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ΠΕΡΙΛΗΨΗ

Η διαχείριση έργων λογισμικού αποτελείται από διάφορες δραστηριότητες προγραμματισμού,

οργάνωσης, στελέχωσης, καθοδήγησης και ελέγχου. Οι αποφάσεις που παίρνουν οι διαχειριστές

έργων λογισμικού σ’ αυτές τις δραστηριότητες, καθώς και οι διάφορες πρακτικές που ακολουθού-

νται, πιθανόν να επηρεάσουν την επιτυχία ενός έργου λογισμικού. Η έρευνα που παρουσιάζεται σ’

αυτή τη διδακτορική διατριβή επικεντρώνεται ειδικά στην περιοχή του προγραμματισμού έργων

και, συγκεκριμένα, στις δραστηριότητες ανάθεσης πόρων και χρονοπρογραμματισμού εργασιών,

μέσα στις οποίες ένας διαχειριστής έργων πρέπει να αποφασίσει ποιος θα κάνει τι και πότε μέσα

σ’ ένα έργο λογισμικού.

Σ’ αυτές τις δραστηριότητες, οι διαχειριστές έργων χρειάζονται, συνήθως ταυτόχρονα, να α-

ναθέσουν μηχανικούς λογισμικού σε εργασίες και να προγραμματίσουν τον χρόνο εκτέλεσης των

εργασιών με σκοπό την ικανοποίηση διαφόρων στόχων και προϋποθέσεων. Ωστόσο, η ανάληψη

αυτών των δραστηριοτήτων είναι συνήθως πρόκληση για τους διαχειριστές έργων λογισμικού ε-

πειδή συνοδεύονται από αντικρουόμενους περιορισμούς χρόνου, κόστους και ποιότητας, οι οποίοι

δύσκολα εξισορροπούνται αποτελεσματικά. Επιπλέον, επειδή οι ανθρώπινοι πόροι θεωρούνται οι

μοναδικοί διαθέσιμοι πόροι για μια εταιρεία παραγωγής λογισμικού, είναι σημαντικό οι πληροφο-

ρίες που χρησιμοποιούνται σ’ αυτές τις δραστηριότητες να περιλαμβάνουν και τα χαρακτηριστικά

των εργασιών που θα εκτελεστούν, αλλά και τα χαρακτηριστικά των πόρων που θα εκτελέσουν

αυτές τις εργασίες.

Μια νέα τάση στην περιοχή αφορά στην συμπερίληψη της προσωπικότητας των μηχανικών λο-

γισμικού. Διάφορες μελέτες έχουν παρατηρήσει την επίδραση των τύπων προσωπικότητας πάνω

σε πτυχές όπως την απόδοση και την επαγγελματική ικανοποίηση, οι οποίες πιθανόν να μπορούν

να συνεισφέρουν στην επιτυχία ενός έργου λογισμικού. Επίσης, έχουν γίνει προσπάθειες καθορι-

σμού των επιθυμητών τύπων προσωπικότητας που απαιτούν τα διάφορα επαγγέλματα παραγωγής

λογισμικού, προκειμένου να ανατίθενται εργασίες σε μηχανικούς λογισμικού που ταιριάζουν κα-

λύτερα στην προσωπικότητά τους.

Η διατριβή παρέχει μια λεπτομερή περιγραφή διαφόρων ερευνητικών προσπαθειών που πραγ-

ματοποιήθηκαν υιοθετώντας μεθόδους πολυστοχικής βελτιστοποίησης με σκοπό την επίλυση τουCon
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προβλήματος της ανάθεσης πόρων και χρονοπρογραμματισμού εργασιών στα έργα παραγωγής λο-

γισμικού. Οι προτεινόμενες προσεγγίσεις που περιγράφονται σ’ αυτές τις προσπάθειες χρησιμο-

ποιούν πρακτικά κριτήρια που σχετίζονται με την παραγωγή λογισμικού, καθώς και αυστηρές, ρε-

αλιστικές προϋποθέσεις. Επικεντρώνονται κυρίως στον χειρισμό της μη-εναλλάξιμης φύσης των

ανθρώπινων πόρων, συμπεριλαμβάνοντας παράγοντες όπως την προσπάθεια και τις δεξιότητες

που απαιτούν οι εργασίες, τα επίπεδα εμπειρίας και τον ρυθμό παραγωγικότητας των μηχανικών

λογισμικού, και επιπρόσθετα τον τρόπο με τον οποίο οι μηχανικοί λογισμικού εργάζονται μαζί α-

νάλογα με τον τύπο της εργασίας που εκτελούν. Επιπλέον, μια από τις προτεινόμενες προσεγγίσεις

επιχειρεί να αναθέσει πόρους σε εργασίες βάσει την καταλληλότητα του τύπου προσωπικότητας

των μηχανικών λογισμικού.

Τα αποτελέσματα των διαφόρων πειραμάτων που πραγματοποιήθηκαν για την αξιολόγηση των

προσεγγίσεων δείχνουν ότι οι μέθοδοι βελτιστοποίησης μπορούν πράγματι να χειριστούν επαρ-

κώς τους συγκεκριμένους στόχους και περιορισμούς που υιοθετήθηκαν, και ότι οι προτεινόμενες

προσεγγίσεις έχουν τη δυνατότητα να αποτελέσουν μια πιο αποτελεσματική και πρακτική μέθοδο

για την ανάθεση πόρων και χρονοπρογραμματισμό εργασιών σε έργα παραγωγής λογισμικού.
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ABSTRACT

Software project management consists of a number of planning, organizing, staffing, directing

and controlling activities. Decisions taken by software project managers in these activities, as well

as the different practices followed, are likely to influence the success of a software project. The

research presented in this doctoral dissertation focuses specifically on the area of project planning

and, in particular, on the activities of resource allocation and task scheduling, in which project

managers must decide who will do what and when in a software project.

In these activities, project managers are required to assign developers to tasks and plan the

execution of tasks, often simultaneously, with the aim of satisfying several goals and assump-

tions. However, these activities are often challenging to undertake because they are accompanied

by conflicting time, budget and quality constraints, which project managers find difficult to bal-

ance effectively. Furthermore, because human resources are considered the only type of resource

available for software development companies, it is important that the information used for these

activities consists of both the characteristics of the tasks to be carried out, as well as the attributes

of the resources that will carry out these tasks.

A leading trend in the area involves taking into account the personality of developers. A num-

ber of studies have observed the effects of personality types on aspects such as performance and

job satisfaction, which can potentially contribute towards the success of a project. Also, there

have been attempts to determine the personality type required for different software development

professions in order to allocate developers to tasks that better suit their personality.

The dissertation provides a detailed account of several research attempts carried out that adopt

multiobjective optimization methods in order to solve the problem of resource allocation and task

scheduling in software development. The proposed approaches described in these attempts use

practical software-related criteria, as well as strict, realistic assumptions. They mainly focus on

dealing with the noninterchangeable nature of human resources by including factors such as the

effort and skills required by tasks, the experience levels and productivity rates of software devel-

opers, in addition to the way developers work together depending on the type of task carried out.

Furthermore, one of the proposed approaches attempts to allocate resources based on the suitability

of the personality type of developers.
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The results of various experiments carried out to evaluate the approaches show that the specific

objectives and constraints adopted can indeed be handled adequately by the optimization methods,

and that the proposed approaches have the potential to constitute a more effective and practical

method for resource allocation and task scheduling in software development.
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Chapter 1

Introduction

One of the biggest problems still facing the software development industry is the high rate of

challenged and failed software projects. According to the 2015 Standish Group CHAOS Report

[1]:

• 29% of software projects were delivered on time, within budget and with the required func-

tionality,

• 52% of software projects were delivered late, over budget and/or with less than the required

functionality, and

• 19% of software projects were cancelled prior to completion or delivered but never used.

These figures suggest that only three out of ten projects are likely to be completed successfully.

The group also reveals that small projects have a greater chance of succeeding than larger projects.

In fact, around 92% of successful projects are of small-to-medium sized, whereas the remaining

8% are classed as large or grand. Furthermore, projects following a traditional waterfall life-cycle

model have a much lower success rate (11%) compared to projects developed with agile processes

(39%). Considering the ever-increasing size and complexity of modern-day software products,

development companies are facing escalating pressure to deliver products to customers sooner,

cheaper and with higher quality than their competitors in order to remain viable in today’s compet-

itive software market. This pressure, however, hinders the probability of software projects success.

Tackling the issue of low software project success rates has been the focal point of many re-

searchers in the field of software engineering for a number of years. A variety of reasons have

1
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2

been suggested as the cause of this problem, both from a technical perspective (for example, the

ambiguous and unstable nature of requirements, the lack of end-user involvement, contradicting

stakeholder policies and the poor design of system architectures) and from a project management

perspective (for example, the lack of support from senior executives, competing priorities, cultural

or ethical misalignment and the lack of risk management). One of the most significant causes

is linked to the lack of proper practices to help project managers in their planning, organizing,

staffing, directing and control activities. Inadequate or insufficient practices can cause software

project managers to make incorrect decisions within these activities; for example, employing inac-

curate cost estimation techniques that lead to budget and schedule explosions or using inadequate

progress reporting and tracking tools that creates problems in change requests. Providing project

managers with effective methods, tools and techniques for these practices can, therefore, be con-

sidered central to the success of a software project.

1.1 Problem statement

Many researchers consider that practices related to planning activities are the most crucial

for the success of a software project, especially because these activities are required at the start

of a project; any problems, inaccuracies or oversights are likely to be propagated as the project

progresses. Specifically, planning activities require software project managers to undertake various

budgeting and scheduling tasks in order to determine how the software product will be built, how

much it will cost and how long it will take to deliver it to the customer. In order to answer these

questions, two activities need to be carried out, namely resource allocation and task scheduling,

during which software project managers decide what needs to be done, when and by whom. These

two activities are considered extremely important for the success of a software project because,

on the one hand, inaccurate task scheduling may cause significant delays in delivery and budget

overruns and, on the other hand, improper resource allocation can lead to an undesired low level

of quality in the software products.

Planning practices adopted by software project companies should aim to assign tasks to de-

velopers and arrange the execution of tasks simultaneously in a way that satisfies the objectives

determined by a project manager. However, despite the fact that many research attempts have

proposed approaches to solve this problem, there is still a lack of adequate tools and methods to

help software project managers carry out resource allocation and task scheduling for their softwareCon
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3

projects. Several of the approaches proposed up until now have significant drawbacks, particularly

because they often fail to take into account specific development-related factors and/or tend to relax

certain assumptions, both of which severely limit their applicability in actual real-world projects

in the software development industry.

Human resources (that is, software developers) feature prominently in the resource allocation

and tasks scheduling activities of software project managers. As a matter of fact, developers are

often regarded as ‘human capital’ and considered the only type of resource available in software

development companies [2]. As a consequence, human factors can greatly influence not only

decisions within planning activities, but also decisions in other activities (such as staffing and

directing). Researchers therefore consider these factors critical for the success of software projects

since they can affect aspects such as productivity, performance and job satisfaction, as well as

software quality. For this reason, a primary concern for software project managers is to make sure

that the resource allocation and task scheduling activities take into account the human-centred

factors of software developers and not just the technical characteristics of the software project.

One interesting aspect of human resources involves the personality of software developers.

Researchers have conducted several studies examining the importance of personality in software

development and how this aspect can help in allocating resources or forming development teams.

For example, there have been a number of studies that attempt to profile the personality type re-

quired by various software development professions [3]. These profiles can then be used to help

software project managers allocate resources more effectively by assigning developers to tasks

whose personality better suits the personality profile of the task. Other studies concentrate on as-

sessing which combination of personalities yield better-performing teams [4]. These combinations

can subsequently be used to help software project managers predict how well a team will perform

based on the personality types of the individual team members.

The purpose of the research reported in this dissertation is to propose a series of practical ap-

proaches that aim to help software project managers with the simultaneous allocation of resources

and scheduling of tasks in a way that satisfies certain objectives, including shortest possible dura-

tion, most experienced team, lowest possible cost. Specifically, the goal is to treat the problem of

resource allocation and task scheduling in software projects as a special instance of the resource-

constrained project scheduling problem, which is then solved using optimization techniques foundCon
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in the field of computational intelligence to generate optimal resource allocation and task schedul-

ing solutions. Given that a software project manager may want to allocate resources and schedule

tasks in a way that satisfies a number of objectives, it is necessary to make use of multiobjective

optimization methods where each objective is defined in a separate function and each assump-

tion/condition is specified in a separate constraint function. In order to reflect as accurately and

realistically as possible the factors that software project managers take into account, the functions

consider a variety of resource attributes and task characteristics, including

• dependencies between tasks,

• effort and skills required by tasks,

• interdependence type of tasks,

• levels of developers’ experience in skills,

• productivity rates of developers,

• salary of developers,

• personality of developers, and

• communication overhead between developers.

The resulting solutions obtained from the optimization methods are expected to consist of resource

allocation matrices showing which developers are assigned on each task and Gantt charts illustrat-

ing when each task is planned to be executed.

1.2 Research targets

The dissertation sets two main groups of research targets. The first group involves performing

a thorough investigation of the topic of resource allocation and task scheduling in software devel-

opment, and also analyzing the significance of these activities for software project managers. It is

important to determine the challenges and problems that software project managers encounter, as

well as the implications of these challenges and problems for software project companies. Con-

sequently, it is necessary to conduct a comprehensive review of related research work previously

carried out in the form of systematic literature reviews, surveys and proposed approaches. Ad-

ditionally, is also crucial to assess the most important technical and nontechnical factors that are
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5

or should be taken into account by software project managers in order to specify the attributes

of resources and the characteristics of tasks that will be used in formulating the objectives and

constraints of the optimization methods adopted in the proposed approaches.

The second group of research targets focus on the optimization methods adopted in the pro-

posed approaches and, in particular, involve evaluating howwell the various optimization methods

perform in solving the problem of resource allocation and task scheduling in light of the objectives

and constraints established in each approach. Taking into account the fact that the goal of the opti-

mization methods is to generate solutions that represent the best way to correctly allocate resources

and schedule tasks in a given software project, it is necessary to assess the quality of these solu-

tions. Specifically, it is important to assess the degree to which the optimization methods are able

to meet the objectives of each approach in order to examine how optimal the solutions generated

are. Similarly, it is also important to evaluate the extent to which the optimization methods are

able to satisfy the constraints of each approach in order to observe how valid the solutions gener-

ated are. Furthermore, it is essential to be able to compare the different optimization methods in

order to decide which one is the most adequate to possibly be adopted formally in a future method-

ology. Therefore, it is important determine how different optimization methods compare against

each other in terms of performance. Since the number of tasks/available resources may vary in

size, it is also necessary to assess how different optimization methods compare against each other

in terms of scalability.

1.3 Organization of the dissertation

The dissertation is organized as follows: To begin with, Chapter 2 introduces the research

area of resource allocation and task scheduling in software development projects, together with a

description of the main problems and current open issues that software project managers are faced

with. Chapter 3 then presents a literature review of various approaches that have been proposed

in the past as a way of solving the problem of resource allocation and task scheduling. Next,

Chapters 4–7 describe four approaches developed during the research that adopt multiobjective

optimization methods as a means to allocate resources and schedule tasks in software projects.

Following this, Chapter 8 provides an overview of the area of personality psychology, focusing on

the significance of using personality types in software development and, in particular, for resource

allocation and team formation. This chapter also provides a literature review of previous studiesCon
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and approaches that attempt to incorporate personality types of software developers. Chapter 9 then

presents the details of an approach proposing the use of multiobjective optimization methods in

order to allocate resources base on the personality types of software developers and the personality

profile of software professions. Finally, Chapter 10 concludes the dissertation by giving a summary

of the research work carried out and recommendations for future research.
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Chapter 2

Resource Allocation and Task Scheduling in Software Development

This chapter introduces the key research areas of this dissertation: allocation of resources and

scheduling of tasks in software development projects. Resource allocation involves assigning a

developer or a team of developers to carry out a task, whereas task scheduling involves specifying

the time frame in which a developer or a team of developers will work on a task. Both together

attempts to answer the question: who will work on what, and when? Generally, they are both

carried out by project managers in the initial phases of a software project, specifically as part of

a project manager’s planning activities. However, depending on the practices followed by the

software development organization and the information regarding the actual software project, the

way these are carried out can vary. In some cases, a software project manager is required to allocate

one or more developers to each task and schedule the tasks appropriately, whereas in other cases

tasks are distributed to already predefined teams of developers. There are also cases where a project

manager only needs to carry out team formation, that is, to put together a group of developers

without assigning them to specific tasks.

2.1 Principles of software development

According to Reifer, software development consists of three core principles: process, product

and people [5]. These principles come together in the form of a software project, where software

developers (the people) use tools and methodologies (the processes) to build software systems (the

products). Over the years software development has evolved ‘from an art, to a craft, to a proper

engineering principle’ [6].

7
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2.1.1 Process

Software development organizations establish a series of phases and procedures containing

a number of activities for developers to perform. The most common steps include requirements

elicitation and analysis, specification definition, architectural and analytical design, implementa-

tion and integration, testing, and maintenance. Various models exist that combine these steps into

formal life cycle structures with the sole purpose of identifying and describing all the activities

necessary to be undertaken throughout a software product’s development. Examples of available

methods include the waterfall model, the spiral model, agile software development processes (such

as extreme programming, XP), and IBM’sRational Unified Process, to name a few. Due to the large

number of models there have been attempts to standardize these models, as in the ISO/IEC/IEEE

12207 standard (Systems and Software Engineering – Software Life Cycle Processes) [7]. Apart

from these primary process development models, there is also a variety of assistive processes aim-

ing to support the core processes, such as those involving configuration management, documen-

tation and quality assurance. In order to carry out the development process a range of tools and

applications are required to help developers in various stages of a software product’s life cycle.

Some tools, known as integrated development environments (IDEs), give support for all phases in

the life cycle, while others provide a phase with individual and tailored assistance, such as graph-

ical user interface designers, compilers and debuggers.

Processes will only be useful for a software development organization if its developers fol-

low them properly and consistently. By doing so the organization will be in a position to build a

management infrastructure whereby developers will easily be able to share experiences. However,

an organization must periodically review its processes using metrics and assessments in order to

improve them. For this reason, the Software Engineering Institute of Carnegie Mellon University

has devised the Capability Maturity Model (CMM) that allows organizations to rate the maturity

of their practices [8].

2.1.2 Product

Customers and software development organizations meet together to determine the objectives

and scope of the software to be built. Hence, a software product defines what is to be built and

its purpose in order to help those involved come up with alternative solutions, identify possible

constraints and assist in management decisions. Depending on the customer’s needs, software
Con
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products come in different types, such as single applications, application suites, business and con-

sumer products, and research and development products. In order to build a high quality software

product it is recommended that organizations follow an engineering methodology because the so-

lution selected will have to satisfy both user’s needs and technical requirements [5]. The quality

of a software product can be measured in terms of the degree of certain behaviours [9], for in-

stance, performance, correctness, maintainability, robustness, reliability, availability, and portabil-

ity. Reifer stresses the importance of involving the customer in the development of a product for

two main reasons: First, to get as much out of them as possible in terms of knowledge (especially

in situations where domain knowledge is rather technical and difficult to understand by develop-

ers), and second, to get them to participate in quality assurance activities [10]. Joint Application

Development (JAD) is an example of a process that promotes such user participation.

Some of the problems concerning software product development include gold plating (where

features are enhanced despite having implemented user requirements) and feature creep (where

additional/unwanted functionalities are added to the product making it more complicated and less

efficient). In both cases, these are likely to cause budget and schedule overruns. Another caveat

of software products lies in the documentation. If not executed as a planned activity the time spent

on the composition of documents may actually be wasted effort on pointless paperwork.

2.1.3 People

In software development organizations, people are considered a critical success factor because

it is through their skills and experience that processes are followed to build software products.

Keeping staff happy, motivated and stimulated in a solid working environment is very significant

for software organizations because it can help increase levels of creativity and innovation. In

addition, a developer’s work is often dependent on theworkforce practices of the organization, such

as communication, collaboration and communication. Thematurity of an organization’s workforce

practices can be rated using the SEI’s People Capability Maturity Model (PCMM) [11].

People and their role in teams are highly important for project success, and they are even

taken into account in many cost estimation models, as for example in the COCOMO model [12].

Acuña et al. characterize employees in software development organizations as ‘human capital’ –

the most important asset of the company [2]. The more effectively this capital is managed, the

more competitive benefit is achieved over other organizations. Due to the importance of people inCon
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10

software development organizations, there is also a great deal of emphasis given to human resource

management practices in order to effectively hire, train, motivate or appraise software developers,

and also to decide on whether to retain of fire software developers.

2.1.4 Challenges and issues

In order for a software project to be successful, management of these three principles must be

successful. However, due to rapid changes in the software development industry, many technical,

financial, political, social and even psychological factors can prevent the constant and effective

management of these principles. For example, changes in technology may force organizations

to change development strategies in order to remain competitive. This in turn may require the

adoption of new processes, despite the fact that employees may not be familiar with these new

processes. Financial factors may also cause difficulties in managing both people and product,

especially concerning project budget. Also, stress, as a psychological factor, can lead to key players

resigning, while issues with trust amongst team members can be attributed to social factors [5].

A summary of these challenges are shown in Table 2.1. Regarding the process perspective

of software development, one of the major obstacles facing organizations is actually finding and

following a suitable process to adopt and revise accordingly. Also, the fact that software project

management involves many activities any process adopted will require a specialized and most

likely complex system. Concerning the product dimension of software development, the size and

complexity of software systems is the foremost issue arising. Also, the volatility of requirements

and possible constant changes can cause product problems. With respect to the people aspect of

software development, the primary issue is actually dealing with software professionals, because

it is commonly assumed that each employee needs to be handled differently as unique individuals.

Furthermore, assigning people to tasks is still an open issue that remains unsolved, mainly due to

the various approaches and objectives that resource allocation focuses on.

2.2 Software project characteristics

A software project has a well-defined set of objectives, the satisfaction of which leads to the

successful delivery of a tangible product. Before developers can begin satisfying a project’s ob-

jectives, they will need to have a collection of product requirements that have been approved by

the customer. In addition, the development company and the customer must agree upon a project
Con

sta
nti

no
s S

tyl
ian

ou



11

Table 2.1: Summary of software development challenges and issues

Process Product People

• Adhering to practices [13].

• Coping with the lack of plan-

ning [14, 15].

• Working out conflicts when

collaborating software compa-

nies use different development

methodologies [16].

• Satisfying the need for com-

plex project management sys-

tems [17].

• Meeting the size, speed and

complexity requirements of

modern systems [13, 18].

• Managing volatile user re-

quirements (moving target

phenomenon) [10].

• Remaining competitive due to

the globalization and interna-

tionalization of markets [19].

• Keeping up with technology

[20, 21].

• Dealing with people [10, 18,

22].

• Assigning human resources

successfully [10].

• Handling the lack of coordina-

tion activities [23].

• Applying theory to practice

[21, 24].

schedule and a budget for the software products to be delivered. These are usually estimated by

constructing a plan of the tasks to be performed and the relationships between them [5].

In the majority of projects, work is undertaken by software development teams; according to

the Juran’s Pateto principle, the ’vital few’ 20% of a project’s resources will be used for 80% of the

work, while the ’useful many’ 80% of a project’s resources will be used for the remaining 20% of

the work. The assessment of the work, usually made by project managers, is often subjective de-

pending on the practices adopted in assessing the work and the developers. Nevertheless, project

managers are still more likely to reward developers with control and authority through perfor-

mance in their work rather than given through the position that a developer holds. Also, tasks are

considered unique and nonrepeating, meaning that each task in the project aims to produce a dif-

ferent project-specific output. Despite having specific outputs, for projects requiring innovation,

allowing teams to be creative and flexible is crucial for success [25].

2.3 Software project management

Brooks stated that software and its development has inherent attributes, and the problems

caused by these attributes cannot be solved by a single ‘silver bullet’ [26]. These attributes are:

• Complexity – high effort and cost due to uniqueness of products.

• Conformity – inconsistent, ambiguous and arbitrary requirements of clients.

• Changeability – expectation that changes are to be made without difficulty.
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• Invisibility – difficulty in perceiving and physically seeing the progress of software products.

Because of these attributes, it is necessary to distinguish software project management from other

types of project management in other disciplines. Software project management involves the plan-

ning, organizing, staffing, directing and controlling of software development projects [5, 6]. A

software project manager is therefore required to make estimates of the amount of effort a project

will require, the cost of the project, as well as the scheduling of work packages, tasks and activities.

Also, project managers are expected to delegate responsibility to developers, including designating

developers with authority and holding developers accountable where problems and issues arise. At

the same time, project managers have a role to lead and motivate their developers in order to get

the most out of their creativity and knowledge. In addition, throughout the development process,

they will need to be kept up to date on the project’s progress, be made aware of any problems

encountered, and keep track of their development teams. All these activities are subject to a num-

ber of constraints, such as time, money, people, materials, quality and standards. Due to these

constraints, software project management has witnessed various changes, as stated by Pyster and

Thayer [13]. Some of these changes include

• creation and adoption of software project management standards,

• introduction of new (evolutionary) software development life-cycle models and approaches,

• credentialing of software project managers,

• usage of distributed workforces, and

• building of product lines.

To help them, software project managers make use of their own past experiences and previ-

ously acquired knowledge together with the wide range of available commercial tools and tech-

niques (such as Project®[27], Project KickStartTM [28], Basecamp [29], MindViewTM [30] and

RationalPlan MultiProject [31]). A study of the impact of project management information sys-

tems by Raymond and Bergeron found that such systems improve efficiency and effectiveness

with respect to project planning and control activities, as well as general project performance and

overall success [19]. An example of a project management information system is described by

Petter and Vaishnavi, who support the reuse of software project experiences in the form of narra-

tives illustrated through the use of wikis [32]. However, not many of these available applications
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are tailor-made for the software development industry. A survey conducted by McBride highlights

this, especially for monitoring, controlling and coordination activities, in which project managers

use a number of different mechanisms for a given activity but also use the same mechanism for a

number of activities [20].

2.4 Resource allocation and task scheduling

During the planning activities of a software project, a project manager must allocate resources

and schedule tasks by determining what work will be done, how and when it will be done, and who

will do it. This consists of identifying the various products to be delivered and the activities that

need to be executed, as well as estimating the effort for each activity. Hughes lists the methods

available to identify a project’s activities as follows [33]

• Activity-basedmethods, which use techniques such as brainstorming, data from past projects

and work breakdown structures, to determine which activities the project will comprise.

• Product-based methods, which use practices such as product breakdown structures and prod-

uct flow diagrams, to determine which products the project will contain and transform them

into activities.

• Hybrid methods, which apply the work breakdown structure on the products of the project.

Due to the importance of these responsibilities, resource allocation and task scheduling normally

have priority over all other activities. Furthermore, resource allocations and task schedules of a

project need to be updated regularly to coincide with its current status.

The most common pieces of information that a project manager is required to provide includes

a description of the tasks and their requirements, the start and finish times (and consequently,

duration) of each task, the dependency relationships between the tasks, as well as the descriptions

of the resources that will execute the tasks [34]. The most common representations include

• Gantt charts, which represent the activities of a project with a bar chart showing the start/fin-

ish times and duration of each task. This is the most common representation used by project

managers.

• Task precedence graphs, which show a project as a network of activities where nodes denote

the activities and arcs denote start/finish dates of the activities.
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• Resource allocation charts, which display the work to be carried out by each resource in the

form of a bar chart. Only the tasks performed by a worker are displayed for each resource.

• Programme Evaluation and Review Technique (PERT), which describes a project as a net-

work of activities, where arcs denoted the activities and nodes denote start/finish dates of

the activities.

• Critical Path Method (CPM), which computes the shortest possible duration of a project

which corresponds to the longest path of an activity network.

• Earned Value Analysis (EVA), which measures project progress by comparing planned work

(budgeted cost of work scheduled) with earned value (budgeted cost of work performed)

using earning value rules.

However, one of the issues with these is that the representations often ‘cannot model the evo-

lutionary and concurrent nature of software development’ [35]. Also, in most cases, information

at the beginning of a software project is often imprecise or unavailable. As a result, a project

manager’s estimates may be vulnerable to mistakes, which can significantly affect the progres-

sion and overall success of a software project. Adding further complexity for project managers

is the fact that allocating developers and scheduling tasks are not independent activities, which is

why carrying them out as such may be considered unsuitable [35]. Allocating resources to tasks

without considering how tasks are to be scheduled or scheduling tasks without taking into account

how resources are to be allocated could potentially cause problems for a software project, such as

availability conflicts, since both activities are affected by the same constraints. Therefore, in order

to avoid the possibility of future obstacles, both activities need to be worked on simultaneously.

The most significant challenge facing project managers is the fact that resource allocation and

task scheduling in software development projects is a naturally complex and computationally-

intensive process. In the majority of cases, project managers will have several considerations

(such as budget and time constraints) that need to be satisfied when carrying out these activities.

Unlike in other manufacturing, industrial and engineering projects, a software project’s workforce

is solely made up of knowledge workers. As a result, software development relies heavily on the

cognitive and intellectual competencies of the individuals, as well as their ability to innovate and

be creative. Bearing these considerations in mind makes the allocation of resources and schedul-

ing of tasks much harder for software project managers. What’s more, project managers cannot
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completely depend on using experiences from previous projects nor can they use past project infor-

mation unless as weak guidelines because of the fact that software projects are different every time.

The challenge is made even more difficult due to the fact that software projects are intangible in

nature and labour intensive, and thus adding to the levels of complexity and uncertainty. For these

reasons, the problem of resource allocation and task scheduling in software development is classed

as a special case of the resource-constrained project scheduling problem (RCPSP), and therefore is

considered to be an NP-hard problem. This means that large-sized instances of the problem cannot

be solved to optimality by exact solution methods in reasonable time (polynomial time) [34, 36].

Project managers often struggle to use a manual approach because there are many different com-

binations to be examined. As a result, a brute-force, exhaustive search to find the best solution

will often prove inadequate and impractical, especially if they have a limited amount of time at

their disposal. Consequently, the majority of research works view the problem as an operational

research problem, where proposed solutions make use of techniques that carry out combinatorial

optimization of various software criteria, such as cost, duration, or number of defects. Examples

include mathematical modelling methods and computational intelligence techniques, where spe-

cialized algorithms are employed to locate optimal or near-optimal feasible solutions as a means of

providing better and faster support to decision makers. Several of these approaches emphasize that

the allocation of developers and scheduling of tasks needs to take into account certain attributes of

the available workforce, such as the capabilities and experience of developers in certain skills, as

well as their cost. A comprehensive analysis of these research approaches for resource allocation

and task scheduling in software development are presented in Chapter 3.
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Chapter 3

Related Work

This chapter provides a review of research work carried out related to the problem of resource

allocation and task scheduling for software development. It gives a description of a number of

proposed approaches that attempt to solve the problem in a similar fashion as to the ones devel-

oped as part of the research presented in this dissertation. In general, this problem can be consid-

ered to belong to the field of operational research, which aims to solve decision-making problems

found in many different disciplines, including natural sciences, engineering and social sciences.

Operational research problems are solved by locating optimal or near-optimal solutions using a

wide range of specialized methods, the most common of which include mathematical modelling

approaches and computational intelligence techniques. Both these methods have been used exten-

sively to solve the problem of resource allocation and task scheduling in software projects, but they

have also been successful in solving a variety of other software engineering problems, including,

regression models for estimating software project costs and effort [37], classification methods for

evaluating software quality assessment [38], clustering techniques for software component cate-

gorization and retrieval from repositories [39], and optimization algorithms for the automatic and

dynamic generation of test cases [40].

Approaches using mathematical modelling represent the problem of resource allocation and

task scheduling in software projects as a model using variables, operators, equations, functions

and other mathematical notations and concepts, and then attempt either to solve the model as an

optimization problem or to use the model for prediction. Examples of mathematical modelling

techniques include linear programming, statistical modelling and queuing theory. Approaches

using computational intelligence techniques adopt various algorithms inspired by nature to solve

16
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complicated and complex real-world problems like resource allocation and task scheduling in soft-

ware projects. These techniques aim to achieve specific goals by imitating both individual and

collective behaviours and qualities of human and other living beings with regards reasoning, logic

and inference, learning and knowledge processing, in addition to reproduction and evolution. The

most common computational intelligence techniques include evolutionary algorithms and swarm

intelligence, artificial neural networks and fuzzy logic.

3.1 Mathematical modelling approaches

3.1.1 Linear programming

The first type of mathematical modelling concerns linear programming, which requires a linear

objective function to be minimized or maximized in order to find optimal solutions to problems de-

scribed by linear relationships subject to certain problem-specific restrictions [41]. Kantorovich,

a Soviet mathematician during World War II, first introduced this approach as a means to solve

several planning problems for the military, including how to optimally assign, schedule and trans-

port resources based on their availability and cost, so that army expenses are reduced while enemy

losses are increased. Consequently, linear programming has been considered by researchers as a

suitable technique for helping software project managers in their planning activities also.

Li et al. used integer linear programming to help software development organizations cope

with the pressures of limited resources and decreased time-to-market intervals by proposing two

models concerning requirement scheduling and software release planning [42]. Their first model

takes into account the precedence dependencies of requirements and the skills of available teams

of developers to generate a project schedule for the development of requirements of a new release

within the shortest possible make span, whereas their second model integrates requirements se-

lection and software release planning of a project with a fixed deadline to maximize revenues in

addition to providing an on-time delivery schedule. One of the assumptions of this attempt is that

requirements are assigned to teams of developers to implement and not to individual developers.

Additionally, for testing their proposed approach the authors used both example and real-world

datasets. The authors do point out, however, that a mathematical model cannot stand alone as a

project management decision support system since other real-world factors influence the decision-

making process, such as psychological, personality and political factors.Con
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Another methodology using linear programming is presented by Otero et al., which was de-

veloped to tackle the issue of project manager subjectivity in resource allocation [43]. The authors

highlight that ineffectual resource allocation can lead to many problems for development organi-

zations, such as ‘schedule overruns, decreased customer satisfaction, decreased employee morale,

reduced product quality, and negative market reputation’ [44]. They therefore proposed the Best-

Fitted Resource methodology that works to measure the suitability between the skills required by

tasks and the skills possessed by the available resources. Project managers can then use the results

from the methodology to decide on the most suitable (optimal) allocation of resources based on

their capabilities. To test their approach the authors provided a small sample resource allocation

scenario to 30 subjects, consisting of software engineers and project managers from the industry

and also computer science students and professors from universities, and asked them to perform a

ranking of the available resources based on their capabilities in the required skills. The results of

this survey were then compared to the results obtained from their methodology, showing that such

approach had potential in allocating resources to tasks.

Otero et al. presented another similar multicriteria decision-making methodology for software

task assignment [45]. Here, they state that there is evidence that ineffective human resource project

planning is the main reason that software development projects fail [46]. The methodology uses

a desirability function as a means of assigning tasks to developers in cases where there are no

optimally suitable developers in the existing workforce. It takes into account the capabilities of

resources in skills, the required levels of expertise, as well as the level of significance of skills

required by tasks and task complexities. A significant aspect of this approach is that it can be

extended to take into account project-specific factors that a software project manager decides are

important according to the needs of the project. An artificial case studywas used to demonstrate the

methodology, consisting of a scenario where a task needed to be assigned to one of ten candidate

developers based on their skill assessment and associated cost with respect to the required skills

of the task. On a practical level, the authors state that the approach can be adopted by software

project managers using a simple spreadsheet implementation. However, no formal description of

a tool is provided. Although it seems sensible to exploit the strengths of developers based on what

each task requires, this is only realistically possible if the developer is available to carry out a task.

The approach however does not address the issue of availability when computing the desirabilityCon
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function and does not deal with task scheduling, which often influences or comes hand-in-hand

with resource allocation.

3.1.2 Branch and bound methods

Branch and bound methods are a combinatorial approach that evaluate candidate solutions in

order to minimize or maximize a certain objective function. They were introduced in 1960 by

Land and Doig [47]. In these methods, all candidate solutions are stored at the root of a tree.

Iteratively, they apply the concept of ’branching’ to divide (or ’split’) the search space into smaller

spaces (branches) and then attempt to optimize the objective function by exploring these branches.

Each branch is assessed to determine whether or not it satisfies the lower and upper bounds of the

optimal solution. If a branch cannot satisfy these bounds then the solutions it contains are discarded

by ’pruning’ the search space they reside in.

Bellenguez and Néron proposed a multiskill project scheduling approach that considers the

assignment of activities to resources possessing different levels of skill abilities [48]. Specifically

in this approach, each activity requires specific skills at a fixed minimum level and has a time

window for execution. Additionally, the staff available to undertake these activities possess one or

more of these skills at different levels. The objective is to allocate resources so that the minimum

level of skill is satisfied by the assigned developers in order to complete the project with the shortest

possible make-span. Two lower bounds were used in the approach to prune the search tree. The

first lower bound is based on blocks and uses a graph of compatibility to test whether a pair of

activities are able to be executed simultaneously without violating the resource constraints and the

precedence constraints. The second lower bound is based on energetic reasoning and detects if

all the necessary parts of the activities that have to be processed in a given time interval can be

executed or not. Experimental results using 180 generated data sets showed that the two lower

bounds proved to be both complementary and efficient.

The authors also used a branch and bound method in another similar multiskill project schedul-

ing approach [49], which adopts various decomposition rules at leaf nodes, as well as several

branching strategies regarding maximum slack activities, stable set activities and loaded time-

interval activities. The results showed that the approach works well on small and average size

instances, whereas less efficiently on most of the large-sized instances. One of the drawbacks inCon
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both these approaches is the need for each activity to be set a time window of execution, which

may prove difficult for software project managers to determine at the start of the project.

3.1.3 Probabilistic modelling

Probabilistic modelling is a mathematical modelling approach that uses data (usually historical

data) to forecast the conditions of different future states of a problem by calculating the probability

of certain outcomes. A characteristic of this approach is that one or more of the variables in the

model can be random.

Padberg presented a probabilistic project scheduling model, which focused on using schedul-

ing strategies to help software development organizations to manage their human resources more

effectively, arguing that software developers are the most valuable resources, and that software

project managers need a useful scheduling support tool, as opposed to a common cost estimation

tool that simply predicts the overall development effort needed to carry out a project [50]. Specifi-

cally, in the approach scheduling strategies represent, in quantitative terms, the effect of decisions

regarding development costs and duration on the current state of a project. Once a strategy is fixed,

it is inserted into the model, which computes a probability distribution estimating the completion

time and cost by using several technical and non-technical factors, such as scheduling constraints,

adopted software processes and complexity of components to be developed, as well as skills and

experience of the human resources. Stochastic optimization techniques are then applied to optimize

the expected duration or the cost of the project with regards to the allocated resources. It is impor-

tant to model the intrinsic uncertainty that is part of the software process regarding the duration of

activities and also the events that occur during a project. The author, therefore, claims that using

a probabilistic approach can help deal with the fact that events in a project can occur with a par-

ticular likelihood. The approach considers a project to be broken down into components, to which

only one team is assigned at any given time. An advantage to the approach is that it allows a team

to interrupt their work on a component in order to rework a previously completed component. In

addition, it takes into account the availability of development teams as well as the precedence rela-

tionships between components. However, overall this approach can only be applicable in software

companies who have predefined teams of developers, with each team possessing the know-how to

undertake the development of the component. For small-to-medium-sized companies that do not

often have such luxury, this could be impractical.Con
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Padberg later implemented his probabilistic scheduling model as a discrete simulation model

for project managers to use as a tool to provide feedback and comparisons among varying strategies

[51, 52] and also implemented a variation of the value iteration algorithm to generate optimal

scheduling policies in the model [53, 54]. The premise of these works remains the same as in

his previous approaches; that uncertainty inherent in the task durations can only allow a software

project manager to create a schedule wherein the duration and cost are ‘likely’ to be minimized

and so it is vital for software project managers to be able to apply dynamic scheduling policies.

3.1.4 Queuing theory

Queuing theory can be used as a mathematical model to simulate a system providing services to

customers (human or otherwise) as they wait in line to be served. In general, this method attempts

to minimize the duration and size of delays subject to constraints and, therefore, has practical

application in problems such as scheduling, employee allocation, facility design and management,

and traffic flow management.

Antoniol et al. used this technique in their approach concerning the allocation of resources

in a large software maintenance project [55]. Specifically, the authors made use of stochastic

simulations of queuing networks as an instrument to evaluate the probability that the project meets

its deadline as the project is being carried out.

Jalote and Jain implemented a critical path/most immediate successor first approach to resource

allocation targeting software projects that are to be developed by multiple teams across different

geographically distributed time zones [56]. With a rise in the number of organizations adopting

global software development, project managers face new communication and coordination issues

in addition to technical and managerial problems. Therefore, they suggest a 24-hour software

factory model that utilizes project task precedence graphs and available resources to satisfy three

types of constraints: operational, skill and resource, in order to generate a near-optimal software

project schedule with the shortest make span.

3.1.5 Constraint satisfaction

Constraint satisfaction is amethod that is adopted as ameans ofmodelling and finding solutions

to combinatorial problems by imposing conditions on variables in mathematical functions that are

all required to be satisfied. They feature in many artificial intelligence fields and other disciplines,Con
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including planning, scheduling and logistics. Well-known examples of problems that can be solved

using this method include map colouring, job-shop scheduling and even Sudoku puzzles. With

respect to the software industry, the constraints regarding development projects predominantly

concern budget and schedule and quality. Therefore, this method is adopted in order to attempt to

satisfy the restrictions surrounding these issues.

Barreto et al. proposed the use of constraint satisfaction as an optimization approach to soft-

ware project staffing, stating that process productivity and product quality are highly associated

to the abilities of available resources [57]. The abilities taken into consideration included skills,

knowledge, experience, capabilities and roles, and together with the characteristics of a project’s

activities and any development organization constraints, various utility functions can be maxi-

mized or minimized depending on the project manager’s needs. The possible optimizers imple-

mented consisted of most or least qualified team, cheapest team, smallest team, and best partial

solution team. It is assumed that tasks are broken down into small units of work to which only

one developer can be assigned. Once the software project manager decides which these tasks are,

the tool performs optimization in order to locate the developer assignments that best fit the chosen

utility function. The approach concentrates solely on the allocation of resources, while the starting

and finishing times of tasks are known beforehand.

As an extension to their previous approach, Barreto et al. incorporated a mechanism to also

handle developer productivity [58]. The authors state that the time taken to carry out a task is

affected by the developer’s level of productivity. Hence, the approach proposes various productiv-

ity modifiers computed based on the experience, the profession or the activity itself. A software

project manager selects to apply one of these modifiers and then a new duration for each task is

estimated accordingly (either increasing or decreasing it based on the developer assigned). A new

utility function was subsequently implemented to enable assignments yielding the fastest team.

The ability to factor in productivity is very important for software companies as the accuracy of

budget and schedule estimates can be improved.

3.2 Computational intelligence techniques

3.2.1 Evolutionary algorithms

Evolutionary algorithms are a class of population-based algorithms that stem from the the-

ory of natural evolution. They are most widely used to solve search-based problems that require
Con
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some form of optimization due to their ability to explore and exploit a problem’s search space

more efficiently and effectively for the purpose of locating optimal/near-optimal solutions. Conse-

quently, evolutionary algorithms have been commonly applied directly or indirectly to the problem

of resource allocation and task scheduling in software development projects. In order to find op-

timal/near-optimal solutions, evolutionary approaches evaluate each individual in the population,

which represents a candidate solution, using an objective function that rates the fitness of solutions

and checkswhether they satisfy various constraints. Stronger candidates are passed into subsequent

generations whereas weaker ones are discarded, leading to the detection of optimal/near-optimal

solutions.

One of the earliest instances of using evolutionary algorithms for software project resource

allocation and task scheduling is found in the work of Chang, Chao, Hsieh et al., who formalized

a model for software project management, namely SPMNet, in the mid-90s [59]. Their approach

focuses on the fact that software development organizations fail to assign the right developers

to the right tasks due to the difficulties faced by project managers in handling the high level of

complexity involved in finding optimal/near-optimal schedules. Their approach employs a single-

objective genetic algorithm as a ‘schedule optimizer’ aiming to minimize the total duration and

cost of a software project through a process of assigning software developers to tasks [59, 60].

One of the practical benefits of the formal software management model proposed is that it allows

software project managers to track the progress of a project by working together with develop-

ers and customers. It also addresses the issue of risk management by enabling the pre-executing

SPMNet and, hence, predicting the future states of a project. Over the years, this model has been

significantly extended to support features to deal with additional software project management is-

sues, such as partial assignment of developers to tasks, developer overload, and multiple project

scheduling [34], in addition to developer reassignments, task suspensions and resumptions, learn-

ing, and task-specific deadlines [35].

Ge and Chang also used the schedule optimizer to implement a capability-based scheduling

framework, in which task durations are calculated through system dynamics simulation that fo-

cused on the capabilities of the available personnel [61]. The authors state that it is important to

consider developers’ capabilities because they can influence a team’s average productivity, which

is determined by factors such as individual productivity, overworking, and communication over-

head. Being able to simulate the effect of an assignment based on the capabilities of the developerCon
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going to carry out a task could provide software project managers vital information at any stage

during the project. However, exact details on how system dynamics simulation manages to gen-

erate task durations are not provided, which severely limits the assessment of its applicability in

real-world settings.

An extension to the capability-based scheduling framework is suggested by Jiang et al., who

incorporate personnel risks based on historical data during the assignment process [62]. This ad-

dition is aimed at helping software project managers identify, analyse and monitor possible risk

factors arising from human activities (for example, late-in-the-day coding) and allow them to reg-

ulate resource assignment. Furthermore, the authors adapt the previous genetic algorithm to a mul-

tiobjective schedule optimizer, employing a weighted sum method to allow for trade-off solutions

to be generated. Another approach using multiobjective optimization was implemented again by

Ge to provide a framework for scheduling and rescheduling software projects [63]. The approach

takes into account the skills and capabilities of available developers and attempts to provide an op-

timal project schedule based on efficiency (minimum cost and duration) and also stability factors

(minimum impact of disruptions caused by rescheduling developers).

Alba and Chicano also employed genetic algorithms to develop an automated tool to allocate

resources to tasks taking into account duration, resource skills, cost and global complexity [64, 65].

Their research work was centred on the fact that one of the goals of software project managers is

to reduce both the cost and the duration of software development projects, even though these two

goals can be conflicting. Each individual in the population is an assignment matrix representing

the allocation of resources to tasks. The quality of each assignment matrix regarding cost and

duration is evaluated through two objectives using the salary of each developer, the degree of ded-

ication each developer is permitted to work on each task and the effort required for each task. The

project’s schedule is constructed directly as the result of which resources have been allocated to

each task. As the algorithm executes, solutions converge to the optimal/near-optimal allocations

and schedules. By allowing project managers to adjust weights according to the problem at hand,

they have the ability to perform different scenario analyses and make better decisions regarding

the software project. This is a significant feature because the importance of each criterion is sub-

ject to the software being developed within the project, thus it is reasonable to expect a software

project manager in some cases to want to give emphasis on minimizing the cost of the project andCon
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in other cases to want to focus on minimizing the project’s duration, depending on which crite-

rion he or she considers more important. One drawback to the approach, however, relates to the

way that developer skills are handled. Specifically, the skills possessed by developers are treated

as Boolean; either a developer possesses a certain skill or does not, and this information is used

to evaluate whether the skills required by the project’s tasks are satisfied in the form of a con-

straint. However, in reality, most project managers do not treat skills in such way but rather take

into account that developers possess skills at varying levels. Therefore, the approach would make

more sense to address this as part of the evaluation of objectives (that is, as an additional crite-

rion for assigning developers to a task) rather than part of the assessment of the constraints. A

comparison of several multiobjective evolutionary algorithms using various quality indicators was

subsequently performed in Luna et al. [66] and Chicano et al. [67] using the same representation,

that is, with each solution comprising a series of developers possessing a set of skills, which are

matched against the skills required by the project’s tasks. None of the experiments in this group

of approaches, however, has been tested on real-world software projects. Instead they have only

been applied to a collection of simulated projects, which were created by an instance generator that

randomly creates a set of tasks (with associated costs and required skills) and a set of developers

(with associated salaries and skills possessed). The randomness of the generated software projects

may not always accurately reflect, for example, the correlation between skill set and salary of a

developer where higher-skilled employees are more likely to be paid more.

In the approach proposed by Duggan et al., project managers supply the complexity of the

packages to be developed (using McCabe’s cyclomatic complexity measure [68]) and the profi-

ciency (from novice to expert) of the available software engineers in each of the packages, and

using a multiobjective genetic algorithm aims to find an optimal solution that minimizes the num-

ber of defects per unit of complexity and minimizes the duration of the project with a specific

assignment of developers [69]. However, software project managers may find it difficult to adopt

this approach because it is strictly focused on allocating resources and scheduling tasks belonging

to implementation phase of a development project, and only if the project is developed using an

object-oriented approach.

Kapur et al. proposed a hybrid approach, which employs integer linear programming in con-

junction with genetic algorithms for resource scheduling and allocation, targeting planning prod-

uct releases [70]. The authors emphasize the fact that software developers have different levelsCon
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of skills and so their goal is to help project managers assign the most qualified developers to the

required tasks in order for them to achieve maximum productivity, which in turn leads to a product

release offering features that maximize business value. The optimization carried out using the ge-

netic algorithm helps software companies decide which features should be included in a particular

release for its customers. The two-step method was applied to a real-world project carried out

at Chartwell Technology, which specializes in developing online gaming and gambling software,

demonstrating how change requests, user requirements and improvements were planned and or-

dered. This approach, however, can only be used for allocating and scheduling human resources

for software projects developed incrementally. Ngo-The and Ruhe further develop this two-phase

approach again aimed at incremental software development [71]. The authors use integer linear

programming to fix an upper bound to the maximum possible achievable business value according

to stakeholders’ satisfaction, and then employ a genetic algorithm to evaluate this value and sub-

sequently find an optimal/near-optimal allocation and schedule of developers to tasks in order to

plan which features are to be included in each release and which are to be postponed. The approach

also allocates non-human resources, such as capital, during the assignment procedure. One of the

benefits of the approach, as stated by the authors, is that project managers can replan features and

reschedule resources if requirements are changed or new requirements are introduced by simply

using the same two-phase approach with modified inputs and parameters.

Several attempts carried out by Antoniol et al. had the sequence of execution of work packages

and the assignment of teams to work packages evaluated using a hybrid of queuing simulation and

a single-objective genetic algorithm [72, 73]. A shift to a multiobjective genetic algorithm was

then made in the approach suggested in Gueorguiev et al., which highlights the difficulties in con-

structing project schedules with regards to risk [74]. The main objective of this approach focuses

on the conflicting objectives of robustness and completion time, but the approach can be used

implicitly for resource usage maximization. Furthermore, the adoption of queuing simulation for

task staffing and optimization for scheduling tasks are also part of a later approach in Di Penta

et al., where additional features are implemented to deal with fragmentation, software developer

specialization, and work package dependencies [75]. Ren et al. opted for a different approach

to optimizing the sequence of execution of work packages and assigning developers to tasks byCon
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adopting a cooperative co-evolutionary method, which tries to evolve two populations of individ-

uals simultaneously through collaboration, rather than having individuals in a single population

compete against each other [76].

Yannibelli and Amandi proposed a knowledge-based genetic algorithm to aid project managers

at the early stages of scheduling to staff software projects with the most effective employees [77].

Specifically, the approach uses available knowledge about employees’ previous participation in

projects to evaluate how effective a set of resources will be if assigned to a specific activity and

how effective each individual in that set will be. With this knowledge, the algorithm attempts to

find feasible and optimal project schedules satisfying the precedence relationships between the

activities and the human resource requirements. An important aspect of this approach is that allo-

cations are based not only on the skills of developers but the level of effectivity that is the result of

two or more developers working together on the same task. This is an attempt to reflect real-world

practices, since a software project manager may be hesitant to assign a task to a pair of developers

when he or she is aware that the pair is less effective working together, even though individually

the developers possess a higher level of skills than another pair of developers. It might be prefer-

able to allocate two developers who are less skilled, but more effective working together in order

to be more productive. What the authors do not make clear, however, is whether the duration of

a task is specified knowing the exact number of developers to be assigned to it. What would be

more flexible if this is not the case is having the duration of a task to actually shorten or stretch

depending on the final level of effectivity resulting from the developers assigned.

3.2.2 Swarm intelligence

Swarm intelligence algorithms are a specific group of methods found in the field of computa-

tional intelligence that are inspired by the behaviour of biological systems found in nature, such

as the flocking of birds and the schooling of fish. The aim of swarm intelligence algorithms is to

mimic how each individual in the swarm acts and interacts with other individuals in its environment

to achieve a common goal shared by all individuals. In particular, swarm intelligence algorithms,

such as ant colony optimization and particle swarm optimization, work similarly to evolutionary

algorithms by assessing the quality of the solution that each individual in the swarm represents. In

the case of resource allocation and task scheduling for software development, these types of algo-

rithms are only just now beginning to be applied, though the general goals of the approaches stillCon
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focus on minimizing the cost and duration of software projects in similar fashion to evolutionary

algorithms.

Chen and Zhang recently proposed a model that combines an event-based scheduler with ant

colony optimization, aiming to provide solutions consisting of reduced project costs and more

stable workload assignments [78]. Essentially, the model considers that resource allocations are

affected by specific events: the starting time of the project, the time when developers join or leave

the project, and the time when developers are released from completed tasks. When one of these

events occurs during the project, the event-based scheduler modifies the allocation of resources

based on the priority given to tasks, the skill proficiency of developers, and the current availability

of the developers. Then, the method goes on to construct a new schedule by using ant colony op-

timization, where specifically artificial ants are iteratively dispatched to build project plans. The

practical benefits with this method are that it allows a software project manager to have the flex-

ibility to pre-empt tasks, but also to be able to handle and avoid resource conflicts. Experiments

were carried out on 80 artificial projects and three real-world business software projects of a de-

partmental store and the results demonstrated that the combination of event-based scheduler with

ant colony optimization was effective yielding solutions with the lowest project cost.

Xiao et al. also presented an approach using swarm optimization to allocate resources and

schedule tsks in a software project [79]. The authors adopted a similar approach as Alba and

Chicano [64], but instead of using a genetic algorithm to generate solutions with optimal developer

assignments and project schedules they adopted ant colony optimization. They used the same

objectives, that is, to minimize cost and duration, subject to the precedence relationships of tasks

and skills of developers. The authors show through the results of optimization on 30 randomly

generated project instances that this approach outperformed the original.

3.2.3 Fuzzy logic

Fuzzy logic is regarded as a control system for solving problems based on information that

is imprecise, ambiguous, uncertain, or even missing and is used to imitate the human decision-

making process on a linguistic (descriptive) rather than a numeric basis. The goal is to model the

vagueness of variables that do not possess clear (crisp) distinction between its possible values. In-

stead, it divides the variable into (usually) overlapping (fuzzy) sets and with the use of membership

functions determines the degree to which a specific value falls into each set. It has been appliedCon
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in many disciplines, such as robotics, medicine and management, where it has helped overcome

subjectivity of the decision maker.

One attempt at using fuzzy logic for software project scheduling was proposed as a decision

support system by Hapke et al. (1994), who claim that, due to the uncertainty of time parameters,

software projectmanagers can only approximate the durations of development activities. The fuzzy

project scheduling system proposed, therefore, creates intervals representing possible durations of

tasks and aims to assign software engineers to development phases taking into consideration the

completion time and maximum lateness of a software project. The time criterion is cut into lower

and upper bounds generating a set of optimistic and pessimistic scenarios, which are then optimized

using priority heuristic rules. Because the approach only handles the minimization of the duration

of projects, its applicability in the industrymay be limited. The fact, however, that human resources

are considered renewable resources severely increases its limitations, since it does not accurately

reflect the impact that developers’ capabilities can have on allocation and scheduling.

Fuzzy logic was also employed as a means for project scheduling by Callegari and Bastos

(2009) in order to handle the difficulties present in pure mathematical models, for example, ‘the

partial loss in meaning in terms of knowledge representation’. The multicriteria resource selection

method proposed employs multivalued logic and a set of inference rules to rank available resources

according to their suitability to specific tasks, thus allowing project managers to assign resources

to task. Specifically, a fuzzy rule matrix is constructed that stores how suitable an assignment is

based on the skill level expected by a task and the current skill level possessed by the assigned

developers. If-then rules then help software project managers allocate resources in order to meet

the requirements of each task. One advantage of this approach is that the rules can help avoid poor

utilization of developers, which is considerably important for software development companies as

highly experience developers are not wasted on tasks requiring low levels of skills. However, one

criticism is its inability to handle the scheduling of developers simultaneously. This is one of the

few approaches that also demonstrate a prototype tool to show how a software project manager

can adopt the approach in the industry.

3.3 Discussion on related work

The approaches regarding resource allocation and task scheduling for software development

discussed in Section 3.1 and Section 3.2 are summarized in Table 3.1. The approaches are groupedCon
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by the method/technique adopted and provide the goals, constraints and the type of data used in

each attempt. As can be seen, the majority of attempts employ computational intelligence methods

as a form of optimization, with the most popular technique being evolutionary algorithms.

Not getting the right people to do the right job at the right time can be detrimental to the suc-

cess of a software project. Various techniques borrowed from several fields have been used to

help avoid this through different approaches allocating resources and scheduling tasks in software

projects. But despite the evolution over the years, the problem still remains unsolved largely be-

cause there is no consensus on the criteria that these research approaches need to target to create a

successful resource allocation and task scheduling tool. There are several notable points regarding

the approaches that need to be addressed.

Firstly, even though there have been many approaches proposed, their ability to be applied in

real-world environments is not always clear. First and foremost, any approach should be accom-

panied with some sort of tool to show exactly how the approach could be adopted by software

project managers and not provide only a description of the underlying mechanisms. Additionally,

the information needed to execute any approach should be easily obtainable and measurable where

necessary by software project managers, such as the dependency relationships between tasks in or-

der to validate the feasibility of a schedule. But, for example, things like units of complexity may

not be able to be provided by a software project manager, especially at initial stages of the project.

Also, some attempts have put their approach to the test using simulated or artificial projects only,

without obtaining results from experiments on real-world cases. This may lower a project man-

ager’s perception of the practicality of the approach.

Secondly, the majority of the research works approach the problem as a (multi)optimization

problem, in that they aim to minimize/maximize several objectives, with genetic algorithms being

the most prevalent of approaches. The most popular objectives involve the cost and duration of the

project – two of the three dimensions of software project success – through allocating resources

and scheduling tasks in such a way that the assignments yield a balance between the two.

Thirdly, some approaches consider software developers as interchangeable resources, espe-

cially when it comes to dealing with the skills required by tasks and the skills possessed by devel-

opers. Just because two developers possess the same skill, it does not mean that they will carry

out a task in the same way or within the same time. Software developers are knowledge workers,

and it is with this knowledge that software is built. The varying levels of skill proficiency andCon
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experience between developers can be directly related to their salary, as well as to the time it takes

to carry out a task. Therefore, in approaches trying to allocate resources and schedule tasks, it is

important for software project managers to be able to factor in the variance caused by different

levels of performance and productivity of developers.

Chapters 4–7 describe a series of attempts developed as part of this research work to deal with

the problem of resource allocation and task scheduling in software development projects, similar to

the way the approaches in this chapter attempt to solve the problem. The aim is to present the grad-

ual evolution of a practical and applicable approach to scheduling tasks and assigning developers

for projects in the software development industry. A total of four attempts are presented, which

use computational intelligence techniques to optimize several software development-related crite-

ria. These attempts focus on certain objectives, constraints and parameters that have not always

been taken into account in previously proposed approaches. For example, the level of experience

that developers possess in various skills has often been overlooked in previous approaches. In

fact, in some approaches resources are considered interchangeable meaning that one developer

is as equally competent and skilful as another. However, this does not always reflect real-world

situations, since developers acquire different levels of expertise in a number of skills over time

and through the application of their knowledge. Another example involves the communication

between team members and the effect it has on the time taken to complete a task and the overall

development time of a project. Yet, when a team of developers is required to carry out a task it is

more likely that an overhead will be incurred due to the time necessary to coordinate activities and

to collaborate in their work.

Skill proficiency and experience levels are not the only things that differentiate developers.

Performing resource allocation and task scheduling using only these technical factors of software

development means that other, nontechnical ones are neglected. Amrit argues that approaches

based strictly on skills and experience may be inadequate for project managers to help them han-

dle issues like interpersonal relationships among developers [80]. Such human, social and cultural

aspects are strongly exhibited in software development companies, especially as they becomemore

reliant on teamwork and collaboration and the emergence of distributed development. For this rea-

son, more and more research work is being carried out that try to incorporate non-technical aspects,

especially human-centric factors, involved in software development. In particular, Chapter 8 in-

vestigates the impact of the personality type of software developers and provides an overview ofCon
sta

nti
no

s S
tyl

ian
ou



32

the various approaches that have been proposed attempting to incorporate personality types into

human resource management, either as part of team formation strategies or as part of allocation

and scheduling activities. Furthermore, Chapter 9 provides a description of an approach that in-

corporates the nontechnical factor of personality types in an optimization method in an attempt to

allocate resources based on the suitability of developers’ personality type to software tasks and the

level of experience in the required skills.
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Table 3.1: Summary of task scheduling and developer allocation approaches

Research attempt Goals/objectives Constraints Data used

Linear programming

Li et al. [42] – Minimize project duration – Requirement precedence satisfaction – Simulated

– Maximize revenues – Team availability – Real-world

Otero et al. [43] – Maximize suitability of developers – Skill/expertise requirements satisfaction – Simulated

Otero et al. [45]

Branch and bound methods

Bellenguez and Néron [48] – Minimize project duration – Skill/expertise requirements satisfaction – Simulated

Bellenguez-Morineau and Néron [49] – Task precedence satisfaction

Probabilistic modelling

Padberg [50, 51, 52, 53, 54] – Minimize project duration – Skill/expertise requirements satisfaction – Simulated

Queuing theory

Antoniol et al. [55] – Minimize risk of delay – N/A – Real-world

Jalote and Jain [56] – Minimize project duration – Task precedence satisfaction – Simulated

– Skill/expertise requirements satisfaction – Real-world

Constraint satisfaction

Barreto et al. [57, 58] – Minimize project cost – Resource requirements satisfaction – Simulated

– Maximize/minimize team quality – Developer availability

– Minimize team size

– Minimize project duration
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Table 3.1: Summary of task scheduling and developer allocation approaches (continued from previous page)

Research attempt Goals/objectives Constraints Data used

Evolutionary algorithms

Chang et al. [59] – Minimize project cost – Developer overtime limit satisfaction – Simulated

Chang et al. [60] – Minimize project duration – Developer availability

Chang et al. [34] – Minimize amount of overtime – Hard deadline satisfaction

Chang et al. [35] – Resource requirements satisfaction

Ge and Chang [61] – Minimize project cost – Developer availability – Simulated

– Developer overtime limit satisfaction

– Task precedence satisfaction

Jiang et al. [62] – Minimize project cost – Developer availability – N/A

– Minimize project risk – Developer overtime limit satisfaction

– Task precedence satisfaction

Ge [63] – Maximize efficiency – Developer availability – Simulated

– Maximize stability – Developer overtime limit satisfaction

– Task precedence satisfaction

Alba and Chicano [64, 65] – Minimize project cost – Developer overtime limit satisfaction – Simulated

Luna et al. [66] – Minimize project duration – Task precedence satisfaction

Chicano et al. [67] – Resource requirements satisfaction

– Skill/expertise requirements satisfaction
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Table 3.1: Summary of task scheduling and developer allocation approaches (continued from previous page)

Research attempt Goals/objectives Constraints Data used

Evolutionary algorithms (cont.)

Duggan et al. [69] – Maximize project duration – Package precedence satisfaction – Simulated

– Minimize software defects – Team utilization

– Cross-communication overhead

Kapur et al. [70] – Maximize business value – Feature precedence satisfaction – Simulated

Ngo-The and Ruhe [71] – Task precedence satisfaction – Real-world

– Developer availability

– Release deadlines satisfaction

– Feature release satisfaction

– Resource requirements satisfaction

Antoniol et al [72, 73] – Minimize project duration – N/A – Real-world

Gueorguiev et al. [74] – Minimize project duration – Work package precedence – Real-world

– Minimize project overruns

Di Penta et al. [75] – Minimize project duration – Work package precedence satisfaction – Real-world

– Minimize schedule fragmentation – Work package assignment satisfaction

– Skill/expertise requirements satisfaction

Ren et al. [76] – Minimize project duration – Work package precedence satisfaction – Real-world

– Resource requirements satisfaction
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Table 3.1: Summary of task scheduling and developer allocation approaches (continued from previous page)

Research attempt Goals/objectives Constraints Data used

Evolutionary algorithms (cont.)

Yannibelli and Amandi [77] – Maximize effectivity levels of teams – Task precedence satisfaction – Simulated

– Resource requirements satisfaction

Swarm intelligence

Chen and Zhang [78] – Minimize project cost – Task precedence satisfaction – Simulated

– Developer overtime limit satisfaction

– Resource requirements satisfaction

Xiao et al. [79] – Minimize project cost – Developer overtime limit satisfaction – Simulated

– Minimize project duration – Task precedence satisfaction

– Resource requirements satisfaction

– Skill/expertise requirements satisfaction

Fuzzy logic

Hapke et al. [81] – Minimize project duration – Task precedence satisfaction – Real-world

– Developer availability

Callegari and Bastos [82] – Maximize suitability of developers – N/A – Simulated
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Chapter 4

Approach 1: Optimizing Project Duration, Developer Experience

and Developer Availability using a Weighted-Sum Genetic Algorithm

This chapter presents the first of four approaches that were developed as part of the research

work described in this dissertation. The approach [83] attempts to solve the problem of resource-

constrained software project scheduling by employing a weighted-sum genetic algorithm in order

to generate a (near-)optimal solution where resources are allocated and tasks are scheduled so that

the following criteria are satisfied: (1) the software project completes within the shortest duration

possible, (2) tasks are undertaken by the most experienced developers, and (3) developers are only

assigned to one task at any given time in the project to prevent availability conflicts. To satisfy

these three criteria, the approach evaluates solutions with three objective functions, which consider

information regarding the idle time between tasks, the experience of developers and conflicts in

developers’ assignments.

As previously mentioned, the problem of resource allocation and task scheduling for soft-

ware development can be thought of as a particular instance of the resource-constrained project

scheduling problem (RCPSP). Consequently, the approach utilizes an adapted RCPSP description

that considers various attributes and requirements of project tasks and available resources specific

to software development necessary to carry out multi-objective optimization.

4.1 Research questions

It is important to assess whether the use of a weighted-sum genetic algorithm method is able to

generate (near-)optimal resource allocation and task scheduling solutions that satisfy the objectives

37
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put forward in the approach. The research targets, therefore, aim to evaluate the quality of the

solutions generated by the algorithm.

In particular, the first research question (RQ1.1) aims to assess how well the objective func-

tion responsible for optimizing the project duration performs in generating the (near-)optimal task

schedule of a software project: RQ1.1: How well does the project duration objective function

perform in generating (near-)optimal task schedules?

Similarly, the second research question (RQ1.2) assess the performance of the objective func-

tion responsible for optimizing the developer experience in generating the (near-)optimal resource

allocation of a software project: RQ1.2: How well does the developer experience objective

function perform in generating (near-)optimal resource allocations?

The third research question (RQ1.3) assess the performance of the objective functions when

they are left to compete against each other. Because the approach adopts a weighted-sum method,

assigning different weights to the objective functions means that different (near-)optimal solutions

will be generated. Hence, it is important to also assess the quality of these solutions with differ-

ent weight values: RQ1.3: How well do all three objective functions perform in generating

(near-)optimal resource allocation and task schedules when competing against each other at

different weight values?

To help answer these research questions, a number of experiments are conducted using several

software project instances.

4.2 Problem description

A software project consists ofm tasks, denoted by the set T = {t1, t2, . . . , tm}. Each task, ti,

is associated with a duration, tdurationi , which corresponds to the length of time that it requires to

be completed. The execution of the tasks in the project is subject to certain logical relationships

that may exist between the tasks. These relationships are specified in the set of dependencies,

D, which consists of pairs of tasks such that (ti, tj) ∈ D if the execution of task tj depends on

the execution of task ti. In the approach, it is assumed that all task dependencies follow a finish-

to-start relationship, that is, a task can only start executing once all its predecessor tasks have

finished executing. A task precedence graph (TPG) consisting of nodes and edges can be used to

help depict these relationships, where the nodes and edges represent the tasks and dependenciesCon
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between tasks, respectively. Figure 4.1 illustrates an example task precedence graph of a software

project consisting of eight tasks and ten dependencies.

T01

T02

T03

T04

T05

T06

T07 T08

Figure 4.1: An example TPG for a software project

A software development company has n resources (developers) available to carry out a project,

expressed by the set R = {r1, r2, . . . , rn}. A project requires a set, S = {s1, s2, . . . , sp}, of p

skills to be used by these available developers in order to carry out its tasks. The approach considers

that a task may require one or more of these skills in order to be carried out; this information is

represented by them×p logical matrixTREQ = [treqik], where treqik = 1 if task ti requires skill

sk or treqik = 0 if task ti does not require skill sk. Also, the approach assumes that a developer

may possess experience in one or more of these skills. The level of experience of each developer

in each skill is represented by the n×pmatrix LEXP = [lexpjk], where lexpjk denotes the level

of experience that developer rj possesses in skill sk. The level of experience can take a value in

the range [0, 1], where a value of 0 means that a developer has no experience in a skill, whereas a

value of 1 means that a developer is highly experienced.

The approach uses these definitions to employ a weighted-sum genetic algorithm in order to

generate (near-)optimal resource allocation and task schedule solutions that satisfy the aforemen-

tioned objectives.

4.3 Weighted-sum genetic algorithm method

Genetic algorithms are a computational intelligence technique introduced by John Holland

in 1975 [84] that attempts to solve optimization problems by simulating the process of natural

selection using concepts from biological evolution. To begin with, an initial population (or gen-

eration) of individuals is randomly generated. These individuals represent candidate solutions to
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the problem being solved. The goal is to iteratively improve these individuals with genetic opera-

tors, eventually leading to the location of the individual that represents the best or (near-)optimal

solution to the problem. To do this, the fitness of every individual is evaluated using some mea-

sure/criterion related to the problem being solved, which is expressed in the form of an objective

function. Essentially, the fitness value of an individual calculated by the objective function deter-

mines how good its corresponding candidate solution is at solving the problem. Once the fitness

of all individuals have been evaluated, the genetic algorithm proceeds to use a selection operator

to chose the parents from the current population to populate the next generation with offspring

individuals. Because genetic algorithms resemble the concept of ‘survival of the fittest’, selection

takes into account the fitness of individuals; those that are fitter are more likely be selected as

parents, meaning their good characteristics are passed on to the offspring in the next generation,

while those that are less fit are discarded. Offspring individuals are created by recombining parent

individuals with a crossover operator. In addition, offspring individuals are altered using a muta-

tion operator in prospect of increasing the fitness of the offspring further. After the new generation

is formed, the individuals of the population are again evaluated, and the selection, crossover and

mutation operators are applied once more to form a new generation. This process is repeated for a

fixed number of iterations or until no improvement to the individuals of the population is observed.

Ultimately, with help from the genetic operators, the algorithm guides individuals to converge to

the (near-)optimal solution. The steps are presented in detail in Algorithm A.1.

In some cases, certain problems require multiple criteria to be satisfied. Therefore, the prob-

lem becomes a multi-objective optimization problem where individuals need to be tested against

multiple objective functions. One way to solve these problems is to adopt a weighted-sum genetic

algorithm method, where the objective functions that are used to assess the fitness of an individ-

ual are aggregated into one combined objective function using predefined weights. The weights

symbolize the significance of each objective function so that the fitness of an individual in the

population is calculated by summing the product of each objective function with its corresponding

weight. If an individual has a greater fitness in an objective that is considered more important,

then it will stand a higher chance of being selected. The use of a weighted-sum genetic algo-

rithm method is considered appropriate in this approach, since each candidate solution (resource

allocation and task schedule) needs to be able to satisfy a number of objectives.Con
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4.3.1 Representation and encoding

In this approach, each individual in the population corresponds to a resource allocation and

task schedule solution. In order to assess the fitness of an individual, the objectives require two

pieces of information: (1) task schedule information indicating when each task is scheduled to

be executed, and (2) resource allocation information denoting which developers are assigned to

each task. Thus, to represent these pieces of information, the genetic algorithm uses a single

mixed-type array of length m, where each element, i, in the array contains the two necessary

pieces of information for each task, ti. Specifically, the task schedule information is represented

by a positive, nonzero integer that symbolizes the scheduled start time, tschedi , of task ti and the

resource allocation information is represented by a bitset Bi = {bi1, bi2, . . . , bin} that symbolizes

which of the n developers are assigned to each task. Thus, if bit bij in the bitset has a value of 1,

then this means that developer rj ∈ R is assigned to work on the corresponding task. If the value

of the bit is 0, then the developer is not assigned to work on the task. The t
assigned
i developers that

are selected to work on task ti are denoted by the set A
i = {rj | ∀rj ∈ R ∧ bij = 1}. Figure 4.2

gives an example of an individual representing the task scheduling and developer allocation for a

software project containing four tasks (T01–T04) and five available developers (R01–R05). In the

example, task T01 is scheduled to start at tsched1 = 1, with developers A1 = {R01, R03} assigned

(since b11 = b13 = 1). Task T02 is scheduled to start at tsched2 = 11, with developer A2 = {R04}

assigned (since b24 = 1). The complete allocation of resources for this project can be given by the

set A = {{R01, R03}, {R04}, {R02, R05}, {R03, R04}}.

T01 T02 T03 T04

1 10100 11 00010 16 01001 31 00110

Figure 4.2: Example of the representation and encoding of individuals used in Approach 1

4.3.2 Population initialization

Individuals in the population are initialized randomly. However, both pieces of information

are subject to certain feasibility constraints. For each task, the task schedule information of an

individual is randomly generated with an integer value greater than zero. The bitsets in the devel-

oper allocation information of an individual is also randomly generated in a way that at least one

developer is assigned to each task (that is, at least one bit in a task’s bitset is set to a value of 1).
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4.3.3 Optimization function

The optimization function that the approach adopts in order to help guide the algorithm to

generate (near-)optimal resource allocation and task scheduling solutions is given in Equation (4.1).

Maximize
∀x∈POP

F(x) = (w1 ×Fduration(x)) + (w2 ×Fexperience(x)) + Fassignment(x), (4.1)

where 0 ≤ wi, w2 ≤ 1 and wi + w2 = 1. The fitness of each individual x in the population

POP is assessed using three objective functions relating to the duration of the project,Fduration(x),

the experience of the developers assigned, Fexperience(x), and the conflicts in the availability of

developers, Fassignment(x).

By adopting a weighted-sum approach for optimizing multiple objectives, a project manager

can associate different levels of importance to either the project duration or developer experience

criteria so as to allow the guidance of the genetic algorithm based on his or her preference. For

instance, a project manager may want to focus primarily on the construction of a project schedule

with the shortest possible duration and secondarily on the experience of employees. In such a case,

a higher weight value will be assigned to the project duration objective function and a lower weight

value will be assigned to the developer experience objective function. If the most experienced de-

veloper is assigned to work on two parallel tasks, which leads to a conflict, then preference will

be given to keeping the duration of the project the same but assigning the next most experienced

developer to either one of the tasks. Conversely, if a project manager prefers to have a team that

is the most experienced and gives lower priority to project duration, then in case of a conflict, the

project schedule will grow in duration so that the most experienced developer(s) still remain as-

signed to the tasks causing the conflict. The developer assignment objective function is essentially

always assigned a weight value of one in order to keep its importance in finding feasible solutions

regardless of the importance of the other two objective functions.

4.3.3.1 Objective functions

4.3.3.1.1 Project duration objective function

The first objective in this approach relates to generating resource allocation and task schedule

solutions in a way where a software project completes within the shortest duration possible. This

objective is specified in the project duration objective function, which aims to minimize the du-

ration of a software project by assessing the fitness of individuals in the population based on the
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degree to which unnecessary delays exist between tasks. Hence, the function only requires the task

scheduling information regarding the start time of each task.

To begin with, for each individual x in the population, the earliest start time tstarti of each task

ti is calculated using

tstarti =


0, if @tj such that (tj , ti) ∈ D

max{tfinishj | (tj , ti) ∈ D}+ 1, otherwise

, (4.2)

where the scheduled finish time of task tj is computed based on its scheduled start time and its

duration as

tfinishj = tschedj + tdurationj . (4.3)

If task ti does not have any predecessors, then tstarti is given a value of zero because it can start

as soon as the project starts. Otherwise, if task ti depends on task tj (that is, (tj , ti ∈ D)), then

tstarti is calculated based on the value corresponding to the finish time tfinishj of task tj . In the case

where task ti has more than one predecessor, then the value given to tstarti is calculated based on

the finish time of the predecessor task that finishes the latest. Next, the number of idle time units

elapsing between the task’s scheduled start time (based on the task scheduling information in the

individual) and its earliest start time (based on the finish time of its predecessors) is calculated as

tidlei = tschedi − tstarti . (4.4)

Figure 4.3 illustrates an example of how the idle time is calculated. Assuming that task T03

depends on tasks T01 and T02, then the idle time will be calculated by using the finish time of

T01 since it is the predecessor of T03 that finishes the latest. Consequently, the idle time for T03

is 16− 10 = 6 days.

Day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T01

T02 idle days

T03

Figure 4.3: Example of the computation of task idle days

The conditional equation in Equation (4.5) is then used to calculate the overall delay in ex-

ecution for each task, taking into account dependency violations caused in cases where a task is
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scheduled to start before one of its predecessor tasks. Specifically,

t
delay
i =


0, tschedi < tstarti

1

1 + tidlei

, tschedi ≥ tstarti

. (4.5)

If the scheduled start time of task ti causes a dependency violation, then t
delay
i is given a value

of zero. Otherwise, t
delay
i is calculated using the value of tidlei . The smaller the idle time, the

higher the value of the t
delay
i . Ideally, a task should be scheduled to start immediately after its latest

predecessor finishes with no delays so that tidlei = 0 and t
delay
i taking a maximum value of one. The

total sum of delays obtained for all tasks using Equation (4.5) are then averaged over the number of

tasks, as shown in Equation (4.6), in order to give the final value of the project duration objective

function of an individual in the population.

Fduration(x) =
1

m

m∑
i=1

t
delay
i . (4.6)

The higher the partial values of t
delay
i , the fitter the individual with regards this objective due to

more tasks starting as early as possible in the project without delay. It should be noted that the

objective function does not compute the actual duration of the project, but as previously mentioned,

it computes the degree to which there are unnecessary delays between tasks. The objective function

essentially assesses the lateness of a task in the sense that a task that is scheduled to start after its

earliest start time will also finish later than it is supposed to. Hence, the objective function attempts

to minimize this ‘lateness’ and, consequently, the duration of the project.

4.3.3.1.2 Developer experience objective function

The second objective concerns generating resource allocation and task schedule solutions in a

way where tasks are undertaken by the most experienced developers. This objective is defined in

the developer experience objective function, which aims to maximize the experience of assigned

developers by calculating the fitness of individuals in the population based on the level of expe-

rience that developers possess in the various skills required by the tasks of the project. Hence,

the function only makes use of the resource allocation information regarding which developers are

assigned to each task.

In this approach, the level of experience in a skill is not considered cumulative among de-

velopers, and therefore is not presented as simply the summation of the experience levels of all
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developers assigned to a task. In order to calculate the total experience, treq
experience
ik , of the de-

velopers assigned to carry out task ti requiring skill sk, Equation (4.7) takes the experience level

of the most experienced developer assigned and adds to that the mean level of experience of all

assigned developers regarding skill sk.

treq
experience
ik = max{lexpjk | ∀rj ∈ Ai}+ 1

t
assigned
i

sum{lexpjk | ∀rj ∈ Ai}, (4.7)

where Ai consists of the t
assigned
i developers assigned to task ti. In this way, the objective function

helps assign highly experienced developers to a task and simultaneously prevents the assignment

of developers without experience in the skills required (that is, non-contributors) through lowering

the average experience of the team. The total experience possessed by the assigned developers of

a task is then calculated by averaging the experience of all the task’s required skills as given by:

t
experience
i =

1

tskillsi

p∑
k=1

treq
experience
ik [treqik = 1], (4.8)

where tskillsi indicates the number of skills required by task ti. Last, the total experience of as-

signed resources obtained for all tasks is then averaged over the number of tasks, as shown in

Equation (4.9), in order to calculate the value of the developer experience objective function for

an individual in the population.

Fexperience(x) =
1

m

m∑
i=1

t
experience
i . (4.9)

The higher the partial values of t
experience
i , the fitter the individual with regards this objective due to

the overall experience levels of the team of developers assigned to work on each task being higher.

4.3.3.1.3 Assignment validity objective function

The approach’s third objective involves generating resource allocation and task schedule so-

lutions so that developers are only assigned to one task at any given time in the project so as to

prevent availability conflicts. Its purpose, therefore, is to ensure that the algorithm locates feasible

solutions. The objective is defined the assignment validity objective function, which aims to min-

imize the number of instances where the same developer has been assigned to two or more tasks

that have been scheduled to execute (in part or wholly) simultaneously by evaluating the fitness

of individuals in the population based on the degree to which conflicts exist in developers’ assign-

ments. To carry out the evaluation, the function requires both the task scheduling information and

the developer allocation information.
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To start with, the algorithm calculates the fraction representing the number of time units that

an available developer rj been assigned with conflicts, r
conflicts
j , over the total number of assigned

time units, r
totassigned
j . Then, the algorithm uses Equation (4.10) to calculate the ratio a developer’s

valid assignments.

r
assignment
j = 1−

rconflictsj

r
totassigned
j

. (4.10)

After the valid assignment ratio has been computed for each developer separately, the average ratio

of all developers for an individual in the population is then calculated as the final value given to

the objective function given as

Fassignment(x) =
1

n

n∑
j=1

r
assignment
j . (4.11)

The higher the partial values of r
assignment
j , the fitter the individual with regards this objective due

to developers having fewer number of conflicts in their assignments.

4.3.4 Genetic operators

The attempt uses a roulette wheel procedure to select two individuals as parents for recombi-

nation. Individuals with higher fitness (that is, higher value of F(x) will have a higher probability

of being selected as a parent. The two winning individuals of the roulette wheel procedure are then

combined using a single-point crossover operator. To determine the position at which crossover

will occur between the two parents, a series of random integers is generated, first, to select the task

at which the crossover will occur, and second, to then determine on which one of the two pieces of

information the crossover will take place. In this way, crossover will be applied either right after

the task scheduling information or randomly between two bits in the bitset of the developer allo-

cation information. The two offspring produced as a result of crossover then undergo a mutation

operation. Similarly, a random integer is again generated to determine the task whose information

will be mutated. Then, another random integer is generated to decide which piece of information

will be mutated. If the task scheduling information is selected, then a polynomial mutation operator

is applied on the integer representing the start day. On the other hand, if the developer allocation

information is selected, then a bit flip mutation operator is applied to one of the bits in the bitset

randomly.Con
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4.4 Experiments

A series of three experiments were carried out to help answer the research questions posed

in Section 4.1 concerning the performance of the objective functions. The first experiment was

carried out to help answer research question RQ1.1 by setting only the project duration objective

function active, F(x) = Fduration(x), in order to examine whether the objective function guides

the algorithm to generate (near-)optimal solutions with the shortest project duration based on the

scheduling of tasks. The second experiment was conducted to help answer research question RQ1.2

by having only the developer experience objective function active, F(x) = Fexperience(x), in order

to observe whether the objective function is able to guide the algorithm to generate (near-)optimal

solutions with the highest experience based on the allocation of resources. The third and final ex-

periment was used to help answer research question RQ1.3 by applying all three objective functions

using Equation (4.1), in order to assess whether the objective functions are able to guide the algo-

rithm to generate (near-)optimal solutions with both the shortest duration and highest experience

with different weight values.

The experiments used two projects instances that were constructed using the TPG depicted in

Figure 4.4, which was also used by Chang et al. [34]. The first project instance (P1A) consisted

of ten tasks (T01–T10) of the TPG, whereas the second project instance (P1B) contained all 15

tasks (T01–T15) of the TPG. All tasks dependencies follow a finish-to-start relationship with their

predecessor tasks.

T01

T02

T03

T04

T05

T06

T07

T08

T09

T10

T11 T12

T13

T14

T15

Figure 4.4: The TPG from which the two project instances used for experiments in Approach 1

were created
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Table 4.1: Duration and skills required for the tasks of the two project instances used for experi-

ments in Approach 1

Required skill

Task Duration S01 S02 S03 S04 S05

T01 10 X X
T02 15 X X
T03 20 X
T04 10 X X
T05 15 X X X
T06 20 X X
T07 10 X X
T08 15 X X
T09 20 X X
T10 20 X X
T11 10 X X
T12 15 X X
T13 20 X X
T14 25 X X
T15 15 X X

Table 4.2: Experience of available developers in the skills required by the two project instances

used for experiments in Approach 1

Required skill

Developer S01 S02 S03 S04 S05

R01 0.0 0.0 0.4 0.8 0.0

R02 0.2 0.0 0.4 0.0 0.0

R03 0.0 0.8 0.0 0.0 0.0

R04 0.0 0.0 0.4 0.8 0.6

R05 0.0 0.6 0.0 0.0 0.0

R06 0.0 0.6 0.4 0.8 0.0

R07 0.0 0.4 0.4 0.0 0.0

R08 0.0 0.6 0.6 0.8 0.0

R09 0.0 0.2 0.4 0.0 0.0

R10 0.6 0.4 0.0 0.0 0.6

The duration and the set of skills required for each task of Figure 4.4 are given in Table 4.1.

The project instances require a total of five skills (S01 − S05), with some tasks requiring two or

more skills in order for them be executed. In addition, Table 4.2 provides the degree of experience

that the ten available developers (R01 − R10) possess in each of the five skills required by the

project. As can be seen, the majority of developers possess experience in more than one skill.

The genetic algorithm was run 30 times for each project instance in each experiment for 5000

iterations. The population of each run consisted of 100 individuals. Execution time ranged between

17 s and 5 min, depending also on the size of the project. It should be noted that genetic algorithms
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are random in nature with respect to initialization and application of genetic operations. Because

this randomness affects convergence, that is, the number of iterations required to find the (near-

)optimal solution, the time taken to complete an execution will naturally vary. Hence, any figures

regarding execution time can only give a very rough indication of the overall behaviour of the

genetic algorithm in terms of performance.

4.5 Results and discussion

4.5.1 RQ1.1: How well does the project duration objective function perform in generating

(near-)optimal task schedules?

The first experiment involved executing the genetic algorithm on the two project instances

to evaluate only the project duration objective function. This was done to assess that generated

solutions contained no unnecessary delays between tasks and no dependency violations. Out of

the 30 runs, 23 (77%) runs were able to find the (near-)optimal solution for project P1A, whereas

14 runs (47%) for project P1B. An example of the convergence of the genetic algorithm for both

test projects can be seen in Figure 4.5.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

0.2

0.4

0.6

0.8

1

Iterations

F
it
n
e
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v
a
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e

P1A
P1B

Figure 4.5: Graph showing the iterations required for the genetic algorithm to converge to the

(near-)optimal solutions found for projects P1A and P1B with only the project duration objective

function active in Approach 1Con
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For project P1A the (near-)optimal solution was found around 1000 iterations, whereas for

project P1B, as expected, required a higher number of iterations (roughly 4300). Furthermore,

construction of the corresponding (near-)optimal project Gantt charts correctly shows that the

shortest possible duration for project P1A is 90 days and for project P1B the shortest make-span

is 110 days (Figure 4.6).

FINISH

Day

0 10 20 30 40 50 60 70 80 90 100 110

T01
T02
T03
T04
T05
T06
T07
T08
T09
T10
T11
T12
T13
T14
T15

Figure 4.6: Gantt chart of the optimal solution generated for project P1B with only the project

duration objective function active in Approach 1

4.5.2 RQ1.2: How well does the developer experience objective function perform in gener-

ating (near-)optimal resource allocations?

The second experiment examined whether the algorithm was able to find the (near-)optimal

resource allocation by only evaluating the developer experience objective function for individuals.

All 30 runs were successful in assigning the most experienced developers or team of developers to

each task in both project instances in such a way that all skills were satisfied and no idle or surplus

developers were used. Table 4.3 shows the (near-)optimal resource allocation matrix generated

for project P1A displaying which of the available developers will staff each task. Out of the ten

available developers only four (R04, R06, R08 and R10) are selected to carry out the project.
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Table 4.3: Resource allocation matrix of the optimal solution generated for project P1A with only

the developer experience objective function active in Approach 1

Task

Developer T01 T02 T03 T04 T05 T06 T07 T08 T09 T10

R04 X X
R06 X
R08 X X X X X X
R10 X X X

4.5.3 RQ1.3: How well do all three objective functions perform in generating (near-)op-

timal resource allocation and task schedules when competing against each other at

different weight values?

The final experiment was carried out to investigate the behaviour of the genetic algorithmwhen

all three objectives are active in the evaluation of individuals. Since the objective functions are

considered to be competing against each other, each objective function is multiplied by a preference

(weight) as explained previously. To begin with, greater preference was given to project duration

(w1 = 0.9) than to developer experience (w2 = 0.1). The results obtained showed that with all

three objective functions active, the genetic algorithm was able to find the (near-)optimal schedule

successfully in 17 runs (57%) for project P1A and in eight runs (27%) for project P1B. Given

these specific weight preferences, in order to avoid availability conflicts, (near-)optimal solutions

generated by the genetic algorithm assign the next best developers in terms of experience to parallel

tasks while keeping the project duration to a minimum. Table 4.4 gives an example of the resource

allocation matrix of the (near-)optimal solution found for project P1A.

Table 4.4: Resource allocation matrix of the optimal solution generated for project P1A with all

objective functions active (w1 = 0.9 and w2 = 0.1) in Approach 1

Task

Developer T01 T02 T03 T04 T05 T06 T07 T08 T09 T10

R02 X X
R04 X
R06 X X
R08 X X X X
R10 X X X

Conversely, a higher preference was given to developer experience (w2 = 0.9) and a lower

preference to project duration (w1 = 0.1). This was done to examine whether the genetic algorithmCon
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was able to increase the project duration to accommodate keeping the most experienced developers

assigned. The results obtained showed that the algorithm found it difficult to reach a (near-)optimal

solution. Specifically, executions carried out for project P1A managed to locate (near-)optimal

solutions three times (10%), whereas once (3%) for project P1B. As expected, the algorithm,

draws its attention to the developer experience objective function causing the project duration to

be prolonged. An example of the evolution of the three objective functions for one of the runs for

project P1A in this experiment is shown in Figure 4.7.
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Figure 4.7: Evolution of objective functions of a run conducted for project P1A with all objective

functions active (w1 = 0.1 and w2 = 0.9) in Approach 1

As can be seen in the figure, the developer experience objective function converges to the

maximum possible value (0.6 in this case), while the project duration objective function remains

at much lower values since there is a lower weight preference assigned.

The corresponding Gantt chart of the solution is presented in (Figure 4.8). Notably, there is a

delay in the start of task T02 by 15 days (it should start as soon as T04 completes). Furthermore,

a minor dependency violation of the order of one day can be observed for task T08.
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Figure 4.8: Gantt chart of a solution generated for project P1A with all objective functions active

(w1 = 0.1 and w2 = 0.9) in Approach 1

4.6 Summary

The results obtained when using only one of the objective functions showed that the weighted-

sum genetic algorithm method is capable of finding (near-)optimal solutions in the majority of

cases. However, when all objective functions are active the algorithm has difficulties in reaching

(near-)optimal solutions, especially when assigning a greater preference to developer experience

over project duration. Through observation of a number of executions, it was noticed that in this

approach the algorithm is not able to reduce idle gaps between tasks nor is it able to produce

feasible conflict-free schedules and allocations given the current set up. For this reason, several

modifications to the approach were required, particularly with regards the optimization function,

in order to improve the generation of (near-)optimal solutions and to avoid the generation of in-

feasible solutions. These modifications are presented in Chapter 5, which shows the introduction

of constraints in the optimization function.
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Chapter 5

Approach 2: Optimizing Project Duration and Developer Experience

using a Weighted-Sum Particle Swarm Optimization Algorithm

Based on the deficiencies of the approach described previously in Chapter 4, a new approach

[85] was constructed aiming to solve the resource-constrained software project scheduling problem

by providing better and more valid solutions. Specifically, the objectives of this approach mirror

the fist two objectives of the previous approach, that is, to allocate resources and schedule tasks

so that: (1) the software project completes within the shortest duration possible, and (2) tasks are

undertaken by the most experienced developers. However, the availability of developers is now

correctly treated as a constraint of the problem (rather than an objective to be optimized), the pur-

pose of which is help the algorithm avoid the generation of infeasible solutions where developers

are mistakenly assigned to carry out more than one task simultaneously. In addition, several other

constraint functions are introduced to help in the generation of higher quality, feasible solutions.

The mechanism used for optimization also differs in this approach. Specifically, this attempt

employs a weighted-sum particle swarm optimization algorithm instead of a weighted-sum genetic

algorithm to generate solutions for the approach.

5.1 Research questions

The primary research target is to investigate whether the weighted-sum particle swarm algo-

rithm manages to produce acceptable and (near-)optimal resource allocation and task schedule

solutions for software projects based on the new assumptions and criteria set in the approach.

Specifically, the first research question (RQ2.1) aims to evaluate the quality of the solutions

generated by the algorithm in terms of feasibility: RQ2.1: How well do the constraint functions
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perform in helping the algorithm generate feasible resource allocation and task scheduling

solutions?

The goal of the second research question (RQ2.2) is to determine the quality of the solutions

generated in terms of optimality: RQ2.2: How well do the objective functions perform in help-

ing the algorithm generate (near-)optimal resource allocation and task scheduling solutions?

A series of experiments using a number of software project instances ranging in size and com-

plexity were set up to help with these investigations.

5.2 Problem description

The approach uses the same definition of the resource-constrained software project scheduling

problem presented previously in Chapter 4, and adopts the corresponding notations and conven-

tions provided in Section 4.2.

5.3 Weighted-sum particle swarm optimization algorithm method

The Particle Swarm Optimization (PSO) algorithm is a type of swarm intelligence algorithm

from the field of evolutionary computation. A swarm consists of a number of particles, each rep-

resenting a possible solution to the problem under examination. Iteratively, the algorithm then

attempts to discover the (near-)optimal solution to the problem through the cooperation and col-

laboration between these particles by exploring and exploiting the problem’s search space. The

procedure for particle swarm optimization is outlined in Algorithm A.2.

5.3.1 Representation and encoding

The representation used to solve the problem is unchanged from the previous approach de-

scribed in Section 4.3.1. Each solution contains information regarding the start time of each task

as an integer number and the assignment of developers as a bitset.

5.3.2 Swarm initialization

The particles of the swarm are initialized in the same fashion as in the previous approach

presented in Section 4.3.2, keeping in mind that at least one developer must be assigned to each

task.Con
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5.3.3 Optimization function

The optimization function used in this second approach is modified as

Maximize
∀x∈SWARM

F(x) = Ffitness(x) + Ffeasibility(x). (5.1)

The function is expressed as the sum of the evaluation of the fitness of a particle, Ffitness(x), and

the evaluation of the feasibility of a particle, Ffeasibility(x). The fitness of a particle concerns how

well the it performs on the objectives of the problem, whereas the feasibility of a particle addresses

the degree to which the particle satisfies the constraints of the problem. These two evaluations,

therefore, are intended to help guide the algorithm to generate (near-)optimal and valid solutions.

5.3.3.1 Objective functions

In this approach, two objective functions are used to assess the fitness of each particle of the

swarm. These concern the duration of the project (Fduration(x)) and the experience of the developers

assigned (Fexperience(x)), as shown in Equation (5.2).

Ffitness(x) = (w1 ×Fduration(x)) + (w2 ×Fexperience(x)) (5.2)

where 0 ≤ wi, w2 ≤ 1 andwi+w2 = 1. Again, using a weighted-sum approach allows a software

project manager to regulate the importance of each objective.

5.3.3.1.1 Project duration objective function

This first objective relates to the generation of (near-)optimal resource allocation and task

scheduling solutions so that a software project completes within the shortest duration possible

function. The approach uses the same objective function described by Equation (4.6), such that

Fduration(x) =
1

m

m∑
i=1

t
delay
i . (4.6 revisited)

The function aims to minimize the duration of a software project by calculating the fitness of each

individual x in the swarm based on the degree to which unnecessary delays exist between tasks.

As already mentioned, the function only requires the task scheduling information regarding the

start time of each task.Con
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5.3.3.1.2 Developer experience objective function

This objective works towards the generation of (near-)optimal resource allocation and task

scheduling solutions in order that tasks are undertaken by the most experienced developers. The

approach adopts the same objective function defined in Equation (4.9), where

Fexperience(x) =
1

m

m∑
i=1

t
experience
i . (4.9 revisited)

The goal of the function is to maximize the experience of assigned developers by assessing the

fitness of each individual x in the swarm based on the level of experience that developers possess

in the various skills required by the tasks of the project. As stated previously, the function only

makes use of the resource allocation information regarding which developers are assigned to each

task.

5.3.3.2 Constraint functions

Several constraint functions are now introduced to handle the feasibility of solutions. They are

aggregated together as shown in Equation (5.3):

Gfeasibility(x) = (cp1 × Gdependencies(x)) + (cp2 × Gskills(x)) + (cp3 × Gassingments(x)). (5.3)

Each constraint is multiplied by a negative coefficient, cp1, cp2, cp3 < 0, as a form of penalty

for when each constraint is violated. This allows a software project manager the option of relaxing

the importance of certain constraints while stressing the significance of others. Specifically, the

constraints considered in this approach assess the degree to which: (1) dependencies are satisfied

by the scheduling of tasks, (2) skills required by tasks are fulfilled by the allocation of resources,

and (3) assignments complywith the availability of developers. Ideally, the value ofGfeasibility(x) for

a particle x should have a value of zero (the maximum possible) indicating that all constraints are

satisfied. Otherwise, the function will take a negative value denoting that one or more constraints

are not met. Hence, the lower the value, the less feasible the solution represented by the particle.

5.3.3.2.1 Dependency satisfaction constraint function

The first constraint addresses the generation of valid resource allocation and task scheduling

solutions in a waywhich ensures that all task dependencies are satisfied as a result of the scheduling

of each task. This constraint is defined by the dependency satisfaction constraint function, whose
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goal is to evaluate the feasibility of each particle x in the swarm based on the number of instances

where a task’s start time is scheduled before the finish times of all its predecessors. Accordingly,

the function only makes use of the task scheduling information of an individual.

Initially, the algorithm calculates the dependency violations, tdviolationsi , for each task in the

project. Specifically, in the case where task ti is scheduled to begin before its earliest start time,

the algorithm multiplies the number of time units that are violated by the number of successor

tasks, suci, that depend on ti using the following conditional formula

tdviolationsi =


(tearliesti − tstarti )× suci, tstarti < tearliesti

0, otherwise

. (5.4)

The purpose of this multiplication is to help correct subsequent paths in the TPG that involve the

violating task. Once the dependency violations of each tasks has been calculated, the total value

for this constraint is determined by averaging the total number of dependency violations of all tasks

using

Gdependencies(x) =
1

m

m∑
i=1

tdviolationsi . (5.5)

So, the lower the number of unsatisfied dependencies per task, then the smaller the value of the

constraint function Gdependencies(x), and ergo the higher the degree of feasibility of the solution

represented by particle x.

5.3.3.2.2 Skill fulfilment constraint function

The approach’s second constraint regards the generation of valid resource allocation and task

scheduling solutions in a way which ensures that all skills required by a task are fulfilled based on

the allocation of resources. This constraint is defined by the skill fulfilment constraint function,

which aims to assess the feasibility of each particle x in the swarm based on the number of instances

where none of the developers assigned to a task possesses experience in a particular skill. Thus,

the function only requires of the resource allocation information of an individual.

To begin with, the conditional formula of Equation (5.6) is used to determine the skill vio-

lations, tsviolationsi , of each task in the project. Here, the algorithm specifically calculates the av-

erage number of skills that are not fulfilled by the developers assigned to task ti by using the

value treqexperienceik calculated by the developer experience objective function (Equation (4.9)).

In essence, the algorithm simply averages the total number of skills whose level of experience
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treq
experience
ik equals to zero, shown as

tsviolationsi =
1

tskillsi

l∑
k=1

[treqik = 1 ∧ treq
experience
ik = 0], (5.6)

where tskillsi denotes the number of skills required by task ti. If all skills can be fulfilled by the

assigned developers then tsviolationsi = 0. However, if none of the skills can be satisfied by the

assigned developers then tsviolationsi = 1. After the skill violations of each task has been calculated,

the total value for this constraint is established by averaging the total number of skill violations of

all tasks denoted in

Gskills(x) =
1

m

m∑
i=1

tsviolationsi . (5.7)

Hence, the fewer the number of unfulfilled skills per task then the smaller the value of Gskills(x),

and consequently the higher the degree of feasibility of the solution represented by the particle x.

5.3.3.2.3 Assignment validity constraint function

One of the issues observed in Approach 1 described in Chapter 4 was the fact that the availabil-

ity of developers was incorrectly handled as an objective rather than as a constraint. If an individual

in the swarm represents the case where a developer is assigned to more than one task at any given

time in the project, then this should affect the feasibility of the solution, and not its optimality. The

final constraint, therefore, relates to the generation of valid resource allocation and task schedul-

ing solutions in a way which ensures that assignments comply with the availability of developers.

This constraint is defined by the assignment validity constraint function, the purpose of which is to

ascertain the feasibility of each particle x in the swarm based on the number of instances where a

developer has been assigned to work on more than one task simultaneously. The function therefore

utilizes both the resource allocation and task scheduling information of an individual in a slightly

modified version of the assignment validity objective function described in Paragraph 4.3.3.1.3 in

Approach 1.

First, the algorithm calculates the number of time units a developer rj has been assigned to

more than one task, rconflictsj , using the information regarding at which time and on which task

the developer is to work on, and then divides this number by the number of time units that the

developer has been assigned to work in total, r
totassigned
j , as shown in

raviolationsj =
rconflictsj

r
totassigned
j

. (5.8)
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After the assignment violations of each developer has been computed, the total value for this con-

straint is calculated by averaging the total number of assignment violations of all developers by

applying

Gassignments(x) =

n∑
j=1

raviolationsj . (5.9)

Consequently, the fewer the noncompliant assignments per developer then the smaller the value

of Gassignments(x), and therefore the higher the degree of feasibility of the solution represented by

particle x.

5.4 Experiments

An experiment was carried out to assist in answering the research questions posed in Sec-

tion 5.1 regarding the algorithm’s ability to generate feasible and (near-)optimal solutions taking

into account the assumptions and criteria put forward in the approach.

Initially, a small survey was conducted in order to find out the driving factors influencing

the size and complexity of a software project. Specifically, three project managers working at

software development SMEs in Cyprus were interviewed so as to ascertain the main features they

take into account when performing task scheduling and developer allocation activities in software

projects. The interviews consisted of open questions to allow the software project managers to

express in their own words how they define the size and complexity of small, medium and large

software projects. This procedure identified that project managers consider the number of the tasks

and the number of skills required by each task as the primary features for the size of a software

project. On the other hand, the complexity of the project is fundamentally specified by the number

of dependencies between the tasks. In particular, project managers consider the dependency rate,

which is defined as the ratio of the number of dependencies present in the project to the total number

of possible dependencies in the project. Additionally, the number of developers and the number of

skills they possess are also regarded as important features affecting the size of a software project

and also its complexity.

Using the information provided by the project managers, a total of seven software project

instances of varying size and complexity were generated aiming to represent real-world software

project case studies, summarized in Table 5.1. The project instances were constructed in away so as

to allow, on the one hand, the evaluation of the performance of the algorithm in terms of optimality

and, on the other hand, assessment of the performance of the algorithm in terms feasibility.
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Table 5.1: Size and complexity of software projects used for experiments in Approach 2

Avg. no. No. Avg. no.

Project No. No. Dependency skills available skills per

instance tasks dependencies rate per task developers developer

P2A 10 13 29% 2.0 10 2.0

P2B 14 16 18% 2.0 10 1.5

P2C 18 24 16% 2.0 10 1.2

P2D 18 24 16% 2.0 5 0.7

P2E 25 15 5% 2.5 8 1.0

P2F 30 62 14% 3.3 18 2.0

P2G 30 62 14% 3.3 10 1.0

Specifically, the difficulty level between projects P2A–P2C increases with respect to the

project size and the complexity based on the number of tasks and the number of dependencies

between each task, respectively. The difference in project P2C and project P2D lies in the num-

ber of developers and the average number of skills each developer possesses, influencing both

complexity and size features making the latter project tougher to handle. The difficulty level in-

creases even more in project P2E where, although the dependencies rate is only 5%, the average

number of required skills increases while the number of available developers decreases, compared

to the first three projects. This represents the case where the project is marginally outside of the

capacity of a software development company, since more skills are required but fewer developers

are available. The last two projects (P2F and P2G) represent more challenging tests, since the

size and complexity of the projects are affected by all the driving factors. Among them, project

P2G is the most competitive because both the number of developers and the average skills per

developer decrease.

Taking into account the fact that the project duration and developer experience objectives are

considered to be directly competing, the PSO algorithm was executed to generate solutions for the

seven project instances with three different weight preferences. The preferences of the two objec-

tives were adjusted by modifying the weights w1 and w2 shown in Equation (5.2). The purpose of

this was to monitor how the change influences the evolutionary behaviour of the algorithm and the

quality of the final solutions generated. In the first weight preference, both objectives are given

equal importance, thus setting their weights w1 = w2 = 0.5. In the second weight preference,

the project duration is considered more significant and, therefore, the weights were set in favour

of the first objective function of Equation (5.2) with w1 = 0.9 and w2 = 0.1. Finally in the thirdCon
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preference, team experience was considered more important and so the weights were set in favour

of the second objective function of Equation (5.2) with w1 = 0.1 and w2 = 0.9.

Among the numerous variations of the particle swarm optimization algorithm, Binary-PSO

[86] and Constriction-PSO [87] were selected as the most suitable and promising implementations

that would be able to handle the task scheduling and developer allocation problem. The former

is used to control the explosion of the swarm and to improve the convergence of particles over

time, whereas the latter is adopted particularly to handle developer allocation due to the particles’

bitset representation of assigned developers. Furthermore, the multimodal nature of the problem,

having many global/local minimum, dictates the utilization of a low-connected topology in order

for the swarm to adequately examine the search space and to avoid premature convergence in local

(near-)optimal solutions. Due to this, the ring topology was used, in which a particle is connected

with its left- and right-adjacent neighbours. Additionally, the swarm size during the experimental

procedure was kept constant at 60 particles. In case that stagnation was observed, that is, if for a

certain percentage of iterations there was no improvement in the best globally found solution, a

partial reinitialization of positions and velocities took place so as to remove stagnation and give an

additional boost to the particles. Finally, the value of the penalty weights for the constraints were

all specified to cp1 = cp2 = cp3 = −100 giving, thus, equal importance to the constraints.

Each project instance was run ten times for each of the three weight preferences, with a max-

imum number of iterations set to 106. The resource allocation and task schedule solutions ob-

tained at the end of each run for all weight preferences were then analyzed to help answer research

question RQ2.1 regarding the feasibility of the generated solutions and research question RQ2.2

regarding the optimality of the generated solutions.

5.5 Results and discussion

5.5.1 RQ2.1: How well do the constraint functions perform in helping the algorithm gen-

erate feasible resource allocation and task scheduling solutions?

In order to answer the first research question (RQ2.1), each particle in the swarm was assessed

based on whether it represented a feasible resource allocation and task scheduling solution. For

this purpose, a swarm feasibility rate was calculated at the end of each run for each preference

separately, defined as the percentage of solutions in the swarm that do not violate any of the three

constraints analysed in Section 5.3.3.2. Then, the average feasibility rate was computed over all
Con
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ten runs of the algorithm per objective weight preference. The results of this experiment are shown

in Table 5.2.

Table 5.2: Average feasibility rate of generated solutions for each project instance using three

different objective function weight preferences in Approach 2

Project instance

Weight preference P2A P2B P2C P2D P2E P2F P2G

w1 = 0.5, w2 = 0.5 100.0 99.1 97.9 96.6 89.0 88.2 85.0

w1 = 0.9, w2 = 0.1 100.0 99.6 97.8 95.6 88.8 87.3 83.8

w1 = 0.1, w2 = 0.9 100.0 98.0 96.0 95.0 90.0 89.0 87.0

As can been seen from the results, the particles at the end of the runs for project P2A all rep-

resent feasible solutions for each different preference. As the complexity and size of the software

projects increase however, the feasibility ratios begin to decrease. Despite this fall, the majority of

the solutions that the algorithm generates are always feasible (but not necessarily optimal) even in

the most complex and difficult scenarios (projects P2E–P2G). This indicates that the algorithm

is highly capable in constructing sufficient solutions with respect to the hard constraints imposed

in this approach. An important observation is the similar rate of decrease in the feasibility of the

solutions for all three objective weight preferences from 100% in project P2A to around 84–87%

in project P2G. This is basically due to the progressive increase in complexity and difficulty lev-

els from project to project. Thus, solving the optimization problem becomes more complicated

and challenging, especially with the multimodal nature of the problem containing many local and

global optima, which causes the the algorithm to struggle to produce feasible solutions.

Another noteworthy observation that was made after examining particles representing infea-

sible solutions, is that the only constraint not satisfied was that of developer availability (Equa-

tion (5.9)). No dependency violations were recorded and also the skills required by each task were

all fulfilled by the developers assigned. One possible explanation for this behaviour can be at-

tributed to the actual objectives of the problem. The constraint responsible for avoiding conflicts

in developer availability is influenced by both objectives and, therefore, it is more difficult to be

satisfied, whereas the other two constraints are impacted only by one of the objective functions –-

the former by project duration and the latter by developer experience.
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5.5.2 RQ2.2: Howwell do the objective functions perform in helping the algorithm generate

(near-)optimal resource allocation and task scheduling solutions?

The purpose of the second experiment was to help answer research question RQ2.2., and fo-

cused on examining the algorithm with respect to its ability to generate (near-)optimal solutions,

that is, solutions where no unnecessary delays exist in the task scheduling and each task is allo-

cated the most experienced developer(s). The evaluation uses the hit rate of a swarm, defined as

the percentage of particles in the swarm that represent (near-)optimal solutions at the end of each

run. Because the project instances were optimized ten times for each weight preference, the aver-

age hit rate was computed for each project instance for all three weight preferences individually.

The results are provided in Table 5.3.

Table 5.3: Average hit rate of generated solutions for each project instance using three different

objective function weight preferences in Approach 2

Project instance

Weight preference P2A P2B P2C P2D P2E P2F P2G

w1 = 0.5, w2 = 0.5 100.0 30.0 50.0 30.0 0.0 0.0 0.0

w1 = 0.9, w2 = 0.1 100.0 50.0 40.0 30.0 0.0 0.0 0.0

w1 = 0.1, w2 = 0.9 100.0 90.0 80.0 70.0 0.0 0.0 0.0

Studying the hit rates in Table 5.3, it can be seen that the algorithm performs sufficiently well

in the first four projects in all three weight preferences. In these projects, the hit rates reach a

maximum value of 100% for project P2A (the simplest of all project instances) but decrease pro-

gressively (reaching as low as 30% in project P2D, as the software projects becomemore difficult.

As mentioned previously, the feasibility rate decreases approximately the same way for all experi-

ments in the first four projects, but this does not occur in the case of the hit rates, where fluctuations

can be seen.

Comparing results for projects P2C and P2D, there is an obvious decrease in the number of

(near-)optimal solutions produced. This could be attributed to the fact that even though the number

of tasks, dependencies and required skills are the same, there are fewer developers available to

carry out project P2D than project P2C, who also possess a lower number of skills on average.

A possible explanation for the behaviour of the algorithm in project P2D, therefore, is that the

algorithm encounters more difficulties when trying to satisfy the constraints since, intuitively, the

fewer the number of available developers, the more likely that conflicts in developer availability

will arise. Thus, the algorithm produces solutions with lower quality (by creating idle gaps between
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tasks) when compared to project P2C, despite the number of feasible solutions being, on average,

roughly equal.

With regards to projects P2E and P2F , the algorithm experiences some difficulties in find-

ing (near-)optimal solutions, despite being able to frequently generate feasible solutions (within

80–90% of the time). This can suggest that the increase in the complexity and size of software

projects causes difficulties in the evolution of the algorithm and, consequently, to the generation

of acceptable solutions. For example, in project P2E the rate of dependencies is low (only 5%),

which implies that many tasks can start executing simultaneously. In fact, for this project 13 tasks

can start executing on the first day; hence making the scheduling of tasks by the algorithm much

harder as it tries to satisfy all three constraints simultaneously. Furthermore, the imbalance between

the average number of skills required by each task and the skills possessed by each developer raises

the level of difficulty to such a degree that precise adaptations and movements of task starting days

are required by the algorithm in order to convert feasible solutions to (near-)optimal solutions as

well. These issues also apply in the case of projects P2F and P2G. However, better results were

achieved in the project P2E, since fewer unnecessary gaps were recorded in the results.

Another significant observation relates to the variety of (near-)optimal solutions generated by

the algorithm (that is, the uniqueness of the resource allocations and task schedules). As previ-

ously mentioned, each weight preference was run ten times for all projects, meaning a total of 30

executions of the algorithm per project. The number of different (unique) solutions identified for

projects P2A–P2D per weight preference is shown in Table 5.4. Careful examination of these so-

lutions actually showed that the solutions differed only with respect to resource allocation, while

their task schedules remained exactly the same.

Table 5.4: Number of unique solutions generated for projects P2A–P2D using three different

objective function weight preferences in Approach 2

Project instance

Weight preference P2A P2B P2C P2D

w1 = 0.5, w2 = 0.5 4 2 1 1

w1 = 0.9, w2 = 0.1 5 2 2 4

w1 = 0.1, w2 = 0.9 4 2 4 3

The objective weights included in the evaluation of a swarm’s particles allows the algorithm

to be guided into generating solutions that favour either one of the two objective functions. Again

using projects P2C and P2D as a comparison, the objective function values of the overall best
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solutions for the different experiments (Table 5.5) present the visible trade-off and competitive

nature of the objectives.

Table 5.5: Objective function values obtained for project P2C and P2D using three different

objective function weight preferences in Approach 2

P2C P2D

Weight preference Fduration Fexperience Fduration Fexperience

w1 = 0.5, w2 = 0.5 0.984 0.609 0.979 0.608

w1 = 0.9, w2 = 0.1 0.991 0.605 0.982 0.604

w1 = 0.1, w2 = 0.9 0.971 0.612 0.966 0.612

With greater emphasis on developer experience, the algorithm yields its highest fitness value

forFexperience and its lowest forFduration. Conversely, with greater significance on project duration,

the algorithm produces its highest fitness value for Fduration and its lowest for Fexperience. When

equal importance is given, both the objective function values of the best solution are somewhere

between the best and worse for each objective. This can also be seen in Figure 5.1, which presents

the Gantt charts of the best solutions generated for project P2C with each of the three weight

preferences.
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(a) Total project duration of the best solution found for project P2C with weight preferencew1 = w2 = 0.5
is 130 daysCon
sta

nti
no

s S
tyl

ian
ou



67

FINISH

Day

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

T01
T02
T03
T04
T05
T06
T07
T08
T09
T10
T11
T12
T13
T14
T15
T16
T17
T18

(b) Total project duration of the best solution found for project P2C with weight preference w1 = 0.9 and
w2 = 0.1 is 125 days
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(c) Total project duration of the best solution found for project P2C with weight preference w1 = 0.1 and
w2 = 0.9 is 140 days

Figure 5.1: Gantt charts of the best solutions found for project P2C using three different objective
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As can be seen in the figure, the different assignments of developers produce varying project

durations due to the distribution of the objective function weights. With an equal preference in

weights, the total duration of the project is 130 days, which is longer than the duration of the

project generated with a higher preference for project duration (125 days), but shorter than the

duration of the project generated with a higher preference for developer experience (140 days).

5.6 Summary

The results obtained from various executions of the algorithm indicated that particle swarm

optimization is a promising approach for software task scheduling and developer allocation, and

performs sufficiently well in the majority of the test projects examined. The average feasibility

rate of the solutions generated is more than 83%, proving that most of the particles in a swarm

reside in feasible search space area. However, some difficulties were encountered in scenarios

consisting of larger sized and more complex software projects, where the number of tasks, the rate

of dependencies and the number of available developers were shown to influence the ability of

the algorithm to produce (near-)optimal solutions. By observing the solutions generated, several

issues were encountered. First, it was observed that some solutions contained an overallocation

of experienced developers to certain tasks. Although there were no noncontributing developers

assigned to these tasks, the algorithm tended to select too many experienced developers, when in

reality the solutions would still be as good even with the experience of fewer developers. Second,

and most important issue, is that needless gaps between tasks continued to exist just as in the

previous approach, despite solutions satisfying all constraints imposed, which is the main reason

that the average hit rates in all three weight preferences showed a decrease. This led to the creation

of the approach described next in Chapter 6, similar to the previous two, but with enhancements

to mitigate the previous issues.
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Chapter 6

Approach 3: Optimizing Project Duration and Developer Experience

using a Pareto Ranking Genetic Algorithm

The main purpose of this approach [88] is to modify the optimization function described in

the previous two proposed approaches in an attempt to improve the quality of solutions gener-

ated, particularly regarding the project duration objective, since the phenomenon of unnecessary

delays between tasks remained. Furthermore, the two approaches presented up until now both use

a weighted-sum approach, which essentially combines the objectives functions into a scalar func-

tion with one objective. However, the main drawback with this method is that a project manager

is required to select an appropriate weight for each objective function beforehand, which is not

always ideal or reflective of the importance of each objective. In addition, because the objectives

can be conflicting, it would be more beneficial for project managers to have a set of (near-)opti-

mal solutions consisting of the possible trade-offs between the objectives to chose from after the

optimization.

In order to overcome these issues, the approach uses the Non-dominated Sorting Genetic Al-

gorithm (NSGA-II) [89], which is a genetic algorithm that applies the concept of Pareto ranking

on individuals in order to generate a set of (near-)optimal solutions in multi-objective environ-

ments. For comparison, the approach also uses the Archived Multi-objective Simulated Annealing

(AMOSA) algorithm [90], which is a search-based technique again used to solve multi-objective

optimization problems.

69
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6.1 Research questions

The primary research target is to compare the performance of the two multi-objective algo-

rithms. Specifically, research question (RQ3.1) aims to compare the quality of the solutions gen-

erated by two algorithms considering the objectives and constraints underlying this modified ap-

proach: RQ3.1: How do NSGA-II and AMOSA perform with respect to generating feasible

and (near-)optimal resource allocation and task scheduling solutions?

6.2 Problem description

This third approach borrows the notations provided in Section 4.2, which were used to define

the resource-constrained software project scheduling problem put forward in the two previous

approaches proposed in Chapters 4 and 5 .

6.3 Pareto ranking genetic algorithm method

The purpose of using a Pareto ranking genetic algorithm method is to generate a set of (near-

)optimal resource allocation and task scheduling solutions (rather than just one single (near-)op-

timal solution) based the multiple assumptions and objectives defined in the approach. This set

of (near-)optimal solutions is known as the Pareto optimal set, and contains only those solutions

that are nondominated by (or noninferior to) others in the set. In other words, each (near-)optimal

solution represents a particular trade-off between the objectives, where any improvement in one of

the objectives leads to the worsening of one or more other objectives. Because this approach works

as an a posteriori method, that is, the decision-maker does not provide any preferences regarding

the importance of each objective before the optimization, the decision-maker is free to adopt any

one of the (near-)optimal resource allocation and task scheduling solutions generated [91].

The Pareto ranking genetic algorithm adopted in this approach is the second version of the

Non-dominated Sorting Genetic Algorithm (NSGA-II) proposed by Deb et al. in 2002 [89]. The

general outline of the algorithm along with the complementary notations can be found in Algo-

rithm A.3. Since there are constraints present in the task scheduling and developer allocation (that

is, solutions may be infeasible because of dependency relationship violations and/or assignment

conflicts) the constrained NSGA-II algorithm was implemented. One important characteristic of

NSGA-II is that it promotes the diversity of solutions through a crowded comparison operator usedCon
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both during the tournament selection and population reduction steps of the algorithm. Also, elitism

is guaranteed since parent and offspring populations are combined prior to being sorted according

to nondomination.

In addition, a multi-objective simulated annealing algorithm was also implemented using the

Archived Multi-Objective Simulated Annealing (AMOSA) algorithm proposed by Bandyopad-

hyay et al. [90]. Simulated annealing mimics the process of physically heating materials for a

certain amount of time at different temperature intervals, starting at a high temperature and slowly

lowering the temperature over time to reduce defects [92]. This specific variation stores nondom-

inated solutions in an archive that is updated iteratively based on the comparison of the suitability

and feasibility of a current solution and a newly created solution (resulting from the mutation of

the current solution). The same objective and constraints functions are incorporated into the im-

plementation to allow direct comparison of the solutions in the final populations with respect to

the feasibility and optimality of the task schedules and developer allocations represented by indi-

viduals. The steps of the algorithm are outlined in Algorithm A.4.

6.3.1 Representation and encoding

In order to generated (near-)optimal resource allocation and task scheduling solutions, the al-

gorithm requires the same two pieces of information described in Section 4.3.1. Each solution is

represented by an individual made up of a mixed-type array in which each element, similarly to

before, contains the information regarding the starting time of each task (encoded using a nonzero

positive integer) and the assignment of developers (encoded using a bitset).

6.3.2 Population initialization

Initialization of individuals in the population follows the same procedure described in Sec-

tion 4.3.2. Again, the main goal is to start with a generation of feasible solutions, and therefore no

individual is allowed to have any tasks without developers able to carry it out.

6.3.3 Optimization function

A new optimization function is implemented in this approach so as to allow the Pareto rank-

ing method to find a set of (near-)optimal solutions that schedule task with the shortest possible

duration and allocate developers with the highest experience. Specifically, the function aims toCon
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maximize a vector of three objective functions subject to three constraints, as shown in Equa-

tion (6.1):

Maximize
∀x∈POP

F(x) = (Fduration(x),Fexperience(x),Fsize(x)),

subject to Gdependency(x) = 0,

Gskills(x) = 0,

Gassignment(x) = 0.

(6.1)

6.3.3.1 Objective functions

The first two objective functions, Fduration(x) and Fexperience(x), are adopted as-is from the

previous two proposed approaches described in Chapters 4 and 5. The third objective function,

Fsize(x), attempts to minimize the number of developers assigned to each task in order to handle

the issue of over-allocating developers to tasks.

6.3.3.1.1 Project duration objective function

This objective relates to generating resource allocation and task schedule solutions so that a

software project completes within the shortest duration possible. The approach uses the same

objective function described in Equation (4.6), defined by

Fduration(x) =
1

m

m∑
i=1

t
delay
i . (4.6 revisited)

The function’s purpose is to minimize the duration of a software project by calculating the fitness

of each individual x in the population taking into account the degree to which unnecessary delays

exist between tasks.

6.3.3.1.2 Developer experience objective function

This objective concerns generating resource allocation and task schedule solutions in a way

where tasks are undertaken by the most experienced developers. The approach adopts the same

objective function from Equation (4.9), such that

Fexperience(x) =
1

m

m∑
i=1

t
experience
i . (4.9 revisited)

The function targets the maximization of the experience of assigned developers by assessing the

fitness of each individual, x, in the population based on the level of experience that developers

possess in the various skills required by the tasks of the project.
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6.3.3.1.3 Team size objective function

The final objective in this approach relates to generating resource allocation and task sched-

ule solutions in a way where the over-allocation of resources is reduced. Fewer team members

mean less cost and effort devoted to a project and less communication overhead, the latter being

something that software project managers are aware of and almost always want to avoid. More

importantly, it allows for more developers to be available for selection in other tasks. This objec-

tive is expressed in the project team size objective function, which aims to minimize the size of a

team by assessing the fitness of individuals in the population based on the number of developers

assigned to each task. Therefore, the function only requires the resource allocation information

regarding which developers are assigned to each task.

To begin with, for each task ti in the project, the algorithm calculates tsizei by taking into account

the number of developers, t
assigned
i , assigned to task ti using

tsizei =
1

1 + t
assigned
i

. (6.2)

Next, the total sum of the team sizes calculated using Equation (6.2) are averaged over the number

of tasks with

Fsize(x) =
1

m

m∑
i=1

tsizei . (6.3)

The higher the partial values of tsizei , then the fitter the individual with regards this objective due

to the overall number of developers assigned to work on each task being lower.

6.3.3.2 Constraint functions

The three constraint functions used to handle the assumptions in the approach remain the same

as those described in Section 5.3.3.2. In particular, the approach employs these functions in order

to guide the algorithm to generate feasible solutions where: (1) dependencies are satisfied by the

scheduling of tasks (dependency satisfaction constraint function), (2) skills required by tasks are

fulfilled by the allocation of resources (skill fulfilment constraint function), and (3) assignments

comply with the availability of developers (assignment validity constraint function).

6.3.3.2.1 Dependency satisfaction constraint function

The dependency satisfaction constraint, Gdependencies(x), assesses the feasibility of each indi-

vidual x in the population based on the degree to which task dependencies are satisfied as a result of
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the scheduling of each task. The value of the function is calculated using Equation (5.5) described

in Paragraph 6.3.3.2.1 in Approach 2.

Gdependencies(x) =
1

m

m∑
i=1

tdviolationsi . (5.5 revisited)

6.3.3.2.2 Skill fulfilment constraint function

The skill fulfilment constraint, Gskills(x), assesses the feasibility of each individual x in the

population based on the degree towhich skills required by a task are fulfilled based on the allocation

of resources. The value of the function is calculated using Equation (5.7) described in Paragraph

5.3.3.2.2 in Approach 2.

Gskills(x) =
1

m

m∑
i=1

tsviolationsi . (5.7 revisited)

6.3.3.2.3 Assignment validity constraint function

The assignment validity, Gassignments(x), assesses the feasibility of each individual x in the

population based on the degree to which assignments comply with the availability of developers.

The value of the function is calculated using Equation (5.9) described in Paragraph 5.3.3.2.3 in

Approach 2.

Gassignments(x) =

n∑
j=1

raviolationsj . (5.9 revisited)

6.4 Experiments

An experiment was carried out to help answer research question RQ3.1 regarding the quality of

the resource allocation and task scheduling solutions generated by NSGA-II and AMOSA, subject

to the approach’s objectives and constraints.

A total of eight software project instances with varying size and complexity were again cre-

ated after consulting with three expert project managers with the purpose of representing possible

instances of real-world software projects. The software project managers were interviewed with

open questions to extract the features of these software projects, which are presented in Table 6.1.

Project P3A provides an example of a project to be undertaken by a small software company

with few available developers each possessing a moderate number of skills. The project contains

very few tasks and each task requires only one skill. In addition, the project contains a small

number of dependencies and so is considered to have low complexity. Project P3B again involves
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Table 6.1: Size and complexity of software projects used for experiments in Approach 3

Avg. no. No. Avg. no.

Project No. No. Dependency skills available skills per

instance tasks dependencies rate per task developers developer

P3A 5 5 50% 1.0 3 3.0

P3B 12 26 39% 1.0 3 1.0

P3C 15 40 38% 2.0 8 2.0

P3D 18 36 24% 4.0 10 3.0

P3E 20 52 27% 2.0 3 2.0

P3F 30 62 14% 3.0 18 3.0

P3G 20 65 34% 3.0 6 4.0

P3H 25 16 5% 3.0 3 3.0

a small-sized company undertaking a software project, but this time with both a moderate number

of tasks and dependencies. As in project P3A, each task requires only one skill and, furthermore,

developers in the company specialize also in only one skill. Projects P3C and P3D both represent

examples of projects to be performed by medium-sized software companies. However, in project

P3D the size of the project is larger but there are fewer dependencies between tasks. Another

difference is that tasks in project P3D require more skills and developers possess experience in a

wider range of skills.

Projects P3E and P3F both correspond to a software project that is both large in size and high

in complexity. In the case of project P3E, the project is to be undertaken by a small development

company with developers that possess a moderate range of skills, whereas in project P3F a larger

software company will be responsible for the project’s development with its developers having

experience in a larger number of skills on average. Also, tasks in project P3E require, on average,

fewer skills each. Project P3G in the experiments consists of a large and more complicated project

undertaken by amedium-sized company. This project is similar to projectP3E, however, with two

differences: each task requires more skills and developers possess experience in a larger number

of skills. Finally, project P3H represents a large but less complex project with tasks requiring

a medium number of skills. The size of the development company is small but developers have

experience in an average number of different skills.

Both NSGA-II and AMOSA were run 15 times for each project with 3500 iterations per run.

All runs of the NSGAI-II consisted of a population with 100 individuals. The objective functions

and constraint functions were applied to each solution and the evolution process began by selecting

a number of parents to enter the mating pool using a tournament selection procedure of size four.Con
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The two best parents of each tournament in terms of fitness and/or feasibility were selected for

recombination and mutation. The operators were applied uniformly across each variable so that

each project task had a probability of being recombined and mutated with a value of 0.90 and 2/m,

respectively. In addition, simulated binary crossover for the integer-coded variables was used for

reproduction of variables representing start days, while single-point binary crossover was adopted

for reproduction of the bitset-encoded variables representing developer assignments. Mutation of

the integer-coded variables used polynomial mutation, whereas the bitset-coded variables used a

bit-flip operator.

6.5 Results and discussion

6.5.1 RQ3.1: How do NSGA-II and AMOSA perform with respect to generating feasible

and (near-)optimal resource allocation and task scheduling solutions?

The first property examined in the comparison was the number of unique solutions present in

the final Pareto front (NSGA-II) and final Pareto archive (AMOSA) of each run. Table 6.2 sum-

marizes this data for all eight projects, for both the NSGA-II and AMOSA implementations of the

proposed approach. For project P3A, NSGA-II runs generated final Pareto fronts consisting of

either one, two or three unique solutions, indicating that the majority of individuals in a popula-

tion converged to the same point(s) in the search space. However, this range in number seems to

increase as the attributes of the software projects increase, both in size and complexity.

Also for each project, the final Pareto fronts/archives of the 15 runs were pooled together into

one approximation Pareto front/archive in order to identify the combined set of (near-)optimal

solutions as a whole for each algorithm. The number of best solutions in these fronts/archives for

each project are also given in Table 6.2. For example, AMOSA generated a total of 82 unique

solutions for project P3A (summation of the column) over the 15 iterations, averaging around

six unique solutions per run. But after combining the 15 final Pareto archives, a total of three

(near-)optimal solutions were found to comprise the approximation Pareto archive.
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Table 6.2: Results of obtained by NSGA-II and AMOSA in the experiments performed in Approach 3

Project P3A Project P3B Project P3C Project P3D

NSGA-II AMOSA NSGA-II AMOSA NSGA-II AMOSA NSGA-II AMOSA

Run 01 1 6 2 13 100* 100* 98 100*

Run 02 3 2 1 53 100* 81* 98 100*

Run 03 1 6 1 58 92 93* 99 100*

Run 04 3 6 7 39 60 97* 99 100*

Run 05 3 5 37 11* 100* 100* 95 100*

Run 06 1 10 96 44 100* 83* 97 100*

Run 07 2 11 1 35 3 88* 95 100*

Run 08 1 4 3 41 100* 72 98 100*

Run 09 2 10 1 35 73 100* 99* 100*

Run 10 2 6 70 14 100* 100* 97 100*

Run 11 2 6 43 21 100* 74* 97 100*

Run 12 2 7 5 2 100* 100* 97 100*

Run 13 1 1* 1 32 75* 65 100 100*

Run 14 2 5 6 34* 100* 75* 98 100*

Run 15 2 1 42 27 80 64* 95 100*

Total no. unique solutions 28 86 316 459 1283 1292 1462 1500

Avg. no. unique solutions 2 6 21 31 86 86 97 100

No. best solutions in

approximation Pareto front 2 3 5 4 8 2 215 1
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Table 6.2: Results of obtained by NSGA-II and AMOSA in the experiments performed in Approach 3 (continued from previous page)

Project P3E Project P3F Project P3G Project P3H

NSGA-II AMOSA NSGA-II AMOSA NSGA-II AMOSA NSGA-II AMOSA

Run 01 99* 94* 100* 100* 100* 100* 30 100*

Run 02 99* 75* 100* 100* 100* 81* 98 100*

Run 03 100* 100* 94* 100* 80* 100* 89 100*

Run 04 98* 69* 9 100* 97* 100* 75 100*

Run 05 99* 100* 83 51* 100* 100* 64 100*

Run 06 98* 100* 100* 100* 100* 100* 75 100*

Run 07 6 95* 100* 88* 80 100* 99 100*

Run 08 99* 68* 100* 78* 100* 100* 81 100*

Run 09 100* 86* 100* 96* 99* 97* 100 100*

Run 10 99* 48* 98* 88* 90 100* 99 100*

Run 11 98* 92* 100* 100* 88 94* 72 100*

Run 12 100* 100* 100* 78* 83* 100* 100* 100*

Run 13 99* 100* 100* 93* 100* 100* 100 100*

Run 14 100* 100* 100* 100* 100* 100* 76 100*

Run 15 96* 100* 99* 100* 100* 100* 74 100*

Total no. unique solutions 1390 1327 1383 1372 1417 1491 1232 1500

Avg. no. unique solutions 93 88 98 91 94 99 82 100

No. best solutions in

approximation Pareto front 6 1 50 1 143 1 9 1
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Project P3A involves a software project that is relatively small in size and low in complexity.

The skills required by the project’s tasks, as well as the experience that the available developers

possessed in the skills the are shown in Table 6.3 and Table 6.4, respectively.

Table 6.3: Skills required for the tasks of project P3A in Approach 3

Required skill

Task S01 S02 S03 S04 S05

T01 X
T02 X
T03 X
T04 X
T05 X

Table 6.4: Levels of experience of available developers in skills required for project P3A in Ap-

proach 3

Required skill

Developer S01 S02 S03 S04 S05

R01 0.88 0.00 0.00 0.01 0.15

R02 0.00 0.82 0.74 0.29 0.00

R03 0.00 0.36 0.14 0.56 0.63

Given the attributes of project P3A, it is possible to identify that there are two unique resource

allocation and task schedule solutions (3AS1 and 3AS2) for the project. The objective function

values of these two optimal solutions are given in Table 6.5.

Table 6.5: Objective function values corresponding to the optimal solutions found by NSGA-II for

project P3A in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3AS1 1.0000 0.6340 1.0000

3AS2 0.8181 0.7260 1.0000

The corresponding Gantt charts of these two solutions are shown in Figure 6.1, where the

resources assigned to each task are shown next to the corresponding task bars.
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(a) Gantt chart of best solution 3AS1 found by NSGA-II for project P3A
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(b) Gantt chart of best solution 3AS2 found by NSGA-II for Project P3A

Figure 6.1: Gantt charts of the best solutions found by NSGA-II for project P3A in Approach 3

From Table 6.2, it can be seen that all runs of NSGA-II generate feasible solutions for project

P3A. Also, the final Pareto fronts represented between one and three unique solutions, something

which is actually expected since the very small size of the software project guided individuals to

converge to these solutions. The individuals of the final Pareto fronts were then combined to iso-

late the overall best solutions forming the approximated Pareto front (Figure 6.2).
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Figure 6.2: Approximation Pareto front corresponding to the best solutions generated by NSGA-II

for project P3A in Approach 3
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Table 6.6 presents the runs in which the two optimal solutions were indeed found together with

the corresponding number of individuals representing those solutions in each run’s final Pareto

front. As can be seen, best solution 3AS1 was found in the final Pareto front of 12 runs, whereas

optimal solution 3AS2 was found in six. However, only a third of the runs managed to find both

solutions (runs 07, 10, 11, 12 and 15). What’s more, in the majority of cases where an best solution

was found, it was either highly prevalent over the other (as in runs 04, 05, 07, 09, 10, 11, 12 and

15) or the only solution found (as in runs 03, 06, 08 and 13).

Table 6.6: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3A in Approach 3

Frequency

3AS1 3AS2

Run 03 100 0

Run 04 96 0

Run 05 97 0

Run 06 100 0

Run 07 99 1

Run 08 100 0

Run 09 99 0

Run 10 6 94

Run 11 99 1

Run 12 99 1

Run 13 100 0

Run 14 0 2

Run 15 93 7

It is clear from the results of Table 6.6 that for small-scale software projects the algorithm

is able to find the best task schedules and developer allocations. As is reflected in real-world

situations, assigning more experienced developers to tasks can create conflicts in the availability

of the developers. In order to accommodate this, the algorithm will attempt to delay the execution

of the conflicting tasks so that it keeps fixed the assignment of more experienced developers, which

consequently increases the overall duration of the project. Such is the case for tasks T02 and T03

of projectP3A. In Figure 6.1a, developerR03 is assigned to carry out task T02 (experience in skill

S02 = 0.36) and developerR02 is assigned to carry out task T03 (experience in skill S03 = 0.74).

This assignment, whilst optimal with respect to duration, it is not optimal with respect to experience

since developerR02 is more experienced in S02 than developerR03 (0.82 > 0.36). By assigning

developer R02 to also carry out task T02, an assignment conflict is created in the availability of

developerR02. Therefore, in order to handle this, the algorithm pushes back the execution of task
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T03, conversely increasing the duration of the software project by three days and generating the

new competing best solution shown in Figure 6.1b. It is evident from this example that the two

objective functions with respect to duration and experience are competing in nature. Due to the

small scale of the software project, the size objective function also tries to minimize the number

of developers assigned to each task, therefore selecting only one developer per task.

The AMOSA implementation of the proposed approach produced a total of three unique solu-

tions, which include the two optimal solutions presented in Figure 6.1. Regarding the optimality

of the solutions generated in each run, none of the runs managed to successfully generate both

optimal solutions, unlike NSGA-II, which managed to do so in five of the runs. In fact, 11 runs

generated only one of the best solutions, whereas the remaining four runs generated neither opti-

mal solutions. This demonstrates that even with a small-scale and less complex software project,

a genetic algorithm approach is more appropriate than simulated annealing for optimization in the

context of this constrained multi-objective problem, since the rate of optimality is more frequent

in NSGA-II than in AMOSA. With respect to feasibility, only one run did not manage to provide

an archive with any feasible solutions (run 13).

For project P3B various behaviours of the NSGA-II algorithm can be observed by examining

the number of unique solutions in the final Pareto front of each run in Table 6.2. First, in some cases

the individuals comprising the final Pareto front represent one single unique solution. This occurs

in runs 02, 03, 07, 09 and 13. This can be read as possible evidence that the crossover and mutation

operators adopted are not capable of untrapping individuals to search for more varied solutions.

One possible solution is to gradually increase the rate of exploration of the search space with a

higher probability of mutation as the algorithm is executing so that more nondominated solutions

could be generated. A second observation is that in certain instances a relatively small number of

unique solutions are represented by the individuals of the final Pareto front. Specifically, in runs

01, 04, 08, 12 and 14, between two and seven solutions are represented by individuals in their

respective final Pareto front. Furthermore, in some runs population individuals represent many

unique solutions, as occurred in runs 05, 06, 10, 11 and 15, which leads to an average number

of unique solutions of 21 for project P3B. This may be due to more iterations required for the

algorithm to converge to a smaller set of best solutions. Finally, all 316 unique solutions that were

found by NSGA-II in the 15 runs for project P3B provided feasible task schedules and developer

allocations. By carrying out a fast nondominated sort of these solutions, the approximation ParetoCon
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front in the end comprised five best solutions, which listed in Table 6.7 and depicted in Figure 6.3.

The frequency of these solutions as individuals in the runs are shown in Table 6.8.

Table 6.7: Objective function values corresponding to the best solutions generated by NSGA-II

for project P3B in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3BS1 0.5815 0.6109 1.0000

3BS2 0.6037 0.6425 1.0000

3BS3 0.6079 0.6717 1.0000

3BS4 0.7350 0.5817 1.0000

3BS5 0.6302 0.6108 1.0000

0.6
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0.7 0.6

0.65
0.8

1

1.2
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Fsize

Figure 6.3: Approximation Pareto front corresponding to the best solutions generated by NSGA-II

for project P3B in Approach 3

Table 6.8: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3B in Approach 3

Frequency

3BS1 3BS2 3BS3 3BS4 3BS5

Run 02 100 0 0 0 0

Run 11 0 5 1 0 0

Run 12 0 0 0 89 0

Run 13 0 0 0 0 100

A closer look at the objective function values in Table 6.7 shows that, as anticipated, the shorter

the project’s make span, the lower the experience. Again, this shows the competitive nature of the

objectives as the algorithm tries to balance developer availability conflicts. This is demonstrated by
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the schedules of the two (near-)optimal solutions in Figure 6.4. Optimal solution 3BS1 provides

the shortest project duration, while best solution 3BS3 the most experienced software project

team. From a practical perspective, a software project manager looking to maximize resources

or minimize make span can use this approach to select the most appropriate project schedule and

team assignment from a pool of possible strategies.
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(a) Gantt chart of best solution 3BS1 found for project P3B
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(b) Gantt chart of best solution 3BS3 found for project P3B

Figure 6.4: Gantt charts of several best solutions found for project P3B in Approach 3

All the solutions produced satisfy all the constraints, thus, generating feasible task schedules

and developer allocations. Interestingly, individual solutions in the approximation Pareto front

have varying frequencies in their respective final Pareto front. For instance, best solution 3BS3 isCon
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found only by one individual in run 11, whereas best solution 3BS1 is represented by all individ-

uals in the final Pareto front of run 02. This may indicate that the random nature of the algorithm

particularly during selection, recombination and mutation does not guarantee the convergence to

a single (near-)optimal solution or the divergence to a set of (near-)optimal solutions.

Results produced from executing AMOSA on Project P3B showed that, while NSGA-II had

no runs that generated only infeasible solutions, the simulated annealing method had two instances

where an run’s final archive contained individuals violating any or all of the constraints (runs 05

and 14). The average number of unique solutions found per run was 31, which is higher than in

the case of NSGA-II (21). Still, the number of best solutions in the approximation Pareto archive

was almost the same as for NSGA-II.

In project P3C, six NSGA-II runs produced final populations all with feasible solutions,

whereas there were nine instances (those marked with an asterisk in Table 6.2) where the runs

of the algorithm produced a final population of infeasible solutions that violated at least one of

the three constraints. As the problem size and complexity increases the more it is clear that the

algorithm starts to find difficulties in generating (near-)optimal solutions whilst trying to cope with

avoiding constraint violations. The final populations of the six runs that generated only feasible

solutions (specifically, runs 03, 04, 07, 09, 13 and 15) were subsequently combined to yield the

eight best solutions presented in Table 6.9 and plotted in Figure 6.5. The frequency of these eight

best solutions in their respective runs are given in Table 6.10. While most of the solutions in this

front only appeared once in their respective runs, three of the solutions were represented by more

than one individual. The corresponding Gantt chart of the most predominant individual, 3CS5, is

shown in Figure 6.6.

Table 6.9: Objective function values corresponding to the best solutions generated by NSGA-II

for Project P3C in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3CS1 0.7536 0.5507 0.7222

3CS2 0.7530 0.5521 0.7000

3CS3 0.6915 0.5521 0.7333

3CS4 0.8194 0.5301 0.7333

3CS5 0.8182 0.5411 0.7333

3CS6 0.4219 0.5532 0.7000

3CS7 0.4208 0.5546 0.7000

3CS8 0.4207 0.5569 0.7333Con
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Figure 6.5: Approximation Pareto front corresponding to the best solutions generated by NSGA-II

for project P3C in Approach 3

Table 6.10: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3C in Approach 3

Frequency

3CS1 3CS2 3CS3 3CS4 3CS5 3CS6 3CS7 3CS8

Run 04 1 1 1 0 0 0 0 0

Run 07 0 0 0 4 87 0 0 0

Run 15 0 0 0 0 0 6 1 1
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Figure 6.6: Gantt chart of best solution 3CS5 found for project P3C in Approach 3Con
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Applying the simulated annealing algorithm on project P3C produced some interesting obser-

vations. Only two runs produced feasible solutions, which is lower than in the case of NSGA-II,

where five runs produced feasible solutions. However, on average, the number of unique solutions

at the end of each run is the same (86). This shows that the ability of AMOSA in enforcing diver-

sity in solutions in the context of the described problem is equal with that of NSGA-II. However,

after combining the final archives of each run, the number of best solutions in the approximation

Pareto archive of AMOSA is only two, compared to the eight in NSGA-II.

Regarding the optimality of the solutions in the final archive, after careful examination of

all schedules and allocations generated in both techniques, AMOSA provided far less suitable

solutions, having unnecessary gaps and also unnecessary allocation of noncontributing developers

to tasks, something which was not observed in the NSGA-II implementation. Furthermore, both

the solutions in the approximation Pareto archive were individuals from the same run.

The software project represented by project P3D is comparatively larger than the three previ-

ous projects. The results obtained here show that all but one run of NSGA-II managed to contain a

final Pareto front of feasible solutions, as opposed to none with AMOSA. Run 09 of the NSGA-II

implementation, however, produced a final Pareto front of infeasible solutions and, in particular,

all individuals failed to satisfy the dependency violation constraint of Equation (5.5). This may

primarily be attributed to the increased number of tasks, as well as number of skills required per

task in the software project. Due to the overall higher number of skills needed to be satisfied,

in this instance, the algorithm encounters difficulties in satisfying the constraint while simultane-

ously attempting to optimize the competing functions. By combining the final Pareto fronts of the

runs, a total of 215 best solutions were present in the approximation Pareto front, as illustrated in

Figure 6.7.

Tables 6.11 and 6.12 show the objective function values and frequency, respectively, of the

best solutions of the approximation Pareto front that appeared more than once in their respective

final Pareto front. The remaining 209 solutions appearing as individuals just once are omitted.
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Figure 6.7: Approximation Pareto front corresponding to the best solutions generated by NSGA-II

for project P3D in Approach 3

Table 6.11: Objective function values corresponding to the best solutions generated by NSGA-II

for Project P3D in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3DS1 0.2299 0.4392 0.5000

3DS2 0.3058 0.5154 0.3366

3DS3 0.3065 0.5150 0.3292

3DS4 0.3059 0.5136 0.3509

3DS5 0.3628 0.4600 0.4213

3DS6 0.2691 0.5262 0.3000

Table 6.12: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3D in Approach 3

Frequency

3DS1 3DS2 3DS3 3DS4 3DS5 3DS6

Run 02 2 0 0 0 0 0

Run 07 0 2 2 2 0 0

Run 11 0 0 0 0 2 0

Run 14 0 0 0 0 0 2

Upon closer examination of the task schedules of all Pareto front solutions it was established

that, similar to the previous approaches, there were unnecessary gaps between dependent tasks.

This indicates that the algorithm was not able to find (near-)optimal solutions in any of the runs.

An example of such nonoptimal solution appearing in the approximated Pareto front can be seen

in the Gantt chart of Figure 6.8. From the figure, task T18 starts its execution on Day 124while its
Con

sta
nti

no
s S

tyl
ian

ou



89

predecessor (task T16) finishes its execution on Day 105. This means that there are 20 days in the

project where developers are idle. What is expected of the algorithm is to shift the start day of task

T18 towards the finishing day of task 16, thus minimizing the duration of the project. This also

occurs between tasks T08 and T09. Although there is no dependency between the two tasks here,

there is, nevertheless, a gap of 4 days where developers R01 and R06 are expecting to commence

work on task T09 after developer R01 is freed by the completion of task T08. Either or both of

these types of situations occurred in all of the solutions of the approximation Pareto front, which

gives an indication of the difficulties challenging the algorithm to generate (near-)optimal solutions

when the size of the software project increases in addition to trying to handle constraints.
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Figure 6.8: Gantt chart of best solution 3DS5 found for project P3D in Approach 3

In comparison with simulated annealing, only a single solution made up the approximation

Pareto archive, and this solution was infeasible. The level of diversity of the solutions in each run

is, however, almost just as high as with NSGA-II. The fact that no feasible solutions were generated

in any of the runs is opposite to the behaviour of theNSGA-II algorithm, whichmanaged to produce

feasible solutions in all but one run. This is possibly attributed to the fact that, as a local search

technique, the method encounters difficulty in evolving in a direction of a more feasible solution

in a search space with multiple dimensions and constraints.Con
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In the case of project P3E, only run 07 of the NSGA-II algorithm managed to produce a final

Pareto front with feasible solutions. The runs which produced infeasible solutions all failed to

satisfy the dependency satisfaction constraint (Equation (5.5)), while several also failed to satisfy

the assignment validity constraint (Equation (5.9)). Clearly, the larger number of tasks coupled

with the increased number of dependencies and small number of developers available to staff each

task make the algorithm unable to sufficiently cope with balancing the objectives. The individuals

of the final Pareto front of run 07make up the approximation Pareto front for NSGA-II (Figure 6.9).

The objective function values of these six best solutions are shown in Table 6.13.
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Figure 6.9: Approximation Pareto front corresponding to the best solutions generated by NSGA-II

for project P3E in Approach 3

Table 6.13: Objective function values corresponding to the best solutions generated by NSGA-II

for Project P3E in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3ES1 0.6039 0.3470 0.8000

3ES2 0.6039 0.3476 0.7917

3ES3 0.6039 0.3497 0.7750

3ES4 0.6039 0.3524 0.7500

3ES5 0.6039 0.3503 0.7667

3ES6 0.6039 0.3530 0.7417

The important observation made here is that the scheduling of the project tasks is the same for

all solutions and, hence, all schedules have a duration of 134 days. Even so, the algorithm tries to

balance the competition between the experience objective function and the size objective function.
Con

sta
nti

no
s S

tyl
ian

ou



91

An increase in the value of one objective decreases the value of the other objective. Decreasing

the size of a team in a task means that more developers become available to participate in other

tasks and possibly increasing the experience value of those other tasks. The approximation Pareto

front also shows the trade-off between these two objectives. What’s more, the solutions generated

are more-or-less equally represented by individuals in run 07, at roughly 16–17 appearances each

(Table 6.14). TheGantt chart in Figure 6.10 shows the resulting task scheduling represented by best

solution 3ES6. Again, the presence of unnecessary gaps between tasks can be observed, causing

extra time to be added to the project’s duration. A possible solution to eliminate gaps could come

in the form of a technique that allows the algorithm to explore the surrounding problem space more

effectively in order to escape from local optima, and by allowingmore evolutions of the algorithm.

Table 6.14: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3E in Approach 3

Frequency

3ES1 3ES2 3ES3 3ES4 3ES5 3ES6

Run 07 17 17 16 16 17 17
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Figure 6.10: Gantt chart of best solution 3ES5 found for project P3E in Approach 3Con
sta

nti
no

s S
tyl

ian
ou



92

The simulated annealing approach behaved similarly in project P3E as in project P3D, gen-

erating a single infeasible solution in the approximation Pareto archive, with no runs generating

any feasible solutions. However, the average number of unique solutions per run in this case was

slightly lower in AMOSA than in NSGA-II.

The runs of project P3F by NSGA-II were marginally more successful in producing final indi-

viduals with feasible solutions than project P3E. By comparing the project dimensions of the two

instances in Table 6.1, some indications can be given as to why this occurs. First, in project P3F

there are quite more developers available to be assigned to tasks and also they possess experience

in a higher number of skills on average than in project P3E. For this reason, the algorithm should

be able to handle the skills fulfilment constraint Equation (5.7) and the developer assignment va-

lidity constraint Equation (5.9) more easily since there are more developers to choose from with

a wider variety of skill sets. Second, project P3F has a lower dependency rate meaning that, on

average, fewer dependency relationships exist between the total number of possible dependencies

among the tasks, which are one-and-a-half times as much as those of project P3E. Consequently,

the algorithm should be able to satisfy the dependency satisfaction constraint Equation (5.5) with

less difficulty in project P3F than in project P3E. On this basis, it is expected that final Pareto

fronts with feasible solutions should be more frequent in runs of project P3F than in project P3E,

yet the majority produced infeasible solutions. One possible reason for this may be related to

the dependency relationships between tasks. In project P3F , the dependency relationship rate

of the software project is relatively lower than in the project P3E, but nevertheless the number

of dependency relationships is higher. This suggests that using the rate alone as an indicator of

complexity may not be sufficient. A closer examination of the dependency relationships in project

P3F revealed that there are actually several tasks that have a high number of predecessor tasks in

contrast with project P3E. Due to tasks being heavily dependent on others, as the algorithm tries

to balance the objectives, it would more likely encounter problems in satisfying the dependency

violation constraint, as well as the developer assignment conflict constraint. This, therefore, can

provide an explanation as to why the algorithm is not able to produce more feasible solutions in

this instance.

The feasibility of the solutions using the simulated annealing method also suffered from this,

as it again failed to provide any solutions that did not violate all of the constraints imposed. It

should be noted, though, that the infeasible solution of the approximation Pareto archive violatedCon
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the dependency constraint (at a value of 0.0308) and the developer availability constraint (at a

value of 0.0179). Considering that a feasible solution will have constraint values of zero, the level

of infeasibility of the solution is relatively small, which indicates that the simulated annealing

algorithm in this run was close to producing at least one feasible solution.

In NSGA-II, runs 04 and 05 for project P3F were the only ones that managed to provide final

Pareto fronts with feasible solutions. After joining the two populations, the approximation Pareto

front consisted of 50 individuals (which, incidentally, all belonged to the final Pareto front of run

05) as shown in Figure 6.11.
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Figure 6.11: Approximation Pareto front corresponding to the best solutions generated by NSGA-

II for project P3F in Approach 3

The fact that a small number of runs with feasible populations were generated can be attributed,

perhaps, to the fact that project P3F has a considerably higher number of tasks, which on average

require more skills to be carried out. While this does not directly affect the satisfaction of con-

straints in theory, in practice the algorithm has to conduct exploration and exploitation of a much

larger search space in order to find (near-)optimal solutions and, by doing so, possibly compro-

mises the feasibility of its solutions. Out of the 50 solutions comprising the approximation Pareto

front, 11 were represented by more than one individual in their respective runs final population.

For the sake of brevity, only the objective function values and frequencies of these individuals are

displayed in Tables 6.15 and 6.16, respectively.Con
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Table 6.15: Objective function values corresponding to the best solutions generated by NSGA-II

for Project P3F in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3FS1 0.4144 0.8543 0.5420

3FS2 0.4111 0.8648 0.5553

3FS3 0.4311 0.8514 0.5448

3FS4 0.4228 0.8659 0.5698

3FS5 0.4002 0.8685 0.5817

3FS6 0.3506 0.8668 0.5900

3FS7 0.3586 0.8677 0.5844

3FS8 0.3906 0.8689 0.5761

3FS9 0.3241 0.8681 0.5872

3FS10 0.3232 0.8679 0.5917

3FS11 0.3060 0.8692 0.5833

Table 6.16: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3F in Approach 3

Frequency

3FS1 3FS2 3FS3 3FS4 3FS5 3FS6

Run 05 3 2 2 2 3 2

3FS7 3FS8 3FS9 3FS10 3FS11

Run 05 3 2 2 3 2

Another interesting observation here is that the competing nature of the objective functions is

not clear, that is, an increase in one value does not imply a decrease in the other(s). This, once

more, is possibly due to the fact that the software project consists of a large number of tasks and,

thus, the algorithm is not able to provide (near-)optimal solutions but instead yields schedules with

unnecessary delays between tasks. Had the algorithm managed to overcome this, then the values

of the corresponding objective function would have been lower (leading to a lower make span) and

more reflective of the competitiveness of the objective functions.

For project P3G, three of the NSGA-II runs managed to produce final Pareto fronts with feasi-

ble solutions. Compared to project P3F , the software project here had a higher number of depen-

dency relationships for the algorithm to deal with, in addition to much lower number of available

developers. This combination could be a possible factor determining whether the algorithm is able

to handle such high complexity in its attempt to optimize the objectives, especially with limited re-

sources. Furthermore, by studying the runs with infeasible solutions, it was observed again that the

individuals in each of these populations only breached the dependency violation constraint. The

Con
sta

nti
no

s S
tyl

ian
ou



95

143 solutions comprising the approximation Pareto front of NSGA-II for project P3G can be seen

in Figure 6.12, while the objective function values of the most frequent are shown in Table 6.17.

Table 6.17: Objective function values corresponding to the best solutions generated by NSGA-II

for Project P3G in Approach 3

Objective function

Solution Fduration Fexperience Fsize

3GS1 0.5162 0.5775 0.6250

3GS2 0.4677 0.5719 0.6625

3GS3 0.4618 0.5733 0.6667

3GS4 0.2904 0.5932 0.6292

3GS5 0.3125 0.5903 0.6542

3GS6 0.3425 0.5742 0.6917

3GS7 0.4080 0.5851 0.5708

3GS8 0.3565 0.5962 0.6000

3GS9 0.3049 0.5980 0.5875

3GS10 0.3243 0.5831 0.6767

3GS11 0.3365 0.5783 0.6833

3GS12 0.3608 0.5701 0.6708

3GS13 0.3420 0.5511 0.6917

3GS14 0.4555 0.5555 0.6583

3GS15 0.4501 0.5453 0.6778

3GS16 0.4204 0.5580 0.6917

3GS17 0.4662 0.5699 0.5788

3GS18 0.4296 0.5775 0.5719

3GS19 0.4045 0.5820 0.5792

3GS20 0.4129 0.5805 0.5875

3GS21 0.4351 0.5795 0.6042
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Figure 6.12: Approximation Pareto front corresponding to the best solutions generated by NSGA-

II for project P3G in Approach 3Con
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The corresponding objective function values are shown in Table 6.18. Because the algorithm

was unable to provide (near-)optimal solutions in any of the runs, the competing nature of the

objective functions is again not clear in this project. AMOSA, on the other hand, again failed to

produce any feasible solutions in the 15 runs.

Table 6.18: Frequency of the best solutions in the final Pareto fronts generated by NSGA-II for

project P3G in Approach 3

Frequency

3GS1 3GS2 3GS3 3GS4 3GS5 3GS6 3GS7

Run 07 2 2 2 0 0 0 0

Run 10 0 0 0 2 2 2 2

Run 11 0 0 0 0 0 0 0

3GS8 3GS9 3GS10 3GS11 3GS12 3GS13 3GS14

Run 07 0 0 0 0 0 0 0

Run 10 2 2 2 2 0 0 0

Run 11 0 0 0 0 2 2 2

3GS15 3GS16 3GS17 3GS18 3GS19 3GS20 3GS21

Run 07 0 0 0 0 0 0 0

Run 10 0 0 0 0 0 0 0

Run 11 2 2 2 2 2 2 2

The eighth and final project, project P3H was similar to project P3G, but with a much lower

level of complexity among dependencies. Immediately noticeable is the fact that all but one run

of NSGA-II terminated with a final Pareto front of only feasible solutions, which is contrary to

projects P3E, P3F and P3G, where very few of the runs were able to find feasible solutions

successfully. The reason for this may be due to not having too many dependency relationships

between tasks, the dependency violation constraint is easier to handle by the algorithm and, con-

sequently, the objective functions can be optimized more straightforwardly as shown by the nine

solutions of the final approximation Pareto front in Figure 6.13 and Table 6.19.

The frequency of each solution is displayed in Table 6.20, which shows that solutions in the

approximation Pareto front are only represented once by the individuals in their respective run’s

final Pareto front.

The results obtained from employing simulated annealing as the optimization approach are

similar to those of projects P3F and P3G, where only one infeasible solution comprised the final

combined archive, demonstrating that NSGA-II outperforms AMOSA when applied to carry out

optimization for the proposed approach.
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Figure 6.13: Approximation Pareto front corresponding to the best solutions generated by NSGA-

II for project P3H in Approach 3

Table 6.19: Objective function values corresponding to the best solutions generated by NSGA-II

for Project P3H in Approach 3

Objective Function

Solution Fduration Fexperience Fsize

3HS1 0.1781 0.8672 0.7200

3HS2 0.1131 0.8841 0.7333

3HS3 0.1529 0.8828 0.7400

3HS4 0.1512 0.8776 0.7333

3HS5 0.1509 0.8711 0.7067

3HS6 0.1510 0.8789 0.7400

3HS7 0.1920 0.8581 0.7022

3HS8 0.2000 0.8594 0.6933

3HS9 0.2019 0.8633 0.7200

Table 6.20: Frequency of the best solutions in final Pareto fronts generated by NSGA-II for project

P3H in Approach 3

Frequency

3HS1 3HS2 3HS3 3HS4 3HS5 3HS6 3HS7 3HS8 3HS9

Run 01 1 0 0 0 0 0 0 0 0

Run 04 0 1 0 0 0 0 0 0 0

Run 05 0 0 1 0 0 0 0 0 0

Run 14 0 0 0 1 1 1 0 0 0

Run 15 0 0 0 0 0 0 1 1 1
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6.6 Summary

The most important aspect of this attempt is the introduction of a Pareto ranking mechanism

in order to suggest a set of solutions from which a project manager can select to adopt based on

his or her preferences and criteria, rather than having a weighted-sum approach requiring a project

manager to decide beforehand the importance of each objective to provide only one solution.

Through investigation of the results obtained from the runs, it was observed that the NSGA-

II algorithm performed better in cases consisting of small- and medium-sized software projects.

In these cases, the algorithm was able to produce feasible solutions that satisfied all constraints,

in addition to finding diverse (near-)optimal task schedules and developer allocations. However,

with an increase in the number of tasks and number of dependency relationships the algorithm

found difficulties in producing feasible solutions, especially in cases where the number of available

developers and the skills possessed by the developers was low.

The main obstacle lies in the algorithm’s inability to avoid task dependency violations and de-

veloper assignment conflicts whilst trying to handle the competitive nature of the objective func-

tions. Furthermore, in runs where feasible solutions were indeed produced, the algorithm only

managed to generate (near-)optimal schedules and/or allocations. These (near-)optimal solutions

continued to suffer from unnecessary gaps in their represented schedules, which was a problem

also identified in the previous two approaches. One way to handle this could be to introduce a

forced-correction step in the algorithm after a certain number of iterations. This step would be

responsible for selecting population individuals with unnecessary gaps and removing them from

within their corresponding schedule. Then these newly-corrected individuals would be reinserted

back to the population to continue the evolution procedure. Alternatively, treating such individ-

uals as infeasible could be a possible extension to the project duration objective function, whose

purpose is to minimize these idle gaps between tasks. However, a more radical yet effective ap-

proach could be to change the representation of solutions so that delays between tasks would not

be allowed to exist. Specifically, as described in the following fourth approach, the task schedule

information could be encoded using a permutation (order) of task run rather than an integer en-

coding denoting task start days. In this way, the duration of a project can be calculated directly by

identifying the finish day of the task that ends the latest.

Apart from fixing the issue of delays between tasks, it is also important to consider how devel-

oper allocations affect the overall schedule of a project. The approaches up until now differentiate
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developers based on their experience in skills in an attempt to stress the fact that realistically de-

velopers are not interchangeable. However, what the approaches do not consider is the effect that

this experience has on the time it takes to complete a task – regardless of the developer(s) assigned

to a task, the duration is always the same. This is misleading because in reality a project manager

does not estimate the duration of a task (in calendar terms) but rather the effort required for the task

to be complete. Hence, a highly-skilled developer may complete a task quicker than a less-skilled

developer.

Consequently, the fourth approach, presented in Chapter 7 redesigns the two objective func-

tions of this approach by incorporating developer experience as the part of the project duration

objective function in the form of productivity. It also introduces the cost of a software project as

an objective, which is a more practical criterion for software project managers.
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Chapter 7

Approach 4: Optimizing Project Duration and Project Cost using a

Pareto Ranking Genetic Algorithm

This approach [93] introduced a number of significant changes to the approaches described

previously in Chapters 4–6. First, it aims to minimize the cost of a software project with a new

objective function that considers the salary of developers. Second, it adopts an improved represen-

tation of the problem in order to handle the issue of unnecessary gaps existing between tasks and,

subsequently, to improve the quality of the solutions generated with regards optimality. Third, it

replaces the experience of developers in skills with the rate of productivity of developers in pro-

fessions. It uses this information in conjunction with the effort required by tasks to compute the

duration of each task. Hence, the definition of the project duration objective function and the calcu-

lation of its corresponding value are revised accordingly to reflect this improvement. As stated in

the previously described attempts, the approach is intended to be used for allocating resources and

scheduling tasks at the beginning of a software development project to help managers make more

accurate budget and time estimates by selecting from a set of possible viable solutions. For this

reason, performing multiobjective optimization using Pareto ranking rather than a weighted-sum

method was kept.

This attempt takes into account the fact that even though the amount of work required to com-

plete a task does not depend on the developers assigned, the amount of time required to complete

a task does. In other words, the effort required for a task will be the same regardless of who is as-

signed to carry out the task, whereas the durationwill vary based on the developers assigned towork

on it. Existing optimization attempts have overlooked this, and instead either regard developers as

interchangeable (meaning that they all possess the same skills) or focus simply on whether or not

100
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developers possess the necessary skills required by a task, without considering the effect on dura-

tion. For example, Antoniol et al. [73], Ren et al. [76], and Di Penta et al. [75] attempt to schedule

work packages and allocate teams to work packages with the goal of minimizing project duration.

These attempts focus on software maintenance projects, where work packages are assigned teams

of developers as they occur in time or are postponed until developers with the required expertise

are available again. The latter attempt also focuses on minimizing the idle times of developers, that

is, the time a developer waits to be reassigned to another task. However, these attempts consider

that teams are equally capable of carrying out tasks and require the same amount of time to do so.

Alba and Chicano [64, 65] propose an approach to allocate developers and schedule tasks in order

to minimize the cost and duration of software projects. The authors employ a genetic algorithm to

perform the optimization, in which the duration of tasks is determined by the degree of dedication

of each assigned developer as long as the skill requirements of tasks are satisfied. Using the same

approach, Xiao et al. [79] made a comparison between genetic algorithms and particle swarm op-

timization, and their results show that the latter technique yield better solutions. Also, Minku et

al. [94, 95] attempt to improve the quality of solutions and hit rates of the original approach by

normalizing the degree of dedication of developers and incorporating a new penalty for evaluating

cost and completion time. The approach, however, considers that all developers with a particular

skill will possess it to the same level and, thus, assumes that those developers are interchangeable.

In reality, however, developers possess varying levels of skills depending on the knowledge

acquired through education and training, their natural abilities and talents, as well as their expe-

riences accumulated over time. Hence, differences in levels of skill implies differences in pro-

ductivity rates of developers, which in turn affects the duration and cost of each task, and of the

project as a whole. Therefore, to take this into account, the new approach moves away from opti-

mizing developers’ experience in required skills and, instead, substitutes the effect of experience

with the rate of productivity in the respective profession that the skill falls under, similar to Kapur

et al. [70] and Ngo-The and Ruhe [71]. The authors here use integer linear programming together

with genetic algorithms in order to assign resources and schedule the implementation of features

in incremental software development. One of the goals of the optimization is to maximize produc-

tivity on the assumption that developers with different levels of skills will naturally have different

rates of productivity. This can be used by software development companies as a way to schedule

product releases with selected features that lead to an optimum business value.Con
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However, one of the assumptions is that only one developer can be assigned to implement a

feature, which may not be practical considering that larger software projects may require two or

more developers to work together on a task in any phase of development. In contrast, the approach

described in this chapter, as in the three previously described approaches, intentionally allows for

more than one developer to be allocated to a task.

In the resource allocation and task scheduling approach proposed by Yanibelli and Amandi

[77], the authors take into account the level of effectivity of software developers by assessing the

degree to which developers will be effective when assigned to work together on the same task.

This information is then used in a genetic algorithm approach that attempts to maximize the ef-

fectivity of assigned resources. This approach was later modified, first, with a memetic algorithm

[96] and, second, with a diversity-adapted simulated annealing method [97] as a way to improve to

the quality of the generated solutions. Make span minimization was also introduced by the authors

as an additional criterion to the original approach, hence, transforming it into a multiobjective op-

timization approach [98]. This was then expanded with the integration of simulated annealing in

order to improve the exploitation and exploration search processes of the genetic algorithm [99].

All of these approaches assume that the number of developers required for each task and the level

of effectivity between combinations of developers is known in advance, which may pose a prob-

lem when two or more developers are assigned together for the first time. Furthermore, the authors

completely ignore the cost dimension when allocating and scheduling developers. Themost signif-

icant downside to this approach, however, is that the duration of each task is not actually influenced

by how developers work together. In fact, regardless of how effective the developers assigned to a

task are, the duration remains unaffected. The new approach presented here helps managers con-

sider how the contributions of each individual team member are combined with respect to their

productivity rate, rather than their effectivity. Specifically, the approach adopts Steiner’s classifi-

cation of task interdependence [100] to help select which operator to use for aggregating individual

productivity rates depending on the specific type of software development task.

Finally, another important factor that also influences the duration and cost of a project, which

is often neglected, is the issue of communication overhead. Very few attempts have taken into

account the increase in time that could occur when developers work together on a task. One attempt

is presented by Di Penta et al., who explore how different models and levels of communication

overhead affect the allocation of developers in teams, as well as on the overall make span of aCon
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project in a search-based project staffing and scheduling approach [101]. This approach adopts a

similar rationale by incorporating communication overhead in the calculation of a task’s duration

that is then used in the optimization process.

7.1 Research questions

Considering the modifications made to the optimization criteria and also to the definition and

representation of the problem, this approach attempted to include harder andmore realistic assump-

tions and constraints concerning the availability and suitability of developers. These assumptions

add significantly to the complexity of the problem, which makes it that much harder for the opti-

mization process to find feasible and (near-)optimal solutions. Therefore, the first research target

involved adopting several different variations of multiobjective genetic algorithms to carry out

the optimization in order to assess their performance. RQ4.1: How do different multiobjective

genetic algorithm variations perform in terms of generating (near-)optimal solutions with

respect to this approach for resource allocation and task scheduling?

Given the fact that software systems progressively become larger as current technology ca-

pabilities are improved, it is also important for the approach to be applicable to varying sizes

of projects undertaken by varying sizes of software development companies. Consequently, the

second research target involved examining the issue of scalability. RQ4.2: How do different

multiobjective genetic algorithm variations behave in terms of scalability as the number of

tasks and developers increases in this approach for resource allocation and task scheduling?

Furthermore, it is equally important to investigate the approach in real-world settings. In par-

ticular, it is necessary to study the practical effects of productivity and interdependence type in

order to better understand the implication of these attributes in real-world software development,

and also to test the general behaviour of the approach when applied to real-world software develop-

ment projects. RQ4.3: What observations can be made from the application of the approach

in real-world software projects?

To answer these research questions, a number of generated software project instances were

used, as well as several real-world projects.
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7.2 Problem description

The RCPSP described in Section 4.2 is revised in order to reflect the new factors taken into

consideration in this new attempt.

A software development project consists of a set T = {t1, t2, . . . , tm} of m tasks, which

are determined by the project manager based on the activities from the different phases of soft-

ware development that will be required. All tasks must be undertaken by at least one software

developer employed by the development company. The project manager also determines the set

H = {h1, h2, . . . , hq} of q professions whose associated skills will be required by the software

project. Each task ti ∈ T is subsequently assigned one (and only one) of these professions, de-

noted by t
prof
i , the skills of which are required for the task to be completed. For example, a project

manager would assign a task that entails interviewing stakeholders to a requirements analysis pro-

fession since he or she will determine that elicitation skills will be necessary to carry out the task.

Next, the software project manager determines which tasks are related to each other in the

form of dependency relationships. The approach assumes that only finish-to-start dependency

relationships exist, meaning that in order for a task to start, all its predecessor tasks must first

finish. The set of dependency relationshipsD contains pairs of tasks such that (ti, tj) ∈ D if task

tj depends on task ti.

Once the tasks and dependency relationships have been identified, it is up to the project man-

ager to provide an estimate of the effort or workload that will be required to carry out each task.

The effort required for each task ti is denoted by tefforti . According to the Project Management

Institute [102], effort is defined as ‘the number of units of labour needed to complete a scheduled

activity or work breakdown structure component’. It is commonly expressed in person-hours (that

is, the number of hours needed for an average developer to carry out the work), though it is possible

to represent effort in person-days, person-weeks or even person-months for large projects.

The human resources of a development company form the set R = {r1, r2, . . . , rn} of n

software developers, who are able to participate in a project based on their availability and area of

expertise. Each developer rj ∈ R is associated with an hourly wage rate (r
salary
j ), used to calculate

the cost of each task to which developer rj is assigned. The hourly wage rate can be easily obtained

from the company’s human resource or accounting department.

Often, developers may possess appropriate skills in more than one profession. As a result,

they can work on a project in different capacities, thus adding to the complexity of the allocation
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and scheduling process. This is particularly true in small-to-medium-sized companies, where de-

velopers are often forced to undertake several roles in the company due to limited resources. To

accommodate this in this approach, each developer rj is assigned a rate of productivity for each

profession hl ∈ H required by the software project. This information is represented by a produc-

tivity matrix PROD = [prodjl] where prodjl denotes the rate at which developer rj is able to

carry out any task belonging to profession hl. The value of this productivity rate is selected by the

project manager from the range [0.0, 2.0] and can be determined in any number of ways using the

metrics employed by the software development company and then normalized to fit this range. If

a development company is mature enough, project managers may be able to adopt principles from

standards and frameworks, such as the People CMM [11], which provide ways to quantify pro-

ductivity using factors such as experience, competency and capacity. Also, project managers may

have access to developers’ scores in evaluation reports to help determine their productivity rate.

Additionally, project managers can use their experience and expertise to assess the technical skills,

know-how and performance of developers in past projects with similar tasks to form a productivity

profile of their resources. If a developer does not possess any of the skills of a particular profes-

sion, then the project manager will assign a rate of productivity equal to 0.0, and the developer will

not be considered as a candidate to be assigned to any task belonging to that profession. For an

average developer that possesses the skills of a specific profession, the project manager will likely

assign a nominal value of 1.0 as a productivity rate for that profession. In the case of a novice or

newly-recruited developer that is considered to be half as productive as an average developer in a

certain profession, he or she may be assigned a productivity rate of around 0.5 for that profession.

On the other hand, for an above-average developer that possesses the skills of a certain profession

(such as an expert), a project manager may assign the developer a productivity rate of 2.0 if he or

she is considered to be twice as productive as an average developer in that profession.

As mentioned previously, this attempt allows for more than one developer to be assigned to a

task. Therefore, it is important to identify how developers will work together to produce the output

of each task. In order to do this, the task interdependence categorization proposed in Steiner’s

taxonomy of group task [100] is adopted. Steiner identified different “combinatorial strategies”

that define the ways with which a team’s overall contribution to a task can be measured based on

the individual contributions of its members. According to Steiner, there are five different types of

task interdependence: additive, compensatory, disjunctive, conjunctive and discretionary, whereCon
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each type adopts a unique function for aggregating individual productivity in order to determine

overall team productivity. The types of task interdependence and their corresponding aggregation

functions used in the approach are additive, disjunctive and conjunctive tasks. Hence, the software

project manager assigns a task interdependence type (t
type
i ) to each task ti ∈ T taken from set

Y = {additive, disjunctive, conjuctive}.

In the case of additive tasks, the overall productivity of a team is obtained by adding together

the individual productivity of its members. Additive tasks are classed as divisible and maximizing,

meaning that these tasks can be broken into subtasks, the goals of which focus on the quantity of the

output. Examples of additive software development tasks include verification and validation tasks,

such as usability inspections and software reviews, where the work can be divided into subtasks

in order for developers to attempt to find as many defects as possible [103]. Since developers will

work individually in such tasks and then pool together their work, the higher their individual pro-

ductivity rates, the higher the effectiveness of the team in defect detection. Software development

tasks that require brainstorming may also be considered additive tasks. With regards to disjunc-

tive tasks, the overall productivity of a team is equivalent to the highest individual productivity.

Disjunctive tasks are unitary and optimizing, indicating that they cannot be further decomposed

and that they focus on the output’s quality. Database design may be considered an example of a

disjunctive task. If a team of developers is assigned to come up with a suitable (optimal) schema,

not all developers are required to come up with the best solution. Instead, it is enough for only one

member to provide the best solution. Hence, a highly productive member who is able to come up

with the best solution quicker will help the team finish such a task sooner compared to a teamwhose

most productive member has an average or lower productivity rate. Similarly, a task involving the

integration of two modules can also be regarded as a disjunctive task. For conjunctive tasks, the

overall productivity of a team is defined as the lowest individual productivity. Conjunctive tasks

can be considered either divisible focusing on quality, or unitary focusing on quantity. Implemen-

tation tasks are an example of software development tasks that can be regarded as conjunctive. For

example, in the case where the programming/coding of a module has been split into subtasks for

team members to implement individually, the developer possessing the lowest rate of productivity

out of thete whole team will determine the team’s overall rate of productivity. Compensatory and

discretionary types of tasks are not adopted in the approach as they are not considered to be appli-

cable in the case of software development tasks. In compensatory tasks, the overall productivityCon
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of a team can be expressed as the variability of individual productivity. In this attempt though,

it does not make sense to require developers to have diversity in their rates of productivity. In

discretionary tasks, the decision on how to combine individual contribution is left up to the team

members. However, in this approach it is assumed that the output of each software task can only

be derived using one specific type.

Finally, each task incurs a communication overhead (toverheadi ) depending on the number of

developers assigned to carry out the task. Typically, when developers work together as a group,

there is an amount of time spent on communicating with each other in order to coordinate activities,

discuss issues and resolve conflicts regarding a task. Communication can take many forms (such

as meetings, phone calls, e-mails, video calls, etc.) all of which take away from work that the

developers are assigned to perform. The approach proposes, therefore, to take into account this

additional time needed for communication by adjusting the make span of each task in order to give

a more accurate project duration and cost.

According to Brooks [104], there is a polynomial relationship linking the size of a teamworking

on a task with the number of possible communication paths between pairs of developers. Specifi-

cally, the relationship between the number of developers,t
assigned
i , assigned to task ti and the number

of communication paths, t
paths
i , can be defined using

t
paths
i =

t
assigned
i × (t

assigned
i − 1)

2
. (7.1)

This means that as the number of developers working together on a task increases, so does the

number of communication paths, resulting in an exponential growth in communication overhead.

Abdel-Hamid and Madnick [105], therefore, carried out an empirical investigation to attempt to

quantify the percentage of communication overhead incurred given different team sizes. Their

findings are presented in Table 7.1.

In order to determine the percentage of communication overhead for any specific number of

developers, Douglas [106] suggests interpolating between the two nearest team sizes given in Ta-

ble 7.1. By applying linear regression, he was then able to formulate an equation (Equation (7.2))

using the number of communication paths as a variable to calculate the percentage of communica-

tion overhead of any team size. This approach adopts the formula to calculate the communication

overhead, toverheadi , of each task ti given by

toverheadi = 0.001248269× t
paths
i . (7.2)
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Table 7.1: Correlation between team size, number of communication paths and percentage of com-

munication overhead

Team Communication Communication

Size Paths Overhead

0 0 0.00%

5 10 1.50%

10 45 6.00%

15 105 13.50%

20 190 24.00%

25 300 37.50%

30 435 54.00%

With the above information regarding tasks and developers, the goal is to allocate developers

and schedule tasks in such a way that the shortest possible project make span and cost are achieved

simultaneously. It is assumed that a task can be assigned more than one developer, and a developer

can be assigned to tasks associated with different professions as long as they possess the required

skills and have a positive nonzero productivity rate. Also, a developer can be assigned to work on

only one task at any given time. This means that a developer will not be set to work on tasks that

are executed concurrently, thus avoiding conflicts in assignment. Furthermore, tasks cannot be

preempted, that is, once a task starts it must be completed and its execution cannot be suspended.

In the case of divisible tasks, a developer may finish his or her contribution earlier than other team

members. Normally, this would allow the developer to be free towork on another task. However, in

this approach, it is considered that developers are assigned to a task as a team and so all developers

will remain assigned until the whole task is complete and they will be paid for the whole duration

of the task. In order to achieve these goals and satisfy the underlying constraints, the objectives and

constraint functions are modified in order to guide the generation of (near-)optimal and feasible

solutions.

7.2.1 Representation and encoding

Candidate solutions are represented by individuals in the population that are composed of two

variables: one to handle the information regarding the allocation of resources and one to handle

the information related to the scheduling of tasks, as similarly proposed by Yannibelli and Amandi

[77]. An example of the encoding of a candidate solution using the TPG of Figure 4.1 is shown

in Figure 7.1. The first variable is encoded using a bitset array of length m, where each element

u of the array contains a bitset that represent only those developers that possess the skills of the
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profession required to carry out task tu. If the value of a bit in the sequence is ‘0’, then the cor-

responding developer is not assigned to the task, whereas if the value of the bit in the sequence

is ‘1’, then the corresponding developer is assigned to the task. With this representation, the total

number of bits required always varies according to the number of tasks and number of available

developers in each profession. The second variable uses a permutation array whose length is also

equal to the number of tasks in the project,m. Each element v of the array contains the index of a

task in the project. Tasks can only appear once in the array and are chosen for scheduling in order

of their appearance from left to right in the array.

u 1 2 3 4 5 6 7 8

101 00100 10001 01011 0110100 0010101 1000100 010

v 1 2 3 4 5 6 7 8

1 3 2 5 4 6 7 8

Figure 7.1: Example of the encoding used to represent an individual: (top) developer allocation

variable, and (bottom) task schedule variable in Approach 4

7.2.2 Population initialization

As with the previous approaches, individuals of the population must be initialized subject to

several feasibility restrictions in order to guarantee that the candidate solutions they represent are

valid. At the same time, the initialization should ensure that the population represents a varied

and heterogeneous pool of candidate solutions. This can be achieved by randomly setting the

starting values of the two variables subject to the necessary constraints. For the bitset representing

the allocation of developers, each task must have at least one developer assigned to it. For the

permutation array representing the scheduling order of tasks, each task must appear in the array

after all of its predecessors in order for the solution to be feasible. To ensure this, the initialization

follows a process of randomly selecting a task only from a set that consists of tasks that have not

yet been selected and whose predecessors have already been inserted in the array. Thus, the initial

permutation arrays will always represent feasible project schedules, since no task will be selected

before its predecessors.Con
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7.2.3 Optimization function

The optimization adopts two objective functions, Fduration(x) and Fcost(x), in order to assess

the fitness of each individual solution x in the population. The values given to these two objective

functions denote the duration and the cost of the project, respectively. Also, the approach uses two

constraint functions, Gassignment(x) and Gdependency(x), which assess the feasibility of an individual

solution. The first constraint function reflects whether or not at least one developer is assigned to

a task, and the second one reflects whether or not any dependency violations between tasks exist.

The following subsections describe in detail how the values of each function are calculated.

The goal of the optimization is to consider the productivity-related characteristics of tasks and

developers so as to perform allocation and scheduling in a way that simultaneously minimizes

project duration and project cost of a solution x of the population, POP , bound by the constraints.

At the same time, the two objectives are competing in nature, that is, attempting to decrease one

objective would lead to an increase in the other. The optimization will therefore provide a set of

(near-)optimal solutions rather than a single (near-)optimal solution. Thus, the goal is to minimize

a vector consisting of the two objective functions given as

Minimize
∀x∈POP

F(x) = (Fduration(x),Fcost(x)),

subject to Gassignment(x) = 0,

Gdependency(x) = 0.

(7.3)

For each individual x in the population, POP , the two objective functions are evaluated simul-

taneously. As the algorithm attempts to improve the quality of the population, during selection

individuals are compared against each other using both their objective function values to ascer-

tain which individuals are nondominated as previously described in the beginning of Chapter 6.

Ultimately, since each solution represents a different allocation and scheduling plan, the project

manager will be offered a choice on which plan he or she feels suits the project and the organization

better.

7.2.3.1 Objective functions

7.2.3.1.1 Project duration objective function

In order to compute the overall duration of a project, Fduration(x), represented by a solution

x in the population, POP , the approach first calculates the duration of each task individually to

Con
sta

nti
no

s S
tyl

ian
ou



111

determine the amount of time (in hours) that developers will spend on each task they are assigned

to. Then, by using the precedence relationships between tasks and the availability of developers,

the starting and finishing times of each task are determined. The project duration is then established

as the highest finishing time of all tasks.

The duration of a task is calculated using the productivity rate of developers, similarly to the

way presented in Kapur et al. [70] and Ngo-The and Ruhe [71], but also using the type of task

interdependence. The order in which task durations are computed is determined by the order that

tasks appear in permutation array variable. With this forward scheduling approach, the first element

of the permutation array (position v = 1) contains the index u of the task whose duration is to

be calculated first. Using this index, the corresponding element at position u of the bitset array

variable is decoded in order to obtain the set of developers, Ai, assigned to task ti. Once this set

of developers has been determined, the duration is then calculated by dividing the effort that ti is

estimated to require by the overall productivity rate (t
prod
i ) of the team of developers comprising

the set Ai, as shown in Equation (7.4).

tdurationi =
tefforti

t
prod
i

. (7.4)

The overall productivity rate t
prod
i is computed using Equation (7.5), which takes into account

the information in the productivity matrix, PROD, concerning each developer rj ∈ Ai and the

task’s interdependence type, t
type
i .

t
prod
i =


sum{prodjl | rj ∈ Ai}, if t

prof
i = hl and t

type
i = additive

max{prodjl | rj ∈ Ai}, if t
prof
i = hl and t

type
i = disjunctive

min{prodjl | rj ∈ Ai}, if t
prof
i = hl and t

type
i = conjunctive

. (7.5)

The term prodjl denotes the rate of productivity possessed by developer rj at profession hl. Using

the operationalization suggested by Steiner [100], if task ti is categorized as additive, then the

summation operator is used to aggregate individual productivity rates. Alternatively, if task ti is

categorized as disjunctive, then the maximum operator is applied. Else, if task ti is categorized as

conjunctive, then the minimum operator is employed.

With this information, the duration can be adjusted to take into account the communication

overhead calculated from Equations 7.1 and 7.2 accordingly, using Equation (7.6) for calculatingCon
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the final duration of a task. The ceiling function rounds up to the nearest hour.

tdurationi = d t
effort
i

t
prod
i

× 1

1− toverheadi

e. (7.6)

Following this, the earliest starting time and finishing time of task ti are then calculated. As

shown in Equation (4.2), the earliest starting time, tstarti , of task ti is determined by the maximum

finishing time out of all its predecessor tasks. If task ti has no predecessor tasks, then it can begin

immediately.

tstarti =


0, if @tj such that (tj , ti) ∈ D

max{tfinishj | (tj , ti) ∈ D}+ 1, otherwise

. (4.2 revisited)

In the previous three attempts, the aim was to minimize the delay between the scheduled starting

time of a task (encoded in the individuals of the population) and the earliest starting time (computed

using Equation (4.2)). The finish time of a task, therefore, depended on its scheduled start time

(Equation (4.3)). However, in this attempt the information regarding the actual start time of tasks

has been removed from the representation and replaced by a permutation array. Consequently, the

durations of the tasks are computed in the order in which they appear in the permutation array,

meaning that each task will be scheduled at the earliest possible starting time taking into account

the finishing times of its predecessor tasks. The finishing time, tfinishj , of a task tj is simply equal

to the earliest start time (as there is no longer a scheduled start time) plus its duration, as shown in

Equation (7.7).

tfinishj = tstartj + tdurationj . (7.7)

However, it is also necessary to examine the availability of the assigned developers in order

to avoid any conflicts that will cause a schedule to be infeasible. The procedure carried out to

handle this is presented in Algorithm 7.1. First, the start and finish times of task ti are calculated

using Equations 4.2 and 7.7, respectively. If all developers rk ∈ Ai are available for the duration,

tdurationi , of task ti, then no modifications to the start and finish times are necessary. However, if

at least one of the developers assigned to carry out task ti is already assigned to a different task

between the start time and finish time of task ti, then the value of t
start
i is adjusted to the next time

step and tfinishi is recalculated again using Equation (7.7). This process repeats until the earliest

time is determined that satisfies that all developers are available to work for the whole duration of

the task.
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Algorithm 7.1 Procedure to compute earliest start and finish time of a task.

1: Input: Set of developers Ai assigned to task ti, start time tstarti , duration tdurationi and finish time tfinishi .

2:

3: conflict← true

4: while conflict do

5: for all developers rk ∈ Ai do

6: if developer rk is assigned to any task tj at a time unit such that

7: tstarti ≤ tstartj ≤ tfinishi then

8: tstarti = tstarti + 1
9: tfinsihi = tstarti + tdurationi

10: conflict← true

11: else

12: conflict← false

13:

14: Output: Start time tstarti and finish time tfinishi of task ti.

Once all task start and finish times have been determined, then the overall duration of the

software project represented by solution x is calculated by taking the value corresponding to the

highest finishing time out of all m tasks. This value corresponds to the value given to the first

objective function, Fduration(x), and is defined in Equation (7.8) as

Fduration(x) = max{tfinishi | ti ∈ T}. (7.8)

7.2.3.1.2 Project cost objective function

To evaluate the overall cost of a software project, Fcost(x), represented by a solution x in the

population, POP , the approach begins by calculating how much the assigned developers will cost

for each task, and then aggregating all individual task costs. Specifically, the cost, tcosti , of task ti

is computed by aggregating how much each assigned developer rk ∈ Ai will cost for the duration

of the task based on his or her wage rate, as given in Equation (7.9).

tcosti =

tni∑
j=1,rj∈Ai

tdurationi × r
salary
j . (7.9)

Subsequently, the overall cost of developers for the project represented by solution x is computed

by summing the cost of all m tasks individually. This value corresponds to the value given to the

second objective function, Fcost(x), and is defined in Equation (7.10) as

Fcost(x) =
m∑
i=1

tcosti . (7.10)Con
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7.2.3.2 Constraint functions

The feasibility of each candidate solution x in the population, POP is assessed by again using

the information stored in the two variables. Since the approach uses forward scheduling based on

the availability of the assigned developers, there is never a violation where a developer is assigned

to more than one task at any given time. Hence, the only constraints evaluated concern (a) whether

or not a task is assigned at least one developer and (b) whether the scheduling of tasks conforms

to the precedence relationships. For the former, the value is equivalent to the number of tasks that

have no developers assigned, which is calculated by the conditional summation in the constraint

function of Equation (7.11).

Gassignment(x) =

m∑
i=1

[tni = 0]. (7.11)

For the latter, the value equals to the number of dependencies violated by the schedule, which

computed by the conditional summation given in the constraint function of Equation (7.12).

Gdependency(x) =
|D|∑

(ti,tj)∈D

[tstartj ≤ tfinishi ]. (7.12)

7.2.4 Genetic operators

In this approach, two binary tournaments are performed in order to select the parents to create

offspring. In each tournament, a pair of individuals is randomly selected as candidate parents,

which are then compared based on their dominance. Specifically, if one candidate parent dominates

the other candidate parent (that is, betters the other in at least one of the objective functions, and

betters or is equal to the other in the remaining objective functions), then that candidate is declared

‘winner’ of the tournament, and is chosen as a parent. In this way, individuals with greater fitness

have a better chance of becoming parents and surviving into the next generation. If the fitness of

two candidates is tied, then the candidate with the lowest number of violations as determined by the

constraint functions is chosen. For the crossover operator, the developer allocation variable uses

single-point crossover at a random bit of the bitset array, whereas the task scheduling variable uses

partially-mapped crossover [107], which guarantees that the constraint of having each task only

appear once is satisfied. For the mutation operator, the developer allocation variable uses a bit-flip

operator where a randomly selected bit of the bitset is altered from a value of ‘0’ to a value of ‘1’

or vice-versa. For the task scheduling variable, a swap mutation takes place where two positionsCon
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in the permutation array are chosen randomly and the indices in those positions are swapped. In

this way, the preservation of the validity of an individual is ensured.

7.3 Experiments

The experimental process was set up with two experiments in order to help answer the two

previously-defined research questions, RQ4A and RQ4B, respectively.

Specifically, in the first experiment the goal was to compare the performance of four well-

known variations of multiobjective genetic algorithms, namely, the Non-dominated Sorting Ge-

netic Algorithm II (NSGA-II) [89], the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [108],

the Pareto Archived Evolution Strategy (PAES) [109], and the Multi-Objective Cellular algorithm

(MOCell) [110]. These algorithms were selected because they have been extensively used as the

underlying mechanism to solve related project scheduling optimization problems in the past. In

addition, their use would allow similar future research attempts to be compared with this proposed

approach.

A dataset (DS1) containing 16 synthetic software projects of varying size, both in terms of the

total number of tasks involved, as well as the total number of available developers was generated

for this experiment, subject to several conditions. To begin with, four distinct software develop-

ment projects were constructed with varying size of m: (i) 25 tasks, (ii) 50 tasks, (iii) 75 tasks,

and (iv) 100 tasks. Each task in a project was randomly assigned to one of nine software devel-

opment professions shown in Table 7.2, which were identified using the Standard Occupational

Classification (SOC) System [111] and the O*NET Resource Center [112].

Table 7.2: List of software development-related professions used in creation of generated software

projects for Approach 4

SOC code Profession

11.3021.00 Computer and information systems managers

15.1121.00 Computer systems analysts

15.1122.00 Information security analysts

15.1131.00 Computer programmers

15.1134.00 Web developers

15.1143.00 Computer network architects

15.1199.01 Software quality assurance engineers and testers

15.1199.02 Computer systems engineers/architects

15.1122.06 Database architectsCon
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In addition, the task precedence graph of each project was created in such a way so as no cir-

cular dependencies existed among tasks. Also, each task was assigned a task interdependence type

(additive, conjunctive or disjunctive). For the sake of experimentation, this assignment was gen-

erated randomly. Finally, the tasks in each project were randomly given an estimated effort value.

Next, four separate sets of software developers were randomly generated with different sizes for

n: (a) 25 developers, (b) 50 developers, (c) 75 developers, and (d) 100 developers. A productivity

matrix was then randomly generated containing values in the range of [0.0, 2.0] making sure that

each profession had at least two developers with a value greater than zero to guarantee that all tasks

will be able to be completed. Additionally, each developer was assigned a salary indicating his or

her wage rate per hour. Salaries were randomly generated within scale ranges in order to reflect

that developers with higher levels of expertise and proficiency in skills are more likely to possess

a higher productivity rate and, subsequently, cost more in a development company. Finally, each

of the four software projects (i)–(iv) was paired with each of the four sets of available workforce

(a)–(d) to form 16 project instances.

The second experiment assesses the behaviour of the multiobjective genetic algorithm varia-

tions with respect to scalability as the number of tasks and number of available developers increase.

To answer this question, the experiment made use of the project instances provided by Luna et al.

[66, 113], which were intended for use in experiments that adopted the approach presented by Alba

and Chicano [64, 114] This dataset (DS2) contains randomly generated projects consisting of six

different task sizes (16, 32, 64, 128, 256, and 512) each paired with six different sizes of available

developers (8, 16, 32, 64, 128 and 256) for a total of 36 project instances. Because of the under-

lying differences between approaches, several data present in the instances were then adapted to

meet the data requirements of this approach. For example, the instances contained data regarding

the skills possessed by developers. This had to be transformed into developer professions so that

a developer productivity matrix could be randomly generated for each project instance. In addi-

tion, task interdependence types were not present in the instances. Therefore, these also had to be

randomly generated based on the number of tasks and number of available developers. The effort

required for each task, task precedences and salary of developers in all project instances were left

as provided in the original dataset.

Furthermore, it is equally important to investigate the implications of the productivity-based

attributes in practical software development settings. For this, several real-world projects were alsoCon
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investigated. The ultimate goal is to provide an approach that accurately reflects both the manner

with which these activities are carried out, and also the factors that may influence decisions taken

by software project managers in an automated, efficient and less time-consuming way.

The representation scheme, objective functions and constraint functions explained were imple-

mented for all four variations using jMetal 4.3, a Java-based framework for multiobjective opti-

mization [115]. The same parameters and algorithm settings were used for all algorithms through-

out all instances, as summarized in Table 7.3.

Table 7.3: Parameters and algorithm settings used in the execution of the variations in Approach 4

Parameter Value

Population size 100

Selection operator Binary tournament

Crossover probability 0.90 (single-point)

0.90 (partiallymapped)

Mutation probability 1/L (bit-flip mutation)

0.90 (swap mutation)

Stopping condition 500,000 objective function evaluations

Number of runs per algorithm 100

Preliminary runs for 50,000 and 100,000 fitness evaluations were performed in order to in-

vestigate the convergence of the algorithms with respect to the quality of solutions. Even though

the results obtained in these runs showed that the number of fitness evaluations did not actually

influence which of the four algorithms performed better, they did show that the quality of solutions

could be improved by increasing the number of fitness evaluations. Therefore, in order to allow

for a satisfactory trade-off between convergence and computational time, each of the algorithms

was executed for 500,000 fitness evaluations.

7.4 Results and discussion

For each project instance, the four algorithms were run 100 times resulting in the generation

of 100 final Pareto fronts, each consisting of a number of non-dominated resource allocation and

task scheduling solutions. Subsequently, by combining the 100 Pareto fronts, an approximation

Pareto front was extracted containing the best solutions each algorithm managed to locate for a

project instance over its 100 runs. Then, by combining the approximation Pareto fronts of all

four algorithms, a reference Pareto front was identified consisting of the overall best solutions

found for each project instance. Consequently, each project instance had four approximation Pareto
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fronts (one for each algorithm) and one reference Pareto front (combining the best solutions of

all algorithms). Figure 7.2 displays the approximation and reference Pareto fronts achieved for

projects instances in datasetDS1with 50 developers and (a) 25 tasks, (b) 50 tasks, (c) 75 tasks and

(d) 100 tasks. In the smaller-sized project instances (projectsP4A2 andP4A6), the approximation

Pareto fronts of individual algorithms overlap the reference Pareto front, indicating possibly that

they are as equally able to find the same (near-)optimal solutions. However, as the size of the

projects increases (projects P4A10 and P4A14), both in terms of tasks and developers, it can be

observed that fewer overlaps with the reference Pareto front occur, as well as greater differences

in the shape of the individual approximation curves. This could mean that each algorithm is able

to locate (near)-optimal solutions in different regions of the solution space. The remaining Pareto

fronts are plotted in Figure B.1.

(a) Project P4A1 (b) Project P4A6

(c) Project P4A10 (d) Project P4A14

Figure 7.2: Pareto fronts corresponding to the best solutions generated for the first experiment of

Approach 4 by the four variations for the project instances in datasetDS1 with 50 developers and
(a) 25 tasks, (b) 50 tasks, (c) 75 tasks and (d) 100 tasksCon
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The hypervolume [116] and inverted generational distance [91] quality indicators were selected

to help compare the four algorithms with respect to performance and scalability given their abil-

ity to assess both convergence and diversity (uniformity and spread) of algorithms. Speifically,

the hypervolume (HV) indicator assesses the volume covered by the nondominated solutions of

a Pareto front in the objective space. Therefore, the larger the volume covered by the solutions

generated in a run, then the higher the HV value, which indicates a better performance. Since each

algorithm was run 100 times, 100 corresponding HV indicator values were calculated for each

algorithm for each project instance. The inverted generational distance (IGD) indicator assesses

how far the elements of the true Pareto front are from the nondominated points of an approxima-

tion Pareto front. Therefore, the greater the extent of the true Pareto front that is covered by the

nondominated points generated by a run in the objective space, the lower the IGD value, which

denotes a better performance. In this case, because it is not possible to know the true Pareto front

a priori, the reference Pareto front is used instead. Similarly, 100 IGD values were calculated for

the 100 runs of each algorithm for each project instance.

7.4.1 RQ4.1: Howdo differentmultiobjective genetic algorithmvariations perform in terms

of generating (near-)optimal solutions with respect to this approach for resource allo-

cation and task scheduling?

In order to compare the performance of the four algorithms, the median HV and IGD values for

each algorithm were calculated for each project instance in datasetDS1. The values are presented

in Tables 7.4 and 7.5, respectively. The shaded cells indicate which algorithm(s) achieved the best

value in each project instance (highest median value in the case of the HV indicator and the lowest

median value in the case of the IGD indicator). In addition, the average rank of each algorithm is

also given.

Using the HV and IGD values obtained, a Friedman rank sum test on both quality indicators

(with level of significance α = 0.05) was carried out to detect whether or not a statistically sig-

nificant difference exists among the four algorithms. For the HV indicator, the test produced a

Friedman statistic χ2
F = 35.3846, p-value: 1.010× 10−07, whereas for the IGD indicator the test

returned a Friedman statistic χ2
F = 34.6212, p-value: 1.464 × 10−07. For both indicators, the

critical chi-square value at α = 0.05 for k − 1 = 3 degrees of freedom is computed at 7.815,Con
sta

nti
no

s S
tyl

ian
ou



120

Table 7.4: Median HV values obtained after 100 runs of each algorithm for the 16 project instances

in dataset DS1 for the first experiment of Approach 4

Project Median HV value

Instance Tasks Developers MOCell NSGA-II PAES SPEA2

P4A1 25 25 0.9231 0.9231 0.9106 0.9231

P4A2 25 50 0.9533 0.9486 0.9333 0.9431

P4A3 25 75 0.8028 0.7908 0.7250 0.7585

P4A4 25 100 0.8333 0.8438 0.6501 0.7867

P4A5 50 25 0.7364 0.7484 0.6286 0.7468

P4A6 50 50 0.6206 0.6120 0.4925 0.5886

P4A7 50 75 0.6551 0.6733 0.4891 0.6189

P4A8 50 100 0.1773 0.1217 0.0000 0.0915

P4A9 75 25 0.7942 0.7771 0.6175 0.7687

P4A10 75 50 0.3755 0.3848 0.1940 0.3916

P4A11 75 75 0.4295 0.4280 0.1431 0.3883

P4A12 75 100 0.3951 0.3911 0.1648 0.2575

P4A13 100 25 0.5352 0.4754 0.1894 0.4638

P4A14 100 50 0.4765 0.4761 0.1391 0.4469

P4A15 100 75 0.0841 0.0842 0.0000 0.0701

P4A16 100 100 0.0935 0.0986 0.0000 0.1388

Average ranking (1) 1.6250 (2) 1.7500 (3) 4.0000 (4) 2.6250

Table 7.5: Median IGD values obtained after 100 runs of each algorithm for the 16 project instances

in dataset DS1 for first experiment of Approach 4

Project Median IGD value

Instance Tasks Developers MOCell NSGA-II PAES SPEA2

P4A1 25 25 0.0001 0.0001 0.0007 0.0001

P4A2 25 50 0.0014 0.0014 0.0015 0.0014

P4A3 25 75 0.0066 0.0073 0.0111 0.0086

P4A4 25 100 0.0144 0.0153 0.0185 0.0154

P4A5 50 25 0.0009 0.0009 0.0021 0.0009

P4A6 50 50 0.0128 0.0127 0.0170 0.0144

P4A7 50 75 0.0160 0.0150 0.0272 0.0177

P4A8 50 100 0.0536 0.0597 0.0859 0.0638

P4A9 75 25 0.0081 0.0082 0.0124 0.0080

P4A10 75 50 0.0280 0.0272 0.0418 0.0265

P4A11 75 75 0.0301 0.0304 0.0572 0.0330

P4A12 75 100 0.0326 0.0327 0.0498 0.0412

P4A13 100 25 0.0189 0.0220 0.0435 0.0225

P4A14 100 50 0.0215 0.0216 0.0432 0.0229

P4A15 100 75 0.0398 0.0399 0.0951 0.0413

P4A16 100 100 0.0385 0.0382 0.0666 0.0345

Average ranking (1) 1.6250 (2) 1.9375 (3) 4.0000 (4) 2.4375Con
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which is lower than the respective statistics. Hence the tests led to the rejection of the null hypoth-

esis that the algorithms are equivalent with respect to both the HV and IGD indicators. Since the

Freidman tests strongly suggested that significant differences do exist between at least two algo-

rithms, a multiple pairwise comparison of algorithms was carried out to identify exact differences

between pairs of algorithms. To handle the family-wise error rate accumulated, p-values were ad-

justed using a post-hoc Holm procedure. The results of the comparison are shown in Table 7.6,

where pairs of algorithms with a statistically significant difference (p < 0.05) are shown shaded.

According to the pairwise comparisons, no significant difference is observed betweenMOCell and

NSGA-II, MOCell and SPEA2, and NSGA-II and SPEA2 in either indicator. However, MOCell,

NSGA-II and SPEA2 all have statistically significant differences with PAES. Since the HV and

IGD indicators relate to the convergence and diversity of a Pareto front, the approximation Pareto

fronts generated by MOCell, NSGA-II and SPEA2 can be considered to cover a larger volume of

the objective space and are nearer to the (near-)optimal compared to PAES. Therefore, to answer

RQ4.1, MOCell, NSGA-II and SPEA2 would perform better as the underlying multiobjective op-

timization mechanism for this approach since, based on the statistical analysis, they are equally

capable of generating a more diverse range of trade-offs between project duration and project cost

that correspond to resource allocations and task schedules.

Table 7.6: Adjusted p-values resulting from the pairwise comparison (α = 0.05) for HV and IGD

indicators in first experiment of Approach 4

HV adjusted p -values

NSGA-II PAES SPEA2

MOCell 0.784191 0.000001 0.085379

NSGA-II – 0.000004 0.110468

PAES – – 0.010365

IGD adjusted p -values

NSGA-II PAES SPEA2

MOCell 0.546643 0.000001 0.225180

NSGA-II – 0.000031 0.546643

PAES – – 0.002475
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7.4.2 RQ4.2: How do different multiobjective genetic algorithm variations behave in terms

of scalability as the number of tasks and developers increases in this approach for

resource allocation and task scheduling?

In order to compare the scalability of the algorithms, the approach was examined with the 36

instances found in datasetDS2, and followed the method described in Luna et al. [66]. Scalability

was assessed in terms of number of tasks and available developers separately, again using the HV

indicator as a basis of comparison due to the fact that this metric considers the diversity of solutions

and also the convergence of algorithms. In the same way as described previously, the median HV

value over 100 runs of each algorithm was calculated for all 36 instances.

First, the algorithms were assessed regarding how they behave as the size of the projects in-

creases in terms of number of tasks. To begin with, project instances were grouped together based

on the number of tasks they contained. This led to six groups of project instances. Then, for each

algorithm, the average of each group’s median HV values were calculated. Table 7.7 shows these

averages for all six different task sizes in dataset DS2. The results of the table are also shown

graphically in the bar chart of Figure 7.3.

Table 7.7: Average median HV values per algorithm for project instances with the same number

of tasks over all sizes of available developers obtained for second experiment of Approach 4

Average median HV values

Task size MOCell NSGA-II PAES SPEA2

16 0.4130 0.4190 0.3859 0.4099

32 0.2692 0.2765 0.2262 0.2687

64 0.0846 0.0805 0.0000 0.0763

128 0.0681 0.0946 0.1384 0.0893

256 0.0037 0.0000 0.1799 0.0000

512 0.0000 0.0000 0.3151 0.0000

It is generally expected that the higher the number of tasks, the harder it will be for the algo-

rithms to find (near-)optimal solutions. Indeed, this does hold true in here, as it is observed that

as the number of tasks increases from 16 to 64, the averaged HV values tend to worsen for all

algorithms with a steep slope. For MOCell, NSGA-II and SPEA2, the increase between 64 and

128 tasks shows a steady behaviour of the algorithms with respect to scalability as there is little

change in the averaged HV values. Interestingly, as the number of tasks increase from 128 to 512,

the averaged HV value actually increases for PAES.Con
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Figure 7.3: Comparison of average HV values per algorithm for instances with the same number

of tasks over all sizes of developers obtained for second experiment of Approach 4

In a similar fashion, the algorithms were evaluated as to how they behave as the size of the

projects increases in terms of number of available developers. Again, instances of projects were

grouped, but this time by those having the same number of developers. Then, for each algorithm,

the HV values of each group were averaged. The averages for all six developer sizes of dataset

DS2 are presented in Table 7.8 and the equivalent bar graph is shown in the bar chart of Figure 7.4.

Table 7.8: Average median HV values per algorithm for project instances with the same number

of developers over all sizes of available tasks obtained for second experiment of Approach 4

Average median HV values

Developer size MOCell NSGA-II PAES SPEA2

8 0.4793 0.5017 0.3582 0.4924

16 0.2631 0.2714 0.2159 0.2636

32 0.0739 0.0619 0.0938 0.0594

64 0.0222 0.0356 0.1584 0.0289

128 0.0001 0.0000 0.2126 0.0000

256 0.0000 0.0000 0.2066 0.0000Con
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Figure 7.4: Comparison of average HV values per algorithm for instances with the same number

of developers over all sizes of tasks obtained for second experiment of Approach 4

Once more, it is generally expected that as the number of developers increase, the HV values

will decrease. This is mirrored in the behaviour of the MOCell, NSGA-II and SPEA2 algorithms,

which show that they do not scale considerably well, but rather have a sharp gradient. On the

other hand, the averaged HV values for PAES show that the algorithm exhibits a better ability for

scaling. Overall, the results indicate that PAES is superior with respect to scalability of both task

size and developer size, which is similarly concluded in Luna et al. [66, 113].

7.4.3 RQ4.3: What observations can be made from the application of the approach in real-

world software projects?

Several software projects carried out by university students were examined in order to assess

how productivity rates and interdependence type actual impact software development. In partic-

ular, these projects were undertaken by third-year university students during a project-orientedCon
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Software Engineering course spanning two semesters. The students possessed software develop-

ment knowledge and skills at different levels of proficiency, and also had gained various practical

experiences from their university coursework and, in some cases, industry employment. Groups

of four to five students were required to develop a software product following a traditional water-

fall life-cycle model and plan-driven development based on requirements from external real-world

clients. In some cases, group members worked on tasks individually, whereas in other cases, tasks

required two or more group members to work together as a team.

Considering that the projects were approximately of the same size, difficulty and complexity,

several comparisons could be made regarding how the characteristics of the tasks and the pro-

ductivity rates of the students influenced the duration of tasks. First, in tasks with a conjunctive

interdependence (such as various programming tasks) if at least one student in a team had a rel-

atively low productivity rate then the whole team would struggle and take longer than planned

to complete such a task. Second, in tasks with a disjunctive interdependence (such as database

designing) even if the majority of the members were not familiar with the task’s content, as long

as there was one member who possessed the necessary skills and had a high productivity rate, that

member was able to help the whole team finish the task sooner. Last, in additive tasks (such as

the execution of test cases in the testing phase) students working together with more knowledge

in testing had a higher combined productivity rate and, as a result, took shorter time to complete

these types of tasks in contrast to teams whose overall team productivity rate was lower. These

observations help validate the applicability of this approach that indeed developers combine their

efforts in different ways depending on the type of work that needs to be done and their rate of

productivity, which subsequently affects task completion times.

To investigate the behaviour of the approach in real-world software development settings, an

additional experiment was conducted using a real-world software project undertaken by a local IT

company concerning the development of a vessel policies management system for a large insurance

brokers company. The supervising projectmanager at the time of the project had just over five years

of industry experience in software project management, and was responsible for the initial planning

at the beginning of the project, aiming to find a balance between the total duration and cost of the

project. Table 7.9 presents the characteristics of the project, which comprised 31 tasks split into a

number of software development activities (professions). The table also shows the interdependence

type of each task, which the project manager helped define according to the nature of the activitiesCon
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in the project. The resources available to undertake the project (presented in Table 7.10) consisted

of four developers with skills and expertise in one or more of the professions required by the project

tasks. The project manager was consulted to provide the estimated effort for each task, as well as

the productivity matrix and salary of the developers. Finally, he also provided the Gantt chart he

constructed for the project (Figure 7.5).

Table 7.9: Task characteristics of real-world software project examined in Approach 4

Task Effort Type Profession Task Effort Type Profession

T01 48 Disjunctive Req. analysis T16 8 Disjunctive Testing

T02 16 Conjunctive GUI design T17 12 Additive Programming

T03 8 Conjunctive DB design T18 4 Conjunctive DB design

T04 8 Conjunctive DB design T19 6 Conjunctive Programming

T05 6 Additive Req. analysis T20 6 Conjunctive Programming

T06 8 Disjunctive Testing T21 64 Conjunctive Integration

T07 16 Additive Programming T22 16 Disjunctive Testing

T08 4 Conjunctive Programming T23 16 Additive Programming

T09 4 Conjunctive Programming T24 4 Conjunctive Programming

T10 4 Conjunctive Programming T25 16 Conjunctive Programming

T11 4 Conjunctive Programming T26 12 Conjunctive Programming

T12 4 Conjunctive Programming T27 6 Conjunctive DB design

T13 6 Conjunctive Programming T28 32 Conjunctive Integration

T14 6 Conjunctive Programming T29 8 Disjunctive Deployment

T15 8 Conjunctive Programming T30 12 Additive Programming

T31 24 Additive Training

Table 7.10: Characteristics of resources available to undertake the real-world software project

examined in Approach 4

Developer

R01 R02 R03 R04

Wage rate €10.23 €6.25 €7.39 €5.68

Productivity rate

Req. analysis 2.00 0.50 0.50 0.00

DB design 2.00 1.00 2.00 0.00

GUI design 2.00 0.00 2.00 0.00

Programming 2.00 1.00 1.00 0.00

Integration 2.00 0.50 0.50 0.00

Testing 0.00 0.00 0.00 2.00

Deployment 0.00 0.00 0.00 1.00

Training 2.00 0.50 1.00 0.00
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Figure 7.5: Gantt chart constructed by the project manager of the real-world software project ex-

amined in Approach 4

Using the same parameters and settings as before, the algorithm was executed for 100 runs

for all four algorithms. Subsequently, the HV quality indicator was computed from the solutions

generated. The results obtained followed to a large degree the same pattern that was observed with

the previous experimental software projects. Specifically, MOCell, NSGA-II and SPEA2 man-

aged to outperform PAES with respect to the HV, demonstrating their ability to generate solutions

with higher diversity and cover the extent of the reference Pareto front to a larger degree. Further-

more, there was no statistically significant difference between the results obtained for MOCell and

NSGA-II, MOCell and SPEA2, and NSGA-II and SPEA2, which suggests once more that these

optimizers are equally suitable for this approach. The reference Pareto containing the overall bestCon
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solutions is displayed in Figure 7.6. Also, in the same figure, we plot the duration and cost of the

project corresponding to the original allocation of resources and schedule of tasks constructed by

the project manager.

Figure 7.6: Comparison of project manager’s initial estimate with reference Pareto front for real-

world software project in Approach 4

The 27 solutions on the reference Pareto front all dominate the initial estimate made by the

project manager either in terms of duration or in terms of cost. The solutions correspond to project

plans ranging from short make spans at higher costs to low costs with longer make span. The

project manager’s goal was to allocate developers and schedule tasks so that a balance between

the total duration and cost was achieved. Notably, the closest generated solutions to the project

manager’s estimate represent plans that also offer amore equal trade-off between the two objectives

(enclosed in the dotted rectangle in Figure 7.6). In other words, the project manager’s estimate is

not nearer either extreme, but rather closer to the midway solutions. The point on the Pareto front

in Figure 7.6 markedED represents a solution whose task schedule and resource allocation yield a

duration equal to the project manager’s initial duration estimate. On the other hand, the point EC

on the Pareto front represents a solution whose task schedule and resource allocation produce a cost

equal to the project manager’s initial cost estimate. The comparison of the resource allocations,

costs and duration of these two points with the project manager’s initial estimate for each task is

presented in Table 7.11.Con
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Table 7.11: Comparison of project manager’s initial estimation against generated solutions ED
and EC in real-world software project examined in Approach 4

PM’s initial estimation Generated solution ED Generated solution EC

Task Resource Duration Cost Resource Duration Cost Resource Duration Cost

T01 R01 24 245.52R01 24 245.52R01 24 245.52

T02 R03 8 59.12R01 8 81.84R01 8 81.84

T03 R03 8 59.12R03 4 29.56R01 4 40.92

T04 R01 8 81.84R01 4 40.92R03 4 29.56

T05 R02 12 75.00R01 3 30.69R02 12 75.00

T06 R04 4 22.72R04 4 22.72R04 4 22.72

T07 R02,R03 3 40.92R01,R02 6 98.88R01,R02 6 98.88

T08 R02 4 25.00R02 4 25.00R02 4 25.00

T09 R02 4 25.00R01 2 20.46R01 2 20.46

T10 R03 4 29.56R02 4 25.00R03 4 29.56

T11 R03 4 29.56R03 4 29.56R03 4 29.56

T12 R02 4 25.00R03 4 29.56R02 4 25.00

T13 R02 6 37.50R01 3 30.69R01 3 30.69

T14 R03 6 44.34R01 3 30.69R01 3 30.69

T15 R03 8 59.12R01 4 40.92R01 4 40.92

T16 R04 4 22.72R04 4 22.72R04 4 22.72

T17 R01,R02,R03 2 47.74R01 6 61.38R01 6 61.38

T18 R02 4 25.00R03 2 14.78R03 2 14.78

T19 R02 6 37.50R01 3 30.69R01 3 30.69

T20 R03 6 44.34R01 3 30.69R01 3 30.69

T21 R01,R02 16 263.68R01 32 327.36R01 32 327.36

T22 R04 8 45.44R04 8 45.44R04 8 45.44

T23 R03 3 22.17R01 8 81.84R01,R02 6 98.88

T24 R02 4 25.00R01 2 20.46R01 2 20.46

T25 R03 16 118.24R01 8 81.84R01 8 81.84

T26 R02 12 75.00R01 6 61.38R01 6 61.38

T27 R02 6 37.50R03 3 22.17R03 3 22.17

T28 R01 16 163.68R01 16 163.68R01 16 163.68

T29 R04 4 22.72R04 8 45.44R04 8 45.44

T30 R02 2 12.50R01 6 61.38R01 6 61.38

T31 R02,R03 19 259.16R01 12 122.76R01,R02,R03 7 167.09

Project duration 177 177 167

Project cost 2,081.71 1,976.02 2,081.70

It is clear from Table 7.11 that by taking into account the rate of productivity of developers,

the type of task interdependence and the communication overhead at task level, the optimization

approach manages to allocate resources and schedule tasks in a variety of ways. The generated

solutions can easily be presented to the project manager through a decision support system, from

which a project manager may select the most suitable allocation and schedule scheme according

to his or her priorities. Furthermore, a project manager is able to generate more accurate solutionsCon
sta

nti
no

s S
tyl

ian
ou



130

compared to ad-hoc and manual approaches with a small amount of effort. The differences be-

tween solutions are also evident when comparing each of the generated solutions with the project

manager’s initial estimation in regards to the overall project cost and project duration, as shown in

Table 7.12.

Table 7.12: Difference between project manager’s cost and duration estimation and each generated

solution

Difference Difference

Project from estimated Project from estimated

duration duration cost cost

PM estimation 177 2,081.71

Solution

RW01 161 -16 2,190.84 109.84

RW02 162 -15 2,170.37 89.37

RW03 163 -14 2,149.90 68.90

RW04 164 -13 2,136.27 55.27

RW05 165 -12 2,115.80 34.80

RW06 166 -11 2,102.17 21.17

RW07 (EC) 167 -10 2,081.70 0.01

RW08 168 -9 2,071.49 -9.51

RW09 169 -8 2,057.86 -23.14

RW10 170 -7 2,037.39 -43.61

RW11 171 -6 2,026.03 -54.97

RW12 172 -5 2,020.35 -60.65

RW13 173 -4 2,008.99 -72.01

RW14 174 -3 2,003.31 -77.69

RW15 175 -2 1,991.95 -89.05

RW16 176 -1 1,981.70 -99.30

RW17 (ED) 177 0 1,976.02 -104.98

RW18 178 1 1,964.66 -116.34

RW19 179 2 1,958.98 -122.02

RW20 180 3 1,947.62 -133.38

RW21 181 4 1,943.07 -137.93

RW22 182 5 1,938.52 -142.48

RW23 183 6 1,931.69 -149.31

RW24 184 7 1,929.42 -151.58

RW25 185 8 1,927.15 -153.85

RW26 186 9 1,924.88 -156.12

RW27 188 11 1,920.34 -160.66

As seen from the solutions that are shaded in Table 7.12 (that is, the solutions enclosed in the

dotted rectangle in Figure 7.6), compared to the project manager’s estimate, the algorithm was

able to find a range of alternative plans that are up to approximately 6% shorter in duration for

the same estimated cost or up to roughly 5% cheaper in cost for the same estimated duration. The

Gantt chart of the latter case (solution ED) is given in Figure 7.7, where the algorithm generated
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a solution that managed to allocate resources and schedule tasks with the same project duration as

the project manager’ estimates, but with a cheaper project cost.
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Figure 7.7: Gantt chart corresponding to solutionED generated for the real-world software project

in Approach 4

Essentially, the difference in cost is due to having different combinations of developer as-

signments that are more cost-effective. In some tasks, the developers assigned possessed a high

productivity rate and, although these developers cost more, it was still cheaper than assigning

developers with a low productivity rate for a longer duration. In other tasks, the developers as-

signed possessed a low productivity rate and, despite the tasks taking longer, it was still cheaper

than assigning developers with a high productivity rate for a shorter duration. This emphasizesCon
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the competitive nature of duration and cost, and underlines the fact that search-based optimiza-

tion techniques may handle the complexity posed by this competition more efficiently compared

to software project managers, irrespective of their experience and expertise. Furthermore, when

several of these solutions were presented to the supervising project manager, he confirmed that

in several tasks certain combinations of developers that existed both in the original allocation, as

well as in the generated solutions completed the work earlier than planned, due to some of the

assigned developers possessing high productivity rates in the required professions. In addition,

he also confirmed that the final cost and duration of the project was much more near to the solu-

tions generated in this approach rather than his initial estimated values. Although the percentage

of reduction was relatively small due to the small size of the project, in larger and more complex

projects improvements to the cost and duration estimates could be greater, proving more beneficial

to software development companies.

Several observations were also made regarding the interdependence type of tasks. First, the

solutions generated by this approach avoided the assignment of more than one developer to cer-

tain tasks. Further examination revealed that these tasks were programming tasks, which have a

conjunctive interdependence type. Because the duration of a conjunctive task is determined by the

lowest productivity rate in the team, the algorithm rejected the assignment of a team of developers

to such a task in favour of assigning only one developer that possessed a high rate of productivity,

thus decreasing both the duration and cost of the task. Furthermore, due to the dependencies, a

number of programming tasks were able to be scheduled to start at the same time (for example,

tasks T08, T12 and T14 in Figure 7.7). In order to simultaneously avoid assignment conflicts and

minimize the project’s make span, the most cost-effective solution was to assign a developer with

a lower productivity rate and having the task start as soon as possible (rather than to assign one of

the developers with the highest rate of productivity and forcing the start of a task to be delayed until

one of those developers was available). Conversely, it was observed that the solutions generated

by this approach showed no preference to the number of developers assigned to additive tasks.

In some cases, only one developer was assigned (the cheaper alternative), whereas in other cases,

several developers were assigned (the faster alternative). These observations suggest that taking

into account the type of task interdependence can prove valuable to a software project manager for

his/her allocation decisions.Con
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7.5 Summary

The approach described in this chapter has introduced additional aspects for resource alloca-

tion and task scheduling that were previously missing from the first three approaches presented in

Chapters 4–6. To begin with, the representation of individuals was revised in order to help solve the

previous problem of unnecessary delays between the execution of tasks. The new representation

allows the tasks to be scheduled exactly at their earliest starting time, thus avoiding idle gaps in the

schedule. Also, the levels of experience of developers in skills was replaced by productivity rates of

developers in software professions. These productivity rates are now used together with the effort

required and the interdependence type of tasks in order to calculate more accurate and realistic task

durations before proceeding to allocate resources and schedule tasks. Communication overhead is

also added to the duration of tasks to take into account extra time not considered for collaboration

between team members in the required effort. In addition, the salary of developers was introduced

as a resource attribute in order to calculate the cost of the project using a newly-defined objective

function. Through the experiments performed with multiobjective genetic algorithm variations,

overall, the approach shows promising results. Applying the approach on a real-world software

project demonstrated the importance of incorporating these necessary characteristics of tasks and

attributes of developers, which have been either traditionally overlooked or not incorporated fully

in previous approaches.
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Chapter 8

Personality Psychology and Software Development

Given that a large percentage of software projects are severely challenged or considered to

have failed, coupled with the fact that human resources are considered the only type of resource

in a software project, one of the directions that the software engineering research community is

trying to establish for the software development industry to follow involves including human-

centric factors. Specifically, this direction attempts to promote nontechnical factors of software

development as equally important as technical factors in approaches for human resource allocation,

scheduling and team formation.

A leading trend focuses on taking into account the personality types of developers when assign-

ing them to tasks and also when grouping them into development teams. More and more studies

are now being performed aiming to observe the effects of personality types on performance, pro-

ductivity, software quality, and job satisfaction. Also, there have been attempts to determine the

personality types required of different software development professionals, such as system ana-

lysts, programmers, testers, etc. Therefore, this chapter presents a literature review of various

human resource allocation and scheduling approaches, as well as team formation strategies for

software development teams, that incorporate personality types and results of their application in

the software industry. Before doing so, several sections are dedicated to presenting an overview

of personality testing, including when and how the practice came to be, reasons for employee per-

sonality assessment, as well as a brief description of some popular personality testing instruments.

134
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8.1 Background theory of personality psychology

Psychology is the scientific discipline in which human behaviour and mental functions are

studied. Personality psychology is the area of psychology that examines the human individual, that

is, the person. Though there is no general consensus as to the actual definition of personality, many

people incorrectly assume that personality psychology deals with studying individual differences.

Every individual has a set of characteristics, both organized and dynamic, that come into action or

that are expressed in certain situations regarding a person’s cognitive, motivational and behavioural

patterns. Over the years many categories of personality theories have been developed, including

trait theories, type theories, humanistic theories and behaviourist theories, all of which aim either

to understand an individual’s distinctive personality features or to identify general rules applying

to different individuals. During the 20th century, with the rapid growth of the field of personality

psychology, there was an equal interest in the field of personality testing. The intensive research in

the field has led to many additions and modifications of personality assessment instruments, both

in approach and application.

8.1.1 Humours and temperaments

One of the most important and pioneering figures in the field of medicine is undoubtedly the

ancient Greek physician Hippocrates (ca.460–370 BCE). He is known as the father of modern

medicine and is responsible for introducing the concepts of crisis and prognosis. He is also cred-

ited for developing the concept of humourism, which is based on the idea that an individual’s

behaviours and personality characteristics are influenced by the four fluids, known as the ‘four

humours’, present in the human body: blood, phlegm, black bile and yellow bile. The word ‘hu-

mour’ originates from the Greek word ‘χυμός’, meaning ‘juice’ or ‘fluid’, which is the reasoning

behind the name given to the theory. The four humours/bodily fluids are all present in a human

at different levels. A person is considered healthy when there is an even balance of these four hu-

mours, but an imbalance in either one would affect both the physical health and personality of the

person. Hence, these four humours were presumed to influence the temperament of individuals:

sanguine (blood), phlegmatic (phlegm), melancholic (black bile), and choleric (yellow bile). For

example, a person with an excess of black bile was said to have a melancholic disposition causing

sleeplessness and depression. The doctrine of the four temperaments remained a popular medical

theory for centuries until cellular pathology emerged.
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8.2 History of employee personality assessment

During the 20th century, with the rapid growth of the field psychology, there was an equal

interest in the field of employee personality testing [117]. In 1911, Frederick Winslow Taylor

[118] introduced the idea that worker productivity can be increased by applying scientific methods

in employee management. He published his work in The Principles of Scientific Management, in

which he states that traditional knowledge of a task should be gathered and documented from a

worker through a series time-and-motion studies in order to describe what needs to be done, how

it needs to be done, and how long it should take for it to be completed. He also states that a task

should be undertaken by a worker who has the proper skills and has been trained to perform the task

in the best way and that this will lead the worker to achieve maximum efficiency. The notions of

specialization and division of labour by simplifying jobs and optimizing the way they are executed

rely on the fact that employee skills are quantifiable.

Two years later in 1913, the German-American psychologist Hugo Münsterberg published his

theories and research work in a book titled Psychology and Industrial Efficiency [119], which fo-

cused on the field of industrial/organizational psychology. In his work, Münsterberg investigated

the desirable psychological abilities and traits an employee was required to have. This test was put

into practice by the Boston Elevated Company for selecting conductors, as well as by the American

Tobacco Company for choosing travelling salesmen. His works eventually lead to the widespread

development and adoption of the use of personality tests to measure and evaluate candidate em-

ployees. In addition to the use of screening procedures, other techniques have been developed to

include employee character evaluation. For example, when the USA entered World War I, the War

Department observed that some recruits were prone to stress and being shell-shocked during battle.

As a result, the USA Army hired Robert Sessions Woodworth, an experimental psychologist, to

develop a checklist to evaluate soldiers for special missions by carrying out tests for their selec-

tion. Despite the fact that the measure was completed in 1919, after the war ended, the Woodworth

Personal Data Sheet (WPDS) is the one of the forerunners of modern personality testing put into

practice [120].

Personality testing continued to be practised, though afterWorldWar I testing began to dwindle

as the evidence that job success was directly correlated to personality aptitudes slowly shrunk.

Henry Charles Link’s Employment Psychology published in 1919 regarding industrial hiring statesCon
sta

nti
no

s S
tyl

ian
ou



137

that ‘this [the weakness of the method of employing] is due to the absolute reliance upon the ability

and experience of the individual or individuals who happen to be doing the hiring’ [121].

The early 1940s saw the reemergence of personality testing. One of the most well-known

test devised in this period was created by Katherine Cook Briggs and Isabel Briggs Myers [122],

who based their theories on the Jungian archetypes [123]. This mother-and-daughter pair was

mainly motivated by the need for an instrument to aid executives and managers to evaluate female

candidates for various factory and industrial positions during World War II. They devised a type

indicator, known as the Myers-Briggs Type Indicator, which was a pen-and-pencil test and once

scored was used as a means to allocate the most suitable employee to a particular task but also as a

method for conflicts resolution. After World War II, the use of personality testing shifted its focus

on assessing employees most suited for managerial and executive positions and many companies,

such as IBM, started developing their own employee personality tests. However, during the 1960s,

testing restarted being practised at all levels and over a wider variety of occupations. Today, as

much as 60 per cent of companies adopt employee personality testing – albeit for different reasons

and for gathering different information. There are also many instruments available to help em-

ployers consider factors other than personality, such as cognitive ability, integrity, job knowledge

and physical ability.

8.2.1 Overview of personality tests

Personality testing has come a longway sinceWoodworth’s Personal Data Sheet. The intensive

research in the field has led to many additions and modifications, both in approach and applica-

tion. The most widely administered test is the Myers-Briggs Type Indicator (MBTI) [122] that

scores individual preferences based on the works of Carl Gustav Jung [123]. Individuals answer a

psychometric questionnaire that assesses preferences relating to four dichotomies:

• Extraversion/Introversion (E/I), which concerns the attitudes or orientations of energy. This

dichotomy assesses whether the energy and attention of an individual is directed either to-

wards people and objects in their environment or towards ones internal world, experiences

and reflection.

• Sensing/Intuition (S/N), which relates to the functions or processes of perception. This di-

chotomy evaluates whether an individual carries out information gathering either by observ-

ing using the five sensory attributes or by perception of future possibilities and meanings.
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• Thinking/Feeling (T/F), which refers to the functions or processes of judging. This di-

chotomy determines whether an individual performs decision making by either linking ideas

together through logical connections or by weighing relative values and issues.

• Judging/Perceiving (J/P), which is associated with the attitudes or orientations towards deal-

ing with the outside world. This dichotomy establishes whether an individual is either con-

cerned with making decisions or is attuned to incoming information.

The personality type of an individual is determined by which alternative of each dichotomy is

preferred. It should be noted that preference of one option does not mean that the other is never

used – it is simply regarded as being less preferred. As a result there are 16 possible combinations

of personality types as shown in Table 8.1

Table 8.1: The 16 personality types of the Myers-Briggs Type Indicator

ISTJ ISFJ INFJ INTJ

Dependability Commitment Integrity Vision

ISTP ISFP INFP INTP

Ingenuity Sensitivity Idealism Logic

ESTP ESFP ENFP ENTP

Energy Enthusiasm Imagination Initiative

ESTJ ESFJ ENFJ ENTJ

Decisiveness Affiliation Responsiveness Drive

Another well known personality test is the Keirsey Temperament Sorter [124], which is closely

related to the MBTI, but instead uses temperaments rather than attitudes and functions. The four

temperaments (artisan, guardian, idealist and rational) can be subsequently broken down into roles

and further into role variants as shown in Table 8.2.

The temperaments are separated firstly by whether a person prefers to perceive (observant)

or reflect on their inner world (introspective). An individual can then be described by what they

pay attention to the most. If a person is more concerned about other peoples’ feelings then they

are cooperative, whereas those who pay attention to their own thoughts and emotions are said to

be pragmatic. Communicating with others distinguishes whether an individual prefers to inform

others (informative) or direct others (directive). Each temperament makes this distinction and

results in the eight roles. Finally, the way with which a person relates to their environment leads

to the 16 role variants. A person who acts before reflecting is considered as expressive, whereas a
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Table 8.2: The breakdown of the Keirsey’s temperaments into roles and role variants

Temperament Role Role variant

Abstract Cooperative Directive Expressive

or or or or

Concrete? Utilitarian? Informative? Attentive?

Observant

Artisan

Entertainer
Composer

Performer

Operator
Crafter

Promoter

Guardian

Administrator
Supervisor

Inspector

Conservator
Protector

Promoter

Introspective

Idealist

Advocate
Champion

Healer

Mentor
Counsellor

Teacher

Rational

Coordinator
Field marshal

Mastermind

Engineer
Architect

Inventor

person who reflects before acting is thought to be attentive. An observant, cooperative, directive

and attentive person would be classed as having a supervisor temperament.

Many similarities can be seen between the KTS and the MBTI (shown in Table 8.3). However,

there are substantial differences in both theoretical and practical aspects, as well as the adminis-

tration of the two tests.

Table 8.3: KTS role variants with corresponding MBTI types

Inspector Protector Consellor Mastermind

ISTJ ISFJ INFJ INTJ

Crafter Composer Healer Architect

ISTP ISFP INFP INTP

Promoter Performer Champion Inventor

ESTP ESFP ENFP ENTP

Supervisor Provider Teacher Field marshal

ESTJ ESFJ ENFJ ENTJ

Finally, the NEO Inventories [125] are a collection of psychological personality assessment

instruments that measure the Five-Factor Model (FFM) personality traits of individuals [126], also

known as the ‘Big-Five’ personality traits. Specifically, these instruments are used to determineCon
sta

nti
no

s S
tyl

ian
ou



140

emotional, interpersonal, experiential, attitudinal and motivational styles represented by five do-

mains of personality and their facets:

• Neuroticism, which reflects the level to which an individual is predisposed to experiencing

negative emotions, such as sadness, embarrassment, fear and anger.

• Extraversion, which refers to the level to which an individual engages with their external

world through interpersonal interactions, as well as their energy and predisposition to expe-

riencing positive emotions.

• Openness to experience, which concerns an individual’s tendencies regarding intellectual

curiosity, creativity and variety in interests and experiences.

• Agreeableness, which involves interpersonal orientation with regards issues, such as com-

passion, social harmony, cooperation, and trust.

• Conscientiousness, which relates to the degree of self-discipline and control of impulses,

and also ambition and organization.

The facets defining each domain can be seen in Table 8.4. Currently, there are several inventories

that can be administered. The NEO-PI-R/NEO-PI-3 inventories are a 240-item questionnaire that

contains statements describing various behaviours. An individual answers the questionnaire using

a five-point Likert scale by simply indicating the degree to which he or she agrees or disagrees

with the statement given in each question. For each facet, there are eight related questions that

need to be answered, giving a total of 48 questions per domain. Based on the responses of the

individual, a profile of his or her personality is formed containing the scores measured for each

facet and domain separately. A shorter 60-item questionnaire can also be administered using the

NEO-FFI-3, which only provides scores of the five personality domains (each measured on a 12-

item scale), but not on the facets defining each domain. The purpose of this inventory is to give a

brief and comprehensive assessment of the personality of an individual.

8.2.2 Advantages and disadvantages of employee personality testing

According to the Society of Industrial and Organizational Psychology Inc, Division 14 of the

American Psychology Association [127], employee testing can yield a number of benefits. First ofCon
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Table 8.4: The personality domains and facets of the NEO Inventories

Neuroticism (N) Extraversion (E) Openness to Experience (O)

Anxiety (N1) Warmth (E1) Fantasy (O1)

Angry hostility (N2) Gregariousness (E2) Aesthetics (O2)

Depression (N3 Assertiveness (E3) Feelings (O3)

Self-consciousness (N4) Activity (E4) Actions (O4)

Impulsiveness (N5) Excitement-seeking (E5) Ideas (O5)

Vulnerability (N6) Positive emotions (E6) Values (O6)

Agreeableness (A) Conscientiousness (C)

Trust (A1) Competence (C1)

Straightforwardness (A2) Order (C2)

Altruism (A3) Dutifulness (C3)

Compliance (A4) Achievement-striving (C4)

Modestry (A5) Self-discipline (C5)

Tender-mindedness (A6) Deliberation (C6)

all, testing saves time during the hiring process as it can reduce the time spent interviewing candi-

dates by excluding applicants that are less skilled, or lack abilities or characteristics of what the job

requires. It is, therefore, considered a fair and cost-efficient method of hiring within a reasonable

amount of time especially with a very large number of applicants. Another advantage to employee

testing is that it limits erroneous hiring decisions bymanagement executives, which can be very ex-

pensive for a company when taking into account possible training expenses, low performance costs

and the costs of replacement. Additionally, most tests involve measuring characteristics, such as

personality traits and extensive know-how, which are gained through experience rather than some

sort of training. Also, employee testing can be more successful and less expensive than otherwise

traditional methods when trying to attain certain difficult information on candidates. Some may

consider certain hiring processes to be subjective if the information gathered on applicants is not

the same or if the information is not used in the same way. Employee testing, on the other hand,

introduces a standardized approach ensuring that this bias is removed or at least kept to a minimum,

and that all applicants are handled in the same manner.

One of the disadvantages of employee testing is that it cannot always be administered. For in-

stance, when the instrument used for testing needs to be customized, then the administering costs

can add up. However, the future benefits for a company using testing for hiring applicants or re-

taining employees may prove to be a sound investment. Another significant drawback to employeeCon
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testing is the possibility of an applicant or employee taking legal action for discrimination. In par-

ticular, differences in demographic groups may be highlighted more in certain test scores, and so

selection based on these tests could be deemed exclusionary by some participants. In addition,

personality testing can only be carried out if the proper resources are available. This includes the

right people, as well as a suitable period of time to carry out the test. Finally, it is not suitable when

the number of candidates is relatively low.

Investigating whether or not a specific type of job can be executed by a particular personality

type, especially for the heavily people-oriented field of software development, is very appealing

to many organizations. It can help supervisors decide on issues such as pay rises and promotions

or, in a negative light, disciplinary action and dismissal. As a result, several studies have been

carried out to investigate whether software development professionals possess a specific type of

personality. The outcomes of these investigations can shed light on the type(s) of personality that

are drawn towards a career in software development. It also enables to explore whether different

professions within the industry appeal to different personality types.

8.3 Personality types of software development professionals

One of the earliest studies of personnel in software engineering-related occupations was per-

formed by Moore [128]. The study was based on the 16 Personality Factor Questionnaire (16PF)

[129], a popular measurement tool in personality-occupation studies, which is extensively used

to assemble personality profiles for people in various occupations [130]. In the study, the author

compiled the 16PF questionnaire for four software development occupation categories (namely, ap-

plication programmers, systems analysts, technical programmers, and data processing managers)

in an attempt to answer the question: ‘Do these groups of information systems professionals share

a common personality profile, or are there significant differences?’ After multiple analyses, the

authors found that managers and application programmers were most similar in that they are more

inclined to experiment and think freely, thus allowing them to use their imagination more, while

at the same time being more outspoken and comfortable with whatever happens. In contrast with

application programmers, however, managers are more likely to be laid-back and spontaneous,

more forceful and competitive, and more capable of abstract thinking. Another finding showed

that systems analysts and technical programmers have a tendency to be more practical, careful and

conservative than data processing managers because their work is often highly visible, not onlyCon
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within data processing but throughout the company. Mistakes can be costly, but also embarrassing

for them. Additionally, the study also identified managers as ‘less concerned with social rules than

most people’ and more likely to pursue their own desires.

Wynekoop andWalz attempted to explore the differences between information systems profes-

sionals in order to determine whether or not differences existed in personality characteristics with

the rest of the general population [131]. They surveyed three oil and gas companies with a total

of 114 programmer analysts, systems analysts, and project managers by administering the Cali-

fornia Psychological Inventory Adjective Check List (ACL) [132] on the employees. The results

showed that managers and system analysts are more similar to each other than to programmers.

In addition, managers and system analysts differ from the general population on more scales than

programmers but also on different scales. Another finding was that managers tend to be more log-

ical, compliant and with more confidence than the general population, whereas analysts are more

willing to keep friendly relationships with others. Generally, the study shows that IT professionals

have more leadership skills, are more ambitious and reasonable and have more self-esteem and can

be more disciplined than other professionals. Similarly, Smith [133] also carried out research on

IT professionals, though his work concentrated only on the personality types of systems analysts.

Based on MBTI type tests, the author concluded that a high majority of systems analysts tend to

prefer sensing and thinking, in addition to being more introvert rather than extrovert.

Capretz attempts to provide a personality profile of software engineering employees by dis-

tributing the MBTI instrument to 100 software engineers working for the government, for private

companies and students of private or public universities and comparing results to the distribution

of MBTI types of the general US adult population [134]. The motivation behind the author’s re-

search is the fact that the majority of software engineering professionals are typecast as a ‘nerd’ –

an introvert working alone in his corner and with no intentions to interact with others. However,

over the years software development has become more complex leading to a rise in the need for

specialization within the profession, such as system analysts, designers, programmers, testers, etc.

As a result, the author believes each role requires a corresponding personality type. Furthermore,

at the time of the study, there had been very little research carried out regarding the degree of job

satisfaction among software professionals and any profile developed of the software engineer may

have been modified due to the growth of the field’s popularity. The results of the author’s survey

showed that, of the 16 possible MBTI types, the most dominant were ISTJs, ISTPs, ESTPs, andCon
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ESTJs accounting for around 55% of the total sample. The majority of software engineers fall

under the ISTJ personality type (24%), which is a higher percentage than that of the general pop-

ulation of the US (11.6%). This is largely due to the fact that the majority of software engineers

are technically oriented and prefer working with the facts and reason rather than with people. It

was also noted that systems analysts possessed an extroverted thinking personality type, which

prefers to communicate with other people and use their enhanced thinking ability in order to solve

organizational problems. On the other hand, programmers exhibit an ISTP personality type, which

excels at pinpointing the root of a problem, as well as coming up with practical solutions (regarded

as ‘gurus’). Conversely, ‘wizards’ possess an INTJ personality type, exhibiting a great desire to

achieve things but unwilling to socialize with others. Introverts make up the majority of software

development professionals; as such they usually find it hard to communicate with end users. The

greatest difference, according to the author, between software engineers and the general popula-

tion is that the majority of software engineers ‘take action based on what they think rather than

what somebody else feels’. This, however, does not help reduce the communication gap between

software developers and end users. A more recent comprehensive investigation can be found in an

analysis by Varona, et al., which surveys existing studies that try to profile software development

professions, in order to properly understand the human resources working in the software industry,

as well as to spot possible trends and changes [3].

8.3.1 Allocating developers to tasks based on personality type

Even if a specific personality type can be distinguished for each software development profes-

sion, the most important question is how to make use of this information in practice when trying

to allocate and schedule human resources or form software development teams. There has been a

gradual rise in the number of approaches aiming to help answer this question, which are presented

here.

The personality type of a developer can play a significant role in determining which tasks he or

she is assigned to because particular individual traits can help certain developers to be more adept

in coping with the requirements and characteristics of a specific task. Furthermore, a more suitable

personality type assigned to a task can have a direct influence on individual performance and team

efficacy [135, 136], as well as group conflict and team cohesion [137]. It also can contribute to the

overall quality of the final software product [138]. In addition, when a developer is assigned to aCon
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task that suits his or her personality, then his or her level of job satisfaction can increase leading to

higher productivity [139].

Dafoulas and Macaulay’s approach to assigning developers to tasks uses dynamic role alloca-

tion to maximize productivity and performance and takes into account certain role criteria (such

as the goals and objectives, skills and knowledge, as well as any personality and culture require-

ments) so that project managers can assign/reassign roles or activities to team members according

to their suitability [140].

Acuña and Juristo also consider roles and human capabilities in their attempts [141]. Their

proposed model first determines the intrapersonal, organizational, interpersonal and management

capabilities of team members and then performs role assignment to team members based on the

capabilities required by the roles and the capabilities of the available resources. Each capability is

allotted a number of personality traits required to be possessed using the 16PF test as a psychome-

tric instrument. The goal is to assign those employees possessing the personality traits nearest to

those required by the role [142].

Similarly, André et al.developed a formal model for human resource allocation focusing on

the assignment of developers to roles [143]. In this approach, rules are generated to undertake

the team formation process based on the roles and competencies of developers assessed through

psychological tests. These team formation rules were converted into a formal model compris-

ing four objective functions (competence, team compatibilities, availability and distance cost) and

twelve constraint types, to perform human resources assignment to roles by employing heuris-

tic algorithms (random restart hill-climbing, simulated annealing, Tabu search, and various other

combinations of heuristic approaches).

Capretz and Ahmed presented an attempt at human resource allocation suggesting a mapping

of job requirements and skills to personality characteristics of employees, stating that diversity of

psychological types improves effectiveness and fulfilment of software developers [144, 136]. Be-

cause employees are more likely to perform better if they are assigned roles that their personality

traits are best suited to, the authors associate hard skills (in the form of job requirements) to soft

skills (in the form of personality requirements) for various software professionals: systems ana-

lysts, designers, programmers, testers and maintenance staff. The soft skills are then matched with

specific personality characteristics based on MBTI personality types and this can allow projectCon
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managers to select team members with the same personality types and assign them to the roles

required in the project.

8.3.2 Allocating developers to teams based on personality type

While some researchers argue the importance of getting a developer to work on the right task,

others argue the significance of getting developers to work right together. The approaches men-

tioned in Section 8.3.1 all focus on the relationship between developers and tasks. However, other

approaches focus on the relationships among developers in order to try to identify how the per-

sonality types of developers influence various facets of team work and investigate whether certain

combinations of personality types improve aspects such as performance, productivity and even

quality. From a software project manager’s perspective, this could help him or her to understand

and exploit this underlying factor effectively when deciding on assigning developers to tasks.

One area of study concerns the heterogeneity of personality types, that is, the diversity of

traits possessed by developers. Rutherfoord examined the impact of diversity by comparing teams

comprising different personality types with teams composed of the same personality type using the

KTS [145]. The results showed that groups withmembers of the same personality type were having

more personal problems, rather than technical. The surveys revealed that members seemed to want

to elaborate the project by themselves and had problems with members that did not have much of a

sharing discipline. On the other hand, groups with members of different personality types seemed

to have more problems at a technical level. It was also noticed that groups where all members

possessed a supervisor personality type were spending too much time discussing how tasks will be

assigned, despite this matter having already been decided previously. Groups where all members

possessed an inspector personality type were very quiet and interaction between them did not seem

to exist. These groups appeared, however, much more focused and responsible. Groups with

different personality types among their members were very active, had robust discussions and

provided different kinds of ideas. The authors also noticed that groups with supervisor personality

types were very opinionated and preferred to ‘follow a traditional path’.

Research by Neuman et al. investigated the relationship between work team effectiveness and

two other factors: team personality elevation, defined as ‘the average level of a given trait within

a team’, and team personality diversity, described as ‘the variability or differences in personality

traits found within a team’ [4]. Predicting job performance using personality has conventionallyCon
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been based only on the elevation, or magnitude, of traits within a group and this has been the

foundation of selection and placement strategies. Nevertheless, the authors claim that team-based

designs may also require taking into account the diversity, or variability, of traits within a group,

in order to find correlations between personality and job performance. The research used the FFM

to examine the relationship between team personality composition and work-team performance.

Based on the authors’ interpretation of the results, teams perform better when members differ in

terms of extraversion and emotional stability (neuroticism) rather than when members are simi-

lar in terms of these traits. Conversely, team performance is likely to increase if team members

possess similarly high levels of traits regarding conscientiousness, agreeableness and openness to

experience. Therefore, project management decisions on developer selection can be supported by

taking into account the similarity of certain traits and the dissimilarity of others within a team.

A similar study was conducted by Pieterse et al., where the authors developed a methodol-

ogy to investigate the role of personality diversity in teams [146]. Specifically, they came to the

result that personality diversity has more positive influence on team performance compared than

team’s capabilities. They also support that personality diversity yields faster team productivity.

Nonetheless, they caution that diversity alone should not be taken as a sure predictor of a team’s

performance, and other factors should also be taken into consideration, such as the ability of lead-

ership, team communication and group cohesion. Peslak reports that personality is significantly

related to team success because it improves team cohesion, communication to handle conflicts, cre-

ates a more pleasant atmosphere and team roles [147]. All of these impacts were found to correlate

to increased team performance. Whether or not personality diversity helps team performance, the

paper supports the opinion that ‘perhaps the advantages of diversity are offset by the conflicts that

can arise’.

A large number of research studies concentrate on the effects of personality in agile methodolo-

gies, which is a relatively new development approach in the field of software engineering. Agile

methodologies transform the way in which communication, collaboration and coordination prac-

tices in software development projects are carried out towards a more people-oriented approach,

where software teams are self-managing and share the decision making. Approaches here focus

particularly on pair programming activities and how personality types are implicated. These ac-

tivities involve two developers working together on one task as they alternate between the role

of ‘driver’ – the developer who codes – and ‘navigator’ – the developer who reviews the code.Con
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Immediately, there is a need for social interaction (in the form of communication, collaboration

and cooperation) among the developers in order to reach a common goal of delivering the unit

produced on time and with the required quality. Hence, this is the reason why, especially in the

last five years, investigations have been carried out to investigate the impact that personality types

have on the performance and productivity of the pairs. For example, Sfetsos et al. investigate

the diversity of the personality traits of pair programmers and came to the conclusion that pairs

with heterogeneous personalities and temperaments exhibit better performance and collaboration-

viability than pairs with similar personality traits [148]. Software project managers, therefore, can

take into account personality types when allocating developers to tasks and try to match develop-

ers so as to optimize the pair’s effectiveness. Similarly, Choi et al. investigate which combination

of personality types yields higher pair productivity [149]. Specifically, they tested pairs of devel-

opers with alike, opposite and diverse combinations of personality types and found that the latter

combination outperformed, in terms of code productivity, the other two.

An other attempt investigating the diversity of personalities can be also be found in the study

by Karn et al. [150]. The MBTI instrument was administered to determine the personality types of

developers, in addition to various other questionnaires to identify the level of cohesion of software

development teams following the Extreme Programming (XP) methodology. Workgroup cohesion

is defined by the authors as ‘the degree to which team members have close friendships with others

in their immediate work unit and their personal attraction to members of the group’. The authors

support the argument that certain combinations of personality types work better and decided to

investigate development teams of university students working on software projects for external

clients selected on personality type, nationality and previous skills/experience. Some interesting

results were observed. First, the team with the highest level of cohesion did not have the highest

performance rating. This finding means that cohesion is not the only factor contributing towards

high performance and subsequently team success, but increases the possibility of a team to be-

come a successful. Another observation was that the team with worst level of cohesion could not

be characterised by a typical personality team type. Also, teams having a more traditional sci-

ence/engineering personality profile seem to outperform those with more diverse types. Overall

the authors summarized that a combination of personality types is important and that they factor

in both team performance and cohesion.Con
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In practice, a software development company may find it easier and cheaper if developers are

left to team up by themselves. Oftentimes, however, pairs will be formed based on friendships and

common interests, and not on optimizing productivity. If personality types are taken into account,

a software project manager can assign tasks to developers yielding maximum effect with relatively

little time and cost.

Acuña et al. explore the relationship between each of the five factors of the FFM and job

satisfaction, performance, team cohesion, task conflict and quality in agile settings [139]. Results

of their quasi-experiment produced a variety of results. Firstly, they observed that the quality of

the end product is positively correlated to the preferred interpersonal style of the developers. This

means that teams with a high average level of extraversion will enjoy the social interaction that is

promoted through agile methodologies and all members share the same goal of making the project

a success. They also noted that developers with positive attitudinal and motivational styles are also

more likely to be satisfied with their job. Developers in a team that share the same high level of

agreeableness and conscientiousness feel more content with their career. Staying with the factors

of the FFM, Salleh et al. explored how they especially affected pair programming [151]. The

main findings here were that pairings of developers with high levels of traits relating to openness

to experience were conducive to the effectiveness of the pairings. Hannay et al. (2010) provide a

comprehensive survey of the research investigating the effects of personality on pair programming

and its ability to predict job performance.

8.3.3 Discussion

There are two schools of thought concerning the inclusion of information regarding the per-

sonality types of developers for human resource allocation and scheduling activities in software

development. On the one hand, there is a view that a developer should be assigned to a task that

he or she is more suitable based on the requirements of the task and the personality type of the

developer. The claim is that each software development task has a set of characteristics and re-

quirements that can be associated to a desired set of personality traits. For example, requirements

elicitation tasks involve a high level of social engagement and the ability to identify with clients to

understand their needs. Therefore, an introverted individual may struggle to perform these tasks,

as they are more reserved and prefer working alone rather than in environments requiring high

social interaction. The research does not claim that a developer cannot be able to carry out a taskCon
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if he or she does not have the right personality type; it claims that he or she would not prefer to

carry out the task. Consequently, a better task-fit for a developer would result in, not only better

performance, but also higher job satisfaction. The more fulfilled a developer is while working on

a task that he or she is suited to, the more productive and efficient he or she is. Of course, this

can only work if the developer is capable of carrying out the task in the first place with regards

technical skills, knowledge and expertise, so as not to jeopardize the quality of the software being

developed.

On the other hand, there is the standpoint that a developer should be assigned with other de-

velopers so that the resulting combination of personality types leads to increased performance and

effectiveness. The claim here is that there are certain combinations of personality traits that can

improve the productivity of the team and increase probability of success. Some traits, such as

conscientiousness, should be present in all team members, while other traits, such as extraversion,

should be diverse. Contrariwise, if several developers are assigned to work together on a task,

their combination of personality types may not foster the most efficient and productive working

environment. This does not mean that the job cannot get done; it may just mean that a more ap-

propriate mixture of developers in terms of personality type may be able get the job done with

improved levels of communication, collaboration and coordination, which are governed by an in-

dividual’s personality type. Inevitably, if this personality type blend is not ‘effectual’, there will be

several knock-on effects, such as lowered productivity, job satisfaction, and, ultimately software

quality.

Overall, there are a limited number of approaches that attempt to incorporate personality types

of software developers in order to perform resource allocation, which is expected as this is still

a relatively new direction. Some approaches, for example, do not treat resource allocation and

task scheduling as an operational research problem and therefore do not employ the specialized

techniques and methods as the ones presented in Chapter 3. Those that do, attempt to only opti-

mize the allocation of resources so that tasks are assigned developers whose personality type is

closest to a desired profile. Interestingly, all but one approach overlook dealing with the problem

of task scheduling altogether, which as previously mentioned is tough to separate from resource

allocation since both activities are affected by developer assignment constraints. Hence, the abil-

ity of approaches to provide an integrated tool may be considered limited unless they are able to

accommodate scheduling (or scheduling constraints) also.Con
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8.4 Further research trends and challenges

Incorporating aspects of personality types in allocation and scheduling is still at a young and

exploratory stage, and so the applicability of approaches lacks the back-up of empirical evidence

demonstrating their practical benefits in order to promote their adoption by real-world software

development companies. A systematic evaluation of the effect is still required to be carried out to

gather such evidences and, if these continue to indicate promising results, only then can a signifi-

cant evolution in team formation, as well as allocation and scheduling strategies, occur.

The desired personality types of roles, tasks or activities that form the basis of assigning suitable

developers in a number of approaches are not always justified empirically. It is important that

desired personality type of a task is correctly identified in order to allocate a suitable developer,

but this may pose a challenge given the different personality measures and frameworks available to

assess personality types and preferences. There is currently no consensus as to which personality

instrument is the most capable of providing a task’s desired personality accurately.

Considering the use of personality types does not aim to single out developers or discriminate

against them. Instead, it is supposed to provide software project managers with additional and

complementary information to help them in the allocation and scheduling of resources or, in gen-

eral, task-independent team formation. Additionally, it should not substitute or force to disregard

important technical factors such as knowledge, skills and experience. However, some developers

may still consider such approach intrusive, so it is therefore important to provide reassurances that

the goal is to utilize this human-centric factor to achieve maximum resource usage through the

strengths of developers. Ultimately, the goals and objectives of any approach is to eliminate those

risks in software project management preventing development organizations from delivering their

products on time, within budget and with the required level of quality.

There is a differing of opinions with respect to how personality types can be utilized – for

assigning tasks or for staffing teams. Either way, the emphasis remains on gathering evidence

whether taking into account personality types of developers constitutes a legitimate way forward

to help software project managers make staffing decisions aiming to increase the probability of

success. Ideally, future approaches will be able to support both these valid research viewpoints.

Chapter 9 describes an approach developed as part of the research work, which takes into

account the personality type of software development professionals for human resource manage-

ment. More specific, an optimization approach is presented that attempts to allocate developers to
Con
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tasks in a way that tasks will be assigned to developers who are better suited with respect to their

personality types but also takes into account the levels of experience of the available resources.
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Chapter 9

Approach 5: Optimizing Developer Experience, Developer

Personality Type and Team Size using a Pareto Ranking Genetic

Algortihm

The goal of this proposed approach [152, 153] is to use a Pareto ranking genetic algorithm to

optimally allocate resources to tasks so that the tasks are carried out by: (1) the most experienced

developers based on technical knowledge and skills, (2) the most suitable developers based on

personality traits and abilities, and (3) the smallest number of developers possible so as to avoid

over-assignment. These criteria are expressed in the form of objective functions, which take into

account the skills and personality type required by tasks, in addition to the skills and personality

type possessed by developers. Furthermore, the approach assumes that developers assigned to

tasks must have the required skills to carry out the tasks, and also that developers must only be

assigned to one task at any given time so as to avoid assignment conflicts. The objective functions

along with the constraint functions form the basis of evaluation of solutions. In order to handle

the possibly competing nature of the objectives, the Non-dominated Sorting Genetic Algorithm

(NSGA-II) is again adopted as the optimization method [89]. Unlike the previous approaches

proposed in Chapters 4–7, the duration of the project is not taken into account as an objective to

help schedule tasks. Instead, the focus of the approach is solely on allocating resources to tasks

that have already been scheduled.

Personality type in this proposed approach is based on the personality domains of the Five-

Factor Model (FFM) described in Section 8.2.1 [126]. The FFM has been widely adopted in many

academic and application disciplines where personality measures have been required, and is a com-

mon instrument in cases involving career and personnel assessment. Specifically, to measure the
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personality type of a developer, the 60-item NEO-FFI-3 inventory is administered [125], which

scores each developer on the five domains: neuroticism (N), extraversion (E), openness to experi-

ence (O), agreeableness (A) and conscientiousness (C).

9.1 Research questions

Themain research target is to investigate the quality of the resource allocation solutions that are

generated with respect to the objectives and constraints involved in the optimization. In an ideal

case, objectives will not be competing at all: developers possessing a high level of experience in a

certain skill of a profession will also possess the most suitable personality traits of that particular

profession. On the other hand, in the worst case, objectives will be highly competing: developers

possessing a high level of experience in a certain skill of a profession will possess the least suitable

personality traits required for that particular profession, and vice-versa. Therefore, it is important to

evaluate how well the objective functions guide the algorithm to generate (near-)optimal solutions

in both these cases.

Specifically, the first research question (RQ5.1) assesses how well the objective functions per-

form in generating (near-)optimal solutions in a best-case scenario where highly experienced de-

velopers also possess the most suitable personality type: RQ5.1 How well does the algorithm

perform in generating (near-)optimal solutions in cases where objectives are not at at all

competing?

Conversely, the second research question (RQ5.2) assess how well the objective functions

perform in generating (near-)optimal solutions in a worst-case scenario where highly experienced

developers posses the least suitable personality type, and vice-versa: RQ5.2 How well does the

algorithmperform in generating (near-)optimal solutions in cases where objectives are highly

competing?

Several experiments using different-sized software project instances are used to help answer

these research questions.

9.2 Problem description

A software project consists of a set T = {t1, t2, . . . , tm} ofm tasks. Each task ti is associated

with one and only one profession from the set H = {h1, h2, . . . , hq}. In order to be completed,

each task requires a number of skills, which are related to the profession with which the task is
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associated. The complete set of S skills required by a project is given by S = {s1, s2, . . . , sp}. As

previously mentioned, the approach assumes that all tasks have already been scheduled. Hence,

each task has an associated start time, tstarti , and finish time, tfinishi .

A development company has n developers available to carry out a project, which are given by

the set of R = {r1, r2, . . . , rn}. The level of experience each developer possesses in all skills is

represented using the matrix LEXP = [lexpjk], where lexpjk ∈ [0, 1] and denotes the level of

experience that developer rj possesses in skill sk. The lower the value of lexpjk, the lower the

level of experience possessed by the developer in the skill, and vice-versa.

To be able to compare the personality type of a developer to that desired by a profession, each

personality domain of the FFM is associatedwith a level (1:low, 2:average or 3:high) corresponding

to the degree to which each domain is either possessed by a developer or desired by a profession.

Specifically, the personality type of developer rj is denoted by a vector r
pers
j consisting of

five elements – one for each personality domain – such that r
pers
j = {rNj , rEj , rOj , rAj , rCj }, where

each element represents the level to which the corresponding domain is possessed: rNj for the

level of neuroticism, rEj for the level of extraversion, rOj for the level of openness to experience,

rAj for the level of agreeableness and rCj for the level of conscientiousness. For example, if the

personality scores of developer rj indicate low neuroticism, high extraversion, average openness

to experience, high agreeableness and low conscientiousness, then the personality type will be

expressed as r
pers
j = {1, 3, 2, 3, 1}.

Similarly, the desired personality required by profession hl is also denoted by a vector h
pers
l =

{hNl , hEl , hOl , hAl , hCl }, where each element in the vector reflects the desired level of the correspond-

ing domain that is required by the profession.

An important part of the research carried out in this approach involved deciding which person-

ality type is desired for specific software development professions. The professions investigated

were previously presented in Table 7.2, which were determined from the Standard Occupational

Classification (SOC) System [111]. A detailed analysis of these nine professions was carried out

using the O*NET Resource Center [112], which provides a content model and an on-line database

defining standardized and occupation-specific descriptors of each profession using the SOC Sys-

tem coding. Each occupation’s job-related and worker-related characteristics and requirementsCon
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were retrieved containing information on: the abilities and work styles of workers, the skills re-

quired by workers, and the work activities of occupations. Once these key requirements and char-

acteristics were identified, the most suitable personality traits required by developers to carry out

activities of each profession were then associated with corresponding personality traits of the FFM.

The level of each domain required by the professions are presented in Table 9.1/

Table 9.1: Desired level of each FFM personality domain for the nine identified software

development-related professions

Desired personality domain level

SOC code Profession N E O A C

11-3021.00 Computer and information systems managers Low High Average Low High

15-1121.00 Computer systems analysts Low High Average High Average

15-1122.00 Information security analysts Low Low High Low High

15-1131.00 Computer programmers Low Low Average Low Average

15-1134.00 Web developers Low Average High Average Low

15-1143.00 Computer network architects Low Low High Low Low

15-1199.01 Software quality assurance engineers and testers Average Average Low Low Low

15-1199.02 Computer systems engineers/architects Low High High Low Average

15-1199.06 Database architects Low Low High Low Low

9.3 Pareto ranking genetic algorithm method

The basic steps of the NSGA-II algorithm is given in Section A.3. In brief, the algorithm

attempts to find a set of (near-)optimal solutions by using a nondominating sorting procedure and

a crowding comparison operator. The former helps to promote individuals whose fitness values

are ranked higher, whereas the latter helps promote individuals that can potentially improve the

diversity of the population despite having a lower rank.

9.3.1 Representation and encoding

This approach only attempts to allocate resources to tasks based on the characteristics of the

required tasks and available developers; therefore the objective functions require individuals to

contain information regarding which developers are assigned to each task. Specifically, each in-

dividual, x, in the population is represented by a bitset array of length m. Each element i of the

array contains a bitset, Bi = {bi1, bi2, . . . , bin}, of length n that represents the developers assigned

to carry out task ti. Each bit in a bitset represents one specific developer such that if bit bij = 1

then this indicates that developer rj is assigned to work on task ti. Else, if bit b
i
j = 0, then this
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denotes that developer rj is not assigned to work on task ti. Overall, each individual requires a

total of m × n bits. Figure 9.1 gives an example of how solutions are represented by individuals

in a population. Individuals are encoded using a bitset array with five elements – one for each

task, and each element contains a bitset consisting of six bits – one for each available developer.

Therefore, a total of 30 bits are required to represent solutions.

T01 T02 T03 T04 T05

001101 101001 100100 000101 111000

Figure 9.1: Example of the representation and encoding of individuals used in Approach 5

9.3.2 Population initialization

The population is generated in a way that ensures all individuals are feasible by having at least

one developer assigned to each task. For each element of an individual’s array, a randomized bitset

is created. If all bits have a value of 0, then another bitset is randomly generated. This process is

repeated until at least one of the bits has a value of 1.

9.3.3 Optimization function

A total of three objective functions were created for the evaluate the fitness of each individual,

along with two constraints to measure the degree of feasibility of each solution. The optimization

function is given in Equation (9.1).

Maximize
∀x∈POP

F(x) = (Fexperience(x),Fpersonality(x),Fsize(x)),

subject to Gskills(x) = 0,

Gassignment(x) = 0.

(9.1)

9.3.3.1 Objective functions

9.3.3.1.1 Developer experience objective function

The first objective function is responsible for ensuring that highly-experienced developers are

assigned to each task. The approach adopts the function described in Equation (4.9) in order to

evaluate the fitness value of each individual x in the population concerning this objective.Con
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Fexperience(x) =
1

m

m∑
i=1

t
experience
i . (4.9 revisited)

9.3.3.1.2 Developer personality objective function

The second objective function is used to allocate the most suitable resources to each task based

on the personality type required by the profession that each task belongs to. To calculate the fitness

value of each individual x in the population, the personality type of each developer is matched

against the desired personality type of the profession. This matching is carried out by calculating

the distance between the level at which each domain is possessed by an assigned developer rj

and the level at which the domain is desired for the profession hl that task ti belongs to. This

personality distance is given by

rdistj = |rNj − hNl |+ |rEj − hEl |+ |rOj − hOl |+ |rAj − hAl |+ |rCj − hCl |. (9.2)

Then, by using Equation (9.3) the average personality distance of all developers assigned to task

ti is computed.

tdisti =
1

t
assigned
i

∑
∀rj∈Ai

rdistj . (9.3)

The objective function of Equation (9.4) proceeds to average the values of the personality distance

over all tasks in the project. The lower the partial values of tdisti , then the more fit the individual

with regards this objective due to the shorter distance between the desired personality type of the

task and the personality type possessed by the assigned developers.

Fpersonality(x) =
1

m

m∑
i=1

1

1 + tdisti

. (9.4)

9.3.3.1.3 Team size objective function

The third objective function is employed to handle the over-allocation of resources to tasks by

attempting to minimize the number of developers assigned to each task of the project. It makes use

of the function defined by Equation (6.3) in order to compute the fitness value of each individual

x in the population with regards to this objective.

Fsize(x) =
1

m

m∑
i=1

tsizei . (6.3 revisited)Con
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9.3.3.2 Constraint functions

The assumptions made in this proposed approach that govern the feasibility of solutions con-

cern: (1) the satisfaction of skills, and (2) the availability of developers. For the former, the re-

quired skill constraint function is employed to evaluate the extent to which skills required by tasks

have been satisfied by the developers assigned. For the latter, the developer availability constraint

function is used to evaluated the degree to which developers have been conflictingly assigned to

more than one task at any given time in the project.

9.3.3.2.1 Skill fulfilment constraint function

In regards to the fulfilment of skills, a solution is considered feasible only if each skill required

by a task can be satisfied by at least one of the developers assigned to the task. For each indi-

vidual x in the population, the evaluation is carried out using the function previously defined in

Equation (5.7), which aggregates the ratio of unsatisfied skills to total number of required skills

calculated for each task ti, to give the corresponding solution’s degree of feasibility with respect

to this constraint.

Gskills(x) =
1

m

m∑
i=1

tsviolationsi . (5.7 revisited)

9.3.3.2.2 Assignment validity constraint function

With respect to the availability of developers, a solution is deemed feasible only if there are

no conflicts in the assignment of each developer assigned to work on the project. For each indi-

vidual x in the population, the evaluation is performed using the function previously defined in

Equation (5.9), which sums the ratio of the number of time units with conflicts to the number of

the total number of time units assigned for each developer rj , to give the corresponding solution’s

degree of feasibility regarding this constraint.

Gassignments(x) =
n∑

j=1

raviolationsj . (5.9 revisited)

9.4 Experiments

To help answer the research questions set concerning how well the algorithm performs in gen-

erating (near-)optimal solutions, two experiments were conducted.Con
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The first experiment was carried out to help answer research question RQ5.1 by evaluating

the performance of the algorithm in generating (near-)optimal solutions in the best-case scenario

where all available developers possessing the highest experience levels also possessed the most

suitable personality type for the corresponding profession.

The second experiment was executed to help answer research question RQ5.2 by evaluating

the performance of the algorithm in generating (near-)optimal solutions in the worst-case scenario

where all available developers possessing the highest experience levels also possessed the least

suitable personality type for the corresponding profession, and vice-versa.

The experiments used two software project instances, P5A and P5B, which were both created

in a similar fashion as those used for experiments in Chapters 5 and 6. The characteristics of the

two project instances are given in Table 9.2.

Table 9.2: Size and complexity of software projects used for experiments in Approach 5

No. Rate of Avg. no. No. Avg. no.

Project No. dependency dependency skills available skills per

instance tasks relationships relationships per task developers developer

P5A 20 21 11% 2 10 3

P5B 30 35 8% 2 12 4

The professions associated with each task of project P5A are listed in Table 9.3. The specific

professions used in the approach are taken from the Standard Occupational Classification (SOC)

System [111], which allows for a formal categorization of the most common job positions found

in the local software development industry.

Additionally, the duration and skill requirements of the tasks of project P5A, as well as the

experience levels of the available developers are given in Tables 9.4 and 9.5, respectively. There

are a 20 tasks in project P5A requiring a total of 18 skills. The development company has ten

resources possessing experience in one or more skills.

Since the aim is to assign developers to tasks that have already been scheduled, both project

instances have a predefined plan for the execution of tasks. The Gantt chart in Figure 9.2 shows

the predefined schedule of tasks for project P5A.
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Table 9.3: Profession associated with each task of project P5A used for experiments in Approach

5

Task Profession Task Profession

T01 Computer and information systems managers T11 Database architects

T02 Computer and information systems managers T12 Database architects

T03 Computer and information systems managers T13 Database architects

T04 Computer and information systems managers T14 Database architects

T05 Computer and information systems managers T15 Database architects

T06 Computer systems analysts T16 Computer programmers

T07 Computer systems analysts T17 Computer programmers

T08 Computer systems analysts T18 Computer programmers

T09 Computer systems analysts T19 Computer programmers

T10 Database architects T20 Computer programmers

Table 9.4: Duration and skills required for the tasks of project P5A used for experiments in Ap-

proach 5

Required skill

Task Duration S01 S02 S03 S04 S05 S06 S07 S08 S09

T01 18 X X
T02 35 X X
T03 29 X
T04 17 X X
T05 26 X X
T06 13 X
T07 12 X X
T08 9 X X
T09 3 X

Required skill

Task Duration S10 S11 S12 S13 S14 S15 S16 S17 S18

T10 5 X X
T11 14 X X
T12 10 X X
T13 12 X
T14 9 X
T15 16 X
T16 7 X
T17 23 X X
T18 10 X X
T19 3 X X
T20 9 X X
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Table 9.5: Experience levels of available developers in the skills required by the project P5A used

for experiments in Approach 5

Required skill

Developer S01 S02 S03 S04 S05 S06 S07 S08 S09

R01 0.7364 0.8761 0.4298

R02 0.3476 0.7066 0.5540 0.6286

R03 0.6412 0.9959 0.7128 0.8696

R04 0.4323 0.7842 0.5784 0.2242

R05
R06
R07
R08
R09
R10

Required skill

Developer S10 S11 S12 S13 S14 S15 S16 S17 S18

R01
R02
R03
R04
R05 0.6451 0.2819

R06 0.9523 0.8780 0.3574 0.7090 0.1574

R07 0.1026 0.0137 0.0105

R08 0.9472 0.5155 0.5393 0.4580

R09 0.0723 0.1530 0.2382

R10 0.8128 0.9531

The personality domain levels of the available developers in the two project instances for both

experiments were specially initialized in a way so as to reflect the scenario being investigated.

Specifically, for projects P5A and P5B in the first experiment, available developers that were as-

signed high levels of experience in the skills required by a task were also given personality domain

levels suitable for the profession to which the task belonged, whereas available developers that

were assigned low levels of experience in the skills required by a task were also given personality

domain levels unsuitable for the profession to which the task belonged.

Conversely, for projects P5A and P5B in the second experiment, available developers that

were assigned high levels of experience in the skills required by a task were also given personality

domain levels unsuitable for the profession to which the task belonged, whereas available devel-

opers that were assigned low levels of experience in the skills required by a task were also given

personality domain levels suitable for the profession to which the task belonged. Table 9.6Con
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Figure 9.2: Gantt chart of project P5A with predefined schedule of tasks used for experiments in

Approach 5

Table 9.6: Personality domain levels of available developers in best-case and worst-case scenarios

for project P5A used for experiments in Approach 5

Best-case scenario Worst-case scenario

Developer N E O A C N E O A C

R01 Low High Average Low High Low High Average Low High

R02 Low High Average Low High High Low Low High Low

R03 Low High Average High Average High Low High Low Low

R04 High Low Average Low Average Low High Average High Average

R05 High High Low High High Low Low High Low Low

R06 Low Low High Low Low High High Low High High

R07 Average Average High Average High Low Low Average Low Average

R08 Low Low Average Low Average High High High High Low

R09 Average Average High Average High Low Low Average Low Average

R10 Low Low Average Low Average High High Low High Low

The NSGA-II was run 10 times for each project instance in both experiments with a population

of 100 individuals. The fast nondominated sorting procedure was applied to rank the individuals

in terms of their fitness and feasibility, after which a tournament selection of size 4 was used to

select which parents were to enter the mating pool. The best two parents were then recombined toCon
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produce offspring using a one-point crossover operator with a likelihood of 0.80, and a single bit-

flip mutation operator with a probability of 1/m. The population evolved by repeating the steps

from the selection of individuals until the termination criteria were met or the maximum number

of iterations were reached (set at 2000 iterations).

9.5 Results and discussion

9.5.1 RQ5.1 How well does the algorithm perform in generating (near-)optimal solutions

in cases where objectives are not at at all competing?

The first experiment involved executing the algorithm on the two project instances to evaluate

the quality of the solutions generated with regards a best-case scenario where the objectives are not

at at all competing. In such a scenario, only one (near-)optimal solution exists since in there will

always be only one possible ideal assignment existing for each task. As expected, the algorithmwas

able to successfully generate this (near-)optimal solution in all ten runs for both project instances.

Specifically, in both cases the algorithm managed to assign tasks to those developers possessing

both high levels of experience and the most suitable desired personality type. Furthermore, the

algorithm avoided assigning developers to a particular task if they were already assigned elsewhere

at the same time. The (near-)optimal solution generated for project P5A is shown in the resource

allocation matrix in Table 9.7.

9.5.2 RQ5.2 How well does the algorithm perform in generating (near-)optimal solutions

in cases where objectives are highly competing?

The second experiment involved executing the algorithm on the two project instances to evalu-

ate the quality of the solutions generated with respect to a worst-case scenario where the objectives

are highly competing. Here, it is anticipated that there will be many (near-)optimal solutions for

each project, since the characteristics of developers (that is, experience levels and personality do-

main levels) were purposely set to be conflicting. Indeed, the algorithm for both project instances

was able to generate a Pareto set of individuals that represent a number of different resource allo-

cation solutions. By combining the final Pareto fronts of the ten runs, the approximation Pareto

front for project P5A consisted of a total of 94 unique solutions, whereas for project P5B the

approximation Pareto front consisted of a total of 95 unique solutions. The approximation Pareto

front generated by the algorithm for project P5A is shown in Figure 9.3.
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Table 9.7: Resource allocation matrix of the (near-)optimal solution generated for project P5A in

best-case scenario in Approach 5

Task

Developer T01 T02 T03 T04 T05 T06 T07 T08 T09 T10

R01 X X X
R02 X X X
R03 X X X X
R06 X
R08
R10

Task

Developer T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

R01
R02
R03
R06 X X X X X
R08 X X X
R10 X X
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Figure 9.3: Approximation Pareto front corresponding to the best solutions generated by NSGA-II

for project P5A in Approach 5

In order to observe the trade-offs more clearly, the team size objective function was removed

from the plot. As can be seen, there are many possible trade-offs between the levels of experience

levels and the personality types of developers. Thus, a software project manager can select any

one of the possible solutions.Con
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9.6 Summary

Although there has been a vast number of studies investigating the personality type of soft-

ware developers, there have been very little attempts in utilizing this knowledge into an applicable

approach for resource-based software project scheduling, and in particular resource allocation. Im-

portantly, this approach acts as a first step in actually incorporating this knowledge in an approach

that can be of practical assistance to software project managers for the purpose of allocating re-

sources to tasks efficiently and effectively through the use of multi-objective optimization and

computational intelligence techniques.

One of the major contributions of this approach is that it can allow project managers to foresee

possible resource issues arising during development. With respect to either or both constraint

functions, if the algorithm is unable to find feasible solutions when applied to a specific project

whose task schedule is predefined, this could indicate that the available resources are not sufficient

or adequate enough to carry out the software project. This is very useful for project managers

since it would allow them to revise their task schedule and attempt to allocate their resources in a

slackened time frame. Alternatively, without modifying the project’s schedule, a project manage

may use the results to recruit extra resources (possessing either higher experience levels or more

suitable personality traits or both). In a similar way, the approach can be used to examine whether

the development company has the required capacity in terms of human resources before bidding

for a software project.
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Chapter 10

Conclusions and Future Research

10.1 Summary

This dissertation has presented the research work carried out in the area of resource allocation

and task scheduling in software development projects. The main goals of the research were to

investigate these activities in order to identify the major challenges and open issues, and to develop

a number of approaches to help solve the problem using single or multiple objective optimization

methods.

Resource allocation and task scheduling activities are considered two of the most important

planning activities that project managers are required to undertake because they must be carried

out properly at the start of a project. Failure to do so can potentially jeopardize the success of a

project by causing schedule delays and budget overruns or a decline in quality. However, due to the

lack of proper practices, in addition to the computationally-intensive nature of these activities, it

is difficult for project managers to accurately and efficiently carry out these tasks. For this reason,

many researchers in the field of software engineering have approached the problem in the context of

operational research, treating it as a special instance of the resource-constrained project scheduling

problem, which can be solved using a variety of optimization methods. A comprehensive review

of a number of research approaches that have previously attempted to solve the problem in this

manner was presented in Chapter 3.

The approaches developed employed multiobjective optimization methods as the means to

help software project managers simultaneously assign tasks to developers and plan the execution

of tasks in a way that, on the one hand, meets their objectives and, on the other hand, satisfies their
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constraints. The approaches presented in Chapters 4–7 were specifically developed to deal with

the problem of resource allocation and task scheduling mainly using technical aspects related to

software development, such as the required skills, cost and duration of tasks, as well as the level of

experience and productivity rates of developers. Each developed approach defined and represented

the problem accordingly so that these aspects were incorporated in the corresponding optimization

method either as objectives or constraints responsible for generating optimal and feasible resource

allocation and task scheduling solutions. The series of experiments conducted to validate each ap-

proach along with the subsequent results were also provided so as to demonstrate the effectiveness

of each approach. Experiments used a number of generated software project instances that were

specially constructed with the help of local software project managers in the aim of testing the de-

veloped approaches using projects whose task characteristics and resource attributes depicted more

accurate representations of real-world software projects. Apart from generated software project in-

stances, experiments carried out in Approach 4 also used data from a real-world software project

provided by a local software development company.

The main goal of the first three approaches was to allocate resources and schedule tasks so as

to minimize the duration of software projects and to maximize the experience of the developers

assigned. From the initial results obtained in these three approaches, it was clear that the optimiza-

tion methods were able to successfully generate feasible and optimal resource allocation and task

scheduling solutions for smaller-sized projects. However, for larger-sized projects the findings

indicated that generated solutions severely lacked sufficient quality, both in terms of optimality

and feasibility. In order to overcome these limitations, each new approach developed gradually

improved the previous ones by including new or modifying existing objective and constraint func-

tions.

Approach 4 (Chapter 7), in particular, introduced the most important improvements, such as a

new representation of individuals to improve the quality of solutions, the addition of an objective

to manage project cost and the inclusion of productivity-based attributes of developers to allow

for more useful and accurate duration and cost estimates. Several experiments were carried out to

evaluate the performance of four well-known multiobjective genetic algorithms (MOCell, NSGA-

II, PAES, and SPEA2) using 16 generated software project instances. From the analysis of the

results obtained, it was clear thatMOCell, NSGA-II and SPEA2were themost dominant of the four

algorithms, managing to outperform PAES in the majority of project instances. This suggested thatCon
sta

nti
no

s S
tyl

ian
ou



169

for this approach, these algorithms are better for providing resource allocation and task scheduling

solutions that were closer to the optimal, as well as more diverse. Additionally, 36 project instances

were used to compare the scalability of the algorithms. Here, the results indicated that PAES was

able to scale better than the rest, despite producing solutions with lower quality. Overall, there were

positive indications that this approach could help project managers make better resource allocation

and task scheduling decisions, since the approach was based on more realistic assumptions and

used more representative information.

Furthermore, the results from the experiment on the real-world software project provided evi-

dence that the approach could also provide a basis for a promising decision-support tool with which

software project managers could be able to efficiently select a suitable allocation of resources and

task schedule that satisfies his/her criteria the most from a range of alternatives through the use of

multiobjective optimization.

Since human resources are considered the most crucial type of resource in software develop-

ment, it is important for project planning decisions to also take into account human aspects of

software development. The personality types and preferences of software developers is one such

aspect, and was examined as part of the research with respect to resource allocation and team for-

mation. Chapter 8 presented various studies that illustrated the importance of personality type in

software development. Some of these studies focused simply on assessing the personality type of

developers in various software professions in order to form a personality profile of each developer.

Other studies used personality type in resource allocation approaches by assigning developers to

tasks that they are best suited for. Finally, a number of studies assessed personality types in attempt

to discover correlations between team performance and the personality type of team members so

as to improve the effectiveness of team formation.

Following the investigation of personality type, Chapter 9 presented an approach that em-

ployed a Pareto ranking genetic algorithm for allocating resources to tasks using both technical

and human aspects. Specifically, this approach used an optimization function that aimed to: (1)

maximize the experience of assigned developers, (2) maximize the suitability of assigned develop-

ers, and (3) minimize the number of assigned developers in each task. The suitability of a developer

is determined by measuring the distance between a developer’s personality type and the desired

personality of the profession to which the task belongs. The desired personality type of each soft-

ware profession was identified by corresponding different personality traits related to the domainsCon
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of the FFM [125, 126] to the job-related and worker-related characteristics and requirements pro-

vided by O*Net [112]. In this way, the smaller the distance between the actual personality (of the

developer) and the target personality (of the task), then the more suitable the developer is to un-

dertake the tasks. Again, experiments were carried out to assess the performance of the algorithm

using a number of software project instances. The results obtained from the experiments indicated

that the algorithm was capable of generating optimal and feasible solutions in the majority of runs

executed. In the cases where the attributes of the developers did not cause the objectives to be

competing (that is, in cases where the most experience developer for a task was also the most suit-

able in terms of personality), the algorithm correctly managed to generate the one optimal solution

performing the best assignment possible. In the cases where the attributes of the developers did

cause the objectives to be competing (that is, in cases where the most experience developer for a

task was also the least suitable in terms of personality), the algorithm attempted to balance the two

objectives accordingly so as to generate a set of optimal solutions consisting of different trade-offs

between experience and personality.

Furthermore, the approaches could also provide a basis for a promising decision-support tool

with which software project managers are able to efficiently select a suitable allocation of resources

and task schedule that satisfies his or her criteria the most from a range of alternatives through the

use of multiobjective optimization. Multi-objective optimization allows for different trade-offs

between duration and cost to be examined by software project managers, which would otherwise

not be possible due to the many permutations that require effort and time to produce manually. It

is important, however, to examine the approaches using more real-world projects from the local

software industry. To this end, several development companies have been contacted to provide

project and resource data for further experimentation.

10.2 Contributions and benefits

10.2.1 Task characteristics and Resource attributes

A key feature that distinguishes this research from other previous attempts is the fact that the

objectives and constraints specified in each developed approach take into account various software

development-related factors that are more realistic in reflecting the criteria actually considered by

project managers in the software development industry. Specifically, these software development-

related factors concern the characteristics of the tasks (including required effort and skills, and
Con
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interdependence type) and attributes of the resources (such as experience, productivity, salary and

personality). Consequently, the proposed approaches offer the benefit of being able to provide

project managers with resource allocation and tasks scheduling solutions that are more accurate as

they are assessed using more realistic criteria. Hence, the contributions of the proposed approaches

are a direct result of the inclusion of these task characteristics and resource attributes.

10.2.1.1 Developer experience (Approaches 1–3 and 5)

The inclusion of this resource attribute is so that resource allocation and task scheduling ac-

tivities take in to account the fact that developers possessing a certain skill are not necessarily

equally capable of carrying out a task requiring that skill. In reality, developers should be con-

sidered noninterchangeable since each developer is likely to have a different level of experience

in each skill. Thus, the assignment of a less experienced developer to a task will have a different

effect than the assignment of a more experienced one. Thus, by taking into account developers’

experience, the solutions generated by these proposed approaches will better reflect the effect that

the noninterchangeable nature of developers has on the allocation of resources.

10.2.1.2 Productivity rate of developers (Approach 4)

This resource attribute is incorporated in order for resource allocation and task scheduling

activities to adequately reflect the fact that the duration of a task is a direct result of the relationship

between the effort required to complete a task and the productivity rate of the developer assigned

to carry it out; a more productive developer will be able to complete a task within a shorter duration

than a less productive developer. Therefore, by considering the productivity rate of developers, task

durations are calculated more realistically and so the proposed approach provides project managers

with solutions where the execution of tasks are planned more accurately.

10.2.1.3 Task interdependence type (Approach 4)

The addition of this task characteristic is for resource allocation and task scheduling activities

to be able to deal properly with the common problem of how developers combine their efforts when

assigned to work together in different types of software tasks, since this, in turn, affects the way

that task durations are computed. In particular, software tasks are not all carried out in the same

way because the work that needs to done depends on the desired output of each task. This meansCon
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that developers cannot always combine their efforts (that is, their productivity) in the same manner

for all tasks. Consequently, by using the interdependence type of tasks, the proposed approach

offers the ability to determine how developers will combine their productivity rates when working

on different tasks in order to calculate more realistic task durations (when more than one developer

is assigned to a task). As a result, solutions formed by the proposed approach will contain more

precise task schedules since they will be based on more accurate task durations.

10.2.1.4 Communication overhead (Approach 4)

The inclusion of this task characteristic is so that resource allocation and task scheduling ac-

tivities factor in the additional time that results from the need for developers to communicate,

collaborate and cooperate with each other during the execution of a task. Communication, while

conducive in order for a task to be carried out, is not considered as part of the effort required

to perform it. In this regard, the duration of a task needs to be adapted accordingly in order to

accommodate the communication overhead incurred during its execution. Despite being a charac-

teristic of tasks, it is actually calculated based on the number of resources assigned. By adjusting

the durations of tasks through the addition of communication overhead in the proposed approach,

generated solutions will again comprise more accurate schedules.

10.2.1.5 Personality types of software developers (Approach 5)

Apart from including technical factors in resource allocation and task scheduling activities, it

is equally important to consider nontechnical factors. Human factors, especially, are significant

since the resources available for software development companies consist to a large degree, if

not wholly, of human resources. One of these factors involves personality and, in particular, the

personality type of software professionals. This developer attribute is taken into account in order

for resource allocation and task scheduling activities to help project managers mitigate issues such

as underperformance and low productivity, which result from the assignment of developers to tasks

that they are less suited to carry out in terms of personality type. The approach developed assesses

the suitability of developers by matching their personality type to that desired by the software

professions. Thus, incorporating how suited a developers is to a task based on personality can

provide project managers with solutions containing better allocation of resources.Con
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10.2.2 Pareto ranking optimization

The benefit of employing multiobjective optimization methods that use Pareto ranking is their

ability to generate a set of solutions, rather than just a single one. In this way, approaches such as the

ones described in Chapters 6, 7 and 9 are able to provide software project managers with a selection

of alternative resource allocation and task scheduling solutions to choose from. If the criteria of

a project manager favours one of the objectives (for instance, to allocate resources and schedule

tasks so that project duration is minimized), then the solution chosen will be from ones whose

project duration objective function value corresponds to shorter make spans. Alternatively, if a

project manager’s goal is to allocate resources and schedule tasks so that the developers assigned

possess the greatest level of experience, then the selection would be made from solutions with

higher values in the developer experience objective function. A more common option, however,

would be to choose a solution that balances the criteria.

10.3 Limitations

The developed approaches made use of optimization methods, found in the field of compu-

tational intelligence, aiming to satisfy a number of criteria and conditions. Because of certain

properties of the algorithms employed, the approaches can be subject to several limitations, partic-

ularly from threats to the validity of the appropriateness of the assumptions made, the experimental

process carried out to obtain results and the generalized inferences made from these results.

10.3.1 Construct validity

Threats to construct validity concern the assumptions and simplifications made in the devel-

oped approaches regarding the software development process. The main assumption in all of the

approaches was that developers are only allowed to be assigned to one task at any given time in

a project. They did not take into account the possibility of having developers simultaneously as-

signed to multiple tasks with certain degrees of dedication. However, taking this into account was

not in the scope of the current research work. Regardless, to accommodate this, minimal changes

will be require to the way that the feasibility of individuals is calculated (in all approaches) and to

the way that tasks are scheduled (in Approach 4). Also, an assumption is made in Approach 4 re-

garding the maximum rate of productivity of developers (set at value of 2.0), which in practice mayCon
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never be reached or exceeded. Nevertheless, any potential effect of this threat is limited, since the

productivity rate values used in the approach scale in relative terms rather than in absolute terms.

10.3.2 Internal validity

Optimization methods such as genetic algorithms and particle swarm optimization algorithms

are stochastic in nature. They use various degrees of randomness during the initialization and evo-

lution of populations/swarms so that they can generate solutions. In order to limit this internal

validity threat in the approaches, each optimization method employed was run a number of times

for each project instance investigated. Furthermore, given the random nature of the optimization

methods, the results of the experiments may be influenced by the parameters chosen for each op-

timization method. So, in order to mitigate this in each approach, preliminary runs were carried

out using different settings to help identify the best parameters with which to execute the experi-

ments. Moreover, the experiments carried out in Approach 4 employed statistical tests to examine

if significant differences existed between the results generated by each algorithm examined in the

approach.

10.3.3 External validity

The main threat to external validity is the fact that experiments conducted in the approaches

were carried out using randomly-generated project instances, which therefore limits the ability to

make generalizations from the findings. To mitigate this threat, the project instances were cre-

ated through discussions with several local software project managers to help extract various task

and developer features, including number of tasks, complexity of task dependencies, number of

available developers and salary ranges. These features were then used to randomly generate the

project instances as realistic as possible. In Approach 4, an experiment using a real-world case

study was also conducted, which showed that the solutions generated were of better quality and

more realistic than compared to the resource allocation and task schedule constructed manually by

the software project manager, let alone the fact that these solutions were generated much quicker.

However, further experiments using real-world software projects are necessary in order to support

the results already obtained, and are planned as part of future research. In addition, the ability

of the optimization methods to achieve a satisfactory level of quality of solutions in a reasonable

amount of time is dependent on the number of iterations that they are left to run for. This means thatCon
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for larger software projects, there may be an issue of scaling, where the optimization method will

require longer computational time to find better solutions. This threat, however, was addressed

by preliminarily running the algorithms with different iteration settings, before finally selecting an

appropriate number in each developed approach. From the findings, it was concluded that signifi-

cant improvements to the results were not expected by increasing the number of iterations further

than the ones reported. Computation overhead may be addressed even more efficiently in cases

of large projects using modules in high performance computing environments, thus executing in

much less time compared to the original experiments.

10.4 Recommendations for further research

There are a number of potential topics that can be explored as part of future research work.

These topics focus on ways to improve the current approaches and, also, on ways to utilize person-

ality for resource allocation and task scheduling, as well as team formation in other approaches.

Regarding the improvement of approaches, one possible area for further study concerns the

better understanding of developer productivity in order to help provide more accurate estimations

of the duration and cost of tasks. Since the topic of productivity is very broad, a thorough inves-

tigation will be required to ensure that its usage in the optimization methods contributes to the

generation of realistic solutions. Also, there is a need to explore the rates of completion of soft-

ware development tasks at different levels of productivity, and to examine whether a saturation

point exists at which a task cannot be completed quicker irrespective of the rate of productivity.

One of the objectives in the approaches described in Chapters 4-6 and Chapter 9 is to maximize

the level of experience of the assigned developers. However, some tasks may require skills at a

specific level of experience that is not necessarily the maximum level of experience. Some trivial

tasks, for example, may not require skills at a high level of experience and, consequently, can be

assigned to developers with lower levels of experience in the corresponding required skills. An

enhancement in these approaches could involve the addition of lower and upper bounds to the level

of experience in a required skill so as to avoid wasting resources, that is, the assignment of tasks

to overqualified developers, which may be costly for development companies. Furthermore, by

only assigning highly-experienced developers to tasks may cause the exclusion of less-experienced

developers from being selected to work on the software project. Introducing lower and upperCon
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bounds should help avoid this as more developers will have the opportunity to be assigned to

tasks.

The approaches currently assume that resources are only permitted to work on one task at any

given time. However, this is not always the case in reality since in most development companies

developersmay be required to split their time betweenmultiple tasks possibly belonging tomultiple

projects. Future work could, therefore, focus on incorporating degrees of resource dedication and

availability, as well as resource levelling constraints for multiproject resource allocation and task

scheduling. In addition, it would also be interesting to research the allocation of resources and

scheduling of tasks for distributed software development projects, where available resources are

located around the world and use the principle of follow-the-sun development to build software.

An attempt has already been started based on the approach described in Chapter 7, with the aim

of extending the approach so as to allocate resources and schedule tasks of multiple projects with

developers from multiple geographical locations.

The approaches aim to help software project managers to assign developers to tasks and plan

the execution of tasks at the start of a project. However, it is equally important to provide software

project managers a way to handle the reassignment of developers and rescheduling of tasks once

the project has commenced. In real-world software projects, many events take place during the

course of a project, both within and beyond the control of the development company, including the

introduction of new tasks brought on by new requirements and designs, as well as the departure

of developers from the project or from the development company because of illness, transfers or

resignations. A future improvement should provide a reassignment and reschedulingmechanism to

the approaches described so as to allow software project managers allocate resources and schedule

tasks dynamically as the project is proceeding.

Further research will also be required to determine the interdependence type of software devel-

opment tasks so as to be able to estimate precisely how developers will combine their efforts for

each task, and subsequently, to be able to calculate the duration of each task, accordingly. Further-

more, research will also be necessary to handle the release of developers working on divisible tasks.

Specifically, in divisible tasks (additive or conjunctive), the work is broken down into subtasks,

and then the subtasks are divided among the team members. Ideally, once a developer completes

his/her subtask, they should be made available for assignment again since their contribution to the

task is over, rather than have him/her committed for the full duration of the task.Con
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As regards the optimization methods, further experiments should be carried out using other

genetic algorithm variations, as well as other alternative optimization techniques, both population-

based and otherwise, in order to determine whether such methods are able to provide more diverse

and/or better resource allocation and task scheduling solutions. In addition, another area that should

be looked into concerns the representation of solutions. The approaches currently use a representa-

tion whose solution space contains both feasible and infeasible solutions. Further research should

examine more effective representations that lead to a search space that creates only feasible so-

lutions to reduce the number of infeasible solutions generated. Finally, the optimization methods

should be incorporated into a decision-support tool for software project managers to use, provid-

ing them with the ability to select the desired objectives and constraints for resource allocation and

task scheduling, as well as the optimization method and related execution parameters.

With respect to personality, additional research is required to further analyze the desired per-

sonality type of software professions so that a more complete profile of what is required of a

profession in terms of personality can be established. The approach currently adopts the FFM per-

sonality model for assessing the suitability of developers; though, other instruments could also be

investigated, such as the MBTI [122] or the KTS [124].

Moreover, personality type can be used to further enhance Approach 4 by incorporating the

developer personality objective function used in Approach 5, in the optimization function of Ap-

proach 4. This will allow the optimization method employed to allocate resources and schedule

tasks in a way that also maximizes the suitability of assigned developers (in addition to minimizing

the cost and duration of the project).

One other possible research topic could involve developing an approach that uses personal-

ity types and preferences of software developers in order to help software project managers form

highly effective development teams in terms of performance. As discussed in Chapter 8, there

have been many studies carried out examining the possible correlation between personality type

and performance. Thus, it would be highly beneficial for a software project manager to be able to

predict whether a specific team chosen for a project will be successful based not only on the team

member’s technical skills and knowledge, but also on their personality type. Research in this topic

has already begun with the extension of a fuzzy cognitive map model [154] proposed by Andreou

and Neophytou [155] depicting the various concepts affecting team effectiveness (including per-

sonality types), and the interactions between these concepts. The goal of the research will be toCon
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initialize the concepts of the model with the characteristics of the team members, and then to simu-

late the behaviour of these concepts in order to predict whether these team member characteristics

will interact in a way that leads to project success. Additionally, since 2012, the NEO-FFI-3 [125]

questionnaire has been administered to students enrolled in a project-oriented Software Engineer-

ing university course for the purpose of investigating possible correlations between personality

and software-related aspects, such as performance, job satisfaction, team cohesion and software

quality. Due to the small number of teams participating each year, there has not been enough data

acquired for any general and reasonable inferences to be made as yet. Results of this research will

require several more years to report once enough data has been collected from teams.

An important part of this research topic should also involve investigating how individual per-

sonality type is combined into a team personality type, similarly to the way that productivity is

handled with task interdependence type in Approach 4. It may not be possible to simply average

the personality types of team members in order to determine the overall team personality type.

Therefore, a thorough study will be required to determine how to aggregate individual personality

traits.

10.5 Concluding remarks

The problem of resource allocation and task scheduling, particularly in software development

projects, is difficult to solve due to its multidisciplinary nature. It encompasses the fields of soft-

ware engineering, management and industrial organization, and even personality psychology. Due

to the inherent attributes of software, incorrect decisions in these activities may not be detected on

time, which could prove catastrophic for a software development company, especially in projects

for the development of large, complex multiproduct software systems. Furthermore, software de-

velopers are knowledge workers, and it is with this knowledge that software is built. As a result,

it is very hard to quantify the effect that this knowledge has in various aspects of software devel-

opment, such as duration and quality. The approaches developed and presented in this dissertation

have made a first attempt to quantify this effect by representing knowledge, first, in the form of

experience and, second, in the form of productivity.

Traditional approaches to solving resource allocation and task scheduling make use of various

modelling techniques and intelligence-based methods based on technical project criteria, such as

project cost and duration, required skills, or number of defects. However, research in the fieldCon
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has started to move towards a more human-centric solution, with an increase in the number of ap-

proaches including nontechnical aspects of software development, such as personality types and

preferences. One of the biggest challenges, therefore, for the research community is to try to find a

way to ‘marry’ these two methods of solving the problem. The ideal direction for research would

be to concentrate on providing a hybrid of the two styles in a unified software project resource

allocation and task scheduling framework that, on the one hand, takes advantage of the benefits

of underlying techniques (mathematical modelling/computational intelligence) and, on the other

hand, targets both technical/industrial objectives and nontechnical/human-centric criteria. One of

the obstacles to achieving this is quantifying andmeasuring human-centric criteria. The approaches

developed as part of the research work reported in this dissertation have already attempted to con-

tribute to solving this problem.

Concluding, this particular area of research is very promising as it contributes to dealing with

the important issue of helping software projects succeed by focusing on the most crucial, and

arguably only, resource involved in software development.
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Appendix A

Optimization Algorithms

This appendix chapter presents the various optimization algorithms that were adopted in the

approaches described in Chapters 4–7 and 9. Specifically, the algorithms are presented as they

were proposed by their corresponding authors.

A.1 Genetic algorithm

The basic optimization procedure of the genetic algorithm (GA) proposed by Holland [84] is

shown in Algorithm A.1.

Algorithm A.1 Genetic algorithm

1: Set xmin, xmax, t = 0, pc, pm
2: for each individual i ∈ POP (t) do
3: xi = rand(xmin, xmax)

4: while maximum iterations reached or stopping criteria satisfied do

5: for each individual i ∈ POP (t) do
6: Evaluate the position, xi, of the individual using objective function F (xi)

7: POP ′(t) = select(POP (t))
8: POP ′(t) = crossover(POP ′(t), pc)
9: POP ′(t) = mutate(POP ′(t), pm)
10: Set POP (t+ 1) = POP ′(t)
11: Set t = t+ 1
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A.2 Particle swarm optimization algorithm

The steps of the particle swarm optimization algorithm (PSO) given in Eberhart and Kennedy

[156] are shown in Algorithm A.2.

Algorithm A.2 Particle swarm optimization

1: Set xmin, xmax, vmax, t = 0
2: for each particle pi ∈ SWARM(t) do
3: xi = rand(xmin, xmax)
4: vi = rand(−vmax/3, vmax/3)

5: while maximum iterations reached or stopping criteria satisfied do

6: for each particle pi ∈ SWARM(t) do
7: Evaluate the position, xi, of the particle using objective function F (xi)
8: if F (xi) < F (pbesti) then
9: pbesti = xi

10: if F (xi) < F (gbest) then
11: gbest = pbesti
12: for each particle pi ∈ SWARM do

13: vi = vi + (U(0, c1)× (pbesti − xi)) + (U(0, c2)× (gbest− xi))
14: xi = xi + vi
15: Set t = t+ 1

A.3 Nondominated sorting genetic algorithm

The procedure of the nondominated sorting genetic algorithm (NSGA-II), proposed by Deb et

al. [89], is given in Algorithm A.3.

Algorithm A.3 Nondominated sorting genetic algorithm (NSGA-II)

1: Rt = Pt ∪Qt

2: F = fast-non-dominated-sort(Rt)
3: where F = (F1, F2, . . . )
4: Pt+1 = ∅ and i = 1
5: until |Pt+1|+ |Fi| ≤ N
6: crowding-distance-assignment(Fi)
7: Pt+1 = Pt+1 ∪ Fi

8: i = i+ 1
9: Sort(Fi,≺n)
10: Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
11: Qt+1 = make-new-pop(Pt+1)
12: t = t+ 1
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A.4 Archived multiobjective simulated annealing algorithm

Algorithm A.4 presents the steps of the archived multiobjective simulated annealing algorithm

(AMOSA) introduced by Bandyopadhyay et al. [90].

Algorithm A.4 Archived multiobjective simulated annealing (AMOSA)

1: Set Tmax, Tmin,HL, SL, γ, iter, α, temp = Tmax
2: Initialize the Archive with γ × SL solutions

3: current-pt = random(Archive)
4: while temp > Tmin do

5: for i = 0 to iter do
6: new-pt = perturb(current-pt)
7: Check the domination status of new-pt and current-pt
8: if current-pt dominates new-pt then
9: Set new-pt as current-pt with probability prob = 1

1+exp(∆domavg×temp)

10: where∆domavg =
(
∑k

i=1 ∆domi,new-pt)+∆domcurrent-pt,new-pt

k+1 and k equals the total number

11: of points in the Archive that dominate new-pt, k ≥ 0
12: else if current-pt and new-pt are nondominating with respect to each other then

13: Check the domination status of new-pt and points in the Archive
14: if new-pt is dominated by k (k ≥ 1) points in the Archive then
15: Set new-pt as current-pt with probability prob = 1

1+exp(∆domavg×temp)

16: where∆domavg =
∑k

i=1 ∆domi,new-pt

k
17: else if new-pt is nondominating with respect to all the points in the Archive then
18: Set new-pt as current-pt and add new-pt to the Archive
19: if Archive-size > SL then Cluster Archive to HL number of clusters

20: else if new-pt dominates k (k ≥ 1) points in the Archive then
21: Set new-pt as current-pt and add it to the Archive
22: Remove all the k dominated points from the Archive

23: else if new-pt dominates current-pt then
24: Check the domination status of new-pt and points in the Archive
25: if new-pt is dominated by k(k ≥ 1) points in the Archive then
26: Set point of the Archive that corresponds to∆dommin as current-pt with probability
27: prob = 1

1+exp(−∆dommin)
otherwise set new-pt as current-pt

28: where∆dommin = minimum of the difference of domination amounts between the

29: new-pt and the k points

30: else if new-pt is nondominating with respect to the points in the Archive then
31: Set new-pt as the current-pt and add it to the Archive
32: if current-pt is in the Archive then Remove current-pt from the Archive
33: else if Archive-size > SL then Cluster Archive to HL number of clusters

34: else if new-pt dominates k other points in the Archive then
35: Set new-pt as current-pt and add it to the Archive
36: Remove all the k dominated points from the Archive

37: temp = α× temp

38: if Archive-size > SL then Cluster Archive to HL number of clusters
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A.5 Multiobjective cellular genetic algorithm

The procedure of the multiobjective cellular (MOCell) genetic algorithm put forward by Nebro

et al. [110] is shown in Algorithm A.5.

Algorithm A.5Multiobjective cellular genetic algorithm (MOCELL)

1: proc Steps_Up(mocell)

2: Pareto_front = Create_Front();

3: while not TerminationCondition() do

4: for individual←1 to mocell.popSize do do

5: n_list←Get_Neighbourhood(mocell,position(individual));

6: parents←Selection(n_list);

7: offspring←Recombination(mocell.Pc,parents);

8: offspring←Mutation(mocell.Pm,offspring);

9: Evaluate_Fitness(offspring);

10: Replacement(position(individual),offspring,mocell,aux_pop);

11: Insert_Pareto_Front(offspring);

12: mocell.pop←aux_pop;

13: mocell.pop←Feedback(mocell,Pareto_front);

14: end_proc Steps_Up;

A.6 Pareto archived evolution strategy algorithm

The steps of the Pareto archived evolution strategy (PAES) algorithm are shown in Algo-

rithm A.6. The algorithm was originally proposed by Knowles and Corne [109].

Algorithm A.6 Pareto archived evolution strategy algorithm (PAES)

1: generate initial random solution c and add it to the archive
2: mutate c to producem and evaluatem
3: if (c dominatesm) then discardm
4: else if (m dominates c) then
5: replace c withm, and addm to the archive

6: else if (m is dominated by any member of the archive) then discardm
7: else apply test(c,m, archive) to determine which becomes the new current solution and whether to add

m to the archive

8: until a termination criterion has been reached, return to line 2
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A.7 Strength Pareto evolutionary algorithm

Algorithm A.7 provides the procedure of the strength Pareto evolutionary algorithm (SPEA)

designed by Zitzler et al. [108].

Algorithm A.7 Archived multiobjective simulated annealing (AMOSA)

1: Input: N (population size), N (archive size), T (maximum number of generations)

2: Output: A (nondominated set)

3: Step 1: Initialization: Generate an initial population P 0 and create the empty archive (external set)

P 0 = ∅. Set t = 0.
4: Step 2: Fitness assignment: Calculate fitness values of individuals in P t and P t.

5: Step 3: Environmental selection: Copy all nondominated individuals in P t and P t to P t+1. If size of

P t+1 exceeds N then reduce P t+1 by means of the truncation operator, otherwise if size of P t+1 is

less than N then fill P t+1 with dominated individuals in P t and P t.

6: Step 4: Termination: If t ≥ T or another stopping criterion is satisfied then setA to the set of decision

vectors represented by the nondominated individuals in P t+1. Stop.

7: Step 5: Mating selection: Perform binary tournament selection with replacement on P t+1 in order to

fill the mating pool.

8: Step 6: Variation: Apply recombination and mutation operators to the mating pool and set P t+1 to the

resulting population. Increment generation counter (t = t+ 1) and go to Step 2.
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Appendix B

Additional Figures

This appendix provides the approximated Pareto fronts for MOCell, NSGA-II, PAES and

SPEA2, as well as the reference Pareto front that were generated for the 16 project instances in

dataset DS1 for the first experiment of Approach 4.

(a) Project P4A1 (b) Project P4A2

(c) Project P4A3 (d) Project P4A4
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(e) Project P4A5 (f) Project P4A6

(g) Project P4A7 (h) Project P4A8
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(i) Project P4A9 (j) Project P4A10

(k) Project P4A11 (l) Project P4A12
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(m) Project P4A13 (n) Project P4A14

(o) Project P4A15 (p) Project P4A16

Figure B.1: Pareto fronts corresponding to the best solutions generated by the four variations for

the 16 project instances in DS1 in Approach 4
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Appendix C

Description of Notations

Table C.1 presents the notations used throughout the dissertation regarding the description of

the resource-constrained project scheduling problem for software development.

Table C.1: Description of notations

Notation Description

m Number of tasks required for the software project

T = {t1, t2, . . . , tm} Set ofm tasks required for the software project

D Set of dependency relationships where (ti, tj) ∈
D if task tj depends on task ti

p Number of skills required by the software project

S = {s1, s2, . . . , sp} Set of p skills required by the software project

TREQ = [treqik] m × p logical matrix where treqik = 1 if task ti
requires skill sk or treqik = 0 if task ti does not
require skill sk

n Number of developers available in the software

development company

R = {r1, r2, . . . , rn} Set of n developers available in the software de-

velopment company

LEXP = [lexpjk] n × p real matrix where lexpjk denotes the level

of experience that developer rj possesses in skill

sk in the range [0, 1]

q Number of software development professions re-

quired by the software project

H = {h1, h2, . . . , hq} Set of q software development professions re-

quired by the software project

PROD = [prodjl] n × q real matrix where prodjl denotes the pro-
ductivity rate of developer rj in profession hl in

the range [0, 2]

tassignedi Number of developers assigned to task ti
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Table C.1: Description of notations (continued from previous page)

Notation Description

Bi = {bi1, bi2, . . . , bin} Bitset representing the assignment of developers

for task ti

Ai = {rj | ∀rj ∈ R ∧ bij = 1} Set of tassignedi developers assigned to task ti

tschedi Scheduled start time of task ti

tstarti Actual start time of task ti

tfinishi Actual finish time of task ti

tdurationi Duration of task ti

tskillsi Number of skills required by task ti

tprofi Profession to which task ti belongs

tefforti Effort required for task ti

tpathsi Number of communication paths between devel-

opers in task ti

toverheadi Communication overhead incurred in task ti

Y = {additive, disjunctive, conjuctive} Set of possible task interdependence types

ttypei Interdependence type of task ti taken from the set

Y

tprodi Overall team productivity rate of developers as-

signed to task ti

rsalaryj Salary of developer rj

rpersj = {rNj , rEj , rOj , rAj , rCj } Personality type of developer rj based on the Five-
Factor Model

rNj Level of neuroticism of developer rj

rEj Level of extraversion of developer rj

rOj Level of openness to experience of developer rj

rAj Level of agreeableness of developer rj

rCj Level of conscientiousness of developer rj

hpersl = {hNl , hE
l , h

O
l , h

A
l , h

C
l } Desired personality of profession hl based on the

Five-Factor Model

hNl Level of neuroticism desired for profession hl

hEl Level of extraversion desired for profession hl

hOl Level of openness to experience desired for pro-

fession hl

hAl Level of agreeableness desired for profession hl

hCl Level of conscientiousness desired for profession
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