

UNIVERSITY OF CYPRUS DEPARTMENT OF CHEMISTRY

Doctorate Thesis

Zwitterionic Biscyanines and Related Compounds

Theodosia Athinagora Ioannou

UNIVERSITY OF CYPRUS DEPARTMENT OF CHEMISTRY

Doctorate Thesis

Theodosia Athinagora Ioannou

Examination Committee:

Prof. Hussein El-Kashef, Assiut University (External Examiner)

Prof. Dr. Jürgen Schatz, Friedrich-Alexander University of Erlangen-Nuremberg (External Examiner)
Dr. Nicolaos Chronakis, University of Cyprus (Committee Chairman)
Dr. Athanasios Nicolaides, University of Cyprus (Internal Examiner)
Dr. Panayiotis A. Koutentis, University of Cyprus (Project Supervisor)

May 2013

EXPERIMENTAL PROCESSES ACCOMPLISHMENT STATEMENT

Except where noted below the work described within this thesis has been carried out exclusively by Theodosia A. Ioannou at the Organic Chemistry Research Laboratory, in the Department of Chemistry under the supervision of Dr. Panayiotis A. Koutentis, (January 2005 - January 2012).

The exceptions include: the single crystal X-ray crystallographic studies (performed by Dr. Anastasios J. Tasiopoulos of the Department of Chemistry, University of Cyprus); some theoretical calculations (performed by Prof. Michael Bendikov of Weizmann Institute of Science), some NMR spectroscopy (performed by Maria Koyioni, PhD student of University of Cyprus), the elemental analysis of all compounds (performed by Stephen Boyer of London Metropolitan University) and high resolution mass spectrometry (performed by John Barton of Imperial College London).

Date

Signature

51

89

91

146

148

173

176

177

158a

158c

158d

Abstract

Linear and angular tetraazapentacenes are studied to ascertain their electronic structures. The research and discussion section (Chapters 2-5) follows an introduction on organic materials with semiconducting or magnetic properties (Chapter 1).

Chapter 2 focuses on linear tetraazapentacenes 51, which prefer the zwitterionic singlet ground state instead of a triplet or singlet diradical state. On the contrary the angular 89 motif prefers a triplet ground state where the two free spins are located parallel to each other. With the linear tetraazapentacenes, various substitution patterns at strategic positions are shown to influence the energy gaps between the singlet-triplet states.

Chapters 3 describes the synthesis of linear tetraazapentacenes where a series of substituted linear tetraazapentacenes 91 (tolyl analogs of systems 51) are synthesized in order to have spectroscopic data of these zwitterionic singlet ground state molecules that can be compared with the computational data. The agreement of the computational and spectroscopic data validates the computational method chosen.

Attempt to synthesize the angular tetraazapentacene 89 leads to the synthesis of a series of side products, phenazines $\mathbf{1 4 6}, \mathbf{1 4 8}, \mathbf{1 7 3}, \mathbf{1 7 6}, 177$, and to an unexpected but important product, the linear radical 158. This is covered in Chapter 4, where the mechanistic paths are analyzed as well as the alternative synthetic paths that were taken.

The related linear and angular arene-fused bis(1,2,3-dithiazoles) $\mathbf{1 8 0}$ and $\mathbf{1 8 1}$ were also studied towards their singlet-triplet energy gaps (Chapter 5). These systems are shown to be stabilized in the triplet or singlet diradical ground state but more towards the triplet ground states in the angular motif. The singlet and triplet states of the substituted benzo, pyrido $182(\mathrm{X}=\mathrm{CH}, \mathrm{Y}=\mathrm{N}), \mathbf{1 8 3}(\mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH})$ and pyrazino $184(\mathrm{X}=\mathrm{Y}=\mathrm{N})$ linear fused bis(1,2,3-dithiazoles) as well as their corresponding angular analogs 185-187 have been studied as well, showing singlet states for $\mathbf{1 8 2}$ and $\mathbf{1 8 4}$ while all the others are stabilized as triplet or singlet diradicals.

Chapter 6, the experiemental section, describes the synthetic procedures and spectroscopic characterization details for all synthesized products.

51

89

91

146

148

173

176

177

158a

158c

158d

ПЕРІАНЧН

Граццıќ́ каı $\gamma \omega v ı \alpha \kappa \alpha ́ ~ \tau \varepsilon \tau \rho \alpha \alpha \zeta \alpha \pi \varepsilon \nu \tau \alpha \kappa \varepsilon ́ v 1 \alpha ~ \mu \varepsilon \lambda \varepsilon \tau о v ́ v \tau \alpha ı ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \xi \alpha к \rho i ß \omega \sigma \eta ~ \tau \omega v$

 (Kє甲а́ $\lambda \alpha \ldots 1$ 1).

 $\delta 1 \alpha \varphi о \rho \alpha ́ \alpha \pi \lambda \eta ́ s-\tau \rho \imath \pi \lambda \eta ́ s ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma$.
 ó $\pi о v \mu \mu \alpha$ бєıр́́ $\alpha \pi o ́ ~ v \pi о к \alpha \tau \varepsilon \sigma \tau \eta \mu \varepsilon ́ v \alpha ~ \tau \varepsilon \tau \rho \alpha \alpha \zeta \alpha \pi \varepsilon v \tau \alpha \kappa \varepsilon ́ v 1 \alpha ~ 91 ~(~ \alpha v \alpha ́ \lambda о \gamma \alpha ~ \tau \omega v ~ \sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v$

Пробла́ $\theta \varepsilon ı \alpha ~ \sigma v ́ v \theta \varepsilon \sigma \eta \varsigma ~ \tau о ט ~ \gamma \omega v ı \alpha к о v ́ ~ \tau \varepsilon \tau \rho \alpha \alpha \zeta \alpha \pi \varepsilon v \tau \alpha к \varepsilon v i ́ o v ~ 89 ~ о \delta \eta \gamma \alpha ́ ~ \sigma \tau \eta ~$

 $\varepsilon \vee \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa \eta$ торєía $\pi о v \pi \rho о \tau \alpha ́ \theta \eta \kappa \varepsilon$.

 $\sigma \tau \alpha \theta \varepsilon \rho о \pi о$ ои́v $\tau \alpha \iota ~ \sigma \tau \eta \nu \tau \rho ı \pi \lambda \eta ́ ~ \eta ́ ~ \alpha \pi \lambda \eta ́ ~ \kappa \alpha \tau \alpha ́ \sigma \tau \alpha \sigma \eta ~ \delta i ́ p \iota \zeta \alpha \varsigma$.

ACKNOWLEDGEMENTS

I like to thank my supervisor Dr. P. A. Koutentis for providing the opportunity to work on the project described herein.

I thank Dr. A. J. Tasiopoulos for X-ray crystallography (University of Cyprus), the technical staff John Barton for mass spectroscopy (Imperial College London), Stephen Boyer for elemental analysis (London Metropolitan University), Dr Yiannis Sanakis for the EPR studies (Institute of Materials Science, "Demokritos", Athens), Prof. Michael Bendikov (Weizmann Institute of Science) for theoretical calculations and discussion and the laboratory technician Savvas Savva (University of Cyprus).

This work was partially supported by the Research Promotion Foundation (IPE) of Cyprus and the European Structural Funds via grant NEKYP/0308/02. I also want to thank the Cyprus Research Promotion Foundation (Grant No. DRASI/ TEXNO/0104/04) and the University of Cyprus for financial support as well as the following organizations in Cyprus for the generous donations of chemicals and glassware: the State General Laboratory, the Agricultural Research Institute and the Ministry of Agriculture. Furthermore I thank the A. G. Leventis Foundation for helping to establish the NMR facility in the University of Cyprus.

I thank all past members of KRG group, particularly Irene, Haris, Sophia, George and Georgia for being so friendly and for their support and all the new members of the group especially Styliana, Maria, Georgia and Andreas for proof-reading my thesis. Also I would like to give many thanks and my appreciation to Maria Koyioni for her help on establishing the NMR spectroscopy on some synthesized systems and Christos Constantinides for his help and discussions on computational chemistry. Outside of the lab I thank my friends Natasa, Evi, Elena, Tina, Maria, Stella and Andreas for their friendship, patience and support and my friends and colleagues Nancy and Andreas for being in my life less than one year but asking everyday about my thesis progress.

Finally I would like to thank my family for their love, support and encouragement.

CONTENTS

Sections Page
Abstract in English 7
Abstract in Greek 9
Acknowledgements 11
Contents 13
Abbreviations 17
Brief Contents
Chapter 1: Introduction 21
Chapter 2: Computational Study on Linear Tetraazapentacenes 61
Chapter 3: Synthesis of Substituted 5,7-Di-p-tolyl-13,7-dihydro-quinoxalino- [2,3-b]phenazin-5-ium-13-ides 91
Chapter 4: Study on Angular Quinoxalino[2,3-a]phenazinediyl: Synthesis of a New Organic Radical 127
Chapter 5: Manipulating the Singlet-triplet Energy Gaps of Linear and Angular Arene-fused Bis(1,2,3-dithiazoles) 159
Chapter 6: Experimental 185
Appendix 223
List of Compounds Prepared 353
References 361

Detailed Contents

1 Chapter 1: Introduction 21
1.1 Organic Materials and Properties 21
1.1.1 Electrical Conductivity and Organic Semiconductors 24
1.1.1.1 Electrical conductivity 24
1.1.1.2 Organic semiconductors 26
1.1.2 Magnetism and Organic Magnets 28
1.1.2.1 Magnetism 28
1.1.2.2 Organic magnets 31
1.2 Electrons and Principles 32
1.3 Organic Radicals and Polyradicals 36
1.3.1 Hydrocarbon-Based Radicals 36
1.3.1.1 Triphenylmethyl radicals 36
1.3.1.2 Phenalenyl radicals 38
1.3.2 Heterocyclic Radicals based on Nitrogen 39
1.3.2.1 Aminyl radicals 39
1.3.2.2 Hydrazyl radicals 40
1.3.3 Diradicals and Polyradicals 41
1.3.3.1 Hydrocarbon diradicals as ferromagnetic coupling units 42
1.3.3.2 Diradicals containing heteroatoms 44
1.3.3.3 Aminyl diradicals 46
1.4 Zwitterionic Azaacenes 47
1.5 Pentacene and Azapentacenes 50
1.5.1 Pentacene 50
1.5.2 Azaacenes and Azapentacene 52
1.6 Target of Project 58
2 Chapter 2: Computational Study on Linear Tetraazapentacenes 61
2.1 Introduction 62
2.2 Target Molecules 64
2.3 Methodology 66
2.4 Computational Results 69
2.4.1 Spin Coupling and Singlet-Triplet Gap 69
2.4.2 Geometric Data 74
2.4.3 NICS Calculations 82
2.4.4 Time Dependent Calculations 86
2.5 Summary 89
3 Chapter 3: Synthesis of Substituted 5,7-Di-p-tolyl-13,7- dihydro-quinoxalino-[2,3-b]phenazin-5-ium-13-ides 91
3.1 Introduction 92
3.2 Methodology and Synthesis 93
3.2.1 Synthesis and Characterisation of Substituted 2-Halonitrobenzenes 96
3.2.1.1 Synthesis of 3-fluoro-4-nitroanisole 95b 98
3.2.1.2 Synthesis of 3-chloro-4-nitrobenzonitrile $95 \boldsymbol{f}$ 99
3.2.2 \quad Synthesis and Characterisation of 2-Nitro- N-(p-tolyl)- benzeneamines 94 100
3.2.3 \quad Synthesis and Characterisation of $N-p$-Tolyl-1,2- benzenediamines 93 105
3.2.4 Synthesis and Characterisation of 1,5-Bis[1-N-(p-tolyl)-1,2- benzenediamino]-2,4-dinitrobenzenes 92 108
3.2.5 Synthesis and Characterisation of 5,7-Di- p-tolyl-13,7- dihydro-quinoxalino[2,3-b]phenazin-5-ium-13-ides 91 112
3.3 Comparison of Spectroscopic and Computational Data 123
3.3.1 Geometric Data 123
3.3.2 Time Dependence vs UV/vis 124
3.4 Summary 125
4 Chapter 4: Study on Angular Quinoxalino[2,3-a]phenazinediyl: Synthesis of a New Organic Radical 127
4.1 Introduction 128
4.2 Attempted Synthesis of Angular Quinoxalino[2,3-a]phenazine 131
4.3 Study on Tetraazapentacene Oxy Radical 145
4.4 Mechanistic Rationale for the Formation of Radical 158 and Alternative Pathway for Target 150
4.5 Summary 157
5 Chapter 5: Manipulating the Singlet-triplet Energy Gaps of Linear and Angular Arene-fused Bis(1,2,3-dithiazoles) 159
5.1 Introduction 160
5.2 Total Energies, Spin-coupling Constants and Singlet-triplet Gaps 162
5.2.1 Linear Fused Bis(1,2,3-dithiazoles) 162
5.2.2 Angular Fused Bis(1,2,3-dithiazoles) 165
5.3 Aromaticity Considerations 167
5.4 Molecular Orbital Analysis 172
5.5 Mulliken Charge Distribution 178
5.6 Replacing the Central 6-Membered Arene by a 5-Membered Arene 179
5.7 The Analogous Quinoid Structures 181
5.8 Summary 183
6 Chapter 6: Experimental 185
6.1 General Methods and Materials 186
6.2 Compounds Related to Chapter 3 187
6.3 Compounds Related to Chapter 4 213
Appendix 223
List of Compounds Prepared 353
References 361

ABBREVIATIONS

Å
A

Ac
aq.
Ar
Bn benzyl
BS
Bz
ca.
$\mathrm{c} f$.
CI configuration interactions
cm
cm^{-1}
d
DCE
DCM
dd
DEPT distortionless enhancement by polarization transfer
DHTAP dihydrotetraazapentacene
DFT density functional theory
DMF $\quad N, N$-dimethylformamide
DMSO dimethylsulfoxide
DMSO- d_{6} deuterated dimethylsulfoxide
DPPH $\quad N, N$-diphenyl- N^{\prime}-picrylhydrazyl
DSC differential scanning calorimetry
DTQP
E^{+}
EA
EDG
e.g.

EI
Ångströms
amperes
acetyl
aqueous
aryl
broken symmetry
benzoyl
approximately
compare
centimetres
wavelength unit
doublet (NMR) or days
1,2-dichloroethane
dichloromethane
double doublet

5,7-di-(p-tolyl)-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide
electrophile
electron affinity
electron-donating group
for example
electron ionization

equiv.	equivalent
ESR	electron paramagnetic resonance
eV	electron volt unit
EWG	electron-withdrawing group
$\mathrm{f}(\mathrm{r})$	function
FTIR	Fourier transform infrared
G	gas
GCMS	gas chromatography mass spectrometry
h	hour
Hal	halogen
HOMO	highest occupied molecular orbital
Hünig's base	N, N-diisopropylethylamine ($i-\mathrm{Pr}_{2} \mathrm{EtN}$)
Hz	Hertz unit
IE	ionization energy
inf.	inflection
I_{p}	ionization potential
IR	infrared
J	coupling constant
$K_{\text {ET }}$	electron-transfer rate
LG	leaving group
lit.	literature
LRMS	low resolution mass spectrometry
LUMO	lowest unoccupied molecular orbital
m	multiplet (NMR) or medium (IR) or metres
m / z	mass to charge ratio
M^{+}	molecular ion
2-MeTHF	2-methyltetrahydrofuran
MHz	megahertz unit
min	minutes
MO	molecular orbital
mp	melting point
MW	microwave
NBMO	nonbonding molecular orbital

NICS	nucleus independent chemical shift
nm	nanometer unit
NMR	nuclear magnetic resonance
Nuc	nucleophile
${ }^{\circ} \mathrm{C}$	degrees Celsius
OLED	organic light-emitting diode
OFET	organic field-effect transistor
OSC	organic solar cell
ox	oxidation
p-NPNN	p-nitrophenyl nitronyl nitroxide
Ph	phenyl
PhCl	chlorobenzene
PhH	benzene
PhMe	toluene
ppm	parts per million
PTM	polychlorinated triphenylmethyl
q	quartet
rt	room temperature (ca. $20{ }^{\circ} \mathrm{C}$)
S	singlet (NMR) or strong (IR)
S	Siemens
SOMO	singly occupied molecular orbital
SMM	single-molecule magnet
t	triplet
t	transfer integral
T	temperature
TAP	tetraazapentacene
$T_{\text {c }}$	Curie temperature
TCNQ	tetracyanoquinodimethane
TD	time-dependent
TEMPO	2,2,6,6-tetramethylpiperidine- N -oxyl
THF	tetrahydrofuran
TLC	thin layer chromatography
TME	tetramethyleneethane

TMM	trimethylenemethane
Tol	tolyl
TPHA	tetraphenylhexaazaanthracene
TTF	tetrathiafulvalene
UV	ultra-violet
V	volts
vis	visible
w	weak (IR)
δ	chemical shift relative to a standard
Δ	heat (thermolysis)
ΔE_{HL}	energy difference between HOMO and LUMO
ΔE_{ST}	energy difference between the singlet and triplet states
λ_{-}	radical anion
λ_{+}	radical cation
$\lambda_{\text {max }}$	maximum wavelength
μ	mobility
Ω	Ohms

CHAPTER 1

Introduction

Sections Page
1.1 Organic Materials and Properties 22
1.1.1 Electrical Conductivity and Organic Semiconductors 24
1.1.1.1 Electrical conductivity 24
1.1.1.2 Organic semiconductors 26
1.1.2 Magnetism and Organic Magnets 28
1.1.2.1 Magnetism 28
1.1.2.2 Organic magnets 31
1.2 Electrons and Principles 32
1.3 Organic Radicals and Polyradicals 36
1.3.1 Hydrocarbon-Based Radicals 36
1.3.1.1 Triphenylmethyl radicals 36
1.3.1.2 Phenalenyl radicals 38
1.3.2 Heterocyclic Radicals based on Nitrogen 39
1.3.2.1 Aminyl radicals 39
1.3.2.2 Hydrazyl radicals 40
1.3.3 Diradicals and Polyradicals 41
1.3.3.1 Hydrocarbon diradicals as ferromagnetic coupling units 42
1.3.3.2 Diradicals containing heteroatoms 44
1.3.3.3 Aminyl diradicals 46
1.4 Zwitterionic Azaacenes 47
1.5 Pentacene and Azapentacenes 50
1.5.1 Pentacene 50
1.5.2 Azaacenes and Azapentacene 52
1.6 Target of Project 58

1.1 Organic Materials and Properties

Since the birth of electronic devices, life has become easier, and man's work more efficient. Over the last decades, the amount of electronic devices used in our daily lives has increased. People now depend on them and demand that they become faster, smaller and "smarter". To help achieve this, scientists search for and study new materials needed to develop new and improved devices that satisfy present and future needs.

The most important components in electronic devices are probably semiconductors. Owing to their advantages, semiconductor devices have replaced electron tubes in almost every application. For instance, semiconductor devices can function in hazardous environmental conditions since they are more rugged than electron tubes which are usually comprised of sealed glass or metal-ceramic enclosures. Due to their solid-state construction, semiconductors also eliminate the need for filaments or heater voltage and consequently no power input is required for operation, leading to instant, cooler and more efficient operation. The small size and the very low voltage ability operations are also advantages that semiconductor devices have. The ease to be damaged due to their sensitivity to temperature changes or inappropriate operating voltages are some of the disadvantages. Furthermore, the need for extremely high power in some applications, prohibits the entire replacement of electron tubes by semiconductor devices. These limitations however are being overcome as semiconductor technology develops. Some semiconductor devices are diodes (e.g., light emitting diodes), transistors (e.g., field effect transistors), solar cells and integrated circuits. By far, the most widely used material in such devices is silicon. ${ }^{1}$

Magnets are also widely found in devices used in our everyday life. They are used in the creation and distribution of electricity and are components in a plethora of electrical devices. ${ }^{2}$ Their market is considered to be larger than that of semiconductors. Magnets have numerous applications such as (a) magnetomechanical applications e.g., magnetic separators, (b) acoustic devices e.g., loud-speakers and microphones; (c) electrical motors and generators; (d) information and telecommunication devices e.g., fax machines and magnetic disks; and (e) magnetic shielding e.g., high voltage electrical lines. ${ }^{3}$ Electromagnets are made by a core, usually iron, and a wire coiled around it that concentrates the created magnetic field. Electromagnets, unlike permanent magnets, display magnetic properties only when electrical currents pass through them, either from a battery or another source of electricity and as such, they can be turned on and off.

Magnets and electricity have a complicated connection between them. Technically they both use the same particle: the electron. An electron moves and spins on its own axis at the same time. Whereas electricity is the result of its movement, the magnetic field is a result of its spin.

Figure 1. Different applications of magnets and semiconductors resulting by using the electrons' spins or charges.

Semiconductors use the transport of electron charge in integrated circuits for data processing, while magnets use the spins of electrons for data storage. As a consequence these basic components are used for different applications, however, a new class of devices called 'spintronic' or 'magnetoelectronic', require both properties by using conduction electrons' spins and not just their electrical charge in information circuits. A new generation of devices was born having the advantages of being smaller, more robust and having increased data processing speed, decreased electric power consumption and increased integration densities resulting in more capable and advanced electronic products. ${ }^{4}$ The merging of electronics and magnetics promises new multifunctional devices but before this can become a reality, researchers need to find new materials that combine such properties e.g. ferromagnetic semiconductors and try to get a deeper understanding and control over spin related phenomena in magnetic and semiconductor materials.

The above electronic and magnetic properties are usually properties of inorganic elements. Organic compounds typically do not have such abilities. Only since the discovery of conductivity in polyethylene has the concept of using organics in electronic applications become accepted. ${ }^{5}$ Organic systems that can easily process electron transport or organic systems with unpaired electrons, called open-shell, may have conductive and magnetic properties, respectively, giving rise to new applications. Organic
semiconductors, organic magnets and even organic spintronics are now some of the top research areas being pursued for technology advancement. In the following sections brief discussions on organic semiconductors (Section 1.1.1) and organic magnets (Section 1.1.2) will be presented.

1.1.1 Electrical Conductivity and Organic Semiconductors

Conductors (and superconductors) and insulators are the two extremes of the ability to conduct charge, since the first class covers materials that include movable electric charges, while the second one covers materials that do not respond to an electric field and completely resist the flow of electricity. Semiconductors are a class of materials with intermediate electrical conductivity.

1.1.1.1 Electrical conductivity

The ability of a material to conduct charge is measured by its electrical conductivity σ and is measured in $\Omega^{-1} \mathrm{~m}^{-1}$. Electrical conductivity σ follows Ohm's law [$V=I R$, where $V=$ Voltage drop in Volts (V), $I=$ current in Amperes (A) and $R=$ resistance in Ohms (Ω) or Siemens (S)]. This law can also be written as in the form $j=\sigma E$ where j is current density (current per unit area in $\mathrm{A} / \mathrm{m}^{2}$) and E is electric field or electrical potential gradient that comes out when the voltage drop is divided to the length of the material (L) $E=V / L$ measured in V / m.

Metals have large conductivities ($>10^{5} \Omega^{-1} \mathrm{~m}^{-1}$) that increase as temperature drops. By comparison, semiconductors have smaller conductivities and display different temperature dependence. This can be shown schematically in a spectrum of quantum excited states (Figure 2). Electrons on occupying frontier orbitals have a continuous range of energy levels in solids (band of quantum states). Quantum states of the electrons with low energy (closer to the nucleus) are full, up to a particular band called the valence band. The band immediately above the valence band is the conduction band where empty quantum states can accept electrons that can be excited from the valence band to the conduction band. The ease for this excitation depends on the energy gap between the two bands and this band gap distinguishes conductors, semiconductors and insulators. In fact, what distinguishes them is the size of the band gap between the Fermi level (or Fermi energy) and the conduction band. The Fermi energy of a substance is a result of the Pauli exclusion principle (stating that a maximum two electrons with opposite spins can be
placed in each orbital) when the temperature of the material is lowered to absolute zero where all of the electrons in the solid attempt to get into the lowest available energy level. At absolute zero no electrons have enough energy to occupy any energy levels above the Fermi level. As the temperature of the material is raised above absolute zero the probability of electrons with energy greater than the Fermi energy increases and these electrons take part in electric conduction.

For metals, the Fermi energy level actually lies within the conduction band and it takes relatively little energy to bump these electrons into the band gap and that is why metals are typically good conductors. In case of semiconductors, the Fermi energy level lies between the valence band and conduction band, and more energy is required to excite the electrons sufficiently. For insulators, the Fermi level is considerably below the conduction band significantly reducing the movement of charges. In metals the highest energy occupied state and the least energy empty state do not differ much in energy, whereas in semiconductors or insulators they are separated by a significant energy gap. In semiconductors the energy gap is typically $0.5-3.0 \mathrm{eV}$ while in insulators the gap is $>3 \mathrm{eV}$. ${ }^{6}$

Figure 2. Schematic energy spectrum for metals, semiconductors and insulators. The valence and conduction bands are with filled and empty circles representing full and empty quantum states, respectively.

In both semiconductors and metals, the states that correspond to the frontier orbitals are mobile and thus electrons are permitted to travel from atom to atom while in insulators they are fairly immobile. Through covalent bonds, an electron moves by hopping to a neighboring bond. The Pauli exclusion principle requires the electron to be lifted into the higher antibonding state of that bond. For a net current to flow, more states for one direction than for the other direction must be occupied. Electrons excited to the conduction band also leave behind electron holes (unoccupied states in the valence band). Both the conduction band electrons and the valence band holes contribute to electrical conductivity. The holes themselves do not actually move, but a neighboring electron can move to fill the hole, leaving a hole at the place it had just come from, and in this way the holes appear to move, behaving as if they were actual positively charged particles.

Semiconductors are relatively poor conductors until they are "doped". The doping process inserts a small number of additional atoms into the crystal lattice of the original semiconductor. This in turn, provides additional levels, narrowing the band gap between the original valence and conduction bands. In this way its conductivity is greatly increased. This is usually achieved by adding elements like arsenic, phosphorous or boron. By doping with atoms that have more valence electrons than the host atoms in the existing semiconductor, then there are extra valence electrons between the two bands (n type semiconductor) while by doping with atoms with less valence electrons then there are more "holes" (p-type semiconductor) facilitating the conduction.

1.1.1.2 Organic semiconductors

Most organic solids are insulators for two main reasons: 1) There is a significant energy difference between the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) and 2) the organic solids are usually molecular as they do not possess a system of covalent bonds extending over macroscopic distances. This results in small interactions between HOMOs of adjacent molecules forming a very narrow valence band and similarly a narrow conduction band arising from the small interactions between the LUMOs. Thus the band gap may be estimated as the HOMO-LUMO gap in a free molecule. To increase conductivity and access semiconductive properties in such systems, the HOMO-LUMO gap needs to be reduced. Extensive π-bonding or adding heteroatoms with lone pair electrons can give this result.

It was predicted in 1911 that certain organic solids may exhibit an electrical conductivity comparable to that of metals. This was confirmed in 1954 when Akamatu et al., ${ }^{7}$ reported a room temperature conductivity of around $10^{-1} \mathrm{~S} / \mathrm{cm}$ for a bromine/perylene complex. Perylene itself is an insulator with a room temperature conductivity of around $10^{-15}-10^{-17} \mathrm{~S} / \mathrm{cm}$. In this complex bromine acts as a donor/acceptor to give perylene an electron/hole enabling the flow of charge. Since then, considerable work has been carried out to prepare new conducting materials investigating properties of both donor and acceptor molecules. A major step was in 1972 when the acceptor molecule tetracyanoquinodimethane (TCNQ) and the donor molecule tetrathiafulvalene (TTF) were combined to form the charge transfer salt (TTF)(TCNQ) which was the first organic solid to show metallic conductivity over an extended temperature range. ${ }^{8}$ Shortly afterwards, in 1977, Heeger, MacDiarmid and Shirakawa discovered metallic conductivity in iodine doped polyacetylene, the first conducting plastic. ${ }^{5}$ For this discovery they received the Nobel Prize for Chemistry in 2000.

TTF

TCNQ

Why organic semiconductors? Organic semiconductors cannot compete with copper or silicon made devices on power but do display exciting properties, which enable new applications, that are not available to traditional semiconductors. They have the ability to be made in thin and flexible sheets, and thus can be used for displays on clothes or paper. Organic semiconductors are lighter, more flexible, and biodegradable compared to traditional semiconductors, furthermore, owing to advances in organic synthesis they can be manipulated and fine-tuned to provide tailored properties that fit specific applications at relatively low cost. Applications. Organic semiconductors have applications as optoelectronic materials and especially as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic solar cells (OSCs). OLEDs are based on electroluminescence instead of photoemission as in conventional LEDs and made possible the development of inexpensive and lightweight flat-panel displays. OFETs have been of great interest for applications, such as display drivers, identification tags and smart cards. Beside their advantages of low cost, flexibility and light weight,
they can be processed at low temperatures compatible with plastic substrates, whereas higher temperatures are required for alternative Si-based FETs. ${ }^{9-12}$ OFETs have led to a revolution in developing fast and inexpensive integrated circuits on plastic substrates based on organic semiconductor elements. When combined with the advantage of solution processability, organic materials allow for the use of a variety of printing techniques, such as inkjet printing and stamping, to fabricate large area devices at low cost. OSCs have reached quantum efficiencies that make them attractive for delivering cheap solar power. ${ }^{13,14}$ Studies on OSCs have attracted particular attention due to the application of them in renewable green energy strategy.

1.1.2 Magnetism and Organic Magnets

Magnetism was first discovered by ancient Greeks when they noticed certain rocks called lodestones were naturally magnetized, and this was later exploited by Chinese workers who invented the compass. ${ }^{15}$ The name comes from Magnesia, a district in Greece. Magnets can be "hard" (permanent) or "soft" (non-permanent). Permanent magnets produce an external magnetic field on other magnets or on an electric current, while nonpermanent magnets guide or deflect magnetic fields and have large magnetic moments in response to small electric currents.

1.1.2.1 Magnetism

A typical magnetic material is attracted or repulsed to another magnet. This behavior arises from the intrinsic spin of an electron which, because it is negatively charged, has a magnetic dipole moment in the opposite direction to the moment of the spin. If a molecule has at least one orbital with an unpaired electron then there can be a net spin on a material composed of such molecules. Magnets are materials with ordered spins (parallel spins). If in the way that the molecules are ordered, the spins of the unpaired electrons are cancelled (opposite spins resulting from antiparallel alignment), then no magnetic behavior can be observed. Magnetism is usually not a molecular property but a macroscopic one and the total sum of all the individual spin magnetic moments must not be equal to zero. The vector sum when normalized to unit volume of the material is called magnetization $(M) .{ }^{16,17}$

There are four main types of magnetic behavior: paramagnetism, ferromagnetism, ferrimagnetism and antiferromagnetism depending on the alignment of the spins in the solid state (Figure 3). ${ }^{3,16,17}$

Figure 3. Spin alignment representations for the four main types of magnetism.

Paramagnetism: This is the most common behavior of organic molecules with one unpaired electron. In the solid state, independent uncoupled spins are separated in such a way that their spin coupling energy is much smaller than the thermal energy, leading to no interaction among them (no coupling). The distribution of the spins is random and there is a weak form of magnetism. Spins in a paramagnetic material are aligned with the application of an external magnetic field. If an external magnetic field of intensity H is applied and the field within the substance is B, such that $B>H$, the material is paramagnetic. With the removal of the external field on a paramagnetic material, the alignment of the spins breaks again.

Ferromagnetism: The most classic ferromagnet is iron. When the distances between neighboring molecules are such that the coupling energy is larger than the thermal energy, then there is alignment of the spins. In ferromagnetism, this alignment is parallel resulting in a net magnetic moment. In ferromagnets a percentage of the internal field B remains in the absence of an external magnetic field even after several years.

Ferrimagnetism: It is a kind of ferromagnetism and comes out from antiferromagnetism since the neighboring spins again are aligned antiparallel. The difference here is that spins have different magnetic moments and thus they do not cancel each other. As a result macroscopically there is a net moment and the material acts like a ferromagnet.

Antiferromagnetism: In this case, the coupling energy is again larger than the thermal energy but the magnetic spins are aligned antiparallel and such spins cancel each other. Thus there is no net magnetic moment. Since the antiparallel alignment of the spins is a process analogous to bond formation, this behavior is the most favorable.

Ferro-, and ferrimagnets are actually composed of small domains where the magnetic moments are aligned (Figure 4). The related direction of the magnetic moment in adjacent domains is not parallel. This phenomenon lowers the total energy of the magnet because if all the spins are parallel then there is a large energy stored in the magnetic field, however, in the domains the energy stored is small due to the fact that the magnetic moments point in various directions. By placing the material in a strong external magnetic field or by passing electrical current through it, some or all the magnetic domains become aligned. The more domains aligned, the stronger the magnetic field in the material.

Figure 4. Spin alignment representations for domains within a ferromagnet.

All these types of magnets involve two-dimensional magnetic behavior. To achieve long range magnetic order and bulk ferromagnetic behavior, three dimensional interactions are typically necessary. Depending on the exchange interaction J, which is the type and degree of coupling between neighboring spins, the magnetic material can be ferromagnetic $(J>0)$ or antiferromagnetic $(J<0)$. There are three main ways to describe magnetic interactions:

Ferromagnetic exchange resulting from orthogonal orbitals: This happens when there are lone electrons in orthogonal orbitals which are located in the same spatial region. The antibonding space electron wavefunction is lower in energy than the bonding space electron wavefunction and the high spin state is stabilized. Examples are carbene (methylene) ${ }^{18}$ and trimethylmethane. ${ }^{19}$

Interactions between spin containing species in different regions: Here the spins that interact are in different regions and the type of interaction (ferromagnetic or antiferromagnetic) is calculated by the total wavefunction of the system. If the spins are in the same molecule the unpaired electron in the SOMO (Singly Occupied Molecular Orbital) polarizes the paired electron spins in an orthogonal bond connecting it to another
moiety containing an unpaired electron (spin polarization). If the spins are in different molecules the type of interaction is calculated by configuration interactions (CI) as the two molecules that contain spins approach each other.

Dipole-dipole exchange interactions: These interactions are performed between spins through space, and are independent of the orbitals overlap. These interactions are very weak and are created due to the magnetic fields from each molecule that contains spin. They can lead to the alignment of spins (ferromagnetic or antiferromagnetic) at very low temperatures ($<1 \mathrm{~K}$). As such, they are important only at very low temperatures and can cooperate with the other two types of magnetic interactions leading to spin alignment.

Dependence of magnetism: The manner in which spins couple (ferromagnetic vs antiferromagnetic) can be ascertained in a number of ways, with two of the more common being variable temperature ESR experiments and magnetic susceptibility experiments. Magnets are characterized by their response to the approach to another magnet. If the spins of a magnet do not interact, a net magnetic moment M, is induced in the magnet when exposed to an applied magnetic field, H. In this case M is proportional to H since M $=\chi H$, where χ, the proportionality constant, is defined as the molar magnetic susceptibility. The constant χ depends on temperature and is characterized by the Curie expression: $\chi=C / T$, where C is the Curie constant.

1.1.2.2 Organic magnets

Unpaired electrons are needed to have a potential magnet. In molecular organic magnets the unpaired electron is delocalized over the various atoms that constitute the molecule while in traditional inorganic magnets, the unpaired electron spin is largely confined to the metal ion center. Obtaining magnetic materials that are totally composed of organic molecules is challenging owing to the difficulty of having unpaired and aligned spins in organic molecules. Organic molecules with unpaired electrons are called radicals and are open-shell molecules since they have unfilled shells due to the unpaired electrons.

The control of the radical stability and reactivity in a single molecule and the prevention of cancellation of the spin in the three dimensions of the crystal structure are not readily achieved. As such, there are only a few known examples of organic radicals that display bulk ferromagnetism such as some nitroxy nitronyl ${ }^{20}$ e.g., p-nitrophenylnitronyl nitroxide (p-NPNN) $1\left(T_{\mathrm{c}}=0.65 \mathrm{~K}\right)^{21,22}$ and some verdazyl radicals. ${ }^{20}$ However, these radicals only show ferromagnetism at temperatures below 1 K which is too low to
be useful. ${ }^{23}$ The fullerene-based charge transfer-salt [tetrakis(dimethylamino)ethylene] C_{60} exhibits ferromagnetism at higher temperature ($T_{\mathrm{c}}=16.1 \mathrm{~K}$) but still is too low. ${ }^{24}$
$2,5,8$-Tri-tert-butyl-phenalenyl $\mathbf{2},{ }^{25}$ perchloro-2,5,8-triazaphenalenyl radical $\mathbf{3}^{26}$ and 1-(4-chlorophenyl)-3-phenyl-1,4-dihydro-1,2,4-benzotriazinyl 4^{27} are some examples of organic radicals that exhibit antiferromagnetic behavior.

1

2

3

4

Why organic magnets? While organic magnets do not possess the magnetic properties of their inorganic counterparts, they have several important advantages, making them worthy of study. These advantages include the high strength, mechanical flexibility, solubility, low temperature processability, low density, biocompatibility, transparency, high magnetizations and magnetic susceptibilities. Due to their structure, they may also have additional semiconducting properties, while their properties may be easily modulated by means of organic chemistry. ${ }^{3}$

Applications. A variety of applications of organic radicals were reported. For instance, polymers with magnetic properties like polythiophene with a nitroxide radical attached on each monomeric unit and polyethylene with verdazyl radical attached to each monomer were considered as magnetic inks. ${ }^{28}$ Nitroxyl, verdazyl, hydrazinyl and aminotriazinyl radicals have found applications in batteries. ${ }^{29}$ Hydrazinyls, verdazyls, pyridinyls, aryloxides and ionic radicals have been applied in photosensitive devices. ${ }^{30}$ Verdazyl radical was also applied in electrochromic devices, ${ }^{31}$ while nitroxide and benzodithiazolyl radicals found applications in spin probes. ${ }^{32}$

1.2 Electrons and Principles

To understand how electrons can provide magnetic or conductive properties in an organic system we need to understand the principles that describe their behavior. The energy of an electron is quantized, that is, limited to certain values and allowed energy states
(orbitals). Orbitals are descriptions of the wave properties of electrons in atoms and molecules and show the region of space in which the electrons can be found. Using quantum mechanics (the theory that describes electrons behavior), Erwin Schrödinger expressed the picture of an orbital to be simplistic and inaccurate by showing regions of electron density with the location and route of the electron described as probabilities. Electron density is a measure of the probability of finding an electron in an orbital. Quantum mechanics describe orbitals by the mathematical wavefunction ψ. The sign of the wavefunction for an electron can be positive (+) for wave peak or negative (-) for a wave trough. The wavefunction is zero at a node, indicating zero probability for finding an electron.

Electrons in orbitals are characterized by quantum numbers which, for atoms, are n, l, m, and s. The principal quantum number $n(n=1,2,3, \ldots)$ describes the energy and size of an orbital (orbitals of higher n have higher energy); the angular momentum quantum number l (depends on n and takes any integer value from 0 to $n-1$) describes the shape of an orbital [e.g., $l=0$ (s orbitals) are spheres]; the magnetic quantum number m (depends on l and takes values between -1 and +1) describes the orientation of an orbital and the spin quantum number s assumes a value of $+1 / 2$ or $-1 / 2$. A number of principles are known that define the way electrons are placed in orbitals:

Heisenberg's uncertainty principle: the exact position and velocity of an electron cannot be specified but only the probability that it occupies a certain region of space can be specified.

Pauli's exclusion principle: a maximum of two electrons may be placed in any one atomic orbital, and these electrons must have opposite spins that are generally indicated by showing the electrons as arrows pointing up (\uparrow) or down (\downarrow).

Hund's rule: when electrons are distributed among identical orbitals of equal energy, single electrons are placed into separate orbitals before the orbitals are filled, and the spins of these unpaired electrons are the same.

Aufbau principle: to determine the electronic configuration of an atom, electrons are placed one by one into orbitals of the lowest possible energy in a manner consistent with the Pauli exclusion principle and Hund's rules and continues through the higherenergy shells, until the appropriate number of orbitals is filled for each atom. "Aufbau" means "building up" in German.

Chemical bonding can be an energetically favorable process. When atoms combine into a molecule, the electrons of each atom are no longer localized on individual atoms but belong and can be delocalized to the entire molecule. The combination of n atomic orbitals gives n molecular orbitals. Bonding molecular orbitals are formed when individual atomic orbitals constructively overlap, i.e. they arise through in phase interactions. The energy of an electron in the bonding molecular orbital is lower than that of an electron in an atomic orbital. When out of phase interactions take place between atomic orbitals, then antibonding molecular orbitals are formed and the energy of electrons in these are higher than in the atomic orbitals.

Molecular orbitals have different energies and are arranged in order of increasing energy, then populated with electrons according to the Pauli and Aufbau principles and Hund's rules. The electrons occupy the bonding molecular orbitals before occupying the antibonding orbitals. The most common bonding situations occur when bonding molecular orbitals contain electron pairs and antibonding molecular orbitals are empty. The above rules are valid both for atomic orbitals in an element e.g., carbon (Figure 5a) and molecular orbitals in a molecule e.g., ethyne (Figure 5b).

Figure 5. Filling a) the atomic orbitals of carbon atom and b) the molecular orbitals in ethyne.

The "octet rule" is a bonding theory according to which each atom will share, gain, or lose electrons in order to fill outer electron shells with eight electrons. There are many exceptions to the octet rule and can be separated in three classes: i) electron deficient molecules where some elements in these molecules have not enough electrons to form an octet e.g., boron; ii) expanded octets where elements in periods greater than period 3 on the periodic table are included and due to d orbitals can expand their valence
shells to accommodate more than eight electrons e.g., sulfur; and iii) free radicals where the valence electrons contain an odd number of electrons in the valence shell.

While the first two classes of exceptions can be considered stable due to the pairing of electrons despite having less or more than eight electrons in the outer shell, the third class where unpaired electrons exist is a different story. The existence of unpaired electrons can change the chemistry and the properties of the system since due to violation of the octet rule upon pairing of electrons that stabilizes each atom, unpaired electrons are highly reactive and try to form bonds. Molecular oxygen for example is a molecule with two unpaired parallel electrons in its outer shell placed in two degenerate orbitals (orbitals of equal energy) (Figure 6). It can be often represented as $\cdot \mathrm{O}-\mathrm{O} \cdot$ and is considered as a stable diradical (triplet state, see Section 1.3.3). Due to the unpaired electrons though, molecular oxygen does not react directly with many other systems that have only pairs of electrons in their electronic configuration (singlet state) but easily reacts with other radicals with an unpaired electron (doublet state) and thus is susceptible to radical formation giving reactive oxygen species (ROS•) like the superoxide anion $\left(\mathrm{O}_{2}{ }^{\bullet}\right)$, hydroperoxide radical $\left(\mathrm{HO}_{2} \cdot\right)$ and hydroxyl radical $(\cdot \mathrm{OH})$.

Figure 6. Filling up the molecular orbitals (MOs) in oxygen molecule $\left(\mathrm{O}_{2}\right)$.

Organic radicals may afford organic high spin systems in the solid state and therefore gain magnetic behavior as discussed in the previous section.

1.3 Organic Radicals and Polyradicals

According to the Pauli's exclusion principle, Hund's rule and the octet rule (Section 1.2) it is rare to find unpaired electrons in an organic molecule. There are, however, exceptions where unpaired electrons can exist in such molecules which are called radicals. Molecular orbitals that host only one electron are known as Singly Occupied Molecular Orbitals (SOMOs). If a molecule has many unpaired electrons that occupy an analogous number of SOMOs, then the molecule is a polyradical. Radicals based on simple valency considerations have less bonds than expected and thus are highly reactive. In general, due to the presence of unpaired electrons organic radicals can easily take part in reactions, such as hydrogen abstraction, dimerization, oxidation, disproportionation or recombination, and as a result they can easily achieve a closed-shell character. In many cases, steric hindrance built around the atoms hosting the greatest spin density can prevent undesireable reactions. ${ }^{33-37}$ As such, the synthesis of stable radicals and polyradicals is a challenging task in organic synthesis.

1.3.1 Hydrocarbon-Based Radicals

Important examples of hydrocarbon based radicals are the triphenylmethyl and phenalenyl radicals. They have been extensively studied and many derivatives and analogs are known.

1.3.1.1 Triphenylmethyl radicals

Triphenylmethyl radical 5, synthesized by Gomberg, marked the beginning of organic free radical chemistry. ${ }^{38}$ Under anaerobic conditions, radical 5 is relatively stable due to the steric protection of the central carbon, where the bulk of the radical spin density exists. The three phenyl groups adopt a propeller conformation, with the rings twisted by $\sim 30^{\circ}$ with respect to the plane containing the central carbon and the three ipso phenyl carbons. ${ }^{39-41}$ Triphenylmethyl 5 and its derivatives are best described as persistent rather than stable radicals since in dilute and deoxygenated solution, radical 5 cannot be isolated and is in equilibrium with its σ dimer 6 (Scheme 1). ${ }^{42}$

Scheme 1. Triphenylmethyl radical 5 in equilibrium with its σ dimer 6 .

Substitution on the phenyl rings decreased the tendency for dimerization. Para substitution on all three phenyl rings like system $7^{40,41,43-46}$ or even better by chloro-substitution as in systems 8-10 gave them excellent chemical stability. ${ }^{47-52}$ Radical 10 is the prototype of what has become a large number of polychlorinated triphenylmethyl (PTM) radicals that display outstanding stability. ${ }^{53}$ Work on these chlorinated radicals showed that not all the chlorines are necessary for this stability but the six chlorines in the ortho positions are. This is demonstrated by the relative stabilities of perchlorinated tris(thienyl)methyl radicals $\mathbf{1 1}$ and $\mathbf{1 2},{ }^{54}$ since the 2-thienyl derivative 11 which has only three ortho-chlorine groups is not particularly persistent and decomposes within minutes whereas compound 12, with six ortho-chlorines, is comparably stable to $\mathbf{1 0}$. Heteroaromatic analogs of $\mathbf{5}$ in which one or more of the phenyl groups is replaced by, e.g., pyridyl, ${ }^{55}$ thienyl, ${ }^{56,57}$ or benzotriazoly1 ${ }^{58,59}$ do not show dramatically different stability from the parent compound.

11

12

13

14

Ortho substituents other than chlorine, can also reduce the reactivity of triarylmethyls like in tris(2,6-dimethoxyphenyl)methyl radical 13. ${ }^{60}$ Its fused analog 14,
the sesquixanthydryl radical, is not monomeric. ${ }^{61}$ Compound $\mathbf{1 4}$ gained resonance delocalization due to its planar orientation of the phenyl groups but lost the steric barrier to radical dimerization giving a σ dimer of unknown structure since its poor solubility made its characterization difficult.

1.3.1.2 Phenalenyl radicals

The phenalenyl radical 15 (Scheme 2) was prepared by Reid ${ }^{62}$ and independently by Calvin ${ }^{63}$ after phenalene oxidation. A number of simple derivatives have been generated ${ }^{64,65}$ and the older literature has been reviewed. ${ }^{66}$ The spin density in radical $\mathbf{1 5}$ is predominantly on the six peri carbon atoms. The spin density at the three peripheral (β) carbons is much smaller and it arises from spin polarization effects. It also suggests no spin density on the central carbon. ${ }^{67}$ Such a resonance structure would consist of a methyl type radical inside an antiaromatic periphery and thus would not be appropriate. ${ }^{37}$

Scheme 2. Resonance structures and spin density distribution of phenalenyl 15.

Most simple phenalenyls weakly and reversibly dimerize via σ bond formation. ${ }^{65,66,68}$ Placement of t-butyl groups at the three β carbons effectively shuts down the σ dimerization pathway, resulting in an alternative dimeric structure, that of a π dimer where the two radicals are stacked face-to-face and antiparallel to minimize steric interactions between R groups. The first phenalenyl π dimer structure was reported by Nakasuji ${ }^{25,69}$ and has been subsequently studied in some detail by Kochi. ${ }^{68,70-72}$

Other substituents on the phenalenyl periphery such as chlorine in $\mathbf{1 6},{ }^{73}$ sulfur in $17^{74,75}$ or oxygen in $18^{67,76,77}$ render stable phenalenyl radicals. Nakasuji has prepared a series of 'oxophenalenoxyl' radicals like $\mathbf{1 8}$ which can be considered hybrids of phenalenyls and phenoxyl radicals. ${ }^{78-80}$ These radicals appear to be qualitatively somewhat less stable than the phenalenyl radicals.

The phenalenyl skeleton has been subjected to heteroatom perturbation as well. Examples are 2,5,8-tri-(t-butyl)-1,3-diazaphenalenyl 19 which was prepared by Nakasuji and decomposed significantly slower in air than its hydrocarbon analog, ${ }^{81}$ and the triaza-version of 16, the triazaphenalenyl $\mathbf{3}$ which is stable and monomeric. ${ }^{26}$

1.3.2 Heterocyclic Radicals Based on Nitrogen

Many of the most stable organic radicals have a substantial portion of spin density on nitrogen. Examples are the aminyl and hydrazyl radicals.

1.3.2.1 Aminyl radicals

Most simple aminyl radicals $\left[\mathrm{R}_{2} \mathrm{~N} \bullet\right]$ are short-lived species that rapidly dimerize to hydrazines or undergoing other radical reaction pathways. ${ }^{82,83}$ To be isolated, steric shielding is required e.g., the perchlorodiphenylaminyl radical $\left[\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2} \mathrm{~N} \bullet\right] \mathbf{2 0} .{ }^{84}$

Aminyl radicals incorporated into a cyclic, p-conjugated framework exhibit enhanced stability. There are several examples of isolable phenazinyl radicals 21. ${ }^{85-88}$ In all of these cases $\mathrm{R} \neq \mathrm{H}$ otherwise they give the corresponding closed shell phenazine. The aromatic groups also have electron withdrawing ($\mathrm{C} \equiv \mathrm{N}, \mathrm{NO}_{2}$) and/or bulky substituents. Most stable phenazinyls are predominantly monomeric in solution at room temperature but associate upon cooling, most likely via π dimer formation. Crystal structures of several derivatives show the radicals forming π dimers or π-stacked structures in the solid state. The related phenoxazinyls and phenothiazinyls (obtained by replacement of the NR group by O or S , respectively) are generally quite short-lived species except for some derivatives that are stabilized due to steric factors. ${ }^{82,89}$

20

21

1.3.2.2 Hydrazyl radicals

Acyclic hydrazyl radicals $\left[\mathrm{R}_{2} \mathrm{NNR} \cdot\right]$ are in general only persistent and often not very long-lived, in solution. The most stable example is N, N-diphenyl- N '-picrylhydrazyl (DPPH) 22 which has been known for decades and is used as an EPR reference compound. ${ }^{82}$ A number of stable radical families contain the hydrazyl moiety built into a cyclic and/or delocalized skeleton. For example, radicals $\mathbf{2 3}$ are generally stable enough to be isolated (R^{\prime} substituents are aromatic residues and $\mathrm{R} \neq \mathrm{H}$). A few derivatives have been crystallographically characterized and all were monomeric in the solid state. ${ }^{90,91}$ The spin distribution in radicals $\mathbf{2 3}$ suggests that these are still mainly hydrazyl-like radicals, but with non-negligible spin density also on the imine nitrogen. Similarly, the benzotriazinyl radicals $\mathbf{2 6}$ have substantial spin density on all three nitrogen atoms as well as appreciable spin on the annelated benzene ring. ${ }^{92,93}$

22

23

24

25

26

Other examples of resonance-delocalized hydrazyls are the tetrazolinyl radicals 24^{94-96} where their stability is improved by introducing electron withdrawing substituents on the nitrogen atoms ${ }^{96}$ and verdazyl radicals of general structure $\mathbf{2 5}$. Verdazyls are relatively stable and were discovered accidentally in 1963 by Kuhn and Trischmann. ${ }^{97,98}$ Many derivatives with various aromatic or non aromatic substituents have been prepared. ${ }^{92,97-101}$

This spin delocalization upon nitrogens helps the radical stabilization. Such a stability is also achieved by other heteroatom radicals as well such as radicals containing N along with O, S, Se or P. For instance nitroxides $\left[\mathrm{R}_{2} \mathrm{NO} \cdot\right]$ are the most well-known class of stable radicals with respect to air, water, dimerization and other radical-based reactions. They have substantial spin density on both N and O since they can be represented by two resonance structures. Similar resonance structures can be observed in other heteroatom radicals that contain nitrogen for instance in thioaminyl radicals (Scheme 3).

Thioaminyl radicals

Nitroxide radicals
Scheme 3. Resonance structures of nitroxide and thioaminyl radicals.

Particularly stable are nitroxides with two quaternary carbon-based substituents like 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO) 27 as well as "imino nitroxides" 28 or nitronyl nitroxides like p-nitrophenyl nitronyl nitroxide (p-NPNN) 1. ${ }^{20,22,102-104}$ The latter are resonance-delocalized nitroxides and they can be considered as the most stable examples of nitroxides. They were first reported by Ullmann 40 years ago. ${ }^{22}$

Other monomeric examples of heteroatom nitrogen containing radicals are some 1,3,2- and 1,2,3-dithiazolyl radicals like $29(\mathrm{X}=\mathrm{CH}$ or N$){ }^{105}$ and 30, respectively. ${ }^{106}$ The "dithiazolodithiazolyl" radical $31\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}\right.$ and $\left.\mathrm{R} "=\mathrm{H}, \mathrm{Me}, \mathrm{Cl}, \mathrm{Ph}\right)$ are other examples of stable resonance-delocalized systems. ${ }^{107-110}$

1.3.3 Diradicals and Polyradicals

To achieve high spin in the solid state, it is better to have polyradicals with their spin already aligned in parallel rather than by using monomeric radicals (more spins per unit volume, higher magnetization). The solid state packing can always cancel or enhance the high spin character, but before tackling this problem, it is good to first achieve high spin character in a single molecule as in a diradical or a polyradical.

This can be achieved in coordination chemistry where polynuclear metal complexes containing several transition-metal ions where the spins can be localized, can exhibit magnetic properties. These systems are called single-molecule magnets (SMMs) and they were first discovered in 1993 when a Mn complex $\left[\mathrm{Mn}_{12} \mathrm{O}_{12}(\mathrm{OAc}) \cdot 16\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{AcOH}$ was synthesized having a large spin ground state. ${ }^{111-113}$ SMM have several advantages over traditional magnets like solubility,
crystallizability and stability due to the shell of the organic groups that protect the magnetic cores. ${ }^{114}$ High spin purely organic materials, however, remain big challenges.

The simplest way to describe the pair of odd electrons in a diradical is to assign each one to a localized orbital e.g., Φ_{A} and Φ_{B}, respectively. These orbitals can interact through a weak one-electron overlap integral (S_{AB}), or two-electron exchange integral (K_{AB}). If the overlap integral S becomes too large (bond formation) or if the energy difference between Φ_{A} and Φ_{B} is too large (electrons are localized as a pair in the lower orbital, Hund's rule), then the diradical character is lost. As long as these interactions are weak, the diradical character remains, but we can still have either a singlet or a triplet state. Both states describe the diradical but they differ in the manner in which the electron spins couple. For a pair of electrons, their total spin (S) can be either $S=1$ ("parallel spins") or $S=0$ ("antiparallel spins") and in terms of spin multiplicity, $(2 S+1$,) these spin values correspond to triplet and singlet, respectively. The singlet state, however, may be either a single configuration with the same spatial occupation or a mixture of configurations. ${ }^{115}$ Singlet diradicals for instance are open-shell systems characterized by two unpaired electrons occupying a different part of space with a small sharing region. The triplet state is the desired multiplicity state regarding developing high spin systems with potential magnetic behavior where spins are parallel (Figure 7). The energy difference between the singlet and triplet states $\left(\Delta E_{\mathrm{ST}}\right)$ measures the strength of the spin coupling. Spin-orbit coupling effects are neglected. $\Delta E_{\mathrm{ST}}=E_{\mathrm{S}}-E_{\mathrm{T}}$ and since energies are negative, a positive ΔE_{ST} results when triplet is lower in energy and thus the ground state is triplet and a negative ΔE_{ST} results when the ground state is singlet.

Figure 7. Spin alignment in singlet and triplet state.

1.3.3.1 Hydrocarbon diradicals as ferromagnetic coupling units

A few organic moieties have triplet ground states and many molecules have been designed based on them. Two of these moieties are trimethylenemethane (TMM), first 42
detected by Dowed in $1966,{ }^{19,116-118}$ and m-xylylene. ${ }^{119-121}$ Their ΔE_{ST} was $c a$. $+15 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{TMM}^{19,116,120,122-124}$ and $+9.6 \mathrm{kcal} / \mathrm{mol}$ for xylylene ${ }^{121,125,126}$ with the triplet state lying below singlet as denoted from the positive values. These motifs are used as ferromagnetic coupling units in an effort to develop high spin organic molecules. The origin of the triplet state preference on these non-Kekulé systems ${ }^{127}$ (fully conjugated but at least two atoms are not π-bonded) can be expressed via molecular orbital or valence bond theory. ${ }^{128}$

TMM

m-xylylene

Figure 8. TMM and m-xylylene diradicals. Starred and unstarred carbons are shown.

In 1950 Longuet-Higgins proved that, in a non-Kekulé hydrocarbon that contains no $4 n$-membered rings, the number of atoms that cannot be assigned to π bonds is equal both to the number of a nonbonding molecular orbitals (NBMOs) and to the number of electrons that must be accommodated in them. ${ }^{127}$ Thus, each of TMM and m-xylylene, has two π NBMOs, which contain a total of two electrons as a diradical. On the basis of Hund's rule ${ }^{129}$ Longuet-Higgins predicted that the ground state of a non-Kekulé hydrocarbon with n electrons in $\mathrm{n} \pi$ NBMOs would have a spin quantum number of $S=\mathrm{n} / 2^{127}$ and thus each of these diradicals should have a triplet ground state $(S=1)$, in which the two nonbonding electrons occupy different NBMOs and have parallel spins. If after these assumptions, such a molecule had a singlet state instead, then this is addressed as "a violation of Hund's rule in non-Kekulé hydrocarbons". ${ }^{130}$

By using valence bond approach and the */non* rule for planar π systems, again TMM and m-xylylene keep the triplet ground state. Using this rule, atoms are * or non* alternately and if $N^{*}=N$ then the π NBMOs are disjoint (have no atoms in common and are localized on two seperated subparts) and if $N^{*} \neq N$ then they are non-disjoint (have atoms in common). Disjoint NBMOs such as in tetramethyleneethane (TME) without having electron density at the same atom result in small destabilization factor by the Coulomb repulsion compared to non-disjoint type. Non-disjoint NBMOs such as TMM have electron density at the same atom and according to Hund's rule, each orbital is filled
with one electron with parallel spin, avoiding the Coulomb repulsion by filling one orbital with two electrons. Therefore, such molecules with non-disjoint NBMOs are expected to prefer a triplet ground state while in disjoint NBMOs, singlet and triplet states will have nearly equal relative stability or even reversed. Ovchinnikov derived the formula $S=\left(N^{*}-N\right) / 2^{131}$ which in case of $N^{*}=N$ predicts $S=0$ and a singlet ground state while when $N^{*}-N=2$ as in case of TMM and m-xylylene, then $S=1$ and the triplet state is favored (Figure 8). This */non* topology has been applied in many diradicals to predict their ground state preference and even studied for charged polyradicals. ${ }^{132}$

Examples of hydrocarbon diradicals having the m-xylylene coupling unit are m-quinonoid diradicals like the Schlenk hydrocarbon 32, ${ }^{133,134}$ which was the first synthesized diradical of this family and was based on triphenylmethyl radical. Diradical 32 could be easily oligomerized in ambient temperature and the ESR spectrum and Curie studies of its oligomerized sample suggest that a minor species gave a triplet ground state. ${ }^{135,136}$ Steric protection was required then in para positions to the triarylmethyl sites like diradicals $\mathbf{3 3}$ and $\mathbf{3 4}$ which show triplet ESR spectra.

1.3.3.2 Diradicals containing heteroatoms

Many stable diradicals contain heteroatoms by having heteroatom-containing spin sites attached to a strong ferromagnetic coupling unit like TMM and m-xylylene. An example is the nitroxyl diradical $\mathbf{3 5}^{137}$ having m-xylylene as a coupling unit and stabilized in the triplet state. Unlike system 35, its alkyl substituted analogs $\mathbf{3 6}^{138}$ and $\mathbf{3 7}{ }^{139}$ are suggested to have the singlet ground state as an exception to the expected result. The contribution of resonance structures $\mathbf{3 9}$ and $\mathbf{4 0}$ was considered as the reason for the singlet state preference but rejected since the systems are not planar and herein X-ray did not show any shortening of the $\mathrm{N}-\mathrm{C}(\mathrm{Ph})$ or $\mathrm{O}-\mathrm{C}(\mathrm{Ph})$ bonds. The twisted radical sites with predicted torsion angles about $70-90^{0140,141}$ might cause the singlet ground state of the last two
examples due to the lower spin polarization, since the nitroxide groups are not coplanar with the phenyl ring, and the possible antiferromagnetic through-space interaction between the spins. Surprisingly the bis-trifluoromethyl derivative $\mathbf{3 8}$ after rapid cooling that leads to a singlet state was slowly converted in low temperatures to its triplet ground state. ${ }^{142}$

35

38

36

39

37

40

Another triplet ground state diradical is the nitroxide diradical $\mathbf{4 1}$ which is a derivative of diazapentacene. ${ }^{143,144}$ Diradical $\mathbf{4 1}$ is stable at room temperature and retains strong ferromagnetic coupling. It illustrates both the high spin character and the properties of the azaacene backbone (discussed in Section 1.5).

41
"Yang's biradical" 42, ${ }^{145}$ is a stable triplet diradical. The three benzenoid rings of this molecule are twisted by $\sim 34^{\circ}$ in a propeller-like arrangement, ${ }^{146}$ similar to the structures of simple triarylmethyl radicals. Nearly 50% of the total spin density lies on the three carbons directly adjacent to the central carbon. ${ }^{146}$ Thus although $\mathbf{4 2}$ is represented and often described as a phenoxyl-based diradical, resonance structure 42b, which is a more accurate representation of the spin density, suggests that Yang's biradical could alternatively be categorized as a delocalized version of TMM (Scheme 4).

Scheme 4. Resonance structures of "Yang's biradical" 42.

A series of m-xylylene and TMM-based bis(semiquinones) like 43 and 44, respectively have been synthesized by Shultz and coworkers. ${ }^{147}$ These compounds gave triplet ground states while a fluorenyl linked system $\mathbf{4 5}$ being synthesized for comparative purposes exhibits antiferromagnetic character in a singlet ground state.

43

44

45

1.3.3.3 Aminyl diradicals

To the best of our knowledge there are only a few examples of triplet aminyl diradicals: The Platz diradical $\mathbf{4 6}^{148}$ and Rajca's diradical $\mathbf{4 7}^{149,149}$ were both shown to be persistent triplets in solution at low temperatures, $-195{ }^{\circ} \mathrm{C}$ and $-140^{\circ} \mathrm{C}$, respectively in 2-MeTHF. Rajca et al., later prepared two aminyl diradicals, $\mathbf{4 8}^{150}$ and $\mathbf{4 9},{ }^{151}$ that were persistent at room temperature.

The structures above are based on the m-phenylene moiety and the nitrogen spin carriers seem to render the stable diradical character in a triplet ground state. But that was not always achieved. Similar compounds like compounds 50-55 (discussed in Section 1.4) failed to afford a triplet ground state but instead gave closed shell zwitterionic biscyanines. In the latter systems, apart from the nitrogen spin carriers, there are additional electronegative heteroatoms in the system e.g., nitrogens. This subsequently affects the electronic properties and possibly the ground multiplicity state preference. As will be discussed later, the zwitterionic character is preferred in these systems to avoid their potential antiaromaticity after a single $\pi \rightarrow \pi^{*}$ excitation.

1.4 Zwitterionic Azaacenes

Tetraphenylhexaazaanthracene (TPHA) 50, ${ }^{152}$ an analog of stable Blatter's radical 24, ${ }^{153}$ and diphenyltetraazapentacene $51(\mathrm{R}=\mathrm{Ph})^{154,155}$ exist as singlet ground states with a zwitterionic "double-barreled" biscyanine motif. Analogous biscyanine zwitterions that have since appeared in the literature are the pyridine-bridged bis-1,2,3-dithiazole $\mathbf{5 2}^{156}$ and the monocyclic 1,2,4,5-tetrasubstituted benzene 55. ${ }^{157-159}$ Furthermore, compounds $\mathbf{5 3}{ }^{160}$ and $\mathbf{5 4}{ }^{161}$ that are aza analogs of $\mathbf{5 0}$ and $\mathbf{5 1}$, respectively were also recently reported.

50

51

52

53

54

55

Koutentis ${ }^{155}$ developed a strategy for the synthesis of zwitterionic tetraazapentacenes, including 51. The preparation involved a double nucleophilic aromatic substitution of 1,5 -difluoro-2,4-dinitrobenzene $\mathbf{5 6}$ with N-substituted-1,2-benzenediamines $\mathbf{5 7}$ to give 2,4-dinitrobenzene-1,5-diamines $\mathbf{5 8}$ in good yield.

Hydrogenation of compounds 58 followed by heating in ethanol in air gave the zwitterionic tetraazapentacenes 51 (Scheme 5).

Scheme 5. Synthesis of zwitterionic tetraazapentacenes. Reagents and conditions: i) $i-\mathrm{Pr}_{2} \mathrm{EtN}$ (2 equiv.), $\mathrm{EtOH}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h}, 83-91 \%$; ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \mathrm{rt}, 3 \mathrm{~h}$; iii) air, EtOH, $80{ }^{\circ} \mathrm{C}, 77-85 \%{ }^{155}$

Their optical properties were examined, and upon attachment of long alkyl chains (instead of phenyl groups), compound 51 becomes liquid crystalline. ${ }^{162}$ The combination of optical and liquid crystalline properties makes derivatives of $\mathbf{5 1}$ potentially interesting in thin film devices. The zwitterionic structure $51(\mathrm{R}=\mathrm{Ph})$ displays an absorption maximum $\lambda_{\text {max }}$ of $744 \mathrm{~nm}(\mathrm{EtOH})$, which upon protonation is blue-shifted to 660 nm (monoprotonated) and 639 nm (diprotonated). ${ }^{154}$ Furthermore, in a correlation between solvent polarity $\mathrm{ET}(30)$ and the maximium $\pi-\pi^{*}$ absorption, compound 51 displays negative solvatochromic behavior, typical of zwitterionic compounds.

Braunstein et al., ${ }^{157}$ described this family of zwitterionic biscyanine compounds as "potentially antiaromatic" due to the fact that a single $\pi \rightarrow \pi^{*}$ excitation would restore π delocalization and antiaromaticity. To avoid this "potential antiaromaticity" and hence a triplet ground state, the molecules prefer to partition their overall electronic system into two charge conjugated π subsystems (cyanines) which are structurally connected by σ bonds but not electronically conjugated. Haas and Zilberg ${ }^{163}$ indicated that these molecules can be envisioned as the union of two odd electron radicals. These zwitterions are the result of an electron transfer from the donor to the acceptor radical subunit. This transfer will only take place if the donor and acceptor radicals have a low ionization potential and a high electron affinity, respectively.

Calculations, performed on these systems, ${ }^{152,154-159,163}$ showed that the lowest triplet states of the heterocyclic members of this family are energetically close to the singlet zwitterionic ground states. This close energetic competition can be manipulated by substitution. Many theoretical and experimental studies on m-phenylene diradicals and
also on carbenes indicated that substituents can influence their singlet-triplet energy gaps $\left(\Delta E_{\mathrm{ST}}\right)$ and hence their ground state multiplicities. ${ }^{164-169} \mathrm{~A}$ computational study on the effect of the substitution and the structural motif on the ground state multiplicity of tetraazapentacenes and related systems indicated that angular systems preferred the triplet ground state while the linear analogs are stabilized in the singlet. ${ }^{170}$

Figure 9. Linear structures prefer singlet ground state $\left(\Delta \mathrm{E}_{\mathrm{ST}}<0\right)$ and angular structures triplet state $\left(\Delta \mathrm{E}_{\mathrm{ST}}>0\right)$ according to DFT computational studies. ${ }^{170}$

The zwitterionic nature provides unique properties. Some zwitterionic compounds have exceptional optical properties like high fluorescence quantum yields and strong solvatochromic behavior. Furthermore, studies using quantum mechanical modeling on zwitterionic systems composed of $\mathrm{C}, \mathrm{H}, \mathrm{N}$ have shown strong magnetic character and thus triplet ground state. An example is the zwitterionic betaine system (Figure 10) where the pyridine moiety acts as acceptor and the imidazole moiety acts as a donor that are linked with a π bridge by alternating $\mathrm{C}=\mathrm{C}$ bonds. ${ }^{171}$ In this system the exchange interactions between electron spin are relatively strong and local and independent of the length of the bridge.

Figure 10. Zwitterionic betaine molecule with a pyridine acceptor and an imidazole donor linked by alternating $\mathrm{C}=\mathrm{C}$ bridge.

Compared to Kekulé-type nitrogen-rich acenes, non-Kekulé structures show considerable narrowing of their singlet-triplet energy separations, thereby making these types of π conjugated fused heterocycles fascinating candidates for the design of organic electronics and molecule-based magnetic substances. П Conjugation permits effective intra- and intermolecular delocalization and charge transport and thus this feature is
essential for a system to act as a semiconductor. In addition, because of the π conjugation, high-energy occupied and low-energy vacant molecular orbitals facilitate injection of holes or electrons from the source electrode into the semiconductor and the following extraction at the drain electrode. ${ }^{172}$ The polyacene backbone, which is responsible for this high π conjugation resulting in interesting electronic properties, will be further discussed in Section 1.5 with emphasis on pentacenes and azapentacenes.

1.5 Pentacene and Azapentacenes

Polyacenes are polycyclic aromatic hydrocarbons consisting of fused benzene rings (Figure 11). Due to their extended π conjugation these compounds are attractive as building blocks in the design of organic electronic materials. ${ }^{11,160,173-175}$ Large polyacenes were predicted to behave as one-dimensional organic conductors with a zero band gap. ${ }^{176,177}$ Recently, it was proposed that linear polyacenes would behave as two polyacetylene chains with a triplet ground state and a vanishing band gap. ${ }^{178}$ They have been studied widely from both theoretical and experimental scientists but the thorough understanding of electronic properties in large oligoacenes ends with pentacene since homologues higher than hexacene remain to be fully characterized. In addition, oligoacenes larger than anthracene are unstable towards oxidation as well as dimerization and are poorly soluble. ${ }^{179,180}$

Polyacene

Pentacene, $n=5$

Figure 11. Structure of polyacenes and pentacene and crystal packing of pentacene in a herringbone motif. ${ }^{181}$

1.5.1 Pentacene

Pentacene has received much attention as a semiconductor in field-effect transistors (FETs) because of its unusually high charge-carrier mobility. Pentacene's facile and reversible oxidation to its radical cation in the solid state enables its use as a holetransporting semiconductor. The observed high hole mobility is a result of its good transfer integral (t) and correct nodal overlap of the highest occupied molecular orbitals (HOMOs) of adjacent molecules, as well as a small reorganization energy of the radical
cation $\left(\lambda_{+}\right)$when going from the neutral molecule to the radical cation. ${ }^{182}$ High-quality FET devices made from thin films of pentacene typically show mobilities greater than $1.5 \mathrm{~cm}^{2} / \mathrm{Vs},{ }^{183}$ with mobilities up to $35 \mathrm{~cm}^{2} / \mathrm{Vs},{ }^{184}$ while ambipolar charge transport has been observed in pentacene thin films (although electron mobilities were very low and n-type behavior was only observed under vacuum). ${ }^{185}$ Pentacene has also been used as the p-type material in organic solar cells (with C_{60} as the n -type material), yielding power conversion efficiencies as high as $2.7 \%{ }^{186,187}$

Pentacene melts above $300{ }^{\circ} \mathrm{C}$ and sublimes at $372{ }^{\circ} \mathrm{C}$. It was first synthesized by Clar and John starting from m-xylophenone (Scheme 6). ${ }^{188-190}$ A vigorous Friedel-Crafts reaction yielded 40% of 4,6-dibenzoyl-1,3-dimethylbenzene $\mathbf{5 9}$ which was converted into dihydropentacene $\mathbf{6 0}$ in an unstated yield after heating with copper. Dehydrogenation of 60 to pentacene 61 was accomplished by boiling the dihydro derivative in nitrobenzene with phenanthraquinone or by passing over copper at 350-400 ${ }^{\circ} \mathrm{C}$. More recently, pentacene has been easily synthesized in 54% yield by reduction of pentacenequinone 62 (prepared by condensation of cyclohexane-1,4-dione with o-phthalaldehyde) using an aluminum-cyclohexanol mixture. ${ }^{191}$ Before the above short synthesis, it had been shown that pentacene could be synthesized by a three-step procedure in an overall yield of 30% starting from 1,2-dimethylenecyclohexane and benzoquinone. ${ }^{192}$

Scheme 6. Synthesis of pentacene.

Similar to its lower homologues, pentacene and its derivatives pack in a herringbone motif ${ }^{193}$ that allows for excellent $\pi-\pi$ overlap in the solid state (Figure 11),
although it can potentially adopt any of a number of polymorphs. ${ }^{194}$ This polymorphic nature complicates device studies, since band structure calculations have shown significant electronic differences between polymorphic forms. ${ }^{195}$ Other drawbacks of pentacene beside polymorphs is its environmental instability, low thermal stability and photooxidation. ${ }^{196-198}$ In addition pentacene's insolubility in organic solvents at room temperature requires costly vacuum evaporation techniques for its deposition. ${ }^{199,200}$

Due to the problems mentioned above on handling pentacene, analogs and derivatives were considered. Substituted oligoacenes have received considerable attention, ${ }^{201-205}$ while acenes incorporating heteroatoms only came into focus over the past decade. ${ }^{172,187,206}$ Nitrogen containing acenes (azaacenes) are known to be more stable than their parent hydrocarbons against photooxidation and dimerization. ${ }^{172,207}$ The stability of the aza analogs of pentacene is relevant to the breaking of the conjugation in the pentacene skeleton via entering the amino groups. ${ }^{198}$ This functionality gives different properties such as better solubility and even easier synthesis and derivatization.

1.5.2 Azaacenes and Azapentacene

Azaacenes, due to the nitrogen heteroatoms are considered as n-type semiconductors where the charge carriers are electrons, in contrast to acenes which are considered as p-type semiconductors having holes as the charge carriers. Winkler and Houk studied computationally Kekulé-type azaacenes to examine their n-type potentials. ${ }^{172}$ Tetraazatetracenes and larger analogs showed larger singlet-triplet energy separations $\left(\Delta E_{\mathrm{ST}}\right)$ than their corresponding hydrocarbons. They estimated reorganization energies, singlet-triplet energy splitting between ground state singlet and lowest triplet and singlet [$\Delta E_{(\mathrm{S} 0-\mathrm{T} 1)}$ and $\Delta E_{(\mathrm{S} 0-\mathrm{S} 1)}$, respectively], ionization energy (IE) and electron affinity (EA). The authors compared pentacene with a series of azapentacenes as in the structural models of 63-65 and concluded, to obtain good electron-transporting properties, that the proposed azapentacenes should carry at least seven nitrogen atoms in their perimeter and/or electronegative substituents such as nitriles, which allow for a graphite-like packing.

Critical parameters are the reorganization energy of the radical anion (λ_{-}) in combination with a high electron affinity. Enforcement of a suitable supramolecular arrangement of these materials should maximize the transfer integral t, as the mobility μ should be related to the electron-transfer rate $\left(K_{\mathrm{ET}}\right)$ between two molecules, a function of
the term that contains the transfer integral t and λ.. If the absolute temperature T is close to zero, K_{ET} would largely depend on the size of t. If $\lambda_{\text {_ }}$ is very small, K_{ET} and therefore μ would also only be dependent upon t, which is defined by the magnitude and phase of the overlap of the lowest unoccupied molecular orbitals (LUMOs) of neighboring, interacting molecules, as discussed by Brédas et al. ${ }^{182}$ A pentacene with at least seven nitrogen atoms reached both the minimum required levels for the electron affinity ($\mathrm{EA} \sim 3.0 \mathrm{eV}$) and reorganization energies for electron transport $\left(\lambda_{-} \sim 0.20 \mathrm{eV}\right)$ to be useful for applications in molecular electronics.

63

$\Delta E_{\text {III }}$	2.576
$\Delta E_{\text {(SO-T1),vert }}$	1.320
$\Delta E_{\text {(SO-SI),vert }}$	2.308
IE	7.340
$\mathrm{EA}_{\text {vert }}$	1.977
$\lambda_{\text {ert }}$	0.115
λ	0.151

64
2.615
1.403
2.409
7.384
2.010
0.128
0.165

65
2.320
1.276
1.383
8.439
3.164
0.356
0.203

Figure 12. Selected data $[B 3 L Y P / 6--31 \mathrm{G}(\mathrm{d})]$ in eV for systems 63-65. For comparison the analogous data for pentacene are: $\Delta E_{\mathrm{HL}}=2.211 \mathrm{eV}, \Delta E_{(\mathrm{S} 0-\mathrm{Tl}), \text { vert }}=0.994 \mathrm{eV}, \Delta E_{\text {(S0- }}$ Sl, ,vert $=1.994 \mathrm{eV}, \mathrm{IE}_{\text {vert }}=5.935 \mathrm{eV}, \mathrm{EA}_{\text {vert }}=1.056 \mathrm{eV}, \lambda_{+}=0.093 \mathrm{eV}, \lambda_{-}=0.132 \mathrm{eV} .{ }^{172}$

Hepp and Fischer ${ }^{208-211}$ gave the first report on pyrazine-containing acenes referring to the synthesis of dihydrotetraazapentacene (DHTAP) 66 by condensing 2,3-diaminophenazine hydrochloride 67 with 1,2-benzenediamine 68. Later Hinsberg ${ }^{212}$ investigated N-heterocyclic homologues such as $\mathbf{6 9}$ and DHTAP 70 that were synthesized by melting dihydroxynaphthalene $\mathbf{7 1}$ or dichloroquinoxaline $\mathbf{7 2}$ with 2,3-diaminonaphthalene 73, respectively (Scheme 7).

Scheme 7. Early synthesis of azapentacenes.

Nuckolls investigated the heteroacene 69 and several of its derivatives for organic electronics applications. ${ }^{198}$ The single-crystal structure of 69 (from benzophenone) is similar to that of pentacene, but the molecules are slipped with respect to each other, thereby avoiding the overlap of the dihydropyrazine rings in the solid state. The molecules of 69 are planar in the solid state, despite the formally antiaromatic, central dihydropyrazine ring. The heteroacene 69 (reinvestigated by Miao et al., ${ }^{213}$) forms three different polymorphs in the solid state and in thin films, of which one has a comparatively high field effect mobility $\left(0.45 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$, making it a contender with pentacene, particularly as $\mathbf{6 9}$ is stable and does not undergo oxidative degradation. The high charge-carrier mobility of $\mathbf{6 9}$ is explained by the correct packing that allows facile charge transport according to the models of Brédas et al. ${ }^{214}$

Attempts to oxidize dihydrodiazapentacene 69 and dihydrotetraazapentacene 70 by chromate to afford the diazapentacene 74 and tetraazapentacene (TAP) 75, respectively failed while it worked well with their tetracene analogs. Only in 1967 Kummer and Zimmermann ${ }^{215}$ reported azapentacenes via oxidation of $\mathbf{6 9}$ by p-chloranil, and of $\mathbf{7 0}$ by lead dioxide. The azahexacene analog of $\mathbf{6 9}$ could not be oxidized either with p-chloranil or lead dioxide indicating that might be too unstable or/and too insoluble. ${ }^{216}$

Badger and Pettit also published the synthesis of DHTAP 66 by condensing 2,3-diaminophenazine with o-benzoquinone in benzyl alcohol, or by heating 1,2-benzenediamine or its hydrochloride salt in naphthalene under a stream of $\mathrm{O}_{2}{ }^{217}$ They also demonstrated that the oxidation of homofluorindine $\mathbf{6 6}$ with acidic dichromate led to the quinone 76 and not to the tetraazapentacene 77 (Scheme 8).

Scheme 8. Oxidation of DHTAP 66 leads to quinone 76.

Siri et al., ${ }^{216}$ reported the synthesis of a series of substituted tetraazapentacenes 66 using an alternative route involving condensation of 1,2-benzenediamines 68 with 2,5-dihydroxy- p-benzoquinone $\mathbf{7 8}$ in alcohol or water to afford high yields of substituted 2,3-dihydroxyphenazines 79 that are then reacted individually with excesses of substituted 1,2-benzenediamines in the presence of glacial acetic acid (Scheme 9).

Scheme 9. Synthesis of substituted TAPs 66 by Siri et al. ${ }^{216}$

Studying their electrochemical properties, the DHTAPs exhibit one poorly reversible oxidative step and multi reductive steps which indicate chemical evolution of the oxidized and reduced species. ${ }^{218}$ Compared with the unsubstituted parent system $\mathbf{6 6}$, molecules 66b and 66c are more difficult to oxidize due to the presence of
electron-withdrawing groups (EWGs) while stronger influence was observed in the case of 66c owing to a mesomeric effect. As expected, molecules 66d and 66e, bearing electron-donating groups (EDGs), were easier to oxidize than the parent $\mathbf{6 6}$. ${ }^{216}$

The N, N^{\prime}-dihydro heteroacenes are formally antiaromatic, but the heteroacenes (e.g., 74 and 75) should be aromatic like the linear acenes. Homofluorindine 66 displays a structural distinction: The N -H motif can either be arranged to give an (antiaromatic) dihydropyrazine or a quinoid structure where the two NHs are in different rings and opposite positions as in $\mathbf{6 6}^{\prime}$. Using NMR and quantum-chemical calculations, it has been shown that the "antiaromatic" form, $\mathbf{6 6}$ is the prevalent one (estimated to be $4.2 \mathrm{kcal} / \mathrm{mol}$ more stable), and the quinoidal 66 form must be there in low or vanishing concentrations. ${ }^{218-220}$ Tang and Miao ${ }^{221}$ methylated $\mathbf{6 6}$ and obtained a mixture of $\mathbf{8 0}$ (55\%) and 81 (12%), separated by chromatography and characterized by X-ray crystallography (Scheme 10). While quinoid compound $\mathbf{8 1}$ is planar in the solid state and has the smaller bandgap, compound $\mathbf{8 0}$ is nonplanar as a consequence of the steric hindrance of the methyl groups when compared to 66.

Scheme 10. Methylation of 66 gives derivatives 80 and 81 in 55 and 12% yields, respectively.

The redox behavior of acene compounds containing the pyrazine unit is unusual. As mentioned above, as the length of the pyrazinacene is increased the fully oxidized form becomes even less favored and as the number of fused pyrazine rings increases, the reduced form is increasingly favored. This is exemplified by DHTAP 66 which cannot be oxidized to the tetraazapentacene 77 . The somewhat unusual stability of the "antiaromatic" compounds compared to their fully aromatic counterparts was investigated
using computational techniques by Bunz and Schleyer. ${ }^{222}$ Nucleus Independent Chemical Shift (NICS) calculations, ${ }^{223}$ even though they have been criticized for their reliability as aromaticity indicators, ${ }^{224,225}$ were used to estimate the aromatic and antiaromatic contributions for each six-membered ring in two model compounds of diazatetracene and the reduced derivative dihydrodiazatetracene ${ }^{226,227}$ showing that each of the rings were diatropic (diamagnetic) in case of the fully oxidized compound while for the reduced compound showed that despite containing $4 \mathrm{n} \pi$ electrons, it was weakly aromatic. The reduced pyrazine ring was locally paratropic (paramagnetic) and the remaining rings locally diatropic. However, the remote π contributions for each of the rings were distinctly paratropic. In other words, the reduced form can be viewed as globally aromatic, yet the central dihydropyrazine ring is strongly (locally) antiaromatic.

Other reported synthesis of N-heterocyclic acenes like 6,13-dihydro-5,6,7,12,13,14-hexaazapentacenes $\mathbf{8 2}$ include the nucleophilic aromatic substitution of 2,3-dicyano-1,4,5,10-tetraazaanthracenes 83 by benzenediamines $\mathbf{6 8}$ (Scheme 11). ${ }^{228}$ Interestingly, historically, it was discovered as a condensation product of dichloroquinoxaline and diaminoquinoxaline in $1903,{ }^{229}$ and several patents claim its derivatives for applications as dyes. ${ }^{230-232}$

Scheme 11. Synthesis of 6,13-dihydro-5,6,7,12,13,14-hexaazapentacenes 82.

Recently, Fleischhauer et al., ${ }^{161}$ extended the hexaazapentacene family with the synthesis of the quinoidal fluorubine $\mathbf{8 4}$, which was formed as the main product (20%) together with the zwitterionic compound 54 (3\%) after tetrachloropyrazine 85 was condensed with 2,3-dichloro-5-phenyl-5,10-dihydropyrazino[2,3-b]quinoxaline 86 and the resultant regioisomeric mixture 87 and 88 was further oxidized (Scheme 12).

Scheme 12. Synthesis of quinoidal fluorubine 84 with its zwitterionic analog 54.

1.6 Target of Project

In an effort to investigate new organic materials with interesting electronic properties, tetraazapentacene system 51 was studied. A preliminary computational study investigated the effect of EDGs and EWGs in strategic positions and determined substitution patterns that moderated the singlet-triplet energy gap $\left(\Delta E_{\mathrm{ST}}\right)$. Our objective was to complete this computational study and validate it with experimental data by preparing several derivatives. The decrease or increase of ΔE_{ST} upon substitution on $\mathbf{5 1}$ can afford a useful tool for the design of high spin systems and at the same time candidates that may avoid zwitterionic character and be stabilized in the triplet ground state and therefore provide materials for magnetic or spintronic applications. The effect of the substitution as well as the conformation on analogous linear and angular dithiazoles was also investigated computationally.

51

89

The promising candidate for electronic properties, angular analog $\mathbf{8 9}$, which theoretically is stabilized in the triplet ground state is an additional synthetic target to study.

CHAPTER 2

Computational Study on Linear Tetraazapentacenes

Sections Page
2.1 Introduction 62
2.2 Target Molecules 64
2.3 Methodology 66
2.4 Computational Results 69
2.4.1 Spin Coupling and Singlet-Triplet Gap 69
2.4.2 Geometric Data 74
2.4.3 NICS Calculations 82
2.4.4 Time Dependent Calculations 86
2.5 Summary 89

2.1 Introduction

Tetraazapentacenes were investigated as potential diradicals due to the m-phenylene ferromagnetic coupling unit that could support two unpaired electrons located on the unsubstituted nitrogens (Figure 13).

Figure 13. General structure of linear 5,7-disubstituted tetraazapentacenediyls.

The synthesis, characterization ${ }^{154,155}$ and computational ${ }^{233}$ study of 5,7-disubstituted tetraazapentacenes, however, proved that the compounds exist in the singlet and not the triplet ground state with an energy gap between the two states $\Delta E_{\mathrm{ST}}=-10.05 \mathrm{kcal} / \mathrm{mol}$ in favor of the singlet. The compounds exist as zwitterions (Figure 14), sporting both negative and positive cyanines, which is achieved by sacrificing the aromaticity of the central arene. ${ }^{157}$ It is a challenge to investigate the electronic properties of such a system and also to modify its structure to enable diradical character.

Singlet-triplet gaps $\left(\Delta E_{\mathrm{ST}}\right)$ have been modified upon substitution e.g., in carbenes. ${ }^{234-237} \pi$ Donors or acceptors on CX_{2} species influence the ground state preference and $\Delta E_{\text {ST }}$ dramatically. For instance $\mathrm{C}(\mathrm{C} \equiv \mathrm{N})_{2}$ is stabilized in triplet state $\left(\Delta E_{\mathrm{ST}}=79.5 \mathrm{kcal} / \mathrm{mol}\right)$ while $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}$ is stabilized in singlet state $\left(\Delta E_{\mathrm{ST}}=-26.3 \mathrm{kcal} / \mathrm{mol}\right) .{ }^{235}$ Systems CX_{2} and CXY have been studied computationally by various methods in an effort to provide accurate correlations with experimental data. ${ }^{238}$ Similarly computational studies (B3LYP/6-311++G**) on aryl substituted cyclopentadienylidenes $\mathbf{9 0}$ showed that electron donating substituents at the phenyl group increase (more positive) $\Delta E_{\text {ST }}$ while electron withdrawing substituents decrease it. ${ }^{239}$ HOMO-LUMO gaps support and explain the $\Delta E_{\text {ST }}$ screening, ${ }^{240,241}$ since HOMO-LUMO gaps are increased upon EWG substitution and in contrast, they are decreased upon EDG substitution at the phenyl ring.

90
With the linear 5,7-disubstituted tetraazapentacenes we can assume that the negative and positive cyanines are major components of the HOMO and LUMO frontier orbitals, respectively. Furthermore, the substitution on strategic positions on the tetraazapentacene system can influence electronically the negative and positive cyanines and therefore the relative energies of the HOMO and LUMO orbitals. For example, the introduction of substituents that donate electron density either inductively or mesomerically to the negative cyanine would be expected to raise the HOMO energy level while by the introduction of substituents that withdraw electron density from the positive cyanine would be expected to lower the energy of the LUMO (Figure 14). Careful selection of substituents can therefore provide low band gap materials and if the HOMO-LUMO gap is sufficiently reduced (i.e., $\left.\Delta \mathrm{E}_{\text {Номо-Luмо }}<1.5 \mathrm{eV}\right)^{242}$ then the system should prefer the triplet over the singlet ground state.

Figure 14. Substitution on tetraazapentacene to affect the HOMO-LUMO gap.

Tetraazapentacenes substituted on either positions X, Y, E or Z with a variety of EDGs and EWGs were studied computationally to understand the influence of the specific substitution (Figure 15). Analogs of several of these compounds were also synthesized (see Chapter 3) to validate the computational results. Furthermore, combinations of EDG and EWG's were studied computationally in an attempt to reach a theoretical triplet state structure. The energetic gap between the singlet and triplet state was estimated computationally as well as other electronic features such as the

HOMO-LUMO energetic difference, the band gap, the dipole moment, the spin electronic density and the geometric data.

Figure 15. Triplet and singlet state of linear 5,7-disubstituted tetraazapentacenes.

2.2 Target Molecules

The systems studied were tetraazapenacenes substituted on the $\mathrm{X}, \mathrm{Y}, \mathrm{E}$ and Z positions. The substitution involved electron donating groups (EDGs) $\left(\mathrm{NH}_{2}, \mathrm{OMe}\right.$ and Me$)$ and electron withdrawing groups (EWGs) $\left(\mathrm{NO}_{2}, \mathrm{C} \equiv \mathrm{N}, \mathrm{CF}_{3}, \mathrm{~F}\right.$ and Br$)$. The substituents can have mesomerical $\left(\mathrm{NH}_{2}, \mathrm{OMe}, \mathrm{NO}_{2}, \mathrm{C} \equiv \mathrm{N}\right)$ or inductive $\left(\mathrm{Me}, \mathrm{CF}_{3}, \mathrm{~F}, \mathrm{Br}\right)$ effect. Table 1 shows the range of the substituted systems studied arranged in series of decreasing singlet-triplet gap (see Section 2.3). Hammett constants $\sigma_{m e t a}$ and $\sigma_{p a r a}$, which show the effectiveness of EDG or EWG substituents to donate or remove electron density to or from the biscyanine, respectively, are listed in Table 1 and provide information about the inductive or mesomeric influence of each substituent. ${ }^{243,244}$

Table 1. List of substituted TAPs studied computationally.

TAP	X	Y	E	Z	$\sigma_{\text {meta }}{ }^{a}$	$\sigma_{\text {para }}{ }^{a}$
51a	NO_{2}	NH_{2}	H	NH_{2}		
51b	H	H	CN	H	0.56	0.66
51c	NO_{2}	NH_{2}	H	H		
51d	H	H	H	NO_{2}	0.71	0.78
51e	H	NH_{2}	H	NH_{2}	-0.16	-0.66
51f	NO_{2}	H	H	H	0.71	0.78
51g	CN	OMe	H	H		
51h	H	NH_{2}	H	H	-0.16	-0.66
51i	CF_{3}	H	H	H	0.43	0.54
51j	CN	H	H	H	0.56	0.66
51k	H	F	H	H	0.34	0.06
511	H	OMe	H	H	0.12	-0.27
51m	H	H	H	NH_{2}	-0.16	-0.66
51n	H	Br	H	H	0.39	0.23
510	H	Me	H	H	-0.07	-0.17
51p	H	H	H	H	0.00	0.00
51q	H	H	H	CN	0.56	0.66
51r	H	CF_{3}	H	H	0.43	0.54
51s	Br	H	H	H	0.39	0.23
51t	H	CN	H	H	0.56	0.66
51u	Me	H	H	H	-0.07	-0.17
51v	H	NO_{2}	H	H	0.71	0.78
51w	F	H	H	H	0.34	0.06
$51 \mathrm{x}^{\text {b }}$	NH_{2}	NO_{2}	H	H		
51y	OMe	H	H	H	0.12	-0.27
51z	NH_{2}	H	H	H	-0.16	-0.66
51aa	OMe	CN	H	H		
51ab	H	H	NH_{2}	H	-0.16	-0.66
51ac	NH_{2}	H	NH_{2}	H	-0.16	-0.66
51ad	NH_{2}	NO_{2}	H	H		
51ae	NH_{2}	NO_{2}	NH_{2}	H		

${ }^{a}$ Hammet constants are included for better understanding of substitution affect on HOMO-LUMO energy levels.
${ }^{b}$ Asymmetrical system: Substitution on one X and one Y position.

2.3 Methodology

For the computational study, density functional theory (DFT) with the spin polarized Becke's three parameter hybrid (U)B3LYP method ${ }^{245,246}$ was employed using Gaussian 2003 or 2009^{247} on Linux work stations. The geometries of the studied systems were fully optimized at the UB3LYP/6-31G(d) level of theory, both on singlet and triplet states. The optimization calculations of the singlets were followed by stability calculations that used the broken symmetry (BS) application ${ }^{248-257}$ in case of internal instability. The analytical second derivatives were computed using vibrational analysis to confirm each stationary point as a minimum by giving zero imaginary frequencies. The stability and frequency calculations were performed at the same level of theory as the optimization calculations and where the BS approach was required, the optimization, stability and frequency calculations were repeated using the BS method at B3LYP/6-31G(d). The zero point energy was derived via the frequency calculations and scaled by 0.981 to correct the energy taken by the optimization calculation of each state. ${ }^{258}$

Using the above method, the structures ground state, singlet-triplet energy difference $\left(\Delta E_{\mathrm{ST}}\right)$ and the spin-coupling constant J, which describes the effective exchange interaction between spin-carrier sites, were computed. The sign and value of J establishes the magnetic behavior of the structure. A positive J indicates triplet ground state and ferromagnetic coupling between the two spins while a negative J designates singlet ground state with antiferromagnetic coupling between the spins. There are three spin-projected methods that estimate J by equations that differ in their application ability depending on the overlap degree between the magnetic orbitals (SOMOs). The first one $\left(J_{a b}{ }^{(1)}\right)$ developed by Ginzberg, ${ }^{259}$ Noodleman ${ }^{260}$ and Davidson ${ }^{261}$ (GND) is applied when the overlap of the SOMOs is small, the second one $\left(J_{a b}{ }^{(2)}\right)$ proposed by GND, Bencini ${ }^{262}$ and Ruiz ${ }^{263}$ is used when the overlap is large and the third one $\left(J_{a b}{ }^{(3)}\right)$ derived by Yamaguchi and Houk ${ }^{264,265}$ leads to the first and second one in weak and strong overlap, respectively:

$$
J_{a b}^{(1)}=\frac{{ }^{B S} E_{D F T}-{ }^{T} E_{D F T}}{S_{\max }^{2}} \quad J_{a b}^{(2)}=\frac{{ }^{B S} E_{D F T}-{ }^{T} E_{D F T}}{S_{\max }\left(S_{\max }+1\right)} \quad J_{a b}^{(3)}=\frac{{ }^{B S} E_{D F T}-{ }^{T} E_{D F T}}{{ }^{T}\left\langle S^{2}\right\rangle-{ }^{B S}\left\langle S^{2}\right\rangle}
$$

Where: ${ }^{B S} E_{D F T}$: total scaled energy for the singlet BS state
${ }^{T} E_{D F T}$: total scaled energy for the triplet state
${ }^{T}\left\langle S^{2}\right\rangle$: total spin angular momentum for the triplet state
${ }^{B S}\left\langle\mathrm{~S}^{2}\right\rangle$: total spin angular momentum for the BS state
$\mathrm{S}_{\text {max }}:$ spin size of the triplet. Calculation formula: ${ }^{T}\left\langle\mathrm{~S}^{2}\right\rangle=\mathrm{S}_{\max }\left(\mathrm{S}_{\max }+1\right)$
$J_{a b}{ }^{(3)}$ is close to $J_{a b}{ }^{(1)}$ when ${ }^{T}\left\langle\mathrm{~S}^{2}\right\rangle \cong \mathrm{S}_{\text {max }}\left(\mathrm{S}_{\text {max }}+1\right)$ and ${ }^{B S}\left\langle\mathrm{~S}^{2}\right\rangle \cong \mathrm{S}_{\text {max }}$ where $\mathrm{S}_{\text {max }}$ is the spin size for the triplet state, $E_{D F T}$ is the total energy and S^{2} is the total angular momentum for BS or triplet state. $J_{a b}{ }^{(3)}$ is equal to $J_{a b}{ }^{(2)}$ on strong overlap region where ${ }^{B S}\left\langle S^{2}\right\rangle \cong 0$. The energetic gap between singlet and triplet state can be estimated by the equation $\Delta E_{\mathrm{ST}}={ }^{T}\left\langle\mathrm{~S}^{2}\right\rangle J_{a b}$ given by Ginzberg where $\Delta E_{\mathrm{ST}}=E_{\mathrm{S}}-E_{\mathrm{T}}$. Since both energies are negative, a positive sign of ΔE_{ST} denotes that the triplet state is the most stable while a negative ΔE_{ST} indicates that the singlet state is the lowest one.

While hydrogens were used as the substituents on the 5,7-nitrogens (positive cyanine) to facilitate the calculations, we nevertheless, ensured the lack of substituents did not dramatically affect the geometric or electronic properties calculated, by computationally investigating the influence of the 5,7 -substituent N-Me $\left(\mathrm{C}_{s p}{ }^{3}\right), N-E t$ $\left(\mathrm{C}_{s p^{3}}\right)$, N-vinyl $\left(\mathrm{C}_{s p^{2}}\right), N$-aryl $\left(\mathrm{C}_{s p^{2}}\right)$ and $N-\mathrm{C} \equiv \mathrm{CH}\left(\mathrm{C}_{s p}\right)$ on the parent system (Table 2). Interestingly, the geometric data of the three center rings were nearly identical but the dipole moment of each structure differed significantly when the aryl substituent was introduced.

Table 2. Dipole moments of R-substituted systems.

R	Dipole Moment (Debye)	$\sigma_{\text {meta }}$	$\sigma_{\text {para }}$
H	7.41	0.00	0.00
Mc	8.23	-0.07	-0.17
Et	8.42	-0.07	-0.15
vinyl	8.46	0.05	-0.02
$p-\mathrm{Tol}$	10.81		-0.50
$\mathrm{C} \equiv \mathrm{CH}$	6.74	0.21	0.23

Methyl, ethyl and vinyl substituents give similar dipole moments to the system (8.23-8.46 D) but the $\mathrm{C} \equiv \mathrm{CH}$ group significantly decreased the dipole moment (6.74 D). What was notable was the important increase of the dipole moment $(10.81 \mathrm{D})$ in the case of p-tolyl. The increase of the dipole moment from an $s p^{2}$ aliphatic substituent to an $s p^{2}$ aromatic substituent could be explained by the ability of the aromatic ring to attract electron density $\left(\sigma_{\text {para }}=-0.50\right)$ maximizing the positive charge on the positive cyanine. As can be seen from the optimized structure (Figure 16) the aryl substituent is orthogonal (dihedral angel 89.72°) and therefore no π-overlap is expected. The same is true for the vinyl substituent but to a lesser degree (dihedral angel 72.87°).

Figure 16. Optimized N-tolyl and N-vinyl substituted TAPs show that the tolyl and vinyl substituents are orthogonal to the azaacene structure.

Since the dipole moment is an important electron property of the system and the above results show that it depends from the N-substituent, the use of N-tolyl substituent on the systems is necessary for the calculations, at least for the ones that were synthesized having N-tolyl substituents, to compare more accurately the computational and experimental results. The computational cost though is increased when N-tolyl substituents are used instead of just $N-H$. Thus $N-H$ substituents were used for the calculation of the substituted tetraazapentacenes while the parent and the substituted systems that were synthesized were also calculated with N-tolyl substituents.

What was expected from the computational study on these systems was the determination of the system's ground state, the energetic difference between singlet and triplet state $\left(\Delta E_{\mathrm{ST}}\right)$ and any other properties that could be estimated and related to the
substitution. Thus, beside optimization followed by frequency calculations, other calculations such as Time Dependence (TD) and Nucleus-Independent Chemical Shifts (NICS) calculations were applied. TD calculations provide the energetic difference of the ground and the first excited state (Band Gap) and thus they are a valuable tool for screening the substitution effect on the system. It can also be used for a good comparison with the experimental UV/vis data of the synthesized compounds and therefore can be used to validate the overall computational data. NICS calculations can be used to estimate the ring current of each ring and thus help describe how the aromaticity of each ring is affected by substitution. The central ring for example is more aromatic in the triplet state but sacrifices its aromaticity in the singlet state.

2.4 Computational Results

2.4.1 Spin Coupling and Singlet-Triplet Gap

Table 3 summarizes the computational data of the substituted tetraazapentacenes that were studied. Energies are in Hartrees (1 Hartree $=627.5095 \mathrm{kcal} / \mathrm{mol}$). $\Delta E_{\text {ST }}$ and J are in $\mathrm{kcal} / \mathrm{mol}$. The data include the energies of singlet and triplet states $\left(E_{\mathrm{S}}, E_{\mathrm{T}}\right)$ corrected by the zero point energy corrections ZPE, the total angular momentum $\left\langle S^{2}\right\rangle$ of the triplet and singlet broken symmetry state, the spin coupling constants $J_{a b}{ }^{(1)}, J_{a b}{ }^{(2)}$ and $J_{a b}{ }^{(3)}$ (shown also as J^{1}, J^{2}, J^{3} respectively) and the energetic difference ΔE_{ST} for each $J_{a b}$ as well as the energetic gap of singlet and triplet state by the abstraction $\Delta E_{\mathrm{ST}}=E_{\mathrm{S}}-E_{\mathrm{T}}$.

The ranking of structures in Table 3 is in order of most the stable singlet (top) to the least stable singlet (down) structures. Structure 51ae, has the lowest $\Delta E^{\mathrm{U}}{ }_{\text {ST }}(1.61 \mathrm{eV})$ which indicates a potential triplet ground state. All the systems above the parent molecule are substituted contrarily to the way that should reduce the energetic gap of the singlet and triplet state. EDGs are placed para to the positive cyanine and EWGs are placed para to the negative cyanine and thus ΔE_{ST} is increased and the singlet ground state is more stabilized. The systems below the parent system demonstrate a reduction of ΔE_{ST} reaching even a positive value indicating stabilization of the triplet state. For instance, the amino group $\left(\mathrm{NH}_{2}\right)$ which act as EDG and is placed para to the negative cyanine on molecule 51 z reduced ΔE_{ST} at about $3.5 \mathrm{kcal} / \mathrm{mol}$ reaching $-6.53 \mathrm{kcal} / \mathrm{mol}$ in referenced to the parent compound $\mathbf{5 1 p}$ $\left(\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-10.06 \mathrm{kcal} / \mathrm{mol}\right)$.

Table 3. Total energies $\left(E_{\mathrm{S}}, E_{\mathrm{T}}\right)$ in hartrees, spin angular momentum ($\left.<\mathrm{S}^{2}\right\rangle$) for singlet and triplet state, spin coupling constants J^{1}, J^{2} and J^{3}, the energetic difference ΔE_{ST} for each J and $\Delta E_{\mathrm{ST}}^{\mathrm{U}}$ by abstracting $E_{\mathrm{S}}-E_{\mathrm{T}}$.

TAP	$E_{\mathrm{S}}\left(<\mathrm{S}^{2}>\right)$	$E_{\text {T }}$	J^{1}	$\Delta E^{1}{ }_{\text {ST }}$	J^{2}	$\Delta E^{2}{ }_{\text {ST }}$	J^{3}	$\Delta E^{3}{ }_{\text {ST }}$	$\Delta E^{\mathrm{U}}{ }_{\text {ST }}$
51a	-1486.919 (0.00)	-1486.885 (2.05)	-14.55	-29.80	-7.33	-15.02	-7.33	-15.02	-15.02
51b	-1004.145 (0.00)	-1004.124 (2.05)	-13.16	-26.93	-6.63	-13.57	-6.63	-13.57	-13.57
51c	-1431.587 (0.00)	-1431.566 (2.05)	-12.34	-25.27	-6.22	-12.74	-6.22	-12.74	-12.74
51d	-1116.411 (0.00)	-1116.391 (2.05)	-12.16	-24.89	-6.13	-12.54	-6.13	-12.54	-12.54
51e	-1077.882 (0.00)	-1077.862 (2.05)	-11.90	-24.35	-5.99	-12.27	-5.99	-12.27	-12.27
51f	-1320.903 (0.00)	-1320.884 (2.05)	-11.51	-23.58	-5.80	-11.89	-5.80	-11.89	-11.89
51g	-1325.360 (0.00)	-1325.341 (2.05)	-11.43	-23.46	-5.77	-11.83	-5.77	-11.83	-11.83
51h	-1022.568 (0.00)	-1022.550 (2.05)	-11.30	-23.13	-5.69	-11.65	-5.69	-11.65	-11.65
51i	-1585.967 (0.00)	-1585.949 (2.05)	-10.79	-22.12	-5.44	-11.15	-5.44	-11.15	-11.15
51j	-1096.392 (0.00)	-1096.374 (2.05)	-10.76	-22.08	-5.43	-11.13	-5.43	-11.13	-11.13
51k	-1110.380 (0.00)	-1110.363 (2.05)	-10.78	-22.08	-5.43	-11.12	-5.43	-11.12	-11.12
511	-1140.876 (0.00)	-1140.859 (2.05)	-10.66	-21.84	-5.38	-11.01	-5.38	-11.01	-11.01
51m	-967.233 (0.00)	-967.216 (2.05)	-10.55	-21.60	-5.32	-10.88	-5.32	-10.88	-10.88
51n	-6054.127 (0.00)	-6054.110 (2.05)	-10.20	-20.90	-5.14	-10.53	-5.14	-10.53	-10.53
510	-990.480 (0.00)	-990.464 (2.05)	-9.78	-20.04	-4.93	-10.10	-4.93	-10.10	-10.10
51p	-911.898 (0.00)	-911.882 (2.05)	-9.74	-19.96	-4.91	-10.06	-4.91	-10.06	-10.06
51q	-1004.148 (0.00)	-1004.132 (2.05)	-9.58	-19.63	-4.83	-9.90	-4.83	-9.90	-9.90
51r	-1585.964 (0.00)	-1585.949 (2.05)	-9.57	-19.61	-4.83	-9.88	-4.83	-9.88	-9.88
51s	-6054.127 (0.00)	-6054.112 (2.05)	-9.25	-18.95	-4.66	-9.55	-4.66	-9.55	-9.55
51t	-1096.387 (0.00)	-1096.372 (2.05)	-9.21	-18.87	-4.64	-9.51	-4.64	-9.51	-9.51
51u	-990.480 (0.00)	-990.465 (2.05)	-8.79	-18.00	-4.63	-9.07	-4.63	-9.07	-9.07
51v	-1320.896 (0.00)	-1320.882 (2.05)	-8.41	-17.22	-4.24	-8.68	-4.24	-8.68	-8.68
51w	-1110.378 (0.00)	-1110.365 (2.05)	-8.16	-16.70	-4.11	-8.42	-4.11	-8.42	-8.42
51x	-1171.735 (0.01)	-1171.723 (2.04)	-7.71	-15.75	-3.88	-7.93	-3.90	-7.98	-7.93
51y	-1140.877 (0.00)	-1140.865 (2.05)	-7.05	-14.42	-3.55	-7.27	-3.55	-7.27	-7.27
51z	-1022.570 (0.00)	-1022.559 (2.04)	-6.34	-12.96	-3.19	-6.53	-3.19	-6.52	-6.53
51aa	-1325.357 (0.21)	-1325.346 (2.05)	-6.16	-12.61	-3.10	-6.35	-3.46	-7.08	-6.35
51ab	-967.236 (0.53)	-967.236 (2.04)	-2.75	-5.60	-1.38	-2.82	-1.86	-3.80	-2.82
51ac	-1077.909 (0.66)	-1077.910 (2.04)	-1.52	-3.09	-0.76	-1.55	-1.13	-2.30	-1.55
51ad	-1431.575 (0.00)	-1431.573 (2.04)	-1.14	-2.34	-0.58	-1.18	-0.58	-1.18	-1.18
51ae	-1486.915 (0.90)	-1486.927 (2.04)	1.57	3.20	0.79	1.61	1.41	2.88	1.61

EDGs on positions X and EWGs on positions Y indeed decrease $\Delta E_{\mathrm{ST}} . \mathrm{NH}_{2}$ and $\mathrm{C} \equiv \mathrm{N}$ substituents that have similar donating and withdrawing ability respectively $\left[\sigma_{\text {para }}\left(\mathrm{NH}_{2}\right)=-0.66\right.$ and $\left.\sigma_{\text {para }}(\mathrm{C} \equiv \mathrm{N})=0.66\right]$ help us compare the effect of EDG and EWG substitution on each position. Thus by comparing $-\mathrm{NH}_{2}$ and $-\mathrm{C} \equiv \mathrm{N}$ substituted systems it seems that EDGs at position X (compound $\mathbf{5 1 z}, \Delta E_{\text {ST }}^{\mathrm{U}}=-6.53 \mathrm{kcal} / \mathrm{mol}$, decreasing parent's ΔE_{ST} at about $3.53 \mathrm{kcal} / \mathrm{mol}$) have bigger influence on decreasing ΔE_{ST} than EWGs at positions Y (compound 51t, $\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-9.51 \mathrm{kcal} / \mathrm{mol}$, decreasing parent's ΔE_{ST} at only $0.54 \mathrm{kcal} / \mathrm{mol})$. Still EDGs placed para to the negative cyanine and EWGs placed para to the positive cyanine, decrease $\Delta E_{\text {ST }}$ while EDGs placed para to the positive cyanine and EWGs placed para to the negative cyanine, increase it.

Halogens F and Br are exceptions to the above resulting conclusion. They act mainly as EWGs but they can also act as EDGs mesomerically due to their lone electrons.

They may be placed in the "correct" positions but they predominantly influence the negative cyanine which is meta to them. This is explained from the corresponding Hammett values $\left[\sigma_{\text {meta }(\mathrm{F})}>\sigma_{\text {para }(\mathrm{F})}\right.$ and $\left.\sigma_{\text {meta }(\mathrm{Br})}>\sigma_{\text {para }(\mathrm{Br})}\right]$. Especially in the case of $\mathrm{F}\left[\sigma_{\text {meta }(\mathrm{F})}=0.34\right.$, $\left.\sigma_{\text {para }(\mathrm{F})}=0.06\right]$, where Hammett values support a weak mesomeric effect but a strong inductive effect. As a result, ΔE_{ST} is not reduced as expected but is increased instead. In the case of F substituent, molecule $\mathbf{5 1} \mathbf{k}, \Delta E_{\mathrm{ST}}$ is increased at $-11.12 \mathrm{kcal} / \mathrm{mol}$. On the contrary, when they are placed on the X positions, ΔE_{ST} is reduced significantly e.g., molecule $\mathbf{5 1 w}$ where F is on X position $\left(\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-8.42 \mathrm{kcal} / \mathrm{mol}\right)$. In the case of $\mathrm{Br}\left[\sigma_{\text {meta }(\mathrm{Br})}=0.39, \sigma_{\text {para }(\mathrm{Br})}\right.$ $=0.23$], molecule 51s where Br is on X position $\left(\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-9.55 \mathrm{kcal} / \mathrm{mol}\right)$ shows more reduction of ΔE_{ST} compared to molecule $\mathbf{5 1 n},\left(\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-10.53 \mathrm{kcal} / \mathrm{mol}\right)$ where Br is on Y position.

The direct substitution on the positive cyanine (position Z) with the strongly electron withdrawing cyano group $\left(\sigma_{\text {para }}=0.66, \sigma_{\text {meta }}=0.56\right)$, gave structure $\mathbf{5 1 q}$ $\left(\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-9.90 \mathrm{kcal} / \mathrm{mol}\right)$ which had a negligible effect on ΔE_{ST} compared to the parent $\mathbf{5 1 p}$ $\left(\Delta E^{\mathrm{U}}{ }_{\text {ST }}=-10.06 \mathrm{kcal} / \mathrm{mol}\right)$. In contrast, direct substitution on the negative cyanine with the strongly donating amino group ($\sigma_{\text {para }}=0.66, \sigma_{\text {meta }}=0.16$) gave structure 51ab $\left(\Delta E_{\mathrm{ST}}^{\mathrm{U}}=-2.82 \mathrm{kcal} / \mathrm{mol}\right)$ indicating a significant reduction of ΔE_{ST}. This result indicated that the negative cyanine was more important for the determination of the ground state of the molecule. The picture of the HOMO molecular orbital explains this since there is relatively little orbital density on the positive cyanine at $\mathrm{C}_{6}(\mathrm{Z}$ position) while there is considerable orbital density C_{13} (E position) on the negative cyanine (Figure 17), as such substituent effects at $\mathrm{C}_{13}(\mathrm{E})$ were greater than those at $\mathrm{C}_{6}(\mathrm{Z})$. The direct substitution on the negative cyanine (position E) seem to have the largest effect on $\Delta E_{\text {ST }}$ not only if it is compared with direct substitution on the positive cyanine (position Z) but also with positions X and Y . For instance NH_{2} substitution on X position (compound $\mathbf{5 1 z}$) gave $\Delta E_{\text {ST }}^{\mathrm{U}}=-6.53 \mathrm{kcal} / \mathrm{mol}$ while on E position (compound 51ab) gave $\Delta E^{\mathrm{U}}{ }_{\mathrm{ST}}=-2.82 \mathrm{kcal} / \mathrm{mol}$.

Figure 17. HOMO of the parent system.

The coexisting combination of substituents on the outer rings and directly on the cyanines gave a positive $\Delta E_{S T}$ which indicated destabilization of the singlet state. The stronger EDGs and EWGs of the studied substituents were $\mathrm{NH}_{2}\left(\sigma_{\text {para }}=-0.66, \sigma_{\text {meta }}=-0.16\right)$ and $\mathrm{NO}_{2}\left(\sigma_{\text {para }}=0.78, \sigma_{\text {meta }}=0.71\right)$, respectively. By controlling the combination of the substituents and adding two EDG substituents $\left(\mathrm{NH}_{2}\right)$ para to the negative cyanine and two EWG substituents $\left(\mathrm{NO}_{2}\right)$ para to the positive cyanine (molecule 30), the reduction of ΔE_{ST} reached $-1.18 \mathrm{kcal} /$ mol. An additional substitution of NH_{2} (molecule 31) directly on the negative cyanine gave further reduction of ΔE_{ST} reaching the positive difference $+1.61 \mathrm{kcal} / \mathrm{mol}$ which favored the triplet state.

To summarize, the direct substitution on the negative cyanine (position E) seem to have the largest effect on $\Delta E_{\text {ST }}$ compared with the rest strategic positions while halogens and especially F affect on their meta positions than the para as is also indicated from their Hammett values ($\sigma_{\text {meta }}>\sigma_{\text {para }}$). The general outcome is that indeed EDG substituents placed para to the negative cyanine and EWG substituents placed para to the positive cyanine, decrease the singlet-triplet energy gap ΔE_{ST}, destabilizing the singlet ground state and favoring the triplet.

The ability of a substituent to increase or decrease the energy of HOMO or LUMO can be seen in Table 4. The energies of HOMO and LUMO orbitals are in a.u. while their energetic difference $\Delta E_{H L}$ is in $\mathrm{eV} . \Delta E_{H H}$ and $\Delta E_{L L}$ are the differences in eV of the HOMO and LUMO, respectively of each substituted molecule with the parent system according to the equations:

$$
\begin{aligned}
& \Delta E_{H L}=E_{\mathrm{LUMO}}-E_{\mathrm{HOMO}} \\
& \Delta E_{H H}=E_{\mathrm{HOMO}}-{ }^{51 \mathrm{p}} E_{\text {НОмО }} \\
& \Delta E_{L L}=E_{\mathrm{LUMO}}-{ }^{51 \mathrm{p}} E_{\mathrm{LUMO}}
\end{aligned}
$$

Positive and negative values of $\Delta E_{H H}$ and $\Delta E_{L L}$ indicate increase and decrease of the substituted molecule's orbital energy level with respect to that of the parent molecule. Increment and decrement of the HOMO and LUMO orbital energies, respectively (positive ΔE_{HH} and negative ΔE_{LL}) are required to achieve a reduction of the HOMO-LUMO energy gap of the parent system. This was achieved, both in increasing ΔE_{HH} and decreasing ΔE_{LL}, on molecule 51ae. In all other substituted systems, it was observed that HOMO and LUMO were both increased or decreased in energy to different degrees. The decrease of the HOMO-LUMO gap became clearer on molecules 51y-51ae
reaching a gap under 1.5 eV . According to Hoffmann, where the gap is less than 1.5 eV , the two nonbonding electrons on a diradical, will prefer to occupy degenerate orbitals having their spins parallel leading to a triplet ground state. ${ }^{242}$ According to our calculations, the triplet ground state is achieved when this energy gap is less than 1 eV which is the case of molecule 51ae. These data agree with the previous conclusions from the ΔE_{ST} data where molecules substituted on the correct strategic positions with NH_{2} and NO_{2} substituents, gave the best results compared with substituted molecules with other EDGs or EWGs.

Table 4. Frontier orbitals' energies and differences.

TAP	$E_{\text {HOMO }}(\mathrm{au})$	$E_{\text {LUMO }}(\mathrm{au})$	$\Delta E_{\text {HH }}(\mathrm{eV})$	$\Delta E_{\mathrm{LL}}(\mathrm{eV})$	$\Delta E_{\mathrm{HL}}(\mathrm{eV})$
51a	-0.18273	-0.11873	-0.84	-0.90	1.74
51b	-0.16839	-0.09854	-0.45	-0.35	1.90
51c	-0.18441	-0.12133	-0.89	-0.97	1.72
51d	-0.16791	-0.09865	-0.44	-0.35	1.88
51e	-0.14130	-0.07241	0.28	0.36	1.87
51f	-0.19228	-0.12839	-1.10	-1.16	1.74
51g	-0.18243	-0.11695	-0.83	-0.85	1.78
51h	-0.14280	-0.07521	0.24	0.28	1.84
51i	-0.17279	-0.10563	-0.57	-0.54	1.83
51j	-0.18351	-0.11843	-0.86	-0.89	1.77
51k	-0.16122	-0.09379	-0.26	-0.22	1.83
511	-0.14906	-0.08230	0.07	0.09	1.82
51m	-0.15005	-0.08257	0.05	0.08	1.84
51n	-0.16527	-0.09879	-0.37	-0.36	1.81
51o	-0.14848	-0.08205	0.09	0.10	1.81
51p	-0.15175	-0.08568	0.00	0.00	1.80
51q	-0.16484	-0.09929	-0.36	-0.37	1.78
51r	-0.16937	-0.10366	-0.48	-0.49	1.79
51s	-0.16260	-0.09840	-0.30	-0.35	1.75
51t	-0.17909	-0.11404	-0.74	-0.77	1.77
51u	-0.14657	-0.08165	0.14	0.11	1.77
51v	-0.18209	-0.11980	-0.83	-0.93	1.70
51w	-0.15498	-0.09198	-0.09	-0.17	1.71
51x	-0.15570	-0.09606	-0.11	-0.28	1.62
51y	-0.13955	-0.07976	0.33	0.16	1.63
51z	-0.13074	-0.07279	0.57	0.35	1.58
51aa	-0.17247	-0.11133	-0.56	-0.70	1.66
51ab	-0.13563	-0.08480	0.44	0.02	1.38
51ac	-0.11763	-0.07222	0.93	0.37	1.24
51ad	-0.15821	-0.11209	-0.18	-0.72	1.26
51ae	-0.14337	-0.11104	0.23	-0.69	0.88

On close inspection of the monosubstituted systems, it can be seen that of the EDG groups examined the amino group $\left(-\mathrm{NH}_{2}, \sigma_{\text {para }}=-0.66, \sigma_{\text {meta }}=-0.16\right)$ was the most effective at increasing the HOMO energy level (e.g., on structure $\mathbf{5 1 z}, \Delta_{H H}=0.57 \mathrm{eV}$) while of the EWG groups the nitro $\left(-\mathrm{NO}_{2}, \sigma_{\text {para }}=0.78, \sigma_{\text {meta }}=0.71\right)$ was the most efficient at reducing the LUMO energy level (e.g., on structure 51f, $\Delta_{\mathrm{LL}}=-1.16 \mathrm{eV}$). Hammett values indicate these substituents are strongly para directing, presumably owing to their ability to contribute in a mesomeric manner. In contrast, the halogens, in particular the F groups have Hammett values $\left(\sigma_{\text {meta }}=0.34, \sigma_{p a r a}=0.06\right)$ that support stronger meta directing effects (i.e., greater inductive contributions). As such the $\mathrm{X}=\mathrm{F}$ analog (structure 51w) affects not the HOMO but the LUMO since it is meta directing and not para, resulting in decreasing the LUMO energy level $\left(\Delta_{\mathrm{LL}}=-0.17 \mathrm{eV}\right)$ in a small degree and even less decreases the HOMO energy level $\left(\Delta_{\mathrm{HH}}=-0.09 \mathrm{eV}\right)$. Furthermore, when F is placed on Y position, due to its meta directing effect, it reduces the HOMO energy level ($\Delta_{\mathrm{HH}}=-0.26 \mathrm{eV}$) together with the LUMO energy level $\left(\Delta_{\mathrm{LL}}=-0.22 \mathrm{eV}\right)$. Me ($\left.\sigma_{\text {meta }}=-0.07, \sigma_{\text {para }}=-0.17\right)$ and $\mathrm{CF}_{3}\left(\sigma_{\text {meta }}=0.43, \sigma_{\text {para }}=0.54\right)$ on the other hand, even though they act inductively, they affect the para position mostly but not in a tremendous difference. As such, in systems 51u and 510, methyl achieves increase of both HOMO and LUMO energies while in systems $\mathbf{5 1 r}$ and $\mathbf{5 1} \mathbf{i}, \mathrm{CF}_{3}$ achieves reduction of both HOMO and LUMO energies, independently if they are placed in the "right" or "wrong" position since there was little difference. OMe substituent for example which is an EDG substituent with different inductive and mesomeric affect ($\sigma_{\text {meta }}=0.12, \sigma_{\text {para }}=-0.27$) gives much different influence on HOMO and LUMO energy levels if is placed on "right" (structure 51y, $\Delta_{\mathrm{HH}}=0.33 \mathrm{eV}, \Delta_{\mathrm{LL}}=0.16 \mathrm{eV}$) or "wrong" position (structure 511, $\left.\Delta_{\mathrm{HH}}=0.07 \mathrm{eV}, \Delta_{\mathrm{LL}}=0.09 \mathrm{eV}\right)$.

2.4.2 Geometric Data

Analysis of the geometric data for singlet and triplet state for the parent system 51p $(\mathrm{R}=\mathrm{H})$ shows the difference between the two states and supports the zwitterionic character of the singlet state.

Table 5. Selected bond lengths $\left(\mathbf{A}^{\circ}\right)$ and angles $\left(^{\circ}\right)$ of the parent system $(\mathrm{R}=\mathrm{H})$ on singlet and triplet state.

	$\mathrm{C}_{1}-\mathrm{C}_{2}$	$\mathrm{C}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{C}_{5}$	$\mathrm{C}_{5}-\mathrm{C}_{6}$	$\mathrm{C}_{1}-\mathrm{C}_{6}$	$\mathrm{C}_{3}-\mathrm{C}_{4}$	$\mathrm{N}_{1}-\mathrm{C}_{1}$	$\mathrm{N}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{N}_{3}$	$\mathrm{C}_{6}-\mathrm{N}_{4}$
Singlet	1.3948	1.3947	1.4033	1.4033	1.4646	1.4647	1.3535	1.3535	1.3449	1.3449
Triplet	1.3953	1.3953	1.4079	1.4079	1.4319	1.4319	1.3879	1.3879	1.3661	1.3661
	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{6}$	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$	$\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{C}_{5}$	$\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{C}_{6}$	$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	$\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{~N}_{4}$	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{~N}_{3}$
Singlet	119.46	123.33	121.47	121.30	117.13	117.13	116.99	116.98	121.30	121.30
Triplet	119.95	122.46	121.07	121.07	117.73	117.73	116.90	116.90	123.33	123.32

On going from the triplet to the singlet state of the parent system, no significant change in the cyanine C-C bond lengths (1.3953 vs $1.3948 \AA$, respectively) was observed while the C-N bond lengths decrease ($1.3661 / 1.3879$ vs $1.3449 / 1.3535 \AA$, respectively) and the lateral $\mathrm{C}-\mathrm{C}$ bond lengths that connect the two cyanines $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{3}-\mathrm{C}_{4}\right)$ increase (1.4319 vs $1.4647 \AA$ Å). The longer lateral C-C bonds in the singlet state support their single bond character and lack of conjugation between the two cyanine π subsystems. This disproportion of the bond lengths in the central arene shows that the system avoids its overall antiaromaticity by sacrificing the aromaticity of the central arene for the creation of the two independent cyanines. This observation was also explained by Braunstein et al., ${ }^{266}$ describing such systems as "potentially antiaromatic" that in order to avoid antiaromaticity prefer to divide their electronic systems into two charged subunits connected by σ bonds. The only significant difference between the bond angles of the singlet and triplet states is the slightly larger angle of the $\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{~N}_{4}$ bond angles of the negative cyanine (123.33° on triplet vs 121.30° on singlet).

The tendency of the substituted molecules to have longer bond lengths on the CC bonds that connect the two cyanines could be an indication of their preference for the singlet ground state. As such, by comparing the geometric data of the theoretical studied substituted systems with the parent molecule, their ability to reduce or increase the singlet-triplet gap may be correlated with the length of the lateral cyanine $\mathrm{C}-\mathrm{C}$ bonds. The geometric data, selected bond lengths (\AA) and bond angles (${ }^{\circ}$) of the singlet state substituted molecules are listed in Tables 6 and 7, respectively, while selected bond
lengths of $N-\mathrm{R}$ substituted systems where $\mathrm{R}=\mathrm{Me}$, Et, vinyl, aryl and ethynyl are listed (Table 8).

Table 6. Selected bond lenghts ($(\mathbb{\AA})$ of the parent and the substituted systems on singlet state.

	1.4040									
51b	1.3942	1.3942	1.4235	1.4	1.4616	1.46	1.353	1.353	1.33	1.3
	1.3940	1.3940	1.4014	1.401	1.469	1.469	1.350	1.350	1.34	1.3433
51d	1.4372	1.4372	1.3991	1.399	1.461	1.461	1.338	1.338	1.34	1.3489
	1.4045	1.3992	1.4043	1.403	1.460	1.466	1.345	1.352	1.344	1.3455
	1.3940	1.3940	1.4011	1.401	1.465	1.46	1.352	1.352	1.34	1.3457
	1.3943	1.3943	1.4014	1.401	1.465	1.46	1.353	1.353	1.34	1.3457
51h	1.3950	1.3950	1.4036	. 403	1.465	1.465	1.352	1.352	1.34	1.3447
51i	1.3944	1.3944	1.4020	1.4020	1.465	1.465	1.353	1.353	1.34	1.3451
51j	1.3943	1.394	1.4015	4015	1.464	1.464	1.353	1.3535	1.34	1.3
51k	1.3947	1.394	1.4027	1.402	1.465	1.465	1.352	1.352	1.34	1.3448
511	1.3948	1.3948	1.4033	1.403	1.466	1.466	1.352	1.352	1.34	1.3439
51 m	1.4046	1.398	1.4038	1.403	1.459	1.466	1.345	1.353	1.34	1.3
	1.3947	1.394	1.4025	1.4025	1.464	1.464	1.353	1.353	1.34	13
	1.3948	1.3949	1.4034	1.403	1.464	1.464	1.353	1.353	1.345	1.3
	1.3948	1.394	1.4033	1.403	1.4646	1.464	1.353	1.353	1.344	1.3
	1.4143	1.414	1.4045	1.4045	1.457	1.457	1.344	1.344	1.345	1.34
	1.3943	1.394	1.4026	1.4026	1.464	1.464	1.354	1.354	1.345	1.3451
	1.3944	1.394	1.4027	1.4027	1.4640	1.464	1.354	1.354	1.345	1.3
	1.3940	1.3940	1.4022	1.402	1.4648	1.464	1.354	1.354	1.34	1.3
	1.3949	1.3948	1.4036	1.4036	1.4638	1.463	1.354	1.354	1.345	1.34
	1.3940	1.3940	1.4021	1.4021	1.4643	1.464	1.3552	1.355	1.34	1.34
	1.3946	1.3946	1.4034	1.4034	1.4629	1.462	1.355	1.355	1.345	1.3453
	1.3963	1.3928	1.3995	1.4070	1.458	1.4630	1.3562	1.358	1.3492	1.3444
51y	1.3947	1.3947	1.4041	1.4041	1.4603	1.4603	1.357	1.3574	1.3475	1.347
51z	1.3941	1.3941	1.4026	1.4026	1.4634	1.4634	1.3562	1.356	1.345	1.3453
aa	1.3950	1.3950	1.4045	1.4046	1.4601	1.4600	1.3574	1.3573	1.347	. 34
ab	1.3959	1.3959	1.4113	1.4112	1.4485	1.4485	1.3592	1.3592	1.3543	1.3543
51 c	1.3939	1.3939	1.4035	1.4035	1.4597	1.4597	1.3599	1.3599	1.3465	1.3465
ad	1.3956	1.3955	1.4112	1.4111	1.4528	1.4528	1.3554	1.3554	1.3517	1.3517
$51 a \mathrm{e}$	1.3953	1.3953	1.411	1.4119	1.4471	1.4471	1.36	1.362	1.3	1

All the substituted systems as well as the parent have almost equivalent bond lengths on the C-C bonds of the cyanines $\left(\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{4}-\mathrm{C}_{5}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{C}_{6}\right)$ and longer bond lengths on the C-C bonds that connect the two cyanines $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{3}-\mathrm{C}_{4}\right)$. These two latter bond lengths though have not much difference among the substituted molecules to reflect any significant deviation from the singlet ground state of the parent system. Only on structures 51ab-51ae, with the smallest $\Delta E_{\text {ST }}$ values, do the bond lengths $\mathrm{C}_{1}-\mathrm{C}_{6}$
and $\mathrm{C}_{3}-\mathrm{C}_{4}$ noticeably shorten (1.447-1.459 \AA). By plotting the lateral C-C bond lengths $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ vs ΔE_{ST} this can be seen more clearly: graphs in Figure 18 plot the TAP systems with N-H substituent and the X and Y substituted with $N-p$-tolyl substituent, respectively. The first and last points are labeled with the structure's number to show that indeed there is tendency for shorter $\mathrm{C}_{1}-\mathrm{C}_{6}$ as the ΔE_{ST} reduces in favor of the triplet state.

E
Table 7. Selected angles $\left({ }^{\circ}\right)$ of the parent and the substituted systems on singlet state.

	118.	22	12	122	17.68	117.28	117.65	116.89	121.24	121.5
51b	119.53	122.37	121.91	121.91	17.14	117.14	116.67	116.67	121.50	121.50
51c	119.41	123.15	121.42	121.42	117.30	117.30	116.72	116.72	121.76	121.76
51d	118.57	123.20	120.53	120.53	118.59	118.59	116.91	116.91	120.86	120.86
51e	118.40	123.11	121.74	122.22	117.40	117.12	117.73	116.98	120.97	121.29
51f	119.31	122.93	121.44	121.44	17.44	117.44	16.85	116.85	121.49	121.49
51g	119.34	123.05	121.44	121.44	117.36	117.36	116.87	116.87	121.49	121.49
51h	119.53	123.44	121.44	121.44	117.07	117.07	116.82	116.82	121.51	121.51
1 i	119.38	123.17	121.46	121.46	17.27	117.27	16.94	116.94	121.37	121.37
51j	119.32	123.02	121.45	121.45	117.38	117.38	116.93	116.93	121.39	121.39
51k	119.43	123.26	121.46	121.46	117.20	117.20	116.91	116.91	121.39	121.39
511	119.49	123.42	121.46	121.46	117.08	117.08	116.89	116.89	121.47	121.47
51m	118.29	123.00	117.47	122.27	117.47	117.18	117.90	117.13	120.76	121.07
51n	119.36	123.18	121.48	121.48	117.25	117.25	116.99	116.99	121.31	121.31
510	119.49	123.37	121.46	121.46	117.11	117.12	116.95	116.95	121.36	121.36
51p	119.46	123.33	121.47	121.30	17.13	117.13	116.99	116.98	121.30	121.30
51q	119.38	123.61	120.97	120.97	17.53	117.53	117.75	117.75	120.85	120.85
51r	119.36	123.20	121.50	121.50	17.22	117.22	117.01	117.01	121.28	121.28
51s	119.39	123.22	121.49	121.49	117.21	117.21	117.05	117.05	121.29	121.29
51t	119.30	123.15	121.53	121.53	117.25	117.25	117.02	117.02	121.27	121.27
51u	119.49	123.35	121.46	121.46	117.12	117.12	117.03	117.03	121.28	121.28
51	119.23	123.08	121.56	121.56	117.29	117.29	117.07	117.07	121.23	121.23
51w	119.40	123.28	121.51	121.51	117.15	117.15	117.11	117.11	121.21	121.21
51x	119.36	123.20	121.75	121.28	117.00	117.40	117.21	117.03	121.03	121.38
51 y	119.51	123.35	121.47	121.47	117.10	117.10	117.22	117.22	121.30	121.30
51z	119.30	123.17	121.55	121.55	117.22	117.22	117.14	117.14	121.21	121.21
51 aa	119.50	123.38	121.48	121.49	117.08	117.07	117.21	117.21	121.13	121.13
51 ab	118.20	121.35	122.19	122.19	118.01	118.00	116.58	116.58	122.14	122.14
51 ac	119.25	123.21	121.64	121.64	117.13	117.13	117.39	117.39	121.07	121.07
51 ad	118.16	121.19	122.19	122.19	118.11	118.11	116.37	116.37	122.25	122.25
51 ae	117.79	121.03	122.46	122.46	118.10	118.10	116.70	116.70	122.12	122.12

Regarding the bond angles, a common characteristic can be observed on all substituted systems and that is the larger central angle $\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}\right)$ and CCN angles $\left(\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{~N}_{4}\right.$ and $\left.\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{~N}_{3}\right)$ of the negative cyanine compared to the opposite angles $\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}, \mathrm{~N}_{1} \mathrm{C}_{1} \mathrm{C}_{6}\right.$
and $\left.\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right)$ of the positive cyanine. In contrast, the other CCC angles $\left(\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{C}_{5}\right.$ and $\left.\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}\right)$ of the negative cyanine are smaller compared to the opposite angles $\left(\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{6}\right.$ and $\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$) of the positive cyanine.

Table 8. Selected bond lenghts (\AA) of N-R substituted systems on singlet state.

R	$\mathrm{C}_{1}-\mathrm{C}_{2}$	$\mathrm{C}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{C}_{5}$	$\mathrm{C}_{5}-\mathrm{C}_{6}$	$\mathrm{C}_{1}-\mathrm{C}_{6}$	$\mathrm{C}_{3}-\mathrm{C}_{4}$	$\mathrm{~N}_{1}-\mathrm{C}_{1}$	$\mathrm{~N}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{N}_{3}$	$\mathrm{C}_{6}-\mathrm{N}_{4}$
H	1.3900	1.3900	1.4000	1.4000	1.4600	1.4600	1.3500	1.3500	1.3400	1.3400
Me	1.4032	1.4032	1.4006	1.4006	1.4604	1.4604	1.3667	1.3667	1.3418	1.3418
Et	1.4034	1.4034	1.4004	1.4004	1.4629	1.4629	1.3679	1.3679	1.3423	1.3423
Vinyl	1.3990	1.3990	1.4017	1.4017	1.4606	1.4606	1.3693	1.3693	1.3429	1.3429
Tolyl	1.3900	1.4000	1.4000	1.4000	1.4600	1.4600	1.3700	1.3600	1.3400	1.3400
Ethynyl	1.3990	1.3928	1.4020	1.4020	1.4571	1.4571	1.3842	1.3842	1.3451	1.3451

The lateral C-C bonds $\mathrm{C}_{1}-\mathrm{C}_{6}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ on the N-substituted systems are the longest compared to the rest C - C bonds as a consequence of the zwitterionic character and the separate subunits. The plots in Figure 18 can give a clearer picture relating ΔE_{ST} with $\mathrm{C}_{1}-\mathrm{C}_{6}$ bonds. Indeed from the three plots there can be seen a linear correlation where ΔE_{ST} is reduced as $\mathrm{C}_{1}-\mathrm{C}_{6}$ decreases.

TAPs N-R substituted
Lateral Bond Lengths (C1-C6) A

Figure 18. Graphs plotting lateral bond length $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ vs ΔE_{ST} for linear substituted tetraazapentacenes with $\mathrm{R}=\mathrm{H}, p$-Tolyl and N-R substituted, respectively.

Since some of the theoretical substituted systems were also synthesized with N-tolyl substituent (see Chapter 3), it was important to compare the computational geometric data of N -H and N -tolyl (compounds name 91 for N -tolyl systems as in following Chapter 3) substituted systems (Tables 9 \& 10). A comparison indicates, however, that the N-substituent does not affect significantly any bond lengths or angles since most of them are very similar. This was also observed on N-Me, Et, vinyl, tolyl and ethynyl comparison (Table 8).

E
Table 9. Selected bond lengths (\AA) of parent and substituted systems with N - H and N-tolyl substituents on singlet state.

TAP		$\mathrm{C}_{1}-\mathrm{C}_{2}$	$\mathrm{C}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{C}_{5}$	$\mathrm{C}_{5}-\mathrm{C}_{6}$	$\mathrm{C}_{1}-\mathrm{C}_{6}$	$\mathrm{C}_{3}-\mathrm{C}_{4}$	$\mathrm{N}_{1}-\mathrm{C}_{1}$	$\mathrm{N}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{N}_{3}$	$\mathrm{C}_{6}-\mathrm{N}_{4}$
51i	H	1.3944	1.3944	1.4020	1.4020	1.4654	1.4654	1.3532	1.3532	1.3451	1.3451
91h ${ }^{\text {a }}$	Tolyl	1.3982	1.3982	1.4002	1.4002	1.4644	1.4644	1.3685	1.3685	1.3432	1.3432
51j	H	1.3943	1.3943	1.4015	1.4015	1.4647	1.4647	1.3535	1.3535	1.3459	1.3459
$91{ }^{\text {a }}$	Tolyl	1.3979	1.3979	1.3997	1.3997	1.4640	1.4640	1.3684	1.3684	1.3439	1.3439
51k	H	1.3947	1.3947	1.3997	1.4027	1.4653	1.4653	1.3529	1.3529	1.3448	1.3448
91k ${ }^{\text {a }}$	Tolyl	1.3985	1.3985	1.4009	1.4009	1.4640	1.4640	1.3685	1.3685	1.3429	1.3429
511	H	1.3948	1.3948	1.4033	1.4033	1.4666	1.4666	1.3524	1.3524	1.3439	1.3439
$91{ }^{\text {a }}$	Tolyl	1.3986	1.3986	1.4015	1.4015	1.4652	1.4652	1.3681	1.3681	1.3420	1.3420
510	H	1.3948	1.3949	1.4034	1.4034	1.4647	1.4647	1.3536	1.3536	1.3452	1.3453
$91 \mathrm{e}^{a}$	Tolyl	1.3987	1.3987	1.4016	1.4016	1.4633	1.4633	1.3694	1.3694	1.3433	1.3433
51p	H	1.3948	1.3947	1.4033	1.4033	1.4646	1.4647	1.3535	1.3535	1.3449	1.3449
91a ${ }^{a}$	Tolyl	1.3987	1.3986	1.4015	1.4015	1.4633	1.4633	1.3694	1.3694	1.3430	1.3430
51r	H	1.3943	1.3943	1.4026	1.4026	1.4645	1.4645	1.3542	1.3542	1.3451	1.3451
$91 i^{a}$	Tolyl	1.3981	1.3981	1.4007	1.4007	1.4634	1.4634	1.3699	1.3699	1.3431	1.3431
51t	H	1.3940	1.3940	1.4022	1.4022	1.4648	1.4648	1.3547	1.3547	1.3446	1.3446
$91 \mathrm{~g}^{\text {a }}$	Tolyl	1.3979	1.3979	1.4004	1.4004	1.4637	1.4637	1.3703	1.3703	1.3427	1.3427
51u	H	1.3949	1.3948	1.4036	1.4036	1.4638	1.4638	1.3543	1.3543	1.3456	1.3457
$91 \mathrm{~d}^{a}$	Tolyl	1.3988	1.3988	1.4017	1.4017	1.4624	1.4624	1.3704	1.3704	1.3437	1.3437
51w	H	1.3946	1.3946	1.4034	1.4034	1.4629	1.4629	1.3554	1.3554	1.3453	1.3453
$91 j^{a}$	Tolyl	1.3984	1.3984	1.4016	1.4016	1.4620	1.4620	1.3712	1.3712	1.3434	1.3434
51y	H	1.3947	1.3947	1.4041	1.4041	1.4603	1.4603	1.3574	1.3574	1.3475	1.3475
91b ${ }^{\text {a }}$	Tolyl	1.3986	1.3986	1.4022	1.4022	1.4611	1.4611	1.3720	1.3720	1.3440	1.3440

${ }^{a}$ Substitution same as in structure $\mathbf{5 1}$ but named after the synthesized systems $\mathbf{9 1}$ in Chapter 3.

Table 10. Selected angles $\left({ }^{\circ}\right)$ of parent and substituted systems with N - H and N-tolyl substituents on singlet state.

TAP R	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{6}$	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$	$\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{C}_{5}$	$\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{C}_{6}$	$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	$\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{~N}_{4}$	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{~N}_{3}$
51i H	119.38	123.17	121.46	121.46	117.27	117.27	116.94	116.94	121.37	121.37
$\mathbf{9 1 h}^{\boldsymbol{a}}$ Tolyl	120.38	123.56	120.62	120.62	117.41	117.41	117.77	117.77	122.01	122.01
51j H	119.32	123.02	121.45	121.45	117.38	117.38	116.93	116.93	121.39	121.39
91f ${ }^{a}$ Tolyl	120.33	123.42	120.61	120.61	117.51	117.51	117.75	117.75	122.04	122.04
51k H	119.43	123.26	121.46	121.46	117.20	117.20	116.91	116.91	121.39	121.39
91k ${ }^{\boldsymbol{a}}$ Tolyl	120.41	123.67	120.63	120.63	117.33	117.33	117.72	117.72	122.04	122.04
511 H	119.49	123.42	121.46	121.46	117.08	117.08	116.89	116.89	121.47	121.47
91c ${ }^{\text {a }}$ Tolyl	120.44	123.82	120.66	120.66	117.21	117.21	117.67	117.67	122.10	122.10
510 H	119.49	123.37	121.46	121.46	117.11	117.12	116.95	116.95	121.36	121.36
$91 \mathrm{e}^{a}$ Tolyl	120.44	123.77	120.65	120.65	117.25	117.25	117.73	117.73	122.00	122.00
51p H	119.46	123.33	121.47	121.30	117.13	117.13	116.99	116.98	121.30	121.30
91a ${ }^{\boldsymbol{a}}$ Tolyl	120.43	123.74	120.64	120.64	117.27	117.27	117.77	117.77	121.94	121.94
51r H	119.36	123.20	121.50	121.50	117.22	117.22	117.01	117.01	121.28	121.28
91i ${ }^{\text {a }}$ Tolyl	120.36	123.59	120.66	120.66	117.36	117.36	117.82	117.82	121.92	121.92
51t H	119.30	123.15	121.53	121.53	117.25	117.25	117.02	117.02	121.27	121.27
$\mathbf{9 1 g}^{\boldsymbol{a}}$ Tolyl	120.31	123.54	120.68	120.68	117.40	117.40	117.85	117.85	121.91	121.91
51u H	119.49	123.35	121.46	121.46	117.12	117.12	117.03	117.03	121.28	121.28
$\mathbf{9 1 d}^{\text {a }}$ Tolyl	120.46	123.75	120.63	120.63	117.26	117.26	117.82	117.82	121.92	121.92
51w H	119.40	123.28	121.51	121.51	117.15	117.15	117.11	117.11	121.21	121.21
$\mathbf{9 1 j}^{\boldsymbol{a}}$ Tolyl	120.39	123.71	120.69	120.69	117.27	117.27	117.89	117.89	121.88	121.88
51y H	119.51	123.35	121.47	121.47	117.10	117.10	117.22	117.22	121.30	121.30
$\mathbf{9 1 b}^{\boldsymbol{a}}$ Tolyl	120.46	123.80	120.66	120.66	117.21	117.21	117.97	117.97	121.86	121.86

${ }^{a}$ Substitution same as in structure 51 but named after the synthesized systems $\mathbf{9 1}$ in Chapter 3.

There is a slight increase of the $\mathrm{N}_{1}-\mathrm{C}_{1}$ and $\mathrm{N}_{2}-\mathrm{C}_{3}$ bond lengths of the positive cyanine of the N-tolyl substituted systems ($1.3681 \AA-1.3720 \AA$) compared to the $N-\mathrm{H}$ substituted systems ($1.3524 \AA-1.3574 \AA$) (Table 9). Furthermore, compared to the parent there is a slight increase of the central bond angles of both positive and negative cyanines $\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right.$ and $\left.\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}\right)$ in the N -tolyl systems while there is a small decrease of the $\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$ and $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{6}$ bond angles of the positive cyanine (Table 10). In addition all the CCN angles of N-tolyl systems are also increased in a small degree (e.g. on $\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{C}_{6}: 117.67^{\circ}-$ 117.99° on N-tolyl systems vs $116.89^{\circ}-117.22^{\circ}$).

2.4.3 NICS Calculations

Polycyclic conjugated hydrocarbons have been extensively studied regarding their aromaticity. There are many criteria used to estimate aromaticity e.g., aromatic stabilization energy (ASE), and isomerization stabilization energy (ISE), are energy criteria. ${ }^{267}$ Geometry criteria are also used having as prototype the benzene ring where all the $\mathrm{C}-\mathrm{C}$ bonds are equal having bond lengths between single and double bond. Nucleus-Independent Chemical Shifts (NICS) ${ }^{268}$ calculations proposed by Schleyer et al., in 1996, are magnetism criteria for the determination of the ring current as diatropic (aromatic character) or paratropic (antiaromatic character). Other and older magnetism criterions are the diamagnetic susceptibility exaltation Λ and nuclear magnetic resonance NMR. ${ }^{269}$

NICS is a computational method that estimates ring current locally, in each ring separately. The π electron current is estimated in the center of each planar ring where a Bq ghost atom is introduced. In the plane of the ring the σ orbital contributions to NICS prevails but $1 \AA$ above the ring center, the π orbitals have their maximum density and thus the estimation of the π delocalization can be done more accurately. Therefore $\operatorname{NICS}(1)(1 \AA$ above the ring center) is recommended compared to $\operatorname{NICS}(0)$ (at the ring center and same plane) for the estimation of aromaticity since it avoids σ orbital contributions. ${ }^{270}$ Near zero NICS values designate non aromaticity. Negative NICS values denote diatropic ring current i.e., aromaticity, while positive values denote paratropic ring current i.e., +28.8 for cyclobutadiene. Furthermore, qualitative comparisons can be made to benzene's ring currents $(-11.5 \mathrm{ppm}) .{ }^{268}$

Linear polycyclic hydrocarbons have been studied using NICS calculations and other methods for the aromaticity estimation of each ring. ${ }^{271}$ It is observed that the central ring of a linear polycyclic system is more aromatic than the outer rings. For example with anthracene $\operatorname{NICS}(1)=-13.06 \mathrm{ppm}$ on the central ring is whereas on the outer rings $\operatorname{NICS}(1)=$ 9.80 ppm . In contrast, in the angular analogous systems, e.g., phenanthrene, the central ring is less aromatic than the outer rings (Table 11). ${ }^{271}$

Table 11. NICS values (ppm) on RB3L YP/6-311+G*** level of theory. ${ }^{223}$

	$\begin{gathered} \mathrm{NICS}(0) \\ \text { Ring A } \end{gathered}$	NICS (1) Ring A	$\begin{gathered} \text { NICS (0) } \\ \text { Ring B } \end{gathered}$	$\begin{gathered} \hline \text { NICS (1) } \\ \text { Ring B } \end{gathered}$
	-8.55	-10.71	-8.55	-10.71
	-7.50	-9.80	-11.47	-13.06
	-8.53	-10.71	-5.72	-8.40

NICS calculations cannot be used strictly in such complicated systems. Thus NICS-scan technique is preferred where NICS values are estimated in a larger range e.g., 0 to $4.9 \AA$ and a plot of the NICS values vs the distance of the Bq atoms indicates the degree of aromaticity. A deep negative minimum denotes diatropic ring current, a positive maximum stands for paratropic and when there can be seen negative NICS values that decrease (becoming more positive) when distance increases and asymptotically are going to zero, then no ring current is present. ${ }^{272}$ For example, anthracene has a deeper minimum for the central ring $(\approx-40 \mathrm{ppm})$ than the outer ring $(\approx-28 \mathrm{ppm})$, which indicates more aromaticity on the centre than on the edges. The graph is composed by the out of plane components (above the plane of the molecule), in plane components (away from the center of the ring but in the same plane) and the isotropic chemical shift (Figure 19). ${ }^{272}$

NICS values as a function of diastance r (Angstrom) of anthracene.
(α) Central ring (β) Terminal ring

- Out of plane - In plane

Isotropic chemical shift
Figure 19. NICS (ppm) $v s$ distance (\AA) for middle and outer rings of anthracene. ${ }^{272}$

The singlet ground state of the substituted molecules is determined by their ability to form two independent cyanines which necessitates the sacrificing of the aromaticity of the central arene. The loss of aromaticity should be reflected by a bond length analysis (see Section 2.3.2) but also by studying the magnetic ring currents using NICS. As such, NICS calculations performed on the zwitterionic tetraazapentacene biscyanines are expected to show antiaromaticity or at least non aromaticity for the central ring and aromaticity on the outer rings which are not affected by the zwitterionic character of the system, while for the triplet ground state, the central ring is expected to be aromatic (Figure 20).

Figure 20. Linear TAP in triplet and singlet state.

The out of plane NICS values were estimated in the B3LYP/6-31G(d) level of theory for the parent system $\mathbf{1 6}$ to show the aromatic character on each ring. Unlike linear polycyclic systems, this tetraazapentacene system owing to the zwitterionic biscyanine character shows less aromaticity at the central benzene ring. The graph of each ring of the parent system shows that the central ring (ring 1) is less aromatic than the outer rings (ring 3) while the diazine rings (ring 2) are antiaromatic (Figure 21). TAP systems substituted by F and OMe substituents on X and Y positions were also studied regarding their aromaticity in each ring via NICS calculations to confirm the aromaticity behavior observed on the parent system since the same aromaticity behavior is estimated in all these singlet ground state systems. The resulting plots are identical to the parent system as expected.

Ring 1

Figure 21. NICS (ppm) vs distance (\AA) for the three rings of substituted TAPs 51k, 511, 51p, 51w and 51y.

NICS(0) and NICS(1) on selected substituted analogs 51a, 51k, 511, 51p, 51w, 51y, $\mathbf{5 1 a e}$ are listed in Table 12. Systems $\mathbf{5 1 k}$, 511, 51w, 51y show similar behavior to the parent system 51p as was also observed in the plots in Figure 21. In the two extreme cases though, substituted structures 51a and 51ae, NICS calculations successfully show the difference on the aromaticity of each benzene ring, as the singlet or the triplet state is approached respectively.

Table 12. NICS values (ppm) on parent 51p ($\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{E}=\mathrm{H}$) and selected substituted systems 51a ($\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{Z}=\mathrm{NH}_{2}$), 51k $(\mathrm{Y}=\mathrm{F})$, $511(\mathrm{Y}=\mathrm{OMe})$, 51w $(\mathrm{X}=\mathrm{F})$, 51y $(\mathrm{X}=\mathrm{OMe})$ and 51ae ($\mathrm{X}=\mathrm{E}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{NO}_{2}$).

	Ring 1		Ring 2		Ring 3	
	NICS (0)	NICS (1)	NICS (0)	NICS (1)	NICS (0)	NICS (1)
$\mathbf{5 1 a}$	-4.0	-5.7	2.1	1.6	-7.3	-7.1
51k	-2.7	-4.8	4.7	0.5	-7.6	-7.6
511	-2.9	-5.0	4.1	0.1	-7.5	-7.7
51p	-2.3	-4.6	5.4	1.0	-6.0	-7.3
51w	-2.2	-4.5	5.6	1.4	-7.1	-7.2
519	-2.4	-4.6	5.6	1.3	-6.8	-7.2
51ae	-15.9	-16.3	13.1	7.4	-2.7	-3.3

Structure 51a, with NO_{2} substituents on X positions and NH_{2} substituents on Y and Z positions, gives the most negative $\Delta E_{\mathrm{ST}}(-17.48 \mathrm{kcal} / \mathrm{mol})$ and thus the most singlet ground state character. NICS calculations give slight aromacity on the central ring (ring 1) and aromaticity on the outer rings (ring 3) similarly to systems $\mathbf{5 1 k}, \mathbf{5 1 1}, \mathbf{5 1 p}, \mathbf{5 1 w}$ and 51y. On the other hand structure 51ae, with NH_{2} substituents on X and E positions and NO_{2} substituents on Y positions, gives the most positive $\Delta E_{\text {ST }}$ and reaches the triplet ground state ($+1.61 \mathrm{kcal} / \mathrm{mol}$). NICS estimate much more aromatic character on ring 1 $[\operatorname{NICS}(1)=-16.3 \mathrm{ppm}]$ of system 51ae compared to the rest rings of the system and the other systems herein. These results confirm that NICS studies can be used in extreme cases to study and differentiate the singlet-triplet behavior of zwitterionic tetraazapentacenes.

Similar to benzene, aromatic systems have usually NICS values around -10 to -15 ppm depending on the structure and the computational method used. For instance NICS calculations [B3LYP/6-31G(d)/GIAO/SCF] estimate NICS (1) for monocyclic aromatic systems furan, thiophene and pyrolle, $-10.5,-11.1$ and -12.5 ppm , respectively. When these monocyclic systems are fused to a benzene ring though their NICS (1) values change and become $-9.2,-9.1$ and -11.7 ppm , respectively. ${ }^{273}$ These numbers show how much less the aromaticity is on the central ring of the linear tetraazapentacene systems studied here. S zwitterionic systems like tetraphenylhexaaza-anthracene (TPH-athracene) and tetraphenylhexaaza-acridine (TPH-acridine) have $\operatorname{NICS}(1)$ values -2.0 and +2.6 ppm for central and outer ring respectively of TPH-anthracene and -1.1 and +1.4 ppm for central and outer ring respectively of TPH-acridine. ${ }^{175}$ These numbers are comparable to ring 1 and ring 2 of TAPs studied here.

2.4.4 Time Dependent Calculations

Time Dependent (TD) calculations estimate the energetic difference between the ground and excited states (band gap) and provide helpful data regarding the molecules' singlettriplet gap. As the frontier orbitals of the molecule become closer in energy the band gap between the ground and first excited state is reduced and when close enough lead to destabilization of the singlet state and formation of a singlet biradical or triplet ground state.

The TD data can be compared with the experimental data provided by the UV/vis spectroscopy. TD calculations were performed using a range of methods such as

ZINDO, BLYP, B3LYP, PBE and PBE0. The energetic difference of the ground state and the first singlet excited state in eV shows a noticeable difference among the results of the various methods (Table 13).

Table 13. TD data (cV) in various methods for selected substituted molecules compared with experimental results.

TAP	TD-ZINDO	TD-BLYP	TD-B3LYP	TD-PBE	TD-PBE0	 2max UV/Vis $(\mathrm{DCM})(\mathrm{cV})$
$\mathbf{5 1 \mathbf { i }}$	1.43		1.63	1.75	1.65	1.80
$\mathbf{5 1 j}$	1.43	1.63	1.75	1.65	1.80	1.67
$\mathbf{5 1 k}$	1.43	1.66	1.78	1.68	1.83	1.71
$\mathbf{5 1 \mathbf { 1 }}$	1.42	1.62	1.75	1.64	1.80	1.72
$\mathbf{5 1 0}$	1.42	1.60	1.72	1.62	1.77	1.65
$\mathbf{5 1 p}$	1.41	1.58	1.60	1.60	1.75	1.64
$\mathbf{5 1 \mathbf { r }}$	1.41	1.55	1.66	1.56	1.71	1.61
$\mathbf{5 1 t}$	1.39	1.48	1.61	1.49	1.65	1.56
$\mathbf{5 1 \mathbf { u }}$	1.38	1.55	1.66	1.56	1.71	1.59
$\mathbf{5 1 w}$	1.39	1.47	1.60	1.49	1.64	1.56
$\mathbf{5 1 \mathbf { y }}$	1.34	1.38	1.50	1.39	1.55	1.50

On going from molecule 51i to molecule 51y $\Delta E_{\text {ST }}$ is reduced and if the energetic difference between the ground and first singlet state is also reduced, then there is a good agreement of the TD data and the $\Delta E_{\text {ST }}$ results. Indeed in all the methods used, this reduction is achieved with some exceptions and these are molecules 51w in TDZINDO, 51k and 51u in TD-BLYP, 51k, 51r and 51u in TD-B3LYP, and 51k and 51u in TD-PBE and TD-PBE0. These exceptions, according to the TD data have bigger energetic gaps than what was expected from the $\Delta E_{\text {ST }}$ resulting series. In general though, the decrease of this energetic difference is similarly followed in all the methods studied. The most accurate method can only be discerned by comparison with the experimental UV/vis data (i.e., synthesized N-tolyl substituted systems 51i, 51j, 51k, 511, 510, 51p, $\mathbf{5 1 r}, 51 \mathbf{t}, 51 \mathrm{u}, 51 \mathbf{w}, 51 \mathrm{y}$) from which the energetic gap can be estimated from the $\lambda_{\max }$ value (see Section 3.4). This comparison showed that of the methods investigated, TDB3LYP was the more accurate method.

Band gaps calculated using TD-B3LYP were compared to HOMO-LUMO energetic gaps $\left(\Delta E_{\mathrm{HL}}\right)$ for the theoretical structures 51a-51ae (Table 14). In general the decreasing trend of the calculated band gaps on going from structure 51a (most stable
singlet structure, $\Delta E_{\mathrm{ST}}-17.48 \mathrm{kcal} / \mathrm{mol}$) to structure 51ae (least stable singlet structure, $\Delta E_{\mathrm{ST}} 17.61 \mathrm{kcal} / \mathrm{mol}$) were in line with decreasing ΔE_{HL}, as expected. Furthermore, there was in most cases a linear relationship between band gap and ΔE_{ST} (Figure 22).

Table 14. Band gap (TD-B3LYP) for the parent and substituted molecules, the HOMO-LUMO energetic difference (ΔE_{HI}) and the singlet - triplet energy gap (ΔE_{ST}).

TAP	X	Y	E	Z	Band Gap (cV)	$\underset{(\mathrm{cV})}{\Delta E_{\mathrm{HL}}}$	$\underset{(\mathrm{kcal} / \mathrm{mol})}{\Delta E_{\mathrm{ST}}}$
51a	NO_{2}	NH_{2}	H	NH_{2}	1.75	1.74	-15.02
51b	H	H	CN	$\mathrm{H}^{\text {² }}$	1.76	1.90	-13.57
51c	NO_{2}	NH_{2}	H	H	1.79	1.74	-12.74
51d	H	H	H	NO_{2}	1.42	1.88	-12.54
51e	H	NH_{2}	H	NH_{2}	1.72	1.72	-12.27
51f	NO_{2}	H	H	H	1.85	1.84	-11.89
51 g	CN	OMc	H	H	1.76	1.78	-11.83
51h	H	NH_{2}	H	H	1.81	1.84	-11.65
51i	CF_{3}	H	H	H	1.75	1.83	-11.15
51j	CN	H	H	H	1.75	1.77	-11.13
51k	H	F	H	H	1.78	1.83	-11.12
511	H	OMc	H	H	1.75	1.82	-11.01
51m	H	H	H	NH_{2}	1.74	1.84	-10.88
51n	H	Br	H	H	1.71	1.81	-10.53
510	H	Mc	H	H	1.72	1.81	-10.10
51p	H	H	H	H	1.70	1.80	-10.06
51q	H	H	H	CN	1.66	1.78	-9.90
51r	H	CF_{3}	H	H	1.66	1.79	-9.88
51s	Br	H	H	H	1.65	1.75	-9.55
51t	H	CN	H	H	1.61	1.77	-9.51
51u	Mc	H	H	H	1.66	1.77	-9.07
51v	H	NO_{2}	H	H	1.48	1.70	-8.68
51w	F	H	H	H	1.60	1.71	-8.42
51x	NH_{2}	NO_{2}	H	H	1.44	1.62	-7.93
51y	OMc	H	H	H	1.51	1.63	-7.27
51 z	NH_{2}	H	H	H	1.47	1.58	-6.53
51 aa	OMc	CN	H	H	1.50	1.66	-6.35
51ab	H	H	NH_{2}	H	1.12	1.38	-2.82
51 ac	NH_{2}	H	NH_{2}	H	1.09	1.26	-1.55
51 ad	NH_{2}	NO_{2}	H	H	1.00	1.24	-1.18
51ae	NH_{2}	NO_{2}	NH_{2}	H	0.56	0.88	1.61

Figure 22. Band Gap and ΔE_{HL} vs ΔE_{ST} for systems 51a-51ae.

The linear correlation between the Band Gap and ΔE_{ST} supports the hypothesis that the optical band gap can be used to estimate the ΔE_{ST} and furthermore the TD computations validated the computational methods used for structure optimization. This was also observed on HOMO-LUMO gap vs ΔE_{ST} correlation. Furthermore, experimental UV/vis data for several derivatives (see Chapter 3) was closely in agreement with the computed band gaps which further validated the chosen computational method.

2.5 Summary

A range of substituted linear zwitterionic tetraazapentacenes were studied computationally in an effort to determine the effect of substitution on ΔE_{ST}. The strategic addition of suitable EDG and EWG's can be used to manipulate $\Delta E_{\text {ST }}$ by as much as the range -17.48 to $+1.61 \mathrm{kcal} / \mathrm{mol}$ while in the case of a tetra substituted analog structure 31, a positive ΔE_{ST} of $1.61 \mathrm{kcal} / \mathrm{mol}$ was obtained. Worthy of note was that the introduction of an amino group directly on the negative cyanine at C_{13}, had the most dramatic affect lowering the ΔE_{ST} from -10.06 to $-2.81 \mathrm{kcal} / \mathrm{mol}$. B3LYP $/ 6-31 \mathrm{G}(\mathrm{d})$ which was chosen for the optimization of the studied structures also proved to be accurate in estimating TD data since they correlate well with the experimental UV/vis data and also the geometric data as discussed in Chapter 3.

CHAPTER 3

Synthesis of Substituted
 5,7-Di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ides

Sections Page
3.1 Introduction 92
3.2 Methodology and Synthesis 93
3.2.1 Synthesis and Characterisation of Substituted 2-Halonitrobenzenes 96
3.2.1.1 Synthesis of 3-fluoro-4-nitroanisole 95b 98
3.2.1.2 Synthesis of 3-chloro-4-nitrobenzonitrile $95 f$ 99
3.2.2 \quad Synthesis and Characterisation of 2-Nitro- N-(p-tolyl)- benzeneamines 94 100
3.2.3 \quad Synthesis and Characterisation of $N-p$-Tolyl-1,2- benzenediamines 93 105
3.2.4 Synthesis and Characterisation of 1,5-Bis[1-N-(p-tolyl)-1,2- benzene-diamino]-2,4-dinitrobenzenes $\mathbf{9 2}$ 108
3.2.5 Synthesis and Characterisation of 5,7-Di- p-tolyl-13,7- dihydro-quinoxalino[2,3-b]phenazin-5-ium-13-ides 91 112
3.3 Comparison of Spectroscopic and Computational Data 123
3.3.1 Geometric Data 123
3.3.2 Time Dependence vs UV/vis 124
3.4 Summary 125

3.1 Introduction

The synthesis of a range of substituted 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3$b]$ phenazin- 5 -ium-13-ides (5,7-DTQP's) 91 was carried out to obtain experimental data such as UV/vis absorption and single crystal X-ray spectroscopy for comparison with and validation of the DFT computational study (Chapter 2).

Ten substituted analogs of 5,7-di- p-tolyl-7,13-dihydroquinoxalino[2,3b]phenazin-5-ium-13-ide 91 were synthesized. The p-tolyl group was selected for the positive cyanine N5 and N7 nitrogen atoms because it helped simplify both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra by providing an upfield CH_{3} signal which was a useful spectroscopic handle in the NMR spectra. Electron Donating Groups (EDGs) [MeO- ($\sigma_{\text {para }}=-0.27, \sigma_{\text {meta }}$ $=0.12)$ and Me- $\left.\left(\sigma_{\text {para }}=-0.17, \sigma_{\text {meta }}=-0.07\right)\right]$ and Electron Withdrawing Groups (EWGs) $\left[\mathrm{F}-\left(\sigma_{\text {para }}=0.06, \sigma_{\text {meta }}=0.34\right), \mathrm{N} \equiv \mathrm{C}-\left(\sigma_{\text {para }}=0.66, \sigma_{\text {meta }}=0.56\right)\right.$ and $\mathrm{F}_{3} \mathrm{C}-\left(\sigma_{\text {para }}=0.54\right.$, $\sigma_{\text {meta }}=0.43$)] were chosen for the C_{3} and C_{9} positions (X position) or the C_{2} and C_{10} positions (Y) (Table 15).

Table 15. 5,7-DTQP targets with substituents at $\mathrm{C}_{3} / \mathrm{C}_{9}(\mathrm{X})$ or $\mathrm{C}_{2} / \mathrm{C}_{10}(\mathrm{Y})$.

DTQP	X	Y		$\sigma_{\text {meta }}$	$\sigma_{\text {para }}$
91a	H	H			
91b	OMc	H		0.12	-0.27
91c	H	OMc		0.12	-0.27
91d	Mc	H	EDG	-0.07	-0.17
91e	H	Me		-0.07	-0.17
91f	CN	H		0.56	0.66
91g	H	CN		0.56	0.66
91h	CF_{3}	H		0.43	0.54
91 i	H	CF_{3}		0.43	0.54
91j	F	H		0.34	0.06
91k	H	F		0.34	0.06

The methoxy and cyano substituents predominantly influence the electronics via strong mesomeric effects as EDG and EWG, respectively, while the methyl, fluoro, and
trifluoromethyl substituents predominantly influence the electronics via a weaker inductive effect. Hammett values indicate the effect of each substituent at meta and para positions. Positive signs specify electron withdrawing effect while negative signs are for electron donating effect. The cyano substituent $(\mathrm{C} \equiv \mathrm{N})$ has the strongest electron withdrawing effect due to positive inductive (-I) and mesomeric (-M) effect. The trifluoromethyl substituent $\left(\mathrm{CF}_{3}\right)$ also has electron withdrawing effect. The fluorine substituent (F) on the other hand may have a positive σ value but the ratio of $\sigma_{\text {meta }}$ and $\sigma_{\text {para }}$ values ($\sigma_{\text {meta }}=0.34, \sigma_{\text {meta }}=0.06$) shows the fluorine acts more inductively than mesomerically, i.e., affects the meta positions more effectively that the para position. The methoxy substituent (OMe) has opposite signs for the substituent constant due to opposing inductive and mesomeric effect, however, since $\sigma_{\text {para }}(-0.27)$ is significantly larger than $\sigma_{\text {meta }}(0.12)$ then the mesomeric effect dominates, while methyl (Me) is electron-releasing in both respects (see Table 1, Chapter 2). The chosen range of substituents provided a thorough picture of the substitution effect regarding the electronic properties of 5,7-DTQP.

3.2 Methodology and Synthesis

The retrosynthetic analysis of substituted 5,7-DTQPs 91a-k was based on the synthetic method proposed by Koutentis ${ }^{155}$ and required access to substituted 2-nitro- N-(p-tolyl)benzeneamines 94 (Scheme 13).

91

92

93 (2 equiv.)

56 (1 equiv.)

Scheme 13

2-Nitro- N-(p-tolyl)benzeneamine $\mathbf{9 4}$ can be prepared via three routes: 1) via copper mediated Ullmann C-N coupling, ${ }^{274-277}$ 2) via Pd or Cu catalysed Buchwald-Hartwig $\mathrm{C}-\mathrm{N}$ coupling ${ }^{278,279}$ and 3) via base catalysed nucleophilic aromatic substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)^{280,281}$ of anilines on 2-halonitrobenzenes. The starting materials required in all the above methods are aryl halides and anilines. The first two methods, which require metal catalysts, work well for Br and I substituted nitrobenzenes since the ease of halogen displacement from the aromatic ring is generally $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}$. The opposite trend was observed on halogen displacement using the uncatalysed $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction and thus the latter procedure favors F and Cl substituents. ${ }^{281}$ Since 2-chloro and 2-fluoronitrobenzenes were more readily available than the 2-bromo and 2-iodonitrobenzenes the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ route was chosen for the synthesis of the substituted 2-nitro- N-(p-tolyl)benzeneamines 94. In addition, the ortho nitro substituent, strongly activated the halo substituent towards displacement and favored aromatic nucleophilic substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$). Thus, the substituted 2-halogenated nitrobenzenes $\mathbf{9 5}$ and 4-toluidine 96 were the required staring materials (Scheme 14).

Scheme 14

2-Nitro- N-(p-tolyl)benzeneamines 94 gave N-(p-tolyl)-1,2-benzenediamines 93 after reduction of the nitro group. Benzenediamines 93 reacted with 1,5-difluoro-2,4-dinitrobenzene 56 under basic conditions to give the disubstituted 1,5-bis[1- N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes 92. Hydrogenation of the nitro groups using Pd/C followed by filtration (Celite ${ }^{\circledR}$) to remove the heterogenous catalyst and partial oxidation under the atmospheric air in refluxing EtOH led to the formation of a deep green solution from which the target 5,7-di-(p-tolyl)-7,13-dihydroquinoxalino[2,3b]phenazin-5-ium-13-ides 91 were isolated as lustrous blue green microcrystals (Scheme 15).

$95 \mathrm{a}(\mathrm{Hal}=\mathrm{F}, \mathrm{X}=\mathrm{Y}=\mathrm{H})$
95b-k (see Table 16)

Scheme 15. Reagents and conditions: i) $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ (2 equiv.), KF (1 equiv.), $180^{\circ} \mathrm{C}$, 48 h ; ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\left(5 \mathrm{~mol} \%\right.$), $\mathrm{EtOH}, 20^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$; iii) $1,3-\mathrm{F}_{2}-2,4-\left(\mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right.$ (0.5 equiv.), $i-\mathrm{Pr}_{2} \mathrm{EtN}$ (1 equiv.), $\mathrm{EtOH}, 80^{\circ} \mathrm{C}, 1-3 \mathrm{~d}$; iv) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%), \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 4-6 \mathrm{~h} ;$ v) air, $\mathrm{EtOH}, 80^{\circ} \mathrm{C}, 0.5-1 \mathrm{~h}$.

3.2.1 Synthesis and Characterisation of Substituted 2-Halonitrobenzenes

2-Fluoronitrobenzene 97 has been synthesized by three basic synthetic methods (Scheme 16): ${ }^{282}$ The first (Method A) was via direct nitration of fluorobenzene using a mixture of sulfuric and nitric acids. The resulting product was an isomeric mixture of para and ortho-fluoronitrobenzenes in a 9:1 ratio favoring the para product 98 . The second (Method B) was the diazotization of 2-nitroaniline 99 and its conversion to 2-nitrodiazonium fluoroborate. Thermal decomposition of the latter, gave 2-fluoro-nitrobenzene $\mathbf{9 7}$ in low yields. The thermal decomposition of fluoroborates was achievable only when the nitro group was at the ortho position and thus only the ortho product can be synthesized via this method. Finally, the third and most preferred (Method C) involved halogen exchange using an alkali metal fluoride on 2-chloronitrobenzene 100. Long reaction times and high temperature are required affording the product in moderate to good yields.

Scheme 16

Heating a solvent free mixture of 2-chloronitrobenzene $\mathbf{1 0 0}$ and KF (1 equiv.) without stirring at $290{ }^{\circ} \mathrm{C}$ for 1 d under pressure in a sealed tube, gave 2 -fluoronitrobenzene 97 in 61% yield based on recovered 2-chloronitrobenzene (50\%). ${ }^{283}$ Using DMF at $170{ }^{\circ} \mathrm{C}$ or DMSO at $185{ }^{\circ} \mathrm{C}$ for 7 d and 4.5 h , respectively the reaction gave similar yields around $40 \% .{ }^{284}$ The yield was improved to 56% though when the reaction in DMSO was kept for 10 h and in tetramethylene sulfone $\left(240{ }^{\circ} \mathrm{C}, 22 \mathrm{~h}\right) .{ }^{282}$

An improved method of halogen displacement by fluorination on 2-chloronitrobenzene involved the use of ultra-fine particulate KF in tetramethylene sulfone with a macrocyclic ether or a quaternary ammonium halide catalyst. The product yield reached 87% with 13% unreacted 2-chloronitrobenzene. The latter procedure was also applicable when the chloro and nitro substituents were in the para positions. ${ }^{285}$

Other ways of synthesizing fluoronitrobenzene have also been reported. An effort to synthesize fluoronitrobenzene by Appelman et al., by reacting nitrobenzene with cesium fluoroxysulfate $\left(\mathrm{CsSO}_{4} \mathrm{~F}\right)$ in the presence of an acid catalyst, showed that the meta product was mostly favored and that the yields were very low but could be enhanced with the use of an acid catalyst such as $\mathrm{BF}_{3}, \mathrm{FSO}_{3} \mathrm{H}$ or "magic acid" $\mathrm{SbF}_{5} . \mathrm{FSO}_{3} \mathrm{H}^{286}$

2-Fluoronitrobenzene was also synthesized by fluorodenitration of 1,2-dinitrobenzene using tetraphenylphosphonium hydrogendifluoride. ${ }^{287}$

Fortunately, the following 2-chloro and 2-fluoronitrobenzenes were commercially available and did not need to be synthesized (Table 16). Nevertheless, 3-fluoro-4-nitroanisole 95b and 3-chloro-4-nitrobenzonitrile $\mathbf{9 5 f}$ had to be prepared.

Table 16. Availability of 2-halonitrobenzenes.
Commercial

Noncommercial

$95 \mathrm{~b} \quad 95 \mathrm{f}$

3.2.1.1 Synthesis of 3-fluoro-4-nitroanisole 95b

3-Fluoro-4-nitroanisole 95b, required for the preparation of 3,9-dimethoxy-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 91b, was synthesized via O-methylation of the analogous phenol. In general, alkylation of phenols can usually be carried out by reaction of an alkali metal phenolate with alkyl halides or sulfates. OMethylation can occur with simple refluxing of phenols with excess MeI, using either anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF, ${ }^{288} \mathrm{KOH}$ in DMSO ${ }^{289}$ or NaH in THF/DMF mixtures. ${ }^{290}$ The use of more powerful alternative methylating agents such as $\mathrm{Me}_{2} \mathrm{SO}_{4},{ }^{291}$ and the less hazardous dimethyl carbonate (DMC) in the presence of a base and a catalyst such as the couple of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Bu}_{4} \mathrm{NBr}^{292,293}$ or DBU as catalyst, ${ }^{294}$ or in the presence of an ionic liquid like 1 - n-butyl-3-methylimidazolium chloride ([BMIm]Cl) ${ }^{295}$ have been used. Furthermore, diazomethane has been used to methylate acidic hydroxyl groups in the presence of an acid catalysts such as fluoroboric acid. ${ }^{296}$

3-Fluoro-4-nitroanisole 95b was eventually synthesized via O-methylation of the commercially available 3-fluoro-4-nitrophenol 101 using $\mathrm{Me}_{2} \mathrm{SO}_{4}$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and acetone under reflux (Equation 1). ${ }^{297}$

Reagents and conditions: i) $\mathrm{Me}_{2} \mathrm{SO}_{4}$ (1.5 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4 equiv.)
$\mathrm{Me}_{2} \mathrm{CO}, c a .50^{\circ} \mathrm{C}$ (reflux), $3 \mathrm{~h}, 81 \%$ (lit., ${ }^{297} 85 \%$).

The work up involved addition of $\mathrm{H}_{2} \mathrm{O}$ to the reaction mixture, followed by neutralization with acetic acid (AcOH). After extraction (DCM) and collection of the organic layer, a dark oil was isolated. On cooling (fridge, ca. $3{ }^{\circ} \mathrm{C}$) this oil solidified to afford a light brown solid. A short chromatograph removed the dark polar material (baseline TLC) to afford a yellow oil which on trituration with n-pentane gave 3 -fluoro-4-nitroanisole 95b as a colorless solid [mp $48{ }^{\circ} \mathrm{C}$ (n-hexane), lit., ${ }^{297} 56^{\circ} \mathrm{C}$] in good yield (81%). The reaction could be performed comfortably on 1 g scale to provide enough material for the subsequent chemistry.

3.2.1.2 Synthesis of 3-chloro-4-nitrobenzonitrile $95 \boldsymbol{f}$

3-Chloro-4-nitrobenzonitrile 95f, required for the preparation of 3,9-dicyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 91f, was prepared from the commercially available 4-amino-3-chlorobenzonitrile $\mathbf{1 0 2}^{298}$ via Sandmeyer nitration. The procedure involved the classic diazotization method with NaNO_{2} and $\mathrm{Cu}(\mathrm{I}) \mathrm{NO}_{2}$ (Equation 2). To a suspension of 4-amino-3-chlorobenzonitrile 102 in concentrated HCl at $c a .0^{\circ} \mathrm{C}$, an aqueous solution of NaNO_{2} (1.5 equiv.) was added. The mixture was stirred (10 min) and then added to a suspension of NaNO_{2} and freshly prepared $\mathrm{Cu}_{2} \mathrm{O}^{299,300}$ in $\mathrm{H}_{2} \mathrm{O}$ at ca. 0 ${ }^{\circ} \mathrm{C}$. After stirring for 30 min at $c a .0^{\circ} \mathrm{C}$ and then 30 min at $c a .20^{\circ} \mathrm{C}$, the reaction mixture was extracted (DCM), washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography gave 3-chloro-4-nitrobenzonitrile $95 f$ as colorless crystals, $\left[\mathrm{mp} 77-78{ }^{\circ} \mathrm{C}\right.$ (n-pentane), lit., ${ }^{298}$ yellow oil] in 70\% yield. Interestingly, although not reported in the literature procedure, we also isolated from this reaction 3,4-dichlorobenzonitrile $\mathbf{1 0 4}$ [mp $64-65{ }^{\circ} \mathrm{C}$ (n-pentane)] as a trace side-product.

Reagents and conditions: i) HCl (conc.), $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; ii) aqucous NaNO_{2} (1.5 cquiv.), $0^{\circ} \mathrm{C}$, 10 min ; iii) suspension of aqucous NaNO_{2} (7 equiv.), $\mathrm{Cu}_{2} \mathrm{O}$ (0.4 equiv.), ca. 0 to $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$, $95 \mathrm{f} 70 \%$ (lit., ${ }^{298} 87 \%$), 104 (trace).

With the 2-chloro- and 2-fluoronitrobenzenes either purchased or synthesized the preparation of the required diarylamines could be pursued.

3.2.2 Synthesis and Characterisation of 2-Nitro- N-(p-tolyl)benzeneamines 94

Synthesis of 2-nitro-N-(p-tolyl)benzeneamines 94

The next synthetic step involved the formation of the 2 -nitro- N - $(p$-tolyl)benzene-amines 94 via nucleophilic aromatic substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)$. The reaction of 2-chloro-nitrobenzene with 4-toluidine has been previously reported and heating a mixture at $170{ }^{\circ} \mathrm{C}$ for $12 \mathrm{~h}^{301}$ or under MW irradiation $(90 \mathrm{~W})$ for $8 \mathrm{~min}^{302}$ gave the desired product in 74 and 90% yields, respectively. Because of the required multigram scale for the synthesis of the 2-nitro- N-(p-tolyl)benzeneamines 94, conventional heating methods (woods metal bath) were chosen instead of MW irradiation.

As such, the halogenated nitrobenzenes were mixed with 4-toluidine and KF, and heated at ca. $180{ }^{\circ} \mathrm{C}$ for about 48 h without stirring (Table 17). The reaction was judged complete when all the halogenated nitrobenzene had been consumed (TLC). At this point the mixture was allowed to cool to $c a .20^{\circ} \mathrm{C}$, dissolved in DCM and extracted with aqueous $\mathrm{HCl}(5-10 \%)$ to remove unreacted amine. In most cases dry flash chromatography was also needed to remove minor side-products.

Table 17. Reaction of 2-halonitrobenzenes 95 (1 equiv.) with p-toluidine 96 (2 cquiv.) and KF (1 equiv.) at $180^{\circ} \mathrm{C}$.

 95			$\xrightarrow[180^{\circ} \mathrm{C}]{\mathrm{KF}}$		
95	Hal	X	Y	Time (d)	Yiclds 94 (\%)
95 a	F	H	H	2	94 a (87)
95b	F	McO	H	2	94 b (75)
95 c	Cl	H	McO	4^{a}	94 c (17)
95 d	F	Mc	H	2	94d (84)
95 e	Cl	H	Mc	>2	94 e (37)
95 f	Cl	CN	H	<1	94 f (64)
95 g	Cl	H	CN	2	94g (92)
95h	Cl	$\mathrm{F}_{3} \mathrm{C}$	H	2	94h (85)
$95 i$	F	H	$\mathrm{F}_{3} \mathrm{C}$	2	94i (99)
95j	F	F	H	2	94j (82)
95k	F	H	F	2	94k (79)

${ }^{a} p$-Toluidine (3 cquiv.) and KF (1.5 cquiv.)

The 2-nitro- N-(p-tolyl)benzeneamines 94 were generally isolated in good yields especially when additional electron withdrawing substituents were present, however, where electron releasing substituents were para with respect to the halogen (e.g., $\mathrm{Y}=\mathrm{Me}$ and $\mathrm{Y}=\mathrm{OMe}$) the reactions were sluggish, gave mixtures that were difficult to extract with aqueous HCl , and furthermore, were difficult to chromatograph due to excess formation of polar material (baseline on TLC). These products were isolated in very low yields, presumably because these substituents deactivated the arene towards nucleophilic attack. At best, for a 1 g scale reaction the use of 4 -toluidine (3 equiv.) and KF (1.5 equiv.) heated over 4 d gave 37% yields of the $\mathrm{Y}=$ Me product and 17% of $\mathrm{Y}=\mathrm{OMe}$ product.

Interestingly 4-nitro- N, N^{\prime}-[di-(p-tolyl)]benzene-1,3-diamine $\mathbf{1 0 5}$ was isolated as a very minor side-product (1%) from the reaction of 2-chloro-4-fluoro-1-nitrobenzene $\mathbf{9 5 j}$ with p-toluidine in order to get 5 -fluoro-2-nitro- N-(p-tolyl)-benzeneamine $\mathbf{9 4 j}$ (Eq. 3). This supported that the 5 -fluoro of $\mathbf{9 4 j}$ was reactive enough to be displaced under the reaction conditions.

Another important side-product, 4-nitro- N-(p-tolyl)-3-(p-tolyl-amino)-benzamide 106, was also isolated from the reaction of chloronitrobenzonitrile $\mathbf{9 5 f}$ with 4-toluidine. Under the specific conditions and depending on the reaction scale, the carbon of the cyano group could be attacked by excess 4 -toluidine and on work up the carboxamide 106 was isolated. Increasing the reaction scale led to longer reaction times, higher yields of side-product 106, and a decreased yield of the target molecule $94 f$ (Table 18).

Table 18. Reaction of 3-chloro-4-nitrobenzonitrile $\mathbf{9 5 f}$ with p-toluidine $\mathbf{9 6}$ and KF (1 equiv.)

The reaction was best performed on a small scale ($30 \mathrm{mg}, 0.16 \mathrm{mmol}$ or 40 mg , 0.22 mmol) of 3-chloro-4-nitrobenzonitrile $\mathbf{9 5 f}$ using 4-toluidine (2 equiv.) and anhydrous KF (1 equiv.), at ca. $180{ }^{\circ} \mathrm{C}$. These conditions led to a complete consumption of the halonitrobenzene in less than 24 h to afford the target molecule 3-(p-toluidino)-4-nitrobenzonitrile 94f in $63 \%-64 \%$. This side reaction was observed
only during the reaction of 3-chloro-4-nitrobenzonitrile $\mathbf{9 5 f}(\mathrm{X}=\mathrm{C} \equiv \mathrm{N})$ with 4-toluidine. The isomeric 4-chloro-3-nitro-benzonitrile $\mathbf{9 5 g}(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$, which has the cyano group meta to the activating nitro group, when treated with 4 -toluidine gave only the target molecule 4 -(p-toluidino)-3-nitrobenzonitrile $\mathbf{9 4 g}$ in 92% yield. Clearly the carbon of the $\mathrm{C} \equiv \mathrm{N}$ group on 3-chloro-4-nitrobenzonitrile $\mathbf{9 5 f}(\mathrm{X}=\mathrm{C} \equiv \mathrm{N})$ was more strongly activated towards nucleophilic attack by the para electron withdrawing nitro group.

Characterisation of 2-nitro- N -(p-tolyl)benzeneamines 94

2-Nitro- N-(p-tolyl)benzeneamines 94 were isolated as orange crystals, usually needles, and recrystallized from n-hexane. Their molecular weights were determined by mass spectrometry (MS) which also provided information about characteristic fragmentations. Bulk purity was determined by melting point, by quantitative element analysis (EA), which also supported the molecular formulae, and by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy. Infrared (FTIR) spectroscopy helped identify of characteristic functional groups while UV/vis spectroscopy described electronic transitions.

MS analysis not only provided the parent ion but also gave details about important fragmentations such as the loss of the NO_{2} group $\left(\mathrm{M}^{+}-\mathrm{NO}_{2}\right)$. The UV/vis spectroscopy of these systems showed an absorption between 400 and 200 nm . Infrared spectroscopy shows among others, the vibrations of the aromatic Ar NH and Ar CH as well as the nitro group (Table 19).

Table 19. Experimental data of 2-nitro- N-(p-tolyl)benzeneamines 94.

\#	$\mathbf{M p}\left({ }^{\circ} \mathrm{C}\right)$ (hexane)	EA (\%)		$\begin{gathered} \lambda_{\max }(\underset{\operatorname{DOg})}{(\operatorname{DCD} \varepsilon)} \end{gathered}$	$\begin{gathered} m / z(\text { EI }) \\ \mathbf{M}^{+}(100 \%) \end{gathered}$	$\underset{\left(\mathrm{cm}^{-1}\right)}{v_{\max }}$
		Found	Required			
94a	66-67	C, 68.52	C, 68.41	205 (3.88)	228	3335w (Ar NH)
		H, 5.33	H, 5.30	262 (3.96)		1504s (NO_{2}, as)
	Lit., ${ }^{374}(68)$	N, 12.14	N, 12.27	434 (3.60)		1352s (NO_{2}, sy)
94b	85-86	C, 65.23	C, 65.11	265 (4.02)	258	3343w (Ar NH)
		H, 5.50	H, 5.46	477 (3.60)		3116w (Ar CH)
		N, 10.94	N, 10.85			$1505 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, as $)$
						$1339 \mathrm{~m}\left(\mathrm{NO}_{2}\right.$, sy)
94c	86-87	C, 65.15	C, 65.11	204 (4.02)	258	3343w (Ar NH)
		H, 5.39	H, 5.46	266 (4.18)		3115w (Ar CH)
	Lit., ${ }^{375}$ (85-86)	N, 10.87	N, 10.85	477 (3.72)		$1506 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, as $)$
						$1339 \mathrm{~m}\left(\mathrm{NO}_{2}\right.$, sy)
94d	92-93	C, 69.38	C, 69.41	273 (3.97)	242	3351m (Ar NH)
		H, 5.73	H, 5.82	433 (3.60)		3032w (Ar CH)
	Lit., ${ }^{376}$ (80)	N, 11.67	N, 11.56			$1507 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, as $)$
						1338s (NO_{2}, sy)
94e	83-84	C, 69.42	C, 69.41	203 (4.06)	242	3358m (Ar NH)
		H, 5.86	H, 5.82	263 (4.01)		2924w (Ar CH)
	Lit., ${ }^{377}$ (85)	N, 11.58	N, 11.56	450 (3.58)		$1511 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, as $)$
						$1339 \mathrm{~s}\left(\mathrm{NO}_{2}, \mathrm{sy}\right)$
94f	139-140	C, 66.40		205 (4.08)	253	3317 m (Ar NH)
		H, 4.29	H, 4.38	262 (4.11)		2236w (CN)
		N, 16.48	N, 16.59	442 (3.61)		1512s (NO_{2}, as $)$
						$1339 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, sy)
949	122-123	C, 66.39	C, 66.40	228 (4.01)	253	3318 m (Ar NH)
				260 (4.10)		$2222 \mathrm{~m}(\mathrm{CN})$
	Lit., ${ }^{378}$ (128)	N, 16.49	N, 16.59	286 (4.10)		$1512 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, as $)$
				419 (3.96)		1358s (NO_{2}, sy)
94h	64-65	C, 56.81	C, 56.76	254 (3.95)	296	3364w (Ar NH)
		H, 3.71	H, 3.74	431 (3.52)		2926w (Ar CH)
		N, 9.33	N, 9.46			1496s (NO_{2}, as)
						$1331 \mathrm{~m}\left(\mathrm{NO}_{2}\right.$, sy)
94i	111-112	C, 56.70	C, 56.76	254 (4.03)	296	3351w (Ar NH)
		H, 3.68	H, 3.74	418 (3.57)		3104w (Ar CH)
	Lit., ${ }^{379}$ (113.5-114)	N, 9.37	N, 9.46			$1509 \mathrm{~m}\left(\mathrm{NO}_{2}, \text { as }\right)$
						$1323 \mathrm{~s}\left(\mathrm{NO}_{2}, \mathrm{sy}\right)$
94j	123-124	C, 63.32	C, 63.41	269 (3.81)	246	3329 m (Ar NH)
		H, 4.43	H, 4.50	416 (3.49)		3105w (Ar CH)
		N, 11.25	N, 11.38			$1499 \mathrm{~s}\left(\mathrm{NO}_{2} \text {, as }\right)$
						1343s (NO_{2}, sy)
94k	119-121	C, 63.43	C, 63.41	257 (3.93)	246	3347 m (Ar NH)
		H, 4.38	H, 4.50	449 (3.58)		3107w (Ar CH)
		N, 11.22	N, 11.38			$1511 \mathrm{~s}\left(\mathrm{NO}_{2}\right.$, as $)$
						$1346 \mathrm{~m}\left(\mathrm{NO}_{2}\right.$, sy)

In ${ }^{1} \mathrm{H}-\mathrm{NMR}$ the $\mathrm{N} H$ proton gave the most downfield singlets ($\delta_{\mathrm{H}} 9.33-9.78 \mathrm{ppm}$) while the tolyl methyl groups were in most cases, the most upfield singlets (δ_{H} 2.36-2.41 $\mathrm{ppm})$. The exceptions were the methyl substituted systems 94d ($\mathrm{X}=\mathrm{Me}$) and $\mathbf{9 4} \mathbf{e}$ $(\mathrm{Y}=\mathrm{Me})$ which gave more upfield signals at $\delta_{\mathrm{H}} 2.25$ and 2.28 ppm , respectively for the non tolyl methyl groups. The methoxy groups of the substituted systems $\mathbf{9 4 b}$ ($\mathrm{X}=\mathrm{OMe}$) and $\mathbf{9 4 c}(\mathrm{Y}=\mathrm{OMe})$ gave a more downfield singlets at 3.72 and 3.81 ppm , respectively. The Ar Hs were in the region 8.53-6.30 ppm. Regardless of the substitution, the most upfield signal of Ar H s belongs to hydrogens next to the nitro groups $\left(H_{\mathrm{d}}\right)$. The substituent though affected the signal and multiplicity of the rest Ar Hs. Usually hydrogens H_{a} and H_{b} were observed as multiplets (7.35-7.02 ppm) but they were resolved cleanly in the trifluoromethyl and fluoro substituted systems. Hydrogen H_{c} was also observed as a multiplet peak except when the X position was substituted.

In the ${ }^{13} \mathrm{C}$-NMR spectra, the most downfield C signals were $C_{7}\left(\delta_{\mathrm{C}}\right.$ 137.0-165.5 $\mathrm{ppm}), C_{6}\left(\delta_{\mathrm{C}} 134.4-146.2 \mathrm{ppm}\right)$ and $C_{1}\left(\delta_{\mathrm{C}} 134.7-143.6 \mathrm{ppm}\right)$, depending on the substitution of the system. Surprisingly, C_{4} also gave the most downfield signal (165.5, 147.8 and 168.9 ppm) when the system is substituted on the X position with $\mathrm{OMe}, \mathrm{Me}$ and F substituent, respectively. The tolyl methyl groups gave the most upfield signals (20.0-21.4 ppm). The methyl group on systems $\mathbf{9 4 d}(\mathrm{X}=\mathrm{Me})$ and $\mathbf{9 4 e}(\mathrm{Y}=\mathrm{Me})$ gave a more downfield signal than the tolyl methyl at 22.4 and 20.9 ppm , respectively while the methoxy group on systems $\mathbf{9 4 b}(\mathrm{X}=\mathrm{OMe})$ and $\mathbf{9 4 c}(\mathrm{Y}=\mathrm{OMe})$ gave a more downfield signal at 55.6 and 55.8 ppm , respectively.

3.2.3 Synthesis and Characterisation of N - p-Tolyl-1,2-benzenediamines $\mathbf{9 3}$

Synthesis of N-p-tolyl-1,2-benzenediamines 93
Hydrogenation of 2-nitro- N-(p-tolyl)benzeneamines 94 was carried out in a Parr hydrogenator apparatus ($\mathrm{H}_{2}, 2$ bar) using ethanol as solvent and $\mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%)$ as catalyst to afford the N-p-tolyl-1,2-benzenediamines $\mathbf{9 3}$ in good yields (Table 20).

Table 20. Hydrogenation of 2-nitro- N-(p-tolyl)benzeneamines 94 (1 equiv.) in EtOH using H_{2} (2 bar) and $5 \% \mathrm{Pd} / \mathrm{C}$ (1 mass equiv.) at rt for 1 h .

94
93

$\mathbf{9 4}$	X	Y	Y ields $\mathbf{9 3}$ $(\%)$
$\mathbf{9 4 a}$	H	H	$\mathbf{9 3 a}(76)$
$\mathbf{9 4 b}$	OMe	H	$\mathbf{9 3 b}(81)$
$\mathbf{9 4 c}$	H	OMe	$\mathbf{9 3 c}(96)$
$\mathbf{9 4 d}$	Me	H	$\mathbf{9 3 d}(84)$
$\mathbf{9 4 e}$	H	Me	$\mathbf{9 3 e}(77)$
$\mathbf{9 4 f}$	CN	I	$\mathbf{9 3 f}(59)$
$\mathbf{9 4 g}$	H	CN	$\mathbf{9 3 g}(74)$
$\mathbf{9 4 h}$	CF	H	$\mathbf{9 3 h}(98)$
$\mathbf{9 4}$	H	CF	$\mathbf{9 3 i}(77)$
$\mathbf{9 4} \mathbf{j}$	F	H	$\mathbf{9 3 j}(66)$
$\mathbf{9 4 k}$	H	F	$\mathbf{9 3 k}(81)$

After the hydrogen pressure was stabilised, the orange color of the nitroanilines disappeared and no more starting material was observed (by TLC), the reaction was stopped and the solution was filtered through Celite ${ }^{\circledR}$ directly onto crushed ice. In most cases the resulting N-(p-tolyl)-1,2-benzenediamines $\mathbf{9 3}$ crystallized in the cold water and were isolated by filtration. Diamines $\mathbf{9 3 h}\left(\mathrm{X}=\mathrm{CF}_{3}\right)$ and $\mathbf{9 3 i}(\mathrm{X}=\mathrm{F})$ were isolated after extraction by DCM as colorless oils. The colorless 1,2-diamines readily oxidized to give colored impurities and as such they were stored at low temperatures in the fridge.

Characterisation of N-p-tolyl-1,2-benzenediamines 93

Microanalysis, melting point, UV/vis, FTIR spectroscopy and LRMS which among other fragmentations showed the loss of NH_{2} were used to confirm the structure of diamines 93 (Table 21).

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy showed that the tolyl methyl groups were the most upfield singlets (δ_{H} 2.23-2.35 ppm). Diamine 93e $(\mathrm{Y}=\mathrm{Me}$) gave signals at 2.32 and 2.30 ppm for the tolyl methyl and methyl on Y position, respectively while the diamine 93d (X $=\mathrm{Me}$) gave methyl singlets at 2.23 and 2.29 ppm , respectively. The methoxy groups of the substituted systems 93b ($\mathrm{X}=\mathrm{OMe}$) and $\mathbf{9 3 c}(\mathrm{Y}=\mathrm{OMe})$ gave a more downfield singlets at 3.70 and 3.81 ppm , respectively. The NH and NH_{2} protons in some cases [93a (parent), $\mathbf{9 3}(\mathrm{Y}=\mathrm{Me}), \mathbf{9 3 i}\left(\mathrm{Y}=\mathrm{CF}_{3}\right)$ and $\left.\mathbf{9 3 k}(\mathrm{Y}=\mathrm{F})\right]$ overlapped to give a broad singlet peak ($\delta_{\mathrm{H}} 3.82-4.15 \mathrm{ppm}$). All other substituted diamines gave separate broad singlets for $\mathrm{NH}\left(\delta_{\mathrm{H}} 4.97-5.58 \mathrm{ppm}\right)$ and $\mathrm{NH}_{2}\left(\delta_{\mathrm{H}} 3.18-4.15 \mathrm{ppm}\right)$. The Ar $H \mathrm{~s}$ were in the region 6.287.35 ppm .
${ }^{13} \mathrm{C}$-NMR spectroscopy, indicated that the most downfield C signals were C_{7} ($\left.\delta_{\mathrm{C}} 138.8-159.6 \mathrm{ppm}\right)$ and $C_{1}\left(\delta_{\mathrm{C}} 131.9-145.5 \mathrm{ppm}\right)$ depending on the substitution of the system, as well as C_{4} at 153.5 and 158.5 ppm on $\mathbf{9 3 b}(\mathrm{X}=\mathrm{OMe})$ and $\mathbf{9 3 j}(\mathrm{X}=\mathrm{F})$ and C_{3} at 158.3 and 162.8 ppm on $\mathbf{9 3 c}(\mathrm{Y}=\mathrm{OMe})$ and $\mathbf{9 3 k}(\mathrm{Y}=\mathrm{F})$. The tolyl methyl groups gave the most upfield signals (20.4-20.7 ppm). The methyl group on systems 93d $(\mathrm{X}=\mathrm{Me})$ and 93e $(\mathrm{Y}=\mathrm{Me})$ gave a more downfield signal at 20.5 and 21.0 ppm , respectively while the methoxy group on systems 93b $(\mathrm{X}=\mathrm{OMe})$ and $\mathbf{9 3 c}(\mathrm{Y}=\mathrm{OMe})$ gave downfield signals at 55.5 and 55.2 ppm , respectively.

Table 21. Experimental data of N - p-tolyl-1,2-benzenediamines $\mathbf{9 3}$.

\#	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$ (water)	EA (\%)		$\lambda_{\max }(\underset{(\log \varepsilon)}{ }$	$\begin{gathered} m / z(\mathrm{EI}) \\ \mathrm{M}^{+}(100 \%) \end{gathered}$	$v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$
		Found	Required			
93a	73-74	C, 78.69	C, 78.75	235 (3.89)	198	$\begin{aligned} & 3339 \mathrm{~m}(\mathrm{ArNI}) \\ & 2918 \mathrm{w}(\mathrm{ArCH}) \end{aligned}$
		II, 7.23	$\mathrm{H}, 7.12$	275 (3.73)		
	Lit., ${ }^{380}$ (74)	N, 14.06	$\mathrm{N}, 14.13$			
93b	82-83	C, 73.76	C, 7366	237 (3.98)	228	$\begin{aligned} & 3329 \mathrm{w}(\mathrm{ArNH}) \\ & 2918 \mathrm{w}(\mathrm{ArCH}) \end{aligned}$
		H, 7.12	H, 7.06	296 (3.63)		
		N, 12.23	N, 12.27			
93 c	74-76	C, 73.76	C, 73.66	227 (3.79)	228	$\begin{aligned} & 3359 \mathrm{w} \text { (Ar NH) } \\ & \text { 2918w (Ar CHI) } \end{aligned}$
		H, 7.11	H,7.06	275 (3.70)		
		N, 12.22	N, 12.27			
93d	103-104	C, 79.30	C, 79.21	237 (3.94)	212	$\begin{aligned} & \text { 3330m (Ar NII) } \\ & \text { 2916w (Ar CII) } \end{aligned}$
		H, 7.48	$\begin{aligned} & \mathrm{H}, 7.60 \end{aligned}$	274 (3.73)		
	Lit., ${ }^{381}$ (103)	N, 13.02	$\mathrm{N}, 13.20$	301 (3.66)		
93e	102-103	C, 79.30	C, 79.21	238 (3.94)	212	$\begin{aligned} & 3328 \mathrm{~m}(\mathrm{ArNI}) \\ & 3027 \mathrm{w}(\mathrm{ArCH}) \end{aligned}$
		H, 7.67	H, 7.60	270 (3.74)		
	Lit., ${ }^{382}$ (109)	N, 13.11	$\mathrm{N}, 13.20$			
93 f	96-97	C, 75.28		261 (4.01)	223	$\begin{gathered} 3340 \mathrm{~m}(\mathrm{ArNH}) \\ 2916 \mathrm{w}(\mathrm{ArCII}) \\ 2218 \mathrm{~s}(\mathrm{CN}) \end{gathered}$
		$\mathrm{H}, 5.75$	$\begin{aligned} & C, 75.31 \\ & \hline \\ & \hline=97 \end{aligned}$ H, 5.87			
		N, 18.81	$\mathrm{N}, 18.82$			
93g	160-161	C, 75.42	C, 75.31	228 (3.99)	223	$\begin{gathered} \text { 3379m (Ar NI) } \\ \text { 2862w (Ar CII) } \\ 2209 \mathrm{~s}(\mathrm{CN}) \end{gathered}$
		H, 5.92		$295(3.85)$		
	Lit. ${ }^{383}$ (162-163)	N, 18.90	$\mathrm{N}, 18.82$	327 (3.86)		
93h	oil	C, 63.08		235 (3.87)	266	$\begin{aligned} & \text { 3370w (Ar NII) } \\ & \text { 2923w (Ar CH) } \end{aligned}$
		H, 4.94	$\begin{aligned} & \mathrm{C}, 63.15 \\ & \mathrm{H}, 4.92 \end{aligned}$	292 (3.68)		
		N, 10.59	$\mathrm{N}, 10.52$			
931	72-74	C, 63.11		228 (3.92)	266	$\begin{aligned} & 3376 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}) \\ & \text { 2919w (Ar CII) } \end{aligned}$
		H, 4.91	C, 63.15 H, 4.92	282 (3.88)		
	Lit., ${ }^{379}$ (semi-solid)	N, 10.53	H, 4.92 N, 10.52			
93j	oil	C, 72.36		269 (3.81)	216	$\begin{aligned} & 3365 \mathrm{w} \text { (Ar NII) } \\ & 3030 \mathrm{w} \text { (Ar CII) } \end{aligned}$
		H, 6.26	C, 72.20	416 (3.49)		
		N, 13.02	H, 6.06 $\mathrm{N}, 12.95$			
93k	85-86	C, 72.30		257 (3.93)	216	$\begin{aligned} & 3336 \mathrm{~m}(\mathrm{ArNI}) \\ & 3061 \mathrm{w} \text { (} \mathrm{ArCH} \text {) } \end{aligned}$
		II, 6.00	C, 72.20	449 (3.58)		
		N, 12.93	H, 6.06 N, 12.95			

3.2.4 Synthesis and Characterisation of 1,5-Bis[1- N-(p-tolyl)-1,2-benzene-diamino]-2,4-dinitrobenzenes 92
Synthesis of 1,5-bis[1-N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes 92
1,5-Difluoro-2,4-dinitrobenzene 56 was chosen as the reagent for the synthesis of compounds 92 since it readily undergoes nucleophilic aromatic substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) (Scheme 17). The synthesis of dinitrobenzenediamines having N-substituents Ph , $p-(t-\mathrm{Bu})-\mathrm{C}_{6} \mathrm{H}_{4}, p-(n-\mathrm{Bu})-\mathrm{C}_{6} \mathrm{H}_{4}$ and $n-\mathrm{Bu}$ instead of the tolyl group, has already been described in the literature. ${ }^{155}$

Scheme 17

For the synthesis of 1,5-bis[1- N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes 92, N - p-tolyl-1,2-benzenediamines 93 were treated with 1,5-difluoro-2,4dinitrobenzene 56 (0.5 equiv.) and Hünig's base (2 equiv.) in EtOH heated at reflux (80 ${ }^{\circ} \mathrm{C}$) for 1-4 d. The reaction was followed by TLC and judged completed when reagent 56 was consumed. On cooling to room temperature, the desired disubstituted products 92 precipitated since they were poorly soluble in ethanol. The usual work up of the reaction included the filtration of the solid, followed by recrystallization from hot EtOH where any monosubstituted product remained dissolved and the disubstituted product preferentially crystallized as red needles.

In some cases, $\mathbf{9 2 f}(\mathrm{X}=\mathrm{C} \equiv \mathrm{N}), \mathbf{9 2 g}(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$ and $\mathbf{9 2 h}\left(\mathrm{X}=\mathrm{CF}_{3}\right)$, the main product of the reaction was the substituted N-(5-ethoxy-2,4-dinitrophenyl)- $N^{\prime}-p$-tolyl-benzene-1,2-diamine 107. These products formed via nucleophilic attack of the solvent on C_{5} of the monosubstituted product which could be easily attacked due to the EWG substitutes that enhances its electrophilicity.

As such, for these examples, the reaction solvent was switched to tetrahydrofuran (THF). The lower reflux temperature ($65{ }^{\circ} \mathrm{C}$), however, led to lower yields and longer reaction times. Furthermore, the products 92 dissolved in THF and thus for the work up, the solvent was evaporated and the residue column chromatographed to
afford the target compounds. Recrystallisation (EtOH) furnished the desired disubstituted products 92 as red crystals.

The yields of 1,5 -bis[1- N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes 92 were moderate (Table 22). Their recrystallisation was difficult due to their low solubility in EtOH , but necessary to avoid any monosubstituted product that remained.

Table 22. Reaction of N-(p-tolyl)-1,2-benzenediamines 93 (1 equiv.) with 1,5-difluoro-2,4-dinitrobenzene 56 (0.5 equiv.) and Hünig's base (1 equiv.).

Characterisation of 1,5-bis[1-N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitro-benzenes 92
Compounds $\mathbf{9 2}$ were characterized by melting point, microanalysis, UV/vis, LRMS, FTIR (Table 23) and NMR spectroscopy.

${ }^{1}$ H-NMR spectroscopy showed the tolyl methyl groups as the most upfield singlets $\left(\delta_{\mathrm{H}} 2.13-2.26 \mathrm{ppm}\right)$. Compound $92 \mathrm{~d}(\mathrm{X}=\mathrm{Me})$ gave two signals at 2.15 ppm for the tolyl methyl and methy on X position, respectively while the methyl signals of
compound $\mathbf{2 e}(\mathrm{Y}=\mathrm{Me})$ were overlapped in one singlet at 2.21 ppm . The methoxy groups of the systems $\mathbf{9 2 b}(\mathrm{X}=\mathrm{OMe})$ and $\mathbf{9 2 c}(\mathrm{Y}=\mathrm{OMe})$ gave more downfield singlets at 3.66 and 3.62 ppm , respectively. The two different $\mathrm{N} H$ groups gave downfield singlets at 9.199.54 ppm and $7.19-8.10 \mathrm{ppm}$. The $\mathrm{Ar} H \mathrm{~s}$ were in the region 5.32-9.00 ppm. Most upfield signals belong to H_{a} and most downfield signals belong to H_{b}. Compound $\mathbf{9 2 g}(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$ gave the most upfield (5.33 ppm) and most downfield (9.00 ppm) singlets that belong to H_{a} and H_{b}, respectively.
${ }^{13} \mathrm{C}$-NMR spectroscopy, indicated the most downfield C signal as C_{2} ($\delta_{\mathrm{C}} 146.1-151.8 \mathrm{ppm}$) for all compounds except from the methoxy- and fluorosubstituted compounds $\mathbf{9 2 b}, \mathbf{9 2 c}, \mathbf{9 2 j}$ and $\mathbf{9 2 k}$. The most downfield signal on these compounds were the tertiary substituted carbons C_{7} for compounds $\mathbf{9 2 c}$ ($\delta_{\mathrm{C}} 155.1 \mathrm{ppm}$) and $\mathbf{9 2 k}\left(\delta_{\mathrm{C}} 157.4 \mathrm{ppm}\right)$ that are substituted on the Y position and C_{8} for compounds $\mathbf{9 2 b}$ ($\delta_{\mathrm{C}} 158.9 \mathrm{ppm}$) and $\mathbf{9 2} \mathbf{j}\left(\delta_{\mathrm{C}} 163.3 \mathrm{ppm}\right.$) that are substituted on the X position. The tolyl methyl groups gave the most upfield signals (20.3-21.3 ppm). The non-tolyl methyl groups on the systems 92d $(\mathrm{X}=\mathrm{Me})$ and 92e $(\mathrm{Y}=\mathrm{Me})$ gave more downfield signals at 21.4 and 21.1 ppm , respectively while the methoxy group on the systems $\mathbf{9 2 b}$ ($\mathrm{X}=\mathrm{OMe}$) and $\mathbf{9 2 c}(\mathrm{Y}=\mathrm{OMe})$ were even more downfield at 55.0 and 56.1 ppm , respectively.

Table 23. Experimental data of 1,5-bis[1- N-(p-tolyl)-1,2-benzenediamino $]-2,4$-dinitrobenzenes 92.

\#	$\underset{(\mathrm{EtOH})}{\mathbf{M p} \boldsymbol{i}^{\circ} \mathbf{C}}$	EA (\%)		$\begin{gathered} \lambda_{\max }(\underset{\operatorname{mog} \boldsymbol{(l o g})}{(\mathrm{DCM})} \end{gathered}$	$\begin{gathered} m ;(\mathrm{EI}) \\ \mathbf{M}^{+}(\mathbf{1 0 0 \%}) \end{gathered}$	$v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$
		Found	Required			
92a	219-220	C, 68.68	C, 68.56	228 (4.16)	560	3322 m (Ar NII)
		H, 5.09	H, 5.03	283 (4.32)		
		N, 15.07	N, 14.99	331 (4.19)		
				379 inf (3.94)		
92b	241-242	C, 65.78	C, 65.80	229 (4.18)	620	$\begin{aligned} & 3334 \mathrm{~m} \text { ((} \mathrm{rr} \mathrm{NH} \text {) } \\ & 3001 \mathrm{ArCH}) \end{aligned}$
		H, 4.99	$\mathrm{H}, 5.20$	281 (4.16)		
		N, 13.66	N, 13.54	327 (4.11)		
				388 inf (3.81)		
92c	187-188	C, 65.72	C, 65.80	228 (4.22)	620	$\begin{aligned} & 3333 \mathrm{~m} \text { ((Ar NH) } \\ & 2916 \mathrm{w} \text { (Ar CII) } \end{aligned}$
		H, 5.09	H, 5.20	284 (4.30)		
		N, 13.51	N, 13.54	$336(4.19)$		
				$383 \inf (3.94)$		
92d	254-255	C, 69.37	C, 69.37	228 (4.22)	588	$\begin{aligned} & 3336 \mathrm{~m} \text { (Ar NII) } \\ & 2918 \mathrm{w} \text { (Ar CII) } \end{aligned}$
		H, 5.56	H, 5.48	284 (4.35)		
		N, 14.33	N, 14.28	331 (4.22)		
				383 inf (3.96)		
92e	197-199	C, 69.45	C, 69.37	228 (4.10)	588	$\begin{aligned} & 3334 \mathrm{~m} \text { (Ar NII) } \\ & 2916 \mathrm{w} \text { (} \mathrm{Ar} \mathrm{CH} \text {) } \end{aligned}$
		H, 5.54	II, 5.48	278 (4.36)		
		N, 14.15	N, 14.28	331 (4.11)		
				381 inf (3.92)		
92 f	268-270	C, 66.71	C, 66.88	228 (4.33)	610	$\begin{aligned} & 3335 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}) \\ & 2230 \mathrm{~m}(\mathrm{CN}) \end{aligned}$
		H, 4.32	H, 4.29	287 (4.33)		
		N, 18.26	N, 18.35	327 (4.21)		
				381 inf (4.06)		
92g	303-305	C, 66.97	C, 66.88	229 (4.19)	610	$\begin{aligned} & 3379 \mathrm{w}(\mathrm{ArNH}) \\ & 2220 \mathrm{~m}(\mathrm{CN}) \end{aligned}$
		H, 4.33	H, 4.29	303 (4.50)		
		N, 18.16	N, 18.35	388 inf (3.83)		
92h	246-247				696	3313 m (Ar NH)
		C, 58.57	C, 58.62	230 (4.31)		
		H, 3.78	H, 3.76	283 (4.49)		
		N, 11.92	N, 12.06	326 (4.41)		
				380 inf (4.14)		
92i	185-187	C, 58.58	C, 58.62	228 (4.20)	696	$\begin{aligned} & 3396 \mathrm{~m} \text { (Ar NII) } \\ & 3316 \mathrm{~m} \text { (Ar CII) } \end{aligned}$
		H, 3.75	H, 3.76	287 (4.37)		
		N, 11.86	N, 12.06	322 (4.29)		
				388 inf (3.89)		
92j	240-241	C, 64.52	C, 64.42	228 (4.22)	596	3317 m (Ar NII)
		H, 4.31	H, 4.39	277 (4.32)		
		N, 14.09	N, 14.09	323 (4.26)		
				393 inf (3.88)		
92k	200-202	C, 64.36	C, 64.42	223 (4.46)	596	3312 m (Ar NH)
		H, 4.22	H, 4.39	277 (4.47)		
		N, 13.94	N, 14.09	321 (4.33)		
				396 inf (4.47)		

3.2.5 Synthesis and Characterisation of 5,7-Di-p-tolyl-13,7-dihydro-quinoxalino[2,3-b]phenazin-5-ium-13-ides 91
Synthesis of 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ides 91
1,5-Bis[1- N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes $\mathbf{9 2}$ were hydrogenated in EtOH using a Parr shaker hydrogenator in the presence of ca. 3 bar of H_{2} and Pd / C ($5 \mathrm{~mol} \%$). The reaction was judged complete when: a) the uptake of hydrogen ceased $\left(\mathrm{H}_{2}\right.$
pressure stabilized), b) the red color of the starting material had dissipated and c) there was no more starting material checked by TLC. As soon as the reaction was stopped, the solution was filtered (Celite ${ }^{\circledR}$) to remove Pd / C and the filtrate (manually agitated) was heated (heat gun) under an air atmosphere until its color turned from colorless to brown and finally to deep green. At this point the filtrates were left to cool to room temperature whereupon in nearly all cases green crystalline solids, DTQP's 91, were collected by filtration and recrystallized from either EtOH or chlorobenzene (Table 24). Treatment of the DTQP's with acid (HCl) gave a deep blue solution of the mono protonated DTQP. ${ }^{155}$

Table 24. Synthesis of 5,7-di-p-tolyl-13,7-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ides 91 via 1,5-bis[1- N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes 92 .

Reagents and conditions: i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%)$, $\mathrm{EtOH}, 20^{\circ} \mathrm{C}, 4-6 \mathrm{~h}$; ii) air, $\mathrm{EtOH}, 80^{\circ} \mathrm{C}, 0.5-1 \mathrm{~h}$.

92	X	Y	Yields 91 (\%)
92a	H	H	91a (87)
92b ${ }^{\text {a }}$	MeO	H	91b (31) ${ }^{\text {a }}$
92c	H	MeO	91c (20)
92d	Me	H	91d (87)
92e	H	Me	91e (41)
92 f	CN	H	91 f (50)
92g	H	CN	919 (38)
92h	$\mathrm{F}_{3} \mathrm{C}$	H	91h (57)
92i	H	$\mathrm{F}_{3} \mathrm{C}$	91 i (50)
92j	F	H	91j (36)
92k	H	F	91 k (57)

${ }^{a}$ Addition of drops of $\mathrm{HCl}(35 \%)$ before heating and subsequent neutralization (NaOH) to collect 91b.

With the exception of compound 91b $(\mathrm{X}=\mathrm{OMe})$, all the substituted DTQPs were synthesized in this manner. The filtrate containing compound 91b, however, on heating did not give the desired green color but remained brown. Also, addition of acid to this brown filtrate did not turn its color to blue but lilac-brownish. After intense heating and stirring, only traces of the desired green product could be formed. The filtrate, however, contained the trans isomer 108 as supported by UV/vis spectroscopy (Figure 23). ${ }^{208-211}$ A short
study indicated that, after hydrogenation acidification of the filtrate assisted the formation of the target compound 91b ($\mathrm{X}=\mathrm{OMe}$), while neutral or slightly basic conditions gave predominantly the trans analog 107.

Figure 23. Structure of trans isomer 108.

The mechanism for the ring closure to give DTQP was studied for better understanding of the influence of the conditions on the formation of the main product. Reduction of the dinitrobenzene 92 affords the hexamino 109, although not isolated in this study one example of hexamino $\mathbf{1 0 9}$ has been previously isolated and fully characterized. ${ }^{155}$ On heating in air hexamino $\mathbf{1 0 9}$ presumably oxidizes to the ortho or para quinonedimine and then undergoes an intramolecular ring closure to give phenazine 110. Loss of ammonia affords a new phenazinimine which undergoes a final intramolecular ring closure with loss of ammonia to give the target DTQP (Scheme 18).

92

111

112
$\xrightarrow[\mathrm{EtOH}, \mathrm{rt}]{\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}}$

109

110

91

Scheme 18

It is proposed that after the first intramolecular cyclization, the phenazine intermediate can prototautomerise to reveal the N-arylimino form $\mathbf{1 1 3}$ which could encourage formation of the spirocyclic intermediate 114. A subsequent aza-Smiles type rearrangement ${ }^{303}$ could lead to isomerisation affording the phenazine $\mathbf{1 1 4}$ which can then cyclise to give the trans-DTQP 108 (Scheme 19).

Scheme 19

In the case of compound $\mathbf{9 1 b}(\mathrm{X}=\mathrm{OMe})$, the reaction under neutral conditions prefers to give a mixture of both cis and trans products, which suggests the OMe substituent encourages spirocyclic formation. To understand this requires additional studies. Nevertheless, the addition of acid facilitated ring closure to give the cis DTQP presumably because of preferential protonation of the exocyclic imine of the phenazine intermediate $\mathbf{1 1 2}$ which is electron rich owing to the electron release from the tolylamino group (Scheme 20).

Scheme 20

Thus, an alternative work up procedure was followed in the case of system 91b. After the filtration, drops of $\mathrm{HCl}(35 \%)$ acid was added in the filtrate and heated under atmospheric air until a deep blue color developed. The crystalline material that precipitates is the protonated product and can be isolated by filtration, dissolved in the least amount of MeOH and treated with base (sat. NaOH) to get the free base.

Characterisation of 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ides 91

The target compounds 91 were characterized by melting point, microanalysis, LRMS, FTIR, some of them by NMR spectroscopy but most importantly with UV/vis and X-ray. The latter two are the most important since they can be compared with the Time Dependence (TD) and geometric computational data, respectively (see Section 2.3) and thus help validate the computational methods chosen.

DTQPs have green color, are sparingly soluble and most of them have melting points above $300{ }^{\circ} \mathrm{C}$. Their exact melting or decomposition points were detected using Differential Scanning Calorimetry (DSC). Their crystalization was difficult but achieved using EtOH, pyridine or chlorobenzene. Attempts to obtain single crystals from the tolyl analogs failed, however, suitable crystals for X-ray crystallography were obtained for the N-Ph 116, $N-{ }^{n} \mathrm{Bu} 117$ and N - n-dodecyl 118 analogs (the first two are known compounds) ${ }^{155}$ and thus we were able to analyze the structures of these systems.

X-Ray Studies

X-ray crystallography was achieved for the synthesized $N-\mathrm{Ph}(116), N-n-\mathrm{Bu}(117)$ and N - n-dodecyl (118) analogs (Figure 24).

C

Figure 24. Crystal structures of A) 5,7-diphenyl-7,13-dihydroquinoxalino[2,3-b]-phenazin-5-ium-13-ide 116, B) 5,7-di- n-butyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 117 and C) 5,7-di-n-dodecyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 118.

It can be tentatively assumed that the 5,7-di-phenyl-7,13dihydroquinoxalino $[2,3-b]$ phenazin- 5 -ium-13-ide 116 (5,7-DPQP), which gave the suitable crystal for the X-ray studies will have similar packing properties and geometric data with the N-tolyl analog. The system 116 has a near planar conformation with a small degree of torsion of the outer fused benzene rings which is estimated in about 1.2° (Figure 25). The analogous dihedral angles of N - n-butyl and N-n-dodecyl are 5.0° and 8.6°, respectively. This can be measured by the angle between the planes of the two outer rings. In addition, the two N - Ph rings, which are orthogonal to the plane of the five fused rings, are not aligned in parallel, but show a deviation of 7.9°.

Figure 25. Planarity of A) 5,7-diphenyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 116, B) 5,7-di- n-butyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 117 and C) 5,7-di-n-dodecyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide $\mathbf{1 1 8}$.

Selected bond lengths and angles are shown in Table 25. The larger bond lengths between $\mathrm{C}_{1}-\mathrm{C}_{6}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ compared to the parallel C - C bonds of the outer benzene rings $(1.41 \AA)$ are characteristic of 5,7-di-phenyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide $\mathbf{1 1 6}$ due to its separate positive and negative cyanines.

Table 25. Selected bond lengths and angles of 5,7-diphenyl-13,7-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 116.

侕	.									
Bond (A)	$\begin{gathered} \mathbf{C}_{\mathbf{1}}-\mathbf{C}_{\mathbf{2}} \\ 1.389(4) \end{gathered}$	$\begin{array}{r} \mathbf{C}_{\mathbf{2}}-\mathbf{C}_{\mathbf{3}} \\ 1.394(5) \end{array}$	$\begin{gathered} \mathbf{C}_{4}-\mathbf{C}_{\mathbf{5}} \\ 1.399(4) \end{gathered}$	$\begin{gathered} \mathbf{C}_{5}-\mathbf{C}_{\mathbf{6}} \\ 1.395(5) \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathbf{1}}-\mathbf{C}_{6} \\ 1.458(4) \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathbf{3}}-\mathbf{C}_{\mathbf{4}} \\ 1.456(5) \end{gathered}$	$\begin{gathered} \mathbf{N}_{\mathbf{1}}-\mathbf{C}_{\mathbf{1}} \\ 1.362(5) \end{gathered}$	$\begin{gathered} \mathbf{N}_{2}-\mathbf{C}_{3} \\ 1.357(4) \end{gathered}$	$\begin{gathered} \mathbf{C}_{4}-\mathbf{N}_{\mathbf{3}} \\ 1.343(5) \end{gathered}$	$\begin{gathered} \mathbf{C}_{6}-\mathbf{N}_{4} \\ 1.344(4) \end{gathered}$
Angle (${ }^{\circ}$	$\begin{aligned} & \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}} \mathbf{C}_{\mathbf{3}} \\ & 120.5(3) \end{aligned}$	$\begin{aligned} & \mathbf{C}_{\mathbf{4}} \mathbf{C}_{5} \mathbf{C}_{\mathbf{6}} \\ & 123.5(0) \end{aligned}$	$\begin{aligned} & \mathbf{C}_{2} \mathbf{C}_{3} \mathbf{C}_{\mathbf{4}} \\ & 120.6(0) \end{aligned}$	$\begin{aligned} & \mathbf{C}_{\mathbf{2}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{6}} \\ & 120.6(0) \end{aligned}$	$\begin{gathered} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \\ 117.2(7) \end{gathered}$	$\begin{aligned} & \mathbf{C}_{\mathbf{1}} \mathbf{C}_{6} \mathbf{C}_{5} \\ & 117.4(1) \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{1}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{6}} \\ & 118.0(8) \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\mathbf{2}} \mathbf{C}_{\mathbf{3}} \mathbf{C}_{\mathbf{4}} \\ & 118.1(9) \end{aligned}$	$\begin{aligned} & \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{6}} \mathbf{N}_{\mathbf{4}} \\ & 122.0(0) \end{aligned}$	$\begin{aligned} & \mathbf{C}_{\mathbf{3}} \mathbf{C}_{\mathbf{4}} \mathbf{N}_{\mathbf{3}} \\ & 121.7(1) \end{aligned}$

The molecules pack in a face to face alignment with the N - Ph substituents facing in the opposite directions (Figure 26). The distance between heterocyclic moieties is $3.420 \AA$ and suggests a weak $\pi-\pi$ intermolecular interaction. In Figure 27 the view of 5,7-diphenyl-5H,12H-quin-oxalino[2,3-b]phenazine 116 along a-, b - and c-axis is shown.

Figure 26. $\pi-\pi$ Stacking of 5,7-diphenyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 116.

a-axis

b-axis

c-axis

Figure 27. 5,7-Diphenyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 116 viewed along a-, b - and c-axis.

UV/vis Studies

The most important spectroscopy of the synthesized DTQPs is the UV/vis spectroscopy since it reflects the energetic difference between the ground and first excited state and thus the optical Band Gap $\left[E_{\mathrm{g}}(\mathrm{opt})\right]$. The smallest energetic difference or in other words the longest wavelength $\lambda_{\text {max }}$, suggests better electronic movement within the system and thus potentially better conductivity. Systems with unpaired electrons - radicals - absorb in large absorption maxima, near IR. The comparison of the substituted DTQPs in UV/vis spectroscopy will show if indeed the substitution on the system affects the energetic difference between the singlet and triplet state. It is expected to have a noticeable red shift of $\lambda_{\text {max }}$ on going from the $\mathrm{X}=$ EWG and $\mathrm{Y}=$ EDG substitution to the X -EDG and Y-EWG substitution, having the parent system somewhere between. These experimental results can be readily compared with the Band Gap estimations by TD calculations and therefore can validate the theoretical results that support this research.

The synthesized substituted DTQPs (the parent system and 10 substituted analogs), are shown and compared on the UV/vis spectrum below (Figure 28).

Figure 28. The UV/vis spectra for the parent and substituted DTQPs normalized with respect to the longest wavelength absorption.

The above $\lambda_{\max }$ comparison shows that the series of increase of the absorption maxima or in other words reduction of the Band Gap is: $\mathrm{Y}: \mathrm{OMe}>\mathrm{Y}: \mathrm{F}>\mathrm{X}: \mathrm{CF}_{3}>\mathrm{X}: \mathrm{C} \equiv \mathrm{N}$ $>\mathrm{Y}: \mathrm{Me}>$ parent $>\mathrm{Y}: \mathrm{CF}_{3}>\mathrm{X}: \mathrm{Me}>\mathrm{X}: \mathrm{F}>\mathrm{Y}: \mathrm{C} \equiv \mathrm{N}>\mathrm{X}: \mathrm{OMe}$. According to these results the system 91b $(\mathrm{X}=\mathrm{OMe})$ is closest to potential paramagnetic character and this might also explain the difficulties observed in its synthesis. The $\lambda_{\max }$ shift from $\mathrm{Y}: \mathrm{OMe}$ $\left(\lambda_{\max }=722 \mathrm{~nm}, \log \varepsilon 4.36\right)$ to the $\mathrm{X}:$ OMe $\left(\lambda_{\max }=825 \mathrm{~nm}, \log \varepsilon 4.22\right)$ system is 103 nm which is a noteworthy influence on the position of substitution on the electronic properties of the system.

By plotting separately X -substituted, Y-substituted, EDG-substituted and EWG-substituted systems the influence of substitution on the parent system is more noticeable (Figure 29).

Figure 29. Separate plots for X-substituted, Y-substituted, EDG and EWG substituted DTQPs normalized with respect to the longest wavelength absorption.

The UV/vis spectroscopy also supports the zwitterionic character of the system by showing negative solvatochromism which is typical for zwitterions. A series of different polarity solvents are used in which the parent compounds as well as the substituted systems Y:OMe, Y:F, X:F and X:OMe, showed a marked decrease of their absorbance maxima as the solvent polarity $\left[\mathrm{E}_{\mathrm{T}}(30)\right]$ increased (Figure 30).

Figure 30. Correlation between solvent polarity $\mathrm{E}_{\mathrm{T}}(30)$ and absorbance maxima $\lambda_{\max }$ of parent, X:OMe, X:F, Y:F and Y:OMe systems.

3.3 Comparison of Spectroscopic and Computational Data

The comparison of the experimental and theoretical results on the substituted DTQP systems is essential. In this way the computational results of systems that were not synthesized can be validated.

3.3.1 Geometric Data

Such a comparison can be done by comparing the geometric data of the X-ray crystallography and the optimized structures. The tables below list selected bond lengths and bond angles for a comparison between the X-ray crystal of the system with N - Ph substituent and the computational optimized structures with $N-\mathrm{Tol}$ and $\mathrm{N}-\mathrm{H}$ substituents.

Table 26. Selected bond lenghts (\AA) of X-ray crystal ($N-\mathrm{Ph}, N-\mathrm{Bu}$ and N-dodecyl) and $N-\mathrm{H}$ and $N-$ Tol substituted optimized [DFT/B3LYP/6-31G(d)] structures.

	$\mathrm{C}_{1}-\mathrm{C}_{2}$	$\mathrm{C}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{C}_{5}$	$\mathrm{C}_{5}-\mathrm{C}_{6}$	$\mathrm{C}_{1}-\mathrm{C}_{6}$	$\mathrm{C}_{3}-\mathrm{C}_{4}$	$\mathrm{N}_{1}-\mathrm{C}_{1}$	$\mathrm{N}_{2}-\mathrm{C}_{3}$	$\mathrm{C}_{4}-\mathrm{N}_{3}$	$\mathrm{C}_{6}-\mathrm{N}_{4}$
$\begin{aligned} & \text { X-Ray } \\ & (\mathrm{R}=\mathrm{Ph}) \end{aligned}$	1.389	1.395	1.399	1.396	1.458	1.457	1.363	1.357	1.344	1.344
$\begin{aligned} & \text { X-Ray } \\ & (\mathrm{R}=n \text {-Bu) } \end{aligned}$	1.392	1.391	1.399	1.384	1.463	1.462	1.356	1.367	1.339	1.354
$\begin{aligned} & \text { X-Ray } \\ & \left(\mathrm{R}=n-\mathrm{C}_{12} \mathrm{H}_{25}\right) \end{aligned}$	1.385	1.389	1.391	1.385	1.440	1.445	1.362	1.355	1.337	1.342
Comput. $(\mathrm{R}=p-\mathrm{Tol})$	1.399	1.399	1.402	1.402	1.463	1.463	1.369	1.369	1.343	1.343
Comput. $(\mathrm{R}=\mathrm{H})$	1.395	1.395	1.403	1.403	1.465	1.465	1.354	1.354	1.345	1.345

The bond length comparison (Table 27) shows a very good agreement in all important bonds of the central part of the molecule. The bonds that connect the two cyanines $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$ and $\left.\mathrm{C}_{3}-\mathrm{C}_{4}\right)$ are identical $(1.46 \AA)$ and larger than the $\mathrm{C}-\mathrm{C}$ bonds of the cyanines ($1.38-1.40 \AA$) which are very similar on experimental and theoretical computed structures. The bond lengths of the $\mathrm{C}-\mathrm{N}$ bonds of the positive cyanine (1.35-1.37 \AA) are also very close and slightly larger from the $\mathrm{C}-\mathrm{N}$ bonds of the negative cyanine (1.34-1.35 \AA).

Table 27. Selected angles of X-Ray crystal (N - Ph, N-Bu and N-dodecyl) and N-H and N-Tol substituted optimized [DFT/B3LYP/6-31G(d)] structures.

	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{6}$	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$	$\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{C}_{5}$	$\mathrm{N}_{1} \mathrm{C}_{1} \mathrm{C}_{6}$	$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	$\mathrm{C}_{1} \mathrm{C}_{6} \mathrm{~N}_{4}$	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{~N}_{3}$
$\begin{aligned} & \text { X-Ray } \\ & (\mathrm{R}=\mathrm{ph}) \end{aligned}$	120.5(3)	123.5(0)	120.6(0)	120.6(0)	117.2(7)	117.4(1)	118.0(8)	118.1(9)	122.0(0)	121.7(1)
$\begin{aligned} & \mathrm{X}-\mathrm{Ray} \\ & (\mathrm{R}=n-\mathrm{Bu}) \end{aligned}$	121.1(1)	123.5(2)	120.1(9)	119.7(0)	117.3(1)	118.0(6)	118.3(4)	117.5(8)	121.4(6)	122.3(6)
$\begin{aligned} & \text { X-Ray } \\ & \left(\mathrm{R}=n-\mathrm{C}_{12} \mathrm{H}_{25}\right. \end{aligned}$	$120.8(8)$	123.6(4)	120.0(8)	120.3(3)	117.4(1)	117.6(1)	117.9(5)	118.3(2)	122.1(4)	122.1(9)
Comput. $(\mathrm{R}=p-\mathrm{Tol})$	120.4(3)	123.7(4)	120.6(4)	120.6(4)	117.2(7)	117.2(7)	117.7(7)	117.7(7)	121.9(4)	121.9(4)
Comput. $(\mathrm{R}=\mathrm{H})$	119.4(6)	123.3(3)	121.4(7)	121.3(0)	117.1(3)	117.1(3)	116.9(9)	$116.9(8)$	121.3(0)	121.3(0)

The bond angles of the experimental and theoretical computed structures match very well. The biggest deviation is about 1.7° on the central CCC angle of the positive cyanine $\left[\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right.$ Comput. $(\mathrm{R}=\mathrm{H})=119.46^{\circ}$ vs X -Ray $\left.(\mathrm{R}=n-\mathrm{Bu})=121.11^{\circ}\right]$. The X-ray structures (116-118) and the N-Tol optimized structure are much closer and almost identical, while the N-H optimized structures has some deviations e.g., on the CCN angles $\left[\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{~N}_{3}\right.$ Comput. $(\mathrm{R}=\mathrm{H})=121.30^{\circ}$ vs Comput. $(\mathrm{R}=\mathrm{Tol})=121.94^{\circ}$, X -Ray $(\mathrm{R}=\mathrm{Ph})$ $=121.71^{\circ}$, X-Ray $(\mathrm{R}=n-\mathrm{Bu})=122.36^{\circ}$ and $\left.\mathrm{X}-\mathrm{Ray}\left(\mathrm{R}=n-\mathrm{C}_{12} \mathrm{H}_{25}\right)=122.19^{\circ}\right]$.

3.3.2 Time Dependence vs UV/vis

The comparison of the TD data with the experimental UV/vis is very important for the evaluation of the theoretical results. Since the B3LYP method on the $N-H$ systems proved to be similar to the experimental, it was applied to the N - Tol substituted systems for a better comparison with experimental results.

Table 28. Comparison of UV/vis data with band gap (TD-B3LYP)

	R	UVexp. (eV)	TD-B3LYP (eV)
511	H		1.75
91c	Tol	1.72	1.66
51k	H		1.78
91k	Tol	1.71	1.70
51i	H		1.75
91h	Tol	1.67	1.69
51]	H		1.75
91 f	Tol	1.67	1.70
510	H		1.72
91e	Tol	1.65	1.63
51p	H		1.60
91a	Tol	1.64	1.62
51r	H		1.67
91i	Tol	1.61	1.60
51u	H		1.67
91d	Tol	1.59	1.58
51t	H		1.61
91g	Tol	1.56	1.55
51w	H		1.60
91j	Tol	1.56	1.52
51y	H		1.50
91b	Tol	1.50	1.46

The data in the Table 28 are listed on a series where the $\lambda_{\text {max }}$ is increased. On going from molecule $91 \mathbf{h}$ to molecule $91 \mathbf{b}$ we expect the $\lambda_{\text {max }}$ to be increased and the energy in eV to be reduced since this is the series of the reduction of ΔE_{ST}. This series is indeed followed both on the UV/vis and TD data with exceptions on molecules 91k, 91c and 91g. The theoretical and experimental results are very close to each other in every case. This agreement supports the validation of the computational data and the computational method used.

3.4 Summary

A series of linear tetraazapentacenes substituted with a range of substituents were synthesized and studied. The synthesized systems gave spectroscopic data that were compared and in agreement with the computational results. This comparison validates the computational method we used and supports the reduced singlet - triplet ground state gap upon the appropriate substitution based on our computational data.

CHAPTER 4

Study on Angular Quinoxalino[2,3-a]phenazinediyl: Synthesis of a New Organic Radical

Sections Page
4.1 Introduction 128
4.2 Attempted Synthesis of Angular Quinoxalino[2,3-a]phenazine 131
4.3 Study on Tetraazapentacene Oxy Radical 145
4.4 Mechanistic Rationale for the Formation of Radical 158 and Alternative Pathway for Target 150
4.5 Summary 157

4.1 Introduction

An interesting angular analog of the quinoxalino[2,3-b]phenazine-12,14-diyl 119 is the quinoxalino[2,3- a]phenazine-8,14-diyl 89. Both isomers have meta unsubstituted nitrogens that can carry single spins and avoid e^{-}pairing similar to m-phenylene, however, computational and experimental studies show that the quinoxalino[2,3$b]$ phenazine-12,14-diyl 119 exists as a singlet in the ground state as the zwitterionic biscyanine structure $51\left(\Delta E_{\mathrm{ST}}=-10.05 \mathrm{kcal} / \mathrm{mol}\right)$ (see Chapters 2 and 3).

119

89

Nevertheless, computational studies on system 89 at the UDFT/B3LYP/6$31 \mathrm{G}(\mathrm{d})$ level of theory, support a ground state triplet structure with a $\Delta E_{\mathrm{ST}}=+14.3$ $\mathrm{kcal} / \mathrm{mol} .{ }^{170}$ Furthermore, the energy difference between the two SOMOs $\left(\Delta E_{\mathrm{SS}}=0.32\right.$ eV) of the angular structure $\mathbf{8 9}$ was significantly less than 1.5 eV , in agreement with Hoffmann's requirement ${ }^{242}$ for two nonbonding electrons to occupy different degenerate orbitals with a parallel-spin configuration to minimize their electrostatic repulsion (Figure 31).
$\operatorname{LUMO}=-2.33 \mathrm{eV}$, كُ,
$\Delta E_{\mathrm{IL}}=1.80 \mathrm{eV}$
$\mathrm{HOMO}=-4.13 \mathrm{eV}$

51

Figure 31. SOMOs of the angular quinoxalino[2,3-a]phenazine $89(\mathrm{R}=\mathrm{H})$ compared with the HOMO-LUMO orbitals of the linear quinoxalino[2,3-b]phenazine $51(\mathrm{R}=\mathrm{H})$, generated with Gaussview 3.0, isovalue 0.02 .

The electrostatic surface potential (ESP), the Mulliken charges and the dipole moment of the angular quinoxalino[2,3-a]phenazine 89 were compared with the linear analog 51 (Figure 32). The ESP supports the zwitterionic character on the linear system 51 with negative charge on the unsubstituted nitrogens (red color) and positive charge (blue) on the substituted nitrogens. The Mulliken charges demonstrate again the positive character on the substituted cyanine and the negative character on the opposing cyanine. At first glance this was not clear because all four nitrogens carry a negative charge but it can be seen that hydrogens, which for the most part have positive charge between 0.121-0.144 (not shown in the scheme for simplicity), have a positive charge of 0.333 when they are N-substituted (the charges of these Hs are demonstrated in the picture). Thus, we can consider the substituted nitrogens as NH groups instead and then we can see a noticeable difference between unsubstituted Ns and substituted NHs. This charge separation can also be observed if we determine the sum charge (including hydrogens on each unit) of each cyanine. In contrast, the quinoxalino[2,3-a]phenazine $\mathbf{8 9}$ cannot give two independent oppositely charged units. Mulliken charges again suggest positive substituted NHs and negative unsubstituted Ns but cannot sum charges in specific regions to show charge separated moieties. Furthermore, there is an asymmetrical charge distribution at the spin centers of quinoxalino[2,3-a]phenazine 89, while that of the linear analog 51 is symmetrical.

Furthermore, the dipole moment (7.41 D) of the linear quinoxalino[2,3$b]$ phenazine $\mathbf{5 1}$ is over twice as large as that of the angular analog quinoxalino[2,3a]phenazine 89 (3.47 D). Moreover, in the linear analog 51 the dipole moment lines up with an imaginary z-axis, demonstrating a perfectly symmetrical charge separation involving the two opposite cyanines in the system, while this is not the case for the angular quinoxalino[2,3-a]phenazine 89. The magnitude and vector of the calculated dipole moments strongly support the charge separation in the linear structure and the lack of charge separation of the angular. The above data support that systems $\mathbf{5 1}$ and $\mathbf{8 9}$ have different electronic properties attributed to their different structural motifs and reveal a potential diradical character for system 89 .
A

B

51

89

Figure 32. A) The electrostatic surface potential (ESP) mapped on the electron density surface generated with GaussView 3.0, isovalue 0.0004 , where blue denotes positive character, while red denotes negative charge; B) Mulliken charges, and C) the dipole moment expressed as vector generated with GaussView 5.0 of the linear and angular quinoxalinophenazines 51 and $\mathbf{8 9}$, respectively.

The spin density of the angular quinoxalino[2,3-a]phenazine $\mathbf{8 9}$ can be seen in Figure 33. Spin up lobes (blue) are delocalised across the carbon skeleton of the entire molecule in an odd-alternant fashion that includes all four nitrogen atoms.

Figure 33. Spin density of angular quinoxalino[2,3-a]phenazine 89 generated with GaussView 3.0, isovalue 0.0004 , where blue denotes spin up and green denotes spin down density.

In the hypothetical zwitterionic angular quinoxalino[2,3-a]phenazine 89 (Figure 34) a number of resonance structures can be proposed, which show that the two possible cyanines are cross-conjugated and overlap over the central benzene ring. Since many resonance structures can be proposed, this suggested to us that a charge separated singlet state could be feasible, challenging the computational data that supported a triplet ground state. To test this hypothesis, we required experimental evidence i.e. the synthesis of an analog of the angular quinoxalino[2,3-a]phenazine $\mathbf{8 9}$.

Figure 34. Selected resonance structures of the angular quinoxalino[2,3- a]phenazine 89.

4.2 Attempted Synthesis of Angular Quinoxalino[2,3-a]phenazine

Angular analogs with closed shell ground states are known: Quinoxalino[2,3-a]phenazine 120 (5,8,13,14-tetraazapentaphene) was synthesized by Cookson ${ }^{304}$ via treatment of 1,2-benzenediamine $\mathbf{6 8}$ with bishydroxyiminocyclohexanone $\mathbf{1 2 1}$ in acetic acid heated at
reflux. The isolated brown product gave dark blue or green solutions in organic solvents that slowly changed to yellow on atmospheric oxidation or after recrystallization from nitrobenzene. The final product $\mathbf{1 2 0}$ formed yellow needles with a high melting point $\left(304{ }^{\circ} \mathrm{C}\right) .{ }^{304}$ Alternatevely, quinoxalino[2,3-a]phenazine $\mathbf{1 2 0}$ has been synthesized after refluxing quinonimine $\mathbf{1 2 2}$ and 1,2-benzenediamine $\mathbf{6 8}$ in acetic acid. ${ }^{305}$ UV/vis studies of quinoxalino[2,3-a]phenazine $\mathbf{1 2 0}$ show a longest wavelength absorbance of 339 nm (EtOH) that shifted to 348 nm upon protonation in $\mathrm{EtOH} / \mathrm{HCl}{ }^{304}$

Scheme 22

6-Aminoquinoxalino[2,3-a]phenazine $\mathbf{1 2 3}$ was also prepared via a Wohl-Aue cyclization ${ }^{306}$ starting from either diphenylamine $\mathbf{1 2 4}$ or triaminobenzene $\mathbf{1 2 5}$ in nitrobenzene heated at reflux. The reaction proceeds via the 1,3-phenazinediamine $\mathbf{1 2 6}$ (Scheme 23).

125
Scheme 23

Analogs with substituents on the peripheral rings such as system $\mathbf{1 2 7}$ have also been prepared from nitrophenazine $\mathbf{1 2 8}$ and substituted anilines. This synthesis worked moderately well for analogs with EDGs but failed with EWGs. ${ }^{307,308}$

Scheme 24

In addition, 6,7,13,14-tetramethyl-13,14-dihydroquinoxalino[2,3-a]phenazine 131, was prepared from 2-methylaminoaniline $\mathbf{1 2 9}$ and cyclohexendione $\mathbf{1 3 0}$ in MeOH^{309} Compound 131 gave a longest wavelength absorption of 552 nm (EtOH), which was dramatically red shifted to 639 nm in $\mathrm{EtOH} / \mathrm{HCl}$.

Scheme 25

For the preparation of the angular quinoxalino[2,3-a]phenazine 89, a retrosynthetic analysis revealed a possible synthetic route similar to that for the linear quinoxalino[2,3-b]phenazine 51 (Scheme 26).

The closure of system $\mathbf{8 9}$ in this angular motif requires the precursor $\mathbf{1 3 2}$ to have nitro groups in meta positions, hydrogenation of which can afford the tetraamino substituted benzene $\mathbf{1 3 8}$ which on air oxidation and heating could cyclize to give the desired target 89 (Scheme 27). System 132 can be prepared by treating 1,3-dichloro-2,4dinitrobenzene 133 with N-alkyl or aryl substituted 1,2-benzenediamine 134. The latter compound was formed after reduction of compound $\mathbf{1 3 5}$ that was prepared via a KF promoted nucleophilic aromatic substitution (see Section 3.3.2).

Scheme 27

Forward synthesis

1,3-Dichloro-2,4-dinitrobenzene $\mathbf{1 3 3}$ was synthesized from 4-aminobenzenesulfinic acid $\mathbf{1 3 9}$ in four steps according to the literature procedure (Scheme 28). ${ }^{310-312}$

Scheme 28. Reagents and conditions: i) $\mathrm{HCl}(6 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ (2 equiv.), $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 15 \mathrm{~min}, 67 \%$; ii) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(70 \%)$ (10 cquiv.), $180-190^{\circ} \mathrm{C}, 2 \mathrm{~h}, 68 \%$; iii) $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$, (7 cquiv.), AcOH (glacial), rt, $48 \mathrm{~h}, 79 \%$; iv) HNO_{3} (fuming) (10 equiv.), $90-100^{\circ} \mathrm{C}, 20-30 \mathrm{~min}$, 92%.

1,3-Dichloro-2,4-dinitrobenzene 133 was treated with benzenediamines 134a-c $(\mathbf{a}, \mathrm{R}=\mathrm{Ph} ; \mathbf{b}, \mathrm{R}=p-\mathrm{Tol} ; \mathbf{c}, \mathrm{R}=n-\mathrm{Bu})$ and Hünig's base in EtOH and heated to $c a .78{ }^{\circ} \mathrm{C}$ to give the tetraamino-dinitrobenzenes 132a-c, respectively (Scheme 29).

Scheme 29. Reaction of diamines $\mathbf{1 3 4}$ with 1,3-dichloro-2,4-dinitrobenzene $\mathbf{1 3 3}$ to give the corresponding disubstituted products 132.

While the reaction of N-phenyl-1,2-benzenediamine (134a, R $=\mathrm{Ph}$) or N - p-tolyl-1,2-benzenediamine ($\mathbf{1 3 4 b}, \mathrm{R}=p$-tolyl) with 1,3 -dichloro-2,4-dinitrobenzene 133 gave the corresponding disubstituted products $132 \mathrm{a}(\mathrm{R}=\mathrm{Ph})$ and $\mathbf{1 3 2 b}(\mathrm{R}=p$-Tol) in moderate yield (42\%), the reaction of N-(n-butyl)-1,2-benzenediamine 134c and 1,3-dichloro-2,4-dinitrobenzene $\mathbf{1 3 3}$ was complex, giving the desired disubstituted product 132c ($\mathrm{R}=n-\mathrm{Bu}$) in low yield (15%) together with a main product (47\%) and a minor product in traces. In the latter reaction, three equivalents of the diamine were needed to facilitate the reaction. The main product was isolated via column chromatography as purple needles $\left[\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 532(\log \varepsilon 3.69)\right]$, $\mathrm{mp} 95-96{ }^{\circ} \mathrm{C}$ (from n-hexane). Microanalysis (found: C, $60.42 ; \mathrm{H}, 4.93 ; \mathrm{N}, 13.19 \%$) and mass spectrometry $\left[\mathrm{m} / \mathrm{z}(\mathrm{EI})\left(\mathrm{M}^{+}, 29 \%\right) 317 \mathrm{Da}\right]$ supported the molecular formula $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$-NMR identified six Ar Hs (7.62-6.62 ppm), one NH (9.59 ppm) and the butyl group. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ identified the butyl group, six tertiary Ar Cs and six Ar CHs . The data suggested that on monosubstitution an intermolecular cyclization had taken place whereby the butylamino group had displaced the nitro group. Based on the data three possible phenazine structures 145-147 can be proposed (Scheme 30). The monosubstituted product, which could have structure $\mathbf{1 4 3}$ or $\mathbf{1 4 4}$, unfortunately could not be isolated, presumably since it was rapidly converted to the phenazine or the disubstituted product 132c.

134c

133

143

144

145
or

146
or

147

Scheme 30. Proposed monosubstituted system and phenazine structures upon reaction of 134 c with 133.

Single crystal X-ray crystallography even with very bad refinement ($\mathrm{R}=32 \%$) supported phenazine 146 to be the correct structure for the main product (Figure 35).

Figure 35. X-ray $(\mathrm{R}=32 \%)$ picture of system 146.

This suggested that the amine first attacked the most hindered Cl -substituted C to give the monochloro substituted $\mathbf{1 4 3}$. This site is probably the most electrophilic since it is activated by two ortho nitro groups. The second attack from the butylamine-group to cyclize the system occurred at the most hindered NO_{2}-substituted C forming phenazine 146.

Tentatively, the alkylamino group of N-(n-butyl)-1,2-benzenediamine $\mathbf{1 3 4} \mathbf{c}$ was significantly more nucleophilic than the arylamino groups of the N-(aryl)-1,2benzenediamine 134a and \mathbf{b} and thus displaced the nitro group. Diarylamines are typically less nucleophilic than alkylarylamines since the lone pair of electrons on the nitrogen of the diarylamines is strongly conjugated with the π electrons of the aromatic rings and is therefore less available to the nitrogen for nucleophilic or basic type reactions. On the other hand, an alkyl group attached to the amine may increase the nucleophilicity and basicity since the alkyl group inductively releases electron density to the nitrogen. Nitro groups are usually considered as activating groups in aromatic nucleophilic substitution especially in the ortho and para positions but there are many examples where nitro groups act as good leaving groups in aromatic nucleophilic reactions especially when displaced by oxygen or sulfur nucleophiles. ${ }^{313-317}$ For example a nitro-group can be readily displaced by phenoxides in phthalimide derivatives where the leaving group ability compared to halogens F and Cl is $\mathrm{NO}_{2}>\mathrm{F}>\mathrm{C} 1 .{ }^{318}$ Usually nitro displacement is achieved when other EWGs are also attached to nitrobenzene. Moreover nitro group displacements by nitrogen nucleophiles as in our case, have also been reported. ${ }^{319-322}$ For instance, chloronitroquinoxalines 151 react with 3 -amino-1,2-propanediol to undergo preferential displacement of the nitro rather than the chloro group, while chloronitropyrazines 149 prefer to display the chloride instead (Scheme 31). ${ }^{323}$

149

151

152

Scheme 31

The minor product from the reaction of amine $\mathbf{1 3 4} \mathbf{c}$ with 1,3 -dichloro-2,4dinitrobenzene 133 was another unknown product isolated as blue prisms. Due to the small quantity of material isolated, only mass spectroscopy data could be collected [$\mathrm{m} / \mathrm{z}(\mathrm{EI})\left(\mathrm{M}^{+}, 82 \%\right) 328 \mathrm{Da}$, which suggested a phenazine structure 148 where the chloro-group of the monosubstituted system 143 was substituted by nitrite, possibly released during the synthesis of phenazine 146 (Scheme 32).

Scheme 32. Reaction of diamine 134c with 1,3-dichloro-2,4-dinitrobenzene 133.

To investigate if product 148 can come from phenazine 146, we treated 146 with NaNO_{2} in DMF heated at $c a .100{ }^{\circ} \mathrm{C}$. After 2.5 d the starting material was consumed and TLC analysis of the reaction mixture indicated a major purple product and some other minor colored side products, but none of the blue product 148. Additional work to clarify this reaction and the structure of the unknowns was not pursued owing to time constraints.

The isolation of phenazine $\mathbf{1 4 6}$ indicated the difficulty in synthesizing the desired compound 89 bearing N-alkyl substituents. Despite this, the reaction was partially optimized to increase the yield of the desired disubstituted product 132c. By using a 3:1 ratio of 134c:133, we expected the reaction to favor the intermolecular cyclization, however, the intramolecular ring closure dominated. To prevent this intramolecular cyclization, lower reaction temperatures were also considered. Furthermore, we avoided

Hünig's base because it could activate the amine attack and favor the ring closure towards the phenazine. As such, when a $2: 1$ ratio of the reagents $\mathbf{1 3 4} \mathrm{c}: \mathbf{1 3 3}$ was heated in DCM at ca. $44{ }^{\circ} \mathrm{C}$ for 4 d , the reaction mixture gave unreacted starting material 133 (30\%), phenazine $146(20 \%)$ and disubstituted product $132 \mathrm{c}(\mathrm{R}=n-\mathrm{Bu})$ as the main product of the reaction in 48% yield.

The disubstituted products 132a $(\mathrm{R}=\mathrm{Ph})$ and 132c $(\mathrm{R}=n-\mathrm{Bu})(100 \mathrm{mg})$ were hydrogenated using Pd / C and H_{2} in a Parr hydrogenator apparatus using EtOH (20 mL) and THF (10 mL) as the solvents. The presence of THF was needed to facilitate solubilization of the starting dinitrobenzene. The reaction was monitored by hydrogen uptake and once this had ceased the reaction was considered complete (confirmed by TLC). The reaction mixture was then filtered through Celite ${ }^{\circledR}$ to remove Pd / C and the ethanolic filtrate was then heated under an air atmosphere to give only a black mixture that was difficult to process. Thus, in subsequent reactions, to the ethanolic filtrates before heating, acid (ca. 1 mL) was added (e.g., $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HBF}_{4}, \mathrm{HClO}_{4}$ and HPF_{6}) in the hope of trapping the cyclized quinoxalinophenazine as the mono cations, which should be more stable than the anticipated target diradical. The filtrate was heated extensively in the open air using a heat gun until the initially colorless solution became deep lilac. In each case, after the heated ethanolic solution was allowed to cool to $c a .20$ ${ }^{\circ} \mathrm{C}$, a crystalline bronze solid precipitated and was isolated by filtration. Higher yields and better quality crystals were obtained using HBF_{4}. Products with $N-\mathrm{Ph}$ and $N-\mathrm{Bu}$ substituents acidified with HBF_{4} were obtained in 47 and 42% yields, respectively. Other acids gave smaller yields e.g., with N - Bu system, HBr formed crystals in $37 \%, \mathrm{HClO}_{4}$ in 31% and HPF_{6} in 27%.

The cyclized quinoxalinophenazine $(\mathrm{R}=\mathrm{Ph})$, isolated as a $\mathrm{BF}_{4}{ }^{-}$salt from the reaction of 132a gave a LRMS (EI) with a molecular mass $m / z 451 \mathrm{Da}$, and elemental analysis: C, $66.69 ; \mathrm{H}, 3.92 ; \mathrm{N}, 10.37 \%$, which did not agree with the expected data for the targeted BF_{4}^{-}salt of system 89a $(\mathrm{R}=\mathrm{Ph})$: molecular mass $m / z 436 \mathrm{Da}$, and elemental analysis: C, $68.72 ; \mathrm{H}, 4.04 ; \mathrm{N}, 10.67 \%$. Similarly, the cyclized quinoxalinophenazine (R $=n-\mathrm{Bu}$) as a BF_{4}^{-}salt from the reaction of 132c gave a LRMS (EI) with a molecular mass $m / z 412 \mathrm{Da}$, instead of 396 of the $N-\mathrm{Bu}$ analog 89c, while elemental analysis (found: C, 62.48; H, 5.87; N, 11.06\%) did not match 89c either (C, 64.48; H, 6.04; N, 11.57\%) (Figure 36).
expected products

89a

89c
expected data $\quad m / z 436 \mathrm{Da} ; \mathrm{C}, 68.72 ; \mathrm{H}, 4.04 ; \mathrm{N}, 10.69 \% \quad m / z 396 \mathrm{Da} ; \mathrm{C}, 64.48 ; \mathrm{H}, 6.04 ; \mathrm{N}, 11.57 \%$ experimental data $m / z 451 \mathrm{Da} ; \mathrm{C}, 66.69 ; \mathrm{H}, 3.92 ; \mathrm{N}, 10.37 \% \quad m / z 412 \mathrm{Da} ; \mathrm{C}, 62.48 ; \mathrm{H}, 5.87 ; \mathrm{N}, 11.06 \%$

Figure 36. Expected and experimental data for system 89.

The experimental data suggested the addition of oxygen, which can be expected for paramagnetic systems since they can be easily oxidized. For instance, Blatter radical (1,3-diphenyl-1,2,4-benzotriazinyl radical) 26 oxidizes with MnO_{2} (10 equiv.) in DCM at ca. $20{ }^{\circ} \mathrm{C}$ for 7 d or KMnO_{4} (10 equiv.) in refluxing PhH for 2 d to give 1,3-diphenyl-1,2,4-benzotriazin-7-one 153 in 84 and 62% yields, respectively. ${ }^{324}$ The oxidation at the C_{7} position of the benzotriazinyl $\mathbf{2 6}$ can be blocked potentially redirecting the oxidation to C-5 position to give the hypothetical $\mathbf{1 5 4}$ where there is also some spin density (less than C_{7}) as Neugebauer has reported. ${ }^{92,93}$ Such an effort was established using the trifluoromethyl group as the substituent at C_{7}. The oxidation of the corresponding 7-trifluoromethylbenzotriazinyl radical 155 using either MnO_{2} or KMnO_{4} did not give either the para-quinonimine 153 nor the ortho-quinonimine $\mathbf{1 5 6}$ showing in this way the tolerance of the trifluoromethyl group towards oxidation and owing to its electron withdrawing power its stabilizing effect on the radical, preventing the possible alternative oxidation at C_{5} (Scheme 33). ${ }^{324}$

Oxidation $=\mathrm{MnO}_{2}, \mathrm{PhH}, 80^{\circ} \mathrm{C}$

154

156

Scheme 33. Oxidation of 7-trifluoromethylbenzotriazinyl radical 155.

Tentatively, the most likely site for oxidation on the cyclized quinoxalinophenazine should be on the central ring, since the central rings in acenes are typically more reactive. ${ }^{325-327}$ In addition, and in light of the known oxidation of Blatter's radical to the benzotriazinone (formation of the quinone para to the unsubstituted nitrogen), we tentatively considered the possible structure of $157 \mathrm{a}(\mathrm{R}=\mathrm{Ph})$.

157a

Under acidic "work up" conditions the analogous salts were isolated and freed on treatment with base. As such, to a suspension of the salt in $\mathrm{EtOH}, \mathrm{NaOH}$ (ca. 1 equiv. in small pieces) was added and then gentle heating was applied until the NaOH dissolved and the color of the suspension changed from lilac to brown. On cooling, the free bases were obtained as brown solids, which were isolated by filtration and then recrystallized from benzene or toluene (bulk recrystallization) or using DCE/pentane (vapor diffusion). Protic solvents were avoided since they could reprotonate the neutral radical. Elemental
analysis of the isolated radical gave $\mathrm{C}, 79.76 ; \mathrm{H}, 4.17 ; \mathrm{N}, 12.46 \%$ which matched the suggested radical 157a $\left(\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}^{\circ}\right.$ requires C, $\left.79.81 ; \mathrm{H}, 4.24 ; \mathrm{N}, 12.41 \%\right)$.

Scheme 34. Expected product and suggested product according to MS and MA data after hydrogenation and oxidation of 131a.

The UV/vis absorption of the neutralized compound ($N-\mathrm{Ph}$) gave $\lambda_{\text {max }}=900 \mathrm{~nm}$ ($\log \varepsilon 3.35$). This longest wavelength absorption supported charge transfer ability while the extensive $\pi-\pi^{*}$ character is supported by absorptions in the region below 700 nm . EPR spectroscopy of the same compound gave a strong signal, indicating a doublet ground state supporting the synthesis of a new organic radical (Figure 37).

Figure 37. EPR signal for the isolated radical, ($N-\mathrm{Ph}$).

In light of the above, we considered Scheme 35 to be rational and attempted to grow single crystals of the tetraazapentacene $\mathbf{1 5 7 H}$ for structure elucidation and to confirm our hypothesis. Unexpectedly, the X-ray structure of the $\mathrm{R}=\mathrm{Ph}$ analog crystallized with HBF_{4} to give an altogether different structure.

Scheme 35. Reaction of compound 132 to give the expected radical 157.

According to the X-ray data, the linear system 158 was the product of the above reaction. The refinement of the X-ray was very poor and thus the only qualitative information we could get from the picture was the atom connectivity, which supported a linear motif for the radical and the position of the oxygen atom (Figure 38). This was a surprising result considering the synthetic route to the angular analog.

Figure 38. X -ray ($\mathrm{R}=11 \%$) picture of system 158a.

Despite the fact that from this synthesis the diradical 89a was not observed, the unusual tetraazapentacene oxy radical 158a was unexpectedly isolated and this required further study.

4.3 Study on Tetraazapentacene Oxy Radical

Three possible resonance structures for oxy-tetraazapentacene radical $\mathbf{1 5 8}$ are I, II and III (Scheme 36). Two of them, beside their paramagnetic character, are also zwitterions. Structure I, has a carbonyl bond and the free spin is delocalized between the two unsubstituted nitrogens. Structures II and III have a positive cyanine in the site of the substituted nitrogens and have a negative charge located on the oxygen and the free spin on the opposite cyanine for structure II or have the negative charge on the opposite cyanine and the free spin located on the oxygen for structure III.

Scheme 36. Three possible resonance structures for radical 158.

The EPR data, which shows only a single peak, strongly supports that radical is not delocalized equally among spin carriers since that should have given EPR data with hyperfine interactions with neighboring nuclei and thus splitting of the signal. This somehow excludes structures I and II where radical seems equally delocalized among nitrogens and supports the oxy-radical structure III where radical is mostly localized on oxygen.

Computational studies

A computational study for the most preferred structure of the radical using various methods was inconclusive. Optimization of the structure using DFT/B3LYP/6-31G(d) which is a method that gives a good matching of computational and experimental data of the linear tetraazapentacene structure $\mathbf{1 1 9}$ (see Chapter 3), suggested double bond $\mathrm{C}=\mathrm{O}$ as in structure I but gave one imaginary frequency during the frequency calculation. Other methods like HF/6-31G(d), MP2/6-31G(d), B3LYP/6311G(d) or B3PW91/6-31G(d) also suggested structure with double carbonyl bond, but only HF gave zero imaginary frequencies. The above optimized structures though are symmetrical as could be expected. However, a non-symmetrical structure with double carbonyl bond resulted in an
optimization using DFT/B3LYP/6-31G(d) that gave zero imaginary frequencies. It is not that easy to draw such a structure but it could be pictured as in structure IV.

IV
Bond length analysis (Table 29) of the optimized structure IV shows the non-symmetric character of the structure. For instance C-CO bonds $\mathrm{C}_{7}-\mathrm{C}_{8}$ and $\mathrm{C}_{8}-\mathrm{C}_{10}$ are $1.507 \AA$ and $1.473 \AA$, respectively. Similarly C-C bonds $\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ have lengths $1.430 \AA$ and $1.373 \AA$, respectively indicating single and double bond character respectively (Table 29).

Table 29. Selected bond lenghts (\AA) of optimized structure IV [B3LYP/6-31G(d)]

$\mathbf{N}_{\mathbf{1}}-\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{2}}-\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{3}}-\mathbf{C}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{4}}-\mathbf{N}_{\mathbf{5}}$	$\mathbf{C}_{\mathbf{4}}-\mathbf{C}_{\mathbf{7}}$	
1.387	1.430	1.373	1.391	1.468	
$\mathbf{C}_{\mathbf{1 0}}-\mathbf{N}_{\mathbf{1 1}}$	$\mathbf{C}_{\mathbf{8}}-\mathbf{C}_{\mathbf{1 0}}$	$\mathbf{C}_{\mathbf{7}}-\mathbf{C}_{\mathbf{8}}$	$\mathbf{N}_{\mathbf{6}}-\mathbf{C}_{\mathbf{7}}$	$\mathbf{C}_{\mathbf{2}}-\mathbf{C}_{\mathbf{1 0}}$	$\mathbf{C}_{\mathbf{8}} \mathbf{- \mathbf { O } _ { \mathbf { 9 } }}$
1.354	1.473	1.507	1.303	1.414	1.228

While EPR and computational data suggest structure IV, X-ray ($\mathrm{R}=11 \%$) suggests tentatively a single C-O bond $[1.422(6) \AA$] as in III but not symmetric. However, due to the low refinement of the X-ray structure these data are not accurate. Nevertheless, the possible zwitterionic character of structures II and III was supported by a UV/vis solvatochromic study. Typically, charge separated compounds that have a less polar excited state display negative solvatochromism, i.e. the $\lambda_{\max }$ decreases as the polarity of the solvent increases. This was observed with zwitterionic system 119. ${ }^{154}$ For this study, radical 158a ($\mathrm{R}=\mathrm{Ph}$) negative solvatochromism was also observed indicative of zwitterionic behavior (Figure 39).

Figure 39. Correlation between solvent polarity $E_{\mathrm{T}}(30)^{328-330}$ and the absorbance maxima of radical 158a.

In $\mathrm{EtOH} / \mathrm{HCl}$, a blue shift of the low $\pi-\pi^{*}$ transitions was observed when adding one drop of $\mathrm{HCl}\left[\mathrm{H}^{+} / \mathrm{EtOH}, \lambda_{\max } 749 \mathrm{~nm}(\log \varepsilon 0.68)\right]$ or two drops of $\mathrm{HCl}\left[\mathrm{H}^{+} / \mathrm{EtOH}, \lambda_{\max }\right.$ $735 \mathrm{~nm}(\log \varepsilon 0.84)]$ on the neutral solution [EtOH, $\left.\lambda_{\max } 801 \mathrm{~nm}(\log \varepsilon 0.63)\right]$ (Figure 40). Addition of more drops HCl did not affect the spectrum. This behavior was also observed on quinoxalinophenazine $119(\mathrm{R}=\mathrm{Ph})$ but in a significant blue shift $(100 \mathrm{~nm}) .{ }^{154}$

Figure 40. Absorption spectra of radical 158 in EtOH at $4.4 \times 10^{-3} \mathrm{M}$; [free base (blue line) $\lambda_{\max } 801 \mathrm{~nm}(\log \varepsilon 0.63)$; addition of one drop $\mathrm{HCl}\left(\right.$ red line) $\lambda_{\max } 749 \mathrm{~nm}(\log \varepsilon$ 0.68); addition of two drops HCl (green line) $\lambda_{\max } 735 \mathrm{~nm}(\log \varepsilon 0.84)$.

The unusual proposed structures for $\mathbf{1 5 8}$ remind us the ambiguous structure of cyclobutadiene 159. ${ }^{331-336}$ Cyclobutadiene could be considered as a square structure but such a structure would result in a strong anti-aromatic character that needs to be avoided. That is because, the four p orbitals on each carbon will form four π orbitals, that will include a bonding, an anti-bonding and two non-bonding orbitals and following Hund's rule and Hückel molecular orbital theory cyclobutadiene should be a diradical. Though, the two non-bonding electrons will be in opposite orbitals, cyclobutadiene becomes a highly unstable diradical and therefore it is known as an anti-aromatic system. To avoid anti-aromaticity, cyclobutadiene needs to adopt a structure to prevent conjugation.

The geometric distortions 159a and $\mathbf{1 5 9 b}$ were proposed to describe the system better (Scheme 37). Both singlet and triplet ground states have been predicted computationally. Dewar's calculations though predicted singlet ground state with localized single and double bonds as in rectangular structure 159a. In fact single C-C bonds are even longer than conventional single C-C bonds. The other proposed structure, 159b, is an unsymmetrical zwitterionic form that also stabilizes the system. However, studies confirmed the rectangular structure 159a as the preferred structure of cyclobutadiene. ${ }^{337,338}$

Scheme 37. Proposed geometric distortions of cyclobutadiene.

The crystal structure of $\mathbf{1 5 8}$ showed the linear conformation of the system but a better X-ray was required to get precise geometric data and resolve the structure assignment. The need for better single crystals led to the synthesis of analogous radicals with different N-substituents, such as perfluorophenyl or p-trifluoromethylphenyl since the C-H \cdots C-F interactions could assist the crystal packing. ${ }^{339,340}$ Thus, the analogous amines were used for the synthesis of the corresponding oxy radicals $\mathbf{1 5 8 d}$ and $\mathbf{1 5 8 e}$.

The nitro-diarylamines $\mathbf{1 6 0}$ and $\mathbf{1 6 2}$ were synthesized after reaction of 2-fluoronitrobenzene with p-(trifluoromerthyl)aniline and pentafluoroaniline, respectively (Scheme 38).

Scheme 38. Synthesis of amines 161 and 163.

Amine 160 was synthesized via the same conditions used on $N-\mathrm{Ph}$ and $N-\mathrm{Bu}$ analogs but amine $\mathbf{1 6 2}$ could not because under these conditions the reaction rate was too slow giving the product only in traces. The reported synthesis of amine $\mathbf{1 6 2}$ required basic conditions via CsF, in DMF and $95{ }^{\circ} \mathrm{C}$, and the product was isolated in 22% yield after high vacuum distillation. ${ }^{341}$ By using chromatography we managed to get the product in a crude oily form in 59% yield and after crystallization from hexane the amine $\mathbf{1 6 2}$ was isolated clean as needles in 15% yield.

Hydrogenation ($\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, EtOH) of amines 160 and 162 afforded diamines 161 and $\mathbf{1 6 3}$ respectively, in high yields (Scheme 38). The reaction of diamines 161 and 163 with 1,3-dichloro-2,4-dinitrobenzene $\mathbf{1 3 3}$ followed: In the case of diamine $\mathbf{1 6 1}$ (Scheme 39) the reaction required a $4: 1$ ratio of reagents 161:133 in refluxing EtOH for 10 d and gave the product in 56% yield. Under basic conditions (Hünig's base) in refluxing EtOH, the reaction gave deep blue and purple colored products that correspond to the analogs phenazines and thus it was preferred to perform the reaction without base. On the other hand, with the diamine 163, the reaction could not be performed without base and even then a complex reaction mixture was obtained. As such, it was abandoned. We subsequently focused our attention on the formation of the trifluoromethylphenyl analog.

Scheme 39

After the synthesis of the trifluoromethyl analog 132d, reduction and then oxidation of the obtained hexamino compound, we isolated the HBr acidified product $\mathbf{1 5 8 d H}{ }^{+}$in 40%, and after neutralization with NaOH , the radical $\mathbf{1 5 8 d}$ was isolated in 80%. Disappointingly, recrystallisation of 158d did not give crystals suitable for X-ray crystallogaphy. Eventually, three of oxy-tetraazapentacene radicals 158a, \mathbf{c} and \mathbf{d} were synthesized.

158a

158c

158d

4.4 Mechanistic Rationale for the Formation of Radical 158 and Alternative Pathway for Target

A rational mechanism for the formation of the linear quinoxalinophenazine radical was proposed based on the probable oxidation of the central tetraamino substituted benzene. This highly electron rich arene was likely to suffer rapid oxidation to give either an ortho or para quinonedimine, which could then undergo intramolecular cyclization to give, following loss of ammonia, the phenazine 164. Subsequent Michael type addition by the exocyclic benzenediamine at the 5,10 -dihydrophenazine C_{3} position can give the linear quinoxalinophenazine 165 that can oxidize to the quinoxalinophenazine $\mathbf{1 6 6}$. Subsequent tautomerization affords the exocyclic imine 167 that can hydrolyse to the ketone $\mathbf{1 5 8 H}$.

Air oxidation of the latter affords the tentative quinoxalinophenazine oxy radical $\mathbf{1 5 8}$ (Scheme 40).

Scheme 40

By analyzing the proposed mechanism for the formation of the linear quinoxalinophenazine oxy radical, it can be inferred that blocking the cyclization at C-3 in intermediate $\mathbf{1 6 4}$ could lead to the formation of the desired angular quinoxalinophenazine. A good blocking group is the trifluoromethyl group because it imparts oxidative stability to the arene owing to its electron withdrawing effects and was successfully used to stabilize azaacene radicals such as the Blatter radical. ${ }^{324}$

We therefore synthesized 2,4-dichloro-1,3-dinitro-5-trifluoromethylbenzene $\mathbf{1 6 9}$ from available 2,4-dichlorotrifluoromethylbenzene $\mathbf{1 6 8}$ according to a literature procedure (Scheme 41). ${ }^{342}$

Scheme 41
N-Phenyl-1,2-benzenediamine 134a reacted with 2,4-dichloro-1,3-dinitro-5-trifluoromethyl-benzene 169 and Hünig's base (2 equiv.) in EtOH at ca. $78{ }^{\circ} \mathrm{C}$ to give the corresponding tetramine $\mathbf{1 7 0}$ in low yield (3\%), together with three colored side products (Scheme 42).

The main product \mathbf{A} (54\%) was obtained as light purple-pink cotton like crystals, $\mathrm{mp} 213-214^{\circ} \mathrm{C}$ (hexane). Microanalysis (found: C, 56.23 ; H, 2.70; N, 10.27\%) and LRMS [$\left.\mathrm{m} / z(\mathrm{EI}) 405 \mathrm{Da}\left(\mathrm{M}^{+}, 91 \%\right)\right]$ suggested the formula $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$, indicating tentatively, that a phenazine had been formed via an intramolecular cyclization and displacement of a nitro group, similar to that observed during the reaction of N-(n-butyl)-1,2-benzenediamine 134c with 1,3-dichloro-2,4-dinitrobenzene 133 (see Section 4.2). The UV/vis spectrum gave a $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 492(\log \varepsilon 3.72)$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the new compound identified ten Ar Hs and one $\mathrm{NH}(9.84 \mathrm{ppm})$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ identified eight tertiary Ar Cs , eight Ar CHs and the peak of the CF_{3} group. The splittings of the $\mathrm{CF}_{3}\left(\mathrm{q},{ }^{1} J_{\text {C-F }} 271.6 \mathrm{~Hz}\right.$), the neighboring carbon ($\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 32.7 \mathrm{~Hz}$) and the carbon next ($\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 6.3 \mathrm{~Hz}$) attributed to
the three flourines were observed. Three possible structures 173-175 for unknown A can be proposed, tentatively originating from the possible monochloro displaced precursors 171 and 172. Monosubstituted system 171 can lead to phenazines $\mathbf{1 7 3}$ and $\mathbf{1 7 4}$ while monosubstituted 172 can only give phenazine 175. Unknown B was a purple-blue $\left[\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 559(\log \varepsilon 3.90)\right]$ product (18\%), mp 206-207 ${ }^{\circ} \mathrm{C}$ (hexane), $[\mathrm{m} / \mathrm{z}(\mathrm{EI}) 416$ $\left.\mathrm{Da}\left(\mathrm{M}^{+}, 100 \%\right)\right]$ the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of which were similar to that of the phenazine above: ten Ar Hs, one NH (10.21 ppm), eight tertiary Ar Cs, eight Ar CHs and the peak of the CF_{3} group, and the unknown \mathbf{C} was a minor blue $\left[\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 585(\log \varepsilon 3.14)\right.$] product in traces [m / z (EI) $416 \mathrm{Da}\left(\mathrm{M}^{+}, 100 \%\right)$]. The data suggest again the formation of dinitro-analogs and thus compounds $\mathbf{1 7 6 - 1 7 7}$ are suggested for major purple-blue and minor blue compounds (Figure 41).

171
ii)

173
iii)

176

172

174

177

175

178

Figure 41. Possible structures of i) monosubstiututed, ii) purple unknown \mathbf{A} and iii) major and minor blue unknowns \mathbf{B} and \mathbf{C} of the reaction of $\mathbf{1 3 4 a}$ with 169.

The structure of the two dinitro unknowns \mathbf{B} and \mathbf{C} were solved by single crystal X-ray crystallography and determined to be the dinitro phenazines 176 and 177, respectively (Figure 42).

176

177

Figure 42. X-ray pictures of major and minor dinitro compounds 176 and 177, respectively.

Having in mind that the dinitro-products from the reaction are 176 and 177, the correct structure of the monosubstituted system must be 171. Structure 172 would only give the dinitro-compound 178 through phenazine 175, while compound 171 would give dinitro compound $\mathbf{1 7 6}$ through phenazine 173 and dinitro compound 177 through phenazine 174. Considering the correct structure of phenazine \mathbf{A}, we suggest structure 173 since only structures $\mathbf{1 7 3}$ and 174 can be produced from monosubstituted system 171 and since $\mathbf{1 7 3}$ agrees with the analogous phenazine $\mathbf{1 4 6}$ in the butyl analog confirmed by X-ray crystallography (see Section 4.2).

Since the desired disubstituted product $\mathbf{1 7 0}$ was formed in only 3% yield via these conditions (refluxing EtOH and Hünig's base) and because we had a route to the monosubstituted compound 171 we considered aiming for a two-step synthesis of disubstituted product $\mathbf{1 7 0}$ via the monosubstituted product 171. This two-step synthesis could limit or avoid the formation of undesirable side products.

Using a 1:1 ratio of reagents 134a:169, in the absence of base, in DCM at $c a$. $20^{\circ} \mathrm{C}$ for 2 d led to an incomplete consumption of the starting dichlorodinitrobenzene but nevertheless gave the desired monosubstituted product 171 in moderate yield (26\%) together with the corresponding phenazine where the Cl is displaced by a nitro group as the main product in 38%. A $2: 1$ ratio of 134a:169 and addition of Hünig's base in refluxing DCM gave in 7 h a lower yield of the phenazine to 6% and higher of the yield of the monosubstituted product to 38%. By using a $4: 1$ ratio of $\mathbf{1 3 4 a}: \mathbf{1 6 9}$ and refluxing EtOH instead, without any base, we managed to get after only 1.5 h a clean reaction
without any phenazine formed and the monosubstituted product $\mathbf{1 7 1}$ as the main product in 89% (Table 30).

Table 30. Optimization of the reaction of 134a:169 to increase the yield of monosubstituted 171.

With the monosubstituted product $\mathbf{1 7 1}$ in hand we then pursued the synthesis of the disubstituted analog 170. Initially, the behavior of the monosubstituted product 171 was examined: An ethanolic solution of the monosubstituted product 171 was treated with Hünig's base (1 equiv.) and heated to reflux. After 24 h , phenazine 173, dinitrophenazine 176, and some trace of dinitro-compound 177 were formed in 22,25 and 4% yields, respectively (Scheme 43). Interestingly, heating the monosubstituted product 171 in $\mathrm{EtOH}\left(c a .78{ }^{\circ} \mathrm{C}\right.$) in the absence of base led to the quantitative formation of phenazine $\mathbf{1 7 3}$ in just 10 min , while in DCM at $c a .40^{\circ} \mathrm{C}$ only phenazine $\mathbf{1 7 3}$ was formed at a slower rate and in traces.

Scheme 43

To achieve the synthesis of dinitro-system 176, basic conditions (Hünig's base) were required either in refluxing EtOH or DCM. When a weaker base was used such as
pyridine, even in refluxing EtOH , the dinitro-compound 176 was not observed since phenazine 173 was the only product of the reaction. Attempts to synthesize dinitrophenazines $\mathbf{1 7 6}$ or $\mathbf{1 7 7}$ from phenazine $\mathbf{1 7 3}$ using nitration conditions $\left[\mathrm{NaNO}_{2}\right.$ (10 equiv.)/DMF/ Δ or KNO_{2} (10 equiv.), $18-\mathrm{C}-6$ (2 equiv.)/PhMe/ Δ] failed. This tentatively suggested that the mechanism for their formation was not via an intermolecular displacement of Cl but possibly via an intramolecular migration of a nitrogroup at the time of the proposed ring closure (Scheme 44).

Scheme 44. Formation of phenazine 173 via compound 171.

Since the monosubstituted 171 readily underwent intramolecular ring closure, we considered preparing the disubstituted analog using a large excess of N-phenyl-1,2benzenediamine. To do this 10 equiv. of N-phenyl-1,2-benzenediamine were used under solvent free conditions thus ensuring a high local concentration of the diamine reagent: Heating the reaction mixture at $\mathrm{ca} .80^{\circ} \mathrm{C}$ for 3 d gave the desired disubstituted product $\mathbf{1 7 0}$ in 83% and phenazine $\mathbf{1 7 3}$ in only 15%, based on recovered starting material $\mathbf{1 7 1}$ (33\%) (Scheme 45).

Scheme 45

Having prepared the disubstituted system 170, the synthesis of the diradical was attempted. Hydrogenation of $\mathbf{1 7 0}$ using Pd / C followed by the oxidative cyclization conditions (EtOH/ HClO_{4}, air, heat) used for the formation of the linear
quinoxalinophenazines failed to give the expected product or any products that can be handled and identified. Time constraints prevented further work.

4.5 Summary

A DFT computational study on the angular quinoxalino[2,3-a]phenazine 89 suggested a triplet ground state. The attempted synthesis of 89 starting from 1,3-dichloro-2,4dinitrobenzene and N-(alkyl or aryl)-1,2,-benzenediamines failed but afforded an unusual linear quinoxalino[2,3-b]phenazine 158 supporting a zwitterionic biscyanine bearing an oxy radical. This unusual radical was partially characterised by X-ray, UV/vis and EPR and a rational mechanism for its formation was proposed.

CHAPTER 5

Manipulating the Singlet-triplet Energy Gaps of Linear and Angular Arene-fused Bis(1,2,3-dithiazoles)

Sections Page
5.1 Introduction 160
5.2 Total Energies, Spin-coupling Constants and Singlet-triplet Gaps 162
5.2.1 Linear Fused Bis(1,2,3-dithiazoles) 162
5.2.2 Angular Fused Bis(1,2,3-dithiazoles) 165
5.3 Aromaticity Considerations 167
5.4 Molecular Orbital Analysis 172
5.5 Mulliken Charge Distribution 178
5.6 Replacing the Central 6-Membered Arene by a 5-Membered Arene 179
5.7 The Analogous Quinoid Structures 181
5.8 Summary 183

5.1 Introduction

Thiazyl radicals as heteroatom radicals, hold considerable potential in the design of materials with electronic properties and, as such, have been the focus of intense study. ${ }^{37,343-347}$ A number of thiazyl radicals displaying magnetic ${ }^{348-352}$ and/or conductive ${ }^{353,354}$ properties have been reported. In particular dithiazolyls (1,2,3- and 1,3,2-dithiazoles in Figure 43) are a fertile ground for promising electronic materials owing to their reduced inter-electron repulsion that lead to suppression of their solid-state dimerization. ${ }^{344,346}$

Figure 43. 1,2,3- and 1,3,2-dithiazolyls, compunds 78 and 79 respectively.

Historically, Mayer et al., made early progress on 1,2,3-dithiazolyls in the 80 's but this research was focused on their spectroscopic characterization ${ }^{355-357}$ until the first stable crystalline derivatives were synthesized by Oakley some 20 years later and interesting solid-state properties were discovered ${ }^{358-361}$ The disproportionation energy of the 1,2,3-dithiazolyls was much lower than those reported for other thiazyl radicals indicating further enhancement of the π delocalization and promising transport properties, however, these 5 -membered monocyclic radicals were more prone to dimerization. Nevertheless, 1D regular π stacks of 1,2,3-dithiazolyls have been isolated but owing to the poor orbital overlap stemming from slippage along the stacking direction, conductivity was of the order of $10^{-6}-10^{-7} \mathrm{~S} / \mathrm{cm} .^{362,363}$ Incorporation of selenium in place of the 2-sulfur resulted in bulk ferromagnetic ordering of bisthiaselenazolyl radicals with T_{c} of $c a$. 12-14 K denoting their potential as promising materials for electronic devices. ${ }^{364}$

The bis(1,2,3-dithiazolyl) 180a was shown computationally to have a triplet ground state $5.1 \mathrm{kcal} / \mathrm{mol}$ more stable than the singlet state, however, Oakley and coworkers have synthesized the pyrido-fused bis(1,2,3-diathiazole) 52 (Figure 44) that had a zwitterionic ground state as supported by X-ray structure and calculations. ${ }^{156}$ In contrast, skeletal rearrangements such as switching from the linear to the angular structure led to a significant change in ΔE_{ST} strongly favoring the triplet state of angular system 181a.

180a
$\Delta E_{\mathrm{ST}}=+5.1 \mathrm{kcal} / \mathrm{mol}$

52

181a
$\Delta E_{\mathrm{ST}}=+16.3 \mathrm{kcal} / \mathrm{mol}$

Figure 44. Bis(1,2,3-dithiazoles) 180a-181a and the pyrido-fused bis(1,2,3-diathiazole)
52.

As mentioned before (see Chapter 1.4) zwitterionic biscyanines can be considered to combine the electronic form of single carbenes and the structural motif of m-phenylene diradicals. Many theoretical and experimental studies on carbenes and m phenylene diradicals indicated that substituents can influence their singlet-triplet energy gaps $\left(\Delta E_{\mathrm{ST}}={ }^{\mathrm{S}} E-{ }^{\mathrm{T}} E\right)$ and hence their ground state multiplicities. ${ }^{164-169}$ To the best of our knowledge, a broad computational study on fused 1,2,3-dithiazolyls has not been reported, but could identify structure-property-relationships (SPR) that can aid in the design of analogs with desired electronic properties. In this study we examine how structural changes, such as the direct introduction of substituents on the cyanines and the modification of the central arene to heteroazines, affects the ground state multiplicity of linear and angular bis(1,2,3-dithiazoles) $\mathbf{1 8 0}$ and $\mathbf{1 8 1}$ (Figure 45).

180a ($\mathrm{E}=\mathrm{Z}=\mathrm{CH}$)
182 ($\mathrm{E}=\mathrm{CH}, \mathrm{Z}=\mathrm{N}$)
$183(\mathrm{E}=\mathrm{N}, \mathrm{Z}=\mathrm{CH})$
$184(\mathrm{E}=\mathrm{Z}=\mathrm{N})$

181a ($\mathrm{E}=\mathrm{Z}=\mathrm{CH}$)
$185(\mathrm{E}=\mathrm{CH}, \mathrm{Z}=\mathrm{N})$
$186(\mathrm{E}=\mathrm{N}, \mathrm{Z}=\mathrm{CH})$
$187(\mathrm{E}=\mathrm{Z}=\mathrm{N})$

Figure 45. Selected fused bis(1,2,3-dithiazoles) for the DFT study. X and Y are substituents for compounds $\mathbf{1 8 0} \mathbf{- 1 8 1}$ and are either electron donating (EDG) or electron withdrawing (EWG) groups as indicated in Tables 29-30.

5.2 Total Energies, Spin-coupling Constants and Singlet-triplet Gaps

5.2.1 Linear Fused Bis(1,2,3-dithiazoles)

The benzo bridged linear system 180a ($\mathrm{X}=\mathrm{Y}=\mathrm{CH}$) was compared to the pyrido 182 $(\mathrm{X}=\mathrm{CH}, \mathrm{Y}=\mathrm{N}), \mathbf{1 8 3}(\mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH})$ and pyrazino $\mathbf{1 8 4}(\mathrm{X}=\mathrm{Y}=\mathrm{N})$ bridged analogs. Furthermore, the substitution of hydrogens $(X=H, Y=H)$ on the parent system 180a by electron donating (EDGs) and electron withdrawing groups (EWGs) was studied in an effort to manipulate $\Delta E_{\text {ST }}$ (Figure 45).

Scheme 46. Singlet and triplet structures for the linear parent fused bis(1,2,3-dithiazoles) 180.

The energies of the open-shell singlet and triplet states, the spin-coupling constants (J), and the corresponding energy splittings $\left(\Delta E_{\mathrm{ST}}\right)$ for linear structures $\mathbf{1 8 0}$ and 182-184 are presented in Table 29 for the full optimizations at the UB3LYP/6-31G(d) level of theory. The series of structures 180b-q in Table 31 is in order of increasing $\Delta E^{\mathrm{U}}{ }_{\text {ST }}$ which is the result of the subtraction of the singlet state energy from the triplet state energy.

Table 31. ${ }^{\mathrm{BS}_{<\mathrm{S}^{2}>}>}{ }^{\mathrm{T}}<\mathrm{S}^{2}>, J$ coupling and $\Delta \mathrm{E}_{\mathrm{ST}}(\mathrm{kcal} / \mathrm{mol})$ values for structures $\mathbf{1 8 0}$ and $\mathbf{1 8 2 - 1 8 4}$ calculated at the B3LYP/6-31G(d) level of theory.

180a-q

182

183

184

\#	X	Y	${ }^{\mathrm{BS}_{<} \mathrm{S}^{2}>}$	${ }^{T}<S^{2}>$	J^{1}	$\Delta E^{1}{ }_{S T}$	J^{2}	$\Delta E^{2}{ }_{S T}$	J^{3}	$\Delta E^{3}{ }_{S T}$	$\Delta E^{\mathrm{U}}{ }_{S T}$
180a	H	H	0.8138	2.0427	0.16	0.33	0.08	0.17	0.14	0.28	5.28
180b	H	CN	0.6527	2.0423	-2.06	-1.04	-1.52	-4.20	-2.12	-3.11	0.51
180c	H	Br	0.7904	2.0422	-0.17	-0.08	-0.14	-0.34	-0.17	-0.28	4.52
180d	H	Cl	0.7933	2.0427	-0.10	-0.05	-0.08	-0.21	-0.10	-0.17	4.66
180e	OMe	H	0.8236	2.0424	0.28	0.14	0.24	0.58	0.29	0.49	5.62
180f	Me	H	0.8222	2.0433	0.33	0.17	0.28	0.68	0.34	0.57	5.67
180 g	CN	H	0.8244	2.0463	0.41	0.21	0.35	0.85	0.43	0.71	5.73
180h	OH	H	0.8346	2.0420	0.43	0.88	0.22	0.44	0.37	0.75	6.00
180i	F	H	0.8361	2.0416	0.46	0.23	0.39	0.94	0.47	0.80	6.06
180j	Br	H	0.8323	2.0433	0.53	0.27	0.45	1.09	0.55	0.93	6.07
180k	Cl	H	0.8329	2.0435	0.55	0.28	0.47	1.13	0.57	0.96	6.09
1801	NH_{2}	H	0.8415	2.0431	0.55	0.28	0.47	1.13	0.57	0.96	6.29
180m	H	Me	0.8371	2.0433	0.64	0.32	0.54	1.30	0.65	1.11	6.33
180n	H	F	0.8716	2.0424	1.02	0.52	0.90	2.09	1.05	1.84	7.76
1800	H	OMe	0.8729	2.0414	1.88	0.95	1.65	3.84	1.93	3.38	8.41
180p	H	OH	0.9328	2.0402	2.18	1.09	2.02	4.44	2.23	4.11	11.08
180q	H	NH_{2}	0.9745	2.0370	3.04	1.53	2.94	6.20	3.12	5.98	13.91
182	-	-	0.5379	2.0330	-4.19	-8.52	-2.11	-4.28	-2.86	-5.82	-2.69
183	-	-	0.7933	2.0388	-0.04	-0.08	-0.02	-0.04	-0.03	-0.07	4.72
184	-	-	0.4583	2.0329	-4.82	-9.79	-2.42	-4.92	-3.13	-6.35	-3.71

Our calculations for structures 180 and 182-184 indicate that the spin contaminations of the triplet states are low and the deviation from the expected value of 2.0 is at most 0.046 . All the singlet wave functions are unstable denoting that even where the ground state is a zwitterionic singlet, there is a stong influence of a low-lying triplet state. A closed-shell singlet wavefunction would have been inadequate to describe a zwitterionic singlet ground state since we found considerable amount of spin contamination in the open-shell zwitterionic singlets. Spin contamination for the singlet states of structures $\mathbf{1 8 0}$ and $\mathbf{1 8 2} \mathbf{- 1 8 4}$ has a broader range of values which span from 0.4583 to 0.9745 . The results from the optimizations indicate that most of the studied structures have either open-shell triplet ground states or degenerate singlet and triplet states. The equality of $\Delta E_{\text {ST }}^{1}$ and $\Delta E^{3}{ }_{\text {ST }}$ (weak overlap of magnetic orbitals) along with a marginally positive value of $c a .0 .28 \mathrm{kcal} / \mathrm{mol}$ for the parent structure 180a indicates a degenerate singlet-triplet ground state. However, upon substitution at either the positive
or negative cyanine the triplet open-shell state stabilizes at different degrees depending on the electronic nature of the substituent and the place of substitution at the central benzene. When electron deficient groups are placed on the positive cyanine ($\mathrm{X}=\mathrm{EWG}$) the effect on the singlet-triplet gap was minimal with ΔE^{3} Sт taking values between $0.80(\mathrm{X}=\mathrm{F}$, 180i) to $0.96 \mathrm{kcal} / \mathrm{mol}(\mathrm{X}=\mathrm{Cl}, \mathbf{1 8 0 k})$. Even when CH was replaced by N at the centre of the positive cyanine, structure $\mathbf{1 8 3}$ possessed a degenerate singlet-triplet ground state $\left(\Delta E_{\mathrm{ST}}^{1} \approx \Delta E^{3}{ }_{\mathrm{ST}}\right)$ as did the parent 180a. Interestingly, substitution with electron donating groups ($\mathrm{X}=\mathrm{EDG}$) at the same position provided similar numbers with $\Delta E^{3}{ }_{\text {ST }}$ between $0.49(\mathrm{X}=\mathrm{OMe}, \mathbf{1 8 0 e})$ to $0.96 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{X}=\mathrm{NH}_{2}, \mathbf{1 8 0 1}\right)$. Modifications directly on the positive cyanine did not lead to dramatic changes demonstrating its limited significance to the ground state multiplicity.

A reverse behavior is observed with substituents directly attached to the negative cyanine. The higher spin contamination in the BS singlet states of structures 1800-q (0.872-0.974) indicate that EDG groups ($\mathrm{Y}=$ EDG) destabilized the singlet states as they pushed electron density in the already electron rich negative cyanine. These structures cannot avoid anymore their overall antiaromaticity through the formation of the bicyanines and therefore the ground states are triplets with $\Delta E^{3}{ }_{\text {ST }}$ of $3.38,4.11$ and 5.98 $\mathrm{kcal} / \mathrm{mol}$ for $\mathbf{1 8 0 0} \mathbf{- q}$, respectively. Electron withdrawing groups $(\mathrm{Y}=\mathrm{EWG})$ help to stabilize the single states by reducing the electron density on the negative cyanine. The structures avoid their antiaromaticity but the effect is less since the $\Delta E^{3}{ }_{\text {ST }}$ are marginally negative for $\mathbf{1 8 0 d}(\mathrm{Y}=\mathrm{Cl})$ and $\mathbf{1 8 0 c}(\mathrm{Y}=\mathrm{Br})$ with -0.17 and $-0.28 \mathrm{kcal} / \mathrm{mol}$ deviation from parent system, respectively. Stronger EWGs have a more profound effect on stabilizing the zwitterionic singlet states (e.g., $\Delta E^{3}{ }_{\text {ST }}=-3.11 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{1 8 0 b}$ $\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$. The replacement of CH by N at the centre of the negative cyanine in structure 182 has the greatest impact on the singlet-triplet gap $\left(\Delta E^{3}{ }_{\mathrm{ST}}=-5.82 \mathrm{kcal} / \mathrm{mol}\right)$ indicating the importance of this position in controlling the ground state multiplicity of bis(1,2,3-dithiazoles). Worthy of note, is the pyrazino-fused bis(1,2,3-dithiazole) $\mathbf{1 8 4}$ that has the most stable zwitterionic singlet state with $\Delta E^{3}{ }_{\mathrm{ST}}=-6.35 \mathrm{kcal} / \mathrm{mol}$.

5.2.2 Angular Fused Bis(1,2,3-dithiazoles)

The analogous structural modifications were also applied to the corresponding angular structures. The benzo bridged angular system 181a ($\mathrm{X}=\mathrm{Y}=\mathrm{CH}$) was studied by adding EDGs and EWGs at X and Y positions and was compared to the pyrido $\mathbf{1 8 5}(\mathrm{X}=\mathrm{CH}$, $\mathrm{Y}=\mathrm{N}), 186(\mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH})$ and pyrazino $187(\mathrm{X}=\mathrm{Y}=\mathrm{N})$ bridged analogs.

The energies of the open-shell singlet and triplet states, the spin-coupling constants (J), and the corresponding energy splittings (ΔE_{ST}) for structures $\mathbf{1 8 1}$ and $\mathbf{1 8 5 - 1 8 7}$ are presented in Table 32.

Table 32. ${ }^{\mathrm{BS}_{<}} \mathrm{S}^{2}>,{ }^{\mathrm{T}}<\mathrm{S}^{2}>, J$ coupling and $\Delta \mathrm{E}_{\text {ST }}(\mathrm{kcal} / \mathrm{mol})$ values for structures $\mathbf{1 8 1}$ and $\mathbf{1 8 5 - 1 8 7}$ calculated at the B3LYP/6-31G(d) level of theory.

181a-q

185

186

187

$\#$	X	Y	${ }^{\mathrm{BS}_{<\mathrm{S}^{2}>}}$	$\mathrm{T}_{<\mathrm{S}^{2}>}$	J^{1}	$\Delta E^{1}{ }_{S T}$	J^{2}	$\Delta E_{S T}^{2}$	J^{3}	$\Delta E_{S T}^{3}$	$\Delta E_{S T}^{\mathrm{U}}$
$\mathbf{1 8 1 a}$	H	H	1.0018	2.0397	3.43	6.99	1.72	3.52	3.39	6.91	16.33
$\mathbf{1 8 1 b}$	H	CN	1.0147	2.0390	1.66	3.37	0.83	1.70	1.49	3.04	8.86
$\mathbf{1 8 1 \mathbf { c }}$	H	Br	1.0042	2.0389	2.23	4.54	1.12	2.29	2.07	4.22	11.14
$\mathbf{1 8 1 d}$	H	Cl	1.0038	2.0392	2.62	5.35	1.32	2.69	2.45	4.99	11.70
$\mathbf{1 8 1 e}$	OMe	H	1.0014	2.0377	3.12	6.37	1.57	3.20	3.05	6.22	15.30
$\mathbf{1 8 1 f}$	Me	H	1.0018	2.0402	3.30	6.74	1.66	3.39	3.25	6.63	15.59
$\mathbf{1 8 1 \mathbf { g }}$	CN	H	1.0098	2.0420	3.34	6.81	1.68	3.43	3.31	6.74	15.90
$\mathbf{1 8 1 h}$	OH	H	1.0051	2.0379	3.55	7.01	1.79	3.65	3.52	7.19	16.15
$\mathbf{1 8 1 i}$	F	H	1.0078	2.0386	3.55	7.25	1.79	3.65	3.51	7.17	16.43
$\mathbf{1 8 1 j}$	Br	H	1.0088	2.0401	3.45	7.03	1.74	3.54	3.42	6.98	16.45
$\mathbf{1 8 1 k}$	Cl	H	1.0088	2.0403	3.42	6.97	1.72	3.51	3.39	6.91	16.60
$\mathbf{1 8 1 1}$	NH	H	1.0048	2.0401	3.43	7.00	1.73	3.52	3.40	6.93	16.61
$\mathbf{1 8 1 m}$	H	Me	0.9956	2.0391	3.52	7.18	1.77	3.61	3.50	7.14	16.91
$\mathbf{1 8 1 n}$	H	F	0.9897	2.0391	3.57	7.29	1.80	3.67	3.56	7.26	17.45
$\mathbf{1 8 1 0}$	H	OMe	0.9381	2.0386	3.77	7.70	1.90	3.87	3.76	7.66	17.48
$\mathbf{1 8 1 p}$	H	OH	0.9346	2.0372	3.47	7.08	1.75	3.56	3.45	7.05	17.88
$\mathbf{1 8 1 q}$	H	NH	0.9021	2.0367	3.64	7.42	1.83	3.73	3.64	7.43	17.91
$\mathbf{1 8 5}$	-	-	1.0112	2.0346	3.32	6.75	1.67	3.40	3.32	6.75	17.41
$\mathbf{1 8 6}$	-	-	0.9822	2.0368	5.08	10.35	2.56	5.21	4.94	10.06	17.77
$\mathbf{1 8 7}$	-	-	0.9124	2.0350	5.56	11.31	2.80	5.69	5.07	10.31	15.17

For angular structures 181 and $\mathbf{1 8 5 - 1 8 7}$, the spin contaminations of the triplet states are low likewise in linear systems, and the deviation from the expected value of 2.0 is at most 0.042 . All the singlet wave functions are unstable and in the BS application the spin contamination is high in a shorter range of values which span from 0.9124 to 1.0147 .

All the studied angular systems are stabilized in triplet ground states. Upon substitution at either the X or Y position the triplet state stabilizes at different degrees depending on substituent and the place of substitution. When EWGs are placed on X position the effect on the singlet-triplet gap was minimal as in linear analogs, with ΔE^{3} ST taking values between $6.74(\mathrm{X}=\mathrm{C} \equiv \mathrm{N}, \mathbf{1 8 1} \mathrm{g})$ to $7.17 \mathrm{kcal} / \mathrm{mol}(\mathrm{X}=\mathrm{F}, \mathbf{1 8 1 i})$ affecting the parent system by -0.17 to $0.26 \mathrm{kcal} / \mathrm{mol}$ respectively. Substitution with electron donating groups $(\mathrm{X}=\mathrm{EDG})$ at the same position again did not affect the $\Delta E^{3}{ }_{\text {ST }}$ much with $\Delta E^{3}{ }_{\text {ST }}$ being affected between $-0.69(\mathrm{X}=\mathrm{OMe}$, 181e) to $0.28 \mathrm{kcal} / \mathrm{mol}(\mathrm{X}=\mathrm{OH}, \mathbf{1 8 1} \mathrm{h})$. When CH was replaced by N on the $\mathrm{C}-\mathrm{X}$ position though, structure $\mathbf{1 8 6}$ was stabilized in triplet even more with ΔE_{ST} increasing by $3.15 \mathrm{kcal} / \mathrm{mol}$.

A reverse behavior is observed with substituents attached to the Y position. Electron withdrawing groups help to stabilize the singlet states likewise in linear systems and even then the ΔE_{ST} is positive. $\Delta E^{3}{ }_{\mathrm{ST}}$ is taking values between $3.04 \mathrm{kcal} / \mathrm{mol}$ $(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N}, \mathbf{1 8 1 b})$ and $4.99 \mathrm{kcal} / \mathrm{mol}(\mathrm{Y}=\mathrm{Cl}, \mathbf{1 8 1 d})$ being reduced by -3.87 and -1.92 $\mathrm{kcal} / \mathrm{mol}$ from the parent system respectively. Only exception is $\mathbf{1 8 1 n}(\mathrm{Y}=\mathrm{F})$ where $\Delta E^{3}{ }_{\text {ST }}$ is slightly increased by $0.35 \mathrm{kcal} / \mathrm{mol}$. EDGs on the same position stabilize the triplet more but not with great impact. $\Delta E^{3}{ }_{\text {ST }}$ takes values between $7.05 \mathrm{kcal} / \mathrm{mol}$ $(\mathrm{Y}=\mathrm{OH}, \mathbf{1 8 1 p})$ and $7.66 \mathrm{kcal} / \mathrm{mol}(\mathrm{Y}=\mathrm{OMe}, \mathbf{1 8 1 0})$ being affected by 0.14 and 0.75 $\mathrm{kcal} / \mathrm{mol}$ respectively from the parent system. The replacement of $\mathrm{C}-\mathrm{Y}$ by N in structure 185 has a slight impact on the singlet-triplet gap and reduces $\Delta E^{3}{ }_{\text {ST }}$ by $0.16 \mathrm{kcal} / \mathrm{mol}$. On the other hand, the pyrazino-fused bis(1,2,3-dithiazole) $\mathbf{1 8 7}$ has the most stable triplet singlet state with $\Delta E^{3}{ }_{\mathrm{ST}}=10.31 \mathrm{kcal} / \mathrm{mol}$.

5.3 Aromaticity Considerations

The aromaticity of the central arene has a detrimental role on the ground state multiplicities of structures $\mathbf{1 8 0} \mathbf{- 1 8 7}$. Therefore the ground state multiplicities and the ΔE_{ST} values were expected to follow trends based on aromaticity indices such as the nucleus independent chemical shifts (NICS) as shown before on linear DTQPs (Chapter 2.3.3).

NICS calculations for structures $\mathbf{1 8 0 - 1 8 7}$ were performed at the B3LYP/6$31 \mathrm{G}(\mathrm{d})$ level of theory. To assess the aromaticity of each of the three rings of the linear and angular bis(1,2,3-dithiazoles) 180-187, diagrams correlating the NICS values (in $\mathrm{ppm})$ versus the distance above each ring centre $\mathrm{f}(\mathrm{r})$ (in \AA) were constructed (Figures 46-48). In these diagrams negative minimums denote diatropic ring currents, while positive maximums stand for paratropic and when negative NICS values approach zero in an asymptomatic manner with increasing distance, then no ring current is present. ${ }^{365}$

180a	$(\mathrm{E}, \mathrm{Z}=\mathrm{CH})$
$\mathbf{1 8 2}$	(E $=\mathrm{CH}, \mathrm{Z}=\mathrm{N})$
$\mathbf{1 8 3}$	(E $=\mathrm{N}, \mathrm{Z}=\mathrm{CH})$
$\mathbf{1 8 4}$	(E, $\mathrm{Z}=\mathrm{N})$

Figure 46. NICS diagram $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})]$ for structures 180a and 182-184.

Figre 47. NICS diagram $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})$] for structures 180a-q.

The outer 1,2,3-dithiazoles (rings A and C) for all linear studied structures, have negative NICS values which become asymptomatic to zero on going from 0 to $10 \AA$ above the ring centre (Figures 45 and 46). These values are compared to the ones of the monocyclic 1,2,3-dithiazolyl and benzo-fused 1,2,3-dithiazolyl calculated at the same level of theory (Figure 47). The 1,2,3-dithiazole rings are non-aromatic, in line with their 7π electron system. The fused benzene ring has a $\operatorname{NICS(1)~value~of~}-8.77 \mathrm{ppm}$ and is formally more aromatic than benzene (-4.1 ppm).

Figure 48. NICS diagram $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})]$ for the monocyclic and benzo-fused 1,2,3-dithiazolyls.

Structures 180a and 183, as already discussed in Section 5.2.1., have a degenerate singlet-triplet diradical ground state. Their central arene rings (ring B) have 168
negative $\operatorname{NICS}(1)$ values at $c a .-6 \mathrm{ppm}$ and a minimum in the $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})]$ diagram indicative of diatropic ring currents and therefore aromatic character. In contrast, the central rings of structures $\mathbf{1 8 2}$ (pyrido) and $\mathbf{1 8 4}$ (pyrazino), which have singlet ground states with $\Delta E^{3}{ }_{\text {ST }}$ of -5.82 and $-6.35 \mathrm{kcal} / \mathrm{mol}$, respectively, have weakly positive $\operatorname{NICS}(0)$ values, very weakly negative $\operatorname{NICS}(1)$ values and an asymptomatic zero at higher distances, characteristic of non-aromatic rings. This result was in agreement with their zwitterionic biscyanine ground states and the loss of aromaticity in the central arene rings.

NICS calculations verify the importance of the pyridyl nitrogen position on the ground state multiplicity of structures $\mathbf{1 8 2}$ and $\mathbf{1 8 3}$. Placing the nitrogen at the centre of the positive cyanine did not alter the aromatic character of the central ring (c.f., 183), however, when nitrogen was at the centre of the negative cyanine (c.f., 182) the central arene becomes non-aromatic. Substitution at the central fused benzene of structure $\mathbf{1 8 0}$ did not affect the non-aromaticity of the peripheral dithiazoles and interestingly, it did not cause significant changes to the aromatic character of the central ring (Figure 47). Structure 180b $(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$ with a zwitterionic singlet ground state $\left(\Delta E^{3}{ }_{\mathrm{ST}}=-3.11\right.$ $\mathrm{kcal} / \mathrm{mol}$) has a central ring (-6.33 ppm) more aromatic than the corresponding ring $(-5.02 \mathrm{ppm})$ of $\mathbf{1 8 0 q}\left(\mathrm{Y}=\mathrm{NH}_{2}\right)$ which has a triplet ground state $\Delta E^{3}{ }_{\mathrm{ST}}=5.98 \mathrm{kcal} / \mathrm{mol}$, while theoretically it should be vise versa. The result above indicates that indeed there is no obvious relationship between the NICS and the $\Delta E_{\text {ST }}$ values and that NICS calculations provide only qualitative results as Fleischhauer et al. ${ }^{161}$ had also previously observed.

NICS calculations on the angular analogs were performed as well and are shown in Figures 49 and 50, Similarly to their linear analogs, the outer 1,2,3-dithiazoles (rings A and C) for all angular structures, have negative NICS values which become asymptomatic to zero on going from 0 to $10 \AA$ above the ring centre indicating no ring current. On the contrary, the central arene rings (ring B) of all the studied angular systems have negative NICS(1) values at $c a$. -6 ppm and a minimum in the $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})$] diagram indicative of diatropic ring currents and therefore aromatic character.

Figure 49. NICS diagram $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})]$ for structures 181a and 185-187.

$\mathbf{r}(\AA)$

r(£)

$\mathbf{r}(\AA)$

Figure 50. NICS diagram $[\mathrm{ppm}=\mathrm{f}(\mathrm{r})]$ for structures 181a-q.

It was previously shown that the lateral C-C bond lengths, which connect the two cyanine units, gave a good indication to whether the central ring is aromatic or non-aromatic. ${ }^{154,155,157,159-161,163,170,175,366,367}$ In the charge separated zwitterionic ground states of polyazaacenes the lateral C-C bong lengths were longer and had significant σ character reflecting the conversion of the arene to an anti-quinoid structure in which resonance stabilization was mainly within the two separate cyanine units. In contrast, for structures with triplet ground states these C-C bonds were shorter and had bond lengths typical of aromatic benzene C-C bonds. For structures $\mathbf{1 8 0}$ and 182-184 the lateral C-C bond lengths of the ground states along with the dipole moments are presented in Table 33. Structures $\mathbf{1 8 2}$ and $\mathbf{1 8 4}$ with the zwitterionic single ground states have lateral C-C bond length of $c a .1 .47 \AA$ and dipole moments of $4-5 \mathrm{D}$ indicating the charge
redistribution and the formation of the cyanines. In contrast, structure 180b, which had the largest dipole moment (5.9 D) and a singlet ground state had shorter lateral C-C bonds $(1.44 \AA)$ compared to structures $\mathbf{1 8 2}$ and 184. This was in agreement with its NICS(1) value of -6.33 ppm , that indicated a more aromatic character for the central arene. For structure $\mathbf{1 8 0 q}$, which has the triplet state with the largest $\Delta E^{3}{ }_{\text {ST }}(5.98 \mathrm{kcal} / \mathrm{mol})$, the lateral C-C bond lengths were the shortest $(1.43 \AA)$ and closer to the expected $1.4 \AA$ of aromatic benzene. The dipole moment of $\mathbf{1 8 0 q}$ is 0.65 D demonstrating that this structure did not possess a charge separated ground state.

Table 33. Ground state $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond lenghts (\AA) and dipole moments (D).

		 182 183			 184
\#	X	Y	$\mathrm{C}_{1}-\mathrm{C}_{2}$ (E)	$\mathrm{C}_{4}-\mathrm{C}_{5}(\mathrm{E})$	Dipole Moment (D)
180a	H	H	1.441	1.441	1.81
180b	H	CN	1.439	1.439	5.90
180c	H	Br	1.441	1.441	2.66
180d	H	Cl	1.441	1.441	2.92
180e	OMe	H	1.439	1.439	2.54
$180 f$	Me	H	1.439	1.439	2.40
180 g	CN	H	1.438	1.438	2.03
180h	OH	H	1.441	1.436	2.21
180i	F	H	1.440	1.440	0.65
180j	Br	H	1.441	1.441	1.03
180k	Cl	H	1.441	1.441	0.68
1801	NH_{2}	H	1.437	1.437	3.03
180m	H	Me	1.441	1.439	1.35
180n	H	F	1.439	1.439	2.91
1800	H	OMe	1.442	1.436	1.29
180p	H	OH	1.430	1.440	2.10
180q	H	NH_{2}	1.434	1.434	0.65
182	-	-	1.477	1.477	5.49
183	-	-	1.442	1.442	0.20
184	-	-	1.472	1.472	4.04

5.4 Molecular Orbital Analysis

Other factors which influence the singlet-triplet energy gaps and hence the ground state multiplicities of these structures are the SOMO-SOMO energy splitting (ΔE_{SS}) and their topological distributions. Haas and Zilberg rationalized the origins of the zwitterionic ground states of 1,2,4,5-tetrasubstituted benzenes in terms of the molecular orbitals of the 1,2,4,5-tetramethylenebenzene (TMB), a diradical for which no classical Kekulé structure can be written. ${ }^{368}$

The correlation diagram of TMB is constructed by the molecular orbitals of two pentadienyl radicals containing 5π electrons each. ${ }^{128,369}$ The π orbitals are connected via σ bonds to form the TMB electronic system. The two non-bonding molecular orbitals maybe chosen so that they are disjoint i.e., do not have atoms in common and the unpaired electrons can be confined to different sets of atoms so that the coulombic repulsion energy from the electrons of opposite spins is minimized. These two orbitals have the same energy as there is no π electron density on the atoms that connect the two 5π electron radical fragments. TMB a formally 10π aromatic molecule, decomposes into two separated 5π electron radical units with relatively long lateral $\mathrm{C}-\mathrm{C}$ bonds connecting the two fragments.

When the two bonded fragments are nonequivalent the energy of the frontier orbitals change. The molecular orbitals of the benzo-fused bis(1,2,3-dithiazoles) can be constructed based on the TMB approach using two nonequivalent fragments; one 11π sulfur-substituted radical fragment (S) and one 5π imino-substituted radical (N). The two non-bonding molecular orbitals and the antibonding molecular orbital are depicted in Figure 51.

Figure 51. Qualitative correlation diagram of the benzo-fused bis(1,2,3-dithiazole) 180a constructed by the two non-equivalent 11π and 5π radical fragments.

The S1 - N1 molecular orbital has mostly N1 character with large atomic coefficients on the imino 5π radical fragment. The antibonding orbital $\mathrm{S} 2+\mathrm{N} 2$ is close in energy to the out-of-phase non-bonding orbital S1-N1 and has more S2 character with larger coefficients on the sulfur 11π radical fragment. The near degeneracy of these two orbitals can lead to a triplet ground state. A transfer of an electron from the donor 11π sulfur-substituted radical fragment (S) to the acceptor 5π imino-substituted radical (N) subunit results in a 10π positive and 6π negative cyanines.

From the calculated frontier orbitals of the ground state structures 180a and 182-184 at the B3LYP/6-31G(d) level of theory (Figure 51) the SOMO $1 /$ HOMO is the S1-N1 non-bonding molecular orbital and the SOMO $2 /$ LUMO is the antibonding S2 + N 2 molecular orbital. It should be noted that the SOMO $1 / \mathrm{HOMO}$ has a large atomic coefficient at the centre of the negative 6π cyanine, as such, substituents directly attached to this position can significantly alter the energy of this orbital. For example, the introduction of the electronegative pyrido nitrogen on this position (structure 182), stabilizes this orbital and opens up the energy gap of the frontier orbitals leading to pairing of electrons and therefore singlet ground state. In contrast, SOMO 2 / LUMO has
a node at the centre of the positive 10π cyanine and therefore any substituent at this position does not affect significantly its energy. For structures with zwitterionic ground states such as 180b the two electrons are paired in a doubly occupied S1 - N1 orbital which has nodes over the lateral C-C bonds. However, promotion of an electron from the S1-N1 orbital (HOMO) to the S2 + N2 orbital (LUMO) supplies the lateral C-C bonds with some π-bonding character (smaller bond lengths) as is evident from the atomic coefficients over these bonds (Figures 51 and 52).

Figure 52. Frontier orbitals of ground state structures 180a and 182-184 calculated at the B3LYP/6-31G(d) level of theory.

In the linear structures SOMOs were identical among the systems, but this was not observed in the angular analogs. Only the SOMOs of structures 185 and 187 are similar. SOMO 1 of structure 181a has some atomic coefficient at carbon C_{5} that can be substituted by the Y substituent but there is a node at the carbon C_{6} that X substituent can be placed. This explains why Y substitution indeed affects the energy gap with EDGs stabilizing the triplet more and EWGs destabilizing it. SOMO 2 has similar atomic coefficient on both positions with some more on carbon C_{5}.

Figure 53. SOMO orbitals of structures 181a and 185-187 calculated at the B3LYP/6$31 \mathrm{G}(\mathrm{d})$ level of theory.

According to Hund's rule the ΔE_{ST} should be inverse correlated to the energy gap of the two SOMOs (ΔE_{SS}). The energy levels $\left({ }^{1} E_{S}\right.$ and $\left.{ }^{2} E_{S}\right)$ and energy gaps $\left(\Delta E_{\mathrm{SS}}\right)$ of the two SOMOs for the triplet states of structures $\mathbf{1 8 0}$ and $\mathbf{1 8 2 - 1 8 4}$ are presented in Table 34 . ${ }^{129}$

Table 34. Energy levels (${ }^{1} E_{\mathrm{S}}$ and ${ }^{2} E_{\mathrm{S}}$) and the energy gaps (ΔE_{SS}) of the SOMOs for the triplet states of molecules $\mathbf{1 8 0}$ and 182-184 at the B3LYP/6-31G(d) level of theory.

180a-q

182

183

184

Hoffmann provided a rough empirical criterion based on extended Hückel calculations on benzynes and diradicals which suggests that if $\Delta E_{\mathrm{SS}}<1.5 \mathrm{eV}$, the two nonbonding electrons will prefer to occupy different degenerate orbitals with a parallelspin configuration to minimize their electrostatic repulsion leading to triplet states. We previously showed that triplet states for polyazaacenes require $\Delta E_{\mathrm{SS}}<1.3 \mathrm{eV}^{170}$ while Schreiner suggested $\Delta E_{\mathrm{SS}}<0.9 \mathrm{eV}$ for the ground state triplets for related compounds. ${ }^{367}$ Structure 180a with a $\Delta E_{\mathrm{SS}}=0.9 \mathrm{eV}$ and degenerate singlet and triplet states $\left(\Delta E^{3}{ }_{\text {ST }}=0.28 \mathrm{kcal} / \mathrm{mol}\right)$ was in agreement with Schreiner's observation. A SOMOSOMO splitting of 0.9 eV is the limit where the singlet and triplet states are isoenergetic. ΔE_{SS} of less than 0.9 eV would favor a triplet state as for example in structure $\mathbf{1 8 0} \mathbf{q}$
$\left(\Delta E_{\mathrm{SS}}=0.41 \mathrm{eV}\right.$ and $\left.\Delta E^{3}{ }_{\mathrm{ST}}=5.98 \mathrm{kcal} / \mathrm{mol}\right)$ and ΔE_{SS} of more than 0.9 eV would lead to singlet ground states as in structure $182\left(\Delta E_{\mathrm{SS}}=1.07 \mathrm{eV}\right.$ and $\left.\Delta E_{\mathrm{ST}}^{3}=-5.82 \mathrm{kcal} / \mathrm{mol}\right)$.

For comparison on the studied angular analogs, the maximum ΔE_{SS} observed was 0.66 eV (Table 35). What is strange though is that ΔE_{SS} does not decrease accordingly to $\Delta E^{3}{ }_{\text {ST }}$ in every case. For instance structures 181b-d have $\Delta E_{\text {SS }}$ in the range $0.19-0.23 \mathrm{eV}$ and $\Delta E^{3}{ }_{\text {ST }}$ in range 3.04-4.99 kcal/mol but $\mathbf{1 8 1 p - q}$ with larger $\Delta E^{3}{ }_{\text {ST }}$ (7.05$7.43 \mathrm{kcal} / \mathrm{mol})$ have also larger $\Delta E_{\mathrm{SS}}(0.53-0.66 \mathrm{eV})$ when it was expected to be lower. Despite the non-linearity between ΔE_{SS} and $\Delta E_{\mathrm{ST}}^{3}$, all the angular systems have very low ΔE_{SS} values and this may justify this observation. Structure $\mathbf{1 8 6}$ for example has the lowest $\Delta E_{\text {SS }}(0.15 \mathrm{eV})$ and one of the largest $\Delta E^{3}{ }_{\mathrm{ST}}(10.06 \mathrm{kcal} / \mathrm{mol})$ as expected but its $\Delta E_{\text {SS }}$ does not differ much from structures $\mathbf{1 8 1 g}(0.18 \mathrm{eV})$ or $\mathbf{1 8 1 b}(0.19 \mathrm{eV})$ that have lower $\Delta E^{3}{ }_{\text {ST }}$ values 6.74 and $3.04 \mathrm{kcal} / \mathrm{mol}$, respectively.

Table 35. Energy levels (${ }^{1} E_{\mathrm{S}}$ and ${ }^{2} E_{\mathrm{S}}$) and the energy gaps (ΔE_{SS}) of the SOMOs for the triplet states of molecules $\mathbf{1 8 1}$ and 185-187 at the B3LYP/6-31G(d) level of theory.

181a-q

185

186

187

Structures	X	Y	${ }^{1} E_{\mathrm{S}}(\mathrm{au})$	${ }^{2} E_{\mathrm{S}}(\mathrm{au})$	$\Delta E_{\mathrm{SS}}(\mathrm{eV})$	$\Delta E^{3}{ }_{S T}(\mathrm{kcal} / \mathrm{mol})$
$\mathbf{1 8 1 a}$	H	H	-0.19219	-0.18332	0.24	6.91
181b	H	CN	-0.20814	-0.20129	0.19	3.04
181c	H	Br	-0.19688	-0.18881	0.22	4.22
181d	H	C	-0.19774	-0.18939	0.23	4.99
$\mathbf{1 8 1 e}$	OMe	H	-0.18813	-0.17783	0.28	6.22
181f	Me	H	-0.18977	-0.18076	0.25	6.63
$\mathbf{1 8 1 g}$	CN	H	-0.20671	-0.20027	0.18	6.74
$\mathbf{1 8 1 h}$	OH	H	-0.19019	-0.18083	0.25	7.19
$\mathbf{1 8 1 \mathrm { i }}$	F	H	-0.19784	-0.18892	0.24	7.17
$\mathbf{1 8 1 j}$	Br	H	-0.19743	-0.19020	0.20	6.98
$\mathbf{1 8 1 k}$	Cl	H	-0.19837	-0.19096	0.20	6.91
$\mathbf{1 8 1 1}$	NH	H	-0.18832	-0.17754	0.29	6.93
$\mathbf{1 8 1 m}$	H	Me	-0.18919	-0.17962	0.26	7.14
$\mathbf{1 8 1 n}$	H	F	-0.19643	-0.18601	0.28	7.26
$\mathbf{1 8 1 0}$	H	OMe	-0.19064	-0.17703	0.37	7.66
$\mathbf{1 8 1 p}$	H	OH	-0.19569	-0.17604	0.53	7.05
$\mathbf{1 8 1 q}$	H	NH	-0.18506	-0.16075	0.66	7.43
$\mathbf{1 8 5}$	-	-	-0.20678	-0.19207	0.40	6.75
$\mathbf{1 8 6}$	-	-	-0.20018	-0.19484	0.15	10.06
$\mathbf{1 8 7}$	-	-	-0.21773	-0.20708	0.29	10.31

5.5 Mulliken Charge Distribution

The Mulliken charge distribution of the singlet and triplet states of the linear benzo-fused system 180a is shown in Figure 54. The electronegative nitrogen atoms are strongly negative but more so in the singlet state structure (-0.577 vs -0.531). Furthermore, while the electropositive sulfur atoms are positive in both singlet and triplet states there are interesting differences. The sulfur atoms next to the nitrogen atoms are the most positive and also almost equal in value between singlet and triplet structures (0.302 vs 0.306), however, by comparison the sulfurs bound to carbon are significantly less positive and as expected that of the singlet state was more positive than that of the triplet structure $(0.116 v s 0.077)$. These charge distributions are in agreement with the zwitterioninc biscyanine state proposed for the singlet states. If the total charges on the $\mathrm{S}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{S}$ and the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ fragments are compared for both singlet and triplet states we obtain -0.185_{SCCCS} (singlet) vs -0.297_{SCCCS} (triplet) compared to -0.742_{NCCCN} (singlet) $v s-0.658_{\mathrm{NCCCN}}$ (triplet) which correlates to a comparative charge separation between the SCCCS and NCCCN fragments of 0.557 and 0.361 between the singlet and triplet states, respectively.

Figure 54. Mulliken charge distribution on singlet and triplet state of linear system 180a.

On the angular parent system 181a (Figure 55) the positive charged sulfur atoms and negative charged nitrogen atoms in the singlet are increased and reduced symmetrically in the triplet (e.g., one nitrogen reduced and the other increased in charge). There is no clear polarization in the angular motif as observed with the linear analog.

Singlet

Triplet

Figure 55. Mulliken charge distribution on singlet and triplet state of angular system 181a.

5.6 Replacing the Central 6-Membered Arene by a 5-Membered Arene

Replacing the central 6 -membered arene with a 5 -membered one, afforded the corresponding symmetrical (188a-d and 189a-d) and asymmetrical (190a-d) bisdithiazole analogs where $\mathrm{X}=\mathrm{NH}, \mathrm{O}, \mathrm{S}$ and SO_{2} (Figure 56).

188a-d

189a-d

190a-d

$$
\mathbf{a}(\mathrm{X}=\mathrm{NH}) ; \mathbf{b}(\mathrm{X}=\mathrm{O}) ; \mathbf{c}(\mathrm{X}=\mathrm{S}) ; \mathbf{d}\left(\mathrm{X}=\mathrm{SO}_{2}\right)
$$

Figure 56. Bisdithiazole analogs with 5-membered central rings.

The geometry optimisation [UB3LYP/6-31G(d)] of structures 188a-d (triplet state) and 190a-d (singlet state) were unsatisfactory affording in both cases one imaginary frequency, which could not be overcome. As such, meaningful ΔE_{ST} data or other properties could not be calculated. Nevertheless, the geometry optimisations on structures 189a-d were successful (Table 36).

Table 36. Computational values at the B3LYP/6-31G(d) level of theory for $\operatorname{NICS}(0)(\mathrm{ppm})$, $\operatorname{NICS}(1)(\mathrm{ppm}), J$ and $\Delta E_{\mathrm{ST}}(\mathrm{kcal} / \mathrm{mol})$ values for the central arene of structures 189a-d, in order of increasingly positive ΔE_{ST}.

\mathbf{X}	$\mathrm{NICS}(0)$	$\mathrm{NICS}(1)$	J^{1}	$\Delta E^{1}{ }_{\mathrm{ST}}$	J^{2}	$\Delta E^{2}{ }_{\mathrm{ST}}$	J^{3}	$\Delta E^{3}{ }_{\mathrm{ST}}$	$\Delta E^{\mathrm{U}} \mathrm{ST}$
SO_{2}	-0.8	-1.5	-2.35	-4.75	-1.18	-2.39	-2.18	-4.42	5.71
NH	-7.5	-5.9	0.73	1.46	0.36	0.73	0.70	1.42	10.49
S	-6.3	-4.8	-0.02	-0.05	-0.01	-0.02	-0.02	-0.05	13.09
O	-6.2	-5.0	0.78	1.57	0.39	0.79	0.79	1.60	14.94

Interestingly, little correlation with the aromaticity of the central arene was observed. The degree of aromaticity of the central arenes follows the series thiophene $[\mathrm{X}=\mathrm{S}, 43(84-117 \mathrm{~kJ} / \mathrm{mol})]>$ pyrrole $[\mathrm{X}=\mathrm{NH}, 40.5(59-130 \mathrm{~kJ} / \mathrm{mol})]>$ furan $[\mathrm{X}=\mathrm{O}$, $27.2(34-96 \mathrm{~kJ} / \mathrm{mol})$] based on experimental resonance energies, ${ }^{370}$ and pyrrole $\left(I_{\mathrm{A}} 85\right)>$ thiophene $\left(I_{\mathrm{A}} 81.5\right)>$ furan $\left(I_{\mathrm{A}} 53\right)$ based on Bird's aromaticity ${ }^{371}$ indices and pyrrole $(-12.5)>$ thiophene $(-11.1)>$ furan (-10.5) based on $\operatorname{NICS}(1) .{ }^{273}$ Clearly the computed ΔE_{ST} values followed none of the above trends, with the preference for the triplet ground state favored in the order furan $>$ thiophene $>$ pyrrole. As such, the least aromatic heteroarene furan $189 \mathrm{~b}(\mathrm{X}=\mathrm{O})$ gave the largest ΔE_{ST}, however, the non aromatic thiophene-1,1-dioxide $\left(\mathbf{1 8 9 d}, \mathrm{X}=\mathrm{SO}_{2}\right)$ did not follow this trend and gave the least positive ΔE_{ST} value $(5.71 \mathrm{kcal} / \mathrm{mol})$.

The SOMOs of the systems 189a-c ($\mathrm{X}=\mathrm{NH}, \mathrm{O}$ and S) (Figure 57) are very similar and differ from those of $\mathbf{1 8 9 d}\left(\mathrm{X}=\mathrm{SO}_{2}\right)$ which has the lower ΔE_{ST} and least aromaticity in the central ring. The lower SOMO of $\mathbf{1 8 9 a - c}$, presents nodal points between the two carbons nearby the heteroatom while that picture is presented at the higher SOMO of system $\mathbf{1 8 9 d}, \mathrm{X}=\mathrm{SO}_{2}$.

Figure 57. SOMOs of system 189a-d ($\mathrm{X}=\mathrm{NH}, \mathrm{O}, \mathrm{S}$ and SO_{2})

5.7 The Analogous Quinoid Structures

As expected, linear and angular dithiazolobenzodithiazoles where the spin carriers are ortho or para orientated prefer the corresponding quinoid structures. The singlet ground state was most favored with structures 191 and 193 where the spin carriers are para orientated (Figure 58) where ΔE_{ST} reaches -18.54 and $-16.73 \mathrm{kcal} / \mathrm{mol}$, respectively. The spin coupling constants (J) and the singlet-triplet energy gaps $\left(\Delta E_{\mathrm{ST}}\right)$ are given in Table 37. The frontier molecular orbitals HOMO and LUMO of the three systems are shown in Figure 59.

192a
\rightleftharpoons

192b

193a

\rightleftharpoons

193b

Figure 58. The ortho- and para-oriented spin carriers analogs 191-193.

Table 37. Computational values at the B3LYP/6-31G(d) level of theory for J and $\Delta E_{\mathrm{ST}}(\mathrm{kcal} / \mathrm{mol})$ values for the central arene of structures 191-193.

Structures	J^{1}	$\Delta E^{1}{ }_{\mathrm{ST}}$	J^{2}	$\Delta E^{2}{ }_{\mathrm{ST}}$	J^{3}	$\Delta E^{3}{ }_{\mathrm{ST}}$	$\Delta E_{\mathrm{ST}}^{\mathrm{U}}$
$\mathbf{1 9 1}$	-18.41	-37.02	-9.22	-18.54	-9.22	-18.54	-18.54
$\mathbf{1 9 2}$	-8.64	-17.41	-4.33	-8.73	-4.46	-8.99	-8.73
$\mathbf{1 9 3}$	-16.58	-33.38	-8.31	-16.73	-8.31	-16.73	-16.73

LUMO

HOMO

191

192

193

Figure 59. HOMO and LUMO orbitals of systems 191-193.

NICS calculations gave $\operatorname{NICS}(0)$ and $\operatorname{NICS}(1)$ values for the three rings of systems 191-193 (Table 38). Unlike the meta oriented spin carrier analogs 180a and 181a, molecules 191-193 have no ring current in the central rings, supporting the quinoid structures.

Table 38. $\mathrm{NICS}(0)$ and (1) of systems 191-193 [B3LYP/6-31G(d)].

			$\stackrel{S}{S_{N}^{\prime}} \underset{\sim}{A}=$		$\stackrel{S}{\mathrm{~N}}_{\mathrm{S}}^{\mathrm{S}}$	
	NICS(0)	NICS(1)	NICS(0)	NICS(1)	NICS(0)	NICS(1)
191	-8.63	-5.00	-0.60	-3.65	-8.66	-5.02
192	-7.91	-4.31	-1.33	-3.44	-7.88	-4.31
193	-8.96	-4.81	-1.00	-3.88	-8.90	-4.78

5.8 Summary

The singlet and triplet states of the substituted benzo 180a ($\mathrm{X}=\mathrm{Y}=\mathrm{CH}$), pyrido 182 (X $=\mathrm{CH}, \mathrm{Y}=\mathrm{N}), 183(\mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH})$ and pyrazino $\mathbf{1 8 4}(\mathrm{X}=\mathrm{Y}=\mathrm{N})$ linear fused bis(1,2,3-dithiazoles) as well as their corresponding angular analogs 181a and 185-187 have been studied using DFT calculations in combination with the BS approach and spinprojected methods. The calculations show that the multiplicity of these molecules is determined by their ability to form zwitterionic independent cyanines by sacrificing the central arene aromaticity. NICS calculations show that the pyrido and pyrazino rings in molecules 182 and 184 readily sacrifice their aromaticity to access the "double-barreled" biscyanine avoiding in this way their overall $4 \mathrm{n} \pi$ antiaromaticity and a triplet ground state. Indeed strategic substitution on the linear and angular systems $\mathbf{1 8 0}$ and 181 can affect their ground state multiplicity and therefore their electronic properties.

CHAPTER 6

Experimental

Sections Page
6.1 General Methods and Materials 186
6.2 Compounds Related to Chapter 3 187
6.3 Compounds Related to Chapter 4 213

6.1 General Methods and Materials

DCM was freshly distilled from CaH_{2} under argon. Reactions were protected from atmospheric moisture by CaCl_{2} drying tubes. Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was used for drying organic extracts, and all volatiles were removed under reduced pressure. All reaction mixtures and column eluents were monitored by TLC using commercial glass backed thin layer chromatography (TLC) plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). The plates were observed under UV light at 254 and 365 nm . The technique of dry flash chromatography was used throughout for all non-TLC scale chromatographic separations using Merck Silica Gel 60 (less than 0.063 mm). Melting points were determined using a PolyTherm-A, Wagner \& Munz, Koefler-Hotstage Microscope apparatus or a TA Instruments DSC Q1000 with samples hermetically sealed in aluminum pans under an argon atmosphere, using heating rates of $5^{\circ} \mathrm{C} / \mathrm{min}$. Solvents used for recrystallization are indicated after the melting point. UV spectra were obtained using a Perkin-Elmer Lambda-25 UV/vis spectrophotometer and inflections are identified by the abbreviation "inf". IR spectra were recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer with a Pike Miracle Ge ATR accessory and strong, medium and weak peaks are represented by s, m and w respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 300 (at 300 and 75 MHz , respectively) and 500 machine (at 500 and 125 MHz , respectively). Deuterated solvents were used for homonuclear lock and the signals are referenced to the deuterated solvent peaks. Low resolution (EI) mass spectra were recorded on a Shimadzu Q2010 GCMS with direct inlet probe. High resolution (EI) mass spectra were recorded on an Autospec 'Q' machine. 3-Fluoro-4-nitroanisole (95b), ${ }^{297}$ 1,3-dichloro-2,4-dinitrobenzene (133), ${ }^{310-}$ 312 N -phenyl-1,2-benzenediamine $\mathbf{1 3 4 a},{ }^{155} \mathrm{~N}$-butyl-1,2-benzenediamine $\mathbf{1 3 4} \mathbf{c}^{155}$ and 2,4-dichloro-1,3-dinitro-5-trifluoromethylbenzene $(\mathbf{1 6 9})^{342}$ were prepared according to literature procedures.

6.2 Compounds Related to Chapter 3

6.2.1 Substituted 2-halonitrobenzenes

6.2.1.1 3-Chloro-4-nitrobenzonitrile $95 f$

To a suspension of 4-amino-3-chlorobenzonitrile $\mathbf{1 0 2}(1.5 \mathrm{~g}, 9.86 \mathrm{mmol})$ in concentrated $\mathrm{HCl}(3.8 \mathrm{~mL})$ and water $(3.8 \mathrm{~mL})$ at $c a .0^{\circ} \mathrm{C}$, an aqueous solution of NaNO_{2} (1.6 equiv.) $(1.1 \mathrm{~g}, 15.80 \mathrm{mmol}$, in 5.6 mL of water) was added. The mixture was stirred (10 min) and then added to a suspension of $\mathrm{NaNO}_{2}(4.9 \mathrm{~g}, 0.07 \mathrm{~mol})$ and freshly prepared $\mathrm{Cu}_{2} \mathrm{O}(0.5 \mathrm{~g}$, $6.41 \mathrm{mmol})^{299,300}$ in $\mathrm{H}_{2} \mathrm{O}$ at ca. $0^{\circ} \mathrm{C}$. After stirring for 30 min at $c a .0^{\circ} \mathrm{C}$ and then 30 min at $c a .20{ }^{\circ} \mathrm{C}$, the reaction mixture was extracted (DCM), washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Dry flash chromatography (hexane / DCM, $8: 2$) gave 3,4-dichlorobenzonitrile 104 as colorless needles (traces); mp 64-65 ${ }^{\circ} \mathrm{C}$ (from n-pentane) (lit., ${ }^{372} 71.8-72.1^{\circ} \mathrm{C}$ from petroleum ether); (Found: C, 49.01; H, 1.64; N, 8.09. $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{~N}$ requires $\mathrm{C}, 48.88 ; \mathrm{H}$, 1.76 ; N, 8.14\%); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3272 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 3092 \mathrm{w}(\mathrm{ArCH}), 2955 \mathrm{w}, 2922 \mathrm{w}, 2852 \mathrm{w}$, $2234 \mathrm{~m}(\mathrm{C}=\mathrm{N}), 1910 \mathrm{w}, 1779 \mathrm{w}, 1653 \mathrm{w}, 1647 \mathrm{w}, 1601 \mathrm{w}, 1587 \mathrm{w}, 1540 \mathrm{w}, 1506 \mathrm{w}, 1487 \mathrm{w}$, $1462 \mathrm{~s}, 1419 \mathrm{w}, 1380 \mathrm{~m}, 1261 \mathrm{w}, 1201 \mathrm{~m}, 1148 \mathrm{~s}, 1131 \mathrm{~m}, 1051 \mathrm{w}, 1041 \mathrm{~s}, 889 \mathrm{ss}, 865 \mathrm{~m}$, $855 \mathrm{w}, 822 \mathrm{~s}, 791 \mathrm{w} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.74(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{Ar} H), 7.59-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ $H) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.2(\mathrm{C} \mathrm{\equiv N}), 133.9(\mathrm{Ar} C), 133.6(\mathrm{Ar} \mathrm{CH}), 131.4(\mathrm{ArCH})$, $131.0(\mathrm{Ar} C \mathrm{H}), 116.7(\mathrm{Ar} C), 111.9(\mathrm{Ar} C) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $133.6(\mathrm{Ar}$ $C H), 131.4(\mathrm{ArCH}), 131.0(\mathrm{Ar} C \mathrm{H}) ; m / z(\mathrm{EI}) 175\left(\mathrm{M}^{+}+4,10 \%\right), 173\left(\mathrm{M}^{+}+2,60\right), 171$ $\left(\mathrm{M}^{+}, 100\right), 136$ (27), 109 (7), 100 (37), 85 (9), 75 (19), 62 (6), 50 (28). Further elution (hexane / DCM, 6:4) gave the title compound $\mathbf{9 5 f}(1.3 \mathrm{~g}, 70 \%$) as colorless plates; mp $77-78{ }^{\circ} \mathrm{C}$ (from n-pentane) (lit., ${ }^{298}$ oil; lit., ${ }^{373} \mathrm{mp} 85-86{ }^{\circ} \mathrm{C}$); (Found C, 45.95 ; H, 1.55; N, 15.26. $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires C, $46.05 ; \mathrm{H}, 1.66 ; \mathrm{N}, 15.34 \%$); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3100 \mathrm{w}(\mathrm{Ar} \mathrm{NH})$, $3079 \mathrm{w}, 3038 \mathrm{w}, 2239 \mathrm{~m}(\mathrm{C}=\mathrm{N})$, 1596w, 1581w, 1569m, 1559w, 1533s, 1506w, 1474w, $1457 \mathrm{w}, 1388 \mathrm{~m}, 1363 \mathrm{~s}, 1341 \mathrm{w}, 1294 \mathrm{w}, 1266 \mathrm{~m}, 1199 \mathrm{w}, 1142 \mathrm{w}, 1055 \mathrm{~m}, 899 \mathrm{~m}, 890 \mathrm{~m}$, $852 \mathrm{~s}, 818 \mathrm{~m}, 751 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.96(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{Ar} H), 7.88(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $7.44(1 \mathrm{H}, \mathrm{dd}, J 8.4,1.4, \mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 150.2(C \equiv \mathrm{~N}), 135.3(\mathrm{Ar} C \mathrm{H}), 131.3$ ($\operatorname{Ar} C H), 128.2(\operatorname{Ar} C), 126.1(\operatorname{Ar} C H), 117.1(\operatorname{Ar} C), 115.6(\operatorname{Ar} C) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $135.3(\mathrm{Ar} \mathrm{CH}), 131.3(\mathrm{Ar} C \mathrm{H}), 126.1(\mathrm{Ar} \mathrm{CH})$.

6.2.2 Substituted 2-Nitrodiphenylamines

Synthesis of 2-nitrodiphenylamines 94b-k follow the typical procedure described for 1- N (p-tolyl)-2-nitrobenzeneamine $\mathbf{9 4 a}$ and quantities of products 94b-k are based on the same mol scale of typical procedure described for product $94 a$.

6.2.2.1 1-N-(p-Tolyl)-2-nitrobenzeneamine 94a; typical procedure:

To a stirred mixture of 2-fluoronitrobenzene $\mathbf{9 5 a}(1 \mathrm{~mL}, 9.49 \mathrm{mmol})$ and p-toluidine (1.93 $\mathrm{g}, 18.98 \mathrm{mmol}$) at $c a .20{ }^{\circ} \mathrm{C}$, potassium fluoride $(0.5 \mathrm{~g}, 9.49 \mathrm{mmol})$ was added in one portion. The reaction mixture then was heated at $c a .180^{\circ} \mathrm{C}$ for 48 h before being allowed to cool to $c a .20^{\circ} \mathrm{C}$. The mixture was then dissolved in dichloromethane and extracted with aqueous hydrochloric acid (5-10\%) to remove unreacted amine. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered (fluted filter paper) and the volatiles removed in vacuo. Dry flash chromatography gave the title compound 94a (1.9 g, 87\%) as orange needles; mp $66-67{ }^{\circ} \mathrm{C}$ (from n-hexane) (lit., ${ }^{374} 68{ }^{\circ} \mathrm{C}$ from MeOH); (Found C, 68.52; H , 5.33; N, 12.14. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , 68.41; H, $5.30 ; \mathrm{N}, 12.27 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 205$ ($\log \varepsilon 3.88$), 262 (3.96), 434 (3.60); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3335 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 1618 \mathrm{~m}, 1609 \mathrm{~m}, 1570 \mathrm{~m}$, $1504 \mathrm{~s}, 1441 \mathrm{w}, 1422 \mathrm{~m}, 1352 \mathrm{~s}, 1325 \mathrm{~m}, 1256 \mathrm{~s}, 1223 \mathrm{~s}, 1163 \mathrm{w}, 1146 \mathrm{~m}, 1111 \mathrm{w}, 1078 \mathrm{~m}$, $1043 \mathrm{~m}, ~ 1016 \mathrm{w}, ~ 951 \mathrm{w}, ~ 895 \mathrm{w}, ~ 849 \mathrm{~m}, ~ 802 \mathrm{~m}, ~ 775 \mathrm{w}, 766 \mathrm{w}, 735 \mathrm{~s}, 692 \mathrm{w}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 9.46(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.21(1 \mathrm{H}, \mathrm{d}, J 8.6, \operatorname{Ar} H), 7.34(1 \mathrm{H}, \mathrm{dd}, J 7.8,7.8, \mathrm{Ar} H), 7.21-$ $\left.7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.73(1 \mathrm{H}, \mathrm{dd}, J 7.8,7.8, \mathrm{Ar} H), 2.38(3 \mathrm{H}, \mathrm{s}, \mathrm{CH})_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 143.6(\mathrm{Ar} C), 135.8(\mathrm{Ar} C), 135.7(\mathrm{Ar} C), 135.6(\mathrm{Ar} C H), 132.7(\mathrm{Ar} C), 130.3(\mathrm{Ar}$ $\mathrm{CH}), 126.6(\mathrm{Ar} C \mathrm{H}), 124.7(\mathrm{Ar} C \mathrm{H}), 117.0(\mathrm{Ar} C \mathrm{CH}), 115.9(\mathrm{Ar} \mathrm{CH}), 21.0\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ MHz ; CDCl_{3}, DEPT-135) 135.6 (Ar CH), 130.3 (Ar CH), 126.6 (Ar CH), 124.7 (Ar CH), $117.0(\mathrm{Ar} C \mathrm{H}), 115.9(\mathrm{Ar} C H), 21.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 228\left(\mathrm{M}^{+}, 100 \%\right), 211(12), 194$ (26), 183 (20), 181 (31), 180 (38), 167 (23), 152 (7), 140 (4), 91 (8), 77 (9), 65 (14), 51 (6).

6.2.2.2 5-Methoxy-2-nitro-1-N-(p-tolyl)-benzeneamine 94b

Orange plates ($1.8 \mathrm{~g}, 75 \%$); mp $85-86^{\circ} \mathrm{C}$ (from n-hexane); (Found: C, 65.23 ; H, 5.50 ; N, 10.94. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $\left.65.11 ; \mathrm{H}, 5.46 ; \mathrm{N}, 10.85 \%\right) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 265(\log \varepsilon$ 4.02), 477 (3.60); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3343 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 3116 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 1572 \mathrm{~m}, 1505 \mathrm{~s}, 1467 \mathrm{w}$, $1454 \mathrm{w}, 1443 \mathrm{w}, 1408 \mathrm{~m}, 1339 \mathrm{~m}, 1324 \mathrm{w}, 1307 \mathrm{w}, 1272 \mathrm{~s}, 1222 \mathrm{~s}, 1180 \mathrm{w}, 1140 \mathrm{~s}, 1111 \mathrm{w}$, $1069 \mathrm{~m}, 1034 \mathrm{~s}, 1017 \mathrm{~m}, 854 \mathrm{~m}, 821 \mathrm{~s}, 811 \mathrm{~s}, 790 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.72(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H)$, $8.16(1 \mathrm{H}, \mathrm{d}, J 9.5, \operatorname{Ar} H), 7.24-7.15(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.48(1 \mathrm{H}, \mathrm{d}, J 2.6, \operatorname{Ar} H), 6.30(1 \mathrm{H}$,
dd, J 9.5, 2.6, $\mathrm{Ar} H), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.5$ $(\operatorname{Ar} C), 146.1(\operatorname{Ar} C), 135.8(\operatorname{Ar} C), 135.6(\operatorname{Ar} C), 130.3(\operatorname{Ar} C H), 128.9(\mathrm{Ar} C H), 127.0$ ($\mathrm{Ar} C$), $124.9(\mathrm{Ar} C \mathrm{H}), 106.3(\mathrm{Ar} C H), 97.0(\mathrm{Ar} \mathrm{CH}), 55.6\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$, DEPT-135) $130.3(\mathrm{Ar} C \mathrm{H}), 128.9(\mathrm{Ar} \mathrm{CH}), 124.9(\mathrm{ArCH}), 106.3(\mathrm{ArCH})$, $97.0(\mathrm{Ar} \mathrm{CH}), 55.6\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 258\left(\mathrm{M}^{+}, 100 \%\right), 241(10), 224(30), 212$ (11), 197 (13), 181 (16), 168 (15), 154 (7), 106 (4), 91 (8), 65 (11).

6.2.2.3 4-Methoxy-2-nitro-1-N-(p-tolyl)-benzeneamine 94c

Red cubes ($0.4 \mathrm{~g}, 17 \%$); mp $86-87{ }^{\circ} \mathrm{C}$ (from n-hexane) (lit., ${ }^{375} 85-86{ }^{\circ} \mathrm{C}$); (Found C , $65.15 ; \mathrm{H}, 5.39 ; \mathrm{N}, 10.87 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 65.11 ; \mathrm{H}, 5.46 ; \mathrm{N}, 10.85 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 204(\log \varepsilon 4.02), 266$ (4.18), 477 (3.72); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3343 \mathrm{w}(\mathrm{Ar} \mathrm{NH})$, 3115w (Ar CH), 1572m, 1506s, 1466w, 1443w, 1408m, 1339m, 1310w, 1273s, 1221s, $1138 \mathrm{~m}, 1069 \mathrm{~m}, 1034 \mathrm{~m}, 1016 \mathrm{w}, 935 \mathrm{w}, 874 \mathrm{w}, 853 \mathrm{~m}, 810 \mathrm{~m}, 791 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $9.34(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.61(1 \mathrm{H}, \mathrm{d}, J 2.9, \operatorname{Ar} H), 7.21-7.02(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{H}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 150.8(\mathrm{Ar} C), 138.8(\mathrm{ArC}), 136.4(\mathrm{ArC}), 135.1$ ($\mathrm{Ar} C$), $132.3(\mathrm{Ar} C), 130.2(\mathrm{Ar} C H), 126.4(\mathrm{Ar} C H), 124.1(\mathrm{Ar} C H), 117.7(\mathrm{Ar} C H)$, $106.6(\mathrm{Ar} \mathrm{CH}), 55.8\left(\mathrm{OCH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $130.2(\mathrm{Ar}$ $C H), 126.4(\mathrm{Ar} C H), 124.1(\mathrm{Ar} C H), 117.7(\mathrm{Ar} \mathrm{CH}), 106.6(\mathrm{Ar} \mathrm{CH}), 55.8\left(\mathrm{OCH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 258\left(\mathrm{M}^{+}, 100 \%\right), 243$ (11), 224 (23), 211 (29), 197 (16), 196 (32), 181 (9), 168 (10), 154 (9), 91 (10), 65 (8); (Found: M^{+}, 258.1007. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M, 258.1004).

6.2.2.4 5-Methyl-2-nitro- N -(p-tolyl)-benzeneamine 94d

Orange plates ($1.9 \mathrm{~g}, 84 \%$); mp 92-93 ${ }^{\circ} \mathrm{C}$ (from n-hexane) (lit., ${ }^{376} 80{ }^{\circ} \mathrm{C}$ from EtOH); (Found: C, 69.38; H, 5.73; N, 11.67. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 69.41 ; \mathrm{H}, 5.82 ; \mathrm{N}, 11.56 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 273(\log \varepsilon 3.97), 433$ (3.60); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3351 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 3032 \mathrm{w}(\mathrm{ArCH})$, 2916w, 2862w, 1623s, 1610m, 1575s, 1539w, 1517m, 1507s, 1487s, 1444w, 1411m, $1379 \mathrm{w}, 1338 \mathrm{~s}, 1325 \mathrm{~s}, 1261 \mathrm{~s}, 1221 \mathrm{~s}, 1168 \mathrm{~m}, 1157 \mathrm{~m}, 1104 \mathrm{w}, 1076 \mathrm{~s}, 1017 \mathrm{~m}, ~ 961 \mathrm{w}, 941 \mathrm{w}$, $853 \mathrm{w}, 831 \mathrm{w}, 818 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.51(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.09(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Ar} H)$, 7.25-7.15 (4H, m, Ar H), $6.92(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.54(1 \mathrm{H}, \mathrm{d}, J 8.7, \operatorname{Ar} H), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 147.8(\mathrm{Ar} \mathrm{C}), 144.2(\mathrm{ArC}), 136.4(\mathrm{ArC}), 136.1$ ($\mathrm{Ar} C$), $131.3(\mathrm{Ar} C), 130.7(\mathrm{ArCH}), 127.0(\mathrm{Ar} C \mathrm{H}), 125.3(\mathrm{ArCH}), 119.2(\mathrm{ArCH})$, $115.7(\mathrm{Ar} C \mathrm{H}), 22.4\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $130.7(\mathrm{Ar} \mathrm{CH})$,
$127.0(\mathrm{Ar} C \mathrm{H}), 125.3(\mathrm{Ar} C \mathrm{H}), 119.2(\mathrm{Ar} \mathrm{CH}), 115.7(\mathrm{Ar} \mathrm{CH}), 22.4\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$; $m / z(E I) 242\left(\mathrm{M}^{+}, 100 \%\right), 225$ (13), 208 (30), 197 (18), 196 (11), 194 (23), 181 (16), 152 (3), 91 (6), 65 (8); (Found: $\mathrm{M}^{+}, 242.1060 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, 242.1055).

6.2.2.5 4-Methyl-2-nitro-N-(p-tolyl)-benzeneamine 94e

Red plates ($0.8 \mathrm{~g}, 37 \%$); mp 83-84 ${ }^{\circ} \mathrm{C}$ (from n-hexane) (lit., ${ }^{377} 85^{\circ} \mathrm{C}$); (Found: C, 69.42 ; $\mathrm{H}, 5.86 ; \mathrm{N}, 11.58 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 69.41; H, 5.82; N, 11.56\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm}$ $203(\log \varepsilon 4.06), 263$ (4.01), 450 (3.58); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3358 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 2924 \mathrm{w}, 1630 \mathrm{~m}$, $1610 \mathrm{w}, 1566 \mathrm{~m}, 1511 \mathrm{~s}, 1429 \mathrm{w}, 1402 \mathrm{~m}, 1376 \mathrm{w}, 1339 \mathrm{~s}, 1321 \mathrm{w}, 1308 \mathrm{w}, 1263 \mathrm{~s}, 1221 \mathrm{~s}$, $1199 \mathrm{~m}, 1151 \mathrm{~s}, 1108 \mathrm{w}, 1082 \mathrm{w}, 1039 \mathrm{w}, 1020 \mathrm{w}, 924 \mathrm{~m}, 878 \mathrm{w}, 844 \mathrm{w}, 822 \mathrm{~s}, 807 \mathrm{~s}, 786 \mathrm{w}$, $765 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.35(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.99(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.22-7.07(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ H), $2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.5(\mathrm{Ar} C), 137.1(\mathrm{Ar}$ $C H), 136.2(\operatorname{Ar} C), 135.2(\operatorname{Ar} C), 132.6(\operatorname{Ar} C), 130.2(\mathrm{Ar} C H), 126.8(\mathrm{Ar} C), 125.7(\mathrm{Ar}$ $C H), 124.3(\mathrm{Ar} C \mathrm{H}), 116.0(\mathrm{Ar} C \mathrm{H}), 20.9\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT135) $137.1(\mathrm{Ar} C \mathrm{H}), 130.2(\mathrm{Ar} C H), 125.7(\mathrm{Ar} C H), 124.3(\mathrm{Ar} C H), 116.0(\mathrm{Ar} \mathrm{CH}), 20.9$ $\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 242\left(\mathrm{M}^{+}, 100 \%\right), 225(11), 208$ (32), 197 (22), 194 (37), 181 (24), 171 (3), 168 (4), 152 (7), 149 (6), 127 (3), 125 (4), 123 (3), 111 (4), 109 (3), 108 (3), 104 (6), 91 (11), 83 (9), 77 (12), 69 (13), 67 (5), 65 (17), 63 (7), 55 (10), 51 (6); (Found: M^{+}, 242.1060. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 242.1055$).

6.2.2.6 5-Cyano-2-nitro-1-N-(p-tolyl)-benzeneamine 94f

Orange plates ($1.5 \mathrm{~g}, 64 \%$); mp 139-140 ${ }^{\circ} \mathrm{C}$ (from n-hexane); (Found: C, 66.40 ; H, 4.29; $\mathrm{N}, 16.48 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 66.40 ; \mathrm{H}, 4.38 ; \mathrm{N}, 16.59 \%\right) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 205(\log \varepsilon$ 4.08), 262 (4.11), 442 (3.61); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3317 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 2236 \mathrm{w}(\mathrm{C} \equiv \mathrm{N}), 1616 \mathrm{~m}, 1606 \mathrm{~m}$, $1587 \mathrm{~m}, 1569 \mathrm{~s}, 1512 \mathrm{~s}, 1482 \mathrm{~s}, 1445 \mathrm{w}, 1412 \mathrm{~m}, 1406 \mathrm{~m}, 1339 \mathrm{~s}, 1322 \mathrm{~m}, 1313 \mathrm{w}, 1258 \mathrm{~s}$, $1223 \mathrm{~s}, 1211 \mathrm{~m}, 1182 \mathrm{~m}, 1168 \mathrm{~m}, 1151 \mathrm{~m}, 1065 \mathrm{~s}, 1018 \mathrm{w}, 980 \mathrm{~m}, 955 \mathrm{w}, 867 \mathrm{~m}, 879 \mathrm{w}, 845 \mathrm{~m}$, $839 \mathrm{~m}, 826 \mathrm{~s}, 814 \mathrm{~s} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.43(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.28(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ar} H), 7.36$ (1H, d, $J 1.5, \operatorname{Ar} H), 7.29-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.14(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 6.93(1 \mathrm{H}, \mathrm{d}, J$ 8.8, 2.0, $\operatorname{Ar} H$), $2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.7(\mathrm{Ar} C), 137.3(\mathrm{ArC})$, $134.4(\mathrm{Ar} C), 134.1(\mathrm{Ar} C), 130.8(\mathrm{Ar} C H), 127.7(\mathrm{Ar} C H), 125.3(\mathrm{Ar} C H), 120.6(\mathrm{Ar}$ $C H), 118.9(\mathrm{Ar} C H), 118.5(\mathrm{Ar} C), 117.2(\mathrm{Ar} C), 21.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 253\left(\mathrm{M}^{+}, 100 \%\right)$, 236 (13), 219 (25), 208 (33), 206 (39), 205 (55), 192 (33), 177 (7), 164 (8), 151 (12), 103 (15), 89 (19), 65 (46), 51 (19); (Found $\mathrm{M}^{+}, 253.0848 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M, 253.0851$).

Further elution on column chromatography (hexane / DCM, 4:6) gave 4-nitro-N-p-tolyl-3-(p-tolylamino)benzamide 106 as red crystals (trace); mp 211-212 ${ }^{\circ} \mathrm{C}$ (from n-hexane); (Found: C, 69.89; H, 5.24; N, 11.58. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.79 ; \mathrm{H}, 5.30 ; \mathrm{N}, 11.63 \%$); $3340 \mathrm{w}(\operatorname{Ar} \mathrm{NH}), 3292 \mathrm{w}, 1658 \mathrm{~s}$, 1616m, 1601s, 1576s, 1533s, 1516s, 1508s, 1479s, $1436 \mathrm{~m}, 1405 \mathrm{~m}, 1336 \mathrm{~s}, 1329 \mathrm{~s}, 1305 \mathrm{w}, 1276 \mathrm{~m}, 1261 \mathrm{~s}, 1241 \mathrm{w}, 1229 \mathrm{~m}, 1197 \mathrm{~m}, 1184 \mathrm{w}$, 1153w, 1109w, 1066m, 1020m, 978w, 938w, 888m, 876w, 841m, 818s, 806m, 775 w ; δ_{H} (300 MHz; DMSO- d_{6}) $10.33(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 9.45(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.23(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar} H)$, 7.60-7.56 (3H, m, Ar H), 7.34-7.22 (5H, m, Ar H), 7.13 (2H, d, J 8.5, Ar H), $2.32(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 163.8(\mathrm{C}=\mathrm{O}), 142.3(\mathrm{Ar} C), 141.3(\mathrm{Ar}$ C), $136.2(\operatorname{Ar} C), 136.0(\operatorname{Ar} C), 134.7(\operatorname{Ar} C), 134.0(\operatorname{Ar} C), 133.2(\operatorname{Ar} C), 130.1(\mathrm{ArCH})$, 129.0 ($\mathrm{Ar} C \mathrm{H}$), 126.6 (Ar CH), 124.3 ($\mathrm{Ar} C \mathrm{H}$), 120.5 ($\mathrm{Ar} C \mathrm{H}$), 116.2 (Ar CH), 115.7 (Ar $\mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ;\right.$ DMSO- d_{6}, DEPT-135) 130.1 (Ar CH), 129.0 ($\mathrm{Ar} C \mathrm{H}$), $126.6(\mathrm{Ar} C \mathrm{H}), 124.3(\mathrm{Ar} C \mathrm{H}), 120.5(\mathrm{Ar} C \mathrm{H}), 116.2(\mathrm{Ar} C \mathrm{H}), 115.7(\mathrm{Ar} C \mathrm{H})$, $20.5\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 361\left(\mathrm{M}^{+}, 100 \%\right)$, $255(49), 253$ (10), 227 (14), 221 (5), 208 (8), 205 (6), 192 (4), 181 (34), 152 (4), 91 (6), 77 (5), 65 (4).

6.2.2.7 4-Cyano-2-nitro-1-N-(p-tolyl)-benzeneamine $\mathbf{9 4 g}$

Orange plates ($2.2 \mathrm{~g}, 92 \%$); mp 122-123 ${ }^{\circ} \mathrm{C}$ (from n-hexane) (lit., ${ }^{378} 128{ }^{\circ} \mathrm{C}$ from EtOH); (Found: C, 66.39; H, 4.26; N, 16.49. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.40 ; \mathrm{H}, 4.38 ; \mathrm{N}, 16.59 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228$ ($\log \varepsilon 4.01$), 260 (4.10), 286 (4.10), 419 (3.96); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3318 \mathrm{~m}(\mathrm{Ar}$ NH), 3300w (Ar CH), 2222m (C $\equiv \mathrm{N}$), 1620s, 1607s, 1587w, 1562s, 1530, 1512s, 1439w, $1418 \mathrm{~m}, 1377 \mathrm{w}, 1358 \mathrm{~s}$, 1317w, 1263s, 1225s, 1184s, 1150m, 1069m, 926m, 910m, 870w, 810s, $783 \mathrm{w}, 766 \mathrm{~m}, 700 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.78(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.53(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, 7.47 (1H, dd, $J 9.1,1.9, \operatorname{Ar} H), 7.29(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.16-7.08(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 2.39(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 146.2(\mathrm{ArC}), 137.6(\mathrm{Ar} \mathrm{C}), 137.2(\mathrm{Ar} \mathrm{CH}), 134.0(\mathrm{ArC})$, $132.0(\mathrm{Ar} C H), 131.7(\mathrm{Ar} C), 130.7(\mathrm{Ar} C H), 125.5(\mathrm{Ar} C H), 117.8(\mathrm{ArC}), 116.8(\mathrm{Ar}$ $\mathrm{CH}), 99.6(\mathrm{Ar} \mathrm{C}), 21.1\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) 137.2 (Ar CH), $132.0(\mathrm{Ar}$ $C H), 130.7(\mathrm{Ar} C \mathrm{H}), 125.5(\mathrm{Ar} C H), 116.8(\mathrm{Ar} C H), 21.1\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 253(100 \%$, M^{+}), 236 (5), 223 (5), 219 (16), 206 (30), 205 (30), 192 (17), 179 (4), 177 (4), 164 (5), 151 (5), 103 (5), 102 (4), 91 (7), 89 (5), 77 (5), 65 (8), 63 (4), 51 (4); (Found M ${ }^{+}$, 253.0858. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $M, 253.0851$).

6.2.2.8 5-Trifluoromethyl-2-nitro- N -(p-tolyl)-benzeneamine $94 \boldsymbol{h}$

Orange cubes ($2.4 \mathrm{~g}, 85 \%$); mp $64-65^{\circ} \mathrm{C}$ (from n-hexane); (Found: C, $56.81 ; \mathrm{H}, 3.71$; N, 9.33. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 56.76 ; \mathrm{H}, 3.74 ; \mathrm{N}, 9.46 \%\right) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 254(\log \varepsilon$ 3.95), 431 (3.52); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3364 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 2926 \mathrm{w}, 1625 \mathrm{w}, 1612 \mathrm{w}, 1586 \mathrm{~m}, 1559 \mathrm{w}$, $1540 \mathrm{w}, 1512 \mathrm{~s}, 1496 \mathrm{~s}, 1445 \mathrm{w}, 1420 \mathrm{~m}, 1399 \mathrm{w}, 1344 \mathrm{~m}, 1331 \mathrm{~m}, 1305 \mathrm{~m}, 1286 \mathrm{w}, 1256 \mathrm{~s}$, $1207 \mathrm{~m}, 1183 \mathrm{~m}, 1175 \mathrm{~s}, 1153 \mathrm{~m}, 1120 \mathrm{~s}, 1112 \mathrm{~s}, 1091 \mathrm{w}, 1067 \mathrm{~m}, 1017 \mathrm{w}, 976 \mathrm{w}, 939 \mathrm{w}$, $883 \mathrm{~m}, 860 \mathrm{w}, 847 \mathrm{~m}, 828 \mathrm{~s}, 822 \mathrm{~s}, 775 \mathrm{w}, 762 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.53(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H)$, 8.31 (1H, d, $J 8.9, \operatorname{Ar} H), 7.39(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.27$ (2H, d, $J 8.2, \operatorname{Ar} H), 7.17$ (2H, d, $J 8.3$, Ar H), 6.94 ($1 \mathrm{H}, \mathrm{dd}, J 8.9,1.8, \mathrm{Ar} H$), $2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.5(\mathrm{Ar}$ $C), 136.7\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}} 32.9, \operatorname{Ar} C\right), 136.6(\mathrm{Ar} C), 134.8(\mathrm{Ar} C), 133.9(\mathrm{Ar} C), 130.6(\mathrm{Ar} C \mathrm{H})$, $127.7(\mathrm{Ar} C \mathrm{H}), 124.8(\mathrm{Ar} C \mathrm{H}), 121.0(\mathrm{Ar} C), 113.4\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.1, \mathrm{Ar} C \mathrm{H}\right), 112.8\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}\right.$ 3.3, $\operatorname{Ar} \mathrm{CH}), 21.0\left(\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $130.6(\mathrm{Ar} \mathrm{CH}), 127.7(\mathrm{Ar} C \mathrm{H})$, $124.8(\mathrm{Ar} C \mathrm{H}), 113.4\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.1, \mathrm{Ar} C \mathrm{H}\right), 112.8\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 3.3, \mathrm{Ar} C \mathrm{H}\right), 21.0\left(\mathrm{CH}_{3}\right) ; m / z$ (EI) $296\left(\mathrm{M}^{+}, 100 \%\right), 279$ (11), 262 (18), 251 (17), 250 (8), 249 (22), 248 (24), 235 (11), 181 (7), 65 (6).

6.2.2.9 4-Trifluoromethyl-2-nitro-N-(p-tolyl)-benzeneamine 94i

Orange plates ($2.8 \mathrm{~g}, 99 \%$); mp 111-112 ${ }^{\circ} \mathrm{C}$ (from n-hexane) (lit., ${ }^{379} 113.5-114{ }^{\circ} \mathrm{C}$); (Found: C, 56.70; H, 3.68; N, 9.37. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 56.76$; $\mathrm{H}, 3.74 ; \mathrm{N}, 9.46 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 254(\log \varepsilon 4.03), 418$ (3.57); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3351 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 3104 \mathrm{w}(\mathrm{ArCH})$, 2928w, 1640m, 1575m, 1530m, 1516m, 1509m, 1439m, 1413m, 1357m, 1323s, 1260s, $1221 \mathrm{~m}, 1150 \mathrm{~s}, 1108 \mathrm{~s}, 1085 \mathrm{~s}, 1022 \mathrm{w}, 990 \mathrm{w}, 944 \mathrm{w}, 916 \mathrm{~s}, 911 \mathrm{~m}, 862 \mathrm{w}, 845 \mathrm{~m}, 829 \mathrm{~m}$, $807 \mathrm{~m}, 778 \mathrm{~m}, 765 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.68(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.51$ $(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Ar} H), 7.27(2 \mathrm{H}, \mathrm{d}, J 7.8, \operatorname{Ar} H), 7.17(3 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{Ar} H), 2.41$ (3H, s, CH_{3}); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 145.7(\mathrm{Ar} C), 137.0(\mathrm{Ar} C), 134.7(\mathrm{Ar} C), 131.6\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 3.1\right.$, $\operatorname{Ar} C \mathrm{H}), 131.4(\mathrm{Ar} C \mathrm{H}), 130.6(\mathrm{Ar} C \mathrm{H}), 125.3(\mathrm{Ar} C \mathrm{H}), 124.7\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.3, \mathrm{Ar} C \mathrm{H}\right), 121.6$ ($\operatorname{Ar} C H$), $118.6\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}} 34.3, \mathrm{Ar} C\right), 116.6(\mathrm{Ar} C \mathrm{H}), 21.0\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $131.6\left(q,{ }^{3} J_{\mathrm{CF}} 3.1, \mathrm{Ar} C \mathrm{H}\right), 130.6(\mathrm{Ar} C \mathrm{H}), 125.3(\mathrm{Ar} C \mathrm{H}), 124.7\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.3\right.$, $\operatorname{Ar} C H$), $116.6(\mathrm{Ar} C \mathrm{H}), 21.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 296\left(\mathrm{M}^{+}, 100 \%\right), 279$ (13), $262(21), 251$ (20), 250 (9), 249 (24), 248 (28), 235 (10), 181 (6), 180 (7), 115 (6); (Found M ${ }^{+}$, 296.0768. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}$ requires $M, 296.0773$).

6.2.2.10 5-Fluoro-2-nitro-N-(p-tolyl)-benzeneamine 94j

Orange needles ($1.9 \mathrm{~g}, 82 \%$); mp 123-124 ${ }^{\circ} \mathrm{C}$ (from n-hexane); (Found: C, 63.32; H, 4.43; $\mathrm{N}, 11.25 . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 63.41 ; \mathrm{H}, 4.50 ; \mathrm{N}, 11.38 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 269(\log \varepsilon$ 3.81), 416 (3.49); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3329 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 3105 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 1632 \mathrm{~s}, 1612 \mathrm{~m}, 1589 \mathrm{~m}$, $1572 \mathrm{~s}, 1510 \mathrm{~s}, 1499 \mathrm{~s}, 1455 \mathrm{~m}, 1443 \mathrm{w}, 1417 \mathrm{~m}, 1381 \mathrm{w}, 1343 \mathrm{~s}, 1320 \mathrm{~m}, 1303 \mathrm{~m}, 1252 \mathrm{~s}$, 1225s, 1205s, 1133m, 1120m, 1108w, 1078s, 1018w, 997m, 968w, 950w, 843m, 834m, $799 \mathrm{~m}, 776 \mathrm{w}, 751 \mathrm{~s}, 748 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.24(1 \mathrm{H}, \mathrm{dd}, J 9.3$, 6.0, $\operatorname{Ar} H$), 7.25 (2H, d, $J 7.8, \operatorname{Ar} H), 7.15$ (2H, d, $J 8.1, \operatorname{Ar} H), 6.73$ (1H, dd, $J 11.4,2.4$, $\operatorname{Ar} H), 6.47-6.40(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.9(\mathrm{Ar} \mathrm{C})$, $165.5(\mathrm{Ar} C), 146.1(\mathrm{Ar} C), 136.5(\mathrm{Ar} C), 135.1(\mathrm{Ar} C), 130.5(\mathrm{Ar} C H), 129.7(\mathrm{Ar} C H)$, $125.1(\mathrm{Ar} C \mathrm{H}), 105.6(\mathrm{Ar} C H), 101.2(\mathrm{Ar} C \mathrm{H}), 21.0\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT135) 130.5 ($\mathrm{Ar} C \mathrm{H}$), 129.7 ($\mathrm{Ar} C \mathrm{H}$), 125.1 ($\mathrm{Ar} C \mathrm{H}$), 105.6 (Ar CH), 101.2 (Ar CH), 21.0 $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 246\left(\mathrm{M}^{+}, 100 \%\right), 229(21), 212$ (60), 198 (73), 189 (3), 185 (38), 178 (7), 170 (7), 157 (5), 151 (6), 106 (9), 99 (14), 95 (5), 91 (13), 86 (5), 77 (10), 65 (29), 57 (4), 51 (11); (Found: M^{+}, 246.0805. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires M, 246.0805). Further elution on column chromatography (hexane / DCM, $4: 6$) gave 2 -nitro- N, N^{\prime}-[di-(p-tolyl)]benzene-2,4-diamine 105 as orange crystals ($3.0 \mathrm{mg}, 1 \%$); mp 170-171 ${ }^{\circ} \mathrm{C}$ (from n-hexane); m / z (EI) 333 ($\mathrm{M}^{+}, 17 \%$), 298 (4), 246 (46), 229 (6), 212 (16), 198 (16), 185 (10), 180 (9), 149 (6), 91 (8), 77 (8), 65 (9), 58 (5), 51 (5).

6.2.2.11 4-Fluoro-2-nitro-N-(p-tolyl)-benzeneamine 94k

Red cubes ($1.8 \mathrm{~g}, 79 \%$); mp 119-121 ${ }^{\circ} \mathrm{C}$ (from n-hexane); (Found: C, 63.43; H, 4.38; N, 11.22. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 63.41 ; \mathrm{H}, 4.50 ; \mathrm{N}, 11.38 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 257(\log \varepsilon$ 3.93), 449 (3.58); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3347 \mathrm{~m}(\mathrm{ArNH}), 3107 \mathrm{w}(\mathrm{ArCH}), 2919 \mathrm{w}, 1589 \mathrm{~m}, 1576 \mathrm{~m}$, $1559 \mathrm{w}, 1511 \mathrm{~s}, 1436 \mathrm{w}, 1412 \mathrm{~m}, 1346 \mathrm{~m}, 1323 \mathrm{w}, 1304 \mathrm{w}, 1263 \mathrm{~s}, 1232 \mathrm{~s}, 1180 \mathrm{~m}, 1127 \mathrm{~s}$, $1060 \mathrm{~m}, ~ 981 \mathrm{w}, ~ 962 \mathrm{w}, ~ 949 \mathrm{~s}, 883 \mathrm{~m}, ~ 839 \mathrm{w}, ~ 833 \mathrm{w}, ~ 821 \mathrm{~s}, 812 \mathrm{~s}, 795 \mathrm{~m}, 766 \mathrm{~m}, 757 \mathrm{~m} ; \delta_{\mathrm{H}}(300$ MHz; $\left.\mathrm{CDCl}_{3}\right) 9.33(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.89(1 \mathrm{H}, \mathrm{tt}, J 1.7,1.7,8.9, \mathrm{Ar} H), 7.24(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H)$, $7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.15(2 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{Ar} H), 7.13(2 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{Ar} H), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 154.9(\mathrm{Ar} C), 151.7(\mathrm{ArC}), 140.7(\mathrm{Ar} C), 135.8(\mathrm{Ar} C), 131.7(\mathrm{Ar}$ C), 130.4 ($\mathrm{Ar} C \mathrm{H}$), $124.6(\mathrm{ArCH}), 124.2(\mathrm{Ar} C \mathrm{H}), 117.6(\mathrm{Ar} C H), 111.7(\mathrm{Ar} C \mathrm{CH}), 20.9$ $\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $130.4(\mathrm{Ar} \mathrm{CH}), 124.6(\mathrm{Ar} \mathrm{CH}), 124.2(\mathrm{Ar} \mathrm{CH})$, $117.6(\mathrm{Ar} C \mathrm{H}), 111.7(\mathrm{Ar} C \mathrm{H}), 20.9\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 246\left(\mathrm{M}^{+}, 100 \%\right), 229(10), 212(26)$, 201 (22), 200 (14), 199 (45), 198 (51), 185 (31), 170 (6), 99 (8), 65 (14); (Found M ${ }^{+}$,
246.0810. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{2}$ requires $M, 246.0805$).

6.2.3 Substituted N-(p-Tolyl)-1,2-benzenediamines

Synthesis of N-(p-tolyl)-1,2-benzenediamines $93 \mathbf{b} \mathbf{- k}$ follow the typical procedure described for 1-N-(p-tolyl)-1,2-benzenediamine 93a and quantities of products $93 \mathrm{~b}-\mathrm{k}$ are based on the same mol scale of typical procedure described for product 93a.

6.2.3.1 1-N-(p-Tolyl)-1,2-benzenediamine 93a; typical procedure:

1- N-tolyl-2-nitrobenzeneamine 94a ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in EtOH (20 mL) in a hydrogenation flask and $5 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ was added. The flask was attached to a Parr hydrogenator, evacuated, and flushed with hydrogen twice. Then the mixture was shaken under hydrogen atmosphere at a pressure of 2 bar for 1 h . The hydrogenation was judged complete after the pressure of the hydrogen stayed stable, the red color of the reagent was gone and there was no more starting material according to TLC. TLC at the end of the reaction showed only a colorless product that became red after a while. The mixture was filtered through Celite ${ }^{\circledR}$ directly into a flask containing ice-cold water. The title compound 93a was separated as colorless plates and kept in the fridge ($66 \mathrm{mg}, 76 \%$); mp 73-74 ${ }^{\circ} \mathrm{C}$ (from water) (lit., ${ }^{380} 74{ }^{\circ} \mathrm{C}$ from water); (Found: C, 78.69; H, 7.23; N, 14.06. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $\mathrm{C}, 78.75 ; \mathrm{H}, 7.12 ; \mathrm{N}, 14.13 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 235$ ($\log \varepsilon 3.89$), 275 (3.73); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3430 \mathrm{~m}$ and $3339 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 2918 \mathrm{w}, 1653 \mathrm{~m}, 1611 \mathrm{~s}, 1591 \mathrm{~m}, 1556 \mathrm{w}$, $1539 \mathrm{w}, 1516 \mathrm{~s}, 1500 \mathrm{~s}, 1441 \mathrm{~m}, 1398 \mathrm{~m}, 1378 \mathrm{w}, 1304 \mathrm{~s}, 1259 \mathrm{~m}, 1219 \mathrm{w}, 1181 \mathrm{w}, 1157 \mathrm{w}$, $1139 \mathrm{~m}, 1124 \mathrm{~m}, 1030 \mathrm{w}, 928 \mathrm{~m}, 888 \mathrm{w}, 865 \mathrm{w}, 835 \mathrm{w}, 809 \mathrm{~s}, 787 \mathrm{w}, 777 \mathrm{w}, 771 \mathrm{w}, 757 \mathrm{~s}, 745 \mathrm{~s} ;$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.13-6.99(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.83-6.94(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N} H_{2} \& \mathrm{~N} H\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.6(\mathrm{ArC}), 141.2(\mathrm{ArC}), 129.8$ $(\mathrm{Ar} C \mathrm{H}), 129.4(\mathrm{Ar} C), 128.8(\mathrm{Ar} C), 125.0(\mathrm{Ar} C \mathrm{H}), 123.8(\mathrm{Ar} C H), 119.1(\mathrm{Ar} C H)$, 116.1 ($\mathrm{Ar} C \mathrm{H}$), $115.7(\mathrm{Ar} C \mathrm{H}), 20.5\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; Dept-135) $129.8(\mathrm{Ar}$ $C H), 125.0(\mathrm{Ar} C \mathrm{H}), 123.8(\mathrm{Ar} C H), 119.1(\mathrm{Ar} C H), 116.1(\mathrm{Ar} C H), 115.7(\mathrm{Ar} C \mathrm{H}), 20.5$ $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 198\left(\mathrm{M}^{+}, 91 \%\right), 183$ (85), 182 (36), 181 (18), 169 (7), 154 (7), 145 (7), 132 (10), 119 (19), 107 (38), 106 (27), 98 (74), 91 (100), 80 (72), 65 (56), 53 (12); (Found: $\mathrm{M}^{+}, 198.1164 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires M, 198.1157).

6.2.3.2 5-Methoxy-1-N-(p-tolyl)-1,2-benzenediamine 93b

Colorless plates ($81 \mathrm{mg}, 81 \%$); mp $82-83{ }^{\circ} \mathrm{C}$ (from water); (Found: C, $73.76 ; \mathrm{H}, 7.12$; N, 12.23. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.66 ; \mathrm{H}, 7.06 ; \mathrm{N}, 12.27 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 237(\log \varepsilon$ 3.98), 296 (3.63); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3430 \mathrm{w}, 3339 \mathrm{~m}$ and $3329 \mathrm{w}(\mathrm{Ar} \mathrm{NH}$), 2918w, 2864w, 1653m, 1611s, 1591m, 1576w, 1559w, 1539w, 1519s, 1516s, 1500s, 1441m, 1398m, 1378w, 1304s, $1259 \mathrm{~m}, 1181 \mathrm{~m}, 1157 \mathrm{w}, 1139 \mathrm{~m}, 1124 \mathrm{~m}, 1030 \mathrm{w}, 928 \mathrm{w}, 835 \mathrm{w}, 809 \mathrm{~s}, 757 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ MHz; CDCl_{3}) $7.08(2 \mathrm{H}, \mathrm{d}, J 8.1, \operatorname{Ar} H), 6.82-6.73(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.54(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.8$, Ar H), $\left.5.30(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.31(2 \mathrm{H}, \mathrm{s} \mathrm{NH})_{2}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 153.5(\mathrm{Ar} C), 141.6(\mathrm{Ar} C), 132.8(\mathrm{Ar} C), 131.9(\mathrm{Ar} C), 129.8(\mathrm{Ar} C H)$, $129.4(\mathrm{Ar} C), 117.5(\mathrm{Ar} C \mathrm{H}), 116.8(\mathrm{Ar} C \mathrm{H}), 108.7(\mathrm{Ar} C \mathrm{C}), 107.2(\mathrm{Ar} C \mathrm{C}), 55.5$ $\left(\mathrm{OCH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $129.8(\mathrm{Ar} \mathrm{CH}), 117.5(\mathrm{Ar} \mathrm{CH})$, $116.8(\mathrm{ArCH}), 108.7(\mathrm{Ar} \mathrm{CH}), 107.2(\mathrm{Ar} \mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 228$ ($\mathrm{M}^{+}, 100 \%$), 213 (77), 197 (4), 185 (10), 169 (8), 144 (3), 137 (2), 118 (11), 106 (4), 91 (12), 68 (7), 65 (9), 52 (5).

6.2.3.3 4-Methoxy-1-N-(p-tolyl)-1,2-benzenediamine 93c

Colorless plates ($96 \mathrm{mg}, 96 \%$); mp $74-76{ }^{\circ} \mathrm{C}$ (from water); (Found: C, $73.76 ; \mathrm{H}, 7.11$; N, 12.22. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.66 ; \mathrm{H}, 7.06$; $\mathrm{N}, 12.27 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 227$ (log ε 3.79), 275 (3.70); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3359 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 2918 \mathrm{w}, 2833 \mathrm{w}, 1610 \mathrm{~m}, 1596 \mathrm{~m}, 1511 \mathrm{~s}$, $1484 \mathrm{~m}, 1452 \mathrm{~m}, 1436 \mathrm{w}, 1396 \mathrm{~m}, 1312 \mathrm{w}, 1275 \mathrm{~m}, 1244 \mathrm{~m}, 1214 \mathrm{~m}, 1195 \mathrm{~m}, 1158 \mathrm{~s}, 1111 \mathrm{w}$, $1039 \mathrm{~m}, 1010 \mathrm{w}, 965 \mathrm{w}, 810 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.03(3 \mathrm{H}, \mathrm{d}, J 7.5, \operatorname{Ar} H), 6.59(2 \mathrm{H}, \mathrm{d}$, J 8.1, $\operatorname{Ar} H), 6.36-6.28(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 4.97(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.90(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}$) , $3.81(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 158.3(\mathrm{ArC}), 144.5(\mathrm{Ar} C), 144.3(\mathrm{ArC})$, $129.7(\mathrm{Ar} C \mathrm{H}), 127.9(\mathrm{Ar} C \mathrm{H}), 127.7(\mathrm{Ar} C), 121.3(\mathrm{Ar} C), 114.2(\mathrm{Ar} C \mathrm{CH}), 103.9(\mathrm{Ar}$ $\mathrm{CH}), 101.1(\mathrm{Ar} \mathrm{CH}), 55.2\left(\mathrm{OCH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135); 129.7 ($\mathrm{Ar} C \mathrm{H}), 127.9(\mathrm{Ar} C \mathrm{H}), 114.2(\mathrm{ArCH}), 103.9(\mathrm{ArCH}), 101.1(\mathrm{Ar} C \mathrm{H}), 55.2\left(\mathrm{OCH}_{3}\right)$, $20.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 228\left(\mathrm{M}^{+}, 100 \%\right), 213$ (66), 197 (4), 185 (7), 169 (6), 153 (3), 142 (5), 132 (3), 118 (7), 106 (3), 91 (8), 77 (3), 65 (7).

6.2.3.4 5-Methyl-1-N-(p-tolyl)-1,2-benzenediamine 93d

Colorless plates ($78 \mathrm{mg}, 84 \%$); mp 103-104 ${ }^{\circ} \mathrm{C}$ (from water) (lit., ${ }^{381} 103{ }^{\circ} \mathrm{C}$ from EtOH); (Found: C, 79.30; H, 7.48; N, 13.02. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires C, 79.21; H, 7.60; N, 13.20\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 237$ (log $\varepsilon 3.94$), 274 (3.73), 301 (3.66); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3416 \mathrm{w}, 3330 \mathrm{~m}$ and

3312w(Ar NH), 3020w (Ar CH), 2916w, 2864w, 1873w, 1616m, 1595w, 1509s, 1488m, $1387 \mathrm{w}, 1377 \mathrm{w}, 1308 \mathrm{~s}, 1269 \mathrm{w}, 1250 \mathrm{~m}, 1182 \mathrm{~m}, 1154 \mathrm{~m}, 1124 \mathrm{~m}, 1113 \mathrm{w}, 950 \mathrm{w}, 933 \mathrm{w}$, $888 \mathrm{w}, 850 \mathrm{w}, 809 \mathrm{~s}, 785 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.05(2 \mathrm{H}, \mathrm{d}, J 8.3, \operatorname{Ar} H), 6.94(1 \mathrm{H}, \mathrm{s}$, $\operatorname{Ar} H), 6.82-6.69(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 5.08(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.18(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.6(\mathrm{Ar} C), 138.3(\mathrm{Ar} C), 129.7(\mathrm{Ar} \mathrm{CH}), 129.6$ $(\operatorname{Ar} C), 128.7(\operatorname{Ar} C), 128.6(\mathrm{Ar} C), 125.2(\mathrm{Ar} C H), 123.8(\mathrm{Ar} C H), 116.2(\mathrm{Ar} C \mathrm{H}), 115.8$ (Ar CH), $20.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $129.7(\mathrm{Ar} \mathrm{CH}), 125.2$ (Ar CH), $123.8(\mathrm{Ar} \mathrm{CH}), 116.2(\mathrm{Ar} \mathrm{CH}), 115.8(\mathrm{Ar} \mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI})$ 212 ($\mathrm{M}^{+}, 100 \%$), 197 (42), 121 (5), 106 (13), 98 (12), 91 (12), 77 (14), 65 (7); (Found: M^{+}, 212.1315. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires M, 212.1313).

6.2.3.5 4-Methyl-1-N-(p-tolyl)-1,2-benzenediamine 93e

Colorless plates ($72 \mathrm{mg}, 77 \%$); mp $102-103{ }^{\circ} \mathrm{C}$ (from water) (lit., ${ }^{382} 109{ }^{\circ} \mathrm{C}$ from petroleum ether); (Found: C, 79.30; H, 7.67; N, 13.11. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires C, 79.21; H, $7.60 ; \mathrm{N}, 13.20 \%) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 238(\log \varepsilon 3.94), 270(3.74) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3413 \mathrm{~m}, 3328 \mathrm{~m}$ and 3314w (Ar NH), 3027w (Ar CH), 2917w, 2862w, 1868w, 1613m, 1509s, 1448w, 1424w, 1399w, 1375w, 1315s, 1306m, 1269w, 1262m, 1251w, 1179w, 1167w, 1144w, 1123w, 1111w, 941w, 924w, 871m, 828w, 807s, 796 m ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.06-7.00$ $(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.67-6.59(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 4.05(3 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{NH}), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.4(\mathrm{Ar} C), 141.8(\mathrm{Ar} C), 135.4(\mathrm{Ar} C), 129.7(\mathrm{Ar}$ $C H), 128.2(\operatorname{Ar} C), 126.3(\operatorname{Ar} C), 125.1(\mathrm{Ar} C H), 119.8(\mathrm{Ar} C H), 116.7(\mathrm{Ar} C H), 115.0$ (Ar CH), $21.0\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}, \mathrm{DEPT}-135\right) 129.7(\mathrm{Ar} \mathrm{CH}), 125.1$ (Ar CH), $119.8(\mathrm{Ar} C \mathrm{H}), 116.7(\mathrm{Ar} C H), 115.0(\mathrm{Ar} \mathrm{CH}), 21.0\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI})$ 212 (${ }^{+}, 100 \%$), 197 (30), 196 (22), 182 (5), 181 (4), 121 (4), 106 (6), 79 (4), 77 (9), 65 (6); (Found: $\mathrm{M}^{+}, 242.1316 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires $M, 212.1313$).

6.2.3.6 5-Cyano-1-N-(p-tolyl)-1,2-benzenediamine $93 f$

Colorless plates ($58 \mathrm{mg}, 59 \%$); mp $96-97{ }^{\circ} \mathrm{C}$ (from water); (Found: C, $75.28 ; \mathrm{H}, 5.75$; N, 18.81. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3}$ requires $\mathrm{C}, 75.31 ; \mathrm{H}, 5.87 ; \mathrm{N}, 18.82 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 261(\log \varepsilon 4.01)$; $v_{\max }\left(\mathrm{cm}^{-1}\right) 3416 \mathrm{~m}, 3367 \mathrm{~m}$ and $3340 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 2916 \mathrm{w}, 2218 \mathrm{~s}(\mathrm{C} \equiv \mathrm{N}), 1631 \mathrm{~m}, 1616 \mathrm{~m}$, $1594 \mathrm{~s}, 1578 \mathrm{~s}, 1522 \mathrm{~s}, 1512 \mathrm{~s}, 1489 \mathrm{~m}, 1434 \mathrm{~m}, 1399 \mathrm{~m}, 1352 \mathrm{~m}, 1317 \mathrm{~s}, 1312 \mathrm{~m}, 1288 \mathrm{~m}$, $1243 \mathrm{~m}, 1183 \mathrm{w}, 1167 \mathrm{w}, 1142 \mathrm{~m}, 1127 \mathrm{~m}, 1114 \mathrm{w}, 1036 \mathrm{w}, 961 \mathrm{~m}, ~ 948 \mathrm{w}, 882 \mathrm{~m}, 854 \mathrm{~m}, 820 \mathrm{~s}$, $802 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.30(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{Ar} H), 7.22(1 \mathrm{H}, \mathrm{dd}, J 8.2,1.5, \mathrm{Ar} H)$,
$\left.7.06(2 \mathrm{H}, \mathrm{d}, J 8.3, \operatorname{Ar} H), 6.76-6.67(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 5.10(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 4.15(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})_{2}\right)$, $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 145.5(\mathrm{Ar} C), 141.1(\mathrm{ArC}), 130.2(\mathrm{ArC}), 129.9$ $(\mathrm{Ar} C \mathrm{H}), 129.5(\mathrm{Ar} C), 129.2(\mathrm{Ar} C H), 126.5(\mathrm{Ar} C H), 120.0(C \equiv \mathrm{~N}), 116.6(\mathrm{Ar} C H)$, $115.2(\mathrm{Ar} C \mathrm{H}), 100.4(\mathrm{Ar} C), 20.5\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $129.9(\mathrm{Ar}$ $C H), 129.2(\mathrm{Ar} C \mathrm{H}), 126.5(\mathrm{Ar} C H), 116.6(\mathrm{Ar} C H), 115.2(\mathrm{Ar} \mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI})$ 223 ($\mathrm{M}^{+}, 100 \%$), 208 (70), 207 (25), 106 (4), 105 (5), 104 (4), 98 (6), 91 (8), 77 (6), 65 (5).

6.2.3.7 4-Cyano-1-N-(p-tolyl)-1,2-benzenediamine 93g

Colorless plates ($73 \mathrm{mg}, 74 \%$); mp $160-161{ }^{\circ} \mathrm{C}$ (from water) (lit., ${ }^{383} 162-163{ }^{\circ} \mathrm{C}$ from EtOH); (Found: C, 75.42; H, 5.92; N, 18.90. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3}$ requires C, 75.31; H, 5.87; N, $18.82 \%) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon 3.99), 295(3.85), 327(3.86) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3429 \mathrm{w}$, 3379 m and $3352 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 2862 \mathrm{w}, 2209 \mathrm{~s}(\mathrm{C} \equiv \mathrm{N}), 1630 \mathrm{~m}, 1595 \mathrm{~s}, 1576 \mathrm{~m}, 1516 \mathrm{~s}, 1485 \mathrm{~m}$, $1437 \mathrm{~m}, 1348 \mathrm{~m}, 1314 \mathrm{~s}, 1289 \mathrm{~m}, 1244 \mathrm{~m}, 1236 \mathrm{~m}, 1182 \mathrm{w}, 1169 \mathrm{w}, 1142 \mathrm{~m}, 1123 \mathrm{w}, 1030 \mathrm{w}$, $1017 \mathrm{w}, 959 \mathrm{~m}, 858 \mathrm{~m}, 851 \mathrm{~m}, 799 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.13(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar} H), 7.05$ (2H, d, $J 8.0, \operatorname{Ar} H), 6.99(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.91(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{Ar} \mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.69$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH} H_{2}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 138.8(\mathrm{ArC}), 137.3(\mathrm{ArC}), 136.8$ $(\operatorname{Ar} C), 132.2(\operatorname{Ar} C), 130.0(\mathrm{Ar} C H), 124.8(\mathrm{Ar} C H), 119.9(C \equiv \mathrm{~N}), 119.7(\mathrm{Ar} C H), 119.4$ $(\mathrm{Ar} C \mathrm{H}), 116.5(\mathrm{Ar} C \mathrm{H}), 103.5(\mathrm{Ar} C), 20.7\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $130.0(\mathrm{Ar} C \mathrm{H}), 124.8(\mathrm{Ar} C \mathrm{H}), 119.7(\mathrm{Ar} C \mathrm{H}), 119.4(\mathrm{Ar} C \mathrm{H}), 116.5(\mathrm{Ar} C \mathrm{H}), 20.7$ $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 223\left(\mathrm{M}^{+}, 100 \%\right), 208(63), 207$ (17), 194 (6), 179 (5), 116 (6), 106 (12), 98 (5), 91 (24), 79 (12), 65 (22), 51 (14); (Found: M^{+}, 223.1110. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3}$ requires M, 223.1109).
6.2.3.8 5-Trifluoromethyl-1-N-(p-tolyl)-1,2-benzenediamine $93 \boldsymbol{h}$

Colorless oil ($115 \mathrm{mg}, 98 \%$); (Found: C, 63.08; H, 4.94; N, 10.59. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2}$ requires C, 63.15; H, 4.92; N, 10.52\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 235$ ($\log \varepsilon 3.87$), 292 (3.68); $v_{\max }\left(\mathrm{cm}^{-1}\right)$ 3370w (Ar NH), 3024w (Ar CH), 2923w, 2866w, 1624m, 1613m, 1560w, 1539w, 1513s, $1473 \mathrm{w}, 1456 \mathrm{w}, 1443 \mathrm{~m}, 1396 \mathrm{w}, 1328 \mathrm{~s}, 1313 \mathrm{~m}, 1274 \mathrm{~m}, 1247 \mathrm{w}, 1216 \mathrm{w}, 1205 \mathrm{w}, 1162 \mathrm{~m}$, 1147s, 1109s, 1072m, 1016w, 932m, 899w, 852w, 813s; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.35(1 \mathrm{H}$, s, Ar H), $7.23(1 \mathrm{H}, \mathrm{d}, J 7.8, \operatorname{Ar} H), 7.07(2 \mathrm{H}, \mathrm{d}, J 8.4, \operatorname{Ar} \mathrm{H}), 6.81(1 \mathrm{H}, \mathrm{d}, J 8.3, \operatorname{Ar} H)$, $\left.6.70(2 \mathrm{H}, \mathrm{d}, J 8.3, \operatorname{Ar} H), 5.10(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 4.05(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})_{2}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, C H_{3}\right) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 144.2(\mathrm{Ar} C), 141.6(\mathrm{Ar} C), 130.0(\mathrm{Ar} C H), 129.8(\mathrm{Ar} C), 129.1(\mathrm{Ar} C)$,
$124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}} 270.9 \mathrm{CF}_{3}\right.$), $122.1\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.0, \mathrm{Ar} C \mathrm{H}\right), 121.0\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}} 33.0, \operatorname{Ar} C\right), 120.5(\mathrm{q}$, $\left.{ }^{3} J_{\text {CF }} 3.6, \operatorname{Ar} C H\right), 116.2(\mathrm{Ar} C H), 115.2(\mathrm{Ar} C H), 20.5\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT135) $130.0(\mathrm{Ar} C \mathrm{H}), 122.1\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.0, \mathrm{Ar} C \mathrm{H}\right), 120.5\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 3.6, \mathrm{Ar} C \mathrm{H}\right), 116.2(\mathrm{Ar}$ $C H), 115.2(\mathrm{Ar} \mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 266\left(\mathrm{M}^{+}, 100 \%\right), 51(58), 250(20), 237(8)$, 181 (7), 175 (5), 148 (8), 132 (6), 106 (4), 98 (4), 91 (12), 89 (4), 80 (6), 79 (7), 65 (5).

6.2.3.9 4-Trifluoromethyl-1-N-(p-tolyl)-1,2-benzenediamine 93i

Colorless plates ($90 \mathrm{mg}, 77 \%$); mp $72-74{ }^{\circ} \mathrm{C}$ (from water); (lit., ${ }^{379}$ semi-oil); (Found: C, $63.11 ; \mathrm{H}, 4.91 ; \mathrm{N}, 10.53 . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2}$ requires $\mathrm{C}, 63.15 ; \mathrm{H}, 4.92 ; \mathrm{N}, 10.52 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon 3.92), 282(3.88) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3479 \mathrm{w}, 3376 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 2919 \mathrm{w}$, 2867w, 1884w, 1621m, 1610m, 1599m, 1511s, 1479w, 1439m, 1396m, 1337s, 1313w, $1300 \mathrm{~m}, 1284 \mathrm{w}, 1250 \mathrm{~s}, 1224 \mathrm{~m}, 1209 \mathrm{w}, 1162 \mathrm{w}, 1153 \mathrm{~s}, 1109 \mathrm{~s}, 1088 \mathrm{~m}, 1047 \mathrm{w}, 930 \mathrm{~m}$, $871 \mathrm{~m}, 817 \mathrm{~s}, 801 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.17-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.02(2 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Ar}$ $\left.H), 6.84(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{Ar} H), 4.15(3 \mathrm{H}, \mathrm{s}, \mathrm{N} H \text { and } \mathrm{NH})_{2}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} H_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 140.3(\mathrm{Ar} C), 138.4(\mathrm{Ar} C), 134.4(\mathrm{Ar} C), 130.8(\mathrm{Ar} C H), 129.9(\mathrm{Ar} C), 124.4(\mathrm{q}$, ${ }^{1} J_{\mathrm{CF}} 271.5, \mathrm{CF}_{3}$,), $124.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}} 35.2, \mathrm{Ar} C\right), 119.4(\mathrm{Ar} C \mathrm{H}), 118.0(\mathrm{Ar} C \mathrm{H}), 116.7(\mathrm{q}$, $\left.{ }^{3} J_{\mathrm{CF}} 4.0, \mathrm{Ar} C \mathrm{H}\right), 113.1\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.0, \mathrm{Ar} C \mathrm{H}\right), 20.6\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $130.8\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.0, \operatorname{Ar} C \mathrm{H}\right), 119.4(\mathrm{Ar} C \mathrm{H}), 118.0(\mathrm{Ar} C \mathrm{H}), 116.7\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}} 4.0, \mathrm{Ar} C \mathrm{H}\right)$, $113.1(\mathrm{Ar} \mathrm{CH}), 20.6\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 266\left(\mathrm{M}^{+}, 100 \%\right), 251(63), 250(21), 122(4), 106$ (4), 91 (7), 79 (5), 65 (5); (Found: $\mathrm{M}^{+}, 266.1030 . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2}$ requires M, 266.1031).

6.2.3.10 5-Fluoro-1-N-(p-tolyl)-1,2-benzenediamine 93j

Colorless oil ($63 \mathrm{mg}, 66 \%$). (Found: C, 72.36; H, 6.26; N, 13.02. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2}$ requires C, $72.20 ; \mathrm{H}, 6.06 ; \mathrm{N}, 13.95 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 232$ ($\log \varepsilon 3.73$), 275 (3.60), 305 (3.47); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3365 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 3030 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 2974 \mathrm{w}, 2921 \mathrm{w}, 2868 \mathrm{w}, 1608 \mathrm{~m}, 1512 \mathrm{~s}$, $1480 \mathrm{~m}, 1447 \mathrm{~m}, 1397 \mathrm{~m}, 1373 \mathrm{w}, 1344 \mathrm{w}, 1312 \mathrm{~m}, 1302 \mathrm{~m}, 1263 \mathrm{~m}, 1244 \mathrm{~m}, 1211 \mathrm{w}, 1180 \mathrm{w}$, $1146 \mathrm{~m}, 1108 \mathrm{w}, 1092 \mathrm{w}, 1038 \mathrm{w}, 1010 \mathrm{w}, 978 \mathrm{~m}, ~ 970 \mathrm{~m}, ~ 933 \mathrm{~m}, 904 \mathrm{~m}, ~ 850 \mathrm{~m}, ~ 809 \mathrm{~s}, 786 \mathrm{~m} ;$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.13(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar} H), 6.92-6.84(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.77-6.72(1 \mathrm{H}$, $\left.\mathrm{m}, \operatorname{Ar} H), 6.68-6.62(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 5.35(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.46(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})_{2}\right) 2.35(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 158.5(\mathrm{Ar} C), 155.3(\mathrm{Ar} C), 140.8(\mathrm{Ar} C), 134.5(\mathrm{Ar} \mathrm{C}), 130.3$ $(\mathrm{Ar} C), 129.9(\mathrm{Ar} C \mathrm{H}), 117.5(\mathrm{Ar} C H), 117.0(\mathrm{Ar} C H), 109.0(\mathrm{Ar} C H), 106.9(\mathrm{Ar} C H)$, $20.54\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ Dept-135) $129.9(\mathrm{Ar} \mathrm{CH}), 117.5(\mathrm{Ar} \mathrm{CH}), 117.0(\mathrm{Ar}$ $C H), 109.0(\mathrm{Ar} C \mathrm{H}), 106.9(\mathrm{Ar} C H), 20.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 216\left(\mathrm{M}^{+}, 100 \%\right), 201(58), 200$ 198
(36), 185 (5), 137 (6), 125 (10), 107 (17), 98 (28), 91 (28), 77 (20), 65 (28), 63 (16), 57 (9), 51 (20).

6.2.3.11 4-Fluoro-1-N-(p-tolyl)-1,2-benzenediamine 93k

Colorless plates ($77 \mathrm{mg}, 81 \%$); mp $85-86^{\circ} \mathrm{C}$ (from water); (Found: C, 72.30 ; H, 6.00; N, 12.93. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2}$ requires C, 72.20; H, 6.06; N, 12.95\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 205$ ($\log \varepsilon$ 3.98), 236 (4.09), 290 (3.78); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3421 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 3336 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 3300 \mathrm{w}, 3061 \mathrm{w}$ (Ar CH), 1613m, 1594w, 1506s, 1468w, 1435m, 1398w, 1385w, 1307w, 1284m, 1250s, $1217 \mathrm{w}, 1207 \mathrm{w}, 1158 \mathrm{~s}, 1122 \mathrm{~m}, 1110 \mathrm{~m}, 1013 \mathrm{w}, 974 \mathrm{~m}, ~ 932 \mathrm{w}, ~ 856 \mathrm{~s}, ~ 841 \mathrm{w}, 813 \mathrm{~s}, 793 \mathrm{~m}$, $770 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.04-6.99(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.59(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{Ar} H), 6.53-$ $6.40(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{NH}_{2}\right) 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 162.8$ ($\operatorname{Ar} C$), $159.6(\operatorname{Ar} C), 143.5(\mathrm{Ar} C), 129.8(\mathrm{Ar} C H), 128.5(\mathrm{Ar} C), 127.3(\mathrm{Ar} C H), 124.2$ $(\mathrm{Ar} C), 114.7(\mathrm{Ar} C \mathrm{H}), 105.1(\mathrm{Ar} C H), 102.3(\mathrm{Ar} C \mathrm{H}), 20.4\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; Dept-135) 129.8 ($\mathrm{Ar} C \mathrm{H}$), $127.3(\mathrm{Ar} C \mathrm{H}), 114.7(\mathrm{Ar} \mathrm{CH}), 105.1(\mathrm{ArCH}), 102.3(\mathrm{Ar} C \mathrm{H})$, $20.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 216\left(100 \%, \mathrm{M}^{+}\right), 201$ (51), 200 (23), 125 (8), 107 (8), 98 (11), 91 (6), 83 (5), 77 (5), 65 (7), 51 (5); (Found: M^{+}, 216.1066. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}$ requires M, 216.1063);

6.2.4 Substituted 1,5-Bis[N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzenes

 Synthesis of $1,5-\mathrm{Bis}[N$-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzene 92b-k follow the typical procedure described for 1,5 -Bis[N-(p-tolyl)-1,2-benzenediamino]-2,4dinitrobenzene 92a except when noted and quantities of products 92b-k are based on the same mol scale of typical procedure described for product 92a.6.2.4.1 1,5-Bis/N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzene 92a; typical procedure:

To a stirred solution of 1- N-(p-tolyl)-1,2-benzenediamine 93a ($1.0 \mathrm{~g}, 5.05 \mathrm{mmol}$) in EtOH $(10 \mathrm{~mL})$ at $c a .20^{\circ} \mathrm{C}$, 1,5-difluoro-2,4-dinitrobenzene $56(0.5 \mathrm{~g}, 2.53 \mathrm{mmol})$ was added in one portion. The color of the reaction mixture became orange-red and Hünig's base (0.9 $\mathrm{mL}, 5.05 \mathrm{mmol}$) was then added in one portion. A red crystalline precipitate was observed in minutes. The reaction mixture was heated under reflux for 24 h , and then allowed to cool to ca. $20^{\circ} \mathrm{C}$. The red precipitate was filtered, washed with hot water and then with cold EtOH and dried. The precipitate often consisted of both mono- and di-
substituted products. The title compound $\mathbf{9 2 a}$ was obtained after recrystallisation by EtOH as red plates ($1.1 \mathrm{~g}, 76 \%$); mp 219-220 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 68.68; H, 5.09; N, 15.07. $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 68.56 ; \mathrm{H}, 5.03 ; \mathrm{N}, 14.99 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon$ 4.16), 283 (4.32), 331 (4.19), $379 \inf (3.94) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3390 \mathrm{w}, 3373 \mathrm{w}$ and $3322 \mathrm{~m}(\mathrm{Ar}$ $\mathrm{NH}), 1653 \mathrm{w}, 1620 \mathrm{~s}, 1601 \mathrm{~s}, 1593 \mathrm{~s}, 1565 \mathrm{~s}, 1517 \mathrm{~s}, 1483 \mathrm{~m}, 1472 \mathrm{~m}, 1461 \mathrm{~m}, 1429 \mathrm{w}, 1408 \mathrm{~s}$, $1379 \mathrm{w}, 1340 \mathrm{~s}, 1322 \mathrm{~s}, 1311 \mathrm{~m}, 1284 \mathrm{~s}$, 1247s, 1232m, 1207m, 1188m, 1161w, 1130w, $1120 \mathrm{w}, 1067 \mathrm{~m}, 1044 \mathrm{w}, 930 \mathrm{w}, 897 \mathrm{w}, 830 \mathrm{~m}, 804 \mathrm{~m}, 753 \mathrm{~s}$, $745 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; DMSO- d_{6}) $9.39(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.97(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.44(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.08-7.03(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.97$ (4H, d, $J 8.3, \operatorname{Ar} H), 6.82-6.77(2 H, \mathrm{~m}, \mathrm{Ar} H), 6.70(4 \mathrm{H}, \mathrm{d}, J 8.3, \operatorname{Ar} H), 5.91(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$ H), $2.19\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 146.8(\mathrm{Ar} C), 140.1(\mathrm{Ar} C), 140.0(\mathrm{Ar} C)$, $130.0(\mathrm{Ar} C), 129.5(\mathrm{Ar} C H), 127.7(\mathrm{Ar} C H), 127.5(\mathrm{Ar} C H), 125.1(\mathrm{Ar} C), 124.4(\mathrm{Ar} C)$, $119.8(\mathrm{Ar} C H), 119.4(\mathrm{Ar} \mathrm{CH}), 118.4(\mathrm{Ar} C \mathrm{H}), 116.5(\mathrm{ArCH}), 95.1(\mathrm{Ar} C H), 20.4\left(\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ;\right.$ DMSO- d_{6}, DEPT-135) 129.5 ($\mathrm{Ar} C H$), 127.7 ($\mathrm{Ar} C H$), 127.5 ($\mathrm{Ar} C H$), 119.8 (Ar CH), $119.4(\mathrm{Ar} \mathrm{CH}), 118.4(\mathrm{Ar} C H), 116.5(\mathrm{Ar} \mathrm{CH}), 95.1(\mathrm{Ar} \mathrm{CH}), 20.4\left(\mathrm{CH}_{3}\right) ; m / z$ (EI) $560\left(\mathrm{M}^{+}, 100 \%\right), 546$ (15), 513 (5), 496 (8), 479 (58), 468 (62), 454 (11), 420 (5), 405 (25), 388 (70), 375 (27), 359 (12), 345 (7), 317 (6), 300 (12), 284 (14), 277 (6), 271 (15), 257 (12), 243 (7), 239 (5), 232 (11), 221 (7), 219 (8), 209 (6), 207 (5), 195 (18), 183 (20), 180 (23), 167 (13), 154 (8), 140 (5), 128 (7), 118 (5), 116 (5), 115 (5), 106 (20), 91 (30), 79 (15), 77 (42), 65 (30), 51 (13); (Found M ${ }^{+}, 560.2168 . \mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires M, $560.2172)$.

6.2.4.2 1,5-Bis $\{\mathrm{N}-[5-m e t h o x y-\mathrm{N} '$-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene

 92bRed plates ($800 \mathrm{mg}, 51 \%$); mp 241-242 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 65.78; H, 5.99; N, 13.69. $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires C, $65.80 ; \mathrm{H}, 5.20 ; \mathrm{N}, 13.54 \%$) $\lambda_{\text {max }}(\mathrm{DCM}) / \mathrm{nm} 229(\log \varepsilon$ 4.18), 281 (4.16), 327 (4.11), $388 \inf (3.81) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3414 \mathrm{w}, 3396 \mathrm{w}$ and $3334 \mathrm{~m}(\mathrm{Ar}$ NH), 3001w (Ar CH), 1653w, 1616s, 1608s, 1591m, 1581m, 1565s, 1526s, 1514s, $1481 \mathrm{w}, 1464 \mathrm{~m}, 1452 \mathrm{w}, 1436 \mathrm{~m}, 1408 \mathrm{~m}, 1342 \mathrm{~m}, 1342 \mathrm{~m}, 1318 \mathrm{~s}, 1286 \mathrm{~s}, 1244 \mathrm{~s}, 1204 \mathrm{~s}$, $1168 \mathrm{~m}, 1149 \mathrm{w}, 1132 \mathrm{w}, 1114 \mathrm{w}, 1072 \mathrm{~m}, 1045 \mathrm{~m}, 1019 \mathrm{w}, ~ 935 \mathrm{w}, 901 \mathrm{w}, 854 \mathrm{~m}, 837 \mathrm{~m}$, $821 \mathrm{~m}, 808 \mathrm{~s}, 778 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 9.19(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.96(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.42$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.01(4 \mathrm{H}, \mathrm{d}, J 7.5, \operatorname{Ar} H), 6.93(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 6.79(4 \mathrm{H}, \mathrm{d}, J 5.9, \operatorname{Ar} H)$, $6.55(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 6.36(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ar} H), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 3.66\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.22$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 158.9(\mathrm{Ar} C), 147.7(\mathrm{Ar} C), 141.7(\mathrm{Ar} \mathrm{C}), 139.4$
($\operatorname{Ar} C$), $130.3(\operatorname{Ar} C), 129.3(\operatorname{Ar} C H), 129.2(\operatorname{Ar} C H), 127.4(\operatorname{Ar} C H), 124.9(\operatorname{Ar} C), 120.0$ $(\mathrm{Ar} C \mathrm{H}), 118.2(\mathrm{Ar} C), 104.7(\mathrm{Ar} C H), 100.6(\mathrm{Ar} C \mathrm{H}), 95.2(\mathrm{Ar} C H), 55.0\left(\mathrm{OCH}_{3}\right), 20.3$ $\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ;\right.$ DMSO- d_{6}, DEPT-135); $129.3(\mathrm{Ar} C \mathrm{CH}), 129.2(\mathrm{Ar} \mathrm{CH}), 127.4(\mathrm{Ar}$ $C H), 120.0(\mathrm{Ar} C \mathrm{H}), 104.7(\mathrm{Ar} \mathrm{CH}), 100.6(\mathrm{Ar} \mathrm{CH}), 95.2(\mathrm{Ar} \mathrm{CH}), 55.0\left(\mathrm{OCH}_{3}\right), 20.3$ $\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 620\left(\mathrm{M}^{+}, 100 \%\right), 539$ (14), 528 (10), 525 (7), 480 (7), 450 (7), 435 (6), 434 (6), 392 (10), 375 (13), 347 (5), 228 (91), 212 (7), 91 (7).
6.2.4.3 1,5-Bis $\left\{\mathrm{N}\right.$-[4-methoxy- N^{\prime}-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene 92c

Red plates ($690 \mathrm{mg}, 44 \%$); mp 187-188 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 65.72 ; H, 5.09; N, 13.51. $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires C, 65.80; H, 5.20; N, 13.54\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon$ 4.22), 284 (4.30), 336 (4.19), 383 inf (3.94); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3408 \mathrm{~m}$ and 3333 m (Ar NH), 3028w (Ar CH), 2916w, 2859w, 1627m, 1603s, 1566s, 1518s, 1481m, 1456w, 1406m, $1397 \mathrm{~m}, 1375 \mathrm{w}, 1323 \mathrm{~s}, 1287 \mathrm{~s}, 1250 \mathrm{~s}, 1200 \mathrm{~s}, 1163 \mathrm{w}, 1119 \mathrm{~m}, 1069 \mathrm{~m}, 1036 \mathrm{w}, 936 \mathrm{w}$, 907w, $874 \mathrm{~m}, 833 \mathrm{~m}, 802 \mathrm{~s}, 781 \mathrm{w}, 745 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; DMSO- d_{6}) $9.51(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.96$ $(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.19(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.09(2 \mathrm{H}, \mathrm{d}, \operatorname{Ar} H), 6.84-6.78(8 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.51(4 \mathrm{H}, \mathrm{d}$, J 8.2, $\operatorname{Ar} H), 6.31(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 3.62\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.13\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; DMSO- d_{6}) $155.1(\operatorname{Ar} C), 147.1(\operatorname{Ar} C), 142.8(\operatorname{Ar} C), 132.9(\operatorname{Ar} C), 130.2(\mathrm{Ar} C H), 130.1$ ($\mathrm{Ar} C$), $128.6(\mathrm{Ar} C H), 125.9(\mathrm{Ar} C), 122.1(\mathrm{Ar} C H), 117.5(\mathrm{Ar} C H), 114.3(\mathrm{Ar} C H)$, $112.1(\mathrm{Ar} C H), 96.1(\mathrm{Ar} C H), 74.4(\mathrm{Ar} C), 56.1\left(\mathrm{OCH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; DMSO- d_{6}, DEPT-135) 130.2 ($\mathrm{Ar} C \mathrm{H}$), $128.6(\mathrm{Ar} C H), 122.1(\mathrm{Ar} \mathrm{CH}), 117.5(\mathrm{Ar} C H)$, $114.3(\mathrm{Ar} \mathrm{CH}), 112.1(\mathrm{Ar} \mathrm{CH}), 96.1(\mathrm{Ar} \mathrm{CH}), 56.1\left(\mathrm{OCH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 620$ $\left(\mathrm{M}^{+}, 100 \%\right), 528$ (17), 480 (9), 450 (26), 435 (8), 310 (7), 106 (7), 91 (6); (Found: M^{+}, 620.2382. $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires $M, 620.2383$).
6.2.4.4 1,5-Bis $\{\mathrm{N}-[5-m e t h y l-\mathrm{N}$ '-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene 92d Red plates ($1.2 \mathrm{~g}, 84 \%$); mp 254-255 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 69.37; H, 5.56; N, 14.33. $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 69.37; H, 5.48; N, 14.28\%); $\lambda_{\text {max }}(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon$ 4.22), 284 (4.35), 331 (4.22), $383 \inf (3.96) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3398 \mathrm{~m}, 3378 \mathrm{~m}$ and 3336 m (Ar NH), 3091w, 3024w (Ar CH), 2918w, 2862w, 1621s, 1609m, 1593m, 1581m, 1566s, $1521 \mathrm{~s}, 1486 \mathrm{~m}, 1456 \mathrm{w}, 1436 \mathrm{~m}, 1429 \mathrm{~m}, 1408 \mathrm{~s}, 1374 \mathrm{w}, 1340 \mathrm{~m}, 1321 \mathrm{~s}, 1287 \mathrm{~s}, 1247 \mathrm{~s}$, 1207, 1193m, 1118m, 1070m, 1038w, 1018w 962w, 931w, 904w, 856w, 831w, 810s, $800 \mathrm{~m}, 775 \mathrm{w}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 9.28(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.96(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.37(2 \mathrm{H}, \mathrm{s}$,
$\mathrm{NH}), 7.00-6.88(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.73(4 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar} H), 6.61(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{Ar} H), 5.81$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 2.21\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 147.7(\mathrm{Ar} C), 140.2(\mathrm{Ar} C)$, $138.8(\mathrm{Ar} C), 138.4(\mathrm{Ar} C), 132.1(\mathrm{Ar} C), 129.8(\mathrm{Ar} C H), 128.9(\mathrm{Ar} C \mathrm{H}), 127.2(\mathrm{Ar} C \mathrm{H})$, $125.4(\mathrm{Ar} C), 122.1(\mathrm{Ar} C), 121.0(\mathrm{Ar} C \mathrm{H}), 120.5(\mathrm{Ar} C \mathrm{H}), 116.2(\mathrm{Ar} C H), 96.4(\mathrm{Ar} C H)$, $21.4\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ;\right.$ DMSO- d_{6}, DEPT-135); $129.8(\mathrm{Ar} \mathrm{CH}), 128.9(\mathrm{Ar}$ $C H), 127.2(\mathrm{Ar} C \mathrm{H}), 121.0(\mathrm{Ar} C \mathrm{H}), 120.5(\mathrm{Ar} C \mathrm{H}), 116.2(\mathrm{Ar} C \mathrm{H}), 96.4(\mathrm{Ar} C \mathrm{H}), 21.4$ $\left(\mathrm{CH}_{3}\right), 20.74\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 588\left(\mathrm{M}^{+}, 100 \%\right), 507(34), 496(38), 448$ (6), 418 (27), 402 (23), 387 (9), 386 (9), 376 (8), 359 (9), 345 (5), 331 (10), 312 (10), 298 (12), 283 (10), 271 (8), 260 (7), 254 (6), 247 (8), 239 (7), 231 (6), 212 (18), 197 (12), 180 (5), 106 (9), 91 (9), 79 (5), 65 (6); (Found $588.2492 \mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires 588.2485).
6.2.4.5 1,5-Bis $\{\mathrm{N}-[4-m e t h y l-\mathrm{N}$ '-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene $92 e$ Red plates ($1.1 \mathrm{~g}, 74 \%$); mp 197-199 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 69.45; H, 5.54; N, 14.15. $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 69.37; H, 5.48; N, 14.28\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon$ 4.10), 278 (4.36), 331 (4.11), $381 \inf$ (3.92); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3409 \mathrm{w}$ and $3334 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}$), 3029w (Ar CH), 2916w 2856w, 1628m, 1613m, 1567s, 1516s, 1481m, 1456w, 1448w, $1419 \mathrm{w}, 1406 \mathrm{~m}, 1397 \mathrm{~m}, 1375 \mathrm{w}, 1324 \mathrm{~s}, 1287 \mathrm{~s}, 1250 \mathrm{~m}, 1201 \mathrm{~m}, 1162 \mathrm{w}, 1120 \mathrm{w}, 1070 \mathrm{~m}$, 1036w, $935 \mathrm{w}, 874 \mathrm{w}, 833 \mathrm{~m}, 802 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; DMSO- $\left.d_{6}\right) 9.42(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.96(1 \mathrm{H}$, s, $\operatorname{Ar} H), 7.32(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.02-6.87(10 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.61(4 \mathrm{H}, \mathrm{d}, J 8.1, \operatorname{Ar} H), 6.10(1 \mathrm{H}$, s, $\operatorname{Ar} H), 2.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 151.8(\mathrm{Ar} \mathrm{C})$, $147.5(\operatorname{Ar} C), 141.6(\operatorname{Ar} C), 137.9(\operatorname{Ar} C), 130.4(\operatorname{Ar} C), 130.2(\mathrm{Ar} C H), 129.9(\operatorname{Ar} C)$, $128.8(\mathrm{Ar} C \mathrm{H}), 127.9(\mathrm{Ar} C \mathrm{H}), 127.6(\mathrm{Ar} C H), 125.8(\mathrm{Ar} C), 119.2(\mathrm{Ar} C H), 118.7(\mathrm{Ar}$ $C H), 95.8(\mathrm{Ar} \mathrm{CH}), 21.1\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right.$, DEPT-135) 130.2 ($\mathrm{Ar} C \mathrm{H}$), $128.8(\mathrm{Ar} C \mathrm{H}), 127.9(\mathrm{Ar} C \mathrm{H}), 127.6(\mathrm{Ar} C \mathrm{H}), 119.2(\mathrm{Ar} C \mathrm{H}), 118.7(\mathrm{Ar} C \mathrm{H})$, $95.8(\mathrm{Ar} \mathrm{CH}), 21.1\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 588\left(\mathrm{M}^{+}, 100 \%\right), 541(5), 524(5), 507$ (31), 496 (50), 448 (6), 418 (34), 403 (14), 402 (14), 387 (6), 294 (5), 106 (11), 91 (10), 79 (7), 65 (6); (Found: $\mathrm{M}^{+}, 588.2478 . \mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires M, 588.2485).
6.2.4.6 1,5-Bis\{N-[5-cyano-N'-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene $92 f$ Similar treatment to typical procedure for 92a but using THF as the solvent $\left(65^{\circ} \mathrm{C}\right)$ instead of EtOH gave the title compound as red plates ($648 \mathrm{mg}, 42 \%$); mp $268-270{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 66.71; H, 4.32; N, 18.26. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.88 ; \mathrm{H}$, 4.29; $\mathrm{N}, 18.35 \%) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228$ ($\log \varepsilon 4.33$), 287 (4.33), 327 (4.21), $381 \inf (4.06)$;
$v_{\max }\left(\mathrm{cm}^{-1}\right) 3335 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 2230 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N}), 1623 \mathrm{~m}, 1590 \mathrm{~m}, 1570 \mathrm{~s}, 1525 \mathrm{~m}, 1512 \mathrm{~m}$, $1489 \mathrm{w}, 1472 \mathrm{w}, 1458 \mathrm{w}, 1410 \mathrm{~m}, 1363 \mathrm{w}, 1343 \mathrm{~m}, 1325 \mathrm{~m}, 1291 \mathrm{~s}, 1252 \mathrm{~m}, 1212 \mathrm{~m}, 1192 \mathrm{~m}$, $1157 \mathrm{w}, 1112 \mathrm{w}, 1067 \mathrm{~m}, 1019 \mathrm{w}, 976 \mathrm{w}, 938 \mathrm{w}, 829 \mathrm{~m}, 814 \mathrm{~m}$; δ_{H} (300 MHz ; DMSO- d_{6}) $9.54(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.97(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.85$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{N} H$), $7.31-7.23$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.07$ (4H, d, $J 7.5, \operatorname{Ar} H), 6.77(4 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Ar} H), 5.70(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 2.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ (75 MHz; DMSO-d d_{6}) $146.4(\mathrm{Ar} C), 142.3(\mathrm{Ar} C), 139.0(\mathrm{Ar} C), 132.7(\mathrm{Ar} C), 130.6(\mathrm{Ar}$ $C H), 130.3(\mathrm{Ar} C), 129.6(\mathrm{Ar} C H), 128.1(\mathrm{Ar} C H), 126.5(\mathrm{Ar} C), 123.2(\mathrm{Ar} C H), 121.8$ ($\mathrm{Ar} C \mathrm{H}$), $119.4(\mathrm{C} \equiv \mathrm{N}), 118.4(\mathrm{Ar} C H), 110.6(\mathrm{Ar} C), 97.2(\mathrm{Ar} C H), 21.3\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75$ MHz; DMSO- d_{6}, DEPT-135); 130.6 (Ar CH), 129.6 (Ar CH), 128.1 (Ar CH), 123.2 (Ar $C H), 121.8(\mathrm{Ar} C H), 118.4(\mathrm{Ar} \mathrm{CH}), 97.2(\mathrm{Ar} C H), 21.3\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 610\left(\mathrm{M}^{+}, 100 \%\right)$, 576 (5), 546 (7), 529 (48), 518 (54), 505 (5), 503 (5), 470 (5), 439 (19), 425 (27), 410 (10), 407 (26), 395 (5), 373 (5), 358 (6), 342 (6), 333 (7), 327 (5), 323 (6), 312 (9), 305 (10), 295 (9), 284 (9), 269 (10), 258 (10), 247 (15), 233 (10), 231 (10), 223 (23), 212 (5), 208 (33), 192 (14), 179 (10), 164 (6), 153 (5), 151 (5), 140 (5), 129 (5), 127 (7), 116 (8), 109 (6), 106 (49), 91 (55), 84 (6), 79 (27), 77 (28), 69 (15), 65 (50), 56 (34), 51 (11).

6.2.4.7 1,5-Bis\{N-[4-cyano-N'-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene $92 g$

 Similar treatment to typical procedure for compound 92a but using THF as the solvent $\left(65{ }^{\circ} \mathrm{C}\right.$) instead of EtOH gave the title compound as red plates ($756 \mathrm{mg}, 49 \%$); mp 303$305{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 66.97; H, 4.33; N, 18.16. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{4}$ requires C, 66.88; $\mathrm{H}, 4.29 ; \mathrm{N}, 18.35 \%) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 229$ (log $\left.\varepsilon 4.19\right), 303$ (4.50), $388 \inf (3.83) ; \nu_{\max }\left(\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right) 3379 \mathrm{w}$ and $3304 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 2220 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N}), 1653 \mathrm{w}, 1623 \mathrm{~s}, 1599 \mathrm{~s}, 1577 \mathrm{~s}, 1569 \mathrm{~s}, 1517 \mathrm{~s}$, $1490 \mathrm{w}, 1472 \mathrm{w}, 1457 \mathrm{w}, 1430 \mathrm{~m}, 1399 \mathrm{~m}, 1333 \mathrm{~s}, 1314 \mathrm{~m}, 1287 \mathrm{~s}, 1265 \mathrm{~m}, 1252 \mathrm{~m}, 1235 \mathrm{~m}$, $1200 \mathrm{~m}, 1179 \mathrm{w}, 1117 \mathrm{w}, 1070 \mathrm{~m}, 891 \mathrm{~m}, 835 \mathrm{~m}, 814 \mathrm{~m}, 807 \mathrm{~s}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;\right.$ DMSO- d_{6}) 9.46 $(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 9.00(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 8.10(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.47(2 \mathrm{H}, \mathrm{d}, J 8.5, \operatorname{Ar} H), 7.41(2 \mathrm{H}, \mathrm{s}$, Ar H), $7.15(4 \mathrm{H}, \mathrm{d}, J 7.5, \operatorname{Ar} H), 6.84(2 \mathrm{H}, \mathrm{d}, J 8.5, \operatorname{Ar} H), 6.74(4 \mathrm{H}, \mathrm{d}, J 8.0, \operatorname{Ar} H), 5.33$ ($1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H$), $2.27\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 146.6$ ($\mathrm{Ar} C$), 146.1 ($\mathrm{Ar} C$), $136.8(\mathrm{Ar} C), 133.2(\mathrm{Ar} C), 133.0(\mathrm{Ar} C H), 132.4(\mathrm{Ar} C H), 129.7(\mathrm{Ar} C H), 127.0(\mathrm{Ar}$ $C H), 125.4(\mathrm{Ar} C), 123.6(\mathrm{Ar} C), 122.9(\mathrm{Ar} C \mathrm{H}), 119.1(C \equiv \mathrm{~N}), 112.7(\mathrm{Ar} C \mathrm{H}), 98.5(\mathrm{Ar}$ C), $95.4(\mathrm{Ar} \mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 610\left(\mathrm{M}^{+}, 100 \%\right), 546(6), 530(12), 518(27), 516$ (18), 440 (16), 425 (14), 305 (9), 257 (6), 223 (6), 220 (12), 208 (7), 205 (7), 192 (5), 106 (18), 91 (13), 79 (6), 77 (5), 65 (10); (Found: M^{+}, 610.2068. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{4}$ requires M, 610.2077).6.2.4.8 1,5-Bis $\left\{\mathrm{N}-\left[5-\right.\right.$-trifluoromethyl- N^{\prime}-(p-tolyl)-1,2-benzenediamino]\}-2,4dinitrobenzene $92 \boldsymbol{h}$

Similar treatment to typical procedure for compound 92a but using THF as the solvent $\left(65{ }^{\circ} \mathrm{C}\right.$) instead of EtOH gave the title compound $\mathbf{9 2 h}$ as red plates ($704 \mathrm{mg}, 40 \%$); mp 246-247 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 58.57; H, 3.78; N, 11.92. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, $58.62 ; \mathrm{H}, 3.76 ; \mathrm{N}, 12.06 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 230(\log \varepsilon 4.31)$, 283 (4.49), 326 (4.41), 380 $\inf (4.14) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3423 \mathrm{w}, 3413 \mathrm{w}$ and $3313 \mathrm{~m}(\mathrm{Ar} \mathrm{NH}), 1623 \mathrm{~m}, 1606 \mathrm{~m}, 1595 \mathrm{~m}, 1573 \mathrm{~s}$, $1560 \mathrm{w}, 1539 \mathrm{w}, 1525 \mathrm{~m}, 1513 \mathrm{~m}, 1490 \mathrm{w}, 1495 \mathrm{w}, 1456 \mathrm{w}, 1441 \mathrm{~m}, 1416 \mathrm{~m}, 1340 \mathrm{~m}, 1332 \mathrm{~m}$, $1311 \mathrm{w}, 1290 \mathrm{~s}, 1251 \mathrm{~m}, 1228 \mathrm{w}, 1192 \mathrm{~m}, 1165 \mathrm{~s}, 1109 \mathrm{~s}, 1077 \mathrm{~m}, 1065 \mathrm{~m}, ~ 944 \mathrm{~m}, ~ 926 \mathrm{w}$, $875 \mathrm{~m}, 856 \mathrm{w}, 829 \mathrm{~m}, 813 \mathrm{~s} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.37(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 9.27(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H)$, $7.30(2 \mathrm{H}, \mathrm{d}, J 1.0, \operatorname{Ar} H), 7.14(2 \mathrm{H}, \mathrm{d}, J 8.5, \operatorname{Ar} H), 7.07(4 \mathrm{H}, \mathrm{d}, J 8.0, \operatorname{Ar} H), 7.01(2 \mathrm{H}$, dd, J 8.0, 1.0, Ar H), $6.70(4 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar} H), 5.89(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 5.72(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 2.32$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 146.9(\mathrm{Ar} C), 141.6(\mathrm{Ar} C), 137.0(\mathrm{Ar} C), 133.9(\mathrm{Ar}$ C), 131.1 ($\mathrm{Ar} C, \mathrm{q},{ }^{2} J_{\text {CF }} 32.7$), $130.2(\mathrm{Ar} C \mathrm{H}), 128.8(\mathrm{Ar} C H), 127.9(\mathrm{Ar} \mathrm{CH}), 126.5(\mathrm{Ar}$ C), $125.8(\mathrm{Ar} C), 123.5\left(\mathrm{Ar} C, \mathrm{q}^{1}{ }^{1} J_{\text {CF }} 272.8\right), 121.4(\mathrm{Ar} C \mathrm{H}), 116.1(\mathrm{Ar} C \mathrm{H}), 111.5(\mathrm{Ar}$ $C H), 96.9(\mathrm{Ar} C \mathrm{H}), 20.8\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right.$, DEPT-135); $129.5(\mathrm{Ar} C \mathrm{H})$, $128.4(\mathrm{Ar} C \mathrm{H}), 127.1(\mathrm{Ar} C H), 121.1(\mathrm{Ar} C H), 114.7(\mathrm{ArCH}), 110.1(\mathrm{Ar} C \mathrm{CH}), 95.9(\mathrm{Ar}$ $\mathrm{CH}), 20.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 696\left(\mathrm{M}^{+}, 100 \%\right), 677$ (9), 661 (5), 632 (10), 615 (30), 604 (56), 556 (5), 526 (21), 511 (18), 495 (5), 348 (27), 339 (7), 327 (5), 307 (6), 300 (9), 263 (18), 258 (5), 256 (5), 251 (12), 106 (17), 91 (16), 79 (8), 77 (5), 65 (13).

6.2.4.9 1,5-Bis $\left\{\mathrm{N}-\left[4-\right.\right.$-trifluoromethyl- N^{\prime}-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitrobenzene 92i

Red plates ($1.3 \mathrm{~g}, 73 \%$); mp $185-187^{\circ} \mathrm{C}$ (from EtOH); (Found: C, $58.58 ; \mathrm{H}, 3.75$; N, 11.86. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 58.62; H, 3.76; N, 12.06\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228$ (log ε 4.20), 287 (4.37), 322 (4.29), $388 \inf$ (3.89); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3396 \mathrm{~m}$ and $3316 \mathrm{~m}(\mathrm{Ar} \mathrm{NH})$, $1622 \mathrm{~m}, 1609 \mathrm{~m}, 1592 \mathrm{w}, 1584 \mathrm{w}, 1570 \mathrm{~m}, 1523 \mathrm{~m}, 1515 \mathrm{~m}, 1489 \mathrm{w}, 1471 \mathrm{w}, 1437 \mathrm{~m}, 1408 \mathrm{~m}$, $1338 \mathrm{~s}, 1320 \mathrm{~s}, 1282,1245 \mathrm{~m}, 1230 \mathrm{~m}, 1209 \mathrm{~m}, 1185 \mathrm{w}, 1163 \mathrm{~m}, 1118 \mathrm{~m}, 1102 \mathrm{~s}, 1075 \mathrm{~m}$, $1069 \mathrm{~m}, ~ 937 \mathrm{w}, ~ 932 \mathrm{w}, ~ 892 \mathrm{~m}, ~ 871 \mathrm{w}, ~ 829 \mathrm{~m}, ~ 801 \mathrm{~m}, ~ 780 \mathrm{w}, ~ 771 \mathrm{w}, 746 \mathrm{~m}, 711 \mathrm{~m}$; $\delta_{\mathrm{H}}(500$ MHz; DMSO-d $d_{6} 9.44(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 9.02(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.86(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.33-7.31(4 \mathrm{H}$, m, Ar H), $7.02(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 6.95(2 \mathrm{H}, \mathrm{d}, J 8.5, \operatorname{Ar} H), 6.71(4 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar} H)$, $5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 2.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 146.9(\mathrm{Ar} C), 145.0(\mathrm{Ar}$ C), $137.8(\mathrm{Ar} C), 132.3(\mathrm{Ar} C), 129.5(\mathrm{Ar} C H), 127.1(\mathrm{Ar} C H), 125.8(\mathrm{Ar} C H), 125.4(\mathrm{Ar}$
C), $125.1(\mathrm{Ar} C H), 124.2\left(\mathrm{Ar} C, \mathrm{q},{ }^{1} J_{\mathrm{CF}} 270.4\right), 123.4(\mathrm{Ar} C H), 122.2(\mathrm{Ar} C \mathrm{H}), 117.9(\mathrm{Ar}$ C, q, $\left.{ }^{2} J_{\mathrm{CF}} 32.7\right), 113.1(\mathrm{Ar} C \mathrm{H}), 94.9(\mathrm{Ar} C H), 20.4\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 696\left(\mathrm{M}^{+}, 100 \%\right), 677$ (12), 659 (7), 649 (5), 630 (97), 615 (10), 604 (35), 584 (8), 564 (7), 552 (25), 545 (4), 526 (28), 511 (25), 495 (6), 429 (5), 421 (5), 419 (5), 352 (5), 348 (18), 339 (6), 327 (6), 301 (7), 263 (19), 258 (5), 251 (16), 180 (5), 106 (27), 91 (32), 79 (14), 77 (9), 65 (18).
6.2.4.10 1,5-Bis\{N-[5-fluoro-N'-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene 92j Red needles ($1.2 \mathrm{~g}, 79 \%$); mp 240-241 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 64.52; H, 4.31; N, 14.09. $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 64.42 ; \mathrm{H}, 4.39 ; \mathrm{N}, 14.09 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon$ 4.22), 277 (4.32), 323 (4.26), $393 \inf (3.88) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3401 \mathrm{~m}, 3378 \mathrm{w}$ and $3317 \mathrm{~m}(\mathrm{Ar}$ $\mathrm{NH}), 1610 \mathrm{~s}, 1586 \mathrm{~m}, 1569 \mathrm{~s}, 1521 \mathrm{~s}, 1511 \mathrm{~s}, 1486 \mathrm{~m}, 1472 \mathrm{w}, 1465 \mathrm{w}, 1446 \mathrm{~m}, 1436 \mathrm{w}, 1414 \mathrm{~s}$, $1345 \mathrm{~s}, 1327 \mathrm{~m}, 1314 \mathrm{~m}, 1308 \mathrm{~m}, 1287 \mathrm{~s}, 1244 \mathrm{~s}, 1209 \mathrm{~m}, 1190 \mathrm{w}, 1177 \mathrm{w}, 1161 \mathrm{~m}, 1121 \mathrm{w}$, $1096 \mathrm{w}, 1068 \mathrm{~m}, ~ 989 \mathrm{~m}, ~ 846 \mathrm{w}, 830 \mathrm{~m}, 815 \mathrm{~s}, 796 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$; DMSO- $\left.d_{6}\right) 9.28(2 \mathrm{H}, \mathrm{s}$, $\mathrm{N} H), 8.98(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.64(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.07-6.99(6 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.78(4 \mathrm{H}, \mathrm{d}, J 8.2$, Ar H), 6.65 ($2 \mathrm{H}, \mathrm{dd}, J 11.5,2.6, \operatorname{Ar} H), 6.55(2 \mathrm{H}$, ddd, $J 8.3,8.2,2.6, \operatorname{Ar} H), 5.51(1 \mathrm{H}, \mathrm{s}$, $\operatorname{Ar} H), 2.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 163.3(\mathrm{Ar} C), 160.1(\mathrm{Ar} C), 147.4(\mathrm{Ar}$ C), $143.2(\mathrm{Ar} C), 138.5(\mathrm{Ar} C), 131.6(\mathrm{Ar} C H), 130.5(\mathrm{Ar} C H), 129.6(\mathrm{ArCH}), 125.2(\mathrm{Ar}$ C), $121.1(\mathrm{Ar} C \mathrm{H}), 120.6(\mathrm{Ar} C), 105.0(\mathrm{Ar} C H), 100.7(\mathrm{Ar} C H), 95.2(\mathrm{Ar} C \mathrm{H}), 20.4$ $\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right.$, DEPT-135); $131.6(\mathrm{Ar} \mathrm{CH}), 130.5(\mathrm{Ar} \mathrm{CH}), 129.6(\mathrm{Ar}$ $C H), 121.1(\mathrm{Ar} C \mathrm{H}), 105.0(\mathrm{Ar} \mathrm{CH}), 100.7(\mathrm{Ar} \mathrm{CH}), 95.2(\mathrm{Ar} \mathrm{CH}), 20.4\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ 596 ($\mathrm{M}^{+}, 100 \%$), 532 (7), 515 (42), 504 (35), 500 (5), 456 (6), 426 (15), 411 (18), 394 (7), 381 (6), 363 (5), 335 (10), 319 (7), 306 (5), 289 (6), 277 (5), 275 (5), 250 (6), 239 (5), 237 (5), 216 (27), 213 (12), 201 (20), 185 (7), 130 (6), 106 (19), 91 (27), 79 (11), 77 (9), 65 (19); (Found: $\mathrm{M}^{+}, 596.1977 . \mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires M, 596.1984).
6.2.4.11 1,5-Bis $\{\mathrm{N}-[4-$ fluoro- N '-(p-tolyl)-1,2-benzenediamino]\}-2,4-dinitro-benzene $92 \boldsymbol{k}$ Red plates ($1.0 \mathrm{~g}, 69 \%$); mp 200-202 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 64.36; H, 4.22; N, 13.94. $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 64.42; H, 4.39; $\mathrm{N}, 14.09 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 223(\log \varepsilon$ 4.46), 277 (4.47), 321 (4.33), $396 \inf (4.47) ; v_{\max }\left(\mathrm{cm}^{-1}\right) 3379 \mathrm{w}, 3366 \mathrm{w}$ and 3312 m (Ar $\mathrm{NH}), 1630 \mathrm{~m}, 1601 \mathrm{~m}, 1568 \mathrm{~s}, 1516 \mathrm{~s}, 1490 \mathrm{~m}, 1482 \mathrm{~m}, 1434 \mathrm{~m}, 1429 \mathrm{~m}, 1407 \mathrm{~m}, 1395 \mathrm{~m}$, $1340 \mathrm{~m}, 1326 \mathrm{~s}, 1287 \mathrm{~s}, 1273 \mathrm{~s}, 1262 \mathrm{~s}, 1233 \mathrm{~m}, 1206 \mathrm{~m}, 1196 \mathrm{~m}, 1159 \mathrm{~m}, 1152 \mathrm{~m}, 1120 \mathrm{w}$, $1102 \mathrm{~m}, 1068 \mathrm{~m}, ~ 982 \mathrm{w}, ~ 973 \mathrm{w}, ~ 924 \mathrm{w}, ~ 974 \mathrm{~m}, ~ 865 \mathrm{~m}, ~ 829 \mathrm{~m}, ~ 802 \mathrm{~s}, 780 \mathrm{~m}, 769 \mathrm{w}, 744 \mathrm{~m}$, $705 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ;\right.$ DMSO- $\left.d_{6}\right) 9.49(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.97(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.40(2 \mathrm{H}, \mathrm{s}, \mathrm{N} H)$,
7.08-6.93 (10H, m, Ar H), $6.64(4 \mathrm{H}, \mathrm{d}, J 7.5, \operatorname{Ar} H), 5.97(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 2.18(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 157.4(\mathrm{Ar} C), 154.3(\mathrm{Ar} C), 146.0(\operatorname{Ar} C), 140.4(\mathrm{Ar} C)$, $136.4(\mathrm{Ar} C), 129.4(\mathrm{Ar} C H), 127.5(\mathrm{Ar} C), 127.4(\mathrm{Ar} C H), 125.2(\mathrm{Ar} C), 118.7(\mathrm{Ar} C H)$, $118.6(\mathrm{Ar} C \mathrm{H}), 118.4(\mathrm{Ar} C \mathrm{H}), 114.0(\mathrm{Ar} C \mathrm{CH}), 95.7(\mathrm{Ar} \mathrm{CH}), 20.3\left(\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; DMSO- d_{6}, DEPT-135) 129.4 ($\mathrm{Ar} C \mathrm{H}$), $127.4(\mathrm{Ar} C \mathrm{H}), 118.7(\mathrm{Ar} C \mathrm{CH}), 118.6(\mathrm{Ar} C H)$, $118.4(\mathrm{Ar} C \mathrm{H}), 114.0(\mathrm{Ar} C \mathrm{H}), 95.7(\mathrm{Ar} C \mathrm{H}), 20.3\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 596\left(\mathrm{M}^{+}, 100 \%\right), 532$ (5), 515 (10), 504 (44), 456 (6), 426 (45), 411 (25), 395 (8), 335 (7), 319 (6), 305 (6), 298 (12), 289 (6), 277 (7), 254 (5), 250 (8), 243 (6), 239 (8), 224 (5), 213 (16), 198 (14), 185 (9), 106 (30), 91 (31), 83 (5), 79 (17), 65 (22), 57 (7).

6.2.4.12 4-(5-Ethoxy-2,4-dinitrophenylamino)-3-(p-tolylamino)benzonitrile 107a

As in typical procedure for compound 92a, treatment of 5-cyano-1-N-(p-tolyl)-1,2benzenediamine 93 with 1,5 -difluoro-2,4-dinitrobenzene $\mathbf{5 6}$ gave the title compound 107a as yellow-orange plates ($668 \mathrm{mg}, 61 \%$); mp $228-229{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 61.07; H, 4.36; N, 16.08. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 60.97 ; \mathrm{H}, 4.42 ; \mathrm{N}, 16.16 \%\right)$; $v_{\max }\left(\mathrm{cm}^{-1}\right)$ 3328w (Ar NH), 3304w (Ar CH), 2239w (C \equiv N), 1622s, 1597w, 1574s, 1568s, 1543w, $1529 \mathrm{~m}, 1511 \mathrm{~s}, 1505 \mathrm{~m}, 1494 \mathrm{w}, 1471 \mathrm{w}, 1452 \mathrm{w}, 1432 \mathrm{~m}, 1415 \mathrm{~m}, 1400 \mathrm{~m}, 1375 \mathrm{w}, 1350 \mathrm{~m}$, $1336 \mathrm{~m}, 1309 \mathrm{~m}, 1289 \mathrm{~s}, 1262 \mathrm{~s}, 1243 \mathrm{~s}, 1216 \mathrm{w}, 1185 \mathrm{w}, 1126 \mathrm{w}, 1114 \mathrm{w}, 1070 \mathrm{~m}, 1027 \mathrm{~m}$, $980 \mathrm{w}, 940 \mathrm{w}, 910 \mathrm{w}, 887 \mathrm{~m}, 854 \mathrm{w}, 829 \mathrm{~m}, 817 \mathrm{~s}, 770 \mathrm{~m}, 7766 \mathrm{w}, 749 \mathrm{~m} ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 433\left(\mathrm{M}^{+}\right.$, 100\%), 399 (5), 387 (35), 372 (8), 358 (5), 342 (5), 340 (4), 324 (6), 312 (10), 296 (23), 282 (15), 267 (24), 256 (6), 244 (6), 231 (5), 223 (12), 208 (16), 205 (11), 192 (8), 179 (5), 106 (23), 91 (20), 79 (12), 77 (11), 65 (19), 53 (7).

6.2.4.13 3-(5-Ethoxy-2,4-dinitrophenylamino)-4-(p-tolylamino)benzonitrile 107b

As in typical procedure for compound 92a, treatment of 4-cyano-1- N-(p-tolyl)-1,2benzenediamine $\mathbf{9 3 g}$ with 1,5 -difluoro-2,4-dinitrobenzene 56 gave the title compound 107b as red plates ($657 \mathrm{mg}, 60 \%$); mp 205-207 ${ }^{\circ} \mathrm{C}$ (from EtOH); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3324 \mathrm{~m}(\mathrm{Ar}$ $\mathrm{NH}), 2216 \mathrm{~m}, 1653 \mathrm{w}, 1619 \mathrm{~m}, 1600 \mathrm{~m}, 1580 \mathrm{~s}, 1570 \mathrm{~m}, 1539 \mathrm{~m}, 1515 \mathrm{~s}, 1490 \mathrm{w}, 1481 \mathrm{w}$, $1473 \mathrm{w}, 1457 \mathrm{w}, 1448 \mathrm{w}, 1428 \mathrm{~m}, 1401 \mathrm{~m}, 1387 \mathrm{w}, 1363 \mathrm{w}, 1354 \mathrm{~m}, 1330 \mathrm{~s}, 1314 \mathrm{~m}, 1299 \mathrm{~s}$, 1291s, 1275m, 1262m, 1248s, 1204w, 1181w, 1157w, 1118w, 1113w, 1066m, 1053m, $1037 \mathrm{w}, ~ 1032 \mathrm{w}, ~ 1017 \mathrm{w}, 1006 \mathrm{w}, ~ 958 \mathrm{w}, ~ 923 \mathrm{w}, ~ 908 \mathrm{w}, ~ 885 \mathrm{w}, ~ 847 \mathrm{w}, ~ 832 \mathrm{~m}, ~ 818 \mathrm{~m}$, 804w, 792w, 775w, 767w, 742w; m/z (EI) 433 (M ${ }^{+}, 69 \%$), 407 (100), 387 (17), 373 (10), 358 (12), 344 (5), 326 (8), 312 (18), 298 (16), 282 (10), 269 (14), 267 (13), 244 (5), 223
(31), 208 (27), 203 (5), 197 (5), 192 (8), 179 (6), 164 (5), 106 (40), 102 (5), 91 (35), 81 (6), 77 (20), 69 (5), 65 (32), 57 (8), 55 (9), 51 (9).

6.2.4.14 N -(5-Ethoxy-2,4-dinitrophenyl)- N '-p-tolyl-4-trifluoromethyl-benzene-1,2diamine 107c

As in typical procedure for compound 92a, treatment of 5-trifluoromethyl-1-N-(p-tolyl)-1,2-benzenediamine $\mathbf{9 3 h}$ with 1,5-difluoro-2,4-dinitrobenzene 56 gave the title compound 107c as red plates ($446 \mathrm{mg}, 37 \%$); m / z (EI) 476 ($\mathrm{M}^{+}, 100 \%$), 431 (60), 339 (7), 311 (67), 251 (69), 106 (37), 91 (15), 79 (17), 65 (23), 51 (63).
6.2.5 Substituted 5,7-Di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ides

Synthesis of 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ides 91b-k follow the typical procedure described for 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3b]phenazin-5-ium-13-ide 91a except when noted and quantities of products 91b-k are based on the same mol scale of typical procedure described for product 91a.
6.2.5.1 5,7-Di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide typical procedure:

To a suspension of 1,5-bis[N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzene 92a (100 $\mathrm{mg}, 0.18 \mathrm{mmol}$) in EtOH (20 mL) in a hydrogenation flask, $5 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ was added. The flask was attached to the hydrogenator, evacuated, and flushed with hydrogen twice. Then the mixture was shaken under hydrogen at a pressure of 3 bar for $5-6 \mathrm{~h}$. The hydrogenation was judged complete after the hydrogen pressure remained stable, the red color of the reagent was gone and there was no more starting material (by TLC). TLC at the end of the reaction showed only a colorless product that became blue on standing. The mixture was filtered (Celite $®$ ® and the brown colored filtrate was heated in air atmosphere until a deep green color developed. On standing green colored crystals precipitated which were collected by filtration and recrystallised to afford the title compound 91a as green needles ($73 \mathrm{mg}, 87 \%$), mp $343.61{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 82.61; H, 5.09; N, 11.93. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{4}$ requires C, 82.73; H, 5.21; N, 12.06\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 227$ ($\log \varepsilon 3.95$), 298 (4.69), 401 (4.23), 423 (4.62), 449 (3.56), 478 (3.68), 512 (3.44), 631 (3.75), 686 (4.08), 757 (4.13); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3042 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 1560 \mathrm{~m}, 1537 \mathrm{w}, 1505 \mathrm{~s}, 1456 \mathrm{~m}, 1441 \mathrm{~m}, 1370 \mathrm{w}$,
$1350 \mathrm{~m}, 1335 \mathrm{~m}, 1308 \mathrm{~m}, 1248 \mathrm{~m}, 1192 \mathrm{~m}, 1175 \mathrm{~m}, 1140 \mathrm{~m}, 1105 \mathrm{w}, 1028 \mathrm{w}, 972 \mathrm{w}, 916 \mathrm{w}$, $824 \mathrm{~m}, 814 \mathrm{~m}, 729 \mathrm{~s}, 721 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.24(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 7.04(2 \mathrm{H}, \mathrm{d}, J$ 8.0, Ar H), 6.95-6.92 (6H, m, Ar H), 6.56 (2H, dd, J7.8, 7.5, Ar H), 6.14-6.11 (3H, m, Ar $H), 4.27(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 3.42(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 2.39\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $150.8(\operatorname{Ar} C), 144.8(\operatorname{Ar} C), 144.1(\operatorname{Ar} C), 140.3(\operatorname{Ar} C), 134.3(\operatorname{Ar} C), 131.6(\mathrm{Ar} C H)$, $130.7(\mathrm{Ar} C), 127.7(\mathrm{Ar} C \mathrm{H}), 127.1(\mathrm{Ar} C \mathrm{H}), 125.9(\mathrm{Ar} C \mathrm{H}), 122.8(\mathrm{Ar} C \mathrm{H}), 116.3(\mathrm{Ar}$ $C H), 103.3(\mathrm{Ar} C \mathrm{H}), 93.0(\mathrm{Ar} C \mathrm{H}), 21.3\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 464\left(\mathrm{M}^{+}, 100 \%\right), 450(23), 373$ (39), 357 (13), 277 (8), 262 (8), 232 (26), 169 (3), 105 (37), 91 (7), 77 (33), 65 (11), 51 (17); (Found: $\mathrm{M}^{+}, 464.2016 . \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{4}$ requires $M, 464.2001$).

6.2.5.2 3,9-Dimethoxy-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 91b

Similar treatment to typical procedure for compound 91a but use of acid conditions (drops of HCl in the ethanolic solution) before refluxing followed by basic conditions (sat. NaOH) for the isolation of the title compound $\mathbf{9 1 b}$ as green plates ($29 \mathrm{mg}, 31 \%$); mp $239.76{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 77.89 ; H, 5.49; N, 10.62. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 77.84; H, 5.38; N, 10.68\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 290$ ($\log \varepsilon 4.69$), 399 (4.33), 421 (4.72), 477 (3.82), 686 (3.63), 749 (4.03), 825 (4.22); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3186 \mathrm{w}, 3030 \mathrm{w}(\mathrm{ArCH}), 2920 \mathrm{w}$, $2862 \mathrm{w}, 1595 \mathrm{~m}, 1578 \mathrm{~m}, 1528 \mathrm{~s}, 1513 \mathrm{~s}, 1429 \mathrm{~m}, 1410 \mathrm{~m}, 1379 \mathrm{w}, 1331 \mathrm{~m}, 1308 \mathrm{~m}, 1292 \mathrm{~m}$, $1271 \mathrm{w}, 1231 \mathrm{~m}, 1204 \mathrm{~m}, 1175 \mathrm{w}, 1136 \mathrm{w}, 1111 \mathrm{w}, 1034 \mathrm{w}, 1011 \mathrm{~m}, ~ 957 \mathrm{w}, ~ 920 \mathrm{w}, 858 \mathrm{~m}$, $812 \mathrm{~s}, 789 \mathrm{w} ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 525\left(\mathrm{M}^{+}+1,100 \%\right), 524\left(\mathrm{M}^{+}, 90\right), 510(62), 509(62), 493$ (28), 492 (31), 401 (33), 262 (38), 247 (32), 216 (58), 184 (33), 127 (30), 111 (30), 103 (39), 97 (48), 95 (41), 91 (69), 85 (37), 83 (42), 81 (39), 77 (58), 71 (46), 69 (53), 67 (28), 65 (34), 57 (95), 56 (26), 55 (42), 51 (37).
6.2.5.3 2,10-Dimethoxy-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 91c

Green plates ($19 \mathrm{mg}, 20 \%$); mp $336.33{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 77.93; H, 5.29; N, 10.73. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $\left.77.84 ; \mathrm{H}, 5.38 ; \mathrm{N}, 10.68 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 259(\log \varepsilon$ 3.97), 308 (4.68), 414 (4.05), 436 (4.36), 536 (3.57), 605 (3.60), 668 (4.12), 722 (4.36); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3063 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 2993 \mathrm{w}, 2934 \mathrm{w}, 2907,2830 \mathrm{w}, 1831 \mathrm{w}, 1622 \mathrm{~m}, 1607 \mathrm{w}, 1564 \mathrm{~m}$, 1506s, 1472s, 1437w, 1424m, 1393w, 1354m, 1329w, 1308m, 1285w, 1262m, 1234s, $1209 \mathrm{~m}, 1182 \mathrm{w}, 1157 \mathrm{~m}, 1136 \mathrm{~m}, 1119 \mathrm{~m}, 1080 \mathrm{w}, 1034 \mathrm{~m}, 1024 \mathrm{w}, ~ 976 \mathrm{w}, ~ 914 \mathrm{w}, 855 \mathrm{w}$,
$824 \mathrm{~m}, 812 \mathrm{~m}, 801 \mathrm{w}, 789 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.24(4 \mathrm{H}, \mathrm{d}, J 8.0, \operatorname{Ar} H), 6.99(4 \mathrm{H}, \mathrm{d}$, $J 8.0, \operatorname{Ar} H), 6.50(2 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.16(2 \mathrm{H}, \mathrm{d}, J 8.0, \operatorname{Ar} H), 6.11(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.03(2 \mathrm{H}, \mathrm{d}$, $J 9.0, \operatorname{Ar} H), 4.22(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 3.71\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.39\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 158.9(\mathrm{Ar} C), 150.8(\mathrm{Ar} C), 145.5(\mathrm{Ar} C), 142.8(\mathrm{Ar} C), 140.1(\mathrm{Ar} C), 134.6(\mathrm{Ar}$ C), $131.5(\mathrm{Ar} C H), 127.8(\mathrm{Ar} C H), 125.5(\mathrm{Ar} C), 117.0(\mathrm{Ar} C H), 112.0(\mathrm{Ar} C H), 106.7$ $(\mathrm{Ar} C \mathrm{H}), 103.5(\mathrm{Ar} C \mathrm{H}), 92.2(\mathrm{Ar} C \mathrm{H}), 55.7\left(\mathrm{OCH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 524\left(\mathrm{M}^{+}\right.$, 41\%), 481 (6), 433 (3), 390 (3), 262 (10), 241 (7), 211 (3), 142 (3), 91 (7), 69 (3), 65 (6), 64 (4), 57 (4), 55 (6); (Found: $\mathrm{M}^{+}, 524.2212 . \mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $M, 524.2212$).
6.2.5.4 3,9-Dimethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ide 91d

Green plates ($77 \mathrm{mg}, 87 \%$); mp $311.27^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 82.85; H, 5.59; N, 11.48. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 82.90 ; \mathrm{H}, 5.73 ; \mathrm{N}, 11.37 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 296(\log \varepsilon 4.44)$, 402 (3.98), 424 (4.37), 449 (3.46), 478 (3.55), 510 (3.21), 638 (3.34), 709 (3.73), 779 (3.87); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3048 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 2909 \mathrm{w}, 1553 \mathrm{~m}, 1531 \mathrm{w}, 1503 \mathrm{~s}, 1451 \mathrm{~m}, 1368 \mathrm{~m}$, $1346 \mathrm{~m}, 1308 \mathrm{~m}, 1287 \mathrm{w}, 1250 \mathrm{~m}, 1221 \mathrm{~m}, 1209 \mathrm{~m}, 1175 \mathrm{~m}, 1128 \mathrm{~m}, 1109 \mathrm{~m}, 1020 \mathrm{~m}, ~ 945 \mathrm{w}$, $817 \mathrm{~s}, 802 \mathrm{~m}, 727 \mathrm{w}, 692 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.25(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 6.96(4 \mathrm{H}, \mathrm{d}, J$ 8.0, $\operatorname{Ar} H), 6.91(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 6.70(2 \mathrm{H}, \mathrm{d}, J 8.0, \operatorname{Ar} H), 6.15(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 5.93$ ($2 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H$), $4.25(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 2.41\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.01(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3)$; m/z (EI) $492\left(\mathrm{M}^{+}\right.$, 100\%), 401 (21), 385 (6), 311 (4), 246 (25), 238 (4), 231 (3), 193 (3), 91 (6), 64 (6), 51 (2).
6.2.5.5 2,10-Dimethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ide 91e

Green plates ($36 \mathrm{mg}, 41 \%$); mp $340.07{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 83.04; H, 5.68; N, 11.41. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4}$ requires C, 82.90; H, 5.73; N, 11.37\%); 302 ($\log \varepsilon 4.70$), 406 (4.20), 428 (4.56), 454 (3.62), 483 (3.61), 519 (3.56), 626 (3.61), 686 (4.05), 750 (4.23); $v_{\max }\left(\mathrm{cm}^{-1}\right)$ 3048w, 3026w (Ar CH), 3005w, 2909w, 2853w, 1831w, 1622w, 1572m, 1533w, 1514s, $1468 \mathrm{~m}, 1435 \mathrm{w}, 1418 \mathrm{~m}, 1381 \mathrm{~m}, 1368 \mathrm{~m}, 1350 \mathrm{~m}, 1327 \mathrm{~m}, 1308 \mathrm{~m}, 1254 \mathrm{w}, 1233 \mathrm{~m}, 1188 \mathrm{~m}$, $1179 \mathrm{w}, 1152 \mathrm{~m}, 1130 \mathrm{w}, 1078 \mathrm{w}, 1030 \mathrm{w}, 1001 \mathrm{w}, 835 \mathrm{~m}, 808 \mathrm{~s}, 781 \mathrm{~s} ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ;$ $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.23(4 \mathrm{H}, \mathrm{d}, J 8.0, \operatorname{Ar} H), 6.93(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{Ar} H), 6.84(2 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.39(2 \mathrm{H}$, dd, $J 8.5,1.5, \operatorname{Ar} H), 6.11(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 6.01(2 \mathrm{H}, \mathrm{d}, J 8.5, \operatorname{Ar} H), 4.23(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H)$, $2.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 150.7(\mathrm{Ar} C), 144.6(\mathrm{Ar} C)$,
$143.6(\operatorname{Ar} C), 140.1(\operatorname{Ar} C), 136.9(\operatorname{Ar} C), 134.4(\operatorname{Ar} C), 131.5(\mathrm{Ar} C H), 128.7(C), 127.8$ ($\mathrm{Ar} C \mathrm{H}), 125.5(\mathrm{Ar} C \mathrm{H}), 124.0(\mathrm{Ar} C \mathrm{H}), 115.9(\mathrm{Ar} C H), 103.2(\mathrm{Ar} C H), 92.6(\mathrm{Ar} C H)$, $21.3\left(\mathrm{Ar} \mathrm{CH}_{3}\right), 21.0\left(\mathrm{Ar} \mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 492\left(\mathrm{M}^{+}, 100 \%\right), 433(2), 401(25), 386(6), 371$ (3), 311 (3), 262 (5), 246 (27), 238 (5), 201 (3), 192 (3), 91 (8), 65 (10).

6.2.5.6 3,9-Dicyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ide $91 f$

Green plates ($46 \mathrm{mg}, 50 \%$); mp $354.96^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 79.42; H, 4.24; N, 16.29. $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{6}$ requires $\mathrm{C}, 79.36 ; \mathrm{H}, 4.31 ; \mathrm{N}, 16.33 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 315$ ($\log \varepsilon 4.65$), 424 (4.07), 450 (4.58), 502 (3.76), 625 (3.65), 681 (4.12), 744 (4.30); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3023 \mathrm{w}$ (ArCH), 2213s (C $\equiv \mathrm{N}), 1617 \mathrm{w}, 1596 \mathrm{w}, 1569 \mathrm{w}, 1559 \mathrm{w}, 1540 \mathrm{~s}, 1506 \mathrm{~s}, 1490 \mathrm{w}, 1453 \mathrm{~s}$, $1436 \mathrm{~m}, 1430 \mathrm{w}, 1405 \mathrm{w}, 1374 \mathrm{w}, 1353 \mathrm{~s}, 1324 \mathrm{w}, 1312 \mathrm{~m}, 1257 \mathrm{~m}, 1202 \mathrm{w}, 1190 \mathrm{~m}, 1127 \mathrm{w}$, $1031 \mathrm{w}, 1009 \mathrm{w}, 876 \mathrm{~m}, 861 \mathrm{~m}, 831 \mathrm{~m}, 816 \mathrm{~s} ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; TFA-d) 7.74 (2H, dd, $J 8.8,1.5$ $\mathrm{Hz}, \operatorname{Ar} H), 7.65(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.48(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 7.42(4 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{~Hz}, \mathrm{Ar} H)$, $7.22(2 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.07(4 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathrm{Ar} H), 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 2.45(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ;$ TFA- d) $147.0(C), 145.7(\mathrm{Ar} C), 144.6(\mathrm{Ar} C), 134.6(\mathrm{Ar} \mathrm{CH}), 133.8$ ($\operatorname{Ar} C H$), $133.6(\operatorname{Ar} C), 133.3(\operatorname{Ar} C), 132.4(\operatorname{Ar} C), 126.9(\mathrm{Ar} C H), 124.7(\mathrm{Ar} C H), 121.5$ ($\mathrm{Ar} C \mathrm{H}$), $115.8(\mathrm{CN}), 113.5(\mathrm{C}), 99.8(\mathrm{Ar} C \mathrm{H}), 98.7(\mathrm{Ar} \mathrm{CH}), 21.0(\mathrm{Ar} \mathrm{CH} 3) ; m / z(\mathrm{EI})$ 514 (${ }^{+}, 32 \%$), 424 (5), 407 (3), 258 (7), 249 (3), 107 (3), 105 (3), 97 (3), 91 (13), 84 (3), 81 (3), 77 (3), 71 (3), 65 (15), 51 (5).
6.2.5.7 2,10-Dicyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ide 91 g

Green plates ($35 \mathrm{mg}, 38 \%$); mp $390.84{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 79.50; H, 4.26; N, 16.27. $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{6}$ requires $\mathrm{C}, 79.36 ; \mathrm{H}, 4.31 ; \mathrm{N}, 16.33 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228(\log \varepsilon 4.19)$, 315 (4.42), 411 (3.75), 435 (4.14), 461 (2.89), 494 (3.09), 654 (2.94), 721 (3.42), 795 (3.55); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3034 \mathrm{w}(\mathrm{ArCH}), 2224 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N}), 1592 \mathrm{w}, 1566 \mathrm{~m}, 1508 \mathrm{~s}, 1457 \mathrm{~m}, 1425 \mathrm{w}$, $1410 \mathrm{w}, 1381 \mathrm{w}, 1358 \mathrm{~s}, 1320 \mathrm{~m}, 1314 \mathrm{~m}, 1227 \mathrm{~m}, 1195 \mathrm{w}, 1152 \mathrm{w}, 1030 \mathrm{w}, 895 \mathrm{w}, 872 \mathrm{w}$, $833 \mathrm{~m}, 818 \mathrm{~s}, 801 \mathrm{~m} ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{TFA}-d) 7.83(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.56(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{Ar}$ $H), 7.41(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \operatorname{Ar} H), 7.36(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 7.06(4 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.94(2 \mathrm{H}$, d, $J 9.0 \mathrm{~Hz}, \mathrm{Ar} H), 5.51(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} 3\right.$); $\delta_{\mathrm{C}}(125 \mathrm{MHz}$; TFA-d) 147.5 (C), $145.6(\mathrm{Ar} C), 144.3(\mathrm{Ar} C), 135.9(\mathrm{Ar} C), 134.0(\mathrm{Ar} C H), 133.7(\mathrm{Ar} C H), 132.6(\mathrm{Ar} C)$, $130.8(\mathrm{Ar} C), 126.9(\mathrm{Ar} C \mathrm{H}), 124.7(\mathrm{Ar} C \mathrm{H}), 121.4(\mathrm{Ar} C \mathrm{H}), 115.7(\mathrm{CN}), 114.1(\mathrm{C})$,
$100.8(\mathrm{Ar} \mathrm{CH}), 97.6(\mathrm{Ar} \mathrm{CH}), 21.0\left(\mathrm{Ar} \mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 514\left(\mathrm{M}^{+}, 13 \%\right), 416$ (88), 401 (24), 367 (25), 263 (18), 242 (89), 199 (9), 184 (3), 152 (15), 139 (19), 128 (9), 124 (86), 121 (13), 109 (23), 107 (24), 103 (14), 99 (90), 92 (40), 84 (11), 80 (9), 79 (9), 74 (94), 71 (21), 68 (93), 62 (100), 55 (20), 53 (37).
6.2.5.8 3,9-Ditrifluoromethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 91 h

Green plates ($62 \mathrm{mg}, 57 \%$); mp $384.80^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 67.90; H, 3.52; N, 9.23. $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{~N}_{4}$ requires C, 68.00; H, 3.69; N, 9.33\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 304$ ($\log \varepsilon 4.77$), 408 (4.26), 432 (4.67), 455 (3.66), 487 (3.77), 521 (3.11), 620 (3.72), 679 (4.13), 742 (4.24); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3052 \mathrm{w}, 3032 \mathrm{w}(\mathrm{ArCH}), 1626 \mathrm{w}, 1613 \mathrm{w}, 1567 \mathrm{w}, 1509 \mathrm{~m}, 1460 \mathrm{w}$, $1439 \mathrm{w}, 1401 \mathrm{w}, 1359 \mathrm{~m}, 1338 \mathrm{~m}, 1322 \mathrm{~m}, 1286 \mathrm{~s}, 1258 \mathrm{w}, 1246 \mathrm{~s}, 1223 \mathrm{w}, 1192 \mathrm{w}, 1171 \mathrm{w}$, $1155 \mathrm{~m}, 1127 \mathrm{~m}, 1104 \mathrm{~s}, 1070 \mathrm{~s}, 1030 \mathrm{w}, 992 \mathrm{~m}, ~ 986 \mathrm{~m}, 871 \mathrm{w}, 862 \mathrm{w}, 825 \mathrm{~m}, 814 \mathrm{~s} ; \delta_{\mathrm{H}}(500$ MHz; TFA-d) 7.71 (2H, dd, $J 9.0,1.0 \mathrm{~Hz}, \operatorname{Ar} H), 7.63$ (2H, d, J $8.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.44$ (4H, d, $J 8.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 7.09(6 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{Ar} H), 5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 2.47$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ; \mathrm{TFA}-d) 146.6(C), 145.4(\mathrm{Ar} C), 144.1(\mathrm{Ar} C), 134.4(\mathrm{Ar} C$, q, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}} 35.2 \mathrm{~Hz}\right), 133.7(\mathrm{Ar} C H), 133.0(\mathrm{Ar} C \mathrm{H}), 132.7(\mathrm{Ar} C), 132.3(C), 128.7(\mathrm{Ar} C \mathrm{H}$, q, $\left.{ }^{3} J_{\text {C-F }} 2.5 \mathrm{~Hz}\right), 127.0(\mathrm{Ar} C \mathrm{H}), 123.5\left(\mathrm{Ar} C, \mathrm{q},{ }^{1} J_{\mathrm{C} \text {-F }} 272.9 \mathrm{~Hz}\right), 121.0(\mathrm{Ar} C \mathrm{H}), 117.5(\mathrm{Ar}$ $\left.C H, q,{ }^{3} J_{\text {C-F }} 3.8 \mathrm{~Hz}\right), 99.6(\mathrm{Ar} C H), 97.6(\mathrm{Ar} \mathrm{CH}), 21.0(\mathrm{Ar} \mathrm{CH} 3) ; m / z(\mathrm{EI}) 600\left(\mathrm{M}^{+}\right.$, 100\%), 581 (4), 509 (26), 493 (6), 439 (3), 425 (3), 300 (16), 91 (11), 65 (11).

6.2.5.9 2,10-Ditrifluoromethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-

 5-ium-13-ide 91iGreen plates ($54 \mathrm{mg}, 50 \%$); mp $257.81^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 68.10; H, 3.63; N, 9.29. $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{~N}_{4}$ requires $\mathrm{C}, 68.00 ; \mathrm{H}, 3.69 ; \mathrm{N}, 9.33 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 228$ ($\log \varepsilon 4.12$), 302 (4.45), 401 (3.85), 424 (4.24), 483 (3.46), 639 (3.13), 705 (3.53), 771 (3.64); $v_{\max }\left(\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right) 3030 \mathrm{w}(\mathrm{ArCH}), 1609 \mathrm{w}, 1576 \mathrm{w}, 1514 \mathrm{~s}, 1470 \mathrm{w}, 1422 \mathrm{~m}, 1387 \mathrm{w}, 1368 \mathrm{w}, 1356 \mathrm{~m}, 1323 \mathrm{~s}$, $1283 \mathrm{w}, 1248 \mathrm{w}, 1206 \mathrm{~m}, 1186 \mathrm{~m}, 1161 \mathrm{~m}, 1130 \mathrm{~m}, 1109 \mathrm{~s}, 1069 \mathrm{~s}, 1030 \mathrm{w}, 957 \mathrm{~m}, 876 \mathrm{~m}$, $835 \mathrm{~m}, 806 \mathrm{~s}, 729 \mathrm{~m}, 720 \mathrm{~m}, 679 \mathrm{~m} ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{TFA}-d) 7.76(2 \mathrm{H}, \mathrm{d}, J 0.5 \mathrm{~Hz}, \mathrm{Ar} H)$, $7.50(2 \mathrm{H}, \mathrm{dd}, J 9.0,1.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.41(4 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar} H), 7.36(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 7.05(4 \mathrm{H}$, d, $J 8.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.91(2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{Ar} H), 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}$ (125 MHz ; TFA- d) 146.9 (C), $145.3(\operatorname{Ar} C), 143.9(\operatorname{Ar} C), 135.0\left(\operatorname{Ar} C, \mathrm{q}^{2} J_{\mathrm{C}-\mathrm{F}} 35.2 \mathrm{~Hz}\right)$, $134.7(\mathrm{Ar} C), 133.5(\mathrm{Ar} C \mathrm{H}), 132.9(C), 128.0\left(\mathrm{Ar} C H, q,{ }^{3} J_{\mathrm{C}-\mathrm{F}} 2.5 \mathrm{~Hz}\right), 123.4(\mathrm{Ar} C, \mathrm{q}$,
$\left.{ }^{1} J_{\text {C-F }} 181.1 \mathrm{~Hz}\right), 120.2(\mathrm{Ar} C H), 117.5\left(\mathrm{Ar} C, \mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 99.9(\mathrm{Ar} C \mathrm{H}), 97.2(\mathrm{Ar}$ CH), 21.0 ($\mathrm{Ar} \mathrm{CH}_{3}$); m / z (EI) $600\left(\mathrm{M}^{+}, 100 \%\right.$), 509 (26), 493 (8), 425 (3), 419 (4), 300 (20), 91 (17), 89 (5), 65 (23).
6.2.5.10 3,9-Difluoro-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ide $\mathbf{9 1 j}$

Green plates ($32 \mathrm{mg}, 36 \%$); mp $411.97^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 76.87; H, 4.39; N, 11.15. $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4}$ requires $\left.\mathrm{C}, 76.79 ; \mathrm{H}, 4.43 ; \mathrm{N}, 11.19 \%\right)$; $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 226(\log \varepsilon$ 3.96), 291 (4.74), 394 (4.40), 416 (4.80), 445 (3.62), 474 (3.82), 506 (3.38), 650 (3.62), 722 (4.07), 793 (4.21); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3050 \mathrm{w}, 3032 \mathrm{w}$ and $3007 \mathrm{w}(\mathrm{Ar} \mathrm{CH}), 1622 \mathrm{w}, 1578 \mathrm{~m}$, $1559 \mathrm{~m}, 1547 \mathrm{~m}, 1506 \mathrm{~s}, 1449 \mathrm{~s}, 1441 \mathrm{~m}, 1395 \mathrm{w}, 1372 \mathrm{~m}, 1350 \mathrm{~m}, 1306 \mathrm{~m}, 1285 \mathrm{w}, 1269 \mathrm{~m}$, $1242 \mathrm{~s}, 1219 \mathrm{~s}, 1188 \mathrm{~m}, 1152 \mathrm{~m}, 1132 \mathrm{w}, 1105 \mathrm{~s}, 1030 \mathrm{w}, 999 \mathrm{~m}, 984 \mathrm{w}, 964 \mathrm{w}, 877 \mathrm{w}, 868 \mathrm{w}$, $835 \mathrm{~s}, 802 \mathrm{~s}, 782 \mathrm{w}, 729 \mathrm{~m}, 710 \mathrm{w} ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ;$ TFA-d) $7.45(2 \mathrm{H}, \mathrm{q}, J 4.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.40$ (4H, d, $J 8.0 \mathrm{~Hz}, \operatorname{Ar} H), 7.21-7.17$ (2H, m, Ar H), 7.14 (1H, s, C H), 7.03 (4H, d, J 8.5 $\mathrm{Hz}, \operatorname{Ar} H), 6.45(2 \mathrm{H}, \mathrm{dd}, J 8.8,2.5 \mathrm{~Hz}, \mathrm{Ar} H), 5.37(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH} H_{3}\right) ; \delta_{\mathrm{C}}$ (125 MHz ; TFA- d) $165.4(C), 163.4(\operatorname{Ar} C), 146.2(\operatorname{Ar} C), 145.1(\operatorname{Ar} C), 142.3(\operatorname{Ar} C)$, $134.2\left(\mathrm{Ar} C, \mathrm{~d}, J_{\mathrm{C}-\mathrm{F}} 11.7 \mathrm{~Hz}\right), 133.5(\mathrm{Ar} C \mathrm{H}), 133.0(\mathrm{Ar} C), 127.5(\mathrm{C}), 126.9(\mathrm{Ar} C \mathrm{H})$, $121.9\left(\mathrm{Ar} C H, \mathrm{~d}, J_{\mathrm{C} \text {-F }} 10.1 \mathrm{~Hz}\right), 121.0\left(\mathrm{Ar} C H, \mathrm{~d}, J_{\text {C-F }} 25.1 \mathrm{~Hz}\right), 106.5\left(\mathrm{Ar} C H, \mathrm{~d}, J_{\mathrm{C}-\mathrm{F}} 30.2\right.$ $\mathrm{Hz}), 99.5(\mathrm{Ar} C \mathrm{H}), 96.3(\mathrm{Ar} C \mathrm{H}), 21.0\left(\mathrm{Ar} \mathrm{CH} 3\right.$); $m / z(\mathrm{EI}) 500\left(\mathrm{M}^{+}, 100 \%\right), 409(33), 393$ (11), 319 (5), 250 (18), 243 (2), 91 (10), 65 (20).
6.2.5.11 2,10-Difluoro-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13ide 91k

Green plates ($51 \mathrm{mg}, 57 \%$); mp $391.31{ }^{\circ} \mathrm{C}$ (from EtOH); (Found: C, 76.85; H, 4.35; N, 11.01. $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4}$ requires C , $76.79 ; \mathrm{H}, 4.43 ; \mathrm{N}, 11.19 \%$); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 299(\log \varepsilon$ 4.68), 404 (4.10), 426 (4.47), 453 (3.58), 481 (3.55), 518 (3.51), 611 (3.63), 668 (4.05), 727 (4.20); $v_{\max }\left(\mathrm{cm}^{-1}\right) 3036 \mathrm{w}(\mathrm{ArCH}), 1628 \mathrm{w}, 1566 \mathrm{~m}, 1508 \mathrm{~s}, 1462 \mathrm{~m}, 1427 \mathrm{~m}, 1391 \mathrm{w}$, $1381 \mathrm{w}, 1368 \mathrm{w}, 1346 \mathrm{~m}, 1310 \mathrm{~m}, 1277 \mathrm{w}, 1237 \mathrm{~s}, 1209 \mathrm{w}, 1192 \mathrm{w}, 1179 \mathrm{w}, 1157 \mathrm{w}, 1140 \mathrm{w}$, $1107 \mathrm{~m}, 1026 \mathrm{w}, ~ 984 \mathrm{~m}, ~ 895 \mathrm{w}, ~ 876 \mathrm{~m}, ~ 853 \mathrm{w}, ~ 839 \mathrm{w}, ~ 833 \mathrm{~m}, ~ 826 \mathrm{~m}, ~ 818 \mathrm{~s}, ~ 802 \mathrm{~m}, 789 \mathrm{~m}$, $777 \mathrm{~m}, 760 \mathrm{w}, 727 \mathrm{w}, 687 \mathrm{~m} ; \delta_{\mathrm{H}}(500 \mathrm{MHz} ; \mathrm{TFA}-d) 7.37(4 \mathrm{H}, \mathrm{d}, J 8.5, \operatorname{Ar} H), 7.18(1 \mathrm{H}, \mathrm{s}$, Ar H), 7.14 (2H, dd, $J 7.5,2.0, \operatorname{Ar} H), 7.02-6.99$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), 6.76 (2H, dd, $J 9.5,4.5$, $\operatorname{Ar} H), 5.30(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 2.41\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz} ; \mathrm{TFA}-d) 165.8$ ($\mathrm{Ar} C$), 145.0 $(\operatorname{Ar} C), 143.6(\operatorname{Ar} C), 133.5(\mathrm{Ar} C H), 133.2(\mathrm{Ar} C), 131.8(\mathrm{Ar} C), 131.7(\mathrm{Ar} C), 130.0$
$(C \equiv \mathrm{~N}), 127.0(\mathrm{Ar} C \mathrm{H}), 122.1(\mathrm{Ar} C \mathrm{H}), 120.4(\mathrm{Ar} C \mathrm{H}), 106.0(\mathrm{Ar} C H), 98.8(\mathrm{Ar} C H)$, $97.0(\mathrm{Ar} C \mathrm{H}), 21.0\left(\mathrm{Ar} C \mathrm{H}_{3}\right) ; m / z(\mathrm{EI}) 500\left(\mathrm{M}^{+}, 100 \%\right), 409$ (31), 393 (9), 319 (5), 250 (23), 198 (3), 147 (2), 91 (9), 65 (17).

6.3 Compounds related to Chapter 4

6.3.1 $\quad N$-Trifluoromethylphenyl Substituted Benzeneamines

Synthesis of N-(p-trifluoromethylphenyl) substituted benzeneamines 160 and 161 follow the typical procedure described for $1-N-(p$-tolyl)-2-nitrobenzeneamine $94 a$ and $1-N-(p-$ tolyl)-1,2-benzenediamine 93a respectively and quantities of products $\mathbf{1 6 0}$ and $\mathbf{1 6 1}$ are based on the same mol scale of the analogous typical procedures.

6.3.1.1 1-N-(p-Trifluoromethylphenyl)-2-nitrobenzeneamine 160

As in typical procedure of 1- N-tolyl-2-nitrobenzeneamine 94a. Orange needles (1.6 g , 59%); mp $96-98{ }^{\circ} \mathrm{C}$ (from n-hexane); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.47(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.22(1 \mathrm{H}$, dd, $J 8.4,1.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.65(2 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \operatorname{Ar} H), 7.48-7.35$ (4H, m, Ar H), 6.93-6.87 $(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.4(\mathrm{Ar} C), 140.9(\mathrm{Ar} C), 135.7(\mathrm{ArCH}), 134.5$ $(\operatorname{Ar} C), 129.4(\mathrm{Ar} C), 126.9\left(\mathrm{Ar} C H, q,{ }^{3} J_{\mathrm{C}-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 126.7(\mathrm{Ar} C \mathrm{H}), 126.4\left(\mathrm{Ar} C, \mathrm{q}^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $32.5 \mathrm{~Hz}), 122.3$ ($\mathrm{Ar} C \mathrm{H}$), 119.1 ($\mathrm{Ar} C \mathrm{CH}$), $116.5(\mathrm{Ar} \mathrm{CH}) ; \delta \mathrm{c}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT135) $135.7(\mathrm{ArCH}), 126.9\left(\mathrm{Ar} C H, q,{ }^{3} J_{\mathrm{C}-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 126.7(\mathrm{ArCH}), 122.3(\mathrm{ArCH}), 119.1$ ($\mathrm{Ar} C \mathrm{H}$), 116.5 ($\mathrm{Ar} C \mathrm{H}$); $m / z(\mathrm{EI}) 282\left(\mathrm{M}^{+}, 100 \%\right.$), 279 (6), 265 (20), 263 (8), 248 (26), 235 (43), 216 (18), 185 (10), 183 (7), 167 (40), 149 (48), 145 (9), 140 (7), 125 (5), 113 (5), 95 (13), 83 (7), 75 (14), 71 (8), 63 (9), 57 (16), 55 (5).

6.3.1.2 1-N-(p-Trifluoromethylphenyl)-1,2-benzenediamine 161

As in typical procedure of 1- N-(p-tolyl)-1,2-benzenediamine 93a. White plates (106 mg , 96\%) (from n-hexane); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.43(2 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}), 7.14-7.09$ ($2 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H$), 6.85-6.71 ($4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \mathrm{H}$), $5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right.$) ; $\delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.5(\mathrm{Ar} C), 142.7(\mathrm{Ar} C), 127.1(\mathrm{Ar} C H), 126.6\left(\mathrm{Ar} C H, \mathrm{q}^{3} J_{\mathrm{C}-\mathrm{F}} 3.8 \mathrm{~Hz}\right)$, $126.5(\mathrm{Ar} C \mathrm{H}), 126.3(\mathrm{Ar} C H), 122.9(\mathrm{Ar} C \mathrm{H}), 120.5\left(\mathrm{Ar} C, \mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 32.5 \mathrm{~Hz}\right), 119.2(\mathrm{Ar}$ $C H), 116.3(\mathrm{Ar} C \mathrm{H}), 113.7(\mathrm{Ar} C \mathrm{H}) ; \delta \mathrm{c}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$, DEPT-135) $127.1(\mathrm{Ar} C H)$, $126.6\left(\mathrm{Ar} C \mathrm{H}, \mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 126.5(\mathrm{Ar} C \mathrm{H}), 119.2(\mathrm{Ar} C \mathrm{H}), 116.3(\mathrm{Ar} C \mathrm{H}), 113.7(\mathrm{Ar}$

CH); m / z (EI) 252 (M ${ }^{+}, 100 \%$), 251 (18), 237 (16), 231 (22), 213 (14), 182 (23), 118 (9), 116 (5), 107 (10), 91 (10), 80 (22), 65 (11), 53 (9).

6.3.2 N-Substituted Tetraamino-dinitrobenzenes $\mathbf{1 3 2}$

Synthesis of 1,3-bis[N-(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzene 132b follows the typical procedure described for 1,3-bis[N-(phenyl)-1,2-benzenediamino]-2,4dinitrobenzene 132a and quantity of product is based on the same mol scale of typical procedure described for product 132a.

6.3.2.1 1,3-Bis/N-(phenyl)-1,2-benzenediamino]-2,4-dinitrobenzene 132a

Typical procedure: To a stirred solution of the N-phenyl-1,2-benzenediamine 134a (41.8 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in $\mathrm{EtOH}(2 \mathrm{~mL})$ at $c a .20^{\circ} \mathrm{C}, 1,3$-dichloro-2,4-dinitrobenzene 133 (24.8 $\mathrm{mg}, 0.11 \mathrm{mmol}$) was added in one portion. The color of the reaction mixture became orange-red and Hünig's base ($36 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) was then added in one portion. A red crystalline precipitate was observed in minutes time before even the reflux starts. The reaction mixture was heated under reflux $\left(c a .78^{\circ} \mathrm{C}\right)$ for 48 h , and then allowed to cool to $c a .20^{\circ} \mathrm{C}$. The red precipitate was filtered, washed with hot water and then with cold EtOH and dried. The precipitate often was consisted of both mono- and di-substituted products. The title compound 132a was obtained after recrystallisation by EtOH as red crystals ($24 \mathrm{mg}, 42 \%$); mp 200-201 ${ }^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 10.19$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.97(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.06(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, \operatorname{Ar} H), 7.72(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.29-$ $7.15(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.06(1 \mathrm{H}, \mathrm{t}, J 7.5, \operatorname{Ar} H), 7.01-6.92(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.89-6.83(2 \mathrm{H}, \mathrm{m}$, Ar H), $6.79(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Ar} H), 6.22(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, \operatorname{Ar} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $147.7(\operatorname{Ar} C), 142.3(\operatorname{Ar} C), 141.8(\operatorname{Ar} C), 141.6(\operatorname{Ar} C), 139.8(\operatorname{Ar} C), 137.8(\operatorname{Ar} C), 131.7$ ($\mathrm{Ar} C \mathrm{CH}$), $129.4(\mathrm{Ar} C \mathrm{H}), 129.4(\mathrm{ArCH}), 128.8(\mathrm{ArC}), 128.7(\mathrm{ArCH}), 127.9(\mathrm{ArC})$, $127.3(\mathrm{Ar} C \mathrm{H}), 127.3(\mathrm{Ar} C H), 126.1(\mathrm{Ar} C), 124.7(\mathrm{Ar} C), 122.6(\mathrm{ArCH}), 121.8(\mathrm{Ar}$ $C H), 121.6(\mathrm{Ar} C H), 121.2(\mathrm{Ar} C H), 120.9(\mathrm{Ar} C H), 119.6(\mathrm{ArCH}), 119.1(\mathrm{Ar} C H)$, $118.2(\mathrm{Ar} C \mathrm{H}), 117.8(\mathrm{Ar} C \mathrm{H}), 104.7(\mathrm{Ar} \mathrm{CH}) ; m / z(\mathrm{EI}) 532\left(\mathrm{M}^{+}, 8 \%\right), 485(100), 468$ (28), 451 (10), 438 (13), 408 (17), 391 (5), 375 (4), 361 (24), 346 (5), 283 (11), 270 (8), 258 (17), 243 (13), 231 (6), 219 (16), 207 (7), 195 (7), 181 (35), 167 (30), 154 (11), 140 (10), 129 (12), 117 (4), 115 (8), 102 (7), 93 (15), 77 (62), 65 (15), 51 (21).
6.3.2.2 1,3-Bis[N -(p-tolyl)-1,2-benzenediamino]-2,4-dinitrobenzene 132b

As in typical procedure of product 132a. Red crystals (42\%); mp 190-191 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found C, 68.46; H, 4.93; N, 14.90. $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 68.56; H, 5.03; N, 14.9\%); m / z (EI) 560 ($\mathrm{M}^{+}, 9 \%$), 513 (35), 496 (20), 479 (13), 466 (7), 373 (13), 283 (7), 272 (9), 257 (7), 198 (7), 195 (13), 181 (14), 167 (12), 122 (7), 111 (8), 107 (15), 101 (7), 98 (19), 91 (40), 79 (22), 73 (15), 69 (28), 60 (24), 55 (67).

6.3.2.3 1,3-Bis/N-(n-butyl)-1,2-benzenediamino]-2,4-dinitrobenzene 132c

To a stirred solution of the N-butyl-1,2-benzenediamine $\mathbf{1 3 4 c}(1.5 \mathrm{~g}, 8.9 \mathrm{mmol})$ in EtOH $(10 \mathrm{~mL})$ at ca. $20^{\circ} \mathrm{C}, ~ 1,3$-dichloro-2,4-dinitrobenzene $\mathbf{1 3 3}(0.7 \mathrm{~g}, 2.9 \mathrm{mmol})$ was added in one portion. The color of the reaction mixture became orange-red and Hünig's base (1.5 $\mathrm{mL}, 8.9 \mathrm{mmol})$ was then added in one portion. The reaction mixture was heated under reflux (ca. $78{ }^{\circ} \mathrm{C}$) for 30 h , and then allowed to cool to ca. $20{ }^{\circ} \mathrm{C}$. Dry flash chromatography (hexane / DCM, 7 : 3) gave 5-butyl-4-chloro-1-nitro-5,10dihydrophenazine 146 ($430 \mathrm{mg}, 47 \%$) as purple needles, mp $95-96{ }^{\circ} \mathrm{C}$ (from n-hexane); (Found C, 60.42; H, 4.92; N, 13.19. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 60.47 ; \mathrm{H}, 5.08 ; \mathrm{N}$, $13.22 \%) ; \lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 251(\log \varepsilon 4.57), 272$ (3.92), 327 (3.83), 532 (3.69); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.62(1 \mathrm{H}, \mathrm{d}, J 9.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.93(1 \mathrm{H}, \mathrm{td}, J 7.8,7.5,1.0$ $\mathrm{Hz}, \operatorname{Ar} H), 6.87(1 \mathrm{H}, \mathrm{td}, J 7.7,7.5,1.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.82(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.68(1 \mathrm{H}$, d, $J 8.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.63(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.0 \mathrm{~Hz}, \operatorname{Ar} H), 3.64\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.61-$ $1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 1.29\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 0.83\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 142.02(\mathrm{Ar} C), 135.9(\mathrm{Ar} C), 134.7(\mathrm{Ar} C), 134.0(\mathrm{Ar} C), 130.6(\mathrm{Ar} C)$, $129.6(\mathrm{Ar} C), 124.3(\mathrm{Ar} C H), 124.1(\mathrm{Ar} C H), 121.3(\mathrm{Ar} C H), 121.1(\mathrm{Ar} C H), 120.3(\mathrm{Ar}$ $\mathrm{CH}), 115.7(\mathrm{Ar} \mathrm{CH}), 56.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 319$ $\left(\mathrm{M}^{+}+2,10 \%\right), 318\left(\mathrm{M}^{+}+1,6 \%\right), 317\left(\mathrm{M}^{+}, 29 \%\right), 263(5), 261(15), 260(100), 243(6), 216$ (15), 215 (8), 214 (41), 213 (10), 179 (24), 178 (6), 153 (8), 152 (9), 151 (6), 132 (29), 131 (19), 118 (5), 109 (6), 108 (88), 107 (19), 104 (5), 102 (12), 91 (8), 90 (5), 81 (20), 80 (47), 78 (6), 77 (8), 76 (9), 75 (9), 65 (9), 64 (13), 63 (13), 62 (6), 57 (21), 55 (7), 54 (12), 53 (18), 52 (19), 51 (13). Further elution (hexane / DCM, $6: 4$) gave 5-butyl-dinitro-5,10-dihydrophenazine 148 as blue crystals (trace); m/z (EI) 328 ($\mathrm{M}^{+}, 82 \%$), 271 (100), 255 (17), 225 (72), 211 (10), 206 (9), 179 (39), 164 (8), 152 (10), 127 (10), 102 (12), 77 (8), 76 (8), 57 (34), 55 (14). Further elution (hexane / DCM, 5 : 5) gave the title compound 132c as red cotton needles ($210 \mathrm{mg}, 15 \%$); mp 221-222 ${ }^{\circ} \mathrm{C}$ (from EtOH);
(Found C, 63.37; H, 6.41; N, 16.90. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 63.40; H, 6.55; N, 17.06\%); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.14(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.27(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.16(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, \mathrm{Ar} H)$, $7.26(1 \mathrm{H}, \mathrm{dt}, J 14.5,1.0 \mathrm{~Hz}, \operatorname{Ar} H), 7.15(1 \mathrm{H}, \mathrm{dt}, J 14.5,1.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.05(1 \mathrm{H}, \mathrm{dd}, J$ $8.0,1.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.85(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.80-6.71(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.64-6.61(1 \mathrm{H}$, $\mathrm{m}, \operatorname{Ar} H), 6.12(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, \operatorname{Ar} H), 4.08(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.85(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 3.24(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.14\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.74\left(2 \mathrm{H}\right.$, pentet, $\left.J 7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.61-1.48$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38\left(2 \mathrm{H}\right.$, sextet, $\left.J 8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.00\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{t}, J$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.5(\mathrm{Ar} C), 144.6(\mathrm{Ar} C), 142.9(\mathrm{Ar} C), 142.4(\mathrm{Ar}$ C), $131.7(\mathrm{Ar} C H), 129.5(\mathrm{Ar} C H), 128.0(\mathrm{Ar} C H), 127.9(\mathrm{ArCH}), 127.4(\mathrm{Ar} C), 125.3$ $(\operatorname{Ar} C), 124.2(\operatorname{Ar} C), 121.8(\mathrm{Ar} C), 120.5(\mathrm{Ar} C H), 117.0(\mathrm{Ar} C H), 116.7(\mathrm{Ar} C H), 111.9$ (Ar CH), $111.6(\mathrm{Ar} \mathrm{CH}), 104.7(\mathrm{Ar} \mathrm{CH}), 43.5\left(\mathrm{CH}_{2}\right), 43.2\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right)$, $20.3\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{EI}) 492\left(\mathrm{M}^{+}, 16 \%\right), 446(21), 428$ (6), 389 (100), 368 (5), 357 (13), 354 (10), 343 (9), 341 (5), 329 (6), 326 (5), 324 (5), 312 (26), 299 (9), 285 (9), 270 (5), 256 (7), 254 (6), 241 (5), 194 (7), 181 (6), 169 (6), 164 (29), 156 (11), 149 (7), 122 (15), 119 (13), 92 (6), 77 (6), 65 (5), 57 (12).
6.3.2.4 1,3-Bis/ N -(p-trifluoromethylphenyl)-1,2-benzenediamino]-2,4-dinitrobenzene 132d

To a stirred solution of the N-(p-trifluoromethylphenyl)-1,2-benzenediamine 161 (10.0 $\mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{EtOH}(2 \mathrm{~mL})$ at $c a .20^{\circ} \mathrm{C}, 1,3$-dichloro-2,4-dinitrobenzene $133(2.4 \mathrm{mg}$, 0.1 mmol) was added in one portion. The reaction mixture was heated under reflux ($c a$. $78{ }^{\circ} \mathrm{C}$) for 10 d , and then allowed to cool to $\mathrm{ca} .20^{\circ} \mathrm{C}$. The red precipitate was filtered, washed with hot water and then with cold EtOH and dried. The precipitate often was consisted of both mono- and di-substituted products. The title compound 132d was obtained after recrystallisation by EtOH as red crystals ($37 \mathrm{mg}, 56 \%$); mp 223-225 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found C, 57.42; H, 3.22; N, 12.45. $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{4}$ requires C, 57.49; H, $3.32 ; \mathrm{N}, 12.57 \%) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.18(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.53(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.17(1 \mathrm{H}$, d, $J 10.0 \mathrm{~Hz}, \operatorname{Ar} H), 7.49(4 \mathrm{H}, \mathrm{dd}, J 19.0,8.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.41(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \operatorname{Ar} H)$, 7.33-7.29 (2H, m, Ar H), $7.16(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.08(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.96-$ $6.92(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 6.88(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.40(1 \mathrm{H}, \mathrm{d}, J 9.5 \mathrm{~Hz}, \operatorname{Ar} H), 6.00(1 \mathrm{H}$, $\mathrm{s}, \mathrm{N} H), 5.80(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ one peak missing $147.0(\mathrm{Ar} C), 145.9$ ($\operatorname{Ar} C$), $145.6(\operatorname{Ar} C), 141.1(\operatorname{Ar} C), 137.1(\operatorname{Ar} C), 135.6(\operatorname{Ar} C), 131.8(\mathrm{Ar} C H), 130.6(\mathrm{Ar}$ $C H), 128.6(\mathrm{Ar} C), 128.5(\mathrm{Ar} C H), 128.3(\mathrm{Ar} C), 127.3(\mathrm{Ar} C H), 126.9(\mathrm{Ar} C H), 126.7$
($\left.\mathrm{Ar} C \mathrm{H}, \mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 125.1(\mathrm{Ar} C), 124.4\left(\mathrm{Ar} C, \mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 270.3 \mathrm{~Hz}\right), 124.6(\mathrm{Ar} C, \mathrm{q}$, $\left.{ }^{1} J_{\mathrm{C} \text { - }} 270.3 \mathrm{~Hz}\right), 124.1(\mathrm{Ar} C \mathrm{H}), 123.2(\mathrm{Ar} C \mathrm{H}), 123.2\left(\mathrm{Ar} C, \mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 32.7 \mathrm{~Hz}\right), 122.6(\mathrm{Ar}$ C, q, $\left.{ }^{2} J_{\text {C-F }} 32.7 \mathrm{~Hz}\right), 121.3(\mathrm{Ar} C \mathrm{H}), 120.8(\mathrm{Ar} C \mathrm{H}), 120.2(\mathrm{Ar} C \mathrm{H}), 116.7(\mathrm{Ar} C \mathrm{H}), 116.6$ ($\mathrm{Ar} C \mathrm{H}$), 104.7 ($\mathrm{Ar} C \mathrm{H}$); m / z (EI) 668 ($\mathrm{M}^{+}, 12 \%$), 621 (6), 602 (17), 588 (6), 582 (7), 572 (62), 565 (5), 443 (8), 427 (31), 417 (6), 415 (5), 400 (8), 399 (4), 342 (9), 338 (5), 314 (6), 300 (5), 287 (7), 283 (10), 271 (6), 259 (5), 257 (21), 249 (12), 222 (5), 218 (5), 216 (7), 214 (5), 208 (5), 183 (40), 167 (18), 161 (5), 154 (11), 145 (23), 142 (6), 140 (8), 127 (7), 114 (5), 102 (5), 95 (9), 92 (5), 80 (5), 77 (13), 69 (7), 65 (8), 57 (10), 55 (8), 51 (9).

6.3.3 Oxy-tetraazapentacene Radicals

Synthesis of oxy-tetraazapentacene radicals follows the typical procedure described for oxy-tetraazapentacene radical 158a ($\mathrm{R}=$ Phenyl).

6.3.3.1 Oxy-tetraazapentacene radical 158a ($R=$ Phenyl); typical procedure:

1,3-Bis[N-(phenyl)-1,2-benzenediamino]-2,4-dinitrobenzene $\quad \mathbf{1 3 2 a} \quad(100 \mathrm{mg})$ was hydrogenated using Pd / C and H_{2} in a Parr hydrogenator apparatus using EtOH (20 mL) and some THF (10 mL) as the solvents. The reaction was monitored by hydrogen uptake and once this had ceased the reaction was considered complete (confirmed by TLC). The reaction mixture was then filtered through Celite ${ }^{\circledR}$ to remove Pd / C and the ethanolic filtrate was then heated under an air atmosphere to give only a black mixture that was difficult to process. To the ethanolic filtrate before heating, acid (ca. 1 mL) was added (e.g., $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HBF}_{4}, \mathrm{HClO}_{4}$ or HPF_{6}) and the filtrate was heated extensively in the open air using a heat gun until the initially colorless solution became deep lilac. In each case, after the heated ethanolic solution was allowed to cool to $c a .20{ }^{\circ} \mathrm{C}$, a crystalline bronze solid precipitated and was isolated by filtration. To a suspension of the salt in $\mathrm{EtOH}, \mathrm{NaOH}$ (ca. 1 equiv. in small pieces) was added and then gentle heating was applied until the NaOH dissolved and the color of the suspension changed from lilac to brown. On cooling, the free base was obtained as brown solid, isolated by filtration and then recrystallized from benzene or toluene (bulk recrystallization) or using DCE/pentane (vapor diffusion).

158a $\left(\mathrm{HBF}_{4}\right.$ salt): (Found C, 66.56; H, 3.87; N, 10.46. $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}$ requires C, 66.69 ; H, 3.92; N, 10.37\%); 158a (radical): (Found C, 79.76; H, 4.17; N, 12.46. $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}^{-}$ requires C, 79.81; H, 4.24; N, 12.41\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 231(\log \varepsilon 3.74), 317$ (4.14), 424
(4.01), 445 (4.31), 530 (3.34), 569 (3.30), 900 (3.35); $v_{\max }\left(\mathrm{cm}^{-1}\right) 33052 \mathrm{w}$ (Ar NH), $1615 \mathrm{w}, 1589 \mathrm{w}, 1572 \mathrm{w}, 1554 \mathrm{~s}, 1533 \mathrm{w}, 1509 \mathrm{~m}, 1492 \mathrm{~s}, 1473 \mathrm{w}, 1462 \mathrm{w}, 1455 \mathrm{w}, 1439 \mathrm{~m}$, $1419 \mathrm{w}, 1386 \mathrm{w}, 1333 \mathrm{~s}, 1303 \mathrm{w}, 1289 \mathrm{w}, 1278 \mathrm{w}, 1234 \mathrm{~m}, 1198 \mathrm{w}, 1153 \mathrm{w}, 1141 \mathrm{w}, 1126 \mathrm{w}$, $1071 \mathrm{w}, 1052 \mathrm{w}, 1030 \mathrm{w}, 1001 \mathrm{w}, ~ 983 \mathrm{w}, ~ 918 \mathrm{w}, ~ 846 \mathrm{w}, ~ 839 \mathrm{w}, 797 \mathrm{~m}, 783 \mathrm{~m}, 757 \mathrm{~m}, 745 \mathrm{~s}$, $729 \mathrm{~s}, 712 \mathrm{~s} ; m / z(\mathrm{EI}) 451\left(\mathrm{M}^{+}, 100 \%\right), 375$ (12), 374 (33), 373 (7), 372 (8), 358 (4), 298 (5), 297 (19), 296 (7), 225 (28), 77 (10), 51 (5).

6.3.3.2 Oxy-tetraazapentacene radical 158c ($R=\mathrm{n}$-Butyl)

158c (HBF_{4} salt): (Found $\mathrm{C}, 62.48 ; \mathrm{H}, 5.87 ; \mathrm{N}, 11.06 . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 62.41$; H, 5.84; N, 11.20\%); 158c (radical): 239 ($\log \varepsilon 3.77$), 311 (4.15), 418 (4.07), 442 (4.52), 524 (3.37), 562 (3.32), 900 (3.42); $v_{\max }\left(\mathrm{cm}^{-1}\right) 2957 \mathrm{w}(\mathrm{Ar} \mathrm{NH}), 2929 \mathrm{w}, 2863 \mathrm{w}, 1613 \mathrm{w}$, $1560 \mathrm{~m}, 1513 \mathrm{~m}, 1489 \mathrm{~m}, 1461 \mathrm{w}, 1443 \mathrm{~m}, 1384 \mathrm{w}, 1340 \mathrm{~s}$, 1309w, 1296w, 1286w, 1253w, $1226 \mathrm{~m}, 1209 \mathrm{w}, 1187 \mathrm{w}, 1156 \mathrm{w}, 1172 \mathrm{~m}, 1130 \mathrm{w}, 1113 \mathrm{w}, 1101 \mathrm{w}, 1097 \mathrm{w}, 1063 \mathrm{w}, 1049 \mathrm{w}$, 1032w, 1011w, 963w, 917w, 887w, 849w, 784m; m/z (EI) 411 (${ }^{+}$, 100\%), 395 (5), 383 (6), 366 (7), 354 (99), 351 (6), 340 (7), 335 (5), 326 (10), 322 (9), 310 (11), 298 (83), 283 (6), 271 (9), 255 (5), 206 (10), 180 (5), 169 (14), 168 (7), 155 (5), 151 (7), 147 (6), 142 (5), 129 (6), 121 (6), 102 (13), 77 (32), 69 (11), 65 (5), 57 (28), 51 (12), 50 (5).

6.3.3.3 Oxy-tetraazapentacene radical $158 d\left(R=\mathrm{p}-\mathrm{C}_{6} H_{4} C F_{3}\right)$

158d (radical): 214 ($\log \varepsilon 3.97$), 317 (4.10), 426 (4.01), 450 (4.38), 537 (3.44), 576 (3.45), 900 (3.36).

6.3.4 Mono- and Di-substituted Phenylbenzene-1,2-diamines $\mathbf{1 7 1}$ and $\mathbf{1 7 0}$

6.3.4.1 N-(3-Chloro-2,6-dinitro-4-(trifluoromethyl)phenyl)- N^{\prime}-phenylbenzene-1,2diamine 171

To a stirred solution of the N-Phenyl-1,2-benzenediamine 134a ($3.61 \mathrm{~g}, 19.6 \mathrm{mmol}$) in EtOH (10 mL) at ca. $20^{\circ} \mathrm{C}$, 2,4-dichloro-1,3-dinitro-5-trifluoromethyl-benzene 169 (1.50 $\mathrm{g}, 4.9 \mathrm{mmol})$ was added in one portion. The reaction mixture was heated $\left(c a .80^{\circ} \mathrm{C}\right)$ for 1.5 h , and then allowed to cool to $c a .20{ }^{\circ} \mathrm{C}$. The reaction products were separeted and isolated after column chromatoghraphy (Hexane / DCM). The title compound 171 precipitated and was obtained after recrystallisation by EtOH as orange crystals $(1.98 \mathrm{~g}$, 89%); mp 135-137 ${ }^{\circ} \mathrm{C}$ (from EtOH); (Found C, 50.36; H, 2.63; N, 12.23. $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$
requires $\mathrm{C}, 50.40 ; \mathrm{H}, 2.67 ; \mathrm{N}, 12.37 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.61$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.30-7.19(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 7.06-6.89(5 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H), 5.78(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H) ; \delta_{\mathrm{C}}$ ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $141.7(\mathrm{Ar} C), 141.3(\mathrm{Ar} C), 139.7(\mathrm{Ar} C), 139.3(\mathrm{Ar} C), 133.9(\mathrm{Ar} C)$, $133.0(\mathrm{Ar} C), 129.7(\mathrm{Ar} C \mathrm{H}), 129.5(\mathrm{Ar} C \mathrm{H}), 127.0(\mathrm{Ar} C \mathrm{H}), 126.7\left(\mathrm{Ar} C H, q,{ }^{3} J_{\mathrm{C}-\mathrm{F}} 6.3\right.$ $\mathrm{Hz}), 125.2(\mathrm{Ar} C \mathrm{H}), 122.5(\mathrm{Ar} C \mathrm{H}), 121.5\left(\mathrm{CF}_{3}, \mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 273.2 \mathrm{~Hz}\right), 121.3(\mathrm{Ar} C \mathrm{H}), 119.3$ ($\mathrm{Ar} C \mathrm{H}$), $118.2(\mathrm{Ar} C H), 117.8\left(\mathrm{Ar} C, \mathrm{q}^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}} 34.7 \mathrm{~Hz}\right)$.
6.3.4.2 $\mathrm{N}^{l}, \mathrm{~N}^{1}$-(2,4-Dinitro-6-(trifluoromethyl)-1,3-phenylene) bis $\left(\mathrm{N}^{2}\right.$-phenyl-benzene-1,2-diamine) $\mathbf{1 7 0}$
(i) To a stirred solution of the N-phenyl-1,2-benzenediamine $\mathbf{1 3 4 a}(96.8 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ at $c a .20^{\circ} \mathrm{C}$, 2,4-dichloro-1,3-dinitro-5-trifluoromethyl-benzene 169 (80.1 $\mathrm{mg}, 0.25 \mathrm{mmol}$) was added in one portion. The color of the reaction mixture became orange-red and Hünig's ($89 \mu \mathrm{l}, 0.50 \mathrm{mmol}$) was then added in one portion. A red crystalline precipitate was observed in minutes time before even the reflux starts. The reaction mixture was heated under reflux ($\mathrm{ca} .78^{\circ} \mathrm{C}$) for 48 h , and then allowed to cool to ca. $20^{\circ} \mathrm{C}$. Dry flash chromatography (hexane / DCM, $7: 3$) gave the 1-chloro-4-nitro-10-phenyl-2-(trifluoromethyl)-5,10-dihydrophenazine 173 as purple plates ($55 \mathrm{mg}, 54 \%$), mp 213-214 ${ }^{\circ} \mathrm{C}$ (from n-hexane); (Found C, 56.23; H, 2.70; N, 10.27. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 56.24; H, 2.73; N, 10.36\%); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 254$ ($\log \varepsilon 4.57$), 326 (3.83), 492 (3.72); δ_{H} ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $9.84(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 8.24(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar} H), 7.36-7.31(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.24-$ $7.18(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.03-6.97(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 6.82-6.80(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 148.3(\mathrm{Ar} C), 142.6(\mathrm{Ar} C), 134.9(\mathrm{Ar} C), 134.1(\mathrm{Ar} C H), 133.3(\mathrm{Ar} C), 131.0(\mathrm{Ar}$ C), $129.8(\mathrm{Ar} C), 129.5(\mathrm{Ar} C H), 128.5(\mathrm{Ar} C), 125.8(\mathrm{Ar} \mathrm{CH}), 125.8(\mathrm{Ar} C \mathrm{H}), 125.5(\mathrm{Ar}$ $C \mathrm{H}), 123.2(\mathrm{Ar} C \mathrm{H}), 122.1\left(\mathrm{CF}_{3}, \mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 271.6 \mathrm{~Hz}\right), 121.1\left(\mathrm{Ar} C \mathrm{H}, \mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 6.3 \mathrm{~Hz}\right), 120.4$ ($\mathrm{Ar} C$, q, ${ }^{2} J_{\text {C-F }} 32.7 \mathrm{~Hz}$) $116.1(\mathrm{Ar} \mathrm{CH}) ; m / z(\mathrm{EI}) 409\left(\mathrm{M}^{+}+2,32 \%\right), 408\left(\mathrm{M}^{+}+1,18\right), 407$ ($\mathrm{M}^{+}, 91$), 390 (10), 389 (7), 388 (30), 361 (6), 360 (23), 359 (19), 358 (71), 328 (11), 324 (10), 323 (30), 322 (6), 303 (9), 290 (5), 289 (8), 282 (9), 276 (7), 254 (12), 253 (13), 247 (12), 227 (6), 152 (7), 149 (6), 128 (6), 127 (6), 113 (6), 102 (11), 99 (6), 97 (6), 95 (6), 93 (9), 91 (7), 88 (9), 86 (44), 85 (11), 84 (62), 83 (10), 81 (9), 79 (6), 78 (6), 77 (59), 76 (10), 75 (8), 71 (10), 70 (5), 69 (15), 67 (8), 65 (9), 64 (11), 63 (6), 59 (7), 57 (21), 56 (6), 55 (20), 51 (65), 50 (14). Further elution (hexane / DCM, 6:4) gave 1,4-dinitro-10-phenyl-2-(trifluoromethyl)-5,10-dihydrophenazine 176 as purple-blue plates (19 mg , 18%). mp 206-207 ${ }^{\circ} \mathrm{C}$ (from n-hexane); $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 254(\log \varepsilon 4.71), 308$ (3.77), 559
(3.90); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.82(1 \mathrm{H}, \mathrm{d}, J 0.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.49-7.41$ (3H, m, $\operatorname{Ar} H), 7.39-7.36(2 H, m, \operatorname{Ar} H), 6.83(1 H, \operatorname{td}, J 7.8,7.8,1.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.75(1 \mathrm{H}$, td, $J 8.0,8.0,1.5 \mathrm{~Hz}, \mathrm{Ar} H), 6.63(1 \mathrm{H}, \mathrm{dd}, J 7.8,1.0 \mathrm{~Hz}, \mathrm{Ar} H), 6.47(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{Ar}$ $H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 141.3(\mathrm{Ar} C), 141.2(\mathrm{Ar} C), 137.5(\mathrm{Ar} C), 134.1(\mathrm{Ar} C), 132.2$
 ($\mathrm{Ar} C \mathrm{H}$), $124.9(\mathrm{Ar} C \mathrm{H}), 121.2\left(\mathrm{CF}_{3}, \mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 272.9 \mathrm{~Hz}\right), 118.3\left(\mathrm{Ar} C H, q,{ }^{3} J_{\mathrm{C}-\mathrm{F}} 6.3 \mathrm{~Hz}\right)$, $117.6(\mathrm{Ar} C \mathrm{H}), 116.1(\mathrm{Ar} C H), 114.4\left(\mathrm{Ar} C, \mathrm{q}^{2}{ }^{2} J_{\mathrm{C}-\mathrm{F}} 35.2 \mathrm{~Hz}\right) ; m / z(\mathrm{EI}) 416\left(\mathrm{M}^{+}, 100 \%\right)$, 399 (11), 369 (76), 352 (11), 339 (5), 323 (60), 320 (9), 303 (15), 296 (7), 283 (10), 273 (11), 271 (11), 254 (46), 251 (5), 247 (11), 243 (6), 241 (8), 229 (7), 227 (12), 215 (6), 208 (6), 202 (8), 200 (10), 179 (6), 177 (9), 162 (6), 152 (22), 150 (8), 145 (6), 138 (10), 136 (5), 127 (18), 123 (9), 114 (13), 112 (6), 103 (12), 93 (7), 88 (8), 81 (7), 77 (39), 69 (9), 65 (8), 51 (34). Further elution (hexane / DCM, 5 : 5) gave 1,2-dinitro-5-phenyl-3-(trifluoromethyl)-5,10-dihydrophenazine 177 as blue cubes (trace). $\lambda_{\max }(\mathrm{DCM}) / \mathrm{nm} 251$ ($\log \varepsilon 3.80$), 320 (2.92), 585 (3.14); m / z (EI) 416 ($\mathrm{M}^{+}, 100 \%$), 399 (8), 370 (17), 369 (69), 353 (6), 352 (10), 324 (16), 323 (48), 322 (43), 303 (8), 302 (8), 301 (9), 284 (7), 273 (5), 255 (13), 254 (32), 253 (24), 152 (7), 151 (5), 127 (5), 102 (5), 77 (10), 51 (7). Further elution (hexane / DCM, 4:6) gave the title compound $\mathbf{1 7 0}$ as red plates (9 mg , $3 \%) ; \mathrm{mp} 90-91{ }^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;\right.$ DMSO- $\left.d_{6}\right) 7.48(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.47(1 \mathrm{H}, \mathrm{s}$, $\mathrm{N} H), 7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.48(1 \mathrm{H}, \mathrm{s}, \mathrm{N} H), 7.47(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H), 7.21-7.13$ ($6 \mathrm{H}, \mathrm{m}, \operatorname{Ar} H$), 7.07-7.04 (1H, m, Ar H), 7.00-6.95 (2H, m, Ar H), $6.90(4 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \operatorname{Ar} H), 6.83-$ $6.68(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 143.2(\mathrm{Ar} C), 142.3(\mathrm{Ar} C), 142.0(\mathrm{Ar} C)$, $141.0(\operatorname{Ar} C), 138.6(\operatorname{Ar} C), 138.5(\operatorname{Ar} C), 138.0(\operatorname{Ar} C), 131.2(\operatorname{Ar} C), 129.6(\operatorname{Ar} C), 129.5$ $(\mathrm{Ar} C \mathrm{H}), 129.4(\mathrm{Ar} C \mathrm{H}), 129.3(\mathrm{Ar} C \mathrm{H}), 128.8\left(\mathrm{Ar} C H, \mathrm{q}^{3} J_{\mathrm{C}-\mathrm{F}} 5.0 \mathrm{~Hz}\right), 128.2(\mathrm{Ar} C \mathrm{H})$, $127.3(\mathrm{Ar} C \mathrm{H}), 127.1(\mathrm{Ar} C), 123.6(\mathrm{Ar} C \mathrm{H}), 122.9\left(\mathrm{CF}_{3}, \mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 272.8 \mathrm{~Hz}\right), 122.9(\mathrm{Ar}$ $\mathrm{CH}), 122.1(\mathrm{ArCH}), 122.0(\mathrm{ArCH}), 121.4(\mathrm{Ar} C \mathrm{H}), 120.9(\mathrm{Ar} \mathrm{CH}), 119.2(\mathrm{ArCH})$, $119.0(\mathrm{Ar} C \mathrm{H}), 118.0(\mathrm{Ar} C \mathrm{H}), 111.0\left(\mathrm{Ar} C, \mathrm{q}^{2} J_{\mathrm{C}-\mathrm{F}} 35.2 \mathrm{~Hz}\right) ; m / z(\mathrm{EI}) 600\left(\mathrm{M}^{+}, 28 \%\right)$, 553 (100), 551 (6), 537 (7), 520 (7), 508 (79), 487 (21), 469 (6), 467 (9), 450 (7), 444 (9), 438 (20), 430 (31), 415 (6), 409 (52), 365 (6), 390 (5), 384 (5), 361 (7), 359 (8), 351 (8), 347 (5), 339 (6), 332 (17), 325 (8), 318 (11), 253 (9), 243 (6), 218 (9), 215 (9), 204 (16), 195 (6), 184 (20), 167 (10), 156 (5), 77 (21).
(ii) To a stirred solution of the N-phenyl-1,2-benzenediamine $\mathbf{1 3 4 a}(2.0 \mathrm{~g}, 11.0 \mathrm{mmol})$ at $c a . \quad 20^{\circ} \mathrm{C}, \quad N$-(3-chloro-2,6-dinitro-4-(trifluoromethyl)phenyl)- N '-phenylbenzene-1,2diamine $\mathbf{1 7 1}(0.5 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added in one portion. The reaction mixture was heated
(ca. $80{ }^{\circ} \mathrm{C}$) for 3 d , and then allowed to cool to $c a .20{ }^{\circ} \mathrm{C}$. Dry flash chromatography (hexane / DCM, 7 : 3) gave 1-chloro-4-nitro-10-phenyl-2-(trifluoromethyl)-5,10dihydrophenazine 173 as purple plates ($45 \mathrm{mg}, 15 \%$ based on recovered (33%) starting material 171). Further elution (hexane / DCM, $4: 6$) gave the title compound $\mathbf{1 7 0}$ as red plates ($367 \mathrm{mg}, 83 \%$ based on recovered (33\%) starting material 171).

APPENDIX

Sections Page
I Computational Parameters 224
II Crystallographic Data 346

I Computational Parameters

Computational Parameters related to Chapter 2

Table 39. Computational output parameters for singlet TAP 51a ($\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{NH}_{2}$, $\mathrm{Z}=\mathrm{NH}_{2}$).

1|1|UNPC-CHEM39-KPDQ5T27|FOpt | UB3LYP|6-31G(d)|C18H13N904|GAUSSIAN|15-N ov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||Optimization||0,1| C, -1.2231569641,0.9381401015,-0.0000000987|C,-0.0000004303,1.613503911 $8,-0.0000007105$ | C, 1. $2231560555,0.9381398563,-0.0000009917 \mid C, 1.20053638$ $69,-0.5312144982,-0.0000010937$ | C, - $0.0000006345,-1.2598895314,-0.000001$
 $04863616,0.0000006073|N,-2.3764150786,1.6293346155,0.0000005433| C,-3.5$ $541924861,0.9646687355,0.0000012914 \mid C,-3.6217130914,-0.4685741299,0.00$ $00014246|\mathrm{H},-2.469737504,-2.1591810209,0.0000010329| \mathrm{C},-4.7680640944,1.6$ 695475119, 0.0000013666|C, -4.8330360283, -1.1268038687, 0.0000026039|C, -6 $.0205536693,1.0382067275,0.0000009091 \mid C,-6.031946391,-0.4007120602,0.0$ $000024252|\mathrm{H},-4.7125769427,2.7536510875,0.0000007392| \mathrm{H},-4.8987390571,-2$ $.2090828576,0.0000038359|N, 2.4110103181,-1.1504868178,-0.0000008007| N$, $2.3764142313,1.6293341624,-0.0000012004 \mid C, 3.6217118076,-0.4685748275$, $0.0000007379|C, 3.5541915521,0.9646680267,-0.0000010699| \mathrm{H}, 2.4697360501$, $-2.1591814908,0.0000000895$ |C, 4.8330347473,-1.1268049444,0.0000001388|C ,4.7680634351,1.6695464349,-0.0000020544|C, 6.0319445648, -0.4007131592, $-0.0000016339|\mathrm{C}, 6.0205526324,1.0382049472,-0.0000038747| \mathrm{H}, 4.7125769099$, 2. $7536500568,-0.0000030363|\mathrm{H}, 4.8987377379,-2.2090839461,0.0000024228|$ H, -0.0000003306, 2. $6959944552,-0.0000006179 \mid N,-7.2461372716,-1.16809149$ $03,0.0000065496|0,-7.1648657279,-2.4035316815,0.0000153588| 0,-8.344402$ $9641,-0.5733579817,0.0000013306 \mid N, 7.2461385112,-1.1680919278,0.0000047$ $25|0,8.3444065611,-0.5733584552,0.0000169337| 0,7.1648745571,-2.4035346$ $024,0.0000444824|N, 7.1575166369,1.7796494388,-0.0000087664| N,-7.157516$ 09,1.7796534102,-0.0000018364|H, 7.097963289,2.7852320522,0.0000008041| H, $8.0498728636,1.3065889816,-0.0000114755 \mid \mathrm{H},-8.0498732133,1.3065947407$, $-0.0000004405|\mathrm{H},-7.0979603257,2.7852358991,0.0000057163| \mathrm{N},-0.00000077$ $47,-2.6573212423,-0.0000019122 \mid \mathrm{H}, 0.8417196316,-3.2031645809,-0.0000137$ $428|\mathrm{H},-0.8417213015,-3.2031644,-0.000010623|$ |Version=IA32W-G09RevC. 01 State=1-A|HF=-1487.2147954|S2=0.|S2-1=0.|S2A=0.|RMSD=8.553e-009|RMSF=2 $.088 e-005 \mid$ Dipole $=-0.000019,-0.2876257,-0.0000399 \mid$ Quadrupole= $=-37.913782$ $9,26.4583219,11.4554609,0.0000633,-0.0004342,0.0003102 \mid \mathrm{PG}=\mathrm{C01}$ [X(C18H1

Table 40. Computational output parameters for triplet TAP 51a ($\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{NH}_{2}, \mathrm{Z}=$ NH_{2}).

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H13N904 (3)|GAUSSIAN|1 7-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||Optimization||0 , 3|C, -1.221679925, 0.9713276247,-0.0000191114\|C, -0.0000056648, 1.6605780 487,-0.0000280319|C,1.2216697687,0.9713301147,-0.000016088|C, 1.2058145 $239,-0.4629792264,-0.0000078307 \mid C,-0.0000029046,-1.1903289882,-0.00003$ 26822 IC, $-1.2058219286,-0.4629822652,-0.0000139935 / N,-2.4430293979,-1.0$ 934765397, $0.0000094576 / \mathrm{N},-2.3743825746,1.7048480434,-0.0000200466 \mathrm{C},-3$ $.55284577,1.0484011686,-0.000007335$ IC, $-3.6334225237,-0.3923215134,0.00$ 00128475 | $\mathrm{H},-2.5106826971,-2.0997471201,0.0000510279 \mid \mathrm{C},-4.7562345281,1$. 7764856023, - 0.0000079664 IC, $-4.8630808902,-1.0190335306,0.0000354664$ IC, $-6.0198691795,1.1704141683,0.0000107191 \mid C,-6.0506222126,-0.2674638543$, $0.0000343694|\mathrm{H},-4.6775649869,2.8591319322,-0.000022952| \mathrm{H},-4.952585467$, $-2.098978519,0.000052301|\mathrm{~N}, 2.4430235626,-1.0934703335,0.0000244597| \mathrm{N}, 2$ $.3743716891,1.7048519541,-0.0000158552$ IC, $3.633414363,-0.3923147775,0.0$ 000290999 IC, $3.5528347347,1.0484075391,0.0000063997 \mid \mathrm{H}, 2.5106791863,-2.0$ 997408666, 0.0000793229|C, 4.8630739792,-1.0190267513, 0.0000712661 IC, 4.7 $562243061,1.7764903311,-0.000008174 \mid C, 6.0506159706,-0.267461769,0.0000$ 748107|C, 6.0198579269,1.170418127,0.0000101736|H,4.6775557004,2.859136 7763,-0.0000540862|H, 4.9525763097,-2.098971235, 0.0001201327|H, -0.00000 67588,2.7433363837,-0.0000361894।N,-7.2791960818,-1.0118181869,0.00005 $54966 \mid 0,-7.2192706213,-2.2490733232,0.00007312310,-8.3677890964,-0.396$ 4290894, 0.0000554374|N,7.2792123539,-1.0118293486, 0.0001660157|0, 8.367 8514574,-0.3964842956,0.000137231।0,7.2193534714,-2.2491049459,0.00013 $48506 / \mathrm{N}, 7.1440590843,1.9317916251,-0.000069409 / \mathrm{N},-7.1440728852,1.93178$ $34114,0.0000056912|\mathrm{H}, 7.0675350814,2.9361831851,-0.0000947583| \mathrm{H}, 8.04379$ $94878,1.4726597866,-0.0001829238 \mid \mathrm{H},-8.0438129824,1.4726502658,0.000023$ $4744|\mathrm{H},-7.0675513959,2.9361750204,-0.0000022094| \mathrm{N},-0.0000012523,-2.583$ 0360319,-0.0000584825|H, 0.8435296213,-3.1262508083,-0.0003343108|H, -0. 843530854,-3.1262527887,-0.0003077382|।Version=IA32W-G09RevC.01|State= $3-A|H F=-1487.19502| S 2=2.048355|S 2-1=0 .|S 2 A=2.001395| R M S D=9.316 e-009| R M$ $S F=3.304 e-005 \mid$ Dipole $=-0.0002563,0.1267662,-0.0004518 \mid$ Quadrupole $=-39.62$ $33418,28.3980905,11.2252513,0.0014422,-0.0019555,0.0019539 \mid P G=C 01 \quad[\mathrm{X}(\mathrm{C}$ 18H13N9O4)]।।@

Table 41. Computational output parameters for singlet TAP 51b $(E=C \equiv N)$.

Abstract

1|1|UNPC-CHEM40-OTNBTO7T | FOpt | UB3LYP|6-31G(d) | C19H11N5|GAUSSIAN|18-Nov -2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1|C, $-1.0471077946,-1.2472899664,0 .|C,-1.7332163248,0.0000002175,0| C,$. $71075413,1.2472901849,0 .|C, 0.4138205278,1.2045835685,0| C,$. , 0.0000000963, 0.|C, 0.4138202033,-1.2045832921, 0.|N, 1. $0565311433,-2.396$ $160505,0 .|N,-1.7101398944,-2.4038631472,0| C,-1.0160362812,$. $32,0 .|\mathrm{C}, 0.4047053971,-3.6237502309,0 .|\mathrm{H}, 2.0703838426,-2.3957462151,0|$. C, -1. $7061707632,-4.8107090776,0 .|C, 1.1050657111,-4.8341666405,0| C,-1.$. $0136806039,-6.0095501539,0 .|C, 0.3940646025,-6.0273837432,0| H,$. $51241,-4.7749542336,0 .|\mathrm{H},-1.561222809,-6.947666694,0| \mathrm{H},$.0.9283044848 , $6.9725201228,0 . \mid \mathrm{H}, 2.1934877849,-4.8330818741,0.1 \mathrm{~N}, 1.0565316274,2.39616$ $0969,0 .|N,-1.7101397685,2.4038636591,0| C, 0.4047059016,3.6237509758,$.0 . |C, -1.0160360429, 3.5753946911, 0.| H, 2. $0703844174,2.3957467018,0 . \mid C, 1.10$ $50662167,4.8341675963,0 .|C,-1.7061706879,4.8107100463,0| C,$. $7,6.0273848352,0 .|\mathrm{H}, 0.9283048561,6.9725212739,0| \mathrm{C},-1.0136803774,$. $5512495,0 .|\mathrm{H},-1.5612226134,6.9476678335,0| \mathrm{H},-2.7906651761,$. $5,0 .|\mathrm{H}, 2.193488359,4.8330828433,0 .|\mathrm{H}, 2.2044682444,0.0000000842,0| \mathrm{C},-3$. $.1567409347,0.0000004978,0 .|N,-4.3215258636,0.0000005291,0 .| | V e r s i o n=I$ A32W-G09RevC. 01 |State=1-A'|HF=-1004.4023837|S2=0.|S2-1=0.|S2A=0.|RMSD= $4.434 e-009|\operatorname{RMSF}=6.297 e-005|$ Dipole=4.7395257,-0.0000033,0.|Quadrupole=-$8.2501597,17.4438831,-9.1937234,0.0000098,0 ., 0 .|P G=C S \quad[S G(C 19 H 11 N 5)]| \mid$ @

Table 42. Computational output parameters for triplet TAP 51b ($\mathrm{E}=\mathrm{C} \equiv \mathrm{N}$).

1|1|UNPC-CHEM40-OTNBTO7T | FOpt | UB3LYP|6-31G (d) | C19H11N5 (3) |GAUSSIAN| 18-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 | C, - $1.2449785837,0.4337597588,0 .|C, 0.0000000041,1.127429038,0| C,$. $9786928,0.4337597831,0 .|C, 1.2078526816,-0.9953774762,0| C,$. , -1. $6920381325,0 .|\mathrm{C},-1.2078525756,-0.9953774413,0| \mathrm{N},-2.4314840308,$.-1 . $6509200177,0 .|N,-2.3968899524,1.1517240218,0| \mathrm{C},-3.5720022475,$. $7009,0 .|C,-3.6343165045,-0.9675089068,0| \mathrm{H},-2.4448938954,$. , 0.|C, - $4.7929073116,1.1775469444,0 .|C,-4.8646044883,-1.628349275,0|$.$C ,$ $-6.0103129258,0.5144881613,0 .|C,-6.0469129996,-0.8889921004,0| H,$. $05463538,2.260958425,0 .|\mathrm{H},-6.937033551,1.0804295257,0| \mathrm{H},$.
,-1.4091608971,0.|H,-4.8934609428,-2.7159556996,0.|N,2.4314841123,-1.6 $509200252,0 .|N, 2.3968900023,1.1517240706,0| C, 3.6343166041,$. 87,0.|C, 3. $572002311,0.4625188086,0 .|\mathrm{H}, 2.4448940611,-2.6615954304,0|$.$C ,$ $4.864604727,-1.6283492028,0 .|C, 4.7929073512,1.1775470936,0| C,$. 2548, - 0. $8889918863,0 .|\mathrm{H}, 7.0003538932,-1.4091606366,0| \mathrm{C}, 6.0103130174,$. $.5144884145,0 .|\mathrm{H}, 6.9370335994,1.0804298318,0| \mathrm{H}, 4.7305463379,$. 537, 0.| $\mathrm{H}, 4.8934612612,-2.7159556509,0 .|\mathrm{H}, 0.0000000524,-2.780706365,0$. C, 0.0000000012,2.5543631225,0.|N,-0.0000000427,3.7181251436,0.||Versio n=IA32W-G0 9RevC.01|State=3-A'|HF=-1004.3781486|S2=2.046511|S2-1=0.|S2A $=2.001412|R M S D=6.142 e-009| R M S F=4.211 e-005 \mid$ Dipole=0.,-3.9445704,0.|Quad rupole=16.7660309,-6.8856502,-9.8803806,0.0000005,0.,0.|PG=CS [SG(C19H 11N5)] | \| @

Table 43. Computational output parameters for singlet TAP 51c $\left(\mathrm{Z}=\mathrm{NO}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H11N502|GAUSSIAN|27-N ov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1| C, -0.0005736253,-1.424317927,-0.0000016537।C,1.1941025693,-0.696104200 $4,-0.0000084258$ IC, $1.2390062164,0.7022954348,-0.0000021727$ IC, -0.0210080 $171,1.4422952606,0.000008671$ | C, -1.2774579588, 0.7445417947,0.0000136324 |C,-1.2654385125,-0.6926179549, 0.0000112387|N,-2.387572961,-1.42240991 $77,0.0000196396 / \mathrm{N}, 0.0185662973,-2.7730569819,-0.0000081277 \mid \mathrm{C},-1.146443$ $381,-3.4568637106,-0.0000017584 \| C,-2.4115980826,-2.8047511823,0.000012$ $6679 \mid \mathrm{H},-3.2549860437,-0.8773618817,0.0000349333 / \mathrm{C},-1.1525194664,-4.877$ 2909265,-0.0000090357IC,-3.6204673201,-3.5148391936,0.0000206193IC,-2. $344021516,-5.5750946082,-0.0000017563$ IC, $-3.5851391359,-4.8995167016,0$. $0000127398|H,-0.1921356294,-5.3823661532,-0.0000204589| \mathrm{H},-2.3300915404$ $,-6.6614924023,-0.0000074054 \mid \mathrm{H},-4.5120661257,-5.4643301907,0.000018173$ $3|\mathrm{H},-4.5651633016,-2.9760593529,0.0000324943| \mathrm{N}, 0.0609645668,2.77835486$ 02,0.0000173217|N, 2.4220144027,1.350338494,-0.0000078178|C,1.251934755 $4,3.4805175879,0.0000126167|\mathrm{C}, 2.442858945,2.701045679,-0.0000008556| \mathrm{H}$, $-0.8407843518,3.2644915428,0.0000290579$ IC, $1.274039284,4.8823382396,0.0$ 000207626 IC, $3.6758162272,3.4063594661,-0.0000067984$ IC, $2.496295841,5.53$ $40033986,0.0000143733|\mathrm{H}, 2.5309411362,6.6189033221,0.0000201623| \mathrm{C}, 3.695$ 7905955, 4.7870148037, 0.0000009078|H,4.6479598694, 5.3103000104,-0.00000 35927|H, 4.5885981127,2.8196167542,-0.0000174717|H, 0.3396602559, 5.43881 85994, 0.000031775|H,2.1294909887,-1.2413296616,-0.0000182309|N, -2.5008 $463968,1.4578000792,0.000015684910,-3.5918453133,0.8392379875,-0.00009$ 16722|0,-2.4998788238,2.7119590221,-0.0001391476||Version=IA32W-G09Rev
C. $01 \mid$ State=1-A|HF=-1116.6714749|S2=0.|S2-1=0.|S2A=0.|RMSD=4.575e-009|R $\mathrm{MSF}=4.741 \mathrm{e}-005 \mid$ Dipole=$=0.5940511,0.3459298,0.0001677 \mid$ Quadrupole=-4.876 $2536,12.0360974,-7.1598438,14.9319992,-0.0008941,0.0005975 \mid P G=C 01$ [X(C 18H11N5O2)] | @

Table 44. Computational output parameters for triplet TAP 51c $\left(\mathrm{Z}=\mathrm{NO}_{2}\right)$.

Abstract

1|1|UNPC-CHEM39-KPDQ5T27|FOpt \| UB3LYP|6-31G(d)|C18H11N5O2 (3)|GAUSSIAN|2 8-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0 , 3| C, 1. $2347014143,-1.0743827863,0.0000408631 \mid C, 0.0000284922,-1.7457816$ $372,0.0000277282$ | C, -1.2346564406, -1.0744035603, 0.0000039533|C, -1. 23975 $81896,0.356860766,0.0000352281 \mid C, 0.0000047587,1.0767679276,0.000007854$ $7|C, 1.2397767784,0.3568813897,-0.0000150178| N, 2.4707122041,0.961193219$ $1,-0.0000903692|N, 2.3696550355,-1.8316982637,0.0000731238| C, 3.56411857$ $97,-1.1801416706,0.0000486505$ |C, $3.6547978213,0.2440487522,-0.000040967$ $7|\mathrm{H}, 2.4694318887,1.9770517584,-0.0002409589| \mathrm{C}, 4.7690747761,-1.92155311$ $26,0.0000879536|C, 4.895385678,0.8852759085,-0.0000934176| C, 5.998254910$ $7,-1.2797910545,0.0000418542$ |C, $6.0629546043,0.1230208035,-0.0000496509$ $|\mathrm{H}, 4.6884353265,-3.0038316609,0.0001521273| \mathrm{H}, 6.9144386896,-1.862897182$ $6,0.0000732242|\mathrm{H}, 7.0267151094,0.623483322,-0.0000875344| \mathrm{H}, 4.941441769$, $1.9715075836,-0.0001638555|N,-2.4707067262,0.9611473053,0.0000750652| N$,-2. $3695952161,-1.8317423245,-0.0000289113 \mid C,-3.6547784201,0.243978931$ $2,0.0000240759|\mathrm{C},-3.5640715081,-1.1802095508,-0.0000322792| \mathrm{H},-2.469450$ $7701,1.9770054445,0.000197748$ |C, $-4.8953786633,0.8851819398,0.000041187$ $3|C,-4.7690132607,-1.9216444746,-0.0000792865| C,-6.0629329882,0.122904$ 1101, $-0.0000047879|\mathrm{H},-7.0267031591,0.6233480669,0.0000063726| \mathrm{C},-5.9982$ $059625,-1.279906342,-0.0000667633 \mid \mathrm{H},-6.9143783828,-1.863030343,-0.0001$ $024968|\mathrm{H},-4.6883529539,-3.0039214074,-0.0001215368| \mathrm{H},-4.9414565399,1.9$ $714126899,0.0000868426|\mathrm{H}, 0.0000370046,-2.829579871,0.0000323799| \mathrm{N}, 0.00$ $00043944,2.5058528314,0.0000025552$ | $0,1.0805832413,3.1303094242,-0.0002$ $096163|0,-1.0805652955,3.1303200677,0.0001716626|$ |Version=IA32W-G09Rev C. $01 \mid$ State=3-A $|\mathrm{HF}=-1116.649498| \mathrm{S} 2=2.046469|\mathrm{~S} 2-1=0 .|S 2 A=2.001397| \mathrm{RMSD}=6$ $.829 e-009|R M S F=1.925 e-005|$ Dipole $=0.0000075,0.2151295,-0.0000117 \mid$ Quadru pole $=20.0257067,-12.1997737,-7.825933,0.0002022,-0.0003708,0.0000497 \mid \mathrm{P}$ $\mathrm{G}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 11 \mathrm{~N} 5 \mathrm{O} 2)]| | @$

Table 45. Computational output parameters for singlet TAP 51d $\left(\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt | RB3LYP|6-31G(d)|C18H12N8O4|GAUSSIAN|12-N ov-2012|0||\# opt rb3lyp/6-31g(d) geom=connectivity||Optimization Singl et||0,1|C,1.232543866,1.1044674773,-0.0000001625|C, 0.000000093,1.77149 $35425,0.0000001504|C,-1.232543518,1.1044672139,0.0000000122| C,-1.20366$ $53694,-0.3652300144,-0.0000004151$ |C, $0.0000004358,-1.068470643,-0.00000$ 04744 |C, 1. $203666106,-0.3652298141,-0.0000003981 \mid N, 2.3978729301,-0.9960$ $009367,-0.0000006848|N, 2.3882273236,1.7889555923,-0.0000002671| C, 3.560$ $0222951,1.109119346,-0.0000006954$ |C, $3.616064712,-0.3258491813,-0.00000$ $07976|\mathrm{H}, 2.4143003478,-2.0100401172,-0.0000006503| \mathrm{H}, 0.0000005801,-2.156$ $8822699,-0.0000007237$ IC, $4.779606672,1.8028681566,-0.0000007116 \mid C, 4.821$ $8075892,-0.9942982948,-0.0000009122 \mid C, 6.0270218308,1.1607662421,-0.000$ 0014335 | C , $6.025872971,-0.2778941034,-0.0000014096 \mid \mathrm{H}, 4.7336816374,2.887$ $3931799,-0.00000053731 \mathrm{H}, 4.8771537295,-2.0769587165,-0.0000006777 \mid \mathrm{N},-2$. $3978719226,-0.9960013945,-0.0000009028 \mid N,-2.3882269919,1.7889550354,0$. $0000001407|C,-3.6160637319,-0.3258499896,-0.0000009814| C,-3.5600216686$, 1. $1091185891,-0.0000004199 \mid \mathrm{H},-2.4142990562,-2.0100405272,-0.000001099$ $7|C,-4.8218062887,-0.9942996354,-0.0000015612| \mathrm{C},-4.7796061186,1.802867$ $2085,-0.0000001276|C,-6.0258712502,-0.2778949963,-0.0000022432| C,-6.02$ $70206579,1.1607644564,-0.0000015389 \mid \mathrm{H},-4.7336816109,2.8873922043,0.000$ $0004598|\mathrm{H},-4.8771524213,-2.0769599213,-0.0000017303| \mathrm{H}, 0.0000000119,2.8$ $547561875,0.0000004183 / \mathrm{N}, 7.2350666275,-1.0557799549,-0.000000896 \mid 0,7.1$ $4372454,-2.2896859353,0.0000025868 \mid 0,8.3370509806,-0.4690621044,0.0000$ 069647 | $N,-7.2350681049,-1.0557748938,-0.0000026433 \mid 0,-8.3370473541,-0$. $4690474285,0.000010443810,-7.1437344735,-2.2896815525,0.0000031596 \mid N,-$ $7.1693860145,1.8932926736,-0.0000031523 \mid N, 7.1693845108,1.8932985006,-0$ $.0000024086|\mathrm{H},-7.1175702244,2.8993437953,-0.0000010175| \mathrm{H},-8.0583664229$ $, 1.4139389778,-0.0000225612|\mathrm{H}, 8.0583666991,1.4139483201,-0.0000159595|$ H, 7.1175645316,2.8993494759,-0.0000021222||Version=IA32W-G09RevC. 01 |St ate $=1-A|H F=-1431.8825016| R M S D=7.606 e-009|R M S F=3.297 e-006| D i p o l e=-0.000$ $004,0.2656831,-0.000036 \mid$ Quadrupole $=-33.6250024,21.4462187,12.1787837,0$ $.0001578,0.0000863,-0.0000161|\mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 12 \mathrm{~N} 8 \mathrm{O} 4)]| \mid @$

Table 46. Computational output parameters for triplet TAP 51d ($\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{NH}_{2}$).

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H12N804 (3)|GAUSSIAN| 1 3-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivityl|Optimization Si nglet|।0,3|C,-1.23177263, 0.8944351876,-0.0000148687|C,-0.0000015373,1. 5740763655,-0.0000184336|C,1.2317696671, 0.8944355875,-0.0000156084|C, 1 $.2069460669,-0.5409212803,-0.0000098239 \mid C,-0.0000012115,-1.2413513507$,
$-0.0000061919|C,-1.2069487041,-0.5409218824,-0.000008993| N,-2.42736082$ $2,-1.1828290107,-0.0000034205 / N,-2.3856346761,1.6227896917,-0.00001604$ $45|C,-3.5586032015,0.950186868,-0.0000116276| C,-3.6266597703,-0.492288$ $8433,-0.0000044984|\mathrm{H},-2.4526641995,-2.1942485448,0.0000023115| \mathrm{H},-0.000$ $0009873,-2.3296280138,0.0000005474 \mid C,-4.7672040271,1.667502271,-0.0000$ $078179|C,-4.8503778947,-1.1285044047,-0.0000007299| C,-6.0267707838,1.0$ $504939708,0.0000015123|\mathrm{C},-6.0444605111,-0.3862342655,0.0000000611| \mathrm{H},-4$ $.6979779586,2.7507822439,-0.0000074181 \mid \mathrm{H},-4.9300635727,-2.2090150765,-$ $0.0000010197|N, 2.4273584559,-1.1828278882,-0.0000046442| N, 2.3856317661$,1.6227901368,-0.0000170989|C, 3. $6266569639,-0.4922879539,-0.0000059612$ | C, 3. $5585999883,0.9501876553,-0.0000137675 \mid \mathrm{H}, 2.4526622068,-2.194247447$ $3,0.0000008181|C, 4.8503752368,-1.1285039644,-0.0000046451| C, 4.76720134$ $58,1.6675020729,-0.0000077453$ |C, $6.0444586087,-0.3862357483,-0.00000487$ $3|C, 6.0267675595,1.0504931131,0.0000024832| \mathrm{H}, 4.6979758715,2.7507820885$, $-0.0000029854|\mathrm{H}, 4.9300596422,-2.2090144357,-0.0000096053| \mathrm{H},-0.0000016$ $958,2.657969392,-0.0000225708 \mid N,-7.2678761272,-1.1409534762,-0.0000045$ $9210,-7.197879244,-2.3769220819,0.000007541910,-8.3605109159,-0.533439$ $1461,0.0000140728 / \mathrm{N}, 7.2678816756,-1.1409587747,-0.00002115 \mid 0,8.3605303$ $805,-0.5334577535,0.000000215110,7.1979075684,-2.3769340304,-0.0000098$ $353|N, 7.1558730234,1.8039235861,0.0000304621| N,-7.1558766714,1.8039235$ $619,0.0000177828|\mathrm{H}, 7.0865968785,2.8088733571,0.0000368897| \mathrm{H}, 8.05248625$ $28,1.3386059193,0.0001000179 \mid \mathrm{H},-8.0524900299,1.3386059593,0.0000628583$ | H, - $7.0866009868,2.8088733451,0.000021396| | V e r s i o n=I A 32 W-G 09 R e v C .01 \mid S t$ ate $=3-\mathrm{A}|\mathrm{HF}=-1431.8599304| \mathrm{S} 2=2.047976|\mathrm{~S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=2.001391| \mathrm{RMSD}=6.893 \mathrm{e}-$ $009|\operatorname{RMSF}=3.119 e-005|$ Dipole=-0.0000828, 0.788442,0.0000736|Quadrupole=-3 $5.5911118,23.3954743,12.1956375,0.0004757,0.0004256,0.0003484 \mid \mathrm{PG}=\mathrm{C01} \quad$ [X(C18H12N8O4)]||@

Table 47. Computational output parameters for singlet TAP 51e $\left(\mathrm{Y}=\mathrm{NH}_{2}, \mathrm{Z}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H15N7|GAUSSIAN|20-Nov -2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||Optimization||0,1|C, $1.2277238271,-0.5730008689,0.0000003588 / \mathrm{C},-0.0000000587,-1.2446208479$, 0.000005454 IC, $-1.2277239428,-0.5730008947,0.0000226128$ IC, -1.2027227673 , 0.8929158749, 0.0000328823|C, $-0.0000000953,1.617240949,0.0000327116 \mid C$, $1.2027226094,0.8929159255,0.0000173949 / N, 2.4132173393,1.5167686734,0.0$ 000178633 IN, $2.3850124003,-1.2593406089,-0.0000174741$ IC, $3.5641076051,-0$ $.5843780375,-0.0000184207|\mathrm{C}, 3.627896081,0.8390414108,0.0000007982| \mathrm{H}, 2$. $4649684969,2.5252740234,0.0000334187$ IC, $4.7856968201,-1.2908282437,-0.0$

000363414 IC, $4.8532763172,1.5073710674,0.0000024901 \mid C, 6.0152544014,-0.6$ 299202669,-0.0000362562|C, 6.0398663462,0.7884810316,-0.0000151756|H, 4. $73322854,-2.3757413383,-0.0000515747 \mid \mathrm{H}, 4.8792952553,2.5963431109,0.000$ 0180671 | $N,-2.4132174749,1.5167685879,0.0000400517 \mid N,-2.3850124815,-1.2$ $593406415,0.0000286302$ IC, $-3.6278961487,0.8390413102,0.0000435399$ IC, -3. 5641076378,-0.5843780933, 0.0000412926|H,-2.4649686231,2.5252739267,0.0 000418208 IC, $-4.8532763654,1.5073709469,0.0000459388 / C,-4.7856968241,-1$. 2908283068, 0.0000421355IC, -6.0398663378, 0.7884809254, 0.0000477361 IC,-$6.0152543652,-0.6299203596,0.0000519264 \mid \mathrm{H},-4.7332285085,-2.3757413843$, $0.0000436415|\mathrm{H},-4.879295297,2.5963429791,0.000044676| \mathrm{H},-0.0000000325,-$ $2.3274339788,-0.0000040708|N,-7.2008984526,-1.3350118029,0.0001296814|$ $\mathrm{N}, 7.200898469,-1.3350117269,-0.0000676813 \mid \mathrm{H},-7.2030624359,-2.341020776$ $6,-0.0003565425|\mathrm{H},-8.0888248289,-0.8629698872,-0.0004190385| \mathrm{H}, 8.088825$ $0346,-0.8629698571,0.0000325491 \mid \mathrm{H}, 7.203062542,-2.3410208175,0.00000751$ 18|H, 6.9920797402,1.312297382,-0.0000156746|H,-6.9920797413,1.31229723 $2,0.000061372|\mathrm{~N},-0.0000001329,3.0205673005,0.0000469916| \mathrm{H}, 0.8425603354$, 3.5640630604, 0.000035101|H, $-0.8425606164,3.5640630213,0.0001069325| | V$ ersion=IA32W-G09RevC. 01 |State=1-A|HF=-1078.1889615|S2=0.|S2-1=0.|S2A=0 $.|\operatorname{RMSD}=6.010 \mathrm{e}-009| \mathrm{RMSF}=2.833 \mathrm{e}-005 \mid$ Dipole $=-0.0000008,2.7197182,-0.00051$ 45 |Quadrupole=26.2268056,-0.8258197,-25.4009859,-0.0000048, 0.0118751,0 $.0023805 \mid P G=C 01$ [X(C18H15N7)]||@

Table 48. Computational output parameters for triplet TAP 51e $\left(\mathrm{Y}=\mathrm{NH}_{2}, \mathrm{Z}=\mathrm{NH}_{2}\right)$. 1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G (d)|C18H15N7 (3)|GAUSSIAN|25-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 |C,-0.8315801555,-1.2251618579,0.|C,-1.5159101378,-0.0000007816,0.|C,$0.8315805075,1.2251604661,0 .|C, 0.5995662005,1.207807224,0| C,$. 346,-0.0000000104, 0.|C, 0.5995667427,-1.2078082149, 0.|N,1.2371183765,-2 $.4491638237,0 .|N,-1.5690619727,-2.3791506762,0| C,-0.9020990019,$. 4307796, 0.IC, 0.5291914314,-3.6398525389,0.|H, 2. $2424918615,-2.514106151$ $1,0 .|C,-1.6345868609,-4.7690994829,0 .|C, 1.1605569732,-4.8840009223,0|$. C, $-1.0036066993,-6.0126840335,0 .|C, 0.4127753408,-6.0579119063,0| H,$.-2 . $7178301641,-4.6894186192,0 .|H, 0.9206258803,-7.0191371839,0| \mathrm{H},$. $062,-4.9385857555,0 .|N, 1.2371182454,2.4491623748,0| N,-1.5690622431,2.$. 3791493855, 0. IC, 0.5291914089, 3.6398511613, 0.|C, -0. $9020991043,3.5604294$ 439, 0.| $\mathrm{H}, 2.242491944,2.5141038953,0 .|\mathrm{C}, 1.1605571012,4.8839994476,0|$.C , $-1.6345868289,4.7690982521,0 .|C, 0.4127755505,6.0579104801,0| \mathrm{H},$. $61726,7.019135709,0 .|C,-1.0036065066,6.0126827236,0| H,-2.7178301445,$.
$.6894175189,0 .|\mathrm{H}, 2.2479152064,4.9385841998,0| \mathrm{H},-2.5990282807,$. $08824,0 .|N, 2.7196596133,0.0000024422,0| H, 3.2600004777,0.8447411652,0.$. $|\mathrm{H}, 3.2600039342,-0.84473387,0 .|N,-1.7310588972,7.1860337214,0| N,-1.73$. $10592226,-7.1860349533,0 .|\mathrm{H},-1.2750294038,8.0821862982,0| \mathrm{H},$. $77,7.1691918196,0 .|\mathrm{H},-1.2750298279,-8.0821875803,0| \mathrm{H},-2.7368196011,$. $.1691929447,0 .||V e r s i o n=I A 32 W-G 09 R e v C .01|$ State=3-A'|HF=-1078.171166|S2 $=2.046638|S 2-1=0 .|S 2 A=2.001394| R M S D=9.186 e-009| R M S F=6.460 e-005 \mid D i p o l e=$ $2.2553044,0.0000007,0.1$ Quadrupole $=-0.8562449,27.2583728,-26.4021278,0$. $0000035,0 ., 0 .|P G=C S \quad[S G(C 18 H 15 N 7)]| \mid @$

Table 49. Computational output parameters for singlet TAP 51f $\left(\mathrm{X}=\mathrm{NO}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H10N604|GAUSSIAN|11-N ov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||Optimization Singl et||0,1|C, 0.0193875588, -1.4360639692, -0.0000004546|C,1.2174941665,-0.7 $096856313,-0.000000181$ IC, 1. $2591058229,0.69079795,-0.0000005574$ IC, -0.02 $0782744,1.4046568268,-0.0000007238 \mid C,-1.2352015925,0.7199566007,-0.000$ 0009279 |C, $-1.2325084931,-0.6741812244,-0.0000006177 \mid N,-2.3818931668,-1$ $.3874765134,-0.0000008946|\mathrm{~N}, 0.0231123377,-2.7817380812,-0.0000001871| \mathrm{C}$ $,-1.1542886611,-3.4438312189,-0.0000004873$ । $\mathrm{C},-2.4195085935,-2.77698758$ $79,-0.0000006589|\mathrm{H},-3.2648568639,-0.8884016065,-0.0000015354| \mathrm{H},-2.1753$ $499771,1.2679560344,-0.0000016205$ IC, $-1.1727987767,-4.8650037026,-0.000$ 0006829 IC, $-3.6228949845,-3.4723333648,-0.0000012544 \mid C,-2.3595442804,-5$ $.5662149519,-0.0000014099|C,-3.578201601,-4.8625866097,-0.0000016064| \mathrm{H}$ $,-0.2154530507,-5.3747275198,-0.0000005778 \mid \mathrm{H},-2.3804384059,-6.64879342$ 18,-0.0000022429|H,-4.5828018204, -2.9674138067,-0.0000021218|N, 0.03345 $50814,2.7562979532,-0.0000011064 / \mathrm{N}, 2.4318626174,1.3507171911,-0.000000$ 3964 IC, 1.2239835646, 3.473792143, -0.0000009788 IC, $2.427741204,2.7015036$ 438, - $0.0000008044 \mathrm{IH},-0.8359411439,3.2786492508,-0.0000017536 \mathrm{IC}, 1.23599$ $04743,4.8635765779,-0.0000016796$ IC, $3.6552346606,3.4179765011,-0.000001$ 1137 IC, $2.4677273617,5.5098164258,-0.000002161 \mid C, 3.680546172,4.79617160$ $84,-0.0000019464|\mathrm{H}, 4.6122414742,5.3478568326,-0.0000028675| \mathrm{H}, 4.5705530$ $171,2.8361504236,-0.0000010077 \mid$ H, $0.3235904339,5.4499988981,-0.00000255$ 59| $\mathrm{H}, 2.1533279955,-1.2551702855,0.0000002477 \mathrm{IN},-4.833824809,-5.6002226$ 926,-0.0000046492|0,-5.8843156721,-4.9489954726, 0.0000100296|0, -4.7779 $466432,-6.8324474834,0.0000102312 \mid \mathrm{N}, 2.4907897399,6.9658953251,-0.00000$ 54033|0,3.5905319838,7.524525127, 0.0000122611।0,1.406441277,7.55903627 12,0.000012221||Version=IA32W-G09RevC.01|State=1-A|HF=-1321.1666753|S2 $=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=8.059 e-009| R M S F=1.044 e-005| \operatorname{Dipole}=-0.7926772,0$

```
.4620373,-0.0000314|Quadrupole=7.4311193,-32.4325073,25.0013879,-35.19
29941,0.0000533,-0.000079|PG=C01 [X(C18H10N6O4)]||@
```

Table 50. Computational output parameters for triplet TAP 51f $\left(\mathrm{X}=\mathrm{NO}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H10N604 (3)|GAUSSIAN| 1 4-Nov-2012|0|।\# opt ub3lyp/6-31g(d) geom=connectivityl|Optimization Tr iplet||0,3|C,1.2300554497,1.0361999622,-0.0000004918|C,-0.0000001082,1 $.7172571099,-0.0000008891|C,-1.230055641,1.0361999131,0.0000006683| C,-$ $1.2060743447,-0.3953981289,0.0000027018 / C,-0.000000069,-1.0966559328,0$.0000033773 IC, 1. $2060741906,-0.3953980964,0.0000017292$ IN, $2.4297430712,-$ $1.0416962795,0.0000019898|\mathrm{~N}, 2.3881631051,1.7638238548,-0.0000024132| \mathrm{C}$, $3.5555203026,1.0858560276,-0.0000020053$ IC, $3.6276119739,-0.3515526923,0$ $.0000002598|\mathrm{H}, 2.4530119472,-2.0530580024,0.0000033939| \mathrm{H},-0.0000000528$, $-2.1848346909,0.0000048953|C, 4.7799408055,1.808536836,-0.0000040769| C$, $4.8532537947,-1.0075329977,0.0000005867$ |C, $5.9981061821,1.1609613053,-0$ $.0000038309|C, 6.0206637421,-0.2431434822,-0.0000014884| \mathrm{H}, 4.7149754399$, $2.8912158098,-0.0000058803|\mathrm{H}, 6.9347247542,1.7036923755,-0.0000054144| \mathrm{H}$, 4.9248780311,-2.0892003026,0.0000023279।N,-2.429743222,-1.0416963394, $0.0000037594|N,-2.3881633309,1.7638237533,-0.0000000887| C,-3.627612144$ $8,-0.351552819,0.0000028562|C,-3.5555204985,1.0858559347,0.0000010167|$ H, $-2.4530120638,-2.0530580626,0.000004766$ IC, $-4.853253977,-1.0075331469$ $, 0.0000034648 \mid C,-4.7799409987,1.808536789,-0.0000000965$ IC, -6.020663824 $8,-0.2431434958,0.0000021682 \mid C,-5.9981064042,1.1609612878,0.0000003694$ | $\mathrm{H},-6.9347250361,1.7036922325,-0.0000007744 \mid \mathrm{H},-4.7149755599,2.89121575$ 91,-0.00000156|H,-4.924878381,-2.0892004247, 0.0000046771|H,-0.00000012 79,2.8012180041,-0.0000026292|N, 7. $3048292825,-0.9346247255,-0.00000119$ $47|0,7.2919967374,-2.1700761162,-0.0000026767| 0,8.3292139114,-0.246817$ 1133,-0.0000070634|N,-7.3048291053,-0.9346245492, 0.0000016948|0, -8. 329 2135417,-0.2468165789,-0.0000187704।0,-7.2919962852,-2.1700759777,-0.0 $000153588||V e r s i o n=I A 32 W-G 09 R e v C .01|$ State=3-A|HF=-1321.1455077|S2=2.04 9088|S2-1=0.|S2A=2.001539|RMSD=5.889e-009|RMSF=5.641e-006|Dipole=-0.00 00002,-0.4850993, 0.0000251| Quadrupole=-52.2256139,28.516664,23.7089499 $, 0.0000039,-0.0002279,-0.0000781|\mathrm{PG}=\mathrm{CO1} \quad[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 10 \mathrm{~N} 6 \mathrm{O} 4)]| \mid @$

Table 51. Computational output parameters for singlet TAP 51g ($\mathrm{X}=\mathrm{C} \equiv \mathrm{N}, \mathrm{Y}=\mathrm{OMe}$). 1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C22H14N6O2|GAUSSIAN|01-D ec-2012|0।|\# opt ub3lyp/6-31g(d) geom=connectivity|loptimization||0,1| C, - 0.866697265,1.2328007805,0.0001152974।C,-1.5334988095,0.0000129711, 0.0000000895 IC, $-0.8667138211,-1.2327840232,-0.0001151545$ IC, 0.600929209 $8,-1.2037158821,-0.0001154998 \mid C, 1.3043414994,-0.0000063042,0.000000010$ 4 IC, $0.6009451436,1.2037126835,0.0001155608$ IN,1.235777312,2.3973885324, $0.0002322782|N,-1.548313729,2.3914739704,0.0002231217| C,-0.8625161879$, $3.5594057013,0.0003408545$ IC, $0.566357679,3.6166055504,0.0003482678 \mid \mathrm{H}, 2$. $2496840628,2.4087988432,0.0002393022 \mid \mathrm{H}, 2.3928947631,-0.0000135512,-0.0$ 000000182 IC, $-1.5514862817,4.7873202425,0.0003940409$ IC, 1. $2359626059,4.8$ $26699968,0.0004900893$ IC, $-0.8986885343,6.0164091439,0.000504321 \mid C, 0.531$ $5346352,6.0481142022,0.0006036775$ | $\mathrm{H},-2.6350609302,4.771447759,0.000319$ $0256|\mathrm{H}, 2.3223307926,4.8559263181,0.0005621712| N, 1.2357462046,-2.397399$ 9155,-0.0002322425/N,-1.5483463151,-2.3914475268, -0.0002229348|C, 0. 566 $3112603,-3.6166084094,-0.0003481873 \mid C,-0.862564728,-3.5593888465,-0.00$ 03406989 | $\mathrm{H}, 2.2496528323,-2.4088231495,-0.0002393163 \mid \mathrm{C}, 1.2359043905,-4$. 8267114239,-0.0004900121।C,-1.5515531742,-4.787294057,-0.0003938053।C, $0.5314530687,-6.0481113117,-0.0006035409 \mid C,-0.8987573218,-6.0163834395$ $,-0.0005041142|\mathrm{H},-2.6351276127,-4.7714133123,-0.0003187352| \mathrm{H}, 2.3222719$ $806,-4.8559557046,-0.0005621183 \mid \mathrm{H},-2.6167452847,0.000020331,0.00000012$ 07 IC, 1. $3368848184,7.2263094664,0.001062565 / N, 2.0684160494,8.1339521195$, 0.0014900555 IC, 1.3367375089,-7.2263506806,-0.0010623045।N, 2.068050989 $1,-8.1341692118,-0.0014894494 \mid 0,-1.7355044406,7.0820250179,0.000608840$ $4 \mid 0,-1.7355115708,-7.0820360465,-0.000608676$ IC, $-1.2751302204,8.4323557$ 567,-0.0009472871|H,-0.6863641417, 8. $6603008273,0.8925882982 \mid \mathrm{H},-0.68647$ $97639,8.6582419612,-0.8950950791 \mid \mathrm{H},-2.1837294692,9.0371189124,-0.00158$ 13387|C,-1.2749577007,-8.4323036626, 0.0009467037|H,-0.6861533738, -8. 66 $01610633,-0.8925884889|\mathrm{H},-0.6862683094,-8.6581028629,0.89509328| \mathrm{H},-2.1$ 834701107,-9.037196774,0.0015810373।|Version=IA32W-G09RevC.01|State=1$A|H F=-1325.6785389| S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=3.546 e-009| R M S F=1.986 e-00$ 5|Dipole=1.1854411,0.0001919,-0.0000007|Quadrupole=11.1094302,-21.5246 $285,10.4151983,-0.0039674,-0.000001,-0.0413756|\mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 22 \mathrm{H} 14 \mathrm{~N} 6 \mathrm{O} 2)]|$ 1 @

Table 52. Computational output parameters for triplet TAP 51g ($\mathrm{X}=\mathrm{C} \equiv \mathrm{N}, \mathrm{Y}=\mathrm{OMe})$. 1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C22H14N6O2 (3)|GAUSSIAN|0 1-Dec-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization\| , 3|C,1.2321247381,0.6687653756,0.0001388303|C,0.0000007396,1.347997076 $3,-0.0000000823$ IC, $-1.2321187413,0.6687571931,-0.0001389648$ IC, -1.207485 0008,-0.7641153815,-0.0001390597|C, 0.0000101215,-1.4635321535,-0.00000 0017 IC, 1. $207500558,-0.7641073068,0.0001389924$ IN, $2.4304762954,-1.410893$ 5619, 0.0002811488|N, 2.3864222112,1.4000586588, 0.0002672262|C, 3. 5583547 $806,0.720413308,0.000407581|C, 3.6286128176,-0.7158573443,0.0004193983|$ H, 2.4530643377,-2.4217677617, 0.0002968912|H, 0.0000137524,-2.552020082, 0.0000000072 IC, $4.7715174472,1.4361054949,0.000471871$ |C, 4. $8577067529,-1$ $.3482198311,0.0005921066$ IC, $6.0168518225,0.8118061999,0.0006069453$ IC, 6 . $0691181879,-0.612873206,0.0007365545 \mid \mathrm{H}, 4.7288228002,2.5190115533,0.000$ $3834718|\mathrm{H}, 4.9163632739,-2.4328781807,0.0006785018| \mathrm{N},-2.4304563794,-1.4$ 109098689,-0.0002811931|N,-2.3864210562,1.4000428823,-0.0002673914|C,-$3.6285975082,-0.7158815225,-0.0004194781$ IC, $-3.558349079,0.7203895835,-$ $0.0004077142|\mathrm{H},-2.4530376674,-2.4217842194,-0.0002968877| \mathrm{C},-4.85768746$ $03,-1.3482517819,-0.0005921519 \mid C,-4.7715167238,1.4360733122,-0.0004720$ $429 \| C,-6.0691042392,-0.6129132214,-0.0007365959 \mid C,-6.0168471981,0.8117$ 657606,-0.0006071019|H, -4.7288298333, 2.5189796553,-0.000383686|н, -4.91 63368868,-2.4329105122,-0.0006784821|H,-0.0000028624,2.4319741908,-0.0 000001068 IC, $7.2624056799,-1.3954289231,0.0013049107 \mid N, 8.1839698462,-2$. 1094896263, 0.0018376206/C,-7.2623864901,-1.3954772424,-0.0013048425/N, $-8.1839366503,-2.1095559821,-0.001838223210,7.0637413514,1.6732878717$, $0.0007288584|0,-7.0637434137,1.6732388326,-0.0007290453| C, 8.422897849$, $1.2400729955,-0.001139643|\mathrm{H}, 8.6626832101,0.6559082058,0.8924564185| \mathrm{H}, 8$ $.6601928133,0.6559490131,-0.8954424192 \mid \mathrm{H}, 9.0095871135,2.1604720999,-0$. $0019311683|\mathrm{C},-8.4228953139,1.2400109177,0.0011396507| \mathrm{H},-8.6626748552,0$ $.6558436545,-0.8924563992|\mathrm{H},-8.6601843028,0.6558847177,0.8954426017| \mathrm{H}$, $-9.0095938379,2.1604041563,0.0019311096 \mid$ Version=IA32W-G09RevC. 01 I Stat $\mathrm{e}=3-\mathrm{A}|\mathrm{HF}=-1325.6573637| \mathrm{S} 2=2.051713|\mathrm{~S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=2.001728| \mathrm{RMSD}=5.631 \mathrm{e}-00$ 9|RMSF=2.423e-005|Dipole=-0.0000014,-0.6813149, 0.0000005| Quadrupole=-2 $0.2759796,11.3057661,8.9702135,-0.0001811,-0.04982,-0.0000019 \mid P G=C 01 \quad$ [X(C22H14N6O2)]।।@

Table 53. Computational output parameters for singlet TAP 51h $\left(\mathrm{Y}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H14N6|GAUSSIAN|18-Nov -2012|0|।\# opt ub3lyp/6-31g(d) geom=connectivity||Optimization||0,1|C, $-1.2364123327,-1.0844439117,0.0000235925$ IC, $-0.00001024,-1.7491391891,0$.0000348324 IC, 1. $2363942727,-1.0844485104,0.0000225906$ IC, 1. 2054652971,0 $.3811804042,-0.0000031575$ IC, $-0.0000049532,1.0833551773,-0.0000156921$ IC ,-1.2054777903, 0.3811848221,-0.0000029342|N,-2.399998112,1.0160250387, $-0.0000140477|\mathrm{~N},-2.3968183686,-1.7634519648,0.0000360243| \mathrm{C},-3.56952239$ $01,-1.0740031598,0.0000240164$ |C, $-3.621836186,0.3512821648,-0.000002027$ 5। H, -2.408528946,2.0295202452,-0.0000339024।C,-4.7971193219,-1.7694609 $842,0.0000368789$ IC, $-4.8413322699,1.0303585258,-0.0000141732$ |C, -6.02069 84364,-1.0975759995,0.0000249795 IC, -6.033127789, 0.3211733699,-0.000001 $3239|\mathrm{H},-4.754360583,-2.8547265221,0.000056903| \mathrm{H},-4.8567502325,2.119072$ 4859,-0.000034028/N, 2.3999881532,1.0160162377,-0.0000137599|N, 2. 396798 $0476,-1.7634610623,0.0000332347$ IC, $3.6218239657,0.3512687971,-0.0000028$ $288|C, 3.5695048128,-1.0740165462,0.0000207326| \mathrm{H}, 2.4085228026,2.0295114$ 875,-0.0000329863|C, 4.8413227851, 1.0303406021, -0.0000125891|C, 4.797099 $3228,-1.7694791099,0.0000342667$ IC, $6.0331157803,0.3211508008,-0.0000014$ 657|C, 6.0206811111,-1.0975986867,0.0000209427|H, 4.7543363646,-2.854744 5643, 0.0000534536|H, 4.8567448523,2.1190545622,-0.0000297614|H, -0.00001 $21945,-2.832639318,0.0000537789 \mid N, 7.2121694929,-1.7919531934,0.0000125$ 575/N, - $7.2121893963,-1.7919260489,0.0000411925 \mid \mathrm{H}, 7.2236264583,-2.79794$ 79578, 0.0001308034|H, $8.0959697394,-1.3120994907,0.0001535788 \mid \mathrm{H},-8.0959$ $8785,-1.3120691104,0.0000089745 \mid \mathrm{H},-7.2236501418,-2.7979207372,0.000037$ 205|H,-6.9809557092, 0.8527694284,-0.0000106113|H, 6.9809457585, 0.852743 3173,-0.0000142912|H,-0.0000028808,2.1727226703,-0.0000349582||Version $=I A 32 W-G 09 R e v C .01 \mid$ State $=1-A|H F=-1022.858732| S 2=0 .|S 2-1=0 .|S 2 A=0| R M S D=$. $4.823 e-009|\operatorname{RMSF}=3.931 e-005|$ Dipole $=0.0000031,2.2308308,0.0000943 \mid$ Quadru pole $=28.4948237,-4.1274825,-24.3673413,-0.0000626,0.002974,-0.0007566$ । PG=C01 [X(C18H14N6)]।|@

Table 54. Computational output parameters for triplet TAP 51h $\left(\mathrm{Y}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C18H14N6(3)|GAUSSIAN|19-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity|lOptimization||0,3 |C,1.2346144246,-0.5253298124, 0.0000049997|C, -0.0000000229,-1.20072089 $28,0.0000129042$ IC, $-1.2346144829,-0.5253298342,0.0000292419$ | C, -1.208397 $5657,0.9063566398,0.0000368634$ IC, $-0.0000000486,1.6048210581,0.00003058$
$46|C, 1.2083974729,0.9063566681,0.0000154244| N, 2.4331578096,1.555171474$, $0.000009328|\mathrm{~N}, 2.3909035763,-1.2570973596,-0.0000120961| \mathrm{C}, 3.5659609085$, - 0. $5743891349,-0.0000184024|C, 3.6321830564,0.859138618,-0.0000066862|$ $\mathrm{H}, 2.4550518262,2.5654426222,0.0000178543 \mid \mathrm{C}, 4.7811294925,-1.29493165,-0$ $.0000351031|C, 4.8700251747,1.5013451597,-0.0000112553| C, 6.018966663,-0$ $.6522525203,-0.0000414641|C, 6.0508186212,0.7640408102,-0.0000277565| \mathrm{H}$, $4.7119300289,-2.3788939676,-0.0000447688 \mid \mathrm{H}, 4.914279054,2.588781365,-0$. $0000014653|N,-2.4331579117,1.5551714261,0.0000493526| N,-2.3909036283,-$ $1.257097411,0.0000379197$ | C, - $3.6321831414,0.8591385467,0.0000567748 \mid C$, -$3.5659609629,-0.5743892065,0.0000537464 \mid \mathrm{H},-2.4550519399,2.5654425719,0$ $.0000548321|C,-4.8700252769,1.5013450637,0.0000628608| C,-4.7811295423$, $-1.2949317459,0.0000568786|C,-6.0508187029,0.76404069,0.0000677434| C$, -$6.0189667151,-0.6522526447,0.0000716729 \mid H,-4.7119300426,-2.378894061,0$ $.0000590039|\mathrm{H},-4.9142791694,2.5887812674,0.0000620075| \mathrm{H},-0.000000013,-$ $2.2848841895,0.0000064651|N,-7.1982837195,-1.369113656,0.0001712066| N$, $7.1982836493,-1.3691135185,-0.0000753038 \mid \mathrm{H},-7.1912497681,-2.3750207957$, $-0.0004446517|\mathrm{H},-8.090593456,-0.9054787159,-0.0005106715| \mathrm{H}, 8.09059365$ $08,-0.905478623,0.0000454166|H, 7.1912498818,-2.375020833,0.0000283862|$ $\mathrm{H}, 7.0072465722,1.2807902181,-0.000033357 \mid \mathrm{H},-7.0072466696,1.2807900667$, $0.0000861819|\mathrm{H},-0.0000000694,2.6940893069,0.0000373322| \mid V e r s i o n=I A 32 W-$ G09RevC. 01 |State=3-A|HF=-1022.8376895|S2=2.046537|S2-1=0.|S2A=2.001389 $|\mathrm{RMSD}=7.529 \mathrm{e}-009| \mathrm{RMSF}=3.698 \mathrm{e}-005|\mathrm{Dipole}=0.000001,1.6987382,-0.0006975|$ Quadrupole $=29.4630406,-4.35466,-25.1083806,-0.0000062,0.0149485,0.0024$ $867|\mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 14 \mathrm{~N} 6)]| \mid @$

Table 55. Computational output parameters for singlet TAP 51i $\left(\mathrm{X}=\mathrm{CF}_{3}\right)$.

1|1|UNPC-USER-TOSH|FOpt | UB3LYP|6-31G(d)|C20H10F6N4|USER|09-Feb-2013|0| |\# opt ub3lyp/6-31g(d) geom=connectivity||X:CF3||0,1|C,-0.11022791,0.0 $004918146,0.0606156235$ |C, $-0.1032577717,0.0000078723,1.4626360904 \mid C, 1.0$ $741698054,-0.0004783485,2.2238023948 \mid C, 2.3451719441,0.0007648105,1.494$ $4794073|\mathrm{C}, 2.3843265023,0.0000024941,0.1006227539| \mathrm{C}, 1.1889286009,-0.000$ $7568417,-0.617286177|N, 1.1744632837,-0.0026324921,-1.9704127196| N,-1.2$ $622852064,0.0023303834,-0.6336639246 \mid C,-1.2157749019,0.0003882929,-1.9$ $880540579|\mathrm{C}, 0.005266459,-0.003999668,-2.7231291685| \mathrm{H}, 3.3391696699,0.00$ $00004821,-0.4221772519|C,-2.4166621002,0.0062871226,-2.7438926575| C, 0$. $0335612641,-0.0061808439,-4.1177801904 \mid C,-2.3930124226,0.005875673,-4$. 1240692485 |C, -1.1664389699,-0.0009491404, -4.8204458219|H,-3.3512719727 , $0.0147595146,-2.1931158412 \mid \mathrm{H}, 0.9810190605,-0.0064915495,-4.6493023491$
$|\mathrm{N}, 3.4773692917,0.0026386253,2.2356202682| \mathrm{N}, 1.0384562526,-0.0023139225$, 3.5684156511 |C, $3.4816545764,0.0040094487,3.6261542541 \mid C, 2.2045668748$, $-0.0003733492,4.2588660256 \mid C, 4.6718715848,0.0061902394,4.3536402567$ | C , $2.194410391,-0.0062678529,5.6777808686 \mid C, 4.6173954136,0.000963278,5.74$ $31622518|\mathrm{C}, 3.3699302539,-0.0058567696,6.4013825634| \mathrm{H}, 1.2268971897,-0.0$ $147359771,6.1684630298|\mathrm{H}, 5.6300843197,0.0064979279,3.8417610653| \mathrm{H},-1.0$ $53412806,0.0000099717,1.9828692163 \mid \mathrm{H},-3.3224441005,0.0176324014,-4.684$ $4271882|\mathrm{H}, 3.3413220168,-0.0176092344,7.4862909097| \mathrm{C},-1.1708290155,-0.0$ $546993797,-6.3193341222|C, 5.8778216852,0.0547103664,6.5543411406| \mathrm{F},-2$. $0880040622,0.7880162129,-6.8471113693 \mid F, 0.0321155043,0.272990076,-6.84$ $63336414|\mathrm{~F}, 6.1013756502,1.2917891374,7.0608576356| \mathrm{F}, 5.8283801724,-0.78$ $8035356,7.6113483458|\mathrm{~F},-1.4770889128,-1.291788819,-6.7805435966| \mathrm{F}, 6.96$ $98652629,-0.2729419777,5.8247737437 \mid \mathrm{H}, 4.3708943547,0.0041553917,1.7562$ $717369 \mid \mathrm{H}, 2.0596659984,-0.0041529445,-2.4649611957$ ||Version=IA32W-G09Re vC. $01 \mid$ State $=1-A|H F=-1586.2339293| S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=4.994 e-009|$ $R M S F=2.069 e-006 \mid$ Dipole=1.6723461,-0.0000023,-0.9156446|Quadrupole=6.90 $56018,7.448815,-14.3544168,-0.5229401,-16.6239173,-0.95505 \mid P G=C 01$ [X(C 20H10F6N4)] | @

Table 56. Computational output parameters for triplet TAP 51i $\left(\mathrm{X}=\mathrm{CF}_{3}\right)$.

1|1|UNPC-USER-TOSH | FOpt | UB3LYP| 6-31G (d) | C20H10F6N4 (3) |USER|10-Feb-2013 |0||\# opt ub3lyp/6-31g(d) geom=connectivity||X:CF3||0,3|C,1.2325336241 , 1. $1606522728,0.0069951845|C,-0.0000000515,1.8399089247,-0.0000005486|$ C, -1.2325336123,1.1606520637,-0.0069951143|C,-1.2071983415,-0.27073987 69,-0.0075453587|C, 0.0000001781,-0.9700296437,0.0000019902|C, 1.2071985 $899,-0.2707396666,0.0075480211 \mid N, 2.4329935072,-0.9201161396,0.01592845$ $07|N, 2.3877403025,1.8905328742,0.0134020058| C, 3.5606678848,1.204368490$ $4,0.0212069666$ | C , $3.6300515846,-0.2276378368,0.0229036604 \mid \mathrm{H}, 0.000000267$ $5,-2.058642405,0.0000029561|C, 4.78289227,1.9199779289,0.0329888953| C, 4$ $.8600177423,-0.8834652314,0.0363007696$ | C, $6.0020560583,1.2650445659,0.0$ 452025881 | C , $6.0418200616,-0.1390946618,0.0473256081 \mid \mathrm{H}, 4.721947177,3.00$ $32043926,0.0362019587$ | H, 4.9001454899, -1.9688461091, 0.0462655277|N, -2. 4 $329931617,-0.9201165645,-0.0159247832 \mid N,-2.3877404123,1.8905324656,-0$. $0134033956|C,-3.630051336,-0.2276384382,-0.0229018631| C,-3.5606678633$, $1.204367849,-0.0212076027$ |C, $-4.8600174078,-0.883466152,-0.0362986011$ |C , $-4.782892398,1.9199770897,-0.032991309 \mid C,-6.0418197651,-0.1390958361$, $-0.0473254987|\mathrm{C},-6.0020559815,1.2650434896,-0.0452047155| \mathrm{H},-4.72194747$ $39,3.0032035576,-0.0362061655 \mid \mathrm{H},-4.9001449054,-1.9688470341,-0.0462614$
$569|\mathrm{H},-0.0000001387,2.9239128668,-0.0000015465| \mathrm{H}, 6.9283543951,1.828673$ $252,0.0616974539|\mathrm{H},-6.9283544342,1.8286719842,-0.0617012812| \mathrm{C}, 7.364726$ $0866,-0.8500083713,-0.0038600795$ IC, $-7.3647263627,-0.8500085366,0.00385$ 95141|F, $8.3332818893,-0.155985445,0.6327296444 \mid F, 7.3021613706,-2.07654$ 87099, 0.5647937957|F,-7.7882899213,-1.0341373223,1.277735138|F,-8. 3332 $775406,-0.1559917484,-0.6327441528 \mid F, 7.78828102,-1.0341516315,-1.27773$ 64973|F,-7.3021588875,-2.076554981,-0. $5647806943 \mid \mathrm{H},-2.4545457644,-1.93$ 09185776,-0.0169582691|H, 2.454546264,-1.9309181481, 0.0169638043|।Versi on=IA32W-G09RevC.01|State=3-A|HF=-1586.214083|S2=2.049049|S2-1=0.|S2A= $2.001566|\operatorname{RMSD}=4.901 \mathrm{e}-009| \operatorname{RMSF}=2.626 \mathrm{e}-006 \mid$ Dipole $=0.0000003,-1.3750552,0$.0000022 I Quadrupole $=-21.6889197,16.0311668,5.6577529,0.0000159,1.07587$ 73,-0.0000156|PG=C01 [X(C20H10F6N4)]।।@

Table 57. Computational output parameters for singlet TAP 51j ($\mathrm{X}=\mathrm{C} \equiv \mathrm{N}$).

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C20H10N6|GAUSSIAN|29-Nov -2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity|loptimization\|l0,1|C, $0.0219363919,-1.4386879195,0 .|C, 1.2196320913,-0.7109305985,0| \mathrm{C},$. $475131,0.6898761743,0 .|C,-0.0172984658,1.4027374911,0| C,$. , 0.7178738648, 0.|C,-1.2291207184,-0.6762645261,0.|N,-2.3803203105,-1.3 $878021866,0 .|N, 0.0229187218,-2.7842399603,0| C,-1.1577201022,$. 5329, 0.| $\mathrm{C},-2.4203810815,-2.7774862452,0 . \mid \mathrm{H},-3.2611809897,-0.8853439606$, 0.| $\mathrm{H},-2.1719606983,1.2659821966,0 .|\mathrm{C},-1.1804283244,-4.8637220636,0|$. $,-3.6256405894,-3.4728636946,0 .|C,-2.3692668111,-5.5617407536,0| C,-3.$. 6088343997,-4.8732592634, 0.|H,-0.224263186, -5.3760141938, 0.| $\mathrm{H},-2.36923$ $73101,-6.6466302553,0.1 H,-4.5727144797,-2.9397957609,0.1 N, 0.0345127638$
 12511, 0.|C, $2.4263364843,2.7046590767,0 . \mid \mathrm{H},-0.8367916576,3.2739460316,0$. IC, 1. $2350904808,4.866232251,0 .|C, 3.6503545684,3.4239905396,0| C,$. $9059643,5.5417390854,0 .|\mathrm{C}, 3.6718514027,4.8024360168,0| \mathrm{H},$.4.6158653463 , $5.3370581518,0 .|\mathrm{H}, 4.5673231576,2.8444535636,0| \mathrm{H}, 0.304522274,$. $779,0 .|\mathrm{H}, 2.1555147585,-1.2564473957,0| \mathrm{C},-4.8394383915,-5.5989788116,$. .$|N,-5.8437636043,-6.1888594993,0 .|C, 2.4869101401,6.9701802349,0| N, 2.$. 505405878, 8.134777523,0.||Version=IA32W-G09RevC.01|State=1-A'|HF=-1096 $.6470012|S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=6.853 e-009| R M S F=1.043 e-004|$ Dipole=$0.9263789,0.5399463,0 . \mid$ Quadrupole= $8.8555359,-30.5491825,21.6936466,-34$.7899122,0.,0.|PG=CS [SG(C20H10N6)]।।@

Table 58. Computational output parameters for triplet TAP 51j ($\mathrm{X}=\mathrm{C} \equiv \mathrm{N}$).

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C20H10N6(3)|GAUSSIAN|30-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 |C, -0.9198631281, 1.2310413748, 0.|C,-1.5999897463, 0.0000026584, 0.|C, -0. 9198657754,-1.2310375267,0.|C, 0.5110630368,-1.2065105868, 0.|C, 1. 211458 9303,-0.0000003579, 0.|C, 0.5110656267,1.2065113784, 0.|N,1.1595865449, 2. $4316544108,0 .|N,-1.6485001988,2.3886025338,0| C,-0.9666317858,$. $4142,0 .|C, 0.4683818898,3.6293927594,0 .|\mathrm{H}, 2.170624003,2.4526770381,0| \mathrm{H}$. , 2. 2998642189,-0.0000015214, 0.|C,-1. $6864671976,4.7809533643,0 . \mid C, 1.122$ $9340266,4.8566515752,0 .|C,-1.0382266777,5.9998586206,0| C,$. , 6.046948027,0.| $\mathrm{H},-2.7693754666,4.7165954119,0 . \mid \mathrm{H},-1.6016003335,6.9267$ 155237, 0.|H,2.2083839537, 4.9015563901, 0.|N, 1.1595813131,-2.4316550138, $0 .|N,-1.6485053207,-2.3885971146,0 .|C, 0.4683740771,-3.6293918825,0|$.$C ,$ $-0.9666394192,-3.5577634716,0 .|\mathrm{H}, 2.1706187251,-2.4526798205,0| \mathrm{C},$. 9235234,-4.8566521472,0.|C,-1.686477452,-4.7809478931,0.|C, 0. 374727467 $7,-6.0469470145,0 .|C,-1.0382396223,-5.9998545725,0| H,-1.6016152651,$. $.9267102685,0 .|\mathrm{H},-2.7693855783,-4.7165876268,0| \mathrm{H}, 2.2083733548,$. 592861,0.|H, -2.683973543, 0.0000038239, 0. IC, 1.0508435865,7.3058072482,0 .$|N, 1.6032866816,8.3311549517,0 .|C, 1.0508274974,-7.3058078654,0| N, 1.6$. $032725122,-8.3311545348,0 .||V e r s i o n=I A 32 W-G 09 R e v C .01|$ State=3-A'|HF=-10 $96.6269631|S 2=2.052103| S 2-1=0 .|S 2 A=2.001775| R M S D=5.483 e-009 \mid R M S F=1.385$ $e-005 \mid$ Dipole $=0.6369102,-0.0000017,0 . \mid$ Quadrupole $=29.0449398,-48.8672075$,19.8222677,-0.0000517,0.,0.|PG=CS [SG(C2OH10N6)]।।@

Table 59. Computational output parameters for singlet TAP 51k $(\mathrm{Y}=\mathrm{F})$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H10F2N4|GAUSSIAN|21-N ov-2012|0|।\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1| C, 0.0330770451,-1.4479205167,0.|C,1.2304026763,-0.717204303, 0.|C,1.276 1789275, 0.6847373655,0.|C, -0.0045156197,1.3965567733, 0.|C, -1. 218603686 $6,0.7102943446,0 .|C,-1.2174374059,-0.6843265005,0| N,-2.3688382056,$.-1 . $3947200877,0 .|N, 0.0330340324,-2.7927166702,0| C,-1.1521428829,$. $11225,0 .|\mathrm{C},-2.4127351448,-2.7851238509,0| \mathrm{H},-3.2482664785,$. $3,0 .|\mathrm{H},-2.1593398288,1.2586405371,0 .|C,-1.1728111299,-4.8699995112,0|$. $\mathrm{C},-3.621891499,-3.4848076153,0 .|\mathrm{C},-2.3799481964,-5.5353776306,0| \mathrm{C},$.-3 . 615999328, -4. $8743150556,0 .|H,-0.2337771517,-5.4107573267,0| \mathrm{H},$. 45716,-5.4496279093, 0.|H,-4.5649614905,-2.9420484546, 0.|N, 0.0462099881 , 2.7485225084,0.|N,2.4463165659,1.3474974599,0.|C,1.2344223902,3.47191
$73885,0 .|\mathrm{C}, 2.4372643137,2.7044256745,0| \mathrm{H},-0.8258733002,3.2652900148,$. .| $\mathrm{C}, 1.2473668109,4.8688604167,0$. | C , $3.6595956859,3.4204466119,0 . \mid C, 2.45$ $93360002,5.5484890874,0 .|\mathrm{H}, 2.5072560972,6.6313037474,0| \mathrm{C},$. , 4.7987262635, 0.| $\mathrm{H}, 4.5928915996,2.8698446234,0 . \mid \mathrm{H}, 0.3103428533,5.42199$ $16875,0 .|\mathrm{H}, 2.1663328489,-1.2627457838,0| \mathrm{F},-2.3858102352,$. , 0.|F, 4. $8156295944,5.4691962092,0 .||V e r s i o n=I A 32 W-G 09 R e v C .01| S t a t e=1-A$ ' $|\mathrm{HF}=-1110.6219756| S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=1.944 e-009| R M S F=4.367 e-00$ 5 | Dipole=-3.0101265,1.7545737,0. |Quadrupole=6.4319562,-4.3286947,-2. 10 $32616,-9.4999658,0 ., 0 .|P G=C S \quad[S G(C 18 H 10 F 2 N 4)]| \mid @$

Table 60. Computational output parameters for triplet TAP 51k ($\mathrm{Y}=\mathrm{F}$).

Abstract

1|1|UNPC-CHEM40-OTNBTO7T | FOpt | UB3LYP|6-31G (d) | C18H10F2N4 (3)|GAUSSIAN|2 3-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0 , $3|C, 0.5519474704,-1.2332714509,0 .|C, 1.2301645441,0.0000000082,0| C, 0.$. $5519478585,1.2332716892,0 .|C,-0.8793138643,1.2077235875,0| \mathrm{C},$. $3955,0.0000004443,0 .|C,-0.8793142312,-1.2077229212,0| N,$.-1.5287341769 , $-2.4331079811,0 .|N, 1.2828888891,-2.3884164366,0| \mathrm{C}, 0.5972685646,$. $161049,0 .|\mathrm{C},-0.8358037686,-3.6323238893,0| \mathrm{H},-2.5391999065,$. $09,0 .|\mathrm{H},-2.6670746737,0.0000006001,0 .|\mathrm{C}, 1.3191984337,-4.780318652,0| \mathrm{C}$. ,-1.4900009553,-4.8656993627,0.|C, 0. $6402829074,-5.9812438237,0 . \mid C,-0.7$ $557773816,-6.051636431,0 .|\mathrm{H}, 2.4024201272,-4.746857876,0| \mathrm{H},$. $87,-7.0194895433,0 .|\mathrm{H},-2.5769739457,-4.9011172807,0| \mathrm{N},-1.5287334227,$. $.4331088528,0 .|N, 1.2828896231,2.3884164277,0| \mathrm{C},-0.8358026381,$. $5477,0 .|\mathrm{C}, 0.5972696647,3.5621612731,0 .|\mathrm{H},-2.5391991457,2.454065088,0|$. C, -1.4899994456, 4.8657002246, 0.|C, 1.3191999167,4.7803186379, 0.|C, - 0.75 $57755008,6.0516370645,0 .|\mathrm{H},-1.2447240263,7.0194903241,0| \mathrm{C},$. $5,5.9812440262,0 .|\mathrm{H}, 2.4024215993,4.7468575264,0| \mathrm{H},-2.5769724248,$. $1184698,0 .|\mathrm{H}, 2.314199611,-0.0000001601,0| \mathrm{F}, 1.3404899537,$. , 0.|F,1.3404921761,7.1364687098,0.||Version=IA32W-G09RevC. 01 |State=3-A ${ }^{\prime}|\mathrm{HF}=-1110.6019621| \mathrm{S} 2=2.04751|\mathrm{~S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=2.001465| \mathrm{RMSD}=6.621 \mathrm{e}-009| \mathrm{RMS}$ $\mathrm{F}=3.119 \mathrm{e}-005 \mid$ Dipole=-2.9436099,0.0000005,0.|Quadrupole=11.1774311,-8.1 $291918,-3.0482393,-0.000003,0 ., 0 .|P G=C S \quad[S G(C 18 H 10 F 2 N 4)]| \mid @$

Table 61. Computational output parameters for singlet TAP $511(\mathrm{Y}=\mathrm{OMe})$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt | UB3LYP|6-31G(d)|C20H16N4O2|GAUSSIAN|05-D ec-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1|

C, 1.2356998023, 0.8298632831,0.0000159016|C, 0.0000019223,1.4949811879,0.0000000653 |C, $-1.2356867427,0.8298462295,-0.0000160534$ । C, -1.204789040 $9,-0.6363694072,-0.0000154438 \mid C, 0.0000215315,-1.3391220234,-0.00000010$ $66|C, 1.2048223737,-0.6363527713,0.0000152501| N, 2.3978424105,-1.2733673$ $157,0.0000305172$ | N , 2. $3964530144,1.5070371096,0.0000307332$ | C, 3.56760186 33, 0.8161938585, 0.0000495877|C, 3.6212296682,-0.6104179204,0.0000489715 | H, 2. $4051301355,-2.2869857802,0.0000319659 \mid \mathrm{H}, 0.0000290588,-2.428256052$ 7, - 0.0000001227 IC, 4.7973851876, 1.5062053976, 0.000051686IC, 4. 8355122664 ,-1.2930512327,0.000066468|C, 6.0091320303, 0.8230515083,0.0000730599|C, $6.0360388488,-0.587770962,0.0000847926 \mid \mathrm{H}, 4.7857119615,2.5901630807,0.0$ $000389701|\mathrm{H}, 4.8471537641,-2.3815250646,0.0000741656| N,-2.3978002401,-1$ $.2734004328,-0.0000307298 / \mathrm{N},-2.3964493287,1.5070040617,-0.0000308693 \mid \mathrm{C}$ $,-3.6211965841,-0.6104678439,-0.0000491715 \mid C,-3.5675885897,0.816144639$ $7,-0.0000497484|\mathrm{H},-2.405073953,-2.2870189952,-0.0000322071| \mathrm{C},-4.835469$ 6691,-1.2931178411,-0.0000666908|C, -4.7973814699,1.5061392214,-0.00005 18258/C, $-6.0360060447,-0.5878541836,-0.0000850044$ IC, $-6.0091192161,0.82$ 29691374,-0.0000732296|H,-4.7857229271,2.5900970648, -0.0000390759|H, -4 $.8470959386,-2.3815918706,-0.0000744184 \mid \mathrm{H},-0.0000055468,2.5783474685,-$ $0.000000053|0,7.1313203822,1.6041003232,0.0001498872| 0,-7.1313172681,1$ $.6040047997,-0.0001500703|C, 8.3983338404,0.969709952,-0.0004614917| \mathrm{H}, 8$ $.5431782328,0.3491587378,0.8942866008 \mid \mathrm{H}, 8.5423817841,0.3493221144,-0.8$ $954476923|\mathrm{H}, 9.1355572592,1.774889092,-0.0007019414| \mathrm{C},-8.3983259524,0.9$ 696042177, 0.0004614924|H,-8.5431659149,0.3490520691,-0.8942866001|H,-8 $.542369221,0.3492154801,0.8954477549 \mid \mathrm{H},-9.1355557839,1.7747775022,0.00$ $07020415|\mathrm{H},-6.9717496699,-1.1329013131,-0.0001331492| \mathrm{H}, 6.9717906036,-1$ $.1328045762,0.0001329126| | V e r s i o n=I A 32 W-G 09 R e v C .01 \mid$ State=1-A|HF=-1141. 1981739|S2=0.|S2-1=0.|S2A=0.|RMSD=7.930e-009|RMSF=3.049e-005|Dipole=0. $0000313,-3.5714779,0.1$ Quadrupole $=22.6501808,-5.3697162,-17.2804645,0.0$ $001477,-0.0083981,0.0000004|P G=C 01[X(C 20 H 16 N 4 O 2)]| । @$

Table 62. Computational output parameters for triplet TAP $511(\mathrm{Y}=\mathrm{OMe})$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C20H16N4O2 (3)|GAUSSIAN|0 6-Dec-2012|0|।\# opt ub3lyp/6-31g(d) geom=connectivity|loptimization\| , 3|C, -1.2345029911, 0.459333678, 0.0000183228|C, 0.0000001059,1.136394710 6, -0.0000000086|C,1.2345032817, 0.4593338525,-0.0000183309|C,1.20862638 $12,-0.9730024729,-0.0000178237$ IC, $0.0000002916,-1.6709207681,-0.0000000$ 086|C,-1.208625896,-0.9730026389, 0.0000178208\|N, -2.4331002949,-1.62175 67003,0.0000360756|N,-2.3878844591,1.1912227594,0.0000350424|C,-3.5653
$003812,0.5062845666,0.0000499942$ | C , - $3.6329895263,-0.9272456237,0.00005$ $12086|\mathrm{H},-2.4544650871,-2.6320965865,0.00003465| \mathrm{H}, 0.0000003668,-2.75999$ $85516,-0.0000000086|C,-4.7782490933,1.2249245346,0.0000705013| C,-4.867$ $3387371,-1.569542762,0.0000676865$ |C, $-6.0082893526,0.57267242,0.0000846$ $167|\mathrm{C},-6.0561875397,-0.8329341832,0.0000816131| \mathrm{H},-4.7371473566,2.30829$ $17336,0.0000739261|\mathrm{H},-4.9106885947,-2.6567218654,0.000066858| \mathrm{N}, 2.43310$ $0871,-1.621756364,-0.0000360762 \mid \mathrm{N}, 2.3878846422,1.1912230896,-0.0000350$ $486|C, 3.6329900055,-0.927245123,-0.0000512006| C, 3.565300662,0.50628505$ 82,-0. $0000499889|\mathrm{H}, 2.4544658019,-2.6320962485,-0.0000346414| \mathrm{C}, 4.867339$ $3071,-1.5695420992,-0.0000676673 / C, 4.7782492735,1.2249251901,-0.000070$ 4932 | C , $6.0561880079,-0.8329333606,-0.0000815813$ | C, $6.0082896057,0.57267$ $32134,-0.0000845934|\mathrm{H}, 4.7371474051,2.3082923841,-0.0000739263| \mathrm{H}, 4.9106$ $893203,-2.6567211962,-0.000066834 \mid H, 0.0000000196,2.2204924672,-0.00000$ $00086|0,-7.1130459613,1.379994114,0.0000817731| 0,7.1130461579,1.379994$ 935,-0.0000817122|C, - $8.3917598022,0.7704422849,0.0002964056 \mid \mathrm{H},-8.54831$ $2445,0.1524362172,-0.8945000548 \mid \mathrm{H},-8.5480272597,0.1524754133,0.8951686$ $467|\mathrm{H},-9.113694347,1.5893385292,0.000389402| \mathrm{C}, 8.3917598799,0.770442889$ $8,-0.0002966542|\mathrm{H}, 8.5483126073,0.1524367611,0.8944997545| \mathrm{H}, 8.548027011$ $4,0.1524760107,-0.8951689472 \mid \mathrm{H}, 9.1136945541,1.5893390181,-0.0003897843$ $|\mathrm{H}, 7.0017794507,-1.3616131499,-0.0000835871| \mathrm{H},-7.0017788755,-1.3616141$ 37, 0.0000836444 | |Version=IA32W-G09RevC. 01 | State=3-A|HF=-1141.1783669|S $2=2.047784|S 2-1=0 .|S 2 A=2.001482| R M S D=3.986 e-009| R M S F=1.331 e-005 \mid D i p o l e$ $=0 .,-2.9565285,0.1$ Quadrupole=23.9404242,-5.9245338,-18.0158904,-0.0000 $006,-0.0033631,-0.0000004|\mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 20 \mathrm{H} 16 \mathrm{~N} 4 \mathrm{O} 2)]| \mid @$

Table 63. Computational output parameters for singlet TAP 51m $\left(\mathrm{Z}=\mathrm{NH}_{2}\right)$.
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash$ FOpt \backslash UB3LYP\6-31G(d) \C18H13N5\GAUSSIAN $\backslash 26-M a r-2013 \backslash 0 \backslash \backslash$ \# opt=tight ub3lyp/6-31g(d) geom=connectivity $\backslash \backslash o p t \backslash \backslash 0,1 \backslash c, 0.0190641255$, 0.0062903602, 0.0068291677\C, 0.0101572652, 0.0025489478, 1.4106641257\C, $1.1820279563,-0.0032775834,2.1822406831 \backslash \mathrm{C}, 2.4530429714,-0.0054381254,1$ $.4646124625 \backslash C, 2.5220442052,-0.0018818701,0.0618440439 \backslash C, 1.324041401,0$. $0038977858,-0.6608376744 \backslash \mathrm{~N}, 1.3247802619,0.0075372581,-2.0142603803 \backslash \mathrm{~N},-$ $1.1235188357,0.0118439145,-0.7021344052 \backslash \mathrm{C},-1.0633371976,0.0152955339$, $2.0604615428 \backslash C, 0.1639191518,0.0133146988,-2.7830467661 \backslash H, 2.220676063,0$ $.0059519512,-2.4875248187 \backslash C,-2.2541049657,0.0211664535,-2.8286853934 \backslash C$, 0.2057840882, 0.0169339209,-4.1794100916\C,-2.2134535703, 0.0247571975,
$-4.2130883149 \backslash \mathrm{C},-0.9845165971,0.022669654,-4.8980513056 \backslash \mathrm{H},-3.194300421$ $3,0.0227154414,-2.2864413577 \backslash \mathrm{H},-3.1416948401,0.0292422067,-4.777951250$ $5 \backslash H,-0.9609028824,0.0255118964,-5.9835014166 \backslash \mathrm{H}, 1.1661339316,0.01524376$ $05,-4.6926945338 \backslash N, 3.5862178306,-0.0110427265,2.1908777229 \backslash N, 1.1510943$ $602,-0.0067775529,3.5275255267 \backslash C, 3.5996641578,-0.0148052059,3.57721176$ $46 \backslash C, 2.3233464672,-0.0123922091,4.2149289561 \backslash H, 4.4504018832,-0.0123973$ $7,1.6531264516 \backslash C, 4.7939408467,-0.0206133266,4.3057126755 \backslash C, 2.317685582$ $8,-0.0161731292,5.6328637667 \backslash C, 4.7451365506,-0.0241726971,5.6936760752$ $\backslash H, 5.6672459009,-0.0286867156,6.2669271044 \backslash \mathrm{C}, 3.4999450224,-0.021916278$ $5,6.3520116879 \backslash \mathrm{H}, 3.468716594,-0.0247243086,7.4381732835 \backslash \mathrm{H}, 1.350588069$, -0.0143720149, $6.125497466 \backslash \mathrm{H}, 5.7468077606,-0.0222824436,3.779994609 \backslash \mathrm{H},-$ $0.9463972997,0.0042527227,1.9191587544 \backslash N, 3.8277462903,-0.0044870128,-0$ $.5377388648 \backslash \mathrm{H}, 4.0223115459,-0.8328456645,-1.096926097 \backslash \mathrm{H}, 4.0276998322,0$ $.8256205769,-1.0924131517 \backslash \backslash V e r s i o n=I A 32 L-G 03 R e v D .02 \backslash$ State=1-A $\backslash H F=-967$. $5076418 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.509 e-09 \backslash R M S F=4.728 e-07 \backslash$ Thermal $=0 . \backslash$ Dipole=2.6061416,-0.0038652,-1.6715101\PG=C01 [X(C18H13N5)]
@

Table 64. Computational output parameters for triplet TAP 51m $\left(\mathrm{Z}=\mathrm{NH}_{2}\right)$.
$1 \backslash 1 \backslash$ GINC-CHEM40\FOpt \UB3LYP $\backslash 6$-31G (d) \C18H13N5 (3) \GAUSSIAN $\backslash 31$-Mar-2013\} $0 \backslash \ \#$ opt ub3lyp/6-31g(d) geom=connectivity \} \backslash o p t \backslash \backslash 0 , 3 \backslash c , 0 . 0 6 2 1 6 8 3 4 6 6 , 0 . $0000000592,-0.0315560348 \backslash \mathrm{C}, 0.0511528018,0.0000001277,1.3771691936 \backslash \mathrm{C}, 1$. $2366784555,0.0000009871,2.1350557841 \backslash C, 2.478319635,0.0000015072,1.4275$ $695304 \backslash C, 2.5317121546,0.000001716,0.0266827106 \backslash C, 1.3298681257,0.000001$ $3604,-0.6953025588 \backslash N, 1.3167991582,0.0000021197,-2.0824625924 \backslash N,-1.1304$ 018775,-0.0000009273,-0.6998082008\C,-1.0873561601,-0.0000006119,-2.06 $1949216 \backslash C, 0.1364127075,0.0000012447,-2.8064894423 \backslash \mathrm{H}, 2.1988539466,0.000$ $006369,-2.5746506844 \backslash C,-2.2988555366,-0.0000018199,-2.7938970999 \backslash C, 0.1$ $243813182,0.0000021426,-4.2024684354 \backslash C,-2.3031327972,-0.0000010391,-4$. $1811208206 \backslash \mathrm{C},-1.0912733231,0.0000010192,-4.8876860009 \backslash \mathrm{H},-3.2207394336$, $-0.0000032538,-2.2209215909 \backslash H,-3.2454783885,-0.0000019655,-4.721151217$ $8 \backslash \mathrm{H},-1.0918796116,0.0000017142,-5.9738690994 \backslash \mathrm{H}, 1.0654421359,0.00000364$ $65,-4.74914526 \backslash N, 3.6407648114,0.0000014734,2.1719537848 \backslash N, 1.1610338407$, 0.000000736,3.4996653923\C,3.6215797694,0.000000597,3.5522575999\C, 2. $3365767365,0.0000006494,4.1902197049 \backslash \mathrm{H}, 4.5088658096,-0.0000011137,1.64$ $89408347 \backslash \mathrm{C}, 4.7947256685,-0.0000000825,4.3112423964 \backslash \mathrm{C}, 2.3068984548,0.00$ $00002678,5.6054294856 \backslash \mathrm{C}, 4.721989156,-0.0000005539,5.7040598397 \backslash \mathrm{H}, 5.639$ $0799958,-0.0000010784,6.2862810241 \backslash C, 3.4764980553,-0.0000003102,6.3508$ $116588 \backslash \mathrm{H}, 3.4290434339,-0.000000626,7.4359449231 \backslash \mathrm{H}, 1.329693107,0.000000$
$3181,6.0780381841 \backslash \mathrm{H}, 5.7590743733,-0.000000181,3.807852036 \backslash \mathrm{H},-0.9028525$ $988,-0.0000006447,1.8919681733 \backslash N, 3.8341762798,0.0000016946,-0.58718765$ $3 \backslash H, 4.0048085814,-0.8264903583,-1.1574592625 \backslash \mathrm{H}, 4.0048138498,0.82650013$ 69,-1.1574485185
Version=IA32L-G03RevD.02\State=3-A\HF=-967.4880213\S $2=2.047448 \backslash S 2-1=0 . \backslash S 2 A=2.001465 \backslash R M S D=8.739 e-09 \backslash R M S F=2.662 e-05 \backslash$ Thermal $=$ $0 . \backslash$ Dipole=1.9661463,0.0000052,-1.578621 \PG=C01 [X(C18H13N5)]
@

Table 65. Computational output parameters for singlet TAP 51n ($\mathrm{Y}=\mathrm{Br}$).

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C18H10Br2N4|USER|10-Feb-2013|0 ||\# opt ub3lyp/6-31g(d) geom=connectivity\|linear tetraazapentacene si nglet opt $\mathrm{Y}: \mathrm{Br}| | 0,1|\mathrm{C}, 1.2339501166,-0.7588086231,0.0000306134| \mathrm{C},-0.000$ $0025267,-1.4255767212,0.0000381862$ |C, $-1.2339512147,-0.7588064663,0.000$ 03636 IC, $-1.2039190979,0.7059041258,0.0000270382$ IC, $0.0000005971,1.40944$ 52149,0.0000188962|C,1.2039178672,0.7059030297,0.0000200581|N, 2. 397599 $1081,1.3444289827,0.0000095236 / \mathrm{N}, 2.3966228371,-1.4347917825,0.00003252$ 61IC, 3.562472648,-0.7410908181, 0.0000242221|C,3.6197555747, 0.682633514 , 0.0000117751|H,2.4042907599,2.3582126715, 0.0000034021|H, 0.0000007633, $2.4982428538,0.0000114204$ IC, 4.7979705262,-1.4370230304, 0.0000255235 IC, $4.8340833561,1.3730972005,0.0000016083$ IC, $5.988566401,-0.7369592576,0.0$ 000166431 IC, $6.0305837254,0.6674690511,0.000004057 \mid H, 4.7719533999,-2.52$ $00083831,0.0000329612|\mathrm{H}, 6.9809916689,1.1874092466,-0.0000056714| \mathrm{H}, 4.84$ 2999034, 2.4612963079,-0.000008973|N, -2.3975979761,1.3444320682, 0.00002 72611 IN, $-2.3966285594,-1.4347883089,0.0000427125$ IC,-3.6197558729,0.682 6396723,0.0000348347|C,-3.562473854,-0.7410854801,0.000041209| $\mathrm{H},-2.404$ $2869093,2.3582159276,0.0000220329$ IC, $-4.8340823082,1.3731068165,0.00003$ 45395 IC, $-4.7979762442,-1.4370143675,0.0000500984$ IC, $-6.0305837335,0.667$ 4823071, 0.0000401687|н, $-6.9809915509,1.1874225339,0.0000375535$ IC, -5.98 85685426,-0.7369476012,0.0000514975|H,-4.7719608231,-2.5199998469,0.00 $00536425|\mathrm{H},-4.8429933996,2.4613060265,0.0000284178| \mathrm{H},-0.000002725,-2.5$ $088530904,0.0000456386|\mathrm{Br},-7.6431659352,-1.6976107129,0.000053954| \mathrm{Br}, 7$ $.6431591095,-1.6976293008,0.0000204891$ \|Version=IA32W-G09RevC.01|State $=1-A|H F=-6054.3652466| S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=6.454 e-009| R M S F=2.341 e$ -005 | Dipole=0.0000149,3.6064227,-0.0000251|Quadrupole=-15.3623657,18.0 677607,-2.7053949,0.000017,0.0000093,-0.000131|PG=C01 [X(C18H10Br2N4)] 1 \| @

Table 66. Computational output parameters for triplet TAP 51n $(\mathrm{Y}=\mathrm{Br})$. $1|1|$ UNPC-USER-TOSH | FOpt | UB3LYP | 6-31G (d) | C18H10Br2N4 (3) | USER|10-Feb-201 3|0||\# opt ub3lyp/6-31g(d) geom=connectivity||linear tetraazapentacene triplet opt $Y: \operatorname{Br}| | 0,3|C,-1.2332278695,-0.152175984,0.00000207| C,-0.00$ $00003015,-0.8309793842,-0.0000061353 \mid C, 1.2332273503,-0.1521762056,-0.0$ 000050686 |C, 1. $2073656764,1.2793163068,0.0000047657$ | C, $0.0000000023,1.97$ 82739989, 0.0000130342 | C, -1.2073658172, 1.2793165737, 0.0000117973|N, -2. 4 $337328595,1.9294766077,0.0000199603 / N,-2.3878741052,-0.8821860627,0.00$ $00003707|C,-3.5615073061,-0.1936979299,0.0000084492| C,-3.6306846512,1$. $2373170454,0.0000185159|\mathrm{H},-2.4545195704,2.9400820203,0.0000261079| \mathrm{H}, 0$. $0000001089,3.0670568763,0.0000204684$ | C, $-4.779391154,-0.9161453824,0.00$ $00069688|\mathrm{C},-4.8654233576,1.8891136188,0.000026533| \mathrm{C},-5.9897432807,-0.2$ $45793854,0.0000150432$ | C, $-6.049817215,1.1535611427,0.0000248627 \mid \mathrm{H},-4.72$ $58449833,-1.9983000238,-0.0000006116 \mid \mathrm{H},-7.0086439235,1.6590349845,0.00$ $00311387|\mathrm{H},-4.9043886235,2.9761016648,0.0000341377| \mathrm{N}, 2.433732862,1.929$ $4760935,0.0000056707|N, 2.3878735162,-0.8821866045,-0.0000133185| C, 3.63$ $0684493,1.2373162579,-0.0000023718 \mid C, 3.5615067871,-0.1936987213,-0.000$ $0118988|\mathrm{H}, 2.454519771,2.9400815007,0.0000121503| \mathrm{C}, 4.8654233486,1.88911$ 25525,-0.0000013887|C, 4.7793905403,-0.9161464342,-0.0000201088|C, 6.049 $8170412,1.1535598287,-0.0000095845 / \mathrm{H}, 7.0086438728,1.6590334326,-0.0000$ $087618|\mathrm{C}, 5.9897427794,-0.2457951798,-0.0000188583| \mathrm{H}, 4.7258440945,-1.99$ $83010631,-0.0000272629|\mathrm{H}, 4.9043888315,2.9761005918,0.0000058334| \mathrm{H},-0.0$ $000003851,-1.9149836837,-0.0000135313 \mid \operatorname{Br}, 7.6224605082,-1.2416266096,-0$ $.0000298828|\mathrm{Br},-7.6224611847,-1.2416249748,0.0000129056| \mid V e r s i o n=I A 32 W$ -G09RevC. 01 |State=3-A|HF=-6054.3462766|S2=2.048487|S2-1=0.|S2A=2.00153 $|\mathrm{RMSD}=5.490 \mathrm{e}-009| \mathrm{RMSF}=2.571 \mathrm{e}-005$ | Dipole=0.0000002,3.0752434,0.0000203| Quadrupole=-13.4727071,16.9190396,-3.4463325,0.0000032,0.0000285,0.000 $134|\mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 10 \mathrm{Br} 2 \mathrm{~N} 4)]| \mid @$

Table 67. Computational output parameters for singlet TAP $510(\mathrm{Y}=\mathrm{Me})$.

```
1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C20H16N4|GAUSSIAN|25-Nov
-2012|0||# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1|C,
0.027328467,-1.4461757861,0.0000002912|C,1.2245605419,-0.713783225,0.0
000004911|C,1.2718408881,0.6889034431,0.0000001878|C,-0.009320265,1.39
98470901,-0.0000004194|C,-1.2232223291,0.7130022415,-0.0000006457|C,-1
.2226538419,-0.6817444172,-0.0000002792|N,-2.3754536862,-1.3905576817,
-0.0000004024|N,0.0250062552,-2.7909128433,0.0000006334|C,-1.163198619
```

$2,-3.4512151559,0.0000004381 \mid C,-2.4202556661,-2.7807876387,-0.00000007$ 11|H,-3.2543919867,-0.8854539358,-0.0000007104|H,-2.1641051478,1.26143 23365,-0.0000010775|C,-1.1929952658,-4.8659265238, 0.0000010499|C,-3.62 $56202038,-3.4839218554,0.0000001434$ IC, $-2.3849550348,-5.5811031772,0.00$ 00010077 IC, $-3.6060872082,-4.8737650787,0.0000007971 \mid \mathrm{H},-0.2335264322,-5$ $.3757593192,0.0000016968|\mathrm{H},-4.5442168936,-5.4218521682,0.0000011902| \mathrm{H}$, $-4.5708361381,-2.9435818699,0.0000001715 / \mathrm{N}, 0.0393407456,2.752251519,-0$ $.0000007304|N, 2.4408035844,1.3536179766,0.0000004758| C, 1.2269557554,3$. 4763485515,-0.0000004483|C,2.4298047556, 2.7129236967, 0.0000001904|H, -0 $.8333160971,3.2681316138,-0.0000011558$ IC, 1. $2447705165,4.8716930653,-0$. 000000715 IC, $3.64611685,3.436027629,0.0000005512$ IC, $2.4637534225,5.53961$ 88313,-0.0000003432|H,2.4783516688, 6.6260229703, - 0.0000005259 | C , 3. 6810 156126,4.825642041, 0.0000002873|H, 4.562574212, 2. $8524047541,0.000001075$ 6|H, 0.3087930026,5.4278820909,-0.0000011728|H,2.1605385678,-1.25935218 87, 0.0000009516|C,5.0028312297,5.5608761331, 0.0000005107|H, 5.602751323 $1,5.3042704549,0.8818687537|\mathrm{H}, 5.6027497768,5.3042737663,-0.881869769| \mathrm{H}$, 4.8576510349, 6. $6460410488,0.0000026302$ IC, $-2.373313113,-7.0935958083,-$ $0.000000649|\mathrm{H},-1.8544126509,-7.4891533442,-0.8818843667| \mathrm{H},-1.854364359$ $1,-7.4891549689,0.8818536845 \mid \mathrm{H},-3.3891034719,-7.5020437073,0.000026272$ 7||Version=IA32W-G09RevC.01|State=1-A|HF=-990.7918974|S2=0.|S2-1=0.|S2 $\mathrm{A}=0 .|\mathrm{RMSD}=2.705 \mathrm{e}-009| \mathrm{RMSF}=3.873 \mathrm{e}-005 \mid$ Dipole $=-2.3893117,1.3927032,-0.00$ 00023 |Quadrupole $=4.6157945,6.7063035,-11.3220981,1.84557,0.0000093,0.0$ $000107 \mid \mathrm{PG}=\mathrm{CO}$ [X(C2OH16N4)]|।@

Table 68. Computational output parameters for triplet TAP 510 $(\mathrm{Y}=\mathrm{Me})$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C20H16N4 (3)|GAUSSIAN|26-Nov-2012|0।|\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 |C, -1.2345062895, 0.5145654258,-0.0000000986|C, -0.0000001104,1.19177263 , -0.0000003539 |C, 1.2345062737, 0.5145657837, 0.000000081|C,1.2083192598, $-0.9174616951,0.0000009057$ IC, $0.0000002748,-1.6153989056,0.0000011719$ |C , -1.2083189099,-0.9174620264,0.0000006344|N,-2.433947202,-1.567513829, $0.0000006569 / \mathrm{N},-2.3888761647,1.2449227122,-0.0000006258 \mid \mathrm{C},-3.565481471$ $5,0.5566130277,-0.0000004277$ IC, $-3.6323697063,-0.8743284242,0.000000171$ $3|\mathrm{H},-2.4550293621,-2.5779654514,0.0000011982| \mathrm{H}, 0.0000004243,-2.7044488$ $414,0.0000017432|C,-4.784470396,1.2717684949,-0.0000012171| C,-4.867642$ $6888,-1.5203390707,-0.0000002772$ IC, $-6.022384534,0.6338762982,-0.000001$ 3055 IC, $-6.0459696455,-0.7722438345,-0.0000011654 \mid \mathrm{H},-4.7122576848,2.355$ 987202,-0.0000019908|H,-7.0010191032,-1.2914111391,-0.0000018399|н, -4.
$9093941904,-2.6077677598,-0.0000004306 / N, 2.4339477305,-1.5675131567,0$. 0000014052 IN, $2.3888759231,1.2449233633,-0.0000003582$ IC, 3. $6323700496,-0$. $8743274211,0.0000008588|\mathrm{C}, 3.5654814409,0.5566139991,-0.0000000215| \mathrm{H}, 2$ $.4550301754,-2.577964773,0.0000017532$ IC, $4.867643207,-1.5203377385,0.00$ 00011217 IC, $4.7844701543,1.2717698088,-0.0000006336$ IC, $6.0459699587,-0.7$ 722421762, 0.0000004943|н, 7.0010195561, -1.2914092238, 0.0000006723।C, 6.0 $223844684,0.6338779477,-0.00000038431 \mathrm{H}, 4.7122571459,2.3559884952,-0.00$ $00013552|\mathrm{H}, 4.909395003,-2.607766416,0.0000017732| \mathrm{H},-0.0000002813,2.275$ 87727,-0.0000009665IC,7.3053795867,1.4336793423,-0.0000008846|H, 7. 3735 $450805,2.0826422726,-0.8818588897 \mid \mathrm{H}, 7.3735473645,2.0826397381,0.881858$ 8318|H, 8.1832358688, 0.7795730052,-0.0000029139|C, -7.3053798706,1.43367 73404, 0.0000007213|н,-7.3735607967,2.0826142271, 0.8818768657|н, -7.3735 $325654,2.0826637394,-0.881840855 \mid \mathrm{H},-8.1832359704,0.7795707589,-0.00003$ 10652 ||Version=IA32W-G09RevC.01|State=3-A|HF=-990.7735118|S2=2.048024| $S 2-1=0 .|S 2 A=2.001502| R M S D=6.025 e-009|R M S F=2.539 e-005|$ Dipole=0.0000003, $-2.1813189,0.0000023 \mid$ Quadrupole $=9.0509243,3.0888228,-12.1397472,0.0000$ 009,-0.0000156,-0.0000042|PG=C01 [X(C20H16N4)]।।@

Table 69. Computational output parameters for singlet TAP 51p (Parent, $X=Y=H$).
$1 \backslash 1 \backslash G I N C-C H E M 39$ \FOpt \UB3LYP\6-31G(d) \C18H12N4\GAUSSIAN $\backslash 30-M a r-2005 \backslash 0 \backslash \backslash$ \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY
linear tetraazapentacene sing let opt $\backslash \backslash 0,1 \backslash C,-1.2528558666,0.0129572165,-0.733033554 \backslash C,-1.260464853$, $0.059809258,0.6694929408 \backslash C,-0.0927583804,0.0509127021,1.4477219502 \backslash C, 1$ $.184938623,-0.0108523184,0.7343987626 \backslash C, 1.2396907557,-0.0587493703,-0$. $6584541693 \backslash C, 0.0536396632,-0.0478188963,-1.3922571923 \backslash \mathrm{~N}, 0.057480505,-0$ $.0928432951,-2.7450057771 \backslash N,-2.394377934,0.0232665779,-1.4440136966 \backslash C$, $-2.3299635568,-0.0237125654,-2.8002851627 \backslash C,-1.0999667208,-0.084068620$ $5,-3.5166205581 \backslash \mathrm{H}, 0.9493831438,-0.135322958,-3.2250393998 \backslash \mathrm{H}, 2.20060400$ $76,-0.104295169,-1.1688178197 \backslash C,-3.5183818178,-0.0140687879,-3.5729462$ $099 \backslash C,-1.0541618489,-0.1318033436,-4.9128488099 \backslash C,-3.4730062358,-0.061$ $3237118,-4.9556852368 \backslash \mathrm{C},-2.2414234158,-0.1204935844,-5.6348807339 \backslash \mathrm{H},-4$ $.4596147951,0.0316683754,-3.0345122067 \backslash \mathrm{H},-4.3986047331,-0.0526601541,-$ $5.5247268829 \backslash \mathrm{H},-2.2146399048,-0.1575421036,-6.7196083267 \backslash \mathrm{H},-0.09295764$ 85,-0.1774093012,-5.4221744177\N, 2.3092477233,-0.0193098487,1.48791111 $36 \backslash N,-0.1414988707,0.0970223816,2.7909380473 \backslash C, 2.3018903444,0.02709672$ 89, 2. $8782226512 \backslash$ C, $1.0196057237,0.0858694878,3.4962587399 \backslash$ н, 3.206370292 $6,-0.0616605872,1.0176903558 \backslash C, 3.485771681,0.0165384187,3.6213028547 \backslash C$ $, 0.9958102193,0.1336615777,4.9128396729 \backslash C, 3.4206114635,0.0644519862,5$.
$0085569873 \backslash \mathrm{H}, 4.3354358466,0.056469174,5.5931578382 \backslash \mathrm{C}, 2.1682442052,0.12$ $3085627,5.6487187061 \backslash \mathrm{H}, 2.1225391645,0.1603502718,6.7336794412 \backslash \mathrm{H}, 0.0226$ $484688,0.1784115552,5.3912500725 \backslash \mathrm{H}, 4.445959627,-0.029050689,3.11005876$ $02 \backslash \mathrm{H},-2.2164033341,0.1051400494,1.1772249426 \backslash$ VVersion=x86-Linux-G03Rev B. $05 \backslash$ State=1-A $\backslash H F=-912.156554 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.297 e-09 \backslash R M S F$ $=6.758 e-06 \backslash$ Dipole=2.5714359,-0.1221197,-1.3658341 \PG=C01 [X(C18H12N4)] $\backslash \backslash @$

Table 70. Computational output parameters for triplet TAP 51p (Parent, $X=Y=H$).
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 18 H 12 N 4(3) \backslash G A U S S I A N \backslash 05-A p r-2005 \backslash$ $0 \backslash \ \#$ OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY
linear tetraazapentacene t riplet opt $\backslash \backslash 0,3 \backslash C,-1.1969543973,0.0113921502,-0.7615956203 \backslash \mathrm{C},-1.215456$ 9905, 0.0592382884, 0.6453716938\C, $-0.0380900278,0.04887439,1.4173696551$ $\backslash C, 1.212931819,-0.0130293139,0.7235926192 \backslash C, 1.2617920333,-0.0613861362$ $,-0.6700217602 \backslash C, 0.078524378,-0.0497285871,-1.4093937742 \backslash N, 0.076745655$ $5,-0.096305781,-2.7965378171 \backslash N,-2.3830000069,0.0252086296,-1.439269207$ $2 \backslash C,-2.3271307872,-0.0222357704,-2.8000143777 \backslash C,-1.0964804958,-0.08475$ $47194,-3.5307076193 \backslash \mathrm{H}, 0.9588292177,-0.1399972703,-3.2880391591 \backslash \mathrm{H}, 2.222$ $7473795,-0.1081290102,-1.1802546964 \backslash C,-3.5314479206,-0.010044021,-3.54$ $36684737 \backslash C,-1.096380157,-0.1316286186,-4.9265137993 \backslash C,-3.5231368838,-0$ $.0567625037,-4.9297917731 \backslash \mathrm{C},-2.3048574377,-0.117705859,-5.6231416149 \backslash \mathrm{H}$ $,-4.4578149873,0.0379488682,-2.9800059713 \backslash \mathrm{H},-4.4598182251,-0.046194886$ $2,-5.4794502046 \backslash \mathrm{H},-2.2954412882,-0.1542622364,-6.7086807956 \backslash \mathrm{H},-0.15101$ $46416,-0.1788024706,-5.4634295673 \backslash N, 2.3625083196,-0.0223573481,1.50125$ $97612 \backslash \mathrm{~N},-0.1395880821,0.0977927382,2.7788262015 \backslash \mathrm{C}, 2.3149718148,0.02534$ $1021,2.8836848755 \backslash C, 1.020342749,0.0859988663,3.4939950015 \backslash \mathrm{H}, 3.26374800$ $96,-0.0657155776,1.0458055271 \backslash C, 3.47276811,0.0155150828,3.6645701411 \backslash C$ $, 0.9633223518,0.1352987727,4.9074716008 \backslash C, 3.3743894522,0.0651261036,5$. $0551798758 \backslash \mathrm{H}, 4.2800346637,0.0571411089,5.6548226527 \backslash \mathrm{C}, 2.1175995382,0.1$ $251403718,5.6761512352 \backslash \mathrm{H}, 2.049387583,0.1637903463,6.7594045956 \backslash \mathrm{H},-0.02$ $25616136,0.1809897191,5.3592933393 \backslash H, 4.4470490275,-0.0308906357,3.1820$ $122185 \backslash \mathrm{H},-2.1720492195,0.1058572672,1.1533421798 \backslash \backslash$ Version=x86-Linux-G0 $3 R e v B .05 \backslash$ State $=3-A \backslash H F=-912.1383063 \backslash S 2=2.04819 \backslash S 2-1=0 . \backslash S 2 A=2.001513 \backslash$ RMS $D=3.043 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.402 \mathrm{e}-05 \backslash \mathrm{Dipole}=2.0638404,-0.1004567,-1.0958547 \backslash \mathrm{PG}=\mathrm{C}$ $01[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 12 \mathrm{~N} 4)] \backslash \backslash @$

Table 71. Computational output parameters for singlet TAP 51q ($\mathrm{Z}=\mathrm{C} \equiv \mathrm{N}$).

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C19H11N5|USER|09-Feb-2013|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1|C,-1.0313583 169,-1.2379081739,0.|C,-1.6948492414,0.0000000817,0.|C, -1.0313582248,1 $.2379082756,0 .|C, 0.4265142829,1.2208852328,0| C, 1.1400641936,$. 239,0.|C, 0.426514131,-1.220885109,0.|N,1.0663110611,-2.4037843035,0.|N ,-1.7078813544,-2.4010989301, 0.|C,-1.0176656227,-3.5695688887,0.|C,0.4 $056351873,-3.6281425298,0 .|H, 2.0828965717,-2.4039726209,0| \mathrm{C},$. 4195,-4.808565093,0.|C,1.1041935122,-4.8393458189,0.|C,-1.0172341515,$6.0070129915,0 .|C, 0.3917891597,-6.0308365235,0| \mathrm{H},-2.7923240783,$. $9499925,0 .|\mathrm{H},-1.5671721548,-6.9439641165,0| \mathrm{H}, 0.9227823529,$. 07,0.|H,2.1923925437,-4.838484191,0.|N,1.0663114747,2.403784399,0.|N,$1.7078812877,2.4010993736,0 .|C, 0.4056357772,3.6281429234,0| C,$. $52466,3.5695695088,0 .|H, 2.0828970615,2.4039725074,0| C, 1.1041942811,4.$. 839346295,0.|C,-1.7077260079,4.8085659632,0.|C, 0.3917899797, 6. 03083723 $41,0 .|\mathrm{H}, 0.9227833366,6.9775802371,0 .|\mathrm{C},-1.0172334495,6.0070138981,0| \mathrm{H}$. ,-1.5671713463,6.9439651453,0.|H,-2.7923237745,4.7739509437,0.|H,2.192 3933695, 4.838484529,0.|H,-2.7780259821,0.0000001964,0.|C,2.5596491189, $0.0000006102,0 .|N, 3.7272942634,-0.0000026448,0 .| | V e r s i o n=I A 32 W-G 09 R e v C$.01|State=1-A'|HF=-1004.4051539|S2=0.|S2-1=0.|S2A=0.|RMSD=5.942e-009|R MSF=2.969e-005|Dipole=1.13725,0.0000006,0.|Quadrupole=-11.3731187,18.5 672272,-7.1941085,0.0000134,0.,0.|PG=CS [SG(C19H11N5)]|।@

Table 72. Computational output parameters for triplet TAP 51q $(Z=C \equiv N)$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C19H11N5 (3)|GAUSSIAN|17-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 |C, 0.9541708682,-1.237807526, 0.|C, 1. $6278209379,0.0000014747,0 . \mid C, 0.954$ 1702086,1.2378102014,0.|C,-0.4735807463,1.2234339817,0.|C,-1.179569504 $4,0.0000011717,0 .|C,-0.4735801168,-1.2234317591,0| N,-1.1237728094,$.-2 . $438357182,0 .|N, 1.6866602667,-2.3893131271,0| C, 1.0011279041,$. 534, 0.|C, - $0.4282445518,-3.6386824332,0 . \mid H,-2.13655086,-2.4542046431,0$. |C,1.7191625743,-4.7870487985,0.|C,-1.0854318367,-4.8695545282,0.|C,1. $0605046261,-6.007140209,0 .|C,-0.3422929434,-6.0499735997,0| \mathrm{H},$. 4551,-4.7228935409, 0.|H,1.6303917994,-6.9315503522,0.|H,-0.8590049894, $-7.0051454406,0 .|\mathrm{H},-2.1726899588,-4.9008089338,0| N,-1.1237743589,$. 83588286, 0.|N, 1. $6866587428,2.3893162697,0 . \mid C,-0.4282468243,3.638684438$
$4,0 .|C, 1.0011256874,3.5675798791,0 .|\mathrm{H},-2.1365524652,2.4542052689,0|$.C , $-1.0854348542,4.8695561324,0 .|C, 1.7191596872,4.7870520118,0| C,$. 966077, 6.0499755946, 0.| $\mathrm{H},-0.8590092128,7.0051471282,0 . \mid \mathrm{C}, 1.0605010033$, $6.0071430251,0 .|\mathrm{H}, 1.6303876355,6.9315535001,0| \mathrm{H}, 2.8025686099,$. 3762,0.| $\mathrm{H},-2.1726929948,4.9008098968,0 .|\mathrm{H}, 2.7119195506,0.00000171,0|$. , $-2.6018927597,0.0000026429,0.1 N,-3.768839163,-0.0000094054,0 . \mid । V e r s i o$ $\mathrm{n}=\mathrm{IA} 32 \mathrm{~W}-\mathrm{G} 09 \mathrm{RevC} .01 \mid$ State=3-A'|HF=-1004.3872358|S2=2.049781|S2-1=0.|S2A $=2.001607|R M S D=8.074 \mathrm{e}-009| \mathrm{RMSF}=2.182 \mathrm{e}-005 \mid$ Dipole $=-0.53852,0.0000042,0$. | Quadrupole=-11.3753205,19.5575987,-8.1822782,-0.0000539,0.,0.|PG=CS [SG(C19H11N5)] \| \|

Table 73. Computational output parameters for singlet TAP 51r $\left(\mathrm{Y}=\mathrm{CF}_{3}\right)$.

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C20H10F6N4|USER|07-Feb-2013|0| |\# opt ub3lyp/6-31g(d) geom=connectivity||tolyl Y:CF3||0,1|C,1.2337300 $479,1.9359276832,-0.005130224 \mid C,-0.0000001043,2.603057888,-0.000000230$ 8|C,-1.23373019,1.9359276246,0.0051301421|C,-1.2035100779,0.4717096623 , 0.0.0065152337|C, $-0.0000000448,-0.2322161484,0.0000005786 \mid C, 1.203509972$ $3,0.4717097301,-0.0065144697 \| N, 2.3970342443,-0.1681358797,-0.014397453$ $5 \mid N, 2.3974051085,2.6104712319,-0.0085251065$ IC, $3.5624536645,1.915216458$ $1,-0.0140538946$ IC, $3.6189162466,0.4925152596,-0.0186393497 \mid \mathrm{H},-0.0000000$ $29,-1.3209299757,0.0000008964$ IC, $4.7999119047,2.6060254814,-0.016011068$ $4|C, 4.8325726002,-0.2025327038,-0.0290111879| C, 5.9984500582,1.91437551$ 55,-0.0248921324|C, 6.0245964852, 0.504435906,-0.032785835|H, 4.770648397 $1,3.6891490924,-0.0134452125 \mid \mathrm{H}, 4.8362030067,-1.2906034707,-0.036958568$ $8|N,-2.3970343231,-0.1681359846,0.0143985864| N,-2.3974052864,2.6104712$ $25,0.0085246308$ IC, $-3.6189163566,0.4925151295,0.0186400863 \mid C,-3.5624538$ $179,1.915216325,0.0140538082$ | $C,-4.8325726903,-0.2025328535,0.029012311$ 2 IC, $-4.7999120589,2.6060253418,0.0160105742$ IC, $-6.0245965942,0.50443574$ 86, 0.0327865391|C, $-5.9984502087,1.9143753463,0.0248920255 \mid \mathrm{H},-4.7706485$ $345,3.6891489566,0.0134440967 \mid \mathrm{H},-4.8362030831,-1.290603619,0.036960322$ $1|\mathrm{H},-0.0000001608,3.6863035867,-0.0000005446| \mathrm{H}, 6.9727155937,-0.0217964$ 457, - 0.0476121893|H,-6.9727156869,-0.0217966319, 0.0476131878।C, 7. 30980 $2767,2.6507857836,0.0169217849 / C,-7.3098029339,2.6507855649,-0.0169223$ $216|F, 8.1866372174,2.1497749573,-0.8860135655| F, 7.9027366133,2.5374456$ $4,1.2298030384|\mathrm{~F},-7.1736020253,3.9673125746,0.2385956653| \mathrm{F},-7.90273677$ $4,2.5374447512,-1.2298035178|F, 7.1736018151,3.9673126435,-0.238596927|$ F,-8.1866374066,2.1497752263,0.88601328|H,2.4029959576,-1.1820429803,$0.0164827311 \mid \mathrm{H},-2.4029960215,-1.1820430911,0.0164844529$ |।Version=IA32W
-G09RevC. $01 \mid$ State $=1-A|H F=-1586.2315551| S 2=0 .|S 2-1=0 .|S 2 A=0| R M S D=1.781$. $e-009|\operatorname{RMSF}=1.464 e-006|$ Dipole $=0.0000012,-3.8363199,0.0000012 \mid$ Quadrupole $=-25.8905291,22.666732,3.2237971,-0.0000004,-0.8397381,-0.000006 \mid \mathrm{PG}=\mathrm{C} 0$ 1 [X(C20H10F6N4)]||@

Table 74. Computational output parameters for triplet TAP 51r $\left(\mathrm{Y}=\mathrm{CF}_{3}\right)$.

Abstract

1|1|UNPC-USER-TOSH|FOpt | UB3LYP|6-31G (d) | C20H10F6N4 (3) |USER|08-Feb-2013 |0||\# opt ub3lyp/6-31g(d) geom=connectivity||Y:CF3||0,3|C,1.23341481,1 $.8516930654,-0.0065719653|C,-0.0000000954,2.5311071774,-0.0000001792| C$, -1.233414981,1.8516930198, 0.0065720155 | C , $-1.206881132,0.4199386158,0$. 0052817497 |C, - $0.0000000403,-0.2790823888,0.0000006773 \mid C, 1.2068810182,0$ $.4199386605,-0.0052808296|N, 2.4339059327,-0.2308536583,-0.0098292403| N$, 2 . $3874935838,2.5800394399,-0.0143021652$ | C, $3.5627474414,1.8896400356,-$ $0.0194579642|\mathrm{C}, 3.6293783678,0.4589648678,-0.0174656088| \mathrm{H},-0.000000024$, $-1.3678263636,0.0000010048|C, 4.780720395,2.6053267747,-0.0309685139| C$, $4.8632807871,-0.1974126051,-0.0270180635$ | C, $6.001192402,1.9424508646,-0$ $.040203974|\mathrm{C}, 6.0436630801,0.5390008817,-0.0379324851| \mathrm{H}, 4.724613188,3.6$ $878830793,-0.0390450745|\mathrm{H}, 4.8970140236,-1.284435271,-0.0308135735| \mathrm{N},-2$ $.433906019,-0.2308537453,0.0098305261 \mid N,-2.3874937739,2.5800393569,0.0$ $143017446|C,-3.6293784826,0.4589647368,0.0174664549| C,-3.5627476123,1$. $8896399086,0.0194579369 \mid C,-4.8632808728$, - $0.1974127773,0.0270192723 \mid C$, $4.7807205845,2.6053266041,0.0309680026 \mid C,-6.0436631999,0.5390006735,0$. 0379331753 | C, $-6.0011925754,1.9424506513,0.0402038071 \mid \mathrm{H},-4.7246134274,3$ $.6878829172,0.0390439014|\mathrm{H},-4.8970140726,-1.284435441,0.030815449| \mathrm{H},-0$ $.000000124,3.6150937107,-0.0000005133 \mid \mathrm{H}, 6.9997725564,0.0274351166,-0.0$ $541962094|\mathrm{H},-6.999772655,0.0274348806,0.0541971612| \mathrm{C}, 7.2863865578,2.72$ $04622437,0.0064176332|C,-7.2863867139,2.7204620258,-0.0064184041| F, 8.2$ $797635292,2.0821532857,-0.6563519498 \mid F, 7.7223357716,2.8994124619,1.276$ $9210572|\mathrm{~F},-7.1573850279,3.9484436306,0.5393856785| \mathrm{F},-7.7223352822,2.89$ $94123112,-1.2769220342|F, 7.157384629,3.9484438505,-0.5393863641| F,-8.2$ $797640296,2.082153082,0.656350669 \mid \mathrm{H}, 2.4541316837,-1.2416475214,-0.0109$ $724773 \mid \mathrm{H},-2.4541317356,-1.2416476083,0.0109743665$ | |Version=IA32W-G09Re vC. 01 |State=3-A|HF=-1586.2137442|S2=2.048272|S2-1=0.|S2A=2.001511|RMSD $=6.262 e-009|R M S F=1.244 e-005|$ Dipole=0.,-3.3705176,0.0000011|Quadrupole= $-23.862748,21.3478245,2.5149235,0.0000002,-1.0179927,-0.0000058 \mid \mathrm{PG}=\mathrm{C} 01$ [X(C20H10F6N4)]||@

Table 75. Computational output parameters for singlet TAP 51s $(X=B r)$.

Abstract

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G (d)|C18H10Br2N4|GAUSSIAN|19-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1 |C,0.035883994,-1.4493410705,0.|C,1.2334004123,-0.7189506913,0.|C,1.27 87967707,0.6829962664,0.|C,-0.0009215719,1.3940106435,0.|C,-1.21504344 $78,0.7082159968,0 .|C,-1.2134507608,-0.6862033476,0| N,-2.3679372954,$. $.3945689776,0 .|N, 0.0330564012,-2.794849374,0| C,-1.1533099882,$. 56511, 0.| $\mathrm{C},-2.4119507657,-2.7837765396,0 . \mid \mathrm{H},-3.2466247772,-0.888911030$ 6,0.|H,-2.1556735361,1.2564971176,0.|C,-1.1860680865,-4.869345489,0.|C $,-3.6257336466,-3.4753179053,0 .|C,-2.381433284,-5.5657590128,0| C,$. $976816976,-4.8627919328,0 .|H,-0.2343796149,-5.3905983378,0| H,$. 29181,-6.6500509311,0.|н,-4.5712951907,-2.9408398585, 0.|N, 0.046517783, $2.7476621908,0 .|N, 2.4481811237,1.3485315717,0| C, 1.233631565,$. 81,0.|C,2.4353587071,2.7046918735,0.|H,-0.8264989287,3.263048879,0.|C, $1.2372088914,4.8675261383,0 .|C, 3.6524901747,3.4316635955,0| C,$. 9834,5.52687289, 0.|C, 3. $6693834597,4.8149941383,0 . \mid H, 4.6095670019,5.355$ $1692363,0 .|H, 4.5750511328,2.8604397175,0| H, 0.3061605886,5.426902504,$. .$|\mathrm{H}, 2.1693222074,-1.2644856975,0 .|\mathrm{Br},-5.2435395366,-5.8303130198,0| \mathrm{Br}$. , 2.4891195599,7.4357988766, 0.||Version=IA32W-G09RevC.01|State=1-A'|HF= $-6054.3654864|S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=1.990 e-009| R M S F=2.182 e-005| D i p$ ole=-1.9157573,1.116674,0.|Quadrupole=4.7385409,-5.6427092,0.9041683,9.164932,0.,0.|PG=CS [SG(C18H10Br2N4)]|।@

Table 76. Computational output parameters for triplet TAP 51s $(\mathrm{X}=\mathrm{Br})$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H10Br2N4 (3)|GAUSSIAN| 20-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization|| $0,3|C,-1.19797069,1.2331994774,0 .|C,-1.8764487833,0.00000017,0| C,-1.1$. 979706437,-1.2331991317,0.|C, 0.2334336517,-1.2072654762,0.|C, 0.9323472 906, 0.0000002329,0.|C, 0.2334335887,1.2072659233,0.|N, 0.8850225527, 2. 43 36447695,0.|N,-1.9267424818,2.388655585,0.|C,-1.2381797418, 3. 562034762 6, 0.|C, 0. $1935730625,3.6303724075,0 .|\mathrm{H}, 1.8956663267,2.4535781338,0| \mathrm{H},$. $.0211301076,0.0000002534,0 .|C,-1.9501481449,4.784943253,0| C,$. $263,4.8595828215,0 .|C,-1.2985966459,6.0089512102,0| C, 0.1009264868,$. $3235128,0.1 \mathrm{H},-3.0338139092,4.7277289957,0 . \mid \mathrm{H},-1.8579440796,6.937311757$ $7,0 .|\mathrm{H}, 1.9388751077,4.9047542441,0 .|N, 0.8850226749,-2.4336442877,0|$.$N ,$ $-1.9267423503,-2.3886552439,0 .|C, 0.1935732489,-3.6303719639,0| C,$.
$81795445,-3.5620344132,0 .|H, 1.8956664498,-2.453577613,0| C,$. $8,-4.8595823464,0 .|C,-1.9501478877,-4.7849429225,0| C, 0.100926809,$. $323508326,0 .|\mathrm{C},-1.2985963209,-6.0089508511,0| \mathrm{H},-1.8579436991,$. $14314,0 .|\mathrm{H},-3.0338136552,-4.7277287266,0| \mathrm{H}, 1.9388753731,$.-4.904753704 , $0 .|\mathrm{H},-2.9604739513,0.00000016,0 .|\mathrm{Br}, 1.0097020308,7.7099962979,0| \mathrm{Br}, 1.$. $0097024514,-7.7099958115,0 .||V e r s i o n=I A 32 W-G 09 R e v C .01|$ State=3-A'|HF=-6 $054.3480463|S 2=2.048331| S 2-1=0 .|S 2 A=2.001522| R M S D=5.282 e-009 \mid R M S F=2.32$ 0e-005 | Dipole=1.7107864,0.0000001,0.|Quadrupole=10.2794239,-9.335411,$0.944013,0.0000008,0 ., 0 .|P G=C S \quad[S G(C 18 H 10 B r 2 N 4)]| \mid @$

Table 77. Computational output parameters for singlet TAP 51t $(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$.

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C20H10N6|USER|06-Feb-2013|0||\# opt ub3lyp/6-31g(d) geom=connectivityl|linear tetraazapentacene $Y: C N$ singlet opt||0,1|C,1.2330070593,-0.771297883,0.0000396943|C,-0.0000037 $682,-1.4388896327,0.0000545256 \mid C,-1.2330096708,-0.7712952161,0.0000520$ 693\|C,-1.2029654091,0.6932496196,0.0000344755/C, 0.0000003263,1.3976699 935, 0.0000165057 IC, 1.2029627362, 0.6932482627, $0.0000166555 \mid N, 2.39682360$ $14,1.3332975123,-0.0000058493 \mid N, 2.3963181984,-1.4455090989,0.000046406$ $3 \mid C, 3.56109995,-0.7505974699,0.0000283057$ IC, 3.6179738013,0.6737846801, $0.000002715|\mathrm{H}, 2.4027669797,2.3473725748,-0.0000198238| \mathrm{H}, 0.0000005146,2$. $4862952235,0.0000007356$ IC, $4.7956369504,-1.4412084559,0.0000326653$ IC, 4 $.8302760685,1.3712531791,-0.0000136002$ IC, $6.0029206856,-0.7460794206,0$. $0000138779|C, 6.0248854572,0.6698269289,-0.000009105| \mathrm{H}, 4.7703872357,-2$. 524903033, 0.0000501536|H, 6.9733019132,1.1946870383,-0.0000220516|H, 4.8 $318996024,2.4591636098,-0.0000323157 \mathrm{IN},-2.3968230901,1.3333014333,0.00$ 00369607 IN, $-2.3963265064,-1.4455045833,0.0000643361$ IC, $-3.6179753263,0$. 673792343, 0.0000527343|C, $-3.5611024441,-0.7505905844,0.0000662559 \mid \mathrm{H},-2$ $.4027630451,2.3473766634,0.0000282573$ IC, $-4.8302756474,1.3712652662,0.0$ $000552523|C,-4.7956447694,-1.4411972576,0.0000818273| C,-6.0248864421,0$ $.6698435014,0.000065058|\mathrm{H},-6.9733026415,1.1947038301,0.0000617804| \mathrm{C},-6$ $.0029242001,-0.7460647959,0.0000806915 \mid \mathrm{H},-4.7703975428,-2.5248919617,0$ $.0000885431|\mathrm{H},-4.8318935956,2.4591757522,0.0000432169| \mathrm{H},-0.0000038882$, $-2.5221031435,0.0000694803 \mid \mathrm{C},-7.243625987,-1.4659429466,0.0000879529 / \mathrm{N}$, $-8.2570373961,-2.0373804084,0.0000940666$ IC, $7.2436189847,-1.4659634049$, $0.0000106836 \mid N, 8.2570270644,-2.037406836,0.000004833$ ||Version=IA32W-G 09RevC. 01|State=1-A|HF=-1096.6423964|S2=0.|S2-1=0.|S2A=0.|RMSD=6.134e$009|\operatorname{RMSF}=8.400 \mathrm{e}-005|$ Dipole=$=0.0000102,4.6812594,-0.0000488 \mid$ Quadrupole=-

Table 78. Computational output parameters for triplet TAP 51t $(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N})$.

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C20H10N6 (3) |USER|06-Feb-2013|0 ||\# opt ub3lyp/6-31g(d) geom=connectivity||linear tetraazapentacene Y: CN singlet opt||0,3|C,1.2331258192,-0.439320434,-0.0000019645|C, -0.000 $0000467,-1.1196747867,0.0000139637 \mid C,-1.2331258275,-0.4393203848,0.000$ 0128913 IC, $-1.206339893,0.9928101303,-0.0000052138$ IC, $-0.0000000296,1.69$ 24846252,-0.0000212439।C,1.2063398273, 0.9928101245,-0.0000197873।N, 2. 4 $345291535,1.6429067843,-0.0000356228 / N, 2.3860387646,-1.1669625357,0.00$ 0000372 IC, $3.5623509611,-0.4767339307,-0.0000150077$ IC, $3.6282931515,0.95$ 48633403,-0.0000334505|H,2.4547830335, 2.6539567203, -0.0000468975|H, -0. $0000000069,2.7811046396,-0.0000348421$ IC, $4.7766484763,-1.1933642768,-0$. 0000128807 IC, $4.8625943404,1.6137033291,-0.0000487102$ IC, $6.0058888948,-0$ $.528485089,-0.0000282219|C, 6.0435920433,0.8822352519,-0.0000462114| \mathrm{H}, 4$ $.7239287214,-2.2762538828,0.0000010501 \mid \mathrm{H}, 7.0004584822,1.3930083038,-0$. $0000581245 \mid \mathrm{H}, 4.8948044807,2.7005859235,-0.0000625644 \mathrm{~N},-2.4345292192,1$ $.6429068084,-0.0000059445|N,-2.3860388664,-1.1669625369,0.000028901| C$, $-3.6282932188,0.9548633598,0.000009713$ IC, $-3.5623509838,-0.4767339276,0$ $.0000272318 \mid \mathrm{H},-2.4547830832,2.6539567456,-0.0000179937$ IC,-4.8625944079 , 1. $6137033477,0.0000088141|C,-4.7766485644,-1.1933642558,0.000043379| C$ $,-6.0435921178,0.882235288,0.0000249093 \mid \mathrm{H},-7.0004585664,1.3930083183,0$.0000241838 IC, $-6.0058889534,-0.5284850726,0.0000423278 \mid \mathrm{H},-4.7239287762$ $,-2.2762538612,0.0000566136 \mid \mathrm{H},-4.8948045322,2.7005859429,-0.0000045279$ | H, -0. $0000000687,-2.2036090167,0.0000275497 \mid C,-7.2306630828,-1.2713682$ $344,0.0000589306 / N,-8.2315694722,-1.8650488593,0.0000723524$ IC, 7.230662 $9498,-1.2713683612,-0.000025861 \mid N, 8.2315696074,-1.8650485376,-0.000024$ 1179||Version=IA32W-G09RevC.01|State=3-A|HF=-1096.6252017|S2=2.048739। $S 2-1=0 .|S 2 A=2.001538| \operatorname{RMSD}=6.193 \mathrm{e}-009|\operatorname{RMSF}=2.140 \mathrm{e}-005|$ Dipole=0. 4.23211 $08,-0.0000522$ | Quadrupole $=-47.851212,29.7405432,18.1106687,-0.0000025,0$ $.0003881,-0.000138 \mid \mathrm{PG}=\mathrm{C} 01$ [X(C20H10N6)]।।@

Table 79. Computational output parameters for singlet TAP 51u ($\mathrm{X}=\mathrm{Me}$).

1|1|UNPC-USER-TOSH | FOpt | UB3LYP|6-31G(d)|C20H16N4|USER|05-Feb-2013|0||\# opt ub3lyp/6-31g(d) geom=connectivity||linear tetraazapentacene X:Me singlet opt||0,1|C,1.2355908516,-0.7742504372,0.0000709901|C, -0.000002 $8376,-1.4400594086,0.0000908968 \mid C,-1.2355919954,-0.774247118,0.0000887$ $594|C,-1.2047473985,0.6895102609,0.0000648634| C, 0.0000015291,1.3924180$ $964,0.00004658|C, 1.2047473842,0.689508082,0.0000496945| N, 2.3976384575$, $1.3305363179,0.0000325848|\mathrm{~N}, 2.3998096152,-1.4481789492,0.0000693805| \mathrm{C}$, $3.5662799399,-0.7516775149,0.0000575406 \mid C, 3.6226880302,0.6717004509,0$. $0000444654|\mathrm{H}, 2.4019637127,2.3442419075,0.000018087| \mathrm{H}, 0.0000022834,2.48$ $14770109,0.0000290646|C, 4.8096574094,-1.4282267286,0.0000272525| C, 4.83$ $16296266,1.3697421262,0.0000103555$ | C , $6.0053876224,-0.7304853574,-0.000$ 0053815 | C, $6.0447243156,0.6802762463,0.0000043787 \mid \mathrm{H}, 4.786546834,-2.5133$ $373091,0.0000007848|\mathrm{H}, 6.9431607129,-1.2810058738,-0.000039657| \mathrm{H}, 4.8215$ $942937,2.4596319782,-0.00001454771 N,-2.3976356251,1.33054147,0.0000616$ $59|N,-2.3998158235,-1.4481733208,0.0001059084| \mathrm{C},-3.6226869706,0.671709$ $6464,0.0000803194|\mathrm{C},-3.5662809327,-0.7516690183,0.0001018941| \mathrm{H},-2.4019$ $57366,2.3442472016,0.0000451115$ |C, $-4.8316266775,1.3697557098,0.0000713$ $946 \mid C,-4.8096631203,-1.4282138052,0.0001108585$ | C, $-6.0447226844,0.68029$ $45464,0.0000901811|C,-6.0053894515,-0.7304688131,0.00010383| \mathrm{H},-6.94316$ $50304,-1.2809851542,0.000111109 \mid \mathrm{H},-4.7865553943,-2.5133245181,0.000119$ $4485|\mathrm{H},-4.8215859,2.4596455756,0.0000524015| \mathrm{H},-0.0000035626,-2.5234452$ $049,0.0001069078|\mathrm{C},-7.3577769013,1.4271924728,0.0001394241| \mathrm{H},-7.457825$ $2232,2.0723663785,0.8828306222 \mid \mathrm{H},-7.4573810603,2.073260969,-0.88194240$ $61|\mathrm{H},-8.2061640629,0.7356273137,-0.0004138625| \mathrm{C}, 7.3577793358,1.4271730$ $942,0.0001944161|\mathrm{H}, 7.4566862951,2.0746310399,-0.8809388727| \mathrm{H}, 7.4585256$ $3,2.0709548028,0.8838297861|\mathrm{H}, 8.2061652587,0.7356099036,-0.0020874029|$ |Version=IA32W-G09RevC. $01 \mid$ State=1-A|HF=-990.7919439|S2=0.|S2-1=0.|S2A= $0 .|\operatorname{RMSD}=2.398 e-009| \operatorname{RMSF}=4.402 e-005 \mid$ Dipole=0.0000074,3.0302689,0.000085 $5 \mid$ Quadrupole $=9.3891319,0.8225508,-10.2116828,-0.0000387,0.0008816,0.00$ $0185|\mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 20 \mathrm{H} 16 \mathrm{~N} 4)]| \mid @$

Table 80. Computational output parameters for triplet TAP 51u ($\mathrm{X}=\mathrm{Me}$).

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G (d)|C20H16N4 (3) |USER|05-Feb-2013|0 ||\# opt ub3lyp/6-31g(d) geom=connectivity||linear tetraazapentacene X: Me singlet opt||0,3|C,-1.2342478664,0.8354664257,-0.0000078499|C,0.000 $0000376,1.5127361346,0.0000198166$ IC, 1.2342479094, 0.8354664051,0.000012

9204 |C, 1. $2082624371,-0.5963591825,-0.0000250139 \mid C, 0.0000000548,-1.2942$ 683673,-0.0000527823|C,-1.2082623301,-0.5963591926,-0.0000436699|N, -2. $4342047193,-1.2476035318,-0.0000685459 / \mathrm{N},-2.3895437827,1.5643260191,-0$.0000014341 |C, $-3.5640314542,0.8742122424,-0.0000202769 \mid C,-3.6337894536$ $,-0.5571739854,-0.0000512655 \mid \mathrm{H},-2.4536878473,-2.2581026918,-0.00009573$ $68|\mathrm{H}, 0.0000000456,-2.3833638409,-0.0000811421| \mathrm{C},-4.7889432581,1.579208$ $4764,-0.0000442995$ IC, $-4.8632970097,-1.2133923652,-0.0000940233$ IC, -6.00 $59741806,0.9135939138,-0.0000856535$ IC, $-6.0650771309,-0.491464559,-0.00$ $00858123|\mathrm{H},-4.7361165961,2.6634088379,-0.000060098| \mathrm{H},-6.9311943866,1.4$ 840255256,-0.0001212737|H,-4.8864279385,-2.3025453466,-0.000137783|N, 2 $.4342048388,-1.2476035207,-0.0000320653 / \mathrm{N}, 2.3895438674,1.5643260453,0$. 0000416295 IC, $3.6337895773,-0.5571739662,-0.0000014185$ IC, $3.5640315057,0$. $8742122984,0.0000353259|\mathrm{H}, 2.4536879584,-2.2581026811,-0.000059752| \mathrm{C}, 4$ $.86329712,-1.2133923077,-0.0000131991 \mid C, 4.7889433022,1.5792085534,0.00$ 00571549 |C, $6.0650772551,-0.4914644451,0.0000163298 \mid C, 6.005974242,0.913$ 5939998, 0.0000456187|H, 6.9311944388,1.4840256177, 0.0000585729| $\mathrm{H}, 4.7361$ $166064,2.6634089129,0.0000754808 \mid \mathrm{H}, 4.8864280417,-2.302545295,-0.000046$ $7157 \mid \mathrm{H}, 0.0000000461,2.5968476377,0.0000472743$ | C, 7. $3880957603,-1.218165$ 6706,0.0000716024|H,7.4926039673,-1.8628658483, 0.8823216756|H,7.492167 9801,-1. $8638096562,-0.8815333512 \mid \mathrm{H}, 8.2276293285,-0.5164260474,-0.00049$ 72862 |C, $-7.3880956226,-1.2181657768,0.0001436526 \mid \mathrm{H},-7.4914751669,-1.86$ 53057971,-0.8804359121|H,-7.4932973231,-1.8613671482, 0.8834140682|H,-8 . $2276282528,-0.5164288221,-0.0022337619$ \| IVersion=IA32W-G09RevC.01|Stat $\mathrm{e}=3-\mathrm{A}|\mathrm{HF}=-990.7750717| \mathrm{S} 2=2.048158|\mathrm{~S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=2.00151| \operatorname{RMSD}=5.689 \mathrm{e}-009|$ RMSF $=2.437 e-005 \mid$ Dipole $=-0.0000005,-2.4663894,0.0001079 \mid$ Quadrupole $=11.1$ $121164,0.5126388,-11.6247552,-0.0000032,-0.0012023,-0.0001151 \mid \mathrm{PG}=\mathrm{C01}$ [X(C20H16N4)]। $@$

Table 81. Computational output parameters for singlet TAP 51v $\left(\mathrm{Y}=\mathrm{NO}_{2}\right)$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H10N604|GAUSSIAN|26-N ov-2012|0|।\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1| C, 0.0449024332,-1.4531154839,-0.0000167087IC,1.2428008999,-0.724419434 $2,0.0000001053$ IC, 1. $2865379016,0.6770252187,0.0000168291$ IC, 0.0064878347 $, 1.3881074119,0.0000160094 \mid C,-1.2081244209,0.7041955135,-0.0000000887$ | $C,-1.2046549001,-0.6897205301,-0.0000160933 \mid N,-2.3597915295,-1.3982824$ 372,-0.0000317737|N, 0.040849715,-2.7978901845,-0.0000328703|C, -1.14604 50307,-3.4535368255,-0.0000485614IC,-2.4060309424,-2.7842146539,-0.000 $0484227|\mathrm{H},-3.2384779812,-0.8919304774,-0.0000315421| \mathrm{H},-2.1485850727,1$.

2523793227,-0.0000001664|C,-1.1722217405,-4.8685223786,-0.0000662547|C $,-3.6215044915,-3.4783834706,-0.0000641919 \mid C,-2.3855572757,-5.53123839$ $48,-0.000085361|C,-3.6214970453,-4.8638249256,-0.0000813792| \mathrm{H},-0.23751$ 95951,-5.4138484422,-0.0000675291|H,-4.5396101263,-5.4357946987,-0.000 $0948296 / \mathrm{H},-4.5609894342,-2.93009044,-0.0000634226 / \mathrm{N}, 0.0537773006,2.742$ 4210717, 0.0000315947|N,2.4546821539,1.3432645952,0.0000330825 IC, 1. 2369 $441202,3.4656511016,0.0000483234 \mid C, 2.4402767047,2.6991350076,0.0000486$ $72|\mathrm{H},-0.8198411688,3.2574677862,0.0000312137| \mathrm{C}, 1.241974634,4.865372016$ $4,0.0000639728$ IC, $3.6586111976,3.4192256093,0.000066473$ IC, 2.4475048629 , $5.5481203582,0.0000812463|\mathrm{H}, 2.4927452417,6.6288770498,0.0000945793| \mathrm{C}, 3$ $.6373266112,4.8015872787,0.0000854537 \mid \mathrm{H}, 4.5937471348,2.8746440833,0.00$ 00679367 | $\mathrm{H}, 0.3019003717,5.4126535459,0.0000630563 \mid \mathrm{H}, 2.1786148432,-1.26$ 98953516, 0.000000178/N,-2.3888621134,-7.003302388,-0.0001086688|0,-3.4 $831000392,-7.5694129321,0.0002730725 / 0,-1.3033555348,-7.5805597366,0.0$ $002850723|\mathrm{~N}, 4.9165969208,5.5299071802,0.0001088616| 0,4.8699420706,6.76$ 10291914,-0.0002732424|0,5.9538358901, 4.8698420733,-0.0002846266||Vers ion=IA32W-G09RevC.01|State=1-A|HF=-1321.1585503|S2=0.|S2-1=0.|S2A=0.|R MSD $=2.144 \mathrm{e}-009|\operatorname{RMSF}=5.688 \mathrm{e}-005|$ Dipole $=-4.0307562,2.3494823,-0.0000002 \mid$ Quadrupole=9.9141783,-29.048379,19.1342007,-34.3976941,0.0054575,0.009 3616|PG=C01 [X(C18H10N6O4)]।।@

Table 82. Computational output parameters for triplet TAP 51v $\left(\mathrm{Y}=\mathrm{NO}_{2}\right)$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H10N604 (3)|GAUSSIAN|2 7-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity|loptimization||0 , 3|C, -1.2331080816, 0.3094936497, 0.0000032734|C, -0.000000028, 0.99062635 69, 0.0000093768।C,1.2331080522,0.3094936559,0.0000108981।C,1.205760785 $4,-1.1232849303,0.0000060476 / C,-0.0000000022,-1.8234628821,-0.00000008$ 63 IC, $-1.2057607975,-1.1232849354,-0.0000015036 / \mathrm{N},-2.4343463098,-1.7727$ $308057,-0.0000074614 / \mathrm{N},-2.3851226425,1.0355522478,0.0000022183 \mid \mathrm{C},-3.56$ $26010497,0.3457070131,-0.0000036586 / C,-3.6267653954,-1.0875862608,-0.0$ $000082776|H,-2.454270793,-2.784036572,-0.000010814| \mathrm{H}, 0.000000003,-2.91$ 2043652,-0.0000037503IC, -4.7767600103,1.0610895843,-0.0000037369|C, -4. $8603760684,-1.7512059487,-0.0000137725$ IC, $-5.9839458922,0.3751693518,-0$.0000083787 IC, $-6.0430423325,-1.0235041087,-0.0000137875 \mid \mathrm{H},-4.750516643$ $7,2.1430555842,0.0000001031 \mid \mathrm{H},-7.0079444943,-1.5142476518,-0.000016918$ $1|\mathrm{H},-4.8895089819,-2.8379730785,-0.0000174423| \mathrm{N}, 2.4343463043,-1.772730$ $7957,0.0000076182|\mathrm{~N}, 2.3851226012,1.0355522652,0.0000168569| \mathrm{C}, 3.6267653$ $829,-1.0875862408,0.0000130987$ IC, $3.562601011,0.3457070354,0.0000181216$
| H, 2. $4542707994,-2.7840365621,0.0000043979 \mid C, 4.8603760653,-1.751205935$ 3, 0.000014108|C, 4.7767599554,1.0610896175, 0.0000231044|C, 6.0430423178, $-1.0235040891,0.0000190318|\mathrm{H}, 7.0079445123,-1.5142475983,0.0000189074| \mathrm{C}$, $5.9839458012,0.3751693431,0.0000238921 \mid \mathrm{H}, 4.7505166127,2.1430556236,0$. $0000266452|\mathrm{H}, 4.8895089947,-2.8379730642,0.0000104631| \mathrm{H},-0.0000000171,2$ $.0745350728,0.000013026|N,-7.2371281594,1.1328194736,-0.0000069976| 0$, -$8.2922700209,0.4937009544,0.00000635210,-7.1645968315,2.3620467547,0.0$ $0000634591 N, 7.2371280419,1.1328193754,0.0000283696 \mid 0,8.2922696934,0.49$ $37005044,-0.000088650310,7.1645966102,2.3620466477,-0.0000760002| | V e r s$ ion=IA32W-G09RevC. $01 \mid$ State=3-A|HF=-1321.1427824|S2=2.047523|S2-1=0.|S2 $A=2.001446|\operatorname{RMSD}=7.589 e-009| R M S F=3.156 e-005 \mid \operatorname{Dipole=0.0000008,-4.2904486}$, 0.00008341 Quadrupole $=-49.8061346,30.061699,19.7444356,0.0000056,0.001$ 7919,0.0002731|PG=C01 [X(C18H10N6O4)]||@

Table 83. Computational output parameters for singlet TAP 51w ($\mathrm{X}=\mathrm{F}$).

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H10F2N4|GAUSSIAN|29-N ov-2012|0|।\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,1| C, 0.0384389258,-1.4519288899,0.|C,1.2361657859,-0.7205640434,0.|C,1.28 $23089361,0.6820465051,0 .|C, 0.0030498165,1.3918361438,0| C,$. $2,0.7059199075,0 .|C,-1.2096021197,-0.6885836863,0| N,-2.3660908296,$.-1 . $3953817885,0 .|N, 0.0330096034,-2.7972185331,0| C,-1.1557834364,$. 84231,0.|C,-2.4135134563,-2.7838361647,0.|H,-3.2431711562,-0.887316283 $6,0 .|\mathrm{H},-2.1518776601,1.2542906569,0 .|\mathrm{C},-1.1876448506,-4.8717036519,0|$. C, $-3.6296342533,-3.4738271316,0 .|C,-2.3835693424,-5.5686843962,0| C,$. $.5895663415,-4.8573974462,0 .|\mathrm{H},-0.2348876131,-5.3905956465,0| \mathrm{H},$. 059083,-6.6532746059, 0.| $\mathrm{H},-4.5843733049,-2.9555495423,0 . \mid N, 0.048139549$ $3,2.7464571784,0 .|N, 2.4502211504,1.3497367894,0| C, 1.2329181628,$. 596725, 0.|C, 2.4358416691,2.7078035241,0.|H,-0.8261792618, 3.2592602476, $0 .|C, 1.2339954216,4.8701865614,0 .|C, 3.6537676393,3.4341940931,0| C, 2.4$. 576402637,5.5171524192,0.|C, 3.6708799642,4.8182913329,0.|H, 4. 601570487 $3,5.3758330181,0 .|\mathrm{H}, 4.5748000236,2.8608756611,0| \mathrm{H}, 0.3125223258,$. 344502,0 .| $\mathrm{H}, 2.1721177244,-1.2661184529,0 . \mid \mathrm{F},-4.7533457654,-5.542187206$ 8,0.|F,2.4799877262,6.8672708218,0.|।Version=IA32W-G09RevC.01|State=1$A^{\prime}|H F=-1110.6202765| S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=9.361 e-009| R M S F=4.484 e-0$ $05 \mid$ Dipole $=-2.0656451,1.204044,0 . \mid$ Quadrupole=5.1890276,-3.7131268,-1.47 59008,-7.8592174,0.,0.|PG=CS [SG(C18H10F2N4)]।।@

Table 84. Computational output parameters for triplet TAP 51w ($\mathrm{X}=\mathrm{F}$).

1|1|UNPC-CHEM40-OTNBTO7T | FOpt \| UB3LYP|6-31G (d) | C18H10F2N4 (3)|GAUSSIAN| 3 0-Nov-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0 , 3| C, 0. $0235405323,-1.2339847223,0 . \mid C, 1.5015917652,-0.0000000474,0$.|C, 0 $.823540563,1.2339846756,0 .|C,-0.6080361927,1.2073794716,0| C,$. $3848,-0.0000000125,0 .|C,-0.6080362031,-1.2073795287,0| N,$. $,-2.4345205458,0 .|N, 1.5512928559,-2.3886698161,0| \mathrm{C}, 0.8610423428,$. $44905006,0 .|\mathrm{C},-0.5712555429,-3.6310713542,0| \mathrm{H},-2.2713816636,$. $6378,0 .|\mathrm{H},-2.3955169826,-0.000000017,0| \mathrm{C}, 1.5747513144,-4.7859506383,$. . | $\mathrm{C},-1.2322558228,-4.8603528464,0 .|C, 0.9247936981,-6.0119839974,0|$.$C , -$ $0.4702791971,-6.0234426645,0 .|\mathrm{H}, 2.6580051527,-4.7247344457,0| \mathrm{H},$. $978113,-6.9504065187,0 .|\mathrm{H},-2.3162361548,-4.9261196678,0| \mathrm{N},$. $37,2.4345204976,0 . \mid N, 1.5512928743,2.3886697342,0$. I C, - $0.5712554993,3.63$ $10713,0 .|\mathrm{C}, 0.8610423727,3.5644904505,0| \mathrm{H},-2.2713816317,2.4530446088,$. .|C, - $1.232255777,4.8603528,0 .|C, 1.5747513632,4.7859505661,0| C,$. $79142,6.0234426082,0 .|\mathrm{C}, 0.9247937542,6.0119839297,0| \mathrm{H}, 1.4681978674,$.6 . $9504064518,0 .|\mathrm{H}, 2.6580052004,4.7247343598,0| \mathrm{H},-2.3162361098,$. $159,0 .|\mathrm{H}, 2.5856370418,-0.0000000609,0| \mathrm{F},-1.1143835189,-7.2078276593,$. . | F, - $1.1143834473,7.2078276117,0 .||V e r s i o n=I A 32 W-G 09 R e v C .01| S t a t e=3-A '$ $|H F=-1110.604775| S 2=2.047078|S 2-1=0 .|S 2 A=2.001432| R M S D=5.327 e-009| R M S F$ $=2.314 e-005 \mid$ Dipole=-1.8509323, 0., 0. | Quadrupole=9.8095785,-7.1577366,-2 $.6518419,0 ., 0 ., 0 .|P G=C S \quad[S G(C 18 H 10 F 2 N 4)]| \mid @$

Table 85. Computational output parameters for singlet TAP 51x (asymmetric $\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}$ $=\mathrm{NO}_{2}$).
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash$ FOpt \backslash UB3LYP $\backslash 6-31 G(d) \backslash C 18 H 12 N 6 O 2 \backslash G A U S S I A N \backslash 16-J u n-2005 \backslash 0$
\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY
linear tetraazapentacene Y: NO2 X:NH2 asymmetrical singlet opt $\backslash 10,1 \backslash \mathrm{C},-1.4265961696,0.0139088664,-$ $1.3250662203 \backslash C,-1.4263597257,0.0370871483,0.081726501 \backslash C,-0.2556453023$, $0.0185992387,0.8483104706 \backslash C, 1.0132672953,-0.0277552761,0.1217068034 \backslash C$, $1.0604430302,-0.0506747035,-1.2701422147 \backslash \mathrm{C},-0.1320865894,-0.0298293155$, -1.9960745072\N,-0.1368991095,-0.0491734012,-3.3521403762\N,-2.571851 $8401,0.0307300587,-2.0290323176 \backslash C,-2.5167756678,0.0078798436,-3.382930$ $2296 \backslash \mathrm{C},-1.2948201798,-0.0314208564,-4.1139638061 \backslash \mathrm{H}, 0.7533662446,-0.082$ $6365486,-3.8362284219 \backslash H, 2.018209633,-0.0844910655,-1.7872845584 \backslash \mathrm{C},-3.7$ $093042739,0.0246151645,-4.1516875123 \backslash C,-1.2547527569,-0.0466751262,-5$.
$5107553681 \backslash C,-3.6780427483,0.0046475102,-5.5288918012 \backslash C,-2.4477125737$, $-0.0299857032,-6.2367393237 \backslash \mathrm{H},-4.6497408473,0.054790015,-3.6111611182 \backslash$ H, -0. $2973301322,-0.080207668,-6.0283236962 \backslash N, 2.1499098073,-0.047263368$ $6,0.8651293266 \backslash \mathrm{~N},-0.2925330814,0.0422763443,2.1967806012 \backslash \mathrm{C}, 2.155267425$ $1,-0.024451252,2.2544742171 \backslash \mathrm{C}, 0.8751701787,0.0216858544,2.8850522212 \backslash \mathrm{H}$, 3.0419083716,-0.0801165444,0.3852019312\C,3.3486779595,-0.0454956754, $2.9819868479 \backslash C, 0.8668513204,0.0459594582,4.2996323485 \backslash C, 3.314593175,-0$ $.0210908397,4.3690821425 \backslash \mathrm{C}, 2.0622311089,0.0245483479,4.9991007577 \backslash \mathrm{H},-0$ $.0816830337,0.0811250053,4.8191046298 \backslash \mathrm{H}, 4.3021699856,-0.0809241902,2.4$ $589198794 \backslash \mathrm{H},-2.3794485802,0.0701253046,0.5956617078 \backslash \mathrm{~N}, 2.0230746119,0.0$ $507411701,6.4684642142 \backslash 0,0.9219863461,0.0907826625,7.0168261728 \backslash 0,3.09$ $92947885,0.0309630648,7.0706851088 \backslash N,-2.4479605752,-0.1071640677,-7.62$ $78499229 \backslash \mathrm{H},-3.2776579436,0.2552851612,-8.0803272805 \backslash \mathrm{H},-1.6021719186,0$. $2081264064,-8.0857897402 \backslash \mathrm{H},-4.607950109,0.0108337182,-6.0925326897 \backslash \mathrm{H}, 4$ $.2174675287,-0.0362186671,4.9642804674 \backslash \backslash$ Version=x86-Linux-G03RevB.05 tate $=1-A \backslash H F=-1172.0119571 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=3.100 e-09 \backslash R M S F=1.9$ $90 \mathrm{e}-05 \backslash$ Dipole=1.5584352,0.2928985,-5.6592477 P PG=C01 [X(C18H12N6O2)]
@

Table 86. Computational output parameters for triplet TAP 51x (asymmetric $\mathrm{X}=\mathrm{NH}_{2}$, $\mathrm{Y}=\mathrm{NO}_{2}$).

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H12N6O2 (3)|GAUSSIAN|0 1-Dec-2012।0|।\# opt ub3lyp/6-31g(d) geom=connectivityl|linear tetraaza pentacene Y:NO2 X:NH2 asymmetrical triplet opt||0,3|C,-1.7807008442,-0 $.7247452802,0.0010492919|C,-0.4915698715,-1.2830382658,0.0020771032| C$, $0.675532541,-0.4903456963,0.0009547501$ IC, $0.514198447,0.9315932347,-0.0$ 015615564 IC, $-0.7530588815,1.5149361921,-0.0018118698 / \mathrm{C},-1.8890175489,0$ $.7062455918,-0.0002188882|\mathrm{~N},-3.1705154589,1.2397003951,0.0008035792| \mathrm{N}$, $-2.864480584,-1.5547125497,0.0007236159 \mid C,-4.0954365971,-0.9771927169$, $-0.0013219779|C,-4.3015023388,0.4416060699,-0.0000417949| \mathrm{H},-3.28250907$ $37,2.2441455066,-0.0064287398 \mid \mathrm{H},-0.855073504,2.5991932797,-0.003354707$ 9|C, - $5.2525807114,-1.7919499717,-0.0031857909 \mid C,-5.5807014731,0.986458$ $5668,0.0038193911|C,-6.5257795446,-1.2538712194,-0.0021240423| C,-6.709$ 6581134, 0.1469368402,0.0022299417|H,-5.0994215243,-2.866402512,-0.0031 65006|H, $-5.7104094125,2.067409876,-0.0008048344 \mid N, 1.6780076226,1.69526$ 33836,-0.0035028625|N,1.8907380439,-1.1040493204, 0.0020653873|C, 2.9277 92938, 1. 1275402264,-0.0027185132।C,2.998687532,-0.3060109327, 0.0003712 $072|\mathrm{H}, 1.600978239,2.7037350084,-0.0062725122| \mathrm{C}, 4.0948630771,1.90494818$ 37, -0.004713048IC, 4.2752039687, -0. $9013030259,0.0015766572$ IC, 5.34085858
$2,1.2934850293,-0.00350472$ | C , $5.4146891643,-0.1046674072,-0.0002858846 \mid$ $\mathrm{H}, 4.3516104115,-1.9807665985,0.0038908135 \mid \mathrm{H}, 4.0198862641,2.9897219828$, $-0.0071932456|\mathrm{H},-0.3883476485,-2.3621052169,0.003176882| \mathrm{N}, 6.7306753951$, -0. $7386764533,0.0011556004|0,6.7773338978,-1.9706501296,0.0040538132|$ $0,7.7240824227,-0.0044221808,-0.0006043305 \mid N,-7.9864261186,0.687614019$ $2,-0.0509009432|\mathrm{H},-8.7373192561,0.083646133,0.256845625| \mathrm{H},-8.088728875$ $4,1.6369076761,0.2833367429 \mid \mathrm{H},-7.3956768819,-1.9056587004,-0.008804711$ $3|H, 6.2548637156,1.8734209823,-0.0049734221||V e r s i o n=I A 32 W-G 09 R e v C .01|$ State=3-A|HF=-1171.997432|S2=2.044356|S2-1=0.|S2A=2.001255|RMSD=7.622e $-009|\operatorname{RMSF}=1.608 e-005|$ Dipole=-4.2155393, 3.2907257,0.3881058|Quadrupole= $-6.2549014,10.0067523,-3.7518509,4.810899,-6.5639918,0.7330982 \mid \mathrm{PG}=\mathrm{C} 01$ [X(C18H12N6O2)]||@

Table 87. Computational output parameters for singlet TAP 51y ($\mathrm{X}=\mathrm{OMe}$).
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 20 H 16 N 402 \backslash G A U S S I A N \backslash 20-M a y-2005 \backslash 0$
\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY
linear tetraazapentacene X : MeO singlet opt
0,1\C,-1.4355923078,0.0463181336,-0.6221253511\C,-1.4 $260415107,-0.0034491902,0.7810668418 \backslash C,-0.2486117487,-0.0504060487,1.5$ $445936842 \backslash C, 1.0185714613,-0.0461548636,0.8145814775 \backslash C, 1.0566152201,0.0$ $025261228,-0.5787247743 \backslash C,-0.1381081131,0.0482419909,-1.296824328 \backslash N,-0$ $.1440383156,0.0963589526,-2.6516541778 \backslash N,-2.5847226185,0.0905516909,-1$ $.3213153193 \backslash C,-2.5306614737,0.1377586114,-2.6782422925 \backslash C,-1.3075384985$ $, 0.1429785252,-3.4110218802 \backslash \mathrm{H}, 0.7442381785,0.0985033197,-3.1396724177 \backslash$ H,2.0118169607,0.0048267262,-1.1019050881 \C, -3.717573996,0.1850099203, $-3.4454201314 \backslash C,-1.2686659788,0.1916368407,-4.8024328092 \backslash C,-3.69418701$ $81,0.2336990792,-4.8312215618 \backslash C,-2.4643791559,0.2373066152,-5.52069378$ $47 \backslash \mathrm{H},-4.6589977914,0.1818186149,-2.9055105858 \backslash \mathrm{H},-4.6308362207,0.268895$ $2479,-5.3756547763 \backslash \mathrm{H},-0.3259330734,0.1948314264,-5.3435972389 \backslash \mathrm{~N}, 2.1571$ 92634,-0.0915412326,1.5490179837\N,-0.2780465278,-0.0974822543, 2.88930 $14247 \backslash \mathrm{C}, 2.1707378361,-0.1409288301,2.9382348039 \backslash \mathrm{C}, 0.8946415942,-0.1417$ $347429,3.574318624 \backslash \mathrm{H}, 3.0467277918,-0.0894123593,1.0632977635 \backslash \mathrm{C}, 3.36430$ 75533,-0.1866052847, 3.6546158611 \C, 0.902165507,-0.1918103665, 4.9874668 $375 \backslash C, 3.325866037,-0.235254405,5.0488460702 \backslash C, 2.0826715303,-0.23759477$ $78,5.7138791421 \backslash \mathrm{H}, 2.0372099106,-0.27513925,6.7962301742 \backslash \mathrm{H},-0.059717576$ $2,-0.1931982337,5.4900309849 \backslash \mathrm{H}, 4.3279539472,-0.1851997058,3.1516266789$ \H, $-2.376280902,-0.0057382483,1.3015283496 \backslash 0,-2.3356239498,0.283226864$ $5,-6.8813213323 \backslash 0,4.5418801419,-0.2779393972,5.6729128658 \backslash \mathrm{C},-3.5157087$ $225,0.3307341604,-7.6664541731 \backslash \mathrm{H},-3.1819558253,0.3617492622,-8.7054103$

Table 88. Computational output parameters for triplet TAP 51y ($\mathrm{X}=\mathrm{OMe}$).
$1|1|$ UNPC-CHEM4 0-OTNBTO7T | FOpt | UB3LYP | 6-31G (d) | C20H1 6N4O2 (3)|GAUSSIAN| 0 7-Dec-2012|0||\# opt ub3lyp/6-31g(d) guess=mix geom=connectivity||linea r tetraazapentacene $\mathrm{X}: \mathrm{MeO}$ triplet||0,3|C,1.2347183409,0.8700916374,-0. 0000005602 | C, $0.0000008101,1.5468313209,0.0000014649 \mid \mathrm{C},-1.2347168799,0$. $8700918879,0.0000038742|\mathrm{C},-1.2082004354,-0.5619917293,0.0000045381| \mathrm{C}, 0$ $.0000005621,-1.2595058298,0.0000022405$ IC, $1.2082016655,-0.5619919295,-0$ $.0000004516|N, 2.4341604373,-1.216058371,-0.0000027946| N, 2.3905717485,1$ $.5968226612,-0.0000026685$ IC, $3.5648023997,0.9046620765,-0.0000045503 \mid$ C, $3.6337433365,-0.5289253954,-0.00000457881 \mathrm{H}, 2.451487999,-2.2264694883,0$ $.0000014375|\mathrm{H}, 0.0000004562,-2.3486854806,0.0000025862| \mathrm{C}, 4.7893174488,1$ $.6057989871,-0.0000064592|C, 4.8570423443,-1.1877609275,-0.0000066159| C$, 6.0170118699, 0.9538020379,-0.0000083126|C, 6.0512003216, -0.4509942712, $-0.0000085732|\mathrm{H}, 4.7368725397,2.6899241777,-0.0000064677| \mathrm{H}, 6.9317034783$, $1.5344439495,-0.0000087085$ | H, 4.9133823989,-2.2728954954,-0.000007164। $N,-2.4341593429,-1.2160579671,0.0000075899 / N,-2.3905701742,1.596823130$ $3,0.000005382|C,-3.6337421423,-0.528924744,0.0000080462| C,-3.564800997$ $2,0.9046627576,0.00000721$ |H, -2.4514870749,-2.2264690929, 0.0000035406|C $,-4.8570412866,-1.1877600176,0.0000106822 \mid C,-4.7893159636,1.6057999413$, 0.0000081184 | C, $-6.0511989523,-0.4509929106,0.0000116384 \mid C,-6.01701045$ $9,0.9538032253,0.0000096743|\mathrm{H},-6.9317022489,1.5344450414,0.000007634| \mathrm{H}$ $,-4.7368708954,2.6899251299,0.0000070335 \mid \mathrm{H},-4.9133816356,-2.2728945755$, 0.0000127752|H, 0.0000009184, 2.6309519006,0.000001105|0,7.1913670966,-$1.1979337732,-0.0000093212|0,-7.1913662195,-1.1979312022,0.0000104571|$ C, $8.4406902236,-0.5234175528,-0.0000249425 \mid \mathrm{H}, 9.2017352819,-1.305799519$ $5,-0.000034069|\mathrm{H}, 8.5613602453,0.1006912675,-0.8948303981| \mathrm{H}, 8.561382798$, 0.1006915626, 0.8947773837|C, -8.4406874647, -0. 5234117636,0.0000536164| H, -9. $2017344858,-1.3057918047,0.0000789632 \mid \mathrm{H},-8.5613358835,0.100697337$ $4,0.8948617098|\mathrm{H},-8.5613981797,0.1006978117,-0.8947460657| \mid$ Version=IA3 $2 W-G 09 R e v C .01 \mid$ State=3-A|HF=-1141.185473|S2=2.04554|S2-1=0.|S2A=2.00133
|RMSD=5.004e-009|RMSF=3.055e-005|Dipole=0.0000008,-1.7080946,0.0000129 I Quadrupole=28.136336,-9.7056974,-18.4306385,-0.0000207,-0.0004598,-0. 0000251 |PG=C01 [X(C20H16N4O2)]|।@

Table 89. Computational output parameters for singlet TAP 51z $\left(\mathrm{X}=\mathrm{NH}_{2}\right)$.
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 18 H 14 N 6 \backslash G A U S S I A N \backslash 17-M a r-2013 \backslash 0 \backslash \backslash$ \# opt ub3lyp/6-31g(d) geom=connectivity $\backslash \backslash o p t \backslash \backslash 0,1 \backslash c,-0.0085967071,-0.0$ 202931853,-0.0018762189\C, 0.0062390471,-0.0273748413,1.4026029366\C,1. $1870409664,-0.0109941538,2.1629666912 \backslash C, 2.4493755459,0.0127520532,1.42$ $97220732 \backslash C, 2.4819036121,0.0197617019,0.0350956271 \backslash C, 1.2842074142,0.003$ 6639359,-0.679969098\N,1.2731118485,0.0090350498,-2.0372716464 $\mathrm{N},-1.16$ $08852074,-0.0341106968,-0.6996243882 \backslash C,-1.1100719703,-0.0253934018,-2$. $056760501 \backslash C, 0.1075135233,-0.0049648467,-2.7940616241 \backslash \mathrm{H}, 2.160438629,0.0$ $297255129,-2.5262438785 \backslash \mathrm{H}, 3.4352920792,0.0381662774,-0.491528816 \backslash$ C, -2. $301626015,-0.0385289225,-2.8240845102 \backslash C, 0.1430910979,-0.003613374,-4.1$ $902483466 \backslash C,-2.2753145539,-0.0329863119,-4.2051266884 \backslash C,-1.0511255962$, $-0.0169258288,-4.9154483459 \backslash \mathrm{H},-3.2418689889,-0.0547754434,-2.282163281$ $6 \backslash \mathrm{H},-3.2085860845,-0.0366011668,-4.7639443744 \backslash \mathrm{H}, 1.1001622824,0.0166710$ $634,-4.7101672623 \backslash \mathrm{~N}, 3.5922381412,0.027319271,2.1618780423 \backslash \mathrm{~N}, 1.16407025$ $66,-0.0158875982,3.509963773 \backslash C, 3.6120796665,0.022332201,3.5514878986 \backslash C$, 2.3397675301, 0.0015862369, 4.1894941817\H,4.4785717733,0.0479964385,1. $6711007948 \backslash C, 4.8128888982,0.0324592062,4.2648852201 \backslash C, 2.3546751094,-0$. $0020947797,5.6068472057 \backslash C, 4.7906973876,0.0282889008,5.6617968586 \backslash C, 3.5$ $374670251,0.0123314274,6.3199009457 \backslash \mathrm{H}, 3.5136260951,0.0161258832,7.4074$ $210364 \backslash \mathrm{H}, 1.3952411119,-0.0184093044,6.1140206331 \backslash \mathrm{H}, 5.7624746383,0.0519$ $6873,3.7314140594 \backslash \mathrm{H},-0.9420779561,-0.0441777235,1.9264040842 \backslash \mathrm{~N},-1.0481$ $167922,0.0498145671,-6.3151640062 \backslash \mathrm{~N}, 5.9764942159,0.1039533384,6.404515$ $8984 \backslash \mathrm{H}, 5.9034970704,-0.273075777,7.3419997696 \backslash \mathrm{H}, 6.7945268798,-0.262975$ $0874,5.9326622419 \backslash \mathrm{H},-1.8790641917,-0.3328679649,-6.7504581086 \backslash \mathrm{H},-0.211$ 7828315,-0.3174584818,-6.7535014796
Version=IA32L-G03RevD.02\State=1$A \backslash H F=-1022.8603283 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.925 e-09 \backslash \operatorname{RMSF}=2.396 e-05 \backslash$ Thermal=0. \backslash Dipole=2.9134765,-0.8606159,-1.6037185 ${ }^{2} \mathrm{PG}=\mathrm{C01}$ [X(C18H14N6)]
@

Table 90. Computational output parameters for triplet TAP 51z $\left(\mathrm{X}=\mathrm{NH}_{2}\right)$.
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 18 H 14 N 6(3) \backslash G A U S S I A N \backslash 19-M a r-2013 \backslash$ $0 \backslash \ \#$ opt ub3lyp/6-31g(d) geom=connectivity \} \backslash o p t \backslash \backslash 0 , 3 \backslash c , 0 . 0 6 8 8 2 7 0 3 2 , - 0 . $0028162124,-0.03495921 \backslash C, 0.0592519786,-0.0018362233,1.3726282468 \backslash C, 1.2$ $399181388,-0.0028348046,2.1390630583 \backslash C, 2.487503088,-0.0057836592,1.436$ $7708531 \backslash C, 2.5288565063,-0.0073203774,0.0423143487 \backslash C, 1.3416715694,-0.00$ $576533,-0.6903593285 \backslash \mathrm{~N}, 1.3363775216,-0.0079882491,-2.0814217207 \backslash \mathrm{~N},-1.1$ $186548668,-0.0000481714,-0.7103688571 \backslash C,-1.0641642985,0.0007299763,-2$. $0710280259 \backslash \mathrm{C}, 0.1631310753,-0.0042961526,-2.811958258 \backslash \mathrm{H}, 2.2187380282,-0$ $.0017605526,-2.5737833273 \backslash \mathrm{H}, 3.4880132412,-0.0094072762,-0.4743592051 \backslash \mathrm{C}$ $,-2.2626475943,0.0050063744,-2.8219810828 \backslash C, 0.1670140437,-0.0093334613$ $,-4.2042583223 \backslash C,-2.2614803172,0.0025408672,-4.2060371272 \backslash C,-1.0433897$ $921,-0.0054441069,-4.9183302973 \backslash \mathrm{H},-3.1937950223,0.0077354126,-2.264098$ $4577 \backslash \mathrm{H},-3.2004075034,0.0110435779,-4.7542079084 \backslash \mathrm{H}, 1.1133694455,-0.0071$ $891651,-4.743066849 \backslash N, 3.6461890409,-0.0080203925,2.2065298754 \backslash N, 1.1505$ $835877,-0.0000860153,3.5022612799 \backslash C, 3.6107203667,-0.0043577732,3.58817$ $10517 \backslash \mathrm{C}, 2.3167738961,0.00067058,4.2053707203 \backslash \mathrm{H}, 4.5427923809,-0.0018254$ $938,1.7406082697 \backslash C, 4.775488745,-0.009424336,4.3509477752 \backslash C, 2.284468523$ $7,0.0049226745,5.619318409 \backslash C, 4.7058273298,-0.0055582858,5.7545591252 \backslash C$, $3.4408591169,0.0024317852,6.3798275665 \backslash \mathrm{H}, 3.3820240667,0.0109192716,7$. $4654674536 \backslash \mathrm{H}, 1.3063110856,0.0076538813,6.0899313744 \backslash \mathrm{H}, 5.7460863265,-0$. $0072862825,3.8571425523 \backslash \mathrm{H},-0.8952543954,0.0010768624,1.8867970524 \backslash \mathrm{~N},-1$ $.0392462576,0.0485952242,-6.3107573955 \backslash \mathrm{~N}, 5.8708451696,0.0484532636,6.5$ $171898005 \backslash \mathrm{H}, 5.777812829,-0.2821876345,7.4693601889 \backslash \mathrm{H}, 6.7026758113,-0.3$ $175034773,6.071252523 \backslash \mathrm{H},-1.8855478009,-0.2820093773,-6.7569428245 \backslash \mathrm{H},-0$ $.2092244013,-0.317385493,-6.7600331942 \backslash \backslash$ Version=IA32L-G03RevD.02\State $=3-A \backslash H F=-1022.8480105 \backslash S 2=2.044239 \backslash S 2-1=0 . \backslash S 2 A=2.001252 \backslash \operatorname{RMSD}=6.635 \mathrm{e}-09 \backslash$ RMSF=1.379e-05\Thermal=0. \Dipole=2.5125651,-0.8488154,-1.3534632 \PG=C0 $1[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 14 \mathrm{~N} 6)] \backslash \backslash @$

Table 91. Computational output parameters for singlet TAP 51aa ($\mathrm{X}=\mathrm{OMe}, \mathrm{Y}=\mathrm{C} \equiv \mathrm{N}$).

1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C22H14N6O2|USER|04-Feb-2013|0| |\# opt ub3lyp/6-31g(d) geom=connectivity||X:MeO Y:CN opt||0,1|C,1.2025 955397,-0.6901397062,0.031835203|C, 0.0000003885, -1.3944818176, -0.00000 25505 IC, $-1.2025956572,-0.690140577,-0.0318388342$ IC, $-1.2331341742,0.772$ 9248673,-0.0349627529\|C,-0.0000011584,1.4403591735,0.0000013702|C,1.23
$31325476,0.7729258737,0.0349634036 / N, 2.3974304782,1.4458843971,0.07069$ 72395 | N , 2.3958739161 , - $1.3338796854,0.0614062795$ | C , $3.6165813572,-0.6763$ $419062,0.0937459826|\mathrm{C}, 3.5602637787,0.7476622986,0.0997401603| \mathrm{H},-0.0000$ $022791,2.523584582,0.0000030819 \mid C, 4.8253825552,-1.3763564991,0.1118918$ $383|C, 4.7967583462,1.4299982955,0.1483864556| C, 6.027542859,-0.68228970$ $61,0.1529587956|C, 6.0083399621,0.7409738221,0.1808198648| \mathrm{H}, 4.849238029$ $9,-2.4628103679,0.105801374|\mathrm{H}, 4.7763372791,2.5137099568,0.1715088044| N$,-2.3974328435,1.4458822135,-0.0706945911|N,-2.3958732151,-1.333881610 $8,-0.0614121619|C,-3.5602653773,0.7476595995,-0.0997405994| C,-3.616581$ $4984,-0.676344753,-0.0937503728 \mid C,-4.7967608705,1.4299959136,-0.148383$ 6894 | C , $-4.825382268,-1.3763613656,-0.1119024945$ | C, $-6.0083404687,0.7409$ $693265,-0.1808178082|\mathrm{C},-6.0275410398,-0.6822931789,-0.1529714384| \mathrm{H},-4$. $8492363183,-2.4628153224,-0.1058200749 \mid \mathrm{H},-4.776340421,2.5137077839,-0$. $171496212|\mathrm{H}, 0.0000008916,-2.4831419256,-0.0000040807| 0,7.1920202538,-1$ $.3935455658,0.238626298|0,-7.1920278245,-1.3935347609,-0.2386446687| C$, $8.0378050101,-1.3773657305,-0.9211949649 \mid \mathrm{H}, 8.3994119388,-0.369092199$, $1.1449679138|\mathrm{H}, 8.8865166219,-2.018672674,-0.6773211209| \mathrm{H}, 7.5059503863$, $-1.7834096232,-1.7910073828 \mid C,-8.0377670152,-1.3774012126,0.9212100222$ $|\mathrm{H},-7.5058772622,-1.7834706416,1.7909890916| \mathrm{H},-8.3993672091,-0.3691345$ $284,1.1450287645|\mathrm{H},-8.8864856346,-2.0187035258,0.6773479956| \mathrm{C}, 7.235615$ $1678,1.4726425686,0.2752655388|N, 8.2306089321,2.071857354,0.346331979|$ $C,-7.2356245073,1.4726290716,-0.2752241014 \mid N,-8.2306250745,2.071827096$ $4,-0.3463350156|\mathrm{H}, 2.3996504665,-2.3478012032,0.0619145754| \mathrm{H},-2.3996485$ 896,-2.347803107,-0.0619222892||Version=IA32W-G09RevC. 01 |State=1-A|HF= $-1325.6755872|S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=8.448 e-009| R M S F=9.253 e-006| D i p$ ole=0.0000277,-4.4443797,0.0000211|Quadrupole=-37.031477,20.7024826,16 $.3289944,-0.0000104,-19.464507,0.0000143|\mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 22 \mathrm{H} 14 \mathrm{~N} 6 \mathrm{O} 2)]| \mid @$

Table 92. Computational output parameters for triplet TAP 51aa $(X=O M e, ~ Y=C \equiv N)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt | UB3LYP|6-31G(d)|C22H14N6O2 (3)|GAUSSIAN|0 8-Dec-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||X:MeO Y:CN opt| |0, 3| C, 1.205407719,-0.8324174475,-0.0541190909|C, -0.0002198572,-1.5310 $464826,-0.0042395142|C,-1.2057469675,-0.8323924156,0.0476783553| C,-1.2$ $326829115,0.6009367938,0.05076439551 \mathrm{C},-0.0000194727,1.2799328504,-0.00$ $01506956|C, 1.2325460043,0.6009113646,-0.0530374308| N, 2.3851681809,1.32$ $54967957,-0.10039230591 N, 2.4313603263,-1.4861465178,-0.1069262924 \mid C, 3$. $6247499714,-0.8025633812,-0.1562129291 \mid C, 3.5578525159,0.6313904957,-0$. $1509543422|\mathrm{H}, 0.000058065,2.3639134735,0.0014166874| \mathrm{C}, 4.8476804803,-1.4$

56318761,-0.2096329024|C,4.774846628,1.3256595991,-0.2007000843।C, 6. 05 68165705,-0.744323289,-0.2595615702।C, 6.0237443746, 0.677808651, -0. 2545 $090849 \mid$ H, $4.9042014176,-2.5408200641,-0.2147937941 \mid \mathrm{H}, 4.7348657296,2.409$ 1392318, - 0. 1963077885/N, -2.3852020167,1.3255451102, 0.100214542|N,-2. 43 17918173,-1.4860962515,0.09861724|C, $-3.5579834881,0.6314630015,0.14886$ 15997 IC, - $3.6250793477,-0.8024902147,0.1499966708$ IC, $-4.7748942364,1.325$ $7680417,0.2002538662$ |C, $-4.8480622843,-1.4562376264,0.2024981181 \mid C,-6.0$ $238593701,0.6779227698,0.2523401622$ IC, $-6.0570684198,-0.7442091944,0.25$ $47516421|\mathrm{H},-4.9046817455,-2.5407412371,0.2057045496| \mathrm{H},-4.7348039371$, 2 . $4092501151,0.1979041728 \mid \mathrm{H},-0.0002981675,-2.6198948299,-0.005821652410$, $7.1427850543,-1.5462432358,-0.307081942210,-7.1432097695,-1.5460198809$ $, 0.3003219943|C, 8.479865983,-1.0443223798,-0.3794718366| \mathrm{H}, 8.7333681857$, $-0.4503201429,0.5026431458|\mathrm{H}, 9.1091372252,-1.93515246,-0.415856347| \mathrm{H}$, $8.6350790912,-0.4468308091,-1.2818867841$ | $\mathrm{C},-8.4788874434,-1.0443277702$, 0. $3965577691|\mathrm{H},-8.6186845166,-0.4494593146,1.3032945001| \mathrm{H},-8.74734823$ 39,-0.4477729729,-0.4793053556|H,-9.1074987893,-1.9352602218, 0.4410462 69|C, 7.176349651,1.5227306141,-0.2976058802|N, 8.0697334961,2.269606887 9,-0.3299721127IC,-7.1766247715,1.5227505555,0.2927896787|N, -8.0702429 $328,2.2694652648,0.322273874 \mid \mathrm{H}, 2.448300895,-2.4971771877,-0.1091302182$ |H,-2.4488810647,-2.4971265279,0.097799722||Version=IA32W-G09RevC.01|S tate $=3-\mathrm{A}|\mathrm{HF}=-1325.6631452| \mathrm{S} 2=2.046509|\mathrm{~S} 2-1=0 .|\mathrm{S} 2 \mathrm{~A}=2.001365| \mathrm{RMSD}=6.633 \mathrm{e}$ $-009|\operatorname{RMSF}=6.051 \mathrm{e}-007|$ Dipole=0.0010295,-4.1471807,0.0104442|Quadrupole= $-14.405748,7.4755259,6.9302221,-0.0025226,0.2018036,0.0053484 \mid \mathrm{PG}=\mathrm{C} 01 \quad$ [X(C22H14N6O2)]।।@

Table 93. Computational output parameters for singlet TAP 51ab $\left(\mathrm{E}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H13N5|GAUSSIAN|04-Dec -2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity|loptimization||0,1|C, $0.0202564312,-1.4356617493,0 .|C, 1.2396491958,-0.7225835835,0| C,$. 994115, 0.6898687142,0.|C,-0.0111376467,1.3915584275,0.|C,-1.234720246, $0.7196970446,0 .|C,-1.2163399801,-0.6760906205,0| N,-2.363551775,$. $1697824,0 .|N, 0.0413915548,-2.7881132782,0| C,-1.1373255478,$. $65,0 .|C,-2.399413771,-2.7907711765,0| \mathrm{H},-3.2458611951,-0.9001340914,$.0 . | $\mathrm{H},-2.1742205493,1.2673179533,0 .|\mathrm{C},-1.1655941727,-4.875787167,0| \mathrm{C},$.-3 . 60741314,-3.4923819555,0.|C,-2.364049277,-5.5683480319,0.|C,-3.5935011 $285,-4.8829983629,0 .|\mathrm{H},-0.2106632656,-5.391967534,0| \mathrm{H},-2.3564426773,$. $6.6550083015,0 .|\mathrm{H},-4.5291889223,-5.4335068693,0| \mathrm{H},-4.5493545973,$. 61862858, 0.|N, 0.0518182404,2.7456385546,0.|N,2.4464323525,1.3379771258
, 0. IC, 1. $2459003068,3.463127366,0 .|C, 2.4479717205,2.6934822123,0| \mathrm{H},-0.$. 8163508903, 3.2679331575,0.|C,1.2610884828,4.860014492,0.|C,3.668186419 $2,3.417042828,0 .|C, 2.4779726817,5.5332138533,0| \mathrm{H}, 2.4958797107,$. 65176,0.|C, 3.6802033078, 4. $8011640998,0 . \mid \mathrm{H}, 4.6294971403,5.3300586254,0$. $|\mathrm{H}, 4.5879320835,2.8404989246,0 .|\mathrm{H}, 0.3216275952,5.4104654593,0| N, 2.420$. 3471789,-1.4107985504,0.|н, 3.2827821827, -0. $8923066806,0 . \mid \mathrm{H}, 2.394202065$ 5,-2.4167532383, 0.||Version=IA32W-G09RevC.01|State=1-A'|HF=-967.510949 $6|S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=6.738 e-009| R M S F=1.840 e-004|$ Dipole=-1. 89594 36,1.1051402,0.| Quadrupole=7.5798693,3.6091996,-11.1890689,-3.5054555, 0., 0.|PG=CS [SG(C18H13N5)]|।@

Table 94. Computational output parameters for triplet TAP 51ab $\left(\mathrm{E}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP|6-31G(d)|C18H13N5 (3)|GAUSSIAN|05-Dec-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 |C, 0.5390094767,-1.2470056754, 0.|C,1.2435119873,-0.0000003191, 0.|C, 0. 5 390101634,1.2470053785,0.|C,-0.8852319034,1.2064821068,0.|C,-1.5896151 56, 0.0000003468, 0.|C,-0.8852325047,-1.206481805,0.|N,-1.5292101106,-2. 4345870343, 0.|N, 1.2719499053,-2.3877181487,0.|C, 0.5906785575,-3.575035 6731,0.|C,-0.8369777911,-3.6382262268,0.|H,-2.539359736,-2.4561983927, 0.| $\mathrm{H},-2.6776798881,0.0000005884,0 .|\mathrm{C}, 1.3012363952,-4.7942674019,0| \mathrm{C},$. $1.4969184933,-4.86813067,0 .|C, 0.63873586,-6.0159988465,0| C,$. $336,-6.0548060821,0 .|\mathrm{H}, 2.3854860409,-4.737328677,0| \mathrm{H}, 1.2077391236,$.-6 . $9413103296,0 .|\mathrm{H},-1.2826687472,-7.0076127497,0| \mathrm{H},-2.5849093146,$. 872342,0.|N,-1.5292088269,2.4345876834,0.|N,1.271951169,2.3877173397,0 . | C, -0. $8369758541,3.6382265095,0$. | C, $0.5906804269,3.5750353063,0 . \mid H,-2$. 5393584393,2.4561996791,0.|C,-1.4969159499, 4.8681312991,0.|C,1.3012389 09,4.794266598,0.|C,-0.7611550784, 6.0548063144,0.| $\mathrm{H},-1.2826650748,7.00$ $76132622,0 .|C, 0.6387390158,6.0159984013,0| H, 1.207742701,6.941309613,$. . $1 \mathrm{H}, 2.3854885334,4.7373272758,0 .|\mathrm{H},-2.5849067604,4.8942884023,0| N,$. $896767604,-0.0000005618,0 .|\mathrm{H}, 3.0710830936,0.887434059,0| \mathrm{H},$. 4,-0.8874353523,0.||Version=IA32W-G09RevC.01| State=3-A'|HF=-967.508423 9|S2=2.037433|S2-1=0.|S2A=2.000901|RMSD=5.465e-009|RMSF=1.662e-004|Dip ole $=-1.3858817,0.0000007,0 . \mid$ Quadrupole $=10.7855239,0.6640872,-11.449611$ $2,-0.0000018,0 ., 0 .|P G=C S \quad[S G(C 18 H 13 N 5)]| \mid @$

Table 95. Computational output parameters for singlet TAP 51ac $\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{E}=\mathrm{NH}_{2}\right)$. 1|1|UNPC-USER-TOSH|FOpt|UB3LYP|6-31G(d)|C18H15N7|USER|04-Feb-2013|0||\# opt ub3lyp/6-3lg(d) geom=connectivity||linear tetraazapentacene E:NH2 $+\mathrm{X}: \mathrm{NH} 2$ singlet||0,1|C,1.230425,0.740343,-0.033598|C,0.000072,1.43105 9,-0.062747|C,-1.230443, 0.740478,-0.039666|C,-1.19778,-0.707633,-0.043 $954|C,-0.000002,-1.42444,-0.052584| C, 1.197812,-0.707739,-0.041222 \mid N, 2$. $39924,-1.34329,-0.030074|N, 2.392649,1.43456,0.004956| C, 3.559946,0.7453$ $99,0.021321|C, 3.621227,-0.67898,-0.002639| \mathrm{H}, 2.406047,-2.356102,-0.0321$ $82|\mathrm{H},-0.00006,-2.512341,-0.0587| \mathrm{C}, 4.806098,1.42077,0.059617 \mid \mathrm{C}, 4.829384$, -1. $378556,0.00158|C, 6.004587,0.733658,0.068939| C, 6.03981,-0.680511,0$. $037301|\mathrm{H}, 4.784403,2.505892,0.077253| \mathrm{H}, 6.942584,1.283536,0.104056 \mid \mathrm{H}, 4.8$ $26026,-2.467848,-0.013995|N,-2.399216,-1.343171,-0.032681| N,-2.392856$, $1.43478,-0.009684|C,-3.621322,-0.678863,-0.01156| C,-3.560215,0.745683$, $0.002788|\mathrm{H},-2.406062,-2.355968,-0.038566| \mathrm{C},-4.829276,-1.378628,0.00417$ $7|C,-4.806563,1.421149,0.03171| C,-6.039879,-0.680451,0.031388 \mid C,-6.005$ $018,0.733996,0.044188|\mathrm{H},-6.943339,1.284245,0.058697| \mathrm{H},-4.785136,2.5063$ $55,0.04344|\mathrm{H},-4.825994,-2.467902,-0.012712| \mathrm{N}, 0.00046,2.817642,-0.13919$ $8|\mathrm{H},-0.857045,3.232828,0.205104| \mathrm{H}, 0.855654,3.232349,0.211368 \mid \mathrm{N}, 7.26491$ $4,-1.359318,0.107763|\mathrm{H}, 7.254124,-2.2882,-0.297071| \mathrm{H}, 8.052259,-0.826854$, - 0. $243374|\mathrm{~N},-7.266867,-1.357459,-0.01865| \mathrm{H},-7.242797,-2.299307,0.3543$ $23|H,-8.042124,-0.837293,0.375109|$ |Version=IA32W-G09RevC.01|State=1-A| $H F=-1078.2155212|S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=7.172 e-009| R M S F=1.150 e-005|$ Dipole=0.0118496,-2.8498012,0.3973726|Quadrupole=19.6751406,0.3261517, $-20.0012923,0.17187,-13.9460675,2.9939834|P G=C 01 \quad[X(C 18 H 15 N 7)]| \mid @$

Table 96. Computational output parameters for triplet TAP 51ac $\left(X=\mathrm{NH}_{2}, \mathrm{E}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM40-OTNBTO7T | FOpt | UB3LYP|6-31G(d)|C18H15N7 (3)|GAUSSIAN|04-Dec-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||optimization||0,3 |C, -1. $7881134961,-0.7280894866,0.0331128293 \mid C,-0.4826539574,-1.3098813$ $882,0.0520879989|\mathrm{C}, 0.6897424123,-0.4927807456,0.0216531722| \mathrm{C}, 0.5159882$ $249,0.921026018,0.0024265372$ | C, - $0.7506513743,1.5097324715,0.0023890914$ |C, -1. $8837909852,0.6931244407,0.0135474613 \mid N,-3.1695765354,1.221629135$ $9,0.0041496837|N,-2.8583424651,-1.563515812,0.0285641417| C,-4.10168294$ $39,-0.9926756664,0.0124805836 \mid C,-4.3014881473,0.4231662033,0.002564465$ $6|\mathrm{H},-3.2818871571,2.2252734592,-0.0207148722| \mathrm{H},-0.853598638,2.59308663$, -0.0118940663|C,-5.2566113034,-1.801593495,0.0073532144|C,-5.58191486

82,0.9713800467,-0.0065813497|C,-6.5330514964,-1.2591323705,-0.0036927 494|C,-6.7130718103,0.1378357593,-0.0101464497|H,-5.110246216,-2.87742 21399, 0.0163783761|H,-5.7067032364,2.0531679639,-0.020731933|N, 1. 67917 29292,1.6821007495,-0.0183904758|N,1.897992727,-1.1118124076,0.0065660 361।C,2.94108459,1.1109851671,-0.0308707286|C,3.0114766486,-0.31713821 53,-0.0203562127|H, 1. $6003294141,2.6889304675,-0.043112974$ IC, 4.09530638 $71,1.8904069776,-0.0511358458$ IC, $4.2979139873,-0.8942152523,-0.03664110$ 5 IC, $5.363063348,1.2846775637,-0.0657116818$ |C, $5.4492870919,-0.121193627$ 6,-0.0588277291|H, 4.3567373954,-1.9783558419,-0.0271935989|H, 4.0141197 $133,2.9763338747,-0.0654734461 \mid N,-7.995114201,0.6893774621,-0.08023185$ 55|H,-8.7333528933, 0.0867450924, 0.2622204298|H,-8.080227423,1.62568432 $76,0.2961985734|\mathrm{H},-7.4033887536,-1.9108707921,-0.0116348539| \mathrm{N}, 6.517719$ 1975,2.0676409139,-0.1469762402|H,7.3590733371,1.6151871209, 0.18899343 $03|\mathrm{H}, 6.4282506581,3.0036112908,0.2293207802| \mathrm{H}, 6.4266380257,-0.59746331$ $7,-0.0752427402|\mathrm{~N},-0.3545608993,-2.6558567314,0.1131379075| \mathrm{H}, 0.5675184$ 517,-3.0416178332,-0.0320473836|H,-1.1888265887,-3.2084015338,-0.02405 84511||Version=IA32W-G09RevC. 01 |State=3-A|HF=-1078.2154394|S2=2. 037072 $|S 2-1=0 .|S 2 A=2.000874| \operatorname{RMSD}=5.705 e-009| R M S F=6.917 e-006 \mid$ Dipole=-0.182939 9,1.9506695,0.6742016| Quadrupole=19.3300076,2.495474,-21.8254817,1.629 4252,-0.5273296,3.6233146|PG=C01 [X(C18H15N7)]।।@

Table 97. Computational output parameters for singlet TAP 51ad $\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{NO}_{2}\right)$.
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 18 H 12 N 8 O 4 \backslash G A U S S I A N \backslash 06-J u n-2005 \backslash 0$
\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY
linear tetraazapentacene Y: NO2 X:NH2 singlet opt $\backslash \backslash 0,1 \backslash C,-1.0576899873,-0.0028404604,-0.8263221313$ $\backslash C,-1.0448847336,0.0009174011,0.577140602 \backslash C, 0.1362806868,0.0036182863$, $1.3352572493 \backslash C, 1.3983689667,0.0008740405,0.6013526031 \backslash C, 1.4339778436,-$ $0.001321326,-0.7920717802 \backslash \mathrm{C}, 0.2355351789,-0.0024033893,-1.5038620247 \backslash \mathrm{~N}$, 0.2295517214,-0.0031669724,-2.8634718269 \N,-2.2082047902,-0.006743401 $1,-1.525564601 \backslash C,-2.1555444776,-0.0096216819,-2.8809179542 \backslash C,-0.930604$ $1801,-0.0066117582,-3.6197975712 \backslash \mathrm{H}, 1.1189673556,-0.0039845707,-3.34987$ $22362 \backslash \mathrm{H}, 2.3871553309,-0.0021801597,-1.3185672477 \backslash \mathrm{C},-3.3340862218,-0.01$ $10021809,-3.6453383772 \backslash C,-0.8942709616,-0.0084479668,-5.0073238753 \backslash C,-$ $3.3088095345,-0.0112672187,-5.0377974622 \backslash C,-2.0764506595,-0.0144474124$ $,-5.7706613358 \backslash \mathrm{H},-4.2864785784,-0.0071683992,-3.1326138637 \backslash \mathrm{H}, 0.0627169$ 787,-0.0163632036,-5.5256715926\N, 2. $5460394449,0.0006120621,1.33034798$ $82 \backslash \mathrm{~N}, 0.1155730422,0.0085779755,2.6814268098 \backslash \mathrm{C}, 2.5685161498,0.005075754$ $3,2.715076413 \backslash C, 1.2908668624,0.0103520469,3.3585190733 \backslash$ н, 3.4313291969 ,
$-0.0001793881,0.8364782202 \backslash C, 3.7623468575,0.0057707749,3.4231090955 \backslash C$, $1.3103962015,0.0128325406,4.7631208178 \backslash C, 3.7790317841,0.0128015137,4.8$ $302169839 \backslash \mathrm{C}, 2.5025083666,0.0119970367,5.4831644689 \backslash \mathrm{H}, 0.3692848355,0.01$ $07816904,5.2962746601 \backslash \mathrm{H}, 4.7106680811,0.0118828584,2.889046748 \backslash \mathrm{H},-1.993$ $1090869,0.00177447,1.1009005996 \backslash \mathrm{~N},-4.5962341518,0.0117293848,-5.713555$ $9449 \backslash 0,-4.6235573984,0.0633114509,-6.9589939338 \backslash 0,-5.6182066415,-0.015$ $259364,-5.0294435706 \backslash N, 2.3890009815,-0.0095614174,6.9327453282 \backslash 0,1.265$ $8425061,0.0195124026,7.4335879017 \backslash 0,3.4285919266,-0.0619747578,7.61906$ $9303 \backslash \mathrm{~N},-2.0030876867,-0.0636787047,-7.132288786 \backslash \mathrm{H},-2.8600079306,0.0917$ $958163,-7.6464772751 \backslash \mathrm{H},-1.1207371452,0.1483801904,-7.57278022 \backslash \mathrm{~N}, 4.9706$ $812191,0.0606317503,5.4930826321 \backslash \mathrm{H}, 4.949492053,-0.0935719688,6.4923963$ $123 \backslash \mathrm{H}, 5.8131884531,-0.1523459296,4.9808883261 \backslash$ VVersion=x86-Linux-G03Re vB. $05 \backslash$ State $=1-A \backslash H F=-1431.8699401 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=5.685 e-09 \backslash R$ $\mathrm{MSF}=4.236 \mathrm{e}-06 \backslash \mathrm{Dipole}=5.0694554,-0.0041642,-2.7995279 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 18 \mathrm{H} 12 \mathrm{~N}$ 804)]
@

Table 98. Computational output parameters for triplet TAP 51ad ($\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{NO}_{2}$).
1|1|UNPC-CHEM39-KPDQ5T27|FOpt | UB3LYP|6-31G(d)|C18H12N8O4 (3)|GAUSSIAN|0
4-Dec-2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||linear tetraaza
pentacene Y:NO2 X:NH2 singlet opt||0,3|C,-1.2332634801,-0.4409606126,0
$.0030842673|C,-0.0000000764,-1.1203721765,-0.0000039498| C, 1.2332618767$
,-0.4409576216,-0.0030680377|C,1.2052518951,0.9935794303,-0.0029776472
| C, - $0.0000034179,1.693806237,0.0000465637$ | C, $-1.2052570297,0.9935765391$
, $0.0030453724|N,-2.4320584039,1.6460558629,0.0061513316| N,-2.388773545$
$8,-1.1579777582,0.0059412721 \mid C,-3.5620592243,-0.4693439909,0.008872005$
$5|\mathrm{C},-3.6277584898,0.9723414307,0.0090785366| \mathrm{H},-2.4440450619,2.65760372$
$53,0.0060906676|\mathrm{H},-0.0000046697,2.7828408002,0.0000660649| \mathrm{C},-4.7792934$
$53,-1.1604222606,0.0118336826 \mid C,-4.8444188838,1.6341735481,0.012136117$
5|C, - $6.0116694739,-0.4989402471,0.0149157445 \mid C,-6.0723676997,0.9327320$
$72,0.0152011913|\mathrm{H},-4.76242211,-2.2420528562,0.0116737305| \mathrm{H},-4.86922878$
$47,2.7219183937,0.0123274259 \mid N, 2.4320518002,1.6460614305,-0.0060616046$
$\mid \mathrm{N}, 2.3887736034,-1.1579718784,-0.0059497597$ |C,3.6277535101,0.972349492
9,-0.0090134825|C, 3. $5620580706,-0.4693356114,-0.0088558665 \mid \mathrm{H}, 2.4440362$
$758,2.6576093014,-0.0059592974 \mid C, 4.8444122138,1.6341841252,-0.01204642$
79 |C, $4.7792940473,-1.1604111441,-0.0118453906 \mid C, 6.0723633436,0.9327458$
872,-0.0151339759|C, 6.011670895,-0.4989278336,-0.0149075877|H,4.762423
$7961,-2.2420409857,-0.011730667 \mid \mathrm{H}, 4.8692183829,2.7219290594,-0.0121800$
$729|\mathrm{H}, 0.0000012663,-2.204297059,-0.0000229848| \mathrm{N},-7.1995240017,-1.31278$

25626,0.0175817772|0,-8.321409449,-0.7559211631,0.0203968085|0,-7.0732 279655,-2.5397905719,0.0170105014\|N, 7.1995319479,-1.3127665529,-0.0176 421961।0, 7.073257267,-2.5397769695,-0.0170657428।0, 8.3214163106,-0. 755 9046625,-0.020464044|N,-7.2341698193,1.6228359584,0.0184018207|H,-8.10 08771949,1.0983831168, 0.0200013601|H,-7.2274345304,2.630591577,0.01735 88297|N, 7.2341612782,1.6228576609,-0.0182309588|H, 8.1008729676,1.09841 34563,-0.0200647249|H,7.2274170172,2.630613413,-0.0174436528||Version= IA32W-G09RevC.01|State=3-A|HF=-1431.8661983|S2=2.044801|S2-1=0.|S2A=2. 001234 |RMSD=9.156e-009|RMSF=7.779e-006|Dipole=-0.0000283,5.6887072,-0. 000187 |Quadrupole $=-28.9264942,21.1766664,7.7498278,0.0001296,0.1063566$,-0.0009337|PG=C01 [X(C18H12N8O4)]||@

Table 99. Computational output parameters for singlet TAP 51ae
($\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{NO}_{2}, \mathrm{E}=\mathrm{NH}_{2}$).
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 18 H 13 N 904 \backslash G A U S S I A N \backslash 21-J u n-2005 \backslash 0$
\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY
linear tetraazapentacene E: NH2 + X:NH2 + Y:NO2 singlet opt
0,1\C,-0.9326711084,-0.0744818143,-0. $8902666365 \backslash C,-0.9530440398,-0.0932960679,0.5213072021 \backslash C, 0.244567632,-0$ $.0417882964,1.267145545 \backslash C, 1.4978534461,-0.0255916464,0.5439482126 \backslash C, 1$. 5583995834,-0.0377901453,-0.8499952211\C,0.3534256119,-0.0549795903,-1 $.5532703718 \backslash N, 0.3397907891,-0.0489143833,-2.9151905292 \backslash N,-2.0978261971$ $,-0.071312679,-1.579492403 \backslash C,-2.0516370548,-0.062402715,-2.9322427275 \backslash$ C, -0. $8223713567,-0.0547974277,-3.6692662042 \backslash \mathrm{H}, 1.2274917107,-0.03770758$ $06,-3.4035683044 \backslash \mathrm{H}, 2.5127749373,-0.0269011827,-1.3709320954 \backslash \mathrm{C},-3.22856$ $84165,-0.0560774427,-3.7004441878 \backslash C,-0.7856255564,-0.0503695026,-5.056$ $2336692 \backslash C,-3.2002526326,-0.0481467933,-5.0934094976 \backslash C,-1.9664553409,-0$ $.0514586071,-5.8228771119 \backslash$ Н, $-4.1832103718,-0.0543036248,-3.1921721388 \backslash$ H, $0.1721227963,-0.0565177611,-5.5732367812 \backslash N, 2.6355877732,0.0075422585$,1.2919177104 \N, 0.19342839,-0.0057330714,2.6194981017\C,2.640661193,0. $0352891806,2.6770264119 \backslash \mathrm{C}, 1.3557574989,0.0331822173,3.3120066412 \backslash \mathrm{H}, 3.5$ $264908858,0.0198177061,0.8094289368 \backslash C, 3.8267219316,0.0690939492,3.3962$ $706906 \backslash C, 1.3648008409,0.0685854847,4.717050661 \backslash C, 3.8322916611,0.106909$ $2881,4.8035074781 \backslash \mathrm{C}, 2.5513907919,0.1028018286,5.4464053647 \backslash \mathrm{H}, 0.4209265$ 83, 0.0626367807,5.2450238709\H, 4.7795577323, 0.0789304217,2.8703236582\} $\mathrm{N},-2.1614902498,-0.1930081183,1.1822902567 \backslash \mathrm{H},-2.135656626,0.1250321642$, 2. $1427543145 \backslash \mathrm{H},-2.9592495682,0.1014395907,0.6334924336 \backslash \mathrm{~N},-1.889158928$ $3,-0.095135461,-7.1846016743 \backslash \mathrm{H},-2.745019508,0.0622332722,-7.7001118009$ $\backslash H,-1.005484815,0.1185604048,-7.621640629 \backslash N, 5.0190198051,0.188002924,5$

$$
\begin{aligned}
& .4735375908 \backslash H, 4.9910470236,0.0496417512,6.4751673617 \backslash \mathrm{H}, 5.8658746709,-0 \\
& .0349482203,4.9725693254 \backslash \mathrm{~N},-4.4844421206,-0.0157540602,-5.7720770211 \backslash 0 \\
& ,-4.5093487126,0.0340511188,-7.0182692824 \backslash 0,-5.5091091809,-0.033000949 \\
& 7,-5.0902466083 \backslash N, 2.4273879636,0.113419599,6.8940892677 \backslash 0,3.4620908605 \\
& , 0.0894923632,7.5902683609 \backslash 0,1.2994652662,0.1407381955,7.386138439 \backslash \backslash V e \\
& \text { rsion=x86-Linux-G03RevB.05\State=1-A\HF=-1487.2265342\S2=0.\S2-1=0.\S2} \\
& A=0 . \backslash R M S D=6.336 e-09 \backslash R M S F=8.016 e-06 \backslash D i p o l e=4.6303419,0.3364945,-2.53342 \\
& 76 \backslash P G=C 01 \quad[X(C 18 H 13 N 904)] \backslash \backslash @
\end{aligned}
$$

Table 100. Computational output parameters for triplet TAP 51ae
$\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{NO}_{2}, \mathrm{E}=\mathrm{NH}_{2}\right)$.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt | UB3LYP|6-31G (d)|C18H13N9O4 (3)|GAUSSIAN|0 3-Dec-2012|0||\# opt ub3lyp/6-31g(d) guess=mix geom=connectivity||optim ization||0,3|C,-1.2442278593, 0.3380744885,-0.0047171345|C, 0.0000170646 , $1.0453832248,-0.0042433433$ | C, $1.2442624578,0.338079872,-0.0017217856 \mid C$, 1. $2024443182,-1.0885233142,0.0002648054 \mid C, 0.0000182381,-1.79687919,-0$ $.0001762929|C,-1.2024084617,-1.0885287064,-0.0026336166| N,-2.431830861$ $1,-1.7353228286,-0.0031920809 \mid N,-2.3867114873,1.0589417412,-0.00709837$ $47|C,-3.5714408015,0.3770045898,-0.0075379203| \mathrm{C},-3.6305411175,-1.06194$ $55119,-0.0055842619|\mathrm{H},-2.4443595305,-2.7466206647,-0.0017042317| \mathrm{H}, 0.00$ $00187736,-2.8847773573,0.0013717643 \mid C,-4.7859028584,1.063055278,-0.010$ $0746981|C,-4.8450578539,-1.7291718696,-0.0060640743| C,-6.0192137676,0$. $3964183361,-0.0106321104|\mathrm{C},-6.0759259228,-1.0335704188,-0.0084332619| \mathrm{H}$, - 4. $7772799557,2.1446726023,-0.0118061695 \mid \mathrm{H},-4.8643598931,-2.817063640$ $7,-0.0042340163|N, 2.4318673444,-1.7353121211,0.0026725731| N, 2.38674559$ $85,1.058951944,-0.001356484|C, 3.630576996,-1.0619301202,0.0031654205| C$, 3.5714754216,0.3770204033, 0.0010515589| H, 2.4443964615,-2.7466099391,0 $.0041753755|C, 4.8450938545,-1.7291513717,0.0055814017| C, 4.7859367625,1$ $.0630767651,0.0015367349|C, 6.0759609711,-1.0335433701,0.0060889181| C, 6$ $.0192491251,0.3964460235,0.0039687335 \mid \mathrm{H}, 4.7773128644,2.1446942816,-0.0$ $000285688|\mathrm{H}, 4.8643964854,-2.8170434283,0.0071799663| \mathrm{N}, 0.0000164455,2.3$ $913799881,-0.0062121506|\mathrm{H}, 0.8852606869,2.8767962732,-0.0056525576| \mathrm{H},-0$ $.8852287665,2.8767923127,-0.0077800841 \mid N,-7.2361359877,-1.7296415489,-$ $0.0075091691|\mathrm{H},-8.1047507788,-1.2092543927,-0.0133779616| \mathrm{H},-7.22442954$ $42,-2.737117367,-0.0116904632 \mid N, 7.2361680798,-1.7296060708,0.008625683$ $6|H, 8.1047968726,-1.2092111983,0.0084717276| \mathrm{H}, 7.224478167,-2.737088962$ $8,0.0094372822|N,-7.2071022466,1.2060979501,-0.0141421612| 0,-8.3288151$ $109,0.6477882224,-0.01575064910,-7.0845919939,2.4348847173,-0.01559982$ $R M S D=7.674 e-009|R M S F=2.084 e-006|$ Dipole=0.0000536,-4.7664107,0.0017113| Quadrupole=-38.0891465,29.8195048,8.2696416,-0.0007157,0.0054031,-0.00 02977|PG=C01 [X(C18H13N9O4)]||@

Table 101. Computational output parameters for singlet 3,9-di-trifluoromethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91h $\left(\mathrm{R}=\right.$ Tolyl, $\left.\mathrm{X}=\mathrm{CF}_{3}\right)$.
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 F 6 N 4 \backslash G A U S S I A N \backslash 13-F e b-2013 \backslash 0$
\# opt ub3lyp/6-31g(d) geom=connectivity
tolyl X:CF3 singlet
0,1\C, $-0.0432645087,-0.0016303241,0.0231513348 \backslash C,-0.0314826885,-0.0000067253$,1.4233430173\C,1.1418090391,0.0016172024,2.1875825634\C,2.4162211505, $0.000831875,1.4662750175 \backslash C, 2.4432906193,-0.0000234027,0.0683505504 \backslash C, 1$. $2509790133,-0.0008566328,-0.6619359454 \backslash \mathrm{~N}, 1.2479056583,-0.0013984992$, $2.0303928064 \backslash N,-1.2053398218,-0.003714808,-0.6504010769 \backslash \mathrm{C},-1.169717820$ $3,-0.0044406105,-2.0023869394 \backslash C, 0.0416299633,-0.0033357511,-2.75684782$ $61 \backslash \mathrm{H}, 3.3907878444,-0.0000375052,-0.4504253328 \backslash \mathrm{C},-2.3906238969,-0.00144$ $20336,-2.7265060954 \backslash C, 0.0193115057,0.0007591974,-4.1552564005 \backslash C,-2.409$ 5235729, 0.0031395777,-4.1051341469\C,-1.1996042705, 0.0054202424,-4.826 $4612674 \backslash \mathrm{H},-3.3065328053,0.0022997477,-2.1450026379 \backslash \mathrm{H}, 0.9421978376,0.00$ $83129208,-4.7205807023 \backslash \mathrm{~N}, 3.5674683115,0.0013795231,2.206081876 \backslash \mathrm{~N}, 1.083$ $2309354,0.0037042261,3.5294694884 \backslash C, 3.5296479671,0.003339641,3.6137064$ $138 \backslash C, 2.241447414,0.0044397853,4.2278026086 \backslash C, 4.6957612338,-0.00072454$ 95, 4.3858625057\C, 2. 1937771791, 0.0014506069, 5. $6464949649 \backslash C, 4.604583734$ $8,-0.0053718538,5.7743718355 \backslash C, 3.3450672084,-0.0031079998,6.4051144842$ \H, 1. $2104498724,-0.0023004672,6.1048646578 \backslash \mathrm{H}, 5.6692167011,-0.008267448$ $3,3.912898008 \backslash \mathrm{H},-0.9817245811,-0.0000055207,1.9436212827 \backslash \mathrm{H},-3.35324109$ $91,0.0142135033,-4.6406821467 \backslash \mathrm{H}, 3.2878565475,-0.0141745737,7.488692676$ $1 \backslash C,-1.230322437,-0.0475800843,-6.3244522933 \backslash C, 5.8500652406,0.04765802$ $82,6.6072543315 \backslash F,-2.2451241074,0.6904466837,-6.8319210264 \backslash F,-0.082115$ $216,0.4096745262,-6.8778477845 \backslash \mathrm{~F}, 6.1458117272,1.3106632111,7.006298341$ $\backslash F, 5.7309266666,-0.6903915384,7.7355804451 \backslash \mathrm{~F},-1.4071419489,-1.31058161$ $77,-6.7886141733 \backslash \mathrm{~F}, 6.9348734909,-0.4095477948,5.9380297204 \backslash \mathrm{C}, 4.8528316$ $748,0.0030133706,1.5449197194 \backslash C, 5.4750098602,-1.2064701434,1.233113703$ $\backslash C, 5.4727317847,1.2143027069,1.2359223782 \backslash C, 6.7223518965,-1.1969815851$
, $0.6105418934 \backslash \mathrm{H}, 4.9840392999,-2.1432569735,1.4790635263 \backslash \mathrm{C}, 6.7201531251$,1.2085833112, 0.6132808424 \н, 4.9799773998, 2.1496274985,1.4839054201\С, $7.3670802854,0.006818548,0.2943271985 \backslash \mathrm{H}, 7.2035518228,-2.1416336035,0.3$ $69871442 \backslash \mathrm{H}, 7.1995694012,2.1546750096,0.3747647128 \backslash \mathrm{C}, 2.4973749323,-0.00$ $30427986,-2.7571120106 \backslash C, 3.0953450436,1.2064534427,-3.1131636426 \backslash C, 3.0$ $915450959,-1.2143190321,-3.1130696642 \backslash C, 4.2917970894,1.1969675234,-3.8$ $28647958 \backslash \mathrm{H}, 2.6237122163,2.1432371144,-2.8318947083 \backslash \mathrm{C}, 4.28811714,-1.208$ $5971027,-3.828611623 \backslash \mathrm{H}, 2.6171009826,-2.1496468797,-2.8316463365 \backslash \mathrm{C}, 4.90$ $54280364,-0.0068474899,-4.2016564911 \backslash н, 4.7538616926,2.1416228782,-4.10$ $42764095 \backslash \mathrm{H}, 4.7472480187,-2.1546855736,-4.1041645796 \backslash \mathrm{C}, 6.1813365938,-0$. $0085371796,-5.0100537074 \backslash \mathrm{H}, 6.7789007706,-0.9048172564,-4.8146901738 \backslash \mathrm{H}$, $5.9647385883,0.0104630904,-6.0861754483 \backslash \mathrm{H}, 6.7984562197,0.8681230387,-4$ $.7877231645 \backslash \mathrm{C}, 8.7354840977,0.0085975203,-0.3451417911 \backslash \mathrm{H}, 8.8821418867,-$ $0.8700897323,-0.9816741867 \backslash \mathrm{H}, 8.8912397786,0.9029702225,-0.9570502363 \backslash \mathrm{H}$, 9.5254612676,-0.0062298313,0.417112358
Version=IA32L-G03RevD.02 \Stat $e=1-A \backslash H F=-2126.9598335 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.050 e-09 \backslash R M S F=2.157 e$ $-06 \backslash$ Thermal $=0 . \backslash$ Dipole $=3.119275,0.000163,-1.7078835 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 22 \mathrm{~F} 6 \mathrm{~N}$ 4) $] \backslash \backslash @$

Table 102. Computational output parameters for triplet 3,9-di-trifluoromethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91h $\left(\mathrm{R}=\right.$ Tolyl, $\left.\mathrm{X}=\mathrm{CF}_{3}\right)$.
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 F 6 N 4(3) \backslash G A U S S I A N \backslash 10-F e b-201$ $3 \backslash 0 \backslash \backslash \#$ opt ub3lyp/6-31g(d) geom=connectivity
tolyl X:CF3 triplet $\backslash \backslash 0,3$ $\backslash C, 0 ., 0 ., 0 . \backslash C,-0.000000015,-0.0000000002,1.4061004626 \backslash C, 1.1846186763,0$., 2.1635919971 \C, 2.4305274185,-0.0003574869,1.4594712525\C,2.455419960 $1,-0.0000008443,0.06169771 \backslash C, 1.2644065555,0.0003577454,-0.6703363024 \backslash \mathrm{~N}$, 1.2563683172,0.0010314086,-2.0749283903\N,-1.2017512474,0.,-0.6443704 $46 \backslash C,-1.1725962074,0.0011834324,-2.0004246006 \backslash C, 0.041040132,0.00186197$ $18,-2.7662009004 \backslash \mathrm{H}, 3.4040382096,-0.0000022387,-0.4576940781 \backslash \mathrm{C},-2.40451$ $05281,0.0062277164,-2.7011759286 \backslash C,-0.017942726,0.0078780034,-4.162747$ $4145 \backslash C,-2.4523006955,0.0113778375,-4.082491959 \backslash C,-1.2537404407,0.01304$ 92637,-4.8133296419\H,-3.3085430327, 0.0099682175,-2.1012459202\H, 0. 893 $0439179,0.0171797323,-4.7471403202 \backslash N, 3.6095454212,-0.0010311682,2.2229$ $231342 \backslash \mathrm{~N}, 1.0800856565,0 ., 3.5231851909 \backslash \mathrm{C}, 3.5372129674,-0.0018529157,3.6$ $192203071 \backslash C, 2.2382482962,-0.0011774476,4.2291548433 \backslash C, 4.682007493,-0.0$ $078601048,4.4212593362 \backslash C, 2.1649650314,-0.0062197091,5.6445316479 \backslash C, 4.5$ $643663602,-0.0130266558,5.8128825738 \backslash C, 3.3029591418,-0.0113599274,6.42$
$89364499 \backslash \mathrm{H}, 1.1725136488,-0.0099645089,6.0829732124 \backslash \mathrm{H}, 5.6651164128,-0.0$ $171626182,3.9685906508 \backslash \mathrm{H},-0.9508102121,0.0000000046,1.9266924036 \backslash \mathrm{H},-3$. $4039038296,0.0224612281,-4.6024967528 \backslash \mathrm{H}, 3.2284086683,-0.0224401007,7.5$ $107844188 \backslash C,-1.2942407313,-0.0468146177,-6.3138685965 \backslash \mathrm{C}, 5.8067331111,0$ $.0468532449,6.6553665882 \backslash F,-2.3863588127,0.5744034626,-6.8133906095 \backslash F$, $-0.2072555685,0.5305660044,-6.8764215992 \backslash \mathrm{~F}, 6.168877774,1.3241101845,6$. $931703963 \backslash F, 5.6392227893,-0.574304857,7.844592003 \backslash F,-1.332024927,-1.32$ $40662163,-6.7678492143 \backslash \mathrm{~F}, 6.8662421314,-0.5305776756,6.0426775077 \backslash \mathrm{C}, 4.8$ $92626648,0.0022241093,1.5727328529 \backslash C, 5.5202177069,-1.2051106492,1.2566$ $623989 \backslash \mathrm{C}, 5.5167139981,1.2129220994,1.2628474611 \backslash \mathrm{C}, 6.7687385561,-1.1952$ $225701,0.6363690421 \backslash \mathrm{H}, 5.0285527041,-2.1428375579,1.4981797206 \backslash \mathrm{C}, 6.7652$ 686895,1.2097756036,0.6424367956\H,5.0223266684,2.1480108339,1.5090288 $924 \backslash C, 7.413712007,0.0090493525,0.3230163813 \backslash \mathrm{H}, 7.2504974098,-2.13933697$ $51,0.3939255647 \backslash \mathrm{H}, 7.244285325,2.1564915334,0.4047794025 \backslash \mathrm{C}, 2.4953642462$, - 0.0022295954,-2.8056361693\C, 3.0997558368,1.2051153185,-3.1640894515 $\backslash C, 3.092633598,-1.2129165933,-3.1644907535 \backslash C, 4.2949355859,1.1952313752$, $-3.8817822584 \backslash \mathrm{H}, 2.6314130774,2.1428396588,-2.8799663726 \backslash \mathrm{C}, 4.287947353$,-1.2097679759,-3.8821615614 \H,2.6188903262,-2.1480080391,-2.880612831 $4 \backslash C, 4.9063869878,-0.0090534987,-4.2563712551 \backslash \mathrm{H}, 4.7587291021,2.13934744$ 89,-4.1570359919\H, 4.7462183842,-2.1564823947,-4.157710453\C, 6.1812655 $91,-0.0124480892,-5.0666961542 \backslash \mathrm{H}, 6.7806536987,-0.9068723629,-4.8679340$ $71 \backslash \mathrm{H}, 5.9640112656,0.0012940495,-6.1428722519 \backslash \mathrm{H}, 6.7975252259,0.86605359$ $16,-4.8490248422 \backslash \mathrm{C}, 8.7832010821,0.0125034419,-0.3145096484 \backslash \mathrm{H}, 8.9328049$ $849,-0.8673098351,-0.9489011077 \backslash \mathrm{H}, 8.9376461855,0.9056757232,-0.9286554$ $467 \backslash H, 9.5728327305,0.0014824828,0.4483177175 \backslash$ VVersion=IA32L-G03RevD. 02 \backslash State $=3-A \backslash H F=-2126.9412387 \backslash S 2=2.049998 \backslash S 2-1=0 . \backslash S 2 A=2.001628 \backslash R M S D=4.38$ $5 e-09 \backslash \mathrm{RMSF}=1.912 \mathrm{e}-06 \backslash \mathrm{Th} \mathrm{rmal}=0 . \backslash$ Dipole=0.0000041,-2.755217,-0.0001216\} PG=C01 [X(C34H22F6N4)]
@

Table 103. Computational output parameters for singlet 3,9-di-cyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91f ($\mathrm{R}=$ Tolyl, $\mathrm{X}=\mathrm{C} \equiv \mathrm{N}$).
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 N 6 \backslash G A U S S I A N \backslash 10-F e b-2013 \backslash 0 \backslash \backslash$ \# opt ub3lyp/6-31g(d) geom=connectivity
singlet tolyl $\mathrm{X}: \mathrm{CN} \backslash \backslash 0,1 \backslash \mathrm{C},-0$. $0395629171,0.0000108613,0.0209066489 \backslash \mathrm{C},-0.0280345691,0.0000000654,1.42$ $05633695 \backslash C, 1.1465555858,-0.0000107237,2.1818187873 \backslash C, 2.4202413735,-0.0$ $000044569,1.4600532823 \backslash C, 2.4463698665,-0.0000002127,0.0623698297 \backslash C, 1.2$ $53225037,0.0000043546,-0.6660580097 \backslash N, 1.2476466956,0.0000005351,-2.034$ $4401952 \backslash \mathrm{~N},-1.2037002553,0.0000238642,-0.6506158475 \backslash \mathrm{C},-1.171979416,0.00$
$00294552,-1.999772862 \backslash \mathrm{C}, 0.0401671776,0.0000168455,-2.7577647152 \backslash \mathrm{H}, 3.39$ $33188033,-0.0000004914,-0.4574077901 \backslash C,-2.397046059,0.000047264,-2.719$ $7068967 \backslash C, 0.0150152589,0.0000219103,-4.1528277453 \backslash C,-2.4246440271,0.00$ $00523013,-4.0959700367 \backslash \mathrm{C},-1.2122700847,0.0000398292,-4.8281981449 \backslash \mathrm{H},-3$ $.3100562408,0.0000563517,-2.1338373617 \backslash \mathrm{H},-3.3688483933,0.0000658483,-4$ $.6306122564 \backslash \mathrm{H}, 0.9350946652,0.0000124532,-4.7234239277 \backslash \mathrm{~N}, 3.5716423064,-$ $0.0000008276,2.1994965215 \backslash N, 1.0879959002,-0.0000238002,3.5244760039 \backslash C$, $3.5335117605,-0.0000169571,3.606532669 \backslash C, 2.243205452,-0.0000294726,4.2$ $221301075 \backslash C, 4.6969115015,-0.0000218641,4.3768144912 \backslash C, 2.1927715124,-0$. $0000472551,5.6421826678 \backslash C, 4.6076913917,-0.0000396311,5.7748108341 \backslash \mathrm{C}, 3$. $3389978624,-0.0000522068,6.4044337203 \backslash \mathrm{H}, 3.2830536121,-0.0000657166,7.4$ $880546533 \backslash \mathrm{H}, 1.2082891324,-0.0000563654,6.0978415073 \backslash \mathrm{H}, 5.6723047295,-0$. $0000124019,3.9069911031 \backslash \mathrm{H},-0.977697774,0.0000000677,1.9418307279 \backslash \mathrm{C},-1$. $2307647953,0.0000457403,-6.2569261979 \backslash N,-1.2456365893,0.0000516982,-7$. $4218075349 \backslash C, 5.8030662141,-0.000045268,6.5575526242 \backslash N, 6.7777996235,-0$. $0000503888,7.1955685487 \backslash C, 4.8581942127,0.0000291662,1.5390470242 \backslash C, 5.4$ $798740535,-1.2107123959,1.2312905963 \backslash C, 5.4798491915,1.2107936057,1.231$ 3651081 \C, $6.7299936768,-1.2028456271,0.6142304067 \backslash \mathrm{H}, 4.9875929542,-2.14$ $70028602,1.4766363738 \backslash \mathrm{C}, 6.7299766223,1.2029844908,0.6143030521 \backslash \mathrm{H}, 4.987$ $5546988,2.147062425,1.4767663432 \backslash C, 7.3775013391,0.0000885606,0.3001058$ $432 \backslash \mathrm{H}, 7.2116148028,-2.1481409141,0.3773330749 \backslash \mathrm{H}, 7.2115836922,2.1483010$ $568,0.3774673114 \backslash C, 2.4956154704,-0.0000297588,-2.7651819211 \backslash C, 3.089050$ $5625,1.2107120743,-3.1243964306 \backslash C, 3.0889718687,-1.2107940485,-3.124418$ $5649 \backslash \mathrm{C}, 4.2808530253,1.202845217,-3.8477002801 \backslash \mathrm{H}, 2.6177475448,2.1470025$ $438,-2.8408319513 \backslash C, 4.2807805699,-1.2029849453,-3.8477284108 \backslash \mathrm{H}, 2.61761$ $34099,-2.1470629224,-2.8408751916 \backslash C, 4.8935260857,-0.0000893554,-4.2252$ $876379 \backslash \mathrm{H}, 4.7393065579,2.148140541,-4.1268054069 \backslash \mathrm{H}, 4.7391727739,-2.1483$ $014939,-4.1268575328 \backslash C, 8.7495886469,0.000099135,-0.3310404541 \backslash \mathrm{H}, 8.9051$ $493545,0.8873068351,-0.9532810764 \backslash H, 9.5342741102,-0.0009005793,0.43671$ $36446 \backslash \mathrm{H}, 8.9044483926,-0.8861420368,-0.9548412941 \backslash \mathrm{C}, 6.1627012803,-0.000$ $0983002,-5.0439227985 \backslash \mathrm{H}, 6.7711268399,-0.8873439746,-4.8411101675 \backslash \mathrm{H}, 5.9$ $363356118,0.0009822291,-6.1181369606 \backslash \mathrm{H}, 6.772139515,0.8861047628,-4.839$ $5649227 \backslash \backslash$ Version=IA32L-G03RevD.02 ${ }^{\text {State }}=1-A \backslash H F=-1637.3743105 \backslash$ S2 $=0 . \backslash$ S2$1=0 . \backslash S 2 A=0 . \backslash R M S D=2.987 e-09 \backslash R M S F=9.119 e-06 \backslash$ Thermal $=0 . \backslash$ Dipole=2.5407308, $0.000003,-1.3945968 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 22 \mathrm{~N} 6)] \backslash \backslash @$

Table 104. Computational output parameters for triplet 3,9-di-cyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91f $(\mathrm{R}=\mathrm{Tolyl}, \mathrm{X}=\mathrm{C} \equiv \mathrm{N})$.
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 N 6(3) \backslash G A U S S I A N \backslash 09-F e b-2013 \backslash$ $0 \backslash \backslash \#$ opt ub3lyp/6-31g(d) geom=connectivity
triplet tolyl X:CN
0, 3\C, $0 ., 0.0000002776,0 . \backslash C,-0.0000000793,0.0000000009,1.4051749755 \backslash C, 1.18543$ $56168,-0.0000002839,2.1596680069 \backslash C, 2.4306419501,-0.0000002884,1.455282$ $8606 \backslash \mathrm{C}, 2.4551278976,-0.000000016,0.0575623199 \backslash \mathrm{C}, 1.2628337505,0.0000002$ 648,-0.6722709025\N,1.2530902282,0.0000005422,-2.075534886\N,-1.202714 $1905,0.000000543,-0.6455989317 \backslash C,-1.1767651822,0.000000806,-1.99631060$ $68 \backslash \mathrm{C}, 0.0378903703,0.0000008179,-2.7663027807 \backslash \mathrm{H}, 3.4031019134,-0.0000000$ 226,-0.4627778794\C,-2.4134852825,0.,-2.6947579276\C,-0.0219578652,0., $-4.1598987559 \backslash C,-2.4679254001,0 .,-4.0723496161 \backslash C,-1.2659293693,0 .,-4.8$ $14681735 \backslash \mathrm{H},-3.3149943191,0 .,-2.0912666861 \backslash \mathrm{H},-3.4198915045,0 .,-4.592348$ $5435 \backslash \mathrm{H}, 0.8862578584,0 .,-4.7490122211 \backslash \mathrm{~N}, 3.6092336172,-0.0000005739,2.21$ $69694271 \backslash \mathrm{~N}, 1.0842928254,-0.0000005403,3.5209503216 \backslash \mathrm{C}, 3.5394922856,-0.0$ $000008408,3.6130378802 \backslash C, 2.2377149483,-0.0000008115,4.2243085426 \backslash C, 4.6$ $830246563,0 ., 4.4118027208 \backslash C, 2.1628962166,0 ., 5.6426557953 \backslash C, 4.567477074$ $6,0 ., 5.8128218532 \backslash \mathrm{C}, 3.2958317301,0 ., 6.4282644268 \backslash \mathrm{H}, 3.2233664525,0 ., 7.5$ $105708215 \backslash \mathrm{H}, 1.16972397,0 ., 6.0791497133 \backslash \mathrm{H}, 5.667669465,0 ., 3.9619304322 \backslash \mathrm{H}$, -0.9502392912,0.0000000075,1.9267585343\C,-1.30617445,0.,-6.243402893 $6 \backslash \mathrm{~N},-1.3395789022,0.0000018903,-7.4078037769 \backslash \mathrm{C}, 5.7511674892,0 ., 6.61390$ $91253 \backslash \mathrm{~N}, 6.7155446963,-0.0000008148,7.2673017157 \backslash \mathrm{C}, 4.8930477251,-0.0000$ $005934,1.5660334929 \backslash C, 5.5187027115,-1.2094160004,1.2546155774 \backslash \mathrm{C}, 5.5187$ $117147,1.2094089988,1.2546402947 \backslash C, 6.7683686461,-1.2026420003,0.636580$ $0633 \backslash \mathrm{H}, 5.0257002561,-2.1460039968,1.4979116203 \backslash \mathrm{C}, 6.7683861054,1.202632$ $9987,0.6366035612 \backslash \mathrm{H}, 5.0257224719,2.1459990014,1.4979541814 \backslash \mathrm{C}, 7.4157742$ $978,-0.0000006384,0.3216419314 \backslash \mathrm{H}, 7.2493731817,-2.1479889986,0.39786308$ $27 \backslash H, 7.2494017947,2.1479769983,0.397908977 \backslash \mathrm{C}, 2.4915630909,0.0000005442$,-2.8090750844\C,3.0902211108,1.2094149969,-3.1696790901\C,3.090203736 $8,-1.2094089988,-3.1697003536 \backslash C, 4.2826016471,1.2026419969,-3.892077067$ $7 \backslash H, 2.6202597813,2.1460039981,-2.8844059138 \backslash C, 4.2825912031,-1.20263399$ 89,-3.8921044167\H,2.6202339692,-2.1459990013,-2.8844487827\C, 4.895907 7838,0.0000005552,-4.2691389049\H, 4.7422592766,2.1479889959,-4.1696845 $883 \backslash \mathrm{H}, 4.7422349644,-2.1479779987,-4.1697351251 \backslash \mathrm{C}, 8.7867292882,-0.00002$ $39991,-0.3123838189 \backslash \mathrm{H}, 8.9408390193,0.8870900022,-0.9352609687 \backslash \mathrm{H}, 9.5738$ 188545,-0.0010579992,0.4530392805\H, $8.9400837459,-0.8861639998,-0.9368$ $426965 \backslash C, 6.1669041668,0.0000240028,-5.085272737 \backslash H, 6.7750878247,-0.8871$ $269936,-4.8808938301 \backslash \mathrm{H}, 5.9437958011,0.0011400027,-6.1602635104 \backslash \mathrm{H}, 6.776$ 0878531,0.8861260033,-4.8792901635
Version=IA32L-G03RevD.02\State=3-A $.427 e-05 \backslash$ Thermal $=0 . \backslash$ Dipole=0.0000036, -2.1862751, $0.0000064 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 3$ 4H22N6)]
@

Table 105. Computational output parameters for singlet 2,10-di-fluoro-5,7-di-p-tolyl-7,13dihydroquinoxalino $[2,3-b]$ phenazin- 5 -ium-13-ide TAP 91k ($\mathrm{R}=$ Tolyl, $\mathrm{Y}=\mathrm{F}$).
$1 \backslash 1 \backslash$ GINC-CHEM39\FOpt\UB3LYP\6-31G(d) \C32H22F2N4 \GAUSSIAN $\backslash 12-F e b-2013 \backslash 0$
\# opt ub3lyp/6-31g(d) geom=connectivity
opt ground state singlet Y: $F \backslash \backslash 0,1 \backslash C,-0.0376515181,0.0000110675,0.0204609531 \backslash C,-0.0268512955,0.000$ 000103,1.4213340415\C,1.1451349037,-0.0000108236,2.1888041432\C, 2.4199 723277,-0.000005209,1.4690658455\C,2.44888223,0.0000001829,0.070872576 $3 \backslash C, 1.2576511943,0.0000055141,-0.6617589483 \backslash N, 1.2560897434,0.000004240$ $9,-2.0302613539 \backslash N,-1.1984639501,0.0000244732,-0.6547871494 \backslash \mathrm{C},-1.162271$ $6246,0.0000317733,-2.0083812585 \backslash C, 0.0515322021,0.0000205782,-2.7615191$ $656 \backslash \mathrm{H}, 3.3972300228,0.0000002221,-0.4464314098 \backslash \mathrm{C},-2.3840357171,0.000049$ $4287,-2.7271425765 \backslash C, 0.0284816758,0.0000272577,-4.1625781427 \backslash C,-2.3704$ $059104,0.0000555452,-4.1033911225 \backslash C,-1.1828773669,0.0000448491,-4.8440$ $743257 \backslash \mathrm{H},-3.3146937543,0.0000575988,-2.1720305305 \backslash \mathrm{H},-1.2227467088,0.00$ $00504463,-5.9274894081 \backslash \mathrm{H}, 0.9554199909,0.000018848,-4.7236162213 \backslash \mathrm{~N}, 3.56$ 97437367,-0.0000040056,2.2112439477\N,1.084445213,-0.0000243236,3.5303 $569054 \backslash C, 3.5324640948,-0.0000204779,3.6198987924 \backslash C, 2.2421206807,-0.000$ $0316879,4.2327213721 \backslash C, 4.6979748001,-0.0000273014,4.3977699205 \backslash \mathrm{C}, 2.185$ 0188311, $-0.0000494446,5.6490778926 \backslash C, 4.6151739047,-0.0000449964,5.7852$ $038436 \backslash \mathrm{H}, 5.5045090894,-0.0000506872,6.4052530735 \backslash \mathrm{C}, 3.3495269525,-0.000$ 0556609, 6.3826770128\H,1.214459084, -0.0000576081, 6.1310405464 \H, 5. 6715 $032167,-0.0000189144,3.9221428 \backslash \mathrm{H},-0.9779478633,0.0000000651,1.94013775$ $16 \backslash \mathrm{C}, 4.8543260513,0.000022638,1.5514181101 \backslash \mathrm{C}, 5.4757065744,-1.209870265$ $8,1.2392832146 \backslash C, 5.4756818404,1.2099362163,1.2393437412 \backslash C, 6.7215393834$, -1. $2025910379,0.6133248989 \backslash \mathrm{H}, 4.9832795094,-2.1456236957,1.4862277242 \backslash$ C, 6.7215211023,1.2027083979,0.6133832978\H,4.9832406726,2.1456703181,1 $.4863330906 \backslash C, 7.3663424718,0.000075673,0.2933879995 \backslash \mathrm{H}, 7.2005680117,-2$. $1480428915,0.3709416037 \backslash \mathrm{H}, 7.2005348969,2.1481793325,0.3710493767 \backslash \mathrm{C}, 2.5$ $062945254,-0.0000223945,-2.7531094574 \backslash C, 3.1051286822,1.2098702416,-3.1$ $065771616 \backslash C, 3.1050649834,-1.209935917,-3.1065881676 \backslash C, 4.3058803834,1.2$ $025910464,-3.8151804391 \backslash H, 2.6309166754,2.1456236445,-2.8262403627 \backslash C, 4$. $3058218189,-1.2027082757,-3.8151956065 \backslash \mathrm{H}, 2.6308079527,-2.145669904,-2$. $8262629598 \backslash C, 4.9239551927,-0.0000755416,-4.1841168646 \backslash \mathrm{H}, 4.7690037122,2$ $.1480428339,-4.0867221778 \backslash \mathrm{H}, 4.7688960135,-2.1481792231,-4.0867507423 \backslash \mathrm{C}$
, $6.2066488866,-0.0000870154,-4.9821419563 \backslash \mathrm{H}, 6.0003982181,0.0007417267$, $-6.0605721293 \backslash \mathrm{H}, 6.8128203029,0.8860092906,-4.7671700136 \backslash \mathrm{H}, 6.8120575638$, - $0.8869880771,-4.7683655409 \backslash C, 8.7317206185,0.0000865985,-0.353055817 \backslash$ $\mathrm{H}, 8.8797389226,0.8869988337,-0.9777882777 \backslash \mathrm{H}, 9.5267909748,-0.0007659072$ $, 0.4041853016 \backslash \mathrm{H}, 8.879128934,-0.8859985172,-0.9791129261 \backslash \mathrm{~F}, 3.2811118845$ $,-0.0000726882,7.7323189889 \backslash F,-3.5422023045,0.000072488,-4.7765233879 \backslash$ \Version=IA32L-G03RevD.02\State=1-A\HF=-1651.3468188\S2=0. \S2-1=0. $\backslash \mathrm{S} 2 \mathrm{~A}$ $=0 . \backslash \mathrm{RMSD}=4.973 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.047 \mathrm{e}-05 \backslash$ Thermal=0. V Dipole=4.3388816,-0.00000 $11,-2.3667732 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 32 \mathrm{H} 22 \mathrm{~F} 2 \mathrm{~N} 4)] \backslash \backslash @$

Table 106. Computational output parameters for triplet 2,10-di-fluoro-5,7-di-p-tolyl-7,13dihydroquinoxalino $[2,3-b]$ phenazin- 5 -ium-13-ide TAP 91k $(\mathrm{R}=$ Tolyl, $\mathrm{Y}=\mathrm{F})$.
$1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 32 H 22 F 2 N 4(3) \backslash G A U S S I A N \backslash 12-F e b-201$ $3 \backslash 0 \backslash \ \#$ opt ub3lyp/6-31g(d) geom=connectivity \} \opt ground state triplet $\mathrm{Y}: \mathrm{F} \backslash \backslash 0,3 \backslash \mathrm{C}, 0.0018803617,0.000007429,0.0000179929 \backslash \mathrm{C}, 0.0009563235,-0.00$ $00000267,1.4061660343 \backslash C, 1.1837248306,-0.0000074443,2.1666341967 \backslash C, 2.43$ $05628373,-0.0000046928,1.4644171813 \backslash C, 2.4571746485,0.0000000645,0.0663$ $495869 \backslash \mathrm{C}, 1.2672934864,0.0000047596,-0.6681461877 \backslash \mathrm{~N}, 1.2608814044,0.0000$ $057497,-2.0725543008 \backslash N,-1.1996679699,0.0000158874,-0.6452483153 \backslash \mathrm{C},-1.1$ $700850664,0.0000237168,-2.0018138282 \backslash C, 0.044549811,0.000018829,-2.7677$ $718044 \backslash \mathrm{H}, 3.4066917261,0.0000001314,-0.4515924063 \backslash \mathrm{C},-2.4048530691,0.000$ $0363461,-2.6967645214 \backslash C,-0.0153938528,0.0000272199,-4.1665209181 \backslash C,-2$. $420478514,0.000044101,-4.0743224828 \backslash C,-1.2440567429,0.000039878,-4.826$ $5976212 \backslash \mathrm{H},-3.3232201321,0.0000395785,-2.1213721194 \backslash \mathrm{H},-1.2987206958,0.0$ $000465228,-5.9097840928 \backslash \mathrm{H}, 0.8990820337,0.0000236785,-4.7474467298 \backslash \mathrm{~N}, 3$. $6078968895,-0.0000056209,2.2301115024 \backslash \mathrm{~N}, 1.0757739778,-0.0000159102,3.5$ $262053105 \backslash C, 3.5339410537,-0.0000187287,3.6291541951 \backslash \mathrm{C}, 2.2323692588,-0$. $0000236745,4.2357350802 \backslash C, 4.6775367596,-0.0000271085,4.4367934627 \backslash C, 2$. $1482081916,-0.0000362965,5.650134388 \backslash C, 4.5673592821,-0.000039772,5.827$ $1799826 \backslash \mathrm{H}, 5.4484929086,-0.0000463983,6.4595442852 \backslash \mathrm{C}, 3.2979792084,-0.00$ $00440128,6.4090393242 \backslash$ н, 1.1672513209,-0.0000395518, 6.1107840344\H,5.66 $10394768,-0.0000235363,3.982411079 \backslash \mathrm{H},-0.9507017447,-0.0000000465,1.925$ $2758913 \backslash C, 4.8907746676,0.0000179075,1.5829515848 \backslash C, 5.5178869942,-1.208$ $5023266,1.2695420611 \backslash C, 5.5178715117,1.2085550368,1.2696062597 \backslash \mathrm{C}, 6.7665$ $426069,-1.2023159508,0.6491715745 \backslash \mathrm{H}, 5.0238022352,-2.1446716661,1.51219$ $69927 \backslash \mathrm{C}, 6.7665337437,1.2024119547,0.6492340607 \backslash \mathrm{H}, 5.0237799367,2.144708$ $3964,1.5123086779 \backslash \mathrm{C}, 7.4132446302,0.0000629192,0.332425703 \backslash \mathrm{H}, 7.24633514$ $64,-2.1478161156,0.4076680232 \backslash \mathrm{H}, 7.2463189914,2.1479281581,0.407783006 \backslash$

C,2.4995141654,-0.0000177408,-2.8008263891 \C, 3.1025232192,1.2085024007 ,-3.1584231424\C,3.102461305,-1.2085549627,-3.1584442543\C,4.300105084 $8,1.20231598,-3.8724247621 \backslash \mathrm{H}, 2.6310202603,2.1446717742,-2.8743702241 \backslash \mathrm{C}$, 4.3000480459,-1.2024119254,-3.8724503958\H,2.630914931,-2.1447082889, $-2.8744107498 \backslash C, 4.9165249187,-0.0000628076,-4.2446853542 \backslash \mathrm{H}, 4.762902366$ $7,2.1478161149,-4.1450848944 \backslash \mathrm{H}, 4.7627975429,-2.147928157,-4.1451322156$ $\backslash C, 6.1954959151,-0.0000703817,-5.048940178 \backslash \mathrm{H}, 5.9848550341,0.0007571515$, $-6.1266344044 \backslash$ H, $6.8028540925,0.8859693546,-4.8367687224 \backslash \mathrm{H}, 6.802089726$ $3,-0.8869121723,-4.8379595345 \backslash C, 8.7818454375,0.0000699897,-0.307515279$ $7 \backslash H, 8.932855904,0.8869229003,-0.9317306705 \backslash \mathrm{H}, 9.5739201581,-0.000781140$ $1,0.4530187581 \backslash \mathrm{H}, 8.932251113,-0.8859585935,-0.9330540268 \backslash \mathrm{~F}, 3.205037406$ $3,-0.0000560544,7.7573840564 \backslash \mathrm{~F},-3.6044624351,0.0000561592,-4.726130561$ $\backslash \backslash$ Version=IA32L-G03RevD.02\State=3-A $\backslash H F=-1651.328498 \backslash$ S2 $=2.048787 \backslash$ S2-1 $=$ $0 . \backslash S 2 A=2.001547 \backslash \operatorname{RMSD}=7.466 \mathrm{e}-09 \backslash \mathrm{RMSF}=5.424 \mathrm{e}-06 \backslash$ Thermal=0. $\backslash \mathrm{Dipole}=3.6102$ 933,-0.0000011,-1.9693406\PG=C01 [X(C32H22F2N4)]
@

Table 107. Computational output parameters for singlet 2,10-di-methoxy-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91c ($\mathrm{R}=\mathrm{Tolyl}, \mathrm{Y}=\mathrm{OMe}$).
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 28 N 4 O 2 \backslash G A U S S I A N \backslash 10-F e b-2013 \backslash 0$
\# opt ub3lyp/6-31g(d) geom=connectivity
singlet $Y: O M e \backslash \backslash 0,1 \backslash C,-0.052$ $4711559,0.000021575,0.027535498 \backslash C,-0.0405953611,0.0000195061,1.4290020$ $541 \backslash C, 1.1305820683,0.0000199409,2.1988026709 \backslash C, 2.4062905284,0.00001734$ $06,1.4781339684 \backslash C, 2.4355496671,0.0000163235,0.0798307542 \backslash C, 1.244728525$ $3,0.0000212411,-0.6536901848 \backslash N, 1.2438067352,0.000016371,-2.0217495359 \backslash$ $\mathrm{N},-1.2124188131,0.0000139796,-0.6475877117 \backslash \mathrm{C},-1.1776074283,0.000007644$ $4,-2.0037506682 \backslash C, 0.0391158129,0.0000094384,-2.7535026281 \backslash \mathrm{H}, 3.38431846$ $71,0.0000072669,-0.4371226739 \backslash C,-2.3923467356,-0.0000025576,-2.7222157$ $525 \backslash C, 0.0085062083,0.0000034073,-4.1503116503 \backslash C,-2.4133987016,-0.00000$ $95572,-4.1106058201 \backslash C,-1.2043024961,-0.0000056664,-4.8346408451 \backslash \mathrm{H},-3.3$ 205911127,-0.0000054975,-2.1622366414 \H, 0.9329488801, 0.0000051033,-4.7 $163334654 \backslash \mathrm{~N}, 3.5553355918,0.0000052335,2.2206181073 \backslash \mathrm{~N}, 1.0689912601,0.00$ $00115195,3.5395026675 \backslash C, 3.5170713044,-0.0000014364,3.6296172761 \backslash C, 2.22$ $74132421,0.00000186,4.2455113845 \backslash C, 4.6741783696,-0.0000111943,4.412634$ $292 \backslash C, 2.17253554,-0.0000079333,5.6557497061 \backslash C, 4.5916638574,-0.00001886$ $33,5.8027432006 \backslash C, 3.3277501598,-0.0000183123,6.4261712478 \backslash \mathrm{H}, 1.19874092$ $73,-0.0000077881,6.1321301015 \backslash \mathrm{H}, 5.6509893757,-0.000012695,3.9427245061$ $\backslash H,-0.9920026909,0.0000156318,1.9473931171 \backslash \mathrm{H},-1.1967540161,-0.00001036$ $7,-5.9177460873 \backslash \mathrm{H}, 5.5058616191,-0.000024397,6.3836187458 \backslash 0,-3.65207994$
$96,-0.000020114,-4.6917199611 \backslash 0,3.1444796058,-0.000024317,7.7820609162$ $\backslash C,-3.7337882086,-0.0000338551,-6.1056955102 \backslash \mathrm{H},-4.7993669809,-0.000044$ $1862,-6.3438224769 \backslash \mathrm{H},-3.2677874597,0.8945479216,-6.5410426605 \backslash \mathrm{H},-3.267$ $7738602,-0.8946167299,-6.5410259434 \backslash C, 4.2883075135,-0.0000740355,8.617$ $3218408 \backslash \mathrm{H}, 3.9106832867,-0.000096088,9.6418034235 \backslash \mathrm{H}, 4.9067434086,-0.894$ $6650362,8.4617447685 \backslash \mathrm{H}, 4.9067824525,0.8944996088,8.4617989372 \backslash \mathrm{C}, 4.8400$ $014742,-0.0000043766,1.5630327322 \backslash C, 5.4624167854,-1.2095355164,1.25140$ $21235 \backslash \mathrm{C}, 5.4624154113,1.2095279711,1.2513596491 \backslash \mathrm{C}, 6.7087644862,-1.20254$ $42259,0.6263846595 \backslash \mathrm{H}, 4.9691342508,-2.1450212518,1.4975761671$ \C, 6.70875 37789,1.2025243097,0.6263451242\H,4.9691247799,2.1450171294,1.49750502 $11 \backslash C, 7.3537688547,-0.000018578,0.3067367891 \backslash H, 7.1877591793,-2.14806254$ $37,0.3837918875 \backslash \mathrm{H}, 7.1877413231,2.1480391344,0.3837179527 \backslash \mathrm{C}, 2.492855506$ $5,0.000018869,-2.7447032763 \backslash C, 3.0921832391,1.2095560881,-3.0987228558 \backslash$ C, 3.0921726711,-1.2095073974,-3.0987499121\C, 4.2930849106,1.20256426,$3.8071305938 \backslash \mathrm{H}, 2.6179017573,2.1450407781,-2.8176737081 \backslash \mathrm{C}, 4.2930798363$, $-1.202504269,-3.8071618875 \backslash \mathrm{H}, 2.6178885651,-2.1449976106,-2.8177240124 \backslash$ C, 4.911357276, 0.0000290314, $-4.1758409761 \backslash \mathrm{H}, 4.7566376055,2.1480834767,-$ $4.0780681714 \backslash \mathrm{H}, 4.7566263763,-2.1480181873,-4.0781241096 \backslash \mathrm{C}, 8.7194103184$ $,-0.0000013248,-0.3394682353 \backslash H, 8.8666144981,0.8858254607,-0.9660492072$ $\backslash \mathrm{H}, 9.5149725545,0.0012463435,0.4173794003 \backslash \mathrm{H}, 8.8675353931,-0.8870138116$, $-0.9641392585 \backslash \mathrm{C}, 6.1947453559,0.0000524205,-4.973006316 \backslash \mathrm{H}, 5.9901092577$ $, 0.0009482938,-6.0518308815 \backslash \mathrm{H}, 6.8008908719,0.8860511797,-4.7572435378 \backslash$ H, $6.8001108561,-0.8867887236,-4.7585451649 \backslash$ VVersion=IA32L-G03RevD.02 tate $=1-A \backslash H F=-1681.922086 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.594 e-09 \backslash R M S F=3.8$ $52 \mathrm{e}-05 \backslash$ Thermal $=0 . \backslash$ Dipole $=4.2442859,0.0000661,-2.312597 \backslash \mathrm{PG}=\mathrm{CO} \quad[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 2$ 8N4O2) 〕
【

Table 108. Computational output parameters for triplet 2,10-di-Methoxy-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91c ($\mathrm{R}=\mathrm{Tolyl}, \mathrm{Y}=\mathrm{OMe}$).
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash$ FOpt \UB3LYP $\backslash 6$-31G (d) \C34H28N4O2 (3) \GAUSSIAN $\backslash 09-F e b-201$ $3 \backslash 0 \backslash \ \#$ opt ub3lyp/6-31g(d) geom=connectivity
triplet $Y: O M e \backslash \backslash 0,3 \backslash C, 0 .$, $0 ., 0 . \backslash C, 0.0000000127,0 ., 1.4068829734 \backslash C, 1.1821672559,0 ., 2.1696412434 \backslash C$, $2.4300277849,0 ., 1.4669030408 \backslash C, 2.4562456278,0.0000004628,0.068554247 \backslash C$ $, 1.2670350911,0.000000145,-0.6675469726 \backslash \mathrm{~N}, 1.2607190331,0 .,-2.070906509$ $4 \backslash \mathrm{~N},-1.2012131267,0 .,-0.6436737368 \backslash \mathrm{C},-1.1736974409,0 .,-2.003375934 \backslash \mathrm{C}, 0$ $.0427240396,0 .,-2.7667656488 \backslash \mathrm{H}, 3.4061012845,0 .,-0.4489913533 \backslash \mathrm{C},-2.4024$ $100184,0 .,-2.696244701 \backslash C,-0.0263669448,0 .,-4.1601606647 \backslash C,-2.454411925$
$2,0 .,-4.0856725178 \backslash \mathrm{C},-1.2582766076,0 .,-4.8222854587 \backslash \mathrm{H},-3.3176471141,0$. $,-2.1150881241 \backslash \mathrm{H}, 0.8844664296,0 .,-4.7475852543 \backslash \mathrm{~N}, 3.605810082,0 ., 2.2330$ $582939 \backslash N, 1.0717776464,0 ., 3.5279648386 \backslash C, 3.5301729023,0 ., 3.6337757187 \backslash C$, 2. 229218095,0.,4.2420228096\C,4.6635480994,0.,4.447276731\C, 2.1452566 $399,0 ., 5.6501251498 \backslash C, 4.5520190649,0 ., 5.8413977706 \backslash C, 3.2845633489,0 ., 6$ $.4471157891 \backslash \mathrm{H}, 1.160719665,0 ., 6.1040950842 \backslash \mathrm{H}, 5.6509648745,0 ., 4.00040628$ $38 \backslash \mathrm{H},-0.9519095482,0.1 .9255476796 \backslash \mathrm{H},-1.2670617944,0 .,-5.9058346251 \backslash \mathrm{H}$, $5.4577343345,0 ., 6.4362387795 \backslash 0,-3.7050928213,0 .,-4.6419905667 \backslash 0,3.0739$ $514821,0 ., 7.7996449447 \backslash \mathrm{C},-3.8101390361,0 .,-6.0543126015 \backslash \mathrm{H},-4.879345468$ $7,0 .,-6.275351535 \backslash$ н $,-3.3509030075,0.8946003056,-6.4970843831 \backslash \mathrm{H},-3.3508$ $703883,-0.8945847008,-6.4970849321 \backslash C, 4.2037370054,-0.0000882121,8.6536$ $197106 \backslash \mathrm{H}, 3.8097873281,-0.0001335254,9.6718850274 \backslash \mathrm{H}, 4.8247445349,-0.894$ $6942767,8.5077229711 \backslash \mathrm{H}, 4.824807038,0.8944907235,8.5078304024 \backslash \mathrm{C}, 4.88903$ $02725,0 ., 1.5893637999 \backslash C, 5.5177413702,-1.2081235579,1.2770868299 \backslash C, 5.51$ $77158092,1.2081314368,1.2770285836 \backslash C, 6.7674330835,-1.2022317171,0.6586$ 930619 \H, $5.0227256827,-2.1440414657,1.5187300846 \backslash \mathrm{C}, 6.7673987631,1.2022$ $452774,0.6586395624 \backslash \mathrm{H}, 5.0226742348,2.1440475301,1.518631943 \backslash \mathrm{C}, 7.414554$ $4222,0.0000017775,0.3427037448 \backslash \mathrm{H}, 7.2474983255,-2.1477748417,0.41746605$ $6 \backslash \mathrm{H}, 7.2474378395,2.1477921481,0.4173660223 \backslash \mathrm{C}, 2.4973118827,0 .,-2.800176$ $5438 \backslash C, 3.1005968088,1.2081324529,-3.1591237977 \backslash C, 3.1005844169,-1.20812$ $25518,-3.1591470404 \backslash \mathrm{C}, 4.297745341,1.2022473248,-3.8739317695 \backslash \mathrm{H}, 2.62918$ $36548,2.1440485217,-2.8741510983 \backslash C, 4.2977394736,-1.2022286801,-3.87395$ $96765 \backslash \mathrm{H}, 2.6291657967,-2.1440414856,-2.8741977095 \backslash \mathrm{C}, 4.914090895,0.00000$ $78398,-4.2464174387 \backslash \mathrm{H}, 4.7607321372,2.147794196,-4.1464996878 \backslash \mathrm{H}, 4.76071$ 63731,-2.147771811,-4.1465508756\C, $8.7838689747,0.0000289503,-0.296075$ $9632 \backslash \mathrm{H}, 8.9344888583,0.8857873938,-0.9220758707 \backslash \mathrm{H}, 9.5759330646,0.001298$ $1241,0.4645832369 \backslash \mathrm{H}, 8.9354206149,-0.8869296105,-0.9201344319 \backslash \mathrm{C}, 6.19323$ $05775,0.00002919,-5.0506958192 \backslash \mathrm{H}, 5.9834953323,0.0009286337,-6.12864714$ $33 \backslash H, 6.8007363252,0.8859646063,-4.8381319985 \backslash H, 6.7999428167,-0.8867533$ 889,-4.8394316707
Version=IA32L-G03RevD.02\State=3-A $\backslash H F=-1681.9043626$ $\backslash S 2=2.049322 \backslash S 2-1=0 . \backslash S 2 A=2.001582 \backslash R M S D=5.067 e-09 \backslash R M S F=3.287 e-05 \backslash$ Therma $1=0 . \backslash$ Dipole $=-0.0000016,-3.9225419,-0.000044 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 28 \mathrm{~N} 4 \mathrm{O} 2)] \backslash \backslash @$

Table 109. Computational output parameters for singlet 2,10-di-Methyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91e $(\mathrm{R}=$ Tolyl, $\mathrm{Y}=\mathrm{Me})$.
$1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 28 N 4 \backslash G A U S S I A N \backslash 14-F e b-2013 \backslash 0 \backslash \backslash$ \# opt ub3lyp/6-31g(d) geom=connectivity \backslash \opt ground state singlet $\backslash 10,1$ $\backslash C, 0.00489256,0.0000087319,-0.0030880568 \backslash C, 0.0054788659,0.0000001563,1$
$.3985373347 \backslash C, 1.1707225759,-0.0000085346,2.177486163 \backslash C, 2.4509341685,-0$ $.0000113824,1.4675907152 \backslash C, 2.4912062644,-0.0000001559,0.0695591308 \backslash C, 1$ $.3062584349,0.0000112347,-0.6734164603 \backslash N, 1.3179399467,0.0000228601,-2$. $042471844 \backslash N,-1.1491292569,0.0000137988,-0.6896974204 \backslash \mathrm{C},-1.0997430572,0$ $.0000232204,-2.0453307687 \backslash \mathrm{C}, 0.1200957635,0.0000343623,-2.7844137272 \backslash \mathrm{H}$, $3.443928782,-0.0000002503,-0.4398079018 \backslash C,-2.3098065162,0.0000564729$, $2.7803076368 \backslash C, 0.1029867891,0.0000971717,-4.1839346263 \backslash C,-2.3364414677$, $0.0000882025,-4.168072773 \backslash C,-1.1103241349,0.0001396699,-4.8629168446 \backslash$ $\mathrm{H},-3.2280362753,0.0000748487,-2.1993242167 \backslash \mathrm{H},-1.108626825,0.0002162672$, - $5.9497765809 \backslash \mathrm{H}, 1.0322392968,0.0001559007,-4.7422163787 \backslash \mathrm{~N}, 3.595906646$ $,-0.0000231447,2.2182484234 \backslash N, 1.1007535884,-0.0000133818,3.5184943033 \backslash$ $C, 3.5476123369,-0.0000344134,3.626430219 \backslash \mathrm{C}, 2.255505598,-0.0000229053,4$ $.2303428545 \backslash \mathrm{C}, 4.7019292823,-0.000097217,4.4179501394 \backslash \mathrm{C}, 2.1946327457,-0$ $.0000558009,5.6448176581 \backslash \mathrm{C}, 4.5926885198,-0.0001393211,5.8040261184 \backslash \mathrm{H}, 5$ $.4974464163,-0.0002158178,6.4062553815 \backslash C, 3.3338830562,-0.0000875737,6$. $4377300835 \backslash \mathrm{H}, 1.2015124289,-0.0000737889,6.0857253737 \backslash \mathrm{H}, 5.6822933131,-0$ $.0001560897,3.9552676799 \backslash \mathrm{H},-0.9500177921,0.000000297,1.9093874458 \backslash \mathrm{C}, 4$. $8849884584,-0.0000084707,1.5687442573 \backslash C, 5.5093146448,-1.20955072,1.261$ $1637264 \backslash \mathrm{C}, 5.5093170832,1.2095439221,1.2612389052 \backslash \mathrm{C}, 6.7597419929,-1.202$ $5128868,0.6444443856 \backslash \mathrm{H}, 5.0148336966,-2.1451250329,1.5045673752 \backslash \mathrm{C}, 6.759$ $750233,1.2025368836,0.6445165929 \backslash \mathrm{H}, 5.0148428293,2.1451071109,1.5046985$ $846 \backslash \mathrm{C}, 7.4068591977,0.0000235882,0.329164311 \backslash \mathrm{H}, 7.2405277431,-2.14801119$ $75,0.4054290778 \backslash \mathrm{H}, 7.2405416953,2.1480463727,0.4055611599 \backslash \mathrm{C}, 2.574011892$ $2,0.0000077811,-2.7537178359 \backslash C, 3.1765412604,1.2095497372,-3.1020680034$ \C, $3.1764796926,-1.209544943,-3.1021110836 \backslash C, 4.3838813247,1.2025114047$, $-3.7993782206 \backslash \mathrm{H}, 2.6994966656,2.1451242528,-2.8260519728 \backslash \mathrm{C}, 4.383825292$ $7,-1.2025383743,-3.7994243784 \backslash \mathrm{H}, 2.6993917591,-2.1451079172,-2.82613110$ $99 \backslash \mathrm{C}, 5.005471128,-0.0000252199,-4.1624039323 \backslash \mathrm{H}, 4.8496707114,2.14800952$ $49,-4.0664434552 \backslash \mathrm{H}, 4.8495676995,-2.1480480639,-4.0665269755 \backslash \mathrm{C}, 6.295911$ $654,-0.0000259584,-4.9480610004 \backslash \mathrm{H}, 6.1006829114,0.0008007415,-6.0286000$ $457 \backslash \mathrm{H}, 6.9000819693,0.886012613,-4.7269974297 \backslash \mathrm{H}, 6.8993450098,-0.8868601$ $387,-4.7281998509 \backslash \mathrm{C}, 8.7769083811,0.0000233513,-0.3075923286 \backslash \mathrm{H}, 8.929230$ $1202,0.886867998,-0.9314914534 \backslash \mathrm{H}, 9.567037557,-0.0008259928,0.454887002$ $3 \backslash H, 8.9286224805,-0.8860047219,-0.9328062518 \backslash \mathrm{C},-3.6500895257,-0.000152$ $4269,-4.9169283166 \backslash \mathrm{H},-4.2514988229,-0.883635693,-4.6696352092 \backslash \mathrm{H},-4.254$ $7238397,0.8796533003,-4.6645449298 \backslash \mathrm{H},-3.4927800186,0.003198843,-6.0003$ $859224 \backslash \mathrm{C}, 3.2270206825,0.0001526068,7.94605243 \backslash \mathrm{H}, 2.6873441279,0.8836301$ $836,8.3088280929 \backslash \mathrm{H}, 2.6813388987,-0.8796588414,8.3086836557 \backslash \mathrm{H}, 4.2153763$ $042,-0.0031880335,8.4169875386 \backslash \backslash$ Version=IA32L-G03RevD.02\State=1-A\HF= $-1531.5156643 \backslash \mathrm{~S} 2=0 . \backslash \mathrm{S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0 . \backslash \mathrm{RMSD}=8.383 \mathrm{e}-09 \backslash \mathrm{RMSF}=6.860 \mathrm{e}-06 \backslash$ Therm $\mathrm{al}=0 . \backslash$ Dipole=3.5935537,-0.000002,-1.9212806\PG=C01 [X(C34H28N4)]
@

Table 110. Computational output parameters for triplet 2,10-di-Methyl-5,7-di-p-tolyl-7,13dihydroquinoxalino $[2,3-b]$ phenazin- 5 -ium-13-ide TAP 91e $(\mathrm{R}=\mathrm{Tolyl}, \mathrm{Y}=\mathrm{Me})$.

```
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 28 N 4(3) \backslash G A U S S I A N \backslash 17-F e b-2013 \backslash\)
``` \(0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \} \text { \opt ground state triplet \\} \(0,3 \backslash C, 0.0485356876,-0.0000166799,-0.0247287277 \backslash \mathrm{C}, 0.0366748338,-0.00000\) 02927,1.382037597\C,1.2124608409, 0.0000161448, 2.1544749371\C, 2.4657746 \(313,0.0000079613,1.4622122083 \backslash C, 2.5037635863,-0.0000002021,0.064351377\) \(5 \backslash C, 1.320849405,-0.0000083976,-0.6814181095 \backslash N, 1.3268691144,-0.00000823\) \(18,-2.0865196436 \backslash \mathrm{~N},-1.1464050935,-0.0000365922,-0.680101757 \backslash \mathrm{C},-1.10418\) 15785,-0.000044646,-2.0401803217\C, 0.1166585791,-0.0000148174,-2.79183 \(58125 \backslash \mathrm{H}, 3.4578963611,-0.0000000952,-0.445256403 \backslash \mathrm{C},-2.3273796257,-0.000\) \(0355915,-2.7496607773 \backslash C, 0.0607118514,0.0000650195,-4.1883875898 \backslash C,-2.3\) 854988294,-0.0000063549,-4.1392290586\C,-1.1709388202,0.0000901643,-4. \(8453299468 \backslash \mathrm{H},-3.2323938889,-0.0000216018,-2.1481632772 \backslash \mathrm{H},-1.1840856527\) \(, 0.0001951028,-5.9325846083 \backslash \mathrm{H}, 0.9766288772,0.000164666,-4.7680567735 \backslash \mathrm{~N}\) , 3.6369287715, 0.0000080345,2.2385784496\N,1.0926537475,0.0000361804,3. \(5120623353 \backslash C, 3.5501389444,0.0000147814,3.6366299419 \backslash C, 2.2465211805,0.0\) \(000444639,4.2333018795 \backslash C, 4.6797280175,-0.0000646049,4.4597431978 \backslash C, 2.1\) \(559700866,0.0000356947,5.6444632737 \backslash C, 4.5408110491,-0.0000894365,5.848\) \(7135775 \backslash \mathrm{H}, 5.4371381949,-0.0001938717,6.4642565761 \backslash \mathrm{C}, 3.2785469421,0.000\) \(0068131,6.4654986287 \backslash \mathrm{H}, 1.1527805537,0.0000217402,6.062148347 \backslash \mathrm{H}, 5.67083\) 85899,-0.0001639353, 4.0208580247\H,-0.9195483233,-0.0000002879,1.89276 \(18595 \backslash \mathrm{C}, 4.9248347651,0.0000198433,1.6032585822 \backslash \mathrm{C}, 5.5552542481,-1.20812\) \(66936,1.2948977043 \backslash C, 5.5552750016,1.2081750351,1.2950042861 \backslash C, 6.809113\) \(038,-1.2021974136,0.6850871327 \backslash \mathrm{H}, 5.0589063674,-2.1441201636,1.53349361\) \(01 \backslash C, 6.8091396565,1.202273156,0.6851914399 \backslash H, 5.058947452,2.144158844,1\) \(.5336800802 \backslash \mathrm{C}, 7.4584433662,0.0000484239,0.3737017688 \backslash \mathrm{H}, 7.2909493717,-2\) \(.14773628,0.4474812707 \backslash \mathrm{H}, 7.2909962611,2.1478220277,0.4476705616 \backslash \mathrm{C}, 2.57\) \(10930724,-0.0000199571,-2.8036248787 \backslash C, 3.1779503262,1.2081265115,-3.15\) \(61008921 \backslash C, 3.1778736691,-1.2081752143,-3.1561769978 \backslash C, 4.3820396372,1.2\) \(021972263,-3.8590944699 \backslash \mathrm{H}, 2.7036322843,2.1441199952,-2.8762588122 \backslash \mathrm{C}, 4\). \(3819679895,-1.2022733426,-3.859174085 \backslash \mathrm{H}, 2.7035006996,-2.1441590081,-2\). \(8763958589 \backslash C, 5.0019271341,-0.0000485157,-4.2256052809 \backslash \mathrm{H}, 4.8474648377,2\) \(.1477360774,-4.1274266926 \backslash \mathrm{H}, 4.8473340805,-2.1478222303,-4.1275699791 \backslash \mathrm{C}\) , 6.2885895386,-0.0000473978,-5.0177335363\H, 6.088827727,0.0007882706,\(6.0975571434 \backslash \mathrm{H}, 6.8940313427,0.8859248429,-4.7995388089 \backslash \mathrm{H}, 6.8932798513\), \(-0.8868250656,-4.80075192 \backslash \mathrm{C}, 8.832302209,0.0000468759,-0.2551695926 \backslash \mathrm{H}, 8\) \(.9882378052,0.8868351967,-0.8783842033 \backslash \mathrm{H}, 9.6186776768,-0.0008113173,0\). \(5113402827 \backslash \mathrm{H}, 8.987631194,-0.8859146774,-0.8797179896 \backslash \mathrm{C},-3.7123920646,-\)
\(0.0003517938,-4.8633297634 \backslash \mathrm{H},-4.3095336083,-0.8843344687,-4.6070367104\) \(\backslash H,-4.31334527,0.8791840706,-4.6008573354 \backslash \mathrm{H},-3.573772931,0.0036739079\), \(-5.9493525144 \backslash \mathrm{C}, 3.14248268,0.0003514727,7.970973305 \backslash \mathrm{H}, 2.5973939061,0.8\) \(843272004,8.3247452073 \backslash \mathrm{H}, 2.590161549,-0.8791914336,8.3244780662 \backslash \mathrm{H}, 4.12\) \(21822448,-0.0036613275,8.4596956662 \backslash \backslash\) Version=IA32L-G03RevD.02\State=3\(A \backslash H F=-1531.4991952 \backslash S 2=2.049662 \backslash S 2-1=0 . \backslash S 2 A=2.001609 \backslash R M S D=6.026 e-09 \backslash R M S\) \(\mathrm{F}=2.874 \mathrm{e}-05 \backslash\) Thermal=0. \Dipole=2.8151112,-0.0000014,-1.5035671\PG=C01 [\(X(C 34 H 28 N 4)] \backslash \backslash\)

Table 111. Computational output parameters for singlet 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91p
(\(\mathrm{R}=\) Tolyl, parent, \(\mathrm{X}=\mathrm{Y}=\mathrm{H}\)).

1|1|UNPC-CHEM40-OTNBTO7T | FOpt \| UB3LYP \| 6-31G (d) | C32H24N4 |GAUSSIAN|26-Feb -2012|0||\# opt ub3lyp/6-31g(d) geom=connectivity||opt ground state sin glet||0,1|C,-1.2359152393,2.6364280436,-0.0000158197|C, 0.0000002145, 3. \(2972024737,-0.0000073804\) |C, 1.235915639, 2.6364279307, 0.0000065955|C, 1.2 \(139341652,1.1732767439,0.000007828 / \mathrm{C}, 0.0000000848,0.478577955,0.000004\) 7711 | C , -1.2139339313, 1.1732768945, -0. \(0000046556 \mid N,-2.4158294126,0.5170\) \(659592,-0.0000018896|N,-2.3860387144,3.3297382054,-0.0000312113| C,-3.5\) \(571538229,2.6466608132,-0.0000377552 \mid \mathrm{C},-3.6360529096,1.22254396,-0.000\) \(0225704|\mathrm{H}, 0.0000000357,-0.6016844824,0.0000093696| \mathrm{C},-4.7782316679,3.36\) \(82476653,-0.0000592497\) |C, \(-4.8765782021,0.5693003757,-0.0000295095 \mid C,-5\) \(.9979862146,2.7177546784,-0.0000659413 \mid C,-6.0510875799,1.3128612639,-0\) \(.0000511595|\mathrm{H},-4.7064488627,4.4512538508,-0.0000702762| \mathrm{H},-6.9193091553\) , 3.2940721266,-0.0000825496|H,-7.0082794868, 0.799848971,-0.000056781|H \(,-4.9216470202,-0.5137202881,-0.0000178512\) |N,2.4158296347,0.5170656616 , 0.0000103554 | N , 2. \(3860391751,3.3297379871,0.0000174411\) | C, 3.6360532525 , \(1.2225435733,0.0000213777|C, 3.5571543119,2.646660467,0.0000260555| C, 4\). \(8765785327,0.5692998891,0.0000292841 \mid C, 4.7782322227,3.3682472479,0.000\) \(0387708|\mathrm{C}, 6.0510880127,1.312860712,0.00004174| \mathrm{H}, 7.0082798854,0.7998483\) \(238,0.0000478075\) | C , 5. \(9979867653,2.7177541412,0.0000464913 \mid \mathrm{H}, 6.91930975\) \(24,3.2940715351,0.0000562513 \mid \mathrm{H}, 4.7064494978,4.4512534594,0.0000419062\) | \(\mathrm{H}, 4.9216472767,-0.5137207921,0.0000257954 \mid \mathrm{H}, 0.0000002787,4.3806649056\), \(-0.0000117799|C, 2.4484074874,-0.9263673743,-0.0000041054| C, 2.469983653\) \(4,-1.6218440384,1.2096191551\) | C, \(2.4700190099,-1.6218151234,-1.209635187\) \(1|C, 2.5131078621,-3.0154117504,1.2025276077| \mathrm{H}, 2.4526244903,-1.07106442\) \(94,2.1452454171\) |C, 2.5131438642 , - \(3.0153898489,-1.2025700034 \mid\) H, 2.4526877
\(32,-1.0710189433,-2.1452521303 \mid C, 2.5389269145,-3.7347929973,-0.0000319\) \(176|\mathrm{H}, 2.5280909298,-3.5520873054,2.1480217567| \mathrm{H}, 2.5281580678,-3.552045\) 821,-2.1480736601|C,-2.4484073996,-0.9263670674, 0.0000314456|C, -2. 4699 \(834306,-1.6218600782,-1.2095821339 \mid C,-2.4700192096,-1.6217984298,1.209\) \(6721803|\mathrm{C},-2.5131077983,-3.0154278834,-1.2024717045| \mathrm{H},-2.4526239351,-1\) \(.0710933164,-2.145215934|\mathrm{C},-2.5131442252,-3.0153730383,1.2026258945| \mathrm{H}\), \(-2.4526881341,-1.0709894336,2.1452815668 \mid C,-2.5389271469,-3.7347926573\) , \(0.0000974383|\mathrm{H},-2.5280906939,-3.5521161996,-2.1479585925| \mathrm{H},-2.5281587\) \(223,-3.5520162487,2.1481368061 \mid C,-2.6208323174,-5.2433205263,0.0001154\) \(223|\mathrm{H},-3.665252286,-5.5821806379,-0.0007297967| \mathrm{H},-2.1403878605,-5.6711\) \(365773,-0.885921411|\mathrm{H},-2.1418332158,-5.6710336914,0.8869784493| \mathrm{C}, 2.620\) \(8318947,-5.243320875,-0.0000287153 \mid \mathrm{H}, 2.1418522811,-5.6710454016,-0.886\) \(8967021|\mathrm{H}, 3.6652518036,-5.5821811042,0.0008442651| \mathrm{H}, 2.1403678584,-5.67\) \(11254537,0.8860031287\) | |Version=IA32W-G09RevC. 01 |State=1-A|HF=-1452.880 \(2554|S 2=0 .|S 2-1=0 .|S 2 A=0 .|R M S D=2.834 e-009| R M S F=9.139 e-006| D i p o l e=-0.00\) \(00014,-4.251033,0.0000231\) |Quadrupole=1.778568,-2.1169808,0.3384128, -0. \(0000044,0.0002344,-0.0000158|\mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 32 \mathrm{H} 24 \mathrm{~N} 4)]| \mid @\)

Table 112. Computational output parameters for triplet 5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91p

\section*{(\(\mathrm{R}=\) Tolyl, parent, \(\mathrm{X}=\mathrm{Y}=\mathrm{H}\)).}
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash\) FOpt \(\backslash\) UB3LYP \(\backslash 6-31 G(d) \backslash C 32 H 24 N 4(3) \backslash G A U S S I A N \backslash 11-F e b-2013 \backslash\) \(0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity\\opt ground state triplet\\ \(0,3 \backslash C, 0.0404735637,0.0000082741,-0.020501511 \backslash C, 0.0286733816,0.00000010\) \(3,1.3861364727 \backslash \mathrm{C}, 1.204964901,-0.0000081731,2.1575688517 \backslash \mathrm{C}, 2.4577286877\) , \(-0.0000043397,1.465181558 \backslash C, 2.4953348651,-0.0000000429,0.0673517543 \backslash C\) , 1. \(3120354642,0.0000042637,-0.6777287358 \backslash N, 1.3177246857,0.0000031421,-\) \(2.0836352989 \backslash \mathrm{~N},-1.1543424238,0.0000189818,-0.6760842086 \backslash \mathrm{C},-1.111765592\) , 0.0000272431,-2.0357523076\C, 0.108074802,0.0000192325,-2.7894160463\H , 3.4491899859,-0.0000000066,-0.4426207756\C,-2.3366650235, 0.0000435023 , -2. \(746532498 \backslash C, 0.0602026555,0.0000278783,-4.1888519786 \backslash C,-2.369955106\) \(2,0.0000517031,-4.1313035844 \backslash C,-1.1675472775,0.0000440074,-4.851696402\) \(2 \backslash H,-3.2447069616,0.0000488578,-2.1517829874 \backslash \mathrm{H},-3.3214216128,0.0000640\) \(8,-4.6553446508 \backslash \mathrm{H},-1.1814712132,0.0000506591,-5.9380636402 \backslash \mathrm{H}, 0.9808556\) \(098,0.0000220658,-4.7607783517 \backslash N, 3.6300179379,-0.0000031656,2.24128948\) \(32 \backslash N, 1.0865374969,-0.0000186706,3.5152686867 \backslash \mathrm{C}, 3.5450957047,-0.0000191\) \(926,3.6392048899 \backslash \mathrm{C}, 2.2408629226,-0.0000269732,4.2350206728 \backslash \mathrm{C}, 4.6822561\) \(621,-0.0000280312,4.456259812 \backslash C, 2.1516285586,-0.0000430674,5.648394055\)
\(5 \backslash C, 4.5515760266,-0.0000440265,5.8453801585 \backslash \mathrm{H}, 5.4472483596,-0.00005082\) \(29,6.4603262717 \backslash \mathrm{C}, 3.2846928312,-0.0000513985,6.4451779366 \backslash \mathrm{H}, 3.19203354\) \(9,-0.0000636429,7.5274541567 \backslash \mathrm{H}, 1.1527188362,-0.0000482119,6.073184012 \backslash\) H, 5. \(6691906744,-0.000022456,4.0083067987 \backslash \mathrm{H},-0.9273194476,0.0000002091\), \(1.8972518986 \backslash C, 4.9167224358,0.0000283662,1.602812408 \backslash C, 5.546042041,-1\). \(2081914786,1.2926092042 \backslash C, 5.5460246206,1.2082736047,1.2927034268 \backslash C, 6.7\) \(982082181,-1.2021879605,0.6793472557 \backslash \mathrm{H}, 5.0504938733,-2.1442422261,1.53\) \(26585622 \backslash \mathrm{C}, 6.7981980579,1.202330345,0.6794408292 \backslash \mathrm{H}, 5.0504680559,2.1443\) \(016998,1.5328235165 \backslash \mathrm{C}, 7.4466622585,0.0000904857,0.3661796828 \backslash \mathrm{H}, 7.27942\) \(31929,-2.1477182085,0.4405439339 \backslash \mathrm{H}, 7.2794046764,2.1478831831,0.4407143\) \(976 \backslash C, 2.5633063402,-0.000028817,-2.7990287592 \backslash C, 3.1707894755,1.2081907\) \(105,-3.1500756738 \backslash C, 3.1707021197,-1.2082743819,-3.1501109346 \backslash C, 4.37622\) \(01367,1.2021866943,-3.8507521627 \backslash \mathrm{H}, 2.6959411551,2.1442416711,-2.871309\) \(9044 \backslash \mathrm{C}, 4.3761372317,-1.2023316102,-3.8507929288 \backslash \mathrm{H}, 2.6957906755,-2.1443\) \(022692,-2.871375409 \backslash C, 4.9967962409,-0.0000919055,-4.2160618851 \backslash H, 4.842\) \(0711956,2.1477167468,-4.1182928371 \backslash \mathrm{H}, 4.841920219,-2.1478846472,-4.1183\) \(671922 \backslash \mathrm{C}, 6.2849620533,-0.0001086651,-5.0056927252 \backslash \mathrm{H}, 6.0871529149,0.000\) \(7546164,-6.0858561665 \backslash \mathrm{H}, 6.8899735182,0.885857294,-4.7863435044 \backslash \mathrm{H}, 6.889\) \(1778621,-0.8869203187,-4.787594629 \backslash C, 8.8187525738,0.0001062186,-0.2664\) \(783538 \backslash \mathrm{H}, 8.9729757487,0.8869293926,-0.890047236 \backslash \mathrm{H}, 9.6071362788,-0.0007\) \(818547,0.4979381619 \backslash \mathrm{H}, 8.9723587036,-0.8858481868,-0.8914413374 \backslash \backslash V e r s i o\) n=IA32L-G03RevD. \(02 \backslash\) State=3-A \(\backslash H F=-1452.8638892 \backslash S 2=2.049827 \backslash S 2-1=0 . \backslash S 2 A=\) \(2.001619 \backslash \mathrm{RMSD}=3.567 e-09 \backslash \mathrm{RMSF}=2.987 e-05 \backslash\) Thermal=0. V Dipole=2.9812111,-0. \(0000015,-1.5938854 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 32 \mathrm{H} 24 \mathrm{~N} 4)] \backslash \backslash @\)

Table 113. Computational output parameters for singlet 2,10-di-trifluoromethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91i \(\left(\mathrm{R}=\right.\) Tolyl, \(\left.\mathrm{Y}=\mathrm{CF}_{3}\right)\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 F 6 N 4 \backslash G A U S S I A N \backslash 12-F e b-2013 \backslash 0\) \\\# opt ub3lyp/6-31g(d) geom=connectivity \\tolyl Y:CF3 \\0,1\C, \(-0.0463985418,0.0006887268,0.0249288306 \backslash \mathrm{C},-0.0344922715,0.0000004849,1\) \(.425616129 \backslash C, 1.138845764,-0.0006866014,2.1906942494 \backslash C, 2.4121205965,0.0\) \(014982056,1.4694197387 \backslash C, 2.4397346712,0.0000028869,0.0715621084 \backslash C, 1.24\) \(747628,-0.0014936131,-0.6587038795 \backslash N, 1.2467669761,-0.0048096958,-2.028\) \(55656 \backslash \mathrm{~N},-1.2068629839,0.0033919041,-0.6512885022 \backslash \mathrm{C},-1.1673187935,0.002\) 8799322,-2.004697114\C,0.0434686145,-0.0029694897,-2.7570860822\H, 3. 38 \(73088161,0.0000037628,-0.4470106188 \backslash C,-2.3879651536,0.0078115934,-2.72\)
\(62603436 \backslash \mathrm{C}, 0.0195095985,-0.008652466,-4.1597669719 \backslash \mathrm{C},-2.3994216233,0.0\) \(037522964,-4.108136282 \backslash \mathrm{C},-1.1921717216,-0.0059416081,-4.8334153483 \backslash \mathrm{H},-\) \(3.3052076986,0.0116595349,-2.149473956 \backslash \mathrm{H}, 0.9462953174,-0.01776216,-4.7\) \(209552836 \backslash \mathrm{~N}, 3.5655233688,0.0048148728,2.208445394 \backslash \mathrm{~N}, 1.0828468968,-0.00\) \(33913242,3.5326375178 \backslash C, 3.5304955543,0.0029729737,3.6146656016 \backslash C, 2.244\) \(0982525,-0.0028786446,4.2288946 \backslash C, 4.6990156043,0.0086563914,4.39097005\) \(71 \backslash C, 2.1938513863,-0.0078119111,5.645971265 \backslash C, 4.6132441837,0.005943908\) \(5,5.7746669254 \backslash \mathrm{C}, 3.3515876444,-0.0037521004,6.4005301591 \backslash \mathrm{H}, 1.213596092\) \(5,-0.0116614895,6.1076161204 \backslash \mathrm{H}, 5.6712774187,0.0177677471,3.9128790348 \backslash\) \(\mathrm{H},-0.984832624,-0.0000004967,1.9457026939 \backslash \mathrm{H},-1.2088163348,-0.017018479\) \(4,-5.9179550416 \backslash \mathrm{H}, 5.5177464807,0.0170211448,6.3733145499 \backslash \mathrm{C},-3.69500862\) \(66,0.0513348263,-4.8691183406 \backslash C, 3.2941448263,-0.0513363289,7.901975976\) \(5 \backslash \mathrm{~F},-3.7118430032,-0.8554850588,-5.8762042233 \backslash \mathrm{~F},-3.8893604921,1.263253\) \(7556,-5.4444220014 \backslash \mathrm{~F}, 2.0585002603,0.1936871095,8.3833589165 \backslash \mathrm{~F}, 3.673939\) \(9032,-1.2632554582,8.3757925721 \backslash \mathrm{~F},-4.7665449168,-0.1936902185,-4.08786\) \(53625 \backslash \mathrm{~F}, 4.1333070644,0.8554836704,8.4590324416 \backslash \mathrm{C}, 2.4981120158,-0.00901\) \(28744,-2.7516181194 \backslash C, 3.0972195458,1.1991684874,-3.1101011745 \backslash C, 3.0952\) \(336703,-1.2212903001,-3.0994523592 \backslash C, 4.2975005506,1.1875939213,-3.8193\) \(645703 \backslash \mathrm{H}, 2.6238852225,2.1367353964,-2.8343027086 \backslash \mathrm{C}, 4.2954885509,-1.217\) \(8957863,-3.8088731528 \backslash \mathrm{H}, 2.6203952331,-2.1556421731,-2.8154374518 \backslash \mathrm{C}, 4.9\) \(142423974,-0.0172876499,-4.183570536 \backslash \mathrm{H}, 4.7608647953,2.1314506643,-4.09\) \(57178464 \backslash \mathrm{H}, 4.7572944782,-2.1648888689,-4.0769748191 \backslash \mathrm{C}, 4.8490819396,0.0\) \(090202532,1.5442467792 \backslash C, 5.4739750876,-1.1991605433,1.2328771235 \backslash C, 5.4\) \(639335946,1.2212982465,1.2288140725 \backslash C, 6.7183850296,-1.1875841955,0.604\) \(250268 \backslash \mathrm{H}, 4.9865248174,-2.1367280897,1.4828795773 \backslash \mathrm{C}, 6.7084628532,1.2179\) \(055185,0.6002937723 \backslash \mathrm{H}, 4.9687513229,2.1556494836,1.4756575566 \backslash \mathrm{C}, 7.35760\) \(28723,0.0172987766,0.2811171711 \backslash H, 7.2009289984,-2.1314403089,0.3629409\) \(044 \backslash \mathrm{H}, 7.1832158025,2.1648992311,0.3558525372 \backslash \mathrm{C}, 6.1959042871,-0.0217887\) \(886,-4.9830265585 \backslash \mathrm{H}, 6.8003737251,-0.9087159685,-4.7669915823 \backslash \mathrm{H}, 5.98774\) \(00899,-0.0245958898,-6.0610261484 \backslash \mathrm{H}, 6.8033019782,0.8644053355,-4.77222\) \(98624 \backslash \mathrm{C}, 8.7218485901,0.021799647,-0.3674356574 \backslash \mathrm{H}, 8.8657713745,0.908778\) \(5561,-0.992934002 \backslash \mathrm{H}, 9.517602953,0.0244987339,0.3889974416 \backslash \mathrm{H}, 8.87168296\) 74,-0.8643430485,-0.9927425539\\Version=IA32L-G03RevD.02\State=1-A\HF= \(-2126.9570439 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=3.489 e-09 \backslash R M S F=1.677 e-06 \backslash\) Therm \(\mathrm{al}=0 . \backslash\) Dipole \(=4.8002309,-0.0000006,-2.6269914 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 22 \mathrm{~F} 6 \mathrm{~N} 4)] \backslash \backslash @\)

Table 114. Computational output parameters for triplet 2,10-di-trifluoromethyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91i \(\left(\mathrm{R}=\right.\) Tolyl, \(\left.\mathrm{Y}=\mathrm{CF}_{3}\right)\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \(\backslash\) UB3LYP \(\backslash 6\)-31G (d) \C34H22F6N4 (3) \GAUSSIAN \(\backslash 10-\) Feb-201 \(3 \backslash 0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \\tolyl Y:CF3 triplet \(\backslash 10,3\) \(\backslash C, 0 ., 0 ., 0 . \backslash C, 0.0000000469,0.0000000259,1.4067397257 \backslash C, 1.1848538427,0\). , 2.1650520809\C,2.4306435219,0.0012429878,1.4602598964\C,2.4557970703, \(0.0000020739,0.0627717134 \backslash C, 1.2651762296,-0.0012388684,-0.6693676455 \backslash \mathrm{~N}\) , 1. \(2574244331,-0.0037604077,-2.0762699506 \backslash \mathrm{~N},-1.1999996976,0.0012427149\) , -0. \(6441392713 \backslash C,-1.1681871501,0.000509434,-2.0039240328 \backslash C, 0.044859207\) \(5,-0.003928106,-2.7671765994 \backslash \mathrm{H}, 3.4045810487,0.0000038737,-0.4564630988\) \(\backslash C,-2.3995612008,0.0023282151,-2.6997478808 \backslash C,-0.0166892347,-0.0112602\) \(147,-4.1681067285 \backslash C,-2.4417717954,-0.0040965463,-4.0849019232 \backslash C,-1.245\) \(3496529,-0.0120239503,-4.819482335 \backslash H,-3.304617272,0.0036990977,-2.1036\) \(555705 \backslash \mathrm{H}, 0.8973866388,-0.0199331537,-4.7495087853 \backslash \mathrm{~N}, 3.6114557186,0.003\) \(7655172,2.2251891332 \backslash \mathrm{~N}, 1.0805247926,-0.0012438157,3.5230027875 \backslash \mathrm{C}, 3.539\) \(7447443,0.0039311315,3.6189331847 \backslash C, 2.2429787484,-0.0005095268,4.22920\) \(9156 \backslash \mathrm{C}, 4.6865277872,0.0112651522,4.4259552327 \backslash \mathrm{C}, 2.1652699643,-0.002329\) \(4168,5.6414473177 \backslash C, 4.5728430479,0.0120277547,5.8119472657 \backslash C, 3.3091885\) \(363,0.0040972786,6.4236757321 \backslash H, 1.1753225814,-0.0037028948,6.082419969\) \(5 \backslash H, 5.6689623548,0.019940696,3.9694653285 \backslash \mathrm{H},-0.9509059433,-0.000000767\) \(1,1.9271358421 \backslash \mathrm{H},-1.27622815,-0.0255360673,-5.9041459596 \backslash \mathrm{H}, 5.469776350\) \(3,0.0255416067,6.4226496286 \backslash C,-3.7506824548,0.0446642826,-4.8195618606\) \(\backslash C, 3.2223931561,-0.0446647282,7.9221545559 \backslash \mathrm{~F},-3.7604568036,-0.80650637\) 89,-5.8740124329\F,-3.9979447039,1.2784224276,-5.3243154092\F,1.993587 \(8698,0.2763209765,8.3781446201 \backslash \mathrm{~F}, 3.5142457643,-1.2784228366,8.40250543\) \(19 \backslash \mathrm{~F},-4.7971442913,-0.2763243433,-4.0303814202 \backslash \mathrm{~F}, 4.1052546459,0.806506\) \(6704,8.4987964572 \backslash C, 2.4977294689,-0.0053386319,-2.8044590883 \backslash C, 3.09871\) \(45175,1.2028840975,-3.1656433568 \backslash C, 3.1016800928,-1.2148995378,-3.15611\) \(0055 \backslash C, 4.2964440538,1.1951426365,-3.8793064416 \backslash \mathrm{H}, 2.6259348141,2.139738\) \(6286,-2.8859779564 \backslash \mathrm{C}, 4.2993872736,-1.2098014967,-3.8698743826 \backslash \mathrm{H}, 2.6312\) \(181227,-2.1507082419,-2.869123301 \backslash C, 4.9143211179,-0.0080363072,-4.2467\) \(973244 \backslash \mathrm{H}, 4.7577434945,2.14010885,-4.1560023268 \backslash \mathrm{H}, 4.7630254179,-2.15576\) \(20485,-4.1391523139 \backslash C, 4.8933828306,0.0053468703,1.5730528373 \backslash C, 5.52156\) \(2464,-1.2028758064,1.2615567908 \backslash C, 5.5151303351,1.2149078046,1.25392744\) \(7 \backslash C, 6.768301872,-1.195133278,0.6374502511 \backslash H, 5.0311535392,-2.1397311381\) , 1.5090058912\C, \(6.7619448184,1.2098108227,0.6298955785 \backslash \mathrm{H}, 5.0198055728\), \(2.1507156805,1.4954838809 \backslash \mathrm{C}, 7.4108997605,0.0080477226,0.3151327019 \backslash \mathrm{H}, 7\) \(.250020716,-2.1400986828,0.3980632872 \backslash\) Н, \(7.2386772633,2.1557731592,0.38\)
\(4545352 \backslash \mathrm{C}, 6.1929866817,-0.0095569093,-5.0513247707 \backslash \mathrm{H}, 6.8007010425,-0.8\) \(948264248,-4.8372722379 \backslash \mathrm{H}, 5.9813932987,-0.0132147915,-6.1287605375 \backslash \mathrm{H}, 6\) \(.7991203922,0.8781731083,-4.8430344209 \backslash C, 8.7778015183,0.0095665538,-0\). \(3281609993 \backslash H, 8.9251510242,0.8948992703,-0.955307839 \backslash H, 9.5712325585,0.0\) \(130949284,0.4308556966 \backslash \mathrm{H}, 8.9290577335,-0.8781003833,-0.9510694167 \backslash\) Ver sion=IA32L-G03RevD.02\State=3-A \(\backslash \mathrm{HF}=-2126.9406449 \backslash \mathrm{~S} 2=2.049525 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S}\) \(2 \mathrm{~A}=2.001593 \backslash \mathrm{RMSD}=4.696 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.630 \mathrm{e}-06 \backslash\) Thermal=0. \(\backslash\) Dipole=0.0000019, \(-4.6937539,0.0000057 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 22 \mathrm{~F} 6 \mathrm{~N} 4)] \backslash \backslash @\)

Table 115. Computational output parameters for singlet 2,10-di-cyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91g (\(\mathrm{R}=\) Tolyl, \(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 N 6 \backslash G A U S S I A N \backslash 11-F e b-2013 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt singlet tolyl \(Y: C N\) tight \(\backslash 0,1 \backslash \mathrm{C},-0.0415602619,0.0000117396,0.0228294954 \backslash \mathrm{C},-0.0295482565,-0.0000\) \(005068,1.4232080945 \backslash C, 1.1444914499,-0.0000128555,2.1866445441 \backslash C, 2.4176\) \(18246,-0.0000056843,1.464509532 \backslash C, 2.444892208,-0.0000005006,0.06689331\) \(07 \backslash \mathrm{C}, 1.2520478796,0.0000045482,-0.6619396403 \backslash \mathrm{~N}, 1.2509354488,0.00000048\) \(27,-2.0322020365 \backslash N,-1.2019226386,0.0000261483,-0.6528443207 \backslash C,-1.16305\) \(92473,0.0000319012,-2.0059032234 \backslash C, 0.0490073736,0.0000177032,-2.759655\) \(8644 \backslash \mathrm{H}, 3.3921443514,-0.0000002738,-0.4523238739 \backslash \mathrm{C},-2.3824588198,0.0000\) \(516203,-2.7245758356 \backslash \mathrm{C}, 0.0263646432,0.0000221838,-4.1626118866 \backslash \mathrm{C},-2.39\) \(63151061,0.0000563288,-4.1153399818 \backslash C,-1.1819318169,0.0000416388,-4.84\) \(04468068 \backslash \mathrm{H},-3.3019221611,0.0000623121,-2.1502810323 \backslash \mathrm{H}, 0.9538982739,0.0\) \(000111539,-4.7223896946 \backslash N, 3.5721336468,-0.0000011629,2.2025572832 \backslash N, 1\). \(0898780555,-0.0000267418,3.5282828961 \backslash C, 3.5388106282,-0.0000179568,3.6\) \(070891642 \backslash C, 2.2513955299,-0.0000320928,4.2233771614 \backslash C, 4.70930446,-0.00\) \(00220954,4.3808736777 \backslash C, 2.2012715519,-0.0000512402,5.6379135568 \backslash C, 4.63\) \(07275711,-0.0000410642,5.7640823399 \backslash C, 3.3662143214,-0.0000555562,6.397\) \(7328096 \backslash \mathrm{H}, 1.2225382135,-0.000061802,6.104077068 \backslash \mathrm{H}, 5.68014144,-0.000011\) \(1565,3.9000978165 \backslash \mathrm{H},-0.9795089963,-0.0000003515,1.9439100086 \backslash \mathrm{C},-3.6428\) 036089, 0.0000763394,-4.8247976201\N, -4.6471204285, 0.0000925474,-5.4122 \(902037 \backslash \mathrm{C}, 3.2937501944,-0.0000749595,7.830147783 \backslash \mathrm{~N}, 3.2487431546,-0.0000\) 906679, 8. 9928060349 \H,-1. \(2009159986,0.0000458147,-5.9245174777 \backslash \mathrm{H}, 5.534\) \(3731684,-0.000044976,6.3632436444 \backslash C, 2.5030576587,-0.0000328981,-2.7558\) \(433209 \backslash \mathrm{C}, 3.1005189582,1.2105184907,-3.1088536761 \backslash \mathrm{C}, 3.1004412161,-1.210\) 6108572,-3.1088642094\C,4.3002988939,1.2027894295,-3.8190115896\H, 2.62 \(6888014,2.1466717903,-2.8287041016 \backslash \mathrm{C}, 4.3002270161,-1.2029467725,-3.819\) \(0274073 \backslash \mathrm{H}, 2.6267550371,-2.1467396945,-2.8287264984 \backslash \mathrm{C}, 4.9176610804,-0.0\)
\(000996604,-4.1890584969 \backslash \mathrm{H}, 4.7626508282,2.1481836577,-4.0915497405 \backslash \mathrm{H}, 4\). \(7625185118,-2.1483652133,-4.0915796673 \backslash C, 4.8557124948,0.0000323846,1.5\) \(363050304 \backslash \mathrm{C}, 5.4746899509,-1.2105192083,1.2225479994 \backslash \mathrm{C}, 5.4746574711,1.2\) \(106101626,1.2226208718 \backslash \mathrm{C}, 6.7187455924,-1.2027901508,0.5931665328 \backslash \mathrm{H}, 4.9\) 837451193,-2.146672458,1.4711105341\C, 6.7187211957,1.202946056,0.59323 \(71344 \backslash \mathrm{H}, 4.9836936293,2.146739032,1.4712374252 \backslash \mathrm{C}, 7.3627906714,0.0000992\) \(168,0.271799399 \backslash \mathrm{H}, 7.1972060353,-2.1481844274,0.3500164634 \backslash \mathrm{H}, 7.19716168\) \(65,2.1483644532,0.3501469371 \backslash C, 6.1983603521,-0.0001149429,-4.989850105\) \(4 \backslash \mathrm{H}, 5.9884853825,0.0008650244,-6.0674822595 \backslash \mathrm{H}, 6.8048784567,0.886032678\) \(6,-4.7766421308 \backslash \mathrm{H}, 6.8039727325,-0.8872132613,-4.7780535855 \backslash \mathrm{C}, 8.7267788\) \(22,0.0001131697,-0.3770412198 \backslash \mathrm{H}, 9.522310241,-0.000933196,0.3795750546 \backslash\) H, \(8.8732887955,-0.8860031737,-1.0030704152 \backslash \mathrm{H}, 8.8740410528,0.8872426702\) ,-1.0014466994 \\Version=IA32L-G03RevD.02 \State=1-A\HF=-1637.3687879\S2 \(=0 . \backslash \mathrm{S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0 . \backslash \mathrm{RMSD}=1.536 \mathrm{e}-09 \backslash \mathrm{RMSF}=4.144 \mathrm{e}-05 \backslash \mathrm{Thermal=0} . \backslash\) Dipole=5.6 \(846771,-0.0000039,-3.1159412 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 22 \mathrm{~N} 6)] \backslash \backslash @\)

Table 116. Computational output parameters for triplet 2,10-di-cyano-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91g (\(\mathrm{R}=\) Tolyl, \(\mathrm{Y}=\mathrm{C} \equiv \mathrm{N}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 22 N 6(3) \backslash G A U S S I A N \backslash 26-N O v-2008 \backslash\) \(0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) lopt \(N E W \backslash \backslash 0,3 \backslash c, 0 ., 0 ., 0 . \backslash C\), \(0.0000000189,0 ., 1.4070353945 \backslash C, 1.1861148052,0 ., 2.1639238413 \backslash C, 2.431678\) \(0282,0 ., 1.4578491393 \backslash C, 2.456391636,-0.0000778749,0.0606097011 \backslash C, 1.2652\) \(39614,0.0000292202,-0.670175407 \backslash \mathrm{~N}, 1.2561976623,0.0000423028,-2.0774478\) \(393 \backslash N,-1.1989423177,0 .,-0.6429942021 \backslash \mathrm{C},-1.1682761113,0 .,-2.0038422501 \backslash\) C, \(0.0464688514,0.00015061,-2.7672957736 \backslash \mathrm{H}, 3.4047682375,-0.0002836312,-\) \(0.4592254171 \backslash C,-2.3977804631,0 .,-2.6959169751 \backslash C,-0.0138133395,0.000358\) \(5753,-4.1692481975 \backslash C,-2.4432184113,0.0001003001,-4.0907729087 \backslash C,-1.238\) \(9471235,0.0003696317,-4.8240666971 \backslash H,-3.3049596796,-0.0000715773,-2.10\) \(22267879 \backslash \mathrm{H}, 0.9009429702,0.0004398714,-4.7493645493 \backslash \mathrm{~N}, 3.6131287333,0 ., 2\) \(.2224874113 \backslash N, 1.0832029016,0 ., 3.520505341 \backslash C, 3.5439120798,0 ., 3.61336677\) \(43 \backslash C, 2.2468786432,0 ., 4.2266969542 \backslash C, 4.6933138547,0.0001915974,4.418337\) \(3216 \backslash C, 2.1689016619,0 ., 5.6354433724 \backslash C, 4.5862796143,0.0000923506,5.8033\) \(590608 \backslash \mathrm{C}, 3.3203068509,0.000100232,6.4240838313 \backslash \mathrm{H}, 1.1804270164,-0.00007\) \(40968,6.0808219066 \backslash \mathrm{H}, 5.6744201096,0.0003459533,3.959270561 \backslash \mathrm{H},-0.950517\) 0599,0.,1.9280437743\C,-3.6995284571,0.0000988821,-4.7785787213\N,-4.7 \(149083399,0.0000907843,-5.3474204327 \backslash C, 3.2243112043,0.0000988149,7.853\) \(1321293 \backslash \mathrm{~N}, 3.1576335899,0.0000895345,9.015083632 \backslash \mathrm{H},-1.2714605663,0.0005\) \(315014,-5.9084339064 \backslash \mathrm{H}, 5.4829001848,0.000242771,6.4140830836 \backslash \mathrm{C}, 2.49784\)
\(33365,0.0001631074,-2.8056115324 \backslash C, 3.1005823569,1.2097930587,-3.159524\) \(9826 \backslash C, 3.0991332489,-1.2087709352,-3.1623572027 \backslash C, 4.2989085446,1.20343\) \(40958,-3.871707642 \backslash \mathrm{H}, 2.6291259969,2.1461002347,-2.8757723697 \backslash \mathrm{C}, 4.29782\) \(24056,-1.20177379,-3.8748994258 \backslash H, 2.6269310339,-2.1454126628,-2.880984\) \(6023 \backslash \mathrm{C}, 4.9152517226,0.00072367,-4.2446505071 \backslash \mathrm{H}, 4.7619764685,2.14901801\) 57,-4.1431480609\H, 4.7598646833,-2.1470508146,-4.1488347281 \C, 4.894881 \(7461,0.0001216354,1.5674968163 \backslash C, 5.5190610089,-1.2088125272,1.25250953\) \(1 \backslash C, 5.5174649946,1.2097515006,1.2497872571 \backslash C, 6.7645385526,-1.201815633\) \(9,0.6253270969 \backslash \mathrm{H}, 5.0278500666,-2.1454551558,1.4992026282 \backslash \mathrm{C}, 6.762443626\) \(3,1.2033922873,0.6227163803 \backslash \mathrm{H}, 5.0246577584,2.1460578095,1.4945881387 \backslash \mathrm{C}\) , 7.4083745991,0.0006806688, 0.3037524001 \H, 7.2440052515,-2.1470927489,0 \(.3831801788 \backslash \mathrm{H}, 7.240368668,2.1489751456,0.3783792828 \backslash \mathrm{C}, 6.1952265293,0.0\) \(024039627,-5.0468885101 \backslash \mathrm{H}, 5.9861306331,0.0672385203,-6.1227828135 \backslash \mathrm{H}, 6\). \(829582271,0.856826773,-4.7885809528 \backslash H, 6.7728923032,-0.9128199295,-4.88\) \(25381228 \backslash C, 8.7731911355,0.0023623092,-0.3437041443 \backslash \mathrm{H}, 8.9454002297,-0.9\) 128729955,-0.9190569206\H,9.5676770298,0.0672227937,0.4113179768\H, 8.8 966704882,0.856769875,-1.0174288022\\Version=AM64L-G03RevD.02\State=3\(A \backslash H F=-1637.3528705 \backslash S 2=2.049804 \backslash S 2-1=0 . \backslash S 2 A=2.001608 \backslash R M S D=8.755 e-09 \backslash R M S\) \(\mathrm{F}=3.128 \mathrm{e}-06 \backslash\) Thermal=0. \Dipole \(=-0.0000008,5.7576729,-0.0053491 \backslash \mathrm{PG}=\mathrm{C01} \quad\) [\(\mathrm{X}(\mathrm{C} 34 \mathrm{H} 22 \mathrm{~N} 6)] \backslash \backslash\)

Table 117. Computational output parameters for singlet 3,9-di-methyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91d (\(\mathrm{R}=\mathrm{Tolyl}, \mathrm{X}=\mathrm{Me}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 28 N 4 \backslash G A U S S I A N \backslash 10-F e b-2013 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \linear tetraazapentacene toly \(1 \mathrm{X}: \mathrm{CH} 3\) singlet \(\backslash \backslash 0,1 \backslash \mathrm{C},-0.0468302898,-0.0000247128,0.0242109973 \backslash \mathrm{C},-0.0\) 35479689,-0.0000449203,1.4258591692\C,1.1362683593,-0.0000483254, 2. 195 \(1140544 \backslash C, 2.4096240616,-0.0000269023,1.4760929443 \backslash C, 2.4384351224,-0.00\) \(00199022,0.0776252227 \backslash \mathrm{C}, 1.2475915518,-0.0000188033,-0.656155212 \backslash \mathrm{~N}, 1.24\) \(96665987,-0.0000118411,-2.0266026645 \backslash \mathrm{~N},-1.2063770652,-0.0000107574,-0\). \(6547883031 \backslash C,-1.1635251963,0.0000132623,-2.0094599955 \backslash C, 0.0463886309,0\) \(.0000129479,-2.7602184527 \backslash \mathrm{H}, 3.3869936489,-0.0000093654,-0.4393201567 \backslash \mathrm{C}\) , \(-2.3766641916,0.0000382908,-2.7448290364 \backslash C, 0.0274664923,0.0000388847\), \(-4.1627705881 \backslash C,-2.3823354764,0.0000637072,-4.1248717944 \backslash C,-1.17731296\) \(4,0.0000655891,-4.8617328576 \backslash \mathrm{H},-3.2980441003,0.0000366854,-2.170942163\) \(\backslash \mathrm{H},-3.3306332534,0.0000829021,-4.6581311195 \backslash \mathrm{H}, 0.9611997849,0.000038804\) \(4,-4.7145915271 \backslash N, 3.5624289438,-0.000011589,2.2171539958 \backslash N, 1.078384316\) \(,-0.0000641923,3.5375886437 \backslash C, 3.5267399091,-0.0000458013,3.6259820242 \backslash\)

C, 2. \(2400334387,-0.0000668919,4.2358315438 \backslash C, 4.6951436006,0.0000159498\), \(4.4020896053 \backslash C, 2.2004728751,-0.0000118914,5.6538965577 \backslash C, 4.6295189539\), \(0.0000246405,5.7933967641 \backslash \mathrm{C}, 3.3571427994,0.0000512646,6.4066682316 \backslash \mathrm{H}, 3\) \(.2912841052,0.0001437144,7.4926225365 \backslash \mathrm{H}, 1.2187938263,0.0000497571,6.11\) \(71387305 \backslash \mathrm{H},-0.9868647596,-0.0000531073,1.9443449766 \backslash \mathrm{C},-1.2001863519,0\). \(0001015377,-6.3714497597 \backslash \mathrm{H},-1.7221119341,0.8815057497,-6.7667023159 \backslash \mathrm{H}\), \(-0.1877081334,0.0000455294,-6.7880817761 \backslash \mathrm{H},-1.7222276857,-0.8812156061\) \(,-6.7667420963 \backslash C, 5.8858391038,-0.000349153,6.6309097457 \backslash \mathrm{H}, 6.7847392438\) , \(0.0037308147,6.005884583 \backslash \mathrm{H}, 5.9332108015,0.8787388995,7.2869737976 \backslash \mathrm{H}, 5\) \(.9369730309,-0.8839671307,7.2806418994 \backslash C, 2.5022711925,-0.0000379214,-2\) \(.743980078 \backslash C, 3.1036316099,1.2094350428,-3.0946677703 \backslash C, 3.1035565948,-1\) . \(2095274988,-3.0946953459 \backslash \mathrm{C}, 4.3080377559,1.2024291627,-3.7970423889 \backslash \mathrm{H}\), \(2.6278322694,2.1450185045,-2.8165451298 \backslash C, 4.3079718489,-1.2025712974,-\) \(3.7970760342 \backslash \mathrm{H}, 2.6277065274,-2.1450928656,-2.8165991064 \backslash \mathrm{C}, 4.928106195\), \(-0.0000900285,-4.1627141917 \backslash \mathrm{H}, 4.772790475,2.1479408328,-4.0659052127 \backslash \mathrm{H}\) , 4.7726679341,-2.1481008893,-4.0659674539\C, 6.2153155767,-0.0000894594 , \(-4.9536769155 \backslash \mathrm{H}, 6.0157463991,0.0013055248,-6.0334269959 \backslash \mathrm{H}, 6.820657204\) \(5,0.88567399,-4.7346877207 \backslash \mathrm{H}, 6.8194081957,-0.8871931549,-4.7367110269 \backslash\) H, 5.6649749089, 0.0000648974,3.9165059704\C, 4.8442220164,0.0000228602,1 \(.55333543 \backslash C, 5.4648932535,-1.209445454,1.238071967 \backslash C, 5.464840954,1.2095\) \(170776,1.2381055475 \backslash \mathrm{C}, 6.7079550166,-1.2024325311,0.606625365 \backslash \mathrm{H}, 4.97329\) \(10863,-2.1450319783,1.4871879394 \backslash C, 6.7079108534,1.2025679258,0.6066557\) \(346 \backslash \mathrm{H}, 4.9732051425,2.1450793803,1.4872456531 \backslash \mathrm{C}, 7.3513226863,0.00008896\) \(36,0.2837180667 \backslash \mathrm{H}, 7.1858163833,-2.1479413029,0.3618073716 \backslash \mathrm{H}, 7.18573725\) \(48,2.1481004154,0.361866129 \backslash C, 8.7137108287,0.0001028549,-0.3692969245 \backslash\) H, \(9.5129287332,-0.0009337452,0.3836570675 \backslash \mathrm{H}, 8.857921854,-0.885827775,-\) \(0.9964329416 \backslash \mathrm{H}, 8.8586698914,0.8870400924,-0.9948258313 \backslash \backslash\) Version=IA32LG03RevD. \(02 \backslash\) State \(=1-A \backslash H F=-1531.5159363 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.176 e\) \(-09 \backslash \operatorname{RMSF}=9.780 \mathrm{e}-06 \backslash\) Thermal=0. \(\backslash\) Dipole=3.7261533,-0.0001133,-2.0306816\P \(G=C 01[X(C 34 H 28 N 4)] \backslash \backslash\)

Table 118. Computational output parameters for triplet 3,9-di-methyl-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91d (\(\mathrm{R}=\mathrm{Tolyl}, \mathrm{X}=\mathrm{Me}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 28 N 4(3) \backslash G A U S S I A N \backslash 09-F e b-2013 \backslash\) \(0 \backslash \backslash \#\) opt ub3lyp/6-31g(d) geom=connectivity \\linear tetraazapentacene t olyl X:CH3 triplet \(\backslash \backslash 0,3 \backslash C, 0 ., 0 ., 0 . \backslash C, 0.0000000123,0 ., 1.4065234626 \backslash C, 1\). \(1819972922,0 ., 2.1688820096 \backslash C, 2.4290803953,0 ., 1.4665013532 \backslash C, 2.45528321\) \(42,0 ., 0.0684432555 \backslash \mathrm{C}, 1.2661975451,0 .,-0.6673069974 \backslash \mathrm{~N}, 1.2617628975,0 .,-\) 294
\(2.0742733186 \backslash \mathrm{~N},-1.2000891777,0 .,-0.6470096196 \backslash \mathrm{C},-1.1648151175,0 .,-2.00\) \(63383725 \backslash \mathrm{C}, 0.0463225581,0 .,-2.7698302768 \backslash \mathrm{H}, 3.4050474934,0 .,-0.44915926\) \(88 \backslash C,-2.3902223397,0 .,-2.7165895242 \backslash C,-0.0112050224,0 .,-4.1690527927 \backslash C\) , - \(2.4275802635,0 .,-4.0985876901 \backslash \mathrm{C},-1.2344484898,0 .,-4.8469676231 \backslash \mathrm{H},-3\). \(2986955498,0 .,-2.1223075851 \backslash \mathrm{H},-3.3846990926,0 .,-4.6148343052 \backslash \mathrm{H}, 0.90963\) \(46021,0 .,-4.7418908004 \backslash N, 3.6090462196,0 ., 2.2328267073 \backslash N, 1.0752556295,0\) \(., 3.5280882853 \backslash C, 3.5347816079,0 ., 3.6312470548 \backslash C, 2.2367111309,0 ., 4.2352\) \(233757 \backslash \mathrm{C}, 4.679462552,0.0000710753,4.4379927414 \backslash \mathrm{C}, 2.1693923581,0.000075\) \(7758,5.6499831885 \backslash C, 4.586142239,0.0000699252,5.8334096241 \backslash C, 3.31053126\) 85, 0.0001577153, 6.430443941 \H, 3.2255944409, 0.0002741193, 7.5145900301\H \(, 1.1775700638,0.0001301814,6.0913254103 \backslash \mathrm{H},-0.9519006128,0 ., 1.925290252\) \(8 \backslash C,-1.2767564136,0 .,-6.3560891224 \backslash \mathrm{H},-1.8056741395,0.8813513412,-6.741\) \(342558 \backslash \mathrm{H},-0.2707588964,-0.0000642308,-6.7871773668 \backslash \mathrm{H},-1.8057885046,-0\). \(8812816642,-6.7413411623 \backslash \mathrm{C}, 5.8314284715,-0.0003584767,6.6869308766 \backslash \mathrm{H}, 6\) \(.7389628318,0.0044440809,6.0751905312 \backslash \mathrm{H}, 5.8662136671,0.8782472057,7.34\) \(40035371 \backslash \mathrm{H}, 5.8707307541,-0.8843647985,7.3365387022 \backslash \mathrm{C}, 2.5023957476,0 .,-\) \(2.7975069138 \backslash C, 3.108344045,1.2080870451,-3.1519000121 \backslash C, 3.1082868514,-\) \(1.2080799516,-3.1519777742 \backslash \mathrm{C}, 4.3100859036,1.2022121841,-3.8589110868 \backslash \mathrm{H}\) ,2.6351178343,2.1440675547,-2.8701685624\C, 4.3100337166,-1.2022078127, \(-3.8590006348 \backslash \mathrm{H}, 2.6350240614,-2.1440624408,-2.870314624 \backslash \mathrm{C}, 4.9288775603\) , - 0.0000053786, -4.2273652067\H,4.7747273147,2.1477766815, -4.1285608136 \(\backslash \mathrm{H}, 4.7746292907,-2.1477723113,-4.1287250916 \backslash \mathrm{C}, 6.2134301468,0.000021163\) , \(-5.0229459994 \backslash \mathrm{H}, 6.0110001311,0.0014663521,-6.1022782064 \backslash \mathrm{H}, 6.819723962\) \(5,0.8856869972,-4.8058163508 \backslash \mathrm{H}, 6.8184469933,-0.8870209925,-4.807920974\) \(3 \backslash H, 5.6599673284,0.0001282874,3.9746360998 \backslash \mathrm{C}, 4.8892717634,0 ., 1.5822429\) \(242 \backslash C, 5.5155330441,-1.2080864724,1.2651329532 \backslash C, 5.5155533307,1.2080805\) \(314,1.2651789833 \backslash \mathrm{C}, 6.7610470609,-1.2022154058,0.6384385482 \backslash \mathrm{H}, 5.0222868\) \(598,-2.1440662994,1.510130349 \backslash \mathrm{C}, 6.7610785525,1.202205598,0.638486393 \backslash \mathrm{H}\) , \(5.0223286966,2.144063702,1.5102102687 \backslash C, 7.40607151,-0.0000009323,0.31\) \(81116907 \backslash \mathrm{H}, 7.239503988,-2.1477805212,0.3941427031 \backslash \mathrm{H}, 7.2395564594,2.147\) \(7684765,0.3942316642 \backslash C, 8.770900535,-0.0000232377,-0.3301674761 \backslash \mathrm{H}, 9.568\) \(2168965,-0.0011158541,0.424964714 \backslash \mathrm{H}, 8.9171839829,-0.8858592737,-0.9570\) \(925217 \backslash \mathrm{H}, 8.9179995598,0.8868497229,-0.9554236165 \backslash \backslash V e r s i o n=I A 32 L-G 03 R e v\) D. \(02 \backslash\) State \(=3-A \backslash H F=-1531.5004048 \backslash S 2=2.049038 \backslash S 2-1=0 . \backslash S 2 A=2.001567 \backslash R M S D=\) \(8.730 e-09 \backslash R M S F=2.868 e-05 \backslash T h e r m a l=0 . \backslash\) Dipole \(=-0.0000031,-3.4090386,0.000\) \(2045 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 28 \mathrm{~N} 4)] \backslash \backslash @\)

Table 119. Computational output parameters for singlet 3,9-di-fluoro-5,7-di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91j (\(\mathrm{R}=\) Tolyl, \(\mathrm{X}=\mathrm{F}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 32 H 22 F 2 N 4 \backslash G A U S S I A N \backslash 09-F e b-2013 \backslash 0\) \\\# opt ub3lyp/6-31g(d) geom=connectivity \\linear tetraazapentacene to lyl X:F singlet \\0,1\C,-0.0402769015,0.000015473,0.0209101414\C,-0.028 \(7826474,0.0000004586,1.4224650951 \backslash C, 1.1437723288,-0.0000144643,2.19032\) \(13475 \backslash \mathrm{C}, 2.4161196073,-0.0000072769,1.4703036999 \backslash \mathrm{C}, 2.4450943961,0.00000\) \(02924,0.0722405816 \backslash \mathrm{C}, 1.253583971,0.0000081272,-0.6596903747 \backslash \mathrm{~N}, 1.257022\) \(3664,0.0000058522,-2.0308095017 \backslash \mathrm{~N},-1.1992548663,0.000031878,-0.6587355\) \(228 \backslash C,-1.1581740749,0.0000397575,-2.0133788612 \backslash C, 0.0559242321,0.000025\) \(4769,-2.7627289009 \backslash \mathrm{H}, 3.3933786803,-0.0000000446,-0.4453262601 \backslash \mathrm{C},-2.375\) \(3385454,0.0000618477,-2.7426607021 \backslash C, 0.0437317472,0.0000322512,-4.1646\) \(077839 \backslash C,-2.3955784465,0.0000690003,-4.1251704498 \backslash C,-1.1783822076,0.00\) \(00540947,-4.8135563396 \backslash \mathrm{H},-3.2934482478,0.0000724213,-2.16462654 \backslash \mathrm{H},-3.3\) \(25527803,0.0000857313,-4.6840860391 \backslash \mathrm{H}, 0.955573925,0.0000215482,-4.7479\) \(953257 \backslash \mathrm{~N}, 3.5711546343,-0.0000055933,2.2091362538 \backslash \mathrm{~N}, 1.0884220226,-0.000\) \(0313557,3.5327387598 \backslash C, 3.536983531,-0.0000255701,3.6152568192 \backslash C, 2.2499\) 632897,-0.000039727,4.2309995178\C, 4.7094332256, -0.000032798, 4.3838755 \(561 \backslash C, 2.2048825791,-0.0000622973,5.6492058131 \backslash C, 4.5941110095,-0.000055\) \(019,5.7627872707 \backslash \mathrm{C}, 3.3566885805,-0.0000699244,6.4141148147 \backslash \mathrm{H}, 3.3236946\) \(3,-0.0000870273,7.4985980265 \backslash \mathrm{H}, 1.222065775,-0.0000728559,6.1086838138 \backslash\) \(\mathrm{H}, 5.6933619631,-0.0000221913,3.9325647865 \backslash \mathrm{H},-0.979796549,0.000000345,1\) \(.9415217233 \backslash \mathrm{~F},-1.1915579994,0.000061687,-6.1662696273 \backslash \mathrm{~F}, 5.7246782152,-\) \(0.0000630352,6.5056362562 \backslash C, 4.8542988857,0.0000287463,1.5460516753 \backslash C, 5\) \(.4754774247,-1.2099021148,1.2336758218 \backslash \mathrm{C}, 5.4754469659,1.2099872039,1.2\) \(337559694 \backslash\) C, \(6.7210508784,-1.2025894485,0.6073163051 \backslash \mathrm{H}, 4.9833816012,-2\). 1457320579,1.4809791669\C,6.721028038,1.2027413599, 0.6073944584\H, 4.98 \(33333895,2.1457919001,1.481119276 \backslash C, 7.3658026763,0.0000974283,0.287403\) \(0003 \backslash \mathrm{H}, 7.2001684051,-2.1480216421,0.3651277731 \backslash \mathrm{H}, 7.2001271238,2.148198\) \(4706,0.3652716444 \backslash C, 2.508840629,-0.0000288025,-2.7512894743 \backslash C, 3.107598\) 5413,1.2099022725,-3.1047449865\C, 3.1075130101,-1.209987055,-3.1047644 \(376 \backslash \mathrm{C}, 4.3082046449,1.2025895399,-3.8134928927 \backslash \mathrm{H}, 2.6333998018,2.1457321\) \(976,-2.8246506254 \backslash \mathrm{C}, 4.3081254078,-1.2027412667,-3.8135180504 \backslash \mathrm{H}, 2.63325\) \(34394,-2.1457917798,-2.8246891249 \backslash C, 4.9260527562,-0.0000977073,-4.1826\) \(990259 \backslash \mathrm{H}, 4.7710817731,2.1480217518,-4.085437231 \backslash \mathrm{H}, 4.7709361501,-2.1481\) \(98361,-4.0854840982 \backslash \mathrm{C}, 8.7314558242,0.0001141084,-0.3583213971\) \H, 8.8799 \(035344,0.8871204488,-0.9828085854 \backslash H, 9.5258188265,-0.0008653667,0.39963\) \(84672 \backslash \mathrm{H}, 8.8792065376,-0.8859380269,-0.9843360151 \backslash \mathrm{C}, 6.2079045166,-0.000\) \(1128923,-4.9819640526 \backslash \mathrm{H}, 6.8133972087,-0.8871564386,-4.7690484136 \backslash \mathrm{H}, 6.0\)
\(001458272,0.0009455292,-6.0600883019 \backslash \mathrm{H}, 6.8143743401,0.885901898,-4.767\) \(521517 \backslash \backslash\) Version=IA32L-G03RevD.02 \(\backslash\) State \(=1-A \backslash H F=-1651.3452841 \backslash\) S2 \(=0 . \backslash S 2-1\) \(=0 . \backslash S 2 A=0 . \backslash R M S D=2.033 e-09 \backslash R M S F=3.947 e-05 \backslash T h e r m a l=0 . \backslash\) Dipole=3.3892373,0 \(.0000036,-1.8498216 \backslash \mathrm{PG}=\mathrm{C01}\) [X(C32H22F2N4)] \\@

\section*{Table 120. Computational output parameters for triplet 3,9-di-fluoro-5,7-di-p-tolyl-7,13-} dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91j (\(\mathrm{R}=\) Tolyl, \(\mathrm{X}=\mathrm{F}\)).
\(1 \backslash 1 \backslash\) GINC-CHEM40\FOpt \UB3LYP \(\backslash 6\)-31G (d) \C32H22F2N4 (3) \GAUSSIAN \(\backslash 09-F e b-201\) \(3 \backslash 0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \\linear tetraazapentacene tolyl X:F triplet \(\backslash \backslash 0,3 \backslash C, 0 .,-0.0000001247,0 . \backslash C,-0.0000000509,-0.00000\) 01299,1.4067557067\C,1.1831471113,-0.00000005,2.1677582926\C, 2.4297066 \(525,0.0000000329,1.4639992985 \backslash C, 2.4557820513,0.0000000466,0.0664073362\) \(\backslash C, 1.266236357,-0.0000000338,-0.6677071961 \backslash \mathrm{~N}, 1.2615219679,-0.000000028\) \(9,-2.075419312 \backslash \mathrm{~N},-1.1989860891,-0.000000206,-0.6461659462 \backslash \mathrm{C},-1.1665306\) \(813,-0.0000001988,-2.0066781947 \backslash C, 0.0494409069,-0.000000111,-2.7688828\) \(59 \backslash \mathrm{H}, 3.4052385291,0.0000001148,-0.4517992432 \backslash \mathrm{C},-2.3952024606,-0.000000\) \(282,-2.7093590697 \backslash C,-0.002564644,-0.0000001095,-4.1669656883 \backslash C,-2.4487\) \(001009,-0.0000002806,-4.0945332525 \backslash C,-1.2430477707,-0.0000001938,-4.79\) \(39905875 \backslash \mathrm{H},-3.3000452985,-0.0000003474,-2.1106138194 \backslash \mathrm{H},-3.3880684445,-\) \(0.0000003442,-4.6363768807 \backslash \mathrm{H}, 0.8949572848,-0.0000000446,-4.7720357008 \backslash\) \(\mathrm{N}, 3.6111077611,0.0000001193,2.2294841431 \backslash \mathrm{~N}, 1.0779959331,-0.0000000624\), \(3.5257131157 \backslash C, 3.5386521747,0.0000001091,3.6240386876 \backslash C, 2.2398072319,0\) \(.0000000161,4.2344030607 \backslash C, 4.6863718479,0.0000001863,4.4240885152 \backslash C, 2\). \(1661280091,0.0000000058,5.6478978776 \backslash C, 4.5426733272,0.0000001712,5.806\) \(5888108 \backslash \mathrm{C}, 3.3021837447,0.0000000822,6.4422195251 \backslash \mathrm{H}, 3.2497370493,0.0000\) \(000745,7.5253887726 \backslash \mathrm{H}, 1.1730699895,-0.0000000652,6.0850134636 \backslash \mathrm{H}, 5.6807\) 89829,0.0000002574,3.9965511347\H,-0.9515219232,-0.0000001982,1.926089 \(5636 \backslash F,-1.2712286412,-0.0000001908,-6.1435960097 \backslash F, 5.6625099902,0.0000\) \(002466,6.5603773807 \backslash C, 4.8930826919,0.0000002112,1.5800595666 \backslash C, 5.51986\) \(49938,-1.2085880007,1.2664656995 \backslash C, 5.5198826439,1.2085800032,1.2665084\) \(716 \backslash C, 6.7684030683,-1.2023940005,0.6459404284 \backslash \mathrm{H}, 5.02606431,-2.14476300\) \(22,1.5096129566 \backslash C, 6.7684282225,1.2023850029,0.6459802444 \backslash \mathrm{H}, 5.026100405\) , \(2.1447580009,1.509683257 \backslash \mathrm{C}, 7.4150618006,-0.0000009993,0.3292530196 \backslash \mathrm{H}\), \(7.2484796219,-2.1478600025,0.4049793575 \backslash \mathrm{H}, 7.2485225819,2.1478480035,0\). \(4050538859 \backslash C, 2.501218957,0.0000000604,-2.802305396 \backslash C, 3.1040337109,1.20\) \(8587996,-3.1598146081 \backslash C, 3.1040044912,-1.2085799982,-3.1598556227 \backslash C, 4.3\) \(013365441,1.2023939959,-3.8742108293 \backslash \mathrm{H}, 2.6324078511,2.1447629982,-2.87\) \(60366219 \backslash\) C, \(4.301314271,-1.2023849983,-3.874257914 \backslash\) н, \(2.6323639378,-2.14\)
\(47579991,-2.8761129086 \backslash C, 4.9175022486,0.0000002344,-4.2467674649 \backslash H, 4.7\) \(637005118,2.1478599927,-4.1476248364 \backslash H, 4.7636562826,-2.147847998,-4.14\) \(77100647 \backslash \mathrm{C}, 8.7839389842,-0.0000219996,-0.3100245106 \backslash \mathrm{H}, 8.9353449547,0.8\) \(869149997,-0.9340322784 \backslash \mathrm{H}, 9.5753656858,-0.0010249996,0.451137263 \backslash \mathrm{H}, 8.9\) \(346064044,-0.886011003,-0.9355670489 \backslash C, 6.1956759814,0.0000239994,-5.05\) \(22315628 \backslash \mathrm{H}, 6.8023648646,-0.886953004,-4.8420651989 \backslash \mathrm{H}, 5.9836358684,0.00\) \(11079992,-6.1296184222 \backslash \mathrm{H}, 6.8033270445,0.885972997,-4.8404964126 \backslash \backslash V e r s i\) on=IA32L-G03RevD. \(02 \backslash\) State=3-A \(\backslash H F=-1651.3314373 \backslash S 2=2.04845 \backslash S 2-1=0 . \backslash S 2 A=\) \(2.001519 \backslash \mathrm{RMSD}=7.608 e-09 \backslash \mathrm{RMSF}=2.478 e-05 \backslash\) Thermal=0. \(\backslash \mathrm{Dipole=}=0.0000006,-3\) \(.030868,-0.0000217 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 32 \mathrm{H} 22 \mathrm{~F} 2 \mathrm{~N} 4)] \backslash \backslash @\)

Table 121. Computational output parameters for singlet 3,9 -di-methoxy- 5,7 -di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91b (\(\mathrm{R}=\) Tolyl, \(\mathrm{X}=\mathrm{OMe}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 34 H 28 N 4 O 2 \backslash G A U S S I A N \backslash 11-F e b-2013 \backslash 0\) \\\# opt ub3lyp/6-31g(d) geom=connectivity\\XOMe singlet \\0,1\c,-0.0520 \(60719,-0.0001241823,0.026683531 \backslash C,-0.0408628334,-0.0000000454,1.428826\) \(3874 \backslash \mathrm{C}, 1.1307864331,0.0001244507,2.1991301834 \backslash \mathrm{C}, 2.4030145186,-0.000147\) \(8039,1.4804232705 \backslash \mathrm{C}, 2.4325327388,0.0000003679,0.0821194671 \backslash \mathrm{C}, 1.2420127\) \(433,0.0001484988,-0.6519016415 \backslash \mathrm{~N}, 1.2491199193,0.0006514567,-2.02379908\) \(11 \backslash N,-1.210266386,-0.0003614088,-0.655251467 \backslash \mathrm{C},-1.1653359382,-0.000308\) \(4383,-2.0101693904 \backslash \mathrm{C}, 0.0490982151,0.0002627979,-2.7605384074 \backslash \mathrm{H}, 3.38132\) \(80888,0.0000000419,-0.4344777187 \backslash C,-2.3719360629,-0.0007688197,-2.7488\) \(108563 \backslash C, 0.0394227936,0.0003501854,-4.1570698359 \backslash C,-2.3893847875,-0.00\) \(06960495,-4.133852452 \backslash \mathrm{C},-1.1745219058,-0.0001389155,-4.8453990488 \backslash \mathrm{H},-3\) \(.2957589523,-0.0011833081,-2.1792393821 \backslash \mathrm{H},-3.3398648891,-0.0010657299\), \(-4.6551475522 \backslash \mathrm{H}, 0.9567504949,0.0007753583,-4.7324631914 \backslash \mathrm{~N}, 3.5591927849\) , - \(0.00065132,2.2189385406 \backslash \mathrm{~N}, 1.0750546067,0.0003607067,3.542026175 \backslash \mathrm{C}, 3\). \(526801485,-0.0002636221,3.6266983608 \backslash \mathrm{C}, 2.2374964706,0.000307175,4.2395\) \(576651 \backslash C, 4.6945636585,-0.0003516297,4.3926782349 \backslash \mathrm{C}, 2.2031329699,0.0007\) \(662886,5.6538752524 \backslash C, 4.6139548417,0.0001363199,5.7858619993 \backslash C, 3.35702\) \(59506,0.0006928576,6.4201491008 \backslash \mathrm{H}, 3.2790911565,0.0010615225,7.50139244\) \(18 \backslash \mathrm{H}, 1.2233938071,0.0011802723,6.1207494854 \backslash \mathrm{H}, 5.6756681698,-0.00077662\) \(06,3.9344189868 \backslash \mathrm{H},-0.9924948062,-0.0000004519,1.9469680732 \backslash 0,-1.074121\) \(9401,-0.0000520602,-6.2117274095 \backslash 0,5.8160824173,0.0000489087,6.4429941\) \(102 \backslash \mathrm{C},-2.271159273,-0.0005863672,-6.9696463953 \backslash \mathrm{H},-1.9626312775,-0.0004\) \(358238,-8.0170712769 \backslash \mathrm{H},-2.8770870116,-0.8952088103,-6.7720302902 \backslash \mathrm{H},-2\). \(8778954354,0.8934839967,-6.772013721 \backslash C, 5.8031004125,0.0005813904,7.859\) \(7407421 \backslash \mathrm{H}, 6.8503103448,0.0004304903,8.1689975458 \backslash \mathrm{H}, 5.3082956253,0.8952\)
\(032803,8.26144929 \backslash \mathrm{H}, 5.3078430988,-0.8934895165,8.2621169979 \backslash \mathrm{C}, 4.840504\) \(7595,-0.0020087876,1.5542939486 \backslash C, 5.4605425631,-1.211995709,1.24076292\) \(17 \backslash \mathrm{C}, 5.4623831402,1.2069707719,1.2388331504 \backslash \mathrm{C}, 6.7042312908,-1.20630697\) \(85,0.6102871281 \backslash \mathrm{H}, 4.9684184221,-2.1471035058,1.4905701345 \backslash \mathrm{C}, 6.70571292\) \(87,1.1986966378,0.6085028563 \backslash \mathrm{H}, 4.9713900777,2.1430450457,1.4872592041 \backslash\) C, \(7.3486188212,-0.0046879376,0.2872162278 \backslash \mathrm{H}, 7.1819368999,-2.1522854512\) \(, 0.367158906 \backslash \mathrm{H}, 7.1846090654,2.1437217905,0.3637757403 \backslash \mathrm{C}, 2.5027135007,0\) \(.0020098029,-2.7393519562 \backslash C, 3.1025381474,1.211998497,-3.0900054743 \backslash C, 3\) \(.1051579108,-1.20696799,-3.0905072941 \backslash C, 4.3070148927,1.2063115899,-3.7\) \(924967839 \backslash \mathrm{H}, 2.62565228,2.1471053946,-2.8122080447 \backslash \mathrm{C}, 4.3093194926,-1.19\) \(86920392,-3.7927773587 \backslash \mathrm{H}, 2.6300475981,-2.1430431594,-2.8129137404 \backslash \mathrm{C}, 4\). \(9280674302,0.0046922444,-4.1584292458 \backslash H, 4.7704657299,2.1522908826,-4.0\) \(618034836 \backslash \mathrm{H}, 4.7747600421,-2.1437163385,-4.0622197744 \backslash \mathrm{C}, 8.7120528797,-0\) \(.0051310678,-0.3635036355 \backslash \mathrm{H}, 8.8406355563,0.8571457579,-1.0262562931 \backslash \mathrm{H}\), \(9.5092300631,0.042798685,0.3900625241 \backslash \mathrm{H}, 8.8752857909,-0.9138428783,-0\). \(9519931843 \backslash \mathrm{C}, 6.2145301377,0.005143191,-4.950516718 \backslash \mathrm{H}, 6.014170009,-0.04\) \(25040768,-6.0290511601 \backslash \mathrm{H}, 6.7975362161,0.9137336711,-4.7680584035 \backslash \mathrm{H}, 6.8\) \(408662162,-0.8572773685,-4.6990651897 \backslash\) VVersion=IA32L-G03RevD.02\State= \(1-A \backslash H F=-1681.9222625 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=9.860 e-09 \backslash R M S F=4.117 e-0\) \(5 \backslash\) Thermal \(=0 . \backslash\) Dipole \(=3.0948165,0.0000135,-1.685056 \backslash \mathrm{PG}=\mathrm{CO}\) [\(\quad\) X (C34H28N4O2) \(] \backslash \backslash @\)

Table 122. Computational output parameters for triplet 3,9 -di-methoxy- 5,7 -di-p-tolyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide TAP 91b (\(\mathrm{R}=\) Tolyl, \(\mathrm{X}=\mathrm{OMe}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash\) FOpt \UB3LYP\6-31G(d) \C34H28N4O2 (3) \GAUSSIAN \(\backslash 05-D e c-200\) \(8 \backslash 0 \backslash \\) opt ub3lyp/6-3lg(d) geom=connectivity \(\backslash\) XXMe trplet (from .log f ile of \(B S\) singlet) \(\backslash \backslash 0,3 \backslash C, 0 ., 0 ., 0 . \backslash C, 0.0000000259,0 ., 1.4065781676 \backslash C, 1\). \(1814509102,0 ., 2.169882305 \backslash C, 2.4291459146,-0.0002034638,1.4674065983 \backslash C\), \(2.4555324551,0.000002089,0.0695972616 \backslash C, 1.2671267893,0.0002057204,-0.6\) \(667868005 \backslash \mathrm{~N}, 1.265000489,0.0006931187,-2.0743089701 \backslash \mathrm{~N},-1.1979878442,-0\). \(0001362566,-0.6485270056 \backslash C,-1.1623291045,-0.000196846,-2.0083757925 \backslash C\), \(0.0535870947,0.000229853,-2.7731152732 \backslash H, 3.4055589169,0.0000017644,-0\). \(447670287 \backslash \mathrm{C},-2.3817900832,-0.0006139177,-2.7195722297 \backslash \mathrm{C}, 0.0027784621,0\) \(.0001742208,-4.164860382 \backslash C,-2.4345857319,-0.0007034958,-4.1070347816 \backslash C\) \(,-1.2319965941,-0.0002967518,-4.8309674273 \backslash \mathrm{H},-3.2915938701,-0.00086590\) \(62,-2.1276694998 \backslash \mathrm{H},-3.3944889388,-0.0010287761,-4.6095836619 \backslash \mathrm{H}, 0.90515\) \(92364,0.0004895732,-4.7633322501 \backslash N, 3.610236861,-0.0006898668,2.2330108\) \(26 \backslash N, 1.0760695917,0.0001350504,3.528063784 \backslash \mathrm{C}, 3.539801402,-0.0002287706\)
, 3. \(6297531545 \backslash C, 2.2376216681,0.0001956662,4.2360588709 \backslash C, 4.6812216215\), \(-0.0001722924,4.4276853869 \backslash \mathrm{C}, 2.1732270569,0.0006115646,5.6462862334 \backslash \mathrm{C}\), \(4.5706433614,0.0002964374,5.8263063097 \backslash C, 3.3099709894,0.0007010844,6.4\) \(435639287 \backslash \mathrm{H}, 3.2111762067,0.0010254411,7.5225483293 \backslash \mathrm{H}, 1.182338036,0.000\) \(8626838,6.089265798 \backslash \mathrm{H}, 5.6735996601,-0.0004852593,3.9945047449 \backslash \mathrm{H},-0.952\) \(1588422,-0.0000016118,1.9250067619 \backslash 0,-1.1496490788,-0.0003027223,-6.19\) \(33053685 \backslash 0,5.7596218268,0.0003035252,6.4964365519 \backslash \mathrm{C},-2.3559469644,-0.0\) \(00765382,-6.9399760409 \backslash \mathrm{H},-2.0573388027,-0.0006836665,-7.9899879664 \backslash \mathrm{H},-\) \(2.9579009628,-0.8955375316,-6.7341555488 \backslash \mathrm{H},-2.958539647,0.8935945784,-\) \(6.7342316367 \backslash \mathrm{C}, 5.732166414,0.0007640597,7.9148574641 \backslash \mathrm{H}, 6.7761666137,0\). \(0006837197,8.2338512121 \backslash \mathrm{H}, 5.2326262178,0.8955348156,8.3087759144 \backslash \mathrm{H}, 5.2\) \(323456432,-0.8935963003,8.3093510445 \backslash C, 4.8905647554,-0.0024616198,1.58\) \(25437785 \backslash C, 5.5164344385,-1.2112387145,1.268587524 \backslash C, 5.5179500151,1.204\) \(9109651,1.2645026543 \backslash C, 6.7628774289,-1.2070518385,0.6434396527 \backslash \mathrm{H}, 5.022\) \(6227183,-2.1465482538,1.5148961138 \backslash C, 6.7639857766,1.1973728716,0.63941\) \(19296 \backslash \mathrm{H}, 5.0250128073,2.1414799582,1.5077744438 \backslash \mathrm{C}, 7.4087759098,-0.00592\) \(15001,0.3220177424 \backslash \mathrm{H}, 7.2414634676,-2.1532206929,0.401888895 \backslash \mathrm{H}, 7.243462\) \(1845,2.1422886146,0.3945085006 \backslash C, 2.5061519658,0.0024681398,-2.79673047\) \(23 \backslash C, 3.1094988273,1.2112483143,-3.1520451903 \backslash C, 3.1137515726,-1.2049013\) 573,-3.1511158412\C,4.3109945028,1.2070665814,-3.8597423722\H, 2.634635 \(339,2.1465562131,-2.8709278972 \backslash C, 4.314979576,-1.1973591222,-3.85850156\) \(29 \backslash \mathrm{H}, 2.6419148672,-2.1414719844,-2.869096161 \backslash \mathrm{C}, 4.9314820629,0.00593639\) , \(-4.2278441714 \backslash \mathrm{H}, 4.7735981598,2.1532360216,-4.1306408828 \backslash \mathrm{H}, 4.780883034\) ,-2.1422732646,-4.1283413781 \C, \(8.7747832788,-0.0067749353,-0.323713663\) \(1 \backslash H, 8.9051603007,0.8541027901,-0.9880815803 \backslash \mathrm{H}, 9.569970318,0.0431990859\) , \(0.4319919044 \backslash \mathrm{H}, 8.9406486633,-0.9165308236,-0.9100033623 \backslash \mathrm{C}, 6.215149142\) , \(0.0068013106,-5.024801718 \backslash \mathrm{H}, 6.0119102104,-0.0428777056,-6.1028264005 \backslash\) \(\mathrm{H}, 6.7977419665,0.9164304089,-4.8457388112 \backslash \mathrm{H}, 6.8438113495,-0.8542280737\) , -4.7739910329\\Version=AM64L-G03RevD.02\State=3-A\HF=-1681.9105928\S2 \(=2.04718 \backslash S 2-1=0 . \backslash S 2 A=2.001431 \backslash R M S D=6.157 e-09 \backslash R M S F=6.255 e-07 \backslash T h e r m a l=0\). \(\backslash\) Dipole \(=-0.0000007,-2.656387,-0.0000014 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 34 \mathrm{H} 28 \mathrm{~N} 4 \mathrm{O} 2)] \backslash \backslash @\)

Table 123. Computational output parameters for singlet 5,7-di-methyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide (\(\mathrm{R}=\) Methyl).

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|RB3LYP|6-31G(d)|C20H16N4|GAUSSIAN|29-Oct -2012|0||\# opt rb3lyp/6-31g(d) geom=connectivityl|opt ground state sin glet vinyl||0,1|C,-1.2355710206,1.2570109492,0.0180205523|C,0.00022748
\(84,1.9164803553,0.0000370287\) | C , 1. \(2359845925,1.2569061448,-0.0179547965\) |C, 1.2201858481,-0.2048525965,0.0266846121|C, 0.0001174163,-0.895299639 \(5,0.0000238741\) | C , -1. \(2198972889,-0.2047492797,-0.0265495922 \mid N,-2.417452\) 1926,-0.8570343659,-0.1159432692|N, -2.3838689664,1.9515397807,0.050947 0094 |C, \(-3.5519786246,1.2673038322,0.0851318698 \mid C,-3.6320581348,-0.1571\) \(369303,0.0218005885|\mathrm{H}, 0.000068415,-1.973620625,-0.0000472729| \mathrm{C},-4.7668\) \(654159,1.9924302168,0.1878664746 \mid C,-4.8763551109,-0.800973905,0.110423\) 5925 | C , - \(5.9872891755,1.3482241952,0.2519670435 \mid C,-6.0446082589,-0.0553\) \(450538,0.2227992623|\mathrm{H},-4.6870061796,3.0742364435,0.2215906231| \mathrm{H},-6.903\) \(4400218,1.9265492368,0.3346495232 \mid \mathrm{H},-6.9989135522,-0.5681947895,0.2962\) \(006781|\mathrm{H},-4.9474359467,-1.8825429398,0.1221619438| \mathrm{N}, 2.4176808349,-0.85\) \(7247347,0.1160773043|N, 2.384316057,1.9513292706,-0.0510906221| C, 3.6323\) 681633,-0.1574407197,-0.0216675341|C, 3.5523893856, 1.2669949841,-0.0852 \(08842|C, 4.8766483389,-0.8013278338,-0.1101443096| C, 4.7672914952,1.9920\) \(537634,-0.1880630268|\mathrm{C}, 6.0449454644,-0.0557631535,-0.2226037962| \mathrm{H}, 6.99\) \(92255707,-0.5686842438,-0.2958393864\) |C, 5. \(987699565,1.3477919552,-0.252\) \(0368003|\mathrm{H}, 6.9038680158,1.9260705405,-0.3348353387| \mathrm{H}, 4.6874796552,3.073\) 8575927, - 0. \(2219637411|\mathrm{H}, 4.9477624856,-1.8828920182,-0.1216655989| \mathrm{H}, 0.0\) \(002773411,2.9998498224,-0.000021853 \mid C,-2.4425373009,-2.2992168585,-0.3\) \(601467218|\mathrm{H},-1.6200338559,-2.5690122,-1.0237045869| \mathrm{H},-2.3603655743,-2\). \(8698965197,0.5725860998|\mathrm{H},-3.3709397142,-2.5630790401,-0.8626737628| \mathrm{C}\), \(2.4425547609,-2.2994297341,0.3602376937 \mid \mathrm{H}, 1.6200354146,-2.5691444088,1\) \(.0238053543|\mathrm{H}, 2.3602740162,-2.8700750785,-0.5725148507| \mathrm{H}, 3.3709163399\), \(-2.5635007129,0.8627153242\) ||Version=IA32W-G09RevC. \(01 \mid\) State=1-A|HF=-990 \(.7646653|\mathrm{RMSD}=4.640 \mathrm{e}-009| \mathrm{RMSF}=8.789 \mathrm{e}-006 \mid \mathrm{Dipole}=-0.0000867,-3.2058788\), 0.00010351 Quadrupole=5.3499269,2.9531178, -8.3030447,0.000192,0.4182477 , -0.0003822| \(\mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 20 \mathrm{H} 16 \mathrm{~N} 4)]| | @\)

Table 124. Computational output parameters for singlet 5,7-di-ethyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide (\(\mathrm{R}=\) Ethyl).

1|1|UNPC-USER-TOSH|FOpt | UB3LYP|6-31G(d)|C22H20N4|USER|13-Feb-2013|0||\# opt ub3lyp/6-31g(d) geom=connectivity||linear tetraazapentacene singl et opt ethyl||0,1|C,1.2374568211,-0.7689384388,-0.0013331774|C, 0.00183 \(22256,-1.4227870327,0.0813235332\) | C, -1.2346396276, -0. \(7712400857,-0.0066\) 606541 | C, \(-1.2229227146,0.6775768906,-0.2083177071 \mid C, 0.000123657,1.3621\) \(685434,-0.2784663224\) | C, 1. \(2242798172,0.6799629076,-0.202822931 \mid N, 2.4255\) \(653871,1.3238189163,-0.3200268151 \mid N, 2.3831276759,-1.4611229288,0.09858\)

40575 | C , \(3.5539962116,-0.7834240271,0.0538872315\) |C, \(3.6382281659,0.62896\) \(6143,-0.1389815301|\mathrm{H},-0.0010635043,2.4379427505,-0.3410336178| \mathrm{C}, 4.7661\) \(088425,-1.5050013111,0.2051963021\) | C , 4. \(8901071579,1.2663864536,-0.14057\) 26649 |C, \(5.9914234641,-0.8677169873,0.1863520785\) |C, \(6.0559853954,0.52574\) \(55506,0.0188724983|\mathrm{H}, 4.6796884227,-2.5782888694,0.3409604215| \mathrm{H}, 6.90553\) \(82083,-1.4424935529,0.3074181312 \mid \mathrm{H}, 7.0147805864,1.0355216512,0.0177981\) \(974|\mathrm{H}, 4.9719244136,2.3417578671,-0.2475353035| \mathrm{N},-2.424592415,1.3193788\) \(752,-0.3312392768|N,-2.3796087534,-1.4653009643,0.0881607994| C,-3.6368\) \(774007,0.6228516616,-0.1549904798 \mid C,-3.5513830968,-0.78935886,0.038422\) 9164 | C , - \(4.8894834691,1.2587124793,-0.1619841554\) | C, \(-4.7631511466,-1.512\) \(5652545,0.1844261685|\mathrm{C},-6.0550379926,0.5164853101,-0.0075201299| \mathrm{H},-7.0\) \(145182942,1.0249459805,-0.0126491608 \mid C,-5.9892394394,-0.876900108,0.16\) \(01770788|\mathrm{H},-6.9030747269,-1.4529547486,0.2772278229| \mathrm{H},-4.6759361268,-2\) \(.5857340211,0.3206137644|\mathrm{H},-4.9717969985,2.3341530514,-0.2687621505| \mathrm{H}\), \(0.0025095395,-2.4964397622,0.226039048 \mid C,-2.4687086376,2.7554866274,-0\) \(.6537669474|\mathrm{H},-1.619024762,2.977014814,-1.3024109435| \mathrm{H},-3.359490203,2\). \(9267360887,-1.25968274|\mathrm{C},-2.4689163765,3.6550591088,0.5850971093| \mathrm{H},-3\). \(333499163,3.4451137668,1.2218009448 \mid \mathrm{H},-1.566120126,3.5041071874,1.1852\) \(176009|\mathrm{H},-2.5105470432,4.7074773947,0.2832671387| \mathrm{C}, 2.468983797,2.76068\) \(31674,-0.6394823615|\mathrm{H}, 3.3624714674,2.9349078175,-1.2404680802| \mathrm{H}, 1.6221\) \(631586,2.9822179584,-1.2918369797\) |C, \(2.461420937,3.6575529632,0.6014351\) \(496|\mathrm{H}, 1.5564208785,3.5027717486,1.1971832977| \mathrm{H}, 3.3239956289,3.44823281\) \(7,1.2411004785|\mathrm{H}, 2.5017457786,4.7107554604,0.3022391899| \mid V e r s i o n=I A 32 W\) -G0 9RevC. \(01 \mid\) State \(=1-A|H F=-1069.3969984| S 2=0 .|S 2-1=0 .|S 2 A=0| R M S D=3.873\). \(e-009|\operatorname{RMSF}=2.726 e-005|\) Dipole=-0.0011947,3.2922085,-0.368851|Quadrupole \(=6.3084063,0.7465019,-7.0549083,0.0090397,0.0356684,-1.9084367 \mid \mathrm{PG}=\mathrm{C} 01\) [X(C22H2ON4)]||@

Table 125. Computational output parameters for singlet 5,7-di-vinyl-7,13dihydroquinoxalino \([2,3-b]\) phenazin- 5 -ium-13-ide (\(\mathrm{R}=\) Vinyl).

1|1|UNPC-CHEM40-OTNBTO7T|FOpt \| RB3LYP|6-31G(d)|C22H16N4|GAUSSIAN|28-Oct -2012|0||\# opt rb3lyp/6-31g(d) geom=connectivity||opt ground state sin glet vinyl||0,1|C,-1.2354348322,2.6398933779,0.0084805226|C, 0.00007737 \(79,3.3019056646,0.0002120027\) |C, 1. \(2356791672,2.6400937187,-0.008250449 \mid\) C, 1.2140285501,1.1798453651, -0.0308361961|C, 0.0002578057, 0.4848956971, \(-0.0002680691|C,-1.2135955538,1.1796556951,0.0308420741| N,-2.409418431\) \(8,0.514183826,0.0768831648|N,-2.3886989843,3.3278161892,-0.0012395066|\)

C,-3.556194391,2.6406165199,0.0415617229|C,-3.6357636927,1.2164068203, \(0.0991084043|\mathrm{H}, 0.0004028244,-0.5959588832,-0.0007839103| \mathrm{C},-4.776577953\) \(4,3.3645651717,0.044949017|C,-4.8769473811,0.5712214529,0.193005643| C\), \(-5.9959383133,2.7201830567,0.123495495\) |C, \(-6.0490366355,1.3175570668,0\). 2050183954|H, \(-4.7017755141,4.4460036586,-0.0076622398 \mid \mathrm{H},-6.9159537023\), 3.2983821157, 0.1280795337|H,-7.0050963477, 0.8077660545, 0.278271296|H,-\(4.9258958551,-0.5088361112,0.2584270068 / N, 2.4099441041,0.5146052695,-0\) \(.0768575396|N, 2.3888646486,3.3281917853,0.0011747244| C, 3.6361622105,1\). 2169552719,-0.0990786474\|C,3.556445135, 2.6411620732,-0.0417514119|C, 4. 8773767037, 0.5717767196,-0.1925027104IC, 4.776782956,3.365187204, -0.045 3768718 IC, \(6.049420831,1.3181790777,-0.2046560456 \mid \mathrm{H}, 7.0055382654,0.8084\) 422879,-0.2775186943\|C,5.9961837618, 2.7208389415,-0.1237053065|H, 6.916 1571847, 3.2991039043,-0.128469271|H, 4.7019381467, 4.4466359464, 0.006967 3189|H, 4.9262773355,-0.5083290071,-0.2571845362|H,-0.0000133388, 4.3853 191205,0.0002157225|C,-2.3878350009,-0.914913079, 0.2115339555|C, -2.783 \(7813641,-1.7460742741,-0.747421023 \mid \mathrm{H},-2.0059328574,-1.2700501366,1.167\) 3190358|H,-2.7636611448,-2.819260751,-0.5852255427|H,-3.1500347213,-1. 3859488116,-1.7040001099|C, 2.3889024842,-0.9145006443,-0.2123470121|C, \(2.7811076807,-1.7459792396,0.7478436118 \mid \mathrm{H}, 2.0109188791,-1.2692535642,-\) \(1.1698465775|\mathrm{H}, 2.7616029714,-2.8191194777,0.5852181267| \mathrm{H}, 3.1435189726\), \(-1.3862212128,1.7060286241| | V e r s i o n=I A 32 W-G 09 R e v C .01 \mid\) State=1-A|HF=-106 \(6.9208606|\mathrm{RMSD}=6.936 \mathrm{e}-009| \mathrm{RMSF}=1.964 \mathrm{e}-006 \mid\) Dipole=0.0006544,-3.3368886, 0.0000248 | Quadrupole \(=3.9800778,2.7880706,-6.7681483,-0.0030561,1.15243\) 33,-0.0016973|PG=C01 [X(C22H16N4)]।।@

Table 126. Computational output parameters for singlet 5,7-di-ethynyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide (\(\mathrm{R}=\mathrm{C} \equiv \mathrm{CH}\)).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 22 H 12 N 4 \backslash G A U S S I A N \backslash 11-F e b-2013 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash \backslash\) linear \(R=C C H \backslash \backslash 0,1 \backslash C, 0.0114392\) \(456,0 .,-0.0060205028 \backslash C, 0.010521756,0.1 .3959713018 \backslash \mathrm{C}, 1.1775731979,0 ., 2\) \(.1728707766 \backslash C, 2.4469435027,0 ., 1.4575222449 \backslash C, 2.4961963606,0 ., 0.0656481\) \(332 \backslash C, 1.3107525838,0 .,-0.6654212471 \backslash N, 1.3294357417,0 .,-2.049478645 \backslash N,-\) \(1.1422209161,0 .,-0.6976720827 \backslash C,-1.0898209957,0 .,-2.0514538133 \backslash C, 0.121\) \(5173991,0 .,-2.798984673 \backslash \mathrm{H}, 3.4501132357,0 .,-0.4448843869 \backslash \mathrm{C},-2.301415451\) \(8,0 .,-2.7916774922 \backslash C, 0.124829556,0 .,-4.1963600863 \backslash C,-2.29813596,0 .,-4\). \(1731076408 \backslash \mathrm{C},-1.0830299731,0 .,-4.8829325098 \backslash \mathrm{H},-3.2239204963,0 .,-2.2202\) \(314549 \backslash \mathrm{H},-3.239429262,0 .,-4.715763425 \backslash \mathrm{H}, 1.0661131556,0 .,-4.7351030556 \backslash\) \(\mathrm{N}, 3.6089267642,0 ., 2.2096916678 \backslash \mathrm{~N}, 1.1131522037,0 ., 3.5164345496 \backslash \mathrm{C}, 3.5625\)
\[
\begin{aligned}
& 480301,0 ., 3.6304925059 \backslash \mathrm{C}, 2.2686464269,0 ., 4.2237561355 \backslash \mathrm{C}, 4.7270866378,0 \\
& ., 4.4028388318 \backslash \mathrm{C}, 2.2125051307,0 ., 5.6424669503 \backslash \mathrm{C}, 4.6283759367,0 ., 5.7886 \\
& 824493 \backslash \mathrm{C}, 3.3637581888,0 ., 6.405995867 \backslash \mathrm{H}, 3.2931601916,0 ., 7.4902118526 \backslash \mathrm{H}, \\
& 1.2253281514,0 ., 6.0930751417 \backslash \mathrm{H}, 5.697468844,0 ., 3.9184658601 \backslash \mathrm{H},-0.944553 \\
& 0249,0 ., 1.9071235284 \backslash \mathrm{C}, 2.5171352814,0 .,-2.7075271741 \backslash \mathrm{C}, 3.5698599764,0 . \\
& ,-3.2974678977 \backslash \mathrm{H}, 4.4982675429,0 .,-3.8213892908 \backslash \mathrm{C}, 4.8152615188,0 ., 1.586 \\
& 4625582 \backslash \mathrm{C}, 5.8900580024,0 ., 1.0377624033 \backslash \mathrm{H}, 6.8409656212,0 ., 0.5558817789 \backslash \\
& H, 5.5323712585,0 ., 6.3898508425 \backslash \mathrm{H},-1.0818066335,0 .,-5.9685703326 \backslash \backslash \mathrm{Versi} \\
& \text { On=IA32L-G03RevD.02\State=1-A1\HF=-1064.3981948\S2=0.\S2-1=0.\S2A=0.\R} \\
& \text { MSD=5.063e-09\RMSF=1.431e-05\Thermal=0.\Dipole=2.3376425,0.,-1.251097\} } \\
{\text { PG=C02V [C2(H1C1C1H1),SGV(C20H10N4)]\\
@}}
\end{aligned}
\]

\section*{Computational Parameters related to Chapter 5}

Table 127. Computational output parameters for singlet 180a
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 S 4 \backslash G A U S S I A N \backslash 11-S e p-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo01\\0,1\C,-1.2141736642,0. \(,-0.9012012783 \backslash C,-1.2053559245,0 ., 0.5658455738 \backslash C,-0.0139573767,0 ., 1.28\) 91993796\C,1.1928227012,0.,0.5918091936\C,1.2334002973,0.,-0.874702885 \(3 \backslash C, 0.0170820019,0 .,-1.5778112641 \backslash N,-2.4050771958,0 .,-1.5123088995 \backslash N, 2\) \(.4372553177,0 .,-1.4598839137 \backslash S,-3.7461791266,0 .,-0.570313907 \backslash S, 3.75764\) \(84803,0 .,-0.4890745343 \backslash S,-2.7526858731,0 ., 1.3292148128 \backslash S, 2.7232628342\), \(0 ., 1.3884995753 \backslash \mathrm{H}, 0.0287972932,0 .,-2.6599162069 \backslash \mathrm{H},-0.025693391,0 ., 2.37\) \(32184355 \backslash \backslash\) Version=x86-Linux-G03RevB.05\State=1-A1 \HF=-1932.0274688\S2= \(0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.951 e-09 \backslash R M S F=7.005 e-05 \backslash D i p o l e=-0.0164557,0 ., 1\) \(.5199634 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V}\) [C2(H1C1C1H1), SGV (C4N2S4)] \\@

Table 128. Computational output parameters for triplet 180a.
\[
\begin{aligned}
& 1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 S 4(3) \backslash G A U S S I A N \backslash 08-M a r-2007 \backslash \\
& 0 \backslash \backslash \# \text { OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\
christos } 5 \text { JACS2004\\
0,3\C } \\
& ,-1.2065735465,0.000347108,-0.865188883 \backslash C,-1.2127741559,0.0003172943,0 \\
& .5754788045 \backslash C,-0.0216248395,-0.0000178524,1.300106402 \backslash \mathrm{C}, 1.1929645493,- \\
& 0.0003339434,0.6154937645 \backslash \mathrm{C}, 1.2346797427,-0.0003254903,-0.8245832055 \backslash \mathrm{C} \\
& , 0.0257253735,0.0000201903,-1.5466345137 \backslash \mathrm{H},-0.039663936,-0.0000320779,
\end{aligned}
\]
\(2.3846344559 \backslash \mathrm{H}, 0.0437386731,0.0000349266,-2.6296116252 \backslash \mathrm{~N},-2.3739813432\) \(, 0.0006792544,-1.5502853755 \backslash N, 2.4242260659,-0.0006389153,-1.4704761735\) \(\backslash S,-3.7322659936,0.0010277485,-0.6260499087 \backslash S, 3.7510220069,-0.00101202\) \(98,-0.5015794366 \backslash S,-2.8120318282,0.0007424419,1.325617425 \backslash S, 2.76639015\) \(65,-0.000778727,1.4184040328 \backslash \backslash V e r s i o n=x 86-\) Linux-G03RevB.05\State=3-A\H \(\mathrm{F}=-1932.0356087 \backslash \mathrm{~S} 2=2.042719 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=2.000943 \backslash \mathrm{RMSD}=2.257 \mathrm{e}-09 \backslash \mathrm{RMSF}=9\) \(.816 e-05 \backslash\) Dipole \(=-0.0118373,-0.0000095,0.7116678 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash\) @

Table 129. Computational output parameters for singlet 180b.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 14-S e p-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\neo012\\0,1\C,-1.2302597696,0 ., -0. \(5472332782 \backslash \mathrm{C},-1.2074247888,0 ., 0.9163567473 \backslash \mathrm{C},-0.0138276294,0 ., 1.6\) \(356397855 \backslash C, 1.1917596383,0 ., 0.9366393508 \backslash C, 1.239335843,0 .,-0.526355421\) \(6 \backslash C, 0.0105382282,0 .,-1.2465437679 \backslash N,-2.4137469165,0 .,-1.1495741122 \backslash N, 2\) \(.4328374357,0 .,-1.1086012936 \backslash,-3.7531026542,0 .,-0.2099596574 \backslash \mathrm{~S}, 3.7561\) 15955,0.,-0.1464770416\S,-2.752546618,0.,1.6825761086\S,2.7237063793,0 .,1.7288721192\H,-0.0229907982,0.,2.7195308137\C,0.0225296123,0.,-2.66 \(49781451 \backslash \mathrm{~N}, 0.0323830526,0 .,-3.8305198656 \backslash\) Version=x86-Linux-G03RevB. 05 \(\backslash\) State \(=1-A 1 \backslash H F=-2024.2722459 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=7.939 e-09 \backslash R M S F=\) \(1.293 e-04 \backslash\) Dipole \(=-0.0287504,0 ., 3.4008205 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{~N} 1)\)), \(\mathrm{SGV}(\mathrm{C}\) 4N2S4)] \\@

\section*{Table 130. Computational output parameters for triplet 180b.}
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 18-S e p-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo010\\0,3\C,-1.220418893 \(6,0 .,-0.5273943566 \backslash C,-1.2227666823,0 ., 0.911172909 \backslash \mathrm{C},-0.0351961457,0 ., 1\) \(.6401039113 \backslash C, 1.1825519843,0 ., 0.9627903374 \backslash C, 1.2419203941,0 .,-0.474553\) \(2825 \backslash C, 0.0261244284,0 .,-1.2173712892 \backslash N,-2.3803576178,0 .,-1.2088331714 \backslash\) \(\mathrm{N}, 2.4300247516,0 .,-1.105603786 \backslash \mathrm{~S},-3.7387094129,0 .,-0.2924490103 \backslash \mathrm{~S}, 3.74\) \(78134663,0 .,-0.1317904396 \backslash S,-2.8235331745,0 ., 1.6574868398 \backslash S, 2.74982817\) 96,0.,1.7770895289\H,-0.0584662163,0.,2.7244650825\C, 0.0566381373,0.,\(2.6392784965 \backslash N, 0.0816131441,0 .,-3.8030879255 \backslash \backslash\) Version=x86-Linux-G03Rev B. \(05 \backslash\) State \(=3-B 2 \backslash H F=-2024.2723603 \backslash S 2=2.042316 \backslash S 2-1=0 . \backslash S 2 A=2.000951 \backslash \mathrm{RMSD}\) \(=6.881 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.248 \mathrm{e}-04 \backslash \mathrm{Dipole}=-0.0498348,0 ., 2.3222488 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H}\)

Table 131. Computational output parameters for singlet 180c.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4 \backslash G A U S S I A N \backslash 17-S e p-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo04\\0,1\C,-1.2293670829 , 0.,-0.1291741862\C,-1.2300156432,0.,1.3359998944 \C,-0.0501742527,0., 2 \(.0765586605 \backslash C, 1.1640565257,0 ., 1.3938459761 \backslash C, 1.2341711068,0 .,-0.069649\) \(6517 \backslash C, 0.0189133376,0 .,-0.7827651198 \backslash N,-2.4086338346,0 .,-0.7537554175 \backslash\) \(\mathrm{N}, 2.4422266393,0 .,-0.6365478935 \backslash \mathrm{~S},-3.7579355602,0 ., 0.1733888382 \backslash \mathrm{~S}, 3.74\) \(51762334,0 ., 0.3546806237 \backslash S,-2.7860365277,0 ., 2.0827139572 \backslash \mathrm{~S}, 2.682198147\) \(2,0 ., 2.2148386082 \backslash \mathrm{H},-0.0763493008,0 ., 3.1598637392 \backslash \mathrm{Br}, 0.0646074011,0 .,-\) \(2.6739024697 \backslash \backslash\) Version=x86-Linux-G03RevB.05\State=1-A1 \HF=-4503.1274491 \(\backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.971 e-09 \backslash R M S F=8.409 e-05 \backslash\) Dipole=-0.0502688, \(0 ., 2.0804702 \backslash \mathrm{PG}=\mathrm{C0} 2 \mathrm{~V}[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{Br} 1), \mathrm{SGV}(\mathrm{C} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 132. Computational output parameters for triplet 180c.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 30-N o v-20\) \(06 \backslash 0 \backslash \backslash \#\) opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \neoklis04 \({ }^{(1)} 0,3 \backslash c,-0.000\) \(3974848,0 ., 0.0287396454 \backslash C,-0.003341418,0 ., 1.4698242286 \backslash \mathrm{C}, 1.1799045028\), \(0 ., 2.2040170377 \backslash C, 2.3966592927,0 ., 1.5268037983 \backslash C, 2.4621070914,0 ., 0.087\) \(2031495 \backslash \mathrm{C}, 1.24749193,0 .,-0.6427905809 \backslash \mathrm{H}, 1.1541679202,0 ., 3.2880514876 \backslash \mathrm{~N}\) \(,-1.1645715711,0 .,-0.6501541806 \backslash N, 3.6571872543,0 .,-0.5356784881 \backslash S,-2.5\) \(220550735,0 ., 0.2710239733 \backslash S, 4.9694256808,0 ., 0.4488828166 \backslash S,-1.60269532\) 29,0.,2.2205849681\S,3.9585829758,0.,2.3526179476\Br,1.2921133288,0.,\(2.5222605246 \backslash \backslash\) Version=AM64L-G03RevD.02 \({ }^{2}\) State \(=3-B 2 \backslash H F=-4503.1342351 \backslash\) S2 \(=\) \(2.042267 \backslash S 2-1=0 . \backslash S 2 A=2.000923 \backslash \operatorname{RMSD}=6.537 e-09 \backslash \operatorname{RMSF}=7.326 e-05 \backslash\) Thermal=0. \(\backslash\) Dipole \(=-0.0248229,0 ., 1.0455487 \backslash \mathrm{PG}=\mathrm{C0} 2 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{Br} 1), \mathrm{SGV}(\mathrm{C} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 133. Computational output parameters for singlet 180d.

\begin{abstract}
1 \1 \GINC-CHEM39\FOpt\UB3LYP\6-31G(d) \C6H1Cl1N2S4 \GAUSSIAN\14-Sep-2007\} \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo03\\0,1\C,-1.2223041008 , 0.,-0.5072393997\C,-1.2170560261,0.,0.9575721166\C,-0.0348669786,0.,1 \(.6944490507 \backslash C, 1.1766342266,0 ., 1.0068275055 \backslash C, 1.2421357173,0 .,-0.456528\) \(1845 \backslash C, 0.0240353563,0 .,-1.1680589584 \backslash N,-2.4030395607,0 .,-1.1290463769 \backslash\) \(\mathrm{N}, 2.44745094,0 .,-1.0292369736 \backslash \mathrm{~S},-3.7496495551,0 .,-0.197552556 \backslash \mathrm{~S}, 3.7546\) \(022511,0 .,-0.0431362356 \backslash S,-2.7714151508,0 ., 1.7077861652 \backslash S, 2.6988161066\) , 0., 1.820348084 \(\mathrm{H},-0.0571588222,0 ., 2.7777775948 \backslash \mathrm{Cl}, 0.0598324453,0 .,-2\). \(9077090731 \backslash\) VVersion=x86-Linux-G03RevB.05 \State=1-A1 \(\backslash H F=-2391.6168211 \backslash S\) \(2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.875 e-09 \backslash R M S F=1.308 e-04 \backslash\) Dipole=-0.0443162,0. , 2. 1536556 \PG=C02V [C2 (H1C1C1Cl1), SGV (C4N2S4)] \@
\end{abstract}

\section*{Table 134. Computational output parameters for triplet 180d.}
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 C l 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 18-S e p-20\)
\(07 \backslash 0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo03\\0,3\C,-1.2222188
\(327,0 .,-0.4776360632 \backslash C,-1.2216041891,0 ., 0.9632622671 \backslash C,-0.036678113,0\).
\(, 1.694663212 \backslash C, 1.1787834108,0 ., 1.0152145884 \backslash C, 1.2417398801,0 .,-0.42430\)
\(7853 \backslash C, 0.0249718094,0 .,-1.1537890907 \backslash N,-2.3861644424,0 .,-1.1558550873 \backslash\)
\(N, 2.433939597,0 .,-1.0515321048 \backslash S,-3.7424516872,0 .,-0.2331635118 \backslash S, 3.74\)
\(90352881,0 .,-0.0710229733 \backslash S,-2.820458097,0 ., 1.7150578747 \backslash S, 2.743612662\)
\(7,0 ., 1.835482756 \backslash H,-0.0601417903,0 ., 2.7787710756 \backslash C l, 0.0623494853,0 .,-2\)
\(.8807746719 \backslash \backslash V e r s i o n=x 86-L i n u x-G 03 R e v B .05 \backslash S t a t e=3-B 2 \backslash H F=-2391.6238611 \backslash\)
\(S 2=2.042697 \backslash S 2-1=0 . \backslash S 2 A=2.000938 \backslash R M S D=6.785 e-09 \backslash R M S F=9.587 e-05 \backslash D i p o l e=\)
\(-0.0248901,0 ., 1.1500151 \backslash P G=C 02 V \quad[C 2(H 1 C 1 C 1 C l 1), S G V(C 4 N 2 S 4)] \backslash \backslash @\)

Table 135. Computational output parameters for singlet 180e.

\footnotetext{
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 O 1 S 4 \backslash G A U S S I A N \backslash 24-M a y-2007 \backslash 0\) \\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis13\\0,1\C,-1.2241619 175,-0.0682393323,-1.2668947242 \C,-1.196993096,-0.1214536323,0.1977014 \(16 \backslash C, 0.0053728383,-0.0886707382,0.904948877 \backslash C, 1.2033708073,-0.04434398\) \(15,0.190966431 \backslash C, 1.2188282198,0.0102617647,-1.2737524256 \backslash \mathrm{C},-0.00584103\)
}
```

56,0.0092928513,-1.962171787\N,-2.4265345585,-0.0984657637,-1.85561430
68\N,2.417307548,0.0572171783,-1.8692883003\S,-3.745053246,-0.19340517
39,-0.8847851295\S,3.7446925836,0.047345876,-0.9058741742\S,-2.7174406
539,-0.2452186899,0.9963215225\S,2.7331540041,-0.0702825909,0.98093035
71\0,0.0118066035,-0.1709512695,2.2774924321\H,-0.0101665012,0.0497680
351,-3.043282809\C,-0.0267586248,1.098267662,2.9558936038\H,-0.9414283
467,1.6485069207,2.7077777288\H,-0.0160347874,0.8664231084,4.021946149
7\H,0.8492197263,1.705933887,2.7023081639<br>Version=x86-Linux-G03RevB.0
5\State=1-A\HF=-2046.5449157\S2=0.\S2-1=0. \S2A=0. \RMSD=3.401e-09\RMSF=
1.138e-05\Dipole=-0.0118607,0.5142981,1.6619608\PG=C01 [X(C7H4N2O1S4)]
<br>@

```

Table 136. Computational output parameters for triplet \(\mathbf{1 8 0 e}\).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 31-M a y-200\) \(7 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis13\\0,3\C,-1.2071 144351,-0.0636843294,-1.2396708751 \C, -1.207799692,-0.0620943543,0.1994 \(423752 \backslash C,-0.0103613575,-0.0643101679,0.9173364893 \backslash C, 1.2013360015,-0.09\) \(39612258,0.22440997 \backslash C, 1.2304254008,-0.0959253406,-1.2144097724 \backslash \mathrm{C}, 0.019\) \(0406019,-0.074255159,-1.9325897414 \backslash \mathrm{~N},-2.383237698,-0.0530030214,-1.910\) \(5097687 \backslash \mathrm{~N}, 2.4200656628,-0.1165393238,-1.8607346117 \backslash \mathrm{~S},-3.728473002,-0.0\) 442020824,-0.9651719547\S,3.7451895655,-0.1430661285,-0.8877280756\S,-\(2.7882417557,-0.0882298757,0.977614135 \backslash S, 2.7640742946,-0.1616873669,1\). \(035148102 \backslash 0,-0.0250255534,-0.0952815606,2.2917284961 \backslash \mathrm{H}, 0.0302745889,-0\) \(.0732810863,-3.015304882 \backslash \mathrm{C},-0.0143276897,1.1993699601,2.9187514347 \backslash \mathrm{H},-\) \(0.8998158458,1.7798109961,2.6353749528 \backslash \mathrm{H},-0.0279667766,1.0106304161,3\). \(993460735 \backslash \mathrm{H}, 0.8919380904,1.7560195322,2.6539373002 \backslash\) VVersion=x86-LinuxG03RevB. 05 \State=3-A \(\backslash \mathrm{HF}=-2046.5535973 \backslash \mathrm{~S} 2=2.042359 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=2.000926\) \(\backslash \operatorname{RMSD}=4.310 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.479 \mathrm{e}-05 \backslash\) Dipole=\(=-0.0007772,0.5769417,0.8144701 \backslash \mathrm{P}\) \(\mathrm{G}=\mathrm{C01}\left[\mathrm{X}\left(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{O} \mathrm{S}^{2}\right)\right] \backslash \backslash @\)

\section*{Table 137. Computational output parameters for singlet \(\mathbf{1 8 0 f}\).}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP \(\backslash 6\)-31G (d) \C7H4N2S4\GAUSSIAN \(\backslash 28-A u g-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis14\\0,1\C,-1.204302193 , -0.0240074944,-1.0958319721\C,-1.1981983566,-0.0184421866,0.371227520 \(6 \backslash C,-0.0153481229,-0.0221885754,1.1228964152 \backslash C, 1.1875653545,0.00623734\)
```

59,0.404324125\C,1.2344727254,0.0012205669,-1.0619997985\C,0.024784113
3,-0.019430915,-1.7720591968\N,-2.3909506472,-0.0414297045,-1.71615093
59\N,2.4379769364,0.0085235051,-1.6491607493\S,-3.737378003,-0.0394955
814,-0.779821927\S,3.7575869177,0.0380365718,-0.6758463082\S,-2.758937
3046,0.0008975878,1.1183816431\S,2.7262455826,0.0576388914,1.194476039
7\H,0.0399157707,-0.0314941732,-2.8538244033\C,-0.0362861823,-0.021268
736,2.6316345703\H,0.844918545,-0.523601989,3.0439114856\H,-0.05239623
62,1.0012953532,3.0314557308\H,-0.9180212173,-0.5418153416,3.019457839
5<br>Version=x86-Linux-G03RevB.05\State=1-A\HF=-1971.3456265\S2=0.\S2-1=
0.\S2A=0.\RMSD=8.145e-09\RMSF=1.079e-04\Dipole=-0.0247759,0.0218678,1.
7696877\PG=C01 [X(C7H4N2S4)]<br>@

```

Table 138. Computational output parameters for triplet \(180 f\).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 S 4(3) \backslash G A U S S I A N \backslash 04-J u n-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis14\\0,3\C,-1.202097 1956,-0.0150756391,-1.0548848453\C,-1.2024264391,-0.0161468268,0.38498 \(9548 \backslash C,-0.015769218,-0.0156729472,1.1300743241 \backslash C, 1.1911472406,0.010661\) \(2061,0.4187612646 \backslash C, 1.2314126815,0.0121798209,-1.0205495142 \backslash C, 0.024646\) \(1486,-0.0042411379,-1.7434251485 \backslash N,-2.3690613384,-0.0357903805,-1.7406\) \(42062 \backslash N, 2.4174286926,0.0178186864,-1.6731073521 \backslash S,-3.7270765425,-0.052\) \(845108,-0.8146622349 \backslash S, 3.74882286,0.0308855302,-0.7091813862 \backslash S,-2.8088\) 049566,-0.0065846948,1.1314766838\S,2.7752107828, 0.0559560196,1.210264 \(2302 \backslash \mathrm{H}, 0.0400138442,-0.0123945215,-2.8261379268 \backslash \mathrm{C},-0.0370635894,-0.014\) \(913547,2.6388065179 \backslash \mathrm{H}, 0.8455225228,-0.5150753778,3.0513963611\) \H, -0.054 1120414,1.0087597592,3.0355026054\H,-0.9195278749,-0.5348215284, 3.0264 \(952954 \backslash \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=3-A \backslash H F=-1971.35438 \backslash S 2=2.043\) \(3 \backslash S 2-1=0 . \backslash S 2 A=2.000967 \backslash \operatorname{RMSD}=6.196 e-09 \backslash R M S F=9.051 e-05 \backslash\) Dipole=-0.0133848 \(, 0.0079327,0.9424277 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 139. Computational output parameters for singlet \(\mathbf{1 8 0 g}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP \(\backslash\) 6-31G(d) \C7H1N3S4\GAUSSIAN \(\backslash 13-S e p-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo012\\0,1\C,-1.2095278001,0 ., -1.2199202194 \C, -1.2159324737,0., 0.2416821757\C,-0.0125014125,0.,0.9 \(739139423 \backslash C, 1.2093282742,0 ., 0.2728134529 \backslash C, 1.2404425455,0 .,-1.18847176\)
\(33 \backslash C, 0.0242959931,0 .,-1.8927626335 \backslash N,-2.3979542657,0 .,-1.8377774016 \backslash N\), \(2.4443367802,0 .,-1.7756204953 \backslash S,-3.7397928322,0 .,-0.9001741932 \backslash S, 3.761\) \(6665597,0 .,-0.8038835109 \backslash S,-2.7577104978,0 ., 0.9976403908 \backslash S, 2.731194150\) \(7,0 ., 1.0680973974 \backslash \mathrm{H}, 0.0381831166,0 \ldots,-2.9746294429 \backslash \mathrm{C},-0.0308148153,0 ., 2\) \(.4006069938 \backslash \mathrm{~N},-0.045760096,0 ., 3.5649088124 \backslash \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=1-A 1 \backslash H F=-2024.2642671 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=9.606 e-09 \backslash R M S\) \(\mathrm{F}=1.262 \mathrm{e}-04 \backslash \mathrm{Dipole}=-0.0002031,0 ., 0.0158239 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{~N} 1)\), SGV (C4N2S4)] \\@

Table 140. Computational output parameters for triplet \(\mathbf{1 8 0 g}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 14-S e p-2007 \backslash\)
\(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo012\\0,3\C,-1.216435968
\(4,0 .,-1.1708124845 \backslash C,-1.2167936173,0.0 .2674877741 \backslash C,-0.0050933348,0 .\),
\(0.982940595 \backslash C, 1.2139562509,0 ., 0.2800832686 \backslash C, 1.2285039941,0 .,-1.158143\)
\(4608 \backslash C, 0.0096593032,0 .,-1.8641070484 \backslash N,-2.3888771274,0 .,-1.8445314233 \backslash\)
\(N, 2.4078640684,0 .,-1.8196759958 \backslash S,-3.7367583425,0 .,-0.9080207797 \backslash S, 3.7\)
\(459676694,0 .,-0.8692472987 \backslash \mathrm{~S},-2.7995101348,0 ., 1.032728512 \backslash \mathrm{~S}, 2.78865744\)
57, 0., 1. \(0616848989 \backslash \mathrm{H}, 0.0152714428,0 .,-2.947169533 \backslash \mathrm{C},-0.012495607,0 ., 2\).
\(41147302 \backslash \mathrm{~N},-0.0185274799,0 ., 3.5755380234 \backslash \backslash V e r s i o n=x 86-L i n u x-G 03 R e v B .05\)
\(\backslash\) State \(=3-\mathrm{B} 2 \backslash \mathrm{HF}=-2024.2731939 \backslash \mathrm{~S} 2=2.046345 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=2.001099 \backslash \mathrm{RMSD}=7.3\)
\(02 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.117 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0041305,0 .,-0.7971347 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C}\)
1C1N1), SGV (C4N2S4)] \\@

Table 141. Computational output parameters for singlet \(\mathbf{1 8 0 h}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4 \backslash G A U S S I A N \backslash 24-S e p-2007 \backslash 0\) \\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo44\\0,1\C,-1.1982335936, \(0.0211493663,-1.0909272323 \backslash C,-1.2030534319,0.0090105536,0.3799208067 \backslash C\) , -0.0140085133,-0.0076294118,1.105259929\C,1.1976657875,-0.0154395103, \(0.4090238667 \backslash C, 1.2391320173,-0.0052755082,-1.0526518553 \backslash C, 0.0318979422\) \(, 0.0136172404,-1.767178183 \backslash N,-2.3882235724,0.0382048701,-1.6982101653\) \(\backslash \mathrm{N}, 2.4526231073,-0.0139039978,-1.6234122019 \backslash \mathrm{~S},-3.7384453823,0.04726996\) 62,-0.7774393234\S,3.7542645092,-0.034753029,-0.6296827691\S,-2.754684 6906, 0.0159998741,1.1474044587\S,2.7060108218,-0.0369832979,1.23339121 \(42 \backslash 0,0.0656253356,-0.0192484757,2.4690718296 \backslash \mathrm{H}, 0.0483301656,0.02248044\) \(95,-2.848581785 \backslash \mathrm{H},-0.8188549735,0.0042686549,2.8675402511 \backslash \backslash\) Version \(=x 86\)
```

-Linux-G03RevB.05\State=1-A\HF=-2007.2400024\S2=0.\S2-1=0.\S2A=0.\RMSD
=8.357e-09\RMSF=5.566e-05\Dipole=-0.2365481,0.0028185,1.5150221\PG=C01
[X(C6H2N2O1S4)]<br>@

```

Table 142. Computational output parameters for triplet \(\mathbf{1 8 0 h}\).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 25-S e p-200\) \(7 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo44\\0,3\C,-1.19851817 \(4,-0.0127464333,-1.0445617513 \backslash C,-1.2069143067,-0.0196489801,0.39613698\) \(51 \backslash C,-0.0099422955,-0.0205060218,1.1145677069 \backslash C, 1.2018852385,0.0224023\) \(252,0.4196894833 \backslash C, 1.2329544059,0.0530353247,-1.0154456413 \backslash C, 0.0246580\) \(676,0.0286322518,-1.7388603582 \backslash N,-2.3731509969,-0.0521747959,-1.715989\) \(0427 \backslash \mathrm{~N}, 2.4246508291,0.0881537109,-1.6575163006 \backslash \mathrm{~S},-3.7254544827,-0.1134\) \(655966,-0.7914352928 \backslash S, 3.7451394314,0.0953209688,-0.6764503517 \backslash S,-2.80\) \(17855122,-0.0132860234,1.162579183 \backslash S, 2.7592300894,0.0307999013,1.24056\) \(28792 \backslash 0,0.0623110032,-0.0373390875,2.4776415108 \backslash \mathrm{H}, 0.0364936492,0.03474\) \(6068,-2.8212212364 \backslash \mathrm{H},-0.7942905279,-0.2848045736,2.8613653244 \backslash \backslash\) Version \(=x 86\)-Linux-G03RevB. \(05 \backslash\) State \(=3-A \backslash H F=-2007.2494483 \backslash S 2=2.042012 \backslash S 2-1=0 . \backslash S\) \(2 A=2.000911 \backslash R M S D=3.682 \mathrm{e}-09 \backslash \operatorname{RMSF}=1.739 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.4562707,-0.1687903\) , \(0.7221253 \backslash \mathrm{PG}=\mathrm{C01}\left[\mathrm{X}\left(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 2 \mathrm{O} \mathrm{S}_{4}\right)\right] \backslash \backslash @\)

Table 143. Computational output parameters for singlet 180i.
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 F 1 N 2 S 4 \backslash G A U S S I A N \backslash 23-A p r-2007 \backslash 0\) \\\# opt ub3lyp/6-31g(d) geom=connectivity \\neoklis06\\0,1\C,0.00675793 33,0.,-0.0209879214 \C, -0.0099558233, 0.,1.4462011702\C,1.183328319,0., 2 \(.152817358 \backslash C, 2.4060410067,0 ., 1.4984419581 \backslash C, 2.4527629009,0 ., 0.03190172\) \(86 \backslash \mathrm{C}, 1.2447083916,0 .,-0.6858469703 \backslash \mathrm{~N},-1.1832685522,0 .,-0.6334655384 \backslash \mathrm{~N}\), \(3.6681517869,0 .,-0.5285639021 \backslash S,-2.5259440977,0.0 .3050963485 \backslash S, 4.9690\) \(025503,0 ., 0.4671586132 \backslash S,-1.5456272866,0 ., 2.2161919592 \backslash S, 3.9069938777\), \(0 ., 2.3340932834 \backslash \mathrm{H}, 1.2680929231,0 .,-1.7673190598 \backslash \mathrm{~F}, 1.1541451883,0 ., 3.50\) \(2459162 \backslash \backslash\) Version=AM64L-G03RevD. \(02 \backslash\) State \(=1-A 1 \backslash H F=-2031.2560429 \backslash\) S2 \(=0 . \backslash\) S2 \(-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.309 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.466 \mathrm{e}-04 \backslash\) Thermal=0. \(\backslash\) Dipole=-0. 022932 \(4,0 ., 1.0605619 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V}\) [C2(H1C1C1F1), SGV (C4N2S4)] \\@

Table 144. Computational output parameters for triplet 180 i .
\(1 \backslash 1 \backslash\) GINC-CHEM54\FOpt \UB3LYP \(\backslash 6\)-31G (d) \C6H1F1N2S4 (3) \GAUSSIAN \(\backslash 30-A p r-200\) \(7 \backslash 0 \backslash \backslash \#\) opt ub3lyp/6-31g(d) geom=connectivity \\neoklis06\\0, 3\c, -0.0013 \(868788,0 ., 0.0114612101 \backslash \mathrm{C},-0.001881258,0 ., 1.4519473806 \backslash \mathrm{C}, 1.2057674407,0\) \(., 2.1362851398 \backslash C, 2.4214703378,0 ., 1.4663597603 \backslash C, 2.4381093714,0 ., 0.0259\) \(696068 \backslash \mathrm{C}, 1.2225526481,0 .,-0.6860426094 \backslash \mathrm{~N},-1.182259493,0 .,-0.6488207287\) \(\backslash N, 3.6267519542,0 .,-0.6202201331 \backslash S,-2.5212977028,0 ., 0.3009378388 \backslash S, 4.9\) \(543988595,0 ., 0.3453979896 \backslash S,-1.5717167619,0 ., 2.2438276021 \backslash S, 3.98177604\) \(17,0.2 .2768558457 \backslash H, 1.2289912933,0 .,-1.7686605756 \backslash \mathrm{~F}, 1.1977488431,0 ., 3\) \(.4845622252 \backslash\) Version=AM64L-G03RevD.02 \State \(=3-B 2 \backslash H F=-2031.2655133 \backslash S 2=2\) \(.041576 \backslash S 2-1=0 . \backslash S 2 A=2.000894 \backslash R M S D=5.463 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.027 \mathrm{e}-04 \backslash\) Thermal \(=0 . \backslash\) Dipole \(=-0.0015128,0 ., 0.254372 \backslash P G=C 02 V[C 2(H 1 C 1 C 1 F 1), S G V(C 4 N 2 S 4)] \backslash \backslash @\)

\section*{Table 145. Computational output parameters for singlet \(\mathbf{1 8 0 j}\).}
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4 \backslash G A U S S I A N \backslash 07-S e p-2007 \backslash\) \(0 \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis08\\0,1\C,-1.214410 7426,0.,-1.6207647092\C,-1.2064839272,0.,-0.1539138177\C,-0.0029744433 \(, 0 ., 0.5485882163 \backslash C, 1.208081984,0 .,-0.14082205 \backslash C, 1.2319143863,0 .,-1.607\) \(5007431 \backslash C, 0.0124920345,0 .,-2.3039547811 \backslash N,-2.4085801675,0 .,-2.22676688\) \(82 \backslash N, 2.4325848908,0 .,-2.2005181087 \backslash S,-3.7419954659,0 .,-1.2706997404 \backslash S\), \(3.7555545115,0 .,-1.2300480514 \backslash S,-2.7432155305,0 ., 0.6193505178 \backslash S, 2.7363\) \(382098,0 ., 0.6490606385 \backslash \mathrm{H}, 0.018357624,0 .,-3.3857683878 \backslash \mathrm{Br},-0.0132861153\) , 0., 2.4504101955\\Version=x86-Linux-G03RevB.05\State=1-A1 \HF=-4503.129 \(737 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.869 e-09 \backslash R M S F=1.078 e-04 \backslash\) Dipole=-0.00675 53, 0., 1. \(2459035 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{Br} 1), \mathrm{SGV}(\mathrm{C} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 146. Computational output parameters for triplet \(\mathbf{1 8 0 j}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 11-S e p-20\)
\(07 \backslash 0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis08\\0,3\C,-1.209
\(4226631,0 .,-1.5842283142 \backslash C,-1.2095644329,0 .,-0.1431300466 \backslash C,-0.0039251\)
\(992,0 ., 0.5537957842 \backslash C, 1.2114717643,0 .,-0.1259702024 \backslash C, 1.2317574435,0 .\),
\(-1.5669256938 \backslash C, 0.0161448727,0 .,-2.2778366028 \backslash N,-2.3832333745,0 .,-2.25\)
\(60576997 \backslash N, 2.4149733427,0 .,-2.2220489228 \backslash S,-3.7298880145,0 .,-1.3120210\)
```

425\S,3.7481110533,0.,-1.259018407\S,-2.7910292568,0.,0.6294503903\S,2 $.7818264436,0 ., 0.6689497319 \backslash \mathrm{H}, 0.023819389,0 .,-3.3606134331 \backslash \mathrm{Br},-0.01740$ 26711,0.,2.4552959851 <br>Version=x86-Linux-G03RevB. 05 $\backslash$ State $=3-B 2 \backslash H F=-450$ $3.1391906 \backslash S 2=2.043325 \backslash S 2-1=0 . \backslash S 2 A=2.000966 \backslash \mathrm{RMSD}=5.825 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.556 \mathrm{e}-$ $05 \backslash$ Dipole $=-0.0028754,0 ., 0.4056866 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V} \quad[\mathrm{C} 2(\mathrm{H} 1 \mathrm{C} 1 \mathrm{C} 1 \mathrm{Br} 1), \mathrm{SGV}(\mathrm{C} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash$ \@

```

Table 147. Computational output parameters for singlet 180k.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 C l 1 N 2 S 4 \backslash G A U S S I A N \backslash 04-D e c-2006 \backslash\) \(0 \backslash \backslash \#\) opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \neoklis07\\0,1\c,0.0072525 674,0.,-0.012780566\C,-0.0102550841,0.,1.4539367658\C,1.1832028519,0., \(2.1775368432 \backslash C, 2.4062731837,0 ., 1.5051992191 \backslash C, 2.4509810175,0 ., 0.039058\) \(892 \backslash \mathrm{C}, 1.2437630251,0 .,-0.6772888767 \backslash \mathrm{~N},-1.1770631781,0 .,-0.6382842548 \backslash \mathrm{~N}\) , 3. 6607573657,0.,-0.535658288\S,-2.5267373823,0.,0.2926744572\S, 4.9697 378217,0.,0.4516991685\S,-1.5609790574,0., 2.1995151958\S,3.9239840484, \(0 ., 2.315869169 \backslash \mathrm{H}, 1.2667080065,0 .,-1.7589225625 \backslash \mathrm{Cl}, 1.1460864998,0 ., 3.92\) \(72134258 \backslash \backslash\) Version=AM64L-G03RevD.02\State=1-A1 \HF=-2391.6175369\S2=0. \(\backslash \mathrm{S}\) \(2-1=0 . \backslash S 2 A=0 . \backslash R M S D=9.043 \mathrm{e}-09 \backslash \mathrm{RMSF}=2.416 \mathrm{e}-04 \backslash\) Thermal=0. \(\backslash\) Dipole=-0.02336 66,0.,1.1015076\PG=C02V [C2 (H1C1C1Cl1), SGV (C4N2S4)] \\@

Table 148. Computational output parameters for triplet \(\mathbf{1 8 0 k}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 C 11 N 2 S 4(3) \backslash G A U S S I A N \backslash 21-M a y-20\) \(07 \backslash 0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis07\\0, 3\C, -1. 212 \(9277646,0 .,-1.2255834848 \backslash C,-1.2131665326,0 ., 0.2157880351 \backslash C,-0.00510253\) \(54,0 ., 0.9131124539 \backslash C, 1.2106791675,0 ., 0.229332652 \backslash C, 1.2265488783,0 .,-1\). \(2119515211 \backslash C, 0.010736788,0 .,-1.9213771491 \backslash N,-2.3866097732,0 .,-1.897439\) \(4707 \backslash \mathrm{~N}, 2.4076661099,0 .,-1.8706487264 \backslash \mathrm{~S},-3.7337917218,0 .,-0.9563460572 \backslash\) \(S, 3.7442464641,0 .,-0.9145582642 \backslash S,-2.7971591653,0 ., 0.9855124822 \backslash S, 2.78\) \(59706002,0 ., 1.0167113963 \backslash \mathrm{H}, 0.0167871308,0 .,-3.004102289 \backslash \mathrm{Cl},-0.01488519\) 6,0.,2.6637459317\\Version=x86-Linux-G03RevB.05\State=3-B2 \HF=-2391.62 \(70347 \backslash S 2=2.043509 \backslash S 2-1=0 . \backslash S 2 A=2.000974 \backslash R M S D=4.463 \mathrm{e}-09 \backslash \operatorname{RMSF}=8.742 \mathrm{e}-05 \backslash \mathrm{D}\) ipole=-0.0014869,0.,0.2660772\PG=C02V [C2 (H1C1C1Cl1), SGV (C4N2S4)] \\@

Table 149. Computational output parameters for singlet 1801.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 3 N 3 S 4 \backslash G A U S S I A N \backslash 05-J u n-2007 \backslash 0 \backslash \backslash\)
\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\neoklis15\\0,1\C,-1.188374259
\(4,0.1258678809,-1.0967760883 \backslash C,-1.19323148,0.1552632535,0.3688893915 \backslash C\)
, \(-0.0149479472,0.0588715548,1.1235708528 \backslash C, 1.2253890336,-0.1692733546\),
\(-1.0491486422 \backslash \mathrm{C}, 0.0313623901,-0.0289343227,-1.7706223408 \backslash \mathrm{~N},-2.36890351\)
\(06,0.2584168882,-1.7149941042 \backslash N, 2.4261115881,-0.3276085397,-1.62062564\)
\(02 \backslash S,-3.7055207412,0.4442052782,-0.7897617603 \backslash S, 3.7312413889,-0.465048\)
\(4752,-0.6430057914 \backslash \mathrm{~S},-2.7414527277,0.3141099206,1.122629545 \backslash \mathrm{H}, 0.051231\)
\(3497,-0.0412264909,-2.8519012185 \backslash N,-0.0418381767,0.0651838327,2.522851\)
4889 \H, \(0.8243858505,0.3676119484,2.9559561812 \backslash \mathrm{H},-0.8250022431,0.570842\)
3669,2.9232983601 \C,1.1801973537,-0.134958191,0.4156699699\S, 2. 6906961
545,-0.3501538497,1.2296708572 \\Version=x86-Linux-G03RevB.05\State=1-A
\(\backslash H F=-1987.3783974 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=6.128 e-09 \backslash R M S F=2.273 e-05 \backslash D\)
ipole \(=0.0244455,0.5028397,1.858516 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 3 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 150. Computational output parameters for triplet 1801.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 3 N 3 S 4(3) \backslash G A U S S I A N \backslash 11-J u n-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis15 3\\0,3\C,-1.2042 805946,0.0181409205,-1.0412412711 \C, -1.2042557208, 0.019327083,0.395515 \(0156 \backslash C,-0.0097294952,0.019632637,1.1336760533 \backslash C, 1.2223256863,-0.038211\) \(766,-1.0194360323 \backslash C, 0.0154682852,-0.0080100445,-1.742417589 \backslash N,-2.37865\) \(73586,0.063330335,-1.7145610476 \backslash \mathrm{~N}, 2.409431048,-0.0478464555,-1.6715454\) \(572 \backslash \mathrm{~S},-3.7285200618,0.1172530711,-0.7818786515 \backslash S, 3.7433859111,-0.05621\) \(1445,-0.7147652493 \backslash S,-2.7994674877,0.0100103599,1.1622450065 \backslash \mathrm{H}, 0.02550\) \(60415,0.0054476533,-2.8245134063 \backslash N,-0.0227184937,0.0030232478,2.529852\) \(8209 \backslash \mathrm{H}, 0.8151120003,0.3753934503,2.9636807771\) \H, \(-0.8497765548,0.414639\) 913,2.9486365658\C,1.1965604003,-0.0363915172,0.4170942256\S, 2.7756166 868,-0.11929916,1.2123257342\\Version=x86-Linux-G03RevB.05\State=3-A \(\backslash\) H \(F=-1987.3882439 \backslash S 2=2.043083 \backslash S 2-1=0 . \backslash S 2 A=2.000956 \backslash R M S D=3.991 e-09 \backslash \operatorname{RMSF}=1\) \(.153 \mathrm{e}-04 \backslash \mathrm{Dipole}=0.0011346,0.4682327,1.0961141 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 3 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 151. Computational output parameters for singlet \(\mathbf{1 8 0 m}\).

\begin{abstract}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 S 4 \backslash G A U S S I A N \backslash 19-S e p-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\neo09\\0,1\C,-1.2079588159,-0 \(.0000000021,-0.6969369188 \backslash C,-1.210939477,0.0000000019,0.7705164371 \backslash \mathrm{C}\), \(0.0300428919,0.0000000042,1.5073521542 \backslash C, 1.1785536541,0.0000000025,0.8\) \(133309875 \backslash \mathrm{C}, 1.225553927,-0.0000000016,-0.6479355409 \backslash \mathrm{C}, 0.0225234334,-0\). \(0000000038,-1.3854846826 \backslash N,-2.4016598062,-0.0000000041,-1.3109228768 \backslash N\) \(, 2.4330461674,-0.000000003,-1.2328560194 \backslash S,-3.7454638735,-0.0000000017\) \(,-0.3770941458 \backslash S, 3.7499062083,0 .,-0.2537914445 \backslash S,-2.7630844519,0.00000\) 00037,1.5257329736\S,2.7050090923, 0.000000005,1.6188863207\H, -0.049449 \(461,0.0000000071,2.5909621529 \backslash C, 0.0827667321,-0.000000008,-2.888328586\) \(4 \backslash H,-0.9216785565,-0.0000000093,-3.3158025141 \backslash\) Н, \(0.6234062571,0.8793830\) 208,-3.2617648669\H, 0.6234062574,-0.8793830386,-3.2617648621 \\Version= x86-Linux-G03RevB. \(05 \backslash\) State=1-A' \(\backslash H F=-1971.3460098 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash\) RMS \(=9.630 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.242 \mathrm{e}-05 \backslash\) Dipole \(=-0.0716336,0 ., 1.3750266 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}\) (C7H2N2S4), X(H2)] \\@
\end{abstract}

Table 152. Computational output parameters for triplet \(\mathbf{1 8 0 m}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP \(\backslash 6\)-31G (d) \C7H4N2S4 (3) \GAUSSIAN \(\backslash 21-S e p-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo09\\0,3\C,-1.2112552981 , 0., - \(0.6563538859 \backslash C,-1.210502774,0 ., 0.7846816549 \backslash C,-0.0222711631,0 ., 1\). \(5109086757 \backslash C, 1.1866188846,0 ., 0.8192044104 \backslash \mathrm{C}, 1.2234874157,0 .,-0.6192355\) \(957 \backslash C, 0.0165992973,0 .,-1.3674571721 \backslash N,-2.3894000037,0 .,-1.3242565527 \backslash N\) , 2.4127962896, 0.,-1.2630234025\S,-3.7408913354,0.,-0.3917569859\S, 3.74 \(39334084,0 .,-0.2985750279 \backslash S,-2.8035793848,0 ., 1.5491375621 \backslash S, 2.76135500\) \(25,0 ., 1.6198062002 \backslash \mathrm{H},-0.0380605796,0.2 .5952516765 \backslash \mathrm{C}, 0.0587830003,0 .,-\) \(2.8685667278 \backslash \mathrm{H},-0.9491675629,0 .,-3.2844500623 \backslash \mathrm{H}, 0.6008074574,0.8781773\) \(389,-3.2383590308 \backslash \mathrm{H}, 0.6008074574,-0.8781773389,-3.2383590308 \backslash \backslash\) Version \(=\) x86-Linux-G03RevB. \(05 \backslash\) State=3-A' \(\backslash H F=-1971.3559836 \backslash S 2=2.043276 \backslash\) S2-1 \(=0 . \backslash S\) \(2 A=2.000963 \backslash R M S D=8.610 \mathrm{e}-09 \backslash \operatorname{RMSF}=9.138 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0127585,0 ., 0.446420\) \(4 \backslash P G=C S \quad[S G(C 7 H 2 N 2 S 4), X(H 2)] \backslash \backslash @\)

Table 153. Computational output parameters for singlet 180n.

\begin{abstract}
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 F 1 N 2 S 4 \backslash G A U S S I A N \backslash 13-S e p-2007 \backslash 0\) \\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo02\\0,1\C,-1.222654293,0 \(.,-0.7033651375 \backslash C,-1.2075001835,0 ., 0.7588763677 \backslash C,-0.0191019432,0 ., 1.4\) \(881237662 \backslash C, 1.1876232717,0 ., 0.7896207946 \backslash C, 1.2403056274,0 .,-0.67174994\) \(42 \backslash C, 0.0174461594,0 .,-1.3591310688 \backslash N,-2.401640334,0 .,-1.336321698 \backslash N, 2\). \(435150123,0 .,-1.2742353994 \backslash S,-3.7447731386,0\), , - \(0.3972596466 \backslash \mathrm{~S}, 3.753736\) \(2685,0 .,-0.3010068321 \backslash S,-2.762453547,0 ., 1.5090597913 \backslash S, 2.7228083758,0\). \(, 1.5794700382 \backslash H,-0.0330082932,0 ., 2.5714884079 \backslash F, 0.0347378441,0 .,-2.706\) \(2278896 \backslash \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=1-A 1 \backslash H F=-2031.2472468 \backslash\) S2 \(=0\) \(. \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=7.404 e-09 \backslash R M S F=5.113 e-05 \backslash D i p o l e=-0.0260465,0 ., 2\). \(0291369 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V}\) [C2(H1C1C1F1), SGV (C4N2S4)] \\@
\end{abstract}

Table 154. Computational output parameters for triplet 180n.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 F 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 14-S e p-200\) \(7 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo02\\0,3\C,-1.21757396 53, 0., - \(0.6825127837 \backslash \mathrm{C},-1.2199689132,0 ., 0.7565477564 \backslash \mathrm{C},-0.0345910644,0\). , 1.4908044026\C,1.1835666209,0.,0.8123168782\C,1.2479192244,0.,-0.6253 \(060613 \backslash C, 0.0310937774,0 .,-1.3400784593 \backslash N,-2.3697096057,0 .,-1.383537706\) \(6 \backslash N, 2.4313291573,0 .,-1.2721394303 \backslash S,-3.7350991268,0 .,-0.4679825473 \backslash S, 3\) \(.7527849761,0 .,-0.294241525 \backslash S,-2.8268520524,0 ., 1.4904728223 \backslash S, 2.754680\) 3422,0.,1.6199808557\H,-0.0597406125,0.,2.57469869\F, 0.0619448275,0.,\(2.6696958689 \backslash\) VVersion=x86-Linux-G03RevB. 05 \State=3-B2 \HF=-2031.2597118 \(\backslash S 2=2.04239 \backslash S 2-1=0 . \backslash S 2 A=2.000926 \backslash R M S D=5.980 e-09 \backslash \operatorname{RMSF}=8.503 e-05 \backslash\) Dipole \(=\) \(-0.0265947,0 ., 1.1461763 \backslash \mathrm{PG}=\mathrm{C} 02 \mathrm{~V}\) [C2(H1C1C1F1), SGV (C4N2S4)] \\@

Table 155. Computational output parameters for singlet 1800.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 201 S 4 \backslash G A U S S I A N \backslash 14-S e p-2007 \backslash 0\) \\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis11\\0,1\C,-1.2048671 283,-0.2814887938,-0.4095717146\C,-1.1504855247,-0.0215735619,1.028072 \(9699 \backslash C, 0.0511973373,0.2213931536,1.6919636245 \backslash C, 1.230050015,0.21241108\) \(32,0.9494167359 \backslash C, 1.2353513844,-0.0349822425,-0.4934008755 \backslash C, 0.0073654\) \(562,-0.3074079602,-1.1318319288 \backslash N,-2.403160097,-0.485595106,-0.9733349\)
\(562 \backslash \mathrm{~N}, 2.4106224964,-0.0029399299,-1.1354346774 \backslash \mathrm{~S},-3.7098565791,-0.4653\) \(744683,0.018897073 \backslash S, 3.7483618251,0.2825487346,-0.2361705775 \backslash S,-2.6723\) \(662113,-0.0336505555,1.8453979344 \backslash S, 2.7762785665,0.501348729,1.6623721\) \(064 \backslash \mathrm{H}, 0.0680171401,0.4064994506,2.7594845773 \backslash 0,0.0072524789,-0.6308009\) \(062,-2.4640967993 \backslash C,-0.3557237818,0.4433300346,-3.3360702289 \backslash \mathrm{H},-0.2950\) \(867696,0.044199581,-4.3513520972 \backslash \mathrm{H},-1.3799657498,0.782040591,-3.139086\) \(3913 \backslash \mathrm{H}, 0.3407705858,1.2853635636,-3.2343003354 \backslash\) VVersion=x86-Linux-G03R evB. \(05 \backslash\) State \(=1-A \backslash H F=-2046.5376812 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=6.248 e-09 \backslash\) \(R M S F=9.151 e-06 \backslash\) Dipole \(=-0.048982,0.7296893,1.415346 \backslash \mathrm{PG}=\mathrm{C} 01\) [X(C7H4N201S 4)] \\@

Table 156. Computational output parameters for triplet 1800.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 19-S e p-200\) \(7 \backslash 0 \backslash \\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis11\\0, 3\C,-1.1498 \(958619,0.1179552031,-0.4909299979 \backslash \mathrm{C},-1.1835508179,-0.0659638909,0.9393\) \(52291 \backslash C,-0.0302584563,-0.2384959451,1.6979237021 \backslash C, 1.2032188787,-0.228\) \(0058532,1.0505388466 \backslash C, 1.3094765723,-0.0375718787,-0.3683934617 \backslash C, 0.11\) \(96119609,0.1424934591,-1.1442152717 \backslash N,-2.3061066213,0.2461733523,-1.17\) \(84922128 \backslash N, 2.5137070217,-0.0224317695,-0.9697644782 \backslash S,-3.6875189451,0\). \(1949471324,-0.2790643404 \backslash S, 3.8031711792,-0.2420244948,0.0304496515 \backslash S,-\) \(2.7981008042,-0.0738135287,1.6605057985 \backslash S, 2.7379025348,-0.4371652879,1\) \(.8973331251 \backslash \mathrm{H},-0.0911672761,-0.3812894735,2.770786163 \backslash 0,0.337425925,0\). \(2879216216,-2.4594818412 \backslash \mathrm{C},-0.6530732786,0.7699324154,-3.375731382 \backslash \mathrm{H},-\) \(0.1043661205,0.9354242538,-4.3047476676 \backslash H,-1.445988435,0.0353923754,-3\) \(.5265474181 \backslash \mathrm{H},-1.0915257895,1.7077465988,-3.0246956253 \backslash\) VVersion=x86-Li nux-G03RevB. \(05 \backslash\) State \(=3-A \backslash H F=-2046.5512612 \backslash S 2=2.041382 \backslash S 2-1=0 . \backslash S 2 A=2.00\) \(0877 \backslash \mathrm{RMSD}=7.420 \mathrm{e}-09 \backslash \mathrm{RMSF}=5.654 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.4646719,0.1622281,0.12206\) \(15 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{O} \mathrm{S} 4)] \backslash \backslash @\)

Table 157. Computational output parameters for singlet \(\mathbf{1 8 0 p}\).
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4 \backslash G A U S S I A N \backslash 21-S e p-2007 \backslash 0\)
\(\backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis \(42 \backslash \backslash 0,1 \backslash C,-1.2061055\)
\(69,-0.0097538208,-0.7244958262 \backslash C,-1.2300533455,-0.0127286763,0.7393762\)
\(53 \backslash C,-0.0661697267,-0.003385447,1.5060234395 \backslash C, 1.1551041332,0.00922608\)
\(07,0.8297483221 \backslash C, 1.2333863078,0.0128184214,-0.6171841035 \backslash C, 0.04357738\)
\(12,0.0031606095,-1.3647707362 \backslash N,-2.3769730722,-0.0192599623,-1.3834688\) \(138 \backslash \mathrm{~N}, 2.4355072111,0.0253313778,-1.2221938245 \backslash \mathrm{~S},-3.7350977103,-0.03229\) \(23161,-0.47816863 \backslash S, 3.7504433782,0.0330189772,-0.2210383409 \backslash S,-2.80463\) \(09725,-0.028770684,1.448756526 \backslash S, 2.6828900191,0.0217725408,1.640527100\) \(5 \backslash H,-0.1069449799,-0.0058689587,2.5883888272 \backslash 0,0.0974007864,0.00643099\) 85,-2.7293004819\H,1.0418891979,0.0162417709,-2.9677570871 \\Version=x8 6 -Linux-G03RevB. \(05 \backslash\) State \(=1-A \backslash H F=-2007.2364125 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S\) \(\mathrm{D}=8.565 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.443 \mathrm{e}-05 \backslash \mathrm{Dipole=0.0806931,-0.0023835,1.6081029} \mathrm{\backslash PG=C0}\) \(1[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 2 \mathrm{O} 1 \mathrm{~S} 4)] \backslash \backslash @\)

Table 158. Computational output parameters for triplet 180p.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 24-S e p-200\) \(7 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis42\\0,3\C,-1.2277 \(233538,0 .,-0.6807678977 \backslash C,-1.2237842301,0 ., 0.7596239647 \backslash C,-0.042744567\) \(8,0 ., 1.5047168006 \backslash \mathrm{C}, 1.1750084992,0 ., 0.8273579436 \backslash \mathrm{C}, 1.227356323,0 .,-0.6\) \(020237379 \backslash C, 0.0220906534,0 .,-1.3525148296 \backslash N,-2.3832874356,0 .,-1.372722\) \(0656 \backslash \mathrm{~N}, 2.3993828507,0 .,-1.2688688993 \backslash \mathrm{~S},-3.7477584795,0 .,-0.4523180701 \backslash\) \(S, 3.7453984716,0 .,-0.3058308835 \backslash S,-2.8262679247,0 ., 1.5009833306 \backslash S, 2.75\) \(97255589,0 ., 1.6117573925 \backslash \mathrm{H},-0.0743867966,0 ., 2.5882337458 \backslash 0,0.060003722\) 8,0.,-2.6945312563\H,1.002907144,0.,-2.9526687163\\Version=x86-Linux-G \(03 R e v B .05 \backslash\) State \(=3-A^{\prime} \backslash H F=-2007.2548371 \backslash\) S2 \(=2.040224 \backslash\) S2-1=0. \(\backslash\) S2A=2. 000831 \(\backslash \mathrm{RMSD}=4.552 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.142 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.4958828,0 ., 0.6627253 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}\) (C6H2N2O1S4)] \\@

Table 159. Computational output parameters for singlet 180q.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 3 N 3 S 4 \backslash G A U S S I A N \backslash 19-S e p-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\neo05\\0,1\C,-1.2082969948,0. \(0134205464,-0.7641914108 \backslash C,-1.201741638,-0.043729275,0.689133697 \backslash \mathrm{C}, 0.0\) \(304977543,-0.0766840415,1.3693504237 \backslash C, 1.1733942847,0.0288174666,-0.81\) \(63734792 \backslash C,-0.0335074282,0.0448121016,-1.5161219885 \backslash S,-3.7355680946,-0\) \(.0441081504,0.4209988751 \backslash S, 3.7506797604,0.004288198,0.2569776602 \backslash \mathrm{H},-0\). \(0574698931,0.0849503928,-2.5979723139 \backslash N, 0.06182726,-0.2095269296,2.760\) \(0932851 \backslash C, 1.2312348239,-0.0280008114,0.6358279872 \backslash S,-2.7759241505,0.06\) \(01894434,-1.4918311553 \backslash S, 2.7069137954,0.0956343472,-1.6119583216 \backslash N,-2\). \(3784456131,-0.0448626443,1.3472521026 \backslash \mathrm{~N}, 2.4355492888,-0.0137416103,1.2\)
\(417790662 \backslash \mathrm{H},-0.7748949729,0.1465902471,3.2091662018 \backslash \mathrm{H}, 0.9127425363,0.1\) 575003177 , 3.172190622 \\Version=x86-Linux-G03RevB.05\State=1-A' \(\backslash H F=-198\) \(7.3779215 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash \mathrm{RMSD}=5.259 \mathrm{e}-09 \backslash \mathrm{RMSF}=4.181 \mathrm{e}-05 \backslash \mathrm{Dipole=} 0\) \(.026337,0.45022,-1.0692294 \backslash P G=C S \quad[S G(C 2 H 1 N 1), X(C 4 H 2 N 2 S 4)] \backslash \backslash @\)

Table 160. Computational output parameters for triplet 180q.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP\6-31G(d) \C6H3N3S4 (3) \GAUSSIAN \(\backslash 21-S e p-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo05\\0,3\C,-1.2138091816 \(,-0.0215624383,-0.7735272647 \backslash C,-1.2174878098,-0.0148745235,0.660348833\) \(\backslash C, 0.0264436193,-0.0095399287,1.3604779784 \backslash C, 1.1831176979,-0.002301676\) \(6,-0.8199812879 \backslash C,-0.0291370005,-0.0167832442,-1.5103647211 \backslash S,-3.74607\) \(84904,-0.0150267915,0.4374189888 \backslash S, 3.7599709062,0.0452888695,0.2919468\) \(027 \backslash \mathrm{H},-0.0500986816,-0.0216763113,-2.5939707803 \backslash \mathrm{~N}, 0.0529896643,-0.0413\) \(134544,2.7170224104 \backslash \mathrm{C}, 1.2422401276,0.0048908828,0.6126776839 \backslash \mathrm{~S},-2.8196\) 713687,-0.029400497,-1.5097852258\S, 2.7591669059, 0.0154288533,-1.61790 \(67898 \backslash \mathrm{~N},-2.3685043561,-0.0069723502,1.3584891656 \backslash \mathrm{~N}, 2.4191658005,0.0314\) \(994843,1.2657009614 \backslash \mathrm{H},-0.810320745,0.112777479,3.2173456576 \backslash \mathrm{H}, 0.932449\) 6999,0.1267816969,3.1835696174 \\Version=x86-Linux-G03RevB.05\State=3-A \(" \backslash H F=-1987.4004828 \backslash S 2=2.036973 \backslash S 2-1=0 . \backslash S 2 A=2.000702 \backslash R M S D=4.040 e-09 \backslash R M S\) \(\mathrm{F}=6.285 \mathrm{e}-05 \backslash \mathrm{Dipole}=0.0020431,0.182715,0.1811748 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 2 \mathrm{H} 1 \mathrm{~N} 1), \mathrm{X}(\mathrm{C} 4\) H2N2S4)] \\@

Table 161. Computational output parameters for singlet 182.
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 5 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 16-N o v-2009 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash \backslash o p t \backslash \backslash 0,1 \backslash c, 0 ., 0 ., 0 . \backslash c, 0 ., 0 ., 1\) \(.47692883 \backslash C, 1.2105739611,0 ., 2.1667266181 \backslash C, 2.3837527233,0 ., 1.415078396\) \(7 \backslash C, 2.3072324208,0 .,-0.0598671372 \backslash S,-2.5288297149,0 ., 0.3333194922 \backslash S, 4\). \(8500229037,0 ., 0.1419413005 \backslash S,-1.5344423523,0 ., 2.2469364986 \backslash S, 3.9560657\) 991,0.,2.1044774482\н,1.2386987385,0.,3.2501886446\N,1.1361258572,0.,-\(0.7042322701 \backslash \mathrm{~N},-1.190452009,0 .,-0.5984734817 \backslash \mathrm{~N}, 3.4651098246,0 .,-0.7192\)
 \(1=0 . \backslash S 2 A=0 . \backslash R M S D=7.087 e-09 \backslash R M S F=6.699 e-05 \backslash T h e r m a l=0 . \backslash\) Dipole=0.0000128, \(2.1599961,0 . \backslash \mathrm{PG}=\mathrm{CS}[\mathrm{SG}(\mathrm{C} 5 \mathrm{H} 1 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 162. Computational output parameters for triplet 182.

\begin{abstract}
1 \1 \GINC-CHEM54 \FOpt \UB3LYP\6-31G(d) \C5H1N3S4 (3) \GAUSSIAN 116 -Nov-2009\} \(0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \} \text { (opt triplet } \backslash \backslash 0 , 3 \backslash c , 0 . 0 0 6 1 2 \(36194,0 ., 0.0368609547 \backslash \mathrm{C},-0.0014296675,0 ., 1.4820061395 \backslash \mathrm{C}, 1.2106166727,0\) ., 2. \(1675956296 \backslash \mathrm{C}, 2.3854940444,0 ., 1.4200985677 \backslash \mathrm{C}, 2.3030381276,0 .,-0.022\) \(7121354 \backslash S,-2.5128285608,0 ., 0.3015411024 \backslash S, 4.8323227077,0 ., 0.1110367117\) \(\backslash S,-1.5815213627,0 ., 2.2566131883 \backslash S, 4.0036146888,0 ., 2.1117565622 \backslash \mathrm{H}, 1.23\) \(87376041,0 ., 3.251837117 \backslash \mathrm{~N}, 1.1367847977,0 .,-0.6790768299 \backslash \mathrm{~N},-1.17750167\) 18,0.,-0.6318528895\N,3.4504071527,0.,-0.7518836874 \VVersion=AM64L-G03 RevD. \(02 \backslash\) State=3-A' \(\backslash H F=-1948.0697848 \backslash S 2=2.03304 \backslash S 2-1=0 . \backslash S 2 A=2.00057 \backslash R M S\) \(\mathrm{D}=5.013 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.122 \mathrm{e}-04 \backslash\) Thermal=0. \(\backslash\) Dipole=0.039264,0.,1.5138871\PG= CS [SG(C5H1N3S4)] \\@
\end{abstract}

\section*{Table 163. Computational output parameters for singlet 183.}
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 5 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 16-N o v-2009 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt singlet \(\backslash \backslash 0,1 \backslash C, 0 ., 0 ., 0 . \backslash C\) ,0.,0.,1.46338914 \C,2.2509840884,0.,1.59914399\C,2.4270483013,0.,0.146 \(4874687 \backslash S,-2.5262798287,0 ., 0.3231102423 \backslash S, 4.8961857698,0 ., 0.7708556665\) \(\backslash S,-1.5606933597,0 ., 2.2186368244 \backslash S, 3.7094517081,0 ., 2.5366634229 \backslash N,-1.1\) \(801130607,0 .,-0.6266420665 \backslash \mathrm{~N}, 3.6738455654,0 .,-0.3338708086 \backslash \mathrm{C}, 1.2561387\) 198,0.,-0.6328915609\H,1.3206138481,0.,-1.7131834747\N,1.0832792324,0. ,2.2307038989 \\Version=AM64L-G03RevD.02\State=1-A' \HF=-1948.0669449\S2 \(=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=6.916 e-09 \backslash R M S F=1.636 e-04 \backslash\) Thermal=0. \(\backslash\) Dipole=-0. \(0005947,0.9202126,0 . \backslash P G=C S \quad[S G(C 5 H 1 N 3 S 4)] \backslash \backslash @\)

Table 164. Computational output parameters for triplet 183.
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 5 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 17-N o v-2009 \backslash\)
\(0 \backslash \backslash \#\) opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) lopt triplet \(\backslash \backslash 0,3 \backslash C, 0.00089\)
\(3904,0 ., 0.0323547076 \backslash C,-0.0039449652,0 ., 1.474413457 \backslash C, 2.2535548626,0 .\),
\(1.6105745359 \backslash C, 2.4220715116,0 ., 0.1783898332 \backslash S,-2.5164479961,0 ., 0.28039\)
\(08255 \backslash S, 4.8913552162,0 ., 0.7271982307 \backslash S,-1.613243769,0 ., 2.2253882309 \backslash S\),
\(3.7609159076,0 ., 2.5495380259 \backslash N,-1.1581731877,0 .,-0.6573300812 \backslash N, 3.6556\)
\(347436,0 .,-0.3669835295 \backslash \mathrm{C}, 1.2546084912,0 .,-0.6096301904 \backslash \mathrm{H}, 1.3198588718\) , 0., -1. \(6912082133 \backslash \mathrm{~N}, 1.0833773935,0 ., 2.2293069107 \backslash\) VVersion=AM64L-G03Rev D. \(02 \backslash\) State \(=3-A^{\prime} \backslash H F=-1948.0740874 \backslash S 2=2.038828 \backslash S 2-1=0 . \backslash S 2 A=2.000783 \backslash R M S D\) \(=3.331 e-09 \backslash R M S F=1.547 e-04 \backslash T h e r m a l=0 . \backslash\) Dipole=-0.0048392,0.,0.0802406\PG \(=C S \quad[S G(C 5 H 1 N 3 S 4)] \backslash \backslash\)

Table 165. Computational output parameters for singlet 184.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 4 S 4 \backslash G A U S S I A N \backslash 26-J u n-2009 \backslash 0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt singlet \(\backslash \backslash 0,1 \backslash C, 0.0684405428\) , 0., 0.0266467852\C, 0.0041083514,0.,1.4972912489\C,2.2428578993,0.,1.63 \(23337866 \backslash C, 2.3558466101,0 ., 0.1646176662 \backslash S,-2.4636768562,0 ., 0.258845209\) \(4 \backslash S, 4.8416759294,0 ., 0.6994997523 \backslash S,-1.5705766288,0 ., 2.2005251031 \backslash S, 3.7\) \(214841575,0 ., 2.5198518595 \backslash N,-1.087421762,0 .,-0.6318930584 \backslash N, 3.58254494\) \(21,0 .,-0.3500844359 \backslash N, 1.0804692351,0 ., 2.2774393338 \backslash N, 1.2540947154,0 .,-\) \(0.599487033 \backslash \backslash V e r s i o n=A M 64 L-G 03 R e v D .02 \backslash\) State=1-A' \(\backslash H F=-1964.1117536 \backslash\) S2=0 \(. \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=7.219 e-09 \backslash R M S F=8.721 e-05 \backslash T h e r m a l=0 . \backslash\) Dipole=-0. 09 54749,0.,1.586234\PG=CS [SG(C4N4S4)] \\@

Table 166. Computational output parameters for triplet 184.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 4 S 4(3) \backslash G A U S S I A N \backslash 26-J u n-2009 \backslash 0 \backslash\) \\# opt ub3lyp/6-31g(d) geom=connectivity \\opt triplet \(\backslash \backslash 0,3 \backslash c, 0.0025103\) \(651,0 ., 0.0344828324 \backslash,-0.0019682374,0 ., 1.4813571801 \backslash \mathrm{C}, 2.2441818438,0\). , \(1.5185250733 \backslash C, 2.2875590806,0 ., 0.072290304 \backslash S,-2.5051889907,0 ., 0.305949\) \(0857 \backslash S, 4.7849496931,0 ., 0.4265639525 \backslash S,-1.5926669935,0 ., 2.2564441522 \backslash S\), \(3.8083384382,0 ., 2.3458199725 \backslash N,-1.169007286,0 .,-0.6399915863 \backslash \mathrm{~N}, 3.48079\) \(55175,0 .,-0.5630293175 \backslash \mathrm{~N}, 1.1095158953,0 ., 2.2006416851 \backslash \mathrm{~N}, 1.1566651322,0\) .,-0.6494303788\\Version=AM64L-G03RevD.02 \State=3-A' \(\backslash H F=-1964.1051457 \backslash\) \(S 2=2.032852 \backslash S 2-1=0 . \backslash S 2 A=2.000559 \backslash R M S D=6.323 e-09 \backslash R M S F=1.671 e-04 \backslash\) Thermal \(=0 . \backslash\) Dipole \(=-0.0145226,0 ., 0.880914 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 4 \mathrm{~N} 4 \mathrm{~S} 4)] \backslash \backslash @\)

Table 167. Computational output parameters for singlet 181a.

\begin{abstract}
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash S T O-3 G \backslash C 6 H 2 N 2 S 4 \backslash G A U S S I A N \backslash 13-J u n-2007 \backslash 0 \backslash \backslash \#\) OPT UB3LYP GEOM=CONNECTIVITY\\neoklis21\\0,1\C,-0.6846070616,0.0001001 \(72,0.1302672633 \backslash C,-0.6874612953,0.0002572024,1.5746286759 \backslash C, 0.52344427\) \(45,0.0001979197,2.283751965 \backslash C, 1.8423487085,-0.0001648615,0.1947541437 \backslash\) C, 0.6020165996,-0.0001155019,-0.5584218819 \N, -1. \(8402190533,0.000148470\) \(9,-0.6539843484 \backslash S,-3.2499565106,0.0004176681,0.3728759411 \backslash S,-2.3270368\) 667,0.0005207618,2.3138278379\C,1.7681258576,-0.0000043246,1.627792498 \(1 \backslash S, 0.7166544411,-0.000284941,-2.2901932081 \backslash N, 3.0982951392,-0.00042628\) \(34,-0.4855196345 \backslash S, 2.8479538628,-0.0006501964,-2.2165946687 \backslash \mathrm{H}, 2.701004\) 6402,-0.0000486589,2.1988763316\H, 0.5074214332,0.0003170295,3.38236112 \(92 \backslash \backslash\) Version \(=x 86\)-Linux-G03RevB. \(05 \backslash\) State \(=1-A \backslash H F=-1910.1669698 \backslash\) S \(2=0 . \backslash S 2-1\) \(=0 . \backslash S 2 A=0 . \backslash R M S D=4.619 e-09 \backslash R M S F=1.040 e-04 \backslash\) Dipole=-0.617915,-0.0000037,\(0.6869034 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)
\end{abstract}

\section*{Table 168. Computational output parameters for triplet 181a.}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 S 4(3) \backslash G A U S S I A N \backslash 18-J u n-2007 \backslash\)
\(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis21\\0,3\C,-0.682418
8565,0., 0.1027411529\C,-0.6797410277,0.,1.5390382167\C, 0.5214478197, 0.
, 2. \(2641391084 \backslash C, 1.7916888316,0 ., 0.1781053428 \backslash C, 0.5715073252,0 .,-0.5603\)
\(721017 \backslash \mathrm{~N},-1.8385784473,0 .,-0.5849523283 \backslash \mathrm{~S},-3.2046889744,0 ., 0.342354551\)
\(7 \backslash S,-2.2759898611,0.2 .2813284314 \backslash C, 1.7377679034,0 ., 1.603986099 \backslash S, 0.71\)
\(06736137,0 .,-2.3041060437 \backslash N, 2.9715177811,0 .,-0.4748911631 \backslash S, 2.85342864\)
\(76,0 .,-2.1225095278 \backslash \mathrm{H}, 2.6735643354,0 ., 2.1508624781 \backslash \mathrm{H}, 0.4995735401,0 ., 3\)
\(.3491364676 \backslash\) VVersion=x86-Linux-G03RevB.05\State=3-A' \(\backslash H F=-1932.0406853 \backslash\)
\(S 2=2.039698 \backslash S 2-1=0 . \backslash S 2 A=2.000809 \backslash R M S D=6.844 e-09 \backslash R M S F=5.308 e-05 \backslash\) Dipole \(=\)
\(-0.2040282,0 ., 0.6009188 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 169. Computational output parameters for singlet 181b.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 3 N 3 S 4 \backslash G A U S S I A N \backslash 07-S e p-2007 \backslash 0 \backslash \backslash\)
\(\#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo26\\0,1\C,-1.6351373113,-0
\(.0123068084,-0.04116351 \backslash C,-1.6685902729,-0.015652138,1.3554225975 \backslash C,-0\)
\(.4688641176,-0.0082705441,2.07241778 \backslash C, 0.7927536802,0.0060355477,-0.05\)
\(96359239 \backslash \mathrm{C},-0.3907920401,-0.0013149419,-0.8006237471 \backslash \mathrm{~S}, 3.3174470643,0\). \(02291371,1.1349499693 \backslash C, 0.8067086946,0.0030304896,1.3507127282 \backslash S,-3.07\) 37428157,-0.0210269053,-0.9979165642\S, 2.4015442687,0.0199906383,-0.83 \(70808494 \backslash \mathrm{~N}, 1.9182870166,0.0101007734,2.066820115 \backslash \mathrm{~N},-0.4386698097,0.001\) \(1387665,-2.1445840041 \backslash S,-1.9408174809,-0.0083408121,-2.8209175415 \backslash \mathrm{H},-2\) \(.6145815435,-0.0239383757,1.886905386 \backslash \mathrm{~N},-0.4125384711,-0.0110968844,3\). \(4134702595 \backslash \mathrm{H},-1.2432628232,-0.0179019968,3.9851451232 \backslash \mathrm{H}, 0.500924835,-0\) \(.004873938,3.850665122 \backslash \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=1-A \backslash H F=-198\) \(7.3846802 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=1.116 e-09 \backslash R M S F=3.410 e-05 \backslash D i p o l e=-1\) . 680146,-0.0160886,1.8169653\PG=C01 [X(C6H3N3S4)] \\@

Table 170. Computational output parameters for triplet 181b.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 3 N 3 S 4(3) \backslash G A U S S I A N \backslash 13-S e p-2007 \backslash\)
\(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo26\\0,3\C,-1.6367382767
, \(-0.0002053202,0.0006898258 \backslash C,-1.6154435391,-0.0003253256,1.3960344363\)
\(\backslash C,-0.4025651435,-0.0002900188,2.0942586606 \backslash C, 0.7944886426,0.000053621\)
, \(-0.0657740725 \backslash C,-0.4323107674,-0.000017286,-0.7794645881 \backslash S, 3.34489407\)
\(52,0.0003512501,1.0274510533 \backslash C, 0.8318199988,-0.0000625698,1.352340577 \backslash\)
\(S,-3.1263499821,-0.0002653365,-0.9498630359 \backslash S, 2.3476713385,0.000356628\)
\(9,-0.873244187 \backslash N, 2.0094337779,0.000086975,2.0106976391 \backslash N,-0.4638140224\)
\(, 0.0001084549,-2.123481627 \backslash S,-1.9835125608,0.0000221658,-2.7847056011 \backslash\)
H, \(-2.5460649471,-0.0004975233,1.9556323865 \backslash N,-0.3238085544,-0.00064279\)
\(92,3.4574351702 \backslash \mathrm{H},-1.1494103014,0.0006821596,4.0328811374 \backslash \mathrm{H}, 0.58404541\)
8,0.0005930109,3.8962074957\\Version=x86-Linux-G03RevB.05\State=3-A \(\backslash H F\)
\(=-1987.3978763 \backslash S 2=2.035719 \backslash S 2-1=0 . \backslash S 2 A=2.000655 \backslash R M S D=7.773 \mathrm{e}-09 \backslash \operatorname{RMSF}=8\).
\(834 \mathrm{e}-05 \backslash\) Dipole \(=-0.4009577,0.0015028,1.2893228 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 3 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 171. Computational output parameters for singlet 181c.
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4 \backslash G A U S S I A N \backslash 27-S e p-2007 \backslash 0\) \(\backslash\) \# opt ub3lyp/6-31g(d) guess=mix geom=connectivity \(\backslash\) \neo46\\0,1\C,0.01 \(09156116,0 ., 0.006848365 \backslash C,-0.0016685375,0 ., 1.4106016314 \backslash C, 1.1994624002\) , 0., 2. \(1895216355 \backslash \mathrm{C}, 2.4232257304,0 ., 1.485924574 \backslash \mathrm{C}, 2.4560883758,0 ., 0.079\) \(0747198 \backslash C, 1.2258403823,0 .,-0.6587769667 \backslash N, 3.6206431484,0 .,-0.608891310\) \(1 \backslash S, 4.9668496803,0 ., 0.3634966706 \backslash S,-1.4867131888,0 ., 2.3432238685 \backslash S, 3.9\) \(926490767,0 ., 2.2852240253 \backslash \mathrm{H},-0.9065133252,0 .,-0.5702491326 \backslash \mathrm{~N}, 1.1510778\) \(184,0 ., 3.5452824959 \backslash \mathrm{~S},-0.3714349183,0 ., 4.1808247322 \backslash 0,1.2702393384,0\). ,
\(-2.0045241179 \backslash H, 2.2140900232,0 .,-2.2603013025 \backslash\) VVersion=AM64L-G03RevD. 0 \(2 \backslash S\) tate \(=1-A^{\prime} \backslash H F=-2007.2573714 \backslash S 2=0.934565 \backslash S 2-1=0 . \backslash S 2 A=0.080331 \backslash R M S D=7\). \(241 e-09 \backslash \operatorname{RMSF}=5.120 e-05 \backslash T h e r m a l=0 . \backslash\) Dipole=-0.2356043,0.,-0.2958471\PG=C S [SG(C6H2N2O1S4)] \\@
\(1 \backslash 1\) \GINC-C

Table 172. Computational output parameters for triplet 181 c .

HEM54 \FOpt \UB3LYP \(\backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 25-S e p-200\)
\(7 \backslash 0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity\\neo46\\0,3\c,-0.03477640 \(23,0.00890619,-0.0078201786 \backslash C,-0.0110152782,-0.0068876036,1.3915671821\) \(\backslash C, 1.2179630252,0.0112298257,2.1356311006 \backslash \mathrm{C}, 2.4253085242,0.0461599483\), \(1.391116506 \backslash \mathrm{C}, 2.4104591476,0.0622550931,-0.0257850583 \backslash \mathrm{C}, 1.1575877224,0\) \(.0431307037,-0.7182982744 \backslash N, 3.5564244682,0.0954052153,-0.7358290517 \backslash S\), \(4.931200352,0.1147395945,0.1915710656 \backslash S,-1.4678430997,-0.0501495999,2\). \(3846339132 \backslash S, 4.0105035012,0.0719143335,2.1329149101 \backslash \mathrm{H},-0.9687179116,-0\) \(.0050458821,-0.5584376114 \backslash N, 1.2226597873,-0.0042331305,3.480334784 \backslash S,-\) \(0.2756006888,-0.0452113194,4.1812229839 \backslash 0,1.1501950933,0.0585586513,-2\) \(.0706937014 \backslash \mathrm{H}, 2.0808989807,0.0821861799,-2.364702035 \backslash\) VVersion=AM64L-G0 \(3 R e v D .02 \backslash\) State \(=3-A \backslash H F=-2007.2610197 \backslash S 2=2.03725 \backslash S 2-1=0 . \backslash S 2 A=2.000711 \backslash R M\) \(S D=4.722 e-09 \backslash \mathrm{RMSF}=2.431 e-05 \backslash\) Thermal=0. S Dipole=0.0700315,0.0039421,-0.2 \(108701 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 201 \mathrm{~S} 4)] \backslash \backslash @\)

Table 173. Computational output parameters for singlet 181d.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 O 1 S 4 \backslash G A U S S I A N \backslash 10-S e p-2007 \backslash 0\) \\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo028\\0,1\C,-1.6974408573 , \(-0.0904561031,-1.0642905546 \backslash C,-1.6510626441,0.0777470531,0.3260961628\) \(\backslash C,-0.4038261394,0.1378261767,1.0556218898 \backslash C, 0.7613306367,0.0184973377\) \(, 0.2937874865 \backslash C, 0.7658585677,-0.1530465288,-1.1126289803 \backslash C,-0.52496712\) \(09,-0.2072169057,-1.8012964384 \backslash N, 1.8994784768,-0.2626295643,-1.7986406\) \(11 \backslash S, 3.2751949194,-0.179634553,-0.8591525919 \backslash S,-3.0755990885,0.2277112\) 156,1.2907242728\S,2.3626843673,0.0771950141,1.0814115282\H,-2. 6400260 \(303,-0.1335308056,-1.5970307841 \backslash \mathrm{~N},-0.4157803003,0.300225941,2.39154675\) \(63 \backslash S,-1.9102590887,0.4197792984,3.0842777883 \backslash 0,-0.7035749783,-0.362741\) \(7046,-3.1124898213 \backslash \mathrm{C}, 0.3580620831,-0.5046159568,-4.0726398751 \backslash \mathrm{H}, 1.0016\) \(595108,0.3764097236,-4.0726107108 \backslash H, 0.9604683353,-1.3884509079,-3.8574\) \(132615 \backslash \mathrm{H},-0.1594541314,-0.60889505,-5.0274437917 \backslash \backslash\) Version=x86-Linux-G0

3RevB. \(05 \backslash\) State \(=1-A \backslash H F=-2046.5395146 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.918 e-0\) \(9 \backslash \mathrm{RMSF}=1.453 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.9090179,-0.1433009,-1.3497551 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 7 \mathrm{H}\) 4N2O1S4)]\\@

Table 174. Computational output parameters for triplet \(\mathbf{1 8 1 d}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP\6-31G(d) \C7H4N2O1S4 (3) \GAUSSIAN \(\backslash 06-S e p-200\)
\(7 \backslash 0 \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo028\\0, 3\C,-1.6445026
\(917,0.0005481518,-1.1217806624 \backslash C,-1.6544098003,-0.1242516716,0.2688453\)
\(135 \backslash \mathrm{C},-0.4384043851,-0.0997190357,1.0285851245 \backslash \mathrm{C}, 0.7717082155,0.078509\)
\(0437,0.3114335415 \backslash C, 0.7961931178,0.2295978838,-1.1073963716 \backslash C,-0.45279\)
\(37021,0.1682987037,-1.8221917201 \backslash N, 1.9695172792,0.4478321319,-1.735786\)
\(3928 \backslash S, 3.2941026932,0.492932628,-0.7477691249 \backslash S,-3.1187389597,-0.33892\)
\(77664,1.2262931637 \backslash \mathrm{~S}, 2.3162702578,0.1625945829,1.1320569279 \backslash \mathrm{H},-2.56327\)
\(33092,-0.0283465303,-1.6968632125 \backslash N,-0.4496962795,-0.2344585073,2.3662\)
\(970589 \backslash S,-1.9497206172,-0.429111398,3.0347013341 \backslash 0,-0.5532911183,0.352\)
\(2332027,-3.1639315287 \backslash \mathrm{C}, 0.3133263069,-0.3838016364,-4.0411031033 \backslash \mathrm{H}, 1.3\)
\(424440235,-0.0271378453,-3.9767594573 \backslash \mathrm{H}, 0.2766848251,-1.4549236848,-3\).
\(8079971279 \backslash \mathrm{H},-0.0855899423,-0.2159703131,-5.0433721823 \backslash\) VVersion=x86-Li
nux-G03RevB. \(05 \backslash\) State \(=3-A \backslash H F=-2046.5575421 \backslash S 2=2.038634 \backslash S 2-1=0 . \backslash S 2 A=2.00\)
\(0765 \backslash \mathrm{RMSD}=4.978 e-09 \backslash \mathrm{RMSF}=2.588 e-06 \backslash\) Dipole=-0.1179977,-0.3733938,-0.483
\(9703 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{O} \mathrm{S} 4)] \backslash \backslash @\)

\section*{Table 175. Computational output parameters for singlet 181e.}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP\6-31G(d) \C6H1F1N2S4 \GAUSSIAN \(\backslash 20-J u n-2007 \backslash 0\) \(\backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis23\\0,1\C,-0.8794205 \(314,0 .,-0.075704341 \backslash C,-0.8683764744,0 ., 1.3630790528 \backslash C, 0.3336945487,0\). , \(2.1214155383 \backslash C, 1.5959283361,0.0 .0135630578 \backslash C, 0.3758242314,0 .,-0.70341\) \(71836 \backslash \mathrm{~N},-2.0519510569,0 .,-0.7412877673 \backslash \mathrm{~S},-3.4055601016,0 ., 0.2120555865\) \(\backslash S,-2.4156510478,0 ., 2.1185600938 \backslash C, 1.5269310507,0 ., 1.4566619449 \backslash S, 0.52\) \(79999601,0 .,-2.4739158013 \backslash N, 2.7783391926,0 .,-0.5900574815 \backslash S, 2.67336557\) \(4,0 .,-2.2428652108 \backslash H, 0.3215914516,0 ., 3.2048073251 \backslash \mathrm{~F}, 2.6670816084,0 ., 2\). \(1377407011 \backslash \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=1-A^{\prime} \backslash H F=-2031.24306 \backslash S 2=\) \(0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.041 e-09 \backslash R M S F=1.141 e-04 \backslash D i p o l e=-0.3822051,0 ., 1\) \(.0609793 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{~F} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 176. Computational output parameters for triplet \(181 \mathbf{e}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 F 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 22-J u n-200\)
\(7 \backslash 0 \backslash \\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis23\\0,3\C,-0.8706 \(555135,0 .,-0.0438451141 \backslash \mathrm{C},-0.8680494922,0 ., 1.3914059376 \backslash \mathrm{C}, 0.3297631653\) , 0., 2. \(1192857099 \backslash \mathrm{C}, 1.610499365,0 ., 0.0186570317 \backslash \mathrm{C}, 0.3845315317,0 .,-0.70\) \(71489414 \backslash \mathrm{~N},-2.026136184,0 .,-0.7330003018 \backslash \mathrm{~S},-3.3934925036,0 ., 0.19355083\) \(12 \backslash S,-2.463203551,0.2 .1360635519 \backslash C, 1.5332297003,0 ., 1.443763149 \backslash S, 0.52\) 67760814,0.,-2.450731668\N,2.7931085835,0.,-0.6223741089\S,2.670301143 \(3,0 .,-2.268971877 \backslash H, 0.3390710088,0 ., 3.2033265237 \backslash \mathrm{~F}, 2.681123437,0 ., 2.13\) \(2557145 \backslash \backslash\) Version=x86-Linux-G03RevB.05 \State=3-A' \(\backslash H F=-2031.2673269 \backslash\) S2 \(=2\) \(.039098 \backslash S 2-1=0 . \backslash S 2 A=2.000785 \backslash R M S D=5.501 \mathrm{e}-09 \backslash R M S F=1.462 \mathrm{e}-04 \backslash\) Dipole=-0.5 480552,0.,0.2630728\PG=CS [SG(C6H1F1N2S4)]\\@

Table 177. Computational output parameters for singlet 181f.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 S 4 \backslash G A U S S I A N \backslash 29-A u g-2007 \backslash 0 \backslash \backslash\)
\(\#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo25\\0, \(\backslash \backslash C,-1.6165455346,-0\)
\(.0000116631,-1.3690401233 \backslash C,-1.6048196317,0.0001688456,0.056150244 \backslash C,-\)
\(0.3919091015,0.0001451638,0.8215371401 \backslash C, 0.7932541021,-0.0000717262,0\).
\(0685961829 \backslash C, 0.8044741163,-0.0002618925,-1.347189343 \backslash C,-0.4486713766,-\)
\(0.0002116928,-2.0878443036 \backslash N, 1.9499568092,-0.0004836313,-2.0251915751 \backslash\)
\(S, 3.3042861772,-0.0005023439,-1.072456057 \backslash S,-3.0613465229,0.0004169801\)
\(, 0.9772692023 \backslash S, 2.3770365527,-0.0001473236,0.8669939308 \backslash H,-2.569410396\)
\(9,0.0000171328,-1.8887582204 \backslash N,-0.4321779759,0.0002963061,2.167756225 \backslash\)
\(S,-1.958512182,0.0005844017,2.8225451297 \backslash C,-0.4332269112,-0.0003187563\)
\(,-3.5890560774 \backslash H, 0.0977445857,0.8774405578,-3.9733353675 \backslash H, 0.098584211\)
\(9,-0.8776046366,-3.9732247303 \backslash H,-1.4501286114,-0.0007988787,-3.9911918\)
\(426 \backslash \backslash V e r s i o n=x 86-L i n u x-G 03 R e v B .05 \backslash S t a t e=1-A \backslash H F=-1971.335901 \backslash S 2=0 . \backslash S 2-1\)
\(=0 . \backslash S 2 A=0 . \backslash R M S D=7.169 e-10 \backslash R M S F=7.239 e-05 \backslash D i p o l e=-0.9966626,0.0000498,-\)
\(1.0383096 \backslash P G=C 01\) [X(C7H4N2S4)]\\@

Table 178. Computational output parameters for triplet 181f.

\begin{abstract}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP\6-31G(d) \C7H4N2S4(3) \GAUSSIAN \(\backslash 20-J u l-2007 \backslash\) \(0 \backslash \\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo25\\0, 3\C, -1. 6268438506 ,-0.0000066185,-1.358010029\C,-1.6331004204,0.0001597795,0.0441243036\ \(C,-0.412308446,0.0001230393,0.7957130366 \backslash \mathrm{C}, 0.8014358222,-0.0000826901\), \(0.0626814146 \backslash C, 0.8034549599,-0.0002426744,-1.3627984544 \backslash C,-0.441509126\) \(6,-0.0002043388,-2.0809232277 \backslash N, 1.9762175957,-0.0004233974,-2.02816178\) \(41 \backslash S, 3.3234223514,-0.0004481037,-1.0716709482 \backslash S,-3.1003242853,0.000420\) \(8812,1.0186888564 \backslash S, 2.3639353823,-0.0001495072,0.8502865258 \backslash H,-2.56936\) \(33249,0.00001645,-1.8973419663 \backslash N,-0.4241891133,0.0002846892,2.14074007\) \(58 \backslash S,-1.9292923871,0.0005246102,2.8240390093 \backslash C,-0.4233130493,-0.000336\) \(2622,-3.5840873527 \backslash \mathrm{H}, 0.1067139998,0.8777248688,-3.9718536488 \backslash \mathrm{H}, 0.10726\) \(50147,-0.878125559,-3.9716938852 \backslash \mathrm{H},-1.4395673834,-0.0006722981,-3.9888\) \(5178 \backslash\) VVersion=x86-Linux-G03RevB. \(05 \backslash\) State \(=3-A \backslash H F=-1971.3608272 \backslash S 2=2.039\) \(116 \backslash S 2-1=0 . \backslash S 2 A=2.000787 \backslash R M S D=6.451 e-09 \backslash R M S F=4.875 e-05 \backslash D i p o l e=-0.53994\) \(6,0.0000284,-0.3906179 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)
\end{abstract}

Table 179. Computational output parameters for singlet \(\mathbf{1 8 1 g}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \(\backslash\) UB3LYP \(\backslash 6\)-31G (d) \C7H4N2O1S4 \GAUSSIAN \(\backslash 03-S e p-2007 \backslash 0\) \\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo040\\0,1\C,0.,0.,0. \C, - 0 \(.0002701016,-1.4295605534,0.0001779455 \backslash C, 0.8287621563,-2.2109072096,-0\) \(.878714398 \backslash C, 1.6948049597,-0.1457386507,-1.7973906713 \backslash C, 0.8738095465,0\) \(.6076481238,-0.927091107 \backslash \mathrm{~N},-0.7916540457,0.6833396351,0.8406240742 \backslash \mathrm{~S},-\) \(1.7324628363,-0.2734088313,1.8363993089 \backslash S,-1.0592488061,-2.1887987881\), \(1.1234200772 \backslash C, 1.6648925962,-1.586719251,-1.7654385566 \backslash S, 0.9942897678\), \(2.3640291269,-1.0547976512 \backslash N, 2.510273659,0.4581426982,-2.6623778506 \backslash \mathrm{~S}\), \(2.4526041834,2.1094273467,-2.6016139829 \backslash\) н, \(2.3087991326,-2.124094439,-2\) \(.4480863458 \backslash 0,0.6832026731,-3.5507965706,-0.7241119778 \backslash C, 1.4647264822\), \(-4.4061006834,-1.5532972714 \backslash н, 1.1948457631,-5.4229797095,-1.267077757 \backslash\) H, 1. \(231958125,-4.2457445613,-2.6129790901 \backslash \mathrm{H}, 2.5363112902,-4.2458893036\) ,-1.3834693702 \\Version=x86-Linux-G03RevB.05\State=1-A\HF=-2046.538803 \(9 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=3.163 e-09 \backslash R M S F=1.353 e-05 \backslash\) Dipole=0.672924,\(0.0006699,1.6163698 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{O} 1 \mathrm{~S} 4)] \backslash \backslash @\)

Table 180. Computational output parameters for triplet \(\mathbf{1 8 1 g}\). \(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 20-A u g-200\) \(7 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo040\\0,3\C,-0.8060184 \(408,0.0001377536,-0.4202325677 \backslash C,-0.832012085,0.0002982749,1.008277940\) \(6 \backslash C, 0.3599352527,0.0001121004,1.7665043238 \backslash C, 1.6593876483,-0.000387167\) , - 0. \(2978513052 \backslash C, 0.4577134355,-0.0002029042,-1.065201957 \backslash \mathrm{~N},-1.95560783\) 52,0.0003039393,-1.1214012298\S,-3.327614651,0.0006972991,-0.198869728 \(9 \backslash S,-2.4214325999,0.0007161779,1.7504528775 \backslash C, 1.5891861025,-0.00022287\) \(84,1.1288357498 \backslash S, 0.634390831,-0.0004176306,-2.8050171456 \backslash \mathrm{~N}, 2.85193367\) \(51,-0.0007104719,-0.9233693887 \backslash S, 2.7700249976,-0.0008567541,-2.5755748\) \(021 \backslash \mathrm{H}, 2.521536457,-0.0003652891,1.6771348468 \backslash 0,0.1740425284,0.00029710\) \(94,3.1140195951 \backslash C, 1.323919999,0.0000422002,3.9526680479 \backslash \mathrm{H}, 0.9437281672\) , 0.0001829395,4.9749609126\H,1.9345458136,-0.8960488744,3.7876779428\H ,1.9349997392,0.8958103226,3.7876032579\\Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=3-A \backslash H F=-2046.564166 \backslash S 2=2.037695 \backslash S 2-1=0 . \backslash S 2 A=2.000719 \backslash R M S D=7.654 e\) \(-09 \backslash \operatorname{RMSF}=9.084 \mathrm{e}-05 \backslash\) Dipole \(=0.2219348,0.0000218,1.066476 \backslash \mathrm{PG}=\mathrm{CO1} \quad[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N}\) 201S4)] \\@

Table 181. Computational output parameters for singlet \(\mathbf{1 8 1 h}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \(\backslash\) UB3LYP \(\backslash 6\)-31G (d) \C6H3N3S4\GAUSSIAN \(\backslash 31-A u g-2007 \backslash 0 \backslash \backslash\)
\# OPT UB3LYP/6-31G (D) GEOM=CONNECTIVITY \ \neo39\\0,1\C,-1.7392780623,-0
\(.0086028529,-0.1303800717 \backslash C,-1.7630101966,-0.0081785158,1.3054390655 \backslash \mathrm{C}\)
, \(-0.5830806791,-0.0066906022,2.011166118 \backslash C, 0.7330354315,0.0205738355,-\)
\(0.1508471213 \backslash C,-0.5061167137,0.02448812,-0.8238823481 \backslash N,-0.5401442668\),
\(-0.0725917242,3.4030686312 \backslash \mathrm{H}, 0.184704733,0.4835718705,3.843346387 \backslash \mathrm{H},-1\)
\(.436280744,0.0722879733,3.8531997926 \backslash C, 0.6605347777,-0.0129138542,1.27\)
9763679 \H, \(-2.7252401865,-0.0003034916,1.8053210864 \backslash \mathrm{~N}, 1.9172088876,0.00\)
\(22711594,-0.7802090404 \backslash \mathrm{~N},-2.8936380651,-0.0162643762,-0.7994992957 \backslash \mathrm{~S},-\)
\(0.5920987928,0.0304127205,-2.5852986915 \backslash S, 2.1807535832,-0.0920894654,2\)
\(.0976691837 \backslash S,-2.7242443605,0.0076518445,-2.4401261612 \backslash S, 3.2468597553\),
\(0.0539299911,0.2269465902 \backslash \backslash\) Version=x86-Linux-G03RevB.05\State=1-A \(\backslash H F=-\)
\(1987.3680542 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=1.664 \mathrm{e}-09 \backslash R M S F=2.394 \mathrm{e}-05 \backslash\) Dipole
\(=-0.5098054,0.4325362,1.5412117 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 3 N 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 182. Computational output parameters for triplet 181h.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 3 N 3 S 4(3) \backslash G A U S S I A N \backslash 09-A u g-2007 \backslash\)
\(0 \backslash \backslash\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo39\\0,3\C,-1.7504419871
\(,-0.012869201,-0.1286837575 \backslash C,-1.7459088,-0.0122776803,1.2943582582 \backslash C\),
\(-0.5566907197,-0.0126818049,2.0160237662 \backslash C, 0.7150422343,0.0151726942,-\)
\(0.1220816078 \backslash C,-0.5104470771,0.0130022659,-0.8341449114 \backslash N,-0.547957294\)
\(,-0.0717406462,3.4124673925 \backslash H, 0.170945624,0.4891367894,3.8578587297 \backslash H\),
\(-1.4517394752,0.1028571725,3.8362366503 \backslash C, 0.6688573694,-0.0194504999,1\)
\(.3094952665 \backslash H,-2.7025618636,-0.005708705,1.8061166215 \backslash N, 1.8969204024,0\)
\(.0436556036,-0.7653980937 \backslash N,-2.9088712682,-0.0149220532,-0.8172374856 \backslash\)
\(S,-0.5967426703,0.0394101047,-2.5810738495 \backslash S, 2.2343198927,-0.099498734\)
\(2,2.1118156324 \backslash S,-2.74227693,0.0140881391,-2.4608460809 \backslash S, 3.2284651272\)
\(, 0.0390873511,0.2101769993 \backslash \backslash V e r s i o n=x 86-L i n u x-G 03 R e v B .05 \backslash S t a t e=3-A \backslash H F=\)
\(-1987.3938806 \backslash S 2=2.040089 \backslash S 2-1=0 . \backslash S 2 A=2.000814 \backslash R M S D=5.208 e-09 \backslash R M S F=1.6\)
\(00 e-05 \backslash \operatorname{Dipole=0.0846083,0.4357772,1.1339569\backslash PG=C01\quad [X(C6H3N3S4)]\backslash \backslash @}\)

Table 183. Computational output parameters for singlet 181i.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 4 N 2 S 4 \backslash G A U S S I A N \backslash 30-A u g-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\neo37\\0,1\C,-0.7266157529,0. \(0000000176,-0.1876342371 \backslash C,-0.704548358,0.0000000721,1.2484909327 \backslash \mathrm{C}, 0\). \(5058628368,0.0000000607,2.0264911457 \backslash C, 1.7386461286,-0.0000000626,-0.0\) \(836050762 \backslash C, 0.5328760486,-0.0000000496,-0.8168339056 \backslash N,-1.8899789863,0\) \(.0000000683,-0.8587358963 \backslash S,-3.2521528889,0.0000000964,0.0982725836 \backslash S\), \(-2.2581901186,0.0000001541,2.0027751844 \backslash C, 1.7000804552,-0.0000000059,1\) \(.3561096032 \backslash S, 0.6851996356,-0.0000001076,-2.5807203332 \backslash N, 2.9229807984\), \(-0.0000001368,-0.6978996257 \backslash S, 2.8194100515,-0.0000001987,-2.3471350262\) \H, 2. \(6451254787,-0.0000000323,1.8883177954 \backslash \mathrm{C}, 0.4437750626,0.0000001346\) , 3.5325830305\H, \(-0.0867781222,0.8831809698,3.9101363759 \backslash \mathrm{H},-0.086778423\) \(4,-0.8831804872,3.9101364751 \backslash H, 1.4486929833,-0.0000000039,3.9631705108\) \(\backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State \(=1-A \backslash H F=-1971.3342458 \backslash\) S2 \(=0 . \backslash S 2-1=0\) \(. \backslash S 2 A=0 . \backslash R M S D=4.734 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.078 \mathrm{e}-04 \backslash \mathrm{Dipole}=0.2227918,0 ., 1.3926151 \backslash \mathrm{P}\) \(\mathrm{G}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 7 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash\)

Table 184. Computational output parameters for triplet 181i.
```

1\1\GINC-CHEM40\FOpt\UB3LYP\6-31G(d)\C7H4N2S4(3)\GAUSSIAN\03-Aug-2007\
0<br>\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY<br>neo37<br>0,3\C,-0.7112384141
,0.0000000078,-0.1572018364\C,-0.7078667473,0.0000000628,1.278272249\C
,0.486664202,0.0000000469,2.0281751524\C,1.7549457049,-0.0000000371,-0
.0785648629\C,0.5405026919,-0.0000000421, -0.8230318424\N,-1.866559799,
0.0000000038,-0.8463036278\S,-3.2336208715,0.0000000659,0.0805978662\S
,-2.3081689923,0.0000001334,2.0181220412\C,1.6954411455,0.0000000034,1
.34588807\S,0.6859884831,-0.0000001118,-2.5662170352\N, 2.9385903484,-0
.0000000849,-0.7251827042\S,2.8282580219,-0.0000001346,-2.3736963426\H
,2.6338931946,-0.000000004,1.8895194327\C,0.4443619863,0.000000127,3.5
35572453\H,-0.0833670726,0.8832115012,3.9183519302\H,-0.0833677672,-0.
8832107593,3.9183520486\H,1.452458124,-0.0000002495,3.9586201433<br>Vers
ion=x86-Linux-G03RevB.05\State=3-A\HF=-1971.3602333\S2=2.04018\S2-1=0.
\S2A=2.000826\RMSD=4.958e-09\RMSF=4.139e-05\Dipole=-0.1912433,0.,0.821
515\PG=C01 [X(C7H4N2S4)]<br>@

```

Table 185. Computational output parameters for singlet 181j.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4 \backslash G A U S S I A N \backslash 06-M a y-2007 \backslash 0\) \\\# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) neo48 \(\backslash 10,1 \backslash C, 0.0082578061,0\) .,-0.0225977864\C,-0.0035029483, 0., 1.4142260123\C,1.1977582151,0., 2.19 \(9784231 \backslash C, 2.4031055924,0 ., 1.4671517062 \backslash C, 2.4261818003,0 ., 0.0510754795 \backslash\) \(C, 1.2010722842,0 .,-0.6971633901 \backslash N, 3.5884170343,0 .,-0.6052080845 \backslash S, 4.91\) \(54406394,0 ., 0.366663324 \backslash S,-1.4828998848,0 ., 2.3122372782 \backslash S, 3.967808886\) , 0., 2. \(2792662397 \backslash N, 1.1398280021,0 ., 3.5369037787 \backslash S,-0.3910358665,0 ., 4.1\) \(89381557 \backslash \mathrm{H}, 1.2286824365,0 .,-1.7793969205 \backslash 0,-1.1407758932,0 .,-0.7517877\) \(741 \backslash \mathrm{H},-1.9214744343,0 .,-0.1762530026 \backslash\) VVersion=AM64L-G03RevD.02\State=1 \(-A^{\prime} \backslash H F=-2007.2268116 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.780 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.928 \mathrm{e}-0\) \(5 \backslash\) Thermal \(=0 . \backslash\) Dipole \(=-0.6875625,0 .,-0.390407 \backslash\) PG=CS \(\quad[S G(C 6 H 2 N 2 O 1 S 4)] \backslash \backslash @\)

Table 186. Computational output parameters for triplet 181j.
```

$1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 O 1 S 4(3) \backslash G A U S S I A N \backslash 28-S e p-200$ $7 \backslash 0 \backslash \backslash \#$ opt ub3lyp/6-31g(d) geom=connectivity <br>neo48<br>0, 3\c,-0.01696484

```
\(36,0 ., 0.0200717457 \backslash C,-0.0295718284,0 ., 1.4283488442 \backslash C, 1.1903965715,0 ., 2\) \(.1770399259 \backslash \mathrm{C}, 2.4155847637,0 ., 1.462206859 \backslash \mathrm{C}, 2.4220619514,0 ., 0.03533153\) \(2 \backslash C, 1.1825008924,0 .,-0.6702301661 \backslash N, 3.5933212503,0 .,-0.6286838674 \backslash \mathrm{~S}, 4\). \(9374879945,0 ., 0.3342373915 \backslash S,-1.5105782479,0 ., 2.3682203533 \backslash S, 3.9751763\) \(372,0 ., 2.2539560813 \backslash N, 1.1594811554,0 ., 3.5224684529 \backslash \mathrm{~S},-0.3560132394,0 .\), \(4.1818052274 \backslash \mathrm{H}, 1.2081430773,0 .,-1.7553553257 \backslash 0,-1.2378892714,0 .,-0.588\) \(2100156 \backslash \mathrm{H},-1.1191224201,0 .,-1.5511102967 \backslash \backslash\) Version=AM64L-G03RevD. \(02 \backslash\) Sta \(t e=3-A^{\prime} \backslash H F=-2007.2566303 \backslash S 2=2.037891 \backslash S 2-1=0 . \backslash S 2 A=2.000729 \backslash R M S D=7.382 e-\) \(09 \backslash \operatorname{RMSF}=9.207 \mathrm{e}-05 \backslash\) Thermal=0. \(\backslash\) Dipole \(=-0.5466933,0 .,-0.6167112 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}\) (C6H2N2O1S4)] \\@

Table 187. Computational output parameters for singlet \(\mathbf{1 8 1 k}\).
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4 \backslash G A U S S I A N \backslash 20-J u n-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis24\\0,1\C,-1.449759 5992,0.,-0.5320508544\C,-1.4447345319,0., 0.9023234049\C,-0.2443021929, \(0 ., 1.6674052493 \backslash C, 1.0324659553,0 .,-0.4167265543 \backslash C,-0.1835806761,0 .,-1\). \(142600163 \backslash \mathrm{~N},-2.6103670097,0 .,-1.2108477226 \backslash \mathrm{~S},-3.9763106077,0 .,-0.26592\) \(50936 \backslash \mathrm{~S},-2.9979151305,0 ., 1.6504342085 \backslash \mathrm{C}, 0.9673602838,0 ., 1.0316202449 \backslash \mathrm{~S}\) \(,-0.0364139837,0 .,-2.9100862358 \backslash N, 2.2078443342,0 .,-1.0368203986 \backslash S, 2.09\) \(89801136,0 .,-2.6840945957 \backslash \mathrm{H},-0.2907810066,0 ., 2.7499595631 \backslash \mathrm{Br}, 2.5608656\) 581,0.,2.0365324796\\Version=x86-Linux-G03RevB.05\State=1-A' \HF=-4503. \(1145994 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=3.669 e-09 \backslash R M S F=8.355 e-05 \backslash\) Dipole=-0.1 \(406492,0 ., 0.9318931 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{Br} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 188. Computational output parameters for triplet \(\mathbf{1 8 1 k}\).

\footnotetext{
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 25-J u n-20\) \(07 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis24\\0,3\C,-1.442 \(9011248,0 .,-0.4872946319 \backslash C,-1.4398796622,0 ., 0.9485208689 \backslash C,-0.24385078\) \(26,0 ., 1.6748031978 \backslash C, 1.0413531455,0 .,-0.4189714539 \backslash \mathrm{C},-0.187359589,0 .,-\) \(1.1460377271 \backslash \mathrm{~N},-2.5972854617,0 .,-1.174803057 \backslash \mathrm{~S},-3.964179669,0 .,-0.2486\) \(932083 \backslash S,-3.035106885,0 ., 1.6919736101 \backslash C, 0.9727851073,0 ., 1.0111072408 \backslash S\) \(,-0.0585616477,0 .,-2.8909774049 \backslash N, 2.2118832166,0 .,-1.0791530897 \backslash S, 2.08\) \(36024326,0 .,-2.722709933 \backslash H,-0.2561724065,0 ., 2.7585360154 \backslash \mathrm{Br}, 2.58117251\) 03, 0., 2.0072258006 \\Version=x86-Linux-G03RevB.05 \State=3-A' \(\backslash H F=-4503.1\) \(411236 \backslash S 2=2.038873 \backslash S 2-1=0 . \backslash S 2 A=2.000779 \backslash R M S D=6.340 e-09 \backslash R M S F=5.238 e-05 \backslash\)
}

Table 189. Computational output parameters for singlet 1811.
```

1\1\GINC-CHEM40\FOpt\UB3LYP\6-31G(d)\C6H1Cl1N2S4\GAUSSIAN\15-Jun-2007\
0<br>\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY<br>neo22<br>0,1\C,-0.8235164865 $, 0.0001319769,-0.2934156384 \backslash C,-0.8431344755,0.0001297311,1.1226128769 \backslash$ $C, 0.4259296118,-0.0000915751,1.8270636885 \backslash C, 1.603254175,-0.0002651742$, $1.1280616782 \backslash C, 1.5791989098,-0.0002541955,-0.2951391674 \backslash C, 0.3605735545$ ,-0.0000638116,-1.0510526587\H,2.5486514885,-0.0004037269,1.657447876\} $\mathrm{N},-1.9859937282,0.0003134038,1.7996964921 \backslash \mathrm{~N}, 0.3899189938,-0.0000765139$ ,-2.3952865681\S,1.9112361784,-0.000292266,-3.0631855382\S,-3.33263741 $3,0.0005042671,0.8447854975 \backslash S, 3.0305639595,-0.000449191,-1.2259842858 \backslash$ S,-2.4063336574,0.0003971759,-1.0931921546\Cl,0.4449867551,-0.00007858 75, 3.5578895105 <br>Version=x86-Linux-G03RevB. $05 \backslash$ State=1-A $\backslash H F=-2391.60473$ $9 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.117 e-09 \backslash \operatorname{RMSF}=1.267 e-04 \backslash$ Dipole=0.8957725, $-0.0001369,0.2550834 \backslash \mathrm{PG}=\mathrm{C} 01$ [X(C6H1Cl1N2S4)]<br>@

```

Table 190. Computational output parameters for triplet 1811.
\(1 \backslash 1\) \GINC-CHEM40\FOpt\UB3LYP\6-31G(d) \C6H1Cl1N2S4 (3) \GAUSSIAN \(\backslash 20-\) Jun-20 \(07 \backslash 0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo22\\0,3\C,-0.8343529 185,0.,-0.2830780545\C,-0.8342903541,0.,1.1445061622\C,0.4329436442, 0. ,1.8143008958\C,1.6235845229,0.,1.1033921251\C,1.6061596607,0.,-0.2956 \(103083 \backslash \mathrm{C}, 0.3715706836,0 .,-1.0285373883 \backslash \mathrm{H}, 2.5622889841,0 ., 1.6454948793 \backslash\) \(\mathrm{N},-1.9971022515,0 ., 1.8172983141 \backslash \mathrm{~N}, 0.3667119553,0 .,-2.3722370654 \backslash \mathrm{~S}, 1.85\) \(93990333,0 .,-3.0780556037 \backslash S,-3.3471973314,0 ., 0.8715705377 \backslash S, 3.05779088\) 09,0.,-1.2907996428\S,-2.4025441156,0.,-1.0587070017\Cl, 0.4692691872,0 ., 3.5532413621 \\Version=x86-Linux-G03RevB.05\State=3-A' \HF=-2391. 63126 \(29 \backslash S 2=2.039168 \backslash S 2-1=0 . \backslash S 2 A=2.00079 \backslash R M S D=9.527 e-09 \backslash R M S F=5.159 e-05 \backslash\) Dipol \(e=0.4919509,0 .,-0.4671549 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{Cl1} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 191. Computational output parameters for singlet 181m.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 F 1 N 2 S 4 \backslash G A U S S I A N \backslash 30-A u g-2007 \backslash 0\)
\\\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis34\\0,1\C,-0.7335877
578, 0., -0.1642726206\C,-0.7071354905,0.,1.2687270075\C, 0.5229551981, 0.
\(, 1.9903014708 \backslash C, 1.7451855085,0 .,-0.0728127136 \backslash C, 0.5291715638,0 .,-0.796\)
\(3931577 \backslash \mathrm{~N},-1.9038764918,0 .,-0.8166922242 \backslash \mathrm{~S},-3.2523604179,0 ., 0.16437774\)
\(74 \backslash \mathrm{~S},-2.2299184038,0.2 .0653957045 \backslash \mathrm{C}, 1.7319314431,0 ., 1.3684991459 \backslash \mathrm{~S}, 0\).
\(6675004994,0 .,-2.5586548579 \backslash N, 2.9199624665,0 .,-0.7041059511 \backslash \mathrm{~S}, 2.798391\)
\(9478,0 .,-2.3483315812 \backslash \mathrm{H}, 2.6612618989,0 ., 1.9237084849 \backslash \mathrm{~F}, 0.4396883866,0\).
,3.3325546383\\Version=x86-Linux-G03RevB.05\State=1-A' \(\backslash\) HF=-2031. 243814
\(9 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=1.361 e-09 \backslash \mathrm{RMSF}=1.692 e-04 \backslash\) Dipole=0.2566956,
\(0 ., 0.5197625 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{~F} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 192. Computational output parameters for triplet 181m.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP \(\backslash 6-31 G(d) \backslash C 6 H 1 F 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 30-J u l-200\) \(7 \backslash 0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis34\\0,3\C,-0.7157 \(051906,0 .,-0.1332974004 \backslash C,-0.7130796411,0 ., 1.301191382 \backslash C, 0.5020247697\), \(0 ., 1.9956697652 \backslash C, 1.7592654472,0 .,-0.0702624947 \backslash C, 0.5339434114,0 .,-0.8\) \(045698771 \backslash N,-1.8822907342,0 .,-0.8024073038 \backslash S,-3.2326471761,0 ., 0.146478\) \(6123 \backslash S,-2.2822583847,0 ., 2.0796168904 \backslash C, 1.7211716694,0 ., 1.3562159093 \backslash S\), \(0.6669362039,0 .,-2.5484879392 \backslash \mathrm{~N}, 2.9337279851,0 .,-0.7286490852 \backslash \mathrm{~S}, 2.8091\) 701255,0.,-2.374587697\H,2.6442507359,0.,1.9221021176\F,0.454528157,0. , 3.3419212263\\Version=x86-Linux-G03RevB. 05 \State=3-A' \(\backslash \mathrm{HF}=-2031.270853\) \(2 \backslash S 2=2.038614 \backslash S 2-1=0 . \backslash S 2 A=2.000763 \backslash R M S D=5.412 e-09 \backslash R M S F=6.069 e-05 \backslash D i p o l\) \(e=-0.275769,0 ., 0.0674351 \backslash P G=C S \quad[S G(C 6 H 1 F 1 N 2 S 4)] \backslash \backslash @\)

Table 193. Computational output parameters for singlet 181n.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP \(\backslash 6\)-31G (d) \C6H1Cl1N2S4 \GAUSSIAN \(\backslash 30-A u g-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo35\\0,1\C,-0.7582144681 , 0., -0.4113670323\C,-0.7349192816,0.,1.0247803812\C, 0.4969572295,0., 1. \(7543942898 \backslash C, 1.7138305166,0 .,-0.3299472044 \backslash C, 0.4997478857,0 .,-1.048375\) \(2851 \backslash \mathrm{~N},-1.9233569908,0 .,-1.0753457917 \backslash \mathrm{~S},-3.2788226402,0 .,-0.1033708682\) \(\backslash S,-2.2747906679,0 ., 1.7956061862 \backslash C, 1.7000633035,0 ., 1.1097114507 \backslash S, 0.63\)
\(30296995,0 .,-2.812716532 \backslash N, 2.8919090148,0 .,-0.9582119606 \backslash S, 2.766689479\) \(9,0 .,-2.603491532 \backslash \mathrm{H}, 2.6404888421,0 ., 1.6462633996 \backslash \mathrm{Cl}, 0.4433624668,0 ., 3\). \(5045308943 \backslash \backslash\) Version \(=x 86\)-Linux-G03RevB. \(05 \backslash\) State \(=1-A^{\prime} \backslash H F=-2391.6047737 \backslash S\) \(2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.492 e-09 \backslash R M S F=8.372 e-05 \backslash D i p o l e=0.1978772,0 .\), \(0.5253901 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{Cl} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 194. Computational output parameters for triplet 181n.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \(\backslash\) UB3LYP\6-31G(d) \C6H1C11N2S4(3) \GAUSSIAN \(\backslash 31-J u l-20\) \(07 \backslash 0 \backslash \\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo35\\0, 3\C, -0.7360525 \(725,0 .,-0.3946544219 \backslash C,-0.7560253324,0 ., 1.042609005 \backslash \mathrm{C}, 0.4476964167,0\). , \(1.7634591383 \backslash C, 1.7347103837,0 .,-0.2982918308 \backslash C, 0.5219880204,0 .,-1.0482\) \(083266 \backslash N,-1.8855644354,0 .,-1.0917654349 \backslash S,-3.258153627,0 .,-0.173176266\) \(2 \backslash S,-2.3516646247,0 ., 1.773986536 \backslash C, 1.675246353,0 ., 1.1259533376 \backslash S, 0.678\) \(0002426,0 .,-2.7892794481 \backslash N, 2.9208799066,0 \ldots,-0.9379917357 \backslash S, 2.818164176\) \(2,0 .,-2.5860234237 \backslash \mathrm{H}, 2.5994365987,0 ., 1.6897854013 \backslash \mathrm{Cl}, 0.3909668715,0 ., 3\) \(.5155997068 \backslash \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State=3-A' \(\backslash \mathrm{HF}=-2391.6326213 \backslash\) \(S 2=2.04031 \backslash S 2-1=0 . \backslash S 2 A=2.000831 \backslash R M S D=7.578 e-09 \backslash R M S F=1.075 e-04 \backslash D i p o l e=-\) \(0.2733401,0 .,-0.0208548 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{Cl} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 195. Computational output parameters for singlet 1810.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4 \backslash G A U S S I A N \backslash 07-S e p-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo35\\0,1\C,-0.7944584789 , 0., - \(0.8811979645 \backslash C,-0.7923814644,0 ., 0.5544103878 \backslash C, 0.4249507837,0 ., 1\). \(3033580962 \backslash C, 1.676160019,0 .,-0.7594254122 \backslash C, 0.4736625915,0 .,-1.4975585\) \(713 \backslash N,-1.949954127,0 .,-1.5625661918 \backslash S,-3.3186848614,0 .,-0.6084923185 \backslash S\) \(,-2.3420594203,0 ., 1.3040415504 \backslash C, 1.6386821378,0 ., 0.6804783651 \backslash S, 0.6353\) 457957,0.,-3.2599186862\N, 2.864558951,0.,-1.3681644978\S,2.7658109488, \(0 .,-3.0154806432 \backslash \mathrm{H}, 2.5702832839,0 ., 1.2320880263 \backslash \mathrm{Br}, 0.3263197146,0 ., 3.2\) \(045782558 \backslash\) VVersion=x86-Linux-G03RevB.05\State=1-A' \(\backslash \mathrm{HF}=-4503.1153877 \backslash\) S2 \(=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.957 e-09 \backslash R M S F=5.785 e-05 \backslash\) Dipole=0.1928,0., 0. 67 \(48717 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 1 \mathrm{Br} 1 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 196. Computational output parameters for triplet 51810.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 1 B r 1 N 2 S 4(3) \backslash G A U S S I A N \backslash 11-S e p-20\)
\(07 \backslash 0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo36\\0,3\C,-0.7911281
\(738,0 .,-0.8425504063 \backslash C,-0.7879152958,0 ., 0.5940756732 \backslash C, 0.4231104017,0\).
\(, 1.2980669034 \backslash C, 1.6819222537,0 .,-0.7790841677 \backslash C, 0.4586212445,0 .,-1.512\)
\(4850571 \backslash N,-1.9510611531,0 .,-1.5216742728 \backslash S,-3.3087847887,0 .,-0.5789408\)
\(183 \backslash S,-2.3692418508,0 ., 1.3536801128 \backslash C, 1.6424049457,0 ., 0.6467411284 \backslash S, 0\)
\(.5910089401,0 .,-3.2558765955 \backslash N, 2.8589325695,0 .,-1.4355458459 \backslash S, 2.73452\)
\(09755,0 .,-3.0815164804 \backslash H, 2.5749675537,0 ., 1.1964199019 \backslash B r, 0.3699367959\),
\(0 ., 3.2022284853 \backslash \backslash V e r s i o n=x 86-L i n u x-G 03 R e v B .05 \backslash S t a t e=3-A ' \backslash H F=-4503.1432\)
\(843 \backslash S 2=2.04015 \backslash S 2-1=0 . \backslash S 2 A=2.000825 \backslash R M S D=5.696 e-09 \backslash R M S F=5.848 e-05 \backslash D i p o\)
\(l e=-0.2414082,0 ., 0.1049185 \backslash P G=C S ~[S G(C 6 H 1 B r 1 N 2 S 4)] \backslash \backslash @\)

Table 197. Computational output parameters for singlet 181p.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 31-A u g-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis38\\0,1\C,-0.744201663 \(3,0 .,-0.332613957 \backslash C,-0.7231427586,0 ., 1.0996867657 \backslash C, 0.5104246813,0 ., 1\). \(8444647899 \backslash C, 1.7305147759,0 .,-0.2537648774 \backslash C, 0.5141001576,0 .,-0.969653\) \(7096 \backslash \mathrm{~N},-1.9109166688,0 .,-0.9962098165 \backslash \mathrm{~S},-3.2641490865,0 .,-0.0279681824\) \(\backslash S,-2.2612537304,0 ., 1.870369607 \backslash C, 1.7152187836,0 ., 1.1809508418 \backslash S, 0.644\) \(0900552,0 .,-2.7348807288 \backslash N, 2.9095710411,0 .,-0.8829371525 \backslash S, 2.782749652\) 9, 0., -2. \(5268498412 \backslash \mathrm{H}, 2.6566333419,0 ., 1.7170764134 \backslash \mathrm{C}, 0.4753542918,0 ., 3\). \(2765214722 \backslash \mathrm{~N}, 0.4371694549,0.4 .4389529632 \backslash\) Version \(=x 86\)-Linux-G03RevB. 0 \(5 \backslash\) State \(=1-A^{\prime} \backslash H F=-2024.2500085 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=4.155 e-09 \backslash R M S F\) \(=6.632 \mathrm{e}-05 \backslash\) Dipole \(=0.1249539,0 .,-0.5507447 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 7 \mathrm{H} 1 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 198. Computational output parameters for triplet 181p.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash\) FOpt \UB3LYP \(\backslash 6\)-31G (d) \C7H1N3S4 (3) \GAUSSIAN \(\backslash 07-A u g-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neoklis38\\0,3\C,-0.727919 \(6747,0 .,-0.3032974025 \backslash \mathrm{C},-0.7245061169,0 ., 1.1310444385 \backslash \mathrm{C}, 0.4920335093,0\) .,1.8490746192\C,1.7472636861,0.,-0.2488266946\C, 0.5204679968,0.,-0.97 \(67370483 \backslash \mathrm{~N},-1.8882322135,0 .,-0.9828165128 \backslash \mathrm{~S},-3.2460980969,0 .,-0.047239\) \(2677 \backslash S,-2.3084084794,0 ., 1.8839156972 \backslash C, 1.7124700242,0 ., 1.1718533612 \backslash \mathrm{~S}\),
\(0.643314062,0 .,-2.7184154075 \backslash N, 2.9221419429,0 .,-0.9116613839 \backslash \mathrm{~S}, 2.78978\) 49012,0.,-2.5547991559\H,2.6473611929,0.,1.7183847925\C,0.473960159,0. , 3.2806127175\N, 0.442167858,0.,4.4436038117\\Version=x86-Linux-G03RevB \(.05 \backslash\) State=3-A' \(\backslash \mathrm{HF}=-2024.2785874 \backslash \mathrm{~S} 2=2.042048 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=2.000903 \backslash \mathrm{RMSD}=\) 8.139e-09 \(\backslash\) RMSF=1.247e-04 \Dipole=-0.332974,0.,-1.1491588\PG=CS [SG(C7H1 N3S4)] \\@

Table 199. Computational output parameters for singlet 181q.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 29-A u g-2007 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\neo27\\0,1\C,-1.6000016166,0. \(,-1.2103697699 \backslash C,-1.5901341281,0 ., 0.2110026118 \backslash C,-0.3797121392,0 ., 0.98\) \(52046984 \backslash C, 0.8151888023,0 ., 0.2192326971 \backslash C, 0.8335096938,0 .,-1.189955968\) \(7 \backslash C,-0.4216932384,0 .,-1.9253921183 \backslash N, 1.9840255408,0 .,-1.8619484456 \backslash S, 3\) \(.3181359862,0 .,-0.9057237818 \backslash S,-3.0505897171,0 ., 1.1351853861 \backslash S, 2.38895\) 15154,0.,1.0153866807\H,-2.546680777,0.,-1.7390275438\N,-0.4056533494, \(0 ., 2.3130576064 \backslash S,-1.940321724,0 ., 2.9880210358 \backslash C,-0.4286267163,0 .,-3.3\) \(492071276 \backslash \mathrm{~N},-0.4759893538,0 .,-4.5125336929 \backslash\) Version=x86-Linux-G03RevB. \(05 \backslash\) State=1-A' \(\backslash H F=-2024.2515991 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=1.485 e-09 \backslash R M S\) \(\mathrm{F}=2.220 \mathrm{e}-04 \backslash \mathrm{Dipole}=-0.2661169,0 ., 0.9081476 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 7 \mathrm{H} 1 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @\)

Table 200. Computational output parameters for triplet 181q.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 7 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 03-J u l-2007 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\neo27\\0,3\C,-1.6202911978 , 0., -1. \(200830702 \backslash \mathrm{C},-1.6226202731,0 ., 0.1933256796 \backslash \mathrm{C},-0.3943521437,0 ., 0\). \(9461733495 \backslash C, 0.8241592699,0 ., 0.2216219211 \backslash C, 0.8406346777,0 .,-1.2034526\) \(192 \backslash C,-0.4153520803,0 .,-1.9099034625 \backslash N, 2.0076747026,0 .,-1.8628469173 \backslash S\) , 3.3485564375,0.,-0.9051887926\S,-3.0845480058,0.,1.1699816372\S, 2. 382 \(7736452,0 ., 1.0146229671 \backslash \mathrm{H},-2.5526701524,0 .,-1.7540321982 \backslash \mathrm{~N},-0.41453383\) 69,0.,2.2865369719\S,-1.9149901567,0.,2.9700968635\C,-0.4317338027,0., \(-3.3340265408 \backslash N,-0.4843790474,0 .,-4.4973495342 \backslash\) VVersion=x86-Linux-G03R evB. \(05 \backslash\) State \(=3-A^{\prime} \backslash H F=-2024.2802697 \backslash S 2=2.039005 \backslash S 2-1=0 . \backslash S 2 A=2.000805 \backslash R M\) SD=7.706e-09 \({ }^{\text {RMSF }}=9.285 \mathrm{e}-05 \backslash \mathrm{Dipole}=-0.4672368,0 ., 1.7523461 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C}\) 7H1N3S4)] \\@

Table 201. Computational output parameters for singlet 185.
```

1\1\GINC-CHEM40\FOpt\UB3LYP\6-31G(d)\C5H1N3S4\GAUSSIAN\09-Nov-2009\0<br>

# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY<br>azo1 opt<br>0,1\C,-0.7316565224 ,0., 0.027028553\C, -0.6864526756,0.,1.4562380733\C,0.5566059678,0., 2.17 $27587866 \backslash C, 1.7450203974,0 ., 0.235769966 \backslash \mathrm{C}, 0.5675115596,0 .,-0.5574440347$ $\backslash S,-3.2488021051,0 ., 0.3247656304 \backslash S,-2.2264842988,0 ., 2.2413204814 \backslash S, 0.7$ $795206197,0 .,-2.2931622076 \backslash S, 2.8882192371,0 .,-1.9906009636 \backslash \mathrm{H}, 0.5318861$ $191,0 ., 3.260976052 \backslash \mathrm{~N}, 1.7396482937,0 ., 1.6142033837 \backslash \mathrm{~N},-1.8672400238,0 .,-$ $0.6496753659 \backslash \mathrm{~N}, 2.9394040549,0 .,-0.3622781846 \backslash$ VVersion=x86-Linux-G03Rev B. $05 \backslash$ State $=1-A^{\prime} \backslash H F=-1948.0475766 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=6.190 e-09 \backslash R$ $\mathrm{MSF}=1.248 \mathrm{e}-04 \backslash \mathrm{Dipole}=0.125318,0 ., 0.0031261 \backslash \mathrm{PG}=\mathrm{CS} \quad[\mathrm{SG}(\mathrm{C} 5 \mathrm{H} 1 \mathrm{~N} 3 \mathrm{~S} 4)] \backslash \backslash @$

```

Table 202. Computational output parameters for triplet 185.

\begin{abstract}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 5 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 12-N o v-2009 \backslash\) \(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\azo1 opt triplet\\0,3\C,-0 \(.7005518956,0 ., 0.040768343 \backslash C,-0.7404780437,0 ., 1.4739161955 \backslash \mathrm{C}, 0.4606321\) 841,0.,2.2064743308\C,1.7420478186,0., 0.2895609432\C, 0.582855559,0., -0 \(.5523842901 \backslash S,-3.2218127665,0 ., 0.2144333913 \backslash S,-2.3478191657,0 ., 2.17567\) \(47079 \backslash S, 0.8440923784,0 .,-2.2763945867 \backslash S, 2.9744380453,0 .,-1.9193281504 \backslash\) \(\mathrm{H}, 0.4358860347,0 ., 3.2941497875 \backslash \mathrm{~N}, 1.6599146073,0 ., 1.6485981114 \backslash \mathrm{~N},-1.837\) \(064511,0 .,-0.6786346669 \backslash N, 2.9649648133,0 .,-0.2777246894 \backslash\) Version \(=x 86-L\) inux-G03RevB.05\State=3-A'\HF=-1948.0753448\S2=2.034587\S2-1=0. \S2A=2. \(00061 \backslash \mathrm{RMSD}=8.293 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.295 \mathrm{e}-05 \backslash \mathrm{Dipole}=-1.0535803,0 ., 0.0709889 \backslash \mathrm{PG}=\) CS [SG(C5H1N3S4)] \\@
\end{abstract}

Table 203. Computational output parameters for singlet 186.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 5 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 10-N o v-2009 \backslash 0 \backslash \backslash\) \# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\azo2 opt \(\backslash \backslash 0,1 \backslash C,-0.7151285993\) , 0., 0.0305411811\C,-0.6652390699,0.,1.4659945423\C,1.7259493843,0.,0.1 \(881517591 \backslash C, 0.5486720108,0 .,-0.5860512777 \backslash S,-3.2241433841,0 ., 0.3893165\) \(224 \backslash S,-2.2033306851,0 ., 2.2611567696 \backslash S, 0.7722358326,0 .,-2.3459917644 \backslash S\), \(2.905735777,0 .,-2.0179873333 \backslash N,-1.8918590869,0 .,-0.6154304402 \backslash N, 2.9406\) \(631812,0 .,-0.3628178312 \backslash \mathrm{~N}, 0.4498808181,0 ., 2.241810352 \backslash \mathrm{C}, 1.6044142877,0\)
., 1. \(6251898048 \backslash \mathrm{H}, 2.5092368851,0 ., 2.2282022706 \backslash\) VVersion=x86-Linux-G03Re vB. \(05 \backslash\) State \(=1-A^{\prime} \backslash H F=-1948.0482229 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=9.257 e-09 \backslash\) RMSF=1.375e-04 \Dipole=0.0379826,0.,0.4511727\PG=CS [SG(C5H1N3S4)] \\@

Table 204. Computational output parameters for triplet 186.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 5 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 12-N o v-2009 \backslash\)
\(0 \backslash \ \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\azo2 opt triplet\\0,3\C,-0
\(.7017638151,0 ., 0.0343336918 \backslash C,-0.7115490425,0 ., 1.4741901023 \backslash \mathrm{C}, 1.740195\)
\(3252,0 ., 0.2614603526 \backslash C, 0.5804870008,0 .,-0.5652999158 \backslash S,-3.2192822111,0\)
\(., 0.2514640306 \backslash S,-2.3314926352,0 ., 2.1945086299 \backslash S, 0.8475266793,0 .,-2.28\)
\(993933 \backslash S, 2.9754164065,0 .,-1.9454609197 \backslash N,-1.8410424015,0 .,-0.672342273\)
\(8 \backslash N, 2.969250401,0 .,-0.2940691907 \backslash N, 0.3599513239,0 ., 2.2540732691 \backslash C, 1.55\)
86099186,0.,1.6777955084 \H,2.4323165827,0., 2.3223303592\\Version=x86-L
inux-G03RevB. \(05 \backslash\) State \(=3-A^{\prime} \backslash H F=-1948.0764468 \backslash S 2=2.036778 \backslash S 2-1=0 . \backslash S 2 A=2\).
\(000703 \backslash \operatorname{RMSD}=9.413 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.290 \mathrm{e}-04 \backslash\) Dipole \(=-0.181276,0 .,-0.2653129 \backslash \mathrm{PG}\)
\(=C S[S G(C 5 H 1 N 3 S 4)] \backslash \backslash @\)

Table 205. Computational output parameters for singlet 187.
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 4 S 4 \backslash G A U S S I A N \backslash 10-N o v-2009 \backslash 0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY \\azo3 opt \\0,1\C,-0.7152735766,0 ., 0.0369202758\C, \(-0.622911979,0 ., 1.4860795787 \backslash C, 1.7343726635,0 ., 0.2574\) \(705974 \backslash C, 0.5579212459,0 .,-0.6030590643 \backslash S,-3.2060882892,0 ., 0.3625340011\) \(\backslash S,-2.2472371891,0 ., 2.2864257889 \backslash S, 0.7891616805,0 .,-2.2857131221 \backslash S, 2.8\) 92688899, 0., -2.0100682667\N,-1.857609066,0.,-0.6142131241\N, 2.93147833 63,0.,-0.4052811987\N, 0.4660212945, 0., 2. \(1866272304 \backslash \mathrm{~N}, 1.6913877577,0 ., 1\) \(.5878209859 \backslash\) VVersion=x86-Linux-G03RevB.05\State=1-A' \(\backslash H F=-1964.0516979 \backslash\) \(S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.849 e-09 \backslash R M S F=1.860 e-04 \backslash\) Dipole=-0.4438337,0 .,-2.1570986\PG=CS [SG(C4N4S4)]\\@

Table 206. Computational output parameters for triplet 187.

\begin{abstract}
\(1 \backslash 1 \backslash G I N C-C H E M 40 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 4 S 4(3) \backslash G A U S S I A N \backslash 12-N o v-2009 \backslash 0 \backslash\) \\# OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\azo3 opt triplet\\0,3\C,-0.7 \(146014661,0 .,-0.0171122426 \backslash \mathrm{C},-0.7336355658,0 ., 1.4219380425 \backslash \mathrm{C}, 1.6861689\) \(674,0.0 .3303355123 \backslash C, 0.5778861367,0 .,-0.5727581169 \backslash,-3.2260837677,0\). , 0.1913022448\S,-2.3480571755,0.,2.1354101666\S,0.9274050109,0.,-2.278 \(4241931 \backslash S, 3.0416680709,0 .,-1.8018429633 \backslash N,-1.8503384105,0 .,-0.72670280\) \(35 \backslash N, 2.9411469518,0 .,-0.1676847549 \backslash N, 0.3311454428,0 ., 2.2153592989 \backslash N, 1\). 5474999228,0.,1.6908077951 \\Version=x86-Linux-G03RevB.05\State=3-A' \(\backslash \mathrm{HF}\) \(=-1964.0756847 \backslash S 2=2.035028 \backslash S 2-1=0 . \backslash S 2 A=2.000633 \backslash \operatorname{RMSD}=8.075 e-09 \backslash \operatorname{RMSF}=8\). \(753 e-05 \backslash\) Dipole \(=-1.0437424,0 .,-0.9606857 \backslash P G=C S \quad[S G(C 4 N 4 S 4)] \backslash \backslash\)
\end{abstract}

Table 207. Computational output parameters for singlet 189a.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 H 1 N 3 S 4 \backslash G A U S S I A N \backslash 22-A u g-2009 \backslash 0 \backslash \backslash\) \# opt=tight ub3lyp/6-31g(d) geom=connectivity \(\backslash \backslash o p t ~ s i n g l e t \backslash \backslash 0,1 \backslash C,-0.0\) 272297893,-0.0360615999,-0.0389130636\C, 0.0052194948,-0.0108236233,1.3 \(945997565 \backslash C, 1.4381260699,0.0052397917,1.7667562259 \backslash \mathrm{C}, 2.162168425,-0.21\) \(0866682,0.5478593618 \backslash S,-1.5762232784,-0.3792865554,-0.7937998618 \backslash S,-2\) \(.4672944994,-0.3463711066,1.2469015357 \backslash S, 3.6846277097,0.4196585376,2.7\) \(812609341 \backslash N,-1.0652499725,-0.1810179675,2.1234522447 \backslash S, 3.8963639424,0\). \(0677285005,0.5924561185 \backslash \mathrm{~N}, 2.0277082094,0.3432488355,2.8822111696 \backslash \mathrm{~N}, 1.2\) 594969269,-0.1904758108,-0.4819944618\H,1.5136032354,-0.2791510044,-1. \(4565473685 \backslash\) \Version=AM64L-G03RevD.02\State=1-A \(\backslash H F=-1909.9150512 \backslash\) S2=0. \(S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=8.161 e-09 \backslash R M S F=5.831 e-07 \backslash\) Thermal=0. \(\backslash\) Dipole=0. 35814 03,-0.1249794,-1.373543\PG=C01 [X(C4H1N3S4)]\\@

Table 208. Computational output parameters for triplet 189a.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 H 1 N 3 S 4(3) \backslash G A U S S I A N \backslash 23-A u g-2009 \backslash\) \(0 \backslash \backslash \#\) opt=tight ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt triplet \(\backslash \backslash 0,3 \backslash C, 0\) \(.0096904068,-0.1599216644,0.036892666 \backslash C, 0.0151435884,-0.0456426935,1.4\) \(442961327 \backslash C, 1.4077272961,0.0459821717,1.8331059551 \backslash \mathrm{C}, 2.1531249995,-0.0\) \(366407575,0.6366822619 \backslash S,-1.5005344561,-0.3945079948,-0.7861771437 \backslash \mathrm{~S},-\) \(2.473929404,-0.2145926833,1.1945673509 \backslash S, 3.6641031723,0.2768537016,2.9\) \(406440885,0.7019982804 \backslash N, 2.0123723213,0.2597533257,3.0132869004 \backslash N, 1.30\) \(30453816,-0.1572597948,-0.4431442602 \backslash \mathrm{H}, 1.5778332504,-0.2303818356,-1.4\) \(101088026 \backslash\) VVersion=AM64L-G03RevD.02\State=3-B\HF=-1909.9302112\S2=2.01 \(9355 \backslash S 2-1=0 . \backslash S 2 A=2.000202 \backslash R M S D=2.562 e-09 \backslash R M S F=2.516 e-06 \backslash\) Thermal=0. \(\backslash \mathrm{Dip}\) ole=0.4900067,-0.1303926,-1.7243088\PG=C02 [C2(N1H1), X(C4N2S4)]\\@

Table 209. Computational output parameters for singlet 189b.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 201 S 4 \backslash G A U S S I A N \backslash 29-J u n-2009 \backslash 0 \backslash \backslash\)
\(\#\) opt=tight ub3lyp/6-31g(d) geom=connectivity \(\backslash \backslash o p t ~ s i n g l e t \backslash \backslash 0,1 \backslash C, 0.02\)
\(55698427,0.2282581916,0.1051787114 \backslash C,-0.0262693644,0.072111993,1.52063\)
\(05888 \backslash C, 1.3832698789,-0.0730613549,1.9309512479 \backslash C, 2.0993304129,-0.2283\)
\(884667,0.708779497 \backslash S,-1.466260079,0.0639469221,-0.7841703085 \backslash S,-2.4937\)
\(955936,-0.0900825016,1.1872402206 \backslash S, 3.6441228525,0.0887992242,2.974248\)
\(2273 \backslash N,-1.152033256,-0.1184143139,2.1627935565 \backslash 0,1.2838313634,0.000155\)
\(7747,-0.3534283751 \backslash S, 3.8353782676,-0.0638698672,0.7592714709 \backslash N, 1.98839\)
\(16148,0.116854433,3.0771515578 \backslash \backslash V e r s i o n=A M 64 L-G 03 R e v D .02 \backslash S t a t e=1-A \backslash H F=\)
\(-1929.7532977 \backslash S 2=0 . \backslash S 2-1=0 . \backslash S 2 A=0 . \backslash R M S D=2.059 e-09 \backslash R M S F=2.331 e-06 \backslash T h e r m\)
\(a l=0 . \backslash D i p o l e=0.135398,0.0001336,-0.4647958 \backslash P G=C 01 \quad[X(C 4 N 201 S 4)] \backslash \backslash @\)

Table 210. Computational output parameters for triplet 189b.
```

1\1\GINC-CHEM53\FOpt\UB3LYP\6-31G(d)\C4N2O1S4(3)\GAUSSIAN\30-Jun-2009\
0<br>\# opt=tight ub3lyp/6-31g(d) geom=connectivity<br>opt triplet<br>0,3\C,0 $.0123437497,-0.2247959118,0.0462380657 \backslash C, 0.0105168189,-0.071574731,1.4$ $359548781 \backslash C, 1.4161385777,0.0718157147,1.7894115239 \backslash \mathrm{C}, 2.0946565334,-0.0$ $123751343,0.5698549821 \backslash S,-1.4823786094,-0.4299118488,-0.8066002165 \backslash S,-$ $2.4638673678,-0.286094106,1.1573577403 \backslash S, 3.7223628368,0.3450158345,2.7$ $12939119 \backslash \mathrm{~N},-1.1309337234,-0.0792206071,2.1349658337 \backslash 0,1.2652895729,-0$. $1924912179,-0.5042128592 \backslash \mathrm{~S}, 3.822808716,0.1112834352,0.5274381925 \backslash \mathrm{~N}, 2.0$ 75027327,0.247855482,2.9411318769<br>Version=AM64L-G03RevD.02\State=3-A\} $H F=-1929.7771997 \backslash S 2=2.020627 \backslash S 2-1=0 . \backslash S 2 A=2.000217 \backslash R M S D=6.669 \mathrm{e}-09 \backslash \mathrm{RMSF}=$ $9.480 \mathrm{e}-07 \backslash$ Thermal=0. D Dipole=0.2216092,-0.0773325,-0.8499212\PG=C01 [X( C4N2O1S4)] <br>@

```

Table 211. Computational output parameters for singlet 189c.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 2 S 5 \backslash G A U S S I A N \backslash 30-J u n-2009 \backslash 0 \backslash \backslash \#\)
opt=tight ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt singlet \(\backslash \backslash 0,1 \backslash c,-0.138\)
1957536,-0.1086032047,-0.0906518736\C, 0.0250142728,-0.0483415103,1.326
\(761634 \backslash C, 1.4553560322,0.0298358629,1.6925972088 \backslash C, 2.2873820992,-0.1432\)
\(85268,0.5449511129 \backslash S,-1.7733572004,-0.345548433,-0.6836827945 \backslash \mathrm{~S},-2.463\)
\(9549434,-0.3237765843,1.4006556112 \backslash S, 3.6062158042,0.4232548912,2.91542\)
\(85515 \backslash \mathrm{~N},-0.9940814766,-0.1519419183,2.1458187045 \backslash \mathrm{~S}, 4.0137493596,0.0618\)
339699,0.7881867187\N,1.9534124073,0.315252988,2.8718430082\S,1.370423
8311,-0.2291737349,-0.9074287587\\Version=AM64L-G03RevD.02\State=1-A \(\backslash\) H
\(\mathrm{F}=-2252.7537939 \backslash \mathrm{~S} 2=0 . \backslash \mathrm{S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0 . \backslash \mathrm{RMSD}=8.434 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.799 \mathrm{e}-06 \backslash\) The
rmal=0. \Dipole=0.1973672,-0.0688713,-0.7569547 \(\mathrm{PGG}=\mathrm{C01}\) [X(C4N2S5)]\\@

Table 212. Computational output parameters for triplet 189c.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 2 S 5(3) \backslash G A U S S I A N \backslash 30-J u n-2009 \backslash 0 \backslash\)
\(\backslash \#\) opt=tight ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt triplet \(\backslash \backslash 0,3 \backslash C,-0\).
\(1336619062,-0.0000015959,-0.1005545924 \backslash C, 0.0254232845,0.0000014243,1.2\)
\(947890863 \backslash C, 1.4378732433,0.0000035221,1.660647805 \backslash C, 2.2543594558,0.000\)
\(0020695,0.5180007272 \backslash S,-1.7524485725,-0.000004214,-0.7338407555 \backslash S,-2.4\)
\(843612976,-0.0000007729,1.3265087471 \backslash S, 3.6166531389,0.0000079713,2.906\)
\(8191224 \backslash N,-1.0287631053,0.0000022154,2.1166066304 \backslash S, 3.9770288999,0.000\)
\(0039807,0.7502325554 \backslash N, 1.9605228684,0.0000063474,2.8909040342 \backslash S, 1.3738\)
\(467137,-0.0000018962,-1.001580605 \backslash \backslash V e r s i o n=A M 64 L-G 03 R e v D .02 \backslash H F=-2252.7\)
\(743248 \backslash S 2=2.020902 \backslash S 2-1=0 . \backslash S 2 A=2.000226 \backslash R M S D=4.183 e-09 \backslash R M S F=2.355 e-06 \backslash\)
Thermal=0.\Dipole=-0.9034262,-0.0000013,-0.2340094\PG=C02 [C2(S1),X(C4
N2S4)]\\@

Table 213. Computational output parameters for singlet 189d.

\footnotetext{
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 4 N 2 O 2 S 5 \backslash G A U S S I A N \backslash 29-A u g-2009 \backslash 0 \backslash \backslash\) \# opt=tight ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \singlet opt \(\backslash \backslash 0,1 \backslash C, 0.01\) 35466293,-0.1259063537,-0.0077677794 \C, 0.015214635,-0.0262358367,1.401 \(2044237 \backslash C, 1.3879907469,0.0221929325,1.9249495064 \backslash C, 2.3328475016,-0.044\) \(1510403,0.8771022591 \backslash S,-1.5235695466,-0.1932116042,-0.7783444983 \backslash S,-2\).
}

Table 214. Computational output parameters for triplet 189d.
```

1\1\GINC-CHEM53\FOpt\UB3LYP\6-31G(d)\C4N2O2S5(3)\GAUSSIAN\29-Aug-2009\
0<br>\# opt=tight ub3lyp/6-31g(d) geom=connectivity<br>triplet opt<br>0,3\C,-
0.0254379856,-0.0000548108,-0.010508848\C,0.0008472691,-0.0000000811,1
.3917855635\C,1.3854436939,0.0000008888,1.9240276288\C,2.3442562603,-0
.0000548622,0.9004070964\S,-1.5660107671,-0.0000641657,-0.7881209696\S
,-2.4901693149,0.0000260623,1.1875921835\S,3.371839621,0.0000341982,3.
4409619655\N, -1.1097379258,0.0000429637,2.1049389615\S,4.009023351,-0.
0000598084,1.3549350296\N,1.7323820882,0.0000481165,3.1974564623\S,1.6
149883482,-0.0001072089,-0.7402133947\0,1.8796450179,1.2649215684,-1.4
287000951\0,1.8796062806,-1.2651966928,-1.4286034109<br>Version=AM64L-G0
3RevD.02\State=3-A\HF=-2403.1315058\S2=2.023853\S2-1=0.\S2A=2.000287\R
MSD=5.107e-09\RMSF=3.450e-06\Thermal=0.\Dipole=-0.3028934,0.0000345,0.
7879596\PG=C01 [X(C4N2O2S5)]<br>@

```

Table 215. Computational output parameters for singlet 191.
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash\) FOpt \(\backslash\) UB3LYP \(\backslash 6\)-31G (d) \C6H2N2S4\GAUSSIAN \(\backslash 28-S e p-2010 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \} \text { (opt } \backslash \backslash 0 , 1 \backslash c , - 0 . 0 9 5 0 9 9 0 1 5 , 0 . , 0 . \(0002144284 \backslash C, 0.0278822048,0 ., 1.4685065687 \backslash C, 1.2435664772,0 ., 2.08198659\) \(48 \backslash C, 2.4487612051,0.1 .2928459228 \backslash C, 2.3258405783,0 .,-0.175569869 \backslash \mathrm{~S},-2\). \(5932615294,0 ., 0.4424229676 \backslash S, 4.9468817494,0 ., 0.8516339499 \backslash S,-1.5195853\) \(844,0 ., 2.3106956449 \backslash H, 1.3528063569,0 ., 3.1602292401 \backslash N,-1.2745912422,0 .\), \(-0.5620881413 \backslash C, 1.1099476724,0 .,-0.7890474378 \backslash \mathrm{H}, 1.0007316989,0 .,-1.867\) \(3158865 \backslash \mathrm{~N}, 3.6279355518,0 ., 1.8555135157 \backslash \mathrm{~S}, 3.8733544028,0 .,-1.0174209617\) \\Version=AM64L-G03RevD.02\State=1-A'\HF=-1932.058867\S2=0. \S2-1=0. \S2
```

A=0.\RMSD=4.727e-09\RMSF=7.634e-05\Thermal=0.\Dipole=0.0003999,0.,0.00
03791\PG=CS [SG(C6H2N2S4)]<br>@

```

Table 216. Computational output parameters for triplet 191.

1 \1 \GINC-CHEM54 \FOpt \UB3LYP\6-31G(d) \C6H2N2S4 (3) \GAUSSIAN \(\backslash 01-O c t-2010 \backslash\) \(0 \backslash \backslash \#\) opt ub3lyp/6-31g(d) geom=connectivity \} \backslash o p t ~ t r i p l e t \backslash \backslash 0 , 3 \backslash c , 0 . 0 1 1 0 4 \(34534,0 ., 0.0048411833 \backslash \mathrm{C},-0.0012339297,0 ., 1.4345326065 \backslash \mathrm{C}, 1.1793087625,0\) ., 2.1690056317\C,2.4159709686,0.,1.4957747143\C,2.4282514245,0.,0.0660 \(80011 \backslash S,-2.5141625541,0 ., 0.2415608921 \backslash S, 4.9411845726,0 ., 1.2590657542 \backslash S\) , \(-1.6024068365,0 ., 2.185056702 \backslash \mathrm{H}, 1.1807751061,0 ., 3.2530205358 \backslash \mathrm{~N},-1.1684\) 649813,0.,-0.6953953628\C,1.2477037122,0.,-0.6683888545\H,1.2462355894 , 0.,-1.7524039797\N,3.5954836212,0.,2.1959764781\S, 4.0294045564,0.,-0. \(6844642598 \backslash\) VVersion=AM64L-G03RevD.02\State=3-A' \(\backslash H F=-1932.0277973 \backslash\) S2 \(=2\). \(010729 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=2.000062 \backslash \mathrm{RMSD}=4.545 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.975 \mathrm{e}-04 \backslash\) Thermal=0. DD ipole=0.0000397,0.,0.0000601\PG=CS [SG(C6H2N2S4)] \\@

Table 217. Computational output parameters for singlet 192.
\(1 \backslash 1 \backslash G I N C-C H E M 53 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 S 4 \backslash G A U S S I A N \backslash 10-M a y-2010 \backslash 0 \backslash \backslash\) \# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt singlet \(\backslash \backslash, 1 \backslash c,-0.0415966\) 308,0.,0.1402068075\C,-0.0696483267,0.,1.5059938916\C,1.1441325231,0., \(2.2682666149 \backslash \mathrm{C}, 2.3619757067,0 ., 1.6493712793 \backslash \mathrm{C}, 2.473910034,0 ., 0.1906806\) \(593 \backslash \mathrm{~S}, 4.967028028,0 ., 0.5880603563 \backslash \mathrm{H}, 1.0728058631,0 ., 3.3507789873 \backslash \mathrm{C}, 1.2\) \(235808232,0 .,-0.5944081908 \backslash \mathrm{H},-1.0137389079,0 ., 2.0405124318 \backslash \mathrm{~S},-0.216413\) 5989,0.,-2.6681939637\N,1.24694612,0.,-1.8959931835\S,-1.4699266985,0. ,-0.912359671 \N, 3.6362852679,0.,-0.3956744862\S,3.9312875639,0.,2.4775 \(820641 \backslash\) VVersion=AM64L-G03RevD.02 \State=1-A' \(\backslash \mathrm{HF}=-1932.0454605 \backslash\) S2 \(=0 . \backslash\) S2\(1=0 . \backslash S 2 A=0 . \backslash R M S D=7.355 e-09 \backslash R M S F=1.092 e-04 \backslash\) Thermal=0. \(\backslash\) Dipole=-0.4771042 ,0.,0.7639066\PG=CS [SG(C6H2N2S4)]\\@

Table 218. Computational output parameters for triplet 192.
1 \1 \GINC-CHEM54 \FOpt\UB3LYP\6-31G(d) \C6H2N2S4 (3) \GAUSSIAN \(\backslash 01-O c t-2010 \backslash\)
\(0 \backslash \ \#\) opt ub3lyp/6-31g(d) geom=connectivity \} \text { \opt triplet } \backslash \backslash 0 , 3 \backslash c , 0 . 0 4 1 6 1 \(\\{\text { 72256,0.,-0.014603957\C, 0.0110478384,0.,1.396568036\C,1.1970899105,0., }} \\{2.1077427957 \backslash C, 2.4274163738,0 ., 1.415962567 \backslash C, 2.4964033341,0 .,-0.001397} \\{95 \backslash \mathrm{~S}, 4.9975999691,0.0 .3571073901 \backslash \mathrm{H}, 1.1801624759,0 ., 3.1921360563 \backslash \mathrm{C}, 1.2} \\{\text { 593540483,0.,-0.7431452147\H,-0.9375007229,0.,1.9223375798\S,-0.234907 }} \\{\text { 2747,0.,-2.780698147\N,1.2619399908,0.,-2.0951652841 } \mathrm{S}_{\mathrm{S}},-1.4216486221,0} \\{\text {., -0.9900371926\N, 3.687820755,0.,-0.6405685933\S,3.9771299333,0.,2.247 }} \\{2938113 \backslash \backslash \text { Version=AM64L-G03RevD.02\State=3-A' } \backslash \mathrm{HF}=-1932.0313828 \backslash \text { S2 }=2.015} \\{03 \backslash S 2-1=0 . \backslash S 2 A=2.000113 \backslash \operatorname{RMSD}=3.353 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.665 \mathrm{e}-05 \backslash \text { Thermal=0. }{ }^{2} \mathrm{Dipol}} \\{e=-0.6427159,0 ., 1.0718037 \backslash P G=C S \quad[S G(C 6 H 2 N 2 S 4)] \backslash \backslash @} \end{array}\)

Table 219. Computational output parameters for singlet 193.
\(1 \backslash 1 \backslash G I N C-C H E M 54 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 S 4 \backslash G A U S S I A N \backslash 01-O c t-2010 \backslash 0 \backslash \backslash\)
\# opt ub3lyp/6-31g(d) geom=connectivity \(\backslash\) \opt singlet \(\backslash \backslash 0,1 \backslash c, 0.00758585\)
\(03,0 ., 0.0208665064 \backslash C, 0.0037252685,0 ., 1.4715065573 \backslash C, 1.1609271851,0 ., 2\).
\(1711059567 \backslash \mathrm{C}, 2.4438498322,0 ., 1.4940057904 \backslash \mathrm{C}, 2.46192462,0 ., 0.0329707684\)
\(\backslash S, 4.968125944,0 ., 1.2918716222 \backslash \mathrm{H}, 1.1733758373,0 ., 3.2555437161 \backslash \mathrm{~N},-1.109\)
\(3804407,0 .,-0.6538009426 \backslash \mathrm{C}, 1.2937721303,0 .,-0.6734262402 \backslash \mathrm{~N}, 3.559346335\)
\(6,0 ., 2.1714475981 \backslash S, 4.0786685947,0 .,-0.6802484259 \backslash S, 1.1760728309,0 .,-2\)
\(.4362385254 \backslash \mathrm{H},-0.9624340615,0 ., 1.9641676087 \backslash \mathrm{~S},-0.9845367193,0 .,-2.3090\)
\(355821 \backslash\) VVersion=AM64L-G03RevD.02\State=1-A' \(\backslash \mathrm{HF}=-1932.057755 \backslash\) S2 \(=0 . \backslash\) S2-1
\(=0 . \backslash S 2 A=0 . \backslash R M S D=3.249 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.186 \mathrm{e}-04 \backslash\) Thermal=0. \(\backslash\) Dipole=-0.0995695,
\(0 ., 0.1603043 \backslash \mathrm{PG}=\mathrm{CS}[\mathrm{SG}(\mathrm{C} 6 \mathrm{H} 2 \mathrm{~N} 2 \mathrm{~S} 4)] \backslash \backslash @\)

Table 220. Computational output parameters for triplet 193.
\(1 \backslash 1 \backslash G I N C-C H E M 39 \backslash F O p t \backslash U B 3 L Y P \backslash 6-31 G(d) \backslash C 6 H 2 N 2 S 4(3) \backslash G A U S S I A N \backslash 01-O c t-2010 \backslash\)
\(0 \backslash \backslash \#\) OPT UB3LYP/6-31G(D) GEOM=CONNECTIVITY\\opt triplet \(\backslash \backslash 0,3 \backslash C,-1.7918\)
\(548825,0 ., 0.2335764871 \backslash C,-1.79671678,0 ., 1.6514748933 \backslash C,-0.6162964263,0\)
\(., 2.3614510731 \backslash C, 0.6338494795,0 ., 1.6923933687 \backslash C, 0.6588151144,0 ., 0.2684\)
\(689007 \backslash S, 3.1643005762,0 ., 1.4616063762 \backslash \mathrm{H},-0.6132678916,0 ., 3.4457021131 \backslash\)
\(N,-2.960005029,0 .,-0.479712079 \backslash C,-0.5459474588,0 .,-0.4561288128 \backslash N, 1.81\)
```

16374668,0.,2.3897594799\S,2.2480126637,0.,-0.4824948893\S,-0.62785483
65,0.,-2.2119598094\H,-2.7559271579,0.,2.1569844905\S,-2.7746662967,0.
,-2.1096787943<br>Version=x86-Linux-G03RevB.05\State=3-A'\HF=-1932.02937
66\S2=2.013205\S2-1=0.\S2A=2.000084\RMSD=6.936e-09\RMSF=4.199e-05\Dipo
le=0.2035239,0.,-0.3390914\PG=CS [SG(C6H2N2S4)]<br>@

```

Table 221. Computational output parameters for 1,2,3-dithiazole radical.
```

1|1|UNPC-CHEM40-OTNBTO7T|FOpt|UB3LYP| 6-31G(d)|C2H2N1S2(2)|GAUSSIAN|02-
Jan-2013|0||\# opt ub3lyp/6-31g(d) geom=connectivity||SSN||0,2|C,0.,1.2
472344921,0.8381997609|C,0.,1.1819887368,-0.5460604338|N,0.,2.41274400
74,1.4892649346|S,0.,3.7429050433,0.4880553995|S,0.,2.7046202191,-1.39
85587956|H,0.,0.2686146147,-1.1268166196|H,0.,0.3460083566,1.446438363
9||Version=IA32W-G09RevC.01|State=2-A"|HF=-928.4928535|S2=0.766534|S2-
1=0.|S2A=0.750081|RMSD=8.445e-009|RMSF=2.280e-004|Dipole=0.,-0.5557846
,-0.4714556|Quadrupole=-2.2110738,4.1570711,-1.9459973,0.,0.,-0.257222
8|PG=CS [SG(C2H2N1S2)]||@

```

Table 222. Computational output parameters for benzo-1,2,3-dithiazole radical.

1|1|UNPC-CHEM39-KPDQ5T27|FOpt|UB3LYP|6-31G(d)|C6H4N1S2(2)|GAUSSIAN|02-Jan-2013|0||\# opt ub3lyp/6-31g(d) geom=connectivity||benzoSSN||0,2|C,0 ., 1. \(2270339196,0.8550320425\) IC, 0., 1.1998684928,-0. 5778679178 |C, 0., -0.01 27014907,-1.2694582853|C,0.,-1.2088303775,-0.5531954853|C,0.,-1. 200265 0744,0.8527182869|C,0.,-0.0070191514,1.5534071801|N, 0., 2.4102953991,1. 5161572609|S, 0., 3.7471418415,0.5546460659|S,0.,2.7791858357,-1.3657152 83|H, 0., 0.0190275567,2.637874359|H, 0.,-0.0254390289,-2.3548763979|H, 0. ,-2.1408640123,1.3958343325|н,0.,-2.1524135703,-1.0904423087।।Version= IA32W-G0 9RevC.01|State=2-A"|HF=-1082.1434179|S2=0.768688|S2-1=0.|S2A=0 . 750247|RMSD=6.960e-009|RMSF=5.332e-005|Dipole=0.,-0.6277805,-0.418965 2 |Quadrupole=-4.0180208,4.1943627,-0.1763419,0.,0.,-0.9455499|PG=CS [S G(C6H4N1S2)]।।@

Figure 60 X-ray structure of 5,7-di-phenyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 116.

Space Group: P-1
Cell Lenghts (\(\AA\)): a 10.6913(7), b 10.7388(7), c 11.0400(7)
Cell Angles (\({ }^{\circ}\)): \(\alpha\) 79.393(5), \(\beta\) 88.577(5), \(\gamma\) 78.677(5)
Cell Volume (\(\AA^{\mathbf{3}}\)): \(1221.53(14)\)
Z: 2
R factor (\%): 3.99

Figure 61 X-ray structure of 5,7-di- \(n\)-butyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 117.

Space Group: P-1
Cell Lenghts (\(\AA\)): a 8.2937(4), b 8.9994(4), c 14.1540(5)
Cell Angles (\({ }^{\circ}\)): \(\alpha\) 79.277(3), \(\beta\) 79.434(3), \(\gamma\) 83.042(4)
Cell Volume (\(\AA^{\mathbf{3}}\)): 1016.23(7)
Z: 2
R factor (\%): 6.30

Figure 62 X-ray structure of 5,7-di-n-dodecyl-7,13-dihydroquinoxalino[2,3-b]phenazin-5-ium-13-ide 118.

Space Group: P 2(1)/c
Cell Lenghts (\(\AA\)): a \(21.4795(10)\), b 9.3618(4), c 17.9078(6)
Cell Angles (\({ }^{\circ}\)): \(\alpha\) 90.000, \(\beta\) 93.816(4), \(\gamma 90.000\)
Cell Volume (\(\AA^{\mathbf{3}}\)): 3593.04(30)
Z: 4
R factor (\%): 6.93

Figure 63 X-ray structure of 5-butyl-4-chloro-1-nitro-5,10-dihydrophenazine 146.

\section*{Space Group: C 2/c}

Cell Lenghts (\(\AA\)): a 30.1757(16), b 28.9029(38), c 21.2557(20)
Cell Angles (\({ }^{\circ}\)): \(\alpha 89.900, \beta 127.505(8), \gamma 90.041\)
Cell Volume (\(\AA^{\mathbf{3}}\)): \(14706.56(296)\)
Z: 8
R factor (\%): 31.65

Figure 64 X-ray structure of tetraazapentacene oxy radical 158.

Space Group: C 2/c
Cell Lenghts (\(\AA\)): a 20.544(2), b 14.5427(18), c 17.625(4)
Cell Angles (\({ }^{\circ}\)): \(\alpha\) 89.996, \(\beta\) 102.027(14), \(\gamma 90.041\)
Cell Volume (\(\mathbf{\AA}^{\mathbf{3}}\)): 5150.15(150)
Z: 8
R factor (\%): 11.83

Figure 65 X-ray structure of 1,4-dinitro-10-phenyl-2-(trifluoromethyl)-5,10dihydrophenazine 176.

Space Group: C 2/c
Cell Lenghts (\(\AA\)): \(\mathrm{a}=26.0989\) (19), \(\mathrm{b}=10.6474(8), \mathrm{c}=14.0452(10)\)
Cell Angles (\({ }^{\circ}\)): \(\alpha\) 90.000, \(\beta\) 107.6700, \(\gamma 90.000\)
Cell Volume (\(\AA^{\mathbf{3}}\)): \(3718.82(50)\)
Z: 4
R factor (\%): 3.16

Figure 66 X-ray structure of 1,2-dinitro-5-phenyl-3-(trifluoromethyl)-5,10dihydrophenazine 177.

Space Group: P 2(1)/n
Cell Lenghts (\(\AA\)): a 13.1420(6), b 7.3928(4), c 17.9303(9)
Cell Angles (\({ }^{\circ}\)): \(\alpha\) 90.013, \(\beta\) 106.319(4), \(\gamma 90.048\)
Cell Volume (\(\AA^{\mathbf{3}}\)): 1.65389
Z: 4
R factor (\%): 3.21

\section*{LIST OF COMPOUNDS PREPARED}

Compound number in bold followed by page number where compound appears in Chapter 6 (Experimental).

\(95 f\)
p 187

94c
p 189

94f
p 190

94i
p 192

93a
p 194

94a
p 188

94d
p 189

94g
p 191

94j
p 193

93b
p 195

94b p 188

94e
p 190

94h
p 192

94k
p 193

93c
p 195

93d
p 195

93e
p 196

93h
p 197

93k
p 199

\(93 f\) p 196

93g
p 197

93j p 198

92a p 199

92b
p 200

92d
p 201

92c
p 201

92f
p 202

p 204

92j
p 205

91a
p 207

91c
p 208

92 g
p 203

92k
p 205

91b
p 208

91d
p 209

p 209

91 g
p 210

91f
p 210

91h
p 211

91j
p 212

105
p 193

106
p 190

107a
p 206

132a
p 214

p 215

148
p 215

158a p 217

158c
p 218

158d
p 218

160
p 213

161
p 213

170
p 219

171
p 218

173
p 219

176
p 219

177
p 219

\section*{REFERENCES}

Kuphaldt, T. R. Lessons In Electric Circuits, Semiconductors, 5th ed., vol. III, 2009.

Harris, I. R.; Williams, A. J. MAGNETIC MATERIALS in Materials Science and Engineering. [Ed. Rees D. Rawlings], in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net], 2009, vol. II.
Miller, J. S.; Epstein, A. J. MRS Bull. 2000, 25, 21-30.
Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Molnár, S. V.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M.; Science 2001, 294, 1488-1495.
Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 16, 578-580.

Singh, R. K.; Dixit, A. Basic Electronics Engineering \& Devices, 1st ed., 2007.

Akamatu, H.; Inokuchi, H.; Matsunaga, Y. Nature 1954, 173, 168-169.
Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. J. Am. Chem. Soc. 1973, 95, 948-949.
Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem. 2005, 15, 53-65.
0 Murphy, A. R.; Fréchet, J. M. J. Chem. Rev. 2007, 107, 1066-1096.
1 Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452-483.
2 Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem. Int. Ed. 2008, 47, 4070-4098.
Halls, J. J. M.; Friend, R. H. Synth. Met. 1997, 85, 1307-1308.
Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 1996, 68, 3120-3122.
Hellemans, A.; Bunch, B. The Timetables of Science, Simon \& Schuster, New York, 1988.
Miller, J. S.; Epstein, A. J. Angew. Chem. Int. Ed. 1994, 33, 385-415.
7 Pope, M.; Swenberg, C. E. Electronic processes in organic crystals and polymers, XVI. Organic Magnets, 2nd ed., 1999.
Rice, F. O.; Glasebrook, A. L. J. Am. Chem. Soc. 1933, 55, 4329-4330.
Baseman, R. J.; Pratt, D. W.; Chow, M.; Dowd, P. J. Am. Chem. Soc. 1976, 98, 5726-5727.
Keana, J. F. W. Chem. Rev. 1978, 78, 37-64.
1 Takahashi, M.; Turek, P.; Nakazawa, Y.; Tamura, M.; Nozawa, K.; Shiomi, D.; Ishikawa, M.; Kinoshita, M. Phys. Rev. Lett. 1991, 67, 746-748.

22 Ullman, E. F.; Osiecki, J. H.; Boocock, D. G. B.; Darcy, R. J. Am. Chem. Soc. 1972, 94, 7049-7059.
Rawson, J.; Catalán, A. Molecules 2004, 9, 713-715.
Allemand, P.-M.; Khemani, K. C.; Koch, A.; Wudl, F.; Holczer, K.; Donovan, S.; Grüner, G.; Thompson, J. D. Science 1991, 253, 301-302.

25 Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.; Shiomi, D.; Takui, T.; Kubota, M.; Kobayashi, T.; Yakusi, K.; Ouyang, J. J. Am. Chem. Soc. 1999, 121, 1619-1620.
26 Zheng, S.; Thompson, J. D.; Tontcheva, A.; Khan, S. I.; Rubin, Y. Org. Lett. 2005, 7, 1861-1863.

Mukai, K.; Inoue, K.; Achiwa, N.; Jamali, J. B.; Krieger, C.; Neugebauer, F. A. Chem. Phys. Lett. 1994, 224, 569-575.

Shinichiro, N. J.P. Pat. 7,138,507, (1995).
Kentaro, N.; Satoh, M.; Shigeyaki, I.; Hiroshi, Y.; Yutaka, B.; Yukiko, M.; Etsuo, H. U.S. Pat. 6,866,964, (2005).
Lawton, W. R.; Salern, N. H. U.S. Pat. 3,600,168, (1966).
Kazuo, M.; Hiroyoshi, H.; Hiroshi, A.; Furukana, K.; Masamitsu, O. J.P. Pat. 5,802,3878, (1983).
Sutcliffe, L. H. Phys. Med. Biol. 1998, 43, 1987
Koivisto, B. D.; Hicks, R. G. Coord. Chem. Rev. 2005, 249, 2612-2630.
Luneau, D.; Rey, P. Coord. Chem. Rev. 2005, 249, 2591-2611.
Power, P. P. Chem. Rev. 2003, 103, 789-810.
Vostrikova, K. E. Coord. Chem. Rev. 2008, 252, 1409-1419.
Hicks, R. G. Org. Biomol. Chem. 2007, 5, 1321-1338.
Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757-771.
Andersen, P. Acta Chem. Scand. 1965, 19, 629-637.
Andersen, P.; Klewe, B. Acta Chem. Scand. 1967, 21, 2599-2607.
Kahr, B.; Van Engen, D.; Gopalan, P. Chem. Mater. 1993, 5, 729-732.
Neumann, W. P.; Uzick, W.; Zarkadis, A. K. J. Am. Chem. Soc. 1986, 108, 3762-3770.
Dünnebacke, D.; Neumann, W. P.; Penenory, A.; Stewen, U. Chem. Ber. 1989, 122, 533-535.
Rajca, A.; Utamapanya, S. J. Am. Chem. Soc. 1993, 115, 2396-2401.
Rajca, A.; Utamapanya, S.; Thayumanavan, S. J. Am. Chem. Soc. 1992, 114, 1884-1885.
Rajca, A. J. Am. Chem. Soc. 1990, 112, 5890-5892.
Ballester, M.; Riera-Figueras, J.; Castaner, J.; Badfa, C.; Monso, J. M. J. Am. Chem. Soc. 1971, 93, 2215-2225.
Armet, O.; Veciana, J.; Rovira, C.; Riera, J.; Castaner, J.; Molins, E.; Rius, J.; Miravitlles, C.; Olivella, S.; Brichfeus, J. J. Phys. Chem. 1987, 91, 5608-5616. Carilla, J.; Fajarí, L.; Juliá, L.; Riera, J.; Viadel, L. Tetrahedron Lett. 1994, 35, 6529-6532.
Carilla, J.; Fajarí, L.; Juliá, L.; Sañé, J.; Rius, J. Tetrahedron 1996, 52, 70137024.

Jang, S.-H.; Gopalan, P.; Jackson, J. E.; Kahr, B. Angew. Chem. Int. Ed. 1994, 33, 775-777.
1 Sabacky, M. J.; Johnson, C. S.; Smith, R. G.; Gutowsky, H. S.; Martin, J. C. J. Am. Chem. Soc. 1967, 89, 2054-2058.
Reid, D. H. Tetrahedron 1958, 3, 339-352.
Sogo, P. B.; Nakazaki, M.; Calvin, M. J. Phys. Chem. Phys. 1957, 26, 13431345.

Lewis, I. C.; Singer, L. S. J. Phys. Chem. 1969, 73, 215-218.
Broser, W.; Kurreck, H.; Oestreich-Janzen, S.; Schlömp, G.; Fey, H. J.; Kirste, B. Tetrahedron 1979, 35, 1159-1166.

Reid, D. H. Q. Rev. Chem. Soc. 1965, 19, 274-302.
Morita, Y.; Nishida, S.; Kawai, J.; Takui, T.; Nakasuji, K. Pure Appl. Chem. 2008, 80, 507-517.
Zaitsev, V.; Rosokha, S. V.; Head-Gordon, M.; Kochi, J. K. J. Org. Chem. 2005, 71, 520-526.
Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Itoh, K.; Gotoh, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Naito, A. Synth. Met. 1999, 103, 2257-2258.
Lü, J.-M.; Rosokha, S. V.; Kochi, J. K. J. Am. Chem. Soc. 2003, 125, 1216112171.

71 Small, D.; Zaitsev, V.; Jung, Y.; Rosokha, S. V.; Head-Gordon, M.; Kochi, J. K. J. Am. Chem. Soc. 2004, 126, 13850-13858.

Small, D.; Rosokha, S. V.; Kochi, J. K.; Head-Gordon, M. J. Phys. Chem. A 2005, 109, 11261-11267.
73 Koutentis, P. A.; Chen, Y.; Cao, Y.; Best, T. P.; Itkis, M. E.; Beer, L.; Oakley, R. T.; Cordes, A. W.; Brock, C. P.; Haddon, R. C. J. Am. Chem. Soc. 2001, 123, 3864-3871.
Haddon, R. C.; Wudl, F.; Kaplan, M. L.; Marshall, J. H.; Cais, R. E.; Bramwell, F. B. J. Am. Chem. Soc. 1978, 100, 7629-7633.
Haddon, R. C.; Wudl, F.; Kaplan, M. L.; Marshall, J. H.; Bramwell, F. B. J. Chem. Soc., Chem. Commun. 1978, 429-430.
Morita, Y.; Maki, S.; Fukui, K.; Ohba, T.; Kawai, J.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Org. Lett. 2001, 3, 3099-3102.
77 Morita, Y.; Kawai, J.; Nishida, S.; Haneda, N.; Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Synth. Met. 2003, 137, 1217-1218.

78 Hatanaka, K.; Morita, Y.; Ohba, T.; Yamaguchi, K.; Takui, T.; Kinoshita, M.; Nakasuji, K. Tetrahedron Lett. 1996, 37, 877-880.
Morita, Y.; Ohba, T.; Haneda, N.; Maki, S.; Kawai, J.; Hatanaka, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. J. Am. Chem. Soc. 2000, 122, 4825-4826.
Morita, Y.; Kawai, J.; Fukui, K.; Nakazawa, S.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Org. Lett. 2003, 5, 3289-3291. Fuyuhiro, A.; Yamamoto, K.; Sato, K.; Shiomi, D.; Naito, A.; Takui, T.; Nakasuji, K. Angew. Chem. Int. Ed. 2002, 41, 1793-1796.
82 Forrester, A. R.; Hay, J. M.; Thomson, R. H. Organic chemistry of stable free radicals, Academic Press, London; New York, 1968.
Danen, W. C.; Neugebauer, F. A. Angew. Chem. Int. Ed. 1975, 14, 783-789.
Ballester, M.; Castañer, J.; Olivella, S. Tetrahedron Lett. 1974, 15, 615-616.
Barth, T.; Kanellakopulos, B.; Krieger, C.; Neugebauer, F. A. J. Chem. Soc., Chem. Commun. 1993, 1626-1628.

104 Stroh, C.; Romero, F. M.; Kyritsakas, N.; Catala, L.; Turek, P.; Ziessel, R. J. Mater. Chem. 1999, 9, 875-882.
105 Barclay, T. M.; Cordes, A. W.; George, N. A.; Haddon, R. C.; Oakley, R. T.; Palstra, T. T. M.; Patenaude, G. W.; Reed, R. W.; Richardson, J. F.; Zhang, H. Chem. Commun. 1997, 873-874.
106 Beer, L.; Cordes, A. W.; Haddon, R. C.; Itkis, M. E.; Oakley, R. T.; Reed, R. W.; Robertson, C. M. Chem. Commun. 2002, 1872-1873.

107 Beer, L.; Britten, J. F.; Clements, O. P.; Haddon, R. C.; Itkis, M. E.; Matkovich, K. M.; Oakley, R. T.; Reed, R. W. Chem. Mater. 2004, 16, \(1564-\) 1572.

108 Beer, L.; Britten, J. F.; Brusso, J. L.; Cordes, A. W.; Haddon, R. C.; Itkis, M. E.; Macgregor, D. S.; Oakley, R. T.; Reed, R. W.; Robertson, C. M. J. Am. Chem. Soc. 2003, 125, 14394-14403.
109 Beer, L.; Brusso, J. L.; Cordes, A. W.; Haddon, R. C.; Itkis, M. E.; Kirschbaum, K.; Macgregor, D. S.; Oakley, R. T.; Pinkerton, A. A.; Reed, R. W. J. Am. Chem. Soc. 2002, 124, 9498-9509.

110 Beer, L.; Brusso, J. L.; Cordes, A. W.; Godde, E.; Haddon, R. C.; Itkis, M. E.; Oakley, R. T.; Reed, R. W. Chem. Commun. 2002, 2562-2563.
111 Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804-1816.
112 Bond, G.; Broecker, W.; Johnsen, S.; Mcmanus, J.; Labeyrie, L.; Jouzel, J.; Bonani, G. Nature 1993, 365, 143-147.
113 Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull. 2000, 25, 66-71.
114 Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Angew. Chem. Int. Ed. 2004, 43, 2117-2121.

115 Salem, L.; Rowland, C. Angew. Chem. Int. Ed. 1972, 11, 92-111.
Dowd, P. J. Am. Chem. Soc. 1966, 88, 2587-2589.
117 Dowd, P. Acc. Chem. Res. 1972, 5, 242-248.
118 Cramer, C. J. J. Chem. Soc., Perkin Trans. 2 1998, 1007-1014.
119 Haider, K. W.; Migirdicyan, E.; Platz, M. S.; Soundararajan, N.; Despres, A. J. Am. Chem. Soc. 1990, 112, 733-738.

120 Wenthold, P. G.; Hu, J.; Squires, R. R.; Lineberger, W. C. J. Am. Chem. Soc. 1996, 118, 475-476.
121 Wenthold, P. G.; Kim, J. B.; Lineberger, W. C. J. Am. Chem. Soc. 1997, 119, 1354-1359.
122 Geib, S. J.; Vicent, C.; Fan, E.; Hamilton, A. D. Angew. Chem. Int. Ed. 1993, 32, 119-121.
123 Dixon, D. A.; Dunning, T. H.; Eades, R. A.; Kleier, D. A. J. Am. Chem. Soc. 1981, 103, 2878-2880.
124 Wenthold, P. G.; Hu, J.; Squires, R. R.; Lineberger, W. C. J. Am. Soc. Mass Spectrom. 1999, 10, 800-809.
125 Wright, B. B.; Platz, M. S. J. Am. Chem. Soc. 1983, 105, 628-630.
126 Neuhaus, P.; Grote, D.; Sander, W. J. Am. Chem. Soc. 2008, 130, 2993-3000.
127 Longuet-Higgins, H. C. J. Phys. Chem. Phys. 1950, 18, 265-274.
128 Borden, W. T. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1993, 232, 195218.

129 Hund, F. Z. Phys. A: Hadrons Nucl. 1928, 51, 759-795.
130 Borden, W. T.; Iwamura, H.; Berson, J. A. Acc. Chem. Res. 1994, 27, 109116.

131 Ovchinnikov, A. A. Theor. Chim. Acta 1978, 47, 297-304.
132 West, A. P.; Silverman, S. K.; Dougherty, D. A. J. Am. Chem. Soc. 1996, 118, 1452-1463.
133 Schlenk, W.; Brauns, M. Chem. Ber. 1915, 48, 661-669.
134 Schlenk, W.; Brauns, M. Chem. Ber. 1915, 48, 716-728.
135 Kothe, G.; Denkel, K.-H.; Sümmermann, W. Angew. Chem. Int. Ed. 1970, 9, 906-907.
136 Luckhurst, G. R.; Pedulli, G. F.; Tiecco, M. J. Chem. Soc. B 1971, 329-334.
137 Calder, A.; Forrester, A. R.; James, P. G.; Luckhurst, G. R. J. Am. Chem. Soc. 1969, 91, 3724-3727.
138 Dvolaitzky, M.; Chiarelli, R.; Rassat, A. Angew. Chem. Int. Ed. 1992, 31, 180181.

139 Kanno, F.; Inoue, K.; Koga, N.; Iwamura, H. J. Am. Chem. Soc. 1993, 115, 847-850.
140 Fujita, J.; Tanaka, M.; Suemune, H.; Koga, N.; Matsuda, K.; Iwamura, H. J. Am. Chem. Soc. 1996, 118, 9347-9351.
141 Fang, S.; Lee, M.-S.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1995, 117, 6727-6731.
142 Rajca, A.; Lu, K.; Rajca, S.; R. Ross Ii, C. Chem. Commun. 1999, 1249-1250.
143 Rajca, A.; Shiraishi, K.; Rajca, S. Chem. Commun. 2009, 4372-4374.
144 Rajca, A.; Shiraishi, K.; Boratyński, P. J.; Pink, M.; Miyasaka, M.; Rajca, S. J. Org. Chem. 2011, 76, 8447-8457.
145 Yang, N. C.; Castro, A. J. J. Am. Chem. Soc. 1960, 82, 6208-6208.
146 Bock, H.; John, A.; Havlas, Z.; Bats, J. W. Angew. Chem. Int. Ed. 1993, 32, 416-418.
147 Shultz, D. A.; Boal, A. K.; Farmer, G. T. J. Org. Chem. 1998, 63, 9462-9469.

148 Haider, K.; Soundararajan, N.; Shaffer, M.; Platz, M. S. Tetrahedron Lett. 1989, 30, 1225-1228.
149 Rajca, A.; Shiraishi, K.; Pink, M.; Rajca, S. J. Am. Chem. Soc. 2007, 129, 7232-7233.
150 Boratyński, P. J.; Pink, M.; Rajca, S.; Rajca, A. Angew. Chem. Int. Ed. 2010, 49, 5459-5462.
151 Rajca, A.; Olankitwanit, A.; Rajca, S. J. Am. Chem. Soc. 2011, 133, 47504753.

152 Hutchison, K.; Srdanov, G.; Hicks, R.; Yu, H.; Wudl, F.; Strassner, T.; Nendel, M.; Houk, K. N. J. Am. Chem. Soc. 1998, 120, 2989-2990.
153 Blatter, H. M.; Lukaszewski, H. Tetrahedron Lett. 1968, 9, 2701-2705.
154 Wudl, F.; Koutentis, P. A.; Weitz, A.; Ma, B.; Strassner, T.; Houk, K. N.; Khan, S. I. Pure Appl. Chem. 1999, 71, 295-302.
155 Koutentis, P. A. Arkivoc 2002, 6, 175-191.
156 Beer, L.; Oakley, R. T.; Mingie, J. R.; Preuss, K. E.; Taylor, N. J.; Cordes, A. W. J. Am. Chem. Soc. 2000, 122, 7602-7603.

157 Braunstein, P.; Siri, O.; Taquet, J.-P.; Rohmer, M.-M.; Bénard, M.; Welter, R. J. Am. Chem. Soc. 2003, 125, 12246-12256.

158 Siri, O.; Braunstein, P. Chem. Commun. 2002, 208-209.
159 Siri, O.; Braunstein, P.; Rohmer, M.-M.; Bénard, M.; Welter, R. J. Am. Chem. Soc. 2003, 125, 13793-13803.
160 Langer, P.; Amiri, S.; Bodtke, A.; Saleh, N. N. R.; Weisz, K.; GöRls, H.; Schreiner, P. R. J. Org. Chem. 2008, 73, 5048-5063.
161 Fleischhauer, J.; Zahn, S.; Beckert, R.; Grummt, U.-W.; Birckner, E.; Görls, H. Chem. Eur. J. 2012, 18, 4549-4557.

162 Riley, A. E.; Mitchell, G. W.; Koutentis, P. A.; Bendikov, M.; Kaszynki, P.; Wudl, F.; Tolbert, S. H. Adv. Funct. Mater. 2003, 13, 531-540.
163 Haas, Y.; Zilberg, S. J. Am. Chem. Soc. 2004, 126, 8991-8998.
164 Worthington, S. E.; Cramer, C. J. J. Phys. Org. Chem. 1997, 10, 755-767.
165 Geise, C. M.; Hadad, C. M. J. Org. Chem. 2000, 65, 8348-8356.
166 Geise, C. M.; Wang, Y.; Mykhaylova, O.; Frink, B. T.; Toscano, J. P.; Hadad, C. M. J. Org. Chem. 2002, 67, 3079-3088.

167 Shultz, D. A.; Bodnar, S. H.; Lee, H.; Kampf, J. W.; Incarvito, C. D.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 10054-10061.
168 Zhang, G.; Li, S.; Jiang, Y. J. Phys. Chem. A 2003, 107, 5573-5582.
169 Zhang, G.; Li, S.; Jiang, Y. Tetrahedron 2003, 59, 3499-3504.
170 Constantinides, C. P.; Koutentis, P. A.; Schatz, J. J. Am. Chem. Soc. 2004, 126, 16232-16241.
171 Shelton, W. A.; Aprà, E.; Sumpter, B. G.; Saraiva-Souza, A.; Souza Filho, A. G.; Nero, J. D.; Meunier, V. Chem. Phys. Lett. 2011, 511, 294-298.

172 Winkler, M.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 1805-1815.
173 Yang, C.; Cho, S.; Heeger, A. J.; Wudl, F. Angew. Chem. Int. Ed. 2009, 48, 1592-1595.
174 Tang, M. L.; Reichardt, A. D.; Miyaki, N.; Stoltenberg, R. M.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 6064-6065.
175 Langer, P.; Bodtke, A.; Saleh, N. N. R.; Görls, H.; Schreiner, P. R. Angew. Chem. Int. Ed. 2005, 44, 5255-5259.
176 Kivelson, S.; Chapman, O. L. Phys. Rev. B 1983, 28, 7236-7243.
Raghu, C.; Pati, Y. A.; Ramasesha, S. Phys. Rev. B 2002, 65, 155204. Houk, K. N.; Lee, P. S.; Nendel, M. J. Org. Chem. 2001, 66, 5517-5521.

179 Chun, D.; Cheng, Y.; Wudl, F. Angew. Chem. Int. Ed. 2008, 47, 8380-8385.
180 Payne, M. M.; Parkin, S. R.; Anthony, J. E. J. Am. Chem. Soc. 2005, 127, 8028-8029.
181 Mannsfeld, S. C. B.; Virkar, A.; Reese, C.; Toney, M. F.; Bao, Z. Adv. Mater. 2009, 21, 2294-2298.
182 Brédas, J. L.; Calbert, J. P.; Da Silva Filho, D. A.; Cornil, J. Proc. Natl. Acad. Sci. 2002, 99, 5804-5809.
183 Yen-Yi, L.; Gundlach, D. I.; Nelson, S. F.; Jackson, T. N. IEEE Transactions on Electron Devices 1997, 44, 1325-1331.
184 Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Appl. Phys. Lett. 2004, 84, 30613063.

185 Meijer, E. J.; Leeuw, D. M. D.; Setayesh, S.; Veenendaal, E. V.; Huisman, B.H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nature Materials 2003, 2, 678-682.
186 Yoo, S.; Domercq, B.; Kippelen, B. Appl. Phys. Lett. 2004, 85, 5427-5429.
Anthony, J. E. Chem. Rev. 2006, 106, 5028-5048.
Clar, E.; John, F. Chem. Ber. 1929, 62, 3021-3029.
Clar, E.; John, F. Chem. Ber. 1930, 63, 2967-2977.
191 Goodings, E. P.; Mitchard, D. A.; Owen, G. J. Chem. Soc., Perkin Trans. I 1972, 1310-1314.
192 Bailey, W. J.; Madoff, M. J. Am. Chem. Soc. 1953, 75, 5603-5604.
193 Campbell, R. B.; Robertson, J. M.; Trotter, J. Acta Crystallogr. 1961, 14, 705711.

194 Mattheus, C. C.; Dros, A. B.; Baas, J.; Meetsma, A.; Boer, J. L. D.; Palstra, T. T. M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 939-941.

195 Siegrist, T.; Kloc, C.; Schön, J. H.; Batlogg, B.; Haddon, R. C.; Berg, S.; Thomas, G. A. Angew. Chem. Int. Ed. 2001, 40, 1732-1736.
196 Kamura, Y.; Shirotani, I.; Inokuchi, H.; Maruyama, Y. Chem. Lett. 1974, 3, 627-630.
197 Yamada, M.; Ikemoto, I.; Kuroda, H. Bull. Chem. Soc. Jpn. 1988, 61, 10571062.

198 Miao, Q.; Nguyen, T.-Q.; Someya, T.; Blanchet, G. B.; Nuckolls, C. J. Am. Chem. Soc. 2003, 125, 10284-10287.
199 Kagan, C. R.; Afzali, A.; Graham, T. O. Appl. Phys. Lett. 2005, 86, 193505193503.

200 Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99-117.
201 Griffith, O. L.; Gruhn, N. E.; Anthony, J. E.; Purushothaman, B.; Lichtenberger, D. L. J. Phys. Chem. C 2008, 112, 20518-20524.
Zhao, Y.; Mondal, R.; Neckers, D. C. J. Org. Chem. 2008, 73, 5506-5513. Martin, D. C.; Anthony, J. E. J. Mater. Chem. 2008, 18, 1961-1969.
204 Rainbolt, J. E.; Miller, G. P. J. Org. Chem. 2007, 72, 3020-3030. Phys. Lett. 2008, 454, 323-326.
207 Sonja, S.; Jelena, D.; Ivan, G.; Radmila, M. J. Serb. Chem. Soc. 2008, 73, 547-554.
208 Fischer, O.; Hepp, E. Chem. Ber. 1890, 23, 2789-2793.
209 Fischer, O.; Hepp, E. Chem. Ber. 1895, 28, 293-301.

213 Tang, Q.; Zhang, D.; Wang, S.; Ke, N.; Xu, J.; Yu, J. C.; Miao, Q. Chem. Mater. 2009, 21, 1400-1405.
214 Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971-5004.
215 Kummer, F.; Zimmermann, H. Ber. Bunsen-Ges. Phys. Chem 1967, 71, 11191126.

216 Seillan, C.; Brisset, H.; Siri, O. Org. Lett. 2008, 10, 4013-4016.
217 Badger, G. M.; Pettit, R. J. Chem. Soc. 1951, 3211-3215.
218 Sawtschenko, L.; Jobst, K.; Neudeck, A.; Dunsch, L. Electrochim. Acta 1996, 41, 123-131.
219 Armand, J.; Boulares, L.; Bellec, C.; Pinson, J. Can. J. Chem. 1987, 65, 16191623.

220 Manassen, J.; Khalif, S. J. Am. Chem. Soc. 1966, 88, 1943-1947.
221 Tang, Q.; Liu, J.; Chan, H. S.; Miao, Q. Chem. Eur. J. 2009, 15, 3965-3969.
222 Miao, S.; Brombosz, S. M.; Schleyer, P. V. R.; Wu, J. I.; Barlow, S.; Marder,
S. R.; Hardcastle, K. I.; Bunz, U. H. F. J. Am. Chem. Soc. 2008, 130, 73397344.

223 Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Chem. Rev. 2005, 105, 3842-3888.
Witt, O. N. Chem. Ber. 1887, 20, 1538-1541.
Kehrmann, F.; Bürgin, H. Chem. Ber. 1896, 29, 1246-1254.
Hinsberg, O. Liebigs Ann. Chem. 1901, 319, 257-286.

Wannere, C. S.; Corminboeuf, C.; Allen, W. D.; Schaefer, H. F.; Schleyer, P. V. R. Org. Lett. 2005, 7, 1457-1460.

Faglioni, F.; Ligabue, A.; Pelloni, S.; Soncini, A.; Viglione, R. G.; Ferraro, M. B.; Zanasi, R.; Lazzeretti, P. Org. Lett. 2005, 7, 3457-3460.

Melby, L. R.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Benson, R. E.; Mochel, W. E. J. Am. Chem. Soc. 1962, 84, 3374-3387.
El Seoud, O. A.; Ribeiro, F. P.; Martins, A.; Brotero, P. P. J. Org. Chem. 1985, 50, 5099-5102.
Richards, G. J.; Hill, J. P.; Okamoto, K.; Shundo, A.; Akada, M.; Elsegood, M. R. J.; Mori, T.; Ariga, K. Langmuir 2009, 25, 8408-8413.

Hinsberg, O.; Schwantes, E. Chem. Ber. 1903, 36, 4039-4050.
Graser, F. D.E. Pat. 3,504,143, (1986).
Switzer, J. L.; Switzer, R. C. U.S. Pat. 2,495,202, (1950).
Foster, C. E. G.B. Pat. 2,430,936 (2007).
Constantinides, C. P.; Koutentis, P. A. Effects of substitution on the groundstate multiplicities of zwitterionic polyazaacenes: A DFT study combined with broken symmetry approach. Proceedings of the International Conference on the Science and Technology of Synthetic Metals (ICSM 2004), University of Wollongong, 2004, ISBN 1741280613.
Irikura, K. K.; Goddard, W. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1992, 114, 48-51.

García, V. M.; Castell, O.; Reguero, M.; Caballol, R. Molecular Physics 1996, 87, 1395-1404.
Shen, J.; Fang, T.; Li, S. Sci. China, Ser. B 2008, 51, 1197-1202.
Carter, E. A.; Goddard, W. A. J. Phys. Chem. 1987, 91, 4651-4652.
Vessally, E. Bull. Chem. Soc. Ethiop. 2010, 24, 311-314.

251 Mitani, M.; Yamaki, D.; Takano, Y.; Kitagawa, Y.; Yoshioka, Y.; Yamaguchi, K. J. Phys. Chem. Phys. 2000, 113, 10486-10504.

257 Barone, V.; Di Matteo, A.; Mele, F.; Moreira, I. D. P. R.; Illas, F. Chem. Phys. Lett. 1999, 302, 240-248.
Gaspar, P. P.; Xiao, M.; Pae, D. H.; Berger, D. J.; Haile, T.; Chen, T.; Lei, D.; Winchester, W. R.; Jiang, P. J. Organomet. Chem. 2002, 646, 68. Organometallics 2003, 22, 3250.
Hoffmann, R.; Zeiss, G. D.; Van Dine, G. W. J. Am. Chem. Soc. 1968, 90, 1485-1499.
Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96-103.
Gokel, G. W. Section 7 Physicochemical Relationships in Dean'S Handbook of Organic Chemistry. McGraw-Hill, 2nd ed., 2004.
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
Becke, A. D. J. Phys. Chem. Phys. 1993, 98, 5648-5652.
Gaussian 09, R. C., Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford Ct, 2009.
Zhang, G.; Li, S.; Jiang, Y. J. Phys. Chem. A 2003, 107, 5573-5582.
Zhang, G.; Li, S.; Jiang, Y. Tetrahedron 2003, 59, 3499-3504.
Mitani, M.; Mori, H.; Takano, Y.; Yamaki, D.; Yoshioka, Y.; Yamaguchi, K. J. Phys. Chem. Phys. 2000, 113, 4035-4051. 1999, 111, 1309-1324.
Mitani, M.; Yamaki, D.
Lahti, P. M.; Ichimura, A. S.; Sanborn, J. A. J. Phys. Chem. A 2000, 105, 251260.

Illas, F.; Moreira, I. P. R.; De Graaf, C.; Barone, V. Theor. Chim. Acta 2000, 104, 265-272.
Barone, V.; Bencini, A.; Ciofini, I.; Daul, C. J. Phys. Chem. A 1999, 103, 4275-4282.

Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-16513.
Ginsberg, A. P. J. Am. Chem. Soc. 1980, 102, 111-117.
Noodleman, L. J. Phys. Chem. Phys. 1981, 74, 5737-5743.
Noodleman, L.; Davidson, E. R. Chem. Phys. 1986, 109, 131-143.
Bencini, A.; Totti, F.; Daul, C. A.; Doclo, K.; Fantucci, P.; Barone, V. Inorg. Chem. 1997, 36, 5022-5030.

263 Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. Journal of Computational Chemistry 1999, 20, 1391-1400.
264 Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys. Lett. 1988, 149, 537-542.
265 Yamaguchi, K.; Takahara, Y.; Fueno, T.; Houk, K. N. Theor. Chim. Acta 1988, 73, 337-364.
266 Braunstein, P.; Siri, O.; Taquet, J.-P.; Rohmer, M.-M.; Bénard, M.; Welter, R. J. Am. Chem. Soc. 2003, 125, 12246-12256.

267 Steiner, E.; Fowler, P. W. Chem. Commun. 2001, 2220-2221.
268 Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. V. E. J. Am. Chem. Soc. 1996, 118, 6317-6318.

269 Steiner, E.; Fowler, P. W.; Jenneskens, L. W.; Havenith, R. W. A. Eur. J. Org. Chem. 2002, 163-169.
270 Frash, M. V.; Hopkinson, A. C.; Bohme, D. K. J. Am. Chem. Soc. 2001, 123, 6687-6695.
271 Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Chem. Rev. 2005, 105, 3842-3888.
272 Stanger, A. J. Org. Chem. 2006, 71, 883-893.
273 Zora, M.; Özkan, İ. J. Mol. Struct. THEOCHEM 2003, 638, 157-162.
274 Ullmann, F. Chem. Ber. 1903, 36, 2382-2384.
Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453-2455.
Field, J. E.; Hill, T. J.; Venkataraman, D. J. Org. Chem. 2003, 68, 6071-6078.
Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400-5449.
Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818.
279 Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852-860.
280 Belfield, A. J.; Brown, G. R.; Foubister, A. J. Tetrahedron 1999, 55, 1139911428.

281 Lindley, J. Tetrahedron 1984, 40, 1433-1456. Fuller, G. U.S. Pat. 4,164,517, (1979). Appelman, E. H.; Basile, L. J.; Hayatsu, R. Tetrahedron 1984, 40, 189-197. Brown, S. J.; Clark, J. H. J. Fluorine Chem. 1985, 30, 251-258.
Brieger, G.; Hachey, D.; Nestrick, T. J. Chem. Eng. Data 1968, 13, 581-582. Johnstone, R. W. A.; Rose, M. E. Tetrahedron 1979, 35, 2169-2173.
Stoochnoff, B. A.; Benoiton, N. L. Tetrahedron Lett. 1973, 14, 21-24.
291 Lewis, H. F.; Shaffer, S.; Trieschmann, W.; Cogan, H. Ind. Eng. Chem. 1930, 22, 34-36.
292 Ouk, S.; Thiebaud, S.; Borredon, E.; Legars, P.; Lecomte, L. Tetrahedron Lett. 2002, 43, 2661-2663.
293 Ouk, S.; Thiébaud, S.; Borredon, E.; Le Gars, P. Appl. Catal., A 2003, 241, 227-233.
294 Shieh, W.-C.; Dell, S.; Repič, O. Org. Lett. 2001, 3, 4279-4281.
295 Shen, Z. L.; Jiang, X. Z.; Mo, W. M.; Hu, B. X.; Sun, N. Green Chemistry 2005, 7, 97-99.
296 Neeman, M.; Caserio, M. C.; Roberts, J. D.; Johnson, W. S. Tetrahedron 1959, 6, 36-47.

298 Tsuji, K.; Nakamura, K.; Konishi, N.; Okumura, H.; Matsuo, M. Chem. Pharm. Bull. 1992, 40, 2399-2409.
299 Palmer, W. G. Experimental Inorganic Chemistry, Cambridge University Press, Cambridge, 1959.
300 Guntz, A.; Bassett, H. Bull. Soc. Chim. 1906, 35, 201-203.
301 Zhu, Y.-F.; Lin, G.-Q.; Chen, Y.-Q. Synthesis 1990, 430-430.
302 Xu, Z.-B.; Lu, Y.; Guo, Z.-R. Synlett 2003, 564-566.
303 Rotas, G.; Kimbaris, A.; Varvounis, G. Tetrahedron 2004, 60, 10825-10832.
304 Cookson, G. H. J. Chem. Soc. 1953, 1328-1331.
305 Albini, A.; Bettinetti, G. F.; Minoli, G. J. Chem. Soc., Perkin Trans. 1 1981, 1821-1825.
306 Wohl, A.; Aue, W. Chem. Ber. 1901, 34, 2442-2450.
307 Barashenkov, G. G.; Serebryanyi, S. B.; Fedoryak, D. M. Ukr. Khim. Zh. (Russ. Ed.) 1996, 62, 49-52.
308 Inst. Bioorg., K. N. N. a. N., Kiev, Ukraine; Ru.
309 Ried, W.; Schaefer, H.-J. Liebigs Ann. Chem. 1972, 756, 139-144.
310 Margaret K. Seikel, O. S., Coll. Vol. 3, P. 262, Vol. 24, P. 47.
311 Holmes, R. R.; Bayer, R. P. J. Am. Chem. Soc. 1960, 82, 3454-3456.
312 Boulton, A. J.; Ghosh, P. B.; Katritzky, A. R. J. Chem. Soc. B 1966, 10041011.

313 Burnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273-412.
314 Serushkina, O. V.; Dutov, M. D.; Shevelev, S. A. Russ. Chem. Bull. 2001, 50, 261-264.
315 Shevelev, S. A.; Dutov, M. D.; Vatsadze, I. A.; Serushkina, O. V.; Rusanov, A. L.; Andrievskii, A. M. Mendeleev Commun. 1995, 5, 157-158.

316 Shevelev, S. A.; Dutov, M. D.; Vatsadze, I. A.; Korolev, M. A.; Rusanov, A. L. Mendeleev Commun. 1996, 6, 155-157.

317 Shevelev, S. A.; Dutov, M. D.; Korolev, M. A.; Sapozhnikov, O. Y.; Rusanov, A. L. Mendeleev Commun. 1998, 8, 69-70.

318 Williams, F. J.; Donahue, P. E. J. Org. Chem. 1977, 42, 3414-3419.
319 Werner, A.; Herberger, T. Chem. Ber. 1899, 32, 2686-2696.
320 Schimmelschmidt, K.; Hoffmann, H. Liebigs Ann. Chem. 1964, 677, 157-160.
321 Ullmann, F.; Engi, G.; Wosnessensky, N.; Kuhn, E.; Herre, E. Liebigs Ann. Chem. 1909, 366, 79-118.
322 Sapozhnikov, O. Y.; Dutov, M. D.; Korolev, M. A.; Kachala, V. V.; Shevelev, S. A. Mendeleev Commun. 2001, 11, 232-233.

323 Hartman, G. D.; Schwering, J. E. J. Heterocycl. Chem. 1983, 20, 947-950.
324 Constantinides, C. P.; Koutentis, P. A.; Krassos, H.; Rawson, J. M.; Tasiopoulos, A. J. J. Org. Chem. 2011, 76, 2798-2806.
Zade, S. S.; Bendikov, M. J. Phys. Org. Chem. 2012, 25, 452-461. Biermann, D.; Schmidt, W. J. Am. Chem. Soc. 1980, 102, 3163-3173.
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry; Springer: New York, 2007; p 2749.
328 Dimroth, K.; Reichardt, C.; Siepmann, T.; Bohlmann, F. Liebigs Ann. Chem. 1963, 661, 1-37.
329 Dimroth, K.; Reichardt, C. Liebigs Ann. Chem. 1969, 727, 93-105.
330 Reichardt, C. Liebigs Ann. Chem. 1971, 752, 64-67.
331 Allinger, N. L.; Gilardeau, C.; Chow, L. W. Tetrahedron 1968, 24, 2401-2406.

338 Thompson, S. J.; Emmert, F. L.; Slipchenko, L. V. J. Phys. Chem. A 2012, 116, 3194-3201.

340 Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J. W.; Lobkovsky, E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998, 120, 3641-3649.
341 Yakobson, G. G.; G., F. G.; S., K. L.; N., V. N. J. Gen. Chem. USSR (Engl.Transl.) 1967, 37, 1217-1220.
342 Hori, H.; Noguchi, N.; Yokoyama, H.; Ise, H.; Jin, C.-Z.; Kasai, S.; Goto, T.; Taira, Z. Bioorg. Med. Chem. 1996, 4, 247-253.
343 Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303-349.
344 Haynes, D. A. CrystEngComm 2011, 13, 4793-4805.
346 Rawson, J. M.; Alberola, A.; Whalley, A. J. Mater. Chem. 2006, 16, 25602575.

347 Rajca, A. Chem. Rev. 1994, 94, 871-893.
348 Banister, A. J.; Bricklebank, N.; Lavender, I.; Rawson, J. M.; Gregory, C. I.; Tanner, B. K.; Clegg, W.; Elsegood, M. R. J.; Palacio, F. Angew. Chem. Int. Ed. 1996, 35, 2533-2535.
349 Alberola, A.; Less, R. J.; Pask, C. M.; Rawson, J. M.; Palacio, F.; Oliete, P.; Paulsen, C.; Yamaguchi, A.; Farley, R. D.; Murphy, D. M. Angew. Chem. Int. Ed. 2003, 42, 4782-4785.
350 Fujita, W.; Awaga, K. Chem. Phys. Lett. 2004, 388, 186-189.
351 Mcmanus, G. D.; Rawson, J. M.; Feeder, N.; Van Duijn, J.; Mcinnes, E. J. L.; Novoa, J. J.; Burriel, R.; Palacio, F.; Oliete, P. J. Mater. Chem. 2001, 11, 1992-2003.
352 Brusso, J. L.; Clements, O. P.; Haddon, R. C.; Itkis, M. E.; Leitch, A. A.; Oakley, R. T.; Reed, R. W.; Richardson, J. F. J. Am. Chem. Soc. 2004, 126, 8256-8265.
353 Cordes, A. W.; Haddon, R. C.; Oakley, R. T. Adv. Mater. 1994, 6, 798-802.
354 Leitch, A. A.; Reed, R. W.; Robertson, C. M.; Britten, J. F.; Yu, X.; Secco, R. A.; Oakley, R. T. J. Am. Chem. Soc. 2007, 129, 7903-7914.

355 Preston, K. F.; Sutcliffe, L. H. Magn. Reson. Chem. 1990, 28, 189-204.
356 Mayer, R.; Domschke, G.; Bleisch, S.; Bartl, A. Tetrahedron Lett. 1978, 19, 4003-4006.

358 Beer, L.; Brusso, J. L.; Cordes, A. W.; Haddon, R. C.; Itkis, M. E.; Kirschbaum, K.; Macgregor, D. S.; Oakley, R. T.; Pinkerton, A. A.; Reed, R. W. J. Am. Chem. Soc. 2002, 124, 9498-9509.

359 Beer, L.; Britten, J. F.; Clements, O. P.; Haddon, R. C.; Itkis, M. E.; Matkovich, K. M.; Oakley, R. T.; Reed, R. W. Chem. Mater. 2004, 16, \(1564-\) 1572.

360 Barclay, T. M.; Cordes, A. W.; Beer, L.; Oakley, R. T.; Preuss, K. E.; Taylor, N. J.; Reed, R. W. Chem. Commun. 1999, 0, 531-532.

Oakley, R. T.; Reed, R. W.; Robertson, C. M.; Richardson, J. F. Inorg. Chem. 2005, 44, 1837-1845.
362 Beer, L.; Wallace Cordes, A.; Haddon, R. C.; Itkis, M. E.; Oakley, R. T.; Reed, R. W.; Robertson, C. M. Chem. Commun. 2002, 1872-1873.
363 Barclay, T. M.; Cordes, A. W.; George, N. A.; Haddon, R. C.; Itkis, M. E.; Mashuta, M. S.; Oakley, R. T.; Patenaude, G. W.; Reed, R. W.; Richardson, J. F.; Zhang, H. J. Am. Chem. Soc. 1998, 120, 352-360.

364 Robertson, C. M.; Leitch, A. A.; Cvrkalj, K.; Myles, D. J. T.; Reed, R. W.; Dube, P. A.; Oakley, R. T. J. Am. Chem. Soc. 2008, 130, 14791-14801.
365 Stanger, A. J. Org. Chem. 2005, 71, 883-893.
366 Ioannou, T. A.; Koutentis, P. A.; Krassos, H.; Loizou, G.; Lo Re, D. Org. Biomol. Chem. 2012, 10, 1339-1348.
367 Amiri, S.; Schreiner, P. R. J. Phys. Chem. A 2009, 113, 11750-11757.
368 Haas, Y.; Zilberg, S. J. Am. Chem. Soc. 2004, 126, 8991-8998.
369 Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1994, 116, 6327-6331.
370 Cook, M. J.; Katritzky, A. R.; Linda, P. Aromaticity of Heterocycles in Advances in Heterocyclic Chemistry, A. R. Katritzky, A. J. Boulton, Eds. Academic Press, 1974, vol. Volume 17, pp. 255-356.
371 Bird, C. W. Tetrahedron 1985, 41, 1409-1414.
372 Kraay, G. M. Recl. Trav. Chim. Pays-Bas 1930, 49, 1082-1092.
373 Greizerstein, W.; Bonelli, R. A.; Brieux, J. A. J. Am. Chem. Soc. 1962, 84, 1026-1032.
374 Schöpff, M. Chem. Ber. 1890, 23, 1839-1844.
375 Belton; Mcinerney Proc R Ir Acad B 1970, 69, 21-27.
376 Grundon, M. F.; Wasfi, A. S. J. Chem. Soc. 1963, 0, 1982-1986.
377 Herbert, A. E. J.; Tomlinson, M. J. Chem. Soc. 1958, 0, 4492-4494.
378 Mattaar, T. J. F. Recl. Trav. Chim. Pays-Bas 1922, 41, 24-37.
379 Beaulieu, P. L.; Haché, B.; Von Moos, E. Synthesis 2003, 1683-1692.
380 Heidensleben, E. Chem. Ber. 1890, 23, 3451-3458.
381 Melms, F. Chem. Ber. 1870, 3, 549-554.
382 Fischer, O.; Sieder, L. Chem. Ber. 1890, 23, 3798-3802.
383 Coker, G. G.; Plant, S. G. P.; Turner, P. B. J. Chem. Soc. 1951, 0, 110-115.```

