UNIVERSITY OF CYPRUS

DEPARTMENT OF MATHEMATICS AND STATISTICS

EXTENSIONS OF THE SINGULAR
FUNCTION BOUNDARY INTEGRAL
METHOD TO TWO AND THREE
DIMENSIONS

Ph.D. Dissertation

EVGENIA CH. CHRISTODOULOU

JUNE 2011



UNIVERSITY OF CYPRUS

DEPARTMENT OF MATHEMATICS AND STATISTICS

EXTENSIONS OF THE SINGULAR FUNCTION
BOUNDARY INTEGRAL METHOD TO TWO AND THREE
DIMENSIONS

By

Evgenia Ch. Christodoulou

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
UNIVERSITY OF CYPRUS
NICOSIA, CYPRUS

JUNE 2011

(© Copyright: Evgenia Ch. Christodoulou, 2011



This thesis is dedicated to my parents, Christodoulos and Nafsika, whose love, support and

encouragement has been a constant in my life.



Mpa | [lavermompio
' Kunipou
Tunua Mabnpatikwv kat ZTatioTikng

H nagovoa Awwaxtooikn Auxtolpr)
ekmovnOnke ota MAalowx Twv Lmovdwv
YX TNV AOKTNOT] TOV

AtdaktoglkoV AtmAwpuatog ota Mabnuatika

TIOL ATIOVEUEL TO
Tunpa Mabnuatikav kot LTatiotikng
tov [lavermuotnuiov Kompov
otnv Evyevia XgLotodovAov

EyxoiOnke tv 23" Maiov 2011

amo E&etaotikr) Emtponn) anoteAovpevn ano toug:

Ovopatenwvuuo BaOuida

['ewgytov I'weyocg Kabnync
Epevvntikoc LopupovAog
[Tavemotnuio Kvmpov

Eevodwvtog XQLotog AvarAnowtnc Kabnyntc

Epevvntikoc LoppovAog
[avemotuio Kvmpov

LuveAnc I'iweyog KaOnync
[Tpoedpoc E€etaotikng Emitgomnc
[Taveruomuio Kvmpov

MmnovvtouPric Avdgeac Kabnyntnc
MéAoc E€etaotiknc Emtitgomc
EOvuco Metoofro IToAvtexveto, EAAada

Yosibash Zohar Kabnynmc

MéAoc E€etaotiknc Emitponnc
Ben Gurion University, Israel

\EK

Ynoyeadn

ITPOXQIITKA
AEAOMENA

ITPOXQITIKA
AEAOMENA

N

IMPOXQITIIKA
AEAOMENA

-

IHPOXQIIIKA |-
AEAOMENA

IHHPOXQIITKA
AEAOMENA




Hepiiqyn

H MéOodoc Zvvopioxod Oloxinpauotoc ue Ioiglovoss Zovaptioers (Singular Function
Boundary Integral Method, SFBIM) avoantoybnke omd tovg Georgiou et. al. (1996) yio tnv
apluntikn enidvon didtdotatemv TpofAnudtov Laplace pe cuvoplokéc iopoppieg. X
puéBodo avtn, n Adon mpooeyyiletal Pe TOVG aPYIKODS OPOVE TOL TOTIKOD CVOTTVYLOTOG
™G A0ong kovtd oto onpeio g wopopeiag. Ztabuilovrag t dapopikn eElowon He TIg
ovvaptioelg Baong kot Galerkin kot epapudlovrtag  debtepn tavtdtTnTa Tov Green, To
dwkprromompévo mpdPANUa avdyetotl o€ £va GOGTNHO OAOKANPOTIKOV £EIGOGEMY TAV®
670 GUVOPO Tov Y®Piov Kot pdAoTa poakpld amd to Walov onueio. ‘Etol | didotoon tov
TPOPALLOTOG HELOVETOL KOTE £VOL L€ ONUAVTIKY UEIMOT TOV VTOAOYIGTIKOD KOGTOVG. Ot
cuvoplokég ouvinkeg Tomov Dirichlet emPBdAlovtol pHEocw GLVAPTIGE®Y TOAUTAAGIOGTMOV
Lagrange, ot omoieg eupovifovior cov emmpOcHETOl AyVMOGTOL GTO TEMKO YPOLUKO
ovotua Kot Tpoceyyilovtal TomiKd pe ToAVOVLIKEG cuvaptioelg Baong. Ot dyvootot
omv pébodo SFBIM egivar ot 1014lovtec cuVTEAEGTEG TG TPOGEYYIOTG TNG ADONC, YVOOoTOl
KOl G YEVIKELUEVOL GUVTEAECTEG GLYKEVIPOONG TACEMV, KOl Ol OOKPITEG TIUEG TMV
noAlomiactactov Lagrange. To yeyovdg 0tL ot 1014lovteg cuvtedeotég vmoioyilovrtal
amevbeiog kot Oyl pe petemeepyacio g apOunTikng Avong amotedel GAAO TAEOVEKTLLOL
g neboddov. H pébodog pedetbnie kol epapudotnke e Aamhaciovd Kot Aleprovikd
mpoPAuato ot VO OoTACELS, Olvovtog toyela oOykMon pe 10 mANBog TV
01ocVvapTHoE®V Kot To TAN0og TV cvviedeotmv Lagrange. H cvykiion g puebodov

avolvdnke Oempntikd oty mepinTwon ddidctatov TpofAnudtmv Laplace.

Ot otdHY01 TG droTpPnc g Moy ot eENg:
(i) H apiBuntin erainfevon kdmolmv OepnTik®V OTOTEAEGUATOV GE TPOTLTOL
npofAquarta Laplace.
(i) H omddeitn g ovykhong m™c pebodov yi évo S18100TOTO  SLOPLOVIKO
TPOPANLLOL [LE HI0L GLVOPLOKT] LOTOHOPPILQL.
(ili)  H eméxtaon g uebddov oe tpdtdototo mpoPfinuata Laplace ue dopopeisg

INTY [

Mo v enitevén tov Tpmd@TOL 6TdHYOL peetnoape TpoPfAnuata Laplace moveo og kKukAkoe
TOUEIG, e YVOOTH OVOAVTIKY AVoT. Avtd emétpeye T HEAETN TG GVYKAMONG TG HeBddov

YL S1popovg Pabovg TG TOAVMOVLUIKNG TPOGEYYIoNG TOV ToAAATANGIGTOV Lagrange



Kot tov  okpif] vmoAoywopd TV oQoApdTOV mpocdyyiong. Ta  apfuntikd  pog

AMOTEAEGLOTO, CLUPWVOVV pE T BempnTikh avdAivon tov Xenophontos et al. (2006).

O 0eltepoc oTOYOG emutevyOnKe pe TNV EMEKTOON NG avAALONG CLYKMONG TMOV
Xenophontos et al. (2006) yw éva mpdTtvmo ddidotato dStopuovikd TPOPANUA pe
cuvoplokn 1dopopeia. AmodeiEope OTL o1 LWOAOYILOUEVOL 1010 OVTEG GUVIEAECTEC
cvykAivouv exBetikd pe 1o mAn0og tov Wiocuvapticemy. Extedécape eniong apOuntikd
nepauoto yioo éva mpoPinuo pong Stokes yw v moapovcicon TV OspnTiK®V

ELPNUATOV.

o tov tedevtaio ot1dx0 emekteivape T péBodo Yoo v emiAvomn evog TPLOUCTUTOV
npofAnquartog Laplace pe dopopeia akune. H tomikn Avon yopo omd v akpun umopel va
ekppachel cav €vo acLUTTOTIKO avATTUYHO TTOL TEPIAAUPAVEL TIG OIOTIHES KOl TIC
1010GVVOPTNGELS TOV AVTIGTOLYOV S1O1AGTOTOV TPOPANUATOC GE TOAIKES GUVTETOYUEVEG, Ol
OLVTEAECTEG TV OmolmV €ival Ol AEYOUEVEG GUVOPTNCELS OKUOIOV GUYKEVIPOGE®V PONG
(edge flux intensity functions, EFIFs). Ot mapdyoyor ovdtepng TaENg ovTOV TOV
GLUVOAPTNCEWV TNG AEOVIKNG GLVTETOYUEVNG EUQOVICOVTOL GE L0 ECMOTEPIKT] OTELPOGEPE
oto avamntoypo g Avong (Yosibash et al., 2002). ITpoceyyiCovtag tig cvvaptioec EFIFS
pe tunuotikd moAvovoua Boabuod k=0, 1 oe éva mAéypo midtovg h amaAeipovpe v
E0MTEPIKN AMEPOCELPA KOl UTopovpe va enekteivovpe ) puéBodo SFBIM. Onwg kot ota
ddidotata wpoPfAnuata, n Avon mpoceyyiletal and éva menepacuévo TAN00C Op®V TOL
TOTIKOD  OVOTITOYUOTOC Kol Ol ovuvoplakég ovvOnkeg Dirichlet empdilovior péow
moAlomiaciactov Lagrange. Ot apiBuntikoi vroroyiopol £€6e&av 01t o1 VIOAOYWLOHEVES

suvaptioelg EFIFs svyikhivouy pe taén O(h*Y) ec mpoc v L2-voppo.



Abstract

The Singular Function Boundary Integral Method (SFBIM) was introduced by Georgiou et
al. (1996) for solving numerically two-dimensional Laplacian problems with one boundary
singularity. In this method, the solution is approximated by the leading terms of the local
asymptotic expansion near the singular point. By weighting the governing equation with the
eigenfunctions in the Galerkin sense and applying Green’s second identity, the discretized
problem is reduced to a system of boundary integral equations far from the singular point.
This reduces the dimension of the problem by one and leads to considerable computational
savings. Dirichlet boundary conditions are enforced by means of Lagrange multiplier func-
tions, which appear as additional unknowns in the system. These functions are approximated
locally by polynomial basis functions. Therefore, the unknowns in the SFBIM are the coeffi-
cients of the eigenfunctions, also known as singular coefficients or generalized stress intensity
factors, and the discrete Lagrange multiplier values. The fact that the singular coefficients are
calculated directly and not by postprocessing the numerical solution is another advantage of
the method. The latter has been applied to both Laplacian and biharmonic two-dimensional
problems exhibiting fast convergence with the number of singular coefficients and the number
of Lagrange multipliers. The convergence of the method has also been analyzed theoretically
in the case of two-dimensional Laplacian problems.

The objectives of this thesis were:

(i) the numerical verification of certain theoretical results on model two-dimensional problems.

v



(ii) the proof of convergence of the method for a two-dimensional biharmonic problem with
one boundary singularity.

(iii) the extension of the method to three-dimensional Laplacian problems with straight-edge
singularities.

For accomplishing the first objective, we considered a Laplacian problem over a circular sector,
with known analytical solution. This allowed us to study the convergence of the method for
various orders of the polynomial approximation of the Lagrange multipliers and to calculate
the exact approximation errors. The numerical results agree well with the theoretical analysis
of Xenophontos et al. (2006).

Objective number two was achieved by extending the convergence analysis from Xenophontos
et. al. (2006) to a model two-dimensional biharmonic problem with a boundary singularity.
We proved that the calculated singular coefficients converge exponentially with the number
of singular functions. To illustrate the theoretical findings, we have carried out numerical
experiments on a Stokes flow problem.

Finally, we extended the method for solving a three-dimensional Laplacian problem with a
straight-edge singularity. The solution in the neighbourhood of the straight edge can be ex-
pressed as an asymptotic expansion involving the eigenpairs of the analogous two-dimensional
problem, which have as coefficients the so-called edge fluz stress intensity functions (EFIFs).
The EFIFs are functions of the axial coordinate the higher derivatives of which appear in an
infinite series in the expansion (Yosibash et al., 2002). Approximating the EFIFs by piecewise
polynomials of degree k = 0,1 defined on a mesh with width A, eliminates the inner infinite
series in the local expansion and allows for the straightforward extension of the SFBIM. As in
the case of two-dimensional problems the solution was approximated by the leading terms of
the local asymptotic solution expansion and the Dirichlet boundary conditions were imposed
by means of Lagrange multiplier functions. Our numerical calculations demostrated that the

calculated EFIFs converge with order O(h¥*1), in the L? norm.
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Chapter 1

Introduction

The solutions of elliptic partial differential equations in two-dimensional domains, such as
the Laplace and the biharmonic equations, exhibit singularities at boundary corners or at
boundary points where there is an abrupt change in the boundary conditions along a smooth
boundary. Such problems are extensively covered in the literature (see, for example, Grisvard
1992, Grisvard 1995, Beagles et al. 1991, Réssle 2000, and more recently Dauge et al. 2011).
Elliptic boundary value problems with boundary singularities appear in many engineering
applications, such as fracture and fluid mechanics. They have also attracted the attention of
numerical analysts, since boundary singularities create convergence difficulties to standard
numerical methods and cause inaccuracies in the numerical solutions, at least locally. These
numerical difficulties are overcome by using special adaptive grid refinement schemes but
the resulting efficiency is not always satisfactory and the required computational cost may
be very high (see, e.g., Bernal and Kindelan, 2010). One notable exception is the high
order p/hp Finite Element Method (FEM) which produces accurate results if the mesh and
polynomial degree of the approximating polynomials is chosen appropriately (see, e.g., Szabd
and Babuska, 1991).

In the past few decades, several methods for treating elliptic boundary value problems with



boundary singularities have been proposed. Among them one finds the so-called hybrid meth-
ods which incorporate, directly or indirectly, the form of the local asymptotic expansion for
the solution in the approximation scheme. Knowledge of the leading singular coefficients of
the local solution expansion, which in two-dimensional problems are also known as General-
ized Stress Intensity Factors (GSIFs) (Szabé and Babuska, 1991) or Fluz Intensity Factors
(Arad et al., 1998), is of great importance in many engineering fields, such as fracture me-
chanics. Many methods have been proposed in the literature for their effective and efficient
approximation, including high order p/hp FEMs with post-processing (Szabé and Yosibash,
1996) and Trefftz methods (Li et al., 2007). In the former, the solution is first approximated
on a refined grid designed especially to capture the singularity and the singular coefficients
are obtained by an extraction formula which uses the computed solution. Methods that do
not require any postprocessing and/or include information about the exact solution in the
approximation scheme, such as Trefftz methods, are more attractive if the approximation of
the coefficients is the main objective.

Trefftz methods have been reviewed by Li and co-workers (Li et al., 2007) who have also
made comparisons with collocation and other boundary methods. Other recent reviews of
methods used for elliptic boundary value problems with boundary singularities can be found
in the articles of Bernal et al. (2009, 2010), who considered both global and local meshless
collocation methods with multiquadrics as basis functions, and Dosiyev and Buranay (2008)
who employed the block method which was proposed for the solution of Laplace problems on
arbitrary polygons.

Singularities in three dimensional Laplace problems have received less attention, mainly due
to their complexity. Different forms of singularity may appear depending on the boundary
geometry and conditions. Both edge and vertex singularities are of interest in applications
(Kondratiev, 1967. Stephan and Whiteman, 1988. Zaltzman and Yosibash, 2009). Yosibash

et al. (2002) discuss the case of the singularity at the intersection of an edge and a vertex.



Edge singularities appear, for example, in V-notched solids loaded by static loads, in which
the assumption of plane stress or plane strain condition is not valid. For the solution of such
problems, few methods have been proposed, such as the J-integral method (Huber et al.,
1993), the B- and H-integral methods (Meda et al., 1998), and, more recently, the methods
of Costabel et al. (2004) and Yosibash et al. (2002) in which the quantities of interest are
computed by means of a post-processing procedure in a p-version finite element scheme.
Yosibash et al. (2002) presented the solution to the Laplace operator in three-dimensional
domains in the vicinity of straight edges in the form of an asymptotic expansion involving
eigenpairs and having as coefficients the so-called Edge Flux Intensity Functions (EFIFs). It
turns out that the eigenpairs are those of the two-dimensional problem over a plane perpen-
dicular to the edge.

Vertex singularities appear in electromagnetic fields, in magnetic recording, heat transfer,
elasticity, and fluid mechanics problems, as well as in multimaterial problems (Zaltzman and
Yosibash, 2009). Among the earliest analyses of Laplacian solutions in the neighbourhood of
a vertex are those of Stephan and Whiteman (1988) and Beagles and Whiteman (1989) who
used finite elements for the computation of the eigenvalues. Schmitz et al. (1993) also used a
method employing the Boundary Element Method (BEM) instead. Recently, Zaltzman and
Yosibash (2009) derived explicit analytical expressions for the local solution of the Laplace
equation in the neighbourhood of a vertex. They also considered vertices at the intersection
of a crack front and a free surface and provided numerical estimates of the eigenpairs obtained
by extending a modified Steklov method.

In the sections that follow we will give an overview of the various types of singularities found
in two- and three-dimensional Laplacian problems, in order to give the reader a feeling for
what one is faced with when it comes time to approximate the solution to such problems.

Also, this material will serve as the cornerstone of what is to follow in subsequent chapters.



1.1 Preliminaries

Throughout this dissertation Q C R™, n = 2,3 will be used to denote an open, bounded
domain with boundary 9. The space of square integrable functions defined on 2 will be
denoted as usual by L2(2). The notation H*(Q2) will be used to denote the Sobolev spaces

containing functions on €2, having k generalized derivatives in L?(2). For instance,
HY(Q) = {u e L*(Q) : Vu € L*(Q)}. (1.1)

The norm and seminorm on H*(2) will be denoted by || - || and || k.0 Tespectively.

Let the trace space of functions in H' (2) be denoted by
HY2(09) = {u € H (Q) : ulpn € L* (0Q)} . (1.2)

With T : H' (Q) — H'/2 (99) denoting the trace operator, the norm of H/?(9Q) is defined

as

9200 =, ot {Iulho: Tu=v}. (13)

Then, we define H=/2 (9Q) as the closure of H° (092) = L? (9Q) with respect to the norm

oy
ol ypon = sup SV 14)
wer2(o0) Y11 /2,00

For other non-integer and/or negative values of k, we will adopt the notations and definitions
found in Lions et al. (1972).

Finally, the letters C' and ¢ (with or without subscripts) will be used to denote generic positive
constants independent of any discretization parameters and possibly having different values

in each occurrence.



1.2 Corner Singularities in Planar Laplacian Prob-

lems

For Laplace problems with corner singularities, the singular functions can be obtained an-
alytically. To demonstrate this for a two dimensional Laplace problem posed on a domain
with a corner, we consider the domain 2 shown in Fig. 1.1 with either Dirichlet or Neumann

boundary conditions on each of the sides S7 and S5.

6=qa
S2
Sa
<D
S1
e=0

Figure 1.1: A two-dimensional domain €2 with a corner.

The Laplace equation in polar coordinates is:

O*u  10u 1 0%u

1 Lou_ 1.5
87‘2+7‘87‘+r2892 (15)
Assuming that u(r,0) = R(r)©(0) in the above equation and separating variables, we end up

with

R’ +rR :_@_”' (1.6)
R S)
Since the right hand side of the last equation is a function of § and the left hand side a
function of r, then they both have to be equal to a constant, say p?, where the constant s is

chosen to be positive in order to obtain periodic solutions in §. We therefore have two second

order, linear, homogeneous ordinary differential equations:

R’ +rR — >R =0 (1.7)



and

0" + 1?6 = 0. (1.8)

Now, Eq. (1.8) has solutions of the form
O(0) = Acos(ub) + Bsin(ub), (1.9)

where A and B are general constants. Equation (1.7) is an Euler differential equation and

using the transformation r = e’ we get the simpler equation
w”(t) — pw(t) =0, (1.10)
which in turn gives solutions for R, of the form
R(r)=Crt+ Dr7#, (1.11)

where C, D € R. Note that solutions of the form R(r) = Dr~* are rejected if the solution is

bounded near O. Therefore, our problem has solutions of the form
(o.]
u(r,0) = Zr”j (A cos(p;0) + Bjsin(p;0)) , (1.12)
j=1
where the singular coefficients A;, B; and the eigenvalues p; are uniquely determined by
the geometry and the boundary conditions. For instance, see also Fig. 1.2, if we have

homogeneous Dirichlet boundary conditions on S and Sy, then A; = 0 and p; = jm/o;

if instead we have homogeneous Neumann boundary conditions on both sides of the corner

then B; = 0 and p; = W The case when we have a homogeneous Dirichlet boundary

condition on S7 and homogeneous Neumann boundary condition on S, is of interest as it

would be part of our model problem in Chapter 3 (see Fig. 3.1). In this case A; = 0

and p1j = (212 )m

. More specifically, if in addition o = 37 /4, then we have the the L-shaped

-1
(6%
domain discussed in Chapter 2 (see Fig. 2.3 ). Changing the boundary conditions to Neumann

on S7 and Dirichlet on Ss and taking @ = m we get the local solution of the celebrated Motz



(a)

(c)

u(r.6)=3 Br* sin(u,6)
=l

v #]
4= 227D u(r,6)= Z(CJ,FP’IJ + dij_]
of _,f=i
.| cos{ +1)8 cos(i —1)6]
B R o i e o
. cos{z’.__+1}<x cosl i ~1ja
o lsin(g =118 sin(u —1)8]
i =gt i L2 )
= sinf g, +1j e sin| g e

where sin2la=—2sin2e ad snluo=usinla
o o o o

bl eo=Tareows| |y

Figure 1.2: Various BVPs with singularities and their local solutions.

problem that is often used for testing various methods proposed in the literature: B; = 0

and p; = (2j2_1).

The singular coefficients, on the other hand, depend on the boundary conditions on the rest

of the boundary of the problem domain.

1.3 Edge Singularities in Three-Dimensional Lapla-

cian Problems

In this section we consider the Laplace equation and discuss the form of the local solution
near straight edge singularities as shown in Yosibash et al. (2002). In the cylindrical domain
Q) shown in Fig. 1.3, AB is a straight edge and S and S5 are rectangles. This domain can be

a subdomain of any domain with a straight edge. We consider the following boundary value



Figure 1.3: A three-dimensional domain 2 with an edge

problem on Q: Find u such that

Vi =0in ©, (1.13)

with boundary conditions

u = gy on .Sy

(1.14)
G4 = gaon Sy
As shown in Yosibash et al. (2002), the local solution near the edge is of the form
K L
u(r, 0, z) ZZ&M ke (Inr) sge(0) + v(r, 8, 2), (1.15)
k=1 ¢=0

with age(z) the unknown EFIFs, which are analytic functions of z away of the vertices. The
functions sp¢(6) are known as edge eigenfunctions and they are analytic in §. The function
v(r,0,2) belongs in HY(2) where ¢ depents on K and can be as large as required. The
numbers 11 > i are known as edge eigenvalues. If py is not an integer, then L = 0. In
what follows we assume that pi for £ < K are not integers and that no “crossing point”

occurs (cf. Costabel et al.,1993). Under these assumptions Eq. (1.15) becomes

=

u(r,0,z) = Z ar(z)r**s,(0) + v(r, 0, z). (1.16)

k=1



Note that r#ns, () satisfies the Laplace equation on the (r,#) plane (2-D problem), i.e.
Vi, s, (0)] = 0. (1.17)

However, S, (1,0, z) = a,(z)r*"s,(0) does not satisfy the Laplace equation in €2, i.e.

0? 9?

Viplan(2)rt sn(6)] = (Vip + 5.2)lan ()" sn(0)] = 5lan(2)r""sn(0)] # 0, (1.18)

Nevertheless, taking into account that a,(z) is an analytic function and augmenting S,, by

ot 822‘

_ 1yt
(z)rzi# as demonstrated in Yosibash et al. (2002), the

Tﬂnsn(e) Z.an i - NE
; 0z [T5=1 (ke +5)

function
(720

TTjmy d(kn + 4)

0 a9 .
Sn(r,0,2) =i s,(0) Z aaz% a”(z)rzl
=0

(1.19)

satisfies identically the 3-D Laplace equation (see Appendix B).

1.4 Vertex Singularities in Three-Dimensional Lapla-

cian Problems

The extension of the SFBIM for three-dimensional Laplacian problems with conical vertex
singularities will be the subject of a future project. Nevertheless, in this section we discuss the
local solution near a vertex singularity. We consider the Laplace problem that was proposed
and solved by Zaltzman et al. (2009). In the three-dimensional domain € depicted in Fig.
1.4. This domain has a conical vertex on its boundary and w/2 € [0,7]. The problem is
solved in the vicinity of the conical point, with either homogeneous Dirichlet or Neumann
boundary conditions, i.e.

Viu=0 in Q, (1.20)

with

Ug—2 =0 in ¢, (1.21)



<Y

e ———

Figure 1.4: A three-dimensional domain with a rotationally symmetric conical vertex.

where 0Q¢ = I'c is the surface of the cone insert. Equation (1.21) may be written as

ou 10u
— = —-— =0 in 09Q¢c. (1.22)
on O=w/2 pae O=w/2
Writing u as
u(p,0,¢) = R(p)O(0)2(p), (1.23)

and separating variables leads to the following ODEs:

p’R" +2pR —v(v +1)R =0, (1.24)
" 4+ 12® =0, (1.25)
—sin?(0)©” — sin(f) cos(0)©" — [v(v + 1)sin?(0) — ] © =0, (1.26)

where v and p? are separation constants. The solution to Eq. (1.24) is of the form
R(p) = Ag?, (1.27)

where A is a constant. Note that in order to have u € H'({2), then there should hold v > 0.

The solution to Eq. (1.25) is

® = Bsin(uy) + C cos(uy), (1.28)

where A and C are constants. Because of conical reentrant corners, a periodic solution is
sought in ¢ , witch leads to the conclusion that u has to be a positive integer. The case

10



u = 0 is associated with axisymmetric solutions, independent of . For the solution of Eq.
(1.26) one has to change variables using z = cos(f), [see Zaltzman and Yosibash(2011) and
the references therein]. Taking into account the axis of symmetry of the domain and that the
solution has to be bounded at 8 = 0, the latter authors concluded that the solution to Eq.
(1.26) is of the form

©(cos ) = DP!(cos ), (1.29)

where D is a constant and P/’ is the associated Legendre function of the first kind, of degree
v and order p. Now, because the BCs give an infinite number of v’s, which are the roots of

)

the Legendre function P}, they are denoted by two indices Vé“ . Hence, the solution can be

represented by

oo 00 " ‘
u(p,8,p) = E o [Ayesin(pp) + By cos(up)] Pl (cos 6). (1.30)
p=0 (=1

The expression (1.30) may be used to construct an approximation to the solution, but this

is outside the scope of the present work.

1.5 The SFBIM

The Singular Function Boundary Integral Method (SFBIM), developed by Georgiou et al.
(1996) for (two-dimensional) Laplacian problems with a boundary singularity, belongs to the
class of Trefftz methods. To give a brief overview of the SFBIM (a detailed one is provided in
Chapter 2), we consider Laplace’s equation in a domain 2 with boundary 9Q = S U .Sy U Ss.
We assume appropriate boundary conditions so that the solution u has a singularity at a

point O, shared by boundary parts S; and Ss. The local expansion for u near O is given by

u= Z anh fn(0), (1.31)
n=1

with fi,, frn(0) known. The coefficients «,, are the unknowns of interest.

11



In the SEBIM, the solution is approximated by the leading terms of the asymptotic expansion,

Nq
uy =Y o rin f,(0), (1.32)
n=1

and the so-called singular functions r#~ f,,(0) are used to weight the governing differential

equation in the Galerkin sense:

// rHif;(0) ViundV =0, i=1,2, ..., N,. (1.33)
Q

The discretized equations are then reduced to boundary integrals by means of Green’s the-
orem, reducing the dimension of the problem by one. Since the singular functions exactly
satisfy the boundary conditions on the boundary parts S7 and S5 that share the singularity

we only have to integrate away of the singular point. Hence,

/ <8UN szz(e) —uy w) dsS = 0, 1= 1, 2, ceey Na' (134)
S3

on on
A particular feature of the SFBIM is that Dirichlet conditions are weakly enforced in the
Galerkin sense by means of Lagrange multipliers,
Ny
Am A= NM, (1.35)
j=1
the discrete values of which are additional unknowns.
It has been demonstrated both numerically and theoretically that the method converges
exponentially with the number of singular functions used in the approximation of the solution
and the number of Lagrange multipliers (Xenophontos et al. 2006, Christodoulou et al. 2010).
The method has also been extended to biharmonic problems in two-dimensions arising from
solid and fluid mechanics (Elliotis et al. 2005b, 2006). The main advantages of the SFBIM are
that the dimension of the problem is reduced by one, leading to considerable computational
savings and that the singular coefficients are calculated directly, hence avoiding the need for

post-processing.

12



Although the error analysis of the method for two dimensional Laplace problems was discussed
in Xenophontos et al. (2006), there were no numerical results to demonstrate all that was
proven therein. The method was also tested on various two dimensional biharmonic problems,
in Elliotis et al. (2005, 2006, 2007) but there was a lack of theoretical results proving the

rate of convergence that was demonstrated numerically.

1.6 Objectives and Outline of the Thesis

In the present dissertation we extend the SFBIM in a number of ways, leading up to the

extension of the method to three-dimensions. In particular:

e We numerically verify the theoretical results from Xenophontos et al. (2006) by con-
sidering two model Laplace problems over circular sectors with known exact solutions.
Piecewise constant, linear, quadratic and cubic approximations of the Lagrange mul-
tiplier function are used. For linear, quadratic and cubic approximations it is verified
that the approximate solution and the approximations of the singular coefficients con-
verge exponentially, whilst the convergence of the approximate Lagrange multipliers
is algebraic of order equal to the degree of the approximations used. All these results
are in accordance to the theoretical results found in Xenophontos et al. (2006). The
case of piecewise constant approximations is also of interest as it is not covered by the
theory. We observe that for this case the convergence is algebraic of order 3 for the
singular coefficients, of order 2 for the approximate solution and of order 3/4 for the

Lagrange multipliers.

e We provide the proof of convergence of the method for a two-dimensional biharmonic
problem, as a model for the well-known Newtonian stick-slip problem from fluid me-
chanics and establish the exponential convergence rates observed in the calculations by
Elliotis et al. (2005b).

13



e The method is extended to a three-dimensional Laplacian problem with a straight edge
singularity. The SFBIM is formulated and applied to two test problems with a straight-
edge singularity caused by two intersecting flat planes, using piecewise polynomials of
degree k = 0,1 defined on a mesh with width h, for the approximation of the EFIFs.

Our numerical results show that the convergence is, as expected, of O(h*).

The rest of this dissertation is organized as follows. In Chapter 2 we review the formulation
of the SFBIM for a two-dimensional model Laplacian problem and present the error analysis
results from Xenophontos et al. (2006). We also describe the application of the method on a
model two-dimensional biharmonic problem taken from Elliotis et al. (2006). In Chapter 3
we apply the method on two Laplacian problems over circular sectors and we give numerical
evidence in order to verify the theoretical results from Xenophontos et al. (2006). In Chapter
4 we provide the error analysis of the method on a model two-dimensional biharmonic problem
with a boundary singularity, and in Chapter 5 we extend the SFBIM to a three-dimensional
Laplacian problem with an edge singularity and we present numerical results that demonstrate
the approximation of the EFIFs. Finally, in Chapter 6 we summarize our results and provide
ideas for future work.

The reader should be warned that an effort was made for each chapter to be independent,
in order to make the study of a single chapter easier. In addition, as indicated, certain
chapters constitute journal articles that have been published by us. As a result there is some

repetition, mainly in the introductions and the method description.
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Chapter 2

Review of the Singular Function

Boundary Integral Method

In this chapter we present an overview of the Singular Function Boundary Integral Method
(SFBIM) for a model Laplacian as well as a model Biharmonic problem in two-dimensions.
Our goal is to provide the reader with a feel for the formulation of the method, its imple-
mentation, as well as review the existing theoretical and numerical results. The material
presented in the present chapter may also be found in Elliotis et al. (2005 a, b), Xenophontos

et al. (2006) and Christodoulou et al. (2009).

2.1 Introduction

Planar elliptic boundary value problems with boundary singularities have been extensively
studied in the last few decades. Many different methods have been proposed for the solution
of such problems, ranging from special mesh-refinement schemes to sophisticated techniques
that incorporate, directly or indirectly, the form of the local asymptotic expansion, which

is known in many occasions. These methods aim to improve the accuracy and resolve the
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convergence difficulties that are known to appear in the neighborhood of such singular points.
The local solution, centered at the singular point, in polar coordinates (r, ) is of the general

form:
u(r,0) = i a; i f;(0) (2.1)
i=1

where p; are the eigenvalues and f; are the eigenfunctions of the problem, which are uniquely
determined by the geometry and the boundary conditions along the boundaries sharing the
singular point. The singular coefficients «;, also known as generalized stress intensity factors
(Szabé and Babuska, 1991) or flux intensity factors (Arad et al., 1998), are determined by
the boundary conditions in the rest of the boundary. Knowledge of the singular coefficients
is of importance in many engineering applications, especially in fracture mechanics.

In the past few years, Georgiou and co-workers (Georgiou et al., 1996, 1997; Elliotis et al.,
2002, 2005a, 2005b, 2006, 2007; Li et al., 2006; Xenophontos et al., 2006) developed the
SFBIM, in which the unknown singular coefficients are calculated directly. The solution
is approximated by the leading terms of the local asymptotic solution expansion and the
Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers. The
method has been tested on standard Laplacian and biharmonic problems, yielding extremely
accurate estimates of the leading singular coefficients, and exhibiting exponential convergence
with respect to the number of singular functions.

In this chapter, the SFBIM is reviewed and its convergence is discussed. The method is
presented in section 2.2. In section 2.3, some convergence results for Laplacian problems
are provided. Numerical results for Laplacian and biharmonic problems are presented and
discussed in sections 2.4 and 2.5, respectively. Finally, section 2.6 contains the conclusions and
briefly discusses our current efforts for extending the method to three dimensional Laplacian

problems with edge sngularities.
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2.2 The SFBIM for a planar Laplacian Problem

We consider the Laplacian problem with a boundary singularity, as depicted in Fig. 2.1: Find

u such that
VZu = 0in ©, (2.2)
with boundary conditions
% =0on S
u = 0 on Sy
) (2.3)

u= f(r,0) on S

% = g(r,0) on Sy

where  has a smooth boundary, 02 = S U Sy U S3U Sy, with the exception of a boundary
singularity at the corner O, formed by the straight boundary segments S; and Ss. In the
remaining parts of the boundary, either Dirichlet or Neumann boundary conditions apply

and the given functions f and ¢ are such that no other boundary singularity is present.

n

u:f(r,G)

Figure 2.1: A two-dimensional Laplace equation problem with a boundary singularity.

The asymptotic expansion of the solution in polar co-ordinates (r, ) centered at the singular

point, is given by (see, e.g., Grisvard, 1995)
’LL(?",@) = Zai Tuifi(9)7 (24)
i=1
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where «; are the unknown singular coefficients or Generalized Stress Intensity Factors (GSIFs),
w; are the singularity powers arranged in ascending order, and the functions f;(#) represent
the #-dependence of the eigensolution. Knowledge of the GSIFs is of great importance in ap-
plications (Georgiou et al., 1996; Arad et al., 1998), and their reliable and efficient extraction
is the main focus of the SFBIM.

The SFBIM is based on the approximation of the solution by the leading terms of the local

solution expansion, viz.

Na
i=1
where oY are the approximate GSIFs and N, is the number of singular functions used, which

are defined by

W= rtif;(6). (2.6)

Note that the approximation (2.5) is valid only if € is a subset of the convergence domain of
expansion (2.4).

By applying Galerkin’s principle, we obtain
//W"V%Ndvzo, i=1,2,..., Na. (2.7)
Q

By double application of Green’s second identity, the above volume integral becomes

; 8uN 8Wi
W' ——dS — U
o0 on o0 N on

dS+// aViWidv, i=1,2,..., N, (2.8)
Q

and, since the singular functions, W*, are harmonic, the above volume integral is reduced to

a boundary one, as follows:

/89<a—nW_UN an>ds—07 2_1727”’7NOC' (29)

It is clear that the dimension of the problem is reduced by one, leading to a considerable

reduction of the computational cost. Since, now W' exactly satisfy the boundary conditions
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along S7 and SS9, the above integral along these boundary segments is identically zero, yielding

/ <8uNWi—uN8W>dS+/ <5UNWi_uNaW>d5:07 i=1,2,..., N,
S3 on Sa 0 on

on n

(2.10)
It should be noted that the integrands in Eq. (2.10) are non-singular and all integrations are

carried out far from the boundaries causing the singularity.

To impose the Neumann condition along S, we simply substitute the normal derivative
by the known function ¢ (see Eq. (2.3)). The Dirichlet condition along Sz is imposed by
means of a Lagrange multiplier function A, replacing the normal derivative. The function A

is expanded in terms of standard, polynomial basis functions M7 of degree p, as
N
Am A= NM, (2.11)
j=1
where N, represents the total number of the unknown discrete Lagrange multipliers (or,
equivalently, the total number of Lagrange-multiplier nodes) along S4. The basis functions

M7 are used to weight the Dirichlet condition along the corresponding boundary segment Ss.

We thus obtain the following linear system of N, 4+ N discretized equations:

/ (Ahwi—uN W >dS—/ un oW dS=— [ Wig(r,6)dS, i=1,2, ..., Ng,
S 871 Sy Z?n Sy
(2.12)
/ uny M7 dS = | f(r,0)M?dS, j=1,2,..., Ny. (2.13)
53 SS

The above system can be written in the following block form:

Ky Ky A Fy
= , (2.14)

KI o A P
where A = [of, ..., oz%a] is the vector of the approximate singular coefficients, A = [Ay, ..., Ay, ]
is the vector of the unknown Lagrange multipliers, submatrices K7 and K5 contain the
coefficients of the unknowns (obviously, K; is symmetric), and vectors Fj and F» contain

the right hand side contributions of Eqs. (2.12) and (2.13), respectively. It is easily shown
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that the system (2.14) is symmetric and nonsingular, provided N, > N,. The “optimal”

relationship between these two parameters will be discussed in the next section.

2.3 Convergence Results

In this section we briefly present results from Xenophontos et al. (2006) which show that the

method converges at an exponential rate. To this end let

HY Q) = {u e L*(Q) : Vu € L*(Q)}, (2.15)
denote the usual Sobolev space, with || - ||; o denoting its norm, set
HA(Q) = {u e H'(9) : uls, = 0}, (2.16)

and note that u € H! (). The space

HY2(00Q) = {u € H'(Q) : ulpq € L*(6Q)}, (2.17)

is referred to as the trace space of functions in H'(df2) and its norm will be denoted by
|- ll1/2,0- Finally, the dual space of H'Y2(08), denoted by H~'/2(dQ), with norm || - l-1/2.0,
will also be used (see Xenophontos et al., 2006 for more details). The approximate solution

uy, will be chosen from the finite dimensional space V,, C H}(Q2), defined by
Vo = span{Wi}Ne. (2.18)

The Lagrange multiplier function A belongs to H~Y/ 2(S3) and its approximation will be
chosen from the finite dimensional space V) which is defined as follows. Let S3 be divided
into quasiuniform sections I';, ¢ = 1,2,...,n such that S5 = U ;I;. Let h; = |I';| and

set h = max hi;. We assume that for each segment I'; there exist an invertible mapping
<i<n
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F : I — T'; which maps the interval I = [—1,1] to I';, and define
Va={M\: M, 0 ;€ P(I),i=1,2,...,n}, (2.19)

where P,(I) is the set of polynomials of degree < p on I = [-1,1]. In other words, the
Lagrange multiplier function A is a linear combination of piecewise polynomials of degree p,
defined on a quasiuniform partition of S3 characterized by the meshwidth h. Note that the
number of Lagrange multipliers Ny satisfies Ny = O(p/h).

In Xenophontos et al. (2006) it was shown that if v and A = Ju/On are approximated by uy
and Ap, given by Egs. (2.5) and (2.11), respectively, then there exists a positive constant C,

independent of N, and Ny, such that

lu—unlli o+ A= Anll_1 /08, <C {vien\;a lu—vll o+ nien‘g A — 77||_1/2,53}- (2:20)

Using the above best approximation result it was further shown that if A € H*(S3) for some
k > 1, then there exists positive constants C' and 3 € (0,1), independent of N, and N}, such

that

e = unllyg + I = Mull 1y, < C {V/NaB +hmp~* ), (2.21)

where m = min{k,p + 1}. Moreover, since the error between the exact coefficients «; and

N

approximate coefficients «;* satisfies

|a,~ - afv‘ <Cllu— UNHL?(Q) ) (2.22)
we have
la; — N | < OBNe, (2.23)

which shows that the method approximates these coefficients at an exponential rate, as
N, — 0.
Based on the error estimate (2.21) one may obtain the “optimal” matching between the

parameters N, and h, i.e. the relationship between the number of singular functions and the
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number of Lagrange multipliers used in the method, by choosing them in such a way so that
the error in (2.22) is balanced. For example in the case when p is kept fixed and h — 0 (or
equinalently N)— 0o) we take hPT! ~ V/NoBNe. This leads to the following approximate

expression for N,:

Ny~ (p+1)

2p
' (2.24)

In practice, Eq. (2.24) is used as follows: We pick a value for N, and solve the linear
system (2.14) for several values of N, > N) concentrating only on the calculation of the first
approximate oY, which we record. Once we reach a value for N, which yields an approximate
oY with, say, 16 converged significant digits, we then use Eq. (2.24) to calculate the constant
3 using the values for N, and N, which gave us the converged coefficient o'. With 3 now

known, we can compute subsequent “optimal” pairs of N, and Ny.

2.4 Numerical Results for two Laplace Problems

Results for the cracked-beam problem (Georgiou et al., 1997) and a Laplacian problem over
an L-shaped domain (Elliotis et al. 2005) are presented in this section. The former problem
is defined in Fig. 2.2 . A singularity arises at * = y = 0, where the boundary condition

suddenly changes from v = 0 to du/dy = 0. The local solution is given by

(25-1) 27 —1
_ ) A ] 2.25
U ]E 10@7" 2 cos K 5 > } , ( )

and its approximation by
Na .
N N (2i=1) 27 —1
uN—Zajr 2 Cos [(T 0| .
7j=1
The system of discretized equations, resulting from the application of the SFBIM, consists

of two equation sets as follows:

—/ uNaW dy+/ )\W’—uNa dw—i—/ uNaW dy=0, i=1,2,...,N,, (2.26)
S3 ox Sy ay S5 ox
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; N
7 a;

1| 0.191118631972

2 | —0.118116071967

3| 0.000000000000

4 | 0.000000000000

5 | —0.01254698598

6 | —0.01903340371

Table 2.1: The coefficients af-v calculated with N, = 50 and N, = 25.

/uNdex:0.125 Mdx =0, j=1,2,...,N,. (2.27)
S4 S4
u=0.125
1
y-2 S4
S3
ou_ v2u=0 ou_
ox ox
=2 r
S S

y=0 1 1 . 0 2

== u=0 0] X ou_ _1

2 ay *=3

Figure 2.2: The cracked-beam problem.

The interval [—1/2,1/2], corresponding to the boundary segment Sy, is subdivided unformly
into quadratic elements and, thus, the Lagrange multiplier function is approximated locally by
quadratic polynomials. All numerical integrations were performed using Gaussian quadrature
with 15 nodes on each subinterval. Using Eq. (2.24), we find that the “optimal” values for
N, and N are 50 and 25, respectively, and using them we calculate the first 6 approximate

coefficients, as shown in Table 2.1.
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Ou_
B%ﬁ

uw=0

Viu=0 u=0

u=l ;

’
»+ Symmetry
’
’
’

=1

(-1,-1)
Figure 2.3: A Laplacian problem over an L-shaped domain.
The second Laplacian problem is depicted in Fig. 2.3. This is equivalent to a Poisson equa-
tion problem, V2u = —1, over an L-shaped domain, with homogeneous Dirichlet boundary
conditions along the whole boundary. Note that along boundary parts Sy and S3 essential
boundary conditions are applied. Due to symmetry, only half of the domain is considered.

The local solution is given by

= 2(2j-1) 2
= ; in|=(27 —1)0] . 2.28
n ;a]r 3 sin [3( j ) } ( )

The quantity 2«;/3 is of interest, since it may be considered as the leading “generalized
stress intensity factor” (see Arad et al., 1998). It should be noted that two sets of Lagrange
multiplier functions, denoted by A4 and Ap, are now required. Thus, the Dirichlet boundary

conditions along S5 and S3 are replaced by:

ou p ou gy
Ag = —85 =" N, M7 and Ap = a—yN =) MM (2.29)
j=1 J=1

where Ny, and N, are the numbers of nodes along S and S3, respectively. The following

system of N, 4+ Ny, + Ny, linear equations is thus obtained:

—/ <)\AWi—uN8W>dy+/ ()\BWi—uNaW>dﬂj:0, i=1,2,..., Ny, (2.30)
Sa Ss 0

ox Yy

—/ uNdey:/ up,Midy, §=1,2,...,Ny,, (2.31)
5'2 SZ

/uNMkdx:/ upM*dz, k=1,2,...,Ny,. (2.32)
53 S3
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As before, M7 are chosen as (piecewise) quadratic polynomials and all numerical integrations
are performed using Gaussian quadrature with 15 nodes on each subinterval. The “optimal”
values for N, and Ny = Ny, + N, are found via Eq. (2.24) to be N, = 90 and N, = 38.

The computed leading singular coefficients are listed in Table 2.2.

] N ; N
{ Q; { Q;

1| 0.40193103 9 |-0.000719

2 1 0.09364829 10 | -0.000565

3 | —0.0093830 11 | -0.000395

4 | —0.0298851 12 | -0.000296

5 | —0.0083588 13 | -0.000219

6 | —0.0047302 14 | -0.000173

7 | —0.0015451 15 | -0.000138

8 | —0.001098

Table 2.2: Converged values of the leading singular coefficients with N, = 90 and

N, = 38.

2.5 The SFBIM for a Planar Biharmonic Problem

In this section we describe the extension of the SFBIM to biharmonic problems arising in
fracture mechanics. Even though no convergence analysis was available before this work, the
method was tested on various biharmonic problems (Elliotis et al., 2005a, 2005b, 2006, 2007)
and was found to converge (again exponentially) with respect to the number of singular
functions. The convergence analysis for a model biharmonic problem with one boundary

singularity is presented in Chapter 4. Here we consider a two-dimensional solid elastic plate
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containing a single edge crack subjected to a uniform inplane load normal to the two edges
parallel to the crack, while the remaining edges are stress free. The resulting boundary value

problem is to find u such that:

Vi =0in Q= (-1,1) x (0,1), (2.33)
with
.
u =0, g—Z:O, on Sy
g—Z—O, %:0, on Sp
u =2, % =2, on Seo (2.34)

u=1(z+1)? g—Z:O, on Sp

u:O7 am:O’ OIlSE

where 0 = S, U SgUScUSp U SE.

u=d@+1) Gh=o

y=1 y=1
Sp
=0 Vi =0 =
u Sp U Sc u=2
3&,0 3u“2
dz ~ dz =
Q B
Y 0
SA SB
& =—1 - Au _ O % du _ o B _ r=1
u=0, Gy =0 3y =0 ByB’D

Figure 2.4: Model biharmonic problem.

The asymptotic expansion for « in the neighborhood of the singular point O is given by
> . .
u(r,0) =Y [cjwf(r,e) +d; Wi (r,0)] (2.35)
j=1
where (7,0) are the polar coordinates centered at O, and ¢;. d; correspond to the even and

odd coefficients, respectively (see also Schiff 1979). The two sets of singular functions Wi ,

7=12..., Ny, k=1,2, are given by
Wi =t (0, 1), (2.36)
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where

f1(0, 1) = cos(uj — 1) — cos(u; + 1)8, pj = (2.37)
and
1
F20,15) = cos(p; — 1)0 — P17 cos(u; + 1)0, ;=5 — 1/2. (2.38)
pj+1

Note that the singular functions W]g satisfy the PDE (2.33) and the boundary conditions on
S and Spg.
As in the Laplacian case, the solution will be approximated by the leading terms of the

asymptotic expansion, viz:

Na Na
uN:Zc£VWf+Zd£VW2i, (2.39)
i=1 i=1

where ¢V and d are the approximations to the coefficients. Applying Galerkin’s principle,
the governing equation is weighted by the singular functions, which gives the following set of

discretized equations:
/ WivViundV =0, i=1,2,...,Ng, k=1,2. (2.40)
Q

Next, applying Green’s theorem twice and since the singular functions satisfy the governing

biharmonic equation (2.33), the above integrals are reduced to

dun A7) O(V2un) . i s OWS\ o
/((%vwk o ds+/89 S Wi = Vhuy =k ) dS =0, (2.41)

fori=1,2,...,N,, k= 1,2. Now, since W,g satisfy exactly the boundary conditions along
S and Spg, the above integral along these boundary segments is identically zero. Therefore,

we have

Oun o 3(V2W1§) A(Vun) 2 OWy _
/<8n VAW, — o dS—i—/S o Wi —Vun o ds =0, (242)

where ¢ = 1,2,..., Ny, k =1,2 and S = S¢c USp U Sg. As before, the Dirichlet boundary
conditions are imposed by means of Lagrange multipliers. In the case of Laplacian problems,

the Lagrange multipliers replace the normal derivative duy /On. In the case of biharmonic
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problems, another option for the Lagrange multipliers is to replace OV2uy/dn, which is
the choice made here. In the present problem, Dirichlet boundary conditions appear along
the three boundary parts of interest, i.e. Sc, Sp and Sg, where the normal derivative of
the solution is also specified. Therefore, Lagrange multipliers have been chosen to replace
OV2uy /On on boundary parts Sc, Sp and Sg. These are partitioned into three-node elements
and the corresponding Lagrange multipliers, denoted respectively by Ao, Ap and Ag, are

expanded in terms of quadratic basis functions M7 as:

O(Viuy) o5
Ac = TN = Z )\]CMJ on Sc, (2.43)
j=1
Ny
_OVPun) NSy
and
Ny
AE = o = ; XpM? on Sg, (2.45)

where Ny, Ny, and N}, are the numbers of the discrete Lagrange multipliers )\Jé, /\]]‘3 and Ajﬁ
along the corresponding boundaries. The discrete Lagrange multipliers appear as additional
unknowns in the problem. The required Ny, + Ny, + N, additional equations are obtained
by weighting the Dirichlet boundary conditions along Sc, Sp and Sg by the quadratic basis
functions M7 in the Galerkin sense. The following system of 2N, + N e T Nap + Nag
discretized equations is thus obtained:
i A(V2W; oW}
fSc ()\CWL; — uNi( 9z K _ V2UN8—:pk) dy+
i o(V2W; oW}
Jsp (AoWi = un 258 — G2un ) do+
(2.46)

; O(V2W? OW}

= — [, 2V?Widy i=1,2,...,Ny k=12,
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/ uNdey:/ oMdy, j=1,2,...,Ny., (2.47)
SC SC
. 1 .
/ uNM’dy:/ [—(w+1)2] Midz, j=1,2,...,Ny,, (2.48)
SD SD 2
—/ uyMidy =0, j=1,2,...,Ny,. (2.49)
SEg

As in the case of Laplacian problems, the integrands in Eqgs. (2.46)—(2.49) are non-singular
and all integrations are carried out far from the boundaries causing the singularity. Also, the
stiffness matrix is symmetric and becomes singular if Ny > 2N, where Ny = Ny, +N),+Ny,,.
Since there was no theory available for the biharmonic problems, what was done in Elliotis et
al. (2006) was to find the “optimal” values of N, and N by systematic runs. It was found
that the choice N, = 47, N, = 39(= 7+ 25 + 7) produces very accurate results. These are
converged in the sense that they are not affected by moderate changes of N, and N, (see
Elliotis et al. 2006 for more details). Table 2.5 shows the approximate coefficients CZN , le ,
i=1,2,...,10 obtained with this choice of parameters, along with the results from (Li et al.
2004) for comparison. It appears that the SFBIM can be effective for biharmonic problems

as well, and this will be mathematically established in Chapter 4.

2.6 Conclusions

The SFBIM for planar Laplacian and biharmonic problems with boundary singularities has
been reviewed. The convergence of the method has been demostrated theoretically for Lapla-
cian problems and numerical applications have been presented for two Laplacian and a bi-

harmonic elasticity test problems.
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Approx. coeffs | Collocation Trefftz SFBIM
dy 2.12751351 2.1275134
da —1.0366925 —1.036692
ds 0.0371711 0.037170
dy 0.117749 0.11775
ds —0.122728 —0.12273
dg —0.109909 —0.10991
dy —0.002255 —0.00226
ds 0.006863 0.00686
do —0.005936 —0.00594
dio —0.011032 —0.01103
c1 0.1667621 0.166762
2 0.0624433 0.062444
3 —0.1324738 —0.132474
cy4 —0.010221 —0.01022
cs 0.105846 0.10585
C6 0.031153 0.03115
cr —0.007149 —0.00714
cs —0.001684 —0.00169
Co 0.009484 0.00950
€10 0.004281 0.00426

Table 2.3: Comparison of converged values of the coefficients with those reported by

Li et al. (2004) using the Collocation Trefftz method.
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Chapter 3

The SFBIM for Laplacian Problems

Over Circular Sectors

In this chapter we consider two model Laplacian problems over a circular sector, with an
exact solution, in order to verify the theoretical convergence of the SFBIM.

All the results discussed in this chapter are also found in Christodoulou et al. (2010).

3.1 Introduction

In the last few decades there has been an extensive study of planar elliptic boundary value
problems with boundary singularities. The methods that have been proposed for the solution
of such problems range from special mesh-refinement schemes to sophisticated techniques that
incorporate, directly or indirectly, the form of the local asymptotic expansion, which is known
in many occasions. These methods aim to improve the accuracy and resolve the convergence
difficulties that are known to appear in the neighborhood of singular points.

The local solution, centered at the singular point, in polar coordinates (r, ) is of the general
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form
0o
u(r,0) = a;rti £(0), (3.1)
j=1

where 1, f; are, respectively, the eigenvalues and eigenfunctions of the problem, which are
uniquely determined by the geometry and the boundary conditions along the boundaries
sharing the singular point. The singular coefficients «; also known as generalized stress
intensity factors or flux intensity factors (Arad et al., 1998), are determined by the boundary
conditions in the rest of the boundary. Knowledge of the singular coeflicients is of importance
in many engineering applications, especially in fracture mechanics.
In the past few years, Georgiou and co-workers (Georgiou 1996, 1997; Elliotis 2002, 2005a,
2005b, 2006, 2007; Li 2006; Xenophontos 2006) developed the Singular Function Boundary
Integral Method (SFBIM), in which the unknown singular coefficients are calculated directly.
The solution is approximated by the leading terms of the local asymptotic solution expansion
and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipli-
ers. The method has been tested on standard Laplacian and biharmonic problems, yielding
extremely accurate estimates for the leading singular coefficients, and exhibiting exponential
convergence with respect to the number of singular functions. Theoretical results on the
convergence of the method in the case of Laplacian problems where given by Xenophontos et
al. (2006).
The SFBIM belongs to the class of boundary approximation methods (BAMs) or Trefftz
methods (TM), which have been recently reviewed by Li and co-workers Li et al. (2004) and
compared to collocation and other boundary methods. Other recent reviews of methods used
for elliptic boundary value problems with boundary singularities can be found in the articles
of Bernal et al. (2009) who considered both global and local meshless collocation methods
with multiquadrics as basis functions, and of Dosiyev and Buranay (2008) who employed the
block method which was proposed for the solution of Laplace problems on arbitrary polygons.
The objective of this chapter is to apply the SFBIM to two model Laplacian problems over
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circular sections in order to investigate the effect of the order of the Lagrange multiplier
approximation in connection with the theoretical error estimates.

In section 3.2, two Laplacian problems over circular sections are presented. One problem has
Dirichlet and the other Neumann boundary conditions along the arc. The formulation of the
method for both cases is given in section 3.3. In section 3.4, numerical results are presented
for piecewise constant, linear, quadratic and cubic basis functions, used for the approximation
of the Lagrange multipliers. These results are compared with the theoretical error estimates.

Finally, section 3.5 summarizes the conclusions.

3.2 The Model Problems

We consider two Laplacian test problems over circular sectors of angle am and radius R, as
depicted in Fig. 3.1. A boundary singularity occurs at the origin which is due, not only to
the geometry (i.e. the presence of an angle in the boundary) but also to the fact that different
boundary conditions are imposed on the boundary parts S; (# = 0) and Sy (§ = aw). The
two test problems differ only in the boundary condition along the circular arc S3, where
Dirichlet and Neumann boundary conditions are respectively prescribed. For both problems

the local solution is

u = Z a;rt sin(p;0). (3.2)
j=1

In problem 1 ( Fig. 3.1a), the Dirichlet boundary condition along Sj is given by

u=f(0)=0— 0 (3.3)

2am’
In problem 2 (Fig. 3.1b), the Neumann boundary condition along S3 is given by

ou 0

5 =00 =—. (3.4)
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(a) (b)

Figure 3.1: Test Laplacian problems over circular sectors. (a) Problem 1 (b) Problem

2.

For both problems, we have

2j —1

The singular coefficients for problem 1 are given by

16
Q5 = T2 RHs (2] - 1)3, (3.6)
and for problem 2 by
—1)7t116
o; = 1" 16a (3.7)

m2RIL(25 —1)3

3.3 Formulation of the SFBIM

The SFBIM is based on the approximation of the solution by the leading terms of the local

solution expansion:

Na
Uy = Z aé—VWj, (3.8)
j=1

where N, is the number of singular functions W; = r# sin(u;0). By applying Galerkin’s
principle, we obtain

// W;ViuydV =0, j=1,2,...,N,. (3.9)
Q
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By double application of Green’s second identity, and keeping in mind that the singular

functions W; are harmonic, the above volume integral becomes

oun 8W
W —dS — st—o =1,2,..., Ng. 3.10
Now, since the W;’s satisfy the boundary conditions along S; and S», the above integral

along these boundaries is zero. Therefore, we get

auN 8W
= =1,2,...,N,. A1
/S3 <WJ8 —un 8n>ds 0, j= (3.11)

It should be noted that integration is needed only along S3, i.e. far from the singularity and

not along the boundary parts causing the singularity.

3.3.1 Formulation of Problem 1

The Dirichlet condition along S3 is imposed by means of a Lagrange multiplier function
A, which replaces the normal derivative. The function A is expanded in terms of standard

polynomial basis functions M; of order p:
a”N Z M, (3.12)

where N, represents the total number of unknown discrete Lagrange multipliers \; (or, equiv-
alently, the total number of Lagrange multiplier nodes) along S3. The basis functions M; are
used to weigh the Dirichlet condition along the corresponding boundary segment S3. Hence,

we obtain the following symmetric system of N, + Ny discretized equations:

/ </\W — uN@W ) dS =0, j=1,2,...., Ny, (3.13)

Ss on

/ UNMZdS = f(T‘,@)MZdS, 1= 1,2, ...,N)\. (3.14)
53 SS

The above system can be written in (block) matrix form as

Dy, xnN., Kno.xn, A @)
- , (3.15)

Klj\}AxNa ONAXNA A F
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where A and A are, respectively, the vectors of unknown singular coefficients and Lagrange
multipliers. It turns out that for this simple geometry the submatrix D is always diagonal
with

Dy = —u,-R%C;—”. (3.16)

The submatrix K and the forcing vector F' are given by

Ky = R“i"'l/o M sin p;6d6, (3.17)

F, = R / " o) Mido, (3.18)
0

and can be calculated analytically for various orders p of the approximation of the Lagrange
multiplier function. The entries in K and F for p = 0,1,2 and 3 are given in the Appendix
A.

According to the analysis in Xenophontos et al. (2006), if A\ € H¥(S3) for some k > 1 and ),
is the approximation to the Lagrange multiplier function with A being the meshwidth, then

there exist positive constants C' and § € (0, 1), independent of N, and h such that

lu = unlie+ 1A= Anll—1y2,5, < C{V/NafBN + B™p~F}, (3.19)

where m = min{k,p + 1}. Here, Hk(Q),k; € N is the usual Sobolev space which contains
functions that have k generalized derivatives in the space of squared integrable functions

L%*(Q). The norm || - ||, is defined, as usual, by

1/2

1flhe = [ /Q (P24 2+ PYdedy| | (3.20)

The norm ||-||_1 /2,5, that appears in (3.19) is defined as follows: Let H'/2(S3) denote the space
of functions in H' () whose (trace) values on S3 belong to L?(S3), let T : HY(Q) — H'/?(S3)

denote the trace operator, and define the norm

[¥lhj2s, =, inf (o Tu = v} (321)
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Then,

oY
”¢H—1/2,53 = sup fS3

Nl /25, 3.22
wer/2(sq) 1¥l1/2,55 (3.22)

For more details see Xenophontos et al. (2006).

From (3.19) it is clear that the approximate solution converges exponentially with respect to
the number of singular functions, N,. Moreover, if we choose the two errors in (3.19) to be
balanced, we obtain the following relationship between the number of singular functions and

the number of basis functions used to approximate the Lagrange multiplier:

p
W~/ Nop = <Nf - 1) ~ VNN = (323)

Namlg —20 (3.24)

(VNN )P

It was also shown in Xenophontos et al. (2006) that

o — | < CBNe, (3.25)

which shows that the approximate singular coeflicients aj-v converge exponentially with re-

spect to the number of singular functions.

3.3.2 Formulation of Problem 2

To impose the Neumann conditions, the normal derivative in (3.11) is simply substituted by
the known function g. It turns out that for this problem all integrations can be performed

analytically as this substitution gives

/uNawidS: gWidS , i=1,2,...N,. (3.26)
Sy n S3

The above expression becomes
aiR2“i_1,u,-/ sin? (p;0)df = R* / g(0) sin(p;0)d0, (3.27)
0 0

from which we find that

(—1)*116a
Rri=172(2i — 1)3’

a; 1 ] /OM g(0) sin(u;0)do =

~ B R@io) (3:28)
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and the method is equivalent to the method of separation of variables. In the next section

we will present numerical results for the first test problem.

3.4 Numerical Results

We show results for three different values of the constant « defining the angle 6 of the circular
sector: o = 1,1.5,2, which correspond to a semi-circle, an L-shaped domain and a domain

with a slit, respectively. Our goal is to verify that

lu—unlio+ 1A= Anll—1y2,5, < C{V/ NN + Bp7*}, (3.29)

where m = min{k,p + 1}, as well as

la; — aﬁy] < CpNe, (3.30)

3.4.1 Semi-Circle (a = 1)

First we consider the case o = 1 for the angle 0, which corresponds to the domain being
a semi-circle. Our first step was to determine the constant § appearing in (3.29), which
was done as follows: We choose a value for N, say Ny = 10, and solve the linear system
(3.11) for various values of N, > 10, using, e.g., p = 2. Concentrating on the first singular
coefficient, we record the results in Table 3.1. Since the exact value of the first coefficient
is ap = 16/7% ~ 1.621138938277404, we see from the results of Table 3.1 that o} has
“converged” once N, = 30. Hence, using (3.24) and the “optimal” pair N, = 30, N, = 10
we compute the value for 8 as 5 ~ 0.88.

With 8 known, we use (3.30) to determine subsequent “optimal” values for N and N, for use
in our computations. We should note that in general, the exact value of the first coefficient is
unknown, hence in practice we choose the “optimal” value of N, based on the changes that

appear in the computed o/lv , i.e. once the value of o/lv does not change significantly.
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N N
Ny o Ny o

12 | 1.617187500000000 27 1.621138938152942

13 | 1.621215820312500 28 1.621138938197758

14 | 1.619140625000000 29 1.621138938231953

15 | 1.621154785156250 30 | 1.621138938258757

16 | 1.622070312500000 31 1.621138938280287

17 | 1.621398925781250 32 1.621138938297822

18 | 1.621582031250000 33 1.621138938312330

19 | 1.621154785156250 34 1.621138938324523

20 | 1.621215820312500 35 1.621138938334964

21 | 1.621138935554673 36 1.621138938344132

22 | 1.621138937140710 37 1.621138938352468

23 | 1.621138937635686 38 1.621138938360383

24 | 1.621138937869855 39 1.621138938368192

25 | 1.621138938004718 40 1.621138938368413

26 | 1.621138938092001

Table 3.1: Approximate singular coefficient a¥, computed with Ny = 10, a = 1.
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In Fig. 3.2 we show the convergence of the approximate solution and in particular the
percentage relative error in the approximation of u versus IV, in a semi-log scale for p = 1, 2, 3.
Since each curve becomes a straight line as N, is increased, we see that the error decreases
at an exponential rate and the convergence as predicted by (3.29) is verified. Comparing the
error curves in Fig. 3.2 we observe that the slope for p = 3 is smaller than that for p = 1 at
high N,, which is, of course unexpected. This effect may be due to the fact that the number

of Lagrange multipliers predicted, under certain assumptions, from (3.29) is not optimal.

Error in the approximation of the solution u
10 T T T T

iy

100 lu=uy Il o/l ull, o

Figure 3.2: Convergence of the approximate solution uy, o = 1.

Figures 3.3-3.5 show the percentage relative error in the first four singular coefficients, versus
N, in a semi-log scale, for p = 1, 2, 3, respectively. The exponential convergence as predicted

by (3.29) is again readily visible in all three plots.

Next, we would like to compute the error in the approximation of the Lagrange multipliers.

Note that for any v € H~/2(S3) we have

loll-1/2,5, < Cllvllo,ss < Cllvllo,ss: C,C €R. (3.31)

So, instead of [|A — Ap[[—1/2,5,, We use

IA(Ok) — An(Ok)|
() (3:32)

100 x max
k
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Figure 3.3: Convergence of the singular coefficients aj-v forp=1,a=1.

" Error in j"' coefficient, p = 2
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Figure 3.4: Convergence of the singular coefficients aj-v forp=2 a=1.

where 6 are the (internal) nodal points along S3. By construction, Ap(0;) = Ak, i.e. Ap(0k)
is equal to the k™ discrete Lagrange multiplier. Figure 3.6 shows this error versus Ny (which
is directly related to the meshwidth A on S3) in a log-log scale. The convergence rate indeed
appears to be algebraic of order p, i.e. A\, — X as Ny — oo (or, equivalently, as h — 0) at
the rate O(N, ") (or O(hP)). Therefore, from (3.31) we have that [|A — A4||_1 /2,5, = O(h?).

Finally, we show numerical results for the case p = 0. The error analysis in Xenophontos
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Figure 3.5: Convergence of the singular coefficients aj-v forp=3, a=1.
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Figure 3.6: Convergence of the Lagrange multipliers, oo = 1.

et al. (2006) does not cover this case, hence it is not possible to use (3.30) to determine
“optimal” values for Ny and N,. In what follows we have chosen N, = 2N, ; other choices
gave similar results. Figure 3.7 shows the percentage relative error in the first three singular
coefficients versus IV, in a log-log scale. We observe that for p = 0, the convergence is not
exponential, but rather algebraic of order 3.

Figure 3.8 shows the percentage relative error in the approximation of u and of the Lagrange
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Figure 3.7: Convergence of the singular coefficients aj-v forp=0,a=1.

multipliers, versus N, in a log-log scale. Again we have algebraic convergence, with rate 2 for

the approximation of u and with rate 3/4 for the approximation of the Lagrange multipliers.

p=0,N, =N 2
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Figure 3.8: Convergence of the approximate solution uy and Lagrange multiplier A,

forp=0, a=1.
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3.4.2 Domain With a “Slit” (a = 2)

We have also repeated the previous computations for the case of o = 2, which corresponds to
a domain with a “slit”. The procedure for determining the constant 3 in (3.29) was repeated
yielding 8 = 0.92 for the pair N, = 35 and N, = 20.

Figure 3.9 shows the convergence of the approximate solution and in particular the percentage
relative error in the approximation of u versus N, in a semi-log scale for p = 1,2,3. As with
a=1, each curve becomes a straight line as N, is increased, hence the error decreases at an

exponential rate as predicted by (3.29).

Error in the approximation of the solution u
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Figure 3.9: Convergence of the approximate solution uy, o = 2.

Figures 3.10 and 3.11 show the percentage relative error in the first four singular coeflicients,
versus NV, in a semi-log scale, for p = 1 and 2, respectively (the case p = 3 is almost identical).
The exponential convergence is again visible in both plots.

Finally, Fig. 3.12 shows the error in the Lagrange multiplers versus V) in a log-log scale.

The convergence rate again appears to be algebraic of order p.

44



. Errorin j‘h coefficient, p = 1
10 T T

FNEANNES

i

N
-a'|/]a
N/l
=
O‘
T

]

100 x| a

Figure 3.10: Convergence of the singular coefficients ajv forp=1, a=2.
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Figure 3.11: Convergence of the singular coefficients ozév forp=2 a=2.

3.4.3 L-Shaped Domain (a = 1.5)

Similar results have been obtained with « = 1.5, which corresponds to an L-shaped domain.
The constant 8 in (3.29) was determined as 0.9 from the pair N, = 33, Ny = 15. Figure
3.13 demonstrates the convergence of the approximate solution, while Figs. 3.14-3.15 show
the convergence of the approximate coefficients (for p = 1) and of the Lagrange multipliers,

respectively. As in Fig. 3.2, the slope for p = 3 is smaller than that for p = 1. As already
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Figure 3.12: Convergence of the Lagrange multipliers, a = 2.

pointed out, this unexpected and counterintuititive deceleration of the convergence may be

attributed to the fact that the choice of the number of Lagrange multipliers is not optimal.

Error in the approximation of the solution u
10 T T
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Figure 3.13: Convergence of the approximate solution uy, o = 1.5.
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Figure 3.14: Convergence of the singular coefficients ajv forp=1 a=1.5.
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Figure 3.15: Convergence of the Lagrange multipliers, a = 1.5.

3.5 Conclusions

In this chapter we revisited the Singular Function Boundary Integral Method (SFBIM) for
the solution of two-dimensional elliptic problems with boundary singularities. Our objective
was to demonstrate, via numerical examples, the convergence of the method and to show the
agreement with the theoretical results provided in the literature. For this purpose the method

was applied to a Laplacian test problem over a circular sector with the use of constant, lin-
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ear, quadratic and cubic approximations of the Lagrange multipliers. After obtaining the
“optimal” values for the number of Lagrange multipliers and the number of singular func-
tions, the exact approximation errors were calculated. In the cases of linear, quadratic and
cubic approximations we show that both the singular coefficients and the solution converge
exponentially with the number of singular functions and that the convergence of the ap-
proximation of the Lagrange multipliers is algebraic of order p with the number of Lagrange
multipliers, as predicted by the theory. In the case of constant approximations, which is not
covered by the theory, we observed that the convergence is algebraic for both the singular

coefficients and the solution.
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Chapter 4

Analysis of the SFBIM for a
Biharmonic Problem With One

Boundary Singularity

The material of this chapter also appears in Christodoulou et al. (2011).

4.1 Introduction

Boundary singularities appear in many problems governed by elliptic partial differential equa-
tions. These arise when there is a sudden change in the boundary conditions (e.g. domains
with cracks) and/or on the boundary itself (e.g. re-entrant corners). It is well known that
ignoring their presence can adversely affect the accuracy and the convergence of standard
numerical methods, such as finite element, boundary element, finite difference and spectral
methods. One way to deal with singularities is to incorporate their local form into the nu-
merical scheme, something that has been successfully done for two-dimensional Laplacian

problems (see, e.g., Georgiou et al., 1996. Li, 1997 and the references therein).
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In the case of two-dimensional Laplacian problems with one boundary singularity, and with

straight boundary parts sharing the singularity, the local solution expansion is given by

u = Z ;T £5(6), (4.1)
j=1

where (r,6) are polar coordinates centered at the singular point, o; € R are the unknown
singular coefficients and p;, f; are, respectively, the eigenvalues and eigenfunctions of the
problem, which are uniquely determined by the geometry and the boundary conditions along
the boundaries sharing the singular point. The «;’s, called singular coefficients (or stress
intensity factors if the boundary value problem arises from structural mechanics), are primary
unknowns in many applications. With standard numerical schemes, such as the finite element
method (FEM), the singular coefficients are calculated via a post-processing procedure (see,
e.g.,Babuska and Miller, 1984. Szabé and Yosibash, 1996.). The Singular Function Boundary
Integral Method (SFBIM), belongs to the class of Trefftz methods in which the singular
coefficients are calculated directly. It was originaly developed for two-dimensional Laplacian
problems with boundary singularities, by Georgiou and coworkers (Georgiou et al., 1996,
1997), and was recently extended to biharmonic problems by Elliotis et al. (2005b, 2006,
2007). See also Li et al. (2004), Li et al. (2008) and Lu et al. (2009) for reviews of Trefftz
methods and recent works with applications to biharmonic problems.

The SFBIM, uses the leading terms of the local asymptotic expansion to approximate the
solution. The associated functions r#s f;(#) are used to weight the governing biharmonic
equation in the Galerkin sence. This allows for the reduction of the discretized equations
to boundary integrals by means of Green’s theorem. Any Dirichlet boundary conditions are
weakly enforced by means of Lagrange multipliers, which are calculated directly together
with the unknown singular coefficients; hence, no post-processing of the numerical solution
is performed.

The implementation of the method for the solution of Laplacian and biharmonic problems
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with boundary singularities has given highly accurate numerical results, see Elliotis et al.
(2002, 2005a, 2005b, 2006, 2007). The convergence of the SFBIM, for Laplacian problems,
has been investigated theoretically in Xenophontos et al. (2006), where it was shown that
the absolute difference between the true and approximate singular coefficients decreases at an
exponential rate as the number N of the terms in the numerical approximation is increased.
The main goal of this paper is to extend the analysis to the case of biharmonic problems and
establish the (exponential) convergence rates observed in numerical simulations in Elliotis et
al. (2005b, 2006, 2007). It should be noted that the Collocation Trefftz method also yields
exponential convergence rates, when applied to biharmonic problems, as was shown in Li
(1998) and Li et al. (2008).

The rest of this chapter is organized as follows: In Section 4.2 the formulation of the method
for a model two-dimensional biharmonic problem with a boundary singularity is presented.
In Section 4.3 the convergence analysis is carried out. Finally, in Section 4.4 we discuss the

efficient implementation of the method.

4.2 The Model Problem and its Formulation

We consider the following model two-dimensional biharmonic problem (depicted graphically

in Fig. 4.2): Find u such that

Viu=0in Q, (4.2)
with
u=0 du _ on S

) on 1

u =0, Viu=0 on So
5(Vu) , (4.3)

u
V2u =0, an =0 on S3
u=g(r0), Viu=0 on Sy
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where 02 = Uf-‘zlSi. A boundary singularity arises at the intersection of S; and Sy (point
O) due to the sudden changes in the boundary conditions. The function g is assumed to
be smooth enough and such that no other boundary singularities arise (at the endpoints of
S4). We also assume that the only singularity present is the one at the point O. The above
boundary value problem models the so-called Newtonian stick-slip flow problem (see Elliotis

et al. (2005b)).

u = g(?", 0)
Viu =

Figure 4.1: The model biharmonic problem with one singular point.

For two-dimensional biharmonic problems, the solution in the neighbourhood of the boundary
singularity is given by an asymptotic expansion of the form
oo )
u(r,0) =Y a0, ) + D BT fa(0, pj), (4.4)
j=1 Jj=1
where o; and 3; are the unknown singular coefficients, u; and p; are the two sets of sin-
gularity powers (i.e., the eigenvalues of the problem) arranged in ascending order, and the
functions f1(0, ;) and f2(6, p;) represent the f-dependence of the eigensolution. The func-
tions rHi L £1(60, p;) and 7P f5(6, p;) are called singular functions. Since we are considering
a model for the stick-slip problem where S7 and S2 meet at an angle 7, the eigenvalues p;, p;

are real and the functions f1(0, 1), f2(0, p;) are even and odd, respectively (see Michael
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(1958) and Papanastasiou et al. (1999)). In fact, in this setting, one finds that

S
f1O,p5) = cos(uj +1)0 —cos(p; —1)8, pj=j—5,j=1L2.. (4.5)
f2(0,p5) = (pj —1)sin(p; +1)0 — (p; + 1)sin(p; —1)8, p;=j+1, j=1,2,.. (4.6

Now, suppose v is a function which satisfies

Viv =0in
1):0,%20011 St . (4.7)

v=0,V2v=0o0n S,

One choice for v is
v =yt T (0, 1) + 05rPt fa(8, pj),

for some constants y; and ;. Multiplying the governing biharmonic equation by v, integrating

over €2 and employing Green’s formula, we obtain

2
—// Vv - V(Vu) + U@(V w) = 0.
Q oo On

Using Green’s formula once again, the above expression becomes:

2
// VZuViy — Vzu@ —|—/ v@(V u) =0.
Q o9 o Joq  On

Considering the boundary conditions in (4.3) and (4.7), we find that

//Q ViV + L4va(g§u) = 0. (4.8)

Now, on S4 we have u = g and thus

(V)
/54 (u - g) an - 07

which added to (4.8) gives
9 w2 O(V2u) 0(V?v) 0(V?v)
VauViu + v + u = g .
Q S4 E?n Sy 871 S4 Z?n

8(V2u)| B G(szu)|
on Sar b = on Sa>s

Letting

A\ =
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we get

// V21)V2u+/ v)\+/ uu:/ g, (4.10)
Q Sy Sy Sy

which leads to the following variational formulation: Find (u, A\) € Vi x V5 such that
B (u,v) +b(u, 03\, p) = F (v, ) ¥ (v, 1) € Vi x Vs, (4.11)

where

B (u,v) = [[o, V2oV?u

b(u, ;A 1) = [g, up+ [, vA (- (4.12)

F(v,p) = [g, g1

The spaces V7 and V5 are defined as
2 2 dv —3/2
Vi=H;(Q)=<ve H*(Q):v|s,us, =0, %le =0;,Vo=H (Sy). (4.13)

The above formulation will be used in the analysis of the method. It will be shown in Section

4.4 that this formulation is equivalent to the one used for the implementation.

4.3 Discretization and Error Analysis

In order to describe the discrete analog of (4.11), boundary part Sy is divided into sections

I, with i = 1,--- ,n such that Sy=U"_,T';. Let h; = |[';| and set h = maxj<;<, h;. Now, let
oft! = rH Ly (0, y) and v = v fy (0, p))
denote the singular functions, and define the following finite dimensional space:
Vi = span {v](-l)} U span {v](-2)} ,j=1,2,---  N. (4.14)

We assume that for each segment I';, there exists an invertible mapping F; : I = [-1,1] — T

and define the space

Vol = { X s Mnfry o FH € P(I) i = 1,--- (4.15)
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where Py (I) denotes the set of polynomials of degree < k on I. Then the discrete version of

(4.11) reads: Find (un,\p) € ViV x W,"] € [V x V3] such that
B (un,v) +b(u,v; A, ) = F (v, 1) ¥ (v, ) € i x 1", (4.16)

with B (un,v), b (u,v; Ap, p) and F (v, u) given by (4.12).

We have the following result, which is a generalization of Theorem 4.5 from Li et al. (2006).

Theorem 1 Let (u,\) and (un, \p) be the solutions to (4.11) and (4.16), respectively. Sup-
pose there exist positive constants cg, ¢, B* and -, independent of N and h such that the

following three conditions hold:

B (vn,vn) = collon g0 and [ B (u,vn)| < cllullz.allonllao ¥V ox € ViV, (4.17)

30 75 wN € VlNS.t. ‘/ uth' > ﬁ*HuhH—%,S4|’wN”27Q V,uh S Vgh, (4.18)
Sy
‘/S xow| < VIMs g, llonllzq ¥ o € ViV, (4.19)
4

Then,

u —unl2,0+ [|A—Anll_s §C’{ inf Jlu—vnll2,0+ inf [A—mnul_s }, 4.20
| 2.0+ |l [ vN€V1NH 2 nhevzhH mll-s s, (4.20)

with C € RT independent of N and h.

Proof. Obviously, V (v, ) € Vi x Va we have

B(u—upn,v) = —=b(u —un,v; A\ — A\p, pt) = —/
Sy

(u—un)p— /S (A= Ap)v.

Since u = g on Sy and fS4 pn(un —g) =0V py, € V', we have

/ pn(un —u) =0 Y py, € V!, (4.21)
Sy
and
B(u — uN,vN) = —/ ()\ — )\h)UN Yoy € VlN. (4.22)
Sa
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Letting wy = uy — vy € VlN we obtain

B(vy —un,wy) = B(u—uy,wy)~+ Bloy —u,wy)
= B(UN—U7WN)_/ (A= Ap)wn
Sy

= B(UN—U,wN)—/S(A—nh)wN—/S(nh—Ah)wN,

with ny, € V2h arbitrary. Using the definition of wy and (4.21) with p, = Ap — wy, € Vzh, we

further have

(u —oN) (. — An)-

B(vy —un,wy) = B(vn —u,wy) (A —mp)wy — / (un —vn)(n — An)
54 S4
= B(UN—u,wN / )\ 77h WN — / uN(nh —)\h)—i-/ UN(nh —)\h)
S4 S4 S4
= B(vv—u,wy)— [ A—mp)wn — / u(nn — An) +/ on (N — An)
54 S S
/.

= B(UN—u,wN)—/S()\—nh)wN—

4

This along with Egs. (4.17) and (4.19) give

clluvl3e < [Blwy,wy)| <[B(uy — vy, wy)]
< |B(vy —u,wn)| + / ()\—nh)wN‘—F / (nh—)\h)(u—vN)‘
S4 54
< cllon =ullzollwnllzo + YA =l s g, lwnllz.0 + vl = Anll s g, lu = v ll20
< {(HUN —ullza + A =l s g ) lwnlloo + [lnn = Anll s g, llu - UNHz,Q} :

with C; € R satisfying C; > max{c,v}. This is an inequality of order 2: coz? < bz +d, where

2= llunliag, b=Cr {llox = ulag + 1A = ml_g.s, b d=Cullm = Mll_z,g, I — vl

For any € > 0, we have

) 2
d< — {EHU — ’UNHZQ + 6”77h - )\hH—g,&;} :

Therefore, we have the bound

. b+ b2+ 4cyd
260 ’
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or, equivalently,
1
lwnll2,0 < C2 9 llon —ull2,o + A =mull_s g, + —llvn —ullz ¢ +Coel|An —nrll_3 g,, (4.23)
551 1 ¢ 554

with Cy > L max{C1, /coC1/2}. Next, using Eq. (4.18) with pup = A, — 1, we have that

co
there exists a nonzero vy € ViV such that

‘f54()‘h - nh)UN‘

lon 2,0

1
[An =l 3 s, < 3 (4.24)

Also, it follows from (4.22) that

/54()% — Nh)UN

/54()\h — A)un + /54()\ — np)UN
/34()\—%)111\/‘

< dlu—unllzollonllze + A =mll_s 5 lonll2.0-

IN

|B(u — upn,vn)| +

Hence, (4.24) becomes

IAn =l g5, = Cs {Hu ~unllzo+ 1A= nhH_%’S“}

IN

Ca {llu = vllz0+ low = unllz0 + 1A= mll_s s, }
with C3 > %max{c,y}. Since |[vny — unll2,0 = ||lwn||2,0, using (4.23) leads to

1A=l 3 5, < C3(1+ Co/€)lu—vnllaa+ C3(Ca+ DA =mnll_s 5, + C3Ca€ A —mnll s g,

2

Choosing € = 1/(2C5C5) we get, for some constant Cy > max{Cs, Cs3},

1w = mll_s.s, < Co {llu—vxllza+ 1A = mll_s.5,}

and using the triangle inequality we have

12 = Az s, < 120 = mll_g.g, + I = Mll_g.s, < C {llu—vllaa+ 1A= mll_s s, }

Similarly, using the above inequality and (4.23), we finally get

lu—unl < flu—vnl2a+[vn —unl2e
< u—onflag + sl
< C{llu—vnla+IA=ml s}
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which gives the desired result. =

Before verifying that (4.17)—(4.19) hold for our problem, consider the following: For any

o o
1 2
w=3" o)+ Bjo)”
j=1 j=1
we can always write

w=wyN +TN, (4.25)

where

N N > >
wy = Zajvg('l) + Z/ijj(?) eV, rv=) aj”g(‘l) + 2 /BJUJ(‘Q)’ (4.26)
j=1 j=1 j=N+1 j=N+1

with a; and f; the true singular coefficients. We will assume that there exists a constant

a € (0,1) such that for £ =0,1,2

9 (rn)
ort

' < CON*N. (4.27)

Note that when r < 1, assumption (4.27) can be replaced by the assumption that the singular

coefficients are bounded, since then, due to the fact that f;(6, it;) and f(6, p;) are biharmonic,

we have
(@) D
_ _ piN+1+] pPN+1+]
Irn| < Z oyt Z 18] 7P+ < ¢y - + O, — < CaV,

with r < @ < 1 and C € R" independent of o and N. Similarly,

or O } > ‘
= D lagl Gag+ 0+ D7 (Bl (g + 1)
j=N+1 j=N+1
= > el {d [evael e > i {a [Cea
. J J dr 0 . J J dr 0
j=N+1 j=N+1
d [ < . - T
= | 2 \%\(uﬁh{/ S”de}Jr > !Bﬂ(ﬂHl){/ gwg}
j=N+1 0 j=N+1 0
d - , = _
< o Z \Oéj\r“”“r'z |85 et
j=N+1 j=N+1
d [ rHN+itl d [ rPN+1+l
< — _
- Cldr< 1—7’>+C2d7’< 1—T>
< CNaV.
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(The case ¢ = 2 follows in a similar fashion.)

In the case r > 1 one may partition the domain €2 into subdomains in which separate
approximations may be employed, including one (near the singular point O) that is valid for
r < 1. The solution over the entire domain can then be composed by combining solutions from
each subdomain and properly dealing with their interactions across the interfaces separating
them (see, e.g., Li et al., 1987, where this idea was applied to a Laplacian problem).

We are now ready to verify that (4.17)—(4.19) hold for the problem (4.16). We have (see,

e.g., Johnson, 1987),

/ V2V2u // |v2v\ > Collvll3a Vv eW
and 3¢ € R such that

B (u, )| < cllull2llvll2,0 ¥V u,v e Vi,

therefore (4.17) is verified.

In order to verify (4.18) we consider the following auxiliary problem:

Viw =0, in Q, (4.28)
with the boundary conditions
w =0, %% = on S
w =0, Viw =0 on Sy
) , (4.29)
%gn—w) =0, V2w=0 on Sy
a(V?
V2w =0, —(an—w) =pup on Sy

where yj, € V3§ in (4.29). By using Green’s formula we obtain

2
/ wpp| = / wa(v w) ‘// wV4w+// Vw-V(VQw)‘
Sa S4 Q Q

= / V2wV2iw + v2 Ow

an
= / V2wViw| = / (VZw)
Q
> Collwll3q. (4.30)



Note that (see, e.g., Wloka, 1987)

A(V2w) ||? 2

2
1nllZ3)2,5, = H o , CERT, (4.31)

<Cluffo<c [ v
~3/2,54 o0

[

with 8 € R independent of w and h. Now, let wy € VlN be such that w = wy + ry, as

so, by (4.30)

> Pllwllzellenll-s/2,54, (4.32)

given by (4.25)—(4.26). We have

/thN‘Z / th—/ HRTN| = / prw| — / :uhrN‘ (4.33)
Sy4 S S Sy4 Sa
and
/ WN\s01\mh|r_3/2,s4umuz,n, Gy € R*. (434)
:
Now, combining (4.31)—(4.33) we obtain
\ /. uth' > Bllwlolunl_szs: — Cillunll_szs.lrlize. (435)

Also, from the reverse triangle inequality,

[wll2,0 = lun +rrll2,e 2 [lwnll2.0 = Irvll2e;
and by (4.34), we get
‘/54 uth‘ > B (llwnllzo = Irnll2.0) Il =3/2,5, — Cillunll-3/2,5: I7N 2.0 (4.36)
Therefore,

'/S uth‘ > Bllwnllz.ellnll=s/2,5, — (C1 + B) l1nll=3/2,5, ITN 12,0 (4.37)
4

Since by assumption (4.27), r converges to zero exponentially (or, equivalently wy converges

to w exponentially), we have

i Iralze _ o
N—oo |lwn|l2,0
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T
I N||||2'Q < € whenever N > N*.

lwnll2,0

which means that for any € > 0 there exists N* such that

Hence, for N sufficiently large we may write

7N ll2,0 B
lwnll2,0 ~ 2(C1+B)

Combining (4.36) with (4.37) yields

B
HhWN| 2 _”NhH—3/27S4HwN”279'
Sy 2

By replacing wy by vy and g by £, inequality (4.18) is obtained. Finally, condition (4.19)

follows from (see, e.g., Wloka 1987)

|20 < lgnsolaa Vo € VY. € R,
4

The above analysis leads to the following theorem.

Theorem 2 Let (u,\) and (un,\p) be the solutions to (4.11) and (4.16), respectively. If
X\ € H*(Sy), for some k > 1, then there exists a positive constant C, independent of N and

h, such that

lu = unllzg + 1A = Ml 3705, < C {Nzazv + hkﬂ} 7

with o € (0,1).
Proof. From Theorem 1 we have

nf, A=l o (439
Vs

u—un||2,0 +||A = Anl|_ SC{ inf |lu—2v||20+
| Il |l -3/2,5, UeleH |l .

with C € RT independent of N and h. Note that by (4.25) and (4.26)

inf lu—vlz,0 < [lu—wnll2o = [[ryll20-
veVy

Using assumption (4.27) we get

inf |lu—v|j20 < CN?¥, (4.39)
veni N
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where the constant C' > 0 is independent of N and a. Next let A be the k*"-order interpolant

of \. Then, since A € H*(S,) and )\, is the best approximation, we have
IA = Anll=s/2,50 < A= Anlloss < A= Arllo,ss < BFH[Alle,s, < CRMFY,

which, along with (4.38)—(4.39) gives the desired result. m

The approximation of the singular coefficients is given by the following.

Corollary 1 Let

w="Y a0, 5) + Y Bt 2 (0, 1) (4.40)
J=1 j=1
and
N N
un =Y ot (0, 0) + Y BN (0, 1) (4.41)
J=1 j=1

satisfy (4.11) and (4.16), respectively, with o, 5; and ozév, @N denoting the true and approx-
imate singular coefficients. Then, there exists a positive constant C € RT, independent of N

and «, such that

[(a; — )| + |(B; — BY)| < ON2M. (4.42)

Proof.

We begin by noting the following (which can be obtained by elementary calculations):

2
f1(0, 1) f1(0, )0 = 2w, (4.43)
2T
fl(H,Mj)fg(G,pk)dH = 0 Vj,k = 1,2,... (4.44)
2 4k? — 4k +5
; f2(0, pj) f2(0, pi)dO = QWm@,k (4.45)

where fi, fo are given by (4.5)—(4.6) and d; is the Kronecker delta. Now, in (4.40) take a
fixed r = ro < 1, multiply by f1(6, 1) and integrate from 6 = 0 to § = 27. Using (4.43) and

(4.44) we find that

2w
/ U(TQ, 9)f1(9, /Lk)de = 27T7‘6Lk+1ak. (4,46)
0
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Next, multiply (4.40) by f2(0, px) and integrate from 6 = 0 to 6 = 27, to get with the aid of

(4.44) and (4.45),

4k — 4k + 5

4k2 + 4k + 15k (4.47)

27T
/ u(ro, 0) f2(0, pr.)do = 27rfr+!
0

Similarly, one obtains expressions like (4.46), (4.47) corresponding to the approximate coeffi-
cients a]kv,ﬁ,]gv, i.e. Egs. (4.46), (4.47) with u replaced by uy and «, O replaced by akN,,Bliv,

respectively. Therefore, we have

1 2w ~
g, — Y| < ﬁ/ lu — wn| [ 1] d6 < Cillu — unllo.o, (4.48)
27y 0
- B < e L a0 < Gl unlon, (09)
FOR TS o 4k — 4k +5) Jo VR '

where the Cauchy-Schwartz inequality and the smoothness of fi, fo were used. The positive
constants Cy, C depend only on k (and 7). The result then follows from (4.39) and the fact
that [[u —unlloo < [[u —un|20. ®

Note that the above corollary establishes the exponential convergence of the SFBIM, in the
case of the biharmonic problems of the type shown in Fig. 4.2; the term N? can be absorbed
in the exponentially decaying term Y. This result is analogous to the one obtained in

Xenophontos et al. (2006) for 2-D Laplacian problems.

4.4 Implementation

We now give a description of the implementation of the method and show that the two
approaches are (mathematically) equivalent. Recall the discrete problem given by (4.16),

which may be rewritten in mired form as follows: Find (uy,\) € [V x V] C [Vi x V4]

such that
// V2UNV2UN —I—/ vNA, = 0 Voy € VlN, (4.50)
Q Sy
/ HRUN = / png ¥ pn € V3" (4.51)
54 S4
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We may reduce the double integral in (4.50) using Green’s second identity and the boundary

conditions in (4.3) and (4.7), as follows:

2
// V2UNV2UN — / V2UN8U_N _UNM
Q o0 871 871

oun 8(V2UN)>
= V2 —u ) 4.52
/SSUS4 < N 877/ N 877/ ( )

Hence, the problem (4.50)—(4.51) becomes: Find (un, Ay) € [V{¥ x V] C [V4 x V4] such that

2
/ <V%N6”—N —UNM> +/ uNd = 0 YuyeVd, (4.53)
S3US4 871 87’L S4

/S,UhUN = /uhg Vo € Vs (4.54)
4

S4
Obviously, if (un,A\n) € [V{¥ x VJ] C [V4 x V3] solves (4.50)—(4.51) (or (4.16)), then it also
solves (4.53)—(4.54). Now suppose that (ux,\) € [Vi¥ x V] C [V x Va] solves (4.53)—(4.54).

We have from (4.52) that

2
/ <V2,UN8UN _uNa(V ’UN)> _ // V2un V2, (4.55)
S3US4 871 871 Q

hence, adding Eqgs. (4.53)—(4.54) and using the above fact, we find that

// V2’L)NV2UN—|—/ UN)\h—I-/ ,uhuN:/ HUhg, (4.56)
Q Sy Sy Sa

which shows that (ux, Ap) solves (4.16).

Equations (4.53)—(4.54) are used in the implementation, since they are posed only on the
boundary of the domain away from the singular point. This reduces the dimension of the
problem by one and leads to significant computational savings.

Now, to obtain a linear system of equations corresponding to (4.53)—(4.54), we approximate

u and A by means of

N N
uy =Yool + 37 NP e v, (4.57)
i=1 i=1
and
M
AL = Z’ymﬁk S V2h (54) , (4.58)
k=1
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N N
with ozZN, BZ-N and 7, the unknowns in the system, and V¥ = span {vgl) } 1U span {vgz) } X
1= 1=

VI = span {4 }2L,. Upon inserting (4.57) and (4.58) into (4.53)—(4.54), a (2N + M) x (2N +

M) linear system of the following composite form is obtained:

K Ki2 M o [
Ky Koy Ag ? =170 . (4.59)
AT AT o || 7 G

where @ = [a{v,...,a]NV]T,? = [ﬁ{v,...,ﬁ%]T,V = [71,...,7M]T, and

2 M )9 (oa ) :

[Kll]i’j = /Sgus4 {V Y o Y% (V v; >} , 1,7 =1,...,N,
2 MO 20 (o2 >

[Klg]” = /53US4 {V v; o -, n (V v; >} ,,7=1,...,N,

[K21]” = /SSUS4 {V%J( )8;;(;) - vz( )% (ngj(_z))} , i =1,.,N,
2 @ 00 (o2 @ :

[K22]” = /S3US4{VU o Vi a—n(v v; >} ,i,7=1,...,N,

[Al]k,j - /S wk v§1) ) k= 17’”7M7 ] = 17’”7N7
4

[A2]k,j ~ 5 ka U]('Z) ) k= 17"'7M7 ] = 17"'7N7
4

[8] _ /94g¢g, 0=1 .. M.

It is easily shown that the coefficient matrix in (4.59) is nonsingular provided N > M. Hence,
N should be chosen larger than M, but not too large since for excessively large values of N the
linear system (4.59) becomes ill-conditioned and the results obtained are unreliable. As a final
remark we should point out that all integrals involved in the determination of the coefficient
matrix (and right hand side) in (4.59), are along the parts of the domain boundaries that do
not contain the singularity. These are one-dimensional and can be approximated by standard

techniques, such as Gaussian quadrature.
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4.5 Numerical Results

In this section we illustrate the main theoretical findings through one numerical experiment,
as described below. Since the method is designed for the efficient approximation of the
singular cofficients, the numerical results shown below correspond to how fast (and accurately)

these coefficients are approximated.

y=1 w=0,0u/on=0 1) u=0,Vu=0
S / Sa
u=g(y) r ot =0
S S
ou 5 3| ou
e =0 Viu=0 e =0
Q
Sy
T=-3 u=—-1,Vu=0 T=3

Figure 4.2: Stick-slip problem; g(y) = 2y(3 — y?) — 1.

We are considering the boundary value problem depicted graphically in Fig. 4.5 which is
the classical stick-slip flow problem from fluid mechanics (see, e.g. Elliotis, 2005b). We note
that the boundary of the domain consists of five parts, with 54 and S5 being the portions
of 992 where Lagrange multipliers will be applied, since Dirichlet boundary conditions are
prescribed there.

We implemented our method, as explained in Section 4.4, using piecewise quadratic poly-
nomials for the approximation of the Lagrange multiplier functions, on a subdivision of Sy
and S5 characterized by a meshwidth h — for simplicity a uniform subdivision of the same
meshwidth h was used for both portions of the boundary. All integrals involved were approx-
imated by a 15-point Gaussian quadrature on each element. Systematic runs were performed

in order to find the “optimal” combination of N and h (or M), which ultimately was chosen
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as the one that gave the “smoothest” approximation to

ovViu
)\4 = a—n’5’4. (460)

This is shown in Fig. 4.3 which shows that for M = 39 and N = 45 the approximation to
the Lagrange multipler function on Sy is free of oscillations (The oscillations observed are
due to the ill-conditioning of the stiffness matrix.). Using this pair of values, the constant «

in (4.42) is calculated by “balancing” the error estimate of Theorem 2, i.e.

N2OéN ~ hk-l—l .

We find that o ~ 0.87, from which subsequent “optimal” pairs of N and M may be found.

1

-4+

-5}

Figure 4.3: Approximation of Lagrange multipler function along Sj.

Figures 4.4 and 4.5 show the (percentage relative) error in the approximation of the first five
coefficients o, 85,7 = 1, ..., 5, in a semi-logarithmic scale, as N is increased. The exponential
convergence is clearly visible, since the curves are (essentially) straight lines, even for small
values of V.

We should mention that for a; there is an exact answer while for the rest we used a reference

value for the computations.
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Figure 4.5: Error in coefficient BJN .

4.6 Conclusions

In this chapter we analyzed the SFBIM for a two-dimensional biharmonic problem with one
boundary singularity, as a model for the Newtonian stick-slip flow problem. We analyzed the
convergence of the method and proved that the coefficients in the local asymptotic expansion,

also referred to as stress intensity factors, are approximated at an exponential rate as the
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number of the employed expansion terms is increased. Our theoretical results were illustrated

through a numerical experiment.
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Chapter 5

Extensions to Three-Dimensions

5.1 Introduction

Sapplications both edge and vertex singularities are of interest (see Kondratiev, 1967, Stephan
and Whiteman, 1988, and

The objective of this chapter is to extend the SFBIM to three-dimensional Laplacian problems
with a boundary straight-edge singularity and calculate directly the Edge Flux Intensity
Functions (EFIFs). These are approximated locally by low-degree polynomials the coefficients
of which are primary unknowns of the method. To our knowledge, the only methods found
in the literature for the calculation of the EFIFs are based on post-processing the numerical
solution and/or using extraction formulae (see Omer et al., 2004. Yosibash et al., 2002.
Yosibash et al., 2004 and Yosibash et al., 2007)

The rest of the chapter is organized as follows: in Section 5.2 we present a three-dimensional
Laplacian problem with an edge singularity and its asymptotic local solution expansion. In
Section 5.3 the three-dimensional version of the SFBIM is formulated. Numerical results are

given in Section 5.4. Finally, our conclusions are summarized in Section 5.5.
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5.2 A Three-Dimensional Problem With a Straight

Edge Singularity

We consider a Laplacian problem in the three-dimensional domain Q = [0, 1] x [0, ax] x [—1, 1],

as shown in Fig. 5.1: Find u such that

Vi =0in Q, (5.1)
u=0on S
% =0 on Sy

u=g(r,f,z) on Ss

% =q (r,0) on Sy
ou __
52 =q2(r,0) on Ss

5
where 9 = |J S;. S1 and Ss are quadrilateral surfaces intersecting at a straight edge AB,
i=1

S3 is a cylindrical surface of unit radius, and S4 and S5 are unit-circular sectors of angle a.

S5

Figure 5.1: A model three-dimensional domain ©Q = [0,1] x [0, an| x [—1,1] with a

straight edge AB.

To demonstrate the analogy with the two-dimensional case, we consider the Laplace equation
over a circular sector, as shown in Fig. 5.2. A boundary singularity arises at the origin O,

which is due not only to the presence of a corner in the boundary but also to the fact that
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Figure 5.2: A 2-D Laplacian problem with a boundary singularity at point O.

the boundary conditions along boundaries S; and Sy are different: u = 0 along § = 0 and
Ou/06 = 0 along § = am, where 0 < a < 2. The local solution in polar coordinates (r,6),

centered at the singular point O, is of the general form

ugp (r,0) = Z a;rH f; (), (5.3)
j=1

where 1; and f; are, respectively, the eigenvalues and eigenfunctions of the problem with
Mj+1 >y, and o are the constant singular coefficients which are unknown. The eigensolu-
tion (uj, fj) is uniquely determined by the geometry and the boundary conditions along the
boundary parts S and Sy sharing the singular point. The unknown singular coefficients o;
are determined by the boundary conditions in the remaining parts of the boundary. These
coefficients are called (generalized) stress intensity factors (Szab6 and Yosibash, 1996) and, in
many applications, are the main unknowns. In the case of the boundary conditions depicted

in Fig. 5.1, the eigenvalues p; and eigenfunctions f;(6) are given by

2 —1
=5, (5.4)

and
fi(0) = sin (u;0) . (5.5)

As pointed out by Yosibash et al. (2002), once the eigen-pairs for the 2-D Laplacian problem
are obtained, one may construct the full series expansion solution for the 3-D Laplacian
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operator in the vicinity of straight edges. In the case of the Laplace equation, the solution

can be decomposed as follows:

J L
u=>"3"ajz)r (nr)’ f(0) + v(r,0,2), (5.6)

j=1¢=1
where p; are identical to the eigenvalues of the 2-D problem and are now called edge eigenval-
ues, ajy are the flux intensity functions (EFIFs) which are analytic in z up to the vertices, fj
are the edge eigenfunctions which are analytic in @, and v is a sufficiently smooth function.
L > 0 is an integer which is zero except when p; is an integer. In the present work it is

assumed that p;,7 < J are not integers. Therefore, (5.6) is reduced to

u= Za] )t f5(0) +v(r, 6, 2). (5.7)

As demonstrated in Yosibash et al. (2002), a choice for the function v so that u satisfies

identically the 3-D Laplace equation is

_ L d¥ 72 (—1/4)"
v(r,0,z) = ri fj(e)zﬁ (aj(2)) .(—/). (5.8)
=1 [Ln Gy + )
Thus, the solution takes the form :

J 2 i
rt(—1/4

S H n(pj+n)
n=1

In Appendix B we show that for any «;(z) € C°°(AB), the above function u satisfies the three-
dimensional Laplace equation and the boundary conditions on S7 and S;. The calculation
of the EFIFs «;(2),j = 1,2,...,J is the main objective of the present chapter. It should be
noted that Eqs. (5.7)—(5.9) hold only for the special case of the Laplace equation and not for
the general elliptic equation considered by Yosibash et al. (2002). More details are provided

in Appendix C.
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5.3 Formulation of the SFBIM

The basic assumption for the development of the SFBIM for 3-D Laplacian problems with
edge singularities is the use of piecewise polynomial approximations for the EFIFs by parti-

tioning the interval [—1,1] into M subintervals and writing

My
Oé;'w(z) = Zajkqbk(z) ) J = 1727"'7N7 (510)
k=1

where o, are unknown coefficients, ¢y (z) are (piecewise polynomial) basis functions, and
M is the number of basis functions (e.g. My = M for constant, My = M + 1 for linear basis

functions, etc.). Thus, the solution (5.9) can be approximated as follows:

N
un =Y (2)r £5(0), (5.11)
j=1
or
N M,
uy = Z ajka(r, 0,z), (5.12)
j=1k=1
where
WEr,0,2) = f;(0)¢r(2) , § =1,2,...N, k=1,2, ..., My. (5.13)

It is important to note that the functions Wf satisfy identically the governing equation
and the boundary conditions on boundaries S; and Sy sharing the edge AB. In order to
calculate the N, = NMyg unknown coefficients o, we discretize the problem by weighting
the governing equation over {2 by means of the functions Wf. Applying Green’s theorem

twice one gets:

oWk
// <8“wa _ uN) dS=0,j=1,2.,N, k=12, ..M, (5.14)

on on

S3US41US5

The Neumann conditions on boundaries Sy and S5 are weakly imposed by simply substituting
the functions ¢; and g9, respectively. The Dirichlet boundary condition on S3 is imposed by

means of a Lagrange multiplier function A(f, z) which replaces the normal derivative of the
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solution. In this work, A is approximated by means of locally polynomial (depending on the
choice for ¢y) basis functions W;:

A0, 2) = T

N
=> ANT4(0, 2), (5.15)
i=1
where A\;,7 = 1,2,..., N) are the unknown discrete Lagrange multipliers. To define the ba-
sis functions W¥;, the two-dimensional domain [0, o] x [—1,1] is partitioned into Ny x My
elements, which means that Ny = MyNy or My(Ng + 1) for, respectively, constant or bilin-
ear Lagrange multipliers. The additional required equations are obtained by weighting the
Dirichlet condition u = ¢(f, z) on S3 by means of the basis functions ¥;. The following linear

system of N, + N, discretized equations is obtained:

// <>\Wk )ds+//
//qﬂ/Vde - //qlede, for j=1,2,..,N, k=1,2,...,M,,
54 S4

//uN\I/idS - //g\IfidS, i=1,2,...,Ny. (5.17)
53 SS

Equations (5.16) and (5.17) involve two-dimensional integrals, while our problem is three-

(5.16)

and

dimensional, as mentioned before, the dimensional reduction is one of the main advantages
of the SFBIM. It should also be noted that the contributions over boundary parts S4 and
S5 in the RHS of Eq. (5.16) are identically zero if the basis functions ¢y are constant. The
system of Egs. (5.16) and (5.17) can be written in block form as follows:

K L A B

= , (5.18)
T o || A C

where A is the vector of the unknown coefficients a;j, of the EFIFs and A is the vector of
the unknown discrete Lagrange coefficients. It is easily observed that the stiffness matrix is
symmetric and becomes singular if N, < N or, equivalently, when N < Ny for constant ¢y
and N < Ny + 1 for linear ¢p. In order to assure that the stiffness matrix is non-singular, in

all the numerical results of this work we have chosen Ny = min{M, N — 2,20}.
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5.4 Numerical Results

Following Yosibash et al. (2002), we construct test problems having analytical solutions of

the form:

Q43

Hit2 o ; 1
T 1)7" sin (p;0) |, (5.19)

ug(r, 0, z) = Z [(Ozﬂ + a2 + ai3z2) i sin (p;6) —
i=1

where «;j,% = 1,...,J,j = 1,2,3 are specified as desired. Any solution of the form (5.19)
satisfies the 3D Laplace equation as well as the boundary conditions along S; and S3. Once

the solution u is specified, it is straightforward to find the functions g, ¢; and ¢ that appear

in Eq. (5.2):
4 ;3 2 .
9(0,2) =us(1,60,2) = Z [0421 — m + ajoz + a;327 | sin () , (5.20)
i=1 Hi

ou J
q(r,0) = a—;(r, 9,—1) = ; (aig — 2a3) i sin (u0) (5.21)

ou J
qa(r,0) = 8—;(7‘,9, 1) = Z (@iz + 2a;3) T sin (p;0) . (5.22)

In what follows we investigate the implementation of the above method for o = 3w /4. The

eigenvalues and eigenfunctions in this case are

py= 2221 (5.23)

and
. . 225 —1)
fj(0) = sin (p;6) = sin TG . (5.24)
We will consider two test problems: In Test Problem 1 we take J = 100 with

1 2 3
Q1 = Z,—4,Oé7;2 = m,aig = 1_4 , 1= 1,...,J. (525)

In Test Problem 2, J = 3 with 11 = a12 = a13 = 1,91 = ag = 0.5,a93 = 1, and
a3y = age = ass = 0.2. The entries of K, L, C' and B of the system (5.18) for both test

problems can be found in Appendix D.
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Due to the form of the essential boundary condition (5.2), the SFBIM calculates directly the

EFIFs, which are given by

;3

2
_ ; Y a 5.26
2+ D) + @ioz + ayzz (5.26)

OZZ'(Z) = Q41 —
For both test problems we will be interested in the relative errors

ez _O‘yHm(AB)

€ = )

il 2 (am)

where,
1/2
1) 2 am) = [/ £ } | (5.27)

Let us first discuss the results of the SFBIM obtained for Test Problem 1 using constant basis
functions ¢y, in the axial direction. In Fig. 5.3, we plot the approximations of the first EFIF,
a1, obtained with three different numbers of elements in the axial direction (M =5, 10 and
100) and N = 20, along with the analytical solution. Despite the inherent limitations of the
constant basis functions, the approximation is improved considerably as M is increased. The
results for the other EFIFs are quite similar. Figure 5.4 illustrates this effect in the case of
as.

Next, in Fig. 5.5, we plot the calculated relative errors in the leading EFIFs (i.e., €1, €
and e5) versus M. The slope of the lines is approximately —1, as expected since we are (i)
using 0*" degree polynomials for the approximation and (ii) the L%norm is used as an error
measure. We can then conclude that in the, e.g., H'-norm, the method converges linearly
with the number of elements, M, in the axial direction.

Figures 5.6 and 5.7 show the convergence of oy and as, respectively, with N when the number
of elements in the axial direction is fixed at 20. Increasing N from 10 to 25 does not seem
to lead to any observable improvement; the accuracy appears to be restricted by the value
of M, which is rather low as already illustrated in Figs. 5.3 and 5.4. The errors in ag, as

and ap are plotted in Fig. 5.8 versus the number N of the expansion terms. For higher
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78



001 T T T
0.008} s
0.006f —
[Te) /
o} L
0.004} 1
0.002F "~ 1
-1 -0.5 0 0.5 1
z
M=10
001 T T T
0.008} 1
0.006} :
< —
~ /’
o e
0.004} — .
0.002F "~ 1
-1 -0.5 0 0.5 1
z
M=100
001 T T T
0.008} -
0.006f i :
/I\T .{'r
S
o Ee
0.004} e E
P
\__\ _J!‘J
0.002f S - i
-\__‘\’____,f'
-1 -0.5 0 0.5 1
z

Figure 5.4: Convergence of as(z) with M using constant basis functions. N = 20.

79



A o 81
€
A )
A A €
5
10} ;
4 o
=]
o
W™ e g
10
-2
10
10°

Figure 5.5: The errors 1, €5 and &5 for constant basis functions and N = 20 versus M.

values of IV, the errors appear to level off very soon. This is simply due to the fact that the
optimal approximation for the given value of M has essentially been achieved. This effect is
illustrated in Fig. 5.9, where the errors in oy for various values of M are plotted.

We now turn our attention to the case when linear basis functions are used for the approx-
imation of the EFIFs. As expected, using linear basis functions ¢ leads to more accurate
estimated for the EFIFs and faster convergence of the SFBIM. In Figs. 5.10 and 5.11, the
approximations of a; and as for different values of M and N = 20 compare nicely with the
analytical solutions for Test Problem 1. The convergence of the method is illustrated in Fig.
5.12, where the errors in the leading coefficients calculated with N = 40 are plotted versus
M. The (expected) quadratic convergence is illustrated in Fig. 5.16, where we compare the
errors in the first EFIF, aq, obtained with the two sets of basis functions.

Figure 5.12 shows the error in the first, second and fifth EFIF with M. In all cases N = 60.
Here, Ny = M for M < 30 and Ny = 30 for M > 30.

Figures 5.13 and 5.14 are analogous to Figs. 5.6 and 5.7, for linear basis functions. We have

plotted the EFIFs (numerical and analytic) for M = 20 and N = 10, 20 and 25. Note that
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Figure 5.6: Convergence of 1(z) with the number of singular functions N when using

M = 20 constant basis functions in the z-direction.

for N = 10 and N = 20 the stiffness matrix is singular since here Ny = 20. This singularity
is not obvious in «; but it can be observed in ajs. For N = 25 the matrix is not singular and
it can be seen that both EFIFs are very close to the analytic solution.

Figures 5.15 and 5.16 compare the errors obtained with constant and linear basis functions
versus the number of singular functions, N, and the number of z-elements, M, respectively.
In Fig. 5.15 we have chosen M = 20 and Ny = 19. We have plotted the error in a; and as for
constant and linear basis functions against V. Note that for N < 20 the matrix is singular.
Figure 5.16 shows the error in oy for constant and linear basis functions against M. Here

N =70 and Ng = M for M < 20 and Ny = 19 for M > 20. Note that the slope is —1 for
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Figure 5.7: Convergence of a(z) with the number of singular functions N when using

M = 20 constant basis functions in the z-direction.

constant approximations and —2 for linear approximations.
Similar results have been obtained for Test Problem 2. The convergence of the SFBIM with
the number of z-elements M and the number of singular functions N is illustrated in Figs.

5.17 and 5.18 , respectively, where we plot the errors in a; and as.

5.5 Conclusions

We have presented an extension of the SFBIM to three-dimensional Laplacian problems with

a boundary straight-edge singularity. As in the two-dimensional setting, the SFBIM produced
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number of singular functions .

accurate results for the coefficients (which in this case are functions of the third dimension).
We have observed the following: (i) The approximation of the EFIFs is naturally governed
by the choice of basis functions, as expected, hence increasing the number of z-elements
M produces more accurate results (for moderately low values of singular functions N). (ii)

Increasing N while keeping the number of z-element M fixed does not lead to any advantages.
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M=5

Figure 5.10: Convergence of the fifth EFIF, ay(z), with M, using linear functions;

N = 20.
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Figure 5.11: Convergence of as(z), with M, using linear functions; N = 20.
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Figure 5.12: The errors €1, €3 and €5 for N = 60 linear basis functions versus the

number M of the elements in the z-direction.

87



Figure 5.13: Convergence of a;(z) with N using linear basis functions; M = 20.
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Figure 5.14: Convergence of as(z) with N using linear basis functions; M = 20.
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Figure 5.15: The errors €1 and €5 for constant and linear basis functions, plotted against

the number of singular functions N, M = 20.
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Figure 5.16: The errors £; for constant and linear basis functions, plotted against M;

N =T170.
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N=60

Figure 5.17: ; and €3 for linear basis functions, plotted against M; Test Problem 2;

N = 60.
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Figure 5.18: £; and e3 for linear basis functions, plotted against N; Test Problem 2;

M = 20.
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Chapter 6

Summary and Future Work

In this dissertation we have studied the Singular Function Boundary Integral Method (SF-
BIM) and investigated some of its extensions to two- and three-dimensions. To begin with,
in Chapter 2, we reviewed the method for model Laplacian and biharmonic problems in two-
dimensions. We also reviewed the theoretical convergence of the method in the case of a model
two-dimensional Laplace problem. In this case, the approximate solution and the approxi-
mate values of the singular coefficients converge exponentially with the number of singular
functions and the approximate values of the Lagrange multipliers converge algebraically.

Next, in Chapter 3, we have studied systematically the numerical convergence of the method
and made comparisons with the theoretical estimates. We considered two model Laplace
problems over circular sectors with known exact solutions and we used piecewise constant,
linear, quadratic and cubic approximations of the Lagrange multiplier function. The con-
vergence analysis of Xenophontos et al. (2006) does not apply for constant approximations
of the Lagrange multiplier function. For this case, that is not covered by the theory, we
observed that the convergence was algebraic of order 3 for the singular coefficients, of order
2 for the approximate solution and of order 3/4 for the Lagrange multipliers. The results for

the rest of the cases were in accordance with the theory. The approximate solution and the
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approximations of the singular coefficients converged exponentially, whilst the convergence
of the approximate Lagrange multipliers was algebraic of order equal to the degree of the
approximations used.

The theoretical analysis of the SFBIM was then extended to the case of biharmonic problems,
in Chapter 4. The convergence of the method was studied for a two-dimensional biharmonic
problem, as a model for the well-known Newtonian stick-slip problem from fluid mechanics.
It was proven that the coefficients in the local asymptotic expansion are approximated at an
exponential rate as the number of the employed expansion terms is increased. The theoretical
results were then illustrated through a numerical experiment.

Finally, in Chapter 5, the method was extended to three-dimensional Laplace problems with
a straight-edge singularity. The asymptotic solution of one such problem was presented and
the SFBIM was formulated. The edge flux intensity functions (EFIFs) were approximated
locally by low-degree polynomials the coefficients of which were the primary unknowns of
the method and were calculated directly. The SFBIM produced accurate results for the
coefficients and it was noted that increasing the number of polynomials used produced more
accurate results even with just a few singular functions but increasing the number of singular
functions while keeping the number of polynomials constant did not lead to any noticeable
advantages.

Directions for future work are proposed below:

e The preliminary results suggest that the method can successfully be extended to other
three-dimensional elliptic problems. The method should be tested on other problems
with edge singularities and with various combinations of boundary conditions in the
immediate future. For instance, it would be interesting to solve a Laplacian problem
with a boundary straight-edge singularity in the case when more Dirichlet conditions
apply and therefore more sets of Lagrange multipliers need to be employed. Also,
additional numerical evidence should be obtained, especially to see how the various
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parameters in the method affect its accuracy and convergence.

The next step would be the convergence analysis for a model three-dimensional Laplace
problem with a boundary straight-edge singularity. A preliminary analysis to the prob-

lem of Chapter 5 is provided in Appendix E.

Another direction is the extension of the method to three-dimensional problems with
conical vertex singularities and the convergence analysis. Such problems have been
recently considered by Zaltzman and Yosibash (2009), who derived explicit analytical

expressions for the eigen-pairs.

The method may also be extended for the solution of general corner flows in the Stokes
limit. Such flows are governed by the biharmonic equation in terms of the streamfunc-
tion and are of interest in fluid dynamics. Such flow problems in a stationary wedge
of angle 2a have been recently considered by Hills (2001 b), who used a collocation
technique utilizing a basis of eddy functions. It is well known that there exists a critical
half-angle (cri¢) such that for o < g the problem possess complex local solutions
(Moffat, 1964). Therefore, the study of this problem for o < a4 will be the extension
of the SFBIM to the complex direction. A preliminary formulation for this problem

can be found in Appendix F.

94



Appendix A

In this appendix, the elements of the matrix K and the vector F' defined in (3.17) and
(3.18) are provided for constant, linear, quadratic and cubic approximations of the Lagrange

multiplier function A defined in (4.35). We note that N is the number of elements:

N)n p= 0
N = (A1)
B p>1

Constant basis functions

For constant basis functions we have for i = 1,2,..., N,, 7 =1,2,..., Ny,

4RAHL (20— 1)(2 - D)7 . (20 — )7

K = A2
AN O R AN TN (4.2)
and for ¢ = 1,2, ..., Ny,
Ra?r? 32 —3i+1
FF=——FF2i—1— ———|. A.
1T Nz |7 3N (A4.3)
Linear basis functions
For linear basis functions we have, for i = 1,2, ..., N, ,
2 RHit! 2N (2i — D)
Kii=—1|1- i A4
N Gy Qi—1r " 2N |’ (A-4)
SaNRHFL —(2i—1)r (2 —1)(2N — )7
KN, = i A.
BT ez M TN AN ’ (A.5)
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and for 1 =1,2,..., Ny, j =2,..., Ny — 1,

16N RHit1 (2i—V)mr . 2i—1)(G—Dr
Kij = in” i :
i1z ot TN " ON

Similarly,

2.2 1
o M(l )

6N2 \ 4N
Ra?r? 9
Fn, = 24N3 (6N o 1) )

and for j =2,..., Ny — 1,

R(12N(1 — i) + 6i* — 12i 4 7)
t 12N3

Quadratic basis functions
For quadratic basis functions we have for i = 1,2, ..., Ny,

R,ui+1 )
K= W {2 cos (2hp;) + hp; sin (2hp;) — 2 + 2h2,ui2} ,

RuH—l

Kion+1 = T [—3hu; sin(2hN ;) + (21?1 — 2) cos(2hN ;) +

+2cos(2h(N — 1)u;) — hpisin(2h(N — 1) ;)] ,

———— [cos(2hk ;) + hu; sin(2hkp;) — cos(2h(k — 1))+

+hpisin(2h(k — 1)wi)], k=1,...,N,

Rui+1

Kiopy1 = T [—6hu; sin(2hku;) — 2 cos(2h(k + 1))+

+2cos(2h(k — 1)p;) — hpisin(2h(k + 1)pi) — hps), k=1,..., N — 1,

Similarly,
B Ra27?
1T 120N3”
Py = RoPr [10k(k — 1) + 10N (1 — 2k) + 3], k =2,3,..., N,
303
Fopp1 = RoPm [10k* —20kN — 1], k=1,2,..,N — 1,
60N3
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Ra27?

To0N3 [1ON? +1].

Foni =

Cubic basis functions

For cubic basis functions we have for ¢ = 1,2, ..., Ny,

Rui+1
Kig=— S [(,u?h2 — 3)sin(3hu;) + 3pih cos(3hp;) + 6hu; — 3h3u§’] ,
R,ui+1 9 9y .
Kiskt2 = ol [—8hp; cos(3h(k 4 1)) + (6 — 3h° ) sin(3h(k + 1) ;) —

—10hp; cos(3hkp;) + (6R°pf — 6) sin(3hky;)], k=0,1,..,N —1,

wi+1
Kt = e [—10hpu; cos(3h(k + 1)p;) + (6 — 6h%p?) sin(3h(k + 1)p;)—

—8hy; cos(3hkpu;) + (3h2u? — 6) sin(3hkp;)], k=0,1,..,N —1,

R,ui+1

g8 L1745 = 6) sin(Bhk + D)+

K;3p1a =
+(3 — h2u?) sin(3hkp;) — 3hp; cos(3hkp;) — 3hy; cos(3h(k + 2) ;) +

+(3 — h?ud)sin(3h(k + 2)p;)] . k=0,1,...N —2,

wi+1
Kisny1 = e [(12hp; — 6h3u?) cos(3hN ;) + (11h2u? — 6) sin(3hN p;)+
+6hy1; cos(3h(N — 1)) + (6 — 2R ) sin(3h(N — 1)u;)] -
Similarly,
Ra?r?
F,=——(4N -1
1= Sa0n5 )
F. —w(wm—%%m—%) k=0,1,..,N —1
3k+2 — SON3 ’ — Yy ’
F. —W(SN—SIC—?H—lOkN—%z) k=0,1,..,N -1
3k+3 — SON3 ) — Yl ’
Ra?r?

Fyppq = W(%N — 30k 4+ 30kN — 15k? — 16), k=0,1,..., N — 2,

Ra27?

W(15N2 —1).

F3np =
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Appendix B

In this appendix we show that the functions Wf given by (5.9), satisfy the three-dimensional
Laplace equation and the boundary conditions on S; and S, described by (5.1)-(5.2) in

Chapter 5. In particular, we set

N 52 P2 (_ i
Sy (1,0, 2) = 1 £1(60) | an(2) + Z% (an(e)) — 1| (B.1)
=Y I;Ilj (Nn +])

and show that the residual of V2Sy (7,6, z) tends to 0, as N tends to co. We have

0?Sy 108y 1 0%Sy
2 N 2PN S PPN
VS (r.0,2) = Or? r Or r2 062

N 2i _ i
= ) £ (O (Db 20) 20 22,0 D () T

=1 17 (n + )

N 2i _ i
2 (O)n(2) D+ 2022, (0) D () L

= [1J (ttn + )

0% ~1/4)’
o (o (2)) M

N
2L O)an(2) + Y r 2L 6)
i=1

J

N+1 . 2% . i—1
B+ D, (0) D (7)) (B.2)
=2 I;Ilj (Nn + ])

There holds f”(0) = —u2 f.(6), hence the coefficient of r#7=2f,(0)a,(2) in (B.2) is

KA
1j (pn + J)

pin (. = 1) + pn — i, = 0. (B.3)
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Similarly, the coefficient of r#» f,,(6)alr(z) in (B.2) is

[(ptn + 2) (ptn + 1) + (1t +2) — 1]

2%

and finally, the coefficient of r”"+2i_2fn(0)% (an(2)) for i =2,3,...,N in (B.2) is

a1
7 i—1
H](Nn+]) H](/‘n‘F])

J=1 J=1

= [(ptn +20) (i + 20 — 1) + (st + 20) — 2 — i +7)] %

[17 (n +J)

J=1

[(pn + 28)(n + 26 = 1) + (p + 20) — 1]

_Cwy

[T (n + )

Jj=1

— [(pn + 20)% — 2 — 4i(pn + 1))

Therefore, the residual is

2N+2 N
i b2N fn(e)% (an()) 2L (B.4)

and we have

92N +2 (_1/4)]\/

]\;i—1>noo 74Ln+2Nan(9)W (an(2)) 73— <

2N +2
2N

<C(n) lim |r N2

- N—oco

< =0, (B.5)

< [t fa(O)] Jim (2

gavee (n(2))

since a,, € C* and with C'(n) some bounded function of n. This establishes that W, =
lim,, o S, satisfies Laplaces equation in three-dimensions. To show that the boundary con-

ditions are also satisfied, we note that f,,(#) (as an eigenfunction of the 2D problem) satisfies

fn(0) = f(am) = 0. (B.6)
Therefore,

— oW,

Wn|5‘1 — WLS‘Q — 0 (B?)
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Appendix C

Consider solving the BVP
L(u)=0in Q C R?

u = g on Of)

where ¢ is a given function and the differential operator L is given by

3 3
L=3> #ijoid;
i=1 j=1

9

with Kij = Kji € R and 0y = 9l

¢ =1,2,3. For example, if

K11 = Koo = K33 = 1
K12 = K13 = Koz = 0

then

We split the operator as
L= Mo(al, (92) + Ml(al,ag)ag + M28§

where

My: second order differential operator in z1, z2
My first order differential operator in z1, z2
Ms: constant.

Then the solution u has the expansion
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u > O A(w3) P (1, 72)

Jj=0
where A(x3) is the EFIF. The functions ®; satisfy
My®y =0
My®, = —M; P
My®; = —MP;_1 — Ma®;_»
We are interested in operators for which
My = (1107 4 2K12010 + K220505
M; =0
My =1

Suppose the domain §2 has an angle a and set

\/ K11K22 — /{%2 sin «v
w = arctan

K99 COS v — K12 Sin &

pi="i i=1,2,...
w

Solving My®y = 0 we find

2
R11KR22 — K12

Once ®g is known we proceed with finding ®; by solving
My®; =0
and once this is achieved we continue with ®5 which satisfies
Mo®S) = — My

etc.
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K99 cosf — K19 sin 6

(C.7)
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Appendix D

In this appendix we provide the elements of the matrices K and L and of the vectors B and
C defined in (5.16), (5.17) and (5.18), for constant and linear approximations of the Lagrange

multiplier function A and the EFIFs «;(z) defined by (5.15) and (5.10) respectively.

Locally constant approximations of o;(z) and A
Let h be the mesh width in z and 2, = -1+ (k—1)h for k =1,2,..., M + 1.

We use:

1if zp < 2 < zp11
gbk(z) = (D.l)

0 otherwise,
fork=1,2,... M
The Lagrange multiplier function A is also approximated by constant basis functions. The
2D domain [0, an] x [—1,1] is subdivided into N) = Ny x M elements. Let hyp be the mesh
width in 6 and 6, = (¢ —1)hg for £ = 1,2,..., Ng+ 1. Therefore the basis functions are given
by:
1if zp <z< 2k and Oy < 0 < 6pyq

\Ij(k—l)N9+€(97 z) = (D.2)
0 otherwise

where, (kK — 1)Ng + £ is the element number and is calculated with & = 1,2,..., M and

¢=1,2,..., Nyg. The sub-matrices K, L and the vectors B, C' in (5.18) are given by:

— i i =
K ;= (D.3)

)

0 otherwise,
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where 7,5 =1,2,... ,NM.

h
Lm—1) M4k, (k-1)Ng+¢ = o [cos (mbe+1) — €08 (pmby)] (D.4)

m

form=1,2,...,N,k=1,2,...,Mand £ =1,2,...,Ng (L; j = 0 otherwise).

J 2 37 2k+1 0041
o1 Qo2 Q32 cos ;6
Clh—1)Not+t = — [(ail— >z+ + ] [ ] (D.5)
(k—1)Ng+ ZZ:; 2(,[1,2 +1) 2 3 2 g 0,

for k =1,2,...,M and ¢ = 1,2,..., Ny, J = 3 for Test Problem 2 and J = 100 for Test

Problem 1 as shown in (5.25).

ajo—2a3)am . .
%,j <min{N,J}, k=1

Bii—nym+r(0,2) = —%%))M,j <min{N,J}, k=M (D.6)

0 otherwise,

where, 7 =1,2,...,N.

Locally linear approximations of oj(z) and A

Let h be the mesh width in z and 2z = -1+ (k — 1)h for Kk =1,2,..., M + 1. This time:

% (z — zgp—1) if 2z < 2 < 2z

Pr(z) = —% (z — zg) if 2k < 2 < 211 (D.7)

0 otherwise,

for k=2,3,..., M,
§

—%(z—@) if 21 <2< 29

0 otherwise,
and

%(z—zM) if zpr < 2 < zZpaa
Prr41(2) = (D.9)

0 otherwise,

\

The Lagrange multiplier function A is now approximated by bilinear basis functions. The 2D

domain [0, ar] x [—1,1] is again subdivided into Ny = Ny x M elements. Let hy be the mesh
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width in § and 0p = (£ — 1)hg for £ =1,2,..., Ny + 1. The basis functions are given by:

7

W k—1)(Npr1)+0(0, 2) =

Wifzk4<z§zkand9@_l<9§93

—2p_1)(6—0 .
—W if 2z 1 <z<zpand Oy <0 <0

—% if 2y <2<z and Op_1 <0 <0y

%}S_emifzk<z§zk+land93<9§95+l

0 otherwise

\

for k=2,3,...,M and £ =2,3,..., Ny.

)
_(Z_Z’“}L%Wifzk_1<zgzkand91<0§92

Mifzk<z§zk+land91<9§92

U1y (Np+1)41(0,2) = )

for k=2,3,..., M.

0 otherwise

—21—1)(0—0 .
Gmze-1)(0=0) if 2,1 <z <z, and Oy, <0 < On,+1

Fhg

— 0—6 .
(2 (6=6n,) if 2, < 2 < 241 and Oy, <0 < On,41

Vpng+1)(0,2) = — e

for k=2,3,..., M.

\I’g(e, Z) =

for £ =2,3,..., Ny.

War(vg+1)+e(0,2) =

for £ =2,3,..., Ny.

0 otherwise

—%ifa<z§z2and@_l<ﬁgﬁg

%ifﬁ<z§z2andﬁg<9§0ﬂl

0 otherwise

%isz<z§zM+landﬁg_l<0§94

_ 6—6 .
— o) 00e) f 2y < 2 < zpggr and O < 0 < Opy

0 otherwise
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%}g_ez)if 21 <z<z9and #; <6 <0,

\111(9, Z) =

0 otherwise

(2=22)(0—0n,) .
_TG if 21 <z<zandln, <0 <0n,41

\IlNe-i-l(e? Z) =
0 otherwise

_ emzm)(0-02)

Bl ifZM<Z§ZM+1 and 67 < 0 <6,

Vs (Ng+1)11(0 2) =
0 otherwise

(z—2m)(0—6n,)
hh

5 if v <z < 2y and HNQ <9§9N9+1

Vn41)(Np+1) (0, 2) =
0 otherwise

The sub-matrices K, L and the vectors B, C' in (5.18) are given by:

am 1 wih )
K nym+1)+1,G-D)(M+1)+1 = 5 <W + %) , J=12,...,N.

pj +1)
fo%s 1 wih .
Kj+1),5(m+1) = o (m - %) , J=12,...,N.
am 1 wih ‘
KG—nyM+1)+2,G-1)(M+1)+1 = > <W - %) , J=12,...,N.
am 1 pih ,
K nwy+mjve) = o (m - T) , j=12,...,N.
art h

K(j—1)(M+1)+k,(j—1)(M+1)+k—l = _MJ7€7 J = 17 27 s 7N7 k= 3747 cee 7M +1

am2h |
K(j—1)(M+1)+k,(j—1)(M+1)+k = _M]7?7 J=L4L2...,N, k=24,....M

ar h

K(j—l)(M+1)+k,(j—1)(M+1)+k+1 = _MJ767 J=L4L2...,N, k=24,... . M -1

Any entries of K not described by (D.19)-(D.25), are zero.

ajo—2a3)am . .
%,] <min{N,J}, k=1

Bi-iymx(0,2) = —%%))M,jgmin{N,J},k:M—i-l

0 otherwise,

where, j =1,2,...,N.

105

(D.15)

(D.16)
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Let 8, = a1 — 58— fori =1,2,...,J

2(pi+1)
J z
1 22 23 A
Cle—1)(Npgt 1) 10 = t757— Z —Bizk—12 + (Bi — qipzk—1) 5 + (cuig — quzz—1) o + quz—
hhg &= 2 3 i,
[(05_1 — 0) cos ;0 N sin ,u,-@} 0
i T P
1< 22 23 P
T ; |:_/8izk—12 + (B — ai22k—1)5 + (i — az’?ﬂk—l)g + ai?’z} . 4
[(954_1 — 60) cos ;6 N sin uiﬂ] Oet
i ,UZZ 8,
1 J 22 53 LA %1
T ; [_/Bizk-i-lz + (B — az’22k+1)§ + (g — ai32k+1)§ + ai32:| . :
' [(94_1 — ) cos ;60 N sin ,12%9} e h
Hi Hi lo,_,
1 < 22 23 el A
+-—= —Bizk12 + (B — qiozii1) = + (2 — 03241) o + @iz —
hhg = 2 3 4 o
Orp1 — 0 0 sing0]7+
. [( 041 ?COSM N smgz } }, (D.27)
Hi My Jg,
for{=2,3,...,Ngand k=2,3,..., M.
J 2 3 47 %k
1 Z z z
Cle—1)(Np+1)+1 = T Z; { [—5i2k—12 + (Bi — aiZZk—l)? + (cuz2 — az’?ﬂk—l)? + %'32] »
1= _
. [(92 —0) cos ;0 N sin /;ZH]OQ N
Hi Ki 1g,
1< 22 23 AR
+h—h@ ; [_/Bizk-i-lz + (B — az’22k+1)7 + (g — ai32k+1)§ + i3 Z} .
0y — 0 0 sinp0]%
. [( 2= 0)cos b, =4 } : (D.28)
g 5 0,
for k=2,3,..., M.
J 2L
1 22 23 2477k
C -y Bz oz ) ez 1) N
K(No+1) = T35 ; { [ Bize—1z + (Bi — aizzn—1) 5 + (@2 — aizzp-1) 3 + iz .
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[(91\79 — 0) cos p;0 sinmer’\’eﬂ}
. 1 S B
g 13

o,
1 J Z2 23 Z4 Zk41
) [—ﬂizmz (8~ o) 5 + (@ - a5+ aigﬂ ’
. (On, — 0) cos ;b N sin ;0 ONg+1 | 029)
, 2
i Mi 9N0
for k =2,3,..., M.
4 z
1 2;2 23 24 2
Cr= g ; { [—52'7322 + (B — OéiQZg)E + (a0 — ai3Z2)§ + Oéi?;z} \ )
) [(94—1 - 9? cos ;0 n sin ;2%9} O } )
12 1 6o
4 z
1 22 23 24 2
" 2 { B (i own) G (o) o]
0 - 9 19 i 19 Oet1
' [( = u-) — 4 SHZ; } } ; (D.30)
i ; 0,

for £ =2,3,..., Np.

1 3 22 23 SATEMH
CM(N@-H)Z = +h—hg Z |:_ﬁiZMZ + (B — aizZM)E + (g — 042'3ZM)§ + aigZ} y .

[(94—1 — 0) cos ;0 N sin ,uie} L } B

. 2
1243 12 01
1 4 22 23 LA AM
g ; [—5iZMZ + (B — 042‘2ZM)E + (o2 — Oéi3ZM)§ + Oéi3z:| o :
Or41 — i in 11;0]%+
[( 41 9)cosu9+sm,t2¢9} }7 (D.31)
Hi i 0,
for £ =2,3,..., Ny
J 22
1 22 23 24
Cr = o ; { [—ﬂﬂ%’ + (B — 042‘222)5 + (auo — ai322)§ + ai3z:| . :
0y — 0 0 sinp0]%
: [( 2= b)cospifl  sinp } } (D.32)
g H; 0,
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1 J 22 23 24 =2
CNo+t1 = —75— —PBizoz + (Bi — qioza) = + (2 — ayzzo) — +aiz—| -
g 2= 2 58T

[[(On, — 6) cos pif) N sin p;0 Vo1 ' (D.33)
: 2
i Hi Ong
; 22
) 22 23 z*
Cu(Npt1)+1 = " hhy Z { [_@ZMZ + (Bi — O‘QZM)E (e = ai3ZM)§ A iy
i=1 h
.[( o — 6) cos + 2L } } (D.34)
i M 01
; 22
) 22 23 z*
Carnme+) = 77 D { [_@‘ZM” (B~ awz) g+ (i —amam) g Faag |
i=1 h
. (On, — 0) cos ;b n sin 1;6 Ong 1 ‘ (D.35)
: 2
MZ /1/74 GNG

We kept L last because it is the most difficult matrix to describe. In practice, the mesh is
scanned element by element and at each element eight integrations are performed.The results
are added to the appropriate entries of L that starts as a zero matrix. For instance in the

random element [0y, 0p11] X [z, zx+1] We calculate the integrations:

1 sin 1,0 Oeta 23 1
Ig=———5—1{—h 0 J [ 24 22 D.36
la Mjh2h9 { 0 COS [0y + [ ; Ll } [3 24127+ 2% . ) ( )
1 sin ;0741 23 22 het
Iy = ——=-— 4 —hg cos u;0, + [ J } . {— — (21 + 2h1) = + 2pt1202 , (D.37
,ujh2h9 { J ,uj 0, 3 ( +1) 9 +1 ” ( )
1 sin 1,0 Oet 23 e+l
Iy, = —=— < —hgcos piber1 + [ J } . [— — 2p412° + 2R 02 ; D.38
a ,ujhzhe { HiYe41 15 0 3 +1 k+1 . ( )
1 sin ;60774 23 22 s
Iop = ————=— < —hgcos ;b 1+[ J } -[—— 2k + Zk+1)—= + Zk+12KkZ ,
,Ufjhth { Vet ; 0, 3 ( + ) 2 + ”
(D.39)
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1 sin ;01741 | [23 22 Pt
I3, = e {—he cos p;be + [ ; L g (zk + 2k+1)7 + Zp412k2 ; (D.40)
1 2k
1 sin p;07%+ 23 5 o |FT
Iy = ————— < —hgcos ;0 + [7J ] : [— — 2g27 + 2z ) D.41
Njh2h€ { ! J 0, 3 g 2k ( )
1 sin y1;0 Oet 23 22 San
Lyg = ———57—q —he cos p;b; 1+[ : } |y T Bkt Zkt1) 5 Zk12k2 )
,ujhzhe { IV e+ 14 0, 3 ( + ) 2 + "
(D.42)
and
1 sin yu;0 Oet 23 5 5 |7
Iy = +——— < —hgcos ;b +|: J :| -[——zkz + 21z . D.43
4 ,u]‘h2h9 { g Ve+1 i 0 3 k " ( )
Then, Ila is added tOL(j—l)(M-l—l)-l-k,(k—l)(N@+1)+€a ie.:
L1y (a1 4k, (k1) (Ng+ 1)+ = LGG—1)(M+1) 1k, (k1) (Np+1)+¢ + T1a- (D.44)
Similarly,
L1y (M41)+k+1, (k1) (No+ 1) ¢ = LG-1)(M+1)+k+1,(k—1)(Ng+ 1) ¢ + L1065 (D.45)
L 1y (M41)+k,(k=1)(No+ D) 0+1 = LG-1)(M41) 4k, (k—1)(Ng+1) 4041 T 124, (D.46)
LG 1) (M4 1) k41, (k=) (N4 1) 041 = LG 1) (M 1)4k+1,(k—1) (Ng+1) 41 T L2b, (D.47)
L1y (M4 1) 4k k(Ng+ 1) £ = LG —1)(M+1) 4k k(No+1)+¢ T L5305 (D.48)
L1y +k+1,k(Ng+1)+¢ = LG-1)(M41) +h41,k(Ng+1)+¢ T L30, (D.49)
L1y (M+1) 4k k(Ng+1) 4041 = L —1)(M+1) 4k k(Ng+ 1) 4041 T Laa, (D.50)
and
L 1) (M4 1) b1, k(Np+1) 041 = L(G_1)(M1)+k4 1,k (No+ D) e1 + Lap. (D.51)

This is done for every j =1,2,... ., N, k=1,2,..., M and £ =1,2,..., Ny.
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Appendix E

One future direction for the expansion of the SFBIM is the theoretical convergence analysis
for the three-dimensional Laplace problem of Chapter 5. In this appendix the preliminary
steps of such an analysis are carried out. Let us recall the problem, which for convenience

we restate here: Find « such that
Vi =0in Q=[0,1] x [0,an] x [-1,1], (E.1)

with

u=0on Sy

ou __
%—OOHSQ

u=g(0,z) on S3 ) (E.2)

% =q (r,0) on Sy

% =qy(r,0) on Ss

5
where n denotes the outward unit normal pointing outside 9Q = (JS; (see also Fig. 5.1).
i=1

Let us multiply (E.1) by a test function v (to be specified shortly) and integrate over Q:

/é/vv%zo.

By Green’s Theorem, we have

_// Vv.Vu+//v%+//vq1+//vq2:0, (E.3)
Q S 4

S1US3
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where the boundary conditions (E.2) were used. Suppose, now, that v is chosen to satisfy

VZu=0inQ, v=0o0n 9, @

50 0 on Ss. (E.4)

Then (E.3) becomes

—///VU’VU—l-//vg—Z:—//UQ1—//1)Q2- (E.5)
0 s Sy 4

Now, since v = g on S3 we have

oo
S3

so adding this to (E.5), we get (using (E.4))
0 0
Jfwese v [ = [ [Jons [ o
S3 S3 S4 Ss

_ Ou
- On

Letting

ov
, W= 7
S on Ss

equation (E.6) becomes

/4/w.vu_/szuu—/¥mz_/SZMW/S[UW/SZU%

So we arrive at the following wvariational problem to be solved: Find (u,\) € H%E (Q) x

H~'/2(83) such that
B(u,v) + b(u,v; A, 1) = F(o,p) ¥ (v,p) € Hy () x H2(S3) (E8)

where

Buv:///Vv-Vu (E.9)
blu,v; A\, b)) = //u,u //v)\ (E.10)
—//u9+//vq1+//qu- (E.11)

S3 Sa Ss
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The space H# (Q) appearing in (E.8) is defined as
H# Q) ={weH (Q): w|g, =0}, (E.12)

and H~1/2 is the usual dual of the space of trace functions H'/2. The discrete problem
corresponding to (E.8), then, reads: Find (un,Ap) € [Vi¥ x V'] C [H;}7£ x H=1/2(83)| such
that

B(un,v) + b(un, v; An, 1) = F(v,1) ¥ (v,) € V¥ x V3, (E.13)

with B(u,v),b(u,v; \, ) and F(v, ) given by (E.9)-(E.11), and with V{¥, VJ finite dimen-
sional spaces to be selected.

The above problem is equivalent to the formulation used in the SFBIM and presented in
the Chapter 5. To see this we first state the discrete problem (E.13) in mized form: find

(un, A) € ViV x Vi such that

ffva'VuN—ffv)\:ffqlv+ffq2vVv€VlN
@ 53 = 55 (E.14)
éf(UN—g)MZOVUEVzh

Now, from Green’s theorem and the boundary conditions that v satisfies (cf. (5.5)) we have

/é Vo Vuy //a—uN //qu%_//a_uN
K

S3US4US5

and (E.14) becomes

I Giun = fva ffqlvfqu\fvevl

S3US4US5 Ss . (E15)
Jf (un —g)p=0VveVy
S3
It is then easily seen that if uy satisfies (E.15) then it also satisfies (E.14) and in turn (E.8),
and vice versa.
Next, upon selecting the finite dimensional spaces V¥, V', one would like to establish a best
approximation result analogous to (2.20) that will ultimately lead to the rate of convergence

of the method.
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Another issue we wish to address is the choice of singular functions (cf. (5.13)). It turns out

that the function

—, 2i 2i (_1\?
W (r,0,z) =1 f;(0) Za <ﬂf )—7‘ (=3)

~ Z , (E.16)
" Loy +0)

with ﬂf(z) € C™(AB) arbitrary, also satisfies the three-dimensional Laplace equation and
the boundary conditions on 57,55 (as is shown in Appendix B). Hence, any function of the
form (E.16) may be used as a singular function, especially if ﬁf (z) are chosen as polynomials
(so that the inner sum terminates after a finite number of terms). In fact, the singular
functions used in the previous chapter are a special case of (E.16) with ﬁf(z) being (piecewise)
constant /linear polynomials. What remains is the selection of the finite dimensional spaces

VN, V] and the corresponding norms.
1V2
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Appendix F

In this appendix we discuss the application of the SFBIM for solving a Stokes flow problem

within a circular sector assuming that the circular boundary is rotating at a constant speed.

Moffatt eddies

Moffatt (1964) analyzed the two-dimensional Stokes flow in an infinite wedge of angle 2a with
a far-field disturbance. He came to the conclusion that there exist a critical half angle («
crit) under which eddies are formed and that for these cases there can be constructed a series
solution in which the eigenvalues are complex. The eigenfunctions are known as Moffatt eddy
functions.

Consider the two-dimensional creeping incompressible flows in polar coordinates. By elim-
inating the pressure from the r— and #— components of the Navier-Stokes equations, we

obtain the biharmonic equation for :
Vi = V3(V3)) = 0. (F.1)
The stream function 1 is expanded in a series of the form:

P(r,0) = an M f(0), (F.2)
k=1

where,

fr(0) = Ay, cos(Ap +1)0 + By, sin(A + 1)0 4 C, cos(Ay, — 1)0 + Dy, sin(A\, — 1)60, (F.3)
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with the exception of the cases A\ = 0, 1,2, where f;(6) degenerates to

fre(6) = A)\k + By, 0 + C)\kez + D)\ke?’, (F.4)
fr(0) = Ay, cosO + By, sinf + Cy, 0 cos + D, 0sinb, (F.5)
fr(0) = Ay, cos20 + By, sin20 + Cy, 0 + D,,, (F.6)

respectively.

Flow near a corner

We consider the flow problem that was solved by Hills (2001 b). The fluid is maintained

B=-a

Figure F.1: Problem domain for a Stokes flow within a circular sector where the circular

boundary is rotating at a constant speed.

in two-dimensional steady motion, contained in the region formed by a finite wedge of side

R =1 and internal angle 2, as depicted in Fig. F.1, where :




A boundary singularity occurs at the origin O which is due to the geometry. The motion is
caused by the rotation of the curved boundary S3 about an axis through O. As indicated by
Hills (2001 b), the boundary condition du/Jdr = 0 on S; U Sa, is equivalent to the condition
u = 0, from the continuity of the steamfunction.

As pointed out by Dean and Montagnon (1949), a disturbance far from the corner can generate
either an antisymmetric or a symmetric flow pattern near the corner, and the corresponding
stream function is an even or odd function of 6, respectively.

If the flow is symmetric near the corner then f,(6) is odd (4, = C, = 0) and
fu(0) = By sin(p+1)0 + D, sin(p — 1)6, (F.8)

where the eigenvalues satisfy the equation sin 2ua = 1 sin 2a.

If the flow is antisymmetric near the corner then f)(0) is even (By = Dy = 0) and
fa(0) = Ay cos(A+1)8 + Cy cos(A — 1)0, (F.9)

where the eigenvalues satisfy the equation sin 2Aa = — A sin 2a..

The computed eigenvalues for symmetric and antisymmetric flow for a« = 45° are ploted in
Fig. F.2.

As shown by Moffatt (1964) the eigenvalues are all complex for « sufficiently small (less than
73.2°). Moreover if A is an eigenvalue then so are the conjugates of A and —A.

The asymptotic expansion for u in the neighborhood of the singular point O can be expressed

in terms of an eigenfunction expansion of the form:

u(r,0) = i (chlj + djW2j> , (F.10)
j=1

where the even eigenfunctions W7 are:

J(r ) = A+ cos(A; +1)6  cos(A; —1)¢ F11
Wi(r.0)=r [cos()\j + Do cos(A\j —Da]’ (F-11)
and the odd eigenfunctions WQJ are:
; , in(p; +1)0  sin(u; —1)0
Wi(r,0) = it | S04 _ . F.12
2(r0) =r [sin(,uj + 1o sin(p; — 1o (F.12)
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a8 +oro+a °FF

0 100 180

Figure F.2: Computed eigenvalues for symmetric (o) and antisymmetric (+) flow for
o = 45°.

It turns out that for this problem the eigenvalues are complex and they are chosen so that
0 < Re(A1) < Re(A2) < ...and 0 < Re(u1) < Re(pa) < ...

Hills (2001 b) solved the problem using a collocation scheme for determining the physical

streamfunction :

N
_ e g ((cos(px +1)0  cos(u, —1)0
¥(0) =R {; AR <COS(M o~ coslim 1)a> } : (F.13)

Since the coefficients Ay are complex, they each require two constrains that are obtained by
satisfying the conditions on 1 at discrete collocation points on S3. A total number of N
collocation points are needed where the required components of velocity are strictly enforced.
The collocation points are chosen in the positive range . Since 1 is even in # the boundary
conditions are satisfied on 2N — 1 (if § = 0 is a collocation point) or on 2N boundary points

on the whole arc.

Preliminary formulation of the SFBIM

As always, the first step in the method is to approximate the solution by the leading N, even
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terms of the asymptotic expansion
Na '
u(r,0) => &Wi. (F.14)
j=1

Next, the problem is discretized by applying Galerkins principle. The governing equation is

weighted by the singular functions yielding the following set of equations
/ Viawidv = 0,i=1,2,... N,. (F.15)
Q

The discretized equations are then turn into boundary integrals by double application of
Greens theorem. Taking into account that the singular functions satisfy the governing equa-

tion we obtain these equations:

= ) 217171 25 ) i
/ [8—“V2Wf — aM} d5+/ P(v @) Wi — v%za(Wl) dS =0, i=1,2,...,N,.
oN 0N

(F.16)
Taking into account the boundary condition we have this system:
o 24 . i «a '

Therefore we only have to integrate along Ss, away from the singular point. The Dirichlet
condition v = 0 along S5 is imposed by means of a Lagrange multiplier function &, which
replaces the normal derivative of the Laplacian of u. The function ¢ is expanded in terms of

standard, polynomial basis functions M7 of order p:

OV
f=—7—=) &M, (F.18)
=1

where N¢ represents the total number of the unknown discrete Lagrange multipliers §; along
S3. The basis functions M7 are used to weight the Dirichlet condition along the corresponding
boundary segment S3. The following symmetric system of N, + N¢ discretized equations is

thus obtained:
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L.

07

[gwf — V%

o(Wy)

«

}dgz_
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VEWido, i=1,2,...

—Q

/ aM*®dd =0, £=1,2,... N

7Na7

(F.19)

(F.20)
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