
DEPARTMENT OF COMPUTER SCIENCE 

EXPLORING SOFTWARE COST MODELLING 

AND ESTIMATION WITH COMPUTATIONAL 

INTELLIGENCE 

Ph.D. Dissertation 

EFI PAPATHEOCHAROUS 

2011 

Efi P
ap

ath
eo

ch
aro

us



EXPLORING SOFTWARE COST MODELLING AND 

ESTIMATION WITH COMPUTATIONAL INTELLIGENCE 

Efi Papatheocharous 

University of Cyprus, 2011 

Software cost estimation (SCE) is the art of balancing time and resources to optimally 

budget a project. An essential requirement is to estimate the schedule, cost and human effort 

required to complete the project with adequate accuracy and before the project commences, or 

during its life-cycle, at an acceptable point in time when such an estimation may be 

considered useful to project managers (i.e., at the ‗early‘ project phases). SCE models consist 

of mathematical algorithms or parametric relations used to approximate the most dominant 

cost, the human effort, in terms of person-months for developing a software. It is considered 

one of the basic project management processes to support efficiently the activity of resource 

allocation. 

 Although numerous SCE models and techniques have been proposed by researchers, 

many problems still exist. Recent research reports 60-80% of projects overrun software cost 

estimates by 30-40% (Moløkken and Jørgensen, 2003). The aforementioned problem stems 

from the complex, intangible and unique nature of software and the inconsistent selection of 

the factors that affect productivity by cost estimators. Moreover, many cost factors are 

qualitative rather than quantitative (Boehm et al., 2000b) and hence subjective in nature. 

Finally, there is also lack of explicit terminology, data gathering principals, measurement 

rules and formal definitions of these factors. As a result, SCE is affected by a semantic vicious 

cycle: What constitutes a ‗successful‘ project is hardly clearly defined; whereas, ‗non-

Efi P
ap

ath
eo

ch
aro

us



Efi Papatheocharous – University of Cyprus, 2011 

successful‘ projects are those that are either cancelled, delivered with less functionality and/or 

with lower than the agreed quality, or exceeded resources, budget and/or schedule estimates. 

The real reason for the underestimations occurring is hard to contemplate. Over and under 

estimations may be attributed to the project going ‗wrong‘ or to the budget estimates that were 

inaccurate in the first place. This dissertation aims at minimising such imprecisions in SCE.  

Novel models and techniques are employed, based on the factors of People – Process – 

Product, for improving SCE accuracy and comprehending the risks occurring. Moreover, the 

essential quantitative and quanlitative factors that affect productivity are identified and 

explored. Thus, this thesis adopts two approaches: A quantitative and a qualitative. The 

quantitative approach, aims at improving SCE accuracy, reliability and generalisability, by 

exploring Computational Intelligent (CI) models and techniques, such as Artificial Neural 

Networks (ANN), Evolutionary Algorithms (EA), Fuzzy Logic (FL), and hybrid forms of the 

aforementioned techniques. Moreover, the main target is to develop SCE models of a practical 

value, i.e., dealing with the inherent uncertainty of the software engineering data and 

producing relatively ‗early‘ (i.e., post specifications) estimations. The qualitative approach 

extends the numerical and empirical CI investigations, by employing Fuzzy Cognitive Maps 

(FCM) and Influence Diagrams (ID), which facilitate exploring the relationships between 

qualitative cost factors and effort. It also visually reveals the contribution of attributes in SCE 

and enhances the understanding of their cause-and-effect dependencies.  

The results and observations of this diatribe reveal that considerable benefits may be 

gained by CI-based methods employed in cost prediction improvement and in understanding 

which factors are considered ‗significant‘ in the process of SCE. The various Feature Subset 

Selection (FSS) methods applied assisted in identifying and excluding the less ‗influential‘ 

cost factors from the models, which, in turn, lowers the model‘s complexity and the overall 

time and effort required to measure and quantify each and evey one of them. The SCE models 

proposed in this thesis are proven viable, practical alternatives through extensive 

experimentation with widely known and used benchmark data of the relevant literature.  

 

Efi P
ap

ath
eo

ch
aro

us



 

 

DEPARTMENT OF COMPUTER SCIENCE 

EXPLORING SOFTWARE COST MODELLING AND 

ESTIMATION WITH COMPUTATIONAL INTELLIGENCE 

 

 

Efi Papatheocharous 

 

 

 

A Dissertation Submitted for Fulfillment 

 of the  

Requirements for the Ph,D, Degree  

at the Faculty of Pure and Applied Sciences 

of the University of Cyprus 

 

 

 

 

December, 2011 

Efi P
ap

ath
eo

ch
aro

us



 

© Copyright Material of 

 

 

Efi Papatheocharous 

 

 

 

 

 

 

All Rights Preserved 

 

 

 

 

 

 

2011 

 

Efi P
ap

ath
eo

ch
aro

us



ii 

APPROVAL PAGE 

Doctoral Dissertation 

EXPLORING SOFTWARE COST MODELLING AND ESTIMATION 

WITH COMPUTATIONAL INTELLICENCE 

Presented by 

Efi Papatheocharous 

Research Supervisor 

(Jan. 2007-Aug. 2010) 

Co-Supervisor  Andreas S. Andreou 

(Sept. 2010-Dec. 2011) 

Co-Supervisor  

(Sept. 2010-Dec. 2011) George A. Papadopoulos 

Examining Committee 

Member George Pallis 

Examining Committee 

Member Georgia Kapitsaki 

Examining Committee 

Member Ioannis Stamelos 

 Examining Committee 

 Member Stephen G. MacDonell 

University of Cyprus 

December, 2011

Efi P
ap

ath
eo

ch
aro

us



iii 

ACKNOWLEDGEMENTS

The diatribe has been materialised during my years as a Ph.D. student and research 

associate at the Software Engineering and Intelligent Information Systems research lab from 

January 2007 to December 2011. It would have been extremely difficult to accomplish 

pursuing and completing this Ph.D. without the support, advice and patience from 

collaborators, mentors and professors, parents, family and friends. 

First of all, I would like to express my profound gratitude to my supervisor Associate 

Professor Andreas S. Andreou who inspired me and stood by my side throughout this work. I 

would like to thank him for being a mentor, a teacher, a key supporter and a friend. He has 

provided unconditional support and encouragement and has also offered generously his 

knowledge, guidance and time, which facilitated in all good abilities and opportunities granted 

in my life and career, especially during the last nine years that we have been acquainted. I 

would also like to thank him for the encouragement to get involved in several national and 

international research projects which enriched my professional knowledge and experiences 

and at the same time alleviated my family from any financial burden. 

I would also like to give special thanks to Professor George A. Papadopoulos and 

Professor Constantinos Pattichis for their academic support and caring attitude, as well as 

their willingness to act as my co-supervisors when Professor Andreas S. Andreou joined the 

Cyprus University of Technology and could no longer act as my full supervisor at the 

University of Cyprus. Their contributions of time, ideas, feedback and advice are greately 

appreciated. I am also tremendously grateful to the remaining members of my examining 

committee Dr. George Pallis, Dr. Georgia Kapitsaki, Assistant Professor Ioannis Stamelos and 

Professor Stephen G. MacDonell for their time, helpful comments and encouraging attitude. 

Efi P
ap

ath
eo

ch
aro

us



 

 iv 

During the years of my doctoral student experience the University and the research lab 

have been a source of friendships, cooperations and collaborations. Especially, I would like to 

express my appreciation by thanking my colleague and friend Constantinos Stylianou with 

whom I have been sharing ideas, experiences and facilities throughout these years. His 

willingness to participate in brainstorming sessions and contributing in problem-solving 

turning-points resulted in a highly motivating, challenging, productive and pleasurable 

environment to work. My gratitude also goes to Dr. Nicos H. Mateou for giving endless 

support, personal boost and encouragement. He has been supportive in many aspects enabling 

me to see the ‗big picture‘ in cases where it was quite difficult for me to see. 

Especially, I would like to express my sincerest gratitude to the first person to ever 

believe in me and my abilities, Assistant Professor Panagiotis Germanakos. He has been a 

source of abundant patience, exemplary ethics, invaluable advice and limitless emotional and 

spiritual support. I would like to thank him for the tremendous inspirations, intellectual 

challenges and endless discussions which enabled me to become more insightful and able to 

cope with complex circumstances.  

I would also like to individually thank my co-authors, colleagues and collaborators Dr. 

Harris Papadopoulos, Dr. Stamatia Bibi, George Rossides – a close friend and supporter for 

many years, Christos Skouroumounis, Angela Iasonos, Despina Trikomitou and Pantelis 

Yiasemis for their contribution and professionalism. They have all contributed immensely to 

maintaining the level of enthusiasm and excitement for professional work growth. Finally, I 

am also thankful to Professor Jean-Marc Desharnais from École de Technologie Supérieure 

(ÉTS), Montreal for providing me after personal communication one of the datasets used in 

this work and published in his thesis.  

Lastly, I would like to express my sincerest thanks to my mother, Maro, and to my father, 

Loizos, who both supported me in my whole life with invaluable life lessons, their 

indescribable kindness and sacrifice without asking anything for return. Also, a special thank 

you goes to my sister, Stalo, and her husband, Marinos, for always encouraging and 

supporting me throughout all my efforts. 

Efi P
ap

ath
eo

ch
aro

us



 

 v 

 

TABLE OF CONTENTS 

Chapter 1 ................................................................................................................................ 21 

Introduction ............................................................................................................................ 21 

1.1 Problem Definition ...................................................................................................... 22 

1.2 Motivation ................................................................................................................... 25 

1.3 Goals and Objectives ................................................................................................... 29 

1.4 Research Approach ...................................................................................................... 33 

1.5 Significance ................................................................................................................. 34 

1.6 Contents of the Dissertation ........................................................................................ 35 

Chapter 2 ................................................................................................................................ 37 

Literature Overview .............................................................................................................. 37 

2.1 Brief Historical Overview ........................................................................................... 37 

2.2 Classification Schema of SCE Models and Techniques .............................................. 40 

2.3 Evaluation Criteria of Software Cost Models .............................................................. 43 

2.4 Overview of Related Work in Software Cost Estimation ............................................ 52 

2.5 Computational Intelligence in Software Cost Estimation ........................................... 55 

2.6 Open Research Problems in Software Cost Estimation ............................................... 64 

Chapter 3 ................................................................................................................................ 70 

Technical Background ........................................................................................................... 70 

3.1 Introduction to Computational Intelligence ................................................................. 70 

3.2 Quantitative Models Technical Background ............................................................... 71 

Efi P
ap

ath
eo

ch
aro

us



 

 vi 

3.2.1 Artificial Neural Networks (ANN) ................................................................... 72 

3.2.1.1 Artificial Neuron: The Basic Computational Element ........................... 73 

3.2.1.2 Feedforward ANN and Supervised Learning ......................................... 75 

3.2.1.3 The Backpropagation Learning Algorithm ............................................ 76 

3.2.1.4 Input Sensitivity Analysis Algorithms ................................................... 77 

3.2.2 Regression ......................................................................................................... 79 

3.2.2.1 Multiple Linear Regression (MLR) ........................................................ 79 

3.2.2.2 Ridge Regression (RR) ........................................................................... 80 

3.2.2.3 Classification and Regression Tree (CART) .......................................... 81 

3.2.3 Genetic Algorithms (GA) .................................................................................. 83 

3.2.4 Genetic Programming (GP) .............................................................................. 84 

3.2.5 Conditional Sets (CS)........................................................................................ 85 

3.2.6 Fuzzy Logic (FL) .............................................................................................. 86 

3.2.7 Fuzzy Implication Systems (FIS) ...................................................................... 87 

3.2.8 Decision Trees (DT).......................................................................................... 88 

3.3 Qualitative Models Technical Background ................................................................. 90 

3.3.1 Fuzzy Cognitive Maps (FCM) .......................................................................... 90 

3.3.2 Influence Diagrams (ID) ................................................................................... 92 

Chapter 4 ................................................................................................................................ 95 

Proposed Software Cost Modelling and Estimation Methodologies ................................. 95 

4.1 Overview of Software Cost Estimation Models and Datasets ..................................... 95 

4.1.1 The Datasets Utilised ........................................................................................ 97 

4.1.1.1 The COCOMO Dataset .......................................................................... 97 

4.1.1.2 The Albrecht and Gaffney Dataset ......................................................... 97 

Efi P
ap

ath
eo

ch
aro

us



vii 

4.1.1.3 The Kemerer Dataset .............................................................................. 97 

4.1.1.4 The Desharnais Dataset .......................................................................... 98 

4.1.1.5 The ISBSG R9 Dataset ........................................................................... 98 

4.1.1.6 The ISBSG R10 Dataset ......................................................................... 99 

4.1.2 Pre-processing Activities .................................................................................. 99 

4.2 Quantitative Software Cost Estimation Models ........................................................ 101 

4.2.1 Size-Based Software Cost Estimations (SB-SCE) .......................................... 102 

4.2.1.1 Single Hidden Layer MLP ANN for SB-SCE ...................................... 103 

4.2.1.2 Multiple Hidden Layer MLP ANN for SB-SCE .................................. 109 

4.2.1.3 Hybrid Multiple Hidden Layer MLP ANN Coupled with GA ............. 113 

4.2.2 Feature Subset Selection and Software Cost Estimation (FSS-SCE) ............. 121 

4.2.2.1 ANN and Input Sensitivity Analysis (ISA) for FSS-SCE .................... 122 

4.2.2.2 Ridge Regression (RR) and FSS-SCE.................................................. 141 

4.2.3 Clustering and Classification for Software Cost Estimation (CC-SCE) ......... 152 

4.2.3.1 Genetically Evolved Conditional Sets (CS) for CC-SCE ..................... 153 

4.2.3.2 Fuzzy Clustering in CC-SCE ............................................................... 164 

4.2.3.3 Genetic Programming (GP) in CC-SCE ............................................... 172 

4.2.3.4 Fuzzy Decision Trees (FDT) in CC-SCE ............................................. 181 

4.2.3.5 FDT and Fuzzy Implication Systems (FIS) in CC-SCE ....................... 191 

4.2.4 Predictive Intervals of Software Cost Estimation (PI-SCE) ........................... 203 

4.2.5 Phased-Based Software Cost Estimations (PB-SCE) ..................................... 207 

4.3 Qualitative Software Cost Estimation Models .......................................................... 213 

4.3.1 Fuzzy Cognitive Map for Software Cost Estimation (FCM-SCE) ................. 213 

4.3.2 Agile Software Development and SCE (ASD-SCE) ...................................... 221 

Efi P
ap

ath
eo

ch
aro

us



 

 viii 

Chapter 5 .............................................................................................................................. 230 

Conclusions and Discussion................................................................................................. 230 

5.1 Summary ................................................................................................................... 230 

5.2 Goals Achieved and Significance .............................................................................. 238 

5.3 Discussion of the Threats to Validity ........................................................................ 241 

5.4 Future Work .............................................................................................................. 247 

References ............................................................................................................................. 251 

Appendix A Statistical Profile of Datasets ......................................................................... 281 

A.1 The COCOMO Dataset ............................................................................................ 281 

A.2 The Albrecht and Gaffney Dataset ........................................................................... 282 

A.3 The Kemerer Dataset ................................................................................................ 283 

A.4 The Desharnais Dataset ............................................................................................ 283 

A.5 The ISBSG R9 Dataset ............................................................................................. 284 

A.6 The ISBSG R10 Dataset ........................................................................................... 289 

Appendix B Complete Experimental Results .................................................................... 291 

B.1 Complete Results of MLP ANN for SB-SCE ........................................................... 291 

B.2 Complete Results of ANN and ISA for FSS-SCE .................................................... 296 

B.3 Complete Results from Ridge Regression (RR) and FSS-SCE ................................ 297 

B.4 Complete Results of Fuzzy Clustering in CC-SCE .................................................. 298 

B.5 Complete Results for GP in CC-SCE ....................................................................... 300 

B.6 Complete Results from FDT for in CC-SCE ............................................................ 302 

 

 Efi P
ap

ath
eo

ch
aro

us



 

 ix 

 

LIST OF TABLES 

 

 

Table 2.1: Software cost model evaluation criteria by Boehm (1981) ..................................... 44 

Table 2.2: Software cost modelling technique capability criteria by Gray and MacDonell 

(1997a) ................................................................................................................. 45 

Table 2.3: Software cost system evaluation criteria by Mair et al. (2000) .............................. 45 

Table 2.4: Software cost model/estimate, method and application evaluation criteria by Briand 

and Wieczorek (2000) ............................................................................................ 45 

Table 2.5: Quantitative and qualitative software cost evaluation criteria by Burgess and Lefley 

(2001) ..................................................................................................................... 47 

Table 2.6: Software cost model evaluation criteria aggregated by Ahmed et al. (2005) ......... 47 

Table 2.7: Estimation inputs, process and outputs evaluation criteria by Zhang and Zhang 

(2009) .................................................................................................................. 49 

Table 2.8: The performance of 8,000 projects in 350 organizations (The Standish Group, 

2007) .................................................................................................................... 65 

Table 3.1: Matrix with ANN connection weights .................................................................... 77 

Table 3.2: Matrix with the calculated contribution of each input neuron ................................ 78 

Table 3.3: Matrix with the calculated relative and sum input neuron contribution ................. 78 

Table 3.4: Matrix with the calculated relative importance of inputs ....................................... 78 

Table 3.5: Matrix with the calculated overall connection strength of inputs ........................... 79 

Table 4.1: Summary of the pre-processing steps applied for the datasets ............................... 99 

Table 4.2: Size-based software attributes description for each dataset .................................. 103 

Efi P
ap

ath
eo

ch
aro

us



 

 x 

Table 4.3: Selected experimental results from single hidden layer ANN MLP of SB-SCE 

models ............................................................................................................... 106 

Table 4.4: Selected experimental results from OLS Regression of SB-SCE ......................... 108 

Table 4.5: Sliding-window technique to determine the ANN inputs ..................................... 111 

Table 4.6: Selected experimental results from multiple hidden layer MLP ANN sliding-

window .............................................................................................................. 112 

Table 4.7: Indicative experimental results of the constant sliding-window size hybrid model 

(ANN &GA) with multiple hidden layer MLP ANN coupled with GA for SB-

SCE .................................................................................................................... 117 

Table 4.8: Indicative experimental results of varying sliding-window size hybrid model (ANN 

&GA) with multiple hidden layer MLP ANN coupled with GA for SB-SCE .. 118 

Table 4.9: Attributes used in the experiments of Desharnais and ISBSG R9-2 ..................... 123 

Table 4.10: ANN results obtained for the FSS-SCE using empirical ISA thresholds ........... 126 

Table 4.11: ISBSG R9-3 Attributes used in the enhanced ANN and ISA cost estimations .. 129 

Table 4.12: Threshold specification for selecting ANN of various performing levels .......... 130 

Table 4.13: Indicative experimental results of the proposed methodology of ANN and ISA 133 

Table 4.14: Mann-Whitney signed-rank test results .............................................................. 136 

Table 4.15: Indicative experiments of backward attribute elimination using ISA on ANN .. 138 

Table 4.16: ISBSG R9-4 attributes description...................................................................... 143 

Table 4.17: Software cost estimations across various FSS with the Desharnais dataset ....... 148 

Table 4.18: Software cost estimations across various FSS with the ISBSG R9-4 dataset ..... 149 

Table 4.19: Attributes and abbreviations used in the genetically evolved Conditional Sets . 156 

Table 4.20: Genetic Algorithm main parameters of the Conditional Sets utilised for SCE... 160 

Table 4.21: Performance results of genetically evolved Conditional Sets with Weights ...... 161 

Table 4.22: ISBSG R9-8 attributes description...................................................................... 165 

Table 4.23: Entropy-based fuzzy k-modes clustering results (effort values in person-hours) for 

the ISBSG R9-8.5 dataset .................................................................................. 170 

Table 4.24: The COCOMO cost attributes ............................................................................ 173 

Efi P
ap

ath
eo

ch
aro

us



 

 xi 

Table 4.25: GP parameters configurations used in the experiments for SCE ........................ 177 

Table 4.26: Indicative cost functions using arithmetic and logical operators obtained with GP

 ........................................................................................................................... 178 

Table 4.27: Indicative cost estimation performance of GP cost functions execution ............ 179 

Table 4.28: ISBSG R9-9 cost factors selected for the classification experimentation ........... 182 

Table 4.29: Indicative preliminary FDT prediction results using the mean fuzzy range of effort

 ........................................................................................................................... 184 

Table 4.30: Indicative Classification Rules obtained from the ISBSG R9-9 dataset with FDT

 ........................................................................................................................... 190 

Table 4.31: Indicative experimental results from enhanced FDT classifications in ISBSG R9-9

 ........................................................................................................................... 190 

Table 4.32: Summary of the COCOMO software cost attributes .......................................... 193 

Table 4.33: Software cost drivers description for the Desharnais dataset ............................. 194 

Table 4.34: Fuzzy Interval Values for the ISBSG R9-9.2 ..................................................... 194 

Table 4.35: Fuzzification values for the cost factors of the ISBSG R9-9.2 dataset ............... 197 

Table 4.36: Indicative if-then rules obtained using FDT and the CHAID and CART 

algorithms .......................................................................................................... 200 

Table 4.37: Performance results of the FDT & FIS hybrid SCE model ................................ 201 

Table 4.38: Best testing results of RR and the corresponding parameters ............................. 205 

Table 4.39: Tightness and reliability of the RR & CP ........................................................... 206 

Table 4.40: Spearman‘s two-tailed correlation coefficients (ρ) of the phased-effort values and 

total effort in ISBSG R10 .................................................................................. 211 

Table 4.41: Spearman‘s two-tailed correlation coefficients ρ between the phased efforts .... 211 

Table 4.42: ANN performance results of total effort estimation in PB-SCE ......................... 212 

Table 4.43: ANN performance results of the subsequent effort phases PB-SCE .................. 212 

Table 4.44: Influence values (weights) between the Conceptual Nodes ................................ 217 

Table 4.45: Linguistic terms and corresponding numerical values for the influence between 

Conceptual Nodes and their initial Activation Level ........................................ 217 

Efi P
ap

ath
eo

ch
aro

us



 

 xii 

Table 4.46: Initial linguistic values for the scenarios executed with the FCM ...................... 218 

Table 4.47: Initial and final concepts activation values from executing two hypothetical 

scenarios.......................................................................................................... 219 

Table 4.48: Linguistic terms and corresponding numerical values for the Influence Diagrams

 ........................................................................................................................... 225 

Table 4.49: Input values for Simple and Deterministic diagrams in answering: RQ1 Follow 

Agile or Traditional development activities? .................................................... 226 

Table 4.50: Input values for Advanced diagram in answering: RQ1 Follow Agile or 

Traditional development activities? ................................................................ 226 

Table 4.51: Input values for answering: RQ2 Will the cost increase if we follow the agile 

paradigm or not? ................................................................................................ 227 

Table A. 1: COCOMO dataset software cost attributes definitions ....................................... 281 

Table A. 2: COCOMO dataset cost attributes descriptives .................................................... 282 

Table A. 3: Albrecht and Gaffney dataset software cost attributes definitions ...................... 282 

Table A. 4: Albrecht and Gaffney dataset cost attributes descriptives .................................. 282 

Table A. 5: Kemerer dataset software cost attributes definitions .......................................... 283 

Table A. 6: Kemerer dataset cost attributes descriptives ....................................................... 283 

Table A. 7: Desharnais dataset software cost attributes definitions ....................................... 283 

Table A. 8: Desharnais dataset cost attributes descriptives ................................................... 284 

Table A. 9: ISBSG R9-1 dataset descriptive of attributes SWE and AFP ............................. 284 

Table A. 10: ISBSG R9-2 dataset cost attributes descriptives ............................................... 284 

Table A. 11: ISBSG R9-3 dataset cost attributes descriptives ............................................... 285 

Table A. 12: ISBSG R9-4 dataset software cost attributes definitions .................................. 285 

Table A. 13: ISBSG R9-5 dataset cost attributes descriptives ............................................... 286 

Table A. 14: ISBSG R9-6 dataset cost attributes descriptives ............................................... 287 

Table A. 15: ISBSG R9-7 dataset cost attributes descriptives ............................................... 287 

Table A. 16: ISBSG R9-8 dataset software cost attributes definitions .................................. 287 

Efi P
ap

ath
eo

ch
aro

us



 

 xiii 

Table A. 17: ISBSG R9-8.5 Dataset Summary Work Effort (SWE) descriptives (outlier-free)

 ........................................................................................................................ 288 

Table A. 18: ISBSG R9-9 dataset software cost attributes definitions .................................. 288 

Table A. 19: ISBSG r10 dataset software cost attributes definitions ..................................... 289 

Table A. 20: ISBSSG R10 dataset effort breakdown in phases descriptives ......................... 290 

Table B. 1: Results from Single hidden layer MLP ANN for SB-SCE for the COCOMO 

dataset ............................................................................................................. 291 

Table B. 2: Experimental results from Single hidden layer MLP ANN for SB-SCE for the 

Kemerer dataset .............................................................................................. 292 

Table B. 3: Experimental results from Single hidden layer MLP ANN for SB-SCE for the 

Albrecht and Gaffney dataset.......................................................................... 292 

Table B. 4: Experimental results from Single hidden layer MLP ANN for SB-SCE for the 

Desharnais dataset ........................................................................................... 293 

Table B. 5: Experimental results from Regression for SB-SCE for the COCOMO dataset .. 293 

Table B. 6: Experimental results from Regression for SB-SCE for the Kemerer dataset ...... 293 

Table B. 7: Experimental results from Regression for SB-SCE for the Albrecht and Gaffney 

dataset ............................................................................................................. 294 

Table B. 8: Experimental results from Regression for SB-SCE for the Desharnais dataset .. 294 

Table B. 9: Experimental results obtained from the hybrid genetically evolved multiple hidden 

layer MLP ANN SB-SCE (hybrid ANN&GA) for a constant sliding-window 

size .................................................................................................................. 295 

Table B. 10: Experimental results of multiple hidden layer MLP ANN hybrid model coupled 

with GA (ANN&GA) with varying sliding-window size for SB-SCE of the 

Desharnais dataset ........................................................................................... 295 

Table B. 11: Experimental results of multiple hidden layer MLP ANN hybrid model coupled 

with GA (ANN&GA) with varying sliding-window size for SB-SCE of the 

ISBSG R9-1 dataset ........................................................................................ 296 

Efi P
ap

ath
eo

ch
aro

us



 

 xiv 

Table B. 12: Random sampling and first four attributes removed from the Desharnais dataset 

using backward elimination using the Relative Importance (RI) of inputs using 

ISA on ANN ................................................................................................... 296 

Table B. 13: Random sampling-first seven attributes removed from the ISBSG R9-3 dataset 

using backward elimination using the Relative Importance (RI) of inputs using 

ISA on ANN ................................................................................................... 296 

Table B. 14: SCE across various FSS with RR on the Desharnais dataset ............................ 297 

Table B. 15: SCE across various FSS with RR on the ISBSG R9-4 dataset ......................... 298 

Table B. 16: SCE results obtained with the fuzzy k-modes algorithm and various ISBSG R9-8 

subsets ............................................................................................................. 299 

Table B. 17: Best cost functions obtained using GP and including arithmetic and logical 

operators (i.e., numeric and categorical attributes) across datasets .............. 300 

Table B. 18: Software cost estimation performance of the GP arithmetic cost functions 

execution ...................................................................................................... 300 

Table B. 19: Software cost estimation performance of the GP logical cost functions 

classification and execution (calculations were based on eq. (4.25) on 

classified projects) ........................................................................................ 300 

Table B. 20: Best cost functions obtained using GP and including/excluding ‗important‘ 

attributes across datasets .............................................................................. 301 

Table B. 21: Performance results including/excluding ‗important‘ attributes with GP ......... 301 

Table B. 22: Classification results using enhanced FDT approach for SCE on ISBSGR9-9 302 

 

Efi P
ap

ath
eo

ch
aro

us



 

 xv 

 

LIST OF FIGURES 

 

Figure 1.1: Survey results of projects from 2006 regarding ‗successful‘ costing of software 

(The Standish Group, 2007) ................................................................................... 28 

Figure 2.1: Software estimation methods classification (Briand and Wieczorek, 2000) ......... 41 

Figure 2.2: Software estimation methods classification schema (Myrtveit et al., 2005) ......... 42 

Figure 2.3: The cone of uncertainty (Boehm et al., 2000a) ..................................................... 68 

Figure 3.1: Basic computational model of a neuron ................................................................ 74 

Figure 3.2: Transfer functions (Beale et al., 2011) of (a) hard limiter, (b) log-sigmoid, (c) tan-

sigmoid and (d) pure linear .................................................................................... 74 

Figure 3.3: Example of network structure................................................................................ 77 

Figure 3.4: Genetic Algorithm pseudo code (Michalewicz, 1994) .......................................... 83 

Figure 3.5: Membership function of cost example for Low, Moderate and High quantity. .... 87 

Figure 3.6: A simple Influence Diagram (ID) example ........................................................... 94 

Figure 4.1: Software Cost Modelling and Estimation Research Components ......................... 96 

Figure 4.2: Membership functions of three fuzzy sets for the linguistic values LOW, MEDIUM 

and HIGH............................................................................................................. 101 

Figure 4.3: A Feedforward Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN)

 ............................................................................................................................. 105 

Figure 4.4: Feedforward MLP Artificial Neural Network (ANN) consisting of an input and an 

output layer and three slabs of hidden layers neurons. ........................................ 110 

Efi P
ap

ath
eo

ch
aro

us



 

 xvi 

Figure 4.5: Actual vs. Predicted normalised effort estimation values with ANN architecture 1-

16-18-11-1 and IOM2 on the ISBSG R9-1 dataset .............................................. 119 

Figure 4.6: The stages of the ANN methodology with ISA for SCE (Papatheocharous and 

Andreou, 2012b) .................................................................................................. 128 

Figure 4.7: Outlying ANN identified by Box Plots based on their MMRE performance ...... 132 

Figure 4.8: Partial data samples of Actual vs. Predicted Effort during validation (testing) 

experiments for the Desharnais dataset using a 3-8-1 ANN topology ................. 134 

Figure 4.9: Partial data samples of Actual vs. Predicted Effort during validation (testing) 

experiments for the ISBSG R9-3 dataset using a 7-10-1 ANN topology ............ 134 

Figure 4.10: Stepwise selection of project attributes ............................................................. 144 

Figure 4.11: Methodology of genetically evolved Conditional Sets (CS & GA) .................. 157 

Figure 4.12: Total Fitness Evolution of the Genetically evolved Conditional Sets for SCE . 163 

Figure 4.13: An example of parse tree for the COCOMO dataset ......................................... 174 

Figure 4.14: A Fuzzy Decision Tree (FDT) example with Association Rule ........................ 183 

Figure 4.15: SCE using the mean of the Fuzzy Range of Fuzzy Decision Trees .................. 184 

Figure 4.16: Enhanced FDT Approach (Papatheocharous and Andreou, 2009b) .................. 186 

Figure 4.17: Methodology of FDT combined with FIS (Papatheocharous and Andreou, 2012a)

 ............................................................................................................................. 192 

Figure 4.18: Membership function of attribute work effort for the project full-cycle 

ln(FCWEFF) ........................................................................................................ 195 

Figure 4.19: Membership function of attribute Adjusted Function Points (AFP) ................. 196 

Figure 4.20: Membership function of attribute Project Elapsed Time (PET) ........................ 196 

Figure 4.21: Membership function of attribute Project Delivery Rate (PROD) .................... 196 

Figure 4.22: Membership function of attribute Project Inactive Time (PIT) ......................... 197 

Figure 4.23: Membership function of attribute Average Team Size (ATS) .......................... 197 

Figure 4.24: An example of rule aggregation and defuzzification. ........................................ 199 

Figure 4.25: Effort average percentages distribution per phase (selected projects of ISBSG 

R10)...................................................................................................................... 210 

Efi P
ap

ath
eo

ch
aro

us



 

 xvii 

Figure 4.26: SCE Certainty Neuron Fuzzy Cognitive Map (Papatheocharous et al., 2008) .. 214 

Figure 4.27: Experimental results of FCM-SCE for (a) Scenario 1: Pessimistic case and (b) 

Scenario 2: Optimistic case .................................................................................. 220 

Figure 4.28: ‗Follow Agile or Traditional development activities?‘ Influence Diagram ...... 223 

Figure 4.29: ‗Will the cost increase if we follow the agile paradigm or not?‘ Influence 

Diagram................................................................................................................ 223 

 

Efi P
ap

ath
eo

ch
aro

us



 

 xviii 

 

LIST OF ACRONYMS AND ABBREVIATIONS 

 

Abbreviation Description 

AFA Arbitrary Function Approximators 

AFP Adjusted Function Points 

AMSE Adjusted Mean Square Error 

ANGEL ANaloGy softwarE tool 

ANN Artificial Neural Networks 

AQUA Software Cost Model developed by Li et al. (2007) 

ASD-SCE Agile Software Development and Software Cost Estimation 

ASMA Australian Software Metrics Association  

BANN Backward Feature Removal with ANN using Garson‘s Relative Importance 

BFE Backward Feature Elimination combined with Ridge Regression 

BMMRE Balanced Mean Magnitude of Relative Error 

BSWF Backward StepWiseFit with Ridge Regression 

C4.5 Extended classification algorithm of the ID3 algorithm 

CART Classification And Regression Trees 

CBR Case-Based Reasoning 

CBSD Component-Based Software Development 

CC Correlation Coefficient (Pearson) 

CCE Core Cost Estimation 

CC-SCE Clustering and Classification for Software Cost Estimation 

CD Class Diagrams 

CHAID Chi-squared Automatic Interaction Detection algorithm 

CI Computational Intelligence 

ClS Cluster Size 

CMM Capability Maturity Model 

CN Concept Node 

CNFCM Certainty Neuron Fuzzy Cognitive Map 

COCOMO COnstructive COst Model 

CompTIA Computing Technology Industry Association 

COSEEKMO Software Cost Model reported in Menzies et al. (2006)  

CP Conformal Predictors 

CS Conditional Sets 

DENFIS Dynamic Evolving Neuro-Fuzzy Inference System 

DSN Deep Space Network 

DT Decision Trees 

Efi P
ap

ath
eo

ch
aro

us



 

 xix 

Abbreviation Description 

EA Evolutionary Algorithms 

EBSE Evidence-Based Software Engineering 

ERD Entity Relationship Diagrams 

exCHAID Exhaustive Chi-squared Automatic Interaction Detection algorithm 

FCM Fuzzy Cognitive Maps 

FCM-SCE Fuzzy Cognitive Maps for Software Cost Estimation 

FDT Fuzzy Decision Trees 

FFS Forward Feature Selection combined with Ridge Regression 

FIS Fuzzy Implication Systems 

FL Fuzzy Logic 

FLANN Functional Link Artificial Neural Network 

FP Function Points 

FPA Function Points Analysis 

FSS Feature Subset Selection 

FSS-SCE Feature Subset Selection and Software Cost Estimation 

FSWF Forward StepWiseFit with Ridge Regression 

FUSP Fuzzy Use Case Size Points 

GA Genetic Algorithms 

GP Genetic Programming 

GRA Grey Relational Analysis 

GRACE Grey Relational Analysis based on Software ProjeCt Effort Prediction 

GUI Graphical User Interface 

HR Hit Ratio 

IBM DP IBM's Data Processing services 

IBM-FSD IBM's Federal Systems Division 

ID Influence Diagrams 

ID3 Iterative Dichotomiser 3 algorithm 

IDE Integrated Development Environment 

IEEE Institute of Electrical and Electronics Engineers 

IFPUG International Function Point Users Group 

IOM Input Output Methods  

IS Input Strength 

ISA Input Sensitivity Analysis 

ISBSG International Software Benchmarking Standards Group 

Jørgensen95 Dataset mentioned in Mair et al. (2005) 

KLOC Thousands Lines Of Code 

k-NN k-Nearest Neighbour 

KSLOC Thousands Source Lines Of Code 

LOC Lines Of Code 

LS Less Strict criterion 

LSBFE Backward Feature Elimination with Least Squares  

LSFFS Forward Feature Selection with Least Squares 

LSGA Genetic Algorithm with Least Squares  

LSR Least Squares Regression 

MAE Mean Absolute Error 

MBRE Mean Balanced Relative Error   

MERMAID-2 Dataset reported in Kitchenham (2002) 

ML Machine Learning 

MLP  Multi-Layer Perceptron 

MLR Multiple Linear Regression 

MMRE Mean Magnitude of Relative Error 

MRW Median Relative Width 

Efi P
ap

ath
eo

ch
aro

us



 

 xx 

Abbreviation Description 

MSE Mean Squared Error 

MW Median Width 

NATO North Atlantic Treaty Organization 

NF Neuro-Fuzzy 

NG Neuro-Genetic 

NRMSE Normalised Root Mean Squared Error 

OLS Ordinary Least Squares 

OS Overall Size 

PB-SCE Phased-Based Software Cost Estimation 

PE Percentage of Errors 

ph/pm person-hours/person-months 

PI-SCE Predictive Intervals in Software Cost Estimation 

POJO  Plain Old Java Objects 

Pred(l) Prediction Level 

PRICE-S Parametric Review of Information for Costing and Evaluation – Software 

PSO Particle Swarm Optimisation 

RBF Radial Basis Function 

RBFN Radial Basis Function Network 

RCA Requirements Capture and Analysis 

RDBMS Relational DataBase Management System 

RI Relative Importance 

RMSE Root Mean Squared Error 

RR Ridge Regression 

RS Relative Strength 

RUP Rational Unified Process 

S Strict criterion 

SB-SCE Size-Based Software Cost Estimation 

SCE Software Cost Estimation 

SDLC Software Development Life-Cycle 

SEER-SEM 
Software Evaluation and Estimation of Resources – Software Estimating 

Model  

SL Significance Level 

SLIM Software LIfecycle Management 

SLOC Source Lines Of Code 

SOFCOST SOFtware COST Grumman's Software Cost Estimating Model 

SOM Self-Organising Maps 

SVM Support Vector Machines 

TRW TRW Inc. - an American corporation 

UCD Use Case Diagrams 

UFP Unadjusted Function Points 

USP Use Case Size Points 

WNN Wavelet Neural Networks 

WSD1  Dataset mentioned in Mair et al. (2005) Efi P
ap

ath
eo

ch
aro

us



 

21 

 

Chapter 1  

Introduction 

The term ―software‖ was coined by John Wilder Tukey in computing context in a 1958 

article (Brillinger, 2002). Since then, it has been gaining vital ground in our daily lives, 

contributing into providing innovative solutions for problems within organisations and 

assistance in management and control for many products branded in the market today. Thus, a 

plethora of organisations emerged producing/developing software. Software today, stands on 

the foundation of everything and comes in everything. 

The discipline of ―Software Engineering‖ emerged in the 1968 NATO Conference (Naur 

and Randell, 1968), but was explicitly described not long ago in the IEEE standard 610.12 

(1990) as ―the application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software‖. The definition implies that individuals 

will probably be able to estimate the cost of building such controllable systems. However, in 

recent years, the software industry has become increasingly specialised and has resulted to a 

wide range of software developments and even wider application and adoption areas. 

Moreover, the ever-morphing, complex, multi-dimensional nature of software engineering as 

a discipline, as an art form and as a culture, make it intricate to comprehend and monitor the 

associated processes, challenges and risks and henceforth, effectively estimate software 

development costs.  

A software project usually follows a structured/systematic approach to be engineered, i.e., 

adopts life-cycle models like the Waterfall (Royce, 1970), the Incremental (Mills and O‘Neil, 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

22 

1980), Rapid Prototyping (Naumann and Jenkins, 1982) and the Spiral (Boehm, 1988). These 

structured approaches may be adopted or adapted in prevalent forms of software development 

by organisations. There is also the trend to diversify to non-traditional software development 

methods and facilitate the production of high-quality software in a cost-effective way. Cost 

effectiveness is associated with the balance of schedule, resources and budget. Since the 

adoption of the classic Waterfall method (Royce, 1970) and until the more recently adopted 

methods like the Rational Unified Process (RUP) (Ambler, 2005) and the Agile Paradigm 

(Martin, 2002) in software engineering, maintaining a standard level of resource planning, 

scheduling and budgeting is very hard to be accomplished during the development life-cycle 

due to the individuality of each project. An essential task, especially from the project‘s 

inception and until its ‗early‘ phases (post specifications), is to effectively describe the 

activities related to the project, reflect on the project‘s unique characteristics and estimate the 

required costs to deliver it on time. Finally, in this process, software project managers are 

responsible for estimating the costs, planning how resources will be allocated, scheduling and 

budgeting the main activities (Sommerville, 2006).  

1.1 Problem Definition 

Software project management involves a variety of critical activities, including planning, 

scheduling, monitoring and controlling the processes employed, the resources spent and the 

artefacts utilised for software development. Among these activities the accurate and realistic 

Software Cost Estimation (SCE) is considered a key task, exhibiting an increasing interest on 

behalf of software engineers, researchers, managers and stakeholders.  

Software project costs may include the hardware and software development tools and 

platform costs (including maintenance), the travel and training costs and of course the effort 

costs, i.e., the costs of paying software professionals (Sommerville, 2006). SCE involves the 

overall assessment of these costs, even though for the majority of the projects the most 

popular metric is considered the effort cost. The development effort cost is settled as the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

23 

dominant cost in nearly all the related SCE studies performed because it is the most complex, 

unpredictable and substantial cost factor, compared to the rest abovementioned costs. 

Moreover, the development cost is related to the company‘s/organisation‘s productivity and 

cannot be easily or objectively calculated. 

The activities performed to effectively estimate (or predict) the required development 

effort are highly dependent on the sizing and costing of the software product. The basic units 

for measuring software size are the software Lines Of Code (LOC) (Gilb, 1976) and the 

functional size obtained from the Function Points (FP) introduced by Albrecht (1979). Sizing 

and costing are considered equally important since the successful delivery of a product on 

time, within budget and with the anticipated functionality heavily depends, among other 

things, on how accurate the aforementioned estimations turn out to be. Moreover, SCE 

involves the activity to calculate, with certain confidence, the resources required to develop 

software systems. Organisations estimate the costs in terms of overhead costs for carrying out 

the project and divide this by the number of productive staff (Sommerville, 2006). This is 

expressed in terms of the effort required, which is typically measured in person-months (pm). 

Likewise, scheduling, including the time expected to deliver a project, is considered to be 

related with effort estimation (Putnam, 1978; Abdel-Hamid and Madnik, 1983). In some cases 

the dependency of similar parameters influencing effort are investigated to estimate schedules 

(Jensen, 1983; Park, 1988; Putnam and Myers, 1992; Boehm et al., 2000a). Therefore, SCE 

and scheduling are both considered imperative activities which seem to be mostly directed by 

the overall size of the project as well as other project characteristics. Nonetheless, in some 

cases where effort is confused with progress; assuming that the people working on a project 

and the months of a schedule are interchangeable (Brooks, 1995) which is not valid. 

Identifying and understanding the basic parameters that affect software cost, as well as 

making appropriate assessments of these parameters, are extremely important requirements to 

determine staff allocation and scheduling issues for a project and thus could pave the way to 

producing better software cost estimates. These parameters, usually called ―software cost 

drivers‖, are not easy to be defined and sometimes are regarded as highly ambiguous and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

24 

difficult to measure. Also, they relate to software effort, quality, scheduling, sizing and 

productivity (Sommerville, 2006). For example, proper sizing of a software product under 

development from the ‗early‘ development phases and complexity assessment of the 

necessary functions may significantly enhance the estimation of the total effort required for 

the completion of the project. This estimation may thus constitute a useful tool in the hands of 

project managers for better planning, monitoring, coordinating and controlling the subsequent 

development phases. 

It was in the late ‘50s and early ‘60s when researchers first began focusing on estimations 

of software cost and executed experiments with a range of estimation techniques. These 

experiments endeavoured to achieve accurate cost predictions and provide strong project and 

quality frameworks for optimising software project management (Boehm et al., 2000b). The 

impact of various resource estimation methods and models proposed over the last 50 years on 

successful software engineering practices has been tremendous, whereas SCE until today 

continues to attract considerable research attention (Jørgensen and Shepperd, 2007). In 

addition, software cost methods and models for development effort estimation are included 

practically in all software Capability Maturity Models (CMM), software engineering 

textbooks and ―bodies of knowledge‖ (Boehm and Valerdi, 2008). 

Accuracy in SCE is a critical prerequisite in the initial project phases and until the end of 

the project for a project manager; it may represent the main reason for deciding on whether to 

undertake a project. In fact, precision in these initial cost estimates has a profound effect on 

the success of the activities and phases carried out throughout the whole Software 

Development Life-Cycle (SDLC). For instance, underestimating a project will probably lead 

to under-staffing, causing wrong allocation of resources and eventually overworked staff. 

Thus, underestimation will sooner or later lead to compromises as regards the quality of the 

development methodology, the documentation, the testing procedure and the product itself. 

Ultimately, it will probably result in exceeding the agreed budget and schedule, and as 

deadlines will probably be missed the developers will eventually lose their credibility.  On the 

other hand, overestimating a project is likely to cause again poor resources allocation but in 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

25 

the sense expressed in Parkinson‘s Law, i.e., ―Work expands to fill the time available for its 

completion‖ (Parkinson, 1957). The law expresses project slack that is a result of situations 

with more resources than needed that causes developers becoming less productive or decide to 

‗gold-plate‘ a system by adding features that were not required by the user (Boehm, 1981). 

Thus, overestimating will probably lead to undertaking the wrong projects, in terms of size 

and capacity of developers and might risk the success of bidding and winning any other 

project as well. As a consequence, loss of opportunities to win more appropriate contracts to 

competitors due to the prohibitive costs and misallocated staff, as well as financial loss, will 

probably occur. Conclusively, such inaccuracies in software cost estimations may result in 

huge business and economic failures which may eventually be proven catastrophic for 

developers and organisations. 

1.2 Motivation 

Software development is an intractable, multi-faceted process, which frequently 

encounters inherent and unforeseen difficulties. With the rapid growth of technology and the 

increasing need for new software applications in a wide variety of disciplines, software 

development today has become an essential, highly valuable and quite expensive procedure. 

The motivation for conducting research on the area of SCE is unfolded in this section. 

According to reviews on surveys, 60-80% of projects encounter cost overruns in the range 

of 30-40% (Moløkken and Jørgensen, 2003) leading to quality reduction, schedule overruns or 

extra staff employment to realise the project goals. This phenomenon may be attributed to 

several contingencies occurring during software development and to the high dependence of 

cost and schedule estimates on accurate size estimates (approximations) of the software to be 

developed. However, software size approximations (in LOC or FP) is hard to determine prior 

to its actual implementation, but it is usually one of the main components of the cost 

estimation process since it seems to be affecting productivity or at least a component of it 

(Sommerville, 2006). This is evident in classical and recent software cost models such as the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

26 

Doty (Herd et al., 1977), COCOMO (Boehm, 1981; Boehm et al., 2000a), Walston-Felix 

(Walston and Felix, 1977), SLIM (Putnam, 1978),  Bailey-Basili (Bailey and Basili, 1981), 

Albrecht and Gaffney (Albrecht and Gaffney, 1983), SEER-SEM (Jensen, 1983), Kemerer 

(Kemerer, 1987), PRICE-S (Park, 1988), Barnett and Mellichamp (Matson et al., 1994), 

ANGEL (Shepperd and Schofield, 1997), GRACE (Song et al., 2005), COSEEKMO 

(Menzies et al., 2006) and AQUA (Li et al., 2007) where the size estimate is a main 

component. In addition software cost models presuming the ability of estimating LOC early in 

the software life-cycle enclose a major weakness over models based on estimates of FP which 

can be generated reasonably accurately at early project stages (Finnie et al., 1997). Therefore, 

studying the aforementioned dependence of size and effort is considered a challenging issue 

for research and is examined in this thesis. Specifically, the first investigation of the diatribe 

explores prediction of effort through various Computational Intelligence (CI) methodologies 

and Size-Based SCE (SB-SCE) models. The proposed CI methodologies originate from 

nature-inspired approaches to address the intricate and challenging nature of the process of 

developing software systems, express the dependencies among software factors and effort, as 

well as, deal with the imprecise and uncertain nature of available software project data. 

Apart from the software size, other cost drivers, such as software complexity, team 

capability, team experience and programming language used, are also investigated in the 

context of SCE. Therefore, the secondary research investigation of this thesis relates to CI-

based cost estimations with Feature Subset Selection methods (FSS-SCE). The investigation 

is related with the cost driver‘s dependence with effort, while the subsets of these cost drivers 

that are considered more appropriate/influencing to increase estimation performance are 

selected. The main benefit of this investigation is to find out or propose a set of cost drivers on 

which project managers and cost estimators should focus on during the software measurement 

and SCE activities. 

A supplementary research investigation of this thesis with regards to feature selection is 

related with the issue of practicality of the SCE methods proposed. The examination concerns 

the indication of a particular project phase based on which relatively ‗early‘ cost estimations 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

27 

may be achieved and are referred to as Phase-Based SCE (PB-SCE). A four-stage progressive 

cost model investigates the phase in the software life-cycle which is ‗safer‘ to obtain estimates 

by adjusting the estimates at each stage. Since, the dynamic form of the software development 

process results to changes in the project manager‘s beliefs about the cost estimates over the 

SDLC (Pendharkar et al., 2005), conducting ‗early‘ phase estimates is especially considered 

risky and uncertain (Boehm et al., 2000a). However, the issue of estimating cost using drivers 

that are available from the early phases of development is extremely practical and consists 

therefore, another important research issue worth investigating. Throughout this thesis, 

experiments are conducted in the majority of the models proposed, investigating the issue of 

‗early‘ SCE, i.e., utilising drivers that are measured in the initial phases of development.  

Another issue is the type of project data available, typically of nominal nature, containing 

categorical or descriptive values, which are considered hindering factors in SCE since they 

cannot be easily exploited in models and are usually not clearly defined. In addition, the lack 

of explicit terminology for project data makes the differentiation of projects obscure. 

Examples of such data include the type of the organisation, culture and stability of the 

development environment, business area, application domain, development platform and the 

type(s) of language(s) utilised by a project. Therefore, an important requirement of SCE is to 

implement models that may accommodate many-type of data, such as numerical, nominal and 

descriptive data, and facilitate in performing the necessary transformations. Additionally, SCE 

models need to accommodate techniques or reasoning mechanisms to handle the uncertainty 

and vagueness of values caused by the lack of explicit terminology and measurement 

activities regarding software. Techniques such as Fuzzy Logic (FL), clustering and 

classification as well as predictive intervals (instead of crisp predictions) are associated with 

SCE in this work to address for example the lack of homogeneity and confidence in the 

project data. Thus, this thesis investigates the merits added in SCE by the implementation of 

such techniques, i.e., Clustering and Classification methods in SCE (CC-SCE), Predictive 

Intervals in SCE (PI-SCE) and Fuzzy Cognitive Maps for SCE (FCM-SCE), the latter 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

28 

including models of Qualitative nature, and all of which approximate cost factors and effort in 

a manner closer to the way humans conceive/conceptualise and relate information. 

Nevertheless, research in SCE has and will still have a long way to go, especially as the 

nature of the development process continues to evolve. The prevailing problem of resource 

misallocation is reported also in recent statistics. Figure 1.1 obtained from the Standish Group 

report (The Standish Group, 2007) indicates that only 35% of the projects in 2006 

successfully delivered their software within their estimates. Whereas, the issue of reliable 

estimation is between the most imperative success factors for software projects (Grimstad et 

al., 2006).  

 

Figure 1.1: Survey results of projects from 2006 regarding ‘successful’ costing of software (The 

Standish Group, 2007) 

 

Moreover, the emerging recent trends of software engineering contribute to the ascending 

horizon of SCE research as the field is being re-invented in every aspect of the triad People – 

Process – Product involved. Emerging paradigms include object-orientation, abstract data 

types, very high level programming and modelling languages, rapid and agile development 

processes, etc. As the different levels of customer requirements, quality and individual team‘s 

unique characteristics eventually affect the development process, SCE models are expected to 

be extended and include such evolutions. One of the issues investigated in the SCE 

approaches of this thesis, is the cost change in a newly adopted development environment, 

namely the Agile (Beck et al., 2000). The models proposed are referred to as Agile Software 

Development SCE (ASD-SCE) models. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

29 

Concluding, one of the greatest research questions still not adequately answered is: 

―Which type of software cost method is appropriate to use for a particular project/case to 

obtain successful, reliable and practical (useful) effort estimations?‖. Even though this 

research question most probably cannot be adequately solved for every single case, the 

exploration of a proposed range of solutions for software cost modelling and estimation based 

on enhanced/hybrid CI techniques is considered a promising endeavour. 

1.3 Goals and Objectives 

Taking into consideration the motivation for conducting research in the area of SCE, 

summarised in the previous section, this dissertation carries out an exploration of 

Computational Intelligent (CI) techniques and models. The goal is to find accurate, reliable 

and practical alternative solutions for estimating software cost taking into consideration the 

available information of particular circumstances. These circumstances are unique for each 

project. Moreover, in order to produce estimations, the cost techniques and models require 

information that is not known from the initiation of the project. Thus, project managers and 

engineers try to specify the exact values for the metrics used as inputs (MacDonell and Gray, 

1997). Since for many of these metrics the actual values are never known with certainty until 

the project is completed, managers often assume values they anticipate (Jørgensen, 2004a). As 

an alternative, cost data values may be collected from past completed projects and be utilised 

for future cases in an analogy-based method (Chiu and Huang, 2007) according to a set of 

project characteristics. While the former situation suffers from subjectivity, the latter does not 

guarantee that the new project will require the same amount of effort with that of ‗similar‘ 

projects in terms of the selected characteristics, especially considering the diversity of 

projects. Thus, typically the estimates are based on the subjective human judgements encoded 

in measured data of previous human experiences with software projects. 

CI methods and techniques were chosen since several research studies appeared during 

the last decade with promising results (such as the work of Srinivasan and Fisher (1995), 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

30 

Finnie et al. (1997), Wittig and Finnie (1997), Mair et al. (2000), Heiat (2002), Idri et al. 

(2004), Xu and Khoshgoftaar (2004) and Ahmed et al. (2005)) and suggesting that their 

application might yield significant benefits. These studies have shown that the appropriateness 

and comprehensibility of the algorithms coming with CI techniques have added significant 

advantage for project managers over traditional methods (like another popular technique, i.e., 

regression analysis). Moreover, according to Fenton (2000) traditional methods hardly 

provide adequate support for quantitative decision making. 

The main goal of this diatribe is briefly summarised in the following statement: 

“Investigate the effectiveness of Computational Intelligent (CI) techniques and propose novel 

models for accurate and reliable Software Cost Estimation (SCE) in conjunction with the 

identification of the most significant (appropriate) cost driver attributes/schemes and their 

relationships with effort.”. Among the main goals of this thesis is also to investigate both 

empirical and theoretical issues emerging in the field of SCE, under two approaches, the 

Quantitative and the Qualitative. The first refers to exploration of numerical and empirical 

project observations through Quantitative cost models; the second introduces empirical 

scenarios analysis through Qualitative cost models devised with the aid of one or more 

experts. In this context, existing cost models, methods and techniques, and their actual use in 

real-life software environments comprise the cornerstone of the initial research investigation. 

The first realisation was that most well-known parametric cost models, such as SLIM 

(Putnam, 1978), Function Points Analysis (FPA) (Albrecht, 1979), COCOMO I (Boehm, 

1981), COCOMO II (Boehm et al., 2000a), PRICE-S (Park, 1988) and ANGEL (Shepperd 

and Schofield, 1997), require different sets and types of inputs. Therefore, this work carries 

out an explorative study for software cost modelling utilising a set of cost factors related with 

the three axons People – Process – Product. Moreover, since the majority of parametric cost 

models commence by associating the size of the software product with the effort required for 

each phase of the life-cycle and the total effort (Ghezzi et al., 2003), primarily in this work, 

Size-Based SCE (SB-SCE) are investigated (Papatheocharous and Andreou, 2008; 

Papatheocharous and Andreou, 2009c; Papatheocharous and Andreou, 2011).  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

31 

Then, Feature Subset Selection for SCE (FSS-SCE) is performed to establish the 

appropriate set(s) of software project factors and principles for (professional) practice of cost 

estimation upon which schedules, resource allocation and decisions can be based. The chief 

cost estimation models developed are based on two widely known techniques, i.e., Artificial 

Neural Networks (ANN) (Papatheocharous and Andreou, 2007; Papatheocharous and 

Andreou, 2010; Papatheocharous and Andreou, 2012b) and Ridge Regression (RR) 

(Papatheocharous et al., 2010c; Papatheocharous et al., 2010b). ANN represent a dominant CI 

technique widely used in various fields and RR is used as a reliable estimator for comparing 

various FSS approaches. The basic research investigation of the thesis related to modelling 

and cost factor‘s extraction is complemented by hybrid SCE models from the area of CI, such 

as Evolutionary Algorithms (EA) and Fuzzy Logic (FL).  

Of particular interest is the development of software cost models that also apply vertical 

and horizontal dataset filtering, through methods of clustering and classification. Some of the 

techniques proposed are used in conjunction with Fuzzy Logic (FL) for addressing the 

subjectivity and uncertainty of the data and comprise the Clustering and Classification SCE 

(CC-SCE) models. The techniques involve fuzzy clustering with the Entropy-based and Fuzzy 

k-modes algorithm (Papatheocharous and Andreou, 2009a) and classification with association 

rules obtained from Fuzzy Decision Trees (FDT) (Papatheocharous and Andreou, 2009b; 

Andreou and Papatheocharous, 2008b). Moreover, two hybrid approaches are used for both 

clustering and classification purposes, namely Conditional Sets (CS) coupled with a Genetic 

Algorithm (GA) (Andreou et al., 2007; Andreou and Papatheocharous, 2008a) and Genetic 

Programming (GP) yielding cost equations (Papatheocharous et al., 2010a).  

Advancing the above techniques, the subsequent SCE approaches implemented have the 

ability to make intelligent decisions effectively for an assortment of ‗similar‘ software projects 

and at the same time to handle incomplete, imprecise and fuzzy information. Thus, hybrid 

models consisting of Fuzzy Decision Trees (FDT) and Fuzzy Implication Systems (FIS) 

(Papatheocharous and Andreou, 2012a) are developed. The aforementioned models focus on 

improving the prediction accuracy produced by employing hybrid Computational Intelligence 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

32 

(CI) techniques and by identifying rules of association between effort and the most 

‗influencing‘ cost drivers from the ones available. During the experiments conducted with the 

models of FSS-SCE and CC-SCE, this thesis included the study of the prediction ability of 

cost drivers that are available from the ‗early‘ project phases (i.e., after the end of the 

specifications) thus attempting to provide models of a more practical value. 

Lastly in the Quantitative approach, another hybrid model is developed using Ridge 

Regression (RR) and Conformal Predictors (CP) (Papadopoulos et al., 2009) to replace the 

production of a crisp estimation value for effort to predictive intervals, according to specific 

confidence levels. The Predictive Intervals for SCE (PI-SCE) are developed to yield more 

flexible approximations of effort and investigate maximum-minimum conditions. This 

flexibility is described through the predictive intervals constructed that include a minimum 

and a maximum value of the effort estimate. Also, the Phased-Based progressive SCE models 

(PB-SCE) developed perform estimations in four distinct stages of development, i.e. at an 

early, post planning, post specifications and a post design phase (Papatheocharous et al., 

2012). 

The Qualitative models produced investigate, simulate and analyse the dynamics of 

various cost factors (even factors that are hard to measure) through Fuzzy Cognitive Maps 

(FCM) and Influence Diagrams (ID). FCM utilise a group of experts for empirically weighing 

the set of inputs in the form of cognitive states and then estimate effort on a scenario basis 

(Papatheocharous et al., 2008). Finally, effort is investigated within non-conventional 

software development environments, i.e., when Agile Software Development (ASD) 

methodologies are followed, through ID. The Agile Software Development SCE (ASD-SCE) 

models constructed investigate and analyse the benefits of switching from traditional 

methodologies to agile in terms of productivity and cost (Papatheocharous et al., 2011).   

The above comprise the contribution of this Ph.D. thesis and meet the following set of 

objectives: 

– Investigate the validity of size-based software cost models. 

– Model and accurately predict development costs of real-life software projects. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

33 

– Locate the strongly influencing cost drivers and examine their impact in estimating cost.  

– Improve software cost models by using hybrid and evolutionary algorithms. 

– Cluster and classify software projects to improve estimations. 

– Handle the problematic nature of software engineering data (characterised by 

uncertainty) and incorporate fuzzification and predictive intervals in the estimations. 

– Investigate the issue of defining which phase or time-period is the most appropriate 

(safer) one for producing accurate enough cost estimations, i.e., how early in the phases 

of the development life-cycle. 

– Investigate software cost estimations within scenarios and modern development 

environments (e.g., Agile). 

1.4 Research Approach 

The scientific approach is briefly described in this section to summarise how this research 

work was developed: The first attempt aimed to discover new relations of cost factors 

according to the People – Process – Product aspects and model these relations into an 

assortment of SCE models. These models were divided into Quantitative and Qualitative 

models. The need of creating various cost models stems from the fact that no software cost 

model can address every project case in software engineering. It would not help, for example, 

to tailor the model if the technology or the process is too immature for the project in hand, or 

if the people involved are not skilled enough. Of primal concern was the study of the causal 

relationships among cost factors and an organisation‘s (or a person‘s) productivity. 

Productivity was accounted with work-effort estimates. Definition and measurement issues of 

cost factors that are quantitative (such as software size) and qualitative (such as people skills) 

were investigated.  

New methodologies for SCE were then developed stemming from the area of 

Computational Intelligence (CI), such as Artificial Neural Networks (ANN), Genetic 

Algorithms (GA), Probabilistic Theory and Fuzzy Logic (FL). CI methods offer a 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

34 

complement to conventional Artificial Intelligence in the area of Machine Intelligence and 

approximate in a qualitative manner human reasoning. Moreover, the introduction of new 

hybrid SCE models, by combining Evolutionary Algorithms (EA) and Fuzzy Logic (FL), 

improved the techniques and the results in terms of accuracy and comprehensiveness. In 

addition, the quality of the available data was investigated through Feature Subset Selection 

(FSS) methods to locate the strongly influencing set of software cost factors. Moreover, 

various clustering and classification algorithms were employed to improve the SCE obtained 

by identifying the most appropriate factors to group projects and optimise prediction results. 

Especially the effect of ‗early‘ software effort estimations (i.e., after concluding with 

requirements specification) was examined. Recent software paradigms and modern 

development approaches such as the Agile were also examined, as regards the impact they 

pose on current cost models and approaches and for any necessary enhancements and/or 

modifications to account for the changes they introduce. This research thesis also studied 

qualitative software metrics such as the developer‘s working environment, which are harder to 

quantify. Such metrics were used together with expert assessments regarding the software 

under to model and execute hypothetical scenarios. 

1.5 Significance 

The impact of this dissertation is included in the benefits of the introduction of CI 

techniques for the improvement of SCE models. The discipline of CI has been chosen to be 

applied in the area of SCE combining elements of learning, adaptation, prediction, evolution 

and fuzzy logic to create hybrid models with some sort of intelligence. The CI-hybrid models 

developed extend or replace traditional SCE techniques such as Algorithmic, Expert 

Judgement, Analogy-based, Parkinson‘s Law and Price-to-win (Sommerville, 2006). CI in 

SCE offers the opportunity to build solutions inspired from a combination of several research 

disciplines, for example, computer science, economics, philosophy, sociology and biology. 

The solutions: (i) are practical and repeatable, (ii) are objective and realistic since the result is 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

35 

based on extensive analysis of real project data and feedback from project stakeholders, (iii) 

provide automatic data exploration, filtering, clustering and classification for improving 

estimates, (iv) provide ways to handle efficiently complex, hard, NP-complete problems, 

where no obvious mathematical formulas can be extracted by hand to associate the 

independent variable(s) with the dependent one(s) and, finally, (v) add significant value of 

empirical evidence, something which is important in the case the discipline of software 

engineering turns into Evidence-Based Software Engineering (EBSE). The term adapted from 

Evidence-Based Medicine aims to provide ways by which current best evidence from research 

can be integrated with practical experience and values in the process of decision making for 

the development and maintenance of software (Kitchenham et al., 2004). 

1.6 Contents of the Dissertation 

The rest of this dissertation is organised as follows: 

 Chapter 2 begins with a definition of SCE and a brief historical overview. It describes 

the SCE models and techniques classification and the evaluation criteria proposed in 

the literature. It surveys background work on models and particularly introduces the 

area of Computational Intelligence, and finally, it summarises the open research 

issues in the area of SCE.  

 Chapter 3 describes the technical background relevant to this research work in two 

approaches, namely the Quantitative and the Qualitative. The theoretical background 

of the basic algorithms and techniques related with this work is summarised. 

 Chapter 4 describes the models and cost estimation approaches developed in this 

research work aiming to accurately estimate effort and investigate the effect from 

various project factors on cost. The chapter also summarises the empirical 

experiments conducted with the CI-based models and techniques and presents the 

evaluation results. The experimental results include various accuracy indicators, 

analysis of the relationship between values of relevant cost drivers and discussion. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

36 

 Chapter 5 concludes this dissertation, provides a summary of the proposed software 

cost models and techniques presented in the previous chapter. The chapter 

summarises the main results and goals achieved with the techniques and research 

questions explored. In addition, the chapter provides a critical discussion of the threats 

to validity and concludes with the future research steps. 

 

Efi P
ap

ath
eo

ch
aro

us



 

37 

 

Chapter 2  

Literature Overview 

Over the years, a lot of research effort has been devoted to quantitative studies of software 

productivity and the factors affecting cost. Many models and techniques have been proposed 

for estimating the cost to develop a software product. In this chapter a historical overview 

along with a specification of the classical and more recent techniques and advances employed 

in the area of SCE are provided. Also, the evaluation criteria proposed by various researchers 

are described and a section of the chapter refers to the most commonly used accuracy 

measures for assessing cost estimations. The chapter provides also a review of related research 

work and concludes with CI techniques emerging in the research area. Concluding the chapter 

the identified open research problems are summarised. 

2.1 Brief Historical Overview 

The process of Software Cost Estimation (SCE) is one of the fundamental tasks performed 

by project managers. It involves predicting the amount of cost (or effort) required to produce a 

software artefact. The earliest attempts of SCE included simple rules of thumb such as ―on a 

large project, each software performer will provide an average of one checked-out instruction 

per man-hour‖ (roughly 150 instructions per man-month) or ―each software maintenance 

person can maintain four boxes of cards‖ (in those early days a box of cards held 2000 cards 

or roughly 2000 instructions of few comment cards) (Selby, 2007). Later on, several project 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

38 

managers (e.g., Benington (1956), Norden (1958) and Nelson (1966)) began collecting 

quantitative data on effort and effort distribution along the Software Development Life-Cycle 

(SDLC). The relevant early studies of Norden (1958) which attempted to estimate the 

expected production costs for building a system using logistic growth curves and Nelson 

(1966) which provided estimates using analogy, rules of thumb and parametric models, 

concluded that there were too many non-linear aspects of software development for the 

models to work well. 

Up to the early 1970s relatively little progress was made in SCE, until the 1980s and 

1990s when several SCE models were developed that worked reasonably well on a restricted 

set of projects based on which they were calibrated. Models of that period include the TRW 

Wolverton model (Wolverton, 1974), the Doty Model (Herd et al., 1977), the IBM-FSD 

(Walston and Felix, 1977), the Function Points Analysis (FPA) (Albrecht, 1979), the RCA 

PRICE-S model (Freiman and Park, 1979; Park, 1988), the SLIM model (Putnam, 1978) and 

the COCOMO (Boehm, 1981). Some more recent models use algorithmic equations, quite 

similar to the COCOMO (Boehm, 1981) or to the Rayleigh curve as in SLIM (Putnam and 

Myers, 1992). Such examples include Baily-Basili‘s meta-model (Bailey and Basili, 1981), 

Grumann‘s SOFCOST model (Dircks, 1981), Tausworthe‘s Deep Space Network (DSN) 

model (Tausworthe, 1981), Jensen‘s model (Jensen, 1983) and COCOMO II (Boehm et al., 

2000a). A basic shortcoming of such models‘ contribution of collecting data and fitting simple 

linear or exponential equations is that the independent cost drivers and their effect on effort 

have to be known a priori. However, the cost drivers values, coefficients and degree of 

relationship with effort are hard to be determined before the requirements of the project under 

estimation are gathered, analysed and a fairly detailed design is prepared (Stutzke, 2006). In 

addition, high inaccuracies occur when the aforementioned models are applied in different 

environments (i.e., different organisations, organisation types and projects) than the ones 

calibrated for (Kitchenham and Taylor, 1985; Conte et al., 1986; Kemerer, 1987).  

Some successive software cost models developed showed that research has moved beyond 

the above models and include the ANGEL (Shepperd and Schofield, 1997), GRACE (Song et 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

39 

al., 2005), COSEEKMO (Menzies et al., 2006) and AQUA (Li et al., 2007). ANGEL 

(Shepperd and Schofield, 1997) is a model based on analogy which produces an estimate by 

selecting only projects with very similar characteristics (e.g., number of interfaces, 

development method, or size of functional requirements documents). The model has presented 

several advantages, such as user acceptability, dealing with the inadequately understood 

domain of software projects since the estimations are based on previous project experience 

and the reasoning is closer to human thinking. GRACE is based on the uncertainty presented 

in small sample datasets and addresses feature subset selection and effort prediction based on 

Grey Relational Analysis (GRA) (Song et al., 2005). COSEEKMO is used to rank alternative 

SCE models and select the best parametric method among models in the COCOMO format 

(Menzies et al., 2006). AQUA combines analogy and collaborative filtering and handles non-

nominal features and missing values (Li et al., 2007).  

Even though the aforementioned models presented several advantages, some limitations 

are mentioned in this section. For example, the yielded estimations from analogy-based 

models (e.g., ANGEL, AQUA) will always be limited to the selected projects and thus they 

will present increased uncertainty. Additionally, GRACE cannot handle efficiently outliers, 

feature subset selection, and the weighted determinations for both features and efforts were 

not completely considered. Meanwhile COSEEKMO was restricted to work only with inputs 

having the specific COCOMO 81 or COCOMO II format, does not work well with noisy data 

and mostly relies on expert opinions and feedback. Other SCE models that have appeared 

even more recently (e.g., Huang et al. (2008), Li and Ruhe (2008), Azzeh et al., (2010), 

Menzies et al. (2010) and Song and Shepperd (2011)) seem to introduce and combine 

techniques from Machine Learning and Computational Intelligence, or combine results from 

multiple methods to enhance the particular approaches. 

However, today‘s organisations and environments utilise modern development methods, 

such as object-orientation, component, or in general, reuse-based development and agility, 

which force project management methods to evolve. Current trends in software development 

utilise specialised tools, e.g., Integrated Development Environments (IDE), Graphical User 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

40 

Interfaces (GUI), Relational DataBase Management Systems (RDBMS) and application 

composition languages. These support Component-Based Software Development (CBSD) and 

software reuse, whereas software variability and size are continuously increasing in more 

complex software systems. Moreover, new types of software projects prevail such as Open 

Source, which usually are not considered in the latest models and have been hardly analysed 

regarding SCE. Therefore, the literature overview shows that the current models lack of 

several capabilities, emerging models using combination of approaches have gained some 

ground during the last decade and there are many open issues (summarised in the final section 

of this chapter) which need to be addressed by future SCE models and techniques. The 

following section summarises the models classification and evaluation criteria in SCE. 

2.2 Classification Schema of SCE Models and Techniques  

Software cost estimation methods are distinguished generally in model and non-model-

based methods (Briand and Wieczorek, 2000). Model-based methods include at least the 

following: (a) one or more models, most probably concerning a representation of the 

relationship between the value estimated (i.e., effort, productivity, etc.) and cost drivers, (b) 

one or more modelling method(s), concerning the required techniques and steps applied for 

acquiring the particular model(s), and, (c) one or more application method(s), involving the 

procedure for obtaining an estimate by putting into practice the model(s) of a particular 

context. The systematic classification of software cost methods reported in Figure 2.1 

distinguishes estimation methods based on explicit resource modelling and on expert 

judgements (Briand and Wieczorek, 2000). Efi P
ap

ath
eo

ch
aro

us



 

 

 

41 

 

Figure 2.1: Software estimation methods classification (Briand and Wieczorek, 2000) 

 

A further analysis of the software estimation methods follows: Model-based methods are 

further separated into Generic and Specific model-based methods, according to the context in 

which they may be applied. The case of Generic models may be public and documented (Non-

proprietary), or not public and not fully documented (Proprietary), while the case of Specific 

models may be distinguished according to Data-driven or Composite methods. Data-driven 

methods are divided into Parametric, i.e., methods requiring the a priori specification of a 

functional relationship between project attributes and cost, and Non-parametric, i.e., methods 

that do not make this type of specific assumptions. Composite methods may combine expert 

judgement and Data-driven methods. Finally, Non-model-based estimation methods consist of 

one or more estimation techniques together with the specifications of how to apply them in a 

particular context. These methods do not build any models but just direct estimation by 

usually resorting to consulting one or more experts and deriving a subjective effort estimate.  

Another popular classification schema of SCE methods is provided in Figure 2.2 

(Myrtveit et al., 2005). The schema distinguishes the methods into Sparse-data and Many-data 

methods. Sparse-data methods require few or no historical data. Many-data methods need 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

42 

large datasets and are subdivided to methods based on Functions, i.e., pre-defined 

mathematical equations describing the relationship among effort and the independent features, 

and methods of Arbitrary Function Approximators (AFA), i.e., functions that do not require 

any assumptions for the aforementioned relationships. The latter include estimation by 

analogy and Machine Learning techniques. 

 

Figure 2.2: Software estimation methods classification schema (Myrtveit et al., 2005) 
 

Function-based methods, also called Algorithmic models (Boehm, 1981; Boehm, 1984), 

are even today among the most popular methods in SCE. They attempt to represent the 

relationships between effort and one or more project characteristics with mathematical 

formulas derived through statistical data analysis. Expert Judgment methods (appearing within 

the Sparse-data methods) rely purely on the experience and knowledge of one or more 

experts. They highly depend on the ability of the experts to extract a sufficiently meaningful 

understanding of the underlying mechanisms behind the development process. As projects 

become increasingly large, such information extraction, understanding and unbiased 

estimations of costs turns to be even harder, as estimations are subjective. Machine Learning 

techniques mostly combine concepts and notions from the area of Soft Computing to form 

cost estimators or predictors. Machine learning models contrast traditional models, such as 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

43 

regressions, which are typically defined with a mathematical formula, in the sense that they 

may hold with many different shape functions.  

2.3 Evaluation Criteria of Software Cost Models 

Substantial research effort is focused on discussing cost estimation methods (Briand and 

Wieczorek, 2000), reviewing effort estimation models (Boehm et al., 2000b), proposing best 

practices for effort estimations (Menzies et al., 2006) and finally, guidelines on how to 

advance towards skilled estimation techniques and measurement (Jørgensen, 2004a). 

However, software engineers are until today hindered to adopt a specific approach for SCE. 

The aforementioned problem may be attributed to the uniqueness of each software product, 

the numerous unmanageable software risks (Boehm, 1988) and the volatile conditions and 

contingencies occurring during the development process. In addition, a notably long list 

composed by Menzies et al. (2006) of effort estimation best practices is extremely difficult to 

follow by cost estimators and software engineers. Very little support is provided on which of 

the proposed SCE models, techniques or best practices are considered ‗safe‘ to use, essential, 

appropriate to combine or ignored. Moreover, each project and organisation appears to have 

different tolerance regarding over or under estimated runs of cost, and should be treated as a 

unique case. For example, an organisation may be satisfied with a cost estimate that overruns 

by 10% the actual cost if their profit rate is around 30%, while the case for another 

organisation may be quite different. Therefore, the evaluation of various cost models is a 

highly subjective matter. 

In order to evaluate the effectiveness of competing methods several global accuracy 

measures have been proposed, with the most dominant (in terms of most frequently reported 

in studies) being the Mean Magnitude of Relative Error (MMRE) and the Prediction Level 

(Pred(l)). The equations calculating these accuracy measures are provided at the end of this 

section. Researchers consider a model‘s accuracy acceptable if it produces an effort estimate 

within 25% of the actual effort 80% of the time (Conte et al., 1986; Kitchenham, 1990). 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

44 

Nevertheless, if for example a model reaches the ‗acceptable‘ accuracy (i.e., is reported to 

produce an effort estimate within 25% of the actual effort 75% of the time) it may yield 

significantly higher relative errors for the remaining 25% of the estimates, something which 

suggests that this model is not reliable (Nguyen et al., 2008). 

Therefore, apart from the quantitative accuracy comparison of SCE models various 

researchers have described a list of supplementary evaluation criteria. These other desirable 

properties of software cost models found in relative literature are provided in Table 2.1 

(Boehm, 1981), Table 2.2 (Gray and MacDonell, 1997a), Table 2.3 (Mair et al., 2000),Table 

2.4 (Briand and Wieczorek, 2000), Table 2.5 (Burgess and Lefley, 2001), Table 2.6 (Ahmed 

et al., 2005) and Table 2.7 (Zhang and Zhang, 2009). Even though there are also many other 

supplementary criteria proposed in the relative literature for evaluating software cost models 

they are not listed in this section. The reason for this was that the most significant evaluation 

criteria are already covered in the tables reported below and considering more criteria resulted 

to overlaps in terms of definition. 

Table 2.1: Software cost model evaluation criteria by Boehm (1981) 

Criteria Description 

Definition Has the model clearly defined the costs it is estimating and cost it is excluding? 

Fidelity  Are the estimates close to the actual costs expended on the project?  

Objectivity  

Does the model avoid allocating most of the software cost variance to poorly 

calibrated subjective factors (such as complexity)? That is, is it hard to rig the 

model to get the results you want?  

Constructiveness  
Can you tell a user why the model gives the estimate that it does? Does it help 

the user understand the software job to be done?  

Detail  

Does the model easily accommodate the estimation of a software system 

consisting of a number of subsystems and units? 

Does it give (accurate) phase and activity breakdown?  

Stability  
Do small differences in inputs produce small differences in output cost 

estimates?  

Scope  
Does the model cover the class of software projects whose costs you need to 

estimate?  

Ease of Use  Are the model inputs and options easy to understand and specify?  

Prospectiveness  
Does the model avoid the use of information which will not be known until the 

project is complete?  

Parsimony  
Does the model avoid the use of highly redundant factors or factors which make 

no appreciable contribution to the result?  

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

45 

Table 2.2: Software cost modelling technique capability criteria by Gray and MacDonell (1997a) 

Criteria Description 

Model free 
The ability of the technique to determine its own structure, rather than relying on 

the developer to provide the form of the relationship between inputs and outputs. 

Resist Outliers 
The modelling technique‘s robustness of estimation when faced with a dataset 

containing outliers. 

Explains Output The technique‘s capability of providing some explanation for their reasoning. 

Suits small datasets Can an accurate model still be derived with small datasets? 

Adjusted for new 

data 

Once a model has been developed, the issue of whether additional data can be 

added or whether the entire model must be re-generated on the combined data set 

must be considered. 

Reasoning process 

is visible 

Related to the explanation of a model is the capability for a user to see how a 

model arrived at its conclusions. 

Suit complex 
The suitability of a technique to incorporate complex models is related to the 

issue of model-free estimation and the ability to add expert knowledge. 

Include known 

facts 

The technique‘s capability to include known information into a model, that is, to 

initialise a model with known facts (expert knowledge) and then use data to 

improve and refine it. 

 

Table 2.3: Software cost system evaluation criteria by Mair et al. (2000) 

Criteria Description 

Accuracy The spread of error in terms of MMRE. 

Explanatory value Does the system provide explicit discernible results? 

Configurability 
How much effort is required to build the prediction system in order to generate 

useful results? 

 

Table 2.4: Software cost model/estimate, method and application evaluation criteria by Briand 

and Wieczorek (2000) 

Criteria Description 

Quality of 

model and 

estimate 

An important criterion regarding the quality of an estimation model and estimate, or its 

estimates, is predictive accuracy. This compares the predicted resource expenditures 

with actual values, e.g., in terms of the relative error. The higher the quality of an 

estimate, the less the risk associated with an estimate, the more likely is an estimation 

method to be accepted by practitioners. This criterion is often considered the most 

important as models or techniques have to be sufficiently accurate to be even 

considered as an alternative for resource estimation. 

Input variables 

required 

This category considers the kind of inputs required to develop and use a model. For 

generic models, we will consider whether it is possible to tailor inputs to a particular 

environment and the extent to which they can be objectively assessed in terms of their 

contribution to estimating resource expenditures. For example, COCOMO II proposes 

a set of up to 17 cost-drivers (or model input variables) that one has to estimate and use 

to produce an effort estimate. 

Completeness 

of estimates 

This category evaluates a model‘s capability to provide estimates for different project 

resource expenditures like, effort, cost, or duration. During project planning, support is 

needed for all these types of resources. However, effort estimation has been the focus 

of most research, as it is believed that cost and duration can then be derived from effort 

estimates. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

46 

Criteria Description 

Type of 

estimates 

This category assesses the different possible types of estimates that a model can 

provide, like point estimates, interval estimates, or probability distributions. In general, 

the uncertainty of a resource expenditure estimate should be modelled. This is 

particularly important in software engineering where decisions are made within the 

context of large uncertainties and based on risk analysis. For example, it can be a range 

of values that has a given probability (e.g., 0.95) of including the actual cost. 

Calibration 

This category captures the extent to which a model can be calibrated based on project 

data and to which extent calibration is clearly supported by a modelling method. 

Usually, generic models such as COCOMO need to be calibrated to different 

environments. But proprietary models and tools do not always provide such a 

capability in a satisfactory form. 

Interpretability 

This category specifies the extent to which a model is easy to interpret by a software 

engineering practitioner, (e.g., project manager). A model that consists of a 

multivariate regression equation, for example, may not be very easy to interpret, and 

thus might not be accepted by practitioners in certain contexts. It is often the case that 

practitioners want to understand how an estimate was obtained before relying on it. 

Those human factors play a very important role in the adoption of a resource 

estimation method. 

Assumptions 

This criterion assesses how realistic are the underlying assumptions of the estimation 

model(s) in a given context. The more unrealistic the assumptions, the more risky the 

application of an estimation method. 

Repeatability 

The repeatability of an estimation method captures the extent to which the steps to use 

models and techniques, combine their results, and obtain a final estimate, are clearly 

defined. The better defined and specified an estimation method, the more independent 

the estimate from any specific human estimator. 

Complexity 

This characterises the cognitive complexity of the steps that are required to generate an 

estimate. The more complex an estimation method, the higher the effort invested into 

estimates, the more error-prone, the less likely to be adopted by practitioners. 

Automation of 

Modelling 

This criterion captures the extent of tool support that is available to apply a modelling 

method in order to derive estimation models. The effort to derive models and evaluate 

them is drastically reduced when effective tool support is available. 

Transparency 

This assesses the extent to which the algorithms and heuristics of the estimation 

method are documented and justified by a clear rationale. This is different from 

repeatability as the estimation process may be well defined but proprietary and 

invisible to the estimator. This criterion mostly applies to proprietary estimation 

methods embedded into commercial tools. 

Application 

Coverage 

This category evaluates the extent of possible applications of a model. Questions 

addressed here are the following: Can the provided models be used for prediction, 

benchmarking, and/or risk-assessment? Can usage scenarios be readily identified for 

these purposes? 

Generalisability 

This assesses the extent to which an estimation method is applicable across 

development environments. This depends on the conceptual assumptions underlying 

the estimation methods and its underlying models (if any) and may be supported by 

empirical evidence reported in existing studies. 

Comprehensive

ness 

This tells how fine grained an estimate can be (e.g., effort predicted at the project, 

phase, or activity level), and what project activities can be included into an estimate 

(e.g., administrative and management overhead activities). 

Availability of 

Estimates 

This category captures the applicability of an estimation method during the various 

stages of software development. This mainly depends on the availability of the inputs 

required by the estimation model(s) or techniques to obtain an estimate.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

47 

Criteria Description 

For example, COCOMO II provides ways to obtain estimates at different stages of a 

project, each requiring different sets of input variables are used for subsequent stages. 

Automation of 

Method Usage 

For a given estimation method, this criterion captures the extent to which the derivation 

of a final estimate for different purposes such as prediction, risk analysis, and 

benchmarking are supported by tools. 

 

Table 2.5: Quantitative and qualitative software cost evaluation criteria by Burgess and Lefley 

(2001) 

Criteria Description 

Accuracy 
Summary statistics (such as CC, AMSE, Pred(.25), 

Pred25%, MMRE, BMMRE). 

Resources required Time and memory needed to train and query. 

Ease of set up 
Ease of configuration and number of parameters required 

to be configured. 

Transparency of solution or decision Explanatory value of a solution and how it was reached. 

Generality Extent of generality. 

Robustness Sensitivity of solutions on parameter values. 

Likelihood of convergence Possibility of converging to a solution. 

Prediction beyond learning data set space Extent of prediction. 

 

Table 2.6: Software cost model evaluation criteria aggregated by Ahmed et al. (2005) 

Criteria Description 

Underlying model 

The underlying model specifies whether the effort prediction soft computing 

approach is based on an existing algorithmic cost estimation model like 

COCOMO, SLIM, etc. or based on other models like expert judgment, analogy. 

Trainability 

Trainability is the ability of a prediction system to learn the relationships between 

features and adapt during training. This attribute is what has generally been 

referred to as adaptability in many of the approaches surveyed. 

Adaptability 

This attribute describes the ability and ease of the prediction system to adjust to 

new environments as new information and knowledge are supplied. Trainability 

does not translate to adaptability, as a system could be trainable but not adaptive. 

Adaptability subsumes trainability. 

Sensitivity 

This attribute refers to the responsiveness to changes in input data, and the type of 

input data it can handle (e.g., numeric data, categorical data). Responsiveness to 

changes in input data assesses the effect an imprecision in input to the model has 

on the effort estimate produced. For example, we desire to know how well the 

system can accommodate an error involving size supplied as 900 KLOC as 

opposed to the actual 850 KLOC. 

Aspect coverage 

This refers to the ability of the approach to cover wide range of aspects of the 

development process and environment. For example, whether the effort 

prediction system takes into consideration the following; reuse, capability-

maturity model level, etc. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

48 

Criteria Description 

Spectrum coverage 

This attribute refers to the coverage of different types (classes) of systems, e.g. 

organic, semidetached and embedded systems. If a prediction system is not 

sophisticated, it might not be able to cover the whole spectrum. A prediction 

system might still be able to model a software project inherently made up of 

different classes without necessarily breaking the project into different groups, 

although such systems may be too complicated. 

Implementation 

technique 

This attribute captures the implementation approach taken. An implementation 

approach using soft computing can be as simple as a straightforward application 

of an underlying model by applying a single soft computing approach, e.g. 

fuzzifying input/output, or a more sophisticated implementation technique that 

explores/combines various capabilities of the Soft Computing methods used (e.g., 

Fuzzy Logic (FL), ANN, Neuro-Fuzzy (NF), Neuro-Genetic (NG), etc.). 

Input data 

This attribute identifies the type of input data required by the effort prediction 

system to perform estimates, e.g., LOC. It also reflects the ease of getting the 

input data and the accuracy in making reasonable estimates. Input data is simply 

the input required to make estimates using the prediction system, but not to 

develop the prediction system. 

Knowledge 

acquisition and data 

source 

This refers to the mode of knowledge acquisition considered in developing (i.e., 

training/adapting) the prediction system, the source of data required and how 

reliant the system is on the data source. The mode of knowledge acquisition could 

either be manual, with users being the source of the knowledge or automatic 

(based on perceived relationship between the data through learning). For 

example, a system that relies on users to supply rules in a FL-based approach is 

said to exhibit manual knowledge acquisition. The data source can be either from 

historical or simulated data. 

Complexity of the 

model 

This attribute refers to the amount of effort or size (e.g., number of neurons, 

number or rules, etc.) required for building and/or using the prediction system. 

This attribute reflects the efficiency of the prediction system. A model that is not 

practical or rather difficult to use might not be a good model. For example, ANN 

are known to give good approximations, but they might be overly complex and 

require considerable effort and expertise. 

Accuracy 

Accuracy is the attribute of a prediction system that reflects its effectiveness. A 

software manager who wants to use a prediction model would desire to use an 

accurate one. 

Transparency 

Transparency of a prediction system reflects the visibility of the prediction 

process to the software engineer/expert. Interaction or collaboration between the 

prediction system and the end-user/expert is of great importance, especially for 

maintenance purposes. If a system is transparent, an expert can easily evaluate 

and add his own knowledge to improve accuracy of the model, because it would 

be possible to see and understand the processes involved. Empirical research has 

indicated that experts coupled with prediction systems outperform either 

prediction systems or experts alone. 

Extendibility 

Extendibility reflects the ability of a prediction system to accommodate changes 

to its model, in that it will be useful for predicting effort required for other 

activities of software development, e.g., maintenance, testing, etc. A prediction 

system that uses an underlying model in such a way that the prediction process 

expects a specific type of input, might not be useful on extending it to other 

activities for which such inputs are not defined. 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

49 

Table 2.7: Estimation inputs, process and outputs evaluation criteria by Zhang and Zhang (2009) 

Criteria Description 

Comprehensiveness 
Whether the users can clearly understand definitions and requirements of inputs 

that estimation methods need. 

Accessibility 
Whether the inputs information needed can be received in estimation stage, not 

until the project completes. 

Objectivity Whether the users‘ subjective judgment information can be minimised. 

Parsimony 
Whether the input of unnecessary information and factors which have little 

impact on result can be excluded. 

Scientificalness 
Whether the analytical method or data processing method used in estimation is 

reasonable, and there is no objection to the basic hypothesis condition. 

Repeatability 
Whether the description of estimation process is detailed and clear enough, and 

subjective comprehension error produced in application can be avoided. 

Sustainableness 

Whether the estimation method can answer problems of response ability 

enhancement and timeliness spread by adjustment of relevant parameters and 

calibration within the organisation. 

Information 

Completeness 

Whether the outputs provided can satisfy the requirement of information scope 

users need. 

Results Reliability Whether the estimation result is credible and how can it be validated. 

 

The problematic issue of definition regarding the evaluation criteria summarised above is 

apparent; even thought the researchers agree in the general concept of the evaluation criteria 

they appeared to be quite inconsistent in terms of definition, i.e., what each criteria means in 

each respective study is quite different. Most research studies summarised proposed the 

evaluation of different aspects of the models, introduced non-identical descriptions (using 

different terminology) for sometimes the same criterion, and in some cases, the definitions of 

some criteria overlap. This makes the decision to evaluate software cost models on specific 

criteria hard and the comparison of the results reported from various SCE studies and models 

in the literature even more difficult. 

Nevertheless, if we attempt to gather the common criteria described in at least half of the 

aforementioned studies (even though the list is indicative and it could be expanded in a future 

investigation and although quite inconsistent terms were used), the following merged list is 

established: Accuracy (i.e., fidelity as described by Boehm (1981)), comprehensiveness (i.e., 

transparency as described by Briand and Wieczorek (2000)), robustness (i.e., sensitivity as 

described by Ahmed et al. (2005), usability (i.e., ease of use as described by Boehm (1981)), 

adaptability (i.e., generalisability as described by Briand and Wieczorek (2000)) and early 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

50 

estimations (i.e., prospectiveness as described by Boehm (1981)). This aggregated list 

comprises the chief criteria that were considered in the research work conducted in this thesis. 

Finally, it is worth noting that none of the aforementioned software cost evaluation criteria list 

(not even our own merged list) claims to be complete or fully applicable for evaluating every 

type of cost model or technique.  

Moreover, this section concludes with the most popular accuracy evaluators used in the 

area of SCE since accuracy is the primal concern of project managers, stakeholders and 

researchers. The criteria of evaluation for the performance results of the methods/models 

developed in this research are obtained using a combination of common error metrics found in 

literature (Conte et al., 1986; Foss et al., 2003; Jørgensen et al., 2004), namely the Mean 

Magnitude of Relative Error (MMRE), the Correlation Coefficient (CC) and the Normalised 

Root Mean Squared Error (NRMSE). These error metrics are employed to validate the 

model‘s forecasting ability considering the difference between the actual and the predicted 

cost values and their ascendant or descendant progression in relation to the actual values. 

However, in cases where utilising a range of accuracy metrics made the comparison of the 

results of a particular model difficult (especially since they measure different aspects of the 

model), in this work, we mainly focused on using the most popular metric in the SCE 

literature, i.e., the MMRE for comparing the results of one or more models. 

The MMRE, given in eq. (2.1), shows the prediction error based on the sample being 

predicted; )(ixact is the actual effort and )(ix pred is the predicted effort of the 
thi project.  







n

i act

predact

ix

ixix

n
nMMRE

1 )(

)()(1
)(  (2.1) 

The CC between the actual and predicted values, described by eq. (2.2), measures the 

ability of the predicted samples to follow the upwards or downwards of the original values as 

it evolves in the sample prediction sequence. An absolute CC value equal or near 1 is 

interpreted as a perfect follow up of the original series by the forecasted one. A negative CC 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

51 

sign indicates that the forecasting series follows the same direction of the original with 

negative mirroring, that is, with a 180 rotation about the time-axis.  

   

    






























n

i

npredpred

n

i

nactact

n

i

npredprednactact

xixxix

xixxix

nCC

1

2

,

1

2

,

1

,,

)()(

)()(

)(  (2.2) 

The NRMSE assesses the quality of predictions and is calculated using the Root Mean 

Squared Error (RMSE) as follows:  

 
2

1

)(
1

)()(
)(









n

i

nact xix
n

nRMSEnRMSE
nNRMSE


 

(2.3) 

 



n

i

actpred ixix
n

nRMSE
1

2
)()(

1
)(  (2.4) 

If NRMSE=0 then predictions are perfect; if NRMSE=1 the prediction is no better than taking 

predx  equal to the mean value of n samples. 

In addition to the above, four evaluation metrics were used to evaluate the model‘s 

performance, namely the Prediction of specific Level l (Pred(l)), Mean Balanced Relative 

Error (MBRE), Mean Squared Error (MSE) and Mean Absolute Error (MAE). These are 

specified in eqs (2.5), (2.7), (2.8) and (2.9) respectively. Eq. (2.5) defines the ratio of the 

accurate data predictions k to the total number of data points predicted n. This accuracy is 

measured by the RE metric (given in eq. (2.6)) which must be lower than level l. For our case 

the parameter l was set equal to 0.25. MBRE measures the bias in prediction accuracy and in 

some cases may be considered more appropriate than MMRE for the analysis of linear 

relationships, especially in datasets including projects with strongly underestimated effort. 

MSE and MAE are scale dependent errors and do not offer objective evaluation. Nevertheless, 

in some experiments these error figures are calculated as well, to facilitate the comparison 

with similar studies which report these metrics.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

52 

n

k
lpred )(  (2.5) 

)(

)()(
)(

ix

ixix
nRE

act

predact 
  (2.6) 



































n

i

predact

pred

predact

predact

act

predact

ixixif
ix

ixix

ixixif
ix

ixix

n
nMBRE

1
)()(,

)(

)()(

)()(,
)(

)()(

1
)(

 
(2.7) 

 



n

i

npredpred xix
n

nMSE
1

2

,)(
1

)(  (2.8) 





n

i

predact ixix
n

nMAE
1

)()(
1

)(  (2.9) 

The following section summarises the related work on SCE models. 

2.4 Overview of Related Work in Software Cost Estimation 

A huge number of empirical studies on SCE models exist. Jørgensen and Shepperd (2007) 

report 61% of the 304 papers published before 2005 that concerned research on software 

development effort or cost estimation, have also introduced and evaluated estimation methods. 

Although the work on developing SCE methods is vast and therefore quite difficult to survey 

adequately this section reports the main streams of research work.  

Foremost models (49% according to Jørgensen and Shepperd (2007)) are based on 

regression analysis, which is usually used as a baseline to compare the performance of other 

models (Myrtveit et al., 2005). These models assume that by employing some independent 

attributes as inputs (i.e., project characteristics) and a dependent variable as the output 

(namely development effort) the resulted complex I/O relationships may be captured by an 

explicit formula. Some examples adopting the concept include the work of Miyazaki et al. 

(1994), Finnie et al. (1997), Angelis and Stamelos (2000), Boehm et al. (2000b), Barry et al. 

(2002), Benediktsson and Dalcher (2003), Mair and Shepperd (2005), Nguyen et al. (2008) 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

53 

and Mittas et al. (2010). Project managers are expected to produce a preliminary software cost 

estimate based on (i) either solely on their experience (Jørgensen, 2007), (ii) or with the help 

of the cost models developed (Boehm et al., 2000b), (iii) or through statistical analysis of 

historical data (Liu et al., 2008), (iv) or through a combination of the above methods 

(MacDonell and Shepperd, 2003a; Jørgensen and Shepperd, 2007). Also, most of the 

aforementioned studies applied the Ordinary Least Squares (OLS) Regression method. 

Substantial research (22% of the studies reviewed by Jørgensen and Shepperd (2007)) 

involves Function Point-based estimation approaches. These approaches mainly involve 

identifying and classifying the major system components such as external inputs, external 

outputs, logical internal files, external interface files and external inquiries. The classification 

is based on their characterisation as ‗simple‘, ‗average‘ or ‗complex‘, depending on the 

number of interacting data elements and other factors. Then, the unadjusted Function Points 

(FP) are calculated using a weighting schema and adjusting the estimations utilising a 

complexity adjustment factor (Albrecht, 1979). This is influenced by several project 

characteristics, namely data communications, distributed processing, performance objective, 

configuration load, transaction rate, on-line data entry, end-user efficiency, on-line update, 

complex processing, reusability, installation ease, operational ease, multiple sites and change 

facilitation. Some examples include the work of Albrecht and Gaffney (1983), Kemerer 

(1987), Heemstra and Kusters (1991), Betteridge (1992), Matson et al. (1994), Horgan et al. 

(1998), Antoniol et al. (2003), Zivkovic et al. (2005) and Xia et al. (2008). 

Another increasing stream of work involves Expert Judgements (15% of the studies from 

the aforementioned reference, i.e., Jørgensen and Shepperd (2007)) which includes consulting 

one or more experts and in which the estimation process may be directed on a non-explicit, 

non-recoverable reasoning processes, i.e., ‗intuition‘ (Jørgensen, 2004c). Moreover, most 

expert-based estimations rely on analogy of the estimator‘s past experience on similar projects 

developed. Some examples include the work of Hughes (1996), Höst and Wohlin (1997), Hill 

et al. (2000), Rush and Roy (2001), MacDonell and Shepperd (2003), Jørgensen et al. (2004), 

Jørgensen (2004b) and Jørgensen (2004c).  

Efi P
ap

ath
eo

ch
aro

us

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DH%25C3%25B6st,%2520Martin%26authorID%3D6602902996%26md5%3D831d7f3d35c0d5307db2ad02ba3daa6d&_acct=C000064619&_version=1&_userid=4731899&md5=5c946c9e8c4206877451173056e7c4cf


 

 

 

54 

 In recent years, the diversity and growth of SCE approaches have increased and a 

tendency towards alternative approaches like, analogy (10%), neural networks (7%), Bayesian 

(2%) and other approaches (8%) (such as genetic programming, linear programming, soft 

computing, fuzzy logic modelling and bootstrap-based analogy) has been reported (the 

percentages reported are obtained from Jørgensen and Shepperd (2007)). Especially in recent 

years, research is increasing towards Computational Intelligent (CI) techniques and 

combinations of approaches. Machine Learning or CI research work in SCE has gained a lot 

of interest within researchers and has also stimulated the research work conducted and 

included in this thesis. Therefore, specific research work related with CI techniques is 

discussed in the subsequent section. Whereas also considerable benefit is achieved by 

combining more than one technique to obtain an estimate, or the individual results of more 

than one technique to attain again at the end a unique estimate. Examples of such composite 

methods include the hybrid expert and regression-based methods of Boehm and Sullivan 

(1999), Genuchten and Koolen (1991), Kitchenham et al. (2002) and MacDonell and 

Shepperd (2003b). Clearly, these combinations influenced the results and led to the 

convergence of a more ‗reasonable‘ value of the estimation (as reported by MacDonell and 

Shepperd (2003), but also enhanced the substantiality of the techniques by combining their 

individual strengths. Finally, a common approach by organisations and/or individual 

estimators is to optimally tailor and apply existing methodologies according to their 

requirements, or device new techniques to benefit the most out of them. 

Despite the vast research conducted and variety of SCE methods proposed, the need to 

answer the following question still exists: ―Which model is more appropriate under specific 

conditions?” (Shepperd and Kadoda, 2001). Moreover, even if ‗acceptable‘ (accurate) cost 

predictions are produced, they do not point to an explicit, measurable and concise set of 

factors affecting productivity. Also, most techniques do not account for the uncertainty which 

is commonly discovered in the values of software cost factors. As already mentioned, many 

researchers have resulted in investigating intelligent CI and hybrid techniques since promising 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

55 

early indications were found on their effectiveness. The emergence of CI techniques and 

related work in SCE is presented in the next section. 

2.5 Computational Intelligence in Software Cost Estimation 

Latest trends in SCE research seems to promote the adoption of CI techniques, in 

combination with other approaches for building hybrid models capable of yielding more 

robust results (MacDonell and Shepperd, 2003a; Huang and Chiu, 2006). One of the 

challenges identified includes increasing the generalisability, comprehensibility and 

transparency of the approaches and techniques, in order to contribute in reducing the inherent 

uncertainties and increasing user acceptance. In addition, the investigation and understanding 

of the interrelated factors affecting cost and their relationship with effort and productivity is 

limited even for experts, and thus demands further research (Jørgensen, 2007). 

A wide range of studies report research attempts to approximate effort, either directly 

based on a CI technique or via their combination with other CI and/or statistical, analogy or 

expert-based techniques. These attempts have resulted in improved, hybrid forms of SCE 

models. However, even if a particular method outperforms others in a comparative analysis, it 

may still not be of any practical use in real project management if the prediction is not based 

on software factors that may be measured in the early phases of the project life-cycle. 

Early studies, such as the work of Serluca (1995), compared the results of three methods 

for effort estimation: Regression, analogy and Artificial Neural Networks (ANN). Utilising 

the MERMAID-2 dataset ANN achieved far more superior results compared to regression and 

marginally better than analogy when the dataset was fully used. However, when the dataset 

was separated into two more homogenous and therefore smaller clumps, the ANN performed 

very poorly, while the other two methods improved considerably. This led the author to 

conclude that ANN require large training sets before they can yield accurate predictions. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

56 

Srinivasan and Fisher (1995) compared ANN and regression trees for predicting effort 

reported in the Kemerer dataset, using the COCOMO dataset for training. The results of the 

experiments were in favour of ANN. 

Jørgensen (1995) utilised four modelling approaches to estimate maintenance effort: 

regression, ANN, a form of pattern recognition and a simple baseline rule of thumb model 

according to which, ―effort is equal to size divided by the mean productivity‖. The study used 

a Multi-Layer Perceptrons (MLP) with a back-propagation training algorithm on the 

Jørgensen95 dataset and the ANN was found to perform worse than the best regression model 

in terms of the MMRE, but very successfully in terms of the Pred(.25) metric. 

Wittig and Finnie (1997) compared a back-propagation MLP ANN with Case-Based 

Reasoning (CBR) which is a form on analogy, using the Desharnais dataset and 136 sample 

observations from the Australian Software Metrics Association (ASMA). In this work the 

ANN yielded very encouraging results, with only utilising the attribute of system size to 

obtain the effort predictions. The trials conducted to test the model combining attributes other 

than size resulted in reduced prediction errors, which suggested that there is room for further 

investigation and improvement through a more systematic study of the development 

characteristics. 

Samson et al. (1997) developed an Albus MLP to predict software effort, which operates 

in a similar way to a lookup table, using a generalisation mechanism so that a solution learned 

at one point in the input space influenced solutions at neighbouring points. Different ANN 

were then compared with linear regression. Although predictions made by the ANN 

outperformed those produced by linear regressions using the COCOMO dataset the accuracy 

of the prediction results obtained was rather low. 

Hughes (1997) compared a wide range of approaches for effort estimation including 

analogy, regression, and ANN, using the WSD1 dataset. The dataset was initially divided into 

two homogenous groups. When the two groups were merged the MMRE was improved, 

reinforcing the fact that ANN can perform well when presented with larger datasets, while, at 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

57 

the same time, performance of other techniques, including analogy and regression, 

deteriorated. 

MacDonell and Gray (1997) proposed the combination of feedforward MLP ANN and 

fuzzy models to overcome the uncertainty and limitations of the measurements included in the 

datasets of past projects. However, the results obtained from the models on the Desharnais 

samples were not overly impressive. 

Gray and MacDonell (1997b) compared Function Point Analysis, regression, ANN and 

FL using real data from the Canadian industry. The results indicated that FL achieved good 

performance with only ANN outperforming estimation accuracy, but with considerably more 

input variables. In their approach triangular membership functions were defined for small, 

medium and large intervals of size, complexity and effort, and, additionally, expert judgment 

was utilised to define an initial set of nine rules, which were later refined. 

Mair et al. (2000) evaluated predictions of effort utilising regression, rule induction, CBR 

and ANN models. The results showed considerable variations in accuracy, unstable and 

inconsistent results. This was attributed to the various datasets utilised which contained 

different attributes, like the number of features and the number of projects, and, additionally, 

the series of data presented outliers, collinearity and thus convergence was difficult to be 

obtained.  

Idri et al. (2000) employed algorithmic Fuzzy Logic (FL) models to offer fuzzification of 

the COCOMO cost drivers. The fuzzy Intermediate COCOMO developed showed that it can 

tolerate input imprecision, is less sensitive to input uncertainty and can generate more robust 

cost predictions. 

Musilek et al. (2000) used FL concepts to represent only ‗mode‘ and ‗size‘ as inputs to the 

COCOMO model, which was called f-COCOMO. With this extension the non-numeric nature 

of the inputs was considered more appropriate to use by project managers and fuzzy sets 

provided the means for a more flexible and highly versatile development environment. 

Idri and Abran (2001) in an attempt to address the need of analogy-models to handle 

categorical attributes, proposed the utilisation of fuzzy reasoning for measuring the similarity 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

58 

between projects expressed in categorical values. Categorical data were represented by 

linguistic values through fuzzy sets suggesting that fuzzy analogy is able to handle such data. 

The validation experiments performed proved that fuzzy Intermediate COCOMO offered 

improved estimations. 

Burgess and Lefley (2001) performed a comparative evaluation of the following 

techniques: ANN, CBR, k-nearest neighbours (k-NN) where k was set equal to 2 and 5, Linear 

Least Squares Regression (LSR), Genetic Programming (GP) and random to test the 

hypothesis of whether GP can improve software effort estimates. In terms of accuracy, GP 

was found more accurate than the rest of the techniques for the Desharnais dataset, but it did 

not converge to a good solution as consistently as ANN.  

Dolado (2000) investigated GP evolving tree structures which represent cost equations 

compared to classical equations, like the linear, power, quadratic, etc. Different datasets were 

used, i.e., the Abran and Robillard, Albrecht and Gaffney, Bailey and Basili, Belady and 

Lehman, Boehm, Heiat and Heiat, Academic, Kemerer, Miyazaki et al., Shepperd and 

Schofield, Desharnais and finally, the Kitchenham and Taylor datasets. The technique yielded 

diverse results, classified as ‗acceptable‘, ‗moderately good‘, ‗moderate‘ and ‗bad‘ results. 

The diversified results were attributed to the fact that the datasets examined varied extremely 

in terms of complexity, size, homogeneity, or values‘ granularity consistent results were hard 

to obtain.  

Heiat (2002) compared the prediction performance of an MLP and a Radial Basis 

Function Network (RBFN) to that of regression analysis and found that when for project data 

implemented with a third generation language the ANN performed equally well with 

regression. However, when a combined third and fourth generation languages dataset was 

used ANN outperformed regression. 

Lefley and Shepperd (2003) presented results of various effort estimation techniques 

which included comparison of the following: random, LSR, k-NN, ANN, GP and average of 

all non-random estimators. GP was modelled as a symbolic regression problem in order to 

improve effort predictions. The so-called ‗Finnish dataset‘ collected by a software project 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

59 

management consultancy organisation was used in the context of within and beyond a specific 

company estimations. The results indicated that the approaches of LSR, ANN and GP yielded 

better predictions than the rest of the techniques. 

Huang et al. (2003) combined FL with ANN and demonstrated improved results than the 

original COCOMO model for software development effort estimation. The neuro-fuzzy model 

used for input software size and 22 ratings of cost drivers, including 5 scale factors and 17 

effort multipliers. The ratings could be numerical continuous values or linguistic terms such 

as ―low‖, ―nominal‖ and ―high‖. The projects used for validation were 63 projects from the 

COCOMO dataset and 6 projects from the industry. 

Idri et al. (2004) investigated the use and interpretation of RBFN in software cost 

estimation by mapping the ANN to a fuzzy rule-based system. Results on the COCOMO 

dataset indicated that the accuracy of the ANN depended heavily on the parameters of the 

middle layer and more specifically on the number of hidden neurons and the weight values. 

Xu and Khoshgoftaar (2004) improved significantly the accuracy results of COCOMO 

using fuzzy input data rather than using the original data. The authors extracted rules and 

membership functions using an advanced FL technique and the three types of COCOMO 

models, i.e., Basic, Intermediate and Detailed. 

Braz and Vergilio (2004) proposed the use of the Fuzzy Use Case Size Points (FUSP) 

metric in object-oriented software, in an attempt to offer ‗early‘ estimations and showed 

functional size allows better effort estimation than estimations made with USP (i.e. without 

fuzzy logic concepts). 

Several studies by Aggarwal et al. (2005a, 2005b, 2005c) evaluated various techniques for 

software engineering applications, serving three objectives: Find the optimal training 

algorithm in an ANN model (Aggarwal et al., 2005a), combine ANN and Bayesian 

regularization (Aggarwal et al., 2005b), and combine ANN and linear regression (Aggarwal et 

al., 2005c) to optimise the results. Initially, results indicated that the ensemble with 15 

neurons in the hidden layer and the Bayesian regularization training algorithm yielded the best 

results. Then, various models were compared with regression e.g., linear, quadratic, cubic and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

60 

robust, which was found to yield the best performance. Therefore, the robust regression model 

was then combined with ANN to form an expert committee model, taking advantage of the 

two, leading to optimisation and achieving better performance. 

Ahmed et al. (2005) combined FL and knowledge incorporation to approximate the effort 

by utilising the Intermediate COCOMO model. The authors proposed a Fuzzy Inference 

System (FIS) that integrates two components using the set of fuzzy rules produced: (i) training 

of COCOMO and generation of artificial data and (ii) adjustment (fuzzification) of the cost 

drivers. Utilising FL enabled the technique to model effectively and adapt well to the complex 

development environment. Their approach appeared to perform as good as the COCOMO 

model and could potentially perform better in future investigations. 

Huang and Chiu (2006) developed a GA to determine the appropriate weighted similarity 

measures of effort drivers in analogy-based software effort estimation models. The ISBSG 

and the IBM DP services databases were used in the experiments and the results obtained 

showed that among the applied methods, i.e., unweighted analogy, weighted analogy, 

unequally weighted analogy, linearly weighted analogy, non-linearly weighted analogy, 

Classification And Regression Trees (CART), ANN and OLS, the GA produced improved 

estimates and the method could provide objective weights for the weighted analogy methods 

rather than the subjective weights assigned by experts. Finally, the non-linearly weighted 

analogy method produced superior prediction accuracy among the weighted analogy methods 

investigated. 

Huang et al. (2006) embedded risk assessment into a fuzzy decision tree approach for 

SCE and showed that complex cost factors structures can be explained better if fuzzification 

was applied. The approach combined the comprehensible rules generated by the ID3 decision 

tree algorithm with the expressive power of fuzzy sets. For the verification projects from the 

COCOMO dataset were used. 

Kumar et al. (2008) compared the SCE prediction of Wavelet Neural Networks (WNN) 

with MLP ANN, RBFN, Multiple Linear Regression (MLR), Dynamic Evolving Neuro-Fuzzy 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

61 

Inference System (DENFIS) and Support Vector Machines (SVM) in terms of the MMRE. 

WNN seemed to outperform all other techniques. 

Tronto et al. (2008) investigated the application of ANN and stepwise regression for 

software effort prediction. The experiments were conducted on the COCOMO dataset 

employing categorical variables whose impact was identified based on the work of Angelis et 

al. (2001) forming new categorical values. It was observed that there is a strong relationship 

between the success of a technique and the size of the learning dataset, the nature of the 

function for cost and other dataset characteristics (such as existence of outliers, collinearity, 

number of attributes etc.).  

Aroba et al. (2008) employed fuzzy clustering to organise data samples of the ISBSG R8 

into several subsets and yielded better figures of adjustment than their crisp equivalents. 

Although the approach presented some encouraging results and also provided higher 

explicative capabilities, some problems were identified regarding the use of fuzzy clusters in 

segmented models of parametric software estimation. 

Park and Baek (2008) built and evaluated ANN effort estimation models by using 

regression analysis and expert interviews to select the input variables. The ANN model was 

compared to expert judgement and two traditional regressions. The authors found ANN to 

yield more accurate predictions and also emphasised that most of the existing studies focus on 

selecting the best estimation method without mentioning how variables are being selected, but 

usually refine the set of factors by a trial and error approach. In such an approach the different 

sets of factors are then tested repeatedly until the evaluation criteria are met. The authors also 

add that a method to define which factors to use as inputs in ANN does not exist yet and 

underline that it is critically important to identify dominant factors that should be used in these 

models. 

Reddy and Raju (2009) used the popular COCOMO model mapped to an ANN with 

minimal number of layers and nodes to increase the performance of the network. They 

employed a feedforward backpropagation MLP and obtained improved predictions for effort 

using the COCOMO dataset compared to the COCOMO model.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

62 

Rao et al. (2009) used a Functional Link Artificial Neural Network (FLANN) which does 

not contain any hidden layers so that the network architecture becomes simple and training 

does not involve full backpropagation, thus reducing computational complexity. Their method 

provided more accurate results compared to other methods for software cost estimation on the 

NASA dataset. 

Azzeh et al. (2010) explored the impact of Grey Relational Analysis (GRA) integrated 

with Fuzzy set theory for a by-analogy estimation model and also compared to ANN, CBR 

and MLR models using several public datasets, i.e., ISBSG, Desharnais, COCOMO, Albrecht 

and Kemerer. The study aimed to reduce the uncertainty in the similarity degree of different 

forms of measures i.e., for continuous, nominal, or ordinal types between two tuples with X 

features. The Fuzzy GRA appeared to produce statistically more significant results than the 

rest of the models. Moreover, it effectively reduced the uncertainty of attribute measurement 

between two software projects and improved the way to handle both numerical and 

categorical data in similarity measurements. 

Attarzadeh and Ow (2010) showed that the fuzzification of the scale factors, cost drivers 

and size metrics from the COCOMO and an artificial dataset improved the performance of the 

traditional COCOMO II model. The validation was performed using the projects of the 

COCOMO dataset and 100 artificial projects. 

Mittal et al. (2010) fuzzified software‘s size metric and used FL to tune the parameters of 

the COCOMO model. Their results showed improvement compared to the results of Bailey-

Basili, Doty and Halstead models in terms of prediction accuracy. 

Prasad Reddy (2010) combined Particle Swarm Optimisation (PSO) to further optimise 

estimates of the FL technique for developing 10 NASA software, 18 NASA and 63 

COCOMO projects. Two models were built which yielded better results than the rest models 

compared. 

Bhatnagar et al. (2010) attempted to estimate cost in the early stages of development by 

using Entity Relationship Diagrams, Use Case Diagrams and Class Diagrams of student 

projects. The authors identified that parameters used in cost estimation models contain some 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

63 

degree of fuzziness and this requires uncertainty to be introduced in the models. Thus, they 

included uncertainty in the metrics measured by the students at the requirement, analysis and 

design phases of development by applying fuzzification, rule-based inference and 

defuzzification to obtain crisp effort values. 

Kaur et al. (2010) proved the effectiveness of ANN models for the NASA dataset 

compared to the Halstead, Walston-Felix, Bailey-Basili and Doty models, all of which are 

popular legacy models used in software cost estimation. Backpropagation ANN were used and 

reported as the most generalised networks currently in use that present good estimation 

capabilities. 

Summarising the above, the current SCE literature is quite rich in studies reporting the use 

of CI techniques and comparing the prediction results obtained from various models. 

Moreover, various hybrid forms of techniques and cost models attempting to improve 

intuitiveness, accuracy and robustness emerged in an increasing number of studies. In several 

cases the CI techniques employed were found to outperform the techniques they were 

compared to and in addition, offered considerable improvements. In addition, CI techniques 

offered the advantage to automatically detect complex relationships taking into consideration 

historical empirical data and derive estimates independent from the subjective opinion of 

domain experts. However, the heterogeneous sampling, measurement and reporting 

techniques used for software data (Mair and Shepperd, 2005), the inconsistency and 

inappropriateness of the performance measures and statistical tests used for the comparison of 

alternative models (Kitchenham et al., 2001; Kitchenham and Mendes, 2009) and other 

problems discussed in the subsequent section lead in many cases to incomparable and non-

conclusive results. 

Particularly, the use of ANN in most cases showed some promising results, although one 

may argue that they mainly lack transparency on the way they work and on how their results 

are interpreted. ANN also present high data dependence and may fail to generalise if they are 

not properly trained and calibrated. In addition, hybrid and evolutionary forms of SCE 

techniques were found by researchers to improve the solutions obtained and reach to moderate 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

64 

levels of accuracy. Other popular learners, such as decision trees and association rules, since 

they learn by examples, in the presence of outlying data or too few data samples, it is quite 

possible that they may fail to generalise well. Therefore, popular alternatives for learning and 

reasoning, such as fuzzy hybrid forms, offer the advantage of adaptive learning, increasing the 

comprehensibility of the results obtained and the ability to deal with inexact and uncertain 

information expressed with fuzzy representations. Many of the aforementioned relative 

research studies have identified that many parameters used in SCE models contain some 

degree of uncertainty. Thus, this implied that Fuzzy Logic introduced in such models could 

lead to considerable improvements in the SCE prediction results of the techniques applied. 

2.6 Open Research Problems in Software Cost Estimation  

This section summarises the main open research problems in SCE. Considering the track 

record of the software industry from a survey performed in 2001 by the Standish Group
1
, it 

seems that 23% of all software projects are cancelled before completion. From those projects 

that are actually completed only 28% are delivered on time, within budget and with all 

originally specified features. Additionally, the average percentage of software project budget 

overruns is 45%. Recent survey reviews indicate that most projects (60-80%) encounter cost 

overruns of the range of 30-40% (Moløkken and Jørgensen, 2003). This shows that there is 

still ample room for improvement regarding cost estimation accuracy. The rest of this section 

summarises the main reasons why this phenomenon occurs. 

Recent performance figures of 8,000 projects (listed in Table 2.8) gathered from 350 

organizations and reported in the Chaos survey from 2000-2006 (The Standish Group, 2007) 

                                                 
1
 Older reports mention that for every 100 projects that start there are on average 94 restarts. An average of 189% 

of projects exceed the original cost, time or schedule estimates by 239%, and more than one quarter of the projects 

are completed with only 25%-49% of the originally-specified features and functions (The Standish Group, 1994). 

The subsequent year‘s figures report an average of more than 50% of the completed projects have less than 50% of 

the original requirements (The Standish Group, 1995). 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

65 

show that a large percentage of projects overrun budget and schedule estimates. According to 

a Web poll with 1000 respondents released by the Computing Technology Industry 

Association (CompTIA) the primary reason most IT projects fail is poor communication, 

insufficient resource planning was found to be the second reason, while unrealistic deadlines 

was the third (Rosencrance, 2007). 

Table 2.8: The performance of 8,000 projects in 350 organizations (The Standish Group, 2007) 

Year 2000 2002 2004 2006 

Percentage of projects delivered within budget and schedule 28 34 29 35 

Percentage of projects cancelled before completion 23 15 18 19 

Percentage of projects overrun on budget and schedule 49 51 53 46 

 

Such statistics are usually included in case studies on project failures, articles and 

estimation surveys, as well as reports produced by project management consultants. These 

resources characterise effort estimation as a key research area in software engineering and 

project management. Even though the situation has been somewhat improved since the first 

references on the problems in producing software (Brooks, 1995; De Marco and Lister, 1999), 

these numbers have not changed much, compared to the aforementioned recent reported 

statistics. These statistics reveal the complex underlying problems concerning the 

development procedure and emphasise the difficulties of the SCE process.  

The ultimate objective of the research conducted in the area is to develop a repeatable 

process for creating and empirically validating SCE models. Jones (2007) mentioned that 

there is lack of theoretical grounds to support the process of assessing the effect of 

development on software cost: ―Measurements, metrics, and statistical analysis of data are 

the basic tools of science and engineering. Unfortunately, the software industry has existed 

for more than 50 years with metrics that have never been formally validated and with 

statistical techniques that are at best questionable.‖. Therefore, a primary need is to 

investigate existing foundations of research and the form of available historical data (metrics 

and measurements) in software engineering. 

A recent review of Jørgensen and Shepperd (2007) reports a disconnection between 

research and the actual use of effort estimation methods, such as the ones described in the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

66 

previous section. More specifically, it seems that studies in real-life estimation situations are 

rare as the authors describe: ―there seems to be a lack of in-depth studies on the actual use of 

estimation methods and real-life evaluations published as journal papers‖. Moreover, it is 

worth noting that throughout the material reviewed in the aforementioned study (304 software 

cost estimation papers in 76 journals), the authors could not locate any study with in-depth 

data collection and analysis of how estimation methods were actually applied, even for well-

distinguished models such as the COCOMO (Boehm, 1981).  

Despite the vast research background of SCE the need for better costing in software 

projects is obvious and until today is considered a highly difficult task (Briand and 

Wieczorek, 2000; Moløkken and Jørgensen, 2003; Jørgensen and Shepperd, 2007; Menzies at 

al., 2010). The main challenges relate to: (a) establishing basic and consistent terminology 

(Grimstad et al., 2006), (b) obtaining objective measurements of software cost drivers (Fenton 

and Pfleeger, 1997), (c) modelling and estimating, as well as other practical issues related 

with the SCE models and methods proposed thus far (Kan, 2003; Laird and Brennan, 2006).  

In essence, accuracy and robustness (in terms of stability) of SCE are of primal concern 

and are one of the most difficult merits to acquire. The reason is that the experimental studies 

performed are governed by unstable factors since different (a) datasets, (b) pre-processing and 

transformation methods, (c) evaluation criteria, (d) design of experiments, (e) variations of 

parameters, are used and thus inconsistent and inconclusive comparisons are presented (Mair 

and Shepperd, 2005; Kitchenham and Mendes, 2009).  

The main reason that cost estimations are usually inaccurate is that some software cost 

drivers affecting development effort relate to highly subjective characteristics. These project 

characteristics are purely qualitative, or subjective and thus hard to measure. Most of them are 

not standardised, heterogeneous sampling and reporting techniques are used and exhibit 

complex influencing inter-relationships that cannot be easily modelled. In addition, due to the 

fact that software development is driven by a large number of factors that are consequently 

used in SCE models (refer for example to the popular COCOMO which uses 16 cost drivers 

(Boehm, 1981) and its successor COCOMO II which uses 23 cost drivers (Boehm et al., 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

67 

2000a)), on the one hand they can be quite hard to calibrate to specific environments and on 

the other, they may result in strong collinearity, heteroscedasticity and unstable prediction 

accuracy (Li et al., 2010; Nguyen et al., 2008).  

Also, as previous research identified, there is lack of standard definitions in the software 

terminology (Grimstad et al., 2006), causing the presence of inconsistencies in the empirical 

data samples (Miyazaki et al., 1994). In order to be able to estimate more accurately software 

effort, researchers need to understand, accept, and manage these inherent inconsistencies in 

estimation and change the existing terminology to include uncertainties as proposed by 

DeMarco (1982), that is, include the effect from other fields and estimating upper and lower 

bounds (Kitchenham et al., 2003).  

Apart from the aforementioned complexity of the influencing cost factors, the constant 

pressure on standardisation and lack of software data, many other open problems have been 

identified as equally important. These refer to the need to systematically address missing data 

values, detect and eliminate outliers, perform feature subset selection and facilitate the 

continuous evolution/adjustment of predictions as the project unfolds (Song and Shepperd, 

2011). Moreover, as recent studies report, the quality and appropriateness of the datasets 

utilised in most effort estimating techniques are key factors to obtaining better results 

(Kitchenham and Mendes, 2009). Furthermore, finding an appropriate software cost model for 

every dataset is practically impossible, since several datasets have been proven to exhibit 

unstable results and other datasets have been proven unsuitable to distinguish the performance 

of different methods (Keung et al., 2012).  

Another important research issue of practical importance is the time-period that the cost 

estimate is performed. This time-period is related to when the system is proposed and when it 

is delivered. According to Boehm et al. (2000a) a manager may accurately estimate the 

resources required to develop a system according to how much information is available at the 

time of the estimate. Therefore, throughout most of the software development life-cycle, 

estimations regarding size and effort can be quite uncertain. As the software process proceeds 

this level of uncertainty is lowered and thus the estimation accuracy is increased. This 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

68 

dependency became widely known as the ―cone of uncertainty‖ and is illustrated in Figure 

2.3. Kitchenham and Linkman (1997) attribute this uncertainty to the following factors: (a) 

measurement error of input variables, (b) model error, (c) assumption error of input 

parameters, and finally, (d) scope error.  

 

Figure 2.3: The cone of uncertainty (Boehm et al., 2000a) 

 
Kitchenham et al. (2003) proposed the representation of effort not only as a crisp value, 

but as a distribution of values in order to deal with these uncertainties of SCE. Grimstad 

(2006) also proposed to view effort in a probabilistic manner, and thus, for example, the ‗most 

likely effort‘, the ‗planned effort‘ and the ‗budgeted effort‘ will be values (with different 

probabilities of being exceeded by actual effort) on an effort probability distribution. 

Gruschke and Jørgensen (2008) introduced the notion of prediction interval as ―a minimum-

maximum range of values for the effort estimates, attached with a confidence level that the 

actual value of the effort will be included in the range‖. Accordingly, such estimates extend 

the typical single-value estimates that do not associate the estimation with the degree of ‗how 

good‘ an estimation is, which would have been more informative. 

In the rest of this section, which also concludes this chapter, the open problems tackled by 

this diatribe are summarised. All aforementioned issues were taken into consideration for the 

research work conducted. The thesis focused on devising novel hybrid techniques taken from 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

69 

the field of CI. The issues of primal concern involved were: (a) performance accuracy in terms 

of prediction, and (b) robustness in terms of responsiveness to data and parameter changes. 

The SCE models investigated these two factors through size and other cost drivers used as 

inputs, and additionally, their degree of influence was examined. Particularly, to the best of 

our knowledge the contribution of the variables within a model is rarely measured in the SCE 

context. Most studies focus on the accuracy of the models and few on their explanatory value, 

even though both are considered very important attributes (Bibi et al., 2008). Thus, the models 

developed employed feature selection based on the input‘s significance and accuracy 

optimisation through hybrid techniques. 

Moreover, this thesis handled one of the main obstacles of constructing empirical SCE 

models, i.e., the subjectivity of the available data of the software development domain. The 

subjectivity is addressed through pre-processing (filtering) activities, including outlier‘s 

removal, fuzzification and other transformations carried out, as well as clustering and 

classifications to yield interval effort predictions instead of crisp predictions. Thus, the models 

developed incorporated uncertainty in the techniques employed for prediction. The models 

produced are repeatable, useful in practice, may be easily understood by the end-users and 

overcome several limitations like the uncertainty. The next chapter includes the technical 

background of the research conducted in this dissertation. 

Efi P
ap

ath
eo

ch
aro

us



 

70 

 

Chapter 3  

Technical Background 

This chapter presents briefly the technical background behind the two types of 

Computational Intelligent (CI) models proposed and explored in this thesis for SCE. The 

models developed concern (a) Quantitative models and (b) Qualitative models.  

3.1 Introduction to Computational Intelligence 

Computational Intelligence (CI), a term coined in the early ‗90s, is a branch of Artificial 

Intelligence (AI) relying on coherent heuristic algorithms, including Fuzzy Systems, Artificial 

Neural Networks and Evolutionary Computation providing important advantages for global 

optimisation. In addition, CI embraces techniques that use Swarm Intelligence, Fractals and 

Chaos Theory, Artificial Immune Systems, Wavelets, etc. (Engelbrecht, 2007). It is an 

internationally well-established scientific field for which many journals and conferences 

provide in-depth research contributions and that were applied in many domains.  

CI combines elements of learning, adaptation, evolution and fuzzy logic (rough sets) to 

create programs that are, in some sense, intelligent. CI research does not reject statistical 

methods, but often gives a complementary view. In this diatribe CI is utilised in devising 

software cost models and improving them for achieving practicality and effectiveness. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

71 

3.2 Quantitative Models Technical Background 

The data-driven quantitative models proposed are built on soft-computing notions such as 

Artificial Neural Networks (ANN), Fuzzy Systems and combinations of techniques from 

Machine Learning (ML) and Evolutionary Computing. In this research work, two non-linear 

techniques, namely ANN and Ridge Regression (RR) are mainly used as software cost 

predictors. ANN provide the advantage of modelling complex, non-linear  relationships from 

noisy domains and RR is an improvement of the classical Ordinary Least Squares (OLS) 

Regression, which is a promising solution in cases where high correlations exist between 

variables. Both of the aforementioned techniques are used for modelling and prediction. 

Another form of software cost estimator utilised in this thesis, is the Fuzzy Implication 

System (FIS) which is used to obtain crisp effort estimations by aggregating rule-based 

inferences. The details of these techniques are summarised in this section. 

In addition, the method of analogy is used as a predictor for three cases namely, in the 

case of clustered projects obtained from the Entropy Fuzzy k-modes Algorithm (Tsekouras et 

al., 2005) and classified projects obtained from the association rules of Fuzzy Decision Trees 

(FDT) (Papatheocharous and Andreou, 2009b; Andreou and Papatheocharous, 2008b) and the 

Genetic Programming equations (Papatheocharous et al., 2010a). Analogy-based estimations 

are also synonymous to Case-Based Reasoning (CBR) which uses past cases of similar 

projects to determine the value of effort of the target project (Li et al., 2007). Li et al. (2007) 

mention that effort estimation with analogies outperforms the rest estimation methods in 60% 

of the cases of published studies, while in 30% of the cases it yields the worst predictive 

accuracy. This observation suggested some instability of the method (Ruhe et al., 2003). It 

therefore can be concluded that effort estimation by analogy is promising, but needs further 

improvement in terms of better accuracy and broader applicability. Therefore, analogy is used 

in this thesis for estimating the effort for the target project, based upon the mean effort and 

standard deviation values of the clustered and the classified projects, to investigate the 

suitability of the clusters and/or classes obtained (Papatheocharous and Andreou, 2009a; 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

72 

Papatheocharous and Andreou, 2009b). Finally, for the case of the association rules that 

satisfy specific clusters of projects and extracted from FDT in (Andreou and Papatheocharous, 

2008b) the mean value of the fuzzy range effort is used for predicting the effort of these 

projects.  

Moreover, the aforementioned techniques are extended to hybrid models for SCE. The 

techniques combined with ANN, include Input Sensitivity Analysis (ISA) and Genetic 

Algorithms (GA), from which the former combines ways to illuminate the ‗black box‘ nature 

of ANN and optimally select the most ‗significant‘ or influential feature subset and the latter 

evolves the structure of ANN in order to improve predictions (Papatheocharous and Andreou, 

2007; Papatheocharous and Andreou, 2010; Papatheocharous and Andreou, 2012b; 

Papatheocharous and Andreou, 2009c). The techniques combined with RR include Feature 

Subset Selection (FSS) approaches (Papatheocharous et al., 2010b; Papatheocharous et al., 

2010c) and Conformal Predictors (CP) (Papadopoulos et al., 2009), from which the first 

identifies the most appropriate subset of features for SCE and the second complements the 

predictions with software cost prediction intervals.  

Finally, clustering and classification approaches are included as pre-processing or filtering 

steps in SCE to produce improved prediction results. Therefore, Fuzzy Logic (FL), Genetic 

Programming (GP), Conditional Sets (CS), Decision Trees (DT) and the Entropy Fuzzy k-

modes Algorithm (Papatheocharous and Andreou, 2012a; Papatheocharous et al., 2010a; 

Andreou et al., 2007; Andreou and Papatheocharous, 2008a; Papatheocharous and Andreou, 

2009a) are used and some of them are combined to produce better figures of adjustment (as 

regards to accuracy performance). The rest of this section summarises the technical 

background of the aforementioned techniques. 

3.2.1 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) is a branch of CI that is closely related to Machine 

Learning. ANN have the ability to model complex linear and non-linear relationships and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

73 

have attractive prospects for solving pattern recognition tasks, classification and 

categorisation problems. They also present two main advantages, firstly, they avoid the costly, 

time consuming and error-prone task of trying to directly extract knowledge for a problem 

domain from an expert and secondly, they handle efficiently noisy, incomplete and distorted 

data with high degree of uncertainty. 

An ANN may be viewed as a directed graph, composed of a number of basic 

computational elements called neurons or nodes and connections (weights or synapses) 

between them, forming layers. McCulloch and Pitts (1943) provided the model of a neuron 

similar to the biological neurons in the human brain called ‗Perceptron‘. Later on, Rosenblatt 

(1957) developed a model consisting of three layers and Rumelhart et al. (1986) proposed the 

multilayer ANN with an effective training algorithm and non-linear but differentiable transfer 

functions. 

3.2.1.1 Artificial Neuron: The Basic Computational Element 

The basic computational model of a neuron (illustrated in Figure 3.1) encloses a set of 

inputs xi, where i=1,...,n indicating the input signal source. Each xi input is weighted by the 

connection strength or weight factor wij before inserted into the main body of the processing 

element. The result inserted into the main body may also be optionally affected by a bias term 

wo (intentionally not shown in Figure 3.1). The bias term allows the effective control of the 

result from a layer of neurons and it may constitute a critical component for successful 

learning. The neuron also encloses a threshold value θj above which the neuron produces a 

signal, a non-linear function φ that acts on the yielded signal netj and an output O. The output 

O constitutes input to other subsequent neurons. The transfer function of the basic model is 

described in eq. (3.1), where j takes values from 1 to n and denotes the source of the input 

signal for the i
th
 neuron under investigation (Kartalopoulos, 1996).  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

74 














 



n

j

jijii wxO
1

  (3.1) 

 

Figure 3.1: Basic computational model of a neuron 

 

The most popular activations functions φ include the hard limiter, the log-sigmoid, the 

tan-sigmoid and the pure linear transfer function (summarised in Figure 3.2 (a)-(d) 

respectively). 

  

(a) (b) 

  

(c) (d) 

Figure 3.2: Transfer functions (Beale et al., 2011) of (a) hard limiter, (b) log-sigmoid, (c) tan-

sigmoid and (d) pure linear  

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

75 

3.2.1.2 Feedforward ANN and Supervised Learning 

ANN with neurons organised in multiple layers form the widely known Multi-Layer 

Perceptrons (MLP) (McCulloch and Pitts, 1943; Rumelhart et al., 1986; Haykin, 1999; Karray 

and Silva, 2004). Typically, the layer of neurons that the input patterns are applied is the 

‗Input Layer‘, the layer of neurons that the output is obtained is the ‗Output Layer‘; the rest of 

the layers between the Input and the Output layers are called the ‗Hidden Layers‘. The 

feedforward Multi-Layer Perceptron (MLP) is considered the most popular topology and is 

especially suited for the kind of problem solving domains that comprise very noisy, distorted, 

or incomplete sample data (Prechelt, 1994).  

In the supervised-type of ANN learning, the available data is structured as a set of vectors 

with input and output sample values which are presented to the ANN during a training 

process. The goal of an ANN is to characterise the relationship between the inputs and the 

output(s) for the whole set of the training vectors. During the training process of an ANN, 

inputs from a training vector propagate throughout the network and are multiplied, as 

explained previously in section 3.2.1.1, by the appropriate weights. These products are then 

summed up and if the summation exceeds some specified threshold for a node, then the node 

‗fires‘ and its output serves as input to another node in a subsequent layer. This process 

repeats until the network generates an output value for the corresponding input vector. The 

calculated output value is then compared to the desired output and an error value is 

determined for the particular input vector. The goal is to minimise the total error (i.e., the 

mean error of the set of input vectors) by modifying the weights of the connections. Finally, 

processing continues, until a total low error value is achieved, or training ceases to converge 

(Haykin, 1999). This describes the backpropagation learning algorithm which is defined in 

detail in the following section.  Efi P
ap

ath
eo

ch
aro

us



 

 

 

76 

3.2.1.3 The Backpropagation Learning Algorithm 

Backpropagation is a supervised learning technique that was first described by Werbos 

(1974) and gained interest through the work of Rumelhart (1986). The algorithm is based on 

calculating the derivatives of performance of the neurons. Each subsequent layer uses the 

weights coming from the previous layers and adjusts them accordingly so that the accuracy 

performance error of the output is diminished. Backpropagation is an iterated gradient method 

of optimisation that updates the weights within the implicit bounds of a search weight space. 

The algorithm is adjusted by enforcing a learning rate (the gain) and a momentum term (the 

damping factor) in the model.  

The backpropagation training technique for ANN is summarised as follows: 

(1) Present a training sample to the ANN. 

(2) Compare the ANN‘s output to the desired output from that sample. Calculate the error 

in each output neuron. 

(3) For each neuron, calculate what the output should have been, and a scaling factor, 

which defines how much lower or higher the output must be adjusted to match the 

desired output. This is the local error of the neuron. 

(4) Adjust the weights of each neuron to lower the local error. 

(5) Assign ‗blame‘ for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights. 

(6) Repeat the steps (1)-(5) on the neurons at the previous level, using each one‘s ‗blame‘ 

as its error. 

The challenge is to find a good algorithm for updating the weights and thresholds in each 

iteration (step (4)) to minimise the error. These continuous adjustments of the values of 

weights - so that the difference of error (delta) between the desired and the actual output is 

reduced - are also based on the delta learning rule (Kartalopoulos, 1996, p. 70), or the Least 

Mean Square algorithm, also known as the Widrow-Hoff learning rule (Widrow and Hoff, 

1960). 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

77 

3.2.1.4 Input Sensitivity Analysis Algorithms 

The contribution of independent variables within an ANN may be measured with many 

methods (Belue and Bauer, 1995; Glorfeld, 1996; Satizábal and Pérez-Uribe, 2007). However, 

most of them are rarely used and especially in the SCE context they have never been used as 

they are considered to add complexity to the already complicated SCE process. Garson‘s 

algorithm (Garson, 1991) and another variant (which serves similar purpose) utilised in this 

work are described in this section. The algorithms aim to perform Input Sensitivity Analysis 

(ISA) on ANN by partitioning the ANN connection weights in order to determine the Relative 

Importance (RI) and the Relative Strength (RS) of each input variable in the network.  

An example of the application of Garson‘s Algorithm in a single hidden layer feedforward 

MLP network with two neurons (shown in Figure 3.3) is described below. 

 

Figure 3.3: Example of network structure 
 

The basic steps in determining the relative weights of the inputs are as follows: 

Step 1: Construct a matrix containing the input-to-hidden and the hidden-to-output neuron 

connection weights. This matrix is shown in Table 3.1. 

Table 3.1: Matrix with ANN connection weights 

Layers Input 1 Input 2 Input 3 Output 

Hidden A WA1=-2.61 WA2=0.13 WA3=-0.69 WOA=1.11 

Hidden B WB1=-1.23 WB2=-0.91 WB3=-2.09 WOB=0.39 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

78 

Step 2: Calculate the contribution of each input neuron to the output (e.g., CA1 in eq. (3.2)) via 

each hidden neuron as the product of the input-hidden connection weights (e.g., WA1) and the 

hidden-output connection (e.g., WOA) weights as shown in Table 3.2. 

90.2110.1610.211  OAAA WWC  (3.2) 

Table 3.2: Matrix with the calculated contribution of each input neuron 

Layers Input 1 Input 2 Input 3 

Hidden A CA1=-2.90 CA2=0.14 CA3=-0.77 

Hidden B CB1=-0.48 CB2=-0.35 CB3=-0.82 

 
Step 3: Calculate the relative contribution of each input neuron to the outgoing signal for each 

hidden neuron (e.g., RA1 in eq. (3.3)) and the sum of all input neuron contributions (e.g., S1 in 

eq. (3.4)) as shown in Table 3.3. 

    76.077.014.090.290.232111  AAAAA CCCCR  (3.3) 

05.129.076.0111  BA RRS

 

(3.4) 

Table 3.3: Matrix with the calculated relative and sum input neuron contribution 

Layers Input 1 Input 2 Input 3 

Hidden A RA1=0.76 RA2=0.04 RA3=0.20 

Hidden B RB1=0.29 RB2=0.21 RB3=0.50 

Sum S1=1.05 S2=0.25 S3=0.70 

 

Step 4: Calculate the relative importance (e.g., RI1 in eq. (3.5)) of each input variable as 

shown in Table 3.4. 

      %5.5210070.025.005.105.110032111  SSSSRI  (3.5) 

Table 3.4: Matrix with the calculated relative importance of inputs 

Inputs Input 1 Input 2 Input 3 

Relative Importance RI1=52.5% RI2=12.5% RI3=35% 

 

For a more detailed step-by-step example of the calculations the interested reader may refer to 

(Garson, 1991). In this example, a relatively small ANN was used for demonstration purposes. 

The variant of the algorithm, according to Azoff (1994), alternatively one can sum up 

only the absolute values of the weights fanning from each input attribute to all nodes in the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

79 

successive hidden layer and estimate the overall connection strength of each attribute (e.g., 

Input Strength (IS), IS1 in eq. (3.6)) as shown in Table 3.5. This method, in contrast to 

techniques like the Garson‘s algorithm (Garson, 1991) which makes use of the entire hidden 

structure for calculating the effect of a certain input on the output, takes into consideration 

only the first level of neurons without loss of generality, as demonstrated in (Azoff, 1994). 

Thus, the relative input strength may also be calculated (e.g., RS1 in eq. (3.7)). 

  92.12111  BA WWIS  (3.6) 

        %13.5039.152.092.110092.1100 32111  ISISISISRS

 

(3.7) 

Table 3.5: Matrix with the calculated overall connection strength of inputs 

Inputs Input 1 Input 2 Input 3 

Input Strength IS1=1.92 IS2=0.52 IS3=1.39 

Relative Strength RS1=50.13% RS2=13.58% RS3=36.29% 

 

3.2.2 Regression 

Regression is not a technique belonging to the CI domain. However, it is used as a 

predictor in SCE in conjunction with other techniques, as mentioned before, thus forming in 

some cases hybrid-CI cost models. Also, Regression-based techniques are utilised in this 

thesis for comparison purposes. Two types of regressions are utilised, namely linear and non-

linear regressions.  

3.2.2.1 Multiple Linear Regression (MLR) 

Multiple Linear Regression (MLR) assumes a functional form or equation relating a 

dependent variable with more than one independent variables. In case one significant 

independent variable is used then it is reduced to a Simple Linear Regression (SLR). The goal 

of SLR is to achieve a model expressed in eqs (3.8), (3.9) given i observations: 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

80 

 
(3.8) 

 (3.9) 

where y is the dependent variable and each vector {(x1, y1), …, (xl, yl)} represents the data 

samples. Assuming that the errors εi are independent and have a zero mean, the aim is to 

discover the polynomial coefficients β0 and β1 representing the constant and the slope of the 

regression linear function  respectively (the latter defined in eq. (3.9)). In MLR 

accordingly more independent variables appear in eq. (3.9). Previous experience from the use 

of regression models showed that Regressions can be difficult to use in cases where the 

dataset is not large, there are no missing values or outliers and the predictor variables are not 

correlated (Boehm and Sullivan, 1999). 

In the Ordinary Least Squares (OLS) Regression form the model specified in eq. (3.9) 

tries to minimise the overall sum of squared errors. One of the main assumptions of OLS 

Regression is that the error variation (or residual) is on average constant on the dependent 

variable range. Therefore, this assumes that there is no difference between the actual and the 

predicted values of projects and it is referred to as the homoscedasticity assumption (Briand 

and Wieczorek, 2000).  

3.2.2.2 Ridge Regression (RR) 

Ridge Regression (RR) is an improvement of the classical OLS Regression technique. RR 

is used in this thesis as a predictor to compare various Feature Subset Selection (FSS) 

approaches and to evaluate a hybrid form of predictors based on Conformal Predictors (CP). 

RR approximates a set of sample data {(x1, z1), …, (xn, zn)}, where xi  
n
 is the vector of the 

independent variables for sample i and zn   is the dependent of that sample. The RR 

procedure recommends finding the w which minimises the function: 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

81 





n

i

ii xwzwa
1

22
,)(  (3.10) 

where a is a positive constant, called the ridge parameter. Notice that RR includes Least 

Squares as a special case (by setting a = 0). The RR prediction tẑ  for an input vector tx  is 

then .ˆ
tt xwz   

The dual variables formula, derived in Saunders et al. (1999), for the prediction of an 

input vector 
tx is: 

,)(ˆ 1kaIKzzt

  (3.11) 

where z = (z1, ..., zn) is the vector consisting of the dependent variables‘ outputs of the 

samples, K is the n × n matrix of dot products of the input vectors {x1, ..., xn} of those data 

samples defined as: 

njnixxK jiji ,....,1    ,,...,1    ),,Κ(,   (3.12) 

and k is the vector of dot products between tx  and the input vectors given as: 

,,...,1    ),,Κ( nixxk tii   (3.13) 

and ),K( xx   is the kernel function, which returns the dot product of the vectors x and x  in 

some feature space. Finally, the Radial Basis Function (RBF) kernel function, which is the 

typical choice of kernel in Machine Learning literature is selected, defined as: 

).
2

exp(),Κ(
2

2



xx
xx


  (3.14) 

3.2.2.3 Classification and Regression Tree (CART) 

A third form of Regression utilised as a hybrid technique in this thesis mainly for 

classification purposes, is the Classification and Regression Tree (CART). CART, introduced 

by Breiman et al. (1984), is a Machine Learning technique that decides the best out of a range 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

82 

of variables to split the data into as homogeneous as possible groups according to a dependent 

variable. The most important features of CART include the ability to remain unaffected by 

outliers and to deal with missing values easily. 

Two main procedures executed in CART are tree growing and pruning. The process of 

tree growing is based on splitting the data based on the aforementioned dependent variable. 

This splitting procedure is applied iteratively to each child node until each partition of the tree 

created is ‗pure‘ (i.e., all cases classified in the particular node have the same value for the 

dependent variable), or sufficiently small (i.e., under a specific threshold of minimum number 

of cases for nodes), or the maximum number of levels of growth specified for the tree have 

been reached. 

In cases where an overly large tree is produced, the branches are pruned to avoid 

overfitting. The process of pruning is based on a specified maximum difference in risk 

(expressed in standard errors). With this process the smallest sub tree is obtained that has an 

acceptable risk value.  

For a set of values {(x1, y1), …, (xn, yn)} representing the data samples, where y is the 

dependent variable, the CART algorithm calculates the best split s* so that over all the 

possible set of splits S eq. (3.15) is minimised (where ΔR in eq. (3.15) is specified in eq. 

(3.16)). 

),(maxarg)*,( tsRtsR
Ss




 (3.15) 

)()()(),( RL tRtRtRtsR 

 

(3.16) 

Eq. (3.16) represents the improvement in the resubstitution estimate for split s of t and the 

variables tR and tL represent the left and right values of split t. The resubstitution estimate R(t) 

is defined in eq. (3.17) where y(t) is defined in eq. (3.18) and N(t) is the total number of cases 

in t. 





tx

n

n

tyy
N

tR 2))((
1

)(  (3.17) 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

83 





tx

n

n

y
tN

ty
)(

1
)(

 
(3.18) 

Finally, the same process is used to proceed growing the tree until a node is reached that does 

not significantly decrease the resubstitution estimate, and thus this node will represent the 

final (terminal) node of the tree (Pendharkar et al., 2005). 

3.2.3 Genetic Algorithms (GA) 

A Genetic Algorithm (GA) is an optimisation technique based on the principles of 

evolution and inheritance. GA is used in this thesis for optimising the topologies of ANN, the 

selection of the optimal features assessed by RR and the choice of ranges for the Conditional 

Sets (refer to section 3.2.5, pg. 85). 

 The algorithm aims to maintain the best selection from a population of solutions 

(individuals) based on the fitness of individuals and a set of genetic operators. The basic 

structure of an evolutionary algorithm is described in Figure 3.4 (Michalewicz, 1994). 

 

Figure 3.4: Genetic Algorithm pseudo code (Michalewicz, 1994) 

 
The evolutionary computing process described in Figure 3.4 is domain-independent and it 

may play an important role in the development of optimal and self-improving intelligent 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

84 

techniques according to Karray and Silva (2004). The evolutionary-based computational 

approach of the GA aims to find approximated solutions in complex optimisation and search 

problems (Holland, 1992). In order to achieve this, pruning a population of individuals based 

on the Darwinian principle of reproduction and ‗survival of the fittest‘ is performed (Koza, 

1992).  

The fitness of each individual is based on the quality of the simulated individual in the 

environment of the problem investigated. The process is characterised by the fact that the 

solution is achieved by means of a cycle of generations of candidate solutions that are pruned 

by using a set of biologically inspired operators. According to evolutionary theories, only the 

most suited solutions in a population are likely to survive and generate offspring, and transmit 

their biological heredity to the new generations. Thus, GA are much superior to conventional 

search and optimisation techniques in high-dimensional problem spaces due to their inherent 

parallelism and directed stochastic search implemented through recombination operators. The 

GA operators are selection, crossover and mutation. The stochastic search procedure of GA 

usually does not locate the exact location of the optima identified by some other gradient-

based optimisation techniques, but effectively avoid the entrapment to local minima (Karray 

and Silva, 2004). 

3.2.4 Genetic Programming (GP) 

Genetic Programming (GP) comprises an evolutionary technique similar to GA where the 

potential solutions of the population are represented as parse trees of computer programs and 

the fitness value is calculated by executing these programs. GP may be conceived as a subset 

of Genetic Algorithms, with the main difference being the solution‘s representation. GP is 

used to examine in a stochastic search approach extensive Regression and other mathematical 

models for SCE. 

The following steps are usually followed to implement a GP algorithm: 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

85 

 Step 1: Initialise the population of solutions comprising functions and terminals that are 

considered the alphabet of the computer programs. 

 Step 2: Execute each solution and obtain a fitness value according to how well each 

solution approximates the problem. 

 Step 3: Generate new solutions of offsprings by applying: 

o Replication of the computer program that has the best fitness value. 

o Mutation of the computer program using the mutation operator. Two types of 

mutation may be applied; replacing randomly a function or replacing a terminal, 

with the latter offering the ability to replace an entire sub tree of the parse tree 

with another sub tree. 

o Crossover of two probabilistically chosen parents based on their fitness values to 

create new computer programs. After a crossover point is randomly determined 

for both parents, a sub tree from the first one is substituted with a sub tree from 

the second. 

 Step 4: Obtain the computer program with the highest fitness value as the result of the 

GP. Repeat Steps 2-4 if a termination criterion does not occur. Otherwise stop. 

3.2.5 Conditional Sets (CS) 

The Conditional Set (CS) theory is a very simple idea that refers to a set of boundary 

conditions. These sets of conditions may be used in a combination with an algorithm such as 

GA to optimise their form (as described in Adamopoulos et al. (1998)). In this work CS are 

used to specify appropriate set of conditions enrolling as minimal as possible ranges for SCE. 

The main concept is to represent conditional knowledge as a collection of classical logic 

statements and conditions involving bounds (Packard, 1990).  

Consider a dataset of N samples xi, i=1, ..., N and a condition Ci of the form: 

)(: iiii ubxlbC  , Ni ...,,1  (3.19) 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

86 

where lbi and ubi are the lower and upper bounds of Ci respectively. 

A conditional set S of length L entails L conditions that are coupled with the logical 

operator ^ (Boolean AND) as follows: 

LAND CCCS  ...21  (3.20) 

and a numerical example is the following: 

610).x580(.....470) x340( N1 ANDS  (3.21) 

The theory of CS is based on a set of such conditions with respect to boundaries 

representing an upper and a lower boundary value. It may be used to disengage the model 

from the need of an expert, past experience or a technique to define the conditions. 

3.2.6 Fuzzy Logic (FL) 

Fuzzy Logic (FL) is particularly useful for representing human knowledge and making 

inferences in reasoning with that knowledge. It is generally conceived as qualitative, 

descriptive and subjective, while it may contain some overlapping degree of neighbouring 

quantity, i.e., some degree of a particular quantity (Karray and Silva, 2004). FL is used in this 

thesis as a pre-processing step for project data with uncertain and vague values. 

FL allows a way of processing data through partial set membership rather than crisp set 

membership or non-membership (Zadeh, 1965). It is a problem solving methodology that 

provides a simple way to arrive at a definite conclusion based on vague, ambiguous, 

imprecise, noisy or missing information.  

In FL, a membership function is used to express the distribution of truth of a variable in 

the context of a given (fuzzy) set. An example of a membership function of a particular 

quantity is shown in Figure 3.5. A fuzzy descriptor may thus be represented by a membership 

function. The membership function provides a membership grade between 0 and 1 for each 

possible value of the fuzzy descriptor it represents. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

87 

   1,0:)(  xAxF Az 

 

Figure 3.5: Membership function of cost example for Low, Moderate and High quantity. 

 
 

A fuzzy set A is represented by a membership function defined in eq. (3.22) in which each 

element of A, as denoted by a point x on the real line  , is mapped to a value μ which may lie 

anywhere in the real interval of 0 to 1. This value represents the grade of membership of x in 

A. If the membership grade is greater than 0 but less than 1, the membership is not crisp, i.e., 

it is fuzzy and thus the element has some possibility of being within the set and some 

complementary possibility of being outside the set (Karray and Silva, 2004). 

 (3.22) 

In most fuzzy problems rules are generated through past experience and based on the 

defuzzification process an output is deduced. Particularly, defuzzification is the process where 

the membership functions are sampled to find the grade of membership, then the membership 

is used in the FL equations and an outcome region is specified (Kartalopoulos, 1996). 

3.2.7 Fuzzy Implication Systems (FIS) 

In Fuzzy Implication Systems (FIS) knowledge is based on ‗if-then‘ linguistic rules 

expressed through fuzzy terms. The knowledge base is formed by aggregating several such 

fuzzy rules. FIS are used in this thesis as predictors. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

88 

 
YyXx

yxyx BABA





,

)(),(min),( 

  
YyXx

yxyx BABA





,

)()(1,1min),( 

Considering fuzzy set A defined in universe X and fuzzy set B defined in another universe 

Y, the fuzzy implication ―If A then B‖ is denoted by AB. While A represents the situation, 

condition, or the antecedent, B represents another fuzzy situation and is the action or the 

consequence in this fuzzy rule (Karray and Silva, 2004). 

Karray and Silva (2004) mention the following two (mostly used) definitions of fuzzy 

implications (even though several others exist): 

Method 1 (Mamdani implication): 

 
(3.23) 

 

Method 2 (Lukasiewics implication): 

 
(3.24) 

 

Thus, these two methods are used to obtain the membership function of the particular fuzzy 

relation of an if-then rule (implication). The first method defines a symmetric expression to A 

and B while the second method gives an upper-bounded membership function to 1. 

3.2.8 Decision Trees (DT) 

Decision Trees (DT) comprise non-parametric approaches for decision analysis, 

classification, conditional probabilities calculation, data mining and predictive modelling. DT 

are used in this thesis in conjunction with FL, thus forming Fuzzy Decision Trees (FDT) to 

obtain fuzzy association rules, which may be utilised either as classifiers and then as 

predictors, or for constructing FIS and applying an implication method, as described in the 

previous section.  

DT represent structures with flow-chart-like nodes. The top-most node is called the ‗root‘ 

and the terminal nodes are called ‗leaves‘. The internal nodes represent the attributes and each 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

89 

branch corresponds to an outcome of the test performed on an attribute. DT provide a 

hierarchical representation of the feature space and they are considered popular choices for 

learning, reasoning and increasing understandability in specific contexts (Maimon and 

Rokach, 2005; Han et al., 2006). The feature space is allocated to classes according to the 

result of a decision made at the sequence of nodes, where the branches of the tree diverge. 

The popular DT extensively used in data mining mainly comprise the following:  

(a) Classification trees to predict an outcome in the class to which the data belongs, and, 

(b) Regression trees to predict an outcome as a real number. 

The term Classification and Regression Tree (CART) refers to both the above types of 

processes, introduced by Breiman et al. (1984). The CART algorithm has been previously 

described in section 3.2.2.3. Other popular DT algorithms include the ID3 (Quinlan, 1986), 

C4.5 (Quinlan, 1993) and CHAID (Kass, 1990). These algorithms share some similarities but 

also present several differences, such as the splitting conditions. 

The CHAID algorithm is selected to be briefly described below since it was utilised in this 

thesis. The Chi-Squared Automatic Interaction Detection (CHAID) (Kass, 1990) splits the 

data in an iterative manner using multi-way splits on nominal and ordinal data. Each split is 

executed if the level of significance in a chi-square test of independence between the target 

value and the branch exceeds a threshold. CHAID uses a significance test to determine the 

number of branches and the Bonferroni adjustment for nominal values to mitigate the bias 

towards inputs with many values. 

The following steps are executed: 

(1) For each value xi of the data sample {(x1, y1), …, (xn, yn)}, where y is the 

dependent variable, assign a different branch. 

(2) For each pair of branches form a two-way table and count the number of cases in 

each branch according to the target value (dependent variable). 

(3) Locate the pair of branches which has the lowest chi-square independence 

measure. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

90 

(4) If the significance level is below a threshold, merge the branches and repeat steps 

(2)-(4). Otherwise, consider re-splitting the branches that contain more than three 

input values and continue with step (5). 

(5) If a binary split is located that exceeds a threshold significance level, split the 

branch in two and go back to step (4) and merge branches. When no more merges 

or re-splits are significant continue with step (6). 

(6) The procedure stops and the last split on the input is chosen as the candidate split 

for the input. 

The CHAID algorithm does not select the most significant split examined. Biggs et al. 

(1991) introduced the algorithm ―exhaustive CHAID‖ which selects the most significant split 

and produces more branches than the original CHAID. The exhaustive CHAID has also been 

used in the experiments conducted in this work. 

3.3 Qualitative Models Technical Background 

A major weakness of quantitative software cost estimation models is observed when 

attempting to take into consideration factors that are purely qualitative, immeasurable and 

subjective, such as development group dynamics, cohesiveness and experience. Consequently, 

the interactions among such factors and their effect on development effort are hard to 

understand and model. In this section, two forms of Qualitative models are presented, Fuzzy 

Cognitive Maps (FCM) and Influence Diagrams (ID), both being used in this diatribe. 

3.3.1 Fuzzy Cognitive Maps (FCM) 

A Fuzzy Cognitive Map (FCM) model, initially proposed by Axelrod (1976), provides a 

graphical representation of the knowledge used to describe a given real-world problem in the 

form of an acyclic graph comprising of cognitive states (concepts) (Kosko, 1995). Each 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

91 

concept node is characterised by a numeric state, which denotes the qualitative measure of its 

presence in the conceptual domain. For example, a high numerical value indicates that the 

concept is strongly present in the analysis, while a negative or zero value indicates that the 

concept is not currently active or relevant to the conceptual domain.  

The FCM works in discrete steps (Kosko, 1986). When a strong positive correlation exists 

between the current state of a concept and that of another concept in a preceding period, we 

say that the former positively influences the latter, indicated by a positively weighted arrow 

directed from the causing to the influenced concept. By contrast, when a strong negative 

correlation exists, it reveals the existence of a negative causal relationship indicated by an 

arrow charged with a negative weight. Two conceptual nodes without a direct link are, 

obviously, independent. 

The effect of a causal relationship between two nodes is represented as follows:  

 Positive (+) causality, in cases in which a node promotes, enhances, or is a benefit to 

another node, etc. An increase in the cause variable will result to an increase in the 

effect variable; a decrease in the cause concept will result to a decrease in the effect 

concept.  

 Negative (-) causality, in cases in which a node retards, prevents, or is harmful to 

another node, etc. In such cases an increase in the cause variable will end up with a 

decrease of the effect variable and vice-versa. 

 No effect (0), when a node has no effect on, or is not affected by another node. 

The activation level of each node of the FCM and the weighted arrows are set to specific 

values. These values for example may be based on the beliefs provided by a group of experts. 

Then, the FCM is free to progress and react until it (Taber, 1987):  

(i) Reaches equilibrium at a fixed point, with the activation levels, being decimals in the 

interval [-1, 1], stabilising at fixed numerical values.  

(ii) Exhibits a limit cycle behaviour, with the activation levels falling in a loop of numerical 

values under a specific time-period.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

92 

  t

iA
i

dt

i
At

i
Sf

t

i
A 

 1

(iii) Exhibit a chaotic behaviour, with the activation levels reaching a variety of numerical 

values in a non-deterministic, random way. 

A simple FCM structure is described in (Tsadiras and Margaritis, 1996) to build a 

Certainty Neuron Fuzzy Cognitive Map (CNFCM). The activation level for each concept Ci is 

defined by a function coming from the area of Expert Systems (Andreou et al., 2004) used to 

update each concept after receiving new evidence concerning previous beliefs based on the 

present certainty factor (eq. (3.25)), where Ai is the activation level for concept Ci at some 

time (t+1) or (t). Eq. (3.26) defines the sum of the weighted influences that concept Ci 

receives at time step t from all other concepts, while di is a decay factor. 

 (3.25) 

where  




n

ij
j

ij

t

j

t

i WAS
1

 (3.26) 

Finally, equation (3.27) describes the function used for the aggregation of certainty 

factors. The meaning of this function is that the external influence can affect the activation of 

a concept just to a certain degree. 

 

 

(3.27) 

3.3.2 Influence Diagrams (ID) 

Influence Diagrams (ID) represent a way to model a decision problem and are very useful 

for probabilistic and decision analysis problems (Howard and Matheson, 1984; Shachter, 

1988). The models are represented by interconnected nodes, directed arcs and contain no 

 

 



















otherwiset

i
St

i
At

i
St

i
A

t

i
St

i
At

i
St

i
Aift

i
St

i
At

i
St

i
At

i
At

i
St

i
A

t

i
St

i
Aift

i
St

i
At

i
St

i
At

i
At

i
St

i
A

t

i
St

i
A

m
f

,)),min(1(

1,1,0,0,)1(

0,0,)1(

,

Efi P
ap

ath
eo

ch
aro

us



 

 

 

93 

cycles. They rely on probabilistic dependence, reveal the information flow and contain 

uncertain variables and decisions. ID contain four types of nodes, described as follows: 

 Decision Node: represents the variables that are under the control of the decision 

maker and models the available decision alternatives. 

 Chance (or Uncertainty) Node: represents the random variables and uncertain 

quantities that are relevant to the decision problem. This means that each chance node 

is associated with a random variable; for each of these nodes there is an underlying 

probability distribution for all the random variables. 

o Deterministic Node: is a special type of chance node whose outcome is 

defined in a deterministic manner, i.e., represents either constant values or 

values that are algebraically determined from the states of their parent nodes. 

 Value Node: represents a measure of desirability of the outcomes from the decision 

process. The value node is quantified by the utility of each of the possible 

combinations of outcomes from the parent nodes defined in the ID. 

ID contain two types of arcs, described as follows: 

 Influence (or Conditional) Arc: Indicates a node‘s direct influence to another node. 

The influence can be directed to chance and value nodes. 

 Informational Arc: Indicates one node‘s influence into decision nodes. 

The arcs indicate the probabilistic dependence of uncertain quantities (questions in the 

decision problem).  

The algorithm of Cooper (1988) is used for obtaining the outcome of a decision by 

solving an ID initially transforming it into a Bayesian Belief Network (BBN) and then 

estimating the expected utilities for each of the decision alternatives through a repetitive 

process of inference.  

For example, consider the ID of Figure 3.6 representing the decision to bring an 

umbrella to work or not (Shachter and Peot, 1992). The goal is maximise Satisfaction 

depending on the Weather and whether we bring an umbrella. The latter represents the 

decision and the key uncertainty here is the Weather, which we will not observe until we 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

94 

reach to a decision. However, prior knowledge exists regarding Forecast before we reach 

to the decision. Forecast depends on the Weather since otherwise it would not offer any 

valuable information to the decision problem modelled.  

The data for the ID is stored within the nodes and each node can take a set of possible 

values: (i) outcomes or alternatives for random variables, for which there is a conditional 

probability distribution giving chances to different outcomes dependent on the outcomes 

of the variable parents, and, (ii) value variables, for which there is a function v(A) giving 

the expected value as a function of its parents and denoted by the set A.  

Decision variables do not have a distribution but when the optimal choices are 

determined, the decision is replaced by a random variable, called the ‗optimal policy‘. 

Regarding this optimal policy the choices can be indicated by a probability distribution or 

a deterministic function. Finally, for evidence nodes a likelihood function is sufficient, 

since the outcome is already known. 

 

Figure 3.6: A simple Influence Diagram (ID) example 

 

The main advantage of ID is that they provide clear insight into a decision problem 

including the qualitative structure of the problem and distinguish the negative or positive 

dependence of each node on each other and on the decision (Shachter, 1988). Therefore, 

they are very useful in cases of investigating the cause-and-effect relationships and in the 

distinction between informational and probabilistic relations within a particular context 

(Mateou et al., 2005). 

In the next chapter, the proposed research as conducted is described. 

Efi P
ap

ath
eo

ch
aro

us



 

95 

 

Chapter 4  

Proposed Software Cost Modelling and Estimation Methodologies 

This chapter provides details on the research contribution of this dissertation and 

emphasises on the hybrid Computational Intelligent (CI) Software Cost Estimation (SCE) 

models developed. The models are distinguished in Quantitative and Qualitative models. 

4.1 Overview of Software Cost Estimation Models and Datasets 

The models proposed and developed in the context of this research thesis are illustrated in 

Figure 4.1. The figure shows the basic steps followed which include dataset pre-processing, 

software cost modelling and estimation which is at the final stage evaluated (validated). The 

pre-processing activities involve data cleaning for ensuring that the models proposed will 

utilise qualitative data. The pre-processing activities carried out are described thoroughly in 

this section. In cases where it was considered necessary, pre-processing involved the 

transformation of nominal and multi-valued nominal attributes to binary. In some other cases, 

normalisation was applied on numerical and binary (dummy) attributes. The normalisation 

aims to achieve rescaling in a way to distribute the data evenly within a particular range. In 

addition, for models based on Fuzzy Logic (FL), fuzzification was applied on real-valued 

(numerical) data to limit the underlying uncertainty of the datasets. Finally, several techniques 

to cluster or classify the data considering the project‘s features were applied as a filtering step. 

This chapter includes the detailed description of the necessary pre-processing activities to 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

96 

carry out exploratory experiments and investigations to effectively model and accurately 

estimate software cost. The SCE component of Figure 4.1 includes two types of approaches: 

the Quantitative and the Qualitative. The Quantitative SCE models, on the one hand, examine 

the use of various techniques to model and forecast software development effort. The 

techniques utilised comprise Artificial Neural Networks (ANN), Ridge Regression (RR), 

Genetic Programming (GP) and hybrid systems. The hybrid systems include ANN combined 

with Genetic Algorithms (GA) or Input Sensitivity Analysis (ISA), Fuzzy Decision Trees 

(FDT) combined with Fuzzy Inference Systems (FIS), Conditional Sets (CS) combined with 

GA and RR combined with Conformal Predictors (CP). On the other hand, the Qualitative 

models identify the vital cost factors in software engineering environments and utilise 

techniques of Fuzzy Cognitive Maps (FCM) and Influence Diagrams (ID), by representing the 

factors that affect cost as nodes with certain interrelationships, to investigate the problem of 

SCE in real-case scenarios. Finally, each design of experiments used in this thesis aims to 

answer specific questions which helped to structure the contents of this chapter. 

 
Figure 4.1: Software Cost Modelling and Estimation Research Components 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

97 

4.1.1 The Datasets Utilised 

In this section the datasets used in the experiments conducted are described. They 

incorporate a rich volume of empirical, past, completed projects from the software industry. 

4.1.1.1  The COCOMO Dataset 

The COCOMO dataset (Boehm, 1981, pg. 496-497) contains information of 63 software 

projects from different applications developed at TRW Inc. Each project is described by the 

following 17 cost attributes: reliability, database size, complexity, required reusability, 

documentation, execution time constraint, main storage constraint, platform volatility, analyst 

capability, programmer capability, applications experience, platform experience, language & 

tool experience, personnel continuity, use of software tools, multi-site development and 

required schedule. Also, for the projects the Source Lines of Code (SLOC) are measured. 

4.1.1.2 The Albrecht and Gaffney Dataset 

The Albrecht and Gaffney dataset (Albrecht and Gaffney, 1983) contains information of 

24 projects developed by the IBM DP service organisation. The datasets‘ characteristics 

correspond to the actual project effort, the SLOC, the number of inputs, the number of 

outputs, the number of master files, the number of inquiries and the Function Points‘ (FP) 

count. 

4.1.1.3 The Kemerer Dataset 

The Kemerer dataset (Kemerer, 1987) contains 15 software project records gathered by a 

single organisation in the USA, which constitute business applications written mainly in 

COBOL. The attributes of the dataset include the actual project‘s effort measured in man-

Efi P
ap

ath
eo

ch
aro

us



 

 

 

98 

months, the project duration, the thousands of Source Lines of Code (KSLOC), the unadjusted 

and adjusted FP‘s count. 

4.1.1.4 The Desharnais Dataset 

The Desharnais dataset (Desharnais, 1989) includes observations for 81 systems 

developed by a Canadian software development house at the end of 1980. The basic 

characteristics of the dataset account for the following: development effort measured in hours, 

team‘s experience, project manager‘s experience, number of transactions processed, number 

of entities, unadjusted and adjusted FP, development environment and year of completion. 

4.1.1.5 The ISBSG R9 Dataset 

The ISBSG R9 dataset (ISBSG, Repository Data Release 9) is obtained from an 

international non-profit organisation, the International Software Benchmarking Standards 

Group (ISBSG), and contains an analysis of characteristics and costs for a group of software 

projects. The ISBSG organisation establishes and maintains a database of historic IT industry 

project data to assist and improve IT project management globally. The projects come from a 

broad cross section of industry and range in size, effort, platform, language and development 

technique data. The release R9 of the dataset contains 92 variables for 3,024 projects and 

contains multi-organisational, multi-application domain and multi-environment data. Some of 

the attributes collected and stored in the ISBSG repository were mandatory and some were 

optional. Efi P
ap

ath
eo

ch
aro

us



 

 

 

99 

4.1.1.6 The ISBSG R10 Dataset 

The ISBSG R10 dataset (ISBSG, Repository Data Release 10) is a newer version of 

ISBSG R9 dataset that was released on January 2007 with contributions of data from many 

industries all over the world. The dataset includes 4,106 projects which have different 

characteristics, are developed following different methodologies and techniques. The data 

originate from 25 countries with 60% of the projects being less than 10 years old. The 

database consists of 106 number of attributes recorded, but only a small portion of records 

contains values for all of these attributes (the same applies for ISBSG R9 dataset). The list of 

attributes includes, among others, the application domain, programming languages used, 

language types, development techniques, resource levels, functional size of the software 

produced, etc.  

4.1.2 Pre-processing Activities 

The generic pre-processing steps the datasets went through are summarised in Table 4.1. 

However, the appropriate and required combinations of these pre-processing steps were 

applied in each particular methodology according to the research question examined, the 

technique used and the requirements of the methodology. 

Table 4.1: Summary of the pre-processing steps applied for the datasets 

Code Description 

(a) Projects with null values in numerical (real value) data were excluded. 

(b) Projects with null values in categorical data were excluded. 

(c) 

Projects with data quality and Unadjusted Function Point (UFP) rating from the ISBSG 

reviewers as ‗C‘ or ‗D‘ Category were excluded and projects with ‗A‘ or ‗B‘ Category 

quality were maintained. 

(d) 

Projects that used a technique to measure the size of the project that was different than the 

unadjusted functional size measurement method IFPUG (ISO/IEC 20926, 2003) were 

excluded. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

100 

Code Description 

(e) 

Projects reporting partial work effort for a limited set of phases in the project life-cycle 

even if the effort was adjusted to represent the full-cycle work effort were excluded. 

(f) 

Attributes containing more than 40% of projects with null values for that specific attribute 

were excluded. 

(g) 

Attributes that were considered not to have a direct or apparent impact on software cost 

(irrelevant) were excluded. 

(h) 

Attributes of numerical and binary form were normalised in the range [-1, 1]. The 

normalisation was based on eq. (4.1), where y‟ is the normalised value of x, ymax and ymin 

are the bounds of the ranges we are normalising to (i.e., [-1, 1]) and xmax and xmin are the 

maximum and minimum elements of the original values. It is assumed that x‘s values are 

real and that the elements in each row of x are not equal. 

min

minmax

minminmax )(*)(
' y

xx

xxyy
y 




  

(4.1) 

 

(i) Attributes with categorical (but not ordinal) attributes were excluded. 

(j) 

Attributes that were not considered relevant to software size, complexity, or productivity, 

or constituted derived attributes from transformations of other attributes, were excluded. 

(k) 

Project attributes that could not be measured before the project completion and therefore 

would not be practical for the cost estimation model under creation were excluded. 

(l) 

New binary columns for different values of categorical attributes were created. In these 

columns the value of 1 was reported for each project that belonged to the new categories 

created, and 0 otherwise. 

(m) 

Attributes of numerical form were normalised in the range [0, 1] according to eq. (4.1), 

i.e., where the bounds of the ranges we are normalising to ymax and ymin are 1 and 0 

respectively. 

(n) 

New categories to describe different but logically similar sample values of categorical 

columns were created, thus merging and homogenising similar pieces of information into 

new categories (e.g., ‗Oracle v7‘, ‗Oracle 8.0‘ into ‗Oracle‘). 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

101 

Code Description 

(o) 

Numerical values were fuzzified under a fuzzy linguistic representation proposed in (Braz 

and Vergilio, 2004). Each numerical cost attribute was fuzzified based on the trapezoidal 

membership function by calculating variables mi, ni, ai and bi (see Figure 4.2) where 

1≤i≤n, and n is the number of linguistic terms in the classification table being analysed 

and using the following eqs: 

tabletionclassificainTtermlinguisticofvaluem ii min  (4.2) 

2

1
 ii

i

mm
n  

(4.3) 

1 ii na  (4.4) 

1 ii mb  (4.5) 

Figure 4.2 illustrates an example of a three linguistic values encoding (or fuzzification) 

scheme. 

(p) New categorical sample bins were created of similar size to group data into classes. 

(q) 

Attributes of numerical form were transformed using the natural logarithm (i.e., the 

logarithm to the base-e). 

 

 

 

Figure 4.2: Membership functions of three fuzzy sets for the linguistic values LOW, MEDIUM and 

HIGH 

 

4.2 Quantitative Software Cost Estimation Models 

Typically the process of Software Cost Estimation (SCE) requires the identification and 

utilisation of a set of attributes, factors or cost drivers. These attributes may be of numerical, 

nominal or even non-quantitative nature. The latter, being qualitative and thus quite 

subjective, are difficult to measure with certainty. Examples of quantitative attributes include 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

102 

the project manager‘s experience (in years/projects), the software size, the development 

technique followed, etc. factors that both describe the project and influence its cost. This 

section describes the Quantitative software cost models developed for estimating a software 

project's effort and examining the complex interrelations between cost factors and effort. 

Several techniques are employed from the domain of CI in order to build software cost 

models, improve forecasting ability and analyse the form of the input variables used, the latter 

being rarely adequately conducted in SCE models (Park and Baek, 2008). 

4.2.1 Size-Based Software Cost Estimations (SB-SCE) 

Many software engineers have focused on measuring internal product attributes and 

building software cost models based on such attributes; an example of these is software size 

(Fenton and Pfleeger, 1997; Schach, 2004). Software size is commonly recognised as one of 

the most important factors affecting the amount of effort required to complete a project 

(Fenton and Pfleeger, 1997; Boehm et al., 2000b; Sommerville, 2006). Even though size 

measurements reported do not usually account for all the amount of effort required to create 

various artefacts of the product, we may assume that they represent estimates of the size for 

all forms of products produced for some required software, including requirement 

specifications, design, source code and associated documentation. In addition, size 

measurements are assumed to represent size estimates which in reality are subjective and thus 

suffer from some degree of uncertainty. 

Therefore, in this preliminary research work the main goal is to investigate and confirm 

the relation of software effort with size estimates, even though according to Jørgensen (2007) 

in the domain of SCE the stability of this relationship is controversial, since the technology, 

the types of software produced and the development methodologies followed change 

regularly. The modelling is carried out through ANN and the performance of the Size-Based 

SCE (SB-SCE) model is investigated through a series of experiments given that it depends on 

the properties of the relationships it attempts to model. Once a robust relationship between 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

103 

size of the deliverables of a software project and effort is established by means of a model, 

then it can allow the accurate evaluation of effort estimations (Kemerer, 1993).  

Moreover, since the most popular size-based metrics used in practice are the number of 

Lines Of Code (LOC) and the number of Function Points (FP) of the software (Fenton, 2000), 

these are used in the SB-SCE methodologies and series of experiments executed which are 

described subsequently. Software size metrics (either in LOC, FP, or both) represent the only 

common metrics measured in all the datasets, previously described in section 4.1.1. 

Particularly, the size-based metrics used in the experiments were obtained from the datasets 

COCOMO, Kemerer, Albrecht and Gaffney, Desharnais and ISBSG R9. The latter includes 

projects from many organisations while the rest datasets from specific companies. The details 

of the pre-processing applied for the attributes summarised in Table 4.2 can be found in Table 

4.1 (a). Thus, measurements of Source Lines of Code (SLOC) and/or Function Points (FP) 

found in each of the datasets were utilised for estimating development effort in all SB-SCE 

experiments conducted.  

Table 4.2: Size-based software attributes description for each dataset 

Dataset Size-Metric Name Description 

COCOMO SLOC Source Lines of Code 

Kemerer 
AFP Adjusted Function Points 

KSLOC Thousands of Source Lines of Code 

Albrecht and Gaffney 
FP Function Points 

SLOC Source Lines of Code 

Desharnais AFP Points ajust. (Adjusted Function Points) 

ISBSG R9-1 AFP Adjusted Function Points 

4.2.1.1 Single Hidden Layer MLP ANN for SB-SCE 

Initially, the employment of ANN for SCE utilising size-related software attributes (such 

as LOC and FP), aims to investigate the levels of predictive performance of simple, single 

hidden layer Multi-Layer Perceptron (MLP) architectures. More specifically, the goal is to 

inspect whether sufficient estimates of software development effort using only size-related 

metrics on different datasets of empirical cost samples may be achieved. Since the estimates 

of software size suffer from subjectivity, the ANN technique was selected because it is 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

104 

especially suited for adapting estimations to the type of problem-solving domains that 

comprise very noisy and complex data samples. In particular, the nature of software size 

metrics presents tremendous restrictions, such as, the absence of widely accepted definitions, 

counting rules, as well as subjectivity and complexity in calculating Lines Of Code (LOC) 

and/or Function Points (FP). These restrictions result to high size estimates‘ variations and 

uncertainty. 

The filtered datasets initially used consisted of 63 projects in the COCOMO, 15 projects 

in the Kemerer, 24 projects in the Albrecht and Gaffney and 77 projects in the Desharnais 

case. The data was randomly separated into three subsets, i.e., the training set consisting of 

60% of the original samples, the validation set 20% and the testing set 20%, the latter being 

called the ‗holdout sample‘ as it is used to examine the generalisation ability of a trained 

model. The holdout sample was ‗unseen‘ to the training process. This process of validation is 

known as ‗holdout‘ (Weiss and Kulikowski, 1991). 

The ANN models were developed in Matlab 2010b and comprised a single hidden layer 

MLP architecture, as shown in Figure 4.3. The number of nodes in the hidden layer was 

empirically defined (from 2 to 10 hidden nodes), the input layer utilised the netsum function 

(defined in eq. (4.6) and in which the calculation of output 
1

1h  is based on the summation of 

the product of ix and weights
1

1iw , where i=1,…,n for each input weight and bias 

1

1 variables), the hidden layer utilised the hyperbolic tangent sigmoid transfer (tansig) 

function (eq. (4.7)) and finally, the output layer utilised the pure linear (purelin) function.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

105 

 
Figure 4.3: A Feedforward Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) 

 









 



n

i

ii wxfh
1

1

1

1

1

1

1
  

(4.6) 

1))exp(1(*))exp(1()(  bybyyf  (4.7) 

The ANN were trained using the Levenberg-Marquardt (Levenberg, 1944; Marquardt, 

1963) backpropagation algorithm (trainlm) which is widely accepted due to its wide range of 

problem applicability and generally good performance (Demuth and Beale, 2000; Shukla and 

Misra, 2008; Koivo, 2008). The maximum number of epochs and the initial momentum 

constant were set equal to 100 and 0.001 respectively. Training was repeated 20 times (as 

proposed by Prechelt (1994)) and also, validation was used as a pseudo-test to ensure that the 

network was indeed trained and to impose ‗early stopping‘. Early stopping is considered a 

powerful method to apply cross-validation in ANN (Prechelt, 1994). In each iteration of 

training random initialisation was performed, i.e., the weights and momentum coefficients (or 

bias) were randomly initialised with the Nguyen-Widrow initialisation method (Nguyen and 

Widrow, 1990). The performance function was the Mean Squared Error (MSE). The best 

trained ANN, i.e., the ANN that yielded the lowest Mean Magnitude of Relative Error 

(MMRE) figure, was used for evaluation, i.e., was used for the final prediction using the 

testing samples. The selection of MMRE for comparing models was made since it is the most 

widely used criterion to assess SCE model‘s performance in literature, even though it has been 

x1 

x2 

xn 

+1 

. 

. 

. 

. 

. 

. z1 

+1 

Hidden 
Layer 

Output 

Inputs  

Bias  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

106 

proven not suitable for comparisons across datasets or all kinds of model types (Myrtveit et 

al., 2005). 

The indicative best results in terms of effort prediction obtained from the single hidden 

layer SB-SCE ANN models are summarised in Table 4.3 (Papatheocharous and Andreou, 

2011). The term ‗best result‘ is used to discern the lowest in MMRE result one can get using a 

particular method. The ANN were also constructed a number of times before reaching to the 

models summarised in Table 4.3, with variations of activation functions in the hidden layer, 

performance function, number of hidden layer neurons, etc. and then picking the type of 

network that yielded the best result. The results reported were obtained with minimum 

experimentation, i.e., most of the parameters altered at the beginning (for model calibration) 

did not affect the result and thus many ANN parameters were kept constant (and same as the 

default ones) such as the performance function and the training parameters. 

Table 4.3: Selected experimental results from single hidden layer ANN MLP of SB-SCE models 

DATASET INPUT TOPOLOGY 
TESTING PHASE 

MMRE CC NRMSE Pred(.25) 

COCOMO SLOC 1-4-1 1.629 0.597 2.890 0.154 

Kemerer 
 AFP 1-3-1 0.282 0.943 0.614 0.333 

KSLOC 1-3-1 0.257 0.792 0.527 0.333 

Albrecht and Gaffney 
FP 1-2-1 0.324 0.987 0.149 0.600 

SLOC 1-4-1 0.469 0.985 0.691 0.200 

Desharnais AFP 1-3-1 0.348 0.712 0.696 0.400 

 

The overall accuracy performance indicates that the ANN approach can reach to quite 

promising effort approximations with very simple architectures as the level of MMRE 

obtained is in some datasets is near to the acceptable rate for software prediction models set 

by Conte et al. (1986), i.e., ≤ 0.25. The datasets whose effort is better approximated is the 

Kemerer, followed by the Albrecht and Gaffney (using FP as input) and then followed by 

Desharnais. This means that the optimal SB-SCE models with ANN cannot be constructed for 

every case (dataset). Moreover, the accuracy level obtained across the datasets and across the 

accuracy metrics reported varies considerably, thus inconsistent ordering of the various 

accuracy measures used is evident. This also means that for some datasets and some accuracy 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

107 

metrics the predicted value obtained for effort is considered successful (since it is very close 

to the actual) and for others it is not. 

Commenting the above results, we observe that for the Albrecht and Gaffney dataset 

when FP are used as inputs instead of LOC, the prediction is better which shows that there is 

an indication of high association between the two (i.e., FP and effort). Metrics such as LOC, 

even though seem to affect the value of effort (e.g., in the Kemerer case), they do not affect 

the model in yielding better predictions. This may be attributed to the subjectiveness of LOC 

estimates as a metric and its high dependence on factors not considered in the experiments, 

such as complexity of the code, code design, programming skills and style of the developers, 

degree of code re-use, programming language and type (if it is object-oriented or not) and the 

use of tools for generating code. For example, application generators such as Eclipse IDE 

generate automatic code for POJO (Plain Old Java Objects) (a term coined by Fowler et al., 

(2000)), e.g., constructors, getters, setters, as well as comments, without any effort spent on 

actual coding. Whereas FP estimates are considered less subjective as a metric by definition, 

because even though they are affected by factors such as the software complexity in the 

functional aspect, the latter remains unaffected during the project, and thus, is independent 

from technical factors, such as the ones affecting LOC and the actual implementation. 

However, since FP are affected by the team‘s and project manager‘s domain experience, 

requirements, changing requirements, etc., it is worthwhile to investigate such factors in 

subsequent research analyses. 

Additionally, for comparison purposes, Table 4.4 summarises the prediction results over 

the same project samples and data separation utilising a popular method in the literature, i.e., 

Ordinary Least Squares (OLS) Regression. Regression was used to capture the relationship 

between size and effort of projects in the form of an exponential function which was 

represented by a polynomial transformed to linear using the natural logarithm. Polynomial 

curve fitting was used for finding coefficients β0 and β1 (as specified in eq. (3.9) of section 

3.2.2.1, pg. 80 representing the constant and the slope of the regression curve using the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

108 

training set in a least-squares sense. Then, the coefficients were utilised for estimating effort 

of the testing set.  

Table 4.4: Selected experimental results from OLS Regression of SB-SCE 

DATASET INPUT 
TESTING PHASE 

MMRE CC NRMSE Pred(.25) 

COCOMO SLOC 1.022 0.639 1.045 0.154 

Kemerer 
 AFP 0.196 0.974 0.289 0.667 

KSLOC 0.234 0.825 0.566 0.667 

Albrecht and Gaffney 
FP 0.248 0.969 0.453 0.600 

SLOC 0.397 0.970 0.556 0.200 

Desharnais AFP 0.311 0.708 0.819 0.467 

 

The aim here was to investigate as a starting point the performance of two well-known, 

established and simple techniques in SCE (Papatheocharous and Andreou, 2011). Particularly 

the experimentation was made only with projects developed by single companies whereas 

projects developed within various organisations will need to be also examined. The 

experimental results showed that Regression outperformed the simple single hidden layer 

ANN using the exact same data partitions in all the respective datasets. The rest of the training 

and generalisation (testing) performance figures of the models are provided in Appendix B 

(pg. 291-294).  

Taking into consideration all the experiments conducted, it became evident that several 

parameters calibrated, such as the internal activation function in the ANN model, did not 

differentiate the performance results. However, both models were found to be particularly 

sensitive in all the datasets used to the random subdivision of training, validation and testing 

sets, and particularly to the type of inputs used (i.e., FP or LOC in cases where both were 

available). In most datasets, both models performed better when FP instead of LOC were 

used. Thus, the high dependence between FP and effort was confirmed by both models 

examined (ANN and Regression). 

 Nevertheless, further investigation needs to be carried out, especially regarding the 

network architecture, the optimum number of internal hidden neurons (computational 

elements) and combination of types of size-related metrics to yield even better software cost 

predictions in these benchmark datasets. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

109 

4.2.1.2 Multiple Hidden Layer MLP ANN for SB-SCE 

The previous experimentations provided evidence that there is need to develop and 

examine perhaps more complicated ANN topologies that could optimise prediction accuracy, 

reliability and generalisability. Therefore, the models subsequently developed 

(Papatheocharous and Andreou, 2008) were based on multiple hidden layer MLP networks. 

Moreover, a dedicated method was applied to combine size-related measures and actual effort 

expended to develop these products. The coupling method used a variable window of i past 

projects, where i=1,...,5, so that the ANN could become ‗aware‘ of this information and 

assimilate it as a pattern. These patterns of completed projects of size and effort were expected 

to increase the learning capacity of the ANN and optimise effort prediction of impending new 

projects. The size of the project‘s window was considered sufficient based on the rather small 

project samples available in the datasets utilised. 

 The ANN models were developed in the Neuroshell tool Release 2.0. (Ward System 

Group, 2008). The architecture employed is illustrated in Figure 4.4. The ANN input layer 

utilised the linear function (and thus the inputs were normalised in the range [-1, 1]) and the 

output layer used the logistic function. The networks were built connecting each input neuron 

with hidden layers consisting of three parallel slabs activated by different functions, i.e., the 

hyperbolic tangent, the Gaussian and the Gaussian complement as specified in eqs (4.7) pg. 

105, (4.8) and (4.9) respectively. 

 2exp)( xyf   (4.8) 

 2exp1)( xyf   (4.9) 

The linear and tanh functions were selected because they are considered useful when the 

output is a continuous variable, the logistic function because it is considered the most useful 

function for most ANN applications, the Gaussian is especially useful in data-starved domains 

while both the Gaussian and the Gaussian complement bring out meaningful characteristics in 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

110 

the extremes of the data (Ward Systems Group, 2008) which is useful in the case of the size-

based data examined. 

Empirical variations of architectures were examined regarding the number of neurons in 

the internal hidden layers (Papatheocharous, 2004). The backpropagation algorithm was used 

for training with performance error the difference of the sum of squares and the number of 

maximum iterations (epochs) was 10,000. The learning rate, momentum and initial weights 

were set to 0.1, 0.1 and 0.3 respectively (Papatheocharous, 2004; Papatheocharous and 

Andreou, 2008).  

 

Figure 4.4: Feedforward MLP Artificial Neural Network (ANN) consisting of an input and an 

output layer and three slabs of hidden layers neurons. 
 

The varying size sliding-window technique applied on the data aimed to provide a specific 

sample sequence order (ti). This order specified couples of size-effort data of i projects, which 

were fed to the ANN models using this particular organisation in patterns, to estimate the 

effort of the (t+1)
th
 project. These combinations allow ANN to employ pattern matching and 

discovery regarding the dependent variable (effort) in each coupling of size-related cost 

drivers and their effort. Again, as a starting point, the ability of only size-related software 

metrics (LOC and FP) was investigated to approximate effort. The window-sliding size i 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

111 

varied, from 1 to 5, as defined in Table 4.5, covering the following Input Output Methods 

(IOM): 

 IOM1-IOM2: Using the Lines of Code or Function Points of i projects attempt to 

estimate the effort of the i
th
 project; 

 IOM3-IOM4: Using Lines of Code or Function Points with effort of the i
th
 project to 

estimate the effort required for the next project (i+1)
th
 in the series sequence; 

 IOM5-IOM6: Using Lines of Code or Function Points of the i
th
 and (i+1)

th
 projects 

and effort of the i
th
 project we estimate the effort required for the (i+1)

th
 project. 

In each IOM the number of past samples included in the sliding-window was increased as i 

increased and all variations were examined.  

Table 4.5: Sliding-window technique to determine the ANN inputs 

METHOD SOFTWARE METRICS* Output* 

IOM1 LOC(ti) EFF(ti) 

IOM2 FP(ti) EFF(ti) 

IOM3 LOC(ti), EFF(ti) EFF(ti+1) 

IOM4 FP(ti), EFF(ti) EFF(ti+1) 

IOM5 LOC(ti), LOC(ti+1), EFF(ti) EFF(ti+1) 

IOM6 FP(ti), FP(ti+1), EFF(ti) EFF(ti+1) 

(*where i=1…5) 

  

The same pre-processed datasets described in section 4.2.1.1 along with the cross-

organisational projects obtained from the ISBSG dataset were also used. The filtered version 

of the ISBSG R9, named ISBSG R9-1, was used consisting of 961 projects. The details of the 

pre-processing applied are described in Table 4.1 (a), (b)-(h). From the attributes only the 

Effort (EFF) and size-related factors, i.e., the Adjusted Function Points (AFP), were selected.  

In these multiple hidden layer MLP ANN models the number of projects utilised in the 

training process was increased due to the sliding-window technique applied. Therefore, 70% 

of the original data samples, instead of 60%, were used for training, 20% for validation of 

training and finally, only 10% of holdout samples were used for testing the generalisability of 

the model. Some indicative performance results (Papatheocharous and Andreou, 2008) are 

summarised in Table 4.6. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

112 

Table 4.6: Selected experimental results from multiple hidden layer MLP ANN sliding-window 

DATASET METHOD 
WINDOW  

SIZE i 
TOPOLOGY 

TESTING PHASE 

MMRE CC NRMSE 

COCOMO 
IOM5 1 3-15-15-15-1 0.551 0.407 0.952 

IOM1 2 2-9-9-9-1 0.525 0.447 0.963 

Kemerer 
IOM1 1 1-15-15-15-1 0.256 0.878 0.830 

IOM5 2 5-20-20-20-1 0.232 0.988 0.503 

Albrecht and Gaffney 
IOM6 2 5-3-3-3-1 1.142 0.817 0.649 

IOM2 2 2-20-20-20-1 1.640 0.936 0.415 

Desharnais 
IOM4 2 4-9-9-9-1 0.481 0.970 0.247 

IOM4 3 6-9-9-9-1 0.051 1.000 0.032 

ISBSG R9-1 
IOM2 4 4-15-15-15-1 0.843 0.577 2.617 

IOM6 1 3-3-3-3-1 0.809 0.601 2.435 

 

The figures show that deploying a mixture of architectures and IOM yields various 

accuracy levels based on the intrinsic characteristics of the datasets. The performance 

accuracy obtained compared to the previous experiments (summarised in Table 4.3) is 

improved in the COCOMO but worsened in the Albrecht and Gaffney case. This means, that 

for the latter dataset, the effort of projects cannot be accurately calculated (or at least 

approximate the acceptable rate for software prediction models set by Conte et al. (1986), i.e., 

≤ 0.25)) with the multiple hidden layer neuron MLP ANN developed and using the patterns of 

LOC and FP from the rest projects contained in the dataset. This means that at least for the 

Albrecht and Gaffney projects, there are other factors that drive effort to divergent levels and 

thus, the addition of the values from other projects to the model does not contribute positively 

in obtaining better prediction results.  

Also, it is worth mentioning that similar performance compared to the performance of 

Table 4.3 was obtained in Table 4.6 for the Kemerer case, whereas in the COCOMO and only 

in one of the Desharnais cases accuracy was considerably improved to successful levels. 

However, in the other case from the Desharnais projects the ANN accuracy again deteriorated. 

The main observation obtained is that effort predictions appear quite divergent even across 

similar datasets (i.e., datasets containing similar small number of projects, developed in the 

same decade, by single-companies) and even in predictions within the same datasets. The 

same applies for the multi-organisational dataset of the ISBSG R9-1.  

The same observation can again be made as with the previous experiments conducted, i.e., 

that FP and LOC metrics alone cannot always produce accurate effort estimations for every 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

113 

dataset and thus other factors affecting effort might need to be considered. Also, the results 

obtained for the cases thus far, infer that for the projects in the COCOMO and Desharnais 

datasets the addition of past historical pairs of size-effort to the model increases performance 

accuracy. This may be attributed to some pattern existence between the size-related metrics 

and effort of the projects within these datasets, which is discovered by the ANN models. 

Another interesting observation here is that the majority of the optimal ANN models 

employ a large number of internal neurons. Therefore, it seems that the optimal type of ANN 

architecture in SCE is an important issue for investigation and relying on simple empirical 

rules to determine it is not the best approach. Finally, since considerable accuracy 

performance variation was observed in the results, the models proposed are probably not the 

optimum ones for each case, and thus, further investigation is needed with respect to the 

selection of a ‗closer to optimum‘ ANN topologies in each dataset case as well as considering 

factors other than size (which is addressed in a subsequent section, i.e., 4.2.2 (pg. 121)). 

4.2.1.3 Hybrid Multiple Hidden Layer MLP ANN Coupled with GA 

Early investigations of ANN emphasised on the importance of the inputs used, the 

architecture (size, topology/structure, connectivity) and the existence of a deterministic 

relationship among input and target (Wittig and Finnie, 1997), so that, accurate predictions 

can be obtained. The lack of existence or appropriate selection of any of the above may cause 

inadequate learning. The SB-SCE models developed next were based on a hybrid technique, 

i.e., combining ANN with Genetic Algorithms (GA) for optimising the networks utilised for 

predictions in the previous section. The main objective was to exploit the benefits of 

Evolutionary Algorithms (EA) in software cost modelling of ANN and provide better effort 

predictors for impending new projects by calibrating the number of hidden layers and nodes 

(Papatheocharous and Andreou, 2011). Since manually determining the structure of the ANN 

is a tedious task and common trial-and-error methods entail the risk of overlooking promising 

optimisations, a dedicated GA was constructed to calibrate the model‘s architecture. The 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

114 

investigation included whether the combination of ANN and GA, may contribute in choosing 

an ‗ideal‘ ANN architecture for the particular set of inputs that meet some performance 

evaluation criteria, i.e., improve performance accuracy and minimise the complex structure of 

the ANN as much as possible. 

The GA developed aimed to obtain the ideal network structural settings by means of a 

cycle of generations including candidate solutions that were pruned by the criterion ‗survival 

of the fittest‘. This criterion was specified for ANN as the ‗best performing‘ (in terms of effort 

prediction accuracy in the evaluation phase) and the ‗less complex‘ structure (in terms of 

number of hidden neurons). The aforementioned criterion was selected after conducting some 

preliminary experiments (Papatheocharous, 2004) that showed that the GA favoured overly 

complex networks with large number of internal neurons in the multiple hidden layers. This 

may cause ‗overfitting‘ of the ANN, which in this case was avoided by using validation 

mechanisms of the generalisation ability of the ANN. The GA therefore replaced the trial-and-

error method previously applied to select the optimum architecture for the aforementioned 

IOM of the SB-SCE ANN models with the risk of overlooking models that would potentially 

lead to optimisation of performance. 

The following steps describe the way the genetically evolved SB-SCE models (also 

referred as hybrid ANN & GA in Figure 4.1) were implemented (Papatheocharous and 

Andreou, 2008): 

(1) The initial population of individuals was created randomly containing an encoding of 

the necessary pieces of information, that is, the number of internal hidden neurons for 

each hidden layer and the Input Output Method (IOM) – see Table 4.5. 

(2) From each individual of the generation the information regarding the network 

architecture and the structure of the input vector was extracted. Then the 

corresponding network was initialised, trained for a number of epochs and finally, 

tested. From the testing results obtained, all individuals were evaluated and the 

network state and performance results were stored. The performance of each 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

115 

individual was calculated based on the fitness function (see eq. (4.10)) an equation 

based on common forecasting performance errors. 

(3) Once all individuals of the respective generation were trained and tested on 

generalisation, the generation was evaluated as a whole. This was carried out by 

summing the fitnesses of each individual in the generation. 

(4) The top 5% of best individuals were forwarded to the next generation unchanged 

(elitism) and the rest individuals required to complete the size of the next generation 

were obtained through generic evolution steps applying the selection, crossover and 

mutation operators. The offsprings produced through these steps replaced their 

parents in the original population. 

(5) Steps (2), (3) and (4) were repeated until finally a predefined number of generations 

had been reached. Each generation evolved one or more near to optimal solution(s), 

that is, the best ANN architectures in terms of internal neurons for the IOM selected 

for predicting effort with the highest possible accuracy within the current population. 

More specifically, the first task for implementing the hybrid model was to determine a 

type of encoding so as to express the potential solutions. The encoding used was a binary 

string representing the ANN structure, the internal hidden neurons following the various 

methods of inputs‘ coupling, i.e., effort and size-related attributes. The inputs were inserted 

into the ANN models created within the hybrid algorithm following the IOM specified earlier 

(Table 4.5). The number of neurons used in the hidden slabs was restricted not to exceed 20 

neurons to avoid building ANN models that would lead to overfitting. The space of all 

feasible solutions (i.e., the set of solutions among which the desired solution resides) is called 

the ‗search space‘. Each point in the search space represents one possible solution. Each 

possible solution was ‗marked‘ by its fitness value, which in our case was expressed by eq. 

(4.10), minimising the MMRE (as defined in eq. (2.1) pg. 50) and the overall size of the 

network, i.e., the total number of internal neurons.  

sizeMMRE
fitness




1

1
 

(4.10) 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

116 

The hybrid GA searched the problem space to locate the best solution among a number of 

possible solutions.  Searching for a solution is then equal to looking for some extreme value 

(minimum or maximum) in the search space. The number of generations was set equal to 30 

and the population of each generation equal to 50.  

The GA developed included three types of operators: selection (roulette wheel), crossover 

(with crossover rate equal to 0.25) and mutation (with mutation rate equal to 0.01). Selection 

chooses members from the population of chromosomes proportionally to their fitness and 

elitism was used to ensure that the best members of each population were always selected for 

the new population. Crossover adapted the genotype of two parents by exchanging parts of 

them and creating new chromosomes with modified genotypes. Crossover was performed by 

selecting a random gene along the length of the chromosomes and swapping all the genes after 

that point. Finally, the mutation operator simply changed a specific gene of a selected 

individual in order to create a new chromosome with a different genotype. 

The hybrid ANN utilised in the input layer the netsum function (defined in eq. (4.6), pg. 

105), the hidden layer the hyperbolic tangent sigmoid transfer (tansig) function (defined in eq. 

(4.7), pg. 105) and finally, the output layer utilised the purelin function. The backpropagation 

training and learning function that updates weight and bias values according to gradient 

descent with momentum (traingdm/learndgm) was used. The maximum number of epochs 

was set to 100, early stopping was applied and the learning rate and momentum constant were 

both set to 0.3. The training process was repeated 3 times and each time the network weights 

and bias were randomly initialised with the Nguyen-Widrow method (Nguyen and Widrow, 

1990). The performance function used was the Mean Squared Error (MSE) with reg 

performance function (msereg), which takes into account the weight sum of two factors, the 

mean squared error and the mean squared weight and bias values and is referred as an 

alternative performance function to improve generalisation (Beale et al., 2011). 

The indicative ‗best‘ results obtained from the hybrid multiple hidden layer MLP 

genetically evolved SB-SCE ANN models for a constant window size (see Table 4.5, i=1) are 

summarised in Table 4.7 (Papatheocharous and Andreou, 2009c; Papatheocharous and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

117 

Andreou, 2011). The estimation of MMRE, CC and NRMSE was carried out on the normalised 

actual and predicted effort values (as specified in Table 4.1 (h)).  

Table 4.7: Indicative experimental results of the constant sliding-window size hybrid model (ANN 

&GA) with multiple hidden layer MLP ANN coupled with GA for SB-SCE 

DATASET METHOD* ANN ARCHITECTURE 
TESTING PHASE 

MMRE CC NRMSE 

COCOMO 

IOM1 1-9-17-10-1 0.003 1.000 0.014 

IOM3 2-20-18-3-1 0.075 0.961 0.278 

IOM5 3-19-20-4-1 0.044 0.981 0.199 

Kemerer 

IOM1 1-17-13-16-1 0.009 1.000 0.019 

IOM3 2-18-14-18-1 0.211 0.822 0.550 

IOM5 3-19-15-20-1 0.028 0.997 0.081 

IOM2 1-17-20-11-1 0.009 1.000 0.006 

IOM4 2-19-15-20-1 0.062 0.993 0.122 

IOM6 3-19-9-16-1 0.031 0.999 0.051 

Albrecht and Gaffney 

IOM1 1-13-20-6-1 0.005 1.000 0.024 

IOM3 2-19-20-8-1 0.163 0.977 0.210 

IOM5 3-19-11-10-1 0.173 0.975 0.218 

IOM2 1-9-17-10-1 0.014 1.000 0.018 

IOM4 2-18-15-11-1 0.112 0.985 0.171 

IOM6 3-20-19-10-1 0.084 0.984 0.177 

Desharnais 

IOM2 1-3-18-20-1 0.016 0.998 0.075 

IOM4 2-20-19-20-1 0.589 0.437 1.022 

IOM6 3-20-20-19-1 0.381 0.674 0.750 

ISBSG R9-1 

IOM2 1-16-18-11-1 0.004 0.998 0.073 

IOM4 2-19-14-20-1 0.952 0.030 1.141 

IOM6 3-19-15-26-1 1.312 0.705 0.742 

*sliding-window size i was equal to 1. 

 

The hybrid model developed shows ability to optimise the architecture and the accuracy 

performance of estimating effort in all the datasets, even though the results cannot be directly 

compared to the previous set of experiments. Table 4.8 summarises the results obtained for a 

varying sliding-window size (Papatheocharous and Andreou, 2008; Papatheocharous and 

Andreou, 2009c). The larger sliding-window size employed, aims to feed the model with 

more pairs of historical samples of size-effort so that more information is used to train the 

model. Moreover, the number of generations and number of individuals within the generations 

were altered to 200 and 30 to allow the algorithm to converge, as some preliminary 

experiments trying a few variations on these parameters indicated that the algorithm needed to 

explore more generations. Increasing the number of generations led to vast increase of the 

time the GA required to reach to a solution and therefore, to minimise the execution time 

fewer solutions (individuals) were examined in each generation. Moreover, the ANN 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

118 

developed were trained using the scaled conjugate gradient backpropagation (trainscg) over a 

maximum of 500 epochs and early stopping was applied.  

Table 4.8: Indicative experimental results of varying sliding-window size hybrid model (ANN 

&GA) with multiple hidden layer MLP ANN coupled with GA for SB-SCE 

DATASET METHOD 
WINDOW 

SIZE i 

ANN 

ARCHITECTURE 

TESTING PHASE 

MMRE CC NRMSE 

COCOMO 

IOM1 3 3-25-2-9-1 0.431 0.838 0.549 

IOM3 1 2-16-21-18-1 1.967 0.942 0.556 

IOM5 3 7-0-9-14-1 0.981 0.708 0.725 

Kemerer 

IOM1 2 2-20-14-2-1 0.572 -0.552 1.521 

IOM3 1 2-11-4-5-1 0.474 -0.500 1.593 

IOM5 2 5-6-19-6-1 0.572 -0.551 1.521 

Albrecht and 

Gaffney 

IOM2 6 6-20-6-11-1 0.083 0.141 1.109 

IOM4 4 6-3-7-3-1 0.113 0.061 1.075 

IOM6 1 3-0-2-5-1 0.083 0.141 1.109 

Desharnais 

IOM2 2 2-20-19-19-1 0.285 0.899 0.443 

IOM4 3 6-17-15-20-1 0.327 0.835 0.550 

IOM6 2 5-20-19-20-1 0.493 0.461 1.058 

ISBSG R9-1 

IOM2 3 3-19-9-3-1 0.070 0.241 1.000 

IOM4 2 4-19-20-20-1 1.201 0.005 1.738 

IOM6 2 5-19-20-19-1 0.892 -0.053 1.648 

 

The performance of the various ANN architectures constructed with the aid of the GA and 

for the IOM examined, indicates that quite large differences in behaviour are observed, i.e., 

very high and mediocre learning ability is indicated by the error figures obtained in the 

evaluation of all the datasets. In regards the results of Table 4.7 (listing the performance 

obtained from the hybrid model with a constant sliding-window size) quite complex 

architectures are yielded as the optimum models. In fact, the ANN architectures comprised of 

many hidden layers and many neurons in these hidden layers.  

In regards the results listed in Table 4.8 the main observation is that for almost all of the 

datasets at least one optimal model of ANN is found to maximise the prediction accuracy 

compared to the previous performance summarised in Table 4.3 and Table 4.6. In fact, 

considerable effort prediction accuracy gain is obtained for the cases of the COCOMO, the 

Albrecht and Gaffney, and the ISBSG R-1 datasets respectively. This means that at least for 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

119 

these cases the GA improved the performance results and also automated and optimised the 

process of ANN construction, resorting to less complex architectures this time.  

Some additional comments are provided regarding the vast and less homogeneous dataset 

(ISBSG R9-1) which across the experiments conducted exhibits higher variations in 

performance than the other datasets (i.e., Table 4.7 IOM2 and IOM6/i=1 and Table 4.8 

IOM2/i=3 and IOM4/i=2 refer to two extreme cases).  

Figure 4.5 also presents the actual versus the predicted normalised effort sample values 

during the training and testing phases of the ANN juxtaposed from an indicative experiment 

using the ISBSG R9-1 dataset of the IOM2, i=1 scheme with the ANN architecture 1-16-18-

11-1 which is the best yielded prediction.  

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60

project sample

n
o

rm
a
li

s
e
d

 e
ff

o
rt

actual predicted

TRAINING PHASE TESTING PHASE

 
Figure 4.5: Actual vs. Predicted normalised effort estimation values with ANN architecture 1-16-

18-11-1 and IOM2 on the ISBSG R9-1 dataset 

 

The above leads us to conclude that solving the problem of SCE for large and multi-

organisation datasets, even though some promising results have been obtained, is quite 

difficult and requires further research. Future research work within this context could be 

directed on establishing measures for the sensitivity of the models and intelligent selection of 

the input parameters/data separation methods/model parameters‘ calibration, etc. 

Lastly, commenting on the window of projects fed to the ANN it was logical to expect 

that providing a larger number of coupled data of size-effort to the model regarding past 

projects (i.e., larger window size), would inherently improve the pattern matching ability and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

120 

consequently the prediction results of the ANN, compared to the experiments conducted with 

a constant and smaller window size (i=1), but this was not observed. This of course might 

hold if the records came from a single population, which may not be the case here since a 

randomisation process for data separation was applied.  

Nevertheless, it may be assumed that there are lower correlations between the patterns of 

effort-size across the various projects reported in the datasets than the ones expected. This is 

perhaps an indication of the lack of explicit pattern relationship between the couples of size-

effort and thus inadequate learning is many times observed (refer also to some additional 

experiments and results in Appendix B). 

Moreover, the algorithm proposed may not be the optimal solution for this problem since 

conflicting goals were included in the internal fitness function (i.e., low number of processing 

elements – neurons – and improvement in performance). This leads us to conclude that multi-

objective Evolutionary Algorithms (EA) may comprise more appropriate solutions. 

Summarising this section, the experiments conducted showed that the hybrid model of 

genetically evolved ANN is a promising approach for SCE that yields improved results 

compared to the Ordinary Least Regression (OLS) and the empirically designed ANN, even 

though some limitations exist. 

These limitations include the high execution time and computation power required to find 

the optimal ANN architectures. Other limitations are classical situations appearing in any 

other SB-SCE approach, and involve the LOC-size estimates. These estimates must be known 

in advance to provide accurate enough effort estimations, which is never the case. Also, size-

related estimates anticipated by the project manager before the software is actually developed 

are usually different than the size of the actual delivered code. Moreover, there is generally 

the belief that the same project counted twice will not give exactly the same size (LOC or FP) 

or even effort measurements. This basic limitation and other measurement validation issues 

are usually recognised between practitioners (Abran and Robillard, 1994; Poels, 1996; 

Kitchenham et al., 1997). In addition, differences in measurements of size and effort should be 

taken into consideration in any approach used for SCE and especially when a large 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

121 

discrepancy between the actual and estimated size, is occurring in the estimations made at the 

early project phases.  

Another limitation is the lack of a satisfactory volume of homogeneous data which has 

lowered the performance accuracy of effort predictions in many cases in our experiments. 

There is also lack of a clear definition and measurement rules for size units, such as LOC and 

FP, which result in uncertainty to the whole estimation process.  The software size is also 

affected by other factors that are not investigated by the models of this approach, such as the 

programming skills, language and platform used during development. This section of this 

diatribe has focused only on coding effort, which accounts for only a percentage of the total 

effort in software development.  

Another limitation related to the technologies used is that the ANN have many candidate 

solutions as architectures which cannot be optimally trained every time and so even the GA 

developed requires to conduct extensive search of the solution space, something which is very 

time-consuming. The coupling of size-related attributes with effort fed to the ANN in the form 

of training patterns are considered a viable solutions for efficiently modelling the relation of 

size and effort, since in some cases the ANN converged to very accurate results. Finally, as 

already mentioned, further research needs to be carried out in this context, investigating the 

degree of influence of other project attributes on development effort (such as programming 

language used, personnel skills etc.) and locate such interdependencies. The following section 

deals with this matter. 

4.2.2 Feature Subset Selection and Software Cost Estimation (FSS-SCE) 

SCE models make use of a wide range of project attributes, also called ‗cost drivers‘, for 

approximating development effort as accurately as possible. Some cost drivers relate to the 

actual size (code length in Lines of Code (LOC) or Function Points (FP)), complexity, 

duration of the project, experience of the people involved in developing the system, etc. The 

relevant SCE research conducted thus far utilises models such as ANN commonly only as 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

122 

predictors - and very rarely quantitative analysis is conducted on the influence of the inputs to 

the model‘s output. Obtaining the influence degree of inputs within a modelling technique that 

estimates effort, means that possibly some inputs will be regarded as more significant than 

others. Moreover, identifying the dominant cost drivers from a wider pool of available data 

has been recognised as a crucial step in SCE (Park and Baek, 2008).  

The hybrid models presented in this section for identifying the optimal subset of cost 

drivers are based on two popular SCE techniques, namely Artificial Neural Networks (ANN) 

and Ridge Regression (RR). The methodologies involve Feature Subset Selection in SCE 

(FSS-SCE) to serve the following twofold aim: (i) identify and investigate the leading cost 

drivers that decisively influence software effort, and (ii) provide sufficiently accurate cost 

approximations (i.e., near or close to the acceptable rate for software prediction models set by 

Conte et al. (1986), i.e., ≤ 0.25).  

4.2.2.1 ANN and Input Sensitivity Analysis (ISA) for FSS-SCE 

The ANN developed thus far consist of variations of structures of basic computational 

elements that aim at measuring or predicting software development effort. ANN models 

combined with supportive tasks, such as Input Sensitivity Analysis (ISA), can assess 

quantitatively and rank the significance of any set of attributes used as inputs for these models 

(Papatheocharous and Andreou, 2007; Papatheocharous and Andreou, 2010; Papatheocharous 

and Andreou, 2012b). Isolating or extracting a subset of the most ‗significant‘ or ‗influencing‘ 

project attributes and investigating whether this FSS improves, or, at least maintains the same 

levels of estimation accuracy is a critical exploration (Papatheocharous et al., 2010b). 

This section describes novel FSS methods for ANN to qualify the most ‗significant‘ 

project features, i.e., those that seem to highly affect the estimation. The cost drivers selected 

are then utilised for SCE. The proposed methodology comprises of a practical way to reduce 

the model‘s input space (and also its computational complexity) while maintaining high levels 

of effort prediction accuracy. The basic idea is to describe and apply a simple yet reliable 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

123 

automatic approach that leads to a subset of project attributes which may be more usable, i.e., 

more feasible to measure, collect and maintain, thus reducing human error and uncertainty. 

The datasets employed were the Desharnais and the ISBSG R9 which went through the 

pre-processing steps described in Table 4.1 (a), (b) and (h). The ISBSG R9 additionally went 

through steps (f) and (g) and thus, 738 projects measuring the attributes summarised in the 

second part of Table 4.9 consisted the filtered ISBSG R9-2, while 77 projects measuring the 

attributes summarised in the first part of the same table were used in the Desharnais case. The 

attributes of Table 4.9 in italics represent dependent variables. 

Table 4.9: Attributes used in the experiments of Desharnais and ISBSG R9-2 
Dataset Attributes Abbreviation 

Desharnais 

Development Effort (hours) DEff 

Team Experience (years) TE 

Manager Experience (years) ME 

Duration (months) DU 

Transactions TR 

Entities EN 

Function Points Adjusted  FPA 

Scale of project SC 

Function Points Non-Adjusted FPNA 

ISBSG R9-2 

Summary Work Effort (hours) SWE 

Functional Size  FS 

Adjusted Function Points AFP 

Project PDR (afp) PDRA 

Project PDR (ufp) PDRU 

Normalised PDR (afp) NPDRA 

Normalised PDR (ufp) NPDRU 

Project Elapsed time PET 

Project Inactive time PIT 

Resource Level (ordinal) RL 

Input count INC 

Output count OC 

Enquiry count EC 

File count FC 

Interface count IFC 

Added count AC 

Changed count CC 

Deleted count DC 

 

The preliminary investigation employed MLP ANN of various topologies, i.e., with 

varying number of hidden neurons in the single internal hidden layer, starting from being 

equal to the number of inputs and increased by one until the number of hidden neurons 

reached twice the number of the inputs. The activation function used was the hyperbolic 

tangent sigmoid transfer (tansig) function (defined in eq. (4.7), pg. 105) in the input and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

124 

hidden layer and the pure linear (purelin) function was used in the output layer. Each ANN 

was trained to learn and predict the behaviour of the available datasets and characterise the 

relationship among the inputs and the output, the latter being the development effort. Training 

was based on the backpropagation algorithm and learning was based on the gradient descent 

with momentum weight/bias learning function (learngdm). The network training function 

updated the weight and bias values based on the scaled conjugate gradient method (trainscg). 

The initial weights and biases of each ANN were randomly set by the Nguyen-Widrow 

initialisation method (Nguyen and Widrow, 1990). The number of epochs was set to 100 and 

early stopping was applied. The data was randomly divided into 70% of the samples for 

training, 20% for validation and 10% for testing, and the whole process was repeated 10 

times. This process is also known as holdout cross validation (Weiss and Kulikowski, 1991). 

During the process of training, the data was presented to the various ANN developed in 

patterns (inputs/output) and corrections were made on the weights of the network according to 

the overall error in the output and the contribution of each node to this error. After training 

was completed the ‗best‘ ANN in terms of performance accuracy (MMRE) were extracted.  

On these ANN the following Input Sensitivity Analysis (ISA) process was performed as 

initially described in (Azoff, 1994): Each weight connecting neurons from a particular input to 

the hidden layer was summed up, thus developing an order of significance for the inputs based 

on this sum. The higher the sum of weights for a certain input is the higher is its contribution 

in defining the final ANN output. Using these values of ‗significance‘ the following filtering 

was applied (to select the most ‗influential‘ inputs and reject the rest): This filtering was 

carried out according to two empirically defined thresholds, namely the Strict (S) (eq. (4.11)) 

and the Less Strict (LS) (eq. (4.12)) criteria, which promote inputs in each trained ANN whose 

sum of weights is above a certain threshold.  

2

}min{}max{ kikiS

iw
WW 

 , where },...,2,1{},...,,{ niandZBAk   (4.11) 

25,0}max{  ki

LS

iw W , where },...,2,1{},...,,{ niandZBAk   (4.12) 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

125 

Particularly, the Strict (S) criterion threshold considers as ‗significant‘ the inputs whose sum 

of weights was higher than half the difference between the corresponding maximum and 

minimum weight sums among the inputs of the ANN (defined in eq. (4.11), where k 

represents the hidden layers and i the input neurons). Whereas, the Less Strict (LS) criterion 

threshold was more flexible, conceiving as ‗significant‘ those inputs whose summed weights 

value was higher than the 25% of the ANN‘s maximum weight value (as defined in eq. 

(4.12)). 

The final criterion to decide which inputs to select was based on eq. (4.13), which 

calculated for each input parameter i the percentage to which it was rated ‗significant‘ using 

each (S) or (LS) criterion respectively: 

%_
T

N
totalrate i   (4.13) 

where N is the number of the ANN satisfying the threshold for the Strict criterion )( S

iw or the 

threshold for the Less Strict criterion )( LS

iw and T is the total number of ANN created. In this 

way, not only the weights define which inputs to consider as ‗important‘ factors to define 

predictions, but also the assessment of whether these variables were considered ‗important‘ to 

more than half of the best ANN was investigated. Subsequently, after identifying and 

selecting the most ‗influential‘ attributes validation experiments were executed. 

During the 10 experimental repetitions performed the attributes suggested as significant 

by the Strict threshold for the Desharnais dataset were: the FPA and FPNA and for the ISBSG 

R9-2 dataset: the NPDRA, FC and AC. The attributes suggested by the Less Strict criteria 

case were for the Desharnais dataset: the TE, TR, FPA, SC and FPNA and for the ISBSG R9-

2 dataset: the NPDRA, EC, FC, AC and CC. Moreover, a third subset of attributes was 

empirically selected so as to investigate the prediction of attributes that can be measured in the 

‗early‘ (end of specifications) project phases. In this case, the attributes for the Desharnais 

case were: the TE, ME, FPA and FPNA and for the ISBSG R9-2 were: the FS, AFP and 

NPDRU. These subsets of features were finally selected to repeat the same series of 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

126 

experiments with ANN, as described before, to examine under the same conditions whether 

the exclusion of insignificant attributes from the datasets improves accuracy performance. 

 Table 4.10 lists the indicative prediction results obtained from the Initial phase using the 

whole spectrum of attributes with ANN and the selected significant attributes, called the Final 

phase. Table 4.10 lists also the number and the abbreviation of selected attributes based on 

each threshold used (i.e., none: all attributes at the Initial phase; Strict: selected attributes by 

the Strict (S) criterion at the Final phase; and Less Strict (LS): selected attributes by the Less 

Strict (LS) criterion at the Final phase; Early: attributes measured from the early SDLC 

phases at the Final phase). The error figures were calculated on the normalised data as 

previously described in Table 4.1 (h) (Papatheocharous and Andreou, 2007). 

Table 4.10: ANN results obtained for the FSS-SCE using empirical ISA thresholds 

Dataset 
Phase/ 

Threshold 

TESTING PHASE Number/Selected 

attributes Architecture MMRE CC Pred(.25) 

Desharnais 

Initial/none 

9-20-1 0.047 0.955 1.000 

9/all 
9-16-1 0.061 0.933 1.000 

9-10-1 0.063 0.922 1.000 

9-19-1 0.074 0.900 1.000 

Final/Strict 

2-3-1 0.196 0.700 1.000 

2/FPA, FPNA 
2-4-1 0.209 0.676 1.000 

2-5-1 0.243 0.580 1.000 

2-6-1 0.203 0.676 1.000 

Final/Less 

Strict 

5-7-1 0.184 0.833 1.000 

5/TE, TR, FPA, 

SC, FPNA 

5-8-1 0.188 0.772 1.000 

5-11-1 0.172 0.841 1.000 

5-12-1 0.178 0.804 1.000 

Final/Early 

4-6-1 0.246 0.485 1.000 

4/TE, ME, FPA, 

FPNA 

4-7-1 0.204 0.741 1.000 

4-8-1 0.210 0.677 1.000 

4-10-1 0.237 0.508 1.000 

ISBSG R9-2 

Initial/none 

17-22-1 0.064 0.938 1.000 

17/all 
17-23-1 0.054 0.951 0.993 

17-35-1 0.053 0.948 0.993 

17-19-1 0.041 0.968 1.000 

Final/Strict 

3-4-1 0.037 0.852 0.993 

3/NPDRA, FC, 

AC 

3-5-1 0.026 0.977 1.000 

3-6-1 0.042 0.909 0.993 

3-7-1 0.039 0.939 1.000 

Final/Less 

Strict 

5-6-1 0.038 0.957 1.000 

5/NPDRA, FC, 

AC, EC, CC 

5-7-1 0.045 0.862 0.993 

5-11-1 0.039 0.806 0.993 

5-12-1 0.050 0.718 0.993 

Final/Early 

4-6-1 0.039 0.956 1.000 

3/FS, AFP, 

NPDRU 

4-7-1 0.026 0.973 1.000 

4-8-1 0.023 0.981 1.000 

4-9-1 0.028 0.960 1.000 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

127 

The results using the selected attributes (Final phase) compared to the Initial cost 

estimates, with the whole spectrum of the available parameters acting as inputs, indicate an 

overall improvement of predictions in the ISBSG R9-2 case only, whereas in the Desharnais 

case accuracy appears to be worsened. Moreover, the case of ‗early‘ estimation is considered 

quite successful again only for the ISBSG R9-2 dataset. Conclusively, the ISA applied for 

FSS in ANN has contributed to model improvement only in the ISBSG R9-2 case. In addition, 

the high Pred(.25) metric results show that through the predictions very few cases (projects) 

were not accurately predicted, i.e., prediction error was most cases lower than 0.25 in terms of 

MMRE. The less accurate predictions obtained for the Desharnais case and the selected 

attributes (compared to the Initial) may be attributed to the lower contribution of these 

attributes to the ANN prediction result.  

Overall, the prediction results obtained with the ANN models are considered quite 

successful in terms of accuracy and at the Final experimental phase the slightly worse error 

figures (compared to the Initial) may be considered minimal trade-off with respect to the 

overall gain of the approach. This slight deterioration in terms of predictive power may be 

regarded for example acceptable by project managers since the approach managed to identify 

a very small number of features and may disengage the SCE process from the difficult and 

time-consuming need of gathering values for a large variety of metrics. Also, obtaining 

accurate estimations with attributes measured early is a significant advantage.  

Subsequently, the abovementioned empirical ISA methodology applied was enhanced in 

(Papatheocharous and Andreou, 2012b). The idea was quite similar since the aim again was to 

eliminate less influential input parameters by computing the sensitivity level of each 

connection (weight) to the internal ANN structure and extending the idea of Azoff (1994). A 

more detailed and complete methodology was proposed (illustrated in Figure 4.6) to: (i) 

Isolate a set of ANN providing accurate estimates of software development effort, in terms of 

low prediction error and consistent performance, (ii) Identify a set of the most significant 

attributes through an enhanced ISA, and (iii) Reduce the size of input vector dimension of the 

ANN and not significantly compromise the accuracy of the results? 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

128 

 

Figure 4.6: The stages of the ANN methodology with ISA for SCE (Papatheocharous and 

Andreou, 2012b)  

 

A brief description of the complete methodology follows: In Stage One the necessary pre-

processing tasks were carried out. In the Desharnais case the same pre-processing was carried 

out as described in Table 4.1 (a), (b) and (h), and thus the same 77 projects and attributes 

mentioned in Table 4.9 were used. In addition to these steps, for the ISBSG R9 case, the pre-

processing involved the steps of Table 4.1 (c)-(f), (j) and (i), which were considered important 

to complete since they contribute to obtaining a qualitative and homogeneous filtered sample. 

The sample, called ISBSG R9-3 consisted of 113 projects and its attributes are summarised in 

Table 4.11. The attribute in italics represents the dependent variable. 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

129 

Table 4.11: ISBSG R9-3 Attributes used in the enhanced ANN and ISA cost estimations 
Dataset Attributes Abbreviation 

ISBSG R9-3 

Summary Work Effort (hours) SWE 

Functional Size  FS 

Adjusted Function Points AFP 

Project Elapsed time PET 

Project Inactive time PIT 

Resource Level (ordinal) RL 

Maximum Team Size MTS 

Input count INC 

Output count OC 

Enquiry count EC 

File count FC 

Interface count IFC 

Added count AC 

Changed count CC 

Deleted count DC 

 

In Stage Two, the Core Cost Estimation (CCE) module was executed 250 times. The 

process executes random shuffling and data separation into 70%, 10%, 20%, percentages that 

refer to training, validation and testing subsets. In regards to previous experiments, here the 

testing percentage was increased to examine the ANN‘s generalisability on more testing 

samples. The process of validation is called random holdout samples cross validation (Weiss 

and Kulikowski, 1991; Maimon and Rokach, 2005). The same logic as before was applied in 

producing various feedforward ANN architectures of MLP with one hidden layer, i.e., the 

number of neurons in the internal hidden layer was modified, starting from the number of 

inputs for each dataset and increasing by one in each step until it reached to twice the number 

of inputs. The activation function used was the hyperbolic tangent sigmoid transfer (tansig) 

function (defined in eq. (4.7), pg. 105) in the input and hidden layer and the pure linear 

(purelin) function was used in the output layer. The MLP were trained with the gradient 

descent backpropagation (learngdm) algorithm. The number of training epochs was set to 100 

and the training function updated the weight values according to the scaled conjugate gradient 

method (trainscg). The performance function was the Mean Squared Error (MSE), the 

learning rate and mutation constant were set to 0.3 and 0.6, whereas the Marquardt adjustment 

parameter, Marquardt decrease and Marquardt increase factors were set to 1, 0.8 and 1.5. 15% 

of the ‗best‘ performing ANN were selected and Box Plots were used to exclude outlying 

networks, with extreme performance. Box Plots were used to examine the distribution of the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

130 

most popular performance metric (namely the MMRE) because it is a scale-independent 

metric. In this stage the examination did not target the exact error figures in terms of accuracy 

obtained from the normalised predicted values of the ANN, but targeted consistent and 

coherent (i.e., around-the-mean) networks that may provide a reliable input ranking. Thus, the 

ISA technique did not consider insufficiently trained and ‗overfitting‘ ANN, which led to 

analysing ANN of consistent performance accuracy.  

In Stage Three, the order of significance for the input attributes was examined using the 

value of the Input Strength (defined in the previous chapter in Table 3.5, pg. 79) with respect 

to three different thresholds (specified in Table 4.12 namely the Strict, Medium and Relaxed). 

These thresholds were defined to isolate groups of top-performing ANN (in terms of 

prediction accuracy), i.e., within 15%, 20% and 25% of the whole population of ANN 

produced as these were expressed through the MMRE, CC and NRMSE performance metrics. 

The error figures were calculated on the normalised data as described in Table 4.1 (h). 

Table 4.12: Threshold specification for selecting ANN of various performing levels 

 Strict Medium Relaxed 

MMRE  0.15  0.20  0.25 

CC  0.85  0.80  0.75 

NRMSE  0.15  0.20  0.25 

 
In the same Stage, right before executing the final validation experiments, the following 

FSS algorithm was employed which utilised the thresholds specified in Table 4.12 in order to 

select two levels of validation sets. The algorithm aimed to reduce the quantity of selected 

features to more than 50%: 

(i) The first trunc[n/2] leading inputs according to their weights were isolated based on 

each filtered level of networks (i.e., the networks filtered by the Strict, Medium and 

Relaxed threshold were the StrictANN, MediumANN, RelaxedANN respectively), 

where n is the number of available attributes (e.g., n=8 for the Desharnais and n=14 

for the ISBSG) and trunc[] denotes the integer part of the quotient.  

(ii) The attributes ranked among the leading ones by all filtering levels were placed in the 

so-called „Strict evaluation set‘. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

131 

(iii) If the number of elements in the Strict evaluation set was equal to trunc[n/2], which 

essentially meant that each filtering level indicated the same leading inputs, the 

process was terminated. Otherwise, the process continued with step (iv). 

(iv) The rest of the attributes that were promoted by any of the filtered levels of networks 

were further examined to create the „Relaxed evaluation set‘ as follows: 

a. One by one the attributes promoted by the Strict level networks were 

examined first, followed by those of the Medium and finally by those 

suggested by the Relaxed level networks. For each attribute the following two 

steps were executed.  

a.1. If the attribute was suggested also by at least one of the other two 

filtering levels then it was selected and together with the attributes of 

the Strict evaluation set, formed the Relaxed evaluation set.  

a.2. If the elements in the evaluation set reached trunc[n/2] the process was 

terminated. Otherwise, it continued with the rest of the attributes of step 

a. above. 

In Stage Four validation experiments were carried out using the selected project attributes 

by the methodology, i.e., the Strict and Relaxed evaluation sets. 

The proposed methodology (Papatheocharous and Andreou, 2012b), after the Box plot 

filtering (illustrated in Figure 4.7) that eliminated the extreme and mild performing ANN 

(considered as outliers), grouped the ANN according to the thresholds (specified in Table 

4.12) in the Relaxed, Medium and Strict networks, each of which represented a superset of the 

next in the order they are mentioned (i.e., RelaxedANN ⊇ MediumANN ⊇ StrictANN). For the 

Desharnais dataset the Strict filtering level retained a total of 5 ANN, the Medium level 14 

ANN and finally the Relaxed level 35 ANN. For the ISBSG R9-3 dataset, the Strict filtering 

level kept 5 ANN, the Medium level 28 ANN and lastly, the Relaxed level 69 ANN. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

132 

 

Figure 4.7: Outlying ANN identified by Box Plots based on their MMRE performance 
 

The attributes selected for the Desharnais in the Strict evaluation set were the DU and SC, 

and in the Relaxed evaluation set the DU, SC and TR. For the ISBSG R9-3 dataset in the 

Strict evaluation set were the FS, AC and OC and in the Relaxed evaluation set were the FS, 

AC, OC, CC, DC, EC, IFC and RL. The attributes are listed in Table 4.13 that also juxtaposes 

the  best and median results of ANN and Multi Linear Regression (MLR) models developed 

using all the attributes (Initial/Original case) and the selected ‗significant‘ attributes (Final 

case) for comparison purposes (Papatheocharous and Andreou, 2012b).  

In the Desharnais case the best ANN yielded MMRE equal to 0.062 and in the ISBSG R9-

3 the best MMRE was equal to 0.052, which are very successful prediction results, but 

utilising in both cases all attributes. The results of the Final phase indicate that with the 

reduced attribute sets (Strict or Relaxed evaluation set) some increase in terms of the MMRE 

is observed. However, this performance decrease was expected considering the immense 

decrease in the number of attributes used in the evaluation subsets compared to the original 

experiments conducted.  

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

133 

Table 4.13: Indicative experimental results of the proposed methodology of ANN and ISA 

Dataset Phase/Subset 
TESTING PHASE #Selected 

attributes/Abbreviations Model
a
 MMRE CC Pred(.25) 

Desharnais 

(all: TE, 

ME, DU, 

TR, EN, 

FPA, SC, 

FPNA) 

Initial/Original 

8-13-174 0.105 0.987 0.933 

8/all 
8-15-1199 0.085 0.992 1.000 

 8-15-187 0.062 0.995 1.000 

Median  0.214 0.931 0.933 

Final/Strict 

evaluation set 

2-6-158 0.133 0.964 0.933 

2/DU, SC 
2-5-1146 0.154 0.974 1.000 

2-5-123 0.185 0.974 1.000 

Median 0.396 0.806 0.933 

Final/Relaxed 

evaluation set 

3-8-181 0.130 0.971 1.000 

3/DU, SC, TR 
3-6-13 0.230 0.895 1.000 

3-5-1237 0.245 0.957 1.000 

Median 0.366 0.832 0.933 

Initial/Original MLR 0.880 0.897 0.350 8/all 

Final/Strict 

evaluation set 
MLR 0.781 0.889 0.350 2/DU, SC 

Final/Relaxed 

evaluation set 
MLR 0.779 0.901 0.350 3/DU, SC, TR 

ISBSG 

R9-3  

(all: FS, 

AFP, PET, 

PIT, RL, 

MTS, 

INC, OC, 

EC, FC, 

IFC, AC, 

CC, DC) 

Initial/Original 

14-16-122 0.052 0.989 1.000 

14/all 
14-19-1172 0.060 0.99 1.000 

14-26-1145 0.059 0.986 1.000 

Median  0.150 0.955 1.000 

Final/Strict 

evaluation set 

3-8-1226 0.131 0.973 1.000 

3/FS, AC, OC 
3-7-116 0.132 0.953 0.955 

3-8-127 0.138 0.965 0.955 

Median 0.344 0.657 0.955 

Final/Relaxed 

evaluation set 

7-10-1109 0.100 0.961 1.000 

8/FS, AC, OC, CC, DC, 

EC, IFC, RL 

7-15-1150 0.105 0.967 1.000 

7-15-157 0.116 0.969 0.955 

Median 0.281 0.776 0.955 

Initial/Original MLR 0.790 0.952 0.276 14/all 

Final/Strict 

evaluation set 
MLR 1.083 0.581 0.172 3/FS, AC, OC 

Final/Relaxed 

evaluation set 
MLR 0.979 0.284 0.167 

8/FS, AC, OC, CC, DC, 

EC, IFC, RL 

Model
a
 refers to the model employed. In ANN the topology is mentioned, i.e., x-y-1 refers to 

architecture with x nodes in the input layer, y nodes in the hidden layer and 1 output node. In MLR the 

Ordinary Least Regression method comprises the model. The subscript indexing scheme is used to 

differentiate experiments in the respective experiment repetition of the Core Cost Estimation component 

(refer to Figure 4.6) with similar ANN topologies but different training and testing sets. 
 

 

Since the performance figures of MLR were obtained after the data were transformed 

(using step (q) described in Table 4.1) and then transformed back to the original values in the 

reverse manner, while the ANN performance figures were obtained utilising the normalised 

values of the datasets (i.e., as specified in the pre-processing step (h) in Table 4.1) the results 

of the two models cannot be directly compared.  

The graphical representation of the actual values versus the predicted values (transformed 

back to their original scale) of two indicative ANN is presented in Figure 4.8 and Figure 4.9. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

134 

The predicted samples are quite close (with very few exceptions), to the actual values in the 

testing phase of the forecasting process.  

 

Figure 4.8: Partial data samples of Actual vs. Predicted Effort during validation (testing) 

experiments for the Desharnais dataset using a 3-8-1 ANN topology 
 

 

Figure 4.9: Partial data samples of Actual vs. Predicted Effort during validation (testing) 

experiments for the ISBSG R9-3 dataset using a 7-10-1 ANN topology 

 
 

Since the groups of predictions obtained are independent, the non-parametric test of 

Mann-Whitney is usually employed to examine the chances of one population having greater 

observations over another population (Mann and Whitney, 1947). The null hypothesis in the 

Mann–Whitney test is that the two samples are drawn from a single population, and therefore 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

135 

their probability distributions are equal. The alternative hypothesis is that the probability 

distribution of one sample is stochastically greater than the other. The test is used to evaluate 

and compare the results of two techniques. Therefore the Mann-Whitney test is performed to 

compare the significance of the results obtained using the Original, Strict and Relaxed 

evaluation sets.   

The results of the Mann-Whitney test are listed in Table 4.14. The U value is the sum of 

the numbers of scores from the experimental group that are less than each of the control group 

scores (or the other way round), whichever gives the smaller value of U. The z is the 

associated z-approximation and the p-value refers to the significance value of the test, which 

gives the two-tailed probability that the magnitude of the test statistic is a chance result. The 

important part of the test is the significance value of the test, which gives the two-tailed 

probability that the magnitude of the test statistic is a chance result. Results are highly 

significant if p<0.001. 

Comparing the results of ‗Dataset A‟ over ‗Dataset B‟, the indication of the mean rank 

shows which one outperforms the other and the p-value indicates its significance. For 

example, the indication of mean rank ‗Dataset A‘ > ‗Dataset B‘ shows the outperforming 

results of ‗Dataset A‟ over ‗Dataset B‟ for all the set of predictions obtained.    

From the experiments conducted, the MMRE error values obtained from the ANN with 

the Original set of attributes and the Strict or Relaxed evaluation subsets indicate that the 

former outperforms the rest. This means that the results obtained with the features selected do 

not outperform the experiments with the Original dataset, while the performance of the 

Relaxed evaluation set outperforms the Strict evaluation set. Since statistical significant loss 

of accuracy was observed for the reduced attribute models this might mean that the FSS may 

not be acceptable. In reality, however, project managers may well be willing to accept this 

level of reduction if the number of variables removed is sufficient, i.e., so that the overall 

costs and effort of data collection and analysis are reduced to a substantial extent. That is, 

managers may not be especially worried about statistical significance. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

136 

Table 4.14: Mann-Whitney signed-rank test results 
Dataset Subset: Model

b
 Mean Rank U z p 

Desharnais 

Original: 8-15-187 

Strict: 2-5-123 
Original > Strict 51 -2.551 0.011 

Original: 8-15-187  

Relaxed: 3-8-181 
Original > Relaxed 56 -2.344 0.019 

Strict: 2-5-123 

Relaxed: 3-8-181 
Strict < Relaxed 87 -1.058 0.290 

ISBSG R9-3 

Original: 14-26-1145  

Strict: 3-8-1226 
Original > Strict 129 -2.652 0.008 

Original: 14-26-1145  

Relaxed: 7-15-1150 
Original> Relaxed 196 -1.080 0.280 

Strict: 3-8-1226  

Relaxed: 7-15-1150 
Strict < Relaxed 215 -0.634 0.526 

Model
b
 refers to the model employed. In ANN the topology is mentioned, i.e., x-y-1 refers to 

architecture with x nodes in the input layer, y nodes in the hidden layer and 1 output node. The 

subscript indexing scheme is used to differentiate experiments in the respective experiment repetition of 

the Core Cost Estimation component (refer to Figure 4.6) with similar ANN topologies but different 

training and testing sets. 

 

Conclusively, the SCE accuracy obtained, using the Final subsets of selected attributes, is 

at lower levels compared to the results of the Original ANN models. However this loss of 

accuracy might be beneficiary, since some of the excluded project attributes may not be 

required to be measured, collected and maintained. Thus, the process of data collection might 

be substantially less complex, costly and time consuming. Practically, the proposed 

methodology achieved to minimise the number of independent attributes of ANN, 

emphasising on scheduling and sizing attributes for predicting effort.  

The methodology described in the previous paragraphs that used Azoff‘s ISA (Azoff, 

1994) to calculate the overall connection strength of each input to the output, did not consider 

any impact of the weights connecting the hidden nodes to the output, and this may be 

considered a limitation. According to the relative literature (Refenes et al., 1995; Belue and 

Bauer, 1995; Glorfeld, 1996; Olden and Jackson, 2002) there are other saliency measures of 

input variables that calculate the impact of the input vector on the output by using the whole 

set of connection weights between neurons (e.g., Garson‘s algorithm (Garson, 1991)). Thus 

the exploration of alternative methods for FSS implemented are summarised subsequently.  

The next methodology implemented (Papatheocharous and Andreou, 2010) aimed to 

complement the previous investigations in two ways: (i) examine accuracy performance of 

ANN by gradually removing the least significant attribute, and (ii) compare one of the most 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

137 

popular saliency measures of ANN weights, namely the value of Relative Importance (RI) 

(Garson, 1991) with the measures already utilised in the previous investigation 

(Papatheocharous and Andreou, 2012b). The logic of Garson‘s Algorithm is used for FSS 

because it is considered a good trade-off example between complexity and effectiveness. The 

motivation of the work conducted was that the contribution of the independent variables 

within the ANN models in SCE is rarely measured or taken into account, especially using 

complicated algorithms. Many techniques are proposed (Belue and Bauer, 1995; Glorfeld, 

1996; Satizábal and Pérez-Uribe, 2007) but to the best of our knowledge none of them has 

been used. 

The methodology followed the same rationale for producing various topologies of ANN 

MLP architectures, as explained in previous methodologies (i.e., starting with a topology 

which contains a number of neurons in the hidden layer equal to the number of attributes used 

as inputs in each experiment and continuing with topologies resulting from increasing the 

number of hidden neurons by one until their number becomes twice the size of the input 

attributes). The activation function used was the hyperbolic tangent sigmoid transfer (tansig) 

function (defined in eq. (4.7), pg. 105) in the input and hidden layer and the pure linear 

(purelin) function was used in the output layer. The initial weights and biases of each ANN 

were randomly set by the Nguyen-Widrow initialisation method (Nguyen and Widrow, 1990). 

The same pre-processed datasets of Desharnais and ISBSG R9-3 summarised in Table 4.9 and 

Table 4.11 were used.  

The datasets were randomly divided into three subsets, training, validation and testing, 

with the percentages of 60%, 20% and 20% of the total available samples respectively, where 

each sample participated in only one subset. The scaled conjugate gradient training function 

was used which is based on the derivative functions of weights, net inputs and transfer 

functions (trainscg). The learning process used was based on the gradient descent with 

momentum weight and bias learning function (learngdm). The performance function was the 

Mean Squared Error (MSE) and the number of epochs, learning rate and momentum 

coefficient were set to 1000, 0.01 and 0.9 respectively. The training process was repeated 10 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

138 

times so that the optimal network that minimises the prediction error (in terms of MMRE) was 

identified and the weights of each input-hidden-output path were stored for further processing 

by Garson‘s Algorithm. The experiments conducted involved the gradual evaluation of ANN 

inputs (Papatheocharous and Andreou, 2010). Particularly, the ANN‘s performance was 

traced as the number of input attributes was gradually reduced by one. The reduction was 

based on the rank of the inputs regarding the Relative Importance (RI) (refer to Table 3.4, pg. 

78) and was performed until the inputs were reduced to half the initial size. Moreover, the 

attribute that would be removed according to the Input Strength (IS) (refer to Table 3.5, pg. 

79) utilised in the previous experiments was also estimated. 

 Table 4.15 lists the inputs that made the smallest contribution to the final output of the 

indicative ANN experiments (as this was reflected through the weight connections). Even 

though each experiment of ANN evaluation was repeated 10 times to investigate the stability 

of the technique, here, only 5 indicative experiments with their specific experiment-id 

(Exp.Id) are reported. The complete experiments are provided in Appendix B (Table B. 12 

and Table B. 13). 

Table 4.15: Indicative experiments of backward attribute elimination using ISA on ANN 

Dataset 
Exp. 

Id 

Importance 

Measure 

Order of Attributes 

Removed 

Initial 

MMRE 

Initial 

Pred(.25) 

Final 

MMRE 

Final 

Pred(.25) 

Desharnais 

4 RI TE,TR,FPA,SC 0.364 1.000 0.387 1.000 

 IS TE,FPNA,FPA,SC     

5 RI ME,FPA,TE,DU 1.264 0.867 1.060 0.867 

 IS ME,SC,TE,DU     

6 RI TE,SC,DU,ME 0.386 0.933 0.346 0.933 

 IS TE,SC,DU,ME     

7 RI ME,SC,FPNA,FPA 0.569 0.800 0.512 0.800 

 IS ME,SC,FPNA,FPA     

10 RI TE,SC,EN,DU 0.312 0.933 0.293 0.933 

 IS TE,SC,EN,DU     

ISBSG 

R9-3 

3 RI INC,CC,DC,RL,OC,AC,FC 0.255 0.955 0.265 0.909 

 IS INC,CC,DC,RL,OC,FC     

4 RI MTS,CC,RL,INC,FC,FS,AC 0.199 0.955 0.191 0.955 

 IS MTS,CC,RL,AFP,OC,FS,AC     

7 RI CC,OC,RL,FC,INC,AFP,IC 0.377 0.909 0.257 0.909 

 IS CC,OC,RL,FC,INC,AFP,IC     

9 RI FC,IC,RL,AFP,AC,EC,PIT 0.662 1.000 0.500 1.000 

 IS FC,IC,RL,AFP,AC,EC,PIT     

10 RI FS,IC,PIT,OC,AFP,RL,FC 0.249 0.955 0.270 0.955 

 IS FS,IC,PIT,RL,AFP,RL,FC     

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

139 

The backward input elimination methodology showed that in most cases the prediction 

accuracy in terms of error metrics comparing the Initial (using all the attributes) with the 

Final (using only the selected attributes, i.e., after removing the attributes mentioned in the 

column ―Order of Attributes Removed‖ of the Table 4.15) was positively affected, meaning 

accuracy was increased. In the Desharnais case the highest accuracy improvement obtained in 

testing was 20% and the highest accuracy decrease obtained was 16%.  In the ISBSG R9-3 

dataset the highest accuracy improvement during the testing phase was 16% and the highest 

accuracy decrease obtained was 24%. The experimental results in Table 4.15 imply that since 

the Pred(.25) values are very high (near the unit) while the MMRE values reported contain 

some degree of variability, there were only a few poor predictions per experiment. 

Throughout the experiments similar or consistent attributes were selected to being the 

‗weakest‘ effort contributors. These were in the Desharnais case TE, ME, DU and SC and in 

the ISBSG R9-3 case RL, FC, CC, INC and OC. Therefore, the most influential attributes in 

the Desharnais dataset were the TR, EN, FPA and FPNA and in the ISBSG R9-3 dataset the 

FS, AFP, PET, PIT, EC, INF, AC, DC and MTS. Also, comparing the attributes filtered out 

by both measures of weakness (RI and IS) only in very few exceptional cases the attribute 

exclusion would not be in agreement (these exceptional cases were underlined in Table 4.15). 

Therefore, comparing the ISA methodologies utilised thus far for FSS, the most recent ISA 

applied (based on Garson (1991)) provided the best prediction accuracy with the yielded 

‗significant‘ features. In terms of simplicity and practicality all methods are similar and as 

shown from the results of Table 4.15 agree to a high degree on the promoted attributes. Some 

attributes however in the Desharnais case, such as DU and SC, have appeared in the previous 

ISA methodologies as significant attributes whereas in the last method they are listed among 

the weakest contributors, which implies that a vulnerability issue exists regarding the method 

utilised, dataset and data partitions used to select features. 

Summarising the CI-based FSS techniques on ANN applied thus far, we conclude that all 

of the aforementioned variations of ISA have in common the measurement of saliency 

measures of network weights, which provide insight on the interpretation of the ANN and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

140 

‗illuminate‘ their ‗black-box‘ nature. Moreover, they all represent feasible and simple 

solutions for ISA. ISA may be used for obtaining the interactions between the variables of a 

complex environment and effectively evaluating the contribution of each variable on the 

prediction result. In addition, the ISA methods described provide different levels of empirical 

forms of experimentation, since various thresholds and processes are followed. The ISA 

variations may be also compared in terms of simplicity, practicality and effectiveness. 

 Slight deterioration in terms of performance accuracy in SCE was usually obtained using 

the features selected for prediction. However, only in the Garson‘s Algorithm case of ISA the 

prediction results were slightly improved compared to the rest. The main advantage of the 

techniques developed and results obtained is that it may disengage the SCE process from the 

hindering and extremely time and effort consuming process of measuring values for a large set 

of metrics. The features commonly selected by all the ISA techniques applied on ANN were 

for the Desharnais dataset related with the number of transactions (TR) and size-based metrics 

(FPA and FPNA) and for the ISBSG the attributes the functional size (FS) and, since the 

projects were measured using the IFPUG standard (ISO/IEC 20926, 2003), with the number 

of additions (AC) and enquiries (EC) of unadjusted FP. The AC is related to the count of new 

or added functions and EC to the count of external enquiries, i.e., the number of reports 

created by the applications and where the report does not include any derived data.  

The consideration of the aforementioned variables as most significant indicates that the 

basic components of software size, number of transactions and enquiries performed by the 

software, account to a decisive degree, for the amount of effort to develop the software. 

Moreover, the unadjusted FP metric of software change to the initial software specifications 

(i.e., adding new functions) has a decisive effect on effort. This however raises a question 

regarding the availability of such estimates in a development phase where it is also useful, in 

terms of enabling early SCE. Thus, making changes after the specification of the requirements 

at the initial phases seems to add a considerable burden to the overall effort accounted during 

the development process. This finding is rather rational for traditional software development 

processes where the cost of changing specifications at the design and implementation phases 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

141 

increases as development proceeds to later phases. It is important to also emphasise that these 

attributes related to FP software size, number of transactions and reports can be measured at 

the early project phases, in the sense that at least a rough estimation may become available at 

the beginning of the development process. 

4.2.2.2 Ridge Regression (RR) and FSS-SCE 

A significant limitation of ANN is related to the type of attributes the structures can 

accommodate. In SCE many cost factors are of nominal nature and were in the 

aforementioned experiments with ANN disregarded. Since the descriptive aspects of software 

might considerably reflect on the amount of development effort, the models of SCE are 

extended to investigate techniques that may utilise many-type of data. With the appropriate 

pre-processing (described in this section) a range of models based on Ridge Regressions (RR) 

are developed that may handle nominal and numerical data types and investigate a wide range 

of CI and non-CI techniques for Feature Subset Selection approaches is SCE (FSS-SCE).  

The approach aimed initially to further investigate classical techniques, such as 

Regressions, and particularly for selecting the appropriate set of features for SCE. However, 

some initial investigations on Multiple Linear Regression (MLR) based on the Least Squares 

technique, (Papatheocharous and Andreou, 2012b) indicated quite mediocre curve fitting and 

accuracy performance in approximating effort.  

RR is considered an improvement of the classical Least Squares technique, which is one 

of the dominant methods applied in SCE and one of the most widely used algorithms in cases 

where there is high correlation among predictor variables. RR is considered a promising 

solution for addressing the abovementioned issues and it has also been already successfully 

applied in the area of software engineering by various researchers yielding promising results. 

Specifically, RR has been used to estimate the coefficients for the COCOMO model (Nguyen 

et al., 2008), to produce classification scores and remove unnecessary features (Parsa et al., 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

142 

2008) and to improve the performance of regressions on multi-collinear datasets (Li et al., 

2010).  

Nevertheless, previous SCE research did not investigate systematically or to any 

significant extent the issue of identifying the optimum attribute subset for estimating effort 

more accurately. The models proposed in this thesis involve nine different Feature Subset 

Selection (FSS) approaches which are combined with RR. Particularly, RR is used as the 

evaluator and the FSS techniques are used as filtering methods (Papatheocharous et al., 

2010b). Selecting the most informative subset of features from a pool of available cost drivers 

stemmed from the hypothesis that reducing the dimensionality of datasets will significantly 

minimise the complexity and time required to reach to an estimation using any particular 

modelling technique. Especially, using a search approach for selecting the most appropriate or 

relevant set of attributes in high dimensional datasets, i.e., datasets with a large number of 

available attributes is a tedious task. The exhaustive search of all possible subsets of features 

is impractical and extremely time-consuming but produces the most predictive features 

(Kirsopp and Shepperd, 2002; Azzeh et al., 2008). Based on previous investigations, in data-

intensive estimation methods, such as ANN or Regressions, a significant task is the pre-

processing performed to remove irrelevant data which may lead to less complex and equal or 

more accurate effort approximations. Moreover, accurate SCE are not the result of a purely 

blind process that takes any number of inputs found in empirical software databases and 

outputs work effort, but seem to be influenced by various factors to different degrees.  

Therefore, the models proposed in this work investigate effort estimation via various FSS 

approaches for reducing the number of cost drivers required in successful SCE, under the 

assumption that some cost drivers are more informative than others. The main goal of the 

methodology was to assess the appropriateness of the available cost drivers for SCE and 

investigate the number and type of attributes selected by various FSS approaches.  

Typically, feature selection approaches may belong to one of three categories: Wrappers, 

Filters or Embedded algorithms. Wrappers utilise the machine learning algorithm as a black 

box to rank feature subsets under examination according to their accuracy prediction. Filters, 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

143 

as a pre-processing step, filter the feature subsets independently of the machine learning 

algorithm. Embedded methods are included as part of a specific machine learning technique 

and through training they provide subset selection for the specific technique.   

The following FSS approaches were examined: Filter approaches (i) Backward 

StepWiseFit (BSWF) with RR, (ii) Forward StepWiseFit (FSWF) with RR, (iii) Backward 

Feature Elimination with Least Squares (LSBFE), (iv) Forward Feature Selection with Least 

Squares (LSFFS), (v)  Genetic Algorithm with Least Squares (LSGA), and (vi) Backward 

Feature Removal with Artificial Neural Networks, Garson‘s Relative Importance (BANN) 

with RR; Wrapper approaches (combined with RR) involved (vii) Forward Feature Selection 

(FFS), (viii) Backward Feature Elimination (BFE) and finally, (ix) Genetic Algorithms (GA). 

The datasets of Desharnais (filtered in the same way as described before, i.e., applying the 

pre-processing steps described in Table 4.1 (a), (b) and (m)) and ISBSG R9 were used. The 77 

projects were described by the attributes summarised in upper part of Table 4.9. The attributes 

of ISBSG R9 went through the pre-processing steps of Table 4.1 (a), (c), (f), (k)-(m). The 

filtered dataset, namely ISBSG R9-4 comprised 467 projects and 82 attributes and is 

summarised in Table 4.16. 

Table 4.16: ISBSG R9-4 attributes description 
Abbreviation ISBSG R9-4 Attribute Description Number of values 

CA1-4 Count Approach 4 

AFP Adjusted Function Points 1 

PET Project Elapsed Time 1 

IY Implementation Year (extracted from Implementation Date) 1 

DTY1-4 Development Type 4 

OT1-12 Organization Type 12 

DT1-15 Development Technique 15 

FST1-3 Functional Sizing Technique 3 

DP1-5 Development Platform 5 

LT1-6 Language Type 6 

PPL1-11 Primary Programming Language 11 

DBS1-9 Database System 9 

RM1-7 Recording Method 7 

RL Resource Level 1 

MTS Max Team Size 1 

ATS Average Team Size 1 

 

For each FSS approach the same data partition was used. Particularly, 10 fold cross-

validation was used (Maimon and Rokach, 2005), where 80% of the total projects were 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

144 

allocated to the training set and the remaining 20% to the testing set. The training samples 

were used to select the optimum features with each technique and then evaluation of the 

optimum features was carried out with the testing samples. Specifically, in the training phase 

the 10 fold cross-validation procedure split the training set into 10 parts of almost equal size 

and applied the FSS approaches (with only the selected cost drivers) 10 times, each time 

evaluating its performance on one part after training on the remaining nine. Performance 

evaluation included calculating the MRE for each fold and then the MMRE over the whole set 

was calculated (i.e., the mean value of the MREs of all projects) at the end of the process. 

Initially, Stepwise Regression was utilised both in a backward (BSWF) and a forward 

(FSWF) manner, i.e., in the former case starting with a full attribute set, attributes were 

removed if the prediction was improved in terms of MMRE and in the latter case starting with 

an empty set of attributes, attributes were added again if the prediction was improved. Figure 

4.10 shows the generic logic of the algorithm followed.  

 

Figure 4.10: Stepwise selection of project attributes 

No 

Empty set 

Ø 

Whole 

Dataset 

Cost Estimation Technique 

Yes 

Is MMRE 

no longer 

improved? 

Suitable Subset of Cost Drivers 

Subset of Cost Drivers 

Add/Remove Cost Driver 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

145 

 

Matlab‘s function stepwisefit (Matlab R2009a) was utilised in which, the null hypothesis 

is defined as ―if a variable is not currently included in the model it would have a zero 

coefficient if it was added to the model‖ (Beale et al., 2011). If there is sufficient evidence to 

reject the null hypothesis, then the variable is added to the model. Conversely, the null 

hypothesis is that ―if a variable is currently in the model, the variable has a zero coefficient‖. 

If there is insufficient evidence to reject the null hypothesis, then the variable is removed from 

the model as the coefficient is zero. The method continues with the following steps: 

 Step 1: Fit the initial model. 

 Step 2: Add the variable that has the smallest p-value, from the candidate variables 

that do not currently participate in the model and have p-values less than an inclusion 

threshold (that is, it is unlikely that they would have zero coefficient if they were 

added to the model) and repeat this step; otherwise, go to step 3. 

 Step 3: Remove the variable that has the largest p-value, from the variables included 

in the model that have p-values greater than a removal threshold (that is, it is unlikely 

that the hypothesis of a zero coefficient can be rejected) and proceed to step 2; 

otherwise, terminate. 

The method terminates when no single step improves the model (Draper and Smith, 1998). 

The maximum p-value for a predictor to be added was set to 0.05 and the minimum p-value 

for a prediction to be removed was set to 0.10. 

Basically, the aforementioned method examines each variable and its value to be entered 

in a model in a stepwise sequential process. If adding the variable contributes to the model 

then it is retained, but all other variables in the model are then re-tested to see if they are still 

contributing to the success of the model. If they no longer contribute significantly to the 

success of the model they are removed. Thus, the method ensures that we end up with the 

minimal set of predictor variables included in the model. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

146 

In addition, two forward selection and backward elimination algorithms were 

implemented both as Filter combined with linear Least Squares (LSFFS and LSBFE 

respectively) and as Wrapper combined with Ridge Regression methods (FFS and BFE). 

Also, a dedicated Genetic Algorithm (GA) was developed for feature selection in 

MatlabR2009a using the Genetic Algorithm and Direct Search Toolbox (MathWorks, 2009). 

The algorithm is an extension of a preliminary work (Papatheocharous et al., 2010c) which 

had the target of employing a GA for identifying the optimal subset of cost drivers 

participating in the cost estimation process of the dual variables RR technique. The dedicated 

algorithm had the following goal: Select the subset of cost drivers that minimises the overall 

relative error rate obtained with two machine learning techniques, in this case Ridge 

Regression (RR) and Least Squares (LS). Thus, two versions of the algorithm were 

implemented called GA and LSGA. The main advantage of using Evolutionary Algorithms 

(EA) is that they can search the vast space of possible combinations of cost drivers efficiently 

and reach to a near-to-optimal outcome.  

The GA evolved a population of individuals encoded as bit strings of the size of the cost 

drivers contained in the dataset. The cost drivers represented by the bits set to 1 were taken 

into account as inputs, while all the others (set to 0) were not. The individuals at each step, 

called a generation, were evaluated in the same 10 fold cross-validation process previously 

described. For each individual we assigned a score, called its fitness value, indicating how 

good the solution it represented was. The fitness of each individual defined its likelihood of 

being selected for the next generation. Until a new generation was completed, individuals 

from the current generation were selected probabilistically based on their fitness to generate 

offspring for the new generation. There were also a few individuals, the fittest ones, which 

were carried to the new generation unchanged, that is, without the application of any genetic 

operation on them. The same process was repeated until an optimal solution was reached or a 

stopping criterion was met, which in many cases was a maximum number of generations. The 

solution represented by the fittest individual in the last population was the one adopted as the 

resulting solution of the algorithm. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

147 

Firstly, to create each generation, the 10% fittest individuals were isolated and placed in 

the new generation. Then, until the new generation was complete (that is, it reached the 

maximum size) individuals were selected and recombined and/or mutated to generate new 

individuals for the new population. The selection of individuals was performed with the 

stochastic uniform function applied on the rank of the individuals in the current population. In 

effect this selection function laid out a line in which each individual corresponded to a section 

of the line of length proportional to its rank. The function then moved along this line in steps 

of equal size selecting the individual from the section it landed on. The size of the first step 

was a uniform random number less than the fixed step size. 

The crossover operator used the uniform function, with probability of being applied to a 

selected pair (called crossover rate) being set to 0.8. This function creates a random bit string 

of the same size as the two parents, called crossover mask, and generates the first child by 

copying the parts of the first parent at the points where the crossover mask has a 1 and the 

parts of the second parent at the points where the crossover mask has a 0. For the second child 

the same process was repeated with the parents reversed. Also, the uniform mutation was 

used, which flips each bit of an individual with a given probability, which in this case was set 

to 0.01. The number of generations and individuals in each generation were both set equal to 

100. 

Finally, the methodology explained in section 4.2.2.1, pg.136-138 using ANN and Input 

Sensitivity Analysis was followed to remove the ‗weakest‘ attribute (identified by the Relative 

Importance using Garson‘s Algorithm) from the sample until the inputs were reduced to half 

the initial size. The approach is called (BANN) as backward feature elimination was 

performed through ANN. 

An initial investigation of RR on the full Desharnais and ISBSG R9-4 datasets 

(Papadopoulos et al., 2009) showed that the following algorithm configurations were the most 

appropriate and thus were applied in the experiments conducted: the ridge parameter α and 

the kernel gamma γ were set to 0.1 and 3.5 for the ISBSG R9-4 dataset, and to 0.05 and 5 for 

the Desharnais dataset respectively. In order to evaluate the quality of the selected feature 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

148 

subsets, and therefore their appropriateness, we compared their accuracy performance to that 

of the full feature set using all the aforementioned specific estimation techniques (RR or LS).  

The results obtained using the various FSS approaches in the Desharnais dataset are 

summarised in Table 4.17 and in the ISBSG R9-4 dataset in Table 4.18 (Papatheocharous et 

al., 2010b). For the complete experimental results refer to Appendix B (Table B. 14 and Table 

B. 15). The column #F indicates the number of selected features by each technique. The fact 

that each technique resulted in the selection of a different cost driver subset, with some cost 

drivers appearing in the majority of subsets and others appearing very rarely or not at all, 

triggered us to examine both the quality of the different subsets as well as their similarities. 

Thus, the final column in Table 4.17 and Table 4.18 list the features selected by all (i.e., 

100%) and by most (i.e., 80% of the executions of each method over the 10 data partitions. 

Table 4.17: Software cost estimations across various FSS with the Desharnais dataset 

FSS RESULTS 

TESTING PHASE 

#F 

Common Features 

Selected in a) 100% 

and b) 80% runs 
INITIAL FINAL 

MMRE PRED MMRE PRED 

BFE 

MIN 0.334 0.400 0.337 0.333 4 a) None 

MAX 0.815 0.267 0.916 0.267 5 b) DU, EN, SC 

  AVG 0.582 0.387 0.622 0.347 4  

FFS 

MIN 0.334 0.400 0.337 0.333 4 a) FPNA 

MAX 0.815 0.267 0.903 0.267 6 b) DU, EN, SC, PNA 

  AVG 0.582 0.387 0.622 0.340 5  

BSWF 

MIN 0.334 0.400 0.345 0.400 4 a) DU 

MAX 0.779 0.333 0.859 0.333 2 b) DU, TR, FPNA 

  AVG 0.582 0.387 0.623 0.413 4  

FSWF 

MIN 0.387 0.467 0.416 0.400 2 a) None 

MAX 0.815 0.267 0.911 0.533 3 b) TR, FPNA 

  AVG 0.582 0.387 0.653 0.413 3  

LSBFE 

MIN 0.389 0.400 0.377 0.400 4 a) None 

MAX 1.264 0.067 1.170 0.200 3 b) None 

  AVG 0.648 0.293 0.699 0.320 3  

LSFFS 

MIN 0.339 0.400 0.388 0.333 2 a) None 

MAX 1.264 0.067 1.096 0.267 3 b) TR, FPNA 

  AVG 0.648 0.293 0.639 0.333 3  

LSGA 

MIN 0.387 0.467 0.416 0.400 2 a) None 

MAX 0.779 0.333 0.867 0.267 3 b) FPNA 

  AVG 0.582 0.387 0.626 0.320 3  

GA 

MIN 0.334 0.400 0.337 0.333 4 a) None 

MAX 0.779 0.333 0.836 0.400 5 b) DU, EN, SC 

AVG 0.582 0.387 0.614 0.327 4  

BANN 

MIN 0.334 0.400 0.382 0.333 4 a) None 

MAX 0.779 0.333 0.792 0.200 4 b) FPA 

AVG 0.582 0.387 0.606 0.447 4  

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

149 

Table 4.18: Software cost estimations across various FSS with the ISBSG R9-4 dataset 

FSS 

RESULTS TESTING PHASE 

#F 

Common Features Selected in a) 100% and b) 

80% runs  INITIAL FINAL 

MMRE PRED MMRE PRED 

BFE 

MIN 0.434 0.398 0.456 0.390 34 a) AFP, PET, OT12, FST3, RM4, MTS, ATS 

MAX 0.657 0.415 0.851 0.423 36 b) AFP, PET, OT4, OT9, OT12, DT1, DT3, FST3, 

LT2, PPL2, RM4, MTS, ATS  AVG 0.585 0.349 0.592 0.377 32  

FFS 

MIN 0.434 0.398 0.439 0.455 33 a) AFP, PET, DT1, LT3, RM4, MTS, ATS 

MAX 0.657 0.415 0.771 0.463 29 b) AFP, PET, OT9, OT12, DT1, DT3, DT5, DT7, 

LT2, LT3, PPL2, RM4, MTS, ATS  AVG 0.585 0.349 0.577 0.382 29  

BSWF 

MIN 0.434 0.398 0.434 0.447 32 a) CA1, CA2, AFP, PET, RM4, MTS, ATS 

MAX 0.763 0.309 0.880 0.407 30 b) CA1, CA2, CA3, AFP, PET, OT8, LT1, PPL2, 

RM4, MTS, ATS  AVG 0.585 0.349 0.618 0.386 27  

FSWF 

MIN 0.434 0.398 0.425 0.447 11 a) AFP, PET, LT2, RM4, MTS 

MAX 0.763 0.309 0.817 0.382 11 b) AFP, PET, LT2, LT3, PPL2, RM4, MTS, ATS  

AVG 0.585 0.349 0.600 0.373 12  

LSBFE 

MIN 0.434 0.398 0.399 0.439 39 a) AFP, PET, MTS, ATS 

MAX 0.815 0.317 0.869 0.301 27 b) AFP, PET, DTY2, DT5, DT12, LT1, DBS4, 

RM2, RM4, MTS, ATS  AVG 0.585 0.349 0.592 0.372 32  

LSFFS 

MIN 0.434 0.398 0.447 0.407 37 a) AFP, PET, LT3, RM4, MTS 

MAX 0.815 0.317 0.812 0.350 31 b) CA4, AFP, PET, IY, DT1, DT12, FST1, LT2, 

LT3, LT5, PPL2, RM4, MTS, ATS  AVG 0.585 0.349 0.596 0.363 34  

LSGA 

MIN 0.434 0.398 0.432 0.407 36 a) AFP, PET, LT2, RM4, MTS 

MAX 0.763 0.309 0.867 0.374 29 b) CA4, AFP, PET, DT5, DT12, FST1, LT2, LT5, 

PPL2, DBS2, RM4, MTS, ATS  AVG 0.585 0.349 0.607 0.355 31  

GA 

MIN 0.434 0.398 0.445 0.415 35 a) AFP, PET, DT1, DT3, PPL2, RM4, MTS, ATS 

MAX 0.815 0.317 0.748 0.382 30 b) AFP, PET, OT4, OT12, DT1, DT3, DT5, LT2, 

LT3, PPL2, PPL8, DBS1, RM4, MTS, ATS AVG 0.585 0.349 0.570 0.376 33  

BANN 

MIN 0.434 0.398 0.478 0.325 41 a) None 

MAX 0.815 0.317 0.954 0.317 41 b) PET, OT11, DBS1, DBS8, DBS9 

AVG 0.585 0.349 0.686 0.320 41  

 

Comparing the initial error figures obtained using the full attribute set with the final errors 

obtained using the optimum feature subset of each method on average a minor accuracy shift 

is observed in both datasets. This means that a large subset of software cost drivers has a 

small or insignificant influence in estimating software development effort accurately. 

Therefore, feature selection for the specific datasets has been found particularly useful for 

maintaining accuracy and in some cases (i.e., LSBFE, LSFFS in the Desharnais dataset and 

FSS, FSWF, LSBFE, GA in the ISBSG dataset) even increasing performance. The best 

selection was obtained with the BANN and the GA feature selection method in the Desharnais 

and the ISBSG case respectively, among the ones examined, as it yielded the lowest MMRE 

on average in the testing phase. It is also interesting to point out that the FSWF method 

promoted the smallest in size subset of features among the methods investigated in the ISBSG 

case and more importantly, it was able to provide highly accurate development effort 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

150 

estimations, similar to the rest of the FSS methods; FSWF on average selected around less 

than half the original features. Considering the average number of optimal features obtained 

from all the techniques explored, there are 4 only for the Desharnais dataset and 30 for the 

ISBSG R9-4 dataset. The average number of features is estimated by the average (AVG) 

number of features selected by each technique. In both datasets there was a quite important 

attribute reduction achieved without any significant compromise on the prediction accuracy of 

the SCE model based on the RR technique. 

In general, we observe that the commonly promoted attributes of all FSS methods 

presented in the last column of Table 4.17 and Table 4.18 are quite similar in the first case 

(i.e., the 100% case). This picture, though, is not retained in the 80% case probably due to the 

fact that more attributes are allowed to enter the pool of significant attributes as the threshold 

is less strict than the 100% case. In the Desharnais dataset, there are no attributes consistently 

promoted by all random splits (100% case) and the various FSS methods. However, there are 

a few attributes more consistently promoted than the rest (in 80% of the data splits) and these 

were FPNA and DU. Also, in some of the random data splits there were a few less frequently 

promoted attributes, namely TR, EN and SC. The significant attributes that seem to have 

direct influence on development effort in the Desharnais case also relate with software size 

and project duration. In the ISBSG case the attributes promoted in all of the 10 random data 

splits and all FSS methods, except BANN‘s filtering, are the following: AFP, PET, RM and 

MTS. Additionally, the attributes ATS, LT and DT are also considered important by most of 

the methods. Even though the features selected in the pre-processing stage comprise the most 

relevant attributes found in the vast ISBSG dataset, it seems that particularly the size of 

software and the duration of the project significantly affect effort estimates as they are 

consistently promoted. These two factors, as expected, drive development effort value and 

probably, if used as inputs in SCE models could lead to more accurate results. The 

comparison of the results obtained showed consistency among the results of the FSS methods, 

while the findings are in agreement with other related research studies that also identified 

significant project features on the same datasets (Azzeh et al., 2008; Li et al., 2009a; Keung et 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

151 

al., 2008). In addition, an important finding is that a rather small number of features is 

actually required as input for the particular SCE technique investigated to yield successful 

results. Therefore, the subset of features leads in reducing the model‘s complexity and training 

time. 

Summarising the observations obtained through the investigation of various FSS 

approaches in SCE described in this section, there are some commonly selected attributes in 

each dataset. This observation was more obvious in the case of the Desharnais dataset where 

the same pre-processing steps were performed before the application of each approach, 

whereas in the case of the ISBSG dataset this observation was harder to make. However, in 

both datasets size-related features were commonly selected, i.e., the FPNA and FPA attributes 

from the Desharnais dataset and the FS and AFP attributes from the ISBSG dataset. This 

direct effect and contribution of the size of the software on the effort required to develop it 

was presupposed in the previous section 4.2.1, where size-based variables were investigated 

for effort estimation. 

The experiments showed that in single company datasets, such as the Desharnais, apart 

from FP-related variables (FPNA and FPA) which were found to significantly affect effort, 

the attributes of project duration (DU), scope (SC), number of transactions (TR) and entities 

(EN) were also considered influential to the value of effort. Factors related with human 

features such as the team‘s and manager‘s experience were not found significant and 

moreover, factors related to the domain experience, team size, application type, technologies 

utilised etc. were not measured in the Desharnais dataset possibly because among the projects 

reported these factors remained unaltered in the context of the same company. However, in 

the FSS experiments conducted with multi-organisational datasets where projects from many 

companies are reported, such as the ISBSG, apart from the functional size (FS) and the AFP 

which as expected were found to influence effort, other factors of technical nature were 

identified as ‗significant‘. These factors relate for example to properties that change among 

different projects developed by dissimilar organisations such as the developers‘ team size 

(MTS), the development type (DT), the language type (LT) used, etc.  Finally, the existence of 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

152 

such dissimilarities, especially in large datasets calls for the need of clustering and 

classification techniques for conducting SCE on more homogeneous data samples. The 

following section deals with this matter. 

4.2.3 Clustering and Classification for Software Cost Estimation (CC-SCE)  

The Clustering and Classification methodologies for SCE (CC-SCE) proposed in this 

section aim to complement the previously mentioned research work that emphasised attribute 

selection (Papatheocharous et al., 2010b), and filter software data based on explicit project 

characteristics. Thus, the Clustering and Classification methodologies intend to approximate 

the issue of SCE by performing horizontal (attribute-based) and/or vertical (project-based) 

filtering. The motivation is that the successful clustering and/or classification of past project 

data into homogeneous clusters and/or classes may provide better cost estimates within each 

cluster and/or class. Moreover, fuzzification and cost estimation within value ranges are 

executed, that transform the amount of the underlying uncertainty in software project data into 

useful information that can lead to better software cost estimations. The latter is considered an 

extension to the typical clustering and classification approaches to Fuzzy clustering and/or 

classifications for SCE. In addition, the estimations are based on predictive intervals and are 

reported as interval instead of a crisp estimate (a subject which is also addressed in a later 

section 4.2.4 (pg. 203) namely with the Predictive Intervals for SCE (PI-SCE)). 

Initially, clustering methodologies are proposed by employing genetically evolved bounds 

of cost attribute value ranges are created based on Conditional Sets (CS) theory (Packard, 

1990) to cluster software data and investigate software cost estimation performance. 

Moreover, an Entropy-based Fuzzy k-modes clustering algorithm, to identify clusters of 

similar projects that are sufficiently close to each other. Then, the descriptive characteristics 

(i.e., cost drivers‘ values) of the projects are used for classifying each new project in a certain 

cluster. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

153 

The classification methodologies of software projects are developed based initially on 

Genetic Programming (GP) for investigating genetically evolved typical algorithmic models 

and then Fuzzy Decision Trees (FDT) and Fuzzy Implication Systems (FIS) are employed. 

The main target of the methodologies was to classify project data and, at the same time, 

extract association rules between software projects that describe the multifaceted nature of the 

software development environments. The methodologies developed conceptually interpret the 

subjective, encrypted information, especially coming from large heterogeneous datasets, in 

such a way that can be comprehensively understood by individuals. Classification of software 

project data aims to produce and examine groups of projects that share similar characteristics 

and obtain association rules that can be used to perform improved cost estimations. Each 

association rule isolates a number of project samples which satisfy a number of cost 

parameters in terms of similar values, thus forming clusters of known project data. In case a 

new (under development) project is properly classified in a cluster (i.e., it  satisfies the 

corresponding rule) then the estimated effort value can be expressed in terms of the mean 

value and standard deviation of the group‘s (clustered projects‘) effort. Alternatively, a group 

of association rules can be used to build a decision support Fuzzy Implication System (FIS) 

aiming to provide improved SCE. 

4.2.3.1 Genetically Evolved Conditional Sets (CS) for CC-SCE 

The methodology proposed in this section targets clustering and is based on the 

combination of the theory of Conditional Sets (CS) with Genetic Algorithms (GA) (Andreou 

et al., 2007). The idea was inspired by (Meyer and Packard, 1992; Packard, 1990) that 

employed Evolutionary Algorithms (EA) to improve CS. The main philosophy was to evolve 

value ranges (or CS) that describe the determinant relationships among project attributes and 

effort in a given dataset. This entails exploring a vast space of solutions expressed in ranges. 

These ranges utilise values that are within the range of values included in available software 

project data located in benchmark datasets. The ranges produced may be used to replace the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

154 

crisp/actual data values from the datasets which usually contain high levels of uncertainty and 

lower the dependency of the SCE process on the quality of the data gathered. 

The term Conditional Sets (CS) refers to a set of boundary conditions. Some definitions 

and notations of the CS theory (Adamopoulos et al., 1998; Packard, 1990) are provided in the 

context of the SCE paradigm. Consider a set of n cost attributes {A1, A2, …, An}, where each 

Ai has a corresponding discrete value xi. A software project may be described by a vector of 

the following form:  

 nxxxL ,...,, 21
 (4.14) 

Let also consider a condition Ci of the form: 

)(: iiii ubxlbC 
, ni ...1  

(4.15) 

where lbi and ubi are the lower and upper bounds of Ci respectively for which: 

 iii ublbC :
 

(4.16) 

that is, the lbi and ubi have minimal difference in their value, under a specific threshold ε.  

Consider also a conditional set S. S is of length l (≤n) if it entails l conditions of the form 

described by eqs (4.15) and (4.16), which are coupled via the logical operators of AND and 

OR as described in eqs (4.17) and (4.18). 

lAND CCCS  ...21  
(4.17) 

lOR CCCS  ...21  
(4.18) 

Each conditional set S is considered as an individual in the population of the dedicated 

GA, which will be thoroughly explained next and eqs (4.17) and (4.18) were used to describe 

CS representing cost attributes or cost drivers. The main purpose of the algorithm is the 

definition of a set of software projects, M, the elements of which are vectors as in eq. (4.14) 

that hold the values of the specific cost attributes used in relation with a CS. More 

specifically, the set M can be defined as follows:  

 mLLLM ,...,, 21
 

(4.19) 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

155 

 liiii xxxL ,2,1, ,...,,
,  mi ...1  

(4.20) 

where l denotes the number of cost attributes of interest. 

A conditional set S is related to M according to the conditions in eqs (4.17) or (4.18) that 

are satisfied according to the following: 

:iL       kki Csatisfiesx ,  , (AND)  ...1,...1 lkmi   (4.21) 

(OR)  ,...1  ,,..., ,22,11, miCsatisfiesxORCsatisfiesxORCsatisfiesx lliii   (4.22) 

The goal of the proposed algorithm is to identify the exact value ranges for the attributes 

of cost drivers and determine the attributes that have a high influence on development effort 

by providing associated weights together with effort predictions. These weights represent the 

notion of ranked importance of the associated attributes and if used for predicting effort could 

possibly result in a more efficient and practical solution than the solutions offered by the 

previously proposed SCE approaches. 

The dataset used was the ISBSG R9 from which only the attributes that were suggested by 

a previous technique (the Less Strict (LS) criterion of ISA on ANN (pg. 126 using ISBSG R9-

2 dataset in (Papatheocharous and Andreou, 2007)) were selected. The data went through the 

pre-processing steps summarised in Table 4.1 (c)-(e) and was named ISBSG R9-5. In 

addition, ISBSG R9-6 was obtained after performing Box Plots and excluding the extreme 

effort values observed in the previously mentioned subset (i.e., suggested by the Less Strict 

(LS) criterion of ISA on ANN (pg. 126)). In this dataset a variation was also made, instead of 

the AFP attribute the NAFP was preferred to investigate the difference in the results utilising 

more homogeneous values (since values are normalised and outliers were also eliminated). 

Finally, the third dataset utilised, namely ISBSG R9-7, consisted only attributes that could be 

measured ‗early‘ in the software life-cycle and for which Box Plots were used to eliminate 

outlying effort values. The subsets ISBSG R9-5, ISBSG R9-6 and ISBSG R9-7 included 386, 

458 and 333 projects respectively whose attributes are summarised in Table 4.19. 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

156 

Table 4.19: Attributes and abbreviations used in the genetically evolved Conditional Sets 
Dataset Attributes Abbreviation 

ISBSG R9-5 

Adjusted Function Points AFP 

Enquiry Count EC 

File Count FC 

Added Count AC 

Changed Count CC 

ISBSG R9-6 

Normalised Adjusted Function Points NAFP 

Enquiry Count EC 

File Count FC 

Added Count AC 

ISBSG R9-7 

Adjusted Function Points AFP 

Project delivery rate (productivity) in functional size units PDRU 

Project Elapsed Time PET 

Resource Level (ordinal) RL 

Average Team Size ATS 

 

Figure 4.11 summarises the methodology proposed and the steps followed for evolving 

CS and providing effort range predictions (Andreou and Papatheocharous, 2008a). At the 

initiation step, a random set or initial population of conditions (individuals) was created. The 

individuals were then evolved through specific genetic operators and evaluated internally 

using the fitness functions. The evolution of individuals continued while none of the 

termination criteria was satisfied. Among the termination criteria were a maximum number of 

iterations (called generations or epochs) or no improvement in the maximum fitness value 

occurred. The top 5% individuals resulting in the higher fitness evaluations were accumulated 

into the optimum range population, which then were advanced to the next algorithm 

generation (repetition). In the end, at the evaluation step, the final population was produced 

that satisfied the criteria and which was used to estimate the mean effort. Also, at the 

evaluation step, the methodology was assessed through performance metrics. The most 

successful CS evolved by the GA that had small assembled effort ranges with relatively small 

deviation from the mean effort, were then used to predict the effort of new, unknown projects. 

 Efi P
ap

ath
eo

ch
aro

us



 

 

 

157 

 

Figure 4.11: Methodology of genetically evolved Conditional Sets (CS & GA) 

 

A dedicated GA utilising CS was implemented executing the following steps: 

Step 1: Randomly create an initial population of individuals P, which represent solutions to 

the given problem (in this particular case, ranges of values in the form expressed in eqs 

(4.17) or (4.18)). 

Step 2: Perform the following steps for each generation: 

2.1. Evaluate the fitness of each individual in the population using eq. (4.23) or eq. (4.24) 

specified below, and isolate the best individual(s) of all preceding populations.  
















i

l

i

ii

AND

wlbub

kF

*)(

11

1



 (4.23) 


















l

i

i

iii

i
OR

w
lbub

kF
1

11


 (4.24) 

where k represents the number of projects satisfying the conditional set, ki the number 

of projects satisfying only condition Ci, and ζ, ζi  are the standard deviations of the 

effort of the k and  ki projects, respectively. 

2.2. Create a new population by applying the following genetic operators: 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

158 

2.2.1. Selection; based on the fitness select a subset of the current population for 

reproduction by applying the roulette wheel method. This method of reproduction 

allocates offspring values using a roulette wheel with slots sized according to the 

fitness of the evaluated individuals. It is a way of selecting members from a 

population of individuals in a natural way, proportional to the probability set by 

the fitness of the parents. The higher the fitness of the individual is, the greater the 

chance it will have to be selected, even though it is not guaranteed that the fittest 

member goes to the next generation. So, additionally, elitism is applied, where the 

top best performing individuals are copied in the next generation. 

2.2.2. Crossover; two or more individuals are randomly chosen from the population and 

parts of their genetic information are recombined to produce new individuals. 

Crossover with two individuals takes place either by exchanging their ranges at the 

crossover point (inter-crossover) or by swapping the upper or lower bound of a 

specific range (intra-crossover). The crossover takes place on one (or more) 

randomly chosen crossover point(s) along the structures of the two individuals. 

2.2.3. Mutation; randomly selected individuals are altered randomly and inserted into 

the new population. The alteration takes place at the upper or lower bound of a 

randomly selected range by adding or subtracting a small random number. This 

mutation number is based on the median range value of the population. Mutation 

intends to preserve the diversity of the population by expanding the search space 

into regions that may contain better solutions. 

2.3. Replace the current population with the newly formed population. 

Step 3: Repeat from step 2 unless a termination condition is satisfied. Output the individual 

with the best fitness as the near to optimum solution. 

Each loop of the aforementioned steps is called a generation. The entire set of iterations 

from population initialisation to termination is called a run. At the termination of the process 

the algorithm promotes the ‗best-of-run‘ individual. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

159 

By using the standard deviation in the fitness evaluation (eqs (4.23) and (4.24))  the 

algorithm promotes the evolved individuals that had their effort values close to the mean 

effort value of either the k projects satisfying S (AND case) or either the ki projects satisfying 

Ci (OR case). Additionally, the evaluation rewards individuals whose difference among the 

lower and upper range is minimal. Finally, wi in eqs (4.23) and (4.24) is a weighting factor 

corresponding to the significance given by the estimator to a certain cost attribute. 

These particular fitness functions were used to define the appropriateness of the value 

ranges produced for a particular dataset. More specifically, when a conditional set is evaluated 

the dataset was used to define how many records of data (a record corresponds to a project 

with specific values for its cost attributes and effort) was within the ranges of values of the 

individual according to the conditions used and the logical operator connecting these 

conditions. Note that in the OR case the conditional set is satisfied if at least one of its 

conditions is satisfied, while in the AND case all conditions in S must be satisfied. Hence, k 

(and ζ) is unique for all ranges in the AND case, while in the OR case k may have a different 

value for each range i. This requirement specified the need of having two different fitness 

functions for each of the two logical operators. The total fitness of the population in each 

generation was calculated as the sum of the fitness values of the individuals in P.  

Once the GA terminates, the best individual was used to perform effort estimation. More 

specifically, in the AND case the individual‘s projects that satisfy the conditional set, while in 

the OR case the projects that satisfy one or more conditions of the set were distinguished. 

Next we calculated the mean effort value (ē) and standard deviation (ζ) of those projects. For 

a new project for which an estimate of its development effort is required, the algorithm check 

whether the values of its attributes lie within the ranges of the best individual and that it 

satisfies the form of the pre-defined CS AND or OR. If this holds, then the effort of the new 

project is estimated to be: 

 eepred
 (4.25) 

where epred is the mean value of the effort of the projects satisfying the conditional set S. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

160 

Until the phase of conducting the final set of experiments with the genetically evolved CS 

a series of initial setup experiments was carried out to define and tune the main parameters of 

the GA (as summarised in Table 4.20).  

Table 4.20: Genetic Algorithm main parameters of the Conditional Sets utilised for SCE 
Category Value Details 

Attributes set { SAND, SOR } - 

Solution representation L - 

Generation size 1000 epochs - 

Population size 100 individuals - 

Selection - Roulette wheel based on fitness of each individual 

Elitism - Best individuals are forwarded (5%) 

Mutation Ratio 0.01-0.05 Random mutation 

Crossover Ratio 0.25-0.5 Random crossover (inter-, intra-) 

Termination criterion - 
Generations size is reached or no improvements are 

noted for more than 100 generations 

 

The indicative experimental results summarised in Table 4.21 (Andreou et al., 2007), 

show average performance in terms of HR, even in cases where the lower and upper bound 

values included in the conditions were broad.  The most promising results were obtained with 

the coupling of OR-based CS. In this case, overly wide range intervals were produced and 

many projects (191 out of 386) satisfied the interval ranges evolved. In addition, 83 projects 

out of the 191 have their predicted value satisfying eq. (4.25).  

Efi P
ap

ath
eo

ch
aro

us



 

161 

 

Table 4.21: Performance results of genetically evolved Conditional Sets with Weights 
Dataset 

(CS-

case) 

Attribute Weights /Ranges Evaluation Metrics 

AFP PDRU PET RL ATS NAFP AC FC EC CC ē σ HR 

ISBSG  

R9-5  

(OR) 

- - - - - - 0.4 0.3 0.2 0.1 

3204 1879 81/187       [1, 1391] [11,242] [14,268] [206,1735] 

ISBSG  

R9-5  

 (OR) 

- - - - - - 0.4 0.2 0.2 0.2 

3254.5 1857 83/191       [1,1377] [3, 427] [1, 347] [46, 579] 

 ISBSG 

R9-6  

(AND) 

- - - - - 0.25 0.25 0.25 0.25 - 

3188.6 2470.9 3/221      [1,152] [22, 859] [58, 3192] [20, 563]  

ISBSG  

R9-6 

(AND) 

- - - - - 0.25 0.25 0.25 0.25 - 

3151.6 2377.9 4/139      [1, 156] [34, 443] [122, 2084] [37, 469]  

ISBSG  

R9-7 

 (AND) 

0.2 0.2 0.2 0.2 0.2 - - - - - 

2380.0 434.5 2/3 
[173, 1131] [1, 20] [2, 20] [2, 4] [1, 7] 

     

ISBSG  

R9-7 

 (AND) 

0.25 0.25 0 0.25 0.25 - - - - - 

2477.8 838.2 5/5 
[189, 1301] [2, 26] 0 [1, 3] [2, 11] 

     

 

Efi P
ap

ath
eo

ch
aro

us



 

162 

 

In the OR CS case for the ISBSG R9-5 dataset, the best obtained indicative results 

included higher weight value on the attribute of AC in relation to the rest attributes that 

increased its corresponding significance in the fitness equation (as specified in eq. (4.24)). The 

level of HR obtained was quite good but the high value of the standard deviation compared to 

the mean effort (measured in person days) indicated that the CS attained were rather dispersed 

(too wide) and not of high practical value. The mean effort of the best 100 experiments 

conducted was found equal to 2929 and the total standard deviation equal to 518. From these 

measures the total standard error was estimated at 4.93.  

In the AND CS case for the ISBSG R9-6 dataset the results appear to be very poor, since 

very low HR was obtained indicating that the CS satisfied in terms of ranges a large number 

of projects but the prediction range produced was not overly successful, i.e., it did not include 

the actual effort values of those projects. The AND case was based on a stricter method than 

the OR case and is considered more practical since it requires all yielded ranges to be 

simultaneously satisfied, instead of just one range (like in the OR case).  

Finally, in the AND CS case for the ISBSG R9-7 dataset (i.e., which utilises the subset of 

attributes that can be measured ‗early‘ in the development life-cycle) the best obtained 

standard deviation of effort falls to 74.9. The overly narrow effort prediction interval 

produced is considered quite successful, but unfortunately the CS obtained satisfied only 2 

projects. However, both of these 2 projects‘ effort is included in the prediction interval 

obtained. This leads us to conclude that either the careful removal of outliers performed, or 

the utilisation of attributes measured early have contributed to obtaining optimised results 

with the proposed methodology. The results attained for the AND cases demonstrated that 

there is high individuality regarding the projects, especially the projects included in the multi-

organisational dataset ISBSG R9. In general, the results may be regarded as achieving 

consistently successful predictions, yielding optimum ranges that are adequately small and 

suggesting effort estimations that are within reasonable mean values and perfectly acceptable 

deviation from the mean. However, due to the two goals utilised in the fitness functions, i.e., 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

163 

narrow predictions and satisfying large number of projects, further calibrations need to be 

performed since there are cases where these two goals can be conflicting. 

Figure 4.12 depicts the total fitness value of a sample population through generations, 

which, as expected, rises as the number of epochs increases. A plateau was observed in the 

range 50-400 epochs which may be attributed to a possible trapping of the algorithm to a local 

minimum. The algorithm seems to escape from this minimum with its total fitness value 

constantly being improved along the segment of 400-450 epochs and then stabilising. Along 

the repetitions of the algorithm execution, the total population fitness improves showing that 

the methodology performs consistently well. 

 

Figure 4.12: Total Fitness Evolution of the Genetically evolved Conditional Sets for SCE  
 

The difficulty of obtaining genetically evolved CS in all the experiments described in this 

section suggested that large dissimilarities and high ‗individuality‘ exist within the values 

reported in software projects, at least regarding the specific attributes investigated. This also 

suggests that perhaps selecting the appropriate features to obtain clustered groups of projects 

that conform to specific rules and which, if successfully isolated, e.g., through a clustering 

technique, and effort is estimated using classification or by-analogy techniques, then 

improvements may be achieved. The subsequent techniques emphasise on ways to obtain 

more intelligent clusters of projects that share similar characteristics utilising the theory of 

Fuzzy Logic. 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

164 

4.2.3.2 Fuzzy Clustering in CC-SCE 

Fuzzy clustering algorithms seek to organise data samples into several subsets taking into 

consideration the degree of membership of each object to a certain subset. Therefore, fuzzy 

clustering may deal with the possible lack of homogeneity, objectivity and quality of data. In 

previous related research work (Aroba et al., 2008) the technique of fuzzy clustering yielded 

better figures of adjustment (better results) than their crisp equivalent (i.e., the Expectation 

Maximization clustering algorithm). Aroba et al. (2008) supported that in some cases the 

projects under estimation cannot be assigned to a cluster in a sharp (hard) way and one may 

consider clustering them in more than one cluster and improve the overall prediction result. 

Therefore, the proposed approach for Fuzzy Clustering employs a hybrid algorithm, namely 

the Entropy-based fuzzy k-modes clustering algorithm (Tsekouras et al., 2005), which is a 

combination of entropy (Yao et al., 2000) and the k-means algorithm for categorical data 

(Huang, 1998). The approach applies a threshold to obtain clustered projects and ultimately 

estimates effort of a new project which is assigned to a specific cluster by taking into account 

the mean effort and standard deviation values (Papatheocharous and Andreou, 2009a). 

Classical clustering algorithms work under the assumption that well-defined boundaries 

exist between clusters and they assign each object to one and only one cluster, with a 

membership degree equal to 1. In fuzzy clustering objects may belong to more than one 

cluster and for each association a membership level exists. The set of membership levels 

indicates the strength of association between the objects in each cluster and it is used to assign 

objects to one or more clusters. 

The ISBSG R9 dataset was used in the experiments conducted. The dataset went through 

the pre-processing steps described in Table 4.1 (a), (c), (e), (f), (j)-(l), (n) and (o). This pre-

processing led to the ISBSG R9-8 which comprised of 424 projects and 49 attributes, 

summarised in Table 4.22. 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

165 

Table 4.22: ISBSG R9-8 attributes description 
Abbreviation ISBSG R9-8 Attribute Description Number of values 

CA Count Approach 1 

AFP Adjusted Function Points 1 

PET Project Elapsed Time 1 

IY Implementation Year (extracted from Implementation Date) 1 

DT Development Type 1 

OT1-12 Organization Type 12 

DT1-15 Development Technique 15 

FST Functional Sizing Technique 1 

DP Development Platform 1 

LT Language Type 1 

PPL Primary Programming Language 1 

DBS1-9 Database System 9 

RM Recording Method 1 

RL Resource Level 1 

MTS Max Team Size 1 

ATS Average Team Size 1 

 

The fuzzy clustering methodology was performed on the training data which comprised 

the 75% of the initial data samples. Initially, the Entropy-based clustering computed the 

number of clusters (k) in the software projects datasets and identified the candidate initial 

cluster centres based on the entropy value (defined in eq. (4.30)) for the set of n projects 

described by m attributes X = [x1, x2,…, xn]. The definition of the entropy value for each pair 

of data projects i and j (eq. (4.26)) is dependent on the fuzzy exponent α and the distance 

measure D.  

)1(log)1()(log 22 ijijijijij EEEEH  , jiwhere   (4.26) 

Eij is the similarity measure between two projects, estimated using a distance function (Dij) 

and α (defined in eqs (4.27)-(4.28) respectively, where D is the mean distance among the 

pairs and D is calculated based on the Hamming distance (Hamming, 1950) of eq. (4.29), (i.e., 

for binary strings it includes the number of ones in an XOR). 

ijaD

ij eE


  (4.27) 

Da /)5.0ln(  (4.28) 










 jj

jj
m

j

ij XXif

XXif
D

21

21

1
,1

,0  
(4.29) 

As already mentioned, the total entropy value of a project Xi with respect to all other projects 

is estimated in eq. (4.30). The yielding Z1 = {Z11,...Z1m} represents a cluster centre, to which 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

166 

each project is assigned to, as it achieves the minimum entropy value after each algorithm 

iteration. 

)]1(log)1()(log[ 22
1

ijijijij

n

ki

j
ij EEEEH  





 (4.30) 

The Entropy-based clustering algorithm as described in (Stylianou and Andreou, 2007) 

executes the following steps: 

1. Based on a selected threshold of similarity (β) set the initial number of clusters to 

zero (c=0). 

2. Estimate the total entropy values (H) for each project in the dataset X using eq. 

(4.30). 

3. Set c=c+1. 

4. Select the project Xmin with the smaller entropy and set Zc=Xmin as the c
th
 cluster 

centre. 

5. Remove Xmin and all projects having similarity with Xmin >  β from the dataset X.  

6. If X is empty then stop; otherwise continue with step 3. 

This means that projects with many surrounding projects will have total entropy values 

relatively lower than the rest, and will be thus considered as strong candidates for 

representing a cluster. The project with the lowest entropy value is selected as the cluster 

centre and the algorithm uses parameter β, which represents the similarity threshold, to 

exclude projects with very high similarity degree to the recently selected cluster centre, i.e., 

prevent these projects from being considered as potential cluster centres (Yao et al, 2000). 

The number of clusters is increased and the project with the next lowest entropy value is 

selected and the algorithm continues until zero projects are left in the dataset. 

The k-modes algorithm, introduced by (Huang, 1998) and later on extended in (Huang, 

1999) to include fuzzy elements so as to account for the uncertainty observed in data 

samples, uses an altered dissimilarity function based on a simple matching of the attributes 

(i.e., the Hamming distance instead of the Euclidean distance). In addition, in the fuzzy 

version of the algorithm the cluster centres are defined by the modal value of each attribute 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

167 

instead of the mean value and their computation relies on the assignment of the most 

frequent category of each attribute as the representative of the cluster.  

Consider X = [x1, x2, …, xn] a set of n projects described by m attributes A=[ A1, A2, …, 

Am]. An Aj attribute can take any value from the domain D(Aj) = {aj
1
, aj

2
, …, aj

nj} where nj is 

the possible number of category values for attribute Aj (1 ≤ j ≤ m). Thus, data objects may 

be represented by attribute-value pairs of the form: [Ai1 = xi1] ^ [Ai1 = xi1] ^ … ^ [Ai1 = xi1] 

(Kim et al., 2004) and therefore a project Xi may be represented by a vector of the form [x11, 

x12,…, x1m] for 1 ≤ i ≤ m. Z1 = {Z11,...Z1m} represents a cluster center for 1≤l≤n and finally, 

the aim is to minimise the cost function of eq. (4.31) subject to eqs (4.32)-(4.34) (Bezdek, 

1980). 

   

 

 
1 1

,    ,  

k n

li l i

l i

F W Z w d Z X  (4.31) 

     0    1, 1    ,  1    liw l k i n  (4.32) 



  
1

  1, 1    

k

li

l

w i n  (4.33) 



   
1

0    , 1    

n

li

i

w n l k  (4.34) 

k (≤ n) represents a predefined number of clusters, W = [wli] is a k × n partition matrix, Z = 

{Z1, Z2, …, Zk} is the set of cluster centres, and d(∙, ∙) is some measure of distance between 

two objects. The fuzziness exponent, α   [1, ∞) in eq. (4.31) identifies whether hard (α = 1) 

or fuzzy (α > 1) k-modes clustering is performed. 

Consider X1 = [x11, x12, …, x1m] and X2 = [x21, x22, …, x2m] two data samples of a dataset 

described by m attributes. The dissimilarity between these two samples, d(X1, X2), is given 

by eq. (4.35) 

   



 1 2 1 2

1

,    ,  

m

j j

j

d X X x x

 

(4.35) 

where δ is defined in eq. (4.36). 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

168 

 





1 2
1 2

1 2

0,
,   = 

1,

j j
j j

j j

x x
x x

x x
 

(4.36) 

The dissimilarity function (eq. (4.35)) is then used to (re)assign a data sample to a 

cluster. Accordingly, in the case of the hard k-modes algorithm, if object Xi yields the 

shortest distance with centre Zl in a given iteration, this is represented by setting the value at 

the nearest cluster to 1 and the values at the rest of the clusters to 0 in the partition matrix 

W. Formally, for α = 1: 

      
 


1, if ,    ,  , 1    
ˆ

0, otherwise
l i h i

li
d Z X d Z X h k

w

 

(4.37) 

In the case of the fuzzy k-modes algorithm, for α > 1, the partition matrix W is given by: 

 
 

 






  



 


   
 
 
   


1 1

1

1, if 

0, if ,  

ˆ   
1

, if  and , 1    

,  

,  

i l

i h

li

i l i h
k

l i

h ih

X Z

X Z h l

w

X Z X Z h k

d Z X

d Z X
 

(4.38) 

for 1 ≤ l ≤ k, 1 ≤ i ≤ n. This means that if a data sample has exactly the same attribute values 

with a particular cluster centre, then it will be assigned fully to that cluster and not at all to the 

rest. Otherwise, the data sample will be characterised by a membership degree for each cluster 

denoting its partial membership in the cluster (Tsekouras et al., 2005). 

The Fuzzy k-modes clustering algorithm as described in (Stylianou and Andreou, 2007) 

executes the following steps: 

1. Set k random initial clusters Z
1
 = {Z1

1
. Z2

1
, ..., Zk

1
}. 

2. Calculate W
1 

by using eq. (4.32) or (4.33) for applying hard or fuzzy clustering, so 

that a cost function F(W, Z
1
) (eq. (4.31)) is minimised. 

3. Set t = 1. 

4. Calculate Z
1+1 

by finding the update of every cluster based on the frequency of 

categories of attributes (modes of attributes) for hard k-modes or fuzzy k-modes 

clustering, so that cost function F(W
t
, Z

1+1
) is minimised.  

5. If F(W
t
, Z

t+1
) = F(W

t
, Z

t
) then stop; otherwise go to step 6. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

169 

6. Calculate W
t+1

 using the same equation as in step 2, such that F(W
t+1

, Z
t+1

) is 

minimised. 

7. If F(W
t+1

, Z
t+1

) = F(W
t
, Z

t+1
) then stop; otherwise set t = t +1 and go to step 4. 

Thus, the application of the entropy-based fuzzy k-modes clustering algorithm yielded the 

k clusters with respect to the fuzzy exponent α and the threshold of similarity β. At the 

validation step, using the rest 25% of the original data, each project was matched against the 

final cluster centres and using the partition matrix W (eq. (4.88)) the nearest centre was 

obtained. Then, a cut-off limit was used to further isolate projects responding to a similarity 

measure φ. The cut-off limit was constructed by defining an upper and lower bound (set to 

±10%) based on the value of the new project‘s membership degree to the closest cluster 

centre. Thus, if a new project was assigned a membership degree of 60% in the search cluster, 

then the projects retrieved would have membership degrees between 50%-70%. The similarity 

measure φ ensures that only the closest projects falling between the ±10% radius distance 

from the new project, are selected. The value of the similarity measure φ was specified equal 

to 75% and 85%. Then, the mean effort value (ē) and standard deviation (ζ) of the actual 

effort values of the projects isolated were estimated. The predicted effort value of new 

projects was estimated to lie within the range [ē ± ζ] (also refer to eq. (4.25)). In this 

particular case however if the standard deviation was greater than the mean (i.e., ζ > ē), the 

lower bound of the abovementioned interval was set equal to zero (i.e., the range would be [0, 

ē + ζ]). Thus, the methodology proposed bounded estimation intervals of the minimum 

possible width, rather than single point value predictions, yielding more ‗flexible‘ estimates 

on one hand, as it encapsulates the inherent estimation uncertainty, but of a more informative 

nature on the other (Papatheocharous and Andreou, 2009a). 

The evaluation of the predictions was carried out through the following four performance 

metrics: 

a. If the actual effort fell within the range [ē - ζ, ē + ζ] then the Hit Ratio (HR) of the 

estimation was increased by one. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

170 

b. Width was calculated by subtracting [ē – ζ] from [ē + ζ] in case the result of [ē – ζ] 

was positive; otherwise the width was considered equal to [ē + ζ]. 

c. Overall Size (OS) was calculated dividing the Width with the subtracted minimum 

effort value from the maximum effort value contained in the original samples. 

d. Cluster Size (ClS) was calculated dividing the Width with the subtracted minimum 

effort value and maximum effort value contained in the clustered samples. 

The last two metrics represent how ‗good‘ or how shrinked the estimation intervals are. 

The best fuzzy clustering results of the algorithm and the associated effort prediction 

intervals of minimum width, based on the mean and standard deviation values of the effort of 

the clustered projects are summarised in Table 4.23. The clustering results were obtained 

using a variation of the dataset (namely ISBSG R9-8.5) which included the attributes of 

ISBSG R9-8 plus the effort attribute as a classifier, and for which the following steps were 

additionally executed: (i) the outlying projects based on Box Plots on the effort sample values 

were excluded, and (ii) an additional weight value on the effort variable (to reach the 

dominant significance level of 51% in the clustering process compared to the rest of the 

attributes) was applied. 

Initially, experimentation was carried out with the Entropy algorithm to locate the cluster 

centres k and subsequently hard clustering was applied. Then, the fuzzy k-modes algorithm 

was executed to obtain the fuzzy clustering results. The best clustering carried out using all 

respective variations of the ISBSG R9-8 dataset are included in Appendix B. In the 

experiments the parameter β and fuzzy exponent α were varied, taking values from the sets 

{0.3, 0.4, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9} and {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8}. 

Table 4.23: Entropy-based fuzzy k-modes clustering results (effort values in person-hours) for the 

ISBSG R9-8.5 dataset 

β α k OS (%) ClS (%) HR(%) mean effort (ē) std effort (σ) width 

0.8 1.7 25 1.60 37.92 76.60 2030.93 1198.76 2397.53 

0.8 1.5 25 1.88 39.69 76.60 2294.23 1406.38 2812.76 

0.8 1.8 25 1.92 38.74 45.74 2206.57 1433.75 2867.49 

0.9 1.7 104 1.93 50.20 62.77 2625.31 1440.06 2880.12 

0.9 1.5 104 1.94 77.48 62.77 2647.77 1452.07 2904.14 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

171 

From the results obtained the algorithm estimated in all cases a standard deviation (ζ) 

value consistently lower than the mean effort value (ē) reported. This means that the 

prediction intervals yielded were consistently narrow, i.e., at least lower than the initial value 

reported for the interval [ē - ζ, ē + ζ] before clustering was applied (refer to Appendix A, 

Table A. 17). The assumption formulated here was that the narrower a predictive interval is 

the more useful will be to project managers. Additionally, as reported by other researchers 

(Jørgensen and Moløkken, 2002) previous studies suggest that software development effort 

prediction intervals are, on average, much too narrow to reflect high confidence levels, i.e., 

the uncertainty is under-estimated. Therefore, a balance needs to be found on the acceptable 

interval estimates and the confidence regarding this estimate (i.e., the expected probability 

that the real value is within the predicted interval). For example, Jørgensen et al. (2004) report 

that on average, if a software professional is 90% confident or ‗almost sure‘ to include the 

actual effort in a minimum-maximum interval, the observed frequency of including the actual 

effort is only 60-70%.  

Therefore, the results obtained from fuzzy clustering indicate ‗relatively narrow‘ widths, 

(even though this might be considered an assumption) and is not reflected by a confidence 

level; whereas the best results achieved a spread of approximately 2398 person-hours (ph), 

with a mean effort value of 2031ph and a corresponding standard deviation of 1199ph.  

The HR degree in relation to both OS and ClS degrees reported suggested that clustering 

data in small segments had been achieved: The derived interval in the best case was 17% of 

the initial and 38% of the clustered one. The best results consistently suggested k=25 as the 

‗optimal‘ number of clusters, while parameters β and α assumed the values of 0.8 and 1.7 

respectively.  

Finally, the methodology identified clusters of similar projects and then assigned each 

new project successfully according to its resemblance with the cluster centres. The approach 

utilised both nominal and numerical attributes for clustering the projects and has identified as 

suitable and as homogeneous clusters of projects as possible. The best cost estimates yielded 

HR up to 77% which is quite promising, i.e., the estimations were within the calculated width 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

172 

in nearly 77% of the cases. However, in order to obtain these estimates, 51 projects with 

extreme effort values were disregarded (were considered as outliers) and additionally, 

weighted effort values were used as described above. The relatively low HR rates obtained 

without the aforementioned modifications (included in Appendix B, Table B. 16) indicated 

that the modelling was not entirely successful and that there is a need for further exploration 

on other fuzzy clustering and classification techniques for obtaining improved predictive 

intervals for software projects. Towards this aim, the subsequent explorative approaches for 

SCE in the rest of this chapter are described, starting from the issue of obtaining algorithmic 

approximations using Genetic Programming are explored in the subsequent section. 

4.2.3.3 Genetic Programming (GP) in CC-SCE 

In this section, the development of an automatic tool that uses Genetic Programming (GP) 

to examine possible candidate solutions to algorithmic cost estimation is described 

(Papatheocharous et al., 2010a). The methodology based on GP aims to seek and locate 

appropriate equations consisting of cost factors which characterise the dependent variable 

(development effort) in the best possible way according to specific grammars (i.e., a set of 

syntactical constraints, operands, operators, etc.). The methodology addresses two goals: (i) 

To yield symbolic representations of development effort by analysing a large set of variables 

and constructing optimised sets of solution-equations, (ii) To generate logical expressions for 

attributes of categorical nature.  

The datasets used consisted of the COCOMO, the Desharnais and the ISBSG R9 dataset. 

The datasets went through only one pre-processing step as described in Table 4.1 (a) and thus, 

the COCOMO consisted of 63 and the Desharnais of 77 projects. Additionally, the ISBSG R9 

dataset went through the pre-processing steps described in Table 4.1 (c), (f), (k)-(m) which 

formed dataset ISBSG R9-4 consisting of 467 projects. The attributes of the COCOMO 

dataset are summarised in Table 4.24, the attributes of the Desharnais are summarised in the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

173 

first part of Table 4.9 (pg. 123) and finally, the attributes of the ISBSG R9-4 are summarised 

in Table 4.16 (pg. 143). 

Table 4.24: The COCOMO cost attributes 

Code Attribute name 

LOC Lines of Code 

RELY Required Reliability 

DATA Database Size 

CPLX Product Complexity 

TIME Execution Time Constraint 

STOR Main Storage Constraint 

VIRT Virtual Machine Volatility 

TURN Computer Turnaround Time 

ACAP Analyst Capability 

AEXP Applications Experience 

PCAP Programmer Capability 

VEXP Virtual Machine Experience 

LEXP Programming Language Experience 

MODP Modern Programming Practices 

TOOL Use of Software Tools 

SCED Required Development Schedule 

 

The SCE methodology based on the GP technique produced candidate solutions to 

algorithmic cost estimation by experimenting with a set of representations that utilised 

operators and operands (Papatheocharous et al., 2010a). These solutions essentially 

represented regression equations that made use of software cost factors to effectively describe 

the dependent variable in a software development environment, that is, the effort spent in 

software projects. The reason for using evolutionary models and more specifically structures 

that serve as candidate solutions through GP that combine different cost factors in simple 

mathematical equations close to regression models is that they may find better solutions than 

conventional regression or other methods. 

In the GP context, potential solutions in the population are represented as parse trees (an 

example is illustrated in Figure 4.13) and usually utilise a customised pool of arithmetic 

operators in the case of input factors of numerical nature. In the case of categorical input 

factors parse trees are built with logical operators.  Efi P
ap

ath
eo

ch
aro

us



 

 

 

174 

 

Figure 4.13: An example of parse tree for the COCOMO dataset 

 

The GPLab toolbox (Silva, 2007) was used and extended with new, custom-built 

functions (developed in Matlab R2007b). The extensions may execute the steps summarised 

in this section. From each of these steps specific parameters and selections were utilised in the 

experiments conducted and presented, as these are summarised in Table 4.25 (pg. 177): 

Step 1: Employ software cost attributes from a dataset to design and build a random 

population of potential solutions (random parse trees of regression equations). 

Step 2: Execute each solution (parse tree) and assign a fitness value to it according to how 

well the solution describes the dependent variable (effort). 

Step 3: Generate new offspring in the population using the following procedure: 

 Sampling 

It defines the method for selecting a parent based on which new individuals are created. 

The following five variations are supported: Roulette, where a roulette with random pointers 

is spun and each individual owns a portion of this roulette. Sus, which is based on the roulette 

process but here the pointers are equally spaced. Tournament, where the parent is chosen with 

a random draw of individuals and then the best of them is selected. Lexictour, which is based 

on tournament but in case of equality the shortest individual wins. Double tournament, where 

two tournaments are performed one for fitness and one for parsimony. The sampling methods 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

175 

select the best individuals according to a certain fitness function (see eqs (4.39) and (4.40)) to 

apply the genetic operators listed below. 

 Crossover 

Random nodes from two parents are chosen and swapped creating two new individuals. 

 Mutation 

A random node is chosen from a parent and replaced with a randomly created tree. 

Several different types are utilised here: Shrink Mutation, a random sub-tree S is chosen from 

a parent and replaced with a random sub-tree of S. Swap Mutation, two random sub-trees are 

chosen from a parent and swapped. Replace Mutation, follows the concepts of the normal 

mutation but with the difference that for a certain mutation point performed on a terminal 

node (i.e., a cost factor) the terminal node is replaced by another random operand from the 

available pool, whereas in the case mutation is performed on an arithmetic operator, the 

operator will be replaced by another randomly selected operator from the available pool.  

 Survival 

The selection of a number of individuals from the current population and the newly 

created children forms the new population.  

 Elitism 

The best individuals of each generation are passed to the next one unchanged. This is 

known as the full (or total) elitism operator, according to which the more fit individuals get 

the chance to be part of the reproduction process throughout generations.  

Step 4: Repeat steps 2 and 3 until the maximum number of generations is reached. The 

solution with the highest fitness value from the final population is considered to be the result 

of the GP. 

Initially, the data is randomly split in two sets, the training and testing set, according to a 

percentage defined by the user. In the experiments, a random separation of the data samples 

into percentages of 80% for training and 20% for testing was executed and this random 

holdout cross-validation process (Weiss and Kulikowski, 1991) was repeated 100 times. The 

rationale behind this was to produce cost functions (solutions) valid within a variable and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

176 

random set of training samples and then evaluate their generalisation performance with the 

rest of the testing samples.  

The cost equations in the case of numerical attributes make use of the following 

arithmetic operators: add (+), minus (-), divide (/), multiply (*), power (^), natural logarithm 

(log), base-2 logarithm (log2) and base-10 logarithm (log10). In the case of categorical 

attributes the following pool of logical operators is used: less than (<), less than or equal (≤), 

greater than (>), greater than or equal (≥), logical AND (&&), logical OR (||), exclusive OR 

(XOR), negative OR (NOR), negative AND (NAND) and IF-THEN-ELSE. The specification 

of any of the two variations of operators (i.e., arithmetic, logical) is according to the type of 

input variables and results in equations in the form of either algebraic or logical expressions. 

Each equation-solution in the population for arithmetic attributes may be evaluated according 

to the default fitness equation (regfitness) shown in eq. (4.39) or to the modified mrefitness 

(defined in eq. (4.40)). 





n

i

predact ixixregfitness
1

|)()(|  (4.39) 







n

i act

predact

ix

ixix

n
mrefitness

1

|
)(

)()(
|

1

 
(4.40) 

The cost equations evaluation in the case of the logical-solutions produced by the GP is 

performed using eq. (4.41), where k represents the number of projects satisfying the equation, 

ζ is the standard deviation of the actual effort of the k projects and TreeNodes represents the 

size of the rule obtained. Using eq. (4.41) for the logical equations of the GP the individuals 

promoted satisfied the largest possible number of projects, thus being more representative for 

the dataset, had effort values closer to the mean effort value of those projects and had a 

relatively small length. 

TreeNodes
kfitness

11
log 


 (4.41) 

The experiments conducted with the GP methodology (Papatheocharous et al., 2010a) 

aimed to obtain the optimal equation-solutions for estimating effort and to provide a relative 

importance ranking for the set of input variables utilised. Another important criterion for the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

177 

tree-structured equations constructed was to avoid bloating, that is, yielding relatively simple 

equations (avoiding overly deep trees) by imposing tree depth and node restrictions. 

Therefore, careful selection of several values for the parameters was performed to avoid 

bloating.  

Bloating is the phenomenon in GP where the tree structures (i.e., program code or 

regression equations) expand excessively without the analogous improvement in fitness. 

Several techniques were applied to control bloating that seem to have promising results to 

other problems, like for example defining tree depth size and node number restrictions on the 

evolved trees (Koza, 1992), setting dynamic maximum tree depth (Silva and Almeida, 2003), 

applying Lexictour and Double tournament (doubletour) sampling methods and survival 

methods based on Resources (Silva and Costa, 2005). Variations of these parameters as well 

as for the rest of the GP parameters were tried out through a large series of initial simulation 

experiments in order to obtain the configurations reported in Table 4.25.  

Table 4.25: GP parameters configurations used in the experiments for SCE 
Parameter Value 

Cross-Validations 100 

Training Set Size 80% 

Testing Set Size 20% 

Population Size 100 

Number of Generations 350 

Tree Population Type Balanced and Unbalanced  

Survival Resources 

Elitism Total Elitism 

Sampling Double Tournament 

Fitness Function Regfitness (eq. (4.39)) 

Fitness Improvement Best-of-Mean Population Fitness 

Expected Number of Children Absolute 

Genetic Operators 
Crossover (probability=0.3), Replace Mutation (probability=0.2) and 

Crossover & Mutation (probability=0.6) 

Tree Size Based on Depth (3, 4, 5, 6 or 7)/Based on Nodes (16, 20 or 28) 

Dynamic Max Tree Depth On 

Resources Static 

Stop Condition Generations=350/Fitness Hit 

Fitness Hit Percentage 60 

Fitness Hit Tolerance 10 

 

The Tree Population Type relates to the type of the trees created in the initial population, 

variations of which can be: fullinit, growinit and rampedinit. A common approach is usually 

to construct ‗Ramped Half and Half‘ trees. This means that half trees are constructed based on 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

178 

the maximum tree level and the other half may have a random form. This was a way to allow 

the GP algorithm to produce random tree types in the initial population. The Fitness 

Improvement describes the way the generation can be improved considering the fitness value 

of either the best-of-run mean population fitness or the mean population fitness of the 

previous generation. The Expected Number of Children determines the method used for 

calculating the expected number of children of each individual. With the absolute method the 

expected number of children of each individual is proportional to its fitness value, whereas 

with the rank85 the expected number of children of each individual is based on its rank in the 

population. The Dynamic Maximum Tree Depth is a method to control bloating by setting a 

maximum depth on trees being evolved, so that when a genetic operator produces a tree that 

outruns this limit, one of the parents enters the new population instead. The Stop Condition 

specifies when the algorithm stops. It is set to either a maximum generation size, or it is 

activated if the best individual produces exact results within a Fitness Hits Tolerance 

percentage of the expected results. The percentage of expected results is specified within a 

least Fitness Hits Percentage. 

Table 4.26 lists an indicative set of cost equations obtained by applying the GP algorithm 

using the parameters above for each dataset. The first two equations of the COCOMO and 

Desharnais datasets are expressed with regression equations derived using only the numerical 

attributes in each dataset. The third equation was obtained using logical operators and 

attributes of categorical nature (operands) of the ISBSG R9-4 dataset. 

Table 4.26: Indicative cost functions using arithmetic and logical operators obtained with GP 

Dataset Indicative Expressions 

COCOMO (((LOC*SCED)^(TIME/TOOL))+((LOC^VEXP)^(TIME*MODP))) 

Desharnais ((((DU* DU)+ SC)+((ME+FPA)+(TR+ME)))*((FPNA-(TR+DU)))) 

ISBSG 

R9-4 

((OT7='0') ||((((DT15='0') NAND(OT4='0')) NORIF ((DBS2='0') THEN ((DT1='0')) 

ELSE ((OT2='0')))) NOR(((DBS6='0') ||(MTS='0')) &&((DT1='1') NOR(DBS3='0'))))) 

 

The yielded equations are presented in a relatively simple form and are considered easy to 

be used by project managers, even though their rationale might be considered harder to 

understand. This however needs to be confirmed through practical investigations with real 

project managers via collaboration with an industrial partner.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

179 

The main advantage for a project manager will be the execution of these forms of 

equations obtained by the algorithm to attain in the arithmetic case effort values and in the 

logical case clustered groups of projects that conform to them. Therefore, regression 

equations, such as the ones obtained from the COCOMO and Desharnais data, may be directly 

used for calculating the effort of new projects. The predicted effort values using some 

indicative regression equations yielded by the GP are summarised in Table 4.27. Logical 

equations, such as the one obtained from the ISBSG R9-4, may offer an indication of the 

relation of specific type of projects, for example those developed within specific types of 

organisations (like ‗Banking‘), or using data modelling as a development technique, or 

database systems other than ORACLE or SYBASE. Such rule-based equations, once 

executed, may constitute a tool for clustering projects described with linguistic values, like the 

ISBSG database, into smaller and more homogeneous groups of projects which can be further 

analysed.  

Table 4.27: Indicative cost estimation performance of GP cost functions execution 

Dataset Tree Depth No. Of Nodes 
TESTING 

MMRE CC NRMSE 

COCOMO 

 

4 - 0.469 0.945 0.322 

4 - 0.497 0.962 0.349 

5 - 0.497 0.962 0.354 

5 - 0.494 0.979 0.243 

Desharnais 

5 - 0.485 0.768 0.722 

4 - 0.541 0.733 0.702 

- 20 0.521 0.731 0.684 

- 28 0.574 0.744 0.710 

 

The performance results of the indicative equations show relatively adequate predictions 

for the COCOMO and Desharnais datasets. Finally, for the ISBSG R9-4 dataset the execution 

of the logical expression led to the classification of a number of projects which may be used 

for effort prediction by estimating the mean effort value (ē) and standard deviation (ζ) of the 

actual effort values of the projects satisfying the equation. Then, the predicted effort value of a 

new project was estimated to lie within the range [ē ± ζ] (also refer to eq. (4.25)). Based on 

this predictive interval of effort the Hit Ratio (HR) is estimated. For example, using the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

180 

function reported in Table 4.26 the mean effort, standard deviation and the HR value was 

7069, 14072 and 87/93 (i.e., satisfied 87 out of 93 projects of the testing set). 

In addition, a reduced set of features was identified by further analysing the best 

performing solution-equations obtained from the GP approach. The attributes identified to 

appear more frequently in the best performing equations were the following: for the 

COCOMO dataset project the attributes of size (LOC), required development schedule 

(SCED), complexity (CPLX) and applications experience (AEXP), for the Desharnais dataset 

the attributes of project duration (DU), scope (SC), number of transactions (TR) and function 

points (adjusted) (FPA) and for the ISBSG R9-4 the attributes of organisation type (OT), 

development technique (DT), database system (DBS) used and maximum team size (MTS). 

For the more details refer to the complete experimental results in Appendix B (pg. 300). The 

average performance results obtained with the GP approach on datasets that were previously 

examined (e.g., comparing the results of the Desharnais dataset and the various FSS 

approaches previously mentioned – see section 4.2.2.1 pg. 138 – refer again to Appendix B 

for the mean value of MMRE=0.511) and section 4.2.2.2 pg. 148) appear to be slightly 

improved.   

The commonly selected features included in the majority of the regression equations 

obtained by the application of GP for the COCOMO and Desharnais datasets, concern 

attributes that are mostly project-specific and moreover, one would expect them to 

considerably affect the overall development effort. Whereas, the commonly selected features 

for the ISBSG dataset relate mostly with domain experience and organisational-related aspects 

of the developing organisations.  The most influential attributes placed in the top nodes of the 

GP trees produced are quite common and in agreement with the attributes proposed by 

previous FSS methods. Particularly, for the Desharnais case these are DU and FPA, thus 

confirming the direct relation of project duration and software size with effort. Also the 

attributes of scope (SC) and number of transactions (TR) were commonly considered 

significant. For the ISBSG R9-4 case the common features selected by the majority of the FSS 

approaches employed thus far, and of GP, are rather difficult to discern due to the nature of 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

181 

the pre-processed dataset which lead to overly complex equations in the GP case. Finally, the 

need for an automated mechanism to handle the complexity and subjectivity in both 

nominal/ordinal categorical and numerical data is identified as a prerequisite for project 

datasets containing this form of values. Thus, in the subsequent methodologies described we 

have worked towards this direction.  

4.2.3.4 Fuzzy Decision Trees (FDT) in CC-SCE 

The methodology described in this section focuses on Fuzzy Decision Trees (FDT) to 

handle the amount of uncertainty and the associated risks of software cost estimation by 

incorporating fuzzy logic in regression, classification and interaction detection models. 

Initially, SCE is approximated by classifying information describing a plethora of past 

projects and deriving association rules for cost drivers associated with effort. Then, these rules 

are used to predict the actual development effort. Particularly, the Chi-squared Automatic 

Interaction Detection (CHAID) (Kass, 1990) and Classification and Regression Trees (CART) 

(Breiman et al., 1984) algorithms are used for deriving a finite set of association rules.  

The dataset initially used was the ISBSG R9, which went through the pre-processing steps 

described in Table 4.1 (a), (c)-(g) and (o) and was named ISBSG R9-9. The dataset included 

961 projects and 12 attributes also summarised in Table 4.28. Three subsets of the dataset 

were used in the experiments, namely ISBSG R9-9.1, ISBSG R9-9.2 and ISBSG R9-9.3. 

ISBSG R9-9.1 included all the variables of ISBSG R9-9, ISBSG R9-9.2 included only the 

ordinal and numerical attributes, excluding all categorical attributes (i.e., PET, PIT, PDRU, 

AFP and ATS) and ISBSG R9-9.3 included from the ordinal and numerical attributes of 

ISBSG R9-9.2 only the attributes that may be measured ‗early‘ (i.e., after specifications are 

defined) in the project life-cycle (i.e., AFP, PDRU and ATS). In addition, for the target 

(dependent) variable (i.e., development effort) the transformation step described in Table 4.1 

(q) was performed to include the integration of a function. This transformation is usually used 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

182 

for solving equations in which the unknown variable appears as the exponent of some other 

quantity. 

Table 4.28: ISBSG R9-9 cost factors selected for the classification experimentation 

Code Factor Name Description 

EFF
a
 Full Cycle Work Effort Total effort (in hours) recorded against the project 

PET Project Elapsed Time Total elapsed time for the project (in calendar months) 

PIT Project Inactive Time The number of calendar months in which no activity occurred 

PDRU Project PDR (ufp) 
Project delivery rate (in hours per function point) which equals to 

the quotient of effort and functional size                                      

AFP
c
 Adjusted Function Points Functional size of the project at the final count 

ATS
c
 Average Team Size Average number of people that worked on the project 

DT
b,c

 Development Type 
Description of whether the project is a New Development, 

Enhancement or Re-development 

AT
b,c

 Application Type Description of the application addressed by the project 

DP
b,c

 Development Platform 
Description of the primary development platform (e.g., PC, Multi-

Platform etc.) 

LT
b,c

 Language Type 
Definition of the language type used by the project (e.g., 3GL, 

4GL, etc.) 

RL
b,c

 Resource Level 
Describes the four levels about the people whose time is included 

in the work effort data reported 

ID
d
 Implementation Date Describes the actual  implementation date of the software 

PPL
d
 

Primary Programming 

Language 

Description of the primary programming language used (e.g., 

JAVA, C++, etc.) 
a Dependent variable 

b Attribute participating in the Categorical Driver Scheme (DS=Cat) 

c Attribute participating in the Early Driver Scheme (DS=Erl) 

d Attribute excluded after the preliminary experimentation (Andreou and Papatheocharous, 2008b) 

 

The methodology was initiated by devising instances of FDT that yielded robust rules, 

which could then be used for obtaining a hierarchy of significant project attributes 

participating in the rules and estimating effort using the mean effort values of the fuzzy range 

(Andreou and Papatheocharous, 2008b). The solutions are represented as a tree (an example is 

shown in Figure 4.14 for the ISBSG R9-9.2 dataset) which is interpreted by rules of the form 

―If (condition 1 AND condition 2 AND … AND condition N) then Z‖, where the conditions are 

extracted from the nodes and Z is the root. Each path from the root node to a terminal node 

corresponds to a fuzzy rule. Efi P
ap

ath
eo

ch
aro

us



 

 

 

183 

 

Figure 4.14: A Fuzzy Decision Tree (FDT) example with Association Rule 
 

Figure 4.15 summarises the FDT approach employed (Andreou and Papatheocharous, 

2008b). The fuzzification enhances the benefits of decision trees offering them significant 

advantages compared to other machine learning techniques regarding their ability to produce 

accurate predictive tools and extract self-descriptive rules in a way that is easier to interpret by 

individuals. In the experimental exploration performed, the following empirical parameter 

settings were set for the CHAID algorithm: the significance level value was set to 0.05 and the 

chi-squared test statistic used was the Pearson and for the CART algorithm: the minimum 

change in improvement was set to 0.0001 and both Twoing and Gini splitting methods were 

used. Twoing groups the splitting variable‘s categories into two subclasses and the best 

possible splits are found that separate these two groups. Whereas, Gini also finds appropriate 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

184 

splits to maximise the homogeneity of child nodes with respect to the value of the dependent 

variable and is based on the probabilities of membership for each category of the dependent 

variable. 

 

Figure 4.15: SCE using the mean of the Fuzzy Range of Fuzzy Decision Trees 

 
 

In the preliminary approach (Andreou and Papatheocharous, 2008b) the set of rules with 

high significance level (over the value of 50%) indicated in the ISBSG R9-9.1 case that the 

attributes participating more often in most of the rules presented the following order: firstly 

AFP, secondly, PET, PDRU, ID, DT, LT and thirdly PIT and PPL. In the ISBSG R9-9.2 case, 

only the attributes AFP, PDRU and ATS participated in the trees (i.e., the rest of the attributes 

were pruned). Taking into consideration these observations, the set of rules obtained from the 

attribute subsets ISBSG R9-9.1-3 were used to calculate the indicative preliminary effort 

predictions (listed in Table 4.29 and used the attributes listed in each case) using the mean 

effort of the fuzzy effort values of the testing projects that satisfied the rules. Thus, the 

estimation was based on the mean effort values of the fuzzy range for those projects. The 

estimation was performed on the transformed values. 

Table 4.29: Indicative preliminary FDT prediction results using the mean fuzzy range of effort 
Dataset MMRE CC NRMSE 

ISBSG R9-9.1={AFP, PET, PDRU, PIT, ATS} 0.13 0.53 1.04 

ISBSG R9-9.2={AFP, PET, PIT, ATS} 0.11 0.65 0.87 

ISBSG R9-9.3={AFP,  PDRU, ATS} 0.17 0.45 1.32 

 

The experimental results showed that sufficiently accurate cost predictions in terms of 

MMRE, i.e., the approach may achieve estimations close to the actual development costs. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

185 

However, the levels of the CC and NRMSE metrics achieved by the rules were not so 

encouraging. The rules extracted promoted the linguistic representation of the attributes‘ 

associations and provided added value to the SCE process. The approach also has optimised 

accuracy performance and robustness in relation to the rest previously described approaches. 

The FDT technique is highly applicable something which suggests that the generation of 

fuzzy association rules is a fairly good solution in classifying projects and extracting relations 

that describe the nature of the software development environment. The classification rules 

obtained are expressed in a comprehensive manner using gradually-defined linguistic terms 

which are especially practical to project managers. 

Since the estimation results obtained were quite encouraging, the aforementioned 

approach was expanded to an enhanced Fuzzy Decision Tree (FDT) approach 

(Papatheocharous and Andreou, 2009b). The approach described thereafter improved both the 

methodology‘s parameters and the evaluation process so that enhanced classification rules are 

obtained.  

Particularly, the enhanced FDT classification approach, illustrated in Figure 4.16, includes 

the following stages: (i) Data pre-processing, quality checking and fuzzification under a fuzzy 

linguistic representation, (ii) Training with Fuzzy Decision Trees (FDT), including creation 

and evaluation, and (iii) Prediction with the classification rules obtained and class 

resemblance prediction enhancement, along with validation activities. 

Data records were split into two subsets; the first one (containing 70% of the samples) 

was used to construct the FDT, thus called the training set. The second subset (contained 30% 

of the samples), called the testing set, was used to test the produced FDT and to assess the 

efficiency and generalisation of the corresponding rules of the tree. The experiments 

conducted were iteratively executed, changing several internal parameters of the algorithms in 

each iteration, to create robust FDT and produce a set of unique strong rules. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

186 

 

Figure 4.16: Enhanced FDT Approach (Papatheocharous and Andreou, 2009b) 

 

The CHAID, CART and exhaustive CHAID algorithms were executed and in order to 

find the optimal algorithm parameters that produce the best rules, the rules obtained in each 

case were evaluated according to their significance level and degree of occurrence among the 

set of experiments performed. Also, the minimum number of cases per parent and child node 

for both CHAID and CART were varied and different splitting criteria were examined. The 

maximum tree depth was confined to the maximum number of variables found in each cost 

Driver Scheme (DS) which is described in this section. For CHAID the significance value was 

initially adjusted by the Bonferroni method to produce the simplest trees, but also varying 

values were examined to allow for more splitting nodes. Additionally, the Pearson chi-squared 

test statistic was used. For CHAID and CART the minimum change in improvement was set 

to 0.001 and 0.0001 respectively. For CART both the Twoing and Gini splitting methods were 

tested to either maximise the homogeneity of the child nodes with respect to the value of the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

187 

target variable, or to create binary splits. Finally, cross-validation (Maimon and Rokach, 

2005) for both CHAID and CART was used with 10 sample folds.  

 The ultimate aim in this endeavour was to reach to stable rules that include a large 

number of project characteristics and yield specific clusters of projects improving the overall 

prediction accuracy. To this end, the deepest trees were finally selected for further 

experimentation and evaluation. Therefore, a representative set of rules was extracted for 

further processing. 

The evaluation of the FDT created at the training phase was based on a combination of 

measures. Due to the fact that the technique is data-driven, several FDT generated were 

identical and thus the rules that appeared more frequently were considered to better describe 

the distribution of the samples and thus were selected and presented  in Table 4.30. Each leaf 

of the FDT indicates a class or effort value range according to the distribution (Significance 

Level (SL)) and is represented by a classification rule as already mentioned. The variable that 

classifies the majority of the training samples is placed at the top of the tree and exhibits the 

most significant relationship with the dependent variable. Also, besides the statistical 

significance, the ‗goodness‘ of each rule is evaluated on the number of factors participating in 

the rule (Number of Factors (NF)), thus reaching to a more homogeneous cluster of data. The 

promoted rules are then used for classification and validation. 

Some definitions follow (Papatheocharous and Andreou, 2009b). The numbers of the train 

and test project samples that satisfy a rule r are defined as: 

 (4.42) 

 (4.43) 

where Nr = {train project samples that satisfy rule r} and Lr = {test project samples that satisfy 

rule r}. For each rule r satisfied we calculate the mean effort range  using eq. (4.44), with 

 being the standard deviation of the respective project samples satisfying rule r. 

Essentially, eq. (4.44) takes the mean effort value of the projects that were classified in a 

certain cluster according to rule r as the predicted effort value of the new project (provided 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

188 

that the new project is also classified in the same cluster), with a deviation tolerance threshold 

equal to the standard deviation of the projects in the cluster. 

 

(4.44) 

For the test samples that satisfy rule r we define an additional threshold measure, namely 

Prediction Measure (PM) and define the number of samples that satisfy it as: 

 (4.45) 

where Cr = {test project samples in Lr that satisfy inequality (4.46)}.  

 

 

(4.46) 

The Hit Ratio (HR) of PM is defined in eq. (4.47). 

 

(4.47) 

So far the predicted effort value has been estimated according to eq. (4.44). This 

estimation is further enhanced by considering additional factors than those participating in a 

rule thus improving the homogeneity of the associated cluster. Therefore, for each sample p in 

the test set that satisfies rule r the following definitions are considered: Let a Resemblance 

Threshold (RT) for each data scheme (where j is the name of the dataset utilised, i.e., takes the 

values within the set {ISBSG R9-9.1, ISBSG R9-9.4, ISBSG R9-9.5}) as follows: 

 

(4.48) 

where dsISBSG R9-9.1=10, dsISBSG R9-9.4=5 and dsISBSG R9-9.5=7 and ds represents the number of 

attributes included in each Driver Scheme (DS). Let Sr,p be a subset of Lr such that Sr,p = {train 

project samples in Lr that have a number of cost factors NF ≥ RTj whose values are equal to 

those of sample p} which has nr,p elements. Then the enhanced effort estimation is calculated 

as: 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

189 

 (4.49) 

The Hit Ratio (HR) for the enhanced RM of the Kr test samples is defined in eq. (4.50), 

where Kr = {test project samples in Cr that satisfy inequality (4.52)}. 

 

(4.50) 

 (4.51) 

 

(4.52) 

 

In the enhanced FDT classification approach (Papatheocharous and Andreou, 2009b) 

three cost Driver Schemes (DS) were employed on the ISBSG R9-9 dataset each consisting of 

different attributes named All (containing all the cost attributes, except the ones marked with 

the superscript letter 
d
 in Table 4.28), Cat (containing only the categorical attributes, also 

marked with the superscript letter 
b
 in Table 4.28) and Erl (containing only attributes that are 

available and can be measured from the early stages of project development, also marked with 

the superscript letter 
c
 in Table 4.28). Particularly ISBSG R9-9.1 included all the variables of 

ISBSG R9-9, ISBSG R9-9.4 included only the categorical attributes DT, AT, DP, LT and RL 

and ISBSG R9-9.5 included only the attributes that may be measured ‗early‘ (i.e., after 

specifications are defined) in the project life-cycle namely, AFP, ATS, DT, AT, DP, LT and 

RL. The logic behind creating these three schemes of data inputs was to assess the power of 

these cost factor types on effort as this is reflected on the available empirical data samples.   

The experimental approach described previously (pg.186) and the most significant rules 

obtained for each DS were extracted. Table 4.30 lists an indicative set of rules selected for 

further processing (i.e., see the enhanced classification method described above (pg.186). The 

analysis is based on the hypothesis that the most reliable rules are the ones that perform well 

during training (high significance levels are observed) and maximise the homogeneity of the 

set of projects satisfying the rules, i.e., classify appropriately the project samples with similar 

characteristics.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

190 

Table 4.30: Indicative Classification Rules obtained from the ISBSG R9-9 dataset with FDT 
DS Algorithm NF SL ‘If’ Part of Rule and ‘Then’ Part of Rule 

All CHAID 2 0.974 

IF ((ATS != "HIGH"  AND  ATS != "MEDIUM")  AND  (PET != 

"MEDIUM"  AND  PET != "HIGH")  AND  (DT != "New 

Development")) THEN EFFORT="MEDIUM"  

Cat CART 4 1.000 

IF (RL != "R4"  AND  RL != "R3")  AND  (((DT = "Enhancement" OR 

DT = "Re-development") OR (DT != "New Development")  AND  ((DP 

= "" OR DP = "MF") OR (DP != "Multi"  AND  DP != "MR"  AND  DP 

!= "PC")  AND  ((LT = "3GL" OR LT = "" OR LT = "4GL" OR LT = 

"2GL") OR (LT != "ApG")  AND  (RL != "R2")))))  AND  (((LT = 

"4GL" OR LT = "ApG" OR LT = "2GL") OR (LT != "3GL"  AND  LT 

!= "")  AND  (DP = "Multi"))) THEN EFFORT="MEDIUM" 

Erl exCHAID 7 0.991 

IF ((DT != "New Development")  AND  (DP = "MF" OR DP = "Multi")  

AND  (AT!= ""  AND  AT!= "Stock control & order processing;"  AND  

AT!= "Transaction/Production System;"  AND  AT!= "Maintenance;")) 

THEN EFFORT="MEDIUM" 

 

The prediction accuracy obtained from validating the rules is shown in Table 4.31. 

Table 4.31: Indicative experimental results from enhanced FDT classifications in ISBSG R9-9 

DS Algorithm SL 
TESTING PM RM 

n(288)   HR HR(%) HR HR(%) 

All CART 0.953 262 7.265 1.354 166/262 63.35 170/262 64.89 

All CART 0.959 261 7.255 1.348 166/261 63.60 169/261 64.75 

Cat CHAID 0.969 153 6.899 1.396 97/153 63.39 99/153 64.71 

Cat CART 0.873 41 6.711 1.169 21/41 51.21 21/41 51.22 

Erl CHAID 0.973 152 6.904 1.399 96/152 63.15 98/152 64.47 

Erl exCHAID 1.000 22 7.420 1.198 10/22 45.45 11/22 50.00 

 

For the 288 test project samples the mean effort and standard deviation values of the 

respective n number of samples that satisfy each rule (displayed in every row of Table 4.31) 

were calculated. The Significance Level (SL) obtained from the classified projects is 

consistently close or equal to the unit, indicating with high confidence that the classification 

was successfully performed. For the same projects the small standard deviation reports that 

the range effort and mean effort prediction obtained is near to the actual effort value, 

indicating relatively good prediction accuracy. Additionally, the best HR levels obtained in 

the testing phase with respect to the PM and RM thresholds set earlier are 63% and 64% 

respectively. The performance is not considered particularly high, even though in some 

experiments some higher figures were obtained (refer to Appendix B, Table B. 16) where for 

example the level of HR is equal to 75% but for only satisfying a small number of projects. In 

fact, the best in accuracy prediction rule obtained satisfied only a very small number of 

samples, and therefore we concluded that as more homogeneous clusters of data are created 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

191 

the more prediction accuracy will probably be improved. Finally, the approach may 

adequately express the complex relationships among the project attributes under investigation 

and effort, and within the enhanced classification clusters produced we may achieve overall 

average estimation accuracy within the range of the values involved for nearly 65% of the 

cases. 

Finally, the main conclusion is that the quality of the prediction results is highly affected 

by the quality of the data, as well as the homogeneity of the samples. The FDT approach 

applied formed the basis to discover the interrelations among vital project variables and 

suggested that categorical cost factors, such as the ones examined, are of high importance in 

determining the evolution of the final effort spent during development. The contribution of the 

FDT approach is that such categorical attributes may be taken into consideration in the SCE 

models created, even though great deal of attention should be given on the quality of 

especially nominal categorical features. Finally, an interesting next research step is to exploit 

more ‗sophisticated‘ intelligent mechanisms for the rule exploitation activity. 

4.2.3.5 FDT and Fuzzy Implication Systems (FIS) in CC-SCE 

Fuzzy Implication Systems (FIS) are developed in this thesis for complementing the 

successfully created FDT for SCE described in the previous section. The aforementioned 

classification methodology with FDT is expanded by extracting the classification association 

rules generated in a systematic manner (Papatheocharous and Andreou, 2012a). The rules are 

merged in FIS systems which subsequently defuzzify the association rules obtained through 

the Mamdani-Sugeno method (Mamdani, 1977). The methodology addresses the amount of 

underlying uncertainty in software data introduced by the measurement activities, the 

categorical nature (i.e., linguistic) and the non-existence of clear definitions of the software 

data samples by incorporating fuzzy logic concepts. Moreover, the result from the approach 

offers to the estimator (and usually to the project manager) the ability to understand the 

rationale behind the estimate and interpret the result, before adopting it. The approach has 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

192 

three objectives: (i) To approximate the problem of software cost estimation as accurately as 

possible, (ii) To generate comprehensible results and tackle, to the best possible extent, the 

inherent uncertainty of the development process and the uncertainty introduced by the 

measurement activities of project sample data, as well as (iii) develop Intelligent Systems for 

carrying out the cost estimations. The main contribution is overcoming limitations like the 

uncertainty of the metrics and the estimate itself i.e., impreciseness and vagueness, and 

additionally, generating an interpretable output that is easily understood by the end-users. 

The proposed fuzzy cost estimation system involves four stages as illustrated in Figure 

4.17 (Papatheocharous and Andreou, 2012a): (i) Pre-processing of the cost driver data, (ii) 

Creation and evaluation of FDT, (iii) Implementation of the FIS, and (iv) Effort Estimation. 

The final output of the supporting methodology consists of estimations obtained by 

defuzzifying the FIS predictions with specific techniques. In addition, the methodology 

attempts to determine a plausible way to derive a hierarchy of significant attributes that are 

engaged in the rules used for prediction with the FIS. 

 

Figure 4.17: Methodology of FDT combined with FIS (Papatheocharous and Andreou, 2012a) 

 
 

More details on the steps performed by the Fuzzy Cost Implication System are provided 

subsequently in this section. In the hybrid FDT and FIS methodology the attributes were pre-

processed by the steps of Table 4.1 (a) for the COCOMO, Desharnais and ISBSG R9 datasets 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

193 

and are summarised in Table 4.32 for the COCOMO dataset and in Table 4.33 for the 

Desharnais dataset.  The COCOMO consisted of 63 and the Desharnais of 77 projects. The 

ISBSG R9 went through additionally the pre-processing steps described in Table 4.1 (c)-(g), 

(i) and (o) and was named ISBSG R9-9.2. The ISBSG R9-9.2 was also used for ‗Early‘ SCE, 

and the first five cost drivers described in Table 4.28 (after the dependent variable) were used 

reporting data for 466 projects. The attributes used in the ‗early‘ cost driver scheme of the last 

experiments conducted were the PDRU, AFP and ATS. All dependent variables (marked with 

a
 superscript in the respective tables) were transformed according to the step (q) in Table 4.1. 

Table 4.32: Summary of the COCOMO software cost attributes 

Code Attribute name Description 

EFF
a
 Development Effort Development effort (in man-months) 

LOC Lines of Code Project size (in delivered source instructions) 

RELY
b
  Required Reliability 

Extent to which a software product is expected to satisfactory perform its 
intended functions  

DATA Database Size 
Relative database size to be developed (size refers to the amount of data to be 
assembled and stored in non-main storage:  D/P = (Database size in bytes or 
characters)/(Program size in SLOC)) 

CPLX
b
 Product Complexity 

Subjective average of four types of functions: control, computation, device-
dependent, or data management operation 

TIME
b
 

Execution Time 
 Constraint 

Degree of execution time constraint imposed upon a software product  
(expressed in terms of available execution time expected to be used) 

STOR
b
 Main Storage Constraint 

Percentage of main storage expected to be used by the software product and 
 any subsystems consuming the main storage resources 

VIRT
b
 Virtual Machine Volatility 

Level of volatility of the virtual machine underlying the software product to be 
developed. The virtual machine is defined as the complex of hardware and 
software the product will call upon to accomplish its tasks 

TURN 
Computer 
Turnaround Time 

Level of computer response time experienced by the project team developing 
 the software product 

ACAP
b
 Analyst Capability 

Ratings for analyst capability (expressed in terms of percentiles with respect to 
the overall population of software analysts) 

AEXP
b
 Applications Experience 

Level of equivalent applications experience of the project team developing  
the software product 

PCAP
b
 Programmer Capability 

Capability of the programmers working on the software product. The  
ratings are expressed in terms of percentiles with respect to the  
overall population of programmers 

VEXP
b
 

Virtual Machine  
Experience 

Experience of the project team with the complexity of hardware and  
software that the software product requires to accomplish its tasks,  
e.g. computer, operating system, and/or database management system 

LEXP
b
 

Programming Language 
Experience 

Level of programming language experience of the project team developing  
the software project (defined in terms of the project team's equivalent  
duration of experience with the programming language used) 

MODP
b
 

Modern Programming 
 Practices 

Degree to which modern programming practices are used in developing the 
software 

TOOL
b
 Use of Software Tools Degree to which software tools are used in developing the software product 

SCED
b
 

Required Development 
Schedule 

Level of constraint imposed on the project team developing a software product. 
Ratings are defined in terms of the percentage of schedule stretch-out or 
acceleration with respect to a nominal schedule for a project requiring a given 
amount of effort 

a Dependent variable 

b Attribute participating in the ‗Early‘ cost driver scheme 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

194 

Table 4.33: Software cost drivers description for the Desharnais dataset 

Code Attribute name Description 

DEFF
a
 Effort Actual development effort (in person-hours) 

FPNA
b
 Function Points Non-Adjusted Unadjusted Function Points count 

FPA Function Points Adjusted Adjusted Function Points count 

TE
b
 Team Experience Team experience (measured in years) 

ME
b
 Manager Experience Manager‘s experience (measured in years) 

DU Duration Duration of development (measured in months) 

TR
b
 Transactions Count of basic logical transactions in the system 

EN Entities Number of entities in the systems data model 

ENV Envergure Scale of the project 

LAN
b
 Language Development language 

a Dependent variable 

b Attribute participating in the ‗Early‘ cost driver scheme  

 

The basic procedure followed is explained using one of the aforementioned datasets, i.e., 

the ISBSG R9-9.2, as the example-guide. Initially, each cost driver of the dataset was 

associated with a different fuzzy set described by the trapezoidal membership function. The 

shape of a membership function essentially defines how well an adaptive fuzzy system 

approximates each cost factor. The membership function determines the degree to which each 

dataset attribute belongs to a certain fuzzy set through ordinal transformation of each variable 

to its fuzzy counterpart. 

The separation of each variable into bins of similar size was performed by carrying out 

some preliminary classification trees with the raw dataset data (before any type of 

transformation/fuzzification took place). The splitting point for the numerical values of 

attributes whose value ranges were relatively large (i.e., of the order of thousands) was set to 5 

ordinal intervals, whereas those that had smaller value ranges (i.e., of the order of hundreds) 

was set to 3 ordinal intervals This conversion to ordinal intervals was clearly empirical 

following common practices adopted in similar cases in literature (Braz and Vergilio, 2004) 

and Table 4.34 summarises the specific continuous ranges estimated.  

Table 4.34: Fuzzy Interval Values for the ISBSG R9-9.2 

Cost Factors VERY LOW LOW MEDIUM HIGH 
VERY 

HIGH 

FCWEFF ≤ 3.90 3.91 - 5.73 5.74 - 7.55 7.56 - 9.37 ≥ 9.38 

AFP ≤ 3506 3507 - 7010 7011 - 10514 10515 - 14017 ≥ 14018 

PET - ≤ 17.23 17.24 - 34.65 ≥ 34.66 - 

PROD - ≤ 129 129 - 258 ≥ 258.10 - 

PIT - ≤ 4.0 4.10 - 7.90 ≥ 8.0 - 

ATS - ≤ 26.29 26.30 - 51.62 ≥ 51.63 - 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

195 

 

Before moving on the dependent variables (FCWEFF in the ISBSG case, EFF in the 

COCOMO case and DEFF in the DESHARNAIS case) were normalised using the natural 

logarithm transformation. The aforementioned process caused the FCWEFF and AFP 

attributes obtained from the ISBSG dataset to be encoded using an ordinal scale of five values 

(‗VERY LOW‘, ‗LOW‘, ‗MEDIUM‘, ‗HIGH‘, ‗VERY HIGH‘) and the rest four attributes using 

a scale of three linguistic values (‗LOW‘, ‗MEDIUM‘, ‗HIGH‘) according to the variance of 

each attribute. 

Figure 4.18 until Figure 4.23 illustrate the trapezoidal functions formed for the attributes 

of (a) Full-Cycle Work EFFort (ln(FCWEFF)), (b) Adjusted Function Points (AFP), (c) 

Project Elapsed Time (PET), (d) Project Delivery Rate (PROD), (e) Project Inactive Time 

(PIT) and (f) Average Team Size (ATS). The corresponding numerical boundaries are listed in 

Table 4.35. 

 

Figure 4.18: Membership function of attribute work effort for the project full-cycle 

ln(FCWEFF) 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

196 

 

Figure 4.19: Membership function of attribute Adjusted Function Points (AFP) 

 

 

Figure 4.20: Membership function of attribute Project Elapsed Time (PET) 

 

Figure 4.21: Membership function of attribute Project Delivery Rate (PROD) 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

197 

 

Figure 4.22: Membership function of attribute Project Inactive Time (PIT) 

 

 

Figure 4.23: Membership function of attribute Average Team Size (ATS) 
 

Table 4.35: Fuzzification values for the cost factors of the ISBSG R9-9.2 dataset 
 FCWEFF AFP PET PROD PIT ATS 

m1 2.07 3 0 0.1 0 0.95 

n1 2.99 1755 8.67 64.6 2.05 13.62 

b1 3.90 3507 17.34 129.1 4.1 26.3 

m2 3.90 3507 17.34 129.1 4.1 26.3 

n2 4.81 5259 26 193.65 6.1 38.97 

a2 2.99 1755 8.67 64.6 2.05 13.62 

b2 5.73 7011 34.67 258.2 8.1 51.64 

m3 5.73 7011 34.67 258.2 8.1 51.64 

n3 6.64 8763 - - - - 

a3 4.81 5259 26 195.65 6.1 38.97 

b3 7.55 10515 - - - - 

m4 7.55 10515 - - - - 

n4 8.47 12267 - - - - 

a4 6.64 8763 - - - - 

b4 9.38 14019 - - - - 

a5 8.47 12267 - - - - 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

198 

 

The subsequent experiments used the pre-processed data (i.e., after normalisation and 

transformation into fuzzy linguistic values was performed according to the ranges described 

above; see also steps (q) and (o) in Table 4.1). Before initiating the experimental process, 

random splitting was performed taking 70% of the data for the construction of the FDT 

(training phase) and the rest 30% for their evaluation (testing phase). The FDT were 

implemented using SPSS v.17.0 and both the CHAID and CART algorithms were applied. 

The trees generated numerous rules, starting from the parent node and reaching to a leaf, 

which were associated with a respective significance level. The rules achieving a significance 

level of over 65% were selected no matter the tree depth yielded by the corresponding 

algorithm and were included in the FIS. Additionally, the FDT were used to extract a 

hierarchy of the most significant project attributes appearing at the top-most nodes of the 

trees.  

The fuzzy implication process expresses the rules using fuzzy sets represented by their 

membership function, which weighs appropriately the linguistic characteristics that are 

attributed to each set. Once a set of rules describing the relationship between cost factors and 

effort is available, we may calculate the degree to which each part of the antecedent (i.e., the 

conditions - the IF part of the rule) is satisfied for each rule; if the antecedent of a given rule 

has more than one part, a fuzzy operator is applied to combine the multiple degrees and obtain 

a single number that represents the result of the antecedent for that rule. This number is then 

applied to the output function (the THEN part of the rule). Rules combined with the AND 

operator are calculated using the Minimum value of the partial membership functions of the 

participating attributes, while the Maximum function is used for the corresponding OR 

combinations. The implication of the rules is performed with the Minimum function and the 

aggregation, i.e., the fuzzy sets that represent the outputs of each rule are combined into a 

single fuzzy set, were executed using the Maximum function.  

The final step includes the defuzzification process. Defuzzification translates back the 

membership value of the corresponding fuzzy set into a single crisp value of the initial set of 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

199 

real numerical values. Defuzzification follows a certain computational method to calculate the 

final estimation of a numerical attribute (in our case the development effort). 

Figure 4.24 presents graphically an example of the whole process for the composite rule 

―IF (AFP = ‗VERY LOW‘ and (PET = ‗MEDIUM‘ or PET = ‗HIGH‘) THEN FCWEFF = 

‗HIGH‟‖. The rule is broken down into two parts, namely ―IF (AFP = ‗VERY LOW‘ and PET 

= ‗MEDIUM‘) THEN FCWEFF = ‗HIGH‟‖ and ―IF (AFP = ‗VERY LOW‘ and PET = 

‗HIGH‟) THEN FCWEFF = ‗HIGH‘‖. Each rule is evaluated separately and then the two 

results are combined. For each input and for each attribute the degree of membership is 

calculated (according to the membership functions in Figure 4.19 and Figure 4.20). In the first 

rule AFP=1000 and μ1,AFP=1. Also, PET=30 and μ1,PET=0.5. Since the two factors are coupled 

with the AND operator the joint membership value is equal to their minimum, that is, 

μ1,FCWEFF=0.5. The same process is applied for the second rule yielding μ2,FCWEFF=0.5. The 

aggregation of the two rules, if we assume the LOM defuzzification method for demonstration 

purposes, evaluates to the largest of maximum, thus the effort value corresponds to the partial 

membership value μFCWEFF=0.5, which gives ln(FCWEFF)=8.84. 

 

Figure 4.24: An example of rule aggregation and defuzzification. 

 

The final part of the experimental process included the fuzzy cost estimation model 

implementation (carried out in Matlab R2007b) for each dataset and cost driver scheme. This 

included encoding the rules, ranges and membership functions for the participating attributes 

and producing six FIS instances, two for each dataset, as follows: The first (FIS1) comprised 

the full spectrum of the available attributes, while the second (FIS2) included only those 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

200 

attributes that may be measured early in the development process. Finally, defuzzification was 

performed with the rules produced being aggregated and implicated to obtain numerical effort 

estimations from their fuzzy linguistic counterparts. An indicative set of rules obtained from 

the FDT is listed in Table 4.36.  

Table 4.36: Indicative if-then rules obtained using FDT and the CHAID and CART algorithms 

Dataset If-then Rules Significance 

ISBSG R9-9.2 
IF ((AFP = "LOW" OR AFP = "MEDIUM" OR AFP = "VERY HIGH" OR 
AFP = "HIGH")  AND  (PET = "" OR PET = "MEDIUM" OR PET = 
"HIGH")) THEN FCWEFF = "VERY HIGH" 

79% 

ISBSG R9-9.2 
IF ((AFP = "VERY LOW")  AND  (PDRU = "LOW" )  AND  (PET = 
"MEDIUM" OR PET = "HIGH" )) THEN FCWEFF = "HIGH" 

66% 

COCOMO 
IF ((DATA != "HIGH")  AND  (AEXP != "HIGH"  AND  AEXP != 
"LOW")  AND  (VIRT != "HIGH")) THEN EFF = "MEDIUM" 

80% 

COCOMO 
IF ((DATA != "HIGH")  AND  (AEXP = "HIGH" OR AEXP = "LOW")  
AND  (VEXP = "MEDIUM")) THEN EFF = "LOW" 

71% 

Desharnais 
IF ((LAN != "HIGH")  AND  (LE != "LOW")  AND  (EN = "LOW" OR EN 
= "HIGH")  AND  (FPNA != "LOW")) THEN DEFF = "HIGH" 

100% 

Desharnais 
IF ((LAN != "HIGH")  AND  (LE != "LOW")  AND  (EN = "LOW" OR EN 
= "HIGH")) THEN DEFF = "HIGH" 

91% 

 

The rules indicate a direct relationship between size and effort in all datasets; the former 

being expressed either in the form of functional aspects (FP), data model entities or database 

size. This relationship of software size and effort has been also observed in the results of most 

of the previously described SCE models (e.g., refer to the FSS models of ANN using ISA in 

section 4.2.2.1, to the attributes selected by the various FSS approaches examined in section 

4.2.2.2 and to the GP equations obtained in section 4.2.3.3).  

Less direct relationships are also observed such as: Applications experience (AEXP) as 

well as software and hardware complexity (VEXP) seem to play a decisive role in the 

COCOMO case and development language (LAN) in the Desharnais case. This suggests that 

both technical skills and experience, as expected, especially for projects with high complexity, 

guide expenses in human resources and hence drive the associated effort spent. Another 

important observation is that the cost attributes found significant are available (known) from 

the launch of a software project (e.g., skills and experience of the technical team experts). 

Nevertheless, this is a finding that must be interpreted cautiously as the results of the 

experiments with the datasets that contain categorical attributes, in our case COCOMO and 

Desharnais, do not agree as to which specific attributes representing skills and experience are 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

201 

considered more significant. This supports the argument made earlier that the diversification 

in the number and type of factors measured in each dataset, as well as the different 

measurement processes followed and the variety of software markets and/or cultures of the 

development organisations providing the metrics, may affect the level of significance of the 

participating factors with respect to their explanatory power over effort. In other words, it 

seems that there are more complex relationships than one may expect between the factors 

measured, with complexity driving also the kind of relationship these factors may have with 

effort. Overall, one may also argue that the Desharnais and ISBSG R9-8 datasets follow the 

philosophy of measuring tangible aspects of the development process (i.e., the process itself), 

while COCOMO focuses mostly on characteristics that constrain the development process. 

This also enforces the argument that the datasets are quite diversified and that the 

measurement activities performed for each one possibly lead to highly uncertain (subjective) 

and, to a large extent, inconsistent values. Therefore, any differences observed regarding the 

attributes‘ significance between datasets may lead to deriving independent conclusions for 

each case. 

Defuzzification was performed with more than one method, specifically, Centroid (CEN), 

Bisector (BIS), Middle of Maximum (MOM), meaning the average of the maximum value of 

the output set, Largest of Maximum (LOM) and Smallest of Maximum (SOM). The results of 

the hybrid FDT & FIS model are juxtaposed in Table 4.37. 

Table 4.37: Performance results of the FDT & FIS hybrid SCE model 
Defuzzification 

method 
Error  
Metric 

ISBSG R9-8 COCOMO Desharnais 

FIS1 FIS2 FIS1 FIS2 FIS1 FIS2 

CEN 

MMRE 0.12 0.18 0.29 0.62 0.19 0.19 

MBRE 0.12 0.20 -0.11 -0.55 -0.16 -0.16 

Pred(.25) 0.91 0.72 0.58 0.26 0.74 0.74 

BIS 

MMRE 0.12 0.18 0.29 0.63 0.19 0.19 

MBRE 0.12 0.20 -0.11 -0.56 -0.16 -0.16 

Pred(.25) 0.91 0.72 0.58 0.26 0.74 0.74 

MOM 

MMRE 0.14 0.18 0.29 0.63 0.20 0.20 

MBRE 0.14 0.21 -0.10 -0.56 -0.18 -0.18 

Pred(.25) 0.87 0.71 0.58 0.21 0.70 0.70 

LOM 

MMRE 0.11 0.16 0.37 0.93 0.27 0.27 

MBRE 0.05 0.13 -0.29 -0.90 -0.25 -0.25 

Pred(.25) 0.92 0.83 0.47 0.11 0.43 0.43 

SOM 

MMRE 0.18 0.22 0.33 0.51 0.15 0.15 

MBRE 0.23 0.29 0.20 -0.17 -0.11 -0.11 

Pred(.25) 0.79 0.61 0.53 0.21 0.87 0.87 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

202 

 

A small superiority of the LOM defuzzification method is observed in the ISBSG case and 

of the SOM method for the Desharnais. The picture in the COCOMO dataset is clearly 

different, where the MMRE and MBRE are noticeably higher than in the other two datasets, 

while the Pred(.25) metric on average indicates also lower resemblance percentages under the 

threshold of 25%. The best prediction accuracy results in terms of MMRE obtained throughout 

the experiments were 0.11 for the ISBSG R9-9.2 dataset, 0.29 for the COCOMO and 0.15 for 

the Desharnais dataset, while the corresponding MBRE values were 0.05, -0.10 and -0.11 

respectively. 

Overall, the accuracy performance obtained from the hybrid FDT and FIS approach (or 

FDT & FIS model) described in this section, presents quite successful results that sometimes 

outperformed the results of previous work using normalised values for the estimation. The 

results are directly comparable for the Desharnais case with the previously described 

approaches of ISA combined with ANN since the same filtered dataset was used and the 

performance was measured on data transformed with the same manner. However, for the 

ISBSG since different filtered versions and subsets of project data were employed, many 

results presented thus far are not directly comparable to the hybrid FDT and FIS approach.  

A more detailed comparison taking the above considerations is provided next. 

Particularly, the SCEs obtained with the Desharnais dataset in previous work (i.e., refer to the 

results in pg. 126 and pg. 133 in section 4.2.2.1) were better using the whole spectrum of 

attributes compared to the hybrid FDT & FIS approach described in this section. However, 

using the ‗early‘ attributes in the FIS2 of the hybrid model, i.e., those attributes that can be 

measured from the early project phases, the predictions outperform the majority of the effort 

predictions obtained with ANN (i.e., using the attributes selected by the ISA and the Strict (S), 

Less Strict (LS) and Early thresholds (refer to pg. 126)), while they are comparable to the 

results obtained with the Strict and Relaxed evaluation sets of ISA and ANN (refer to pg. 

133).  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

203 

As already mentioned, even though different datasets for the ISBSG were utilised in each 

experiment previously explained, the ISBSG dataset results are also compared here. 

Particularly, the results of the FDT & FIS approach are worse compared to the ANN results 

obtained with all the range of attributes and with the selected attributes from all types of ISA 

and thresholds (refer again to pg. 126 and pg. 133 of section 4.2.2.1) except the results 

obtained with the Strict evaluation set of attributes attained from the ISA on ANN.  

Moreover, the results of the hybrid FDT & FIS model using the ISBSG dataset also 

outperform the results from the estimation of effort from the mean fuzzy range of the 

classified projects in the initial FDT constructed (refer to pg. 184 from section 4.2.3.4) in two 

out of the three set of attributes utilised. The third attribute case (i.e., ISBSG R9-9.2) achieved 

the same exact accuracy with the accuracy obtained with the hybrid FDT & FIS model. More 

detailed comparisons are provided in the next chapter. Ultimately, the approach presented in 

this section has therefore showed several improvements and that quite accurate cost 

predictions close to the actual development costs can be achieved. The following investigation 

relates to improving the type of prediction results obtained, to predictions based on intervals, 

even though predictions based on intervals have already been proposed (refer to CS & GA 

model in section 4.2.3.1, Fuzzy clustering and by-analogy estimation in section 4.2.3.2, GP 

estimations in the ISBSG case in section 4.2.3.3 as well as fuzzy interval estimation with FDT 

in section 4.2.3.4). 

4.2.4 Predictive Intervals of Software Cost Estimation (PI-SCE)  

The notion of Conformal Predictors (CP) is used to produce Predictive Intervals (PI), or 

regions, that satisfy a pre-determined level of confidence in the obtained estimations. The 

major advantage of the proposed method of Predictive Intervals in SCE (PI-SCE) is its 

flexibility to be applied or adopted in combination with any predictive technique. 

Additionally, a significant aspect is that in CP given a confidence level 1-ε and a 

computational method that produces a prediction of effort (such as Ordinary Least Regression 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

204 

(OLS), Artificial Neural Networks (ANN)), these predictions typically will include the real 

effort values with probability (1- ε) (Papadopoulos et al., 2009). Therefore, in cases where the 

sample data is independent and identically distributed (i.i.d) the yielded predictive intervals of 

CP will also be well-calibrated, that is, they will contain the true effort value within a relative 

frequency of at least 1-ε (Nouretdinov et al., 2001). 

Based on a sample of projects {(x1,z1), …, (xn,zn)}, where xi  n
 is a vector consisting of 

the independent (input) variables and zi   is the dependent variable (effort) for each project 

i, the prediction intervals are produced under the assumption that all pairs (xi, zi)  are i.i.d. and 

a value ai is assigned to each pair representing the ‗strangeness‘ or non-conformity of the pair 

(xi, zi)  to the rest of the pairs in the sample. This non-conformity value may be calculated 

using any machine learning algorithm. In this particular case the Ridge Regression (RR) 

algorithm has been selected and is already described in section 3.2.2.2.  

Next, the non-conformity score an of the pair (xn, zn) is compared to the non-conformity 

scores of all other pairs to calculate the degree of non-conformity according to eq. (4.53). 

n

aani
zxzxp ni

nn

}:,...,1{#
)),(),...,,(( 11


  

(4.53) 

If p(zn) is under some low threshold, e.g., 0.05, then it means that zn is ‗unlikely‘ as the 

probability of occurring is at most 5%. By calculating the p-value of every possible dependent 

variable using the above equation, all prediction variables under a very low threshold, or 

significance level ε, that have at most ε probability of being correct may be excluded.  

Finally, CP for a significance level (1-ε) calculates the following set: 

})(:{ nn zpz  (4.54) 

which represents the predictions that have a p-value greater than the specified significance 

level ε. Thus, instead of considering every possible prediction in  
 the technique uses eq. 

(4.54) (Nouretdinov et al., 2001). The algorithm is referred to as RR & CP model for SCE. 

The datasets used for the experimentation were the COCOMO, the Desharnais and the 

ISBSG R9 dataset which went through the pre-processing activities described in Table 4.1 (a). 

Additionally, in the ISBSG R9 case steps (c), (f), (k)-(m) were executed that yielded the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

205 

ISBSG R9-4 summarised in Table 4.16. Thus, the COCOMO consisted of 63 projects, the 

Desharnais of 77 projects and the ISBSG R9-4 467 projects. The attributes of the COCOMO 

dataset are summarised in Table 4.32 while the attributes of the Desharnais are listed in the 

first part of Table 4.9. 

 The experiments conducted followed a 10 fold cross-validation process (Maimon and 

Rokach, 2005). Each data set was split randomly into 10 parts of almost equal size and the 

tests were repeated 10 times, each time using one of the 10 parts as the testing set and the 

remaining 9 as the training set. This procedure was repeated 100 times for each dataset and 

the results reported refer to the results obtained across all runs. The parameter γ of the RBF 

kernel, as well as the ridge parameter α, were typically determined by trial-and-error 

methods. Particularly for γ the values from 2 to 7 with increments of 0.5 were tried and for α 

values from the set {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} were examined. 

The best results obtained with the RR algorithm are reported in Table 4.38 whereas the 

application of the hybrid RR & CP yielded the results shown in Table 4.39 for 95%, 90% and 

80% confidence levels to every project in each of the 10 parts of each dataset, using as 

training set the other 9 parts. The process was repeated 100 times and thus resulted in 100 x N 

predictive intervals for each confidence measure, where N represents the number of projects in 

each dataset. The Median Width (MW) and the Median Relative Width (MRW) for each of the 

three confidence levels (95%, 90% and 80%) was calculated. The MRW corresponds to the 

tightness of the MW and is calculated by dividing the predictive interval produced for each 

project with its actual effort value. The Percentage of Errors (PE) reports the reliability of the 

predictive intervals, that is, the percentage of projects for which the true effort value is not 

inside the interval outputted by the model. In effect PE checks empirically the validity of the 

predictive intervals produced. 

Table 4.38: Best testing results of RR and the corresponding parameters 
Dataset γ α MMRE 

COCOMO 5.5 0.001 0.422 

Desharnais 5 0.05 0.345 

ISBSG R9-4 3.5 1 0.596 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

206 

Table 4.39: Tightness and reliability of the RR & CP 

Dataset 
Median Width (MW) Median Relative Width (MRW) Percentage of Errors (PE) 

80% 90% 95% 80% 90% 95% 80% 90% 95% 

COCOMO 170.8 278.8 383.4 1.35 2.20 3.11 19.11 8.68 3.68 

Desharnais 4549 5579 6396 1.25 1.54 1.76 19.03 9.06 4.38 

ISBSG R9-4 4451 6571 9126 1.68 2.46 3.37 20.01 10.02 5.01 

 

The results obtained from the hybrid RR combined with CP (Papadopoulos et al., 2009) 

indicate lower MW for the COCOMO dataset in all three confidence levels compared to the 

Desharnais and ISBSG R9-4 cases. This means that the effort prediction for the projects 

enclosed in the latter two cases is harder. In addition, the MRW values indicate that promising 

tightness levels are obtained for 80% confidence level in all the datasets. The best levels of 

tightness were obtained for the Desharnais, then for the COCOMO and lastly the least 

promising levels were obtained in the ISBSG R9-4 case. A significant desirable improvement 

would be obtaining even lower widths of the predictive intervals for higher confidence values. 

In terms of tightness, however, the optimal results (i.e., the tighter widths) were obtained with 

the Desharnais dataset in all the three confidence levels (95%, 90% and 80%). Finally, 

satisfactory PE percentages were reported especially within the 95% confidence interval 

which indicates that the method yields provable results. 

The hybrid RR & CP algorithm offers quite narrow predictive intervals (as shown for the 

95% confidence level in the median widths for the COCOMO, Desharnais and the ISBSG 

datasets that correspond to 3.36%, 27.34% and 6.09% respectively). These were calculated on 

the whole range of efforts of the respective datasets.  

The above observations show that the intervals produced are quite narrow and reliable to 

be useful in practice. The predictive intervals are also well-calibrated and provide 

considerably more informative results for a project manager instead of crisp counterpart 

predictions and can be more useful in practice for considering worst and best-case scenarios 

for SCE. The subsequent approach is the last SCE method proposed which provides 

quantitative results and is based on phased predictions calibrated to the time of the estimate. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

207 

4.2.5 Phased-Based Software Cost Estimations (PB-SCE)  

The examination of the adjustment of work effort progressively through the project life-

cycle (SDLC) and along the development phases using historical data of cost factors which 

are available at the time of the estimation is analysed in this section. This examination aims to 

identify patterns of development effort distribution in software projects and introduce some 

emerging opportunities that could improve project planning and controlling. ANN are 

employed to approximate estimations of effort as accurately as possible, using available 

project information and effort values of finished project phases. The SCE models developed 

for each phase are employed to yield Phased-Based effort estimates (PB-SCE) 

(Papatheocharous et al., 2012). Particularly, the models utilise data obtained from the ‗early‘ 

project phases (i.e., before the actual implementation phase) and progressively produce 

estimates for each phase.  

The following research questions are investigated: (i) How is the total development effort 

related with each development phase of the software development life-cycle?, (ii) Is there a 

correlation between the efforts distributed in the various development phases?, (iii) Updating 

the estimates during the software development process leads to significant improvement in the 

accuracy of effort estimates for the total effort?, and (iv) At a fixed point in time of the 

development process how accurately can effort be approximated for the next phase?  

The investigation includes examining the relationship among the development effort of 

each project phase to each other and to the total work effort through correlation analysis on 

the pairs of phased-effort values and using ANN. ANN aim to identify patterns of 

development effort distribution in software projects and approximate estimations of effort as 

accurately as possible, using available project information and effort values of finished project 

phases. 

The dataset used for the experimentation was the ISBSG R10 from which several 

attributes and the effort reported in the project phases was selected. Particularly, the pre-

processing steps of Table 4.1 (a)-(c), (e)-(i), (k) and (p) were carried out, leading to only 65 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

208 

projects in the dataset. The attributes formed a group of project attributes useful to carry out 

comparisons among different project types described by the Development Type (DT), 

Development Platform (DP), Language Type (LT) and Maximum Team Size (MTS). Also, 

any effort information available at the time of the estimate was used which involved phased-

effort values and total effort reported for the 65 projects maintained in the dataset. 

ANN were used to model the problem of cost estimation and predict the value of total 

effort using prior-phase information of effort. The prediction was carried out in the following 

four project phases: a) Early, using only the available project attributes at the project initiation 

(i.e., DT, DP, LT and MTS), b) Post planning, given that planning is complete and its effort is 

available, it is added with the aforementioned available project attributes to re-adjust the 

estimate, c) Post specifications, given that the planning and specifications phases are 

completed and their actual effort is available, then they are added to the input of the model to 

review the total effort estimate, and finally, d) Post design; given that the previous phases and 

design phase are complete and their actual effort values are known, the model is updated  to 

re-adjust the total effort estimate. Evaluation of the estimation model was performed using 5 

fold cross-validation (Maimon and Rokach, 2005). One round of cross-validation involved 

performing the analysis on one subset (containing 60% of the data samples), the validation on 

a second subset (containing 20% of the data samples) and the testing on a third subset 

(containing 20% of the data samples). In order to reduce variability multiple rounds of cross-

validation were performed using different partitions. 

A range of MLP ANN architectures were employed, each of which containing a number 

of neurons in the hidden layer equal to the number of attributes used as inputs in each 

experiment and the number of inputs was increased by 1 until the neurons doubled the size of 

the input attributes. All architectures were evaluated and the best performance was recorded, 

while each time the process was repeated, the layer‘s weights and momentum (or biases) were 

initialised with the Nguyen-Widrow initialisation method (Nguyen and Widrow, 1990). The 

weights were updated with the gradient descent with momentum weight/bias learning 

function. Training was performed with the scaled conjugate gradient method. This function 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

209 

can train any network as long as its weight, net input and transfer functions have derivative 

functions. Training was repeated 10 times (as proposed by Prechelt (1994)) and also, 

validation was used as a pseudo-test to ensure that the ANN were indeed trained. 

Moreover, to avoid overfitting, training was stopped when one of the following conditions 

occurred: 1) The maximum number of 1000 epochs was reached; 2) Performance was 

maximised with prediction error close to the goal, which was set to 0.0001; 3) The gradient 

fell below the minimum performance values, which was set to 0.000001; 4) The performance 

of validation had increased more than 5 times the maximum validation failures since the last 

time it decreased.  

The hyperbolic tangent sigmoid transfer function was used (eq. (4.7), pg. 105) to calculate 

the hidden layer's output from its net input. The output from this function was bounded in the 

range [-1, +1] and it was selected because it does not require non-linearity and additional 

scaling. Finally, the hyperbolic tangent sigmoid function was used for the output layer.  The 

Matlab R2009b was used to create, train, simulate and visualise the ANN performance.  

The observations from the research questions examined are summarised below. The 

relationship between the development effort of each SDLC phase and the total work effort 

was examined using correlation analysis. Spearman‘s correlation coefficient non-parametric 

statistic was used as a measure of rank association between two variables (Spearman, 1904; 

Maritz, 1981; Myers and Arnold, 2003). The same analysis was used to examine the relation 

among the efforts reported for each development phase.  

Figure 4.25 summarises the breakdown of effort for the Planning, Specify, Design, 

Building and Implementation phases in the selected projects from the ISBSG R10. A large 

effort proportion is spent on Building activities while Test and Implementation activities also 

demand a notable amount of the total effort. The high amount of effort required for design and 

testing and the even greater amount devoted for building shows the priority software 

engineers give on these activities in order to deliver qualitative software. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

210 

 

Figure 4.25: Effort average percentages distribution per phase (selected projects of ISBSG R10) 

 
 

Initially, the effort reported for the completion of each phase was examined using 

distribution histograms (Papatheocharous et al., 2012). The histograms showed that for all the 

phases the distribution was negatively skewed (except for the Design and Build where it was 

normally distributed). The non-normal form of effort distributions revealed that for the 

analysis, Spearman‘s non-parametric test should be used. The raw values Xi (independent 

variable) and Yi (dependent variable) were converted to the ranked xi, yi values and if there 

were no tied ranks, Spearman‘s ρ coefficient was calculated by eq. (4.60).  

 

_)1(

)(6
1

2

2






nn

yx ii
  (4.60) 

 

The correlation analysis conducted on the phases and total effort (Table 4.40), as well as 

the pairs of phased effort values (Table 4.41) indicated that considerable correlations exist.  

The sign of Spearman‘s correlation (ρ) indicates the direction of association between the two 

variables examined and a zero correlation value indicates that there is no relation. Particularly 

Table 4.40 shows that very large correlation exists between the Plan, Design and Build efforts 

and the total effort, and moreover large correlation is found between Specify, Test and 

Implementation and the total effort. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

211 

Table 4.40: Spearman’s two-tailed correlation coefficients (ρ) of the phased-effort values and 

total effort in ISBSG R10 

Phase ρ (p-value) 

Plan 0.715 (0.000) 

Specify 0.693 (0.000) 

Design 0.827 (0.000) 

Build 0.828 (0.000) 

Test 0.633 (0.000) 

Implement 0.603 (0.000) 

Unphased 0.328 (0.008) 

 

Moreover, Table 4.41 shows very large and significant positive correlations between the 

pairs of Specify - Design and Design - Build Effort (the p-value is lower than 0.001), while 

the pairs of Plan - Specify, Plan - Design, Plan - Build, Specify - Build, Specify - Implement, 

Design - Test, Design - Implement Effort also reveal high correlation. 

Table 4.41: Spearman’s two-tailed correlation coefficients ρ between the phased efforts 
ρ 

(p-value) 
Plan Specify Design Build Test Implement Unphased 

Plan 1 
0.600 

(0.000) 

0.542 

(0.000) 

0.625 

(0.000) 

0.421 

(0.000) 

0.481 

(0.000) 

0.276 

(0.026) 

Specify  1 
0.764 

(0.000) 

0.564 

(0.000) 

0.428 

(0.000) 

0.583 

(0.000) 

-0.005 

(0.970) 

Design   1 
0.751 

(0.000) 

0.581 

(0.000) 

0.577 

(0.000) 

0.103 

(0.413) 

Build    1 
0.493 

(0.000) 

0.482 

(0.000) 

0.265 

(0.033) 

Test     1 
0.482 

(0.000) 

-0.009 

(0.944) 

Implement      1 
-0.023 

(0.856) 

Unphased       1 

 

As already mentioned, the experiments were carried out for estimating the value of (i) the 

total effort and (ii)  the subsequent in order phase was carried out in four progressive project 

phases, that is, a) Early, b) Post planning, c) Post specifications and d) Post design estimates. 

The mean results obtained with the ANN estimation models over 5 cross-validations are 

summarised in Table 4.42 for estimating the total effort and Table 4.43 for estimating the 

effort in the next phase according to the time the estimation is conducted (Papatheocharous et 

al., 2012). 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

212 

Table 4.42: ANN performance results of total effort estimation in PB-SCE 

Estimation Model Architecture MMRE CC Pred(.25) 

Early '12-17-1' 1.57 0.05 0.18 

Post planning '13-23-1' 1.14 0.48 0.28 

Post specifications '14-18-1' 1.03 0.59 0.26 

Post design '15-22-1' 0.94 0.75 0.34 

 

Table 4.43: ANN performance results of the subsequent effort phases PB-SCE 
Estimation Model Architecture MMRE CC Pred(.25) 

Early '12-19-1' 0.92 0.20 0.03 

Post planning '13-23-1' 0.92 0.05 0.03 

Post specifications '14-24-1' 0.85 0.31 0.05 

Post design '15-20-1' 1.01 0.43 0.08 

 

The experiments showed that adding more information to the projects from the 

progressive completed effort phases (especially after the initial project phases of planning and 

specifications) and estimating total effort, results to accuracy increase in terms of MMRE, CC 

and Pred(.25). Regarding the estimations of the subsequent project phase they are not overly 

impressive, although based on a small number of potentially diverse ISBSG projects, 

indicating that further analysis and experiments need to be conducted. If we attempt to 

compare the figures of effort estimation along the software product development phases 

(shown in Figure 2.3 pg. 68) and the actual effort estimated by the ANN PB-SCE model 

(Table 4.42), the main observation is that while Boehm‘s estimations start from a higher error 

they are considerably improved as the phases progress, whereas in our case the initial error is 

substantially lower compared to Boehm‘s estimations (at the 1/3) but is improved only until 

the Post planning phase where the error value remains for all the rest phases. This shows that 

for the ISBSG projects the estimation of the total effort until the initial phases is rather 

promising while later on estimation accuracy does not improve. This leads us to infer that 

apart from the project attributes considered by the models there is need for engaging in the 

SCE process other critical factors such as the developer team‘s communication, risk 

resolution, process maturity. The following section refers to Qualitative models developed for 

SCE. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

213 

4.3 Qualitative Software Cost Estimation Models 

The process of SCE requires the consideration of the complex causal relationships among 

effort, productivity, personnel skills, communication and other factors. However and as 

already mentioned it is very hard even for experts and project managers to model and handle 

the complex interactions among cost factors. Therefore, two novel methodologies on software 

cost modelling and estimation are proposed based on Fuzzy Cognitive Maps (FCM) and 

Influence Diagrams (ID) respectively, that help to handle the relations between these essential 

components. 

4.3.1 Fuzzy Cognitive Map for Software Cost Estimation (FCM-SCE) 

Fuzzy Cognitive Maps (FCM) have been selected because they have shown promising 

results by modelling real world problems with success and indicating strong ability to capture 

the dynamics of complex environments. Particularly in SCE, some cost factors are purely 

quantitative (e.g., software size), and therefore easier to measure, but most cost factors are 

qualitative, subjective and hard to measure (e.g., team dynamics, cohesiveness, experience) 

and consequently their interactions with effort are very hard to understand and model. 

Therefore, in this section the investigation of the SCE process from a qualitative point of view 

is provided by trying to reach to an empirical influence matrix of the factors affecting effort.   

The Certainty Neuron Fuzzy Cognitive Map (CNFCM) software cost model proposed in 

this section consists of 10 cognitive Concept Nodes (CN) representing cost factors and one 

additional node representing development effort. Figure 4.26, depicts graphically the CNFCM 

constructed that models the problem of SCE (Papatheocharous et al., 2008). Efi P
ap

ath
eo

ch
aro

us



 

 

 

214 

 

Figure 4.26: SCE Certainty Neuron Fuzzy Cognitive Map (Papatheocharous et al., 2008)  
 

The nodes‘ description is provided below: 

 Application Domain Experience (CN1): Represents the amount of knowledge and 

experience of the team in the domain of a certain application.  A Very Low value implies 

no experience or knowledge in that specific domain while a Very High value implies great 

experience and knowledge. During project development, a low application domain 

experience may cause significant problems and some of them may be hard to solve due to 

lack of experience. This will result in an increase to the total cost and effort of the project. 

 Process Maturity (CN2): Represents the company‘s maturity level. The Very Low and 

Very High values correspond to the lowest and highest level of the Capability Maturity 

Model (CMM) respectively. A company at a high CMM level will follow a more efficient 

development process than a company at a low level, handling errors more efficiently, with 

benefit gained on the total effort spent. 

 Project Size (CN3): Represents the size of a project, in terms of LOC, FP, documentation 

etc. A Very Low value implies a very small project while a Very High value implies a 

very big project. Here, the assumption made is that if the size of a project is high then 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

215 

more time will be needed in order to establish the project parameters and therefore the 

cost, effort and risks for the certain project will be increased. However, there is always the 

possibility of a small but highly innovative project requiring again more time, effort, etc. 

but this case is not considered in the scenarios modelled. 

 Project Complexity (CN4): Represents the complexity of a project. A Very Low value 

implies a project of very low complexity while a Very High value implies a project of 

very high complexity. As with the project size the effect of project complexity on project 

cost is clear. A project with high complexity can cause a lot of time-consuming situations 

or hard to solve problems, thus the effort will be higher. The risk for such projects will 

also be higher, as it will be difficult for a project manager, to predict the possible 

problems the development team will face, and propose solutions to overcome them.  

 Technology Support (CN5): Represents the available technological support tools, such 

as CASE tools, support configuration management tools etc. A Very Low value implies 

low and inadequate technological support while a Very High value implies very high 

technological support. The usage of supporting tools and technology increases the 

productivity of a project development team and therefore the required cost and effort is 

less than if the level of the technology used was lower. 

 Working Environment (CN6): Reflects the developing company‘s working 

environment. A Very Low value implies a non-ideal working environment (noisy, 

overcrowded etc.) while a Very High value implies an ideal working environment. A good 

working environment is essential for a development team in order to be able to 

concentrate on their work without getting disturbed. An excellent working environment 

may increase the productivity of the team and decrease the total cost and effort of the 

project.  

 Architecture and Risk Analysis (CN7): Represents the amount of architecture and risk 

analysis including planning for risk control and mitigation conducted by the company. A 

Very Low value implies an inadequate analysis, while a Very High value implies a 

detailed and extensive analysis. A good architecture and risk analysis is expected to cover 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

216 

situations like unexpected managerial changes, reduction of the development team size, 

lack of sufficient technological support etc. If the architecture and risk analysis fails to 

map the possible risks and threats that might occur during development then the effort and 

the cost of the project will be more than expected.  

 Team Composition and Organisation (CN8): Represents the quality of the composition 

and organisation of the developing team. A Very Low value implies a poorly composed 

team, with team members of limited ability and skills and ineffective hierarchical 

structure. A Very High value implies a team composed with highly skilled members and 

effective structure. It is obvious that a team composed by capable and experienced 

members who are organised effectively will be very productive, deliver work in less time 

and cost less than a team with weaker team composition. 

 Team Cohesiveness and Communication (CN9): Reflects the quality of communication 

inside the team and the level of team cohesiveness during the development process. A 

Very Low value implies a team with poor communication and cohesiveness while a Very 

High value implies a team with strong communication and cohesiveness. Highly cohesive 

teams with high communication levels are expected to deliver work more efficiently, with 

more quality and will require less effort. 

 Project Quality (CN10): Represents the quality of the project in general. A Very Low 

value implies a project requiring typical levels of quality (does not have any heavy 

restrictions as regards quality) while a Very High value implies a project of increased 

quality demands. If high quality is required for a project then more effort is required in 

order to achieve that level of quality. Consequently if the required level of quality for a 

certain project is low (quality restrictions are low i.e., the system is not mission critical), 

then the effort is expected to be less. 

 Effort (CN11): Represents the project‘s overall cost, in terms of human effort, which is 

associated with money and time. The values assigned to this conceptual node are specific 

according to each company‘s definition of low or high cost. Thus, a Very Low value 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

217 

implies a project that is expected to have minor cost for that specific company, while a 

Very High value implies a project that is expected to have a quite high cost. 

The CN identification was established from investigating the relevant literature (Fenton 

and Pfleeger, 1997; Pressman, 2000; Schach, 2004; Sommerville, 2006) and also from 

discussion with experts. The CN were isolated and determined in terms of significance and 

interrelationships by conducting several sessions of interviews with experts coming from the 

software industry in three different European countries, namely Germany, Greece and Cyprus. 

The causal relationships (interactions) between the cost concepts were defined by the group of 

experts which included five active project managers in the software industry. The experts 

managed to reach to consensus regarding the type and structure of the cause-and-effect 

relationships among the identified critical cost factors as well as the strength of these 

connections specified by the values summarised in Table 4.44.  

Table 4.44: Influence values (weights) between the Conceptual Nodes 
 CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 

CN1 0 0 0 -0.1 0 0 0 0.3 0 0 0 

CN2 0 0 0 0 0.6 0.3 0.3 0.5 0 0 0 

CN3 0 0 0 +0.2 0 0 0.3 0 0 0.4 0.2 

CN4 -0.3 -0.4 +0.3 0 0 0 -0.5 0 0 0.6 0.4 

CN5 0.1 0.9 -0.5 0 0 0.1 0 0 0 0 0 

CN6 0 0.2 0 0 0 0 0 0 0.3 0 0 

CN7 -0.5 0.5 0.5 0.6 -0.4 0 0 0.1 0 0.7 0 

CN8 +0.4 0.4 0 0 0 0 0 0 0 0 0 

CN9 0 0.3 -0.5 0 0.1 0.5 0 0.7 0 0 -0.5 

CN10 -0.3 0.7 0 0.4 0.5 0 0.5 0.3 0 0 0.5 

CN11 0 -0.9 0.7 0.7 0 0 0.5 -0.6 -0.2 0.7 0 

 

The causal relationships (weights) and the values of the activation levels of the 

participating concepts were characterised on a five scale fuzzification scheme listed in Table 

4.45.   

Table 4.45: Linguistic terms and corresponding numerical values for the influence between 

Conceptual Nodes and their initial Activation Level 

Very Low Low Medium High Very High 

-1.0 ― -0.61 -0.6 ― -0.21 -0.2 ― 0.2 0.21 ― 0.6 0.61 ― 1.0 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

218 

The experiments conducted were based on two hypothetical scenarios representing two 

extreme cases and aimed at testing the validity of the CNFCM model on situations where the 

output is considered known or expected (Papatheocharous et al., 2008). The target of the 

experimentation process was to reach to equilibrium when qualitative rather than quantitative 

measures of influences are available and try to obtain the real state of influences of Concept 

Nodes within a situation for a software development company.  

The first scenario (Pessimistic Case) involved a case in which the developing company 

had Very Low maturity level, Medium levels of communication and discipline and had to 

produce a demanding software project. Under these circumstances the expected (estimated) 

value of effort was Medium. The rest initial linguistic values for the CN on the map are 

summarised in the third column of Table 4.46. The second scenario (Optimistic Case) 

reflected the opposite picture, where the company was mature, well-organised and had Very 

High communication quality, while the project undertaken had medium to low demands. 

Under this environment the expected (estimated) estimation of effort was High, whereas the 

rest initial linguistic values for the CN are defined in the fourth column of Table 4.46. 

Table 4.46: Initial linguistic values for the scenarios executed with the FCM 
CN Conceptual Node Scenario 1: Pessimistic Scenario 2: Optimistic 

CN1 Application Domain Experience Very Low Very High 

CN2 Process Maturity Very Low Very High 

CN3 Project Size and Complexity Low Medium 

CN4 Technology Support High High 

CN5 Working Environment Low Very High 

CN6 Development Flexibility Medium Very High 

CN7 Architecture and Risk Resolution Very Low High 

CN8 Team Composition and Organisation Low Very High 

CN9 Team Cohesiveness and Communication Medium Very High 

CN10 Project Quality High Medium 

CN11 Effort Estimated to be Medium Estimated to be High 

 

The corresponding numerical values for the hypothetical initial linguistic states of the 

FCM concepts are listed as initial conditions in the upper portion of Table 4.47. Particularly, 

in the first scenario, the map is executed taking these initial values and is then stabilised at 

equilibrium after 250 iterations as shown in Figure 4.27 (a). Analysing the results obtained 

(shown in Table 4.47, Scenario 1/Final) the cost model suggests that initially the required 

effort was rather underestimated (i.e., it was estimated to be of Medium intensity or having 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

219 

the value CN11=0.20), and that under these circumstances it should have been anticipated to 

be Very High, which is the linguistic counterpart of the value CN11=0.92. Therefore, the 

model reacted successfully by recognising the dynamics of a ‗negative‘ example where the 

poor capacity and ability of a company in conjunction with high demands and complexity of 

the project affect negatively the value estimated for effort.  

Moreover, in the second scenario the final result of the model stabilised at equilibrium 

after 250 executions as shown in Figure 4.27(b). Analysing the results obtained (shown in the 

lower part of Table 4.47, Scenario 2/Final) the cost model suggests that initially the required 

effort was overestimated (it was estimated to be of High intensity or having the value 

CN11=0.30), and that under these particular circumstances it should have been anticipated to 

be Very Low, which is the linguistic counterpart of the value CN11=-0.84. Therefore, the 

model has successfully recognised the dynamics behind a ‗positive‘/ideal scenario where the 

company presents the necessary skills and qualifications to handle efficiently a project having 

the characteristics described. Therefore, the proposed model provides quantitative effort 

estimates in comparison to the initial set of effort estimations provided by project managers.  

 

Table 4.47: Initial and final concepts activation values from executing two hypothetical scenarios 

Scenario Condition CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9 CN10 CN11 

1 
Initial -0.80 -0.90 0.10 -0.10 -0.50 0.10 -0.70 -0.50 0.20 -0.30 0.20 
Final -0.51 -0.74 0.74 0.77 -0.81 -0.61 0.83 -0.65 -0.88 0.45 0.92 

2 
Initial 0.90 0.90 0.20 0.40 0.70 0.80 0.40 0.80 0.90 0.50 0.30 
Final 0.51 0.74 -0.74 -0.76 0.82 0.61 -0.83 0.66 0.88 -0.39 -0.84 

 

 

 

 Efi P
ap

ath
eo

ch
aro

us



 

 

 

220 

 
(a) (b) 

Figure 4.27: Experimental results of FCM-SCE for (a) Scenario 1: Pessimistic case and (b) 

Scenario 2: Optimistic case 

 
 

The model produced quite successful quantitative results suggesting that in the first case 

the situation was underestimated in the initial estimation of effort and that this should have 

been estimated at much higher levels. The same successful performance was also observed by 

the model in the second case, where the results indicated an initial overestimation of the 

required effort and that this should have been estimated at much lower levels. 

The hypothetical case studies aimed to validate the FCM cost model at the two extreme 

scenarios. The experiments conducted and the results obtained may be considered quite 

promising suggesting that further experimentation is needed with the model. This 

experimentation includes widening the spectrum of cases in which the model may capture the 

dynamics of real situations in software development, i.e., cases where the prevailing 

circumstances will not be clearly in favour of under- or overestimation. Also, the map may be 

also refined in terms of activation levels, i.e., specifying narrower ranges for the activation 

levels or restricting them to either increase or decrease in specific cases. Finally, the next 

investigation includes exploration of reaching to efficient and informed decisions for cost 

options in modern development environments, such as environments following Agile 

methods. 

C
N

1
1

 a
ct

iv
at

io
n

 l
ev

el
 

Number of iterations Number of iterations 

C
N

1
1

 a
ct

iv
at

io
n

 l
ev

el
 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

221 

4.3.2 Agile Software Development and SCE (ASD-SCE) 

The exploration of the Agile Paradigm in this thesis aims to answer two critical questions 

that software industry practitioners and cost estimators are very eager to answer. They relate 

with adopting agile and abandoning traditional plan-driven software development 

methodologies, something which in effect will lead to a radical changes in conventional 

project management. The decision diagrams namely Influence Diagrams (ID) are used for 

modelling the particular questions. The decision problems examined were the following: (i) 

―Should an organisation switch from traditional development methods to agile or not?”, and 

(ii) ―Will the software cost increase if an organisation switches from traditional to agile 

development methods or not?” (Papatheocharous et al., 2011). The experiments conducted 

and described in this section involve SCE in Agile Software Development environments 

(ASD-SCE). 

The agile software development, introduced in the Agile Manifesto (Beck et al., 2001), is 

a relatively new paradigm consisting of a group of methodologies created to deliver value to 

the customer. Even though it is hard to quantitatively assess the value delivered to the 

customer, it has a profound effect on the quality of the product delivered to the customer and 

the productivity of software developers. The added value from inserting flexibility and 

adaptability in the processes followed during software development is reported in one of the 

early surveys in agile methodologies (Johnson, 2003). In addition, companies using agile 

processes report lower or unchanged cost and better productivity, quality and business 

satisfaction. Value is considerably more useful to the customers as the streamlined 

development, in highly efficient ways, reduces time and delivers products that satisfy the real 

customer needs and achieve competitiveness in the market. 

Nevertheless, SCE research in Agile and on the identification of the factors which affect 

agile development is scarce (e.g., Chandrasekaran et al., 2006; Laanti and Kettunen, 2006) 

and typically utilise expert-based estimations. Highsmith (2003) mentions that the nature of 

projects under the Agile paradigm often results in flexible project scope but fixed budgets and 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

222 

schedule. On the contrary Ceschi et al. (2005) report that companies using agile methods 

usually result in ―flexible contracts instead of fixed ones that pre-define functionalities, price, 

and time‖.  

The ID created to answer the aforementioned questions are shown in Figure 4.28 and 

Figure 4.29 (Papatheocharous et al., 2011); each diagram consists of interrelated nodes whose 

description is provided below: 

Customer: It represents the client‘s degree of participation in the development process. The 

options are: On-site and Away. 

Manager Experience: It represents the project manager‘s experience in years using Agile 

methodologies. 

Manager Confidence: Represents the project manager‘s confidence in the success of Agile 

based on the percentage of ‗successful‘ agile projects within the organisation.  

Manager Skills: Represents the project manager‘s skills in Agile methodologies. 

Team Size: Represents the number of people in the IT/Systems/Development sector 

participating in the team. 

Team Physical Environment: Represents the location of the team members. The two options 

are: Co-located and Far-located. 

Team Experience: Represents the team‘s experience in years using Agile methodologies. 

Team Skills: Represents the level of the team‘s skills in Agile methodologies. 

Productivity: Represents the productivity degree in terms of product functionality delivered 

per time unit. 

Effort: Represents the amount of effort required to deliver a system release. 

Quality: Represents the quality level of the developed product and in consequence the ease of 

maintenance. 

System Size: Represents the size of the system developed in terms of length or duration. 

Evaluation: Represents the measure of desirability/reliability of the evaluation and is where 

the decision is quantified and the decision result obtained. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

223 

Agile or Traditional: Indicates the development method chosen to develop software. The two 

options are: Traditional or Agile. 

Cost Increase: Indicates the possibility of cost increase. The two options are: Yes or No. 

 

Figure 4.28: ‘Follow Agile or Traditional development activities?’ Influence Diagram 

 
 

 

Figure 4.29: ‘Will the cost increase if we follow the agile paradigm or not?’ Influence Diagram 
 

 

The GeNIe toolbox (Decision Systems Laboratory: GeNIE, 1998) was used to create the 

Influence Diagrams (ID) for the two models described and used in the experimentation. For 

answering the first question three different variations of the ID illustrated in Figure 4.28 were 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

224 

built that differed in structure namely the Simple diagram, the Deterministic diagram and the 

Advanced diagram. In the Simple diagram all nodes can take any value in the range [0, 1]. In 

the Deterministic diagram all non-leaf nodes take deterministic values, i.e., can take any 

binary value from True (1) or False (0), and are represented by double oval shapes in the ID. 

In the Advanced diagram the nodes can take linguistic values, such as ‗low‘, ‗medium‘ or 

‗high‘. The figures of the Deterministic and Advanced diagrams are not provided since there is 

no other difference than the double oval shapes for the non-leaf nodes of Figure 4.28. For 

answering the second question two different ID were created to estimate the change of cost; 

firstly in the case Agile and secondly in the case of Traditional development processes were 

followed. Figure 4.29 provides the diagram created for estimating the cost change in Agile 

environments. The diagram was slightly modified to assess cost estimation for Traditional 

software development by just adding one more node, i.e., the Documentation node.    

For the first question the following three scenarios were examined: 

 Scenario 1 (Worst case): In the first scenario the case of a poor project manager and a 

weak team was assumed. This means the project manager has low experience in using 

Agile methodologies, low confidence and skills. The team is far-located, is large (includes 

many people) and thus communication and cooperation is harder, while the team members 

have low experience and skills. The customer is away during development. 

 Scenario 2 (Ideal case): In the second scenario the case of an ideal project manager and 

team was assumed. This means the project manager has high experience in using Agile 

methodologies, high confidence and skills. The team is co-located, team size is small and 

the team members have high experience and skills. The customer is on-site. 

 Scenario 3 (Real case):  In the third scenario the values used were obtained from 

questionnaires reporting Information Technology practice (Ambler, 2008; Ambler, 2010). 

The analysis performed on the data produced sample bins of the answers provided, which 

showed that project managers using Agile were highly experienced and confident in the 

‗success of agile‘. The success in using Agile was rated as interval percentage ranks in 

increments of 10 (i.e., 0-10%, 11-20%, etc.). Also, the data showed that a large percentage 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

225 

of the teams had a small size but were highly experienced. Also, the case of an 

experienced project manager with high confidence and a small team with high experience 

and average skills was assumed. Finally, the members of the team were far and co-located 

and the customer was on-site. 

Table 4.49 summarises the input values used in the experiments based on the linguistic 

terms specified for the factors of the Simple, Deterministic and Advanced diagrams. The range 

of values for each linguistic term and diagram are specified in Table 4.48. The values reflect 

the previously described scenarios where one can easily notice that the elicitation of values in 

the Advanced case leads to examining less strict, absolute or extreme (deterministic) 

scenarios. 

Table 4.48: Linguistic terms and corresponding numerical values for the Influence Diagrams 

Diagram 

Factor (Node) 

Simple/Deterministic Diagram Advanced Diagram 

Range 
Linguistic 

Values 

Input 

Values 
Range 

Linguistic 

Values 

Input 

Values 

Manager Experience 

[0,1] Low 0 – 0.49 [0,1] Low 0 - 0.3 

[0,1] High 0.5 - 1 [0,1] Medium 0.4 - 0.6 

[0,1] - - [0,1] High 0.7 – 1 

Manager Confidence 

[-1,1] Low 0 – 0.49 [-1,1] Low 0.2 - -1 

[-1,1] High 0.5 - 1 [-1,1] Medium 0.3 – 0.5 

[-1,1] -  [-1,1] High 0.6 - 1 

Manager Skills 

[0,1] Low 0 – 0.49 [0,1] Low 0 – 0.3 

[0,1] High 0.5 - 1 [0,1] Medium 0.4 – 0.6 

[0,1] -  [0,1] High 0.7 - 1 

Team Physical 

Environment 

[0,1] Co-located 0.5 - 1 [0,1] Co-located 0 – 0.5 

[0,1] Far-located 0 – 0.49 [0,1] Far-located 0.6 – 1 

Team Size 

[0,1] Small <10 [0,1] Small <10 

[0,1] Medium 10 – 20 [0,1] Medium 10 – 20 

[0,1] Large >20 [0,1] Large >20 

Team Experience 

[0,1] Low 0 – 0.49 [0,1] Low 0 - 0.3 

[0,1] High 0.5 - 1 [0,1] Medium 0.4 - 0.6 

[0,1] -  [0,1] High 0.7 – 1 

Team Skills 

[0,1] Low 0 – 0.49 [0,1] Low 0 – 0.3 

[0,1] High 0.5 - 1 [0,1] Medium 0.4 – 0.6 

[0,1] -  [0,1] High 0.7 - 1 

Customer 
[0,1] On-site 0.5 - 1 [0,1] On-site 0.5 - 1 

[0,1] Away 0 – 0.49 [0,1] Away 0 – 0.49 

Quality 
[0,1] Low 0 – 0.49 - - - 

[0,1] High 0.5 - 1 - - - 

Project Size 
[0,1] Low 0 – 0.49 - - - 

[0,1] High 0.5 - 1 - - - 

System Type 
[0,1] New 0 – 0.49 - - - 

[0,1] Customised 0.5 - 1 - - - 

Documentation 
[0,1] Low 0 – 0.49 - - - 

[0,1] High 0.5 - 1 - - - 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

226 

Table 4.49: Input values for Simple and Deterministic diagrams in answering: RQ1 Follow Agile 

or Traditional development activities? 

Factor Term  Scenario 1 Scenario 2 Scenario 3 

Manager  Experience 
Low 0.2 0.8 0.885 

High 0.8 0.2 0.115 

Manager  Confidence 
Low 0.2 0.8 0.909 

High 0.8 0.2 0.091 

Manager Skills 
Low 0.1 0.9 0.5 

High 0.9 0.1 0.5 

Team Physical Environment 
Co-located 0.2 0.8 0.5 

Far-located 0.8 0.2 0.5 

Team Size 

Small 0.1 0.8 0.612 

Medium 0.1 0.1 0.313 

Large 0.8 0.1 0.075 

Team Experience 
Low 0.6 0.4 0.222 

High 0.4 0.6 0.778 

Team Skills 
Low 0.8 0.2 0.537 

High 0.2 0.8 0.463 

Customer 
On-Site 0 1 1 

Away 1 0 0 

Table 4.50: Input values for Advanced diagram in answering: RQ1 Follow Agile or Traditional 

development activities? 

Factor Term  Scenario 1 Scenario 2 Scenario 3 

Manager Experience 

Low 0.7 0.2 0.115 

Medium 0.1 0.1 0.846 

High 0.2 0.7 0.039 

Manager Confidence 

Low 0.7 0.1 0.091 

Neutral 0.2 0.2 0.159 

High 0.1 0.7 0.75 

Manager Skills 

Low 0.7 0.1 0.33 

Medium 0.2 0.2 0.33 

High 0.1 0.7 0.34 

Team Physical Environment 
Co-located 0.2 0.8 0.5 

Far-located 0.8 0.2 0.5 

Team Size 

Small 0.1 0.7 0.612 

Medium 0.2 0.2 0.313 

Large 0.7 0.1 0.075 

Team Experience 

Low 0.1 0.7 0.222 

Medium 0.2 0.2 0.654 

High 0.7 0.1 0.125 

Team Skills 

Low 0.7 0.1 0.537 

Medium 0.2 0.2 0.336 

High 0.1 0.7 0.127 

Customer 
On-site 1 1 1 

Away 0 0 0 

 
For the second question the following scenarios were examined: 

 Scenario 1 (Worst Case): In the first scenario a weak team and a weak project 

manager, in terms of experience and skills, are assumed. The software quality is high, 

the project size is large, the system type is new software and the amount of 

documentation is high. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

227 

 Scenario 2 (Ideal Case): In the second scenario a strong team and project manager, in 

terms of experience and skills, are assumed. The software quality is medium, the 

project size is small, the system type is customisation software and the amount of 

documentation is low. 

 Scenario 3 (Ideal-Manager Case): In the third scenario the dynamics between 

manager-team are investigated. Therefore, a weak team but a strong project manager 

(again, in terms of experience and skills) are assumed. The software quality is 

medium, the project size is large, the system type is customisation and the 

documentation is medium. 

 Scenario 4 (Ideal-Team Case): In the final scenario the reverse dynamics between 

manager-team are investigated and thus the rest of the values are left unchanged. 

Thus, a strong team but a weak project manager in terms of experience and skills 

whereas the same conditions specified in Scenario 3 are assumed.  

Table 4.51 summarises the values used for the factors of the two diagrams created, the 

first refers to answering the question for Agile and the second for Traditional projects.  

Table 4.51: Input values for answering: RQ2 Will the cost increase if we follow the agile 

paradigm or not? 

Factor Term  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Team Experience 
Low 0.8 0.2 0.8 0.2 

High 0.2 0.8 0.2 0.8 

Team Skills 
Low 0.8 0.2 0.8 0.2 

High 0.2 0.8 0.2 0.8 

Manager Experience 
Low 0.8 0.2 0.2 0.8 

High 0.2 0.8 0.8 0.2 

Manager Skills 
Low 0.8 0.2 0.1 0.9 

High 0.2 0.8 0.9 0.1 

Quality 
Low 0.2 0.6 0.6 0.6 

High 0.8 0.4 0.4 0.4 

Project Size 
Small 0.2 0.8 0.2 0.2 

Large 0.8 0.2 0.8 0.8 

System Type  
New 0.9 0.1 0.2 0.2 

Customised 0.1 0.9 0.8 0.8 

Documentation 
Low 0.3 0.7 0.5 0.5 

High 0.7 0.3 0.5 0.5 

 
Regarding the question of using Agile or Traditional development activities executing the 

Worst case scenario on the Simple diagram the decision was 0.072 for the Agile methods and 

0.377 for the Traditional ones. The Deterministic diagram produced the value -0.441 for Agile 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

228 

and 0.626 for the Traditional. Lastly, the Advanced diagram gave the value -0.231 for the 

Agile and 0.454 for the Traditional methods. Therefore, in the Worst case scenario all three 

diagrams agreed that traditional methods should be followed over agile. 

Executing the Ideal case scenario the Simple diagram yielded the value 0.742 for the Agile 

and 0.625 for the Traditional methods. The Deterministic diagram gave the value of 0.747 for 

the Agile and -0.389 for the Traditional methods. Finally, the Advanced diagram produced the 

value of 0.740 for the Agile and -0.359 for the Traditional. Therefore, all three diagrams 

indicated that in the Ideal case scenario agile methodologies should be preferred over the 

traditional. The result was expected, as the Worst and Ideal cases are exact opposite situations 

and consequently the results matched those of the Worst case scenario in mirrored result 

values. The above results confirmed that in all the cases the diagrams created yield reasonable 

results. 

Executing the Real case scenario with values drawn from questionnaires the Simple 

diagram yielded the value 0.620 for the Agile and 0.429 for the Traditional methods. The 

Deterministic diagram provided the value 0.542 for the Agile methods and -0.082 for the 

Traditional ones. Finally, the Advanced diagram provided the value 0.384 for the Agile and 

the value 0.007 for the Traditional methods. Therefore, in the Real case scenario all diagrams 

confirmed that Agile methods are favoured over the Traditional ones. 

Regarding the question of cost increase in case the Agile paradigm is followed, executing 

the Worst case scenario the Agile diagram produced the value of -0.430 for no cost increase 

and the value 0.692 for cost increase. The Traditional diagram resulted to a value of -0.297 

that cost will not increase and a value of 0.683 that cost will increase. As expected, 

considering the Worst case scenario software cost is expected to increase no matter which 

methods or activities are selected to follow, agile or traditional. 

For the same question, executing the Ideal case scenario, the Agile diagram created 

showed that cost will not increase with a value of 0.718 while cost will increase with a value 

of -0.585. In the Traditional diagram the Ideal case showed that cost will not increase with a 

value of 0.543 and will increase with a value of -0.245. Therefore, the diagrams showed that 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

229 

in the Ideal case cost will probably not increase in the Agile nor in the Traditional case, with 

the former having a stronger confidence. 

The next two scenarios executed had the same conditions except the diversified 

experiences and skills of the team members and the project manager. Executing the Ideal-

Manager the Agile diagram showed that with a value 0.005 cost will not increase and cost will 

increase with the value of 0.249. On the contrary, the Traditional diagram showed that cost 

will not increase with a value of 0.296 and will increase with 0.117. It is obvious that having a 

weak team, even with a strong project manager, in Agile methods software cost is more 

probable to increase, whereas in Traditional development the existence of a strong project 

manager counterweights the situation, and most probably cost will not increase. However, the 

decision in Traditional with a strong manager versus a weak team is not ‗distinct‘ (clear) 

because the values produced were close. 

Executing the Ideal-Team case scenario where a strong team supports the activities but the 

project manager is weak, in terms of experience and skills, the diagrams support a different 

decision. The Agile diagram yields that the cost will not increase with a value of 0.294 and it 

will increase with the value of 0.033. The Traditional diagram resulted that the cost will not 

increase with the value of 0.066 and it will increase with the value of 0.400. The experimental 

results showed that Agile methods with an ideal team will probably not lead to a cost increase 

(even though the project manager has low skills). On the contrary, even though there is a 

strong development team in the Traditional environment, due to the weakness of the manager, 

cost will most probably increase. Overall, the results obtained were very encouraging as they 

showed that the diagrams worked reasonably well, fully adopting the conditions in each of the 

paradigms followed. In cases where the organisation‘s conditions did not favour the Agile 

paradigm, all diagrams consent to following a Traditional method instead, as the use of Agile 

would have an increase in cost and should be avoided. 

The following chapter provides a summary of the approaches explored in this thesis and 

includes an overall discussion on the targets achieved, problems and threats of each SCE 

model proposed and described the future research steps. 

Efi P
ap

ath
eo

ch
aro

us



 

230 

 

Chapter 5  

Conclusions and Discussion 

In this chapter the research goals of this diatribe are summarised and the main results and 

conclusions are discussed. Future work is also provided along with a list of open research 

issues and potential extensions of this work. 

5.1 Summary 

Recalling the modelling and Software Cost Estimation (SCE) methodologies explored in 

this diatribe we summarise: Two approaches were followed the Quantitative and the 

Qualitative to explore the subject from two different points of view. 

The Quantitative models created followed a supervised type of learning based on 

empirical project data. The models were developed and calibrated using a part of the project 

samples and the rest samples (the ‗unseen‘ part) were used to evaluate their prediction and 

generalisation performance. The techniques utilised by the models proposed originate from 

the Computational Intelligence (CI) area. They aimed to model and accurately estimate the 

development costs of real software projects. Each model utilised data from empirical software 

project datasets that are publicly available, such as the COCOMO, the Albrecht and Gaffney, 

the Kemerer, the Desharnais and the ISBSG datasets. 

The exploration of the proposed modelling and cost estimation techniques carried out in 

this thesis began with Size-Based SCE (SB-SCE) models. The SB-SCE models investigated 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

231 

the relation of software size and effort, as the former was expressed with Lines of Code 

(LOC) and/or Function Points (FP). The investigation included finding the optimum model for 

the relationship between size and development effort. The main conclusion of the SB-SCE 

models was that size expressed in FP presented considerable advantage in estimating effort 

compared to the corresponding size-related metric of LOC. The experiments showed that 

effort is driven by size-based factors but also other cost drivers exist that seem to affect the 

value of effort. This effect of other cost drivers, or software features, on effort was further 

analysed in subsequent investigations conducted in this thesis.  

Moreover, the accuracy of the ANN models developed for SB-SCE was compared to 

regression which is one of the most popular approaches in SCE. The second observation made 

during the experimentation with SB-SCE models was that one of the critical factors affecting 

the performance of an ANN was the internal network architecture. Therefore, a Genetic 

Algorithm (GA) was developed and was responsible to optimise the patterns of data used as 

inputs and the internal ANN architecture, thus partially automating the ANN design. The 

patterns of inputs were specified to investigate the prediction ability of the ANN using data 

fed as patterns of size-effort from projects within the same company and from cross-

organisations, i.e., international projects from many companies around the world. The 

experiments conducted showed that the hybrid model developed for SB-SCE provided 

optimised accuracy results in most dataset cases and explored a vast space of solutions. The 

main conclusion was that effort predictions were divergent over both the single-company and 

multi-company (ISBSG R9-1) datasets, i.e., it was easier to locate an improved accurate 

model in the single-company datasets than in the ISBSG dataset.  However, apart from some 

ANN topologies and patterns of inputs found to optimise the prediction performance, it 

became evident that the SB-SCE based on ANN could not converge to optimal solutions for 

every single case (dataset or project data split examined). The above confirms the previous 

assumption that LOC and/or FP metrics alone cannot always produce accurate effort 

estimations, and an exploratory study of other factors affecting effort needs to be considered. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

232 

Therefore, the subsequent approaches investigated the evaluation and selection of 

appropriate inputs (or project features) and aimed to enhance our understanding of the cost 

drivers‘ effect in the SCE process. Also, the main outcome from selecting the most 

appropriate (or ‗significant‘) features in SCE is that it may contribute to minimising the 

required effort and time to gather, process, store and maintain large quantities of project 

attributes for future SCE and simplify the overall estimation process.  

Initially, the investigation of the utilisation of ANN for Feature Subset Selection (FSS) 

and evaluation was carried out. The methodologies developed aimed to improve effort 

predictions and lower the complexity of the model by reducing the input‘s dimension. This 

reduction was based on a process to extract the most influential cost drivers that describe best 

the effort devoted to development activities using the weights of the network connections. In 

addition, the cost drivers (or features) selected were assessed towards their effect on effort 

estimation performance. Three variants of FSS approaches investigated the ability of an ANN 

to predict effort, generalise the knowledge acquired during training and yield predictions with 

a minimal set of features, thus reducing the need to feed the network with large quantities of 

inputs. The hybrid approaches combined ANN and Input Sensitivity Analysis (ISA) by 

employing three different methodologies (although similar in principle) which utilised the 

network weights for obtaining the following: (i) the significance degree of inputs (through 

empirical thresholds), (ii) the relative input‘s strength (Azoff, 1994) and (iii) the overall 

relative importance (Garson, 1991). The FSS executed was successful in some datasets (e.g., 

the ISBSG R9-2) but less successful in other datasets (e.g., the Desharnais and the ISBSG R9-

3). The common features selected were for the Desharnais dataset the number of transactions 

and software size (FP) and for the ISBSG the software functional size, number of software 

additions and external enquiries (reports). Also, the hybrid ANN & ISA techniques showed 

that the balance between the appropriate number and convenient type of inputs used in the 

model (i.e., a relatively small input size of attributes that can be measured from the initial 

project phases) need to be defined so that the level of accuracy performance will be within 

‗acceptable‘ - within explicit limits - for a project manager or a cost estimator. Although these 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

233 

limits are considered speculative and subjective for each project manager, there is a 

considerable benefit from investigating the contribution of features in SCE. 

In order to further explore this, nine dedicated FSS approaches were employed with Ridge 

Regression (RR) acting as the evaluator of each approach. The approaches aimed to 

automatically identify the ‗significant‘ features and evaluate them separately (i.e., excluding 

the ‗less significant‘ features from the original datasets of Desharnais and ISBSG R9-4) by 

carrying out SCE. Finally, a comparison of the initial predictions (using the full attributes set) 

and the final predictions (using the selected attributes set) is performed. In some cases, the 

prediction results were maintained at similar levels compared to the initial predictions 

obtained with the full feature set and, in addition, the number of ‗optimal‘ features selected 

was reduced to more than half. The results also showed that the attributes selected for each 

dataset were related to concepts akin. Particularly, for the Desharnais dataset the promoted 

attributes were related with software size (in FP) and duration (in months). Other factors were 

the number of transactions, entities and scope of the project. For the ISBSG R9-4 the selected 

attributes related with the software size (in AFP), duration, recording method and team size. 

Other factors were the language type and development technique used. The argument made 

therefore in the former experimentations (with the SB-SCE models) that apart from size-

related metrics there are other cost drivers that affect development effort was confirmed since 

they were selected by the FSS approaches. In addition, within the single-company dataset (the 

Desharnais) the features selected were not related with the team‘s characteristics, team size, 

domain experience etc., since in this case they were the same or quite similar, and therefore 

did not play a critical role in describing effort, as expected. In contrast, for the ISBSG case 

which is a multi-organisational dataset, the features selected were related with factors that are 

diversified between different organisations and development teams. This leads to the 

interesting observation that even though some cost drivers identified in the past to clearly 

affect the value of effort, there might be factors which are not mentioned/measured in single-

company datasets, not because they do not affect effort, but because they are considered 

constant within the context of the company (e.g., domain experience and use of tools). 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

234 

Moving on, the subsequent investigations of this thesis aimed to analyse from large and 

heterogeneous datasets (such as the ISBSG) factors of numerical, nominal and descriptive 

(including multi-categorical) nature. The factors of this nature required intensive pre-

processing, filtering (vertical and horizontal), transformation and fuzzification, in order to be 

suitable for cost models. The activities elaborated subsequently aimed to improve the quality 

of the accuracy performance of SCE models from the CI-domain. Two approaches were 

followed for conducting Clustering and Classification for SCE (CC-SCE) using notions from 

the field of CI, i.e., evolutionary approaches, fuzzy logic, machine learning and fuzzy systems. 

Initially, clustering was performed taking into consideration ranges of values instead of 

rules containing crisp attribute values. The novel technique proposed for SCE included a 

Genetic Algorithm (GA) for evolving value ranges of cost attributes based on the real project 

values within datasets and the evaluation of the value ranges was based on Conditional Sets 

(CS) theory. The aim was to address the problem of large value variances found in the 

available historical project data, especially in the ISBSG dataset case, used in SCE which 

resulted in inadequate fitting in some cases. Also and as already mentioned, meaningful 

software data is quite expensive to collect, manage and maintain. Therefore, in order to lower 

the need within the SCE process to gather accurate and homogenous data, the proposed 

technique considers replacing the actual data values with simulated or generated data ranges. 

The estimation of effort was performed using the mean effort of the actual projects that 

satisfied the value ranges included in equations expressed as Conditional Sets (CS). The 

hybrid technique created evolved CS through the application of a GA to satisfy as many 

similar projects and obtaining as narrow ranges in the CS as possible. The technique was 

found inadequate to produce particularly narrow ranges regarding the attributes investigated, 

but only satisfied a small number of projects, something which confirmed the existence of 

diversity in the values within the ISBSG R9 dataset for these attributes. The technique, even 

though was promising as a concept, produced adequate CS but failed to cover the whole 

spectrum, or at least a large spectrum, of projects in the dataset and thus, prediction 

performance was not impressive. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

235 

The next clustering technique employed aimed to address the multi-dimensionality and 

uncertainty included in fuzzified datasets and obtain predictive intervals of effort. The 

predictions were based again on the mean and standard deviation of the samples with strong 

membership within a fuzzy cluster. The fuzzy clustering algorithm of Entropy-based Fuzzy k-

modes was applied and yielded relatively invariable clusters of projects within the ISBSG R9-

8 dataset and with the estimations lying within the calculated interval in a large number of 

cases. The results obtained confirmed the need for applying clustering in such multi-

dimensional datasets and the existence of highly divergent measurements in the dataset. Also, 

the above observations triggered the need for investigation of classification rules within the 

context of SCE that may facilitate the optimisation of the clustered (grouped) projects which 

will be later on selected and used for effort approximations 

Therefore, the exploration of a Genetic Programming (GP-based) approach for SCE was 

performed which investigated algorithmic SCE and created automatic large quantities of rule-

based equations. These equations included arithmetic and logical expressions for the 

numerical software attributes (such as LOC and programming language experience in years) 

and for the nominal software features (such as organisation type) respectively. The optimal 

rules were selected by the GP through an evolutionary process and were used to directly 

estimate effort by solving the arithmetic expressions and by classifying projects through the 

logical expressions and predicting effort as a range within the mean effort and the standard 

deviation of the projects satisfying the expression. Even though the model was quite 

promising the prediction results obtained were not very successful, considering the acceptable 

rate for software prediction models set by Conte et al. (1986), i.e., ≤ 0.25. From the rules 

obtained, however, the participating attributes were analysed in terms of having a higher 

influence/presence for each dataset utilised. Therefore, the attributes having higher presence 

in the GP rules were: for the COCOMO dataset the attributes of project size, duration, 

complexity and analyst experience, for the Desharnais dataset the project duration, scope, 

number of transactions and function points (adjusted) and for the ISBSG R9-4 dataset the 

attributes of organisation type, development technique, database system used and the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

236 

maximum team size. The main advantage of the GP tool developed was that it automatically 

explored a vast set of potential solutions in an adaptive search technique. The main limitation 

was that it was too data-dependent.  

Subsequently, the following assumption was made: if we proposed a methodology to 

acquire classification rules that included fuzziness it would enhance the CC-SCE techniques 

proposed thus far, into Fuzzy CC-FCE, since they would not be crisp-value-dependent and 

thus taking better into account the uncertainty of the data values. The methodology developed 

for classification and prediction used the techniques of Fuzzy Logic (FL) and Decision Trees 

(DT) to obtain fuzzy rules. These rules were used to obtain estimations based on: (i) the mean 

effort values of the fuzzy range, (ii) the mean value and standard deviation of effort from the 

classified projects (classification was based on the aforementioned fuzzy rules), and (iii) 

Fuzzy Implication Systems (FIS) that aggregate the aforementioned fuzzy rules to perform 

effort implication (suggestion). Thus, the predictions were based on the production of rules 

obtained from Fuzzy Decision Trees (FDT) and their utilisation as classifiers and predictors. 

The main advantage was the automation in the construction of fuzzy rules which were overly 

simple, described in an intuitive form and may be considered to enhance the knowledge and 

understanding of the project manager and team regarding the factors in software development 

driving effort. The methodologies yielded quite accurate predictions and more importantly 

provided comprehensible linguistic rules that may increase the acceptability by individuals 

since they are expressed in a way closer to the way humans think. Comparing the prediction 

results of the hybrid FDT & FIS technique with previous work the main observation was that 

the accuracy was not improved for the cases of Desharnais and ISBSG R9-9 compared with 

the ANN technique. However, using a set of features that may be measured from the ‗early‘ 

project phases the hybrid FDT & FIS algorithm outperformed the predictions of ANN.  

Before moving on and concluding this summary, another approach was utilised for 

improving SCE in the sense of producing Predictive Interval estimations (PI-SCE) through the 

novel technique in the area of SCE of Conformal Predictors (CP) and RR. The hybrid 

approach yielded narrow and reliable intervals according to specified confidence levels, which 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

237 

may be regarded acceptable in practice by project managers. Finally, the last Quantitative 

model proposed in SCE was the Phased-Based SCE (PB-SCE) model. Empirical 

investigations were carried out on the adjustment of work effort progressively throughout the 

whole software project life-cycle and along the development phases. Particularly, estimates 

were progressively updated and total effort, as well as at fixed point in time of the 

development process, the effort of the next phase were assessed. The experimental results 

obtained with only a small portion of the newer version of the ISBSG (R10) were at a 

preliminary stage and further investigations need to be conducted.  

The above Quantitative investigations led to the conclusion that even through exploration 

of a variety of techniques, based on different concepts and enhancers/optimisers (i.e., feature 

subset selection approaches, genetic-based evolutionary optimisations, methods of 

fuzzification, clustering and classification) the SCE prediction can be enhanced, but it seems 

that a single optimal (panacea) method cannot be used as a solution for all project cases. 

Therefore, under specific requirements the estimator might prefer one technique over another. 

The above indicates that there is need for structuring the decision process of deciding which 

SCE technique to use. Taking this into consideration, for each dataset and with respect to the 

experiments conducted in this work the following is proposed: The model achieving the 

lowest MMRE in estimating effort and should be selected for SCE for the COCOMO dataset 

was Ridge Regression (RR) utilising all features (with MMRE equal to 0.422), for the 

Albrecht and Gaffney dataset was Ordinary Least Regression (OLS) utilising only the feature 

Function Points (FP) (with MMRE equal to 0.248), for the Kemerer dataset was OLS utilising 

only the feature Adjusted Function Points (AFP) (with MMRE equal to 0.196), for the 

Desharnais dataset was Artificial Neural Networks (ANN) utilising only the feature of AFP 

and also using Input Sensitivity Analysis (ISA) (with MMRE equal to 0.051 and 0.293 

respectively) and finally for the ISBSG dataset again the was ANN and also combined with 

ISA (with MMRE equal to 0.199 and 0.191 respectively).   This short comparison per dataset 

was made taking into consideration the method performance metrics were calculated in each 

case so that comparison of ―apples with apples‖ is ensured.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

238 

Finally, concluding this research work Qualitative models were developed for simulating 

and analysing the dynamics of various factors in the development environment which cannot 

be quantitatively assessed (such as team composition and organisation). A model based on 

Fuzzy Cognitive Maps (FCM) for SCE was evaluated via two real-case scenarios taking into 

consideration the opinions and expertise of three project managers from three European 

countries. The FCM-SCE model showed that it captured the dynamics of the situations tested. 

Finally, the qualitative investigation in SCE included the influence of the Agile paradigm 

which is a relatively popular approach followed during the last 10 years in software 

development. The Agile Influence Diagrams (ID) proposed for SCE (ASD-SCE) examined 

the benefits of switching from traditional software development to agile methods and how 

software cost might change if agile methodologies are adopted by an organisation. 

5.2 Goals Achieved and Significance 

The main contribution of this work is the exploration of the effectiveness and applicability 

in specific project cases of CI techniques and models for obtaining accurate and reliable 

approximations of the human effort required to develop software systems. This exploration 

included the analysis and understanding of the relationships holding among the various cost 

drivers and the development effort required to produce software. The analysis concluded also 

provided the identification of the most significant and appropriate cost drivers for particular 

project cases, i.e., within single-company or multi-company international empirical software 

datasets.  

In addition, the relationships within the development environments were effectively 

modelled through various CI techniques. The models were distinguished into Quantitative and 

Qualitative according to the aspect of SCE targeted in each respective case, i.e., quantitative 

or scenario-based and decision analysis effort approximations. Specifically, the Quantitative 

explorations initially confirmed the importance of the size metric in SCE but the difficulty to 

approximate effort accurately for every single project case led to the conclusion that other 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

239 

factors need to be investigated. The SCE models described in this thesis‘ quantitative 

approach were considered successful and novel compared to other studies since they 

investigated beyond accuracy, which is the dominant approach in SCE studies, the 

significance of cost drivers through Feature Subset Selection (FSS) approaches. Regarding 

accuracy of the SCE performed in this work, the figures obtained showed improved prediction 

accuracy for all the datasets examined compared to other related research work (e.g., some 

recent examples include Huang et al. (2008), Azzeh et al. (2008), Li et al. (2009a), Li et al. 

(2009b), Oliveira et al. (2010) and Azzeh et al. (2010)). The FSS-SCE also provided intuitive 

support for understanding the strength of inputs and the sensitivity of the relationships 

between cost driver parameters and model prediction results. The implementation of the 

algorithms, techniques and models for SCE explored in this thesis, originating from the 

domain of CI, established reliable, accurate and comprehensible (in the sense of practical) 

effort estimations and particularly identified the strong relationships among factors 

contributing with a relatively higher degree (than the rest factors) to the accurate prediction of 

effort. The abovementioned practicality also included addressing the particular needs of 

people that are involved in project resource management and in SCE, including software 

managers, system and subsystem engineers, stakeholders and cost estimators. However, this 

practicality needs to be further investigated through application of the CI-based approaches in 

a real industrial setting (i.e., collaboration with a software company). 

This thesis increased the comprehensibility of both the CI techniques for SCE and the 

results obtained by the models proposed. This level of understanding was increased by the 

clear definition of experiments, selection of parameters and by brightening up the internal 

workings of models such as the ANN for example, that are usually considered ‗black-box‘, by 

utilising fuzzy rules, linguistic terms and intervals to express a result (a rule, a prediction or a 

confidence level) and reach to a more informed decision. In addition, some of the models 

developed were more robust than others (e.g., FDT compared to ANN) that is the solutions 

are less sensitive to the change of parameters. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

240 

This research thesis has addressed key factors that contributed in obtaining improved 

effort estimates and were generally missing from many other SCE attempts. The key factors 

taken into consideration for this thesis have never been embraced into one exploration, and 

have addressed the following issues: the inherent software data uncertainty/heterogeneity, the 

existence of null (missing), multi-categorical, nominal and numerical values in the datasets, 

outliers (in the sample and in the predictors), causality (analysis of parameters‘ change and 

inputs‘ contribution), feature (inputs) selection and new development paradigms. In addition, 

optimisation of the software data quality was produced through clustering, fuzzy clustering, 

genetically evolved clustering and classifications, fuzzy classifications and predictions 

through intervals.  

Qualitative explorations were conducted to represent and realise the complex environment 

of software development and particularly the degree of causality among a concise set of 

factors causing alterations to software effort. The models were composed of factors found in 

the relevant literature to affect development processes in general and in the particular cases of 

development methods with the Agile paradigm. The effectiveness of such models depended 

on the experts‘ understanding of the influences among concepts and the techniques used to 

perform the calculations for the model result. The knowledge of a group of experts, from three 

different European countries, was used and several hypothetical scenarios were used for 

estimating effort in particular cases and in the Agile environment. 

The CI-based models proposed in this thesis increased our understanding of the SCE 

problem and proposed viable alternatives for accurate and reliable estimations. The models 

assisted in reducing the complexity of the problem by automating the estimation process and 

disengaging it from the need of an expert or consultant (at least after a model is efficiently 

constructed and trained). Moreover, the significance of the models proposed is the creation 

and utilisation of novel forms of Computational Intelligent models and hybrid models, 

combining more than one technique for the challenging task of SCE. Finally, the aim of this 

dissertation to override some of the main disadvantages, limitations and problems occurring 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

241 

with the examined CI methods was achieved through the detailed experimental form which 

furthermore, addressed the overall complexity and uncertainty of the problem of SCE. 

5.3 Discussion of the Threats to Validity 

The main threads to validity of the models proposed in this thesis included:  

 Availability of software metrics. Both Quantitative and Qualitative models rely on 

the existence of prior knowledge regarding several project attributes and 

characteristics of the organisation. Therefore, one possible threat is that some of this 

information is impossible to know beforehand, i.e., before the actual development of 

the software, or even is considered subjective to measure. Such attributes are 

considered complex and difficult to be objectively calculated. However, this threat is 

not prohibitive in including such software metrics within the models proposed since 

they are considered to represent values that are believed or anticipated to be valid for 

the organisation and software under development. Therefore, project managers may 

for example approximate or use information from prior completed projects, 

knowledge and past experience to reach to estimates for these software metrics.  

 Availability of size metrics. The models based on size metrics (all proposed models 

in this thesis including software size as a factor and especially the SB-SCE models) 

require the availability of the software size, before the project begins or at least at the 

initial project phases where the SCE process is more practical. This threat is 

recognised as a threat in almost all data-driven software cost models in the relevant 

literature (Fenton and Pfleeger, 1997). However, in this work this threat has been 

addressed in two ways: Firstly, size metrics are not considered to represent the actual 

code length in Lines of Code (LOC), number of Function Points (FP), etc. delivered, 

but represent values anticipated (estimated) by project managers. Secondly, size 

metrics are used from past completed projects as available measures to construct 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

242 

(and/or train) a model and then the model is utilised for yielding estimates for the new 

(similar) project case(s).  

 Small dataset size. Several datasets (e.g., the COCOMO, Albrecht and Gaffney, 

Kemerer and Desharnais dataset) included a small size of samples. This on one hand 

raises doubts as regards proper model training versus overfitting on such small 

datasets and on the other hand, limits the significance of the findings since the results 

may be considered valid for only the small number of projects examined. 

Nevertheless, the threat of overfitting was handled by using holdout samples and 

testing the generalisation ability of the model on ‗unseen‘ samples. This of course 

raises the threat discussed in the next point. Moreover, regarding overfitting in the 

training process of the ANN models (which are generally blamed for obtaining too 

accurate results), it was also avoided by stopping training in any of the following 

cases: if a maximum amount of epochs or time was reached, if performance reached 

the goal set and if validation performance was increased more than 5 times of 

maximum validation failures since the last time it decreased. The latter threat of the 

significance of the results was addressed by utilising larger in size datasets, like the 

ISBSG R9. 

 Lucky or local successful performance. This threat is also related to the 

generalisability of the models when samples change which is discussed in the next 

point. Some of the models proposed were constructed based on a set of samples 

(training) which were obtained from separating the datasets. Therefore, one may 

argue that the results obtained from these models (e.g., the SB-SCE models of 

multiple hidden layer ANN, the genetically evolved CS for classification and SCE 

and the Entropy-based fuzzy k-modes clustering algorithm and SCE) were dependent 

to the random division of training and testing set of samples. However, this threat was 

treated in the experimentation with the models proposed by: (i) repeating the process 

(including the data separation) a number of times and reporting the best accuracy 

results from all the models constructed (e.g., refer to the rest SB-SCE of ANN and the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

243 

GP application for CC-SCE), (ii) repeating the process (including the data separation) 

a number of times and reporting means of performances over a number of executions 

(e.g., the hybrid ANN with the first two ISA approaches for FSS-SCE), and (iii) 

performing k-fold cross-validations (e.g., the ANN and the third ISA approach and 

RR in the FSS-SCE, FDT in the CC-SCE, CP with RR in the PI-SCE and the ANN in 

the PB-SCE models). 

 Model generalisability. As already mentioned above, some models developed and 

trained will not necessarily work sufficiently well when conditions (e.g., data 

samples, environments) change. Having in mind that the proposed models are 

empirical investigations based on available project data datasets, it is clear that when 

new data, projects or organisations emerge to utilise the models, they might fail to 

generalise. Especially in software development environments that are frequently 

characterised by rapid change in the technologies used, the people involved and the 

software constructed, it is hardly the case that within different conditions the same 

accuracy results in terms of performance errors will be obtained. In the investigations 

carried out in this thesis and for the specific datasets, the trained models seem to have 

worked sufficiently well, using the ‗holdout‘ samples (and during validation – when 

validation was used). The same models, though, in light of a large number of 

completely different projects may or may not work that well. In such case, the cost 

estimator might need to repeat the process of training until the models restore their 

ability to generalise with the new data (if this is possible to achieve).  

 Data degree of variability/heterogeneity: The data samples included in the 

experiments vary considerably in terms of characteristics. This was observed 

especially in the cases of the multi-organisational and international datasets such as 

the ISBSG R9 and R10. Even though the same data collection method was used for 

these datasets the measurements yielded are considered highly subjective or the 

projects are extremely diversified. Through the investigations of this thesis it was 

observed that effort distributions in relation to project features, such as functional 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

244 

size, development type, language type and team size, did not follow the normal form 

and therefore huge variations existed. The lack of homogeneity may be addressed if 

project samples were carefully collected, under the same conditions i.e., similar 

processes, technologies, environments, people and requirements, and as long as 

consistent counting methods are used (Leung, 2002). Some of these conditions might 

be less variable in cases were projects belonged to a single-company and therefore 

such datasets were utilised in this work (e.g., COCOMO, Albrecht and Gaffney, 

Kemerer and Desharnais datasets). In addition, to eliminate the inherent 

heterogeneity, improve the quality and consistency of the datasets filtering and pre-

processing activities were carried out in this dissertation (refer to Table 4.1 and also to 

the methodologies including fuzzification, clustering and classification). 

 Subjectiveness of data pre-processing. The pre-processing activities carried out on 

the available project data were different in each approach proposed and analysed in 

this diatribe. Thus, the trained models might not work in different contexts and if for 

example insufficient pre-processing is carried out. Thus, the performance figures 

obtained from the various models may not be always directly comparable. This is a 

common threat found in most SCE studies as discussed by Mair and Shepperd (2005). 

However, this threat was partially treated by performing common necessary pre-

processing activities to obtain a more homogeneous dataset appropriate for each SCE 

approach and in some cases the exact filtered datasets were obtained (e.g., Desharnais, 

COCOMO, ISBSG R9-4). Moreover, the variables selected and included in the SCE 

models proposed were those considered more appropriate to describe development 

effort. This selection was purely empirical and was not based on any scientific 

evidence apart from relevant studies describing attempts and experiences with other 

models utilising specific variables. The variables selected involved in some cases 

highly subjective measures, such as team experience, project size and complexity, 

whose effect on effort was harder to be captured or explained by traditional SCE 

models. The target of this work, though, was not to assess the subjectivity of the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

245 

measurements but to produce successful effort estimations with the use of a limited 

set of variables from the specific datasets, something that was finally achieved. 

 Data representativeness and quality. Another threat is that the results of both 

Quantitative and Qualitative methodologies depend on the quality of the data utilised. 

There are cases where the form of data, the presence of collinearity, heteroscedasticity 

or even outliers within the samples jeopardise the outcome of estimation processes 

that rely on learning by examples (like the ANN models included in this thesis). In 

addition, projects listed within datasets usually do not constitute the industry norm 

(ISBSG, 2007a; ISBSG, 2007b). This is mainly observed because organisations are 

usually reluctant to submit ‗unsuccessful‘ projects and the ‗failed‘ projects will 

usually not be ‗advertised‘ (i.e., submitted to the ISBSG organisation). The 

representativeness of the projects within the datasets unfortunately was not tackled in 

this thesis but the quality and consistency issues are believed to be resolved by 

considering the recommendations of the ISBSG‘s quality reviewers that assessed the 

quality of the submitted data values. In addition, the pre-processing steps (Table 4.1) 

and filtering activities (clustering, classification and feature selection) carried out in 

this thesis enhanced the quality of the data samples utilised.  

 Fuzziness/Defuzzification. Another threat is related to the way fuzzification and 

defuzzification were performed which might have affected the credibility of the 

results.  

 Fuzzification: The selection of the membership functions was clearly 

empirical. The shape was decided based on the general picture observed using 

histograms for each cost attribute which indicated that the respective function 

used was a good candidate for approximating the shape of the fuzzy set to 

which the crisp values were transformed. Whether this is actually a threat to 

the proposed approach can only be determined by looking at the results of 

each approach. If for example the selected membership function was 

appropriate then this is reflected in the accuracy of the final estimations. If the 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

246 

datasets change then obviously the same empirical process must be followed 

once again for defining the appropriate shape and the experiments must be 

repeated on a trial-and-error basis. Once, though, the shape is correct the cost 

model may be considered reliable under the assumption that the dataset used 

for creating the rules reflects also the characteristics of new projects. 

 Defuzzification: The process of defuzzification may also constitute a potential 

threat to the estimation process as it may also affect the accuracy of the 

estimates. Different methods for transforming the linguistic values of fuzzy 

variables into crisp numerical approximations were utilised, each resulting in 

possible loss of ‗detailed‘ information included in the part of the original 

value. This value is sort of filtered out by the fuzzification step described 

above and consequently by the reverse action of defuzzification. Again it is 

also a trial-and-error situation where one has to test various approaches for 

defuzzifying the result of the cost model to see which method suits best the 

available datasets. Once more, if this proves successful then accurate 

estimates may be produced by the model.  

 Fitness function. A possible threat which might have led to overly time-consuming 

explorations of the search space solutions in genetically evolved approaches was the 

use of conflicting factors within the fitness functions. Such conflicting objectives 

were employed in approaches like the hybrid ANN with the Genetic Algorithm (GA) 

in SB-SCE and the genetically evolved CS for the CC-SCE models. This threat could 

be treated by a multi-objective GA which is one of the future plans described in the 

following section. 

Closing this section, we may argue that the validity of the proposed SCE and modelling 

techniques does not suffer from serious threats or threats that were not addressed or planned to 

be addressed in some manner. Having the aforementioned threats in mind, their potential 

influence on the accuracy of the estimations for the SCE models proposed may be minimised 

or required the models to be re-calibrated to the current environment to minimise their effect. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

247 

5.4 Future Work 

The research conducted has provided an insight into using advanced CI approaches and 

paved the path for further research on software cost modelling and estimation. Some of the 

future research plans are summarised in this section. Future work will include two types of 

investigations based on extensions of the proposed models and developing new approaches 

pointing to new areas of research. 

Initially, the extensions or improvements of some aspects of the Quantitative and 

Qualitative SCE approaches application are summarised. First of all, a practical extension 

includes the application of the described SCE models in a real industrial setting, i.e., by a 

software company. The only requirement is that functional size measurement and work effort 

(in person-hours or person-months) are measured by the industrial partner. Also, other 

extensions include the development and investigation of more ISA approaches for the neurons 

of trained ANN, an issue which has not been used in previous SCE research nor has received 

attention to date. The ISA methods presented in this thesis for ANN are considered promising, 

since they are simple, enhance and elucidate the knowledge acquired within the neurons and 

may contribute in significantly increasing the acceptability of the ANN technique as a method 

for SCE by project managers and other researchers. Therefore, continuing the investigation 

towards this area is reasonable and beneficiary.  

Another possible extension of this work is to apply the hybrid genetically evolved ANN to 

investigate non-SB-SCE since the accuracy results obtained with only size-related features 

were quite promising. Another significant investigation regarding the application of ANN in 

the SCE research area is to explore the statistical robustness of the technique by comparing 

the performance obtained in terms of training ability and generalisation ability.  

Moreover, another general concern that needs to be quantified through the future SCE 

experiments carried out is the complexity of a method selected to be applied, compared to the 

accuracy increase of the predictions obtained with the respective method. Therefore, the 

balance between underfitting and overfitting needs to be found in order to achieve the best (or 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

248 

optimal) model. This issue, although taken into consideration by some of the techniques 

presented in this work (e.g., ANN), it was not however quantified. Another related significant 

issue raised in the genetically evolved approaches of this dissertation (e.g., the hybrids ANN 

& GA and the CS & GA) which needs to be addressed in future work is the appropriate 

selection of fitness function. In the approaches developed and presented in this thesis, some of 

the goals set were rather conflicting (i.e., performance vs. complexity, narrow ranges vs. 

clustering performance), and thus the consideration to develop a Multi-Objective evolutionary 

algorithm to handle this issue might be a novel step forward. 

Moreover, another future extension of this work is the coupling of the approach of 

Conformal Prediction (CP) with any other Computational Intelligent technique (such as ANN, 

FDT) to provide further positive contribution in the area of Predictive Intervals for SCE (PI-

SCE). This extension is particularly worthy of investigation in future research since it takes 

into consideration the variability, volatility and uncertainty of several factors in the SCE 

process. An interesting addition to the investigation will be the discovery of appropriate (or 

acceptable) predictive intervals in industry from interaction with, and feedback from, 

industrial partners. 

The incorporation of Fuzzy Logic theory was especially useful in several of the 

techniques developed in this research work (i.e., fuzzy clustering, FDT, FCM) and has 

showed great potential in addressing the uncertainty of the SCE process and in the values of 

the available datasets. Therefore, in the future, Fuzzy Logic might also be included in other 

approaches (like ANN, GP, ID) and thus enhance their properties and merits.  

In addition, future plans include the expansion of the work conducted related with Phase-

Based SCE (PB-SCE) and further investigation of the temporal dimension of project data to 

improve the accuracy already obtained through the preliminary experiments described in this 

dissertation.  

Also, an interesting step of future work might include combinations of the approaches 

described in this work that have not been examined; for example fuzzy clustering or CS might 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

249 

be employed to obtain ‗similar‘ projects as a ‗filtering‘ step and then the GP technique might 

be applied for obtaining more robust rules and predictions in SCE. 

Other future plans of research include expanding the Qualitative models presented in this 

diatribe which provided quite promising conclusions regarding the development environment 

and SCE. Flexibility and adaptability in these models is a key notion. Particularly, further 

experimentation with the FCM-SCE models will aim at refining its parameters, widening the 

spectrum of real-cases and capturing the dynamics of a real situation in a software 

development environment. In future work also, some Concept Nodes of the FCM might be re-

defined so that their value will be deterministic, restricted or biased. For example, the Process 

Maturity (CMM level) may be determined to a specific and unchanged value (e.g., CMM=3), 

the Application Domain Experience may only increase (e.g., from low to medium), and the 

Project Quality may only increase up to a certain point (e.g., from low up to average quality) 

with respect to the specific scenario executed. Moreover, in the FCM-SCE it might be 

interesting to observe the activation value of each concept and how the value is altered based 

on the specific scenario realised and investigate whether this change is acceptable or not based 

on the particular project and conditions. Other future possible extensions include locating the 

optimal weight matrices by applying a GA instead of consulting a group of experts. Such 

automated intelligent solutions may pave the way for simpler, future decision-support tools 

offering project managers a significant aid in SCE. 

Future extensions of this work will also include utilisation of the already developed 

models and enhancing them towards different targets. For example, the SB-SCE models 

developed may be particularly useful in analysing Open Source software. Open source 

software today has become an overarching software development paradigm which can be 

benefited by ‗post-mortem‘ analysis of the LOC of the source code produced.  

Other future new approaches in SCE include the utilisation of Self-Organising Maps 

(SOM) for visualising the heterogeneity of vast datasets (like the ISBSG) and addressing the 

problem of multi-dimensionality. SOM may facilitate advancing our research efforts of 

utilising a multi-dimensional dataset in SCE which contains a plethora of software projects 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

250 

and a large number of categorical and multi-valued attributes. Visualisation and analysis 

methods will enable increasing our understanding regarding such datasets and might 

contribute in taking decisions on how to reduce the dimensionality of the dataset, thus 

significantly minimising the complexity and time required to reach to an estimation using a 

particular SCE technique. 

Also, as already mentioned, the proposed SCE models need to be investigated in real 

software development environments, where our future research activities might target 

software re-use, component-based software development, open source software, software size 

estimations  utilising user requirements, use cases or other software artefacts, estimating 

duration (scheduling) and maintenance effort. SCE approaches need to be directed towards 

fields that have been adapted and adopted today by software engineers (e.g., object-

orientation, very high level languages of development, rapid and agile development 

processes).  

 

 

Efi P
ap

ath
eo

ch
aro

us



 

251 

 

References 

 

(Abdel-Hamid and Madnik, 1983) Abdel-Hamid, T.K., and Madnik, S.E. 1983. The 

Dynamics of Software Project Scheduling. Communications of the ACM 26 (5), 340-346. 

(Abran and Robillard, 1994) Abran, A., and Robillard, P.N. Function Points: a Study of their 

Measurement Processes and Scale Transformations. Journal of Systems and Software 25, 

171-184. 

(Adamopoulos et al., 1998) Adamopoulos, A.V., Likothanassis, S.D., and Georgopoulos, E.F. 

1998. A Feature Extractor of Seismic Data Using Genetic Algorithms, Signal Processing 

IX: Theories and Applications. In Proceedings of the 9
th
 European Signal Processing 

Conference (EUSIPCO), Vol. 2, Island of Rhodes, Greece, 2429-2432. 

(Aggarwal et el., 2005a) Aggarwal, K.K., Singh, Y., Chandra, P., Puri, M. 2005. Evaluation of 

various Training Algorithms in a Neural Network Model for Software Engineering 

Applications. ACM SIGSOFT Software Engineering Notes 30 (4), 1-4. 

(Aggarwal et el., 2005b) Aggarwal, K.K., Singh, Y., Chandra, P., Puri, M. 2005. Bayesian 

Regularization in a Neural Network Model to Estimate Lines of Code Using Function 

Points. Journal of Computer Sciences 1 (4), 505-509. 

(Aggarwal et el., 2005c) Aggarwal, K.K., Singh, Y., Chandra, P., Puri, M. 2005. An Expert 

Committee Model to Estimate Lines of Code. ACM SIGSOFT Software Engineering 

Notes 30 (5), 1-4. 

(Ahmed et al., 2005) Ahmed, M.A., Saliu, M.O., and AlGhamdi, J. 2005. Adaptive Fuzzy 

logic-based Framework for Software Development Effort Prediction. Information and 

Software Technology 47, 31-48.  

Efi P
ap

ath
eo

ch
aro

us



 

 

 

252 

(Albrecht and Gaffney, 1983) Albrecht, A.J., and Gaffney, J.R. 1983. Software Function 

Source Lines of Code, and Development Effort Prediction: A Software Science 

Validation. IEEE Transactions on Software Engineering 9 (6), 639-648, ISSN: 0098-

5589. 

(Albrecht, 1979) Albrecht, A.J. 1979. Measuring Application Development. In Proceedings of 

IBM Applications Development Joint SHARE/GUIDE Symposium, Monterey, CA, USA, 

83-92. 

(Ambler, 2005) Ambler, S.W. 2005. A Manager‘s Introduction to the Rational Unified 

Process (RUP), December 2005 (online).  Available at: 

http://www.ambysoft.com/downloads/managersIntroToRUP.pdf. 

(Ambler, 2008) Ambler, S.W. 2008. Agile Adoption Rate 2008 (online). Available at: 

http://www.ambysoft.com/surveys/agileFebruary2008.html. Accessed: December 2011. 

(Ambler, 2010) Ambler, S.W. 2010. Agile Project Success Rates 2010 (online). Available at: 

http://www.ambysoft.com/surveys/agileSuccess2010.html. Accessed: December 2011. 

(Andreou and Papatheocharous, 2008a) Andreou, S.A., and Papatheocharous E. 2008. 

Computational Intelligence in Software Cost Estimation: Evolving conditional sets of 

effort value ranges. In Tools in Artificial Intelligence, I-Tech Education and Publication 

KG, Vienna, 1-20. 

(Andreou and Papatheocharous, 2008b) Andreou, S.A., and Papatheocharous, E. 2008. 

Software Cost Estimation using Fuzzy Decision Trees. In Proceedings of the 23
rd

 

IEEE/ACM International Conference on Automated Software Engineering (ASE), 

L‘Aquila, Italy, 371-374. 

(Andreou et al., 2004) Andreou, A.S., Mateou, N.H., and Zombanakis, G.A. 2004. 

Optimization in Genetically Evolved Fuzzy Cognitive Maps Supporting Decision-

Making: The Limit Cycle Case. In Proceedings of International Conference on 

Information and Communication Technologies: From Theory to Applications (ICCTA), 

Damascus, Syria, 377-378. 

Efi P
ap

ath
eo

ch
aro

us

http://www.ambysoft.com/downloads/managersIntroToRUP.pdf
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/agileSuccess2010.html


 

 

 

253 

(Andreou et al., 2007) Andreou, S.A., Papatheocharous E., and Skouroumounis C. 2007. 

Evolving Conditional Value Sets of Cost Factors for Estimating Software Development 

Effort. In Proceedings of the 19
th
 IEEE International Conference on Tools with Artificial 

Intelligence (ICTAI), Vol. 1, Patras, Greece, IEEE Computer Society, 165-172. 

(Angelis and Stamelos, 2000) Angelis, L., and Stamelos, I. 2000. A Simulation Tool for 

Efficient Analogy Based Cost Estimation. Empirical Software Engineering 5(1), 35-68. 

(Angelis et al., 2001) Angelis, L., Stamelos, I., Morisio, M. 2001. Building A Software Cost 

Estimation Model Based On Categorical Data. In Proceedings of the 7
th
 International 

Symposium on Software Metrics (METRICS), London, United Kingdom, IEEE Computer 

Society, 4-15. 

(Antoniol et al., 2003) Antoniol, G., Fiutem, R., and Lokan, C. 2003. Object-Oriented 

Function Points: An Empirical Validation. Empirical Software Engineering 8(3), 225-

254. 

(Aroba et al., 2008) Aroba, J., Cuadrado-Gallego, J.J., Sicilia, M., Ramos, I., and García-

Barriocanal, E. 2008. Segmented Software Cost Estimation Models based on Fuzzy 

Clustering. Journal of Systems and Software 81, 1944-1950. 

(Attarzadeh and Ow, 2010) Attarzadeh, I. and Ow, S.H. 2010. Improving the Accuracy of 

Software Cost Estimation Model Based on a New Fuzzy Logic Model. World Applied 

Sciences Journal 8 (2), 177-184. 

(Axelrod, 1976) Axelrod, R. 1976. Structure of Decision: The Cognitive Maps of Political 

Elites. Princeton University Press, Princeton, NJ. 

(Azoff, 1994) Azoff, E.M. 1994. Neural Network Time Series Forecasting of Financial 

Markets. John Wiley & Sons, NY. 

(Azzeh et al., 2008) Azzeh, M., Neagu, D., Cowling P. 2008. Improving Analogy Software 

Effort Estimation using Fuzzy Feature Subset Selection Algorithm. In Proceedings of 4
th
 

InternationalWorkshop on Predictor Models in Software Engineering (PROMISE), 

Leipzig, Germany, 71–78. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

254 

(Azzeh et al., 2010) Azzeh, M., Neagu, D., and Cowling, P.I. 2010. Fuzzy Grey Relational 

Analysis for Software Effort Estimation. Empirical Software Engineering 15 (1), 60-90. 

(Bailey and Basili, 1981) Bailey, J.J., and Basili, V.R. 1981. A Meta-model for Software 

Development Resource Expenditures. In Proceedings of the 5
th
 International Conference 

Software Engineering (ICSE), San Diego, CA, USA, IEEE/ACM/NBS, 107-116. 

(Barry et al., 2002) Barry, E.J., Mukhopadhyay, T., and Slaughter, S.A. 2002. Software 

Project Duration and Effort: An Empirical Study. Information Technology and 

Management 3(1-2), 113-136. 

(Beale et al., 2011) Beale, M.H., Hagam, M.T., and Demuth, H.B. 2011. Neural Network 

Toolbox User‘s Guide R2011b, The MathWorks, Natick, MA. Available at: 

http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf. Accessed: December 2011. 

(Beck et al., 2001) Beck, K., Grenning, J., Martin, C.R., Beedle, M., Highsmith, J., Mellor, S., 

Bennekum, van A., Hunt, A., Schwaber, K., Cockburn, A., Jeffries, R., Sutherland, J., 

Cunningham, W., Kern, J., Thomas, D., Fowler, M., and Marick, B. 2001. Manifesto for 

Agile Software Development. Agile Alliance (online). Available at: 

http://agilemanifesto.org/. Accessed: April 2010. 

(Belue and Bauer, 1995) Belue, L.M., and Bauer, K.W. 1995. Determining Input Features for 

Multilayer Perceptrons. Neurocomputing 7, 111-121. 

(Benediktsson and Dalcher, 2003) Benediktsson, O., and Dalcher, D. 2003. Effort Estimation 

in Incremental Software Development. IEE Proceedings Software Engineering 150 (6), 

351-357. 

(Benington, 1956) Benington, H.D. 1956. Production of Large Computer Programs. In 

Proceedings of the ONR Symposium on Advanced Program Methods for Digital 

Computers, Washington, DC, USA, 15-27. (Also available in the Annals of the History of 

Computing, October 1983, 350-361.) 

(Betteridge, 1992) Betteridge, R. 1992. Successful Experience of Using Function Points to 

Estimate Project Costs Early in the Life-Cycle. Information and Software Technology 34 

(10), 655-658. 

Efi P
ap

ath
eo

ch
aro

us

http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
http://agilemanifesto.org/


 

 

 

255 

(Bezdek, 1980) Bezdek, J.C. 1980. A Convergence Theorem for the Fuzzy ISODATA 

Clustering Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 

2 (1), 1-8, ISSN 0162-8828. 

(Bhatnagar et al., 2010) Bhatnagar, R., Bhattacharjee, V., and Ghose, M.K. 2010. A Proposed 

Novel Framework for Early Effort Estimation using Fuzzy Logic Techniques. Global 

Journal of Computer Science and Technology 10 (14), 66-72. 

(Bibi et al., 2008) Bibi, M, Stamelos, I., and Angelis, L. Combining Probabilistic Models for 

Explanatory Productivity Estimation. Information and Software Technology 50, 656-669.   

(Biggs et al., 1991) Biggs, D., de Ville, B, Suen, E. 1991. A Method for Choosing Multiway 

Partitions for Classification and Decision Trees. Journal of Applied Statistics 18 (1), 49-

62. 

(Boehm and Sullivan, 1999) Boehm, B.W., and Sullivan, K. 1999. Software Economics: 

Status and Prospects. Information and Software Technology 41 (14), 937–946. 

(Boehm and Valerdi, 2008) Boehm, B.W., and Valerdi, R. 2008. Achievements and 

Challenges in COCOMO-Based Software Resource Estimation. IEEE Software 25 (5), 

74-83. 

(Boehm et al., 2000a) Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., 

Horowitz, E., Madachy, R., Reifer, D. J., and Steece, B. 2000. Software Cost Estimation 

with COCOMO II. Prentice-Hall, Upper-Saddle River, NJ. 

(Boehm et al., 2000b) Boehm, B.W., Abts, C., and Chulani, S. 2000. Software Development 

Cost Estimation Approaches—A survey. Annals of Software Engineering 10 (1), 177-

205. 

(Boehm, 1981) Boehm, B.W. 1981. Software Engineering Economics. Prentice-Hall Inc., 

Englewood Cliffs, NJ, ISBN: 0130266922. 

(Boehm, 1984) Boehm, B.W. 1984. Software Engineering Economics. IEEE Transactions on 

Software Engineering 10 (1), 4-21. 

(Boehm, 1988) Boehm, B.W. 1988. A Spiral Model of Software Development and 

Enhancement. IEEE Computer 21 (5), 61-72. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

256 

(Braz and Vergilio, 2004) Braz, M.R., and Vergilio, S.R. 2004. Using Fuzzy Theory for Effort 

Estimation of Object-Oriented Software. In Proceedings of the 16
th
 IEEE International 

Conference on Tools with Artificial Intelligence (ICTAI), Boca Raton, FL, USA, 196-

201. 

(Breiman et al., 1984) Breiman, L., Friedman, J., Oshlen, R., and Stone, C. 1984. 

Classification and Regression Trees, Wadsworth International Group, 1984. 

(Briand and Wieczorek, 2000) Briand, L.C., and Wieczorek, I. 2000. Resource Estimation in 

Software Engineering. International Software Engineering Research Network, Technical 

Report ISERN-00-05, Fraunhofer Institute for Experimental Software Engineering, 

Germany. 

(Brillinger, 2002) Brillinger, D.R. 2002. John W. Tukey: His life and professional 

contributions. The Annals of Statistics 30 (6), 1535-1575. 

(Brooks, 1995) Brooks, Jr, F.P. 1995. The Mythical Man-month (anniversary edition). 

Addison-Wesley Longman Publishing Co., Inc., Boston, MA. 

(Burgess and Lefley, 2001) Burgess, C.J., and Lefley, M. 2001. Can Genetic Programming 

Improve Software Effort Estimation? A Comparative Evaluation. Information and 

Software Technology 43, 863-873. 

(Ceschi et al., 2005) Ceschi, M., Sillitti, A., Succi, G., and De Panfilis, S. 2005. Project 

Management in Plan-Based and Agile Companies. IEEE Software 22, 21-25. 

(Chandrasekaran et al., 2006) Chandrasekaran, S, Lavanya R., and Kanchana V. 2006. Multi-

criteria Approach for Agile Software Cost Estimation Model. In Proceedings of the 

International Conference Global Manufacturing and Innovation (GMI), Coimbatore, 

India. 

(Chiu and Huang, 2007) Chiu, N., and Huang, S. 2007. The Adjusted Analogy-based 

Software Effort Estimation based on Similarity Distances. Journal of Systems and 

Software 80, 628-640.   

Efi P
ap

ath
eo

ch
aro

us



 

 

 

257 

(Conte et al., 1986) Conte, S.D., Dunsmore, H.E., and Shen, V.Y. 1986. Software Engineering 

Metrics and Models. The Benjamin/Cummings Publishing Company, Inc., Redwood 

City, CA. 

(Cooper, 1988) Cooper, G.F. 1988. A method for using Belief Networks as Influence 

Diagrams. In Proceedings of the 4
th
 Workshop on Uncertainty in Artificial Intelligence 

(UAI), Minneapolis, MN, USA, 55-63. 

(Decision Systems Laboratory: GeNIE, 1998) Decision Systems Laboratory, University of 

Pittsburgh. Graphical Network Interface (GeNIE). 1998 (online). Available at: 

http://genie.sis.pitt.edu/. Accessed: October, 2010. 

(DeMarco and Lister, 1999) DeMarco, T., and Lister, T. 1999. Peopleware: Productive 

Projects and Teams (2
nd

 edition). Dorset House Publishing Co., Inc., New York, NY. 

(DeMarco, 1982) DeMarco, T. 1982. Controlling Software Projects. Prentice-Hall, 

Englewood Cliffs, NJ. 

(Demuth and Beale, 2000) Demuth, H., and Beale, M. 2000. Neural Network Toolbox (for 

use with Matlab). MathWorks, Natick, MA. 

(Desharnais, 1989) Desharnais, J.M. 1988. Analyse Statistique de la Productivite des Projects 

de Development en Informatique a Partir de la Technique de Points de Fonction. MSc. 

Thesis, Université du Québec, Montréal, Canada. 

(Dircks, 1981) Dircks, H.F. 1981. SOFCOST: Grumman's Software Cost Eliminating Model. 

In Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON), 

Dayton, OH, USA. 

(Draper and Smith, 1998) Draper, N.R. and Smith, H. 1998. Applied Regression Analysis. 

Wiley-Interscience, Hoboken, NJ, 307–312. 

(Engelbrecht , 2007) Engelbrecht, A.P. 2007. Computational Intelligence: An Introduction 

(2
nd

 edition). John Wiley & Sons Ltd, West Sussex, England. 

(Fenton and Pfleeger, 1997) Fenton, N.E., and Pfleeger, S.L. 1997. Software Metrics: A 

Rigorous and Practical Approach. PWS Publishing Co., Boston, MA. 

Efi P
ap

ath
eo

ch
aro

us

http://genie.sis.pitt.edu/


 

 

 

258 

(Fenton, 2000) Fenton, N.E., and Neil, M. 2000. Software Metrics: Roadmap. In Proceedings 

of the 22
nd

 International Conference of Software Engineering (ICSE), Future of Software 

Engineering Track, Limerick, Ireland. ACM, 357–370. 

(Finnie et al., 1997) Finnie, G.R., Wittig, G.E., and Desharnais, J-M. 1997. A Comparison of 

Software Effort Estimation Techniques: Using Function Points with Neural Networks, 

Case-Based Reasoning and Regression Models. Journal of Systems and Software 39 (3), 

281-289. 

(Foss et al., 2003) Foss, T., Stensrud, E., Kitchenham, B.A., and Myrtveit, I. 2003.  A 

Simulation Study of the Model Evaluation Criterion MMRE. IEEE Transactions on 

Software Engineering 29, 985-995. 

(Fowler et al., 2000) Fowler, M., Parsons, R., and MacKenzie, J. 2000 (Talk): Coined the term 

POJO in a 2000 Conference (online). Available at: 

http://www.martinfowler.com/bliki/POJO.html. Accessed: December 2011. 

(Freiman and Park, 1979) Freiman, F.R., and Park, R.D. 1979. PRICE Software Model-

Version 3: An Overview. In Proceedings of the IEEE-PINY Workshop on Quantitative 

Software Models, IEEE Cat. TH0067-9, 32-41. 

(Garson, 1991) Garson, G.D. 1991. Interpreting Neural-Network Connection Weights. AI 

Expert 6, 46-51. 

(Genuchten and Koolen, 1991) Genuchten, M.V., and Koolen, H. 1991. On the Use of 

Software Cost Models. Information and Management 21 (1), 37-44. 

(Ghezzi et al., 2003) Ghezzi, C., Jazayeri M., and Mandrioli, D. 2003. Fundamentals of 

Software Engineering (2
nd

 edition). Pearson Prentice Hall, Upper Saddle River, NJ. 

(Gilb, 1976) Gilb T. 1976. Software Metrics, Chartwell-Bratt, Cambridge MA. 

(Glorfeld, 1996) Glorfeld, L.W. 1996. A Methodology for Simplification and Interpretation of 

Backpropagation-Based Neural Network Models. Expert Systems with Applications 10, 

37-54. 

Efi P
ap

ath
eo

ch
aro

us

http://www.martinfowler.com/bliki/POJO.html


 

 

 

259 

(Gray and MacDonell, 1997a) Gray, A.S., and MacDonell, S.G. 1997. A Comparison of 

Techniques for Developing Predictive Models of Software Metrics. Information and 

Software Technology 39, 425–437. 

(Gray and MacDonell, 1997b) Gray, A.S., and MacDonell, S.G. 1997. Applications of Fuzzy 

Logic to Software Metric Models for Development Effort Estimation. In Proceedings of 

the Annual Meeting of the North American Fuzzy Information Processing Society 

(NAFIPS), Syracuse, NY, USA, 394-399. 

(Grimstad et al., 2006) Grimstad, S., Jørgensen, M., and Moløkken-Østvold, K. 2006. 

Software Effort Estimation Terminology: The Tower of Babel. Information and Software 

Technology 48 (4), 302-310. 

 (Gruschke and Jørgensen, 2008) Gruschke, T.M., and Jørgensen, M. 2008. The role of 

Outcome Feedback in Improving the Uncertainty Assessment of Software Development 

Effort Estimates. ACM Transactions of Software Engineering Methodology 17, 1–35. 

(Hamming, 1950) Hamming, R.W. 1950. Error Detecting and Error Correcting Codes. Bell 

System Technical Journal 29 (2), 147–160. 

(Han et al., 2006) Han, J., Kamber, M., and Pei, J. 2006. Data Mining: Concepts and 

Techniques, The Morgan Kaufmann Series in Data Management Systems, (3
rd

 edition), 

Morgan Kaufmann, Waltham, MA. 

(Haykin, 1999) Haykin, S. 1999. Neural Networks: A Comprehensive Foundation (2
nd

 

edition). Prentice Hall, Upper Saddle River, NJ. 

(Heemstra and Kusters, 1991) Heemstra, F.J., and Kusters, R.J. 1991. Function Point 

Analysis: Evaluation of a Software Cost Estimation Model. European Journal of 

Information Systems 1(4), 223-237. 

(Heiat, 2002) Heiat, A. 2002. Comparison of Artificial Neural Network and Regression 

Models for Estimating Software Development Effort. Information and Software 

Technology 44 (15), 911-922. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

260 

(Herd et al., 1977) Herd, J.R., Postak, J.N., Russell, W.E., and Steward, K.R. 1977. Software 

Cost Estimation Study-Study Results, Final Technical Report (RADC-TR-77-220) Vol. 

1, Doty Associates, Inc., Rockville, MD. 

(Highsmith, 2003) Highsmith, J. 2003, Agile Project Management: Principles and Tools. 

Cutter Consortium 4, 1-37. 

(Hill et al., 2000) Hill, J., Thomas, L.C., and Allen, D.E. 2000. Experts‘ Estimates of Task 

Durations in Software Development Projects. International Journal of Project 

Management 18(1), 13-21. 

(Holland, 1992) Holland, J.H. 1992. Genetic Algorithms. Scientific American 267 (1), NY, 

66–72. 

(Horgan et al., 1998) Horgan, G., Khaddaj, S., and Forte, P. 1998. Construction of an FPA-

Type Metric for Early Lifecycle Estimation. Information and Software Technology 40 

(8), 409-415. 

(Höst and Wohlin, 1997) Höst, M., and Wohlin, C. 1997. A Subjective Effort Estimation 

Experiment. Information and Software Technology 39 (11), 755-762. 

(Howard and Matheson, 1984) Howard, R.A., and Matheson, J.E. 1984. Influence diagrams. 

Readings on the Princinples and Applications of Decision Analysis II, Howard, R. A., 

and Matheson, J. E. eds., Strategic Decision Group, Menlo Park, CA, 719–762. 

(Reprinted:  Howard, R.A., and Matheson, J.E. 2005. Influence diagrams. Decision 

Analysis 2 (3), 127–143). 

(Huang and Chiu, 2006) Huang, S., and Chiu, N. 2006. Optimization of Analogy Weights by 

Genetic Algorithm for Software Effort Estimation. Information and Software Technology 

48, 1034-1045. 

(Huang et al., 2003) Huang, X.L., Capretz, J.R., and Ho, D. 2003. A Neuro-Fuzzy Model for 

Software Cost Estimation. In Proceedings of the 3
rd

 International Conference on Quality 

Software (QSIC), Dallas, TX, USA, 126-133. 

Efi P
ap

ath
eo

ch
aro

us

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DH%25C3%25B6st,%2520Martin%26authorID%3D6602902996%26md5%3D831d7f3d35c0d5307db2ad02ba3daa6d&_acct=C000064619&_version=1&_userid=4731899&md5=5c946c9e8c4206877451173056e7c4cf
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DH%25C3%25B6st,%2520Martin%26authorID%3D6602902996%26md5%3D831d7f3d35c0d5307db2ad02ba3daa6d&_acct=C000064619&_version=1&_userid=4731899&md5=5c946c9e8c4206877451173056e7c4cf


 

 

 

261 

(Huang et al., 2006) Huang, S.-J., Lin, C.-Y., and Chiu, N.-H. 2006. Fuzzy Decision Tree 

Approach for Embedding Risk Assessment Information into Software Cost Estimation 

Model. Software Engineering and Software 22, 297-313. 

(Huang et al., 2008) Huang, S.J., Chiu, N.H., and Chen, L.W. 2008. Integration of the Grey 

Relational Analysis with Genetic Algorithm for Software Effort Estimation. European 

Journal of Operational Research 188 (3), 898-909. 

(Huang, 1998) Huang, Z. 1998. Extensions to the k-Means Algorithm for Clustering Large 

Datasets with Categorical Values. Data Mining and Knowledge Discovery 2 (3), 283-

304. 

(Huang, 1999) Huang, Z., and Ng, M.K. 1999. A Fuzzy k-Modes Algorithm for Clustering 

Categorical Data. IEEE Transactions on Fuzzy Systems 7 (4), 446-452. 

(Hughes 1997) Hughes, R.T. 1997. An Evaluation of Machine Learning Techniques for 

Software Effort Estimation. PhD Thesis, Department of Computing, University of 

Brighton, United Kingdom. 

(Hughes, 1996) Hughes, R.T. 1996. Expert Judgement as an Estimating Method. Information 

and Software Technology 38(2), 67-75.  

(Idri and Abran, 2001) Idri, A., and Abran, A. 2001. A Fuzzy Logic Based Set of Measures 

for Software Project Similarity: Validation and Possible Improvements. In Proceedings 

of the 7
th
 International Software Metrics Symposium (METRICS), London, United 

Kingdom, 86-96. 

(Idri et al., 2000) Idri, A., Abran, A., and Krishna, L. 2000. COCOMO Cost Model using 

Fuzzy Logic. In Proceedings of the 7
th
 International Conference on Fuzzy Theory and 

Techniques, Atlantic City, NJ, USA, 219-223. 

(Idri et al., 2004) Idri, A., Mbarki, S., Abran, A. 2004. Validating and Understanding Software 

Cost Estimation Models based on Neural Networks. In Proceedings of the 1
st
 

International Conference on Information and Communication Technologies: From 

Theory to Applications (ICTTA), Damascus, Syria, 433-434. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

262 

(IEEE standard 610.12, 1990) IEEE Standard Glossary of Software Engineering Terminology, 

IEEE standard 610.12-1990, 1990. 

(ISBSG, 2007a) ISBSG. Special Analysis Report: Early Lifecycle Software Estimation. 

Report. Available at: http://www.isbsg.org/. 

(ISBSG, 2007b) ISBSG. Guidelines for use of the ISBSG data. Report. Available at: 

http://www.isbsg.org/. 

(ISBSG, Repository Data Release 10) International Software Benchmarking Standards Group 

(ISBSG). 2008. The Benchmark Release 10. Available at: http://www.isbsg.org. 

(ISBSG, Repository Data Release 9) International Software Benchmarking Standards Group 

(ISBSG). 2005. Estimating, Benchmarking & Research Suite Release 9, Victoria. 

Available at: http://www.isbsg.org/. 

(ISO/IEC 20926, 2003) IFPUG. 2003. IFPUG 4.1 Unadjusted Functional Size Measurement 

Method – Counting Practices Manual, International Organization for Standardization, 

ISO/IEC 20926:2003. 

(Jensen, 1983) Jensen, R.W. 1983. An Improved Macrolevel Software Development Resource 

Estimation Model. In Proceedings of the 5
th
 International Society of Parametric Analysts 

(ISPA) Conference, 88-92.  

(Johnson, 2003) Johnson, M. 2003. Agile methodologies: Survey results. Victoria, Australia: 

Shine Technologies (online). Available at: 

http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf. 

Accessed: Accessed: April 2010. 

(Jones, 2007) Jones, C. 2007. Estimating Software Costs: Bringing Realism to Estimating (2
nd

 

edition), McGraw-Hill Osborne Media, NY. 

(Jørgensen and Moløkken, 2002) Jørgensen, M., and Moløkken, K. 2002. Combination of 

Software Development Effort Prediction Intervals: Why, When and How? In 

Proceedings of the 14
th
 International Conference on Software Engineering and 

Knowledge Engineering (SEKE), Ischia, Italy, 425–428. 

Efi P
ap

ath
eo

ch
aro

us

http://www.isbsg.org/
http://www.isbsg.org/
http://www.isbsg.org/
http://www.isbsg.org/
http://www.shinetech.com/attachments/104_ShineTechAgileSurvey2003-01-17.pdf


 

 

 

263 

(Jørgensen and Shepperd, 2007) Jørgensen, M., and Shepperd, M. 2007. A Systematic Review 

of Software Development Cost Estimation Studies. IEEE Transactions on Software 

Engineering 33 (1), 33-53. 

(Jørgensen et al., 2004) Jørgensen, M., Teigen, K.H., and Moløkken, K. 2004. Better sure than 

safe? Over-confidence in judgment based software development effort prediction 

intervals. Journal of Systems and Software 70, 79-93. 

(Jørgensen, 1995) Jørgensen, M. 1995. Experience with the Accuracy of Software 

Maintenance Task. IEEE Transactions on Software Engineering 21 (8), Effort Prediction 

Models, 674-681. 

(Jørgensen, 2004a) Jørgensen, M. 2004. A Review of Studies on Expert Estimation of 

Software Development Effort. Journal of Systems and Software 70, 37-60. 

(Jørgensen, 2004b) Jørgensen, M., Realism in Assessment of Effort Estimation Uncertainty: It 

Matters How You Ask. IEEE Transactions on Software Engineering 30 (4). 

(Jørgensen, 2004c) Jørgensen, M. 2004. Top-Down and Bottom-Up Expert Estimation of 

Software Development Effort. Information and Software Technology 46 (1), 3-16. 

(Jørgensen, 2007) Jørgensen, M. 2007. Forecasting of Software Development Work Effort: 

Evidence on Expert Judgement and Formal Models. International Journal Forecast 

23(3), 449–462. 

(Kan, 2003) Kan, S.H. 2003. Metrics and Models in Software Quality Engineering (2
nd

 

edition). Addison-Wesley Longman Publishing Co., Inc., Upper Saddle River, NJ. 

(Karray and Silva, 2004) Karray, F.O., and Silva, C.W.D. 2004. Soft Computing and 

Intelligent Systems Design: Theory, Tools and Applications. Addison-Wesley, London, 

UK. 

(Kartalopoulos, 1996) Kartalopoulos, S.V. 1996. Understanding Neural Networks and Fuzzy 

Logic: Basic Concepts and Applications. IEEE Press, NY, ISBN.0-7803-1128-0. 

(Kass, 1990) Kass, G.V. 1990. An Exploratory Technique for Investigating Large Quantities 

of Categorical Data. Applied Statistics 20 (2), 119-127. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

264 

(Kaur et al., 2010) Kaur, J., Singh, S., Kahlon, K.S., and Bassi, P. 2010. Neural Network – A 

Novel Technique for Software Effort Estimation. International Journal of Computer 

Theory and Engineering 2 (1) 1793-8201, 17-19. 

(Kemerer, 1987) Kemerer, C.F. 1987. An Empirical Validation of Software Cost Estimation 

Models. Communications of the ACM 30 (5), 416-429, ISSN:0001-0782. 

(Kemerer, 1993) Kemerer, C. 1993. Reliability Function Points Measurement: a Field 

Experiment. Communications of the ACM 36(2), 85-97. 

(Keung et al., 2008) Keung, J.W., Kitchenham, B.A., and Jeffery, D.R. 2008. Analogy-X: 

Providing Statistical Inference to Analogy-Based Software Cost Estimation. IEEE 

Transactions on Software Engineering 2008 34(4), 471–484. 

(Keung et al., 2012) Keung, J., Kocaguneli, E., and Menzies, T. 2012. A Ranking Stability 

Indicator for Selecting the Best Effort Estimator in Software Cost Estimation. Journal of 

Automated Software Engineering, Under review. 

(Kim et al., 2004) Kim, D.-W., Lee, K.H., and Lee, D. 2004. Fuzzy Clustering of Categorical 

Data Using Fuzzy Centroids. Pattern Recognition Letters 25 (11), 1263-1271, ISSN 

0167-8655. 

(Kirsopp and Shepperd, 2002) Kirsopp, C., and Shepperd, M. 2002. Case and Feature Subset 

Selection in Case-Based Software Project Effort Prediction. In Proceedings of the 22
nd

 

SGAI International Conference of Knowledge-Based Systems and Applied Artificial 

Intelligence, Cambridge, United Kingdom. 

(Kitchenham and Linkman, 1997) Kitchenham, B.A., and Linkman, S. 1997. Estimates, 

Uncertainty, and Risk. IEEE Software 14 (3), 69-74. 

(Kitchenham and Mendes, 2009) Kitchenham, B.A., and Mendes, E. 2009. Why Comparative 

Effort Prediction Studies may be Invalid. In Proceedings of the 5
th
 International 

Conference on Predictor Models in Software Engineering (PROMISE), Vancouver, BC, 

Canada, ACM, 1-5. 

(Kitchenham and Taylor, 1985) Kitchenham, B.A., and Taylor, N.R. 1985. Software Project 

Development Cost Estimation. Journal of Systems and Software 5, 267-278. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

265 

(Kitchenham et al., 1997) Kitchenham, B.A., Linkman, S.G., Law, D.: DESMET: A 

methodology for Evaluating Software Engineering Methods and Tools. IEE Computing 

and Control Journal, 120-126. 

(Kitchenham et al., 2001) Kitchenham, B.A., MacDonell, S.G., Pickard, L., Shepperd, M. 

2001. What Accuracy Statistics Really Measure. IEE Proceedings of Software 

Engineering 148(3), 81-85. 

(Kitchenham et al., 2002) Kitchenham, B.A., Pfleeger, S.L., McColl, B., and Eagan, S. 2002. 

An Empirical Study of Maintenance and Development Estimation Accuracy. Journal of 

Systems and Software 64 (1), 57–77. 

(Kitchenham et al., 2003) Kitchenham, B.A., Pickard, L.M., Linkman, S., and Jones, P.W. 

2003. Modeling Software Bidding Risks. IEEE Transactions on Software Engineering 29 

(6), 542-554. 

(Kitchenham et al., 2004) Kitchenham, B.A., Dyba, T., and Jørgensen, M. 2004. Evidence-

Based Software Engineering. In Proceedings of the 26
th
 International Conference on 

Software Engineering (ICSE), Edinburg, Scotland, 273- 281.  

(Kitchenham, 1990) Kitchenham, B.A. 1990. Measuring Software Development. In Software 

Reliability Handbook, Elsevier, Amsterdam, 303-332. 

(Koivo, 2008) Koivo, H.N. 2008. Neural Networks: Basics using Matlab Neural Network 

Toolbox (online). Available at: 

http://pis.unicauca.edu.co/moodle/file.php/458/2010b/clase_29/AS-

74_3115_neural_networks_-_basics.pdf. Accessed: December 2011. 

(Kosko, 1986) Kosko, B. 1986. Fuzzy Cognitive Maps. International Journal of Man-Machine 

Studies 24, 65-75. 

(Kosko, 1995) Kosko, B. 1995. Fuzzy Thinking, the New Science of Fuzzy Logic (2
nd

 edition). 

Harper Collins, London, UK. 

(Koza, 1992) Koza, J.R. 1992. Genetic Programming: On the Programming of Computers by 

Means of Natural Selection. MIT Press, Massachusetts. 

Efi P
ap

ath
eo

ch
aro

us

http://pis.unicauca.edu.co/moodle/file.php/458/2010b/clase_29/AS-74_3115_neural_networks_-_basics.pdf
http://pis.unicauca.edu.co/moodle/file.php/458/2010b/clase_29/AS-74_3115_neural_networks_-_basics.pdf


 

 

 

266 

(Kumar et al., 2008) Kumar, K.V., Ravi, V., Carr, M., and Kiran, N.R. 2008. Software 

Development Cost Estimation using Wavelet Neural Networks. Journal of Systems and 

Software 81, 1853-1867. 

(Laanti and Kettunen, 2006) Laanti, M., and Kettunen P., Cost Modeling Agile Software 

Development. International Transactions on Systems Science and Applications 1 (2), 

175-179. 

(Laird and Brennan, 2006) Laird, L.M., and Brennan, M.C. 2006. Software Measurement and 

Estimation: A Practical Approach, Quantitative Software Engineering Series. Wiley-

IEEE Computer Society Press, Hoboken, NJ. 

(Lefley and Shepperd, 2003) Lefley, M., and Shepperd, M.J. 2003. Using Genetic 

Programming to Improve Software Effort Estimation Based on General Data Sets. In 

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 

Chicago, IL, USA, 2477-2487. 

(Leung, 2002) Leung, H., and Fan, Z. 2002. Software Cost Estimation, Handbook of Software 

Engineering and Knowledge Engineering 2, S.K. Chang, Ed., World Scientific, River 

Edge, NJ, Available at: ftp://cs.pitt.edu/chang/handbook/42b.pdf, Accessed: December 

2011. 

(Levenberg, 1944) Levenberg, K. 1944. A Method for the Solution of Certain Problems in 

Least Squares. Quarterly Applied Mathematics 2, 164-168. 

(Li and Ruhe, 2008) Li, J.Z., and Ruhe, G. 2008. Analysis of Attribute Weighting Heuristics 

for Analogy-Based Software Effort Estimation Method AQUA+. Empirical Software 

Engineering 13 (1), 63-96. 

(Li et al., 2007) Li, J.Z., Ruhe, G., Al-Emran, A., and Richter, M.M. 2007. A Flexible Method 

for Effort Estimation by Analogy. Empirical Software Engineering 12 (1), 65-106. 

(Li et al., 2009a) Li, Y.F., Xie, M., and Goh, T.N. 2009. A Study of Mutual Information 

Based Feature Selection for Case Based Reasoning in Software Cost Estimation. Expert 

Systems with Applications 36 (3), 5921-5931. 

Efi P
ap

ath
eo

ch
aro

us

ftp://cs.pitt.edu/chang/handbook/42b.pdf


 

 

 

267 

(Li et al., 2009b) Li, Y.F., Xie, M., and Goh, T.N. 2009. A Study of Project Selection and 

Feature Weighting for Analogy Based Software Cost Estimation, Journal of Systems and 

Software 82 (2), 241-252. 

(Li et al., 2010) Li, Y.F., Xie, M., and Goh, T.N. 2010. Adaptive Ridge Regression System for 

Software Cost Estimating on Multi-Collinear Datasets. Journal of Systems and Software 

83 (11), 351-363. 

(Liu et al., 2008) Liu, Q., Qin, W.Z., Mintram, R., and Ross, M. 2008. Evaluation of 

Preliminary Data Analysis Framework in Software Cost Estimation based on ISBSG R9 

Data. Software Quality Journal 16 (3), 411-458. 

(MacDonell and Gray, 1997) MacDonell, S.G., and Gray, A.R. 1997. A Comparison of 

Modeling Techniques for Software Development Effort Prediction. In Proceedings of the 

International Conference on Neural Information Processing and Intelligent Information 

Systems (ICNIP), Dunedin, New Zealand, Springer-Verlag, 869-872. 

(MacDonell and Shepperd, 2003a) MacDonell, S.G., and Shepperd, M.J. 2003. Combining 

Techniques to Optimize Effort Predictions in Software Project Management. Journal of 

Systems and Software 66 (2), 91-98. 

(MacDonell and Shepperd, 2003b) MacDonell, S.G., and Shepperd, M.J. 2003. Using Prior-

Phase Effort Records for Re-estimation During Software Projects. In Proceedings of the 

9
th 

IEEE International Software Metrics Symposium (METRICS), Sydney, Australia, 

IEEE Computer Society, 1-13. 

(Maimon and Rokach, 2005) Maimon, O.Z., and Rokach, L. 2005. Data Mining and 

Knowledge Discovery Handbook. Springer-Verlag New York Inc., NY. 

(Mair and Shepperd, 2005) Mair, C., and Shepperd, M. 2005. The Consistency of Empirical 

Comparisons of Regression and Analogy-based Software Project Cost Prediction. In 

Proceedings of the International Symposium on Empirical Software Engineering 

(ISESE), Noosa Heads, Australia, 509-518. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

268 

(Mair et al., 2000) Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., 

and Webster, S. 2000. An Investigation of Machine Learning Based Prediction Systems. 

Journal of Systems and Software 53, 23-29.   

(Mamdani, 1977) Mamdani, E.H. 1977. Applications of Fuzzy Set Theory to Control 

Systems: A Survey. In Fuzzy Automata and Decision Processes, Gupta, M.M., Saridis, 

G.N., and Gaines B.R., Eds. North-Holland, New York, 1-13. 

(Mann and Whitney, 1947) Mann, H.B., and Whitney, D.R. 1947. On a Test of Whether one 

of Two Random Variables is Stochastically Larger than the Other. Annals of 

Mathematical Statistics 18 (1), 50–60. 

(Maritz, 1981) Maritz, J.S. 1981. Distribution-Free Statistical Methods. Chapman & Hall, 

London, UK. 

(Marquardt, 1963) Marquardt, D. 1963. An Algorithm for Least-Squares Estimation of Non-

linear Parameters. SIAM Journal of Applied Mathematics 11, 431-441. 

(Martin, 2002) Martin, R.C. 2002. Agile Software Development, Principles, Patterns, and 

Practices (1
st
 edition), Prentice Hall. 

(Mateou et al., 2005) Mateou, N.H., Hadjiprokopis, A.P., and Andreou, A.S 2005. Fuzzy 

Influence Diagrams: An Alternative Approach to Decision Making Under Uncertainty. In 

Proceedings of International Conference on Computational Intelligence for Modelling 

(CIMCA), Control and Automation, Vienna, Austria, IEEE Computer Society, Vol. 1, 58-

64. 

(MathWorks, 2009) The MathWorks. 2009. Genetic Algorithm and Direct Search Toolbox 

User‘s Guide R2009b, Version 2.4.2, The MathWorks Inc., Natick, MA. 

(Matson et al., 1994) Matson, J.E., Barrett, B.E., and Mellichamp, J.M. 1994. Software 

Development Cost Estimation using Function Points. IEEE Transactions on Software 

Engineering 20, 275-287. 

(McCulloch and Pitts, 1943) McCulloch, W.S., and Pitts, W. 1943. A Logical Calculus of the 

Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biology 5 (4), 115-133. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

269 

(Menzies et al., 2006) Menzies, T., Chen, Z., Hihn, J., and Lum, K. 2006. Selecting Best 

Practices for Effort Estimation. IEEE Transactions on Software Engineering 32, 883-

895.   

(Menzies et al., 2010) Menzies, T., Jalali, O., Hihn, J., Baker, D., and Lum, K. 2010. Stable 

Rankings for Different Effort Models. Automated Software Engineering 17 (4), 409-437. 

(Meyer and Packard, 1992) Meyer, T.P., and Packard, N.H. 1992. Local Forecasting of High-

dimensional Chaotic Dynamics, Non-linear Modeling and Forecasting. Addison-Wesley. 

(Michalewicz, 1994) Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = 

Evolution Programs. Springer-Verlag, Berlin. 

(Mills and O‘Neil, 1980) Mills, H.D., and O‘Neil, D. 1980. The Management of Software 

Engineering. IBM Systems Journal 24 (2), 414-477. 

(Mittal et al., 2010) Mittal, A., Parkash, K., and Mittal, H. 2010. Software Cost Estimation 

Using Fuzzy Logic. ACM SIGSOFT Software Engineering Notes 35 (1), 1-7. 

(Mittas et al., 2010) Mittas, N., Kosti, M.V., Argyropoulou, V., and Angelis, L. 2010. 

Modeling the Relationship between Software Effort and Size Using Deming Regression. 

In Proceedings of the 6
th
 International Conference on Predictive Models in Software 

Engineering (PROMISE), Timisoara Romania, ISBN: 978-1-4503-0404-7. 

(Miyazaki et al., 1994) Miyazaki, Y., Terakado, M., Ozaki, K., and Nozaki, H. 1994. Robust 

Regression for Developing Software Estimation Models. Journal of Systems and 

Software 27 (1), 3-16, ISSN: 0164-1212. 

(Moløkken and Jørgensen, 2003) Moløkken, K., and Jørgensen, M. 2003. A Review of 

Software Surveys on Software Effort Estimation. In Proceedings of the International 

Symposium on Empirical Software Engineering (ISESE), Rome, Italy, 223-230.   

(Musilek et al., 2000) Musilek, P., Pedrycz, W., Succi, G., and Reformat, M. 2000. Software 

Cost Estimation with Fuzzy Models. Applied Computing Review 8 (2), 24-29. 

(Myers and Arnold, 2003) Myers, J.L., and Arnold, D.W. 2003. Research Design and 

Statistical Analysis (2
nd

 edition). Lawrence Erlbaum Associates Inc., NJ. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

270 

(Myrtveit et al., 2005) Myrtveit, I., Stensrud, E., and Shepperd, M. 2005. Reliability and 

Validity in Comparative Studies of Software Prediction Models. IEEE Transactions on 

Software Engineering 31 (5), 380-391. 

(Naumann and Jenkins, 1982) Naumann, J.D., and Jenkins, A.M. 1982. Prototyping: The Bew 

Paradigm for Systems Development. MIS Quarterly 6 (3), 29-44. 

(Naur and Randell, 1968) Naur, P., and Randell, B., Eds. 1969, Software Engineering: Report 

on NATO Conference, Garmisch, Germany, October 7–10, 1968. 

(Nelson, 1966) Nelson, E.A. 1966. Management Handbook for the Estimation of Computer 

Programming Costs, Systems Development Corporation, Santa Monica, CA. NTIS 

Report No. AD-A 648750. Available from National Technical Information Service 

(NTIS), Springfield, Virginia. Available at: http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0648750. Accessed: 

December 2011. 

(Nguyen and Widrow, 1990) Nguyen, D., and Widrow, B. 1990. Improving the Learning 

Speed of 2-layer Neural Networks by Choosing Initial Values of the Adaptive Weights. 

In Proceedings of the International Joint Conference on Neural Networks (ICJNN), Vol. 

3, Wasington, DC, USA, 21–26. 

(Nguyen et al., 2008) Nguyen, V., Steece, B., and Boehm, B.W. 2008. A Constrained 

Regression Technique for COCOMO Calibration. In Proceedings of the 2
nd

 ACM-IEEE 

International Symposium on Empirical Software Engineering and Measurement (ESEM), 

Kaiserslautern, Germany, 213-222. 

(Norden, 1958) Norden, P.V. 1958. Curve Fitting for a Model of Applied Research and 

Development Scheduling. IBM Journal Research and Development 2 (3), 232-248. 

(Nouretdinov et al., 2001) Nouretdinov, I., Vovk, V., Vyugin, M.V., and Gammerman, A. 

2001. Pattern Recognition and Density Estimation under the General i.i.d. Assumption. 

In Proceedings of the 14
th
 Annual Conference on Computational Learning Theory 

(COLT) and 5
th
 European Conference on Computational Learning Theory (EuroCOLT), 

Amsterdam, Netherlands. Lecture Notes in Computer Science 2111, Springer, 337–353. 

Efi P
ap

ath
eo

ch
aro

us

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0648750
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0648750


 

 

 

271 

(Olden and Jackson, 2002) Olden, J.D., and Jackson, D.A. 2002. Illuminating the ―Black 

Box‖: a Randomization Approach for Understanding Variable Contributions in Artificial 

Neural Networks. Ecological Modelling 154, 135-150. 

(Oliveira et al., 2010) Oliveira, A.L.I., Braga, P.L., Lima, R.M.F., and Cornélio M. 2010. GA-

based Method for Feature Selection and Parameters Optimization for Machine Learning 

Regression Applied to Software Effort Estimation. Information and Software Technology 

52 (11), 1155-1166. 

(Packard, 1990) Packard, N.H. 1990. A Genetic Learning Algorithm for the Analysis of 

Complex Data. Complex Systems 4 (5), 543-572. 

(Papadopoulos et al., 2009) Papadopoulos, H., Papatheocharous, E., and Andreou, S.A. 2009. 

Reliable Confidence Intervals for Software Effort Estimation. In Proceedings of the 2
nd

 

Artificial Intelligence Techniques in Software Engineering Workshop (AISEW), 5
th
 IFIP 

Conference on Artificial Intelligence Applications and Innovations (AIAI), Thessaloniki, 

Greece, 211-220. Available at: http://sunsite.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-475/AISEW2009/22-pp-211-220-208.pdf. 

(Papatheocharous and Andreou, 2007) Papatheocharous, E., and Andreou, S.A. 2007. 

Software Cost Estimation using Artificial Neural Networks with Inputs Selection. In 

Proceedings of the 9
th
 International Conference on Enterprise Information Systems 

(ICEIS), Madeira, Portugal, Vol. Databases and Information Systems Integration (DISI), 

398-407. 

(Papatheocharous and Andreou, 2008) Papatheocharous, E., and Andreou, S.A. 2008. Size 

and Effort-based Computational Models for Software Cost Prediction. In Proceedings of 

the 10
th
 International Conference on Enterprise Information Systems (ICEIS), Barcelona, 

Spain, Vol. Databases and Information Systems Integration (DISI), Databases and 

Information Systems Integration, 57-64. 

(Papatheocharous and Andreou, 2009a) Papatheocharous, E., and Andreou, S.A. 2009 

Approaching Software Cost Estimation Using an Entropy-based Fuzzy k-modes 

Clustering Algorithm. In Proceedings of the 2
nd

 Artificial Intelligence Techniques in 

Efi P
ap

ath
eo

ch
aro

us

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-475/AISEW2009/22-pp-211-220-208.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-475/AISEW2009/22-pp-211-220-208.pdf


 

 

 

272 

Software Engineering Workshop (AISEW), 5
th
 IFIP Conference on Artificial Intelligence 

Applications and Innovations (AIAI), Thessaloniki, Greece, 231-241. Available at: 

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-

475/AISEW2009/24-pp-231-241-211.pdf.  

(Papatheocharous and Andreou, 2009b) Papatheocharous, E., and Andreou, S.A. 2009. 

Classification and Prediction of Software Cost Through Fuzzy Decision Trees.  Lecture 

Notes in Business Information Processing (LNBIP) 24, Enterprise Information Systems, 

11
th
 International Conference, ICEIS 2009, Milan, Italy, May 2009 Proceedings, Filipe J., 

and Cordeiro, J., Eds. Springer-Verlag, Berlin Heidelberg, 234-247. 

(Papatheocharous and Andreou, 2009c) Papatheocharous, E., and Andreou, S.A. 2009. Hybrid 

Computational Models for Software Cost Prediction: An Approach Using Artificial 

Neural Networks and Genetic Algorithms. Lecture Notes in Business Information 

Processing (LNBIP) 19, Enterprise Information Systems, 10
th
 International Conference 

ICEIS 2008, Barcelona, Spain, June 2008, Revised Selected Papers, Filipe J., and 

Cordeiro, J., Eds. Springer-Verlag, Berlin Heidelberg, 87-100. 

(Papatheocharous and Andreou, 2010) Papatheocharous, E., and Andreou, A.S. 2010. On the 

Problem of Attribute Selection for Software Cost Estimation: Input Backward 

Elimination Using Artificial Neural Networks. In Artificial Intelligence Applications and 

Innovations (AIAI), Papadopoulos, H., Andreou, A.S., and Bramer, M., Eds. Vol. 339, 

Springer Berlin Heidelberg, 287-294. Available at: 

http://www.springerlink.com/content/7607363884w45248/. 

(Papatheocharous and Andreou, 2011) Papatheocharous, E., and Andreou, S.A. 2011. Size-

based Software Cost Modelling with Artificial Neural Networks and Genetic Algorithms. 

Artificial Neural Networks Application, In-Tech Open Access Publisher, 168-188. 

Available at: http://www.intechopen.com/source/pdfs/14908/InTech-

Size_based_software_cost_modelling_with_artificial_neural_networks_and_genetic_alg

orithms.pdf. 

Efi P
ap

ath
eo

ch
aro

us

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-475/AISEW2009/24-pp-231-241-211.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-475/AISEW2009/24-pp-231-241-211.pdf
http://www.springerlink.com/content/7607363884w45248/
http://www.intechopen.com/source/pdfs/14908/InTech-Size_based_software_cost_modelling_with_artificial_neural_networks_and_genetic_algorithms.pdf
http://www.intechopen.com/source/pdfs/14908/InTech-Size_based_software_cost_modelling_with_artificial_neural_networks_and_genetic_algorithms.pdf
http://www.intechopen.com/source/pdfs/14908/InTech-Size_based_software_cost_modelling_with_artificial_neural_networks_and_genetic_algorithms.pdf


 

 

 

273 

(Papatheocharous and Andreou, 2012a) Papatheocharous, E., and Andreou, S.A. 2012. A 

Hybrid Software Cost Estimation Approach Utilizing Decision Trees and Fuzzy Logic. 

To appear in: Journal of Software Engineering and Knowledge Engineering. 

(Papatheocharous and Andreou, 2012b) Papatheocharous, E., and Andreou, S.A. 2012. 

Software Cost Modelling and Estimation Using Artificial Neural Networks Enhanced by 

Input Sensitivity Analysis. To appear: Journal of Universal Computer Science. 

(Papatheocharous et al., 2008) Papatheocharous, E., Rossides, G., and Andreou, S.A. 2008 

Qualitative Software Cost Estimation Using Fuzzy Cognitive Maps. In Proceedings of 

the Artificial Intelligence Techniques in Software Engineering Workshop (AISEW), 18
th
 

European Conference on Artificial Intelligence (ECAI), Patras, Greece, 1-5. 

(Papatheocharous et al., 2010a) Papatheocharous, E., Iasonos, A., and Andreou, S.A. 2010. A 

Genetic Programming Approach to Cost Modeling and Estimation. In Proceedings of the 

12
th
 International Conference on Enterprise Information Systems (ICEIS), Funchal, 

Portugal, Vol. 1 Databases and Information Systems Integration (DISI), 281-287. 

(Papatheocharous et al., 2010b) Papatheocharous, E., Papadopoulos, H., and Andreou, S.A. 

2010 Feature Selection Techniques for Software Cost Modelling and Estimation. 

Engineering Intelligent Systems 18 (3/4), September/December, CRL Publishing, 233-

246. 

(Papatheocharous et al., 2010c) Papatheocharous, E., Papadopoulos, H., and Andreou, S.A. 

2010. Software Effort Estimation with Ridge Regression and Evolutionary Attribute 

Selection. In Proceedings of the 3
rd

 Artificial Intelligence Techniques in Software 

Engineering Workshop (AISEW), 6
th
 IFIP Conference on Artificial Intelligence 

Applications and Innovations (AIAI), Larnaca, Cyprus. Available at: 

http://arxiv.org/abs/1012.5754. 

(Papatheocharous et al., 2011) Papatheocharous, E., Trikomitou, D., Yiasemis, P.S., and 

Andreou, S.A. 2011. Cost Modeling and Estimation in Agile Software Development 

Environments Using Influence Diagrams. In Proceedings of the 13
th
 International 

Efi P
ap

ath
eo

ch
aro

us

http://arxiv.org/abs/1012.5754


 

 

 

274 

Conference on Enterprise Information Systems (ICEIS), Beijing, China, Vol. 3 

Information Systems Analysis and Specification, 117-127. 

(Papatheocharous et al., 2012) Papatheocharous, E., Bibi, S., Stamelos, I., and Andreou A.S. 

2012. Investigating Empirically Effort Distribution among Development Phases: A Four 

Stage Progressive Software Effort Estimation Model. Under Preparation. 

(Papatheocharous, 2004) Papatheocharous, E. 2004. Software Effort Modeling and 

Forecasting using Computational Intelligent Methods. BSc Thesis, Department of 

Computer Science, University of Cyprus, Cyprus. 

(Park and Baek, 2008) Park, H., and Baek, S. 2008. An Empirical Validation of a Neural 

Network Model for Software Effort Estimation. Expert Systems with Applications 35, 

929-937. 

(Park, 1988) Park, R. 1988. The Central Equations of the PRICE Software Cost Model. In 

Proceedings of the 4
th
 COCOMO User‟s Group Meeting, Los Angeles, CA, USA. 

(Parkinson, 1957) Parkinson, G.N. 1957. Parkinson's Law and Other Studies in 

Administration. Houghton-Miffin, Boston, MA. 

(Parsa et al., 2008) Parsa, S., Vahidi-Asl, M., and Naree, S.A. 2008. Finding Causes of 

Software Failure Using Ridge Regression and Association Rule Generation Methods. In 

Proceedings of the 9
th
 ACIS International Conference on Software Engineering, Artificial 

Intelligence, Networking, and Parallel/Distributed Computing (SNPD), Phuket, 

Thailand, 873-878. 

(Pendharkar et al., 2005) Pendharkar, P.C., Subramanian, G.H., Rodger, J.A., A Probabilistic 

Model for Predicting Software Development Effort. IEEE Transactions on Software 

Engineering 31 (7), 615-624. 

(Poels, 1996) Poels, G. 1996. Why Function Points do not Work in Search of New Software 

Measurement Strategies. Guide Share Europe Journal 1 (2), 9-26. 

(Prasad Reddy, 2010) Prasad Reddy, P.V.G.D.  2010. Particle Swarm Optimization in the 

Fine-Tuning of Fuzzy Software Cost Estimation Models. International Journal of 

Software Engineering (IJSE) 1 (2). CSC Journals, 12-23. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

275 

(Prechelt, 1994) Prechelt, L. 1994. PROBEN1 - a set of Neural Network Benchmark Problems 

and Benchmarking Rules.Technical Report 21/94, Faculty of Informatics, Universität 

Karlsruhe, 1-38. 

(Pressman, 2000) Pressman, R.S. 2000. Software Engineering: a Practitioner's Approach (5
th
 

edition). McGraw-Hill, NY.  

(Putnam and Myers, 1992) Putnam, L.H., and Myers, W. 1992. Measures for Excellence: 

Reliable Software on Time, Within Budget (Yourdon Press Computing Series). Prentice 

Hall, Englewood Cliffs, NJ.  

(Putnam, 1978) Putnam, L.H. 1978. A General Empirical Solution to the Macro Software 

Sizing and Estimating Problem. IEEE Transactions on Software Engineering 4 (4), 345-

361. 

(Quinlan, 1986) Quinlan, J.R. 1986. Induction of Decision Trees. Machine Learning 1, 81-

106. 

(Quinlan, 1993) Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. Morgan 

Kaufmann Publishers, San Mateo, CA. 

(Rao et al., 2009) Rao, B.T., Sameet, B., Swathi, G.K., Gupta, K.V., Teja, C.R., and Sumana, 

S. 2009. A Novel Neural Network Approach for Software Cost Estimation using 

Functional Link Artificial Neural Network (FLANN). International Journal of Computer 

Science and Network Security 9 (6), 126-131. 

(Reddy and Raju, 2009) Reddy, C.S., and Raju, K. 2009. A Concise Neural Network Model 

for Estimating Software Effort. International Journal of Recent Trends in Engineering 1 

(1), 188-193. 

(Refenes et al., 1995) Refenes, A.N., Kollias, C., and Zarpanis, A. 1995. External Security 

Determinants of Greek Military Expenditure: An Empirical Investigation Using Neural 

Networks. Defence and Peace Economics 6, 27-41. 

(Rosenblatt, 1957) Rosenblatt, F. 1957, The Perceptron - a Perceiving and Recognizing 

Automaton. Report 85-460-1. Cornell Aeronautical Laboratory. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

276 

 (Rosencrance, 2007) Rosencrance, L. 2007. Poor Communication Causes Most IT Project 

Failures. Inadequate Resource Planning, Unrealistic Deadlines also cited in CompTIA 

study. Computerworld (online). Available at: 

http://www.computerworld.com/s/article/9012758/Survey_Poor_communication_causes

_most_IT_project_failures. 

(Royce, 1970) Royce, W.W. 1970. Managing the Development of Large Software Systems: 

Concepts and Techniques. In Proceedings of the IEEE Western Electronic Show and 

Convention (WESTCON), Los Angeles, CA, USA. Technical Papers Vol. 14, 1-9. 

(Ruhe et al., 2003) Ruhe, M., Jeffery, R., and Wieczorek, I. 2003. Cost estimation for web 

application. In Proceedings of 25
th
 International Conference on Software Engineering 

(ICSE), Portland, OR, USA, 285-294. 

(Rumelhart et al., 1986) Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning 

Internal Representations by Error Propagation. In Parallel Distributed Processing: 

Explorations in the Microstmctures of Cognition 1. MIT Press, Cambridge, MA, 318-

362. 

(Rush and Roy, 2001) Rush, C., and Roy, R. 2001. Expert Judgement in Cost Estimating: 

Modelling the Reasoning Process. Concurrent Engineering: Research and Applications 9 

(4), 271-284. 

(Samson et al., 1997) Samson, B., Ellison, D., and Dugard, P. 1997. Software Cost Estimation 

using an Albus Perceptron (CMAC). Information and Software Technology 39, 55-60. 

(Satizábal and Pérez-Uribe, 2007) Satizábal, H.M., and Pérez-Uribe, A. 2007. Relevance 

Metrics to Reduce Input Dimensions in Artificial Neural Networks. In Proceedings of 

International Conference on Artificial Neural Networks (ICANN), Porto, Portugal, 39-48, 

Springer Berlin/Heidelberg. 

(Saunders et al., 1999) Saunders, C., Gammerman, A., and Vovk, V. 1999. Transduction with 

Confidence and Credibility. In Proceedings of the 16
th
 International Joint Conference on 

Artificial Intelligence (IJCAI), Stockholm, Sweden. Vol. 2, 722–726. Morgan Kaufmann, 

Los Altos, CA. 

Efi P
ap

ath
eo

ch
aro

us

http://www.computerworld.com/s/article/9012758/Survey_Poor_communication_causes_most_IT_project_failures
http://www.computerworld.com/s/article/9012758/Survey_Poor_communication_causes_most_IT_project_failures


 

 

 

277 

(Schach, 2004) (Schach, 2005) Schach, S.R. 2005. Object-Oriented and Classical Software 

Engineering (6
th
 edition). McGraw-Hill Publishing Co., New York, NY. 

(Selby, 2007) Selby, R.W. 2007. Software Engineering: Barry W. Boehm‟s Lifetime 

Contributions to Software Development, Management, and Research. IEEE Computer 

Society/Wiley Partnership, John Wiley & Sons Inc., Hoboken, NJ. 

(Serluca, 1995) Serluca, C. 1995. An Investigation into Software Effort Estimation using a 

Back-Propogation Neural Network. MSc. Thesis, Bournemouth University, United 

Kingdom. 

(Shachter and Peot, 1992) Shachter, R.D., and Peot, M.A. 1992. Decision Making Using 

Probabilistic Inference Methods. In Proceedings of the 8
th
 Conference on Uncertainty in 

Artificial Intelligence (UAI), Stanford, CA, USA, 276–283. 

(Shachter, 1988) Shachter, R.D. 1988. Probabilistic Inference and Influence Diagrams. 

Operations Research 36, 589-605. 

(Shepperd and Kadoda, 2001) Shepperd, M., and Kadoda, G. 2001. Comparing Software 

Prediction Techniques Using Simulation. IEEE Transactions on Software Engineering 27 

(11), 1014-1022. 

(Shepperd and Schofield, 1997) Shepperd, M., and Schofield, C. 1997. Estimating Software 

Project Effort Using Analogies. IEEE Transactions on Software Engineering 23, 736-

743. 

(Shukla and Misra, 2008) Shukla, R., and Misra, A.K. 2008. Estimating Software 

Maintenance Effort - A Neural Network Approach. In Proceedings of the 1
st
 India 

Software Engineering Conference (ISEC), Hyderabad, India. ACM Digital Library, 107-

112. 

(Silva and Almeida, 2003) Silva, S., and Almeida, J. 2003. Dynamic Maximum Tree Depth - 

a Simple Technique for Avoiding Bloat in Tree-Based GP, In Proceedings of the Genetic 

and Evolutionary Computation Conference (GECCO), Chicago, IL, USA, 1776-1787. 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

278 

(Silva and Costa, 2005) Silva, S., Costa, E. 2005. Resource-Limited Genetic Programming: 

The Dynamic Approach. In Proceedings of the Genetic and Evolutionary Computation 

Conference (GECCO), Washington, DC, USA. ACM Press, 1673-1680.  

(Silva, 2007) Silva, S. 2007. GPLAB A Genetic Programming Toolbox for Matlab, Version 3, 

April 1007. Evolutionary and Complex Systems Group (ECOS), University of Coimbra, 

Portugal. Available at: 

http://klobouk.fsv.cvut.cz/~leps/teaching/mmo/data/gplab.manual.3.pdf 

(Sommerville, 2006) Sommerville, I. 2006. Software Engineering (8
th
 edition), International 

Computer Science. Pearson Education Limited, Essex, United Kingdom. 

(Song and Shepperd, 2011) Song, Q., and Shepperd, M. 2011. Predicting Software Project 

Effort: A Grey Relational Analysis Based Method. Expert Systems with Applications 38 

(6), 7302-7316. 

(Song et al., 2005) Song, Q., Shepperd, M., and Mair, C. 2005. Using Grey Relational 

Analysis to Predict Software Effort with Small Data Sets. In Proceedings of the 11
th
 

IEEE International Software Metrics Symposium (METRICS), Como, Italy, 35-45.  

(Spearman, 1904) Spearman, C. 1904. The Proof and Measurement of Association between 

Two Things. American Journal of Psychology 15, 72-101. 

(Srinivasan and Fisher, 1995) Srinivasan, K., and Fisher, D. 1995. Machine Learning 

Approaches to Estimating Software Development Effort. IEEE Transactions on Software 

Engineering 21 (2), 126-137. 

(Stutzke, 2006) Stutzke, R.D. 2006. Software Project Estimation: An Overview. In Software 

Management (7th edition), Reifer, D.J., Eds. IEEE Computer Society, 189-202. John 

Wiley & Sons Inc., Hoboken, NJ.  

(Stylianou and Andreou, 2007) Stylianou, C., and Andreou, A.S. 2007. A Hybrid Software 

Component Clustering and Retrieval Scheme Using an Entropy-Based Fuzzy k-Modes 

Algorithm. In Proceedings of the 19
th
 IEEE International Conference on Tools with 

Artificial Intelligence (ICTAI), Vol. 1., Washington, DC, USA. IEEE Computer Society, 

202-209. DOI=10.1109/ICTAI.2007.16. 

Efi P
ap

ath
eo

ch
aro

us

http://klobouk.fsv.cvut.cz/~leps/teaching/mmo/data/gplab.manual.3.pdf


 

 

 

279 

(Taber, 1987) Taber, W.R., and Siegel, M. 1987. Estimation of Expert Weights and Fuzzy 

Cognitive Maps. In Proceedings of the 1
st
 IEEE International Conference on Neural 

Networks, Vol. 2, San Diego, CA, USA, 319-325. 

(Tausworthe, 1981) Tausworthe, R.C. 1981. Deep Space Network Software Cost Estimation 

Model, Jey Propulsion Laboratory Publication 81-7, Pasadena, CA, 67-78. 

(The Standish Group, 1994) The Standish Group. 1994. The Chaos Report. Standish Group 

Internal Report. Available at: http://www.standishgroup.com/. 

(The Standish Group, 1995) The Standish Group. 1995. CHAOS Chronicles. Standish Group 

Internal Report. Available at: http://www.standishgroup.com/. 

(The Standish Group, 2007) The Standish Group. 2007. Chaos Report. Standish Group 

International Internal Report. Available at: http://www.standishgroup.com/. 

(Tronto et al., 2008) Tronto, I.F.D.B., Silva, J.D.S.D., and Sant'Anna, N. 2008. An 

Investigation of Artificial Neural Networks based Prediction Systems in Software Project 

Management. Journal of Systems and Software 81, 356-367. 

(Tsadiras and Margaritis, 1996) Tsadiras, A.K., and Margaritis, K.G. 1996. Using Certainty 

Neurons in Fuzzy Cognitive Maps. Neural Network World 6, 719-728. 

(Tsekouras et al., 2005) Tsekouras, G.E., Papageorgiou, D., Kotsiantis, S., Kalloniatis, C., and 

Pintelas, P. 2005. Fuzzy Clustering of Categorical Attributes and its Use in Analyzing 

Cultural Data. International Journal of Computing Intelligence 1 (2), 123-127, ISSN 

1304-2386. 

(Walston and Felix, 1977) Walston, C.E., and Felix, C.P. 1977. A Method of Programming 

Measurement and Estimation. IBM Systems Journal 16 (1), 54-73. 

(Ward System Group, 2008) Ward System Group, Inc. 2008. NeuroShell 2 User‘s Manual. 

Available at: http://www.wardsystems.com/manuals/neuroshell2/index.html. Accessed: 

December 2011. 

(Weiss and Kulikowski, 1991) Weiss, S., and Kulikowski, C.A. 1991. Computer Systems that 

Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine 

Efi P
ap

ath
eo

ch
aro

us

http://www.standishgroup.com/
http://www.standishgroup.com/
http://www.standishgroup.com/
http://www.wardsystems.com/manuals/neuroshell2/index.html


 

 

 

280 

Learning, and Expert Systems, Machine Learning Series, Morgan Kaufmann Puclishers, 

Inc., San Mateo, CA. 

(Werbos, 1974) Werbos, P.J. 1974. Beyond Regression: New Tools for Prediction and 

Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA, 

USA. 

(Widrow and Hoff, 1960) Widrow, B., and Hoff, Jr.M. 1960. Adaptive Switching Circuits, 

IRE WESCON Convention Record at the Western Electronic Show and Convention, Los 

Angeles, CA, 96-104. 

(Wittig and Finnie, 1997) Wittig, G.E., and Finnie, G.R. 1997. Estimating Software 

Development Effort with Connectionist Models. Information and Software Technology 

39 (7), 469-476. 

(Wolverton, 1974) Wolverton, R.W. 1974. The Cost of Developing Large-Scale Software. 

IEEE Transactions on Computers, 615-636. 

(Xia et al., 2008) Xia, W., Capretz, L.F., Ho, D., and Ahmed, F. 2008. A new calibration for 

Function Point complexity weights. Information and Software Technology 50, 670-683, 

(Xu and Khoshgoftaar, 2004) Xu, Z., and Khoshgoftaar, T.M. 2004. Identification of Fuzzy 

Models of Software Cost Estimation. Fuzzy Sets and Systems 145 (1). Elsevier, New 

York, 141-163. 

(Yao et al., 2000) Yao, J., Dash, M., Tan, S.T., and Liu, H. 2000. Entropy-based Fuzzy 

Clustering and Fuzzy Modeling. Fuzzy Sets and Systems 113 (3), 381-388. 

(Zadeh, 1965) Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8 (3), 338–353, ISSN 

0019-9958. 

(Zhang and Zhang, 2009) Zhang, B., and Zhang, R. 2009. Evaluation Model of Software Cost 

Estimation Methods Based on Fuzzy-Grey Theory. In Proceeding of the International 

Conference on Internet Computing for Science and Engineering, Harbin, China, 53-55. 

(Zivkovic et al., 2005) Zivkovic, A., Rozman, I., and Hericko, M. 2005. Automated software 

size estimation based on function points using UML models. Information and Software 

Technology 47, 881-890. 

Efi P
ap

ath
eo

ch
aro

us



 

281 

 

Appendix A 

Statistical Profile of Datasets 

In this Appendix the statistical profile and the description of attributes of the datasets 

utilised in this thesis are presented. The datasets include the COCOMO, the Albrecht and 

Gaffney, the Kemerer, the Desharnais, the ISBSG R9 and the ISBSG R10.  

A.1 The COCOMO Dataset 

The COCOMO dataset contains 63 projects developed at TRW Inc. Aerospace. The 

projects range in size from 2,000 to 100,000 Lines Of Code (LOC) and the programming 

languages range from assembly to PL/I. These projects were based on the Waterfall model of 

software development which was the prevalent software development process in 1981. 

Table A. 1: COCOMO dataset software cost attributes definitions 

Code Attribute name Levels-Definition 

EFF Development Effort Development effort (in person-months) - Continuous 

LOC Lines of Code Project size – Continuous 

RELY  Required Reliability Continuous  

DATA Database Size Continuous  

CPLX Product Complexity Continuous  

TIME Execution Time Constraint Continuous  

STOR Main Storage Constraint Continuous  

VIRT Virtual Machine Volatility Continuous  

TURN Computer Turnaround Time Continuous 

ACAP Analyst Capability Continuous  

AEXP Applications Experience Continuous  

PCAP Programmer Capability Continuous  

VEXP Virtual Machine Experience Continuous  

LEXP Programming Language Experience Continuous  

MODP Modern Programming Practices Continuous  

TOOL Use of Software Tools Continuous  

SCED Required Development Schedule Continuous  

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

282 

Table A. 2: COCOMO dataset cost attributes descriptives 

Code Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Range Min Max 

EFF 683.32 229.50 98.00 8.00 1821.58 3318162.25 21.87 4.47 11394.10 5.90 11400 

LOC 77.21 21.23 25.00 23.00 168.51 28395.41 26.96 4.71 1148.02 1.98 1150 

RELY  1.04 0.02 1.00 0.88 0.19 0.04 -0.54 0.60 0.65 0.75 1.40 

DATA 1.00 0.01 1.00 0.94 0.07 0.01 -0.18 0.95 0.22 0.94 1.16 

CPLX 1.09 0.03 1.07 1.30 0.20 0.04 -0.33 -0.08 0.95 0.70 1.65 

TIME 1.11 0.02 1.06 1.00 0.16 0.03 2.89 1.77 0.66 1.00 1.66 

STOR 1.14 0.02 1.06 1.00 0.18 0.03 1.13 1.47 0.56 1.00 1.56 

VIRT 1.01 0.02 1.00 1.00 0.12 0.01 -0.27 0.61 0.43 0.87 1.30 

TURN 0.97 0.01 1.00 1.00 0.08 0.01 -1.26 -0.09 0.28 0.87 1.15 

ACAP 0.91 0.02 0.86 0.86 0.15 0.02 1.84 1.02 0.75 0.71 1.46 

AEXP 0.95 0.02 1.00 1.00 0.12 0.01 1.24 0.94 0.47 0.82 1.29 

PCAP 0.94 0.02 0.86 0.86 0.17 0.03 1.64 1.00 0.72 0.70 1.42 

VEXP 1.01 0.01 1.00 0.90 0.09 0.01 -0.93 0.33 0.31 0.90 1.21 

LEXP 1.00 0.01 1.00 1.00 0.05 0.00 0.51 1.01 0.19 0.95 1.14 

MODP
b
 1.00 0.02 1.00 0.91 0.13 0.02 -0.75 0.47 0.42 0.82 1.24 

TOOL 1.02 0.01 1.00 1.00 0.09 0.01 0.49 0.56 0.41 0.83 1.24 

SCED 1.05 0.01 1.00 1.00 0.08 0.01 1.65 1.69 0.23 1.00 1.23 

 

A.2 The Albrecht and Gaffney Dataset 

The Albrecht and Gaffney dataset contains information 24 projects developed by the IBM 

DP service organisation. 

Table A. 3: Albrecht and Gaffney dataset software cost attributes definitions 

Code Attribute name Levels-Definition 

EFF Development Effort Development effort (in K-hours) - Continuous 

FP Function Points Project functional size - Continuous 

SLOC  Thousand Lines of Code Project size - Continuous 

LAN Language 
1=COBOL 
2=PL/I 
3= DMS 

 

Table A. 4: Albrecht and Gaffney dataset cost attributes descriptives 

Code EFF FP SLOC 

Mean 21.88 647.63 61.08 

Standard Error 5.80 99.61 13.00 

Median 11.45 506.00 41.00 

Mode n/a 512.00 24.00 

Standard Deviation 28.42 488.00 63.68 

Sample Variance 807.58 238139.38 4055.56 

Kurtosis 4.67 1.56 11.73 

Skewness 2.30 1.54 3.09 

Range 104.70 1703.00 315.00 

Min 0.50 199.00 3.00 

Max 105.20 1902.00 318.00 

Sum 525.00 15543.00 1466.00 

Count 24.00 24.00 24.00 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

283 

A.3 The Kemerer Dataset 

The Kemerer dataset contains 15 projects from an organisation in the USA mainly written in 

COBOL. 

Table A. 5: Kemerer dataset software cost attributes definitions 

Code Attribute name Levels-Definition 

EFF Development Effort Development effort  - Continuous 

FP Function Points (unadjusted) Project functional size - Continuous 

AFP Adjusted Function Points Adjusted project functional size - Continuous 

KSLOC  Thousand Source Lines of Code Project size - Continuous 

DU Duration Project duration (months) - Continuous 

 

Table A. 6: Kemerer dataset cost attributes descriptives 

Code EFF FP AFP KSLOC DU 

Mean 219.25 993.87 999.14 186.57 14.27 

Standard Error 67.92 154.25 152.23 35.33 1.95 

Median 130.30 976.00 993.00 164.80 14.00 

Mode n/a n/a n/a n/a 5.00 

Standard Deviation 263.06 597.43 589.59 136.82 7.54 

Sample Variance 69198.16 356917.98 347618.82 18719.01 56.92 

Kurtosis 10.59 -0.05 0.22 -0.09 0.43 

Skewness 3.07 0.49 0.50 0.78 0.72 

Range 1084.11 2187.00 2206.90 411.00 26.00 

Min 23.20 97.00 99.90 39.00 5.00 

Max 1107.31 2284.00 2306.80 450.00 31.00 

Sum 3288.71 14908.00 14987.10 2798.60 214.00 

Count 15.00 15.00 15.00 15.00 15.00 

A.4 The Desharnais Dataset 

The Desharnais dataset includes observations for 81 systems developed by a Canadian 

software development house. 

Table A. 7: Desharnais dataset software cost attributes definitions 

Code Attribute name Levels-Definition 

EFF Development Effort Development effort (in person-hours) - Continuous 

TE Team Experience (years) Team‘s experience (in years) - Continuous 

ME Manager Experience (years) Project Manager‘s experience (in years) - Continuous 

DU Duration (months) Project duration (in months) - Continuous  

TR Transactions Continuous  

EN Entities Continuous  

FPA Function Points Adjusted  Continuous  

SC Scale of project Continuous  

FPNA Function Points Non-Adjusted Continuous 

LAN Language 
1=Environment 1 
2=Environment 2 
3=Environment 3 

 

 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

284 

Table A. 8: Desharnais dataset cost attributes descriptives 

Code EFF TE ME DU TR EN FPA SC FPNA 

Mean 5046.31 2.27 2.67 11.72 179.90 122.33 302.23 27.63 287.05 

Standard Error 490.97 0.15 0.17 0.82 15.92 9.43 19.96 1.18 20.57 

Median 3647.00 2.00 3.00 10.00 139.00 99.00 260.00 28.00 253.00 

Mode n/a 4.00 4.00 12.00 97.00 52.00 100.00 34.00 192.00 

Standard Deviation 4418.77 1.34 1.52 7.40 143.31 84.88 179.68 10.59 185.11 

Sample Variance 19525503.82 1.79 2.30 54.76 20539.17 7204.98 32283.76 112.19 34265.02 

Kurtosis 4.72 -1.26 0.07 3.12 7.73 1.48 4.94 -0.28 4.16 

Skewness 2.01 -0.04 0.20 1.60 2.36 1.34 1.78 -0.11 1.66 

Range 23394.00 4.00 7.00 38.00 877.00 380.00 1054.00 47.00 1054.00 

Min 546.00 0.00 0.00 1.00 9.00 7.00 73.00 5.00 62.00 

Max 23940.00 4.00 7.00 39.00 886.00 387.00 1127.00 52.00 1116.00 

Sum 408751.00 179.00 208.00 949.00 14572.00 9909.00 24481.00 2238.00 23251.00 

Count 81.00 79.00 78.00 81.00 81.00 81.00 81.00 81.00 81.00 

A.5 The ISBSG R9 Dataset 

The filtered versions of the ISBSG R9 dataset utilised throughout the experiments of this 

thesis are summarised in this section. Initially, in Table A. 9 the summary statistics for the 

ISBSG R9-1 and the only two attributes used in the SB-SCE experiments of section 4.2.1 are 

described (i.e., Summary Work Effort (SWE) and Adjusted Function Points (AFP)). 

 

Table A. 9: ISBSG R9-1 dataset descriptive of attributes SWE and AFP 

Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Range Min Max 

4762.75 272.82 1740.00 384.00 8457.54 71530049.00 19.86 3.98 73912.00 8.00 73920.00 

478.05 33.94 196.00 101.00 1052.05 1106804.56 131.29 9.58 17515.00 3.00 17518.00 
 

 

Table A. 10: ISBSG R9-2 dataset cost attributes descriptives 

Code Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Min Max 

SWE 4162.94 264.96 2047.00 0.00 7198.02 51811470.57 168.31 9.93 0 138883.00 

FS 447.93 20.78 249.00 119.00 564.51 318675.40 10.26 2.79 4.00 4326.00 

AFP 455.26 21.45 252.50 128.00 582.78 339627.11 12.26 2.96 4.00 4932.00 

PDRA 14.74 0.90 7.90 3.30 24.53 601.84 90.47 7.66 0 387.10 

PDRU 15.73 1.24 8.00 3.30 33.76 1139.78 182.68 11.51 0 640.00 

NPDRA 15.96 1.00 8.30 0.00 27.10 734.21 82.07 7.44 0 387.10 

NPDRU 16.95 1.31 8.35 0.00 35.65 1271.28 152.60 10.50 0 640.00 

PET 6.26 0.21 4.70 3.00 5.76 33.13 49.63 4.91 0 84.00 

PIT 0.24 0.06 0.00 0.00 1.76 3.11 431.63 18.91 0 42.00 

RL 1.34 0.03 1.00 1.00 0.84 0.71 4.93 2.51 1 4.00 

INC 104.25 6.66 44.00 0.00 180.90 32724.80 24.79 4.14 0 1935.00 

OC 104.16 5.56 48.50 0.00 151.04 22812.43 13.26 3.11 0 1337.00 

EC 78.25 4.89 28.00 0.00 132.97 17681.53 19.08 3.68 0 1306.00 

FC 109.14 5.77 49.50 0.00 156.69 24552.90 10.22 2.82 0 1252.00 

IFC 52.44 4.32 17.00 0.00 117.44 13792.53 33.17 5.18 0 1097.00 

AC 341.17 19.81 148.50 0.00 538.06 289506.28 12.73 3.10 0 4326.00 

CC 103.57 10.89 0.00 0.00 295.91 87565.58 46.42 5.88 0 3622.00 

DC 3.49 1.35 0.00 0.00 36.68 1345.20 325.15 17.04 0 780.00 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

285 

 

Table A. 11: ISBSG R9-3 dataset cost attributes descriptives 

Code Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Range Min Max 

SWE 4674.91 626.47 1974.00 1238.00 6659.42 44347932.67 8.43 2.75 35906.00 140 3155 

FS 436.27 49.18 252.00 244.00 522.80 273320.38 7.72 2.59 3113.00 42 3471 

AFP 455.27 52.57 264.00 56.00 558.85 312316.79 8.45 2.65 3432.00 39 84 

PET 9.50 0.84 8.00 7.00 8.89 79.03 44.01 5.53 83.00 1 42 

PIT 1.34 0.41 0.00 0.00 4.31 18.55 72.25 7.86 42.00 0 4 

RL 2.00 0.13 1.00 1.00 1.34 1.79 -1.36 0.73 3.00 1 65 

MTS 6.05 0.73 4.00 0.00 7.75 60.06 29.39 4.32 65.00 0 1327 

INC 141.70 20.63 66.00 21.00 219.33 48106.82 9.54 2.90 1327.00 0 620 

OC 87.73 9.88 57.00 4.00 105.03 11031.36 9.20 2.73 620.00 0 534 

EC 63.13 8.34 30.00 0.00 88.70 7867.35 11.10 2.96 534.00 0 995 

FC 111.08 15.47 56.00 7.00 164.46 27047.18 11.42 3.11 995.00 0 329 

IFC 32.62 5.79 10.00 0.00 61.60 3794.36 10.71 3.19 329.00 0 3155 

AC 395.28 49.21 213.00 0.00 523.12 273654.37 8.18 2.63 3155.00 0 844 

CC 39.41 10.33 0.00 0.00 109.80 12056.42 26.96 4.54 844.00 0 128 

DC 1.58 1.17 0.00 0.00 12.41 153.89 98.80 9.74 128.00 0 36046 

 
 

Table A. 12: ISBSG R9-4 dataset software cost attributes definitions 

Abbreviation Attribute name Levels-Definition 

CA1-4 

Count Approach 1=IFPUG 
2=Mark II 
3=Feature Points 
4=NESMA 

AFP Adjusted Function Points Continuous 

PET Project Elapsed Time Continuous 

IY Implementation Year  Nominal 

DTY1-4 Development Type 

1=New Development 
2=Re-development 
3=Enhancement 
4=New Utility 

OT1-12 Organization Type 

1=Aerospace / Automotive 
2=Banking 
3=Communications 
4=Electricity, Gas, Water 
5=Financial, Property & Business Services 
6=Government 
7=Insurance 
8=Manufacturing 
9=Public Administration 
10=Transport & Storage 
11=Wholesale & Retail Trade 
12=OTHER 

DT1-15 Development Technique 

1=Data Modelling 
2=Prototyping 
3=Process Modelling 
4=Joint Application Development 
5=Multifunctional Teams 
6=Object Oriented Design 
7=Rapid Application Development 
8=Regression Testing 
9=Event Modelling 
10=Business Area Modelling 
11=Object Oriented Analysis 
12=Timeboxing 
13=Standards 
14=Waterfall 
15=OTHER 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

286 

Abbreviation Attribute name Levels-Definition 

FST1-3 Functional Sizing Technique 
1=Using a tool 
2=Manually  
3=UNKNOWN 

DP1-5 Development Platform 

1=Multi 
2=MF 
3=PC 
4=MR 
5=UNKNOWN 

LT1-6 Language Type 

1=2GL 
2=3GL 
3=4GL 
4=ApG 
5=5GL 
6=UNKNOWN 

PPL1-11 Primary Programming Language 

1=ACCESS 
2=C/C++/C# 
3=PL/I 
4=SQL 
5=TELON 
6=VB 
7=WEBDEV 
8=COBOL 
9=JAVA 
10=NATURAL 
11=OTHER 

DBS1-9 Database System 

1=DB2 
2=IMS 
3=ORACLE 
4=ADABAS 
5=VSAM 
6=SYBASE 
7=ACCESS 
8=SQL SERVER 
9=OTHER 

RM1-7 Recording Method 

1=Recorded Productivity 
2=Total hours Weekly/Daily 
3=Recorderd Staff Hours 
4=Derived Staff Hours 
5=Task 
6=Hours Weekly/Daily 
7=Combinations 

RL Resource Level Ordinal 

MTS Max Team Size Continuous 

ATS Average Team Size Continuous 

 

Table A. 13: ISBSG R9-5 dataset cost attributes descriptives 

Code FCWEFF AFP EC FC AC CC 

Mean 5110.70 628.08 90.58 136.61 478.05 117.43 

Standard Error 428.00 60.85 10.25 13.00 48.02 20.92 

Median 2149.00 289.50 28.00 60.00 199.50 0.00 

Mode 1950.00 44.00 0.00 0.00 0.00 0.00 

Standard Deviation 8408.84 1195.53 201.43 255.38 943.41 411.04 

Sample Variance 70708539.81 1429289.49 40572.19 65217.27 890025.59 168956.39 

Kurtosis 18.11 106.75 100.46 44.78 97.80 78.64 

Skewness 3.79 8.47 8.24 5.46 7.87 7.88 

Range 66538.00 17511.00 2886.00 2955.00 13580.00 5193.00 

Min 62.00 7.00 0.00 0.00 0.00 0.00 

Max 66600.00 17518.00 2886.00 2955.00 13580.00 5193.00 

Sum 1972729.00 242440.00 34962.00 52730.00 184529.00 45329.00 

Count 386.00 386.00 386.00 386.00 386.00 386.00 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

287 

Table A. 14: ISBSG R9-6 dataset cost attributes descriptives 

Code FCWEFF NAFP EC FC AC 

Mean 4988.53 12.99 101.79 133.64 487.00 

Standard Error 398.17 0.76 6.59 7.75 28.45 

Median 2647.50 7.95 47.00 71.00 267.50 

Mode 0.00 1.40 6.00 14.00 129.00 

Standard Deviation 8521.23 16.17 141.11 165.94 608.83 

Sample Variance 72611368.75 261.35 19910.98 27537.60 370670.37 

Kurtosis 134.43 28.37 9.73 8.96 9.22 

Skewness 9.28 4.33 2.85 2.62 2.66 

Range 138883.00 159.40 919.00 1245.00 4322.00 

Min 0.00 0.10 3.00 7.00 4.00 

Max 138883.00 159.50 922.00 1252.00 4326.00 

Sum 2284746.00 5947.30 46620.00 61209.00 223046.00 

Count 458.00 458.00 458.00 458.00 458.00 

 

Table A. 15: ISBSG R9-7 dataset cost attributes descriptives 

Code FCWEFF AFP PDRU PET RL ATS 

Mean 6756.81 676.51 13.41 9.50 1.41 7.63 

Standard Error 630.20 67.67 1.19 0.39 0.05 0.54 

Median 2350.00 344.00 7.40 7.30 1.00 4.50 

Mode 1788.00 118.00 3.80 6.00 1.00 3.00 

Standard Deviation 11500.13 1234.83 21.74 7.15 0.99 9.80 

Sample Variance 132252962.63 1524812.98 472.73 51.19 0.98 95.94 

Kurtosis 11.67 83.06 94.33 7.52 2.79 18.05 

Skewness 3.25 7.70 8.05 2.25 2.15 3.80 

Range 73750.00 16131.00 300.00 51.00 3.00 76.05 

Min 170.00 17.00 0.30 1.00 1.00 0.95 

Max 73920.00 16148.00 300.30 52.00 4.00 77.00 

Sum 2250018.00 225279.00 4467.10 3163.80 468.00 2541.50 

Count 333.00 333.00 333.00 333.00 333.00 333.00 

 

Table A. 16: ISBSG R9-8 dataset software cost attributes definitions 

Abbreviation Attribute name Levels-Definition 

CA Count Approach Nominal 

AFP Adjusted Function Points Ordinal 

PET Project Elapsed Time Ordinal 

IY Implementation Year  Nominal 

DT Development Type Nominal 

OT1-12 Organization Type 

1=Aerospace / Automotive 
2=Banking 
3=Communications 
4=Electricity, Gas, Water 
5=Financial, Property & Business Services 
6=Government 
7=Insurance 
8=Manufacturing 
9=Public Administration 
10=Transport & Storage 
11=Wholesale & Retail Trade 
12=OTHER 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

288 

Abbreviation Attribute name Levels-Definition 

DT1-15 Development Technique 

1=Data Modelling 
2=Prototyping 
3=Process Modelling 
4=Joint Application Development 
5=Multifunctional Teams 
6=Object Oriented Design 
7=Rapid Application Development 
8=Regression Testing 
9=Event Modelling 
10=Business Area Modelling 
11=Object Oriented Analysis 
12=Timeboxing 
13=Standards 
14=Waterfall 
15=OTHER 

FST Functional Sizing Technique Nominal 

DP Development Platform Nominal 

LT Language Type Nominal 

PPL Primary Programming Language Nominal 

DBS1-9 Database System 

1=DB2 
2=IMS 
3=ORACLE 
4=ADABAS 
5=VSAM 
6=SYBASE 
7=ACCESS 
8=SQL SERVER 
9=OTHER 

RM Recording Method Nominal 

RL Resource Level Ordinal 

MTS Max Team Size Ordinal  

ATS Average Team Size Ordinal 

 

Table A. 17: ISBSG R9-8.5 Dataset Summary Work Effort (SWE) descriptives (outlier-free) 

Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Range Min Max 

4762.75 3107.40 160.19 1935.00 1238.00 3093.74 9571232.23 1.74 1.50 14113.00 97.00 

 

Table A. 18: ISBSG R9-9 dataset software cost attributes definitions 

Abbreviation Attribute name Levels-Definition (original/after fuzzification) 

EFF Full Cycle Work Effort Continuous/Ordinal 

PET Project Elapsed Time Continuous/Ordinal 

PIT Project Inactive Time Continuous/Ordinal 

PDRU Project PDR (ufp) Continuous/Ordinal 

AFP Adjusted Function Points Continuous/Ordinal 

ATS Average Team Size Continuous/Ordinal 

DT Development Type 

1=New Development 
2=Re-development 
3=Enhancement 
4=New Utility 

AT Application Type Nominal 

DP Development Platform 

1=Multi 
2=MF 
3=PC 
4=MR 
5=UNKNOWN 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

289 

Abbreviation Attribute name Levels-Definition (original/after fuzzification) 

LT Language Type 

1=2GL 
2=3GL 
3=4GL 
4=ApG 
5=5GL 
6=UNKNOWN 

RL Resource Level Ordinal 

PPL Primary Programming Language 

1=ACCESS 
2=C/C++/C# 
3=PL/I 
4=SQL 
5=TELON 
6=VB 
7=WEBDEV 
8=COBOL 
9=JAVA 
10=NATURAL 
11=OTHER 

 

A.6 The ISBSG R10 Dataset 

The ISBSG R10 dataset utilised in the experiments contained 65 projects for which the 

breakdown of effort for the Planning, Specify, Design, Building and Implementation phases 

was available. 

Table A. 19: ISBSG r10 dataset software cost attributes definitions 

Code Attribute name Levels-Definition 

SWE Summary Work Effort Total actual effort (in person-hours) - Continuous 

PLAN Plan effort Continuous  

SPEC Specify effort Continuous  

DESN Design effort Continuous  

BLD Build effort Continuous  

TEST Test effort Continuous  

IMPL Implement effort  Continuous  

DT Development Type 
1=New Developement 
2=Re-development 
3=Enhancement 

DP Development Platform 

1=Multi 
2=MF 
3=PC 
4=MR 

LT Language Type 

1=2GL 
2=3GL 
3=4GL 
4=ApG 

MTS Max Team Size Continuous  

 
 

 

 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

 

290 

Table A. 20: ISBSSG R10 dataset effort breakdown in phases descriptives 

Code SWE PLAN SPEC DESN BLD TEST IMPL 

Mean 6999.71 575.63 556.23 831.77 2577.68 1085.55 390.38 

Standard Error 1048.22 180.67 127.36 127.11 581.32 169.28 97.25 

Median 4294.00 158.00 250.00 400.00 1300.00 626.00 168.00 

Mode 3138.00 30.00 138.00 120.00 420.00 228.00 50.00 

Standard Deviation 8451.03 1456.60 1026.80 1024.79 4686.74 1364.81 784.02 

Sample Variance 71419927.65 2121697.36 1054308.18 1050194.96 21965510.38 1862711.50 614680.62 

Kurtosis 10.07 39.18 23.30 8.19 22.54 8.26 26.89 

Skewness 2.90 5.84 4.60 2.50 4.51 2.71 4.74 

Range 47080.00 10796.00 6496.00 5790.00 29930.00 6926.00 5391.00 

Minimum 172.00 4.00 4.00 17.00 70.00 40.00 2.00 

Maximum 47252.00 10800.00 6500.00 5807.00 30000.00 6966.00 5393.00 

Sum 454981.00 37416.00 36155.00 54065.00 167549.00 70561.00 25375.00 

Count 65.00 65.00 65.00 65.00 65.00 65.00 65.00 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

291 

 

Appendix B 

Complete Experimental Results 

This Appendix includes the complete experimental results obtained from the SCE models 

created and described in Chapter 4. The results report the prediction errors obtained during the 

training and testing phases. The training phase conducted is goal-oriented, i.e., it calibrates the 

particular model or technique employed. Effective training will ultimately reduce some error 

or satisfy some pre-defined requirements. Thus, the target of the training process is to find the 

set of appropriate settings (conditions) that yield successful results, in terms of either 

prediction, generalisation or other specific requirements set. This evaluation process, also 

referred to as testing phase, assesses the ability of the model or technique to match the actual 

target values or requirements as closely as possible. The best models obtained appear in bold. 

B.1 Complete Results of MLP ANN for SB-SCE 

The results summarised below refer to the single hidden layer MLP ANN created during 

repetition of the experiments described in section 4.2.1.1 (pg. 103) for Size-Based SCE. 

Table B. 1: Results from Single hidden layer MLP ANN for SB-SCE for the COCOMO dataset 

INPUT 
ANN 

TOPOLOGY 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

SLOC 

1-2-1 3.340 0.663 0.736 0.100 3.701 0.987 0.448 0.077 

1-3-1 1.026 0.837 0.538 0.200 1.664 0.711 0.750 0.154 

1-4-1 1.196 0.677 0.730 0.067 1.910 0.645 0.742 0.154 

1-2-1 1.601 0.831 0.573 0.167 1.257 0.796 0.966 0.308 

1-3-1 1.334 0.670 0.730 0.167 1.449 0.933 1.227 0.077 

1-4-1 0.888 0.998 0.063 0.333 1.629 0.597 2.890 0.154 

1-2-1 1.772 0.821 0.561 0.233 1.010 0.765 0.637 0.077 

1-3-1 1.554 0.865 0.512 0.267 2.480 0.501 1.488 0.154 

1-4-1 1.647 0.934 0.584 0.167 1.029 0.995 0.327 0.154 

Efi P
ap

ath
eo

ch
aro

us



 

 

292 

 

Table B. 2: Experimental results from Single hidden layer MLP ANN for SB-SCE for the 

Kemerer dataset 

INPUT 
ANN 

TOPOLOGY 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

AFP 

1-2-1 0.286 0.988 0.145 0.625 0.380 0.574 0.822 0.000 

1-3-1 0.204 0.966 0.248 0.625 0.282 0.943 0.614 0.333 

1-4-1 0.074 0.976 0.211 1.000 0.652 -0.995 1.167 0.000 

1-2-1 0.253 0.977 0.231 0.500 0.976 0.952 0.665 0.333 

1-3-1 0.187 0.986 0.158 0.750 0.604 0.998 0.873 0.667 

1-4-1 0.071 0.997 0.084 0.875 0.318 0.626 0.910 0.667 

1-2-1 0.235 0.892 0.474 0.625 0.826 0.798 0.681 0.000 

1-3-1 0.228 0.850 0.575 0.750 0.386 0.995 1.357 0.333 

1-4-1 0.003 1.000 0.002 1.000 1.726 0.033 4.836 0.000 

SLOC 

1-2-1 0.183 0.993 0.111 0.625 0.503 0.026 0.917 0.333 

1-3-1 0.258 0.861 0.476 0.750 0.257 0.792 0.527 0.333 

1-4-1 0.067 0.967 0.238 0.875 0.272 0.936 0.828 0.667 

1-2-1 0.222 0.990 0.133 0.500 0.931 0.920 0.527 0.333 

1-3-1 0.193 0.980 0.483 0.750 0.449 0.455 1.040 0.000 

1-4-1 0.258 0.987 0.411 0.250 0.674 -0.327 1.105 0.333 

1-2-1 0.134 0.976 0.251 0.750 0.907 0.603 0.762 0.333 

1-3-1 0.377 0.983 0.174 0.625 0.304 0.763 0.535 0.667 

1-4-1 0.235 0.809 0.552 0.625 1.221 0.698 4.288 0.000 

 

Table B. 3: Experimental results from Single hidden layer MLP ANN for SB-SCE for the 

Albrecht and Gaffney dataset 

INPUT 
TOPO-

LOGY 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

FP 

1-2-1 0.141 0.995 0.108 0.818 0.713 0.300 0.885 0.200 

1-3-1 0.264 0.990 0.141 0.636 0.501 0.889 0.787 0.400 

1-4-1 0.165 0.998 0.069 0.636 0.561 0.999 0.543 0.000 

1-2-1 0.304 0.978 0.213 0.545 0.324 0.987 0.149 0.600 

1-3-1 0.303 0.980 0.192 0.455 0.449 0.892 0.474 0.200 

1-4-1 0.240 0.994 0.133 0.636 2.804 0.923 0.702 0.600 

1-2-1 0.253 0.976 0.209 0.545 1.408 0.998 5.356 0.400 

1-3-1 0.183 0.991 0.125 0.545 0.603 0.684 0.850 0.200 

1-4-1 0.135 0.998 0.061 0.909 3.646 0.830 0.785 0.400 

SLOC 

1-2-1 0.228 0.989 0.139 0.545 1.466 0.995 0.825 0.200 

1-3-1 0.378 0.996 0.090 0.636 0.463 0.840 0.524 0.200 

1-4-1 0.301 0.991 0.130 0.364 0.469 0.985 0.691 0.200 

1-2-1 0.318 0.976 0.218 0.455 1.051 0.876 0.617 0.000 

1-3-1 0.279 0.988 0.150 0.636 0.746 0.732 0.844 0.000 

1-4-1 0.327 0.967 0.278 0.455 1.534 0.854 0.497 0.600 

1-2-1 0.453 0.910 0.395 0.545 1.051 0.998 2.885 0.400 

1-3-1 0.351 0.965 0.252 0.727 0.704 0.882 2.410 0.200 

1-4-1 0.363 0.975 0.222 0.364 2.961 0.773 0.801 0.200 

 

 Efi P
ap

ath
eo

ch
aro

us



 

 

293 

 

Table B. 4: Experimental results from Single hidden layer MLP ANN for SB-SCE for the 

Desharnais dataset 

INPUT 
TOPO-

LOGY 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

AFP 

1-2-1 0.609 0.680 0.744 0.447 1.155 0.640 0.769 0.267 

1-3-1 0.471 0.713 0.722 0.474 0.853 0.377 0.906 0.600 

1-4-1 0.555 0.618 0.785 0.316 0.459 0.733 0.681 0.533 

1-2-1 0.483 0.672 0.730 0.474 0.648 -0.509 1.273 0.333 

1-3-1 0.487 0.697 0.715 0.474 0.348 0.712 0.696 0.400 

1-4-1 0.502 0.793 0.627 0.526 0.350 0.231 1.026 0.467 

1-2-1 0.539 0.803 0.696 0.395 0.624 0.523 1.214 0.267 

1-3-1 0.453 0.769 0.647 0.474 0.496 -0.407 1.374 0.400 

1-4-1 0.515 0.691 0.718 0.421 0.544 -0.364 1.226 0.400 

 

The results summarised below refer to the Regression models created for comparison 

purposes of the single hidden layer MLP ANN experiments described above for Size-Based 

SCE. 

Table B. 5: Experimental results from Regression for SB-SCE for the COCOMO dataset 

INPUT 
TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

SLOC 

1.078 0.573 0.858 0.167 0.778 0.973 0.273 0.308 

0.832 0.821 0.619 0.233 1.273 0.961 0.268 0.231 

0.802 0.647 0.759 0.200 2.010 0.628 0.767 0.154 

0.978 0.807 0.622 0.200 1.107 0.785 1.194 0.231 

0.932 0.646 0.802 0.133 1.212 0.901 0.690 0.231 

0.608 0.834 0.579 0.233 1.022 0.639 1.045 0.154 

0.991 0.802 0.609 0.133 0.578 0.734 0.746 0.462 

0.887 0.989 0.238 0.267 0.863 0.336 1.032 0.077 

0.884 0.627 0.776 0.200 0.562 0.982 0.741 0.231 

 

Table B. 6: Experimental results from Regression for SB-SCE for the Kemerer dataset 

INPUT 
TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

AFP 

0.480 0.943 0.539 0.375 0.541 0.573 0.765 0.000 

0.424 0.764 0.663 0.500 0.196 0.974 0.289 0.667 

0.411 0.790 0.645 0.375 0.457 0.973 0.864 0.333 

0.348 0.935 0.506 0.375 0.125 1.000 0.059 0.667 

0.461 0.824 0.661 0.500 0.522 0.967 0.827 0.333 

0.408 0.795 0.673 0.750 0.517 0.626 0.827 0.000 

0.244 0.887 0.457 0.750 0.919 0.805 0.654 0.000 

0.240 0.882 0.446 0.750 0.474 0.973 0.789 0.000 

0.212 0.965 0.405 0.625 1.784 0.052 5.086 0.000 

SLOC 

0.419 0.772 0.747 0.500 0.688 0.147 1.030 0.333 

0.330 0.776 0.627 0.500 0.234 0.825 0.566 0.667 

0.337 0.706 0.686 0.375 0.489 0.931 0.933 0.000 

0.417 0.802 0.680 0.625 0.778 0.994 0.289 0.333 

0.441 0.802 0.689 0.375 0.739 -0.012 1.053 0.667 

0.344 0.894 0.593 0.500 0.877 -0.064 1.281 0.667 

0.178 0.938 0.335 0.750 0.630 0.767 0.781 0.333 

0.485 0.878 0.636 0.375 0.446 0.876 0.786 0.667 

0.397 0.679 0.744 0.625 1.055 0.664 3.730 0.000 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

294 

 

Table B. 7: Experimental results from Regression for SB-SCE for the Albrecht and Gaffney 

dataset 

INPUT 
TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

FP 

0.164 0.959 0.336 0.818 0.828 0.249 0.914 0.200 

0.276 0.969 0.258 0.636 0.392 0.994 0.612 0.200 

0.283 0.981 0.359 0.364 0.415 0.987 0.244 0.400 

0.354 0.930 0.472 0.364 0.248 0.969 0.453 0.600 

0.326 0.961 0.329 0.455 0.285 0.992 0.223 0.400 

0.351 0.948 0.458 0.364 1.748 0.920 0.752 0.400 

0.318 0.930 0.452 0.545 0.343 0.998 0.340 0.200 

0.357 0.955 0.330 0.364 0.388 0.951 0.931 0.200 

0.186 0.978 0.256 0.818 1.117 0.880 0.590 0.200 

SLOC 

0.273 0.868 0.478 0.545 0.847 0.962 0.449 0.200 

0.384 0.848 0.600 0.455 0.472 0.802 0.571 0.200 

0.408 0.837 0.530 0.364 0.397 0.970 0.556 0.200 

0.245 0.982 0.193 0.545 0.887 0.869 0.741 0.000 

0.344 0.981 0.250 0.455 0.457 0.967 0.493 0.400 

0.379 0.885 0.498 0.545 0.538 0.909 1.236 0.200 

0.411 0.859 0.556 0.455 0.354 0.999 0.239 0.600 

0.421 0.951 0.489 0.455 0.405 0.860 1.056 0.200 

0.564 0.962 0.355 0.182 0.411 0.958 0.481 0.400 

 

Table B. 8: Experimental results from Regression for SB-SCE for the Desharnais dataset 

INPUT 
TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE Pred(.25) MMRE CC NRMSE Pred(.25) 

AFP 

0.393 0.718 0.701 0.447 0.759 0.691 0.737 0.467 

0.478 0.714 0.714 0.474 0.871 0.379 0.908 0.600 

0.561 0.491 0.883 0.447 0.463 0.620 0.787 0.333 

0.481 0.555 0.837 0.395 0.501 0.905 0.695 0.400 

0.514 0.543 0.848 0.395 0.311 0.708 0.819 0.467 

0.552 0.672 0.752 0.500 0.351 0.347 0.951 0.467 

0.519 0.866 0.508 0.342 0.676 0.495 1.576 0.267 

0.525 0.626 0.790 0.500 0.391 0.902 0.659 0.333 

0.533 0.532 0.856 0.395 0.461 0.870 0.668 0.467 

 

The results summarised below refer to the hybrid model developed for Size-Based SCE 

combining ANN with GA to optimise the neural network structure using various Input Output 

Method (IOM) as described in section 4.2.1.3 (pg. 113). 

The Sign Predictor (Sign(p)) metric appearing in Table B. 9 assesses if there is a positive 

or a negative transition of the actual and predicted effort trace in the projects used only during 

the evaluation of the models with the sliding-window technique on unknown test data. The 

practical usage of this measure is that it does not take into account the exact prediction values 

obtained but considers the degree of correct prediction tendency, i.e., if the real value 

compared to the next value and the predicted value compared to the next predicted value have 

the same tendency (upwards or downwards). This is expressed in eqs (B.1) and (B.2). 

Efi P
ap

ath
eo

ch
aro

us



 

 

295 

 

 

n

z

pSign

n

i

i
 1)(  

(B.1) 

.

0))(*)((

0

1
11

otherwise

xxxxif
zwhere

act

t

act

t

pred

t

pred

t

i







 
 (B.2) 

 

 
Table B. 9: Experimental results obtained from the hybrid genetically evolved multiple hidden 

layer MLP ANN SB-SCE (hybrid ANN&GA) for a constant sliding-window size 

DATASET METHOD* 
ANN 

ARCHITECTURE 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE MMRE CC NRMSE Sign(p) Sign(p)% 

COCOMO 

IOM1 1-9-17-10-1 0.004 1.000 0.014 0.003 1.000 0.014 24/24 100 

IOM3 2-20-18-3-1 0.092 0.963 0.270 0.075 0.961 0.278 13/18 72.22 

IOM5 3-19-20-4-1 0.043 0.990 0.149 0.044 0.981 0.199 14/24 58.33 

Kemerer 

IOM1 1-17-13-16-1 0.008 1.000 0.015 0.009 1.000 0.019 4/4 100 

IOM3 2-18-14-18-1 0.246 0.825 0.539 0.211 0.822 0.550 1/3 33.33 

IOM5 3-19-15-20-1 0.004 1.000 0.006 0.028 0.997 0.081 3/3 100 

IOM2 1-17-20-11-1 0.006 1.000 0.005 0.009 1.000 0.006 4/4 100 

IOM4 2-19-1520-1 0.041 0.998 0.074 0.062 0.993 0.122 3/3 100 
IOM6 3-19-9-16-1 0.029 0.999 0.045 0.031 0.999 0.051 3/3 100 

Albrecht and 

Gaffney 

IOM1 1-13-20-6-1 0.002 1.000 0.008 0.005 1.000 0.024 6/6 100 
IOM3 2-19-20-8-1 0.087 0.990 0.136 0.163 0.977 0.210 5/6 83.33 

IOM5 3-19-11-10-1 0.089 0.990 0.139 0.173 0.975 0.218 3/6 50.00 

IOM2 1-9-17-10-1 0.011 1.000 0.018 0.014 1.000 0.018 6/6 100 

IOM4 2-18-15-11-1 0.092 0.989 0.145 0.112 0.985 0.171 5/6 83.33 

IOM6 3-20-19-10-1 0.088 0.983 0.179 0.084 0.984 0.177 5/6 83.33 

Desharnais 

IOM2 1-3-18-20-1 0.013 0.999 0.038 0.016 0.998 0.075 22/22 100 

IOM4 2-20-19-20-1 0.912 0.495 1.107 0.589 0.437 1.022 13/22 59.09 

IOM6 3-20-20-19-1 0.354 0.878 0.480 0.381 0.674 0.750 21/22 95.45 

ISBSG R9-1 

IOM2 1-16-18-11-1 0.004 0.998 0.068 0.004 0.998 0.073 288/288 100 

IOM4 2-19-14-20 0.329 0.174 0.985 0.952 0.030 1.141 62/288 21.53 

IOM6 3-19-15-26-1 0.164 0.728 0.686 1.312 0.705 0.742 235/288 81.60 

*sliding-window size i was equal to 1 (refer to Table 4.5). 

Table B. 10: Experimental results of multiple hidden layer MLP ANN hybrid model coupled with 

GA (ANN&GA) with varying sliding-window size for SB-SCE of the Desharnais dataset 

METHOD 
WINDOW 

SIZE i 

ANN 

ARCHITECTURE 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE MMRE CC NRMSE Sign(p) Sign(p)% 

IOM4 1 2-20-19-19-1 0.230 0.960 0.279 0.285 0.899 0.443 15/22 68.18 

IOM2 1 4-19-20-17-1 0.623 0.892 0.961 0.566 0.658 0.755 11/22 50.00 

IOM2 5 5-20-19-20-1 0.305 0.885 0.464 0.493 0.461 1.058 13/21 61.90 

IOM2 3 3-20-18-20-1 0.327 0.881 0.470 0.386 0.701 0.763 9/22 40.91 

IOM4 3 6-17-15-20-1 0.705 0.869 0.979 0.327 0.835 0.550 10/21 47.62 

IOM2 7 7-20-19-18-1 0.136 0.967 0.254 0.707 0.579 0.936 13/21 61.90 

 Efi P
ap

ath
eo

ch
aro

us



 

 

296 

 

Table B. 11: Experimental results of multiple hidden layer MLP ANN hybrid model coupled with 

GA (ANN&GA) with varying sliding-window size for SB-SCE of the ISBSG R9-1 dataset 

METHOD 
WINDOW 

SIZE i 

ANN 

ARCHITECTURE 

TRAINING PHASE TESTING PHASE 

MMRE CC NRMSE MMRE CC NRMSE Sign(p) Sign(p)% 

IOM4 1 2-18-3-19-1 0.089 0.175 1.100 0.073 0.045 1.012 80/288 27.78 

IOM2 1 4-19-20-20-1 1.980 0.288 0.957 1.201 0.005 1.738 110/286 38.46 

IOM2 5 5-19-20-19-1 1.980 0.123 0.992 0.892 -0.053 1.648 94/286 32.87 

IOM6 1 3-19-9-3-1 0.085 0.274 0.962 0.070 0.241 1.000 143/286 50.00 

IOM6 2 6-19-20-19-1 1.851 0.183 0.983 1.244 -0.031 1.845 98/286 34.27 

IOM2 7 7-3-12-15-1 0.070 0.100 0.994 0.071 0.039 1.013 163/286 56.99 

B.2 Complete Results of ANN and ISA for FSS-SCE 

The following results were obtained with the ISBSG R9-3 and with Input Sensitivity 

Analysis (ISA) performed on Artificial Neural Networks (ANN) as described in the backward 

elimination methodology of section 4.2.2.1 (pg. 136-137). 

Table B. 12: Random sampling and first four attributes removed from the Desharnais dataset 

using backward elimination using the Relative Importance (RI) of inputs using ISA on ANN 

Exp.Id 

Order of 

Attributes 

Removed 

ANN Training Phase ANN Testing Phase 

Initial 

MMRE 

Initial 

Pred(.25) 

Final 

MMRE 

Final 

Pred(.25) 

Initial 

MMRE 

Initial 

Pred(.25) 

Final 

MMRE 

Final 

Pred(.25) 

1 TE,DU,SC,ME 0.384 0.936 0.559 0.936 0.536 0.867 0.600 0.867 

2 ME,DU,TR,TE 0.280 0.979 0.343 1.000 0.409 0.933 0.487 0.933 

3 SC,EN,TE,DU 0.557 0.936 0.583 0.936 0.198 1.000 0.335 1.000 

4 TE,TR,PA,SC 0.474 0.915 0.485 0.894 0.364 1.000 0.387 1.000 

5 ME,PA,TE,DU 0.361 0.957 0.360 0.979 1.264 0.867 1.060 0.867 

6 TE,SC,DU,ME 0.512 0.915 0.784 0.915 0.386 0.933 0.346 0.933 

7 ME,SC,PNA,PA 0.472 0.957 0.572 0.957 0.569 0.800 0.512 0.800 

8 TE,ME,SC,EN 0.509 0.957 0.572 0.957 0.351 0.800 0.512 0.800 

9 TE,ME,EN,DU 0.358 0.936 0.356 0.936 0.507 0.933 0.578 0.933 

10 TE,SC,EN,DU 0.482 0.894 0.768 0.894 0.312 0.933 0.293 0.933 

Mean 0.439 0.938 0.538 0.940 0.490 0.907 0.511 0.907 

 

Table B. 13: Random sampling-first seven attributes removed from the ISBSG R9-3 dataset using 

backward elimination using the Relative Importance (RI) of inputs using ISA on ANN 

Exp.Id 
Order of Attributes 

Removed 

ANN Training Phase ANN Testing Phase 

Initial 

MMRE 

Initial 

Pred(.25) 

Final 

MMRE 

Final 

Pred(.25) 

Initial 

MMRE 

Initial 

Pred(.25) 

Final 

MMRE 

Final 

Pred(.25) 

1 CC,AFP,MTS,PET,OC,PIT,EC 0.223 0.957 0.329 0.928 0.358 1.000 0.578 1.000 

2 DC,CC,PET,RL,PIT,INC,EC 0.280 0.986 0.352 0.971 0.418 0.955 0.575 0.955 

3 INC,CC,DC,RL,OC,AC,FC 0.337 1.000 0.404 0.986 0.255 0.955 0.265 0.909 

4 MTS,CC,RL,INC,FC,FS,AC 0.350 0.957 0.493 0.957 0.199 0.955 0.191 0.955 

5 FS,RL,FC,EC,IC,INC,CC 0.367 0.971 0.411 0.986 0.202 0.955 0.298 0.955 

6 RL,DC,CC,INC,OC,EC,FS 0.362 1.000 0.303 1.000 0.346 0.909 0.385 0.864 

7 CC,OC,RL,FC,INC,AFP,IC 0.210 1.000 0.271 0.986 0.377 0.909 0.257 0.909 

8 FC,OC,AC,AFP,RL,IC,FS 0.247 0.957 0.344 0.957 0.188 1.000 0.424 1.000 

9 FC,IC,RL,AFP,AC,EC,PIT 0.261 0.957 0.305 0.971 0.662 1.000 0.500 1.000 

10 FS,IC,PIT,OC,AFP,RL,FC 0.338 0.986 0.279 0.986 0.249 0.955 0.270 0.955 

Mean 0.297 0.977 0.349 0.972 0.325 0.959 0.374 0.950 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

297 

 

B.3 Complete Results from Ridge Regression (RR) and FSS-SCE 

The complete results obtained using the nine different Feature Subset Selection (FSS) 

approaches during the phases of training and testing are presented below. Table B. 14 and 

Table B. 15 report the best prediction result obtained with each FSS (MIN) and the mean 

across all the 10 fold cross-validation experiments conducted (AVG). 

 

Table B. 14: SCE across various FSS with RR on the Desharnais dataset 

FSS RESULTS 

TRAINING PHASE TESTING PHASE 
#Fea-

tures 
INITIAL FINAL INITIAL FINAL 

MMRE Pred(.25) MMRE Pred(.25) MMRE Pred(.25) MMRE Pred(.25) 

BFE 

MIN 0.565 0.339 0.566 0.323 0.334 0.400 0.337 0.333 4 

MAX 0.482 0.419 0.489 0.435 0.815 0.267 0.916 0.267 5 

AVG 0.522 0.379 0.528 0.389 0.582 0.387 0.622 0.347 4 

FFS 

MIN 0.565 0.339 0.566 0.323 0.334 0.400 0.337 0.333 4 

MAX 0.482 0.419 0.487 0.435 0.815 0.267 0.903 0.267 6 

AVG 0.522 0.379 0.528 0.395 0.582 0.387 0.622 0.340 5 

BSWF 

MIN 0.565 0.339 0.584 0.435 0.334 0.400 0.345 0.400 4 

MAX 0.474 0.435 0.516 0.435 0.779 0.333 0.859 0.333 2 

AVG 0.522 0.379 0.552 0.427 0.582 0.387 0.623 0.413 4 

FSWF 

MIN 0.556 0.323 0.623 0.387 0.387 0.467 0.416 0.400 2 

MAX 0.482 0.419 0.537 0.403 0.815 0.267 0.911 0.533 3 

AVG 0.522 0.379 0.577 0.427 0.582 0.387 0.653 0.413 3 

LSBFE 

MIN 0.559 0.306 0.564 0.290 0.389 0.400 0.377 0.400 4 

MAX 0.448 0.435 0.462 0.403 1.264 0.067 1.170 0.200 3 

AVG 0.516 0.342 0.540 0.353 0.648 0.293 0.699 0.320 3 

LSFFS 

MIN 0.554 0.274 0.587 0.306 0.339 0.400 0.388 0.333 2 

MAX 0.448 0.435 0.479 0.403 1.264 0.067 1.096 0.267 3 

AVG 0.516 0.342 0.538 0.348 0.648 0.293 0.639 0.333 3 

LSGA 

MIN 0.556 0.323 0.623 0.387 0.387 0.467 0.416 0.400 2 

MAX 0.474 0.436 0.510 0.452 0.779 0.333 0.867 0.267 3 

AVG 0.522 0.379 0.573 0.416 0.582 0.387 0.626 0.320 3 

GA 

MIN 0.566 0.339 0.566 0.323 0.334 0.400 0.337 0.333 4 

MAX 0.474 0.436 0.474 0.500 0.779 0.333 0.836 0.400 5 

AVG 0.522 0.379 0.530 0.377 0.582 0.387 0.614 0.327 4 

BANN 

MIN 0.565 0.339 0.605 0.468 0.334 0.400 0.382 0.333 4 

MAX 0.474 0.435 0.533 0.387 0.779 0.333 0.792 0.200 4 

AVG 0.522 0.379 0.573 0.387 0.582 0.387 0.606 0.447 4 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

298 

 

Table B. 15: SCE across various FSS with RR on the ISBSG R9-4 dataset 

FSS RESULTS 

TRAINING PHASE TESTING PHASE 
#Fea-

tures 
INITIAL FINAL INITIAL FINAL 

MMRE Pred(.25) MMRE Pred(.25) MMRE Pred(.25) MMRE Pred(.25) 

BFE 

MIN 0.355 0.520 0.444 0.436 0.434 0.398 0.456 0.390 34 

MAX 0.337 0.532 0.409 0.433 0.657 0.415 0.851 0.423 36 

AVG 0.330 0.536 0.407 0.467 0.585 0.349 0.592 0.377 32 

FFS 

MIN 0.355 0.520 0.451 0.453 0.434 0.398 0.439 0.455 33 

MAX 0.337 0.532 0.418 0.456 0.657 0.415 0.771 0.463 29 

AVG 0.330 0.536 0.410 0.471 0.585 0.349 0.577 0.382 29 

BSWF 

MIN 0.355 0.520 0.465 0.419 0.434 0.398 0.434 0.447 32 

MAX 0.313 0.523 0.414 0.436 0.763 0.309 0.880 0.407 30 

AVG 0.330 0.536 0.451 0.434 0.585 0.349 0.618 0.386 27 

FSWF 

MIN 0.355 0.520 0.551 0.390 0.434 0.398 0.425 0.447 11 

MAX 0.313 0.523 0.482 0.401 0.763 0.309 0.817 0.382 11 

AVG 0.330 0.536 0.518 0.387 0.585 0.349 0.600 0.373 12 

LSBFE 

MIN 0.355 0.520 0.462 0.387 0.434 0.398 0.399 0.439 39 

MAX 0.312 0.564 0.415 0.477 0.815 0.317 0.869 0.301 27 

AVG 0.330 0.536 0.431 0.446 0.585 0.349 0.592 0.372 32 

LSFFS 

MIN 0.355 0.520 0.461 0.448 0.434 0.398 0.447 0.407 37 

MAX 0.312 0.564 0.403 0.477 0.815 0.317 0.812 0.350 31 

AVG 0.330 0.536 0.442 0.435 0.585 0.349 0.596 0.363 34 

LSGA 

MIN 0.355 0.520 0.457 0.410 0.434 0.398 0.432 0.407 36 

MAX 0.314 0.523 0.422 0.462 0.763 0.309 0.867 0.374 29 

AVG 0.330 0.536 0.434 0.436 0.585 0.349 0.607 0.355 31 

GA 

MIN 0.355 0.520 0.424 0.422 0.434 0.398 0.445 0.415 35 

MAX 0.312 0.564 0.374 0.491 0.815 0.317 0.748 0.382 30 

AVG 0.331 0.536 0.401 0.472 0.585 0.349 0.570 0.376 33 

BANN 

MIN 0.355 0.520 0.566 0.384 0.434 0.398 0.478 0.325 41 

MAX 0.312 0.564 0.465 0.401 0.815 0.317 0.954 0.317 41 

AVG 0.330 0.536 0.489 0.402 0.585 0.349 0.686 0.320 41 

 

B.4 Complete Results of Fuzzy Clustering in CC-SCE 

In the fuzzy clustering algorithm utilised for Clustering and Classification Software Cost 

Estimations (CC-SCE) (Papatheocharous and Andreou, 2009a), namely the Entropy-based 

fuzzy k-modes algorithm the following experiments and experimental subsets were used: The 

experimental dataset ISBSG R9-8.1 included all available project characteristics plus the 

effort; all project characteristics excluding effort constituted ISBSG R9-8.2; removing the 

outliers from ISBSG R9-8.1 and ISBSG R9-8.2 based on the Box Plots of the effort sample 

values resulted datasets ISBSG R9-8.3 and ISBSG R9-8.4 respectively; finally, using ISBSG 

R9-8.3 and adjusting the weight of the effort variable to reach the dominant significance level 

of 51% in the clustering process compared to the rest of the attributes, produced dataset 

Efi P
ap

ath
eo

ch
aro

us



 

 

299 

 

ISBSG R9-8.5. Similarity Table B. 16 summarises the best results obtained with respect to the 

width of the estimation (or prediction) interval and the Hit Ratio (HR).  

Table B. 16: SCE results obtained with the fuzzy k-modes algorithm and various ISBSG R9-8 

subsets 

Dataset β α k φ OS (%) ClS (%) HR (%) mean effort (ē) std effort (σ) width 

ISBSG R9-8.1 0.55 1.5 42 0.75 7.80 49.09 38.68 12727.77 5843.59 11687.19 

ISBSG R9-8.2 0.7 1.2 95 0.75 10.16 49.39 50.94 7885.80 7614.47 15228.94 

ISBSG R9-8.3 0.4 1.4 6 0.85 2.26 67.68 36.17 1711.81 1695.34 3390.68 

ISBSG R9-8.4 0.3 1.8 3 0.85 2.39 67.45 28.72 1931.39 1788.68 3577.36 

ISBSG R9-8.5 0.8 1.7 25 0.75 1.60 37.92 76.60 2030.93 1198.76 2397.53 

 

The results reported indicate relatively large prediction intervals in most of the cases, 

except in the datasets ISBSG R9-8.1 and ISBSG R9-8.5, with standard deviations being lower 

than the means in all cases. Moreover, a mediocre Hit Ratio (HR) performance is observed, 

which amounts to approximately 30-40% hits for ISBSG R9-8.1, ISBSG R9-8.3 and ISBSG 

R9-8.4 and slightly over 50% hits for the ISBSG R9-8.2. The accuracy of the predicted effort 

values is significantly improved in the ISBSG R9-8.5 case; the HR is quite high suggesting 

that estimations produced lay within the calculated width in nearly 77% of the cases. It is 

worth noticing that when the effort attribute participates in a dataset performance is improved 

(cases ISBSG R9-8.1 and ISBSG R9-8.3 in comparison with ISBSG R9-8.2 and ISBSG R9-

8.4 respectively). This outcome suggests that the effect of previous values for the attribute 

being estimated leads to forming better clusters. One may argue that the participation of effort 

samples in the clustering process may bias results, but this is not true; past effort values are 

treated by the algorithm as descriptors of the behaviour of effort in relation with the rest of the 

participating factors. Hence, what effort samples offer is essentially a way to map cost factors 

onto the effort attribute and thus form knowledge regarding how effort is affected. 

Additionally, the narrower widths obtained with ISBSG R9-8.3 and ISBSG R9-8.4 confirm 

that when extreme values are removed from the datasets the estimation performance is again 

improved. Overall, ISBSG R9-8.5 yielded the most promising results. 

 

 

Efi P
ap

ath
eo

ch
aro

us



 

 

300 

 

B.5 Complete Results for GP in CC-SCE 

The complete results using the Genetic Programming tool to examine all possible 

algorithmic cost estimations and predict the effort value using the indicative regression 

equations listed in Table B. 17 are summarised in Table B. 18 and Table B. 19. 

Table B. 17: Best cost functions obtained using GP and including arithmetic and logical operators 

(i.e., numeric and categorical attributes) across datasets 

Dataset Id Algorithmic Expressions 

COCOMO 

C1 (((LOC*SCED)^(TIME/TOOL))+((LOC^VEXP)^(TIME*MODP))) 

C2 (((LOC^TIME)^MODP)+((LOC*STOR)^RELY)) 

C3 ((((LOC^MODP)+(STOR+STOR))^TIME)+(((SCED+LOC)^RELY)*(STOR^RELY))) 

C4 (((LOC^(STOR*MODP))+((TIME+TIME)^(VEXP+STOR)))+((LOC^(TIME*DATA))*AEXP)) 

Desharnais 

D1 ((((DU* DU)+ SC)+((ME+FPA)+(TR+ME)))*((FPNA-(TR+ DU)))) 

D2 (((FPA+FPA)+SC)*((TR-FPNA))) 

D3 ((((FPNA+SC)+SC)+EN)*(((EN-((DU*DU)+(DU+DU)))*DU))) 

D4 (((((((log(EN)*DU)+(EN*(log(log(FPNA))*DU)))*log(SC))-(FPA*DU)))+((DU)))*FPA) 

ISBSG 

R9-4 

I1 

((INS='0') ||((((ODT='0') NAND(EGW='0')) NORIF ((IMS='0') THEN ((DMODEL='0')) ELSE 

((BANK='0')))) NOR(((SYBASE='0') ||(MTEAM='0')) &&((DMODEL='1') 

NOR(ORACLE='0'))))) 

I2 ((OT6='0') ||(OT7='0')) 

I3 
((((DBS5='0') NAND(OT5='0')) &&((IY='2000') NOR(0T12='0'))) NAND(((OT11='1') 

NAND(DBS1='1')))) 

I4 ((((DT13='0')) XOR((DBS2='0') XOR(OT12='0'))) ||(((OT8='0') ||(OT12='0')) ||((OT11='1')))) 

 

Table B. 18: Software cost estimation performance of the GP arithmetic cost functions execution 

Dataset Id 
Tree 

Depth 

No. of 

Nodes 

TRAINING TESTING 

MMRE CC NRMSE MMRE CC NRMSE 

COCOMO 

C1 4 - 0.459 0.985 0.184 0.469 0.945 0.322 

C2 4 - 0.450 0.986 0.183 0.497 0.962 0.349 

C3 5 - 0.465 0.986 0.179 0.497 0.962 0.354 

C4 5 - 0.485 0.991 0.138 0.494 0.979 0.243 

Desharnais 

D1 5 - 0.474 0.836 0.562 0.485 0.768 0.722 

D2 4 - 0.533 0.787 0.628 0.541 0.733 0.702 

D3 - 20 0.520 0.799 0.606 0.521 0.731 0.684 

D4 - 28 0.454 0.851 0.546 0.574 0.744 0.710 

 

Table B. 19: Software cost estimation performance of the GP logical cost functions classification 

and execution (calculations were based on eq. (4.25) on classified projects) 

Dataset Id Tree Depth 
TRAINING TESTING 

mean effort (ē) std effort (σ) HR HR HR(%) 

ISBSG R9-4 

I1 5 6983.43 13806.51 374/374 89/93 95.70 

I2 2 6726.99 13511.18 374/374 87/93 93.55 

I3 4 7068.52 13827.94 374/374 90/93 96.77 

I4 4 6983.43 13806.51 374/374 89/93 95.70 

 

A second series of experiments was conducted after identifying and isolating the attributes 

that appeared more frequently in the best performing equations from all the experiments 

conducted, i.e., the frequent attributes were considered the most ‗important‘. The datasets 

Efi P
ap

ath
eo

ch
aro

us



 

 

301 

 

used thus consisted of only those attributes selected and are indicated by the Imp subscript in 

Table B. 21. Particularly, the following subsets were created: for the COCOMO dataset, i.e., 

the COCOMOImp dataset included the attributes project size (LOC), execution time constraint 

(TIME), product complexity (CPLX) and applications experience (AEXP) and for the 

Desharnais dataset, i.e., DesharnaisImp dataset included the attributes project duration (DU), 

scope (SC), number of transactions (TR) and function points (FPA). Also, the series of 

experiments was conducted on the ‗complementing‘ datasets of the ‗important‘ attributes, thus 

including the ‗non-important‘ attributes, i.e., the COCOMOImp‘ and DesharnaisImp‘ respectively 

which excluded the abovementioned ‗important‘ attributes. The equations obtained and the 

experimental results using the important and the non-important attributes are summarised in 

Table B. 20 and Table B. 21 respectively. 

Table B. 20: Best cost functions obtained using GP and including/excluding ‘important’ 

attributes across datasets 

Dataset Id Algorithmic Expressions 

COCOMOImp 
C5 (((LOC^AEXP)+(LOC+LOC))^(TIME^AEXP)) 

C6 (((LOC^AEXP)+(LOC/TIME))*((LOC*LOC)^log(TIME))) 

COCOMOImp‘ 

C7 (MODP^(STOR/log10(TURN))) 

C8 
((TOOL*((STOR+TOOL)^(DATA+DATA)))^(((SCED*STOR)+ 

(DATA*DATA))^((DATA*DATA)*DATA))) 

DesharnaisImp 
D5 ((log(FPA)*FPA)+(log2(FPA)*(SC*DU))) 

D6 (log2(((DU*DU)*SC))*((SC+FPA)+(SC+(DU+SC)))) 

DesharnaisImp‘ 
D7 (((EN+FPNA)+(TE+ FPNA))*log((FPNA+FPNA))) 

D8 ((FPNA+log2(FPNA))*log2((EN*EN))) 

 

Table B. 21: Performance results including/excluding ‘important’ attributes with GP 

Dataset Id 
Tree 

Depth 

TRAINING TESTING 

MMRE CC NRMSE MMRE CC NRMSE 

COCOMOImp 
C5 4 0.575 0.942 0.347 0.520 0.931 0.681 

C6 4 0.545 0.968 0.260 0.608 0.788 0.546 

COCOMOImp‘ 
C7 4 0.856 0.829 0.613 1.127 0.527 0.901 

C8 5 0.897 0.852 0.545 0.989 0.456 0.967 

DesharnaisImp 
D5 4 0.597 0.751 0.659 0.290 0.820 0.601 

D6 4 0.549 0.747 0.665 0.441 0.905 0.523 

DesharnaisImp‘ 
D7 4 0.659 0.731 0.684 0.325 0.803 0.646 

D8 5 0.668 0.726 0.685 0.373 0.809 0.649 

 

The results obtained from the experiments utilising the full attributes, only the important 

attributes and excluding the important attributes (non-important attributes) show that effort 

prediction quality and research suffers from the effect of insignificant attributes participating 

Efi P
ap

ath
eo

ch
aro

us



 

 

302 

 

in the prediction and that researchers should turn to identifying the most important cost factors 

to gain accuracy improvements in the SCE approaches utilised. 

B.6 Complete Results from FDT for in CC-SCE 

The complete experimental results obtained using the enhanced FDT approach are 

presented below. 

Table B. 22: Classification results using enhanced FDT approach for SCE on ISBSGR9-9 

DS Algorithm SL 
TRAINING TESTING PM RM 

n(673)   n(288)   HR HR(%) HR HR(%) 

All CHAID 0.939 155 7.332 1.075 66 7.099 1.194 42/66 63.63 42/66 63.64 

All CHAID 0.974 418 7.118 1.279 168 6.985 1.383 108/168 64.28 107/168 63.69 

All CART 0.953 632 7.386 1.252 262 7.265 1.354 166/262 63.35 170/262 64.89 

All CART 0.959 630 7.380 1.248 261 7.255 1.348 166/261 63.60 169/261 64.75 
All exCHAID 0.909 10 8.353 1.359 4 8.330 0.634 3/4 75.00 3/4 75.00 

All exCHAID 0.896 43 7.831 1.079 20 7.669 1.232 11/20 55.00 12/20 60.00 
Cat CHAID 0.971 269 7.008 1.373 106 6.942 1.489 68/106 64.15 68/106 64.15 

Cat CHAID 0.969 405 7.109 1.298 153 6.899 1.396 97/153 63.39 99/153 64.71 

Cat CART 0.873 96 8.013 1.007 41 6.711 1.169 21/41 51.21 21/41 51.22 
Cat CART 1.000 92 6.766 1.101 33 5.217 1.143 22/33 66.66 21/33 63.64 

Erl CHAID 0.973 403 7.097 1.291 152 6.904 1.399 96/152 63.15 98/152 64.47 
Erl CHAID 0.921 210 7.931 1.009 91 7.749 1.155 52/91 57.14 51/91 56.04 

Erl exCHAID 0.991 110 7.058 1.005 43 6.867 1.165 28/43 65.11 27/43 62.79 

Erl exCHAID 1.000 60 7.859 1.014 22 7.420 1.198 10/22 45.45 11/22 50.00 

 

Efi P
ap

ath
eo

ch
aro

us


	Cover Page
	PhD-Efi-v2.0_Final



