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Wireless Sensor Networks (WSNs) are composed of resource-constrained tiny-scale devices

that enable users to monitor the physical world at an extremely high fidelity. In order to collect

the data generated by these tiny-scale devices, the data management community has proposed the

utilization of declarative data-acquisition frameworks that provide similar functionality to tradi-

tional distributed query processing systems. While these frameworks have facilitated the energy-

efficient retrieval of data from the physical environment, they were agnostic of the underlying

network topology and also did not support advanced query processing semantics.

In this dissertation we present KSpot+, a novel distributed network-aware framework for

query-based data acquisition in WSNs that optimizes network efficiency by combining three novel

components: i) theTree Balancing Module, which balances the workload incurred on each sen-

sor node during a query by constructing efficient network topologies; ii) theWorkload Balancing

Module, which minimizes data reception inefficiencies by synchronizing the network activity in-

tervals of each sensor node; and iii) theQuery Processing Module, which provides advanced query

processing semantics (e.g., top-k, group-by) by employing a novel ranking mechanism that yields

only thek-highest ranked answers, thus further minimizing energy consumption. KSpot+ features

a highly modular design in which each module can operate both in isolation and in combination

with other modules, scales linearly with the addition of new sensor nodes in the network and is

resilient to node and communication failures.
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The KSpot+ framework can be utilized in numerous application domains that require query-

based data acquisition including environmental monitoring, big ephemeral events, structural mon-

itoring, urban monitoring, security applications and health monitoring. Applications that benefit

the most from the utilization of the KSpot+ framework are those that require continuous monitor-

ing of the most important events of the network.

In order to validate the efficiency of our approach, we have created a prototype implementation

of the KSpot+ framework in nesC and JAVA. In our experimental evaluation, we thoroughly assess

the performance of KSpot+ using the real prototype system we developed and datasets from the

University of California - Berkeley, the University of Washington and Intel Research Berkeley.

We show that KSpot+ provides significant energy reductions under a variety of conditions, thus

significantly prolonging the longevity of a WSN compared to predominant approaches.

Panayiotis G. Andreou – University of Cyprus, 2011
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Table of Acronyms

Symbol Definition

WSD Wireless Sensor Device
WSN Wireless Sensor Network
Q A Continuous Query
n Number of Sensors
S Set of SensorsS = {s1, s2, ..., sn}
si Sensor numberi (s0 denotes the sink).
m Number of sensor recordings{a1, a2, ..., am}
e Epoch duration (consecutive data acquisition round) of query Q

T = (S,E) Query Routing Tree (S=vertices,E=edges)
d Depth of the routing treeT
wi Wake-up time of sensorsi

τi Waking window of sensorsi

ψ Total time needed to answer queryQ
d Depth of the routing treeT
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ai Attribute i
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V ′
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1

Pan
ay

iot
is 

G. A
nd

reo
u



Chapter 1

Introduction

Technological advances in embedded systems, sensor components and low power wireless

communication units have made it feasible to produce small-scaleWireless Sensor Devices (WSDs)

that can be utilized for the development of environmental monitoring systems. Similarly to em-

bedded systems, WSDs are controlled by one or more main processing cores, typically either

micro-controllers or digital signal processors, include components for data storage and enable

both wired and wireless communication. One of the key differences of WSDs with embedded sys-

tems is that the former include one or more sensor components that allow real-time measurements

of environmental and biological phenomena amongst others.

The ability of WSDs to communicate with each other in a wireless manner enables the for-

mation of ad hocWireless Sensor Networks (WSNs)that can deployed in harsh environments and

monitor physical phenomena under diverse conditions. Large-scale deployments ofWireless Sen-

sor Networks (WSNs)have already emerged in environmental and habitant monitoring [121, 107],

structural monitoring [70] and urban monitoring [93]. In these deployments, users are able to

disseminate queries to the network that request runtime measurements of sensor data. One of the

key goals in designing an energy-efficient WSN is to maximize the lifetime of the network thus

2
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3

minimizing maintenance costs. This is not a trivial task since in the majority of cases, WSDs fea-

ture a limited energy budget as they are typically powered using AA or AAA batteries. In order to

prolong the lifetime of the network, much research has been devoted to the design and implemen-

tation of energy-efficient hardware such as low-frequency processors [21, 57, 117], low-power

communication units [136, 128, 119, 116, 36] and low-power sensor components [103]. Although

these energy-efficient hardware designs can significantly decrease the energy overhead of a WSD,

the efficient utilization of this hardware by energy-conscious applications/algorithms can further

reduce the energy consumption the WSD and considerably prolong the overall lifetime of a WSN.

A decisive variable for prolonging the longevity of a WSN is to minimize the utilization of

the wireless communication medium. It is well established that communicating over the radio

in a WSN is the most energy demanding factor among all other functions, such as storage and

processing [85, 86, 135]. For example, the energy consumption for transmitting 1 bit of data using

the MICA mote is approximately equivalent to processing 1000 CPU instructions [86]. In order to

cope with this energy challenge sensing devices are forced to power down their radio transceiver

(transmitter-receiver) or utilize power-saving modes [103] betweenepochs(i.e., consecutive data

acquisition rounds. More specifically, it has been shown that sensors operating at a 2% duty

cycle can achieve lifetimes of 6-months using two AA batteries [86, 121, 107]. Supplementary

approaches to cope with the energy challenge have been proposed at virtually all layers of the

sensing device stack ranging from the hardware layer [103] to the operating system layer [61, 78,

17], the programming language [50], the network layer [145] and the data management layer (e.g.,

storage [142, 89, 13], compression [39, 113], query processing [85, 86, 135, 109, 110, 112, 81, 63]

and prediction [52, 95]). A general theme in these supplementary approaches is to reduce the

number of messages communicated between sensors prolonging in that way the lifetime of a

WSN.
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It is important to notice that the majority of existing approaches establish data acquisition on

the premise of Query Routing Trees, denoted asT (a.k.a spanning trees or converge-cast trees),

which provide each sensor with a path over which query answers can be transmitted to a cen-

tralized querying node (i.e., sink). Query Routing Trees are typically constructed in an ad hoc

manner using the the First Heard From (FHF) mechanism, which is utilized in a number of data

acquisition frameworks such as [85, 86, 135, 109, 110] and operates as follows. A user submits

a queryQ at the sink node and the system then initiates the execution ofQ by disseminating it

to the sensor network. In particular, the sink sendsQ to sensor nodes within its communication

range. Subsequently, sensor nodes receivingQ set the sink node as their parent nodes (i.e., all

data will be forwarded to the parent node) and forward the query to all their neighbors. This

procedure executes recursively until all nodes have assigned their parent nodes. Although, this

simplistic procedure generates an effective routing scheme between sensor nodes, it may prove

highly inefficient as it does not provide any guarantees on the workload incurred on each sensor

node.

Our study revealed that predominant data acquisition frameworks [85, 135, 81, 112, 62, 60,

78, 17, 82, 47, 95, 118] have overlooked the important parameter of constructing efficient query

routing trees and that negatively impacts the energy efficiency of these systems. In particular,

sinceT is constructed in an ad-hoc manner there are two major sources of inefficiencies:

• Data Reception Inefficiencies:T structures do not define thewaking window(τ ) of a

sensing device (i.e., the continuous interval during which a sensor node has to enable its

transceiver, collect and aggregate the results from its children, and then forward these results

to its own parent). Note thatτ is continuous because it would be very energy-demanding to

suspend the transceiver more than once during the interval of an epoch. Consequently,τ is

an over-estimate that leads to significant energy waste. For instance, a typical query with an
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5

epoch of 31 seconds over a three-tier network in TinyDB [85], will enforce each sensor to

activate its transceiver for listening for as much as 10 seconds while the requiredτ interval

might only be a few milliseconds.

• Data Transmission Inefficiencies:T structures are constructed in an ad-hoc manner and

therefore there is no guarantee that the query workload will be distributed equally among all

sensors. That leads to data collisions during transmission which represent a major source of

energy waste. Consequently, unbalanced trees can severely degrade the network health and

efficiency.

Consequently, in designing our architecture, ourfirst objective is to automatically tuneτ ,

locally at each sensor without any a priori knowledge or user intervention. Note that in defining

τ we are challenged with the following trade-offs: i) Early-off Transceiver: Shall a sensor device

power-off the transceiver too early reduces energy consumption but also increases the number of

tuples that are not delivered to the sink. Thus, the sink will generate an erroneous answer to a

query, and ii) Late-off Transceiver: Shall a sensor device keep the transceiver active for too long

decreases the number of tuples that are lost due to powering down the transceiver too early but

also increases energy consumption. Thus, the network will consume more energy than necessary

which is not desirable given the scarce energy budget of each sensor.

Although, addressing the first objective will significantly reduce the energy consumption of

the sensors by scheduling communication activities based on the workload, it still does not take

into account the fact that the tree topology might be unbalanced. Therefore, oursecond objective

is to transform the initial query routing treeT into a near-balanced treeT ′ in a distributed manner.

Addressing the first two objectives will rapidly decrease data reception and transmission inef-

ficiencies that enable the generation of energy-efficient query routing trees. However, additional
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energy savings can be achieved by closely investigating the query execution process that takes

place after generating an efficient topology.

Current data acquisition frameworks systems [85, 135, 62, 60, 78, 17, 82, 47, 95, 118] focus

on producing a complete result set for a queryQ. Conversely, a number of studies in data manage-

ment systems [45, 24, 137, 143, 92, 15, 14, 20, 90] model the retrieval of data on the presumption

that the user is only interested in thek highest-ranked answers rather than all of them. A Top-k

query [45] focuses on the subset of most relevant answers for two reasons: i) to minimize the

energy cost that is associated with the retrieval of all answers, and ii) to improve the quality of

the answer set such that the user is not overwhelmed with irrelevant results. This assumption is

quite reasonable and has been utilized in numerous other settings (e.g., consider a search engine

that returns the 10 highest-ranked results to minimize the consumption of system resources and in

order to improve the quality of the answer set.)

Top-k queries can be used in conjunction with materialized in-network views, in order to

further minimize the cost of query execution. A viewV in relational databases is a virtual table

that contains the results from an arbitrary queryQ which is evaluated every timeV is referred to.

In order to avoid the unnecessary and energy expensive re-execution ofQ it is beneficial to store

V on secondary storage. This introduces the notion of a materialized view. Materialized views

have been studied in numerous seminal papers including [19, 30, 27, 74] and have a clear space

versus time trade-off: A fully materialized viewV requires more space but less time in evaluating

Q, whereas a partially materialized viewV ′ requires less space but more time in evaluatingQ.

Materialized views can potentially conserve energy as the application can avoid the expensive

re-evaluation of the in-network queryQ.

Although a fully materialized viewV maintains the complete results of a queryQ, the dis-

tributed nature of a sensor network environment, along with its distinct characteristics, imposes
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some fundamental limitations to this model. Firstly, maintaining consistency betweenV and the

underlying and distributed base relationR (defined by the sensor readings) is very expensive in

terms of energy. Thus, we focus on maintaining a subsetV ′ ⊆ V that unveils only thek highest-

ranked answers for some user definedk thus minimizing the related energy requirements. Sec-

ondly,V ′ is recursively defined using the results that are stored at the lower-levels of the multi-hop

routing tree that interconnects the sink with the sensing devices. Thus, traditional view mainte-

nance techniques are not directly applicable.

As a result, ourthird objective is to decrease the energy cost of a query by introducing Top-k

queries into the query execution process. Additionally, we further decrease both the number and

size of communication packets by incorporating in-network views that reside on local storage.

The KSpot+ architecture presented in this dissertation is composed of three novel components:

i) the Workload Balancing Module, ii) the Tree Balancing Module, and iii) theQuery Processing

Module, which address the aforementioned objectives, respectively. The KSpot+ framework can

be utilized in numerous application domains that operate on stationary sensor networks including

environmental monitoring [121, 107], big ephemeral events [133, 98], structural monitoring [70],

urban monitoring [93], military and security applications [91, 35, 108], health monitoring [99, 84],

etc. Additionally, the energy-efficient algorithms that lie in the foundations of each module can be

utilized in a plethora of stationary sensor network systems. Below we show their applicability in

the context of a Bio-Harvesting Sensor Network [125]. Furthermore, we explain how KSpot+ can

be adapted in order to become the foundation of future applications in People-centric Sensing [23,

22] scenarios.

Example 1 - Voltree Climate Sensor Network: Recently, Voltree Power [125] has engi-

neered a bio-energy harvesting technology that allows sensor devices to recharge themselves by
Pan

ay
iot

is 
G. A

nd
reo

u



8

collecting the energy that is naturally produced by living trees or other large plants. This alter-

native minimizes the cost of replacing batteries frequently, especially in large-scale deployments.

Many Voltree devices form a wireless mesh network which is composed of many inexpensive sen-

sor nodes that collect and report data on temperature, humidity, wind speed and direction. Data

collected by the nodes are recursively transmitted from each node to its neighbors (i.e., forming a

query routing tree) until these measurements reach a central base station that records the data for

further analysis. Such networks have already been deployed by the United States Department of

Agriculture (USDA) at five different sites [125]. These networks complement the USDA Forest

Service’s Remote Automated Weather Stations network. The Voltree Climate Sensor Network

deploys Query Routing Tree structures much like its predecessor technology (Battery-powered

Wireless Sensor Networks) and thus constructing energy-efficient trees is consequently of major

importance.

Example 2 - People-Centric Sensing:People-centric sensing [23, 22], aims to support sensor-

enabled applications that engage the general public through the use of their own personal mobile

devices. The recent miniaturization and integration of sensors into popular consumer mobile de-

vices (e.g., iPhone, HTC Touch Pro) has enabled a myriad of new sensor based applications for

personal, social and public sensing. These applications can be utilized for increasing the sensing

coverage of large public spaces and collect targeted information about their mobile device own-

ers. The information can be then uploaded to a centralized database system or exchanged with

neighboring mobile devices. What is really important is that these environments allow new levels

of data sharing among commodity devices. Specifically, a particular device can request sensor

data from available neighboring devices through the establishment of an adhoc link (e.g., through

Bluetooth or Wi-Fi).
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9

Figure 1-1: People-centric Sensing Example: Cyclists collect data through their sensor equipped
mobile devices (e.g., CO2 level) during their ride. A given cyclist can query its neighborhood by
constructing an ad-hoc query spanning tree.

Figure 1-1, illustrates a futuristic people-centric sensing scenario where cyclists journey through

the main streets of a city. Each cyclist is equipped with a mobile device that has the ability to inter-

act with its integrated sensors during the ride. The measurements retrieved from these sensors can

be used to quantify various aspects of the cyclic performance (e.g., current/average speed, heart

rate, burned calories) as well as the environmental conditions (e.g. CO2 level, car density) during

the journey. The continuous sharing of these collected data can be utilized to create collaborative

scenarios (e.g., identify routes with low CO2 levels in the city).

A central component to realize such scenarios is the availability of some high-level commu-

nication structure, such as the energy-efficient query routing trees presented in this dissertation.

Such structures can serve as a primitive mechanism for percolating query results to nodes that

query the network. It must be noted that in People-centric sensing applications, the topology of
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10

the network might change frequently. Consequently, it might be necessary to complement these

structures with update mechanisms (e.g., reconstructing the query routing tree periodically either

completely or incrementally), although a more detailed exploration of this aspect remains outside

the scope of this dissertation.

1.1 KSpot+: A Network-aware Framework for Energy-efficient WSNs

KSpot+ is a data-centric framework that enables energy-efficient query processing on top of

balanced and workload-optimized network topologies. It is composed of three basic loosely-

coupled modules: i) theWorkload Balancing Module, ii) the Tree Balancing Module, and iii)

the Query Processing Modulethat specifically address the objectives mentioned in the previous

section. It is important to note that these modules can operate both in isolation and in combination.

This modular plug-and-play design allows application developers to experiment under different

settings by enabling or disabling each module independently. Below, we briefly describe the key

features for each module of the KSpot+ framework:

A. The Workload Balancing Module (described in Chapter 4), investigates data reception/ trans-

mission inefficiencies that occur from the unbalanced assignment of the query workload among

sensor nodes. We show that in current data acquisition frameworks, thewaking windowτ of

a sensing device is an over-estimate that leads to significant energy waste. To cope with these

problems, the Workload Balancing Module employs theWorkload-aware Routing Tree (WART)

algorithm that identifies network bottlenecks by periodically profiling recent data acquisition and

attempts to remove them by fine-tuning each sensor node’s waking window through an in-network

execution of the critical path method.Pan
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B. The Tree Balancing Module(described in Chapter 5), investigates the data reception/ trans-

mission inefficiencies that occur from the construction of unbalanced query routing tree topolo-

gies. These structural inefficiencies lead to increased data collisions during transmission, which

represent a major source of energy waste because they result in energy expensive retransmissions.

We show that a centralized approach to cope with this problem requires a significant amount of

resources and therefore is not suited for resource-constraint networks, such as WSNs. Conversely,

the Tree Balancing Module employs theEnergy-driven Tree Construction Algorithm (ETC), which

aims to reconstruct the initial query routing tree into a more balanced topology in a distributed

and energy efficient manner. To accomplish this, ETC assumes a fixed workload on each sensor

node and balances the network based on the optimal branching factorβ, which takes into account

network-based semantics that is the depth of the query routing tree and the total number of sen-

sor nodes. In Chapter 2, we show that there are other approaches that incorporate query-based

semantics and discuss how ETC can be extended to support them. A direct comparison with these

approaches remains out of the scope of this dissertation.

C. The Query Processing Module(described in Chapter 6), extends the aptitude of traditional

data-acquisition frameworks, like TinyDB and Cougar, by introducing the notion of Top-k queries

into the query execution process. Top-k queries prune away tuples that will not participate in the fi-

nal result thus minimizing thesizeof communication packets. This is facilitated by theIn-Network

Views (INT)algorithm of the Query Processing Module. Furthermore, in order to minimize the

numberof communication packets, the Query Processing Module employs theMaterialized In-

Network Views (MINT)algorithm, which extends the INT algorithm by materializing the results

of the previous time instance and suppressing the results of the current time instance if they are

identical.
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In designing our architecture, we additionally focus on a number of desiderata besides Energy-

efficiency (see Section 3.1) including fully Distributed and Autonomous Behavior of each sensor

node, Modularity and Resilience in the presence of node and communication failures.

In the section below, we list the main contributions of this dissertation.

1.2 Contributions

The high-level contribution of this dissertation is to integrate network awareness and tuple

ranking in data acquisition systems for WSNs. The proposed KSpot+ accomplishes this with

novel algorithms that offer contributions at both the network and query level, as well as prototype

implementations and evaluations that demonstrate large energy savings in practice. The specific

contributions of this dissertation are described below:

1.2.1 Novel Network-aware Framework

The overall contribution of this dissertation is to present, KSpot+, a novel network-aware dis-

tributed framework for energy efficient data acquisition in WSNs. KSpot+ seeks to overcome

network-related inefficiencies and optimize the energy-efficiency of queries by combining 3 novel

modules: i) theTree Balancing Module, which balances the workload incurred on each sensor

node by constructing efficient network topologies, ii) theWorkload Balancing Module, which min-

imizes data reception inefficiencies by synchronizing the waking windows of each sensor node,

and iii) theQuery Processing Modulethat manages query execution and additionally employs a

novel ranking mechanism that unveils only thek-highest ranked answers thus further minimizing

energy consumption.

KSpot+ supports a number of SQL-like queries including simple, filter, top-k and group-

by queries as well as a number of distributive aggregates including duplicate-insensitive (e.g.,
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MAX, MIN) and duplicate-sensitive (e.g.,SUM, COUNT, AVG). KSpot+ also supports holistic

aggregates (e.g.,MEDIAN) without performing in-network aggregation as it might compromise the

correctness of the final result. Although the current version of KSpot+ does not provide support

for multi-query execution, Chapter 6 discusses extensions in this direction.

Additionally, KSpot+ focuses on improving the Quality of Data (QoD) [110, 109] for all

queries executed over the WSN. QoD can be measured in different dimensions [100] such as fresh-

ness, accuracy, completeness, relevancy, etc. In the KSpot+ design, we focus on data accuracy and

freshness as we assume that the underlying network layer provides retransmission mechanisms for

coping with communication failures. In our experimental evaluation, we measure the number and

size of these retransmissions in order to translate them into energy, which is the primary focus

of our work. Furthermore, we adopt a number of additional network performance metrics such

as the balancing error that quantifies the discrepancy between the initial query routing tree and

the more balanced one generated by the KSpot+ framework, and the network longevity defined

as the time instancet where the average amount of energy in the network becomes equal to zero.

Our network longevity metric, similarly to [123], adopts a universal perspective of the sensor net-

work (i.e., measures the energy depletion across the whole spectrum of participating sensors) as

opposed to existential energy depletion metrics (i.e., measure when the energy is depleted on a

single node) utilized in other works [109, 110]. This is because we are particularly interested in

decreasing the overall energy consumption of the sensor network and not a single node.

Finally, KSpot+ features a highly modular design in which each module can operate both in

isolation and in combination with other modules, scales linearly with the addition of new sensor

nodes in the network and is resilient to node and communication failures.Pan
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1.2.2 Novel Energy-Efficient Algorithms

The modules of the KSpot+ framework presented in this dissertation are founded on energy

conscious algorithms that enhance the existing literature. We highlight the main algorithmic con-

tributions below:

• The Workload-aware Routing Tree (WART) algorithm[141, 11, 10] (described in Sec-

tion 4.3) is a network-level algorithm, which profiles recent data acquisition activity within

a WSN and discovers bottlenecks using an in-network execution of the critical path method.

It then generates a time synchronized topology in which sensor devices identify exactly

when and for how long they should have their transceivers powered on thus minimizing the

energy spent on idle connections.

• TheEnergy-driven Tree Construction (ETC) algorithm[7, 10] (described in Section 5.3) is

a network-level algorithm, which investigates the data reception/transmission inefficiencies

that occur from the construction of unbalanced query routing tree topologies. It then at-

tempts to alleviate this problem by reconstructing the initial query routing tree in a manner

that minimizes the data transmission collisions between neighboring sensor devices.

• The In-Network Top-k Views (INT) algorithm[140, 12, 9] (described in Section 6.3) is a

query-level algorithm, which uses a top-k pruning filter that focuses only on thek-highest

ranked answers thus significantly minimizing the size of the packets transmitted by each

sensor node. We also propose theMaterialized In-Network Top-k Views (MINT)query-

level algorithm (described in Section 6.3), which utilizes the temporal coherence between

consecutively acquired sensor readings in order to further minimize the communication

overhead (i.e., number of packets) of the INT algorithm.
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1.2.3 Open-source KSpot+ prototype implementation

We present the implementation of an open-source prototype implementation that demonstrates

the full potential of the KSpot+ framework. The prototype implementation is available at the

KSpot+ project website1 for users to download for free, redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software Foundation. The

KSpot+ project website additionally contains a number of related recourses including installation

instructions, the version of the TinyOS operating system used for the development of KSpot+,

all the real datasets used in the experiments and a list of publications related to KSpot+. The

prototype demonstrates how the energy-efficient algorithms presented in this dissertation can be

integrated into real systems. More specifically, the client-side components of each module of the

KSpot+ framework were implemented in nesC, the programming language of TinyOS [61] and

can thus be deployed in a number of heterogeneous sensor devices (e.g., Mica, Mica2, MicaZ,

Telos, iMote2, etc.). The server-side components of each module were implemented in JAVA

because of its platform-independence. Additionally, we augment the description of each module

with any considerations or problems that occurred during the implementation phase.

1.2.4 Experimental Evaluations Demonstrating Significant Energy Reductions

The KSpot+ architecture and its three basic modules presented in this dissertation have been

deployed and evaluated in actual testbeds. The evaluations reveal that each individual module

significantly decreases the energy required for data acquisition. Additionally, we show the inte-

gration of KSpot+’s modules can further decrease the energy consumption of a WSN setup. We

summarize the major experimental contributions below:

1KSpot+ download page, http://www.cs.ucy.ac.cy/ panic/kspot/
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• Workload Balancing Module: In Section 7.3, we evaluate the WART algorithm of the

Workload Balancing Module in isolation using three realistic datasets in order to simulate

small-scale, medium-scale and large-scale WSNs. Additionally, we utilize three represen-

tative query sets that simulate variable workloads. We show that the Workload Balancing

Module significantly decreases the energy consumption by one order of magnitude or more,

compared to traditional approaches.

• Tree Balancing Module: In Section 7.4, we evaluate the ETC algorithm of the Tree Bal-

ancing Module using the same datasets and query-sets mentioned earlier. In addition to the

energy consumption metric we also focus on the balancing error, a metric which allows us

to quantitatively measure structural inefficiencies. We show that the distributed ETC algo-

rithm offers significant energy savings while in parallel exhibits only a fraction of lower

balancing accuracy than the centralized (i.e., optimal) approach.

• Fusing the Workload and Tree Balancing Modules:In Section 7.5, we fuse the Workload

and Tree Balancing modules and evaluate them in comparison to the performance of the

individual modules. We show that the fusion of the two modules decreases the energy

consumption by two orders of magnitude compared to traditional approaches and one order

of magnitude compared to the individual performance of each module.

• Query Processing Module: In Section 7.6, we illustrate the efficiency of the Query Pro-

cessing Module, using an experimental methodology that utilizes various real and realistic

traces. We focus on energy consumption, scalability as well as query semantic parameters.

We show that the INT and MINT algorithms of the Query Processing Module decrease en-

ergy consumption compared to TinyDB, minimizes both the size and number of packets
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transmitted over the network, scales linearly with and prolongs the longevity of a WSN

deployment.

• Overall evaluation of KSpot+: In Section 7.7, we assess the efficiency of the complete

KSpot+ framework. We show that the complete KSpot+ framework can significantly de-

crease the overall energy consumption of the network.

1.3 Dissertation Outline

The rest of the dissertation is structured as follows: We start in Chapter 2 by presenting a

classification of different data acquisition approaches for WSNs and perform a qualitative com-

parison of their features compared to KSpot+. Related work in the areas of Power Conservation,

View Management and Top-K Query Processing is also presented in this Chapter as these pro-

vide the foundations for each of the basic modules of the KSpot+ framework. In Chapter 3, we

present the KSpot+ framework including its design considerations and specific application do-

mains in which it can be utilized. Chapters 4, 5 and 6 thoroughly describe the basic modules

of the KSpot+ framework including their algorithmic foundations. In Chapter 7 we present an

extensive experimental evaluation of the KSpot+ framework using a proof of concept application

that we developed. Finally, Chapter 8 presents our conclusions, remaining challenges and future

directions.
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Chapter 2

Related Work

In this Chapter we overview research efforts that relate to the KSpot+ framework. We start

by presenting a classification of different data-acquisition approaches and perform a qualitative

comparison of their features compared to KSpot+. Next, we provide a thorough study of research

works that reside in the areas of i) Power Conservation, ii) View Management, and iii) Top-K

Query Processing as these provide the foundations for each of the basic components of the KSpot+

framework.

2.1 Middleware Approaches for WSNs

Traditional middleware frameworks such as the Common Object Request Broker Architecture

(CORBA) [34], Java service oriented architecture (JINI) [66], Enterprise Java Beans (EJB) [96],

Java Remote Method Invocation (RMI) [65] are considered heavyweight in terms of processor

and memory requirements, which renders them highly inefficient for WSN deployments. In this

section we present different middleware approaches tailored specifically for WSNs. Additionally

we perform a qualitative comparison with the proposed KSpot+ middleware framework. Finally,

we summarize the results of our analysis at the end of this section in Table 2-1.

18
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Data-centric Middleware Frameworks:

Cougar [135], considers the network as a virtual relational database and is one of the first data-

centric approaches for wireless sensor networks. Each sensor node acts as a database that stores

the node’s measurements locally and the network acts as a distributed database. In Cougar, queries

as well as management operations are translated to query messages, which are then injected to the

network. Similar to KSpot+, Cougar [135], employs a centralized optimizer, which maintains

status information about the network in order to coordinate sensor nodes in an energy-efficient

manner. However, in Cougar, this centralized approach requires a massive amount of messages to

be transmitted back and forth to the sink station thus increasing energy consumption. Furthermore,

in [10] we have shown that node and communication failures severely hamper the efficiency of

this coordination scheme as they cause sensor nodes, especially the ones in higher levels, to stay

in reception mode longer than required.

TinyDB [85], is one of the most popular data acquisition frameworks developed for TinyOS.

Like Cougar, it is a data-centric middleware platform that supports SQL-syntax queries over the

sensor network. Additionally, TinyDB supports a number of different query sets including his-

toric, event-based and lifetime queries. TinyDB’s power-aware optimizer employs a cost-based

mechanism in order to choose the most energy-efficient query execution plan, which may involve

prioritizing data delivery, adapting sampling rates and minimizing power consumption. This of-

ten enforces a uniform waking window for all sensor nodes depending on the depth of the query

routing tree, which in the majority of cases it is clearly an overestimate. The rationale behind this

over-estimation is to offset the limitations in the quality of the underlying clock synchronization

algorithms of the operating system but in reality it is too coarse [10]. TinyDB employs Tiny Aggre-

gation (TAG) [86], for energy efficient in-network aggregation of sensor results. KSpot+ extends
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the TinyDB in-network aggregation by enabling support for top-k queries that further minimize

energy consumption by reducing the size and number of packets transmitted to the network.

Temporal coherency-aware in-Network Aggregation (TINA) [109] is another data-centric mid-

dleware framework developed at the University of Pittsburgh. TINA works on top of existing

in-network aggregation like TAG and Cougar, and similarly to the Query Processing Module,

introduces a temporal coherency filter that minimizes both the size and number of transmitted

packets. Additionally, it influences the construction of the query routing tree by incorporating

query-based semantics using the Group-aware Network Configuration (GANC) [110] component.

TINA achieves significant energy savings while maintaining specified quality of data. The tempo-

ral coherence tolerance settings are either defined by the user or dictated by the network in cases

where the network cannot support the current tolerance level. The MINT algorithm of the KSpot+

Query Processing module utilizes a temporal coherence filter like TINA but also incorporates

in-network pruning, which introduces additional energy savings.

Sensor Information Networking Architecture (SINA) [112], is a middleware framework devel-

oped at the University of Delaware. SINA provides a set of programming abstractions that enable

application designers to view the network as a collection of distributed objects. SINA consists of

three basic components: i) Hierarchical Clustering, which forms a hierarchical network through

clustering, ii) Attribute-based Naming, which assigns names to the sensor nodes according to

their locally stored attributes and measurement capabilities, and iii) Location Awareness, which

employs both absolute (i.e., GPS) and relative (i.e., RSSI indicators) localization techniques to

determine the positions of the sensor nodes. As a result of the Attribute-based Naming compo-

nent, the network can be viewed as a collection of datasheets where each sensor maintains a single

datasheet locally that stores its measurements. This enables application designers to easily query

the network (either a single sensor or a group of them) using an extended SQL syntax (SQLT) that
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incorporates attribute-based naming in the filtering process. Additionally, the architecture provides

a set of configuration and communication primitives that enable scalable and energy-efficient or-

ganization and query-processing. However, in achieving energy-efficient topologies, SINA may

sacrifice the results of some sensors to avoid data collisions. This may result in the production of

inaccurate results at the sink node thus it is not applicable for data sensitive applications.

The Sensor NEtwork Engine (SNEE) [48, 49] is a middleware framework developed at the

University of Manchester. SNEE employs a query optimizer that receives metadata information

about the available resources (e.g., memory, energy), the WSN topology and also predictive cost

models. These are then used for computing the worst-case upper-bounds for the output size and

time taken for operations. SNEE combines a rich, expressive query language, named SNEEQL,

which provides extensive support on the JOIN operators incorporating techniques found on clas-

sical DQP architectures. Unlike KSpot+, the proposed query language does not directly address

Top-k queries although we assume that they can be incorporated as an aggregate function. Fur-

thermore, SNEE supports workload balancing by scheduling different workloads to different sites

in the network thus effectively reducing the energy. However, SNEE assumes that the underlying

infrastructure employs an efficient protocol for self-organization of the topology thus neglecting

to investigate the effects of an unbalanced topology. KSpot+ addresses the latter with the aid of

the Tree Balancing Module.

The Data services middlWare (DsWare) [81, 138], provides data abstractions to applications

in order to improve the performance of real-time execution and reduce the communication cost.

It inserts a layer between the applications and the sensor network, which is composed of server

and sensor-side components. Like KSpot+, the server-side components store meta-data about the

network and additionally handle all coordination activities and provide mechanisms for predic-

tion. The sensor-side components manage the state of the sensor nodes and provide a filtering
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mechanism on sensor-generated data. The filtering mechanism provides approximate instead of

exact values in order to decrease communication overhead. Overall, DsWare seeks to exploit

trade-offs between resource consumption and application quality in WSNs. This is accomplished

by sacrificing accuracy for energy conservation. In KSpot+, we minimize the overall energy con-

sumption of the network without sacrificing the results of sensor nodes. Currently, DsWare is still

in its infancy as only a fraction of the proposed components have been implemented and evaluated.

Application-centric Middleware Frameworks:

The Middleware Linking Applications and Networks (Milan) [60] is an application-driven mid-

dleware framework developed at the University of Rochester. Its high level application interface

enables application designers to specify their QoS requirements inside the sensor network ap-

plication code. These requirements are then translated by the middleware into protocol-specific

commands that are able to reconfigure the network topology based on quality metrics (e.g., sensor

remaining energy, channel bandwidth). Similarly to KSpot+, Milan’s architecture extends to the

network protocol stack thus allowing the middleware to perform power control on the communica-

tion medium as well as topology changes according to heuristics. However, Milan unlike KSpot+

does not consider the workload incurred on each sensor node, which may result in serious data

reception inefficiencies.

The MidFusion [62] is a middleware architecture that aims to facilitate information fusion

in sensor networks. MidFusion discovers and selects the best set of sensor nodes (w.r.t. en-

ergy efficiency) that can respond to an application request. This is accomplished by maintaining

profiles (e.g., energy reserves) for each sensor node and is done in a transparent manner to the

application. MidFusion assumes that a routing strategy is provided by the operating system of the

sensor network and that failures in the network can only occur due to communication interference.
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Therefore, unlike KSpot+ it does not consider data transmission/reception inefficiencies that occur

because of unbalanced routing structures or uneven workload distributed amongst sensor nodes.

Additionally, MidFusion may omit sensor nodes from the data acquisition process because of the

QoS requirements of the application, which may lead to inaccurate results.

Publish-subscribe Middleware Frameworks:

The Aware [95] middleware platform provides components to enable the cooperation between

fixed and mobile sensor nodes in addition to Unmanned Aerial Vehicles (UAVs). It is based

on the publish/subscribe paradigm where the flow of information is coordinated through data

channels. Each device publishes its capabilities (i.e., data channels) and attributes to a centralized

registry where other devices can subscribe to and receive feeds. Aware supports packet-level

optimizations that focus on content rather than address; the network acts as a global filtering

mechanism, minimizing in this way the communication overheads.

Mires [118] is another publish/subscribe middleware system built on top of TinyOS. It encap-

sulates the low-level generic interfaces of the operating system and provides high-level services to

the applications. In addition to the publish/subscribe layer, Mires incorporates a routing module

to facilitate multi-hop communication. Although, both Aware [95] and Mires[118] support a num-

ber of packet-level optimizations that can greatly decrease the number of communication packets,

additional energy savings can be achieved by optimizing the network topology.

Virtual Machine-based Middleware Frameworks:

Maté [78] is a virtual machine-based middleware developed at University of California-Berkeley.

It acts as a TinOS byte interpreter component that resides on top of several system components

including communication, sensorboard and storage. Maté’s high level interface allows complex
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programs to be written with minimal code, reducing in this way the energy for transmitting these

programs to the sensor network. It is important to note that this high-level instruction set can trans-

mit a message to the network using a single instruction. Application code is broken in capsules of

24 instructions, which allows a capsule to fit into a single TinyOS packet. Larger programs can

be composed of multiple capsules. Updating capsules with newer versions is facilitated by aug-

menting each capsule with version meta-data. Maté was built by taking into account the system

constraints of the Rene and Mica sensor devices and thus all of its sub-components must fit in 1KB

of RAM and 16 KB of instruction memory. Maté can be ported to a number of sensor devices that

run the TinyOS operating system including, Rene, Mica1, Mica2, MicaZ, TelosB. Unfortunately,

the current implementation does not support other operating systems (e.g., Contiki, LiteOS).

MagnetOS [17] is a virtual machine-based middleware developed at Cornel University. It

focuses on network-wide energy management, which can only be achieved by a distributed mid-

dleware approach. To accomplish this, MagnetOS provides a single system image of a unified

Java virtual machine across heterogeneous sensor nodes of the WSN. Regular Java applications

are transparently translated into distributed objects and ported to each sensor virtual machine. This

enables applications to view the entire network as a single unified Java virtual machine. MagnetOS

is comprised of two basic components: i) the server-sidestatic partitioning servicecomponent,

and ii) the client-sidedynamic runtime servicecomponent. Thestatic partitioning serviceis re-

sponsible for rewriting the byte-code of regular Java applications into objects or modules than can

be ported to each distributed virtual machine (i.e., sensor node). Each object is further augmented

with additional information in order to retain the original application’s semantics regardless of the

fact that the object will be distributed across many sensor nodes. Thedynamic runtimeprovides

services for object management including creation, invocation, placement, and migration, which
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utilize a number of power aware algorithms. Additionally, it provides the means for application de-

velopers to explicitly adjust object placement and migration thus enabling experimentation under

different settings. Both Mate [78] and MagnetOS [17] rely on a built-in ad hoc routing algorithm

that may produce unbalanced and workload inefficient topologies.

Agent-based Middleware Frameworks:

Impala [82] is an agent-based middleware architecture that has been designed mainly to be a part

of the ZebraNet [107, 83] sensor network but a prototype has also been developed for HP/Compaq

iPAQ Pocket PC handhelds. It focuses on application modularity, adaptivity and reparability. To

accomplish this, Impala’s middleware layer utilizes three agent-based components: the Applica-

tion Adapter, the Application Updater, and the Event Filter. The Application Updater facilitates

Over-The-Air-Programming (OTAP) by receiving and installing application updates. However, it

is important to note that only one application can be online at a time. The Application Adapter

is responsible for dynamically adapting running applications in order to improve performance,

energy-efficiency and robustness. On the one hand this ensures a high degree of energy-efficiency

without user-intervention in a transparent manner. On the other hand, it prevents application de-

signers to experiment under custom settings.

Agilla [47] is another mobile agent-based middleware specifically suited for applications cop-

ing with ephemeral events. The main component of the architecture is the Agilla Engine, which

is responsible for the concurrent execution of all mobile agents residing on a sensor node. Ad-

ditionally, it facilitates agent migration via the Agent Sender and Agent Receiver components.

The network is partitioned into tuple-spaces where agents interact and coordinate. The Agilla

platform has a low memory footprint and is well suited for resource-constrained networks such

as WSNs. On the other hand, the coordination of mobile agents on a large-scale network can
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Table 2-1: Classification and Comparison of Middleware Approaches for WSNs

Middleware Key Features Energy- Workload Topology Top-k Approx. (A) Heterog Scalab Mobil
Approach aware Opt. Opt. Support /Exact (E) eneity ility ity

Data-centric
TinyDB [85] SQL syntax, lifetime/event-based queries, Y Y N N A/E TinyOS Y N

In-network aggregation, Semantic routing trees
Cougar [135] SQL syntax, Virtual relational database, Y Y N N A/E TinyOS Y N

centralized optimizer
TINA [109] temporal coherence filters, Y N Y N A/E TinyOS Y N

group aware network configuration
DsWare [81] SQL syntax, real-time semantics, Y N N N A N Y N

event-detection
SNEE [48] rich, expressive language, Y Y N N A/E N Y N

scheduling of different workloads
SINA [112] Virtual spreadsheet database, Y N N N A N Y N

Attribute-based naming, Hierarchical Clustering
KSpot+ SQL syntax, in-network aggregation, top-k, Y Y Y Y A/E TinyOS Y N

topology balancing, workload balancing

Application-driven
Milan [60] topology adaptation Y N Y N A/E N N N

MidFusion [62] information fusion, sensor agents Y N N N A/E N Y N

Virtual Machine
Maté [78] bytecode interpreter, OTAP, code capsules Y N N N A/E TinyOS Y Y

MagnetOS [17] Java VM, OTAP, Single System Image Y Y N N A/E Java Y Y

Publish-Subscribe
Mires [118] aggregation service, high-level interfaces Y N N N A/E TinyOS N N

AWARE [95] sensor network & UAC coordination Y Y N N A/E TinyOS N N

Agent-based
Impala [82] adaptivity, reparability, OTAP, Y Y N N A/E Y Y N

single executing application
Agilla [47] self-adaptation, tuple-space abstraction, Y Y N N A/E TinyOS N Y

location addressing

seriously hamper the overall performance of the network. Furthermore, unlike KSpot+, Agilla

does not consider topology inefficiencies, which may result in unavoidable hotspots during agent

communication and coordination.

In conclusion, the majority of proposed middleware approaches employ mechanisms for re-

ducing the overall energy consumption of the network thus increasing the longevity of a WSN

as shown in Table 2-1. However, they neglect the important parameter of constructing an energy

efficient topology and operate on top of the initial ad hoc query routing tree. Additionally, most ap-

proaches often assume a fixed workload distributed uniformly on all sensor nodes. Consequently,

it is not clear how efficient they will operate under a variable workload, which occurs under the

following circumstances: i) from a non-balanced topology, where some nodes have many children

and thus require more time to collect the results from their dependents; and ii) from multi-tuple

answers, which are generated because some nodes return more tuples than other nodes (e.g., be-

cause of the query predicate). Furthermore, none of the approaches support top-k queries, which
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can significantly decrease the overall number and size of transmitted packets. Finally, few of the

proposed middleware approaches have been implemented and tested in real environments. Ta-

ble 2-1, shows a feature comparison of all presented approaches. Like all presented approaches,

the KSpot+ middleware framework focuses on energy efficiency but additionally employs mech-

anisms that generate a more efficient topology as well as provide support for top-k queries.

2.2 Power Conservation

In this section, we present a number of power conservation approaches that we have utilized

as input in the design of the Tree and Workload Balancing modules of the KSpot+ framework.

Power conservation is one of the key design features in all middleware approaches proposed

for WSNs and numerous mechanisms have been proposed virtually at all layers of the traditional

layered sensor communication stack. All these approaches attempt to decrease the energy con-

sumption with two basic techniques: i) by turning the radio transceiver to low-power consumption

mode during periods of inactivity, and ii) by improving the sensor node’s operation (e.g., voltage

scaling, employing multiple power levels). Most of these techniques are complementary to the

techniques described in this dissertation while the rest come with their own trade-offs as we will

show shortly.

In this section, we present an elaborate overview of techniques that decrease communication

related power consumption in WSNs, using the ISO/OSI stack [73]. Such a categorization allows

one to accurately capture the main focus and limitations of each presented technique. We shall

also refer to cases of cross-layer optimizations individually. For the remainder of this section, we

will present the universe of techniques in a bottom-up manner, starting from the physical layer

and moving up to the application layer where KSpot+ belongs to. We omit the Presentation and

Session layers of the typical ISO/OSI stack as none of the presented techniques addresses these
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layers specifically.

Physical Layer techniques:

This layer relates to the low-level sensor device hardware (circuitry, MCU, transceiver, etc) thus

the opportunity for software-level power management is fairly limited. Yet, there are a few

works [21, 57, 117] that look at individual and local power management optimizations.

Examples of these techniques are theDynamic Voltage Scaling (DVS)[21] and Embedded

power supply for low power Digital Signal Processor (DSP)[57] which are effective techniques

for reducing the energy consumption of the CPU. The goal of these approaches is to adapt the

processor’s power supply and operating frequency to match any given computation load without

degrading performance.Dynamic Power Management (DPM)[117] is another work that utilizes

different power models to shut down various components (e.g., radio transceiver, CPU) when these

are not required to operate. All of the above techniques, and generally any local power conserva-

tion mechanism at the physical layer, are supplementary to the KSpot+ middleware framework.

MAC Layer techniques:

The Medium Access Control (MAC) layer facilitates the transfer of messages to and from the

physical layer. Most of the protocols developed for the MAC layer deploy explicit mechanisms to

avoid collisions when multiple sensor nodes attempt to access a shared channel. Most of the sensor

network related works presented in this layer [119, 116, 136, 97] minimize energy consumption

by minimizing collisions and overall usage of the shared access medium.

TheCoordinated Power Conservation algorithm (CPC)[119] is an example of a MAC-layer

power management protocol that coordinates the sleeping intervals of sensor nodes with the aid

of a backbone. CPC starts out by selecting a set of backbone nodes as CPC servers. Next all CPC
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clients that run on non-backbone nodes, request to turn the transceiver of the sensor node off when

there is no communication activity in order to conserve power and extend network lifetime. CPC

servers running on backbone nodes serve as coordinators to synchronize sleeping schedules of

nodes within their coverage areas. The intuition of turning off the radio transceiver during periods

of inactivity is very similar to the WART algorithm of the KSpot+ Workload Balancing Module.

However, CPC servers coordinate in a distributed manner without obtaining any global informa-

tion from the base station, which does not provide a universal view of the system. Furthermore,

the scheduling on WART is based on the query workload incurred on each sensor node while CRC

misses the inclusion of such high-level semantics.

Power-aware Multi-Access Protocol with Signaling (PAMAS)[116], is another MAC-layer

power management protocol that utilizes two independent radio channels in order to avoid over-

hearing among neighboring nodes. PAMAS does not attempt to reduce idle listening which is

a major disadvantage, as nodes have their radio enabled during periods of inactivity reception.

However, battery power is saved by intelligently turning-off sensor nodes that are not in active

transmission. On the other hand, the popularSensor-MAC (S-MAC)[136] protocol, utilizes a

synchronization scheme that allows sensor nodes to realize periodic listening and sleeping during

busy periods (i.e., when transmission from other nodes is detected). Furthermore, S-MAC con-

sists of two additional components that handle: i) collision and overhearing avoidance by allowing

sensor nodes receiving control packages not destined to them go to sleep, and ii) message passing

by segmenting long messages into smaller ones and transmitting in a burst (i.e., RTS/CTS control

messages are not used for each fragment). S-MAC has been further enhanced in [97] to minimize

the end-to-end delay. Both PAMAS and S-MAC achieve high energy savings by allowing sensor

nodes to sleep periodically. However, none of these approaches considers the underlying topology

of the sensor network, intra-sensor relationships and high-level query semantics. In particular,
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these techniques do not consider the workload of a continuous query, rather they assume a random

variable workload. In the Tree Balancing Module of KSpot+, we minimize collisions by con-

structing a near balanced routing tree through the ETC algorithm. Nevertheless, since the S-MAC

protocol has been successfully integrated in TinyOS [136] as one of the primary MAC protocols,

these techniques extend the power management capabilities of KSpot+ inherently.

Sensornet Protocol (SP)[102], introduces a unified link level abstraction that is part of the

sensor network architecture proposed in [36]. Specifically, SP provides shared neighbor manage-

ment and message pool interfaces that allow network protocols to exchange messages efficiently

and choose neighbors wisely without concentrating on link specifics. To accomplish this, these

interfaces encapsulate the mechanisms of the particular link and physical layers that operate be-

low SP. The authors show that various link-layer protocols can be expressed in terms of SP and

subsequently mapped efficiently to various different link-level power management mechanisms.

Network Layer techniques:

This layer is responsible for delivering packets from a source node to a destination node through

some routing mechanisms. In WSNs, routing is accomplished using multi-hop messages, thus

many mechanisms in this layer attempt to discover optimal routing paths for energy efficient de-

livery of messages through intermediate hosts [53, 37, 132, 59].

The Power-Aware Routing (PAR)[53] technique proposes a routing policy that balances the

overall power in the network by discovering routes that consume the least possible energy. Since

in a non-uniform network, the majority of nodes do not consume power in an identical fashion,

PAR favors nodes with generous power reserves. Another technique is theMinimum Connected

Dominating Sets (MCDS)routing algorithm [37] which employs a virtual backbone that provides
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shortest paths for routes as well as route updates in cases of node movements in order to minimize

the overall energy required for routing multi-hop packets.

Both PAR and MCDS approaches assume an a priori established query routing tree. Any

optimizations suggested by both approaches do not alter the state of the query routing tree. On the

other hand, the KSpot+ differs from these approaches as the Tree Balancing module reconstructs

a near-balanced tree in order to minimize collisions prior to any further optimizations. Certain

modules of PAR and MCDS (e.g., shortest path discovery) can be used in conjunction with KSpot+

in order to achieve even more energy savings.

In Modular Network Layer[44] the authors decompose the network layer into smaller com-

ponents that can be used by several protocols in parallel. This network layer operates on top of

the popular Sensornet link-layer Protocol [102]. The intuition behind their approach is that the

majority of network protocols have many commonalities. Encapsulating these commonalities and

exposing them as service interfaces enables faster development of new protocols and run-time

sharing of components. The authors evaluate their approach and find that Modular Network Layer

can reduce both the memory and code of network protocols that run concurrently. Consequently,

this work is supplementary to KSpot+, as our protocol could have been implemented using this

intermediate framework rather than in a standalone.

Transport Layer techniques:

The transport layer is responsible for the transfer of messages between two or more end systems

using the network layer. One of the main objectives of the transport layer is the reliable and cost

effective delivery of transferred messages between applications. The evolution of the techniques

in this layer has been severely hampered by the fact that sensor networks feature node failures and

collisions making reliable and cost effective communication often impossible.
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One of the few works that addresses the above issues is theTCP-Probing[124] communication

protocol, which introduces the concept of a probe cycle instead of standard TCP re-transmissions,

congestion window and threshold adjustments. During probe cycles, data transmission is sus-

pended and only probe segments are sent. The proposed scheme achieves high throughput perfor-

mance whilst in parallel decreases the overall energy consumption for transmission. This is done

without damaging the end-to-end characteristics of TCP.Flush[69] is another transport layer pro-

tocol for multi-hop wireless networks. Flush provides end-to-end reliability, reduces transfer time

and adapts to time-varying network conditions. To accomplish these properties, Flush uses end-

to-end acknowledgments, implicit snooping of control information and a rate-control algorithm

that operates at each hop along a flow.

In contrast to the probe cycles of TCP-Probing and end-to-end acknowledgments of Flush,

KSpot+ uses the notion of a waking window during which a sensor may transmit a message re-

peatedly until it is successfully received by the recipient. The aforementioned techniques would

introduce further delays as well as more energy waste since the sensors would have to exchange

more messages in order to synchronize.

Application Layer techniques:

The main objective of this high level layer is to exploit the semantics of the network or applica-

tion and low-level data in order to optimize the network structure among nodes and boost power

management. Consequently, this layer has implicit interactions with lower levels of the communi-

cations stack (often referred to as cross-layer optimizations [4]). The techniques in this category

can roughly be classified in the following categories: i) local techniques, in which low-level data

semantics dictate the reaction of the application, and ii) cluster-based techniques, in which the

reaction of the application is dictated by the cluster semantics (e.g., network proximity).
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Application-Driven Power Management for Mobile Communication (ADPM)[72], is an exam-

ple of an application-layer technique that enables the dynamic power configuration of the commu-

nication device. The goal of this work is to determine the appropriate tradeoff for battery lifetime

versus response delay, while adjusting the sleep duration of the communication device. ADPM,

just like the techniques in the physical layer, which adjust the power supply of the processor, is

supplementary to our approach. Adaptive Energy-Conserving Routing (AdECoR) [131], is an-

other application layer protocol that utilizes two algorithms for routing in resource constrained

WSNs. The intuition behind this approach is that although switching-off the communication de-

vice may result in energy conservation it may also introduce delays in the network. AdECoR

attempts to find a tradeoff between energy conservation and latency by utilizing application-level

information. AdECoR differs from KSpot+ as its application-level information does not include

the high level query semantics used in KSpot+. Furthermore, the concept of introducing delays

in order to conserve power is not acceptable in KSpot+ as we assume that queries have specific

response time requirements that must be met. In [139], the authors propose a Data Transmission

Algebra (DTA) that allows a centralized query optimizer to utilize lower layer communication

protocols in scheduling sensor database queries. This generates query routing trees to maximize

collision-free concurrent data transmissions. The Workload Balancing Module of the KSpot+

framework focuses on minimizing the wake-up time of each sensor node and does not consider

creating collision-free topologies. In KSpot+ this is achieved by utilizing the Tree Balancing Mod-

ule prior to the operation of the Workload Balancing Module. DTA can be utilized in conjunction

with the Workload Balancing Module to minimize both the collisions and the wake-up time of the

sensor nodes.Pan
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A query routing tree can be considered as a query evaluation plan. This observation motivated

us to develop a Data Transmission Algebra (DTA) that allows a query optimizer to generate query

routing trees to maximize collision-free concurrent data transmissions.

The second class of application layer techniques includes those techniques that use clustering

mechanisms [132, 59, 29]. An example of these techniques isGeographical Adaptive Fidelity

(GAF) [132], which obtains location information using the Global Positioning System (GPS) in

order to connect sensor nodes to a virtual grid (i.e., a semantic overlay based on geographical

proximity). It then saves energy by keeping sensor nodes located in a particular grid area in sleep-

ing state. The sleeping schedule uses a turn-based approach that aims to balance the load incurred

on each sensor.Energy-Efficient Communication Protocol for Wireless Micro-Sensor Networks

(LEACH) [59] is another cluster-based technique that minimizes overall energy consumption in

WSNs by rotating the cluster head nodes in a random manner. This rotation allows the distribu-

tion of the energy load evenly among the sensor nodes in the network without draining the energy

resources of an individual sensor node. One final cluster-based protocol isSPAN[29], which

builds on the observation that when a region of a shared-channel has a sufficient density of nodes,

only a small number of them needs to be present at any time to forward traffic for active connec-

tions. To accomplish this, SPAN utilizes a distributed, randomized algorithm that allows sensors

to make local decisions as to when sleeping is appropriate.

GPS and SPAN, like KSpot+ take advantage of global information to preserve energy. Both

approaches switch-off some sensors based on some application-level parameters and force other

sensors to seek alternate routing paths. However, switching-off some sensors means that they

cannot participate in a given query and as a result, valuable results may be lost even for shorts

period of time. LEACH differs from our approach since in KSpot+ all nodes participate in a given

query and none plays a separate role (e.g., cluster head) nor has more energy reserves than others.
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The recent trend in wireless sensor networks is to interconnect existing sensor networks through

dedicated web-based or geospatial-based information systems. Such systems operate over differ-

ent operating systems, communication protocols and applications. To address the problem of

communicating with such diverse sensor network systems, the works in [1, 94] have developed

middleware systems that enable integration and management of many WSN sites. Additionally,

multi-tier sensor systems like TENET [51], that aim to combine the low-power sensor devices we

discuss in this dissertation with powerful 32-bit nodes (e.g., Stargates [35] or ordinary PCs), are

another direction in sensor networks optimization. Yet, all these techniques are complementary

to the approaches we outline in this dissertation as our techniques structure efficient and well-

formed WSN deployments while middleware techniques utilize these as a building block.

2.3 View Management

In this section, we present a number of view management approaches that we have utilized as

input in the design of the Query Processing module of the KSpot+ middleware framework.

View Management has been an area of great contributions over the last decades [19, 30, 27,

74]. Materialized Views, in particular, have been extremely important in OLAP and Data Ware-

housing, where users are required to get quick answers to their aggregate queries over extremely

large datasets. Most of the proposed solutions assume powerful and complex centralized or dis-

tributed DBMSes. Materialized views have also been extremely important in mobile databases be-

cause they provided the means to support disconnected operations [127, 126]. Similarly to mobile

databases, we focus on wireless (sensor) devices with limited energy, CPU and memory resources.

Additionally, our work is fundamentally different from Temporal View Management [134, 87], as

our queries are not historic.
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The notion of views in the context of sensor networks, has appeared in three recent works.

The first one proposes a new abstraction, coinedModel-based Views, which provides users with

a unified view of data that hides away the irregularities of sensor data [40]. These views are im-

plemented outside the sensor network. Thus, their scope and objective is supplementary to our

approach, in which we utilize in-network views to optimize the acquisition of data from sensing

devices. The second work [130] is similar to our approach but it uses in-network views to sup-

port ad-hoc queries in a data-centric environment as opposed to continuous and top-k queries in

our approach. Finally, in [75] the authors present two cluster-based techniques for materializing

aggregated results in a sensor network. The proposed MINV framework replicates aggregated

results on some or all sensor nodes inside a cluster and then uses these results as materialized

in-network views in order to speed-up the execution of spatial aggregation queries. The proposed

cluster-based techniques in [75] can be used in conjunction with the INT and MINT Views algo-

rithms of the KSpot+ Query Processing Module in order to further speed-up query execution as

well as to improve the overall fault tolerance of the system since with MINV, local sensor results

are available to other sensor nodes.

The problem of materialized views that are generated by top-k queries in a centralized DBMS

scenario was recently addressed in [38]. In particular, the authors study the problem of answering

a top-k query from a set ofN materialized top-k answers. These answers refer to different top-k

queries, which are neither distributed nor organized in a hierarchy, as this is the case in our setting.

Finally in [76], the authors propose to exploit fully materialized views in sensor networks in order

to speedup the execution of multiple queries. However these views are complete, rather than top-k,

therefore their setting is closer to the TINA framework rather than the solutions proposed in this

dissertation.
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2.4 Top-k Query Processing

In this section, we present a number of top-k query processing approaches that we have utilized

as input in the design of the Query Processing module of the KSpot+ framework.

Top-k Query Processing has been studied in a variety of contexts including middleware sys-

tems [45, 46], web accessible databases [20, 90], stream processors [15], peer-to-peer systems [14]

and other distributed systems [24, 144, 143]. It has been shown in numerous studies [45, 24, 20,

144], that top-k query processing is meaningful only if the predicatek refers to a small subset of

the complete answer set (usually up-to 5%). For larger values ofk, the query optimizer can choose

to retrieve the complete answer set. For instance, the query”Find the k=5 rooms with the highest

average temperature”, retrieves a subset of the complete answer set in order to minimize a cost

metric that is associated with the retrieval of the complete answer set. This cost is usually mea-

sured in terms of disk accesses or network transmissions, depending on where the data physically

resides.

Distributed Top-k Query Processing algorithms can be classified according to the approach

in which the data are fragmented over the network, that is vertically or horizontally. In verti-

cally fragmented datasets, each sub-relation contains a subset of columns (attributes) of the orig-

inal relation R. An example of a query that can be executed on a vertically partitioned dataset

is “Find the timestamp on which we had the highest temperature across all sensors”. Various

algorithms [45, 143, 24, 137] have been proposed for top-k query processing with the Thresh-

old Algorithm (TA)[45] being the most predominant. In [24] the authors develop a three phase

protocol (TPUT) which decreases the number of remote accesses in large networks. The TPAT

algorithm [137] extends the TPUT algorithm by exploiting data distributions among nodes to im-

prove pruning. In [143], the authors propose the Threshold Join Algorithm which operates on a
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multi-hop network (in contrast with TA,TPUT and TPAT) and further reduces communication by

exploiting in-network aggregation.

While the aforementioned algorithms provide exact results for top-k queries there is a number

of works [92, 15, 143] that provide approximate answers. In [143], the authors propose the UB-

K and UBLB-K algorithms that return upper/lower bounds instead of exact answers. In [15] the

authors use a centralized coordinator node which distributes filters to each source node so as to en-

sure that local top-k result correlate with the global top-k answer. In [92], the authors propose the

KLEE algorithm which extends the TPUT algorithm by providing approximate answers. The idea

is to provide an adaptive framework which allows trading-off efficiency against result quality and

bandwidth saving against the number of communication messages. A sampling-based approach

to optimize Top-k queries in sensor networks is also the core topic in [115].

In horizontally fragmented datasets, each sub-relation contains a subset of tuples (rows) of the

original relation R. An example of a query that can be executed on a vertically partitioned dataset

is “Find the two rooms with the highest average temperature”.

A method for continually providing approximate answers in a hierarchical sensor network

scenario by exploiting temporal coherency was addressed inTINA [109, 110]. The basic idea

behind TINA is to send a reading from a sensor only if the reading differs from the last recorded

reading by more than a stated toleranceǫ. The problem of continually providing approximate

top-k answers in a client-server setting was studied in [15]. The problem is tackled by installing

arithmetic constraints at each node which define the current Top-k scores at any point. This work

was later extended to a hierarchical sensor network environment in [39].Pan
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In [129] the authors propose a range caching algorithm for continuous top-k processing. This

approach utilizesk+1 individual filters that are selectively adapted rather than a hierarchical in-

network pruning mechanism. In [14, 67], the problem of identifying the Top-k objects from rela-

tions which are horizontally fragmented over peers in a P2P environment is studied. The proposed

solution depends on each peer having knowledge of the total score of each object that it manipu-

lates. This is not possible for vertically partitioned relations, as this requires access to all relations

in their entirety, which constitutes their approach inapplicable in our context.

Other approaches range from efficient join processing algorithms in sensor networks [49, 31,

120, 68], to the underlying data management layer [28, 3, 41, 142] and network optimization [88,

32, 18, 11], among others. Yet, these approaches focus either on a different system model or a

different problem formulation, than the work we present in the Query Processing Module of the

KSpot+ framework.

Finally, most of the above horizontal approaches assume a star (or single-hop) communication

topology, in which all nodes are directly accessible by the querying entity. On the other hand, our

work has focused on the challenges of a hierarchical (or multi-hop) topology. In all cases the re-

sults are approximate and continuous over a single attribute, thus operate over individual attributes

(columns), while our approach is exact and operates horizontally covering all tuple attributes.
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Chapter 3

The KSpot+ Framework

KSpot+ is a novel network-aware framework for WSNs built on top of a diverse set of energy-

conscious algorithms. It inserts a profiling layer between the server and the sensor network that

discovers structural and workload inefficiencies and exploits them in order to generate balanced

topologies that can be queried in an energy-efficient manner. It has three basic operations: i) to

construct balanced network topologies; ii) to tune the waking windows of sensor nodes; and iii) to

enable tuple ranking through top-k queries.

KSpot+’s modular design allows application designers to easily integrate new features into the

design as well as experiment under different settings. KSpot+’s modules can function individually

or in cooperation according to the requirements of the application. Additionally, they can operate

in conjunction with a variety of routing and query protocols (see Chapter 2).

In this Chapter, we provide an overview of the KSpot+ architecture, its design principles and

some information on its prototype implementation.

40
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3.1 Design Goals

In order to build a practical system, we have taken into consideration the following desired

properties for our architecture:

• Modularity : Decomposing systems into a number of components that may be mixed and

matched in a variety of configurations ensures a high degree of openness and usability for

our architecture. Our framework’s architecture design consists of modular components that

operate in an energy efficient manner both in isolation and in combination with each other

as well as with other protocols.

• Energy-Efficiency: Battery-powered WSNs are expected to minimize maintenance cost

by lasting for large periods of time without requiring battery replacements [86, 85, 9, 121,

10]. To accomplish this, any software (i.e., OS, middleware, application) that runs on a

sensor device must be designed to operate in an energy-efficient manner. In the KSpot+

framework, each module is founded on the premise of energy-conscious algorithms that

minimize energy consumption and increase network longevity.

• Distributed and Autonomous Behavior: We focus on fully autonomous and decentralized

behavior of KSpot+ client-side components. More specifically, we minimize the mainte-

nance of any global state or data structures at a centralized location and use only local

knowledge. In the cases where global information is necessary for completing an operation

it is acquired using specialized coordinator components. Note, that this occurs only at the

initialization of the network topology upon a balancing request or in case of node failures.Pan
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• Scalability : The network sizes of WSNs are expected to grow substantially in the next

few years as the cost for manufacturing sensor devices continuously decreases [5]. Con-

sequently, we consider scalability an extremely desirable property of our framework as it

ensures that the performance of the system will maintain acceptable QoS standards regard-

less of the increasing network size. In our experiments, we show that the KSpot+ framework

is scalable by utilizing a number of datasets that vary from small-scale to large-scale sensor

networks.

• Resilience in the presence of Failures: WSNs are typically prone to imminent node failures

triggered from temporary power-downs, malfunctions, environmental causes, etc. Maintain-

ing resilience in such environments is vital for applications (e.g., fire detection/prediction)

that require real-time results. In our experiments, we show that the algorithms that operate

in each of the KSpot+ modules have proven to work both resiliently and efficiently in the

presence of failures.

3.2 KSpot+ Framework Architecture Design

The KSpot+ framework lies between the server tier and the data tier as illustrated in Figure 3-

1. It follows the client-intercept-server [101] model and it is composed of server-side and client-

side components. Applications can post queries to the sensor network through the server-side

Query Manager using the Query API or request a balancing operation (Tree Balancing and/or

Workload Balancing request) through the respective server-side coordinator components. Queries

are forwarded to the client-side Query Processing Module, which in turn decides the best execution

plan for the query and communicates with the schema layer in order to retrieve the actual data

residing on local storage. As soon as the query results are ready, they are forwarded back to the
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Figure 3-1: KSpot+ framework architecture. The KSpot+ client combines 3 novel components:
theTree Balancing Module, which balances the sensor network topology, theWorkload Balancing
Module, which balances the workload of each sensor node, and theQuery Processing Module,
which handles query execution and facilitates Top-k query processing.

application through the Data server-side Listener component. Applications can then share the data

with online databases and web portals.

Balancing requests require global information, which is stored in the meta-data repository.

The Coordinator components recursively forward specialized messages to the sensor network re-

questing the local values. In the next step, these values are propagated in the opposite order until

they reach the sink node. The sink node then calculates the critical path (ψ, described in Chap-

ter 4) and the optimal network branching factor (β, described in Chapter 5) values and forwards

them back to the coordinator components that proceed with balancing the network topology and

each sensor node’s workload locally.

We now describe in more detail the components of the KSpot+ framework:
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• The Workload Balancing Module (described in detail in Chapter 4), investigates data

reception/transmission inefficiencies that occur from unbalanced assignment of the query

workload amongst sensor nodes. It utilizes the WART algorithm for the dynamic adap-

tation of the waking windows of each sensor node. The server-side Workload Balancing

Coordinator starts by profiling recent data acquisition activity and then identifies the bot-

tlenecks of the network through an in-network execution of the Critical Path Method. The

acquired global critical path value (ψ) is stored in theMeta-data Repository. Immediately

afterwards, the coordinator transmits theψ value to the network recursively fine-tuning each

sensor node’s waking windowτ locally through the Workload Client.

In particular, the Workload Balancing process consists of three phases: i) theConstruction

Phase, where the sink node constructs a new query routing tree or utilizes an established

one and then queries the network for the total critical path valueψ; ii) the Dissemination

Phase, where the sink node disseminates the critical path valueψ to the network and each

sensor node tunes its waking window accordingly; and iii) theAdaptation Phase, where

each sensor node adapts its waking window according to new workload variations.

A more elaborate description of the Workload Balancing Module along with its algorithmic

foundations will be thoroughly presented in Chapter 4.

• TheTree Balancing Module (described in detail in Chapter 5), identifies structural ineffi-

ciencies in the initial query routing tree that occur from its ad hoc construction nature. It

utilizes the Energy-driven Tree Construction (ETC) algorithm in order to remove these inef-

ficiencies by reconstructing the tree in a balanced manner, which minimizes data collisions

during communication.Pan
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In particular, the Tree Balancing process consists of two phases: i) theDiscovery Phase,

where the sink node calculates the optimal branching factorβ of the initial ad hoc network

topology (β is stored in theMeta-data Repository); and ii) theBalancing Phase, where

the sink disseminatesβ to the network and sensor nodes recursively conduct a number of

local rearrangements to their parent assignment. This results in a more balanced network

topology.

A more elaborate description of the Tree Balancing Module along with its algorithmic foun-

dations will be thoroughly presented in Chapter 5.

• TheQuery Manager is responsible for disseminating queries to the network and translat-

ing the network results into a tuple-format using theData Listenercomponent. It supports

an SQL-like query syntax, which supports standard queries through theQuery API. Ad-

ditionally, it extends the traditional SQL syntax of predominant data-centric middleware

systems [85, 135, 112, 81] by introducing Top-k query execution in the form of aggregates

through theTop-k Query API. More details on the Query Syntax will be presented in Sec-

tion 3.3.

• TheQuery Processing Module(described in detail in Chapter 6), is responsible for query

execution as well as a number of services including group management and caching. Reg-

ular SQL queries are executed using the built-in query mechanism while standard Top-k

queries are executed using the INT algorithm. In the case of Top-k queries that involve

logical groups, these are coordinated through the group management component (see Sec-

tion 3.4). The Query Processing Module also utilizes a data caching mechanism that in

cooperation with the INT mechanism exploits temporal coherency between results of con-

secutive time instances (MINT).
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In particular, the Query Processing process consists of three phases: i) theQuery Dissem-

ination Phase, where the sink node propagates a query to the network; ii) theProcessing

Phase, where each sensor node acquires its local sensor readings, merges them with all val-

ues acquired from its child nodes and process them using the INT/MINT algorithms; and

iii) Data Acquisition Phase, where each sensor node recursively transmits its results to the

network until they reach the sink node.

A more elaborate description of the Query Processing Module along with its algorithmic

foundations will be thoroughly presented in Chapter 6.

• TheData Cachingcomponent exploits the temporal coherency in order to suppress updates

that do not change between consecutive time instances. At each epoch, the query results

are stored in main memory before they are transmitted so that they can compared with the

results of the next epoch. We have chosen to store the results in main memory instead of

flash storage because it increases the response time performance of the system.

• TheGroup Managementcomponent is responsible for forming clusters of sensors by ar-

ranging them in logical groups. This is accomplished by attribute-based naming of the

sensors based on specific query semantics and application requirements. More details are

presented in Section 3.4.

The KSpot+ framework is composed of loosely-coupled modules that communicate in a message-

passing manner. As illustrated in Figure 3-1, the server-side components communicate with their

client-sideaccomplicesusing different communication messages (different arrows departing from

each server-side component). The reason we have not opted for a unified communication mecha-

nism is that this generates a tightly-coupled system, which would have compromised the modular-

ity of the system as tightly coupled systems tend to exhibit a number of disadvantages including: i)
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Decreased Reusability, because dependent modules must be bundled together in order to be reused

or tested, ii) Increased Deployment Effort, because module bundles will require more time to test

and deploy, and iii) Increased Maintenance, as updates on one module may require re-testing of

the whole bundle. Nevertheless, under a unified communication setting, we could have performed

additional packet-level optimizations that could have decreased the energy requirements for trans-

mission/reception.

KSpot+ modular design allows application designers to easily integrate new features into the

design as well as experiment under different settings. KSpot+’s modules can function individually

or in cooperation1 according to the requirements of the application. Additionally, they can operate

in conjunction with a variety of routing and query protocols (see Chapter 2).

The KSpot+ modules can be roughly classified by their awareness on the routing topology

(topology-aware), the scheduling of the waking windows (schedule-aware) and the executed query

(query-aware). The Tree Balancing Module is topology-aware but schedule and query-agnostic.

The Workload Balancing Module is schedule-aware but topology and query-agnostic and the

Query Processing Module is query-aware but topology and schedule-agnostic. Consequently, each

module is complimentary to each other, an argument that we experimentally quantify in our Ex-

perimental Series 4 and 6. In Experimental Series 4 we present the combination of the Tree and

Workload Balancing Modules (i.e., topology and schedule-aware but query agnostic) and show

how these complimentary modules benefit from their cooperation. Finally, in Experimental Series

6 we present the combination of all modules (i.e., topology, schedule and query-aware), which

demonstrate the additive effect of all modules on increasing the sensor network longevity.

1When operating in cooperation, the operation of the Tree Balancing Module logically precedes the operation of the
Workload Balancing Module, as the former reconstructs the network topology which may result in different workload
assignment between sensor nodes.Pan
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In the following sections, we present the services provided by the KSpot+ framework. A more

elaborate description of the Workload Balancing, Tree Balancing and Query Processing modules

along with their algorithmic foundations will be thoroughly presented in Chapters 4, 5 and 6

respectively.

3.3 Query Syntax

The KSpot+ framework supports an SQL-like query syntax, which supports standard queries

through theQuery APIand Top-k queries through theTop-k API.

In particular, the KSpot+ middleware architecture utilizes the following query syntax:

SELECT Top k attribute [,aggregate]

FROM sensors

[WHERE filter]

[GROUP BY attribute]

[ORDER BY [attribute|aggregate] [ASC|DESC]]

[SAMPLE PERIOD time (ms)]

Theattribute parameter mentioned in theSELECT statement refers to all measurements

that can be acquired from the sensorboard as well as variables stored locally at each sensor node.

Theattribute parameter mentioned in theGROUP BY statement may additionally refer to a

logical group assignment, as described in the next Section. Theaggregate parameter refers

to all duplicate-insensitive aggregates supported. Roughly, these aggregates can be distinguished

in: i) distributive aggregates, where records can be aggregated in-network without compromising

correctness (e.g., duplicate insensitive (MAX, MIN), duplicate sensitive (SUM, COUNT)), and ii)

holistic aggregates, where in-network aggregation might compromise the result correctness (e.g.,
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typedef struct {

uint8_t nVals;

uint16_t topVals[MAX_K];

} TopkData;

SELECT 

TOPK(k, attribute) 

FROM sensors

SAMPLE PERIOD 2048

SELECT 

TOPKROOM(k, attribute) 

FROM sensors

SAMPLE PERIOD 2048

typedef struct {

uint8_t sameAsPrevious:1;

uint8_t vals:3;

uint32_t count:22;

uint32_t room:22;

uint16_t sum[roomCount];

} __attribute__((__packed__)) 

TopkRoomData;

SELECT TOP k attribute 

FROM sensors

SAMPLE PERIOD 2048

SELECT TOP k room, attribute

FROM sensors

GROUP BY room

SAMPLE PERIOD 2048

SQL Query

Top-k Query API

Data Structures

Figure 3-2: The KSpot+ Top-k query syntax and their respective client-side data structures.

MEDIAN), thus all tuples have to be transmitted to the sink before the query can be executed.

The benefits of the KSpot+ framework can be seen when executing single-relation queries with

distributive aggregate functions. In contrast with other frameworks, we optimize queries with

multi-tuple answers. Such answers could be generated by aGROUP-BY clause, or by a non-

aggregate query. Note that forsingle-tupleanswers, such as those generated by an aggregate

query without a GROUP-BY clause, there is no notion of a top-k result.

Note that in the KSpot+ framework, when aTOP k attribute query is executed over the net-

work, we only return thek-highest results for that attribute, if noORDER BY clause is used.

However, we could have easily returned thek-lowest results in a similar way. If aGROUP BY

query is posted to the network, results are grouped by the attribute statement and aggregates are

calculated for each group individually. The two forms of Top-k queries supported by the KSpot+

Top-k Query API along with their transformations from query text to data structures are illustrated

in Figure 3-2.
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3.4 Logical Group Management

The Group Management component realizes clustering of the sensor nodes by arranging them

into logical groups. This is necessary in the case ofGROUP BY queries, where grouping may

be achieved not only on predefined attributes (e.g.,nodeid) but also on context-based attributes

(e.g., building name, room number). To facilitate our description, consider an indoor deployment

of four sensor nodess1−4 in a building with two offices, A and B, such thats1−2 is located in

office A ands3−4 in B. In order to inform each sensor node of its actual location (e.g., longitude,

latitude) and then derive its logical location (i.e., office A or B), we could have utilized absolute

localization techniques (e.g., Global Positioning System (GPS)) or relative localization techniques

(e.g., RSSI indicators) and then perform the logical mapping on the server. However, this requires

specialized hardware (e.g., GPS receiver, beacons [104]), which may not be always available, and

also increases the overall message complexity. In KSpot+, group management is accomplished

through attribute-based naming with the following commands:

i. The server issues acreate logical grouprequest using thecreateGroup(String groupid,

int NodeID, int value) statement. This is transformed into a group request and in-

jected to the network. Note that theString groupid is transformed by a hash function

into an integer value (int groupid) and the mapping is stored in a server-side mapping

table. This is done in order to minimize the size of the command packet.

ii. As soon as the sensor node with matching ID receives the group-request it executes the

setGroup(int groupid, int value) command and stores it in a dedicated table

in main memory.Pan
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iii. when a sensor receives aGroup-By query which involves logical group attributes, it ag-

gregates the results based on the group attribute, which is obtained by thegetGroup(int

groupid) statement.

The Group Management API also supports the server-sidedeleteGroup(String groupid,

int NodeID) command and the client-sidedeleteGroup(int groupid) for deleting a

logical group.

3.5 Target Application Domains

The KSpot+ framework can be utilized in numerous application domains including environ-

mental monitoring [121, 107], big ephemeral events [133, 98], structural monitoring [70], urban

monitoring [93], military and security applications [91, 35, 108], health monitoring [99, 84], etc.

Below, we describe two representative application domains that KSpot+’s features can be very

beneficial.

Environmental Monitoring and Emergency Management

Dynamic monitoring of forests and rivers as well as emergency management require the existence

of large sensor network deployments that can provide realtime results. They involve hundreds

of sensors and actuators deployed to cover thousands of square kilometers of forest areas thus

producing huge amounts of data that require ample time to process. However, in the case of a

crisis, even delays of the order of milliseconds may not be acceptable as fire officers and associated

authorities need to dynamically collaborate in realtime according to the evolution of the crisis in

order to timely react upon detected fire and flooding risks. KSpot+ alleviates this problem by

focusing only on thek-most important events. This minimizes the time required to forward thePan
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results to the querying node (i.e., decreased size of packets because of in-network pruning) as well

as the time required to process the results (i.e., onlyk results are returned to the sink station).

Another important factor in sustaining such large sensor network deployments is the cost of

maintenance associated with battery replacement. There are solutions today that can rapidly re-

duce this maintenance cost by utilizing alternative means for energy replenishment including solar

panels, bio-harvesting [125], etc. However, in order for these solutions to succeed effectively, the

ratio of energy replenishment over energy consumption must be encouraging. KSpot+ decreases

energy consumption by minimizing both the size and number of packets, which increases the

network’s lifespan and reduces maintenance costs.

Big Ephemeral Events

International events (e.g., FIFA World Cup, World Expo) usually attract millions of participants

during a very limited period of time. The deployment of smart sensor networks (i.e., sensors,

actuators, RFID) in buildings can contribute to improve the visitor’s experience by providing the

means to easily interact with its surroundings. For example, during these ephemeral big events,

affluence-measuring sensors (e.g., sound, proximity) can form logical groups in order to build a

compound resource that provides a real-time map of visitors’ arrivals at the different pavilions

and places and propose visitors an ideal tour, so as to maximize their experience and satisfaction.

Additionally, if a crisis situation happens, these compound resources can also help to localize

people to rescue. Furthermore, these deployments can be utilized in conjunction with smartphone

networks in order to generate opportunistic social networks that form spontaneously according

to relationships, which are explicit (e.g., friendship, ownership) and/or implicit (e.g., location,

energy, capabilities).Pan
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Figure 3-3: KSpot+ prototype implementation deployment during the event “Researcherś
Evening” at the Cyprus International Fair in 2009. Sensor nodes were placed over the pavil-
ions using helium balloons (left) and measured sound level. Sink station (right) was connected
with a laptop computer that projected the pavilions with the highest noise level.

In this context, we have deployed a preliminary version of the KSpot+ framework prototype

implementation during the event “Researcher’s Evening” at the Cyprus International Fair in 20092

. Figure 3-3 shows two pictures of our deployment. Our objective was to create an acoustic

map of the pavilions participating in the exhibition and direct the visitors towards the most pop-

ular ones (i.e., the most noisy). This was accomplished by forming logical clusters of the sensor

nodes at each pavilion and then measuring the average sound level using the microphone sensor.

KSpot+ successfully monitored the pavilions by periodically visualizing the most popular loca-

tions (i.e., Top 3 highest ranked logical groups) every 4 seconds. Additionally, in order to demon-

strate the interoperability of the KSpot+ middleware, all acquired results were also recorded in a

local database. Noteworthy was that at the end, the organizing committee of the event requested

the data trace for further analysis.

2http://crpf.metacanvas.com/EL/intcooperation/night/index.htmlPan
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3.6 Proof of Concept Application

In order to assess the practicality and usability of the proposed KSpot+ framework, we have

developed a prototype implementation that demonstrates the full potential of the KSpot+ frame-

work. The components of the prototype are implemented in JAVA (server-side) and in nesC

(client-side). We have selected nesC (TinyOS/TinyDB) for the implementation of the client-side

components for practical reasons as it already provides a kernel of declarative data acquisition

functionalities (i.e., SQL query syntax). However, we could have similarly applied our ideas on

top of other sensor network operating systems like Contiki [42] or LiteOS [25].

We have created a server-side desktop application, named the KSpot+ GUI, in order to demon-

strate the usability of our middleware as well as the applicability of our approach. The KSpot+

GUI is used for: i) configuring the number of sensors and assigning them to logical groups, ii)

execute Top-k and standards queries, and iii) for displaying the query results in a manner that

highlights the ranking properties of the executed query (in the case of Top-k queries). In particu-

lar, the KSpot+ GUI consists of three panels (see Figure 3-4):

i. TheConfiguration Panel(Figure 3-4, top-left), which enables the user to load a new scenario

from a configuration file or to create a new scenario that can be stored in a configuration file.

Through this panel the user can specify which nodes belong to in the same logical group.

Additionally, the user can assign values to the|γ| descriptors mentioned in Section 6.5.2. If

no specific values are assigned, KSpot+ assigns the maximum values for each attribute as

these were found in the sensorboard manual. Note, that both the cluster configuration andγ

descriptors are translated to KSpot+ commands which are transmitted to the sensor nodes

prior the execution of a Top-k query.
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Figure 3-4: KSpot+’s Graphical User Interface (GUI) allows users to administer the execution
of standard and Top-k Queries through an intuitive and declarative graphical user interface. The
above scenario conducts a Top-3 query over a 14-node sensor network organized in 6 logical
clusters. The Display Panel (on the right) illustrates the three KSpot+-Bullets for the three highest-
ranked sensor clusters.

ii. The Query Panel(Figure 3-4, bottom-left), which enables the user to specify aggregate

(AVG, MIN and MAX) and non-aggregate SQL-like queries either graphically or manually.

The constructed query is parsed and translated to the KSpot+ Query API if the query is a

Top-k query or to the Query API otherwise.

iii. The Display Panel(Figure 3-4, right), which allows a user to load an image representation

of the scenario map. Subsequently, the user can drag-and-drop the sensing devices to the re-

spective positions on the map. Our system allows the user to choose among a wide range of
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sensor devices, coming in various shapes and sizes, in order to accommodate crowded map

configurations. Note that the Display Panel links together nodes of the same cluster using

a black line. Additionally, the panel highlights the K-highest ranked clusters by utilizing

a red bullet, coined theKSpot+ Bullet, which projects the rank of the given cluster at any

given time instance. Subsequently, the KSpot+ bullets are continuously re-ranked such that

the user is informed about the K highest ranked answers instantaneously.
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Chapter 4

Workload Balancing Module

In this Chapter we present the Workload Balancing Module of the KSpot+ framework. The

Workload Balancing Module investigates data reception/transmission inefficiencies that occur

from unbalanced assignment of the query workload amongst sensor nodes. It utilizes the Workload-

aware Routing Tree (WART) algorithm for the dynamic adaptation of the waking windows of each

sensor node. This is accomplished by continuously profiling recent data acquisition activity and

then identifying the bottlenecks of the network through an in-network execution of the Critical

Path Method.

We start by presenting the motivation behind the proposed WART algotihm that lies in the

foundations of the Workload Balancing Module followed by our system model and the basic ter-

minology that will be utilized in the subsequent sections. Next, we present the WART algorithmic

framework accompanied by a discussion of our considerations and specific implementation de-

tails.

57
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4.1 Motivation and Preliminaries

We start by defining thewaking windowτ as the continuous interval during which a sensing

devicesi enables its transceiver, collects and aggregates the results from its children, and then

forwards them all together to its own parent. Note thatτ is continuous because it would be very

energy-demanding to suspend the transceiver more than once during the interval of an epoch (as

shown in Section 7.2 with a series of micro-benchmarks) It is important to mention that the exact

value ofτ is query-specific and cannot be determined accurately using current techniques. For

instance,si does not know in advance how many tuples it will receive from its children. Choosing

the correct value forτ is a challenging task as any wrong estimate might disrupt the synchrony of

the query routing tree.

We found that that predominant data acquisition frameworks [135, 86, 85, 81, 112] have not

taken under consideration the optimization of the waking window and this degrades significantly

the energy efficiency of these systems. Consequently, the objective of the WART algorithm is

to generate a time synchronized topology in which sensing devices know exactly their waking

window (i.e., they know when and for how long they should enable their transceivers).

To facilitate our description we briefly describe the waking window mechanisms of two pop-

ular data acquisition systems, TAG [86, 85] and Cougar [135] and the motivation behind our

approach. For simplicity, let us assume that some arbitrary queryQ has already been dissemi-

nated to then sensors of the wireless sensor network.

Tiny aggregation (TAG): In this approach, the epoche is divided intod fixed-length timeintervals

{e1, e2, . . . , ed}, whered is the depth of the routing tree rooted at the sink that conceptually

interconnects then sensors. The core idea of this framework is summarized as follows:“when
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Figure 4-1: The Waking (Listening) Window (τ ) in TAG, Cougar and WART algorithms.

nodes at level i+1 transmit then nodes at level i listen”. More formally, a sensorsi enables its

transceiver at time instancewi = ⌊e/d⌋ ∗ (d − depth(si)) and keeps the transceiver active for

τi = ⌊e/d⌋ time instances. Note that
∑0

i=d(ei), whereei defines the epoch at leveli, provides

a lower-bound one, thus the answer will always arrive at the sink before the end of the epoch.

Settinge as a prime number ensures the following inequality
∑0

i=d(ei) < e, which is desirable

given that the answer has to reach the sink at time instancee.

For instance, if the epoch is 31 seconds and we have a three-tier network (i.e., d=3) like the

one presented in Figure 4-1 (top, left), then the epoch is sliced into three segments{10,10,10}.

During interval [0..10), nodes at level 3 will transmit while nodes at level 2 will listen; during

interval [10..20) level 2 nodes transmit while level 1 nodes listen; and finally during [20..30), level

1 nodes transmit and the sink (level 0) listens. Thus, the answer will be ready prior the completion

of time instance 31 which is the end of the epoch.
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The parent wake-up windowτ is clearly an over-estimation (in the above example 10 it is

seconds!) of the actual time that is required to transmit between the children and a parent. The

rationale behind this over-estimation is to offset the limitations in the quality of the clock synchro-

nization algorithms [86] but in reality it is too coarse. In the experimental Section 7.3, we found

that this over-estimation is three orders of magnitude larger than necessary. Additionally, it is not

clear howτ is set under avariable workloadwhich occurs under the following circumstances: i)

from anon-balanced topology, where some nodes have many children and thus require more time

to collect the results from their dependents; and ii) frommulti-tuple answers, which are generated

because some nodes return more tuples than other nodes (e.g., because of the query predicate).

Cougar: In this approach, each sensor maintains achild waiting list that specifies the children

for each node. Such a list can be constructed by having each child explicitly acknowledging its

parent during the query dissemination phase. Having the list of children enables a sensor to power

down its transceiver as soon as all children have answered. This yields a set of non-uniform

waking windows{τ1, τ2, . . .} as opposed to TAG where we have a singleτ , which is uniform

for all sensors (i.e.,⌊e/d⌋). The main drawback of Cougar is that a parent node has to keep its

transceiver active from the beginning of the epoch until all children have answered. In particular,

it holds thatτi > τj if depth(vi) < depth(vj). In order to cope with children sensors that may not

respond, Cougar deploys a timeouth. To understand the drawback of Cougar consider Figure 4-1

(top, right), where level 2 and level 1 nodes have activated their transceivers at time instance zero

and wait for the leaf nodes to respond. If a failure at some arbitrary nodex occurs (e.g., at level 3)

then each node on the pathx→ . . .→ s0 has to keep its radio active forh additional seconds.

A recent paper that proposes a scheduling algorithm for wireless sensor networks has been

presented in [6]. The authors define a probabilistic model that allows the evaluation of the packet
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loss probability that results from the reduced radio activity. Based on the probabilistic model, the

algorithm chooses the radio activity intervals that achieve optimal probability of successful packet

delivery using three different strategies. The key differences between WART and this approach

are: i) the proposed approach assumes that only one channel can be active at a given time whereas

in our case all sensors that participate in a continuous query are active, and ii) the scheduling of the

wake-up times is based on a probabilistic model whereas in our model the scheduling is based on

profiling recent activity and determining the workload of each sensor. While this approach might

be beneficial in cases of snapshot queries, our approach is focused on continuous queries.

The objective of the WART algorithm is to automatically tuneτ , locally at each sensor without

any a priori knowledge or user intervention. However, note that in definingτ we are challenged

with the following trade-offs:

• Early-off Transceiver: Shall si power-off the transceiver too early reduces energy con-

sumption but also increases the number of tuples that are not delivered to thesink. Thus, the

sink will generate an erroneous answer to the queryQ; and

• Late-off Transceiver: Shallsi keep the transceiver active for too long decreases the number

of tuples that are lost due to powering down the transceiver too early but also increases

energy consumption. Thus, the network will consume more energy than necessary which is

not desirable given the scarce energy budget of each sensor.

WART dynamically adapts the waking windowτ values by profiling recent data acquisition

activity and identifying the bottlenecks of the network. This is accomplished using an in-network

execution of the Critical Path Method.Pan
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The Critical Path Method (CPM)[54] is a graph-theoretic algorithm for scheduling project

activities. It is widely used in project planning (construction, product development, plant mainte-

nance, software development and research projects). The core idea of CPM is to associate each

project milestone with a vertexv and then define the dependencies between the given vertices us-

ing activities. For instance, the activityvi ⇐ vj denotes that the completion ofvi depends on the

completion ofvj . Each activity is associated with a weight (denoted as
weight⇐ ) which quantifies

the amount of time that is required to completevi assuming thatvj is completed. The critical

path allows us to define the minimum time, or otherwise the maximum path, that is required to

complete a project (i.e., milestonev0). Any delay in the activities of the critical path will cause a

delay for the whole project. In order to adapt the discussion to a sensor network context assume

that each sensorsi is represented by a CPM vertex. More formally, we map eachsi to the elements

of the vertex setV = {v1, v2, . . . , vn} using a 1:1 mapping functionf : si → vi, i ≤ n. Also, let

the descendent-ancestor relations of the sensor network be denoted as edges in this graph.

Figure 4-2 illustrates an example which will be utilized throughout the Chapter. The weights

on the edges of the figure define the workload of each respective node (as the required time to

propagate the query results between the respective pairs). It is easy to see that the total time

to answer the query at the sink in the given network is at leastψ=99, since the critical path is

s0
40⇐ s1

30⇐ s3
29⇐ s8. Having this information at hand, enables the scheduling of transmission

between sensors. In particular, considers0 that operates solely in reception mode. Given that the

maximum workload it expects from its only childs1 is 40,s0 only needs to enable its transceiver

in the interval [59..99]. Similarly,s1 which operates in both transmission and reception modes,

needs to enable its transceiver for listening during the interval [29..59] to accommodate the mostPan
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s s s s
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⇐ ⇐ ⇐

=

Critical Path

Figure 4-2: Nine sensing devices (shown as vertices) and the respective workload between them
(shown as edges) in order to answer some continuous queryQ at the sink (s0). The WART
algorithm utilizes this information in order to locally adapt the waking window of each device
using theCritical Path Method.

demanding childs3 with workload 30. Additionally, it needs to enable its transceiver for transmit-

ting to its own parent during the interval [59..99]. Consequently,s1 needs to keep its transceiver

enabled during the interval [29..99]. A similar intuition also applies to other nodes.

Note that although the listening interval for each sensorsi (i ≤ n) will be scheduled by our

approach, each sensor also keeps track of which childrensj (j ≤ n) have already responded.

When all childrensj (j ≤ n) have reported their results to their parent then the parent nodesi

(i ≤ n) can immediately turn off its receiver as it does not expect any additional results from the

sjs (j ≤ n). Yet, it is obligated to wait for the right listening interval of its parent (i.e.,parent(si))

before proceeding with the transmission of its own result. Finally, we would like to point out that

a sensorsi (i ≤ n) might delay the transmission of its results for a number of reasons (e.g., sensor

malfunction). In these cases,si will enable its transceiver only if it can anticipate the listening

interval of its parent node (as the parent ofsi (i ≤ n) will only be available during the given time

interval).

Finally, note that the critical path allows a sensorsj (j ≤ n) to identify the interval during

which its parentsi (i ≤ n) is expected to enable its own transceiver for reception. This is very
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useful because in the subsequent epochs and under a different workload than the one utilized to

compute its currentτ interval,sj can identify with local knowledge if it can still deliver the new

workload without notifyingsi to adjust itsτ interval.

It should be noted that the edges in Figure 4-2 have different weights. This is very typical for a

sensor network as the link quality can vary across the network [121]. Another reason is that some

sensors might have a different workload than other sensors. Note that our scheduling scheme is

distributed, which makes it fundamentally different from centralized scheduling approaches like

DTA [139] and TD-DES [26] that generate collision-free query plans at the centralized node.

Additionally, our approach is also different from techniques such as [111], which segment the

sensor network into sectors in order to minimize collisions during data acquisition.

4.2 System Model and Definitions

In this section we will formalize our system model and the basic terminology that will be

utilized in the subsequent sections. The main symbols and their respective definitions are summa-

rized in Table 4-1.

Let S denote a set ofn sensing devices{s1, s2, ..., sn}. Assume thatsi (i ≤ n) is able to

acquirem physical attributes{a1, a2, ..., am} from its environment at every discrete time instance

t. This generates at eacht and for eachsi (i ≤ n) one tuple of the form{t, a1, a2, ..., am}. This

scenario conceptually yields ann×m matrix of readingsR:=(sij)n×m for each timestamp. This

matrix is horizontally fragmentedacross then sensing devices (i.e., rowi contains the readings

of sensorsi andR = ∪i∈nRi). Now letG = (S,E) denote the network graph that represents

the implicit network edgesE of the sensors inS. The edges inE are implicit, because there

is no explicit connection between adjacent nodes, but nodes are considered neighbors if they are
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Table 4-1: Definition of Symbols for Chapter 4

Symbol Definition

Q A Continuous Query
n Number of SensorsS = {s1, s2, ..., sn}
si Sensor numberi (s0 denotes the sink).
m Number of sensor recordings{a1, a2, ..., am}
e Epoch duration of queryQ

T = (S,E) Query Routing Tree (S=vertices,E=edges)
d Depth of the routing treeT
wi Wake-up time of sensorsi

τi Waking window of sensorsi

ψ Total time needed to answer queryQ

within communication range (i.e., a fundamental assumptionunderlying the operation of a radio

network).

A user submitsQ at some centralized querying node (denoted ass0, or sink node) prior de-

ployment and the system then initiates the execution ofQ by disseminating it to then sensors.

In particular, the sink sendsQ to one sensors1. Subsequently,s1 recursively forwardsQ to all

of its neighbors until alln sensors have received the given query. Without loss of generality, we

adopt theFirst Heard From (FHF) mechanism which is utilized in a variety of data acquisition

middleware frameworks such as [85, 135, 81, 112] and where each sensorsi selects as its parent

the first node from whichQ was received. This creates an acyclic subset of the communication

graph G (i.e., a spanning tree) which is denoted asT = (S,E′), whereE′ ⊂ E. Eachsi also

maintains aChild Node List(denoted aschildren(si)), which is trivially constructed during the

creation ofT (i.e., using an acknowledgment from each child to its parent). In more recent frame-

works, like GANC [110] and Multi-Criteria Routing [80],T can be constructed based on query

semantics, power consumption, remaining energy and others. In more unstable topologies a node

can maintain several parents [33] in order to achieve fault tolerance but this might impose some

limitations on the type of supported queries.
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4.3 Algorithmics

In this section we describe the underlying algorithms of the Workload Balancing Module.

4.3.1 The WART Algorithm

At the foundation of Workload Balancing Module lies the WART algorithm that determines

the period during which eachsi should wake up and the precise duration of this wake-up. In

particular, WART is executed as a three-phase process that is summarized below:

1. Construction Phase: In this phase, the sink constructs a query routing tree (or uses an

already established one) and then queries the network for the critical path valueψ.

2. Dissemination Phase:The sink disseminatesψ to the network and each sensor tunes its

waking window accordingly.

3. Adaptation Phase: This phase is executed either periodically or when a topology change

occurs. With this step each sensor adapts its waking windowτ according to the new work-

load.

4.3.2 WART Phase 1: Construction

The first phase of the WART algorithm starts out by having each node select one node as its

parent. This results in awaiting list similar to Cougar [135]. To accomplish this task, the parent is

notified through an explicit acknowledgment or becomes aware of the child’s decision by snooping

the radio.

In the next step, each sensor profiles the activity of the incoming and outgoing links and

propagates this information towards the sink. In particular, each sensorsi executes one round of

data acquisition by maintaining one counter for its parent connection (denoted assout
i ) and one
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counter per child connection (denoted assin
i,j), wherej denotes the identifier of the child. These

counters measure theworkloadbetween the respective sensors (as the required time to propagate

the query results between the respective pairs) and will be utilized to identify the critical path cost

in the subsequent epochs. Note that these counters account for more time than what is required

had we assumed a collision-free MAC channel. Additionally, it is important to mention that we

could have deployed a more complex structure rather than the counterssout
i andsin

i,j, that would

allow a sensor to obtain a better statistical indicator of the link activity, but these ideas are outside

the scope of this dissertation. By projecting the time costs obtained for each edge to a virtual

spanning tree creates a distributedQuery Routing Treesimilar to the one depicted in Figure 4-2.

The final step is to percolate these local edge costs to the sink by recursively executing the

following in-network functionf at each sensorsi:

f(si) =























0 if si is a leaf,

max∀j∈children(si)(f(sj) + sin
i,j) otherwise.

The critical path cost is thenf(s0) (denoted for brevity asψ). Using our working example of

Figure 4-2, we will end up with the following values :f(s5≤i≤9) = 0, f(s4) = 4, f(s3) = 29,

f(s2) = 11, f(s1) = 59 andψ = f(s0) = 99.

4.3.3 WART Phase 2: Dissemination

In this phase each sensorsi (i ≤ n) locally defines three parameters using the critical path

costψi. These parameters enablesi to derive: i) the time instance during which it should wake

up (i.e.,wi), ii) the interval during which it should listen for readings and to transmit results (i.e.,

τi), and iii) the workload increase tolerance of the parent ofsi (i.e.,λi) which signifies when the

synchrony of the query routing tree might be disrupted.
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Algorithm 1 presents the main steps of this procedure which propagatesψi top-down, from

the sink to the leaf sensors, with a message complexity ofO(n). The first step aborts the case

where the critical path is larger than the epoch (which signifies an error in the user query). The

second step calculates the wake up time instancewi, such thatsi has enough time to collect the

tuples from all its childrensj (∀j ∈ children(si)). In practice, this is defined by the child ofsi

with the largest workload (i.e.,sin
i,maxchild). The second step also defines the waking window of

τi, which is the complete window during whichsi will enable its transceiver. In the third step, the

children ofsi are notified with the adjusted critical path cost (i.e.,ψ − sout
j ). Concurrently with

step three,si also notifies its childrensj with the workload increase tolerance ofsi (i.e.,λi) and

a flag which signifies whether these nodes belong to the critical path. Thus,sj can intelligently

schedule its transmissions in cases of local workload deviations.

To facilitate our presentation we will now simulate the execution of Algorithm 1 on the ex-

ample of Figure 4-2. To simplify the discussion, assume that the costsa, b and c (which ac-

count forprocessing, the inaccurate clockand thecollisions at the MAC layer) are all equal to

zero. Additionally, assume that the critical path cost is small enough to fit within the epoch

(i.e., ψ << e). In particular, withψ = 99 we get the following quadruples (si, wi, τi, λi) at

each sensor:{ (s0, 59, [59..99), 0), (s1, 29, [29..99), 0), (s2, 46, [35..59), 17), (s3, 29, [0..59), 0),

(s4, 37, [33..63), 8), (s5, 35, [35..46), 0), (s6, 39, [39..46), 4), (s7, 27, [27..29), 27), (s8, 0, [0..29), 0),

(s9, 33, [33..37), 0) }

To understand the benefits of the workload increase tolerance parameterλi, consider the sce-

nario where nodes7 increases its workload by 15 time instances. Sinceλ7 = 29 − 2 = 27, s7

knows that the transceiver of its parents3 is enabled for 27 additional time instances, thuss7 can

start delivering the workload earlier (i.e.,w7 = 12 instead ofw7 = 27) succeeding in completing

the transmission on-time.
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Algorithm 1 : WART Dissemination Phase
Input: n sensing devices{s1, s2, . . . , sn} and the sinks0, the Critical Path costψ, the epoche.
Output: A set ofn waking windowsτi (i ≤ n), wake-up time instanceswi (i ≤ n) and workload increase
tolerance thresholdsλi (i ≤ n)
Execute these steps beginning froms0 (top-down) and assuming thatψ0 = ψ:

1. If ψi > e then abort“The Critical Path is larger than the Epoch”.

2. For each childsj of si (∀sj ∈ children(si)), find the maximumsin
i,j . The child with the maximum

sin
i,j is denoted assin

i,maxchild. The wake timewi is calculated as follows:

wi = ψi − sin
i,maxchild − a− b− c, (1)

wherea, b andc are three variables which offset the costs ofprocessing, the inaccurate clockand
collisions at the MAC layer, respectively.

The waking window ofsi is the interval:

τi = [wi..(wi + sin
i,maxchild + sout

i )) (2)

3. Disseminate the following information to eachsi’s child sj (∀j ∈ children(si)):

(a) The valueψi.
Upon receivingψi, eachsj computes its ownψj as follows:

ψj = ψi − sout
j (3)

(b) The valuesin
i,maxchild.

Upon receivingsin
i,maxchild, eachsj utilizes this value to define theworkload increase toler-

ance(λj) of si as perceived bysj , as follows:

λj = sin
i,maxchild − sout

j (4)

4. Repeat steps 2-5, recursively until all sensors in the network have setwi, τi andλi respectively
(i ≤ n).

4.3.4 WART Phase 3: Adaptation

In this section we describe an efficient distributed algorithm for adapting the WART query

routing tree in cases of workload changes.

First notice that the naive approach to cope with workload changes is to re-construct the WART

tree in every epoch. The message cost of such an approach is analyzed as follows: the WART

construction phase has a message complexity ofO(1) as it can be executed in parallel with the

acquisition of data tuples from sensors (i.e., the critical path cost can be piggybacked with data

tuples). The dissemination phase on the other hand, has a message complexity ofO(n) as it
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Algorithm 2 : WART adaptation phase
Input: A sensorsi, the critical path valueψi, the wake-up timewi, the waking windowτi, a flag which
indicates ifsi lies on the critical path, an error thresholdδ.
Output: An updated set ofwi, τi andλi values.
1: procedureAdapt(si)
2: ⊲ Step 1:Calculate Workload Indicators
3: workload′i = ψi − wi; ⊲ Workload of previous epoch
4: for j = 1 to children(si) do
5: add(tuples(sj), workloadi); ⊲ Build new workload
6: end for
7: add(tuples(si), workloadi); ⊲ Append local tuples
8: x = |workloadi − workload′i| ⊲ Workload Deviation
9: if (x < δ) then

10: signal(finished); ⊲ Negligible Workload Change
11: end if
12: ⊲ Step 2: Important Workload Change on the CP
13: if (cpi) then
14: send(”Critical Path Re-construction”,sj);
15: signal(finished);
16: end if
17: ⊲ Step 3: Important Work Change NOT on the CP
18: if (workloadi decreased byx) then
19: wi = wi + x; ⊲ Adjust local wakeup time
20: else⊲ Workload was Increased by x
21: if (x ≤ λi) then ⊲ x is less than the available slack
22: wi = wi − x; ⊲ Adjust local wakeup time
23: else
24: send(”Request Critical Path Re-construction”,sj);
25: end if
26: end if
27: signal(finished);
28: end procedure

requires the dissemination of the critical path cost to alln nodes in the network. The algorithm we

propose in this section can circumvent theO(n) cost incurred by the dissemination phase in every

epoch by deploying a set of rules we describe in the next algorithm.

Algorithm 2, presents the WART adaptation algorithm which proceeds in three steps. The

first step of the algorithm (lines 2-11) calculates the workload indicators of the current epoch (i.e.,

workloadi) and the previous epoch (i.e.,workload′i). If the workload has changed by more than

a user defined user thresholdδ in line 9, we consider this change as significant and proceed with

the adaptation of the routing tree in line 12. Otherwise, we disregard this deviation and abort the

algorithm. Assuming a significant deviation, step 2 in line 12 handles the case where the change
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occurs on the critical path. In such a case,si has to request the re-construction of the routing tree

using the construction and dissemination phases. For instance, if the workload ofs3 changes from

30 time instances to 35 time instances (see Figure 4-2) then this will trigger the re-construction of

the WART routing tree and this change should be propagated to all nodes in the network. Although

this case is possible, our experimental study in Section 7.3 has shown that it is not frequent.

Finally, step 3 of Algorithm 2 (lines 17-26) handles the more common case where the change

does not occur on the critical path. In such a case, if the workload isdecreasedby x (line 18) then

a sensor locally delays its wake up variable by x (i.e., towi + x). For instance, if the workload

of s2 drops from 13 to 11 (thus,x = 2), thenwnew
2 = w2 + x = 46 + 2 = 48. Similarly if the

workload isincreasedby x (line 20) then there are two cases: i) the increase is less or equal to the

slackλi, and ii) the increase is greater than the slackλi. For the first case (i), consider a workload

increase ats2 from 13 to 18 (thus,x = 5 that is smaller thanλ2 = 17). This yields the following

adaptation of the wake up timewnew
2 = wi − x = 46− 5 = 41. For the second case (ii), consider

a workload increase ats2 from 13 to 32 (thus,x = 19 that is larger thanλ2 = 17). This yields the

re-construction of the tree as such an increase might potentially create a new critical path.

4.4 Discussion

Critical Path Reconstruction Frequency: In the event of a change in the critical path, the Work-

load Balancing Module needs to re-calculate the critical path value and disseminate it to alln

nodes in the network thus has a message complexity ofO(n). One important question that arises

is how often to expect changes to the critical path. This might severely degrade the longevity of

the network. In the experiments presented later in Section 7.3.1, we have observed that queries

yielding approximately the same amount of results (e.g., single-tuple queries or multi-tuple queries

with fixed size) benefit the most from the Workload Balancing Module optimization phase. This is
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expected as the critical path value is only calculated at the start of the execution and continues to

be valid (i.e., not requiring reconstruction) until a node or communication failure becomes present.

In the event of a node failure, the results of the path rooted at the failed node are not transmitted

and therefore the critical path is not affected as the parent node of the failed node will wait for the

results for the same amount of time as it would if the node was active. However, in the case of

a communication failure, which results in the retransmission of the results by the sensor node in

which the failure occurred, the efficiency of the network may be affected especially if the failed

node lies on the critical path. This can also lead to data loss if the node in question misses the

waking window of its parent node.

In the case of event-based queries or queries with multi-tuple results of arbitrary size (e.g.,

filter queries) the critical path reconstruction frequency is increased. This happens because the

workload incurred on each sensor node may change rapidly between subsequent epochs. However,

even in these cases, the Workload Balancing Module still manages to conserve energy as can be

seen by the results of Section 7.3.1.
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Chapter 5

Tree Balancing Module

Although the Workload Balancing Modules significantly reduces the energy consumption of

the sensors by scheduling communication activities based on the workload, it still does not take

into account the fact that the tree topology might be unbalanced.

In this Chapter we present the Tree Balancing Module of the KSpot+ framework. The Tree

Balancing Module identifies structural inefficiencies in the initial query routing tree that occur

from its ad hoc construction nature. It utilizes the Energy-driven Tree Construction (ETC) al-

gorithm in order to remove these inefficiencies by reconstructing the tree in a balanced manner,

which minimizes data collisions during communication.

We start by presenting the motivation behind the ETC algorithm that lies in the foundations of

the Tree Balancing Module followed by our system model and the basic terminology that will be

utilized in the subsequent sections. Next, we present the ETC algorithmic framework accompanied

by a discussion of our considerations and specific implementation details.

73
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5.1 Motivation and Preliminaries

Even though the WART algorithm presented in Chapter 4 can efficiently resolve the waking

window problem, it does not optimize the query routing tree and that leads to increased collisions

during data transmission. Assuming an arbitrary query routing treeTinput constructed using the

FHF approach, the objective of ETC is to transformTinput into a near-balanced treeTETC in a

distributed manner.

To facilitate our description, consider the example depicted on Figure 5-1 (left), which illus-

trates the initial ad-hoc query routing treeT created on top of a 10-node sensor network with

the First-Heard-From approach. In the example we observe that nodes2 is inflicted with a high

workload (i.e., 5 child nodes) while other nodes at the same level (i.e.,s3 ands4), only have zero

and one child nodes respectively. Notice that boths8 ands10 are within communication range

from s3 (i.e., the dotted circle), thus these nodes could have chosen the latter one as their parent.

Unfortunately, the FHF [85, 135, 109] approach is not able to take these semantics into account

as it conducts the child-to-parent assignment in a network-agnostic manner. Additionally, unbal-

anced topologies pose some important energy consumption challenges which are summarized as

follows:

• Decreased Lifetime and Coverage:Since the majority of the energy capacity is spent on

transmitting and receiving data, the available energy of sensors with a high workload will

be depleted more rapidly than the others. For example, in Figure 5-1 (left) sensors2’s

energy will be depleted 93/12=7.75 faster thans3, that is ((
∑children(s2)

i=0 (si, s2) + (s2, s1))

/ (
∑children(s3)

i=0 (si, s3) + (s3, s1)), and 3.72 times faster thans4 (i.e., 93/25). In addition,

if s2’s energy is depleted and no alternate parents are available for sensorss5−7 then the

coverage of the network will be reduced dramatically.
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s5 s6 s8

s2

s9

s3

s1

11 7 29 3 4
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s2 s3

s1

11 7 29 3

s4

13 30 22

40

Sink (s0)

s7 s10
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s9

4

s7

2

s10

Figure 5-1: (Left) The initial ad-hoc query routing tree constructed using theFirst Heard From
method. (Right) The optimized workload-aware query routing tree constructed using the in-
network ETC balancing algorithm.

• Increased Data Transmission Collisions:An unbalanced workload increases data trans-

mission collisions which represent a major source of energy waste in wireless communi-

cation. Our micro-benchmarks on the CC2420 radio transceiver (see Section 7.2, unveil

that crowded parent hubs likes2 might yield loss rates of up to 80%, thus inflicting many

re-transmissions to successfully complete the data transfer task between nodes.

We start out with some definitions on balanced trees and then present the ETC algorithm both

in a centralized setup and a distributed setup. Notice that the ETC algorithm logically precedes

the operation of the WART algorithm (i.e., ifT is reconstructed then WART must be re-executed).

5.2 System Model and Definitions

In this section we will formalize our system model and the basic terminology that will be

utilized in the subsequent sections. The main symbols and their respective definitions are summa-

rized in Table 5-1.
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Table 5-1: Definition of Symbols for Chapter 5

Symbol Definition

n Number of SensorsS = {s1, s2, ..., sn}
si Sensor numberi (s0 denotes the sink).

T = (S,E) Query Routing Tree (S=vertices,E=edges)
d Depth of the routing treeT

children(si) Children List of sensorsi

APL(si) Alternate Parent List of sensorsi

β Balanced Branching Factor of networkS

We utilize the same system model as presented in Chapter 4 withsome additions in order

to accommodate the requirements of the ETC algorithm. Once more, we adopt theFirst Heard

From (FHF) mechanism for the construction of the ad hoc query routing treeT . Besides theChild

Node List, we additionally supplement each sensorsi with anAlternate Parents List(denoted as

APL(si)). The APL list is constructed locally at each sensor bysnooping(i.e., monitoring the

radio channel while other nodes transmit and recording neighboring nodes) and comes at no extra

cost. This list is utilized by the ETC algorithm for parent reassignment during the reconstruction

of T , but it can also be used for selecting alternate parents in cases of failures.

As we have already mentioned in the motivation of this Chapter, balanced trees have the fol-

lowing desirable properties: i) they decrease collisions during data transmission, ii) they decrease

query response times, and iii) they increase system lifetime and coverage. Balanced trees can

improve the asymptotic complexity ofinsert, delete andlookup operations in trees from

O(n) time toO(logbn) time, whereb is the branching factor of the tree andn the size of the tree.

We shall next provide some formal definitions to be utilized in our description:

Definition 5.1 - Balanced Tree (Tbalanced): A tree where the heights of the children of each

internal node differ at most by one.Pan
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The above definition specifies that no leaf is much farther away from the root than any other

leaf node. For ease of exposition consider the following directed tree:T1 = (V,E) = ({A,B,C,D},

{(B,A), (C,A), (D,B)}), where the pairs in theE set represent the edges of the binary tree.

By visualizingT1, we observe that the subtrees of rooted at nodeA differ by at most one (i.e.,

|height(B) − height(C)|=0) and that the subtrees rooted atB differ again by at most one (i.e.,

|height(D) − height(NULL)|=1). Thus, we can characterizeT1 as a balanced tree.

Notice thatV has several balanced tree representations of the same height (e.g., the directed

treeT2 = ({A,B,C,D}, {(B,A), (C,A), (D,C)})). Similarly, V has also many balanced tree

representations of different heights (e.g., the directed treeT3 =({A,B,C,D}, {(B,A), (C,A), (D,A)})

which has a height of one rather than two). Finally, in a balanced tree every node has approxi-

matelyβ children, whereβ is equal to d
√
n (the depth of every balanced tree isd = logβ n, thus

βd = n andβ = d
√
n). The ETC algorithm presented in this section focuses on the subset of

balanced trees which have the same height toTinput as this makes the construction process more

efficient.

In order to derive a balanced tree (Tbalanced) in a centralized manner we could utilize the

respective balancing algorithms of AVL Trees [2], B-Trees [105] and Red-Black Trees [55]. How-

ever, that would assume that all nodes are within communication range from each other which is

not realistic. Thus, the ETC algorithm seeks to construct aNear-Balanced Tree(Tnear balanced),

defined as follows:

Definition 5.2 - Near-Balanced Tree (Tnear balanced): A tree in which every internal node at-

tempts to obtain a number of child nodes as close to the optimal branching factorβ.

The objective ofTnear balanced is to yield a structure similar toTbalanced without imposing an

impossible network structure (i.e., nodes will never be enforced to connect to other nodes that are
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not within their communication range). We shall later also define an error metric for measuring

the discrepancy between the yieldedTnear balanced and the optimalTbalanced. We will additionally

show in Section 7.4.1 that constructingTnear balanced with the ETC algorithm yields an error of

11% on average for the topologies utilized in this paper.

5.3 Algorithmics

In this section we describe the underlying algorithms of the Tree Balancing Module.

5.3.1 The Centralized ETC (CETC) Algorithm

Let us first devise an algorithm for constructing a near-balanced query routing tree in a central-

ized manner. In particular, we will devise theCentralized ETC (CETC)algorithm, which obtains

global knowledge before proceeding into the generation of the near-balanced tree (the tree will

be denoted for clarity asTCETC). We show that such a centralized solution poses an extremely

high complexity rendering it inefficient for wireless sensor networks. This necessitates the use of

a lower complexity distributed approach. For this, we devise in the next section the distributed

ETC algorithm that constructs a structurally similar tree toTCETC in a distributed manner.

The CETC algorithm consists of three steps:

1. A sink (s0) node executes an in-network query in order to acquire the initial input tree

Tinput and the alternative parent list of each sensor. The alternative parent list will be useful

in defining a set of parent re-assignments that can lead toTCETC .

2. The sinks0 conducts an exhaustive search of all possibleTCETC trees and estimates their

balancing error w.r.t. to the optimalTbalanced tree. It finally chooses the one with the least

cost using theBalancing Error formula presented in 7.4.1.
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Algorithm 3 : Centralized ETC (CETC) Algorithm
Input: An Ad-hoc Query Routing TreeTinput.
Output: A Near-Balanced Query Routing TreeTCETC .

1. Execute the following query at the sink node:
SELECT sensorid, parentid, alternate parents, height FROM SENSORS.
Notice thatheight is evaluated using the following in-network function with an O(1) cost and
height(s0) defines the height (d) of TCETC :

height(si) =

{

0 if si is a leaf,

max∀j∈children(si)(height(sj) + 1) otherwise.

2. Utilize two boolean matricesPM :=(parentij)|V |×|V | andAPM :=(alternate parentij)|V |×|V | to
represent the child-to-parent and child-to-alternateparent relationships acquired in step 1.PMij =
1 denotes that nodej is a parent of nodei (a similar idea applies to the APM matrix).

3. UsingAPM andPM , find an assignment of parents such that the following are satisfied:

a. height(TCETC) == height(Tinput).

b. Each childsj (j ≤ n) has exactly one parentsi (i ≤ n).

c. Each childsj (j ≤ n) attempts to obtain less or equal children toβ.

d. The discrepancy between an optimal solutionTbalanced and a feasible solutionTCETC is the
minimum possible. To quantify this discrepancy, define theBalancingError metric as follows:

Balancing Error(TCETC ) :=
n

∑

i=0

|β −
n

∑

j=0

PMij |

4. Find an assignment that satisfied the constraints 3a-3d by executing the A* graph search algo-
rithm [58, 106] in order to find theTCETC with the minimum BalancingError. In particular, search
through the solution space by computing the following heuristic in each step:

Heuristic := Steps(TInput, TCETC) +Balancing Error(TCETC )

The A* algorithm gives priority to the routes that have the smallest value in the heuristic (i.e., are
most likely to lead towards the goal). The algorithm terminates when then heuristic changes by less
thanδ betweenk consecutive steps, whereδ, k are user-defined thresholds.

5. DisseminateTCETC to the network so thatTInput is adjusted accordingly.

3. The sinks0 disseminates the identified tree back to then nodes so that these can make the

required adjustments.

It is easy to see that the first step of the CETC algorithm has a message complexity ofO(n)

(i.e., each node will transmit exactly one message) but each message has a size ofO(n2) (i.e., in a

fully connected graph each node will have n-1 alternate parents). The second step is conducted on

the sink node and requires in the worst case to explore the complete solution space which has a size
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of O(n2!). Note that the CETC algorithm is a computationally intensive algorithm and therefore

the second step of the algorithm might end up delivering a solution which does not match the

initial acquired state of the network that was acquired in step 1 (as the network state might have

changed). Finally, the algorithm needs to propagate the solution back to then nodes and that has

again a message complexity ofO(n) with each message beingO(n2).

5.3.2 The Distributed ETC Algorithm

The ETC algorithm presented in this section overcomes the problems of the Centralized ETC

algorithm by conducting the calculation of the optimized routing tree in a distributed manner. In

particular, given an arbitrary query routing treeTinput the objective of ETC is to transformTinput

into a near-balanced treeTETC in a distributed manner. The ETC algorithm consists of a discovery

and distributed balancing step which are described next.

5.3.3 ETC Phase 1: Discovery

The first phase of the ETC algorithm starts out by having each node select one node as its

parent using the FHF approach. During this phase, each node also records its local depth (i.e.,

depth(si)) from the sink. Notice thatdepth(si) can be determined based on ahopsparameter

that is included inside the tree construction request message. In particular, the hops parameter

is initialized to zero and is incremented each time the tree construction request is forwarded to

the children nodes of some node. A nodesi also maintains a child node list (children) and an

alternate parent list (APL) according to the description we provided in Section 5.2.

The sink then queries the network for the total number of sensorsn and the maximum depth

of the routing treed. Such a query can be completed with a message complexity ofO(n). WhenPan
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variablesn andd are received, the sink calculates, similar to the CETC algorithm, the Optimal

Branching Factor (β).

5.3.4 ETC Phase 2: Balancing

The second phase of the ETC algorithm involves the top-down reorganization of the query

routing treeTinput such that this tree becomes near-balanced. In particular, the sink disseminates

the β value to then nodes using the reverse acquisition tree. When a nodesi receives theβ

value from its parentsp it initiates the execution of Algorithm 4 in whichsi will order parent

re-assignments for its children. Algorithm 4 is divided into two main steps: i) lines 3-8:si’s

connection to its newly assigned parentnewParent, and ii) lines 9-25: the transmission of parent

reassignment messages to children nodes, in which the given nodes are instructed to change their

parent.

In line 2 of Algorithm 4 each nodesi (∀si ∈ S−s0) waits in blocking mode until an incoming

message interrupts thereceive() command. When such a message has arrived,si obtains the

β value and the identifier of itsnewParent. The next objective (line 4) is to identify whether

newParentis equal to NULL, in which casesi does not need to change its own parent (i.e., we

proceed to line 9). On the contrary, ifnewParenthas a specific node identifier thensi will attempt

to connect to that given node (lines 4-8). Notice that ifnewParentcannot accommodate the connect

request fromsi then the procedure has to be repeated until completion or until the alternative

parents are exhausted.

In line 9 we proceed to the second step of the algorithm in whichsi’s children might be

instructed to change their parent node. We choose to do such a reassignment atsi, rather than at

the individual childsj, becausesi can more efficiently eliminate duplicate parent assignments (i.e.,

two arbitrary children ofsi will both not choosenewParent). In line 10 we skipsi if the number
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Algorithm 4 : ETC balancing algorithm
Input: A nodesi; The children-list ofsi (denoted aschildren(si)); The alternate parent list for each child
of si (denoted asAPL(sj), wheresj ∈ children(si)); The Optimal Branching Factorβ; The new parent
thatsi should select (denoted asnewparent(si)).
Output: A Near-Balanced Query Routing TreeTCETC .
Execute these steps beginning ats0 (top-down):
1: procedureBalance T ree(si; children(si); ∀sj∈children(si)APL(sj); )
2: (β, newParent)=receive(); ⊲ Acquire info fromsi’s parent.

3: ⊲ Step 1:Connect to new parent if needed
4: while (newParent != NULL) do
5: if (!connect(newParent)) then ⊲ Cannot become a child of newParent.
6: newParent = getNewParent(parent(si)) ⊲ Involves 1 round-trip. Parent returns NULL if

no new Parent is available (in which casesi stays with its current parent).
7: end if
8: end while

9: ⊲ Step 2:Adjust the parent of the children nodes.
10: if (|children(si)| <= β) then ⊲ Skipsi as no change is necessary.
11: for j = 1 to |children(si)| do
12: send(β,NULL, sj); ⊲ Sendβ and no newParent to child.
13: end for
14: else⊲ Ask |children(si)| − β nodes to change their parent.
15: while (|children(si)| > β) do
16: sj = getNext(children(si));
17: if (|APL(sj)| > 1) then
18: newParent=AlternParent(APL(sj), si);
19: send(β, newParent, sj); ⊲ Send tosj .
20: children(si) = children(si) - sj ⊲ Remove from children.
21: else
22: send(β,NULL, sj); ⊲ Report No change.
23: end if
24: end while
25: end if
26: end procedure

of children is less thanβ. In the contrary case (line 14), we have to eliminate|children(si)| − β

children fromsi. Thus, we iterate through the child list ofsi (line 16) and attempt to identify

a child sj that has at least one alternate parent (line 17). If an alternative parent can not be

determined for nodesj then it is obviously not meaningful to request a change ofsi’s parent (line

22).

Let us now simulate the execution of the ETC algorithm using the illustration of Figure 5-1.

In particular, Figure 5-1 (left) displaysn = 10 sensors arranged in an ad-hoc topologyTinput

with a depthd = 2. In order to transformTinput into a near-balanced topology each node has to
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obtain approximatelyβ = 3.16 children (i.e., 2
√

10). To simplify our discussion, but w.l.o.g., let

us assume that the only sensors with multiple entries in their alternate parent list (APL) ares8 and

s10. In particular, assume that we have the following values:APL(s8)={s3} andAPL(s10)={s3}.

The ETC algorithm is initiated at the sink nodes0. Sinces0 has less thanβ = 3.16 chil-

dren it transmitsβ andnewParent=NULL to its only childs1. Similarly, s1 transmitsβ and

newParent=NULL to its childrens2, s3 and s4. Let us now considers2 which receives the

above parameters in line 2 of Algorithm 4. SincenewParent =NULL, s2 does not need to

change its parent (lines 3-8). It has to however instruct some of its children to change their par-

ents as|children(s2)|>β. Thus, it processes its children nodes in sequential order, starting

at s5 and ending ats10, instructing some of them to change their parent. In particular,s5−8 are

instructed to retain their initial parent whiles8 ands10 are instructed to change their parent tos3

(i.e., they receive the messagessend(3.16, s3, s8) andsend(3.16, s3, s10) respectively. In

our examples3 can accommodates8’s ands10’s request as|children (s3)|=0. Under dif-

ferent conditions however, satisfying such requests might not be possible. Thus, each node might

request from its parent another alternative parent (i.e., lines 5-7). The updated near-balanced tree

TETC is presented in Figure 5-1 (right).

5.4 Discussion

Effect of sensor locations and topology properties on network performance:The performance

of the wireless sensor network is affected by the topology design and particularly by the physical

locations of the sensor nodes, the network structure (i.e., flat or hierarchical) as well as the sen-

sor reception/transmission power. These topology design issues (commonly known as topology

control) usually affect the energy efficiency, coverage, connectivity and fault tolerance of the net-

work. Dense topologies, for example, where the majority of sensor nodes are deployed near the
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sink node (i.e., low depth query routing trees), benefit from the low energy consumption because

of the short communication range of each sensor node, but may be severely hampered by data

transmission collisions, low coverage, etc. Additionally, sensor nodes closer to the sink node will

with high probability become hotspots (i.e., critical nodes with high relay traffic load) resulting

in premature depletion of their energy reserves. In contrast, sparse WSN deployments favor the

coverage performance metric by deploying sensor nodes at large distances (i.e., high depth query

routing trees), reduce data transmission collisions and decrease hotspots. However, enforcing sen-

sor nodes to communicate over large distances increases the individual power consumption of

each sensor node. Additionally, for the aforementioned reasons, sparse WSN deployments are

vulnerable to network disconnections and partitions.

In order to minimize the data transmission collisions, the ETC algorithm attempts to balance

the number of child nodes of each inner node according to the optimal branching factor value

while in parallel maintaining the same depth as the original query routing tree. This happens

as by increasing the depth of the query routing tree results in: i) an increase of time and energy

overhead for propagating a query to the network as the same query packets will travel more hops to

arrive at sensor nodes that reside in larger depths; and ii) an increase of time and energy overhead

for recursively forwarding the results of sensor nodes residing in larger depths to the sink node.

Conversely, increasing the depth also results in the assignment of less child nodes for each inner

node, which decreases data transmission collisions. Depending on the application requirements,

ETC can be easily extended to construct topologies with greater or smaller height by removing

the condition dictating that the depth must remain unchanged. However, when a change of depth

occurs then the optimal branching factor becomes obsolete and the reconstruction phase must be

reinitiated. Additionally, this procedure may run for infinite loops unless a termination condition
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(e.g., maximum number of runs) is introduced. This will result in a significant increase of energy

and time, which will have a negative effect on the longevity of the network.

Extending the Optimal Branching Factor: ETC assumes that all sensor nodes feature the same

workload and that the workload of a parent sensor node is directly proportional to the number

of its child nodes. The rationale behind this assumption is that the majority of queries typically

incur the same workload (i.e., the same number of tuples) on each sensor node. However, there are

queries (e.g., filter queries, event-based queries) that may impose significantly different workloads

on each sensor node.

In order to tackle this problem, we could have easily extended the definition of the optimal

branching factor to take into account the workload of each sensor node rather than the global

number of sensor nodes (N ) and the depth (d) of the query routing tree. One way to accomplish

this would be to first execute the WART algorithm of the Workload Balancing Module (described

in Chapter 4), which discovers the workload incurred on each sensor node by profiling recent data

acquisition activity and then to execute the ETC algorithm in order to create a more workload-

balanced topology.

Balancing based on Network vs. Query Semantics:The ETC algorithm presented in this Chap-

ter, optimizes the network efficiency by generating a more balanced topology that minimizes data

transmission collisions. To accomplish this, ETC balances the network using the optimal branch-

ing factor that takes into account network semantics (e.g., number of child nodes, depth of the

query routing tree, workload of each sensor node). Although in our experiments we show that

these optimizations offer significant energy savings (see section 7.4) there are occasions where

they may present conflicts with the optimizations proposed by the Query Processing Module (pre-

sented in the next Chapter) where optimization is achieved by taking into account query-based

semantics.
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A work that incorporates query-based semantics in the network optimization phase is pre-

sented in [110] where the authors configure the network in order to benefit the execution of

Group-by queries using theGroup-Aware Network Configuration(GANC) framework. Since,

in the KSpot+ framework, each module can be enabled or disabled according to the requirements

of the application, we could have easily substituted the Tree Balancing Module with GANC in

order to support query-based semantics in the network optimization phase. Recall from Chapter 3

that this is also one of the reasons we have not opted for a unified communication scheme as it

would decrease the modularity of our framework. In conclusion, taking into account the Group-

By query-based semantics can introduce additional optimizations for Group-By queries during

their execution by the Query Processing Module. However, one drawback that may arise is that

this approach can limit the efficiency of other types of queries that could have benefited from the

network-based semantics optimization. Therefore, depending on the application requirements, de-

signers can incorporate new modules and/or disable the existing ones in order to further minimize

the overall energy consumption of the network.
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Chapter 6

Query Processing Module

In this Chapter we present the Query Processing Module of the KSpot+ framework. The

Query Processing Module is responsible for query execution as well as a number of services in-

cluding group management and caching. Regular SQL queries are executed using the built-in

query mechanism while standard Top-k queries are executed using the INT algorithm. In the case

of Top-k queries that involve logical groups, these are coordinated through the group management

component. The Query Processing Module also utilizes a data caching mechanism that in coop-

eration with the INT mechanism exploits temporal coherency between results of consecutive time

instances (MINT).

In particular, the Query Processing process consists of three phases: i)Query Dissemination

Phase, where the sink node propagates a query to the network; ii)Processing Phase, where each

sensor node acquires its local sensor readings, merges them with all values acquired from its child

nodes and process them using the INT/MINT algorithms; and iii)Data Acquisition Phase, where

each sensor node recursively transmits its results to the network until they reach the sink node.

87
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We start by presenting the motivation behind the proposed INT/MINT algotihms that lie in the

foundations of the Query Processing Module followed by our system model and the basic termi-

nology that will be utilized in the subsequent sections. Next, we present the INT/MINT algorith-

mic framework accompanied by a discussion of our considerations and specific implementation

details.

6.1 Motivation and Preliminaries

At the foundation of Query Processing Module lies MINT Views, a novel algorithm that mini-

mizes messaging and thus energy consumption in the execution of continuous monitoring queries.

Like other works [85, 135, 86, 81, 112], we support single-relation queries with the standard aggre-

gate functions but our focus is to optimize top-k queries overmulti-tupleanswers. Such answers

are very typical for queries with aGROUP BY clause and for non-aggregate queries.

To facilitate our description, consider the scenario in Figure 6-1, where we illustrate a deploy-

ment of 9 sensors in a 4-room building. We are interested in answeringQuery1 at the sink (rooted

aboves1). In particular we want to find the average temperature of each room every one minute.

Query 1

SELECT roomno, AVERAGE(temp)

FROM sensors

GROUP BY roomno

SAMPLE PERIOD 60000

With the TinyDB-based [86, 85] in-network aggregation approach each node forwards tuples

of the form (room,sum,count) to its parent every single time instance1 . One alternative approach

is the notion of anIn-Network View (V ) (Figure 6-1 on the right).V materializes the result ofQ

1For clarity in Figure 6-1, we only depict the average (i.e., sum/count).
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C,75
A,74

D,76.5
A,75
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D, 64F
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A 4-room environment monitored by 9 sensors An In-Network View (V)

S9,39

s9

D,39

B,42
D,39

Room,
AVG(temp)

SINK (s0)

Figure 6-1: The left figure illustrates a sensor network scenario that consists of 9 sensors
{s1, ..., s9} deployed in four rooms{A,B,C,D}. The label next to each sensor denotes the
identifier of the node and the local temperature reading. The figure on the right presents a recur-
sively defined In-Network View (V ) to Query1. The label next to each node indicate the local
averages for each room.

and utilizes these results to speedup the next execution ofQ. The performance ofV largely relies

on the premise of temporal coherence between consecutively acquired sensor readings as local

changes will affect the intermediate views until the sink.

To improve the performance penalty of In-Network Views, we propose to prune the local views

stored at each node and focus on thek highest-ranked answers rather than all of them. This turns

out to be extremely useful because now sensors can discard view updates that do not refer tok

highest-ranked answers. On the other hand, this also imposes an extremely challenging problem:

“a naive local greedy pruning strategy may easily discard tuples that will be finally among thek

highest-ranked answers”.

To understand this problem, consider againQuery1 but assume that we are only interested in

the top-1 result. Such a query should return room(C, 75F ). Assuming that each node naively

eliminates anything below its local top-1 result will lead us to the erroneous answer(D, 76.5F ).

In particular, the leaves{s5, s6, s7, s8, s9} will send their only tuple to their respective parent.

The parents{s2, s3, s4} will then aggregate the results of their children along with their own
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result and forward this result to their own parent (i.e.,s1). In particular,s2 will send (C, 75F ),

s3 the tuple(D, 76.5F ) ands4 the tuple(B, 42F ). It is now easy to see that ifs1 aggregates

the results of its children{s2, s3, s4} along with its own result (B, 40F ), then this will yield

V wrong
0 ={(D, 76.5F ), (C, 75F ), (B, 41F )}, where roomD is the top-1 answer rather than room

C.

Our MINT algorithm utilizes an intelligent upper-bounding algorithm and a local parameter

k to construct a subset ofV , denoted as thek-covered bound-setV ′, to be materialized. We will

show that any tuple outsideV ′ can safely be eliminated during the execution of a query because

this tuple cannot be among thek highest-ranked results.

The key idea of the MINT pruning algorithm is to exploit a set of|γ| descriptors (γ =

{γ1, γ2, ...}), in order to bound above the score of tuples that are not known at a given level

of the sensor network. The elements inγ are application specific: these can either be known in

advance so they can be defined prior to setting up the execution of a query, or these can be learned

and dynamically adjusted during query execution (as we will show in Section 6.5.2). Without loss

of generality, in the rest of our discussion we will utilize the following instances:γ1 =“Maximum

possible temperature value”andγ2 =“Number of sensors in each room”. For instance, the tem-

perature sensor on the TelosB Weather Board [121] might only record values between -40F to 250F

and the barometric pressure module can only measure pressure in the range 300mb to 1100mb.

6.2 System Model and Definitions

In this section we will formalize our basic terminology upon which we will build the descrip-

tion of the algorithms that comprise the foundation of the KSpot+ Query Processing Module. We

will then outline the motivation behind the phases of these algorithms. The main symbols and

their respective definitions are summarized in Table 6-1.
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Table 6-1: Definition of Symbols for Chapter 6

Symbol Definition

Q A Query
k Number of requested results
si Sensor numberi (s0 denotes the sink).
n Number of Sensors{s1, s2, ..., sn}
m Number of Attributes at each sensor{a1, a2, ..., am}
Vi Local View (the results to Q) at sensorsi (i ≤ n)
V ′

i Pruned View atsi (unveils the top-k answers atsi)

We utilize the same system model as presented in Chapter 5 withsome additions in order

to accommodate the requirements of the INT/MINT algorithms. Once more, we adopt theFirst

Heard From (FHF) mechanism for the construction of the ad hoc query routing treeT . Assume

thatsi (i ≤ n) is able to acquirem physical attributesA = {a1, a2, ..., am} from its environment at

every discrete time instancet. This generates tuples of the form{t, a1, a2, ..., am} at each sensor.

At any given time instance, the aforementioned scenario yields ann × m matrix of readings

R:=(sij)n×m. This matrix ishorizontally fragmentedacross then sensing devices (i.e., rowi

contains the readings of sensorsi andR = ∪i∈nRi.

6.3 Algorithmics

In this section we describe the underlying algorithms of the Query Processing Module. As

already mentioned in Section 6.5.3, the KSpot+ Query Processing Module operates on two new

types of aggregate queries,TopK andTopKRoom.

TheTopK query dictates that each sensor node must return at mostk results (highest or lowest

depending on the query) during each epoch (i.e.,|V ′
i | ≤ k). The procedure for this is the following:

i) at each epoch, a sensorsi collects the results from its child sensors, ii) merges these results with

its local results, generatingVi; and finally iii) selects thek highest-ranked answers, generating
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in that wayV ′
i . As soon as this process is complete, the sensorsi forwardsV ′

i to its own parent

node. As the above procedure is conceptually not very complex, we do not devote any additional

description to the internal mechanisms needed to realize this Top-k aggregate.

On the other hand, theTopKRoom query, which is responsible for GROUP-BY queries, fea-

tures a much more complex pruning procedure that we will outline next. In this type of query, it

is not always possible to discard tuples fromV ′
i because these may appear in the finalk highest-

ranked answers (recall the example that appeared in Section 6.1). To overcome this problem, we

propose the MINT Views algorithm that utilizes an upper-bounding mechanism, which ensures

that no tuples appearing in the final result will be omitted fromV ′
i during the pruning phase.

Additionally, the MINT Views algorithm employs a temporal coherence filter that allows the sup-

pression of results, if these do not change between subsequent epochs.

6.3.1 The INT/MINT Algorithms

In this section, we overview the three phases of the MINT Views algorithm, which addresses

theTopKRoom-types of queries (i.e., group-by queries). We also present the INT Views algo-

rithm, MINT’s stateless version, which is appropriate for sensing devices of limited main memory.

The MINT Views algorithm consists of three phases:

A. The Creation Phase, executed during the first acquisition of readings from the distributed

sensors. This phase results inn distributed viewsVi (i ≤ n);

B. The Pruning Phase, during which each sensorsi locally prunesVi and generatesV ′
i (⊆ Vi).

V ′
i contains only the tuples that might be located among the final top-k results; andPan
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C. The Update Phase, executed once per epoch, during whichsi updates its parent node with

V ′
i .

The above conceptual phases are executed in a distributed manner using the tree-based query

routing protocol established by the operating system layer [61] after the query has been dissemi-

nated to then sensors. In the following sections we thoroughly describe each phase of the MINT

Views algorithm.

6.3.2 MINT Phase 1: Creation

The first phase of the algorithm is a recursive execution of Algorithm 5 at all sensors in a given

network. Recall that a sensor generates an(m + 1)-tuple of the formv = {t, a1, a2, ..., am} at

each timestampt. A sensor starts out by performing the selectionσQ that retains the tuples that

satisfy the selection criterion (e.g., temperature>60). Note that a sensor can acquire concurrently

several readings, all of which might not be of interest to a particular query. For example, the

Crossbow Weather board which was utilized in the Great Duck Island study [121] supplements

the motes with 14 physical parameters. Thus, we only project the attributes related toQ prior to

storing the result in the in-memory bufferVi (line 3). The next step of the algorithm merges the

tuples that arrive from the children ofsi into Vi (line 4-13). This yields an in-network view similar

to Figure 6-1 (right).

If the various values at each node of the depicted tree do not change across consecutive times-

tamps, thenV can efficiently provide the answer to the subsequent re-execution ofQ. On the

contrary, whenever we have a deviation, or a change, in a parameter atsi, this change has to cas-

cade all the way up to the sink. A change at all sensors has a worst-case message complexity

of O(n) for every single timestamp of theepochduration, thus we seek to optimize this process

through the proposition of the pruning phase.
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Algorithm 5 : Construct MINT/INT View
Input: A distributed sensorsi (∀si ∈ S) that generatesm attributes{a1, a2, ..., am}, a queryQ,
an empty bufferVi = {}
Output: A set ofn distributed viewsV = {V1, V2, ..., Vn}.

1: procedure CONSTRUCT MINT V IEW(si, Q)
2: // Execute Q and store the answer inVi (takesO(1) time).
3: insert(πQ(σQ(current reading())), Vi);
4: for j = 1 to |children(si)| do
5: c = child(si, j); // c is thejth child of nodesi

6: // w is a list of tuples returned to query Q.
7: w = Construct Mint V iew(c,Q);
8: for l = 1 to |w| do
9: // wl is thelth entry of tablew.

10: // Inserts tuplewl into local tableVi in O(1) time.
11: insert(wl, Vi);
12: end for
13: end for
14: send(Vi, parent(si));
15: end procedure

6.3.3 MINT Phase 2: Pruning

Algorithm 5 constructs a hierarchy of views, where ancestor nodes in the routing hierarchy

maintain a superset view of their descendants. Before we explain the details of the pruning phase

which minimizes messaging between sensors consider the following query:

Query 2

SELECT TOP k room,avg(temp)

FROM SENSORS

GROUP BY room

SAMPLE PERIOD 60000

which returns the k rooms with the highest average temperature. Ifsi could locally define the

k-highest answers toQuery2 (ats0), thensi could use this information to prune its local viewVi.

However, this is a recursively defined problem that can only be solved once all tuples percolate upPan
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Figure 6-2: The left table illustrates theVi of a given node during the execution of queryQuery2.
The right figure illustrates the intuition of the pruning algorithm. In particular, we plot the (lb,ub)
ranges for the various returned tuples at some arbitrary node. We then generate ak-covered bound
setV ′

i using Algorithm 6. We only propagate a tupleu to the parent ofsi, if u ∈ V ′
i .

to the sinks0. In order to avoid this, we utilize a set of descriptorsγ which are utilized to bound

above the attributes inV0 and subsequently enable a powerful pruning framework.

Consider the example of Figure 6-2 (left), where we illustrate theVi for a given sensor. Prior

to the execution ofQuery2 we established thatγ1=“Maximum possible temperature value”=120

andγ2=“Number of sensors in each room”=5. The figure indicates thesum andcount for several

room numbers. By observing column 3 (i.e., count), it becomes evident that thesum for the rooms

{2, 5, 11, 12, 15} is a partial value of thesum returned at the sink (sinceγ2 = 5).

On the contrary, the tuple of room 6 is already in its final form (i.e., 500). In this example the

sum of each row is bounded above using the following formulasum′ = sum+(γ2 − count)∗γ1

and bounded below using the actual attributesum. This creates six lower-bound (lb) and upper-

bound (ub) pairs which precisely show the range of possible values for thesum attribute at the

sink.

Having such knowledge locally, it can now help us to prune(lb, ub) pairs which will not be in

the final top-k result. The intuition behind our algorithm is to identify thekth highest lower bound

(i.e.,vlb
k ) and then eliminate all the tuples that have an upper bound (i.e.,vub) belowvlb

k . Figure 6-2
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(right), visually depicts this idea. We will prove that by applying locally such an operation yields

at the end the correct top-k tuples at the sink. In order to achieve this we define the notion of a

k-Covered Bound-Setas following:

Definition 6.1: k-Covered Bound-Set (V ′
i ) is the subset ofVi that satisfies the following con-

dition: If there is somev /∈ V ′
i , thenvub < vlb

k , wherevlb
k is thekth highest lower bound2 .

Algorithm 6 illustrates the pruning ofVi at some arbitrary nodesi and the construction of the

candidate setV ′
i . This algorithm applies to both the MINT View and the INT View algorithms.

The first step of the algorithm (lines 2-6) identifies the pruning thresholdvlb
k . This threshold allows

the algorithm to prune-away tuples that will not be in the result.

AlthoughVi physically resides in main memory, we want to minimize the running time of our

algorithms in order to accommodate the scarce energy budget. In particular, we utilize similarly

to the well knownselection algorithm, a k-element bufferkBuff in order to locatevlb
k in linear

time (i.e.,O(k) per tuple). This procedure takes place inside thekHighest function which inserts

vlb
j into kBuff , if the former is larger than the minimum item inkBuff .

The next step of the algorithm is to locate the tuples that have an upper boundvub below the

thresholdvlb
k . By visually examining Figure 6-2, it is easy to see that an efficient way to do so is

to create an ordered list of upper bounds and then perform a linear scan in descending order until

a tuplevub
j (<vlb

k ) is located. Any upper bound below or equal tovub
j can be safely eliminated.

The ordered list can be constructed in parallel with the location of the pruning thresholdvlb
k . In

particular, while scanning forvlb
k , we insert each upper boundvub

j into a new tablesortedUBs(line

5). This takes only O(1) per tuple as we utilize an idea similar tobucketsort. However, if memory

2Due to contraposition, the condition could also be expressed using the implicationif v
ub

≥ v
lb

k , thenv ∈ V
′

i .
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Algorithm 6 : Prune MINT/INT View
Input: A distributed sensorsi (∀si ∈ S), a bufferVi that contains the local view, a set of descrip-
torsγ = {γ1, γ2, ...}, a query result parameterk.
Output: A locally pruned viewV ′

i , such thatV ′
0 can be utilized to answer a top-k queryQ.

1: procedure PRUNE MINT V IEW(Vi)
2: for j = 1 to |Vi| do // Identify the pruning thresholdvlb

k .
3: vj = Vi[j] // vj=(vlb

j , vub
j ) pair.

4: kHighest(vlb
j ,kBuff)

5: bucketinsert(vub
j ,sortedUBs)

6: end for
7: vlb

k = min(kBuff);
8: for j = 1 to |sortedUBs| do
9: vub

j =sortedUBs[j]

10: If (vub
j < vlb

k ) then break; end if
11: add to candidates(vj , V

′
i );

12: end for
13: end procedure

is limited then this optimization can be avoided without any consequence on the correctness of our

approach.

In lines 8-12, we finally perform a linear scan of thesortedUBstable in descending order and

stop when we find a tuplevub
j that is belowvlb

k . The correctness of our algorithm is established by

Theorem 1.

Theorem 1.The k-Covered Bound-SetV ′
i correctly identifies the k-highest ranked answers to Q.

Proof (by contradiction): Let v denote an arbitrary tuple which is not included in thek-Covered

Bound-SetV ′
i . We have to show thatv will have a smaller value than any of thek highest-ranked

tuplesw (i.e., v < w). Assume thatv ≥ w. It always holds thatvub ≥ v which consequently

yieldsvub ≥ w (by using the assumption). However ifvub ≥ w, thenv would have been included

in V ′
i , by definition 5.1, a contradiction�Pan
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Algorithm 7 : Update MINT View

Input: A bufferT ′ that contains theV ′
i of the previous time instance, thevlb

k of T ′, a tuple update
x from some child.
Output: A locally pruned viewV ′

i , such thatV ′
0 can be utilized to answer a top-k queryQ.

1: procedure UPDATE MINT V IEW(T ′, vlb
k , x)

2: V ′
i = T ′;

3: if (vlb
k ≤ xub) then

4: add to candidates(x, V ′
i );

5: if (xlb ≤ vlb
k ) then

6: send(x, parent(si)); // Single tuple x update
7: else // xlb > vlb

k

8: Prune MINT View(V ′
i ); // Using Algorithm 6

9: send(V ′
i , parent(si)); // CompleteV ′

i update
10: end if
11: end if
12: T ′ = V ′

i ;
13: end procedure

6.3.4 MINT Phase 3: Update

In the previous step, we transformedVi into a pruned subsetV ′
i . We shall now describe how to

incrementally and recursively updateV ′
i . LetT ′ denote theV ′

i taken at the last execution ofQ. The

below description only applies to the MINT View algorithm, for whichT ′ is available. The update

phase of the INT View algorithm is simply a re-execution of Algorithm 5 which re-constructsV ′
i

from the beginning.

Since our objective is to identify the correct results at the sink, we utilize animmediateview

maintenance mechanism: “As soon as a new tuple is generated atsi, this update is reflected in

V ′
i ”. In order to minimize communication,si only re-transmitsV ′

i to its parent, ifV ′
i has changed

(temporal coherence filter as in TINA). Additionally, in order to minimize energy consumption

even further, we seek to minimize processing consumption as well. Therefore, our objective is to

constructV ′
i by avoiding the re-executing of Algorithm 6.

Algorithm 7 presents the MINT Update Algorithm and Figure 6-3 illustrates the respective

steps of the algorithm. In particular, line 3 of Algorithm 7 shows that any tuple updatex with
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Example 1:

Example 2:

Example 3:

Figure 6-3: The figure illustrates how different tuples will be handled during the update phase.

an upper bound (denoted asxub) less than thevlb
k can beignored (also see respective example

1 of Figure 6-3). In the opposite case, we add the tuplex to the set of candidatesV ′
i (line 4 of

Algorithm 7 and example 2 of Figure 6-3).

Now the remaining question is whethervlb
k has changed by this addition ofx. If xlb ≤ vlb

k is

true thenvlb
k has not changed. Consequently,si only propagates the updatex towards its parent

rather than a complete view update. In the implementation we buffer these updates until all chil-

dren send their updates to their parents. If on the contraryvlb
k < xlb, thenvlb

k might have changed.

As a resultsi has to reconstructV ′
i using Algorithm 6 and transmit the completeV ′

i to its parent

(also see respective example 3 of Figure 6-3). This re-construction procedure is necessary to guar-

antee the correctness of our algorithm. Note that the reconstruction only happens for|V ′
i | elements

rather than all the elements (i.e.,|Vi|), had we executed Algorithm 6 for the first time.

6.4 Discussion

MINT vs. INT: The differences of the two algorithms are summarized as following: i) MINT

exploits a temporal coherence in order to suppress view updates that do not change between con-

secutive time instances, while INT has to re-send these updates, because it is stateless. ii) In

MINT, we only have to updateV ′
i using Algorithm 7 (in O(|V ′

i |) time), while in INT we have to

construct it every time from the beginning, in O(|Vi|) time, using Algorithm 6. iii) INT has the
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advantage of not requiring any extra storage thus is more appropriate for sensors for which the

storage is at premium.

Deferred View Updates: In order to minimize communication even more in the MINT/INT

Views, we could have opted for adeferredview maintenance mechanism, rather than aimme-

diate one. Adeferredmechanism could propagate changes periodically, after a certain number

updates or even randomly. In all cases this would produce probabilistic answers at the sink, as the

sink would not have at its disposal the most up-to-date view. Although deferred view maintenance

mechanisms are extremely interesting in the context of sensor networks, as these allow us to trade

accuracy versus energy consumption, in this dissertation we only focus on exact answers.

In-Memory Buffering: The materialized views and temporary results of all algorithms, can either

reside in an SRAM-based buffer or a Flash-based buffer. For instance, a typical MICA mote with

a 2KB SRAM might need to exploit the 512KB on-chip flash memory, while Intel’s i-mote might

easily store these results in the 64KB SRAM. There is a growing trend for more available local

storage in sensor devices [142] and therefore local buffering of results is not a threat to our model.

Impact of the k parameter: Similarly to traditional DQP systems, the value ofk is typically user-

defined and is closely related to the application requirements. However, this approach is prone to

human errors and may result in two types of inefficiencies:

• Extremely small values ofk: Selecting an extremely low value fork (e.g., in a Top-1

query), might cause the INT/MINT algorithms to omit important results that are vital to the

application. For example, in a forest fire monitoring system where alerts are caused by high

temperature values, there may be two regions that present identical temperature readings. In
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our current implementation, the Query Processing module will randomly return one of the

extreme values if a Top-1 query has been injected to the network. However, our approach

can be easily adapted to not suppress identical readings by updating only a minor fraction

(2 lines) of the INT/MINT algorithm’s implementation code.

• Extremely large values ofk: Selecting an extremely large value fork (e.g., in a Top-90%

query), might cause the pruning of the INT/MINT algorithms to rapidly decrease as the

in-network pruning filters will not be able to omit tuples from thek-covered bound-set.

However, as we show in the experiments in Section 7.6.3, even in these extreme scenarios

the temporal coherence filter of the MINT algorithm still manages to reduce the energy

consumption by 18% for the tested queries.

Supported Query Types: We support single-relation queries with the standard aggregate func-

tions (i.e.,SUM, MIN, MAX andAVERAGE). In contrast with other frameworks, we optimize

queries withmulti-tupleanswers. Such answers could be generated by aGROUP-BY clause, or by

a non-aggregate query. Note that forsingle-tupleanswers, such as those generated by an aggregate

query without a GROUP-BY clause, there is no notion of a top-k result.

6.5 Implementation Details

In this section we present specific implementation details regarding the components presented

in the previous sections.

6.5.1 INT/MINT Internal Operations

An abstract representation of the internal mechanisms of the INT and MINT algorithms that

operate inside the TopkRoomM module is illustrated in Figure 6-4 (left). Similar to all aggregate
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TopkRoomM module operations

Step 1. init: initializes the state of the aggregate

Step 2. update: is called when a new value is generated

locally at the sensor

Step 3. merge: is called when new results arrive from the 

child nodes of the current sensor

Step 4. hasdata: is called when the results are ready

to be output

hasData performs the following operations

A. Retrieve the current state

B. Sort the current state in DESC order

C. Retrieve the top-k and attribute  

parameters

D. Generate upper bounds

E. Find the k highest lower bound

F. Eliminate Tuples not in 

k-Covered-Bound set

G. Finalize state

H. Check if generated state is the same as

as the previous one. If yes, do not send 

anything (MINT only).

I. Copy current state to the previous one 

(MINT only).

initialize

sense

merge

prune

send

initialize

sense

merge

prune

Compare 

previous state

INT 

operations

MINT 

operations

send

TopkRoomM module - INT/MINT operations (for each epoch)

Figure 6-4: Internal operations of the INT and MINT Views algorithms.

operations supported by the TinyDB framework, both the INT and MINT algorithms follow a

linear procedure to compute the result of each epoch.

This procedure includes the following steps: i) initialize, where all aggregate state variables are

reset, ii) sense, where each sensor generates its local measurement, iii) merge, where each sensor

acquires measurements from its child sensors and merges them with its own, iv) prune, where the

k-Covered-BoundSet is generated by pruning results that will not appear in the final top-k result,

and v) send, where the sensor transmits its results to its parent. The corresponding nesC functions

that implement this procedure are illustrated in Figure 6-4 (right). The pruning procedure of the

underlying INT and MINT algorithms that operate inside the TopkM and TopkRoomM modules

are thoroughly described in Section 6.3.Pan
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6.5.2 Dynamically Tuning theγ Descriptors

The gamma descriptors are used for bounding above the maximum possible value of tuples in

the INT and MINT Views algorithms. In our examples so far,γ1 denoted the“Maximum possible

temperature value”and γ2 denoted the“Number of sensors in each room”. While the static

(fixed) configuration of these descriptors is general enough to fit different application scenarios

(e.g., using humidity, light, sound, etc.), this could lead to a sub-optimal pruning power of our

framework when these are over-estimates. While our experimental evaluation in Section 7.6 shows

that this will not be very typical, in this section we discuss for completeness how these descriptors

can be adjusted dynamically with runtime knowledge.

Tuning γ1 (Maximum Possible Sensed Value):Assume that we need to determine the maximum

value for a sensed parameter (e.g., temperature) over the past. Using the running maximum (i.e.,

highest value seen so far), is certainly not efficient as some outlier, or some abnormal past record-

ing, will set the running maximum to a high value. Subsequently, this will limit the pruning power

of the KSpot framework. However, since the majority of sensor readings (e.g., temperature, hu-

midity, light, voltage, etc.) usually follow the Gaussian distribution, the maximum possible value

for an attribute can be predicted using a sliding window sampling mechanism. Given the limited

memory and processing capabilities of sensor devices, the size of the sliding window must be

relatively small, for memory and processing reasons, but also large enough to accurately predict

the next maximum value.

In our setting, we have implemented the sliding window sampling mechanism using a circular

buffer (CB) of size 40 bytes (10x4 bytes). CB records the requested sensor measurement (val)

for the previous 10 epochs. In the case where the CB structure is full, the oldest value is omitted.Pan
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Figure 6-6: Prediction accuracy (γ1) of the slid-
ing window prediction mechanism.

We can configure theγ1 descriptor using the following formula:γ1=MAX
|CB|
i=0 (vali ∈ CB) +

2×σN
i=0(vali ∈ CB), whereσ is the standard deviation.

Figure 6-5 shows howγ1 is dynamically adapted through 1000 timestamps using the Intel54

dataset presented in Section 7.1. We observe thatγ1 is tightly bounding the real recorded value,

i.e., it is approximately≈ 4% higher than the recorded value. Additionally, Figure 6-6 shows that

this prediction is correct in 95% of the cases and that the incorrect situation is usually corrected

in the immediately next epoch. The above discussion shows that one can easily achieve higher

pruning power with acceptable levels of accuracy.

Tuning γ2 (Number of Sensors Per Room):Now assume that we need to dynamically determine

the γ2 descriptor, which refers to the number of sensors perroom. A room in our description

is a “conceptual region that needs to be monitored using several sensors such that a group-by

aggregate per region - e.g., average - can be determined”. In case the sensor board features a GPS

(e.g., Crossbow’s MTS420), then the conceptual partitioning can easily be conducted at the sink,

by the human operator, after acquiring over the air the coordinates of the participating nodes. If
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on the other hand absolute positioning techniques are not available, then sensor devices can derive

their coordinates through relative means.

In particular, several localization technologies have been discussed in the literature including

methods based on Infrared, Bluetooth, RFID, UWB, ultrasound and WLAN [56]. The underly-

ing positioning algorithms may utilize different types of measurements, such asAngle of Arrival

(AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA)andReceived Signal Strength

(RSS). These techniques could have been utilized for localizing nodes and for dynamically tuning

theγ2 descriptor, but a more extensive exploration of these techniques remains outside the scope

of this dissertation.

6.5.3 KSpot+ Aggregates

Currently, KSpot+ supports two different aggregates, TopK and TopKRoom. Both aggregates

are implemented in the TopkM and TopkRoomM modules, which are wired with the AggOperator

configuration component of the TinyDB client system. The KSpot+ data structures presented in

Figure 3-2 will be thoroughly described in Section 7.1.
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Chapter 7

Experimental Evaluation

In this chapter we assess the efficiency of the KSpot+ framework. We start by describing

our experimental methodology, which involves a set of trace-driven simulations with real datasets

from the Department of Atmospheric Sciences at the University of Washington, Intel Research

Berkeley and University of California-Berkeley. Next, we present two micro-benchmarks on the

CC2420 radio transceiver [122] in order to quantify its reception and transmission inefficiencies.

We conduct six experimental series that demonstrate the benefits of the KSpot+ framework.

In Experimental series 1 we conduct two micro-benchmarks on the CC2420 radio chip to justify

why data reception and data transmission inefficiencies have to be optimized in current data acqui-

sition systems. Experimental series 2 and 3 evaluate the performance of the Workload Balancing

module and Tree Balancing module respectively. Experimental series 4 evaluates the combination

of the aforementioned modules. Experimental series 5 evaluates the Query Processing module in

isolation and finally Experimental series 6 evaluates the overall KSpot+ framework.

In our experiments, we focus on a number of parameters including: i) Energy Consumption

Cost; ii) Balancing Error; iii) Pruning Magnitude; iv) Scalability with respect tok; v) Cardinality

of the GROUP-BY queries; and vi) Network Lifetime.
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7.1 Experimental Methodology

In this section we describe our experimental methodology which involves both a set of real

micro-benchmarks on the CC2420 radio chip [122], utilized on MICAz, TelosB and IMote2 sens-

ing devices, and a set of trace-driven simulations with real datasets from the Department of At-

mospheric Sciences at the University of Washington, Intel Research Berkeley and University of

California-Berkeley. The experimental evaluation focuses on a number of parameters including

Energy Consumption, Scalability and Network Lifetime.

7.1.1 Experimental Testbed

In order to evaluate the KSpot+ algorithms presented in this dissertation with their competi-

tors, we have implemented all algorithms in TinyOS.

TinyOS is an open-source operating system designed for wireless embedded sensor nodes. It

was initially developed at University of California-Berkeley and has been successfully deployed

on a wide range of sensor devices (e.g., Mica, Telos, IMote2 mote, etc). TinyOS uses a component-

based architecture that enables programmers to wire together the minimum required components

in an on-demand basis. This minimizes the final code size and energy consumption as sensor

nodes have extremely limited power and memory. nesC [50] is the programming language of

TinyOS and it realizes its structuring concepts as well as its execution model.

We utilize the TOSSIM [79] environment to conduct realistic trace-driven simulations of our

code with a variety of input datasets described next. TOSSIM [79] provides a scalable, high fi-

delity simulation environment of TinyOS sensor networks. It simulates the TinyOS network stack,

allowing experimentation with low-level protocols in addition to top-level application systems. In

order to conduct fine-grained power modeling in TOSSIM, we use PowerTOSSIM [114], a popu-

lar power modeling extension of TOSSIM. As TelosB is not part of the PowerTOSSIM module, we
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had to extend PowerTOSSIM by incorporating a new energy model for TelosB. PowerTOSSIM

has been shown [114, 142], to be more than 90% accurate. In particular, the authors in [114]

measure the energy for executing the demonstration examples bundled with TinyOS both using

PowerTOSSIM and on real sensors (measured with a multi-meter). The authors show that this

yielded an average error of only 4.7%. Similar observations also apply for more complex applica-

tions like TinyDB and Surge that were shown to have an error of 9.5% on average. Consequently,

the accuracy will remain at the same high levels with our integrated TelosB power model.

To compare the WART and ETC algorithms of the KSpot+ framework with TAG and Cougar,

we have implemented stripped-down editions of these protocols according to the descriptions pro-

vided in Section 4. We did not choose to use the TAG implementation (integrated within TinyDB)

as there was no practical way to separate its implementation from the rest system due to low-level

implementation details. Additionally, Cougar never emerged to an open source implementation

stack.

To compare the INT and MINT Views algorithms we have implemented, or ported, all algo-

rithms under the KSpot framework. It is important to mention that the TAG algorithm is already

implemented as part of the TinyDB framework (that lies at the kernel of KSpot) and has been

used as a baseline for comparison. The rest algorithms, TINA [109], INT and MINT Views, were

implemented from scratch in nesC [50]. Note that in the case of TINA, we utilize its baseline

version, which does not include the Group-Aware Network Configuration (GANC) optimizer, so

as to focus on the network optimizations for all algorithms.

In addition to our base implementation, we have also implemented a graphical user interface

(see Section 3.6) that allows us to visualize the connectivity of query routing trees by displaying

sensor nodes in circles and the connections to their parents using straight lines.
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Step 1: Create lossy radio model

java net.tinyos.sim.LossyBuilder-d 7 2 

-s 20 –o 7x2_20.nss

Step 2: Run experiment with TOSSIM and 

collect power statistics

DBG=power ./build/pc/main.exe –b=10 –seed=10 –t=1000

–r=lossy –rf= 7x2-20.nss -p 14 > mintGDI.trace

Step 3: Get energy results from power 

statistics

./postprocess.py --detail --sb=1 –em 

telos_energy_model.txt mintGDI.trace

>mintTotalEnergy.txt

Figure 7-1: Sample execution scenario for the MINT
Views algorithm on the GDI dataset.

…

38: POWER: Mote 38 ADC ON at 2741220 

38: POWER: Mote 38 ADC ON at 2741220 

38: POWER: Mote 38 ADC ON at 2741220 

38: POWER: Mote 38 RADIO_STATE ON at 2741220

8: POWER: Mote 8 RADIO_STATE TX at 2791414

38: POWER: Mote 38 RADIO_STATE RX at 2842220

8: POWER: Mote 8 RADIO_STATE RX at 2850614

8: POWER: Mote 8 RADIO_STATE RX at 2851464

8: POWER: Mote 8 RADIO_STATE RX at 2852264

8: POWER: Mote 8 RADIO_STATE RX at 2853064

8: POWER: Mote 8 RADIO_STATE RX at 2853864

8: POWER: Mote 8 RADIO_STATE RX at 2853864

38: POWER: Mote 38 RADIO_STATE TX at 2862733

38: POWER: Mote 38 RADIO_STATE TX at 2863533

…

Figure 7-2: Trace from the PowerTOSSIM
log file.

Figure 7-1 illustrates an example of the process that we utilized in order to collect power

statistics for our experiments. In the first step, we create a lossy model for the topology and store

it in an.nss file. We then execute the experiment for a fixed time period (e.g., 1000s (-t=1000))

and collect power statistics in the.trace file. An example of the PowerTOSSIM trace file is

depicted in Figure 7-2. Finally, we process the power statistics file in order to generate the energy

results for each sensor.

Our simulation experiments were performed on a Lenovo Thinkpad T61p PC with an Intel

Core 2 Duo CPU running at 2.4GHz and 2.0 GB of RAM. In order for us to collect realistic results

for a large period of time, we collect statistics for 1000 epochs in each experiment. To increase the

fidelity of our measurements we repeated each experiment 5 times and present the average energy

consumption for each type of plot. The above process, resulted in quite long simulation runs for

each type of plot as the simulation time required for completing an experiment and generating

the power trace file, ranged from 2.5 to 8.5 hours. Furthermore, the generated power trace file

size ranged from 20-250MB, depending on the dataset. This led to an additional time overhead

of 30-100 minutes for processing each power trace file, in order to collect the energy results. The

processing of results for the GDI140 and Intel540 datasets in many cases required 2-3 days of

simulation and several hours of processing. Our simulation statistics are depicted in Figure 7-3.
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Figure 7-3: Simulation Statistics: Average Simulation Timerequired for each experiment (Left);
Average File Size required for storing the power statistics for each algorithm (Middle). Average
Processing Time for each power trace file (Right).

7.1.2 Sensing Device

We use the energy model of Crossbow’s TelosB [35, 103] research sensor device to validate

our ideas (see Figure 7-4). TelosB is an ultra-low power wireless sensor equipped with an 8 MHz

MSP430 core, 1MB of external flash storage, and a 250kbps Chipcon (now Texas Instruments)

CC2420 RF Transceiver that consumes 23mA in receive mode (Rx), 19.5mA in transmit mode

(Tx), 7.8mA in active mode (MCU active) with the radio off and5.1µA in sleep mode. Our per-

formance measure isEnergy, in Joules, that is required at each discrete time instance to resolve the

query. We utilize a failure rate of 20% in our trace-driven experiments in order to simulate failures.

In particular, a sensor has a probability of 0.2 to not participate in a given epoch. As TelosB is

not part of the PowerTOSSIM module, we had to extend PowerTOSSIM by incorporating a new

energy model for TelosB. In particular, the process of configuring different hardware platforms

in PowerTOSSIM, boils down to the customization of the configuration file that enumerates the

power consumption of the individual operations (e.g., RADIORX, RADIO OFF, CPUACTIVE,

etc.).Pan
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Figure 7-4: Crossbow’s TelosB Mote (TPR2420). Our
micro-benchmark and trace-driven experiments utilize the
energy model of the TelosB sensor device and the CC2420
radio transceiver.

<mote id> <mote id> <error rate>

…

0 0 0.0 

0 1 8.99E-4 

0 2 0.5 

0 3 0.5 

0 4 8.99E-4 

0 5 0.012694 

0 6 0.5 

0 7 0.002147 

0 8 0.5 

0 9 0.5 

0 10 0.00965

…

Figure 7-5: Trace from the Lossy-
Builder output.

7.1.3 Multi-hop Topologies

In order to create a multi-hop network topology, we have utilized the LossyBuilder component

of TOSSIM. LossyBuilder allows the creation of “lossy” radio models for the topologies utilized

in all datasets. These lossy models position sensors at various distances from the sink node and

generate a Gaussian packet loss probability distribution for each distance. TOSSIM then generates

packet loss rates for each sensor pair by sampling these distributions and translating them into

independent bit error rates. An example of the LossyBuilder output is depicted on Figure 7-5

where we list some of the bit error for sensor mote (with id=0) on a topology of 10 nodes. For

example, line 3 (0 2 0.5) of Figure 7-5 states that mote 0 listens to mote 2 with a bit error rate

of 50%. This process allows the creation of multi-hop network topologies required for all of our

experiments.

7.1.4 Communication Protocol

Our communication protocol is based on the ubiquitous for sensor networks IEEE standard

802.15.4 (the basis for the ZigBee [145] specification used by most sensor devices including the

TelosB sensor device). ZigBee uses the CSMA/CA collision avoidance scheme where a node
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employs a random exponential back-off algorithm that backs-off for a random interval of 0.25-

0.5s before retransmission. Although collisions might be handled at a certain degree by the MAC

layer [128], this scheme is agnostic of the data semantics exhibited at the higher levels of the

communication stack. In this thesis we exploit these higher level semantics in order to yield better

collision handling.

Our data frames are structured as following [79]: Each message is associated with a 5Byte

TinyOS header [77]. This is augmented with an additional 6B application layer header that in-

cludes: (i) the sensor identifier (1B), (ii) the message size (4B) and the depth of a cell from the

querying node (1B). In each message we allocate 2B for environmental readings (e.g., temper-

ature, humidity, etc.), 4B for aggregate values (max, min andsum) and 8B for timestamps.

ZigBee’s MAC layer dictates a maximum data payload of 104 bytes thus we segment our data

packets whenever this is required.

The TinyDB message frames associated with the KSpot algorithms are structured as fol-

lows [79]: Each message is associated with a 7BytesTinyDB application layer header that in-

cludes: (i) the source identifier (2B), the query source identifier (2B), the sequence number (2B)

and the hop count (1B). In the remaining payload (29B) we allocate our KSpot structures accord-

ing to the query being executed:

i. For the TopkData data structure: we allocate 1 bit for identifying if the current state is

the same as the previous state, 3 bits for identifying the number of tuples in the current state

and 2B for the attribute value.

ii. For the TopkRoomData data structure: which is used for Top-kGROUP-BY queries,

we allocate a number of variables for storing results for each room. In order to maximize

the number of rooms that can be supported by this query we utilized a packed data structure

Pan
ay

iot
is 

G. A
nd

reo
u



113

that consists of the following information: i)sameAsPrevious (1 bit): is a bit flag that

indicates whether the current result is the same as the previous result and thus should not be

transmitted, ii)vals (3 bits): the number of values in the topk result. Note that the number

of values is identical to the number of rooms that have reported their values. The maximum

number of values (i.e., maximum number of rooms is 7)., iii)count (22 bits): This attribute

records the number of results for each room using a 3-bit counter for each room (maximum

number of rooms=7 x 3-bits = 21), iv)room (22 bits): This attribute records the room id of

each room, and v)sum (16 bits x maximum number of rooms): stores the cumulative total

of the sensor’s result for each room. Since the maximum number of bytes available in the

TinyDB message payload is 25 bytes, our packed data structure supports a maximum of 7

rooms.

7.1.5 Datasets

We utilize the following real and realistic datasets in our trace-driven experiments in order

simulate small-scale, medium-scale and large-scale wireless sensor networks.

i. Great Duck Island (GDI14): This is a real dataset from the habitat monitoring project de-

ployed in 2002 on the Great Duck Island which is 15km off the coast of Maine [121], USA.

We utilize readings from the 14 sensors that had the largest amount of local readings. The

GDI dataset includes readings such as: light, temperature, thermopile, thermistor, humidity

and voltage.

ii. Washington State Climate (AtmoMon32): This is a real dataset of atmospheric data col-

lected at 32 sensors in the Washington and Oregon states, by the Department of Atmospheric

Sciences at the University of Washington [43]. More specifically, each of the 32 sensors
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Figure 7-6: The location of the 54 sensors in the Intel54 dataset and an ad-hoc query tree con-
structed using the FHF approach.

maintains the average temperature and wind-speed on an hourly basis for 208 days between

June 2003 and June 2004 (i.e., 4990 time moments).

iii. Intel Research Berkeley (Intel54): This is a real dataset that is collected from 58 sensors

deployed at the premises of the Intel Research in Berkeley [64] between February 28th

and April 5th, 2004. The sensors utilized in the deployment were equipped with weather

boards and collected time-stamped topology information along with humidity, temperature,

light and voltage values once every 31 seconds (i.e., the epoch). The dataset includes 2.3

million readings collected from these sensors. We use readings from the 54 sensors that had

the largest amount of local readings since some of them had many missing values. More

specifically, we utilize the real coordinates of the 54 sensors (see Figure 7-6). The depth of

the initial query routing tree constructed with the FHF approach is 14.

iv. Great Duck Island (GDI140): In order to evaluate our approach on a medium-scale sensor

network we synthetically derive a sensor network composed of 140 nodes that follows the

same distribution with the GDI14 dataset. The average depth of the initial query routing

tree constructed with the FHF approach is 24.
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v. Intel Research Berkeley (Intel540): In order to evaluate our approach on a large-scale

sensor network we synthetically derive a 540-node network based on the Intel54 dataset.

The distribution of the dataset follows again the same distribution with the Intel54 dataset.

The average depth of the initial query routing tree constructed with the FHF approach is 22.

7.1.6 Query Sets

We utilize three representative queries from two predominant classes of queries in wireless

sensor networks.

The first class of such queries isaggregate selection queries[135, 86] (i.e.,SELECT agg()

FROM sensors). Roughly, these queries can be distinguished in: i)distributive aggregates,

where records can be aggregated in-network without compromising correctness (e.g.,Max, Min,

Sum, Count) and ii) holistic aggregates, where in-network aggregation might compromise the

result correctness (e.g.,Median), thus all tuples have to be transmitted to the sink before the

query can be executed. The separation between the above cases is important as each individual

case defines a different workload per edge (i.e., distributive aggregates have afixed workloadof

one tuple per edge while holistic aggregates avariable workload).

The second class of representative queries isnon-aggregate selection queries(e.g.,SELECT

moteid FROM sensors). Assuming a static topology such queries generate afixed workload

per edge, unless we apply a predicate on the query (e.g.,temperature > X) and generate in

this manner avariable workloadper edge.

In our experiments we utilize the following query-sets which encapsulate all the above cases:

• Single-Tuple queries (ST): where a sensor transmits exactly one tuple per epoch. Distribu-

tive aggregates belong to this category. We utilize the following representative query in our

study:
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SELECT moteid, temperature

FROM sensors

WHERE temperature=MAX(temperature)

EPOCH DURATION 31 seconds

• Multi-Tuple queries with Fixed size (MTF ): where a sensor transmits a set onf tuples per

epoch, wheref is a constant. Holistic aggregates and non-aggregate selection queries with

a fixed workload belong to this category. We utilize the following representative query in

our study:

SELECT moteid, temperature

FROM sensors

EPOCH DURATION 31 seconds

• Multi-Tuple results with Arbitrary size (MTA ): where a sensor transmits a set off ′ tuples

per epoch, wheref ′ is a variable that might change across different epochs. Non-aggregate

selection queries with a variable workload belong to this category. We utilize the following

representative query in our study:

SELECT moteid, temperature

FROM sensors

WHERE temperature>39

EPOCH DURATION 31 seconds

Each query features an epoch duration which specifies the amount of time that sensors have

to wait before re-computing the continuous query. Additionally, for the Cougar and WART algo-

rithms, we set the child waiting timerh to 200ms. If the timer for a sensorsi runs out thensi will
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not wait for any more results from its children. Such a timer is deployed to avoid situations where

nodes have to wait for children nodes for an unspecified amount of time.
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7.2 Experimental Series 1: Microbenchmarks

In the first experimental series we have conducted two micro-benchmarks on the CC2420

radio chip [122] (both attached to the TelosB [35] sensor and in TOSSIM [79]) to justify why data

reception and data transmission inefficiencies have to be optimized in current data acquisition

frameworks. For the first type of inefficiency we show why a sensing device should not change

the state of its transceiver more than once during the interval of an epoch. That supports our

argument that query results have to be communicated between sensors at a specific time instance

rather than at several time instances. For the second type of inefficiency we justify why a sensor

network should minimize the number of hub nodes (i.e., nodes with several children) as these

increase collisions during data transmission and thus also increase energy consumption.

In the first micro-benchmark we transfer 1000 16-byte packets from a TelosB sensing device

A to another TelosB sensing device B and measure the energy consumption of sensor A when

this transfer is conducted in 1, 10, 100 and 1000 rounds respectively. In particular, we configure

sensor B with an always-on transceiver and sensor A with a transceiver that changes its state from

on (STXON/SRXON) to off (SRFOFF), 1 to 1000 times respectively. In order to measure the

energy consumed by sensor A for the above function we utilized a multi-meter, to measure the

circuit current, and we also measured the wall clock time until the given operations completed

successfully.

Figure 7-7 shows the result of the first micro-benchmark. We observe that by changing the

transceiver status 1000 times consumes 195µJ while conducting the same operation one time

requires only 128µJ . Although in both cases we transfer precisely the same amount of data, in the

former case we spent 65% more energy. This increase occurs even though the CC2420 transceiver

has very quick start-up times compared to other transceivers. Notice that during the startup of
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Figure 7-8: Micro-benchmarks using the
CC2420 communication module: Increasing the
number of children per nodex also increases col-
lisions during data transmission to nodex.

the RF module a voltage regulator and crystal oscillator have to be started as well and become

stable [122]. Thus, it is quite inefficient to change the transceiver state (from on to off and vice-

versa) more than once during the interval of an epoch. The WART algorithm of the Workload

Balancing Module presented in Section 4 assigns a specific time interval to each child node during

which query results have to be transmitted to a parent node, thus the transceiver is enabled only

once.

In the second micro-benchmark we justify why a sensor network should minimize the number

of hub nodes (i.e., nodes with a large in-degree). For this purpose we construct 20 star topologies

Neti (10 ≥ i ≥ 30) with each of which featuresi children nodes, and evaluate the loss rate

when all children nodes attempt to transmit data packets to a given sink node. In particular, each

node attempts to transmit a 16-byte packet to a given sink node for 60 seconds (that accounts to

approximately 250 messages in our setting). We utilized the TOSSIM environment along with its

LossyBuilder module that created “lossy” radio models for each topology. The lossy model we

have created (for each of the topologies) places the sensors at various distances from the sink node

and generates a Gaussian packet loss probability distribution for each distance. TOSSIM then
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generates packet loss rates for each sensor-sink pair by sampling these distributions and translates

this into independent bit error rates.

For each topologyNeti (10 ≥ i ≥ 30) we measure: i) theTotal Packets Sentfrom all sensors

to s0 (denoted asP T
i ), and ii) theTotal Packets Receivedfrom s0 (denoted asP 0

i ). We next

evaluate each topology’s loss rate by using the formula:

LossRate(Neti) = 1 − (
P 0

i

P T
i

) (5)

Figure 7-8 illustrates the loss rate for the 20 presented topologies. We can observe an almost

linear increase in the loss rate for topologies with more than 10 children nodes. For a setup of

30 children nodes we observe a loss rate of over 56%. We tried to scale the experiments to 100

children nodes and observed that the loss rate peaked at 77%. But even for smaller-scale cases,

many data packets do not reach their designated destination in the first attempt and need to be re-

transmitted (the energy cost of this deficiency will be documented in the subsequent experiments).

It should be noted these findings are highly correlated with the lossy model generated by the

TOSSIM’s LossyBuilder component. More pessimistic lossy models would have generated even

higher loss rates. However, investigating the results of our experiments indicates that nodes closer

to the sink node manage to transmit more messages successfully and that is why the loss rates

may appear somewhat optimistic. The Tree Balancing Module of KSpot+ framework presented in

Section 5, distributes the children of overloaded nodes to neighboring nodes and assigns different

wake-up times decreasing in that way data transmission collisions and energy consumption.
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7.3 Experimental Series 2: Evaluation of the Workload Balancing Module

In this experimental series, we assess the efficiency of the Workload Balancing Module pre-

sented in Chapter 4. More specifically, we have conducted four experiments that evaluate the

efficiency of the underlying WART algorithm under variable workloads and network sizes. In the

first experiment we compare the energy consumption of the WART algorithm to the respective

algorithms deployed in the Cougar and TinyDB frameworks using real datasets under a variety

of query workloads and topologies. In the second experiment we demonstrate the scalability of

the WART algorithm on large scale networks using the realistic datasets presented in Section 7.1.

Next, in the third experiment we evaluate the the adaptation phase of the WART algorithm. Finally,

in the fourth experiment we show that the utilization of the WART algorithm can significantly in-

crease the longevity of a wireless sensor network.

More specifically, this experimental evaluation focuses on two parameters:

1. the Energy Consumption Cost, for the WART algorithm presented in Chapter 4 under

variable workloads (single-tuple results, multi-tuple results with fixed size and multi-tuple

results with arbitrary size), and

2. theNetwork Lifetime , of the WART algorithm compared to the TAG and Cougar Algo-

rithms used in the TinyDB and Cougar middleware frameworks respectively.

Table 7-1 summarizes the configuration parameters for all experiments mentioned in the subse-

quent sections.

7.3.1 Energy Consumption

We study the energy consumption of the WART, Cougar and TAG algorithms for the different

combinations of query sets (ST, MTF and MTA) to datasets (Intel54, GDI140 and Intel540) as
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Table 7-1: Configuration parameters for all experimental series of Section 7.3.

Section Objective Datasets Workload Algorithms

7.3.1 Energy Consumption Intel54 ST,MTA TAG,Cougar,

Medium-scale MTF WART

7.3.2 Energy Consumption GDI140, ST,MTA TAG,Cougar,

Large-scale Intel540 MTF WART

7.3.3 Energy Consumption Intel54,GDI140, ST,MTA WART

Intel540 MTF WART-adaptation

7.3.4 Network Lifetime Intel540 MTF TAG,Cougar,

WART

these were described in Section 7.1.

Energy Consumption for Single-Tuple Answers: Figure 7-9 (top-left) shows the energy con-

sumption for the Intel54 dataset using the single-tuple query ST. We observe that TAG requires

11,227±2mJ, which is two orders of magnitudes more energy than the energy required by WART

(i.e., only 53±35mJ). This is attributed to the fact that the transceiver of a sensor in TAG is en-

abled for≈2.14 seconds in each epoch (i.e.,⌊e/d⌋ = 31 (epoch duration)/14 (tree depth)), while

in WART it is only enabled for≈146ms on average. Enabling the transceiver for over two seconds

in TAG is clearly the driving force behind its inefficiency. Figure 7-9 (top-left) also shows that

the WART energy curve quickly drops to the mean value of53mJ within the first epoch (i.e., the

sudden drop at the beginning of the curve). Notice that WART runs very much like Cougar during

the first epoch but our algorithm then intelligently exploits the waking window cost to preserve

energy.

Figure 7-9 (top-left) also shows that the Cougar algorithm requires on average 882±250mJ,

which is one order of magnitude more than the energy required by WART. The disadvantage of

Pan
ay

iot
is 

G. A
nd

reo
u



123

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

E
ne

rg
y 

(m
J)

Epoch Number

Energy Consumption for Query Set: ST (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31, link=250kbps

TAG
COUGAR

WART

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

E
ne

rg
y 

(m
J)

Epoch Number

Energy Consumption for Query Set: MTF (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31, link=250kbps

TAG
COUGAR

WART

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900  1000

E
ne

rg
y 

(m
J)

Epoch Number

Energy Consumption for Query Set: MTA (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31, link=250kbps

TAG
COUGAR

WART

Figure 7-9: Energy consumption for Single-Tuple (top-left)and Multi-Tuple (top-right and bot-
tom) answers. The plots indicate the individual results for the TAG, Cougar and WART data
acquisition algorithms. In all figures we observe that WART is at least one order of magnitude
more efficient than its competitors.

the Cougar algorithm originates from the fact that the parents keep their transceivers enabled until

all the children have answered or until the local timerh has expired (in cases of failures). Thus,

any failure is automatically translated into a chain of delayed waking windows all of which con-

sume more energy than necessary. One final observation regarding the Cougar algorithm is that it

features a large standard deviation (i.e.,250mJ), which signifies that certain nodes consume more

energy than others. This is attributed to the fact that the cost of failures in Cougar is proportional

to the depth of the node that caused the failure. In particular, failures at a large depth (i.e., closerPan
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to the leaf nodes) will generate a larger chain of waking windows, thus will be more energy de-

manding than failures that occur at a small depth (i.e., closer to the sink).

Energy Consumption for Multi-Tuple Answers: We shall next measure the energy cost of the

queries with multi-tuple answers (i.e., MTF and MTA) again over the Intel54 dataset and present

our results in Figure 7-9 (top-right and bottom) and also summarize these results in Table 7-2

(first row). From the figures and the table we can draw the following conclusions: i) the WART

algorithm has the same compelling benefits compared to TAG and Cougar, although the incurred

workload for the three queries is very different; and ii) the MTA query consumes on average less

energy than the ST query for all algorithms (see Table 7-2 (first row)). This is attributed to the fact

that MTA is associated with a predicate that limits the cardinality of sensor answers below one in

certain cases, while the ST query yields exactly one answer per sensor. On the contrary, the MTF

query has an increased energy consumption compared to the ST query (i.e., between 1-10mJ) as it

generates multiple tuples at each node. To explain this, first notice that it is relatively inexpensive

to pack a small number of additional tuples into a message, given that the transmission cost is

dominated by the packet header and not by the payload. As the cardinality of an MTF query is

bounded above by the number of sensorsn (see query MTF), in practice this yields only a small

increase in the number of messages. Thus, the additional energy consumption of the MTF query

over the ST query is very small.

By evaluating the same algorithms over the medium-size GDI140 dataset, presented in Ta-

ble 7-2 (second row), we observe that WART continues to maintain a competitive advantage over

the other two algorithms. Another observation is that the TAG algorithm has a slightly better

performance compared to the previous experiment but its performance is still two orders of mag-

nitudes worse than WART. In particular, we noticed that the TAG-to-WART performance ratio is

Pan
ay

iot
is 

G. A
nd

reo
u



125

Table 7-2: Energy Consumption results for experimental series 7.3.1: Evaluation of the WART,
Cougar and TAG algorithms under different queries and datasets.

Dataset
P

P
P

P
P

P
P

PP

Algor.
Query

ST MTF MTA

Intel54

TAG 11,227±02mJ 11,228±02mJ 11,225±01mJ

Cougar 882±250mJ 893±239mJ 877±239mJ

WART 53±35mJ 56±37mJ 50±21mJ

GDI140

TAG 58,380±24mJ 58,380±25mJ 58,374±26mJ

Cougar 1,435±176mJ 1,443±181mJ 1,432±176mJ

WART 429±39mJ 438±37mJ 425±34mJ

Intel540

TAG 189,691±53mJ 189,707±49mJ 189,670±51mJ

Cougar 7,269±37mJ 7,317±37mJ 7,257±37mJ

WART 3,431±14mJ 3,510±12mJ 3,398±13mJ

slightly decreased (i.e.,136%) compared to the respective performance ratio recorded with the

Intel54 dataset which was211%. Such a decrease is explained as follows: the depth of the query

routing tree in GDI140 was 22 and thus each sensor has to maintain its radio open for≈1.40 sec-

onds in each epoch (i.e.,⌊e/d⌋ = 31 (epoch duration)/22 (tree depth)). On the contrary, the depth

of the query routing tree in Intel54 was 14 and thus each sensor has to maintain its radio open for

a larger window in each epoch (i.e.,≈2.14 seconds).

7.3.2 Large-Scale Network Study

In the third experiment of this series we evaluate the WART algorithm against the Cougar algo-

rithm using the Intel540 dataset, which represents a large-scale wireless sensor network. We have

omitted the presentation of the TAG algorithm as it has a very high energy cost (i.e.,189, 707mJ).

To facilitate our presentation we also summarize the mean and standard deviation of our results in

Table 7-2 (third row).
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Figure 7-10: Energy Consumption in a Large-Scale Sensor Network (Intel540). The plots indicate
the individual results for the ST, MTF and MTA queries using the Cougar and WART algorithms
(we omit the TAG curve in this plot due to its inefficiency (i.e.,189, 707mJ)).

The plots in Figure 7-10 show that WART requires only 3,446mJ on average (i.e., the mean

of the plots for all three queries) while Cougar requires as much as 7,281mJ for the acquisition

of values from all 540 nodes. This shows that WART retains a significant competitive advantage

over Cougar even for large-scale wireless sensor networks. For all queries we noticed that the

WART-to-Cougar performance ratio is slightly increased (i.e.,47%) compared to the respective

performance ratio noticed with the Intel54 dataset (which was only6%). Such an increase was

expected as larger networks have a higher probability of transient network conditions and arbitrary

failures. The above characteristics are causes that lead to the disruption of the query routing tree

synchrony. Nevertheless, the WART approach is still53% more energy efficient than Cougar under

these limitations, thus WART can have many practical applications in large-scale environments.
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Figure 7-11: WART’s Adaptation algorithm evaluation for theIntel540 dataset (top-left), GDI140
dataset (top-right) and the Intel54 dataset (bottom).

7.3.3 Adaptation Phase Evaluation

In the last experiment of this series we evaluate the WART adaptation algorithm. So far we

have assumed that the critical path is re-constructed in every epoch during the execution of a

query, thus introduced an additional cost ofO(n) messages. In the following experiments we

aim to investigate the efficiency of the WART adaptation algorithm and verify the savings we

claimed in Section 4.3.4. We compare WART with no adaptation against a version that employs

the adaptation rules of Algorithm 2 during data acquisition. For this experimental series we utilize

the Intel54, Intel540 and GDI140 datasets and present the results for the MTF query only as the

other two queries expose a similar behavior.
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Figure 7-11 (top-left, top-right) shows that the invocation of the adaptation rules in Algo-

rithm 2 for the Intel540 and GDI140 large scale networks can yield additional energy savings of

60mJ and36mJ respectively. Given that one packet in our setting was 128 bytes we can estimate

that the transmission of such a packet requires144µJ (see Section 7.1). In the case of the Intel540

dataset, the quantity of 60mJ is approximately equivalent to 416 messages (i.e.,60mJ/144µJ)

whereas in the case of the GDI140 dataset the quantity of 36mJ is approximately equivalent to

290 messages (i.e.,36mJ/144µJ). This result is consistent with our analysis were we expected

O(n) additional messages during the dissemination phase. Figure 7-11 (bottom) shows the adap-

tation algorithm on a small scale network (i.e., Intel54). The result indicates that even for such

small-scale networks we might observe some energy savings but these are not very significant

(i.e., only2mJ). This is attributed to the fact that the adaptation rules in small-scale networks are

not invoked as frequently as workload deviations occur more rarely.

7.3.4 Network Lifetime

The final performance criterion we have considered is network lifetime. We define network

lifetime as the average amount of energy in the network. In particular, let the following summation

denote the amount of energy that is available at time instancet in a network ofn sensors:

Energy(t) =
∑n

i=1 available energy(si, t)/n

whereavailable energy(si, t) denotes the energy that is available at sensorsi (i ≤ n) at time

instancet. We define thenetwork lifetime, similar to [123], as the time instancet′ at which

Energy(t′) = 0. This definition, adopts a universal perspective of the sensor network (i.e.,

measures the energy depletion across the whole spectrum of participating sensors) as opposed to

existential energy depletion metrics (i.e., measure when the energy is depleted on a single node)
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Figure 7-12: Network Lifetime evaluation of the WART, TAG andCougar algorithms.

utilized in other works [109, 110]. This is because we are particularly interested in decreasing the

overall energy consumption of the sensor network and not a single node.

Note that this applies only to the case where sensors operate using batteries. Double batteries

(AA) used in many current sensor designs (including the TelosB sensor) operate at 3V voltage

and supply a current of 2,500 mAh (milliAmpere per hour). Assuming similar to [121], that only

2,200mAh is available and that all current is used for communication, we can calculate that AA

batteries offer23, 760J (2, 200mAh× 60min× 60s× 3V ). In order to speed up our experiments

we start with an initial energy of60, 000mJ subtract at each epoch and for each sensor the energy

required for communication. When terminate this iteration when the termination condition is

satisfied.

Figure 7-12 illustrates the average energy status of the sensor network, at each epoch, during

the execution of a query. We notice that the energy of sensors under TAG is consumed far faster

than the WART algorithm, leading to a lifetime of just 171 epochs (i.e., 85 minutes). Cougar

comes second by offering 4,433 epochs (i.e., 36 hours), Finally, WART comes third with 9,238

epochs (i.e., 77 hours) which can be translated to≈208% increase in network lifetime.
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7.4 Experimental Series 3: Evaluation of the Tree Balancing Module

In this experimental series, we assess the efficiency of the Tree Balancing Module presented

in Chapter 5. More specifically, we have conducted two experiments that evaluate the efficiency

of the underlying ETC algorithm under different network sizes.

In the first experiment we measure the quality of the near-balanced query routing tree that is

generated by the ETC algorithmTETC against the original ad hoc query routing treeTinput and

the one generated by the Centralized ETC algorithm (CETC)TCETC . In the second experiment

we compare the energy consumption ofTinput with TETC with respect to data collisions.

More specifically, this experimental evaluation focuses on two parameters:

1. theBalancing Error , for measuring the balancing quality of the near-balanced tree gener-

ated by the ETC algorithm, and

2. theEnergy Consumption Cost, with respect to data collisions of the original ad hoc query

routing treeTinput and the one generated by the ETC algorithm (ETC)TETC .

Table 7-3 summarizes the configuration parameters for all experiments mentioned in the subse-

quent sections.

Table 7-3: Configuration parameters for all experimental series of Section 7.4.

Section Objective Datasets Algorithms

7.4.1 Balancing Error Intel54, GDI140, Ad hoc, ETC

Intel540 CETC

7.4.2 Energy Consumption Intel540 Ad hoc, ETCPan
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7.4.1 Measuring the Balancing Error

Our first objective is to measure the quality of the tree, w.r.t the balancing factor, that is gen-

erated by the ETC algorithm. Thus, we measure the balancing error of the generated trees as this

was presented in Section 5.3.1. Recall that the BalancingError of a query routing tree was defined

as follows:

Balancing Error(TCETC) :=

n
∑

i=0

|β −
n

∑

j=0

PMij |

whereβ = d
√
n and PMij = 1 denotes that nodei is a parent of nodej andPMij = 0 the

opposite. Notice that this table is fragmented vertically in the case of the distributed ETC algorithm

but can be obtained easily with a message complexity of O(n), where each message has a size of

O(n2) in the worst case.

For this experiment we generated one query routing tree per dataset (i.e., Intel54, GDI140

and Intel540) using the three described algorithms: i) the First-Heard-From approach, which con-

structs an ad-hoc spanning treeTinput without any specific properties, ii) the CETC algorithm,

which transformsTinput into the best possible near-balanced treeTCETC in a centralized man-

ner, and iii) the ETC algorithm, which transformsTinput into a near-balanced treeTETC in a

distributed manner.

Figure 7-13, presents the results of our evaluation which demonstrates the following proper-

ties: i) All three approaches feature some balancing error, which indicates that in all cases it is

not feasible to construct a fully balanced treeTbalanced. This is attributed to the inherent struc-

ture of the sensor network where certain nodes are not within communication radius from other

nodes. ii) The second observation is that the FHF approach has the worst BalancingError, which

is an indicator that FHF can rarely produce any proper balanced topology and that increases dataPan
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Figure 7-13: Measuring the Balancing Error of the FHF (Tinput), CETC (TCETC) and ETC
(TETC) algorithms

transmission collisions and energy consumption (shown in next experiment). In particular, the bal-

ancing error of the FHF approach is on average 91% larger than the respective error for the CETC

algorithm. iii) The third and most important observation is that the distributed ETC algorithm is

only 11% less accurate than the centralized CETC algorithm. Therefore, even though the ETC

algorithm does not feature any global knowledge, it is still able to create a near-balanced topology

in a distributed manner.

7.4.2 Energy Consumption

In order to translate the effects of the BalancingError into an energy cost, we conduct another

experiment using the Intel540 dataset. More specifically, we generate two query routing trees: a)

Tinput, constructed using the First-Heard-From approach, and b)TETC constructed using the ETC

algorithm. We configure our testbed to only measure the energy required for re-transmissions due

to collisions in order to accurately capture the additional cost of having an unbalanced topology.

Figure 7-14 displays the energy consumption of the two structures. We observe that the energy

required for re-transmissions usingTinput is 3,314±50mJ. On the other hand,TETC requires only
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Figure 7-14: Energy Consumption due to re-transmissions in an unbalanced topology (Tinput) and
in a near-balanced topology (TETC)

566±22mJ which translates to additional energy savings of 83%. The reason whyTETC presents

such great additional savings is due to the re-structuring of the query routing tree into a near

balanced query routing tree which ensures that data transmissions collisions are decreased to a

minimum.
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7.5 Experimental Series 4: Fusing the Workload and Tree Balancing Modules

In experimental series 2 and 3 we studied the performance of the Workload and Tree Balancing

modules in isolation in order to highlight their distinct properties. In this experimental series we

study them in conjunction to demonstrate their combined efficiency. In particular, we fuse the

Workload and Tree Balancing modules, labeledETC+WART, as follows. The fused algorithm

deploys firstly the ETC algorithm to balance the query routing tree and then utilizes the WART

algorithm to optimize the waking windows of the sensor nodes.

More specifically, this experimental evaluation focuses on two parameters:

1. the Energy Consumption Cost, for the ETC+WART algorithm presented in Chapter 4

under variable workloads (single-tuple results, multi-tuple results with fixed size and multi-

tuple results with arbitrary size), and

2. theNetwork Lifetime , of the ETC+WART algorithm compared to the WART, TAG and

Cougar Algorithms.

Table 7-4 summarizes the configuration parameters for all experiments mentioned in the subse-

quent sections.

Table 7-4: Configuration parameters for all experimental series of Section 7.5.

Section Objective Datasets Workload Algorithms

7.5.1 Energy Consumption Intel540 MTF ETC+WART,

WART

7.5.2 Network Lifetime Intel540 MTF TAG, Cougar,

WART, ETC+WARTPan
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7.5.1 Energy Consumption

In the first experiment of this series we measure the energy consumption of the integrated

WART and ETC algorithms using the Intel540 dataset and the MTF query. We have observed

similar results for the other combinations of query-to-datasets as well and omitted these results for

brevity.

Figure 7-15 illustrates the energy savings of using the ETC algorithm in conjunction with

WART. While WART requires on average 3,510±126mJ, ETC+WART uses only 749±269mJ

which translates in an additional 78% decrease (see Figure 7-16) in energy consumption on av-

erage. In particular, we have observed a threefold improvement of ETC+WART compared to

the execution of the WART algorithm in isolation. Additionally, we have noticed that the near-

balanced routing tree generated by the ETC algorithm will not only reduce data collisions, and

thus data re-transmissions, but will also have a positive effect on the WART scheduling algorithm.

The reason why the efficiency of the WART algorithm increases under no failures can be

explained as follows: In a topology with limited failures the critical path cost is not re-computed
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Figure 7-17: Network Lifetime for all algorithms.

very often. Thus, the communication overhead is minimized. Additionally, in a topology with

a small number of failures we also have a smaller number of parent waiting for their children

(i.e., a fewer number of expiredh timers). Consequently, minimizing data transmission collisions

automatically triggers a whole range of new characteristics which improve the overall quality of

our framework.

7.5.2 Network Lifetime

The final performance criterion we have considered is network lifetime. We use the same

definition for define network lifetime as the one presented in Section 7.3.4.

Figure 7-17 illustrates the average energy status of the sensor network, at each epoch, during

the execution of a query. We notice that the energy of sensors under TAG is consumed far faster

than ETC+WART, leading to a lifetime of just 171 epochs (i.e., 85 minutes). Cougar comes

second by offering 4,433 epochs (i.e., 36 hours) and WART third with 9,238 epochs (i.e., 77

hours). Finally, ETC+WART reaches its limit far later at epoch 43,824 (i.e., 365 hours) and this

can be translated into a≈474% increase of the network lifetime (over WART).
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7.5.3 Multi-query Execution

In a real system, it will be necessary to execute several queries, possibly belonging to individ-

ual users, concurrently. In this subsection we discuss at an abstract level how this can be realized.

First, notice that the WART algorithm, which minimizes data reception inefficiencies by profiling

recent data acquisition activity, can maintain separate profiles for the individual queries running

over a given query routing tree. Furthermore, the ETC algorithm, which generates a near-balanced

tree topology that minimizes data collisions, is query-independent. In particular, an ETC tree re-

configures itself based on a balancing factor that is derived directly from the branching factor of

a node in a query routing tree. Consequently, the same physical tree might apply to any query

running over KSpot+. The above discussion shows that it is relatively easy to extend the KSpot+

framework into a multi-query execution environment although a detailed investigation of this pa-

rameter is outside the scope of this dissertation.
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7.6 Experimental Series 5: Evaluation of the Query Processing Module

In order to assess the efficiency of the Query Processing Module we have conducted six exper-

iments. In the first experiment we have compared the energy consumption of the INT and MINT

Views algorithms to the TAG and TINA algorithms, showing that the former algorithms present

significant energy savings compared to their competitors. In the second experiment, we study the

pruning magnitude of the INT and MINT Views algorithms. In the third experiment, where we

investigate the scalability of the parameterk, we manually test the efficiency of the MINT Views

algorithm with different values fork. In the fourth experiment we investigate the effect of the

GROUP-BY cardinality. Note that in all datasets, we randomly and uniformly divide the sensors

into areas (rooms). In this experiment, we distribute the sensors in different room configurations

and study the energy consumption of all algorithms. Finally, in the fifth experiment, we show

that the utilization of the Query Processing Module can significantly increase the longevity of a

wireless sensor network.

More specifically, the experimental evaluation focuses on five parameters:

1. the Energy Consumption Cost, for the INT and MINT Views algorithms proposed in

Chapter 6 compared to two other popular query processing algorithms namely, TAG and

TINA,

2. the Pruning Magnitude, of the k-Covered Bound-SetV i
i of the INT and MINT Views

algorithms,

3. the Scalability with respect to k, were we evaluate the efficiency of the MINT Views

algorithm with different values of thek parameter,Pan
ay
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4. theCardinality of the GROUP-BY clause, were we evaluate the effect of different cardi-

nalities on the energy consumption of the MINT Views algorithm, and

5. theNetwork Lifetime , of all algorithms presented in this Section.

Table 7-5 summarizes the configuration parameters for all experiments mentioned in the subse-

quent sections.

Table 7-5: Configuration parameters for all experimental series of Section 7.6.

Section Objective Dataset k Rooms (R)

7.6.1 Energy Consumption GDI14, AtmoMon32, 5% 4-7

Intel54

7.6.2 Pruning Magnitude AtmoMon32 5% 7

7.6.3 Scalability ofk GDI14 5%-100% 4

7.6.4 GROUP-BY cardinality GDI14 5% 1-7

7.6.5 Network Lifetime GDI14 5% 4

7.6.1 Energy Consumption

In the first experiment, we evaluate the energy consumption of INT and MINT Views algo-

rithms compared to the popular TAG and TINA acquisition frameworks. We execute queryQ on

the three datasets and measure the energy consumption for each dataset separately.

In Figure 7-18 (top-left), we illustrate the energy consumption of the four algorithms (MINT,

INT, TINA and TAG) using the GDI14 dataset. Let us mention the preliminary observation that

the energy scale among consecutive time instances fluctuates greatly. This happens due to the

arbitrariness of when and under which condition top-k pruning and temporal coherence filtering

takes place. In order to correct this situation in the subsequent graphs, we apply a spline interpola-

tion smoothing between consecutive data points. We shall next also mention the real observations

we determine from the given execution.
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Figure 7-18: Energy Consumption for the TAG, TINA, INT View and MINT View algorithms
using the TelosB sensor energy model.

In Figure 7-18 (top-right), we plot the results using the GDI14 dataset. Since we utilize TAG

as the baseline of comparison, it always has a value of 100%. The TAG line accounts for approx-

imately 57±2.52J average energy for all 14 nodes of the network. Recall that in TAG, a sensor

always transmits all aggregated tuples to the sink. Although TINA still returns all answers to the

sink, it takes the average energy consumption down to 48±1.57J. This validates that exploiting

temporal coherence can be beneficial in most cases. The INT Views approach on the other hand,

performs in-network pruning of the results which reduces the energy consumption to 34±1J (i.e.,

≈ 41% less than TAG).
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Finally, the MINT Views algorithm exploits temporal coherence in addition to top-k pruning

and only consumes an average of 19±0.56J which is equivalent to a 66% energy reduction from

TAG, 49% energy reduction from TINA and 25% from INT. The reason why the TINA and MINT

Views follow a similar pattern is because in both curves, the energy reduction is dominated by the

savings that are due to the temporal coherence between consecutive time points.

In this figure, we also observe surges (deviations) for the TINA, INT and MINT Views algo-

rithms in all experiments. In the case of the TINA algorithm, the surges attribute to the fact that,

at some time instances, the sensors exploit the temporal coherence and do not report their results

to their parents. This decreases the overall energy consumption of the network. In the case of

the INT algorithm, the surges correlate with the fact that, at some time instances, the amount of

results pruned fromVi is decreased or increased because of the deviation of values in the dataset.

This is an indication that the top-k answer has changed at the particular timestamp and that this

has brought some increase in energy consumption, until the updates propagate to the sink. On

the other hand, the surges of the MINT Views algorithm correlate to both of the aforementioned

attributes as MINT exploits both temporal coherence and top-k pruning.

By repeating the same experiment on the AtmoMon32 dataset, we observe in Figure 7-18

(bottom-left), that MINT continuous to maintain a competitive advantage over TAG and TINA.

In particular, we observe that MINT consumes 50% less energy than TAG (i.e. 115±4J versus

234±2J). The same conclusion applies for the INT Views algorithm although we observe that

the performance difference compared to TINA has decreased. This happens because in the At-

moMon32 dataset, the temperature values do not change frequently and this allows the temporal

coherence filter to significantly reduce the number of tuples transmitted over the network. How-

ever, the top-k pruning filter of the INT algorithm still manages to considerably decrease the size

of packets that are transmitted through the network thus maintaining an advantage over TINA.
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Table 7-6: Average Energy Consumption for all sensors in experimental series 7.6.1: Evaluation
of the TAG, TINA, INT and MINT Views algorithms under different datasets.

X
X

X
X

X
X

X
X

X
X

X

Algor.
Dataset

GDI14 AtmoMon32 Intel54

TAG 57±2.52J 234±2J 523±22J
TINA 48±1.57J 183±6J 289±15J
INT 34±1.01J 170±7J 187±08J
MINT 19±0.56J 115±4J 139±06J

In the final dataset, Intel54 (Figure 7-18 (bottom-right)) weobserve that all algorithms behave

in a similar manner to the previous experiments. The difference is that the energy performance of

all algorithms has increased compared to TAG. One reason that this happens, is the fact that like

the AtmoMon32 dataset the temperature values of the Intel54 do not change frequently, which is

exploited by the temporal coherence filter of the TINA and MINT Views algorithms. On the other-

hand, the INT Views algorithm which does not employ a temporal coherence filter, outperforms

significantly the TAG and TINA algorithms. This means that the pruning mechanism of INT

Views, significantly decreases the packet sizes thus minimizing energy consumption associated

with transmission.

The results for all experiments are summarized in Table 7-6.

7.6.2 Pruning Magnitude

We next study the pruning magnitude of the k-Covered Bound-SetV ′
i using the AtmoMon32

dataset. In Figure 7-19 we plot with a white box the average number of tuples at each level of the

topology (for all 1000 time instances). We also plot with a dashed box the aggregate number of

tuples eliminated by Algorithm 2.

We observe that the closer we move towards the sink, the pruning power of our framework

increases exponentially. This is attributed to the fact that the cardinality ofVi can increase in the

worst case exponentially as well (i.e., each sensor reports a different room number). In particular,
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Figure 7-19: Pruning Magnitude of MINT Views
on the AtmoMon32 dataset.
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Figure 7-20: Scalability with respect tok: In
the worst case scenario (k=100%), the MINT al-
gorithm maintains a competitive advantage over
TAG.

we observe that the pruning at level five to one ranges from 0% (where only leaf nodes exist), to

39% in level two and 77% in level one. It is important to highlight the fact that such a pruning

presents a reduction of more than 20,000 tuples at level one alone.

A final remark is that these results apply to both MINT and INT, as these two algorithms only

differ in howV ′
i is maintained and not on the final content of the in-network view.

7.6.3 Scalability with respect tok

In the third experiment, we evaluate the efficiency of the MINT algorithm with respect to the

parameterk. More specifically, we increase the parameterk while maintaining the same network

topology. We expect that by increasing thek parameter, packet sizes will also increase as less

packets will be pruned fromVi. We utilize the GDI14 dataset for this experiment and measure the

average energy consumption for all sensor nodes. However, we mention that similar observations

also do hold for the rest datasets.Pan
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Figure 7-20 shows the result of our experiment. For the lowest value ofk (k=25% of the

answer set) the overall energy consumption is 66% less than TAG (19±0.5J). We observe that as

the value of thek parameter increases, the performance gain is decreased. Particularly, fork=50%

andk=75% the energy performance ratio compared to TAG reaches 36.5% (36±1.6J) and 23,4%

(44±1.5J) respectively. This is expected as the number of results transmitted from each sensor

node is correlated with thek parameter (i.e., higher values ofk decrease the number of tuples

eliminated fromVi). When thek parameter reaches 100% (i.e., all sensor nodes transmit all of

their results), then the MINT Views algorithm behaves identically to the TINA algorithm. More

specifically, since no pruning occurs on the sensors, the MINT Views algorithm only exploits

temporal coherence exactly like the TINA algorithm. However, like TINA, MINT still maintains a

competitive advantage of 18% (47±1.59J) decreased energy consumption over TAG (57±2.52J).

7.6.4 Cardinality of the GROUP-BY Clause

In the fourth experiment, we evaluate the efficiency of the MINT Views algorithm with respect

to the cardinality of the GROUP-BY clause (i.e., the number of rooms that participate in the given

query). More specifically, we manually set the number of rooms (R) to 2, 4 and 7 in the GDI14

dataset and uniformly distribute the sensors in each room respectively. We measure the average

energy consumption for all 14 sensor nodes. There are two important parameters that affect the

cardinality attribute. Firstly, whenR increases, so is the packet size, as the TopKRoom data

structure allocates space to storeR results. On the other hand, since a smaller number of sensors

is distributed in each room, lower-level nodes can quickly calculate the exact result of a room thus

the pruning magnitude is increased. Secondly, whenR decreases the packet size also decreases for

the same aforementioned reason. However, in this case the pruning magnitude rapidly decreases

as only higher-level sensor nodes have a complete picture of the exact result for a room.
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Figure 7-21: Cardinality of the GROUP BY
clause for 3 different room configurations
(R=Number of Rooms).
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Figure 7-22: Cardinality of the GROUP BY
clause for all algorithms.

Figure 7-21 shows the first result of our experiment. We observe that the best energy perfor-

mance occurs when the number of rooms R is equal to 4 (i.e., 21±0.7J). In the case of fewer rooms

(i.e.,R=2) we observe that the energy consumption is slightly increased although in this case the

data payload of MINT becomes almost half the size. The reason for this increase, is the fact that

the MINT pruning phase almost never prunes theV ′
i structure on sensor nodes that have a hop

count greater than 1 (i.e., the results have to reach nodes very close to the sink in order for a node

to be able to eliminate tuples). On the other case, whereR=7, we observe a significant increase

in energy consumption. This is because the data payload is now configured to store 7 tuples at

each sensor which requires almost double overall transmission energy. However, in this case the

pruning mechanism of MINT eliminates tuples at lower levels of the network topology and that is

why the standard deviation of this experiment increases (i.e., 36±1,68J).

Figure 7-22 presents the results of all algorithms on the GDI14 dataset with different cardi-

nalities. We have found that MINT always maintains an advantage against its competitors in all

scenarios. In the case whereR=7, we observe that TINA presents better performance than INT.Pan
ay

iot
is 

G. A
nd

reo
u



146

 0

 5000

 10000

 15000

 20000

 25000

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)

Epoch Number

Network Lifetime (Average energy consumption for all n sensors) 
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

5793 6949 9768 16965

 TAG 
 TINA 

 INT 
 MINT 

Figure 7-23: Network lifetime for the TAG, TINA, INT and MINT Views algorithms presented in
this Section.

This is attributed to the fact that TINA suppresses many results from being transmitted to the net-

work, due to its temporal coherence filter. On the other hand, MINT which employs both top-k

pruning and the temporal coherence filter outperforms all algorithms.

7.6.5 Network Lifetime

The final performance criterion we have considered is network lifetime. We use the same

definition for define network lifetime as the one presented in Section 7.3.4.

Figure 7-23 illustrates the average energy status of the sensor network, at each epoch, during

the execution of a query using the GDI14 dataset. We notice that the available energy of sensors

under TAG is consumed far faster than the MINT Views algorithm, leading to a lifetime of just

5,793 epochs (i.e., 193 minutes). TINA ranks third by offering 6,949 epochs (i.e., 231 minutes)

and INT second with 9,768 epochs (i.e., 325 minutes). Finally, MINT consumes its available

energy budget far later at epoch 16,965 (i.e., 565 minutes), and this is translated into a≈292%

increase of the network lifetime.
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7.7 Experimental Series 6: Evaluation of KSpot+

In the final experimental series we evaluate the performance of the full KSpot+ framework

in comparison with the algorithms presented in this dissertation. In particular, we compare two

modes of the KSpot+ framework: i) KSpot+ with only the Query Processing Module enabled,

KSpot+ (MINT), and ii) KSpot+ with all modules enabled,KSpot+ (ETC+WART+MINT).

Notice that the latter, firstly utilizes the ETC algorithm to balance the query routing tree, then

utilizes the WART algorithm to optimize the waking windows of the sensor nodes and finally

executed a top-k query using the MINT algorithm. We have selected the MINT algorithm for both

versions as it presents the higher energy savings in our framework.

More specifically, this experimental evaluation focuses on two parameters:

1. theEnergy Consumption Cost, for the KSpot+ (MINT) and KSpot+ (ETC+WART+MINT)

algorithms presented in Chapters 4, 5 and 6,

2. theNetwork Lifetime , of all algorithms presented in this dissertation

Table 7-7 summarizes the configuration parameters for all experiments mentioned in the subse-

quent sections.

Table 7-7: Configuration parameters for all experimental series of Section 7.7.

Section Objective Datasets Algorithms

7.7.1 Energy Consumption GDI14, AtmoMon32, KSpot+ (MINT)

Intel54 KSpot+ (ETC+WART+MINT)

7.7.2 Network Lifetime GDI14 All AlgorithmsPan
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7.7.1 Energy Consumption

In the first experiment, we evaluate the energy consumption of KSpot+ (MINT) and KSpot+

(ETC+WART+MINT). We a top-k queryQ, as mentioned in Section 7.1 on the GDI14, At-

moMon32 and Intel54 datasets and measure the energy consumption for each dataset separately.

In Figure 7-24 (top-left), we plot the results using the GDI14 dataset. As it was previously

observed in Section 7.6.1 the KSpot+ framework using only the MINT algorithm consumes on

average 19±0.5J. On the other hand, when the KSpot+ framework operates with all modules

we observe a decrease≈6% on average energy 18±1.19J. However, we also observe that the

standard deviation has negatively increased which proves that there are fluctuations in energy

consumption caused by the Workload and Tree Balancing Modules. This is expected as under our

experimental setting both node and communication failures occur that trigger the reconstruction

and adaptation phases of the Tree and Workload Balancing modules respectively. This results in

additional packets to be transmitted to the network.

The same observations apply also for the AtmoMon32 and Intel54 datasets, with the complete

KSpot+ framework maintaining a competitive advantage over KSpot+ (MINT). In particular, we

observe that the complete KSpot+ framework consumes 105±8J in the AtmoMon32 dataset and

118±10J in the Intel54 dataset, which translates in 9% and 15% decrease in energy consumption

respectively.

In conclusion, the complete KSpot+ framework demonstrates large energy gains when op-

erating both with isolated components or full-fledged. It is important to note though, that the

Query Processing Module demonstrates much larger gains (in the order of Joules) against thePan
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Figure 7-24: Energy Consumption for the KSpot+ (MINT) and KSpot+ (ETC+WART+MINT)
using the TelosB sensor energy model.

other two modules (in the order of milliJoules) of the KSpot+ framework. This shows that in-

network pruning combined with exploiting temporal coherence can be of higher benefit in cases

where application require monitoring of thek most important events in the sensor network.

The results for all experiments are summarized in Table 7-8. For ease of exposition, we have

included the results for all algorithms as these were presented in Section 7.6.1.Pan
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Table 7-8: Average Energy Consumption for all sensors in experimental series 7.7.1: Evaluation
of the TAG, TINA, INT and MINT Views algorithms under different datasets.

X
X

X
X

X
X

X
X

X
X

X

Algor.
Dataset

GDI14 AtmoMon32 Intel54

TAG 57±2.52J 234±2J 523±22J
TINA 48±1.57J 183±6J 289±15J
INT 34±1.01J 170±7J 187±08J
KSpot+ MINT 19±0.56J 115±4J 139±06J
KSpot+ ETC+WART+MINT 18±1.19J 105±8J 118±10J
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Figure 7-25: Network Lifetime for all algorithms.

7.7.2 Network Lifetime

The final performance criterion we have considered is network lifetime. We use the same

definition for define network lifetime as the one presented in Section 7.3.4.

Figure 7-25 illustrates the average energy status of the sensor network, at each epoch, during

the execution of a query using the GDI14 dataset. We notice that the available energy of sensors

under TAG is consumed faster than all algorithms, leading to a lifetime of just 5,793 epochs (i.e.,

193 minutes). TINA ranks fourth by offering 6,949 epochs (i.e., 231 minutes). The KSpot+

framework with only the INT algorithm enabled ranks third with 9,768 epochs (i.e., 325 minutes).

Next, the KSpot+ framework with only the MINT algorithm consumes its available energy budget
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far later at epoch 16,965 (i.e., 565 minutes). Finally, the full KSpot+ framework, which includes

all modules enabled, ranks first at epoch 18,371 (i.e., 612 minutes), and this is translated into a

≈317% increase of the network lifetime compared to TAG.
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7.8 Experimental Evaluation Summary

The experimental evaluation of Sections 7.1 to 7.7 has demonstrated the effectiveness of in-

corporating network awareness during the execution of queries in Wireless Sensor Networks. In

summary, the following conclusions are drawn:

• We have conducted experiments using real and realistic datasets of various sizes, rang-

ing from small-scale (GDI14), to medium-scale (AtmoMon32, Intel54) and large-scale

(GDI140, Intel540), which show that the performance of the KSpot+ framework scales

linearly with the addition of new sensor nodes to the network (Sections 7.3 to 7.7).

• In all the experimental series, we considered various query types including simple (e.g., se-

lection, filter) and complex (e.g., top-k, group-by) that generated various workloads ranging

from single-tuple to multi-tuple results. The KSpot+ framework has demonstrated signifi-

cant energy savings in all the aforementioned query types and workloads (Sections 7.3 to 7.7).

• The KSpot+ framework has proven to be resilient in the case of node and communication

failures (Sections 7.3 to 7.7).

• The combination of both network optimization and query optimization yields superior en-

ergy performance than focusing on a single objective. We have shown that when the mod-

ules of the KSpot+ framework operate in combination, KSpot+ achieves far greater energy

savings and significantly increases the network longevity (Sections 7.5 and 7.7).

• Each module has been evaluated with a number of experiments in Sections 7.3, 7.4 and 7.6,

and we have shown that each one demonstrates significant performance gains. Depending

on the application requirements or user preferences, each module can be enabled or disabled

accordingly providing their own performance contribution.
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Chapter 8

Conclusions

Technological advances in embedded systems, sensor components and low power wireless

communication units have made it feasible to produce small-scale Wireless Sensor Devices that

can be utilized for the development and deployment of Wireless Sensor Networks for monitoring

the environment at a high fidelity. Monitoring applications normally incorporates a query execu-

tion process that enables users to disseminate queries to the network and acquire the results. Query

processing in WSNs is typically performed on the premise of a query routing tree, which provides

each sensor with a path over which query answers are propagated to a centralized querying node.

Our study revealed that predominant data acquisition frameworks suffer from serious data recep-

tion/transmission inefficiencies due to the unbalanced workload incurred on sensor nodes as well

as the ineffective construction of this query routing tree. This leads to increased energy waste on

each sensor as well as degrades the overall energy performance of the network.

This dissertation advocates an alternative framework design that looks upon the network char-

acteristics as well as the intrinsic properties of the data dissemination/acquisition process. In

this context, three novel techniques were developed with opportunities of applications that go be-

yond the current problem settings (e.g., smartphone networks [71], People-centric sensing [93]).
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Through our experimental evaluation, we have shown that KSpot+ can provide significant energy

reductions and increase the longevity of the wireless sensor network.

We conclude by summarizing the benefits of our proposed KSpot+ framework and mention

some opportunities for future work.

8.1 KSpot+: A Network-aware Framework for Energy-efficient WSNs

KSpot+ presents a framework for optimizing the query execution and data acquisition pro-

cesses by incorporating query semantics and the intrinsic properties of the wireless sensor network

in order to improve energy-efficiency as follows:

• Structural inefficiencies are omni-present due to the ad hoc construction nature of the initial

query routing tree. The KSpot+ Tree Balancing Module minimizes these inefficiencies by

reconstructing the query routing tree in a balanced manner, which reduces data collisions

during communication.

• The unbalanced assignment of the query workload amongst sensor nodes incurred by the

ad hoc construction of the query routing tree leads to data reception/transmission inefficien-

cies that severely degrade the energy performance of the network. The KSpot+ Workload

Balancing Module alleviates this problem by profiling recent data acquisition activity, iden-

tifying the bottlenecks of the network through an in-network execution of the Critical Path

Method, and then dynamically adapts the waking windows of each sensor node.

• Efficiently monitoring the most important events is often more important than monitoring

all the network. The KSpot+ Query Processing Module specifically addresses this problem

by incorporating top-k query execution in the current stack. This enables minimization of
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both the size and number of packets that are transmitted through the network leading to

massive energy savings.

• Organizing the sensor nodes into logical clusters, is essential in the cases where monitoring

of specific areas is required. The current design incorporates logical grouping that enables

sensor nodes to locally prune results by predicting their maximum values.

• Since Wireless Sensor Networks are typically prone to imminent node failures (triggered

from temporary power-downs, malfunctions, environmental causes etc), maintaining is ex-

tremely vital for applications. In our experiments, we have shown that the KSpot+ frame-

work is resilient to such failures and therefore is well suited for the aforementioned scenar-

ios.

This dissertation builds the above ideas into a practical data-centric framework for WSNs.

Further, it integrates top-k execution within the current query processing stack, develops prac-

tical algorithms for balancing both the structure and workload of the wireless sensor network,

provides prototype implementations of the proposed designs, and testbed evaluations that demon-

strate significant energy reductions in comparison with traditional data acquisition frameworks.

Additionally, its modular design ensures a high degree of openness and usability as well as combi-

nation with other protocols. Thus, we believe that this work makes a strong case for an alternative

framework design tailored specifically for energy-efficient wireless sensor networks.

8.2 Lessons Learned

The most important conclusion drawn from this dissertation is that incorporating network

and query semantics into the query dissemination and data acquisition process can significantly

reduce the overall energy consumption of the network. However, the development of the prototype
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implementation has provided us with valuable experience on various aspects concerning WSN

deployments and additionally enabled us to deduct a number of conclusions that can aid future

researches that will tackle similar topics. We present some of the major lessons learned below:

• Simulation vs. Real Deployment:During the early stages of our work, we developed a

number of simulators for the evaluation of each of KSpot+ modules independently. Al-

though, the results we obtained from this approach were highly correlated with the results

of the prototype implementation, the latter presented a more thorough assessment of all pa-

rameters that are involved during the operation of a WSN deployment (e.g., physical layer,

storage layer, etc), which were not considered in the simulations.

• Significant amount of time required for real experiments: As presented in the experi-

mental methodology in Section 7.1, the time required for experimenting with network sizes

over 50 nodes was massive (i.e., several hours for the Intel54 dataset and even days for the

GDI140 and Intel540 dataset).

• Protocols are tightly coupled to the Operating System:The protocols/algorithms pre-

sented in this dissertation were developed on top of the TinyOS operating system, which

currently supports the largest amount of heterogeneous sensor nodes [61, 42, 25]. This in-

volved learning the architecture of the operating system, a new programming language and

in the case of deployment on different sensor nodes the specific component APIs for each

sensor node (if they were different), which was very time consuming.

• Temporal coherence of sensor results:In order for a temporal coherence filter (e.g., the

Query Processing Module’s MINT temporal coherence filter) to work effectively, the sensor

readings must follow some distribution (e.g., uniform distribution). This is typical for sensor

readings like temperature and humidity where values do not change significantly during
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subsequent time intervals. However, this is not the case for other sensor readings like sound-

level, whose values may continuously fluctuate with high standard deviation. Therefore,

application developers must carefully examine the required sensor readings and tune the

parameters of KSpot+ (e.g., gamma descriptors) accordingly.

8.3 Remaining Challenges and Future Work

The systems in this dissertation address the major challenges of energy-efficient data manage-

ment in wireless sensor networks. Below, we enumerate a few challenging issues that we believe

the KSpot+ can be extended to support.

As it was discussed in Section 4.4, the Workload Balancing Module may suffer from frequent

reconstructions of the critical path value and its energy-costly dissemination to all the sensor nodes

of the network. This occurs when the application executes certain types of queries like event-based

queries or queries with multi-tuple results of arbitrary size (e.g., filter queries), which cause the

workload incurred on each sensor node to change rapidly between subsequent epochs. One way

to alleviate this problem is to dynamically configure an additional parameter (like thea, b andc

parameters that offset the costs of processing, inaccurate clock and collisions at the MAC layer)

in order to increase the waking window of each sensor node. Finding a golden ratio w.r.t energy

consumption between reconstructing the critical path value or extending the waking window of

each sensor device is subject to further investigation.

In the Tree Balancing Module of the KSpot+ framework we have assumed that the workload

of a parent sensor node is directly proportional to the number of its child nodes. However, as it

was discussed in Section 5.4, there are queries (e.g., filter queries, event-based queries) that may

impose significantly different workloads on each sensor node. In the future, we plan to extend

the definition of the optimal branching factor in order to take into account additional parameters
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(e.g., the workload of each sensor node rather than the global number of sensor nodes (N ) and the

depth (d) of the query routing tree). Furthermore, in Chapter 2 we have studied research works

that perform balancing based on query and not network semantics. A thorough study of how such

techniques can be incorporated in the Tree Balancing Module and their benefits compared to the

current implementation needs to be investigated. Finally, an important aspect that considerably

affects the network performance is the actual deployment (i.e., placement) of the sensor nodes.

Many research works have tackled this problem and particularly interesting are the ones that in-

corporate multiple objectives (e.g., energy efficiency, coverage, connectivity, fault tolerance, etc.)

rather than the single objective of energy efficiency that is considered in this dissertation. Incorpo-

rating multi-objective optimization algorithms into KSpot+ could significantly increase the QoS

provided by the framework.

The Query Processing Module currently supports a number of different query types and ag-

gregate functions as already described in Section 3.3. However, in the future, or depending on

the application requirements, the need for new queries and aggregate functions may arise. Aggre-

gate functions can be easily added into the current version of the implementation by following a

procedure that includes: i) publishing the aggregate function to the catalog; ii) developing a nesC

module that implements the aggregate functionality; and iii) updating the Parser implementation

in order to translate the SQL text format in the appropriate query format. On the other hand, new

types of queries and query operators will require major updates to the implementation, including

the development of new Parser, Data Listener and Communication modules, both at the server as

well as the client-side components of KSpot+. Increasing the expandability of our framework is

an important aspect that we will investigate in the future.

The algorithms presented within this dissertation are founded on the assumption that the rout-

ing topology is stationary (i.e., sensor nodes do not change locations) and this can only be affected
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by node failures. However, recent advances in distributed robotics and low power embedded sys-

tems have enabled a new class of Wireless Sensor Networks that have the ability to move, named

Mobile Sensor Networks (MSNs). MSNs can be used in new application domains like land, ocean

and air exploration and monitoring, automobile applications and a wide range of other scenar-

ios. The absence of a stationary network infrastructure in these settings, makes continuous data

acquisition to some sink point a non-intuitive task as it results in a dynamic query routing tree

that continuously adapts. How will data acquisition be established in such environments is still an

open issue.

Furthermore, since the operation of MSNs is severely hampered by the fact that failures are

omnipresent, fault-tolerance schemes become of prime importance. In these settings, data acqui-

sition needs to be succeeded by in-network storage, such that these events can later be retrieved by

the user. We have recently began to study in [8] how we can extend the current framework with

fault tolerance mechanisms that will ensure the continuous operation of data acquisition even in

these harsh environments.

Another, important parameter that we have started to investigate in [13] is the energy cost

associated with retrieving the locally stored sensor results in an efficient manner. While KSpot+

assumes that the cost of retrieving any set of stored results from the flash-based storage is identical,

we have shown in [13] that this is not the case. More specifically, we have developed an algorithm,

which is an efficient external sorting algorithm tailored specifically for flash-based devices that we

plan to incorporate into the KSpot+ framework.

Finally, our work was focused solely on sensor networks. However, the ideas presented in this

dissertation can be applied to other wireless devices such as smartphone devices. Communication

between these devices so far has been achieved by Internet-enabled access points (e.g., WiFi, 3G).

However, it has not yet been proven that this is the most energy-efficient manner to forward results
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between devices. We plan to investigate how the energy-efficient algorithms presented in this

work can be ported onto these devices in order to form energy-efficient, multi-hop communication

protocols that can become the foundation of future energy-efficient applications (e.g., People-

centric Sensing [23, 22]).
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Appendix A

Our experimental evaluation utilizes the following real and realistic datasets in our trace-driven

experiments in order simulate small-scale, medium-scale and large-scale wireless sensor networks.

Great Duck Island (GDI14) Dataset

This is a real dataset from the habitat monitoring project deployed in 2002 on the Great Duck

Island which is 15km off the coast of Maine [121], USA. We utilize readings from the 14 sensors

that had the largest amount of local readings. The GDI dataset includes readings such as: light,

temperature, thermopile, thermistor, humidity and voltage.

The GDI dataset has the following properties:

Table 8-1: GDI14 Dataset Information

Parameter Value

Dataset Type Real
Number of Sensors (N ) 14
Number of Attributes (m) 14
Epoch duration (e) 30 seconds
Average Depth (d) of T 3

The GDI14 dataset includes the following attributes/readings for each sensor node:
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Table 8-2: GDI14 Dataset Attributes

Attribute Description Data Type

packettime transmitted packet date and time Date/Time
nodeid the node identifier Integer
light raw light reading Integer
tempraw temperature reading Integer
thermopileraw thermopile reading Integer
thermistorraw thermistor reading Integer
humidity raw humidity reading Integer
intersemapressurereading intersema pressure reading Integer
intersemapressureraw intersema pressure raw reading Integer
intersematempreading intersema temperature reading Integer
intersematempraw intersema temperature raw readingInteger
voltagereading voltage reading Integer
seqno sequence/epoch number Integer
crc cyclic redundancy check Integer

Washington State Climate (AtmoMon32)

This is a real dataset of atmospheric data collected at 32 sensors in the Washington and Oregon

states, by the Department of Atmospheric Sciences at the University of Washington [43]. More

specifically, each of the 32 sensors maintains the average temperature and wind-speed on an hourly

basis for 208 days between June 2003 and June 2004 (i.e., 4990 time moments).

The AtmoMon32 dataset has the following properties:

Table 8-3: AtmoMon32 Dataset Information

Parameter Value

Dataset Type Real
Number of Sensors (N ) 32
Number of Attributes (m) 9
Epoch duration (e) 1 hour
Average Depth (d) of T 5

The AtmoMon32 dataset includes the following attributes/readings for each sensor node:
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Table 8-4: AtmoMon32 Dataset Attributes

Attribute Description Data Type

packettime transmitted packet date and timeDate/Time
nodeid the node identifier Integer
light raw light reading Integer
temperature temperature reading Integer
air speed air speed reading Integer
air temp air temperature reading Integer
humidity raw humidity reading Integer
pressureraw barometric pressure reading Integer
cumulativerain cumulative rain reading Integer

Intel Research Labs (Intel54) Dataset

This is a real dataset that is collected from 58 sensors deployed at the premises of the Intel

Research in Berkeley [64] between February 28th and April 5th, 2004. The sensors utilized in the

deployment were equipped with weather boards and collected time-stamped topology information

along with humidity, temperature, light and voltage values once every 31 seconds (i.e., the epoch).

The dataset includes 2.3 million readings collected from these sensors. We use readings from the

54 sensors that had the largest amount of local readings since some of them had many missing

values. More specifically, we utilize the real coordinates of the 54 sensors. The depth of the initial

query routing tree constructed with the FHF approach is 14.

The Intel54 dataset has the following properties:

Table 8-5: Intel54 Dataset Information

Parameter Value

Dataset Type Real
Number of Sensors (N ) 54
Number of Attributes (m) 8
Epoch duration (e) 31 seconds
Average Depth (d) of T 14Pan
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The Intel54 dataset includes the following attributes/readings for each sensor node:

Table 8-6: Intel54 Dataset Attributes

Attribute Description Data Type

date date of transmitted packet Date/Time
time time of transmitted packet Text
epoch epoch number Integer
moteid mote/node identifier Integer
temperature temperature reading Integer
humidity humidity reading Integer
light light reading Integer
voltage voltage reading Integer

Great Duck Island (GDI140)

In order to evaluate our approach on a medium-scale sensor network we synthetically derive a

sensor network composed of 140 nodes that follows the same distribution with the GDI14 dataset.

The average depth of the initial query routing tree constructed with the FHF approach is 24.

The GDI140 dataset has the following properties:

Table 8-7: GDI140 Dataset Information

Parameter Value

Dataset Type Realistic
Number of Sensors (N ) 140
Number of Attributes (m) 14
Epoch duration (e) 30 seconds
Average Depth (d) of T 24

Intel Research Berkeley (Intel540)

In order to evaluate our approach on a large-scale sensor network we synthetically derive a

540-node network based on the Intel54 dataset. The distribution of the dataset follows again the
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same distribution with the Intel54 dataset. The average depth of the initial query routing tree

constructed with the FHF approach is 22.

The Intel540 dataset has the following properties:

Table 8-8: Intel540 Dataset Information

Parameter Value

Dataset Type Realistic
Number of Sensors (N ) 540
Number of Attributes (m) 8
Epoch duration (e) 31 seconds
Average Depth (d) of T 22

Pan
ay

iot
is 

G. A
nd

reo
u




