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Περίληψη 
Η μελέτη της διατριβής στοχεύει να συνεισφέρει σημαντικά στη μελέτη της ανθρώπινης 

προσοχής, και πιο συγκεκριμένα της οπτικής επιλεκτικής προσοχής κυρίως μέσω της 

δημιουργίας ενός γνωστικού υπολογιστικού μοντέλου βασιζόμενο σε πληροφορία και γνώση που 

πηγάζει μέσα από μια διαθεματική προσέγγιση.  

Συγκεκριμένα, οι επιστημονικές συνεισφορές της εργασίας προέκυψαν μέσα από τη μελέτη 

κατάλληλων προσομοιώσεων τριών σημαντικών πειραματικών μελετών. Πιο συγκεκριμένα, το 

υπολογιστικό μοντέλο προσέφερε λύσεις και επεξηγητικές υποθέσεις στις διάφορες διαφωνίες και 

αντιδράσεις που προκάλεσαν τα πειράματα αυτά στην επιστημονική κοινότητα βασιζόμενες στα 

αποτελέσματα προσομοίωσης. Το υπολογιστικό μοντέλο αναπτύχθηκε συνδυάζοντας τεχνικές 

συμβολικής προσέγγισης οι οποίες βασίζονται σε αλγόριθμους υψηλού επιπέδου με  

υποσυμβολικές τεχνικές οι οποίες χρησιμοποιούν πιο απλουστευμένα αριθμητικά μοντέλα. 

Επομένως το υπολογιστικό μοντέλο έχει την δυνατότητα να δέσει αποτελεσματικά τις 

αλληλοεπιδράσεις στο επίπεδο  ομάδας νευρώνων με συμπεριφοριστικά δεδομένα, το οποίο δίνει 

ένα σημαντικό πλεονέκτημα στην προσπάθεια δημιουργίας θεωρητικού υπόβαθρου επεξήγησης 

αναφορικά με το πώς προκύψαν τα τελευταία.  

Επιπρόσθετα, μέσα στα πλαίσια της διατριβής αυτής, νέες πειραματικές μελέτες διεκπεραιώθηκαν 

σε συνεργασία με το εργαστήριο της πειραματικής ψυχολογίας του Πανεπιστημίου Κύπρου ούτως 

ώστε να επεκταθεί η γνώση μας όσον αφορά την συμπεριφοριστική αντίληψη της προσοχής καθώς 

επίσης για να προσφέρουν καινούργια δεδομένα για σκοπούς σύγκρισης και βελτίωσης του 

μοντέλου. Ακόμη, η προσπάθεια δημιουργίας ενός ρεαλιστικού υπολογιστικού μοντέλου, σε 

συνδυασμό με τις επιτυχείς προσομοιώσεις των σημαντικών αυτών πειραμάτων, δημιούργησαν μια 

αξιόλογη βάση για μετέπειτα κοινωνικές και ιατρικές εφαρμογές αλλά και εφαρμογές σε θέματα 

που αφορούν την υπολογιστική νοημοσύνη.    

Η δομή της μελέτης χωρίζεται σε τέσσερα κυρίως μέρη. Στο πρώτο μέρος δίνεται μια εισαγωγή για 

τον ρόλο της πληροφορικής στην ανάπτυξη της γνωστικής επιστήμης καθώς επίσης και ένα 

εισαγωγικό υπόβαθρο για την ανθρώπινη προσοχή από ψυχολογική και νευροφυσιολογική σκοπιά 

(Κεφάλαια 1, 2 και 3).  Το δεύτερο μέρος αφιερώνεται σε μια συγκριτική μελέτη μεταξύ διάφορων 

υπολογιστικών μοντέλων υπολογιστικής προσοχής τα οποία είχαν σημαντική επίδραση στον τομέα 

αυτό και κυρίως στις διάφορες ιδέες που είχα. Στο τρίτο μέρος παρουσιάζεται μια λεπτομερείς 

μαθηματική ανάλυση του μαθηματικού/υπολογιστικού μοντέλου που ανέπτυξα, καθώς και οι 

διάφορες εφαρμογές του με κατάλληλες προσομοιώσεις. Τέλος, στο τέταρτο μέρος, οι διάφορες 

επιστημονικές συνεισφορές που προέκυψαν από αυτή τη μελέτη συνοψίζονται, και αναπτύσσονται 

ορισμένες νέες ιδέες για την επέκταση και συνέχιση της μελέτης.  
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Abstract 
The main goal of this research is to collect and integrate information and knowledge from different 

disciplines into a new computational model that will be able to provide contributions in the 

research of “visual selective attention”.  

The contributions derived from this thesis, have been mostly associated with the computational 

simulations of three behavioral experiments related with visual selective attention that initiated 

discussions and controversies in the scientific literature regarding their underlying explanations. 

These are the attentional blink phenomenon by Raymont, Shapiro and Arnell (1992), the 

behavioral experiment that inspired the perceptual load theory by Lavie (1995) and the 

experiment that initiated a controversial debate on the relation between attention and 

consciousness by Naccache, Blandin and Dehaene (2002). In accordance, guided by the simulation 

results, a theoretical framework has been developed and presented on how the behavioral responses 

for each of the corresponding experiments were obtained, based on low level neural interactions, 

something that has not been clearly presented in the literature so far. The methodology behind the 

implementation is based on a new approach that combines the detail representations required in a 

connectionists spiking neural network model with more abstract concepts from cognitive 

psychology. As a result, the computational model effectively links the low level neural interactions 

with behavioral data, thus providing concrete explanations on how the latter were obtained.  

Furthermore, within the scopes of this thesis, new experimental tasks related with the simulated 

experiments have been carried out in the Experimental Psychology Lab of the University of Cyprus 

in an attempt to extend our knowledge about the behavioral aspects of attention as well as to 

provide data that are necessary for comparison and supplementary improvement of the model. 

Finally, the biologically inspired structure of the model, together with successful predictions and 

simulations of the corresponding behavioral experiments have created a concrete backbone for 

future utilization of the model in social, medical and computational intelligence applications.  

The structure of this thesis is divided into four main parts. In the first part, introductory information 

regarding the role of computer science in cognitive modeling is given, along with some background 

information related to visual selective attention. The second part is dedicated to a comparative 

literature review on relevant computational models of prevalent scientific impact in the field.  

In the third part a detailed description of the proposed model is presented along with the simulation 

results of the three behavioral experiments. Finally, in the fourth part, the contributions and 

conclusions of the present study are summarized and the possible research paths and applications 

that can be effectively linked for future work with this study are explained. 
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1. Introduction 

1.1 The human brain from the computer science perspective 
The human brain is one of the most extraordinary and complex creations in the universe. It is 

estimated to consist of by about 50 to 100 billion neurons that are interconnected and pass signals 

to each other through around 100 trillion synaptic connections. This highly non-linear and complex 

manner of neural communication in the brain provides us with the fascinating experience of human 

life as we know it. Our understanding of the world, and our ability to understand it the way we do, 

is based on the proper control and manipulation of data throughout the brain. 

One of the fundamental functions of the human brain is to control the massive amount of 

information coming from external stimulations and received by the various sensory systems (e.g. 

mechanoreceptors, photoreceptors, chemoreceptor, thermo receptors) and to output the 

corresponding relevant responses that provides us with the ability to think, talk and generally to 

experience human life.  

One can think of the brain as the closest to perfect information system known, therefore it has 

traditionally been the source of inspiration in the field of computer science. Artificial intelligence 

which is defined as the human-created, non-biological intelligence and more precisely 

computational intelligence (CI) which is the intelligence that emerges through some form of 

computation is today a major branch of computer science.  

Studying the brain from the computer scientists’ perspective has always been a great challenge, and 

is usually divided under two main paths within the CI field. On the one hand, to understand and 

mimic in a sense the functionality of the human brain has triggered the design and implementation 

of artificial intelligent systems such as robotics, expert systems etc. On the other hand, the 

understanding of certain brain functions can be facilitated with the implementation of relevant 

cognitive computational models that use techniques that are often drawn from the field of CI. 

Nevertheless, it is very important to have many channels of communication between these two 

paths, for the exchange of new information and knowledge for enhancing their independent 

evolution (Figure 1-1). 
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Figure 1-1 The role of computer science in the study of the human brain. 

 

CI is usually defined with emphasis on the specific path that is involved with. For instance, the 

central goal from the engineering point of view is to specify methods and to provide the necessary 

tools to build intelligence.  

Although it is not always necessary to perfectly mimic human behavior in the attempt to design 

computational intelligence systems, the main focus of this direction of research is usually human-

centered. Consequently the main objective of the engineering perspective of CI is to develop and 

use techniques and algorithms mostly inspired from the human brain, for solving difficult problems 

that will help and improve our lives as humans or even to create cognitive systems that could 

compete and perform better than humans. In some restricted domains, such as pattern recognition, 

processing of large amounts of numerical information, classification, high precision control, 

cognition enhancement, brain-computer interfacing for human assistance, and many other tasks that 

generally need to process large sets of data, CI has made impressive progress.   

For a machine however, to demonstrate intelligent behavior comparable to that of humans is a 

target still far from reality.  Despite the great engineering progress in CI, to design and build 

artificial systems capable of solving higher-level cognitive functions, such as the understanding of 

language, reasoning, recognition, problem solving and generally to exhibit some sort of intelligent 

behavior is still in primitive stages. This is perhaps one of the ultimate goals of the scientific 

perspective of CI, which is focused the understanding of the basic principles that could develop 

intelligent behavior, in natural or artificial systems.  This direction of research can be seen under 

the umbrella of cognitive science and more explicitly under the field of computational neuroscience. 

One of the fundamental techniques to explore and understand human cognition is to follow a 

computational modeling approach with simulations of different mental tasks. In this direction of 
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research however, it is very important to obtain information related to the internal functionality of 

the designed model. Therefore, it is necessary to “open” the “black box” and pay attention to the 

internal details, which is a typical characteristic of the “white box” models.  

 
Figure 1-2 The schematic representation of a “white – box” 
 

For the development of these types of cognitive models, it is necessary to collect information that 

explains, on a theoretical basis, the possible connections and interactions of the various 

components that comprise the system under development. Following that, the technological and 

research advances especially from the fields of computer science will provide the appropriate 

environment for their implementation.  

1.2 Cognitive modeling 
Modeling of cognitive processes has always been an interesting challenge for the scientific 

community, mostly because it aims in answering questions that belong to more theoretical 

disciplines like cognitive psychology, and in explaining neurophysiological findings. Cognitive 

modeling is a very essential tool of cognitive science nowadays and this can be proved by the 

rapidly increasing number of articles appearing in journals of Cognitive Science that involve 

cognitive modeling. In addition, cognitive modeling approaches are beginning to spread into other 

fields such as clinical psychology, medicine, economics, and many others.  

Mathematical/computational modeling can help to comprehend the functional organization of a 

particular cognitive phenomenon since the development of explicit mathematical descriptions of 

the various processes that take place in the brain, require the investigation of fine details that 

cannot be understood purely on the basis of behavioral and neurophysiological experiments.  For 
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example, one possible way to study a certain function of the human brain can be done through 

appropriate measurements of behavioral responses while subjects perform a relevant experimental 

task. Another way would be through neuroimaging techniques that locate areas of activity in the 

brain during the execution of a specific task and observe their connectivity in relation to a cognitive 

function, or through single cell recording techniques that offer significant information about the 

firing of individual or groups of neurons. Despite the useful amount of information received, none 

of these experiments on their own can fully explain how the specific cognitive function operates in 

the brain, unless the links between the two levels of experimentation are completely understood. 

This connection can be effectively examined through the implementation of specific and plausible 

computational models capable of providing a platform of communication between the different 

sources of information.  

1.2.1 Methods of computational-cognitive modeling 

There are two basic approaches for developing cognitive models. These involve the symbolic and 

sub-symbolic modeling. Symbolic modeling operates by representing abstract mental functions into 

symbols. This approach has evolved from the computer science paradigms that use technologies of 

knowledge-based systems and particularly systems that are based on logic rules according to 

methods and techniques from the field of classical artificial intelligence. The sub-symbolic 

approach includes the connectionists/neural network models that follow the neural and associative 

properties of the human brain. Connectionism relies on the idea that the human brain is composed 

of simple heavily interconnected nodes and that the whole operation of the system is mainly based 

on the connections between the nodes. Artificial neural network models are perhaps the closest 

mathematical implementations of this approach.  

Neural network models, in terms of cognitive modeling are mostly used to describe the actual 

neural substrates and neural interconnections that implement different cognitive processes. 

Therefore, these models are usually evaluated by comparing their results with the neural activity 

observed in multiple cell recording studies. As a consequence, neural network models typically 

provide predictions related to the coupled interactions and the low level neural mechanisms that are 

necessary to create the observed firing patterns. However, the extensive level of analysis required 

to build neural models, and especially their complicated and numerous interconnections, makes 

them too difficult as modeling tools to address behavioral cognitive tasks. Alternatively, symbolic 

modeling can provide an abstract level of analysis for predictions of complex cognitive tasks and 

multiple measures of behavior, yet, avoiding the details on the low level neural interactions. One 

can see that both ways of modeling have their own important contributions based on what they try 

to predict and thus are equally needed in the field of cognitive science.  
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In line with the latter proposition, an innovation of this research is the development of a hybrid 

cognitive model that uses a combination of symbolic and sub-symbolic structures and therefore 

offers novel research potentials and the opportunity to contribute from a different perspective in the 

field if cognitive science (Figure 1-3). 

 

 
Figure 1-3The hybrid configuration of the proposed computational model 
 

Because of its nature, the model is able to simulate important behavioral experiments and at the 

same time to provide explanations related to the underlying low level neural mechanisms, since its 

internal functionality is designed according to the most recent neuroscientific findings.   

1.3 Cognitive modeling of visual selective attention- motivations 
In order to effectively investigate the complicated nature of the human brain it is suggested to 

concentrate independently on specific cognitive subsystems that contribute in the creation of 

human cognition. Accordingly, as noted in the abstract, the focus of this research is placed on the 

cognitive modeling of the system that is responsible for the proper control and filtering of the 

massive amount of information that enters into the human brain and it is defined as “human 

attention”. More specifically, after a preliminary study on human attention at large, I concentrated 

in the direction of visual selective attention motivated by the applications and results that such 

studies could have.  

A comprehensive example of the role of human attention in general, can be seen by thinking that 

for every instant of conscious life, each person receives millions of external stimulations from 

his/her sensory systems. In fact, in each eye there are about 125 million photoreceptors that are 

estimated to provide information down the optic nerve in the range of 108 – 109 bits per second. 

This amount of information exceeds by far what the brain is capable to fully process and 
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consciously experience and therefore, the role of visual selective attention is to maintain the 

stability in the brain by biasing only the relevant and essential information for further processing in 

the visual cortex, while at the same time to discard the redundant stimulations.  

Indeed, if every stimulus was allowed to pass into perception, one would have been soon overflown 

and be in constant distraction. Adding to that the internal thoughts, a person would end up in a 

totally unstable state. Rightfully then, selective attention is defined as the main control mechanism, 

necessary for keeping the brain system in stability. 

How is this limited amount of information categorized as important and selected through simple 

neural interactions? How are our internal thoughts and previous experiences coupled to the overall 

process of attention? Or even, how is the attentional mechanism linked to conscious experience and 

human behavior? These are all challenging questions that stimulated and motivated the progression 

of the current research study. The most fascinating and inspiring thought however, is that, in my 

opinion, a complete understanding of how cortical neural activity is manipulated by selective 

attention will offer the basic foundations to realize how intelligent behavior is created.  

In addition, selective attention has important behavioral implications in our everyday life and thus, 

a deeper understanding of its role could benefit the general public. For example, failure to sustain 

selective attention while driving to the road, when a distracting stimulus appears (e.g., an attractive 

advertisement board) may cause the driver to induce an accident. If however, attention is too 

focused and cannot be flexibly disengaged from the main stimulus or task, the driver may not 

perceive and react to the sudden appearance of danger (e.g., a car failing to obey a stop signal, or a 

human crossing the road).  

Furthermore, deficits in the selective attention mechanism have been linked to fundamental brain 

disorders. For instance, the failure to inhibit distracting information in order to remain focused on a 

task is considered by many psychologists as the underlying cause of a disorder known as Attention-

Deficit Hyperactivity Disorder (ADHD), which is often associated with adverse life outcomes 

(Barkley, 1997). Yet, perhaps the most important brain deficit directly connected with selective 

attention is schizophrenia. Abnormalities of attention have long been considered as core features of 

the cognitive dysfunction associated with schizophrenia. It has been shown by many studies that 

schizophrenics cannot modulate attention and they maintain consistently high levels of arousal 

during selective attentional tasks (Mirsky and Duncan, 1986; Laurens et al., 2005).  

Finally, computational modeling of visual selective attention, can offer a twofold channel of 

communication between cognitive science and engineering intelligent systems. The field of 

“intelligent systems” can significantly profit from any newly acquired knowledge that cognitive 

modeling brings to surface, since combined with knowledge from computer science, can provide a 

good basis for CI applications. Robots and other engineered systems that mimic biological 

capabilities as well as brain-computer interfaces are some of the potential areas of applications that 
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can benefit from this twofold connection. At the same time, an improvement of the intelligent 

systems algorithms brings more sophisticated tools to study the brain (Figure 1-4). 

 
Figure 1-4 Computational modeling as a tool for better understanding of the attentional mechanism as well as to 
enhance the inspiration of new computational intelligence algorithms. 
 

In the following section a description of the procedure and the different steps that have been 

followed during the design of the computational model is presented. 

1.3.1 Approach to cognitive modeling of visual selective attention 

As hinted earlier, visual selective attention is studied under the multidisciplinary field of cognitive 

science. Understanding the role of selective attention in intelligent behavior could be facilitated by 

looking at attention from different angles and areas of study.  

In fact, a lot of information about the behavioral aspect of selective attention is coming from the 

field of cognitive/experimental psychology, in which the primary research methods involve 

experimentation with human participants. In these experiments, the measurement of behavioral 

response time to a specific stimuli, can give a lot of information and help to understand how the 

respective stimuli are processed.  

In addition, the direct observations of the detailed mechanisms of the system that create intelligent 

behavior are equally significant. These observations are closely tied to the field of cognitive 

neuroscience and usually provide considerable information related to the low level mechanisms and 

the connectivity between different parts of the brain system (Kastner & Ungerleider, 2000). 

Similarly, with cognitive psychology, the primary research method is still based on controlled 

experiments, with the difference being that the emphasis is given on observations of  the neural 

activity at different levels in the brain of humans (or animals) while performing these experiments. 

Therefore, to cope with the specific goals that are set, and to investigate the areas of visual 

selective attention that are somehow controversial, it is necessary to combine knowledge and 

methods from the fields of traditional cognitive/experimental psychology, cognitive neuroscience, 

and computer science. 
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With all these in mind, the first step in the process of implementing the computational model was 

to create a collaborative network between scientists that are involved with these disciplines and set 

the specific goals that the computational model will focus on. The second step was to take from the 

involved disciplines an abstract theoretical framework, and reformulate its assumptions into a 

simple mathematical or computer language description. However, often the conceptual theories are 

not sufficient enough to build the necessary foundations for a complete model. Thus, in the third 

step it is typical to make some assumptions that will allow a more detail and proper 

implementation. The fourth step was to configure several unknown parameters of the model, 

based on observed data, and evaluate its performance with existing experimental studies. It is 

highlighted that in this stage is important to examine predictions from the simulations and design 

new experiments for their proper evaluation.  Finally, the fifth and last step is to go back and 

reformulate the theoretical framework in the light of the feedback obtained from any new 

experimental results. This is a never-ending iterative loop between the involved disciplines, since 

new experimental findings are continuously emerging and thus putting new challenges to previous 

models while predictions from cognitive models bring the need for performing new and different 

experiments. This circular process is in fact the mechanism that produces evolution in cognitive 

science and makes cognitive modeling more powerful over time (Figure 1-5).  

 
Figure 1-5 The multi-disciplinary approach for cognitive modeling of visual selective attention. 

 

Cognitive models however, are constructed as simple representations of a cognitive system that 

only capture the essentials or a fraction of its complete operation. A sufficient amount of 

experimental data will always prove that a model is not completely true; yet the question is not to 

replicate exactly the human brain, but rather to design models that will give as close as possible 

representations of the cognitive system that is studied.  

Along the lines explained in this section for a more effective and methodical research, an 

introduction to the basic concepts related with visual selective attention from the viewpoint of 

cognitive psychology and neuroscience is presented in the following two chapters.  
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2. Theoretical background on human 

attention 

A commonly used statement for attention has been originally stated by William James in 1890, 

who said: “Everyone knows what attention is. It is the taking possession by the mind, in clear and 

vivid form, of one out of what seem several simultaneously possible objects or trains of thought.” 

(James, 1890).  

More than a hundred years later, and with a large number of distinguished scientists dedicating a 

lot of effort in the study of attention, it is more appropriate now to say that still no one really knows 

exactly what the complete functional role of attention is, or how the underlying neural mechanisms 

allow attention to interact with the sensory information. Evidently, the primary role of attention is 

to sustain the focus of cognitive resources on a specific source of information, while filtering or 

ignoring any unrelated extraneous stimulation. At the same time however, attention is believed to 

be a precursor to many other neurological/cognitive functions such as working memory (Fukuda & 

Vogel, 2009), learning (Grossberg, 1999) and consciousness (Koch & Tsuchiya, 2006) and as a 

consequence, there are several contradictions on theoretical concepts behind the overall character 

of attention in primates. While many questions have been answered regarding the underlying neural 

mechanisms behind the attentional interactions on external and internal stimulations, new and more 

complicated issues are continuously coming up. For example, the functioning role of attention 

implies that there is an internal mechanism able to categorize stimulations based on their 

importance for “survival” at every instance. Moreover this mechanism is essential for the 

development of the learning mechanism and the optimum organization of memory. For instance, if 

it were not possible to distinguish an important stimulus from the rest, a newborn would probably 

not be able to begin the learning process and evolve. Or even without a mechanism that emphasizes 

the neural activity of a certain stimulus, it would probably not be possible to successfully register 

and store the characteristics of that stimulus in long term memory and to be perceptually aware of 

its existence.  These, and many more, are some ideas that highlight the complicated role of 

attention in human cognition and that still have not been clearly understood. Therefore many 

specialized aspects of selective attention are still in the need of novel research. 

In the following sections of this chapter, some basic concepts of human attention are presented, 

followed by a more concentrated analysis on selective attention.   
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2.1 The attentional system 
Attention according to Posner and Dehaene (1994) can be described as “an arousal or an alerting 

system, an executive control system, or a system for orienting”. 

From the Darwinian perspective, an increase in the arousal is necessary for survival. For example, 

higher levels of arousal or alertness, can allow an animal to hear and locate easier a threat, or a 

mother to protect her child. The executive control mechanism is essential for human behavior for 

resolving conflicts, error detection or task switching, while the orienting aspect of attention refers 

to the mechanism that turns our sensory receptors towards one set of stimuli and away from 

another. 

One characteristic of the orienting process is that it can be distinguished to overt and covert 

changes. Overt orienting can be described as the act of directing sense organs, like for example 

the head and eye movements, towards a stimulus source. Covert orienting is the act of mentally 

focusing on one of several sensory stimuli. One typical example of covert orienting is the case in 

which we are looking at a person that we are having a conversation, yet our attention is focused on 

a different source. Covert and overt shifts of attention were first defined by Helmholtz (1989).   

Covert attention orienting is usually studied separately from overt orienting behavior, although 

some studies suggest that the mechanisms of overt and covert attention may not be separate. For 

instance, the pre-motor theory of attention, initially proposed by Rizzolatti et al. (1994), suggested 

that these attentional systems are supported by the same neuronal mechanisms. On the other hand, 

more recent and detailed examination of the behavioral and physiological data indicates that 

although the two systems probably share some neural mechanisms, they are not identical (Corbetta 

& Shulman, 2002).  

Covert and overt shifts of attention are usually categorized in the scientific literature, in space-

based and object-based attention. In the space-based mode, locations in the visual field are 

selected while in the object-based mode, organized symbols of visual information are selected 

independently from their location in space. Evidence for spatial selection comes mostly from 

spatial cueing studies (e.g., Posner, 1980) in which the shift of attention in space was manipulated 

by cues that predispose the targets location. Evidence for object-based selection comes from a 

variety of different experimental studies (e.g., Scholl 2001; Cave & Bichot, 1999) in which their 

corresponding results cannot be theoretically explained only on the basis of space-based theories. 

In fact, many different studies have shown that attention can be split among multiple moving 

objects that do not occupy a connected region of space (e.g., Berhmann et al., 1998) and other 

studies emphasized the fact that object-based features are possible to modulate the spatial cueing 

effects, (e.g., Brawn & Snowden, 2000). These studies are some of the many examples in the 

corresponding literature that support the independent study of these two complementary modes of 
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selection. The most prevailing reason however, that triggered the independent study of spatial and 

object based attention came from neuroscientific evidences regarding the neurophysiology of 

attention (see Chapter 3).    

2.2 Exogenous and endogenous orienting of Attention 
One more central distinction in the physical orientation of attention involves the endogenous and 

exogenous reallocation of the attentional focus. 

Top-down or endogenous attention refers to the volitional modulation of neural activity that 

corresponds to an object or a location in space, and it functions in response to signals initiated by 

internal goals, that most likely originate in the parietal and frontal lobes of the brain (Buschman & 

Miller, 2007). Bottom-up or exogenous attention on the other hand is a faster and more automatic 

process that relies on the sensory saliency of stimuli registered by subcortical structures and the 

primary sensory cortices (Corbetta & Shulman, 2002; Beck & Kastner, 2005; Buschman & Miller, 

2007).  

The exogenous process involves a physiological shift of attention that relies on a characteristic that 

most living creatures are born with and is referred to as orienting reflex. Orienting reflex, is 

defined as the movement of the eyes, the skin conductance change, or even the increase in heart 

rate that may occur automatically, with the appearance of a loud noise, a flashing light or any 

stimulation that distracts our internal model of the world, as it is created in that moment. 

For example consider the case, in which a person is reading this text on a computer screen. The 

focus of attention will most probably be in the spatial area of the visual field that the sentence 

appears. At the same time, while reading the sentence, imagine a red flashing dot appearing on the 

left top corner of the screen. The rapid change of the previously processed image combined with 

the fact that the white background is significantly different from the red dot, will make the red dot 

become more salient compare with all the other stimulations on the computer screen. Thus, the 

reader will reflectively orient the focus of attention in an exogenous manner to the red dot’s spatial 

location. On the contrary, if the sentence on the screen was: Please concentrate and look for the 

little red dot that will shortly appear on the top left of the screen, then, the focus of visual attention 

will orient towards the top left corner of the screen but this time voluntarily. In other words, the 

comprehension of the sentence by the reader in our example will trigger and generate some 

endogenous signals (possibly from parietal and frontal lobes of the cortex) that will manipulate the 

visual information and reallocate the attentional focus voluntarily.  

Attention in human cognition however, has also been investigated clinically in patients with 

different neurologic pathologies and introduced some specialized aspects of its functionality.  Some 

attention related deficits have been observed only at certain tasks, while in other conditions, the 
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patients responded normally and therefore, different attentional categories were defined. For 

instance, focus attention corresponds to the ability to respond separately to specific stimuli, divided 

attention defines the ability to simultaneously focus the cognitive resources on multiple tasks and 

sustained attention to maintain consistent attention to specific tasks during continuous and 

repetitive activity. In the next sections more emphasis will be given however on another major 

aspect of the orienting system, the selective attention. 

2.3  Theories of selective attention 
Our daily cognitive functioning relies heavily on our ability to select and process a very small 

subset of the information that is registered from our sensory organs and at the same time to ignore 

the rest. The cognitive process that allows us to carry out such selective processing is referred to as 

selective attention and has been extensively studied under many disciplines and different methods, 

such as behavioral experiments, electrophysiological and imaging studies, and computational 

modeling. The basic concepts of selective attention have been given detailed descriptions and 

scientific explanations over the last years; nonetheless many issues are still remaining to be 

clarified and many others to be confirmed, since several questions about fundamental issues are 

still debated among researchers.  

The theoretical study on selective attention began in the 1950s with the classical concepts of 

selective attention being inspired mostly via auditory perception, when Colin Cherry (1953) first 

performed experiments on dichotic listening. In those experiments, the subjects had to listen to two 

separate streams of words in each of their ear through a headphone set, but to selectively attend 

only to the one. Following the task, the experimenter would inquire about the content of the 

unattended stream by asking specific questions to the subjects. The results from those experiments 

had a significant impact on the development of many theoretical concepts related with the 

attentional processing, and at the same time sparked a long debate around a central topic in the field 

of selective attention about the locus of the attentional filtering within the stream of information 

processing. Early selection theories of attention (e.g., Broadbent, 1958; Treisman, 1960) placed 

selection at an early stage of processing claiming that the attentional mechanism stops completely 

or attenuates processing before the mind can analyze its semantic content, while late selection 

theories (e.g., Deutsch & Deutsch, 1963) propose that selection occurs at a later processing stage 

and after all stimuli have been processed semantically in the short-term memory.  

A more detailed analysis of the most prevailing theories related to selective attention is presented in 

the next section. 
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2.3.1 Early Selection Theories 

The “Filter theory” is one of the major models of early selective attention and was initially 

proposed by Broadbent (1958). The main idea behind the first of the so-called "bottleneck" theories 

is that attention can be modeled as a physical channel that could allow only one message to pass 

into perception and short-term memory, based on its characteristics. In accordance to the results of 

the dichotic listening experiments (Cherry, 1953), Broadbent suggested that the unattended 

messages were apparently stored in a temporary memory buffer, and only their physical properties 

could be retrieved after a short period of time (Figure 2-1). The filter theory despite being one of 

the first models on selective attention, it still remains valid, since it is clear that the information 

processing capacity of human perception system is limited.  

 
Figure 2-1 Broadbent's model. Source from: Perception and communication. (Broadbent, D. E., 1958). 
 

More experiments on dichotic listening, such as those of Moray (1959) revealed that certain words, 

(like for instance a subject's name), seemed to pierce from the unattenting ear to the selective filter. 

But, according to the filter theory, selection is due to the physical quantity of stimuli and thus 

switching attention should be unrelated to the content.  

To explain this and solve the problem of the detection of subtle information through an unattendent 

channel, Treisman and her colleagues (1960) suggested a new theory called the attenuation theory. 

According to the attenuation theory, some important words or sounds for each subject are activated 

and directed into perception more easily than less important stimuli. The unattended information, 

although it will be attenuated, it is possible under certain conditions for some messages to receive a 

certain degree of processing (Figure 2-2). 

 
Figure 2-2Schematic representation of the attenuation theory by Treisman (1960) 
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The last of the major bottleneck theories of attention was proposed in 1963 by Anthony and Diana 

Deutsch. The main argument that pushed them into a further modification of Treisman's (1970) 

theory was based on some new experiments they performed. Together with Donald Norman (1968) 

they showed that some words from the unattenting stream could influence semantically the 

meaning of the attending sentences. One of the most famous examples was the sentence: "They 

threw rocks at the bank yesterday" which according to the sentences in the unattenting ear, “bank” 

was realized as the bank of the river or bank as a financial institution. The late theories are thus 

suggesting that all incoming information is semantically processed before being filtered out.  

 

2.3.2  Late Selection Theory (an alternative of Selection Theory, the “divided theory”)  

The Late Selection Theory (Deutsch & Deutsch 1963; Norman 1968), often called the automaticity 

is proposed against the Broadbent's (1953) and Treisman’s (1960) theory. This theory suggested 

that no filtering or attenuation takes place. Instead all inputs are fully processed. It is assumed that 

perception is an unlimited process that can be performed in an automatic and parallel manner. 

According to this theory selection occurs after full perception and that is why is referred as to as 

“late selection”.     

 

 
Figure 2-3 Schematic representation of the late selection theory by Deutsch and Deutsch (1963) 
 

A promising way of reconciling the debate concerning the locus of selection has been more 

recently proposed by Lavie and colleagues (Lavie & Tsal, 1994; Lavie, 1995; Lavie & Fox, 2000). 

According to Lavie, attention is viewed as a pool of limited resources that are engaged by 

attentional tasks based on the processing demands they entail. Hence, Lavie’s study proposed a 

possible determination on the early- late debate by suggesting that perceptual load of relevant 

information could determine the selective process of irrelevant information. 
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2.3.3 Perceptual Load Theory 

Perceptual load theory (PLT) in respect to the previous theories is based on studies of visual 

selective. More specifically, this theory is based on a study in which participants were asked to 

respond to a specific target after the effect of a distractor. The behavioral results revealed that 

participants could efficiently filter out task-irrelevant distractors when performed under high levels 

of perceptual load (e.g., large display size), but fail to do so under low levels of perceptual load 

(e.g., small display size). The perceptual load theory thus, explains the modulation of selectivity by 

the processing capacity. When the load is high, capacity is exhausted and there are no available 

resources left to process irrelevant distractors and thus it can be inferred as early selection; while 

alternatively, when load is low the irrelevant distractor is processed and consequently influencing 

the reaction time of the response (late selection). 

Perceptual load hypothesis, although offers an interesting approach concerning the early late debate, 

it has still being criticized and challenged and today researchers are continuing to investigate both 

early and late selection models searching for the true limitations of cognitive processing. 

In accordance, the proposed computational model was used for simulations of the corresponding 

PLT experiment, aiming at clarifications regarding the theoretical concepts behind this theory (see 

Chapter 6) and to propose a possible theoretical framework regarding the selection process. 

One important distinction of PLT with the previous experimental studies is that it strictly involves 

visual processing. In fact from the 1970s, the focus of attentional research has moved from the 

auditory to the visual domain, mainly because visual attention is easier to study experimentally. 

Despite the many common parallels between the two domains there are also some major 

differences, and therefore it is important to study selective attention with reference to the domain it 

refers to. 

In the next chapter information about the visual system, the brain areas involved and what is 

currently known about the underlying neural mechanisms of visual selective attention from the 

most recent studies in the field of neuroscience is presented.  
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3. Visual selective attention 

This chapter presents the basic concepts of visual selective attention from the neurophysiological 

perspective. Some introductory information about the visual system will be given before the 

corresponding cortical mechanisms that compose visual selective attention are analyzed. 

3.1 The visual system 
The visual system is the part of the central nervous system that is responsible for assimilating 

information from the environment and interpreting it into visual perception. More precisely, the 

human visual system accomplishes many complex tasks like the detection and discrimination 

between stimuli that have diverse features, the perception of distance to and between objects, and 

guides the corresponding body movements in relation to visual object. 

The act of seeing begins primarily with the reception of light by a light-sensitive membrane in the 

back of the eye, called the retina. The light patterns are then converted into neuronal signals. The 

photoreceptive cells of the retina are able to detect photons of light and to produce the proportional 

neural impulses. These signals are then processed in a hierarchical fashion by different parts of the 

brain during their progression in the visual pathway.  

3.2 The visual pathway 
The term visual pathway implies that there is a hierarchy of levels for information processing in the 

visual system. More specifically, light that leaves an object enters the eye through a transparent 

portion of its external membrane (the cornea), pass through the lens and the vitreous space, and 

form a pattern on the retina that represents the viewed image. 

Light then falls onto the photoreceptors of the retina and is transduced into electrical signals that 

are processed through layers in the retina. The retina consists of six layers: the photoreceptor layer 

(PRL), the outer nuclear layer (ONL), the outer plexiform layer (OPL), the inner nuclear layer 

(INL), the inner plexiform layer (IPL), and the ganglion cell layer (GCL) (Figure 3-1). The 

photoreceptors of the retina are responsible for transducing light into electrical signals that are then 

processed by the local neurons of the retina. The retinal ganglion cells are the output cells of the 

retina, so all visual information available to the brain is transmitted by the axons of these neural 

cells. The transduced signals are then processed in part of the cerebral cortex that is dedicated in 

some way to the processing of visual information. 
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Figure 3-1 The six layers of the retina 

The transduction of light into electrical activity occurs in two types of photoreceptors named rods 

and cones. In the human retina there are approximately 100 million rods and 5 million cones. The 

rods are specialized in the detection of low intensity (scotopic) light, and are homogeneous in their 

wavelength sensitivity while the cones appear in three different forms, each to be sensitive in 

different wavelengths of light and are specialized for the detection of higher intensity (photopic) 

light. The fovea, which is the most sensitive portion of the retina, contains exclusively cones.  

The signals produced by the photoreceptors are transmitted to synapses directly on bipolar neurons 

that are sensitive to specific light contrast and these in turn synapse to the retinal ganglion cells. As 

mentioned, the retinal ganglion cells are the only output cells of the retina, so these cells convey all 

the necessary information to perform the various visual functions such as the detection of shape, 

color, motion etc. The output signals of the retinal ganglion cells are propagated into the brain 

through the optic nerve until they reach a major relay station, the lateral geniculate nucleus (LGN) 

as can be seen in Figure 3-2. 

 
Figure 3-2 The route to the primary visual cortex 
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Many ganglion cells have their axons connected to other structures apart from the LGN, such as the 

superior colliculus (SC) which in humans is known to be mostly involved with eye and movements. 

The neurons of the SC  influence another structure which is involved in visual attention and motion 

perception, the pulvinar, which is located in the thalamus. 

Following the visual hierarchy, the cells from the previously mentioned cortical structures are 

projected to the primary visual cortex which is also known as the striate cortex, or V1. Studies 

performed on macaque monkey, have shown that after the signals are processed in V1 they are 

communicated via multiple pathways to more than thirty visually responsive extrastriate cortical 

areas (Figure 3-3).  

 
 
Figure 3-3 The retina and cortical areas for visual processing in primate from van Essen et al (1992). V1 denotes 

visual area 1, the primary visual cortex and the largest visual area containing detailed representation of the visual 

input; V2 for visual area 2; LGN for lateral geneculate neclus; FEF for frontal eye field , SC for superior 

colliculus, IT for inferotemporal cortex, MT for middle temporal area and LIP for lateral intra-parietal area. The 

lower case letters ending some of the abbreviations often denote spatial locations of the cortical areas, e.g., v for 

ventral, d for dorsal. 
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The primary visual cortex is located in the most posterior portion of the brain's occipital lobe and it 

is where the brain begins to reconstitute the image captured by the photoreceptors.  V1 neurons 

respond to specific spatial information and are exclusively tuned at different properties such as 

small changes in visual orientations, spatial frequencies and colors. Furthermore, V1 neurons with 

similar tuning properties tend to cluster together as cortical columns. A large proportion of the 

primary visual cortex connections are then sent to the secondary visual cortex or V2 (Figure 3-4).  

Further analysis of the visual stimuli that begins in V1 and V2 continues through two major cortical 

systems for processing visual information. These are: The ventral pathway, which extends to the 

temporal lobe and is thought to be involved in recognizing objects, and the dorsal pathway, which 

projects to the parietal lobe and appears to be essential for locating objects. 

 

 
Figure 3-4 The two main visual pathways after the projection of the visual stimuli to primary visual area V1 

(http://thebrain.mcgill.ca) 

 

The separation and definition of the dorsal and ventral pathways (also called the "where/what" or 

"action/perception" streams) were initially studied by Ungerleider and Mishkin (1982) and later on 

analyzed by many scientists with one of the most prevailing reviews to be by Goodale and Milner 

(1992).  

The ventral visual pathway seems to be involved in forming conscious representations of the 

identity of objects. That is, it allows us to consciously perceive and identify objects by processing 

their basic visual properties. The dorsal visual pathway is thought to be responsible for the 
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guidance of our actions in real time towards objects in the visual world. Therefore, one can infer 

that it executes motor control over objects; yet most probably in an unconscious manner.  

Another region involved in the visual processing is area V3 that mainly receives information 

mainly from area V2. Most of the V3 neurons have properties similar to those in V2. After passing 

through areas V1, V2, and V3, a large part of the visual information continues ventrally to area V4. 

The exact role of area V4 is still under investigation, however it is probably involved in 

recognizing shapes, and it appears to be essential for perceiving colors (Moran & Desimone, 1985). 

Continuing up in the visual hierarchy, information passes to the inferotemporal cortex (IT) (Figure 

3-4). The cells of area IT receive many connections from area V4 and respond to a very wide range 

of colors and simple geometric shapes. Additionally, the IT cells seem to play an important role in 

visual memory.  

It is pointed that between all the cortical areas involved in the visual processing of the incoming 

stimuli, there are complicated feedforward and feedback projections. For example only a small 

subset of direct and indirect projections of signals involve the direct feedforward projections from 

V1 to pulvinar, V2, V3, V5 or middle temporal area (MT), and frontal eye fields (FEF) as well as 

feedback projections to V1 that originate from V2, V3, V4, V5 or MT, FEF and inferotemporal 

cortex (Ungerleider & Desimone, 1986). Moreover, lateral connections inside separate areas, such 

as in area V1 are influencing the process of the information, and thus formulate a complicated 

communication system.  

3.3 The Receptive field concept 
Each neuron in every area of the occipital cortex typically responds to light within a restricted area 

of visual space. This area is called the receptive field of the specific neurons. For retinal neurons, 

the receptive field is small, in the range of approximately 0.06 degrees of diameter, measured as a 

visual angle in the center of vision. This area is very small to cover most complete recognizable 

visual objects, but only a portion of it. Ascending along the visual hierarchy, in area V4 the neural 

receptive field becomes larger, in the range of 10 degrees in visual angle diameter, and 20-50 

degrees in IT. That is in the IT, it is possible that a single neuron to signal the recognition of a 

small visual object (Rolls, 2004). 

The receptive fields of the bipolar neurons respond best to a light/dark or to a dark/light contrast 

between their centre and surrounding areas and similarly, this information is transferred to the 

retinal ganglion cells. The cells that response to a light/dark contrast are called ON cells, while 

those that respond to a dark/light contrast between the centre and surround are called OFF cells.  

In the primary visual cortex or area V1, the receptive fields of the corresponding neurons are much 

more diverse and complicated than in the retina and thalamus. For example, some neurons in the 

primary visual cortex can respond selectively to different attributes of the visual scene such as line 
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orientation, direction of movement, luminance contrast, stimulus velocity, color, retinal disparity 

and spatial frequency (frequency of black and white stripes in a degree of visual space).  

The first characterization of receptive fields in the primary visual cortex was given by Hubel and 

Wiesel (1962) and it was made on the basis of two main categories. The first category involves the 

simple cells, which are cortical cells that respond to light and dark spots in different subregions of 

their receptive field. Due to this arrangement the simple cells are possible for encoding visual 

stimuli such as lines, bars or squared shapes. The other category involves the complex-cells (the 

majority of cells found in the visual cortex) that do not have separate subregions (Martinez & 

Alonso, 2003).  For a complex-cell to act in response, it might be necessary not only to have a 

correctly oriented bar of light within their receptive field, but also to move in a particular direction 

or even for the bar to be of a particular length (Figure 3-5).   

  
Figure 3-5 Receptive fields of the on and off retinal ganglion cells when the center or the background is 

illuminated, or when both center and surround are illuminated, Hubel (1963) – left image;  Response of complex 

cells in the primary visual cortex (right image).   

 

Many neurons of the secondary visual cortex V2 and V3 have receptive field properties similar to 

those of the neurons in the primary visual cortex, yet many others respond to far more complex 

shapes. For example, some of these cells are sensitive to color and movement.  

Neurons in higher cortical areas as explained have larger receptive fields and can be more selective 

to the identity of the stimulus than to its physical location.  Klea
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Figure 3-6 Increasing complexity of the receptive field properties along the visual pathway. Image from: Yantis 

(2005) 

 

The concept of the receptive field is very important in the neurophysiologic study of visual 

selective attention for the reason that it gives a plausible explanation about the low level 

interactions during attentional tasks as will be explained in following sections.  

3.4 Measuring Brain Activity 
The technological achievements during the last years in the design and commercialization of 

sophisticated equipment specialized to the collection of brain activity data, together with the 

development of very efficient algorithms for their analysis, have given researchers important 

insides about the basic functionality of attention, from the neurons level until large cortical areas.  

The measurement of brain activity can be performed with either invasive or non-invasive 

techniques. Single neuron recordings are the most common invasive techniques that are usually 

performed on living animals. This technique involves the placement of electrodes in specific 

cortical areas of the animal and therefore it allows the observation of the electric activity from a 

single neuron or a small group of neurons in a region of interest. Single neuron recordings have 

provided important insides on how the brain processes information especially on the neural 

behavior and the low level interactions.  
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Figure 3-7 The physical setup for recording from awake, moving monkeys. Image by Evarts (1973). 

 

Alternatively, neuroimaging techniques are mostly non-invasive and their basic characteristic is 

that they provide a wide field of view by summarizing simultaneous activity across the whole 

brain.  Non- invasive techniques, although they cannot offer the specificity and detail that single 

cell recordings provide, have one significant advantage, since due to their nature are usually 

performed on humans. The most common methods of functional neuroimaging are functional 

Magnetic Resonance Imaging (fMRI), Computer Tomography (CT), Positron Emission 

Tomography (PET), Electroencephalography (EEG) and Magnetoencephalography (MEG). Some 

basic concepts of each of these techniques are presented below. During the progression of my PhD 

studies however, I was given the opportunity to prepare and complete an experiment related with 

visual selective attention with the use of Magnetoencephalography in the Labaratory of Human 

Brain Dynamics of the Brain Science Institute in RIKEN-Japan, therefore more emphasis will be 

given in the description of the specific neuroimaging technique.  

 

3.4.1 Functional Magnetic Resonance Imaging, Computer Tomography and 

Electroencephalography 

Functional magnetic resonance imaging (fMRI) works by detecting the changes in blood 

oxygenation and flow that occur in response to neural activity. The theoretical background of this 

technique is based on the fact that when a brain area is more active it consumes more oxygen. Thus 

in order to meet this increased demand of oxygen, blood flow increases to the active area. fMRI 

uses suitable techniques to measure and process the blood flow in the brain, and it can be used to 

produce activation maps that show which parts of the brain are involved in a particular mental 

process. 

Computed Tomography (CT) scanning is mainly based on the differential absorption of X-rays. 

An x-ray source rides on a ring around the inside of a tube, with its beam aimed at the subjects 
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head. CT scanning uses a computer program that performs a numerical integral calculation on the 

measured x-ray series to estimate how much of an x-ray beam is absorbed in a small volume of the 

brain. Bone and hard tissue absorb x-rays well, air and water absorb very little, and soft tissue is 

somewhere in between. Thus, CT scans reveal the gross features of the brain. 

Electroencephalography (EEG) is the measurement of the electrical activity in the brain through 

recording electrodes that are placed on the scalp. The resulting electrical signal from a large 

number of neurons is known as an electroencephalogram (EEG). EEGs are frequently used in 

experimentation because the process is non-invasive to the subject under study and can provide 

good timing resolution in the analysis of the collected data. EEG is one of the few techniques 

available for detecting changes in electrical activity in the brain on a millisecond-level. The EEG 

activity which is time-locked to the presentation of a stimulus is referred to as evoked potential and 

is widely used in cognitive science research. 

3.4.1.1 Magnetoencephalography (MEG)  

Magnetoencephalography (MEG) is another non-invasive neuroimaging method for detecting, 

analyzing, and interpreting the magnetic fields generated by the electrical activity in the brain. 

Similarly with EEG, MEG has also the advantage of the sub-millisecond temporal accuracy, and 

therefore helps to a better understanding of the dynamics of cortical function. 

MEG signals derive from the net effect of ionic currents flowing in the dendrites of neurons during 

synaptic transmission. In accordance with Maxwell's equations, any electrical current will produce 

an orthogonally oriented magnetic field. These net currents can be thought of as current dipoles and 

thus can be associated with position, orientation, and magnitude but not with spatial coordinates in 

the cortex (Figure 3-8).  

 
Figure 3-8 A layer of pyramidal cells in the cortex which can be seen as a current dipole generating an 

orthogonally oriented magnetic field. 

 

For the brain activity to generate a signal that is detectable, approximately 50,000 active neurons 

are needed. Furthermore, the neurons must have similar orientations to generate magnetic fields 
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that reinforce each other. Therefore, it is often the layer of pyramidal cells in the cortex, which are 

generally perpendicular to its surface, that give rise to measurable magnetic fields (Figure 3-9).  

 
Figure 3-9 The MEG sources generated by similar orientation pyramidal neurons 

 

The MEG measurements span a frequency range from about 10 mHz to 1 kHz and can register 

field magnitudes from about 10 fT (femtotesla) for spinal cord signals to about several pT 

(picotesla) for brain rhythms. These magnetic fields are about a billion times smaller than the 

earth’s magnetic field which is in the range of 50μT (microteslas). Additionally the brain fields are 

many orders of magnitude smaller than the environmental magnetic noise for about a factor of 1 

million, therefore a prerequisite for useful MEG measurements is the availability of sensors that 

can detect the weak magnetic fields generated by the brain. 

3.4.1.1.1 Sensing Magnetic fields 

High-quality detection of brain magnetic fields is the first step in the MEG signal processing chain. 

As mentioned, the measured brain fields are extremely small and the only detectors presently 

available with adequate sensitivity are the Superconducting Quantum Interference Device (SQUID) 

sensors.  

SQUIDs are coupled to the brain fields by means of flux transformers. SQUIDs and their flux 

transformers are superconducting and must be operated at low temperatures, usually immersed in 

cryogen. The cryogen is contained in a thermally insulated container (dewar), which must be 

electromagnetically transparent so that the brain signals can reach the flux transformers and the 

SQUID detectors (Figure 3-10).  Klea
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Figure 3-10 The SQUID sensor (Hamalainen 1992) 

3.4.1.1.2 Noise Sources 

Perhaps the most important part of the MEG data acquisition and system analysis is the distinction 

of the useful data, from the many other noise sources that contaminate them. In that sense, it is 

important to define the possible noise sources that might have an effect on the measurements in 

order to be able to eliminate them with an appropriate methodology. 

The most important noise sources arise from four main categories. First, is the environmental noise 

that might be due to fluctuations in the earth's magnetic field, moving cars, elevators, power lines 

etc. Another important noise source is the noise originating from the sensor itself, such as from 

the electronics, thermal interactions or from vibrations that could possibly interfere with the brain 

activity. Then it is the biological noise from the heartbeat, or the eye blinks and even respiration 

that creates artifacts in the collected data and it is necessary to be filtered out. Finally, brain activity 

that it is not of interest should be taken into consideration and if it is possible to be removed from 

the collected data.  

3.4.1.1.3 Noise Cancellation 

After identifying the noise sources then a more appropriate technique is used to try and increase the 

signal to noise ratio as much as possible. Usually, a different approach is used to eliminate noise 

coming from different sources in order to have closer to optimum results.  

3.4.1.1.3.1 Magnetically shielded room 

For reducing the environmental noise, the most commonly used method is the magnetically 

shielded room. This room is enclosed with the layers of high ferromagnetic metal. Usually, the 

shielded rooms in many MEG labs are enclosed in a capsule made of layers of permalloy and one 

aluminium. A typical attenuation of the external fields is approximately 100 dB at 1 Hz. 
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3.4.1.1.3.2  Gradiometer 

For eliminating noise from distance sources such as the environmental noise, a gradiometer is 

usually adapted on the sensor. The sensor consists of two or more coils, taking the difference 

between the fields measured by the coils. This arrangement is insensitive to a homogeneous 

magnetic field and sensitive to nearby signal sources. Since brain magnetic fields are not 

homogeneous, are retained and thus gradiometers only reduce the noise originating from a long 

distance. 

 
Figure 3-11 The gradiometer (Hamalainen et al., 1992). 

3.4.1.1.3.3 Filtering and averaging 

Another characteristic technique for eliminating noise is by filtering and averaging the collected 

data. The typical cut-off frequency in MEG measurements is 0.03 – 1.0 Hz for high pass filter, and 

40 – 400 Hz for low pass filter. Averaging is also a simple way for measurement of evoked 

responses. By averaging, noises are cancelled out, and the signal that remains, is that which is 

synchronized with the stimuli. However, this approach, cannot remove the noise which is 

synchronized with the stimuli. 

3.4.1.1.3.4 Reference sensor 

Some MEG systems have extra sensors only for noise measurement. These sensors are usually 

positioned far away from the subject’s head and thus they can detect distant noise sources. From a 

noise sensor’s output, one can compute some of the gradient field and thus this configuration of the 

distance sensors can be seen as a virtual gradiometer. For eliminating unwanted artifacts generated 

by the biological noise, usually the electrical activity generated by eye movements and cardiac 

systole is monitored by simultaneous recordings of Electrooculograph (EOG) and 

Electrocardiograph (ECG). Then the concatenated single-trial signal for each run is generally 

analyzed with independent component analysis (ICA) (Jahn & Cichocki 1998). 
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3.4.1.1.3.5 Independent Component Analysis 

Independent Component Analysis (ICA), is a signal processing solution that separates different 

signals that are statistically independent in time. Consequently it is possible to identify and remove 

strong ICA components correlated with either EOG or ECG.  

3.4.1.1.4 Source Localization 

Finally, for determining the location of the activity within the brain, advanced signal processing 

techniques are used that use the magnetic fields measured outside the head to estimate the location 

of that activity's source. Despite the fact that EEG and MEG have the great advantage that they 

reflect brain electrical activity within millisecond temporal resolution, there are however 

limitations in the spatial resolution for principal physical reasons. For instance in order to 

determine the electroencephalography (EEG) and magnetoencephalography (MEG) signal from the 

knowledge of the sources, as well as the electrical properties of their biological environment, it is 

feasible and is known in the literature as the forward problem. This can be achieved with unique 

solutions based on the analysis of the Maxwell equations for electromagnetism. However, even 

with an infinite amount of EEG and MEG recordings around the head it is not possible to recover 

uniquely the source localization of the primary current distribution mainly generated by the electric 

activity of the pyramidal neurons. This limitation is referred to as the inverse problem and many 

algorithms and methodologies have been developed for providing good estimations of the sources. 

One interesting description used for the inverse problem is the attempt to reconstruct an object 

from its shadow. It is necessary to have additional information to be able to do that since only some 

features such as the objects shape are uniquely determined. 

 
Figure 3-12 Measuring the total brain activity from the sources that generate it (forward problem) and the inverse 

problem to identify the localization of those sources based on the measurements 

 

Nevertheless, various solutions to the inverse problem have been developed and obtained as a 

probabilistic estimate under suitable constraints. Some of the most important and commonly used 

probabilistic solutions are presented in the next sections. 

 

Klea
nth

is 
Neo

kle
ou

s



Computational Modeling of Visual Selective Attention 
 
 

Kleanthis Neokleous PhD Thesis, May 2011 Page 46 
 
 

3.4.1.1.4.1  Dipole model source localization 

One of the most popular solutions is by making the assumption that the solution can be modelled as 

just a few focal sources. These sources are interpreted as representative of their neighbourhood and 

are referred to as equivalent current dipoles (ECDs). Based on that, many algorithms have been 

developed for fitting the equivalent current dipole into a position in the brain (e.g. Marquardt, 

1963). Then it is possible to calculate the best fitting current dipole compared with the obtained 

data, by using standard non-linear least-squares optimization methods. Nonetheless, there are some 

important drawbacks based on the limitations of dipole models in the attempt to characterize 

neuronal responses. One significant difficulty concerns the problem of accurately estimating the 

total number of dipoles that could provide the minimum error in the evaluation of the algorithm. 

Another problem would be the sensitivity of dipole location, especially with respect to depth in the 

brain. 

 
Figure 3-13 Equivalent Current Dipole assumption. The red arrow in the rightmost figure represents the 

assumption of an equivalent current dipole. Then based on the activations that it is calculated to produce in the 

MEG sensor it can be combined with the actual measurements and to provide an estimate of the source position. 

3.4.1.1.4.2 Lead-field-based imaging approach 

Another popular approach is based on the assumption that the continuous current density can be 

written as a linear sum of functions, each defining the sensitivity profile, or lead field, of the 

sensors. Lead-field-based modeling divides the source space into a grid containing a large number 

of dipoles. Since the lead fields decay fast away from each sensor the superficial sources are biased 

with respect to the deep sources. Therefore a weighted function matrix is usually applied to the 

data. The inverse problem would then need to calculate the dipole moments for each grid node 

(Hamalainen, 1994). One important weakness of this approach is the very poor spatial resolution. 

3.4.1.1.4.3 Magnetic field tomography  

One other technique to estimate current sources to localize neural activity is the Magnetic Field 

Tomography (Ioannides et al., 1990). MFT has proven to a large extent to be an accurate technique 

and provide good spatial resolution as it has been demonstrated in many experiments (Moradi et 

al., 2003).  
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The basic principle of MFT is based on the separation of the brain into four main source spaces. 

Typically each source space is defined by 17 × 17 × 11 grid points in size, in a way that they 

partially overlap and completely cover the left, right, top, and back part of the brain for each 

subject as can be seen in figure 3-14. 

 

Figure 3-14 The MFT solutions from the four source spaces are combined into one (center) for estimating the 

source of the brain activity.  Image by Yuka Okazaki PhD thesis (2007) 

 

By measuring separately the primary current density of each of the four source spaces (using the 

closest channels to each source space) it is possible to combine and compute the three-dimensional 

distribution of primary current density, J of the entire brain, in an array of (17 × 17 × 17) grid 

points or voxels. Consequently, each voxel typically represents the activity in three-dimensional 

space. The size of a voxel typically represents a volume of 343 mm3 (a cube with 7 mm sides) 

although it might vary depending on the size of the subjects head.  

The localizing algorithms presented briefly are some among the plethora of algorithms and 

methodologies that have been developed and optimized during the last years for the identification 

of cortical areas and their interacting roles in human perception. In line with that, a brief analysis of 

the cortical regions that have been shown to be involved with visual selective attention as well as 

the underlying neural mechanisms that construct the channels of information transfer are presented 

in the next section.  
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3.5 Neural basis of selective attention 

3.5.1 Cortical areas involved with visual selective attention 

All the cortical regions that are involved with visual processing can be influenced from the 

attentional mechanism; however, it is possible to categorize these regions based on their functional 

role in the attentional system or on the various aspects of selective attention.  

Posner and Petersen (1990), and later on Posner and Dehaene (1994) have proposed that the 

attentional control system is comprised by an alerting system, an executive control system, and an 

orienting system. The cortical areas they proposed to be involved in the different aspects of 

controlling attention are shown in figure 3-16. These areas have been correlated with each of the 

attentional subsystems based on several studies of humans exhibiting brain deficits in specific 

cortical areas. More specifically, they proposed that the parietal cortex is responsible for 

disengaging attention, the superior colliculus for moving attention, and the thalamus for engaging 

attention. These propositions have shown to be consistent with lesion studies in primates, which 

show that deactivation of the pulvinar (part of the thalamus) decreases an animal's ability to filter 

out irrelevant stimuli from a scene (e.g. Snow et al. 2009). 

 
Figure 3-16 The alerting, orienting and executive systems of the attentional mechanism according to Posner and 

Petersen (1990). Image from Posner and Rothbart, (2007) 

 

However, the most important distinction of the attentional role involves the automatic and 

volitional operation as previously explained. In terms of cortical organization, this distinction is 

mainly performed in regions that are coupled with information from sensory inputs (in the case of 

visual attention from retinal ganglion cells) and support the exogenous or automatic attention tasks, 
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and regions that are responsible for generating and directing control signals towards the cortical 

areas that receive the sensory inputs in the case of the endogenous or volitional attention. Posner 

and Rothbart (1991) have hypothesized that control is subdivided among posterior and anterior 

networks in the brain. More specifically they explained that the posterior network is more 

concerned with the automatic control or bottom up visual attention, while the anterior network is 

more closely associated with the top-down control signals of attention. This hypothesis was later on 

confirmed by many other neurophysiologic studies (e.g. Corbetta & Shullman, 2002; Buschman & 

Miller 2007).  

 
Figure 3-5 Interaction between bottom up processing and top down control signals 

 

In the case of solely bottom up attention, the brain visual areas that receive the sensory inputs are 

divided into the ventral or dorsal processing pathways beyond the primary visual cortex V1. As 

previously mentioned, space based attention is primarily concerned with the spatial localization 

and the direction of attention towards objects of interest in space and obviously it involves the 

cortical areas along the “dorsal stream” including the posterior parietal cortex (PPC).  

Object based attention involves the cortical areas along the “ventral stream” including the 

inferotemporal cortex (IT) and it mainly concerns the recognition and identification of visual 

stimuli. Of course although the two paths are distinct, they can operate in concert to influence the 

allocation of attention since many of the visual cortical areas are heavily interconnected.  

In the case of top-down attention, several studies of patients suffering from attentional deficits 

due to brain damage as well as studies of healthy subjects performing attentional tasks have given 

insights into a distributed network of higher-order areas in frontal and parietal cortex that appear to 

be involved in the generation of the  top-down feedback control signals.  

More specifically, it has been documented that damage to the right PPC (due to stroke, for 

example) often leads to unilateral visual neglect, which is thought to be a disorder in the ability to 
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deploy spatial attention. Even more, many sub-regions of the PPC have been studied in detail and 

believe to have significant contributions to attentional control, like for instance the lateral 

intraparietal area (LIP, Bisley & Goldberg, 2003), the intraparietal sulcus (IPS), (Silver, et al., 

2007) and the superior parietal lobule.  Sub-regions of the prefrontal cortex have also suggested to 

participate in the generation of the control signals such as the frontal eye field (FEF), and the 

supplementary eye field (Hagler & Sereno, 2006), as well as the superior colliculus. For a detailed 

overview on the brain regions involved with visual selective attention see Kastner and Ungerleider 

(2000), Yantis (2008).              

 

 
Figure 3-17 Regions generating  top down signals and visual areas that interact with these signals. 

 

Another interesting issue regarding the relation between the cortical areas involved with the control 

of attention, concerns the timing and sequence of the cortical regions activation. More specifically, 

in a study by Buschman and Miller (2007), information recorded from multiple electrodes 

simultaneously implanted on the lateral intraparietal area (LIP) in the parietal cortices and the 

lateral prefrontal cortex (LPFC) and frontal eye fields (FEF) in the frontal cortex of Macaca 

monkeys, was presented. This information revealed a significant difference in the timing of the 

activations within the specific cortical areas depending on the nature of the task. For example when 

top –down tasks were involved, modulations have shown to originate from the parietal and frontal 

cortex in order to manipulate the neural activity in the occipital cortex, while in the case of salient 

stimuli and bottom up tasks, the corresponding areas in the occipital cortex were activated first and 

the information was transferred to higher cortical areas afterwards. 

The later observation has been suggested earlier by other studies (Giteleman et al, 1999; Kastner & 

Ungerleider 2000) and is of great importance in view of the fact that the mode of the action of 

Klea
nth

is 
Neo

kle
ou

s



Computational Modeling of Visual Selective Attention 
 
 

Kleanthis Neokleous PhD Thesis, May 2011 Page 51 
 
 

attention can be realized as a collaboration and exchange of signals between cortical areas. It is 

therefore important to incorporate this type of neural network communication in the design of a 

computational model, especially when considering both aspects of visual selective attention 

(endogenous and exogenous). One can explain the interaction between the two subsystems using 

basic concepts of control theory. More specifically, the parietal and frontal cortices can take the 

role of the controller in the system while visual areas in the occipital cortex to be the controlled 

regions that are involved in a bottom up manner (Figure 3-18). 

 
Figure 3-18 One basic possible control system of visual selective attention 

 

Besides however, the interactions between different cortical areas in the networks level, it is of 

equal importance to consider the underlying neural mechanisms that allow this communication 

from the single neurons perspective, when attempting a more realistic and plausible 

implementation of a computational model. Therefore some theories related with the low level 

neural interactions that prevail in the scientific literature are presented in the next section. 

3.6 Neural mechanisms of Selective Attention 
The complete realization about how attention selects one stimulus from another based on the low 

level neural interactions seems to be the key to decode the general behavior of this cognitive 

function. Indeed, it is necessary to understand how organisms manipulate the neural activity of a 

stimulus in their visual field.  For example at one occasion a stimulus can be presented in which its 

context determines that it should be attended (like a red traffic light) and in a different occasion a 

similar stimulus (like for instance a red light on a Christmas tree) might not be considered as 

important to be attended. Thus, the neuronal representations of a stimulus cannot be determined 

entirely by its physical properties, but there must be an additional process that distinguishes the 

attentional state of a stimulus such as knowledge, associated with previous experience.  
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Attention in the neuronal level can better be portrayed as a competitive process. This is a 

hypothesis that was originally inspired from single cell recording studies on monkeys. In particular, 

some studies observed the responses of a cell when elicited by the presence of visual stimulus in 

the cell’s RF. The responses were then compared with responses of the same cell when a second 

stimulus was presented simultaneously within its RF (Moran & Desimone 1985, Reynolds & 

Desimone, 1999).  

Figure 3-19 by Reynolds and Desimone (1999) shows the response of a V2 neuron when measured 

by an invasive electrode in the monkey’s visual cortex. It is assumed that the specific V2 neuron is 

tuned to respond better towards the vertical orientation as can be seen from the top dotted line. 

When the horizontal bar was presented alone in the neurons receptive field, the response of the 

neuron was reduced (solid line below). When both bars were presented simultaneously the neurons 

response was shown to be a weighted average of the responses to the individual stimuli presented 

alone. Finally, when attention was directed towards the preferred stimulus the interaction from the 

second was reduced. This sensory suppressive interaction among multiple stimuli has been 

interpreted as competition for neural representation and can be expressed on the basis of lateral 

inhibitory interactions among neurons in the visual cortex (Reynolds & Chelazzi 2004).  

 
 
Figure 3-19 Neural activity of a V2 neuron, from Reynolds and Desimone (1999) 

 

Similar observations were made even earlier on areas of the visual cortex with larger receptive 

fields such as area V4 and IT (e.g. Moran & Desimone, 1985), as well as in the middle temporal 

area MT and medial superior temporal area MST (e.g. Treue & Maunsell, 1996).  Although the size 

of the receptive field in early areas of the visual cortex is not adequate to capture two simultaneous 
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stimuli, still several recent studies have shown similar attentional effects even in area V1 (e.g., 

Shibata et al., 2007). 

Consistent with these observations, single-unit recording studies in monkeys have shown 

attentional interaction due to spatial selection combined with luminance contrast when a single 

stimulus appeared within the receptive field of a single cell (Treue & Maunsell 1996, Roelfsema & 

Spekreijse 2001).  An example of this attention-dependent response facilitation is illustrated in 

figure 3-20, that shows data by Reynolds et al. (2000) taken by invasive measurements from a V4 

neuron in the visual cortex of monkeys. The role of contrast in the visual response is considered 

according to three different stimulus conditions as can be seen in the right part of Figure 3-20.    

 
Figure 3-20 The response of a V4 neuron in the three different stimuli conditions by Reynolds et al (2000). 

 

More specifically, the dashed line in each panel shows the response elicited by a stimulus when 

appeared within the V4 neuron’s receptive field, but with the monkey’s attention to be directed 

away from the corresponding spatial location. The solid line shows the response of the same neuron 

only this time with spatial attention to be directed to the stimulus. Each panel of figure 3-20 

corresponds to one of three levels of luminance contrast of the stimulus and as can be seen this 

differentiation of contrast is reflected on the neurons response in both conditions (with and without 

spatial attention).  The most interesting observation however is in the condition with the medium 

contrast (10% contrast stimulus) in which the neuron did not elicit any response above the baseline 

when attention was directed away from the receptive field, yet elicited a clear response when 

attention was directed to its location in the receptive field.  

Another interesting single cell study that revealed important information about the underlying 

neural mechanisms was by Reynolds and Desimone (2003) that recorded data from a neuron in 

area V4 of a macaque. In that study, two stimuli with difference in orientation and contrast 

appeared simultaneously within the monkey’s receptive field. As can be seen by figure 3-21 the 
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effect of increasing contrast is qualitatively different when two stimuli appear within the receptive 

field. By increasing the contrast of one of them, amplification or suppression of the neurons 

response can result, and this variation is mostly based on the neurons selectivity for orientation. 

More specifically in this example, the V4 neuron is shown to be tuned or to have a “preference” in 

the vertical orientation. Thus the equivalent stimulus is taken to be the strong stimulus while the 

horizontal spatially superimposed gratings although elicited an excitatory response when presented 

alone still are specified as the “poor” stimulus. 

 
Figure 3-21 Response of a V4 neuron when a preferred and a poor stimulus are presented alone and in pair at the 

same receptive field. Figure adapted by Reynolds and Desimone (2003). 

 

The response of the V4 neuron when the poor stimulus was presented is shown in the first column 

with variations in the stimulus contrast from 5% (top panel) to 80% (bottom panel).  The right 

column shows the response elicited by the preferred stimulus, with fixed contrast. The second 

column shows that by increasing the contrast of the poor stimulus at one location suppresses the 

response elicited by the preferred stimulus (with fixed contrast) at a second location, when both 

stimuli are presented in the same receptive field of the V4 neuron. Therefore, one observation that 

can be inferred based on the corresponding study is that whenever two or more stimuli appear in 

the same receptive field of a single cell, competition can result, or in other words, attention is 

responsible to bias the stimulus that is about to be selected in respect to its competitive stimuli.  
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However, one question that naturally emerges at this point is how the attentional bias is generated 

and where it initiates? The answer is that both, the automatic mechanisms that construct bottom up 

attention and the voluntary driven top-down attention process can create these biases as it is 

explained in more detail in the following section.  

3.6.1 Bottom-Up neural mechanisms 

Bottom up attention is a primitive fast and automatic mechanism that depends on the saliency of 

each sensory input. This mechanism is performed at very early stages of visual processing before 

the interference of any top-down signals and without taking into account the internal state of the 

organism.  

Many theories about the functionality and the underlying mechanisms of bottom up attention were 

inspired from experiments related with visual search, in which the main task is to identify a target 

among several distracters. In these tasks, the target differs from the distracters usually along one or 

more dimensions (e.g. Shiffrin & Schneider, 1977). One such example is a more recent version of 

visual search by VanRullen et al., (2003) in which subjects had to identify the target letter X among 

the L’s (in the first condition) and the target letter T among the L’s (in the second condition).  

 
Figure 3-22 Reaction time analysis of the experiment by VanRullen et al, (2003). 

 

From the experimental results shown in figure 3-22 (by VanRullen et al., 2003) the response time 

compared with the number of objects in the first condition (black line), does not significantly 

increase while in the second condition (grey line) there is an increase of about 42.5 ms for every 

new item (distractor) that is presented in the visual field.  The most prevailing explanation for these 

experimental results and similar older studies is based on the feature integration theory (FIT) by 

Treisman and Gelade in 1980. The FIT suggested that search performance results from a two-stage 
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process. The first and pre-attentive stage (is considered to occur before the influence of attention) 

and is utilized upon different maps that are specialized to capture and register specific features such 

as color, orientation, motion and spatial frequency. Each of these maps is suggested to be correlated 

with neurons that are tuned on the same features and the processing of the elements across the 

display in this stage is assumed to be in a parallel and simultaneous manner. If selection occurs 

only according to the first stage, the search times are independent with the number of items in the 

visual field. The conjunctions between features however, might not allow the isolation of the target, 

and therefore the feature integration theory suggested a second, limited capacity and serial stage 

that is required to focus attention on single items in turn based on a separate master map. In this 

case, the response time increases with respect to the number of items.  

The FIT had a significant impact on the scientific society and provided the foundations for 

developing many other computational models for bottom up processing. More specifically, it 

inspired an idea originally proposed by Koch and Ullman (1985) that is based on a 2 dimensional 

retinotopic map defined as the saliency map.  

The proposal of the saliency map is based on the assumption that different possible factors can 

participate in determining visual saliency. In fact, many neuroscientific studies have indicated how 

the saliency of a visual object does not depend only on its features but mostly on the context in 

which the object is presented, like for instance its surrounding background.   

Stimuli that stand out from their background are processed preferentially at nearly all levels of the 

visual system. For example the response of a cell that had increase activity when a “preferred” 

stimulus was presented in its receptive field, has been completely suppressed when similar stimuli 

appeared within a large surrounding region (Allman et al 1985, Desimone et al 1985).  Even more, 

the suppression of the specific cell is larger when the density of the stimuli in the surround is 

greater (Knierim & Van Essen 1992). 

 

 
Figure 3-23 Experimental results by Nothdurft, Gallant and Van Essen (1999) 
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For example Figure 3-23 shows the responses of a V1 cell when tested to different texture 

conditions by Nothdurft et al., (1999). In this study, an optimal bar over the “classical” receptive 

field (RF) was presented alone or together with a texture surround located outside the RF. The y 

axis of figure 3.23 shows the firing rate of the V1 cell in eight different conditions. The x axis 

shows the different stimuli conditions that are based on combinations of center lines (C) and 

texture surrounds (S) between preferred (vertical bar) and non-preferred stimulus (horizontal bar). 

As can be seen the responses to the optimal center vertical bar (condition C) as well as the 

responses to the horizontal center bar (condition C’) have been suppressed by texture surround 

(conditions C/S,C/S’; and conditions C’/S’,C’/S) , which is an observation that supports the 

saliency map hypothesis.  

The anatomical location of the saliency map, (if it exists as an independent component), was 

suggested to be located somewhere in the very early stages of visual processing. Koch and Ullman 

(1985) proposed that it may be located in the lateral geniculate nucleus of the thalamus, an area 

previously suggested as playing a major role in attentional control by Crick (1984). The pulvinar 

that is known to be involved in attention (Robinson & Petersen 1992) has also been suggested as a 

candidate for housing the saliency map. Another possibility is the superior colliculus, likewise 

known to be involved in the control of eye movements (Kustov & Robinson 1996). Several 

neocortical areas have been suggested as well, including V1 (Zhaoping 2002), V4 (Mazer and 

Gallant 2003), and posterior parietal cortex (Gottlieb 2007). In fact, the proposal of the existence of 

a salient map in very early stages of visual processing was motivated by the finding that in the 

primary visual cortex and specifically in the visual area V1, a neuron’s response can be 

significantly suppressed by contextual inputs outside, but near its receptive field (Sillito et al., 

1995; Nothdurft et al., 1999; Wachtler et al., 2003). Indeed, the response to a preferred input 

feature, i.e. in orientation, color, or motion direction etc., is much more suppressed when there are 

similar rather than very different input features in the nearby context. Specific examples of such 

iso-feature suppressions include iso-orientation suppression (e.g., Knierim & van Essen, 1992), iso-

color suppression (Wachtler et al., 2003), and iso-motion-direction suppression (Jones et al., 2001). 
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Figure 3-24 An example of iso-orientation suppression. 

 

This generalization however, holds also for visual “features” at a much higher level of complexity 

like semantic contrast, for example. Therefore it is more likely that the saliency map, does not 

arises in one particular location but it rather interacts as a functional map whose components are 

distributed over many brain areas. Presumably, the calculation of visual saliency begins from the 

very early stages of visual processing and information from each layer is then conveyed to the 

following layers during the progression of neural activity in the visual stream.  

One comprehensive example of how the bottom up mechanisms contributes in visual perception 

can be seen in the two figures below. In figure 3-25 (left image), the neurons whose receptive field 

correspond to the spatial location of the red tulip, will increase their activations resulting for the red 

tulip to pop-out and capture our attention immediately. The pop-out effect can be explained 

according to the competitive interactions among neurons that correspond to a certain stimulus, 

since the inhibition from each stimulus towards all the other in its vicinity is analogous to its 

“strength”. In the example of figure 3-25 the inhibitory mechanisms between the neurons of the 

similar surrounding stimuli (the white tulips) result to a mutual suppression of their neural activity, 

thus their integrated inhibition towards the neurons that capture the red tulip is limited. In the right 

image of figure 3-25 the same neurons that previously had an increase response for the red tulip 

will now be significantly suppressed. 
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Figure 3-25 An example showing the effect of saliency 

3.6.2 Top-down neural mechanisms for attentional selection 

Plenty of scientific evidence from single-cell recording studies in monkeys and functional brain 

imaging along with event-related potential studies in humans have shown that attention related top 

down signals modulate the visually evoked activity.  In particular, top-down signals have been 

shown to facilitate the information processing of stimuli at attended locations, or the information 

processing of features that belong to the attended stimuli (Desimone & Duncan 1995). This 

facilitation has been observed to affect neural processing in several ways, like for instance through 

the enhancement of an attended stimulus neural response. Top down signals initiated from the 

presence of perceptual cues (e.g spatial cues), have shown to increase the baseline activity in the 

attended location even before the appearance of a visual stimulation (Shibata et al., 2008; 

Poghosyan & Ioannides 2008).  

Although response modulation by selective attention provides probably the best-studied example, 

and numerous studies have established that attention shifts can influence the levels of neuronal 

activation, during the last years, there is increasing evidence that modulator top–down effects 

might influence not only the average neuronal firing rates, but also the temporal structure of neural 

responses (Gruber et al., 1999; Fries et al., 2001). Therefore, the extensive experimental work, 

mainly done in the single neuron level, has emerged two hypotheses related to the possible 

underlying mechanisms of top down visual selective attention. These are the rate based mechanism 

and the most recent theory of neural synchronization. 

3.6.2.1  Rate-based mechanism of selection 

The most prevailing theory related with the rate-based mechanism, is referred to as biased 

competition (Moran & Desimone, 1985; Chelazzi et al., 1993) and has been inspired from the 

plethora of single-cell recordings mentioned previously that showed enhanced firing rates in 

neurons that represent the attended stimuli and suppressed firing rates of neurons encoding 

unattended stimuli. The basic principle of the biased competition theory is that behaviorally 
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relevant stimuli will receive an attentional bias reflected with an increase on their neural activity 

(and thus to gain priority in the visual cortex processing) whereas irrelevant stimuli will be filtered 

out due to coupled inhibitory interactions between them. Despite the fact that the rate based 

mechanism for selection seems to be convenient and plausible in the attentional process, it raises 

some questions related to the interference that might come up with the neural coding that is based 

on the firing rate. That is, supposing that there is information contained in the firing rate that has 

been initiated by a certain stimulus, then any modifications of those rates on the purpose of 

selection would seem to obstruct the broadcast of that information in other cortical regions. This 

problem can be resolved if another degree of freedom is considered, such as the level of 

synchronization among groups of neurons that represent a certain stimulus. More precisely, 

although the biased competition theory, in its original form was limited to studying rate effects (e.g. 

Deco & Rolls, 2005) it has recently examined neural synchronization and the possible interactions 

that may induce this phenomenon during attentional tasks (Buehlmann & Deco, 2008).  

3.6.2.2 Synchronization as a neuronal mechanism of selection 

The second more recent hypothesis related to the mechanisms of selection, places emphasis on the 

synchronization of neural activity during the process of attention. 

The theoretical basis for synchrony as a mechanism for attentional selection was originally 

proposed by Crick and Koch (1990). The basis of this theory is that neurons that correspond to the 

source of the attended information, will present an increase of synchrony between their 

corresponding spike trains. Crick and Koch (1990) suggested that visual selective attention 

functions in a way that there is a change in the temporal structure of the neural spike trains 

representing the source that is about to be selected. The latter suggestion possibly derives from the 

basic hypothesis that temporal patterns are necessary in order for synchronization to appear. The 

neural synchronization hypothesis was later on supported by many recent experiments showing that 

neurons selected by the attention mechanism have enhanced gamma-frequency synchronization 

(Gruber et al., 1999; Fries et al., 2001). More specifically, Fries et al. (2001) in a study of visual 

attention have recorded multi-unit activity and local field potentials (LFPs) in area V4 of monkeys 

while performing tasks of selective attention between behaviorally relevant visual stimuli and 

distracters. They showed an increase in high frequency (>35 Hz) synchronization, and a decrease of 

low frequency (<17 Hz) synchronization, when the monkeys attended the stimulus within the 

receptive field of the neuron in respect to the condition in which the monkey attended to a stimulus 

outside the recorded receptive field (figure 3-26).  
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Figure 3-26 A) Shows the two stimuli with the lower being the one that is placed within the receptive field of the 

neurons being recorded. The spike recording site is shown with the green square and the LFP recording site with 

the yellow square. B) Shows the firing rate in the two conditions (monkey attending on the stimulus inside the 

recorded receptive field – red line- and monkey attending on stimulus outside the recorded receptive field – blue 

line). C) Shows the respective power spectra. Image designed based on the data by Fries et al. (2001) 

 

Synchrony can be seen as a powerful selection mechanism considering that action potentials that 

arrive synchronously can increase the impact of the involved neurons on the postsynaptic targets 

(Azouz & Gray, 2003) and thus to have a greater effect at the next processing stage than do 

asynchronous action potentials. In addition, recent evidence has suggested that the coding of 

stimulus contrast in V1 involves synchronization (Henrie & Shapley, 2005) which is an important 

finding given that response synchronization is not limited by the saturation of neuronal spike rates 

at high contrasts. In this sense, spike rates which may be potentially limited by response saturation 

at high contrast can be avoided if attentional modulations are based on the coherence of neural 

population. Studies that emphasize the significant role of synchronization in the brain, have 

underlined the great importance that temporal structure of neuronal spike trains might have in terms 

of information processing and consequently have increased the interest in the scientific society 

around the role of temporal information in neural coding although this is still a controversial issue 

(see Deco & Rolls 2011, for a recent review).   

Nevertheless, if we consider that in (complex) nervous systems, behavior is influenced by internal 

cognitive or perceptive state of the animal combined with the immediate sensory input; temporal 

structures of spike trains could play a critical role in the binding of the involved cortical areas by 

conveying information through neural synchronization. In particular, cross-area synchrony may be 

a general mechanism for regulating information flow through the brain, since findings from MEG 

and fMRI studies in human subjects support this idea (e.g. Tallon-Baudry et al, 2005).  

Furthermore, cross–area synchrony has been investigated by many recent studies that emphasize 

the direct connection of top-down attention with neural synchronization (Niebur et al., 2002; Gross 
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et al., 2004). More specifically, Saalmann et al. (2007) performed neural recordings simultaneously 

from the posterior parietal cortex and an earlier area in the visual pathway (V4) of macaques 

monkeys while performing a visual matching task and they observed neural synchronization 

between these two regions in the case when the monkey selectively attended to a specific location. 

More recently, Gregoriou et al. (2009) have provided evidence for enhanced oscillatory coupling 

between area V4 and an area in the prefrontal cortex known as the frontal eye field (FEF) when 

attending a stimulus. Thus one can infer that parietal neurons which presumably represent neural 

activity of the endogenous goals can selectively increase neural synchronization in earlier sensory 

areas.  

3.6.2.2.1 How is synchrony induced? 

Two possible mechanisms prevail in the literature so far related with the mechanisms that can 

induce neural synchronization during the deployment of attention. The first mechanism is based on 

the assumption that lateral inhibitory interactions between networks of neurons can rearrange the 

timing of impulses and stimulate synchronous activity. The second possible mechanism is based on 

the common input hypothesis which implies that a neuronal population whose activity is to be 

selected is already identified, and the attentional mechanism can induce synchronization by sending 

simultaneous action potentials to all neurons in that population. These proposed mechanisms are 

mainly based on the neuron’s dynamics as well as on the relation between the excitatory and 

inhibitory input spikes (Salinas & Sejnowski, 2001).  

Cortical structures have a wide range of intrinsic mechanisms that could generate synchronous 

activity with the most plausible to be through inhibitory interneuron networks that can control the 

gain of spiking responses (Azouz & Gray, 2003; Tiesinga & Toups, 2005).  Inhibitory interneurons 

have been observed to connect between them with GABAergic inhibitory synapses and electrical 

gap junctions with the result to form networks (Galarreta & Hestrin, 2001) that contribute in the 

generation of synchronous gamma-frequency oscillations observed in the cortex (Deans et al., 

2001; Hormuzdi et al.,2001). Therefore inhibitory cells are considered as good candidates for 

mediating the effects of attention observed in cortical neurons by generating synchronized 

oscillations in the 20–40 Hz range.   

The second proposed mechanism on how synchronization is induced is mostly based on the 

contribution of the temporal information in neural processing. For example, it has been shown that 

neurons with overlapping receptive fields in the lateral geniculate nucleus, have extracted from 

their spike trains around 20% more information when the synchronous spikes were taken into 

account separately from the non-synchronous ones (Dan, et al 1998). Even more, in an example 

that is usually associated with the binding problem (i.e. how primitive features bind together to 

construct an object) Kreiter and Singer, (1996) stimulated the receptive fields of two visual neurons 
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in two conditions. In the first condition, a single object was presented within their receptive field 

and in the second two objects. In the second condition however, the neurons response evoked 

practically the same firing rates as in the first condition. The synchrony between these neurons 

reflected whether one or two stimuli were presented, even when the firing rates in both conditions 

did not vary. 

These examples show that, temporal information has significant contribution in sensory coding and 

therefore, if neurons are sensitive to correlations, it is possible to extract and integrate similar 

information from different sources, and convey this correlation in the network. In fact, the 

sensitivity of neurons in correlated inputs has been extensively studied and neurophysiologic 

evidence confirmed by computational implementations supported this notion (Binder & Powers 

2001; Galan, et al., 2006). 

In particular, in the study by de la Rocha et al., (2007) the spike train correlation coefficient of in 

vitro cortical unconnected pairs of neurons has been calculated when injected with levels of 

correlated fluctuating currents (that resemble synaptic activity) into their somata. The input current 

for example into one pair of neurons was defined by equation 3.1 below, in which the first term μi 

is the temporal average of the current. In the second term the weighting factors ξi are independent 

for each cell, while ξc is common to both cells (figure 3-27(a)). The input correlation coefficient c 

(0 ≤ c ≤ 1) is then responsible to set the degree of shared fluctuations whereas σi set the variance of 

the input current.  

𝐼𝑖 = 𝜇𝑖 + 𝜎𝑖(√1 − 𝑐𝜉𝑖(𝑡) + √𝑐𝜉𝑐(𝑡) eq.3.1.  

To quantify the output spike train correlation between two cells (e.g. n1 and n2), the correlation 

coefficient of the spike counts was computed, over a sliding window of length T as represented by 

equation 3.2. 

𝜌𝛵 =
𝐶𝑜𝑣(𝑛1,𝑛2)

�𝑉𝑎𝑟(𝑛1)𝑉𝑎𝑟(𝑛2)
 eq.3.2.  

     

𝐶𝑜𝑣  in eq 3.2 is the covariance between n1 and n2  while 𝑉𝑎𝑟  the variance. The correlation 

coefficient ρΤ is thus a dimensionless quantity that can range between 0 and 1 (0 corresponds to 

independent spike trains and 1 for fully correlated spike trains). Therefore, as can be seen in figure 

3-27(b) below, ρΤ increases with c and thus emphasizing the sensitivity of neurons when receiving 

correlated inputs.  
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Figure 3-27 A) The stimulation of pairs of neurons with common and independent components. B) A typical  ρΤ 

versus c curve as estimated from a pair of neurons according to de la Rocha et al (2007). 

 

The sensitivity in correlated activity observed in neurons however implies that neurons might be 

exquisitely sensitive to certain temporal input patterns and in particular to be sensitive to the arrival 

of spikes from two or more inputs within a short time window. This type of process which is 

defined as coincidence detection, in theory could be achieved by having neurons with a very short 

membrane time constant so that the membrane potential can change rapidly. Thus the post synaptic 

neuron could response best when two or more input spikes appear simultaneously rather with a 

time difference. In fact there is considerable experimental evidence signifying that under certain 

conditions, such as high background synaptic activity, neurons can function as coincidence 

detectors (Niebur & Koch, 1994; Destexhe et al., 1998; Kempter et al., 1998). 

More specifically, the main neurons found in several layers of the visual cortex are the Pyramidal 

cells and several recent studies about their function imply that these neurons respond best to 

coincident activation of multiple dendritic compartments. An interesting review about coincidence 

detection in pyramidal neurons can be seen in Spruston (2008) in which a variety of coincidence-

detection mechanisms based on observations of single-unit recordings in pyramidal neurons of 

anaesthetized and awake animals are commented. 

The two possible mechanisms explained in this section, although most probably have a combined 

contribution in the initialization of neural synchronization during attentional tasks; in the design of 

the computational model I have inherited the second mechanism mostly because it coincides with 

my personal thoughts. Even more, the complicated and large forward and feedback projections 

within each layer of the visual cortex could provide a more plausible anatomical basis for the 

second hypothesis. 

The neurophysiologic analysis presented in this chapter was significantly important for the progress 

of this research considering that it provided ideas and suggestions about the basic building elements 

of the computational implementation. The various hypotheses concerning the low level neural 

interactions and cortical networks interactions have been carefully studied and evaluated along with 
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numerous discussions with cognitive psychologists and neuroscientists before incorporating them 

in the computational model.  

Despite however the neurophysiologic guiding lines, another major source of inspiration for the 

design of the model came from a number of previous computational models presented by 

outstanding scientists in the field. A selection of visual selective attention computational models 

based on the influence they had on my research is presented in the next chapter.  
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4. Computational models of visual 

selective attention - A review 

In this chapter, the most important computational models of visual selective attention are presented. 

They are briefly explained and analyzed so that they are classified into four categories based on the 

purpose that each model was designed.  

In the literature there are also many other relevant computational models. The ones presented here 

have been selected according to their scientific impact as well as on their influence, mostly through 

inspiration and guidance towards the proposed model. A wider and extended review of 

computational models of visual selective attention can be found in Tsotsos et al. (2005).  

4.1 Models simulating behavioral data 

4.1.1 Corollary Discharge of Attention Movement model (Taylor & associates, 2000+)  

One assumption that is considered in the Corollary Discharge of Attention Movement (CODAM) 

model is that the mechanism of attention in the brain, functions in a manner analogous to a control 

system and therefore in the implementation a control engineering approach has been followed. The 

model in its initial form is composed of several modules on the basis of neurobiological theories of 

attention (Figure 4-1).The Input Module represents the neural activity at very early stages of visual 

hierarchy and it has its output directly connected to the Object Map, where the specific neural 

activity representing information is registered. The input module also activates the Goals Module 

which guides the top-down deployment of attention. An Inverse Model Controller is also included 

to generate an attention control signal for the amplification of the attended stimulus activity based 

on the activity in the goals module. The model also has a Working Memory (WM) buffer whose 

contents define what information is available for report as well as a Corollary Discharge buffer 

which uses a copy of the attention control signal to predict forthcoming input by pre-activating the 

buffer working memory site.  Finally, a Monitor Module provides a measure of the error occurring 

during an attention movement by comparing actual and desired attentional movements. The 

CODAM model was used for simulations of many behavioural experiments with more important 

the Posner benefit effect in vision (Taylor & Rogers, 2002) and the attentional blink phenomenon 

by Raymont, Shapiro and Arnell (1992) in Fragopanagos et al., 2005. 
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Figure 4-1 A schematic of the CODAM model (Taylor & Rogers 2002). 
 

In more detail, the GM is responsible for biasing the IMC either endogenously by receiving 

information from other sources in a top-down manner, or exogenously causing attention to be 

directed to new and more salient inputs of greater importance. The inverse model controller module 

causes amplification of the attended stimulus activity while reducing that of the distractors. This 

signal generated by the controller, responsible for changing the focus of attention, is applied in an 

alerting way to the early visual cortices which in a sense receive the neural activity caused from the 

input stimulus. A critical component of the CODAM model is the so-called “corollary discharge” 

or copy of the control signal. This term was originally introduced in Von Holst and Mittelstaedt 

(1950) to describe a copy of the occulo-motor control signal. This copy of the control signal is well 

known in control theory and it can lead both to speed-up and to increased accuracy in control 

systems. This copy is employed in the model in a way that it can reduce the effects from 

distractors, and to improve attention control by preventing errors in speeded response. The 

corollary discharge buffer is responsible for two main processes in the model. It allows the 

corollary discharge signal to give an early preparation to the working memory site as well as to 

activate any error signal if the goal set up earlier is not realized. Thus, it can be inferred that it acts 

as a crucial component in the prediction of forthcoming input to the buffer working memory site. 

The error monitor is used to generate an early error signal between the corollary discharge signal 

and the goals signal. Therefore, it is responsible for resolving conflict situations in a way that it 

allows attention to achieve its purpose, as well as to inhibit distractors from accessing the working 

memory site before the attended stimulus is reported.  

4.1.2 The Simultaneous Type/Serial Token model (ST2)-(Bowman and Wyble, 2007)  

The Simultaneous Type/Serial Token model is a neural network model that simulates the encoding 

of stimuli into working memory and it has been used to simulate successfully the attentional blink 

phenomenon. 
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The model is comprised by two processing stages for the neural activity that represents visual 

stimuli. A first stage of parallel visual processing combined with a serial second stage tied to 

Working Memory (WM) encoding. Furthermore, in order for the model to encode the visual 

stimuli, two factors named as “types” that provide information about the feature properties of an 

item and “tokens” to mark the occurrence of visual stimuli are used.  

In the ST2 model the first stage is responsible for extracting the visual features and to categorize 

semantically each incoming stimulus. The first stage allows parallel processing and thus provides 

the ability to concurrently process multiple items with little interference between them. In order for 

an item to obtain a more durable representation and thus to gain access to working memory, it has 

to make it through the second stage. Stage 2 can be considered as the entrance to WM, which in 

contrast to the first stage, it is constrained to sequential processing. These constrains according to 

the suggested methodology, arise because the system attempts to associate items with discrete 

episodic contexts. 

 
Figure 4-2 The schematic representation of the ST2 model by Bowman and Wyble (2007). 
 

Other components of the model that contribute in the overall process are the saliency filter, the 

transient attentional enhancement module and the binding pool as shown in Figure 4-2. The 

salience filter can be seen as the intermediate component between the first and the second stage 

since it is responsible for enhancing task-relevant items and thus enabling them to progress into the 

second stage. Additionally, the saliency filter ensures that task-irrelevant items do not reach Stage 

2. However, despite the amplification of the neural activity of a salient item by the salience filter, 

the authors of the model suggest an additional mechanism similar to the control signal suggested by 

the CODAM model. More specifically, when an item passes the salience filter in a strongly active 

form, a separate mechanism represented by the transient attentional enhancement will provide it a 

temporally brief, but spatially specific, enhancement. Thus, it will help the item to elevate across 
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the later levels of Stage 1 and subsequently to encode into WM. In this sense, the mechanism can 

be considered as exogenous in character, since it is activated by the occurrence of a salient 

environmental stimulus.  

Finally, perhaps the most important process in the model is the binding of the types with tokens. In 

particular, a dedicated pool of binding nodes is suggested in the model, which forms a self-

sustaining pattern of activity during encoding in order to store the coincidence of types and tokens. 

Thus, the binding pool satisfies the requirement that WM does not commit type representation 

space, and with this manner it allows a type to be processed even if it is already present in the 

memory set. 

4.1.3 The global workspace model, (Dehaene Sergent & Changeux 2003) 

Another interesting model is the Global Workspace Model (GWM) of Dehaene, Sergent and 

Changeux (2003).  This model is biologically detailed and anatomically prescribed and similarly 

with the previous models, was successfully used to reproduce the data of the attentional blink 

(Figure 4-3). 

 
Figure 4-3 Processing pathways in the neuronal global workspace model of conscious access. Image by Dehaene et 
al  (2003). 
 

The general functionality of the model is based on the competition between stimuli to engage a 

global workspace access. However, stimuli first need to pass through neural processing pathways 

that originate from early sensory regions to higher association areas of the temporal, parietal, 

frontal, and cingulated cortex. The authors suggest that when a stimulus accesses a sufficient 

number of workspace neurons, the activity of the neurons becomes self-sustained. Thus, it can be 

broadcasted via long-distance connections to different areas and create therefore a global and 

exclusive availability for a specific stimulus. At this point, the stimulus is considered as having 

reached consciousness.  Another important characteristic of the model is the inhibition that is 

exerted by neurons which process a stimulus that has accessed workspace towards other 
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surrounding workspace neurons, which makes the latter unavailable for processing other stimuli. 

The Global Workspace Model has no control signal to amplify neural activity. Instead, when 

intrinsic fluctuations are in phase with stimulus presentation, the total activation is enhanced. This 

results in biasing neurons of adjacent areas and therefore increasing the probability for the entire 

network to fall in a global active state. Furthermore, it is proposed in the models description that 

global activity can be more easily achieved when there is ‘‘resonance’’ between bottom-up sensory 

information and top-down signals.  

The previous models described in this section have been specifically selected for presentation 

because both of them try to simulate data from the “attentional blink” experiment by Raymont, 

Shapiro and Arnell (1992) which provides good justification and evaluation for any model. A 

simulation of this specific behavioural experiment was made by the proposed computational model 

and thus a comparison between the results of these models is feasible and will be presented in 

Chapter 6.1. 

4.1.4 Neural Theory of Visual Attention (Bundesen, Habekost, Kyllingsbæk 2005) 

 
The Neural Theory of Visual Attention NTVA is a neural interpretation of C. Bundesen’s (1990) 

theory of visual attention.  NTVA was used to account data from many attentional effects in human 

performance by simulating reaction times and error rates, as well as it was used to simulate effects 

observed in the firing rates of single cells in the primary visual cortex and thus according to the 

authors it provides a bridge between cognition and neurophysiology. 

In TVA, in order for an object to be encoded in the short term memory, it is necessary to have two 

characteristics. The first is for the object to have visual identification based on the category it 

belongs and the second to be selected from the attentional mechanism when presented in the visual 

field. According to the theory of visual attention, visual categorization of an object has the form 

“object x has feature i” or, equivalently, “object x belongs to category i”. When visual 

categorization of an object completes processing, then this object can enter the visual short term 

memory (if memory space for the object is available in VSTM). More precisely after the object 

identification, a race among objects in the visual field begins in order to become encoded into 

VSTM thus it can be inferred that the theory of visual attention is based on a two stage model. 

The way that each object is encoded according to NTVA is based on the central equation 4.1 below 

that calculates the total firing rate that each object will have based on its saliency.  

 𝑢(𝑥, 𝑖) = 𝜂(𝑥, 𝑖)𝛽𝑖
𝑤𝑥

∑ wzz∈S
 eq.4.1.  
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In eq 4.1, the rate at which a particular visual categorization, “x belongs to the category i”, is 

defined by 𝑢(𝑥, 𝑖) and as can be seen is given by the product of three terms. The first term, 𝜂(𝑥, 𝑖) 

corresponds to the strength of the sensory evidence that object x belongs to the category 𝑖. The 

second term 𝛽𝑖  is a perceptual decision bias associated with category i  which can be thought of as 

a factor indicating the contribution that a certain feature has in the classification of an object 

category and is bounded between 0 and 1, (0≤ 𝛽𝑖≥ 1); with zero being the minimum and one the 

maximum contribution. The third term is the relative attentional weight of the object x, (𝑤𝑥) in 

respect to the sum of weights across all objects in the visual field, (S), ∑ wzz∈S  and therefore gives 

a reflection of a filtering mechanism in the equation. Therefore, each object that will be presented 

in the visual field will have a calculated corresponding firing rate based on the parameters that are 

considered in eq 4.1 and based on their firing rate a race to access working memory begins.  

4.2 Models simulating visual saliency 

4.2.1 A Model of Saliency-Based Visual Attention for Rapid Scene Analysis (Itti ewt al., 

1998)) 

 
The model has been developed on the basis of a previous biologically plausible architecture 

proposed by Koch and Ullman (1985) which has been inspired from the so-called “feature 

integration theory,” by Treisman and Gelade (1980). More specific, selection in the model appears 

to be implemented in the form of a spatially circumscribed region of the visual field or more 

commonly known as the “focus of attention” and this attended region is selected based on 

theoretical background from neurophysiological studies.  

The idea behind the implementation of the model is based on a suggestion by Koch and Ullman 

(1985) that explains how visual input is first decomposed into a set of topographic feature maps 

and the visual field is divided into several spatial locations.  Each location then competes for 

saliency within each map and as a result, only the locations that appear to be more salient than their 

surrounding areas can persist and are further processed. Following the initial processing, all of the 

topographic feature maps feed, in a purely bottom-up manner, a master “saliency map,” which is 

responsible for coding individually and relatively with the combined saliency each location. Based 

on the coding of the master “saliency map,” a winner take all mechanism begins to process each 

location for performing shifts on the focus of attention as can be seen in Figure 4-4 below.  Klea
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Figure 4-4 A schematic Architecture of the proposed model by Itti et al. (1998) 

4.2.2 The Selective Tuning Model – Tsotsos 1990+ 

The Selective Tuning model (ST) was first described in Tsotsos (1990). In contrast with the 

previous model by Itti et al., selective tuning although is mainly a bottom up selection model of 

visual attention; task knowledge is able to bias the computations throughout the processing 

network. Thus the selective tuning can support both bottom-up and top –down modulations of 

attention. 

The visual processing architecture in the selective tuning model is proposed to be pyramidal in 

structure as can be seen in figure 4-5 below, were the feed-forward and feedback connections 

between the units of the network provide the ability to adjust the selection based on bottom up or 

top-down information. 
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Figure 4-5 The pyramidal architecture of the selective tuning mode (Tsotsos 1990+) 
 

The general functionality of this algorithm is mainly based on winner-take-all (WTA) processes 

between different layers of the visual hierarchy. WTA is a parallel algorithm for finding the 

maximum value in a set and is commonly used to simulate how a specific stimulus gains access 

into working memory. For example, when a stimulus is first applied to the input layer of the 

pyramid, it activates in a feed-forward manner all of the units within the pyramid to which it is 

connected (figure 4-5) that result in an inverted sub-pyramid of units and connections. The 

selection process is based on the importance of the content within a specific receptive filed of each 

layer, measured by the response strength of each processing unit. In other words, the strongest 

activation a unit has the more probable is for the specific unit to be selected. 

Therefore, the algorithm initially performs a WTA process across the entire visual field at the top 

layer, which means that the unit with the largest response in the top layer will be the global winner. 

In addition, the WTA can accept guidance for areas or stimulus qualities if there is top-down 

information related to a task; otherwise the algorithm operates independently and based on the 

salience of the input stimulus. 

Following the selection of the winner node (in the top-layer), the selection process goes steps back 

to previous layers by activating a hierarchy of WTA processes. More specifically, the global 

winner activates a WTA that operates only over its direct inputs and thus localizes the largest 

response between the units of the immediate previous layer within the top-level winning receptive 

field.  Next, all of the connections of the visual pyramid that do not contribute to the winner are 
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inhibited. This mechanism of selection and then inhibition of the un-attended receptive fields is 

then applied recursively through the pyramid. The end result is that from a globally strongest 

response, the focus of attention is concentrated and localized in the sensory field at the small 

receptive fields of the earliest levels.  

4.3 Algorithmic Models  

4.3.1 The Adaptive Resonance Theory (ART) – (Grossberg 1987+) 

Adaptive Resonance Theory (ART) is a theory that first has been developed in 1987 by Stephen 

Grossberg and Gail Carpenter, however an interesting description can be seen in Carpenter and 

Grossberg (2005). The basic target of this theory was to provide an explanation on how the brain 

processes information, however although ART is a general theory it can be applied in attentional 

tasks with a very interesting and plausible manner. 

 
Figure 4-6 The basic ART structure (Carpenterand & Grossberg, 1987). 
 

The ART system is an unsupervised learning model that consists of a comparison and a recognition 

field. Those fields are composed by neurons, a vigilance parameter, and a reset module. ART 

performs recognition of a visual stimulus by transforming it into an input vector (a one-dimensional 

array of values) and then connects it to its best match in the recognition field according to a 

comparison field. The best match is the single neuron whose set of weights (weight vector) most 

closely matches the input vector. In other words, if we assume that we are searching for a visual 

stimulus in the visual receptive field, then the recognition field would be an array of values that 

correspond to the information coming from top-down signals. Thus the neurons whose input vector 

has the best match with the recognition field will be selected in a top-down manner. Furthermore, 

in the ART algorithm, each recognition field neuron outputs a negative signal (proportional to that 

neuron’s quality of match to the input vector) to each of the other recognition field neurons and 

inhibits their output accordingly. This is a mechanism that reflects the possible competitive 

mechanisms of selective attention. 
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The vigilance parameter and the reset module are mostly responsible for training and producing 

memories. Vigilance parameter is responsible for producing memories which are relatively 

connected with the degree of vigilance. It is assumed that a memory of a certain stimulus will be 

retained with greater detail if that stimulus is accompanied with high vigilance compared to lower 

vigilance. For instance, an input stimulus will be represented by an input vector with an array of 

values.  After the input vector is classified through the comparison field, the reset module compares 

the strength of the recognition match to a vigilance parameter. If the vigilance threshold is met, 

training commences. Otherwise, if the match level does not meet the vigilance parameter, the firing 

recognition neuron is inhibited until a new input vector is applied. In other words, training 

commences only upon the completion of a search procedure since the recognition neurons are 

disabled one by one by the reset function until the vigilance parameter is satisfied by a recognition 

match. 

4.4 Modeling the underlying Neurobiology of Attention 

4.4.1 A model for the neuronal implementation of selective visual attention based on 

temporal correlation among neurons (Niebur & Koch 1994) 

The model proposed by Niebur and Koch (1994) has been developed in order to simulate the 

possible neural mechanisms behind selective visual attention based on the temporal correlation 

among groups of neurons. This theory fits relatively well with the recent findings that support the 

importance of synchronization as a selective mechanism, mainly due to the emphasis they place on 

the temporal information contained in an incoming stimulus. 

The basic architecture of the model is shown in Figure 4-7 in which the interaction between the two 

cortical areas in the hierarchy of visual cortical processing is presented. The theory behind the 

model is based on the assumption that visual areas V2 and V4 are among the first areas of the 

visual cortex that have shown to be subjected to attentional modulations. Actually, recent 

neurophyiological research as it was mention in the previous chapter has shown activity in area V4 

to be strongly and systematically modified by selective attention. Despite the fact that area V4 

receives direct input from V1, the model considers the major input to be from area V2 because the 

former projection is limited to the central field representations.  
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Figure 4-7 The Architecture of the proposed model by Niebur and Koch (1994) 
 

More specifically, as it has been explained in the previous chapter, input from the two-dimensional 

retina is fed via the lateral geniculate nucleus (LGN) and V1 into area V2. Thus it can be inferred 

that the initial attentional modulation originating in the saliency map has already been applied to 

the neural activity before entering area V2 as can be seen in Figure 4-8 below.  

 

 
Figure 4-8 The modulation of the early neural activity before entering area V2. In the proposed model, the output 
from V2 projects into neuronal "stacks" in V4, where it excites pyramidal cells as well as inhibitory interneurons. 
These V4 interneurons, in turn, inhibit the pyramidal cells of opposing feature selectivity and thus contribute in 
the general mechanism of selection. 
 
The receptive fields of V2 cells are represented in figure 4.7 by overlapping circles and specifically 

white and gray circles represent cells that are tuned to two different features. The two black circles 

correspond to the receptive fields of the V4 cells. That is a V4 cell will receive input from all V2 

cells that appear within its corresponding black circle. Finally, the shaded unfilled circle in the 

figure represents the focus of attention. That is all V2 cells inside the circle are subjected to 

temporal modulation by the saliency map (SM), but without changing the average firing rate of 

those cells. With this manner they provide a plausible way to use the temporal parameters 
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contained in the V2 cells neural activity and to induce synchronization in the following stage of 

processing which would be in area V4 of the visual cortex.  

This model was one of the first models that have been developed based on the hypothesis by Crick 

and Koch (1990) which suggested that visual attention at the single cell level manifests itself via 

“temporal tagging” in order to generate correlated neural activity. Indeed the architecture of the 

model by Niebur and Koch (1994) brought in the surface some possible mechanisms that can 

induce neural synchronization that have been considered in future models, including the proposed 

computational model presented in this thesis. Therefore in the next chapter some fundamental 

operations of this model that have been inherited with some modifications in the proposed model 

will be analyzed in more detail in the next chapter. 

4.4.2 The Biased Competition model- Desimone and Duncan (1995) 

The “biased competition model” is a very influential model in the attention mainly because it has 

been supported by a significant body of behavioural and neurophysiological experimental evidence. 

The key idea behind the model relies on the fact that neural processing is in general competitive 

among the brain systems responding to sensory input. Indeed, neurophysiological evidence as 

explained in chapter 4 emphasize that stimuli presented in the visual field will participate in a form 

of competition in order to “win” the shared attentional resources and access WM. Sustained signals 

from task context act to bias competition in the model, so that the stimulus relevant to the current 

task or behaviour will have more potentials to “win” the race to WM. The mechanisms for biasing 

a specific stimulus or the top-down modulations are suggested to arise from feedback connections 

between working memory and prefrontal cortex. Finally, according to the model, competition 

especially in object – based attention is integrated between one brain system and another. Therefore 

in the case that different objects are activating the same neurons and because the tendency is for the 

same object to assume dominance throughout the network, then due to the couple interactions, 

these neurons will be mutually suppressed.    

More precisely, the model assumes that when two stimuli appear within the visual field, at some 

stage of visual processing will activate separate populations of neurons. If these two stimuli 

however appear close to each other, their neural response will converge to a common input neuron 

in a subsequent stage of cortical processing. In their model Desimore and Duncan (1995) assume 

that each input population will provide both excitatory and inhibitory signals to the output neuron 

through inhibitory interneurons. Thus, the response of the output neuron will depend on the 

corresponding excitatory and inhibitory input ratio and specifically its selectivity to a specific 

source will be based on the corresponding projection between the two inputs. In other words, the 

stimulus that will send proportionally more excitatory signals to the output neuron will elicit 

stronger response and thus define the selectivity neural path. 
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Figure 4-9 A simple connectivity representation for the biased competition model. Figure adapted by Reynolds et 
al (1999). 
 

For example, Figure 4-9 shows the excitatory and inhibitory inputs initiated by two different 

stimuli (vertical and horizontal bar) from separate cells in the visual cortex (i.e. neurons in area V2) 

and mathematically expressed by eq.4.2 below. E is the total excitatory input and I the total 

inhibitory input, while 𝑋1,𝑋2 correspond to the responses from the two cells.  Wi
+ and Wi

- represent 

the corresponding excitatory and inhibitory weights. 

 

 
 𝐸 = 𝑋1𝑊1

+ + 𝑋2𝑊2
+,  𝐼 = 𝑋1𝑊1

− + 𝑋2𝑊2
− 

  
eq.4.2.  

The response of the output neuron y, it is then described by the basic equation that governs the 

neural response in the model (eq.4.3) in which y is the stimulus neural response, B the maximum 

response, E the total excitatory input, I the total inhibitory input and A reflects a passive decay.  

 𝑑𝑦
𝑑𝑡

= (𝐵 − 𝑦)𝐸 − 𝑦𝐼 − 𝐴𝑦 
eq.4.3.  

 

4.4.3 Setting the path towards the proposed model 

As noted in the introduction of the Chapter, the computational models that had been presented were 

the primary source of inspiration and guidance in designing the basic framework of the proposed 

model. Each of the presented categories corresponds to computational models that focus on specific 

research fields, like for instance the simulations of reaction times and error rates measured from 

behavioral experiments, or the effects observed in the firing rates of single cells in the primary 

visual cortex. 

However, it is equally important to give emphasis on computational models that link these two 

fields of research and thus to provide mathematical frameworks that bridge cognition and 

neurophysiology. In line with this, the proposed computational model, as has been briefly 
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mentioned in Chapter 2, combines symbolic with sub-symbolic modeling that gives the potential to 

connect these specialized research fields, and hence to provide a new perspective in the research of 

selective attention. Therefore, one main difference and distinction that the proposed computational 

model has, compared to the majority of the models presented here, is that it is focused on the 

simulation of behavioral experimental data and at the same time it operates according to theories 

about neural mechanisms on the single neuron level. The global workspace model of Dehaene et 

al., (2003) and the model behind the neural theory of visual selective attention by Bundesen et al., 

(2005) are also models that bridge the two fields of research, however there are several differences 

in their overall operation compared to the proposed computational model as will be explained in 

the following chapter.   

More specifically, the proposed model received influences from the global workspace model 

(Dehaene et al., 2003) and the model of Niebur and Koch (1994) concerning the mechanisms that 

induce neural synchronization and from the biased competition framework (Desimone & Duncan, 

1995) about the competitive interactions among incoming stimuli. In fact, the combination and 

conjunction of these theories can provide a very optimistic view about the possible brain 

mechanisms that underlie selective attention and built the foundations for the proposed 

implementation as will be analyzed in the following chapter.  

 

 

Klea
nth

is 
Neo

kle
ou

s



Computational Modeling of Visual Selective Attention 
 

 

Kleanthis Neokleous PhD Thesis, May 2011 Page 80 
 
 

5. The proposed computational 

model of visual selective attention 

The proposed computational model was built through an appropriate system of dynamical 

equations that were mostly implemented and simulated with the MATLAB/SIMULINK 

environment. This is a specialized programming platform for multi-domain simulations and model-

based design of dynamical systems. SIMULINK provides a powerful and versatile interactive 

graphical environment that allows not only the implementation of time-varying systems, but also 

the observation of the system dynamics in a very comprehensive manner.  

The proposed attentional system has many coupling signal interactions from multiple sources; 

therefore it is important to visually observe each phase and component while manipulating 

parameters of the model. SIMULINK offers such simulation capabilities. A theoretical and 

mathematical representation of the model is given in this Chapter, while the SIMULINK model and 

its various components with the underlying programming code are presented in Appendix A. 

The methodology that has been followed to effectively implement the computational model was 

based on a recurrent process. Initially the model was designed according to the neurophysiological 

information about the low level neural interactions and after that; its performance was evaluated on 

the basis of several known behavioral experimental data. During the evaluation stage, any strange 

results or simulation predictions were re-examined through the design and execution of new 

behavioral experiments. The corresponding experimental data were then used for new 

modifications and detail corrections on the parameters of the model. This procedure was repeated 

until the credibility of the model’s behavior was substantially confirmed. More specifically, four 

undergraduate and two graduate students (see Appendix C) have dedicated their diploma theses in 

the design and execution of behavioral experiments related with selective attention guided from the 

computational simulations. 

Next the model was used for simulations of behavioral experiments that had immense impact in the 

scientific literature with the main objective to resolve any disagreements that these experiments 

have brought in the surface. The behavioral experiments that were used for simulations are placed 

under two main categories of visual attention tasks. The first category refers to tasks in which the 

deployment of attention is focused on the temporal appearance of visual stimuli, with a typical 

methodology frequently used in these tasks to be the rapid serial visual presentation (RSVP). RSVP 

is a method of displaying a sequence of visual stimuli in rapid succession at the same location 

(Figure 5-1), with one of the most famous attention related tasks of this tactic to be the attentional 
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blink paradigm by Raymond, Shapiro and Arnell (1992). This is a well-established experiment 

frequently referred in the attention literature. The AB was simulated through the proposed 

computational model, and the findings will be explained in more detail at the following chapter. 

The RSVP methodology is also used in attentional tasks that examine the influence of visual 

masking. Visual masking refers to the reduction or elimination of a specific stimulus (i.e. the 

target) visibility, when presented in a brief temporal window (~100ms) by the presentation of a 

second brief stimulus, called the “mask” and it can be either forward or backward depending on 

whether the mask precedes or follows the stimulus (Moore, 1998). Visual masking is an interesting 

technique introduced at the end of the 19th and beginning of the 20th century but extensively 

studied since then, for exploring the dynamics of visual information processing (Breitmeyer and 

Öğmen, 2006) and in particularly the relation between attention and perception.  This is a research 

area that my thesis is also to some extent involved with.  

The second category of attentional tasks refers to the presentation of multiple stimuli 

simultaneously in separated spatial locations of the visual field. One such behavioral experiment is 

the perceptual load task by Lavie (1995) whose findings were as well deeply analyzed in 

accordance to simulations from the proposed computational model. 

 
Figure 5-1 The RSVP and spatial attention tasks 

 

In the following sections, a separate analysis is given on the basis of two sub-models, defined as 

the RSVP model and the spatial attention model. The justification for this comes mostly for the 

reason that the competitive interactions among stimuli at the neuronal level, occur relatively with 

the time that each stimulus is presented in every task. For example, in the RSVP tasks the 

competitive interactions between presented stimuli occur at different time windows since, (at least 

in the experiments that are studied in this report) only one stimulus appears at the same spatial 

location at any time instant (see figure 5-1.a). On the second category, the competitive interactions 

occur simultaneously and in parallel among each presented stimulus since multiple stimuli appear 

at different spatial locations, yet in the same temporal window.  
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Therefore even though a separate analysis is given, it is pointed that the proposed model is a system 

having a coherent structure and its operational units follow the same principles. 

Separate modules however, in the proposed implementation should have been included in the cases 

where the requirements of the tasks where different. For example, if it was instructed by the task to 

identify and response a spatial location (spatial attention), a different pathway should have been 

integrated than in the case where the task demanded to response on a specific target (object 

attention) as this is explained on section 3.2.  

The RSVP tasks that are considered and studied computationally with the proposed model do not 

involve spatial attention since every stimulus appears at the same location on the computer screen. 

However, in the behavioral task of perceptual load theory (see section 6.2), although it is instructed 

to identify and response towards a certain target, thus concerning object attention and neural 

interactions in the dorsal pathway, spatial interactions are also involved. Nevertheless, these spatial 

interactions are due to spatial cues that appear before the presentation of the visual stimuli and thus 

interact with the neural processing at very early stages of the visual pathway (e.g. in area V1) 

where the two pathways (dorsal and ventral) interact and communicate. Therefore although it 

would have been more realistic to include different modules for spatial and object attentional 

interactions, a simplified model is presented, given that the spatial interactions occur in a common 

visual area that is part of the neural pathway in the proposed model.  

5.1 An overview of the proposed computational model  
The structure of the model relies on previous literature about the neurophysiology of visual 

selective attention (Figure 5.2). The model involves two stages of processing implemented through 

spiking neural networks (SNN). The first stage simulates the initial bottom-up competitive neural 

interactions among visual stimuli, while the second stage involves top-down semantic modulations 

of neural activity. During the progression of neural activity through the two stages of processing, 

the encoded stimuli compete for access to working memory (WM) through forward, backward, and 

lateral inhibitory interactions which modulate the strength of their neural response. This 

implementation is based on the biased competition framework (Moran & Desimone, 1985) and on 

neurophysiologic findings showing that competition for neural representation in visual areas V1 

and V2 is initiated when two or more stimuli fall within the receptive fields of the same or nearby 

cells (Reynolds & Desimone, 1999; Reynolds & Chelazzi, 2004- see Chapter 4). The first stage of 

the model corresponds to the early visual areas at the occipital regions of the brain (e.g., V1, V2) 

and the second stage of processing reflects the interaction between higher areas within the visual 

cortex accompanied with a fronto-parietal network responsible for maintaining goal-directed 

activity (e.g. Corbetta & Shullman, 2002; Posner & Rothbart, 2007).The interaction between these 
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two systems in the model produces enhancement and synchronization of neural activity that leads 

to the selection of a particular stimulus for further processing. 

5.1.1 RSVP model 

In the RSVP tasks, each incoming stimulus will receive inhibition from the stimuli that appeared 

before as well as by those that follow. This assumption is consistent with several studies of single 

cell recordings (Rolls et al., 1999; Keysers & Perrett, 2002) that show the effect of visual masking 

on the firing rate of neurons in the temporal cortex of monkeys. Thus, competition between the 

RSVP items, represented by backward and forward inhibition, will have the first impact on each of 

the neural responses in this model configuration. Even more, forward and backward masking in the 

proposed computational model, is intensified by a reverberatory activity between the first and 

second stage of processing. More specifically, these loops of neural activity between the two stages 

may indirectly interact with the processing of stimuli that appear in the visual field within different 

temporal windows (see Figure 5-2). 

 
Figure 5-2 Diagram of the RSVP proposed computational model. 

5.1.1.1 First stage of processing 

The initial representations of stimuli that enter the visual field are created in the model on the basis 

of a saliency map. The manipulation of visual activity by means of a saliency map in the early 

stages of visual processing is supported by the finding that in the primary visual cortex and 

specifically in area V1, a neuron’s response can be significantly suppressed by contextual inputs 

that lie outside but near its receptive field (Nothdurft, et al., 1999; Wachtler et al., 2003; Shibata et 
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al, 2008).  In the model, a saliency map that was originally proposed by Koch and Ullman (1985) 

as a neuromorphic vision algorithm has been adopted. This algorithm was implemented by Walther 

and Koch (2006) into a Matlab toolbox (Saliency Toolbox - http://www.saliencytoolbox.net) which 

can be used to produce saliency values for every spatial location in the visual field. These values 

are used by the model to establish the initial firing rates of the neurons that correspond to visual 

stimuli (see section 5.3.1.1). 

However, it should be noted that the importance of saliency in visual perception is a debated issue. 

On one hand, salient but irrelevant stimuli have been shown to automatically capture attention 

(Crick & Koch, 1990). On the other hand, in their recent review, Corbetta et al., (2008) claim that 

the behavioural relevance of a stimulus is more important than saliency for the activation of ventral 

frontoparietal network that is responsible for stimulus-driven attention. Cobetta et al., (2008) argue 

that exogenous orienting (i.e., orienting towards salient but non-relevant stimuli) activates a dorsal 

frontoparietal network that is involved in goal-directed attention.   

Nevertheless, the use of saliency values to generate the initial representation of each incoming 

stimulus in the model is based on the assumption that different factors (at different levels in the 

visual hierarchy) may contribute to the saliency of a stimulus. For example, luminance contrast 

appears to be the initial variable on which saliency computation is based, since it is the first type of 

information extracted by our visual system in the retina (VanRullen, 2003). In higher levels of 

processing in the visual cortex, other feature dimensions such as orientation, color and motion are 

encoded and thus contribute to the visual saliency of a stimulus. At even higher levels in the visual 

pathway, “features” with increased level of complexity (e.g., semantic contrast) may influence 

visual saliency. VanRullen (2003) suggested that each level in the visual hierarchy processing 

builds its receptive field selectiveness based on the output of the preceding layers (Chelazzi, et al, 

1993).  

Thus, although the receptive fields of neurons in the higher layers of the visual pathway will be 

activated based on top-down activity; information about local contrasts from all previous layers is 

still maintained and should therefore be included in the computations.  

The second stage of processing explained in the next section, accounts for the influence of top-

down goals to neural activity when these are relevant to the task. Otherwise it simply behaves as an 

extension of the neural path towards working memory. However, the distinction in two stages of 

processing does not eliminate the possibility of having both bottom up and top down mechanisms 

to interact. In fact in several occasions in which perceptual cues are involved in attentional tasks 

the two systems operate simultaneously as will be presented in the detailed analysis that follows.  
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5.1.1.2 Second stage of processing 

The neuroscientific literature and especially studies using single cell recordings (Chapter 4) have 

shown that the neural activity in the area V4 receives influence from top-down activity (Moran and 

Desimone, 1985; Fries et al., 2001; Reynolds & Desimone, 2003). Top-down signals in the second 

stage, are assumed to transfer information about the semantics of each stimulus, therefore, this 

level of processing handles the coupling interactions between the neural activity that represents 

visual stimuli and the activity that maintains semantic information.   

Top-down interactions in the second stage of processing have been implemented in a way that can 

produce both neural amplification and neural synchronization as suggested by recent scientific 

evidence (e.g. Fries et al., 2001; Gregoriou et al., 2009). For example, attention will enhance the 

firing rates of the attended stimuli neurons and suppress the firing rates of neurons that encode 

unattended stimuli; while at the same time will force them to operate in a more synchronous 

rhythm.  

More specifically, similar with the interference model of Isaak et al. (1999), in the presented model 

templates that contain features of targets are created and used for evaluating any visual input. These 

target representations are maintained in the endogenous goals module (Figure 5.2) and recalled 

when tasks demand it. More precisely, following the neural interactions of the first stage of 

processing, the spike trains that correspond to any incoming stimuli will pass through a “temporal 

filter” that reorganizes their spikes appearance without however altering their average firing rate. 

This mechanism is implemented in the model according to a pre-defined probability that reflects 

the degree of resemblance between the features of any incoming stimulus and those of a target. 

Thus only the spike train patterns of a stimulus that shares features with the target will change 

significantly and become closer to the distinct spike train pattern that maintains the semantic 

representation of the target. The temporal filter mechanism in the model is inspired by Crick and 

Koch (1990) who suggested that the selection of stimuli could be made on the basis of synchrony 

across neurons. Crick and Koch (1990) also claimed that visual selective attention could function in 

a way that it causes changes to the temporal structure of the neural spike trains that represent 

information to be selected and suggested that these temporal changes are a prerequisite for the 

presence of neural synchronization. This procedure modulates the timing of spikes within the spike 

train while the firing rate of the spike train remains unchanged.  

After the temporal filter manipulation, neural activity is conveyed in the neural network layers of 

the second stage where semantic top down signals begin to exert their influence. The manipulation 

of neural activity in higher areas of the visual cortex by endogenous signals has been given great 

emphasis by many scientists as indicated by the great number of theories that exist on this topic. 

For instance, the Resonance Theory proposed by Grossberg (1999) claims that temporal patterning 

of neural activity could be ideally suited to achieve the matching of top-down predictions with 
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bottom-up inputs.  Furthermore, in their Global Workspace model, Dehaene et al. (2003) suggested 

that global neural activity that represents the attended stimulus can be achieved more easily when 

there is ‘‘resonance’’ between bottom-up sensory information and top-down signals.   In fact, 

several experimental studies that document the synchronization between cortical areas involved in 

top-down processing and early areas of the visual cortex are well-suited with many of those 

predictions and theories. For example, Engel et al. (2001) in their report argued that top–down 

effects which induce particular patterns of subthreshold fluctuations in the dendrites of a target 

population could be “compared” with temporal patterns arising from peripheral inputs. Along the 

same lines, Womelsdorf et al. (2007) suggested that synchronization of neural activity could be 

generalized as the “handshaking” between cognitive top-down control and the matching sensory 

bottom-up information.  

In line with the above suggestions, a correlation control module (CCM) composed primarily of 

coincidence detection neurons is included in the model. Coincidence detection (CD) is a very 

simplified model of neuron whose output response depends on the number of synchronous or very 

temporally close action potentials that appear at its input (see section 5.2.3). The CCM is 

responsible for evaluating the correlation between the neural activity of encoded stimuli and the 

activity that represents the top-down signals that maintain the properties of the target in a given 

behavioral context (i.e., endogenous goals possibly held in prefrontal cortical areas). Based on the 

degree of correlation, a control signal will be generated for the amplification of the corresponding 

neural activity.  

More specifically, the strength of the control signal can have many variations, mainly based on the 

total firing of the CD neurons of the CCM. That is, if two signals are correlated then the CD 

neurons will fire more frequently and will consequently elicit a stronger control signal. 

Furthermore, an increase in the degree of correlation will generate synchronization of neural 

activity in the spiking neural network (SNN) of the second stage of processing. A strong correlation 

between an incoming stimulus and the endogenous signals will result in a gradual increase of 

synchronous firing by the CD neurons.  
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Figure 5-3 The different modules that interact in the second stage of processing 

 

The implementation of the CCM in the model was inspired by what is currently known about the 

functional role of pyramidal cells, the main neurons found in the visual cortex. The pyramidal 

neurons have one large dendrite that branches upward into the higher layers of the cortex, as well 

as an axon which may be long enough to reach distant areas of the brain. Pyramidal neurons have 

been observed to respond best to the coincident activation of multiple dendritic compartments 

(Spruston, 2008). Therefore a network of CD neurons may function as a mechanism that controls 

the correlation between two streams of information that originate from different cortical areas. 

Based on that, the CCM may be cited in anatomical locations where interaction between top-down 

signals and bottom up sensory information has been observed. More specifically, spontaneous 

activity that is correlated with both networks has been observed in regions of the prefrontal cortex 

which poses as a possible site for the CCM in the brain (Fox et al., 2006). In addition, several 

studies have provided evidence for the interaction between signals containing sensory information 

in visual area V4 and signals of behavioral context (e.g., Treue, 2003; Reynolds and Desimone, 

2003; Ogawa and Komatsu, 2004).  The visual area V4 fits nicely with this model implementation 

as a possible cortical location for the existence of the CCM. 

Finally, following the modulation of neural activity by top-down goals, the neural path leads to the 

working memory network. The working memory network will output a signal indicating perceptual 

awareness of an incoming stimulus if its neural activity is sufficient to activate the working 

memory nodes. The same working memory signal however, will act in an inhibitory manner 

towards any newly generated signals from the Correlation Control Module during that time 

window. This inhibitory process is necessary for preventing multiple stimuli entering working 

memory while it is still occupied. 
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However, the use of a separate controller in the model such as the CCM and the interaction of an 

inhibitory signal from the working memory network are two concepts that need to be discussed in 

more detail.  

Both proposed mechanisms are inspired by a number of studies that concentrate on the 

chronometric analysis of the electric activity in the human cortex. 

In fact, improved algorithms and techniques that have been developed during the recent years for 

filtering, analyzing and distinguishing brain signals while human subjects perform attentional tasks 

have contributed significantly in the understanding of possible attentional neural interactions.  

Especially through EEG and MEG techniques that can provide a very detailed temporal analysis, it 

was possible to identify and categorizy several event- related potentials related to attentional tasks. 

Event-related potentials (ERPs) are signals that measure the electrical activity of neuronal firing 

in the brain that is generated upon an event such as the presentation of a stimulus. Over the years a 

number of ERP components related to attention have been identified in the literature and became 

even clearer with the use of MEG (Ioannides & Taylor, 2003).  

The first distinguishable physiological signals are observed around 80-150ms post stimulus and are 

referred to as the P1/N1 signals. Several ERP studies have shown that stimuli at attended locations 

elicit greater positive (P1 at 80-130 ms) and negative (N1 at 150-200 ms) components over the 

posterior scalp compared to stimuli at unattended locations (e.g.  Hillyard & Anllo-Vento, 1998, 

Luck & Hillyard, 2000).  

The second group of distinguishable signals corresponds to the P2/N2 signals that appear at about 

180-240 ms post-stimulus. The N2 in particular is a negative-going wave that peaks 200-350ms 

post-stimulus and is found primarily over anterior scalp sites (Folstein & Van Petten, 2008). More 

relevant however with selective attention has been found to be an ERP component in the time range 

of the N2 family components, labeled “N2pc” (N2- posterior-contralateral). In fact, several studies 

have pointed a strong correlation of the N2pc component with selective attention and specifically 

indicated that it reflects the allocation of attention (e.g Luck, et al., 1997; Luck 2005). Therefore, it 

has been proposed by several scientists as the control signal for the movement of attention (Hopf et 

al., 2000, Taylor 2002).  

The N2pc component has been demonstrated to occur when attending to visual features and 

semantic features as well (Eimer, 1996, Luck and Hillyard, 2000), while MEG has been used to 

localize the N2pc primarily to lateral extrastriate cortex and inferotemporal visual areas, such as 

V4. Therefore the control signal of the CCM in the proposed model can be justified on the basis of 

the N2pc component.  

Another important ERP is the P300 component which is observed at about 350–600 ms post 

stimulus and is taken to be an index of the availability for report or an indication of perceptual 
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awareness for the stimulus that triggered it (Kok 2001, Linden 2005). Thus, access to the working 

memory sensory site is expected to occur in that specific time window.  

If we now consider the different temporal windows that these attention related ERPs have been 

identified, especially in accordance to RSVP tasks (that rely on brief stimuli presentation and 

therefore the time to process each stimulus by the working memory is critical and limited), then 

some interesting hypotheses can be inferred.  

For example, in the case that two targets appear among distracters in a RSVP task (see section 6.1 

for a more detail description of a relevant task) and the second in line target is not perceived, the 

corresponding P1/N1 components were still obtained even though the N2pc and P300 were not 

seen (Sergent et al., 2005). The N2pc component of the second target however, it is only 

suppressed when it falls within the temporal window of the P300 signal from the first target. In line 

with the latter evidence, one can infer that the P300 signal initiated by the first target, interacted 

with the N2pc component of the second target. More precisely, this is a mechanism that has been 

suggested to offer a protective prevention of any other stimulus getting through and interfering with 

the processing of the first target until a sufficient level of its activity has been reached 

(Fragopanagos et al 2005). 

Therefore, the inhibitory signal from the working memory network which is used in the proposed 

implementation for the same purpose as in the latter hypothesis can be justified based on the 

electrophysiological evidence described here. 

A possible relation between the ERPs explained here and the model RSVP implementation is 

shown in Figure 5-4.   

 

 
Figure 5-4 A possible relation between ERPs and the RSVP model implementation 
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5.1.2 The spatial attention model 

The spatial attention model is very similar to the RSVP model, having some minor operational 

differences due to the nature of the tasks that the two models are designed to simulate. For 

example, forward and backward masking interaction does not influence the overall processing in 

the spatial attention model, since in strictly spatial attention tasks, usually all stimuli appear 

simultaneously. The spatial attention model however, utilizes lateral inhibition between neurons 

whose receptive field corresponds to separate spatial locations of the visual field. A graphical 

representation of the spatial attention model is depicted in Figure 5-5. 

 
Figure 5-5 Spatial attention model schematic representation 

 

Another important feature that is incorporated in both models concerns the way that perceptual 

cues influence the initial firing rate generated by the input neurons. For instance, in the spatial 

attention model, the top-down spatial factors (e.g., when cues are used to prime the spatial location 

of an upcoming stimulus) are allowed to exert their influence in the first stage of processing. This is 

compatible with the findings from several studies documenting that cues may increase the neural 

activity of neurons that correspond to visual stimuli immediately after the presentation of a 

stimulus, or even before the onset of the stimuli (e.g., Gandhi et al., 1999; Shibata et al., 2008; 

Silver et al., 2007).  

Similarly in the RSVP model, temporal cues that prepare participants to anticipate a shortly 

appearing target can interfere with the initialization of the initial firing rate. In other words, a 

stimulus that appears in the time window immediately after the temporal cue, will receive an 

additional bias from the top down signals that interact during that time. 

Perceptual cues interact in the model again through a coincidence detector network (CDN) 

module, similar in the implementation as the correlation control module (CCM) of the second 

stage of processing.  
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In the following sections, the basic computational units of the proposed computational model are 

first presented and then the overall neural network functionality based on the different modules 

involved is analyzed in detail. 

5.2 Mathematical formulations of the proposed model units  

5.2.1 Integrate and fire neuron models 

The basic computational units used in the implementation are the “integrate and fire (I &F)” model 

of neurons, and the choice to design the model based on I&F neurons was made according to some 

thoughts. First, I believe that the level of modeling should be relevant with the level of the 

questions that one tries to address. For instance more realistic models of neurons with detailed 

biophysical restrictions such as the Hodgin & Huxley (H&H) neurons would not be appropriate for 

this study, given that the main goal is to explain behavioral data through computational 

simulations. However, H&H neurons would have been more appropriate in studies that try to 

explain the dynamics of neural communication in the molecular level.  

Another point that guided me into developing the model on the basis of I&F neurons concerns the 

dynamics of the I&F fire neurons, which can offer a proper level of description of the biological 

neurons dynamics in a very simplified manner and therefore one can experiment with realistic time 

scales and firing rates of spike trains that are the carriers of information in the brain. Therefore the 

capability to derive potential hypothesis about cognitive processes exists. 

Furthermore, the non-linearity of the I&F neurons threshold can make the system sensitive to 

different spiking events and synaptic time courses and thus to be able to observe changes in the 

response of the system with minimum interactions (e.g. see section 6.3 where top down 

interference on very low neural activity was behaviorally relevant).   

Finally, with the I&F implementation, one can easily incorporate  noise due to the randomness of 

the neural spiking inherent by changing the threshold level or the resting potential after a spike 

occurrence, thus having more realistic simulations. More specifically, noise was incorporated in the 

experimental simulations of the attentional blink phenomenon (section 6.1). 

 

A mathematical representation of the membrane potential dynamics of a neuron according to the 

I&F model is given in equation 5.1 

 𝜏𝑚
𝑑𝑉
𝑑𝑡

= 𝐸𝑙𝑒𝑎𝑘 − 𝑉(𝑡) + 𝑅𝑚𝐼𝑠(𝑡) eq.5.1.  

Where V is the membrane potential of each neuron,  τm is the membrane time constant, and  ELeak 

is the resting potential of the membrane. The membrane potential can be seen as a measure of the 

extent to which a node is excited.  𝐼𝑠(𝑡)  represents the total synaptic current and is a simple 

combination of pre-synaptic excitation and bias currents that increase the membrane potential, as 
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well as inhibition currents that reduce the membrane potential of the node. The total summation of 

the excitatory and inhibitory currents influences the actual membrane potential at each time 

instance. Finally, Rm is the membrane resistance of the neuron.  

In brief, eq.5.1 determines how the membrane potential V of each neuron develops over time after 

an input current Is  is applied. The value of the membrane potential increases until it reaches a 

specific threshold (Vth) at which a spike is emitted and V resets to its initial condition or resting 

potential Vreset. Subsequently, a refractory period is applied before the neuron model is allowed to 

integrate any pre-synaptic currents again.  

The sequence of output action potentials from a neuron (i) is defined as the neuron’s output spike 

train and it is expressed by y(t)i.  

5.2.2 Synaptic currents 

The  term Is(t) in eq. 5.1, quantifies the synaptic currents that are mediated by the excitatory 

receptors AMPA and NMDA (activated by glutamate, gAMPA and gNMDA) and the inhibitory receptor 

GABAA and GABAB.  

 𝐼𝑠(𝑡) = (𝐼𝐴𝑀𝑃𝐴(𝑡) + 𝐼𝑁𝑀𝐷𝐴(𝑡)) + (𝐼𝐺𝐴𝐵𝐴𝐴(𝑡) + 𝐼𝐺𝐴𝐵𝐴𝐵(𝑡)) eq.5.2.  

However, in the following analysis, the synaptic inputs will be considered as the total excitatory 

and inhibitory synaptic currents (𝐼𝑒𝑥𝑐(𝑡) + 𝐼𝑖𝑛ℎ(𝑡)). 

Indeed, in the framework of the integrate-and-fire model, each pre-synaptic spike generates a post-

synaptic current pulse that is driven in the input of the following neuron as shown in eq. 5.3-5.5.  

 𝐼𝑠(𝑡) =   �𝐼𝑒𝑥𝑐(𝑡) + 𝐼𝑖𝑛ℎ(𝑡)� = 𝑔𝑒𝑥𝑡(𝑡)(𝐸𝑠𝑒𝑥𝑡 − 𝑉)

+ 𝑔𝑖𝑛ℎ(𝑡)(𝐸𝑠𝑖𝑛ℎ − 𝑉) 
eq.5.3.  

Where 

 𝑔𝑒𝑥𝑐(𝑡) = 𝑔̅𝑒𝑥𝑐𝑤𝑒𝑥𝑡𝑃𝑠(𝑡)  and  𝑔𝑖𝑛ℎ(𝑡) = 𝑔̅𝑖𝑛ℎ𝑤𝑖𝑛ℎ𝑃𝑠(𝑡) eq.5.4.  

g�  in equation 5.4 is the maximal excitatory or inhibitory conductance and wexc, winh  are the  

excitatory and inhibitory synaptic weights. Ps(t): Reflects the fraction of open ionic channels that 

determine the synaptic conductivity and is expressed by eq.5.5 below. 

 𝑑𝑃𝑠
𝑑𝑡

= −
𝑃𝑠
𝜏𝑠

+ �𝛿(𝑡 − 𝑡𝑘)
𝑘

 eq.5.5.  

tk is the time of spike appearance from a pre-synaptic neuron. 

The parameters Esexc   and Esinh  of equation 5.3 describe the reversal potentials of the 

corresponding excitatory and inhibitory synapses. The reversal potential of the excitatory synapses 

Esext  is much larger than the membrane resting potential, hence the current induced by a 

presynaptic spike at an excitatory synapse is positive and thus an increase in the membrane 

potential of the post synaptic neuron is induced. The reversal potential of the inhibitory synapses is 
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close to the membrane resting potential, thus an action potential arriving at an inhibitory synapse 

will drag the membrane potential of the post synaptic neuron down to its reversal potential. As the 

reversal potential of excitatory synapses is usually significantly above the firing threshold of 

spiking neurons and the inhibitory reversal potential is close to the membrane resting potential, 

each of the corresponding terms (Esexc − V) and (Esinh − V) can be fitted within the excitatory 

and inhibitory synaptic weight constants of eq.5.4. 

 Therefore, the total input current to a certain neuron is the sum over all current excitatory and 

inhibitory pulses from the total number of pre synaptic neurons and can be expressed by eq.5.6  

 𝐼𝑠(𝑡) = �𝑔̅𝑒𝑥𝑐𝑤𝑒𝑥𝑐𝑃𝑠(𝑡)𝑗 + �𝑔̅𝑖𝑛ℎ𝑤𝑖𝑛ℎ𝑃𝑠(𝑡)𝑗

𝑀

𝑗

𝑁

𝑗

 eq.5.6.  

N is the total number of excitatory input neurons and M the corresponding inhibitory input neurons. 

Ps(t)j determines the synaptic conductivity (eq.5.5) which can be modeled by a simple exponential 

decay with time constant τs (eq.5.7). 

 
𝑃𝑠(𝑡) = 1

𝑒𝑡/𝜏𝑠
+ (𝛩(𝑡−𝑡𝑘)𝑒

𝑡𝜅
𝜏𝑠)

𝑒𝑡/𝜏𝑠
 → 𝑃𝑠(𝑡) = 𝑓(𝛿(𝑡 − 𝑡𝑘)) 

eq.5.7.  

In eq.5.7 Θ represents the Heaviside step function (zero for negative arguments, unity for zero or 

positive arguments, eq. 5.8). 

 𝛩(𝑛) = �0           𝑛 < 0
1           𝑛 ≥ 0

� eq.5.8.  

Finally, the total input current can be modeled as a function of the synaptic weights and the spike 

train time sequences of the pre-synaptic neurons. 

 𝐼𝑠(𝑡) = 𝑔̅𝑒𝑥𝑐𝑤𝑒𝑥𝑐�𝑓(𝛿(𝑡 − 𝑡𝑘))𝑗 + 𝑔̅𝑖𝑛ℎ𝑤𝑖𝑛ℎ�𝑓(𝛿(𝑡 − 𝑡𝑘))𝑗

𝑀

𝑗

𝑁

𝑗

  eq.5.9.  

The coupling computations and interactions in the model however, are performed in discrete time 

and therefore the corresponding mathematical expressions are formed analogously. In biological 

neurons, spike duration has a finite duration in the order of 1ms. Similarly each spike is represented 

in the model by a pulse of unity amplitude and 1ms duration.  Therefore in the discretization 

process each time step δt is taken to be 1ms.  

The simplification adopted in the time discretization, in a sense, bounds the depth of information 

that can be gained in the single neuron level compared to more elaborated models or to biological 

neurons. Nevertheless, as discussed in a number of papers, (Soula et al., 2006; Cessac 2008), this 

kind of modeling simplification, provides a rough yet realistic approximation of a biological neuron 

behavior.  

In line with the above, the basic membrane potential differential equation (eq. 5.1) for a neuron i 

after a formal time discretization is given by 5.10 
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 𝑉𝑖(𝑡 + 𝛿𝑡) = (𝐸𝑙𝑒𝑎𝑘 − 𝑉)(1 +
𝑑𝑡
𝜏𝑚

) +
𝑅𝑚
𝜏𝑚

𝐼𝑠(𝑡)𝛿𝑡 eq.5.10.  

As mentioned, the sampling time was chosen to be the smaller than all characteristic time scales in 

the model which is the duration of the action potential. Therefore with δt = 1ms eq.5.10 can be re-

written to: 

 𝑉𝑖(𝑡 + 1) =
(𝐸𝑙𝑒𝑎𝑘 − 𝑉)

𝜏𝑚
(𝜏𝑚 + 1) +

𝑅𝑚
𝜏𝑚

𝐼𝑠(𝑡)𝛿𝑡 eq.5.11.  

Similarly the implementation of the synaptic currents is also in discrete time and therefore eq.5.5 

takes the following form. 

 𝑃𝑠𝑖(𝑡 + 𝑑𝑡) =
𝑃𝑠𝑖
𝜏𝑠

(1 −
𝑑𝑡
𝜏𝑚

) + �𝛿(𝑡 − 𝑡𝑘)
𝑘

𝛿𝑡 eq.5.12.  

A graphical representation of the discrete computations from a simple example implemented in 

MATLAB SIMULINK is shown in Figure 5-6 below. In the specific example and generally in the 

simulations of the model, the output of each neuron is assumed to be a discrete unity pulse with 

duration 1ms as previously mentioned.  

 
 
Figure 5-6 Discrete computations in a simple example of neural processing. Each black represents a neuron and 

the red area corresponds to the synaptic activity caused by presynaptic neurons.  

 

5.2.3 Coincidence detector nodes 

The proposed model includes a subsystem of coincidence detector neurons. One way to model 

coincidence detection can be based on separate inputs converging on a common target. Let us 

consider a basic neural circuit of two input neurons with excitatory synaptic terminals A and B 

converging on a single output neuron C (Figure 5-7). If it is assume that each spike is represented 
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by a pulse with amplitude equal to 1. Then the coincidence detector neuron C will fire only if the 

sum of its input is greater than 1.  

 
Figure 5-7 Representation of the coincidence detector mechanism 
 

More precisely, let Ψ(t) be a binary row vector denoting the states of neuron A and B at time t and 

C(t + 1) the state of neuron C at t + 1 as in Figure 5-7. 

Then the outcome of C at t +1 can be expressed by: 

 𝐶(𝑡 + 1) = 𝛩(𝛹(𝑡) − 𝜃) eq.5.13.  

As usual, Θ is the Heaviside step function with Θ(x) =  1 for 𝑥 > 0, and Θ(x) =  0 otherwise. θ is 

the specific threshold in which a number of synchronous input spikes is necessary to cause an 

output spike of neuron C.  

5.2.4 Working memory nodes 

Working memory is defined as a brain system that provides selection, temporary storage, and 

manipulation of information necessary for supporting complex cognitive tasks such as language 

comprehension, learning, and attention (Baddeley, 1992).  One possible neural mechanism for 

working memory is that information is stored in rapid short-term changes in the synaptic weights 

(Malsburg and Schneider, 1986; Schmidhuber, 1992). Another mechanism is based on the 

hypothesis that sustained neural activity can temporarily store the necessary information 

(Funahashi et al., 1989; Miyashita & Chang, 1988). The latter proposition is more widely accepted 

and is typically modeled through recurrent neural network models.  

In addition, pre-frontal cortex (PFC) neurons or networks that have been confirmed by several 

studies about their involvement with working memory functions (e.g. Kesner et al., 1996; Owen 

1997) seem to be equipped with a mechanism that enables them to hold active neural 

representations of goal-related information and to protect this goal-related delay activity against 
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interfering stimuli (Durstewitz et al, 1999). The latter has been proposed according to a number of 

single- cell recordings studies on macaque monkeys that demonstrated inhibitory interactions 

during interference of distracting stimuli while working memory networks have been involved with 

the processing of a previously presented target (e.g. Kessler & Kiefer 2005).  

In line with that, the working memory network of the proposed computational model is designed in 

a way that it incorporates three important properties of the second working memory proposition. 

These are: 

The neural activity from incoming information will be gradually built up through a recurrent 

procedure in the working memory nodes until a certain threshold is passed. Once this condition is 

fulfilled, perceptual awareness of the incoming information is assumed. 

b) The working memory network has a safety mechanism that protects the processing of a certain 

stimulus once it has successfully accessed working memory. 

c) Once the working memory network has processed and signaled the awareness of a stimulus, the 

protective mechanism is then released and the network is again available for any new stimulus to 

access it. 

The proposed working memory network is comprised by two nodes, each representing a small 

neural network in the PFC with the membrane potential of the first to evolve according to eq. 5.14 

below.  

 𝑉𝑊𝑀1
(𝑡 + 1) =

(𝐸𝑙𝑒𝑎𝑘 − 𝑉𝑊𝑀1)
𝜏𝑚

(𝜏𝑚 + 1) +
𝑅𝑚
𝜏𝑚

(𝐼𝑠(𝑡) + 𝐼𝑠(𝑡 − 1)) eq.5.14.  

As can be seen by eq.5.14, the synaptic input of the WM1 node is sustained and whenever a new 

synaptic input arrives it is summed up on the previous value. In other words, the total synaptic 

current at each time instance is: 

 𝐼𝑠(𝑡)′ = 𝐼𝑠(𝑡) + 𝐼𝑠(𝑡 − 1) eq.5.15.  

As a consequence, the response and specifically the frequency of the response of the WM1 node 

will vary depending on the strength of the incoming neural activity.  

The second working memory node is described by the next equation, in which the primary 

observation is that its response is explicitly dependent by the WM1 node’s response.  

 𝑉𝑊𝑀2
(𝑡 + 1) =

(𝐸𝑙𝑒𝑎𝑘 − 𝑉𝑊𝑀2)
𝜏𝑚

(𝜏𝑚 + 1) +
𝑅𝑚
𝜏𝑚

𝐼𝑊𝑀1𝑠(𝑡) eq.5.16.  

Within the working memory network framework, important inhibitory interactions are also 

considered. More specifically, the output of a WM1 node is used for inhibition between other WM1 

nodes that correspond to competitive stimuli that might appear in a different spatial location of the 

visual field (as is the case in the spatial attention tasks). Additionally, the same output is used to 
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block the processing of a new stimulus that might appear in the same spatial location after a small 

window, as is verified by RSVP experiments.  

Finally once the WM2 has been given the signal of recognition and awareness, it automatically 

sends a release signal that brings the synaptic current at the input of the WM1 node back to zero and 

thus the network is free again to receive information from any new stimulus (Figure 5-8). 

 

 

 
Figure 5-8 Working memory module functionality 

 

The model explained here for representing WM neural interactions was intended in this manner, 

mainly for the reason that the proposed computational model was designed to simulate behavioral 

experiments that measure the response times as well as the accuracies of response. Therefore, 

relevant measurements had to be established from the computational simulations and more 

specifically from the working memory layer for comparison purposes. However, to do so several 

simplifications had to be considered like for example the representation of small PFC neural 

network by single nodes. For example, whenever the neural activity of a certain stimulus has forced 

the second working memory node (WM2) to fire an action potential, perceptual awareness of that 

stimulus is assumed. In addition, the response time of the system’s response is taken as the time 

that the corresponding node fires.   
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5.3 The computational model’s network mathematical representation 

5.3.1 Neural representation of incoming stimuli 

Each stimulus in the visual field is encoded through 12 input neurons whose receptive fields are 

associated with the spatial positions at which the stimuli appear. These neurons encode stimuli as 

spike trains, i.e., series of discrete action potentials which are represented in the model as binary 

events (0’s and 1’s) denoting the absence or presence of a spike/action potential.  For example, if 

the firing rate of an input neuron A is PA, then the corresponding spike train can be seen as a 

Bernoulli process with probability PA to have the value 1 in each time bin and 0 with probability 1 

− PA, (0 ≤ PA ≤ 1).  The number of bins in a spike train is set in the model to equal the duration of 

each stimulus; that is, if a stimulus appears within the visual field for 100ms then the neurons 

whose receptive fields correspond to that stimulus will generate spike trains with 100 time bins.  

5.3.1.1 Saliency map model 

The initial settings of the input neurons firing rates in the model are determined based on the 

saliency map MATLAB toolbox of Walther and Koch (2006). The overall saliency at each location 

in the visual field results from the integration of information across individual feature maps and is 

represented by the firing of neurons whose receptive fields correspond to the particular location. 

The capability to compute center-surround differences of various features and scales is provided in 

the toolbox. In their model, Itii and Koch (2000) take into account nine different scales of the input 

image by sub-sampling it into a dyadic Gaussian pyramid.  

Low-level vision characteristics such as channels tuned to different colors, orientations, and 

brightness are combined into seven different features types. The computation of these feature types 

is based on evidence suggesting that they are detected by the mammalian visual system. For 

instance, one feature type encodes the image intensity contrast as (Leventhal, 1991), two feature 

types encode the double-opponent red-green and blue-yellow channels (Luschow & Nothdurft, 

1993; Engel, et al., 1997), and four feature types encode the local 0o, 45o, 90o, and 135o 

orientation contrasts (DeValois, et al., 1982; Tootell, et al., 1988). Bottom-up saliency is 

computationally formulated according to evidence showing that the saliency of each location is a 

function of the surround (Leventhal, 1991). Therefore, in the model of Itti et al (2000) center-

surround differences for every type of feature are calculated by a cross-scale subtraction  ⊖ 

between two maps at the center (c) and the surround (s)  levels of the scaling pyramid (created by 

the input image), yielding the “feature maps”. For every type of feature, six different feature maps 

are created, leading to 42 different feature maps as shown in eq.5.17-5.20.  
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 𝐼(𝑐, 𝑠) = |𝐼(𝑐) ⊝ 𝐼(𝑠)| eq.5.17.  

 𝑅𝐺(𝑐, 𝑠) = |(𝑅(𝑐) − 𝐺(𝑐)) ⊝ (𝑅(𝑠) − 𝐺(𝑠))| eq.5.18.  

 𝐵𝑌(𝑐, 𝑠) = |(𝐵(𝑐) − 𝑌(𝑐)) ⊝ (𝐵(𝑠) − 𝑌(𝑠))| eq.5.19.  

 𝑂(𝑐, 𝑠, 𝜀) = |(𝑂(𝑐, 𝜀) ⊝𝑂(𝑠, 𝜀))| eq.5.20.  

I is the image intensity contrast, RG the double- opponent red and green channels, BY to the 

double- opponent blue and yellow channels and O the local orientation contrast. ε is taking the 

angles 0o, 45o, 90oand 135o. 

The feature maps are then combined into three “conspicuity maps,” I for intensity, C for color, and 

O for orientation at a center scale and then are normalized and summed up to form the final 

saliency map S (Figure 5-9).  

 
Figure 5-9 The Itti and Koch (2000) architecture of the saliency map model, based on the Koch and Ulman (1985) 

implementation. Image from Itti and Koch (2000) 
 

The saliency map model processes an image and produces saliency values for every pixel on the 

display as can be seen for example in Figure 5-10 Klea
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Figure 5-10 An example of image processing by the saliency map model 

 

The output of the saliency map is then used to generate the initial firing rates of the input neurons 

whose receptive fields correspond to specific locations in the processed image according to eq. 5.21 

(Figure 5-11). Equation 5.21, takes into account both the maximum pixel value and the sum of all 

pixel values that fall within the receptive fields of the neurons and outputs the firing rate of each 

neuron. 

 𝐹𝑅𝑆𝑖  =  𝛼 �𝑀𝑎𝑥(𝑃𝑗)� + 𝛽 ��𝑃𝑗
𝑛

𝑗=1

� eq.5.21.  

In eq.5.21, FRSi represents the firing rate of each of the 12 input neurons that correspond to the 

receptive field of stimulus Si, �Max(Pj)� is the maximum value of all the pixels that correspond to 

stimulus Si, and  �∑ Pjn
j=1 � is the total summation of the n pixel values Pj that correspond to 

stimulus Si.  Terms α and β are weighting constants. The maximum value of the pixels for each 

stimulus reflects in a sense the general saliency of the stimulus while the summation value was 

used to incorporate the size of the stimulus in the calculations, since the model always uses 12 

neurons to encode every incoming stimulus regardless of its size. 

Therefore, following the analysis explained in the first paragraph of section 5.3.1, the initial firing 

rates of the input neurons whose receptive fields correspond to specific locations are generated. 
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Figure 5-11 Generation of the input neurons spike trains 

 

The values in the saliency map represent the extent to which locations in the visual field may 

attract attention in a solely bottom-up manner (Zhaoping, 2002; Zhaoping & Dayan, 2006). 

However, although no semantic modulation of neural activity takes place at early stages of 

processing, top-down spatial factors initiated by perceptual cues are allowed to influence neural 

activity.(Silver et al., 2007; Shibata et al., 2008).  

Once the initial neural activity corresponding to each stimulus is set, neurons representing different 

visual inputs inhibit all others in an effort to win the race to working memory. The strength of the 

inhibition that is exerted on other stimuli depends heavily on the levels of saliency. Thus, stimuli 

with high saliency values are able to cause stronger inhibition towards the representations of other 

stimuli that are present in the visual field. 

5.3.1.2 Generation of the endogenous Goals  

In tasks that involve top down processing, it is important for the simulations to generate sets of 

synthetic spike trains with controlled rates and cross-correlations that will be stored in the 

endogenous goals module. These will represent the targets at each occasion. The methodology used 

for the generation of the spike trains that represent the endogenous goals, follows the algorithm 

proposed by Niebur and Mikula (2007). This algorithm generates spike trains whose mean rates as 

well as the cross-correlations between pairs of spike trains are free parameters that can be selected 

independently. The cross-correlation between any two of these spike trains can be selected to be 

minimal indicating completely independent spike trains or maximal representing identical spike 

trains. For example, considering two spike trains A and B, if it is desired that the two spike trains 

have a specific degree of correlation between them, then the state of A can be switched (with a 

probability q) to that of B.  
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Therefore, for the representation of a specific target in the simulations, a random spike train with a 

certain firing rate is generated according to the above procedure, and having that as the reference 

spike train, a number of correlated spike trains can be initialized. As a result, all the output neurons 

of the endogenous goals module will produce spike trains with the same degree of correlation 

between them. 

 

 
Figure 5-12 Generation of an output neuron spike train in the endogenous goals module 

 

5.3.2 Mathematics of the RSVP  

In this section, each layer of the neural network will be analyzed under the two specific model 

schemes, the RSVP and the spatial attention model.   

As explained the output spike train of a specific layer’s neuron is a function of its membrane 

potential at each time instance and the total synaptic input it receives. Therefore, in the following 

analysis a neuron’s response will be denoted as below: 

 𝑦(𝑥𝑥)𝑖
= 𝑓(𝑉(𝑥𝑥)𝑖

, 𝐼𝑠(𝑡)) eq.5.22.  

The subscript in the parenthesis of eq.5.22 defines the name of the layer that the specific neuron 

belongs to and the i subscript to the position of the neuron within the layer.  

Figure 5-13 presents the different neural network layers and modules that complete the RSVP 

model implementation in which the following analysis is based. Klea
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Figure 5-13 A schematic representation of the RSVP model implementation 

 

5.3.2.1 Description of the first stage layer 1- (FS1) 

The response of a neuron i  that belongs to the first stage layer1 can then be expressed by: 

 

𝑦(𝐹𝑆1)𝑖(𝑡 + 1) = 𝑓 �𝑉(𝐹𝑆1)𝑖 , 𝐼𝑠(𝑡)� = 𝑓 �𝑉(𝐹𝑆1)𝑖 ,∑ 𝐼𝑒𝑥𝑐𝐼𝑁𝑗(𝑡)𝑁
𝑗 � =

𝑓(𝑉(𝐹𝑆1)𝑖 , 𝑔̅𝑒𝑥𝑐𝐼𝑁𝑤𝑒𝑥𝑐𝐼𝑁 ∑ 𝑓(𝛿(𝑡 − 𝑡𝑘))𝑗𝑁
𝑗 )  

with 𝑃𝑠(𝑡)𝑗 = 𝑓(𝛿(𝑡 − 𝑡𝑘))𝑗 

eq.5.23.  

With N being the total number of excitatory input neurons that are linked to the first stage layer1 

from the input layer (IexcIN). The subscript j shows the position of the pre-synaptic neuron in the 

layer it belongs, that initiated the corresponding synaptic current.  

In eq.5.23 the Dirac function δ(t − tk) can be replaced by the output spike train response of the 

pre-synaptic neuron (in this case from the input layer neurons, 𝑦𝐼𝑁𝑗), as presented in the following 

equation, 5.24.  

 𝑦(FS1)𝑖(𝑡 + 1) =   𝑓(𝑉(FS1)𝑖 , (𝑔̅𝑒𝑥𝑐𝐼𝑁𝑤𝑒𝑥𝑐𝐼𝑁�𝑓(𝑦(𝐼𝑁)𝑗(𝑡))
𝑁

𝑗

)) eq.5.24.  
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In the case that perceptual cues prime the spatial location that a target will appear, high frequency 

endogenous signals will trigger the corresponding coincidence detector network that is linked with 

the neurons whose receptive fields fall within the spatial region specified by the cue (Figure 5-14).  

 
Figure 5-14 Interaction of perceptual (temporal) cue in the early stages of processing 

 

In this condition, the response of a first stage layer #1 neuron will then be: 

 

𝑦(𝐹𝑆1)𝑖(𝑡 + 1) =   𝑓(𝑉(𝐹𝑆1)𝑖
, (𝑔̅𝑒𝑥𝑐𝐼𝑁𝑤𝑒𝑥𝑐𝐼𝑁�𝑓(𝑦(𝐼𝑁)𝑗(𝑡))

𝑁

𝑗

)

+ (𝑔̅𝑒𝑥𝑐𝐶𝐷𝑁𝑤𝑒𝑥𝑐𝐶𝐷𝑁�𝑓(𝑦(𝐶𝐷𝑁)𝑗(𝑡))
𝑁

𝑗

)) 

eq.5.25.  

It is important to note that in eq.5.25 wexcCDN  is greater than wexcINand therefore the contribution 

of the CDN to the progression of neural activity from the input neurons to the first stage of layer 1 

is relatively higher. 

5.3.2.2 Description of the first stage layer 2- (FS2) 

The response of a neuron i  that belongs to the first stage layer #2 as explained is a function of its 

synaptic inputs. These are determined by the first stage layer #1 neurons and the inhibitory neurons 

of the backward masking layer. 

 

𝑦(𝐹𝑆2)𝑖(𝑡 + 1) = 𝑓(𝑉(𝐹𝑆2)𝑖
, (𝑔̅𝑒𝑥𝑐𝐹𝑆1𝑤𝑒𝑥𝑐𝐹𝑆1 �𝑓(𝑦(𝐹𝑆1)𝑗(𝑡))

𝑁

𝑗

)

+ (𝑔̅𝑖𝑛ℎ𝐵𝑀𝑤𝑖𝑛ℎ𝐵𝑀�𝑓(𝑦(𝐵𝑀)𝑗(𝑡))
𝑀

𝑗

)) 

eq.5.26.  
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N is the total number of excitatory input neurons that are linked to the first stage layer #2 from the 

first stage layer #1 (IexcFs1) and M are the corresponding inhibitory inputs (IinhBM) from the pool 

of inhibitory interneuron’s (defined as the backward masking inhibitory neurons layer). 

5.3.2.3 Description of the second stage layer 1- (SL1) 

Following the neural interactions in the first stage of processing, the output spike trains will pass 

through a “temporal filter” that controls the change of temporal spike appearance of the incoming 

spike based on the predefined probability of resemblance P(res)  as explained in a previous section 

of this Chapter.  

The response of a neuron i in the second stage of processing layer #1, y(SL1)i is thus the result of 

the temporal spike appearance manipulation of the (y(FS2)i) neuron when passed through the 

temporal filter block. 

As briefly explained, the temporal filter block, is an algorithmic function with its inputs being the 

predefined probability of resemblance P(res) for each incoming stimulus (i.e. for stimulus si that 

would be P(res)si ), the spike sequence of the previous layer neurons, and the spike train that 

corresponds to a semantic representation of a specific target (see Appendix A for the listing of the 

algorithm). The output of the algorithm is a new spike train with the same frequency of response 

but with an adjustment on the timing of spike appearance.  The probability of resemblance is 

calculated according to a value-based matrix that is formulated according to the feature 

characteristics of a given stimulus (such as the number of line crossings, curves and orientation of 

lines) that are similar to those of the target. For example, if in a specific task the target is the letter 

X, and the letters O and A appear at the visual field, then the letter A will be awarded a higher 

probability of resemblance than the letter O as its features are more similar to those of the target. 

More explicitly, a random number is generated and the algorithm compares this number with the 

probability of resemblance that corresponds to the stimulus responsible for this neural 

activity Pressi. If the random number is smaller or equal to the specific probability, the time bin of 

the incoming spike  tkFSsi
will change and will appear in the closest time bin that a spike appears 

within the endogenous spike train time sequence tkend .  In the case of the opposite condition in 

which the random number is bigger than the Pressi , the appearance of the incoming spike will 

remain in its original time bin. In this manner, it is possible to “re-organize” the temporal pattern of 

an incoming stimulus, without having to interfere with its firing rate, since the total number of 

spikes remains the same.  
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Figure 5-15 The temporal filter mechanism 

 

The responses of the first layer neurons in the second stage of processing are then expressed by 

equation 5.27: 

 𝑦𝑆𝐿1𝑖 = 𝑓( 𝑦𝐹𝑆2𝑖 ,  𝑃𝑟𝑒𝑠𝑠𝑖) eq.5.27.  

5.3.2.4 Description of the correlation control module layer 

Following the second stage of processing layer1 (SL1), neural activity is gradually progressed 

towards the SL2. The same neurons of the SL1 however, are at the same time connected with the 

pool of coincidence detector (CD) neurons that comprise the correlation control module (CCM) 

(see Figure 5-13 of the RSVP design).  

In the CCM, each CD neuron has a total of three neurons connected to its input. Two random 

inputs are from SL1 and one input from the endogenous goals. The response of the CD nodes is 

explicitly dependent on the number of action potentials that arrive simultaneously in their inputs. In 

the current implementation, the threshold has been set to θ =2. That is, at least two spikes of the 

three inputs on each coincidence detector neuron must arrive synchronously for the CD neuron to 

fire (Figure 5-16). 

Therefore, the response of the CD neurons can be expressed by eq.5.28.  

 𝑦𝐶𝐶𝑀𝑖(𝑡 + 1) = Θ(𝛹𝑖(𝑡) − 𝜃) eq.5.28.  

Ψi(t) is a binary vector that denotes the states of the spike trains from the endogenous goals 

 yendi(t) combined with the states from two neurons of the second stage layer #1 ( ySL1i(t)). The k 
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and m subscripts in eq.5.28 represent the two randomly selected neurons from the SL1 that are 

driven in the ith CD neuron. 

 𝛹𝑖(𝑡) = �
 𝑦𝑒𝑛𝑑𝑖(𝑡)
𝑦𝑆𝐿1𝑘(𝑡)
𝑦𝑆𝐿1𝑚(𝑡)

� eq.5.29.  

   

 
Figure 5-16 The correlation control module mechanism. 

 

5.3.2.5 Description of the second stage of processing – second layer (SL2) 

Neurons in the SL2 receive excitatory inputs from the CCM and the SL1 and inhibitory inputs from 

the P300 and forward masking pools of inhibitory interneurons.  

  𝑦𝑆𝐿2𝑖(𝑡 + 1) = 𝑓 � 𝑉𝑆𝐿2𝑖 , (𝐼𝑒𝑥𝑐(𝑡) + 𝐼𝑖𝑛ℎ(𝑡))� eq.5.30.  

 

Where,  

 

𝐼𝑒𝑥𝑐(𝑡) = 𝑔̅𝑒𝑥𝑐𝑆𝐿1𝑤𝑒𝑥𝑐𝑆𝐿1 �𝑓(
𝑁

𝑗

 𝑦𝑆𝐿1𝑖)

+ 𝑔̅𝑒𝑥𝑐𝐶𝐶𝑀𝑤𝑒𝑥𝑐𝐶𝐶𝑀�𝑓(
𝑁

𝑗

 𝑦𝐶𝐶𝑀𝑖)  , 

eq.5.31.  
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𝐼𝑖𝑛ℎ(𝑡) = 𝑔̅𝑖𝑛ℎ𝐹𝑀𝑤𝑖𝑛ℎ𝐹𝑀�𝑓(
𝑁

𝑗

𝑦𝐹𝑀𝑗)

+ 𝑔̅𝑖𝑛ℎ𝑃300𝑤𝑖𝑛ℎ𝑃300�𝑎(
𝑁

𝑗

𝑦𝑃300𝑗) 

 

However, the inhibitory interactions from the P300 signal are stronger than the backward and 

forward masking inhibitions, while the backward masking will produce stronger inhibition than 

forward masking which implies that inhibitory signals for the neurons of the already presented 

stimulus towards the neurons of the proceeding stimulus are relatively lower than the other way 

around (Seiffert and Di Lollo, 1997).  Indeed, according to a neurodynamic analysis on the biased 

competition framework by Deco and Rolls (2005), feedback connections have found to be about 

2.5 times weaker than the feed-forward connections between inter-area cortical interactions. These 

experimental and analytical observations have been reflected in the proposed implementation by 

distinct weighting factors attached to the corresponding inhibitory synaptic currents. Similarly the 

excitation signals from the coincidence detector neurons have stronger weights attached to them 

than the excitatory spikes from the two stages of processing layers. Moreover, the excitatory 

connections in the second stage of processing are stronger than the excitatory connections in the 

first stage of processing. The latter assumption is based on neurophysiologic findings showing that 

the greater the degree of overlap between receptive fields, the stronger the inhibition. Therefore, 

given that the second stage of processing of the proposed model mainly corresponds to interactions 

between V4 neurons that have overlapping receptive fields while the first stage of processing is 

mostly V2 neurons that do not have overlapping receptive fields, the latter hypothesis has been 

incorporated in the model with the inequality of eq.5.32.  

 
𝑤𝑒𝑥𝑐𝐶𝐶𝑀 > 𝑤𝑒𝑥𝑐𝑆𝐿 > 𝑤𝑒𝑥𝑐𝐹𝑆  

𝑤𝑖𝑛ℎ𝑃300 > 𝑤𝑖𝑛ℎ𝐵𝑀 > 𝑤𝑖𝑛ℎ𝐹𝑀 
eq.5.32.  

 

5.3.2.6 Description of the second stage of processing – third layer (SL3) 

The SL3 neurons will receive excitatory inputs from the SL2 and inhibitory inputs from the P300 

and forward masking pools of inhibitory interneurons as is presented below. 

  𝑦𝑆𝐿3𝑖(𝑡 + 1) = 𝑓 � 𝑉𝑆𝐿3𝑖 , (𝐼𝑒𝑥𝑐(𝑡) + 𝐼𝑖𝑛ℎ(𝑡))� eq.5.33.  

 

Where,   
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𝐼𝑒𝑥𝑐(𝑡) = 𝑔̅𝑒𝑥𝑐𝑆𝐿2𝑤𝑒𝑥𝑐𝑆𝐿2 �𝑓(
𝑁

𝑗

 𝑦𝑆𝐿2𝑖) 

𝐼𝑖𝑛ℎ(𝑡) = 𝑔̅𝑖𝑛ℎ𝐹𝑀𝑤𝑖𝑛ℎ𝐹𝑀�𝑓(
𝑁

𝑗

𝑦(𝐹𝑀)𝑗(𝑡))

+ 𝑔̅𝑖𝑛ℎ𝑃300𝑤𝑖𝑛ℎ𝑃300�𝑓(
𝑁

𝑗

𝑦𝑃300𝑗(𝑡)) 

eq.5.34.  

 

Along the same lines, the working memory nodes, and the response of the inhibitory neurons from 

the P300, forward and backward masking layers are shown with the equations in the following 

subsections. 

5.3.2.6.1 Working memory layer 

The response of the working memory node 1 (WM1) and working memory node 2 (WM2) is a 

function of the parameters given in eq.5.34 and 5.35 below that are based on the analysis presented 

in section 5.3.3 (working memory nodes). 

  𝑦𝑊𝑀1𝑖
(𝑡 + 1) = 𝑓 � 𝑉𝑊𝑀1𝑖

, 𝑔̅𝑒𝑥𝑐𝑆𝐿3𝑤𝑒𝑥𝑐𝑆𝐿3  𝑓(𝑦𝑆𝐿3𝑖(𝑡)) � eq.5.35.  

  𝑦𝑊𝑀2𝑖
(𝑡 + 1) = 𝑓 � 𝑉𝑊𝑀2𝑖

, 𝑔̅𝑒𝑥𝑐𝑊𝑀𝑤𝑒𝑥𝑐𝑊𝑀𝑓(𝑦𝑊𝑀1(𝑡)) � eq.5.36.  

5.3.2.6.2 P300 inhibitory layer 

  𝑦𝑃300𝑖 = 𝑓 � 𝑉𝑃300𝑖 , 𝑔̅𝑒𝑥𝑐𝑊𝑀𝑤𝑒𝑥𝑐𝑊𝑀  𝑓(𝑦𝑊𝑀2𝑖
) � eq.5.37.  

5.3.2.6.3 Backward masking inhibitory layer 

  𝑦𝐵𝑀𝑖 = 𝑓 � 𝑉𝐵𝑀𝑖 , 𝑔̅𝑒𝑥𝑐𝑆𝐿2𝑤𝑒𝑥𝑐𝑆𝐿2  𝑓(𝑦𝑆𝐿2𝑖) � eq.5.38.  

5.3.2.6.4 Forward masking inhibitory layer 

  𝑦𝐹𝑀𝑖 = 𝑓� 𝑉𝐹𝑀𝑖 , 𝑔̅𝑒𝑥𝑐𝐹𝑆𝑤𝑒𝑥𝑐𝐹𝑆  𝑓(𝑦𝐹𝑆𝐿𝑖) � eq.5.39.  

5.3.3 The spatial attention model 

As previously explained, the functionality of the spatial attention model, is similar to the RSVP, 

having only some minor differences concerning the inhibitory interactions. Indeed, in the spatial 

attention model, the P300, forward and backward masking inhibitory neurons, will not influence 

the overall processing. Lateral inhibitions from neurons whose receptive field capture different 

spatial location of the visual field will have the primary role in the competition process (Figure 5-

17).  
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Figure 5-17 A schematic representation of the spatial attention model  

 

For example, the response of the first stage layer 2 neurons that correspond to the target letter X in 

the above figure will be based on the function described by the equation below. 

 

yX(FS2)i(t + 1) = 𝑓(𝑉𝑋(𝐹𝑆2)𝑖
, (𝑔̅𝑒𝑥𝑐FS1𝑤𝑒𝑥𝑐FS1 �𝑓(𝑦𝑋(FS1)𝑗(𝑡))

𝑁

𝑗

)

+ (𝑔̅𝑖𝑛ℎ𝑤𝑙𝑎𝑡−𝑖𝑛ℎ𝐹𝑆�𝑓(𝑦𝐴(FS1)𝑗(𝑡))
𝑀

𝑗

)) 

eq.5.40.  

 

where, yX(FS2)i  corresponds to the output spike train sequence of the FS2 neurons that capture 

stimulus X and yA(FS1)i  corresponds to the output spike train sequence of the FS1 neurons that 

capture stimulus A. wlat−inhFS  represents the synaptic weights that describe the lateral inhibition 

between the neurons whose receptive field capture each of the two stimulus.   

Along the same lines will be the response of the SL3 neurons that receive the neural activity that 

initiated by stimulus X as can be seen by eq.5.41 below. 
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yX(SL3)i(t + 1)

= 𝑓(𝑉𝑋(𝑆𝐿3)𝑖
, (𝑔̅𝑒𝑥𝑐SL2𝑤𝑒𝑥𝑐SL2 �𝑓(𝑦𝑋(SL2)𝑗(𝑡))

𝑁

𝑗

)

+ (𝑔̅𝑖𝑛ℎ𝑤𝑙𝑎𝑡−𝑖𝑛ℎ𝑆𝐿�𝑓(𝑦𝐴(SL2)𝑗(𝑡))
𝑀

𝑗

)) 

eq.5.41.  

 

5.3.3.1 Some observations on the spatial attention model 

The lateral inhibition weight between the neurons of the second stage of processing is stronger than 

the corresponding weight of the first stage of processing (wlat−inhSL > 𝑤lat−inhFS). This inequality 

is applied to the model, for the reason that the V4 neurons that comprise the second stage of 

processing have overlapping receptive fields and therefore produce stronger competitive 

interactions between them (Deco & Rolls, 2005).  

In the case that perceptual cues prime the spatial location that a target will appear, in a similar 

manner to the RSVP model, high frequency endogenous signals will interact to the corresponding 

coincidence detector network. The main difference is that in the RSVP model these signals will 

appear at the specified time window that the cue signified, while in the spatial attention model the 

endogenous signals will interact with the coincidence detector network that is linked with the 

neurons whose receptive field falls within the spatial region specified by the cue.  

5.4 Network dynamics 
The attentional mechanism in the proposed computational model relies on the effect of saliency and 

endogenous bias on the incoming stimuli neural activity. These interactions have been 

implemented in the computational model with a network of integrate and fire neurons combined 

with coincidence detector neurons. This configuration supports the most recent scientific evidence 

related to the neural mechanisms that specifically emphasize the neural activity amplification and 

synchronization of the selected stimulus.  

More specifically, it has been shown by several studies that oscillations in a neural network model 

can be generated by pyramidal-to-interneuron loops (e.g. Brunel & Wang, 2003; Whittington & 

Traub, 2003; Gieselmann & Thiele, 2008) and more importantly that the oscillation frequency 

depends on the relative timescales of the excitatory and inhibitory decay constants. For example it 

has been shown that faster excitation than inhibition, will favor this feedback loop and give rise to 

oscillations in the gamma range (Brunel & Wang, 2003). 
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Even more recently, Buehlmann and Deco (2008) explained how oscillations can be manipulated 

by adjusting the conductance of different synaptic currents. More precisely, in their model synaptic 

currents are mediated by the excitatory receptors AMPA and NMDA (activated by glutamate, 

gAMPA and gNMDA) and the inhibitory receptor GABA, (gGABA). The two types of excitatory synapses 

(AMPA and NMDA receptors) have different time constants: AMPA decays very fast (2 ms), 

whereas NMDA decays slowly (100 ms), while the decay constant of GABA (10 ms) lies between 

the two.   

In the specific study, an increase of gAMPA and a decrease of gNMDA cause the pyramidal-to-

interneuron loop interactions to oscillate more strongly and thus resulting in increased gamma 

activity. Buehlmann and Deco (2008), in their report emphasize that the crucial parameter to 

generate oscillations in the network is the relative contribution of the slow NMDA and the fast 

AMPA receptors to the total synaptic currents and as can be seen by figure 5-18.  

 
Figure 5-18 Changes in the spike-triggered average power spectrum based on the gAMPA/gNMDA ratio as presented 

in Buhlmann and Deco (2008). 

 

However, up to now the candidate molecule for performing coincidence detection has been the 

postsynaptic NMDA receptor (e.g. Sjöström et al., 2003; Dan & Poo, 2006; Sprunston 2008). 

Therefore, one can assume that a combination of coincidence detector neurons with basic integrate 

and fire neurons might induce neural synchronization as shown in the study above. 

Furthermore, as explained in chapter 4 and in particular by the study of de la Rocha et al (2007), 

synchronization of neural activity in a cortical network is more probable to be induced when the 

synaptic current that is driven towards the networks neurons is correlated.  

In line with the above hypothesis, a simple configuration on the basis of the proposed 

computational model has been put forward to test several conditions, and thus to examine the 

models dynamics in respect to the generation and propagation of synchronous neural activity in a 

cortical network. 
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5.4.1 Testing different input stimulus conditions in the proposed model  

Following the above implementation, the complete model was tested on several conditions before 

simulating the experimental tasks explained in the following Chapter.  

Parameters: 

Some of the parameters for designing the dynamics of the system are presented here however, more 

detail description can be found in Appendix A. 

τm= 30 ms 

ELeak = Vreset = −65 mV 

Vth=−50 mV  

Rm= 90 MΩ 

An absolute refractory period (TRefract) of 2ms has been applied with a rule. 

Coincidence detector neurons threshold = 2 

Gain of excitatory neurons:  

V1 neurons = 20; V2 neurons = 20; V4 neurons = 30. 

Gain of inhibitory neurons: 

Second stage of processing pool of inhibitory neurons = -2 

First stage of processing pool of inhibitory neurons = -1.2 

The gain of the excitatory and inhibitory neurons in the experimental simulations has been slightly 

readjusted for every task accordingly. Nevertheless, without escaping the boarders set by the 

restrictions explained in the subsections of 5.3. 

 

The model was tested initially on three different ways of presenting a simple stimulus comprised 

by a red and black circle appearing simultaneously in the visual field. Referring to Figure 5.20, in 

condition A) the two circles appear alone and simultaneously in the computer screen. In condition 

B) a perceptual cue indicating the spatial location of the red circle appears a little shortly before the 

two circles appear in the computer screen, and finally in condition C) a written cue requests the 

subjects to search for the red circle when the two stimuli appear. 

  
Figure 5-19 The three stimuli conditions that the model was tested 
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In all three conditions, the input neurons that capture the red and black stimulus were initialized 

according to the description given above with the use of the saliency map toolbox by Walther and 

Koch (2006).  

 
Figure 5-20 Initial firing rate representation of the two stimuli according to the saliency map model 

 

Each layer in both stages of processing of the proposed model, comprises ten integrate & fire 

neurons. However, in the following analysis, only the response of the neurons in the first stage 

layer #2 (FS2) and second stage layer #3 (SL3) is considered.  

The measurement of neural synchronization was made according to the “event synchronization” 

methodology proposed by Quian, et al., (2002), in which a simple description is given below. 

For the following analysis, let  x1 and x2 be two spike trains generated by two neurons and ti
x1, tj

x2  

their corresponding spike time instances. The total number of spikes in each spike train are mx1  and 

mx2, therefore i = 1, … , mx1; j = 1, … , mx2. 

The number of times an event (or a spike) appears in x1 shortly after it appears in x2, is then given 

by cτ(x1|x2) as described in eq.5.42. 

 𝑐𝜏(𝑥1|𝑥2) = ��𝐽𝑖𝑗𝜏
𝑚𝑦

𝑗=1

𝑚𝑥

𝑖=1

 eq.5.42.  

 With 𝐽𝑖𝑗𝜏 = �
1

1/2
0
�

    𝑖𝑓 0 <     𝑡𝑖
𝑥1 −     𝑡𝑖

𝑥2

𝑖𝑓    𝑡𝑖
𝑥1 =     𝑡𝑖

𝑥2

𝑒𝑙𝑠𝑒,               
 eq.5.43.  

 

Similarly, the number of times an event appears in  x2  shortly after it appears in  x1 , is given 

by cτ(x2|x1). Finally, the measurement of synchronization between the two spike trains is: 

 𝑄𝑥1𝑥2
𝜏 =

𝑐𝜏(𝑥1|𝑥2) + 𝑐𝜏(𝑥2|𝑥1)

�𝑚𝑥1𝑚𝑥2
 eq.5.44.  
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The same analysis is then performed for every two combinations of the 10 output neurons of the 

example, leading to 45 different combinations. Therefore the average degree of synchronization for 

each network layer is calculated as in eq.5.44. 

 𝑄𝜏���� =
1

45
��

𝑐𝜏(𝑥𝑘|𝑥𝑙) + 𝑐𝜏(𝑥𝑙|𝑥𝑘)

�𝑚𝑥𝑘𝑚𝑥𝑙

10

𝑙=1

10

𝑘=1

 eq.5.45.  

According to the above methodology, the analysis in the test example has given the results shown 

in Table 5.1 and Figure 5-22.  

 

 

 

 
Table 1 The measurement of synchronization between the three different conditions tested on the proposed 

computational model. 

 Condition A Condition B Condition C 

FS2 layer SL3 layer FS2 layer SL3 layer FS2 layer SL3 layer 
Red circle (𝐐𝛕����)  0.5454 0.4773 0.4506 0.5931 0.5853 0.7507 
Black circle 

(𝐐𝛕����) 
0.5503 0.4819 0.2774 0.3103 0.5816 0.3125 

 

 

 
Figure 5-21 Neural response at the three different stimuli conditions for the two layers under investigation. In the 

above plots, the y axis corresponds to a different neuron in the corresponding layer and the x axis the time. A red 

dot means that two or more neurons have fired synchronously. 

 

In condition A, it is expected that the two stimuli produce more or less a similar response in both 

stages of processing. This is mainly because there are not any external signals in favor of any of 

them and their initial saliency is almost the same. In condition B the FS2 layer comprised by the 
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neurons whose receptive field capture the red circle, will have an increased activity compared with 

the neurons of the black stimulus. This behavior is mainly because endogenous signals containing 

spatial information will bias the neural progression of the red stimulus in FS1 which will result in an 

increase of inhibition towards the corresponding layer of the black stimulus neurons. Finally in 

condition C, neural activity from both stimuli in the first stage of processing, will not have 

significant difference between them, however in the second stage of processing semantic 

information about the red circle will interfere. Endogenous signals describing the semantics of the 

red target will have increased correlation with the neural activity that corresponds to the red 

stimulus and as a result the coincidence detector module will be more active causing an increase of 

neural activity and synchronization in the SL3 of the red circle compared with the same layer of the 

black circle.  

This example indicates the basic operations that have been incorporated in the implementation of 

the model and thus enabling a better comprehension of its emerging behavior.   

In the following section, I justify why I have chosen to adopt the specific neural mechanisms and 

operations.  

5.5 Justification on the adoption of the proposed implementation 
As noted in Chapter 3 (section 3.6.2), the low level neural mechanisms that describe the 

mechanism of selection are a debatable issue in the literature. More specifically, the 

synchronization of neural activity is based on a theory that generated several contradictions among 

prominent scientists that are experts in the field. The main point of contradiction is placed on the 

assumption that neural synchronization is more probably induced due to temporal information 

encoded in the stimuli spike trains, something that is still not widely accepted.  In fact, in a recent 

review by Deco and Rolls (2011), strong scientific arguments are presented in favor of the rate 

coding versus the stimulus dependent synchrony. Also, in a study by Aggelopoulos et al. (2005), it 

was shown that about 95% of the information in the inferior temporal cortex was present in the 

firing rate, while only about 5% in any stimulus dependent on synchrony. Indeed, Deco and Rolls 

(2011) suggest that “firing rates rather than correlation are the main element of the population code 

for feature binding in primary visual cortex”. Oscillations, according to them are not needed for 

attention or decision making, but if synchronized oscillations were present in a network, then it is 

possible to have more spikes accumulating on average in the excitable phase of an oscillation than 

in the less excitable phase. Therefore they can speed information processing within a single 

network and thus to contribute in faster reaction times. To strengthen their theory, they point to the 

simulations by Buehlmann and Deco (2008) (see previous section) that explain how oscillations 

could be initiated according to the dynamics of connected networks and especially by altering the 

excitation/inhibition cycle. Therefore, a separate controller to produce synchronization, as this is 
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the case in my thesis, is suggested that is not necessary, and that oscillations, if they exist can 

increment the speed and efficiency of the transmission and are thus behaviorally relevant. 

However, although I find this theory very probable, I believe that at the end it depends on how one 

interprets some concepts.  

To elaborate on this, a separate analysis is given first on my decision to include a separate 

controller and second to include neural synchronization in the neural processing.   

About having a separate controller, what has to be clarified here is that in the proposed 

implementation, the same simulation results that are presented in the following chapter could have 

been obtained even if the Correlation Control Module was completely removed. Indeed, if the 

coincidence detector neurons that are included in the CCM have been incorporated accordingly in 

the second stage of processing, the simulation results would not have been altered. The question 

that arises then is why to use a separate controller. The justification of having a separate controller 

mostly comes from neuroscintific studies especially about attention related Event Related 

Potentials (ERPs) as it is analyzed in section 5.1.1.2. The second reason for including the CCM is 

based on scientific influences that I had while studying the relevant literature on computational 

modeling of visual selective attention. More specifically, several of my thoughts have been in the 

same lines with studies that attempt to approach the attentional system from an engineering 

perspective (e.g. Taylor & Rogers 2002), since to include a controller offers a more plausible 

interpretation on my understanding about the functionality and interaction of human attention on 

the neural activity of visual stimuli. For example, one could suggest that attention (as a control 

signal) is responsible for altering the excitation/inhibition cycle which results in oscillations, and 

these oscillations in their turn help to communicate more effectively the neural activity within the 

cortex, which to my understanding, is one of attention’s roles in human cognition. 

Concerning the debate about neural synchronization and firing rate manipulation as the principle 

mechanisms of the attentional system, I believe that both (neural synchronization and firing rate) 

contribute in conjunction to the overall process of visual attention, a point that has been reflected in 

my model. There are numerous scientific evidences that support this notion. However, the primary 

reason why I have incorporated this idea is based on my interpretation and supposition on how 

processing and selection of neural activity could be performed most effectively and optimally in the 

brain. In fact, considering the early years of modern neuroscience, until today, all of the new 

findings follow a logical interpretation blended with the nature’s characteristics. In line with this 

thought, I hereby explain why I have been sympathetic to the synchronization theory, by pointing 

some neurophysiologic evidence through the following simple example. 

Let us assume for a moment that a certain stimulus appears for the first time in one’s visual field. 

Repetition of this stimulus would gradually end-up to combine successfully its various features into 

one “object” and to register it in the long-term memory. If again we assume that information about 
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the properties of that stimulus is encoded using rate and temporal coding, these features would have 

been stored in the memory as well. In the case, in which we are asked to identify this specific 

stimulus among several others, the top-down information containing these features will interact 

with the neural activity produced from all the stimuli that appear in the visual field. At the level of 

individual stimulus processing, this implies interaction between two sources of information, the one 

being from top-down signals and the other from the bottom-up stimulus neural activity. Therefore, 

if these two sources share a certain degree of correlation, the combination of specific neurons 

properties, such as their sensitivity in correlated activity, (de la Rocha et al., 2007) and their 

sensitivity in responding to the coincidence activation of presynaptic spikes (Spruston, 2008) can 

induce neural synchronization (e.g. section 5.4). 

In conclusion, the realization of the model was tested and evaluated based on simulations of three 

relevant behavioral experiments. Therefore, taking into account the successful reproduction of the 

experimental data by the model, the theoretical structure in which the model has been built can be 

further justified. The computational simulations have also inspired recommendations for possible 

explanatory theories regarding the cognitive mechanisms that produce these behavioral results. A 

more detailed analysis concerning three very important behavioral experiments and the proposed 

explanations in connection to their results is presented in the next Chapter.   
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6. Applications of the model 

In this chapter simulation of three intensely debated in the literature behavioral experiments are 

presented, as well as the relevant contributions derived from the proposed computational model. 

For each of the three experiments, an explanation concerning their output results is given, based on 

the simulations done and more precisely according to the neural interactions and coupling 

mechanisms that compose its internal functionality. 

The first experiment presented here is the Attentional Blink (AB) paradigm, originally identified by 

Raymond et al. (1992). The AB task employs the rapid serial visual presentation (RSVP) method 

and has been selected for simulations because it presents some of the brain's limitations in 

processing visual information and thus had immense impact on the scientific society.  

The second experiment is the behavioral task that inspired the perceptual load theory by Lavie 

(1995) that offered an appealing account on how selection of information within the processing 

stream can either occur early or late. However, despite the extensive acceptance of the theory, it 

has been recently criticized and challenged. Thus, a possible explanation on how the corresponding 

behavioral results were obtained is of importance.  

Finally, one of the most influential tasks regarding the relation between attention and 

consciousness by Naccache et al (2002) is examined. This task was also very challenging for the 

proposed computational model, for the reason that it sparked an interesting debate among a number 

of scientists regarding the relation between the two cognitive processes. 

6.1 The Attentional Blink paradigm (Raymond, Shapiro and Arnell 

(1992)) 
In the attentional blink (AB) task, different stimuli at a rate of about 100ms are sequentially 

presented and participants are asked for example to identify letter targets among number distractors 

within the sequence of the presented stimuli (Figure 6-1). 

 
Figure 6-1 The use of the RSVP methodology in attentional blink studies. Participants are asked to identify targets 

T1 and T2 that are presented, within a sequence of distractors. 
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The AB refers to the findings that when 2 targets are presented among the sequence of distractors, 

the correct identification of the 1st target (T1) impairs the identification of the 2nd target (T2), 

provided that T2 appears within a brief temporal window of about 200-500ms following T1. In 

cases where T2 is presented before or after this temporal window, it is normally identified. 

Furthermore, although it might be expected that the AB should be maximal immediately following 

T1, a phenomenon referred to as lag-1 sparing often arises, where T2 accuracy is preserved even 

when T2 occurs immediately after T1. 

The percentage of correct T2 reports as a function of the Stimulus Onset Asynchrony (SOA; i.e., 

the temporal interval between T1 and T2) is shown in Figure 6.2 (basic curve – red curve) 

according to the behavioral data from Chun and Potter (1995).  

 

 
Figure 6-2 The basic curve from attentional blink studies based on the behavioral data from Chun and Potter 

(1995) showing the percentage of correct T2 identification given the successful identification of T1 as a function of 

SOA. 

 

Another important finding from the AB paradigm is that if T1 is not followed by a mask 

(distractor), the AB impairment is significantly reduced. In other words, if lag 1 (t=100ms) or lag 2 

(t=200ms) are replaced by a blank then the AB curve takes the form shown in the green and black 

series of Figure 6-2 accordingly.  

The attentional deficit that came up through the AB paradigm, has given important insights 

regarding the possible signal interactions during the deployment of attention and on the same time 

it provided an interesting challenge in terms of computational modeling. Several theories as well as 
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computational models have been formulated to account for the basic U –shaped curve of the AB 

and the modification of the curve when masks are replaced by blanks at lags 1 or 2.  

Because of the particularity of the AB’s data, this task is occasionally taken to be a criterion for the 

evaluation of any new computational implementation. Indeed, for a model to successfully simulate 

and reproduce the corresponding data it must incorporate several neural signal interactions, yet it 

must not escape from what is known from neurophysiology regarding the neural mechanisms.  

Similarly, the proposed model was used for the simulation of the AB phenomenon with and 

without the blanks and the corresponding results along with the theoretical framework behind them 

were published in Neokleous et al (2009a, 2009b, 2009c). A thoroughly description of the 

simulation results and how these were obtained is given in the next section. 

6.1.1 Simulation results  

The model was run under three conditions. One was the typical AB condition in which T2 follows 

the T1 after a fixed delay (SOA of T2) while distracting numbers are presented in-between the two 

targets as well as after T2. This is the no-blanks condition as all positions in the RSVP sequence 

were occupied by stimuli. In another condition, termed Lag 1 blank, neither a target nor a distractor 

was presented at Lag 1.  In a third condition, Lag 2 blank, a blank was presented 200ms after T1 

(i.e., after a distractor was presented at Lag 1). For the simulations, T1 was always presented at 

time t=0 and T2 at each of the subsequent time lags. For each lag that T2 was presented, the 

simulations where run for 50 times. Results revealed a clear match between simulations (Figure 6-

3) and the patterns of finding obtained from previous studies (Figure 6-2). 

 

 
Figure 6-3 Simulation Data from the proposed model 
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As predicted by the literature, an AB effect was observed in the no-blanks condition when T2 was 

presented at Lags 2, 3, and 4 (i.e., the temporal window of 200-400ms).  In addition, Lag 1 Sparing 

was observed when T2 was presented at Lag 1, while as expected based on the findings of 

Giesbrect and DiLollo (1996) and Seiffert and DiLollo (1997), the AB effect was reduced in the 

Lag 1 and Lag 2 blank conditions. 

6.1.2 How the model reproduces the experimental data 

According to the model description of Chapter 6, all visual input will be initially encoded and 

generated with a specific firing rate relevant to their saliency. Selection of a certain stimulus will 

then occur gradually within the information processing stream. What is selected is influenced by 

the result of the inhibitory interactions among visual input at the first-stage of processing and is 

finally determined after the influence – facilitatory or inhibitory – of internal volitions at a 

subsequent stage (if these exist). In terms of the AB effects however found in the literature, specific 

features of the model are responsible for the successful simulations and these are numbered below.  

The first feature of the model is the ability to handle competitive inhibition between any incoming 

stimuli during the whole process. More specifically, in the first stage of processing, the inhibition 

caused by the masking stimuli towards the two targets will modulate their initial neural activity. 

Indeed, the inhibition in the first stage of processing is critical for the simulations because it 

happens at very early stages of visual processing, before any top-down interference and thus makes 

no distinction between distractors and targets. The only criterion for setting the level of inhibition 

in the first stage of processing is explicitly based on the initial saliency of every incoming stimulus. 

Therefore given that the targets and distracters have more or less the same saliency (since all 

appear with the same contrast, size, and design) the initial inhibition will be equally distributed. 

Furthermore, as briefly mentioned in the previous chapter, feedback and feed-forward interactions 

due to a reverbatory activity among the first and second stage of processing will highlight the 

forward and backward masking interactions from the distracting items of the RSVP stream onto the 

two targets.  

The second feature of the model that contributes to obtain the simulation results are the semantic 

top-down interactions in the second stage of processing. By definition, the AB task requires the 

identification and report of the two (letter) targets; thus, it is important in the implementation to 

include signals for the recognition and selection of the neural activity that corresponds to a target 

stimulus. This mechanism is performed in the model through the correlation control module (CCM) 

that generates a control signal relevant to the degree of correlation among the incoming neural 

activity (initiated from an input stimulus) and neural activity from the endogenous goals module 

representing the targets characteristics. As a consequence, the target stimuli will be biased in 
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respect to the distracting elements and subsequently will elicit stronger inhibitions. Figure 6-4 

presents the neural activations that correspond to the target letter when measured from the second 

layer of the first stage of processing (FS2) and the second layer of the second stage of processing 

SL2). Each black dot corresponds to a spike while the red dots show which spikes in the neural 

network layer have been produced synchronously. In line with the latter, the neural activations of 

the SL2 clearly show the effect of the CCM in the neural progression. 

 
Figure 6-4 The neural activations initiated by the processing of the target when measured from the second layer of 
the first stage of processing (FS2) and the second layer of the second stage of processing SL2). 
 

The third feature inherited by the model necessary to get the proper simulation results, concerns the 

interaction between two attention event related potentials (ERPs). These are the P2/N2 signals that 

appear at about 180-240ms post-stimulus and have been proposed as control signals for the 

movement of attention and the P300 signal at about 350–600 ms post-stimulus which is associated 

with the working memory sensory buffer site and is taken to be the signal of the availability for 

report, as stated in the previous chapter.  

Finally, by incorporating a certain level of noise due to the randomness of the neural spiking 

inherent, the model was able to exhibit similar behavior with the experimental data. 

More specifically, how these features help to obtain the simulation results for each of the three 

characteristics observed in the experimental data is analyzed in the following sections. 
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6.1.2.1 Basic Blink 

The explanation for the U- shaped curve despite the inhibitory interactions among distracters and 

targets, mostly lies in the assumption that the P300 signal generated by the first target falls into the 

time window that the P2/N2 component of the second target was about to be generated. Thus due to 

this interaction, the P2/N2 component that was about to bias the neural activity of the second target 

is strongly inhibited. As a result, the second target, fails to access working memory.  A graphical 

representation of this possible interaction is shown in Figure 6.4. 

 

 
Figure 6-5 Processing of the second target falls within the time window that the P300 signal of the first target 

interacts. Therefore the second target, although it has strong correlations with the endogenous goals, the control 

signal is contradicted by the P300 inhibitory interaction. 

 

6.1.2.2 Lag-1 sparing 

As explained, lag-1 sparing refers to the high percentage of correct identification of the second 

target when presented immediately after the first target. One possible mechanism according to the 

proposed model that could be behind this finding, involves the competitive inhibitory interactions 

Klea
nth

is 
Neo

kle
ou

s



Computational Modeling of Visual Selective Attention 
 

 

Kleanthis Neokleous PhD Thesis, May 2011 Page 125 
 
 

between subsequent stimuli. More specifically, when the first target reaches the second stage of 

processing, it will cause inhibition towards the stimuli still processed by the first stage of 

processing. This inhibition will influence the strength of the masking distractor that appears 

immediately after the second target. Given that, the corresponding distractor which is in fact 

responsible for the primary masking effect acted on the second target will have reduced “strength” 

and thus will analogously extract reduced inhibition (Figure 6.6). 

 

 
Figure 6-6 The coupling inhibitory interactions between stimuli 

 

Furthermore, lag- 1 sparing according to the model can also be explained on the basis of the short 

time gap between the two targets.  The second target appears 100ms after the first target, which is 

outside the P300 signal of the first target interacting window. Therefore the amplification of the 

second target’s neural activity from the correlation control module signals will not be interfered. 

Hence, the second target will reach working memory with adequate strength to win perceptual 

recognition as well. An interesting observation however in this condition, is that although both T1 

and T2 are identified, many times are perceived in the wrong order. In fact according to Chun and 

Potter (1995) when T2 appears at lag 1 temporal order judgment was only a little above chance. 

This finding is again consistent with the proposed implementation for the reason that the same 
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working memory node will be excited from the neural activity that corresponds to both targets. In 

other words it is like the two targets appeared as one stimulus. 

6.1.2.3 Blanks at lag 1 and lag 2 

The curves with blank at lag 1 (green series) and blank at lag 2 (black series) of Figure 6-1 are 

again consistent with the competition processes between various stimuli in order to access working 

memory. Indeed, the substitution of a forward or backward mask with a blank removes the 

inhibitory interactions that would have been induced otherwise form the disctracting stimuli. 

Finally the informality of the adjoining synaptic weights between feed-forward and feedback neural 

activity (Chapter 6 – section 6.3) results into different levels of inhibition when forward or 

backward mask are substitute with a blank and therefore explains the difference between the green 

and black curve of Figure 6-3. 

 

6.2 The Perceptual Load Theory behavioral experiment (Lavie, (1995)) 
In one of Lavie’s studies regarding the perceptual load theory (PLT), participants were asked to 

determine whether a presented stimulus was the letter x or the letter z. In one condition, termed the 

high-load, the letter was flanked by 5 other letters. In another condition, termed the low-load 

condition, the target was presented accompanied by no flanking letters. In both conditions a 

distractor letter was presented nearby the target. In a subset of trials the distractor was incompatible 

to the target designating the alternative response (i.e., if the target was x the distractor was z and 

vice-versa). In other trials, the distractor was a neutral letter. Results revealed that the interference 

exerted by the incompatible distractor, evidenced as increased latency for identifying the target, 

was greater in the low than the high load condition. Lavie accounted for these findings by arguing 

that in the high-load condition all attentional resources are consumed by the main task leaving no 

spare resources to process the distractor; that is, the distractor is discarded at an early stage of 

processing.  In contrast, in the low-load condition the task does not exhaust all available resources 

leaving spare resources to process the distractor. In this case, the distractor is discarded at a later-

stage.  Therefore, one can suggest that PLT has given a promising way of reconciling the debate 

concerning the locus of selection in the attentional mechanism (see section 3.2).    

However, although the PLT offers an appealing account for how selection of information can occur 

either early or late, it has been later on criticized and challenged.  For example, Johnson, McGratth, 

and McNeil (2002) have shown that an endogenous cue priming the location of the target (i.e., a 

central arrow presented prior to the target display) eliminates any distractor interference in the low-

load condition. As the presentation of a cue does not alter the amount of spare resources, this result 

is problematic for at least a strong version of the PLT. Furthermore, Elitti, et al., (2005) provided 
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evidence that the critical variable might be the saliency of distractors and not perceptual load per 

se. In their experiments Elitti et al. manipulated the onsets and offsets of targets and distractors, 

showing that interference can be present with high-load provided that the distractor is made more 

salient. Finally, Torralbo and Beck (2008) have criticized the PLT on two grounds. First, they 

argued that the term perceptual load is not clearly defined. Second, they claimed that the concept of 

exhausted capacity of attentional resources cannot be reconciled easily with what is known about 

brain mechanisms. Torralbo and Beck (2008) proposed that the neural basis for perceptual load is 

the extent of competition among stimuli to gain representation in the visual cortex and the strength 

of a top-down biasing mechanism that is needed to resolve the competition and select a stimulus.   

Considering the above, the PLT has placed a challenging framework for the proposed 

computational model, with the expectation to provide a biologically-plausible account of how 

perceptual load effects may arise in the corresponding behavioral experiments. The resultant 

simulations accompanied with an analogous discussion on how these where derived have been 

published in Neokleous et al., (2009c). Nevertheless, a comprehensively analysis on how the 

overall study on PLT was framed is presented in the next section.    

More specifically, a behavioral experiment was carried out in an attempt to (1) replicate the basic 

pattern of findings obtained with perceptual-load experiments, (2) examine the interaction between 

cuing and perceptual load, and (3) to generate data that would allow a comparison with the model’s 

output.  The experiment conducted was similar to that of (Johnson et al., 2002) with the exception 

that an 80%-valid peripheral cue was used. In their experiment Johnson et al. (2002) have used a 

100%-valid central cue.  

6.2.1 Method of the PLT task 

In the designed task, a 2 (perceptual load: high, low) × 3 (cue: no cue, valid, invalid) × 3 (distractor 

compatibility: neutral, compatible, incompatible) within-subject design was used. The experiment 

was designed and presented using the E-Prime software package. During testing participants were 

seated approximately 50-60cm from a computer screen. 

Participants were asked to perform a visual search task in which 6 letters arranged in a circular 

array in the center of the screen were presented after a fixation cross. In the high load condition, the 

search array comprised of the target (X or Z) and 5 letters (M, K, N, H, W) that shared features 

with the two possible targets (Figure 6-7).  In the low load condition the target appeared among 5 

O’s (Figure 6-8).  Klea
nth

is 
Neo

kle
ou

s



Computational Modeling of Visual Selective Attention 
 

 

Kleanthis Neokleous PhD Thesis, May 2011 Page 128 
 
 

  
Figure 6-7 High-load trial with incompatible distractor 

 
Figure 6-8 Low-load trial with compatible distractor 

 

In both conditions, a larger distractor letter (X, Z or L) appeared simultaneously on the left or on 

the right of the circular array and it was compatible (identical to the target), incompatible (calling 

for the alternative response) or neutral (the letter L) in 1/3 of the trials. Participants were requested 

to ignore the distractor letter and focus on identifying the target (X or Z) in the 6-letter search 

array.  

In cue-present trials an asterisk was presented for 150 ms after the offset of the fixation point. The 

cue was located either in the same location as the target letter (valid cue), or in another position in 

the circle (invalid cue).  

Each participant carried out 216 experimental trials, 50% in the low load condition and the other 

50% in the high load condition. In each load condition there were 96 valid cue trials (i.e., 80% of 

the total cue present trials), 96 no cue trials, and 24 invalid cue trials.  Reaction time (RT) and 

accuracy scores were recorded and were used for data analysis.  

6.2.2 Experimental and simulation results 

Separate repeated-measures ANOVA were carried out for accuracy and latency data with load, cue 

type, and distractor compatibility as factors. Invalid cues were excluded from the analyses as they 

constituted only a small subset of trials. Perceptual load effects are typically found in latency data 

therefore, latency for correct responses was the primary measure of interest in our analyses. Yet, a 

more detail description on the experimental data analysis can be found on Neokleous et al. (2009c). 
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Median latencies for the high and low conditions, with and without cues are presented in Figures 6-

9 and 6-10. In Figure 6-10 the interference exerted by the incompatible distractor can be clearly 

seen (indicated with the red line). 

 
Figure 6-9 Median latency for high load condition (error bars represent standard errors) 

 
Figure 6-10 Median latency for low load condition (error bars represent standard errors) 

The computational model was again implemented using the Matlab-Simulink environment and has 

been tuned to incorporate interactions according to spatial attention tasks as this is the case with the 

PLT. More specifically, fifty simulated trials in each combination of load and distractor 

compatibility were run using the model. Median latencies were computed for each condition and 

were subjected to a 2 (load: high, low) x 3 (compatibility: neutral, compatible, incompatible) 

repeated-measures Analysis of Variance (ANOVA) and presented in Figures 6-11, 6-12.  
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Figure 6-11 Simulation results for high load condition 

 
Figure 6-12 Simulation results for low load condition 

 

As evidenced the pattern of results obtained in the experiment replicated the typical pattern of 

findings of perceptual-load studies (Lavie & Cox, 1997) but also verified the prediction of the 

model for no distractor interference in the cued low load condition.  

6.2.3 How the model reproduces the experimental data 

Generally, top-down interactions in both stages of processing, (spatial and semantic top-down 

interference) in conjunction with the competitive inhibitory interactions between each stimulus, are 

the primary factors responsible for the successful reproduction of the behavioural findings. 

More precisely, images depicting conditions for high and low load like those used by Lavie and 

Cox (1997) were produced by taking screenshots from an E-Prime program of the perceptual load 

task. Following that, the example images were analyzed using the saliency map Matlab toolbox of 

Klea
nth

is 
Neo

kle
ou

s



Computational Modeling of Visual Selective Attention 
 

 

Kleanthis Neokleous PhD Thesis, May 2011 Page 131 
 
 

Walther and Koch (2006) and the saliency values were transformed into firing rates of the input 

neurons that encoded each stimulus in the display as explained in Chapter 6. 

The saliency analysis in the low load condition yielded higher firing rates for neurons representing 

the target than those representing the other letters (the 5 O’s) in the circular array. This was 

expected since in the low load condition the distracting O’s in the circular area create a background 

that pushes the target letter (X or Z) to become more salient. Conversely, in the high load condition 

all stimuli that appear in the circular area have more or less the same saliency (Figure 6-13). In 

both conditions, the distracting flanker due to its increase size compared to all the other stimuli is 

represented with an increase initial firing rate according to the transformation equation 6.21- 

Chapter 6.  

 
Figure 6-13 Low and high load conditions together with the saliency map output 

 

Furthermore, given that the instructions of the task were telling to the subjects to concentrate only 

on the circular area, the stimuli presented in that specific region were biased compared to the 

distracting flanker. Spatial top down signals are driven towards the neurons whose receptive field 

coincides with the circular area and consequently induce an amplification of their corresponding 

initial firing rate.   

As neural activity progress to the second stage of the proposed model, the semantics of every 

stimulus begin to have a more critical role in the overall processing. Accordingly, the neurons 

representing the target letters X and Z, due to their correlation with the semantic endogenous 

information will demonstrate high frequency spike rates accompanied with neural synchronization 

(see section 6.3). However, although the inhibition caused by each of the two stimuli is relevant to 

their neural activation, in the case where the flanker and the target are compatible, both (the target 

and the flanker) will stimulate reduced inhibition between them since both of them are semantically 
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similar. The same assumption applies in the first stage of processing between the stimuli which are 

presented by similar spatial top-down characteristics. Put differently, the distracting letters in the 

circular area will cause stronger inhibition to the flanker which is outside the circular area than 

between them.  

In the cue conditions, an additional factor enters to the overall processing. The appearance of an 

asterisk before the presentation of the visual stimuli generates specific top-down spatial signals that 

are concentrated in a very small spatial area around the asterisk. Thus any stimuli that appears in 

that area immediately after, will gain a significant advantage in the competition process. 

On the basis of the above analysis, a more detailed description about how the simulation results 

were obtained for each condition is presented below.  

6.2.3.1 High load condition 

In the high load condition, each stimulus in the circular area has a relatively high salience. This 

along with the spatial top down amplification results into high levels of neural activations for every 

stimulus and consequently high levels of inhibition towards each other. More importantly however 

the corresponding neural activity, results to a combined stronger inhibition towards the distracting 

flanker. The consequences of these interactions in the first stage of processing are reflected on two 

main observations of the simulation results. The first observation corresponds to the increased 

latency of the target’s response in the high load condition compared with the low load condition 

(Figure 6-10).  The model outputs a target response similar with the experimental data in this 

condition because the neural activity of the target is significantly reduced from the lateral 

inhibitions caused by all other stimuli and thus more time is required until it is fully processed from 

the working memory module.  

The second observation concerns the absent of interactions from the flanker towards the target, an 

effect that according to the model is correlated with the flanker’s strength in the second stage of 

processing. This phenomenon can be explained by the fact that the combined inhibitory interactions 

from the stimuli in the circular area towards the flanker in the first stage of processing almost 

neutralize its neural activity. Therefore in the second stage of processing, there no spare resources 

are linked to the flanker in order to extract any interference. A more comprehensive explanation of 

these interactions can be seen in Figure 6-14 in which the level of activation between the neurons 

that represent each stimulus at different stages of the overall processing (and consequently the 

analogous inhibition that each stimulus acts on all the other) is shown.  

Figure 6-14.a corresponds to the level of activations of the input neurons as these are calculated 

according to the saliency map without taking into consideration the spatial attention interactions. 

Figure 6-14.b, shows the same neurons activation after the influence of the spatial top-down signals. 

Of course in the simulations, the spatial top-down signals interact to the presented stimuli even 
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before their appearance, thus the initial levels of neural activations that are applied to the model are 

those of figure 6-14.b. Nevertheless, Figure 6-14.a is presented only to point out the effect of the 

spatial interactions. Figure 6-14.c shows the level of neural activity after the semantics top down 

interactions in the second stage of processing.  

 
 
Figure 6-14 a) shows the level of activations of the neurons that correspond to each stimulus in the high load 

condition as these are calculated according to the saliency map without taking into consideration the spatial 

attention interactions and b) with the spatial top down signal interactions. c) Shows the level of neural activity 

after the semantics top down interactions in the second stage of processing 
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In Figure 6-15 one can observe the neural activations that correspond to the target and the flanker 

when measured from the second layer of the first stage of processing (FS2) and the second layer of 

the second stage of processing SL2) in the high load condition. Each black dot corresponds to a 

spike while the red dots show which spikes in the neural network layer have been produced 

synchronously. From Figure 6-15 it is clear that the neural activations that correspond to the flanker 

have been significantly suppressed thus preventing any semantic interactions in the second stage of 

processing. 

 
Figure 6-15 The neural activations that correspond to the target and the flanker when measured from the second 
layer of the first stage of processing (FS2) and the second layer of the second stage of processing SL2) in the high 
load condition. 

6.2.3.2 Low load condition 

In the low load condition, as explained the target letter because of the iso-feature suppression effect 

becomes more salient than the surrounding O’s. In addition, the spatial top-down interactions about 

the circular area according to the task’s instructions will further amplify the target’s neural activity. 

This will result to strong inhibition from the target letter towards the surrounding O’s yet much 

smaller combined inhibition from all the stimuli in the circular area towards the distracting flanker 
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than in the high load condition. The reason for the smaller combined inhibition is mainly because 

of the reduced activation levels of the distracting stimuli in the circular area at the low load 

condition compared with the high load condition. Again the consequences of these interactions in 

the first stage of processing are reflected on the output results. More specifically the reaction time 

of the target’s response is significantly lower than in the high load condition because of its stronger 

activations during the whole process. More importantly however, in this condition there is a 

significant difference in the reaction time between the compatible and incompatible case. This 

observation results due to the fact that the flanker’s neural activity was only slightly diminished in 

the first stage of processing and thus it continued in the second stage of processing with sufficient 

levels of activations. Thus it was able to persuade the analogous interactions in the incompatible 

case (Figure 6-16).    

 
Figure 6-16 a) shows the level of activations of the neurons that correspond to each stimulus in the low load  

condition as these are calculated according to the saliency map without taking into consideration the spatial 

attention interactions and b) with the spatial top down signal interactions. c) Shows the level of neural activity 

after the semantics top down interactions in the second stage of processing 
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In Figure 6-17 the neural activations that correspond to the target and the flanker when measured 

from the second layer of the first stage of processing (FS2) and the second layer of the second stage 

of processing (SL2) in the low load condition are presented. From Figure 6-17 one can see that 

there are significant neural activations that correspond to the flanker in the second stage of 

processing, therefore it is possible for semantic interferences to interact with the progression and 

processing of the target’s neural activity in the working memory layer. 

 

 
Figure 6-17 The neural activations that correspond to the target and the flanker when measured from the second 
layer of the first stage of processing (FS2) and the second layer of the second stage of processing SL2) in the low 
load condition. 

6.2.3.3 Cued conditions 

In the cued conditions, the specific spatial attention top down signals raise the neural activity of the 

preceding stimulus in to very high levels. As a consequence, this will result for the specific 

stimulus to strongly inhibit the neural activations of all the other surrounding distracters and 

eventually to produce the simulation output results of Figures 6-10 and 6-11.  
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6.2.4  A comment on the simulation results 

As a concluding remark based on the simulations of the specific behavioural experiment what can 

be pointed out is that the proposed computational model offers an explicit and concrete account for 

perceptual load effects. Importantly, the model does not rely on any definition of what constitutes 

high or low load. Instead, whether a task is susceptible to distractor interference is determined by 

the relative saliency of the stimuli in the visual field as well as the current goals of the person. Thus, 

the model is compatible with the claims by Eltiti et al. (2005) that saliency is an important 

determinant of perceptual load effects. The model is also compatible with the theorizing of 

Torralbo and Beck (2008) who argued that the neural basis of perceptual load is the competitive 

interactions in the visual cortex and the biasing mechanisms needed to resolve the competitions in 

favor of the target.  Indeed, on one hand, the model includes continuous inhibitory interactions 

among the stimuli in the visual field with relative saliency determining the strength of the 

inhibitions that are exerted while on the other hand, top-down signals can bias this competition by 

amplifying the activity of neurons representing stimuli that match the spatial and semantic goals.  

6.3 A behavioral experiment regarding the relation between attention 

and consciousness by Naccache, Blandin and Dehaene, (2002) 
Even though the role of attention as a control system is ubiquitous, to fully understand the 

functioning of this mechanism one must closely examine its relation with other psychological 

constructs such as working memory, learning and consciousness. However, perhaps the most 

interesting, albeit controversial, issue concerns the relationship between selective attention and 

consciousness. Although psychologists and neuroscientists accept that selective attention and 

consciousness are related constructs, the exact nature of this relation remains unclear. Some 

researchers emphasize this close relation and argue that attention is necessary and sufficient for 

consciousness (e.g. Posner, 1994; Jackendoff, 1996; O'Regan & Noe, 2001), while others posit that 

since the two constructs are subserved by separate neural processes, they must be regarded as 

distinct mechanisms (Lamme, 2003; Bachmann 2006; Koch & Tsuchiya, 2006). The claims that 

selective attention and consciousness are very similar constructs or even the same, is reinforced by 

the plethora of evidence showing that a person becomes consciously aware of a stimulus when s/he 

focuses attention on it (Mack and Rock, 1994).  In fact, many inattentional blindness studies have 

shown that a stimulus easily evades conscious awareness when no attention is directed at it 

(Simons and Rensick, 2005). Alternatively, evidence from studies using dual task paradigms 

demonstrates that it is possible to perceive stimuli presented in the peripheral visual field even 

when spatial attention is endogenously focused on a central task (Sperling & Dosher, 1986; Braun 

& Jules, 1998). Also, both forward and backward masking has been shown to interfere with the 

visual awareness of a stimulus as is the AB paradigm. 
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Therefore, the proposed model was used to simulate the findings of a behavioural experiment 

conducted by Naccache et al., (2002) which have sparked a debate on the possible links between 

attention and consciousness in the attempt to contribute in this scientific research area. The 

simulations along with the corresponding results were published on Neokleous et al., (2010). 

6.3.1 Method and experimental results of the Naccache, Blandin and Dehaene, (2002)   

task 

In the specific study by Naccache et al., (2002) participants were presented with a number-

comparison task in which they were asked to indicate if a presented numeric stimulus (a number 

between 1 and 9 but excluding 5) was greater or smaller than 5. Shortly before the appearance of 

the target stimulus, a prime was presented that could be either congruent with the target (both the 

prime and target are greater or smaller than 5) or incongruent (the prime is greater than 5 but the 

target smaller or vice versa). 

The prime was presented among masking stimuli for only 29ms and as confirmed by the study, 

participants were not aware of its presence. In addition to the basic task, a temporal cue was 

presented in some trials. The cue did not reveal any information about the identity of the target but 

allowed the participants to anticipate when the target would be presented (Figure 6-18).  

 

 
Figure 6-18 The experimental setup by Naccache et al., (2002) 

    

Results from the study revealed an interaction between cueing condition and target compatibility. 

Participants were faster responding to a congruent than an incongruent target but only when a 

temporal cue was provided. When no temporal cue was present, response times for congruent and 
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incongruent targets were equal. Overall, the temporal cue enhanced performance as response times 

were faster for cued than non cued trials. The basic pattern of the findings by Naccache et al. (2002) 

is presented in Figure 6-19.  

 
Figure 6-19 Basic pattern of findings from Naccache et al., (2002) 

6.3.2 Simulation results of the Naccache, Blandin and Dehaene, (2002)   task. 

The model was used under four conditions to provide simulation data for each combination of 

cueing and compatibility. The simulations were run 50 times for each of the four conditions and 

reaction time was recorded.  Reaction time in the simulations was operationalized as the interval 

between the encoding of the probe (i.e., firing of the first spike in the first stage of the model) and 

the firing of the working memory node to denote that a decision was made. 

Median reaction times (RT’s) from the simulations are presented in Figure 6-20. However, 

comparing these findings with those from the experiment of Naccache et al (2002) one can verify 

that, although the model is overall slower in responding, it does replicate the pattern of behavioural 

findings. 

 
Figure 6-20 Median reaction times from the simulations, (error bars represent standard errors). 

6.3.3 How the model reproduces the experimental data 

This pattern of latencies produced by the model is a consequence of the competitive interactions of 

neural activity in the first stage of the model and the semantic modulation of activity by top-down 
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signals in the second stage of the model. In the uncued conditions, the input neurons that 

correspond to the prime generate spike trains for 29ms (i.e., the duration of the prime) with a mean 

firing rate that is based on its saliency. This neural activity when interacted from backward and 

forward masking is not adequate to advance strongly in the neural pathway of the computational 

model. In fact, in most of the cases it is completely suppressed before it even reaches the second 

stage of processing. Therefore, even though the prime contains semantic information, its 

interference is diminished, and as a consequence the processing of the target is not influenced.  A 

more comprehensive demonstration of the latter can be seen in Figure 6-21 where the neural 

activity that corresponds to the prime is presented when measured in the second layer of the first 

stage of processing (FS2) and the second layer of the second stage of processing (SL2). 

 
Figure 6-21 The neural activations that correspond to the prime when measured from the second layer of the first 
stage of processing (FS2) and the second layer of the second stage of processing SL2). 
 
 

In the cued conditions, top down signals initiated by the presence of the cue interfere with the 

processing of the prime and the target. These top-down signals that are represented in the model by 

a series of spike trains begin to excite the input neurons very shortly after the appearance of the cue. 

This interaction results into an increase of the initial firing rate of any stimuli that appear within 

this temporal window. In the present experiment both the prime and the target are presented in this 

interval. It should be pointed out that the firing rate of the prime is still not strong enough to enter 

working memory and thus to be consciously perceived. Nevertheless, it is critically sufficient to 
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“push” the neural activity of the prime in the second stage of processing and therefore to exert 

semantic interference to the processing of the target. This can be seen more clearly in Figure 6-22 

that presents the activations of the prime in the cued condition (measured in FS1 and SL2). More 

specifically from the activations in SL2 one can see that there is sufficient neural activity to induce 

even at the minimum level some semantic interference.   

 
Figure 6-22 The neural activations that correspond to the prime in the cued conditions, when measured from FS2 
and SL2. 

6.3.4 A comment on the simulation results 

The combination of backward and forward masking in this task makes the prime non-accessible for 

conscious report but it can nevertheless affect performance in the task.  Koch and Tsuchiya, (2006) 

suggested that the visual masking technique in this task allows for an independent manipulation of 

attention and consciousness. They claimed that in order to obtain the priming effect it is necessary 

to allocate top-down attention to a perceptually invisible stimulus; this suggests, in their opinion, 

that two distinct processes are involved. In contrast Mole, (2008) posits that it is possible to 

visually process some of the attributes of an item and manipulate them with attentional mechanisms, 

even if the item has not been consciously experienced. Therefore, the proposition that attention and 

consciousness are two distinct processes is according to Mole not sufficient to explain the 

behavioural results.   

The interpretation put forward by Dehaene and colleagues (2006) is based on the assumption that 

every stimulus causes a different level of processing depending on its strength. They argued that 

every stimulus can trigger subliminal, preconscious or conscious processing. Subliminal processing 

is defined as a condition in which the information is inaccessible due to insufficient bottom-up 
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activation. Preconscious processing causes enough activation to achieve conscious access, but the 

stimulus remains in a nonconscious state because of a lack of top-down attentional amplification. 

Conscious processing involves the interaction of top-down attention with the neural activity of a 

stimulus, in such a way that the activity exceeds the “threshold” of conscious access. Based on the 

logic of Dehaene et al., (2008), the strength of the prime in the cued condition is sufficient to reach 

the level of preconscious processing and therefore to semantically interfere with the processing of 

the target, but it is not adequate to reach the level of conscious processing.   

This threefold distinction of stimulus processing is based on the global workspace hypothesis 

implemented in the model of Dehaene et al. (2003) as well as on neuroscience findings regarding 

the relation between attention and consciousness.  For example, many studies have shown that 

neural activity is observed in extrastriate visual areas even if the participants deny seeing any 

stimulus (Dehaene & Naccache, 2001; Moutoussis & Zeki, 2002; Marois, & Chun, 2004). 

Moreover, in a study by Sergent et al. (2005), similar occipito-temporal event-related potentials 

were evoked by a visible word and by a word that was rendered invisible through masking.  This 

finding is consistent with the hypothesis of different levels of processing proposed by Dehaene et al. 

(2006) as it documents that intense occipito-temporal activation is present in the cortex along with 

lack of conscious awareness of the stimulus that initiated it.  However, these findings can also be 

interpreted as supporting the claim that attention and consciousness are two distinct, albeit 

interacting, processes.  Perhaps then the crucial difference between the claims of  Dehaene et al., 

(2008) and Koch and Tsychiya (2006) is that according to the former top-down attention is 

regarded as necessary for conscious awareness of a stimulus while for the latter  consciousness can 

occur without top-down attention. 

My opinion related with this interesting topic around attention and consciousness is shaped by the 

simulation results and the underlying mechanisms of the proposed model. In the implementation, 

the hypothesis that the primary processing of visual information is performed in a feed-forward 

manner within the visual cortex is adapted. This hypothesis is based on evidence from the literature 

suggesting that complex visual processing can be reflected in the human cortex within 130–150 

msec, (VanRullen & Koch, 2003). For visual information to become conscious however, the model 

follows the theory by Lamme (2003) who argued that sustained neural activity is required, possibly 

through global feedback from frontal regions of the cortex to visual areas and back. This 

reverberatory activity can gradually build up until it is sufficient to propagate in parietal and 

prefrontal regions that are believed to support short-term memory and other processes that relate to 

consciousness. This neural process has also been adopted by other scientists as a possible 

explanation for the creation of consciousness. For instance, Dehaene et al. (2006) suggested that if 

a stimulus is strong enough, then it can access a global network with long range axons that 

communicate with different cortical areas, and therefore it can initiate loops of neural activity. As a 
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consequence, a self-amplifying system will gradually push the corresponding stimulus into 

conscious awareness. Furthermore, in a slightly different interpretation, Taylor (2007) suggested 

that these loops of neural activity are possible candidates for the signals that generate the 

experience of ownership, that is, the experience one has of being aware of an external or internal 

stimulus. In a recent report on the CODAM model, Taylor (2007) regards this activity as a copy of 

the attention control signal denoted as the corollary discharge of the attention movement control 

signal. The copy of the attention signal was originally proposed in the CODAM model as a 

component used to make attention more effective and at the same time, it was suggested as a 

candidate signal for the creation of the “inner self".  

In the proposed computational model, this reverberatory activity is incorporated through forward 

and feedback interactions between the first and second stage of processing as explained in previous 

sections. However, conscious report of a certain stimulus in the model requires activation of the 

corresponding working memory nodes which are connected to the output layer of the second stage 

of processing. Therefore, the experience of being perceptually aware of a stimulus can be achieved 

only if a stimulus sufficiently activates working memory. 

Therefore, I would suggest that the relation between attention and consciousness can become more 

obvious if top-down and bottom-up attentional mechanisms are seen as two distinct processes. The 

neural path following the two stages of processing in the proposed model can be seen as an 

independent attentional system that relies first on bottom-up information but subsequently on top-

down signals as well.  As a result, each stimulus that enters the visual field initiates neural activity 

that will progress in the visual cortex according to the “constructive rules” that underlie bottom-up 

attention combined with any interaction that might arise from a separate system that maintains 

endogenous goals. Furthermore, all stimuli that appear within the same temporal window compete 

with each other to win a place in working memory. Depending on the “strength” of each stimulus, 

which is reflected in the firing rate of its neurons, inhibition takes place and influences the neural 

progression of any other competitive stimuli. This inhibitory interaction can be negligible or 

significant and more importantly, it can influence the neural progression through the corresponding 

areas of the visual cortex of a certain stimulus, regardless of whether the stimulus that initiated the 

inhibition eventually accesses working memory or not. Therefore, although at the very initial stages 

of visual processing the route to consciousness coincides with processes involved in bottom-up 

attention, according to the model’s simulations one can suggest that top-down attention may play a 

key role on whether a stimulus reaches conscious awareness.  

 

Summarizing, the three behavioral experiments presented in this Chapter have been deeply 

analyzed through extensive computational simulations. The corresponding investigations resulted 

into some interesting conclusions regarding the neural interactions that might produce their 
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corresponding behavioral data, which in their turn have offered a possible solution on the relevant 

scientific disagreements that these experiments have produced. Indeed, a general summary about 

the conclusions and contributions as well as on the future scientific paths that can be effectively 

linked with this thesis is given in Chapter 7. 
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7. Conclusions, contributions and 

future work  

In this chapter the general conclusions of the research work are summarized. Also, the chpater 

identifies and explains the original contributions that have been derived during the different levels 

of the research. 

It has been previously pointed that the research work is multidisciplinary, spreading in the fields of 

neuroscience, cognitive psychology and computer science, as they are related to visual selective 

attention. More specifically, the goals of the research work were to collect relevant information 

regarding the neurophysiology and cognitive behavior of the attentional process and integrate it 

into a new and plausible computational model, using elements of neural system dynamics, 

computational intelligence, and mathematical simulations. The multitude of facts and relevant data 

that have been accumulated from many scientific studies from different disciplines however, many 

times bring confusion since they can overwhelm our understanding. Computational sciences, have 

the ability to synthesize distinct facts, to simulate and measure them, and thus to create coherent 

testable hypotheses. Indeed, the visual attentional model that has been proposed in the thesis had 

been focused on the identification of candidate operating principles that may underlie the 

machinery of the attentional system through various simulations of important behavioral 

experiments.  

More specifically, the combination of low level neural interactions and the more abstract 

psychological concepts as implemented in the model has given the opportunity to contribute in the 

theoretical explanation of the corresponding debatable behavioral experiments from a new 

perspective, and thus offering an alternative and novel approach from what has been presented in 

the relevant literature so far. 

7.1 Contributions of the research work 
The important contributions of the thesis are listed below. 

• A generic model of visual selective attention has been designed and used for simulating three 

debatable psychological experiments in the relevant literature. These are the attentional blink 

phenomenon (Raymont et al., 1992), the behavioral experiment that inspired the perceptual 

load theory (Lavie, 1995) and the experiment that initiated a controversial debate on the 

relation between attention and consciousness (Naccache et al., 2002).  The strategy 

followed, was to initially verify its credibility by comparing the simulation results with the 
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experimental data, and afterwards to give some potential explanations for their behavioural 

responses, based on low level neural interactions, something that has not been clearly presented 

in the literature so far. It is important to note that the model was indeed able to reproduce, with 

high accuracy, the data derived from these three behavioral experiments (Neokleous et al., 

2009a; Neokleous et al., 2009b, Neokleous et al., 2010) and therefore, was considered as a very 

good tool for evaluating the explanatory theories behind their behavioral results.  

• The combination of low level neural interactions and the more abstract psychological concepts 

as implemented in the model has provided the power to run simulations of behavioral 

phenomena, and at the same time to stay within the narrow limits of coupling interactions as 

these arise from the plethora of neurophysiologic evidence. The proposed method is a novel 

approach since it offers the opportunity to contribute from a new perspective in the field of 

cognitive science.  

• To my best of knowledge, the proposed model is the first model that provides a solid 

explanation of the perceptual load theory (PLT) supported by computational simulations, on 

the basis of simple neural interactions combined with the stimuli saliency. The only other 

attempt to explain the perceptual load theory found in the literature is by Dayan (2009), 

however by using a different approach, on the basis of simple Bayesian inference for 

incorporating the existence of small and large receptive fields that contribute analogously in the 

process, depending on the condition of the task (high or low). As noted in section 6.2, the PLT 

offered an appealing account for how selection of information can either occur early or late. 

Therefore the corresponding computational simulations are of significant importance taking 

into account that they provided a possible explanation on how these results were obtained, 

especially since contradictions have been observed in the recent scientific literature regarding 

the validity of the theory.  

• With regards to the behavioral experiment by Naccache et al. (2002), to the best of my 

knowledge, there is no other computational model in the literature that simulates the 

corresponding data. This task has sparked an interesting debate among distinct scientists 

regarding the relation between attention and consciousness with some researchers to support 

that these are two distinct processes and others that selective attention and consciousness are 

very similar constructs or even the same. The computational simulations as presented in section 

6.3 resolve this contradiction by suggesting that the distinction is not between attention and 

consciousness but inside the attentional process itself and specifically among the two main 

mechanisms that result from bottom up and top down interactions. It is suggested that these 

two attentional mechanisms can work in accordance and separate and thus giving interesting 

results as the ones obtained from the specific experiment.  
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• Another important contribution of the work is that it has initiated a very promising 

collaboration between the departments of Cognitive Psychology and Computer Science of the 

University of Cyprus and thus opened the road towards a number of new PhD and postdoc 

studies. More specifically, in order to investigate several predictions by the model, as well as to 

refine some of its properties, four undergraduate and two postgraduate students partly under 

my supervision have dedicated their thesis on the design and execution of new and relevant 

behavioral experiments. Furthermore, more students have expressed their interest to be 

involved and continue their graduate studies in the path that the thesis has created as well as on 

several future applications that can be effectively linked to the current study, as these are 

analyzed in more detail in the next section.  

7.2 Future work 
Computational analysis in neurosciences can draw strengths from two sources: the scientific aim of 

understanding the brain, and the engineering goal of building simulations that imitate those 

mechanisms, once they are understood. In future work, related to this thesis, it is therefore desired 

to be driven towards both of these ideas. More realistic implementations could be incorporated in 

the model, based on new collaborations from laboratories performing single cell recordings, with 

the objective to combine more detailed low level mechanisms with behavioral responses. 

More importantly, future work could be directed towards the design and implementation of novel 

computational intelligence algorithms that could be used in several applications such as robotics, 

security systems, computer networks, and diagnostic systems. Even more, straight forward 

applications could be driven towards studies that concentrate on the expansion of these modeling 

concepts on the social and medical fields. For example, it is possible to investigate the effects of 

several parameters such as the strength of inhibitory signals or the level of arousal in important 

medical conditions such as attention deficit hyperactivity disorder and schizophrenia. Furthermore, 

collaborations with governmental institutions could be initiated with the emphasis on the social 

implications of attention and how these could influence our everyday life, or into specialized 

research concerning tests and training tasks for airtraffic control engineers, pilots, police officers 

etc.   

7.3 Concluding remarks 
Although the model follows guiding lines from neurophysiologic studies concerning its operating 

principles, it is still not an entirely biologically realistic implementation. Several studies have been 

presented in the literature that explain and suggest candidate neural mechanisms for the attentional 

process with more realistic implementations. These results however, are usually compared with 

neurophysiologic studies that measure neural activity at the single neuron level. Conversely, given 
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that the proposed model is concentrated on the theoretical interpretations of behavioral 

experiments, a more abstract implementation is necessary. Still, the design of the model does not 

escape from the borderlines placed by neuroscience, and thus keeps its credibility and capability of 

predicting new findings. Also, the collaborations with the Experimental Psychology Lab (EPL) of 

the University of Cyprus, has offered the facilities to design and perform new variations of the 

existing behavioral experiments, and also to design and develop  new experiments based on the 

computational analysis derived from the model.  Therefore, the decision to work at this level of 

modeling concurs with the availability of experimental research within the project’s collaboration 

group, for the proper evaluation of the model’s behavior and the near optimum exploitation of the 

derived data.  

Finally, concerning the discussion regarding the neurophysiologic guidance followed in the 

implementation and especially about the mechanism of selection as this had been expanded in 

section 5.5, it is pointed that although the idea to incorporate both mechanisms (manipulation of the 

firing rate and neural synchronization) was influenced by a number of discussions with distinct 

scientists and published studies, the final decision was based on my personal understanding and 

logical interpretation on how the human brain can manipulate and process the incoming visual 

information under the attentional mechanism .  
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Appendix A 
MATLAB files (.m) 

% Kleanthis Neokleous 
% Department of Computer Science - University of Cyprus 
% November 18th 2010 
% Computational model for visual selective attention 
  
  
%main simulation  %%%%%%%% 
clear all 
close all 
  
initializations 
  
  
% Firing rate calculated according to the saliency map toolbox 
  
Firing_Rate = 0.35; 
Firing_Rate_flanker=0.4; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % high load condition %%%% 
% %  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Firing_Rate_distractor=0.35; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % low load condition %%%% 
% %  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Firing_Rate_distractor=0.25; 
  
  
  
  
for i=1:iteration 
    
    T1(i,1)=i-1; 
    F1(i,1)=i-1; 
    E1(i,1)=i-1; 
    E2(i,1)=i-1; 
     
     
    D1(i,1,:)=i-1; 
    S1(i,1)=i-1; 
     
    SpT(i,1)=i-1; 
    SpF(i,1)=i-1; 
    SpD(i,1,:)=i-1; 
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    i=i+1; 
    
end; 
  
for k=1:number_of_trials 
  
[T]=target_spiketrains(Number_of_trains,Firing_Rate,Number_of_Spikepositi
ons);  
[F]=flanker_spiketrains(Number_of_trains,Firing_Rate_flanker,Number_of_Sp
ikepositions);   
[D]=distractor_spiketrains(Number_of_distractors,Number_of_trains,Firing_
Rate_distractor,Number_of_Spikepositions);   
[SpT1]=target_spiketrains(Number_of_trains,Spatial_prob_T,Number_of_Sp_Sp
ikepositions);  
[SpF1]=target_spiketrains(Number_of_trains,Spatial_prob_F,Number_of_Sp_Sp
ikepositions);   
[SpD1]=distractor_spiketrains(Number_of_distractors,Number_of_trains,Spat
ial_prob_dis,Number_of_Sp_Spikepositions);   
  
  
T1(1:Number_of_Spikepositions,2:Number_of_trains+1)=T; 
F1(1:Number_of_Spikepositions,2:Number_of_trains+1)=F; 
D1(1:Number_of_Spikepositions,2:Number_of_trains+1,:)=D; 
  
SpT(1:Number_of_Sp_Spikepositions,2:Number_of_trains+1)=SpT1; 
SpF(1:Number_of_Sp_Spikepositions,2:Number_of_trains+1)=SpF1; 
SpD(1:Number_of_Sp_Spikepositions,2:Number_of_trains+1,:)=SpD1; 
  
  
  
Dis1=D1(:,:,1); 
Dis2=D1(:,:,2); 
Dis3=D1(:,:,3); 
Dis4=D1(:,:,4); 
Dis5=D1(:,:,5); 
  
SpDis1=SpD(:,:,1); 
SpDis2=SpD(:,:,2); 
SpDis3=SpD(:,:,3); 
SpDis4=SpD(:,:,4); 
SpDis5=SpD(:,:,5); 
  
sim('attention_model'); 
    
  
  
k=k+1; 
end; 
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initializations.m 
 
% Kleanthis Neokleous 
% Department of Computer Science - University of Cyprus 
% November 18th 2010 
%Computational model for visual selective attention 
 
 
Neuron_gainV1 = 20; 
Neuron_gainV2 =20; 
Neuron_gainV4 = 30; 
time_const = 0.03; 
coincidence_detector_threshold = 2; 
  
iteration = 301; 
Number_of_trains = 12; 
Number_of_correlated_trains = 7; 
Number_of_Spikepositions = 100; 
Number_of_Sp_Spikepositions = 100; 
number_of_trials = 50; 
Number_of_distractors=5; 
  
% Probabilities to initialize the spike trains of the spatial top down 
% signals 
  
Spatial_prob_T=0.25; 
Spatial_prob_F = 0.1; 
Spatial_prob_dis=0.25; 
  
% adaptive gain - based on spatial prob and firing rate of each stimulus. 
  
sp_inhibition_gain_flanker = -
(0.8+(Spatial_prob_T*(4*Firing_Rate_distractor+Firing_Rate))); 
sp_inhibition_gain_circle =  -
(0.8+(Spatial_prob_F*(4*Firing_Rate_distractor+Firing_Rate_flanker))); 
  
  
% Inhibition gain - first stage of processing 
  
inh_c = -1.5; 
inh_f = -1.5; 
  
% Degree of correlation between the letters X or Z with the endogenous 
% signals 
Degree_of_correlation = 0.8; 
  
% Inhibition gain -  second stage of processing 
  
End_inh = -0.025; 
End_gain=0.5; 
Endogenous_corr_gain = 1; 
  
% Working memory node threshold 
  
Thresh_WM = 9000; 
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% Initialization of the input spike trains for target , flanker and 
% distractors 
  
T1=zeros(iteration,Number_of_trains+1); 
F1=zeros(iteration,Number_of_trains+1); 
S1=zeros(iteration,2); 
E1=zeros(iteration,2); 
E2=zeros(iteration,2); 
D1=zeros(iteration,Number_of_trains+1,Number_of_distractors); 
SpT=zeros(iteration,Number_of_trains+1); 
SpF=zeros(iteration,Number_of_trains+1); 
SpD=zeros(iteration,Number_of_trains+1,Number_of_distractors); 
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The function below initializes the target spike trains. A similar 
function is used for the flanker/distractors and the endogenous signals.  
 
Target_initialization.m 
 
% Kleanthis Neokleous 
% Department of Computer Science - University of Cyprus 
% November 18th 2010 
%Computational model for visual selective attention 
 
function [T] = target_spiketrains(NofT,FR,NofS) 
  
  
% generation of random matrix A and Target matrix T 
  
number_of_trains =NofT; 
  
number_of_spikes=NofS; 
  
A= rand(number_of_spikes,number_of_trains); 
  
T=zeros(number_of_spikes,number_of_trains); 
  
  
  
for i=1:number_of_trains 
     
     for j=1:number_of_spikes        
          
            if A(j,i)<FR 
     T(j,i)= 1; 
            else 
                T(j,i)= 0; 
            end 
%          else 
%              T(j,i)= 0; 
%         end 
       j=j+1; 
    end   
    
  
    i=i+1; 
end 
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The file below calculates the degree of synchronization (Q) in the V2 and 
V4 layers 
 
Calculate_Q.m 
 
% Kleanthis Neokleous 
% Department of Computer Science - University of Cyprus 
% November 18th 2010 
%Computational model for visual selective attention 
  
function [Q_total, v_global] = calc_Q(V2) 
  
[a,b] = size (V2); 
mu=sum(V2); 
kle=0; 
 
for i = 1:b 
  
eval(['v_' num2str(i) '=V2(:,i);']); 
 
kle=kle+i; 
  
i=i+1; 
 
end 
  
count=0; 
v_global=zeros(a,kle-b); 
mu_global=zeros(1,kle-b); 
  
  
for i =1:(b) 
     
    for j = i+1:b 
   eval(['v_' num2str(i) num2str(j) '=v_' num2str(i) '+v_' num2str(j) 
';']); 
   eval(['mu_' num2str(i) num2str(j) '=(mu(i)*mu(j))^.5;']);  
       
   count=count+1;   
   v_global(:,count)=(eval(['v_' num2str(i) num2str(j)]));  
     
   
%    [r,e]=size(find(eval(['v_' num2str(i) num2str(j)])>1));  
%     
%    C1(count)=r; 
%     
%      
  mu_global(:,count)=(eval(['mu_' num2str(i) num2str(j)]));     
  
j=j+1; 
   
    end 
  
    i=i+1; 
end 
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[f,h]=size(v_global); 
  
for i=1:h 
    count1=0; 
    for j=1:f 
         
        if v_global(j,i)==2 
            count1= count1+1; 
        end 
        j=j+1; 
    end 
         
    for j=1:f-1     
        if v_global(j,i)==1 andand v_global(j+1,i) 
            count1= count1+1; 
            v_global(j,i)=2; 
        end 
        j=j+1; 
         
    end 
C2(i)=count1;  
  
i=i+1; 
end 
  
Q = (C2)./mu_global; 
  
Q_total= sum(Q)/(kle-b); 
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Appendix B 
MATLAB SIMULINK models (.mdl) 

 
For the SIMULINK models, a simple implementation is presented according 
to a straightforward example in which two competitive stimuli appear 
simultaneously in the visual field.  
 
The details and operations performed inside every block in the 

implementation are presented separately below.   
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 Every green block represents a discrete I&F model of neuron.   
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The grey blocks simulate the synaptic input which is shown below.  
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The temporal filter mechanism 
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A recursive attractor simulating working memory nodes 
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Appendix C 
Undergraduate and graduate theses relevant with this 
PhD thesis 

ΑΔΕ/2009/Master thesis by Katia Nicolaidou 

Title: An information system for an experimental study on visual selective attention 

 

Abstract  

This study is part of a larger project aiming at the neural network computational modeling of visual 

selective attention. The main goal of this thesis is to exploit experimentally specific aspects of 

visual selective attention. More specifically the focus of this work is to study how selective 

attention filter’s out the irrelevant information by designing a behavioral experiment similar with 

the one presented in Lavie (1995), yet with specific variations to investigate deeper the effect of 

perceptual load in the overall processing. The experimental results are expected to bring some clear 

conclusions regarding the role of perceptual load in the process of filtering the irrelevant 

information contained in the distracting flanker and more generally in the visual selective attention. 

A deeper analysis is presented regarding possible explanations on the experimental results based on 

computational simulations and a future work linked to this thesis is explained.   
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ΑΔΕ/2010/Master thesis by Christiana Christou  

Title: Computational modeling of perceptual load and selective attention 

  
Abstract  

A great number of scientists is involved in the understanding of human cognition with the ultimate 

target to design systems of artificial intelligence. The research is mostly focused on the 

identification of the primary factors that contribute in the creation of human behavior. Similarly we 

aim in contributing in this important area of computer science by studying and modeling the 

functionality of visual selective attention. More specifically, this study is concentrated in the 

creation of two behavioral experiment that will feed with new data and guiding observations the 

attempt to implement a neural network model of visual selective attention. Both of the experiments 

are new modifications of the perceptual load experiment by Lavie (1995) and are a logical progress 

of the master thesis by Katia Nicolaidou (ΑΔΕ/2009/). The first experiment examines the role of 

visual saliency in the overall processing while the second experiment concentrates on the effect that 

a go, no-go instruction before the execution of the main task has on the output results. Visual 

saliency is examined by manipulating the boldness of the distracting letters in the main task while a 

go no-go instruction that indicates to the subject whether will proceed and respond to the 

immediately preceding task or not, examines the working memory interactions. 
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ΑΔΕ/2009/ Bachelor thesis by Evi Procopiou 

Title: An information system of auditory and visual attention 

Abstract  

The main target of this thesis is to present the work done in order to effectively study some 

important issues that concern auditory and visual attention. In the first chapter a general 

introduction on human attention is presented and how it can be studied using computational 

intelligence methodologies and techniques. In the second chapter a literature review on previous 

studies that examine visual and auditory attention separately and together is presented and in the 

third chapter explains the experiment that I have programmed and examines this relation under the 

attentional process. In this chapter I present a detail description of the purpose that this experiment 

was designed, the results and a possible explanation on how these results were obtained. In the final 

chapter, I comment on the experimental results and explain how these could be incorporated in a 

computational model. Furthermore, I analyze some possible ideas on how this work could be 

effectively linked to new studies.  
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ΑΔΕ/2009/ Bachelor thesis by Athina Mouxouri 

Title: An information model of visual attention. 

 

Abstract  

To simulate the human responses with an information system is a very important research topic and 

therefore my goal is to contribute through my experimental results and conclusions in the 

understanding of the fundamental processes that constitute visual selective attention. More 

specifically, by studying some reports of important impact in the literature, I understood the way 

that the human brain interacts according to one or more external stimulations within visual space. 

Therefore, according to the conclusions and ideas I had on the previous studies I created an 

experiment to measure the reaction times of a number of subjects based on some specific 

instructions of the given task. In my experiment, a number of visual stimulations are presented in 

the computer screen and one of those is the target that the subjects are instructed to respond 

accordingly while another is a distracting stimulus that shares similar semantics with the target. 

The main objective is to investigate how the attentional mechanism deals with this conflict and to 

provide some possible theoretical interpretation on the obtained experimental results. These 

instructions will be used for guidance in the implementation of a neural network computational 

model for visual selective attention.  
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ΔΕ/2010/ Bachelor thesis by Nicoletta Christou 

Title: Study of the saliency of stimuli through experimental studies. 

 

Abstract  

Modeling the visual attention system using computational algorithms is a very important and 

interesting subject of study. Through various experimental studies in the past, it is known that 

during the process in which it is asked to focus attention in one specific target, the observer is 

influenced also from stimulations that are never being consciously perceived. The purpose of this 

study is to study through the design and implementation of a behavioral experiment if the saliency 

of unconscious stimuli is analogous to the interaction they will exert on the processing of a target. 

The main question that we attempted to address was whether we could increase the effect that 

unconscious stimuli have in the processing of information by increasing their saliency. Initially 

several experiments that examine the controversial connection between attention and consciousness 

have been studied in order to increase my understanding on the subject and to design a different 

variation task.   

In the experiment that I have implemented a sequence of random masking images are presented 

and in the end a umber-target between 1-9 (exluding 5) appears. The participants are asked to 

response as fast as possible with the left key if the number was lower than 5 or with the right key if 

the number was higher than 5. Without knowing however, before the target number appears a 

prime is presented among the masking distracters for a very short time that does not allow for the 

human brain to consciously perceive it. Yet, even though that the participants are not aware of the 

existence of the prime, it can still influence their reaction time. Therefore by manipulating the 

prime’s saliency we can measure the variations in the subject’s response.   
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