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This work presents the Thread Flux (TFlux) Parallel Processing Platform, a complete system

that offers an efficient dataflow-like thread-based model of execution, the Data-Driven Multi-

threading (DDM), to its users using commodity components, i.e. unmodified Operating System,

unmodified compiler and unmodified ISA hardware making it applicable to off-the-shelf systems.

TFlux provides a complete solution from the programming toolchain to the hardware implemen-

tation. The abstraction layer TFlux exports to its users hides all the details of the underlying

machine allowing different hardware configurations to support its model of execution transpar-

ently to the programmer. One key component of TFlux is the TFlux Scheduler that is responsible

for Thread Scheduling based on data-availability.

The user of TFlux can develop applications using a set of simple but powerful compiler di-

rectives. Then the TFlux-C-Preprocessor converts this code to an ANSI C program that includes

the Runtime Support for TFlux and all calls to the system’s scheduler. This code can be compiled

with a commodity C compiler resulting in a binary that is executable by any commodity Operat-

ing System on any commodity CPU processor. The layered design of TFlux has been tested on

different Unix-based multiprocessor systems. Moreover, this design enabled the porting of TFlux

to different machines with minimum effort.

In this work, two TFlux designs are presented: TFluxHard and TFluxSoft. For TFluxHard

the Thread Scheduler is a hardware unit whereas for TFluxSoft, the Scheduler’s functionality is
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provided at the software level. As such, TFluxHard is applicable to systems that offer the ability

to augment the machine with a small hardware module while TFluxSoft is directly applicable to

any existing, off-the-shelf system.

To evaluate the TFlux designs, a benchmark suite based on real-life and synthetic applications

was developed. The applications in this suite were carefully chosen in order to have different

characteristics both in terms of their dynamic behavior and complexity of their dataflow graph.

For the applications of the evaluation suite, both TFluxHard and TFluxSoft show remarkable

speedup and scalability. Although for most applications both achieve almost the same perfor-

mance, TFluxHard shows an advantage over TFluxSoft arising from offloading the Scheduler’s

functionality to the hardware module. In addition, the experimental results also show that both

TFluxHard and TFluxSoft are able to exploit more parallelism for applications with complex

dependency graphs, compared with traditional parallel programming model approaches.

Overall, TFlux is a platform able to deliver high-performance by exploiting dataflow-like

Thread scheduling on off-the-shelf systems through augmentation of the source code with simple

compiler directives.
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Chapter 1

Introduction

It is a known fact that traditional techniques used to improve microprocessor performance have

lead to diminishing returns. Such techniques include, among others, packing more transistors into

the same chip [76], clocking the chips at higher frequencies [1, 82], the introduction of on-chip

caches [48], exploitation of Instruction Level Parallelism [10, 110, 111, 119], speculation [66, 65,

107, 109] and prefetching [106]. The main reasons that limited the performance improvement

delivered by these techniques are twofold. On the one hand the complexity of the design and the

power consumed have reached such high levels, that make the extension of the above techniques

unfeasible [11, 19, 80]. On the other hand, the performance increase that these techniques could

deliver has, to a large extent, already been exploited [1, 11, 19].

To overcome these limitations, the CPUs have entered a new era, that of the multicore chips.

These processors consist of a number of interconnected cores on the same die. These cores are

usually simpler than the traditional monolithic designs leading to lower complexity designs and

more power efficient systems. Currently, all major manufacturers have multicore products in the

1
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market. Examples include Sun’s T1 and T2 (Niagara) that support up to 64 hardware threads,

IBM’s Cell/BE [56] with 8+1 cores, Intel’s Xeon 7400 with 6 cores, Intel’s Quad Core [51] with 4

cores, and AMD’s Opteron [2] with also 4 cores. Moreover, more ambitious designs like the Intel

Teraflops chip [50] with 80 cores and the IBM Cyclops-64 (C64) [31] with 160 cores, are under

development.

There are two major ways to explore the parallelism offered by the multicore processors:

“throughput” and “concurrency”. Throughput refers to executing multiple independent applica-

tions on the system, one on each of its cores. Although this approach can keep the resources busy

it is unable to improve the performance of each particular instance of an application. Moreover, it

is not likely that users will have as many compute intensive tasks as the number of on-chip cores

especially when this number of cores increases. On the other hand, “Concurrency” is the approach

that has been traditionally used for the execution of compute intensive applications. In particular,

the target of the “Concurrency” approach, is to split a single program into parallel entities, which

are to be executed by different computation nodes. The main objective is to decrease the execution

time of the application. If enough parallelism from the application is exposed to the hardware, it

is possible to utilize the available resources, therefore decreasing the application’s execution time

as much as possible. While throughput is easily exploited in current small-scale multicore proces-

sors, the support for efficient concurrency will be the key issue to exploit the parallelism for the

future large-scale multicore processors.

In addition to the parallel hardware, the key components for exploiting concurrency are the

execution model, which allows the application to utilize multiple processors for its execution and

the programming model in order for the programmers to develop such applications. An execution

model appropriate for multicore processors must be a good match to the particular characteristics

of the architecture. It must provide an efficient scheduling of the concurrent tasks, and at the same
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time hide the details of the underlying system providing to the user and programmer a virtualized

environment. This virtualization allows for programs to be developed without a particular system

as target.

The programmability of a parallel system is another major issue. Although numerous research

projects have focused in the past on building fully automated parallelizing compilers, such as

Polaris [18], SUIF [128], Parafrase [41] and NCI [77], none of them is widely used today. In

contrast, programmers use semi-automated solutions like the compiler directives of OpenMP [81]

or the libraries for MPI [74] or pthreads [21]. This semi-automated approach is what seems to be

the programming solution to be followed for the multicores architecture [11, 19]. To achieve high

performance the programming model should enable the programmer to express a high degree of

parallelism at a fine-grained level. In addition, this model should not require the programmer to

develop applications with a particular machine configuration in mind.

According to the previous discussion, the main characteristics that a platform must have in

order to allow for the applications to efficiently exploit the parallelism offered by a large-scale

multicore are the following:

Virtualization: The platform must offer to its user and programmer a virtualized environment

that hides the details of the underlying system both at the hardware and software level.

Consequently, programs do not need to be developed for a specific machine configuration.

Instead, programmers must be able to develop and execute on all implementations of the

proposed platform.

Performance: It is required for the proposed platform to be able to achieve high levels of perfor-

mance even for non explicitly parallel applications. In order to achieve this, the paralleliza-

tion overheads incurred must be kept at minimum levels.
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Scalability: The performance of the proposed platform must scale to multicore systems with

larger number of cores. In order to achieve this, the parallelism exposed by the model must

not be limited in any way by the number of execution units.

Portability: The proposed platform must require minimum effort for it to be ported to a new

system. The system-specific code must be limited to only a small number of components of

the proposed platform.

Programmability: Programs for such a platform are to be developed using a fully- or semi-

automated parallelization approach, i.e. with the use of a parallelizing compiler or by aug-

menting sequential code with special compiler directives. The programming model must

allow the programmer to express any parallel construct in an intuitive way.

1.1 The TFlux Parallel Processing Platform

This work presents the Thread Flux (TFlux) Parallel Processing Platform, a parallel execu-

tion system that aims to deliver high performance on commodity multicore systems. TFlux is a

complete system, from the hardware to the programming toolchain and includes a number of key

components that allow it to meet the targets set for a successful parallel processing platform.

TFlux achieves high performance and scalability mainly due to its scheduling policy that fol-

lows the Data-Driven Multithreading (DDM) model of execution. This dataflow-like scheduling

policy enables TFlux to exploit more parallelism compared to other models that enforce synchro-

nization using barriers and locks. The careful design of the several components of TFlux reduce

the parallelization overheads in a way that allows for applications with fine-grained parallel seg-

ments to scale well on systems with a large number of processing elements.
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It is a main goal of TFlux to provide dataflow-like scheduling to commodity systems. By

using commodity components TFlux not only widens its impact but also is able to benefit from

the improvements introduced in those components. In order to achieve its goal, TFlux follows a

layered design. The top layer, which is the one programmers use to develop TFlux applications,

abstracts all details of the underlying machine. TFlux applications are developed using ANSI-C

together with TFlux compiler directives. The TFlux compiler directives are used to express the

code of the parallel segments and the dependencies among those segments. The code of the TFlux

program passes through the TFlux Preprocessor that outputs a C program, which may be compiled

by a commodity C compiler resulting in an executable binary. The binary invokes the operations

of the TFlux Runtime Support allowing execution under TFlux. The Runtime Support runs on

top of an unmodified Unix-based Operating System and hides all TFlux specific details such as

the particular implementation of the TFlux Thread Scheduler. More details about the purpose,

design and operation of the different layers of TFlux will be given in Chapter 3 that focuses on the

presentation of the TFlux Platform. As for the TFlux directives and the TFlux Preprocessor they

are presented in Chapter 4.

This work presents two incarnations of TFlux: TFluxHard and TFluxSoft. The key com-

ponent that differentiates these two incarnations is the TFlux Thread Scheduler. In particular,

whereas for TFluxHard the functionality of the Scheduler is provided by a hardware unit, for

TFluxSoft this functionality is provided at the software level. As such, although TFluxHard uses

only commodity components, it requires the system to be augmented with extra hardware. TFlux-

Soft on the other hand is directly applicable to off-the-shelf multiprocessor systems. The details

of these two systems are presented in Chapter 5 for TFluxHard and in Chapter 6 for TFluxSoft.

The key component of TFlux is its ability to provide the dataflow model of execution to its

programmer. As such, evaluation of the platform needs to be made with a representative collection
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of benchmarks with different dependency graphs. For this TFlux Evaluation suite we selected a

number of real-life and synthetic applications which are presented in detail in Chapter 7.

The evaluation of TFlux was made on a number of different systems which included both

simulated and off-the-shelf machines. In Chapter 8 we present the details of these configurations

and explain the simulation process. Moreover, we analyze the metrics we used and explain the

methodology for the experiments.

The experimental results are presented in Chapter 9. These results show that TFlux incar-

nations are able to deliver almost linear speedup and good scalability. A comparison of the two

TFlux systems shows that offloading the Scheduler’s functionality to the hardware unit allows

TFluxHard to deliver better performance compared to TFluxSoft especially for applications with

very fine-grained parallel constructs. Both systems however, were found to outperform “tradi-

tional” parallel execution models.

The last part of this work, which is presented in Chapter 10, explores the ability of TFlux to

virtualize the details of the underlying system. This qualitative study was performed by executing

both TFlux incarnations on a number of different systems. Towards this direction, to study the

portability of TFlux, i.e. the effort that is required to port the system to a machine with key

differences, we detail the implementation of TFlux on the Cell/BE processor.

The main outcome of this work is a system that brings dataflow scheduling to commodity

multicore systems. TFlux achieves this goal through its layered design which enables to the Data-

Driven Multithreading (DDM) model of execution to operate on unmodified components.Kyri
ak

os
 Stav

rou



7

1.2 Contributions

The main contribution of this work is the design, the implementation and the evaluation of the

TFlux Parallel Processing Platform. In the list that follows we present each contributing factor in

more detail.

1. TFlux Platform

(a) Abstract design of the TFlux Platform: The design includes strict description and

specification for all entities required in order for multiprocessor systems to execute

TFlux applications. These entities include the TFlux compiler directives, the Runtime

Support, the TFlux Kernels and the TFlux Scheduler.

(b) Virtualization and Portability: The different layers of TFlux have been designed in

such a way that allows them to hide the details of the underlying machine. To achieve

this goal it was also necessary to define efficient interfaces between the different layers.

2. TFlux Preprocessor

(a) Definition of the TFlux directives: This work defined a set of general compiler direc-

tives appropriate for expressing dataflow dependencies between the parallel segments.

These directives are not specific for the TFlux Platform but have also been used for

other modern architectures capable of supporting dataflow scheduling.

(b) TFlux Preprocessor: Another part of this work was the development of a tool that

converts TFlux applications, i.e. applications augmented with the aforementioned

compiler directives, to ANSI C programs able to compile with commodity C com-

pilers.
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3. TFlux Incarnations

(a) TFluxHard: Another contribution of this work is the identification of the Basic Op-

erations of the TFlux Scheduler and their description as hardware components. More-

over, this task includes the efficient design and implementation of the interface be-

tween this Scheduler and the Runtime System as well as the interconnection of the

Scheduler to the system’s network.

(b) TFluxSoft: A second incarnations of TFlux, the TFluxSoft system is also a contri-

bution of this work. The main difference of TFluxSoft compared with TFluxHard is

that the former is applicable to off-the-shelf machines. For this incarnations, this work

presents the design and implementation of the TFlux Scheduler at the Software level.

4. TFlux Evaluation Suite: As part of this work we needed to form a collection of real-life

and synthetic applications in order to evaluate the two incarnations. Notice, that this suite is

general enough to be applied to other dataflow architectures.

5. Publicly available distribution of TFlux: TFluxSoft is publicly available upon request

and may be found at www.cs.ucy.ac.cy/carch/casper/tflux. With this contribution, anyone

interested in executing applications using the DDM model of execution may do so using

TFluxSoft on any off-the-shelf system.
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Chapter 2

Related Work

This Chapter presents a representative subset of the related work relevant to the concepts of the

TFlux Platform. Section 2.1 discusses the factors that forced the shift from the monolithic single-

chip microprocessor design to the multicores whereas Section 2.2 presents models of execution

that target these systems. In Section 2.3 we introduce the dataflow model of computation and in

Section 2.4 the Data-Driven Multithreading (DDM) model of execution. Finally, in Section 2.5 we

present the Data-Driven Network of Workstations (D2NOW) and in Section 2.6 the Data-Driven

Multithreading Chip Multiprocessor (DDM-CMP).

2.1 The Shift to Multicore Systems

The performance increase observed for single-chip microprocessors was until recently a result

of combining three different factors. The first was related to the implementation technology. In

particular, as the technology feature size decreases it is possible to pack not only more, but also

faster transistors, into the same chip [1, 11, 19, 82, 131]. This technology shrink, in addition

9
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to the performance increase due to higher clock rates, also allows the implementation of more

sophisticated microarchitectural mechanisms.

The second factor is related to microarchitectural techniques. Maybe the most important such

technique is pipelining which leads to a significant increase of the throughput of microproces-

sors. Today all known microprocessors include deep pipelines. Other techniques that are known

to improve the instruction-level parallelism are the register renaming [108], out-of-order execu-

tion [119] and branch prediction [75].

Whereas these techniques improved significantly the performance of microprocessors this was

not the case for the memory system. In reality, most advances have lead to the increase of what

is known as the “CPU-Memory gap” [82], i.e. the gap between the time to execute an instruction

and the time to get a value from memory. Therefore, the third factor towards increasing the perfor-

mance of single-chip microprocessors regards techniques that target this “Memory Wall”. These

techniques include the introduction of on-chip caches [48], hardware and software prefetching

schemes [106] as well as microarchitectural structures such as the load-store queue [108] or the

trace cache [55].

An orthogonal technique to the ones mentioned above is Simultaneous Multithreading [122].

This technique, which was implemented in commercial chips such as the Intel Pentium 4, allows

for instructions from different programs to co-exist in the same pipeline. To achieve this the

processor is equipped with additional registers and wider pipelines. Although this technique is

able to increase the throughput of the processor often comes with a negative impact on power

consumption.

In the last years, the use of the above techniques to exploit better performance started to result

in diminishing returns [1, 11, 19, 80], i.e. little improvement was obtained for the additional com-

plexity in the design. This is mainly due to the fact that the potential of most of these approaches
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has, to a large degree, been already exploited [1, 11, 19]. Moreover, no new, radical approach

has been included in the commercial chips of last years. Although making the existing mecha-

nisms more aggressive (e.g. larger caches, wider pipelines, multilevel speculation) seemed to be

a possibility, the “Power Wall” became a serious limitation. In particular, the complexity of these

designs increased the power consumption to such level that managing the dissipated temperature

was only possible up to a point. Vendors tried to mitigate this problem through various techniques

both at the physical and microarchitectural level [67, 69, 70, 103, 115]. Despite the contribution of

these techniques to decreasing both power and temperature, the Power Wall is now the major lim-

iting factor to the microprocessor design. Today, computer architects design chips for maximum

performance for a given power budget [103].

Major processor vendors realized that the traditional approaches were not the way that would

allow them to meet the performance increase rate projected by Moore’s Law. As such, instead

of trying to increase the performance of each single CPU core, the effort focused on packing

multiple cores onto the same chip leading to the Chip Multiprocessor (CMP) paradigm [80]. The

trend is for the number of these cores to increase and for their complexity to decrease in each

generation [11, 19, 131]. The major challenge today is to find programming models that will be

able to efficiently keep all the available resources busy.

2.2 Parallel Programming Models

This Section presents recent parallel programming models specifically designed for multicore

systems. Due to the large number of research efforts that target parallel processing it is not possible

for this list to be exhaustive. However, we believe that the works presented in this Section form a

representative subset.
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Thread Level Speculation:

Thread Level Speculation (TLS) [79], implemented by the Stanford’s Hydra CMP, allows the

programmer to break a sequential program into non-overlapping sections of code called Threads

without the need to statically identify data-dependencies among them. The hardware attempts

to execute the Threads in parallel while tracking all memory accesses to detect dependencies.

As such, parallelization of difficult programs is made easier. In case of miss-speculation Thread

rollback/restart functions are activated. The Hydra CMP requires extra hardware which is reported

to consume the real estate of a pair of L1 caches per CPU.

Compared to Hydra, TFluxSoft achieves similar speedup without the need for extra hardware;

and as for the TFluxHard solution, this hardware is smaller and simpler. In addition, in the Hydra

solution TLS targets only loop bodies and subroutine calls whereas in TFlux parallelism can be of

much finer grain. Currently in TFlux dependencies are statically defined but this issue is expected

to be covered in future versions of our compilation tool chain. Moreover, in contrast to Hydra,

the extra hardware required for TFluxHard does not affect the design of the CPU cores making a

potential implmentation much simpler.

Multiscalar Processors:

The idea behind the Multiscalar processors [111] is to split a program into fine-grained tasks

and execute these tasks in parallel. What makes Multiscalar Processors differ compared to other

parallelization approaches is the fact that it is not required to define the dependencies between

these tasks statically. The hardware enforces the necessary Control and Data dependencies dy-

namically. To achieve this, the Multiscalar processors execute the tasks speculatively and in the

case of miss-speculation invoke a recovery mechanism. Speculation does not regard only control

flow dependencies but also data-dependencies. As such, the ultimate goal of Multiscalar proces-

sors is to achieve a partial ordering for the execution by applying only the true data dependencies.
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According to the experimental results, the Multiscalar processors are able to achieve large speedup

values. However, to deliver this speedup the Multiscalar processors need to modify the CPU cores,

the memory hierarchy, the compiler and extend the ISA.

Compared to Multiscalar processors the TFlux architecture does not support neither data nor

control-flow speculation which is likely to limit the amount of parallelism it is able to exploit.

Moreover, for TFlux the data dependencies need to be identified by the user statically. However,

as opposed to Multiscalar Processors, TFlux achieves all its benefits without requiring any modi-

fication to any component (CPU cores, OS, compiler, ISA). As such, TFlux is able to deliver its

benefits on off-the-shelf systems and, as such exploit any benefits delivered by future generations

of these components whereas this will not always be true for the Multiscalar architecture.

Carbon:

In the Carbon [60] project, the authors propose augmenting the CMP with additional hardware

queues to exploit data and loop level parallelism. The results are promising, as in the TFlux

system, but the solution is not applicable to existing multiprocessors.

In contrast, TFlux can achieve high performance without any modifications to the hardware

or to the OS. In addition, Carbon requires extensions to the ISA and as such, modifications to the

CPU cores and the compilation toolchain whereas TFlux requires neither of these.

Synchronization State Buffer (SSB):

The target of the Synchronization State Buffer (SSB) [131] approach is to provide the means

for fine-grain synchronization on many-cores systems. The rationale of SSB is based on the obser-

vation that at any instance during the execution of an application, only a small fraction of memory

locations are actively participating in synchronization. Based on this observation the SSB design

is able to provide the illusion that the entire memory is tagged at word-level, and therefore can be

considered as a “virtually tagged memory design”.

Kyri
ak

os
 Stav

rou



14

For efficient fine-grain parallelism, it is necessary to have all the memory locations tagged,

which imposes very large hardware requirements. Given that future multicores will have signifi-

cantly smaller per core caches, such an approach would further increase the problem of reduced

memory. For SSB to be implemented there are certain hardware requirements. In particular, SSB

adds a small hardware device which is attached to the memory controller of each memory bank.

In addition, SSB assumes a non-preemptive execution model. According to [131], future chips are

likely to have this characteristic.

Although the architecture is promising it can not be applied to current multicores. This is

not only due to its requirement for hardware extensions in the CPU but also due to requirement

for non-preemptive execution model and lack of programming tool-chain. TFlux, on the other

hand, is able to operate using commodity components whereas at the same time it has a dedicated

programming toolchain.

MapReduce:

MapReduce is a programming model and an associated implementation proposed by Google

for processing and generating large data sets that targets large clusters of commodity machines [30].

This model consists of two simple operations, map that processes a key/value pair to generate a set

of intermediate key/value pairs and a reduce function that merges all intermediate values associ-

ated with the intermediate key. The main advantage of this model is its simplicity and the fact that

it can be applied to commodity computers. In addition to high performance, this model also pro-

vides support for dynamic load balancing, fault tolerance, locality optimizations and also backup

tasks (stragglers). According to [87], which studies the applicability of this programming model

on multicore processors under an architecture named “Phoenix”, although promising, MapReduce

is not general enough to cover all application domains. This is due to the fact that the MapReduce

model targets mainly data parallel applications.
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Comparing MapReduce to TFlux’s programming model, i.e. Data-Driven Multithreading,

it is possible to conclude that TFlux is able to exploit more parallelism as it is not limited to

data parallel applications. The runtime system of the two implementations of the MapReduce

programming model (the one used by Google for clusters and the Phoenix system) however, are

more mature that the runtime system of TFlux as they provide functionality which is still under

development for TFlux such as support for load balancing and fault tolerance.

Compute Unified Device Architecture (CUDA):

The Compute Unified Device Architecture (CUDA) [78] is a programming environment pro-

posed by Nvidia for developing high-performance parallel programs to be executed on Graphics

Processors. Although using Graphics processors for general purpose computing (GPGPU) [38] is

a very promising approach, application development is not trivial. In particular, the programmer

needs to manage the data explicitly in order to exploit data locality and consequently high perfor-

mance. Moreover, similar to MapReduce, CUDA is limited to data parallel applications. As such,

CUDA can lead to extremely high performance only for applications that fit to its execution style.

TFlux, in contrast, has wider applicability and targets conventional processing elements.

Micro-threading:

Micro-threading [71] is not a processor architecture but rather a model of concurrency. The

model is fine-grain and provides synchronization in a distributed register file, which allows it to

efficiently scale to designs with a large number of cores. Although this model provides backwards

compatibility, it requires ISA extensions to describe the concurrency in the program.

In a micro-threaded microprocessor the threads are obtained from a single context exploiting

both vector and instruction level parallelism (ILP). This approach employs vertical and horizontal

transfer in a simple pipeline. The horizontal transfer is referred to as the normal scalar pipeline

processing used in most microprocessors. Vertical transfer is a context switch, which allows the
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code to tolerate any latency from undetermined data and control dependencies. A micro-thread

can be a small sequence of code, which may be a basic block, a loop iteration or even just a few

instructions.

Being more fine-grained than TFlux allows Micro-threading to exploit larger amount of paral-

lelism. However, Micro-threading requires complete redesign of the microprocessor and also ISA

extensions. In contrast, TFlux is able to operate with commodity components.

Cell Superscalar:

Cell Superscalar (CellSs) [15] is a programming model for the Cell/BE architecture. CellSs

has two major components: a source-to-source compiler and a runtime system. Similar to TFlux,

CellSs requires the user to annotate the code with directives describing the boundaries and de-

pendencies of parallel sections. Using this information, the source-to-source compiler of CellSs

builds the application’s dependency graph and also partitions the execution to the SPE and PPE

processors. Using two lists, a ready task list and a list of the available resources, the runtime

schedules tasks for execution based on the dataflow firing rule. Moreover, the runtime takes into

consideration data locality, applies techniques to minimize the communication needed between

the SPEs and main memory and to decrease load imbalance.

Although both TFlux and CellSs follow the same task scheduling policy there are some im-

portant differences between the two parallel models. On the one hand CellSs has a number mech-

anisms that do not exist or are not relevant for TFlux. Such techniques include the load balancing

mechanism, which could apply for TFlux as well, and the handling of heterogeneity between the

SPEs and PPEs which is not relevant for TFlux. On the other hand, the tasks for CellSs are more

coarse-grained compared to TFlux as they need to be at the level of function calls, which de-

creases the amount of exploitable parallelism. In contrast, for TFlux the tasks are not limited to

a particular programming construct. Moreover, CellSs has only been tested and evaluated on the
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Cell/BE processor whereas TFlux has been proven able to execute on a variety of multiprocessor

architectures.

2.3 The Dataflow Model of Computation

Conventional computer architectures are based on the control-flow model of execution. In this

model, instructions are scheduled statically by the programmer or compiler. A program counter is

used to issue the next instruction. The control-flow model exploits program locality via a memory

hierarchy. Multiprocessor systems based on control-flow architectures suffer from memory latency

and synchronization overheads [7]. Furthermore, the control-flow model inhibits parallelism by

imposing artificial dependencies. If an instruction stalls, then the entire program must wait for the

stalled instruction to resume execution.

The dataflow model of computation was proposed in the early 1970s by Jack Dennis [32]

as an alternative to the control-flow model of execution. In the dataflow model, instructions are

scheduled dynamically at runtime based on data availability. An instruction becomes executable

only when all of its input operands are available to it. A dataflow program is represented by a

graph consisting of nodes and arcs. The nodes represent the instructions of the program, while

the arcs represent the data dependencies among instructions. Data propagates along the arcs in the

graph in data packets called the tokens.

Dataflow is known to expose the maximum amount of parallelism to the hardware [7]. This

is due to the fact that dataflow graphs, as opposed to conventional machine languages, specify a

minimum order for the execution of instructions and thus provide the opportunity to the hardware

to exploit all the parallelism available in an application. This key characteristic, the ability to

expose to the hardware all the available parallelism, is of major importance for any multiprocessor

Kyri
ak

os
 Stav

rou



18

system as it allows for applications which have limited amount of parallelism to benefit from the

multiple execution nodes.

Dataflow architectures can be classified as Static or Dynamic [88]. In a Static architecture the

nodes of a program graph are loaded into memory before the computation begins and at most one

instance of a node is enabled for firing at a time. A Dynamic architecture facilitates the firing of

several instances of a node at a time and these nodes can be created at runtime. For example, a

loop body in a program can be represented as a single node. A Dynamic architecture unfolds the

loop at runtime by creating multiple instances of the node representing the loop body and attempts

to execute the instances concurrently. For the same loop, a Static architecture would require a

different node for each iteration of the loop. Static architectures are known to be less complex in

comparison to the Dynamic ones but less efficient for a wide range of applications.

2.3.1 Dataflow Architectures

2.3.1.1 Static Dataflow Architectures

The first dataflow machines were static dataflow architectures. These machines were known

as the single-token-per-arc dataflow machines as only a single token could reside on an arc. A

graph, in a static dataflow machine, is represented by activity templates containing the opcode of

the instruction, the operand slots and the destination address fields.

Static dataflow machines have difficulties when a graph is reentrant, such as a loop body or a

function invocation. To avoid these problems, an instruction is enabled for execution if tokens are

present on its input arcs and there are no tokens on any of its output arcs. This single-token-per-

arc constrain is achieved by using acknowledgment signals in the activity templates. These signals

are shown on the dataflow graph with additional arcs. When an instruction is fired for execution,

it sends a token on the acknowledgment arc indicating that it is ready to accept a new token.
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These acknowledgment signals propagate from the consuming nodes to the producing nodes on

the dataflow graph.

One of the early static dataflow machines was the MIT Static Dataflow Architecture [53]. This

machine was composed of memory units and processing elements. Each memory unit stored

the operation, operands and destinations addresses of a node of the program’s graph which was

loaded to the memory cells by the host. Two different networks were responsible for the necessary

communication between the processing elements and the memory units. The main drawback of

this architecture was that consecutive loop iterations could only partially overlap in time, limit-

ing parallelism. Additions to the static model, such as queues, have addressed this limitation in

subsequent designs by Dennis and others.

Another static dataflow architecture is the Language Assignation Unique (LAU) [85] which tar-

geted programs written in a special Single Static Assignment language (Single Static Assignment

Languages are functional languages that prevent side effects and often favor the dataflow model

of execution). The LAU machine was built out of four major units: memory, execution, control

and interface units. A prototype with 32 processors was built and execution of some aerospace

programs showed that a linear speedup could be achieved.

Texas Instruments’ Data-Driven Processor (DDP) [25] was designed for the execution of

Fortran programs using some of the principles of the aforementioned MIT’s static architecture. In

this architecture a special algorithm was used to partition the program into subgraphs which were

dynamically loaded to the memory. Another novelty of this design, was the use of counters to

determine when a node of the program was ready to execute. A machine with four such processors

was built in the early 80’s.
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2.3.1.2 Dynamic Dataflow Architectures

Dynamic dataflow architectures allow loop iterations and subprogram invocations to proceed

in parallel. This is achieved by allowing multiple tokens on each arc. A token includes a tag that

carries information about the context of the token. Dynamic dataflow architectures are also called

tagged-token dataflow architectures. A node is enabled if tokens with identical tags are present

at each of its input arcs. To distinguish between different instances of an instruction, the activity

template is extended with two extra fields: the first carries the loop iteration index, and the second

its function context.

Two of the early tagged-token dataflow architectures are the Manchester Dataflow Com-

puter [43] and the MIT Tagged-Token Dataflow Machine [9, 8]. The main drawback of tagged-

token dataflow machines is the need of a large associative memory for the implementation of the

token matching unit.

The concept of Explicitly Token Store (ETS) has been proposed to eliminate the need for as-

sociative memory. A separate memory frame is allocated for each active loop iteration or subpro-

gram invocation. The explicitly address token store concept was initially developed in the Mon-

soon [39, 40] project. A memory location, within the activation frame of each function allocation

is established where each synchronization takes place. In general, the allocation of activation

frame has to be done dynamically at runtime.

2.3.2 Dataflow Limitations

The benefits of the dataflow model are the tolerance to long memory latency events and over-

coming the synchronization overheads, as defended by Arvind and Iannoucci [7]. Although the

authors concluded that the dataflow microprocessors could overcome these limitations, reality

proved less favorable for the dataflow model of execution. The reasons for this are very well
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presented in a work published by Culler et al. in 1993 [29]. In particular, the authors observe

that Arvind’s and Iannucci’s arguments neglected significant limiting factors related to the storage

hierarchy.

Arvind and Iannucci based their reasoning on the latency tolerance ability of dataflow multi-

processors. Specifically, they argued that if the physical processor includes a sufficient number of

Virtual Processors, each executing a different task, synchronization and communication latencies

can be tolerated by fast switching between tasks. More specifically, when a task blocks due to a

remote reference, the physical processor switches to another enabled task (Scheduling Event) thus

hiding the penalty this event would cause. When the remote reference completes its execution, the

task that issued it, is deemed enabled, i.e. ready for execution (Synchronization Event). According

to this reasoning, the efficiency of dataflow multiprocessors depends on their ability to effectively

handle Scheduling and Synchronization events.

However, both events impose certain requirements on the hardware. Specifically, fast synchro-

nization, can only be achieved with associative memories, which size and cost increases with the

number of concurrently executed tasks. On the one hand, the dataflow architecture requires a large

number of such tasks to tolerate latencies. On the other hand, the larger the number of concurrent

tasks, the longer the time required to perform a synchronization event. Due to the inability to build

the required hardware structures, this issue was one of the major factors that limited the success

of early dataflow systems.

Scheduling events require switching the state of the processor. This switching, can be efficient

only if the data to be stored and loaded reside in the higher levels of the memory hierarchy.

However, fast memories are small, which contradicts with the requirement of large number of

concurrently enabled tasks. The limitations imposed by the efficiency of the memory hierarchy,

was another reason that limited the success of the dataflow systems.
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To decrease the hardware complexity, some functionality was offloaded to the compilers

of special dataflow languages. Examples of those languages include the ID [6], LUCID [12],

LAU [24], Sisal [42], Cajole [45], VAL [73], and Tdfl [125]. Although excelling in expressing

parallelism in dataflow machines, these languages were unable to support side effects, mutable

data structures and other programming constructs that were present in widely used programming

languages [37, 54, 57, 117, 127].

Another limiting factor for dataflow was its inability to efficiently manipulate complex data

structures. Although it was easy to pass simple arithmetic values from one instructions to another,

this issue was getting more complicated when structured data was to be passed [57]. Moreover,

dataflow machines did not handle arrays of data very efficiently due to their emphasis on fine-

grain, operation-level concurrency [37].

2.3.3 Hybrid Dataflow

Pure dataflow does not perform very well with sequential code because of: (a) the inefficient

use of the pipeline since an instruction of the same thread can be issued only after its predeces-

sor instruction is completed, (b) no usage of registers since a context switch occurs at fine-grain

(after the execution of each instruction) and (c) the excessive overheads due to the per-instruction

token matching. Combining dataflow with control-flow mechanisms could eliminate the problems

of pure dataflow. Such hybrid architectures are classified as macro-actor Threaded dataflow, or

Large-grain dataflow [94]. In such architectures a node in a dataflow graph is a sequential instruc-

tion stream referred as a thread of instructions. Since a thread consists of several instructions, data

can be stored in registers, the token matching overhead is reduced and pipeline bubbles can be

avoided.
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Large grain dataflow architectures decouple the token matching stage from the execution stage.

The two stages communicate with each other via FIFO buffers. One of the earliest architectures

that utilize the decoupling principle is the USC Decoupled Graph/Computation architecture [34].

A node in this architecture consists of two basic units (the graph unit and the execution unit) that

operate in an asynchronous manner. The graph unit is responsible for updating the dataflow graph

and determining whether a graph node is executable, while the computation unit is responsible for

the execution of the instructions of the graph’s nodes.

2.3.4 Non-blocking Multithreading

Architectures that have evolved from the large-grain dataflow architectures are called non-

blocking multithreaded architectures, since a thread is fired only if its data dependencies are re-

solved. This ensures that a fired thread will execute to completion without encountering long la-

tency events due to remote memory, communication or synchronization operations. Non-blocking

multithreaded architectures have the advantage that they can be built using conventional off-the-

shelf microprocessors. The representative examples of non-blocking multithreaded architectures

are the StarT [3], the EARTH [47] and the TAM [28].

StarT (or *T) [3] is the successor of the Monsoon [39] project. This is a multithreaded archi-

tecture designed to support non-blocking threads. Each *T node consists of three processors: the

data, the memory-memory request and the synchronization processors, all sharing a local mem-

ory. The data processor is the processor that executes threads. The memory-memory request

processor is responsible for incoming remote load/store requests. The synchronization processor

is responsible for handling returning load responses and join operations.

Another non-blocking multithreading project that has its origins in the dynamic dataflow se-

quencing is the EARTH (Efficient Architecture of Running Threads) [47] multiprocessor. The
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EARTH architecture was implemented on top of the MANNA multiprocessor. Each EARTH node

consists of two processing units: the execution unit and the synchronization unit, linked together

by queues and sharing the same local memory and network processor. The execution unit executes

threads and passes information to the synchronization unit by placing messages in an event queue.

The synchronization unit fetches these messages from the event queue, determines which threads

are ready for execution, and places their identification numbers in a ready queue. Ready threads

are executed by the execution unit to completion, since they are non-blocking threads.

The Threaded Abstract Machine (TAM) [28] is a fine-grain execution model where thread

synchronization, scheduling and storage management are placed under the compiler control. Syn-

chronization is explicit and occurs only at the top of a thread. A synchronizing thread is associated

with a frame slot that contains its entry count. The entry count is initialized by the compiler ac-

cording to the input arcs of the thread in the graph. Whenever a thread is forked, its entry count is

decremented. A thread is enabled for execution when its entry count reaches zero. Finally, notice

that TAM was implemented for a variety of existing processors and platforms.

2.3.5 Recent Dataflow Developments

Dataflow principles are currently used in commercial high performance processors. Out-of-

order processors employ dataflow principles to rearrange the execution order of instructions in

order to achieve better utilization of the processor’s resources. This reordering is achieved with

the support of hardware units that determine data dependencies among the instructions stored in

the instruction window dynamically at runtime.

Recently, several research projects like SDF [5], EDGE [20, 90], DDM [61] and DDM-

CMP [112], have adopted the dataflow principles. Their success is mainly due to two reasons,

the usage of today’s mature hardware technology and the fact that the majority of them apply
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the dataflow model to a coarser-grained level, that of the thread, instead of the fine-grain instruc-

tion. These issues minimize the hardware requirements and make their efficient implementation

feasible.

Explicit Data Graph Execution (EDGE) [20] proposes a new instruction set architecture (ISA)

that enables scaling to window sizes of thousands of instructions to hold large code blocks. The

EDGE ISA provides a richer interface between the compiler and the micro-architecture by directly

expressing the dataflow graph generated by the compiler to the micro-architecture of the proces-

sor. This removes from the hardware the task of rediscovering data dependencies dynamically at

runtime. EDGE uses direct instruction communication, i.e. a producer instruction delivers its pro-

duced data directly to its consumer instructions. This enables instructions to execute in dataflow

order, with instructions firing as soon as all of their operands are available. A major difference be-

tween EDGE and other RISC or CISC architectures is that in EDGE the compiler does not encode

the source operands of instructions. EDGE instructions specify only their targets or consumers.

The TRIPS processor [90] is an instance of the EDGE architecture which uses large cores consist-

ing of a matrix of execution units (ALUs with input operands, buffers and output routers). Code

blocks are mapped by the compiler to an array of execution units and are scheduled dynamically

based on branch predictors. Instructions within code blocks are executed based on the dataflow

order set by the compiler.

Another threaded dataflow project is the Scheduled Dataflow (SDF) [58] architecture. SDF

is a multithreaded architecture that decouples the synchronization from the computation of non-

blocking threads. SDF has its origins in the PL/PS-Machine (Pre-Load/Post-Store), a multithread-

ing machine that decouples memory accesses from thread execution. An SDF processor consists

of two pipelines: the execution pipeline and the synchronization pipeline. The synchronization

pipeline is responsible for scheduling the non-blocking threads whereas the execution pipeline for
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the execution of threads. Each thread is assigned a register context. The synchronization pipeline

preloads the data needed by each thread in its register context in the execution pipeline before

firing the thread for execution. The results from an execution are stored by the execution pipeline

in registers and then post-stored in the memory by the synchronization pipeline. This decoupling

eliminates stalls due to memory accesses and cache misses.

Weng and Chapman [126] present the benefits of translating OpenMP code to low-level par-

allel code using a dataflow execution model. Using dataflow principles, they manage to remove

unnecessary dependencies between potentially parallel sections, improve data locality and reduce

the synchronization overheads.

Kim and Sair [59], use a dataflow architecture for the design of an efficient decoder for the

H.264 video standard. The authors point out that System-on-Chip (SoC) designs are known to

be inadequate for data-intensive tasks such as video encoding/decoding. Their design was based

on co-locating computation and data in the physical space, achieving a significant decrease in the

communication latencies. Finally, based on their experimental results, they conclude that dataflow

architectures are the most appropriate for data-dominated applications.

In the work by Swanson et al. [118], the authors investigate the area/performance tradeoffs

of a tiled dataflow architecture, that of the WaveScalar [117] processor. Specifically, this work

compares the WaveScalar’s area efficiency to that of an aggressive out-of-order superscalar and

to that of a Sun’s Niagara chip multiprocessor. The main conclusion of this work is that, the

dataflow nature of WaveScalar provides substantially more performance per unit area and better

area scaling compared to the other two systems.

Finally, Balakrishnan and Sohi [14], proposed a novel technique for significant performance

improvements based on dataflow principles. This execution paradigm demultiplexes the execution

of methods (functions or subroutines) from the rest of the program. Based on dataflow analysis, a
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method for converting the total ordering of a sequential program’s functions to partial ordering is

presented. This allows them to speculatively execute functions prior to the point they would have

been invoked in the sequential execution of the program. When the program reaches the call point

of those functions, the correctness of their speculative execution is checked and their results are

either committed or discarded. Although the results presented are limited, the authors managed to

prove the potential of their approach.

2.4 Data-Driven Multithreading (DDM)

The Data-Driven Multithreading (DDM) model of execution [61, 63] has been proposed as

a solution to overcome the limitations of dataflow whereas at the same time keeping its ability

to exploit very high degrees of parallelism. The characteristic of DDM that allows it operate

with significantly smaller hardware requirements compared to dataflow is the fact that is uses

coarser-grained scheduling units following the Hybrid Dataflow approach. In particular, whereas

dataflow applies the dataflow firing rule at the level of individual instructions, DDM applies this

rule at the level of sequences of instructions. As for the other limitations of dataflow, DDM

can be programmed with imperative languages, such as C. This allows it to provide the common

load/store memory semantics explicitly and also to efficiently handle any type of data structure in

a generic way.

DDM programs are composed of non-overlapping sections of code called Data-Driven Threads

(DThreads) that may contain an arbitrary number of static or dynamic instructions. A producer/consumer

relationship exists between DThreads. The dependencies among the DThreads in a DDM program

are expressed by the input and output data of each DThread and are represented by a Synchroniza-

tion Graph. The nodes of this graph correspond to the program’s DThreads while its arcs to data

dependencies between the different DThreads.
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As an example, refer to Figure 1-(a) that depicts the high-level code of a synthetic application

and its partitioning into DThreads (the particular partitioning is for illustrative purposes only).

From this code it is possible to observe a number of dependencies. In particular, DThread 1 writes

the variable z which is then used by DThread 3. As such, DThread 1 is a producer for DThread

3 (equivalently, DThread 3 is a Consumer of DThread 1). Similarly, it is possible to observe that

there is a dependency between DThread 2 and DThread 3 through variable t, between DThread 2

and DThread 4, also through t, between DThread 3 and DThread 5 through f and finally between

DThread 4 and DThread 5 through g. These dependencies form the Synchronization Graph of

this application which is presented by Figure 1-(b). The number of producers for each DThread is

named the “Ready Count” value and is depicted in this Figure as a shaded value next to each node.

The Ready Count value is initiated statically and is dynamically decreased each time a producer

completes. A DThread is deemed executable when its Ready Count value reaches zero.

x=y^2;
z=m^k;
x=x/z+k;
t=(l+m)(l-m);
t=t/2+t/4;
f=t+x;
f=f/z+y;
g=g+t;
g=g/t;
i=f+g;
printf (i);

DThread 1

DThread 2

DThread 3

DThread 4

DThread 5

1 2

3 4

5

0 0

2 1

2

(a) (b)

Figure 1: Example of a Data-Driven Multithreading program.

Scheduling a DThread for execution is done dynamically at runtime in a data-driven manner,

i.e. only when all its producers have completed their execution. The instructions within a DThread

are executed by the CPU in a control flow order and any optimization, either by the CPU at runtime
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or statically by the compiler, are exploited. Notice that the code of the DThreads can contain any

programming construct like simple instructions, control flow instructions, function calls or loops.

DThread scheduling is achieved with the help of the Thread Synchronization Unit (TSU)

which abstract layout is depicted in Figure 2 (more details about the operation of the TSU can be

found in [33]). Prior to the execution of any DThread, the metadata of the application’s DThreads

are loaded into the TSU. For each DThread these metadata consist of a unique identifier for the

DThread (Thread Template), the DThread’s Ready Count value and the Thread Templates of its

Consumers.
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Figure 2: The Thread Synchronization Unit (TSU). This Figure was taken from [61].

According to the DDM model the CPUs continually performs a 3-steps process. The first step

is to query the TSU for a ready DThread, the second step is to execute this DThread’s code and

the third step, which is invoked when execution of the DThread completes, is to notify the TSU

about this event. Notice that during the first step, in case no ready DThread exists, the TSU will

force the CPU to wait.
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Each time the TSU is notified about a DThread completion event, it invokes the Post-Processing

Phase. During this phase the Ready Count value of the Consumers of the completed DThread is

decreased. When the Ready Count of a DThread reaches zero it will be deemed executable and

the TSU can schedule it for execution when a CPU becomes available.

To allow applications with arbitrarily large Synchronization Graphs, without requiring equally

large TSU storage, DDM programs can be split into DDM Blocks or simply Blocks. Each Block

contains a subset of DThreads of the original program. The maximum number of DThreads a

Block may contain is limited by the size of the TSU. In addition to the application’s DThreads,

each DDM Block has two other DThreads, the Inlet and Outlet DThread. The purpose of the

former is to load the TSU with the metadata of all the DThreads belonging to that Block whereas

the purpose of the latter is to clear the allocated resources. When all the DThreads of a DDM

Block complete their execution, the Outlet DThread is executed. After releasing the allocated

resources the Outlet DThreads load the TSU with the Inlet DThread of the next Block to allow

execution to proceed.

2.5 Data-Driven Multithreading Network of Workstations (D2NOW)

The Data-Driven Network of Workstations (D2NOW) [35, 61, 63] is the first implementation

of the DDM model. D2NOW consists of a collection of interconnected workstations each of

which is augmented with a Thread Synchronization Unit (TSU). For the communication of the

TSUs, D2NOW uses another dedicated network.

A major characteristic of D2NOW is its cache management scheme which is based on the

“Cacheflow” [62] policy. According to this policy, the scheduling information of the TSU is used

to manage the data present in the L2 cache. Cacheflow has been found to provide significant

reduction of the cache misses with an important consequent performance increase.
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Overall, D2NOW proved to have very high performance and good scalability when evaluated

using a subset of the SPLASH-2 [129] benchmarks. In addition, a major contribution of D2NOW

is the fact that it proved DDM to be implementable using commodity CPU cores.

Although D2NOW and TFlux are based on the same execution model, DDM, the two systems

differ significantly. The major advantage of TFlux over D2NOW is the fact that it provides to its

user a virtualized environment that hides all the details of the underlying system. Programming for

TFlux is done at the high-level by augmenting ANSI-C code with compiler directives. Another

major advantage of TFlux is that it introduced an implementation, TFluxSoft, where no extra

hardware is required. As such, this allows the DDM model to be provided on off-the-shelf systems.

2.6 Data-Driven Multithreading Chip Multiprocessor(DDM-CMP)

The main target of the Data-Driven Multithreading Chip Multiprocessor (DDM-CMP) [112]

design was to explore the potential of applying the DDM model of execution to the Chip Mul-

tiprocessors architecture. In addition to the potential performance, this design studied the power

consumption, the hardware cost as well as ways to benefit from the particular characteristics of

CMPs architecture.

The DDM-CMP design proved able to deliver not only high performance [112, 113, 120] but

also high power efficiency [120]. As for the hardware cost of providing data-driven scheduling

on a commodity CMP chip, this was found to be in the order of 1M transistors per CPU [114].

By taking into advantage the fast on-chip communication of the CMP architecture, DDM-CMP

examined several alternatives for the scheduling unit for space savings [112]. Moreover, the shared

memory environment that is provided by most CMPs allowed implicit communication between the

execution units and easier programmability [116].
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Chapter 3

The TFlux Parallel Processing Platform

Thread-Flux TFlux is a parallel processing platform that allows its user to exploit the bene-

fits of the Data-Driven Multithreading (DDM) model of execution on commodity multiprocessor

systems. TFlux is composed of a collection of abstract entities that provide the necessary virtual-

ization for the execution of TFlux programs on a variety of computer systems.

This Chapter starts with Section 3.1 presenting the different layers of the platform, i.e. the

programming toolchain, the Runtime Support, the TFlux Kernels and the Scheduler. Section 3.2

focuses on the basic execution components of the TFlux Platform whereas Section 3.3 on de-

tails of the Scheduler. Finally, this Chapter concludes with a brief presentation of the two major

incarnations of the TFlux Platform: TFluxHard and TFluxSoft.

3.1 TFlux Layered Design

The main target of the TFlux platform is to provide the necessary virtualization for the parallel

execution of programs under the DDM model on commodity multiprocessor systems. Figure 3
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depicts the layered design of TFlux. The top layer is the one programmers use to develop TFlux

applications and its purpose is to abstract all details of the underlying machine. TFlux applications

are developed using ANSI-C together with TFlux directives [121], which are used to express the

DThreads’ code and the dependencies among them. The code of the TFlux program (ANSI-

C augmented with TFlux directives) passes through the TFlux Preprocessor which outputs a C

program able to be compiled by a commodity C compiler. As a result we can obtain an executable

binary for any ISA. In addition to the code of the initial application, the binary also includes calls

to invoke the operations of the TFlux Runtime Support allowing execution under the DDM model.

The Runtime Support runs on top of an unmodified Unix-based Operating System and hides all

DDM-specific details such as the particular implementation of the TFlux Scheduler (throughout

the text the term “Scheduler” with a capital “S” refers to the scheduler of TFlux).

C & TFlux directives

TFlux Preprocessor

Unmodified C Compiler

Unmodified Operating System

User Program

Compilation
toolchain

Components
for DDM

execution
TFlux Scheduler

TSU 1 TSU 2 TSU 3 TSU n. . .

TFlux Binary

Runtime Support

Kernel 1 Kernel 2 Kernel 3 Kernel n. . .

Unmodified ISA Hardware

Figure 3: The layered design of the TFlux Platform.

The different layers of the TFlux Platform are presented in detail in the following Sections in

an order different to their position on the design for easier explanation.
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3.1.1 Runtime Support

The virtualization TFlux provides is mainly due to its Runtime Support . The Runtime Support

executes on top of an unmodified Unix-based Operating System (OS) and allows for the DDM

execution to be interleaved with the execution of non-DDM binaries by means of simple OS

context switch operations.

For the use of a regular OS for DDM execution, the Runtime Support has to satisfy two

important requirements. First, when an application is executed in parallel, the runtime has to

provide a way for the different DThreads to access the shared variables used in the producer-

consumer relationships. Second, to achieve DThread scheduling according to the DDM model,

the Runtime Support needs to communicate with the TFlux Scheduler, in order to invoke the

appropriate operations on each event.

The Runtime Support meets these requirements with the help of a simple user-level process,

the TFlux Kernel , which is described in the next Section. The Runtime Support starts its execution

by launching n TFlux Kernels, where n is the maximum number of DThreads that can execute in

parallel in the machine. Usually, this number is limited by the number of CPUs of the system. The

Runtime Support spawns the TFlux Kernels in the same address space which allows the differ-

ent DThreads of the application to exchange data through shared variables. Another requirement

for the Runtime Support is that the DThreads must be scheduled according to the DDM model.

This scheduling is performed by the TFlux Kernels as will be explained in the following Section.

Notice that the Runtime Support terminates its execution and exits when all TFlux Kernels have

completed their execution, i.e. executed all DThreads assigned to them. It is relevant to mention
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that the Runtime Support for the TFlux applications and the code of the TFlux Kernels is embed-

ded into the code at compile time. Therefore, each TFlux binary is self-contained, requiring no

extra software for its execution such as OS patches or demons.

3.1.2 TFlux Kernel

The main target of the TFlux Kernel is to communicate with the TFlux Scheduler in order to

schedule DThreads according to the DDM model.

Figure 4 depicts the operation of the TFlux Kernel. Its first task is to transfer the execution to

the first instruction of the Inlet DThread (Section 2.4) of the first Block in order for the metadata

of this Block’s DThreads to be loaded into the TFlux Scheduler. At the end of that Inlet DThread,

as well as of any other DThread, the control jumps to the Kernel code and more specifically to the

FindReadyThread loop. At that point the Kernel requests from the Scheduler the next DThread

for execution. When this call returns a valid ready DThread, the execution control jumps to the

first instruction of that particular DThread. If more than one ready DThreads exist, the TFlux

Scheduler returns the one with the subsequent (regarding the DThread that has just completed

its execution) Thread Template. When the execution of a DThread completes, control is trans-

fered again to the TFlux Kernel, which notifies the Scheduler about this completion event. The

Scheduler will then execute the Post-Processing Phase for the completed DThread during which

the Ready Count values of its consumers are decreased. Then the TFlux Kernel repeats the same

process by querying the Scheduler for the next ready DThread.

To allow execution of multiple Blocks, the Outlet DThreads, in addition to deallocating the

Scheduler resources, also load the Scheduler with the Inlet DThreads of the next Block. When

these Inlet DThreads are executed they load the Scheduler with the metadata of the corresponding

Block’s DThreads, therefore allowing for the execution to proceed. As for the Outlet DThreads of
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the last Block, their operation is to force their Kernels to exit. Consequently, the Runtime Support

exits and the application completes when all DThreads assigned to each Kernel complete their

execution.

Inlet Dthread
 of first Block

Query the 
Scheduler for 

Ready DThread

Application’s 
DDThr code

Notify the 
Scheduler for Post 
processing phase

No ready DThread

Figure 4: Operation of the TFlux Kernel. Application’s code is shown shaded.

The Kernel executes at the user-level. This is achieved by inlining the code of the different

functions of the TFlux Kernel (instead of having function calls) inside the program’s code wher-

ever such a function invocation is required. The transition from the Kernel to the application’s

code, and vice-versa, occurs with minimal overhead and is completely transparent to the OS. As

these transitions may be frequent, this contributes to minimizing of the runtime overheads.

3.1.3 The TFlux Scheduler

As explained earlier, the purpose of the TFlux Scheduler is to enable DThread execution ac-

cording to the DDM model. As can be seen from Figure 5 that depicts the layout of the Scheduler,

it consists of a set of units that are private to each TFlux Kernel and three units that are shared

between all Kernels of the system. Notice that the set of private units form the Kernel’s Thread

Synchronization Unit (TSU) [33] and one such TSU exist for each Kernel of the system. The

units which are private for each Kernel are the Graph Memory (GM), the Synchronization Mem-

ory (SM) and the Thread Execution Stack (TES) whereas the units shared among the Kernels are

the Threads-to-Update Buffer (TUB) the Consumer List (CL) and the Iteration-level Consumers

List (ILCL). The purpose of these units is as follows:
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Figure 5: TFlux Scheduler configured with 2 TSUs.

Graph Memory (GM): The GM stores the static information of the DThreads. For each DThread

this information consists of its Thread Template (Section 2.4), the Thread Templates of

its Consumer DThreads and an index to the Iteration-level Consumers List that contains

information about the Iteration-level Consumers of this DThread.

Synchronization Memory (SM): SM stores the DThread’s Ready Count value i.e. the DThread’s

dynamic information. As explained earlier, the Ready Count value is equal to the number of

producers for this DThread that have not yet completed their execution. For DThreads with

multiple instances, i.e. DThreads executing loops (see Section 3.2.2), it is necessary to store

a Ready Count value for each DThread instance. As such, each SM entry provides storage

for multiple Ready Count values.

Thread Execution Stack (TES): This unit holds the thread templates of the ready DThreads, i.e.

of the DThreads with Ready Count equal to zero. The DThread that is currently executing

is the one at the top of the TES.
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Consumer List (CL): CL is shared among all TSUs of the system and its purpose is to allow

DThreads with more than two consumers. In particular, if a DThread has up to two con-

sumers their Thread Templates are stored in the GM whereas in a different case their tem-

plates are stored in the CL.

Iteration-level Consumers List (ILCL): ILCL is also shared among all TSUs of the system. Its

purpose is to store the information that describes the Iteration-level Consumers of the dif-

ferent DThreads.

Threads-to-Update Buffer (TUB): TUB is used during the Post-Processing Phase, i.e. when the

Ready Count values of the Consumers of the completed DThreads are decreased. Whenever

a DThread completes its execution the Thread Templates of its consumers are inserted into

the TUB (update-request). In a later phase (Thread Update) another entity reads these

update-requests from the TUB and decreases the corresponding Ready Count counters.

3.1.4 Compilation Toolchain

Application development for TFlux is done at the high-level by augmenting ANSI-C code

with the TFlux directives. These directives allow expressing the boundaries of the application’s

DThreads and dependencies among them. The TFlux C Preprocessor (TFluxCpp), which is an

extended version of the Data-Driven Multithreading C Preprocessor (ddmCpp) [121], takes the

application’s code as input and outputs a C program that includes the code of the Runtime Support

and of the TFlux Kernels as well as the TFlux interface calls necessary for the program to execute

on a TFlux architecture under the DDM model. This program can be compiled into an executable

binary using a commodity C compiler.

Further details about TFluxCpp will be given in Chapter 4, which is dedicated to the presen-

tation, analysis and evaluation of TFluxCpp and its directives.
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3.2 Basic Execution Components

This Section presents the basic execution components of the TFlux Platform. These com-

ponents regard the programming constructs provided to the programmer for the development of

applications to be executed on TFlux under the DDM model.

3.2.1 Data-Driven Threads (DThreads)

The principal element of TFlux programs is the DDM Thread (DThread). Each DThread

corresponds to a different portion of the application’s static code and can be of any size (regarding

the number of static or dynamic instructions). This code can include any type of programming

constructs such as function calls, loops and control flow operations. Inside each thread instructions

are executed in control flow order allowing the processor or the compiler being able to apply any

optimization (e.g. out-of-order execution). The different DThreads of the application can be

executed in parallel unless a data dependence exits among them.

A DThread is characterized by its static code, its Thread Template, its Ready Count and its

Consumers. Notice that the tuple Thread Template, Ready Count and Thread Templates of the

Consumers is what we call the “metadata” of a DThread. To better explain these notions we will

use the example depicted in Figure 6.

Figure 6-(a) presents the necessary operations for calculating the Binomial probability for n

experiments with k successes and Figure 6-(b) the corresponding Synchronization Graph. Recall

that the nodes of this graph represent DThreads and arcs the data dependences between them.

The Thread Template is a unique identifier for each DThread, in this example the Synchroniza-

tion Graph of the program consists 8 DThreads each with a different Thread Template (1, 2, ..., 8).

Notice that in general the Thread Template is not just a single number but a two-fields tuple con-

sisting of the the Thread Id (THID) and the Iteration Id (ITER). The purpose of this second field,
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Figure 6: Calculation of the Binomial probability using DDM threads.

Iteration Id, as will be explained in Section 4.3.2 regards the execution of loops. For the analysis

presented here, what is used as the Thread Template is just the Thread Id.

According to the DDM model, the Consumers of DThread X are the DThreads that can not

start their execution unless DThread X has completed its execution; equivalently, a DThread can

start its execution only when all its Producers have completed their execution. As an example,

the Producers of DThread 6 are DThreads 1, 2 and 3 whereas the Consumer of DThread 3 is

DThread 6. Finally, the number of Producers for a DThread is equal to its Ready Count value.

In the previous example the Ready Count value of DThread 6 is 3 whereas the Ready Count of

DThread 7 is 2. It is important to notice that DThreads that have no dependence between them

(e.g. DThreads 4 and 5) can be executed in parallel. Table 1 summarizes the characteristics of the

DThreads of this particular example.

3.2.2 TFlux Loops

Loops are known to be a very common structure in compute-intensive applications. For perfor-

mance improvement, the algorithms of many applications are modified to allow implementations
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Table 1: The DThreads of the example of Figure 6.

Thread Id Ready Count Consumers Producers Code

1 0 6 - k!
2 0 6 - n!
3 0 6 - (n − k)!
4 0 7 - pk

5 0 7 - (1 − p)n−k

6 3 8 1,2,3 n!
k!·(n−k)!

7 2 8 4,5 pk · (1 − p)n−k

8 2 - 6,7 n!
k!·(n−k)! · pk · (1 − p)n−k

with parallel loops, i.e. loops for which there are no data dependencies among the different iter-

ations. This is due to the fact that it is very easy to parallelize these loops leading to significant

performance benefits.

A common case is for these loops to depend on each other. These dependencies can either

be at the loop level, i.e. no iteration of the dependent loop can proceed unless all iterations of

the producer loop have completed thei execution, or at the loop iteration level meaning that an

iteration of the dependent loop can proceed after particular iterations of the producer loop have

completed.

Most parallel programming models do not provide native support for the execution of loops

with dependencies at the loop iteration level. Examples of such models include OpenMP [81]

and MapReduce [30] paradigms. Consequently, in order to enforce the necessary synchronization

between the loops they introduce barriers. This leads to an implementation that often inserts

unnecessary synchronization points with a consequent negative impact on the performance.

TFlux provides special support for the execution of parallel loops which, in addition to sup-

porting fully parallel loops, also covers loops with dependencies at the iteration level. We use

the general term “TFlux Loop” to cover both categories. Formally, a TFlux Loop is a loop each

iteration of which may be deemed executable based on a different data dependency condition.
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This feature is of major importance as it allows converting the barriers between loops into

dependencies between loop iterations. As such, synchronization is enforced only when it is nec-

essary according to the true data dependencies. As will be explained in Chapter 9, that presents

the quantitative evaluation of TFlux, this feature is highly relevant for the performance of TFlux.

The TFlux Loops are executed by a special category of DThreads named “Loop DThreads”

(L-DThreads) and each such L-DThread executes a different iteration of the TFlux Loop. The

L-DThreads executing the same loop have the same static code, the same Ready Count value and

the same Thread Id. What differentiates them is the second field of the Thread Template, i.e. the

Iteration Id (ITER). As such, the L-DThreads should be seen as instances of the same entity; each

different instance however, executes a different iteration of the loop. As for the TFlux Scheduler,

the Runtime Support and the TFlux Kernels, notice that they handle both the DThreads and the

L-DThreads in the same way.

For the representation of L-DThreads we use the convention T/I where T refers to the Thread

Id whereas I to the Iteration Id. For example, 2/7 is the Thread Template of the L-DThread with

Thread Id equal to 2 and Iteration Id equal to 7. For the Thread Template of “normal” DThreads

(i.e. not L-DThreads) we often use a shorter representation which consists of the Thread Id only

(e.g. 2). Another convention that is used throughout the text regards the TFlux Loops which

are symbolized with only one number which is the Thread Id of the L-DThreads executing it (as

explained earlier the Thread Id is common for all L-DThreads executing the same loop).

3.2.2.1 Dependencies of TFlux Loops

The dependencies of TFlux loops can be partitioned into three categories: between a TFlux

Loop and a DThread, between TFlux Loops and between loop iterations.
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Dependency between TFlux-Loops and DThreads

The first category regards the dependency between TFlux-Loops and DThreads. An example

of this dependency is depicted in Figure 7-(a). When a TFlux-Loop (x) depends on a DThread (y),

no L-DThread of TFlux Loop x can start its execution unless DThread y has completed. Similarly,

when a DThread (y) depends on a TFlux-Loop (x), DThread y can not start its execution unless

all L-DThreads of TFlux Loop x have completed their execution. This dependency, i.e. between

DThreads and TFlux-Loop is represented as shown in Figure 7-(b).

1

3

2/0 2/1 2/32/2 2/4 2/5 2/72/6

1

3

2

(a) (b)

Figure 7: Dependencies between a TFlux Loop and DThreads.

Dependency between TFlux-Loops

The second category, depicted in Figure 8-(a), refers to the dependency between TFlux Loops.

This dependency means that no L-DThread of the consumer TFlux-Loop (TFlux Loop 3 in the

example) can start its execution unless all L-DThreads of the producer TFlux Loop (TFlux Loop

2 in the example) have completed their execution. As such, there is a dependency between each

pair of L-DThreads of the two TFlux Loops. Figure 8-(b) shows how the dependency between

TFlux Loops is represented.
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3/0 3/1 3/33/2

2/0 2/1 2/32/2 2/4 2/5 2/72/6 2

3

(a) (b)

Figure 8: Dependency between TFlux Loops.

Dependency at the level of loop iterations

Finally, the third category refers to dependencies at the iteration level of TFlux Loops (Iteration

Level Dependencies - ILD) i.e. dependencies between L-DThreads of the same or different loops

(Figure 9-(a)). More specifically, if L-DThread y depends on L-DThread x, L-DThread y can start

its execution after L-DThread x has completed regardless the progress of the other L-DThreads

of the TFlux Loops.

An example of this situation is depicted in Figure 9-(a) where L-DThread 3/0 can start its

execution after L-DThreads 2/0 and 2/1 of Loop DThread 2 have completed. When two TFlux

Loops depend at the iteration level, the dependency is shown using a thick arrow as depicted in

Figure 9-(b).

As mentioned before it is possible to have Iteration Level Dependencies between L-DThreads

of the same TFlux Loop. For example, the loop depicted in Figure Figure 9-(c) corresponds to the

Synchronization Graph shown by Figure 9-(d).

3.2.2.2 Execution of TFlux Loops

As mentioned earlier, each iteration of a TFlux Loop is executed by a different L-DThread

and all L-DThreads executing the same TFlux Loop have the same initial Ready Count value

(dynamically the Ready Count value of the different L-DThreads will be different according to
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(a) (b)

2/0 2/1 2/32/2 2/4 2/5 2/6

(c) (d)

2/0 2/1 2/32/2 2/4 2/5 2/72/6

3/0 3/1 3/33/2

2

3

2/0

2/1 2/2

2/3 2/4 2/5 2/6

Figure 9: Iteration-Level Dependencies.

the execution scenario), the same static code and the same Thread Id. This is the case depicted in

Figure 10 where all L-DThreads of TFlux Loop 2 have Ready Count equal to 0.
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Figure 10: Execution of TFlux Loops.

As all static information is common for all L-DThreads executing the same TFlux Loop it

is possible to store their metadata in the same Graph Memory row (Figure 10-(b)). As for the

Ready Count counters, they are kept in a single row of the Synchronization Memory (Figure 10-

(b)). Recall that a single Synchronization Memory entry provides multiple Ready Count counters

allowing one such counter per L-DThread.

The L-DThreads of the TFlux Loops are distributed to the different Kernels of the system. As

such, each TSU will have an entry in its internal structures corresponding to each TFlux Loop.

Notice that for the current version of TFlux the assignment of DThreads and L-DThreads to the
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different execution nodes is static, however in the future dynamic assignment policies are to be

applied.

Referring to Figure 10, when the first TFlux Loop is to be executed by a system with 2 nodes,

each Kernel will be assigned 4 iterations (this loop has 8 iterations). The GM entry corresponding

to the L-DThreads of this TFlux Loop in the first TSU has Iteration Id (ITER) equal to 0. As

for the corresponding SM entry it uses 4 Ready Count counters, which means that this row has 4

L-DThreads and consequently the particular Kernel will execute 4 iterations of the loop. Notice

that all Ready Count counters have been initialized with 0 which is the Ready Count value of the

L-DThreads of the TFlux Loop. For the second TSU, the corresponding Iteration Id is equal to

4 and again 4 Ready Count counters are used. In general, the Iteration Id of an L-DThread is

equal to the sum of the ITER field of its corresponding GM entry plus its offset in the SM. For

this example the L-DThreads of first TSU will execute loop iterations 0,1,2 and 3 whereas the

L-DThreads of the second TSU the iterations 4, 5, 6 and 7.

Providing a different Ready Count counter for each L-DThread allows exploiting parallelism

at the level of loop iterations. As an example, consider the Synchronization Graph depicted in

Figure 10-(a). In this particular case, L-DThread 3/0 can start its execution after L-DThreads 2/0

and 2/1 have completed (Figure 10-(b) to 10-(d)) regardless the progress of the other L-DThreads.

As such, it is possible for L-DThreads of TFlux Loop 3 to start their execution without waiting for

all L-DThreads of TFlux Loop 2 to complete their execution.

3.2.2.3 Execution of loops with large number of iterations

An important issue for the execution of TFlux Loops regards the case of loops with a very

large number of iterations compared to the number of available Ready Count counters. This is due

to the fact that providing as many Ready Count counters as the number of loop iterations would
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significantly increase the Scheduler’s space requirement. To avoid this situation, TFlux applies a

technique named “L-DThread Recycling” which is explained through the example presented in

Figure 11. For this example assume that TFlux Loop 2 has 32768 iterations and it is executed in a

system with 2 TFlux Kernels. Moreover, assume that each SM row has 32 Ready Count counters.

When the metadata of the of L-DThreads executing this TFlux Loop are initially loaded into

the TSU only one Graph Memory (GM) and only one Synchronization Memory (SM) row are

allocated in each TSU of the Scheduler (first generation L-DThreads). As can be seen from Fig-

ure 11-(a) initially the Iteration Id for DThread 2 is equal to 0 for TSU 1 and 32 for TSU 2. Given

that all 32 Ready Count counters of the SM row are used, the L-DThreads loaded into the TSU 1

correspond to the iterations 0-31 whereas for TSU 2 to the iterations 32-63.

However, as mentioned earlier the TFlux Loop has 32768 iterations which is larger than the

number of L-DThreads that have been initially created (which are only 64 i.e. 32 per row). In

order to allow for the execution of the loop, the TFlux Preprocessor adds the necessary code to

inform the TFlux Kernels about the number of iterations of this loop. Consequently, each time an

L-DThread completes the execution of a loop iteration, the TFlux Kernel will apply the L-DThread

Recycling technique to that DThread.

1
0

Ready Count Counters

1
1

1
2

1
3

1
4

1
5

1
6

1 1
32...

2 0
THID
Thread 

ITER
Ready Count CountersThread 

0 1 2 3 4 5 6 32...THID ITER
1 1 1 1 1 1 1 12 0

02 64
THID ITER 0 1 2 3 4 5 6 32...
2 0 1 1 1 1 1 1 1
2 64 00

Thread Ready Count Counters

(a) (b) (c)

Figure 11: Execution of TFlux Loops with large number of iterations.

According to this technique, when an L-DThread completes its execution it “recycles” itself

creating a new entry in the TSU structures (that corresponds to a new L-DThread), which will

Kyri
ak

os
 Stav

rou



48

execute a different iteration of the TFlux Loop. The iteration this new instance is going to execute

is the sum of the Iteration Id of the L-DThread that created it and the parallelism of the loop

execution, i.e. the number of L-DThreads that were originally loaded to execute the particular

TFlux Loop. In this example, 32 L-DThreads were created per TFlux Kernel for the execution of

the TFlux Loop, as such the parallelism is equal to 64.

As an example of the L-DThread Recycling technique, consider the situation depicted in Fig-

ure 11-(b). Here the L-DThread that completed had Iteration Id equal to 3. As such, its new

instance will have Iteration Id equal to 67 (3 + 64) (Figure 11-(b)). For this new L-DThread to

be handled by the Scheduler, its metadata need to be stored in the internal structures of its TSU.

As can be seen from the Figure, this new instance is stored in a separate GM / SM row. More

specifically, for this new row the Iteration Id is equal to 64 and the Ready Count counter used for

this L-DThread is the 3rd one (64+3=67). However, it is not for all new L-DThreads that a new

GM/SM is created but instead only when this is necessary. Consider for example the completion

of the L-DThread with Iteration Id equal to 5, which will create a new L-DThread with Iteration

Id equal to 69. As depicted in Figure 11-(c), the metadata of this L-DThread can be saved in the

same row that has been previously created when the metadata of L-DThread 2/67 was previously

saved. This saves valuable space in the Scheduler’s structures.

As can be seen from Figures 11-(b) and 11-(c) whenever an L-DThread recycles, its Ready

Count counter is deallocated. As such, when all the L-DThreads of a row recycle, that row can

be reused. This technique is what enables the execution of TFlux Loops with arbitrarily large

number of iterations to be completed with limited storage resources. When the desired number of

iterations has been covered, instead of performing the L-DThread recycle operation, the DThreads

will perform the conventional Thread Completion operation. These L-DThreads are called the

last-generation L-DThreads.
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L-DThread Recycling also allows reducing the Ready Count values used in TFlux applications.

In particular, if a TFlux Loop with 32768 iterations depends on a DThread, this DThread does not

need to have as many Consumers. In contrast, the DThread will have as Consumers only the first

generation of L-DThreads, i.e. the ones initially loaded into the TSU. This also applies for the

consumers of the TFlux loop, i.e. only the last generation of L-DThreads updates the subsequent

DThreads.

3.2.2.4 Reduction TFlux Loops

Reduction Loops is a special category of TFlux Loops which perform a reduction operation

that can be calculated in parallel. An example of such a loop is depicted in Figure 12 and regards

the calculation of the sum of all elements of array A. In addition to the L-DThreads that execute

the loop iterations, these TFlux Loops have one extra DThread per Kernel to perform the reduction

operation (Figure 13). For each Kernel this extra DThread is executed only after all its L-DThreads

that correspond to this TFlux Loop have completed. The extra DThread for one of the Kernels

(main TFlux Kernel - usually TFlux Kernel 0) in addition to waiting for all L-DThreads of its

Kernel regarding the execution of this loop to complete, also waits for the extra DThreads of the

other Kernels to complete in order to safely perform the global reduction operation (Figure 12).

Notice that to allow better scalability, for configurations with large number of TFlux Kernels

it might be beneficial to have additional DThreads that are organized in a multilevel structure

for the reduction operation. Nevertheless, at this point, multilevel reduction is not supported

automatically by the Preprocessor tool, therefore requiring the manual creation of the DThreads

and their code.

Finally, it must be noted that the dependencies of the Reduction TFlux Loops have the same

properties as the dependencies for the TFlux Loops as they have been presented in Section 3.2.2.1.
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sum=0;
for(i=0;i<n;i++)
{
sum=sum+A[i];

}

Figure 12: An example of TFlux Loop that performs a reduction operation.

. . . . . . . . .

. . .

L-DThreads of Kernel 1 L-DThreads of Kernel 2 L-DThreads of Kernel 3

Reduction 
L-Dthread 

of Kernel 2

Reduction 
L-Dthread 

of Kernel n

Reduction 
L-Dthread of 
main Kernel

Figure 13: Reduction TFlux Loops.

3.2.3 Thread Recycling

TFlux provides support for repeating the execution of one or more parts of the application’s

Synchronization Graph through a technique name “Thread Recycling”. The rationale of this tech-

nique is similar to that of L-DThread Recycling. An example of a program using this technique is

presented in Figure 14 and regards the the calculation of Elliptic Integrals.

As can be seen from Figure 14-(b) which depicts the Synchronization Graph of this example,

the body of the while-loop (DThreads 1-11) is executed multiple times according to the condition

evaluated by DThread 12. Notice that this technique allows these DThreads to be executed mul-

tiple times without the requirement to add their templates multiple times into the Scheduler, i.e.

one single instance is able to execute many times.
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do
{

sX=sqrt(xt); //DThread 1
sY=sqrt(yt); //DThread 2
sZ=sqrt(zt); //DThread 3
alamb=sX(sY+sZ)+sY*sZ; //DThread 4
xt=0.25*(xt+alamb); //DThread 5
yt=0.25*(yt+alamb); //DThread 6
zt=0.25*(zt+alamb); //DThread 7
ave=THIRD*(xt+yt+zt); //DThread 8
X=(ave-xt)/ave; //DThread 9
Y=(ave-yt)/ave; //DThread 10
Z=(ave-zt)/ave; //DThread 11

}
//DThread 12 evaluates the condition
while(MAX(MAX(abs(X),abs(H)),abs(dZ))>err);

(a) (b)

Figure 14: (a) An example program for Thread Recycling. The code comes from [86] and is used for the
calculation of Elliptic Integrals. (b) The Synchronization Graph of this program.

To enable recycling, the Scheduler handles the DThreads that belong to the “recycle-group”

in a special way. In particular, each time such a DThread completes its current execution, in-

stead of invalidating its metadata, the Scheduler keeps these entries in order to allow it to execute

again. When the DThread that controls the execution of the recycle-group (DThread 12 in the

example) completes, based on the condition it evaluated, it either “wakes-up” the DThreads of the

recycle-group (so that these DThreads will execute again) or the DThreads that follow (so that the

DThreads of the recycle-group will not execute again), i.e. DThread Y.

3.2.4 Blocks

As explained earlier, for the DThreads to be executed under the DDM model, their metadata

first needs to be loaded into the Scheduler. The storage of this unit is limited, therefore to allow

programs with arbitrarily large Synchronization Graphs it is necessary to dynamically load and

clear the Scheduler. This dynamic metadata management is done through the use of DDM Blocks.
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A DDM Block (or simply Block) is an entity that encloses DThreads whereas all DThreads of

an application must be inside a DDM Block. The maximum number of DThreads in a DDM Block

is defined by the size of the TSU. Each program must have at least one DDM Block whereas the

number of DDM Blocks in a program is not limited to any maximum value.

In addition to the application’s DThreads each DDM Block has two additional DThreads for

each TFlux Kernel, the Inlet and Outlet DThreads. The “Inlet DThread” loads into the TSU the

metadata of all DThreads executed by its TFlux Kernel which belong to the specific DDM Block.

As for the “Outlet DThread” it performs two operations. The first is to release the resources

allocated for the execution of the DThreads of its Block. The second operation is performed when

there is another Block that follows. If this is the case, the Outlet DThread loads the Scheduler

with the metadata of the next Block’s Inlet DThreads. As already explained, the Inlet DThread

will load the metadata of this Block’s DThreads into the TSU and therefore enable the execution

to proceed.

Finally notice that whereas the DThreads inside a DDM Block are executed in a Data-Driven

manner, the different DDM Blocks are executed sequentially, i.e. the execution of a DDM Block

starts only after all DThreads of the previous Blocks have completed their execution.

Inter-block Sequential Code

The code that exists between Blocks, is always executed by one Kernel only, i.e. it is executed

sequentially. Notice that for the sequential code to be executed, all the DThreads of the previous

Block need to have completed their execution. Similarly, the DThreads of the Block that follows

can start their execution only after the sequential code has completed.Kyri
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3.3 TFlux Scheduler Basic Operations

To enable execution under the DDM model the Scheduler is required to provide to the TFlux

Kernels five operations: (1) the “Thread Load” operation which enables the TFlux Kernels to

load the Scheduler with the metadata of the DThreads to be executed; (2) the “Find Next Thread”

operation which is used by the Kernel to find the next ready DThread to execute; (3) the “Thread

Completion” operation by which the Scheduler is notified each time a DThread completes each

execution; (4) the “Thread Update” operation by which the Ready Count values of the consumers

of the completed DThreads is decreased and finally, (5) the “Clear TSU operation” which clears

the resources allocated onto the several units of the Schedulers. These five operations are named,

the Scheduler’s Basic Operations.

In the Sections that follow we present more details for each of these Basic Operations. Notice

that the interface for these Basic Operations, which is summarized in Table 2, forms the API of

the TFlux Scheduler.

3.3.1 Thread Load

The Thread Load operation is performed by the TFlux Kernel during the execution of the

Inlet DThread. This operation loads the metadata of the DThreads into the Graph Memory and

Synchronization Memory structures. If a DThread has more than two consumers, their Thread

Templates are written in the Consumer List (CL). Moreover, if the DThreads have Iteration-level

Consumers, their information is stored in the Iteration-level Consumers List (ILCL).

3.3.2 Thread Completion

The Thread Completion operation has three different versions which are analyzed in the para-

graphs that follow.
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Table 2: The API of the TFlux Scheduler

1. Load Thread

Input Metadata of the DThreads to be loaded
Output -

Invoked By Inlet DThread
When During Inlet DThread’s Execution

2. Thread Completion

2.1. Execution Completion
Input -

Output -
Invoked By TFlux Kernel

When DThread completes
2.2. L-DThread Recycle

Input Offset for the new Iteration Id
Output -

Invoked By TFlux Kernel
When L-DThread Recycles

2.3. Thread Recycle Execution
Input New Ready Count

Output -
Invoked By TFlux Kernel

When DThread Recycles

3. Thread Update

Input Content of the TUB
Output -

Invoked By -
When Runs continually

4. Find Ready Thread

Input -
Output Thread Template of Ready DThread

Invoked By TFlux Kernel
When The CPU request a new DThread for execution

5. Clear TSU

Input -
Output -

Invoked By Outlet DThread
When During Outlet DThread’s Execution

3.3.2.1 Execution Completion

When a DThread completes its execution its Kernel invokes the Execution Completion opera-

tion which is a two steps process. First the Kernel inserts the Thread Templates of the Consumers

of the completed DThread in the “Threads-to-Update Buffer” (TUB) in order for their Ready
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Count values to be decreased. The second step is to remove the completed DThread from the

Thread Execution Stack (TES).

3.3.2.2 L-DThread Recycle

As explain in Section 3.2.2.2, during the execution of TFlux Loops, all L-DThreads except

those of the last generation recycle themselves to execute a new iteration. For this purpose, in-

stead of performing the Thread Completion operation, these L-DThreads execute the L-DThread

Recycle operation.

During L-DThread Recycle operation the TFlux Kernel removes the completed L-DThread

from the Thread Execution Stack (TES) and inserts the new instance of this L-DThread in the

Graph and Synchronization Memory structures. For L-DThreads with Iteration Level Consumers

this operation also inserts the identifiers of these consumers into the TUB.

3.3.2.3 Thread Recycle Execution

Another variation of the Thread Completion operation is Thread Recycle Execution which en-

ables executing of a part of the application’s Synchronization Graph multiple times (Section 3.2.3).

In particular, when the DThreads that belong the part of the Synchronization Graph that is re-

peated complete their execution, instead of executing the Execution Completion operation, they

execute the Thread Recycle Execution operation. In addition to the actions taken by the Execution

Completion, Thread Recycle Execution reinserts the metadata of the completed DThread into the

Graph and Synchronization Memory structures. The only difference of Thread Recycle Execution

compared to L-DThread Recycle is that whereas the former reinserts the DThread with exactly

the same metadata the latter modifies the Iteration Id field in order for the new instance of the

L-DThread to execute a different iteration.
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3.3.3 Thread Update

The purpose of this operation is to decrease the Ready Count value of the Consumers of

the completed DThreads which have been inserted by the TFlux Kernels in the TUB during the

Thread Completion operation. During this operation the TUB is traversed and for each valid entry

the corresponding Ready Count counter is decreased.

3.3.4 Find Ready Thread

The task of this operation is to return to the CPU a ready DThread. In the common case, where

the Thread Execution Stack (TES) is not empty, the operation completes by returning the DThread

at the head of the TES. If the TES is empty, the Graph and Synchronization Memory structures

are first traversed and the Thread Templates of all ready threads are copied into the TES. If these

structures contain no ready DThreads the process will repeat until such a DThread is found.

3.3.5 Clear TSU

This operation is performed by the TFlux Kernel during the execution of the Outlet DThread

and its result is to release the resources allocated onto the several TSU units for the execution of

the DThreads of the particular Block.

3.4 TFlux Incarnations

Currently TFlux has two incarnations, TFluxHard and TFluxSoft which are presented in de-

tail in Chapters 5 and 6 respectively. These two systems differ only to the implementation of

the Scheduler and the corresponding interface. In particular, for TFluxHard, the Scheduler is a

hardware component and is attached to the on-chip system’s network as a memory mapped device

whereas for TFluxSoft, the Scheduler’s functionality is provided at the software level. As for the
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other components of the system, i.e. the TFlux Preprocessor, the Runtime Support and the TFlux

Kernels they are common for both incarnations.

The basic characteristic of TFluxSoft is its ability to execute using off-the-shelf components

which makes it directly applicable to existing multiprocessors systems. The fact for that TFlux-

Hard the Scheduler is provided by a hardware unit does not allow it to be used today by off-the-

shelf systems. In contrast, TFluxHard targets multicores that will allow extension of the system

with such modules.
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Chapter 4

TFlux Preprocessor

The TFlux Preprocessor (TFluxCpp) is the tool with which the users develop programs for

the TFlux Platform. Using TFluxCpp it is possible to develop TFlux programs by augmenting

ANSI C code with dedicated compiler directives, named the “TFlux directives”. With these direc-

tives, which are presented in Section 4.3, the user defines the boundaries of DThreads, their type

(DThreads or L-DThreads), and the dependencies among them.

To better explain the operation of TFluxCpp we will first present the structure for the code

of TFlux applications in Section 4.1. Then Section 4.2 analyzes the operation of TFluxCpp.

Section 4.3 presents TFlux directives and simple example programs. What follows is a quali-

tative evaluation of the expressibility of the TFlux directives in Section 4.4 and finally Section 4.5

presents the limitations of this tool.

58
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4.1 Structure of a TFlux Application Code

The code of a TFlux application consists of the code of the original program together with the

code added to allow execution under the DDM model. The main purpose of this additional code is

to allow the Runtime Support system to interact with the Scheduler in order to perform data-driven

Scheduling.

Figure 15 depicts the most important parts of code of a TFlux program. The first element

shown in this Figure regards initializations of structures necessary for the execution of TFlux

programs (TFlux Initializations). These initializations, among others, include the number of TFlux

Kernels and the size of the fields in the Thread Template (Thread Id and Iteration Id).

The second component, regards the creation of TFlux Kernels (TFlux Kernels Creation). Upon

creation, TFlux Kernels load the Scheduler with the metadata of the Inlet DThread of the first

Block (Load Inlet of First Block) with a Ready Count value equal to zero (this is to make these

DThreads immediately executable). Then the Kernels are redirected to a special loop, the purpose

of which is to request from the Scheduler a ready DThread and redirect execution to its first

instruction (Thread Select Loop). If the Scheduler has nothing to return, i.e. no DThread is ready

for execution, this process is repeated.

As mentioned several times, DThreads are represented by their Thread Template. However,

when the execution of a DThread is to be initiated, the Runtime Support is required to know the

address of the first instruction of this DThread. This information, i.e. translation from the Thread

Template to the address of the corresponding DThread’s first instruction, is provided by a code

segment of the application’s code. This code segment, which is part of the Thread Select Loop,

consists of a switch statement, each element of which contains a branch to a different label (Thread
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Application Initializations 

TFlux Global Declarations
Application’s Global Declarations
int main(int argc, char* argv[])
{

}

TFlux Initializations 

TFlux Kernels Creation
Application’s code before 1st block

Application’s functions 

Thread Select Loop 
DThread 1
DThread 2
. . . 
DThread n

ThreadSelectLoop:
readyThread=requestReadyThread()
switch(readyThread)
{
case 0: goto ThreadSelectLoop
case 1: goto DThread1
case 2: goto DThread2
. . . 

}

Dthread’s Code

DThread1:
DThread Header

DThread Footer
Notify TSU

goto ThreadSelectLoop

for(i=0;i<numberOfKernels;i++)
{
Create TFlux Kernel
Load inlet of first block
goto ThreadSelectLoop

}

Figure 15: The structure of the TFlux program.

Label), and such a label exists for each DThread. This label points to the first instruction of the

corresponding DThread.

The Thread Label is the first information of the header of DThreads (Thread Header). For

regular DThreads the Label is the only information in the Header. For L-DThreads the Thread

Header also includes information to set the control variable to its proper value in case the lower

bound of the loop is calculated dynamically, or it is not equal to zero, or if the loop has been

unrolled. Similar adjustment of the control variable needs to be made for the different iteration

scheduling policies (see Section 4.3.2.1).

The code of the DThread is followed by the Thread Footer. The Thread Footer includes a

call to notify the Scheduler that the execution of the DThread has completed and is followed by

an unconditional branch to the Thread Select Loop (goto threadSelectLoop). For the case of L-

DThreads, the footer also includes code to define the termination condition. In particular, this code
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examines if the completed L-DThread should recycle itself to execute another iteration of the loop

or if it belongs to the last generation (Section 3.2.2.2).

4.2 Phases of the TFlux Preprocessor

The purpose of TFluxCpp is to take as input the user program written in ANSI C augmented

with the TFlux directives and output the equivalent ANSI C program that operates under the DDM

model. This code can then be compiled using a commodity C compiler. Notice that parts of this

output program may differ for different TFlux incarnations (TFluxHard and TFluxSoft).

TFluxCpp operates in two phases. During the first phase TFluxCpp parses the TFlux program

and builds the Synchronization Graph of the application whereas during the second phase, it cre-

ates the equivalent output code for this program. As the TFlux directives used in the input code are

the same for different target incarnations, the first phase is common. As for the second phase, the

back-end that produces the output program, there is a different version of this back-end depending

on the target implementation. This is mainly due to the fact that for different implementations,

the Scheduler’s interface may differ. Nevertheless, the large majority of the output program is

common for both TFlux incarnations.

4.2.1 Phase 1: Parsing

To create the Synchronization Graph of the input program, TFluxCpp parses the directives in

order to identify the type and the dependencies between the DThreads. Understanding the type

of the DThreads is necessary as some directives declare DThreads that have multiple instances

(e.g. TFlux Loops). Each time TFluxCpp finds the declaration of a DThread it inserts it in an

internal list (DThread List). For the case of TFlux Loops, the preprocessor inserts into this list

multiple DThreads, one per TFlux Kernel. The same stands for DThreads defined by the user
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to be executed by all TFlux Kernels (Section 4.3.1.3). Another situation for which additional

DThreads are created regards the DThreads performing the reduction operation of TFlux Loops

(Section 4.3.2.3). After all DThreads have been created and data dependencies have been defined,

TFluxCpp creates the program’s Synchronization Graph.

The next step for TFluxCpp is to create the Inlet and Outlet DThreads. As explained in Sec-

tion 3.1.2, each Block has one Inlet and one Outlet DThread per TFlux Kernel. The main purpose

of the Inlet DThreads is to load onto the TSU all DThreads to be executed by their TFlux Ker-

nel. The DThreads each Inlet loads onto the TSU are easily found by TFluxCpp by traversing the

DThreads List. Notice that all DThreads of a Block that do not have Producers are set to depend

on the Inlet DThreads. Similarly, the DThreads that do not have any Consumer are set to have as

Consumer the Outlet DThread of their Kernel for their block.

The final step is to set the dependencies between the Inlet and Outlet DThreads to enable

the execution of consecutive Blocks and also of the sequential code between Blocks. Notice

that the sequential code is only executed by one Kernel, which we name the First Kernel. In

order to achieve the execution of consecutive Blocks, all Outlet DThreads are set to load into the

TSU the Inlet DThread of the next Block for their Kernel. In addition, to enforce the necessary

synchronization (a DThread can start its execution only after all DThreads of the previous Block

have completed their execution) the Inlet of the First Kernel has as consumers all the other Inlets

of the same Block (Figure 16). Similarly, the Outlet of the First Kernel is a consumer of all other

Outlets. Finally, the Inlet of the First Kernel of a Block is a consumer of the Outlet of the First

Kernel of the previous Block. As for the Outlet of the last Block, it is set by TFluxCpp to force its

Kernel to exit.

During this first step, in addition to creating the Synchronization Graph, TFluxCpp creates a

list of variables that need to be declared in a special way. These variables are used for the TFlux
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Outlet DThreads 
of Block x

Inlet DThreads 
of Block x+1

Figure 16: Synchronization of Inlet / Outlet DThreads of consecutive DThreads.

Loop reduction operation which needs to be shared among all TFlux Kernels as well as global

memory addresses needed for the communication between the TFlux Kernels and the Scheduler.

4.2.2 Phase 2: Creation of Output Code

Based on the Synchronization Graph created in Phase 1, in this second phase TFluxCpp creates

the output code for the input program. The code-segments added during this second phase include

code: (1) that initializes TFlux execution (TFlux Initializations); (2) that creates the system’s

TFlux Kernel Create TFlux Kernel); (3) that defines the entry and exit points of DThreads (Thread

Header and Thread Footer); (4) that performs the necessary calls the to TSU operations; (5) of the

TFlux Kernels; and (6) of the Runtime Support.

Notice that adding these components into the application’s code results in a binary that is self-

contained. This means that the TFlux application can be executed on the host system without the

need to install any patches to the Operating System or run specialized services.
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All the code that is necessary to support the several features provided for the execution of

TFlux Loops, such as scheduling (Section 4.3.2.1), unrolling (Section 4.3.2.2) and reduction (Sec-

tion 4.3.2.3), is also generated by TFluxCpp in this second step. In particular, when the user

defines the scheduling mode for TFlux Loops, TFluxCpp may need to insert special code at the

header of L-DThreads in order to adjust the control variable. This is also true for the case of TFlux

Loops the lower bound of which is different than zero. As for unrolling, the code of the loop body

is replicated during this second preprocessing step and the control variable is again adjusted ac-

cordingly. As for the case of reduction, TFluxCpp inserts the proper code in reduction DThreads

which have been created in the first step.

4.3 Basic TFlux directives

The main purpose of the TFlux directives is to allow the user to define the boundaries, the

type and the dependencies among the application’s DThreads. This Section presents the most

important TFlux directives together with simple examples of their usage. The complete set of the

TFlux directives is listed in Appendix B.

4.3.1 DThreads

A DThread is defined by enclosing its code in a set of #pragma ddm thread and a #pragma

ddm endthread directives (Figure 17). These directives define the begin and end point of the

DThread respectively. Moreover the #pragma ddm thread directive defines the unique identifier

of the DThread (Thread Id) which in this example is equal to 4. The current version of TFlux

applies a static scheduling technique, i.e. the DThreads each TFlux Kernel executes are defined

statically. As such, TFluxCpp requires the user to define the Kernel that will execute this particular

DThread (notice the Kernel 2 part of the directive in the example of Figure 17).
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#pragma ddm thread 4 kernel 2
x=sin(y);

#pragma ddm endthread

Figure 17: Example of DThread declaration using TFlux directives.

4.3.1.1 Data Import/Export

TFluxCpp allows the user to define the data produced and consumed by a DThread. These

definitions are achieved using the import and export parts of the #pragma ddm thread directive

(Figure 18). TFluxCpp automatically creates a dependence between the DThread that produces a

variable (e.g export x) and the DThread that consumes this variable (e.g. import double x).

#pragma ddm thread 4 kernel 2 import(double y) export(x)
x=sin(y);

#pragma ddm endthread

#pragma ddm thread 5 kernel 1 import(double x) export(z)
z=x*x*x-x*x;

#pragma ddm endthread

Figure 18: Example of DThread declaration using import/export statements.

4.3.1.2 Explicit Dependencies

The producer/consumer relationship between DThreads can also be defined explicitly using

the depends statement of the #pragma ddm thread directive (Figure 19). This feature is useful for

cases where the import/export statements can not express the data dependence. Such a situation is

when these dependencies regard complete arrays.

#pragma ddm thread 4 kernel 2

*x=sin(*y);
#pragma ddm endthread

#pragma ddm thread 5 kernel 1 depends(4)

*z=(*x)*(*x)*(*x)-(*x)*(*x);
#pragma ddm endthread

Figure 19: Example of DThread declaration using the depends statement.
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4.3.1.3 All-Kernels DThreads

TFluxCpp allows its user to define DThreads that are to be executed by all Kernels, i.e. TFlux-

Cpp will create multiple instances of this DThread and each such DThread will be assigned for

execution to a different TFlux Kernel. This is achieved by replacing the kernel kernelID state-

ment of the #pragma ddm thread directive with the kernel all statement (Figure 20). This feature

is very helpful for DThreads that initializate private variables or execute segments of the code

performing Single-Program-Multiple-Data (SPMD) operations.

#pragma ddm thread 4 kernel all
mySum=0;

#pragma ddm endthread

Figure 20: Example of DThread declaration using the kernel all statement.

4.3.2 TFlux Loops

TFluxCpp provides to its user multiple options for defining TFlux Loops (Section 3.2.2). The

basic declaration of a TFlux Loop, which has always the form of a for-loop, is depicted in Fig-

ure 21. The code of this TFlux Loop is enclosed in a set of #pragma ddm for and #pragma ddm

endfor directives. Notice that this declaration regards a parallel for-loop, i.e. a loop all iterations

of which can proceed in parallel (DO-ALL loops).

#pragma ddm for thread 4
for(cv=0;cv<1024;cv++)
{

a[cv]=sin(cv);
}

#pragma ddm endfor

Figure 21: Example of a TFlux Loop.

Notice that TFlux Loops are always executed by all Kernels of the system with TFluxCpp

distributing the iterations to the different Kernels as evenly as possible (Section 4.3.2.1). When
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the number of loop iterations is not a multiple of the number of Kernels TFluxCpp distributes

iterations to TFlux Kernels in such a way that the imbalance is never larger than one loop iteration

as explained in the Section that follows.

4.3.2.1 Iterations Scheduling

TFluxCpp assigns loop iterations to Kernels using chunks the default size of which is 32 (this

size is equal to the number of Ready Count counters per Synchronization Memory row) following

a Chunk Scheduling [68, 130] scheme. As an example, if a system with two Kernels is executing

a TFlux Loop with 256 iterations, TFlux Kernel 1 will be assigned iterations 0-31, 64-95, 128-

159 and 192-223 whereas TFlux Kernel 2 iterations 32-63, 96-127, 160-191 and 224-255. The

rationale behind this scheduling scheme is to allow the TFlux Kernels to better exploit temporal

and spatial data locality. The reason for which TFluxCpp does not split the loops into parts of

consecutive iterations and assign these parts to the Kernels (i.e. iterations 0-127 for Kernel 0 and

128-255 for Kernel 1) is to avoid load imbalance when the computational load of an iteration

depends on the control variable. An example of this situation exists in the CG benchmark that is

presented in Section 7.2.7.

In addition to the scheduling type described above, TFluxCpp supports Round-Robin schedul-

ing [68, 130] i.e. assigning consecutive iterations to different Kernels. To select Round-Robin for

a loop the programmer needs to use the schedule 1 statement in the #pragma ddm for directive

(Figure 22). On a 2-Kernels system, execution of a TFlux Loop with 256 iterations, Round-Robin

scheduling would result in Kernel 1 executing iterations 0, 2, 4, ..., 254 and Kernel 2 executing the

iterations 1, 3, 5, ..., 255. Notice that currently, Round-Robin Scheduling (schedule 1), supports

only applying the round-robin iteration assignment on a single-iteration basis (this is why we use

the number 1 in the schedule 1 statement).
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#pragma ddm for thread 4 schedule 1
for(cv=0;cv<1024;cv++)
{

a[cv]=sin(cv);
}

#pragma ddm endfor

Figure 22: Example of a TFlux Loop with Round-Robin scheduling.

Table 3 provides several examples for the explanation of these two scheduling policies. These

examples assume a configuration with 4 TFlux Kernels.

Table 3: Examples of scheduling the iterations of TFlux Loops

Loop Iterations TFlux Kernel 1 TFlux Kernel 2 TFlux Kernel 3 TFlux Kernel 4

CHUNK SCHEDULING (Default)

8 0, 1 2, 3 4, 5 6, 7
13 0, 1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12

128 0-31 32-63 64-95 96-127
256 0-31 32-63 64-95 96-127

128-159 160-191 192-223 224-255
258 0-31 32-63 64-95 96-127

128-159 160-191 192-223 224-255
256 257

ROUND-ROBING SCHEDULING (schedule 1)

8 0, 4 1, 5 2, 6 3, 7
13 0, 4, 8, 12 1, 5, 9 2, 6, 10 3, 7, 11

128 0, 4, 8, ..., 124 1, 5, 9, ..., 125 2, 6, 10, ..., 126 3, 7, 11, ..., 127
256 0, 4, 8, ..., 252 1, 5, 9, ..., 253 2, 6, 10, ..., 254 3, 7, 11, ..., 255
258 0, 4, 8, ..., 252, 256 1, 5, 9, ..., 253, 257 2, 6, 10, ..., 254 3, 7, 11, ..., 255

4.3.2.2 Unrolling

TFluxCpp provides automatic unrolling of the TFlux Loops [26, 92] which is achieved with

the use of the unroll statement. For example the TFlux Loop depicted in Figure 23 is set to be

unrolled 8 times. Unrolling the loop is often very helpful for TFlux as increasing the size of the L-

DThreads helps to better amortize the parallelization overhead. TFluxCpp automatically handles

all side-effects of unrolling, such as, replicating the code, adjusting the increase of the control

variable and the corresponding change in value of the upper bound of the loop.
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#pragma ddm for thread 4 unroll 8
for(cv=0;cv<1024;cv++)
{

a[cv]=sin(cv);
}

#pragma ddm endfor

Figure 23: Example of a TFlux Loop with unrolling.

4.3.2.3 Reduction

A common operation performed by parallel loops is for all loop iterations to lead to a single

value which is called “reduction”. TFluxCpp provides special support for such TFlux Loops, i.e.

TFlux Loops that perform a reduction operation (Figure 24). This is achieved through the use of

the reduction statement.

#pragma ddm for thread 1 reduction localSum + double totalSum
for(i=0;i<1024;i++)
{
localSum+=i;

}
#pragma ddm endfor

Figure 24: Example of a TFlux Loop with reduction.

Referring to the example depicted in Figure 24, each TFlux Kernel will calculate the sum of

the iterations it executes on the localSum variable. To find the total sum, i.e. the sum for all

iterations of the loop, it is necessary to add all these localSum variables. The necessary code to

perform these operations is automatically generated by the TFluxCpp.

In addition to the simple reduction operations (summation, subtraction and multiplication),

TFluxCpp allows its user to express more complex reduction operations using custom functions.

The only responsibility for the the user is to define this function; all other details are handled

by TFluxCpp automatically. As an example, Figure 25 depicts a TFlux Loop that calculates the

minimum and maximum value of an array of integer values.
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#pragma ddm for thread 1 reduction redFun(Max, Min, int localMax, int localMin)
for(i=0;i<128;i++)
{
if(A[i]>localMax)
{

localMax=A[i];
}
if(A[i]<localMin)
{

localMin=A[i];
}

}
#pragma ddm endfor

void redFun(int* Max, int* Min, int localMax, int localMin)
{

if(*Max<localMax)
{

*Max=localMax;
}
if(*Min>localMin)
{

*Min=localMin;
}

}

Figure 25: Example of a TFlux Loop with reduction with function.

4.3.2.4 TFlux Loop Dependencies

TFlux Loops can depend on other TFlux Loops and DThreads. As explained in Section 3.2.2.1

when a TFlux Loop depends on another TFlux Loop (Figure 26-(a)) no L-DThread of the second

loop can start its execution unless all L-DThreads of the first loop have completed. Similarly,

when a TFlux Loop depends on a DThread (Figure 26-(b)) no L-DThread of the loop can start

its execution unless the DThread has completed. As for the situation where a DThread depends

on a TFlux Loop, the DThread can start is execution only when all L-DThreads have completed.

Notice that it is possible for a TFlux Loop to depend on multiple DThreads or TFlux Loops. All

these dependencies can be expressed with very simple TFlux directives as depicted in Figure 26

4.3.2.5 Iteration Level Dependencies

TFluxCpp allows expressing dependencies at the iteration-level of loops, i.e. dependencies

between L-DThreads (Section 3.2.2.1). As depicted in Figure 27, this is done by using the ilc
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#pragma ddm for thread 3
for(cv=0;cv<1024;cv++)
{
a[cv]=b[cv]*c[cv];

}
#pragma ddm endfor

#pragma ddm for thread 4 depends(3)
for(cv=0;cv<1024;cv++)
{
a[cv]=sin(cv);

}
#pragma ddm endfor

#pragma ddm thread 3
x=sin(y);

#pragma ddm endthread

#pragma ddm for thread 4 depends(3)
for(cv=0;cv<1024;cv++)
{

a[cv]=a[cv]*x;
}

#pragma ddm endfor

(a) (b)

Figure 26: Declaration of TFlux Loop dependencies. (a) Dependencies between TFlux Loops. (b) Depen-
dency between a TFlux Loop and a DThread.

statement (Iteration Level Consumers). Each ilc statement is a six-tuple entity consisting of a

type, the consumer TFlux Loop identifier, three numeric values (a, b and c) and a value indicating

the scheduling type (Chunk scheduling or Round-Robin) of the consumer and producer loops.

The type and the three numeric values (a, b and c) are used to calculate the Iteration Id of the

Consumer L-DThread based on the Iteration Id of the L-DThread that has completed according to

the expressions which are detailed in Section B.1. An example of a program with Iteration level

dependencies is depicted in Figure 27. Notice that for the second TFlux Loop of this program the

Ready Count value has been set explicitly by the programmer to be equal to 2 as each L-DThread

of this loop depends on two L-DThreads of the first TFlux Loop.

#pragma ddm for thread 1 ilc [2 2 2 0 0 0]
for(i=0;i<1024;i++)
{

A[i]=i*i;
}

#pragma ddm endfor

#pragma ddm for thread 2 readyCount 2
for(i=0;i<512;i++)
{

B[i]=A[2*i+1]-A[2*i];
}

#pragma ddm endfor

Figure 27: Example of a TFlux Loops with Iteration Level Dependencies.
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4.3.3 Thread Recycling

As explained in Section 3.2.3 Thread Recycling allows to a part of the application’s Synchro-

nization Graph to be executed multiple times. To express that a DThread is to be executed multiple

times TFluxCpp provides the recycle statement. Figure 28 depicts an application that uses this

feature. In this example DThreads 2, 3 and 4 belong to a “recycle-group” which is controlled by

DThread 1. Based on a condition (if((∗x) > 8)), DThread 1 “wakes-up” either its consumers

inside the recycle-group (DThreads 2 and 3) or the Consumers of the DThreads of this group

(DThread 5). In the first case, where DThread 1 “wakes-up” DThreads 2 and 3, upon completing

their execution these DThreads will lead to DThread 4 becoming executable. When DThread 4

completes it will not “wake-up” DThread 5 but rather DThread 1. In the second case, where the

condition evaluated by DThread 1 is not true any more, instead of “waking-up” DThreads 2 and 3,

it will “wake-up” DThread 5.

#pragma ddm thread 1 kernel 1 recycle
(*x)=(*x)+1;
if((*x)>8)
{
#pragma ddm threadCompleted

}
#pragma ddm recycle

#pragma ddm thread 2 kernel 1 depends (1) recycle
(*y) +=(*x)*(*x);

#pragma ddm recycle

#pragma ddm thread 3 kernel 2 depends (1) recycle
(*z) +=(*x)*(*x)*(*x);

#pragma ddm recycle

#pragma ddm thread 4 kernel 1 depends (2) recycle 1
(*k)+=(*x)+(*y);

#pragma ddm recycle

#pragma ddm thread 5 kernel 2 depends (4)
(*f)+=sin(k);

#pragma ddm endthread

5

4

1

2 3

Recycle Group

(a) (b)

Figure 28: Example of Thread Recycling. (a) The code of the application. (b) The Synchronization Graph
of the application
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4.4 TFlux directives Expressibility

After having presented the TFlux directives, this Section qualitatively examines their ability to

express the parallelism inside an application (expressibility). Notice that the ability of the TFlux

Platform to efficiently execute these parallel segments is not relevant for this discussion as what

is evaluated here, is the ability to express and not the ability to exploit the concurrency between

different code segments using the TFlux directives.

Using DThreads it is possible to express all concurrency that exists in an application due to

the fact that TFlux directives allow arbitrary dependencies between DThreads. This feature is

what allows to TFlux directives to have higher expressibility compared to widely used parallel

“traditional” programming models, i.e. parallel programing models that have barriers and locks

as synchronization primitives. Examples of such models are OpenMP [81] and MapReduce [30].

Figure 29 depicts an application for which the TFlux directives can express more parallelism

compared to the “traditional” model. To parallelize this application using the “traditional” ap-

proach it is necessary to split the program into parallel execution phases and add barriers between

them for synchronization. In particular, as can be seen from Figure 29, the first phase is composed

of code segments 1, 2, 3 and 4, the second phase of code segments 5,6 and 7 and the last phase

of segment 8 (the term “code segment” has the same conceptual meaning as the term DThread).

Although this partitioning of code into phases guarantees correct execution as the data dependen-

cies between the code segments (shown as the arcs of the Synchronization Graph) are satisfied, it

introduces additional synchronization points. As can be seen from Figure 30-(a), that presents the

application’s code parallelized with OpenMP, two barriers have been introduced.
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6 75

8

3 41 2

Figure 29: Example application. Nodes correspond to code segments, arcs to data dependencies and
vertical lines to barriers.

This “traditional” parallelization approach provides a partial ordering of the application’s Syn-

chronization Graph. With TFlux directives however (Figure 30-(b)), it is possible to express the ap-

plication with minimum ordering and consequently expose to the hardware the maximum amount

of parallelism.

To better explain this we will refer to the execution condition of Code Segment 5. According

to the partial ordering of the the “traditional” approach Code Segment 5 can be executed only

after code segments 1, 2, 3 and 4 have completed. However, according to the minimum ordering

expressed with the TFlux directives, Code Segment 5 can execute after code segments 1 and 2

complete without the need to also wait for the completion of Code Segments 3 and 4. If code

segments 1 and 2 require 4 time-units each to execute whereas code segments 3 and 4 10 time-

units, given enough computational resources, execution of code segment 5 could be overlapped by

6 time-units if parallelization was done using TFlux directives. However, this opportunity would

be lost by parallelizing the code using the “traditional” model.

Another situation where TFlux directives allow expressing more parallelism, regards parallel

loops with iteration level dependencies. An example of such a situation is presented by Figure 31.

Notice that the data dependencies between the two loops are such that for an iteration of the second
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#pragma omp parallel
{
#pragma omp section

code segment 1

#pragma omp section
code segment 2

#pragma omp section
code segment 3

#pragma omp section
code segment 4

#pragma omp section
code segment 5

//BARRIER
#pragma omp barrier

#pragma omp section
code segment 6

#pragma omp section
code segment 7

#pragma omp section
code segment 8

//BARRIER
#pragma omp barrier

#pragma omp section
code segment 9

}

#pragma ddm thread 1
code segment 1

#pragma ddm endthread

#pragma ddm thread 2
code segment 2

#pragma ddm endthread

#pragma ddm thread 3
code segment 3

#pragma ddm endthread

#pragma ddm thread 4
code segment 4

#pragma ddm endthread

#pragma ddm thread 5 depends(1,2)
code segment 5

#pragma ddm endthread

#pragma ddm thread 6 depends(3,4)
code segment 6

#pragma ddm endthread

#pragma ddm thread 7 depends(4)
code segment 7

#pragma ddm endthread

#pragma ddm thread 8 depends(5,6,7)
code segment 8

#pragma ddm endthread

(a) (b)

Figure 30: (a) OpenMP code for the application depicted in Figure 29. (b) TFlux code for the application
depicted in Figure 29.

loop to start its execution it is not necessary to wait for all iterations of the first loop to complete.

For instance, iteration 0 of the second loop can start its execution after iterations 0 and 1 of the

first loop have completed.

for(i=0;i<1024;i++)
{
A[i]=i*i;

}

for(i=0;i<512;i++)
{
B[i]=A[2*i+1]-A[2*i];

}

Figure 31: Example of a loops with dependencies at the iteration level.
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The “traditional” parallelization approaches lack the expressibility to expose this type of par-

allelism to the hardware. As such, when such applications are to be parallelized using, for example

OpenMP, a barrier point is implicitly imposed between the two loops (Figure 32-(a)). This leads

to no iteration of the second loop getting executable unless all iterations of the first loop have

completed and consequently to less exploitable parallelism.

As explained earlier in Section 4.3.2.5, the TFlux directives are able to expose this type of

parallelism to the hardware. In particular, using the ilc statement in the directive describing the

parallel loop it is possible to limit the dependencies of the iterations of the second loop to only

those required by the true data dependencies (Figure 32-(b)).

#pragma omp for
for(i=0;i<1024;i++)
{

A[i]=i*i;
}

#pragma omp for
for(i=0;i<512;i++)
{

B[i]=A[2*i+1]-A[2*i];
}

#pragma ddm for thread 1 ilc [2 2 2 0 0 0]
for(i=0;i<1024;i++)
{

A[i]=i*i;
}

#pragma ddm endfor

#pragma ddm for thread 2 readyCount 2
for(i=0;i<512;i++)
{

B[i]=A[2*i+1]-A[2*i];
}

#pragma ddm endfor

(a) (b)

Figure 32: (a) OpenMP code for the application depicted in Figure 31. (b) TFlux code for the application
depicted in Figure 31.

4.5 Limitations

Although TFluxCpp provides to its user numerous features and options there is still room for

improvement. In the paragraphs that follow we identify the two most important limitations of the

tool.

The first limitation regards the fact that currently TFluxCpp supports directives only in the

body of the main() function, i.e. the directives placed in other functions are not taken into account.
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The consequence of this limitation is that to parallelize code in a function it is necessary to first

inline its code into the body of main().

The second limitation of TFluxCpp, is the lack of support for nested parallelism. This feature

could be useful for nested loops. To provide nested parallelism it is necessary to first add the

appropriate support in the Runtime Support in order to differentiate the level at which each code

segment is executed. This support is also useful to allow execution of parallel sections into func-

tions without the need to inline the code. Currently, to exploit the parallelism of nested parallel

constructs the user needs to modify the code in order for all DThreads to be at the same level using

techniques such as loop merging [92].
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Chapter 5

TFluxHard

This Chapter focuses on the TFlux incarnation for which the Thread Scheduler as a hardware

component. We call this design the TFluxHard system.

Section 5.1 presents a general description of TFluxHard followed by a detailed presentation

of its Scheduler in Section 5.2 that focuses on the implementation of the Basic Operation. Sec-

tion 5.3 presents the interface between the Scheduler and the TFlux Kernel whereas Section 5.4

discusses the several logic and memory units of the scheduler. Section 5.5 presents an analysis

about the Scheduler’s hardware budget and finally, Section 5.6 discusses implementation issues

for TFluxHard.

5.1 The TFluxHard System

TFluxHard follows the layered design of TFlux and its major characteristic is the implementa-

tion of the Scheduler, which functionality is provided at the hardware level by a dedicated module.

78
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As for the other TFlux layers, i.e. the programming layer, the Runtime Support and the TFlux Ker-

nels, they are as previously presented for the TFlux Platform.

Although TFluxHard can not be directly applicable to an off-the-shelf multicore system, the

fact that it uses only commodity components (unmodified OS, compiler, CPUs, caches) allows it to

be easily adopted by future systems. In particular, for a multicore to become a TFluxHard machine

the only requirement is the augmentation of the machine with a hardware module providing the

functionality of the Scheduler. As will be explained in more detail in Section 5.2, this module can

be attached to the system network without interfering with any other component of the system. It

is relevant to stress that due to the design of TFlux, no changes are required to the original ISA

in order for TFlux to schedule the Threads in a dataflow-like way. A general, abstract TFluxHard

configuration equipped with 4 CPUs is depicted in Figure 33.
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Figure 33: Abstract TFluxHard configuration with 4 cores.

5.2 TFluxHard Scheduler

This Section presents the purpose of the different logic and memory units (Section 5.2.1) of

the TFluxHard Scheduler as well as the implementation of the Basic Operations (Section 5.2.2).
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5.2.1 TFluxHard Scheduler Units

As can be seen from Figure 34 that depicts the TFluxHard Scheduler, similar to the generic

TFlux Scheduler, it consist of as many TSUs as the number of TFlux Kernels it is able to serve

and a number of shared units. The discussion that follows presents all memory and logic units of

the TFluxHard Scheduler grouped according to their operation.
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Figure 34: TFluxHard Scheduler.

5.2.1.1 Communication Units

The TFluxHard Scheduler is accessible as a memory mapped device. This simplifies the com-

munication between the TFlux Kernel and the TFluxHard Scheduler as it can be achieved through
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simple load and store operations. Notice that in high level languages, such as C, accessing devices

attached to the memory mapped addresses is done through the read() and write() functions that

operate at the user level, therefore incurring in a minimum overhead.

The purpose of the System Network Interface Unit (SNIU) is to serve as the interface between

the Scheduler and the System’s Network. In particular, this unit receives all data packets sent to

the Scheduler and also handles all the data sent by the Scheduler to the CPUs. Notice that each

TSU is mapped to a different address; it is a responsibility of the SNIU to receive the data packets

for all the TSUs and distribute them appropriately.

As the rate by which data is produced and consumed by the Scheduler and the System’s Net-

work may be different, to avoid loss of data, the Scheduler is equipped with two queues per TSU.

The Input Queue (InQ) buffers all data sent by the TSU to the System’s Network until the later

is able to transmit them whereas the Output Queue (OutQ) buffers all data received from the

System’s Network until the TSU is able to process them.

5.2.1.2 Units for the implementation of the Basic Operations

The interface between the Scheduler and the CPU, which will be presented in detail in Sec-

tion 5.3, is through specially coded data packets that represent Scheduler Instructions. The purpose

of the Packets Management Unit (PMU) is to decode these Scheduler Instructions and trigger the

appropriate Basic Operation. The TSU is equipped with one logic unit for each such operation.

The Load Thread Unit (LTU) performs the Load Thread Operation (Section 3.3.1), i.e. it

loads the metadata of the DThreads sent by the CPU to the TSU’s internal structures. Whenever

a DThread completes, the TFlux Kernel triggers the Thread Completed Operation (Section 3.3.2),

which functionality is provided by the Thread Completed Unit (TCU). As for the Clear TSU

operation (Section 3.3.5), which is executed at the end of each Block to deallocate the resources
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used for the execution of the Block’s DThreads, it is provided by the Clear TSU Unit (CTU). The

Find Ready Thread Unit (RFTU) is responsible for returning to the CPU the metadata of a Ready

DThread whenever the CPUs perform the Find Ready Thread operation (Section 3.3.4). Finally,

the Thread Update Unit (TUU) is responsible for decreasing the Ready Count counters of the

consumers of the completed DThreads by executing the Thread Update operation (Section 3.3.3).

5.2.1.3 Units for DThread Metadata Storage

The metadata of the application’s DThreads is stored in the Graph Memory (GM) and Syn-

chronization Memory (SM) unit. More specifically the static metadata, i.e. the one that does not

change during the execution of the application, is stored in the Graph Memory whereas the Ready

Count, that is changed dynamically, is stored in the Synchronization Memory (dynamic metadata).

As explained earlier the Graph Memory provides storing for only two Consumers per row,

i.e. it supports only two Consumers per DThread. However, it is possible for a DThread to have

more than two Consumers. To support such DThreads the Scheduler has a special unit named

Consumer List (CL). The Thread Templates of the Consumers of the these DThreads are stored

in the Consumer List which is indexed by the Consumer 2 field of the Graph Memory (further

details are given in Section 5.2.2.1). The management of the Consumers of a DThread is done

with the help of the Consumer List Management Unit (CLMU). A similar approach is followed

for the Iteration Level Consumers. In particular, their information is stored in the Iteration Level

Consumers List (ILCL) which is indexed by the ILC field of the Graph Memory. For handling the

Iteration Level Consumers the Scheduler uses the Iteration Level Consumers List Management

Unit (ILCLMU).
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5.2.1.4 Units for Handling Ready Threads

Whenever the Ready Count counter of a DThread reaches zero, representing the fact that the

DThread is ready to execute, its Thread Template is copied to the Ready Queue (RQ) unit. As for

the DThreads that have been scheduled for execution, their templates are moved from the Ready

Queue to the Thread Execution Stack (TES).

5.2.1.5 Units for Thread Updating

For the Ready Count of Consumers of the completed DThreads to be decreased the Scheduler

utilizes the Threads-to-Update Buffer (TUB). More specifically, whenever a DThread completes,

the Thread Completed Unit copies its consumers to the Threads-to-Update Buffer. The Thread

Update Unit reads the entries of this unit and decreases their Ready Count counters leading to

new Threads being deemed executable.

5.2.2 Implementation of Basic Operations

This Section presents the details of the implementation of the Basic Operations. For each such

operation, we discuss the interaction between the different memory and logic units involved.

5.2.2.1 Thread Load

When all the data for a DThread have been received by the Packet Management Unit (PMU),

the Load Thread Unit (LTU) stores its metadata onto the Graph Memory (GM) and Synchroniza-

tion Memory (SM) structures. The first step towards this operation is to find an empty entry into

the Graph Memory where the Thread Templates of the DThread, of its Consumers and of its Itera-

tion Level Consumers are to be stored. At the same time the corresponding Ready Count counters

in the Synchronization Memory are initialized. Notice that each SM row corresponds to one GM
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row; as such if an available GM entry has been identified it is not necessary to search for an avail-

able SM entry. If the DThread has more than one instance, i.e. the DThread executes a TFlux loop,

then multiple Ready Count counters in the particular Synchronization Memory row are used.

As an example of Thread Loading refer to Figure 35 which depicts the state of the Graph and

Synchronization Memories after loading DThreads 1/0 and 2/32. DThread 1/0 has 1 instance, 2

Consumers (2/0 and 2/32) and initial Ready Count value equal to 3 whereas DThread 2/32 has

4 instances with and initial Ready Count equal to 1 and 1 consumer (4/0). As can be seen from

Figure 35 the number of Ready Count counters used in the SM is equal to the number on DThread

instances, 1 for 1/0 and 4 for 2/32. Moreover, notice that for DThreads with multiple instances

(e.g. 2/32), all Ready Count counters are initialized to the same value.

Graph Memory Synchronization Memory 

Thread Template Consumer 1 Consumer 2 Ready Count Counters
V INST

THID ITER THID ITER THID ITER
ILC

0 1 2 3 4 5 6 … 31
1 1 1/0 2/0 2/32 0 3         
1 4 2/32 4/0 0/0 0 1 1 1 1      

Figure 35: Example of Thread Loading

For DThreads with at most two Consumers, the Scheduler uses the the Graph Memory for

storing their Thread Templates whereas for DThreads with more than two Consumers it uses the

Consumer List. For this situation where there are more that 2 Consumers, the Consumer 1 field of

the Graph Memory row is set to 0/0 whereas the Consumer 2 field to x/0 where x is the position

into the Consumer List where the first Consumer of this DThread is stored (if the DThread had only

one Consumer then the Consumer 1 field would hold its Thread Template whereas the Consumer

2 field would be equal to 0/0).
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To find the last consumer of each DThread and to avoid segmentation the Consumer List uses

a field named “next”. For each Consumer List entry, this field is an index to the next consumer of

the same DThread. For the last consumer however, the next field indexes itself.

To better explain the way consumers are handled assume that the DThreads shown in Table 4

are to be loaded onto the same TSU.

Table 4: Consumer List usage example

DThread Consumers

1/0 -
1/32 2/0
2/0 4/0, 4/32
3/0 5/0, 6/0, 7/0
4/0 5/32, 6/32, 7/0, 7/32

The state of the Consumer List before loading these DThreads is depicted in Figure 36-(a)

whereas the state of the Graph Memory and Consumer List after loading these DThreads by

Figure 36-(b). DThread 1/0 has no consumers so in its Graph Memory both Consumer 1 and

Consumer 2 fields are equal to 0/0. As for DThread 1/32, it has only one Consumer. Therefore, in

the Consumer 1 field we store the Thread Template of the single Consumer whereas the Consumer

2 field is equal to 0/0. As for DThread 2/0, it has two Consumers. As such, the Thread Template

of the first Consumer in the Consumer 1 field and the Thread Template of the second Consumer

is stored in the Consumer 2 field. Regarding DThread 3/0 it has 3 consumers. In this case, the

Consumer 1 field is set to 0/0 and the Consumer 2 field is set equal to the number of the first

available entry in the Consumer List. Assume that the Consumer List at this point has the state

depicted in Figure 36-(a) with the first available entry being the one with number 4. This means

that for DThread 3/0 the Consumer 1 field will be equal to 0/0 whereas field Consumer 2 equal to

4/0. The first consumer of DThread 3/0 will be stored in entry 4 and its next field will index the

next Consumer (6/0) which will be stored in entry 5. This, in turn, will index the next Consumer
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(7/0) stored in the next available free entry which is the 9th one. As this is the last consumer of

DThread 3/0 it will index itself, i.e. its next field will be equal to 9. With the same rationale the

consumers of DThread 4/0 are stored as depicted in Figure 36-(b).

Consumer List before insertion Graph Memory and Consumer List after insertion
Consumer List (CL) 

Thread TemplateCL
Entry V THID ITER NEXT

    

1 0 11/0 2 
2 1 11/32 3 
3 1 13/0 3 
4 0 - - 
5 0 - - 
6 1 8/0 7 
7 1 8/32 8 
8 0 9/0 8 
9 0 - - 
10 0 - - 
11 0 - - 
12 0 - - 
13 0 - - 
14 0 - - 
15 0 - - 

Graph Memory (GM) 
Thread Template Consumer 1 Consumer 2V INST THID ITER THID ITER THID ITER ILC

         

1 1 1/0 0/0 0/0 0 
1 1 1/32 2/0 0/0 0 
1 1 2/0 4/0 4/32 0 
1 1 3/0 0/0 1/0 0 
1 1 4/0 0/0 4/0 0 
0 … … … … … 

Consumer List (CL) 
Thread TemplateCL

Entry V THID ITER NEXT
    

1 1 11/0 2 
2 1 11/32 3 
3 1 13/0 3 
4 1 5/0 5 
5 1 6/0 9 
6 1 8/0 7 
7 1 8/32 8 
8 1 9/0 8 
9 1 7/0 9 
10 1 5/32 11 
11 1 6/32 12 
12 1 7/0 13 
13 1 7/32 13 
14 0 - - 
15 0 - - 

   

(a)   (b) 

Figure 36: Consumer List usage example.

For DThreads that have Iteration Level Consumers (ILC), their information is stored in the

Iteration Level Consumers List (ILCL) with a rationale similar to that used for the Consumers List.

However, as it is only a certain category of the L-DThreads that has iteration level consumers, for

better TSU space utilization, the metadata of the ILC are always stored in the ILC list which is

indexed by the ILC field of the Graph Memory. If a DThread does not have ILCs, then this field is

equal to zero.

Finally, notice that the DThreads that are loaded with initial Ready Count equal to zero are

also inserted into the Ready Queue by the Thread Load operation. Examples of such DThreads

are the Inlet DThreads of the first Block.
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5.2.2.2 Thread Completed Execution

When a DThread completes its execution the corresponding Kernel notifies its TSU which

triggers the Thread Completed Execution operation. As explained in Section 3.3.2 this operation

has three different versions: (1) Execution Completion which applies for DThreads that have com-

pleted their execution and are not to be re-instantiated in any way; (2) L-DThread Recycle which

regards the L-DThreads that recycle themselves to execute a new loop iteration and (3) Thread

Recycle Execution that is for DThreads that belong in a recycle-group and will be reinvoked in the

future.

For Execution Completion the Scheduler performs two actions. The first is to remove the

currently executed thread from the Thread Execution Stack (TES) (recall that the Thread Template

of the currently executed thread is always the one at the top of the TES). The second step for

this operation is to insert the Consumers of the completed DThread into the Threads-to-Update

Buffer (TUB). For this step the Thread Completed Unit (TCU), uses the Thread Template that

was removed from the TES, to search into the Graph Memory until the entry corresponding to

the completed DThread is found. Then, with the help of the Consumer List Management Unit

(CLMU), it identifies the consumers of the completed DThread and inserts their Thread Templates

into the TUB.

For the L-DThread Recycle operation, the TCU, in addition to the actions described for Exe-

cution Completion, it “recycles” the completed L-DThread to allow it to execute a new iteration

of the TFlux Loop. For this it is necessary to re-insert the metadata of the new instance of this

L-DThread into the Graph Memory (GM) and Synchronization Memory (SM) structures. As al-

ready explained in Section 3.2.2.2, there are two possibilities for this insertion. The first is that a

suitable GM entry already exists (a detailed explanation of the suitability of GM entries has been
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given in Section 3.2.2.3) whereas the second regards the allocation of a new GM entry. As such,

the TCU first searches the GM for such a suitable entry and if such an entry is found uses it for

the new instance of the completed DThread. In case an appropriate row does not exist, the TCU

allocates a new GM row for the insertion of the new instance.

Finally, for the Thread Recycle Execution operation the steps followed are identical to those

regarding the L-DThread Recycle operation with the only difference regarding the Thread Tem-

plate of the new instance. In particular, in contrast to the L-DThread Recycle operation where the

new Iteration Id of the new instance is calculated as an offset to the Iteration Id of the completed

DThread, for Thread Recycle Execution the new Iteration Id is the one given by the TFlux Kernel

as a parameter of the operation invocation.

5.2.2.3 Thread Update

The purpose Thread Update operation is to decrease the Ready Count counters of the DThreads

the Thread Templates of which are in the Threads-to-Update Buffer (TUB). Moreover, when

the Ready Count counter of a DThread becomes zero, the Thread Update Unit (TUU) copies

its Thread Template to the Ready Queue unit of the corresponding TSU.

Whenever the TUU detects a valid entry in the TUB, i.e. a Thread update-request, it tries to

serve it. To achieve this the TUU searches the different Graph Memory (GM) units in order to

identify where the metadata of this DThread is stored. Finding this “host” GM entry leads also

to identifying this DThread’s Ready Count counter due to the one-to-one correlation between the

GM and SM rows. The TUU then decreases this counter and if its value reaches zero, it copies the

metadata of the completed DThread into that TSU’s Ready Queue structure.

Notice that it is possible for an update-request to refer to a DThread that does not exist in any

of the Scheduler’s GM unit. This would be the case for an L-DThread that has as a Consumer an
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L-DThread that is to be created in a later phase when some other L-DThread recycles itself (Sec-

tion 3.2.2.3). For such situations, the TUU will not be able to find the GM row that corresponds to

the particular DThread. When this situation applies, the update-request remains in the TUB and

the TUU will try to serve it again during the next Thread Update cycle.

5.2.2.4 Clear TSU

The purpose of the Clear TSU operation is to deallocate all resources used for the execution

of the Block’s DThreads. To complete this operation the Clear TSU Unit (CTU) flushes all state

of the Graph Memory (GM) and the Synchronization Memory (SM) units. Notice that whenever

a GM entry is invalidated this leads to the invalidation of the corresponding Consumer List and

Iteration Level Consumers list entries (if any). The Ready Queue (RQ) and Thread Execution

Stack (TES) do not need to be flushed as their contents are cleared dynamically when a ready

DThread is requested by the CPU. The same applies for the Threads-to-Update Buffer (TUB) as

whenever an update-request is serviced the corresponding entry is invalidated from the TUB.

5.2.2.5 Find Ready Thread

To find the next DThread to execute, the CPU invokes the Find Ready Thread operation, which

returns to the CPU the template of an executable DThread, i.e. of a DThread with Ready Count

equal to 0. When this operation is invoked, the Find Ready Thread Unit (FRTU) accesses the

Thread Execution Stack (TES) and if it is not empty, it returns to the CPU the Thread Template at

the top of the TES. If the TES is empty, the FRTU first copies all the DThreads from the Ready

Queue (RQ) to the TES. If both the TES and the RQ are empty this means that no ready DThread

exists for this particular TSU and the operation completes by sending to the CPU the template 0/0

which forces the TFlux Kernel to request again for a new ready DThread.
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5.3 TFluxHard Scheduler Interface

The CPU controls the TSU through specially coded data packets that encode Scheduler In-

structions. In addition to defining the operation to be performed, these Instructions contain also

the necessary parameters. In this Section, we describe the interface of the Scheduler for the dif-

ferent operations it supports. Notice that each Instruction consists of several packets while each

packet is 32-bit long. A detailed example of the TFluxHard Scheduler interface is given in Ap-

pendix A.

5.3.1 Load TSU

With this operation a TSU is loaded with the metadata of one or more DThreads. As can be

seen from Figure 37 that depicts the Scheduler’s interface for the Load TSU operation, the first

packet defines that a load operation is to be performed (Byte 3 is equal to 0) and also defines the

number of threads that will be loaded (Byte 0).

Byte 3 (MSB) Byte 2 Byte 1  Byte 0 (LSB) 

Load TSU  0 X X  #thread loads 

Load Thread 1  #Consumers #ILC #instances  Ready Count 
 Thread Template 

ILC 1  Type d a
 b c
 Thread Template of ILC 1 

. . .
ILC n  Type d a

 b c
 Thread Template of ILC n 

. . .
Consumer 1  Consumer 1 Template 

. . . 
Consumer n  Consumer n Template 

. . .
Load Thread 2  #Consumers #ILC #instances  Ready Count 

. . .

Figure 37: TFluxHard Scheduler Interface for Load TSU.
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For each DThread that will be loaded onto the TSU, a sequence of packets must be sent.

For the first packet, Byte 3 is equal to the number of consumers for this DThread, Byte 2 to the

number of Iteration Level Consumers (ILC), Byte 1 to the number of Instances of the DThread

being loaded and finally Byte 0 to its initial Ready Count value. The second packet keeps the

Thread Template of the loaded DThread.

The set of packets that follow regard the Iteration Level Consumers and there are 3 packets

per such consumer. The first of these 3 packets contains the type for this Iteration Level Consumer

(Byte 3), its d parameter (Byte 2) and its a parameter (Byte 1 and Byte 0). As for the b parameter

it is contained in Bytes 3 and 2 of the second packet whereas parameter c in Bytes 1 and 0. Finally,

the third packet contains the Thread Template of the iteration level consumer.

After the packets regarding all Iteration Level Consumers have been sent, the packets that

follow regard the Consumers of the DThread that is being loaded. For each consumer the TSU

receives one packet which represents its Thread Template.

What follows are the packets describing the subsequent DThread, if such a DThread exist.

Recall the first packet of the Thread Load operation defined the number of DThreads to be loaded.

5.3.2 Clear this TSU

In order to perform the Clear TSU operation, a packet with Byte 3 equal to 1 and Byte 0 equal

to 0 must be sent to that TSU. The interface for this operation is depicted in Figure 38.

Byte 3 (MSB) Byte 2 Byte 1  Byte 0 (LSB) 

Clear this TSU  1 X X  0 

Figure 38: TFluxHard Scheduler Interface for Clear TSU.
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5.3.3 Flush Scheduler

When a program starts, all the state of the scheduler is flushed. To perform this operation, as

depicted in Figure 39 that regards the interface for Flush Scheduler, a packet with Byte 1 and Byte

0 equal to 1 must be sent to each TSU.

Byte 3 (MSB) Byte 2 Byte 1  Byte 0 (LSB) 

Flush Scheduler  1 X X  1 

Figure 39: TFluxHard Scheduler Interface for Flush Scheduler.

5.3.4 Thread Completed Execution

5.3.4.1 Execution Completion

The interface for the Execution Completion operation is depicted in Figure 40. This Scheduler

Instruction consists of only one packet for which Byte 3 must be equal to 2. As for Byte 1 and

Byte 0 they represent C1 Iters and C2 Iters which force the TSU to insert into the TUB additional

update-requests. This feature is very helpful for the efficient execution of TFlux loops and allows

loading less consumers for each DThread.

More specifically, if the thread template of Consumer 1 is equal to T/C/I then the TSU inserts

into the TUB update-requests for the DThreads T/C/I, T/C/I+1, T/C/I+2, ..., T/C/I+C1 Iters. With

a similar rational C2 Iters defines the update-requests to be inserted into the TUB for the second

consumer.

Byte 3 (MSB) Byte 2 Byte 1  Byte 0 (LSB) 

Execution Completion  2 X C1 Iters  C2 Iters 

Figure 40: TFluxHard Scheduler Interface for Execution Completion.

Kyri
ak

os
 Stav

rou



93

5.3.4.2 L-DThread Recycle

As can be seen from Figure 41, for the L-DThread recycle operation, the first packet is identical

to that regarding the Execution Completion operation. As for the second packet, Byte 2 defines

the Ready Count value for the new instance of the DThread whereas Bytes 1 and 0 the offset to the

Iteration Id. More specifically, if the DThread for which this operation was performed had Thread

Template T/C/I, the Thread Template for the new instance will be T/C/I+offset.

Byte 3 (MSB) Byte 2 Byte 1  Byte 0 (LSB) 

L-DThread Recycle  3 CITD1 - CITD2 C1 Iters  C2 Iters 

 X New Ready Count Iteration Offset 

Figure 41: TFluxHard Scheduler Interface for L-DThread Recycle.

5.3.4.3 Recycle Execution

The only difference between the interface of this operation and the interface of the L-DThread

Recycle operation regards the fact that for Recycle Execution operation the new Iteration Id is

given explicitly as a parameter of the Scheduler Instruction. As can be seen from Figure 42 that

summarizes the interface of this operation, the new Iteration Id is given by Bytes 1 and 0 of the

second packet.

Byte 3 (MSB) Byte 2 Byte 1  Byte 0 (LSB) 

Recycle Execution  4 CITD1 - CITD2 C1 Iters  C2 Iters 
 X New Ready Count New Iteration Id 

Figure 42: TFluxHard Scheduler Interface for Recycle Execution.Kyri
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5.4 TFluxHard Scheduler Hardware

In this Section we discuss the hardware complexity of the Scheduler’s memory and logic units

and their criticality in terms of timing for the implementation of the TFlux Basic Operations.

5.4.1 Logic Units

5.4.1.1 Packet Management Unit (PMU)

The Packet Management Unit (PMU) decodes the packets sent from the CPU and triggers

the appropriate operation. As most operations require multiple packets, the PMU first copies all

the packets that have been sent for a particular operation in a buffer prior to triggering the circuit

that will execute the operation. The logic of the PMU is very simple as its functionality can be

implemented with a simple FSM.

5.4.1.2 Load Thread Unit

The Load Thread Unit (LTU) receives the data packets describing the DThread to be loaded

from the Packets Management Unit (PMU), decodes them and inserts their metadata in the ap-

propriate TSU’s structures. As explained earlier in Section 5.3.1, it is very simple to extract the

metadata of the DThread to be loaded onto the TSU from the corresponding data packets. As such,

this decoding phase can be implemented by a simple FSM.

The next step is to find an available entry in the Graph Memory. As the number of entries

for this unit is small (64 entries) this operation is also trivial. The same applies for writing the

DThread’s metadata in the GM and SM structures. As for the process of writing the Consumers

and Iteration Level Consumers in the Consumer List and ILC List respectively, the LTU uses

the Consumer List Management Unit (CLMU) Iteration Level Consumer List Management Unit

(ILCLMU) which are presented later in this Section.
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Finally, notice that the delay of the Thread Load operation has negligible effect on the overall

performance of TFluxHard. This is due to the very few times this operation is executed (as many

times as the number of Blocks).

5.4.1.3 Thread Completed Unit

The first step for the Thread Completion Operation is to remove the top entry of the Thread

Execution Stack (TES) which is trivial. The same applies for identifying the Graph Memory (GM)

entry that stores the completed DThread due to the small size of this unit and the efficiency of the

hardware for such searches. The phase of this operation that is likely to have the longer delay is

that of the identification and insertion of the consumers into the Threads-to-Update Buffer (TUB).

This delay is likely to be longer for the Iteration Level Consumers as to define the update-request

it is required to perform some calculations that for some of the ILC types may be complex.

This operation is not in the critical path. After sending the command for the Thread Com-

pletion operation the TFlux Kernel will request for a new ready DThread and will proceed to its

execution. In parallel the Thread Completed Unit will continue its operation.

5.4.1.4 Find Ready Thread Unit

The operations performed by the Find Ready Thread Unit (FRTU) are very simple for both

possible paths. For the first path, Find Ready Thread completes just by writing to the System

Network Interface Unit the 32-bit value of the top entry of the Thread Execution Stack (TES).

This is a trivial operation as it only involves accessing a specific memory location. For the second

path, the FRTU also needs to copy all the data from the Ready Queue (RQ) to the TES prior to

returning the data of the top TES entry. Given the small size of the RQ this operation is also

simple.
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The Find Ready Thread operation is critical for the performance of TFluxHard as its delay can

not be hidden. This is due to the fact that the CPU remains idle until a new DThread is identified.

However, the FRTU executes very simple operations and consequently, its delay is expected to be

very small.

5.4.1.5 Thread Update Unit

The Thread Update operation traverses the Threads-to-Update Buffer (TUB) and for each

update-request it finds and decreases the corresponding Ready Count counter. Identifying the

Graph Memory (GM) row that holds the metadata of the DThread the Ready Count counter of

which is to be decreased, involves searching the different GM units for a match. This search

process might be lengthy for configurations with large number of such units. To avoid this problem

the operations to search the Graph Memory units progress in parallel. An alternative technique

would be to use indexing for easier identification of the host GM unit (Section 6.2.1). Given the

host GM entry the identification of the corresponding Ready Count counter in the Synchronization

Memory (SM) is trivial. In particular, this is the ith counter where i is equal to the difference of

the Iteration Id of the DThread being serviced minus the Iteration Id of the host GM entry. As

such the Thread Update Unit, although loaded with a lot of work, can be implemented efficiently.

Although the Thread Update operation is not in the critical path, the more efficient it is the

faster new DThreads will be deemed executable. This is of significant importance for applications

with a large number of DThreads that have complex dependencies between them. An example of

such application is the LU benchmark (Section 7.2.8).

5.4.1.6 Clear TSU Unit

The Clear TSU Unit flushes the data of the Graph Memory (GM) and Synchronization Mem-

ory (SM) as well as the corresponding entries for the contained DThreads from the Consumer List
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(CL) and ILC List (ILCL) units. The costly part of this operation is the identification of the cor-

responding CL and ILCL entries which involves traversing this structures. However, as the Clear

TSU operation is executed very rarely in TFlux programs (only 1 time for most applications), even

if the delay operation is not very small, the impact on the overall performance will be negligible.

5.4.1.7 Consumer Management Unit

The purpose of the Consumer Management Unit (CMU) is to manage the consumers stored

in the Consumer List which regard the DThreads that have more than two Consumers. In partic-

ular, the CMU finds all the consumers of a DThread given the values of fields Consumer 1 and

Consumer 2 of the Graph Memory (GM). As explained in Section 5.2.2.1, finding the Consumers

belonging to the same DThread given the position of the first one in the Consumer List is a simple

process.

Another parameter that has to be handled by the CMU is the fact that the Consumer List is

shared among all TSUs of the system. As such, some arbitration logic will be necessary when

writing to the Consumer List. However, as delay of the read/write operations performed for the

Consumer List is small any congestion caused will have negligible effect.

5.4.1.8 Iteration Level Consumers Management Unit

The requirements of the Iteration Level Consumers Management Unit (ILCMU) are the same

as for the Consumer Management Unit (CMU) as the operations performed by the two units are

identical. As such, the hardware specifications for the two units are the same.

5.4.1.9 System Network Interface Unit (SNIU)

The purpose of the System Network Interface Unit (SNIU) is to transfer the data from the

Scheduler to the System’s Interconnection Network and vise versa. This unit monitors the address

Kyri
ak

os
 Stav

rou



98

bus of the network and whenever a value is sent to the addresses that correspond to the Scheduler

it copies this value to the Input/Output Queue of the corresponding TSU. Similarly, when a TSU

is to send a value, it sends it to the SNIU which in turn, upon granted permission from the arbiter,

transmits it to the system network. The SNIU is a simple device that consists of a number of

3-state buffers to interact with the system network and some logic to identify the TSU to which it

will forward the packets it receives from the network.

5.4.2 Memory Units

5.4.2.1 Thread Execution Stack (TES)

The Thread Execution Stack (TES) is accessed as a stack structure. In particular, when a

DThread is scheduled for execution its Thread Template is written at the top of this stack. In

addition, when a ready thread is returned to the CPU, the Thread Template that is returned is that

of the top element. As such, the TES can be implemented as a direct mapped memory. Moreover,

as it is not concurrently accessed by multiple units, it can have only one read and one write port.

5.4.2.2 Ready Queue (RQ)

The Ready Queue (RQ) structure holds the Thread Templates of the DThreads that have been

deemed executable, i.e. the DThreads with Ready Count equal to zero. This structure is written

by the Thread Update Unit (TUU) during the Thread Update operation. In particular, the TUU

decreases the Ready Count of the Consumer DThreads and when it identifies that this value has

reached zero it copies its template of that particular DThread into the RQ. As for reading, this is

done during the Find Ready Thread operation. As no searching is required for this structure it can

be implemented as a direct mapped memory. Moreover, as writing is done by the Thread Update

Unit (TUU) only and reading only by the Find Ready Thread Unit (FRTU) it can have only one

read and one write port.
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5.4.2.3 Synchronization Memory (SM)

The Synchronization Memory (SM) holds the Ready Count counters of the DThreads loaded

onto the TSU. Each row of this unit has multiple counters to allow efficient execution of TFlux

loops. In the current version of the TFluxHard Scheduler, the Graph and Synchronization Memory

units have the same number of rows and the later is indexed by the former. As for the Ready Count

counter accessed in a particular row of the Synchronization Memory this is defined by the Iteration

Identifier (ITER) of the DThread. As accessing the Synchronization Memory does not require

searching this unit can be implemented as a direct mapped memory structure. SM is written by the

Thread Update Unit during the Thread Update operation and by the Thread Completed Execution

when a DThread is to “recycle” itself. As such, two write ports and one read port are enough.

5.4.2.4 Graph Memory (GM)

The Graph Memory (GM) unit holds the metadata of the application’s DThreads. According to

our previous description of the logic units, it is possible to see that it is often necessary to identify

the GM entry in which a particular Thread Template is stored. As such, the part of the Graph

Memory containing the Valid, Thread Id (THID) and Iteration Id (ITER) fields is implemented as

a Content Addressable Memory (CAM). As for the other fields of the Graph Memory they can be

implemented as a direct mapped memory indexed by the CAM part.

As at most one entity writes into the TSU at any time point, the Graph Memory needs to have

only one write port. As for the number of read ports, it is necessary to have two as, in addition

to the Thread Load or Thread Completion Units, it is possible that the Thread Update Unit is also

reading from the GM. This however applies only for the CAM part as the direct mapped part is

only accessible by at most one unit at any point in time.
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5.4.2.5 Threads-to-Update Buffer (TUB)

The Threads-to-Update Buffer (TUB) is used by the TSUs to insert consumers of the com-

pleted DThreads during the Thread Completion operation. Each such TUB-write operation re-

quires first finding an empty entry. This can be done with the help of a small CAM indexing unit

that will have as many bits as the entries of the TUB. These write operations can take place con-

currently which makes necessary for the TUB to have multiple write ports. As having one write

port per TSU will be very costly it is better to have a smaller number of write ports and use some

arbitration logic. This second solution is not expected to affect the performance as according to

our previous analysis for the Thread Completed Unit (Section 5.4.1.3), this operation is not in the

critical path.

Regarding the Thread Update Unit its operation involves reading the valid entries from the

TUB in order to service the corresponding requests. Finding the valid entries can be done with

the help of the indexing structure described above. As reading is performed by this unit only, the

TUB can have a single read port.

5.4.2.6 Consumers List (CL)

The Consumer List (CL) is indexed by the Graph Memory directly. Moreover, each entry in-

dexes the next entry, as such, this unit can be implemented as a direct mapped memory. According

to the previous description of the Load Thread operation, only one TSU can write to this unit at

any time point which leads to a requirement for only one write port. However, reading from the

CL could occur concurrently by all the TSUs which can happen only during the Thread Completed

operation. As explained earlier however, this operation is not in the critical path. As such, having

a smaller number of read ports combined with some arbitration logic is not likely to affect the

performance.
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5.4.2.7 Iteration Level Consumers List (ILCL)

As the operation of the Iteration Level Consumers List (ILCL) is identical to that of the Con-

sumer List this unit can also be implemented with the same configuration.

5.4.2.8 Input Queue (InQ)

The input Queue is used as a buffer for the data packets received from the System Network

until they are processed by the TSU. This queue can be is being written by the System Network

Interface Unit and read by the Packets Management Unit. As such,the Input Queue can be imple-

mented as a direct mapped memory unit with one read and one write port.

5.4.2.9 Output Queue (OutQ)

The Output Queue has similar operation as the Input Queue and so it is possible to use the

same configuration. As such, this unit is can also be implemented by a direct mapped memory

with one read and one write port.

5.4.2.10 PMU Buffer

The buffer of the Packets Management Unit stores all the packets for the different operations

until the corresponding unit services them. This FIFO buffer has a single write, single read port

and can be implemented as a direct mapped memory unit.

5.5 Hardware Budget Estimation

In this Section we present an estimation of the hardware budget of the TFluxHard Scheduler.

This analysis is based on CACTI [93], a well known tool for estimating the area of on-chip caches.
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Notice that the estimation focuses on the Scheduler’s memory units as they are the ones that con-

sume the largest portion of the real-estate. In particular, according to [33] the real-estate consumed

by the logic units is in the order of 10%.

The configuration of the Scheduler analyzed here is the one used for the performance evalua-

tion presented in Chapter 9. This configuration, which is summarized in the first rows of Table 5,

regards to a Scheduler that serves 27 TFlux Kernels. In addition to the number of rows for each

memory units, this Table reports the size of each row and the type of each unit according to the

analysis of the previous Section.

The second part of Table 5 shows how each of these memory units was modeled in CACTI.

This modeling follows the configuration of each memory unit but is also “limited” by the restric-

tions of CACTI. As an example, notice that we have merged the Input Queue and Output Queue

in one unit (Queues) as CACTI can not model units that have the size of one queue (128 Bytes).

Table 5: The configuration of the memory units of TFluxHard Scheduler.

Real GM GM
SM RQ TES Queues PMUQ CL

ILC
TUB

Configuration Index Data List
- Memory Type CAM DM DM FIFO FIFO FIFO FIFO DM DM DM
- # entries 64 64 64 32 32 8 32 512 128 2048
- Bits per entry 33 77 160 33 33 33 33 42 57 33
CACTI GM GM

SM RQ TES Queues PMUQ CL
ILC

TUB
Configuration Index Data List

- Associativity FA FA DM DM DM DM DM DM DM DM
- Cache Size (B) 266 617 1281 133 133 34 128 2689 913 8449
- Block Size 10 32 8 16 10 8 8 16 16 16
- Associativity FA 1 1 1 1 1 1 1 1 1
- Read Ports 1 1 1 1 1 1 1 1 1 1
- Write Ports 1 1 1 1 1 1 1 1 1 1
- R/W Ports 0 0 0 0 0 0 0 0 0 0
- # sub-banks 1 1 1 1 1 1 1 4 4 4

#Transistors 37 39 74 25 25 14 15 314 136 776

As CACTI’s results are in terms of area and not transistor count, we determined the #transis-

tor/area ratio using a known cache example. We modeled in CACTI, the Data-Cache of a 180nm

Pentium III processor and compared its area with the processor’s floorplan and total number of
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transistors. For the 180nm technology, this ratio was found to be 185K transistors per mm2.

Based on this analysis, the private memory units of the Scheduler require a total number of 229K

transistors. As for the units that are shared, i.e. TUB, ILC List and CL, their total hardware budget

is in the order of 1326K transistors. As such, a Scheduler able to serve 27 TFlux Kernels requires

7509K transistors. As for the hardware budget per TFlux Kernel this is equal to 259K transistors.

5.6 TFluxHard Implementation Issues

Although the TFluxHard system does not require any modifications to the CPU cores, it re-

quires the system to be equipped with the Scheduler implemented as a hardware device. As such,

it was not possible to apply TFluxHard directly to an existing machine. However, we are exploring

several alternatives for a hardware prototype which are presented in Section 5.6.2.

5.6.1 Current Design

Currently TFluxHard exists at the simulation level. The simulated TFluxHard system has

been built on top of the Simics full system simulator [72]. Simics models the major components

of a system in such level of detail that allows to the simulated machine to boot an unmodified

Operating System. These components include the CPU cores, their interconnection, the caches,

the main memory and the motherboard (more details about Simics will be given in Section 8.1.1).

The virtualization offered by the TFlux Platform allowed us to simulate TFluxHard without

any modification to any component, i.e. the CPUs, the memory hierarchy or the interconnection

network. As for the scheduler, it was developed using the Device Modeling Language [98] (a

language provided by Simics for describing hardware components) and was attached to the net-

work as a memory mapped device. Although our model for the Scheduler is not cycle-accurate, it

includes all logic and memory units described in the previous Sections.
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The operation of TFluxHard was validated using different configurations. These included

setups with the number of CPUs ranging from 2 to 28 CPUs (28 is a limitation of the Simics

version we are using), setups with x86 and UltraSPARC II CPUs and setups with different versions

of Linux.

More details about these machines and the relevant experimentation are presented in Chap-

ters 8 and Section 10.1 respectively.

5.6.2 Possible Future Implementations

For a “real” implementation of TFluxHard the only requirement is for the CPUs to have ac-

cess to a hardware module providing the Scheduler functionality. Although there are multiple

approaches for developing a TFluxHard machine in this Section we discuss only three.

The first approach regards the implementation of the Scheduler as a hardwired module inside a

multicore chip such as the Intel Quad Core [51] or the AMD Opteron [2] CPUs. The Scheduler can

be attached to the on-chip system network and made accessible as a memory mapped device. The

only requirement for this configuration will be an additional connection on the system network for

the Scheduler.

The second approach regards the implementation of TFluxHard using future multicores that

will include on-chip programmable logic [27, 95, 96, 97]. Similar to other proposals that use

programmable logic to speedup execution [89, 91, 123, 124], for TFluxHard this component will

be used for the implementation of the Scheduler. For such a system, the TFluxHard applications

could trigger mechanisms to load the programmable logic with the description of the Scheduler

prior to their execution.

The third approach regards the implementation of the Scheduler on an off-chip device which

will be fast to access from the CPUs. An example of such a device is the HTX board [36, 105]
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that uses the AMD HyperTransport technology [49]. Given that the HTX board provides pro-

grammable logic it can be used for the implementation of the Scheduler leading to a configuration

where TFluxHard platform will be applicable to existing off-the-shelf commodity system with an

add-on card. However, for such a solution it might be necessary to optimize the runtime of TFlux

to make it more tolerable to the Scheduler’s delay. A technique towards this direction is to read

multiple ready DThreads from the corresponding TSU instead of only one at a time.
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Chapter 6

TFluxSoft

TFluxSoft is the other incarnation of the TFlux Platform presented in this work. The key

contribution with this incarnation is the fact that TFluxSoft makes it possible for applications

written for the TFlux platform, i.e. applications that exploit parallelism using an efficient parallel

application execution model, to execute on off-the-shelf systems without significant penalty. Ap-

plications developed for TFluxSoft may execute on a multitude systems without any requirement

for additions or modifications to the hardware or software of the host machine.

The major issue regarding the TFluxSoft is to provide the Scheduler’s functionality at the

software level. In order to achieve this, instead of having a hardware module providing the Sched-

uler’s operations to the Runtime System, these operations are provided by software entities. In

particular, in TFluxSoft four of the five Basic Operations of the Scheduler are provided by the

processors/processes running the TFlux Kernels whereas one of the processors/processes is ded-

icated to providing the fifth operation, Thread Update. Due to the operation it performs, this

processor/process is called the “Updater”. Notice that while TFluxSoft conceptually does not

106
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require any multiprocessor or multicore system to execute, for performance sake, each Kernel and

the Updater should execute on its own processing element (e.g. processor or core). As in this work

we target the multicore hardware, we will assume each Kernel executes on its own core and the

Updater executes on another core. Reserving a core for the execution of the Updater is the tradeoff

made in order to offer the benefits of TFlux on off-the-shelf systems.

Without loss of generality Figure 43-(a) depicts a multicore with 8 cores where 7 of them are

used to execute the TFlux Kernels and 1 is used for the execution of the Updater’s code. Notice

that the processors executing the TFlux Kernels also provide some of the TSU operations depicted

as Local TSU in this Figure. For systems with large number of cores, in order to avoid contention

at the Updater, TFluxSoft may operate with multiple Updaters. For illustration purposes only,

Figure 43-(b) depicts a configuration with 2 Updaters and 6 cores running the TFlux Kernels.
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Figure 43: TFluxSoft multicore configured with (a) 1 Updater and 7 processors executing TFlux Kernels.
(b) 2 Updaters and 6 processors executing TFlux Kernels.

This Chapter focuses on the implementation of the Scheduler at the software level which is

named the “SoftScheduler”. Section 6.1 introduces SoftScheduler and discusses the implemen-

tation of the Basic Operations. Moreover, this Section studies the cost of these operations and

identifies potential bottlenecks. Section 6.2 presents the design of SoftScheduler and discusses
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how each performance bottleneck is targeted. Finally, Section 6.3 present possible extensions of

TFluxSoft for better scalability.

6.1 SoftScheduler

Other than its implementation being at the software-level, SoftScheduler provides the same

Basic Operations as the generic TFlux Scheduler. Nevertheless, instead of using a centralized

approach, it distributes the execution of these operations to the processors executing the Kernels

and to one processor dedicated to the execution of the Thread Update operation (Updater).

Figure 44 depicts the SoftScheduler configured to serve a TFluxSoft system with two Kernels.

As can be seen from this Figure, SoftScheduler introduces some additional units compared to the

generic Scheduler of TFlux (Section 3.1.3). The purpose and operation of these extra units (Local

TUB, TKT, LIT, CAR and ILCAR) will be explained in Section 6.2 which presents the design

issues of SoftScheduler.
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Figure 44: SoftScheduler configured to serve 2 TFlux Kernels.
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6.1.1 Implementation of Basic Operations

As explained earlier in Section 3.3, for a system to provide to its user the DDM model of exe-

cution, its scheduler is required to provide to the Runtime Support System five Basic Operations:

(1) the “Thread Load” operation which enables the TFlux Kernels to load the Scheduler with the

metadata of the DThreads to be executed; (2) the “Find Next Thread” operation which is used by

the Kernel to find the next ready DThread to execute; (3) the “Thread Completion” operation by

which the Scheduler is notified each time a DThread completes its execution; (4) the “Thread Up-

date” operation by which the Ready Count values of the Consumers of the completed DThreads

are decreased and (5) the “Clear TSU operation” which clears the resources allocated onto the

several units of the Scheduler.

The sections that follow present the implementation of these operations for SoftScheduler.

6.1.1.1 Thread Load

The Thread Load operation is performed by the TFlux Kernel during the execution of the

Inlet DThread and its purpose is to load the metadata corresponding Block’s DThreads into the

Graph Memory (GM) and Synchronization Memory (SM) structures. The only difference of this

operation compared to its generic specification for TFlux (Section 3.3.1) is the way the Consumers

are stored.

As can be seen from Figure 44, instead of a Consumer List, SoftScheduler has another unit

named Consumers Arrays (CAR). This unit has as many arrays as the number of DThreads and

each such array stores the Thread Templates of all Consumers of the corresponding DThread. The

advantage of CAR compared to the Consumer List is that the former is private to each TSU and

consequently eliminates any operations to be granted mutual exclusion that would be necessary if

the Consumer List was used. Such a requirement for mutual exclusion would be necessary during
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the load operation as it would be possible that two different Kernels were concurrently inserting

their consumers into the Consumer List. Moreover, CAR guarantees that the space allocated to

store the Consumers is the minimum possible. As for the Iteration-level Consumers, they are

stored in the ILC ARRAY with a rational similar to what applies for the CAR.

6.1.1.2 Thread Completed

The “Thread Completed” operation is executed when a DThread completes its execution and

has three different versions. The first version, “Execution Completion” (Section 3.3.2.1), applies

for DThreads that do not belong to a recycle-group (Section 3.2.3). The second version is “L-

DThread Recycle” (Section 3.3.2.2) and applies for Loop DThreads that do not belong to the last

generation of L-DThreads (Section 3.2.2.2) and finally, the third version “DThread Recycling”

(Section 3.3.2.3) applies for DThreads that belong to a recycle-group.

Execution Completion

When a DThread completes its execution its Kernel invokes the Execution Completion opera-

tion which is a two steps process. First the Kernel inserts the Thread Templates of the Consumers

of the completed DThread in the “Threads-to-Update Buffer” (TUB) in order for their Ready

Count values to be decreased. Notice that TUB is shared among all Kernels and consequently,

before writing into this unit, the Kernel is required to lock it for mutual access. The second step

is to remove the completed DThread from the Thread Execution Stack (TES) which is private to
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L-DThread Recycle

As explained in Section 3.2.2.2, during the execution of TFlux Loops, all L-DThreads except

those of the last generation, “recycle” themselves to execute a new iteration. For this purpose, in-

stead of performing the Execution Completion operation, the TFlux Kernel invokes the L-DThread

Recycle operation.

During L-DThread Recycle operation the TFlux Kernel removes the L-DThread from the

Thread Execution Stack (TES) and inserts the new instance of the L-DThread in the Graph and

Synchronization Memory units. In case the L-DThread that completed its execution has Iteration-

level Consumers its Kernel inserts their Thread Templates into the TUB.

Thread Recycle Execution

In addition to the actions taken by the Execution Completion operation, Thread Recycle Execu-

tion reinserts the metadata of the completed DThread into the Graph and Synchronization Memory

units. The only difference of Thread Recycle Execution compared to L-DThread Recycle is that

whereas the former reinserts the DThread with exactly the same metadata, the latter modifies the

Iteration Id field in order for the new instance of the L-DThread to execute a different iteration.

6.1.1.3 Thread Update

This operation, which is performed by the Updater, decreases the Ready Count value of the

Consumers of the completed DThreads the identifiers of which have been inserted by the TFlux

Kernels in the TUB during the Thread Completion operation. To achieve this, the Updater tra-

verses the TUB and for each valid entry, it locates the Ready Count value of the corresponding

DThread and decreases it.
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6.1.1.4 Find Ready Thread

This operation is executed by the TFlux Kernel and its target is to find the next ready DThread.

In the common case, where the Thread Execution Stack (TES) is not empty (recall that the Thread

Execution Stack holds the Thread Templates of the DThreads that have been scheduled for ex-

ecution), the operation completes by returning the DThread at the head of the TES. If the TES

is empty, the TFlux Kernel first traverses its own Graph and Synchronization Memory units and

copies the Thread Templates of all ready threads into the TES. If the TSU contains no ready

DThreads this operation will return to the TFlux Kernels the Thread Template 0/0. This particular

template forces the TFlux Kernel to request again for a ready DThread. As such, this process will

complete when a ready DThread has finally been returned to the TFlux Kernel.

6.1.1.5 Clear TSU

This operation is performed by the TFlux Kernel during the execution of the Outlet DThread

and its result is to release the resources allocated into the several Scheduler units for the execution

of the particular Block.

6.1.2 Mutual Exclusion

During the execution of these Basic Operations the different parallel entities (the TFlux Ker-

nels and the Updater) may access the same units concurrently. As such, to guarantee the validity

of data, in some cases, mutual exclusion is required.

When performing the Thread Load operation the TFlux Kernel needs to lock the GM and SM

structures as it is possible that at the same time the Updater is decreasing a Ready Count value

while performing a Thread Update operation. The three variations of the Thread Completion oper-

ation, i.e. Execution Completed, L-DThread Recycled and Thread Recycled, write the consumers

of the completed DThread into the TUB. Locking the TUB is necessary as at the same time it is
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possible that another TFlux Kernel is also performing the Thread Completion operation or that the

Updater is invalidating an entry while performing the Thread Update operation.

Table 6 summarizes the units read, written and locked during the execution of the Basic Oper-

ations. In addition, it reports the parallel entity that performs each Basic Operation.

Table 6: Summary of the Basic Operations.

Operation Performed By Units
Write Read Locks

Thread Load Kernel GM/SM GM/SM GM/SM
Thread Completed
- Execution Completion Kernel GM/TUB/TES GM/TUB/TES TUB
- L-DThread Recycle Kernel GM/TUB/TES GM/TUB/TES/SM TUB
- Thread Recycle Execution Kernel GM/TUB/TES GM/TUB/TES/SM TUB
Find Ready Thread Kernel TES/GM/SM TES/GM/SM -
Clear TSU Kernel GM/SM GM/SM GM/SM
Thread Update Updater TUB/GM/SM TUB/GM/SM TUB/GM/SM

6.1.3 Upper Bound of Basic Operations Cost

The Scheduler’s Basic Operations are critical for the performance of the TFluxSoft system as

they are the main source of the parallelization overhead. As such, it is important to understand

the factors that affect their cost and identify potential performance bottlenecks. In this Section we

present a theoretical analysis of the upper bound of the cost of these operations1 .

The most common operations, and consequently the ones that are most critical to the overall

performance, are the three variations of Thread Completed (Execution Completed, L-DThread

Recycle and Thread Recycle Execution), the Find Ready Thread and the Thread Update. This

is due to the fact that the Thread Completed and Find Ready Thread operations are executed

each time a DThread completes whereas the third, Thread Update is executed continually by the

Updater in order for new DThreads to be deemed executable. Moreover, notice that the Find

1Part of the work presented in this Section was done in collaboration with Demos Pavlou who during his Final-Year
Project [84] worked on the TFluxSoft system
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Ready Thread operation is expected to be invoked more times compared to Thread Completed as

it is possible that a ready DThread is not always present. A factor that makes the cost of Thread

Update of major importance is the fact that it is this operation that deems DThreads ready for

execution. If this operations is not efficient, there will be delay in enabling DThreads for execution

with a consequent negative impact on performance.

Table 7 presents the theoretical upper bound of the cost of the Basic Operations as a function

of the different parameters of the System. This cost is analyzed in the paragraphs that follow.

Table 7: Theoretical analysis of the cost of the SoftBasic Operations. This Table comes from [84]

Operation Order of the execution time

Thread Load O (GMSize + (SMsize + #Instances))
Execution Completion O

(
tTUB
Lock + TUBsize + #Consumers

)
L-DThread Recycle O

(
tTUB
Lock + TUBsize + #Consumers +

(
tGM
Lock + SMsize

))
Thread Recycle Execution O

(
tTUB
Lock + TUBsize + #Consumers +

(
tGM
Lock + SMsize

))
Find Ready Thread O (GMsize · #entries per SM row)
Clear TSU O

(
GMsize + tGM

Lock

)
Thread Update O

(
#TF lux Kernels · GMsize + tTUB

Lock + tGM
Lock

)

Thread Load: The execution cost of the Thread Load operation can be split into two parts; load-

ing the metadata of the DThread onto the Graph Memory (GM) and writing the Ready Count

values of these DThreads onto the Synchronization Memory (SM). Loading the DThread’s

metadata onto the GM requires finding an empty entry. This is performed by sequentially

checking the entries of this unit until an empty entry is found (O (GMSize)). If the DThread

to be loaded is not an L-DThread, its Ready Count is stored in the RC field of the GM

whereas for L-DThreads this field is an index to the SM. To insert the Ready Count values

into the SM it is first necessary to find an empty SM entry (O (SMsize)) which is done in

the same way as in the case of the GM. Then the Ready Count counters are set to their initial

value, which is related to the number of instances this L-DThread has (O (#Instances)).
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Thread Completion - Execution Completion: The Execution Completion operation accesses the

TES to remove the entry corresponding to the DThread that has completed its execution. As

this entry is always at the top of the TES, the cost for this action is constant. The lengthy part

of this operation is related to inserting the Consumers of the completed DThread into the

TUB. To perform this, the Kernel needs to lock the TUB for mutual exclusion
(
O

(
tTUB
Lock

))
.

Then for each Consumer it needs to find an empty entry in the TUB (O (TUBsize)) in order

to write its identifier (O (#Consumers)).

Thread Completion - L-DThread Recycle: In addition to the actions taken by Execution Com-

pletion operation, L-DThread Recycle needs to create a new instance for the L-DThread that

completed its execution. For this additional action, L-DThread Recycle needs to lock the

GM for mutual access in order to write the metadata of the new instance of the completed

L-DThread
(
O

(
tGM
Lock

))
. The next step is to access the SM in order to set the Ready Count

counter which may involve finding an empty SM entry (O (SMsize)).

Thread Completion - Thread Recycle Execution: The Thread Recycle Execution operation has

the same cost as L-DThread Recycle as the actions it takes are of the same cost.

Find Ready Thread: The common case for the Find Ready Thread operation is when the Thread

Execution Stack (TES) is not empty. If this is the case, this operation completes just by

returning the Thread Template located at the head of the TES with a constant cost. However,

if TES is empty Find Ready Thread needs to first traverse the GM and SM units and copy

all ready DThreads into the TES. For this action, it accesses the GM and for each valid entry

searches the SM to find a ready DThread (O (GMsize · #entries per SM row)).

Clear TSU: The purpose of the Clear TSU operation is to access the GM unit and lock it in order

to invalidate its entries. As such, its cost is related to the size of the GM
(
O

(
GMsize + tGM

Lock

))
.
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Thread Update: During the Thread Update operation the Updater traverses the Threads-to-Update

Buffer (TUB) and for each valid entry it locates the corresponding Ready Count counter and

decreases its value. To locate the corresponding GM entry the Updater needs to traverse the

different GM units in order to find a match (O (#TF lux Kernels · GMsize)). Whenever

such an update-request is to be served the TUB and GM structures need to be locked for

mutual access
(
O

(
tTUB
Lock + tGM

Lock

))
.

6.1.3.1 Potential Bottlenecks

The theoretical analysis of the upper bound cost of the Basic Operations reveals three issues

that are likely to have an important negative impact on performance. These issues, which are de-

tailed in this Section, are mostly related to the Thread Completion and Thread Update operations.

Potential Bottleneck 1: Mutual Exclusion Access to TUB

Whenever a DThread completes its execution its Kernel will invoke one of the three variations

of the Thread Completion operation. Each of these variations requires the TFlux Kernel to pose

an update-request for each Consumer of the completed DThread by inserting its Thread Templates

into the TUB. As explained in Section 6.1.2, each such action requires the TFlux Kernel to lock

the TUB for mutual exclusion. At the same time however, it is possible that another TFlux Kernel

which is also performing a Thread Completion operation that is also trying to lock the TUB.

Another possibility is that the Updater is trying to lock the TUB during the execution of the

Thread Update operation.

As the number of TFlux Kernels increases the number of parallel execution entities compeet-

ing to be granted mutual access to the TUB will also increase with a consequent increase of the

time required for this lock operation. This fact has, in order, a negative effect on the scalability of

the system.
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Potential Bottleneck 2: Finding the Ready Count Counter

During the Thread Update operation the Updater reads entries from the TUB and then locates

the Ready Count counter that corresponds to this update-request in order to decrease its value.

For this task the Updater needs to traverse the different Graph Memory structures until a match

is found with a cost linearly dependent to the number of TFlux Kernels (recall that there is one

Graph Memory structure for each TFlux Kernel). This dependence is another factor that has a

negative effect on the scalability of TFluxSoft.

Potential Bottleneck 3: Update-Requests for DThreads that do not exist

Applications exploiting the Iteration-level Dependencies often cause high contention to the

TUB structure, which in turn, leads to non negligible performance degradation. The main origin

of this behavior is that a large portion of the TUB entries may to regard to L-DThreads that have

not yet been created.

To better explain this assume an application with two TFlux Loops that depend at the loop-

iteration level. When an L-DThread of the producer TFlux Loop completes, an Update-Request

for its iteration-level consumers L-DThreads will be inserted into the TUB. If this Consumer L-

DThread is not yet present into the TSU (this is possible if this Consumer L-DThread does not

belong to the first L-DThread generation (see Section 3.2.2.2)), the Updater will not be able to

complete serving the update-request. This request will not be invalidated from the TUB and

the Updater will retry to serve it the next time it finds it into the TUB. As the number of these

unsuccessful serving attempts increase, the Updater will be less efficient in serving the update-

requests which are necessary to allow the program to continue with a consequent negative effect

on performance.

Kyri
ak

os
 Stav

rou



118

6.2 SoftScheduler Design Issues

This Section presents the design choices made for SoftScheduler to target the bottlenecks iden-

tified in the previous Section and to decrease as much as possible the cost of the Basic Operations.

6.2.1 Thread to Kernel Indexing (TKI)

As explained earlier, during the Thread Update operation, for each update-request the Updater

is required to find the Ready Count counter corresponding to the Consumer being serviced in order

to decrease its value. As depicted in Figure 45-(a), for this purpose the Updater needs to access

sequentially the different Graph Memory structures until it finds the corresponding Ready Count

counter. This lengthy process is a limitation to the performance and scalability of the system as its

cost increases with the number of TFlux Kernels.

To overcome this limitation TFluxSoft includes a special table named the “Thread to Kernel

Table” (TKT) (Figure 45-(b)) which allows the Updater to directly locate the Graph Memory

unit corresponding to the update-request being served (host GM). TKT has as many entries as

the number of different DThreads of the program and each entry of this table is a pointer to the

DThread’s host GM. To allow fast accessing this table is indexed with the Thread Id, i.e. TKT

entry x corresponds to the DThread with Thread Id x.

Figure 45-(b) depicts the process of identifying the Ready Count counter corresponding to the

update-request being served with the help of the TKT. In particular, the Updater accesses the TKT

using the Thread Id which allows it to directly access the host GM. Then, by sequentially accessing

this unit, it locates the entry that matches the request being served and therefore the corresponding

Ready Count counter.

With this technique only one GM needs to be searched for a match decreasing significantly the

execution time of Thread Update operation. Notice that the TKT is inserted into the application’s
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code statically by the TFlux Preprocessor and therefore its existence does not come with any

disadvantage.

Figure 45: (a) Finding the host GM by searching all GMs sequentially (b) Finding the host GM using the
Thread to Kernel Table (TKT) for DThreads (c) Finding the host GM using TKT and LIT for L-DThreads.
Vertical lines show the entries being searched.

To avoid having a too large TKT, only one entry per DThreads exits for DThreads causing

multiple instances, i.e. for DThreads executing loops (L-DThreads). For such cases, for the

Updater to locate the host GM one additional step is required. In particular, for L-DThreads the

entry in the TKT is not a pointer to the host GM but rather a pointer to another table, named the

Loop Information Table (LIT) (Figure 45-(c)). Each entry of this table contains information for

one TFlux Loop that allows the Updater to calculate with very few operations the TFlux Kernel

that executes the particular L-DThread and therefore the host GM. The LIT is also added in the

application’s code statically by the TFlux Preprocessor.

The TKT and LIT units are accessed by the Updater only, as such, given their small size these

units are likely to be resident in the cache of the corresponding CPU. The introduction of TKT

and LIT leads to an overall performance benefit of more than 10× on systems with large number

of processors (> 16) even for programs with one TFlux Loop.
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6.2.2 TUB Segmentation

The Threads-to-Update Buffer (TUB) is a shared unit which is modified by both the Updater

and all TFlux Kernels. In particular, the TFlux Kernels write into the TUB the Consumers of the

completed DThreads during the Thread Completed operation (Figure 46-(a)) whereas the Updater

reads and invalidates these entries during the Thread Update operation (Figure 46-(b)). As these

operations execute in parallel, the TUB needs to be locked in order to guarantee the validity of the

data. This mutual exclusion requirement leads to an overhead which increases with the number of

TFlux Kernels.
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Figure 46: (a) Thread Completion operation using unified TUB (b) Thread Update operation using unified
TUB (c) Thread Completion operation using TUB with two Segments (d) Thread Update operation using
TUB with two Segments. Locked units are shown shaded.

To decrease the idle time during which the Updater or the TFlux Kernels wait for the TUB to

become available, this unit has been partitioned into segments (Figure 46-(c)-(d)). When a TFlux

Kernel needs to write into the TUB it applies a try/lock operation (try/lock is not blocking as it

locks a unit only if this unit is free) on the segments in a round-robin fashion until it manages to

lock one (Figure 46-(c)). Notice that only one segment is locked at a time, as such, other operations

requiring mutual access to TUB can proceed with the rest of the segments. This allows to as many

Kernels as the number of segments to perform the Thread Completed operation concurrently.
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To perform the Thread Update operation the Updater follows exactly the same rationale. In

particular, it traverses the segments in a round robin fashion and it locks a segment only if it is not

used by another entity at the same time (Figure 46-(d)).

Having too many segments is likely to harm the performance due to the increased number

of lock operations that will be required. This is due to the fact that as the number of segments

increases the size of each segment decreases. For DThreads with multiple update-requests one

segment may not be enough, as such, the TFlux Kernel may need to insert a number of these

requests to other segments as well. This will cause additional lock operations which number may

increase with the number of TUB segments.

The segmentation of the TUB leads to an important performance benefit for the system. In

particular, even for very simple applications the performance improvement more than doubles.

6.2.3 Local TUB

To avoid the bottleneck presented in Section 6.1.3.1 as “Potential Bottleneck 3: Update-

requests for DThreads that do not exist” we introduced the Local TUB unit which is private to

each TSU (Figure 44). When the Updater serves an update-request that corresponds to a DThread

which is not present in the structures of the corresponding TSU, it moves this request from the

TUB to the Local TUB of this TSU. As such, the Updater will manage to serve this TUB entry

the first time it finds it. As for the update-request inserted into the Local TUB, it will be used to

decrease the Ready Count counter of the DThread it corresponds to during the Find Read Thread

operation, which, for this purpose, has been slightly modified.

As explained in Section 6.1.1.4, whenever Find Ready Thread is invoked it accesses the Thread

Execution Stack (TES) in order to return to the CPU the next ready DThread. If however, the TES

is empty, Find Ready Thread first accesses the GM/SM structures in order to move all ready
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DThreads to the TES. To serve the update-requests present in the Local TUB this second step of

the Find Ready Thread operation is modified. In particular, whenever Find Ready Thread finds

a not ready DThread into the GM it accesses the Local TUB to test if a corresponding update-

request exits; and if this is the case, it decreases its Ready Count counter. To decrease as much as

possible the overhead of this additional step, the Local TUB structure is implemented as a highly

hashed, to the Iteration Id, two dimensional matrix.

The cost of this additional step is, in the worst case, in the order of O
(

GMsize·SMsize·LocalTUBsize
HashFactor

)
.

However, the fact that in the common case only a very small number of not Ready DThreads will

exist in the GM, combined with the hihgly hashed nature of Local TUB makes this step to have

significantly lower cost.

The experimental results showed Local TUB to have an impact that may result in a perfor-

mance improvement up to 8×. This happens for the cases of applications with large TFlux loops

exploiting the iteration-levels dependencies feature.

6.2.4 TUB Buffers

The TUB Buffers are used to decrease the number of times a TFlux Kernel needs to lock

the TUB segments in order to perform the Thread Completion operation. As can be seen from

Figure 47-(a), which depicts the execution of the the Thread Completion operation without using

TUB Buffers, each time a Consumer is to be inserted into the TUB the TFlux Kernel locks a

segment for mutual exclusion. As such, the number of times a TFlux Kernel locks a segment is

equal to the number of the Consumers of the completed DThread.

The idea behind the TUB buffers is that all Consumers of the completed DThread are first

copied in a small private unit named “TUB Buffer”. Then a TUB segment is locked once and the

Thread Templates of all consumers are copied from this buffer into the TUB (Figure 47-(b)).
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For applications with DThreads that have multiple consumers TUB Buffers have been found

to contribute more than 4% to the overall performance.
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Figure 47: Inserting Consumers into the TUB (a) Without TUB Buffers (b) With TUB Buffers.

6.2.5 TUB Ranges

Execution of TFlux Loops often causes inserting into the TUB multiple consumers with the

identical Thread Id and consecutive Iteration Ids. An example of such a situation is when a TFlux

Loop depends on a DThread (Section 3.2.2.1). To avoid using multiple TUB entries for these

update-requests, each TUB entry is able to represent multiple update-requests for DThreads with

identical Thread Id and a consecutive range of Iteration Ids. In addition, to leading to a smaller

TUB unit, the TUB Ranges decrease the time required for inserting the entries in the TUB. More-

over, as DThreads with the same Thread Id but consecutive Iteration Ids are likely to be stored in

the same GM unit, the TUB Ranges also benefit the Thread Update operation.

For applications with multiple TFlux loops, using TUB Ranges was found to provide perfor-

mance benefit reaching 8%.
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6.2.6 Summary

After having presented the purpose and operation of the SoftScheduler units as well as the

relevant design issues it is useful to present the size and number of entries for each of these units.

Notice that we carefully selected the data types used for these units in order to decrease as much as

possible their size and the consequent cache pollution caused by the operations that use them. The

final configuration of these units which was used for the evaluation of the architecture (Chapter 9)

is presented in Table 8.

Table 8: Size of the SoftScheduler units. The size of the TUB regards a configuration with 27 TFlux
Kernels.

Unit Size ( bytes) Accessed By
Entry #Entries Total

GM 18 64 1152 Updater / Local Kernel
SM 67 64 4288 Updater / Local Kernel
TES 6 512 3072 Local Kernel

Local TUB 32 16 512 Updater / All Kernels
TUB 7 512 3584 Updater / All Kernels

6.3 TFluxSoft Scalability Issues

Execution under TFluxSoft is performed by a number of TFlux Kernels served by an Updater

which is executed on one of the on-chip cores. In the first TFluxSoft design there was only one

Updater for all the Kernels in the system. However, as the number of TFlux Kernels increases,

for applications with complex Synchronization Graphs it is expected that one Updater will not be

able to serve them efficiently and consequently, will be the bottleneck to the system. To avoid this

situation TFluxSoft was extended to be able to operate using multiple Updaters.

Using more than one Updaters leads to a tradeoff regarding the achievable performance. On

one hand, given a specific number of cores, the theoretical maximum performance decreases as the
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number of Updaters increases. This is due to the fact that the Updaters will “consume” more com-

putation resources leading to less cores available for the execution of the application’s DThreads.

On the other hand however, having multiple Updaters lowers the cost of the Thread Update oper-

ation which, in turn, can lead to higher overall performance.

As explained in Section 6.2.2, for better performance the TUB is partitioned into segments.

These segments are accessed by the TFlux Kernels in order to insert the identifiers of the Con-

sumers of the completed DThreads and by the Updater to read these entries and perform the

corresponding Thread Update operation (Section 6.1.1.3). When these parallel entities (TFlux

Kernels and Updater) are to access the TUB, they perform a try/lock on the different segments in

a round-robin fashion until they manage lock one which they release after completing the prede-

fined task.

For the case of multiple Updaters the rationale remains the same. In particular, instead of

having only one Updater trying to lock a segment and serve the included update-requests, there

are multiple Updaters performing this operation. The main benefit of having multiple Updaters

comes from the fact that in this situation a TUB entry will wait for a shorter period of time until it

is served.

A study of the potential and the tradeoffs regarding the operation of TFluxSoft with multiple

Updaters will be presented in Section 9.4.
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Chapter 7

TFlux Evaluation Suite

This Chapter presents the set of applications used for the evaluation of the TFlux Platform.

This set consists of 8 real-life applications and 10 synthetic applications. The targets set for the

evaluation suite are discussed in Section 7.1. As for the details of the real-life and synthetic

applications they are presented in Section 7.2 and Section 7.3 respectively. Notice that the TFlux

Evaluation suite is general enough and may be used by any other architecture that supports a

dataflow-like model of execution.

7.1 Introduction

In general, for an accurate performance evaluation of a system, it is necessary to use applica-

tions that have different characteristics in order to test the different components of the system. For

the case of the TFlux platform, these characteristics should cover the size (in terms of number of

dynamic instructions) and number of DThreads, the stress on the memory hierarchy, the program-

ming constructs and most importantly, the complexity of the Synchronization Graph. Moreover,
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the selected applications should correspond to compute-intensive workloads and have practical

interest in real-life problems.

For selecting an application to be part of the TFlux Evaluation Suite we had two constrains.

First, for an application to be eligible for this suite, we required for their code to be publicly

available. This is due to the fact that in order execute an application in the TFlux platform the user

needs to augment the original code with the TFlux compiler directives and then pass it through

the TFlux Preprocessor. A second constrain comes from the fact that these applications are also

executed on top of a simulator. As such, we were forced to exclude cases that required very long

simulation time even with small input sizes.

To select applications for the TFlux Evaluation Suite we studied benchmarks from several

well known suites such as the MiBench [44], MediaBench [64], PARSEC [16], SPLASH [129]

and NAS [13] as well as algorithms commonly used in compute-intensive workloads. Given the

constrains described above we selected 3 commonly used kernels namely the Trapezoidal Rule

for Integration, Matrix Multiply and the Runge Kutta method for solving ordinary differential

equations, 2 benchmarks from the MiBench suite, Sort and Susan and 3 benchmarks from the

NAS Parallel Benchmarks suite, FFT, CG and LU.

Each of these applications will be presented in detail in Section 7.2. Notice that for these

applications we used three different input sizes, small, medium and large. The large input size

was defined such that the simulation time on our current machines was less than 24 hours. As for

the medium and small input sizes they have been set to be the half and one quarter of the large

input size respectively.

Although this set of “real-life applications”, i.e. applications that correspond to commonly

used algorithms, is adequate to evaluate the performance and scalability of TFlux, in order to

study specific features of the platform we also used a number of synthetic applications. The major
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benefit of using these synthetic applications is that we were able to focus on specific characteristics

of TFlux by excluding all other factors that could affect the results. These synthetic applications

are presented in detail in Section 7.3.

In the description of the different applications we introduce the term basic task which corre-

sponds to the smallest job that of the algorithm that usually produces a single result value. This

basic task will be identified in order to study the parallelization of a particular algorithm. Ideally

each basic task may be executed concurrently.

Finally, Table 9 presents the characteristics of the caches used to measure the miss rates, which

are used in the dynamic behavior analysis for the different benchmarks.

Table 9: The characteristics of the caches used to measure the miss rates for the different benchmarks.
This setup resembles the Quad-core AMD Opteron processor [2].

Parameter L1-Data L2-Unified

Size 32KB 2MB
# Lines 512 8192

Line Size 64B 256B
Associativity 4 8

Replacement Policy LRU LRU

7.2 Real-life Applications

This section presents the real-life applications. The order these applications are presented cor-

responds to the complexity of their Synchronization Graph, i.e. applications with simple graphs

will be presented first while applications with complex graphs will be presented last. For appli-

cations that do not come from some benchmark suite but rather correspond to commonly used

kernels, this section also presents the operation of the algorithm1 .

1Part of the work presented in this Section was done in collaboration with Marios Nicolaides who during his Final-
Year Project [83] worked on the TFlux Benchmark suite
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7.2.1 Matrix Multiply (MMULT)

MMULT multiplies two 2-D matrices (C = A×B). The “basic task” of this algorithm is the

calculation of one element of the output matrix. To find the value of the element Ci,j the basic

task calculates the dot product of row i of matrix A and column j of matrix B. As such, each

execution of the basic task reads a row from matrix A, a column from matrix B and only modifies

the element Ci,j which, for each basic task invocation, is a different memory location (Figure 48).

Therefore, all invocations of the basic task can run in parallel.

Figure 48: Operation of MMULT.

7.2.1.1 Porting MMULT

The TFlux version of MMULT consists of a TFlux Loop (Figure 49-(a)). Each L-DThread of

this loop calculates an element of the output matrix. As depicted in Figure 49-(b), the Synchro-

nization Graph of MMULT can be expressed with a single ddm loop directive.

#pragma ddm for thread 1
for( i = 0 ; i < ARRAY_SIZE; i++ )
{

BASIC OPERATION
}

#pragma ddm endfor

(a) (b)

Figure 49: (a) The Synchronization Graph of MMULT. (b) MMULT parallelized using TFlux directives.
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7.2.1.2 Dynamic Behavior

As explained earlier, each L-DThread of the program’s TFlux Loop calculates one element of

the output matrix, as such, the number of DThreads for this program is equal to the number of

elements of the output array. For the version of MMULT used in the TFlux Evaluation Suite the

input size is the size of the square matrices being multiplied.

MMULT operates on a significant amount of data. The first matrix (A) is accessed by row

whereas the second (B) is accessed by column. As such, the accesses to the second matrix (B)

suffer from low spacial locality, therefore resulting in a significant number of data cache misses.

In addition, if multiple instances of the basic task are executed on the same Kernel, if the matrices

are large and the caches small, the temporal locality of the accesses will also not be captured.

Although there are cache-efficient versions of this algorithm, the reason we did not select such a

version is to include in our suite a benchmark that is representative of an application that causes a

high stress on the memory hierarchy.

For MMULT the size of the basic task, in terms of number of dynamic instructions, depends

on the input size of the application. As can be seen from Table 10 which summarizes the character-

istics of MMULT, this size approximately doubles for an input array of double size. In particular,

for the small input size (64 × 64) each execution of the basic task corresponds to 1196 instruc-

tions, for the medium size (128 × 128) to 2292 instructions and for the large size (256 × 256) to

4479 instructions. This effect is expected as the input matrices are square n × n resulting in the

operations for a basic task to be O(n). Unrolling the main loop also leads to an increase of this

size. This increase is almost proportional to the unroll factor.

As for the L1-data cache miss rate, it is significantly affected by the input size. In particular,

for the small input size the miss rate is in the order of < 1% wheareas for the medium and large
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input sizes it reaches 49%. The miss rate however, is not affected by the unroll factor due the fact

that consecutive elements of the output array use the same column of the second array which is

the one that causes most misses due to its access pattern. As for the L2-data cache miss rate it is

less than 1% for medium and large sizes. The L2-data cache miss rate for the small size appears

to be in the order of 10% but this is due to the very small number of accesses (< 20).

Table 10: MMULT characteristics. Reported values are averaged over all executions of the basic task.
Miss rates correspond to the cache configuration presented in Table 9.

DThread Unroll Dynamic Data Accesses Miss Rate
factor Instructions L1D L2D L1D L2D

Small Size: 64 × 64
1 1 1196 147 1 0.3% 10.6%

8 9054 1077 3 0.2% 17.5%
64 71521 8470 18 0.2% 17.4%

Medium Size: 128 × 128
1 1 2292 276 130 47.2% 0.6%

8 17823 2111 1039 49.2% 0.3%
64 141697 16738 8303 49.6% 0.2%

Large Size: 256 × 256
1 1 4479 533 258 48.4% 0.2%

8 35307 4172 2062 49.4% 0.2%
64 281902 33256 16485 49.6% 0.1%

7.2.2 Trapezoidal Rule for Integration (TRAPEZ)

TRAPEZ calculates the definite integral of a function in a given interval. To perform this cal-

culation in parallel the integration interval is partitioned into subintervals to which the Trapezoidal

rule is then applied (Figure 50). This operation is the basic task of the algorithm. The sum of all

the partial results is the value of the integral, according to this numerical method.

Each invocation of the basic task can be executed in parallel given that each processor keeps a

private variable for the sum of the partial results it calculates. The final step of the algorithm is to

calculate to sum of these private variables (reduction operation) in order to get the total value of

the integral.
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Figure 50: Operation of the parallel version of TRAPEZ.

7.2.2.1 Porting TRAPEZ

The TFlux version of TRAPEZ consists of a reduction TFlux Loop (Figure 51-(a)) where

each DThread performs the basic task on a different subinterval. As depicted in Figure 51-(b), the

Synchronization Graph of TRAPEZ can be expressed with a single ddm loop reduction directive.

#pragma ddm for thread 1 reduction area + totalArea
for( i = 0 ; i < NUMBER_OF_SUBINTERVALS; i++ )
{

area+=BASIC OPERATION
}

#pragma ddm endfor

(a) (b)

Figure 51: (a) The Synchronization Graph of TRAPEZ. (b) TRAPEZ parallelized using TFlux directives.

7.2.2.2 Dynamic Behavior

As each DThread of the program’s TFlux Loop performs the basic task on a subinterval, the

number of DThreads in the program will be equal to the number of subintervals plus the number

of reduction DThreads (one per TFlux Kernel). The input size for TRAPEZ defines the number of

these intervals.
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As can be seen from Table 11 which summarizes the characteristics of TRAPEZ, the basic task

is very small as it consists of only 461 dynamic instructions. To increase the granularity of the L-

DThreads we unrolled the loops (unrolling leads to each L-DThread executing multiple times the

basic task). According to the data of Table 11 unrolling the loop increases the number of dynamic

instructions. However, this increase is slightly smaller compared to the product of the unroll factor

and the size of the non-unrolled basic task due to optimizations performed by the compiler.

As for data accesses, TRAPEZ uses only scalar variables. This justifies the negligible miss

rate (Table 11).

Finally, notice that the input size for TRAPEZ does not affect in any way the number of dy-

namic instructions or data accesses of the DThreads. This is due to the fact that the input size for

this benchmark defines the number of invocations of the basic task and not the code it executes.

Table 11: TRAPEZ characteristics. Reported values are averaged over all invocations of the basic task.
Miss rates correspond to the cache configuration presented in Table 9.

DThread Unroll Dynamic Data Accesses Miss Rate
factor Instructions L1D L2D L1D L2D

1 1 461 102 < 1 < 0.1% < 0.01%
8 1849 431 < 1 < 0.1% < 0.01%
64 12877 3047 < 1 < 0.1% < 0.01%

7.2.3 Susan Smoothing (SUSAN)

SUSAN is an image processing application and comes from the MiBench benchmark suite [44].

The operation of SUSAN that was used as a benchmark for the TFlux Evaluation Suite was the

smoothing() function. This function applies a transformation to the picture given as input and

operates in two steps. The first step regards the creation of a two dimensional mask that is used

during the second step. The second step applies the smoothing transformation to the picture, which

is also represented as a two dimensional array. The basic task of the first step is the creation of
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an element of the mask. As for the second step, its basic task is the application of the smoothing

filter to a pixel of the input picture.

The basic task of the first step works only on one element of the mask array, therefore each

basic task can proceed in parallel. The same stands for the second step. However, as each opera-

tion of the second step requires all elements of the mask array, no iteration of the second loop may

start its execution unless all iterations of the first loop have completed.

7.2.3.1 Porting SUSAN

The TFlux version of SUSAN consists of two parallel loops with a dependency between them

(Figure 52-(a)). Each loop corresponds to each different step of the algorithm. The first loop

corresponds to the creation of the mask and the second to the application of the smoothing filter to

the picture. The Synchronization Graph of SUSAN can be expressed with two ddm loop directives

as depicted in Figure 52-(b).

Smoothing

Mask

#pragma ddm for thread 1
for (cv = 0; cv < MASK_SIZE; cv++)
{

MASK INITIALIZATION
}

#pragma ddm endfor

#pragma ddm for thread 2 depends (1)
for (cv = 0; cv < IMAGE_SIZE; cv++)
{

SMOOTHING OPERATION
}

#pragma ddm endfor

(a) (b)

Figure 52: (a) The Synchronization Graph of SUSAN. (b) SUSAN benchmark parallelized using TFlux
directives.Kyri
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7.2.3.2 Dynamic Behavior

The number of DThreads for SUSAN is equal to the sum of the number of DThreads neces-

sary for the execution of the two loops, i.e. it is equal to MASK SIZE + IMAGE SIZE.

The first loop, the one that creates the mask, executes the same number of iterations regardless

the size of the input picture. Regarding the loop that executes the smoothing operation, the num-

ber of its DThreads is equal to the number of elements of the output picture. As for the data

accesses, although SUSAN operates on a large amount of data, the cache miss rate is low due to

the exploitation of both temporal and spatial locality.

The size of the DThreads of the first loop (mask creation) is small but can be increased by

unrolling. In particular, as can be seen by Table 12 that summarizes the characteristics of SUSAN,

unrolling the loop 64 times increases the DThread’s size from 459 to 12667 instructions. As for

its data access pattern, it has low L1-data cache miss rate which is at the order of < 5% and is not

affected by the unrolling.

Regarding the DThreads executing the smoothing operation (TFlux Loop 2), their size is ap-

proximately 10 times larger whereas its L1-data cache miss rate is less than 1%. Notice that the

number of dynamic instructions executed by these DThreads does not increase with the input size.

Instead, it is the number of the DThreads executing the smoothing operation that increases with

the input size. Finally, althouth the miss rate for the L2-data cache appears to be high (> 10%)

this is due to the very small number of accesses.

7.2.4 Sorting using qSort (SORT)

The idea behind the SORT benchmark, which comes from the MiBench [44] suite, is to sort

an array of numbers using the sorting function as a “black box”. The sequential version of this

benchmark sorts the whole array using the system’s qsort() function.
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Table 12: SUSAN characteristics. Reported values are averaged over all executions of the basic task. Miss
rates correspond to the cache configuration presented in Table 9.

DThread Unroll Dynamic Data Accesses Miss Rate
factor Instructions L1D L2D L1D L2D

DThread 1: Mask creation operation
1 1 459 98 4 3.7% 24.7%

8 3426 742 35 4.6% 22.2%
64 12667 2744 115 4.2% 22.2%

DThread 2: Smoothing operation
2 1 7216 699 1 0.3% 12.7%

8 57243 5506 2 0.3% 11.6%
64 457110 43891 15 0.3% 11.8%

To perform this operation in parallel, the algorithm was modified to execute in two steps

(Figure 53). First, the input array is partitioned in segments equal to the number of TFlux Kernels.

Each Kernel sorts the subarray assigned to it using the system’s qsort() function which has not

been modified in any way. In the second step, the sorted subarrays are merged into the final output

array using the merge-sort algorithm. Notice that the merge operation can be performed as a

multilevel operation (Figure 53).

Figure 53: Operation of the parallel version of SORT.
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Split the array

qsort(partial arrays)

Single level 
Merge sort

Split the array

qsort(partial arrays)

Two level
Merge sort

Figure 54: The Synchronization Graph of SORT for 4 TFlux Kernels.

7.2.4.1 Porting SORT

As can be seen from the Synchronization Graph of this benchmark (Figure 54) it consists

only of dependent DThreads split in two groups. The DThreads of the first group execute the

qsort() function on the subarray assigned to them whereas the second group’s DThreads performs

the merge operation. Figure 53 depicts the Synchronization Graphs of SORT when the merge

operation is done with one (left part of the Figure) and two levels (right part of the Figure).

As all DThreads of the first group perform the same operation they can be expressed using

the ddm thread kernel all directive which defines a DThread executed by all TFlux Kernels (Fig-

ure 55). As for the DThreads of the second group that performs the merge operation, they are

expressed using the #pragma ddm thread directive with the dependencies being expressed with

the depends statement.

As each such DThread operates on a different segment of the initial array each DThread first

identifies the segments that correspond to it. The merge operation is performed by the DThreads

of the second group. Each such DThread is defined to depend on the corresponding DThreads of

the first group.

To parallelize this benchmark it was necessary to include operations that partition the initial

array as well as code to perform the merge operation. In addition, a temporary array was needed
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#pragma ddm thread 1 kernel all
myL = findLowerBoundMyArray();
myU = findUpperBoundMyArray();
qSort(array, myL, myU-myL);

#pragma ddm thread

#pragma ddm thread 2 depends(1)
outputArray = merge();

#pragma ddm endthread

(a)

#pragma ddm thread 1 kernel all
myL = findLowerBoundMyArray();
myU = findUpperBoundMyArray();
qSort(array, myL, myU-myL);

#pragma ddm thread

#pragma ddm thread 2 depends(1/0,...)
tempArray1 = merge(...);

#pragma ddm endthread

#pragma ddm thread 3 depends(..., 1/k)
tempArray2 = merge(...);

#pragma ddm endthread

#pragma ddm thread 4 depends(2, 3)
outputArray = merge();

#pragma ddm endthread

(b)

Figure 55: The code of SORT parallelized using TFlux directives. (a) Single level merging. (b) Two levels
merging.

to store the sorted subarrays after the execution of the DThreads of the first group. This temporary

array was the input to the DThreads of the second group, which write the final output to the

memory that stored the input array.

7.2.4.2 Dynamic Behavior

The number of DThreads for this benchmark is small and independent of the input size. In

particular, the sort phase has as many DThreads as the number of TFlux Kernels whereas for

the merge operation the number of DThreads is smaller (1 DThread for single level merging and

1+ k/2 for two levels merging where k is the number of TFlux Kernels). For SORT the input size

describes the number of elements in the array to be sorted.

As can be seen from Table 13, that summarizes the characteristics of SORT, the size of the

DThreads performing the partial sort operation is very large, in particular in the order of millions

of instructions. Notice that this size increases with the input size (3M, 6M and 17M for the small,

medium and large input sizes respectively). As for the DThreads that perform the merge operation,
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although their size is approximately one order of magnitude smaller than the size of the DThreads

that perform the partial sort, they are also very large (500K, 1.1M and 2.8M instructions for the

small, medium and large input sizes respectively).

The data access pattern of the DThreads performing the sort operation depends by the imple-

mentation of the system’s qsort function. According to our results the L1 data cache miss rate

is less than 4%. As for the DThreads performing the merge operation, accesses to the different

arrays are done on successive elements exploiting a high degree of spatial locality leading to an

L1 data cache miss rate of 4.2%.

Table 13: SORT characteristics. Reported values are averaged over all executions of each DThread. Miss
rates correspond to the cache configuration presented in Table 9.

DThread Dynamic Data Accesses Miss Rate
Instructions L1D L2D L1D L2D

Small Size: 10K
qsort() 3045162 341825 12498 3.7% 3.9%

Merge Sort 578625 164801 6904 4.2% 11.2%
Medium Size: 20K

qsort() 6480140 725623 27081 3.7% 2.9%
Merge Sort 1152938 329762 13890 4.2% 11.9%
Large Size: 50K

qsort() 17694138 1989383 78345 3.9% 2.1%
Merge Sort 2877869 823733 34076 4.1% 13.1%

7.2.5 Runge-Kutta (RK)

Runge Kutta (RK) is a numeric method for solving initial value problems for ordinary differen-

tial equations. The implementation used as a benchmark is the fourth-order Runge-Kutta formula

which is a four step process. Each step consists of a parallel loop which calculates a value neces-

sary for all iterations of the subsequent loop (Figure 56-(a)). As such, for an iteration of a loop to

start its execution all iterations of the previous loop must complete.
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7.2.5.1 Porting RK

As shown in (Figure 56-(b)) that depicts the TFlux code of RK, parallelization was done using

using ddm for directives. As explained earlier, for RK, all iterations of a loop need to complete

before an iteration of the following loop can start its execution. Notice that this applies to all

TFlux Loops of RK, therefore none of the synchronization barriers can be removed.

Step 2

Step 1

Step 3

Step 4

#pragma ddm for thread 1
for( i = 0 ; i < n; i++ )
{

STEP_1
}

#pragma ddm endfor

#pragma ddm for thread 2 depends(1)
for( i = 0 ; i < n; i++ )
{

STEP_2
}

#pragma ddm endfor

#pragma ddm for thread 3 depends(2)
for( i = 0 ; i < n; i++ )
{

STEP_3
}

#pragma ddm endfor

#pragma ddm for thread 4 depends(3)
for( i = 0 ; i < n; i++ )
{

STEP_4
}

#pragma ddm endfor

(a) (b)

Figure 56: (a) The Synchronization Graph of RK. (b) RK parallelized using TFlux directives.

7.2.5.2 Dynamic Behavior

The algorithm operates on a set of regular data structures; a 2-D matrix is used to describe the

input, one vector for the output and one vector for each step of the RK method. This leads to a

medium to high pressure on the memory hierarchy.
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The number of DThreads for RK depends on the input size, which is a function of the number

of elements in each direction of the array describing the system. In particular, each of the four

loops has one DThread per input element, leading to a total number of DThreads that is four

times larger than the input size. The size of each DThread, in terms of the number of dynamic

instructions, is also dependent on the input size, as each DThread contains a loop with as many

iterations as the size of the input.

The DThreads of the last 3 TFlux Loops have identical dynamic characteristics as the code

they execute is very similar. The size of these DThreads is rather large. In particular, for the small

input size (1024) it is approximately 13K, for the medium size (2048) approximately 26K and

for the large size (4096) approximately 52K instructions. As for the DThreads of the first TFlux

Loop, the number of dynamic instructions and accesses to the data cache is somehow smaller (by

approximately 15%). As shown in Table 14, unrolling these loops leads to an increase in the size

of the DThreads by a factor that is slightly smaller compared to the number of times the loop is

unrolled. This is due to optimizations performed by the compiler.

As for the L1 data cache miss rate for RK it is different for the two TFlux Loop groups. In

particular, for TFlux Loop 1 it ranges from 4.4% for the small input size to 8.4% for the large input

size. As for TFlux Loops 2-4, the L1 data cache miss rate ranges from 3.5% to 9.5%. Notice that

the miss rate, is not affected by the loop unroll factor due to the fact that consecutive iterations of

the loop reuse the same data as such exploiting high temporal locality.

7.2.6 Fast Fourier Transformation (FFT)

FFT computes the Discrete Fourier Transformation (DFT) which is widely used in several

fields such as digital signal processing and electromagnetics. The implementation of FFT used

for evaluating TFlux contains the computational kernel of a 3-D FFT-based spectral method. This
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Table 14: RK characteristics. Reported values are averaged over all executions of each DThread. Miss
rates correspond to the cache configuration presented in Table 9.

DThread Unroll Dynamic Data Accesses Miss Rate
factor Instructions L1D L2D L1D L2D

Small Size: 1024
1 1 13096 3182 140 4.4% 23.6%

8 89693 25343 1125 4.4% 23.2%
64 704998 202643 8983 4.4% 23.3%

2-4 1 15592 4132 145 3.5% 22.5%
8 109924 32990 1106 3.4% 23.4%
64 865362 263701 8830 3.3% 23.4%

Medium Size: 2048
1 1 26022 6337 350 5.5% 18.6%

8 178846 50579 2710 5.4% 19.2%
64 1399760 404287 21619 5.3% 19.3%

2-4 1 34471 8926 823 9.2% 8.1%
8 219534 65879 6255 9.5% 8.2%
64 1725610 526830 49987 9.5% 8.2%

Large Size: 4096
1 1 51886 12654 1064 8.4% 12.2%

8 356925 101088 8484 8.4% 12.3%
64 2797790 808505 67777 8.4% 12.3%

2-4 1 62076 16480 1565 9.5% 8.3%
8 438438 131702 12479 9.5% 8.3%
64 3448890 1053330 99744 9.5% 8.3%

benchmark comes from the NAS Parallel Benchmarks suite [13] and operates on a 3-D matrix of

complex numbers. The version on which the TFlux FFT was based on is the OpenMP implemen-

tation of the NAS FFT [46].

Although the whole benchmark has been ported to TFlux, the analysis focuses on the fft()

function which is the component that performs the useful computation. This function calls three

other routines (cffts1, cffts2 and cffts3) which apply the 1D FFT transformation to each of the three

dimensions of the 3-D input matrix. Each such function calls the cfftz routine which performs one

variant of the Stockham FFT.Kyri
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7.2.6.1 Porting FFT

To port FFT, the cffts1, cffts2 and cffts3 routines have been inlined in the body of the calling

function. The largest portion of the execution time for these routines is spent calling cfftz. No-

tice that the different invocations of the cfftz by cfftz1, cfftz2 and cfftz3 can proceed in parallel.

This routine is invoked multiple times during the execution of cffts1, cffts2 and cffts3. As such,

parallelization has been done at this level, i.e. at the invocation of cfftz.

Figure 57-(a) depicts the Synchronization Graph for the whole FFT benchmark with the fft

function shown shaded. DThreads 4, 5, 6 and 7 perform initializations and precalculations neces-

sary for the execution of the TFlux Loops that follow. As can be seen from the Synchronization

Graph, the calls to cfftz corresponding to cffts1 and cffts2, which have been included in the same

loop body (TFlux Loop 8), can be executed in parallel whereas cfftz calls for cffts3 (TFlux Loop

9) are dependent on those for cffts1 and cffts2. As such, it was not possible to remove the synchro-

nization barrier between these loops. The TFlux code corresponding to the fft function is depicted

in Figure 57-(b).

7.2.6.2 Dynamic Behavior

FFT operates on 3-D complex number matrices which leads to a large number of data accesses

resulting in a medium to high miss rate. The benchmark has a medium number of DThreads that

depends on the input size. In particular, it executes 11 simple DThreads and 8 TFlux Loops with

the number of iterations for these loops being at the order of O(n2), where n is the size of the

input. As for the fft function, it consists of 4 DThreads and 2 TFlux Loops leading to a very

limited number of DThreads. In particular, the FFT function consist of 32 DThreads for the small

input size, 64 DThreads for the medium input size and 128 DThreads for the large input size.
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8

4 5 6 7

#pragma ddm thread 4 kernel 1 depends(3)
Initializations

#pragma ddm endthread

#pragma ddm thread 5 kernel 2 depends(3)
Initializations

#pragma ddm endthread

#pragma ddm thread 6 kernel 3 depends(3)
Initializations

#pragma ddm endthread

#pragma ddm thread 7 kernel 4 depends(3)
Initializations

#pragma ddm endthread

#pragma ddm for thread 8 depends(4,5,6,7)
cffts1
cffts2

#pragma ddm endfor

#pragma ddm for thread 9 depends(8)
cffts3

#pragma ddm endfor

(a) (b)

Figure 57: (a) The Synchronization Graph of the FFT benchmark. The fft() function is shown as shaded.
(b) The fft() function parallelized using TFlux directives.

As can be seen from Table 15, the L-DThreads of this application consist of coarse-grained

threads in the order of tenths of thousands of instructions. This is why unrolling the loop body for

FFT was not necessary. As for the L1 data cache miss rate it is in the order of 10-15%.

7.2.7 Conjugate Gradient Method (CG)

CG comes from the NAS Parallel Benchmarks Suite [13] and computes an approximation of

the smallest eigenvalue of a large, sparse, unstructured matrix using a Conjugate Gradient method.

The code used for the porting CG to TFlux was based on the OpenMP implementation of CG [46].

The core of CG consists of a section of code in the conj grad routine that is repeated multiple

times to increase the accuracy of the approximation. This code mainly consists of a number loops
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Table 15: FFT characteristics. Reported values are averaged over all executions of the basic task. Miss
rates correspond to the cache configuration presented in Table 9.

DThread Dynamic Data Accesses Miss Rate
Instructions L1D L2D L1D L2D

Do not depend on input size
4 43373 6825 524 7.7% 25.0%
5 6713 351 81 23.7% 0.0%
6 7740 490 106 21.6% 22.6%
7 6668 348 32 9.2% 28.1%
13 898 100 40 40.0% 15.0%
14 820 101 37 36.7% 13.6%
15 177 15 0 0.0% 0.0%
17 190 34 1 2.0% 15.7%
18 7285 461 67 14.5% 19.4%

Depend on input size
- SMALL: 32x32x32

1 48051 7455 113 1.5% 5.9%
2 20934 2997 289 9.7% 14.9%
3 2652882 91815 13808 15.3% 1.3%
8 231996 34694 4699 13.5% 0.2%
9 132859 18403 2548 13.8% 0.0%
10 2239316 72463 9121 12.6% 0.5%
11 19662 5605 510 9.9% 11.7%
12 116738 17410 2390 13.7% 0.5%
16 246422 35507 4875 13.7% 0.3%

- MEDIUM: 64x64x64
1 258633 34123 4855 14.2% 0.51%
2 61984 8698 836 9.6% 10.9%
3 21239651 734095 110160 15.0% 0.4%
8 957652 138223 19241 13.9% 1.4%
9 549655 73635 10944 14.9% 0.0%
10 17779590 558788 71353 12.8% 0.5%
11 77099 21858 2857 13.6% 11.6%
12 493075 70058 10582 15.1% 2.5%
16 1017020 141585 20092 14.2% 1.4%

- LARGE: 128x128x128
1 1044410 136409 27464 20.1% 1.48%
2 239734 36277 3292 9.7% 8.6%
3 169905122 5893026 872357 14.8% 0.5%
8 4682070 686179 105682 15.4% 1.4%
9 2618790 360681 52969 14.7% 0.0%
10 141598044 4359210 550108 12.6% 0.4%
11 305788 86408 15080 17.5% 8.8%
12 2402180 348239 52007 14.9% 2.1%
16 4908200 698518 109369 15.7% 1.1%
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and reduction operations. After the desired accuracy has been reached, CG calculates a number of

other metrics and terminates its execution.

The parallel loops of the section that is repeated have two important characteristics. First,

these loops depend on each other. However, this dependency is not at the level of the whole loop

however but rather at the level of the loop iterations. This means that an iteration of the Consumer

loop does not need to wait for all iterations of the producer loop to complete before it initiates its

execution. Second, the different iterations of these loops do not require the same execution time,

which may lead to load imbalance problems.

7.2.7.1 Porting CG

As depicted in Figure 58 the Synchronization Graph CG mainly consists of loops. Notice that

the execution of a part of this graph (DThreads 3-9) is repeated multiple times.

The first step for porting CG was to inline code of the conj grad routine. Most loops in

this function, as well as most loops of the rest of the program, were parallelized by expressing

them as TFlux Loops using the ddm for directive (Figure 59). As for the five loops that per-

form reduction operations (TFlux Loops 2, 5, 7, 11 and 12) they were expressed using a ddm

for reduction directive. Regarding the portion of the Synchronization Graph executed multiple

times (DThreads 3-9), the directives expressing the recycle operation (Section 3.2.3) were used.

Finally, for the iteration-level dependencies that exist between loops 4-5 and 6-7 they have been

expressed through ilc statements (Section 4.3.2.5).

7.2.7.2 Dynamic Behavior

The CG benchmark operate on vectors, which are accessed sequentially. Although the size of

these vectors is large, the locality of these accesses lead to a rather small miss rate (approximately

5% for the L1 data cache). This benchmark executes a large number of DThreads and this is
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Figure 58: The Synchronization Graph of CG.

mainly due to the fact that part of the Synchronization Graph that is repeated consists mainly of

TFlux Loops.

As can be seen from Table 16, these DThreads are very fine grained as they include only a

small number of instructions. As such, in order to amortize the parallelization overheads it is

necessary for these loops to be unrolled. However, due to the simplicity of the operations inside

the DThreads, for all cases except DThreads 4 and 10, unrolling does not increase significantly

their size. As an example, the size of DThreads increases only by a factor of 4.6 (from 81 to 369

instructions) after unrolling the body of the loop 64 times. This is due to optimizations performed

by the compiler.
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#pragma ddm for thread 1
initializations

#pragma ddm endfor

#pragma ddm for thread 2
rho=||r||

#pragma ddm endfor

#pragma ddm thread 3 kernel 1 depends(1,2) recycle
if(tempCgit>cgitmax)
#pragma ddm threadCompleted

else
iteration initializations

#pragma ddm recycle

#pragma ddm for thread 4 depends(3) recycle
q = A.p

#pragma ddm endfor

#pragma ddm for thread 5 reduction var01 + double d depends(4) recycle
Obtain p.q

#pragma ddm endfor

#pragma ddm for thread 6 depends(5) recycle
Calculate: z = z + alpha*p
Calculate: r = r - alpha*q

#pragma ddm endfor

#pragma ddm for thread 7 reduction var01 + double rho depends(6) recycle
rho = r.r; beta = rho/rho0;

#pragma ddm endfor

#pragma ddm for thread 8 depends(7) recycle
Calculate: p = r + beta*p

#pragma ddm endfor

#pragma ddm thread 9 kernel 1 depends(8) recycle 3
#pragma ddm recycle

#pragma ddm for thread 10 depends(9)
||r|| = ||x - A.z||

#pragma ddm endfor

#pragma ddm for thread 11 reduction reductionVar01 + double sum depends(10)
Calculate: sum += (x[j] - r[j]).(x[j] - r[j]);

#pragma ddm endfor

#pragma ddm for thread 12 reduction reductionFunction(...) depends(9)
Calculate: norm11 += x[j]*z[j];
Calculate: norm12 += z[j]*z[j];

#pragma ddm endfor

#pragma ddm thread 13 kernel 1 depends(11, 12)
Calculate final metrics

#pragma ddm endthread

Figure 59: CG parallelized with TFlux directives without exploiting iteration-level dependencies.

7.2.7.3 Removing the barriers

As can be seen from the Synchronization Graph of CG (Figure 58) the TFlux Loops have

barriers between them. However, using TFlux Iteration-Level Dependencies (Section 4.3.2.5) it
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Table 16: CG characteristics. For DThreads executed multiple times, reported values are averaged over all
invocations. The configuration of caches is presented in Table 9.

DThread Unroll Dynamic Data Accesses Miss Rate
factor Instructions L1D L2D L1D L2D

1 1 203 33 1 2.4% 7.9%
8 918 109 6 5.5% 12.4%
64 3211 287 20 6.7% 8.4%

2 1 79 16 1 0.2% 0.0%
8 103 23 1 1.6% 3.2%
64 588 92 2 1.4% 4.8%

3 - 815 72 5 5.9% 11.0%
4 1 730 193 12 6.2% 0.2%

8 5326 1448 94 6.4% 0.9%
64 41965 11453 733 6.4% 0.5%

5 1 81 18 1 1.4% 0.3%
8 113 32 2 3.7% 0.0%
64 369 150 9 5.7% 0.0%

6 1 94 25 1 3.8% 0.0%
8 183 66 5 6.9% 0.0%
64 909 412 20 4.8% 0.0%

7 1 79 16 1 0.6% 0.1%
8 102 23 1 3.4% 0.0%
64 300 85 1 0.2% 6.0%

8 1 83 19 1 1.1% 0.3%
8 128 40 2 2.9% 0.0%
64 500 215 2 0.9% 0.0%

9 - 62 11 0 0.0% 0.0%
10 1 723 191 12 6.2% 0.1%

8 9688 2321 136 5.8% 3.8%
64 42144 11428 736 6.4% 0.3%

11 1 84 18 1 2.2% 0.3%
8 123 32 3 6.6% 0.0%
64 413 147 16 10.7% 0.0%

12 1 86 19 1 1.1% 0.0%
8 132 33 3 6.3% 0.0%
64 482 148 3 2.0% 0.0%

13 - 25973 4525 247 5.5% 26.3%

was possible to remove three out of the five barriers. As for the other two barriers, i.e. between

TFlux Loops 5 and 6 and between 7 and 8, this technique could not be applied as the Producer

loops (TFlux Loops 5 and 7) perform a reduction operation, which is necessary for each iteration

of the Consumer loops (TFlux Loops 6 and 8). As the reduction result will be ready only after all
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iterations of the loop have completed the dependencies between these loops can not be expressed

at the iteration level.

Figure 60 presents the operation of TFlux Loops 6 and 7 and will be used to better explain

how the barrier dependence has been expressed in terms of iteration level dependencies. As can

be seen from this Figure, each iteration of TFlux Loop 6 calculates the value of an element of

vectors w and q whereas each iteration of TFlux Loop 7 uses the value of an element of vector q.

As such, an iteration of TFlux Loop 7 can start its execution whenever the corresponding TFlux

Loop 6 iteration it depends on has completed. Another observation that can be made from the

code depicted in Figure 60 is that the load of each iteration loop 6 depends on the value of the

control variable.

//Code of TFlux Loop 6
for (j = 1; j < inputSize; j++)
{
tempDouble = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++)
{

tempDouble = tempDouble + a[k]*p[colidx[k]];
}
w[j] = tempDouble;
q[j] = w[j];
w[j] = 0.0;
tempDouble=0.0;

}

//Code of TFlux Loop 7
for (j = 1; j < inputSize; j++)
{
reductionVar01 = reductionVar01 + p[j]*q[j];

}

Figure 60: The code of TFlux Loops 6 and 7 which have dependencies at the iteration level.

The TFlux code of CG that exploits the iteration-level dependencies is depicted in Figure 61.

7.2.8 LU

As the previous benchmark, LU was also selected from the NAS Parallel Benchmarks Suite [13].

LU is a simulated CFD application that uses symmetric successive over-relaxation (SSOR) method
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#pragma ddm for thread 1
initializations

#pragma ddm endfor

#pragma ddm for thread 2
rho=||r||

#pragma ddm endfor

#pragma ddm thread 3 kernel 1 depends(1,2) recycle
if(tempCgit>cgitmax)
#pragma ddm threadCompleted

else
iteration initializations

#pragma ddm recycle

#pragma ddm for thread 4 depends(3) ilc [1 5 1 0] recycle
q = A.p

#pragma ddm endfor

#pragma ddm for thread 5 reduction var01 + double d readyCount 1 recycle
Obtain p.q

#pragma ddm endfor

#pragma ddm for thread 6 depends(5) ilc [1 7 1 0] recycle
Calculate: z = z + alpha*p
Calculate: r = r - alpha*q

#pragma ddm endfor

#pragma ddm for thread 7 reduction var01 + double rho readyCount 1 recycle
rho = r.r; beta = rho/rho0;

#pragma ddm endfor

#pragma ddm for thread 8 depends(7) recycle
Calculate: p = r + beta*p

#pragma ddm endfor

#pragma ddm thread 9 kernel 1 depends(8) recycle 3
#pragma ddm recycle

#pragma ddm for thread 10 depends(9) ilc [1 11 1 0]
||r|| = ||x - A.z||

#pragma ddm endfor

#pragma ddm for thread 11 reduction reductionVar01 + double sum readyCount 1
Calculate: sum += (x[j] - r[j]).(x[j] - r[j]);

#pragma ddm endfor

#pragma ddm for thread 12 reduction reductionFunction(...) depends(9)
Calculate: norm11 += x[j]*z[j];
Calculate: norm12 += z[j]*z[j];

#pragma ddm endfor

#pragma ddm thread 13 kernel 1 depends(11, 12)
Calculate final metrics

#pragma ddm endthread

Figure 61: CG parallelized with TFlux directives exploiting iteration-level dependencies.

to solve a seven-block-diagonal system resulting from finite-difference discretization of the Navier-

Stokes equations in 3-D by splitting it into block Lower and Upper triangular systems [46].
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(a) (b)

Figure 62: The dependencies of the iterations of loops 4 and 8.

The core of LU is split into two phases. The first forms and solves the lower-triangular and

diagonal systems, which are represented by two-dimensional arrays, whereas the second phase

forms and solves the upper-triangular system. Referring to the Synchronization Graph of the LU

benchmark (Figure 63), the first phase is executed by Loops 3 and 4 whereas the second phase by

Loops 7 and 8. Notice that each pair of these loops (3-4 and 7-8) needs to be executed multiple

times until the desired accuracy is reached.

The loops solving the two systems (4 and 8), present a particularity regarding their paralleliza-

tion process. More specifically, each iteration of these loops processes only one element of the

system. The data-dependencies between these operations are such that processing an element can

start only if processing the element in the previous row and the previous column has completed

(Figure 62-(a) and 62-(b)). The result of these dependencies is that the operations that can be

executed concurrently are those lying in the diagonals of the array.Kyri
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7.2.8.1 Porting LU

As can be seen from Figure 63, which depicts the Synchronization Graph of LU, this bench-

mark consists only of loops. As for DThreads 2, 5, 6 and 9, they are used to control the recycling

operation, which is necessary for repeating the execution of TFlux Loops 3, 4, 7 and 8. As for the

functions contained in these loops, in order to port the application to TFlux, it was necessary to

inline them in the body of the main() function.

2

3

9

10

5

7

6

13

14

15

11 12

4

8

1

16

17

Figure 63: The Synchronization Graph of LU.

What deserves further explanation is the way Loops 4 and 8 were parallelized using TFlux

directives. As explained earlier (Figure 62) the iterations of these loops are not independent.
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More specifically, for an iteration to start its execution the iteration of the previous row and that of

the previous column are required to have completed.

As depicted in Figure 64-(a) that depicts the OpenMP version of the application [46] on which

we based the TFlux version a #pragma omp for is used in order to express that iterations are to be

executed concurrently whereas proper code is used at the start and end of the loop body to enforce

the necessary synchronization. The first instructions of the loop body examine if the producer

iterations (previous row and previous column) have completed. This is done by checking a flags

array. If not, the processor executing this iteration spins until the iterations on which it depends

complete. When an iteration finally executes it sets the corresponding elements of the flags array

so that its consumer iterations can proceed.

In TFlux, however, these dependencies can be enforced implicitly without any additional code

for synchronization. As can be seen from Figure 64-(b) that depicts the TFlux version of the code

of these loops, these dependencies can be expressed using the appropriate ilc statement. What

deserves further explanation, however, is the scheduding model selected for these loops.

As explained in Section 4.3.2.1, TFluxCpp provides two types of scheduling for the iterations

of a TFlux Loop. The first, chunk scheduling, assigns a number of consecutive iterations to each

processor whereas the second, Round-Robin scheduling, assigns consecutive iterations to different

processors. Figure 65-(a) depicts the execution of Loops 4 and 8 on a 2 CPUs system with chunk

scheduling (chunk size is equal to 32) whereas Figure 65-(b) with Round-Robin scheduling. As

can be seen from this Figure, chunk scheduling decreases significantly the exploitable parallelism

as it splits execution into phases assigned to different processors. As such, for Loops 4 and 8 we

selected the Round-Robin scheduling (schedule 1).
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#pragma omp for
for( i = 0 ; i < NO_ITERATIONS; i++ )
{
//

//Wait for producer iterations to complete.
//
// - Wait for producer 1
while(producer[i/ITERS_PER_DIM]==0)
;

// - Wait for producer 2
while(producer[i%ITERS_PER_DIM]==0)
;

//
// Do the ’’useful’’ computation
//

//
//Set the flags to ’’wakeup’’ the consumers
//
producer[i/ITERS_PER_DIM]=1;
producer[i%ITERS_PER_DIM]=1;

}

#pragma ddm for thread 4 ilc[...][...]

USEFULL CODE

#pragma ddm endfor

(a) (b)

Figure 64: Parallelization of loops 4 and 8 using (a) OpenMP and (b) TFlux directives.

(a) (b)

Figure 65: Scheduling types for Loops 4 and 8 of LU: (a) Chunk and (b) Round-Robin. Gray nodes are
executed by CPU 0 and black nodes executed by CPU 1.
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7.2.8.2 Dynamic Behavior

The input size of LU refers to the size of the system it solves. For our experimentation the

small input size uses a 16× 16 system , the medium size a system of 32× 32 elements and finally

the large size a system of 64 × 64 elements.

LU executes a large number of L-DThreads: approximately 13K for the small input size, 217K

for the medium and 996K for the large input size. As can be seen from Table 17, the number of

dynamic instructions executed by these DThreads is very small (approximately 830 instructions

for DThreads 3 and 7 and approximately 470 instructions for DThreads 4 and 8) which leads to

only partial amortization of the parallelization overheads. The number of data accesses, similarly

to the number of dynamic instructions, is very small. This is why the L1 data-cache miss rate

appears to be large. The only L-DThreads that have a large number of data-accesses and at the

same time large miss rate (17% for the large input size) are those of TFlux Loop 13 which traverse

a large number of arrays.

7.2.9 Summary

The 8 real-life applications of the TFlux Evaluation Suite that have been presented in this

Section meet the criteria presented at the beginning of this chapter. As depicted in Figure 66

that summarizes the Synchronization Graphs of these applications, the complexity of these graphs

ranges from a single parallel loop for MMULT to multiple loops with complex iteration level

dependencies for LU.

As for the other characteristics of these applications, they are summarized in Table 18. The

static number of TFlux Loops and DThreads ranges from only 1 for MMULT and TRAPEZ to

17 for LU. As for the number of dynamically executed DThreads, this ranges from as many as

the number of Kernels for SORT to 221 for TRAPEZ. These applications also differ significantly
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Table 17: LU characteristics. Reported values are averaged over all executions of the basic task. Miss
rates correspond to the cache configuration presented in Table 9.

DThread Dynamic Data Accesses Miss Rate
Instructions L1D L2D L1D L2D

Do not depend on input size
2 187 30 5 13.93% 27.41%
3 836 353 34 5.7% 6.28%
4 462 221 22 6.58% 0.53%
5 61 11 0 0.0% 0.0%
6 191 29 5 14.92% 7.46%
7 825 355 30 4.48% 1.7%
8 482 234 24 7.1% 0.49%
9 61 11 0 0.0% 0.0%

Depend on input size
- SMALL: 16x16

1 1392 289 14 4.84% 27.12%
10 1358 347 25 6.94% 0.0%
11 1292 252 18 6.94% 20.41%
12 1107 332 17 4.97% 6.6%
13 7426 2748 136 4.94% 2.28%
14 869 313 13 3.89% 0.64%
15 6840 2452 96 3.88% 1.1%
16 7170 2551 42 1.64% 0.0%
17 660 187 11 5.79% 0.0%

- MEDIUM: 32x32
1 2590 562 26 4.54% 24.21%
10 2680 702 47 6.64% 9.33%
11 2309 453 29 6.39% 21.49%
12 1985 646 29 4.47% 20.41%
13 22910 6341 539 8.48% 3.36%
14 1752 630 26 3.98% 11.20%
15 13873 5194 221 4.25% 6.65%
16 14939 5322 81 1.52% 2.25%
17 1279 381 23 5.89% 0.0%

- LARGE: 64x64
1 5029 1115 52 4.59% 22.58%
10 5304 1420 94 6.56% 24.32%
11 4400 866 57 6.46% 22.73%
12 3787 1283 57 4.40% 23.32%
13 50553 13209 2306 17.45% 2.1%
14 3317 1271 50 3.92% 24.84%
15 31469 10871 746 6.85% 6.46%
16 30556 10875 168 1.53% 14.29%
17 2505 766 45 5.87% 25.22%

in terms of the stress they cause on the memory hierarchy. In particular, the suite includes ap-

plications with minimum (TRAPEZ), medium (SORT, SUSAN, RK and LU) and large data usage
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Figure 66: Synchronization Graphs of the real-life applications.

(MMULT, RK, FFT). The L1-data cache miss rate for these applications ranges from almost 0%

for TRAPEZ to approximately 50% for MMULT. Regarding the DThreads granularity, CG and

LU applications have fine-, MMULT, TRAPEZ, SUSAN and RK medium- and SORT and FFT

coarse-grained DThreads.

7.3 Synthetic Applications

The synthetic applications presented in this Section allow the analysis of specific character-

istics of TFluxHard and TFluxSoft isolating all other factors that may affect the performance.

Such factors include the cache behavior and the communication delay. Isolating these factors is

achieved by having the synthetic applications executing a parameterizable computational load that
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Table 18: Summary of the characteristics of the real-life application of the TFlux Evaluation Suite. (N:
number of Kernels)

Characteristic MULT TRAPEZ SORT SUSAN RK FFT CG LU

Synchronization Graph
TFlux Loops 1 1 - 2 4 2 10 13

Static # DThreads - N N+2 - - 4 3 4

Porting to TFlux
# Directives 1 1 2 - 4 7 13 17

Origination of the benchmark
Kernel

√ √ √
MiBench

√ √
NAS

√ √ √
Input Sizes

Small 64x64 217 10K 256x288 2048 32 2048 16x16
Medium 128x128 219 20K 512x576 4096 64 4096 32x32

Large 256x256 221 50K 1024x576 8192 128 8192 64x64

Dynamic DThreads
Small 212 217+N N+1 ∼ 216 213 ∼ 27 ∼ 218 ∼ 215

Medium 214 219+N N+1 ∼ 218 214 ∼ 28 ∼ 219 ∼ 217

Large 216 221+N N+1 ∼ 219 215 ∼ 29 ∼ 220 ∼ 219

Dynamic Data Behavior - Data Usage
Low

√
Medium

√ √ √ √
High

√ √ √
Dynamic Data Behavior - L1 Data Cache Miss Rate

Low
√ √ √

Medium
√ √ √

High
√ √

DThread Granulariry
Fine Grained

√ √
Medium Grained

√ √ √ √
Coarse Grained

√ √

is composed of instructions that operate on private scalar variables only. This leads to negligible

data cache miss rate and zero data transfers between the execution nodes.

To avoid situations where the compiler optimizes the instructions that comprise the compu-

tational load, these instructions have been included in a function called load() which has been

compiled with all optimizations turned-off, i.e. with the -O0 compilation flag. The resulting ob-

ject file is then linked to the rest of the application. As for the size of the computational load,

in terms of dynamic instructions, this is controlled by the number of times the load() function is
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called (effect). As can be seen from Figure 67 that depicts the code executed by each DThreads.

This code consinst of a loop that calls the load() function effort times.

for(cv=0;cv<effort;cv++)
{

load();
}

Figure 67: Computational load executed by each DThread of the synthetic applications.

At the code level the load() function, as can be seen from Figure 68 that depicts its code

in ANSI C, consist of multiple i++ instructions. Given that compilation is done without any

optimization, each i++ instruction translates to three assembly instructions, a load operation to

load variable i, an increase operation to increase the value of the variable and finally a store

operation to save the result. Notice that the load() function operates on this scalar variable only (i)

and therefore, with the exception of a pathological case, all memory accesses, except maybe for

the first, will lead to a memory hit.

void load()
{

i++; i++; i++; i++; i++; i++; i++; i++;
i++; i++; i++; i++; i++; i++; i++; i++;
i++; i++; i++; i++; i++; i++; i++; i++;
...

}

Figure 68: The code of the load() function.

Table 19 reports how many assembly instructions are executed for different effort values. As

can be seen from the Table, the number of executed assembly instructions do not increase pro-

portionally to the number of calls to the load() function. For example, calling the load() function

once leads to 162 instructions whereas calling it 16 times leads to 1797 instead of 2592. This is

due to compiler optimizations on the code that calls (and not the code of ) the load() function.
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Table 19: Number of dynamic assembly instructions in synthetic applications’ computational load as a
function of the value of the effort variable.

Calls to the load function (effort) Executed assembly instructions

1 162
2 271
4 489
8 925
16 1797
32 3541
64 7029
128 15196
256 27957
512 57134
1024 112909
2048 225753
4096 451451

The Sections that follow present the different synthetic applications and explain their purpose.

These synthetic applications are categorized in different groups according to the way they are used

for the evaluation of TFlux.

7.3.1 Parallel Threads

The purpose of the Parallel Threads synthetic application is to quantify the parallelization

overhead for TFluxHard and TFluxSoft. More specifically, by using this application it is possible

to find the minimum size, in terms of dynamic instructions, a DThread needs to have in order to

overcome the overheads of creating, synchronizing and handing it.

As can be seen from Figure 69-(a) that depicts the Synchronization Graph of this application,

there is one DThread per TFlux Kernel and these DThreads do not have any dependencies between

them. As for the total computational load executed by this application (numFunctionCalls calls

to the load() function) it is divided between the parallel DThreads, i.e. each DThread executes

numFunctionCalls
numKernels calls to the load() function (care has been taken so that numFunctionCalls is

multiple of numKernels which stands for the number of Kernels).
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21 3 n

#pragma ddm thread kernel all
for(i=0; i<numFunctionCalls / numKernels; i++)
{

load();
}

#pragma ddm endthread

(a) (b)

Figure 69: (a) The Synchronization Graph of the “Parallel Threads” synthetic application. (b) The DDM
code of the “Parallel Threads” synthetic application.

The baseline for this application regards the execution of the same computational load, but

sequentially. Figure 70 depicts the code of the baseline program.

for(i=0; i<numFunctionCalls; i++)
{

load();
}

Figure 70: The baseline for the Parallel Threads synthetic application.

7.3.2 Basic Loops

This set of synthetic applications focuses on the execution of parallel loops. In particular, it is

used to evaluate the performance of TFluxHard and TFluxSoft on applications with parallel loop

constructs. Each L-DThread of these loops executes a constant computational load and this load

is the same for all the L-DThreads of the application. Each parallel loop executes 2048 iterations

(NUM ITERATIONS) as this number was found to be adequate for giving representative results

for all experiments. The baseline for these applications is always the sequential execution of the

same computational load.

7.3.2.1 Single loop: L1

L1 consists of a single parallel TFlux Loop. The Synchronization Graph of L1, which is

depicted in Figure 71-(a), is a frequently-used component for a large number of applications such
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as the MMULT (Section 7.2.1) and TRAPEZ (Section 7.2.2) benchmarks. The TFlux code for this

application is depicted in Figure 71-(b).

#pragma ddm for thread 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 71: (a) The Synchronization Graph of L1 (b) The TFlux code of L1.

The code of the baseline for L1 is depicted in Figure 72. As can be seen from this Figure, the

baseline application executes the same computational load sequentially.

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

Figure 72: The baseline for the L1 synthetic application.

7.3.2.2 Two dependent loops: L2

L2 has two TFlux Loops which depend on each other not at the iteration level but rather at

the level of the whole TFlux Loops. This Synchronization Graph (Figure 73-(a)) is identical to

that of the SUSAN benchmark (Section 7.2.3). The TFlux code for this application is shown in

Figure 73-(b).

The code of the baseline for L2, which executes the same computational load sequentially, is

depicted in Figure 74.Kyri
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#pragma ddm for thread 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 2 depends(1)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 73: (a) The Synchronization Graph of L2. (b) The TFlux code of L2

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

Figure 74: The baseline for the L2 synthetic application.

7.3.2.3 Four dependent loops: L4

L4 executes 4 dependent TFlux Loops and has a Synchronization Graph (Figure 75-(a)) iden-

tical to the RK benchmark (Section 7.2.5). As for the TFlux Code of this application, it is depicted

in Figure 75-(b).

The code of the baseline for L4, which executes the same computational load sequentially, is

depicted in Figure 76.

7.3.2.4 Dependent loops and recycle:L2R

L2R consists of two dependent TFlux Loops which are included inside a recycle-group. This

code structure, i.e. a number of dependent TFlux Loops which are executed multiple times, can

be found in the Synchronization Graphs of both the CG (Section 7.2.7) and the LU benchmarks
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#pragma ddm for thread 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 2 depends(1)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 3 depends(2)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 4 depends(3)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 75: (a) The Synchronization Graph of L4 (b) The TFlux code of L4.

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

Figure 76: The baseline for the L4 synthetic application.
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(Section 7.2.8). For this application the execution of the two loops is repeated four times which has

been found adequate for our experimentation. Figure 77-(a) depicts the Synchronization Graph of

L2R whereas Figure 77-(b) its TFlux code.

x=0;

#pragma ddm thread 1
if(x>4)
{

#pragma ddm threadCompleted
}
else
{

x++;
}

#pragma ddm recycle

#pragma ddm for thread 2 depends(1) recycle
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 3 depends(2) recycle
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm thread 4 depends(3)
;

#pragma ddm recycle

(a) (b)

Figure 77: (a) The Synchronization Graph of L2R (b) The TFlux code of L2R.

The code of the corresponding baseline program for this application is depicted in Figure 78.

Notice that the two applications execute the same computational load.

7.3.3 TFlux Advantage of Dataflow Scheduling

The purpose of this set of synthetic applications is to quantify the advantage of TFluxSoft

resulting from its dataflow scheduling policy. As the objective of using synthetic applications is
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for(i=0; i<4; i++)
{

for(i=0; i<NUM_ITERATIONS; i++)
for(j=0; j<effort; j++)
load();

}

Figure 78: The baseline for the L2R synthetic application.

to analyze the differences between the dataflow and “traditional” parallel execution, we use the

latter as the baseline. By “traditional” parallel execution, we refer to the parallel execution that

uses parallel threads, loops and lock and barrier synchronization. An example of this would be

the execution using OpenMP. Our baseline programs are programmed in TFluxSoft but using the

OpenMP-like model. This is done in order to avoid the results being affected by the overheads or

optimizations of a particular OpenMP implementation.

7.3.3.1 Iteration Level Dependencies between 2 loops

ILD2x consists of 2 TFlux Loops which do not depend at the level of whole TFlux Loops

but rather at the loop-iteration level i.e. at the level of L-DThreads. To study the potential of

Iteration Level Dependencies we experimented with several alternatives of this application. These

different versions, for which we use the notion ILD2x, describe the imbalance between different

iterations of the loops (this imbalance regards both TFlux Loops). For these applications, the

load of consecutive loop iterations increases by a constant factor (which is the load executed by

loop iteration 0) whereas x consecutive loop iterations have the same load. Figure 79 depicts the

number of calls to the load() function each iteration of these loops performs as a function of x,

i..e as a function of the imbalance factor. Notice that ILD20 refers to the case where all loop

iterations have the same load. This type of load increase between the loop iteration exists in the

CG benchmark (Section 7.2.7).
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Figure 79: The load executed by each loop iteration for synthetic applications ILD2x.

Figure 80-(a) depicts the Synchronization Graph of the TFlux version of ILD2x whereas Fig-

ure 80-(b) the Synchronization Graph of its baseline. The baseline application executes the same

computational load as the TFlux version of ILD2x but instead of applying the synchronization

between the two loops at the iteration level it applies it at the level of the whole loops, i.e. this

execution follows what would apply for the “traditional” parallel processing model.

(a) (b)

Figure 80: The Synchronization Graph of the (a) TFlux version and the (b) baseline of the ILD2 x synthetic
application.

For the comparative study of the TFlux and the baseline version of ILD2x, each TFlux Loop

executes for 1024 iterations as it results in a simulated execution time within the criteria (less than

24 hours simulation time). The code for the TFlux version of ILD2x is depicted in Figure 81-(a)

whereas the code of the baseline version by Figure 81-(b).
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#pragma ddm for thread 1 ilc[1 2 1 0 0 0]
for(i=0;i<NUM_ITERATIONS;i++)
{
effort=i/X;
for(j=0;j<effort;j++)

load();
}

#pragma ddm endfor

#pragma ddm for thread 2 readyCount 1
for(i=0;i<NUM_ITERATIONS;i++)
{
effort=i/X;
for(j=0;j<effort;j++)

load();
}

#pragma ddm endfor

#pragma ddm for thread 1
for(i=0;i<NUM_ITERATIONS;i++)
{
effort=i/X;
for(j=0;j<effort;j++)

load();
}

#pragma ddm endfor

#pragma ddm for thread 2 depends 1
for(i=0;i<NUM_ITERATIONS;i++)
{
effort=i/X;
for(j=0;j<effort;j++)

load();
}

#pragma ddm endfor

(a) (b)

Figure 81: (a) The TFlux code of the TFlux version of ILD2x. (b) The TFlux code of the baseline version
of ILD2x.

7.3.3.2 Binary Tree

The second synthetic application used for this study is named BINARY TREE as its Syn-

chronization Graph is identical to that of a complete binary tree (Figure 82-(a)). This graph is

very common in compute-intensive real-life workloads and is used for “reduction-like” opera-

tions [17, 22, 23, 104]. Each node of the graph of BINARY TREE represents the calculations

performed in order to produce the results for the next phase until the final result is reached. An

application from the TFlux Evaluation Suite that uses this technique is the SORT benchmark (Sec-

tion 7.2.4).

For the baseline of this application, which is depicted in Figures 82-(b) and 82-(c), synchro-

nization is achieved through barriers between the different phases as this would be the case for

“traditional” parallel execution according to our previous definition.

The code of the TFlux and baseline version of the BINARY TREE application with 3 levels

are depicted in Figures 83-(a) and 83-(b) respectively. For BINARY TREE experiments have been

made for 4, 5 and 6 levels as well as for different values of the computational load. Notice however,
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(a) (b) (c)

Figure 82: The Synchronization Graph of the (a) TFlux version and the (b) baseline (vertical lines represent
barriers) of the BINARY TREE synthetic application. (c) Detail of the synchronization necessary for the
baseline version of BINARY TREE.

that the computational load executed by the different DThreads within each experiment is the

same.

7.3.3.3 Diagonal

DIAGONAL consists of a loop the iteration of which have a specific data-dependency pattern.

In particular, each iteration of this loop operates on one element of a square matrix and the iter-

ations that can proceed in parallel at a given point in time are those that operate on the elements

of the same diagonal (see Section 7.2.8). Examples of applications that include this component

are the LU (Section 7.2.8), OCEAN [129] and H.264 [52] benchmarks. As can be seen from

Figure 85-(b) that presents the TFlux code for this application, its Synchronization Graph (Fig-

ure 85-(a)) can be expressed with a single #pragma ddm for directive using the ilc statement (i.e.

by using iteration-level dependencies).

The code of the baseline for this application is depicted in Figure 85. This code is based on

the approach followed by the OpenMP implementation of the NAS parallel benchmarks [46], for

this particular graph as explained in Section 7.2.8.
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#pragma ddm for thread 1 kernel 1
for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 2 kernel 2
for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 3 kernel 3
for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 4 kernel 4
for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 5 kernel 1\
depends(1,2)

for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 6 kernel 2\
depends(3,4)

for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 7 kernel 1\
depends(5,6)

for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 1 kernel 1
for(j=0;j<effort;j++)

load();
#pragma ddm endthread

#pragma ddm for thread 2 kernel 2
for(j=0;j<effort;j++)

load();
#pragma ddm endthread

#pragma ddm for thread 3 kernel 3
for(j=0;j<effort;j++)

load();
#pragma ddm endthread

#pragma ddm for thread 4 kernel 4
for(j=0;j<effort;j++)

load();
#pragma ddm endthread

#pragma ddm for thread 5 kernel 1\
depends(1,2,3,4)

for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 6 kernel 2\
depends(1,2,3,4)

for(j=0;j<effort;j++)
load();

#pragma ddm endthread

#pragma ddm for thread 7 kernel 1\
depends(5,6)

for(j=0;j<effort;j++)
load();

#pragma ddm endthread

(a) (b)

Figure 83: (a) The TFlux code of the TFlux version of BINARY TREE. (b) The TFlux code of the baseline
version of BINARY TREE.

For DIAGONAL experiments have been performed using 2025 iterations of the main loop (this

number was found to be adequate for the experimentation. As for the computational load executed

by each iteration varied from 16 to 4096 calls to the load() function.

7.3.4 TFluxSoft Scalability Study

The target of the synthetic applications presented in this Section is to allow studying the scal-

ability of TFluxSoft by using multiple Updaters. To enable this study these applications should
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#pragma ddm for thread 1 schedule 1 \
ilc [9 1 14 63 64 3],[7 1 14 63 64 3] readyCount 2

for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}

#pragma ddm endfor

(a) (b)

Figure 84: (a) The Synchronization Graph of DIAGONAL (b) The TFlux code of DIAGONAL.

#pragma ddm for thread 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{
//
//Wait until the producer iterations have completed.
//
// - Wait for producer 1
while(producer[i/ITERS_PER_DIM]==0)

;
// - Wait for producer 2
while(producer[i%ITERS_PER_DIM]==0)

;

//
// Do the ’’useful’’ computation
//

//
//Set the flags to ’’wakeup’’ the consumers
//
producer[i/ITERS_PER_DIM]=1;
producer[i%ITERS_PER_DIM]=1;

}
#pragma ddm endfor

Figure 85: The baseline for the DIAGONAL synthetic application. Notice that ITERS PER DIM 2 =
NO ITERATIONS.

differ in the number of update-requests and the number of bursts. With the term “burst” we refer

to the situation where in a small period of time a large number of update-requests are inserted

into the TUB. An example of such a situation is when a TFlux Loop that has as consumer another

TFlux Loop completes (Section 3.2.2).

Kyri
ak

os
 Stav

rou



173

In addition to L1 (Section 7.3.2.1), L2 (Section 7.3.2.2) and L4 (Section 7.3.2.3) this set in-

cludes 4 more applications, L2-T1, L4-T3, ILD2 and ILD4.

L2-T1: L2-T1 is a variation of L2 where the synchronization between the two TFlux Loops is

achieved through an intermediate DThread. Notice that this extra DThread does not execute

any computational load and serves for synchronization purposes only. The practical differ-

ence between L2 and L2-T1 is the that the former poses significantly more update-requests

than the later (32 · 32 · numKernels vs. 2 · 32 · numKernels) for synchronization be-

tween the loops (see Section 3.2.2.1). The Synchronization Graph for this application is

depicted in Figure 86-(a) whereas the TFlux code in Figure 86-(b). The baseline for L2-T1

is identical to the baseline for L2 (Figure 74)

#pragma ddm for thread 1 depends(2)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm thread 2 kernel 1 depends(1)
;

#pragma ddm endthread

#pragma ddm for thread 3 depends(2)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 86: (a) The Synchronization Graph of L2-T1 (b) The TFlux code of L2-T1.

L4-T3: Similar to L2-T1, application L4-T3 applies the same technique of introducing an inter-

mediate DThread for the synchronization between TFlux Loops and regards the application
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L4. Figure 87-(a) depicts the Synchronization Graph of this application and 87-(b) the cor-

responding TFlux code. As for the baseline of L4-T3 it is identical to that of L4 (Figure 76).

#pragma ddm for thread 1 depends(2)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm thread 2 kernel 1 depends(1)
;

#pragma ddm endthread

#pragma ddm for thread 3 depends(2)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm thread 4 kernel 1 depends(3)
;

#pragma ddm endthread

#pragma ddm for thread 5 depends(4)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm thread 6 kernel 1 depends(5)
;

#pragma ddm endthread

#pragma ddm for thread 7 depends(6)
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 87: (a) The Synchronization Graph of L4-T3 (b) The TFlux code of L4-T3.

ILD2: Similar to L2, ILD2 consists of two TFlux Loops. The key difference between these two

applications is that whereas for L2 the two loops have a full dependency between them
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(all iterations of the Consumer loop depend on all iterations of the Producer loop - Sec-

tion 3.2.2.1) for ILD2 the dependencies are at the iteration-level. In particular, these two

TFlux Loops execute the same number of iterations and iteration x of the Producer TFlux

Loop has been set to “wake-up” iteration x of the Consumer TFlux Loop. The TFlux code

for ILD2 is depicted in Figure 88-(a) and its Synchronization Graph by Figure 88-(b).

#pragma ddm for thread 1 ilc[1 2 1 0 0 0]
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 2 readyCount 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 88: (a) The Synchronization Graph of ILD2. (b) The TFlux code of ILD2

ILD4: ILD4 follows the same rationale as ILD2 but instead of 2, it has 4 TFlux loops. The purpose

of ILD2 and ILD4 is to study the behavior of the system when update-requests are inserted

into the TUB with a continuous rate. The TFlux code for ILD4 is depicted in Figure 89-(a)

whereas its Synchronization Graph by Figure 89-(b).

The Synchronization Graphs of the set of synthetic applications used to study the potential

of using multiple Updaters are summarized in Figure 90. As for Table 20, it summarizes the

characteristics of these applications. In particular, for each synthetic application this Table reports

the total number of update-requests and the number of bursts.

Regarding the number of update-requests notice that the term 2 × n is common for all appli-

cations with n being the number of TFlux Kernels. This term corresponds to the requests inserted
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#pragma ddm for thread 1 ilc[1 2 1 0 0 0]
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 2 ilc [1 3 1 0 0 0] readyCount 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 3 ilc [1 4 1 0 0 0] readyCount 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

#pragma ddm for thread 4 readyCount 1
for( i = 0 ; i < NUM_ITERATIONS; i++ )
{

for( j = 0 ; j < effort; j++ )
load();

}
#pragma ddm endfor

(a) (b)

Figure 89: (a) The Synchronization Graph of ILD4 (b) The TFlux code of ILD4.

L1 L2 L2-T1 L4 L4-T3 ILD 2 ILD 4

Figure 90: The synthetic applications used to study the potential of using multiple Updaters.
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into the TUB by the Inlet DThreads in order to “wake-up” the first TFlux Loop and those the last

TFlux Loop inserts in order to deem executable the Outlet DThreads. The term 32×32×n, which

is present in applications L2 and L4 corresponds to the update-requests necessary when two TFlux

Loops depend direcly on each other (Section 3.2.2-Figure 8). As for the term 32 × n, which is

present in applications L2-T1 and L4-T3, it describes the udpate-request regarding the dependency

between a DThread and a TFlux Loop (Section 3.2.2-Figure 7). Finally, the term NumIters is

for the update-requests related to iteration-level dependencies (Section 3.2.2-Figure 9) as each L-

DThread of the Producer TFlux Loop has as a consumer one L-DThread of the Consumer TFlux

Loop whereas both loops execute NumIters iterations.

As for the number of bursts, it is possible to observe that all applications have at least two,

one related to the Inlet DThread “waking-up” the first TFlux Loop and one related to the last

TFlux Loop waking up the Outlet DThread. The other situations that lead to a burst are the direct

dependencies between TFlux Loops and the dependence between a TFlux Loop and a DThread.

All these synthetic applications have been executed for 3 different sizes of the computational

load (S: small, M : Medium and L: large). For this experimental setup, for the Small compu-

tational load each loop iteration executes 925 simple assembly instructions, for the Medium size

1800 and for the Large size 3500 (8, 16 and 32 calls to the load() function respectively). As for

the number of iterations per TFlux Loop, for all benchmarks this is equal to 4096 as this number

has been found to be adequate for simulation purposes.
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Table 20: Number of update-requests and number of bursts for the synthetic applications used for studying
the potential of using multiple Updaters. n is the number of TFlux Kernels in the system and NumIters
the number of iterations executed by each TFlux Loop.

Benchmark Number of update-requests Number of bursts

L1 2 · 32 · n 2
L2 2 · 32 · n + 32 · 32 · n 3
L2-T1 2 · 32 · n + 2 · 32 · n 4
L4 2 · 32 · n + 3 · 32 · 32 · n 5
L4-T3 2 · 32 · n + 3 · 2 · 32 · n 8
ILD 2 2 · 32 · n + NumIters 2
ILD 4 2 · 32 · n + 3 · NumIters 2
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Chapter 8

Experimental Setup

This Chapter presents the details of the experimental methodology followed for the quantita-

tive evaluation of the TFlux platform. More specifically, it presents the infrastructure used for the

evaluation of TFlux and discusses several practical issues regarding the experimentation process.

8.1 Experimentation Infrastructure

This Section presents details of the machines used to evaluate TFluxHard and TFluxSoft. Two

of the systems presented in this Section where used to collect performance statistics while the

other systems were used to study the virtualization of TFlux.

As all the simulated systems were based on the Virtutech Simics[72] full-system simulator, this

Section will first introduce this tool and explain the way it has been used for the experimentation.

Moreover, this Section also explains how Simics was used to model the Scheduler as a hardware

unit in order to simulate the TFluxHard system.

179

Kyri
ak

os
 Stav

rou



180

8.1.1 Virtutech Simics Full System Simulator

Simics is a full-system simulator that models the major components of the system in such a

level of detail that allow it to boot an unmodified Operating System. Simics is able to simulate a

large number of different systems. The main parameters that can be configured for these systems

are the number of processors and the cache hierarchy. However, the number of processors can not

be larger than 28 for the currently publicly available version of Simics [102].

8.1.1.1 Generic simulated machine

All simulated systems used in this work follow the scheme depicted in Figure 91 which is

similar to that of recent, commercial multicore chips. This configuration consists of a number

of interconnected CPUs operating under a shared memory environment. Each CPU has its own,

private L1 data and instruction cache, as well as a private unified L2 cache. All L2 caches are

connected to the system’s network which in turn, communicates with the main memory. Notice

that the cache coherency is enforced at the level of the L2 caches.

Shared
Main 

Memory

System Network

CPU 0

L1 I L1 D

L2

CPU 1

L1 I L1 D

L2

CPU n

L1 I L1 D

L2

. . .

Figure 91: Conceptual view of the generic simulated machine.

8.1.1.2 Simics Timing

Regarding timing, Simics provides three operation modes. The first, “Normal” provides only

functional simulation, i.e. Simics just executes the instructions of the application without taking
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into consideration the time each instruction or memory operation takes. The second operation

mode is named “Stall” and provides accurate timing for the memory hierarchy. As for the instruc-

tions execution, different type of assembly instructions do take different number of cycles, but the

microarchitectural model is that of a in-order processor. The third mode, “Micro-architecture”

simulates an out-of-order pipelined CPUs but is not as accurate in terms of the simulation of the

cache hierarchy [100, 102].

In this work all experiments have been executed using the “Stall” mode, i.e. the mode that

provides accurate memory hierarchy simulation combined with a simple in-order processor model.

This choice is justified by the fact that the experimental evaluation is based on the “speedup”

metric, i.e. how many times execution under TFlux is faster compared to sequential execution with

both the sequential and the TFlux binaries executing on identical processor cores. As speedup is

calculated as the ratio of these execution times, the details of the CPU on this metric are not likely

to have a significant effect on the results.

8.1.2 TFluxHard Simulation: Modeling the Scheduler

In order to simulate TFluxHard we needed to model the Scheduler as a hardware module and

attach it to the system network of the simulated machine as a memory mapped device. Figure 92

presents the scheme of the simulated machine with the addition of the Scheduler. Notice that the

addition of the Scheduler is the only difference between this configuration and that of the generic

simulated machine (Figure 91).Kyri
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Figure 92: The conceptual view of the TFluxHard simulator.

8.1.2.1 Scheduler Model

The Scheduler was modeled using the Device Modeling Language (DML) [98] provided by

Virtutech, for describing hardware components. DML, in addition to providing the means for de-

scribing the operation of the module at the functional level, it also provides the necessary interfaces

and API that allow this module to interact with the rest of the system components.

To model the Scheduler we followed a bottom-up approach; each major component was mod-

eled individually and then these components were combined to form the final design. In particular,

this model comprises of several TSUs connected through the shared units.

8.1.2.2 Scheduler Timing

As explained in Section 5.3, in TFluxHard the several Scheduler operations are invoked by

the CPU through the Scheduler Instructions. Figure 93 depicts the timing of these operation as

these are handled by the simulated system. In particular, at time instance ts the CPU sends an

Instruction which is received by the Scheduler at time instance tr. Then at time instance tos the

operation starts and completes at time instance toc. As such, the time required for the command to

be sent from the CPU to the Scheduler is ds = tr − ts. The time for the Scheduler to initiate the

operation is da = tr − tos whereas the time needed for the operation to complete is do = toc − tos.
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CPU:
- Send Command

Scheduler:
- Receive Command

Scheduler:
- Take Action

Scheduler:
- Operation Completes

dodads

timets tr tos toc

Figure 93: Timing of executing Scheduler operation for TFluxHard.

Similar to what would be the case in a real system, in the simulated system the time needed

for the command sent by the CPU to reach the TSU (ds) is defined implicitly by the memory

hierarchy. As for the time elapsed between the time instances that the TSU receives a command

until it invokes the appropriate operation (da), this depends on the particular implementation of the

Scheduler. In the simulated system, this delay (da) can be defined by the user through the delay

parameter. Finally, whereas the time needed to perform an operation (do) could take multiple

cycles in a real implementation, in the simulated system it always takes only one cycle. However,

using the delay parameter it is possible to simulate the impact of the Scheduler’s timing on the

performance of TFluxHard.

8.1.3 Systems used for Performance Evaluation

To evaluate the performance of TFluxHard and TFluxSoft we used 2 systems. The first is

a simulated machine with 28 CPUs and the second an off-the-shelf IBM x3650 server with 2

Intel Xeon E5320 Quad Core processors. TFluxSoft was evaluated on both systems whereas

TFluxHard, due its requirement for hardware extensions, was evaluated only on the simulated

machine.
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8.1.3.1 Simulated System: TFluxSim

The main system used for the evaluation of the TFlux platform is based on a Simics configu-

ration with the code name “Cashew”. Cashew is a Sun Enterprise 6500 server with UltraSPARC

II processors [99]. It has one Ethernet adapter, one SCSI disk and one SCSI CD-ROM. Cashew

is configured to run an unmodified Aurora 2.0 Linux (Fedora Cora 3) disk. The Linux’ kernel

version is 2.6.13.

The simulated machine, which we named “TFluxSim”, follows the design of the generic ma-

chine depicted in Figures 91 and 92 and was configured with 28 CPUs. TFluxSim operates as a

shared memory system. Each CPU has its own, private L1 Data and Instruction Cache, as well as

private Unified L2 Cache. Notice that the MESI cache-coherency protocol is supported at the L2

cache level and the corresponding coherency overheads are correctly simulated. The details of the

memory hierarchy of TFluxSim are summarized in Table 21. Notice however, no detailed model

exists for the delay of the communication infrastructure.

The compiler of this system is gcc version 3.4.5 with glibc version 2.3-5.

Table 21: Memory hierarchy configuration for TFluxSim

L1 I L1 D L2 Main Memory

Private/Shared Private Private Private Shared
Size 32KB 32KB 2MB 256MB

# lines 512 512 8192 N/A
Line Size 64 64 256B N/A

Associativity 4 4 8 N/A
Write Back No No Yes N/A

Write Allocate No No Yes N/A
Replacement Policy LRU LRU LRU N/A

Read Delay 2 2 20 200
Write Delay 0 0 20 200Kyri
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8.1.3.2 Off-the-shelf system: IBM3650

IBM3650, which configuration is depicted in Figure 94, is an IBM x3650 server equipped with

2 Intel Xeon E5320 Core2 QuadCore processors clocked at 1.86GHz. As such, IBM3650 provides

to its user an 8-core shared-memory system. IBM3650 runs Fedora Core 6 with Linux Kernel

2.6.22.

Intel Xeon 
E5320

On Chip Interconnect

CPU 3

L1 I L1 D

CPU 4

L1 I L1 D

L2

CPU 0

L1 I L1 D

CPU 1
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L2

On Chip Interconnect

CPU 3

L1 I L1 D

CPU 4

L1 I L1 D

L2

CPU 0

L1 I L1 D

CPU 1

L1 I L1 D

L2

System Network

Figure 94: The conceptual view of the IBM3650 system.

Each core has access to a private 64KB L1 Instruction Cache, a 64KB L1 Data Cache. As for

the L2 cache its size is 4MB and is shared between 2 cores. The system is equipped with 18GB

of DDR2 main memory and the FSB is clocked at 1066MHz. More details about the memory

hierarchy of the Intel Xeon E5320 processor are presented in Table 22.

The compiler of this system is gcc version 4.1.2 with glibc 2.5-3.

Table 22: Memory hierarchy of Intel Xeon E5320

L1 I L1 D L2 Main Memory

Private/Shared Private Private Private Shared
Size 64KB 64KB 4MB 18GB

Line Size 64 64 64 -
Associativity 8 8 16 -Kyri
ak
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8.1.4 Systems used for Studying Virtualization

In order to study the virtualization capabilities of TFlux we used three more systems in addi-

tion to TFluxSim and IBM3650 which are presented in the sections that follow.

8.1.4.1 Bagle

This system is based on the Simics machine code named “Bagle”. Bagle [99] shares the same

hardware components as the Cashew machine but has a different Operating System. In particular,

Bagle runs SuSE 7.3 Linux with Kernel version 2.4.14. Similar to the Cashew machine, Bagle can

also be configured with up to 28 CPUs.

8.1.4.2 Tango

The Tango machine is an x86-based system equipped with Pentium 4 processors. Tango [101]

runs Fedora Core 5 with Kernel version 2.6.15 and can be configured with up to 15 CPUs.

8.1.4.3 Enterprise

Lastly, the Enterprise system [101] shares the same hardware configuration as Tango but runs

a different Operating System, namely Red Hat Linux 7.3 with Linux Kernel 2.4.18. In contrast to

Tango, Enterprise may be configured with up to 8 CPUs.

8.1.5 Summary

As presented in this Section, the systems used for the evaluation of TFlux consist of both

real, off-the-shelf multiprocessors and simulated machines. These systems differ in the number

and type of CPUs, the ISA of these CPUs, the Operating System and the Linux Kernel. The

characteristics are summarized in Table 23. This set of machines includes systems with significant

differences which allows us to perform a qualitative study of the virtualization capabilities of

TFlux.
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Table 23: Summary of the machines of the experimentation infrastructure

TFluxSim Bagle Tango Enterprise IBM3650

Nature: Simulated Simulated Simulated Simulated Off-the-shelf
Used to study: Performance Virtualization Virtualization Virtualization Performance

ISA SPARC SPARC x86 x86 x86
Endian Big Big Little Little Little
#Cores 28 28 15 8 8

CPU Type UltraSPARC II UltraSPARC II Pentium 4 Pentium 4 Xeon E5320
OS Fedora Core 3 SuSe 7.3 Fedora Core 5 Red Hat .3 Fedora Core 6

Linux Kernel 2.6.13 2.4.14 2.6.15 2.4.18 2.6.22
Compiler gcc V 3.4.5 gcc V 3.2.8 gcc V 3.4.5 gcc V 3.2.9 gcc V 4.1.2

glibc 2.3.5 2.2.3 2.3.5 2.2.3 2.5.3

8.2 Compilation

All benchmarks used for the evaluation of TFlux have been compiled using the -O3 com-

pilation flag in order to exploit all available compiler optimizations. Notice that this applies to

both the sequential and the TFlux versions. For the off-the-shelf system, IBM3650, we compiled

the applications natively on the machine whereas for the simulated system, TFluxSim, we used a

cross-compiler identical to the one installed on that system.

8.3 Scheduling Policy

In Linux-based multiprocessor systems the scheduler tries to keep all CPUs equally utilized.

To achieve this, the Linux scheduler usually does not leave a process to the same CPU for all

its lifetime, even if the number of compute-intensive processes in the system is smaller than the

number of CPUs. This scheduling policy causes multiple process migrations with a negative effect

on the data locality and consequently may result in performance degradation.

To avoid this situation and have more fair comparisons we used the affinity scheduling func-

tionality provided by recent Linux Kernels (2.6.x). In particular, for both the sequential and TFlux
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versions of the benchmarks all execution entities were pinned to a different CPU. In the case of

the TFluxSoft experiments, the pinning also applies to the Updater.

8.4 Unrolling

For some of the benchmarks of the TFlux evaluation suite the DThread size, in terms of num-

ber of dynamic instructions, was very small leading to a situation where the parallelization over-

heads were not amortized. A commonly used technique to avoid having too fine-grained tasks is to

unroll the body of loops. Although this leads to fewer parallel tasks each such task becomes larger

and therefore it amortizes better the overheads. Notice that unrolling often benefits the sequential

version of applications as it leads to fewer dynamic instructions through decreasing the number of

conditional branches executed by the loops.

To have fair comparisons, unrolling was applied both to the sequential and the TFlux versions

of the benchmarks. Nevertheless, as the unroll factor that gave the minimum execution time for

the sequential and the TFlux versions of the benchmarks was different, for each situation we

used the unroll factor that lead to minimum execution time. More specifically, let the execution

time of a benchmark with unroll factor x be tx. If for a certain benchmark, experiments were

performed using unroll factors of 1, 2, 4, ..., 64, we consider as the benchmark’s execution time (t)

the minimum execution time among all these experiments, i.e. t = min {t1, t2, t4, ..., t64}. This

applies for both the sequential and the TFlux versions of the benchmark.

8.5 Metrics

The metric used to evaluate the TFlux platform is “speedup”, i.e. how many times TFlux

execution is faster compared to sequential execution. Formally, if tSeq is the time required to

sequentially execute a benchmark and tTF lux is the time required to execute this benchmark on
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a TFlux system, the speedup of TFlux versus sequential execution is defined as shown by Equa-

tion 1.

Speedup =
tSeq

tTF lux
(1)

Notice that the processors used for TFlux and sequential execution are the same; one core is

used for sequential execution and multiple such cores for TFlux execution.

For benchmarks where unrolling was applied, speedup is calculated as the best sequential time

over the best TFlux execution time as shown by Equation 2.

Speedup =
tSeq

tTF lux
=

min
{
tSeq
1 , tSeq

2 , tSeq
4 , ..., tSeq

64 ,
}

min
{
tTF lux
1 , tTF lux

2 , tTF lux
4 , ..., tTF lux

64

} (2)

In some situations we also report the usage of a TFlux Kernel. With this term we refer to

the percentage of time a TFlux Kernel was executing DThreads. Formally, if tKernel is the time

period a TFlux Kernel is alive and tExec is the sum of the time periods during which this TFlux

Kernel has been executing DThreads, usage is defined as shown by Equation 3.

Usage =
tExec

tKernel
(3)

As such, Usage is a metric that measures the percentage of time a Kernel was doing “useful”

work. Similarly, 1 − usage is the percentage of time a Kernel was waiting for the Scheduler to

assign to it a ready DThread.

8.6 Collecting Statistics

For both metrics, Speedup and Usage, it was necessary to measure the time that elapsed be-

tween certain points in time, such as the time point regarding the start and completion of a TFlux
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Kernel. For the simulated system, these time intervals were measured using the internal Simics

timers through an interface we developed. As for the execution on the real system, IBM3650, we

used the gettimeofday() system call.

8.7 Statistical Significance

For the native execution experiments to have statistical significance we executed all experi-

ments multiple times. In particular, we took the average of 60 executions after removing the 5

smaller and 5 larger values. For all cases this resulted in a variance of less than 2%. Moreover,

to isolate any interference from the Operating System, for native execution experiments, one CPU

was left for the execution of OS’s processes.

As for the simulated environment executing the same experiment multiple times lead to vari-

ance less than 0.5% for the benchmarks of the TFlux Evaluation Suite. Given this small variance,

for the simulated system each experiment was executed only once.
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Chapter 9

Performance Evaluation

In this Chapter we evaluate the performance of TFlux. The performance evaluation study starts

with Section 9.1 that quantifies the minimum size a DThread needs to have in order to amortize the

parallelization overheads for both TFluxHard and TFluxSoft. Section 9.2 presents the performance

of TFlux for the real-life applications whereas Section 9.3 focuses on the performance for the

synthetic workload. Finally, in the last two Sections we study implementation-specific parameters.

In particular, in Section 9.4 we study the potential of using TFluxSoft configurations with multiple

Updaters whereas in Section 9.5 the effect of the Scheduler’s delay for TFluxHard.

9.1 Minimum DThread Size

The term “Minimum DThread Size” refers to the minimum number of dynamic instructions

a DThread needs to execute in order for it to amortize the related parallelization overhead, i.e.

the cost for its management and handling. This overhead includes the associated DThread Load,

DThread Completion and Find Ready DThread operations.

191
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The Minimum DThread Size is found using the “Parallel Threads” application which was

presented in Section 7.3.1. Recall that for this application each TFlux Kernel executes only one

DThread and that these DThreads do not have dependencies between themselves. For this exper-

iment we test Parallel Threads of different size, and the case where the TFlux execution is faster

than the execution of the same computational load determines the minimum DThread size. For

example, for a configuration with N Kernels each of which executing a computational load of x

instructions, the computational load that is to be executed by the sequential application is N × x

instructions.

While for the sequential application, the execution time includes only the time required to ex-

ecute the computational load, for the TFlux execution it also includes the time required for man-

aging the DThreads that execute this load. In particular, this time includes all related Scheduler

operations, i.e. the Thread Load, the Find Ready Thread and the Thread Completed operations.

The experimental results are presented in Figures 95 and 96 for TFluxHard and TFluxSoft

respectively. The reason for which the results do not cover the 27 TFlux Kernels configuration is

related to the increase of the computational load executed by the DThreads, which at each step, is

doubled (this would therefore require a 32 node system which we are not able to simulate).

The experimental results present a clear trend which is the increase of the speedup with the

computational load. However, it is possible to observe that TFluxHard is able to deliver the same

speedup as TFluxSoft for smaller computational load, i.e. it is able to deliver its benefits for

finer-grained DThreads.

With a closer look at the results it is possible to observe that TFluxHard outperforms the

corresponding sequential execution when the computational load executed per DThread is at least

equal to 2 calls to the load() function, i.e. 271 assembly instructions (Table 19 - Section 7.3).

As for TFluxSoft, this minimum thread size is 8 calls to the load() function and correspond to
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Figure 95: Quantification of the minimum DThread size for TFluxHard.
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Figure 96: Quantification of the minimum DThread size for TFluxSoft.

925 instructions. This performance advantage of TFluxHard over TFluxSoft is justified by the

overhead that results from implementing the Scheduler’s functionality at the software level for

TFluxSoft.
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9.2 Real Life Applications

This Section analyzes the performance of the TFlux platform for the real-life applications

presented Section 7.2. All results are in the form of Speedup, i.e. how many times execution

under TFlux is faster compared to the sequential execution (for more details on the definition of

Speedup refer to Section 8.5).

In order to provide further depth to the experimental results presented later, in Figures 97, 98

and 99 we summarize the most important characteristics of the real-life applications.

Figure 97 depicts the number of DThreads executed by each application for the three input

sizes. Notice that the Y-axis of this chart is in logarithmic scale.
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Figure 97: Number of dynamically executed DThread for the real-life applications. Notice that Y axis is
in logarithmic scale.

As for Figure 98 it depicts the size of the critical DThreads for the different applications in

terms of dynamic instructions. The term “critical DThread” refers to the DThread that consumes
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the largest portion of the execution time. Notice that for this chart, the Y axis is also in logarithmic

scale.
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Figure 98: DThread sizes for the real-life applications. Notice that Y axis is in logarithmic scale.

Finally, Figure 99 depicts the L1-Data Cache miss rate of the “critical DThread” of each

real-life application. The configuration of this cache is summarized in Table 9 (Section 7.2).

9.2.1 TFluxHard

The performance results for TFluxHard are presented in Figure 100. These experimental re-

sults have been collected through execution of the real-life applications on the TFluxSim system

which, as was described in Section 8.1.3.1, corresponds to a simulated multicore machine with

28 UltraSPARC II processors. However, experiments have been conducted with only up to 27

CPUs to allow comparison with the TFluxSoft system. Recall that for performance reasons, for

TFluxSoft it is necessary to dedicate one CPU for the Updater.
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Figure 100: The performance of TFluxHard for the real-life applications.

From the experimental results it is possible to draw two conclusions which are common for all

applications. First, as the input size increases, TFluxHard achieves better performance as it better

amortizes the parallelization overheads. The second common observation is related to the increase
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of the speedup with the number of processors which is justified by the ability of TFluxHard to

achieve good scalability.

As for the per-application performance results these are as follows.

MMULT

As explained in Section 7.2.1 MMULT is an embarrassingly parallel application. As can be

seen from Figure 100, TFluxHard achieves almost linear speedup for this application which also

scales well as the number of TFlux Kernels increases.

Referring to Figure 101 that depicts the average usage of the TFlux Kernels for this application,

it is possible to see that the Kernels spend more than 95% of their time executing “useful” work.

Also notice that the average usage improves with the input size, which is due to the decrease of

the relative time spent for DThread handling as the input size increases. Moreover, it is possible to

observe a small decrease of the usage, especially for the small input sizes, as the number of TFlux

Kernels increases. This is justified by the fact that for configurations with more Kernels it is more

likely that their completion time will be different leading to load imbalance among the different

Kernels.

TRAPEZ

TRAPEZ has a similar behavior to MMULT as they have a similar Synchronization Graph.

The main difference between the two applications is that MMULT causes much higher stress to

the memory hierarchy (the large input size leads to an L1 Data Cache miss rate in the order of

50%). As can be seen by the experimental data, this does not affect the performance MMULT is

able to achieve with TFluxHard. Consequently we may conclude that the performance delivered

by TFluxHard scales even in the presence of high memory pressure.

Comparing the usage of these two applications (TRAPEZ and MMULT) it is possible to ob-

serve that the usage of TRAPEZ is more sensitive to the input size (Figure 102). This is related to
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Figure 101: TFlux Kernels usage for MMULT. Solid-bars depict the average usage among all Kernels
whereas the error-bars the minimum and maximum value.

the fact that the DThreads of MMULT are significantly more coarse grained compared to TRAPEZ

(Figure 98).
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Figure 102: TFlux Kernels usage for TRAPEZ. Solid-bars depict the average usage among all Kernels
whereas the error-bars the minimum and maximum value.
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SORT

The third application is SORT. Its performance differs significantly compared to the other

benchmarks. This behavior is justified by the particular characteristics of this application. As

explained in Section 7.2.4 SORT consists of two phases; a first phase that sorts the partial arrays

and a second phase which merges these sorted partial arrays. Although the first step scales very

well, the second step does not.

The usage of Kernels for SORT is depicted in Figure 103. From the experimental data it is

possible to observe that the average usage for SORT is significantly smaller compared to MMULT

and TRAPEZ. This is due to the fact that during the second phase only a subset of the Kernels are

executing DThreads. This can be seen from the minimum and maximum values of the usage. In

particular, whereas the maximum value is never less than 97%, the minimum and average values

decrease with the number of Kernels.
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Figure 103: TFlux Kernels usage for QSORT. Solid-bars depict the average usage among all Kernels
whereas the error-bars the minimum and maximum value.

Kyri
ak

os
 Stav

rou



200

SUSAN

The performance of SUSAN is similar to that of MMULT and TRAPEZ despite the barrier that

exists between the two parallel loops of this application (Section 7.2.3). This is justified by two

facts. The first is that TFluxHard is able to efficiently enforce such barriers without significant

performance loss whereas the second is that the DThreads for SUSAN are coarser leading to a

smaller relative effect for that barrier.

The barrier that exists between the two loops of SUSAN is expected to create some imbalance

to the Kernels as it is unlikely that all will reach this synchronization point at the same time.

As such, the Kernel usage for this application is expected to decrease. However, as can be seen

by Figure 104 that depicts the usage of SUSAN, this application has higher usage compared to

TRAPEZ and MMULT. According to the experimental results, the usage for SUSAN is never lower

than 99% which is justified by the large granularity of its DThreads. In particular, they are larger

than MMULT DThread’s by a factor of 2 and TRAPEZ DThread’s by a factor of 35 (Figure 98).
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Figure 104: TFlux Kernels usage for SUSAN. Solid-bars depict the average usage among all Kernels
whereas the error-bars the minimum and maximum value.
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RK

Regarding RK, its performance is similar to MMULT, TRAPEZ and SUSAN. For RK TFlux-

Hard also achieves almost linear speedup despite the fact that it has barriers between all its parallel

loops (Section 7.2.5). This is justified by the same reasons as the ones mentioned for SUSAN, i.e.

that TFluxHard is able to efficiently enforce the barrier synchronizations and the fact that the

application’s DThreads are coarse-grained.

The usage of the TFlux Kernels for RK, which is depicted in Figure 105, is slightly lower than

the usage of SUSAN despite the fact that the DThreads of RK are larger, by a factor of 7, than

those of SUSAN (Figure 98). However, as can be seen from Figure 99 that depicts the L1 data

cache miss rate for these applciations, RK has a miss rate of approximately 3.6% for the small

input size, 8.6% for the medium and 9.3% for the large input size. For SUSAN however, the miss

rate is in the order of 0.3% regardless the input size. The larger number of data cache misses for

RK create an imbalance on the execution time of the DThreads. Consequently, this results in a

negative effect on the usage. The Kernels with DThreads that complete faster their execution have

to wait at the synchronization barrier until the DThreads of the other Kernels also complete.

FFT

FFT also achieves very good performance with a speedup of 24× for 27 TFlux Kernels. This

speedup however, is slightly lower compared to the previously analyzed benchmarks (with the ex-

ception of SORT). The reasons for this behavior are twofold. The first is that the Synchronization

Graph for this application is significantly more complex while the second is the smaller number of

DThreads which limits the exploitable parallelism. Another observation that can be made for FFT

is related to the effect of the input size on the achievable performance which is larger compared to

the other applications. This behavior is justified by the fact that for FFT it is not only the number

of DThreads that increases but also their dynamic instructions.
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Figure 105: TFlux Kernels usage for RK. Solid-bars depict the average usage among all Kernels whereas
the error-bars the minimum and maximum value.

Figure 106 depicts the usage of the TFlux Kernels for FFT. From the experimental results it

is possible to observe that the usage is always larger than 94% for the configurations with 2, 4, 8

and 16 Kernels. As for the configuration with 27 Kernels the average usage decreases significantly

especially for the small input size (68% for the small, 78% for the medium and 92% for the large

input sizes respectively). This behavior is justified by the small number of DThreads of FFT

which has 128 DThreads for the small input size, 256 for the medium and 512 for the large size.

Whereas for the configuration for which the number of Kernels is a power of 2 the distribution of

DThreads to the Kernels can be even, this is not the case for the 27-Kernels configuration. The fact

that the DThreads of FFT are coarse grained (in the order of 230K, 549K and 2.6M instructions

for the small, medium and large input sizes) increases the effect of this imbalance on usage.

CG

The next application we analyze is CG. Although CG has a highly complex Synchronization

Graph with fine grained DThreads, it is possible to observe that TFluxHard is able to achieve a
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Figure 106: TFlux Kernels usage for FFT. Solid-bars depict the average usage among all Kernels whereas
the error-bars the minimum and maximum value.

speedup that exceeds 24× for 27 Kernels. An important factor towards this good performance is

the exploitation of the Iteration Level Dependencies which leads to a performance benefit ranging

from 10% to 15%.

As can be seen from Figure 107 that depicts the usage of the TFlux Kernels for CG, usage

is sensitive to both the number of TFlux Kernels and the input size. This is justified by the fine-

grained DThreads of CG and the complexity of its Synchronization Graph. Another factor that

significantly affects the usage is the large number of cache misses (Figure 99) that increases the

imbalance between the execution time of the DThreads.

LU

Finally, the LU benchmark also shows good performance, although the speedup achieved is

the lowest compared to the other applications with the exception of SORT. The main reason that

affects the performance of LU is the complexity of its Synchronization Graph which leads to

decreased parallelism. As such, for a non negligible fraction of the execution time a number of
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Figure 107: TFlux Kernels usage for CG. Solid-bars depict the average usage among all Kernels whereas
the error-bars the minimum and maximum value.

Kernels remain underutilized. This benchmark, however, is the one that benefits the most from the

exploitation of dataflow scheduling. In particular, scheduling with Iteration Level Dependencies

give to this application a performance benefit in the order of 20%.

As for the usage of LU (Figure 108) it is possible to observe that it does not show a clear

trend. On one hand, as the number of DThreads and their size increases with the input size,

usage improves due to better amortization of the parallelization overheads. On the other hand, as

the number of DThreads increases, the number of dependencies and synchronization points also

increase.

9.2.2 TFluxSoft

The performance results for TFluxSoft for the real-life applications, when executed on the

simulated system (TFluxSim - see Section 8.1.3.1), are depicted in Figure 109. Notice that for

TFluxSoft, collecting usage statistics was found to have a non-negligeble impact on the execution
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Figure 108: TFlux Kernels usage for LU. Solid-bars depict the average usage among all Kernels whereas
the error-bars the minimum and maximum value.

of the application. As such, usage is not reported here. The reason for this is related to the need

to add to the code multiple extra functions that are invoked very often thus affecting the dynamic

execution. This effect was not observed for TFluxHard as all the management of the statistics was

done by the hardware module without interfering with the execution of the application.

According to the analysis presented in Section 9.1, that quantified the minimum DThread size

for TFluxHard and TFluxSoft, the former does not require as coarse grained DThreads as the latter.

In particular, TFluxHard is able to achieve speedup with DThreads larger than 271 instructions

whereas TFluxSoft with DThreads larger than 925. This fact indicates that the parallelization

overheads of TFluxSoft are larger than those for TFluxHard. The granularity of the DThread is

the main factor that defines this performance difference.

The performance results for TFluxSoft, which are presented in Figure 109, verify this. In

particular, comparing the performance of TFluxHard and TFluxSoft it is possible to observe that

the former always outperforms latter.
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The two benchmarks for which the performance of TFluxHard and TFluxSoft differs signifi-

cantly are the CG and LU applications. CG contains 5 TFlux loops which are executed multiple

times and consequently consume the largest portion of the execution time. As can be seen from

Table 16 that reports the size of all the DThreads of CG, only one of the loops has DThreads

that are large enough to amortize the parallelization overhead of TFluxSoft. Nevertheless, given

that the overheads are smaller for TFluxHard and can therefore be amortized with smaller sized

DThreads, all five loops have DThreads that are large enough for efficient TFluxHard execution.

These facts justify the good speedup achieved by CG for TFluxHard and the smaller speedup

values observed for TFluxSoft.

This same reason is what justifies the smaller speedup values observed for LU for TFluxSoft.

Comparing the performance of CG and LU it is possible to observe that TFluxSoft delivers higher

speedup for the former than for the latter even though the DThreads of LU are slightly larger

compared to the DThreads of CG. What justifies this behavior is that one of the mostly executed

TFlux Loops of CG (TFlux Loop 4) has a very large number of instructions (in the order of 42K)

whereas this does not apply for LU.

Finally, Figure 110 depicts the performance results for TFluxSoft which were collected through

native execution on the IBM3650 machine (Section 8.1.3.2). As can be seen from these results,

native execution validates the simulation data.

9.3 Synthetic Applications

In this Section we present the performance of TFluxHard and TFluxSoft for the synthetic

applications presented in Section 7.3. The main target of this analysis is to quantify the perfor-

mance of TFlux for a number of basic execution constructs. Section 9.3.1 focuses on TFlux Loops

whereas Section 9.3.2 on applications with more complex dependencies.
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Figure 109: TFluxSoft performance for the real-life applications (simulation results).
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Figure 110: TFluxSoft performance for the real-life applications (native execution results).

9.3.1 TFlux Loops Dependencies

The applications analyzed in this Section have dependencies at the level of TFlux Loops.

This set consists of the synthetic applications L1, L2, L2R and L4 that have been presented in
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Section 7.3.2. For the performance analysis we first present the experimental data for TFluxHard

and then for TFluxSoft.

9.3.1.1 TFluxHard

Figure 111 depicts the performance of TFluxHard for the aforementioned synthetic applica-

tions. For each application, experiments have been conducted for different number of TFlux Ker-

nels as well as for different computational load executed by each DThread of the TFlux Loops.

The chart presents the computational load in terms of calls to the load function (Section 7.3). The

number of instructions that correspond to each such computational load has been presented in

Table 19.

From the experimental results it is possible to draw two conclusions that are common for all

applications. The conclusions are that the performance increases with the computational load and

the number of TFlux Kernels. These trends are the same as those that have been observed for

the real-life application results analyzed in Section 9.2. What justifies these trends is the better

amortization of the parallelization overheads as the computational load increases and the ability of

TFlux to scale leading to a consequent performance increase with the number of TFlux Kernels.

Figures 112-(a) to 112-(d) depict the speedup achieved by TFluxHard for these synthetic ap-

plications as a percentage of the theoretical maximum, i.e. the “efficiency” of TFluxHard defined

as speedup/NumKernels. From these data it is possible to observe that for all cases TFlux-

Hard achieves a speedup of at least 0.9× of the theoretical maximum when the computational

load executed by each DThread includes 16 calls to the load function (1797 instructions - see

Table 19/page161). Most importantly, this number is constant among all applications leading to

the conclusion that TFluxHard is able to handle efficiently the dependencies between the parallel

loops. Another observation that can be made is that TFluxHard scales very well to configurations

Kyri
ak

os
 Stav

rou



209

TFluxHard (Simulation)

27

4

2

8

16

Sp
ee

du
p 

(T
Fl

ux
 v

s.
 S

eq
ue

nt
ia

l)

0 . 0

2 . 0

4 . 0

6 . 0

8 . 0

1 0 . 0

1 2 . 0

1 4 . 0

1 6 . 0

1 8 . 0

2 0 . 0

2 2 . 0

2 4 . 0

2 6 . 0

2 8 . 0

2 4 8 16 27 2 4 8 16 27 2 4 8 16 27 2 4 8 16 27

L1 L2 L2R L4

Synthetic Application / Number of TFlux Kernels1 2 4 8 16
32 64 128 256 512

Figure 111: TFluxHard performance for the synthetic applications with dependencies at the level of TFlux
Loops.

with larger number of TFlux Kernels. This is justified by the experimental results that show the

number of Kernels to have a very small impact on the speedup as a percentage of the theoretical

maximum.

9.3.1.2 TFluxSoft

The experimental results of TFluxSoft for these applications are depicted in Figure 113. Com-

paring the performance of TFluxSoft to the performance of TFluxHard it is possible to see that the

trends are the same. In particular, the speedup achieved increases with the number of TFlux Ker-

nels and the computational load executed by each DThread. However, for TFluxSoft to achieve a

specific speedup value it needs coarser grained DThreads compared to TFluxHard due to the fact

that it suffers from higher parallelization overheads.
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Figure 112: The efficiency of TFluxHard for the synthetic applications with dependencies at the level of
TFlux Loops.
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Figure 113: TFluxSoft performance for the synthetic applications with dependencies at the level of TFlux
Loops (simulation results).
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As can be seen from Figures 114-(a) to 114-(d) that depict the speedup as percentage of the

theoretical maximum (efficiency), TFluxSoft achieves a speedup of 90% of the theoretical max-

imum when DThreads execute a computational load consisting of 64 calls to the load function

(7029 instructions i.e. 64 calls to the load function). However, as has been shown in the previous

Section, TFluxHard achieves the same performance for finer grained DThreads (1797 instructions

i.e. 16 calls to the load function).
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Figure 114: The efficiency of TFluxSoft for the synthetic applications with dependencies at the level of
TFlux Loops.

These simulation results are in full agreement with the native execution results which are pre-

sented by Figure 115. Most importantly, they also prove TFluxSoft is able to achieve performance

of 90% of the theoretical maximum for DThread sizes of 7029 instructions (64 calls to the load

function).
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Figure 115: TFluxSoft performance for the synthetic applications with dependencies at the level of TFlux
Loops (native execution results).

9.3.2 Applications with Complex Dataflow Dependencies

This Section presents the performance of the TFluxHard and TFluxSoft for the synthetic ap-

plications with complex dataflow dependencies, i.e. applications ILD2x, BINARY TREE and DI-

AGONAL which have been presented in Section 7.3.3. Recall that for these applications the metric

we use is the benefit, i.e. how many times TFlux execution is faster compared to a “traditional”

parallel execution model as this has been defined in Section 7.3.3.

9.3.2.1 ILD2x

The TFlux benefit for the ILD2x application is depicted in Figures 116-(a), 116-(b) and 116-

(c) for the TFluxHard simulation, TFluxSoft simulation and TFluxSoft native execution results

respectively. The experiments have been performed for different number of TFlux Kernels and dif-

ferent imbalance factor (i.e. the value of parameter x as it has been explained in Section 7.3.3.1).
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Recall that the larger the value of x the larger the imbalance between the DThreads of the appli-

cation.
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(b): TFluxSoft Simulation
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(c): TFluxSoft Native Execution

Figure 116: TFlux performance for ILD2x
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As can be seen from the experimental data, the benefit of TFlux over the “traditional” parallel

execution model increases with the imbalance (i.e. with the value of x). This is due to the fact that

the increase of the imbalance leads to an increase of the time the CPUs need to wait to the barrier

which is the case for execution under the “traditional” model. However, TFlux is able to convert

this barrier to dependencies at the iteration-level of loops allowing the CPUs that have completed

the execution of the DThreads of the first loop to proceed to the execution of the DThreads of the

second loop. This leads to better usage of the CPUs and therefore to better performance.

According to the experimental results, the benefit of TFlux also increases with the number of

TFlux Kernels. This behavior is due to the fact that the workload executed by each CPU is not the

same and as such, the more the imbalance the longer the time spent at the barrier and therefore the

larger the potential benefit in overcoming this synchronization point.

Finally, as can be seen from Figure 116, the performance benefit of TFluxHard reaches 1.75×

for the execution of ILD28 on a configuration with 27 TFlux Kernels configuration. As for

TFluxSoft, the performance benefit reaches 1.65×. Finally, from the native execution results, it

is possible to observe that the benefit of TFluxSoft reaches 1.15× for ILD28 on a configuration

with 6 Kernels.

9.3.2.2 BINARY TREE

The TFlux benefit for the BINARY TREE application is depicted in Figures 117-(a) for TFlux-

Hard, 117-(b) for TFluxSoft simulation and finally by 117-(c) for TFluxSoft native execution

results. These experiments were conducted for different number of TFlux Kernels and different

computational load executed by the application’s DThreads. Notice however that, for each partic-

ular experiment, all DThreads execute the same computational load; i.e. the load varies between

different experiments.
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(b) TFluxSoft Simulation

0

1

2

3

4

1�8� 3�6� 7�2� 1�8� 3�6� 7�2� 1�8� 3�6� 7�2�

2 4 6
Number of TFlux Kerenels � �om�u�a��onal �oa�

�
en

ef
��

4�le�el� 5�le�el� 6�le�el�

(c) TFluxSoft Native Execution

Figure 117: TFlux performance for BINARY TREE

The first observation that can be made from the experimental results is that both TFluxHard

and TFluxSoft always outperform the “traditional” parallel execution. This is justified by the fact
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that the “traditional” execution introduces unnecessary synchronization points in order to guaran-

tee program correctness. TFlux, however, is able to enforce this consistency with the minimum

number of synchronization points. This same reason also explains the increase of TFlux perfor-

mance benefit with the number of the levels of the BINART TREE. In particular, as the number

levels of the tree increases the number of unnecessary synchronization points removed by TFlux

also increases. This leads to better resource utilization as the CPUs need to spend less time waiting

for synchronization and consequently achieve better performance.

The other trend that can be observed from the experimental results is that the performance

benefit of TFlux is larger for smaller computational loads. This is due to the decrease of the

relative time spent for synchronization and consequently of the potential for improvement, as the

computational load increases.

Overall, the experimental results show that both TFluxHard and TFluxSoft outperform the

“traditional” parallel processing model for all the experiments performed. More specifically, the

performance benefit of TFluxHard ranges from approximately 1.5× to 3.8× for the experiments

performed. As for TFluxSoft, this benefit ranges from 1.4× to 3.7×. The same applies to the

native TFluxSoft execution.

9.3.2.3 DIAGONAL

The performance of TFlux for the DIAGONAL synthetic application, in terms of additional

benefit, is presented in Figure 118-(a) for the TFluxHard system and in Figure 118-(b) and Fig-

ure 118-(c) for the TFluxSoft system, simulation and native execution, respectively. The experi-

ments cover configurations with different number of TFlux Kernels as well as different computa-

tional load executed by each of the application’s DThreads. Similar to the experiments performed
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for BINARY TREE, for each of the experiments presented in this Section the size of the DThreads

varies among the experiments whereas it is constant for the same experiment.
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(b): TFluxSoft Simulation
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(c): TFluxSoft Native Execution

Figure 118: TFlux performance for DIAGONAL
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From the experimental data it is possible to conclude that the additional benefit of TFlux

depends on both the computational load executed by the DThreads and the number of TFlux

Kernels. The performance advantage increases with the computational load and after a certain

point (∼ 115K instructions) it starts to decrease. This effect is due to two competing factors. The

first, which leads to a decrease of the TFlux advantage, is due to the fact that as the computational

load increases, the relative effect of the time needed for synchronization decreases. The other

factor, which leads to the increase of the advantage with the computational load, is related to the

fact that the larger this load is, the more possible it is for two different CPUs not to complete

at the same time with a consequent imbalance which, in order, delays the dependent nodes from

initiating their execution. The key characteristic of TFlux that allows it to significantly outperform

the baseline is the way scheduling of nodes is done. In particular, whereas for the baseline each

CPU takes a node and waits until its consumers complete (see Figure 85), in TFlux, a CPU is

always assigned a node ready to execute. This allows TFlux to achieve better resource utilization

by avoiding idle cycles while waiting for the producer nodes to complete.

According to the experimental results, for TFluxHard this performance benefit reaches a value

of 6× for TFluxHard and 5× for TFluxSoft. Moreover, it is possible to observe that TFluxHard

achieves higher speedup values for smaller computational loads compared to TFluxSoft due to the

fact that it introduces smaller overheads.

9.4 TFluxSoft Scalability - Operation with Multiple Updaters

As explained in Section 6.3, TFluxSoft is able to operate with more than one Updater. This

however leads to a tradeoff as on the one hand, more Updaters give better performance through

more efficient execution of the Thread Update operation whereas on the other hand they consume

valuable resources. This Section first analyzes the potential of using multiple Updaters and then

Kyri
ak

os
 Stav

rou



219

studies the aforementioned tradeoff. For this study we use the synthetic applications presented in

Section 7.3.4 (L1, L2, L2-T1, L4, L4-T3, ILD2 and ILD4).

9.4.1 Potential of using Multiple Updaters

The first set of experimental results compares the execution time of the synthetic applications

using 1 and 2 Updaters for TFluxSoft systems with different number of TFlux Kernels. These

results, which are depicted in Figure 119, show the speedup, i.e. how many times execution with

the 2 Updaters is faster compared to execution using 1 Updater.

The first observation that can be made from the experimental data is that the potential of

using multiple Updaters increases with the number of TFlux Kernels. This is due to the fact that

the number of update-requests that must be served for an application to complete increases with

the number of TFlux Kernels. Moreover, the more the TFlux Kernels, the larger the number of

requests to be served during a burst (see Section 7.3.4 and Table 20).

The second conclusion is related to the effect of the computational load executed by each

DThread on the potential of using multiple Updaters. As can be seen from the experimental

results, the general trend is that the larger the computational load the smaller this benefit is. This

behavior is justified by the fact that as the load of each iteration increases the relative time spent

to serve the dependencies decreases.

The third observation is that the complexity of the program is the dominant factor on the

benefit of using multiple Updaters. In particular, the longer the time during which the program

poses update-requests the larger the benefit of using multiple Updaters. This is justified by the

more efficient execution of the Thread Update operation when multiple Updaters exist.

Comparing the experimental results for programs L1 and L2, it is clear that the potential of

multiple Updaters increases for L2 regardless the number of TFlux Kernels. This is due to the
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demanding step, in terms of update-requests, included in L2 for the synchronization between the

two TFlux Loops which is not required for L1. The smaller the delay for serving this burst the

higher the performance. L4 has similar behavior to L2 as the relative time for synchronization is

the same for these two applications. With the same rationale it is possible to explain the reason

from which multiple Updaters deliver less benefit for applications L2-T1 and L4-T3 as opposed to

L2 and L4 respectively. This is justified by the smaller potential that exists, because of the smaller

number of Updater requests (2 · 32 · n vs. 32 · 32 · n).
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Figure 119: Speedup of executing the synthetic applications using 2 Updaters vs. using 1 Updater.

To better understand the effect of using multiple Updaters, Figure 120 presents the number

of update-requests per time interval for the execution of program L4 on a system with 16 TFlux

Kernels and 1, 2 and 4 Updaters. Notice that the number of update-requests does not depend on

the number of Updaters as it is a characteristic of the program. As such, the time required to
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serve the burst can not be seen directly from this Figure but rather indirectly given the following

observation. For this program, a TFlux Kernel operates without posing update-requests during the

period when it is executing the application’s DThreads or when no ready DThread exists. This

second factor, i.e. not having ready DThreads to execute, is the reason for which the period during

which a Kernel does not pose update-requests is prolonged when fewer Updaters are used. As can

be seen from this Figure, having more Updaters significantly decreases the time during which a

Kernel is idle due to the fact that its waiting DThreads have not been yet notified by the Updater(s).
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Figure 120: Update-requests per interval for the execution of program L4 with 16 TFlux Kernels for 1, 2
and 4 Updaters. Numbers on the horizontal arrows show the length of the corresponding period in terms of
time intervals.

The programs for which using multiple Updaters deliver the most benefits are ILD2 and ILD4,

i.e. the programs with iteration-level dependencies. The reason for this is related to the pattern

by which the update-requests are inserted into the TUB which, in contrast to the other programs,
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is not bursty. In particular, for ILD2 and ILD4, each Kernel poses an update-request each time an

L-DThread completes and not only when an L-DThread of the last generation completed (as is the

case for the other applications). As such, the update-requests for applications with iteration level

dependencies are more evenly distributed in time leading to better potential for improvement.

Whereas Figure 119 depicts the speedup of execution with 2 Updaters versus execution with

only 1 Updater, Figure 121 goes one step further and presents the additional speedup that can

be achieved when instead of 2 the system has 4 Updaters. As can be seen from the experimental

results increasing the number of Updaters can provide additional performance benefits. This is

especially true for the applications that have a large number of update-requests to be served, i.e.

ILD2 and ILD4.
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Figure 121: Speedup of executing the synthetic applications using 2 Updaters vs. using 1 Updater.
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9.4.2 Performance Evaluation with Multiple Updaters

According to the results presented in the previous Section, configurations with multiple Up-

daters have the potential for better performance. However, given a system with a specific number

of processors, increasing the number of Updaters means that fewer processors will be available

for the execution of application’s DThreads leading to a tradeoff. As such, the critical question

regards the configuration that leads to the best overall performance.

For the experiments presented in this Section, the number of CPUs of the system is kept

constant, i.e. having more Updaters decreases the number of Kernels. The experimental results

are presented in Figures 122 and 123. Figure 122 presents the speedup of execution with 2

Updaters compared to execution with 1 Updater whereas Figure 123 the speedup of a system

with 4 Updaters compared to a system with 1 Updater.

The first observation that can be made from the experimental results is related to the load

executed by each iteration; in particular, as this load increases the potential of using multiple Up-

daters decreases. This is justified by the fact that the increase of the computational load executed

by each loop iteration leads to a decrease of the relative time spent for synchronization. The

second observation regards the total number of system nodes. As the number of CPUs increases

using multiple Updaters is beneficial as the application’s requirements for synchronization in-

crease. However, for systems with small number of CPUs using multiple Updaters often leads to

performance degradation.

Finally, notice that the potential of using multiple Updaters is, in a major degree, defined by

the application’s Synchronization Graph. Although the synchronization to computation ratio does

is not depicted in these Figures, the real trend is that the benefit from using multiple Updaters
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increases with this ratio. As expected, the applications for which it is better to use multiple Up-

daters even though less execution cores are available for application DThreads, are those exploit-

ing iteration-level dependencies. This is due to the large amount of synchronization requirements

for applications with iteration-level Dependencies.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

6 12 18 20 28 6 12 18 20 28 6 12 18 20 28 6 12 18 20 28 6 12 18 20 28 6 12 18 20 28 6 12 18 20 28

L1 L2 L2-T1 L4 L4-T3 ILD 2 ILD 4

Synthetic Application - Number of CPUs

Sp
ee

du
p

Small Medium Large

Figure 122: Performance comparison of a system with 2 Updaters versus a system with 1 Updater. For
these results the total number of the system’s CPUs is constant, i.e.. using more Updaters decreases the
number of TFlux Kernels.

Figure 123 goes one step further and evaluates configurations with 4 Updaters. As can be seen

from the experimental results using even more Updaters is better in some situations especially

when the load executed by each DThred is small. However, as the executed computational load

increases this benefit decreases.

As a concluding remark it is possible to state that using multiple Updaters can deliver better

performance compared to configurations with only one Updater when two conditions stand: the

first is for the Synchronization Graph of the application to be complex whereas the second for
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Figure 123: Performance comparison of a system with 4 Updaters versus a system with 1 Updater. For
these results the total number of the system’s CPUs is constant, i.e.. using more Updaters decreases the
number of TFlux Kernels.

the DThreads to execute rather small computational load. As this load increases however, the

synchronization to computation ratio will also decrease and finally will lead to a situation where

it will be better to use as many resources as possible to execute the application’s computational

load. The same applies for applications with simple Synchronization Graphs.

9.5 TFluxHard Scheduler Delay

TFluxHard requires the machine to be equipped with a hardware module that provides the

scheduler’s functionality. The target of this Section is to quantify the effect the delay of this unit

has on the overall performance. For this study we used the synthetic applications presented in

Section 9.3 ((L1, L2, L4, L2R, ILD2, BINARY TREE and DIAGONAL)). For the experimental

results presented in this Section the DThreads of these applications execute only 1 call to the
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load() function in order to increase as much as possible the realtive effect of synchronization on

performance which, in part, is dependent on the delay of the scheduler. The metric we used is

the relative execution time, i.e. the execution time with the scheduler having a delay of a specific

number of cycles versus execution with the scheduler having a delay of only one cycle.

The experimental results which are presented by Figure 124 cover the range of 1 to 128 cycles

for the delay of the TFluxHard Scheduler with the baseline being the configuration where the

scheduler has a delay of 1 cycle. Moreover, notice that the experiments have been conducted

for a configuration with 27 Kernels as the larger the number of Kernels the most sensitive the

performance is to the delay of the scheduler. This is due to the fact that given an application the

number of operations performed by the scheduler increase with the number of Kernels.
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Figure 124: The impact of the Scheduler delay in the performance of TFluxHard for the synthetic appli-
cations.
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As can be seen from the experimental data, the penalty of increasing the delay of the sched-

uler from 1 to 128 cycles is never larger than 2%. This effect however is strongly related to the

application being executed. The applications that show the largest sensitivity to the delay of the

scheduler are the Binary Tree and the Diagonal ones. This is justified by the fact that for these

applications there are many dependencies among DThreads executed by different Kernels. The

more complex the dependencies are, the longer the delay in the Scheduler to perform its oper-

ations. Consequently the CPU needs to wait longer until a ready DThread is identified, which

results in an increased overhead and consequently lower performance.
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Chapter 10

Virtualization and Portability

In this Chapter we explore the Virtualization and Portability of the TFlux Parallel Processing

Platform, i.e. its ability to hide the details of the underlying system and to be ported to new

architectures with the minimum possible effort.

10.1 TFlux Virtualization

With the term “Virtualization” we refer to the ability of a system to provide to its user a

programming and operation layer that does not depend on the details of the underlying machine.

Ideally, the programmer should be able to develop applications for TFlux without being aware of

the details of the particular machine. The most important factor, is that this unawareness should

not affect the performance. Notice however, that our study about Virtualization does not include

any quantitative results but only qualitative arguments.

Providing to its user an abstraction layer that hides all details of the underlying machine is

one of the key characteristics of TFlux. The main components that allow TFlux to achieve this

228
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virtualization is its layered design. As explained already in Section 3.1 the user of TFlux is only

required to understand the programming layer which hides all implementation- and machine- spe-

cific details.

To achieve this goal, during the design of TFlux we avoided any modifications to the existing

interfaces. More specifically, all entities of TFlux operate at the user-level in order to allow execu-

tion of TFlux applications to all systems that provide the standard functionality of the Linux-based

Operating Systems. However, the TFlux Runtime is able to take advantage of functionalities of-

fered by the system for better performance. Such an example is the pin of the TFlux Kernels to

the different CPUs of the system when this is offered by the Linux distribution that. Attaching

the TFlux Kernels to different CPUs has been found to give better and more stable results across

different executions.

The implementation of the Scheduler is another component for which special care was taken

in order to avoid modifying existing interfaces. For TFluxSoft, the Scheduler could have been

integrated with the scheduler of Linux. In addition to the fact that this would require the installa-

tion of software patches to udpate the system’s scheduler, it would require the Operating System

to be aware of the TFlux execution leading to a violation of the interface between the processes

and the OS. Similar to that, the Scheduler of TFluxHard is attached to the system’s network as a

memory mapped device allowing it to be accessed by the TFlux Kernels through simple load and

store instructions.

The TFlux layer that is exposed to the user is the set of TFlux directives which allow defining

the boundaries and the dependencies of the DThreads at the high-level code. The abstraction

layers of TFlux are responsible to convert this code into a binary that is able to execute on all

shared memory Linux-based multiprocessor systems. Most importantly, this code is the same

regardless if the target system is TFluxSoft or a TFluxHard.
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To prove the ability of TFlux to meet the virtualization goal we executed all applications that

have been presented in the previous Sections on a variety of computer systems. The applications

were coded using the TFlux directives and through the TFlux compilation toolchain leaded into

both a TFluxSoft and a TFluxHard binary. The systems which we used for this study are summa-

rized in Table 24 (details about these systems have been presented in Sections 8.1.3 and 8.1.4).

These systems differ in three key components: (1) the number of TFlux Kernels ranging from 1 to

28; (2) the Operating System including machines with different Linux distributions and different

versions of the Linux kernel and (3) the ISA of the CPU including systems with x86 and SPARC

processors. Whereas for all these systems we were able to try both TFlux incarnations, for TFlux-

Soft we went one step further and executed the applications on a number of different off-the-shelf

systems.

Table 24: Machines used for virtualization study

Name Nature ISA #Cores CPU OS Kernel

TFluxSim Simulated SPARC 1-28 UltraSparcII Fedora Core 3 2.6.13
Bagle Simulated SPARC 1-28 UltraSparcII SuSe 7.3 2.4.14
Tango Simulated x86 1-15 Pentium 4 Fedora Core 5 2.6.15

Enterprise Simulated x86 1-8 Pentium 4 Red Hat 3 2.4.18
IBM3650 Off-the-shelf x86 8 Xeon E5320 Fedora Core 6 2.6.22

Thales Off-the-shelf x86 4 AMD Opteron Fedora Core 5 2.6.20
QUAD Off-the-shelf x86 4 Core2 QuadCore Fedora Core 7 2.6.22

Both TFluxHard and TFluxSoft managed to execute all these applications without any modi-

fication to the host systems. However, for some of these machines we performed system-specific

optimizations or configurations. The key optimizations were to utilize the affinity scheduling for

the Linux Kernels that supported it, i.e. for versions newer than 2.6.x and to set the TFlux Kernels

to execute in the highest possible priority (Linux Kernel 2.2.x). As for the configuration param-

eters, these mainly regard the address the Scheduler of TFluxHard was mapped to as different

systems provide different addresses for memory mapped devices.
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10.2 TFlux Portability

Whereas virtualization refers to the ability of a TFlux incarnation to be applied to similar

systems as is, i.e. without any modification, portability refers to the effort needed to port this

incarnation to system with important differences. In this Section we will present three situations

that a specific TFlux incarnation was ported to another system and comment on the effort that was

required.

10.2.1 From TFluxHard to TFluxSoft

The first incarnation of the TFlux platform was the TFluxHard system; and based on it we de-

signed TFluxSoft. Although these two systems have a completely different Scheduler implemen-

tation, they share all other TFlux layers. In particular, the TFlux directives, the TFlux Preprocessor

and the TFlux Runtime are common for the two systems.

What needed to change in order to go from TFluxHard to TFluxSoft was the interface between

the TFlux Kernel and the scheduler layer. For TFluxHard this interface is the implementation of

the Scheduler Instructions protocol used by the TFlux Kernels to interact with the TFluxHard

Scheduler (Section 5.3). As for TFluxSoft, this interface consists of function calls to the different

routines provided by Scheduler. This change also affected the TFlux preprocessor as the code it

produces needed to include the correct interface.

10.2.2 TFluxCell

This second case-study regards porting the TFlux Platform to the Cell/BE [4]. The target

set for TFluxCell was to complete the implementation with the minimum possible effort which,

similar to TFluxSoft, needed to be a software-only solution.
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It was clear from the first stages of the design of TFluxCell that the TFlux Kernels were to be

executed on the SPEs whereas the Scheduler’s functionality by the PPE as depicted in Figure 125.

The main particularity for this implementation was the lack of the shared-memory environment

which is the component that allows the different execution entities of TFluxSoft to communicate

between them. As such, direct execution of TFluxSoft was not possible.

PPE
TSU Emulator

SPE 8
TFlux 
Kernel

SPE 7
TFlux 
Kernel

SPE 6
TFlux 
Kernel

SPE 5
TFlux 
Kernel

SPE 4
TFlux 
Kernel

SPE 3
TFlux 
Kernel

SPE 2
TFlux 
Kernel

SPE 1
TFlux 
Kernel

Figure 125: Performance of TFluxCell

This approach allowed us to have a successful implementation of TFlux on Cell/BE with mini-

mum effort as no new component needed to be designed. As explained earlier this implementation

uses identical layers as TFluxSoft with the only exception being the interface between the TFlux

Kernels and the Scheduler which is that of TFluxHard.

Figure 126 presents some experimental performance evaluation data for the TFluxCell imple-

mentation. The reason for which some bars are missing is related to the fact that the application’s

data sets did not fit into the local-store memory of the SPEs. However, from these data it is possi-

ble to observe that TFlux is not only able to be ported to a new architecture with small effort but

also to keep its good performance.

10.2.3 Execution on Distributed Memory Environments

The layered design of the TFlux platform allowed us to expand its design for execution to

distributed memory environments by extending only the Scheduler. As such, TFlux is able to

enforce the dependencies between the application DThreads’s in such an environment without any
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Figure 126: Performance of TFluxCell

of the other layers been unaware of it. Notice however, that it remains the responsibility of the

user to perform the necessary send and receive operations for the application’s data.

The major issue regarding TFlux execution on multiple nodes regards the Thread Update

operation. When a DThread completes its execution its Kernel copies into the TUB the Thread

Template of its consumers. It is the responsibility of the Scheduler to read these entries from the

TUB and update the Ready Count values of the corresponding DThreads. If the Scheduler is to

update the Ready Count of a DThread which Graph Memory entry is in one of the local TSUs

of the same TFlux Node, the Thread Update is exactly the same to what was described in the

previous Chapters. The case that requires further explanation is when the DThread entry is in a

Graph Memory of a remote TFlux Node.

To identify this Remote Thread Update situation, the Scheduler is required to know the TFlux

Node each DThread will be executed by. This information (Thread to Kernel Table (Section 6.2.1))
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is statically inserted into the binary by the TFlux Preprocessor during the application’s compilation

phase and is loaded into the Scheduler when the program starts. During the Thread Update opera-

tion, the Scheduler reads an entry from the TUB and then consults this table. If the corresponding

GM for this DThread is in a remote TFlux Node, the Scheduler will not perform the Thread Update

operation but rather the Remote Thread Update operation which consists of sending the Identifier

of the DThread to the remote Scheduler.

The Remote Thread Update operation will be completed by the target Scheduler, i.e. the TSU

that serves the GM in which the DThread to be updated is located. To update the Ready Count

counter of this DThread, the target TSU needs to be aware of the existence of the corresponding

request. For this purpose, all Schedulers of the system periodically check their connection to the

other TSU of the system. As such, every time these is such a Remote DThread Update request

they will be able to process it.
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Chapter 11

Conclusions and Future Work

11.1 Conclusions

This work presented the TFlux (Thread Flux) Parallel Processing Platform, a complete sys-

tem from the hardware to the programming tools, that offers dataflow-like thread scheduling to

off-the-shelf systems. TFlux was shown able to deliver high-performance by using data-driven

scheduling, virtualization and portability from its layered design and easy programmability due to

its dedicated programming toolchain.

A key component of TFlux is that it offers all its benefits to the user requiring only commodity

components, i.e. unmodified Operating System, unmodified compiler and unmodified ISA hard-

ware making it applicable to off-the-shelf systems. The abstraction layer TFlux provides to its

user hides all the details of the underlying machine allowing different hardware configurations to

support its model of execution transparently to the programmer.

In this work we present two incarnations of TFlux: TFluxHard and TFluxSoft. For TFlux-

Hard the Thread Scheduler is a hardware unit whereas for TFluxSoft, the Thread Scheduler’s
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functionality is provided at the software level. As such, TFluxHard is applicable to systems that

offer the ability to augment the machine with a hardware module while TFluxSoft is directly ap-

plicable to off-the-shelf systems. A distribution of TFluxSoft was made available to the public

upon request.

An evaluation suite which consists of applications with different characteristics in terms of

both their dynamic behavior and the complexity of their dataflow graph was created to evalu-

ate TFlux. Both TFluxHard and TFluxSoft were shown to achieve very good performance and

scalability on the applications of the evaluation suite. Although for most applications the per-

formance of the two incarnations is close, TFluxHard has an advantage over TFluxSoft arising

from offloading the Scheduler’s functionality to the hardware module. Nevertheless, the penalty

for TFluxSoft is small compared to the benefit it offers to the off-the-shelf systems. Comparison

of TFlux with a traditional parallel programming model, i.e. parallel execution that uses parallel

threads, loops and lock and barrier synchronization, shows that TFlux is able to deliver signifi-

cantly better performance especially for applications with complex Synchronization Graphs.

11.2 Future Work

The analysis presented in the previous Chapters proved that the TFlux Parallel Processing Plat-

form is able to efficiently deliver a dataflow model of execution to commodity multicore systems.

In this Chapter we present directions to further improve the performance, the programmability and

the applicability of the platform. This Chapter consists of four Sections which present the future

directions for the TFlux Platform, the TFluxHard system, the TFluxSoft system and the TFlux

Preprocessor.
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11.2.1 TFlux Platform

The specification of the TFlux components can be expanded to include mechanisms that will

increase the performance and the applicability of the system. Such mechanisms could provide

load balancing, fault tolerance and prefetching.

A load balancing scheme for TFlux could be implemented by merging the Graph Memory

structures to a common unit. This would allow to the TFlux Kernels to execute DThreads from

a common pool avoiding situations where a TFlux Kernel is idle whereas others still have not-

executed ready DThreads. For this mechanism to be effective it is important to have finer-grained

DThreads. On the other hand however, this will have a negative effect on performance due to

larger parallelization overheads. As such, a careful study of the tradeoffs is required.

Fault tolerance could be applied to TFlux as an extension of the load balancing scheme. TFlux

should be equipped with mechanisms able to detect failures at run-time and re-schedule the appli-

cation’s load according to the new configuration of the system. However, special care is required

in order to avoid performance degradation due to the application of this mechanism. Moreover,

these mechanisms should focus on the failures that apply for large-scale multicore systems.

Prefetching is expected to play a key role to increasing the performance of TFlux given that

the DDM model of execution has already been shown able to significantly benefit from such a

mechanism [62]. The design of these mechanisms should be applicable without requiring modifi-

cations to the system’s component. This will allow the updated specification of TFlux to also be

applicable to commodity machines.

11.2.2 TFluxHard

Maybe the most important future direction for TFluxHard is the development of a hardware

prototype. This would allow deeper analysis of the system, fine-tuning and better performance.
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Alternatives towards this direction include implementing the Scheduler on add-on card utilizing

the Hyper Transport protocol as explained in Section 5.6.2. Another alternative is the implemen-

tation of the whole system on an FPGA using softcores. As for the mechanisms described earlier

for the TFlux Platform it is important to be included into this prototype.

11.2.3 TFluxSoft

As explained earlier the most important drawbacks of TFluxSoft compared to TFluxHard is the

fact that it requires coarser grained DThreads. To fully utilize the potential of TFluxSoft the focus

of the future work should be to decrease the runtime overheads. For this it might be necessary to

include additional structures to the Soft-Scheduler or preform some operations statically with the

help of the TFlux Preprocessor. Moreover, operation with a distributed execution of the Thread

Update operation should be explored.

11.2.4 TFlux Preprocessor

A common pitfall for TFlux users is the definition of too small DThreads, i.e. DThreads the

size of which is smaller than what is required in order to amortize the parallelization overheads.

Based on heuristics the TFlux Preprocessor could estimate the size of each DThread and warn the

user appropriately. Notice that this minimum DThread size is different for each TFlux incarnation.

With the same rational, the TFlux Preprocessor would automatically set the unroll factor for TFlux

Loops to what is estimated to give the maximum performance.

Numerous research projects target automatic code parallelization but the complexity of the

problem brought an intermediate solution, i.e. using compiler directives, in wide use in both

industry and academia. As such, the ultimate goal which is to have a tool that automatically

defines the boundaries and dependencies between the DThreads of an application seems to be too
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far-fetched. However, the TFlux Preprocessor could be expanded to target easy-to-find DThreads

and give hints to the programmer.
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Appendix A

Example of using the interface of

TFluxHard-Scheduler

To better understand the operation of the interface of the TFluxHard Scheduler we present

the Scheduler Instructions for the execution of the example program depicted by Figure 127 on a

TFluxHard system with 2 nodes. For this application DThread 8 is the Inlet DThread for the first

Kernel and DThread 10 the Inlet DThread for the second TFlux Kernel. As for DThreads 9 and

11 they are the Outlet DThreads of the first and second TFlux Kernel respectively. The DThreads

shown at the left of this Figure (8, 1, 3, 5 and 9) are executed by TFlux Kernel 1 whereas the

DThreads on the right (10, 2, 4, 6, 7 and 11) by TFlux Kernel 2.

The Table that follows shows all the data packets exchanged between the TFlux Kernels and

the Scheduler for the execution of this application as well as each packet’s meaning. Notice that

for this application the Thread Id (THID) field is represented by 7 bits and the Iteration Id (ITER)

by 25 bits (recall that the Thread Template that is composed of the THID and the ITER must be a
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Figure 127: Example program for the better explanation of the TFluxHard Scheduler interface.

32-bits value). As an example, for this particular partitioning, the thread template 10000000HEX

corresponds to the DThread 8/16. To better explain this consider that:

10000010HEX = 00010000000000000000000000010000BIN .

As the first 7 bits are for the THID, the THID value is equal to 0001000BIN = 8DEC and ITER

0000000000000000000010000BIN = 16DEC .

Operation Value TSU Description

Write 0-0-0-1 0 1 Thread Load will follow for TSU 0

Write 0-2-0-1 0 This thread has 2 consumers, 0 ILC and 1 instance

Write 0-0-0-1 0 Ready Count = 1

Write 10-0-0-0 0 Thread Template: 8/0

Write 2-0-0-0 0 Thread template of consumer 1 (1/0)

Write 14-0-0-0 0 Thread template of consumer 2 (10/0)

Write 0-0-0-1 1 1 Thread Load will follow for TSU 1

to be continued on next page
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Operation Value TSU Description

Write 0-1-0-1 1 This thread has 1 consumer, 0 ILC and 1 instance

Write 0-0-0-1 1 Ready Count = 1

Write 14-0-0-0 1 Thread Template: 10/0

Write 4-0-0-0 1 Thread Template of consumer 1: 2

Write 7-1-0-1 1 Explicitly decrease the ready count of the following 1 DThreads

Write 10-0-0-0 1 Thread Template: 8/0

Read 8/0 0 Execution of thread 8/0 started

Write 0-0-0-4 0 4 Thread loads will follow

Write 0-2-0-1 0 This thread has 2 consumers, 0 ILC and 1 instance

Write 0-0-0-1 0 Ready Count=1

Write 2-0-0-0 0 Thread Template: 1/0

Write 6-0-0-0 0 Consumer 1: 3

Write 8-0-0-0 0 Consumer 2: 4

Write 0-1-0-1 0 This thread has 1 consumer, 0 ILC and 1 instance

Write 0-0-0-2 0 Ready Count=2

Write 6-0-0-0 0 Thread Template: 3/0

Write a-0-0-0 0 Consumer 1: 5

Write 0-3-0-1 0 This thread has 3 consumers, 0 ILC and 1 instance

Write 0-0-0-1 0 Ready Count=1

Write a-0-0-0 0 Thread Template: 5/0

Write c-0-0-0 0 Consumer 1: 6/0

Write e-0-0-0 0 Consumer 2: 7/0

Write 12-0-0-0 0 Consumer 3: 9/0

Write 0-0-0-1 0 This thread has 0 consumers, 0 ILC and 1 instance

to be continued on next page
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Operation Value TSU Description

Write 0-0-0-2 0 Ready Count=2

Write 12-0-0-0 0 Thread Template: 9/0

Write 2-0-0-0 0 The currently executed thread completed its execution (8/0)

Read 1/0 0 Execution of thread 1/0 started

Write 2-0-0-0 0 The currently executed thread completed its execution (8/0)

Read 10/0 1 Execution of thread 10/0 started

Write 0-0-0-5 1 5 Thread loads will follow

Write 0-2-0-1 1 This thread has 2 consumers, 0 ILC and 1 instance

Write 0-0-0-1 1 Ready Count=1

Write 4-0-0-0 1 Thread Template: 2/0

Write 6-0-0-0 1 Consumer 1: 3/0

Write 8-0-0-0 1 Consumer 2: 4/0

Write 0-1-0-1 1 This thread has 1 consumer, 0 ILC and 1 instance

Write 0-0-0-2 1 Ready Count=2

Write 8-0-0-0 1 Thread Template: 4/0

Write c-0-0-0 1 Consumer 1: 6/0

Write 0-1-0-1 1 This thread has 1 consumer, 0 ILC and 1 instance

Write 0-0-0-2 1 Ready Count=2

Write c-0-0-0 1 Thread Template: 6/0

Write e-0-0-0 1 Consumer 1: 7/0

Write 0-1-0-1 1 This thread has 1 consumer, 0 ILC and 1 instance

Write 0-0-0-2 1 Ready Count=2

Write e-0-0-0 1 Thread Template: 7/0

Write 16-0-0-0 1 Consumer 1: 11/0

to be continued on next page
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Operation Value TSU Description

Write 0-1-0-1 1 This thread has 1 consumer, 0 ILC and 1 instance

Write 0-0-0-1 1 Ready Count=1

Write 16-0-0-0 1 Thread Template: 11/0

Write 12-0-0-0 1 Consumer 1: 9/0

Write 2-0-0-0 1 The currently executed thread completed its execution (10/0)

Read 2/0 1 Execution of thread 2/0 started

Write 2-0-0-0 1 The currently executed thread completed its execution (2/0)

Read 4/0 1 Execution of thread 4/0 started for CPU 1

Read 3/0 0 Execution of thread 4/0 started for CPU 0

Write 2-0-0-0 1 The currently executed thread completed its execution (4/0)

Write 2-0-0-0 0 The currently executed thread completed its execution (3/0)

Read 5/0 0 Execution of thread 5/0 started for CPU 0

Write 2-0-0-0 0 The currently executed thread completed its execution (5/0)

Read 6/0 1 Execution of thread 6/0 started for CPU 0

Write 2-0-0-0 1 The currently executed thread completed its execution (6/0)

Read 7/0 1 Execution of thread 7/0 started for CPU 0

Write 2-0-0-0 1 The currently executed thread completed its execution (6/0)

Read 11/0 1 Execution of thread 11/0 started for CPU 0

Write 1-0-0-0 1 Clear TSU 1

Write 2-0-0-0 1 The currently executed thread completed its execution (11/0)

Write 6-0-0-0 1 TFlux Kernel 1 completed its execution

Read 9/0 0 Execution of thread 9/0 started for CPU 0

Write 1-0-0-0 0 Clear TSU 0

Write 6-0-0-0 0 TFlux Kernel 0 completed its execution

to be continued on next page
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Operation Value TSU Description

Write 2-0-0-0 0 The currently executed thread completed its execution (9/0)
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Appendix B

TFlux Directives

This appendix describes the TFlux Directives supported by the current version of the TFlux Preproces-

sor. Before the presentation of the directives, Section B.1 will introduce the necessary notations.

B.1 Notations

Depends-on-list

The dependList list defines the producers of DThread, i.e. the list of DThreads a DThread depends-on.

This list is composed of multiple numbers each defining the Thread Id of one of the producers.

dependList = (THID1, ..., THIDn)

Name Thread List

The nameThreadList list describes a list of variables and is used by the import and export statements

(Section 4.3.1.1). For each variable, in addition to the variable’s name it includes the Thread Id of the

DThread that produces this value.

nameThreadList = (V arName1 : THID1, ..., V arNamen : THIDn)
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Name Thread List

The typeNameList list describes a list of variables and is used by the import and export statements. For

each variable, in addition to the variable’s name it includes the type of the variable.

typeNameList = (V arType1 V arName1, ..., V arTypen V arNamen

Iteration Level Consumers List

The ilcList list describes the iteration-level consumers of an L-DThread. The ilcList has the following

format:

ilcList = [Type, THID, a, b, c, sched], ..., [Type, THID, a, b, c, sched]

Each tuple (Type, THID, a, b, c, d) defines the information of one of the iteration-level Consumers. The

different fields are used to define the Iteration Id of the iteration-level Consumer. As for the Thread Id of

this Consumer this is equal to the THID field of the tuple. The SCHED describes the scheduling algorithm

followed for the Consumer and the Producer TFlux Loops. The possible values for the SCHED field are 0,

1, 2 and 3. The meaning of each different value is as follows:

SCHED Producer TFlux Loop Consumer TFlux Loop

0 Chunk Scheduling Chunk Scheduling
1 Chunk Scheduling Round-Robin Scheduling
2 Round-Robin Scheduling Chunk Scheduling
3 Round-Robin Scheduling Round-Robin Scheduling

The calculation of the Iteration Id of the Consumer L-DThread (ITER) is based on the Type field.

In particular, the value of this field defines the algorithm that is used to identify the Iteration Id of the

Consumer. As for the a, b and c fields they are used as parameters to this calculation. Moreover, notice that

the Iteration Id of the Consumer L-DThread (CITER) is calculated as a function of the Iteration Id of the

Producer L-DThread (PITER). The algorithm that is applied according to the different values of the Type

field is as follows:
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Type Algorithm

1 CITER = PITER*a+b;
2 CITER = PITER/a+b;
3 CITER = PITER*a-b;
4 CITER = (PITER*a-b>0 ? PITER*a-b : 0)
5 CITER = (PITER>=b ? PITER : -1)
6 CITER = (PITER==a ? b : -1)
7 CITER = ((PITER+a)<=b ? PITER+a : -1)
8 CITER = ((PITER%a)==0 ? PITER+b : -1)
9 CITER = ((PITER%a)!=a-1 ? PITER+1 : -1)
10 CITER = (PITER>=b?PITER : -1)
11 CITER = (PITER<a ? PITER-b : -1)
12 CITER = (PITER>=a ? PITER+b : -1)

B.2 Program Control

Program Start

Defines the start of the program’s code and must be placed in the main() function. All variables declared

after the startprogram directive are private to the application’s TFlux Kernels.

#pragma ddm startprogram

Program End

Defines the end of the program’s code and must be placed in the main() function. This direc-

tives defines the last instruction of main().

#pragma ddm endprogram

Number of TFlux Kernels

Defines the number of TFlux Kernels executing the application to be equal to noKernels.

#pragma ddm kernel noKernelsKyri
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B.3 Variables Declaration

Declaration of private variable

Declares and allocates memory for variable varName which is of type varType. This variable

is private to the TFlux Kernels.

#pragma ddm private ddm varType varName

Declaration of private array

Declares and allocates memory for array varName which is of type varType and has noEle-

ments elements. This array is private to the TFlux Kernels.

#pragma ddm private ddm varType varName noElements

Declaration of shared variable

Declares and allocates memory for variable varName which is of type varType. This variable

is shared among the TFlux Kernels.

#pragma ddm global ddm varType varName

Declaration of private array

Declares and allocates memory for array varName which is of type varType and has noEle-

ments elements. This variable is shared among the TFlux Kernels.

#pragma ddm global ddm varType varName noElements

B.4 Block Declaration

Declaration of DDM Block

Declaration of a DDM Block with Block Id equal to BID. The block can optionally be set

to import or export variables. Importing will make the particular variables accessible by the
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DThreads of this Block. Similarly, exporting a variable, makes it accessible to the blocks that

import it.

#pragma ddm block BID \
<import typeNameList> <export nameThreadList>

//DECLARATION OF DTHREADs

#pragma ddm enblock

import typeNameList: If used the Block imports the list of variables defined in the type-
NameList that follows.

export nameThreadList: If used the Block exports the list of variables defined in the
nameThreadList that follows.

B.5 DThread Declaration

DThread with implicit dependencies

Declaration of DThread with Thread Id equal to TID that is executed by TFlux Kernel KID.

Optionally, this DThread can be set to import or export variables through using the import and

export statements respectively.

#pragma ddm thread TID kernel KID \
<import nameThreadList> <export typeNameList>

//DThread ANSI C Code

#pragma ddm endthread

import nameThreadList: If used the DThread imports the list of variables defined in the
nameThreadList that follows.

export typeNameList: If used the DThread exports the list of variables defined in the type-
NameList that follows.

DThread with implicit dependencies that recycles

Declaration of DThread with Thread Id equal to TID that is executed by TFlux Kernel KID

and belongs to a recycle group, i.e. it can re-invoke it self to execute another instance of the same

static code. Optionally, this DThread can be set to import or export variables through using the

import and export statements respectively.
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#pragma ddm thread TID kernel KID \
<import nameThreadList> <export typeNameList> \
recycle

//DThread ANSI C Code

#pragma ddm recycle

import nameThreadList: If used the DThread imports the list of variables defined in the
nameThreadList that follows.

export typeNameList: If used the DThread exports the list of variables defined in the type-
NameList that follows.

DThread with implicit dependencies executed by all Kernels

Declaration of DThread with Thread Id equal to TID that is executed by all TFlux Kernels.

Optionally, this DThread can be set to import or export variables through using the import and

export statements respectively.

#pragma ddm thread TID kernel all \
<import nameThreadList> <export typeNameList>

//DThread ANSI C Code

#pragma ddm endthread

import nameThreadList: If used the DThread imports the list of variables defined in the
nameThreadList that follows.

export typeNameList: If used the DThread exports the list of variables defined in the type-
NameList that follows.

DThread with implicit dependencies that recycles and is executed by all Kernels

Declaration of DThread with Thread Id equal to TID that is executed by all TFlux Kernels

and belongs to a recycle group, i.e. it can re-invoke it self to execute another instance of the same

static code. Optionally, this DThread can be set to import or export variables through using the

import and export statements respectively.

#pragma ddm thread TID kernel all \
<import nameThreadList> <export typeNameList> \
recycle
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//DThread ANSI C Code

#pragma ddm recycle

import nameThreadList: If used the DThread imports the list of variables defined in the
nameThreadList that follows.

export typeNameList: If used the DThread exports the list of variables defined in the type-
NameList that follows.

DThread with explicit dependencies

Declaration of DThread with Thread Id equal to TID that is executed by TFlux Kernel KID.

Optionally, this DThread can be set to depend on other DThreads or TFlux Loops.

#pragma ddm thread TID kernel KID <depends (dependList)>

//DThread ANSI C Code

#pragma ddm endthread

depends dependList: The list of DThreads and TFlux Loops this DThread depends on.

DThread with explicit dependencies that recycles

Declaration of DThread with Thread Id equal to TID that is executed by TFlux Kernel KID

and belongs to a recycle group, i.e. it can re-invoke it self to execute another instance of the same

static code. Optionally, this DThread can be set to depend on other DThreads or TFlux Loops.

#pragma ddm thread TID kernel KID <depends (dependList)> recycle

//DThread ANSI C Code

#pragma ddm recycle

depends dependList: The list of DThreads and TFlux Loops this DThread depends on.

DThread with explicit dependencies executed by all Kernels

Declaration of DThread with Thread Id equal to TID that is executed by all TFlux Kernels.

Optionally, this DThread can be set to depend on other DThreads or TFlux Loops.
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#pragma ddm thread TID kernel all <depends (dependList)>

//DThread ANSI C Code

#pragma ddm endthread

depends dependList: The list of DThreads and TFlux Loops this DThread depends on.

DThread with implicit dependencies that controls the execution of a recycle group

Declaration of the DThread that controls the execution of a recycle group, i.e. that defines

if the DThreads of the recycle group will be executed again. The DThread has Thread Id equal

to TID and is executed by TFlux Kernel KID. The dependencies of this DThread are defined

implicitly through the import and export statements.

#pragma ddm thread TID kernel KID \
<import nameThreadList> <export typeNameList> \
recycle

//DThread ANSI C Code

if(recycle group termination condition)
{

#pragma ddm threadCompleted
}

#pragma ddm recycle

import nameThreadList: If used the DThread imports the list of variables defined in the
nameThreadList that follows.

export typeNameList: If used the DThread exports the list of variables defined in the type-
NameList that follows.

DThread with explicit dependencies that controls the execution of a recycle group

Declaration of the DThread that controls the execution of a recycle group, i.e. that defines if

the DThreads of the recycle group will be executed again. The DThread has Thread Id equal to

TID and is executed by TFlux Kernel KID. This DThread depends on the DThreads and TFlux

Loops included in the dependsList

#pragma ddm thread TID kernel KID depends dependList recycle
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//DThread ANSI C Code

if(recycle group termination condition)
{

#pragma ddm threadCompleted
}

#pragma ddm recycle

depends dependList: The list of DThreads and TFlux Loops this DThread depends on.

B.6 TFlux Loop

Defines a TFlux Loop with Thread Id equal to TID.

#pragma ddm for thread TID \
<schedule 1> \
<unroll N> \
<reduction localVar op globalVarType globalVarName> \
<depends (dependList)> \
<ilc ilcList> \
<readyCount rcValue> \
<recycle>

//TFlux Loop Code

#pragma ddm endfor

schedule 1: If it is used the loop iterations will be assigned to the TFlux Kernels according
to the Round Robin scheduling scheme. If it is not used, the Chunk Scheduling scheme is
applied.

unroll N: If this option is used, the loop is unrolled N times

reduction localVar op globalVarType globalVarName: The loop performs a
reduction operation. The operation to be performed is defined by the op and can be sub-
traction (-), summation (+) or product (*). The localVar variable holds the partial result for
each Kernel. The total result will be stored to the globalVarName variable which type is
globalVarType.

depends (dependList): If this option is used the TFlux Loop is set to depend on the
DThreads and TFlux Loops of the dependList.

ilc ilcList: If this option is used the TFlux Loop is set to have the DThreads described in
the ilcList as Iteration Level Consumers.

readyCount rcValue: Defines that the Ready Count value for the L-DThreads of this loops
will be initialized to rcValue.

recycle: Sets the TFlux Loop to recycle (the TFlux Loop belongs in a recycle group)
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L-DThread, 42
L-DThread Recycle Operation, 55
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Thread Update Unit, 82
Thread-Flux, 32
Threads-to-Update Buffer, 38, 83
TKT, 118
Traditional Parallel Execution Model, 167
traditional programming models, 73
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HTX-Board: A Rapid Prototyping Station. In 3rd Annual FPGAworld Conference, Novem-
ber 2006.

[37] Daniel Gajski, David A. Padua, David J. Kuck, and Robert H. Kuhn. A second opinion on
data flow machines and languages. IEEE Computer, 15(2):58–69, 1982.

[38] GPGPU. General-Purpose computation on GPUs (GPGPU). www.gpgpu.org/, 2008.

Kyri
ak

os
 Stav

rou



261

[39] Gregory M. Papadopoulos and David E. Culler. Monsoon: An explicid token store ar-
chitecture. In In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 82 – 91, May 1990.

[40] Gregory. M. Papadopoulos and Kenneth. R. Traub. Multithreading: A revisionist view of
dataflow architectures. In In Proceedings of the 18th Annual International Symposium on
Computer Architecture, pages 342 – 351, May 1991.

[41] The Parafrase Group. Parafrase 2. http://www.csrd.uiuc.edu/parafrase2/, 2008.

[42] J. R. Gurd and W. Bohm. Implicit parallel processing: SISAL on the Manchester dataflow
computer. In Proceedings of the IBM-Europe Institute on Parallel Processing, 1987.

[43] John R. Gurd, Chris C. Kirkham, and Ian Watson. The manchester prototype dataflow
computer. Communications of the ACM, 28(1):34–52, 1985.

[44] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge,
and Richard B. Brown. MiBench: A free, commercially representative embedded bench-
mark suite. In Proceedings of the 4th IEEE International Workshop on Workload Charac-
terization (WWC-4), pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[45] Chris L Hankin and Hugh Glaser. The data flow programming language CAJOLE - an
informal introduction. SIGPLAN Not., 16(7):35–44, 1981.

[46] Michael Frumkin Haoqiang Jin and Jerry Yan. The OpenMP Implementation of NAS Par-
allel Benchmarks and Its Performance. Technical Report NAS Technical Report NAS-99-
011, NASA Ames Research Center - NAS System Division, October 1999.

[47] Olivier Maquelin et al. Herbert H. J. Hum. A design study of the earth multiprocessor. In
PACT ’95: Proceedings of the IFIP WG10.3 working conference on Parallel architectures
and compilation techniques, pages 59–68, Manchester, UK, UK, 1995. IFIP Working Group
on Algol.

[48] Mark D. Hill and Alan Jay Smith. Experimental evaluation of on-chip microprocessor
cache memories. In ISCA ’84: Proceedings of the 11th annual international symposium on
Computer architecture, pages 158–166, New York, NY, USA, 1984. ACM.

[49] Hypertransport Consortium. HyperTransport Technology I/O Link.
www.hypertransport.org.

[50] Intel. Intel’s Teraflops Research Chip, 2006.

[51] Intel. Intel Quad-Core technology. . http://www.intel.com/technology/quad-core/,
2008.

[52] International Telecommunication Union (ITU). H.264 : Advanced video coding for generic
audiovisual services - Recommendation. http://www.itu.int/rec/T-REC-H.264/e, 2008.

[53] Jack B. Dennis. Dataflow Supercomputers. Computers, pages 48 – 56, November 1980.

[54] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow pro-
gramming languages. ACM Computer Surveys, 36(1):1–34, 2004.

Kyri
ak

os
 Stav

rou



262

[55] Kaeli David and Pen-Chung Yew. Speculative Execution In High Performance Computer
Architectures. Chapman and Hall/CRC, 2005.

[56] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Intro-
duction to the Cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[57] Krishna Kavi and Behrooz Shirazi. Dataflow architecture: Are dataflow computers com-
mercially viable. IEEE Potentials, pages 27–30, 1992.

[58] Krishna M. Kavi, Roberto Giorgi, and Joseph Arul. Scheduled Dataflow: Execution
Paradigm, Architecure, and Performance Evaluation. IEEE Transactions on Computers,
50(8):834–846, August 2001.

[59] Youngsoo Kim and Suleyman Sair. Designing real-time H.264 decoders with dataflow ar-
chitectures. In Proceedings of the 3rd IEEE/ACM/IFIP International Conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS 05), pages 291–296, New
York, NY, USA, 2005. ACM Press.

[60] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: architectural sup-
port for fine-grained parallelism on chip multiprocessors. pages 162–173, 2007.

[61] Costas Kyriacou. Data Driven Multithreading using Conventional Control Flow Micropro-
cessors. PhD dissertation, University of Cyprus, 2005.

[62] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. CacheFlow: A Short-Term
Optimal Cache Management Policy for Data Driven Multithreading. In Proceedings of the
2004 EuroPar (EuroPar 04), pages 561–570, August 2004.

[63] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-Driven Multithread-
ing Using Conventional Microprocessors. IEEE Transactions on Parallel and Distributed
Systems, 17(10):1176–1188, 2006.

[64] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communications systems. In International
Symposium on Microarchitecture, pages 330–335, 1997.

[65] Johnny K. F. Lee and Alan J Smith. Analysis of branch prediction strategies and branch
target buffer. Technical report, Berkeley, CA, USA, 1983.

[66] Johnny K. F. Lee and Alan Jay Smith. Branch prediction strategies and branch target buffer
design. Computer, 17(1):6–22, 1984.

[67] Yingmin Li, David Brooks, Zhigang Hu, and Kevin Skadron. Performance, Energy, and
Thermal Considerations for SMT and CMP Architectures. In Proceedings of the 11th IEEE
International Symposium on High Performance Computer Architecture (HPCA 11), pages
71–82, February 2005.

[68] David Lilja. The impact of parallel loop scheduling strategies on prefetching in a shared
memory multiprocessor. IEEE Trans. Parallel Distrib. Syst., 5(6):573–584, 1994.

[69] Zhijian Lu, Wei Huang, Shougata Ghosh, John Lach, Mircea Stan, and Kevin Skadron.
Analysis of Temporal and Spatial Temperature Gradients for IC Reliability. Technical Re-
port CS-2004-08, University of Virginia, March 2004.

Kyri
ak

os
 Stav

rou



263

[70] Zhijian Lu, John Lach, Mircea Stan, and Kevin Skadron. Banking Chip Lifetime: Oppor-
tunities and Implementation. In Proceedings of the 1st Workshop on High Performance
Computing Reliability Issues (HPCRI 1), 2005.

[71] Bing Luo and Chris Jesshope. Performance of a micro-threaded pipeline. In CRPIT
’02: Proceedings of the seventh Asia-Pacific conference on Computer systems architecture,
pages 83–90. Australian Computer Society, Inc., 2002.

[72] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hall-
berg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A
Full System Simulation Platform. IEEE Computer, 35(2):50–58, 2002.

[73] James R. McGraw. The VAL Language: Description and Analysis. ACM Transactions on
Programming Languages and Systems, 4(1):44–82, 1982.

[74] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,
November 2003.

[75] Soo-Mook Moon. Increasing instruction-level parallelism through multi-way branching.
In ICPP ’93: Proceedings of the 1993 International Conference on Parallel Processing,
pages 241–245, Washington, DC, USA, 1993. IEEE Computer Society.

[76] Gordon Moore. Cramming more components onto integrated. Electronics Magazine, pages
114–117, April 1965.

[77] NCI. National Compiler Infrastructure NCI. http://www.cs.virginia.edu/nci/, 2008.

[78] NVIDIA. CUDA Zone. www.nvidia.com/cuda, 2008.

[79] Kunle Olukotun, Lance Hammond, and Mark Willey. Improving the performance of spec-
ulatively parallel applications on the hydra CMP. In Proceedings of ICS, pages 21–30,
1999.

[80] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang.
The case for a single-chip multiprocessor. In Proceedings of the seventh international
conference on Architectural support for programming languages and operating systems
(ASPLOS-VII), pages 2–11, New York, NY, USA, 1996. ACM Press.

[81] OpenMP Architecture Review Board. OpenMP Application Program Interface. Version
2.5, May 2005.

[82] David A. Patterson and John L. Hennessy. ”Computer Architecture: A Quantitative Ap-
proach”. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2003.

[83] Demos Pavlou. Preprocessor and benchmarks for the TFluxSoft platform. Diploma Thesis.
University of Cyprus, Computer Science Department, 2008.

[84] Demos Pavlou. TFluxSoft: a Portable Software Runtime System for Parallel Execution
Based on the Dataflow Principles for Commodity Multiprocessors. Diploma Thesis. Uni-
versity of Cyprus, Computer Science Department, 2008.

Kyri
ak

os
 Stav

rou



264

[85] A. Plas, D.Comte, O.Gelly, and J.C.Syre. LAU System Architecture: A Parallel Data-
driven Processor Based on Single Assignment. In Proceedings of the International Confer-
ence on Parallel Processing, pages 293–302, 1976.

[86] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing 2nd edition. Cambridge University
Press, 1992.

[87] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In HPCA
’07: Proceedings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 13–24, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[88] Robert Iannucci et al. Multithreaded Computer Architecture a Summary of the State of the
Art. Kluwer Academic Publishers, 1994.

[89] Manuel Saldana, Daniel Nunes, Emanuel Ramalho, and Paul Chow. Configuration and Pro-
gramming of Heterogeneous Multiprocessors on a Multi-FPGA System Using TMD-MPI.
In Reconfigurable Computing and FPGA’s, 2006. ReConFig 2006. IEEE International Con-
ference on, pages 1–10, 2006.

[90] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk
Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore. Exploiting ILP, TLP, and
DLP with the polymorphous TRIPS architecture. SIGARCH Computer Architecture News,
31(2):422–433, 2003.

[91] Ron Sass, William V. Kritikos, Andrew G. Schmidt, Srinivas Beeravolu, and Parag Beeraka.
Reconfigurable Computing Cluster (RCC) Project: Investigating the Feasibility of FPGA-
Based Petascale Computing. In Proceedings of the 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM ’07), pages 127–140, 2007.

[92] Paul B. Schneck. A survey of compiler optimization techniques. In ACM’73: Proceedings
of the annual conference, pages 106–113, New York, NY, USA, 1973. ACM.

[93] Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0: An integrated cache timing,
power and area model. Technical report, Compaq Computer Corporation Western Research
Laboratory, August 2001.

[94] J. Sile, B. Robic, and T. Ungerer. Asynchrony in Parallel Computing: From Dataflow to
Multithreading. Parallel and Distributed Computing Practices, 1(1), March 1998.

[95] Silicon Graphics Inc. Extraordinary Acceleration of Workflows with Reconfigurable
Application-specific Computing from SGI. http://www.sgi.com/pdfs/3721.pdf, 2004.

[96] Silicon Graphics Inc. General Purpose Reconfigurable Computing Systems.
http://www.sgi.com/pdfs/3721.pdf, 2004.

[97] Silicon Graphics Inc. Reconfigurable Application Specific Computing: Accelerating Pro-
duction Workflows. http://www.sgi.com/pdfs/3984.pdf, 2006.

[98] Virtutech Simics. DML 1.0 Reference Manual, Revision 1403. Virtutech, 2007.

Kyri
ak

os
 Stav

rou



265

[99] Virtutech Simics. Simics SunFire Target Guide, Revision 1403. Virtutech, 2007.

[100] Virtutech Simics. Simics user guide for Windows, Revision 1403. Virtutech, 2007.

[101] Virtutech Simics. Simics x86-440BX Target Guide, Revision 1403. Virtutech, 2007.

[102] Virtutech Simics. Simics Forum. www.simics.net, 2008.

[103] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankara-
narayanan, and David Tarjan. Temperature-Aware Microarchitecture: Extended Discussion
and Results. Technical Report TR-CS-2003-08, University of Virginia, April 2003.

[104] David B. Skillicorn and Domenico Talia. Models and languages for parallel computation.
ACM Comput. Surv., 30(2):123–169, 1998.

[105] David Slogsnat, Alexander Giese, and Ulrich Brüning. A versatile, low latency hyper-
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