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Abstract

We present a lattice study of hadron form factors and hadron deformation. Hadron form
factors encode information on the composite nature of hadrons, their size and shape. The
calculation of these fundamental quantities from first principles provides a valuable input
to ongoing and planned experiments and theoretical models. In this thesis we develop
techniques for the evaluation of the nucleon electromagnetic, axial and pseudo-scalar form
factors, the nucleon to ∆ electromagnetic, axial and pseudo-scalar transition form factors
and the ∆ electromagnetic form factors. In particular, we develop methods to extract
accurately both the dominant as well as the sub-dominant form factors. The latter are
of particular importance since they probe hadron deformation. Our methods include
smearing techniques to ensure early ground state dominance and gauge noise suppression,
construction of optimized sinks to isolate the sub-dominant form factors and to obtain the
largest set of momentum vectors that contribute to a given momentum transfer thereby
increasing statistics and a suitable over constrained analysis that takes all statistically
independent lattice measurements into account when extracting the form factors. These
techniques are tested in the quenched approximation and then applied to two dynamical
flavors of Wilson fermions and to domain wall valence quarks on staggered sea quarks. We
show that the electric and Coulomb quadrupole nucleon to ∆ transition form factors are
non-zero. We also show, for the first time in lattice QCD, that the ∆ electric quadrupole
form factor is non-zero pointing to a deformation of the ∆. Furthermore hadron deforma-
tion is studied directly by computing density-density correlators. This is done for the pion,
the ρ-meson, the nucleon and the ∆. The evaluation of the four-point function requires the
computation of all-to-all propagators. We develop techniques to reliably compute all-to-all
propagators using stochastic noise and dilution. In the case of the mesons we apply the
one-end trick method to obtain very accurate results for the density-density correlators
and show that the ρ-meson is clearly deformed. Finally we show how to extract the pion
form factor using density-density correlators.Gian
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PerÐlhyh

Se aut  thn ergasÐa melet�me par�gontec morf c (Form Factors) adronÐwn kai thn paramìr-
fwsh adronÐwn. Oi par�gontec morf c twn adronÐwn perièqoun plhroforÐec gia thn sÔs-

tas  touc, to mègejìc touc kai to sq ma touc. O upologismìc aut¸n twn stoiqeiwd¸n

posot twn apì pr¸tec arqèc parèqei polÔtimec plhroforÐec tìso se trèqwn ìso kai se

programmatismèna peir�mata wc epÐshc kai se jewrhtik� montèla. Se aut  th diplwmatik 

ergasÐa anaptÔssoume tic teqnikèc gia ton upologismì twn Hlektromagnhtik¸n kai Asjen¸n

paragìntwn morf c tou noukleonÐou kai thc met�bashc tou noukleonÐou se Dèlta wc epÐshc

kai touc HlektromagnhtikoÔc par�gontec morf c tou Dèlta. Poio sugkekrimèna, anaptÔs-

soume tic teqnikèc gia thn akribeÐc exagwg  tìso twn prwteÔwn ìso kai twn deutereuìntwn

paragìntwn morf c. Oi teleutaÐoi eÐnai idiaÐterhc shmasÐac afoÔ aniqneÔoun pijan  paramìr-

fwsh twn upì melèth adronÐwn. Oi mèjodoÐ mac sumperilamb�noun teqnikèc exom�lunshc

(smearing) gia thn kuriarqÐa thc jemeli¸douc kat�stashc ìso to dunatì poio enwrÐc kai

thn katastol  tou jorÔbou bajmÐdac (gauge noise), kataskeu  beltistopoihmènwn phg¸n

gia thn apomìnwsh twn deutereuìntwn paragìntwn morf c kai gia na p�roume to megalÔtero

sÔnolo apì anÔsmata orm c pou suneisfèroun se dedomènh metafor� orm c aux�nontac ètsi

to statistikì deÐgma kai mia kat�llhlh uper-periorismènh an�lush (over constrained anal-
ysis) h opoÐa lamb�nei upìyin ìlec tic statistik� anex�rthtec plegmatikèc metr seic sthn

exagwg  twn paragìntwn morf c. Autèc oi teqnikèc dokim�zontai arqik� sthn prosèggish

apìsbeshc (quenched approximation) kai èpeita efarmìzontai se duo geÔseic dunamik¸n

kou¸rkc tou Wilson wc epÐshc kai se domain wall kou¸rkc sjènouc me staggered kou¸rkc

upob�jrou. Sthn ergasÐa deÐqnoume pwc o hlektrikìc kai Coulomb tetrapolikìc par�-

gontac morf c thc Hlektromagnhtik c met�bashc noukleonÐou se Dèlta eÐnai mh mhdenikoÐ.

EpÐshc deÐqnoume, gia pr¸th for� sthn Kbantik  Qrwmodunamik  Plègmatoc, pwc o par�-

gontac morf c hlektrikoÔ tetrapìlou tou Dèlta eÐnai mh mhdenikìc upodeiknÔontac paramìr-

fwsh sto swmatÐdio autì. Pèran autoÔ, melet�me �mesa to jèma thc paramìrfwshc twn

adronÐwn mèsw tou upologismoÔ thc sun�rthshc susqètishc dÔo puknot twn. Autì gÐnetai

gia to piìnio, to mesìnio r, to noukleìnio kai to swmatÐdio Dèlta. O upologismìc aut c

thc sun�rthshc susqètishc tess�rwn shmeÐwn apaiteÐ ton upologismì tou diadìth apì ìla

ta shmeÐa se ìla ta shmeÐa tou plègmatoc (all-to-all propagator). AnaptÔssoume teqnikèc
gia ton axiìpisto upologismì tou diadìth autoÔ qrhsimopoi¸ntac stoqastikèc mejìdouc kai

thn mèjodo araÐwshc (dilution). Gia thn perÐptwsh twn mesonÐwn efarmìzoume epiprìsjeta

to tèqnasma thc mÐac pleur�c (one-end trick) gia na p�roume apotelèsmata polÔ uyhl c

akrÐbeiac gia thn sun�rthsh susqètishc pou deÐqnoun pwc to r - mesìnio eÐnai kajar� mh

sfairikì. Tèloc deÐqnoume pwc ex�getai o par�gontac morf c tou pionÐou apì sunart seic

susqètishc dÔo puknot twn.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the theory that describes the nuclear strong force,
the force that holds quarks to form bound states - the hadrons. Its two main charac-
teristics that distinguish it from all other forces are confinement and asymptotic freedom.
Confinement means that an infinite amount of energy is needed to free quarks from each
other while asymptotic freedom means that at large energy scales (or equivalently, short
distances), quarks react weakly and thus QCD can be studied perturbatively.

At nuclear scales, where many hadronic properties are measured experimentally, the
QCD coupling constant is of the order of one, meaning that a perturbative expansion
cannot be carried out. Thus non-perturbative methods are needed for the calculation of
hadronic observables from first principles. The only available method that we have up to
now is Lattice QCD. Within this approach, the theory is defined on a discreet, finite space-
time box allowing, by virtue of the path integral formulation of quantum mechanics and
Wick rotation to imaginary time, the numerical simulation of the theory using methods
of statistical physics.

1.1 Quantum Chromodynamics

Quarks, the constituents of hadrons, interact with each other via the strong force, the
mediator bosons of which are the gluons. This force is felt by particles carrying color
charge which is a quantum number taking three values contrary to electric charge, which
is described by just one. QCD is a gauge theory of the SU(3) gauge group. The Lagrangian
of QCD is given by:

L = ψ̄(i /D −m)ψ − 1
4
F aµνF

µν
a , (1.1)

where ψ(x) is the quark field in the fundamental representation of SU(3), i.e. a Dirac
spinor which additionally carries three color indices. The operator /D is given by:

/D = γµDµ = γµ∂µ + igGaµγ
µT a, (1.2)

where γµ are the Dirac matrices (a definition of the representation used throughout this
thesis can be found in Appendix A), T a the generators of SU(3), g the bare coupling
constant of QCD and Gaµ(x) a gluon field in the adjoint representation of SU(3) with
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2 Introduction

a =1,2,...,8 color components. F aµν is the field tensor operator given by:

F aµν = ∂µG
a
ν − ∂νGaµ − gfabcGbµGcν (1.3)

where fabc are the structure constants of the SU(3) group. Note that unlike QED where
photons do not interact with each other, the term gfabcG

b
µG

c
ν , which is a consequence of

the fact that SU(3) is a non-abelian unitary group, allows three and four gluon interac-
tions. This interaction term makes QCD very different from QED. It exhibits two unique
characteristics:

i) Asymptotic Freedom: At high energy scales, or equivalently short distances, QCD
is asymptotically free, meaning quarks interact weakly, thus allowing a perturbative ex-
pansion of the theory. Asymptotic freedom was predicted by Frank Wilczek and David
Gross [1] and David Politzer [2] in the 1970s earning them the 2004 Nobel Prize in Physics.

ii) Confinement: The amount of energy needed to free a quark from a hadron is infinite,
hence there are no free quarks. Although there is no analytic proof for confinement, it
is widely accepted to hold. This is mainly due to empirical evidence such as the absence
of free color charges in nature, the failure of experiment to detect free quarks, and most
importantly that confinement has been confirmed via numerical simulations on the lattice.

The coupling constant of QCD is of the order of one at scales already around the size
of the nucleon. Thus the theory is confined at energy scales where hadronic observables
are relevant, creating the need for a non-perturbative approach for the solution of QCD.

1.2 Lattice QCD

Lattice QCD is the only method for solving QCD non-perturbatively. Within this method,
a discretized version of the action is defined on a finite space-time lattice, and the theory
is simulated numerically using Monte Carlo methods to produce representative gluon con-
figurations of the QCD vacuum. Observables are obtained via Feynman path integrals, i.e.
averaging appropriately defined correlation functions of fermion and gluon fields over these
representative configurations. Thus, through lattice QCD one obtains a first principles cal-
culation of observables, since the QCD Lagrangian is the only input to the Feynman path
integral. On the other hand, there is a freedom in the choice of the discretization of the
action which, however, observables should be independent of when taking the continuum
limit. The choice of the discretization is often governed by the amount of computational
resources available.

1.2.1 Discretization

One cannot discretize the action in such a way as to preserve the symmetries that the
continuum action exhibits. A trivial example is that of rotational invariance; on the
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1.2 Lattice QCD 3

lattice, only discrete angles can be defined, a fact which has several implications such as
what values of the orbital angular momenta are allowed. Defining QCD on a lattice has
implications on deeper symmetries of elementary particle physics such as chirality. The
exact SU(3) local gauge symmetry, which is a direct consequence of color charge, must
be preserved in a discretized version of the QCD action. Thus, K. Wilson [3] proposed a
discretization scheme where appropriate link variables where defined to connect nearest
neighboring lattice sites. Such a link variable, which is defined as an SU(3) matrix, is
given by the path ordered integral:

U(x+ aµ̂;x) = Uµ(x) = Pe−ig
R x+aµ̂
x dxGbµ(x)Tb ' e−igaGbµ(x)Tb , (1.4)

where µ̂ is a unit vector in the µ direction and a is the lattice spacing. The gluonic part
of the action (F aµνF

µν
a ) is given in terms of the closed 1× 1 product of links, the plaquette

Pµν(x), namely:

SG = β
∑
x

∑
µ>ν

[1− 1
3
<{TrPµν(x)}], (1.5)

where β = 2Nc
g2 , Nc being the number of colors and < means the real part. SG gives

the correct continuum gluonic action when a → 0. To show this we shall first give the
plaquette in terms of links:

Pµν(x) =Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x) (1.6)

= exp
[
−igaGbµ(x)Tb

]
exp [−igaGcν(x+ aµ̂)Tc]×

exp
[
igaGdµ(x+ aν̂)Td

]
exp [igaGeν(x)Te]

= exp

{
−iga2Tb

Gbν(x+ aµ̂)−Gbν(x)
a

+ iga2Tb
Gbµ(x+ aν̂)−Gbµ(x)

a

− g2a2Gcµ(x)Gdν(x)[Tc, Td] +O(a4)
}

a→0−−−→ exp
{
−iga2Tb

[
∂µG

b
ν(x)− ∂νGbµ(x)− gf bcdGcµ(x)Gdν(x)

]
+O(a4)

}
where in the last step we have replaced the discreet derivative with the continuum deriva-
tive:

Gbν(x+ aµ̂)−Gbν(x)
a

a→0−−−→ ∂µG
b
ν(x). (1.7)Gian
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4 Introduction

Substituting the expression for the plaquette into Eq. (1.5) we obtain:

Pµν(x) = e−iga
2TbF

b
µν(x)+O(a4) (1.8)

= 1− iga2TbF
b
µν(x) +

1
2
g2a4TbF

b
µν(x)T cFµνc (x) +O(a6)

⇒ SG =
βg2a4

6

∑
x

∑
µ>ν

Tr[TbF bµν(x)T cFµνc (x)]

=
βg2a4

6

∑
x

∑
µ>ν

F bµν(x)Fµνc (x)
δbc
2
.

Since the field tensor is antisymmetric (F bµν(x) = −F bνµ(x)) the sum over µ and ν can be
written as: ∑

µ>ν

F bµν(x)Fµνb (x) =
1
2

∑
µ,ν

F bµν(x)Fµνb (x). (1.9)

Hence the plaquette action is equivalent to the gluonic part of the continuum action when
a→ 0:

SG =
βg2a4

6

∑
x

1
4
F bµνF

µν
b

a→0−−−→ βg2a4

6
1
a4

∫
d4x

1
4
F bµνF

µν
b

=
∫
d4x

1
4
F bµνF

µν
b . (1.10)

This discretized version of the action is indeed invariant under a local gauge transforma-
tion:

ψ(x)→ ψ̃(x) = e−igα
c(x)Tcψ(x) = U(x)ψ(x),

Gcµ(x)→ G̃cµ(x) = Gcµ(x) + ∂µα
c(x)⇒ (1.11)

U(x+ aµ;x)→ Ũ(x+ aµ;x) = U(x+ aµ)U(x+ aµ;x)U†(x),

where aµ = aµ̂, since the plaquette, in terms of a path ordered product of links, transforms
as:

Pµν(x) =PU(x;x+ aν)U(x+ aν ;x+ aν + aµ)× (1.12)

U(x+ aν + aµ;x+ aµ)U(x+ aµ;x)

→ P̃µν(x) =U(x)PµνU†(x),

thus leaving the trace invariant. For the fermion action, the discretization is not as straight
forward. Let us consider a naive discretization of the Dirac operator. The QCD action
for fermions would then read:

SF = a4
∑
x

1
2a
γµ[ψ̄(x)Uµ(x)ψ(x+aµ̂)− ψ̄(x)U †µ(x−aµ̂)ψ(x−aµ̂)] +mψ̄(x)ψ(x). (1.13)
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1.2 Lattice QCD 5

Now let us consider the propagator of a fermion in a free field i.e. Uµ(x) = 1. The Fourier
transform of the Dirac operator gives:

G(p) = [
i

a
γµ sin (apµ) +m]−1, (1.14)

which, at m = 0 has extra poles at finite a compared to a single pole at the origin when
a→ 0. This means that on the lattice the naively discretized Dirac operator describes more
than one particle, since sin (apµ) becomes zero at every corner of the momentum-space
lattice. The action proposed by Wilson solves this so called fermion doubling problem by
adding an extra double derivative term:

SF = a4
∑
x,µ

ψ̄(x)γµDµψ(x)− ar
2
ψ̄(x)DµD

µψ(x) +mψ̄(x)ψ(x)

= −a4
∑
x,µ

1
2a

[ψ̄(x)(r − γµ)Uµ(x)ψ(x+ aµ̂)

+ ψ̄(x)(r + γµ)U †µ(x− aµ̂)ψ(x− aµ̂)]

+a4
∑
x

(m+
4
a
r)ψ̄(x)ψ(x), (1.15)

where the Wilson parameter r ∈ (0, 1] with r = 0 corresponding to the naive discretization.
The double derivative term added gives the extra fermions a different dependence on the
lattice spacing a, namely it gives them a mass that goes to infinity as a → 0. Thus
at sufficiently small lattice spacings a the doublers are suppressed. The Wilson hopping
parameter: κ = 1

2am+8r is a more convenient parameter than the bare mass since by
rescaling the fermion fields ψ(x)→

√
2κ

a3/2ψ(x), the action assumes the simpler form:

SF = −κ
∑
x,µ

[ψ̄(x)(r − γµ)Uµ(x)ψ(x+ aµ̂)

+ ψ̄(x)(r + γµ)U †µ(x− aµ̂)ψ(x− aµ̂)]

+
∑
x

ψ̄(x)ψ(x). (1.16)

The value of κ at which the mass of the pseudo-scalar meson, the pion, becomes zero is
referred to as κ critical (κc). The action can be conveniently rewritten in the form:

SF =
∑
x,y

ψ̄(x)DW (x; y)ψ(y), (1.17)

DW (x; y) =− κ
∑
µ

[(r − γµ)Uµ(x)δx+aµ̂,y + (r + γµ)U †µ(y)δx−aµ̂,y] + δx,y,

with the Wilson Dirac operator, DW (x; y), being the discretized version of the massive
Dirac operator i /D −m. It is quite trivial to see that a local gauge transformation as in
Eq. (1.11) leaves the total discretized QCD action (SF + SG) invariant.

Wilson fermions explicitly break chiral symmetry at finite lattice spacing even for
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6 Introduction

m = 0, due to the terms proportional to r. In other words, the cost of removing the
doublers, which appeared in the naive discretization, is the explicit breaking of chiral
symmetry, since the massless Wilson-Dirac operator no longer anticommutes with γ5 at
finite a:

γ5DW +DWγ5 ∼ arγ5D
µDµ. (1.18)

A no-go theorem has been proved by Nielsen and Ninomiya [4] stating that any discretized,
local version of the Dirac operator cannot preserve chiral symmetry at finite lattice spacing
while simultaneously avoiding doublers. Ginsparg and Wilson [5] propose a way around
the no-go theorem by allowing the anticommutator of the discretized Dirac matrix and γ5

to be non-zero at finite lattice spacing. The so called Ginsparg-Wilson relation reads:

γ5D +Dγ5 = aDγ5D. (1.19)

Such a discretized Dirac operator is invariant under the chiral-like transformation:

ψ → ψ̃ = e−iγ5(1− 1
2
aD)θψ (1.20)

which is the continuum chiral transformation when a→ 0. Two formulations that satisfy
Eq. (1.19) are Domain Wall fermions [6] and Overlap fermions [7]. Briefly, in the Overlap
formulation, the Dirac operator is discretized as DOver = m[1 + γ5sgn(γ5DW )] where
sgn denotes the sign function. Apart from the complications that arise in Monte Carlo
simulations due to the sign function, redefining operators within this formulation can
often be tedious. Within the domain wall fermion formulation, on the other hand, a
five dimensional Wilson Dirac operator is defined. Fermions of opposite handedness are
located on the boundaries of the fifth dimension and thus chiral symmetry is preserved
for a large enough extent of this fifth dimension. Until recently, simulating QCD with
these actions was impractical due to the great amount of computational resources needed
compared to Wilson fermions.

1.2.2 Path Integral Formulation

Observables in lattice QCD are measured via the path integral formulation of quantum
mechanics. Within this picture, the vacuum expectation value of an operator O is given
by:

〈Ω|O|Ω〉 =
1
Z

∫
Dψ(x)Dψ̄(x)DU(x)O[ψ̄, ψ, U ]e−

i
h̄
S[ψ̄,ψ,U ] (1.21)

where Dψ(x), Dψ̄(x) and DU(x) denote integration over all possible fermion and gluon
configurations (over all paths), while the partition function Z is given by:

Z =
∫
Dψ(x)Dψ̄(x)DU(x)e−

i
h̄
S[ψ̄,ψ,U ]. (1.22)
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1.2 Lattice QCD 7

Wick rotating to a Euclidean space-time t→ it we have:

〈Ω|O|Ω〉 =
1
Z

∫
Dψ(x)Dψ̄(x)DU(x)Oe−S[ψ̄,ψ,U ] 1

h̄ , (1.23)

which thus allows a statistical treatment of quantum field theory. Numerically, one would
define a lattice with the gluons connecting neighboring sites and the fermions living on the
sites as we have seen previously in this section. We would then generate representative
gluon and quark configurations via Monte Carlo methods, with probability of e−

S
h̄ /Z. The

vacuum expectation value of an arbitrary observable would then be its average over these
quark and gluon configurations.

In practice however, the numerical estimation of the path integral has an intrinsic
problem: the fermion fields integrated over in the path integral must be represented by
anticommuting numbers. Thus ψ̄(x) and ψ(x) are Grassmann numbers, obeying Grass-
mann algebra. It is impossible to represent such numbers on a computer, at least at a level
low enough for such an integration to be practical. The way around this is to integrate
over the fermionic degrees of freedom analytically. The consequence of this integration
as we shall see below, is that the problem becomes much more computationally involved.
We shall first show that the integration of the fermion variables in the partition function
gives rise to the determinant of the Dirac operator M = /D +m:

ZF [U ] =
∫
Dψ(x)Dψ̄(x)e−SF [ψ̄,ψ,U ] =

∫
DψDψ̄e−ψ̄M [U ]ψ = detM [U ]. (1.24)

This can be shown by going to diagonal basis for M = U−1MdU , and then transforming the
integration variables according to ξ = Uψ and ξ̄ = ψ̄U−1. Since detU = 1, the Jacobian
of the change of variables is one. Hence the fermionic integral can be written as:∫ ∏

i

dξi
∏
j

dξ̄j
∏
k

(1 + ξ̄kξkλk) (1.25)

where λk = (Md)k,k are the eigenvalues of M , and we have merged all indices of the
fermion fields (spatial, color and Dirac) to a single index. According to Grassmann algebra,∫
dξ = 0 and

∫
dξ ξ = 1, ξ being a Grassmann variable. Hence the only term of the product∏

k(1 + ξ̄kξkλk) that has a non-zero integral is
∏
k ξ̄kξkλk which gives:∫ ∏

i

dξi
∏
j

dξ̄j
∏
k

ξ̄kξkλk =
∏
k

λk = detM [U ]. (1.26)

To summarize:

Z =
∫
DψDψ̄DUeψ̄M [U ]ψ+SG[U ] =

∫
DUdetM [U ]e−SG[U ]. (1.27)

We can also quite generally carry out this integration for an arbitrary observable. In terms
of fermion fields, any measurable quantity is expressed as a vacuum expectation value of
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8 Introduction

time-ordered correlation functions. Since fermion fields cannot appear squared, we can
quite generally write:

〈O(x1, ..., xn, y1, ..., yn)〉 = 〈Ω|ψ(xn), ..., ψ(x1)ψ̄(yn), ..., ψ̄(y1)|Ω〉 =
1
Z

∫
Dψ(x)Dψ̄(x)DU(x)ψ(xn), ..., ψ(x1)ψ̄(yn), ..., ψ̄(y1)e−ψ̄M [U ]ψ+SG[U ]. (1.28)

The integration over fermion fields can be computed through repeated differentiation of
auxiliary fermion fields θ and θ̄ which are set to zero at the end:

〈O〉 =
1
Z
∂θ̄(xn), ..., ∂θ̄(x1)∂θ(yn), ..., ∂θ(y1) Zθ,θ̄

∣∣
θ=θ̄=0

(1.29)

=
1
Z
∂θ̄(xn), ..., ∂θ̄(x1)∂θ(yn), ..., ∂θ(y1)

∫
DψDψ̄DUeψ̄M [U ]ψ+ψ̄θ+θ̄ψ+SG[U ]

∣∣∣∣
θ=θ̄=0

We can evaluate this integral by completing the square in the exponent via a change of
variables: ξ̄ = ψ̄ + θ̄M−1[U ] and ξ = ψ +M−1[U ]θ:

Zθ,θ̄ =
∫
DUdetD[U ]eθ̄M

−1[U ]θ+SG[U ]. (1.30)

According to Wick’s theorem, the repeated differentiation of the remaining exponent
eθ̄M

−1θ gives all possible permutations of the inverse Dirac matrix M between the ar-
guments of the fermions ψ and antifermions ψ̄ (xi and yi), i.e.:

∂θ̄(xn), ..., ∂θ̄(x1)∂θ(yn), ..., ∂θ(y1) e
θ̄M−1θ

∣∣∣
θ=θ̄=0

=∑
q,p

(−1)Pq,pM−1(xqn , ypn)...M−1(xq1 , yp1), (1.31)

where the sum is along all possible q, p combinations and the number of permutations
Pq,p comes from the anticommutation relation of fermion fields, i.e. when permuting two
derivatives a minus sign appears ∂θ(x)∂θ(y) = −∂θ(y)∂θ(x).

Having integrated analytically over the fermion fields we rewrite the path integral for
an arbitrary 2n-point function:

〈O(x1, ..., xn, y1, ..., yn)〉 = (1.32)
1
Z

∫
DU

∑
q,p

(−1)Pq,pM−1(xqn , ypn , U)...M−1(xq1 , yp1 , U)eln(detM [U ])−SG[U ],

with:

Z =
∫
DUeln[detM [U ]]−SG[U ]. (1.33)

Thus we can now simulate the theory to obtain any correlation function since only an
integral over all possible gluon configurations is left. Representative gluon configurations
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1.2 Lattice QCD 9

can be generated via Monte Carlo methods with a probability eln[detM ]−SG/Z. For a given
correlation function we use the Wick theorem to reach to an expression between quark
propagators (M−1(x; y;U)) and average this expression over all gluon configurations.

The modified probability means a computation of detM is needed for every update of
the gluon field in the Monte Carlo simulation. Additionally, the evaluation of correlation
functions requires the calculation of the inverse of the Dirac operator M for every gluon
configuration generated. These two steps, which are direct consequences of the fact that
we had to integrate the fermion fields out analytically, are the most computationally
intensive parts of any simulation in lattice QCD. In fact, early calculations where carried
out ignoring the determinant in the Monte Carlo simulation, an approximation known as
quenching. The quenched approximation is still used in modern measurements since it is
fast to simulate and thus provides a test of methods to be applied to dynamical actions,
which are more expensive to simulate.
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Chapter 2

Lattice Methods

In this chapter we shall discuss the main methods used for the study of hadronic ob-
servables within lattice QCD. Having already elaborated on the basic principles of lattice
QCD, we go on to show how one computes vacuum expectation values and, furthermore,
how these are associated with physical quantities. We shall begin by showing how the
mass of a hadron can be extracted from its propagator and how this can be computed on
the lattice. This shall be followed by an introduction to stochastic techniques used for the
estimation of all-to-all propagators. We also describe the techniques used to improve the
signal of observables on the lattice such as smearing techniques. Finally we shall introduce
three-point functions and explain their importance in association with hadron structure.

2.1 Two-point functions

The aim here is to show that the mass of hadrons can be extracted from the two-point
correlator, and to demonstrate this with an example computation on the lattice. We start
off by writing the two-point correlator at the hadron level:

C(t) =
∑
~x

〈Ω|χ(~x, t)χ̄(~0, 0)|Ω〉, (2.1)

where χ(~x, t) is an interpolating operator that acts on the vacuum creating a hadron
with the same quantum numbers as those of the hadron under study. In the Heisenberg
picture, we can always shift the operators to the origin by multiplying on both sides with
appropriate unitary operators:

C(t) =
∑
~x

〈Ω|e−i~̂p·~xeĤtχ(~0, 0)e−Ĥtei~̂p·~xχ̄(~0, 0)|Ω〉, (2.2)

where ~̂p is the momentum operator and Ĥ the QCD Hamiltonian. Note that we have
already performed a Wick rotation to Euclidean time, i.e. t → it. We now insert a
complete set of momentum and energy states:

1 =
∑
~k,n

|n,~k〉〈n,~k|, (2.3)

11
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12 Lattice Methods

where n counts all the QCD Hamiltonian many-body eigenstates. Inserting Eq. (2.3)
between χ and χ̄ of Eq. (2.2) we have:

C(t) =
∑
~x,n,~k

|〈Ω|χ(~0, 0)|n,~k〉|2e−En(~k)tei
~k·~x =

∑
n

|〈Ω|χ(~0, 0)|n,~0〉|2e−mnt, (2.4)

where En(~k) is the energy eigenvalue of the nth state and the sum over ~x, the sink coor-
dinate, projects the two-point function to zero momentum. We have introduced the mass
mn of the n’th state as the energy of the state at zero momentum (mn = En(~0)). Now,
the only terms that survive the sum over n are those states which have the same quantum
numbers as those of the trial state, due to the overlap term 〈Ω|χ|n,~0〉. At this point we
shall be more specific and consider the pion, since it is the simplest hadron. The states
that would give non-zero overlap with the interpolating operator of the pion would be the
pion and all excitations of the pion as well as multi-pion states. Thus:

C(t) =
∑
n′

|〈Ω|χπ(~0, 0)|π(n′,~0)〉|2e−mn′ t. (2.5)

If the time t is large enough, then excited state contributions to the correlator are sup-
pressed, since the correlator decays exponentially with the energy of the state in the
exponent. Thus the ground state mass (the pion mass in this case) can be extracted:

Cπ(t) t�1−−→ |Zπ(~0)|2e−mπt (2.6)

where Zπ(~p)
√
mπ/Eπ(~p) = 〈Ω|χπ(~0, 0)|π(~p)〉. The kinematic term is a normalization

convention which preserves covariance of the correlator under Lorenz transformations. At
this point, we need to express the pion two-point correlation function in terms of quark
propagators. We begin by defining the interpolating operator in terms of quark field
operators. For instance, the +1 charged pion interpolating operator would be χπ+(x) =
d̄(x)γ5u(x) where u and d are quark field operators and a trace over color indices is implied.
To be a little more general, for the following example we shall assume an interpolating
field of the form: χΓ(x) = d̄(x)Γu(x), where Γ is an arbitrary gamma structure, i.e. the
trial state is some +1 charged meson. The two-point function in terms of the quark field
operators is written as:

Cπ(~x, t) = 〈Ω|χΓ(~x, t)χ̄Γ(~0, 0)|Ω〉 =

〈Ω|d̄aµ(~x, t)Γµνuaν(~x, t)ūbµ′(~0, 0)Γ̄µ′ν′dbν′(~0, 0)|Ω〉, (2.7)

where we imply summation over repeated indices. Integration of this expression over the
fermion fields u and d gives rise to quark propagators, as we have seen in Chapter 1. There
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2.1 Two-point functions 13

is only one way to contract the quark with the antiquark fields, shown by the lines:

〈Ω|d̄aµ(x)Γµνuaν(x)ūbµ′(0)Γ̄µ′ν′dbν′(0)|Ω〉 =

〈ΓµνGabνµ′(x; 0)Γ̄µ′ν′Gbaν′µ(0;x)〉 (2.8)

where x = (t, ~x) and G is the quark propagator i.e. the inverse of the Dirac matrix:
G(x;x0) = ( /D + m)−1 = M−1(x;x0). Here we assume degeneracy between up and down
quark hence we do not discriminate between the propagator of the up quark and that
of the down quark. The antihermiticity of the Dirac matrix implies the forward going
propagator is associated with the backwards going through the relation:

G(x;x0) = γ5G
†(x0;x)γ5. (2.9)

Hence Eq. (2.8) can be rewritten as:

〈Tr[Γ′G(x; 0)Γ̄′G†(x; 0)]〉, (2.10)

where Γ′ ≡ Γγ5. For the case of the π+, Γ = γ5 and the two-point correlator is simply a
trace over the square of the propagator:

C(~x, t) = 〈Tr
[
|G(x; 0)|2

]
〉. (2.11)

The computation of the mass of a hadron thus involves, numerically, the inversion of the
Dirac matrix for each gauge configurations. We summarize the result:∑

~x

〈Tr
[
|G(~x, t; 0)|2

]
〉 t�1−−→ |Zπ(~0)|2e−mπt (2.12)

Note that not all components of the inverse need to be computed. Only the propagator
from the origin to all lattice sites is required in order to carry out the sum over ~x in
Eq. (2.12). A somewhat more involved example is that of the nucleon two-point function.
An interpolating field with the quantum numbers of the proton is:

χNσ (x) = εabc[uaµ(x)(Cγ5)µνdbν(x)]ucσ(x) (2.13)

where C is the charge conjugation operator C = γ0γ2. Note that the interpolating operator
has been defined to carry a free spinor index σ since the proton is a spin 1

2 particle. There
are now two ways to contract the up quark fields, hence the proton propagator is a sum
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14 Lattice Methods

of two terms:

〈Ω|χNσ (x)χ̄Nσ′(0)|Ω〉 = (2.14)

〈Ω|εabcuaµ(x)(Cγ5)µνdbν(x)ucσ(x)εa
′b′c′ ūc

′
σ′(0)d̄b

′
ν′(0)(Cγ5)ν′µ′ ūa

′
µ′(0)|Ω〉

= εabcεa
′b′c′ [Cγ5G(x; 0)Cγ5]bb

′
νν′

[Gcc
′

σσ′(x; 0)Gaa
′

µµ′(x; 0)−Gac′µσ′(x; 0)Gca
′

σµ′(x; 0)].

The lines connecting the quark fields above the expression show one possible contraction
while the lines below show the other. There is only one way to contract the down quarks,
hence we do not show this contraction.

Non-perturbative diagrams are regularly used to depict correlation functions. In Fig 2.1
we show the diagrams corresponding to the two-point function of a meson and a baryon.
Time direction is from right to left. The lines denote quark propagators, with the arrows
denoting the direction in which the quark propagates:

= G(~y, ty; ~x, tx). (2.15)

Quarks propagate forwards in time while antiquarks propagate backwards in time. These
are non-perturbative Feynman diagrams, in the sense that all orders of gluon exchange as
well as quark loops are possible and thus omitted in the diagrams.

Figure 2.1: Diagrams of two-point functions. Left for mesons and right for baryons.

We return to the case of mesons, to note that for a lattice simulated with periodic or
antiperiodic boundary conditions in time, the correlation function of a meson is periodic
over the time extent of the lattice (Lt). For instance, Eq. (2.12) becomes:∑

~x

〈Tr
[
|G(~x, t; 0)|2

]
〉 t�1−−→ |Zπ(~0)|2(e−mπt + e−mπ(Lt−t))

= |Zπ(~0)|2e−mπ
Lt
2 cosh [mπ(t− Lt

2
)]. (2.16)

As an example, we shall demonstrate the methods described above for the two lightest
mesons: the pseudo-scalar and the vector meson. We consider the ρ meson of spin 1. The
interpolating operator used is of the general form d̄Γu where Γ = γ1−iγ2

2 , γ3,
γ1+iγ2

2 for the
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2.1 Two-point functions 15

+1,0 and -1 spin projections respectively. The effective mass is typically constructed as:

mH
eff(t) = log

CH(t)
CH(t+ 1)

t�1−−→MH , (2.17)

which in the large time limit where excited state contributions are damped is equal to the
mass of the hadron. For mesons where the correlator is periodic as in Eq. (2.16), we can
make use of the whole of the time extent of the lattice. Namely, we define the effective
mass as the solution of:

CH(t)
CH(t+ 1)

=
cosh [mH

eff(t)(t− Lt
2 )]

cosh [mH
eff(t)(t+ 1− Lt

2 )]
, mH

eff(t) 1�t�Lt−−−−−→MH (2.18)

For the case of baryons the backwards propagating baryon corresponds to that of
opposite parity, which is not degenerate with the forwards propagating. For instance, the
nucleon two-point correlator on a lattice with periodic or antiperiodic boundary conditions
in time is given by:

CN (t) = |ZN (~0)|e−mN t − |ZN−(~0)|emN− (t−Lt) (2.19)

where N− denotes the negative parity nucleon.

In Fig. 2.2 we show such plots of the pion and the ρ meson effective masses as a function
of time.
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Figure 2.2: Effective mass plots of the pseudo-scalar meson (left) and the vector meson (right) as
a function of the time separation from the source. The straight lines show fits to a constant.

For this simple example, the simulation was carried out over an ensemble of 60 dynam-
ical Wilson NF = 2 configurations with the Wilson hopping parameter set to κ = 0.1575
and β = 5.6, while the dimensions of the lattice are 243 × 40 [8]. We shall omit further
details of the simulation carried out for these plots at the moment, since at this point we
simply would like to demonstrate how the analysis is carried out. As can be seen, at small
time separations from the source the correlation function is contaminated by contributions
from excited states. At larger time separations we see that the effective mass converges
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16 Lattice Methods

to a constant, evidence that the correlation function is dominated by the ground state
and that excited state contributions can be neglected. We thus extract the ground state
energy by fitting to a constant the plateau region of the effective mass plot. For this
specific simulation we have amπ = 0.280(2) and amρ = 0.385(6). The lattice spacing for
this specific lattice is a ' 0.077 fm, or equivalently a−1 ' 2.56 GeV. The spacing was set
in Ref. [8] using the nucleon mass at the chiral limit. Hence the values of the masses in
physical units are: mπ = 0.716(5) GeV and mρ = 0.986(15) GeV.

2.2 Signal Improvement Techniques

To obtain the correlation functions presented in the previous section, an inversion of the
Dirac matrix was performed. As already mentioned, the inversion need not be carried out
for all spatial color and Dirac indices of the matrix. Indeed, for the previous computation,
we needed the propagator from all spinor and color indices of the source coordinates (the
origin) to all spinor and color indices of all lattice sites. The inversion is carried out by
solving the linear system:

ηcκ(z) =
∑
x

M ca
κµ(z;x)ψaµ(x), (2.20)

where M = /D −m. Numerically this is achieved via conjugate-gradient methods. η(z)
is set to a delta function, i.e. ηcκ(z) = δ(y − z)δνκδbc. Thus solving for ψ(x) we obtain
the inverse of the Dirac matrix from coordinate y, color index b and Dirac index ν to all
lattice sites and all color and Dirac components:

ψaµ(x) =
∑
z

Gacµκ(x; z)ηcκ(z) = Gabµν(x; y) (2.21)

For the previous computation twelve such inversions where carried out, one for each color
and Dirac component of the source vector η at the origin, in order to carry out the trace
in Eq. (2.10).

Using delta functions as the source vector for the inversion is the simplest choice one
can make, however this is not the optimum choice. Indeed, this is equivalent to creating
the meson localized at the origin and fixing the constituent quarks to a specific color
and spin state. Although in the large time limit the initial state of the meson should be
irrelevant, it is crucial to arrange so that the initial state has as much overlap with the
ground state as possible since the correlator, as Eq. (2.12) dictates, is an exponentially
decaying function over time, while statistical errors remain approximately constant. An
exception is the pion correlator, where statistical errors drop with the rate of the correlator
itself, thus the relative error remains constant. An argument explaining this behavior can
be found in Ref. [9]. In general though, the later in time the excited states are damped
the larger the relative statistical errors of the correlator will be.

A well known method for increasing the overlap of the ground state with that of the
initial state, and consequently suppressing the initial state overlap with excited states, is

Gian
nis

 K
ou

tso
u



2.2 Signal Improvement Techniques 17

the so called gauge invariant Gaussian smearing of the sources, also known as Wuppertal
smearing [10, 11]. The smeared source is obtained from the point source (or local source)
via:

ηsm(~x, t) =
∑
~y

F (~x, ~y;U(t)) η(~y, t), (2.22)

where:

F (~x, ~y;U(t)) = [1 + αH(~x, ~y;U(t))]n

and

H(~x, ~y;U(t)) =
3∑

k=1

[
Uk(~x, t)δ~x,~y−ak̂ + U †k(~x− ak̂, t)δ~x,~y+ak̂

]
. (2.23)

The hopping parameter α and smearing iterations n are tuned according to the problem
at hand. In Fig. 2.3 we show a contour plot of the r.m.s radius defined by:

〈r2〉 =
∑

~r r
2η†(~r)η(~r)∑

~r η
†(~r)η(~r)

, (2.24)

as a function of the two parameters α and n. As can be seen, for a value of α greater than
around 1.5, for a given number of smearing iterations, the radius of the Gaussian source is
only slightly affected by α. Depending on the correlator needed, one can select the values
of α and n for the r.m.s desired.

Since the initial state smearing is dependent on the gauge configuration U , further
improvement can be achieved by link smearing i.e. smearing the links that enter the
Gaussian smearing hopping matrix (H). In short, this involves replacing each gauge link
of the configuration with a product of gauge links that follow a path with the same end
points, in a gauge invariant manner. The resulting link, often referred to as a fat link, is
thus an average of the original link plus equivalent gauge paths constructed by neighboring
links. There are several link smearing schemes in the literature such as stout [12], APE
smearing [13] and Hypercubic blocking (or HYP smearing) [14]. APE smearing is relatively
simpler than HYP smearing. With APE smearing, one replaces the original thin link with
the sum of 1×1 nearest neighboring staples, a staple being the product of three links:
Sµν(x) = Uν(x)Uµ(x+ ν̂)U †ν (x+ µ̂). Thus APE smearing is defined as:

UAPEµ (x) = ProjSU(3)[Uµ(x) +
ω

6

∑
ν 6=µ

Sµν(x)] (2.25)

where ProjSU(3) means to project the resulting matrix to SU(3) to preserve gauge invari-
ance and ω is a tunable parameter. HYP smearing is somewhat more complicated since
it involves three “APE” steps. Briefly, in the last step, the original thin link is replaced,
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Figure 2.3: Contours of the r.m.s. radius of the smeared source vector plotted against the Wup-
pertal smearing parameters α and n. The contour labels are in fm.

as in APE smearing by itself plus staples:

UHY Pµ (x) = (2.26)

ProjSU(3)[(1− ω1)Uµ(x) +
ω1

6

∑
±ν 6=µ

S̃ν;µ(x)S̃µ;ν(x+ ν̂)S̃†ν;µ(x+ µ̂)],

only now the links S̃ that make up the staples are fat links themselves, constructed via:

S̃(x)µ;ν = (2.27)

ProjSU(3)[(1− ω2)Uµ(x) +
ω2

4

∑
±ρ6=ν,µ

S̄ρ;νµ(x)S̄µ;ρν(x+ ρ̂)S̄†ρ;νµ(x+ µ̂)].

Finally, in the first step, the fat links S̄ are constructed entirely by thin links:

S̄µ;ν,ρ(x) = (2.28)

ProjSU(3)[(1− ω3)Uµ(x) +
ω3

2

∑
±η 6=ρ,ν,µ

Uη(x)Uµ(x+ η̂)U †η(x+ µ̂)].

Note that the fat links are projected to SU(3) in each step separately. The parameters
ω1, ω2 and ω3 are tuned in Ref. [14]. Namely, the authors minimize the largest plaque-
tte fluctuations on a test ensemble of Wilson quenched configurations. The parameters
obtained are ω1 = 0.75, ω2 = 0.6 and ω3 = 0.3.

In Fig. 2.4 we test the effects of Wuppertal smearing and gauge link smearing us-

Gian
nis

 K
ou

tso
u



2.2 Signal Improvement Techniques 19

ing the effective mass of the nucleon. This test was carried out on a small (163×32)
quenched lattice using Dirichlet boundary conditions in time. This choice of boundary
conditions means the correlator shows no periodicity thus the effective mass is computed
via: Meff(t) = log[R(t)]. Comparison of the local-local (no Wuppertal smearing on either
side) correlator with the local-smeared (Wuppertal smearing on either source or sink) cor-
relator shows that Wuppertal smearing damps excited states considerably, with a plateau
showing as early as 6 time slices from the source. If additionally we use APE or HYP
smearing for the links that enter the Gaussian smearing hopping matrix, we see an addi-
tional reduction in excited state contamination. The Wuppertal smearing parameters (α
and n) are taken as in Ref. [15]. Namely these are α = 4.0 and n = 50 which correspond
to an r.m.s of around 0.35 fm as we can see from Fig. 2.3. As for the link smearing, we
see the two methods have the same effect on the effective mass. We choose to use HYP
smearing in all computations carried out hereon.

Figure 2.4: Nucleon effective mass versus time using local-local (filled triangles) correlators, Wup-
pertal smearing with no link smearing (crosses), Wuppertal smearing with HYP gauge link smearing
(open triangles) and Wuppertal smearing with APE smearing on the links (asterisks). The left
graph shows the result of smearing on one side only, while the right graph shows results from
smearing on both ends.

In Figs. 2.5 and 2.6 we show effective mass plots for the pseudo-scalar and vector
meson respectively using no Gaussian smearing (local-local), smearing on the source only
(local-smeared) and smearing on both source and sink states (smeared-smeared) for the
same Wilson NF=2 ensemble used to produce Fig. 2.2, using antiperiodic conditions in
time. The Wuppertal smearing parameters are the same as those mentioned previously.
HYP smearing is used for the links that enter the Wuppertal smearing hopping matrix.
As for the case of the nucleon effective mass, this test shows that gauge invariant Gaussian
smearing of the initial and final states indeed increases their overlap with the ground state
considerably. Apart from the fact that a more accurate plateau can be identified in the
effective mass due to the early damping of excited states, this has further implications in
the case where currents are inserted between source and sink (three-point and four-point
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Figure 2.5: Pseudo-scalar meson effective mass
versus time using local-local (open circles),
local-smeared (crosses) and smeared-smeared
(open triangles) correlators.
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Figure 2.6: Vector meson effective mass versus
time. The notation is the as Fig. 2.5.

functions). We shall discuss three-point functions in this chapter. Four-point functions
shall be introduced in Chapter 7.

2.3 Dispersion Relation

So far, we have shown how to extract the mass of a hadron from the two-point correlator. It
is straight forward to generalize the methods and compute the two-point correlator at finite
momentum, thus obtaining the energy of the hadron at arbitrary momenta. Namely, this
is achieved if one sums over the sink coordinate using a phase i.e. by Fourier transforming
the two-point correlator:

C(~p, t) =
∑
~x

e−i~p·~xC(~x, t) = |〈Ω|χH(0)|H(~p)〉|e−E(~p)t, (2.29)

where H denotes any hadronic state and χH denotes the interpolating operator for this
state. In Fig. 2.7 we show the energy of the pion as a function of the momentum squared.
For this plot we have averaged over all lattice momentum vectors that contribute to the
same ~p2 i.e. for ~p = 2π

L (nx, ny, nz) where L is the spatial extent of the lattice, we average
over all vectors ~n with the same ~p2. The dashed line shows the continuum dispersion
relation E(~p2) =

√
m2 + p2. As we can see, at the relatively low momenta this plot

shows, the energy of the pion calculated on the lattice is well described by the continuum
dispersion relation.

2.4 Stochastic Techniques

In this section we shall elaborate on techniques used to obtain an estimate for the all-
to-all propagator using stochastic techniques. As mentioned in the previous sections,
one need not compute the inverse of the Dirac matrix from all lattice sites to all lattice
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Figure 2.7: Pion energy as a function of the momentum squared. The dashed line shows the
continuum dispersion relation.

sites (the all-to-all propagator) in order to compute, for instance, two-point correlation
functions. In fact, calculating the all-to-all propagator explicitly is far too computationally
demanding to be practical in the first place, since one would need to invert, i.e. solve the
linear equation in Eq. (2.21), twelve times for all lattice sites. Even for a relatively small
lattice, say 163×32, one would need of the order of a million inversions for every gauge
configuration in the ensemble (compared to twelve inversions used to obtain the effective
mass of the particles in the previous sections).

It is thus apparent that it is impractical to compute the all-to-all propagator explicitly.
However, having the all-to-all propagator would allow averaging over volume correlation
functions thus utilizing entirely all the information contained in a single gauge configura-
tion. For instance, for the pion:∑

~x~x0

〈Tr
[
|G(~x, t; ~x0, t0)|2

]
〉 t�1−−→ V3|〈Ω|χπ(~0, 0)|π(~0)〉|2e−mπt, (2.30)

where V3 is the spatial volume of the lattice.

A well known method of estimating all-to-all propagators is by using stochastic tech-
niques [16]. In this approach, a set of orthogonal, random sources are used to invert the
Dirac matrix. The resulting solution vectors are then combined with the random sources
to gain an estimate of the all-to-all propagator. Formally, one defines an ensemble of noise
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sources such that:

1
Nr

Nr∑
r=1

ξaµ(x)r = 〈ξaµ(x)〉r = 0

and (2.31)

1
Nr

Nr∑
r=1

ξaµ(x)rξ∗a
′

µ′ (x′)r = 〈ξaµ(x)ξ∗a
′

µ′ (x′)〉r = δ(x− x′)δµµ′δaa′

where 〈〉r denotes an average over the stochastic ensemble and Nr is the size of the en-
semble. Inverting using these ξ’s as sources one obtains a set of solution vectors:

φaµ(x)r =
∑
y

Gabµν(x, y)ξbν(y)r, (2.32)

which can the be combined to gain an estimate for the all-to-all propagator:

〈φaµ(x)ξ∗bν (y)〉r =
∑
y′

Gab
′

µν′(x; y′)〈ξb′ν′(y′)ξ∗bν (y)〉r

=
∑
y′

Gab
′

µν′(x; y′)δ(y − y′)δνν′δbb′ (2.33)

= Gabµν(x; y).

The above equations are exact i.e. for a set of sources obeying Eq. (2.31) one obtains
the exact all-to-all propagator through Eq. (2.33). In practice however, the noise vector
completeness relations are approximated, since obeying them exactly would be equivalent
to computing the all-to-all propagator explicitly i.e. an inversion from every lattice site.

A common choice for the noise vectors is Z(2) noise where every component of the
noise vectors ξ is set, with equal probability, to one of the four fourth-roots of 1: ξaµ(x) =
{1, i,−1,−i}. This choice guarantees:

〈ξaµ(x)ξ∗aµ (x)〉r = 1 (no sum on repeated indices). (2.34)

However, the off diagonal elements of the average cross product are only approximately
zero since this relies on the cancellation between equally probable 1,-1 pairs and i, −i
pairs. Hence the delta functions in Eq. (2.31) are only approximately satisfied introducing
stochastic noise in the estimation of the all-to-all propagator. Whether one gains from
this method or not relies on whether for a reasonable size of the stochastic ensemble
(Nr), the increase in statistics from the double sum on both source and sink coordinates
outweighs the stochastic noise introduced in the propagator estimation, thus leading to a
more accurate two-point function than using point-to-all propagators.
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2.4 Stochastic Techniques 23

2.4.1 Dilution

A well known technique used to suppress stochastic noise is dilution [17]. With dilution one
distributes the elements of a noise source over certain color, spin and volume components
of multiple new noise sources setting the remaining components to zero. For instance, spin
dilution would be achieved via:

ξaµ(x)(r,σ) = ξaµ(x)rδµσ, (2.35)

where ξaµ(x)r is a noise vector in the original undiluted set and ξaµ(x)(r,σ) is a noise vector
in the diluted ensemble. Spin dilution is four-fold dilution i.e. the total number of noise
vectors Nr (and thus inversions) quadruples.

Dilution suppresses stochastic noise since most of the elements of each noise vectors
are set exactly to zero. Thus the off diagonal elements in the orthogonality relation in
Eq. (2.31) are more consistent with zero the more one dilutes. In Ref. [17] the authors
demonstrate that one sees a reduction of stochastic noise even when keeping the number
of inversions, and hence computational cost, constant, i.e. diluting a noise vector to n new
vectors reduces stochastic noise compared to inverting for n undiluted noise vectors.

2.4.2 One-end trick

Having described stochastic methods for the estimation of all-to-all propagators, one can
use them to calculate two-point correlators, summed on both source and sink coordinates.
We rewrite the general meson two-point function at the quark propagator level (Eq. (2.10))
summing on both sides: ∑

~x0,~x

Tr[Γ′G(x;x0)Γ̄′G†(x;x0)] = (2.36)

∑
~x0,~x

Tr[Γ′
∑
r

1
Nr

φ(x)r ⊗ ξ†(x0)rΓ̄′
∑
r′

1
Nr

[φ(x)r′ ⊗ ξ†(x0)r′ ]†],

where ⊗ denotes an outer product. A double volume sum is needed over source and sink
coordinate as well as a double sum over the stochastic ensemble. The double volume
sum can be quite computationally demanding in practice, especially for large lattices, say
323×64.

The so called Liverpool one-end trick [18] relies on the realization that one can combine
appropriately solution vectors to yield two-point meson correlators, summed over source
and sink coordinates, without the need to carry out the sum on one end explicitly. We
shall demonstrate this for the pion, to start with, which is the simplest case. We consider
the combination:

1
Nr

∑
r,~x

φ†(~x, t; t0)rφ(~x, t; t0)r (2.37)

where we have added an argument to the solution vectors to denote that the noise vectors
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used in the inversion are localized on a specific time-slice, i.e. ξaµ(x)r = ξaµ(~x)rδ(t− t0) and
thus the solution vectors φ are now written as:

φaµ(~x, t; t0)r =
∑
~x0

Gabµν(~x, t; ~x0, t0)ξbν(~x0)r. (2.38)

This combination gives:

1
Nr

∑
~x,r

φ†(~x, t; t0)rφ(~x, t; t0)r =

∑
~x,~x′0,~x

′′
0

G∗abµν (x;x′0)Gacµκ(x;x′′0)
1
Nr

∑
r

ξ∗bν (x′0)rξcκ(x′′0)r =

∑
~x,~x′0,~x

′′
0

G∗abµν (x;x′0)Gacµκ(x;x′′0)δbcδνκδ(~x′0 − ~x′′0) =

∑
~x,~x′0

Tr
[
|G(x;x0)|2

]
(2.39)

where x′0 = (t0, ~x′0) and x′′0 = (t0, ~x′′0). Thus this combination gives the pion two-point
function, with the sum over the source coordinate (~x0) automatically carried out. Although
this is straight forward for the case of the pion, it may not be apparent how it generalizes to
other mesons. For a general meson we must use a specific sort of spin dilution: ξaµ(x)(r,σ) =
ξa(x)rδµσ where r counts sets of four stochastic vectors and σ labels the vectors in the set,
hence the total number of vectors quadruples. Note that this sort of dilution is different
than that described earlier on. In this case, the random entries are the same within the
diluted set only shifted by the spinor index. With this condition for the noise sources, one
can generalize the one-end trick to arbitrary mesons with interpolating operators of the
form χΓ = d̄Γu:

1
Nr

∑
~x,r

φaµ(~x, t; t0)(r,ν)Γ
′
νσφ
∗a
κ (~x, t; t0)(r,σ)Γ̄

′
κµ =

∑
~x,~x′0,~x

′′
0

Gabµν(x;x′0)Γ′νσG
∗ab′
κσ (x;x′′0)Γ̄′κµδ(~x

′
0 − ~x′′0)δbb′ =

∑
~x,~x′0

Tr
[
G(x;x0)ΓG†(x0;x)Γ̄

]
, (2.40)

where Γ′ = Γγ5 and Γ̄ = γ0Γ†γ0.

In Fig. 2.8 we compare the effective mass plots derived on one hand using the one-end
trick and on the other using the usual method with point-to-all propagators, for the pseudo-
scalar meson. No smearing is done on neither source nor sink for this calculation. The
stochastic inversions were carried out using one spin diluted noise vector per configuration
hence 4 inversions in total. The obvious conclusion is that the correlators computed
using the one-end trick carry smaller errors. On average, the relative error is reduced by
approximately 2.7, equivalent to around ∼7 increase in statistics. This comes at a lower
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Figure 2.8: Comparison between the effective mass derived using the one-end trick (asterisks) and
using the standard method with point-to-all propagators (open circles) for the case of the pion
when no smearing is applied.

computational cost since point-to-all propagators need twelve inversions per configuration,
three more than the stochastic inversions. This shows that indeed the sum over volume
outweighs the stochastic noise introduced in the propagator, leading to a more accurate
determination of the two-point correlator over the same ensemble.

It should be noted here that this way of computing two-point functions fixes the mo-
mentum of the hadron via the automatic summation of the source coordinate ~x0. To
obtain the two-point function at arbitrary momenta, one would need to explicitly carry
out the double sum thus Fourier transforming over source and sink coordinates. Alter-
natively, one can select the momentum prior to the inversion, multiplying the stochastic
source with an appropriate momentum phase. Then the one-end trick could be carried
out to obtain the two-point correlator at finite momentum, though a new inversion would
be needed for every momentum vector.

2.5 Three-Point Functions

As already mentioned, hadronic observables on the lattice are computed via measuring
the vacuum expectation value of appropriately defined correlation functions. We have so
far presented the simple case of the two-point correlation function from which, as we have
seen, we can directly extract the mass of hadrons. More complex correlation functions,
on the other hand, give insight to more detailed information on hadron structure such as
hadron charge radii, hadron decay amplitudes, coupling constants, form factors etc.

Using three-point correlation functions, one can study hadron form factors, from which
information on the shape of hadrons can be extracted as well as hadron couplings and
Generalized Parton Distributions. The general form of such a three-point function is
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given by:
GH

′J µH(x;x1) = 〈Ω|χH′(x)J µ(x1)χ̄H|Ω〉, (2.41)

where χH and χH′ are interpolating operators of hadrons H and H′ respectively while J
is some insertion operator, typically a current insertion which may carry a Dirac index µ,
such as an electromagnetic current, a pseudo-scalar current, an axial vector current and
so on. In Fig. 2.9 we show a generic diagram of the three-point function for the case of
baryons. Note that if the initial and final states are the same (H′ = H) then in principle,
the three-point correlator additionally takes a contribution from a disconnected diagram
(right diagram).

Figure 2.9: The diagram of an arbitrary baryon three-point function.

It is more convenient to carry out this evaluation in momentum space. Since we have
already fixed the initial state to the origin, we shall Fourier transform over ~x1 and ~x and
thus the momentum of the initial state shall be fixed accordingly due to momentum con-
servation. Inserting two sets of complete eigenstates, the three-point correlation function
thus gives: ∑

~x,~x1

e−i~x·~p
′
GH

′J µH(~x, t; ~x1, t1)e−i~x1·~p1 = (2.42)

∑
~x,~x1

e−i~x·~p
′〈Ω|χH′e−Ĥtei~x·~̂p

′
e−i~x1·~̂p′eĤt1J µe−Ĥt1ei~x1·~̂p′χ̄H|Ω〉e−i~x1·~p1 =

∑
~x,~x1

~k,~k′,n,n′

〈Ω|χH′ |n′,~k′〉〈~k, n|χ̄H|Ω〉×

e−En′ (
~k′)(t−t1)e−i~x·(~p

′−~k′)〈n′,~k′|J µ|n,~k〉e−En(~k)t1e−i~x1·(~k′−~k+~p1).

The volume sums fix the momentum of the final state (H′) to ~p′ and of the initial state
(H) to ~p ≡ ~p′− ~p1. Furthermore, in the large time limit t− t1 � 1 and t1 � 1, the ground
state contribution will dominate over excited states in the sums over n and n′. Thus:

GH
′J µH(~p, ~p′; t, t1) ≡

∑
~x,~x1

e−i~x·~p
′
GH

′J µH(~x, t; ~x1, t1)e−i~x1·(~p′−~p) = (2.43)

〈Ω|χH′ |H′(~p′)〉〈H(~p)|χ̄H|Ω〉〈H′(~p′)|J µ|H(~p)〉e−EH′ (~p′)(t−t1)e−EH(~p)t1 .
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and by defining ZH(~q) ≡
√

MH
EH(~q)〈Ω|χH|H(~q)〉:

GH
′J µH(~p, ~p′; t, t1) =ZH′(~p′)Z∗H(~p)

√
MHM ′H

EH(~p)EH′(~p′)
〈H′(~p′)|J µ|H(~p)〉

× e−EH′ (~p′)(t−t1)e−EH(~p)t1 . (2.44)

The expectation value 〈H′(~p′)|J µ|H(~p)〉 is what we want to extract from the three-point
function. For H = H′, at zero momentum, this gives the coupling of the hadron with the
current J µ. At finite momentum, one derives hadron form factors associated with this
current, which in turn provide a comparison with experiment. For off diagonal elements
H 6= H′, this is the transition amplitude which can be parametrized in terms of transition
form factors.

A standard way of isolating the expectation value from the three-point correlator, is to
divide with an appropriate combination of two-point correlators. This combination should
cancel the unknown overlaps ZH and ZH′ as well as the exponential terms e−E(~p′)(t−t1)

and e−E(~p)t1 . There are many ways to construct such ratios, however since the two-point
function is an exponentially decaying function, the time extent of the two-point correlators
should be kept as short as possible. One such optimal ratio is given via:

R(~p, ~p′; t, t1;µ) =
GH

′J µH(~p, ~p′; t, t1)
GH′H′(t, ~p′)

(2.45)

×

√
GHH(t− t1, ~p)GH′H′(t1, ~p′)GH′H′(t, ~p′)
GH′H′(t− t1, ~p′)GHH(t1, ~p)GHH(t, ~p)

.

This ratio is optimal since the largest time extent the two-point functions it involves go up
to is t; the time separation between source and sink. This is important since we do not want
the ratio to introduce more statistical noise than the three-point function already carries.
Similarly to two-point functions, this ratio is then plotted against time (t1 or t according to
the problem) in search for a plateau which is then fitted to a constant. In Fig. 2.10 we show
an example of such an analysis. We show this for the dominant form factor of the Nucleon
to ∆ electromagnetic transition [19]. The calculation is performed in the reference frame
where the final state is at rest i.e. ~p′ = 0, ~p = −~p1 = −~q. The plot shows the first four
non-zero momenta ~q = 2π

L (nx, ny, nz), n2 = 1, 2, 3 and 4. The computation was carried
out on two ensembles of Asqtad improved staggered configurations by MILC [20] using
Domain Wall Fermions [6,21,22] in the valence sector. The lattice spacing is approximately
a ' 0.124 fm= 0.65 GeV−1. In this calculation, the sink time slice is held fixed at t/a = 8
while the insertion time slice t1 is varied in search for a plateau. We shall elaborate on the
specifics of this calculation further on. At this point we show this plot to demonstrate that
a plateau is reached in the ratio with the insertion time slice as close as two time slices from
the source or sink. This is possible because we have used Wuppertal smearing on both
initial and final states to effectively damp excited state contributions. This evaluation
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28 Lattice Methods

Figure 2.10: Ratios, versus the insertion time, for the GM1 nucleon to ∆ electromagnetic form
factor at two pion masses.

would not be possible to such a high accuracy without these excited state suppression
methods, since the large time extents involved would introduce a significant increase in
statistical errors.

So far we have not commented on the propagation of the statistical error of the quanti-
ties studied. In all quantities shown the error propagation was achieved through jackknife
analysis. Thus possible correlations between the statistical measurements have been taken
into account in the error of the ratios. Unless specifically stated, it is implied that all errors
presented here on are jackknife errors.

2.5.1 Sequential Inversion

So far, we have shown the general idea of how one extracts from the lattice transition
amplitudes given the three-point correlation function. We now proceed to give the details
of the calculation. At the quark propagator level, the Fourier transform over the two
spatial coordinates ~x and ~x1 requires the knowledge of the all-to-all propagator, just as in
the case where one wants the two-point function summed over both ends. To see this, we
shall return to the simple case of an arbitrary meson with an interpolating operator of the
form: χΓ = d̄Γu. For simplicity we shall assume a local current of the form J µ = Qdd̄γ

µd
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2.5 Three-Point Functions 29

as the insertion operator. Performing the contractions for this simple case we have:

〈Ω|χΓ(x)J µ(x1)χ̄Γ(0)|Ω〉

=Qd〈Ω|d̄(x)Γu(x)d̄(x1)γµd(x1)ū(0)Γ̄d(0)|Ω〉

= −QdTr[ΓG(x; 0)Γ̄G(0;x1)γµG(x1;x)]

+QdTr[G(x1;x1)γµ]Tr[ΓG(x; 0)Γ̄G(0;x)], (2.46)

where Qd is the charge of the down quark. The second term corresponds to a discon-
nected diagram, similar to the right diagram of Fig. 2.9. The Fourier transform over the
coordinates ~x and ~x1 requires the knowledge of the all-to-all propagator G(x1;x) for the
case of the connected contribution, first term given in Eq. (2.46), and G(x1;x1) for the
disconnected contribution (second term). Up to recently, the evaluation of the all-to-all
propagator via stochastic techniques was too computationally intensive for these kind of
calculations. Hence, in most cases, the disconnected contribution is neglected. For the case
of the connected diagram the sequential inversion technique is employed to automatically
sum over the relevant coordinate in the three-point function.

With the sequential inversion technique, one defines an appropriate source vector so
that one of the sums over ~x or ~x1, for the case of the connected diagram, is carried out
through an inversion of the Dirac matrix. One chooses which of the two sums to carry
out through the sequential inversion depending on the problem at hand. If the method is
applied to carry out the sum over ~x, then this is called the fixed sink sequential method
since this fixes the momentum of the final state. Alternatively, one can compute the three-
point function via the fixed current method, which means the sequential inversion performs
the sum over the insertion coordinate ~x1. With this method, the insertion momentum is
fixed as well as the insertion operator.

To return to our example of an arbitrary meson, the three-point correlation function
in terms of quark propagators is given by:

GχΓγ
µχΓ(~p, ~p′; t, t1) = (2.47)

−
∑
~x, ~x1

Qde
−i~p′·~xTr[ΓG(x; 0)Γ̄G(0;x1)γµG(x1;x)]e−i~x1·(~p′−~p).

The first step to evaluatingGχΓγ
µχΓ is to obtain the point-to-all propagator from the source

to all lattice sites, G(x; 0). For the fixed current approach the appropriate sequential source
is given by:

Kab
ρσ(~x, tx; ~q;µ) = (γ5γ

µγ5)ρρ′Gabρ′σ′(~x, tx;~0, 0)(γ5)σ′σδ(tx − t1)ei~x·~q, (2.48)
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which through inversion gives the sequential propagator:

S(~y, ty; t1; ~q;µ) =
∑
~x

G(~y, ty; ~x, t1)γ5γ
µγ5G(~x, t1;~0, 0)γ5e

i~x·~q ⇒ (2.49)

S†(~y, ty; t1; ~q;µ)γ5 =
∑
~x

G(~0, 0; ~x, t1)γµG(~x, t1; ~y, ty)e−i~x·~q.

The three-point function can now be constructed in terms of this sequential propagator:

GχΓγ
µχΓ(~p, ~p′; t, t1) = (2.50)

−
∑
~x

Qde
−i~p′·~xTr[ΓG(x; 0)Γ̄S†(x; t1; ~p′ − ~p;µ)γ5].

Notice that the momentum of the current ~p′ − ~p, the operator inserted γµ as well as the
insertion time t1 are set when constructing the sequential source. Thus a new inversion
is needed for each of these parameters one would like to vary. On the other hand, one
can change arbitrarily the state at the sink (Γ) and can obtain the correlator for any sink
momentum (~p′) and for any sink time t.

Alternatively, for the fixed sink approach, the sequential source is constructed via:

Kab
ρσ(~x, tx; ~q; Γ) = Γρσ′Gabσ′σ(~x, tx;~0, 0)δ(tx − t)e−i~x·~q, (2.51)

which when inverted gives the sequential propagator:

S(~y, ty; t; ~q; Γ) =
∑
~x

G(~y, ty; ~x, t)ΓG(~x, t;~0, 0). (2.52)

Thus the three-point function can be constructed by:

GχΓγ
µχΓ(~p, ~p′; t, t1) = (2.53)

−
∑
~x1

QdTr[S(x1; t; ~p′; Γ)Γ̄G(0;x1)γµ]e−i~x1·(~p′−~p).

Here, the final state (Γ), the final state momentum ~p′ as well as the sink time slice t are
fixed when constructing the sequential source. The advantage of this method is that the
insertion operator can change arbitrarily as well as the insertion momentum ~p′ − ~p and
the insertion time slice t without the need for a new inversion. This gives the matrix
element for arbitrary momentum transfer, compared to the fixed insertion method where
the momentum transfer is fixed prior to the sequential inversion.

After contracting the sequential propagator with the forward propagator, one obtains
a function of the insertion coordinate which by Fourier transform gives the three-point
function at arbitrary momentum. We would like to note here that in practice one does
not have access to any, arbitrarily large momentum transfer of the matrix element though.
As shall be seen in the measurements that follow in the next Chapters, one can extract
reliable results up to momentum transfers of around 2 GeV2. The reason is that the
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2.5 Three-Point Functions 31

three-point function, as well as the two-point functions that are used in the ratio, are
exponentially decaying functions with time with the energy of the hadron for the given
momentum appearing in the exponent. The larger the momentum transfer, the faster the
three-point function falls with time, and since statistical errors are constant this means
that the signal is lost earlier. The advantage of being able to probe any momentum lies in
the fact that the interesting quantities we want to extract from the three-point function
are usually functions of the momentum transfer squared. Hence by having access to all the
lattice momentum vectors we can average over all momenta that give the same momentum
transfer squared thus improving statistics.

The sequential source method can be generalized to more complicated three-point
function calculations such as baryon three-point functions which we shall see in the next
chapters. Here we have presented the method for the simple case of mesons in order
to demonstrate the basic concepts of the sequential inversion and to explain the two
approaches; the fixed sink and the fixed current approach.

In the chapters that follow, we shall present results for the nucleon electromagnetic
form factors as well as the nucleon to ∆ electromagnetic transition form factors computed
via the sequential inversion technique. For these two calculations the fixed sink approach
was used, choosing the sink momentum as zero. As shall be seen, this approach was
chosen so that several operators can be inserted, which in turn allows the construction
of combinations of correlators which isolate specific form factors. More importantly, this
method allows the computation of the three-point function at arbitrary insertion momen-
tum without additional computational cost.
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Chapter 3

Nucleon Electromagnetic Form Factors

The structure of hadrons is a topic still being investigated experimentally as well as the-
oretically. The ingredients of the nuclei, the nucleons, are the building blocks of visible
matter and thus understanding their characteristics and structure within QCD is one of
the main goals of the theory. Experimentally, basic features of the nucleons such as their
size, charge distribution and magnetization are probed via the scattering of electrons on
nucleons. This electromagnetic interaction is parametrized in terms of two form factors,
the nucleon electromagnetic form factors.

The nucleon electromagnetic matrix element is given by:

〈N(p′, s′)|jµ|N(p, s)〉 =

√
M2
N

EN (~p′)EN (~p)
ū(p′, s′)Oµu(p, s), (3.1)

where
Oµ = γµF1(q2) +

iσµνq
ν

2MN
F2(q2). (3.2)

p (s) and p′ (s′) are the initial and final momenta (spins) of the nucleon while qµ =
p′µ − pµ is the momentum transfer. F1(q2) is the Dirac form factor, with F1(0) = QN
is the charge of the nucleon while F2(q2) is the Pauli form factor with F2(0) = κN is its
anomalous magnetic momentum. The earliest measurement of these form factors was in
the 1950’s [23] where the two proton form factors were found to have the same dependence
on the momentum transfer squared up to ∼0.5 GeV2. More specifically, this measurement
established that the form factors have a dipole dependence on Q2 = −q2:

Gd(Q2) = (1 +
Q2

0.71
)−2. (3.3)

Using Rosenbluth separation [24], the electric (GE) and magnetic (GM ) nucleon form
factors, known as Sachs form factors, are extracted:

GE(q2) =F1(q2) +
q2

(2MN )2
F2(q2),

GM (q2) =F1(q2) + F2(q2). (3.4)

Measurements of these two form factors showed that at low momentum transfers their

33
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34 Nucleon Electromagnetic Form Factors

ratios with the dipole form factor Gd(Q2) of Eq. (3.3) were approximately consistent. Next
generation experiments [25] that measure the ratio µGE/GM directly through polarization
experiments, have indicated that this ratio falls off approximately linearly indicating that
the electric form factor falls faster than the magnetic form factor. One can find reviews
of experimental measurements in Refs. [26, 27].

Given the experimental situation, it is thus of interest to calculate these form factors
from first principles. Accurate measurement on the lattice can provide a comparison with
experiment as well as a better determination of phenomenologically interesting quantities
such as the electric and magnetic r.m.s. radii. In this chapter we shall present a lattice
computation of the nucleon electromagnetic form factors [15]. We improve on a previous
quenched calculation [28] by going to lighter pion masses as well as using unquenched gauge
configurations. Additionally the accuracy of this measurement is improved by employing
techniques such as including all lattice momentum vectors that contribute to the same
momentum transfer squared and constructing an optimized sink for a specific form factor.

3.1 Lattice Formulation

As explained more generally in Chapter 2, the calculation of the matrix element of Eq. (3.1)
on the lattice requires the calculation of a three-point function:

GNj
µN (t2, t1; ~p′, ~p; Γ) = (3.5)∑

~x2,~x1

e−i~x2·~p′〈Ω|ΓβαχNα (~x2, t2)jµ(~x1, t1)χ̄Nβ (~0, 0)|Ω〉e−i~x1·(~p′−~p),

where Γ are projection matrices, which in the basis given in Appendix A are given by:

Γi =
1
2

(
σi 0
0 0

)
i = 1, 2, 3 and Γ4 =

1
2

(
1 0
0 0

)
, (3.6)

while χN (x) is a nucleon interpolating operator and jµ(x) is an electromagnetic current
given by:

χNα (x) =εabcua>µ (x)(Cγ5)µνdbν(x)ucα(x)

jµ(x) =Quū(x)γµu(x) +Qdd̄(x)γµd(x). (3.7)

Qu and Qd are the electric charge of the up and down quarks respectively. As given above,
jµ is not a conserved current, i.e. it is not a Noether current of the lattice action. For the
calculation we additionally use the lattice conserved electromagnetic current:

jµ(x) =
∑
f

Qfκ[ψ̄f (x+ µ̂)(1 + γµ)U †µ(x)ψf (x)− ψ̄f (x)(1− γµ)Uµ(x)ψf (x+ µ̂)], (3.8)
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3.1 Lattice Formulation 35

where f = u, d and κ is the Wilson hopping parameter. We take a symmetric combination
of the conserved current:

jµ(x)→ [jµ(x) + jµ(x− µ̂)]/2. (3.9)

As in the simple case of the pion presented in Chapter 2, this three-point function has
a disconnected contribution. On the lattice this requires the computation of an all-to-
all propagator which is generally more difficult to calculate due to the large number of
inversions one needs if one is to employ stochastic techniques. In this work we avoid the
need to compute the disconnected contribution by computing the isovector proton form
factors given by:

GE(q2) =GpE(q2)−GnE(q2)

GM (q2) =GpM (q2)−GnM (q2), (3.10)

where GpE (GpM ) and GnE (GnM ) are the electric (magnetic) form factors of the proton
and neutron respectively. In the computation of these isovector form factors, the quark
loops cancel if we assume degeneracy between up and down quarks. To be more specific,
assuming isospin SU(2) flavor symmetry, the current from which the isovector form factors
are computed is given by:

〈p|2
3
ūγµu−

1
3
d̄γµd|p〉 − 〈n|

2
3
ūγµu−

1
3
d̄γµd|〉 = 〈p|ūγµu− d̄γµd|p〉. (3.11)

Thus the propagator corresponding to the up quark loop cancels with that corresponding
to the down quark loop.

As shown in Chapter 2, the matrix element is extracted from the three-point function
by dividing it with an appropriate ratio of two-point functions. The two-point function in
the large time limit is given by:

GNN (t, ~p; Γ4) = Γβα4

∑
s

〈Ω|χNα |N(~p, s)〉〈N(~p, s)|χ̄Nβ |Ω〉e−EN (~p)t. (3.12)

where we trace the Dirac indices of the nucleon interpolating operator with Γ4. The above
expression is reached to by inserting a complete set of states to the nucleon two-point
function: ∑

s,n,~p

|n, ~p, s〉〈n, ~p, s| = 1, (3.13)

where s is the spin quantum number. Adopting a basis of the states as given in Chapter 2,
the overlap of a nucleon state with the interpolating operator is defined by:

〈Ω|χNα |N(~p, s)〉 = ZN (~p)

√
MN

EN (~p)
uα(~p, s), (3.14)
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where u is a Dirac spinor. Using the spin sum rule for Euclidean space-time:

∑
s

u(p, s)ū(p, s) =
−i/p+MN

2MN
(3.15)

the two-point function, traced with the projection matrix Γ4, gives:

GNN (t, ~p,Γ4) =
EN (~p) +MN

EN (~p)
|ZN (~p)|2e−EN (~p)t. (3.16)

On the other hand, the three-point function, after inserting two sets of complete states
gives, in the large time limit t2 − t1 � 1 and t1 � 1:

GNj
µN (t2, t1; ~p′, ~p; Γ) = (3.17)∑

s,s′

ΓβαZN (~p′)

√
MN

EN (~p′)
uα(~p′, s′)ūα′(~p′, s′)

√
M2
N

EN (~p)EN (~p′)
Oµα′β′×

uβ′(~p, s)ūβ(~p, s)Z̄N (~p)

√
MN

EN (~p)
e−EN (~p′)(t2−t1)e−EN (~p)t1

=
ZN (~p′)Z̄N (~p)

4EN (~p′)EN (~p)
Tr
[
Γ
(
−i/p′ +MN

)
Oµ
(
−i/p+MN

)]
. (3.18)

The ratio is thus constructed and the matrix element is extracted by identifying a plateau
in the large time limit. The ratio is given by:

R(t2, t1, ~p′, ~p; Γ;µ) =
GNj

µN (t2, t1; ~p′, ~p; Γ)
GNN (t2, ~p′; Γ4)

(3.19)

×
[
GNN (t2 − t1, ~p; Γ4)GNN (t1, ~p′; Γ4)GNN (t2, ~p′; Γ4)
GNN (t2 − t1, ~p′; Γ4)GNN (t1, ~p; Γ4)GNN (t2, ~p; Γ4)

]1/2

t2−t1�1−−−−−→
t1�1

Π(~p′, ~p,Γ, µ).

In this specific measurement we have chosen to use the fixed sink sequential inversion
method. As demonstrated in Chapter 2 this means that the sum over the sink coordinate
is carried out by the inversion of an appropriately constructed source. This allows for
any momentum transfer, as well as any direction of the electromagnetic current (µ) to be
selected without further inversions. On the other hand, we must fix the final state and its
momentum before the sequential inversion. We choose to set the momentum of the sink,
~p′ to zero. The momentum transfer, defined by qµ = pµ

′ − pµ is thus given by ~q = −~p in
this frame.

The projection matrix Γ which is used in the three-point function allows to select com-
binations with the current direction µ so that a specific form factor is isolated. Although
µ can be arbitrarily varied after the sequential inversion, the matrix Γ is traced over the
final and initial states and thus appears in the sequential source. Thus it must be selected
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before the sequential inversion. We find two combinations that isolate the electric form
factor and one that isolates the magnetic:

Π(~0,−~q; Γk;µ = i) =K(~q)
1

2MN
εijkqjGM (Q2) (3.20)

Π(~0,−~q; Γ4;µ = i) =K(~q)
qi

2MN
GE(Q2) (3.21)

Π(~0,−~q; Γ4;µ = 4) =K(~q)
E(~q) +MN

2MN
GE(Q2) (3.22)

with K(~q) = 2M2
N

EN (~q)(EN (~q)+MN ) . For the two combinations that give the Electric form factor
(Eqs. (3.21) and (3.22)) we need only perform the sequential inversion using the sequential
source with Γ4. Eq. (3.20) on the other hand, is in fact a set of three equations. Thus
we reduce the number of sequential inversions needed for GM (Q2) to one, by constructing
a linear combination of these sinks. In this way, we obtain the largest set of lattice
measurements that give GM with only one sequential inversion:

Sm(~q, i) =
3∑

k=1

Π(~0,−~q; Γk;µ = i) (3.23)

=
K(~q)
2MN

[(p2 − p3)δ1,i + (p3 − p1)δ2,i + (p1 − p2)δ3,i]GM (Q2).

In Appendix B we perform the contractions of the quarks in the nucleon three-point
function, expressing them in terms of quark propagators. We carry on to show how one
constructs the sequential source, which for this case is rather non trivial as compared to
the pion three-point function, shown in Chapter 2.

3.2 Interpolation of Experimental Results

As mentioned previously, one of the goals of this calculation is to directly compare the
nucleon electromagnetic form factors with experiment. The experimental data for the neu-
tron and proton form factors are available separately albeit at non coincident momentum
transfers. In order to subtract one from the other and yield the isovector form factors we
must interpolate the experimental results to the same Q2 values.

In Fig. 3.1 we show experimental results for the electric and magnetic form factors of
the proton and neutron. These results are obtained in a wide range of experiments [29–43].
For the Electric form factor, we need to extrapolate the data of the proton to values of Q2

between 0.25 and 1.0 GeV2 while for the neutron we need to extrapolate to low momentum
transfer. For the neutron electric form factor we use the Galster parametrization [44]:

GnE(Q2) =
−µnτ

1 + 5.6τ
Gd(Q2) (3.24)

where τ = Q2/4M2
N , µn = −1.91315 and Gd is the dipole given in Eq. (3.3). This provides

a good description of the experimental data. We compute the derivative of Eq. (3.24) at
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Figure 3.1: Experimental results for the electric (left) and magnetic (right) Sachs form factors for
the proton (filled triangles) and the neutron (open triangles).

the Q2 needed and interpolate the data accordingly. In the case of the proton Electric
form factor, we fit to a dipole form and carry out the same procedure. This is also done
for the magnetic form factors, although in cases where two measurements are close enough
to the intermediate Q2 desired, we favor a finite difference approximation.

Figure 3.2: Interpolated results (open circles for proton, filled circles for neutron) compared to raw
experimental results (filled triangles for proton, open triangles for neutron). Left for the electric
and right for the magnetic form factors. The crosses show the isovector form factor; the difference
between the proton and neutron form factors.

In Fig. 3.2 we show the result of interpolating the experimental data and the resulting
isovector form factor computed by the difference of the proton minus the neutron form
factor. The electric isovector form factor is only slightly lower than the proton electric
form factor due to the small neutron electric form factor. In Fig. 3.3 we show the ratio
µGE/GM for both the proton and the isovector form factors extracted by interpolating
the experimental data. As can be seen the ratio of isovector form factors is steeper at
low momentum transfers compared to the ratio of the proton form factors. At higher Q2

however, the isovector remains approximately the same. Investigating this behavior with
precise measurements from lattice QCD is one of the goals.
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Figure 3.3: Ratio of GE/GM of the isovector (crosses) obtained by interpolating the experimental
data and the proton (triangles).

3.3 Lattice Parameters and Optimization

For the results that follow, one ensemble of quenched Wilson configurations is used as well
as three ensembles of Wilson NF = 2 dynamical configurations. The quenched configura-
tions are used since the low computational cost provides access to larger lattices which in
turn allow for finer lattice momenta. A 323×64 lattice at β = 6.0 using three pion masses
is thus used, allowing a smallest momentum transfer of 0.15 GeV2. The unquenched cal-
culation is carried out on two ensembles of gauge configurations provided by the SESAM
Collaboration [8] and one ensemble from the DESY-Zeuthen group [45]. All three of
these ensembles are simulated using β = 5.6 meaning a lattice spacing of approximately
∼ 0.08 fm, which is comparable with that of the quenched calculation ∼ 0.09 fm. Thus,
discrepancies between the results using the dynamical configurations with those using the
quenched lattices will be a measure of unquenching effects since the two calculations ex-
hibit similar finite a effects. Details of the lattices used in this calculation can be found
in Table 3.1. The lattice spacing for these configurations was set by requiring the nucleon
mass at the chiral limit to be equal to the physical nucleon mass. The chiral extrapolation
was carried out using two forms:

aMN (m2
π) =aMN (0) + c0m

2
π, (3.25)

aMN (m2
π) =aMN (0) + c1m

2
π + c2m

3
π.

The discrepancy between the value of a obtained by using these two Ansätze gives the
systematic error, which we found larger than the statistical error. Thus we quote the
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40 Nucleon Electromagnetic Form Factors

Table 3.1: Details of the gauge configuration ensembles used in this calculation. The Wilson
dynamical configurations at κ = 0.1575 and κ = 0.1580 are taken from [8] while the ensemble at
κ = 0.15825 was taken from [45].

number of confs κ amπ aMN

Quenched 323 × 64 a−1 = 2.14(6) GeV
200 0.1554 0.263(2) 0.592(5)
200 0.1558 0.229(2) 0.556(6)
200 0.1562 0.192(2) 0.518(6)

κc =0.1571 0. 0.439(4)
Unquenched 243 × 40 a−1 = 2.56(10) GeV

185 0.1575 0.270(3) 0.580(7)
157 0.1580 0.199(3) 0.500(10)

Unquenched 243 × 32 a−1 = 2.56(10) GeV
200 0.15825 0.150(3) 0.423(7)

κc = 0.1585 0. 0.366(13)

systematic error in Table 3.1.

As we have seen in Chapter 2 smearing of the initial and final states improves ground
state dominance considerably, so that a plateau is identified at earlier time slices. Fig. 2.4
shows that excited state contamination is suppressed as early as three time slices from the
source when employing both Wuppertal smearing on the initial state and HYP smearing
in the links that enter the source smearing. This allows us to set the sink time-slice close
enough to the source so that statistical noise is under control, while simultaneously leaving
enough time slices in between to vary the insertion time in search for a plateau. For both
quenched and unquenched cases we use the same set of parameters for the smearing,
namely n = 50 iterations and α = 4.0, i.e. the same parameters used for the example
plots of the previous chapter.

The nucleon two-point function is shown in Fig. 3.4 where we plot the nucleon energy
for the smallest lattice momentum available |~p| = 2π

L . This is done for the quenched lattice
using the lightest pion mass. The effective energy plotted is constructed from the ratio of
correlators: ENeff(~p, t) = − log [C(~p, t+ 1)/C(~p, t)]. In the large time limit, the ratio gives
a plateau at the value of the energy. The dashed line shows a fit to a constant. The solid
line shows a fit to a form which takes into account the first excited state, i.e. to the form:

C(~p, t) = |〈Ω|χNα |N(~p, s)〉|2e−EN (~p)t + |〈ΩχNα |N ′(~p, s)〉|2e−EN′ (~p)t, (3.26)

where N ′ is the first excitation of the nucleon and EN ′ its energy. The ratio fN (~p, t) =
− log[C(~p, t+ 1)/C(~p, t)], keeping the term associated with the first excitation, now gives:

fN (~p, t) = EN (~p)− log
(

1 + rN (~p) exp[−δN (~p)(t+ 1)]
1 + rN (~p) exp(−δN (~p)t)

)
(3.27)
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3.3 Lattice Parameters and Optimization 41

where rN is the ratio between the overlaps and δN the energy splitting:

rN (~p) =
|〈Ω|χNα |N(~p, s)〉|2

|〈Ω|χNα |N ′(~p, s)〉|2
(3.28)

δN (~p) =EN ′(~p)− EN (~p).

The solid line in Fig. 3.4 shows a three parameter fit to Eq. (3.27) determining EN (~p),
rN (~p) and δN (~p). Consistency with the dashed line shows that whether we fit the whole
correlator considering a first excited state or fit from t/a = 4 to a constant we find the
same value for the energy. Hence excited state contamination can be neglected for t/a ≥ 4
for this lattice spacing. A source-sink separation of t/a = 11 or 5 GeV−1 which is what
we take for the quenched case is thus a reasonable choice. For the unquenched Wilson
configurations which are simulated on slightly finer lattices we take t/a = 12 which gives
a source-sink separation of approximately 4.9 GeV−1.

Figure 3.4: Nucleon energy plot for |~p| = 2π
L versus time. The dashed line is a fit to a constant

while the solid line shows a fit to Eq. (3.27).

It is evident from Eqs. (3.20–3.22) that more than one lattice measurement yields the
form factors at a given Q2. To extract the form factors using all lattice measurements
available we solve the over-complete set of equations:

P (~q;µ) = D(~q;µ)F (Q2), (3.29)

where P (~q;µ) is a vector of the lattice measurements, i.e. of the different Π(0;−~q; Γ;µ)
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combinations at a given Q2. F is the vector of form factors we want to extract:

F (Q2) =

(
GE(Q2)
GM (Q2)

)
(3.30)

and D(~q;µ) is a matrix of kinematic terms which can be read off from Eqs. (3.20–3.22).
F (Q2) is extracted by minimizing:

χ2 =
N∑
k=1

(
DkiFi(Q2)− Pk

wk

)2

(3.31)

where the index k counts all the µ and ~q combinations that contribute to a given Q2 and
wk is the statistical error the lattice measurement Pk carries. Minimizing with respect
to Fi gives (DF − P ) · D> = 0. The inversion is achieved through the singular value
decomposition of Dk,i, i.e. we numerically compute the decomposition of D̃ki = Dki/wk

into:
D̃ = UΣV † (3.32)

where, assuming D̃ is an M × 2 matrix, U is an M ×M unitary matrix, Σ an M × 2
diagonal matrix and V a 2× 2 unitary matrix. We thus extract the form factors by:

F = V Σ−1U †P̃ (3.33)

where P̃k = Pk/wk.

Figure 3.5: The electric isovector form factor (left) and the isovector magnetic form factor (right)
computed using a local current (crosses) and the symmetrized lattice conserved current as in
Eq. (3.9) (open circles).

Before going on to the main results, we shall give details on two tests carried out to
check lattice techniques. In Fig. 3.5 we show a comparison between the electric isovector
form factor computed using the lattice conserved current given in Eqs. (3.8) and (3.9) and
the local current given in Eq. (3.7). The form factor computed with the local current has
been normalized requiring charge conservation, i.e. requiring GE(0) = 1. This gives a
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3.4 Results 43

renormalization constant ZV = G−1
E (0) = 0.67 for the electromagnetic current. The test

was carried out for the quenched case with κ = 0.1554. As can be seen, results for both
the electric and magnetic form factor show deviations when using the local or the lattice
conserved current. Furthermore, the discrepancy found in the two form factors is not in
the same direction. This means the ratio of GE/GM will show an even larger discrepancy
between the two choices for the current. This discrepancy shows that lattice artifacts are
not completely negligible for these values of the lattice spacing.

Figure 3.6: The electric isovector form factor computed using the combination in Eq. (3.21) (circles)
and the combination given in Eq. (3.22) (crosses). We show this using both the local current (left)
and the conserved current (right).

A second test was carried out where we computed GE on one hand using Eq. (3.21)
and on the other hand using Eq. (3.22). The result of this test is shown in Fig. 3.6.
The discrepancy between the two combinations at low Q2 for both lattice currents can
be understood by noticing that GE is multiplied by qi in Eq. (3.21). As ~q → 0 the
inverse of the momentum vector ~qi becomes inaccurate leading to an erroneous value for
GE . However, at momentum transfers larger than ∼0.5 GeV2 we see that there are slight
discrepancies for the case of the local current while the results using the conserved current
are in better agreement. We therefore choose to use the lattice conserved current for the
calculations that follow. Furthermore, we only use Eq. (3.22) to extract GE for momentum
transfers lower than Q2 < 0.5 GeV2.

3.4 Results

In Fig. 3.7 we show the electric isovector form factor computed on the lattice using both
quenched and unquenched ensembles of Table 3.1 at all three pion masses each. The
results are compared to the interpolated experimental data. As can be seen, the value
of the form factor decreases slightly with decreasing pion mass bringing the lattice data
closer to experiment as we approach the chiral limit. In Fig. 3.8 we plot the ratio of the
electric form factor over the dipole form factor Gd. This is done so we can better detect
discrepancies with experiment. We see that the unquenched results show a stronger quark
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44 Nucleon Electromagnetic Form Factors

Figure 3.7: The electric isovector form fac-
tor. Lattice results are compared to experi-
ment (filled triangles). Wilson quenched are
denoted by the crosses, open circles and aster-
isks for κ = 0.1554, κ = 0.1558 and κ = 0.1562
respectively while dynamical Wilson NF = 2
are denoted by the open triangles, filled circles
and open squares for κ = 0.1575, κ = 0.1580
and κ = 0.15825 respectively.

Figure 3.8: The electric isovector form factor
divided by the dipole form factor. The notation
is the same as that of Fig. 3.7.

mass dependence than the quenched results, pointing to a smaller value in the chiral limit.
However, the slope of the lattice data at small momentum transfers has the opposite
sign than that of the experiment. This discrepancy could be attributed either to possible
discretization effects, or that we are too far away from the chiral limit for a meaningful
comparison with experiment. As for the first possibility, assessing finite a effects requires
the computation of the form factors at different lattice spacings. The lattices available to
us at the time of this analysis were restricted to a single lattice spacing, hence such an
investigation was not possible within the amount of resources available. As for the second
possible source of discrepancy – that we are too far away from the chiral limit – we are
once again limited by resources as to how light a pion mass we can reach. Nevertheless,
we will present a chiral extrapolation in the next section.

Figure 3.9: The magnetic isovector form factor.
The notation is the same as that of Fig. 3.7.

Figure 3.10: The magnetic isovector form fac-
tor divided by the dipole form factor. The no-
tation is the same as that of Fig. 3.7.
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In Fig. 3.9 we show the magnetic form factor, computed using the optimal source
given in Eq. (3.23). The conclusion is the same as for GE ; that the lattice data decrease
with decreasing pion mass thus approaching the experimental results. We show the ratio
GM/Gd in Fig. 3.10, where we notice the stronger dependence of the unquenched results
with the quark mass, as already noted in the case ofGE/Gd. We note that the experimental
data for the magnetic form factor are well described by the dipole form Gd which is why
they show an approximately zero slope in Fig. 3.10. At least for the pion masses available
for this work, this seems not to be the case for the lattice data where we note a positive
slope, as in the case of GE/Gd (Fig. 3.8).

Figure 3.11: The ratio of the electric over the magnetic form factors compared to experiment. The
notation is the same as that of Fig. 3.7.

We show the experimentally interesting ratio µGE/GM in Fig. 3.11. As can be seen,
the ratio is quite insensitive to the pion mass as well as unquenching effects contrary to
GE and GM plotted separately. We once again see a discrepancy with experimental data,
namely the lattice data show a smaller if not zero slope than that of the experimental data
which is clearly negative.

The Dirac (F1) and Pauli (F2) form factors are plotted in Fig. 3.12. These are linear
combinations of the Sachs form factors (Eq. (3.4)). They are phenomenologically inter-
esting since in the non-relativistic limit, the slope of F1 is associated with the transverse
size of the nucleon [46]. We see a discrepancy of the lattice data for F1 as compared to
experiment, as well as a weak quark mass dependence. The apparent insensitivity to the
quark mass means that a chiral extrapolation would need to be non-trivial in order for
lattice and experiment to yield consistent results in the chiral limit. F2 on the other hand
has a stronger quark mass dependence and is expected to come closer to experiment after
extrapolating to zero pion mass.

Gian
nis

 K
ou

tso
u



46 Nucleon Electromagnetic Form Factors

Figure 3.12: The Dirac (left) and Pauli (right) form factors compared with experiment. The
notation is the same as that of Fig. 3.7.

3.5 Chiral Extrapolation

As noted above, one of the sources of discrepancy between the lattice results and the
experiment may be the fact that we are too far away from the chiral limit. The form
factors were calculated at pion masses in the range between 0.41 and 0.56 GeV for the
quenched case and in the range between 0.38 and 0.69 GeV using Wilson dynamical
configurations. The statistical accuracy of the measurement allows momentum transfers
(squared) up to around 2 GeV2. The only recent work in which a chiral expansion for
these form factors is presented [47] is limited to small momentum transfers. For high
enough momentum transfers though (Q2 >0.5 GeV2), we expect that non-linear terms in
the extrapolation are suppressed.

Figure 3.13: The electric (left) and magnetic (right) form factors as a function of the pion mass
squared for several momentum transfers. For the quenched case we take the three lowest Q2

(crosses, filled triangles and asterisks with increasing Q2) while for the unquenched case we take
the lowest (filled circles) and 1.37 GeV2 (open triangles). Q2

0 denotes the momentum transfer at
the chiral limit.

We investigate this in Fig. 3.13 where we plot GE(Q2) and GM (Q2) as a function of
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3.5 Chiral Extrapolation 47

the pion mass squared at several momentum transfers. For the quenched calculation we
do this for the three lowest momentum transfers while for the calculation using dynamical
Wilson fermions we do this for the the lowest momentum transfer and for Q2 = 1.37 GeV2.
In the reference frame where the final state is stationary, the momentum transfer squared
is given by Q2 = 2MN (EN (~q) −MN ). Since the nucleon mass MN is a function of the
pion mass itself, the form factors computed at different pion masses are not available at
equal momentum transfer Q2. For the purpose of illustrating the linear dependence in
Fig. 3.13, we use the physical nucleon mass for MN and denote the momentum transfer
using this mass as Q2

0. As we can see all data are well described by a straight line meaning
that for these relatively high pion masses terms non-linear to m2

π are suppressed. We
therefore consider a linear extrapolation to the chiral limit. There is a freedom as to how
we choose this extrapolation from the fact that the Q2 values are different at different
pion masses due to the dependence of the nucleon mass to the pion mass. To first order
this dependence is linear to the pion mass squared and hence we can write:

f(Q2,mπ) = f(Q2
0, 0) +Am2

π, (3.34)

where Q2 is the momentum transfer at the given pion mass and Q2
0 is that at zero pion

mass. Indeed, this is a good approximation since even at relatively large momentum
transfer of 1.37 GeV2 as shown in Fig. 3.13, the value of the form factor is linear to m2

π.
Alternatively, we can interpolate the data so that at each pion mass we have the form
factors at the same Q2 values. This approach should give the same chiral limit for the
form factors something we have indeed verified. We hereon carry out the extrapolation
using the first method described.

In Fig. 3.14 we show the result of this linear extrapolation for the case of the electric
to dipole form factor ratio and for the case of the magnetic to dipole form factor ratio.
As can be seen, the electric form factor still shows a large discrepancy with experiment
for both the unquenched and the quenched case which is a result of the weak quark mass
dependence already noted in the previous section. The discrepancy however is smaller in
the case of the magnetic form factor where, as can be seen, the extrapolated results are
closer to experiment. We have additionally carried out extrapolations for the Dirac and
Pauli form factors. In Fig. 3.15 we show the linearly extrapolated form factors compared to
the interpolated experimental data. As can be seen the extrapolated results indicate that
unquenching effects are small. Furthermore, the Pauli form factor (F2) is in agreement
with experimental data for momentum transfers larger than 0.5 GeV2. As expected from
the results shown in the previous section, this is not the case for the Dirac (F1) form factor
where we see that the experimental data fall more rapidly than the lattice results.

It is meaningful to attempt an extraction of the magnetic moment GM (0) from the
lattice data. As can be seen by Eq. (3.20), there is no combination of the direction of
the current and the direction of the momentum transfers that gives GM (0) directly. This
means we must fit the data to an Ansatz in order to extrapolate to Q2 = 0. We consider
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Figure 3.14: The ratio of the electric to dipole
form factor GE/Gd (upper) and magnetic to
dipole µGM/Gd (lower) as a function of Q2 af-
ter a linear extrapolation to the chiral limit.
We denote results for the quenched case with
open triangles and results for the unquenched
case with filled circles. The results for the
experimental isovector ratios (filled triangles)
where extracted by interpolating the experi-
mental data.

Figure 3.15: The form factors F1 (upper) and
F2 (lower) as a function of Q2. Crosses show
quenched results at the chiral limit, and filled
circles unquenched results. The results for the
experimental isovector ratios (filled triangles)
where extracted by interpolating the experi-
mental data.

a dipole form for both electric and magnetic form factors:

GM (Q2) =
GM (Q2)

(1 +Q2/Mm)2
(3.35)

GE(Q2) =
GE(Q2)

(1 +Q2/Me)2
.

In Fig. 3.16 we show fits for the intermediate pion masses of the quenched and unquenched
calculation. Using the data up to Q2 '2.5 GeV2 we obtain good fits (χ2 < 1). For
comparison we include fits to an exponential which the magnetic form factor seems to be
equally well described by. We however choose to use the dipole forms since this better
describes both electric and magnetic form factors.

In Table 3.2 we summarize the values of the magnetic moments as well as the dipole
masses extracted by fitting. The values quoted at the chiral limit are from fitting to the
extrapolated data. As can be seen, the values of the dipole masses and the magnetic
moment decrease with decreasing pion mass which is what is expected by the plots shown
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Figure 3.16: The magnetic (upper) and electric (lower) form factors for the quenched (left) and
the unquenched (right) cases. Fits to dipole form are shown by the dashed lines while fits to an
exponential by the solid lines.

so far. For the unquenched case we notice that the dipole masses at the chiral limit are
rather close to the proton dipole mass of Md = 0.71 GeV2.

We plot the values quoted in Table. 3.2 against the pion mass squared in Fig. 3.17.
We additionally include in this plot lattice results from Ref. [28] at a lattice spacing of
a−1 = 1.83 GeV which is close enough to our quenched calculation for comparison. The
calculation of the form factors in Ref. [28] was carried out using perturbatively improved
Wilson fermions. In order to compare with this measurement we rescale the magnetic
moment by the ratio of the physical nucleon mass to that measured on the lattice. As
can be seen, there is an agreement between the two lattice computations. A linear ex-
trapolation of the quenched results yields GM (0) = 3.67(3) which is consistent with the
value obtained when fitting to the extrapolated form factors, given in Table. 3.2. Linearly
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Table 3.2: The magnetic moments GM (0) as well as the electric and magnetic dipole masses Me

and Mm extracted by fitting GE and GM to dipole forms. The values given at the chiral limit
where compute by fitting to the extrapolated form factors.

κ GM (0) Mm(GeV2) Me(GeV2)
〈
r2

1

〉 1
2 (fm)

〈
r2

2

〉 1
2 (fm)

Quenched 323 × 64 a−1 = 2.14(6) GeV
0.1554 4.11(7) 1.29(4) 1.24(1) 0.520(5) 0.64(1)
0.1558 4.02(8) 1.28(4) 1.15(1) 0.538(6) 0.64(1)
0.1562 3.90(9) 1.19(4) 1.08(1) 0.550(8) 0.66(1)

κc =0.1571 3.73(13) 1.03(5) 0.90(2) 0.585(13) 0.72(2)
Unquenched 243 × 40 a−1 = 2.56(10) GeV

0.1575 4.45(14) 1.53(7) 1.55(1) 0.467(7) 0.58(2)
0.1580 4.34(43) 1.23(16) 1.41(2) 0.462(23) 0.67(5)

Unquenched 243 × 32 a−1 = 2.56(10) GeV
0.15825 4.10(46) 1.17(17) 1.19(4) 0.500(29) 0.68(6)

κc =0.1585 3.25(48) 0.792(17) 0.66(4) 0.756(36) 0.79(13)

extrapolating the magnetic and electric dipole masses also gives values consistent with
those obtained when fitted to the extrapolated data. Namely we get Mm = 1.09(10) GeV2

and Mm = 0.89(4) GeV2.

In Table. 3.2 we have included the Dirac and Pauli radii (
〈
r2

1

〉1/2 and
〈
r2

2

〉1/2) which
are associated with the slope of the Dirac and Pauli form factors at Q2 = 0:

〈r2
k〉 = − 6

Fk(Q2)
dFk(Q2)
dQ2

∣∣∣∣
Q2=0

=
12
Mk

, (3.36)

where M1 and M2 are the Dirac and Pauli dipole masses. Since the F1 and F2 are linear
combinations of GE and GM , we can express the Dirac and Pauli radii in terms of the
electric and magnetic dipole masses:

〈r2
1〉 =

12
Me
− 3F2(0)

2M2
N

and 〈r2
2〉 =

12[1 + F2(0)]
F2(0)Mm

− 〈r
2
1〉

F2(0)
, (3.37)

where F2(0) is obtained by F2(0) = GM (0)− 1.

The linear fits we have attempted so far do not take into account pion cloud effects,
which are expected to be large at small pion masses. As we approach the chiral limit,
we expect non-linear m2

π terms to dominate in the extrapolation. For the case of the
isovector magnetic moment and isovector radii a calculation has been carried out within a
chiral effective theory determining their quark mass dependence [48]. For the case of the
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Figure 3.17: The magnetic moment (top), mag-
netic dipole mass (center) and electric dipole
mass (bottom) as a function of the pion mass
squared. The values where extracted by fit-
ting to dipole forms. Quenched results are de-
noted by the crosses, unquenched by the filled
circles and the asterisks denote lattice results
from Ref. [28]. The points at m2

π = 0 where
obtained by fitting the dipole forms to the ex-
trapolated lattice results.

Figure 3.18: The magnetic moment (top),
Dirac radius (center) and Pauli radius (bot-
tom) as a function of the pion mass squared.
Quenched results are denoted by the crosses,
unquenched by the open triangles and the as-
terisks denote lattice results from Ref. [28].
The circles denote the experimental values.

isovector anomalous magnetic moment, this chiral effective theory gives us:

κv(mπ) =κv(0)−
g2
AmπMN

4πF 2
π

+
2c2
A∆MN

9π2F 2
π

[
R1(mπ) + log

(mπ

2∆

)]
(3.38)

− 8E1MNm
2
π +

4cAcV gAMNm
2
π

9π2F 2
π

log
(

2∆
λ

)
+

4cAcV gAMNm
3
π

27πF 2
π∆

− 8cAcV gA∆2MN

27π2F 2
π

[(
1− m2

π

∆2

)
R1(mπ) +

(
1− 3m2

π

2∆2

)
log
(mπ

2∆

)]
,

where

R1(m) =
√

∆2 −m2 + iε

2∆
log

(
∆ +

√
∆2 −m2 + iε

∆−
√

∆2 −m2 + iε

)
. (3.39)

∆ denotes the mass splitting between the nucleon and the ∆-baryon, i.e. ∆ = M∆−MN .
As in Ref. [48], we fix ga, cA, Fπ, MN and ∆ to their physical values. We quote these
values in Table 3.3. We then fit to the magnetic moment to obtain κv(0), cv and E1.
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We set the regularization scale to λ = 0.6 GeV, once again following Ref. [48]. For the
fit we use both quenched and unquenched lattice data. The curve obtained is shown in
Fig. 3.18 with the dashed line showing the error. We see that the value of the magnetic
moment measured experimentally is within the error band of the fit. This reflects the fact
that the linear extrapolation of GM/Gd gave results which we saw were relatively close to
the experimental data (Fig. 3.14). The values of κv(0), cv and E1 obtained by the fit are
included in Table 3.3.

Table 3.3: The first column lists the fixed parameters and the second their values at the physical
pion mass. The third column gives the fitted parameters and the fourth their fitted values.

Fixed Empirical value Fitted Fitted value
parameter parameter

gA 1.267 κv(0) 6.08(11)
cA 1.125 cV -2.75(50) GeV−1

Fπ 0.0924 GeV E1 -5.60 (5) GeV−3

MN 0.9389 GeV B10 -0.3(3) GeV−3

∆ 0.2711 GeV Bc2 0.61(4)

We also extrapolate the Dirac and Pauli radii. The one-loop results given in Ref. [28]
read:

r2
1 =− 1

(4πFπ)2

[
1 + 7g2

A +
(
10g2

A + 2
)

log
(mπ

λ

)]
− 12B10

(4πFπ)2
(3.40)

+
c2
A

54π2F 2
π

[
26 + 30 log

(mπ

λ

)
+ 30R2(mπ)

]
and

r2
2 =

1
κv(mπ)

[
g2
AMN

8F 2
ππmπ

+
c2
AMN

9F 2
ππ

2∆
R2(mπ) + 24MNBc2

]
(3.41)

where

R2(m) =
∆

2
√

∆2 −m2 + iε
log

(
∆ +

√
∆2 −m2 + iε

∆−
√

∆2 −m2 + iε

)
. (3.42)

For the Dirac radius we need only determine B10 by the fit. For r2, we fit varying Bc2

using κv(mπ) with the parameters reached to in the fit of the magnetic moment. The
values obtained for B10 and Bc2 are included in Table 3.3. In Fig. 3.18 we show the curves
obtained by these fits. We see that the fit does not follow the pion mass dependence of
the lattice results for the Dirac radius, leading to an extrapolation which is outside error
band compared to experiment. This is not surprising, given the insensitivity F1 exhibited
with respect to the pion mass in Fig. 3.12.
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3.6 Summary of Results

In this chapter we have presented a study of the nucleon electromagnetic form factors
in quenched and NF = 2 Wilson lattice QCD. We have improved on a previous lattice
calculation [28] by going to lighter quark masses (down to 380 MeV for unquenched) and
to larger lattices (323×64 with a ' 0.9 fm for the quenched case) thus allowing access
to finer lattice momenta. We avoid having to compute the disconnected contribution
by computing the isovector form factors. In order to make contact with experiment,
we interpolate experimental results for the proton and neutron form factors at Q2 not
available in order to compute the isovector form factors at these momentum transfers.
Comparing lattice data at different pion masses, we reach the conclusion that the form
factors decrease with decreasing pion mass which is in the direction of the experimental
data. Unquenching effects are consistently found to be small, at least at the pion masses
available. We observe a linear dependence of the form factors to the pion mass squared,
hence we attempt a linear extrapolation. This linear extrapolation however, does not
settle discrepancies with experiment. We have also presented our results in terms of the
Dirac and Pauli form factors. The linearly extrapolated Pauli form factors show good
agreement with experiment which is not the case for the Dirac form factor.

A calculation is available in chiral effective theory to one-loop, which has derived
the dependence of the isovector anomalous magnetic moment and of the Dirac and Pauli
radii. We attempt an extrapolation to the chiral limit using this result with both quenched
and unquenched data entering the fit. For the case of the anomalous magnetic moment,
consistency is observed with the experimental value. This is not the case for the Dirac
radius which shows little dependence on the pion mass, at least for the values considered
here. Since the lattices available to us are of approximately the same lattice spacing, to
assess whether finite lattice spacing effects are responsible for these discrepancies is not
possible. On the other hand, the quenched lattices are large enough to exclude finite
volume effects as a possible source of this discrepancy. As we go to lighter pion masses,
pion cloud contributions are expected to be more important, giving rise to terms non-linear
to m2

π in the extrapolation. A future analysis of these observables, when more resources
will be available and thus allow lighter pion masses, would be able to probe this expected
non-linear dependence.Gian
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Chapter 4

Nucleon to ∆ Electromagnetic Transition Form Factors

In the previous chapter we presented a lattice study of the nucleon electromagnetic form
factors which provide insight to phenomenologically interesting quantities such as the
nucleon charge radius and its magnetic moment. In this chapter we shall investigate
the shape of the nucleon which is still an open issue despite various efforts of at least
two decades [49, 50]. Experimentally, one investigates the question of whether a nucleus
or molecule is deformed by probing for its quadrupole moment, which indicates a non
spherical charge distribution if non zero. However, the nucleon spectroscopic quadrupole
moment is zero since it is a spin-1/2 state. This does not mean that the nucleon charge
distribution is spherical, since it may still have an intrinsic deformation. The quadrupole
moment Q of a given state measured in the laboratory frame is associated with its intrinsic
quadrupole moment Q0 (that measured in the rest frame of this state) by:

Q =
3K2 − J(J + 1)
(J + 1)(2J + 3)

Q0, (4.1)

where J is the spin of the state and K is its projection on the z axis in the rest frame of the
state. For a nucleon (J = 1/2) this equation always yields Q = 0 irrespective of whether its
intrinsic quadrupole moment (Q0) is non zero. The ∆-baryon on the other hand, being a
spin-3/2 state, can have a non zero spectroscopic quadrupole moment. Indeed, preliminary
lattice results corroborate this [51] as we shall see in Chapter 6. To probe a possible
deformation in the nucleon experimentally, one looks at the sub-dominant form factors of
the nucleon to ∆ electromagnetic transition. Namely, if these two form factors are found
to be non zero, this indicates that either the nucleon or the ∆ or both are deformed. In
this chapter we shall present a lattice study of the nucleon to ∆ electromagnetic transition
form factors in unquenched lattice QCD [19].

The motivation for this measurement comes from several recent experiments where
the sub-dominant form factors where measured to high accuracy particularly at low mo-
mentum transfers [52–58]. Since these electric and coulomb (E2 and C2) amplitudes are
sub-dominant, high accuracy is required if we are to exclude zero. A calculation from
first principles indicating non-zero values for these form factors is particularly important
since experimental results require modeling. The first lattice calculation of this quantity
was carried out in the quenched approximation with limited statistics [59]. Although with
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errors large enough that zero could not be excluded, the form factors where found con-
sistently negative. In Ref. [60] the calculation of the three-point function was carried out
with two major improvements which we have already seen in Chapter 3. Carrying out the
sequential inversion through the sink allowed the insertion of any electromagnetic current
which maximized the number of statistically independent lattice measurements for a given
configuration. On the other hand, an optimization of the sequential source was performed
so that a given three-point function isolated a specific form factor. These improvements
led to results accurate enough for a zero value to be excluded in the quenched case.

In this chapter we present a calculation of the nucleon to ∆ electromagnetic transition
form factors using the techniques developed using dynamical quarks. We use the same
quenched and NF = 2 dynamical fermions, with the parameters given in Table 3.1, as
we used for the computation of the nucleon electromagnetic form factors. Additionally,
we will use a Hybrid scheme where the sea quark discretization, i.e. the discretization
used for the Dirac operator that enters the determinant in the Monte Carlo update, is
different from the valence quark discretization, which is the discretization of the Dirac
operator used for the quark propagators. In recent years, the use of such Hybrid actions
has grown, since simulations of chiral fermions such as Overlap or Domain Wall are still
impractically expensive, at least for large enough lattices. On the other hand, using these
actions to invert the Dirac equation and compute the quark propagator is now feasible by
currently available computational resources. Therefore these chiral actions are being used
in the valence sector, over ensembles of already available gluon configurations generated
with a different lattice discretization. For this work we use configurations generated by
the MILC collaboration in the sea sector [20] and Domain Wall fermions [6, 21, 22] in
the valence sector. The MILC configurations are simulated with an Asqtad improved
Staggered action [61]. Staggered, or Kogut-Susskind fermions [62], address the problem of
the appearance of doublers in the naive discretization of the Dirac operator by reducing
them by a factor of four through a unitary transformation of the fermion fields. A remnant
chiral symmetry is thus preserved in the discretized action as well as a reduced number
of doublers. An advantage is that the Staggered fermions are O(a) improved, meaning
lattice artifacts appear to O(a2). The Asqtad improvement used in the MILC lattices
additionally removes artifacts of order O(a2). These MILC configurations are simulated
using 2+1 flavors of quarks, i.e. two degenerate (up and down) quarks and a heavier
strange quark.

Therefore, in this calculation, we use two discretization schemes to evaluate the tran-
sition form factors in unquenched QCD: We use dynamical Wilson fermions both in the
valence and sea sector which preserves unitarity. These carry lattice artifacts linear to the
lattice spacing. We also use a Hybrid scheme which is O(a) improved, preserves chiral
symmetry on the lattice and for which we have configurations for pion masses as low as
350 MeV. The cost is that the theory is only unitary at zero lattice spacing. In Ref. [63] it
is shown that the physical parameters in the mixed (or hybrid) action Lagrangian are the
same up to perturbative a dependent constants. Furthermore, we shall compare results
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between this Hybrid approach and results obtained using Wilson fermions and consistency
between these two schemes will provide a non-trivial check of lattice artifacts.

4.1 Lattice Formulation

The nucleon to ∆ electromagnetic transition matrix element is given by:

〈∆(p′, s′)|jµ|N(p, s)〉 =
(
−2

3
MNM∆

E∆(p)EN (p)

)1/2

ūσ(~p′, s′)Oσµu(~p, s) (4.2)

where uσ is a spin-3/2 spinor in the Rarita-Schwinger formalism and u a Dirac spinor.
The matrix element, in terms of Sachs form factors gives [64]:

Oσµ = GM1(q2)KM1
σµ + GE2(q2)KE2

σµ + GC2(q2)KC2
σµ , (4.3)

where the kinematic factors are given by:

KM1
σµ =− 3

(MN +M∆)2 +Q2

M∆ +MN

2MN
iεσµαβp

αp′β (4.4)

KE2
σµ =−KM1

σµ + 6Ω−1(Q2)
M∆ +MN

2MN
2iγ5εσλαβp

αp′βελγδµ pγp
′
δ

KM1
σµ =− 6Ω−1(q2)

M∆ +MN

2MN
iγ5qσ[q2(p+ p′)µ − q · (p+ p′)qµ]

where

Ω(Q2) = [(M∆ +MN ) +Q2][(M∆ −MN )2 +Q2], (4.5)

qµ = p′µ − pµ and Q = (iq0, ~q).

The Rarita-Schwinger spin sum is given by:∑
s

uσ(p, s)ūτ (p, s) = (4.6)

−i/p+M∆

2M∆
[δστ + 2pσpτ2M2

∆ − i
pσγτ − pτγσ

3M∆
− 1

3
γσγτ ].

The electric GE2 and Coulomb GC2 quadrupole form factors are sub-dominant to the
magnetic dipole form factor GM1. It is customary to quote the ratios of the two sub-
dominant form factors to the magnetic dipole form factor:

REM = − GE2

GM1
and RSM = − |~q|

2M∆

GC2

GM1
, (4.7)

also quoted as EMR and CMR respectively.

The method and techniques used to compute the matrix element on the lattice are
quite similar to those explained in Chapter 3. We compute the nucleon to ∆ three-point
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function:

G∆jµN (t2, t1; ~p′, ~p; Γ)σ = (4.8)∑
~x2,~x1

e−i~x2·~p′〈Ω|Γβαχ∆σ
α (~x2, t2)jµ(~x1, t1)χ̄Nβ (~0, 0)|Ω〉e−i~x1·(~p′−~p),

where the interpolating operator for the nucleon is the same as in the previous chapter
(Eq. (3.7)) as well as the projection matrices (Eq. (3.6)). The interpolating operator for
the ∆ is given by:

χ∆σ
α (x) =

1√
3
εabc

{
2[uaµ(x)(Cγσ)µνdbν(x)]ucα(x) + [uaµ(x)(Cγσ)µνubν(x)]dcα(x)

}
. (4.9)

We consider the conserved current for the case of Wilson fermions (Eq. (3.8)) and the
local current for the case of Domain Wall fermions. The renormalization factor ZV for
the electromagnetic current in this case is known at each pion mass considered. We use
the fixed-sink method, i.e. like in the case of the nucleon form factors we carry out the
sequential inversion through the sink, setting the final state, the ∆ in this case, to zero
momentum. We construct a ratio between two-point functions and the three-point function
such that unknown overlaps and exponentials cancel and look for a plateau varying the
insertion time-slice. The ratio is given by:

Rσ(t2, t1, ~p′, ~p; Γ;µ) =
G∆jµN
σ (t2, t1; ~p′, ~p; Γ)
G∆∆
ii (t2, ~p′; Γ4)

(4.10)

×
[
GNN (t2 − t1, ~p; Γ4)G∆∆

ii (t1, ~p′; Γ4)G∆∆
ii (t2, ~p′; Γ4)

G∆∆
ii (t2 − t1, ~p′; Γ4)GNN (t1, ~p; Γ4)GNN (t2, ~p; Γ4)

]1/2

t2−t1�1−−−−−→
t1�1

Πσ(~p′, ~p,Γ, µ),

where the two-point function for the ∆ is given by:

G∆∆
σσ (t, ~p,Γ) =

∑
~x

e−i~p·~xΓβα〈Ω|χ∆σ
α (~x, t)χ̄∆σ

β (~0, 0)|Ω〉 (4.11)

t�1−−→|Z∆(~p)|2M∆

E∆
e−E∆(~p)tTr

[
Γ
(−i/p+M∆

2M∆

)]
2
3

(1 +
p2
σ

M2
∆

).

which for the case where the final state is at rest (~p′ = 0) then the two-point function for
the ∆ entering the ratio is given by:

G∆∆
ii (t,~0,Γ4) t�1−−→ |Z∆(~p)|2 2

3
e−E∆(~p)t, i = 1, 2, 3. (4.12)

There are three combinations of the current direction and projection matrix Γ that isolate
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the three form factors:

Πσ(~0,−~q; Γ4;µ) =iAεσ4µjpjGM1(Q2), (4.13)

Πσ(~0,−~q; Γk;µ = j) =A
{1

2
(pσδkj − pkδσj)GM1(Q2)

−
[3

2
(pσδkj + pkδσj −

3pσpkpj
~p2

]
GE2(Q2)

− EN −M∆

2M∆
pj

(
δσk −

3pσpk
~p2

)
GC2(Q2)

}
, (4.14)

Πσ(~0,−~q; Γk;µ = 4) =iB
(
δσk −

3pσpk
~p2

)
GC2, (4.15)

where k, j = 1, 2, 3 and:

A =

√
2
3
M∆ +MN

4MNEN

√
EN

EN +MN
,

B =
~p2

2M∆
A. (4.16)

Each time we change the sequential source we must perform a new inversion. For the fixed
sink method we shall use here, the projection matrix Γ and the ∆ index σ must be chosen
before the sequential inversion. Naively, Eq. (4.13), for instance, gives four sequential
sources, one for each value of σ. The same is true for Eqs. (4.14) and 4.15 where we could
define a sequential source for every non-zero σ-k combination. This is, of course, not
optimal. We thus define linear combinations of the above three-point functions to use as
sequential sources and obtain the most lattice measurements of the form factors possible
for a single sequential inversion. These linear combinations are given below:

S1(~q;µ) =
3∑

σ=1

Πσ(~0,−~q; Γ4;µ) (4.17)

=iA [(p2 − p3)δ1,µ + (p3 − p1)δ2,µ + (p1 − p2)δ3,µ]GM1,

S2(~q;µ = j) =
3∑

σ 6=k=1

Πσ(~0,−~q; Γk; j)

=− 3A
{

[(p2 + p3)δ1,j + (p3 + p1)δ2,j + (p1 + p2)δ3,j ]GE2(Q2)

− 2
pj
~p2

(p1p2 + p1p3 + p3p2)[GE2(Q2) +
EN −M∆

2M∆
GC2]

}
,

S2(~q;µ = 4) =− i6B
~p2

(p1p2 + p2p3 + p1p3)GC2(Q2).

We remind that µ is the direction of the current insertion and thus is not fixed when
constructing the sequential source. The above combinations can thus be computed with
two sequential inversions, one for S1 and one for S2. The measurements are analyzed by
solving an over-complete set of equations, as described in the previous chapter, where all
lattice momenta and currents that contribute to a given form factor at a give Q2 value are
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taken into account.

Note that GC2 cannot be extracted from S2 for the lowest lattice momentum ~q =
2π
L (1, 0, 0), since this gives zero for all kinematic factors multiplying it. In order to extract
the form factor at this specific momentum we use a third combination:

S3(~q;µ) =Π3(~0,−~q; Γ3;µ)− [Π1(~0,−~q; Γ1;µ) + Π2(~0,−~q; Γ2;µ)]/2 (4.18)

=
3A
2
pµ

[
2
(
δµ3 −

p2
3

~p2

)
GE2(Q2) +

EN −M∆

2M∆

(
1− 3

p2
3

~p2

)
GC2(Q2)

]
for µ = 1, 2, 3 and

=
3iB
2

(
1− 3

p2
3

~p2

)
GC2(Q2) for µ = 4.

4.2 Lattice Parameters and Optimization

The details concerning the Wilson ensembles used in this work can be found in Table 3.1 in
the previous chapter. In Table 4.1 we list the details concerning the MILC lattices we used
for the Domain Wall calculation. The lattice spacing for these lattices is a = 0.1241 fm
with a 2% error determined from heavy quark spectroscopy [65]. For initial tests we
analyzed the MILC configurations taking half the lattice and setting Dirichlet boundary
conditions in time. This halved the computational time of the inversion. For the lightest
pion mass (∼ 0.36 GeV) we have analyzed lattices at two volumes to perform checks
for finite volume effects. Domain Wall fermions [6, 21, 22] preserve chiral symmetry on
the lattice when the fifth dimension is infinite L5 → ∞. When L5 is finite, the chiral
symmetry breaking can be parametrized to a residual mass [66]. A criterion for setting
the extent of the fifth dimension is to demand the residual mass caused by the symmetry
breaking be at most an order of magnitude smaller than the Domain Wall quark mass.
For the masses considered here, an extent of L5/a = 16 is sufficient for this. To match
the parameters of the Domain Wall calculation to those of the MILC lattices a tuning
was performed [67] demanding that the lightest pseudo-scalar meson obtained by using
Staggered quarks matched that using Domain Wall valence quarks.

Table 4.1: Parameters and number of gauge field configurations used for the hybrid action.

# LS (fm) (amu,d/s)Asqtad (amu,d)DWF mπ (GeV) mπ/mρ mN (GeV) m∆ (GeV)
Volume: 203×32, b.c: Dirichlet

150 2.5 0.03/0.05 0.0478 0.606(2) 0.588(7) 1.329(9) 1.662(21)
150 2.5 0.02/0.05 0.0313 0.502(4) 0.530(11) 1.255(19) 1.586(36)

Volume: 283×32, b.c: Dirichlet
118 3.5 0.01/0.05 0.0138 0.364(1) 0.387(7) 1.196(25) 1.561(41)

Volume: 203×64, b.c: antiperiodic
200 2.5 0.03/0.05 0.0478 0.594(1) 0.585(7) 1.416(20) 1.683(22)
198 2.5 0.02/0.05 0.0313 0.498(3) 0.525(8) 1.261(17) 1.589(35)
100 2.5 0.01/0.05 0.0138 0.362(5) 0.401(13) 1.139(25) 1.488(71)

Volume: 283×64, b.c: antiperiodic
300 3.5 0.01/0.05 0.0138 0.353(2) 0.368(8) 1.191(19) 1.533(27)
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Before going on to present the results for the nucleon to ∆ electromagnetic transition
form factors we shall show several tests we performed. Due to the fact that the sub-
dominant form factors are especially noisy, these tests will reassure that the form factors
where indeed extracted reliably. We start by checking ground state dominance. As in the
calculation of the previous chapter, we use Gaussian smearing of the initial and final states
and HYP smearing for the gauge links. In Fig. 3.4 we tested ground state dominance for
the nucleon at the smallest non-zero momentum by fitting both to a constant and by
considering first excited state contribution. The two fits yielded consistent results for the
effective energy for as close as four time-slices from the source.

Figure 4.1: ∆-baryon effective mass plot. The dashed line is a fit to a constant while the solid line
shows a fit to Eq. (3.27).

In Fig. 4.1 we show the same for the ∆-baryon. Since we set the ∆ to zero momentum
we only check the effective mass. The conclusion is the same, i.e. that fitting to a constant
is consistent with taking into account first excited state contributions. Fitting both the
nucleon and the ∆ to Eq. (3.27) we can obtain r∆, rN and their corresponding energy
splittings δ∆ and δN . We then use these values to fit to the ratio of Eq. (4.10) by using a
form that includes first excited state contributions to the three-point function:

f(t1) =
b0 + b1

√
rN exp (−δN t1) + b2

√
r∆ exp(−δ∆(t2 − t1))√

(1 + r∆ exp(−δ∆t2))(1 + rN exp(−δN t2))
× (4.19)√

(1 + rN exp(−δN (t2 − t1)))(1 + r∆ exp(−δ∆t1))
(1 + r∆ exp(−δ∆(t2 − t1)))(1 + rN exp(−δN t1))

.

This is a three parameter fit to determine b0, b1 and b2. We perform this test on the
quenched lattice at two source-sink separations. This is shown in Fig. 4.2 for a single
lattice momentum ~q = 2π

L (0, 1, 0) for the case of GM1. As can be seen, fitting to a constant
while omitting the first and last two time-slices yields a value for the ratio consistent with
fitting to Eq. (4.19) where first excited state contributions are included. The left figure
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corresponds to a source-sink separation of 11 time-slices compared to 13 for the right
graph. The shorter source-sink separation carries smaller errors, as expected. We remind
that in the actual analysis we use all lattice momenta that give the same form factor
at the given Q2 value. This is just one momentum vector of the 12 momentum vectors
that, according to the source S1 in Eq. (4.17), give GM1 at the first non-zero allowable
momentum transfer.

Figure 4.2: The ratio from which GM1 is extracted, for ~q = 2π
L (0, 1, 0) for the quenched case. Left

for sink time-slice t2/a = 11 from the source and right for t2/a = 13. The dotted line is a fit to a
constant while the solid line shows a fit to Eq. (4.19). The dashed lines show the error band when
fitting to a constant.

Since the form factors we are interested in are sub-dominant we require as accurate a
determination of the three-point function as possible. Thus carefully selecting the source-
sink separation is crucial for this measurement. On one hand, we need enough time
between source and sink to vary the insertion time-slice and determine reliably a plateau.
On the other hand, the closer the sink is to the source, the more accurate the three-point
function, given the exponential decay of the signal.

In Fig. 4.3 we show the GM1 ratio for the first four lattice momenta at two different
source-sink separations. For the purposes of this check we have averaged over the currents
and momentum vectors that contribute to the given value of the form factor (in practice
the form factor is fitted separately to each current and momentum vector in the over-
constraint analysis). The conclusion is that for both these separations the form factor is
consistent. Since the errors are smaller for the shorter separation, while still leaving room
to vary t1 in between, we set t2/a = 11 for the quenched calculation. This corresponds to
about 5.1 GeV−1. Thus in the Hybrid scheme we check between a source-sink separation
of 5 GeV−1 (or t2/a = 8) and 6.3 GeV−1 (or t2/a = 10). The comparison is shown in
Fig. 4.4 for the case of the 203 × 64 lattice at mπ = 0.498(2) GeV. As in the case of the
quenched calculation, we see that the magnetic dipole form factor is consistent for both
source-sink separations.
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Figure 4.3: GM1 ratio in the quenched approxi-
mation for the first four lattice momenta at two
different source-sink separations: t2/a = 11
(triangles) and t2/a = 13 (squares). The re-
sults for t2/a = 11 have been shifted to the
right by a time-slice so that the midpoints co-
incide.

Figure 4.4: GM1 ratio computed in the Hybrid
scheme for the first four lattice momenta at two
different source-sink separations: t2/a = 0 (tri-
angles) and t2/a = 10 (squares). The results
for t2/a = 11 have been shifted to the right by
a time-slice so that the midpoints coincide.

Figure 4.5: GM1 ratio in the quenched approxi-
mation at two different source-sink separations:
t2/a = 11 (triangles) and t2/a = 13 (squares).

Figure 4.6: GM1 ratio computed in the Hybrid
scheme at two different source-sink separations:
t2/a = 0 (triangles) and t2/a = 10 (squares).

In Fig. 4.5 we plot the GM1 ratio after fitting to each lattice measurement separately
by solving the over-complete set of equations (Eq. (3.31)) for the quenched case. This is
done for both the source-sink separations as an additional consistency check. The form
factor is found in agreement with both source sink separations. We do the same for the
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64 Nucleon to ∆ Electromagnetic Transition Form Factors

Hybrid case in Fig. 4.6. In this case, the larger separation is much noisier compared to
the shorter separation. This is on one hand due to the fact that we have used the smallest
pion mass available and on the other due to the fact that the lattice spacing is larger here
and thus the difference between the two source-sink separations is larger (∼0.38 fm).

Figure 4.7: The electric quadrupole (left) and the Coulomb quadrupole (right) form factors for the
quenched case at two sink-source separations: t2/a = 11 (triangles) and t2/a = 13 (squares).

To complement these checks we have plotted GE2 and GC2 at the two sink-source
separations in Fig. 4.7. As can be seen the shorter separation yields the form factors with
smaller errors and consistent with the larger separation. It is apparent from these checks
that it is safe to use the shortest of the two separations in both quenched and unquenched
calculations. In fact, for the lightest pion mass in the Hybrid scheme using the larger of
the two separations gives results prohibitively noisy as we have seen in Fig. 4.6. Hence
we fix the separation to about 5 GeV−1 meaning t2/a = 8 for the Hybrid calculation,
t2/a = 11 for the quenched and t2/a = 12 for the Wilson dynamical calculation.

Figure 4.8: The GM1 form factor in the Hybrid scheme for a pion mass of mπ ' 0.36 GeV computed
on a lattice of 3.5 fm spatial extent (crosses) and 2.5 fm spatial extent (crossed squares).

As a final test we use the two lattices we have that are different in size but at equal pion
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mass to check for the effect the finite volume may have on the measurement. The quantity
Lsmπ, Ls being the spatial extent of the lattice, is typically used to gauge finite volume
effects. These two lattices, quoted in Table 4.1, are of pion mass mπ ' 0.36 GeV. The
larger of the two has a side of 3.5 fm and thus Lsmπ = 6.4 while the other a side of 2.5 fm
or Lsmπ = 4.6. For both these lattices we have computed the GM1 form factor for 100
configurations. We compare the results in Fig. 4.8. We see that the smaller lattice carries
larger statistical errors but is consistent with the large lattice. Hence any volume effects
affecting the measurement are within statistical errors. All the lattices we use in this work
are of Lsmπ ≥ 4.5 with the exception of the lightest Wilson NF = 2 lattice. Hence we
expect finite volume effects to be within statistical errors for these configurations. Since
for the lightest mass of the Wilson NF = 2 simulation there is only one lattice volume
available, we cannot assess in the same way finite volume effects for this case.

4.3 Lattice Results

In Fig. 4.3 we show the results for the dominant magnetic dipole form factor at all three
pion masses for each lattice action used. For the hybrid we show results using the lattices
with the large time extent (203 × 64 for the two heaviest pion masses and 283 × 64 for
the lightest). We see that the value of the form factor decreases with the pion mass. For
the case of the quenched calculation, the dependence on the pion mass is weaker as in
the case of the nucleon form factors we have seen in the previous chapter. Both fits to an
exponential form (f0 exp(Q2/M2)) and to a dipole form (g0/(1 + Q2/M2)) describe the
data well as can be seen by the dashed and the dotted line respectively in Fig. 4.3 where
fits to the lightest of the pion masses for each simulation where performed. We find a
dipole mass of M = 1.30(3) GeV compared to 0.78 GeV which is found experimentally.

In Fig. 4.10 we plot the same data only grouped by similar pion mass. From this figure
we see that the hybrid and Wilson dynamical results are in agreement which indicates
that lattice artifacts are under control since these two actions exhibit different finite lattice
spacing effects. Another conclusion is that unquenching effects are small for this quantity,
at least at the pion masses considered here, since quenched and unquenched results are
found consistent.

In Fig. 4.11 we plot the lightest pion mass of the hybrid scheme against experimental
results. There are two models routinely used to extract the magnetic dipole form factor
from experimental data; the phenomenological model MAID [76] and the pion cloud dy-
namical model referred to as the SL model [77]. In Fig. 4.11 the experimental results are
obtained by the MAID model. As can be seen the lattice results are higher for momentum
transfers larger than around 0.5 GeV. This is in fact expected since Fig. 4.3 shows that
the GM1 decreases with decreasing pion mass hence we expect these points to come closer
to experiment as we approach the chiral limit. On the other hand, the two points corre-
sponding to the two smallest momentum transfers are lower than experiment. To assess
the error due to the choice of the experimental model we show in Fig. 4.12 the lattice
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66 Nucleon to ∆ Electromagnetic Transition Form Factors

Figure 4.9: GM1 as a function of Q2 for all mπ

available grouped by discretization scheme. In
the upper graph we plot the Wilson quenched
results at mπ = 0.56 GeV (crosses), mπ =
0.49 GeV (open circles) and mπ = 0.41 GeV (as-
terisks). In the middle graph we plot the Wilson
unquenched results at mπ = 0.69 GeV (open tri-
angles), mπ = 0.51 GeV (filled circles) andmπ =
0.38 GeV (open squares). In the lower graph
we plot the results from the Hybrid scheme at
mπ = 0.59 GeV (open stars), mπ = 0.50 GeV
(filled triangles) and mπ = 0.35 GeV (crossed
boxes). The dotted lines show fits to a dipole
while the dashed lines show fits to an exponential
all for the lightest pion mass of each simulation.

Figure 4.10: GM1 as a function of Q2 grouped
by similar pion mass for all simulations. In the
upper graph we show the heaviest pion mass,
in the middle the intermediate pion mass and
in the lower graph the lightest pion mass of all
three lattice actions used. The notation is the
same as that of Fig. 4.3.

data compared to the experimental data extracted using MAID and the SL model. As can
be seen the two models yield results outside statistical error bars. Given this systematic
error, the lattice result for the second largest momentum transfer is consistent with ex-
periment and hence only the smallest momentum transfer is lower. Unfortunately, at the
moment, we cannot conclude whether this is expected within chiral effective theory, since
such a calculation has not been carried out for these quantities. One point we can make
though, according to Ref. [78], is that pion cloud contributions to the EMR and CMR
ratios are expected to be larger at low momentum transfers. Whether this accounts for
the discrepancy of this lowest momentum transfer or not cannot be said at this moment
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4.3 Lattice Results 67

Figure 4.11: The magnetic dipole form factor
as a function of the momentum transfer Q2 at
the smallest pion mass of the Hybrid calcula-
tion (crossed boxes) compared to experimental
results. The asterisks are from Ref. [68], the
filled circles from Ref. [69], the open circles from
Ref. [70], the crosses from Ref. [71] the open
squares from Ref. [53], the stars from Ref. [55,
72, 73], the filled triangles from Ref. [58, 74] and
the filled square from Ref. [75].

Figure 4.12: The magnetic dipole form factor
as a function of the momentum transfer Q2 at
the smallest pion mass of the Hybrid calcula-
tion (crossed boxes) compared to experimental
results obtained using two models: MAID (tri-
angles) and the SL model (filled squares).

though.

Figure 4.13: The electric quadrupole form factor
for the lightest pion mass in both the quenched
(filled circles) and the hybrid approach (crossed
boxes). The filled triangles are from Ref. [56,57],
the open squares from Ref. [79] and the stars
from Ref. [55]. The open circles are results ob-
tained using the SL model from Ref. [77] where
no errors where quoted.

Figure 4.14: The Coulomb quadrupole form
factor for the lightest pion mass in both the
quenched (filled circles) and the hybrid approach
(crossed boxes). The notation is the same as
that of Fig. 4.13.

The sub-dominant form factors GE2 and GC2 are shown in Figs. 4.13 and 4.14 respec-
tively. Although these form factors carry large errors, we see that the lattice results are
consistent with the experimental data excluding the lowest momentum transfer available.
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68 Nucleon to ∆ Electromagnetic Transition Form Factors

As in the case of the GM1, this first point is lower than experiment in both quenched
and the hybrid approach. For the case of the GC2 form factor of the lightest pion mass
in the hybrid scheme, we have additionally used the combination S3 (Eq. (4.18)) for the
sequential source in order to obtain this form factor at the smallest available momentum
transfer and improve the signal obtained using S2 for other momentum transfers. We note
here that all numerical results used for the graphs presented in this chapter can be found
tabulated in Appendix C.

Figure 4.15: The ratio of the electric quadrupole
form factor to the magnetic dipole at the light-
est pion mass for the quenched (asterisks), Wil-
son dynamical (filled circles) and hybrid (crossed
boxes) calculations compared to experiment.
The filled triangles are from Ref. [56, 57], the
open squares from Ref. [79], the stars from
Ref. [55], the open triangles from Ref. [52] and
the filled squares from Ref. [80]. The MAID
model was used for the extraction of these ex-
perimental results.

Figure 4.16: The ratio of the Coulomb
quadrupole form factor to the magnetic dipole
at the lightest pion mass of all three simulations
compared to experiment. The notation is the
same as that of Fig. 4.15.

In order to compare with experiment, in Figs. 4.15 and 4.16 we show the ratios EMR
and CMR of the sub-dominant to the dominant form factor. An additional advantage of
plotting ratios is that some systematic sources of error may cancel. For the case of the
EMR we see agreement between quenched and the hybrid approach as well as a noisy
but consistently negative signal. For the CMR the quenched results are clearly negative
and non-zero but are smaller in amplitude than the experimental results. The fact that
the hybrid approach at the lowest two momentum transfer yields a CMR ratio closer
to the experiment is an indication that unquenching effects are more profound for this
quantity. A study in chiral perturbation theory [78] has shown that for this ratio pion
cloud contributions become significant as Q2 → 0. A calculation at smaller pion masses
with improved statistics will enable an investigation on whether this unquenching effect
is due to the pion cloud. At the moment such a computation is impractical, due to the
massive computational resources chiral fermions require.
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4.3 Lattice Results 69

4.3.1 Summary of Results

In this chapter we have presented lattice results for the nucleon to ∆ electromagnetic
transition form factors. The two sub-dominant form factors of this transition, the electric
and Coulomb quadrupole form factors, are experimentally interesting since they reveal
information on the nucleon/∆ system deformation; if they are non-zero this means either
the nucleon or the ∆-baryon or both are non-spherical. We have calculated these form
factors using a hybrid action with Asqtad improved Staggered fermions in the sea sector
and Domain Wall fermions in the valence sector. We have additionally performed the
calculation in Wilson NF = 2 and Wilson quenched lattice QCD. For the dominant form
factor – the magnetic dipole GM1 – we find consistency between the three lattice discretiza-
tion schemes. This means that pion cloud contributions to this particular quantity are
small, since in the quenched approximation quark pair creation from the vacuum is not
allowed. Furthermore, the consistency between Wilson NF = 2 and the Hybrid calculation
indicates that discretization errors are smaller than statistical errors since the two actions
carry lattice artifacts to different order of the lattice spacing.

Despite these reassuring findings we see a discrepancy between lattice results and
experimental results for the magnetic dipole form factor. The trend exhibited by the
lattice data when reducing the pion mass is that the form factor decreases. This brings
all but the point at the smallest momentum transfer of the large 283 MILC lattice closer
to experiment. We have performed the calculation on lattices of a different size but same
pion mass and found that results are consistent thus eliminating finite volume effects as
the source of discrepancy for this lowest momentum transfer. Therefore this disagreement
is most likely due to the range of pion masses we have considered, meaning an analysis
at lower pion masses is needed to assess the source of this discrepancy. At the moment a
chiral extrapolation of this quantity is unavailable, although a study has shown that pion
cloud contributions are expected to be large.

For the case of the sub-dominant form factors the conclusions are similar. In this case,
the systematic error carried by the experimental results is relatively larger due to the
smallness of the amplitude of these quantities. We compare the ratios of the sub-dominant
to the dominant form factors as this is the usual way these form factors are presented.
Calculating ratios of these quantities may also cancel some systematics. The EMR is
found consistent with experiment which is negative and non-zero. The CMR is also found
negative and non zero albeit it is smaller in amplitude than what is found experimentally.
This work has shown however, that the hybrid result is closer to experiment than the
quenched, indicating that pion cloud contributions may be important for this specific
quantity at these low momentum transfers. A future study, when more computational
resources will be available, could go to pion masses as low as 300 MeV thus shedding light
on the significance of the pion cloud.
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Chapter 5

Axial Nucleon and Nucleon to ∆ Transition Form Factors

In Chapters 3 and 4 we presented a study of the nucleon and nucleon to ∆ electromagnetic
matrix elements by computing the corresponding form factors. In this chapter we shall
extend this study to weak matrix elements by calculating the axial nucleon form factors
and the nucleon to ∆ axial transition form factors. We shall additionally calculate the
pion-nucleon form factor, GπNN , and the pion-nucleon-∆ form factor, GπN∆ [81].

The nucleon coupled to an axial current is parametrized in terms of two form factors:
the nucleon axial form factor, GA, and the induced pseudo-scalar form factor, Gp. Unlike
the electromagnetic form factors studied so far, these quantities are less well known, mainly
due to the fact that their experimental measurement is more difficult. An exception is the
axial charge of the nucleon gA = GA(0) which can be measured precisely from β-decay.
Results from neutrino scattering [82] and pion electroproduction experiments [83,84] have
measured its q2 dependence. The pseudo-scalar induced form factor Gp is less well known.
The main source of information concerning experimental measurements of this quantity is
via muon capture and radiative muon capture, found in Ref. [85].

Even less studied are the nucleon to ∆ axial transition form factors. The nucleon to
∆ axial transition is parametrized in terms of four form factors [86]. The two dominant,
analogous to GA and Gp are CA5 and CA6 respectively, while the two sub-dominant are
denoted by GA3 and GA4 . We shall focus on the calculation of the two dominant form
factors in this chapter. Experimentally, these form factors have been evaluated via neutrino
interactions in hydrogen and deutrium and can be found in Ref. [87].

These quantities are equally not well known on the lattice. As is the case with exper-
imental measurements, there have been several lattice measurements of the axial charge
gA [88–90]. However, apart from an early lattice calculation published in 1995 [91] which
used relatively large pion masses in the quenched approximation, only recently have lattice
studies of the q2 dependence of these matrix elements become available [67,92].

In addition to the form factors noted above, we shall present a calculation of the pion-
nucleon form factor, GπNN , and the pion-nucleon-∆ form factor, GπN∆. Calculation of
these quantities requires knowledge of the renormalized quark mass which we shall evaluate
using the axial Ward-Takahashi identity (AWI). The nucleon axial form factors and the
pion-nucleon form factor are associated with each other via the diagonal Goldberger-
Treiman relations. Similarly the axial nucleon to ∆ transition form factors are associated
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72 Axial Nucleon and Nucleon to ∆ Transition Form Factors

with the pion-nucleon-∆ form factor via the off diagonal Goldberger-Treiman relation.
This calculation will provide a check of these relations from first principles.

As we shall show explicitly in the next section, the computational effort for extracting
these quantities is minimal since we can use the same sequential propagators used in
Chapters 3 and 4. This is an advantage of the fixed sink method; that we can insert
any operator without any new inversions. We use the Wilson NF=2 configurations and
Wilson quenched configurations given in Table 3.1 for the calculation of the nucleon axial
and pion-nucleon form factors. In addition to these configurations, we use the hybrid
scheme with the configurations listed in Table 4.1 for the nucleon to ∆ transition form
factors.

5.1 Lattice Formulation

The axial and pseudo-scalar currents used are given by:

Aaµ(x) = ψ̄(x)γµγ5
τa

2
ψ(x) and P a(x) = ψ̄(x)γ5

τa

2
ψ(x) (5.1)

respectively. ψ(x) is the isospin doublet with components the up and down quarks which
we assume to be degenerate. The index a acts on flavor space and τa are the three Pauli
matrices.

5.1.1 Matrix Elements

For the calculation carried out here, we specifically consider a = 3, i.e. A3
µ as the axial

current. The nucleon axial matrix element is given by:

〈N(p′, s′)|A3
µ|N(p, s)〉 = i

(
M2
N

EN (p′)EN (p)

)1/2

ū(p′, s′)Oµ
τ3

2
u(p, s), (5.2)

where:
Oµ = GA(q2)γµγ5 +

qµγ5

2MN
Gp(q2). (5.3)

p′ (s′) and p (s) are the momenta (spins) of the final and initial states respectively and
qµ = pµ′ − pµ is the momentum transfer. The nucleon to ∆ axial transition form factors
are given by:

〈∆(p′, s′)|A3
µ|N(p, s)〉 = i

√
2
3

(
MNM∆

E∆(p′)EN (p)

)1/2

ῡσ(p′, s′)Oσµu(p, s), (5.4)

where:

Oσµ =
(
CA3 (q2)
MN

γν +
CA4 (q2)
M2
N

p′ν
)

(gσµgρν − gσρgµν)qρ + CA5 (q2)gσµ +
CA6 (q2)
M2
N

qσqµ. (5.5)
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5.1 Lattice Formulation 73

u is a Dirac spinor denoting the nucleon while υ denotes the ∆+ spinor in the Rarita-
Schwinger formalism.

For the pseudo-scalar form factors we need knowledge of the pion decay constant fπ
and the renormalized quark mass mq. On the lattice we can use the relation:

〈Ω|Aaµ(0)|πb(p)〉 = ifπpµδ
ab (5.6)

which couples the pion to the axial current in order calculate fπ from a two-point function.
For the calculation of the renormalized quark mass we use the axial Ward-Takahashi
identity which reads:

∂µAaµ(x) = 2mqP
a(x). (5.7)

By taking the expectation value of this relation between the vacuum and a zero momentum
pion state we have:

mq =
〈Ω|Aa0|πa(0)〉
2〈Ω|P a|πa(0)〉

. (5.8)

In order to define the form factors GπNN and GπN∆ in terms of matrix elements of the
pseudo-scalar current we must first relate the pseudo-scalar current to the pion field. The
divergence of the axial current yields:

∂µAaµ(x) = fπm
2
ππ

a(x), (5.9)

where πa is a component of the isospin triplet pion field. This relation is known as
the partially conserved axial current (PCAC) hypothesis. Assuming PCAC, along with
Eq. (5.7), we have:

πa(x) =
2mqP

a(x)
fπm2

π

. (5.10)

We can now define the pion-nucleon form factor via:

2mq〈N(p′, s′)|P 3|N(p, s)〉 = (5.11)

i

(
M2
N

EN (p′)EN (p)

)1/2
fπm

2
πGπNN (q2)
m2
π − q2

ū(p′, s′)γ5
τ3

2
u(p, s)

and similarly the pion-nucleon-∆ form factor via:

2mq〈∆(p′, s′)|P 3|N(p, s)〉 = (5.12)

i

√
2
3

(
MNM∆

E∆(p′)EN (p)

)1/2 fπm
2
πGπN∆(q2)
m2
π − q2

ῡσ(p′, s′)
qσ

2MN
u(p, s).

From the definitions of these form factors, the strong couplings gπNN and gπN∆ are given
by gπNN = GπNN (0) and gπN∆ = GπN∆(0) respectively.
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74 Axial Nucleon and Nucleon to ∆ Transition Form Factors

5.1.2 Goldberger-Treiman Relations

The PCAC hypothesis relates the axial form factors with the pseudo-scalar form factors.
These relations are known as the Goldberger-Treiman relations (GTR). The diagonal GTR
associates the axial nucleon form factors with GπNN :

GA(q2) +
q2

4M2
N

Gp(q2) =
1

2MN

2GπNN (q2)fπm2
π

m2
π − q2

, (5.13)

while the off diagonal GTR associates the axial nucleon to ∆ transition form factors with
GπN∆:

CA5 (q2) +
q2

M2
N

CA6 (q2) =
1

2MN

GπN∆(q2)fπm2
π

m2
π − q2

. (5.14)

Assuming pion pole dominance for the induced pseudo-scalar nucleon form factor Gp(q2)
and for CA6 (q2) we have:

1
2MN

Gp(q2) '2GπNN (q2)fπ
m2
π − q2

(5.15)

1
MN

CA6 (q2) '1
2
GπN∆(q2)fπ
m2
π − q2

Using these relations and Eqs. (5.13) and (5.14) we obtain the simplified Goldberger-
Treiman relations:

fπGπNN (q2) =MNGA(q2) (5.16)

fπGπN∆(q2) =2MNC
A
5 (q2).

5.1.3 Three-Point Functions

The methodology used to extract the form factors from the lattice is the same as that
used in Chapters 3 and 4. For the nucleon axial form factors we compute the three-point
function:

GNA
3
µN (t2, t1; ~p′, ~p; Γ) = (5.17)∑

~x2,~x1

e−i~x2·~p′〈Ω|ΓβαχNα (~x2, t2)A3
µ(~x1, t1)χ̄Nβ (~0, 0)|Ω〉e−i~x1·(~p′−~p),

where the interpolating operator for the nucleon, χN , is given by Eq. (3.7) and the pro-
jection matrices, Γ, are given in Eq. (3.6). We divide the three-point function with a
combination of two-point functions to cancel unknown overlaps and exponentials and look
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5.1 Lattice Formulation 75

for a plateau in the large time limit:

RA(t2, t1, ~p′, ~p; Γ;µ) =
GNA

3
µN (t2, t1; ~p′, ~p; Γ)

GNN (t2, ~p′; Γ4)
(5.18)

×
[
GNN (t2 − t1, ~p; Γ4)GNN (t1, ~p′; Γ4)GNN (t2, ~p′; Γ4)
GNN (t2 − t1, ~p′; Γ4)GNN (t1, ~p; Γ4)GNN (t2, ~p; Γ4)

]1/2

t2−t1�1−−−−−→
t1�1

ΠA(~p′, ~p,Γ, µ).

We use the same kinematics as in Chapters 3 and 4, namely we consider the reference
frame where the final state, with momentum ~p′, is at rest. The momentum transfer in this
frame is ~q = −~p, where ~p is the momentum of the initial state. We take Q2 = −q2 > 0,
Q2 being the Euclidean momentum transfer squared. Given these kinematics, the ratio in
Eq. (5.18), after excited states are suppressed by the large time extents, is given by:

ΠA(~0,−~q,Γk;µ) = i
C

4MN

[
[(EN (~q) +MN )δk,µ + qkδµ4]GA(Q2)− qµqk

2MN
Gp(Q2)

]
(5.19)

where

C =
(

2M2
N

EN (~q) [EN (~q) +MN ]

)1/2

, k = 1, 2, 3

and ΠA(~0,−~q,Γ4;µ) = 0. The summation over the sink spatial index, ~x2, is carried out
using a sequential inversion through the sink, as in the case of the electromagnetic form
factors seen in Chapters 3 and 4. This requires fixing the projection matrix Γ before
inverting. The index µ of the axial current and the momentum transfer ~q can be varied
after the sequential inversion. We take a linear combination of the three-point function in
Eq. (5.19) to increase statistics. This defines a sequential source which when inverted and
traced with the forward propagator yields the three-point function from a maximal set of
lattice measurements. The linear combination we take is given by:

SA(~q; j) =
3∑

k=1

ΠA(~0,−~q,Γk, µ = j)

=i
C

4MN

[
(EN (~q) +MN )GA(Q2)− (q1 + q2 + q3)

qj
2MN

Gp(Q2)
]
, (5.20)

where j = 1, 2, 3. Note that this is the same linear combination as in Eq. (3.23) used
in the calculation of the nucleon electromagnetic form factors. Since with the fixed sink
method the sequential source is independent of the operator inserted, we can use the
same sequential propagators as those used for the calculation in Chapter 3. We need
only recombine the sequential propagator with the forward propagator using the axial
current instead of the electromagnetic current, and solve the over-complete set of equations
as described in Chapter 3 in Eqs. (3.29)–(3.33) where the kinematics are now read off
Eq. (5.20).

The pion-nucleon form factor GπNN is obtained in an identical manner, only the axial
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76 Axial Nucleon and Nucleon to ∆ Transition Form Factors

currentA3
µ is now replaced with the pseudo-scalar current P 3. The ratioRP (t2, t1, ~p′, ~p; Γ;µ)

is obtained by taking the ratio of the three-point function GNP
3N (t2, t1; ~p′, ~p; Γ) with the

combination of two-point functions given in Eq. (5.18). In the large t2 − t1 and t1 limit
the ratio becomes independent of time. In the reference frame where the final state is at
rest we have:

ΠP (~0,−~q; Γk; γ5) = C qk
2MN

fπm
2
π

2mq(m2
π +Q2)

GπNN (Q2) (5.21)

and ΠP (~0,−~q; Γ4; γ5) = 0. We use the same linear combination as in the case of the axial
current:

SP (~q; γ5) =
3∑

k=1

ΠP (~0,−~q; Γk; γ5) = C q1 + q2 + q3

2MN

fπm
2
π

2mq(m2
π +Q2)

GπNN (Q2), (5.22)

which allows us to use the same sequential propagators as those used to compute the axial
form factors. We shall explain how we extract the renormalized quark mass, mq, and the
pion decay constant, fπ, in the next subsection.

To calculate the nucleon to ∆ axial transition form factors we use the three-point
function:

G
∆A3

µN
σ (t2, t1; ~p′, ~p; Γ) = (5.23)∑

~x2,~x1

e−i~x2·~p′〈Ω|Γβαχ∆σ
α (~x2, t2)A3

µ(~x1, t1)χ̄Nβ (~0, 0)|Ω〉e−i~x1·(~p−~p),

where χ∆σ(x) is the ∆ interpolating operator given in Eq. (4.9). The ratio we take to
cancel overlaps and exponentials is the same as that used in the electromagnetic transition:

RAσ (t2, t1, ~p′, ~p; Γ;µ) =
G

∆A3
µN

σ (t2, t1; ~p′, ~p; Γ)
G∆∆
ii (t2, ~p′; Γ4)

(5.24)

×
[
GNN (t2 − t1, ~p; Γ4)G∆∆

ii (t1, ~p′; Γ4)G∆∆
ii (t2, ~p′; Γ4)

G∆∆
ii (t2 − t1, ~p′; Γ4)GNN (t1, ~p; Γ4)GNN (t2, ~p; Γ4)

]1/2

t2−t1�1−−−−−→
t1�1

ΠA
σ (~p′, ~p,Γ, µ),

where we take the ∆ two-point function traced over spatial polarizations, i = 1, 2, 3. We
take the final state, the ∆ in this case, to be at rest. The kinematics are thus the same as
in the case of the nucleon axial form factors, namely the momentum transfer is ~q = −~p.
In this reference frame, the ratio in Eq. (5.24) gives:

ΠA
k (~0,−~q; Γ4;µ = j) = iB

{
(5.25)

−
[
EN (~q)− 2M∆ +MN

2
δkj +

pkpj

2(EN (~q) +MN )

]
CA3 (Q2)

−
[
(EN (~q)−M∆)

M∆

MN
δkj

]
CA4 (Q2) +MNδkjC

A
5 (Q2)− pkpj

MN
CA6 (Q2)

}

Gian
nis

 K
ou

tso
u
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for µ = j = 1, 2, 3 while for µ = 4 we have:

ΠA
k (~0,−~q; Γ4;µ = 4) = Bpk

[
CA3 (Q2) +

M∆

MN
CA4 (Q2) +

EN (~q)−M∆

MN
CA6 (Q2)

]
, (5.26)

where

B =
(

2
3

)1/2 [(EN (~q) +MN )/EN (~q)]1/2

3MN
. (5.27)

We take linear combinations of the three-point function so that for a given Q2 the max-
imum number of lattice measurements contribute to the form factors. We find three
combinations given by:

SA1 (~q; 4) =
3∑

σ=1

ΠA
σ (~0,−~q; Γ4;µ = 4) (5.28)

=B
3∑

k=1

pk
[
CA3 (Q2) +

M∆

MN
CA4 (Q2) +

EN (~q)−M∆

MN
CA6 (Q2)

]
,

SA1 (~q; j) =
3∑

σ=1

ΠA
σ (~0,−~q; Γ4; j) (5.29)

=iB
{
− CA3 (Q2)

2

[
(EN (~q)− 2M∆ +MN ) + (p1 + p2 + p3)

pj

EN (~q) +MN

]
− M∆

MN
(EN (~q)−M∆)CA4 (Q2) +MNC

A
5 (Q2)− CA6 (Q2)

MN
pj(p1 + p2 + p3)

}
,

SA2 (~q; j) =
3∑

σ 6=k=1

ΠA
σ (~0,−~q; Γk; j) (5.30)

=i
A
2

{
(p1 + p2 + p3) [δj1(p2 − p3) + δj2(p3 − p1) + δj3(p1 − p2)]CA3 (Q2)

}
,

SA3 (~q; j) =ΠA
3 (~0,−~q; Γ3;µ = j)− 1

2

[
ΠA

1 (~0,−~q; Γ1;µ = j) + ΠA
2 (~0,−~q; Γ2;µ = j)

]
(5.31)

=iA
[

9
4

(δj1p2p3 − δj2p1p3)CA3 (Q2)
]
,

where j = 1, 2, 3 and

A =
B

EN (~q) +MN
. (5.32)

These combinations are the same as those calculated for the electromagnetic transition.
Thus we can compute the axial transition nucleon to ∆ form factors without any new
inversions. Since in this study we are concerned with the dominant form factors CA5 and
CA6 , we only use the sequential propagator obtained by SA1 in Eqs. (5.28 and 5.29). We
refer to Ref. [92] for a lattice study which additionally evaluated the sub-dominant form
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78 Axial Nucleon and Nucleon to ∆ Transition Form Factors

factors.

The GπN∆ form factor is computed in the same manner, by replacing the axial current
A3
µ by the pseudo-scalar current P 3. After taking the ratio with the combination of two-

point functions, and assuming t2−t1 and t1 are large enough for the suppression of excited
states, we have:

ΠP
σ (~0,−~q; Γ4; γ5) =

(
2
3

)1/2(EN (~q) +MN

EN (~q)

)1/2 qσ
6MN

fπm
2
π

2mq(m2
π +Q2)

GπN∆(Q2). (5.33)

The optimal combination is given by:

SPN∆(~q; γ5) =
3∑

σ=1

ΠP
σ (~0,−~q; Γ4; γ5) (5.34)

=
(

2
3

)1/2(EN (~q) +MN

EN (~q)

)1/2 [q1 + q2 + q3

6MN

fπm
2
π

2mq(m2
π +Q2)

]
GπN∆(Q2),

which is the same combination as that used for the case of the axial nucleon to ∆ transition,
thus the same sequential propagators can be used.

5.1.4 Extraction of fπ and mq

The evaluation of GπNN and GπN∆ requires knowledge of the renormalized quark mass
mq. This is defined via the AWI given in Eq. (5.7). Due to the discretization of the
action, the AWI on the lattice has corrections. For Wilson fermions these are of order
a. For domain wall fermions, as we have described in Chapter 4, the effect of the finite
fifth dimension can be thought of as a residual mass. This introduces an additional term
in the divergence of the axial current which goes to zero as the fifth dimension goes to
infinity [93]. Since we set the fifth dimension such that this residual mass is at most an
order of magnitude smaller than the quark mass, we assume corrections to the AWI are
small and compute mq from Eq. (5.7). For this purpose we define the pion axial-vector
two-point function:

CALS(t) =
∑
~x

〈Ω|A3
4(~x, t)Ã3

4(~0, 0)|Ω〉 (5.35)

where the axial current given in Eq. (5.1) is the interpolating operator. Ã denotes a
smeared interpolating operator while CALS denotes that the two-point function is taken
between a smeared initial state and a local final state. Similarly the pion pseudo-scalar
two-point function is given by:

CPLS(t) =
∑
~x

〈Ω|P 3(~x, t)P̃ 3(~0, 0)|Ω〉. (5.36)
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We define the effective quark mass as the ratio:

mAWI
eff (t) =

mπ

2
ZA
ZP

CALS(t)
CPLS(t)

(
CPSS(t)
CASS(t)

)1/2

(5.37)

and look for a plateau in the large t limit. ZA and ZP are the renormalization constants
of the axial and pseudo-scalar currents respectively. This specific combination of local-
smeared and smeared-smeared two-point functions is chosen since this does not require
knowledge of the overlap of the smeared interpolating operator with the pion state. As we
shall see in the next sections, knowledge of the pseudo-scalar renormalization, ZP , is not
needed since for all physical quantities this cancels. Similarly, the pion decay constant,
fπ, is extracted by looking for a plateau in the large t limit of the ratio:

f eff
π (t) = ZA

(
2
mπ

)1/2 CALS(t)√
CASS(t)

emπt/2. (5.38)

5.2 Lattice Parameters and Optimization

As mentioned in the introduction of this chapter, for the nucleon axial form factors we
use the same configurations used in the calculation of the nucleon electromagnetic form
factors. Namely, we use Wilson quenched configurations at three pion masses and three
ensembles of dynamical Wilson NF=2 configurations. The parameters for these lattices
are given in Table 3.1. For the case of the nucleon to ∆ axial transition and pion-nucleon-∆
form factor, we additionally use the hybrid scheme which we used to calculate the nucleon
to ∆ electromagnetic transition form factors in Chapter 4, where domain wall fermions
are used in the valence sector and staggered fermions are used in the sea sector. The
details for these configurations are listed in Table 4.1. We use gauge invariant Gaussian
smeared initial and final states to increase overlap with the ground state. We additionally
use hyper-cubic blocking on the gauge links that enter the hopping matrix of the Gaussian
smearing to reduce gauge noise. The source sink separation was taken the same as that
of the previous calculations, namely we take t2/a=11 for the quenched lattices, t2/a=12
for the Wilson dynamical and t2/a=8 for the hybrid scheme. Although these separations
where fixed from the previous calculation since we use the same sequential propagators,
We shall present checks that these source-sink separations are large enough to suppress
excited state contamination for the case of the axial and pseudo-scalar form factors.

As in the previous chapters, before showing the results of this study we shall first
present initial checks carried out. In Fig. 5.1 we show plots of the effective quark mass
mAWI

eff (t) given in Eq. (5.37) as a function of time. This is done for the three discretization
schemes considered here, for each pion mass. For the case of domain wall fermions, the
correlator should reach a plateau at the quark mass we input in the domain wall Dirac
matrix, given in Table 4.1 under (amu,d)DWF. Any discrepancy observed is attributed to
the residual quark mass due to the finite size of the fifth dimension. For Wilson fermions
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80 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Figure 5.1: Effective quark mass in lattice units, as defined in Eq. (5.37), at the three pion masses
of each discretization scheme considered: left for the quenched case, center for Wilson dynamical
and right for the hybrid scheme. The dashed lines show fits to a constant over the range spanned.

the AWI has corrections of O(a). As we decrease the pion mass we thus expect systematic
errors to grow since the right hand side of Eq. (5.7) becomes dominated by the O(a) term
due to the correction. We shall come back to this issue when discussing results for the
form factors.

In Fig. 5.2 we show the ratio used to extract the pion-nucleon form factor as a function
of the insertion time-slice t1. For the purpose of this check, we average the ratio over all
lattice momenta that contribute to a given Q2 value and multiply with C q1+q2+q3

2MN
. As can

be seen, at intermediate values of t1 the separation between the insertion and sink, t2− t1,
and the insertion and source, t1, is large enough so that excited state contamination is
suppressed, thus the ratio becomes t1 independent. According to Eq. (5.21), the value
fitted in the plateau region is given by:

RP (t2, t1,~0,−~q; Γk; γ5)
2MN

C(q1 + q2 + q3)
t2−t1�1−−−−−→
t1�1

fπm
2
πGπNN (Q2)

2mq(Q2 +m2
π)ZP

(5.39)

in which the pseudo-scalar current renormalization ZP cancels, as we have already men-
tioned. Thus this quantity, as all other physical quantities we shall see in this chapter,
is independent of the value of ZP we use. We remind that in practice this is not how
we carry out the analysis. The form factors are extracted by fitting for each momentum
vector independently, then taking the average. This is done when minimizing χ2 in the
over-constraint analysis described in Chapter 3. In Fig. 5.3 we show the corresponding ra-
tio for the pion-nucleon-∆ form factor. As can be seen, for all three discretization schemes
used, the ratio becomes independent of t1 when the insertion is 2–3 time-slices from the
source, allowing us to fit to a constant.

In Fig. 5.4 we show the ratio used to extract the axial nucleon form factors as a function
of the insertion time t1. Here we do not average over all momentum vectors contributing
to a given Q2 but rather plot representative lattice momentum vectors separately. As can
be seen the time separations are large enough so that a plateau can be identified.

As we have already mentioned, the sequential propagators used are taken from the
previous evaluations of the corresponding electromagnetic form factors, thus no extra
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5.2 Lattice Parameters and Optimization 81

Figure 5.2: The ratio RP used to extract the
pion-nucleon form factor for the four lowest
non-zero momentum transfers Q2. Top us-
ing quenched Wilson fermions at mπ=0.49 GeV
and bottom using dynamical Wilson fermions at
mπ=0.69 GeV. The dashed lines are fits to the
range they span.

Figure 5.3: The ratio RPN∆ used to extract the
pion-nucleon-∆ form factor for the four lowest
non-zero momentum transfers Q2. Top using
quenched Wilson fermions, center for dynami-
cal Wilson fermions and bottom for the hybrid
scheme. We show the lattices with a pion mass
of approximately 0.5 GeV for each discretization
scheme.

sequential inversions are needed. Although the source-sink separation has been fixed for
the calculation of the electromagnetic form factors, we have performed several checks where
we increase the source-sink separation and check for consistency. In Fig. 5.5 we show the
ratio from which the axial nucleon form factors are obtained and the ratio from which
GπNN is obtained as a function of the insertion time-slice for two source-sink separations,
namely t2/a=11 and t2/a=13. We carry out this check using the quenched lattice at the
smallest pion mass mπ = 0.41 GeV. We see that increasing the source-sink separation by
two time-slices yields consistent plateaus except for the lowest momentum transfer of the
GπNN form factor where we see that the larger source-sink separation yields a larger value
for the form factor. Given the consistency observed for all other momentum transfer, we
can conclude that the origin of this discrepancy is most likely not due to the increase in
the source-sink separation. The most probable cause is that because this form factor is
obtained by dividing with q1 + q2 + q3, the extraction becomes ill-defined as ~q → 0 and
thus the extracted value becomes erroneous.

The effect of increasing the source-sink separation on the values extracted for the form
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82 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Figure 5.4: The ratio used to extract the axial nucleon form factors GA and Gp as a function of
the insertion time-slice t1 for representative lattice momentum vectors. Left for the quenched case
at mπ = 0.49 GeV and right for dynamical Wilson fermions at mπ=0.51 GeV.

factors can be seen in Fig. 5.6 where we compare the axial nucleon form factors GA and
induced pseudo-scalarGp and the pion-nucleon form factor fπGπNN/mq for the two source-
sink separations of Fig 5.5. As can be seen the form factors are consistent up to ∼ 1.5 GeV.
At higher momentum transfer the three-point function becomes noisy, and numerically the
Fourier transform gives an underestimated error due to the small statistics. An exception
is the lowest momentum transfer for the pion-nucleon form factor which appears to be
underestimated for the shorter separation, which is what we have seen in Fig. 5.5. Given
the consistency of all other measurements and the accuracy obtained using the shorter
separation, we fix t2/a=11 with the hindsight that GπNN may be underestimated at the
smallest Q2 value.

In Fig. 5.7 we carry out the same check for the nucleon to ∆ matrix element in the
hybrid scheme. Here we compute the form factors by setting the separation to t2/a=10
time-slices and inverting using Dirichlet boundary conditions cutting the lattice at half the
temporal extent. This is compared to setting t2/a=8 on the full lattice with anti-periodic
boundary conditions. As can be seen the two separations yield consistent results. The
larger separation, however, is much noisier than the shorter separation, thus we fix the
separation at t2/a=8 for the hybrid scheme.

In Fig. 5.8 we check for finite volume effects by computing the three form factors on two
ensembles at equal pion mass but different volume, as we have done for the electromagnetic
transition in Chapter 4. The results are consistent meaning that mπLs ≥ 4.6, which is
what we obtain for the smaller lattice, is sufficient for finite size effects to be negligible.
All lattices considered obey mπLs ≥ 4.6, except for the dynamical Wilson lattice at the
smallest pion mass. Since a larger lattice at this small pion mass is unavailable, we cannot
assess the size of finite volume effects on the form factors computed using this lattice.
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5.3 Lattice Results 83

Figure 5.5: The ratio that yields GA and Gp
(top) and the ratio that yields GπNN (bottom)
as a function of the insertion time-slice t1 for two
source-sink separations, t2/a=11 and t2/a=13.
The results for t2/a=11 have been shifted to
the right by a time-slice so that its median co-
incides with that for t2/a = 13. The results
where obtained in the quenched approximation
at mπ=0.41 GeV.

Figure 5.6: The axial nucleon form factors GA
(top) and Gp (center) as well as the pion-nucleon
form factor fπGπNN/mq (bottom) as a function
of Q2 for two source-sink separations: t2/a=11
(open triangles) and t2/a=13 (crosses). We con-
sider the smallest quark mass in the quenched
approximation (mπ =0.41 GeV).

5.3 Lattice Results

We will first show results on ratios of form factors. In the ratios we shall show the
renormalized quark mass cancels, eliminating one potential source of systematic error.
Additionally, ratios show weaker dependence on the pion mass and thus are more suited
for comparison with results at the physical point.

In Fig. 5.9 we show the ratio of the pion-nucleon-∆ form factor with the pion-nucleon
form factor. Since the momentum transfer, Q2, depends on the nucleon mass for the case
of GπNN and on both nucleon and ∆ masses for the case of GπN∆, we must interpolate
the two form factors to same Q2 values in order to take the ratio. As can be seen this
ratio, within statistical error, shows no dependence on the momentum transfer. Fitting
to a constant we obtain 1.60(2). The Wilson dynamical results are consistent with the
quenched results albeit with larger errors. Fitting to a constant we obtain 1.63(4).
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84 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Figure 5.7: The nucleon to ∆ axial transition
form factors CA5 (top) and CA6 (center) and the
pion-nucleon-∆ form factor fπGπN∆/mq (bot-
tom) for the lightest pion mass in the hybrid
scheme at two source sink separations: t2/a=8
(open triangles) and t2/a=10 (crosses).

Figure 5.8: The nucleon to ∆ axial transition
form factors CA5 (top) and CA6 (center) and the
pion-nucleon-∆ form factor fπGπN∆/mq (bot-
tom) for the lightest pion mass in the hybrid
scheme at two lattice volumes: Ls = 2.5 fm
(crosses) and Ls = 3.5 fm (open triangles).

According to the simplified GTRs given in Eq. (5.16), the ratio shown in Fig. 5.9
should be equal to 2CA5 (Q2)/GA(Q2):

GπN∆(Q2)/GπNN (Q2) = 2CA5 (Q2)/GA(Q2). (5.40)

We test this equality by showing this ratio in Fig. 5.10. As can be seen the ratio is
independent of Q2 within error bars as in the case of the ratio between the pion-nucleon-
∆ and pion-nucleon form factors. Fitting to a constant yields 1.61(1) for the quenched
results which is consistent with what we find for the ratio of the pseudo-scalar form factors.
The results obtained using dynamical Wilson fermions lie slightly higher and fitting to a
constant yields 1.74(4).

We can use the GTRs along with their simplified form in order to eliminate the pseudo-
scalar form factors GπNN and GπN∆. This rearrangement, which is another manifestation
of the assumption that the form factors Gp and CA6 are described by a pion pole, associates
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Figure 5.9: The ratio GπN∆(Q2)/GπNN (Q2) us-
ing quenched Wilson fermions at mπ=0.56 GeV
(crosses), mπ=0.49 GeV (open circles) and
mπ=0.41 GeV (asterisks) and using two degener-
ate flavors of Wilson fermions at mπ=0.69 GeV
(open triangles), mπ=0.51 GeV (filled circles)
and mπ=0.38 GeV (open squares). The dashed
line shows the result of fitting the quenched re-
sults to a constant which yields 1.60(2).

Figure 5.10: The ratio 2CA5 (Q2)/GA(Q2) which
according to the simplified GTRs is equal to
GπN∆(Q2)/GπNN (Q2). The notation is the
same as in Fig. 5.9. Fitting the quenched results
to a constant yields 1.61(1).

the ratios via:

GπN∆(Q2)/GπNN (Q2) = 2CA5 (Q2)/GA(Q2) = 8CA6 (Q2)/GP (Q2). (5.41)

In Fig. 5.11 we plot 8CA6 (Q2)/GP (Q2) as a function of the momentum transfer squared.
The conclusion for this ratio is the same as that of the other two ratios seen so far, that
within error bars we see no Q2 dependence. Fitting the quenched and dynamical Wilson
results to a constant we find 1.71(3) and 1.79(4) respectively which are approximately 7%
larger than what is obtained when fitting the quenched results for GπN∆(Q2)/GπNN (Q2).
Given these comparisons we can conclude that on the few percent level the simplified
GTRs are indeed satisfied.

We can additionally test the GTRs without assuming a pion pole for Gp and CA6 .
For this we take the ratio of the off-diagonal GTR given in Eq. (5.14) over the diagonal
GTR given in Eq. (5.13). This ratio should be equal to unity if both these relations hold.
This is indeed what we observe in Fig. 5.12 where we plot this ratio as a function of the
momentum transfer squared.

Assuming pion pole dominance of the form factors Gp and CA6 , along with the GTRs
given in Eqs. (5.13) and (5.14), implies that Gp has a stronger Q2 dependence than GA

and, similarly, that CA6 has a stronger Q2 dependence than CA5 :

Gp(Q2) =
4M2

N

m2
π

GA(Q2)
1 +Q2/m2

π

(5.42)

CA6 (Q2) =
M2
N

m2
π

CA5 (Q2)
1 +Q2/m2

π

. (5.43)
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86 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Figure 5.11: The ratio 8CA6 (Q2)/Gp(Q2) which
according to the simplified GTRs is equal to
GπN∆(Q2)/GπNN (Q2). The notation is the
same as in Fig. 5.9. The dashed line is the
result of fitting the quenched results to a con-
stant which yields 1.71(3). The dotted line
shows 1.6, which is what is obtained when fitting
GπN∆(Q2)/GπNN (Q2) to a constant, shown in
Fig. 5.9.

Figure 5.12: The ratio of the off-diagonal GTR
over the diagonal GTR given in Eqs. (5.14)
and (5.13) respectively. The notation is the same
as in Fig. 5.9.

In Fig. 5.13 we plot the ratio Gp(Q2)/GA(Q2) as a function of Q2. In the same plot we
include results in the hybrid scheme taken from Ref. [67] which where calculated on the
same lattices we consider here for the nucleon to ∆ transition form factors. Eq. (5.42)
predicts the form of this ratio and is shown with the dashed line in this plot for the
quenched case at the lightest pion mass, mπ=0.41 GeV. We additionally fit the ratio for
each pion mass to the monopole form:

c0

Q2/m2 + 1
(5.44)

to obtain c0 and m. The result of these fits are shown in Table 5.1.

In Fig. 5.14 we show the ratio CA6 (Q2)/CA5 (Q2). Assuming pion pole dominance, the
form of this ratio is given by Eq. (5.43). We show the curve obtained by this prediction
for two cases: for the quenched results at the lightest pion mass, shown by the dashed
line, and for the hybrid case at the lightest pion mass, shown by the dotted line. Fitting
to Eq. (5.44) the quenched results at the lightest pion mass yields the solid curve. The
parameters obtained by fitting each pion mass are given in Table 5.1. As can be seen,
we find that the monopole mass obtained by fitting is larger than the corresponding pion
mass. An additional conclusion is that at low momentum transfer, where pion cloud
contributions are expected to be larger, unquenching effects are more notable.

To study the momentum dependence of the form factors separately we need knowledge
of the axial current renormalization constant ZA. For the case of the pion-nucleon and
pion-nucleon-∆ form factors the renormalization constant of the pseudo-scalar current ZP
which appears in the operator cancels with that which appears from the extraction of the
renormalized quark mass from two-point functions. The values for ZA are known and
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5.3 Lattice Results 87

Figure 5.13: The ratio Gp(Q2)/GA(Q2) as a
function of the momentum transfer squared.
The notation is the same as in Fig. 5.9. We addi-
tionally include results from a hybrid calculation
taken from Ref. [67] at the three pion masses we
use here: mπ=0.59 GeV (stars), mπ=0.50 GeV
(filled triangles) and mπ=0.36 GeV (inscribed
squares). The dashed line shows the ex-
pected behavior according to Eq. (5.42) for the
quenched case at κ = 0.1562, while the solid line
shows the result of fitting the quenched data at
κ = 0.1562 to the monopole form of Eq. 5.44.

Figure 5.14: The ratio of CA6 (Q2)/CA5 (Q2) as a
function of Q2. The notation is the same as in
Fig. (5.13). The dotted line shows the expected
behavior according to Eq. (5.43) for the hybrid
case at the lowest pion mass.

are shown in Table 5.2. In Fig. 5.15 we show results obtained for the axial nucleon form
factor GA(Q2) and the induced pseudo-scalar form factor Gp(Q2) using Wilson quenched
and Wilson dynamical quarks. We include results in the hybrid scheme from Ref. [67].
As can be seen, results obtained using the lightest pion mass in the hybrid scheme show
deviations at low Q2 as was the case with the ratios we have already seen. In particu-
lar, the nucleon axial coupling gA becomes larger in the hybrid scheme approaching the
experimental value. Recent state-of-the art lattice measurements of this quantity can be
found in Refs [88, 89], therefore we shall not elaborate further on gA but rather focus on
the momentum dependence of the form factors. The deviations at low Q2 when using the
lightest pion mass in the hybrid scheme are also seen in Gp(Q2). In Fig. 5.16 we show the
corresponding nucleon to ∆ axial transition form factors. The same discrepancy between
the Q2 dependence of the hybrid scheme and using the quenched lattices is observed here
as well.

The Q2 dependence of GA(Q2) and of CA5 (Q2) is well described by a dipole Ansatz:

g0

(1 +Q2/m2
A)2

. (5.45)

This form is used to describe experimental data yielding an axial mass of ∼1.1 GeV
for GA(Q2) and 1.28(10) GeV for CA5 (Q2) [96]. We additionally fit to an exponential,
g̃0e
−Q2/m̃2

A . We show fits to both forms in Figs. 5.15 and 5.16 for the quenched case where
we see that both Ansätze describe the data well. The parameters obtained are presented
in Table 5.3. The axial masses obtained are found larger than the experimental values.

Gian
nis

 K
ou

tso
u



88 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Table 5.1: The table left (right) shows the result of fitting the ratio Gp(Q2)/GA(Q2)
(CA6 (Q2)/CA5 (Q2)) to the monopole form given in Eq. (5.44).

Nucleon elastic
mπ (GeV) m (GeV) c0

Quenched Wilson fermions
0.563(4) 0.671(14) 13.71(34)
0.490(4) 0.597(14) 15.23(43)
0.411(4) 0.511(16) 17.70(76)
NF = 2 dynamical Wilson fermions
0.691(8) 0.750(43) 14.13(1.01)
0.509(8)
0.384(8) 0.642(77) 11.15(1.82)

Nucleon to ∆
mπ (GeV) m (GeV) c0

Quenched Wilson fermions
0.563(4) 0.691(17) 3.43(9)
0.490(4) 0.628(16) 3.69(11)
0.411(4) 0.548(15) 4.15(14)
NF = 2 dynamical Wilson fermions
0.691(8) 0.711(53) 3.85(35)
0.509(8) 0.490(98) 5.27(1.59)
0.384(8) 0.520(63) 4.08(72)

Hybrid action
0.594(1) 0.693(15) 3.90(8)
0.498(3) 0.627(11) 3.96(8)
0.353(3) 0.459(8) 5.62(12)

Figure 5.15: The nucleon axial form factor GA(Q2) (left) and the induced pseudo-scalar nucleon
form factor Gp(Q2) (right) as a function of Q2. We compare our results using quenched Wilson
and dynamical Wilson quarks to results obtained within the hybrid scheme taken from Ref. [67]
at mπ=0.5 GeV (filled triangles) and mπ=0.36 GeV (inscribed squares). The notation for the
quenched Wilson and dynamical Wilson results is the same as in Fig. 5.9. For the case of GA(Q2),
the solid curve shows a fit to a dipole form of the quenched results at the lowest pion mass. A
fit to an exponential is shown with the dashed line which falls on top. The dotted line shows a
dipole form with the dipole axial mass at mA=1.1 GeV used to describe experimental data. For
Gp(Q2), the solid line shows the form expected by pion pole dominance given by Eq. 5.42 using
the fitted dipole form for GA(Q2). The dashed line shows the form obtained when using the fitted
monopole form for the ratio and the fitted dipole form for GA(Q2) to extract the form of Gp(Q2)
via Eq. 5.42 for the lightest pion mass in the quenched case.

This is expected from Fig. 5.15 where we include the experimentally defined curve with
the dotted line. Having the form of GA(Q2) and CA5 (Q2) we can obtain the momentum
dependence of Gp(Q2) and CA6 (Q2) from Eqs. (5.42) and (5.43). The results are shown by
the dashed curves in Figs. 5.15 and 5.16 for the lightest pion mass in the quenched case.
The Q2 dependence of the curves shows deviations at low Q2. Similarly, we can use the
fitted parameters for the ratios Gp(Q2)/GA(Q2) and CA6 (Q2)/CA5 (Q2) given in Table 5.1
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5.3 Lattice Results 89

Table 5.2: The renormalized quark mass in lattice units, amq, the unrenormalized pion decay
constant, fπ/ZA, and the axial current renormalization constant, ZA, for each discretization scheme
used, at every pion mass considered.

κ or ml amq afπ/ZA ZA
Quenched Wilson fermions

0.1554 0.0403(4) 0.0611(14) 0.808(7) [94]
0.1558 0.0307(4) 0.0587(16) 0.808(7)
0.1562 0.0213(4) 0.0563(17) 0.808(7)

NF = 2 Wilson fermions
0.1575 0.0441(4) 0.0649(8) 0.77(2) [95]
0.1580 0.0229(4) 0.0494(9) 0.78(4) [95]
0.15825 0.0122(3) 0.0467(13) 0.8a

Hybrid action
0.03 0.0475(3) 0.0678(6) 1.1085(5) [88]
0.02 0.0324(4) 0.0648(8) 1.0994(4) [88]
0.01 0.0159(2) 0.0639(2) 1.0847(6) [88]

aEstimated from the values of ZA at κ = 0.1575 and 0.1580

and obtain the Q2 dependence of Gp(Q2) and CA6 (Q2) by:

g0

(1 +Q2/m2
A)2

c0

1 +Q2/m2
. (5.46)

This form describes the data well, as can be seen by the solid curve shown in Figs. 5.15
and 5.16 where we show this for the lightest pion mass of the quenched case.

Figure 5.16: The nucleon to ∆ axial transition form factors CA5 (Q2) (left) and CA6 (Q2) (right). For
the case of CA5 (Q2), the solid curve shows the result of fitting to a dipole form while the dashed
curve the result of fitting to an exponential form. For CA6 (Q2), the dashed curve shows Eq. (5.43)
using the fitted dipole form for CA5 (Q2) for the lightest pion mass in the quenched approximation.
The solid curve shows the product of the fitted monopole form for CA6 (Q2)/CA5 (Q2) with the fitted
dipole form for CA5 (Q2) for the lightest pion mass in the quenched approximation. The dotted
curve shows the same for the hybrid scheme at the smallest pion mass. The rest of the notation is
the same as in Fig. 5.14.

Before going on to results for GπNN and GπN∆ we need to check for lattice effects on
the renormalized quark mass mq. As already mentioned, the AWI takes corrections to
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90 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Table 5.3: The parameters g0 and mA obtained by fitting GA(Q2) and CA5 (Q2) to the dipole
form in Eq. (5.45). We include the parameters obtained when fitting to the exponential form
g̃0 exp(Q2/m̃2

A).

mπ (GeV) mA (GeV) g0 m̃A (GeV) g̃0

Nucleon elastic
Quenched Wilson fermions

0.563(4) 1.659(20) 1.088(8) 1.271(9) 1.074(5)
0.490(4) 1.632(19) 1.079(7) 1.249(9) 1.069(5)
0.411(4) 1.578(28) 1.080(12) 1.220(10) 1.066(6)

NF = 2 dynamical Wilson fermions
0.691(8) 1.831(22) 1.067(6) 1.393(16) 1.063(6)
0.509(8) 1.709(46) 0.999(17) 1.296(29) 0.995(17)
0.384(8) 2.019(78) 0.951(18) 1.528(44) 0.943(15)

Nucleon to ∆
Quenched Wilson fermions

0.563(4) 1.469(46) 0.972(26) 1.204(13) 0.923(9)
0.490(4) 1.467(51) 0.950(29) 1.201(16) 0.903(11)
0.411(4) 1.492(57) 0.901(28) 1.213(20) 0.863(13)

NF = 2 dynamical Wilson fermions
0.691(8) 1.649(36) 1.005(19) 1.384(29) 0.929(17)
0.509(8) 1.460(65) 1.003(47) 1.260(38) 0.898(29)
0.384(8) 1.593(69) 0.980(41) 1.337(38) 0.902(26)

Hybrid action
0.594(1) 1.572(54) 1.040(29) 1.276(19) 0.990(13)
0.498(3) 1.789(46) 0.940(16) 1.402(19) 0.916(9)
0.357(2) 1.740(44) 0.914(15) 1.364(18) 0.895(8)

first order in the lattice spacing for Wilson fermions. As the quark mass goes to zero, this
correction will dominate the right hand side of Eq. (5.7). For domain wall fermions, in the
limit where the fifth dimension goes to infinity the renormalized quark mass is equal the
domain wall quark mass listed in Table 4.1. Any deviations between these two masses are
thus due to the residual quark mass which is due to the finite size of the fifth dimension.
In Fig. 5.17 we show the renormalized quark mass as a function of the pion mass squared.
As can be seen the quenched quark mass extrapolates to zero. For Wilson NF=2, the
quark mass has finite a corrections at m2

π → 0 since it does not extrapolate to zero. For
the case of domain wall fermions we include both the quark mass evaluated using the AWI
and the domain wall quark mass, denoted by mDW

q , which is the hopping parameter of the
domain wall operator and which was tuned in Ref. [67] so that it yields a pion mass equal
to the lightest pseudo-scalar mass obtained when using the Asqtad improved Staggered
action in both the valence and sea sector.

Knowing the values for fπ and mq we carry on to show results for the pion-nucleon and
pion-nucleon-∆ form factors. We first examine the simplified GTRs given in Eq. (5.16)
by which the ratios fπGπNN (Q2)/(MNGA(Q2)) and fπGπN∆(Q2)/(2MNC

A
5 (Q2)) are ex-

pected to be equal to unity. We plot these ratios in Fig. 5.18. As can be seen these are
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5.3 Lattice Results 91

Figure 5.17: The renormalized quark mass as a function of the pion mass squared, crosses for
the quenched case, circles for Wilson dynamical and filled squares for the hybrid scheme. We
additionally include the domain wall quark mass, set by demanding that this yields a pion mass
equal to the lightest pseudo-scalar mass using the MILC lattices [67].

consistent with unity for Q2 ≥ 0.5 GeV2 when using dynamical Wilson and quenched
Wilson fermions. Using the hybrid scheme the results show smaller deviations from unity
at lower Q2 < 0.5 GeV2.

Figure 5.18: The ratios fπGπNN (Q2)/(MNGA(Q2)) (left) and fπGπN∆(Q2)/(2MNC
A
5 (Q2))

(right). The notation is the same as that of Fig. 5.14.

Assuming pion pole dominance of the form factors Gp(Q2) and CA6 (Q2) as in Eq. (5.15),
the ratios:

2GπNN (Q2)fπ
m2
π +Q2

2MN

Gp(Q2)
and

1
2
GπN∆(Q2)fπ
m2
π +Q2

MN

CA6 (Q2)
(5.47)

should also be consistent to unity. We show these ratios in Fig. 5.19 for the lightest
pion mass for each discretization scheme considered, where we see that these are indeed
consistent with unity.

Finally we shall present and discuss the pion-nucleon and pion-nucleon-∆ form factors
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92 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Figure 5.19: The ratios 4MNfπG
∗
πNN (Q2)/(m2

πGp(Q
2)) (left) and

MNfπG
∗
πN∆(Q2)/(2m2

πC
A
6 (Q2)) (right) for the lightest quark mass of each discretization

scheme used, where G∗πNN (Q2) ≡ GπNN (Q2)/(1 +Q2/m2
π) and equivalently for G∗πN∆(Q2).

separately. In Fig. 5.20 we show these for the lightest pion mass for each discretization
scheme considered. Our first observation is the consistency between results using Wilson
fermions and in the hybrid scheme at low Q2 indicating that unquenching effects for
these quantities are smaller than for the axial form factors at pion masses as low as
0.35 GeV. The simplified GTRs relate GπNN and GπN∆ to the axial form factors GA(Q2)
and CA5 (Q2) respectively, which we have seen are described by a dipole form. Using the
fitted parameters for GA(Q2) and CA5 (Q2) listed in Table 5.3 we plot the dashed curves
in Fig. 5.20. The discrepancy noted in Fig. 5.19 at Q2 < 0.5 GeV2 are seen here as
well. These deviations are confirmed by results in the hybrid scheme. The momentum
dependence of these form factors can be described by the linear form:

GπNN (Q2) =a
(

1−∆
Q2

m2
π

)
, (5.48)

GπN∆(Q2) =a′
(

1−∆′
Q2

m2
π

)
.

We fit to the above expressions varying a and ∆ for the case of GπNN and a′ and ∆′ for
the case of GπN∆. The results of the fits are shown by the solid lines in Fig. 5.20 and as
can be seen describe the data well. We have omitted the point at the lowest momentum
transfer in the fit, since we may be underestimating the statistical error on this point. The
fitted parameters a, a′, ∆ and ∆′ at each pion mass are shown in Table 5.4. Note that
the parameters ∆ and ∆′ decrease with decreasing pion mass. Baryon chiral perturbation
theory predicts a value of ∆=2.44% at the physical point [97]. This is reasonable given
the quark mass dependence of the fitted values for ∆ in Table 5.4. This is not the case
for the parameter a which is found smaller than the value MNgA/fπ which is expected by
the GTRs.

In Fig. 5.21 we present the pion-nucleon and the pion-nucleon-∆ form factor at all pion
masses using all three discretization schemes considered here. GπNN (Q2) and GπN∆(Q2)
can be related via the GTRs to Gp(Q2) and CA6 (Q2) respectively, of which we know the
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5.3 Lattice Results 93

Figure 5.20: The pion-nucleon form factor (left) using Wilson dynamical (open squares) and Wilson
quenched (asterisks) at the lightest pion mass available and the pion-nucleon-∆ form factor (right)
additionally in the hybrid scheme at the lowest pion mass (inscribed squares). The dashed lines
show the form expected by Eq. (5.16) using the fitted dipole forms for GA(Q2) and CA5 (Q2). The
solid curves are the result of fitting to Eq. (5.48). We include the curve GπN∆(Q2) = 1.6GπNN (Q2)
denoted by the dash-dotted line, obtained by fitting a constant to the ratio GπN∆(Q2)/GπNN (Q2).

Q2 dependence from Eq. (5.46). Thus the pion-nucleon form factor is given by:

GπNN (Q2) = KN
Q2/m2

π + 1
(Q2/m2 + 1)(Q2/m2

A + 1)2
(5.49)

where we can fit to obtain KN and all other parameters are taken from Tables 5.1 and 5.3.
An equivalent relation holds for the pion-nucleon-∆ form factor. From KN and KN∆ we
extract the strong couplings gπNN and gπN∆ respectively. These are shown in Table 5.4.
We see that the value of the pion-nucleon strong coupling obtained is smaller than the
experimental value of 13.21+0.11

−0.05 [98] and decreases with decreasing pion mass. This is
due to the fact that the GπNN form factor has a weaker Q2 dependence than what is
expected by PCAC at low momentum transfer. If, on the other hand, we use GπNN (Q2) =
(MN/fπ)GA(Q2) to extract gπNN we obtain the more reasonable value of gπNN = 11.8(3).

Figure 5.21: The pion-nucleon form factor (left) and the pion-nucleon-∆ form factor (right) with
the notation of Fig. 5.14. The dashed curves show fits to Eq. (5.49) adjusting only KN for the
lightest pion mass of the quenched case.
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94 Axial Nucleon and Nucleon to ∆ Transition Form Factors

Table 5.4: The parameters ∆ and ∆′ obtained by fitting GπNN and GπN∆ respectively to Eq. 5.48.
The first column for gπNN and gπN∆ is obtained by fitting to Eq. 5.48 while the second column is
obtained by fitting to Eq. 5.49.

Nucleon elastic
mπ (GeV) ∆ gπNN

Quenched Wilson fermions
0.563(4) 0.110(2) 9.943(99) 10.609(73)
0.490(4) 0.083(2) 9.126(93) 10.143(91)
0.411(4) 0.062(2) 8.410(100) 9.725(140)

NF = 2 dynamical Wilson fermions
0.691(8) 0.114(3) 11.48(245) 10.486(122)
0.509(8) 0.038(15) 9.071(294)
0.384(8) 0.044(10) 8.613(551)

Nucleon to ∆
mπ (GeV) ∆′ gπN∆

Quenched Wilson fermions
0.563(4) 0.106(2) 16.560(194) 17.174(166)
0.490(4) 0.079(2) 14.692(188) 16.195(206)
0.411(4) 0.052(2) 12.609(180) 14.873(264)

NF = 2 dynamical Wilson fermions
0.691(8) 0.109(2) 17.536(190)
0.509(8) 0.063(2) 14.970(452)
0.384(8) 0.024(15) 12.685(1.416)

Hybrid action
0.594(1) 0.076(5) 17.649(236)
0.498(3) 0.0648(7) 17.329(496)
0.353(3) 0.036(5) 12.282(289) 13.472(487)

5.4 Summary of Results

In this chapter we have presented a study of the axial nucleon form factors GA and Gp and
of the corresponding axial nucleon to ∆ transition form factors CA5 and CA6 . We have also
evaluated the pion-nucleon and the pion-nucleon-∆ form factors. We have shown results
on ratios of these form factors that are expected to show weak quark mass dependence and
thus can be compared to results extracted experimentally. Within this analysis we have
reached a number of phenomenologically important conclusions. We have seen that GπNN
and GπN∆ have the same momentum dependence by showing that their ratio is constant
and equal to 1.60(2) which is in agreement with what is expected phenomenologically.
Similarly the ratio 2CA5 (Q2)/GA(Q2) is also Q2 independent and equal to 1.61(1). Equality
of these two ratios is expected if the Goldberger-Treiman relations hold, as is equality with
the ratio 8CA6 (Q2)/Gp(Q2) which, however, is found to be about 7% larger. We check
pion pole dominance of the ratios Gp(Q2)/GA(Q2) and CA6 (Q2)/CA5 (Q2) which is again
expected phenomenologically. Both Wilson quenched and dynamical as well as results
obtained in the hybrid scheme are described by a larger pole mass than mπ.
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5.4 Summary of Results 95

We have additionally presented results on the form factors separately. Comparison be-
tween hybrid and quenched results shows that unquenching effects are large, most notably
at small momentum transfer, compared to what we observe when comparing ratios. This
is another confirmation that pion cloud effects may be large at low momentum transfers as
we go to smaller pion masses. The momentum dependence of the nucleon axial form factor
GA and the nucleon to ∆ axial transition form factor CA5 is well described by a dipole
form. For the case of GA we obtain an axial dipole mass mA around 1.5 GeV compared to
experiment which yields mA=1.1 GeV. Our results also confirm the conclusions reached
in a recent lattice study of the axial charge gA [88]. Namely we find that this increases
when using dynamical configurations, coming closer to experiment as compared to using
quenched configurations.

Comparing the momentum dependence of the pion-nucleon form factor GπNN and
of the pion-nucleon-∆ form factor GπN∆ with what is expected phenomenologically we
find discrepancies at low Q2. As we have seen, these form factors increase less rapidly as
Q2 → 0 than the expected dipole form. Because of this behavior the strong couplings gπNN
and gπN∆ extracted are smaller than what is obtained experimentally. To evaluate these
form factors we need the renormalized quark mass which we have calculated on the lattice
using the axial Ward-Takahashi identity. The axial Ward identity has O(a) corrections
for the case of Wilson fermions which become more significant as the pion mass goes to
zero. Domain wall fermions have corrections to the Ward identity due to the residual
quark mass which is in turn due to the finite size of the fifth dimension. Even so, the
renormalized quark mass can not account for discrepancies of the momentum dependence
of the form factors since it is only a multiplicative constant at a given pion mass. Further
investigation of the observed discrepancies requires the evaluation of these form factors
at smaller pion masses where the question of the importance of pion cloud effects can be
addressed. Such calculations will be possible in the near future since simulations at such
pion masses are already underway.
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Chapter 6

∆ Electromagnetic Form Factors

In Chapters 3 and 4 we have presented a lattice evaluation of the nucleon electromagnetic
form factors as well as the nucleon to ∆ electromagnetic transition form factors. In this
chapter we present results on the electromagnetic form factors of the ∆ [51, 99]. This
study completes the investigation of the electromagnetic form factors of the nucleon/∆
system. As mentioned in the previous chapter, the ∆, being a spin-3/2 particle, has a
spectroscopic quadrupole moment and thus a possible asymmetry in its charge distribution
can be investigated by studying its electromagnetic form factors.

The very short lifetime (∼6·10−24 s) of the ∆ baryon means that experimentally its
form factors are notoriously difficult to measure experimentally. However the measure-
ment of the ∆+ magnetic moment has been carried out in Ref. [100] and of the ∆++ in
Ref. [101]. A review of these experimental results can be found in Ref. [102]. The uncer-
tainty accompanying these results is large, and the magnetic moment of the ∆++ is quoted
to be between 3.7 µN and 7.5 µN [102]. Given this experimental situation, it is thus of
interest to evaluate this quantity from first principles on the lattice. Furthermore, a non-
zero value for the ∆ quadrupole form factor would indicate that the ∆-baryon is deformed
and would thus complement the calculation of the electric and Coulomb quadrupole form
factors of the nucleon to ∆ electromagnetic transition.

An early lattice calculation in quenched QCD of these form factors has been carried
out in Ref. [103]. This calculation used sequential inversion through the insertion thus
requiring a new inversion for each different lattice momentum. We apply the techniques
developed in our previous studies to the evaluation of the ∆ electromagnetic form factors.
We obtain results using the large 323 × 64 quenched lattices and Wilson NF = 2 lattices
as well as using the hybrid action involving domain wall valence quarks and dynamical sea
quarks. One of the main goals is to calculate the sub-dominant electric quadrupole form
factor since a non-zero value signals deformation in the ∆. For this purpose we construct
an optimized sequential source that isolates the quadrupole form factor from the dominant
ones.

97

Gian
nis

 K
ou

tso
u



98 ∆ Electromagnetic Form Factors

6.1 Lattice Formulation

The ∆ electromagnetic matrix element is given by:

〈∆(p′, s′)|jµ|∆(p, s)〉 =
(

M2
∆

E∆(p)E∆(p′)

)1/2

ūσ(p′, s′)Oσµτuτ (p, s), (6.1)

where ū and u are spin-3/2 spinors in the Rarita-Schwinger formalism. The matrix element
Oσµτ is given by:

Oσµτ = −δστ
[
a1(q2)γµ − i

a2(q2)
2M∆

(p+ p′)
]

+
qσqτ

4M2
∆

[
c1(q2)γµ − i

c2(q2)
2M∆

(p+ p′)
]
, (6.2)

where c1, c2, a1 and a2 are the electromagnetic form factors of the ∆. These can be
expressed in terms of the multipole form factors:

GE0(q2) =(1 +
2
3

q2

4M2
∆

)
[
a1(q2) + (1 +

q2

4M2
∆

)a2(q2)
]

(6.3)

− 1
3

q2

4M2
∆

(1 +
q2

4M2
∆

)
[
c1(q2) + (1 +

q2

4M2
∆

)c2(q2)
]
,

GE2(q2) =
[
a1(q2) + (1 +

q2

4M2
∆

)a2(q2)
]
− 1

2
(1 +

q2

4M2
∆

)
[
c1(q2) + (1 +

q2

4M2
∆

)c2(q2)
]
,

GM1(q2) =(1 +
4
5

q2

4M2
∆

)a1(q2)− 2
5

q2

4M2
∆

(1 +
q2

4M2
∆

)c1(q2),

GM3(q2) =a1(q2)− 1
2

(1 +
q2

4M2
∆

)c1(q2).

The electric charge form factor GE0 and the magnetic dipole form factor GM1 are domi-
nant while the electric quadrupole GE2 and the magnetic octapole GM3 form factors are
sub-dominant. The matrix element is evaluated through the calculation of a three-point
function:

G∆σjµ∆τ (t2, t1; ~p′, ~p; Γ) = (6.4)∑
~x1,~x2

e−i~x2·~p′〈Ω|Γβαχ∆σ
α (~x2, t2)jµ(~x1, t1)χ̄∆τ

β |Ω〉e
−i~x1·(~p′−~p).

The interpolating operator for the ∆ is the same as that used in the evaluation of the
nucleon to ∆ form factors in the previous chapter (Eq. (4.9)). For the case of Wilson
fermions we use the lattice conserved current in Eq. (3.8). For the hybrid calculation we
use the local current. As in the case of the nucleon form factors, the three-point function
has a contribution from a disconnected diagram. Assuming isospin symmetry between
up and down quarks, we can avoid computing this disconnected quark loop by opting to
calculate the isovector form factors of the ∆ baryon, i.e. the form factors of the isovector
current: ūγµu− d̄γµd.

The three-point function is traced with a projection matrix Γ, given in Eq. (3.6). As in
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6.1 Lattice Formulation 99

the previous chapters, combinations of these matrices are used in order to isolate specific
form factors. To cancel unknown overlaps with the initial and final states as well as
cancel the exponentials appearing in the three-point function we construct a ratio with
a combination of two-point functions similar to that presented in the previous chapters
given by:

Rστ (t2, t1, ~p′, ~p; Γ;µ) =
G∆jµ∆
στ (t2, t1; ~p′, ~p; Γ)
G∆∆
ii (t2, ~p′; Γ4)

(6.5)

×
[
G∆∆
ii (t2 − t1, ~p; Γ4)G∆∆

ii (t1, ~p′; Γ4)G∆∆
ii (t2, ~p′; Γ4)

G∆∆
ii (t2 − t1, ~p′; Γ4)G∆∆

ii (t1, ~p; Γ4)G∆∆
ii (t2, ~p; Γ4)

]1/2

.

In the large time limit where excited states are suppressed, this ratio becomes time inde-
pendent:

Rστ (t2, t1, ~p′, ~p; Γ;µ) t2−t1�1−−−−−→
t1�1

Πστ (~p′, ~p,Γ, µ). (6.6)

The ∆ two-point function is given by

G∆∆
σσ (t, ~p,Γ) =

∑
~x

e−i~p·~xΓβα〈Ω|χ∆σ
α (~x, t)χ̄∆σ

β (~0, 0)|Ω〉, (6.7)

where the Rarita-Schwinger spin sum rule for spin-3/2 spinors given in Eq. (4.6) has been
used and the projection matrices, Γ, are given in Eq. (3.6). For the special case where the
projection matrix is Γ4 and the spinor index σ is summed over the spacial components, as
in the case of the two-point functions that enter the ratio, this gives:

3∑
i=1

G∆∆
ii (t, ~p,Γ4) t�1−−→ |Z∆(~p)|2 2

3
E∆(~p)
2M2

∆

[E∆(~p) +M∆] e−E∆(~p)t. (6.8)

We use the fixed-sink sequential inversion method to sum over the sink coordinate of the
three-point function. We thus need to fix the sink momentum prior to the sequential
inversion. We work in the frame where the final state is at rest i.e. ~p′ = 0. By momen-
tum conservation this means that the momentum of the initial state, ~p, is related to the
momentum transfer ~q by ~q = −~p. The ratio of Eq. (6.5) in this reference frame is given
by:

Πστ (~0,−~q,Γ, µ) =
(

3
2

)1/2 [2E∆(~q)
M∆

+
2E2

∆(~q)
M2

∆

+
E3

∆(~q)
M3

∆

+
E4

∆(~q)
M4

∆

]−1/2

× (6.9)

Tr
[
ΓΛσσ′(p)Oσ′µτΛτ ′τ (p′)

]
,

where
Λστ (p) =

−i/p+M∆

2M∆
[δστ + 2pσpτ2M2

∆ − i
pσγτ − pτγσ

3M∆
− 1

3
γσγτ ], (6.10)

and the trace in Eq. (6.9) is meant over Dirac indices. Performing the sum over the
sink coordinate with a sequential inversion through the sink means we can set the current
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direction µ after the sequential inversion. We however need to choose the projection matrix
Γ and spinor indices σ and τ prior to the inversion since these enter the sequential source.
To gain as many measurements of a single form factor with only one inversion we thus
construct optimal sources by linear combinations of the indices of the ratio in Eq. (6.9).
We take three such linear combinations:

S1(~q;µ) =
3∑
j=1

εjklΠkl(0,−~q,Γ4, µ) (6.11)

=K(q)
5i(E∆(~q) +M∆)

18M2
∆

[δ1,µ(q3 − q2) + δ2,µ(q1 − q3) + δ3,µ(q2 − q1)]GM1(q),

S2(~q;µ) =
3∑
j=1

Πjj(0,−~q,Γ4, µ)

=K(q)
[
−GE0(q)

E∆(~q) + 2M∆

2M2
∆

iqµ −GE2(q)
(E∆(~q)−M∆)2

9M3
∆

]
iqµ

S3(~q;µ) =
3∑
j=1

εjklΠkl(0,−~q,Γk, µ) = Aµk(q)GE2(q) + Bµk (q)GM1(q) + Cµk (q)GM3(q),

where:

K(q) =
(

3
2

)1/2 [2E∆(~q)
M∆

+
2E2

∆(~q)
M2

∆

+
E3

∆(~q)
M3

∆

+
E4

∆(~q)
M4

∆

]−1/2

. (6.12)

Aµk , Bµk and Cµk are complicated kinematic factors which we shall omit writing out explicitly
here. For completeness they are given in Appendix D. As can be seen, the combination
S1 isolates the GM1 form factor. The kinematic factors Bµk and Cµk vanish for µ = 4 and
thus S3(~q, µ = 4) isolates the sub-dominant GE2 form factor. We can then extract the
electric charge form factor GE0 using S2 and hence the magnetic octapole GM3 from S3.
In practice, as explained in Chapter 3, this is all done by solving an over-complete set
of equations, through the singular value decomposition of the matrix of kinematic factors
D(~q, µ) in:

P (~q, µ) = D(~q, µ) · F (Q2) (6.13)

where P is a vector of lattice measurements and F is a vector of the form factors we want
to compute.

6.2 Lattice Parameters

For the results that follow we have used the three ensembles of Wilson quenched and the
three ensembles of Wilson NF=2 configurations used in the calculation of the nucleon and
nucleon to ∆ transition form factors (Chapters 3 and 4). We additionally use the large
283 × 64 MILC lattice in the hybrid scheme at mπ = 0.353(2) GeV used to calculate the
nucleon to ∆ transition form factors. We list the parameters of the calculation, as well as
the mass of the ∆ for the gauge configurations used in Table 6.1.
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6.3 Lattice Results 101

Table 6.1: Details of the gauge configuration ensembles used in this calculation. The Wilson
dynamical configurations at κ = 0.1575 and κ = 0.1580 are taken from [8] while the ensemble at
κ = 0.15825 was taken from [45].

number of confs κ mπ (GeV) M∆ (GeV)
Quenched 323 × 64 a−1 = 2.14(6) GeV

200 0.1554 0.563(4) 1.470(15)
200 0.1558 0.490(4) 1.425(16)
200 0.1562 0.411(4) 1.382(15)

κc =0.1571 0.
Unquenched 243 × 40 a−1 = 2.56(10) GeV

185 0.1575 0.691(8) 1.687(15)
157 0.1580 0.509(8) 1.559(19)

Unquenched 243 × 32 a−1 = 2.56(10) GeV
200 0.15825 0.384(8) 1.395(18)

κc = 0.1585 0.

number of confs (amu,d/s)Asqtad (amu,d)DWF mπ (GeV) M∆ (GeV)
Volume: 283×64, b.c: antiperiodic

300 0.01/0.05 0.0138 0.353(2) 1.533(27)

We use Wuppertal smearing with HYP smeared gauge links entering the Wuppertal
smearing hopping matrix are used on the initial and final states to increase overlap with
the ∆ state. Setting the sink-source separation was based on our experience from the
previous calculations. For the quenched calculation this is set to t2/a=11 time-slices, for
the Wilson NF=2 to t2/a=12 time-slices and for the hybrid we use t2/a=8.

6.3 Lattice Results

In Fig. 6.1 we show the ∆ electric charge form factor computed using quenched Wilson
fermions as a function of the pion mass squared. As can be seen the dependence on m2

π is
linear, hence we perform a linear extrapolation to the physical point in the same manner
as in Chapter 3. In Fig. 6.3 we show the ∆ electric charge form factor at the three pion
masses of the quenched lattices. On the same graph we plot the form factor obtained by a
linear extrapolation to the physical pion mass. In Fig. 6.4 we present GE0 at the lightest
mass of the three discretization schemes considered. From this figure we can conclude that
unquenching effects are small for this quantity since Wilson quenched and unquenched are
consistent. The agreement between the Wilson data and the hybrid results is non-trivial
since these two schemes carry different finite lattice spacing effects. The consistency means
that lattice artifacts are under control. The data are well described by a dipole form:

GE0(Q2) =
1

(1 +Q2/ME0)2
, (6.14)
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Figure 6.1: The electric charge form factor us-
ing quenched Wilson quarks as a function of the
pion mass squared for the four smallest non-zero
momentum transfers. The rhombuses show the
linearly extrapolated value for the form factor at
the physical pion mass.
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Figure 6.2: The magnetic dipole form factor us-
ing quenched Wilson quarks as a function of the
pion mass squared for the four smallest non-zero
momentum transfers. The notation is the same
as that of Fig. 6.1.

as can be seen by the curves plotted along with the data in Figs. 6.3 and 6.4. Fitting
to this form we can extract the ∆ charge radius since, in the non-relativistic limit, it is
associated with the slope of the form factor:

〈r2〉 = −6
∂

∂Q2
GE0(Q2)

∣∣∣∣
Q2=0

=
12
ME0

. (6.15)

This is done for the form factor obtained by extrapolating to the physical point the
quenched results, where we gain an estimate for the charge radius of 〈r2〉1/2 = 0.691(6) fm.
For the lightest pion mass in the Wilson NF=2 calculation we obtain 〈r2〉1/2 = 0.634(9) fm
and for the hybrid calculation we obtain 〈r2〉1/2 = 0.629(6) fm. These values are in agree-
ment with the value of 0.63(7) fm computed in Ref. [103]. The results for the charge radius
at each pion mass are listed in Table 6.2.

In Fig. 6.5 we show the magnetic dipole form factor for the three pion masses in the
quenched case. The dependence on the pion mass of this form factor is similar to that
of GE0, namely that it decreases linearly with the pion mass squared as can be seen in
Fig. 6.2, thus we linearly extrapolate to the physical pion mass. In Fig. 6.6 we show the
GM1 form factor at the lightest pion mass of the three discretization schemes used. As in
the case of the GE0, the data are well described by the dipole form:

GM1(Q2) =
GM1(0)

(1 +Q2/MM1)2
. (6.16)

Since the kinematic factors multiplying GM1 vanish at Q2 = 0, we extrapolate the data

Gian
nis

 K
ou

tso
u



6.3 Lattice Results 103

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Q2 in GeV2

G
E

0

κ = 0.1554

κ = 0.1558

κ = 0.1562

physical point

Figure 6.3: The electric form factor GE0 for
the quenched case at three pion masses: mπ =
0.563(4) GeV (crosses), mπ = 0.490(4) GeV
(open circles) and mπ = 0.411(4) GeV (aster-
isks). The open stars show the result of the lin-
ear extrapolation to the physical pion mass. The
curves are fits to a dipole form (Eq. (6.14)).
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Figure 6.4: The electric form factor GE0 for
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schemes used: Filled squares for the quenched
case at mπ = 0.411(4) GeV, filled rhombus
for the Wilson dynamical calculation at mπ =
0.384(8) GeV and filled circles for the hybrid cal-
culation at mπ = 0.353(2) GeV.
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Figure 6.5: The magnetic dipole form factor
GM1 of the ∆, in the quenched case. The no-
tation is the same as in Fig. 6.3. The vertical
band at Q2 = 0 shows the range of experimental
results cited in Ref. [102].
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Figure 6.6: The magnetic dipole form factor
GM1 of the ∆, for the lightest pion mass of the
three discretization schemes considered. The no-
tation is the same as in Fig. 6.4. The vertical
band at Q2 = 0 shows the range of experimental
results cited in Ref. [102].

to zero momentum transfer by fitting to Eq. (6.16) in order to calculate the magnetic
moment of the ∆: µ∆+ = GM1(0)( e

2M∆
). The wide range of experimental results for this

quantity is shown in Fig 6.5 by the vertical band at Q2 = 0. The extracted values for
GM1(0) obtained using the dipole form are listed in Table 6.2. Our value for the magnetic

Gian
nis

 K
ou

tso
u



104 ∆ Electromagnetic Form Factors

Table 6.2: The charge radius and GM1(0) obtained by fitting the form factors at each pion mass
as described in the text. For the quenched case we additionally show GE2(0), since the data are
accurate enough to do so. We linearly extrapolate the quenched data to the physical pion mass,
and fit to this form factor to obtain the parameters at mπ = 0.135 GeV.

mπ (GeV) 〈r2〉
1
2 GM1(0) GE2(0)

Wilson NF = 0
0.563(4) 0.614(2) 3.05(7) −0.6(3)
0.490(4) 0.632(2) 3.05(8) −0.7(4)
0.411(4) 0.650(3) 3.05(10) −0.7(4)

0.135 0.691(6) 3.04(21)

mπ (GeV) 〈r2〉
1
2 GM1(0)

Wilson NF = 2
0.691(8) 0.530(2) 3.04(22)
0.509(8) 0.595(1) 3.35(34)
0.385(8) 0.634(9) 3.07(51)

Hybrid
0.353(2) 0.629(6) 3.42(20)

moment is 2.32(16) µN at the physical pion mass for the quenched case. For the Wilson
NF = 2 calculation we obtain µ∆+ = 2.33(39)µN at the lightest pion mass and for the
hybrid action µ∆+ = 2.60(15)µN . The most recent experiment [101] which measured the
∆++ magnetic moment finds µ∆++ = 2µ∆+ = 6.14(51)µN . The ∆+ magnetic moment
was measured in Ref. [100] and found at a value of µ∆+ = (2.7 ± 1 ± 1.5 ± 3)µN . The
value quoted by the particle data group [102] for the ∆++ magnetic moment is 3.7–7.5 µN .
Finally, a lattice measurement of the ∆+ magnetic moment found in Ref. [104] finds this
at 1.6(3)µN at a pion mass of ∼0.3 GeV.

The electric quadrupole form factor is phenomenologically interesting since it probes
the ∆ deformation. Non-relativistically, the quadrupole moment Q of a particle is given
by:

Q =
GE2(0)
M2

=
∫
d3rψ̄(~r)(3z2 − r2)ψ(~r), (6.17)

where ψ(~r) is the wave function of the particle in the maximum spin projection state,
in this case mz = 3/2. A positive quadrupole moment means the particle has a prolate
shape while a negative quadrupole moment means an oblate distribution. In Fig. 6.7,
we show the GE2 for all pion masses of the quenched case. The form factor is clearly
negative, and increases in amplitude with decreasing pion mass. This means that the ∆
is an oblate, with deformation that increases as we approach the chiral limit. The worse
errors do not allow an accurate extrapolation to the chiral limit and therefor we present
values of GE2(0) at the three pion masses obtained by fits to a dipole form. The extracted
parameters of the fit are given in Table 6.2. The values we find for the quadrupole moment
are compatible with GE2(0) = −0.4(14) obtained in Ref. [103]. In Fig. 6.8 we show the
electric quadrupole moment using quenched and NF=2 Wilson fermions and using the
hybrid action. For dynamical Wilson fermions we can only obtain reliable results for
two values of the momentum transfer. For the hybrid case we obtain results which are
systematically negative albeit with large errors.

The results for the octapole magnetic form factor are very noisy, as can be seen in
Fig. 6.9 where we show results for the quenched calculation at three pion masses. The
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Figure 6.7: The electric quadrupole form factor
GE2 of the ∆, in the quenched case. The nota-
tion is the same as in Fig. 6.3.
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Figure 6.8: The electric quadrupole form factor
GE2 of the ∆, for the lightest pion mass of the
three discretization schemes considered. The no-
tation is the same as in Fig. 6.4.
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Figure 6.9: The magnetic octapole form factor
GM3 of the ∆, in the quenched case. The nota-
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Figure 6.10: The magnetic octapole form fac-
tor GM3 of the ∆, for the lightest pion mass of
the Wilson quenched (filled squares) and Wilson
NF=2 (filled rhombus) calculations. The hybrid
calculation is omitted since statistical errors are
too large for meaningful comparisons.

errors are even larger for the hybrid case. We include a figure where we show the lightest
pion mass of the Wilson dynamical case for completeness in Fig. 6.10. Within these large
errors, this form factor is consistent with zero. This is in fact expected from a chiral
perturbation theory analysis carried out to leading order [105].
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106 ∆ Electromagnetic Form Factors

6.4 Summary of Results

In this chapter we have presented a calculation of the ∆ electromagnetic form factors in
lattice QCD. This calculation improved on several aspects of an early calculation carried
out in quenched lattice QCD [103]. We use two dynamical flavors of Wilson fermions and
a hybrid action where we use domain wall fermions for the valence sector and NF=2+1
staggered sea quarks. The three-point function is evaluated by carrying out the sequential
inversion through the sink, allowing evaluation of the form factors at any momentum
transfer with no extra inversions. We use three carefully selected sequential sources so
that for certain directions of the current insertion we isolate specific form factors. We
show for the first time in lattice QCD that the electric quadrupole form factor is non-zero
which means the ∆ is deformed.

For the pion masses considered in the quenched case, the form factors decrease linearly
with decreasing pion mass thus we extrapolate linearly to the physical point. The results
are well described by a dipole form. We fit the electric charge form factor to a dipole form
to obtain the r.m.s. radius of the ∆. We find an r.m.s. radius of 0.691(6) fm at the physical
point using the quenched lattices. Using Wilson NF = 2 we find 〈r2〉1/2 = 0.634(9) fm at
mπ = 0.385(8) GeV and for the hybrid case 〈r2〉1/2 = 0.629(6) fm at mπ = 0.353(2) GeV.
The magnetic dipole form factor is fitted to obtain the magnetic moment. The value that
we find is µ∆+ = 2.32(16)µN by extrapolating the results obtained in the quenched case to
the physical pion mass. This value is in agreement with the values computed with Wilson
dynamical quarks at the lightest pion mass (µ∆+ = 2.33(39)µN ) and in the hybrid scheme
(µ∆+ = 2.60(15)µN ) as well as with the range 3.7–7.5 µN quoted by the particle data
group [102].

A very important conclusion of this study is the negative sub-dominant electric quadrupole
form factor. The accuracy obtained for this quantity is due to the improvements applied.
For the unquenched lattices this form factor is very noisy, giving a reliable estimate for only
two momentum transfers for the Wilson dynamical case. A negative electric quadrupole
means an oblate charge distribution, and from the quenched study we see that this de-
formation increases as we approach the chiral limit. The magnetic octapole form factor
is very noisy and within error bars is consistent with zero at all pion masses. This is in
agreement with a chiral perturbation analysis to leading order that shows that GM3 is
zero in the chiral [105].Gian
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Chapter 7

Density-Density Correlators

In Chapters 3 and 4 we presented studies on the nucleon and nucleon to ∆ transition form
factors. The nucleon to ∆ electromagnetic transition form factors, measured experimen-
tally provide an indirect way to investigate the question of nucleon deformation. On the
lattice this required the calculation of a three-point function, for which we employed sev-
eral improvement techniques such as the sequential inversion which allowed the extraction
of these quantities to very high accuracy. These calculations additionally allowed com-
parison with experiment as well as quantitative results on phenomenologically interesting
quantities such as charge radii and magnetic moments.

In this chapter we shall address the question of hadron deformation in a more direct
manner. Namely, we present a calculation where the quark distribution in the hadron
is probed explicitly by means of using density operators. The equal-time density-density
correlator [106,107] for a given hadron state H, is defined by:

C̃H(~x2, t1) =
∫
d3x1〈H|ju0 (~x2 + ~x1, t1)jd0(~x1, t1)|H〉 (7.1)

where jq0 is the normal ordered density operator : q̄γ0q :. This quantity provides in
the non-relativistic limit a gauge invariant definition of the hadron wave function. The
combination of the two sums projects the state to zero momentum. By construction, the
sum over the sink coordinate cannot be carried out through a sequential inversion as was
done for the case of the three-point function. Thus the challenging aspect of investigating
hadron deformation through this method is the fact that the all-to-all propagator must be
computed. A study has been carried out in the quenched approximation [108]. In this work
the density-density correlator was calculated approximately, since summation of the sink
coordinate was neglected consequently eliminating the need for an all-to-all propagator.
The large time separation between source and sink was thus relied upon to project out
the zero momentum state. The calculation showed a deformation in the ρ-meson charge
distribution as well as a slightly non-spherical ∆-baryon as the pion mass decreased. The
study was carried out for relatively heavy pion masses (∼ 600 MeV) and on lattices of
about 1.5 fm spatial extent.

In what follows we shall present results for the pion, the ρ-meson, the nucleon and the
∆ density-density correlator with several improvements compared to the quenched calcu-
lation [109]. The most significant of these improvements is the fact that here we compute
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108 Density-Density Correlators

the all-to-all propagator and thus carry out the sum over the sink spatial coordinates to
explicitly project the hadronic state to zero momentum. Additionally, we use the three
ensembles of NF = 2 Wilson dynamical configurations used in the previous calculations
which give access to pion masses as low as ∼ 0.38 GeV [8, 45]. The large number of
inversions needed for the all-to-all propagator currently prohibits the extension of this cal-
culation to the hybrid scheme. A third improvement we shall introduce in this calculation
is the application of the Liverpool one-end trick to the meson density-density correlator.
As explained in Chapter 2, the one-end trick provides a clever way of combining solution
vectors in order to obtain meson two-point functions summed over both source and sink
coordinates without having to carry out both sums explicitly [110]. As we shall see, this
can be implemented for the case of the meson four-point function [111] thus suppressing
stochastic noise considerably.

7.1 Lattice Formulation

We consider the equal-time density-density correlator:

GHj
0j0H(~x2, t1) =

∑
~x

∑
~x1

d3x1〈Ω|χH(~x, t)ju0 (~x2 + ~x1, t1)jd0(~x1, t1)χ̄H(~x0, t0)|Ω〉 (7.2)

where χH(x) is an interpolating operator with the quantum numbers of the lowest lying
hadron. The two sums in Eq. (7.2) ensure the state is projected to zero momentum; one
sum sets the momentum of the sink equal to that of the source while the other sets both
to zero. This can be shown explicitly by inserting three complete sets of states in Eq. (7.2)
giving:

∑
~p,n,ni,nf

〈Ω|χH |nf ,~0〉
e−Enf (~0)(t−t1)

2Enf (~0)
〈nf ,~0|ju0 |n, ~p〉

ei~p·~x2

2En(~p)
× (7.3)

〈n, ~p|jd0 |ni,~0〉
e−Eni (

~0)(t1−t0)

2Eni(~0)
〈ni,~0|χ̄H |Ω〉.

In the large t1 − t0 and t− t1 limit we have:

GHj
0j0H(~x2) t−t1�−−−−−→

t1−t0�
GHj

0j0H(~x2, t1) (7.4)

=
∑
~p,n

|〈Ω|χH |H〉|2
e−mH(t−t0)

4m2
H

〈H|ju0 |n, ~p〉
ei~p·~x2

2En(~p)
〈n, ~p|jd0 |H〉.

If we divide by the hadron two-point function at zero momentum GHH(~0, t − t0) then
the exponential dependence on t − t0 and overlaps cancel and we obtain the expectation
value of the two density insertions, 〈H|ju0 (~x2)jd0 |H〉. In the non-relativistic limit, this
expectation value gives the charge distribution of the hadron. It can be written in terms

Gian
nis

 K
ou

tso
u



7.1 Lattice Formulation 109

of the non-relativistic form factors [107]

〈H|ju0 (~x2)jd0 |H〉 =
∑
~p,n

F uHn(~p)
ei~p·~x2

2En(~p)
F dnH(−~p) (7.5)

where
F uHn(~p) = 〈H|ju0 |n, ~p〉. (7.6)

Figure 7.1: Equal-time density-density correlators for mesons (left diagram) and for baryons (right
diagram).

In Fig. 7.1 we show the diagrams of the density-density correlators for mesons and
baryons. In principle, if one wants the charge content of the baryons one would need a
three-density correlator to probe for the distances of the two quarks relative to the third.
The baryon diagram in Fig. 7.1 however, yields a correlator that depends only on one
relative distance instead of two. Evaluation of the three-density correlator requires the
evaluation of two types of five-point functions shown in Fig. 7.2. In Ref. [108] the three-
density correlator – or five-point function – was evaluated neglecting the sum over the sink
coordinate for the left of the two diagrams shown in Fig. 7.2 for which each quark line
has only one density insertion. It was shown that integrating over one relative distance
yields a correlator consistent with the corresponding two-density correlator. Therefore
in this calculation we only consider two-density insertions for the case of baryons. This
gives the distribution of one quark relative to the other irrespective of the position of the
third. In other words, in the non-relativistic limit, it corresponds to the one-body charge
distribution.

Figure 7.2: The three-density correlator for baryons.

As already mentioned the challenging aspect of this calculation is the explicit need
of an all-to-all propagator. Carrying out the sum over the sink coordinate through a
sequential inversion does not eliminate this need as was the case for three-point functions.
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To be more specific, consider the arbitrary meson four-point function:∑
~x1,~x

GχΓj
0j0χΓ(x, x2, x1, x0) =

∑
~x1,~x

〈Ω|χΓ(x)j0
u(x2+1)j0

d(x1)χ̄Γ(x0)|Ω〉 (7.7)

=
∑
~x1,~x

Tr
[
ΓG(x;x1)γ0G(x1;x0)Γ̄G(x0;x2+1)γ0G(x2+1;x)

]
where the interpolating operator is of the form χ(x) = d̄(x)Γu(x) as we have extensively
used in Chapter 2, Γ̄ = γ0Γ†γ0 and x = (~x, t), x2+1 = (~x2 + ~x1, t1), x1 = (~x1, t1) and
x0 = (~x0, t0). As can be seen, the summation over ~x1 involves the spatial coordinate of
both insertions. Hence a sequential inversion over the sink would not eliminate the need
for an all-to-all propagator.

For the computation of the four-point function we use stochastic techniques to estimate
the all-to-all propagator. We have introduced these techniques in Chapter 2. We thus
replace each propagator of which a sum is needed over both ends, by the cross product of
a set of solution vectors with their corresponding noise vectors:

G(x; y) =
1
Nr

∑
r

φ(x)r ⊗ ξ†(y)r, (7.8)

⇒
∑
~x1,~x

Tr
[
G(x1;x0)Γ̄G(x0;x2+1)γ0G(x2+1;x)ΓG(x;x1)γ0

]
=

∑
rr′

1
NrNr′

∑
~x1,~x

Tr
[
G(x1;x0)Γ̄G(x0;x2+1)γ0φ(x2+1)r ⊗ ξ†(x)rΓφ(x)r′ ⊗ ξ†(x1)r′γ0

]
.

This can be trivially generalized to baryons. The point-to-all propagator from x0 can be
computed as usual using point sources and the propagator ending at x0 can be obtained
by conjugating this point-to-all propagator. For this calculation we thus need two sets of
stochastic inversions, one with the stochastic source localized on the insertion time-slice
(t1) and one stochastic inversion from the sink time-slice (t). We will refer to this method
as the direct method, since this involves directly substituting the all-to-all propagators
with the solution-source cross product.

As already mentioned, we can alternatively compute the meson four-point function
using the one-end trick which has the additional advantage of summing over the source
coordinate automatically. To see how this can be implemented, we first define a set of
spin diluted noise vectors:

ξaµ(x)(r,σ) = ξa(x)rδµσ. (7.9)

This is the same dilution we used for the two-point function one-end trick in Chapter 2.
Consider additionally that these noise vectors are localized on a given time-slice, i.e.
ξaµ(~x, t)r = ξaµ(~x)rδ(t − t0). We use the same notation for the solution vectors as we
have in Chapter 2:

φaµ(x; t0)(r,σ) =
∑
x0

Gabµν(x;x0)ξbν(x0)(r,σ) =
∑
~x0

Gabµν(~x, t; ~x0, t0)ξb(~x0)rδσν . (7.10)
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Now consider the propagator:

Sabµν(Γ;x; y; t0) ≡
∑
r

φaµ(x; t0)(r,σ)Γσκφ
∗b
ν (y; t0)(r,κ), (7.11)

where x = (~x, tx) and y = (~y, ty). The sum over the stochastic ensemble gives rise to delta
functions after we replace the solution vectors with Eq. (7.10) giving:

Sabµν(Γ;x; y; t0) =
∑
~x0,~y0

Gaa
′

µσ (~x, tx; ~x0, t0)ΓσκG∗bb
′

νκ (~y, ty; ~y0, t0)δa′b′δ(~x0 − ~y0)

=
∑
~x0

G(~x, tx; ~x0, t0)Γ G†(~y, ty; ~x0, t0)
∣∣∣ab
µν
. (7.12)

The combination:∑
~x1

Tr
[
γ5γ0S(Γ̄γ5;x1;x2+1; t0)γ5γ0S(γ5Γ;x2+1;x1; t)

]
, (7.13)

gives the meson four-point function (Eq. (7.8)) summed over both source and sink co-
ordinates. This is the generalization of the one-end trick to meson four-point functions.
As in the case of two-point functions, the additional sum over the source coordinate is
expected to outweigh stochastic noise. It is apparent that for this method we need two
sets of stochastic inversions; one with the noise vectors localized on the source time-slice
and one with the noise vectors localized on the sink time-slice.

The generalization to baryons is not as straight forward. Briefly, for the case of the
density-density correlator, the odd number of quark lines means we cannot combine solu-
tion vectors in such a way so that pairs of source vectors appear to eventually give delta
functions. On the other hand, the one-end trick could be applicable to the three-density
baryon correlator for the case where each quark line carries a density insertion. In this
case we have an even number of quark lines and thus pairs of noise vectors arise giving
delta functions. In what follows, we do not consider five point functions, hence we only
compute the one-body baryon wave function using the direct method.

7.2 Lattice Parameters and Optimization

In this study we computed the density-density correlator for the pion and ρ-meson using
both the direct method and using the one-end trick. We additionally computed the nucleon
and the ∆ density-density correlators using the direct method. Since we are interested
in detecting an intrinsic asymmetry in the hadrons, we must use interpolating operators
that select a physical spin projection. For the mesons we use:

χM (x) = d̄(x)Γu(x) (7.14)
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112 Density-Density Correlators

where Γ = γ5 for the pion and Γ = {γ1−iγ2

2 , γ3,
γ1+iγ2

2 } for the mz = +1, 0 and −1 spin
projections of the ρ-meson. For the nucleon we use the interpolating operator used so far:

χN (x) = εabcua>(x)(Cγ5)db(x)uc(x), (7.15)

and for the delta we use the mz = ±3/2 spin projections:

χ∆
+ 3

2

=
εabc√

3

[
ua1(2ub>CΓ+d

c) + da1(ub>CΓ+u
c)
]

(7.16)

χ∆− 3
2

=
εabc√

3

[
ua2(2ub>CΓ−dc) + da2(ub>CΓ−uc)

]
with Γ± = γ1∓iγ2

2 .

The calculation is carried out on the unquenched Wilson configurations quoted in Ta-
ble 3.1. Once again we use Wuppertal smeared initial and final states with HYP smeared
gauge links entering the source smearing to improve ground state dominance of the cor-
relator. For the direct method we need a stochastic inversions from the insertion and
sink time-slices hence we must fix both prior to the inversions. We take t1 − t0 = 5a and
t − t0 = 10a or 0.38 fm or 0.77 fm respectively. Based on the optimizations carried out
in the previous chapters, these source-sink separations are large enough to ensure excited
states have been suppressed at the insertion time-slice. For the case of the one-end trick we
set the sink 14 time-slices or ∼ 1 fm from the source. As we shall see, the improvement in
statistics gained from the one-end trick allows for such a relatively large separation. Con-
sistency between results using the trick and the direct method will additionally reassure us
the time separations chosen are large enough for ground state dominance. By construction
of the one-end trick four-point correlator, we can vary the insertion time-slices arbitrarily.
For all results that follow that where computed with the one-end trick we have set this to
the midpoint between source and sink i. e. t1 − t0 = 7a.

We first give the details of the computation in the case of the direct method. We require
two sets of stochastic propagators per configuration, one with the noise vectors localized
on the insertion time-slice and one with the noise vectors localized on the sink. We also
compute a point-to-all propagator from the source time-slice to all lattice sites. The noise
vectors are diluted in color, spin and even-odd spatial sites. Dilution in time is automatic
here since we invert with the noise vectors localized on a single time-slice. Thus each noise
vector is diluted to twenty-four independent noise vectors requiring twenty-four times more
inversions. The number of noise vectors used is determined through a tuning process. For
this tuning the ∆-baryon correlator at the lightest pion mass is considered. By comparing
the decrease of the relative statistical error when increasing on one hand statistics and on
the other hand the number of noise vectors used, we determine the optimum number of
stochastic vectors. For this tuning we use 50 configurations and compute the ∆-baryon
correlator for three, six and nine such 24-fold diluted noise vectors. For Nr=3, 6 and
9 we find a relative statistical error of 50%, 20% and 16% respectively. The fact that
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7.3 Results 113

by doubling the number of noise vectors from 3 to 6 the statistical error decreases by
more than one half is an indication that Nr=3 is too small yielding large stochastic noise.
On the other hand, increasing the number of noise vectors from 6 to 9 the relative error
decreases by

√
6/9, which is what is expected from scaling. This indicates that at this

point increasing Nr or the number of configurations is equivalent. We thus fix the number
of noise vectors to six. Since we carry out two sets of stochastic inversions, one at the sink
and one at the insertion time-slice, and since we use color, spin and even-odd dilution we
need 288 stochastic inversions per configuration. This amounts to a total of 300 inversions
per density-density correlator if we additionally consider the point-to-all propagating from
the origin. To increase statistics for the two ensembles corresponding to the two lightest
pion masses needed for the baryons, we calculate density-density correlators using the
first and second half time interval of each configuration. Furthermore, for the lightest
pion mass we improve statistics by using Nr=9 noise vectors for the correlators. Thus
for κ = 0.1580 we carry out 600 inversions per configuration while for κ = 0.15825 888
inversions per configuration. For the case of the one-end trick we use Nr = 8. The one-end
trick requires these to be spin diluted as in Eq. (7.9). Hence we need 32 inversions from
the source and 32 from the sink thus 64 inversions per configuration.

7.3 Results

In Fig. 7.3 we show the pion correlator computed using the one-end trick and the direct
method as a function of the distance from the origin. Being a function of the spatial
coordinate ~x2, to plot the correlator with no averaging would over-clutter the graph. On
the other hand, binning the data over a range ∆r over the x axis would produce an
inaccurate graph, since this would average out the spikes seen after about 0.8 fm, which
are due to finite volume effects and which we shall investigate thoroughly further on.
Thus we replace the points lying in a cell of size 0.015 fm×0.05 by their average. The
wave function is normalized by dividing by its value at the origin. The errors in Fig. 7.3
are additionally suppressed for clarity. As can be seen, we find that the two methods yield
consistent results for the correlators, meaning excited state contributions between source
and insertion and between insertion and sink time-slices have been effectively suppressed.
Even with the errors omitted we see that at a given distance r, the correlator computed
using the direct method shows more spread than the one computed using the one-end
trick. That this reflects larger statistical noise is shown in Fig. 7.4, where we compare
the relative errors of the two binned correlators. As can be seen, at large distances the
maximum relative error exhibited by the one-end trick method is around 4% while for the
direct method exceeds 10%. This is a direct consequence of the double sum accomplished
with the implementation of the one-end trick. In addition, when using the one-end trick
the density-density correlator of a state of spin projection mz = 0 is symmetric under
reflections of the spatial coordinates i.e. C(~r) = C(−~r) by construction whereas in the
direct method it is symmetric only statistically. For the mz = ±1 projections of the
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114 Density-Density Correlators

vector meson we instead have Cmz=+1(~r) = Cmz=−1(−~r). Because of this symmetry we
average over the results for the mz = +1 and mz = −1 spin projections and hereby denote
this correlator by mz = ±1. The same is done for the spin projections mz = ±3/2 of
the ∆. The reduction of the error by more than a factor two when using the one-end
trick comes at a reduced computational cost. As already mentioned, for the one-end trick
the computation of the correlator is done using 64 inversions while for the direct method
we carried out 300 inversions per configuration i.e. we need 4.7 times less inversions for
twice the accuracy. This clearly shows the superiority of the one-end trick, even more if
we consider that the source-sink separation is larger in this case, given that the relative
statistical error grows exponentially with this separation.

0.1

1.0

κ= 0.1575

C
π
(r

)

Direct method

0.0

0.1

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

r (fm)

One end trick

Figure 7.3: The pion density-density correlator
using the one-end trick (upper graph) and using
the direct method (lower graph). The data are
averaged as described in the text and error bars
are suppressed for clarity.
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Figure 7.4: Comparison between the relative
error of the correlator computed with the one-
end trick (blue crosses) and the direct method
(red circles).

One of the main goals of this calculation is to detect a possible asymmetry in the
hadron charge distribution. In Fig. 7.5 we compare the two methods for the case of the
mz = 0 spin projection of the vector meson at the lowest pion mass available. Only the
profile of the correlator along the three axes is plotted so that we can detect a possible
asymmetry. As can be seen, an elongation along the z axis is observed in both cases.
However, the error estimated in the direct method is not small enough to draw definite
conclusions since the correlator along all three axes is consistent within error bars. On
the other hand, by using the one-end trick the fluctuations due to stochastic noise are
suppressed enough for one to come to the conclusion that the vector meson is indeed
prolonged along the z axis. Having demonstrated the effectiveness of the one-end trick in
suppressing stochastic noise, all meson observables that we present hereon are computed
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with the one-end trick.
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Figure 7.5: Comparison between the vector meson mz = 0 correlator projected along the three
axes computed with the direct method (left) and with the one-end trick (right).

In Fig. 7.6 we show the density-density correlators for the pion and the spin zero
projection (mz = 0) of the ρ-meson using the one-end trick and for the nucleon and spin
mz = ±3

2 projection of the ∆ using the direct method. All correlators are projected along
the three axes to display a possible asymmetry. This is done for the largest pion mass
available, namely mπ = 0.691(8) GeV. As can be seen, a clear elongation of the vector
meson along the z axis is observed even at this large pion mass confirming our previous
results [108]. The asymmetry is clearly smaller than for the lightest pion mass shown in
Fig. 7.5. On the other hand, the nucleon shows no asymmetry, at least within this method,
while also for the case of the ∆ no asymmetry is observed at this heavy pion mass.

To better visualize the asymmetry for the case of the vector meson, we show in Figs. 7.7
and 7.8 two-dimensional contour plots of the spin mz = 0 and spin mz = ±1 projections
respectively. As can be seen, for the case of the mz = 0 projection, the contours are
elongated along the z axis as compare to a circle of radius equal to the smallest contour
radius. The observation is consistent at all three pion masses showing a clear asymmetry.
This leads to the conclusion that the vector meson in the spin projection zero state is
prolate. On the other hand, the mz = ±1 ρ-meson state, shown in Fig. 7.8, shows
the opposite behavior. Namely the correlator is found to be larger along the x axis, as
compared to a circle, evidence that in this spin state the ρ is in fact an oblate. This is in
agreement with what is derived in Ref. [108] where it is shown that if the spin-0 state is
a prolate the ±1 channels will be oblate with about half the amount of deformation. The
fact that the ρ-meson in its maximal spin projection state is an oblate is in agreement with
a recent calculation of a negative electric quadrupole form factor evaluated in quenched
lattice QCD [112].
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Figure 7.6: Projections of the pion (top left), the ρ-meson (bottom left), the nucleon (top right)
and the ∆ (bottom right) correlators projected on the three axes.
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Figure 7.7: The correlator of the ρ-meson, mz = 0 projected on the x - z plane for decreasing pion
mass left to right. The dashed circles are to guide the eye.

7.3.1 Finite Volume Effects

Density-density correlators computed in a finite box with periodic boundary conditions
are susceptible to finite volume effects. Finite volume effects mostly affect the tail of the
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Figure 7.8: The correlator of the ρ-meson, mz = ±1 projected on the x - z plane for decreasing
pion mass left to right. The dashed circles are to guide the eye.

distributions and need to be corrected. To perform these corrections we follow the analysis
developed in Ref. [107]. The density-density correlation function computed on a lattice of
spatial dimension L can be written as an infinite sum over the Brillouin zones:

C(~r) =
∞∑
~n=0

C0(~r + ~nL) (7.17)

where C(~r) is the density-density correlator computed on the periodic lattice and C0(~r) is
the “correct” correlator that one would compute if the lattice were of infinite size. Thus
the correlation function computed in a finite box with periodic boundary conditions is in
fact a sum of all images arising from the surrounding boxes. Since C0(~r) is a fast decaying
function, approximated by an exponential or a Gaussian dependence on the distance from
the origin, this means that the leading contributions to the sum come from the nearest
neighboring Brillouin zones.

Figure 7.9: Two-dimensional example of image contributions. The correlator computed at the
filled circles (open circles) is approximately two (four) times larger than the “correct” correlator.
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A two-dimensional sketch is drawn in Fig. 7.3.1 that demonstrates the images that
contribute to the correlator. In this figure, the asterisk shows the origin of the funda-
mental cell (white box) while the triangles show the origins of the neighboring cells (gray
boxes). To first order, the correlator computed in the white box is a superposition of the
correlator with origin the asterisk and the eight correlators with origins the filled triangles,
in accord with the expression given in Eq. (7.17). Thus the correlator that we compute on
a periodic lattice is overestimated. This is particularly severe close to the boundaries of
the lattice where contributions from the images are largest. For example, the correlator at
the distances indicated by the filled circles in Fig. 7.3.1 is approximately twice as large as
the “correct” correlator since besides the contribution from the fundamental cell, a neigh-
boring cell contributes equally as indicated by the dashed line. Similarly, the correlator
computed at the distances indicated by the open circles at the corners of the fundamental
cell is approximately four times larger since there are contributions from three neighboring
cells, as shown by the dotted line.

This analysis can be extended to three dimensions. The correlator is twice as large at
the six distances given by ±L/2n̂i, i = x, y, z where n̂i is the unit vector in the i-direction.
Similarly, the correlator is four times as large at the twelve distances L/2(n̂i ± n̂j), i 6= j

and eight times as large at the eight corners L/2(±n̂x±n̂y±n̂z). All results that have been
discussed so far are for the correlators computed on the lattice with no corrections applied
for the images. For the analysis of quantities, such as the root mean squared radius, that
are sensitive to the long distance behavior of the distributions it is important to take in
to account the image contributions and define a corrected correlator.

To correct for the images and extract C0(~r) of Eq. (7.17) by knowing only C(~r) we
need to have an Ansatz for the asymptotic behavior of C0(~r). If the asymptotic behavior
is known then we can subtract from the lattice data the contribution from the images,
up to a given order, and extract C0(~r). In this work, we consider only nearest neighbor
contributions to the correlator. Thus Eq. (7.17) becomes:

C(~r) '
∑

|~n|∈[0,
√

3]

C0(~r + ~nL). (7.18)

We make an Ansatz for the functional form of C0(~r) that provides a good description
of the data. For instance for the pion correlator that is found to be independent of
the angles, a spherically symmetric Ansatz is used. We then perform a least squares
fit to the lattice data of the sum given on the right hand side of Eq. (7.18) extracting
the fit parameters of the function that describes C0(~r). The corrected correlator is then
constructed by subtracting from the lattice data the images determined from the fitted
function to obtain:

Ccorr(~r) = C(~r)−
∑

|~n|∈(0,
√

3]

C0(~r + ~nL). (7.19)
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The Ansätze for C0(~r) for each particle are summarized below:

Cπ0 = A0 exp (−m0r
σ),

Cρ0 =
[
A0 exp (−m0r

σ) +A1 exp (−m1r
σ)r2P2(cos θ)

]2

,

CN0 = same as for π,
C∆

0 = same as for ρ.

(7.20)

As can be seen, for the pion and the nucleon we take spherical functions. For the case
of the ρ and the ∆ we have parametrized the correlator in such a way so that an asymmetry
is allowed. Since the spatial part of the correlators is even under reflection, only L = 0 and
L = 2 angular momentum quantum numbers are allowed. Thus for the ρ-meson and the
∆ we include an L = 2 component by including the Legendre polynomial P2(cos θ). The
parameters reached to from the fits, at every pion mass are summarized in Table E.1 in
Appendix E. For the case of the spin projection mz = 0 ρ state, the asymmetric term with
coefficient A1 is found consistently non-zero and positive thus corroborating our findings
so far that this spin state of the ρ is indeed elongated along the z-axis (prolate). On
the other hand, the same parameter is consistently negative for the mz = ±1 ρ channels
pointing to a correlator larger at the equator (oblate).

In Figs. 7.10 and 7.11 we show a comparison between the raw lattice data and the
lattice data after subtracting image contributions for the heaviest pion mass available. As
can be seen, the correction procedure clearly compensates for the images, i.e. the spikes at
L/2,

√
2L/2 and

√
3L/2 are corrected for, leading to a smoother correlator that decreases

more rapidly at the tails.

Having corrected the data for the nearest images we can now proceed to a quantitative
analysis of the particle charge distributions. In Table 7.1 we give 〈x2 + y2〉/2, 〈z2〉 and
their difference for each particle at each pion mass available. All errors are jack-knife
errors. Here, the moments presented are computed using the corrected correlator:

〈O〉 =
∑

~rO(~r)Ccorr(~r)∑
~r C

corr(~r)
. (7.21)

From the difference 〈z2 − x2+y2

2 〉 we see once again that the mz = 0 projection of the ρ is
larger along the z axis while the mz = ±1 projections are larger along the equator. For the
case of the baryons the results are inconclusive, even for this large number of stochastic
inversions. Given the improvement obtained in the case of the mesons, implementing the
one-end trick for the three-density baryon correlator is expected to suppress stochastic
noise considerably, allowing concrete conclusions. This will additionally provide more
detailed information, since the charge distribution will be available as a function of two
coordinates, the relative distances of the two quarks from the third.

The asymmetry in the ρ can be reveal by a three-dimensional contour plot. In Figs. 7.12
and 7.13 we show contour surfaces for the ρ-meson in the mz = 0 and mz = ±1 channels
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Figure 7.10: The pion correlator (top) and the
nucleon correlator (bottom) as computed on the
lattice (crosses) and corrected for the images of
nearest neighboring lattices (open circles). The
corrected correlator is divided by a factor of ten
for clarity. Data are binned and error bars are
omitted to avoid cluttering.
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Figure 7.11: The ρ-meson, mz = 0 correla-
tor (top) and the ∆, mz = ±3/2 correlator
(bottom). The notation is the same as that
of Fig. 7.10.

respectively, at the intermediate pion mass. The correlator is compared to a sphere cen-
tered at the origin. In both cases the contour is taken at approximately half the value of
the correlator at the origin. Once again we see that the mz = 0 state is elongated along
the poles while the mz = ±1 channels are flatter.

7.4 Summary of Results

In this chapter we have presented a direct method of investigating hadron deformation,
namely through the calculation of density-density correlators. We have shown how one
explicitly probes the charge distribution of a hadron to detect an intrinsic deformation,
as opposed to the previous chapter where hadron deformation was derived from the spec-
troscopic quadrupole moment. The challenging aspect of this direct method is that an
all-to-all propagator is needed which we use stochastic techniques to evaluate. Having the
all-to-all propagator allowed summation over the sink coordinate of the correlator thus
explicitly projecting the state to zero momentum. The pion, ρ-meson, nucleon and ∆
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Table 7.1: 〈x2 + y2〉/2, 〈z2〉 and their difference for each particle at all three pion masses in fm2,
left for mesons and right for baryons. All errors are jack - knife errors.

m2
π (GeV2) 〈x

2+y2

2 〉 〈z2〉 〈z2 − x2+y2

2 〉
π

0.477 0.1449(6) 0.1460(7) 0.0011(8)
0.259 0.1542(7) 0.1531(9) -0.0010(10)
0.147 0.1529(7) 0.1533(14) 0.0005(18)

ρ, mz = 0
0.477 0.174(2) 0.192(2) 0.018(3)
0.259 0.188(4) 0.196(6) 0.007(7)
0.147 0.190(5) 0.207(6) 0.016(7)

ρ, mz = ±1
0.477 0.183(1) 0.173(2) -0.009(2)
0.259 0.199(2) 0.186(2) -0.013(2)
0.147 0.200(4) 0.193(5) -0.007(6)

〈x
2+y2

2 〉 〈z2〉 〈z2 − x2+y2

2 〉
N

0.164(1) 0.159(1) -0.006(2)
0.170(1) 0.168(2) -0.002(3)
0.181(1) 0.182(2) 0.0008(31)

∆, mz = ±3
2

0.177(1) 0.172(1) -0.005(2)
0.182(1) 0.180(2) -0.001(2)
0.195(2) 0.198(3) 0.003(4)

Figure 7.12: Three-dimensional contour plot
of the ρ-meson, mz = 0 correlator (red or
darker surface) compared to a sphere (green
or lighter surface). The sphere radius is ap-
proximately 0.5 fm. The contour shows all ~r
such that C(~r) = 1

2C(0).

Figure 7.13: Three-dimensional contour plot
of the ρ-meson, mz = ±1 correlator (red or
darker surface) compared to a sphere (green
or lighter surface). The sphere radius is ap-
proximately 0.5 fm. The contour shows all ~r
such that C(~r) = 1

2C(0).

density-density correlators where calculated. We have additionally shown how to imple-
ment the one-end trick for the case of mesons, which leads to a significant improvement in
the accuracy with which the meson correlators are obtained. The significant conclusion of
this study is that the ρ-meson is deformed. When its spin projection is zero it is elongated
along the spin axis (prolate), whereas when its spin projection is ±1 it is elongated per-
pendicularly to the spin axis (oblate). This result corroborates previous studies where the
density-density correlator of the ρ was calculated without explicit zero-momentum pro-
jection and with less accuracy [108]. It is also in agreement with a negative quadrupole
form factor calculated recently on the lattice [112]. For the nucleon as well as for the ∆
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the results are noisy and do not allow a definite conclusion to be drawn.
Finite spatial volume effects lead to a distortion of the long distance behavior of the

correlators. By adopting an Ansatz for the asymptotic dependence of the correlators we
can subtract the first image contributions and correct the lattice data. The functional
form determined from fits to the corrected data confirm a prolate shape for the ρ meson.

Whether the baryons studied here carry an intrinsic deformation could not be con-
cluded due primarily to stochastic noise, even when using such a large ensemble of noise
vectors. An additional source of error is the fact that the density-density correlator for
baryons includes a quark propagating from source to sink. Thus it is expected that im-
plementing the one-end trick to the three-density correlators for baryons, given the im-
provement gained in the case of mesons, will allow concrete conclusions regarding their
asymmetry. This would be an interesting cross-check of lattice results, given results on
the ∆ electromagnetic form factors [51] indicating a negative quadrupole moment, as we
have seen in Chapter 6.
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Chapter 8

The Pion Form Factor using Density-Density Correlators

Having presented the density-density correlator in the previous chapter, we carry on to
investigate one potential use of four-point functions, namely the calculation of form factors.
We shall present a calculation of the pion form factor using the density-density correlator
we have already computed for the hadron charge distributions. The pion form factor has
been extensively studied on the lattice using three-point functions [112–115] and is still
being studied using various improvements [116–118].

Apart from being simple to calculate, there is active interest in this quantity since
certain predictions of perturbative QCD concerning the pion form factor at high momen-
tum transfer are yet to be verified, either by experiment or on the lattice. As we have
seen in previous chapters, lattice calculations become noise dominated at high momen-
tum transfers in the case of three-point functions, making very difficult the extraction of
quantities at energies where perturbative QCD sets in. Being the simplest and lightest
hadron, quantities associated with the pion are easier to extract, and are expected to
reach the perturbative regime at momentum transfer higher than 2 GeV2, i.e. at much
lower momentum transfer than other quantities. The aim of this study is to investigate on
the accuracy obtained using density-density correlators, given the fact that the all-to-all
propagator allows summation over all lattice sites. Having at hand lattice measurements
using three-point functions, we can compare and assess the advantages of each method.

8.1 Lattice Formulation

The pion, being a pseudo-scalar, has only one form factor given by the matrix element:

〈π(p)|jµ|π(p′)〉 =
(

m2
π

Eπ(p)Eπ(p′)

)1/2
p
′µ + pµ

2mπ
Fπ(Q2). (8.1)

The form factor can be extracted by calculating three-point functions in analogy to the
form factors described in the previous chapters. In this chapter we present a calculation
of the pion form factor using four-point functions. In particular we are interested in
comparing the accuracy obtained using this method as compared to results obtained using
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124 The Pion Form Factor using Density-Density Correlators

three-point functions. The relevant pion four-point function is given by:

Gπµµπ(t, t2, t1, t0; ~x2) =
∑
~x1~x~x0

〈χπ(x)|jµu (x2+1)jµd (x1)|χ̄π(x0)〉, (8.2)

jµq (x) = q̄(x)γµq(x), q = u, d,

where x2+1 = (t2, ~x2 + ~x1), x1 = (t1, ~x1), x = (t, ~x) and x0 = (t0, ~x0) and where we have
already included the sum over source coordinate ~x0 which as we have seen in the previous
chapter is made possible using the one-end trick. Note, that this is a generalization of the
density-density correlator we used for the charge distributions since the insertions are not
necessarily at equal times and are for arbitrary direction (Fig. 8.1). If we now insert three
complete sets of states, then in the large time limits t− t2 � 1, t1− t0 � 1 and t2− t1 � 1
when excited state contributions are suppressed we have:

Gπµµπ(t, t2, t1, t0; ~x2)
t−t2�1, t1−t0�1−−−−−−−−−−−−→

t2−t1�1
(8.3)∑

~p

V3〈χπ(0)|π(0)〉〈π(0)|jµu |π(~p)〉〈π(~p)|jµd |π(0)〉〈π(0)|χ̄π(0)〉×

e−mπ(t−(t2−t1)−t0)e−Eπ(~p)(t2−t1)ei~p·~x2 .

The sum over ~x1 sets the momentum of the sink equal to that of the source. The sum
over the sink sets the momentum of the sink (and thus of the source) to zero. The sum
over the source coordinate ~x0 accumulates the four-point function over the volume of the
lattice thus increasing the statistics by V3. It is the accuracy of the form factor obtained
by carrying out this sum that we wish to investigate. Assuming SU(2) flavor symmetry,
Eq. (8.3) becomes:

Gπµµπ(t, t2, t1, t0; ~x2)
t−t2�1, t1−t0�1−−−−−−−−−−−−→

t2−t1�1
(8.4)∑

~p

V3|〈χπ|π(0)〉|2|〈π(0)|jµ|π(~p)〉|2e−mπ(t−(t2−t1)−t0)e−Eπ(~p)(t2−t1)ei~p·~x2

=
∑
~p

V3|Zπ(0)|2 m2
π

mπEπ(~p)

∣∣∣∣pµ + pµ0
2mπ

Fπ(Q2)
∣∣∣∣2 e−mπ(t−(t2−t1)−t0)e−Eπ(~p)(t2−t1)ei~p·~x2 ,

where we have used: 〈χπ|π(~p)〉 =
√

mπ
Eπ(~p)Zπ(~p) and p0 is the initial and final four-

momentum: p0 = (mπ,~0). We now carry out a Fourier transform over ~x2 and take
µ = 0:

Gπ00π(t, t2, t1, t0; ~q) =
∑
~x2

Gπ00π(t, t2, t1, t0; ~x2)e−i~x2·~q t−t2�1, t1−t0�1−−−−−−−−−−−−→
t2−t1�1

(8.5)

V3|Zπ(0)|2 (Eπ(~q) +mπ)2

4mπEπ(~q)
F 2
π (Q2)e−mπ(t−(t2−t1)−t0)e−Eπ(~q)(t2−t1),
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8.2 Lattice Parameters 125

Figure 8.1: Diagram of the pion four-point function

from which we can extract the form factor squared. Once again we use a ratio of two-point
functions to cancel unknown overlaps and the exponential dependence. The specific ratio
used will be presented in the next section. What we would like to emphasize is that in this
specific frame, a pion initially at rest is scattered by two photons of equal amplitude and
opposite sign thus initial and final pion states are stationary, allowing the implementation
of the one-end trick, without fixing the momentum transfer to a specific value. Indeed,
in principle we have the four-point function at arbitrary momentum transfer, limited only
by statistical noise.

8.2 Lattice Parameters

For this calculation we shall use the three ensembles of NF = 2 Wilson lattices (Table 3.1)
used in the calculation of the hadron charge distributions computed in the previous chap-
ter, since we already have the stochastic propagators needed. The main disadvantage in
using the four-point function is the large time intervals required in order to damp ex-
cited state contributions. Although initial and final states are smeared in order to achieve
greater overlap with the ground state, the state propagating between the current insertions
is not smeared and hence needs more time to saturate. As we have seen in Chapter 2, a lo-
cal propagator needs around 0.6 fm for excited state contributions to be suppressed, while
smeared propagators need approximately half the time. In terms of the Wilson NF = 2
lattices we shall use here, this means three time-slices are needed for smeared propagators
and six time-slices for local. We additionally need a window over time in order to vary
the insertions in search for a plateau. Thus for the lattices with a temporal extent of 40
time-slices we have set the source sink separation at 16 time-slices. This allows three to
five time-slices between source (sink) and first (second) insertion leaving six to ten time-
slices between the insertions, which shall be varied in search for a plateau. For the shorter
lattice, with a temporal extent of 32, we have set the source-sink separation to 14 in order
to stay within half the extent of the lattice.

Given the large time intervals involved, careful selection of the combination of two-point
functions is crucial in obtaining a good signal. The unknown overlap and the exponential
exp(−mπ(t−(t2−t1)−t0) can be easily canceled by a zero-momentum two-point function.
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126 The Pion Form Factor using Density-Density Correlators

The zero-momentum two-point function can be computed using the one-end trick to a high
enough accuracy. Having canceled this term we are left with:

(Eπ(~q) +mπ)2

4mπEπ(~q)
F 2
π (Q2)e−Eπ(~q)(t2−t1). (8.6)

In order to cancel the remaining exponential we need the two-point function at finite mo-
mentum. This can be computed using the one-end trick albeit with an inversion required
for each momentum vector needed which would render this method impractical due to the
extensive computational resources it would require. Thus we use the point-to-all propa-
gator to compute the finite-momentum two-point function, which is the main source of
statistical noise of this computation. A naive option would be to divide the expression in
Eq. (8.6) by:

Gππ(~q, t2 − t0)
Gππ(~q, t1 − t0)

. (8.7)

Although this cancels the exponential, t2−t0 is the longest time interval and varies between
eight to twelve time-slices becoming noise dominated for large momentum transfer. A
combination involving shorter time intervals is:[

Gππ(~q, (t2 + t1)/2− t0)
Gππ(~q, t1 − t0)

]2

, (8.8)

however this restricts the time-slices we can consider since t2 + t1 must be even in order
for (t2 + t1)/2 to be integer. Hence, when dividing to extract the form factor, we use the
optimal ratio of Eq. (8.8) when possible and for the intermediate time-slices where t2 + t1

is odd we use the naive ratio of Eq. (8.7). To summarize:

R(t2, t1) =

 t2 + t1 odd : Gπ00π(t,t2,t1,t0;~q)

Gππ(~0,t−(t2−t1)−t0)

Gππ(~q,t1−t0)
Gππ(~q,t2−t0)

t2 + t1 even : Gπ00π(t,t2,t1,t0;~q)

Gππ(~0,t−(t2−t1)−t0)

[
Gππ(~q,t1−t0)

Gππ(~q,(t2+t1)/2−t0)

]2 (8.9)

In Fig. 8.2 we show for the lattice at κ = 0.1575 the ratio obtained for the first four
lattice momenta as a function of the difference t2 − t1. For this plot we take several
combinations of t1 and t2 and average over the same difference. The fluctuations between
odd and even t2−t1 are due to the different combination of two-point functions used in the
ratio. That the naive choice for the ratio is more noisy can be clearly seen for the largest
momentum transfer displayed. We see a plateau in the ratio between (t2 − t1)/a = 6 and
9. The dashed lines in the figure show fits to the range they span. Note, however, that in
practice we vary the fit range to determine a systematic error for the fit.

8.3 Lattice Results

In Fig. 8.3 we show the pion form factor computed using the density-density correlator.
The form factor is normalized to one at Fπ(0) by demanding charge conservation. In the
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Figure 8.2: Ratio of the four-point function by the combination of two-point functions as in Eq. (8.9)
for the first four lattice momenta for κ = 0.1575. The dashed lines are fits to the range they span.

same figure, we show the prediction assuming Vector Meson Dominance (VMD), i.e. the
monopole form 1/(1 +Q2/M2

VMD) with MVMD = Mρ = 0.77 GeV. This form is consistent
with experimental measurements up to the momentum transfer considered here [119–121].
We can generally say that the form factor decreases with decreasing pion mass bringing it
closer with the experimentally determined curve. This is more clearly seen at the smallest
momentum transfer which carry smaller errors.

Since we initially would like to compare the quality of the results obtained with this
method with those obtained using three-point functions we show in the same figure results
obtained by two other lattice groups. One is a calculation carried out in the hybrid
described in Chapter 4. They used pions of mass mπ = 0.32 GeV which is the smallest
value of all the results shown. The calculation was carried out using three-point functions
and a sequential inversion through the sink [114]. The second lattice measurement we
compare to is a calculation in twisted mass QCD at mπ = 0.47 GeV [116]. This calculation
was carried out using the one-end trick for the evaluation of the three-point function. This
requires an inversion for each momentum vector desired, since the sum over both sink and
source requires their momentum to be fixed prior to the inversion as we have seen in
previous chapters. Although this summation increases statistics considerably, at high Q2

where several momentum vectors contribute, inverting to obtain each one becomes too
computationally intensive and thus the form factor is computed for only a few vectors for
the results presented in this figure. As can be seen this method yields the most accurate
form factor.
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Figure 8.3: The pion form factor computed using the density-density correlator in NF = 2 Wilson
QCD, at three pion masses: 0.69 GeV (asterisks), 0.51 GeV (filled squares) and 0.38 GeV (open
circles). We compare to two other lattice measurements: A hybrid calculation using Domain Wall
valence and Staggered sea quarks at mπ = 0.32 GeV [114] (open triangles), and a calculation in
twisted mass QCD at mπ = 0.47 GeV [116] (filled rhombus). The solid line shows Vector Meson
Dominance using the physical mass of the ρ meson which describes experimental measurements
well up to the momentum transfer considered here.

Compared to other lattice results, the form factor computed with the four-point func-
tion shows reasonable behavior at low Q2. Namely we see our results, although carrying
large errors for the lightest two pion masses, are consistent with the two other lattice
measurements cited here. However, we observe deviations at high Q2. Namely, we see our
calculation of the form factor falls off more rapidly than when using three-point functions
which follow the monopole determined by experiment. One major source of error is the
short time interval available for the identification of the plateau (Fig. 8.2). This is even
shorter for the case of the lightest pion mass, where the temporal extent is 32 compared
with 40 for the other two. In this case, we set the source-sink separation at 14 time-slices,
just one time-slice shorter than the largest possible separation. The limited interval avail-
able to fit, combined with the statistical noise carried by the two-point functions at larger
momentum transfer make the determination of the form factor for momenta higher than
0.5 GeV2 unreliable, since a huge systematic error is involved. We would like to note that
for the case of the heavier two pion masses, what limits the calculation to the momentum
transfer presented is the statistical uncertainty of the two-point functions rather than that
of the four-point function.

We find that a monopole form does not describe our data well which is not surprising
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Figure 8.4: Fit of the pion form factor extracted using the density-density correlator to an exponen-
tial form. The dashed line shows the error band. Left for mπ = 0.69 GeV, right for mπ = 0.51 GeV.

Table 8.1: Parameter M obtained by fitting the pion form factor to the exponential form
exp(−Q2/M2) compared to the vector meson mass at each pion mass.

mπ (GeV) mπ/mρ M (GeV) mρ (GeV)
0.691(8) 0.70(1) 1.06(1) 1.009(10)
0.509(8) 0.57(1) 0.91(1) 0.901(23)
0.384(8) 0.45(3) 0.83(2) 0.850(2)

since our results fall off faster than the results of the two other groups. On the other
hand, we find that an exponential form gives a good fit to our data. This is consistent
with a monopole form at low Q2, i.e.: 1/(1 + Q2/M2) ' exp(−Q2/M2) ' 1 −Q2/M2 as
Q2 → 0. In Fig. 8.4 we show fits of the heaviest two pion masses to the exponential form
exp(−Q2/M2). The fitted values of M for each pion mass are summarized in Table 8.1
where we compare with the vector meson mass.

The parameter M obtained by fitting to exponentials is consistent with the vector
meson mass at all pion masses. This shows that at low momentum transfer the form
factor is consistent with the prediction from Vector Meson Dominance, with a pole at
the value of the ρ mass for the specific pion mass. As in the case of the nucleon, non-
relativistically the slope of the form factor at low momentum transfer is associated with
the pion charge radius:

〈r2
π〉 = −6

∂

∂Q2
Fπ(Q2)

∣∣∣∣
Q2=0

=
6
M2

. (8.10)

The primary goal of this study is to see the accuracy obtained for the pion form factor
when using the four-point function. Hence we use only three pion masses at approximately
the same lattice spacing in order to investigate the applicability of this method. Although
one would need several pion masses and at least three lattice spacings for a reliable ex-
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Figure 8.5: Chiral extrapolation of the pion charge radius. The filled circle is the experimentally
measured value of the pion charge radius. The solid line is a fit to Eq. (8.11) fitting c0 and c1 while
the empirical value of 0.0924 GeV is taken for fπ. The dashed line shows the error band.

traction of the pion charge radius, it is interesting to see whether the above results are
consistent with the chiral limit. We use the chiral expansion obtained from one loop chiral
perturbation theory [122]:

〈r2
π〉 = c0 −

1
(4πfπ)2

log(m2
π) + c1m

2
π (8.11)

The terms c0 and c1 are fitted while we use the empirical value for fπ (Table 3.3). The
resulting fit is shown in Fig. 8.3. As can be seen the fit describes the data well leading to
a pion charge radius slightly lower than 0.672(8) fm which is what is quoted experimen-
tally [102].

8.4 Summary of Results

In this chapter we have presented an exploratory study of using four-point functions for
the computation of form factors. Given the technology developed for the calculation of the
hadron charge distributions in the previous chapter, this investigation came at a minimal
computational cost since the stochastic propagators where already computed. We have
shown that using four-point functions, one can calculate the form factor squared for any
momentum transfer while simultaneously fixing initial and final states to zero momentum.
This specific setup, which cannot be achieved with only one current insertion (three-
point function), allows applying the one-end trick to sum over sink and source coordinates
without having to fix the momentum transfer prior to the inversion.
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8.4 Summary of Results 131

Although the double summation provides an accurate four-point function, dividing
with two-point functions in order to cancel exponentials and unknown overlaps with the
interpolating operators introduces noise which translates to an uncertainty in the form
factor comparable with that obtained using standard methods such as three-point func-
tions. We find that at low momentum transfer the form factor obtained with this method
is consistent with that obtained from other lattice measurements. Although the experi-
mentally measured form factor is well described by a monopole form, our data are better
described by an exponential. The fitted parameter of the exponential is consistent with
the ρ-meson mass. Having the Q2 dependence of the form factor, we test our results
against a chiral expansion for the charge radius of the pion. We find that our data are
consistent with this chiral expansion, and a naive fit leads to a pion charge radius slightly
lower than experiment.
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Chapter 9

Summary and Conclusions

In this thesis we describe the techniques developed to extract form factors in the nucleon/∆
system accurately. We also describe the methods developed to calculate all-to-all propa-
gators and apply them for the evaluation of four-point functions. These quantities are of
importance both experimentally and phenomenologically and the results presented here
are of direct relevance to ongoing experiments. For example results on the nucleon elec-
tromagnetic form factors presented in Chapter 3 are particularly relevant to the extensive
experimental program at Jefferson Laboratory which aims at accurate measurements of
the electromagnetic form factors over a large range of momentum transfer. For the calcu-
lation of the nucleon form factors we used quenched Wilson fermions and two dynamical
degenerate flavors of Wilson quarks. A number of improvement techniques are applied:
Gaussian smearing of the source and sink with parameters optimized so that the nucleon
state dominates as early as three time-slices or 0.3 fm from the source. This improvement
allows a relatively short source-sink separation which in turn leads to less statistical noise
in the three-point function. The three-point function is evaluated using a sequential in-
version through the sink, which means we can insert the electromagnetic current operator
at any time and at any momentum with no extra inversions. Selecting appropriately the
quantum numbers of the sequential source allows the isolation of specific form factors
thus leading to a more accurate estimate. In addition we can insert any operator without
requiring any additional sequential inversions. This allows evaluation of the electromag-
netic, axial and pseudo-scalar form factors with the same set of propagators. In the case
of the electromagnetic form factors we evaluate the isovector part that does not have any
disconnected contributions which have not been included in lattice calculations so far. In
order to compare with experiment, we interpolate the experimentally measured electric
and magnetic form factors of the proton and neutron to the same momentum transfer so
that we can subtract and obtain the isovector form factors. The general observation is that
the electric form factor disagrees more with experiment than the magnetic form factor.
The most probable source of this discrepancy is the fact that we work with pion masses
larger than 300 MeV. It is expected that at lower pion masses non-analytic contributions
will become important in the chiral expansion yielding agreement with experiment. A
calculation at pion masses less than 300 MeV is expected to become feasible in the next
couple of years. The anomalous magnetic moment and Dirac and Pauli radii are chirally
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134 Summary and Conclusions

extrapolated to the physical point. We obtain an anomalous magnetic moment at the
physical point consistent with that observed experimentally. This is not the case for the
r.m.s. radii for which we obtain values lower than experiment.

In Chapter 4 we present a lattice calculation of the nucleon to ∆ electromagnetic tran-
sition form factors. The electromagnetic nucleon to ∆ transition is used experimentally
to investigate deformation in the nucleon. There are three nucleon to ∆ electromagnetic
transition form factors: the dominant magnetic dipole GM1 and the sub-dominant elec-
tric quadrupole and Coulomb quadrupole form factors GE2 and GC2. Non-zero values for
these sub-dominant form factors points to a deformation in either the nucleon or the ∆ or
both. This calculation is carried out in the quenched approximation, using two degenerate
flavors of dynamical Wilson quarks and using a hybrid action with domain wall valence
quarks and dynamical staggered sea quarks. Apart from the fact that this hybrid scheme
preserves chiral symmetry on the lattice, it allows the evaluation of the form factors at a
pion mass as low as 350 MeV. For the case of the dominant magnetic dipole form factor
we observe weak unquenching effects and consistency between results obtained using the
hybrid action and results obtained with the Wilson lattices. This consistency is non-trivial
given that discretization errors appear to different order in the lattice spacing for the two
discretization schemes and shows that lattice artifacts are under control. At low momen-
tum transfer the results for GM1 are lower than experiment. Once more, a calculation at
pion masses less than 300 MeV where pion cloud contributions are expected to become
important is needed in order to investigate the approach to the physical point. To com-
pare our results for the sub-dominant form factors with experiment we construct the ratios
− GE2(q2)
GM1(q2)

and − |~q|
2M∆

GC2(q2)
GM1(q2)

in the rest frame of the ∆. Apart from allowing compari-
son with experimental results which are customarily presented in this way, ratios are less
pruned to systematic errors. We find, for the first time in unquenched lattice QCD, that
the sub-dominant form factors are clearly non-zero and negative pointing to a deformed
nucleon and/or ∆. We also observe unquenching effects in the Coulomb quadrupole form
factor, at the smallest pion mass, bringing lattice results closer to experiment.

In Chapter 5 we presented a calculation of the axial nucleon and nucleon to ∆ axial
transition form factors. We additionally evaluated the pion-nucleon and pion-nucleon-∆
form factors. Having the sequential propagators used to compute the electromagnetic form
factors presented in Chapters 3 and 4, we need only replace the electromagnetic current
with the axial or pseudo-scalar current in the three-point function thus requiring no extra
inversions. Phenomenological arguments relate the two axial nucleon form factors GA
and Gp to the pion-nucleon form factor GπNN . This relation is known as the diagonal
Goldberger-Treiman relation. Furthermore, assuming pion pole dominance for the induced
pseudo-scalar form factor Gp, we obtain a simplified Goldberger-Treiman relation. The
same arguments hold for the dominant nucleon to ∆ axial transition form factors CA5
and CA6 which are similarly related to the pion-nucleon-∆ form factor GπN∆ through the
off-diagonal Goldberger-Treiman relation. Given these relations we have constructed and
presented ratios of these form factors which are expected to show no dependence on the
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momentum transfer and have the additional advantage of exhibiting weaker quark mass
dependence thus allowing comparison with experimental results. We have seen that the
pion-nucleon and pion-nucleon-∆ form factors show the same Q2 dependence and that
their ratio GπNN (Q2)/GπN∆(Q2) is equal to 1.60(2). The ratio 2CA5 (Q2)/GA(Q2) is also
constant with respect to the momentum transfer and equal to 1.61(1). Equality of these
two ratios is implied by the Goldberger-Treiman relations as is also implied for the ratio
8CA6 (Q2)/Gp(Q2) which is found, however, about 7% larger. Another phenomenological
expectation is that the momentum dependence of Gp(Q2)/GA(Q2) and CA6 (Q2)/CA5 (Q2)
is of a monopole form with the pion mass at the pole. We find that lattice results, at the
pion masses considered here, are better described by a larger pole mass than mπ. This is
confirmed when using results obtained in the hybrid scheme. We have additionally studied
the momentum dependence of the form factors separately, where we find that unquenching
effects are large when comparing quenched and hybrid results which is another indication
of the importance of pion cloud effects in these quantities. The axial nucleon form factor
GA is fitted to a dipole form yielding a dipole mass decreasing with the pion mass. We find
mA =1.5 GeV at the smallest pion mass of the quenched case compared to mA =1.1 GeV
found experimentally. The momentum dependence of the pion-nucleon and pion-nucleon-
∆ form factors are found different at low Q2 than what phenomenology expects. This
discrepancy leads to values of the strong couplings gπNN and gπN∆ which are smaller
than what is experimentally measured. A calculation at pion masses below 300 MeV is
needed in order to investigate these discrepancy.

A calculation of the ∆ form factors was presented in Chapter 6. Due to its short
lifetime, experimental measurements for the ∆ are difficult and thus measurements of its
magnetic moment and charge radius carry large errors. The ∆ has four form factors: the
dominant charge form factor GE0 and magnetic dipole form factor GM1, and the sub-
dominant electric quadrupole GE2 and magnetic octapole form factors GM3. A non-zero
value for the electric quadrupole form factor at zero momentum transfer means a non-
vanishing quadrupole moment and thus a deformed ∆. The calculation is carried out
in quenched QCD, using two degenerate dynamical quarks at three pion masses as well
as in the hybrid scheme at the smallest pion mass available. The magnetic moment is
in agreement with experimental results, which however carry large errors. The electric
quadrupole form factor is non-zero and negative showing that the ∆ is oblate.

In Chapter 7 we discuss an approach for studying deformation in hadrons by directly
probing their charge distribution. This is achieved by calculating the equal-time density-
density correlator, which in the non-relativistic limit becomes the hadron charge distribu-
tion. This is technically challenging since it requires the evaluation of a four-point function,
which in turn requires all-to-all propagators. We estimate the all-to-all propagator using
stochastic techniques and dilution. We compute the density-density correlator for the
pion, the ρ-meson, the nucleon and the ∆-baryon in NF=2 Wilson QCD. In addition we
extend the one-end trick to the four-point function and evaluate the density-density cor-
relators for mesons. The implementation of the one-end trick greatly improves the signal
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136 Summary and Conclusions

due to summation over both sink and source coordinates. By projecting the correlators on
the three axes we find a clear elongation of the zero spin projection of the ρ-meson along
the spin axis. This observation would not have been possible using the direct method
due to stochastic noise. We correct for finite volume effects by modeling the asymptotic
form of the correlator and subtracting contributions of nearest neighboring lattices from
the correlator computed on the lattice. Using this corrected correlator we measure de-
formation by calculating the expectation value 〈z2 − x2+y2

2 〉. We find a non-zero value
for this expectation value and therefore this analysis corroborates previous findings that
the ρ-meson is deformed. For baryons the evaluation of the density-density correlator us-
ing stochastic techniques and dilution yields large statistical errors obscuring any definite
conclusion within the current statistics. An immediate extension of the work presented
here is the implementation of the one-end trick to compute the baryon charge distribution.
This could be applied to the three-density correlator to obtain a more accurate evaluation
of the baryon wave function in terms of two relative distances. It is important that the
asymmetry in the ∆-baryon indicated by its negative electric quadrupole form factor is
corroborated by a deformed charge distribution.

In the final chapter of this thesis we extract the pion form factor using the density-
density correlator. Our results are in agreement with other lattice results. They are best
described by an exponential decay to which we fit to obtain estimates of the charge radius
of the pion at each pion mass. A chiral extrapolation to the physical point describes our
data on the charge radius well and yields a value for the pion r.m.s. radius in agreement
with experiment.

In summary, we have established the setup for the accurate extraction of hadron form
factors including the sub-dominant form factors which up to now could not be obtained
to the required accuracy to make comparison with experiment meaningful. Extending
the calculation of these form factors to lower pion masses can be under taken within the
setup developed. Such a calculation is important in view of the observed deviations from
experiment at low momentum transfer where, as we go to pion masses below 300 MeV,
pion cloud contributions are expected to become important.
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Appendix A

Gamma Matrix Representation

We use a Euclidean, non - relativistic γ - matrix representation obeying:

{γµ, γν} = 2δµν µ = 1, ..., 4. (A.1)

These are given by:

γk =

(
0 iσk

−iσk 0

)
, γ4 =

(
1 0
0 1

)
(A.2)

where σk are the Pauli matrices and 1 is the 2 × 2 unit matrix. The fifth γ - matrix is
defined as:

γ5 = γ1γ2γ3γ4 =

(
0 1

1 0

)
, (A.3)

while the charge conjugation matrix is given by:

C = γ4γ2. (A.4)

We will also often use the abbreviations:

γ∓ =
γ1 ± iγ2√

2
. (A.5)
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Appendix B

Nucleon Three-Point Function

We will perform the contractions for the nucleon three-point function and show how one
constructs the sequential source, needed in order to compute the nucleon electromagnetic
form factors as in Chapter 3.

We consider the local isovector current:

jρ(x) = ū(x)γρu(x)− d̄(x)γρd(x). (B.1)

We give the three-point function:

GNj
ρN

αβ (x2;x1; 0) = 〈Ω|χNα (x2)jρ(x1)χ̄Nβ (0)|Ω〉 (B.2)

and the interpolating operator for the nucleon:

χNα (x) = εabcuaµ(Cγ5)µνdbν(x)ucα(x). (B.3)

Expanding the tree point function we have:

GNj
ρN

αβ (x2;x1; 0) = 〈Ω|εabcuaµ(x2)(Cγ5)µνdbν(x2)ucα(x2)×

[ūfκ(x1)(γρ)κλu
f
λ(x1)−d̄f

′

λ′(x1)(γρ)κ′λ′d
f ′

λ′(x1)]×

εa
′b′c′ ūc

′
β (0)d̄b

′
ν′(0)(Cγ5)ν′µ′ ūa

′
µ′(0)|Ω〉. (B.4)

We split the three-point function into the term in which the current couples with the up
quarks and that which the current couples with the down quark:

GNj
ρN

αβ (x2, x1, 0) = UNj
ρN

αβ (x2, x1, 0)−DNjρN
αβ (x2, x1, 0). (B.5)

UNj
ρN

αβ (x2, x1, 0) = (B.6)

〈Ω|εabcuaµ(Cγ5)µνdbνu
c
α

∣∣∣
x2

ūfκ(γρ)κλu
f
λ

∣∣∣
x1

εa
′b′c′ ūc

′
β d̄

b′
ν′(Cγ5)ν′µ′ ūa

′
µ′

∣∣∣
0
|Ω〉.
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146 Appendix B

The four possible ways to contract the up quark fields are indicated by the heights of
the lines. We have neglected the contractions that give the disconnected contribution
since these cancel with those from DNjµN

αβ (x2, x1, 0). We have also suppressed the single
possible contraction between down quarks. Rearranging appropriately the color indices
while changing the sign of the antisymmetric tensor εabc we have:

UNj
ρN

αβ (x2, x1, 0) =εabcεa
′b′c′

[
Cγ5G(x2; 0)Cγ5

]aa′
µν

(B.7)

×
{
G(x2;x1)γρG(x1; 0)

∣∣∣bb′
αβ
Gcc

′
µν(x2; 0)

+G(x2;x1)γρG(x1; 0)
∣∣∣bb′
αν
Gcc

′
µβ(x2; 0)

+G(x2;x1)γρG(x1; 0)
∣∣∣bb′
µν
Gcc

′
αβ(x2; 0)

+G(x2;x1)γρG(x1; 0)
∣∣∣bb′
µβ
Gcc

′
αν(x2; 0)

}
.

For the contribution where the current is coupled with the down quark we have:

DNjρN
αβ (x2, x1, 0) = (B.8)

〈Ω|εabcuaµ(Cγ5)µνdbνu
c
α

∣∣∣
x2

d̄fκ(γρ)κλd
f
λ

∣∣∣
x1

εa
′b′c′ ūc

′
β d̄

b′
ν′(Cγ5)ν′µ′ ūa

′
µ′

∣∣∣
0
|Ω〉

where once again we have suppressed the down quark contractions since there is only one
way to do so. The contractions give:

DNjρN
αβ (x2, x1, 0) = εabcεa

′b′c′
[
Cγ5G(x2;x1)γρG(x1; 0)Cγ5

]aa′
µν

(B.9)

×
{
Gbb

′
αβ(x2; 0)Gcc

′
µν(x2; 0)

+Gbb
′

µβ(x2; 0)Gcc
′

αν(x2; 0)
}
.

In Chapter 3 we use the fixed sink sequential inversion method in order to compute the
three-point function and extract the nucleon form factors. With the fixed sink method,
the sum over ~x2 is carried out in the sequential inversion. To identify the correct sequential
source we must rearrange the above expressions. We will demonstrate this for DNjµN

αβ .
We now include the projection matrix Γ:

∑
~x2

Tr[DNjµN (x2;x1; 0)Γ] =
∑
~x2

γρG(x1; 0)
∣∣∣ra′
µν
Garκµ(x2;x1)Γβα (B.10)

×εabcεa′b′c′
[
Cγ5

>G(x2; 0)Cγ5
>
∣∣∣bb′
κν
Gcc

′
αβ(x2; 0) + Cγ>5 G(x2; 0)

∣∣∣bb′
κβ
G(x2; 0)Cγ5

>
∣∣∣cc′
αν

]
.

The above is just a rearrangement of Eq. B.10 with a more convenient labeling of the
indices. It is obvious that the bracketed expression is associated to the sequential source.
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We rewrite the above expression more compactly:

∑
~x2

Tr[DNjµN (x2;x1; 0)Γ] =
∑
~x2

γρG(x1; 0)
∣∣∣ra′
µν
Garκµ(x2;x1)P aa

′
κν (x2; 0) (B.11)

=
∑
~x2

γρG(x1; 0)
∣∣∣ra′
µν

[
γ5G

†(x1;x2)γ5

]ar
κµ
P aa

′
κν (x2; 0)

=
∑
~x2

γρG(x1; 0)
∣∣∣ra′
µν

[γ5G
∗(x1;x2)]raµκ [γ5P (x2; 0)]aa

′

κν .

We can now show that the sequential source needed is given by:

Kab
µν(x) = [γ5P (x; 0)]

∗ab
µν , (B.12)

where:

P abµν(x; 0) = εabcεa
′b′c′Γβα× (B.13)[

Cγ5
>G(x2; 0)Cγ5

>
∣∣∣bb′
κν
Gcc

′
αβ(x2; 0) + Cγ>5 G(x2; 0)

∣∣∣bb′
κβ
G(x2; 0)Cγ5

>
∣∣∣cc′
αν

]
.

Solving the Dirac equation for each of the indices b, ν of the source of Eq. B.12 we have:

Sabµν(y; 0) =
∑
~x

Gacµκ(y;x)Kcb
κν(x) =

∑
~x

Gacµκ(y;x) [γ5P (x; 0)]
∗cb
κν ⇒ (B.14)

[γ5S(y; 0)]∗ =
∑
~x

[γ5G(y;x)]∗ γ5P (x; 0).

In this form, we can return and insert the sequential propagator directly into Eq. B.11:∑
~x2

Tr[DNjµN (x2;x1; 0)Γ] = Tr {γρG(x1; 0)[γ5S(x1; 0]]∗} . (B.15)

We can similarly construct the sequential source for the UNj
µN (x2;x1; 0) term and add

this to the source found in Eq. B.12 to compute the complete isovector matrix element.
Note that Γαβ is traced within the sequential source thus we need a new inversion for
each projection matrix needed. On the other hand we now have the three-point function
as a function of ~x1 which means we can Fourier transform to obtain all lattice momenta.
Finally we would like to note that the projection matrices Γ are usually of the form:

Γ =

(
α 0
0 0

)
, (B.16)

where α is some 2 × 2 matrix. This means that two of the spinor components of the
sequential source are zero meaning that we need not invert for these components thus
reducing the computational cost of the sequential inversion by two compared to a regular
inversion of all twelve spin and color indices.
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Appendix C

Nucleon to ∆ Transition Form Factors: Tables of Results

Numerical results for the electromagnetic N to ∆ transition form factors, presented in
Chapter 4.

Table C.1: Results in the hybrid approach for GM1, EMR and CMR. For the smallest quark mass
we include the errors in the determination of Q2 since these are substantial for the small values of
Q2 allowed on this lattice.

Hybrid action
Q2 (GeV2) GM1 EMR % CMR %

Hybrid action, a−1 = 1.58 GeV
mπ = 594(1)

0.213 1.850(44) -0.16(52)
0.482 1.434(36) -0.45(67) -3.52(1.16)
0.738 1.143(41) -0.52(1.42) -3.88(1.73)
0.983 0.954(42)
1.218 0.789(38) -6.25(2.78)
1.445 0.665(45)
1.874 0.471(68)
2.079 0.413(64)
2.278 0.363(72)
2.472 0.322(89)
2.660 0.262(145)
2.844 0.172(158)

mπ = 498(3)
0.191 1.557(46) -0.243(91)
0.471 1.177(38) -1.14(1.21) -1.96(1.45)
0.735 0.924(40) -0.56(2.53) -0.20(2.42)
0.985 0.783(46)
1.224 0.641(40)
1.452 0.565(47)
1.883 0.371(70)
2.087 0.381(96)
2.284 0.294(172)
2.476 0.260(240)
2.662 0.104(226)
2.843 0.146(120)

Hybrid action
Q2 (GeV2) GM1 EMR % CMR %

Hybrid action, a−1 = 1.58 GeV
mπ = 353(2)

0.042(16) 1.681(59) -0.72(88) -1.523(89)
0.194(14) 1.404(49) -1.56(79) -2.98(92)
0.341(8) 1.199(51) -1.09(1.13) -2.41(1.61)
0.482(9) 1.070(48) 0.22(1.82) -2.55(2.27)
0.619(8) 0.930(47) -1.70(1.57) -2.79(1.77)
0.751(9) 0.813(48) -2.94(2.18) -1.54(2.22)
1.005(11) 0.723(53) -3.98(3.65)
1.127(16) 0.660(53) -2.145(3.14)
1.246(16) 0.623(60) -6.08(3.84)
1.362(23) 0.581(62) -7.80(4.08)
1.475(51) 0.518(89)
1.586(18) 0.525(84)
1.695(35) 0.518(94)
1.906(65) 0.392(116)
2.009(26) 0.328(87)
2.111(13) 0.298(94)
2.209(20) 0.275(128)
2.306(23) 0.230(94)
2.402(34) 0.222(124)
2.497(34) 0.073(108)
2.682(20) 0.087(170)
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Table C.2: Quenched results for GM1, EMR and CMR

Wilson fermions
Q2 (GeV2) GM1 EMR % CMR %

Quenched, β = 6.0, a−1 = 2.14(6) GeV
mπ = 563(4) MeV

0.158 1.646(30) -0.72(26) -0.82(26)
0.348 1.332(23) -0.86(29) -2.09(39)
0.530 1.102(29) -0.60(57) -2.62(52)
0.704 0.933(22) -0.51(47) -1.80(60)
0.871 0.804(22) -0.82(45) -3.11(77)
1.033 0.698(23) -0.62(63) -2.92(84)
1.341 0.545(25) -1.33(93) -4.31(1.21)
1.488 0.474(24)
1.631 0.424(26)
1.770 0.373(25)
1.906 0.309(28)
2.039 0.306(34)
2.169 0.254(28)
2.420 0.202(52)

mπ = 490(4) MeV
0.151 1.572(33) -0.93(36) -0.92(33)
0.344 1.259(31) -1.18(38) -2.33(48)
0.529 1.033(30) -1.03(76) -2.99(66)
0.705 0.873(26) -0.47(64) -1.97(74)
0.874 0.749(24) -1.05(62) -3.87(93)
1.037 0.649(25) -0.79(83) -3.46(1.04)
1.346 0.510(28) -1.65(1.28) -5.44(1.54)
1.493 0.441(25)
1.636 0.393(28)
1.775 0.346(28)
1.910 0.283(31)
2.042 0.290(38)
2.171 0.238(30)
2.420 0.185(52)

Wilson fermions
Q2 (GeV2) GM1 EMR % CMR %

Quenched, β = 6.0, a−1 = 2.14(6) GeV
mπ = 411(4) MeV

0.138 1.479(44) -1.36(59) -0.99(50)
0.338 1.171(37) -1.73(62) -2.49(69)
0.527 0.951(35) -1.82(1.10) -3.59(93)
0.706 0.804(32) -0.26(99) -2.22(1.05)
0.878 0.687(26) -1.30(94) -5.44(1.30)
1.042 0.595(29) -0.95(1.24) -4.74(1.42)
1.353 0.475(34) -2.14(2.04) -7.01(1.22)
1.501 0.406(28)
1.644 0.359(30)
1.783 0.317(31)
1.918 0.252(35)
2.050 0.276(45)
2.178 0.223(34)
2.426 0.172(57)

Table C.3: Wilson NF = 2 results for GM1, EMR and CMR

Wilson fermions
Q2 (GeV2) GM1 EMR % CMR %
NF = 2 Wilson, β = 5.6, a−1 = 2.56(10) GeV

mπ = 691(8)
0.447 1.437(36) -0.76(43) -1.76(69)
0.891 0.989(31) -0.86(71) -3.03(1.04)
1.304 0.717(30) -1.44(1.33) -0.88(1.34)
1.691 0.509(40) -2.28(1.42) -5.75(1.95)
2.058 0.443(38) -2.08(1.48) -10.06(2.41)
2.407 0.341(37)
3.060 0.208(55)

mπ = 509(8)
0.445 1.210(42) -1.00(1.28) -0.93(1.42)
0.892 0.794(32) -5.26(1.87) -6.17(2.10)
1.303 0.521(32) -5.95(4.43) -3.49(3.44)
1.685 0.474(52) -5.65(3.47) -4.02(3.33)
2.044 0.296(32)
2.384 0.211(48)

Wilson fermions
Q2 (GeV2) GM1 EMR % CMR %
NF = 2 Wilson, β = 5.6, a−1 = 2.56(10) GeV

mπ = 384(8)
0.442 1.066(43) -1.49(1.59) -1.27(1.57)
0.893 0.798(44) -1.83(2.10) -6.47(2.37)
1.299 0.589(37)
1.671 0.396(48)
2.017 0.244(47)
2.342 0.181(41)
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Appendix D

∆ Electromagnetic Form Factors: Kinematic Coefficients

In Chapter 6 we give three linear combinations of the three-point function used to construct
three optimal sequential sources. The third combination used is given by:

S3(~q;µ) =
3∑
j=1

εjklΠkl(0,−~q,Γk, µ) = Aµk(q)GE2(q)+Bµk (q)GM1(q)+Cµk (q)GM3(q). (D.1)

The kinematic coefficients are given by:

Aµk(q) =
i

3M2
∆(E∆(q) +M∆)

(q1q2 + q2q3 + q3q1)iqµ (D.2)

Bµk (q) = − 1
6M2

∆(E∆(q) +M∆)
[
δ1,µ(q3q

2
2 + q2q

2
3 − 2q1q2q3) (D.3)

+ δ2,µ(q1q
2
3 + q3q

2
1 − 2q1q2q3)

+ δ3,µ(q1q
2
2 + q2q

2
1 − 2q1q2q3)

]
Cµk (q) = − 1

30M3
∆(E∆(q) +M∆)

{
(D.4)

δ1,µ[(8E∆(q) + 7M∆)(q3q
2
2 + q2q

2
3)− (16E∆(q) + 14M∆)q1q2q3

− 5M∆(E∆(q)2 −M2
∆)(q2 + q3) + 10M∆(q1q2 + q2q3 + q3q1)q1]

+δ2,µ[(8E∆(q) + 7M∆)(q1q
2
3 + q3q

2
1)− (16E∆(q) + 14M∆)q1q2q3

− 5M∆(E∆(q)2 −M2
∆)(q1 + q3) + 10M∆(q1q2 + q2q3 + q3q1)q2]

+δ3,µ[(8E∆(q) + 7M∆)(q1q
2
2 + q2q

2
1)− (16E∆(q) + 14M∆)q1q2q3

− 5M∆(E∆(q)2 −M2
∆)(q1 + q2) + 10M∆(q1q2 + q2q3 + q3q1)q3]

}
.
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Appendix E

Density-Density Correlators: Image Correction Fit

Parameters

In the following table we quote the parameters obtained when fitting the density-density
correlators presented in Chapter 7 to the following forms:

Cπ0 = A0 exp (−m0r
σ),

Cρ0 =
[
A0 exp (−m0r

σ) +A1 exp (−m1r
σ)r2P2(cos θ)

]2

,

CN0 = same as for π,
C∆

0 = same as for ρ.

(E.1)

Table E.1: The parameters obtained from fitting the sum of images to the lattice data.

Mesons
κ 0.1575 0.1580 0.15825

π
A0 0.986(21) 1.129(33) 1.437(78)
m0 0.307(7) 0.405(11) 0.579(25)
σ 0.993(7) 0.884(9) 0.779(12)

ρ, mz = 0
A0 0.969(13) 0.964(21) 0.919(31)
m0 0.0173(19) 0.0140(26) 0.0093(26)
A1 0.00170(31) 0.0031(16) 0.00183(46)
m1 0.0466(87) 0.077(33) 0.0033(12)
σ 1.615(41) 1.646(69) 1.76(11)

ρ, mz = ±1
A0 0.976(10) 0.961(16) 0.977(28)
m0 0.0194(16) 0.0128(16) 0.0141(34)
A1 -0.00113(18) -0.00054(34) -0.0012(17)
m1 0.0560(91) 0.025(12) 0.066(69)
σ 1.577(30) 1.659(47) 1.613(87)

Baryons
0.1575 0.1580 0.15825

N
1.014(39) 1.039(34) 1.057(34)
0.0673(40) 0.0698(44) 0.0548(38)
1.451(20) 1.413(22) 1.450(24)

∆, mz = ±3
2

1.024(22) 1.033(19) 1.023(16)
0.0125(11) 0.0130(12) 0.0087(8)
0.00029(25) -0.0007(14) -0.00121(49)
0.024(13) 0.022(25) 0.077(30)
1.750(32) 1.708(34) 1.787(33)
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