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ABSTRACT IN GREEK 
 

 Τα Δίκτυα Παράδοσης Περιεχομένου (CDN) χρειάζεται συχνά να ανακαλέσουν 

περιεχόμενο απαιτητικό σε εύρος ζώνης για καταναλωτές πληθώρας εφαρμογών 

(ηλεκτρονικής μάθησης, υγείας, κοινωνικής δικτύωσης, έξυπνων πολέων κ.ά.). Μεγάλο 

μέρος της κίνησης στο Internet οφείλεται στους επιγραμμικούς παρόχους πολυμεσικού 

περιεχομένου και η κίνηση επιτείνεται από τη διάδοση περιεχομένου από τα ευρέως 

διαδεδομένα Επιγραμμικά Κοινωνικά Δίκτυα (OSNs). Στην παρούσα διδακτορική 

διατριβή ισχυριζόμαστε ότι η πληροφορία από τα κοινωνικά δίκτυα μπορεί να 

χρησιμοποιηθεί για προανάκληση περιεχομένου και να συνεισφέρει στη βελτίωση των 

υποδομών παράδοσης περιεχομένου. 

 Ο ισχυρισμός μας υποστηρίζεται από τρεις μελέτες, που εφαρμόζουν τη χρήση της 

πληροφορίας από τα κοινωνικά δίκτυα σε καταστάσεις όπου η συμβατική αντιγραφή 

περιεχομένου είναι αδύνατη (λόγω του όγκου των δεδομένων και της φύσης του 

παραγόμενου από χρήστες περιεχομένου, που μπορεί να μην είναι τόσο δημοφιλές για να 

αντιγραφεί στο σύνολο της υποδομής, αλλά συνολικά ευθύνεται για μεγάλο αριθμό 

αιτήσεων χρηστών). Η προσέγγισή μας βασίζεται σε πειραματισμό με εμπειρικά δεδομένα 

για την αναγνώριση των σχετικών ιδιοτήτων από τα κοινωνικά δίκτυα, και την 

ενσωμάτωση των τελευταίων σε σύγχρονα CDN. 

 Οι ελάχιστες προσεγγίσεις που έχουν προταθεί χρησιμοποιούν συνθετικά δεδομένα 

και αγνοούν: θέματα αποθηκευτικών χώρων της υποδομής, την αντιπροσωπευτικότερη 

τοπολογία της υποδομής, κ.ά.. 

 Στην πρώτη μελέτη σκοπός μας είναι να εκμεταλλευτούμε τη δραστηριότητα των 

χρηστών των κοινωνικών δικτύων προκειμένου να βελτιώσουμε το μηχανισμό 

προανάκλησης περιεχομένου που ενσωματώνουμε σε προσομοιωτή CDN κίνησης, ενώ το 

κόστος αντιγραφής στους υποκατάστατους εξυπηρέτες του CDN λαμβάνεται υπόψη. Για 

την αναβίβαση του περιεχομένου χρησιμοποιούμε γεωχωρικά χαρακτηριστικά των 

χρηστών που συμμετέχουν στις αναμεταδόσεις περιεχομένου πάνω από τα Κοινωνικά 

Δίκτυα. Μη δημοφιλή συνολικά αντικείμενα συχνά διαδίδονται επανειλημμένα και 

εντοπίζονται σε συγκεκριμένες περιοχές του OSN. Προτείνουμε τον Social Prefetcher, που 

μειώνει το κόστος αναπαραγωγής με την επιλεκτική αντιγραφή αντικειμένων σε 

τοποθεσίες όπου πιθανόν θα ζητηθούν. 

 Επεκτάσεις της μελέτης περιλαμβάνουν πειραματισμό με παραλλαγές ως προς τα 

σχήματα caching στους υποκατάστατους εξυπηρετητές και περαιτέρω διερεύνηση του 
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θέματος της πλέον αποδοτικής χρονικά αντιγραφής (γνώση των ωρών αιχμής για την 

αναβίβαση / καταβίβαση περιεχομένου). Επίσης ενσωματώνουμε και άλλη πληροφορία 

συγκειμένου, π.χ. αριθμό θεάσεων μέσα στην πολυμεσική υπηρεσία. Οι παραλλαγές μας 

αποδεικνύεται πειραματικά ότι συνεισφέρουν στη μεγιστοποίηση της απόδοσης των CDN 

με ταυτόχρονη εξοικονόμηση του κόστους αντιγραφής. 

 Η δεύτερη μελέτη αφορά στο συνδυασμό δεδομένων σχετικά με τους χρήστες από 

το Twitter με δεδομένα σχετικά με βίντεο από την πλατφόρμα YouTube. Στοχεύουμε στο 

συσχετισμό της προβλεψιμότητας του διαμοιρασμού των βίντεο με το κοινωνικό 

συγκείμενο των χρηστών. Συνδυάζοντας τα δύο σύνολα δεδομένων πραγματοποιούμε 

διαπιστώσεις που κανένα από τα δύο δεν προσφέρει μεμονωμένα. Αναπτύσσουμε ένα 

ακριβές μοντέλο για την πρόβλεψη της μελλοντικής δημοφιλίας ενός πόρου-βίντεο βάσει 

χαρακτηριστικών από το κοινωνικό δίκτυο του χρήστη που το μετάδωσε αρχικά. Το 

σύνολο των χαρακτηριστικών που προτείνουμε στηρίζεται στην αποτίμηση της επιρροής 

ενός χρήστη, τη διακύμανσή της μέσα στο χρόνο, και την απόσταση των ενδιαφερόντων 

των χρηστών στην πλατφόρμα και το κοινωνικό δίκτυο. 

 Ολοκληρώνουμε ενσωματώνοντας τη δεύτερη μελέτη σε μια υποδομή παράδοσης 

περιεχομένου, προκειμένου να αποκομίσουμε οφέλη ως προς την ποιότητα εμπειρίας του 

χρήστη και τα κόστη των παρόχων. 

 Η διατριβή ολοκληρώνεται με ανακεφαλαίωση των κυριότερων συνεισφορών της 

και προτάσεις για μελλοντική έρευνα. 
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ABSTRACT IN AN INTERNATIONAL 

LANGUAGE 

 
 Content Distribution Networks (CDNs) often need to prefetch bandwidth-intensive 

content for consumers of a plethora of applications, including elearning, healthcare, social 

activities, and smart cities. Internet traffic generated by online multimedia streaming 

providers has exploded, and circulation of content over ubiquitous Online Social Networks 

(OSNs) intensifies the traffic growth. Our thesis is that information extracted from OSNs 

can be harnessed to facilitate proactive content caching decisions, and thereby build better 

CDN infrastructures. 

 Our claim is supported by three case studies, which apply social information in 

situations where traditional content scaling is infeasible: global replication demanded by 

traditional CDNs for the voluminous content produced becomes expensive, and user-

generated content is especially difficult due to its long tail nature -with each item probably 

not popular enough to be replicated globally, but with items altogether getting sufficient 

accesses-. We extensively experiment with empirical traces to identify relevant social 

properties and incorporate the latter into current CDNs. 

 The challenging endeavor of engineering of general OSN-aware content placement 

applications over a CDN infrastructure has received less attention. The very few existent 

approaches lack evaluation with nonsynthetic workloads and ignore storage issues of the 

infrastructure, the refined topology of data centers, etc. 

 In our first study the pursuit lies in exploiting the user activity extracted from OSNs 

to incorporate a dynamic mechanism to a CDN traffic simulator. The cost of copying to 

surrogate servers is taken into consideration. For the staging of content we use geo-social 

properties of users participating in social cascades, as unpopular long-tail user-generated 

items often go viral and are localized in a part of the OSN. We propose the Social 

Prefetcher, an approach that decreases replication costs by selectively copying items to 

locations where items are likely to be consumed. 

 Extensions of this work include caching scheme variations as well as further study 

of the issue of temporal diffusion, related to the most efficient timing of the content 

placement. 

 We exploit the knowledge of peak times for upload and download, and incorporate 

contextual information, such as the viewership within the media service. Our variations are 

experimentally proven to contribute toward maximization of CDN performance with 

regard to client-perceived metrics and content replication costs. 
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 The second study examines merging of Twitter user-centric data with YouTube 

video-centric data. We aim at investigating the ties between predictability of video sharing 

and the social context of video uploaders, and obtain insights than neither employed 

dataset individually gives. We develop an accurate model to predict the future popularity 

of a video resource given features of the underlying network of its initiator: the notion of 

user influence, its fluctuation through time, as well as the distance of content interests 

among users for both datasets. 

 We finish by discussing a study integrating the second study with a Content 

Delivery infrastructure to reap possible benefits in terms of user experience and providers 

costs. 

 The Thesis concludes with a discussion of its main contributions and a suggestion 

of key topics for future research. 
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Chapter 1

Introduction

This Thesis discusses the challenges which are inherent in developing content delivery

applications that leverage information from Online Social Networks (OSNs), and proceeds to

propose novel algorithms that efficiently handle the media circulating over OSNs within the

framework of a Content Distribution Network (CDN) infrastructure. Video streaming sites

comprise a considerable part of the Internet data volume ( [156], [136]) and the recent surge

of popularity of video content intensified by circulation over OSNs calls for investments

of the respective operators in the realm of content delivery. The video streaming operators

own content delivery infrastructure consisting of geo-distributed servers and caches all over

the world. Cache selection mechanisms implemented within the delivery infrastructure of

video operators aim to satisfy the growing demand by directing users to nearby servers that

contain the data. However, transmission via the Transmission Control Protocol (TCP), the

protocol via which video data delivery is typically conducted, is subject to delay jitter and

throughput variations and clients are required to preload a playout buffer before staring the

video playback. Due to the use of TCP, that via error recovery and congestion control ensures

lack of packet losses, the quality of experience (QoE) of YouTube is primarily determined

by stalling effects on the application layer as opposed to image degradation in UDP-based

video streaming [99].

1.1 Foundations

Our aim in this chapter is to establish a common understanding of the basic concepts used

in this Thesis, concepts related to content delivery, social networks and the transmission of

media objects over them. In this respect, a few relevant definitions are first provided to
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facilitate the establishment of a common frame of reference for understanding the problem

investigated in this Thesis.

Content Distribution Networks

The amount of Internet traffic generated every day by online multimedia streaming providers

such as YouTube [24] has reached huge numbers. These providers often rely on Content Dis-

tribution Networks (CDNs) [154] to distribute their content from storage servers to multiple

locations over the planet. A CDN is an overlay network with the task of improving Inter-

net service quality via replication of the content from place of origin to surrogate servers

scattered over the Internet (Fig.1). Requests are served from surrogate servers closer to the

clients’ location. CDN servers exchange content in a cooperative way to maximize overall

efficiency.

The general principle of CDNs is to replicate data dynamically in various places of the

world as close as possible to the user that will consume it. They are mainly used for sites

streaming large video files, sites which consist of mainly large media files like image sites,

sites with known heavy traffic in different countries, sites with many tablet and mobile users,

whereas they are not suitable for sites that have their main traffic in one geographic area or

region.

They are, however, very dissimilar in terms of the services provided and their geographic

coverage. The optimization of their overall efficiency, as far as the user is concerned, is

practically achieved with the automatic detection of the medium (either computer or mobile

-smartphone / tablet-), optimized management of the browser cache, server load-balancing,
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the consideration of the specific nature of the content of the media provider (video content

may include video on demand, live videos, geo-blocked content, etc.) or features of certain

operators, such as real-time compression, session management, etc.

There are many commercial CDNs, including Akamai, NTT Communications CDN,

Limelight, Microsoft Azure CDN, CacheFly, MaxCDN, etc. with Akamai infrastructure

deploying 170.000 servers in 102 countries [1] and Limelight deploying 18.000 servers in

over 80 locations [10]. There is also a number of non-commercial ones [83], [182].

CDNs, often operated as SaaS in cloud providers (Amazon CloudFront, Microsoft Azure

CDN, etc.) aim at addressing the problem of smooth and transparent content delivery. A

CDN actually drives cloud adoption through enhanced performance, scalability and cost re-

duction. With the limitation for both CDNs and cloud services being the geographic distance

between a user asking for content and the server where the content resides, cloud acceler-

ation and CDN networks are both complementary to achieving a goal of delivering data in

the fastest possible way. Although cloud mainly handles constantly changing and, thus, not

easily cached dynamic content, utilization of CDNs in cloud computing is likely to have

profound effects on large data download [131].

In a manner that is complementary to the above, CDNs address in general the major

issues of (i) the most efficient placement of surrogate servers in terms of high performance

and low infrastructure cost; (ii) the best content diffusion placement, namely the decision

of which content will be copied in the surrogate servers and to what extent; and (iii) the

temporal diffusion, related to the most efficient timing of the content placement [110].

Copy policies for CDNs include:

• Push-based copy policy: content is proactively prefetched to all surrogate servers, with

minimum response time and maximum copying content cost. Push-based copy policy

is typically used for information that is in high demand by users, e.g. large files or

static assets that do not frequently change as often.

• Pull-based copy policy: content is forwarded to the surrogate server at the moment the

user asks for it, with minimum copying cost and maximum response time. Pull-based

copy policy is typically used for personalized information, e.g. small objects with

inherent virality and limited duration.

Most modern CDNs, e.g. MaxCDN, EdgeCast, Amazon CloudFront, BitGravity, Akamai,

CDNetworks, CacheFly, ChinaCache, MaxCDN, CDN77, etc., deploy both pull and push

zones, with pulling being the most dominant case.

3

EIR
IN

I T
. K

OILA
NIO

TI



As far as the cooperation of the CDN infrastructure elements is concerned, there exist:

• Cooperative CDNs: surrogate servers are cooperating with each other in case of cache

misses to reduce replication and update cost, adopting various policies (closest server,

random selection, load balancing, etc.) for the mapping between content request and

surrogate server.

• Uncooperative CDNs: content is asked either from the local surrogate server or the

origin server.

Online Social Networks

A

C D

F

H

B

K

L

E

G

I

J

Twitter Social Graph

Figure 2: An example of the Twitter social graph.

Formally, an OSN is depicted by a directed graph G = (V,E), where V is the set of the

vertices of the graph representing the nodes of the network and E are the edges between

them, denoting the various relationships among the edges of the graph [76]. An example

of a social graph for Twitter OSN is depicted in Fig. 2. The semantics of these edges

are different for different social networks: for Facebook, for example, edges are usually

translated into personal acquaintance, whereas in LinkedIn they mean business contact. As

far as the directionality of the edges of the social graph is concerned, it depends on the OSN

the graph depicts. For Facebook, an edge denotes mutual friendship between the endpoints
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of a link. For Twitter, if the edge between A and B points at B, B is a follower of A, meaning

that A’s posts (tweets) appear in B’s main Twitter page. We say that the neighbours of a node

are defined as the nodes that are in a 1-hop away distance from it in the social graph.

A node centrality is indicative of the importance of a node within a social network. It is

given in terms of a real-valued function on the vertices of a graph, where the values produced

are expected to provide a ranking which identifies the most important nodes [48], [49].

Twitter is an OSN with a microblogging service as its core functionality, that allows

users to exchange real-time posts of up to 140 characters (tweets) either via a web or mobile

interface (apps, SMSs). Twitter users subscribe to the content of other users, which they can

repost (retweet). The retweet feature, moreover, helps in the acknowledgement of reposts.

Twitter was launched in 2006, and counts 320 million monthly active Twitter users, that send

500 million tweets per day ( [19], [20]).

In this Thesis we refer to the term OSN-aware system / algorithm/ mechanism to refer

to a system/ algorithm/ mechanism that takes information from OSNs into consideration.

The information incorporated in OSNs either involves their general structural properties or

information exchanged over them.

Social Network Analysis SNA is the study of nodes and their ties in a network with the

ultimate purpose to mine useful patterns between them [183].

Bandwidth-intensive Media

A fusion of bandwidth- and storage-demanding media, which may include text, graph-

ics, audio, video, and animation is characterized as Bandwidth-intensive Media. Bandwidth-

intensive media generated from the users and circulating over OSNs is currently ubiquitous

due to the proliferation of smartphones, video editing software and cheap broadband con-

nections. The volume (refers to the amount of data), variety (refers to the number of types

of data) and velocity (refers to the speed of data processing needed) of the data allows us

to characterise it also as Big Data. Multimedia content delivery technologies are nowa-

days essential for a wide range of innovative services, including multimedia social networks,

P2P video streaming, IPTV, interactive online games, cloud multimedia content delivery and

content-centric networks.

Scaling refers to the fact that the throughput of the proposed systems / algorithms / poli-

cies / mechanisms remains unchanged with the increase in the data input size, such as the

large datasets that social graphs comprise and the social cascades that amplify the situation.
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A commonplace observation is the Long-Tail effect happening with the content generated

from OSNs users, where many objects with a small number of individual requests may in

aggregate account for a big contribution in the total object requests [34]. The cost of scaling

such content can be expressed in different ways: For a CDN, or example, can be the number

of replicas needed for a specific source, may take into account the optimal use of memory

and processing time of a OSN-aware built system, etc.

Information Diffusion

In his classic work Rogers [161] defines information diffusion as the process in which

an innovation is communicated through certain channels over time among the members of a

social system. In this context, the innovation is defined as the first spread of an information

from an originator. Rogers indicates that innovation and imitation are the two basic factors

that drive the spread of a new idea: whereas the innovators’ motive is their desire to try an

innovation, imitators are influenced.

A

C D

F

H

B E

G

I

J

Social Cascade

height=4

Figure 3: The evolution of a social cascade in Twitter

A specific case of information diffusion is an information or social cascade (also men-

tioned as “herding”). We say that a social cascade has occurred when somebody, regardless

of his own private information (e.g. concerning the selection of a restaurant in an unfamiliar

town), finds it rational to join the crowd [41]. Practically, a cascade happens in a social
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network, when a piece of information is extensively retransmitted after its initial publication

from a user. Cascades can be represented as rooted directed trees where the initiator of the

cascade is the root of the tree [39]. The length of the cascade is the height of the resulting

tree. Each vertex in the cascade tree can have the information of the user, and the identity of

the item replicated in the cascade.

Figure 3 depicts an example of the evolution of a social cascade in a directed graph. The

cascade follows the arrows’ direction. In the Twitter social network, for example, B, C, D,

E are followers of A, denoted by the directional links from A to B, C, D, E. The adopters

of a new information piece could be the nodes, that after having been exposed in a piece of

information, the link of a YouTube video, for example, they retweet it. User A tweets the

URL of a YouTube video and exposes B, C, D and E to this piece of information. B, C, D

and E adopt the information. B and C have no followers, but the cascade procedes with D

and E. The cascade procedes with nodes F and G and so on so forth until it stops with node

J. For F that receives the same information from D and E, we assume that its influence is

ascribed to the one (between D and E) that tweeted the piece of information earlier.

The diffusion of information in a network is essentially interweaved with whether a piece

of information will become eventually popular or its spread will die out quickly. A large pro-

portion of bandwidth-intensive media is distributed via OSNs’ links (for example YouTube

videos links through retweets in Twitter), that contribute significantly to Internet traffic [2].

Facebook and Twitter users increasingly repost links they have received from others. Thus,

they contribute to social cascades phenomena, a specific case of information diffusion that

occurs in a social network, when a piece of information is extensively retransmitted after

its initial publication from an originator. Therefore, it would be beneficial to know when

such cascades happen in order to proactively replicate popular items (prefetching) via CDN

infrastructures. More precisely, it would be useful to know if they are expected to depict a

global or local range, so that this content can be replicated either in the geographic local area

of the user or in the whole network.

1.2 Motivation

Widespread use of ubiquitous OSNs has led to a radical change in public information

sharing. The popularity of relatively data heavy multimedia applications, such as YouTube,

has also risen ( [9], [156], [136]), and the volume of User Generated Content (UGC) has

exploded across all media platforms (more than 300 hours of video content are uploaded in
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YouTube every minute [26]). The wide use of OSNs and the growing popularity of stream-

ing media have been characterized as the primary causes behind the increases in Hypertext

Transfer Protocol (HTTP) traffic observed in measurement studies 2.5.2. OSN users in-

creasingly repost links they have received from others and a large proportion of bandwidth-

intensive media is distributed via OSN links (for example YouTube videos links through

retweets in Twitter), that contribute significantly to Internet traffic [2]. Although it is diffi-

cult to estimate the proportion of traffic generated by OSNs, it is observed that 320 million

monthly active Twitter users send 500 million tweets per day, of which more than 400 tweets

per minute include a YouTube link ( [19], [20] [52]).

Video streaming operators like YouTube own content delivery infrastructure consisting

of geo-distributed servers and caches all over the world. Cache selection mechanisms im-

plemented within the delivery infrastructure of video operators aim to satisfy the growing

demand by directing users to nearby servers that contain the data. Transmission Control

Protocol (TCP), though, the protocol via which video data delivery is typically conducted, is

subject to delay jitter and throughput variations and clients are required to preload a playout

buffer before staring the video playback. Due to the use of TCP, that via error recovery and

congestion control ensures lack of packet losses, the quality of experience (QoE) of YouTube

users is primarily determined by stalling effects on application layer as opposed to image

degradation in User Datagram Protocol (UDP)-based video streaming [99]. Cache server

selection is also highly Internet Service Provider (ISP)-specific for the YouTube case with

geographical proximity not being the primary criterion and DNS level redirections for load-

balancing purposes occur quite frequently and can considerably increase the initial startup

delay of the playback. Hence, from a QoE management perspective, the smooth playback

of the video rather than visual image quality is the key challenge for YouTube, and several

network-level and client-level approaches are focused on the detection of interruptions, that

have a dramatic impact on the user experience [99].

With the growing popularity of OSNs and the increased traffic due to outspread of infor-

mation through the latter, the improvement of user experience through scaling bandwidth-

demanding content largely depends on the exploitation of usage patterns found in OSNs.

The motivation of our study, thus, is to support SNA tasks (such as cascades characteriza-

tion) that accommodate large volumes of data for the improvement of user experience, e.g.

via prefetching in the framework of a CDN infrastructure that streaming providers own. We

aim to apply social information in situations where traditional bandwidth-intensive content

scaling is infeasible. This happens because global replication demanded by traditional CDNs
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Figure 4: An example of a CDN of an OSN.

for the voluminous content produced becomes expensive. Moreover, user-generated content

is especially difficult due to its long tail nature, with each item probably not popular enough

to be replicated globally, but with the long-tail altogether getting sufficient accesses [34].

1.2.1 Why is our Approach necessary: An Example

Let us consider Bob, who is living in London and is assigned to the London CDN servers

of an Online Social Network service (Fig. 4). Most of Bob’s social contacts are geograph-

ically close to him, but he also has a few friends in Europe and Australia assigned to their

nearest servers. Bob logs into the OSN and uploads a video that he wants to share. A naive

way to ensure that this content is as close as possible to all users before any accesses occur

would be to push the content to all other geographically distributed servers immediately.

Aggregated over all users, pushing can lead to a traffic spike, and users will experience

latency in downloading the content. Indeed, content delivery is subject to delay jitter and

clients are required to preload a playout buffer before staring the video playback. Moreover,

the content may not be consumed at all. The problem of caching multimedia content is

further exacerbated when Alice, for example, who is the only friend of Bob in Athens, is

interested in that content; there are many such Alices in various places.

Rather than pushing data to all surrogates, we can proactively distribute it only to friends

of Bob, who is depicted as B in Fig. 5, likely to consume it. The content will be copied only

under certain conditions (e.g. geographically close user zones where Bob has mutual friends

with high centrality, at non-peak times for the transfer according to the friend’s zone), and

users would not experience unnecessary delays in downloading the content. Thus, users such
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Figure 5: Latency savings through the proposed mechanism.

as Alice, depicted as A in Fig. 5, would not have to wait for the content to be downloaded,

and the OSN provider would experience lower bandwidth costs, as traffic congestion would

be avoided. With the use of evolving graph sequence analysis [158], this approach can be

applicable as an in-house solution of OSN providers. The necessary data will not have to

be calculated on the fly, but only across snapshots of gradually evolving graphs, reducing

bandwidth and storage costs.

1.3 Challenges

In order to utilize information diffusion over CDN infrastructure, a diffusion amplified

by the proliferation of smartphones and cheap broadband connections, we have to efficiently

deal with the size of accommodated social graphs. The amount of information in OSNs is an

obstacle, since elaborate manipulation of the data may be needed. An open problem is the

efficient handling of graphs with billions of nodes and edges [190]. Facebook, for example,

reported that 1.13 billion daily active users on average for June 2016 [5].

In order to generate aggregations and analyses that have meaning, the Facebook custom

built-in data warehouse and analytics infrastructure [21] has to apply ad-hoc queries and

custom MapReduce jobs [68] in a continuous basis on over half a petabyte of new data

every 24 hours, with the largest cluster containing more than 100PB of data and the process

needs surpassing the 60.000 queries in Hive, the data warehouse system for Hadoop [16] and

Hadoop compatible file systems. (MapReduce [68] is Google’s framework (programming
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model and implementation) for processing of parallelizable tasks over large datasets by a

large number of computers / nodes (referred to as a cluster or grid depending on their location

and homogeneity of resources), based on the division of a problem to smaller sub-problems

(map phase) and the composition of their outputs (reduce phase), that hides the details of

parallelization, and encompasses fault tolerance, locality optimization, and load balancing.)

The desired scaling property refers to the fact that the throughput of the proposed ap-

proaches should remain unchanged with the increase in the data input size, such as the large

datasets that social graphs comprise and the social cascades phenomena that amplify the sit-

uation. Cost of scaling such content can be expressed in different ways. For instance, in case

of CDNs, can be the number of replicas needed for a specific source, may take into account

the optimal use of memory and processing time of a OSN-aware built system, etc.

1.4 Thesis Statement

The main point in our thesis is that information extracted from Online Social Net-

works (OSNs) can be used to facilitate proactive content caching decisions, and thereby

build better Content Delivery infrastructures.

This claim is supported by three case studies, which apply social information in situations

where traditional bandwidth-intensive content scaling is infeasible. Our approach is based on

experimentation with empirical traces to identify relevant social properties and is followed

by incorporation of the latter into current Content Delivery infrastructures.

The very few approaches that have been proposed lack experimental evaluation with non-

synthetic workloads for the development of OSN-aware content staging mechanisms, and

moreover ignore storage issues of the infrastructure and matters such as refined topology

of data centers. However, the engineering of general OSN-aware content placement over a

CDN infrastructure is an important and challenging endeavor that has received less attention.

In this work, we address the following question: “Can we find an efficient content

prefetching policy that takes as input a non-synthetic workload of data from OSNs and ac-

tions of users over them and that recognizes objects likely to be popular?” To answer this

question, we perform experiments over a large corpus of YouTube videos. For capturing

the social cascading effects, we use Twitter, one of the most popular OSNs with its core

functionality centered around the idea of spreading information by word-of-mouth [159].

Specifically, Twitter provides mechanisms such as retweet (act of forwarding other people’s
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tweets), which enable users to propagate information across multiple hops in the network

through cascading.

Overall, this Thesis provides the following contributions:

• We present a taxonomy of existing OSN-aware approaches that can be leveraged for

the scaling of bandwidth-demanding media content in CDNs [112]. We take into ac-

count phenomena related with media content and its outspread via OSNs, measurement

studies on OSNs that could provide valuable insight into CDN infrastructure decisions

for the replication of the content, as well as systems built with the leverage of OSN

data.

• The Thesis introduces the Social Prefetcher algorithm and theoretically analyzes it

through an optimization analysis to prove that it provides a near-optimal solution. Ad-

dressing memory usage issues related to the very large graph dataset accommodated,

it incorporates the algorithm implementation in a validated simulator for CDNs, sug-

gesting the accompanying framework within a content delivery infrastructure. In the

Thesis we conduct a multitude of experiments, and we reach some fruitful conclu-

sions regarding how OSNs can affect the content delivery performance. The Social

Prefetcher surpasses performance improvement (30%) of similar works in pull-based

methods [176], that are employed by most CDNs, and depicts better response times

when various approaches are implemented within the suggested framework [164].

Moreover our algorithm uses more refined topology of data centers and does not

neglect storage issues [164], as storage costs are still a significant challenge despite

the proliferation of cloud computing. The findings of present work can be exploited

for future policies complementary to existing CDN solutions or incorporated to OSN

providers mechanisms, to handle larger scale data and we believe that they are gen-

erally applicable with a potentially high impact for large-scale systems with traffic

generated by online social services and microblogging platforms. We aim in the future

to generalize our proposed policies to deal with multiple OSN platforms, as well as

mobile CDN providers.

• Experimentation is conducted on a Twitter dataset [64] containing geographic loca-

tions, follower lists and tweets for 37 million users. We take into account the spread-

ing of more than one million YouTube videos over this network, a corpus of more than

2 billions messages and approximately 1.3 million single messages with a video link

extracted (information contained in dataset depicted in Tables 2, 1).
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Id Tweet id

Text Tweet content

Created at Time of creation

Retweeted If it is retweet

In reply to status id Status id of the tweet to which it replies

In reply to user id User id of the tweet to which it replies

Urls Urls included

Retweet count Number of retweets

Table 1: Twitter dataset tweet information

Id User id

Verified If user has verified email

Followers count Number of user’s followers

Protected If user’s information is private

Listed count How many tweets refer the user

Statuses count How many tweets the user has published

Friends count How many users the user follows

Location Explicit location of the user

Geo enabled If the service denoting the user location along

with tweet is enabled

Lang User language

Favourites count How many tweets user has added to favourites

Created at Time of creation

Time zone Timezone of the user

Table 2: Twitter dataset user information

Although our simulations are focused only on YouTube and Twitter, their wide pop-

ularity and massive user base allow us to obtain insights regarding user navigation

behavior on other similar media and microblogging platforms, respectively. Vine [22],

for example, which is a short-form video sharing service acquired from Twitter that

allows users to record and edit five- to six-second-long looping video clips, can also

exploit such a mechanism for sharing videos.
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• The sequence of content requests created to the CDN directly from the Twitter mes-

sages within the dataset in [165] is based on the assumption that every video contained

in a Twitter message is requested by each follower of the author with a certain proba-

bility. This assumption can be far from reality, as the authors explicitly state. In this

work non-synthetic workloads are obtained via the request generator we use. 1 A

non-synthetic dataset from multimedia links spread over an OSN platform is used to

directly analyze social cascades and access to social profiles is not conducted via a

third-party page [164].

• Our approach consists a paradigm of augmentation of an existing stand-alone tool for

CDN simulations with an OSN-awareness mechanism. With the extension proposed

herein, we can experiment on social patterns without the testing limitations of other

existing CDN platforms, such as the blackbox treatment of CDN policies or the need

for the participation of third users. To the best of our knowledge, no similar extensions

exist towards this direction.

• We furthermore [115] modify the Social Prefetcher algorithm [110] to incorporate best

performing caching mechanisms. We examine which caching schemes in the surrogate

server affect the CDN metrics the most. We further examine which parameters (num-

ber of timezones examined, time threshold duration etc.) affect the CDN metrics the

most. Works extending the Social Prefetcher algorithm [110] to include information

about peak-time of various timezones of our geo-diverse system, as well as contextual

information about the viewership of video content within the media service [111] go

beyond the Social Prefetcher algorithm in terms of performance. The implemented

variations are incorporated in a validated simulator for CDNs, and restrictions of the

CDN infrastructure (storage issues, network topology) are taken into account.

• The diffusion of video content is fostered by the ease of producing online content via

media services and mainly happens via ubiquitous OSNs, where users increasingly

repost links they have received from others (social cascades). If we knew beforehand

when a social cascade will happen or to what range it will evolve, we could exploit

this knowledge in various ways, sparing bandwidth in the area of content delivery in-

frastructure, where popular items would be proactively replicated. Our work focuses

on video virality over an OSN and combines detailed information both of the OSN

1G.Christodoulou implemented the accommodated generator, described in the Appendix.
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and the media service. We propose an accurate prediction model with a small and

easily extracted feature set that performs better than methods like Support Vector Ma-

chines (SVM), Stochastic Gradient Descent (SGD) and K-Nearest Neighbours (KNN),

among others [113]. We, furthermore, proceed to incorporate the model into a mecha-

nism for content delivery depicting substantial improvement for the user experience.

1.4.1 Publications

• I. Kilanioti, Improving multimedia content delivery via augmentation with social in-

formation. The Social Prefetcher approach. Multimedia, IEEE Transactions on, vol.

17, no. 9, pp. 14601470, 2015. [110]

• I. Kilanioti, C. Georgiou, and G. Pallis, On the impact of online social networks in con-

tent delivery, in Advanced Content Delivery and Streaming in the Cloud, M. Pathan,

R. Sitaraman, and D. Robinson, Eds. Wiley, 2014. [112]

• I. Kilanioti and G. A. Papadopoulos, Socially-aware multimedia content delivery for

the cloud, in 2015 IEEE/ACM 8th International Conference on Utility and Cloud Com-

puting (UCC), Dec 2015, pp. 300309. [111]

• I. Kilanioti and G. A. Papadopoulos, Efficient content delivery through popularity fore-

casting on social media, in Proceedings of the 7th IEEE International Conference on

Information, Intelligence, Systems and Applications, IISA 2016, Chalkidiki, Greece,

July 13-15, 2016, pp. 1319. [113]

• I. Kilanioti and G. A. Papadopoulos, Delivering social multimedia content with scal-

ability, in Resource Management for Big Data Platforms: Algorithms, Modelling and

High-Performance Computing Techniques, Springer Computer Communications and

Networks Series, J. K. Florin Pop and B. di Martino, Eds. Springer, 2016, ch. 18. [115]

• I. Kilanioti and G. A. Papadopoulos, Predicting video virality on Twitter, in Resource

Management for Big Data Platforms: Algorithms, Modelling and High-Performance

Computing Techniques, Springer Computer Communications and Networks Series, J.

K. Florin Pop and B. di Martino, Eds. Springer, 2016, ch. 20. [116]

• I. Kilanioti, G.A. Papadopoulos, Content Delivery Simulations supported by Social

Network-awareness, Simulation Modelling Practice and Theory Journal - SIMPAT El-

sevier, ChipSet Special Issue, under review [114]
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1.5 Thesis Structure

Network infrastructures such as CDNs often need to prefetch bandwidth-intensive con-

tent for consumers of a plethora of applications, including elearning, healthcare, ecommerce,

gaming, social activities, smart cities and environment management. The performance of ex-

istent solutions can be insufficient in terms of latency the consumers of content experience,

as well as bandwidth the media providers need.

Our aim in this chapter is to establish a common understanding of the basic concepts

related to content delivery used in this Thesis in general, as well as social networks and the

circulation of media objects over them in particular. In this respect, a few relevant definitions

are first provided, followed by a characterization of social cascades features. These facilitate

the establishment of a point of reference for understanding the problems investigated in this

Thesis.

In our first study (Chapter 3) the pursuit lies in exploiting the user activity extracted from

OSNs to improve the content prefetching mechanism of multimedia user-generated content,

as a significantly large proportion of HTTP traffic results from bandwidth-intensive multime-

dia content circulating through OSNs and multimedia content providers, such as YouTube,

often rely on CDN infrastructures. Aiming to reduce bandwidth usage, we incorporated a

dynamic mechanism to a stand-alone CDN traffic simulator. This mechanism is based on

a dynamic policy that takes patterns of information transmission over OSNs into account.

Thereby, we demonstrate that the performance of CDNs can be improved, and the cost of

copying to surrogate servers is taken into consideration. For the staging of content we use

geo-social properties of users participating in social cascades that prove to be of great impor-

tance toward improving the performance of CDNs and cloud, in the long-term. Unpopular

long-tail user-generated items often go viral and are localized in a part of the OSN, whereas

at the same time social cascades are observed to have a short duration. Exploiting the above,

we propose the Social Prefetcher, an approach that decreases replication costs by selectively

copying items to locations where items are likely to be consumed, thus saving bandwidth

and time.

Extensions of this work include caching schemes variations (Chapter 5) as well as further

study of the issue of temporal diffusion, related to the most efficient timing of the content

placement (Chapter 4). We exploit the knowledge of peak times for upload and download,

so that content is prefetched in the hours with less traffic. We also incorporate other con-

textual information, such as the viewership within the media service, to ensure performance
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optimization. Our variations are experimentally proven to contribute toward maximization

of CDNs performance and reduction of content replication costs.

The second study examines merging of user-centric data from Twitter, one of the most

popular OSNs with its core functionality centered around the idea of spreading information

with mechanisms such as retweet, with video-centric data from YouTube. We aim at in-

vestigating the ties between predictability of video sharing and the social context of video

uploaders. With the combination of social media datasets used, we obtain insights than nei-

ther employed dataset individually gives. We develop an accurate model to predict future

popularity of a video resource given features of the underlying network of its initiator. The

set of features we propose and analysed are based on the notion of influence score of a user

and its fluctuation through time, as well as the distance of content interests among users for

both datasets. We discover that the latter feature plays an important role in video popularity

prediction, suggesting high dependence of video sharing via Twitter on the video content

itself.

We finish by discussing a study integrating the second study with a Content Delivery

infrastructure to reap possible benefits in terms of user experience and providers’ costs.

The Thesis concludes with a discussion of its main contributions and with a suggestion

of key topics for future research.
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Chapter 2

Related Work

Our aim in this chapter is to present existing OSN-aware approaches that can be lever-

aged for the scaling of bandwidth-demanding media content in CDNs. In particular, we

present a taxonomy of the relative research, taking into account phenomena related with me-

dia content and its outspread via OSNs, measurement studies on OSNs that could provide

valuable insight into CDN infrastructure decisions for the replication of the content, as well

as systems built with the leverage of OSN data.

The remainder of the chapter is organized as follows: A categorization of most predom-

inant models for the depiction of the information diffusion process in a social network is

presented in Section 2.1 (Models of Information Diffusion). Section 2.2 (Tools) discusses

various tools for experimenting with scaling of bandwidth-intensive-media content using

OSNs. Metrics for the characterization of the outspread of cascades are described in Sec-

tion 2.4 (Metrics). The association of bandwidth-intensive media content diffusion with

social networks is given in Section 2.5 (Bandwidth-intensive media content and Social Net-

works), where measurements for social networks are also presented with some generic as-

sumptions on the OSNs structure (Structure of OSNs), and various studies that corroborate

them (Measurement studies). Moreover, the way topological features of an OSN may affect

the information diffusion is discussed. The association of bandwidth-intensive media content

with social networks, as well as a description of works studying patterns of user requests over

OSNs for various Video-on-Demand (VOD) systems and OSNs follow in subsection 2.5.3

(Bandwidth-intensive media content diffusion over OSNs). The Section gives finally the out-

line of existent works (Applications and techniques) that exploit information extracted from

OSNs for the improvement of user experience.
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2.1 Models of Information Diffusion

This section describes the most predominant models for the depiction of the information

diffusion process in a social network, on which most of the existent algorithmic solutions

are built. The main algorithmic problems studied in the bibliography are related with the

discovery of nodes that are most prone to diffuse an information to the greatest extent, and

the categorization of nodes according to their influence degree. The categorization of the

models is depicted in Figure 6. The first-level discrimination of models is based on whereas

they take the structure of the network into consideration (network-aware) or not (holistic). In

other words the discrimination criterion is if they incorporate knowledge about underlying

associations of the nodes (friendships) or, to the contrary, follow an aggregate-level approach.

In our Thesis we propose a simple feature-based empirical model ( 6.3), which combines

data from a user-centric and a video-centric platform, whereas the main proposed algorithm

( 3.3) includes heuristics derived from empirical models and augments them with geographic

information.

2.1.1 Holistic view models

Rogers’ theory [161] (Section 1.1) is quantified by the Bass model [43]. The Bass model

is based on the notion that “the probability of adopting by those who have not yet adopted

is a linear function of those who had previously adopted” (F.Bass). It predicts the number of

adopters n(t)∈N of an innovation at time t (in the information diffusion scenario the number

of retransmitters of an information piece):

n(t) = pM+(q− p)N(t)−q/M ( N (t))2 (1)

where N(t) is the cumulative number of adopters by time t, M is the potential market

(the ultimate number of adopters), p ∈ [0,1] is the coefficient of innovation (the external in-

fluences, expressing the individuals influenced by the mass media), and q is the coefficient

of imitation (internal influence, expressing the individuals influenced by the early adopters).

This approach, however, largely ignores the underlying network structure.

Models under the same concept of holistic view of the social behavior make use of differ-

ential equations, and include, among others, the multi step flow model by Katz and Lazars-

feld [107], the Daley-Kendall rumours model [66], and also, more recent ones, such as, the

Van den Bulte and Joshi model of influentials and imitators [180].
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Figure 6: Information Diffusion Models

2.1.2 Network-aware models

These include completely novel models, but also variations of the afore-mentioned (holis-

tic) models, such as the Nekovee variation [150] of the Daley-Kendall model, and are sepa-

rated in the two following categories, based on whether they are mathematically formulated

(Analytical models) and then applied or are the outcome of empirical methods, such as re-

gression, regression trees etc. (Empirical models).

2.1.2.1 Analytical models

The first mathematical models based on nodes’ thresholds for the depiction of informa-

tion diffusion were developed by Schelling [166] and Granovetter [91]. There follows a

categorization of the most predominant ones.

Game theoretic models

In [117], Kleinberg proposes a simple networked coordination games model. The model

is based on the notion that for each individual v ∈ V in the graph G=(V,E) the benefits of

adopting a new behaviour increase as more of its neighbours adopt the new behaviour. We

assume that there are two behaviours a node can follow, the “old” one (A) and a “new” one

(B). At discrete time steps t=1,2,3, ... each node updates its choice of A or B according

to the behaviour of its neighbours. The objective of the nodes is to switch each time to

the behaviour that reaps the maximum benefit for them. This means that v, based on his
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own interest, should adopt the new behaviour after a satisfactory fraction of its neighbours

have already adopted. For the nodes v and w there is a motivation for behaviour matching,

expressed in the following way, where parameter q is a real number 0 < q < 1:

-if v and w both choose behaviour A, they both receive a q payoff

-if v and w both choose behaviour B, they both receive a 1-q payoff

-if v and w choose different behaviours, they both receive a 0 payoff

The overall payoff for v playing the game with its neighbours in G is the sum of the

individual (pairwise) payoff; q is actually the threshold expressing the fraction of adopting

neighbours, since it easily results that v should adopt behaviour B if dB
v > qdv, and A if

dB
v < qdv, where dv is the degree of the node, dA

v the number of its neighbours with behaviour

A and dB
v the number of its neighbours with behaviour B. (v’s payoff for choosing A is qdA

v

and for choosing B is (1−q)dB
v )

Initially there is a set S of nodes adopting behaviour B and hq(S) is the set of nodes

adopting B after one round of updating with threshold q, hk
q(S) the nodes adopting B after k

successive rounds. A set S is contagious (with respect to hq) if “a new behaviour originating

at S eventually spreads to the full set of nodes” and the contagion threshold of a social

network G is “the maximum q for which there exists a finite contagious set” (how big can q

be and still small sets impose new behaviours to all).

The technical issue of progressive or non-progressive processes (monotonous or non-

monotonous as referred to later on in the present study) refers to the fact that when in time

step t a node v following till then the behaviour A updates to behaviour B, it will be fol-

lowing B in all subsequent time steps. Although, intuitively, we would expect progressive

processes to give finite contagious sets more easily (because of lack of early adopters set-

backs that would hinder the cascade), Kleinberg points out that both the progressive and

non-progressive models have the same contagion thresholds [145], which in both cases is at

most 1/2 (“a behaviour can’t spread very far if it requires a strict majority of your friends to

adopt it”) [145].

More game-theoretic models can be found in the work of Arthur [35], who proposes

a simple cascade model of sequential decisions with positive externalities, manifested by

a term that adds to the payoff of a decision. Namely in the scenario of two competing

products, the latter become more valuable as more users use them (for a social media site or a

smartphone, for example, it will aquire better third-party applications and support as its users

grow). Also game-theoretic models are introduced by Banerjee [41] and Bikhchandani et al.

[47], that are based on influence not due to positive externalities, but because of information
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conveyed from earlier decisions. The proposed game-theoretic models, however, have the

drawback of not taking heterogeneity into consideration, in the notion that all nodes have

the same threshold, and all their neighbours contribute the same in making a node change its

behaviour.

The basic propagation models on which most generalizations for information diffusion

are based are the Linear Threshold Model (LTM) [91], [166], [185] and the Independent

Cascade Model (ICM) [89] with many proposed extensions (LTM: [185], [109], ICM: [89],

[109], [93]) and also a proposed unification [109].

Linear Threshold Model

Based on the assumption that some node can be either active (adopts a new idea / trans-

mits a piece of information) or inactive and taking into account the monotonicity assumption,

namely that nodes can turn from inactive to active with the pass of time but not the opposite,

we can say that the LTM is based on the following notion: Each node v has a predefined

activation threshold θv ∈ [0,1], which expresses how difficult it is for the node to be influ-

enced when its neighbors are active (“the weighted fraction of the neighbors of node that

must become active in order for node to become active”), and is influenced by each one of

its neighbors w according to a weight bvw, so that ∑w∈Γ(v) bvw ≤ 1. The thresholds can be

produced randomly with a uniform distribution, but some approaches investigate a uniform

threshold for all the nodes of the network, e.g. [46].The process takes place in discrete steps

and the nodes that satisfy the constraint ∑w∈Γ(v) bvw > θv are gradually added as active to

the initial set of nodes. It’s worth mentioning that LTM can result as a modification of the

networked coordinations game referred in the previous paragraph with the differentiation of

payoffs for different pairs of nodes.

LTM expresses the idea that the influence of the neighbours of a node is additive, but when

the rule of influence can not be expressed by a simple weighed sum, for example a node

becomes active when one of its acquaintances and two of its co-workers do so, the arbitrary

function gv substitutes the weighed sum. In the General Threshold Model for time steps

t = 1,2,3... a node v becomes active if the set of active neighbours at t satisfy gv(X)> θv.
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Independent Cascade Model

Under the ICM model [89], there is also a set of initially active nodes, the process takes

place in discrete steps, but when node v becomes active, it has only one chance of acti-

vating each of its inactive neighbors w until the end of the process with a probability pvw

independent of the activations history and with an arbitrary order.

Exact evaluation of activation probabilities is exponential to the number of edges of the

graph. Improving the performance of the works in [91] and [167], there are works studying

the calculation of these probabilities such as [90](based on a General Threshold Model with

the assumption that each parent’s influence is fixed), or [69] (based on the ICM). In the

latter, sampling from the twiter dataset is conducted in an efficient Markov-Chain Monte

Carlo fashion using the Metropolis-Hastings algorithm [62] and the problem is tackled with

two differentiations, one of which considering the past paths of data known (retweets for the

twitter dataset) and one considering only the past path endpoints known (hashtags and urls)

and joint probabilities are taken into consideration, reflecting also model uncertainty.

Epidemical models

In the case of epidemical models a single activated (“infected”) node causes the change of

state of a neighbour susceptible node, whereas in the afore-mentioned threshold and game-

theoretic models a node has to interact with multiple neighbour nodes to evolve (complex

contagion).

Epidemical models were introduced on the assumption that information would propagate

like diseases. They constitute another category with an almost straightforward pairing with

the ICM. The ICM captures the notion of contagion more directly, and also allows us to

incorporate the idea that a node’s receptiveness to influence does not depend on the past

history of interactions with its neighbors.

Epidemical models variations include the simple branching processes model, where a

node infects a number of nodes and the contagion proceeds in subsequent waves with a

probability π . This model is characterized by the basic reproductive number of the disease

R0 = kπ , where k is the number of new people somebody meets, which expresses the antici-

pated number of new cases of the disease that a single node will cause.

Extensions of the epidemical models are the SIR, SIS, and SIRS models: S stands for

susceptible nodes, nodes that have not been infected yet and have no immunity to the con-

tagion. I stands for infected nodes, nodes contagious to their susceptible neighbours, and R
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Name Meaning Scope
n(t) ∈ N number of adopters of an innovation at time t Bass Model
N(t) cumulative number of adopters at time t
M potential market (ultimate number of

adopters)
p ∈ [0,1] coefficient of imitation
v,w nodes participating in the game Kleinberg

game theo-
retic model

q payoff for the game
dA

v degree of node A
dB

v degree of node B
bvw influence of node v by neighbour w Linear

Threshold
Model

θ activation threshold
X set of active neighbours at t
gv generalization of sum function in the case of

LTM
general
threshold
model

pvw probability that active node v will activate in-
active neighbour w

Independent
Cascade
Model

R0 basic reproductive number epidemical
model

k number of new people somebody meets
π probability that the contagion proceeds in

subsequent waves
K, B states of the world Bayes based

model
p probability that world is placed in state K
vg,vb payoffs for node v adopting a good/ bad idea

respectively
H,L signals denoting that adoption is a good or bad

idea respectively
Gr ordering of common shapes , r frequency

ranking
Ξ=ξ1,ξ2, ...,ξr set of possible states Markov

chain mod-
els

pi j probability of transition from state ξi to state
ξ j

G(V,w,τ) G contains a set V of n nodes and E edges be-
tween nodes representing the information dif-
fusion paths. w denotes the set of the edges’
weights ,τ the set of the time delay on the in-
formation diffusion paths.

Continuous-
Time
Markov
Chain
Model

Table 3: Models - Notation Overview 1

stands for recovered nodes, with the recovery considered as permanent in SIR and temporary

in the case of SIRS [123]. The sequence of the letters in the acronyms of the models explains
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the flow of the epidemic. In SIR model nodes pass from the state of being susceptible to the

state of being infected and then recover. In SIS model nodes are immediately susceptible

once they have recovered (like in the case of common cold, recovery does not imply immu-

nity that lasts for long). In the SIRS model recovered nodes free of infection may rejoin the

susceptible nodes.

Bayes based models

Combining nodes’ private information and their observations of earlier adoptions, in [76],

Kleinberg and Easley present a Bayes based model to formulate information cascades, an-

swering questions such as “What is the probability this is the best restaurant given the reviews

I have read and the crowds I see there?”.

Pr [A|B] = Pr [A]Pr [B|A]
Pr [B]

(2)

Three factors are taken into consideration:

• The states of the world;

• Payoffs; and

• Signals.

The first factor expresses whether an option is good or bad (if a new restaurant is a good or

a bad choice). Supposing that the two options of the world are K (the option is a good idea)

and B (the option is a bad idea), the world is placed in K with probability p and in B with

probability 1− p (Pr [K] = p, Pr [B] = 1−Pr [K] = 1− p). Payoffs for a node v are defined

as follows: -If v rejects the option, the payoff is 0.

-If v adopts a good idea, it receives a positive vg > 0 payoff.

-If v adopts a bad idea, it receives a negative vb > 0 payoff.

-If v adopts without any prior knowledge, the payoff is 0.

The signals refer to private information each individual gets about the benefit or not of a

decision: a high signal (H) suggests that adoption is a good idea, whereas a low signal (L)

suggests that it is a bad idea. If accepting is indeed a good idea, then Pr [H|K] = q > 1
2 and

Pr [H|K] = 1− q < 1
2 . In the restaurant example the private information could be a review
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that an individual reads about the first restaurant, with a high signal corresponding to a re-

view comparing it favorably to restaurant B. If choosing the first restaurant is indeed good,

there should be a higher number of such reviews, so Pr [H|K] = q > 1
2 .

Kleinberg and Easley [76] consider how individual decisions are made using (Eq.2.1.2.1)

when they get a sequence of independently generated signals consisting of a number of high

signals and a number of low signals, thus making interesting observations about situations

where individuals can observe others’ earlier decision, but do not have access to their knowl-

edge.

Markov chain models

Markov chains [70] are used to describe transitions from one state of a system to another

in a finite set of possible states. Their memoryless nature (Markov property) has to do with

the fact that the next state each time is independent of the preceding states. More formally:

With a set of states {ξ1,ξ2, ..,ξr} the process moves successively from one state to another

in so-called steps, and specifically from state ξi to state ξ j with a probability pi j (transition

probability) independent of the previous states of the chains, or remains in the same state

with a probability pii. A particular state is picked from Ξ as the initial state. Markov chains

are usually depicted with a directed graph, where the edges’ labels denote the transition

probabilities.

Markov models are widely used for analysing the web navigation of users. PageRank

[51] is based on a Markov model and is used for ranking of information in the Word Wide

Web. By assigning weights that denote the relative importance of an hyperlinked document

in a set of documents, the likelihood that a person will reach a specific page through random

clicks is, essentially, represented.

In [167], Song et al. use a Continuous-Time Markov Chain Model (CTMC), namely a

Markov model that describes the transition among states after some time of stay in a particu-

lar state. This time is exponentially distributed and does not affect the transition probability

to the next state. The information diffusion model is introduced on a network G(V , w, τ). G

contains a set V of n nodes and E edges between nodes representing the information diffu-

sion paths. w denotes the set of the edges’ weights (“amount of information to flow from one

node to another”) and τ the set of the time delay on the information diffusion paths. Thus,

the representation of the graph matches the CTMC in the notion that each node represents a
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state, each weight a transition probability and the delay is represented as the time-to-stay in

each state.

Name Meaning Scope
ft+1(v), initial assignment f0 Voter model
σi = ±1 state of an atom in the network Ising model
σ = (σ1, ...,σN) configuration for N atoms
H, sg total energy of the system, lowest energy con-

figuration
J “external magnetic field” coefficient
E “nearest-neighbours interaction” coefficient
f probability a node is initially active bootstrap

percolation
k (k = 2, 3, ...) number of nearest neighbors required to be

active
w, v w is a child of v if w appends its name in the

copy of the letter directly below v
chain-letter
Liben-
Nowell and
Kleinberg
model

t time each recipient waits before action
β probability with which a recipient can group-

reply to his corecipients
ci cost function of the number of followers per

individual i
Bakshy

a acquisition cost
c f cost per follower
fi number of followers
Iu(l) number of mentions of an information for a

node u l time units after the node u adopted
the information (at tu)

Yang and
Leskovec
model for
the global
influence
of a node
through
the whole
network

V (t) number of nodes that mention the information
at time t

xi time series
A(t) nodes that got activated before t

Table 4: Models - Notation Overview 2

Voter model

The basic voter model introduced by Clifford and Sudbury [65] and Holley and Liggett

[96], is defined in an undirected network and allows the spread of two opinions. In discrete
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time steps, a node adopts the opinion of a randomly chosen neighbour. For a node v ∈ V in

graph G = (V,E), Γ(v) is the set of neighbors of v in G and initially the nodes are arbitrarily

endowed with a 0/1 state. At time step t each node adopts the opinion of one uniformly

picked neighbour. With an initial assignment f0 : V →{0,1} inductively we define

ft+1(v) =

{
1,with probability a

0,with probability b
(3)

where a =
|{u∈Γ(v): ft(u)=1}|

|Γ(v)| and b =
|{u∈Γ(v): ft(u)=0}|

|Γ(v)| .

Even-Dar and Shapira [78] argue that it is one of the most natural probabilistic models to

capture the information diffusion in a social network. It is suitable for depicting the spread

of a technological product, as it is proved that under this model consensus is reached with

probability 1. Even-Dar and Shapira refer to the (almost) consensus of products such as

Google as a search engine, YouTube as a video-sharing website etc.

Models from physics

Models from physics include the Ising model [101] serving for the description of mag-

netic systems, and bootstrap percolation [31] serving for the description of magnetic systems,

neuronal activity, glassy dynamics, etc.

Ising model The Ising model [101] was first proposed in statistical physics and encom-

passes the notion of a ground state (in physics the state with the minimum energy), and that

of the “self-optimizing” nature of the network.

Similarly to the basic voter model, there can be two competing “opinions”, in favour of

or against a subject, let’s say depicted by a “+1” and a “-1”, which in physics express the

correspondence of an atom forming a network to a spin variable (can be considered as the

basic unit of magnetization) state σi = ±1. The total energy of the system under this model

(Hamiltonian) is defined as:

H = H(σ) =− ∑
<i, j>

Eσiσ j−∑
i

Jσi (4)

for each configuration σ = (σ1, ...,σN), with the parameter J associated with an “external

magnetic field” and E with the “nearest-neighbours interaction”, N the number of the atoms.
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Name Meaning Scope
G∩ largest common subgraph of all snapshots in

cluster C
Ren et al.

G∪ smallest common supergraph of all snapshots
in C

ges graph edit similarity between two graphs
P̃∗(u,v) in a graph G∗, where ∗=
1,2, ...,n,∩,∪

shortest-path between the vertices v and u

∆ difference between two consecutive snapshots
SM1(C),SM2(C),SM FV F(C) storage schemes
ni node of the social network Problem for-

mulation
Γ(ni) set of neighbours of node ni

Cz(m,ni,Ok,Tc,Gtl ,M) Cascade of topic Tc initiated by node ni on ob-
ject Ok, Gtl : the first snapshot where the cas-
cade was detected, under model of diffusion
m, M: array of cascade metrics

φ Fraction of the network that the object is
bound to spread

ω Threshold above which a cascade is charac-
terized as global, and under which as local
(constant)

θi(C) Activation threshold of a specific node i per
cascade

Ok Object to be replicated
stx = {0,1} State of a node (inactive/active) at time point

tx
Nser Number of surrogate servers
Nc Number of clients
S =
[(S1, l1),(S2, l2), ...,(SNser , lNser)]

Topology of surrogate servers, with
l1, l2, ..., lNser their locations

Table 5: Models - Notation Overview 3

The ground state is the lowest energy configuration sg (in physics the zero temperature con-

figuration), so that sg ∈ argminsH(s). In a social network can be seen as the state with the

most likely opinion, minimizing conflicts among its members (atoms).

Bootstrap percolation In the standard bootstrap percolation process [31] a node is

initially either active with a given probability f or inactive. It becomes active if k (k = 2,

3, ...) of its nearest neighbors are active. In that notion it resembles the k-core problem of

random graphs [134], where k-core is the maximal subgraph within which all vertices have

at least k neighbors, but whereas bootstrap percolation starts from a subset of seed vertices

according to the above-mentioned activation rule, the k-core of the network can be found by

a subsequent pruning of vertices which have less than k neighbors.
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Name Meaning Scope
P(Ok,Cz) = [P1,P2, ...,Pw] Places of proactive replication
tp(Nser,Nc,S) Amount of traffic traversing path p between

client and the server finally serving the re-
quest

c = f2(tp,φ ,Nc) Cost of replicating a single object, Nc is taken
into account when φ < ω

f1 classification function for a cascade Cz: Metrics for
character-
ization of
cascades

ϖ threshold for characterization
pk degree distribution of the graph comprising of

n nodes
Watts

z average node degree
f (φ) threshold distribution
reacha(u) the number of cascades a user can reach with

a specific action α

Dave et al.

~Pa(u) the propagation set of u, consisting of all his
immediate neighbours ui, such that there was
an action propagation from u to ui

δ density of a cluster Kleinberg
and Easley

Table 6: Models - Notation Overview 4

2.1.2.2 Empirical models

Before the advent of machine-readable traces, the potential of networks in the transmis-

sion of information and messages was stated already by Milgram in his renowned exper-

iment [139] or Christakis [82], who suggested in a study of 12000 participants that risks,

such as the risk of becoming obese or benefits, such as stopping of smoking, are propagated

through social ties. However, it is large scale and time-resolved machine-readable traces

that, through the step-by-step track of interactions in OSNs (although not compulsorily eas-

ily accessible/ collectible), have driven to the formulation of a plethora of empirical models.

Some generic observations concerning the empirical models are the following. Many of

them lack insight of information content, unlike works, such as that of Huberman et al. [37],

who formulate a model taking into consideration solely the features of an information item

(a news item in Twitter). Sometimes the discovered patterns in empirical models are at odds

with the predictions based on theoretical (analytical) models. For example, in unison with the

epidemical model, Leskovec et al. in [130] claim that cascades (depicting the blogosphere

information diffusion) are mostly tree-like. More specifically, they notice that the number

of edges in the cascade increases almost linearly with the number of nodes, suggesting that

30

EIR
IN

I T
. K

OILA
NIO

TI



Name Meaning Scope
R0 basic reproductive number Ver Steeg et

al.
β transmission rate
γ infection duration
k node degree
σ0 the probability that a person will adopt the

shared piece of information
s size
λ length [39]
td time delay [165]
d time duration
r rate [57]
t f time to the first step of the cascade (infector’s

view)
[57]

te duration of exposure to an item before infec-
tion (infectee’s view)

[57]

gd geodiversity [165]
gr georange [165]
α exponent of Zipf distribution
g(v) betweenness centrality of a node v
σst total number of shortest paths from node s to

node t
σst(v) number of paths that pass through v
ε(v) eccentricity of node v
G(n, p) new edges in graph of n nodes are constructed

at random with an independent probability p
Gilbert
model for
random
network

G(n,M) collection of all graphs which have n nodes
and M edges

Erdos−Renyi
model for
random
network

δ > 1 power-law coefficient power-law
networks

µ minimum number of interaction events interaction
graph

tw time window t of interactions’ occurrence

Table 7: Models - Notation Overview 5

the average degree in the cascade remains constant as the cascade grows (a trees property).

Moreover, Leskovec et al. claim that these trees are balanced, as they notice that the cascade

diameter increases logarithmically with the size of the cascade. In contradiction to the above,

the trees derived from the chain-letter diffusion model of Liben-Nowell and Kleinberg in

[132] are incosistent with the epidemic model, as they are very narrow and deep, with the

majority of their nodes having one child and a median distance from their root to the their

leaves being of hundreds steps.
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Precisely, in [132] the spread of a chain-letter is represented by a tree. Copies of the

chain-letter represent paths through the tree, the root represents the originator and the leaves

represent the recipients of a message (w is a child of v if w appends its name in the copy

of the letter directly below v). In order to produce trees with the characteristics mentioned

in the previous paragraph, the probabilistic model suggested (i) incorporates asynchrony:

after receiving a message, each recipient waits for a time t before acting on it, and if it

receives more copies of the item in this time interval, it acts upon only one of them, and (ii)

encompasses a back-rate β , as a node can either forward the message to its neighbours with

probability 1−β or group-reply to his corecipients with a probability β .

In [39], Bakshy et al. attempt to model the information diffusion in Twitter with the use

of regression trees. Twitter is convenient for information diffusion modeling, since it is ex-

plicitly diffusion-oriented: users subscribe to the content of other users. The retweet feature,

moreover, helps in the acknowledgement (though does not guarantee it) of reposts. Seeders

are users posting original (not retweeted) content and reposting instead of the conventional

retweeting (RT @username) is taken into account. Infuence is measured in terms of the size

of the whole diffusion tree created, and not just the plain number of explicit retweets. The

three different cases studied ascribe the influence to the first one having posted a link, the

most recent one or follow a hybrid approach.

The predictors used include, for the seed users: the number of followers, number of

friends, number of tweets and date of joining, and regarding the past influence of seed users:

the average,minimum and maximum total influence and average, minimum and maximum

local influence (local refers to the average number of reposts by a user’s immediate friends

over a period of one month and total to the average total cascade size over that period).

Bakshy et al. [39] come to the conclusion that although large cascades have in their

majority previously successful individuals with many followers as initiators, individuals with

these characteristics are not necessarily bound to start a large cascade. Thus, because of

the fact that estimations cannot be made at an individual level, marketers should rely on

the average performance. By studying the return on investment, on the whole, with a cost

function of the number of followers per individual i: ci = ac f + fic f , where a is acquisition

cost c f cost per follower and fi is the number of followers, they conclude that relatively

ordinary users of average influence and connectivity are most cost-efficient.
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Content-related features are, also, according to Bakshy et al. not expected to discrimi-

nate initiators of large cascades from non-successful ones, due to the large number of non-

successes. In order to take content into account the regression analysis is repeated encom-

passing the following features: rated interestingness, perceived interestingness to an average

person, rated positive feeling, willingness to share via email, IM, Twitter, Facebook or Digg,

some indicator variables for type of URL, and some indicator variables for category of con-

tent.

Moreover, Lerman et al. [127] claim that exploiting the proximity of users in the social

graph can serve as an adding-value factor for the prediction of information diffusion. They

discriminate proximity as coming from conservative or non-conservative processes (denoting

that the amount of spread information in the network remains or not constant, respectively).

For the case the underlying network is not fully known [148], Najar et al. focus on predicting

the final activation state of the network when an initial activation is given. They find the

correspondence between the initial and final states of the network without considering the

intermediate states. Their work is based on the analogy between predictive and generative

approaches for discrimination or regression problems (predictive models depicting a better

performance, when the real data distribution can’t be captured).

In [190], Yang and Leskovec use a time series model for modeling the global influence

of a node through the whole network. For each node u, an influence function Iu(l) is the

number of mentions of an information l time units after the node u adopted the information

(at tu), and with V (t) being the number of nodes that mention the information at time t, it

applies:

V (t +1) = ∑
u∈A(t)

Iu(t− tu) (5)

where A(t) are the nodes that got activated before t, tu ≤ t. For the modeling of the influence

functions a non-parametric formulation followed allows greater accuracy and deviation, as

no assumptions are made.

A study of the social news aggregator Digg [71] crawling data from the site, story, user

and social network perspective, suggests the presence of previously unconsidered factors for

the steering of information spread in OSNs. Doerr et al. suggest, that, beyond the bare OSN

topology two factors matter: the temporal alignment between user activities (i.e. whether

users are visiting the site in the same narrow time window) and a hidden logical layer of

interaction patterns occurring in their majority outside the social graph.
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In the direction of studying the information diffusion as social graphs evolve, Ren et

al. [158] study the evolution steps for shortest paths between two nodes, (so that they can

ascribe them to a disjoint path, a short-circuiting bridge or a new friend between them), and

furthermore, metrics such as closeness centrality, and global metrics, like the graph diameter,

across snapshots of gradually evolving graphs. To this end, they adopt an efficient algorithm

and an efficient storage scheme.

Firstly, they cluster (in an incremental procedure not requiring all snapshots to be present

in memory) successive graphs exploiting their many resemblances (daily snapshots). As

G∪ and G∩ essentially “bound” the graphs in the cluster, with G∩ being the intersection

(the largest common subgraph) of all snapshots in cluster C, and G∪ the union (the smallest

common supergraph) of all snapshots in C, grouping of snapshots into clusters can be based

in the idea of the graph edit similarity between these two graphs (G∪, G∩). The graph edit

similarity to capture the similarity requirement of a cluster is defined as:

ges(Ga,Gb) =
2 | E(Ga∩Gb) |

| E(Ga) |+ | E(Gb) |
(6)

Secondly, they exploit the idea that, denoting the shortest-path between the vertices v and

u, by P̃∗(u,v) in a graph G∗, where ∗ = 1,2, ...,n,∩,∪, the solution can easily be found by

the intersection or union (two graphs) of graphs in the cluster, or be “fixed” using these two

graphs, and they propose a “finding-verifying-fixing framework”.

As far as the storage schemes variations are concerned, ∆s consist a small fraction of

the snapshot, and their size depends on the threshold value used for clusters’ similarity. The

penalty of decompression overheads needed is surpassed by savings in I/O. Variations of the

storage schemes include the following:

SM1(C) = {G∩,∆(G∪,G∩),∆(Gi,G∩)|1≤ i≤ k} (7)

SM2(C) = {G∩,∆(G∪,G∩),∆(G1,G∩),D(Gi,Gi−1)|2≤ i≤ k} (8)

SM FV F(C) = {D(G∩,Gp∩),∆(G∪,G∩),∆(G1,G∩),D(Gi,Gi−1)|2≤ i≤ k} (9)

2.2 Tools

Various tools for experimenting with scaling of bandwidth-intensive-media content using

“OSN-awareness” include:
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• Tools for general Social Network Analysis tasks, with the help of which valuable in-

formation for the properties of studied OSNs and the patterns of information diffusion

through OSNs may derive,

• Tools for CDNs simulation, so that OSN-aware policies can be evaluated prior to the

release of a system or their incorporation in an OSN in-house application, and

• Tools for efficient management of the large graphs that social graphs comprise.

Some of their representative characteristics are depicted in Tables 8, 9, and 10, respectively.

The Thesis extensively leverages and modifies one of the described CDN simulators to sim-

ulate the CDN infrastructure framework.

2.2.1 Tools for SNA

Name Purpose Built on GUI Mode
SNAP analytical C++ available

through
graphical
front-end
NodeXL

single
workstation

NetMiner analytical Python yes single
workstation

igraph analytical R, Python visualization
capabilities

single
workstation

NetworkX analytical Python visualization
capabilities

single
workstation

NetEvViz visualization
of temporal
differences

C# yes single
workstation

XRime analytical Java no MapReduce

Table 8: SNA Tools

For the augmentation of measurements concerning the OSNs with further results, tools

for SNA [183] are used. SNA is the study of nodes of a network as its members are being

represented (membership can express the membership on a social networking website such

as Twitter or Facebook), and the relationships among them, with the ultimate purpose to

mine useful patterns among them.

Studied attributes can include, node-level attributes, for example, betweenness centrality

(Eq. 2.2.1). Betweenness centrality denotes the total number of shortest paths from node s

to node t and σst(v) is the number of those paths that pass through v.
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g(v) = ∑
s6=v6=t

σst(v)
σst

(10)

Network-level attributes can include the diameter or the radius of the graph, namely the

maximum and minimum eccentricity respectively of any graph vertex in a graph. The ec-

centricity ε(v) of a graph vertex v in a connected graph G is the maximum graph distance

between v and any other vertex u of G. For a disconnected graph, all vertices are defined to

have infinite eccentricity.

Existing SNA platforms are either task-oriented (IdiroSNA [6]) or general-purpose (NodeXL

[14]), and include software built for visualisation exclusively (NetEvViz [11] captures also

the dynamic evolution of graphs) or software that encompasses analytical features, too (which

can be used for link-prediction tasks, for example).

Scripting tools used for network analysis include the free open-source packages: SNAP

[18] package (C++), NetMiner [12](GUI, Python scripting engine), igraph [7], (visualisation

capabilities, R and Python), and the NetworkX [13] library for Python (visualisation capa-

bilities).

Most SNA tools function in single workstation mode, with the exception of libraries of scal-

able algorithms, such as XRime [23]. XRime consists of Map-Reduce programs, dedicated

to do raw data pre-processing and transformation, calculate SNA metrics, e.g. vertex degree

statistics, weakly and strongly connected components, bi-connected components, ego-centric

network density, breadth first search / single source shortest paths (BFS/SSSP), K-core, max-

imal cliques, pagerank, hyperlink-induced topic search (HITS), minimal spanning trees, etc.,

as well as give some graph visualization.)

Name Purpose Built on GUI
CDNSim solely for CDNs OMNET++, INET yes

NS-2 general purpose C++, simulation scenarios in
Object Tcl

no

NS-3 general purpose C++, python no
PlanetLab general purpose Linux vserver as node provi-

sioning mechanism, migrat-
ing to LXC - the implementa-
tion of container-based virtu-
alization in the Linux kernel

yes

Table 9: Tools for CDN Simulation
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2.2.2 Tools for CDNs

CDNSim [168] is a simulation tool for CDNs. It is designed to monitor CDN services

prior to or after their public release in a controlled simulated environment, and overcomes

typical problems of CDN simulators, that may require voluntary involvement of many users.

The simulation concerns the CDN surrogate servers, and the main CDN functions. Outcomes

of experimentation for the evaluation of specific CDN installations are client, server and

network statistics.

The tool provides a graphic user interface for setting of the parameters of a certain sim-

ulation, and, also, utilities and interfaces for simulation of peer-to-peer services. Moreover,

it is open-source, modular and open-architecture parallel discrete-event trace-driven tool,

based on OMNeT++, and its extension INET for the support of network protocols, such

as TCP/IP. Request routing, content distribution and management are simulated by the tool

itself.

Some of its features include: support of various policies (cooperative push based con-

tent management policy, non-cooperative push based content management policy, coopera-

tive pull based content management policy, non-cooperative pull based content management

policy, LRU cache replacement policy, static cache policy), TCP / IP networking support,

various utilities (for executing unattended simulations, for automatically generating results’

reports, for extracting statistics related to net-utility, for converting Apache log files into

CDNsim trace files), and extensibility (implementation of modules in libraries form).

Other tools include the Network Simulator NS-2 [15], a discrete event simulator targeted

at networking research, that supports simulation of TCP, routing, and multicast protocols,

and the real-time testbed PlanetLab [17].

2.2.3 Tools for Graphs

The amount of information in social networks can be an obstacle, since elaborate manip-

ulation of the data may be needed. An open problem is the efficient handling of graphs with

billions of nodes and edges. Facebook, for example, has one billion monthly active users

as of October 2012, 584 million daily active users on average in September 2012, and 604

million monthly active users who used Facebook mobile products as of September 2012 [5].

In order to generate aggregations and analyses that have meaning, the Facebook custom

built-in data warehouse and analytics infrastructure [21] has to apply ad-hoc queries and

custom MapReduce [68] jobs in a continuous basis on over half a petabyte of new data every
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24 hours, with the largest cluster containing more than 100PB of data and the process needs

surpassing the 60.000 queries in Hive, the data warehouse system for Hadoop and Hadoop

compatible file systems.

Below we describe systems for the efficient calculation of graph features (PEGASUS, GBASE),

an approach for the efficient management of distributed graphs through replication of nodes

(Mondal and Deshpande approach), and an architecture for better scheduling and managing

of the underlying MapReduce jobs over an OSN (Facebook Corona).

Name Purpose Built-on Features
PEGASUS graph storage, graph mining Java indexing, inference, spectral

analysis, node-centralized
computation exclusively

GBASE graph storage, graph mining MapRedude
framework

node-centralized or edge-
centralized computation

Mondal
Deshpande
approach

dynamic replication of nodes
based on read-write frequen-
cies

Apache
Couch-DB
key-value
store

exploits clustering

Facebook
Corona

improvement of Apache
Hadoop scalability

Java separate central cluster man-
ager and multiple job track-
ers, task scheduling in push
model

Table 10: Graph Tools

PEGASUS [106] is a Java-written Peta-scale graph mining system, which runs in dis-

tributed manner on top of Hadoop [16] (the open source implementation of MapReduce

framework), implementing algorithms for estimating graph features, such as PageRank, Ran-

dom Walk with Restart (RWR), radius, Connected Components. It encompasses, also, an ef-

ficient graph storage schema and indexing methods, inference and spectral analysis of large

graphs (with a distributed belief propagation algorithm which infers the states of unlabeled

nodes given a set of labeled nodes, an eigensolver for computing top k eigenvalues and

eigenvectors of the adjacency matrices and a tensor decomposition algorithm.)

For the same purposes GBASE [105] is used to approach problems of: storage (in dis-

tributed settings: splitting the edges into smaller units, grouping the units into files), efficient

algorithms for graph applications, and exploitation of the above for query optimization.

In the direction of reducing network bandwidth consumption and specifically tailored for

the large-scale dynamically changing graphs that OSNs comprise, Mondal and Deshpande

propose a distributed graph data management system in [144]. The system is based on dy-

namic replication of nodes defined by their read-write frequencies, and a clustering-based
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approach to amortize the costs of making these replication decisions, which are dictated by

a fairness criterion, and is implemented as middleware on top of the open-source CouchDB

keyvalue store.

Facebook’s open-source Corona [21] surpasses some inherent limitations of an Apache

Hadoop MapReduce implementation, which can be summarized as follows: With the schedul-

ing framework consisting of a single job tracker, that manages both the cluster resources and

user jobs’ scheduling, and many task trackers (one per worker machine) that have to execute

the tasks the job tracker assigns them, cluster utilization suffers due to jobs’ plethora. Also,

task trackers periodically inform the job tracker about their status in a pull-based fashion,

thus resulting in latency, especially observable for the smaller jobs. Last, the static configu-

ration responsible for the division of the cluster in a predefined number of map and reduce

slots results in a scheduling not based on actual resource requirements. To address these is-

sues the proposed framework introduces a scalable architecture of a separate central cluster

manager that allocates slots to job trackers and keeps track of cluster utilization (machines

in the cluster, resources to jobs), and separate multiple job trackers that track one job each,

as well as a task scheduling working in push model (requests itinerary: job tracker, cluster

manager, resource grants back to job tracker).

2.3 Taxonomy of Content Delivery over OSNs

Content Delivery over OSNs

Social Cascades
Characterization

Properties

Geographical Structural and
Temporal

Approaches

Microscopic Macroscopic

OSN
Measurements

OSN Usage
Analysis

OSN Media
Diffusion

System

Figure 7: A taxonomy of content delivery over OSNs.

The presented taxonomy of Content Delivery over OSNs is outlined in Figure 7. The

taxonomy presents the various properties and approaches in the literature for the characteri-

zation of cascades. The branching of topics in our presented taxonomy continues with OSN

measurement works that focus on phenomena and measurement studies providing valuable
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insights into usage analysis and media diffusion. The last dimension of our taxonomy con-

sists of content delivery systems built based on OSNs’ data.

2.4 Metrics for characterization of social cascades

Figure 8: Common cascade shapes. Ordering of common shapes of cascades in the blogo-

sphere [130] by frequency, with r the frequency ranking of Gr.

A cascade is characterized as local if it spreads in a fraction of the network lower than

a threshold. Otherwise the cascade is characterized as global. Local cascades affect only a

relatively small number of individuals and typically terminate within one or two steps of the

initiator (Figure 8). The size of local cascades is therefore determined mostly by the size

of an initiator’s immediate circle of influence, not by the size of the network as a whole.

In global cascades the opposite happens: they affect many individuals, propagate for many

steps, and are ultimately constrained only by the size of the population through which they

pass.

A cascade is local if it spreads in a fraction ϕ of the network lower than a threshold ω or

else we say that the cascade is global. We define the classification function f1 for a cascade

Cz,z ∈ N:

f1(G,Cz) =

 0 if ϕ < ω local cascade,

1 if ϕ > ω global cascade.
(11)

Formally, a cascade should be characterized as global or local with the maximum ac-

curacy α = σ

ν
· 100, σ is the number of the correctly classified cases and ν is the num-

ber of all sampled cases, such that the cost of replicating a simple object c is minimized:

min∑Cz c = f2(tp,ϕ,Ncl,Cz) for all cascades Cz ∈C, where ϕ is the fraction of the network

that the object is bound to spread, Ncl , cl ∈ N is the number of clients requesting a specific
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object and tp the amount of traversing path p between client and the server finally serving

the request.

Even though a percentage of the occurred information flow in cascades is ascribed to ho-

mophily, namely the tendency of individuals to associate with similar others, as “similarity

breeds connection” [137], and research has been conducted for the discrimination between

the two cases (homophily or influence) (see [33], [125], etc.), there exist specific metrics

for the quantification and characterisation of the social cascades, to which we refer in this

section. Below different approaches are presented for the characterization of the extent a

cascade will receive. Some of them are related to the extent that nodes are influenced by

their neighbours on a microscopic level, such as the “vulnerability” that Watts [185] intro-

duces, some to factors that function as obstacles to the spread of a cascade on a macroscopic

level, such as those that Kleinberg and Easley [76] or Ver Steeg et al. [170] introduce. Dave

et al. [67] combine microscopic and macroscopic level properties to identify how empirical

factors like user’s and their neighborhood’s influencing ability or a specific action’s influ-

encing capability and come to the conclusion that action dominates in the prediction of the

spread of the action.

In order to study the cascades a synopsis of the most indicative metrics follows. It in-

cludes some of the structural properties of the cascades, namely their size, which is the

number of participants, including the initiator, their length [39], denoting the height of the

cascade tree, the time delay between two consecutive steps of the cascade [165], the time

duration, and the rate of the cascade [57]. The latter, for the epidemiological model of [57]

is the basic reproductive number R0 = ρ0k2/k
2, where ρ0 = βγk, β is the transmission rate,

γ is the infection duration, and k the node degree. With σ0 the probability that a person will

adopt the shared piece of information (under the assumption that duration infection is equal

to the timelife of the user, much larger than duration of the cascade, and, thus, the informa-

tion will be definitely shared among connections) it applies ρ0 = σ0k, and σ0 can empirically

be estimated by identifying an infected node and counting the fraction of its connected nodes

subsequently becoming infected. Other properties related to the susceptibility of the network

to new items are: the time to the first step of the cascade from infector’s point of view and

the duration of exposure to an item before infection from infectee’s view [57]. Geographical

properties are: the geodiversity, denoting the geometric mean of the geographic distances

between all the pairs of users in the cascade tree, and the georange, denoting the geomet-

ric mean of the geographic distances between the users and the root user of the cascade

tree [165].
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In [185], Watts defines a global cascade as a “sufficiently large cascade”, covering prac-

tically more than a fixed fraction of a large network. Watts introduces a simple model for

cascades on random graphs.

• The network comprises of n nodes with threshold distribution f (ϕ), and the degree

distribution of the graph is pk, namely each node is connected to k neighbours with

probability pk; z is the average node degree (k = z).

• The initial state of each node is state 0 (inactive) and each node is characterized by a

threshold ϕ . If at least a threshold fraction ϕ of the node’s k neighbours acquire state

1 (active), the node will switch from inactive to active.

• Nodes with k ≤ b1/ϕc are said to be “vulnerable” and will switch state if just one of

their neighbours becomes active. Otherwise, nodes are called “stable”.

Watts uses percolation theory [169], the theory studying how connected clusters behave in a

random graph, to investigate the conditions under which a small initial set of seed nodes can

cause a finite fraction of infinite nodes to switch from inactive to active. Percolation in this

case is interpreted as follows: a global cascade is said to occur, when the vulnerable vertices

percolate. Namely the largest connected vulnerable cluster of the graph must occupy a finite

fraction of the infinite network. For infinite Poisson random graphs Watts defines a region,

inside which a finite fraction of an infinite network would switch from inactive to active state

if at least one arbitrarily selected node switched from inactive to active state. Simulations on

finite graphs of 10000 nodes give similar results.

Watts makes the observation that the frequency of global cascades is related to the size

of the vulnerable component, with the larger the component, the higher the chance for the

cascade to be global. He also states that the average size of a global cascade is governed

by the connectivity of the network as a whole. In sparsely connected networks, cascades are

limited by the global connectivity of the network, and in dense networks cascades are limited

by the stability of individual nodes.

In [67], Dave et al. quantify the reach of a user as the number of cascades it can reach

with a specific action α as:

reachα(u) =

 ∑ui∈~Pa(u) 1+
1
2

∑u j∈~Pa(ui)
(reachα(u j))

0, otherwise
(12)
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where a user gets the complete credit for action propagation to his immediate neighbours,

or a decaying factor for non-immediate neighbours. ~Pα(u) is the propagation set of u, con-

sisting of all his immediate neighbours ui, such that there was an action propagation from u

to ui.

Dave et al. [67] identify how empirical factors like user’s and their neighborhood’s influ-

encing ability, a specific action’s influencing capability and other user and network charac-

teristics affect the reachα(u) quantity, coming to the conclusion that action dominates in the

prediction of the spread of the action.

In [76], Kleinberg and Easley claim that clusters are obstacles to cascades, and, moreover,

that they are the only obstacles to cascades: “Considering a set of initial adopters of behavior

A, with a threshold of q for nodes in the remaining network to adopt behavior A: (i) If the

remaining network contains a cluster of density greater than 1− q, then the set of initial

adopters will not cause a complete cascade. (A cluster of density p is a set of nodes, so that

each node in the set has at least a p fraction of its network neighbors in the set.) (ii) Moreover,

whenever a set of initial adopters does not cause a complete cascade with threshold q, the

remaining network must contain a cluster of density greater than 1−q.”

In [170], Ver Steeg et al. find another two factors related with the multiple exposure of

users to stories due to the highly clustered nature of Digg, that drastically limit the cascade

size in Digg. The reproductive number R0 of the epidemical model used, which by intuition

expresses the average number of people infected by a single infected person, is the product of

the average number of fans times the transmissibility. As far as the first factor is concerned,

it is implied that only the number of new fans (those that have not already been exposed to

a story) should be taken into account. In addition for the second factor, transmissibility for

actual cascades is observed to remain constant until about a number of people have voted,

and then begin to decline (maybe due to decay of novelty [188] or decrease in visibility [95]

as a consequence of new stories being submitted to Digg). From this point of view, cascades

are limited.

The field of predicting the appearance of social cascades is very active ( [59], [124], [171], [155],

[73], [39], etc.) Many studies focus on the prediction of the amount of aggregate activities

(e.g. aggregate daily hashtag use [135]), whereas others focus either on the prediction of

user-level behaviour, like retransmission of a specific tweet/ URL ( [155], [84]) or on the

prediction of growth of the cascade size [59].

Although our Thesis focuses solely on video sharing, we identify the following methods

for virality prediction in general. Feature-based methods and time series analysis methods.
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They are both based on the empirical observation of social cascades. Our approach in the

thesis falls into the first category.

Feature-based methods are based on content, temporal and other features, and the learn-

ing algorithms schemes they use are based on simple regression analysis ( [59, 172]), re-

gression trees [39], content-based methods [178], binary classification ( [97,104], [122]) etc.

They do not focus, though, on the underlying network infrastructure, and often encounter

difficulty in extracting all the necessary features due to the large volume of accommodated

graphs.

Time-series analysis works ( [191, 192]), on the other hand, argue that patterns of a

resource’s growth of popularity are indicative for its future retransmissions.

Finally, we should mention that one branch of virality research is based on study of the

evolution of cascades during a specific time-window ( [135], [122], [178]), whereas there

exist works that examine the cascades continuously over their entire duration [59].

Regarding the aspect of cascade analysis, more recent works explore the dynamic nature

of cascades over social networks, including works such as [147].

2.5 Bandwidth-intensive media content and Social Networks

In this section we present the main findings about the structure of OSNs (static properties

and temporal evolution), and moreover how these topological characteristics can affect the

information diffusion in an OSN. Findings on structure are corroborated by measurement

studies, that depict also findings in terms of OSNs users’ workloads.

Moreover, we discuss the association of bandwidth-intensive media content with social

networks, since we would like to know for the delivery of content prior to requests, how

the number of requests is bound to evolve. Next, follows a description of works studying

patterns of user requests over OSNs for various video-on-demand systems and OSNs.Finally,

we present (Applications and techniques) existent applications and techniques that could

provide valuable insights concerning the exploitation of information extracted from OSNs

for scaling of content diffused via OSNs.

2.5.1 Structure Characteristics of OSNs

The main characteristics of OSNs found by different studies are the following: Social net-

works are power-law [142], and, moreover scale-free [42], and exhibit the small-networks

property [119]. The graphs representing the interaction among the nodes of a social network,
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known as “interaction graphs” also exhibit the above properties [187], but lower levels of the

“small-world” properties than their social graph counterparts. Wilson et al. [187] analyze in-

teraction graphs derived from Facebook user traces and depict that these graphs have fewer

nodes with extremely high degree, and overall significant increase of the network diameter.

An interaction graph [187] is parameterized by a minimum number of interaction events n

and a time window t of interactions’ occurrence and is defined as the subset of the social

graph where for each link interactivity between the link’s endpoints is greater than a rate

defined by n and t. Wilson et al. [187] formulate interaction graphs with the implicit as-

sumption that the majority of user interactions take place across social links, which is true

for the Facebook dataset they study, thus defining them as subsets of the social graph, but in

the general case interaction graphs can instead be completely new graphs based only on the

interaction data.

Kumar et al. [121] observed that OSNs consist of the following three parts: singletons

(nodes not participating in the network), the giant component (a subgraph that contains

highly active nodes or to be put differently a dense core of low, actually shrinking, diam-

eter, consistent with the observations in [129]) and the middle region (the remainder, that

consists of various isolated communities interacting with one another but not with the over-

all network).

The role the topological features play concerning the information diffusion in a network

is shown in various works: Indicatively, Draief et al. [74] show the effect of the network

topology in the size of the population that eventually becomes infected, showing that if the

ratio of cure to infection rates is larger than the spectral radius of the graph, a small initially

infected population leads to a small also finally infected population and in the opposite case,

in specific studied models, the final infected population is large.

Concerning the temporal evolution of OSNs, Leskovec et al. [129] highlight two addi-

tional characteristics, densification power laws (average degree increases with E(t) and V (t)

denoting the edges of the social graph and its nodes at time t, respectively, and a ∈ (1,2), so

that they obey: E(t) ∝ V (t)a) and shrinking diameters (diameter decreasing as the network

grows), which are at odds, for example, with the preferential attachment model, in the notion

that it generates graphs with average node degree constant over time and slowly growing

diameters. Forest Fire Model [129] is proposed instead to simulate these properties.
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2.5.2 Measurement Studies on Large-scale OSNs

A first large-scale analysis of multiple OSNs data encompassing Flickr, YouTube, Live-

Journal, and Orkut, social networks for sharing photos, videos, blogs and profiles, respec-

tively, by Mislove et al. [142] highlighted the difficulties of crawling a social network, and

came to the conclusions that: Although node degrees in the studied OSNs varied by orders

of magnitude, key findings are the same. The studied OSNs are power-law, small-world,

scale-free, the in-degree matches out-degree distribution (due to link symmetry, an observa-

tion at odds with the web graph, that increases OSNs’ network connectivity and reduces their

diameter), there is a densely connected core of high degree nodes surrounded by small clus-

ters of low-degree nodes, the average distances are lower, and clustering coefficients higher

than those of the web graph (studied OSNs clustered 10.000 more times than random graphs,

5–50 times more than random power-law graphs). The clustering coefficient of a graph is

defined as the average of the clustering coefficients of the nodes of the graph. For a node i

with degree ki the clustering coefficient is given as:

Ci =
2|(v,w)|,(i,v),(i,w),(v,w) ∈ E

ki(ki−1)
(13)

The core consists of 1–10% of nodes, is necessary for the connectivity of 90% of users,

with most short paths passing through it, could be used for quick information diffusion,

whereas the highly clustered remainder could be used for sharing of information of local

interest.

Mislove et al. performed crawls with a picked known user and all of his friends until

all known users were crawled, performing a BFS of the graph, facing the challenge of quick

finishing of the crawl, due to the changes in the underlying social network, and for the

crawling to be complete they needed to estimate the crawl coverage percentage (for Flickr:

27%, but remaining users had very few links, LiveJournal: 95%, Orkut: sub-crawl, but

representative, YouTube: unable to find percentage of fraction covered), since there exist

users not connected or small clusters.

The concerns about the validity of crawling method used (underestimation of the number

of low-degree nodes and correct capture of the scaling behaviour of degree distribution only

with a sampling ratio above a certain threshold) are confirmed by Ahn et al. [30]. The latter

study, of the complete CyWorld dataset (by that time the largest SN in South Korea) and

small parts of MySpace and Orkut, also confirms power-law and small-world properties.

46

EIR
IN

I T
. K

OILA
NIO

TI



Wilson et al. [187] conducted the first large-scale analysis of Facebook, by crawling and

use of ‘networks’ (15% of total 10M users, and 24M. interactions). In [121], Kumar et al.

study Flickr and Yahoo!360, finding they follow power-law degree distributions. In [128],

Leskovec et al. analyze Microsoft Messenger instant-messaging (IM) service users (240M

users, 30 billion conversations) in terms of the average path length of Messenger users (6.6)

and graph topology, finding that it is well-connected and robust against node removal.

Low diameter and high clustering coefficient, as well as power-laws for in- and out-

degree distributions were confirmed for the Twitter social graph by Java et al. [103]. In [124],

Kwak et al. study Twitter using its API with 20 whitelisted accounts (41.7M user profiles,

near-complete at the time,1.47B following relationships, 4262 trending topics, 106M tweets

mentioning trending topics), finding that following is reciprocal only for 22.1% of nodes,

compared to 68% in Flickr, 84% in Yahoo and 77% in Cyworld guestbook messages, and

that it resembles more a news media site, in the notion that users discuss timely topics, and

only few users have a local influence.

In terms of user workloads in OSNs, Benevenuto et al. [45] collected traces from a social

network aggregator website in Brazil, enabling connection to multiple social networks with a

single authentication, and, thus, studied Orkut, MySpace, Hi5 and Linked. Benevenuto et al.

presented a clickstream model to characterise users’ interactions, frequency and duration of

connection, as well as frequency of users’ transition to activities, such as browsing friends’

profiles, sending messages etc., with their analysis showing that browsing, which cannot be

identified from visible traces, is the most dominant behavior (92%). They also, reinforced

the social cascade effect, since more than 80% of bandwidth-intensive-media content like

videos and photos was found through a 1-hop friend.

2.5.3 Impact of bandwidth-intensive media content diffusion over OSNs

Zhou et al., in [195], explore the popularity of photos in Facebook, noting that the request

pattern follows a Zipf distribution, with an exponent α = 0.44, significantly lower than that

of traditional distributions (ranging from 0.64 to 0.83 [50]). They interprete this as shift of

interest from popular items to items in a long tail. Long-tailed nature of multimedia content

is also taken into account in our Thesis.

In the same context, Yu et al. [193] analyse PowerInfo, a VOD system deployed by

China Telecom and note that the top 10% of the videos account for approximately 60% of

accesses, and the rest of the videos (the 90% in the tail) for 40%. Unaccessible via the

47

EIR
IN

I T
. K

OILA
NIO

TI



official distribution channels (television networks or record companies) independent video

content generated by the users (UGC) becomes available to a wide number of viewers via

services as YouTube [25] or the US-based Vimeo. Cha et al. [56] investigate the long tail

opportunities in the UGC services, such as YouTube video content, taking into account the

fluctuation of the viewing patterns due to the volatile nature of the videos (videos may appear

and disappear) and the various sources that direct to the content (recommendation services,

RSS feeds, web reviews, blogosphere etc.)

In [191], Yang and Leskovec examine the temporal variations of Twitter hashtags and

quotations in blogs, creating time series’ of the number of mentions of an item i at time t,

thus measuring the popularity given to the item i over time. By grouping together items so

that item i is in the same group have a similar shape of the time series xi with a clustering

algorithm, they infer items with similar temporal pattern of popularity, and find that temporal

variation of popularity of content in online social media can be accurately described by a

small set of time series shapes, with most press agency news depicting a very rapid rise and

a slow fading.

In the direction of addressing the open problem of efficient server provisioning espe-

cially for bandwidth-intensive-media content (such as streaming video, that has relatively

strict delivery constraints concerning latency requirements for example [175]), a problem

intensified by the advent of bandwidth-intensive-media UGC and the proliferation of smart-

phones, leveraging information from social networks, Scellato et al. [165] study the relation

between YouTube video sharing service where, for example, a wide number of viewers has

access to a diversity of under other circumstances unaccessible via the official distribution

channels independent video content, and the microblogging service Twitter, specifically tai-

lored for the distribution of information content. Scellato et al. find that social cascades

tend not to expand geographically, a notion which we also apply as a heuristic in our main

algorithm in the Thesis.

Another corpus of the literature studies users’ behaviors in different media services. Sev-

eral studies ( [56], [81] , [88], [153], [143]) have been conducted to investigate the traffic

characteristics of YouTube users. These works focus on the characteristics of YouTube con-

tent, such as file size, bitrate, usage patterns and popularity. After an extensive analysis of the

YouTube workload in [88], the authors found that there are many similarities between tradi-

tional Web and media streaming workloads. From another perspective, the authors in [61]
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found a strong correlation among YouTube videos because the links to related videos gener-

ated by uploaders depict small-world characteristics. In [80], Figueirido et al. analyze how

the popularity of individual YouTube videos evolves since the upload time of the video.

2.5.4 Systems, applications and techniques

In [102], Jacobson et al. introduce Content Centric Networking (CCN), noting that net-

work use has evolved to be dominated by content distribution and retrieval. CCN has no

notion of host at its lowest level - a packet ”address” names content, not location, while si-

multaneously preserving the design decisions that make TCP/IP simple, robust and scalable.

Content is treated as a primitive, and with new approaches, Jacobson et al. simultaneously

achieve scalability and performance.

Furthermore, at the application level, there have been efforts to incorporate the infor-

mation extracted from OSNs in the way that users share content and in how the content

ultimately reaches the users. Some of these works use the information directly from OSNs,

whereas others use such information indirectly. The research goals vary: the decision for

copying content, improvement of policy for temporary caching, etc. For an extensive taxon-

omy of content delivery over OSNs in various directions, readers can refer to [112]. The pre-

sented taxonomy of the relative research includes systems built with the leverage of OSNs’

data. It takes into account phenomena related to bandwidth-intensive media content and its

outspread via OSNs, as well as measurement studies on OSNs that could provide valuable

insights into CDN infrastructure decisions for replicating the content. Some indicative sys-

tems, applications and techniques built with the leverage of OSNs’ data are presented in the

following.

Herein we present existent solutions (systems, applications and techniques) that could

provide valuable insights concerning the exploitation of information extracted from OSNs

for scaling of content diffused via OSNs. As far as the proposed applications and techniques

are concerned, cost for scaling of content tailored for a small number of costumers can be

expressed in terms of: required bandwidth for quick access to the content, required stor-

age capacity for caching of content etc., and can be quantified, for CDNs for example, by

the number of replicas needed. Presented solutions span from components within browsers

to Cloud architecture variations, whereas in the present Thesis we remain focused on the

Content Distribution infrastructure.
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To share resources within the context of a social network with the use of the cloud busi-

ness model, Chard et al. in [58] propose the SocialCloud architecture. Users register in cloud

services (computational capacity, photo storage etc.), and their friends can consume and pro-

vide these services through a Facebook application. The allocation of resources (trading or

reciprocal use between friends) is conducted by an underlying market infrastructure, whereas

the Social Cloud application passes a SLA to the service. The advertisement of the service,

so that it can be included in the market is done with XML based metadata stored in Globus

Monitoring and Discovery System (MDS).

In Buzztraq [164], Sastry et al. build a prototype system that takes advantage of the

knowledge of the users’ friends’ location and number, to generate hints for the placement of

replicas closer to future accesses. Comparing their strategy with location based placement,

which instead uses the geographical location of recent users, they find substantial decrease

of cost, when requests as part of cascades are more than random accesses of content. Fur-

thermore, their system reacts faster when there is a new region shift, since it starts counting

friends of previous users in a new region, even before a request comes from that region.

The key concept of Buzztraq is to place replicas of items already posted by a user closer

to the locations of friends, anticipating future requests. The intuition is that social cascades

are rapidly spread through populations as social epidemics. The experimental results indi-

cated that social cascade prediction can lower the cost of user access compared to simple

location-based placement. Buzztrack is a simple system that only provides hints as to where

to place objects. Other more complex constraints that the present work covers, such as server

bandwidth and storage, are not taken into account. Moreover, social cascade is indirectly an-

alyzed because there has to be a third-party page where users connect to view the videos and

have access to their social profile.

Compared to Buzztraq, the novelty that this Thesis introduces is that it takes into account

the parameters of a CDN infrastructure, such as storage issues, and it also applies heuristics

introduced from more recent works. In our approach, social cascades are directly analyzed

and access to social profiles is not conducted via a third-party page, but rather with a real

dataset from multimedia links spread over an OSN.

In the direction of distributing long-tailed content while lowering bandwidth costs and

improving QoS, although without considering storage constraints, Traverso et al. in [176]

exploit the time differences between sites and the access patterns that users follow. Rather

than naively pushing UGC immediately, which may not be consumed and contribute unnec-

essarily to a traffic spike in the upload link, the system can follow a pull-based approach,
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where the first friend of a user in a Point of Presence (PoP) asks for the content. Moreover,

rather than pushing content as soon as a user uploads, content can be pushed at the local time

that is off-peak for the uplink and be downloaded in a subsequent time bin, also off-peak for

the downlink. The larger the difference is between the content production bin and the bin in

which the content is likely to be read, the better is the performance of the system.

In Tailgate the authors make the non-realistic assumption that once a video is delivered

to a site, all future requests for that content originating from users of that site will be locally

served. In other words, content is moved between sites only once. Tailgate moreover has the

limitation that authors assume read patterns follow a diurnal trend similar to write patterns.

Traverso et al. are more interested in time-of-day effects and more sophisticated read patterns

with respect to content interest, quality of content etc. are ignored.

In [165], Scellato et al. study how Twitter can be used to examine social cascades of

UGC from YouTube and discover popular objects for replication. They improve the tem-

porary caching policy by placing content after accounting for the distance between users.

For the model CDN system constructed and tested, Scellato et al. used the Limelight net-

work properties with 19 clusters of servers worldwide. To test the system, two different

video weights were used: geosocial, in which node locality values are calculated from all the

users that have posted a message about the item (even without being involved in a cascade),

and geocascade, in which node locality values are calculated from the users participating in

the item’s social cascade. It was shown that the model improved performance against a no

weight policy, with geocascade weight performing better.

Zhou et al. [195] leverage the connection between content exchange and geographic lo-

cality (using a Facebook dataset they identify significant geographic locality not only con-

cerning the connections in the social graph, but also the exchange of content) and the ob-

servation that an important fraction of content is “created at the edge” (is user-generated),

with a web based scheme for caching using the access patterns of friends. Content exchange

is kept within the same Internet Service Provider (ISP) with a drop-in component, that can

be deployed by existing web browsers and is independent of the type of content exchanged.

Browsing users online are protected with k-anonymity, where k is the number of users con-

nected to the same proxy and are able to view the content.

In [98], Hoque and Gupta propose a technique for putting with a logical addressing

scheme together in the disk blocks containing data from friends. The large scale of OSNs

and the predominant tail effect do not allow use of techniques such as those used in multime-

dia file systems or web servers, where items are globally popular, and, techniques keeping
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Figure 9: Overview of VOD service placement strategy leveraging OSNs.

related blocks together tracking the access pattern of blocks, respectively. To this purpose,

in [98] the social graph is divided into communities, and the organization of blocks in the

disk is conducted with a greedy heuristic that finds a layout for the users within the commu-

nities and organizes the different communities on the disk by considering inter-community

tie strength. The system is implemented on top of the Neo4j graph database as a layout

manager.

Instead of optimizing the performance of UGC services exploiting spatial and temporal

locality in access patterns, Huguenin et al., in [100], show on a large (more than 650,000

videos) YouTube dataset that content locality (induced by the related videos feature) and

geographic locality are in fact correlated. More specifically, they show how the geographic

view distribution of a video can be inferred to a large extent from that of its related videos,

proposing a UGC storage system that proactively places videos close to the expected re-

quests. Such an approach could be extended with the leverage of information from OSNs, in

the way that Figure 9 depicts.

An interesting approach [126] applicable to the realm of content delivery is based on

an architecture which combines global learning and local caches with small population. It

is shown that age-based thresholds can timely exploit time-varying popularities to improve

caching performance. Moreover, the caching efficiency is maximized by a combination of
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global learning and clustering of access locations, accompanied by score mechanisms to help

with practical issues at local caches. Practical considerations include, though, the size of the

content that circulates over OSN and the long-tail effect, since the goal of the authors is

first to learn a good estimate at the global point and then feed it back to the local caches in

the form of content scores, thus, making the approach possibly prohibitive for OSN-aware

content delivery.
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Chapter 3

The Social Prefetcher

A significantly large proportion of HTTP traffic results from bandwidth-intensive mul-

timedia content circulating through OSNs. With multimedia content providers, such as

YouTube, often relying on CDN infrastructures, the pursuit lies in exploiting the user activ-

ity extracted from OSNs to improve the content prefetching mechanism. Aiming to reduce

bandwidth usage, we incorporated a dynamic mechanism to CDNsim, a stand-alone CDN

traffic simulator. This mechanism is based on a dynamic policy that takes patterns of infor-

mation transmission over OSNs into account. Herein, we demonstrate that the performance

of CDNs can be improved, and the cost of copying to surrogate servers is taken into consid-

eration. The chapter is organized as follows. Section 3.1 gives an example of the necessity of

the Social Prefetcher approach, and epitomizes the contributions of the present work [110].

Section 3.2 formally describes the addressed problem. The proposed algorithm is described

in Section 3.3. Section 3.4 provides an outline of the methodology, followed by the prepa-

ration of the employed datasets. Our main findings are presented in Section 3.5. Section 3.6

concludes the chapter and discusses directions for future work.

3.1 Introduction

The three major issues that the area of CDNs faces concerning the maximization of their

overall efficiency are as follows:

• (i) the most efficient placement of surrogate servers with maximum performance and

minimum infrastructure cost;

• (ii) the best content diffusion placement, either in a global or in a local scale, i.e., which

content will be copied in the surrogate servers and to what extent, given the placement
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of the surrogate servers, because this requires memory, time and computational cost;

and

• (iii) the temporal diffusion, related to the most efficient timing of the content place-

ment.

In this work [110], we focus on (ii), although we do not completely overlook the matter

of the efficient placement of servers and the issues of temporal diffusion. We show how

leveraging information from OSNs can lead to a better content diffusion placement. More

specifically, we incorporate a dynamic mechanism of preactive copying of content to an

existing validated CDN simulation tool and propose an efficient copying policy. The latter

can be based on demand prediction in social networks.

Indeed, users can ultimately benefit from the scaling of bandwidth-demanding content

based on usage patterns over OSNs. Measurement studies, such as [56], attribute the recent

increases in HTTP traffic to the extended use of OSNs [40], [58], [76] and the increasing

popularity of streaming media. The amount of Internet traffic generated every day by online

multimedia streaming providers such as YouTube cannot be neglected. Although we cannot

exactly estimate the proportion of traffic generated by OSNs, it is observed that there are

more than 400 tweets per minute with a YouTube video link [52]. Because media streaming

providers often rely on CDNs to distribute their content from storage servers to multiple

locations scattered over the planet, leverage of information diffusion analysis over OSNs can

improve the CDN user experience.

The cost of scaling bandwidth-intensive content in CDNs can be expressed in different

ways. For example, it might be the number of replicas needed for a specific source, or it

may take into account the optimal use of memory and processing time of a OSN-aware built

system. In this work, we aim to improve user experience via prefetching the objects most

likely to be asked to the necessary extent.

3.2 Problem Description

Our goal is to improve the performance of the content delivery network infrastructure

in terms of reducing the response time and possibly improving the hit ratio of our request,

whereas the cost of copying from the origin server to surrogate servers remains restricted.

We take into account restrictions in the cache capacity of the server, the server location,

and the network topology (Table 11). We seek effective content pre-fetching policies in the

surrogate servers, taking into account data from OSNs and actions of users over them, such
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that we can recognize objects that will eventually be popular and preactively copy them in

surrogate servers.

We search a policy such that given a graph G(V,E), a set of R regions where the nodes

of the social network are distributed, and the posts P of the nodes, it recognizes the set of

objects O that will be popular only in a subset of the regions, where the content is likely to

be copied.

G(V,E) Graph representing the social network

V = {V1, ...,Vn} Nodes representing the social network users

E = {E11, ...,E1n, ...,Enn} Edges representing the social network con-

nections, where Ei j stands for friendship be-

tween i and j

R = {r1,r2, ...,rτ} Regions set

N = {n1,n2, ...,nu} The surrogate servers set. Every surrogate

server belongs to a region ri

Ci, i ∈ N Capacity of surrogate server i in bytes

O = {o1,o2, ...,ow} Objects set (videos)

Si, i ∈ O Size of object i in bytes

Πi Popularity of object i, i ∈ O

qi = {t,Vψ ,ox},1 < x < w,1 < ψ < n Request i, consists of a timestamp, the id of

the user that asked for the object, and the ob-

ject id

P = {p12, p13, ..., pnw} User posts in the social network, where pi j

denotes that node i has shared object j in the

social network

Q = {q1,q2, ...,qζ} Object requests, where qi denotes a request

for an object of set O

Qhiti , Qtotali , i ∈ N Number of requests served from surrogate

servers of the region of the user/ total number

of requests

X ,Y,L,H ∈ R Closest timezones with mutual followers/

with highest centrality metric/ with highest

lobby values/ with highest HITS values

Table 11: Chapter 3 - Notation Overview
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We create a function Predict(G,P,R,O) such that given the social graph, the posts,

the distribution of users in regions, and the set of objects, it can predict which g objects

{o1,o2, ...,og} will be globally popular and which λ objects {o1,o2, ...,oλ} will be locally

popular and to which regions. Our interest is focused on the λ objects that will be locally

popular.

Our optimization strategy is based on the use of the set of popular objects and the set of

surrogate servers. It decides about the placement of objects in the surrogate servers, taking

into account the capacity of each server and the size of each object, and it aims at minimizing

the response time. This is likely to occur when surrogate servers of a region can serve a very

large fraction of the requests Q of nodes in the region.

A good policy for prefetching objects from the origin to the surrogate servers is repre-

sented by the function Put(ni,Predict(G,P,R,O)), which takes as input a surrogate server

ni ∈N and the results of function Predict (set of g objects that will be globally popular and λ

objects that will be locally popular). It returns the set of objects o ∈O that have to be placed

in surrogate server ni ∈N. For x,1< x <w, objects that will be copied in the surrogate server

and the capacity Cni of ni, (1) has to be fulfilled:

S1 +S2 +S3 + ...+Sx ≤Cni(1) (14)

We thus define the function Put(ni,Predict(G,P,R,O)), i ∈ N, which returns the set of

objects that will be placed in each surrogate server of every region ri such that

Qhiti
Qtotali

, i ∈ N (15)

is maximum, whereas constraint

∑
∀i∈O

Si fik ≤Ck (16)

is fulfilled, where:

fik =

1 if object i exists in the cache of surrogate server k

0 if object does not exist
(17)
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Figure 10: Chapter3 - The Prefetching Unit

3.3 Proposed Dynamic Policy

The description of the proposed algorithm follows. It consists of two parts: an algorithm

for each new request arriving in the CDN and an algorithm for each new object in the sur-

rogate server. Internally, the module communicates with the module processing the requests

and each addressed server separately (Fig. 10).

3.3.1 For every new request in the CDN:

The main idea is to check whether specific time has elapsed after the start of the cascade

and then define to what extent the object will be copied (Fig. 7). Initially, we check whether

it is the first appearance of the object. The variable o.timestamp depicts the timestamp of

the last appearance of the object in a request and helps in calculating the timer that defines

the duration of the cascade. If it is the first appearance of the object, the timer for the object

cascade is initialized and o.timestamp takes the value of the timestamp of the request. If the

cascade has not completed (its timer has not surpassed a threshold), we check the importance

of the user (applying the HITS algorithm and checking its authority score).

For users with a high authority score, we copy the object to all surrogate servers of the

user’s timezone and to the surrogate servers serving the timezones of all followers of the

user (global prefetching). Otherwise, selective copying includes only the surrogates that the

selected subpolicy decides (local prefetching).
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Figure 11: Chapter 3 - Algorithm for every new request (timestamp, Vi, o) in the CDN

1: if o.timestamp == 0 then

2: o.timer = 0;

3: o.timestamp = request timestamp;

4: else if o.timestamp != 0 then

5: o.timer = o.timer + (request timestamp - o.timestamp);

6: o.timestamp = request timestamp;

7: end if

8: if o.timer > time threshold then

9: o.timer = 0;

10: o.timestamp = 0;

11: else if o.timer < time threshold and user.authority score > authority threshold then

12: copy object o to surrogate that serves user’s Vi timezone;

13: for all user Vy that follows user Vi do

14: find surrogate server n j that serves Vy’s timezone;

15: copy object o to n j;

16: end for

17: else if o.timer < time threshold then

18: copy object o to surrogates n j that Subpolicy I or Subpolicy II decides;

19: end if

Subpolicies for local copy differ in the selection of the influence measurement of users.

Centrality measurements for the various subpolicies include the Lobby-index (Subpolicy I,

Fig. 8) and Hubs Authorities (HITS) algorithms (Subpolicy II, Fig. 9), which are described

in Section 3.4. Note that Twitter uses a HITS style algorithm to suggest to users which

accounts to follow [94]. Subpolicies check the X closest timezones where a user has mutual

friends and out of them, the H or L with the highest value of a centrality metric as an average

(HITS or Lobby-index, respectively), which means that the object is likely to be asked for

more times. Copying is performed to the surrogate servers that serve the above timezones.

3.3.2 For every new object in the surrogate server:

In the case that the new object does not fit in the surrogate server’s cache, we define the

time threshold as the parameter for the duration that an object remains cached (Fig. 5). We

find the oldest objects and delete them. In the case that there are no such objects, we delete

59

EIR
IN

I T
. K

OILA
NIO

TI



Figure 12: Chapter 3 - Subpolicy I

1: find X timezones where (user Vi has mutual followers and they are closer to user’s Vi

timezone);

2: find the L ⊆ X that (belong to X and have the highest Lobby-index score);

3: for all timezones that belong to L do

4: find surrogate server n j that serves timezone;

5: copy object o to n j;

6: end for

Figure 13: Chapter 3 - Subpolicy II

1: find X timezones where (user Vi has mutual followers and they are closer to user’s Vi

timezone);

2: find the H ⊆ X that (belong to X and have the highest HITS score);

3: for all timezones that belong to H do

4: find surrogate server n j that serves timezone;

5: copy object o to n j;

6: end for

those with the largest timestamp in the cascade. In all other cases, the LRU policy is applied

for the removal of objects.

3.3.3 Heuristics

The heuristics applied in our approach are based on the following observations:

The power of social cascade is analyzed in [177], where it is estimated that users viewing

a link in the social network are 7.35-fold more likely to share it than are the users not viewing

it in the social network. One in 12.5 links is shared again, which is not unexpected if we

consider the number of acquaintances of each user.

In [165] the authors reached the conclusion that users are more influenced by geograph-

ically close friends. Another insight [64] is the influence of mutual followers. The video

retweet likelihood appears to be 6 times larger for users that are mutual followers. Although

a very small fraction of users have an extremely large number of followers, the majority of

users have only a few followers. The most popular users act as authorities and are generally

either public figures or media sources.
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Figure 14: Chapter 3 - Algorithm for every new object o in the surrogate server nk

1: if o.size + current cache size ≤ total cache size then

2: copy object o to cache of surrogate nk;

3: else if o.size + current cache size > total cache size then

4: while o.size + current cache size > total cache size do

5: for all object o′ in current cache do

6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then

7: copy o′ in CandidateList;

8: end if

9: if CandidateList.size>0 and CandidateList.size != total cache size then

10: find o′ that o′.timestamp is maximum and delete it;

11: else if CandidateList.size==0 or CandidateList.size==total cache size then

12: use LRU to delete any object o ∈ O;

13: end if

14: end for

15: end while

16: put object o to cache of surrogate nk;

17: end if

Social cascades have a short duration ( [165], [60]). The percentage of cascades proceed-

ing for days may not be directly attributed to the influence that a social contact exerts, as

the video can appear in the newsfeed of the user for a longer time or a new cascade of this

specific object may have started. However, in our prefetching algorithm we experiment with

varying time thresholds of 24 hours, 48 hours, and threshold covering the entire percentage

of requests (threshold for the cascade effect and the time that an object remains in cache), as

well as indicatively with thresholds lower than 24 hours.

The idea is to check whether specific time has elapsed after the start of cascade and, only

in the case that the cascade has not ended, to define to what extent the object will be copied

(algorithm for every new request). This check is also performed in algorithm for every new

object, where we define the time threshold, which roughly expresses the average cascade

duration, as the parameter for the duration that an object remains cached.
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3.3.4 Short optimization analysis

We search for values of function fik, which shows whether an object i will be redirected to

surrogate server k. A brutal search would have a computational complexity of 2w+u, where

w is the number of objects and u is the number of surrogate servers. Hence, we perform

the search through simulated annealing. We start from an initial configuration and perform

annealing by lowering the temperature. Starting from 0.2 (hot temperature) and cooling

slowly to 1.4 (cold temperature), we search for the optimal solution using the Metropolis-

Hastings algorithm.

By generating a random number, the new configuration for fik is generated. We search

through all possible allocations of objects in servers assigned to various regions, and we

compare the energy, which is expressed as the summation of response time (from the user’s

point-of-view) and server capacity (from the system engineer’s point-of-view) distributions.

If the new configuration is energetically favorable, we keep it; otherwise, we continue gen-

erating random numbers.

Fig. 15 depicts the various energy values for 2500 iterations of the Metropolis algorithm

with different values for fik (we plot only the different configurations in this figure, sampling

over approximately 100 values of iterations). Our solution is shown as the straight line.

Because the simulation does not provide a lower energy than our approach, the solution is

considered to be near-optimal.

Figure 15: Optimization Analysis
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For the experimental evaluation, we used the CDNsim simulator for CDNs [168]. The

configuration of the simulation values is shown in Table 12. We conducted a multitude of

experiments(330) in which the threshold values and the influence measurement metrics used

were varied. For the extraction of reliable output, we had to conclude to a specific network

topology, as well as make assumptions regarding the input dataset.

The simulator takes as input files describing the underlying CDN and the traffic in the

network, and it provide an output of statistical results, which are discussed in the next Sec-

tion.

Number of nodes in the topology 3500

Redirection Policy Cooperative Environment

(closest surrogate)

Number of origin servers 1

Number of surrogate servers 423

User groups 162

Bandwidth 100 Mbit/sec

Table 12: Chapter 3 - Simulation Characteristics

3.4 Experimental evaluation

3.4.1 Network Topology

We followed the process described below to define which nodes would represent the

surrogate servers, the origin servers, and the users making the object requests.

First, we had to define the number of servers simulating our policies and their placement

in a real geographical position. For this purpose, we used the geographical distribution of

the Limelight [54] network. The large initial topology in the tool according to the Limelight

distribution included 4879 servers. For the simulator to respond satisfyingly in terms of

memory usage and simulation time needed (the way the tool is affected by a varying network

size is described in [168]), we reduced the volume of nodes to 10% of the initial volume.

Thus, we used 3500 nodes in total. The number of surrogate servers was reduced by the same

ratio, ultimately resulting in 423 servers, including one origin server. They are depicted in

Table 13.

Based on this placement, we defined the surrogate servers that will initially receive the

user requests of each timezone. We calculated the distance between the coordinates of the
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142 Twitter timezones and the 20 regions where the surrogate servers are placed according

to the Limelight network. Depending on which surrogate region is closer to each timezone,

we decided where the requests from this timezone will be redirected. To make this decision,

we took the population of each timezone into account.

City Servers City Servers

Washington DC 55 Toronto 12

New York 43 Amsterdam 20

Atlanta 11 London 30

Miami 11 Frankfurt 31

Chicago 37 Paris 12

Dallas 19 Moscow 10

Los Angeles 52 Hong Kong 8

San Jose 37 Tokyo 12

Seattle 15 Changi 5

Phoenix 3 Sydney 1

Table 13: Chapter 3 - Distribution of Servers over the World for the Experimental Evaluation

The next step was to place the surrogate servers in the network topology. Because the

geographical coordinates do not coincide with the coordinates of the network topology, we

used the NetGeo tool from CAIDA, which maps IP addresses and Autonomous System (AS)

coordinates to geographical coordinates [174]. To find the latitude and longitude of an IP

address or an AS, NetGeo initially has to find the element in its database, and then it searches

in ARIN/APNIC/RIPE servers.

After extracting the geographical coordinates of the nodes of the network topology, the

distances between servers were calculated. For example, to place the 55 surrogate servers

in Washington DC, we found the 55 closest servers in the topology by comparing their geo-

graphical coordinates with those of Washington DC. Thus, we managed to obtain a realistic

representation.

It would be impossible to define nodes representing users for every user crawled due

to the large dataset and time required for each decision separately. Moreover, the set of

users posing requests varies each time we run the request generator. To obtain a non-variant

placement of the users in the topology, we had to represent all users of the same timezone

as one in the topology. Therefore, all users from the timezone of London, for example, have
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a new unique identity. This matching ultimately provides us with 162 zones (user groups),

as the 142 zones of Twitter include some generic characterizations (7), e.g., Eastern Time

and Central Time. We distributed the users belonging to these generic zones as well as users

that have not defined a region in their account to unique codes, taking into account their

population as a fairness criterion (3 zones for Pacific Time, 1 for International Time, 1 for

Westafrica Time, 1 for Midatlantic Time, 4 for Eastern Time, 3 for Central Time, and 14

zones without region annotation, 27 in total).

After grouping users per timezone, each team of users was placed in a topology node.

The users had to be placed in the nodes closer to those comprising the servers that serve

the respective timezone requests, thus achieving a realistic network depiction. The distances

among timezones of real ids of users and influence measurement metrics corresponding to

the real ids of users were precalculated such that the simulation was not burdened.

The INET generator [56] allowed us to create an AS-level representation of the network

topology. It took as input the number of nodes we wanted to exist in the topology, and it

provided as output the file containing the topology. In this file appears the node id and its

coordinates in the topology, as well as the edges among the nodes. In our scenarios, we used

3500 nodes.

3.4.2 Number of requests

The number of requests that the request generator provided us was set at approximately

1 million because CDNsim handles satisfyingly up to 1 million requests in general, with the

number of objects being the dominant factor increasing the memory use of the tool. We used

the same number of distinct videos for the generation of requests as used in [165].

3.4.3 Cache size

Because requests generated from the generator follow a long-tail distribution, as observed

by plotting the data on a log-log graph, with the axes being rank order and frequency (Fig.16),

15 % of the whole catalog size was considered to be sufficient for experimentation.

3.4.4 Threshold values

Experimenting was conducted for time thresholds of 24 hours and 48 hours, as well as

for the time threshold that covered all the requests. The authority threshold score covering
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different percentages of authorities in our file was tested for various values (0.006 / 0.02 /

0.04).

3.4.5 Influence Measurement Metrics

• Lobby-index:

The Lobby-index or l-index [120] of a node v is the largest integer l such that v has l

neighbors with a degree of at least l. Extended for directed graphs, such as our dataset,

rather than neighbors in this definition, we count followers. In Fig.17, for example, A

is followed by 4 nodes: B, C, D and E. B, C, and D have 4 neighbors each (A and 3

followers), and E is a neighbor only with A. Thus, l(A) here is 3.
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• HITS:

Hyperlink-Induced Topic Search (also known as Hubs and Authorities algorithm) [118]

is a link analysis algorithm that rates web pages. A so-called good hub represents

a page that points to many other pages, and a so-called good authority represents a

page that is linked by many different hubs. In our sample graph, this corresponds to

our intuition that node A is the least authoritative because it is the only node without

incoming edges and that nodes B, C, D and E are equally important authorities. In-

deed, the values here are hub scoreA = 0,999985, authority scoreA = 0, hub scoreB =

0,00317, authority scoreB = 0,499990, hub scoreC = 0,003171, authority scoreC =

0,499990, hub scoreD = 0,003171, authority scoreD = 0,499990, hub scoreE = 0,

and authority scoreE = 0,499990.

For both Lobby-index and HITS metrics, we had to address memory usage issues for

the very large graph dataset accommodated. HITS was calculated using the MapReduce

technique.

3.5 Main findings

The statistic reports produced by the simulator are used to evaluate the proposed policy.

A short explanation of the metrics used in our experiments for extracting statistical results

using the simulator follows. They are described in detail in [168], along with various other

metrics.

3.5.1 Metrics used

3.5.1.1 Client side measurements

They refer to activities of clients, namely, the requests for objects.

• Mean response time: indicates how fast a client is satisfied. It is defined as

M−1
∑

i=0
ti

M ,

where M is the number of satisfied requests and ti is the response time of the ith request.

It starts at the timestamp when the request begins and ends at the timestamp when the

connection closes.

3.5.1.2 Surrogate side measurements

They are focused on the operations of the surrogate servers.
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• Hit ratio: is the percentage of the client-to-CDN requests resulting in a cache hit.

High values indicate high quality content placement of the surrogate servers.

• Byte hit ratio: is the hit ratio expressed in bytes, counting the corresponding bytes of

the requests. High values indicate optimized space usage and lower network traffic.

3.5.1.3 Network statistics

They run on top of TCP/IP and concern the entire network topology.

• Active surrogate servers: refers to the servers being active serving clients.

• Mean surrogate servers utility: is a value that expresses the relation between the

number of bytes of the served content against the number of bytes of the pulled content

(from the origin server or other surrogate servers). It is bounded to the range [0, 1] and

provides an indication about the CDN performance. High net utility values indicate

good content outsourcing policy and improved mean response times for the clients.

Compared to Buzztraq [164], the novelty of this work is that it takes into account the

parameters of a CDN infrastructure, such as storage issues, and it also applies heuristics

introduced from more recent works. In our approach, social cascades are directly analyzed

and access to social profiles is not conducted via a third-party page, as in Buzztraq, but rather

with a real dataset from multimedia links spread over an OSN.

The novelty in this case lies in the fact that no other CDN stand-alone tool has been aug-

mented with a similar mechanism. With the extension proposed herein, we can experiment

on social patterns without the testing limitations of other existing CDN platforms, such as the

blackbox treatment of CDN policies or the need for the participation of third users. To the

best of our knowledge, no similar extensions exist toward this direction. By implementing

and experimentally evaluating it, we prove that OSNs can affect content delivery.

Table 14 presents the average values of three parameters for six cases of testing after

conducting a multitude of experiments (330) with varying threshold values and different

influence measurement metrics. The lowest mean response times appear for the cases of

the time threshold covering all requests for both centrality metrics. However, the hit ratio

percentage is higher in the case where the time threshold covers all requests and the Lobby-

index metric is used. In general, the use of the Lobby-index score metric results in higher hit

ratio percentages compared to the equivalent HITS score cases.
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Cases H.Ratio% Surrogates M.R.T. (x10−2 sec.)

Lobby 48h 32,342 325 1,14

Lobby 24h 32,630 326 1,13

Lobby all requests 34,306 325 1,11

HITS 48h 32,304 325 1,14

HITS 24h 32,495 325 1,13

HITS all requests 34,290 324 1,11

Table 14: Chapter 3 - Average Values of Simulation Results

Concerning comparison with related works, storage issue is not addressed in [176] and its

performance is measured with a ratio of download times for buffering stage of videos, that do

not coincide with the response times a CDN measures. We note, though, that with the policy

proposed herein, there is a significant improvement of the Social Prefetcher framework as

a whole over their respective improvement (30%) in pull-based methods employed by most

CDNs. Moreover, in our approach, we use a more refined topology of data centers and

take storage issues into account. Although the proliferation of cloud services has led to a

reduction in storage costs over the past years, storage costs still remain a significant factor

that can be reduced under certain conditions.

Social Prefetcher algorithm depicts smaller response times compared to the implemen-

tation of other algorithms for content delivery within the Social Prefetcher framework, e.g.

plain Location Based Placement (LBP) algorithm for kre = 3 locations incorporated in our

framework depicts a M.R.T. of 17.32023 ms., Buzztraq [164] incorporated in our framework

depicts a M.R.T. of 13.95011 ms., and Tailgate algorithm [176] depicts a M.R.T. of 12.71411

ms. for the case of Full Information/ Perfect Reads, that the system has access to the social

graph.

We note here that LBP uses the geographical location of recent users to place replicas,

whereas social cascade prediction [164] places replicas in regions where the social cascade

is densest, as determined by the average number of friends who have accessed the UGC.

These strategies are evaluated in the specific case where the UGC provider is allowed to

place a fixed number, kre, of replicas (kre=3). Hence, the LBP strategy amounts to placing

the replicas in the top kre regions ranked by number of recent users, whereas social cascade

prediction ranks regions by the number of friends of previous users and places replicas in

the top kre regions. Buzztraq is expected to work better if there is a strong social cascade
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component driving the user accesses, since it uses the history of social cascades (i.e. how

many friends of a visitor also accessed the content) in contradiction to the history of previous

accesses to predict future accesses (LBP).

Concerning comparison with static approaches, namely those that do not include the

social-awareness component, Plain CDN Simulator - Push case (M.R.T. 14.471 ms.) refers

to proactive prefetching of content to all surrogate servers. In this case the mean response

time becomes minimum for the plain simulator, since every request is bound to be satisfied,

whereas the content copying cost is maximum. In the Plain CDN Simulator - Pull case

(M.R.T. 18.460 ms.) content is forwarded to the surrogate server at the moment the user asks

for it, hence, the copying cost becomes minimum, but the response time is maximum for the

plain simulator.

Most observed systems are assumed to be of either pure-push or pure-pull type with

pure-push systems being, in fact, pure-broadcast and pure-pull systems, on the other hand,

being pure-unicast, they use the broadcast channel just as a return path for point-to-point

communication [189]. Practically, however, most systems combine both forms of data com-

munication, push and pull. The pull policy is typically used for personalized information,

while the push policy deals with information that is in high demand by users. Most modern

CDNs still deploy both pull and push zones, with pulling being the most dominant case. Pull

zones are more frequently used simply because they more easily automatically cache assets

of the clients. However, push zones are still used, but they usually concern dealing with

hosting large files or static assets that do not frequently change. Small objects of inherent

virality and limited duration should ideally be pulled by the CDN.

We notice that Social Prefetcher approach outperforms both Plain CDN Simulator - Push

and Plain Simulator - Pull policies for the case of 15 % of the whole catalog size used in our

experiments. The performance of pull and push strategies varies in regard to the load with

pull strategies achieving a lower mean response time under high loads and push strategies

being superior under low to medium loads ( [141], [75], [140]).

3.5.2 Impact of time threshold duration

• Mean response time:

As the time threshold increases from 24 to 48 h and to hours covering the entire set of

requests, we observe that the mean response time decreases steadily, and in all cases

of our experiments, this is less than the mean response time of the simulator without
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Figure 18: Chapter 3 - Effect of time threshold duration on mean response time for X closest

timezones with mutual followers and Y timezones with the highest metric, where copying is

ultimately performed

the dynamic policy we applied (1.846021059 x 10-2 sec.). For thresholds smaller

than 24-h there is also substantial difference compared to the plain CDN simulation

(1.4135 x 10-2 sec. for 12-h), although not better than the performance of our system

for higher thresholds. Here, we present indicative values for the 10 closest timezones

of mutual followers and varying subsets of 1, 5 and 10 timezones with the highest

influence metric (both Lobby and HITS), respectively, where copying will ultimately

be performed (Fig. 18) .

• Mean utility of the surrogate servers:

For the time threshold of 48 h and the case of 10 timezones where copying is ultimately

performed, the mean utility of the surrogate servers shows a peak for both influence

measurement metrics and decreases for the hours covering the entire set of requests.

Here, we present indicative values for the 10 closest timezones of mutual followers

and varying subsets of 1, 5 and 10 timezones with the highest influence metric (both

Lobby and HITS), respectively (Fig. 19).

• Hit Ratio: As the time threshold increases from 24 to 48 h and to hours covering the

entire set of requests, we observe that the hit ratio increases. Surpassing the plain sim-

ulator hit ratio of 16.36% in all cases, the ratio steadily increases as the time threshold

becomes larger. This result is not unexpected because more requests are examined and

more copies are likely to be performed (Fig. 20).
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Figure 19: Chapter 3 - Effect of time threshold duration on mean utility of the surrogate

servers for X closest timezones with mutual followers and Y timezones with the highest

metric, where copying is ultimately performed
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Figure 20: Chapter 3 - Effect of time threshold duration on hit ratio for X closest timezones

with mutual followers and Y timezones with the highest metric, where copying is ultimately

performed

3.5.3 Impact of the number of timezones

• Mean response time:

Concerning the mean response time, the primary metric for depicting performance

improvement in our system, we observe an improvement of up to 40% (Table 37).

Scellato et al. observed a 55%-70% performance improvement for a substantially

smaller percentage of the catalog, state, although that performance improvement is
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smaller as the cache becomes larger. The cost of their approach also includes the

calculation of the geocascade metric.

Number of timezones Mean response

time (*10−2 sec.)

1 1,11950164004

2 1,11860275262

3 1,11782253597

4 1,11731668785

5 1,11702639155

6 1,11730670104

7 1,11713312804

8 1,11743489586

9 1,11743746926

10 1,11797775248

Table 15: Chapter 3 - Simulation Results

Expressing the trade-off between the reduction of the response time and the cost of

copying in servers, we observe a point where the mean response time starts to increase

again. The cost for every copy is related to the number of hops among the client asking

for it and the server where copying is likely to be made, according to the Put function.

For this most representative case (HITS, all requests), the values of mean response

time for various numbers of timezones with the highest metric value are depicted in

Table 15.

• Number of closest timezones of mutual followers: In Fig. 21, we observe that the

mean response time increases as the number of closest timezones with mutual follow-

ers increases. We assume that the number of timezones with the highest metric value is

the maximum allowed for each case, i.e., the number of closest timezones with mutual

followers. Lower times are observed when a threshold covering all the requests is used.

As naturally expected, there exists no difference for different influence measurement

metrics because all closest timezones of mutual friends are taken into consideration.

Figures 22 and 23 depict the effect of influence measurement on mean response time

and active servers for X = 10 closest timezones with mutual followers respectively.
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Figure 21: Chapter 3 - Effect of timezones used as X on mean response time for X closest

timezones with mutual followers
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Figure 22: Chapter 3 - Effect of influence measurement on mean response time for X = 10

closest timezones with mutual followers

• Number of timezones with highest metric value: For both metrics, we observe a

decrease in the mean response time as timezones with higher metric values increase

(for a fixed number of closest timezones with mutual followers). In Fig. 24, we observe

that this decrease occurs with approximately 5 timezones out of the 10 used. After

this point, there is slight increase in the mean response time, which is attributed to the

delay for copying content to surrogate servers. For the HITS case, this point-of-change

is well depicted in Fig. 25.
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Figure 23: Chapter 3 - Effect of influence measurement on active servers for X = 10 closest

timezones with mutual followers
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Figure 24: Chapter 3 - Effect of timezones used as Y on mean response time for X = 10

closest timezones with mutual followers

3.5.4 Impact of authority threshold duration

The authority threshold score covering different percentages of authorities in our file was

tested for various values (0.006 /0.02 / 0.04), although not depicting the worth-mentioning

difference. This occurs because the percentage of authorities included in the set of nodes of

our set of requests does not substantially change for the precalculated set of requests obtained

from our request generator.
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Figure 25: Chapter 3 - Mean response time for X=10 closest timezones with mutual followers

and all possible Y values, Y ∈ [1,10]

3.6 Discussion and Conclusions

Our approach in the implementation of Social Prefetcher was CDN-centric. In case we

used a video-centric or user-centric approach, we could alternatively use other metrics to

measure the quality of user experience.

Due to the use of TCP, that via error recovery and congestion control ensures lack of

packet losses, the quality of experience (QoE) of YouTube users is primarily determined

by stalling effects on application layer as opposed to image degradation in User Datagram

Protocol (UDP)-based video streaming [99]. Cache server selection is also highly Internet

Service Provider (ISP)-specific for the YouTube case with geographical proximity not being

the primary criterion and DNS level redirections for load-balancing purposes occur quite

frequently and can considerably increase the initial startup delay of the playback. Hence,

from a QoE management perspective, the smooth playback of the video rather than visual

image quality is the key challenge for YouTube, and several network-level and client-level

approaches are focused on the detection of interruptions, that have a dramatic impact on the

user experience [99].

Hence, alternative metrics include, for example, the proportion of a file that is down-

loaded during the initial buffering stage, after which the playout of the video is smooth. We

say the playout is smooth if the download rate for a file drops by a percentage of what was

the original rate. On average, the playback is smooth after 15% of a file is downloaded,

therefore we can note the delay in terms of time it takes for the first 15% of the file to be

downloaded [176] instead of the total M.R.T..
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If alternatively Qhit , the number of requests served from surrogate servers of the region

of the user was leveraged within the Social Prefetcher algorithm, we could use it to balance

the algorithm in each step. The knowledge of Qhit as well as its ratio to the total number of

requests to the surrogate server (Qtotali), could support the selection of the servers surpassing

a threshold of hit ratio for user requests. Selection could be enforced with assignment of

relative weights. Different variations of this load-balancing component might include the

distance of the surrogate servers along with their hit ratio, leading to possible reduction of

bandwidth and copy costs. Thus, although in the Social Prefetcher algorithm, we aim at

maximizing the hit ratio with the application of various heuristics, we could also possibly

add hit ratio as a feedback parameter that will calibrate the algorithm.

Understanding the effects of social cascading on bandwidth-intensive multimedia content

over the Web is of great importance toward improving the performance of CDNs. In the

related literature, many works lack non-synthetic workloads for controlling and evaluating

the proposed systems, whereas with the described generator, we ensure the reliability of the

data used in our experiments.

In this work, we implemented and experimentally evaluated a dynamic policy of content

prefetching, and thus, we have in our hands proof that OSNs can affect the content delivery

infrastructure. The dynamic policy described here required a change of the CDNsim simu-

lator concerning request manipulation, object placement, and the object replacement policy

after the arrival of new objects.

As the number of internet users increases dramatically and OSNs open new perspectives

in the improvement of Internet-based content technologies, new issues in the architecture,

design and implementation of existing CDNs arise. Consequently, we have to search for new

ways to process the large volume of multimedia data created on a daily basis. The dynamic

policy proposed herein can be further enriched with contextual information. In the future,

we could implement and experiment on variations of dynamic policy that aim to improve it

with more complex functions, incorporating timezone differences, to prefetch the content in

the hours with less traffic as well as incorporate information about the popularity of videos.

Thus, it is likely to provide better results toward maximization of CDN performance and

reduction of content replication costs.
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Chapter 4

Efficient Timing of Content Placement

With multimedia content providers requiring CDN services to enable the delivery of

bandwindth-demanding media to end-users, and the growth of HTTP traffic due to media

files circulating over OSNs, a OSN-awareness mechanism over a CDN becomes essential,

to mitigate the considerable weight placed on bandwidth. A social awareness mechanism

augmented to a stand-alone CDN traffic simulator addresses the issue of which content will

be copied in the surrogate servers of a CDN infrastructure and to what extent, and, hence,

ensures an optimized content diffusion placement (Chapter 3). Herein we further address the

issue of temporal diffusion, related to the most efficient timing of the content placement. We

exploit the knowledge of peak times for upload and download, so that content is prefetched

in the hours with less traffic. We also incorporate other contextual information,such as the

viewership within the media service, to ensure performance optimization. Our variations

are experimentally proven to contribute toward maximization of CDNs performance and

reduction of content replication costs [111].

The remainder of this Chapter is organized as follows. Section 4.1 gives an example

of necessity of the approach presented in this Chapter. Section 4.2 formally describes the

addressed problem. The proposed algorithm is described in Section 4.3. Section 4.4 gives

an outline of the methodology, along with the preparation of the employed datasets. Our

main findings are presented in Section 4.5. Section 4.6 concludes the Chapter and discusses

directions for future work.

4.1 Introduction

The amount of traffic generated on a daily basis by online multimedia streaming providers

is multiplied by the transmission over OSNs [52]. Extended use of OSNs [76], [40], [58],
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and the increasing popularity of streaming media are the factors that determine the inter-

net traffic growth [56]. Hence, CDN users can benefit from an incorporated mechanism

of OSN-awareness over the CDN infrastructure. In [110] Kilanioti incorporates a dynamic

mechanism of preactive copying of content to an existing validated CDN simulation tool and

proposes an efficient copying policy. The latter can be based on prediction of demand in

social networks.

Let us consider Bob, located in London and assigned to the London CDN servers of

an OSN service. Most of Bob’s social friends are geographically close to him, but he also

has a few friends in Europe and Australia assigned to their nearest servers. Bob logs into

the OSN and posts a video that he wants to share. Pushing the video content to all other

geographically distributed servers immediately before any requests occur would be the naive

way to ensure that this content is as close as possible to all users. Aggregated over all users,

pushing can lead to traffic congestion, and users would experience latency in accessing the

content, which, moreover, could not be consumed at all. The problem of caching would be

intensified when Alice, the only friend of Bob in Athens, would be interested in that content,

and with many such Alices in various places.

Rather than pushing data to all surrogates, we can proactively distribute it only to friends

of Bob likely to consume it and only at the time window that signifies a non-peak-time for

the upload in London area and a non-peak-time for the download in Athens area, thus taking

advantage of the timezone differences of our geo-diverse system. The content will be copied

only under certain conditions (content with high viewership within the media service, copied

to geographically close timezones where the user has mutual friends with high influence

impact). This would contribute to smaller response times for the content to be consumed

(for the users) and lower bandwidth costs (for the OSN provider).

4.1.1 Contributions

A real dataset of UGC is used. It includes YouTube links over an OSN platform, thus so-

cial cascades are directly analyzed. Real restrictions of a CDN infrastructure (storage issues,

network topology) are taken into account. The proposed algorithm also suggests a mecha-

nism that overcomes the testing limitations of other existing CDN platforms, that either treat

CDN policies as black boxes or need third users for experimentation. This work extends the

Social Prefetcher algorithm [110] to include information about peak-time of various time-

zones of our geo-diverse system, as well as contextual information about the viewership of
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video content within the media service. It implements extensions in two variations and incor-

porates them in a validated simulator for CDNs. A multitude of experiments shows improved

metrics for performance measurement over content delivery.

Experimentation is conducted on a Twitter dataset containing geographic locations, fol-

lower lists and tweets for 37 million users, spreading of more than one million YouTube

videos over this network, a corpus of more than 2 billions messages and approximately 1.3

million single messages with an extracted video URL. The wide popularity and massive

user base of YouTube and Twitter allow us to obtain safe insights regarding user navigation

behavior on other similar media and microblogging platforms, respectively.

As for the main findings of our work, they can be exploited for future policies comple-

mentary to existing CDN solutions or incorporated to OSN providers mechanisms, to handle

larger scale data. In this work we examine which parameters (number of timezones exam-

ined, time threshold duration) affect the CDN metrics the most. The optimization of our

algorithm is proved in [110], whereas herein the incorporation of peak hours and popularity

of circulating objects information are examined to furthermore enhance its performance.

4.2 Problem Description

We aim at improving the performance of the CDN infrastructure in terms of reducing

the response time, improving the hit ratio of our request, as well as restricting the cost of

copying from the origin server to surrogate servers. We consider the network topology, the

server location, and restrictions in the cache capacity of the server. Taking as input data from

OSNs and actions of users over them, knowledge of peak times for upload and download and

the viewership within the media service, we aim at recognizing objects that will eventually

be popular in the realm of the OSN platform.

We search a policy such that given a graph G(V,E), a set of R regions, where the nodes

of the social network are distributed, the peak time start and peak time end for each region

ptsi, ptei,1 < i < τ , the posts P of the nodes, and the popularity Πi,1 < i < w of objects, it

recognizes the set of objects O that will be popular only in a subset of the regions (Table 16).

In these regions is the content likely to be copied. The policy is represented by the function

Put(ni,Predict(G,P,R, ptsi, ptei,Πi,O)), which takes as input a surrogate server ni ∈ N and

the results of function Predict (set of g objects that will be globally popular and λ objects

that will be locally popular), such that:
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G(V,E) Graph representing the social network

V = {V1, ...,Vn} Nodes representing the social network users

E = {E11, ...,E1n, ...,Enn} Edges representing the social network con-

nections, where Ei j stands for friendship be-

tween i and j

R = {r1,r2, ...,rτ} Regions set

N = {n1,n2, ...,nu} The surrogate servers set. Every surrogate

server belongs to a region ri

Ci, i ∈ N Capacity of surrogate server i in bytes

O = {o1,o2, ...,ow} Objects set (videos), denoting the objects

users can ask for and share

Si, oi ∈ O Size of object i in bytes

Πi Popularity of object i, i ∈ O

qi = {t,Vψ ,ox},1 < x < w,1 < ψ < n Request i, consists of a timestamp, the id of

the user that asked for the object, and the ob-

ject id

P = {p12, p13, ..., pnw} User posts in the social network, where pi j

denotes that node i has shared object j in the

social network

ptsi, ptei,1 < i < τ peak time start and peak time end for each re-

gion in secs

Q = {q1,q2, ...,qζ} Object requests, where qi denotes a request

for an object of set O

Qhiti , Qtotali , i ∈ N Number of requests served from surrogate

servers of the region of the user/ total number

of requests

X ,Y ∈ R Closest timezones with mutual followers/

with highest centrality metric (HITS) values

Table 16: Chapter 4 - Notation Overview

Qhiti
Qtotali

, , i ∈ N (18)

is maximum, whereas constraint
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∑
∀i∈O

Si fik ≤Ck (19)

is fulfilled, where:

fik =

1 if object i exists in the cache of surrogate server k

0 if object does not exist
(20)

It returns the set of objects o ∈ O that have to be placed in surrogate server ni ∈ N. For

x,1 < x < w, objects that will be copied in the surrogate server and the capacity Cni of ni, (2)

has to be fulfilled:

S1 +S2 +S3 + ...+Sx ≤Cni(1) (21)

4.3 Proposed Dynamic Policy

The proposed algorithm encompasses an algorithm for each new request arriving in the

CDN and an algorithm for each new object in the surrogate server. Internally, the module

communicates with the module processing the requests and each addressed server separately

(Fig. 26).

Request Handler
Surrogate server 1

Surrogate server 2
Surrogate server 3

Surrogate server 4
Surrogate server 5

. . .
Surrogate server u

Predict(G, P , R, ptsi, ptei, Πi, O)

Prefetching Unit

Servicing
Unit

Figure 26: Chapter 4 - The Prefetching Unit
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4.3.1 For Every New Request in the CDN:

The main idea is to check whether specific time has elapsed after the start of the cascade,

and then define to what extent the object will be copied. Initially, we check whether it is

the first appearance of the object. The variable o.timestamp depicts the timestamp of the last

appearance of the object in a request and helps in calculating the timer related to the duration

of the cascade. If it is the first appearance of the object, the timer for the object cascade is

initialized and o.timestamp takes the value of the timestamp of the request. If the cascade is

not yet complete (its timer has not surpassed a threshold), we check the importance of the

user applying the Hubs Authorities (HITS) algorithm and checking its authority score, as

well as the viewership of the object in the media service platform (Variation-1, Fig. 27). In

Variation-2 (Fig. 28)

1: if o.timestamp == 0 then

2: o.timer = 0;

3: o.timestamp = request timestamp;

4: else if o.timestamp != 0 then

5: o.timer = o.timer + (request timestamp - o.timestamp);

6: o.timestamp = request timestamp;

7: end if

8: if o.timer > time threshold then

9: o.timer = 0;

10: o.timestamp = 0;

11: else if o.timer < time threshold and user.authority score > authority threshold then

12: copy object o to surrogate that serves user’s Vi timezone;

13: for all user Vy that follows user Vi do

14: find surrogate server n j that serves Vy’s timezone;

15: copy object o to n j;

16: end for

17: else if o.timer < time threshold and o.Πi > Πi threshold then

18: copy object o to surrogates n j that Subpolicy I decides;

19: end if

Figure 27: Chapter 4 - Variation-1 - Algorithm for every new request (timestamp, Vi, o) in

the CDN
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1: if o.timestamp == 0 then

2: o.timer = 0;

3: o.timestamp = request timestamp;

4: else if o.timestamp != 0 then

5: o.timer = o.timer + (request timestamp - o.timestamp);

6: o.timestamp = request timestamp;

7: end if

8: if o.timer > time threshold then

9: o.timer = 0;

10: o.timestamp = 0;

11: else if o.timer < time threshold and user.authority score > authority threshold then

12: copy object o to surrogate that serves user’s Vi timezone;

13: for all user Vy that follows user Vi do

14: find surrogate server n j that serves Vy’s timezone;

15: copy object o to n j;

16: end for

17: else if o.timer < time threshold then

18: if o.timestamp 3 (ptsrVi
, pterVi

) and o.timestamp 3 (ptsrn j
, ptern j

) then

19: copy object o to surrogates n j that Subpolicy I decides;

20: end if

21: end if

Figure 28: Chapter 4 - Variation-2 - Algorithm for every new request (timestamp, Vi, o) in

the CDN

we check the importance of the user, as well as if the time of the transmission is not

within the peak-time range of the region of the user ( [4]).

For users with a high authority score, we copy the object to all surrogate servers of the

user’s timezone and to the surrogate servers serving the timezones of all followers of the

user (global prefetching). Otherwise, selective copying includes only the surrogates that the

subpolicy decides (local prefetching).
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1: find X timezones where (user Vi has mutual followers and they are closer to user’s Vi

timezone);

2: find the Y ⊆ X that (belong to X and have the highest HITS score);

3: for all timezones that belong to Y do

4: find surrogate server n j that serves timezone;

5: copy object o to n j;

6: end for

Figure 29: Chapter 4 - Subpolicy I

Centrality is measured with the HITS algorithm, described in Section 4.4. Subpolicy

(Fig. 29) checks the X closest timezones where a user has mutual friends and out of them,

the Y with the highest value of the centrality metric as an average. Highest value of the

metric means that the object is likely to be asked for more times. Copying is performed to

the surrogate servers that serve the above timezones.

4.3.2 For Every New Object in the Surrogate Server:

For both variations, in the case that the new object does not fit in the surrogate server’s

cache, we define the time threshold as the parameter for the duration that an object remains

cached. We find the oldest objects and delete them. In the case that there are no such objects,

we delete those with the largest timestamp in the cascade. In all other cases, the Least

Recently Used (LRU) policy is applied for the removal of objects. The above are depicted in

Fig. 30.

The heuristics applied in our approach are based on the following observations [110]:

Users are more influenced by geographically close friends, and moreover by mutual follow-

ers, with the most popular users acting as authorities. Social cascades have a short duration

( [165], [60]). The percentage of cascades proceeding for days may not be directly attributed

to the influence that a social contact exerts, as the video can appear in the newsfeed of the

user for a longer time or a new cascade of this specific object may have started. However,

in our prefetching algorithm we experiment with varying time thresholds of 24 hours, 48

hours, and threshold covering the entire percentage of requests (threshold for the cascade ef-

fect and the time that an object remains in cache).The idea is to check whether specific time

has elapsed after the start of cascade and, only in the case that the cascade has not ended,

define to what extent the object will be copied (algorithm for every new request). This check
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is also performed in algorithm for every new object, where we define the time threshold. The

latter roughly expresses the average cascade duration, as it defines the duration that an object

remains cached.

1: if o.size + current cache size ≤ total cache size then

2: copy object o to cache of surrogate nk;

3: else if o.size + current cache size > total cache size then

4: while o.size + current cache size > total cache size do

5: for all object o′ in current cache do

6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then

7: copy o′ in CandidateList;

8: end if

9: if CandidateList.size>0 and CandidateList.size != total cache size then

10: find o′ that o′.timestamp is maximum and delete it;

11: else if CandidateList.size==0 or CandidateList.size==total cache size then

12: use LRU to delete any object o ∈ O;

13: end if

14: end for

15: end while

16: put object o to cache of surrogate nk;

17: end if

Figure 30: Chapter 4 - Algorithm for every new object o in the surrogate server nk

Number of nodes in the topology 3500

Redirection Policy Cooperative Environment

(closest surrogate)

Number of origin servers 1

Number of surrogate servers 423

User groups 162

Bandwidth 100 Mbit/sec

Table 17: Chapter 4 - Simulation Characteristics
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4.4 Experimental Evaluation

For the experimental evaluation, we used the CDNsim simulator for CDNs (Chapter 3).

The configuration of the simulation values is shown in Table 17. We conducted a multitude

of experiments (110, 55 for each variation), in which the time thresholds varied. For the

extraction of reliable output, we had to conclude to a specific network topology, as well as

make assumptions regarding the input dataset. The simulator takes as input files describing

the underlying CDN and the traffic in the network, and provides an output of statistical

results, discussed in the next Section.

4.4.1 Network Topology

There follows a short description of the process to define the nodes in the topology. These

nodes represent the surrogate servers, the origin servers, and the users making the object re-

quests (Fig. 31). For an in-depth analysis you can refer to [110]. To simulate our policy

and place the servers in a real geographical position, we used the geographical distribution

of the Limelight network [54]. For the smooth operation of the simulator the number of

surrogate servers was reduced by the ratio of 10%, to ultimately include 423 servers (Ta-

ble 18). Depending on which surrogate region of the 20 the Limelight network defines is

closer to each of the 142 Twitter timezones, we decided where the requests from this time-

zone will be redirected. The population of each timezone was also taken into consideration.

The INET generator [56] allowed us to create an AS-level representation of the network

topology. Topology coordinates were converted to geographical coordinates with the Net-

Geo tool from CAIDA, a tool that maps IP addresses and AS coordinates to geographical

coordinates [174], and surrogate servers were assigned to topology nodes.

After grouping users per timezone (due to the limitations the large dataset imposes), each

team of users was placed in a topology node. We placed the users in the nodes closer to those

comprising the servers that serve the respective timezone requests, contributing this way to

a realistic network depiction.

4.4.2 Number of Requests

1 million requests were considered sufficient, as CDNsim handles satisfyingly up to so

many in general, with the number of objects being the dominant factor increasing the mem-

ory use of the tool. Also similar concept approaches use similar number of requests ( [176]

on a daily basis and [165]), and same number of distinct videos for generation of requests.
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Figure 31: Chapter 4 - Methodology followed

City Servers City Servers

Washington DC 55 Toronto 12

New York 43 Amsterdam 20

Atlanta 11 London 30

Miami 11 Frankfurt 31

Chicago 37 Paris 12

Dallas 19 Moscow 10

Los Angeles 52 Hong Kong 8

San Jose 37 Tokyo 12

Seattle 15 Changi 5

Phoenix 3 Sydney 1

Table 18: Chapter 4 - Distribution of Servers over the World for the Experimental Evaluation

With the requests generated from the generator following a long-tail distribution, 15 % of

the whole catalog size was considered to be sufficient.
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4.4.3 Threshold Values

Experimenting was conducted for time thresholds of 24 hours and 48 hours, as well as

for the time threshold that covered all the requests. The threshold value for media service

viewership was moderately chosen as 402408 (average media viewership in the dataset). The

authority threshold score was tested for various values (0.006 / 0.02 / 0.04).

4.4.4 Influence Measurement Metrics

HITS algorithm [118] is a link analysis algorithm that rates web pages. Twitter uses a

HITS style algorithm to suggest to users which accounts to follow [94], as well. A so-called

good hub represents a page that points to many other pages, and a so-called good authority

represents a page that is linked by many different hubs. We had to address memory usage

issues for the very large graph dataset accommodated, and HITS was calculated using the

MapReduce technique.

4.5 Main Findings

The statistic reports produced by the simulator are used to evaluate the proposed policy.

A short explanation of the metrics used in our experiments for extracting statistical results

follows.

4.5.1 Metrics Used

4.5.1.1 Client Side Measurements

They refer to activities of clients, i.e. the requests for objects.

• Mean Response Time: indicates how fast a client is satisfied. It is defined as

M−1
∑

i=0
ti

M ,

where M is the number of satisfied requests and ti is the response time of the ith request.

It starts at the timestamp when the request begins and ends at the timestamp when the

connection closes.

4.5.1.2 Surrogate Side Measurements

They are focused on the operations of the surrogate servers.

• Hit Ratio: is the percentage of the client-to-CDN requests resulting in a cache hit.

High values indicate high quality content placement in the surrogate servers.
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4.5.1.3 Network Statistics

They run on top of TCP/IP and concern the entire network topology.

• Active Surrogate Servers: refers to the servers being active serving clients.

• Mean Surrogate Servers Utility: is a value that expresses the relation between the

number of bytes of the served content against the number of bytes of the pulled content

(from the origin server or other surrogate servers). It is bounded to the range [0, 1] and

provides an indication about the CDN performance. High net utility values indicate

good content outsourcing policy and improved mean response times for the clients.

After conducting a multitude of experiments (55 for each variation) with varying thresh-

old values, we reached the following conclusions.

Table 19 presents the average values of four parameters for six cases of testing. The

lowest mean response times appear for the cases of the time threshold covering all requests

for both variations. In general, we observe a better performance in terms of mean response

times and hit ratios achieved for the Variation-1, where the viewership within the YouTube

platform is considered. Both variations perform better than the Social Prefetcher approach.

Mean response time

(Avg, 10−2 sec.)

Hit ratio

(Avg, %)

Active

servers

Mean utility

(Avg, %)

Variation-1 - 24-h 1.1383 32.81 326 96.01

Variation-1 - 48-h 1.1352 33.08 326 96.01

Variation-1 - all-h 1.1172 34.58 325 96.04

Variation-2 - 24-h 1.1411 32.13 325 95.98

Variation-2 - 48-h 1.1376 32.43 326 96.00

Variation-2 - all-h 1.1174 34.38 324 96.03

Social Prefetcher 24-h 1.1412 32.12 325 95.98

Social Prefetcher 48-h 1.1377 32.42 326 96.00

Social Prefetcher all-h 1.1181 34.16 325 96.01

Table 19: Chapter 4 - Average Metric Values for X = 10 Timezones of Close Mutual Friends

As we surpass the Social Prefetcher performance, the herein proposed policy outper-

forms related works like [176], where, moreover, storage issue is not addressed -although

the proliferation of cloud services has led to a reduction in storage costs over the past years,
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Figure 32: Chapter 4 - Effect of time threshold duration on mean response time for X closest

timezones with mutual followers and Y timezones with the highest metric, where copying is

ultimately performed for (i)Variation-1 and (ii)Variation-2

storage costs still remain a significant factor that can be reduced under certain conditions-

(improvement over their respective improvement (30%) in pull-based methods employed by

most CDNs) or [164], since better response times are depicted as well after incorporation

of other social prediction algorithms for content delivery in our plain framework (1.395011

ms.).

4.5.2 Impact of Time Threshold Duration

• on Mean Response Time:

As the time threshold increases from 24 to 48 h and to hours covering the entire set of

requests, we observe that the mean response time decreases steadily. Here, we present

indicative values for the 10 closest timezones of mutual followers and varying subsets

of 1, 5 and 10 timezones with the highest influence metric, respectively, where copying

will ultimately be performed (Fig. 32) for both variations.

• on Mean Utility of the Surrogate Servers:

With the exception of time threshold of 48 h for Variation-2, the mean utility of the

surrogate servers shows a peak for both variations for the hours covering the entire set

of requests. Here, we present indicative values for the 10 closest timezones of mutual

followers and varying subsets of 1, 5 and 10 timezones with the highest influence

metric (Fig. 33).
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Figure 33: Chapter 4 - Effect of time threshold duration on mean utility of the surrogate

servers for X closest timezones with mutual followers and Y timezones with the highest

metric, where copying is ultimately performed for (i)Variation-1 and (ii)Variation-2
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Figure 34: Chapter 4 - Effect of time threshold duration on hit ratio for X closest timezones

with mutual followers and Y timezones with the highest metric, where copying is ultimately

performed for (i)Variation-1 and (ii)Variation-2

• on Hit Ratio: As the time threshold increases from 24 to 48 h and to hours covering the

entire set of requests, we observe that the hit ratio steadily increases for both variations.

This result is not unexpected because more requests are examined and more copies are

likely to be performed (Fig. 34).
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Figure 35: Chapter 4 - Effect of timezones used as Y on active servers for X = 10 closest

timezones with mutual followers for (i)24-h and (ii)48-h
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Figure 36: Chapter 4 - Effect of timezones used as Y on mean response time for X = 10

closest timezones with mutual followers for (i)24-h and (ii)48-h

4.5.3 Impact of the Number of Timezones

• on Active Servers:

For a fixed number of 10 closest timezones with mutual followers Variation-1 appears

to use less active servers after the first timezone of highest centrality in the 24-h sce-

nario. In the 48-h scenario Variation-1 depicts higher values than Variation-2 for the

cases of 1, 6 and 10 timezones examined (Fig. 35).

• on Mean Response Time: The trade-off between the reduction of the response time

and the cost of copying in servers is expressed with a decrease of the mean response

time as the timezones increase, and a point after which the mean response time starts

to increase again (Fig. 36 and Fig. 37).
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Figure 37: Chapter 4 - Effect of timezones used as Y on mean response time for X = 10

closest timezones with mutual followers for (i)Variation-1 and (ii)Variation-2
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Figure 38: Chapter 4 - Mean response time for X=10 closest timezones with mutual followers

and all possible Y values, Y ∈ [1,10] for (i)Variation-1 and (ii)Variation-2

For both variations this decrease in the mean response time occurs with approximately

4 timezones out of the 10 used (for a fixed number of closest timezones with mutual

followers). After this point the slight increase in the mean response time is attributed

to the delay for copying content to surrogate servers.

The cost for every copy is related to the number of hops among the client asking for it

and the server where copying is likely to be made, according to the Put function. This

point-of-change is also depicted for our variations in Fig. 38 for the most representa-

tive case of all requests.
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4.6 Conclusions

In this work, we further extended a dynamic policy of OSN content prefetching with tem-

poral and other contextual parameters, depicting how OSNs can affect the content delivery

infrastructure. We have presented how geo-social properties of users participating in social

cascades prove to be of great importance toward improving the performance of CDNs and

cloud, in the long-term. Bandwidth-intensive multimedia delivery over a CDN infrastructure

is experimentally evaluated with non-synthetic workloads, that many works in the related

literature lack.

Whereas our study is limited to a specific OSN and media service, our results are gener-

ally applicable with a potentially high impact for large-scale systems with traffic generated

by online social services and microblogging platforms. As the number of internet users in-

creases dramatically and OSNs open new perspectives in the improvement of Internet-based

content technologies, new issues in the architecture, design and implementation of existing

CDNs arise. Our research agenda includes the generalization of proposed policy to deal with

multiple OSN platforms and mobile CDN providers.
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Chapter 5

Caching Schemes

The Social Prefetcher mechanism (Chapter 3) augmented to a stand-alone CDN traffic

simulator addresses the issue of which content will be copied in the surrogate servers of

a CDN infrastructure and to what extent, and, hence, ensures an optimized content diffu-

sion placement. At the same time, it mitigates the considerable weight on bandwidth, that

Big Data generated and circulated via OSNs places. Herein, we further address the issue

of studying complementary efficient caching policies in the surrogate servers of the CDN

infrastructure. Our variations are experimentally proven to outperform the plain mechanism

behaviour in terms of user experience [116]. The rest of this chapter is structured as follows.

Section 5.2 formally describes the addressed problem. The proposed algorithm is described

in Section 5.3. Section 5.4 gives an outline of the methodology, along with the preparation of

the employed datasets. Our main findings are presented in Section 5.5. Section 5.6 concludes

the chapter and discusses directions for future work.

5.1 Introduction

Utilization of CDNs is likely to have profound effects on large data download through

enhanced performance, scalability and cost reduction. Extended use of OSNs [76], [40], [58],

and the increasing popularity of streaming media are the factors that drive the HTTP traffic

growth [56]. The amount of traffic generated on a daily basis by online multimedia streaming

providers is multiplied by the transmission over OSNs (with more than 400 tweets per minute

including a YouTube video link [52] being published per minute). Subsequently, CDN users

can benefit from an incorporated mechanism of OSN-awareness over the CDN infrastructure.

In [110], [111] Kilanioti and Papadopoulos introduce a dynamic mechanism of preactive
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copying of content to an existing validated CDN simulation tool and propose an efficient

copying policy based on prediction of demand on OSNs along with its variations.

5.1.1 Contributions

In this work [115] we modify the Social Prefetcher algorithm [110], [111] to incorpo-

rate best performing caching mechanisms. We conduct experiments over a large corpus of

YouTube videos and use Twitter, where information propagates via retweeting across multi-

ple hops in the network [159]. Social cascades are directly analyzed, as the real dataset of

UGC used includes multimedia links over the OSN. The Twitter dataset contains geographic

locations, follower lists and tweets for 37 million users, spreading of more than one million

YouTube videos over this network, a corpus of more than 2 billions messages and approxi-

mately 1.3 million single messages with an extracted video URL. The wide popularity and

massive user base of YouTube and Twitter allow us to obtain safe insights regarding user

navigation behavior on other similar media and microblogging platforms, respectively. The

implemented variations are incorporated in a validated simulator for CDNs, and restrictions

of the CDN infrastructure (storage issues, network topology) are taken into account.

The present work goes beyond the Social Prefetcher algorithm [111] in terms of perfor-

mance. The latter surpasses performance improvement (30%) of similar works in pull-based

methods, that are employed by most CDNs, whereas moreover uses more refined topology

of data centers and does not neglect storage issues. Storage costs are still a significant chal-

lenge despite the proliferation of cloud computing. In this work we examine which caching

schemes in the surrogate server affect the CDN metrics the most. The optimization of our

algorithm is proved in Chapter 3 ( [110]), and its performance is further enhanced. The find-

ings of present work can be exploited for future policies complementary to existing CDN

solutions or incorporated to OSN providers mechanisms, to handle larger scale data.

5.2 Problem Description

We aim at mitigating the inherent internet performance issues by improving the CDN

infrastructure mechanisms. We aim at the reduction of the response time for the user, inrease

of the hit ratio of our request, as well as restriction of the cost of copying from the origin

server to surrogate servers. We consider the network topology, the server location, and re-

strictions in the cache capacity of the server. Taking as input data from OSNs and actions of
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users over them, we want to recognize objects that will eventually be popular in the realm of

the OSN platform.

We search a policy such that given a graph G(V,E), a set of R regions, where the nodes

of the social network are distributed, the peak time start and peak time end for each region

ptsi, ptei,1 < i < τ , the posts P of the nodes, and the popularity Πi,1 < i < w of objects,

it recognizes the set of objects O that will be popular only in a subset of the regions (Ta-

ble 20). There is the content likely to be copied. The policy is represented by the function

Put(ni,Predict(G,P,R, iκ ,∆Tiκ ,O)), which takes as input a surrogate server ni ∈ N and the

results of function Predict (set of g objects that will be globally popular and λ objects that

will be locally popular), such that:

Qhiti
Qtotali

, i ∈ N (22)

is maximum, whereas constraint

∑
∀i∈O

Si fik ≤Ck (23)

is fulfilled, where:

fik =

1 if object i exists in the cache of surrogate server k

0 if object does not exist
(24)

It returns the set of objects o ∈ O that have to be placed in surrogate server ni ∈ N. For

x,1 < x < w, objects that will be copied in the surrogate server and the capacity Cni of ni, (2)

has to be fulfilled:

S1 +S2 +S3 + · · ·+Sx ≤Cni(1) (25)
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G(V,E) Graph representing the social network

V = {V1, ...,Vn} Nodes representing the OSN users

E = {E11, ...,E1n, ...,Enn} Edges representing the OSN connections

R = {r1,r2, ...,rτ} Regions set

N = {n1,n2, ...,nu} The surrogate servers set. Every surrogate

server belongs to a region ri

Ci, i ∈ N Capacity of surrogate server i in bytes

O = {o1,o2, ...,ow} Objects set (videos)

Si, i ∈ O Size of object i in bytes

iκ Object accessed at the κ-th iteration, κ:

the counter maintained and incremented each

time there is a request for an object

∆Tiκ Number of accesses since the last time object

i was accessed

Πi Popularity of object i, i ∈ O

qi = {t,Vψ ,ox},1 < x < w,1 < ψ < n Request i, consists of a timestamp, the id of

the user that asked for the object, and the ob-

ject id

P = {p12, p13, ..., pnw} User posts in the social network, where pi j

denotes that node i has shared object j in the

social network

ptsi, ptei,1 < i < τ peak time start and peak time end for each re-

gion in secs

Q = {q1,q2, ...,qζ} Object requests, where qi denotes a request

for an object of set O

Qhiti , Qtotali , i ∈ N Number of requests served from surrogate

servers of the region of the user/ total number

of requests

X ,Y ∈ R Closest timezones with mutual followers/

with highest centrality metric/ with highest

lobby values/ with highest HITS values

Table 20: Chapter 5 - Notation Overview
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5.3 Proposed Dynamic Policy

The proposed algorithm encompasses an algorithm for each new request arriving in the

CDN and an algorithm for each new object in the surrogate server. Internally, the module

communicates with the module processing the requests and each addressed server separately

(Fig. 39).

Request Handler
Surrogate server 1

Surrogate server 2
Surrogate server 3

Surrogate server 4
Surrogate server 5

. . .
Surrogate server u

Predict(G, P , R, ptsi, ptei, Πi, iκ, ∆Tiκ , O)

Prefetching Unit

Servicing
Unit

Figure 39: Chapter 5 - The Prefetching Unit

5.3.1 For Every New Request in the CDN

The main idea is to check whether specific time has elapsed after the start of the cascade,

and then define to what extent the object will be copied. Initially, we check whether it is

the first appearance of the object. The variable o.timestamp depicts the timestamp of the last

appearance of the object in a request and helps in calculating the timer related to the duration

of the cascade. If it is the first appearance of the object, the timer for the object cascade is

initialized and o.timestamp takes the value of the timestamp of the request. If the cascade is

not yet complete (its timer has not surpassed a threshold), we check the importance of the

user applying the Hubs Authorities (HITS) algorithm and checking its authority score, as

well as the viewership of the object in the media service platform (Fig. 40).

For users with a high authority score, we copy the object to all surrogate servers of the

user’s timezone and to the surrogate servers serving the timezones of all followers of the
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user (global prefetching). Otherwise, selective copying includes only the surrogates that the

subpolicy decides (local prefetching).

Centrality is measured with the HITS algorithm [118], a link analysis algorithm that

rates web pages. Twitter uses a HITS style algorithm to suggest to users which accounts

to follow [94], as well. A so-called good hub represents a page that points to many other

pages, and a so-called good authority represents a page that is linked by many different hubs.

Memory usage issues for the very large graph dataset accommodated led to calculation of

HITS with the MapReduce technique. Subpolicy I checks the X closest timezones where a

user has mutual friends and out of them, the Y with the highest value of the centrality metric

as an average. Highest value of the metric means that the object is likely to be asked for

more times. Copying is performed to the surrogate servers that serve the above timezones.

1: if o.timestamp == 0 then

2: o.timer = 0;

3: o.timestamp = request timestamp;

4: else if o.timestamp != 0 then

5: o.timer = o.timer + (request timestamp - o.timestamp);

6: o.timestamp = request timestamp;

7: end if

8: if o.timer > time threshold then

9: o.timer = 0;

10: o.timestamp = 0;

11: else if o.timer < time threshold and user.authority score > authority threshold then

12: copy object o to surrogate that serves user’s Vi timezone;

13: for all user Vy that follows user Vi do

14: find surrogate server n j that serves Vy’s timezone;

15: copy object o to n j;

16: end for

17: else if o.timer < time threshold and o.Πi > Πi threshold then

18: copy object o to surrogates n j that Subpolicy I decides;

19: end if

Figure 40: Chapter 5 - Algorithm for every new request (timestamp, Vi, o) in the CDN
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1: find X timezones where (user Vi has mutual followers and they are closer to user’s Vi

timezone);

2: find the Y ⊆ X that (belong to X and have the highest HITS score);

3: for all timezones that belong to Y do

4: find surrogate server n j that serves timezone;

5: copy object o to n j;

6: end for

Figure 41: Chapter 5 - Subpolicy I

1: if o.size + current cache size ≤ total cache size then

2: copy object o to cache of surrogate nk;

3: else if o.size + current cache size > total cache size then

4: while o.size + current cache size > total cache size do

5: for all object o′ in current cache do

6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then

7: copy o′ in CandidateList;

8: end if

9: if CandidateList.size>0 and CandidateList.size != total cache size then

10: find o′ that o′.timestamp is maximum and delete it;

11: else if CandidateList.size==0 or CandidateList.size==total cache size then

12: use LRU to delete any object o ∈ O;

13: end if

14: end for

15: end while

16: put object o to cache of surrogate nk;

17: end if

Figure 42: Chapter 5 - VariationA - Algorithm for every new object o in the surrogate server

nk

5.3.2 For Every New Object in the Surrogate Server

Surrogate servers keep replicas of the web objects on behalf of content providers. In

the case that the new object does not fit in the surrogate server’s cache, we define the

time threshold as the parameter for the duration that an object remains cached. We find

the oldest objects, that are less likely to be asked for again, and delete them. In the case that
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1: if o.size + current cache size ≤ total cache size then

2: copy object o to cache of surrogate nk;

3: else if o.size + current cache size > total cache size then

4: while o.size + current cache size > total cache size do

5: for all object o′ in current cache do

6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then

7: copy o′ in CandidateList;

8: end if

9: if CandidateList.size>0 and CandidateList.size != total cache size then

10: find o′ that o′.timestamp is maximum and delete it;

11: else if CandidateList.size==0 or CandidateList.size==total cache size then

12: use LFU to delete any object o ∈ O;

13: end if

14: end for

15: end while

16: put object o to cache of surrogate nk;

17: end if

Figure 43: Chapter 5 - VariationB - Algorithm for every new object o in the surrogate server

nk

Name Primary Key Secondary Key

LRU Time Since Last Access

LFU Frequency of Access

SIZE Size Time Since Last Access

Table 21: Applied Caching Schemes

there are no such objects, we delete those with the largest timestamp in the cascade. In all

other cases, various policies are applied for the removal of objects:

• Least Recently Used (LRU): In the most straightforward extension of LRU for handling

non-homogeneous sized objects we prune the least recently used items first. This

algorithm keeps track of what was used when, to make sure that it discards the least

recently used item.
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1: if o.size + current cache size ≤ total cache size then

2: copy object o to cache of surrogate nk;

3: else if o.size + current cache size > total cache size then

4: while o.size + current cache size > total cache size do

5: for all object o′ in current cache do

6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then

7: copy o′ in CandidateList;

8: end if

9: if CandidateList.size>0 and CandidateList.size != total cache size then

10: find o′ that o′.timestamp is maximum and delete it;

11: else if CandidateList.size==0 or CandidateList.size==total cache size then

12: use SIZE to delete any object o ∈ O;

13: end if

14: end for

15: end while

16: put object o to cache of surrogate nk;

17: end if

Figure 44: Chapter 5 - VariationC - Algorithm for every new object o in the surrogate server

nk

• Least Frequently Used (LFU): In this method the system keeps track of the number

of times an object is referenced in memory. When the cache is full and requires more

room the system purges the item with the lowest reference frequency. We simply

employ an LFU algorithm by assigning a counter to every object that is loaded into the

cache. Each time a reference is made to that object the counter is increased by one.

When the cache reaches capacity and a new object arrives the system will search for

the object with the lowest counter and remove it from the cache.

• Size-adjusted LRU (SIZE): The optimization model devised in [29] to generalise LRU

is approximately solved by a simple heuristic and the policy is called Size-adjusted

LRU or SIZE. In this policy the objects are removed in order of size with the largest

object removed first. In case two objects have the same size, objects with higher time

since last access are removed first. Objects in the cache are reindexed in order of of
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increasing values of Si ·∆Tiκ and highest index objects are greedily selected and purged

from the cache until the new object fits in.

Varying algorithms depending on the caching scheme used (Table 21) are depicted in

Fig. 42, Fig. 43 and Fig. 44. The heuristics applied in our approach are based on the following

observations [110]: Users are more influenced by geographically close friends, and moreover

by mutual followers, with the most popular users acting as authorities. Social cascades have

a short duration ( [165], [60]). The percentage of cascades proceeding for days may not be

directly attributed to the influence that a social contact exerts, as the video can appear in the

newsfeed of the user for a longer time or a new cascade of this specific object may have

started. However, in our prefetching algorithm we experiment with varying time thresholds

of 24 hours, 48 hours, and threshold covering the entire percentage of requests (threshold for

the cascade effect and the time that an object remains in cache).

Prinicipally we check whether specific time has elapsed after the start of cascade and,

only in the case that the cascade has not ended, define to what extent the object will be copied

(algorithm for every new request). This check is also performed in algorithm for every new

object, where we define the time threshold. The latter roughly expresses the average cascade

duration, as it defines the duration that an object remains cached.

5.4 Experimental Evaluation

For the experimental evaluation, we used the CDNsim simulator for CDNs (Chapter 3).

The configuration of the simulation values is shown in Table 22. For the extraction of reliable

output, we had to conclude to a specific network topology, as well as make assumptions

regarding the input dataset. The simulator takes as input files describing the underlying

CDN and the traffic in the network, and provides an output of statistical results, discussed in

the next Section.

• Network Topology: There follows a short description of the process to define the nodes

in the topology. These nodes represent the surrogate servers, the origin servers, and

the users making the object requests. For an in-depth analysis you can refer to Chapter

3. To simulate our policy and place the servers in a real geographical position, we used

the geographical distribution of the Limelight network [54]. For the smooth operation

of the simulator the number of surrogate servers was reduced by the ratio of 10%, to

ultimately include 423 servers (Table 13). Depending on which surrogate region of
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the 20 the Limelight network defines is closer to each of the 142 Twitter timezones,

we decided where the requests from this timezone will be redirected. The population

of each timezone was also taken into consideration. The INET generator [56] allowed

us to create an AS-level representation of the network topology. Topology coordinates

were converted to geographical coordinates with the NetGeo tool from CAIDA [4], a

tool that maps IP addresses and AS coordinates to geographical coordinates [174], and

surrogate servers were assigned to topology nodes.

After grouping users per timezone (due to the limitations the large dataset imposes),

each team of users was placed in a topology node. We placed the users in the nodes

closer to those comprising the servers that serve the respective timezone requests, con-

tributing this way to a realistic network depiction.

• Number of Requests: 1 million requests were considered sufficient, as CDNsim han-

dles satisfyingly up to so many in general, with the number of objects being the dom-

inant factor increasing the memory use of the tool. Also similar concept approaches

use similar number of requests ( [176] on a daily basis and [165]), and same number

of distinct videos for generation of requests.

• Cache size: With the requests generated from the generator following a long-tail dis-

tribution, 15 % of the whole catalog size was considered to be sufficient.

• Threshold values: Experimenting was conducted for time thresholds of 24 hours and

48 hours, as well as for the time threshold that covered all the requests. The threshold

value for media service viewership was moderately chosen as 402408 (average media

viewership in the dataset). The authority threshold score was tested for various values

(0.006 / 0.02 / 0.04).

5.5 Main Findings

The statistic reports produced by the simulator are used to evaluate the proposed policy.

A short explanation of the metrics used in our experiments for extracting statistical results

follows.

Client Side Metrics

They refer to activities of clients, i.e. the requests for objects.
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Number of nodes in the topology 3500

Redirection Policy Cooperative Environment

(closest surrogate)

Number of origin servers 1

Number of surrogate servers 423

User groups 162

Bandwidth 100 Mbit/sec

Table 22: Chapter 5 - Simulation Characteristics
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Figure 45: Chapter 5 - Effect of timezones used as Y on (a)Hit Ratio and (b)Byte Hit Ratio

for X = 10 closest timezones with mutual followers for (i)LRU, (ii)LFU and (iii)SIZE
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Figure 46: Chapter 5 - Effect of timezones used as Y on (a)Mean utility of the surrogate

servers and (b)Active servers for X = 10 closest timezones with mutual followers for (i)LRU,

(ii)LFU and (iii)SIZE

• Mean Response Time: indicates how fast a client is satisfied. It is defined as
M−1
∑

i=0
ti

M
,
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Figure 47: Chapter 5 - Effect of timezones used as Y on Mean Response Time for X = 10

closest timezones with mutual followers for (i)LRU and (ii)LFU
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Figure 48: Chapter 5 - Effect of timezones used as Y on Mean Response Time for X = 10

closest timezones with mutual followers for (i)SIZE and (ii)all caching schemes

where M is the number of satisfied requests and ti is the response time of the ith request.

It starts at the timestamp when the request begins and ends at the timestamp when the

connection closes.

Surrogate Side Metrics

They are focused on the operations of the surrogate servers.

• Hit Ratio: is the percentage of the client-to-CDN requests resulting in a cache hit.

High values indicate high quality content placement in the surrogate servers.

Network Statistics Metrics

They run on top of TCP/IP and concern the entire network topology.
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• Active Surrogate Servers: refers to the servers being active serving clients.

• Mean Surrogate Servers Utility: is a value that expresses the relation between the

number of bytes of the served content against the number of bytes of the pulled content

(from the origin server or other surrogate servers). It is bounded to the range [0, 1] and

provides an indication about the CDN performance. High net utility values indicate

good content outsourcing policy and improved mean response times for the clients.

Mean response time Hit ratio Active Mean utility

(Avg, 10−2 sec.) (Avg, %) servers (Avg, %)

LFU - 24-h 1.1383 32.81 326 96.01

LFU - 48-h 1.1352 33.08 325 96.01

LFU - all-h 1.1112 34.69 324 96.01

SIZE - 24-h 1.1541 32.10 327 95.94

SIZE - 48-h 1.146076 32.03 326 95.98

SIZE - all-h 1.1274 33.17 326 96.00

LRU - 24-h 1.1412 32.12 326 95.99

LRU - 48-h 1.1377 32.42 325 96.02

LRU - all-h 1.1181 34.16 325 96.04

Table 23: Chapter 5 - Average Metric Values for X = 10 Timezones of Close Mutual Friends

We conducted a multitude of experiments (55 for each caching scheme and time threshold

combination). Table 23 presents the average values of four parameters for six cases of testing.

The lowest mean response times appear for the cases of the time threshold covering all

requests for all caching schemes. We observe that LFU scheme outperforms LRU and SIZE

in terms of mean response times and hit ratios achieved.

• Hit Ratio:To begin with, Fig. 45 illustrates how the hit ratio of the requests is affected

by modifying the number of timezones with highest centrality metric examined. The

caching scheme of LFU appears to perform better than the LRU scheme. LRU and

LFU offer comparable results, whereas they outperform SIZE. We also come to the

conclusion that there is a realistic room for performance improvement by implement-

ing various web caching characteristics in a CDN infrastructure, even though the social

cascading mechanisms have already been activated to improve its performance.
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• Mean Utility of the Surrogate Servers: For a fixed number of 10 closest timezones

with mutual followers LRU scheme appears to depict the highest mean utility of the

surrogate servers, followed by LFU and SIZE (Fig. 46).

• Active Servers: For a fixed number of 10 closest timezones with mutual followers

LFU appears to use less active servers after the first timezone of highest centrality in

the scenario of time threshold covering all the requests. SIZE depicts higher values of

active servers for the cases of 1, 5 and 10 timezones examined (Fig. 46).

• Mean Response Time: For the most representative case of all requests the trade-off

between the reduction of the response time and the cost of copying in servers is ex-

pressed for LRU and LFU schemes with a decrease of the mean response time as the

timezones increase, and a point after which the mean response time starts to increase

again (Fig. 47 and Fig. 48). For LRU scheme this decrease in the mean response time

occurs with approximately 5 timezones out of the 10 used (for a fixed number of clos-

est timezones with mutual followers), and for the LFU with 7 timezones . After this

point the slight increase in the mean response time is attributed to the delay for copy-

ing content to surrogate servers. The cost for every copy is related to the number of

hops among the client asking for it and the server where copying is likely to be made,

according to the Put function. We observe that SIZE depicts a poor performance com-

pared with the two other schemes, as it is unable to take advantage of the frequency

skew.

Performance of caching schemes

We selected the caching schemes applied among a variety of caching algorithms :

modified LRU (mLRU), scoring based caching algorithm (SC), Cache Management

based on Temporal Pattern Solicitation (CMTPS) algorithm, etc. Our selection was

based on the criteria of time complexity and ease of implementation within the CDN

simulator framework.

LRU supports the fundamental locality principle that if a process visits a location in

the memory, it will probably revisit the location and its neighbourhood soon, and being

implemented by a double linked list, it gives operations of an O(1) complexity (When

a page in the list is accessed, it will be moved from its place to the end of the list. When

a new page is accessed, it will be put in the end of the list and the oldest page is taken
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out of the list.). It poses, though, the problem of what will happen when a process

scans a huge surrogate server cache. LFU overcomes this problem as it takes into

account the advanced locality principle, that claims that the probability of revisiting

will be increased if the number of the visits is bigger. LFU is implemented by a heap

and thus has a logarithmic complexity for adding / removing a page from the heap, as

well as updating the position of a page in the heap. Stale objects can remain a long

time in the memory, while popular objects can be mistakenly removed [86].

A brief categorization [29] of cache replacement schemes for the web includes follow-

ing categories:

– (i) Direct extensions of traditional policies: such as Least Frequently Used (LFU)

and First In First Out (FIFO) besides LRU, which do not in general pay sufficient

attention to object sizes.

– (ii) Key-based policies: objects are sorted based on a primary key, break ties

based on a secondary key, break remaining ties based on a tertiary key and so on.

The idea in using the key-based policies is to prioritize some replacement factors

over others, although this prioritization may not always be the best case.

– (iii) Function-based replacement policies: They employ a function of various

factors such as time since last access, entry time of the object in the cache, trans-

fer time cost, object expiration time, etc. For example, Least Normalized Cost

Replacement (LNC-R) algorithm employs a rational function of the access fre-

quency, the transfer time cost and the size.

In our example LFU performs best, and SIZE depicts a poor performance compared

with the two other schemes, as it is unable to take advantage of the frequency skew.

In our study the objects’ sizes follow a zipf-distribution. As studies [29] depict, the

effect of cost correlation with size has the greatest effect on the performance of SIZE

algorithm, which discriminates against larger objects, -affecting the storage needs of

our infrastructure- and the least effect on the LRU scheme, the performance of which

remains unchanged. Consequently, when cost correlation with size increases, the cost

savings are reduced as well, even though the hit ratios are the same.

In addition to non-homogeneous object sizes there are several other special features

of the web which can be taken into account: Besides the hit ratio, which may not be

the best possible measure for evaluating the quality of a web caching algorithm, since
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for example the transfer time cost for transfering a large object is more than that for a

small object, depending also on the distance of the object from the web server. More-

over, web objects will typically have expiration times. So when considering which

objects to replace when a new object enters a web cache we must consider not only the

relative frequency but also factors such as object sizes transfer time savings and expi-

ration times. Additional suggested features could be: the handling of object expiration

times, enforcement of an admission control policy which will decide if object will be

cached or not in the first place, significant for caching of non-uniform sized objects,

that will eliminate the disruption caused from the addition of an object in cache and

the necessary removal of other objects.

5.6 Conclusions

CDN infrastructures rapidly deliver multimedia content cached on dispersed geographi-

cal servers to web browsers worldwide. The growing demands for quick and scalale delivery,

also due to HTTP traffic increase, can be satisfied with efficient management of the content

replicated in CDNs. Specifically, we need Web data caching techniques and mechanisms on

CDNs, as well as policies recognizing the patterns of social diffusion of content, to ensure

satisfying performance in a constantly changing environment of continuing growth.

In the present work, we further extended a dynamic policy of OSN content prefetching

implemented with temporal and other contextual parameters, to depict how various caching

schemes can affect the content delivery infrastructure. Bandwidth-intensive multimedia de-

livery over a CDN infrastructure is experimentally evaluated with non-synthetic workloads,

that many works in the related literature lack. While recognising that we used one media

service and one OSN platform for our experimentation, we believe that our results are gen-

erally applicable with a potentially high impact for large-scale systems with traffic generated

by online social services and microblogging platforms. We aim in the future to generalize

our proposed policy to deal with multiple OSN platforms, as well as mobile CDN providers.
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Chapter 6

Predicting Video Virality on Twitter

In this work we merge user-centric data from Twitter with video-centric data from YouTube

to investigate the ties between predictability of video sharing and the social context of video

uploaders [115]. It provides a combination of social media datasets, giving insights than

neither dataset (social network and media service) individually gives. We develop an accu-

rate model to predict future popularity of a video resource given features of the underlying

network of its initial sharer. The set of features we propose and analyse are based on the

notion of influence score of a user and its fluctuation through time, as well as the distance of

content interests among users for both datasets.We discover that the latter feature plays an

important role in video popularity prediction, suggesting high dependence of video sharing

via Twitter on the video content itself. We proceed to incorporate our prediction model into a

mechanism for content delivery resulting in substantial improvement for the user experience.

The remainder of this chapter is organized as follows. Section 6.2 formally describes

the addressed problem. Section 6.3 provides an outline of the methodology, followed by the

preparation of the employed datasets. Our main findings are presented in Section 6.4, where

also a validation is conducted. Section 6.5 investigates the incorporation of the proposed

model into a content delivery mechanism. Section 6.6 concludes the work and discusses

directions for future work.

6.1 Introduction

The diffusion of video content is fostered by the ease of producing online content via

media services. It mainly happens via ubiquitous OSNs, where social cascades can be ob-

served when users increasingly repost links they have received from others. Twitter is one
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of the most popular OSNs with its core functionality centered around the idea of spreading

information by word-of-mouth [159]. It provides mechanisms such as retweet (forwarding

other people’s tweets), which enable users to propagate information across multiple hops in

the network.

If we knew beforehand when a social cascade will happen or to what range it will evolve,

we could exploit this knowledge in various ways. For example, in the area of content deliv-

ery infrastructure, with content prefetching by replication of popular items, so that bandwidth

could be spared. The knowledge of the evolution of social cascades could also lead to re-

duction schemes for the storage of whole sequences of large social graphs as well as the

reduction of their processing time.

Towards this direction, in this work we present a model for efficiently calculating the

number of retweets of a video, associating it with a score depicting the influence of its up-

loader in the Twitter dataset, the increasing or decreasing trend this score shows, as well as

the distance of content interests among users in the YouTube and Twitter community.

Our work [116] focuses on video virality over an OSN. Study of social cascades is

active aiming at the prediction of the aggregate popularity of a resource or the individual

behaviour of a user. Few works, however, combine detailed information both of the OSN

and the media service with a small and easily extracted feature set. Our study proposes a

prediction model that performs better than methods like Support Vector Machines (SVM),

Stochastic Gradient Descent (SGD) and K-Nearest Neighbours (KNN), among others, and

we, furthermore, proceed to incorporate our prediction model into a mechanism for content

delivery resulting in substantial improvement for the user experience.

6.2 Problem Description

We consider a directed graph G(t) = (V (t),E(t)) representing a social network at time

t consisting of V vertices and E edges, that evolves through time. Edges between the nodes

of the graph denote friendship in case of a social network (for Twitter B is a follower of A if

there is an edge between B and A pointing at A.)

Our problem is stated as follows. We want to associate the number of retransmits of a

video link by a user v ∈V after u ∈V has transmitted the link. User v is a follower of u.

We express this number, intuitively, as a combination of the following features: the

Score(u, t) of node u, dScore(u, t)/dt of node u, and content distance between the content

interests of the involved users both in the OSN and the media service. The validity of the
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G(t) = (V (t),E(t)) OSN graph G at time t of V vertices and E edges

Au2v number of actions where u influenced v

Âu2v predicted output

M total number of predicted values

α,β ,γ coefficients of feature set variables

U vector of YouTube interests of user u

V vector of Twitter interests of user v

Features Set

Score(u, t) Score of node u at time t

dScore = dScore(u, t)/dt derivative of Score of node u at time t

content dist content distance

Table 24: Chapter 6 - Notation Overview

predictors is analysed in this chapter. The intuition for their selection is based on the notion,

that, the higher influence score a node depicts, the more influence it is expected to exert on

other nodes of the social graph. Moreover, the dScore/dt(u, t) expresses the popularity rise /

fall of the node, and, lastly, the content distance associates the resource with the user context.

With Au2v the output, Âu2v the predicted output, and M the total number of predicted

values, we want to find the values α , β , γ , so that both equations apply:

Au2v = α ∗Score(u, t)+β ∗ dScore(u, t)
dt

+ γ ∗ content dist (26)

and √
1
M

M

∑
i=1

(Âu2v−Au2v)2 (27)

is minimum.

6.3 Proposed Methodology

6.3.1 Dataset

Interests of users were analysed in [28] against directory information from http://

wefol-low.com, a website listing Twitter users for different topics, including Sports,

Movies, News & Politics, Finance, Comedy, Science, Non-profits, Film, Sci-Fi/ Fantasy,

Gaming, People, Travel, Autos, Music, Entertainment, Education, Howto, Pets, and Shows.
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The activity of Twitter users was quantified, and a variety of features were extracted,

such as their number of tweets, the fraction of tweets that are retweets, the fraction of tweets

containing URLs, etc. Aggregated features of YouTube videos shared by a user included

in the dataset comprise the average view count, the median inter-event time between video

upload and sharing, etc.

A sharing event in the dataset is defined as a tweet containing a valid YouTube video ID

(with a category, Freebase topics and timestamp). We augmented the provided dataset with

Tweet content information about the 15 million video sharing events included in the dataset,

as well as information about the followers of the 87K Twitter users.

6.3.2 User Score Calculation

A user score is calculated combining the number n of its followers (reduced by a factor

of 1000 to compensate the wide range of followers in the dataset from zero to more than a

million), a quantity b catering for users with reciprocal followership (calculated by taking

an average of number of followers of a user to the number of users he follows), as well as

the effect e of a tweet by user (measured by multiplying average number of retweets with

number of tweets of the user and normalizing it to correspond to the total number of tweets.)

The distribution of these combined metrics depicts large variance and we have applied a

logarithmic transformation in order to avoid the uneven leverage of extreme values.

Score = log
(

n+
((

b
100

)
∗n
)
+ e
)

(28)

6.3.3 Content Distance

The content distance content dist expresses a measure of similarity of user’s u YouTube

and his follower’s v Twitter interests. Content distance is calculated using cosine similarity

between vectors of user’s u YouTube and user’s v Twitter video interests, as follows:

content dist = 1− U ·V
‖U‖‖V‖ (29)

6.4 Experimental Evaluation

By combining user ids, followership information, user features and tweet context we

build a measure of Au2v, expressing the number of times a user’s u tweet is retweeted by his

followers v. We aim to associate the independent variables of the features set (X dataframe)

with the series depicting Au2v (y).
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Dep. Variable Au2v R-squared 0.396

Model OLS Adj. R-squared 0.396

Method Least Squares F-statistic 1.570e+04

Prob (F-statistic) 0.00 Log-Likelihood -8576.9

No. Observations 71952 AIC 1.716e+04

Df Residuals 71949 BIC 1.719e+04

Df Model 3 Covariance Type nonrobust

Table 25: Chapter 6 - Regression Results (i)

coef std err t P > |t| 95% Conf.Int.

Score 5.79e-05 3.78e-06 15.300 0.000 5.05e-05 6.53e-05

dScore 4.36e-05 4.51e-06 9.667 0.000 3.48e-05 5.25e-05

con dist 0.389 0.002 213.060 0.000 0.386 0.393

Table 26: Chapter 6 - Regression Results (ii)

Omnibus 2091.840 Durbin-Watson 1.723

Prob(Omnibus) 0.000 Jarque-Bera (JB) 2323.421

Skew 0.408 Prob(JB) 0.00

Kurtosis 3.333 Cond. No. 746.

Table 27: Chapter 6 - Regression Results (iii)

6.4.1 Selection of Predictors

The regression summary of Table 26 shows that coefficients of all predictors are signifi-

cant (P > |t| is significantly less than 0.05). Therefore, Score, dScore and content dist can

be considered as good predictors. We note that t here refers to t−statistic, denoting the quo-

tient of the coefficient of dependent variable divided by coefficient’s standard error. P refers

to the P− value, a standard statistical method for testing an hypothesis. P− value < 0.05

means we can reject the hypothesis that the coefficient of a predictor is zero, in other words

the examined coefficient is significant.

The selection of the above predictors comes as a result of comparing the P− values

of various metrics in the dataset and the combination of those with the lowest P− value.

The metrics included the number of distinct users retweeted, fraction of the users tweets
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that were retweeted, average number of friends of friends, average number of followers of

friends, number of YouTube videos shared, the time the account was created, the number of

views of a video, etc., among many others.

6.4.2 Effect of Outliers

Figure 49: Chapter 6 - Regression plots for each independent variable.

The regression plots for each predictor in Fig. 49 show the effect of outliers on the esti-

mated regression coefficient. Regression line is pulled out of its optimal tracjectory due to

the existent outliers. The detailed regression plots for individual predictors (Score, dScore

and content dist) appear in Figures 50, 51, and 52 respectively. As for the fitted (predicted)

values of Au2v and the prediction confidence for each independent variable, they appear in

Figures 53, 54, and 55. We observe that fitted values are quite close to the real values of Au2v

with the exception of the outliers. This suggests that removal of outliers would yield a better

estimate, since it is obvious that the plot is skewed due to their presence.
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Figure 50: Chapter 6 - Regression plots for Score.

A rough estimate of detecting outliers can be based on the quantile distributions of each

independent variable in Table 28. Observing Table 28 with an overview of data ditsribution

we surmise that we could take values of Score and dScore only upto 10 and 5 respectively.

The quantiles appearing on the table are calculated when data is rearranged in ascending

order and divided into 4 equal sized parts. Thus, interpreting the second quantile we notice

that 50% of Score values are less than 2.562232. In the table, we notice that for Score and

dScore we have huge maximum values but 75% of the data are below 6.902750 and 2.308805

respectively. Thus, we select 10 and 5 as values to take most of the data and exclude data

points with extremely large (outliers) out of general range values.

Results of regression model on data obtained after removing outlier data points appear in

Tables 29, 30, and 31. The results show considerable improvement with respect to regression

with presence of outliers (Tables 25, 26 and 27). Also, Durbin-Watson statistic close to 2

confirms normality assumption of residuals, verifying the normality of error distribution, one

of the assumptions of linear regression.
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Figure 51: Chapter 6 - Regression plots for dScore.

Figure 52: Chapter 6 - Regression plots for content dist.

Fig. 58 plots reinforce the argument that after removing outliers we get a better fit of

regression line on each independent variable. Namely, the removal of outliers leads to better

alignment of the path of regression line to the optimal path.
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Figure 53: Chapter 6 - Fitted values of Au2v versus Score.

Figure 54: Chapter 6 - Fitted values of Au2v versus dScore.

Figure 55: Chapter 6 - Fitted values of Au2v versus content dist.

6.4.3 10-fold Cross-Validation

We performed a 10-fold cross validation on the dataset, fitting the regressor to 90% of

the data and validating it on the rest 10% for the prediction of Au2v dependent variable from

Score, dScore and content-dist independent variables. Predictive modeling was conducted

after removing outliers from the data. The results of the predictive modeling using linear re-

gression show that we achieve a root mean squared error of 0.1873 (across all folds), which

means that our prediction varies by 0.1873 amount from the real values of Au2v . This shows
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Figure 56: Chapter 6 - 10-fold Cross-Validation of Au2v.

Figure 57: Chapter 6 - 10-fold Cross-Validation of Au2v without outliers.

Score dScore content dist

count 71952.000000 71952.000000 71952.000000

mean 21.227703 15.880803 0.459111

std 349.102908 292.727717 0.315837

min 0.000000 -1610.253490 0.000000

25% 0.787060 0.000140 0.172534

50% 2.562232 0.526050 0.415394

75% 6.902750 2.308805 0.724986

max 43262.678131 30235.027960 1.000000

Table 28: Chapter 6 - Outliers thresholds

a considerable improvement in prediction error than modeling with original data (with out-

liers), where a root mean squared error of 0.2728 (across all folds) was achieved. Plots in

both cases appearing in Figure 56 and 57 depict how close our predictions are to the real

values of the dependent variable.
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Dep. Variable Au2v R-squared 0.629

Model OLS Adj. R-squared 0.629

Method Least Squares F-statistic 3.072e+04

Prob (F-statistic) 0.00 Log-Likelihood 13947.

No. Observations 54473 AIC -2.789e+04

Df Residuals 54470 BIC -2.786e+04

Df Model 3 Covariance Type nonrobust

Table 29: Chapter 6 - Regression Results without Outliers (i)

coef std err t P > |t| 95% Conf.Int.

Score 0.1460 0.001 145.244 0.000 0.144 0.148

dScore 0.0200 0.001 25.819 0.000 0.018 0.022

con dist 0.1656 0.003 65.690 0.000 0.161 0.171

Table 30: Chapter 6 - Regression Results without Outliers (ii)

Omnibus 10848.216 Durbin-Watson 1.966

Prob(Omnibus) 0.000 Jarque-Bera (JB) 22428.486

Skew 1.183 Prob(JB) 0.00

Kurtosis 5.070 Cond. No. 5.19

Table 31: Chapter 6 - Regression Results without Outliers (iii)

6.4.4 Classification and Comparison with other Models

We predict a user popularity as follows. If Au2v crosses a threshold, e.g. 30%, i.e. if more

than 30% tweets of user u are retweeted by others users, then user u can be considered as

a popular user. This can also be interpreted as “if a user u’s tweets will be popular or not,

given user u’s Score, dScore, and content dist (measure of his YouTube’s interest similarity

with the Twitter interests of his followers)”.
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Figure 58: Chapter 6 - Regression plots for each independent variable.
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Figure 59: Chapter 6 - Comparison with other models.
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Classification was conducted initially with three different methods: Linear Regression

(the Predictive Model we present in this study), Random Forest and Naive Bayes methods.

Area Under the Curve (AUC) is a score that computes average precision (AP) from predic-

tion scores. This average precision score corresponds to the area under the precision-recall

curve and the higher AUC represents better performance. Plots in Figure 59 correspond

to computed precision-recall pairs for different probability thresholds and the AUC score

computes the area under these curves. Best performance is achieved by Linear Regression

(0.699), followed by Naive Bayes (AUC:0.608) and Random Forest (AUC:0.608). Comple-

mentary methods tested were Support Vector Machines (SVM), Stochastic Gradient Descent

(SGD) and K-Nearest Neighbours (KNN).

SVM is a supervised learning model with associated learning algorithm that analyzes

data used for classification and regression analysis. Given a set of training examples, each

marked for belonging to one of the two categories (popular/ non-popular user), the SVM

training algorithm builds a model that assigns new examples into each of the categories,

acting as a non-probabilistic binary linear classifier.

Next classification model was Stochastic Gradient Descent (SGD), a gradient descent

optimization method for minimizing an objective function written as a sum of differentiable

functions, and a popular algorithm for training a wide range of models in machine learn-

ing, including linear support vector machines, logistic regression and graphical models. Its

use for training artificial networks is motivated by the high cost of running backpropaga-

tion algorithm over the full training set, as SGD overcomes this cost and still leads to fast

convergence.

The last classifier implemented here was K-Nearest Neighbours (KNN), a method clas-

sifying objects based on closest training examples in the feature space. The input consists of

positive, typically small, integer (15 in our case) of closest training examples in the feature

space. In KNN classification, the output is a class membership (popular/ non-popular user),

whereas an object is classified by a majority vote of its neighbours, with the object being

assigned to the class most common among its K-Nearest Neighbours.

After plotting the results of computed precision-recall pairs for various probability thresh-

olds we observe that best performance is still noticed in the case of our Predictive Model,

followed by SVM (AUC:0.608), KNN (AUC:0.601), and, lastly, SGD (AUC:0.580).
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6.5 Incorporation into Content Delivery Schemes

Request Handler
Surrogate server 1

Surrogate server 2
Surrogate server 3

Surrogate server 4
Surrogate server 5

. . .
Surrogate server u

Predictive Model

Prefetching Unit

Servicing
Unit

Figure 60: Chapter 6 - The OSN-aware CDN mechanism.

CDNs aim at improving download of large data volumes with high availability and per-

formance. Content generated by online media services circulates and is consumed over

OSNs (with more than 400 tweets per minute including a YouTube video link [52] be-

ing published per minute). This content largely contributes to internet traffic growth [56].

Consequently, CDN users can benefit from an incorporated mechanism of OSN-awareness

over the CDN infrastructure. In [111] Kilanioti and Papadopoulos introduce various effi-

cient copying policies based on prediction of demand on OSNs for the dynamic mechanism

of preactive content copying.

Rather than pushing data to all surrogates, they proactively distribute it only to social

connections of the user likely to consume it. The content is copied only under certain condi-

tions (content with high viewership within the media service, copied to geographically close

timezones of the geo-diversed system used where the user has mutual social connections

of high influence impact). This contributes to smaller response times for the content to be

consumed (for the users) and lower bandwidth costs (for the OSN provider). Herein, we

incorporate the proposed Predictive Model in the suggested policy [111] and prove that it

further improves its performance.

The proposed algorithm encompasses an algorithm for each new request arriving in the

CDN and an algorithm for each new object in the surrogate server. Internally, the module
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communicates with the module processing the requests and each addressed server separately

(Fig. 60).

• For Every New Request in the CDN

Prinicipally we check whether specific time has elapsed after the start of cascade and,

only in the case that the cascade has not ended, define to what extent the object will be

copied. We introduce the time threshold, that roughly expresses the average cascade

duration. Initially, we check whether it is the first appearance of the object (Fig. 61).

The variable o.timestamp depicts the timestamp of the last appearance of the object in

a request. If it is the first appearance of the object, the timer for the object cascade

is initialized and o.timestamp takes the value of the timestamp of the request. If the

cascade is not yet complete (its timer has not surpassed a threshold), we check the

importance of the user applying its Score.

For users with Score surpassing a threshold (average value: 1.2943 in the dataset),

we copy the object to all surrogate servers of the user’s timezone and to the surro-

gate servers serving the timezones of all followers of the user. Otherwise, selective

copying includes only the surrogates that the subpolicy decides. Subpolicy (Fig. 62)

checks the X closest timezones where a user has mutual friends and out of them, the

Y with the highest value of the combined feature set (Predictive Model(Score, dScore,

content dist)) as an average. Copying is performed to the surrogate servers that serve

the Y timezones of highest combined feature set value, according to the coefficients

derived from our analysis. We note here that variations of the Subpolicy include

the replacement of the timezones depicting the highest average values of Predictive

Model(Score, dScore, content dist), with those being derived from the application of

Naive Bayes, Random Forest, SVM, SGD, and KNN schemes.

• For Every New Object in the Surrogate Server

Surrogate servers keep replicas of the web objects on behalf of content providers. In

the case that the new object does not fit in the surrogate server’s cache, time threshold

is the parameter for the duration that an object remains cached. We find the oldest

objects and delete them. In the case that there are no such objects, we delete those

with the largest timestamp in the cascade. We use LRU for handling non-homogeneous

sized objects and prune the least recently used items first.To ensure that least recently

used items are discarded, the algorithm keeps track of their usage.
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G(V,E) Graph representing the social network

V = {V1, ...,Vn} Nodes representing the social network users

E = {E11, ...,E1n, ...,Enn} Edges representing the social network con-

nections, where Ei j stands for friendship be-

tween i and j

R = {r1,r2, ...,rτ} Regions set

N = {n1,n2, ...,nu} The surrogate servers set. Every surrogate

server belongs to a region ri

Ci, i ∈ N Capacity of surrogate server i in bytes

O = {o1,o2, ...,ow} Objects set (videos)

Si, i ∈ O Size of object i in bytes

Πi Popularity of object i, i ∈ O

qi = {t,Vψ ,ox},1 < x < w,1 < ψ < n Request i, consists of a timestamp, the id of

the user that asked for the object, and the ob-

ject id

P = {p12, p13, ..., pnw} User posts in the social network, where pi j

denotes that node i has shared object j in the

social network

Q = {q1,q2, ...,qζ} Object requests, where qi denotes a request

for an object of set O

Qhiti , Qtotali , i ∈ N Number of requests served from surrogate

servers of the region of the user/ total number

of requests

X ,Y,L,H ∈ R Closest timezones with mutual followers/

with highest centrality metric/ with highest

lobby values/ with highest HITS values

Table 32: Chapter 6 - Notation Overview

The nodes representing the surrogate servers, the origin servers, and the users making the

object requests (Fig. 64) in the simulated network topology are analysed in detail in Chapter

3. To simulate our policy and place the servers in a real geographical position, we used the

geographical distribution of the Limelight network. For the smooth operation of the simula-

tor the number of surrogate servers was reduced by the ratio of 10%, to ultimately include

423 servers. Depending on which surrogate region of the 20 the Limelight network defines
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1: if o.timestamp == 0 then

2: o.timer = 0;

3: o.timestamp = request timestamp;

4: else if o.timestamp != 0 then

5: o.timer = o.timer + (request timestamp - o.timestamp);

6: o.timestamp = request timestamp;

7: end if

8: if o.timer > time threshold then

9: o.timer = 0;

10: o.timestamp = 0;

11: else if o.timer < time threshold and user.Score > Score threshold then

12: copy object o to surrogate that serves user’s Vi(t) timezone;

13: for all user Vy(t) that follows user Vi(t) do

14: find surrogate server n j that serves Vy(t)’s timezone;

15: copy object o to n j;

16: end for

17: else if o.timer < time threshold then

18: copy object o to surrogates n j that Subpolicy decides;

19: end if

Figure 61: Chapter 6 - Algorithm for every new request (timestamp, Vi(t), o) in the CDN

1: find X timezones where (user Vi(t) has mutual followers and they are closer to user’s

Vi(t) timezone);

2: find the Y ⊆ X that (belong to X and depict the highest average values of Predictive

Model(Score, dScore, content dist));

3: for all timezones that belong to Y do

4: find surrogate server n j that serves timezone;

5: copy object o to n j;

6: end for

Figure 62: Chapter 6 - Subpolicy

is closer to each of the 142 Twitter timezones, we decided where the requests from this

timezone will be redirected. The population of each timezone was also taken into considera-

tion. The INET generator [56] allowed us to create an AS-level representation of the network

129

EIR
IN

I T
. K

OILA
NIO

TI



1: if o.size + current cache size ≤ total cache size then

2: copy object o to cache of surrogate nk;

3: else if o.size + current cache size > total cache size then

4: while o.size + current cache size > total cache size do

5: for all object o′ in current cache do

6: if (current timestamp - o′.timestamp) + o′.timer > time threshold then

7: copy o′ in CandidateList;

8: end if

9: if CandidateList.size>0 and CandidateList.size != total cache size then

10: find o′ that o′.timestamp is maximum and delete it;

11: else if CandidateList.size==0 or CandidateList.size==total cache size then

12: use LRU to delete any object o ∈ O;

13: end if

14: end for

15: end while

16: put object o to cache of surrogate nk;

17: end if

Figure 63: Chapter 6 - Algorithm for every new object o in the surrogate server nk

topology. Topology coordinates were converted to geographical coordinates with the NetGeo

tool from CAIDA, a tool that maps IP addresses and AS coordinates to geographical coor-

dinates, and surrogate servers were assigned to topology nodes. After grouping users per

timezone (due to the limitations the large dataset imposes), each team of users was placed in

a topology node. We placed the users in the nodes closer to those comprising the servers that

serve the respective timezone requests, contributing this way to a realistic network depiction.

The heuristics applied in [111] are based on the observation that users are more influ-

enced by geographically close friends, and moreover by mutual followers, as well as on the

short duration of social cascades ( [165], [60]).

We examine Mean Response Times (MRT), a client-side metric associated with user

experience in CDNs that indicates how fast a client is satisfied, for the most representative

case of time thresholds covering all the examined requests of our dataset. The trade-off

between the reduction of the response time and the cost of copying in servers is expressed

for all schemes used (Linear Regression, Naive Bayes, Random Forest, SVM, SGD, KNN)

with a decrease of the mean response time as the timezones increase and a point after which
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Figure 64: Chapter 6 - Methodology followed

the MRT starts to increase again (Fig. 65). For the scheme augmented with our Predictive

Model, namely the Linear Regression, this shift occurs with approximately 6 timezones out

of the 10 used (for a fixed number of closest timezones with mutual followers). After this

point the slight increase in the MRT is attributed to the delay for copying content to surrogate

servers. The cost for every copy is related to the number of hops among the client asking

for it and the server where copying is likely to be made. We observe that Linear Regression

outperforms all the other schemes, depicting MRTs smaller than their respective. We note

here that timezones with highest average values for each scheme, that Subpolicy defines, are

pre-calculated, in order to reduce computational burden in the simulations.

6.6 Conclusions

We come to the conclusion that video sharings over an OSN platform can be predicted

with a small set of features combined from both the platform and the media service. Despite

the focused scope of this work and the limitations of its conduction solely with Twitter and

YouTube data, the scale of the medium allows us to make assumptions for generalisation

across different OSNs and microblog platforms. We plan to extensively analyse this gen-

eralisation in the future. Future extensions also include experimentation with variations of
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Figure 65: Chapter 6 - Effect of timezones used as Y on Mean Response Time for various

schemes (X = 10 closest timezones with mutual followers).

content distance interpretation among users, with various score assignment formulas, as well

as subsequent verification in the realm of content delivery. We hope that our findings will

broaden the view on the spread of information in web today.
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Chapter 7

Efficient Content Delivery via Forecasting Popularity on

Social Media

Ubiquitous social networks have in recent years become significant for sharing of content

generated in online video platforms. Our work investigates how the predictability of video

sharing is associated with the underlying social network of the initial sharer of the video and

the context of the media platform it was uploaded. In particular we combine user-centric

data from Twitter with video-centric data from YouTube to give insights that neither dataset

(social network and media service dataset) individually gives. We propose a simple model

to predict future popularity of a video resource with a small and easily extracted feature set,

based on the notion of influence score of a user and its fluctuation through time, as well as

the distance of content interests among users for both datasets. We further demonstrate how

the incorporation of our prediction model into a mechanism for content delivery results in

considerable improvement of the user experience [113].

The remainder of this chapter is organized as follows. Section 7.2 formally describes

the addressed problem. Section 7.3 provides an outline of the methodology, followed by the

preparation of the employed datasets. Our main findings are presented in Section 7.4, where

also a validation is conducted. Section 7.5 investigates the incorporation of the proposed

model into a content delivery mechanism. Section 7.6 concludes the work and discusses

directions for future work.

7.1 Introduction

The diffusion of video content is fostered by the ease of producing online content via

media services. It mainly happens via ubiquitous OSNs, where users increasingly repost
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links they have received from others (social cascades). If we knew beforehand when a social

cascade will happen or to what range it will evolve, we could exploit this knowledge in

various ways. For example, in the area of content delivery infrastructure, where popular

items would be proactively replicated, so that bandwidth could be spared. Our work focuses

on video virality over an OSN and combines detailed information both of the OSN and the

media service with a small and easily extracted feature set. It proposes a prediction model

that performs better than methods like Support Vector Machines (SVM), Stochastic Gradient

Descent (SGD) and K-Nearest Neighbours (KNN), among others. We, furthermore, proceed

to incorporate it into a mechanism for content delivery depicting substantial improvement

for the user experience.

7.2 Problem Description

G(t) = (V (t),E(t)) OSN graph G at time t of V vertices and E edges

Au2v number of actions where u influenced v

Âu2v predicted output

M total number of predicted values

α,β ,γ coefficients of feature set variables

U vector of YouTube interests of user u

V vector of Twitter interests of user v

Features Set

Score(u, t) Score of node u at time t

dScore = dScore(u, t)/dt derivative of Score of node u at time t

content dist content distance

Table 33: Chapter 7 - Notation Overview

We consider a directed graph G(t) = (V (t),E(t)) representing a social network at time

t consisting of V vertices and E edges, that evolves through time. Edges between the nodes

of the graph denote friendship in case of a social network (for Twitter B is a follower of

A if there is an edge between B and A pointing at A.) We want to associate the number of

retransmits of a video link by a user v ∈ V after u ∈ V has transmitted the link. User v is a

follower of u.

We express this number, intuitively, as a combination of the following features: the

Score(u, t) of node u, dScore(u, t)/dt of node u, and content distance between the content

134

EIR
IN

I T
. K

OILA
NIO

TI



interests of the involved users both in the OSN and the media service. The validity of the

predictors is analysed in this work. The intuition for their selection is based on the notion,

that, the higher influence score a node depicts, the more influence it is expected to exert on

other nodes of the social graph. Moreover, the dScore/dt(u, t) expresses the popularity rise /

fall of the node, and, lastly, the content distance associates the resource with the user context.

With Au2v the output, Âu2v the predicted output, and M the total number of predicted

values, we want to find the values α , β , γ , so that both equations apply:

Au2v = α ∗Score(u, t)+β ∗ dScore(u, t)
dt

+ γ ∗ content dist (30)

and √
1
M

M

∑
i=1

(Âu2v−Au2v)2 (31)

is minimum.

7.3 Proposed Methodology

7.3.1 Dataset

Interests of users were analysed in [28] against directory information from http://

wefol-low.com, a website listing Twitter users for different topics, including Sports,

Movies, News & Politics, Finance, Comedy, Science, Non-profits, Film, Sci-Fi/ Fantasy,

Gaming, People, Travel, Autos, Music, Entertainment, Education, Howto, Pets, and Shows.

Twitter is one of the most popular OSNs centered around the idea of spreading informa-

tion by word-of-mouth [159]. It provides mechanisms such as retweet, which enable users

to propagate information across multiple hops in the network.

The activity of Twitter users was quantified, and a variety of features were extracted,

such as their number of tweets, the fraction of tweets that are retweets, the fraction of tweets

containing URLs, etc. Aggregated features of YouTube videos shared by a user included

in the dataset comprise the average view count, the median inter-event time between video

upload and sharing, etc.

A sharing event in the dataset is defined as a tweet containing a valid YouTube video ID

(with a category, Freebase topics and timestamp). We augmented the provided dataset with

Tweet content information about the 15 million video sharing events included in the dataset,

as well as information about the followers of the 87K Twitter users.
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7.3.2 User Score Calculation

A user score is calculated combining the number n of its followers (reduced by a factor

of 1000 to compensate the wide range of followers in the dataset from zero to more than a

million), a quantity b catering for users with reciprocal followership (calculated by taking

an average of number of followers of a user to the number of users he follows), as well as

the effect e of a tweet by user (measured by multiplying average number of retweets with

number of tweets of the user and normalizing it to correspond to the total number of tweets.)

The distribution of these combined metrics depicts large variance and we have applied a

logarithmic transformation in order to avoid the uneven leverage of extreme values.

Score = log
(

n+
((

b
100

)
∗n
)
+ e
)

(32)

7.3.3 Content Distance

The content distance content dist expresses a measure of similarity of user’s u YouTube

and his follower’s v Twitter interests. Content distance is calculated using cosine similarity

between vectors of user’s u YouTube and user’s v Twitter video interests, as follows:

content dist = 1− U ·V
‖U‖‖V‖ (33)

7.4 Experimental Evaluation

By combining user ids, followership information, user features and tweet context we

build a measure of Au2v, expressing the number of times a user’s u tweet is retweeted by his

followers v. We aim to associate the independent variables of the features set with the series

depicting Au2v.

The regression summary of Table 35 shows that coefficients of all predictors are signifi-

cant (P > |t| is significantly less than 0.05). Therefore, Score, dScore and content dist can

be considered as good predictors. We note that t here refers to t−statistic, denoting the quo-

tient of the coefficient of dependent variable divided by coefficient’s standard error. P refers

to the P− value, a standard statistical method for testing an hypothesis. P− value < 0.05

means we can reject the hypothesis that the coefficient of a predictor is zero, in other words

the examined coefficient is significant.

The selection of the above predictors comes as a result of comparing the P− values

of various metrics in the dataset and the combination of those with the lowest P− value.
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The metrics included the number of distinct users retweeted, fraction of the users tweets

that were retweeted, average number of friends of friends, average number of followers of

friends, number of YouTube videos shared, the time the account was created, the number of

views of a video, etc., among many others.

Dep. Variable Au2v R-squared 0.629

Model OLS Adj. R-squared 0.629

Method Least Squares F-statistic 3.072e+04

Prob (F-statistic) 0.00 Log-Likelihood 13947.

No. Observations 54473 AIC -2.789e+04

Df Residuals 54470 BIC -2.786e+04

Df Model 3 Covariance Type nonrobust

Table 34: Chapter 7 - Regression Results without Outliers (i)

Score 0.1460 0.001 145.244 0.000 0.144 0.148

dScore 0.0200 0.001 25.819 0.000 0.018 0.022

con dist 0.1656 0.003 65.690 0.000 0.161 0.171

Table 35: Chapter 7 - Regression Results without Outliers (ii)

Results of regression model on data obtained after removing outlier data points appear

in Tables 34 and 35. We discover that content dist feature plays an important role in video

popularity prediction, suggesting high dependence of video sharing via Twitter on the video

content itself. Fig. 66 plots depict an improved alignment of the path of regression line to

the optimal path after the removal of outliers.

7.4.1 10-fold Cross-Validation

We performed a 10-fold cross validation on the dataset, fitting the regressor to 90% of

the data and validating it on the rest 10% for the prediction of Au2v dependent variable from

Score, dScore and content dist independent variables. Predictive modeling was conducted

after removing outliers from the data. The results of the predictive modeling using linear

regression show that we achieve a root mean squared error of 0.1873 (across all folds), which

means that our prediction varies by 0.1873 amount from the real values of Au2v. Plot in

Fig. 67 depicts how close our predictions are to the real values of the dependent variable.
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Figure 66: Chapter 7 - Regression plots for each independent variable.

Figure 67: Chapter 7 - 10-fold Cross-Validation of Au2v without outliers.

7.4.2 Classification and Comparison with other Models

We predict a user popularity as follows. If Au2v crosses a threshold, e.g. 30%, i.e. if more

than 30% tweets of user u are retweeted by others users, then user u can be considered as

a popular user. This can also be interpreted as “if a user u’s tweets will be popular or not,

given user u’s Score, dScore, and content dist (measure of his YouTube’s interest similarity

with the Twitter interests of his followers)”.

Classification was conducted initially with three different methods: Linear Regression

(the Predictive Model we present in this study), Random Forest and Naive Bayes methods.
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Area Under the Curve (AUC) is a score that computes average precision (AP) from predic-

tion scores. This average precision score corresponds to the area under the precision-recall

curve and the higher AUC represents better performance. Plots in Figure 68 correspond

to computed precision-recall pairs for different probability thresholds and the AUC score

computes the area under these curves. Best performance is achieved by Linear Regression

(0.699), followed by Naive Bayes (AUC:0.608) and Random Forest (AUC:0.608). Comple-

mentary methods tested were Support Vector Machines (SVM), Stochastic Gradient Descent

(SGD) and K-Nearest Neighbours (KNN).

SVM is a supervised learning model with associated learning algorithm that analyzes

data used for classification and regression analysis. Given a set of training examples, each

marked for belonging to one of the two categories (popular/ non-popular user), the SVM

training algorithm builds a model that assigns new examples into each of the categories,

acting as a non-probabilistic binary linear classifier.

Next classification model was Stochastic Gradient Descent (SGD), a gradient descent

optimization method for minimizing an objective function written as a sum of differentiable

functions, and a popular algorithm for training a wide range of models in machine learn-

ing, including linear support vector machines, logistic regression and graphical models. Its

use for training artificial networks is motivated by the high cost of running backpropaga-

tion algorithm over the full training set, as SGD overcomes this cost and still leads to fast

convergence.

The last classifier implemented here was K-Nearest Neighbours (KNN), a method clas-

sifying objects based on closest training examples in the feature space. The input consists of

positive, typically small, integer (15 in our case) of closest training examples in the feature

space. In KNN classification, the output is a class membership (popular/ non-popular user),

whereas an object is classified by a majority vote of its neighbours, with the object being

assigned to the class most common among its K-Nearest Neighbours.

After plotting the results of computed precision-recall pairs for various probability thresh-

olds we observe that best performance is still noticed in the case of our Predictive Model,

followed by SVM (AUC:0.608), KNN (AUC:0.601), and, lastly, SGD (AUC:0.580).

7.5 Incorporation into Content Delivery Schemes

CDNs aim at improving download of large data volumes with high availability and per-

formance. Content generated by online media services circulates and is consumed over
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Figure 68: Chapter 7 - Comparison with other models.
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Figure 69: Chapter 7 - The OSN-aware CDN mechanism

OSNs (with more than 400 tweets per minute including a YouTube video link [52] being

published per minute) and largely contributes to internet traffic growth [56]. Consequently,

CDN users can benefit from an incorporated mechanism of OSN-awareness over the CDN
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infrastructure. In [111] Kilanioti and Papadopoulos introduce various efficient copying

policies based on prediction of demand on OSNs for the dynamic mechanism of preactive

content copying.

Rather than pushing data to all CDN surrogates, they proactively distribute it only to so-

cial connections of the user likely to consume it. The content is copied only under certain

conditions (content with high viewership within the media service, copied to geographically

close timezones of the geo-diversed system used where the user has mutual social connec-

tions of high influence impact). This contributes to smaller response times for the content to

be consumed (for the users) and lower bandwidth costs (for the OSN provider). Herein, we

incorporate the proposed Predictive Model in the suggested policy [111] and prove that it

further improves its performance.

The proposed herein algorithm encompasses an algorithm for each new request arriving

in the CDN and an algorithm for each new object in the surrogate server. We use LRU for

handling non-homogeneous sized objects in the surrogates and prune the least recently used

items first. To ensure that least recently used items are discarded, the algorithm keeps track

of their usage in a scheme described in [111]. Internally, the module implementing the

algorithm communicates with the module processing the requests and each addressed server

separately (Fig. 69).

7.5.1 For Every New Request in the CDN

To begin with, we check whether specific time has elapsed after the start of cascade and,

only in the case of an uncompleted cascade, define to what extent the object will be copied.

We introduce the time threshold, that roughly expresses the average cascade duration. Ini-

tially, we check whether it is the first appearance of the object (Fig. 70).

The variable o.timestamp depicts the timestamp of the last appearance of the object in a

request and helps in calculating the timer related to the duration of the cascade. If it is the

first appearance of the object, the timer for the object cascade is initialized and o.timestamp

takes the value of the timestamp of the request. If the cascade is not yet complete (its timer

has not surpassed a threshold), we check the importance of the user applying its Score.

For users with Score surpassing a threshold (average value: 1.2943 in the dataset), we

copy the object to all surrogate servers of the user’s timezone and to the surrogate servers

serving the timezones of all followers of the user. Otherwise, selective copying includes only

the surrogates that the subpolicy decides. Subpolicy (Fig. 71) checks the Y timezones with
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the highest value of the combined feature set (Predictive Model(Score, dScore, content dist))

for the user Vi(t) as an average. Copying is performed to the surrogate servers that serve the

Y timezones of highest combined feature set value, according to the coefficients derived

from our analysis. We note here that variations of the Subpolicy include the replacement

of the timezones depicting the highest average values of Predictive Model(Score, dScore,

content dist), with those being derived from the application of Naive Bayes, Random Forest,

SVM, SGD, and KNN schemes.

1: if o.timestamp == 0 then

2: o.timer = 0;

3: o.timestamp = request timestamp;

4: else if o.timestamp != 0 then

5: o.timer = o.timer + (request timestamp - o.timestamp);

6: o.timestamp = request timestamp;

7: end if

8: if o.timer > time threshold then

9: o.timer = 0;

10: o.timestamp = 0;

11: else if o.timer < time threshold and user.Score > Score threshold then

12: copy object o to surrogate that serves user’s Vi(t) timezone;

13: for all user Vy(t) that follows user Vi(t) do

14: find surrogate server n j that serves Vy(t)’s timezone;

15: copy object o to n j;

16: end for

17: else if o.timer < time threshold then

18: copy object o to surrogates n j that Subpolicy decides;

19: end if

Figure 70: Chapter 7 - Algorithm for every new request (timestamp, Vi(t), o) in the CDN.
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1: find the Y timezones that depict the highest average values of Predictive Model(Score,

dScore, content dist) user Vi(t);

2: for all timezones that belong to Y do

3: find surrogate server n j that serves timezone;

4: copy object o to n j;

5: end for

Figure 71: Chapter 7 - Subpolicy

The realistic network depiction for the simulation of nodes representing the surrogate

servers, the origin servers, and the users making the object requests is analysed in detail in

Chapter 3, along with information about the dataset and the configuration settings of the

simulations.

We examine Mean Response Time (MRT), the most significant client-side metric asso-

ciated with user experience in CDNs. MRT indicates how fast a client is satisfied. For the

most representative case of time thresholds covering all the examined requests of our dataset

we observe a trade-off between the reduction of the response time and the cost of copying

in servers. This is expressed for all schemes used (Linear Regression, Naive Bayes, Ran-

dom Forest, SVM, SGD, KNN) with a decrease of the MRT as the timezones increase and a

point after which the MRT starts to increase again (Fig. 72). For the scheme augmented with

our Predictive Model, namely the Linear Regression, this shift occurs with approximately 7

timezones out of the 10 used. After this point the slight increase in the MRT is attributed

to the delay for copying content to surrogate servers. The cost for every copy is related to

the number of hops among the client asking for it and the server where copying is likely to

be made. We observe that Linear Regression outperforms all the other schemes, depicting

MRTs smaller than their respective. The proposed model performs better than the algorithm

suggested in [110], and its variations [111], depicting an average MRT of 1.0647 msec.

We note here that timezones with highest average values for each scheme, that Subpolicy

defines, are pre-calculated, in order to reduce computational burden in the simulations.
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G(V,E) Graph representing the social network

V = {V1, ...,Vn} Nodes representing the social network users

E = {E11, ...,E1n, ...,Enn} Edges representing the social network con-

nections, where Ei j stands for friendship be-

tween i and j

R = {r1,r2, ...,rτ} Regions set

N = {n1,n2, ...,nu} The surrogate servers set. Every surrogate

server belongs to a region ri

Ci, i ∈ N Capacity of surrogate server i in bytes

O = {o1,o2, ...,ow} Objects set (videos)

Si, i ∈ O Size of object i in bytes

Πi Popularity of object i, i ∈ O

qi = {t,Vψ ,ox},1 < x < w,1 < ψ < n Request i, consists of a timestamp, the id of

the user that asked for the object, and the ob-

ject id

P = {p12, p13, ..., pnw} User posts in the social network, where pi j

denotes that node i has shared object j in the

social network

Q = {q1,q2, ...,qζ} Object requests, where qi denotes a request

for an object of set O

Qhiti , Qtotali , i ∈ N Number of requests served from surrogate

servers of the region of the user/ total number

of requests

X ,Y,L,H ∈ R Closest timezones with mutual followers/

with highest centrality metric/ with highest

lobby values/ with highest HITS values

Table 36: Chapter 7 - Notation Overview

7.6 Conclusions

Circulation via OSNs further intensifies the problem of HTTP traffic caused by online

generated content. We conclude herein that video sharings over an OSN platform can be

predicted with a small set of features combined from both the platform and the media ser-

vice. Despite the focused scope of this work and the limitations of its conduction merely
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Figure 72: Chapter 7 - Effect of timezones used as Y on Mean Response Time for various

schemes

with Twitter and YouTube data, the scale of the medium allows us to make assumptions for

generalisation across different OSNs and microblog platforms, which we plan to extensively

analyse in the future. Our results have direct application to the optimal placement of online

video content. We believe that our approach can serve as a useful starting point for extensive

experimentation with OSN-aware content delivery schemes.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

Multimedia big data from entertainment and social media, medical images, consumer

images, voice and video drives research and development of related technologies and appli-

cations and is steadily becoming a valuable source of information and insights. Multimedia

content providers such as YouTube strive to efficiently deliver multimedia big data to a large

amount of users over the Internet, with currently more than 300 hours of video content be-

ing uploaded to the site every minute. Traditionally, these content providers often rely on

CDN infrastructures. However, some measurement studies depict that a significantly large

proportion of HTTP traffic results from bandwidth-intensive multimedia content circulating

through OSNs. Consequently we can exploit the user activity extracted from OSNs to reduce

the bandwidth usage. By incorporating patterns of information transmission over OSNs into

a simulated CDN infrastructure, we demonstrated in this Thesis that the performance of

CDNs can be remarkably improved.

Especially today that HTTP traffic ascribed to media circulating over OSNs has grown,

an OSN-awareness mechanism over a CDN has become essential 3. This mechanism, intro-

duced in the Thesis, aims to exploit patterns of social interactions of the users to reduce the

load on the origin server, the traffic on the Internet, and ultimately improve the user expe-

rience. By addressing the issue of which content will be copied in the surrogate servers of

a CDN, it ensures a near-optimal content diffusion placement. At the same time, it moder-

ates the impact on bandwidth that the Big Data transmitted via OSNs has, offering scalable

solutions to existing CDNs or OSNs providers. Furthermore, we have experimented with

variations on caching schemes, timing of content delivery and context of the OSN and the

media platform.
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Table 37 sums up the average values for all cases of testing. As the time threshold in-

creases from 24 to 48 h and to hours covering the entire set of requests, we observe that

the mean response time decreases steadily. Here, we present indicative values for the 10

closest timezones of mutual followers and experiments were conducted for varying subsets

of 1, 5 and 10 timezones with the highest influence metric, respectively, where copying will

ultimately be performed for all variations. The lowest mean response times appear for the

cases of the time threshold covering all requests for all the variations (Fig. 73). In general,

between Variation-1 and Variation-2 we observe a better performance in terms of mean re-

sponse times achieved for the Variation-1, where the viewership within the YouTube platform

is considered. All variations perform better than the plain Social Prefetcher approach apart

from SIZE variation, which however performs better than plain CDN Simulator Push and

Pull policies. The caching scheme of LFU appears to perform better than the LRU scheme.

LRU and LFU offer comparable results, whereas they both outperform SIZE. We come to the

conclusion that there is a realistic room for performance improvement by implementing var-

ious web caching characteristics in a CDN infrastructure, even though the social cascading

mechanisms have already been activated to improve its performance.

For the most representative case of all requests for LRU and LFU schemes, the trade-off

between the reduction of the response time and the cost of copying in servers is expressed

with a decrease of the mean response time as the timezones increase, and a point after which

the mean response time starts to increase again. This decrease in the mean response time

occurs with approximately 5 timezones out of the 10 used for LRU scheme (for a fixed

number of closest timezones with mutual followers), and with 7 timezones for LFU. After

this point the slight increase in the mean response time is attributed to the delay for copying

content to surrogate servers. The cost for every copy is related to the number of hops among

the client asking for it and the server where copying is likely to be made, according to the Put

function. We observe that SIZE depicts a poor performance, since it does not take advantage

of the frequency skew.

In terms of performance, we note that even with the plain Social Pefetcher policy pro-

posed herein, there is a significant improvement over the respective improvement (39.43%

only for the plain Social Prefetcher, upto 42.32% for Variation-3(LR, Chap. 7), whereas 30%

in [176]) of other methods in pull-based methods employed by most CDNs, even though they

moreover overlook storage issues of the distributed infrastructure.
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Mean response time (Avg, 10−2 sec.)

Variation-1 - 24-h 1.1383

Variation-1 - 48-h 1.1352

Variation-1 - all-h 1.1172

LFU - all-h 1.1112

SIZE - all-h 1.1274

LRU - all-h 1.1172

Variation-2 - 24-h 1.1411

Variation-2 - 48-h 1.1376

Variation-2 - all-h 1.1174

Variation-3 (LR)- all-h 1.0647

Variation-3 (KNN)- all-h 1.2611

Variation-3 (NB)- all-h 1.2437

Variation-3 (SGD)- all-h 1.2364

Variation-3 (RF)- all-h 1.2252

Variation-3 (SVM)- all-h 1.2232

Social Prefetcher 24-h 1.1412

Social Prefetcher 48-h 1.1377

Social Prefetcher all-h 1.1181

Plain CDN Simulator - Push 1.4471

Plain CDN Simulator - Pull 1.8460

Table 37: Summary - Average Metric Values for X = 10 Timezones of Close Mutual Friends

Plain CDN Simulator - Push case refers to proactive prefetching of content to all surro-

gate servers. In this case the mean response time becomes minimum for the plain simulator,

since every request is bound to be satisfied, whereas the content copying cost is maximum.

In the Plain CDN Simulator - Pull case content is forwarded to the surrogate server at the

moment the user asks for it, hence, the copying cost becomes minimum, but the response

time is maximum for the plain simulator.

The pull policy is typically used for personalized information, while the push policy deals

with information that is in high demand by users. Most modern CDNs still deploy both pull

and push zones, with pulling being the most dominant case. Pull zones are more frequently

used simply because they more easily automatically cache assets of the clients. However,
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Figure 73: Summary - Average metric values for X = 10 timezones of close mutual friends

for threshold covering all requests

push zones are still used, but they usually concern dealing with hosting large files or static

assets that do not frequently change. Small objects of inherent virality and limited duration

should ideally be pulled by the CDN.

We notice that Social Prefetcher approach outperforms both Plain CDN Simulator - Push

and Plain Simulator - Pull policies for the case of 15 % of the whole catalog size used in our

experiments. The performance of pull and push strategies varies in regard to the load with

pull strategies achieving a lower mean response time under high loads and push strategies

being superior under low to medium loads ( [141], [75], [140]).

8.2 Future research directions

Understanding the effects of social cascading on bandwidth-intensive multimedia con-

tent over the Web is of great importance toward improving the performance of CDNs. Next

generation CDNs are being leveraged in an array of ways to overcome the challenges of pro-

viding a seamless customer experience across multiple devices with varying connectivity and
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corresponding to the call for enterprise application delivery. They have to go beyond efficient

resource discovery and retrieval tasks of the established CDNs and support refined mecha-

nisms for data placement, replication and distribution for a large variety of resource types and

media formats. OSNs on the other hand create a potentially transformational change in user

navigation and from this angle the rapid proliferation of OSNs sites is expected to reshape

the architecture and design of CDNs. The challenges and opportunities highlighted in the

interdisciplinary field of OSN-aware content delivery are bound to foster some interesting

future developments, including innovative cache replacement strategies as a product of the

systematic research of temporal, structural and geographical properties of social cascades.

In this work, we implemented and experimentally evaluated a dynamic policy of content

prefetching, and thus, we have in our hands proof that OSNs can affect the content delivery

infrastructure.

As the number of internet users increases dramatically and OSNs open new perspectives

in the improvement of Internet-based content technologies, new issues in the architecture,

design and implementation of existing CDNs arise. Consequently, we have to search for new

ways to process the large volume of multimedia data created on a daily basis. The dynamic

policy proposed herein can be further enriched with contextual information. In the future,

we could implement and experiment on variations of dynamic policy that aim to improve it

with more complex functions that incorporate more refined handling of the time differences

(enriched with diurnal trends) and exploit load-balancing among surrogate servers.

Whereas our study is limited to a specific OSN and media service, our results are gener-

ally applicable with a potentially high impact for large-scale systems with traffic generated

by online social services and microblogging platforms. As the number of internet users in-

creases dramatically and OSNs open new perspectives in the improvement of Internet-based

content technologies, new issues in the architecture, design and implementation of existing

CDNs arise. Our research agenda includes the generalization of proposed policy to deal with

multiple OSN platforms and mobile CDN providers.

Herein, we discuss some key areas of interest concerning the diffusion of bandwidth-

intensive media content over OSNs.

8.2.1 Large-scale Datasets

In order to harness the power of social networks diffusion over CDN infrastructure, the

key areas of interest that need to be explored include the large size of the graphs, and also
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the fact that diffusion of links is multiplied through dissemination over sites like YouTube,

and amplified by the proliferation of smartphones and cheap broadband connections. The

amount of information in OSNs is an obstacle, since elaborate manipulation of the data may

be needed. An open problem is the efficient handling of graphs with billions of nodes and

edges.

The desired scaling property refers to the fact that the throughput of the proposed ap-

proaches should remain unchanged with the increase in the data input size, such as the large

datasets that social graphs comprise and the social cascades phenomena that amplify the

situation. Cost of scaling such content can be expressed in different ways. For instance,

in this Thesis it matched with the number of replicas needed for a specific source. Future

experimentations may take into account the optimal use of memory and processing time of

a OSN-aware built system.

8.2.2 OSN Evolution

Existent works examine valuable insights into the dynamic world by posing queries on

an evolving sequence of social graphs (e.g. [158]) and time evolving graphs tend to be in-

creasingly used as a paradigm also for the emerging area of OSNs ( [79]). However, the

ability to scalably process queries concerning the information diffusion remains to a great

extent unstudied. With the exception of sporadic works on specialized problems, such as

that of inference of dynamic networks based on information diffusion data [160], we are

not aware of relative studies on the information diffusion through OSNs under the prism of

graphs dynamicity.

8.2.3 Semantic annotation

The introduction of concrete, unified metrics for the characterization of the extent of

the social dissemination (local or global cascades phenomena) is an open issue. A system-

atic incorporation of this quantified knowledge into the existent underlying content delivery

infrastructure would be salutary for proactive steps towards the improvement of user experi-

ence.

Last but not least, of more concurrent cascades happening it would be interesting to

know which of them will evolve as global and which of them will evolve as local, possibly

making some associations with their content or context features. It is challenging to discover

contextual associations among the topics, which are by nature implicit in the user-generated
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content exchanged over OSNs and spread via social cascades. In other words we would like

to derive semantic relations. This way the identification of a popular topic can be conducted

in a higher, more abstract level with the augmentation of asemantic annotation. While we

can explicitly identify the topic of a single information disseminated through an OSN, it is

not trivial to identify reliable and effective models for the adoption of topics as time evolves

( [85], [133]) characterized with some useful emergent semantics.

8.2.4 Mobile CDNs and the Cloud

CDN services are increasingly being used to enable the delivery of bandwindth-demanding

large media data to end-users of multimedia content providers and extend the capabilities of

the Internet by deploying massively distributed infrastructures to accelerate content delivery.

Mobile computing has created enormous demand for online experience, that OSN-aware

CDNs are required to satisfy. Almost ubiquitous Wi-Fi coverage and rapid extension of

mobile-broadband (around 78 active subscriptions per 100 inhabitants in Europe and Amer-

ica) provide undisrupted connectivity for mobile devices, whereas 97% of the world’s pop-

ulation is reported to own a cellular subscription in 2015 [8]. Mobile-specific optimizations

for applications along with drastically simplified and more intuitive use of devices (e.g. with

multi-touch interactions instead of physical keyboards) contribute to mobile applications be-

coming the premium mode of accessing the Internet, at least in the US [9].

Cloud service providers have added CDN services in order to lower costs while increas-

ing simplicity. CDNs, often operated as SaaS in cloud providers (Amazon CloudFront, Mi-

crosoft Azure CDN, etc.) aim at addressing the problem of smooth and transparent content

delivery. A CDN actually drives cloud adoption through enhanced performance, scalability

and cost reduction. With the limitation for both CDNs and cloud services being the geo-

graphic distance between a user asking for content and the server where the content resides,

cloud acceleration and CDN networks are both complementary to achieving a goal of deliv-

ering data in the fastest possible way. Although cloud mainly handles constantly changing

and, thus, not easily cached dynamic content, utilization of OSN-aware CDNs in cloud com-

puting is likely to have profound effects on large data download.

8.2.5 Recommender Systems

Recommender systems aim at providing users with recommendations of new products

/ friends / events / activities and may also be associated with content delivery, e.g. within
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multimedia content delivery platforms, where the product may be a multimedia resource (e.g.

more than 66% of Netflix movies are recommended [55]). Moreover, OSNs today collect

voluminous information from users’ social contacts and their daily interactions (co-rating

of products, co-commenting of posts, etc.) to provide them with useful recommendations.

Hence, this Thesis could be extended in the future to evaluate the prefetching of multimedia

content within recommender system platforms, as well as the exploitation of the social-

awareness component to improve recommendation suggestions.

The challenges for the provision of recommendation within OSNs for the state-of-the-

art recommendation algorithms, including collaborative filtering, semantic enhanced algo-

rithms, etc., in the realm of multimedia OSNs include: (i) the heterogeneity of nodes, as

nodes of the graphs may include not only users, but also activities, events, enhancement

with geo-location information and information deriving from daily interactions with social

contacts,(ii) the cold-start problem for newly-registered users or users with insufficient in-

formation, (iii) the necessary fast response due to frequent change of users’ location and the

energy limitations of their devices.
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Appendix A

Request Generator

The media workload generator developed in the context of the leverage of OSN informa-

tion takes as input controllable parameters and produces traces from desired distributions.

After crawling of Twitter in [64] (users, tweets), tweets were collected with links to

YouTube videos and extracted real video links, ultimately obtaining posts for 1,384,758 users

and information for 1,113,294 unique videos that Twitter users have shared.

For the construction of the request generator, the request distributions in hours of the

day and days of the week [58] were taken into account. For example, the requests increase

dramatically at 12 noon, remain high until the night, and decrease significantly after mid-

night. There are significantly fewer numbers of requests during weekends and holidays than

during working days in the week. Timestamps are counted in seconds after the start of the

simulation. The generator provides an output for every one of the 142 timezones defined by

Twitter.

The requests produced from the generator to evaluate our content prefetching policy

should be realistic. Other systems declared in their majority that the user will ask for an

object it has viewed in a social network with an arbitrary probability. The time that users ask

for content is not taken into account (there exist more requests in the rush hours, and rush

hours differ for users in different timezones). This information is taken into account by the

proposed generator, which can also be applied to other social networks and non-multimedia

content.

1. The unique users per day graph in [88] are used. The measurement is performed at a

university campus with a known population, thus enabling the scale up of the amount

of requests according to the users in each region.
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Figure 74: Unique users per day in [88]

2. The user sessions are distributed into hourly timeslots according to the hourly YouTube

patterns by [88].

Figure 75: User sessions in [88]

3. Each session is assigned a duration according to the duration CDF presented in [153].

4. For each session starting at moment η : We select a video for that session creating the

appropriate request, and the session duration is decreased by the duration of the video.

The session is set to start again when the video ends.

To choose the video to be viewed, the approach described in [27] is used, denoting

VC: view count of each video, σ : sum of the view counts of all videos in the catalog,
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Figure 76: Session durations in [153]

and ν : the number of videos. To select a video, a random number µ between 1 and

σ is created. Then, the video j (1 ≤ j ≤ ν) is found with VC j > µ and VC j−1 < µ .

This gives a probability for a video proportional to its View Count, and thus, its actual

popularity. If a video is also part of a social cascade for the current user, its VC is

multiplied by a number to increase its popularity. The suggested probability increase

is 7.35, as given in [40].
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Appendix B

Acronyms

The following table describes the significance of various abbreviations and acronyms

used throughout the Thesis. The page on which each one is defined or first used is also

given.

AS Autonomous System 64 SGD Stochastic Gradient Descent 15

CDN Content Distribution Network 1 SIR Susceptible Infected Removed 23

HTTP Hypertext Transfer Protocol 8 SIRS Susceptible Infected Removed Susceptible 23

ICM Independent Cascade Model 22 SIS Susceptible Infected Susceptible 23

ISP Internet Service Provider 51 SNA Social Network Analysis 5

KNN K-Nearest Neighbours 15 SVM Support Vector Machines 15

LTM Linear Threshold Model 22 TCP Transmission Control Protocol 1

MRT Mean Response Time 67 UDP User Datagram Protocol 1

OSN Online Social Network 1 UGC User Generated Content 7

QoE Quality of Experience 1 VOD Video-on-Demand 18

Table 38: Acronyms used in Thesis
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