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Περίληψη 

H Μέθοδος Σσνοριακού Ολοκληρώμαηος με Ιδιάζοσζες Σσναρηήζεις (Singular Function 

Boundary Integral Method, SFBIM) αλαπηύρζεθε από ηνπο Georgiou et. al. (1996) γηα ηελ 

αξηζκεηηθή επίιπζε δηδηάζηαησλ πξνβιεκάησλ Laplace κε ζπλνξηαθέο ηδηνκνξθίεο. Σηε 

κέζνδν απηή, ε ιύζε πξνζεγγίδεηαη κε ηνπο αξρηθνύο όξνπο ηνπ ηνπηθνύ αλαπηύγκαηνο 

ηεο ιύζεο θνληά ζην ζεκείν ηεο ηδηνκνξθίαο. Σηαζκίδνληαο ηε δηαθνξηθή εμίζσζε κε ηηο 

ζπλαξηήζεηο βάζεο θαηά Galerkin θαη εθαξκόδνληαο ηε δεύηεξε ηαπηόηεηα ηνπ Green, ην 

δηαθξηηνπνηεκέλν πξόβιεκα αλάγεηαη ζε έλα ζύζηεκα νινθιεξσηηθώλ εμηζώζεσλ πάλσ 

ζην ζύλνξν ηνπ ρσξίνπ θαη κάιηζηα καθξηά από ην ηδηάδνλ ζεκείν. Έηζη ε δηάζηαζε ηνπ 

πξνβιήκαηνο κεηώλεηαη θαηά έλα κε ζεκαληηθή κείσζε ηνπ ππνινγηζηηθνύ θόζηνπο. Οη 

ζπλνξηαθέο ζπλζήθεο ηύπνπ Dirichlet επηβάιινληαη κέζσ ζπλαξηήζεσλ πνιιαπιαζηαζηώλ 

Lagrange, νη νπνίεο εκθαλίδνληαη ζαλ επηπξόζζεηνη άγλσζηνη ζην ηειηθό γξακκηθό 

ζύζηεκα θαη πξνζεγγίδνληαη ηνπηθά κε πνιπσλπκηθέο ζπλαξηήζεηο βάζεο. Οη άγλσζηνη 

ζηελ κέζνδν SFBIM είλαη νη ηδηάδνληεο ζπληειεζηέο ηεο πξνζέγγηζεο ηεο ιύζεο, γλσζηνί 

θαη σο γεληθεπκέλνη ζπληειεζηέο ζπγθέληξσζεο ηάζεσλ, θαη νη δηαθξηηέο ηηκέο ησλ 

πνιιαπιαζηαζηώλ Lagrange. Τν γεγνλόο όηη νη ηδηάδνληεο ζπληειεζηέο ππνινγίδνληαη 

απεπζείαο θαη όρη κε κεηεπεμεξγαζία ηεο αξηζκεηηθήο ιύζεο απνηειεί άιιν πιενλέθηεκα 

ηεο κεζόδνπ. Η κέζνδνο κειεηήζεθε θαη εθαξκόζηεθε ζε Λαπιαζηαλά θαη Δηαξκνληθά 

πξνβιήκαηα ζηηο δύν δηαζηάζεηο, δίλνληαο ηαρεία ζύγθιηζε κε ην πιήζνο ησλ 

ηδηνζπλαξηήζεσλ θαη ην πιήζνο ησλ ζπληειεζηώλ Lagrange. Η ζύγθιηζε ηεο κεζόδνπ 

αλαιύζεθε ζεσξεηηθά ζηελ πεξίπησζε δηδηάζηαησλ πξνβιεκάησλ Laplace. 

Οη ζηόρνη ηεο δηαηξηβήο απηήο ήηαλ νη εμήο: 

(i) Η αξηζκεηηθή επαιήζεπζε θάπνησλ ζεσξεηηθώλ απνηειεζκάησλ ζε πξόηππα 

πξνβιήκαηα Laplace. 

(ii) Η απόδεημε ηεο ζύγθιηζεο ηεο κεζόδνπ γηα έλα δηδηάζηαην δηαξκνληθό 

πξόβιεκα κε κηα ζπλνξηαθή ηδηνκνξθία. 

(iii) Η επέθηαζε ηεο κεζόδνπ ζε ηξηδηάζηαηα πξνβιήκαηα Laplace κε ηδηνκνξθίεο 

αθκήο. 

Γηα ηελ επίηεπμε ηνπ πξώηνπ ζηόρνπ κειεηήζακε πξνβιήκαηα Laplace πάλσ ζε θπθιηθνύο 

ηνκείο, κε γλσζηή αλαιπηηθή ιύζε. Απηό επέηξεςε ηε κειέηε ηεο ζύγθιηζεο ηεο κεζόδνπ 

γηα δηάθνξνπο βαζκνύο ηεο πνιπσλπκηθήο πξνζέγγηζεο ησλ πνιιαπιαζηαζηώλ Lagrange 
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θαη ηνλ αθξηβή ππνινγηζκό ησλ ζθαικάησλ πξνζέγγηζεο. Τα αξηζκεηηθά καο 

απνηειέζκαηα ζπκθσλνύλ κε ηε ζεσξεηηθή αλάιπζε ησλ Xenophontos et al. (2006).  

Ο δεύηεξνο ζηόρνο επηηεύρζεθε κε ηελ επέθηαζε ηεο αλάιπζεο ζύγθιηζεο ησλ 

Xenophontos et al. (2006) γηα έλα πξόηππν δηδηάζηαην δηαξκνληθό πξόβιεκα κε 

ζπλνξηαθή ηδηνκνξθία. Απνδείμακε όηη νη ππνινγηδόκελνη ηδηάδνληεο ζπληειεζηέο 

ζπγθιίλνπλ εθζεηηθά κε ην πιήζνο ησλ ηδηνζπλαξηήζεσλ. Εθηειέζακε επίζεο αξηζκεηηθά 

πεηξάκαηα γηα έλα πξόβιεκα ξνήο Stokes γηα ηελ παξνπζίαζε ησλ ζεσξεηηθώλ 

επξεκάησλ.  

Γηα ηνλ ηειεπηαίν ζηόρν επεθηείλακε ηε κέζνδν γηα ηελ επίιπζε ελόο ηξηδηάζηαηνπ 

πξνβιήκαηνο Laplace κε ηδηνκνξθία αθκήο. Η ηνπηθή ιύζε γύξσ από ηελ αθκή κπνξεί λα 

εθθξαζζεί ζαλ έλα αζπκπησηηθό αλάπηπγκα πνπ πεξηιακβάλεη ηηο ηδηνηηκέο θαη ηηο 

ηδηνζπλαξηήζεηο ηνπ αληίζηνηρνπ δηδηάζηαηνπ πξνβιήκαηνο ζε πνιηθέο ζπληεηαγκέλεο, νη 

ζπληειεζηέο ησλ νπνίσλ είλαη νη ιεγόκελεο ζπλαξηήζεηο αθκαίσλ ζπγθεληξώζεσλ ξνήο 

(edge flux intensity functions, EFIFs). Οη παξάγσγνη αλώηεξεο ηάμεο απηώλ ησλ 

ζπλαξηήζεσλ ηεο αμνληθήο ζπληεηαγκέλεο εκθαλίδνληαη ζε κηα εζσηεξηθή απεηξνζεηξά 

ζην αλάπηπγκα ηεο ιύζεο (Yosibash et al., 2002). Πξνζεγγίδνληαο ηηο ζπλαξηήζεηο EFIFs 

κε ηκεκαηηθά πνιπώλπκα βαζκνύ k=0, 1 ζε έλα πιέγκα πιάηνπο h απαιείθνπκε ηελ 

εζσηεξηθή απεηξνζεηξά θαη κπνξνύκε λα επεθηείλνπκε ηε κέζνδν SFBIM. Όπσο θαη ζηα 

δηδηάζηαηα πξνβιήκαηα, ε ιύζε πξνζεγγίδεηαη από έλα πεπεξαζκέλν πιήζνο όξσλ ηνπ 

ηνπηθνύ αλαπηύγκαηνο θαη νη ζπλνξηαθέο ζπλζήθεο Dirichlet επηβάιινληαη κέζσ 

πνιιαπιαζηαζηώλ Lagrange. Οη αξηζκεηηθνί ππνινγηζκνί έδεημαλ όηη νη ππνινγηδόκελεο 

ζπλαξηήζεηο EFIFs ζπγθιίλνπλ κε ηάμε Ο(h
k+1

) σο πξνο ηελ L
2
-λόξκα.
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Abstract

The Singular Function Boundary Integral Method (SFBIM) was introduced by Georgiou et

al. (1996) for solving numerically two-dimensional Laplacian problems with one boundary

singularity. In this method, the solution is approximated by the leading terms of the local

asymptotic expansion near the singular point. By weighting the governing equation with the

eigenfunctions in the Galerkin sense and applying Green’s second identity, the discretized

problem is reduced to a system of boundary integral equations far from the singular point.

This reduces the dimension of the problem by one and leads to considerable computational

savings. Dirichlet boundary conditions are enforced by means of Lagrange multiplier func-

tions, which appear as additional unknowns in the system. These functions are approximated

locally by polynomial basis functions. Therefore, the unknowns in the SFBIM are the coeffi-

cients of the eigenfunctions, also known as singular coefficients or generalized stress intensity

factors, and the discrete Lagrange multiplier values. The fact that the singular coefficients are

calculated directly and not by postprocessing the numerical solution is another advantage of

the method. The latter has been applied to both Laplacian and biharmonic two-dimensional

problems exhibiting fast convergence with the number of singular coefficients and the number

of Lagrange multipliers. The convergence of the method has also been analyzed theoretically

in the case of two-dimensional Laplacian problems.

The objectives of this thesis were:

(i) the numerical verification of certain theoretical results on model two-dimensional problems.
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(ii) the proof of convergence of the method for a two-dimensional biharmonic problem with

one boundary singularity.

(iii) the extension of the method to three-dimensional Laplacian problems with straight-edge

singularities.

For accomplishing the first objective, we considered a Laplacian problem over a circular sector,

with known analytical solution. This allowed us to study the convergence of the method for

various orders of the polynomial approximation of the Lagrange multipliers and to calculate

the exact approximation errors. The numerical results agree well with the theoretical analysis

of Xenophontos et al. (2006).

Objective number two was achieved by extending the convergence analysis from Xenophontos

et. al. (2006) to a model two-dimensional biharmonic problem with a boundary singularity.

We proved that the calculated singular coefficients converge exponentially with the number

of singular functions. To illustrate the theoretical findings, we have carried out numerical

experiments on a Stokes flow problem.

Finally, we extended the method for solving a three-dimensional Laplacian problem with a

straight-edge singularity. The solution in the neighbourhood of the straight edge can be ex-

pressed as an asymptotic expansion involving the eigenpairs of the analogous two-dimensional

problem, which have as coefficients the so-called edge flux stress intensity functions (EFIFs).

The EFIFs are functions of the axial coordinate the higher derivatives of which appear in an

infinite series in the expansion (Yosibash et al., 2002). Approximating the EFIFs by piecewise

polynomials of degree k = 0, 1 defined on a mesh with width h, eliminates the inner infinite

series in the local expansion and allows for the straightforward extension of the SFBIM. As in

the case of two-dimensional problems the solution was approximated by the leading terms of

the local asymptotic solution expansion and the Dirichlet boundary conditions were imposed

by means of Lagrange multiplier functions. Our numerical calculations demostrated that the

calculated EFIFs converge with order O(hk+1), in the L2 norm.
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Chapter 1

Introduction

The solutions of elliptic partial differential equations in two-dimensional domains, such as

the Laplace and the biharmonic equations, exhibit singularities at boundary corners or at

boundary points where there is an abrupt change in the boundary conditions along a smooth

boundary. Such problems are extensively covered in the literature (see, for example, Grisvard

1992, Grisvard 1995, Beagles et al. 1991, Rössle 2000, and more recently Dauge et al. 2011).

Elliptic boundary value problems with boundary singularities appear in many engineering

applications, such as fracture and fluid mechanics. They have also attracted the attention of

numerical analysts, since boundary singularities create convergence difficulties to standard

numerical methods and cause inaccuracies in the numerical solutions, at least locally. These

numerical difficulties are overcome by using special adaptive grid refinement schemes but

the resulting efficiency is not always satisfactory and the required computational cost may

be very high (see, e.g., Bernal and Kindelan, 2010). One notable exception is the high

order p/hp Finite Element Method (FEM) which produces accurate results if the mesh and

polynomial degree of the approximating polynomials is chosen appropriately (see, e.g., Szabó

and Babuška, 1991).

In the past few decades, several methods for treating elliptic boundary value problems with
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boundary singularities have been proposed. Among them one finds the so-called hybrid meth-

ods which incorporate, directly or indirectly, the form of the local asymptotic expansion for

the solution in the approximation scheme. Knowledge of the leading singular coefficients of

the local solution expansion, which in two-dimensional problems are also known as General-

ized Stress Intensity Factors (GSIFs) (Szabó and Babuška, 1991) or Flux Intensity Factors

(Arad et al., 1998), is of great importance in many engineering fields, such as fracture me-

chanics. Many methods have been proposed in the literature for their effective and efficient

approximation, including high order p/hp FEMs with post-processing (Szabó and Yosibash,

1996) and Trefftz methods (Li et al., 2007). In the former, the solution is first approximated

on a refined grid designed especially to capture the singularity and the singular coefficients

are obtained by an extraction formula which uses the computed solution. Methods that do

not require any postprocessing and/or include information about the exact solution in the

approximation scheme, such as Trefftz methods, are more attractive if the approximation of

the coefficients is the main objective.

Trefftz methods have been reviewed by Li and co-workers (Li et al., 2007) who have also

made comparisons with collocation and other boundary methods. Other recent reviews of

methods used for elliptic boundary value problems with boundary singularities can be found

in the articles of Bernal et al. (2009, 2010), who considered both global and local meshless

collocation methods with multiquadrics as basis functions, and Dosiyev and Buranay (2008)

who employed the block method which was proposed for the solution of Laplace problems on

arbitrary polygons.

Singularities in three dimensional Laplace problems have received less attention, mainly due

to their complexity. Different forms of singularity may appear depending on the boundary

geometry and conditions. Both edge and vertex singularities are of interest in applications

(Kondratiev, 1967. Stephan and Whiteman, 1988. Zaltzman and Yosibash, 2009). Yosibash

et al. (2002) discuss the case of the singularity at the intersection of an edge and a vertex.
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Edge singularities appear, for example, in V-notched solids loaded by static loads, in which

the assumption of plane stress or plane strain condition is not valid. For the solution of such

problems, few methods have been proposed, such as the J-integral method (Huber et al.,

1993), the B- and H-integral methods (Meda et al., 1998), and, more recently, the methods

of Costabel et al. (2004) and Yosibash et al. (2002) in which the quantities of interest are

computed by means of a post-processing procedure in a p-version finite element scheme.

Yosibash et al. (2002) presented the solution to the Laplace operator in three-dimensional

domains in the vicinity of straight edges in the form of an asymptotic expansion involving

eigenpairs and having as coefficients the so-called Edge Flux Intensity Functions (EFIFs). It

turns out that the eigenpairs are those of the two-dimensional problem over a plane perpen-

dicular to the edge.

Vertex singularities appear in electromagnetic fields, in magnetic recording, heat transfer,

elasticity, and fluid mechanics problems, as well as in multimaterial problems (Zaltzman and

Yosibash, 2009). Among the earliest analyses of Laplacian solutions in the neighbourhood of

a vertex are those of Stephan and Whiteman (1988) and Beagles and Whiteman (1989) who

used finite elements for the computation of the eigenvalues. Schmitz et al. (1993) also used a

method employing the Boundary Element Method (BEM) instead. Recently, Zaltzman and

Yosibash (2009) derived explicit analytical expressions for the local solution of the Laplace

equation in the neighbourhood of a vertex. They also considered vertices at the intersection

of a crack front and a free surface and provided numerical estimates of the eigenpairs obtained

by extending a modified Steklov method.

In the sections that follow we will give an overview of the various types of singularities found

in two- and three-dimensional Laplacian problems, in order to give the reader a feeling for

what one is faced with when it comes time to approximate the solution to such problems.

Also, this material will serve as the cornerstone of what is to follow in subsequent chapters.
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1.1 Preliminaries

Throughout this dissertation Ω ⊂ R
n, n = 2, 3 will be used to denote an open, bounded

domain with boundary ∂Ω. The space of square integrable functions defined on Ω will be

denoted as usual by L2(Ω). The notation Hk(Ω) will be used to denote the Sobolev spaces

containing functions on Ω, having k generalized derivatives in L2(Ω). For instance,

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}. (1.1)

The norm and seminorm on Hk(Ω) will be denoted by ‖ · ‖k,Ω and |·|k,Ω, respectively.

Let the trace space of functions in H1 (Ω) be denoted by

H1/2 (∂Ω) =
{
u ∈ H1 (Ω) : u|∂Ω ∈ L2 (∂Ω)

}
. (1.2)

With T : H1 (Ω) → H1/2 (∂Ω) denoting the trace operator, the norm of H1/2 (∂Ω) is defined

as

‖ψ‖1/2,∂Ω = inf
u∈H1(Ω)

{
‖u‖1,Ω : Tu = ψ

}
. (1.3)

Then, we define H−1/2 (∂Ω) as the closure of H0 (∂Ω) ≡ L2 (∂Ω) with respect to the norm

‖ϕ‖−1/2,∂Ω = sup
ψ∈H1/2(∂Ω)

∫
∂Ω ϕψ

‖ψ‖1/2,∂Ω
. (1.4)

For other non-integer and/or negative values of k, we will adopt the notations and definitions

found in Lions et al. (1972).

Finally, the letters C and c (with or without subscripts) will be used to denote generic positive

constants independent of any discretization parameters and possibly having different values

in each occurrence.
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1.2 Corner Singularities in Planar Laplacian Prob-

lems

For Laplace problems with corner singularities, the singular functions can be obtained an-

alytically. To demonstrate this for a two dimensional Laplace problem posed on a domain

with a corner, we consider the domain Ω shown in Fig. 1.1 with either Dirichlet or Neumann

boundary conditions on each of the sides S1 and S2.

Figure 1.1: A two-dimensional domain Ω with a corner.

The Laplace equation in polar coordinates is:

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (1.5)

Assuming that u(r, θ) = R(r)Θ(θ) in the above equation and separating variables, we end up

with

r2R′′ + rR′

R
= −Θ′′

Θ
. (1.6)

Since the right hand side of the last equation is a function of θ and the left hand side a

function of r, then they both have to be equal to a constant, say µ2, where the constant µ is

chosen to be positive in order to obtain periodic solutions in θ. We therefore have two second

order, linear, homogeneous ordinary differential equations:

r2R′′ + rR′ − µ2R = 0 (1.7)
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and

Θ′′ + µ2Θ = 0. (1.8)

Now, Eq. (1.8) has solutions of the form

Θ(θ) = A cos(µθ) +B sin(µθ), (1.9)

where A and B are general constants. Equation (1.7) is an Euler differential equation and

using the transformation r = et we get the simpler equation

w′′(t)− µw(t) = 0, (1.10)

which in turn gives solutions for R, of the form

R(r) = Crµ +Dr−µ, (1.11)

where C,D ∈ R. Note that solutions of the form R(r) = Dr−µ are rejected if the solution is

bounded near O. Therefore, our problem has solutions of the form

u(r, θ) =

∞∑

j=1

rµj (Aj cos(µjθ) +Bj sin(µjθ)) , (1.12)

where the singular coefficients Aj, Bj and the eigenvalues µj are uniquely determined by

the geometry and the boundary conditions. For instance, see also Fig. 1.2, if we have

homogeneous Dirichlet boundary conditions on S1 and S2, then Aj = 0 and µj = jπ/α;

if instead we have homogeneous Neumann boundary conditions on both sides of the corner

then Bj = 0 and µj =
(2j+1)π

2α . The case when we have a homogeneous Dirichlet boundary

condition on S1 and homogeneous Neumann boundary condition on S2, is of interest as it

would be part of our model problem in Chapter 3 (see Fig. 3.1). In this case Aj = 0

and µj =
(2j−1)π

2α . More specifically, if in addition α = 3π/4, then we have the the L-shaped

domain discussed in Chapter 2 (see Fig. 2.3 ). Changing the boundary conditions to Neumann

on S1 and Dirichlet on S2 and taking α = π we get the local solution of the celebrated Motz
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Figure 1.2: Various BVPs with singularities and their local solutions.

problem that is often used for testing various methods proposed in the literature: Bj = 0

and µj =
(2j−1)

2 .

The singular coefficients, on the other hand, depend on the boundary conditions on the rest

of the boundary of the problem domain.

1.3 Edge Singularities in Three-Dimensional Lapla-

cian Problems

In this section we consider the Laplace equation and discuss the form of the local solution

near straight edge singularities as shown in Yosibash et al. (2002). In the cylindrical domain

Ω shown in Fig. 1.3, AB is a straight edge and S1 and S2 are rectangles. This domain can be

a subdomain of any domain with a straight edge. We consider the following boundary value
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Figure 1.3: A three-dimensional domain Ω with an edge

problem on Ω: Find u such that

∇2u = 0 in Ω, (1.13)

with boundary conditions

u = g1 on S1

∂u
∂z = g2 on S2




. (1.14)

As shown in Yosibash et al. (2002), the local solution near the edge is of the form

u(r, θ, z) =

K∑

k=1

L∑

ℓ=0

akℓ(z)r
µk (lnr)ℓskℓ(θ) + υ(r, θ, z), (1.15)

with akℓ(z) the unknown EFIFs, which are analytic functions of z away of the vertices. The

functions skℓ(θ) are known as edge eigenfunctions and they are analytic in θ. The function

υ(r, θ, z) belongs in Hq(Ω) where q depents on K and can be as large as required. The

numbers µk+1 ≥ µk are known as edge eigenvalues. If µk is not an integer, then L = 0. In

what follows we assume that µk for k ≤ K are not integers and that no “crossing point”

occurs (cf. Costabel et al.,1993). Under these assumptions Eq. (1.15) becomes

u(r, θ, z) =
K∑

k=1

ak(z)r
µksk(θ) + υ(r, θ, z). (1.16)
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Note that rµnsn(θ) satisfies the Laplace equation on the (r, θ) plane (2-D problem), i.e.

∇2
2D[r

µnsn(θ)] = 0. (1.17)

However, Sn(r, θ, z) = an(z)r
µnsn(θ) does not satisfy the Laplace equation in Ω, i.e.

∇2
3D[an(z)r

µnsn(θ)] = (∇2
2D +

∂2

∂z2
)[an(z)r

µnsn(θ)] =
∂2

∂z2
[an(z)r

µnsn(θ)] 6= 0, (1.18)

Nevertheless, taking into account that an(z) is an analytic function and augmenting Sn by

rµnsn(θ)

∞∑

i=1

∂2i

∂z2i
an(z)r

2i

(
−1

4

)i
∏i
j=1 j(µn + j)

, as demonstrated in Yosibash et al. (2002), the

function

Sn(r, θ, z) = rµnsn(θ)

∞∑

i=0

∂2i

∂z2i
an(z)r

2i

(
−1

4

)i
∏i
j=1 j(µn + j)

(1.19)

satisfies identically the 3-D Laplace equation (see Appendix B).

1.4 Vertex Singularities in Three-Dimensional Lapla-

cian Problems

The extension of the SFBIM for three-dimensional Laplacian problems with conical vertex

singularities will be the subject of a future project. Nevertheless, in this section we discuss the

local solution near a vertex singularity. We consider the Laplace problem that was proposed

and solved by Zaltzman et al. (2009). In the three-dimensional domain Ω depicted in Fig.

1.4. This domain has a conical vertex on its boundary and ω/2 ∈ [0, π]. The problem is

solved in the vicinity of the conical point, with either homogeneous Dirichlet or Neumann

boundary conditions, i.e.

∇2u = 0 in Ω, (1.20)

with

uθ=ω/2 = 0 in ∂ΩC , (1.21)
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Figure 1.4: A three-dimensional domain with a rotationally symmetric conical vertex.

where ∂ΩC = ΓC is the surface of the cone insert. Equation (1.21) may be written as

∂u

∂n

∣∣∣∣
θ=ω/2

=
1

ρ

∂u

∂θ

∣∣∣∣
θ=ω/2

= 0 in ∂ΩC . (1.22)

Writing u as

u(ρ, θ, ϕ) = R(ρ)Θ(θ)Φ(ϕ), (1.23)

and separating variables leads to the following ODEs:

ρ2R′′ + 2ρR′ − ν(ν + 1)R = 0, (1.24)

Φ′′ + µ2Φ = 0, (1.25)

− sin2(θ)Θ′′ − sin(θ) cos(θ)Θ′ −
[
ν(ν + 1) sin2(θ)− µ2

]
Θ = 0, (1.26)

where ν and µ2 are separation constants. The solution to Eq. (1.24) is of the form

R(ρ) = Aρν , (1.27)

where A is a constant. Note that in order to have u ∈ H1(Ω), then there should hold ν ≥ 0.

The solution to Eq. (1.25) is

Φ = B sin(µϕ) + C cos(µϕ), (1.28)

where A and C are constants. Because of conical reentrant corners, a periodic solution is

sought in ϕ , witch leads to the conclusion that µ has to be a positive integer. The case
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µ = 0 is associated with axisymmetric solutions, independent of ϕ. For the solution of Eq.

(1.26) one has to change variables using z = cos(θ), [see Zaltzman and Yosibash(2011) and

the references therein]. Taking into account the axis of symmetry of the domain and that the

solution has to be bounded at θ = 0, the latter authors concluded that the solution to Eq.

(1.26) is of the form

Θ(cos θ) = DPµν (cos θ), (1.29)

where D is a constant and Pµν is the associated Legendre function of the first kind, of degree

ν and order µ. Now, because the BCs give an infinite number of ν’s, which are the roots of

the Legendre function Pµνℓ , they are denoted by two indices ν
(µ)
ℓ . Hence, the solution can be

represented by

u(ρ, θ, ϕ) =

∞∑

µ=0

∞∑

ℓ=1

ρν
(µ)
ℓ [Aµ,ℓ sin(µϕ) +Bµ,ℓ cos(µϕ)]P

µ
νℓ
(cos θ). (1.30)

The expression (1.30) may be used to construct an approximation to the solution, but this

is outside the scope of the present work.

1.5 The SFBIM

The Singular Function Boundary Integral Method (SFBIM), developed by Georgiou et al.

(1996) for (two-dimensional) Laplacian problems with a boundary singularity, belongs to the

class of Trefftz methods. To give a brief overview of the SFBIM (a detailed one is provided in

Chapter 2), we consider Laplace’s equation in a domain Ω with boundary ∂Ω = S1 ∪S2∪S3.

We assume appropriate boundary conditions so that the solution u has a singularity at a

point O, shared by boundary parts S1 and S2. The local expansion for u near O is given by

u =
∞∑

n=1

αnr
µnfn(θ), (1.31)

with µn, fn(θ) known. The coefficients αn are the unknowns of interest.
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In the SFBIM, the solution is approximated by the leading terms of the asymptotic expansion,

uN =

Nα∑

n=1

αNn r
µnfn(θ), (1.32)

and the so-called singular functions rµnfn(θ) are used to weight the governing differential

equation in the Galerkin sense:

∫∫

Ω
rµifi(θ)∇2uN dV = 0, i = 1, 2, . . . , Nα. (1.33)

The discretized equations are then reduced to boundary integrals by means of Green’s the-

orem, reducing the dimension of the problem by one. Since the singular functions exactly

satisfy the boundary conditions on the boundary parts S1 and S2 that share the singularity

we only have to integrate away of the singular point. Hence,

∫

S3

(
∂uN
∂n

rµifi(θ)− uN
∂(rµifi(θ))

∂n

)
dS = 0, i = 1, 2, . . . , Nα. (1.34)

A particular feature of the SFBIM is that Dirichlet conditions are weakly enforced in the

Galerkin sense by means of Lagrange multipliers,

λ ≈ λh =

Nλ∑

j=1

λjM
j, (1.35)

the discrete values of which are additional unknowns.

It has been demonstrated both numerically and theoretically that the method converges

exponentially with the number of singular functions used in the approximation of the solution

and the number of Lagrange multipliers (Xenophontos et al. 2006, Christodoulou et al. 2010).

The method has also been extended to biharmonic problems in two-dimensions arising from

solid and fluid mechanics (Elliotis et al. 2005b, 2006). The main advantages of the SFBIM are

that the dimension of the problem is reduced by one, leading to considerable computational

savings and that the singular coefficients are calculated directly, hence avoiding the need for

post-processing.
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Although the error analysis of the method for two dimensional Laplace problems was discussed

in Xenophontos et al. (2006), there were no numerical results to demonstrate all that was

proven therein. The method was also tested on various two dimensional biharmonic problems,

in Elliotis et al. (2005, 2006, 2007) but there was a lack of theoretical results proving the

rate of convergence that was demonstrated numerically.

1.6 Objectives and Outline of the Thesis

In the present dissertation we extend the SFBIM in a number of ways, leading up to the

extension of the method to three-dimensions. In particular:

• We numerically verify the theoretical results from Xenophontos et al. (2006) by con-

sidering two model Laplace problems over circular sectors with known exact solutions.

Piecewise constant, linear, quadratic and cubic approximations of the Lagrange mul-

tiplier function are used. For linear, quadratic and cubic approximations it is verified

that the approximate solution and the approximations of the singular coefficients con-

verge exponentially, whilst the convergence of the approximate Lagrange multipliers

is algebraic of order equal to the degree of the approximations used. All these results

are in accordance to the theoretical results found in Xenophontos et al. (2006). The

case of piecewise constant approximations is also of interest as it is not covered by the

theory. We observe that for this case the convergence is algebraic of order 3 for the

singular coefficients, of order 2 for the approximate solution and of order 3/4 for the

Lagrange multipliers.

• We provide the proof of convergence of the method for a two-dimensional biharmonic

problem, as a model for the well-known Newtonian stick-slip problem from fluid me-

chanics and establish the exponential convergence rates observed in the calculations by

Elliotis et al. (2005b).
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• The method is extended to a three-dimensional Laplacian problem with a straight edge

singularity. The SFBIM is formulated and applied to two test problems with a straight-

edge singularity caused by two intersecting flat planes, using piecewise polynomials of

degree k = 0, 1 defined on a mesh with width h, for the approximation of the EFIFs.

Our numerical results show that the convergence is, as expected, of O(hk).

The rest of this dissertation is organized as follows. In Chapter 2 we review the formulation

of the SFBIM for a two-dimensional model Laplacian problem and present the error analysis

results from Xenophontos et al. (2006). We also describe the application of the method on a

model two-dimensional biharmonic problem taken from Elliotis et al. (2006). In Chapter 3

we apply the method on two Laplacian problems over circular sectors and we give numerical

evidence in order to verify the theoretical results from Xenophontos et al. (2006). In Chapter

4 we provide the error analysis of the method on a model two-dimensional biharmonic problem

with a boundary singularity, and in Chapter 5 we extend the SFBIM to a three-dimensional

Laplacian problem with an edge singularity and we present numerical results that demonstrate

the approximation of the EFIFs. Finally, in Chapter 6 we summarize our results and provide

ideas for future work.

The reader should be warned that an effort was made for each chapter to be independent,

in order to make the study of a single chapter easier. In addition, as indicated, certain

chapters constitute journal articles that have been published by us. As a result there is some

repetition, mainly in the introductions and the method description.
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Chapter 2

Review of the Singular Function

Boundary Integral Method

In this chapter we present an overview of the Singular Function Boundary Integral Method

(SFBIM) for a model Laplacian as well as a model Biharmonic problem in two-dimensions.

Our goal is to provide the reader with a feel for the formulation of the method, its imple-

mentation, as well as review the existing theoretical and numerical results. The material

presented in the present chapter may also be found in Elliotis et al. (2005 a, b), Xenophontos

et al. (2006) and Christodoulou et al. (2009).

2.1 Introduction

Planar elliptic boundary value problems with boundary singularities have been extensively

studied in the last few decades. Many different methods have been proposed for the solution

of such problems, ranging from special mesh-refinement schemes to sophisticated techniques

that incorporate, directly or indirectly, the form of the local asymptotic expansion, which

is known in many occasions. These methods aim to improve the accuracy and resolve the
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convergence difficulties that are known to appear in the neighborhood of such singular points.

The local solution, centered at the singular point, in polar coordinates (r, θ) is of the general

form:

u(r, θ) =

∞∑

i=1

αi r
µifi(θ) (2.1)

where µi are the eigenvalues and fi are the eigenfunctions of the problem, which are uniquely

determined by the geometry and the boundary conditions along the boundaries sharing the

singular point. The singular coefficients αi, also known as generalized stress intensity factors

(Szabó and Babuška, 1991) or flux intensity factors (Arad et al., 1998), are determined by

the boundary conditions in the rest of the boundary. Knowledge of the singular coefficients

is of importance in many engineering applications, especially in fracture mechanics.

In the past few years, Georgiou and co-workers (Georgiou et al., 1996, 1997; Elliotis et al.,

2002, 2005a, 2005b, 2006, 2007; Li et al., 2006; Xenophontos et al., 2006) developed the

SFBIM, in which the unknown singular coefficients are calculated directly. The solution

is approximated by the leading terms of the local asymptotic solution expansion and the

Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers. The

method has been tested on standard Laplacian and biharmonic problems, yielding extremely

accurate estimates of the leading singular coefficients, and exhibiting exponential convergence

with respect to the number of singular functions.

In this chapter, the SFBIM is reviewed and its convergence is discussed. The method is

presented in section 2.2. In section 2.3, some convergence results for Laplacian problems

are provided. Numerical results for Laplacian and biharmonic problems are presented and

discussed in sections 2.4 and 2.5, respectively. Finally, section 2.6 contains the conclusions and

briefly discusses our current efforts for extending the method to three dimensional Laplacian

problems with edge sngularities.
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2.2 The SFBIM for a planar Laplacian Problem

We consider the Laplacian problem with a boundary singularity, as depicted in Fig. 2.1: Find

u such that

∇2u = 0 in Ω, (2.2)

with boundary conditions

∂u
∂n = 0 on S1

u = 0 on S2

u = f(r, θ) on S3

∂u
∂n = g(r, θ) on S4





, (2.3)

where Ω has a smooth boundary, ∂Ω = S1 ∪ S2 ∪ S3 ∪ S4, with the exception of a boundary

singularity at the corner O, formed by the straight boundary segments S1 and S2. In the

remaining parts of the boundary, either Dirichlet or Neumann boundary conditions apply

and the given functions f and g are such that no other boundary singularity is present.

Figure 2.1: A two-dimensional Laplace equation problem with a boundary singularity.

The asymptotic expansion of the solution in polar co-ordinates (r, θ) centered at the singular

point, is given by (see, e.g., Grisvard, 1995)

u(r, θ) =
∞∑

i=1

αi r
µifi(θ), (2.4)
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where αi are the unknown singular coefficients orGeneralized Stress Intensity Factors (GSIFs),

µi are the singularity powers arranged in ascending order, and the functions fi(θ) represent

the θ-dependence of the eigensolution. Knowledge of the GSIFs is of great importance in ap-

plications (Georgiou et al., 1996; Arad et al., 1998), and their reliable and efficient extraction

is the main focus of the SFBIM.

The SFBIM is based on the approximation of the solution by the leading terms of the local

solution expansion, viz.

uN =

Nα∑

i=1

αNi W
i, (2.5)

where αNi are the approximate GSIFs and Nα is the number of singular functions used, which

are defined by

W i ≡ rµifi(θ). (2.6)

Note that the approximation (2.5) is valid only if Ω is a subset of the convergence domain of

expansion (2.4).

By applying Galerkin’s principle, we obtain

∫∫

Ω
W i∇2uN dV = 0, i = 1, 2, . . . , Nα. (2.7)

By double application of Green’s second identity, the above volume integral becomes

∫

∂Ω
W i ∂uN

∂n
dS −

∫

∂Ω
uN

∂W i

∂n
dS +

∫∫

Ω
ū∇2W i dV, i = 1, 2, . . . , Nα (2.8)

and, since the singular functions, W i, are harmonic, the above volume integral is reduced to

a boundary one, as follows:

∫

∂Ω

(
∂uN
∂n

W i − uN
∂W i

∂n

)
dS = 0, i = 1, 2, . . . , Nα. (2.9)

It is clear that the dimension of the problem is reduced by one, leading to a considerable

reduction of the computational cost. Since, now W i exactly satisfy the boundary conditions
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along S1 and S2, the above integral along these boundary segments is identically zero, yielding

∫

S3

(
∂uN
∂n

W i − uN
∂W i

∂n

)
dS +

∫

S4

(
∂uN
∂n

W i − uN
∂W i

∂n

)
dS = 0, i = 1, 2, . . . , Nα.

(2.10)

It should be noted that the integrands in Eq. (2.10) are non-singular and all integrations are

carried out far from the boundaries causing the singularity.

To impose the Neumann condition along S4, we simply substitute the normal derivative

by the known function g (see Eq. (2.3)). The Dirichlet condition along S3 is imposed by

means of a Lagrange multiplier function λ, replacing the normal derivative. The function λ

is expanded in terms of standard, polynomial basis functions M j of degree p, as

λ ≈ λh =

Nλ∑

j=1

λjM
j, (2.11)

where Nλ represents the total number of the unknown discrete Lagrange multipliers (or,

equivalently, the total number of Lagrange-multiplier nodes) along S4. The basis functions

M j are used to weight the Dirichlet condition along the corresponding boundary segment S3.

We thus obtain the following linear system of Nα +Nλ discretized equations:

∫

S3

(
λhW

i − uN
∂W i

∂n

)
dS −

∫

S4

uN
∂W i

∂n
dS = −

∫

S4

W i g(r, θ) dS, i = 1, 2, . . . , Nα,

(2.12)
∫

S3

uNM
j dS =

∫

S3

f(r, θ)M j dS, j = 1, 2, . . . , Nλ. (2.13)

The above system can be written in the following block form:



K1 K2

KT
2 O






A

Λ


 =



F1

F2


 , (2.14)

where A = [αN1 , ..., α
N
Nα

] is the vector of the approximate singular coefficients, Λ = [λ1, ..., λNλ
]

is the vector of the unknown Lagrange multipliers, submatrices K1 and K2 contain the

coefficients of the unknowns (obviously, K1 is symmetric), and vectors F1 and F2 contain

the right hand side contributions of Eqs. (2.12) and (2.13), respectively. It is easily shown
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that the system (2.14) is symmetric and nonsingular, provided Nα > Nλ. The “optimal”

relationship between these two parameters will be discussed in the next section.

2.3 Convergence Results

In this section we briefly present results from Xenophontos et al. (2006) which show that the

method converges at an exponential rate. To this end let

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}, (2.15)

denote the usual Sobolev space, with ‖ · ‖1,Ω denoting its norm, set

H1
∗ (Ω) = {u ∈ H1(Ω) : u|S2 = 0}, (2.16)

and note that u ∈ H1
∗ (Ω). The space

H1/2(∂Ω) = {u ∈ H1(Ω) : u|∂Ω ∈ L2(∂Ω)}, (2.17)

is referred to as the trace space of functions in H1(∂Ω) and its norm will be denoted by

‖ · ‖1/2,Ω. Finally, the dual space of H1/2(∂Ω), denoted by H−1/2(∂Ω), with norm ‖ · ‖−1/2,Ω,

will also be used (see Xenophontos et al., 2006 for more details). The approximate solution

uN , will be chosen from the finite dimensional space Vα ⊂ H1
∗ (Ω), defined by

Vα = span{W i}Nα
i=1. (2.18)

The Lagrange multiplier function λ belongs to H−1/2(S3) and its approximation will be

chosen from the finite dimensional space Vλ which is defined as follows. Let S3 be divided

into quasiuniform sections Γi, i = 1, 2, . . . , n such that S3 = ∪ni=1Γi. Let hi = |Γi| and

set h = max
1≤i≤n

hi. We assume that for each segment Γi there exist an invertible mapping
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F : I → Γi which maps the interval I = [−1, 1] to Γi, and define

Vλ = {λh : λh|Γi ◦ F−1
i ∈ Pp(I), i = 1, 2, . . . , n}, (2.19)

where Pp(I) is the set of polynomials of degree ≤ p on I = [−1, 1]. In other words, the

Lagrange multiplier function λ is a linear combination of piecewise polynomials of degree p,

defined on a quasiuniform partition of S3 characterized by the meshwidth h. Note that the

number of Lagrange multipliers Nλ satisfies Nλ = O(p/h).

In Xenophontos et al. (2006) it was shown that if u and λ = ∂u/∂n are approximated by uN

and λh, given by Eqs. (2.5) and (2.11), respectively, then there exists a positive constant C,

independent of Nα and Nλ, such that

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C

{
inf
v∈Vα

‖u− v‖1,Ω + inf
η∈Vλ

‖λ− η‖−1/2,S3

}
. (2.20)

Using the above best approximation result it was further shown that if λ ∈ Hk(S3) for some

k ≥ 1, then there exists positive constants C and β ∈ (0, 1), independent of Nα and Nλ, such

that

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C

{√
Nαβ

Nα + hmp−k
}
, (2.21)

where m = min{k, p + 1}. Moreover, since the error between the exact coefficients αi and

approximate coefficients αNi satisfies

∣∣αi − αNi
∣∣ ≤ C ‖u− uN‖L2(Ω) , (2.22)

we have

∣∣αi − αNi
∣∣ ≤ CβNα , (2.23)

which shows that the method approximates these coefficients at an exponential rate, as

Nα → ∞.

Based on the error estimate (2.21) one may obtain the “optimal” matching between the

parameters Nα and h, i.e. the relationship between the number of singular functions and the
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number of Lagrange multipliers used in the method, by choosing them in such a way so that

the error in (2.22) is balanced. For example in the case when p is kept fixed and h → 0 (or

equinalently Nλ→ ∞) we take hp+1 ≈
√
Nαβ

Nα . This leads to the following approximate

expression for Nα:

Nα ≈ (p + 1)

∣∣∣∣∣
ln 2p

Nλ−1

ln β

∣∣∣∣∣ . (2.24)

In practice, Eq. (2.24) is used as follows: We pick a value for Nλ and solve the linear

system (2.14) for several values of Nα > Nλ concentrating only on the calculation of the first

approximate αN1 , which we record. Once we reach a value for Nα which yields an approximate

αN1 with, say, 16 converged significant digits, we then use Eq. (2.24) to calculate the constant

β using the values for Nα and Nλ which gave us the converged coefficient αN1 . With β now

known, we can compute subsequent “optimal” pairs of Nα and Nλ.

2.4 Numerical Results for two Laplace Problems

Results for the cracked-beam problem (Georgiou et al., 1997) and a Laplacian problem over

an L-shaped domain (Elliotis et al. 2005) are presented in this section. The former problem

is defined in Fig. 2.2 . A singularity arises at x = y = 0, where the boundary condition

suddenly changes from u = 0 to ∂u/∂y = 0. The local solution is given by

u =
∞∑

j=1

αjr
(2j−1)

2 cos

[(
2j − 1

2

)
θ

]
, (2.25)

and its approximation by

uN =

Nα∑

j=1

αNj r
(2j−1)

2 cos

[(
2j − 1

2

)
θ

]
.

The system of discretized equations, resulting from the application of the SFBIM, consists

of two equation sets as follows:

−
∫

S3

uN
∂W i

∂x
dy+

∫

S4

(
λW i − uN

∂W i

∂y

)
dx+

∫

S5

uN
∂W i

∂x
dy = 0, i = 1, 2, . . . , Nα, (2.26)
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i αNi

1 0.191118631972

2 −0.118116071967

3 0.000000000000

4 0.000000000000

5 −0.01254698598

6 −0.01903340371

Table 2.1: The coefficients αNi calculated with Nα = 50 and Nλ = 25.

∫

S4

uNM
jdx = 0.125

∫

S4

M jdx = 0, j = 1, 2, . . . , Nλ. (2.27)

Figure 2.2: The cracked-beam problem.

The interval [−1/2, 1/2], corresponding to the boundary segment S4, is subdivided unformly

into quadratic elements and, thus, the Lagrange multiplier function is approximated locally by

quadratic polynomials. All numerical integrations were performed using Gaussian quadrature

with 15 nodes on each subinterval. Using Eq. (2.24), we find that the “optimal” values for

Nα and Nλ are 50 and 25, respectively, and using them we calculate the first 6 approximate

coefficients, as shown in Table 2.1.
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Figure 2.3: A Laplacian problem over an L-shaped domain.

The second Laplacian problem is depicted in Fig. 2.3. This is equivalent to a Poisson equa-

tion problem, ∇2u = −1, over an L-shaped domain, with homogeneous Dirichlet boundary

conditions along the whole boundary. Note that along boundary parts S2 and S3 essential

boundary conditions are applied. Due to symmetry, only half of the domain is considered.

The local solution is given by

u =

∞∑

j=1

αjr
2(2j−1)

3 sin

[
2

3
(2j − 1)θ

]
. (2.28)

The quantity 2α1/3 is of interest, since it may be considered as the leading “generalized

stress intensity factor” (see Arad et al., 1998). It should be noted that two sets of Lagrange

multiplier functions, denoted by λA and λB , are now required. Thus, the Dirichlet boundary

conditions along S2 and S3 are replaced by:

λA =
∂uN
∂x

=

NλA∑

j=1

λjAM
j and λB =

∂uN
∂y

=

NλB∑

j=1

λjBM
j , (2.29)

where NλA and NλB are the numbers of nodes along S2 and S3, respectively. The following

system of Nα +NλA +NλB linear equations is thus obtained:

−
∫

S2

(
λAW

i − uN
∂W i

∂x

)
dy +

∫

S3

(
λBW

i − uN
∂W i

∂y

)
dx = 0, i = 1, 2, . . . , Nα, (2.30)

−
∫

S2

uNM
jdy =

∫

S2

upM
jdy, j = 1, 2, . . . , NλA , (2.31)

∫

S3

uNM
kdx =

∫

S3

upM
kdx, k = 1, 2, . . . , NλB . (2.32)
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As before,M j are chosen as (piecewise) quadratic polynomials and all numerical integrations

are performed using Gaussian quadrature with 15 nodes on each subinterval. The “optimal”

values for Nα and Nλ = NλA + NλB are found via Eq. (2.24) to be Nα = 90 and Nλ = 38.

The computed leading singular coefficients are listed in Table 2.2.

i αNi i αNi

1 0.40193103 9 -0.000719

2 0.09364829 10 -0.000565

3 −0.0093830 11 -0.000395

4 −0.0298851 12 -0.000296

5 −0.0083588 13 -0.000219

6 −0.0047302 14 -0.000173

7 −0.0015451 15 -0.000138

8 −0.001098

Table 2.2: Converged values of the leading singular coefficients with Nα = 90 and

Nλ = 38.

2.5 The SFBIM for a Planar Biharmonic Problem

In this section we describe the extension of the SFBIM to biharmonic problems arising in

fracture mechanics. Even though no convergence analysis was available before this work, the

method was tested on various biharmonic problems (Elliotis et al., 2005a, 2005b, 2006, 2007)

and was found to converge (again exponentially) with respect to the number of singular

functions. The convergence analysis for a model biharmonic problem with one boundary

singularity is presented in Chapter 4. Here we consider a two-dimensional solid elastic plate
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containing a single edge crack subjected to a uniform inplane load normal to the two edges

parallel to the crack, while the remaining edges are stress free. The resulting boundary value

problem is to find u such that:

∇4u = 0 in Ω = (−1, 1) × (0, 1), (2.33)

with

u = 0, ∂u
∂y = 0, on SA

∂u
∂y = 0, ∂3u

∂y3 = 0, on SB

u = 2, ∂u
∂x = 2, on SC

u = 1
2(x+ 1)2, ∂u

∂y = 0, on SD

u = 0, ∂u
∂x = 0, on SE





(2.34)

where ∂Ω = SA ∪ SB ∪ SC ∪ SD ∪ SE.

Figure 2.4: Model biharmonic problem.

The asymptotic expansion for u in the neighborhood of the singular point O is given by

u(r, θ) =

∞∑

j=1

[
cjW

j
1 (r, θ) + djW

j
2 (r, θ)

]
, (2.35)

where (r, θ) are the polar coordinates centered at O, and cj . dj correspond to the even and

odd coefficients, respectively (see also Schiff 1979). The two sets of singular functions W j
k ,

j = 1, 2, . . . , Nα, k = 1, 2, are given by

W j
k ≡µj+1 fk(θ, µj), (2.36)
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where

f1(θ, µj) = cos(µj − 1)θ − cos(µj + 1)θ, µj = j (2.37)

and

f2(θ, µj) = cos(µj − 1)θ − µj − 1

µj + 1
cos(µj + 1)θ, µj = j − 1/2. (2.38)

Note that the singular functions W j
k satisfy the PDE (2.33) and the boundary conditions on

SA and SB.

As in the Laplacian case, the solution will be approximated by the leading terms of the

asymptotic expansion, viz:

uN =

Nα∑

i=1

cNi W
i
1 +

Nα∑

i=1

dNi W
i
2, (2.39)

where cNi and dNi are the approximations to the coefficients. Applying Galerkin’s principle,

the governing equation is weighted by the singular functions, which gives the following set of

discretized equations:

∫∫

Ω
W i
k∇4uNdV = 0, i = 1, 2, . . . , Nα, k = 1, 2. (2.40)

Next, applying Green’s theorem twice and since the singular functions satisfy the governing

biharmonic equation (2.33), the above integrals are reduced to

∫

∂Ω

(
∂uN
∂n

∇2W i
k − uN

∂(∇2W i
k)

∂n

)
dS +

∫

∂Ω

(
∂(∇2uN )

∂n
W i
k −∇2uN

∂W i
k

∂n

)
dS = 0, (2.41)

for i = 1, 2, . . . , Nα, k = 1, 2. Now, since W j
k satisfy exactly the boundary conditions along

SA and SB, the above integral along these boundary segments is identically zero. Therefore,

we have

∫

S

(
∂uN
∂n

∇2W i
k − uN

∂(∇2W i
k)

∂n

)
dS +

∫

S

(
∂(∇2uN )

∂n
W i
k −∇2uN

∂W i
k

∂n

)
dS = 0, (2.42)

where i = 1, 2, . . . , Nα, k = 1, 2 and S = SC ∪ SD ∪ SE. As before, the Dirichlet boundary

conditions are imposed by means of Lagrange multipliers. In the case of Laplacian problems,

the Lagrange multipliers replace the normal derivative ∂uN/∂n. In the case of biharmonic
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problems, another option for the Lagrange multipliers is to replace ∂∇2uN/∂n, which is

the choice made here. In the present problem, Dirichlet boundary conditions appear along

the three boundary parts of interest, i.e. SC , SD and SE, where the normal derivative of

the solution is also specified. Therefore, Lagrange multipliers have been chosen to replace

∂∇2uN/∂n on boundary parts SC , SD and SE . These are partitioned into three-node elements

and the corresponding Lagrange multipliers, denoted respectively by λC , λD and λE , are

expanded in terms of quadratic basis functions M j as:

λC =
∂(∇2uN )

∂x
=

NλC∑

j=1

λjCM
j on SC , (2.43)

λD =
∂(∇2uN )

∂y
=

NλD∑

j=1

λjDM
j on SD, (2.44)

and

λE =
∂(∇2uN )

∂x
=

NλE∑

j=1

λjEM
j on SE, (2.45)

whereNλC , NλD and NλE are the numbers of the discrete Lagrange multipliers λjC , λ
j
D and λjE

along the corresponding boundaries. The discrete Lagrange multipliers appear as additional

unknowns in the problem. The required NλC +NλD +NλE additional equations are obtained

by weighting the Dirichlet boundary conditions along SC , SD and SE by the quadratic basis

functions M j in the Galerkin sense. The following system of 2Nα + NλC + NλD + NλE

discretized equations is thus obtained:

∫
SC

(
λCW

i
k − uN

∂(∇2W i
k)

∂x −∇2uN
∂W i

k
∂x

)
dy+

∫
SD

(
λDW

i
k − uN

∂(∇2W i
k)

∂y −∇2uN
∂W i

k
∂y

)
dx+

∫
SE

(
−λEW i

k + uN
∂(∇2W i

k)
∂x +∇2uN

∂W i
k

∂x

)
dy+

= −
∫
SC

2∇2W i
kdy i = 1, 2, . . . , Nα k = 1, 2,

(2.46)
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∫

SC

uNM
jdy =

∫

SC

2M jdy, j = 1, 2, . . . , NλC , (2.47)

∫

SD

uNM
jdy =

∫

SD

[
1

2
(x+ 1)2

]
M jdx, j = 1, 2, . . . , NλD , (2.48)

−
∫

SE

uNM
jdy = 0, j = 1, 2, . . . , NλE . (2.49)

As in the case of Laplacian problems, the integrands in Eqs. (2.46)–(2.49) are non-singular

and all integrations are carried out far from the boundaries causing the singularity. Also, the

stiffness matrix is symmetric and becomes singular ifNλ > 2Nα whereNλ = NλC+NλD+NλE .

Since there was no theory available for the biharmonic problems, what was done in Elliotis et

al. (2006) was to find the “optimal” values of Nα and Nλ by systematic runs. It was found

that the choice Nα = 47, Nλ = 39(= 7 + 25 + 7) produces very accurate results. These are

converged in the sense that they are not affected by moderate changes of Nα and Nλ (see

Elliotis et al. 2006 for more details). Table 2.5 shows the approximate coefficients cNi , d
N
i ,

i = 1, 2, . . . , 10 obtained with this choice of parameters, along with the results from (Li et al.

2004) for comparison. It appears that the SFBIM can be effective for biharmonic problems

as well, and this will be mathematically established in Chapter 4.

2.6 Conclusions

The SFBIM for planar Laplacian and biharmonic problems with boundary singularities has

been reviewed. The convergence of the method has been demostrated theoretically for Lapla-

cian problems and numerical applications have been presented for two Laplacian and a bi-

harmonic elasticity test problems.
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Approx. coeffs Collocation Trefftz SFBIM

d1 2.12751351 2.1275134

d2 −1.0366925 −1.036692

d3 0.0371711 0.037170

d4 0.117749 0.11775

d5 −0.122728 −0.12273

d6 −0.109909 −0.10991

d7 −0.002255 −0.00226

d8 0.006863 0.00686

d9 −0.005936 −0.00594

d10 −0.011032 −0.01103

c1 0.1667621 0.166762

c2 0.0624433 0.062444

c3 −0.1324738 −0.132474

c4 −0.010221 −0.01022

c5 0.105846 0.10585

c6 0.031153 0.03115

c7 −0.007149 −0.00714

c8 −0.001684 −0.00169

c9 0.009484 0.00950

c10 0.004281 0.00426

Table 2.3: Comparison of converged values of the coefficients with those reported by

Li et al. (2004) using the Collocation Trefftz method.
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Chapter 3

The SFBIM for Laplacian Problems

Over Circular Sectors

In this chapter we consider two model Laplacian problems over a circular sector, with an

exact solution, in order to verify the theoretical convergence of the SFBIM.

All the results discussed in this chapter are also found in Christodoulou et al. (2010).

3.1 Introduction

In the last few decades there has been an extensive study of planar elliptic boundary value

problems with boundary singularities. The methods that have been proposed for the solution

of such problems range from special mesh-refinement schemes to sophisticated techniques that

incorporate, directly or indirectly, the form of the local asymptotic expansion, which is known

in many occasions. These methods aim to improve the accuracy and resolve the convergence

difficulties that are known to appear in the neighborhood of singular points.

The local solution, centered at the singular point, in polar coordinates (r, θ) is of the general
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form

u(r, θ) =
∞∑

j=1

αjr
µjfj(θ), (3.1)

where µj , fj are, respectively, the eigenvalues and eigenfunctions of the problem, which are

uniquely determined by the geometry and the boundary conditions along the boundaries

sharing the singular point. The singular coefficients αj also known as generalized stress

intensity factors or flux intensity factors (Arad et al., 1998), are determined by the boundary

conditions in the rest of the boundary. Knowledge of the singular coefficients is of importance

in many engineering applications, especially in fracture mechanics.

In the past few years, Georgiou and co-workers (Georgiou 1996, 1997; Elliotis 2002, 2005a,

2005b, 2006, 2007; Li 2006; Xenophontos 2006) developed the Singular Function Boundary

Integral Method (SFBIM), in which the unknown singular coefficients are calculated directly.

The solution is approximated by the leading terms of the local asymptotic solution expansion

and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipli-

ers. The method has been tested on standard Laplacian and biharmonic problems, yielding

extremely accurate estimates for the leading singular coefficients, and exhibiting exponential

convergence with respect to the number of singular functions. Theoretical results on the

convergence of the method in the case of Laplacian problems where given by Xenophontos et

al. (2006).

The SFBIM belongs to the class of boundary approximation methods (BAMs) or Trefftz

methods (TM), which have been recently reviewed by Li and co-workers Li et al. (2004) and

compared to collocation and other boundary methods. Other recent reviews of methods used

for elliptic boundary value problems with boundary singularities can be found in the articles

of Bernal et al. (2009) who considered both global and local meshless collocation methods

with multiquadrics as basis functions, and of Dosiyev and Buranay (2008) who employed the

block method which was proposed for the solution of Laplace problems on arbitrary polygons.

The objective of this chapter is to apply the SFBIM to two model Laplacian problems over
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circular sections in order to investigate the effect of the order of the Lagrange multiplier

approximation in connection with the theoretical error estimates.

In section 3.2, two Laplacian problems over circular sections are presented. One problem has

Dirichlet and the other Neumann boundary conditions along the arc. The formulation of the

method for both cases is given in section 3.3. In section 3.4, numerical results are presented

for piecewise constant, linear, quadratic and cubic basis functions, used for the approximation

of the Lagrange multipliers. These results are compared with the theoretical error estimates.

Finally, section 3.5 summarizes the conclusions.

3.2 The Model Problems

We consider two Laplacian test problems over circular sectors of angle απ and radius R, as

depicted in Fig. 3.1. A boundary singularity occurs at the origin which is due, not only to

the geometry (i.e. the presence of an angle in the boundary) but also to the fact that different

boundary conditions are imposed on the boundary parts S1 (θ = 0) and S2 (θ = απ). The

two test problems differ only in the boundary condition along the circular arc S3, where

Dirichlet and Neumann boundary conditions are respectively prescribed. For both problems

the local solution is

u =

∞∑

j=1

αjr
µj sin(µjθ). (3.2)

In problem 1 ( Fig. 3.1a), the Dirichlet boundary condition along S3 is given by

u = f(θ) = θ − θ2

2απ
. (3.3)

In problem 2 (Fig. 3.1b), the Neumann boundary condition along S3 is given by

∂u

∂r
= g(θ) =

θ

απ
. (3.4)
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(a) (b)

O O

∂u
∂θ = 0 ∂u

∂θ = 0

S2 S2

S1 S1u = 0 u = 0θ = 0 θ = 0

u = f(θ) ∂u
∂r = g(θ)∇2u = 0 ∇2u = 0

θ = απ θ = απ

S3 S3

Figure 3.1: Test Laplacian problems over circular sectors. (a) Problem 1 (b) Problem

2.

For both problems, we have

µj =
2j − 1

2α
. (3.5)

The singular coefficients for problem 1 are given by

αj =
16α

π2Rµj (2j − 1)3
, (3.6)

and for problem 2 by

αj =
(−1)j+116α

π2Rµj−1(2j − 1)3
. (3.7)

3.3 Formulation of the SFBIM

The SFBIM is based on the approximation of the solution by the leading terms of the local

solution expansion:

uN =

Nα∑

j=1

αNj Wj , (3.8)

where Nα is the number of singular functions Wj = rµj sin(µjθ). By applying Galerkin’s

principle, we obtain
∫∫

Ω
Wj∇2uNdV = 0, j = 1, 2, ..., Nα . (3.9)

34

Evg
en

ia 
Chri

sto
do

ulo
u



By double application of Green’s second identity, and keeping in mind that the singular

functions Wj are harmonic, the above volume integral becomes

∫

∂Ω
Wj

∂uN
∂n

dS −
∫

∂Ω
uN

∂Wj

∂n
dS = 0, j = 1, 2, ..., Nα . (3.10)

Now, since the Wj ’s satisfy the boundary conditions along S1 and S2, the above integral

along these boundaries is zero. Therefore, we get

∫

S3

(
Wj

∂uN
∂n

− uN
∂Wj

∂n

)
dS = 0, j = 1, 2, ..., Nα. (3.11)

It should be noted that integration is needed only along S3, i.e. far from the singularity and

not along the boundary parts causing the singularity.

3.3.1 Formulation of Problem 1

The Dirichlet condition along S3 is imposed by means of a Lagrange multiplier function

λ, which replaces the normal derivative. The function λ is expanded in terms of standard

polynomial basis functions Mi of order p:

λ =
∂uN
∂n

=

Nλ∑

i=1

λiMi, (3.12)

where Nλ represents the total number of unknown discrete Lagrange multipliers λi (or, equiv-

alently, the total number of Lagrange multiplier nodes) along S3. The basis functions Mi are

used to weigh the Dirichlet condition along the corresponding boundary segment S3. Hence,

we obtain the following symmetric system of Nα +Nλ discretized equations:

∫

S3

(
λWj − uN

∂Wj

∂n

)
dS = 0, j = 1, 2, ..., Nα, (3.13)

∫

S3

uNMidS =

∫

S3

f(r, θ)MidS, i = 1, 2, ..., Nλ. (3.14)

The above system can be written in (block) matrix form as



DNα×Nα KNα×Nλ

KT
Nλ×Nα

ONλ×Nλ






A

Λ


 =



O

F


 , (3.15)
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where A and Λ are, respectively, the vectors of unknown singular coefficients and Lagrange

multipliers. It turns out that for this simple geometry the submatrix D is always diagonal

with

Dii = −µiR2µi
απ

2
. (3.16)

The submatrix K and the forcing vector F are given by

Kij = Rµi+1

∫ απ

0
Mj sinµiθdθ, (3.17)

Fi = R

∫ απ

0
f(θ)Midθ, (3.18)

and can be calculated analytically for various orders p of the approximation of the Lagrange

multiplier function. The entries in K and F for p = 0, 1, 2 and 3 are given in the Appendix

A.

According to the analysis in Xenophontos et al. (2006), if λ ∈ Hk(S3) for some k ≥ 1 and λh

is the approximation to the Lagrange multiplier function with h being the meshwidth, then

there exist positive constants C and β ∈ (0, 1), independent of Nα and h such that

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C{

√
Nαβ

Nα + hmp−k}, (3.19)

where m = min{k, p + 1}. Here, Hk(Ω), k ∈ N is the usual Sobolev space which contains

functions that have k generalized derivatives in the space of squared integrable functions

L2(Ω). The norm ‖ · ‖1,Ω is defined, as usual, by

‖f‖1,Ω :=

[∫

Ω
{f2 + f2x + f2y }dxdy

]1/2
. (3.20)

The norm ‖·‖−1/2,S3
that appears in (3.19) is defined as follows: LetH1/2(S3) denote the space

of functions in H1(Ω) whose (trace) values on S3 belong to L2(S3), let T : H1(Ω) → H1/2(S3)

denote the trace operator, and define the norm

‖ψ‖1/2,S3
= inf

u∈H1(Ω)
{‖u‖1,Ω : Tu = ψ}. (3.21)
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Then,

‖φ‖−1/2,S3
= sup

ψ∈H1/2(S3)

∫
S3
φψ

‖ψ‖1/2,S3

. (3.22)

For more details see Xenophontos et al. (2006).

From (3.19) it is clear that the approximate solution converges exponentially with respect to

the number of singular functions, Nα. Moreover, if we choose the two errors in (3.19) to be

balanced, we obtain the following relationship between the number of singular functions and

the number of basis functions used to approximate the Lagrange multiplier:

hp ≈
√
Nαβ

Nα ⇐⇒
(

απ

Nλ − 1

)p
≈
√
Nαβ

Nα ⇒ (3.23)

Nλ ≈ 1 +
απ

(√
NαβNα

)1/p . (3.24)

It was also shown in Xenophontos et al. (2006) that

|αj − αNj | ≤ CβNα , (3.25)

which shows that the approximate singular coefficients αNj converge exponentially with re-

spect to the number of singular functions.

3.3.2 Formulation of Problem 2

To impose the Neumann conditions, the normal derivative in (3.11) is simply substituted by

the known function g. It turns out that for this problem all integrations can be performed

analytically as this substitution gives

∫

S3

uN
∂Wi

∂n
dS =

∫

S3

gWidS , i = 1, 2, ..., Nα . (3.26)

The above expression becomes

αiR
2µi−1µi

∫ απ

0
sin2 (µiθ)dθ = Rµi

∫ απ

0
g(θ) sin(µiθ)dθ, (3.27)

from which we find that

αi =
4

Rµi−1π(2i− 1)

∫ απ

0
g(θ) sin(µiθ)dθ =

(−1)i+116α

Rµi−1π2(2i− 1)3
, (3.28)
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and the method is equivalent to the method of separation of variables. In the next section

we will present numerical results for the first test problem.

3.4 Numerical Results

We show results for three different values of the constant α defining the angle θ of the circular

sector: α = 1, 1.5, 2, which correspond to a semi-circle, an L-shaped domain and a domain

with a slit, respectively. Our goal is to verify that

‖u− uN‖1,Ω + ‖λ− λh‖−1/2,S3
≤ C{

√
Nαβ

Nα + hmp−k}, (3.29)

where m = min{k, p + 1}, as well as

|αj − αNj | ≤ CβNα . (3.30)

3.4.1 Semi-Circle (α = 1)

First we consider the case α = 1 for the angle θ, which corresponds to the domain being

a semi-circle. Our first step was to determine the constant β appearing in (3.29), which

was done as follows: We choose a value for Nλ, say Nλ = 10, and solve the linear system

(3.11) for various values of Nα > 10, using, e.g., p = 2. Concentrating on the first singular

coefficient, we record the results in Table 3.1. Since the exact value of the first coefficient

is α1 = 16/π2 ≈ 1.621138938277404, we see from the results of Table 3.1 that αN1 has

“converged” once Nα = 30. Hence, using (3.24) and the “optimal” pair Nα = 30, Nλ = 10

we compute the value for β as β ≈ 0.88.

With β known, we use (3.30) to determine subsequent “optimal” values forNλ and Nα, for use

in our computations. We should note that in general, the exact value of the first coefficient is

unknown, hence in practice we choose the “optimal” value of Nα based on the changes that

appear in the computed αN1 , i.e. once the value of αN1 does not change significantly.
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Nα αN1 Nα αN1

12 1.617187500000000 27 1.621138938152942

13 1.621215820312500 28 1.621138938197758

14 1.619140625000000 29 1.621138938231953

15 1.621154785156250 30 1.621138938258757

16 1.622070312500000 31 1.621138938280287

17 1.621398925781250 32 1.621138938297822

18 1.621582031250000 33 1.621138938312330

19 1.621154785156250 34 1.621138938324523

20 1.621215820312500 35 1.621138938334964

21 1.621138935554673 36 1.621138938344132

22 1.621138937140710 37 1.621138938352468

23 1.621138937635686 38 1.621138938360383

24 1.621138937869855 39 1.621138938368192

25 1.621138938004718 40 1.621138938368413

26 1.621138938092001

Table 3.1: Approximate singular coefficient aN1 , computed with Nλ = 10, α = 1.
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In Fig. 3.2 we show the convergence of the approximate solution and in particular the

percentage relative error in the approximation of u versusNα, in a semi-log scale for p = 1, 2, 3.

Since each curve becomes a straight line as Nα is increased, we see that the error decreases

at an exponential rate and the convergence as predicted by (3.29) is verified. Comparing the

error curves in Fig. 3.2 we observe that the slope for p = 3 is smaller than that for p = 1 at

high Nα, which is, of course unexpected. This effect may be due to the fact that the number

of Lagrange multipliers predicted, under certain assumptions, from (3.29) is not optimal.
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Figure 3.2: Convergence of the approximate solution uN , α = 1.

Figures 3.3–3.5 show the percentage relative error in the first four singular coefficients, versus

Nα in a semi-log scale, for p = 1, 2, 3, respectively. The exponential convergence as predicted

by (3.29) is again readily visible in all three plots.

Next, we would like to compute the error in the approximation of the Lagrange multipliers.

Note that for any v ∈ H−1/2(S3) we have

‖v‖−1/2,S3
≤ C‖v‖0,S3 ≤ Ĉ‖v‖∞,S3 , C, Ĉ ∈ R. (3.31)

So, instead of ‖λ− λh‖−1/2,S3
, we use

100×max
k

|λ(θk)− λh(θk)|
|λ(θk)|

(3.32)
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Figure 3.3: Convergence of the singular coefficients αNj for p = 1, α = 1.
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Figure 3.4: Convergence of the singular coefficients αNj for p = 2, α = 1.

where θk are the (internal) nodal points along S3. By construction, λh(θk) = λk, i.e. λh(θk)

is equal to the kth discrete Lagrange multiplier. Figure 3.6 shows this error versus Nλ (which

is directly related to the meshwidth h on S3) in a log-log scale. The convergence rate indeed

appears to be algebraic of order p, i.e. λh → λ as Nλ → ∞ (or, equivalently, as h → 0) at

the rate O(N−p
λ ) (or O(hp)). Therefore, from (3.31) we have that ‖λ− λh‖−1/2,S3

= O(hp).

Finally, we show numerical results for the case p = 0. The error analysis in Xenophontos
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Figure 3.5: Convergence of the singular coefficients αNj for p = 3, α = 1.
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Figure 3.6: Convergence of the Lagrange multipliers, α = 1.

et al. (2006) does not cover this case, hence it is not possible to use (3.30) to determine

“optimal” values for Nλ and Nα. In what follows we have chosen Nα = 2Nλ ; other choices

gave similar results. Figure 3.7 shows the percentage relative error in the first three singular

coefficients versus Nα in a log-log scale. We observe that for p = 0, the convergence is not

exponential, but rather algebraic of order 3.

Figure 3.8 shows the percentage relative error in the approximation of u and of the Lagrange
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Figure 3.7: Convergence of the singular coefficients αNj for p = 0, α = 1.

multipliers, versus Nα in a log-log scale. Again we have algebraic convergence, with rate 2 for

the approximation of u and with rate 3/4 for the approximation of the Lagrange multipliers.
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Figure 3.8: Convergence of the approximate solution uN and Lagrange multiplier λh

for p = 0, α = 1.
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3.4.2 Domain With a “Slit” (α = 2)

We have also repeated the previous computations for the case of α = 2, which corresponds to

a domain with a “slit”. The procedure for determining the constant β in (3.29) was repeated

yielding β = 0.92 for the pair Nα = 35 and Nλ = 20.

Figure 3.9 shows the convergence of the approximate solution and in particular the percentage

relative error in the approximation of u versus Nα, in a semi-log scale for p = 1, 2, 3. As with

α=1, each curve becomes a straight line as Nα is increased, hence the error decreases at an

exponential rate as predicted by (3.29).
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Figure 3.9: Convergence of the approximate solution uN , α = 2.

Figures 3.10 and 3.11 show the percentage relative error in the first four singular coefficients,

versus Nα in a semi-log scale, for p = 1 and 2, respectively (the case p = 3 is almost identical).

The exponential convergence is again visible in both plots.

Finally, Fig. 3.12 shows the error in the Lagrange multiplers versus Nλ in a log-log scale.

The convergence rate again appears to be algebraic of order p.
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Figure 3.10: Convergence of the singular coefficients αNj for p = 1, α = 2.
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Figure 3.11: Convergence of the singular coefficients αNj for p = 2, α = 2.

3.4.3 L-Shaped Domain (α = 1.5)

Similar results have been obtained with α = 1.5, which corresponds to an L-shaped domain.

The constant β in (3.29) was determined as 0.9 from the pair Nα = 33, Nλ = 15. Figure

3.13 demonstrates the convergence of the approximate solution, while Figs. 3.14–3.15 show

the convergence of the approximate coefficients (for p = 1) and of the Lagrange multipliers,

respectively. As in Fig. 3.2, the slope for p = 3 is smaller than that for p = 1. As already

45

Evg
en

ia 
Chri

sto
do

ulo
u



10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Nλ

10
0 

× 
m

ax
| λ

(θ
k) 

−
 λ

h(θ
k) 

| /
 | 

λ(
θ k) 

|

Error in the approximation of the Lagrange multipliers

 

 

slope ≈ − 3

slope ≈ − 2

slope ≈ − 1

 p = 1
 p = 2
 p = 3

Figure 3.12: Convergence of the Lagrange multipliers, α = 2.

pointed out, this unexpected and counterintuititive deceleration of the convergence may be

attributed to the fact that the choice of the number of Lagrange multipliers is not optimal.
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Figure 3.13: Convergence of the approximate solution uN , α = 1.5.
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Figure 3.14: Convergence of the singular coefficients αNj for p = 1, α = 1.5.
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Figure 3.15: Convergence of the Lagrange multipliers, α = 1.5.

3.5 Conclusions

In this chapter we revisited the Singular Function Boundary Integral Method (SFBIM) for

the solution of two-dimensional elliptic problems with boundary singularities. Our objective

was to demonstrate, via numerical examples, the convergence of the method and to show the

agreement with the theoretical results provided in the literature. For this purpose the method

was applied to a Laplacian test problem over a circular sector with the use of constant, lin-
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ear, quadratic and cubic approximations of the Lagrange multipliers. After obtaining the

“optimal” values for the number of Lagrange multipliers and the number of singular func-

tions, the exact approximation errors were calculated. In the cases of linear, quadratic and

cubic approximations we show that both the singular coefficients and the solution converge

exponentially with the number of singular functions and that the convergence of the ap-

proximation of the Lagrange multipliers is algebraic of order p with the number of Lagrange

multipliers, as predicted by the theory. In the case of constant approximations, which is not

covered by the theory, we observed that the convergence is algebraic for both the singular

coefficients and the solution.
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Chapter 4

Analysis of the SFBIM for a

Biharmonic Problem With One

Boundary Singularity

The material of this chapter also appears in Christodoulou et al. (2011).

4.1 Introduction

Boundary singularities appear in many problems governed by elliptic partial differential equa-

tions. These arise when there is a sudden change in the boundary conditions (e.g. domains

with cracks) and/or on the boundary itself (e.g. re-entrant corners). It is well known that

ignoring their presence can adversely affect the accuracy and the convergence of standard

numerical methods, such as finite element, boundary element, finite difference and spectral

methods. One way to deal with singularities is to incorporate their local form into the nu-

merical scheme, something that has been successfully done for two-dimensional Laplacian

problems (see, e.g., Georgiou et al., 1996. Li, 1997 and the references therein).
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In the case of two-dimensional Laplacian problems with one boundary singularity, and with

straight boundary parts sharing the singularity, the local solution expansion is given by

u =
∞∑

j=1

αjr
µjfj(θ), (4.1)

where (r, θ) are polar coordinates centered at the singular point, αj ∈ R are the unknown

singular coefficients and µj, fj are, respectively, the eigenvalues and eigenfunctions of the

problem, which are uniquely determined by the geometry and the boundary conditions along

the boundaries sharing the singular point. The αj ’s, called singular coefficients (or stress

intensity factors if the boundary value problem arises from structural mechanics), are primary

unknowns in many applications. With standard numerical schemes, such as the finite element

method (FEM), the singular coefficients are calculated via a post-processing procedure (see,

e.g.,Babuška and Miller, 1984. Szabó and Yosibash, 1996.). The Singular Function Boundary

Integral Method (SFBIM), belongs to the class of Trefftz methods in which the singular

coefficients are calculated directly. It was originaly developed for two-dimensional Laplacian

problems with boundary singularities, by Georgiou and coworkers (Georgiou et al., 1996,

1997), and was recently extended to biharmonic problems by Elliotis et al. (2005b, 2006,

2007). See also Li et al. (2004), Li et al. (2008) and Lu et al. (2009) for reviews of Trefftz

methods and recent works with applications to biharmonic problems.

The SFBIM, uses the leading terms of the local asymptotic expansion to approximate the

solution. The associated functions rµjfj(θ) are used to weight the governing biharmonic

equation in the Galerkin sence. This allows for the reduction of the discretized equations

to boundary integrals by means of Green’s theorem. Any Dirichlet boundary conditions are

weakly enforced by means of Lagrange multipliers, which are calculated directly together

with the unknown singular coefficients; hence, no post-processing of the numerical solution

is performed.

The implementation of the method for the solution of Laplacian and biharmonic problems
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with boundary singularities has given highly accurate numerical results, see Elliotis et al.

(2002, 2005a, 2005b, 2006, 2007). The convergence of the SFBIM, for Laplacian problems,

has been investigated theoretically in Xenophontos et al. (2006), where it was shown that

the absolute difference between the true and approximate singular coefficients decreases at an

exponential rate as the number N of the terms in the numerical approximation is increased.

The main goal of this paper is to extend the analysis to the case of biharmonic problems and

establish the (exponential) convergence rates observed in numerical simulations in Elliotis et

al. (2005b, 2006, 2007). It should be noted that the Collocation Trefftz method also yields

exponential convergence rates, when applied to biharmonic problems, as was shown in Li

(1998) and Li et al. (2008).

The rest of this chapter is organized as follows: In Section 4.2 the formulation of the method

for a model two-dimensional biharmonic problem with a boundary singularity is presented.

In Section 4.3 the convergence analysis is carried out. Finally, in Section 4.4 we discuss the

efficient implementation of the method.

4.2 The Model Problem and its Formulation

We consider the following model two-dimensional biharmonic problem (depicted graphically

in Fig. 4.2): Find u such that

∇4u = 0 in Ω, (4.2)

with

u = 0, ∂u
∂n

= 0 on S1

u = 0, ∇2u = 0 on S2

∇2u = 0,
∂(∇2u)
∂n

= 0 on S3

u = g(r, θ), ∇2u = 0 on S4





, (4.3)
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where ∂Ω = ∪4
i=1Si. A boundary singularity arises at the intersection of S1 and S2 (point

O) due to the sudden changes in the boundary conditions. The function g is assumed to

be smooth enough and such that no other boundary singularities arise (at the endpoints of

S4). We also assume that the only singularity present is the one at the point O. The above

boundary value problem models the so-called Newtonian stick-slip flow problem (see Elliotis

et al. (2005b)).

• S1
u = 0
∂u
∂n = 0

S2
•

S3

n•
S4

Ω

∇4u = 0

O
• x

y

r

θ

u = 0
∇2u = 0

∂(∇2u)
∂n = 0

∇2u = 0∇2u = 0

u = g(r, θ)

Figure 4.1: The model biharmonic problem with one singular point.

For two-dimensional biharmonic problems, the solution in the neighbourhood of the boundary

singularity is given by an asymptotic expansion of the form

u(r, θ) =
∞∑

j=1

αjr
µj+1f1(θ, µj) +

∞∑

j=1

βjr
ρj+1f2(θ, ρj), (4.4)

where αj and βj are the unknown singular coefficients, µj and ρj are the two sets of sin-

gularity powers (i.e., the eigenvalues of the problem) arranged in ascending order, and the

functions f1(θ, µj) and f2(θ, ρj) represent the θ-dependence of the eigensolution. The func-

tions rµj+1f1(θ, µj) and r
ρj+1f2(θ, ρj) are called singular functions. Since we are considering

a model for the stick-slip problem where S1 and S2 meet at an angle π, the eigenvalues µj , ρj

are real and the functions f1(θ, µj), f2(θ, ρj) are even and odd, respectively (see Michael
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(1958) and Papanastasiou et al. (1999)). In fact, in this setting, one finds that

f1(θ, µj) = cos(µj + 1)θ − cos(µj − 1)θ , µj = j − 1

2
, j = 1, 2, ... (4.5)

f2(θ, ρj) = (ρj − 1) sin(ρj + 1)θ − (ρj + 1) sin(ρj − 1)θ , ρj = j + 1, j = 1, 2, ... (4.6)

Now, suppose v is a function which satisfies

∇4v = 0 in Ω

v = 0, ∂v
∂n

= 0 on S1

v = 0,∇2v = 0 on S2





. (4.7)

One choice for v is

v = γjr
µj+1f1(θ, µj) + δjr

ρj+1f2(θ, ρj),

for some constants γj and δj . Multiplying the governing biharmonic equation by v, integrating

over Ω and employing Green’s formula, we obtain

−
∫∫

Ω
∇v · ∇(∇2u) +

∫

∂Ω
v
∂(∇2u)

∂n
= 0.

Using Green’s formula once again, the above expression becomes:

∫∫

Ω
∇2v∇2u−

∫

∂Ω
∇2u

∂v

∂n
+

∫

∂Ω
v
∂(∇2u)

∂n
= 0.

Considering the boundary conditions in (4.3) and (4.7), we find that

∫∫

Ω
∇2v∇2u+

∫

S4

v
∂(∇2u)

∂n
= 0. (4.8)

Now, on S4 we have u = g and thus

∫

S4

(u− g)
∂(∇2v)

∂n
= 0,

which added to (4.8) gives

∫∫

Ω
∇2v∇2u+

∫

S4

v
∂(∇2u)

∂n
+

∫

S4

u
∂(∇2v)

∂n
=

∫

S4

g
∂(∇2v)

∂n
.

Letting

λ =
∂(∇2u)

∂n
|S4 , µ =

∂(∇2v)

∂n
|S4 , (4.9)
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we get
∫∫

Ω
∇2v∇2u+

∫

S4

vλ+

∫

S4

uµ =

∫

S4

gµ, (4.10)

which leads to the following variational formulation: Find (u, λ) ∈ V1 × V2 such that

B (u, v) + b (u, v;λ, µ) = F (v, µ) ∀ (v, µ) ∈ V1 × V2, (4.11)

where

B (u, v) =
∫∫

Ω∇2v∇2u

b (u, v;λ, µ) =
∫
S4
uµ+

∫
S4
vλ

F (v, µ) =
∫
S4
gµ





. (4.12)

The spaces V1 and V2 are defined as

V1 = H2
∗ (Ω) =

{
v ∈ H2 (Ω) : v|S1∪S2 = 0,

∂v

∂n
|S1 = 0

}
, V2 = H−3/2(S4). (4.13)

The above formulation will be used in the analysis of the method. It will be shown in Section

4.4 that this formulation is equivalent to the one used for the implementation.

4.3 Discretization and Error Analysis

In order to describe the discrete analog of (4.11), boundary part S4 is divided into sections

Γi, with i = 1, · · · , n such that S4=∪ni=1Γi. Let hi = |Γi| and set h = max1≤i≤n hi. Now, let

v
(1)
j = rµj+1f1 (θ, µj) and v

(2)
j = rρj+1f2 (θ, ρj)

denote the singular functions, and define the following finite dimensional space:

V1
N = span

{
v
(1)
j

}
∪ span

{
v
(2)
j

}
, j = 1, 2, · · · , N. (4.14)

We assume that for each segment Γi, there exists an invertible mapping Fi : I = [−1, 1] → Γi

and define the space

V2
h =

{
λh : λh|Γi ◦ F−1

i ∈ Pk(I), i = 1, · · · , n
}
, (4.15)
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where Pk(I) denotes the set of polynomials of degree ≤ k on I. Then the discrete version of

(4.11) reads: Find (uN ,λh) ∈ [V1
N × V2

h] ⊂ [V1 × V2] such that

B (uN , v) + b (u, v;λh, µ) = F (v, µ) ∀ (v, µ) ∈ V1
N × V2

h, (4.16)

with B (uN , v), b (u, v;λh, µ) and F (v, µ) given by (4.12).

We have the following result, which is a generalization of Theorem 4.5 from Li et al. (2006).

Theorem 1 Let (u, λ) and (uN , λh) be the solutions to (4.11) and (4.16), respectively. Sup-

pose there exist positive constants c0, c, β
∗ and γ, independent of N and h such that the

following three conditions hold:

B (vN , vN ) ≥ c0‖vN‖22,Ω and |B (u, vN )| ≤ c‖u‖2,Ω‖vN‖2,Ω ∀ vN ∈ V1
N , (4.17)

∃ 0 6= wN ∈ V1
Ns.t.

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β∗‖µh‖− 3
2
,S4

‖wN‖2,Ω ∀ µh ∈ V2
h, (4.18)

∣∣∣∣
∫

S4

λvN

∣∣∣∣ ≤ γ‖λ‖− 3
2
,S4

‖vN‖2,Ω ∀ vN ∈ V1
N . (4.19)

Then,

‖u − uN‖2,Ω + ‖λ− λh‖− 3
2
,S4

≤ C

{
inf

vN∈V1
N
‖u− vN‖2,Ω + inf

ηh∈V2
h
‖λ− ηh‖− 3

2
,S4

}
, (4.20)

with C ∈ R
+ independent of N and h.

Proof. Obviously, ∀ (v, µ) ∈ V1 × V2 we have

B(u− uN , v) = −b(u− uN , v;λ − λh, µ) = −
∫

S4

(u− uN )µ−
∫

S4

(λ− λh)v.

Since u = g on S4 and
∫
S4
µh(uN − g) = 0 ∀ µh ∈ V h

2 , we have

∫

S4

µh(uN − u) = 0 ∀ µh ∈ V h
2 , (4.21)

and

B(u− uN , vN ) = −
∫

S4

(λ− λh)vN ∀ vN ∈ V N
1 . (4.22)
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Letting wN = uN − vN ∈ V N
1 we obtain

B(vN − uN , wN ) = B(u− uN , wN ) +B(vN − u,wN )

= B(vN − u,wN )−
∫

S4

(λ− λh)wN

= B(vN − u,wN )−
∫

S4

(λ− ηh)wN −
∫

S4

(ηh − λh)wN ,

with ηh ∈ V h
2 arbitrary. Using the definition of wN and (4.21) with µh = λh − wh ∈ V h

2 , we

further have

B(vN − uN , wN ) = B(vN − u,wN )−
∫

S4

(λ− ηh)wN −
∫

S4

(uN − vN )(ηh − λh)

= B(vN − u,wN )−
∫

S4

(λ− ηh)wN −
∫

S4

uN (ηh − λh) +

∫

S4

vN (ηh − λh)

= B(vN − u,wN )−
∫

S4

(λ− ηh)wN −
∫

S4

u(ηh − λh) +

∫

S4

vN (ηh − λh)

= B(vN − u,wN )−
∫

S4

(λ− ηh)wN −
∫

S4

(u− vN )(ηh − λh).

This along with Eqs. (4.17) and (4.19) give

c0‖wN‖22,Ω ≤ |B(wN , wN )| ≤ |B(uN − vN , wN )|

≤ |B(vN − u,wN )|+
∣∣∣∣
∫

S4

(λ− ηh)wN

∣∣∣∣+
∣∣∣∣
∫

S4

(ηh − λh)(u− vN )

∣∣∣∣

≤ c‖vN − u‖2,Ω‖wN‖2,Ω + γ‖λ− ηh‖− 3
2
,S4

‖wN‖2,Ω + γ‖ηh − λh‖− 3
2
,S4

‖u− vN‖2,Ω

≤ C1

{
(‖vN − u‖2,Ω + ‖λ− ηh‖− 3

2
,S4

)‖wN‖2,Ω + ‖ηh − λh‖− 3
2
,S4

‖u− vN‖2,Ω
}
,

with C1 ∈ R satisfying C1 ≥ max{c, γ}. This is an inequality of order 2: c0x
2 ≤ bx+d, where

x = ‖wN‖2,Ω , b = C1

{
‖vN − u‖2,Ω + ‖λ− ηh‖− 3

2
,S4

}
, d = C1‖ηh − λh‖− 3

2
,S4

‖u− vN‖2,Ω.

For any ǫ > 0, we have

d ≤ C1

2

{
1

ǫ
‖u− vN‖2,Ω + ǫ‖ηh − λh‖− 3

2
,S4

}2

.

Therefore, we have the bound

x ≤ b+
√
b2 + 4c0 d

2c0
,
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or, equivalently,

‖wN‖2,Ω ≤ C2

{
‖vN − u‖2,Ω + ‖λ− ηh‖− 3

2
,S4

+
1

ǫ
‖vN − u‖2,Ω

}
+C2ǫ‖λh−ηh‖− 3

2
,S4
, (4.23)

with C2 ≥ 1
c0
max{C1,

√
c0C1/2}. Next, using Eq. (4.18) with µh = λh − ηh we have that

there exists a nonzero vN ∈ V N
1 such that

‖λh − ηh‖− 3
2
,S4

≤ 1

β

∣∣∣
∫
S4
(λh − ηh)vN

∣∣∣
‖vN‖2,Ω

. (4.24)

Also, it follows from (4.22) that

∣∣∣∣
∫

S4

(λh − ηh)vN

∣∣∣∣ =

∣∣∣∣
∫

S4

(λh − λ)vN +

∫

S4

(λ− ηh)vN

∣∣∣∣

≤ |B(u− uN , vN )|+
∣∣∣∣
∫

S4

(λ− ηh)vN

∣∣∣∣

≤ c‖u− uN‖2,Ω‖vN‖2,Ω + γ‖λ− ηh‖− 3
2
,S4

‖vN‖2,Ω.

Hence, (4.24) becomes

‖λh − ηh‖− 3
2
,S4

≤ C3

{
‖u− uN‖2,Ω + ‖λ− ηh‖− 3

2
,S4

}

≤ C3

{
‖u− vN‖2,Ω + ‖vN − uN‖2,Ω + ‖λ− ηh‖− 3

2
,S4

}
,

with C3 ≥ 1
β max{c, γ}. Since ‖vN − uN‖2,Ω = ‖wN‖2,Ω, using (4.23) leads to

‖λh− ηh‖− 3
2
,S4

≤ C3(1+C2/ǫ)‖u− vN‖2,Ω +C3(C2 +1)‖λ− ηh‖− 3
2
,S4

+C3C2ǫ‖λ− ηh‖− 3
2
,S4
.

Choosing ǫ = 1/(2C3C2) we get, for some constant C4 > max{C2, C3},

‖λh − ηh‖− 3
2
,S4

≤ C4

{
‖u− vN‖2,Ω + ‖λ− ηh‖− 3

2
,S4

}
,

and using the triangle inequality we have

‖λh − λ‖− 3
2
,S4

≤ ‖λh − ηh‖− 3
2
,S4

+ ‖ηh − λ‖− 3
2
,S4

≤ C
{
‖u− v‖2,Ω + ‖λ− ηh‖− 3

2
,S4

}
.

Similarly, using the above inequality and (4.23), we finally get

‖u− uN‖ ≤ ‖u− vN‖2,Ω + ‖vN − uN‖2,Ω

≤ ‖u− vN‖2,Ω + ‖wN‖2,Ω

≤ C
{
‖u− vN‖2,Ω + ‖λ− ηh‖− 3

2
,S4

}
,
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which gives the desired result.

Before verifying that (4.17)–(4.19) hold for our problem, consider the following: For any

w =

∞∑

j=1

αjv
(1)
j +

∞∑

j=1

βjv
(2)
j

we can always write

w = wN + rN , (4.25)

where

wN =

N∑

j=1

αjv
(1)
j +

N∑

j=1

βjv
(2)
j ∈ V1

N , rN =

∞∑

j=N+1

αjv
(1)
j +

∞∑

j=N+1

βjv
(2)
j , (4.26)

with αj and βj the true singular coefficients. We will assume that there exists a constant

α ∈ (0, 1) such that for ℓ = 0, 1, 2

∣∣∣∣
∂ℓ(rN )

∂rℓ

∣∣∣∣ ≤ CN ℓαN . (4.27)

Note that when r < 1, assumption (4.27) can be replaced by the assumption that the singular

coefficients are bounded, since then, due to the fact that f1(θ, µj) and f2(θ, ρj) are biharmonic,

we have

|rN | ≤
∞∑

j=N+1

|αj |rµj+1 +
∞∑

j=N+1

|βj | rρj+1 ≤ C1
rµN+1+1

1− r
+ C2

rρN+1+1

1− r
≤ CαN ,

with r < α < 1 and C ∈ R
+ independent of α and N . Similarly,

∣∣∣∣
∂rN
∂r

∣∣∣∣ ≤
∞∑

j=N+1

|αj| (µj + 1)rµj +
∞∑

j=N+1

|βj | (ρj + 1)rρj

=

∞∑

j=N+1

|αj| (µj + 1)

{
d

dr

∫ r

0
ξµjdξ

}
+

∞∑

j=N+1

|βj | (ρj + 1)

{
d

dr

∫ r

0
ξρjdξ

}

=
d

dr




∞∑

j=N+1

|αj | (µj + 1)

{∫ r

0
ξµjdξ

}
+

∞∑

j=N+1

|βj | (ρj + 1)

{∫ r

0
ξρjdξ

}


≤ d

dr




∞∑

j=N+1

|αj | rµj+1 +
∞∑

j=N+1

|βj | rρj+1




≤ C1
d

dr

(
rµN+1+1

1− r

)
+ C2

d

dr

(
rρN+1+1

1− r

)

≤ CNαN .
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(The case ℓ = 2 follows in a similar fashion.)

In the case r ≥ 1 one may partition the domain Ω into subdomains in which separate

approximations may be employed, including one (near the singular point O) that is valid for

r < 1. The solution over the entire domain can then be composed by combining solutions from

each subdomain and properly dealing with their interactions across the interfaces separating

them (see, e.g., Li et al., 1987, where this idea was applied to a Laplacian problem).

We are now ready to verify that (4.17)–(4.19) hold for the problem (4.16). We have (see,

e.g., Johnson, 1987),

B (v, v) =

∫∫

Ω
∇2v∇2v =

∫∫

Ω

∣∣∇2v
∣∣2 ≥ C0‖v‖22,Ω ∀ v ∈ V1

and ∃ c ∈ R
+ such that

|B (u, v)| ≤ c‖u‖2,Ω‖v‖2,Ω ∀ u, v ∈ V1,

therefore (4.17) is verified.

In order to verify (4.18) we consider the following auxiliary problem:

∇4w = 0, in Ω, (4.28)

with the boundary conditions

w = 0, ∂w
∂n

= 0 on S1

w = 0, ∇2w = 0 on S2

∂(∇2w)
∂n = 0, ∇2w = 0 on S3

∇2w = 0,
∂(∇2w)
∂n

= µh on S4





, (4.29)

where µh ∈ V h
2 in (4.29). By using Green’s formula we obtain

∣∣∣∣
∫

S4

wµh

∣∣∣∣ =

∣∣∣∣
∫

S4

w
∂(∇2w)

∂n

∣∣∣∣ =
∣∣∣∣
∫∫

Ω
w∇4w +

∫∫

Ω
∇w · ∇(∇2w)

∣∣∣∣

=

∣∣∣∣−
∫∫

Ω
∇2w∇2w +

∫

∂Ω
∇2w

∂w

∂n

∣∣∣∣

=

∣∣∣∣
∫∫

Ω
∇2w∇2w

∣∣∣∣ =
∫∫

Ω

(
∇2w

)2

≥ C0‖w‖22,Ω. (4.30)
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Note that (see, e.g., Wloka, 1987)

‖µh‖2−3/2,S4
=

∥∥∥∥
∂(∇2w)

∂n

∥∥∥∥
2

−3/2,S4

≤ C‖w‖22,Ω ≤ C

∫

∂Ω

∣∣∇2w
∣∣2, C ∈ R

+, (4.31)

so, by (4.30)
∣∣∣∣
∫

S4

µhw

∣∣∣∣ ≥ β‖w‖2,Ω‖µh‖−3/2,S4
, (4.32)

with β ∈ R
+ independent of w and h. Now, let wN ∈ V N

1 be such that w = wN + rN , as

given by (4.25)–(4.26). We have

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ =
∣∣∣∣
∫

S4

µhw −
∫

S4

µhrN

∣∣∣∣ ≥
∣∣∣∣
∫

S4

µhw

∣∣∣∣−
∣∣∣∣
∫

S4

µhrN

∣∣∣∣ (4.33)

and
∣∣∣∣
∫

S4

µhrN

∣∣∣∣ ≤ C1‖µh‖−3/2,S4
‖rN‖2,Ω, C1 ∈ R

+. (4.34)

Now, combining (4.31)–(4.33) we obtain

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β‖w‖2,Ω‖µh‖−3/2,S4
− C1‖µh‖−3/2,S4

‖rN‖2,Ω. (4.35)

Also, from the reverse triangle inequality,

‖w‖2,Ω = ‖wN + rN‖2,Ω ≥ ‖wN‖2,Ω − ‖rN‖2,Ω,

and by (4.34), we get

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β (‖wN‖2,Ω − ‖rN‖2,Ω) ‖µh‖−3/2,S4
− C1‖µh‖−3/2,S4

‖rN‖2,Ω. (4.36)

Therefore,

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥ β‖wN‖2,Ω‖µh‖−3/2,S4
− (C1 + β) ‖µh‖−3/2,S4

‖rN‖2,Ω. (4.37)

Since by assumption (4.27), rN converges to zero exponentially (or, equivalently wN converges

to w exponentially), we have

lim
N→∞

‖rN‖2,Ω
‖wN‖2,Ω

= 0,
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which means that for any ε > 0 there exists N∗ such that
‖rN‖2,Ω
‖wN‖2,Ω

< ε whenever N > N∗.

Hence, for N sufficiently large we may write

‖rN‖2,Ω
‖wN‖2,Ω

≤ β

2 (C1 + β)
.

Combining (4.36) with (4.37) yields

∣∣∣∣
∫

S4

µhwN

∣∣∣∣ ≥
β

2
‖µh‖−3/2,S4

‖wN‖2,Ω.

By replacing wN by vN and β
2 by β, inequality (4.18) is obtained. Finally, condition (4.19)

follows from (see, e.g., Wloka 1987)

∫

S4

λv ≤ γ‖λ‖−3/2,S4
‖v‖2,Ω ∀ v ∈ V N

1 , γ ∈ R
+.

The above analysis leads to the following theorem.

Theorem 2 Let (u,λ) and (uN ,λh) be the solutions to (4.11) and (4.16), respectively. If

λ ∈ Hk(S4), for some k ≥ 1, then there exists a positive constant C, independent of N and

h, such that

‖u− uN‖2,Ω + ‖λ− λh‖−3/2,S4
≤ C

{
N2αN + hk+1

}
,

with α ∈ (0, 1).

Proof. From Theorem 1 we have

||u− uN ||2,Ω + ||λ− λh||−3/2,S4
≤ C

{
inf

v∈V1
N
||u− v||2,Ω + inf

η∈V2
h
||λ− η||−3/2,S4

}
, (4.38)

with C ∈ R
+ independent of N and h. Note that by (4.25) and (4.26)

inf
v∈V1

N
‖u− v‖2,Ω ≤ ‖u− wN‖2,Ω = ‖rN‖2,Ω.

Using assumption (4.27) we get

inf
v∈V1

N
‖u− v‖2,Ω ≤ CN2αN , (4.39)
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where the constant C > 0 is independent of N and α. Next let λI be the k
th-order interpolant

of λ. Then, since λ ∈ Hk(S4) and λh is the best approximation, we have

‖λ− λh‖−3/2,S4
≤ ‖λ− λh‖0,S4 ≤ ‖λ− λI‖0,S4 ≤ hk+1‖λ‖k,S4 ≤ Chk+1,

which, along with (4.38)–(4.39) gives the desired result.

The approximation of the singular coefficients is given by the following.

Corollary 1 Let

u =

∞∑

j=1

αjr
µj+1f1 (θ, µj) +

∞∑

j=1

βjr
µj+1f2 (θ, µj) (4.40)

and

uN =

N∑

j=1

αNj r
µj+1f1 (θ, µ) +

N∑

j=1

βNj r
µj+1f2 (θ, µj) (4.41)

satisfy (4.11) and (4.16), respectively, with αj, βj and α
N
j , β

N
j denoting the true and approx-

imate singular coefficients. Then, there exists a positive constant C ∈ R
+, independent of N

and α, such that

∣∣(αj − αNj )
∣∣+
∣∣(βj − βNj )

∣∣ ≤ CN2αN . (4.42)

Proof.

We begin by noting the following (which can be obtained by elementary calculations):

∫ 2π

0
f1(θ, µj)f1(θ, µk)dθ = 2πδj,k (4.43)

∫ 2π

0
f1(θ, µj)f2(θ, ρk)dθ = 0 ∀j, k = 1, 2, ... (4.44)

∫ 2π

0
f2(θ, ρj)f2(θ, ρk)dθ = 2π

4k2 − 4k + 5

4k2 + 4k + 1
δj,k (4.45)

where f1, f2 are given by (4.5)–(4.6) and δj,k is the Kronecker delta. Now, in (4.40) take a

fixed r = r0 < 1, multiply by f1(θ, µk) and integrate from θ = 0 to θ = 2π. Using (4.43) and

(4.44) we find that
∫ 2π

0
u(r0, θ)f1(θ, µk)dθ = 2πrµk+1

0 αk. (4.46)
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Next, multiply (4.40) by f2(θ, ρk) and integrate from θ = 0 to θ = 2π, to get with the aid of

(4.44) and (4.45),

∫ 2π

0
u(r0, θ)f2(θ, ρk)dθ = 2πrρk+1

0

4k2 − 4k + 5

4k2 + 4k + 1
βk. (4.47)

Similarly, one obtains expressions like (4.46), (4.47) corresponding to the approximate coeffi-

cients αNk , β
N
k , i.e. Eqs. (4.46), (4.47) with u replaced by uN and αk, βk replaced by αNk , β

N
k ,

respectively. Therefore, we have

∣∣αk − αNk
∣∣ ≤ 1

2πrµk+1
0

∫ 2π

0
|u− uN | |f1| dθ ≤ Ĉk‖u− uN‖0,Ω, (4.48)

∣∣βk − βNk
∣∣ ≤ 4k2 + 4k + 1

2πrρk+1
0 (4k2 − 4k + 5)

∫ 2π

0
|u− uN | |f2| dθ ≤ C̃k‖u− uN‖0,Ω, (4.49)

where the Cauchy-Schwartz inequality and the smoothness of f1, f2 were used. The positive

constants Ĉk, C̃k depend only on k (and r0). The result then follows from (4.39) and the fact

that ‖u− uN‖0,Ω ≤ ‖u− uN‖2,Ω.

Note that the above corollary establishes the exponential convergence of the SFBIM, in the

case of the biharmonic problems of the type shown in Fig. 4.2; the term N2 can be absorbed

in the exponentially decaying term αN . This result is analogous to the one obtained in

Xenophontos et al. (2006) for 2-D Laplacian problems.

4.4 Implementation

We now give a description of the implementation of the method and show that the two

approaches are (mathematically) equivalent. Recall the discrete problem given by (4.16),

which may be rewritten in mixed form as follows: Find (uN , λh) ∈ [V N
1 × V h

2 ] ⊂ [V1 × V2]

such that

∫∫

Ω
∇2vN∇2uN +

∫

S4

vNλh = 0 ∀ vN ∈ V N
1 , (4.50)

∫

S4

µhuN =

∫

S4

µhg ∀ µh ∈ V h
2 . (4.51)
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We may reduce the double integral in (4.50) using Green’s second identity and the boundary

conditions in (4.3) and (4.7), as follows:

∫∫

Ω
∇2vN∇2uN =

∫

∂Ω

(
∇2vN

∂uN
∂n

− uN
∂(∇2vN )

∂n

)

=

∫

S3∪S4

(
∇2vN

∂uN
∂n

− uN
∂(∇2vN )

∂n

)
. (4.52)

Hence, the problem (4.50)–(4.51) becomes: Find (uN , λh) ∈ [V N
1 × V h

2 ] ⊂ [V1 × V2] such that

∫

S3∪S4

(
∇2vN

∂uN
∂n

− uN
∂(∇2vN )

∂n

)
+

∫

S4

vNλh = 0 ∀ vN ∈ V N
1 , (4.53)

∫

S4

µhuN =

∫

S4

µhg ∀ µh ∈ V h
2 . (4.54)

Obviously, if (uN , λh) ∈ [V N
1 × V h

2 ] ⊂ [V1 × V2] solves (4.50)–(4.51) (or (4.16)), then it also

solves (4.53)–(4.54). Now suppose that (uN , λh) ∈ [V N
1 ×V h

2 ] ⊂ [V1×V2] solves (4.53)–(4.54).

We have from (4.52) that

∫

S3∪S4

(
∇2vN

∂uN
∂n

− uN
∂(∇2vN )

∂n

)
=

∫∫

Ω
∇2vN∇2uN , (4.55)

hence, adding Eqs. (4.53)–(4.54) and using the above fact, we find that

∫∫

Ω
∇2vN∇2uN +

∫

S4

vNλh +

∫

S4

µhuN =

∫

S4

µhg, (4.56)

which shows that (uN , λh) solves (4.16).

Equations (4.53)–(4.54) are used in the implementation, since they are posed only on the

boundary of the domain away from the singular point. This reduces the dimension of the

problem by one and leads to significant computational savings.

Now, to obtain a linear system of equations corresponding to (4.53)–(4.54), we approximate

u and λ by means of

uN =

N∑

i=1

αNi v
(1)
i +

N∑

i=1

βNi v
(2)
i ∈ V N

1 , (4.57)

and

λh =

M∑

k=1

γkψk ∈ V h
2 (S4) , (4.58)
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with αNi , β
N
i and γk the unknowns in the system, and V N

1 = span
{
v
(1)
i

}N
i=1

∪ span
{
v
(2)
i

}N
i=1

,

V h
2 = span {ψk}Mk=1. Upon inserting (4.57) and (4.58) into (4.53)–(4.54), a (2N+M)×(2N+

M) linear system of the following composite form is obtained:




K11 K12 Λ1

K21 K22 Λ2

ΛT1 ΛT2 0







−→α
−→
β

−→γ



=




−→
0

−→
0

−→
G



, (4.59)

where −→α =
[
αN1 , ..., α

N
N

]T
,
−→
β =

[
βN1 , ..., β

N
N

]T
,−→γ = [γ1, ..., γM ]T , and

[K11]i,j =

∫

S3∪S4

{
∇2v

(1)
j

∂v
(1)
i

∂n
− v

(1)
i

∂

∂n

(
∇2v

(1)
j

)}
, i, j = 1, ..., N,

[K12]i,j =

∫

S3∪S4

{
∇2v

(1)
j

∂v
(2)
i

∂n
− v

(2)
i

∂

∂n

(
∇2v

(1)
j

)}
, i, j = 1, ..., N,

[K21]i,j =

∫

S3∪S4

{
∇2v

(2)
j

∂v
(1)
i

∂n
− v

(1)
i

∂

∂n

(
∇2v

(2)
j

)}
, i, j = 1, ..., N,

[K22]i,j =

∫

S3∪S4

{
∇2v

(2)
j

∂v
(2)
i

∂n
− v

(2)
i

∂

∂n

(
∇2v

(2)
j

)}
, i, j = 1, ..., N,

[Λ1]k,j =

∫

S4

ψk v
(1)
j , k = 1, ...,M, j = 1, ..., N,

[Λ2]k,j =

∫

S4

ψk v
(2)
j , k = 1, ...,M, j = 1, ..., N,

[−→
G
]
ℓ

=

∫

S4

g ψℓ , ℓ = 1, ...,M.

It is easily shown that the coefficient matrix in (4.59) is nonsingular provided N > M . Hence,

N should be chosen larger thanM , but not too large since for excessively large values of N the

linear system (4.59) becomes ill-conditioned and the results obtained are unreliable. As a final

remark we should point out that all integrals involved in the determination of the coefficient

matrix (and right hand side) in (4.59), are along the parts of the domain boundaries that do

not contain the singularity. These are one-dimensional and can be approximated by standard

techniques, such as Gaussian quadrature.
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4.5 Numerical Results

In this section we illustrate the main theoretical findings through one numerical experiment,

as described below. Since the method is designed for the efficient approximation of the

singular cofficients, the numerical results shown below correspond to how fast (and accurately)

these coefficients are approximated.

•
θ

x = 3x = −3

�
��	

O

Ω

∇4u = 0

S1

u = 0, ∂u/∂n = 0y = 1 u = 0,∇2u = 0

S2

S3

∂∇2u
∂x = 0

∂u
∂x = 0

S4

u = −1,∇2u = 0

S5

u = g(y)

∂u
∂x = 0

r

Figure 4.2: Stick-slip problem; g(y) = 1
2
y(3− y2)− 1.

We are considering the boundary value problem depicted graphically in Fig. 4.5 which is

the classical stick-slip flow problem from fluid mechanics (see, e.g. Elliotis, 2005b). We note

that the boundary of the domain consists of five parts, with S4 and S5 being the portions

of ∂Ω where Lagrange multipliers will be applied, since Dirichlet boundary conditions are

prescribed there.

We implemented our method, as explained in Section 4.4, using piecewise quadratic poly-

nomials for the approximation of the Lagrange multiplier functions, on a subdivision of S4

and S5 characterized by a meshwidth h – for simplicity a uniform subdivision of the same

meshwidth h was used for both portions of the boundary. All integrals involved were approx-

imated by a 15-point Gaussian quadrature on each element. Systematic runs were performed

in order to find the “optimal” combination of N and h (or M), which ultimately was chosen
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as the one that gave the “smoothest” approximation to

λ4 :=
∂∇2u

∂n
|S4 . (4.60)

This is shown in Fig. 4.3 which shows that for M = 39 and N = 45 the approximation to

the Lagrange multipler function on S4 is free of oscillations (The oscillations observed are

due to the ill-conditioning of the stiffness matrix.). Using this pair of values, the constant α

in (4.42) is calculated by “balancing” the error estimate of Theorem 2, i.e.

N2αN ≈ hk+1.

We find that α ≈ 0.87, from which subsequent “optimal” pairs of N and M may be found.

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

x

λ 4

 

 

M = 39, N = 45
M = 43, N = 45

Figure 4.3: Approximation of Lagrange multipler function along S4.

Figures 4.4 and 4.5 show the (percentage relative) error in the approximation of the first five

coefficients αj , βj , j = 1, ..., 5, in a semi-logarithmic scale, as N is increased. The exponential

convergence is clearly visible, since the curves are (essentially) straight lines, even for small

values of N .

We should mention that for α1 there is an exact answer while for the rest we used a reference

value for the computations.

67

Evg
en

ia 
Chri

sto
do

ulo
u



28 30 32 34 36 38 40 42 44
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

10
0 

× 
| α

jN
 −

 α
j | 

/ |
 α

j | 

Error in coefficient α
j

 

 
 j = 1
 j = 2
 j = 3
 j = 4
 j = 5

Figure 4.4: Error in coefficient αNj .
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Figure 4.5: Error in coefficient βNj .

4.6 Conclusions

In this chapter we analyzed the SFBIM for a two-dimensional biharmonic problem with one

boundary singularity, as a model for the Newtonian stick-slip flow problem. We analyzed the

convergence of the method and proved that the coefficients in the local asymptotic expansion,

also referred to as stress intensity factors, are approximated at an exponential rate as the
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number of the employed expansion terms is increased. Our theoretical results were illustrated

through a numerical experiment.
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Chapter 5

Extensions to Three-Dimensions

5.1 Introduction

5applications both edge and vertex singularities are of interest (see Kondratiev, 1967, Stephan

and Whiteman, 1988, and

The objective of this chapter is to extend the SFBIM to three-dimensional Laplacian problems

with a boundary straight-edge singularity and calculate directly the Edge Flux Intensity

Functions (EFIFs). These are approximated locally by low-degree polynomials the coefficients

of which are primary unknowns of the method. To our knowledge, the only methods found

in the literature for the calculation of the EFIFs are based on post-processing the numerical

solution and/or using extraction formulae (see Omer et al., 2004. Yosibash et al., 2002.

Yosibash et al., 2004 and Yosibash et al., 2007)

The rest of the chapter is organized as follows: in Section 5.2 we present a three-dimensional

Laplacian problem with an edge singularity and its asymptotic local solution expansion. In

Section 5.3 the three-dimensional version of the SFBIM is formulated. Numerical results are

given in Section 5.4. Finally, our conclusions are summarized in Section 5.5.
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5.2 A Three-Dimensional Problem With a Straight

Edge Singularity

We consider a Laplacian problem in the three-dimensional domain Ω = [0, 1]×[0, απ]×[−1, 1],

as shown in Fig. 5.1: Find u such that

∇2u = 0 in Ω, (5.1)

u = 0 on S1

∂u
∂θ = 0 on S2

u = g(r, θ, z) on S3

∂u
∂z = q1 (r, θ) on S4

∂u
∂z = q2 (r, θ) on S5





(5.2)

where ∂Ω =
5⋃
i=1
Si. S1 and S2 are quadrilateral surfaces intersecting at a straight edge AB,

S3 is a cylindrical surface of unit radius, and S4 and S5 are unit-circular sectors of angle απ.

S1

S2

S3
@
@R

A

B

S5

θ

απ

S4

r

Figure 5.1: A model three-dimensional domain Ω = [0, 1] × [0, απ] × [−1, 1] with a

straight edge AB.

To demonstrate the analogy with the two-dimensional case, we consider the Laplace equation

over a circular sector, as shown in Fig. 5.2. A boundary singularity arises at the origin O,

which is due not only to the presence of a corner in the boundary but also to the fact that
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S1

u = 0

S2

∂u
∂θ = 0

θ

απ

∇2u = 0

r

Figure 5.2: A 2-D Laplacian problem with a boundary singularity at point O.

the boundary conditions along boundaries S1 and S2 are different: u = 0 along θ = 0 and

∂u/∂θ = 0 along θ = απ, where 0 < α < 2. The local solution in polar coordinates (r, θ),

centered at the singular point O, is of the general form

u2D (r, θ) =

∞∑

j=1

αjr
µjfj (θ) , (5.3)

where µj and fj are, respectively, the eigenvalues and eigenfunctions of the problem with

µj+1 > µj , and αj are the constant singular coefficients which are unknown. The eigensolu-

tion (µj , fj) is uniquely determined by the geometry and the boundary conditions along the

boundary parts S1 and S2 sharing the singular point. The unknown singular coefficients αj

are determined by the boundary conditions in the remaining parts of the boundary. These

coefficients are called (generalized) stress intensity factors (Szabó and Yosibash, 1996) and, in

many applications, are the main unknowns. In the case of the boundary conditions depicted

in Fig. 5.1, the eigenvalues µj and eigenfunctions fj(θ) are given by

µj =
2j − 1

2α
, (5.4)

and

fj(θ) = sin (µjθ) . (5.5)

As pointed out by Yosibash et al. (2002), once the eigen-pairs for the 2-D Laplacian problem

are obtained, one may construct the full series expansion solution for the 3-D Laplacian
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operator in the vicinity of straight edges. In the case of the Laplace equation, the solution

can be decomposed as follows:

u =
J∑

j=1

L∑

ℓ=1

αjℓ(z)r
µj (ln r)ℓ fjℓ(θ) + v(r, θ, z), (5.6)

where µj are identical to the eigenvalues of the 2-D problem and are now called edge eigenval-

ues, αjℓ are the flux intensity functions (EFIFs) which are analytic in z up to the vertices, fjℓ

are the edge eigenfunctions which are analytic in θ, and v is a sufficiently smooth function.

L ≥ 0 is an integer which is zero except when µj is an integer. In the present work it is

assumed that µj, j ≤ J are not integers. Therefore, (5.6) is reduced to

u =

J∑

j=1

αj(z)r
µjfj(θ) + v(r, θ, z). (5.7)

As demonstrated in Yosibash et al. (2002), a choice for the function v so that u satisfies

identically the 3-D Laplace equation is

v(r, θ, z) = rµjfj(θ)
∞∑

i=1

d2i

dz2i
(αj(z))

r2i (−1/4)i

i∏
n=1

n (µj + n)

. (5.8)

Thus, the solution takes the form :

u =

J∑

j=1

rµjfj(θ)




αj(z) +

∞∑

i=1

d2i

dz2i
(αj(z))

r2i (−1/4)i

i∏
n=1

n (µj + n)




. (5.9)

In Appendix B we show that for any αj(z) ∈ C∞(AB), the above function u satisfies the three-

dimensional Laplace equation and the boundary conditions on S1 and S2. The calculation

of the EFIFs αj(z), j = 1, 2, ..., J is the main objective of the present chapter. It should be

noted that Eqs. (5.7)–(5.9) hold only for the special case of the Laplace equation and not for

the general elliptic equation considered by Yosibash et al. (2002). More details are provided

in Appendix C.
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5.3 Formulation of the SFBIM

The basic assumption for the development of the SFBIM for 3-D Laplacian problems with

edge singularities is the use of piecewise polynomial approximations for the EFIFs by parti-

tioning the interval [−1, 1] into M subintervals and writing

αMj (z) =

Mφ∑

k=1

αjkφk(z) , j = 1, 2, ..., N, (5.10)

where αjk are unknown coefficients, φk(z) are (piecewise polynomial) basis functions, and

Mφ is the number of basis functions (e.g. Mφ =M for constant, Mφ =M +1 for linear basis

functions, etc.). Thus, the solution (5.9) can be approximated as follows:

uN =

N∑

j=1

αMj (z)rµjfj(θ), (5.11)

or

uN =

N∑

j=1

Mφ∑

k=1

αjkW
k
j (r, θ, z), (5.12)

where

W k
j (r, θ, z) = rµjfj(θ)φk(z) , j = 1, 2, ..., N, k = 1, 2, ...,Mφ. (5.13)

It is important to note that the functions W k
j satisfy identically the governing equation

and the boundary conditions on boundaries S1 and S2 sharing the edge AB. In order to

calculate the Nα = NMφ unknown coefficients αjk, we discretize the problem by weighting

the governing equation over Ω by means of the functions W k
j . Applying Green’s theorem

twice one gets:

∫∫

S3∪S4∪S5

(
∂uN
∂n

W k
j −

∂W k
j

∂n
uN

)
dS = 0 , j = 1, 2, ..., N, k = 1, 2, ...,Mφ. (5.14)

The Neumann conditions on boundaries S4 and S5 are weakly imposed by simply substituting

the functions q1 and q2, respectively. The Dirichlet boundary condition on S3 is imposed by

means of a Lagrange multiplier function λ(θ, z) which replaces the normal derivative of the
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solution. In this work, λ is approximated by means of locally polynomial (depending on the

choice for φk) basis functions Ψi:

λ(θ, z) =
∂uN
∂r

∣∣∣∣
r=1

=

Nλ∑

i=1

λiΨi(θ, z), (5.15)

where λi, i = 1, 2, ..., Nλ are the unknown discrete Lagrange multipliers. To define the ba-

sis functions Ψi, the two-dimensional domain [0, απ] × [−1, 1] is partitioned into Nθ × Mφ

elements, which means that Nλ = MφNθ or Mφ(Nθ + 1) for, respectively, constant or bilin-

ear Lagrange multipliers. The additional required equations are obtained by weighting the

Dirichlet condition u = g(θ, z) on S3 by means of the basis functions Ψi. The following linear

system of Nα +Nλ discretized equations is obtained:

∫∫

S3

(
λW k

j − uN
∂W k

j

∂r

)
dS +

∫∫

S4

uN
∂W k

j

∂z
dS −

∫∫

S5

uN
∂W k

j

∂z
dS (5.16)

=

∫∫

S4

q1W
k
j dS −

∫∫

S4

q1W
k
j dS, for j = 1, 2, ..., N , k = 1, 2, ...,Mφ,

and
∫∫

S3

uNΨidS =

∫∫

S3

gΨidS , i = 1, 2, ..., Nλ. (5.17)

Equations (5.16) and (5.17) involve two-dimensional integrals, while our problem is three-

dimensional, as mentioned before, the dimensional reduction is one of the main advantages

of the SFBIM. It should also be noted that the contributions over boundary parts S4 and

S5 in the RHS of Eq. (5.16) are identically zero if the basis functions φk are constant. The

system of Eqs. (5.16) and (5.17) can be written in block form as follows:



K L

LT O






A

Λ


 =



B

C


 , (5.18)

where A is the vector of the unknown coefficients αjk of the EFIFs and Λ is the vector of

the unknown discrete Lagrange coefficients. It is easily observed that the stiffness matrix is

symmetric and becomes singular if Nα < Nλ or, equivalently, when N < Nθ for constant φk

and N < Nθ + 1 for linear φk. In order to assure that the stiffness matrix is non-singular, in

all the numerical results of this work we have chosen Nθ = min{M,N − 2, 20}.
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5.4 Numerical Results

Following Yosibash et al. (2002), we construct test problems having analytical solutions of

the form:

us(r, θ, z) =
J∑

i=1

[(
αi1 + ai2z + ai3z

2
)
rµi sin (µiθ)−

αi3
2 (µi + 1)

rµi+2 sin (µiθ)

]
, (5.19)

where αij, i = 1, ..., J, j = 1, 2, 3 are specified as desired. Any solution of the form (5.19)

satisfies the 3D Laplace equation as well as the boundary conditions along S1 and S2. Once

the solution us is specified, it is straightforward to find the functions g, q1 and q2 that appear

in Eq. (5.2):

g(θ, z) = us (1, θ, z) =

J∑

i=1

[
αi1 −

αi3
2 (µi + 1)

+ ai2z + ai3z
2

]
sin (µiθ) , (5.20)

q1(r, θ) =
∂us
∂z

(r, θ,−1) =

J∑

i=1

(ai2 − 2ai3) r
µi sin (µiθ) , (5.21)

q2(r, θ) =
∂us
∂z

(r, θ, 1) =
J∑

i=1

(ai2 + 2ai3) r
µi sin (µiθ) . (5.22)

In what follows we investigate the implementation of the above method for α = 3π/4. The

eigenvalues and eigenfunctions in this case are

µj =
2(2j − 1)

3
, (5.23)

and

fj(θ) = sin (µjθ) = sin

[
2(2j − 1)

3
θ

]
. (5.24)

We will consider two test problems: In Test Problem 1 we take J = 100 with

αi1 =
1

i4
, αi2 =

2

i4 + i2
, αi3 =

3

i4
, i = 1, ..., J. (5.25)

In Test Problem 2, J = 3 with α11 = α12 = α13 = 1, α21 = α22 = 0.5, α23 = 1, and

α31 = α32 = α33 = 0.2. The entries of K, L, C and B of the system (5.18) for both test

problems can be found in Appendix D.
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Due to the form of the essential boundary condition (5.2), the SFBIM calculates directly the

EFIFs, which are given by

αi(z) = αi1 −
αi3

2 (µi + 1)
+ αi2z + αi3z

2. (5.26)

For both test problems we will be interested in the relative errors

εi =

∥∥αi − αMi
∥∥
L2(AB)

‖αi‖L2(AB)

,

where,

‖f(z)‖L2(AB) =

[∫ 1

−1
f2(z)dz

]1/2
. (5.27)

Let us first discuss the results of the SFBIM obtained for Test Problem 1 using constant basis

functions φk in the axial direction. In Fig. 5.3, we plot the approximations of the first EFIF,

α1, obtained with three different numbers of elements in the axial direction (M = 5, 10 and

100) and N = 20, along with the analytical solution. Despite the inherent limitations of the

constant basis functions, the approximation is improved considerably as M is increased. The

results for the other EFIFs are quite similar. Figure 5.4 illustrates this effect in the case of

α5.

Next, in Fig. 5.5, we plot the calculated relative errors in the leading EFIFs (i.e., ε1, ε2

and ε5) versus M . The slope of the lines is approximately −1, as expected since we are (i)

using 0th degree polynomials for the approximation and (ii) the L2-norm is used as an error

measure. We can then conclude that in the, e.g., H1-norm, the method converges linearly

with the number of elements, M , in the axial direction.

Figures 5.6 and 5.7 show the convergence of α1 and α5, respectively, with N when the number

of elements in the axial direction is fixed at 20. Increasing N from 10 to 25 does not seem

to lead to any observable improvement; the accuracy appears to be restricted by the value

of M , which is rather low as already illustrated in Figs. 5.3 and 5.4. The errors in α1, α2

and α5 are plotted in Fig. 5.8 versus the number N of the expansion terms. For higher
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Figure 5.3: Convergence of α1(z) with M using constant basis functions. N = 20.
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Figure 5.4: Convergence of α5(z) with M using constant basis functions. N = 20.
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Figure 5.5: The errors ε1, ε2 and ε5 for constant basis functions and N = 20 versus M .

values of N , the errors appear to level off very soon. This is simply due to the fact that the

optimal approximation for the given value of M has essentially been achieved. This effect is

illustrated in Fig. 5.9, where the errors in α1 for various values of M are plotted.

We now turn our attention to the case when linear basis functions are used for the approx-

imation of the EFIFs. As expected, using linear basis functions φk leads to more accurate

estimated for the EFIFs and faster convergence of the SFBIM. In Figs. 5.10 and 5.11, the

approximations of α1 and α5 for different values of M and N = 20 compare nicely with the

analytical solutions for Test Problem 1. The convergence of the method is illustrated in Fig.

5.12, where the errors in the leading coefficients calculated with N = 40 are plotted versus

M . The (expected) quadratic convergence is illustrated in Fig. 5.16, where we compare the

errors in the first EFIF, α1, obtained with the two sets of basis functions.

Figure 5.12 shows the error in the first, second and fifth EFIF with M . In all cases N = 60.

Here, Nθ =M for M < 30 and Nθ = 30 for M ≥ 30.

Figures 5.13 and 5.14 are analogous to Figs. 5.6 and 5.7, for linear basis functions. We have

plotted the EFIFs (numerical and analytic) for M = 20 and N = 10, 20 and 25. Note that
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Figure 5.6: Convergence of α1(z) with the number of singular functions N when using

M = 20 constant basis functions in the z-direction.

for N = 10 and N = 20 the stiffness matrix is singular since here Nθ = 20. This singularity

is not obvious in α1 but it can be observed in α5. For N = 25 the matrix is not singular and

it can be seen that both EFIFs are very close to the analytic solution.

Figures 5.15 and 5.16 compare the errors obtained with constant and linear basis functions

versus the number of singular functions, N , and the number of z-elements, M , respectively.

In Fig. 5.15 we have chosen M = 20 and Nθ = 19. We have plotted the error in α1 and α5 for

constant and linear basis functions against N . Note that for N < 20 the matrix is singular.

Figure 5.16 shows the error in α1 for constant and linear basis functions against M . Here

N = 70 and Nθ = M for M < 20 and Nθ = 19 for M ≥ 20. Note that the slope is −1 for
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Figure 5.7: Convergence of α5(z) with the number of singular functions N when using

M = 20 constant basis functions in the z-direction.

constant approximations and −2 for linear approximations.

Similar results have been obtained for Test Problem 2. The convergence of the SFBIM with

the number of z-elements M and the number of singular functions N is illustrated in Figs.

5.17 and 5.18 , respectively, where we plot the errors in α1 and α3.

5.5 Conclusions

We have presented an extension of the SFBIM to three-dimensional Laplacian problems with

a boundary straight-edge singularity. As in the two-dimensional setting, the SFBIM produced
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Figure 5.8: The errors ε1, ε2 and ε5 for M = 20 constant basis functions versus the

number of singular functions N .

accurate results for the coefficients (which in this case are functions of the third dimension).

We have observed the following: (i) The approximation of the EFIFs is naturally governed

by the choice of basis functions, as expected, hence increasing the number of z-elements

M produces more accurate results (for moderately low values of singular functions N). (ii)

IncreasingN while keeping the number of z-elementM fixed does not lead to any advantages.
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Figure 5.9: The error ε1 for for various numbers of constant basis functions (M = 5,

10, 20, 40 and 80) plotted against N .
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Figure 5.10: Convergence of the fifth EFIF, α1(z), with M , using linear functions;

N = 20.
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Figure 5.11: Convergence of α5(z), with M , using linear functions; N = 20.
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Figure 5.12: The errors ε1, ε2 and ε5 for N = 60 linear basis functions versus the

number M of the elements in the z-direction.
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Figure 5.13: Convergence of α1(z) with N using linear basis functions; M = 20.
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Figure 5.14: Convergence of α5(z) with N using linear basis functions; M = 20.
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the number of singular functions N , M = 20.
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Figure 5.16: The errors ε1 for constant and linear basis functions, plotted against M ;
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Figure 5.17: ε1 and ε3 for linear basis functions, plotted against M ; Test Problem 2;

N = 60.
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Figure 5.18: ε1 and ε3 for linear basis functions, plotted against N ; Test Problem 2;

M = 20.

91

Evg
en

ia 
Chri

sto
do

ulo
u



Chapter 6

Summary and Future Work

In this dissertation we have studied the Singular Function Boundary Integral Method (SF-

BIM) and investigated some of its extensions to two- and three-dimensions. To begin with,

in Chapter 2, we reviewed the method for model Laplacian and biharmonic problems in two-

dimensions. We also reviewed the theoretical convergence of the method in the case of a model

two-dimensional Laplace problem. In this case, the approximate solution and the approxi-

mate values of the singular coefficients converge exponentially with the number of singular

functions and the approximate values of the Lagrange multipliers converge algebraically.

Next, in Chapter 3, we have studied systematically the numerical convergence of the method

and made comparisons with the theoretical estimates. We considered two model Laplace

problems over circular sectors with known exact solutions and we used piecewise constant,

linear, quadratic and cubic approximations of the Lagrange multiplier function. The con-

vergence analysis of Xenophontos et al. (2006) does not apply for constant approximations

of the Lagrange multiplier function. For this case, that is not covered by the theory, we

observed that the convergence was algebraic of order 3 for the singular coefficients, of order

2 for the approximate solution and of order 3/4 for the Lagrange multipliers. The results for

the rest of the cases were in accordance with the theory. The approximate solution and the
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approximations of the singular coefficients converged exponentially, whilst the convergence

of the approximate Lagrange multipliers was algebraic of order equal to the degree of the

approximations used.

The theoretical analysis of the SFBIM was then extended to the case of biharmonic problems,

in Chapter 4. The convergence of the method was studied for a two-dimensional biharmonic

problem, as a model for the well-known Newtonian stick-slip problem from fluid mechanics.

It was proven that the coefficients in the local asymptotic expansion are approximated at an

exponential rate as the number of the employed expansion terms is increased. The theoretical

results were then illustrated through a numerical experiment.

Finally, in Chapter 5, the method was extended to three-dimensional Laplace problems with

a straight-edge singularity. The asymptotic solution of one such problem was presented and

the SFBIM was formulated. The edge flux intensity functions (EFIFs) were approximated

locally by low-degree polynomials the coefficients of which were the primary unknowns of

the method and were calculated directly. The SFBIM produced accurate results for the

coefficients and it was noted that increasing the number of polynomials used produced more

accurate results even with just a few singular functions but increasing the number of singular

functions while keeping the number of polynomials constant did not lead to any noticeable

advantages.

Directions for future work are proposed below:

• The preliminary results suggest that the method can successfully be extended to other

three-dimensional elliptic problems. The method should be tested on other problems

with edge singularities and with various combinations of boundary conditions in the

immediate future. For instance, it would be interesting to solve a Laplacian problem

with a boundary straight-edge singularity in the case when more Dirichlet conditions

apply and therefore more sets of Lagrange multipliers need to be employed. Also,

additional numerical evidence should be obtained, especially to see how the various

93

Evg
en

ia 
Chri

sto
do

ulo
u



parameters in the method affect its accuracy and convergence.

• The next step would be the convergence analysis for a model three-dimensional Laplace

problem with a boundary straight-edge singularity. A preliminary analysis to the prob-

lem of Chapter 5 is provided in Appendix E.

• Another direction is the extension of the method to three-dimensional problems with

conical vertex singularities and the convergence analysis. Such problems have been

recently considered by Zaltzman and Yosibash (2009), who derived explicit analytical

expressions for the eigen-pairs.

• The method may also be extended for the solution of general corner flows in the Stokes

limit. Such flows are governed by the biharmonic equation in terms of the streamfunc-

tion and are of interest in fluid dynamics. Such flow problems in a stationary wedge

of angle 2α have been recently considered by Hills (2001 b), who used a collocation

technique utilizing a basis of eddy functions. It is well known that there exists a critical

half-angle (αcrit) such that for α < αcrit the problem possess complex local solutions

(Moffat, 1964). Therefore, the study of this problem for α < αcrit will be the extension

of the SFBIM to the complex direction. A preliminary formulation for this problem

can be found in Appendix F.
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Appendix A

In this appendix, the elements of the matrix K and the vector F defined in (3.17) and

(3.18) are provided for constant, linear, quadratic and cubic approximations of the Lagrange

multiplier function λ defined in (4.35). We note that N is the number of elements:

N =





Nλ, p = 0

Nλ−1
p , p ≥ 1

. (A.1)

Constant basis functions

For constant basis functions we have for i = 1, 2, ..., Nα , j = 1, 2, ..., Nλ,

Kij =
4Rµi+1

(2i− 1)
sin

(2i− 1)(2j − 1)π

4N
sin

(2i − 1)π

4N
, (A.2)

and for i = 1, 2, ..., Nλ,

Fi =
Rα2π2

2N2

[
2i− 1− 3i2 − 3i+ 1

3N

]
. (A.3)

Linear basis functions

For linear basis functions we have, for i = 1, 2, ..., Nα ,

Ki,1 =
2αRµi+1

(2i− 1)

[
1− 2N

(2i− 1)π
sin

(2i− 1)π

2N

]
, (A.4)

Ki,Nλ
=

8αNRµi+1

π(2i− 1)2
sin

(2i− 1)π

4N
cos

(2i− 1)(2N − 1)π

4N
, (A.5)
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and for i = 1, 2, ..., Nα, j = 2, ..., Nλ − 1,

Kij =
16αNRµi+1

π(2i− 1)2
sin2

(2i− 1)π

4N
sin

(2i− 1)(j − 1)π

2N
. (A.6)

Similarly,

F1 =
Rα2π2

6N2

(
1− 1

4N

)
, (A.7)

FNλ
=

Rα2π2

24N3

(
6N2 − 1

)
, (A.8)

and for j = 2, ..., Nλ − 1,

Fi = −R
(
12N(1 − i) + 6i2 − 12i+ 7

)

12N3
. (A.9)

Quadratic basis functions

For quadratic basis functions we have for i = 1, 2, ..., Nα ,

Ki,1 =
Rµi+1

2h2µi3
{
2 cos (2hµi) + hµi sin (2hµi)− 2 + 2h2µi

2
}
, (A.10)

Ki,2N+1 = −R
µi+1

2h2µ3i

[
−3hµi sin(2hNµi) + (2h2µ2i − 2) cos(2hNµi)+

+2 cos(2h(N − 1)µi)− hµi sin(2h(N − 1)µi)] , (A.11)

Ki,2k = −2Rµi+1

h2µ3i
[cos(2hkµi) + hµi sin(2hkµi)− cos(2h(k − 1)µi)+

+hµi sin(2h(k − 1)µi)] , k = 1, ..., N, (A.12)

Ki,2k+1 = −R
µi+1

2h2µ3i
[−6hµi sin(2hkµi)− 2 cos(2h(k + 1)µi)+

+2 cos(2h(k − 1)µi)− hµi sin(2h(k + 1)µi)− hµi] , k = 1, ..., N − 1, (A.13)

Similarly,

F1 =
Rα2π2

120N3
, (A.14)

F2k =
Rα2π2

30N3
[10k(k − 1) + 10N(1 − 2k) + 3] , k = 2, 3, ..., N, (A.15)

F2k+1 =
Rα2π2

60N3

[
10k2 − 20kN − 1

]
, k = 1, 2, ..., N − 1, (A.16)
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F2N+1 =
Rα2π2

120N3

[
10N2 + 1

]
. (A.17)

Cubic basis functions

For cubic basis functions we have for i = 1, 2, ..., Nα,

Ki,1 = −R
µi+1

3h3µ4i

[
(µ2i h

2 − 3) sin(3hµi) + 3µih cos(3hµi) + 6hµi − 3h3µ3i
]
, (A.18)

Ki,3k+2 = −R
µi+1

2h3µ4i

[
−8hµi cos(3h(k + 1)µi) + (6− 3h2µ2i ) sin(3h(k + 1)µi)−

−10hµi cos(3hkµi) + (6h2µ2i − 6) sin(3hkµi)
]
, k = 0, 1, ..., N − 1, (A.19)

Ki,3k+3 =
Rµi+1

2h3µ4i

[
−10hµi cos(3h(k + 1)µi) + (6− 6h2µ2i ) sin(3h(k + 1)µi)−

−8hµi cos(3hkµi) + (3h2µ2i − 6) sin(3hkµi)
]
, k = 0, 1, ..., N − 1, (A.20)

Ki,3k+4 =
Rµi+1

3h3µ4i

[
(11h2µ2i − 6) sin(3h(k + 1)µi)+

+(3− h2µ2i ) sin(3hkµi)− 3hµi cos(3hkµi)− 3hµi cos(3h(k + 2)µi) +

+(3− h2µ2i ) sin(3h(k + 2)µi)
]
, k = 0, 1, ..., N − 2, (A.21)

Ki,3N+1 =
Rµi+1

6h3µ4i

[
(12hµi − 6h3µ3i ) cos(3hNµi) + (11h2µ2i − 6) sin(3hNµi)+

+6hµi cos(3h(N − 1)µi) + (6− 2h2µ2i ) sin(3h(N − 1)µi)
]
. (A.22)

Similarly,

F1 =
Rα2π2

240N3
(4N − 1), (A.23)

F3k+2 =
3Rα2π2

80N3
(10kN − 5k2 + 2N − 2k), k = 0, 1, ..., N − 1, (A.24)

F3k+3 =
3Rα2π2

80N3
(8N − 8k − 3 + 10kN − 5k2), k = 0, 1, ..., N − 1, (A.25)

F3k+4 =
Rα2π2

120N3
(30N − 30k + 30kN − 15k2 − 16), k = 0, 1, ..., N − 2, (A.26)

F3N+1 =
Rα2π2

240N3
(15N2 − 1). (A.27)
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Appendix B

In this appendix we show that the functions Ŵ ℓ
j given by (5.9), satisfy the three-dimensional

Laplace equation and the boundary conditions on S1 and S2, described by (5.1)–(5.2) in

Chapter 5. In particular, we set

SN (r, θ, z) = rµnfn(θ)


αn(z) +

N∑

i=1

∂2i

∂z2i
(αn(z))

r2i (−1/4)i

i∏
n=1

j (µn + j)


 , (B.1)

and show that the residual of ∇2SN (r, θ, z) tends to 0, as N tends to ∞. We have

∇2SN (r, θ, z) =
∂2SN
∂r2

+
1

r

∂SN
∂r

+
1

r2
∂2SN
∂θ2

=

= µn(µn−1)rµn−2fn(θ)αn(z)+
N∑

i=1

(µn+2i)(µn+2i−1)rµn+2i−2fn(θ)
∂2i

∂z2i
(αn(z))

(−1/4)i

i∏
j=1

j (µn + j)

+µnr
µn−2fn(θ)αn(z) +

N∑

i=1

(µn + 2i)rµn+2i−2fn(θ)
∂2i

∂z2i
(αn(z))

(−1/4)i

i∏
j=1

j (µn + j)

+rµn−2fn(θ)αn(z) +
N∑

i=1

rµn+2i−2f ′′n(θ)
∂2i

∂z2i
(αn(z))

(−1/4)i

i∏
j=1

j (µn + j)

+rµnfn(θ)α
′′
n(z) +

N+1∑

i=2

rµn+2i−2fn(θ)
∂2i

∂z2i
(αn(z))

(−1/4)i−1

i−1∏
j=1

j (µn + j)

. (B.2)

There holds f ′′n(θ) = −µ2nfn(θ), hence the coefficient of rµn−2fn(θ)αn(z) in (B.2) is

µn(µn − 1) + µn − µ2n = 0. (B.3)
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Similarly, the coefficient of rµnfn(θ)α
′′
n(z) in (B.2) is

[
(µn + 2)(µn + 1) + (µn + 2)− µ2n

] (−1/4)

(µn + 1)
+ 1 = 0,

and finally, the coefficient of rµn+2i−2fn(θ)
∂2i

∂z2i
(αn(z)) for i = 2, 3, . . . , N in (B.2) is

[
(µn + 2i)(µn + 2i− 1) + (µn + 2i)− µ2n

] (−1/4)i

i∏
j=1

j (µn + j)

+
(−1/4)i−1

i−1∏
j=1

j (µn + j)

=
[
(µn + 2i)(µn + 2i− 1) + (µn + 2i)− µ2n − 4i(µn + i)

] (−1/4)i

i∏
j=1

j (µn + j)

=
[
(µn + 2i)2 − µ2n − 4i(µn + i)

] (−1/4)i

i∏
j=1

j (µn + j)

= 0.

Therefore, the residual is

rµn+2Nfn(θ)
∂2N+2

∂z2N+2
(αn(z))

(−1/4)N

N∏
j=1

j (µn + j)

, (B.4)

and we have

lim
N→∞

∣∣∣∣∣∣∣∣∣
rµn+2Nfn(θ)

∂2N+2

∂z2N+2
(αn(z))

(−1/4)N

N∏
j=1

j (µn + j)

∣∣∣∣∣∣∣∣∣
≤

≤ |rµnfn(θ)| lim
N→∞

∣∣∣∣r2N
∂2N+2

∂z2N+2
(αn(z))

1

4NN2

∣∣∣∣ ≤ C(n) lim
N→∞

∣∣∣∣r2N
1

4NN2

∣∣∣∣ = 0, (B.5)

since αn ∈ C∞ and with C(n) some bounded function of n. This establishes that Ŵn :=

limn→∞ Sn satisfies Laplaces equation in three-dimensions. To show that the boundary con-

ditions are also satisfied, we note that fn(θ) (as an eigenfunction of the 2D problem) satisfies

fn(0) = f ′n(απ) = 0. (B.6)

Therefore,

Ŵn|S1 =
∂Ŵn

∂θ
|S2 = 0. (B.7)
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Appendix C

Consider solving the BVP 



L(u) = 0 in Ω ⊂ R
3

u = g on ∂Ω

(C.1)

where g is a given function and the differential operator L is given by

L =

3∑

i=1

3∑

j=1

κij∂i∂j (C.2)

with κij = κji ∈ R and ∂ℓ =
∂
∂xℓ

, ℓ = 1, 2, 3. For example, if

κ11 = κ22 = κ33 = 1

κ12 = κ13 = κ23 = 0

(C.3)

then

L = ∇2 (C.4)

We split the operator as

L =M0(∂1, ∂2) +M1(∂1, ∂2)∂3 +M2∂
2
3 (C.5)

where

M0: second order differential operator in x1, x2

M1: first order differential operator in x1, x2

M2: constant.

Then the solution u has the expansion
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u
∑

j≥0

∂j3A(x3)Φj(x1, x2) (C.6)

where A(x3) is the EFIF. The functions Φj satisfy

M0Φ0 = 0

M0Φ1 = −M1Φ0

M0Φj = −M1Φj−1 −M2Φj−2

(C.7)

We are interested in operators for which

M0 = κ11∂
2
1 + 2κ12∂1∂2 + κ22∂2∂2

M1 = 0

M2 = 1

(C.8)

Suppose the domain Ω has an angle α and set

ω = arctan

(√
κ11κ22 − κ212 sinα

κ22 cosα− κ12 sinα

)
(C.9)

µi =
π

ω
i, i = 1, 2, . . . (C.10)

Solving M0Φ0 = 0 we find

Φ
(i)
0 (r, θ) = rµiφ

(i)
0 (θ) (C.11)

where

φ
(i)
0 (θ) =

(
κ22 cos

2 θ − κ12 sin(2θ)

κ11κ22 − κ212

)µi
2

· sin
(
µi arctan

(√
κ11κ22 − κ212 sin θ

κ22 cos θ − κ12 sin θ

))
(C.12)

Once Φ0 is known we proceed with finding Φ1 by solving

M0Φ1 = 0 (C.13)

and once this is achieved we continue with Φ2 which satisfies

M0Φ
(i)
2 = −M2Φ

(i)
0 (C.14)

etc.
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Appendix D

In this appendix we provide the elements of the matrices K and L and of the vectors B and

C defined in (5.16), (5.17) and (5.18), for constant and linear approximations of the Lagrange

multiplier function λ and the EFIFs αj(z) defined by (5.15) and (5.10) respectively.

Locally constant approximations of αj(z) and λ

Let h be the mesh width in z and zk = −1 + (k − 1)h for k = 1, 2, . . . ,M + 1.

We use:

φk(z) =





1 if zk < z ≤ zk+1

0 otherwise,

(D.1)

for k = 1, 2, . . . ,M

The Lagrange multiplier function λ is also approximated by constant basis functions. The

2D domain [0, απ] × [−1, 1] is subdivided into Nλ = Nθ ×M elements. Let hθ be the mesh

width in θ and θℓ = (ℓ− 1)hθ for ℓ = 1, 2, . . . , Nθ +1. Therefore the basis functions are given

by:

Ψ(k−1)Nθ+ℓ(θ, z) =





1 if zk < z ≤ zk+1 and θℓ < θ ≤ θℓ+1

0 otherwise

(D.2)

where, (k − 1)Nθ + ℓ is the element number and is calculated with k = 1, 2, . . . ,M and

ℓ = 1, 2, . . . , Nθ. The sub-matrices K, L and the vectors B, C in (5.18) are given by:

Ki,j =





−µi απ2 h if i = j

0 otherwise,

(D.3)
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where i, j = 1, 2, . . . , NM .

L(m−1)M+k,(k−1)Nθ+ℓ = − h

µm
[cos (µmθℓ+1)− cos (µmθℓ)] (D.4)

for m = 1, 2, . . . , N , k = 1, 2, . . . ,M and ℓ = 1, 2, . . . , Nθ (Li,j = 0 otherwise).

C(k−1)Nθ+ℓ = −
J∑

i=1

[(
αi1 −

αi1
2(µi + 1)

)
z +

αi2z
2

2
+
αi3z

3

3

]zk+1

zk

[
cosµiθ

µi

]θℓ+1

θℓ

(D.5)

for k = 1, 2, . . . ,M and ℓ = 1, 2, . . . , Nθ, J = 3 for Test Problem 2 and J = 100 for Test

Problem 1 as shown in (5.25).

B(j−1)M+k(θ, z) =





(αj2−2αj3)απ
4(µj+1) , j ≤ min{N,J}, k = 1

− (αj2+2αj3)απ
4(µj+1) , j ≤ min{N,J}, k =M

0 otherwise,

(D.6)

where, j = 1, 2, . . . , N .

Locally linear approximations of αj(z) and λ

Let h be the mesh width in z and zk = −1 + (k − 1)h for k = 1, 2, . . . ,M + 1. This time:

φk(z) =





1
h (z − zk−1) if zk−1 < z ≤ zk

− 1
h (z − zk) if zk < z ≤ zk+1

0 otherwise,

(D.7)

for k = 2, 3, . . . ,M ,

φ1(z) =





− 1
h (z − z2) if z1 < z ≤ z2

0 otherwise,

(D.8)

and

φM+1(z) =





1
h (z − zM ) if zM < z ≤ zM+1

0 otherwise,

(D.9)

The Lagrange multiplier function λ is now approximated by bilinear basis functions. The 2D

domain [0, απ]× [−1, 1] is again subdivided into Nλ = Nθ×M elements. Let hθ be the mesh
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width in θ and θℓ = (ℓ− 1)hθ for ℓ = 1, 2, . . . , Nθ + 1. The basis functions are given by:

Ψ(k−1)(Nθ+1)+ℓ(θ, z) =





(z−zk−1)(θ−θℓ)
hhθ

if zk−1 < z ≤ zk and θℓ−1 < θ ≤ θℓ

− (z−zk−1)(θ−θℓ+1)
hhθ

if zk−1 < z ≤ zk and θℓ < θ ≤ θℓ+1

− (z−zk+1)(θ−θℓ−1)
hhθ

if zk < z ≤ zk+1 and θℓ−1 < θ ≤ θℓ

(z−zk+1)(θ−θℓ+1)
hhθ

if zk < z ≤ zk+1 and θℓ < θ ≤ θℓ+1

0 otherwise

(D.10)

for k = 2, 3, . . . ,M and ℓ = 2, 3, . . . , Nθ.

Ψ(k−1)(Nθ+1)+1(θ, z) =





− (z−zk−1)(θ−θ1)
hhθ

if zk−1 < z ≤ zk and θ1 < θ ≤ θ2

(z−zk+1)(θ−θ1)
hhθ

if zk < z ≤ zk+1 and θ1 < θ ≤ θ2

0 otherwise

(D.11)

for k = 2, 3, . . . ,M .

Ψk(Nθ+1)(θ, z) =





(z−zk−1)(θ−θNθ
)

hhθ
if zk−1 < z ≤ zk and θNθ

< θ ≤ θNθ+1

− (z−zk+1)(θ−θNθ
)

hhθ
if zk < z ≤ zk+1 and θNθ

< θ ≤ θNθ+1

0 otherwise

(D.12)

for k = 2, 3, . . . ,M .

Ψℓ(θ, z) =





− (z−z2)(θ−θℓ−1)
hhθ

if z1 < z ≤ z2 and θℓ−1 < θ ≤ θℓ

(z−z2)(θ−θℓ+1)
hhθ

if z1 < z ≤ z2 and θℓ < θ ≤ θℓ+1

0 otherwise

(D.13)

for ℓ = 2, 3, . . . , Nθ.

ΨM(Nθ+1)+ℓ(θ, z) =





(z−zM )(θ−θℓ−1)
hhθ

if zM < z ≤ zM+1 and θℓ−1 < θ ≤ θℓ

− (z−zM )(θ−θℓ+1)
hhθ

if zM < z ≤ zM+1 and θℓ < θ ≤ θℓ+1

0 otherwise

(D.14)

for ℓ = 2, 3, . . . , Nθ.
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Ψ1(θ, z) =





(z−z2)(θ−θ2)
hhθ

if z1 < z ≤ z2 and θ1 < θ ≤ θ2

0 otherwise

(D.15)

ΨNθ+1(θ, z) =





− (z−z2)(θ−θNθ
)

hhθ
if z1 < z ≤ z2 and θNθ

< θ ≤ θNθ+1

0 otherwise

(D.16)

ΨM(Nθ+1)+1(θ, z) =





− (z−zM )(θ−θ2)
hhθ

if zM < z ≤ zM+1 and θ1 < θ ≤ θ2

0 otherwise

(D.17)

Ψ(M+1)(Nθ+1)(θ, z) =





(z−zM )(θ−θNθ
)

hhθ
if zM < z ≤ zM+1 and θNθ

< θ ≤ θNθ+1

0 otherwise

(D.18)

The sub-matrices K, L and the vectors B, C in (5.18) are given by:

K(j−1)(M+1)+1,(j−1)(M+1)+1 = −απ
2

(
1

2h(µj + 1)
+
µjh

3

)
, j = 1, 2, . . . , N. (D.19)

Kj(M+1),j(M+1) =
απ

2

(
1

2h(µj + 1)
− µjh

3

)
, j = 1, 2, . . . , N. (D.20)

K(j−1)(M+1)+2,(j−1)(M+1)+1 =
απ

2

(
1

2h(µj + 1)
− µjh

6

)
, j = 1, 2, . . . , N. (D.21)

K(j−1)(M+1)+M,j(M+1) =
απ

2

(
1

2h(µj + 1)
− µjh

6

)
, j = 1, 2, . . . , N. (D.22)

K(j−1)(M+1)+k,(j−1)(M+1)+k−1 = −µj
απ

2

h

6
, j = 1, 2, . . . , N, k = 3, 4, . . . ,M + 1 (D.23)

K(j−1)(M+1)+k,(j−1)(M+1)+k = −µj
απ

2

2h

3
, j = 1, 2, . . . , N, k = 2, 4, . . . ,M (D.24)

K(j−1)(M+1)+k,(j−1)(M+1)+k+1 = −µj
απ

2

h

6
, j = 1, 2, . . . , N, k = 2, 4, . . . ,M − 1. (D.25)

Any entries of K not described by (D.19)-(D.25), are zero.

B(j−1)M+k(θ, z) =





(αj2−2αj3)απ
4(µj+1) , j ≤ min{N,J}, k = 1

− (αj2+2αj3)απ
4(µj+1) , j ≤ min{N,J}, k =M + 1

0 otherwise,

(D.26)

where, j = 1, 2, . . . , N .
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Let βi = αi1 − αi3
2(µi+1) for i = 1, 2, . . . , J

C(k−1)(Nθ+1)+ℓ = +
1

hhθ

J∑

i=1

{[
−βizk−1z + (βi − αi2zk−1)

z2

2
+ (αi2 − αi3zk−1)

z3

3
+ αi3

z4

4

]zk

zk−1

·

·
[
(θℓ−1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ

θℓ−1

}
−

− 1

hhθ

J∑

i=1

{[
−βizk−1z + (βi − αi2zk−1)

z2

2
+ (αi2 − αi3zk−1)

z3

3
+ αi3

z4

4

]zk

zk−1

·

·
[
(θℓ+1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ+1

θℓ

}
−

− 1

hhθ

J∑

i=1

{[
−βizk+1z + (βi − αi2zk+1)

z2

2
+ (αi2 − αi3zk+1)

z3

3
+ αi3

z4

4

]zk+1

zk

·

·
[
(θℓ−1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ

θℓ−1

}
+

+
1

hhθ

J∑

i=1

{[
−βizk+1z + (βi − αi2zk+1)

z2

2
+ (αi2 − αi3zk+1)

z3

3
+ αi3

z4

4

]zk+1

zk

·

·
[
(θℓ+1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ+1

θℓ

}
, (D.27)

for ℓ = 2, 3, . . . , Nθ and k = 2, 3, . . . ,M .

C(k−1)(Nθ+1)+1 = − 1

hhθ

J∑

i=1

{[
−βizk−1z + (βi − αi2zk−1)

z2

2
+ (αi2 − αi3zk−1)

z3

3
+ αi3

z4

4

]zk

zk−1

·

·
[
(θ2 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θ2

θ1

}
+

+
1

hhθ

J∑

i=1

{[
−βizk+1z + (βi − αi2zk+1)

z2

2
+ (αi2 − αi3zk+1)

z3

3
+ αi3

z4

4

]zk+1

zk

·

·
[
(θ2 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θ2

θ1

}
, (D.28)

for k = 2, 3, . . . ,M .

Ck(Nθ+1) = +
1

hhθ

J∑

i=1

{[
−βizk−1z + (βi − αi2zk−1)

z2

2
+ (αi2 − αi3zk−1)

z3

3
+ αi3

z4

4

]zk

zk−1

·
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·
[
(θNθ

− θ) cosµiθ

µi
+

sinµiθ

µ2i

]θNθ+1

θNθ

}
−

− 1

hhθ

J∑

i=1

{[
−βizk+1z + (βi − αi2zk+1)

z2

2
+ (αi2 − αi3zk+1)

z3

3
+ αi3

z4

4

]zk+1

zk

·

·
[
(θNθ

− θ) cosµiθ

µi
+

sinµiθ

µ2i

]θNθ+1

θNθ

}
, (D.29)

for k = 2, 3, . . . ,M .

Cℓ = − 1

hhθ

J∑

i=1

{[
−βiz2z + (βi − αi2z2)

z2

2
+ (αi2 − αi3z2)

z3

3
+ αi3

z4

4

]z2

z1

·

·
[
(θℓ−1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ

θℓ−1

}
+

+
1

hhθ

J∑

i=1

{[
−βiz2z + (βi − αi2z2)

z2

2
+ (αi2 − αi3z2)

z3

3
+ αi3

z4

4

]z2

z1

·

·
[
(θℓ+1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ+1

θℓ

}
, (D.30)

for ℓ = 2, 3, . . . , Nθ.

CM(Nθ+1)ℓ = +
1

hhθ

J∑

i=1

{[
−βizMz + (βi − αi2zM )

z2

2
+ (αi2 − αi3zM )

z3

3
+ αi3

z4

4

]zM+1

zM

·

·
[
(θℓ−1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ

θℓ−1

}
−

− 1

hhθ

J∑

i=1

{[
−βizMz + (βi − αi2zM )

z2

2
+ (αi2 − αi3zM )

z3

3
+ αi3

z4

4

]zM+1

zM

·

·
[
(θℓ+1 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θℓ+1

θℓ

}
, (D.31)

for ℓ = 2, 3, . . . , Nθ.

C1 =
1

hhθ

J∑

i=1

{[
−βiz2z + (βi − αi2z2)

z2

2
+ (αi2 − αi3z2)

z3

3
+ αi3

z4

4

]z2

z1

·

·
[
(θ2 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θ2

θ1

}
. (D.32)
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CNθ+1 = − 1

hhθ

J∑

i=1

{[
−βiz2z + (βi − αi2z2)

z2

2
+ (αi2 − αi3z2)

z3

3
+ αi3

z4

4

]z2

z1

·

·
[
(θNθ

− θ) cosµiθ

µi
+

sinµiθ

µ2i

]θNθ+1

θNθ

}
. (D.33)

CM(Nθ+1)+1 = − 1

hhθ

J∑

i=1

{[
−βizMz + (βi − αi2zM )

z2

2
+ (αi2 − αi3zM )

z3

3
+ αi3

z4

4

]z2

z1

·

·
[
(θ2 − θ) cosµiθ

µi
+

sinµiθ

µ2i

]θ2

θ1

}
. (D.34)

C(M+1)(Nθ+1) =
1

hhθ

J∑

i=1

{[
−βizMz + (βi − αi2zM )

z2

2
+ (αi2 − αi3zM )

z3

3
+ αi3

z4

4

]z2

z1

·

·
[
(θNθ

− θ) cosµiθ

µi
+

sinµiθ

µ2i

]θNθ+1

θNθ

}
. (D.35)

We kept L last because it is the most difficult matrix to describe. In practice, the mesh is

scanned element by element and at each element eight integrations are performed.The results

are added to the appropriate entries of L that starts as a zero matrix. For instance in the

random element [θℓ, θℓ+1]× [zk, zk+1] we calculate the integrations:

I1a = − 1

µjh2hθ

{
−hθ cosµjθℓ +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− zk+1z

2 + z2k+1z

]zk+1

zk

, (D.36)

I1b =
1

µjh2hθ

{
−hθ cosµjθℓ +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− (zk + zk+1)

z2

2
+ zk+1zkz

]zk+1

zk

, (D.37)

I2a =
1

µjh2hθ

{
−hθ cosµjθℓ+1 +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− zk+1z

2 + z2k+1z

]zk+1

zk

, (D.38)

I2b = − 1

µjh2hθ

{
−hθ cosµjθℓ+1 +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− (zk + zk+1)

z2

2
+ zk+1zkz

]zk+1

zk

,

(D.39)
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I3a =
1

µjh2hθ

{
−hθ cosµjθℓ +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− (zk + zk+1)

z2

2
+ zk+1zkz

]zk+1

zk

, (D.40)

I3b = − 1

µjh2hθ

{
−hθ cosµjθℓ +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− zkz

2 + z2kz

]zk+1

zk

, (D.41)

I4a = − 1

µjh2hθ

{
−hθ cosµjθℓ+1 +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− (zk + zk+1)

z2

2
+ zk+1zkz

]zk+1

zk

,

(D.42)

and

I4b = +
1

µjh2hθ

{
−hθ cosµjθℓ+1 +

[
sinµjθ

µj

]θℓ+1

θℓ

}
·
[
z3

3
− zkz

2 + z2kz

]zk+1

zk

. (D.43)

Then, I1a is added toL(j−1)(M+1)+k,(k−1)(Nθ+1)+ℓ, i.e.:

L(j−1)(M+1)+k,(k−1)(Nθ+1)+ℓ = L(j−1)(M+1)+k,(k−1)(Nθ+1)+ℓ + I1a. (D.44)

Similarly,

L(j−1)(M+1)+k+1,(k−1)(Nθ+1)+ℓ = L(j−1)(M+1)+k+1,(k−1)(Nθ+1)+ℓ + I1b, (D.45)

L(j−1)(M+1)+k,(k−1)(Nθ+1)+ℓ+1 = L(j−1)(M+1)+k,(k−1)(Nθ+1)+ℓ+1 + I2a, (D.46)

L(j−1)(M+1)+k+1,(k−1)(Nθ+1)+ℓ+1 = L(j−1)(M+1)+k+1,(k−1)(Nθ+1)+ℓ+1 + I2b, (D.47)

L(j−1)(M+1)+k,k(Nθ+1)+ℓ = L(j−1)(M+1)+k,k(Nθ+1)+ℓ + I3a, (D.48)

L(j−1)(M+1)+k+1,k(Nθ+1)+ℓ = L(j−1)(M+1)+k+1,k(Nθ+1)+ℓ + I3b, (D.49)

L(j−1)(M+1)+k,k(Nθ+1)+ℓ+1 = L(j−1)(M+1)+k,k(Nθ+1)+ℓ+1 + I4a, (D.50)

and

L(j−1)(M+1)+k+1,k(Nθ+1)+ℓ+1 = L(j−1)(M+1)+k+1,k(Nθ+1)+ℓ+1 + I4b. (D.51)

This is done for every j = 1, 2, . . . , N , k = 1, 2, . . . ,M and ℓ = 1, 2, . . . , Nθ.
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Appendix E

One future direction for the expansion of the SFBIM is the theoretical convergence analysis

for the three-dimensional Laplace problem of Chapter 5. In this appendix the preliminary

steps of such an analysis are carried out. Let us recall the problem, which for convenience

we restate here: Find u such that

∇2u = 0 in Ω = [0, 1] × [0, απ] × [−1, 1] , (E.1)

with

u = 0 on S1

∂u
∂θ = 0 on S2

u = g(θ, z) on S3

∂u
∂z = q1 (r, θ) on S4

∂u
∂z = q2 (r, θ) on S5





, (E.2)

where n denotes the outward unit normal pointing outside ∂Ω =
5⋃
i=1
Si (see also Fig. 5.1).

Let us multiply (E.1) by a test function v (to be specified shortly) and integrate over Ω:

∫∫∫

Ω

v∇2u = 0.

By Green’s Theorem, we have

−
∫∫∫

Ω

∇v · ∇u+

∫∫

S1∪S3

v
∂u

∂n
+

∫∫

S4

vq1 +

∫∫

S5

vq2 = 0, (E.3)
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where the boundary conditions (E.2) were used. Suppose, now, that v is chosen to satisfy

∇2v = 0 in Ω, v = 0 on S1,
∂v

∂θ
= 0 on S2. (E.4)

Then (E.3) becomes

−
∫∫∫

Ω

∇v · ∇u+

∫∫

S3

v
∂u

∂n
= −

∫∫

S4

vq1 −
∫∫

S5

vq2. (E.5)

Now, since u = g on S3 we have

−
∫∫

S3

∂v

∂n
(u− g) = 0,

so adding this to (E.5), we get (using (E.4))

∫∫∫

Ω

∇v · ∇u−
∫∫

S3

u
∂v

∂n
−
∫∫

S3

v
∂u

∂n
= −

∫∫

S3

∂v

∂n
g +

∫∫

S4

vq1 +

∫∫

S5

vq2. (E.6)

Letting

λ =
∂u

∂n

∣∣∣∣
S3

, µ =
∂v

∂n

∣∣∣∣
S3

, (E.7)

equation (E.6) becomes

∫∫∫

Ω

∇v · ∇u−
∫∫

S3

uµ−
∫∫

S3

vλ = −
∫∫

S3

µg +

∫∫

S4

vq1 +

∫∫

S5

vq2.

So we arrive at the following variational problem to be solved: Find (u, λ) ∈ H1
# (Ω) ×

H−1/2 (S3) such that

B(u, v) + b(u, v;λ, µ) = F (v, µ) ∀ (v, µ) ∈ H1
# (Ω)×H−1/2 (S3) , (E.8)

where

B(u, v) =

∫∫∫

Ω

∇v · ∇u, (E.9)

b(u, v;λ, µ) = −
∫∫

S3

uµ−
∫∫

S3

vλ, (E.10)

F (v, µ) = −
∫∫

S3

µg +

∫∫

S4

vq1 +

∫∫

S5

vq2. (E.11)
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The space H1
# (Ω) appearing in (E.8) is defined as

H1
# (Ω) =

{
w ∈ H1 (Ω) : w|S1

= 0
}
, (E.12)

and H−1/2 is the usual dual of the space of trace functions H1/2. The discrete problem

corresponding to (E.8), then, reads: Find (uN , λh) ∈
[
V N
1 × V h

2

]
⊂
[
H1

# ×H−1/2(S3)
]
such

that

B(uN , v) + b(uN , v;λh, µ) = F (v, µ) ∀ (v, µ) ∈ V N
1 × V h

2 , (E.13)

with B(u, v), b(u, v;λ, µ) and F (v, µ) given by (E.9)–(E.11), and with V N
1 , V h

2 finite dimen-

sional spaces to be selected.

The above problem is equivalent to the formulation used in the SFBIM and presented in

the Chapter 5. To see this we first state the discrete problem (E.13) in mixed form: find

(uN , λ) ∈ V N
1 × V h

2 such that

∫∫∫
Ω

∇v · ∇uN −
∫∫
S3

vλ =
∫∫
S4

q1v +
∫∫
S5

q2v ∀ v ∈ V N
1

∫∫
S3

(uN − g)µ = 0 ∀ v ∈ V h
2




. (E.14)

Now, from Green’s theorem and the boundary conditions that v satisfies (cf. (5.5)) we have

∫∫∫

Ω

∇v · ∇uN =

∫∫

∂Ω

∂v

∂n
uN −

∫∫

∂Ω

uN∇2v =

∫∫

∂Ω

∂v

∂n
uN

=

∫∫

S3∪S4∪S5

∂v

∂n
uN ,

and (E.14) becomes

∫∫
S3∪S4∪S5

∂v
∂nuN −

∫∫
S3

vλ =
∫∫
S4

q1v
∫∫
S5

q2v ∀ v ∈ V N
1

∫∫
S3

(uN − g)µ = 0 ∀ v ∈ V h
2




. (E.15)

It is then easily seen that if uN satisfies (E.15) then it also satisfies (E.14) and in turn (E.8),

and vice versa.

Next, upon selecting the finite dimensional spaces V N
1 , V h

2 , one would like to establish a best

approximation result analogous to (2.20) that will ultimately lead to the rate of convergence

of the method.
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Another issue we wish to address is the choice of singular functions (cf. (5.13)). It turns out

that the function

Ŵ ℓ
j (r, θ, z) = rµjfj(θ)


β

ℓ
j(z) +

∞∑

i=1

∂2i

∂z2i

(
βℓj(z)

) r2i
(
−1

4

)i
i∏

n=1
n (µj + n)


 , (E.16)

with βℓj(z) ∈ C∞(AB) arbitrary, also satisfies the three-dimensional Laplace equation and

the boundary conditions on S1, S2 (as is shown in Appendix B). Hence, any function of the

form (E.16) may be used as a singular function, especially if βℓj(z) are chosen as polynomials

(so that the inner sum terminates after a finite number of terms). In fact, the singular

functions used in the previous chapter are a special case of (E.16) with βℓj(z) being (piecewise)

constant/linear polynomials. What remains is the selection of the finite dimensional spaces

V N
1 , V h

2 and the corresponding norms.
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Appendix F

In this appendix we discuss the application of the SFBIM for solving a Stokes flow problem

within a circular sector assuming that the circular boundary is rotating at a constant speed.

Moffatt eddies

Moffatt (1964) analyzed the two-dimensional Stokes flow in an infinite wedge of angle 2α with

a far-field disturbance. He came to the conclusion that there exist a critical half angle (α

crit) under which eddies are formed and that for these cases there can be constructed a series

solution in which the eigenvalues are complex. The eigenfunctions are known as Moffatt eddy

functions.

Consider the two-dimensional creeping incompressible flows in polar coordinates. By elim-

inating the pressure from the r− and θ− components of the Navier-Stokes equations, we

obtain the biharmonic equation for ψ:

∇4ψ = ∇2(∇2ψ) = 0. (F.1)

The stream function ψ is expanded in a series of the form:

ψ(r, θ) =
∞∑

k=1

αλkr
λk+1fk(θ), (F.2)

where,

fk(θ) = Aλk cos(λk + 1)θ +Bλk sin(λk + 1)θ + Cλk cos(λk − 1)θ +Dλk sin(λk − 1)θ, (F.3)
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with the exception of the cases λk = 0, 1, 2, where fk(θ) degenerates to

fk(θ) = Aλk +Bλkθ +Cλkθ
2 +Dλkθ

3, (F.4)

fk(θ) = Aλk cos θ +Bλk sin θ + Cλkθ cos θ +Dλkθ sin θ, (F.5)

fk(θ) = Aλk cos 2θ +Bλk sin 2θ +Cλkθ +Dλk , (F.6)

respectively.

Flow near a corner

We consider the flow problem that was solved by Hills (2001 b). The fluid is maintained

Figure F.1: Problem domain for a Stokes flow within a circular sector where the circular

boundary is rotating at a constant speed.

in two-dimensional steady motion, contained in the region formed by a finite wedge of side

R = 1 and internal angle 2α, as depicted in Fig. F.1, where :

∇4u = 0, in Ω

∂u
∂r = ∂u

∂θ = 0, on S1 ∪ S2

∂u
∂r = 1 and ∂u

∂θ = 0, on S3





. (F.7)
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A boundary singularity occurs at the origin O which is due to the geometry. The motion is

caused by the rotation of the curved boundary S3 about an axis through O. As indicated by

Hills (2001 b), the boundary condition ∂u/∂r = 0 on S1 ∪ S2, is equivalent to the condition

u = 0, from the continuity of the steamfunction.

As pointed out by Dean and Montagnon (1949), a disturbance far from the corner can generate

either an antisymmetric or a symmetric flow pattern near the corner, and the corresponding

stream function is an even or odd function of θ, respectively.

If the flow is symmetric near the corner then fµ(θ) is odd (Aµ = Cµ = 0) and

fµ(θ) = Bµ sin(µ + 1)θ +Dµ sin(µ − 1)θ, (F.8)

where the eigenvalues satisfy the equation sin 2µα = µ sin 2α.

If the flow is antisymmetric near the corner then fλ(θ) is even (Bλ = Dλ = 0) and

fλ(θ) = Aλ cos(λ+ 1)θ + Cλ cos(λ− 1)θ, (F.9)

where the eigenvalues satisfy the equation sin 2λα = −λ sin 2α.

The computed eigenvalues for symmetric and antisymmetric flow for α = 45◦ are ploted in

Fig. F.2.

As shown by Moffatt (1964) the eigenvalues are all complex for α sufficiently small (less than

73.2◦). Moreover if λ is an eigenvalue then so are the conjugates of λ and −λ.

The asymptotic expansion for u in the neighborhood of the singular point O can be expressed

in terms of an eigenfunction expansion of the form:

u(r, θ) =

∞∑

j=1

(
cjW

j
1 + djW

j
2

)
, (F.10)

where the even eigenfunctions W j
1 are:

W j
1 (r, θ) = rλj+1

[
cos(λj + 1)θ

cos(λj + 1)α
− cos(λj − 1)θ

cos(λj − 1)α

]
, (F.11)

and the odd eigenfunctions W j
2 are:

W j
2 (r, θ) = rµj+1

[
sin(µj + 1)θ

sin(µj + 1)α
− sin(µj − 1)θ

sin(µj − 1)α

]
. (F.12)
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Figure F.2: Computed eigenvalues for symmetric (o) and antisymmetric (+) flow for

α = 45◦.

It turns out that for this problem the eigenvalues are complex and they are chosen so that

0 < Re(λ1) < Re(λ2) < . . . and 0 < Re(µ1) < Re(µ2) < . . ..

Hills (2001 b) solved the problem using a collocation scheme for determining the physical

streamfunction ψ:

ψ(θ) = Re

{
N∑

k=1

Akλ
k

(
cos(µk + 1)θ

cos(µk + 1)α
− cos(µk − 1)θ

cos(µk − 1)α

)}
. (F.13)

Since the coefficients Ak are complex, they each require two constrains that are obtained by

satisfying the conditions on ψ at discrete collocation points on S3. A total number of N

collocation points are needed where the required components of velocity are strictly enforced.

The collocation points are chosen in the positive range . Since ψ is even in θ the boundary

conditions are satisfied on 2N − 1 (if θ = 0 is a collocation point) or on 2N boundary points

on the whole arc.

Preliminary formulation of the SFBIM

As always, the first step in the method is to approximate the solution by the leading Nα even
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terms of the asymptotic expansion

ū(r, θ) =

Nα∑

j=1

c̄jW
j
1 . (F.14)

Next, the problem is discretized by applying Galerkins principle. The governing equation is

weighted by the singular functions yielding the following set of equations

∫

Ω
∇4ūW i

1dV = 0, i = 1, 2, . . . Nα. (F.15)

The discretized equations are then turn into boundary integrals by double application of

Greens theorem. Taking into account that the singular functions satisfy the governing equa-

tion we obtain these equations:

∫

∂Ω

[
∂ū

∂n
∇2W i

1 − ū
∂(∇2W i

1)

∂n

]
dS+

∫

∂Ω

[
∂(∇2ū)

∂n
W i

1 −∇2ū
∂(W i

1)

∂n

]
dS = 0, i = 1, 2, . . . , Nα.

(F.16)

Taking into account the boundary condition we have this system:

∫ α

−α

[
∂(∇2ū)

∂r
W i

1 −∇2ū
∂(W i

1)

∂r

]
dθ = −

∫ α

−α
∇2W i

1dθ, i = 1, 2, . . . , Nα. (F.17)

Therefore we only have to integrate along S3, away from the singular point. The Dirichlet

condition u = 0 along S3 is imposed by means of a Lagrange multiplier function ξ, which

replaces the normal derivative of the Laplacian of u. The function ξ is expanded in terms of

standard, polynomial basis functions M j of order p:

ξ =
∂∇2ū

∂n
=

Nξ∑

ℓ=1

ξℓM
ℓ, (F.18)

where Nξ represents the total number of the unknown discrete Lagrange multipliers ξj along

S3. The basis functionsM
j are used to weight the Dirichlet condition along the corresponding

boundary segment S3. The following symmetric system of Nα +Nξ discretized equations is

thus obtained:
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∫ α

−α

[
ξW i

1 −∇2ū
∂(W i

1)

∂r

]
dθ = −

∫ α

−α
∇2W i

1dθ, i = 1, 2, . . . , Nα, (F.19)

∫ α

−α
ūM ℓdθ = 0, ℓ = 1, 2, . . . , Nξ. (F.20)
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