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ABSTRACT

Ο τομέας των Συστημάτων Διαχείρισης Επιστημονικών Ροών Εργασίας έχει λάβει μεγάλο

ενδιαφέρον τα τελευταία χρόνια. Υπάρχουν τομείς όπως το ευρύτερο ερευνητικό πεδίο των βιοε-

πιστήμων, η επεξεργασία βίντεο και η πληροφορία δεδομένων, όπου η χρήση της ισχύος ενός Συ-

στημάτος Διαχείρισης Επιστημονικών Ροών Εργασίας έχει γίνει κανόνας. Ορισμένοι αναφέρονται

στη διαδικασία σχεδιασμού μιας Επιστημονικής Ροής Εργασίας ως οπτικό προγραμματισμό. ΄Ε-

χουμε αναπτύξει και αξιολογήσει ένα Σύστημα Διαχείρισης Επιστημονικών Ροών Εργασίας,

την πλατφόρμα Life Sciences Informatics (LiSIs), η οποία είναι: (1) μια καινοτόμα ολοκληρωμένη

διαδικτυακή πλατφόρμα Virtual Screening (VS), και (2) έχει χρησιμοποιηθεί με επιτυχία για την

ταυτοποίηση καινοτόμων χημειοπροληπτικών παραγόντων του καρκίνου από μια εμπορική βάση

δεδομένων με διαθέσιμα μόρια.

Η Αυτό-Προσαρμογή είναι ένας αποτελεσματικός τρόπος για τον έλεγχο των παραμέτρων α-

ναζήτησης ενός Εξελικτικού Αλγόριθμου αυτόματα κατά τη διάρκεια τις βελτιστοποίισης. Βασίζεται

στην εξελικτική αναζήτηση του χώρου των παραμέτρων αναζήτησης και έχει αποδειχθεί επίσης

ως μέθοδος ελέγχου των παραμέτρων αναζήτησης σε πραγματικό χρόνο για μια ποικιλία πα-

ραμέτρων αναζήτησης. Ο προτεινόμενος Self-Adaptive Multi-Objective Evolutionary Algorithm

(Self-Adaptive MOEA) είναι ένας αλγόριθμος δύο επιπέδων. Το εξωτερικό επίπεδο είναι ο

αλγόριθμος που είναι υπεύθυνος για τις αυτό-προσαρμοζόμενες τεχνικές και βασίζεται στο αλ-

γοριθμηκό πλαισίο Multi-Objective Genetic Algorithm (MOGA). Το εσωτερικό επίπεδο είναι ο

elite Multi-Objective Evolutionary Graph Algorithm (eMEGA). Τόσο ο εξωτερικός όσο και ο

εσωτερικός αλγόριθμος είναι βασισμένοι στον προϊγούμενα προτεινόμενο αλγοριθμικό πλαισίο

Multi-Objective Evolutionary Graph Algorithm (MEGA). Ο εξωτερικός αλγόριθμος λειτουργεί σε

χρωμόσωματα στοιχείων, ενώ ο εσωτερικός αλγόριθμος λειτουργεί σε χρωμόσωματα μοριακού

γραφήματος. Ο προτεινόμενος Self-Adaptive MOEA είναι: (1) μια μοναδική προσέγγιση πλαισίου

βελτιστοποίησης πολλαπλών κριτηρίων, (2) χρησιμοποιεί ένα προσαρμοσμένο χρωμόσωμα για να
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κωδικοποιήσει τις παραμέτρους αναζήτησης του eMEGA, και (3) έχει χρησιμοποιηθεί με επιτυχία

για των σχεδιασμό νέων μορίων σε ευρύ φάσμα στόχων.
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ABSTRACT

The field of Scientific Workflow Management Systems (SWMSs) has been receiving considerable

interest in recent years. There are fields such as life sciences, video processing and data information,

where utilising the power of a SWMS has become a norm. Some refer to the process of designing

a Scientific Workflow (SW) as visual programming. We have developed and evaluated a SWMS

specialised for Virtual Screening (VS), the Life Sciences Informatics (LiSIs) platform, which is:

(1) a novel integrated web based VS framework, and (2) has been successfully used to identify novel

cancer chemopreventive agents from a commercial database of available molecules.

Self-adaptation is an efficient way to control the search parameters of an Evolutionary Algo-

rithm (EA) automatically during optimization. It is based on implicit evolutionary search in the space

of search parameters, and has been proven to work well as on-line parameter control method for a

variety of search parameters, from local to global ones. Our proposed Self-Adaptive Multi-Objective

Evolutionary Algorithm (Self-Adaptive MOEA) is a two level algorithm. The outer level is the algo-

rithms that is responsible for the self adaptive techniques and is based on a Multi-Objective Genetic

Algorithm (MOGA) implementation. The inner level is the actual elite Multi-Objective Evolution-

ary Graph Algorithm (eMEGA). Both the outer and inner algorithm are variations of our previously

proposed Multi-Objective Evolutionary Graph Algorithm (MEGA) framework. The outer MOGA

operates on chromosomes of elements, while the inner eMEGA operates on molecular graph chro-

mosomes. The proposed Self-Adaptive MOEA is: (1) a unique approach Multi-Objective Optimiza-

tion (MOO) framework, (2) uses a custom chromosome to encode the search parameters of eMEGA,

and (3) has been successfully used to design novel molecules in a wide spectrum of targets.Chri
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Chapter 1

Introduction

Over the last three decades computational approaches are being used to assist the research per-

formed at the early steps of Drug Discovery Process (DDP) (Figure 1). The computational tools

are used in the steps of: (a) Virtual Screening (VS), where the selection of molecules with desired

characteristics takes place, (b) Lead Optimisation, where experts use computational tools to make

changes on previously selected molecules and validate them, (c) Quantitative Structure Activity

Relationship (QSAR), where computational tools are used to explore the activity of the optimised

leads, and (d) Optimised Synthesis, where computational tools are used to help scientists to identify

the best route for synthesising the molecules selected. Additionally computational approaches are

being used in automatic and assisted design of new molecules.

The last decade we moved from using individual tools to implement a VS process to using

Scientific Workflow Management Systems (SWMSs), which are software suites providing all the

relevant tools required to design and run VS processes. SWMSs are also used in QSAR analysis and

for Optimised Synthesis with the aid of specialised software.

Using computational approaches for helping scientists design novel molecules dates back to

1990’s [1]. The approaches used either come up with an approximate solution, e.g., by stochastic

sampling, or restrict the search to a defined section of chemical space which can be screened exhaus-

tively [2].
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In this thesis, we document the research, development and use of SWMSs in Life Sciences, and

more specifically about designing, developing and using such platforms to be used for designing and

running VS workflows. Additionally we explore the application of Multi-Objective Evolutionary

Algorithms (MOEAs) and Self-Adaptive Multi-Objective Evolutionary Algorithms (Self-Adaptive

MOEAs) as software approaches for molecular De Novo Design (DND).

The following sections of this chapter provide overviews of Drug Discovery and Chem[o]informatics

in Section 1.1, SWMSs in Section 1.2, and Self-Adaptive MOEAs in Section 1.3. Then in Section

1.4 we document the objectives of this thesis, and at the end in Section 1.5 we describe the original

contributions of the research performed.

1.1 Drug Discovery and Chem[o]informatics

Modern Drug Discovery Process (DDP) is an interdisciplinary effort spanning the fields of medic-

inal practice, biology and chemistry. The process is long, laborious and complex. As such it produces

an amazing wealth of information related to the very nature of life and its inner functions. Such

wealth of information coupled with the complexity of the problem constitutes a fertile and challeng-

ing ground for the development of computational methods and applications. Figure 1 illustrates the

steps and the time-line requirements of DDP with and without the use of in silico tools.

Chem[o]informatics combines the scientific working fields of Chemistry and Computer science

[3]. The field has developed in line with increased pharmaceutical data generation and has been an

active area of research for a number of years. Currently, chem[o]informatics permeates all aspects of

drug discovery and continues to drive research and development of novel computational algorithms

and applications [4], [5].

VS is the computational counterpart of biological screening performed in laboratories. Its goal

is to decrease the number of compounds physically screened by identifying small subsets of large

molecular databases that have an increased probability to be active against a specific biological target

[6], [7]. In this respect the method is related to machine learning techniques, such as classification

and regression, which prepare predictive models to estimate the behaviour of unknown records based
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Figure 1: Time-line of Drug Discovery Process, retrieved via Google image search.

on a set of records with known properties. Typically, VS processes involve substantial numbers of

molecules and combine a variety of computational techniques [8], [9], [10], [11].

VS can be performed on libraries of real or virtual compounds and requires either measured

activities for some known compounds or a structure of the biomolecular target [12]. When only

measured activities of compounds are known VS may employ analog-based library design, classifi-

cation/regression models or any combination of the above. The methods offer some advantages while

they suffer from several shortcomings and so researchers typically design a VS experiment taking

into account the specific requirements of each case. If high quality activity measurements about the

ligands are available regression methods (in the form of e.g. QSAR models) can be used to extract

rules capturing the essence of ligand similarity, and hopefully binding action, with high confidence.

These rules can easily be used to filter untested compounds swiftly. Classification methods have

fewer requirements than QSAR but also produce cruder results. Some methods rely on predefined
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sets of molecular descriptors and this makes them appropriate as general tools. However, such over-

dependence on the descriptor set chosen restricts their potential pool of models and general findings.

Reports in the literature [13], [14] describe the usage of descriptor sets in the 100’s of thousands, a

clear attempt to ensure that no significant ligand feature will be missed. Similar issues trouble the

usage of 2D analog-based library design methods based on similarity searches. Approaches relying

on the extraction and use of a detailed pharmacophore representation are plagued by a different set

of problems. A major one is ensuring that the ligands under investigation bind in the same fashion

to the target, i.e. share the same pharmacophore. This task is by no means trivial. In the event that

the pharmacophore extraction process is applied on a set of compounds with distinct binding modes

a result will be typically produced but it will be misleading. 3D pharmacophore extraction faces the

additional concern of the inherent flexibility of the ligand molecules. In this case, common methods

either force the selection of a single conformation for each ligand, and run the risk of picking con-

formations other than the bioactive one, or try to produce a pharmacophore representation general

enough to accommodate some of the flexibility of the ligands. The latter approach is more complex

and may produce pharmacophore representations that are way too general to be useful for the VS

task.

When the structure of the target receptor is known the VS methods of choice typically rely heavily

on docking and small molecule modelling. Initially they take advantage of the knowledge about the

receptor site to model it and then perform docking of molecules from a database in a systematic

manner. A number of conformations are usually sampled for each molecule [15] and a score for

every possible docking attempt is kept [16], [17]. Due to the costly nature of numerous steps of the

process Linux clusters are widely employed by the pharmaceutical industry [15], [18]. Additionally,

databases of multiple conformers of compounds are prepared to avoid their reproduction for every

VS run [19]. As a result, currently, databases with millions of compounds can be screened within a

few hours [18].

The key success measurement of VS is the achievement of high enrichment, i.e. getting an ex-

perimental hit rate for the subset of compounds it recommends that is considerably increased over
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random compound sets [18]. A successful process with high enrichment results in considerable sav-

ings in resources and time, since fewer compounds need to be physically screened while most hits

present in the original large database are retrieved. Often, to improve the results of VS several meth-

ods are used and their results are combined to produce a concise, high quality virtual hit list [15],

[16]. Furthermore it is common to perform a pre-processing step where databases of molecules are

cleaned by filtering out compounds with undesired properties such as large size, high flexibility and

non-compliance to Lipinski’s rule of 5 [20]. During this step compounds containing known unwanted

substructures, e.g. known toxicophores, are also eliminated [18]. However, and despite drastic im-

provements of various algorithms and steps involved in the process, the accuracy of VS still varies

depending on the pharmaceutical target, the virtual library and the docking and scoring methods used.

Thus, a necessary last step to the process is evaluation of the virtual screening experiment results typ-

ically via visual inspection by a human expert [21]. Figure 2 illustrates the common steps of a VS

experiment.

Figure 2: A typical set-up for a Virtual Screening (VS) experiment.
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1.2 Scientific Workflow Management Systems

Scientific Workflows (SWs) enable scientists to plug together problem solving computational

components and implement complex in silico experiments [22], such as the analysis of datasets of

multi-Terabyte magnitude that arise from sensors or computer simulations, the design and execution

of complicated algorithms requiring multiple computationally intensive steps. SWMSs accelerate

scientific discovery by incorporating data management, analysis, simulation, and visualization tools

into a common platform. They provide an interactive visual interface that facilitates the design and

execution of workflows.

More over SWMSs enable remote access as well as data and services sharing, making possible

collaborations among geographically distributed researchers. Traditionally, many scientists have been

using batch files, shell scripts, and programs written in general-purpose scripting languages (e.g.,

Perl, Python) to automate their tool-integration tasks [23]. Visual representation of the task flow and

visual channelling of data are two of the advantages that derive from the properties of a workflow as

opposed to lines of code directing the flow. Provenance information, which is very important for the

reproducibility of the experiments as well as for the tracking of errors, is also a useful characteristic

of workflows commonly not present in scripting tools [24].

Re-usability and transparency is achieved easily by the reuse of a workflow or the use of an exist-

ing workflow inside a new workflow. Finally complex implementation details such as parallelism and

pipelining can be handled transparently by the SWMSs in order to achieve maximum efficiency for

execution time [25]. Essentially, SW technology is a tool that automates the execution of an exper-

iment, which can offer multiple benefits for all the phases of an experiment’s life-cycle. The recent

popularity of SWMSs is partially owed to the emergence of the computational science paradigm,

which promotes collaboration between scientists both within and across disciplines. Through the

use of SWs, such interdisciplinary teams can collaborate closely, share workflows and computational

components, and jointly undertake research initiatives requiring end-to-end scientific data manage-

ment and computational analysis [26]. Advances in grid technologies allow workflows to exploit

parallel executions enabling large-scale data processing. In this case, workflows are used as a parallel
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programming model for data-parallel applications. Web services allow ease of access to local and

distributed data sources as well as data aggregation from highly heterogeneous environments [25].

As in the case of many other tools, SWMSs quickly found application in a great number of diverse

scientific domains, although they were originally developed with a specialized domain application in

mind. Figure 3 illustrates some of the main application domains of SWMSs [27]. This domain

independence is mainly owed to the abstraction that characterizes the workflow paradigm.

Figure 3: Application domains of Scientific Workflow Management Systems (SWMSs), provided by
Achilleos et al. [27].

1.3 Self-Adaptive Multi-Objective Evolutionary Algorithms

Self-adaptation is an efficient way to control the strategy parameters of an Evolutionary Algorithm

(EA) automatically during optimization. It is based on implicit evolutionary search in the space of

strategy parameters, and has been proven to perform well as an online parameter control method for

a variety of strategy parameters, from local to global ones [???].

Research on self-adaptation dates since the late 1960s, with Reed et al. in [28] proposing pa-

rameter adaptation mechanisms for an EA that learns to play poker. A few years later in 1970,
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Rosenberg in [29] proposed a technique to adapt the probability for applying crossover. At the same

time frame Weinberg and Berkus in [30] introduced the meta-evolutionary approaches. Then in

1973, Rechenberg in [31] introduced the 1/5th rule, an adaptation mechanism for step size control

of Evolutionary Strategies (ES). Five years later (1978), Mercer and Sampson in [32] reintroduced

the meta-evolutionary approaches. And in 1986, Grefenstette in [33] proposed a meta-level adaptive

system for tuning the primary optimisation algorithms parameters.

From there on researchers propose new algorithms and approaches based on those initial research

articles. Eiben et al. [34] proposed a taxonomy regarding parameter setting for EAs. Spears and Jong

in 1991 [35] proposed to use a uniform crossover operator as an adaptive operator technique. Sara-

vanan et al. in 1995 [36] compared a Gaussian perturbation self-adaptive mechanism with Lognormal

perturbation self-adaptive mechanism. Recently, Batista et al. in 2010 [37] proposed a Chaotic dif-

ferential mutation function as self-adaptive mechanism. Jain and Deb in 2013 [38], proposed an

improved version of Non-dominated Sorting Genetic Algorithm (NSGA) for Many-Objective Opti-

mization Problem (MaOOP) named ”Improved Adaptive Approach for Elitist Nondominated Sorting

Genetic Algorithm for Many-Objective Optimization” (A2-NSGA-III). Also in 2013, Oliver et al.

[39], proposed a modified Multi-Objective Genetic Algorithm (MOGA) based on NSGA-II with self-

adaptive strategies in mutation (mutation probability per gene) and crossover (crossover probability

per chromosome and uniform crossover). In 2015, Shahsavar et al. [40] proposed three self-adaptive

Genetic Algorithms (GAs) for a triple-objective project scheduling problem.

1.4 Objectives

VS is a computational process that involves numerous steps depending on the task at hand. A VS

process can be represented as a directional graph, where the computational steps are the nodes and

the data transfer between steps are the edges of the graph. As such VS can be represented by a SW.
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SWMSs are used in Life Sciences as a tool to design SWs for VS processes for many years.

Most of these platforms are commercial and proprietary that have been built for this specific pur-

pose. Though there are a few that are free to use, these serve a more general purpose and have been

developed as desktop tools.

There was the need to provide a SWMS platform specialised for VS that would be accessed via a

web interface. We took up this challenge, to design and implement a web accessed SWMS specialised

for VS process. As a result we have built Life Sciences Informatics (LiSIs), a web accessed SWMS

specialised for VS process based on Galaxy1 SWMS.

Using Artificial Intelligence (AI) and Machine Learning (ML) algorithms to solve problems re-

quires to model the problem in an appropriate form that the selected algorithm can read and then use

a set of input parameters for initialising and running the algorithm. These two things are the most

important information we have to provide in order to have meaningful results.

Most of the time we focus too much in one of the two, and the results we get are not what we

expect. Figuring out how to model the problem for a selected algorithm requires knowledge of the

problem we want to find solutions for, and knowledge about the algorithm’s inputs and the process

used to solve a problem. On the other hand providing the set input parameters for the algorithm

comes to performing a number of different executions of the algorithm starting from a reference

point of input parameters and adjusting them according to the results we obtain and their comparison

between the different executions.

As we can understand from this, we can provide a better model of the problem only through

the good knowledge of the problem domain and the selected algorithm process. But finding the

most suitable set of input parameters is an iterative process of using different input arguments and

comparing the results with previous executions. Which raises the question, ”What if we had an

automated way of finding the most suitable set of input parameters and getting the optimal or

near optimal solutions for a given problem and algorithm?”.
1https://galaxyproject.org/
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In our research we are using MOEAs for molecule DND. The algorithms that we use represent

their solutions as graphs, which is a suitable representation of a molecule, and have graph inspired

mutation and crossover operators; thus we consider that the modelling of the problem is good enough

for our needs. But when we are looking for solutions then we have to run our algorithmic implemen-

tations multiple times using different input arguments i.e. population size, iterations, mutation and

crossover probability, selection mechanism, and new generation mechanism. This makes it difficult

to find the most suitable combination of input arguments given a specific problem. Looking for a way

to simplify and automate (to a certain degree) this iterative, time consuming and dull process is a mo-

tivating and exiting experience that will be explored to develop a Self-Adaptive MOEA which will be

using our previously proposed framework Multi-Objective Evolutionary Graph Algorithm (MEGA)

for molecule DND.

1.5 Original Contributions

• Integrated web based Virtual Screening Framework: Computational tools for VS exist as

standalone tools or in commercial software suites. Also there are approaches that provide

integration of such tools as desktop applications in a client server approach. Our approach,

Life Sciences Informatics (LiSIs) is a VS integrated platform based on SW modelling for Life

Sciences. LiSIs aims to provide a set of tools to create, update, store and share SWs for the

discovery of active compounds for biomedical researchers. To the best of our knowledge this

was one of the first web based SWMS for Life Sciences. The system is available via a web in-

terface through a password protected, tiered login process. LiSIs is comprised of five (5) major

layers of functionalities: (a) Input, (b) Pre-Processing, (c) Processing, (d) Post-Processing, and

(e) Output. Each layer hosts a collection of components categories essentially implementing

a variety of functionalities. A component category may implement different variations of the

same functionality.
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• Application of Integrated web based Virtual Screening Framework: LiSIs was used for

the implementation of a VS experiment in order to identify molecules able to bind to Estro-

gen Receptor-α and/or Estrogen Receptor-β. A SW was designed and used for this specific

experiment. A selection of molecules highly ranked were hand-picked and further investigated

in in-vitro experiments to provide feedback for the calibration of the tools available on LiSIs

platform and also were used to select a small set for further research. LiSIs platform aimed

to fill the current void in the application of advanced chem[o]informatics and computational

chemistry technology in determining efficacy and predicting possible mechanism(s) of action

or identifying a possible receptor(s) for a chemopreventive agent in life sciences.

• Self-Adaptive Multi-Objective Evolutionary Algorithm: A Self-Adaptive MOEA based on

our previously published Multi-Objective Evolutionary Graph Algorithm (MEGA) framework,

is proposed. Self-Adaptive MOEA is a two level algorithm. The first/outer level is the al-

gorithm that is responsible for the self adaptive techniques and is a Multi-Objective Genetic

Algorithm (MOGA) implementation. The second/inner level is the actual elite Multi-Objective

Evolutionary Graph Algorithm (eMEGA).

• Original Components of Self-Adaptive Multi-Objective Evolutionary Algorithm: Two

original contributions are documented, chromosome encoding and population evaluation. These

features make our Self-Adaptive MOEA, a problem agnostic algorithm. Self-Adaptive MOEA

has been designed in a way that is easily adaptable, expandable and scalable (utilising multi-

core parallelism). Our proposed Self-Adaptive MOEA operates on, chromosomes of fixed

length that are generated from an alphabet where each gene has different type and value ranges.

In regards to the chromosome details, the gene in position 0 represents the mutation probability,

the gene in position 1 represents the crossover probability, the gene in position 2 represents the

selection type of eMEGA, and finally the gene in position 3 represents the diversity type of

eMEGA, which can get one of ”phenotype” and ”genotype”.
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Population evaluation in Self-Adaptive MOEA is based on the following objective fitness func-

tions: (a) Non Dominated Solutions Percentage: where for each individual it calculates the

percentage of non dominated solutions over the total number of solutions. (b) Unique Solu-

tions Percentage: where for each individual it calculates the percentage of unique solutions

over the total number of solutions. (c) Pareto Front Hypervolume: where for each individual

it calculates the hypervolume [41] of its Pareto Front (PF)s. Hypervolume measures the space

covered by each PF from a reference point, this might be the target if it is known or a starting

point from the initial population. For example, if the reference point is a starting point then the

PF with the larger hypervolume value yields better results.

• Case Studies for Self-Adaptive Multi-Objective Evolutionary Algorithm: The Multi-Objective

(MO) component and self-adaptive functionality of the Self-Adaptive MOEA are unique to the

application of molecular DND. Self-Adaptive MOEA was applied to a number of experiments

as a way to validate its performance against eMEGA and across different situations. Self-

Adaptive MOEA was used to design molecules that bear similarity to Seliciclib2 , Tamoxifen3

, Raloxifen4 and Ixazomib5 , across different experiments. We noticed that Self-Adaptive

MOEA proposed solutions that merit further evaluation in all problems investigated. As men-

tioned in Sections 6.1.3, 6.2.3, 6.3.3, 6.4.3 and 6.5.3 further in-vitro investigation is required

to understand the behaviour of the proposed designed molecules in real environment. Self-

Adaptive MOEA is a useful tool for fine tuning the underlying MOEA to approximate a given

problem. In the hands of an experienced user it can prove very powerful, as the expert can

guide Self-Adaptive MOEA to the range of settings and the algorithm will propose the ones

that tackle the problem better.
2https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL14762
3https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL83
4https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL177798
5https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3545432
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1.6 Thesis Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides an overview of

the research area of Scientific Workflow Management Systems. Chapter 3 provides an overview

of the research area of Multi-Objective Evolutionary Algorithms. Chapter 4 describes the research

performed for Life Sciences Informatics platform, at an algorithmic and application level. Chapter

5 describes the research performed in Multi-Objective Evolutionary Algorithms for Drug De Novo

Design, at an algorithmic and application level. Section 5.1 briefly describes Multi-Objective Evolu-

tionary Graph Algorithm. Section 5.2 briefly describes Parallel Multi-Objective Evolutionary Graph

Algorithm. Section 5.3 describes the proposed Self-Adaptive Multi-Objective Evolutionary Algo-

rithm in detail. Chapter 6 focuses on the experiments performed for the evaluation of the proposed

Self-Adaptive MOEA method and discuses the experimental design followed and the results obtained

from the validation tests performed. Chapter 7 presents open research questions related and/or in-

spired by this thesis and outlines directions for future research.
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Chapter 2

Scientific Workflow Management Systems

Scientific Workflow Management Systems (SWMSs) are powerful tools with enormous possi-

bilities to facilitate the design and execution process of computational experiments. SWMSs enable

scientists to plug together problem solving computational components [22] and implement complex

in silico experiments, such as the analysis of large datasets that arise from sensors or computer sim-

ulations and the design and execution of complicated algorithms requiring multiple computationally

intensive steps.

2.1 Scientific Workflow

A Scientific Workflow (SW) is the term used to describe the actions needed to be taken in order

to complete a complex scientific task. A SW, as shown in Figure 4, is represented as a directed graph

where each node represents a step implemented by a software component. This component can be

either the execution of a local program or a remote web service (e.g. a query to a database). The

edges of the graph represent either data flow or execution dependencies between nodes [42]. The

links coordinate the inputs and outputs of the individual steps, forming the data flow. Control flow

links occur when two tasks have no data dependencies and therefore the order must be explicitly

defined.

Workflow technology is not new. It has long been adopted by the business community. A Business

Workflow (BW) is,

14
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Figure 4: Scientific Workflow (SW) example from Knime [43].

”The computerised facilitation or automation of a business process, in whole or part.”

as defined by the Workflow Management Coalition industry consortium in the ”Workflow Reference

Model” [44]. BW management and business process modelling are mature research areas, whose

roots go far back to the early days of office automation systems [25]. However, the term ”Scientific

Workflow (SW)” became popular after the year 2000, as the existing technology could not support

the special characteristics of scientific processes which are data and computationally intensive, highly

repetitive and reproducible.

In the case of SW however, experts in the field like Ludascher et al. [25] point out that ”there

seems to be no single set of characteristic features that would uniquely define what a SW is and isn’t.”

Flow control can be considered the most important classification characteristic of SWs. A workflow

is either data-flow or control-flow oriented. In control-driven workflows the connections between the

tasks represent a transfer of control from one task to the next one. In data-driven workflows connec-

tions represent the flow of data from one task to the next one. The workflow representation is focused

on data products. As mentioned in [22] most of the current SWs are data-flow oriented as opposed

to their predecessors and BWs which are control-flow. According to [45], the reason is that data-flow
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modelling is the natural way of composing scientific workflows, because they often comprise numer-

ous data transformation steps applying massive parallelism. Another important distinguishing feature

of workflows is pipeline parallel processing. A pipeline consists of a collection of steps. Parallelism is

achieved by executing these steps simultaneously on different input data sets. The tasks are executed

in separate threads, processing input immediately and not waiting for the previous task to complete.

The drawback is that pipelined workflows are harder to restart in the case of unforeseen events as the

current state of the executed workflow is not as easy to describe and restore [26].

A popular categorization is based on the distinction between high level scientific oriented work-

flows and lower-level engineering resource oriented (or ”plumbing”) workflows [22]. The first are an

implementation of an experimental protocol or a data analysis method, where each task corresponds

to the high level tasks of the scientific method. The latter are concerned mostly with the ”plumbing

tasks” such as data movement and replication and job management.

A Workflow Model (WM) defines a workflow including its task definition and structure defini-

tion. There are two types of WMs, namely abstract and concrete [46]. The abstract model defines a

workflow in an abstract form without referring to any resources for task execution. On the contrary

in the concrete model the workflow tasks are bound to the designated resources. The user creates the

abstract workflow in the workflow modeller component. Mapping the resources is done transparently

by the enactment engine to create a concrete executable workflow.

SWs can also be differentiated based on the design focus. In the initial discovery stages of a scien-

tific method, a non-mature workflow is constantly changing while the designer is trying out different

approaches and solutions. The design considerations are ease of change and re-usability. Later on, as

the workflow becomes mature, it obtains a steady form and can then be used as a production workflow

executed on a regular basis. At this point the design considerations shift to speed and efficiency.

2.2 Scientific Workflow Management Systems Paradigms

In theory a SWMS is a combination of a workflow modelling component using an abstract lan-

guage and a workflow enacting component empowered by an execution engine. In practice a SWMS
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enables a user to create and then monitor the execution of a workflow by providing the necessary

infrastructure. The modelling component enables the user to design, reuse and store WMs while the

enacting component invokes, executes and monitors workflow instances [47] deploying them either

on a local desktop computer, a web server, or a distributed computing environment such as a cluster

or even a cloud infrastructure. Embedded in the workflow design, is the order of the tasks to be ex-

ecuted. The coordination process of this execution is known as orchestration. The execution engine

adds the transparency required to allow the domain scientist to model a solution without any concerns

of how the solution will be carried through.

This architecture is applied in the Trident SWMS [48]. This Microsoft system allows for indepen-

dent components for workflow modelling and for execution. Firstly the scientist creates the workflow

in an independent workflow composer. Then the workflow is executed in Trident. This is known as

centralized execution architecture. Other systems follow a less strict decentralized architecture. For

example, in Taverna 2 [49], each processor independently starts its own execution as soon as the in-

put data are available. This allows for inter-processor parallelism as the tasks are executed in separate

threads. The need for coordination however exists, so the system offers a façade pattern that relays

messages to and from the central monitor. As SWMSs are software environments created specifically

for workflows, they encompass a number of functionalities for their management including work-

flow design, re-engineering, allocation of resources, task scheduling, data movement, data formats,

optimizations, execution, monitoring, fault management, analysis, provenance data, storage, collabo-

ration, reuse. Moreover, SWMSs are typically run over middle-ware that provides infrastructure for

accessing the applications or resources consumed by the workflow, and facilities like security and

access control [47].

2.3 Scientific Workflow Life-cycle

The main design goal of SWMS is to support the workflow life-cycle. Detailed analysis of how

each step of the life-cycle can be supported provides an improved understanding of the functionalities

that any SWMS must accommodate. The life-cycle of a scientific workflow begins with the Design
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phase where a new workflow is created either from scratch or from existing workflows. During

the following Planning phase the workflow is validated and optimized to user requirements. This

phase also includes resource allocation and task scheduling if required. The Execution phase involves

invoking and monitoring the workflow, retrieving the data, error handling and keeping measurements.

The results of the execution are visualized and tagged in the Analysis phase. Finally, in the Storage

phase the workflow is stored along with its provenance data and enabled for sharing [47]. Slightly

different scientific workflow life cycles were proposed by experts in the field in [47], [25], [48], [26],

[50]. In Figure 5 the scientific workflow life cycle is given as presented in [47].

Figure 5: Scientific Workflow (SW) life cycle as proposed by Goble et al. [47]

2.4 Scientific Workflow Management Systems for Life Sciences Review

The field of SWMSs has been receiving considerable interest in recent years. Consequently,

a number of implementations have been reported and several reviews of such systems have been

published. Early on, in 2005, Yu and Buyya [46] presented a taxonomy of grid workflow systems. In
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2006, Taylor et al. [51] published a book on E-Science workflows, presenting several systems and

defining research questions. Tiwari and Sekhar [52] surveyed workflow systems for life sciences. The

research questions set down at the National Science Foundation Workshop on Scientific Workflows

of 2006 were recorded by Gil et al. [53]. In 2008, Barker and van Hemert [22], presented a concise

survey of existing workflow technology from the business and scientific domain and made a number of

key suggestions. At the same year Curcin and Ghanem [54] reviewed six systems considered state of

the art in the field. McPhillips et al. [23] prepared a list of Desiderata for scientific workflow systems

for scientists. Finally, Goble et al. [47] presented the challenges to be met by the advancing workflow

technology. In 2009, Ludascher et al. [25] in his survey compared SWs to the well-established BWs.

At the same year, the same author provides an overview of the characteristic features of scientific

workflows and outlines their life cycle [26]. Deelman et al. [50] extracts a taxonomy of features

from the end users view for the current scientific workflow systems. Sonntag et al. in their work in

2011 [48], after reviewing contemporary systems, proposed a conceptual architecture for SW systems

based on BW systems, an approach encouraged by the Sixth International Workshop on Scientific

Workflows (SWF 2011). This section provides an updated review of the main, most popular SWMSs

in order to present the current state of the art in the field.

The list of different workflow management tools used routinely is considerably large, exceeding

50 items [47]. This list includes popular SWMSs like Taverna [49], [55], [56], Triana [57], Kepler

[58], Pegasus [59], KNIME [60], [61], Galaxy [62], [63]. [64], Pipeline Pilot [65], InforSense KDE

[66] and Microsoft Trident [67] but also BioWBI [68], GridBus [69], ICENI [70], Magenta [71],

GridNexus [72], ASKALON [73] and others.

Table 1 presents a snapshot of the main popular representatives of SWMSs used for life sciences

and their main characteristics [27]. There are three open source and two commercial SWMSs. The

majority of them are desktop based software only Galaxy is web based. Knime and Taverna provide

a variety of chem[o]informatics tools in addition to tools for other domains, Galaxy is focused in

Bioinformatics. Inforsence and Pipeline Pilot are focused on chemistry and biology oriented domains.
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Table 1: List of popular Scientific Workflow Applications for Life Sciences

Applications Technology Scientific Field(s)

Open Source
Taverna Java

Bioinformatics,
Chemistry,
Astronomy,
Data Mining,
Text Mining,
Music

Galaxy Python Life Sciences,
Bioinformatics

Knime Java

Life Sciences,
Chem[o]informatics,
Bioinformatics,
High Performance Data Analysis

Commercial
Inforsence/DiscoveryNet

Life Sciences,
Healthcare,
Environmental Monitoring,
Geo-hazard Modelling

Pipeline Pilot
Biology,
Chemistry,
Material Science

The major players in the domain of Life Sciences are KNIME [43] and Pipeline Pilot [65]. KN-

IME is a free suite but their business model provides licensing for enterprise wide components and

servers. Pipeline Pilot is an expensive commercial suite. KNIME is a predictive analytics suite that

has tools suited for specific domains including tools for the Life Sciences that were developed by

pharmaceutical companies and communities, some of which are provided on a licensing scheme and

the rest are provided for free. Pipeline Pilot on the other hand was developed with Life Sciences in

mind, initially focused on chem[o]informatics and has expanded into other Life Sciences sub-domains

and chemistry related domains. Both were developed as desktop suites with client-server extensions

for use in an enterprise environment [74].

These two major players show the trends of the market. They are focused on providing desktop

based platforms to scientists and non-scientists. They have an enterprise approach of an in-house

client server model. As such there is a gap in the web accessed platforms where the only player is

Galaxy and its derivatives.
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The available tools and functionality of the systems mentioned in Table 1 enable the design of

workflows/pipelines consisting of numerous tools, which some refer to as visual programming. This

visual programming approach is an emerging trend of the way data scientists will work. They pro-

vide a lot of tools for creating virtual screening workflows of different complexity and functionality.

However the functionality of in silico molecular design as a dedicated module is rather limited. This

can be addressed by creating complex workflows, using their features in a unique and innovative way.
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Chapter 3

Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) [75], [76] have become an important re-

search field in recent years. Algorithmic advancements combined with the Multi-Objective (MO)

nature of many real life problems have motivated researchers to explore, and often adopt, MOEA

based methods. In contrast to Single Objective Optimization Problems (SOOPs) where a single, op-

timal solution suffices, Multi-Objective Optimization Problems (MOOPs) have a set of equivalent

solutions that represent different compromises among the various objectives guiding the search. This

set of solutions is called the Pareto Front (PF) whereas intermediate solution sets produced during the

optimization search are referred to as Pareto Approximations (PAps). MOEAs aim to minimize the

difference between the final PAp produced and the true PF of a MOOP. The solutions of a population

that comprise its PAp set are characterized by non-domination, i.e, the lack of any other solutions that

are better than them in all the objectives. The Pareto ranking mechanism identifies non-dominated

solutions and ranks all individuals according to the number of solutions that dominate them [77], [78].

The presence of multiple objectives, typically characterized by complex, multi-modal search spaces,

as well the need for processes such as Pareto ranking, increase the complexity of MOOPs and thus the

computational resources required to obtain solutions of good quality. Evolutionary Algorithms (EAs)

are an increasingly popular population based meta-heuristic optimization method inspired by nature.

22
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3.1 Introduction

A MOOP involves several conflicting objectives and has a set of Pareto optimal solutions. Among

the most popular algorithms used in optimization, including Pareto based MOOP approaches, are

EAs [75]. Intensive research efforts during the last two decades have focused on the application of

EA methodology to MOOPs with considerable advances being reported in various fields [75]. By

evolving a population of solutions, Multi-Objective Evolutionary Algorithms (MOEAs) are able to

approximate the Pareto optimal set in a single run. MOEAs have attracted a lot of research effort dur-

ing the last twenty years, and they are still one of the hottest research areas in the field of Evolutionary

Computation (EC).

The popularity of MOEAs is probably due to some inherent algorithmic characteristics. Namely,

the population based approach enables the simultaneous search of multiple search space regions and

thus the identification of numerous Pareto solutions in a single run. Additionally, EAs impose no con-

straints on the morphology of the search space and are therefore suitable for complex, multi-modal

surfaces such as the ones typically produced by MOOP problems. Algorithmically, MOEAs are an

extension of traditional EAs that can address multiple objectives simultaneously by the addition of

appropriate components such as Pareto based selection that incorporates fitness assessment on multi-

ple objectives, calculation of domination relations and Pareto rank and definition of a scalar efficiency

value for each solution, and the techniques of niching and elitism aiming to maintain population di-

versity and avoid good solution loss [79]. Figure 6 outlines the main steps of a simple MOEA.

There has been a growing interest in applying EAs to deal with MOOPs since Schaffer’s seminal

work [80]. By May 2016, more than 10181 publications have been published on Evolutionary Multi-

Objective Optimizations (EMOOs). Among these papers, 84.13% (8565) have been published in the

last 13 years (2003 - 2016), 46.05% (4689) are journal papers and 37.25% (3793) are conference

papers1 .
1The statistical data is based on the paper repository in the EMOO web site, http://delta.cs.cinvestav.mx/

˜ccoello/EMOO/, which is maintained by Professor Coello Coello.
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Figure 6: A typical Multi-Objective Evolutionary Algorithm (MOEA).

The most recent state of the art survey on MOEAs was published in 2011 by Zhou et al. [81], and

according to it the key issues that distinguish MOEAs are: (a) Algorithmic framework, (b) Selection

and population updating, and (c) Reproduction.

3.2 Algorithmic Frameworks

Algorithmic framework is a key issue when designing a MOEA. Below there is a brief description

of the existing algorithmic frameworks and MOEAs representatives.

3.2.1 Pareto non-domination based Multi-Objective Evolutionary Algorithms

The Multi-Objective Genetic Algorithm (MOGA) uses a ranking scheme in which the rank of an

individual corresponds to the number of individuals in the current population by which it is dominated.

I.e. an individual xi at generation t which is dominated by p(t)i individuals, in the current population,

has a rank given by Equation 1. All non-dominated individuals are assigned rank 1, while dominated

individuals are penalized according to the population density of the corresponding region of the trade-

off surface [82].

rank(xi, t) = 1 + p
(t)
i (1)
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In MOGA fitness assignment is performed in the following way: (a) Sort population according

to calculated rank, (b) Assign fitness to individuals by interpolating from best (rank 1) to the worst

(rank n ≤ N ), and (c) Average the fitnesses of the individuals with the same rank, so that all of them

are sampled at the same rate2.

The Non-dominated Sorting Genetic Algorithm (NSGA) modifies the Pareto ranking and the

efficiency calculation step of the algorithm using the non-dominated sorting concept [83]. In NSGA

the population is classified into layers, or waves, of non-dominated sets. The process successively

defines the non-dominated set of the population, removes its members from the current population

and iterates until all solutions have been taken into account. Fitness sharing and solution sampling are

performed at the non-dominated layer level starting from the globally non-dominated solution level.

Fitness values of solutions in successive layers are reduced to be less than the worst fitness value of

the previous layer.

The Niched Pareto Genetic Algorithm (NPGA) method [84] is a further extension of the NSGA

where the selection step is based on a modified tournament-based method that uses a larger subset of

the population and shared efficiency values of the individuals.

In the original version of NSGA, selection is performed using a stochastic-remainder wheel-like

operator while in an updated elitist version, named NSGA-II, selection is performed by choosing the

best solutions from a population combining both parents and offspring [85]. The NSGA-II conducts

niching through the use of a crowding distance calculated for each solution, used to maintain popu-

lation diversity during selection by ensuring that selected solutions are sufficiently apart. This keeps

the population diverse and helps the algorithm to explore the fitness landscape [79]. The NSGA-II

algorithm successfully addresses some of the shortcomings of MOGA, which may introduce a bias

towards certain solutions in the search space due to the nature of its rank-based fitness assignment

method and thereby allow solutions with substantially better performance at an iteration to dominate

the population of later generations, and succeeds in preserving the diversity of the population.
2This procedure keeps the global population fitness constant while maintaining appropriate selective pressure, as defined

by the function used.
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The recently proposed updated version of NSGA-II, NSGA-III, by Jain and Deb [38], is based

on the supply of a set of reference points and demonstrated its working in three to 15-objective

optimization problems.

3.2.2 Decomposition based Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEAD) [86] is based on

conventional aggregation approaches in which an MOOP is decomposed into a number of SOOPs.

The objective of each SOOP, also called a subproblem, is a weighted aggregation of the individual

objectives. Neighborhood relations among these subproblems are defined based on the distances

between their aggregation weight vectors. Each subproblem is optimized in the MOEAD by using

information mainly from its neighboring subproblems.

In a simple version of the MOEAD, each individual subproblem keeps one solution in its memory,

which could be the best solution found so far for the subproblem. For each subproblem, the algorithm

generates a new solution by performing genetic operators on several solutions from its neighbouring

subproblems, and updates its memory if the new solution is better than the old one for the subprob-

lem. A subproblem also passes its newly generated solution on to some (or all) of its neighbouring

subproblems, which will update their current solutions if the received solution is better. A major

advantage of MOEADs is that a single objective local search can be used in each subproblem in a

natural way since its task is for optimizing a single objective subproblem.

Recently several improvements on MOEADs have been made. Li and Zhang [87] suggested

using two different neighbourhood structures for balancing exploitation and exploration. Zhang et

al. [88] proposed a scheme for dynamically allocating computational efforts to different subproblems

in an MOEAD in order to reduce the overall cost and improve the algorithm performance. This

implementation of MOEAD is efficient and effective and has won the Congress on Evolutionary

Computation (CEC) 2009 MOEA competition. Nebro and Durillo [89] developed a thread-based

parallel version of MOEAD, which can be executed on multi-core computers. Palmers et al. [90]
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proposed an implementation of MOEAD in which each subproblem records more than one solution.

Ishibuchi et al. [91] proposed using different aggregation functions at different search stages.

3.2.3 Preference based Multi-Objective Evolutionary Algorithms

In the majority of cases where Pareto domination is used there is the problem of too many or

even infinite optimal solutions residing in the PF. A solution to this is to use a decision manager that

has the job to find the preferred solutions within the PF. In order to find these solutions the decision

manager has to use some reference information for guidance. The methods to provide the preference

information in MOOP can be classified as apriori, posteriori and interactive methods [92].

In apriori method, preference information is given by the decision manager before the solution

process. An MOOP can be converted into an SOOP. Then, a single objective solver is applied to find

the desired Pareto optimal solution.

A posteriori method uses the decision manager’s preference information after the search process.

A well distributed approximation of the PF is first obtained. Then, the decision manager selects the

most preferred solutions based on the preferences.

In an interactive method, the intermediate search results are presented to the decision manager to

investigate; then the decision manager can understand the problem better and provide more preference

information for guiding the search.

The earliest attempts on MOEAs based on the decision manager’s preference were made by Fon-

seca and Fleming [82] and Tanino et al. [93] in 1993. In these algorithms, the rank of the members

of a population is determined by both the Pareto dominance and the preference information from the

decision manager. Greenwood et al. [94] used value functions to rank the population, and preference

information was also used in the survival criteria.

Sakawa and Kato [95] proposed a fuzzy approach to represent preference in the form of reference

points. The decision manager is asked to specify a new reference point until satisfactory results are

reached. Phelps and Kksalan [96] compared a pair of individuals in terms of their fitness values
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based on the decision manager’s preferences at each iteration. A single substitute objective defined

by weighted sum of objectives is used for some generations.

Branke and Deb [97] incorporated the preference information into NSGA-II by modifying the

definition of dominance and using a biased crowding distance based on weights. Deb et al. [98] fur-

ther considered the use of reference points to determine preference information. A guided dominance

scheme and a biased crowding scheme are also suggested. Deb et al. [99] suggested an interac-

tive MOEA based on reference directions. The decision manager provides one or more reference

directions to guide the search towards the region of preferred solution.

Deb and Chaudhuri [100] proposed an interactive decision support system, in which a number

of existing multi-objective optimization and classical decision making methods can be appropriately

adopted for generating solutions in the regions of interest in the Pareto Set (PS).

Li and Silva [101] developed an improved version of an MOEAD combined with Simulated An-

nealing (SA). The weights can be adaptively changed by the decision manager according to the loca-

tion of solutions in the current population. The fitness functions with modified weights can guide the

search towards different parts of the PF during the search. It can be viewed as an interactive MOEA.

Sanchis et al. [102] proposed an MOEA integrated with apriori preferences, which were gen-

erated by applying the principle of physical programming. In this algorithm, the preferences are

expressed by partitioning the objective space into several levels. The preference functions are built to

reflect the decision manager’s interests and to use meaningful parameters for each objective. The de-

signer’s expert knowledge can be translated into preferences for design objectives. A single objective

is automatically built and no weight selection is performed.

Deb et al. [103] proposed a progressively interactive MOEA. An approximate value function is

progressively generated after every few generations. Periodically, several non dominated points found

so far are provided to the decision manager. Based on the decision manager’s preference information,

all these points are ranked from the worst to the best. Then, a suitable polynomial value function is

constructed by solving an SOOP.
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Rachmawati and Srinivasan [104] proposed a preference based MOEA to find the knee region

in the PF, which is visually a convex bulge in the front. The preference based focus is achieved by

optimizing a set of linear weighted sums of the original objectives, and control of the extent of the

focus is attained by careful selection of the weight set based on a user specified parameter. The fitness

scheme could be easily adopted in any Pareto based MOEA with little additional computational cost.

Thiele et al. [105] used the decision manager’s preferences expressed interactively in the form

of reference points. The information is used in an EA to generate a new population by combining

the fitness function and an achievement scalarization function. The selection based on the utility

functions with the modified parameters is expected to lead the search to focus on the most interesting

parts of the PS. In multi-objective optimization, achievement scalarization functions are widely used

to project a given reference point on to the PS.

3.2.4 Indicator based Multi-Objective Evolutionary Algorithms

The quality of an approximated PF could be measured by a scalar indicator such as generational

distance and hypervolume. Indicator-based MOEAs use an indicator to guide the search, particularly

to perform solution selection.

Zitzler and Künzli [106] first suggested a general Indicator-Based Evolutionary Algorithm (IBEA).

This approach uses an arbitrary indicator to compare a pair of candidate solutions. In the IBEA, any

additional diversity preservation mechanism such as fitness sharing, is no longer required. In compar-

ison to other MOEAs, the IBEA only compares pairs of individuals instead of entire approximation

sets.

Basseur and Zitzler [107] proposed an indicator based model for handling uncertainty, in which

each solution is assigned a probability in the objective space. In an uncertain environment, some meth-

ods for computing expected indicator values are discussed, and several variants of their ε-indicator

based model are suggested and empirically investigated.
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Brockhoff and Zitzler [108] proposed a general approach to incorporate objective reduction tech-

niques into hypervolume based algorithms. Different objective reduction strategies are studied for

improving the performance of hypervolume based MOEAs.

Bader and Zitzler [109] further investigated the robustness of hypervolume based multi-objective

search methods. Three existing approaches for handling robustness in the area of evolutionary com-

puting, modifying the objective functions, additional objectives, and additional robustness constraints,

are integrated into a multi-objective hypervolume based search. An extension of the hypervolume in-

dicator is also proposed for robust MOOP.

A year later, Bader and Zitzler [110] suggested a fast hypervolume based Many-Objective Evo-

lutionary Algorithm (MaOEA) for Many-Objective Optimization Problem (MaOOP). To reduce the

computational overhead in hypervolume computation, a fast method based on Monte Carlo simula-

tions is proposed to estimate the hypervolume value of an approximation set. Therefore, the proposed

hypervolume based MaOEA may be applied to problems with many objectives.

3.2.5 Memetic Multi-Objective Evolutionary Algorithms

MOEAs incorporating local search methods have also been investigated [111], [112], [113], [114],

[115], [116], [117], [118], [119]. These algorithms are known as Memetic Multi-Objective Evolu-

tionary Algorithms (mMOEAs). mMOEAs are able to offer not only better speed of convergence to

the evolutionary approach, but also better accuracy for the final solutions [111]. Ishibuchi and Murata

proposed one of the first mMOEAs [112]. The algorithm uses a local search method after classical

variation operators are applied, and a randomly drawn scalar function to assign fitness is used for

parent selection.

According to Adra et al. [120], the best solutions found in each generation are improved by a

local search method in the objective space, and the improved solutions are then mapped back to the

decision space to predict the corresponding decision variables. A local search operator is used to

generate offspring solutions [121]. Similar ideas are also mentioned in [122] and [123].
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Knowles and Corne [124] proposed a memetic Pareto archived evolution strategy to solve MOOPs.

The algorithm introduces a Pareto ranking based selection method and couples it with a partition

scheme in objective space. It uses two different archives to save non-dominated solutions.

Jaszkiewicz [125] proposed a Multi-Objective Genetic Local Search (MOGLS) algorithm for the

MOOP 0/1 knapsack problem. At each iteration, a weighted scalarization function is used as the

fitness function during selection. The weights are generated in a random way. The mating population

in the MOGLS consists of a few individuals selected from the current population in terms of the

current scalarization function. An offspring solution is then produced by recombining members in

the mating population. A local search procedure is followed to improve the quality of the offspring

solution. The current population and an external population including only non-dominated solutions

are updated by the improved solutions obtained in the local search.

Caponio and Neri [126] proposed the cross dominant mMOEA, making use of two local search

engines to balance the global search and the local search. The choice of local search engines is

decided by using the parameter of mutual dominance between non-dominated solutions belonging to

consecutive generations.

A memetic version of Co-evolutionary Multi-Objective Differential Evolution (CoMODE) is pre-

sented in [127]. In this approach, the population of solutions and promising search directions are

evolved synchronously. A local search method is applied to a portion of the population after each

iteration.

A Memetic Algorithm based on Differential Evolution (MADE) was proposed by Qian et al.

[114] to handle Multi-Objective No-wait Flow-Shop Scheduling Problems (MNFSSPs). This algo-

rithm uses several local searchers developed according to the landscape of an MNFSSP to enhance

the local exploitation.

Wanner et al. [118] employed a local search optimizer as an additional operator in MOEA. The

local search technique is able to find more precise estimation of the Pareto optimal surface with a re-

duced number of function evaluations. Ishibuchi et al. [119] studied the use of biased neighbourhood

structures for a local search in mMOEAs. The methods assign higher probabilities to more promising
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neighbours in order to improve the search ability of mMOEAs. More recently, Lara et al. [111] inves-

tigated a new local search strategy called the Hill Climber with Sidestep (HCS) for mMOEAs. The

new point-wise local search procedure is able to move both toward (using hill climber techniques)

and along (sidestep) the PS.

MOEAD [86] also belongs to the class of mMOEAs. It optimizes multiple subproblems. Each

solution is associated with one weighted scalarization function. A local search procedure can be

called for improving a solution. Since MOEAD is a general framework, different heuristic search

methods can serve as the local search component. Sanchis et al. [102] proposed the use of a SA

to improve the current solution of each subproblem. Li and Landa-Silva [128] proposed to optimize

each subproblem by the Greedy Randomized Adaptive Search Procedure (GRASP).

3.2.6 Co-evolution based Multi-Objective Evolutionary Algorithms

Co-evolution can be regarded as evolving multiple sub-populations simultaneously to tackle a

complicated problem. Algorithms using an archive strategy, such as [129], thus fall into this category

because they evolve a population and an archive at the same time to approximate the PF of an MOOP.

However, there is another explanation of co-evolution by using the idea of divide and conquer.

Following this idea, a co-evolutionary algorithm breaks down a problem into a set of subproblems

in the level of individual coding and evolves multiple sub-populations. Tan et al. [130], Goh et

al.[131] and Goh et al.[132] adopt this idea. Among them, the sub-populations are competitive and/or

cooperative with each other and the components from different sub-populations are combined to form

a complete solution.

3.3 Selection and population updating

The selection of solutions for the next generation plays a key role in MOEAs. The main difference

between EAs for SOOPs and MOOPss in algorithm components is the selection procedure. An EA

for SOOPs can be directly applied to MOOPs by replacing the selection component. In SOOP,

there naturally exists a complete order to differentiate all feasible solutions, i.e., for any two feasible
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solutions x and y, either f(x) ≤ f(y) or f(y) ≤ f(x). However, in MOOP, the Pareto dominance,<,

only defines a partial order in the objective space, and not all the feasible solutions can be compared

to each other.

Since the Pareto dominance cannot be naturally used to select solutions, additional strategies need

to be considered. The design of selection operators has been gaining significant attention in MOEAs.

The previous major works on selection follow the idea of defining complete orders over individuals,

and recently some works follow the idea of defining complete orders over populations.

3.3.1 Complete orders over individuals

Since Pareto domination only defines a partial order, extending the partial order to a complete

order becomes a natural way to differentiate solutions. To this end, a two-stage strategy is usually

employed. In the first stage, a population is partitioned into several clusters by Pareto dominance.

Each individual x will be assigned an integer value, called rank, and denoted as xrnk. Those with the

same rank value are equal to each other, and smaller rank is preferred. In the second stage, individuals

with the same rank are further differentiated by assigning each individual a real value, called density,

and denoted as xden. Those with lower density values are preferred. A complete order, denoted as

≺ i, can thus be defined as follows:

∃x ≺ i∃y ⇐⇒ (xrnk < yrnk) ∨ (xrnk = yrnk ∧ xden < yden)

Domination rank [83], domination count [82], and domination strength [133] are usually used to

assign rank values. The widely used methods for density estimation include the niching and fitness

sharing strategy [82], crowding distance [85], k-Nearest Neighbours (kNN) method [134], fast sorting

[135], and gridding and ε-domination method [136], [137],[138], [139] and [140].

A variety of methods [123], [129], [141], [142], [143] and the extension of Pareto domination to

fuzzy domination [144], [145] have been proposed to improve the algorithmic performance.

Some new data structures have been proposed to improve the sorting performance [146], [147],

because there are many redundant comparisons between individuals in the rank assignment procedure

if the definition of Pareto domination is to be followed.
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3.3.2 Complete orders over populations

In an MOEA, populations are actually updated from one generation to another. Selection mech-

anisms based on performance indicators define a complete order over populations. Let I(P ) be a

quality indicator which assigns a real value to a non-dominated population P . A full order, ≺ p is

defined as follows:

P ≺ pQ ⇐⇒ I(P ) < I(Q)

where a smaller value of indicator I(P ) is preferred.

The idea of using performance to guide the selection was first proposed by Fleischer in [148].

Huband et al. [149] proposed the first MOEA with a hypervolume guided selection procedure. In-

dicator based selection has since then been widely applied in MOEAs [150] and [151]. Zitzler and

Künzli generalized the idea and proposed an indicator based MOEA [106]. These methods are called

indicator based MOEAs, and they are discussed in Section 3.2.4. A major disadvantage with this kind

of selection is that it might be time consuming. More work is needed to improve the efficiency.

3.4 Reproduction

Conventional reproduction operators designed for SOOP EAs could be directly used in MOEAs.

The optimal structures of SOOP and MOOP are quite different, i.e., an isolated point or several points

with the same objective value in SOOP and a solution set in MOOP. The operators designed for SOOP

might not be suitable for MOOP. It has been observed that some widely used reproduction operators

did not work well for rotated problems [152]. This difference should be emphasized in MOEA. The

characteristics and/or problem specific knowledge should be considered in designing reproduction

operators for MOOP [153], [154], [155], [156].

3.4.1 Differential Evolution based approaches

The Differential Evolution (DE) algorithm [157], [158], was introduced by Storn and Price. The

DE algorithm was originally designed for SOOP. However, it has since attracted much attention in

MOOP because of its simplicity to implement and efficiency for solving problems.
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A Pareto frontier differential evolution (PDE) algorithm was proposed by Sarker and Abbass

[159]. The major modifications are (a) the step length parameter F is randomly sampled from a

Gaussian distributionN(0, 1), and (b) the parents are from the non-dominated set. To find a uniformly

distributed, near complete, and near optimal PF, a Multi-Objective DE based on Pareto adaptive

dominance and orthogonal design was proposed by Gong and Cai in [160]. A MO DE algorithm with

diversity enhancement strategies was proposed by Qu and Suganthan in [135].

The DE algorithm has also been extended to tackle discrete or mixed continuous and discrete

MOOPs. A MO DE algorithm was proposed by Alatas, et al. in [161] for mining numeric association

rules. A memetic algorithm based on DE was proposed by Qian et al. in [114] to deal with MNFSSPs.

Since the DE algorithm has two control parameters which are not easy to set properly, self adap-

tation has also attracted much attention recently. The two control parameters are randomly picked up

from predefined ranges. Wang et al. in [143] proposed the use of a crowding entropy based diversity

measure to maintain an elitist archive.

3.4.2 Immune based approaches

Due to the clonal selection and affinity maturation by hypermutation, the immune system is able

to adapt B-cells to new types of antigens. By simulating this phenomenon, artificial Immune Iystems

were proposed to deal with optimization problems [162]. Recently, Immune Systems have been ex-

tended from SOOP to MOOP. In Multi-Objective Immune Systems (MOISs), clonal selections based

on Pareto dominance are usually used to select promising solutions while crossover and mutation

operators are widely used to generate new trial solutions.

Most of the MOISs focus on static problems. Coello and Cortes in [163] proposed the use of

two mutation operators to mutate antibodies with different qualities. An archive is used to store

elitist solutions to approximate the PF. A hybrid MO algorithm based on an Immune System and

bacterial optimization was proposed to deal with bi-objective no-wait flowshop scheduling problems,

proposed by Tavakkoli et al. [164]. A linear combination method was applied to generate antibodies

which are improved by using bacterial optimization operations. A non-dominated neighbour immune
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algorithm was proposed for MOOP by Gong et al. in [141]. The selection strategy emphasizes more

on less crowded solutions. A hybrid immune MOOP algorithm based on a clonal selection principle

was proposed by Chen et al. in [115]. In this approach, Gaussian and polynomial mutations are

adaptively applied to mutate the new trial solutions after crossover. The selection procedure proposed

by Gong et al. in [141] is used to update the population directly. A MOIS based on a multiple affinity

model was proposed by Hu in [165].

Some immune algorithms have been applied to dynamic and uncertain optimization problems. A

MOIS was proposed by Zhang in [166] to deal with dynamic MOOP with constraints. A MOIS was

presented by Zuo et al. in [167] to find Pareto optimal robust solutions for bi-objective scheduling

problems.

3.4.3 Particle Swarm Optimization based approaches

Particle Swarm Optimization (PSO) is a population based stochastic optimization technique de-

veloped by Eberhart and Kennedy in 1995 [168] and [169], inspired by the social behaviour of bird

flocking or fish schooling.

Moore and Chapman extended this idea to MOOP in 1999 [170]. Since PSO cannot be directly

applied to MOOP, there are two issues to be considered when extending PSO to MOOP. The first

one is how to select the global and local best particles (leaders) to guide the search of a particle. The

second is how to maintain good points found so far. For the latter, a secondary population is usually

used to maintain the non-dominated solutions.

In [171], the particles are clustered into swarms, all particles that have their best position in the

same cluster form a swarm. In [172], a tournament niche method is introduced to select the global

best particle, and the local best particle is updated by the Pareto dominance. In [173], the global best

particle is selected from the non-dominated solutions with a roulette wheel selection in which the

density values are used as fitness. The SA control parameter is also considered. In [174], a preference

order, a generalization of Pareto dominance, is introduced to rank all the particles and thus to identify

the global best particle.
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Three EA-PSO hybrid algorithms were proposed in [175]. The fitness assignment strategy is

based on that of Strength Pareto Evolutionary Algorithm 2 (SPEA2) [134]. The global best particle

is selected from the external archive by a tournament selection, and the neighbourhood best particle

is selected as the one with lowest strength Pareto fitness.

A MO-PSO was designed to tackle MO mixed-model assembly line sequencing problems in

[176]. To this end, a coding strategy and a local search are introduced. The global best particle

is the non-dominated solution in the archive with the highest crowding distance in the archive.

A multiple swarms algorithm was proposed by Leong and Yen in [116]. Several components,

such as cell-based rank density estimation, population growing and declining strategies, and adaptive

local search, are designed to improve the algorithmic performance. A leader selection was proposed

to assign a leader for each group.

Coello et al. in [139] proposed the use of an archive to maintain the non-dominated solutions

found so far, and the use of a mutation operator to keep the population diversity. To choose a global

best particle, the non-dominated ones in sparse areas are emphasized.

In [177], a fuzzy clustering-based PSO was proposed to tackle electrical power dispatch problems.

A fuzzy clustering technique is applied to maintain the external archive. A self-adaptive mutation

operator is also used to generate new trial solutions. A niching mechanism is designed to find the

global best particle for each particle and thus to emphasize less explored areas. Finally, a fuzzy

decision rule is used to assist decision making.

A Multi-Objective Comprehensive Learning Particle Swarm Optimizer (MOCLPSO) was pre-

sented by Huang et al. in [178]. MOCLPSO uses a learning strategy whereby all other particles’

historical best information is used to update a particle’s velocity. This strategy enables the diversity

of the swarm to be preserved to discourage premature convergence.

Two-Local-Best Multi-Objective Particle Swarm Optimization (2LB-MOPSO) technique was

proposed by Zhao and Suganthan in [179]. Different from canonical Multi-Objective PSO, 2LB-

MOPSO uses two local bests instead of one personal best and one global best to lead each particle.
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The two local bests are selected to be close to each other in order to enhance the local search abil-

ity of the algorithm. Compared to the canonical Multi-Objective PSO, 2LB-MOPSO shows great

advantages in convergence speed and fine-searching ability.

In [180], PSO is used in the MOEAD framework. Each particle is responsible for solving one

subproblem.

More works on MO-PSO are presented in [181].

3.4.4 Probabilistic Model based approaches

The main feature of these algorithms is that they do not use traditional crossover or mutation op-

erators to generate new solutions. Instead, they explicitly extract global statistical information from

their previous search and build a probability distribution model of promising solutions. Based on

the extracted information, new solutions are sampled from the model thus built. Compared to tradi-

tional EA methods, they emphasize the population distribution information rather than the individual

location information. The key issues in these methods include model selection before executing the

algorithm and model building and sampling in the running process. The following methods share the

above basic ideas and they differ from each other on origins.

Ant Colony Optimization (ACO) [182], introduced by Dorigo in 1992, takes inspiration from the

behaviour of real ant colonies and is used to solve optimization problems. Ants deposit pheromone

on the ground in order to mark some favourable paths followed by other members of the colony with

higher probability. ACO exploits a similar mechanism by constructing a probability matrix, named

the pheromone model, to denote the probability to choose an edge in a graph and thus sampling new

solutions. The structure of ACO probability model makes it a natural choice for discrete optimization.

In the case of MOOP, ACO has been applied to Travelling Salesman Problems [183, 184], Vehicle

Routing Problems [185], Flow-Shop Scheduling Problems [186], Portfolio Selection [187, 188] and

others.

The Cross Entropy (CE) method [189] was proposed by Rubinstein and Kroese, originated from

the field of rare event simulation involving the estimation of parameters for a number of probability
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distributions associated with some rare events. CE methods iteratively generate sample points from

the probability model and update the model parameters on the basis of the data. Currently, however,

there are not many reports on applying CE for MOOP. In [190], a CE-based approach was proposed

for MOOPs. In the approach, a population is partitioned into several clusters, and a CE method with

a Gaussian model is utilized in each cluster.

The Quantum-inspired Genetic Algorithm (QGA) was first proposed by Han and Kim in 2000

[191]. The QGA simulates the quantum mechanism and uses a Q-bit vector to represent a solution.

The Q-bit vector actually denotes probability distributions of all Q-bits to be 0 or 1. A quantum gate

is used to generate new individuals. IA MO-QGA was proposed, by Wei et al. in [192], to deal with

hardware - software co-synthesis problems in embedded systems. Another version of the MO-QGA

was proposed to deal with flow-shop scheduling problems by Li and Wang [193].

The Estimation of Distribution Algorithm (EDA) was first introduced by Mühlenbein and Paaβ

in 1996 [194]. Most EDAs aim to discover the variable linkage information from the population to

benefit offspring generation. To this end, different models with univariate, bivariate, and/or multi-

variate variable linkages have been widely studied [195]. Depending on the models used, EDAs are

suitable for both combinatorial and continuous optimization. In the case of continuous MOOP, Okabe

et al. [196] proposed a Voronoi model-based method. Bosman and Thierens [197] proposed an EDA

method based on a mixture univariate Gaussian model. Dong and Yao [198] proposed a multivariate

Gaussian model-based method. Igel et al. [151] extended the Covariance Matrix Adaptation Evolu-

tion Strategy (CMA-ES) for dealing with MOOPs. In the case of combinatorial MOOP, Laumanns

et al. [199] proposed a Bayesian network-based method for knapsack problems. Pelikan et al. [200]

designed a method with hierarchical Bayesian networks to study building boxes for binary coding

problems.

The PF and PS of a continuous MOOP are piecewise continuous (m 1)-dimensional mani-

folds under mild conditions [201]. Based on this regularity property, Zhang et al. [155] proposed

a Regularity Model-based Multi-Objective Estimation of Distribution Algorithm (RM-MEDA) for

continuous MOOPs with variable linkages. In some cases, a good approximation to both the PF and
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the PS is required by a decision maker. To this end, the RM-MEDA has been extended in [156] to

tackle a class of MOOPs in which the dimensionalities of the PF and the PS manifolds are different.

RM-MEDAs have been applied to static MOOPs [155], [156], dynamic [202] MOOPs, MOOPs with

local PFs [203], MOOPs with high search dimensions [204]. Recently, the RM-MEDA has been

improved by combing it with some other techniques [205]. A basic idea behind RM-MEDAs is to

use statistical and machine-learning techniques to guide the search of EDAs. Dimension-reduction

techniques are thus used in RM-MEDAs. Some other ways to use this regularity property are referred

to in [206], [207]. The research work on RM-MEDAs is among very few efforts to design MOEAs

based on mathematical programming theory.

3.4.5 Simulated Annealing based approaches

Simulated Annealing (SA) is a single-point-based global optimization technique which is inspired

by annealing in metallurgy [208]. Due to its simplicity, SA has been incorporated into MO frame-

works for dealing with MOOPs.

Like some other MOEAs, MO SAs also need to maintain an archive to store current non-dominated

solutions and to use reproduction operators to generate new solutions. The main difference between

MOSAs and other MOEAs is on how to update a solution when the offspring individual is dominated

by the parent. The SA updating rule is usually used in such case.

In [209], the SA updating rule is used to choose the next individual when an offspring individual

is dominated by the parent. A similar method was proposed in [210], in which a domination based

energy function is used to calculate the probability to accept a dominated new trial solution. In [211],

the domination relationship between an offspring point and its parent as well as archive points is

systematically studied. A MOSA with a single point was introduced in [212]. In this approach,

each objective is assigned a different cooling schedule, taking into account the prioritization of that

objective. The probability to accept a new solution which is worse than the parent is controlled by

using SA rules.
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3.4.6 Heuristic based approaches

There are also many other heuristics which are originally designed for scalar objective optimiza-

tion. By incorporating with the Pareto domination and/or population (archive) updating strategies,

these heuristics could also be extended to tackle MOOPs. These meta-heuristics include tabu search

[117], [213], scatter search [214], and the GRASP approach [215].

3.5 Self-Adaptive Multi-Objective Evolutionary Algorithms

Self-adaptation is based on the following principle; good solutions more likely result from good

than from bad strategy variable values. Bound to the objective variables, these good parametrizations

have a high probability of being selected and inherited to the following generation. Self-adaptation

becomes an implicit evolutionary search for optimal strategy variable values. These values define

properties of the evolutionary algorithm, e.g., mutation strengths, or global parameters like selection

pressure or population sizes.

Reed et al. in 1967 [28], developed parameter adaptation mechanisms for an EA that learnt to

play poker. The genome contained strategy parameters determining probabilities for mutation and

crossover with other strategies.

Later in 1970, Rosenberg [29] proposed an approach to adapt the probability for applying crossover.

Weinberg and Berkus in 1970 [30] and later Mercer and Sampson in 1978 [32] introduced meta-

evolutionary approaches. In meta-evolutionary methods an outer EA controls the parameters of an

inner one that optimizes the original problem.

In 1973, Rechenberg [31] introduced the 1/5th rule, an adaptation mechanism for step size control

of Evolutionary Strategies (ES). Self-adaptation term was originally introduced by Rechenberg and

Schwefel [216] for ES, and later by Fogel [217] for Evolutionary Programming (EP).

Grefenstette in 1986 [33], suggested a two level adaptive system for tuning the primary opti-

misation algorithm’s parameters. Parameters available for optimisation in Genetic Algorithms (GAs)

were: (i) Population Size (N), (ii) Crossover Rate (CR), (iii) Mutation Rate (MR), (iv) Generation Gap

(G), and (v) Scaling Window (SW). Also the following Performance Metrics were used: (a) Online

Chri
sto

s C
. K

an
na

s



42

Performance: Average performance of all tested structures over the course of the search. (b) Offline

Performance: Average of best performance achieved in a time interval.

Eiben et al. [34] proposed the following taxonomy regarding parameter setting for EAs: (i) Tun-

ing: (a) By Hand, (b) Design of Experiments, and (c) Meta-Evolution; (ii) Control: (a) Deterministic,

(b) Adaptive, and (c) Self-Adaptive (stochastic on-line parameter free).

Spears and Jong in 1991 [35] proposed to use a uniform crossover operator as an adaptive operator

technique.

Saravanan et al. in 1995 [36] compared a Gaussian perturbation self-adaptive mechanism with

Log normal perturbation self-adaptive mechanism. They concluded that Log normal distribution has

an advantage over Gaussian in some objective functions and Gaussian has an advantage over Log

normal in other objective functions. In general Log normal yields better convergence results and is

more robust.

Batista et al. in 2010 [37] proposed a Chaotic differential mutation function as self-adaptive

mechanism. The proposed self-adaptive algorithm when compared to NSGA-II is outperforming it in

14 out of 17 tests performed having lower median Inverted Generational Distance (IGD) values.

Jain and Deb in 2013 [38], proposed an improved version of NSGA for MaOOP (NSGA-III).

NSGA-III [218] and [219] is a new version of NSGA that is used to approximate problems with three

or more objectives, thus MaOOPs where the use of reference points to guide it during the search

process is applied [220]. This improved NSGA-III uses an adaptive approach for reallocating the

reference points, named A2-NSGA-III. Comparing A2-NSGA-III to NSGA-III and Adaptive NSGA-

III (A-NSGA-III), showed to outperform them in terms of solutions distribution and hypervolume

measurements.

During the same year (2013), Olive et al. proposed a Self-Adaptive MOGA that was applied to

Multi-Objective Optimization (MOO) of Airfoil [39]. From their experiments they concluded that the

proposed Self-Adaptive MOGA outperforms NSGA-II and Multi-Objective Tabu Search (MOTS) in

XFoil3 application. Though, MOTS suggested more feasible solutions.
3http://web.mit.edu/drela/Public/web/xfoil/
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Shahsavar et al. in 2015 [40] proposed three self-adaptive GAs for a triple-objective project

scheduling problem. The three Self-Adaptive GA, were namely: (i) A two-stage Multi-Population

Genetic Algorithm (MPGA), (ii) A two-phase Subpopulation Genetic Algorithm (TPSPGA), and

(iii) A Non-Dominated Ranked Genetic Algorithm (NRGA). The Self-Adaptive operator technique

was implemented as proposed by Spears and De Jong in 1991 [35]. The Self-Adaptive parameters

technique was implemented as proposed by Grefenstette in 1986 [33]. All proposed algorithms were

two stage processes, the first stage was to find the optimal set of operators to be used, and the second

stage was where the optimal parameters are identified, using the optimal set of operators. The project

scheduling problem involved three basic objectives (Resource-Constrained Project Scheduling Prob-

lem (RCPSP), Resource Investment Problem (RIP), and Resource Levelling Problem (RLP)), in the

presence of scarce time and scarce resources was first modelled into a triple objective zero-one for-

mulation. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) procedure

[221], [222] and [223] was hired to order the algorithms. According to TOPSIS, the Self-Adaptive

NRGA, Self-Adaptive TPSPGA, and Self-Adaptive MPGA were preference ranked from 1 to 3, re-

spectively (with 1 being the best).

3.6 Concluding Remarks

The majority of real life problems demand MOO solutions that could be derived efficiently and

effectively using MOEAs. MOEAs enable the searching of multiple space regions simultaneously

looking for possible solutions satisfying multiple objectives.

Over the years numerous MOO algorithms have been proposed, developed and tested in various

problems. They cover different algorithmic frameworks from Pareto based, to Decomposition based,

to Preference based, to Indicator based, to Co-Evolution based and finally Memetic based approaches.

The algorithms are then further diversified by their evolutionary process strategy used. This diver-

sification is what enables us to define MOEA approaches that work well on very specific problems,

where other approaches are not that effective.
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MOEAs fine tuning is based on experience and multiple runs for defining their numerous search

parameters and evolutionary operators. The use of self-adaptive techniques comes to aid or automate

in the decision of selecting their search parameters and evolutionary operators.
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Chapter 4

LiSIs: Life Sciences Informatics platform

The work on Life Sciences Informatics (LiSIs) platform, described below, has been partially

supported through the EU-FP7 GRANATUM project, ”A Social Collaborative Working Space Se-

mantically Interlinking Biomedical Researchers, Knowledge and data for the design and execution of

In Silico Models and Experiments in Cancer Chemoprevention”, contract number 270139.

My contributions in the project were: (a) development of all the chem[o]informatics tools, shown

in red rectangles in Figure 7, (b) supported the development of tools for preparing and perform-

ing docking experiments and tools for preparing and performing property prediction via the use of

machine learning algorithms, shown in the blue rectangles in Figure 7, (c) management of tools in-

tegration to LiSIs and integration of LiSIs with the other platforms of the GRANATUM project, and

(d) represented the LiSIs development team and the consortium in project meetings and conferences.

LiSIs is accessible at 1 where you have to create an account to gain access. Once you register an

account you can start using LiSIs, though it is advisable to check our online help pages at 2 .

4.1 Introduction

LiSIs is a Virtual Screening (VS) platform based on Scientific Workflow (SW) modelling for

Life Sciences. LiSIs aims to provide a set of tools to create, update, store and share SWs for the

discovery of active compounds for biomedical researchers. The system is available via a web interface
1http://lisis.cs.ucy.ac.cy
2http://lisis.cs.ucy.ac.cy/u/user-info/p/online-help-pages-index
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through a password protected, tiered login process. Specifically, the login process provides different

level access to platform functionalities based on the user profile. The user is able to assemble SWs

utilizing available in silico models and tools loaded into the platform. Depending on the user profile

and associated permissions, users may also construct new models and tools through the development

of custom workflows made available by the system for this purpose. Workflows execute on the system

server. The execution results can also be stored on the user’s GRANATUM3 workspace, where the

user is able to access, manipulate or share them with other users.

The LiSIs platform is based on the Galaxy web based Scientific Workflow Management System

(SWMS) [64], [63], [62] and is comprised of five (5) major layers of functionalities, i.e. Input, Pre-

Processing, Processing, Post-Processing and Output, shown in Figure 7. Each layer hosts a collection

of components categories essentially implementing a variety of functionalities. A component category

may implement different variations of the same functionality. In addition there are numerous tools

that are available in the original Galaxy distribution.

The following tools were developed by Kannas C., shown in red rectangles in Figure 7:

• Input Layer:

– GRANATUM File Loader,

– SDF File Reader,

– SMI File Reader,

– Property File Reader,

– ChemSpider Molecules,

• Pre-Processing Layer:

– Descriptor Calculator,

– Fingerprint Calculator,

• User Processing Layer:
3www.granatum.org
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Figure 7: Overview of Life Sciences Informatics (LiSIs) tools. Tools highlighted in red rectangle
show tools that were developed by Kannas C. Tools highlighted in blue rectangle show tools where
their development was supported by Kannas C.

– Chemical Properties Filter,

– GRANATUM Ro5 Filter,

– Lipinski Ro5 Filter,

– Similarity Filter,

– Diversity Filter,

– Substructure Filter,

• Expert Processing Layer:

– Molecular Clustering,

• Post-Processing Layer:

– Binary File Merger,

• Output Layer:
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– SMI Writer,

– SDF Writer,

– Prediction Writer,

– CSV Writer,

– TAB Writer,

– GRANATUM File Writer.

Additionally Kannas C. helped in the following tools, shown in blue rectangles in Figure 7:

• Pre-Processing Layer:

– Coord Calculator,

– Protein Cleaner,

• User Processing Layer:

– Property Predictor,

– Vina Predictor,

• Expert Processing Layer:

– Linear SVM,

– Decision Trees,

– Random Forest,

– k-Nearest Neighbors

• Post-Processing Layer:

– Output Reformater.

4.2 Input Layer

The Input Layer consists of the following two component categories:
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Data File Input: provides tools which support parsing different chemical and biological data

files. File formats currently supported include Chemical Data Files, which are sdf (Structure Data

File (SDF)), smi (Simplified Molecular Input Line Entry Specification (SMILES)), pdb (Protein Data

Bank), pdbqt (AutoDock Protein and Ligand data files) and Biological Data Files which are csv

(Comma Separated Values), tab (Tab Separated Values).

GRANATUM File Input: A component which provides GRANATUM’s platform users to upload

on LiSIs files located at GRANATUM platform.

4.3 Pre-Processing Layer

The Pre-Processing Layer consists of the following four component categories:

Descriptors Calculation: This component category provides tools for the calculation of vari-

ous descriptors of chemical compounds. Currently the platform enables the calculation of whole-

compound descriptors with the use of RDKit [224]. Example descriptors include Molecular Weight

(MW), number of Hydrogen Bond Acceptors (HBA) and Hydrogen Bond Donors (HBD), Topological

Surface Polar Area (TPSA), number of rings, calculated Octanol-Water partition coefficient (cLogP),

molecular complexity based on the method proposed by Barone [225] and molecular flexibility, as

well as molecular fingerprints which can be one of Morgan (circular) fingerprints [226], MACCS

[227], atom-pair [228], topological torsion [229], and topological fingerprints, a Daylight like finger-

print based on hashing molecular sub-graphs4 .

Compound Fragmentation: This component category provides tools to identify chemical sub-

structures present in compounds through the in silico fragmentation of chemical compound struc-

ture. Various compound fragmentation methods are available: Retro-synthetic Combinatorial Analy-

sis Procedure (RECAP) [230], Ring System Decomposition (RSD) and Molecular Frameworks [231].

Docking Preparation: This component category provides the following tools:
4www.daylight.com/dayhtml/doc/theory/theory.finger.html
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• 3D Coordinate Calculator: A tool for preparing compounds for docking experiments, by calcu-

lating their 3D coordinates and creating the appropriate files required by the docking software

used by LiSIs.

• Protein Cleaner: A tool provided by AutoDock, which is used to automate the process of

cleaning a protein to create the required files used by AutoDock Vina5 .

4.4 Processing Layer

The Processing Layer consists of the following five component categories:

Attribute Filtering: This component category provides tools for implementing filters for selecting

compounds based on their chemical and biological attributes. Specifically, these components allow

users to enter ranges of acceptable values on available compound properties (including properties

calculated by the Chemical Descriptors component and properties provided externally from the Data

Input Layer).

Compound Similarity: This component category provides tools for implementing filters for se-

lecting compounds based on chemical structure similarity to other compounds indicated by the user.

Substructure Matching: This component category provides tools for implementing filters for se-

lecting compounds based on whether they contain (or not) the chemical substructure(s) indicated by

the user.

Docking Prediction: This component category provides tools for implementing filters for se-

lecting compounds based on predicted binding affinity of a compound to a target protein using in

silico docking prediction. Our platform currently uses AutoDock Vina, a popular docking appli-

cation, freely available to the academic research community. AutoDock Vina attempts to find the

best receptor-ligand docking pose by employing a scoring function that takes into consideration both

intra-molecular and intermolecular contributions, as well as an optimization algorithm [232].

Predictive Modelling: The primary aim of this component is to provide the user with the tools to

construct data-driven predictive models based on available information on a set of compounds. These
5vina.scripps.edu

Chri
sto

s C
. K

an
na

s

vina.scripps.edu


51

models are used to predict biochemical properties of interest of new compounds and to select those

with an acceptable profile.

The component currently makes use of four popular predictive modelling algorithms widely used

by the chem[o]informatics community: Decision Trees (DT), Random Forests (RF), Support Vector

Machines (SVM), and k-Nearest Neighbours (kNN) [233].

4.5 Post-Processing Layer

The Post-Processing Layer consists of the following component category:

Binary File Merging: This component category provides tools for merging binary files, containing

chemical structure objects with processing component results, into one binary file.

4.6 Output Layer

The Output Layer consists of the following three component categories:

Reporting: This component category provides tools for the formatting of the processing results

from one or more in silico experiments and for basic visualization.

Storage: This component category provides tools to store results in various formats for future

reuse and sharing.

Output Reformatting: This component category provides tools to convert results in various for-

mats supported by OpenBabel [234].

4.7 Third Party Tools used by LiSIs

The LiSIs platform uses several, freely available to the research community tools to expedite

development and maximize resources. Specifically, the following 3rd party tools are used:

Galaxy [64], [63], [62], an open, web-based platform for data intensive biomedical research, used

for the customized SWMS platform;

RDKit [224], an open source chem[o]informatics toolkit, used to support all the chem[o]informatics

related functionalities;
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Pybel [235], a Python wrapper for the OpenBabel chem[o]informatics toolkit, used for chemical

file format transformations;

R [236], a statistical environment used to support data mining, machine learning and statistics

related functionalities; caret (Classification and Regression Training) package[233] is used for the

generation of Predictive Models;

AutoDock Vina [232] docking application used to support docking experiments functionalities.

4.8 Showcase and Results

LiSIs has been used for the implementation of a VS experiment in order to identify molecules

able to bind to Estrogen Receptor-α (ER-α) and/or Estrogen Receptor-β (ER-β).

This experiment was designed to combine the experience of our cancer chemopreventive biomed-

ical experts of the two biomedical research groups. The Cancer Biology and Chemoprevention Labo-

ratory 6 provided the experience with ER-α and ER-β and the Cancer Chemoprevention and Epige-

nomics group 7 provided the experience with DNA Methyltransferase (DNMT). As such the targets

for the experiment were ER-α and ER-β and the compounds that were to be investigated were a col-

lection from Indofine 8 , as the Cancer Biology and Chemoprevention Laboratory were using them

extensively and the compounds from Medina-Franco et al. [237] research were investigated by the

Cancer Chemoprevention and Epigenomics group.

Figure 8 illustrates the complete workflow, in an abstract layer, used by LiSIs for the showcase

described. Figure 9 shows the workflow that was designed and executed on LiSIs. At the Input Layer,

parsing of the input datasets takes place. To start with the initial datasets in SMILES format include

2414 compounds from Indofine, 55 compounds characterized as DNMT inhibitors by Medina-Franco

et al. [237] and 21 known ER ligands retrieved from PubChem9 , shown in Table 2, which were used

as a positive control dataset for the validation of docking tools. Tools were used to read chemical

input files and create compound object structures for further processing by the Pre-Processing and
6https://www.ucy.ac.cy/biol/en/research/20-en-topm/50-andreasioannoucostantinou
7https://www.dkfz.de/en/tox/cancer_chemoprevention.html
8www.indofinechemical.com
9pubchem.ncbi.nlm.nih.gov
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Processing Layers. The total number of unique compounds pushed to the next layer were 2413 from

Indofine (one was found to contain erroneous molecular information), 54 from Medina-Franco (two

were found to be identical) and 21 from PubChem’s ER agonists and antagonists (one was found to

contain two disconnected fragments), datasets for a total of 2488 compounds.

Table 2: Known ER ligands used as positive controls for the validation of the in silico results

A/A Estrogen Ligand Docking Score ER-α Docking Score ER-β
1 Raloxifene -11.70 -8.72
2 Lilly-117018 -11.53 -3.80
3 3-HydroxyTamoxifen -11.02 N/A
4 Nafoxidine -10.88 N/A
5 ICI-182780 -10.73 N/A
6 Pyrolidine -10.04 N/A
7 Clomiphene A -10.01 N/A
8 Nitrofinene Citrate -9.87 N/A
9 ICI-164384 -9.82 -9.13

10 Moxestrol -9.38 -9.77
11 Naringenine -8.55 -7.80
12 Triphenylethylene -8.50 N/A
13 Afema -8.15 -7.78
14 Danazol -6.99 N/A
15 Ethamoxytriphetol -6.67 N/A
16 4-HydroxyTamoxifen -6.60 N/A
17 Dioxin -6.22 N/A
18 Estralutin -5.86 -3.80
19 Cyclopentanone -4.88 N/A
20 Miproxifene Phosphate -4.48 N/A
21 EM-800 N/A N/A

Note: The list was retrieved from PubChem and it includes compounds characterized as estrogen ligands. N/A; no binding affinity.
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Figure 8: Schematic of the workflow for current showcase, provided by Kannas et al. [238].Chri
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(a) Estrogen Receptor-α Docking Score (b) Estrogen Receptor-β Docking Score

Figure 10: Compounds were tested against Estrogen Receptor-α (a) and Estrogen Receptor-β (b)
using in-silico docking tools, provided by Kannas et al. [238]. Docking score for our library of
compounds was calculated against the crystal structures 3ERT (Estrogen Receptor-α) and 1X7J, (Es-
trogen Receptor-β) shown. The red dots represent known ER ligands as listed in Table 2 and the cyan
dots represent DNA Methyltransferase inhibitors characterized in [237]. The lower (most negative)
the value of the docking score the higher the predicted binding affinity.

At the Pre-Processing Layer (see Figure 9), a set of physiochemical molecular descriptors were

calculated including Molecular Weight, Hydrogen Bond Donors, Hydrogen Bond Acceptors, Topo-

logical Surface Polar Area and calculated Octanol-Water partition coefficient.

At the Processing Layer, the following tools were used:

1. GRANATUM Rule of Five (Ro5) filter (see Figure 9 Processing Layer):

(a) Molecular Weight (MW) between 160 and 700,

(b) Hydrogen Bond Donors (HBD) less or equal to 5,

(c) Hydrogen Bond Acceptors (HBA) less or equal to 10,

(d) Topological Surface Polar Area (TPSA) less than 140, and

(e) calculated Octanol-Water partition coefficient (cLogP) between -0.4 and 5.6.

This filter was defined by Chemoprevention Research (CPR) experts participating to the GRANA-

TUM project.
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The filtering resulted in 1834 compounds with CPR-like features and 654 compounds without

CPR-like features. The compounds with CPR-like features were pushed for docking experi-

ments.

2. Docking experiment against ER-α and ER-β (see Figure 9 Processing Layer): LiSIs uses

AutoDock Vina [232] and has been setup to provide us with the maximum docking affinity

score. The current key aim of the GRANATUM project was to identify ER-α antagonists and

ER-β agonists. Docking experiments on the filtered combined dataset have been performed

by employing receptors ER-α 3ERT and ER-β 1X7J. The appropriate Docking Models were

created using protein structures obtained from the PDB database10 and related LiSIs tools for

automated Protein Cleaning (see Figure 9 Pre-Processing Layer) and Docking Model Prepara-

tion.

Figure 10a is a graphical representation of the docking affinity score predicted by LiSIs docking

experiment tool for ER-α, and Figure 10b is a graphical representation of the docking affinity

score predicted by LiSIs docking experiment tool for ER-β. The predicted binding affinity

scores of the known ER inhibitors, depicted with red colour in Figure 10a, 10b, indicate the

validity of the docking models prepared and the ability of these models to assign a lower score

to inhibitors and reproduce ground truth. Consequently, the models are applicable in a VS

context, i.e. for the prioritization of unknown compounds based on their predicted binding

affinity to estrogen receptors.

Finally a selection of molecules highly ranked was hand-picked; a small sample of those is shown

in Table 3. These molecules have undergone in vitro investigation to provide feedback for the cali-

bration of the tools available on LiSIs platform and also to select a small set for further research.

As shown in Table 3, three novel flavones, 3’,4’-dihydroxy-a-naphthoflavone (Compound 2),

3,5,7,3’,4’-pentahydroxyflavanone (Compound 5), and 4’-hydroxy-a-naphthoflavone (Compound 6)

were among those with high binding scores for ER-α and ER-β as indicated from the in silico dock-

ing score. Flavones, a class of flavonoids, have previously been demonstrated to possess estrogenic
10www.rcsb.org
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activity in a number of hormonally responsive systems. Their estrogenic and antiestrogenic activ-

ities appear to correlate directly with their capacity to displace Estradiol from ER [239]. Our in

vitro results showed that Compound 2 had the highest affinity for both receptors while Compound 5

also displayed similar affinity for both ER-α and ER-β. However Compound 6 was found to bind

only weakly to ER according to the binding affinity assay. Furthermore, results from the in silico

experiments showed that three previously uninvestigated coumarins, 3(2’-chlorophenyl)-7-hydroxy-

4-phenylcoumarin (Compound 3), 3(3’-chlorophenyl)-7-hydroxy-4- phenylcoumarin (Compound 4)

and 4-benzyl-7-hydroxy-3-phenylcoumarin (Compound 7) can potentially bind ER-α and ER-β based

in their docking scores. Coumarins are natural or synthetic benzopyranic derivatives that form a fam-

ily of active compounds with a wide range of pharmacological properties, including estrogen-like

effects [240]. In vitro results showed that Compound 3 has greater affinity for ER-α while Compound

4 can bind with high affinity to both receptors. However, Compound 7 was not able to bind to either

receptor as determined by the ER binding affinity assay.

4.9 Discussion

In recent years, many high-throughput methods have been established in the effort to identify

novel Estrogen Receptor binders with anticancer activity. However, in vitro assays often produce

disappointing results due to the small percentage of novel active Estrogenic compounds discovered.

To identify novel compounds that act as effective ER-α coactivator binding inhibitors (CBIs), Gunther

et al. applied a time-resolved fluorescence resonance energy transfer (TR-FRET) assay developed in

a 384 well format [241]. This assay measures the binding of a Cy5-labeled SRC-1 nuclear receptor

interaction domain to the ligand binding domain (LBD) of labeled ER-α leading to FRET signal

generation. Compounds that interfere with the FRET signal are identified as potential coactivator

binding inhibitors (CBIs) or conventional ligand antagonists. Based on this method, only 1.6% of the

total compounds screened were identified as active as reported in (Pubchem ID 62911 ).
11http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=629
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In the present study, we used a VS Workflow implemented using the LiSIs platform to screen

the Indofine database of 2413 compounds. Based on their drug-like criteria and docking results we

selected 18 potential ER ligands. These were further investigated in vitro with the ER binding assay

described by Gurer-Orhan et al. [242] with minor modifications. In this manner it was found that five

agents displayed strong affinity for ER-α, three showed selectivity for ER-β and seven were able to

bind to both receptors with similar affinity. In total 15 out of 18 compounds (83.3%) were experimen-

tally confirmed active. Therefore, the use of LiSIs platform may allow researchers to execute complex

biomedical studies and in silico experiments on largely available and high quality data repositories in

order to facilitate the selection and prioritize the investigation of novel chemopreventive compounds

in vitro.

Compounds with high binding affinity to the ERs based on the in silico results, display structural

characteristics that are similar to Estradiol-17β (E2). All contain a phenolic ring which is indispens-

able for binding to the estrogen receptor [243]. The phenolic ring of Compounds 2 - 7 contains at least

one hydroxyl group which mimics the 3’-OH of E2. Furthermore, all compounds have low molecular

weight comparable to that of E2 (MW equal to 272). All agents are highly hydrophobic which is re-

quired for binding in the ER binding pocket [244]. The differences observed in the binding affinities

of compounds may be attributed to differences in structural characteristics. The lower ER binding

affinity of Compound 5 (when compared to Compound 2) may be attributed to the hydrophilic hy-

droxyl group at C-11 of Compound 5 which, due to steric hindrance, lowers its binding affinity for

both receptors [244].

4.10 LiSIs Evaluation

LiSIs was evaluated by 7 biomedical researchers (end-users). LiSIs evaluation revealed that 43%

of the people who participated found it quite easy to design and execute a VS workflow, 43% found it

easy but they had some problems in doing so while 14% had some troubles in doing this. Regarding

the difficulty of uploading a new dataset in LiSIs platform, all of the people who evaluated LiSIs found

it very easy, in detail 29% had no problems at all and 71% had minor problems. When questioned if
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they were able to gather results from their VS workflows, 43% answered that they had some problems,

14% answered that they had minor problems and 43% had no problems at all. To address this issue

LiSIs was updated, introducing a ”How To” section for describing the usage and functionality of each

tool12 . Additionally, various workflows and histories have now been created and uploaded on the

platform to guide users for using LiSIs.

The evaluation regarding the tools to create and use Docking and Property Prediction Models

showed that the ability to perform Property Prediction using existing Prediction Models from the

LiSIs platform was as follows: 29% were able to perform the prediction with some difficulties, 57%

were able to do so with minor difficulties and 14% were able to perform the prediction without any

difficulties. Regarding the ability to perform Docking Prediction using existing Docking Models

from the LiSIs platform, 14% were able to perform the prediction but with difficulties, mostly due

to the known limitations of the automated process that is being used, 57% were able to do so with

minor difficulties and 29% were able to perform the prediction without any difficulties. Based on

the user feedback, to facilitate the end-users, LiSIs was updated, introducing a ”How To” section for

describing the usage and functionality of each tool13 . When questioned about the usefulness and

the difficulty of creating and saving a Property or a Docking Prediction Model, 29% answered that

they had some difficulties, 57% answered that they had minor difficulties and 14% answered that they

were able to do so with ease.

The evaluation regarding the re-usability of useful workflows revealed that 17% of the users found

the functionality of saving a workflow for a future use a task with some difficulties, 67% replied

that task is performed with minor difficulties and 17% were able to perform the task without any

difficulties. When participants were asked about the usefulness of the platform 57% replied that it is

very useful and 43% replied that is extremely useful.

The evaluation revealed that the objectives of the LiSIs platform have been fulfilled by provid-

ing the users an easier means for performing VS workflows and facilitating their experiments. The

web-based approach for the integration of the tools and the use of standards turned out to be the right
12http://lisis.cs.ucy.ac.cy/u/user-info/p/online-help-pages-index
13http://lisis.cs.ucy.ac.cy/u/user-info/p/online-help-pages-index
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decision; it guarantees the platform independent access to the applications and resources. The eval-

uation survey showed that participants were able to interact with LiSIs/GRANATUM using different

established Web browsers. The variety of tools fulfilled the objective of creating and performing VS

workflows for identification of interesting molecules with chemopreventive properties.

Through the development process and the user evaluation, several lessons learnt were identified:

1. To make it more transparent the software should provide a tool for depiction of results, to

underline the quality of results, and a threshold manager where scientists can work more on an

expert level.

2. Researchers need a way to see the progress of each active tool. This will be considered for

future research.

3. Visualizing the results in various stages can be added to the current arsenal of LiSIs. There are

ways to implement this in the near future by using additional 3rd party software.

4. Providing tools targeted to expert users for manual modification of protein structures prior to

docking experiments is also a much requested feature. This requires the implementation of a

fully interactive visualization tool that will show the protein structure and provide the end user

with the option of modifying its structure.

5. LiSIs administration requires the user group based access of tools. This is an upcoming feature

of Galaxy.

6. The complete tool set of LiSIs should be made available in a Tool Shed. Tool Shed is a reposi-

tory like platform of Galaxy that enables the hosting of tools, assigning 3rd party dependencies,

data types configurations, tools dependencies and an easy installation across Galaxy powered

platforms.

4.11 Conclusion

The LiSIs platform aims to fill the current void in the application of advanced chem[o]informatics

and computational chemistry technology in determining efficacy and predicting possible mechanism
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of action or identifying a possible receptor for a chemopreventive agent in life sciences research. Its

successful deployment may have a substantial impact on enabling biomedical researchers to utilize

state of the art computational techniques to search for promising chemical compounds that may lead

to the discovery of novel agents with chemopreventive properties. We have shown that by utilizing

the LiSIs platform in conjunction with a widely used docking program we identified compounds that

can bind to ER-α and/or ER-β with a high degree of success rate. This in silico approach is expected

to facilitate the process of identification of lead compounds with estrogenic or anti-estrogenic activity

and to enhance considerably the discovery process for new therapeutic agents.
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Table 3: Selection of highly ranked compounds from the final virtual screening results

A/A Chemical Structure
Molecular
Weight
(g/mol)

Concentration
(µM)

ER-α LBD ER-β LBD
Binding
Affinity

Docking
Score

Binding
Affinity

Docking
Score

1

17β-Esrtradiol

272.38 10 1 -9.4 1 -10

2
3’,4’-dihydroxy-a-

naphthoflavone

304.29 1
10

0.11
0.22

-7.59
0.05
0.34

-10.39

3
3(2’-chlorophenyl)-7-

hydroxy-4-
phenylcoumarin

348.78 1
10

0.21
2.71

-9.73
N/A
0.34

-10.03

4
3(3’-chlorophenyl)-7-

hydroxy-4-
phenylcoumarin

348.78 1
10

0.24
2.23

-10.34
0.13
2.75

-9.67

5
3,5,7,3’,4’-

pentahydroxyflavanone

304.26 1
10

N/A
0.27

-8.81
0.06
0.18

-9.61

6
4’-hydroxy-a-

naphthoflavone

228.29 1
10

N/A
N/A

-8.18
0.05
N/A

-9.88

7
4-benzyl-7-hydroxy-3-

phenylcoumarin

328.37 1
10

N/A
N/A

-10.13
N/A
N/A

-9.13

Note: Comparison between the in silico docking scores and the in vitro binding affinities of selected compounds. The binding affinity was

normalized to that of 17-β Estradiol which was set as 1 representing 100% binding. LBD; Ligand Binding Domain. N/A; No (binding)

Affinity.
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Chapter 5

Multi-Objective Evolutionary Algorithms for Molecular De Novo

Design

Recently we proposed an algorithmic framework for the problem of Multi-Objective (MO) Optimal

Graph Design (OGD) for labelled, undirected graphs [245]. Solutions to this problem were graphs

consisting of genes from two sets, the set of vertices and the set of edges. Multiple types/labels of

vertices and edges were allowed and therefore the problem suffers from the combinatorial explosion

of the number of potential graph solutions. Additionally, the OGD problem usually has a complex,

multi-modal solution space due to the multiple potentially conflicting objectives that need to be sat-

isfied by the solution graphs and, the combinatorial nature of the problem. Consequently, from a

computational optimization perspective, the problem corresponds to searching the huge space of valid

graphs to discover and select the few designs satisfying, or compromising in the case of conflicts, the

objectives imposed. In this context validity of the resulting graphs is problem specific and, as such,

the inclusion of problem domain knowledge to the process can facilitate the process. The role of

diversity in the population of solutions also assumes increased importance; since multiple solutions,

and not only the single best one, are being sought, the process needs to ensure that the population is

-to the degree feasible- representative of the range of solutions existing in the various regions of the

search space. To solve the problem a search strategy capable of global exploration while paying spe-

cial attention to the diversity of the population and the ability to converge to individuals in promising

localities of the space was implemented.

64
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In Table 4 we list some notable Multi-Objective Evolutionary Algorithms (MOEAs) for Molecu-

lar De Novo Design that have been proposed since 2008. The method used for the MO selection is

shown in the MO Method column, and the algorithmic approach used is shown in Search Method col-

umn. From these two columns some interesting insights are derived. The first is that the majority of

the approaches use a weighted function as their MO selection method in order to overcome the short-

comings of Pareto based selection method for Many-Objective Optimization Problems (MaOOPs).

The second is that approaches proposed prior to 2010 are based on Evolutionary Algorithms (EAs)

but the modern approaches (from 2010 and onwards) are based on workflow based approaches which

gives the opportunity to use specialised software for each required step. The column Remarks de-

scribes the design methodology used. The Ligand term defines ligand based design, the Structure

term defines structure based design, the Pharmacophore term defines pharmacophore based design

and the ADME related properties term defines a design approach guided by Absorption, Distribution,

Metabolism, Excretion (ADME) related properties.

Table 4: Multi-Objective Evolutionary Algorithms (MOEAs) for Molecular De Novo Design (DND)

Name Year Multi-Objective Method Search Method Remarks Reference
EA-Inventor 2008 Weighted Evolutionary

Algorithm
Ligand [246]

GANDI 2008 Weighted Parallel Evo-
lutionary
Algorithm

Structure [247]

FOG 2009 Weighted Evolutionary
Algorithm

Ligand [248]

MEGA 2009 Pareto based Evolutionary
Algorithm

Ligand & Structure [78]

PLD 2010 Pareto based Evolutionary
Algorithm

ADME related
properties

[249]

NovoFLAP 2010 Weighted Evolutionary
Algorithm

Ligand [250]

PhDD 2010 Weighted Workflow Pharmacophore [251]
DOGS 2012 Weighted Workflow Ligand [252]
LiGen 2013 Weighted Workflow Ligand, Structure

& Pharmacophore
[253]

MOARF 2015 Weighted Workflow Ligand & Structure [254]
Synopsis 2016 Pareto based Evolutionary

Algorithm
Ligand & Structure [255]
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5.1 Multi-Objective Evolutionary Graph Algorithm

Nicolaou et al. in [78] and [245] proposed Multi-Objective Evolutionary Graph Algorithm (MEGA),

a framework which combines evolutionary techniques with graph data structures to directly manipu-

late graphs and perform a global search for promising solutions. Additionally, MEGA can incorporate

problem-specific knowledge and local search heuristics and techniques, to improve performance and

scalability.

MEGA initiates with the supply of a set of molecular building blocks, the implemented objectives

to be used for scoring the graphs and a set of attributes controlling mutation and crossover methods

and probabilities, selection method, hard filters for solution elimination, etc. Optionally, a set of

molecules to be used as the initial population may be supplied as well. The supplied data are used

to initiate internal data structures, for example to create graph-based chromosomes representing the

molecules and to construct a list of building block objects to use in subsequent steps.

Next the algorithm applies the objectives on the initial population to obtain a list of scores for

each individual. The list of scores may be used for the elimination of solutions with values outside

the range allowed by the corresponding active hard filters.

In the next step, the list of scores is subjected to a Pareto ranking procedure as described in [82].

According to this procedure the rank of an individual is set to the number of individuals that dominate

it incremented by 1, thus non-dominated individuals are assigned rank order 1 (see Figure 11).

At this phase the algorithm proceeds to calculate a Multi-Objective Fitness (MOFit) score for each

individual. There are two ways of calculating such a score, controlled by user preferences: (1) The

first simply uses a linear transformation function that assigns a higher score to solutions with low

Pareto rank. This method operates exclusively on phenotypes, i.e. in solution space. (2) The second

method invokes a niching mechanism that performs diversity analysis of the population via clustering

of the genotypes, i.e. the chemical structures, and subsequently prepares a two-valued MOFit score

that consists of both the linear transformation of the Pareto rank and the cluster assignment of the

individual.
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Figure 11: Pareto front dominance, provided by Nicolaou et al. [78]. In a Multi-Objective Opti-
mization Problem (MOOP) several equivalent, non-dominated solutions may exist representing com-
promises among the different objectives. Typically solutions to the problem are ranked according to
the number of other solutions dominating them, i.e. solutions that are better in all objectives. Non-
dominated solutions are labelled with ’1’. The curved line represents the Pareto Front (PF). Note that
both objectives in the example shown should be minimized.

An additional optional step at the users’ disposal is the application of elitism which creates and

maintains an external archive of Pareto optimal solutions found during all previous iterations. If

elitism is enabled, then the archive of Pareto solutions is merged with the current population before

the MOFit calculation step to form an extended population. Recalculation of the Pareto rank and

diversity analysis are performed on the extended set to calculate the MOFit score of the solutions.

The non-dominated solutions of the extended population are then stored in the Pareto archive.

Following, MEGA checks for the termination conditions, typically if the number of pre-set max-

imum allowed iterations has been reached; if satisfied the process terminates. However, if this is not

the case, then the process moves to select the parent subset population.

Parent selection is performed using one of the ”best”, ”roulette”, or ”tournament” methods on

the MOFit scores of the solutions. The ”best” method simply selects the subset of solutions with the

highest transformed Pareto rank score, whereas the ”roulette” method selects solutions via a prob-

abilistic mechanism that assigns higher selection probability to solutions with higher transformed
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Pareto rank. The ”tournament” method picks random pairs of solutions and selects the one with the

highest transformed Pareto rank score.

If the niching mechanism is not enabled, then the chosen parent selection method is applied

once on the entire set of candidate solutions to generate the parent sub-population. If the niching

mechanism is enabled, and thus the MOFit scores consist of the transformed Pareto rank and the

cluster assignment of the individual, then the selection methods are applied on the clusters rather

than the entire population. The process picks one solution from each cluster starting from the most

populous cluster and proceeding to clusters containing the fewest compounds. The process traverses

the set of clusters until the number of parents is selected.

The parents are then subjected to mutation and crossover according to the probabilities indicated

by the user. The new population is formed by merging the original population and the newly produced

mutants and crossover children.

The process then iterates, and the new population is subjected to fitness calculation against all

objectives, hard filtering and Pareto ranking.

Following, MEGA proceeds to reduce the new population to the user defined population size using

a ”roulette” like method. The method is essentially identical to the ”roulette” parent selection method

described previously except that it assigns a higher selection probability to the worst performing

solutions. Best performing solutions, i.e. non-dominated solutions, have a selection probability of

zero. In the special case where the number of best performing solutions exceed the user defined

population size an adequate number is randomly selected and marked as ”excess” solutions. If elitism

is enabled, then these solutions are treated as normal members of the population in the next steps of

the algorithm. However, if elitism is not enabled, then these solutions are removed from the current

population prior to the parent selection step. Figure 12 summarizes the MEGA framework process.

While MEGA has been designed to search for solutions compromising multiple objectives it can also

be used in a Single Objective Optimization Problem (SOOP) mode simply by eliminating the Pareto

rank step and replacing the transformed Pareto rank score with the transformed single objective score
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in all following steps. Correspondingly, the diversity score is then used in the same way as in the

standard MOOP case.

Figure 12: The Multi-Objective Evolutionary Graph Algorithm (MEGA) framework, provided by
Nicolaou et al. [78]. Note the Pareto archive component storing an elite population of solutions at
each generation.

Further details can be found in [256], where Nicolaou and Kannas describe the use of MEGA for

the design of a molecular library of novel compounds, based on specific criteria.

An overview of the MOOP methods and tools that are used in DND procedure can be found in

Nicolaou et al. [257] and [258], and in Nicolaou and Brown [259].
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The MEGA algorithm was developed in context of the Ph.D. of Dr. C. Nicolaou [260]. The

objective of this thesis was the development of the Self-Adaptive Multi-Objective Evolutionary Al-

gorithm (Self-Adaptive MOEA) framework, described in Section 5.3, where MEGA is the inner algo-

rithm. Thus my contribution was directed in various modules of the MEGA framework, such as parts

of the algorithm, the scoring functions modules, data preparation modules, supplementary modules

that enabled us to create hybrid versions of MEGA, batch processing module that enabled us to run

numerous experiments of various MEGA versions and experiments with different settings, etc 1 .

5.2 Parallel Multi-Objective Evolutionary Graph Algorithm

Parallel Multi-Objective Evolutionary Graph Algorithm (PMEGA) is our parallel version of MEGA

that facilitates the co-evolution framework to evolve multiple sub-populations in parallel, which has

been implemented using the multiprocessing framework of Python 2.6 - 2.7 [261]. The aim of the

research presented here was to exploit the potential benefits presented by utilising multi-core CPUs

in MOEAs [262]. An additional goal was to investigate the effectiveness of parallel MOEAs in the

problem of molecular DND.

In a Parallel Evolutionary Algorithm (PEA) model the entire population available needs to be in

a distributed or shared form. In coarse-grained or distributed PEAs, there exist multiple independent

or interacting sub-populations, while in fine-grained PEAs there is only one population where each

population member can be processed in parallel. In a coarse-grained PEA, the populations are di-

vided into several sub-populations. These sub-populations evolve independently of each other for a

certain number of generations (isolation time). Upon completion of the isolation time a number of the

resulting individuals is distributed between the sub-populations, a process often referred to as migra-

tion. The number of exchanged individuals (migration rate), the selection method of the individuals

for migration and the scheme of migration determines how much genetic diversity can occur in the
1In a nutshell as my experience was growing I was involved even more in the whole framework of MEGA and its

supporting modules. Since 2009 I maintain a private source code repository (hosted on BitBucket) for the whole package
of Noesis Cheminformatics Ltd. Suite, which MEGA framework is part of it. Similarly I’m the maintainer of the source
code repository for Life Sciences Informatics (LiSIs) and I act as the administrator of our LiSIs server, which is live since
2012.
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sub-population as well as the exchange of information between sub-populations. The selection of the

individuals for migration typically takes place using one of the following two methods:

• Uniformly at random (i.e. pick individuals for migration in a random manner),

• Fitness-based (i.e. select the best individuals for migration).

Additionally, several possibilities exist for the migration scheme of individuals among sub-populations.

Common migration schemes include:

• Complete topology, unrestricted net topology which exchanges individuals among all sub-

populations (Figure 13),

• Ring topology, where exchange of individuals is allowed only to a specific sub-population

(Figure 14), and

• Neighbourhood topology, where individuals are exchanged across a neighbourhood (Figure

15).

Figure 13: Sub-populations Model for a coarse-grained Parallel Evolutionary Algorithm (PEA) with
complete migration topology, provided by [263].

In a fine-grained PEA, also known as global model or Master/Slave, the population is not di-

vided. Instead, the global model employs the inherent parallelism of evolutionary algorithms, i.e.

the presence of a population of individuals, and features of the classical evolutionary algorithm. The

calculations where the whole population is needed - Pareto-ranking and selection - are performed by

the master. All remaining calculations, which are performed for one or two individuals at a time, are
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Figure 14: Sub-populations Model for a coarse-grained Parallel Evolutionary Algorithm (PEA) with
ring migration topology, provided by [263].

Figure 15: Sub-populations Model for a coarse-grained Parallel Evolutionary Algorithm (PEA) with
neighbourhood migration topology, provided by [263].

distributed to a number of slaves. The slaves perform recombination, mutation and the evaluation

of the objective function separately. This is known as synchronous master-slave structure, shown in

Figure 16 [263], [264] and [265].

PMEGA operates on one population set referred to as working population. The algorithm ran-

domly splits the working population to several sub-populations and uses a predefined pool of pro-

cesses, to which it assigns tasks for execution. An example of a task is the independent evolution of

a sub-population set. Sub-populations are evolved independently for a specific number of iterations
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Figure 16: Sub-populations Model for a coarse-grained Parallel Evolutionary Algorithm (PEA) with
neighbourhood migration topology, provided by [263].

defined by a user-supplied epoch counter, which is set to a percentage of the total iterations the al-

gorithm has to run. The default setting of PMEGA is set to 10% of total iterations. The independent

evolution of each sub-population is a scaled-down execution of MEGA algorithm as shown in Figure

12. Specifically, during execution time a pre-constructed process from the pool of processes is as-

signed a task i.e. to execute a scaled-down MEGA. The working population of the process/task is set

to a sub-population set and the number of iterations is set to the epoch counter. During the evolution

of sub-populations, migrations are not permitted between the sub-populations. Upon completion of

the task, the process returns the results produced and gets assigned a new task, if one is pending.

When all sub-populations complete their evolution, their results are gathered and merged. The new

working population is created from the merger of the resulting populations, provided by the set of

task executions. Following PMEGA checks for the termination conditions; if satisfied the process

terminates. However, if this is not the case the process moves to repeat the previous steps. A diagram

of PMEGA is shown in Figure 17.

In our article about PMEGA by Kannas et al. [266], based on the experiments performed we con-

cluded the following: (a) With respect to the quality of the solutions produced, MEGA and PMEGA

behave comparably, (b) The differences observed between the final Pareto-front approximations pro-

duced, are partly due to the way PMEGA splits the working population into sub-populations, it splits

the population in a random fashion without using any knowledge related to the morphology of the

Pareto-approximation and the density of solutions at any region of the search space, (c) With respect
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Figure 17: The Parallel Multi-Objective Evolutionary Graph Algorithm (PMEGA) framework, devel-
oped by Kannas et al. [266].

to execution times PMEGA achieves a speedup of almost 1.6 on a common dual-core CPU which is

considerable, especially for large experimental applications, and (d) Using PMEGA can provide us

with equivalent solution sets in substantially less time.

Future work on PMEGA will focus on algorithmic improvements in the way sub-populations are

selected with the aid of knowledge-driven approaches in order to improve the quality of the optimiza-

tion search and reduce the number of iterations needed for convergence.

5.3 Self-Adaptive Multi-Objective Evolutionary Algorithm

The Self-Adaptive Multi-Objective Evolutionary Algorithm proposed in this dissertation is an

algorithm based on the research from Grefenstette [33] and Shahsavar et al. [40] to implement a

Self-Adaptive version of elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) proposed in
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[78] and [245]. The goal is to have a self-adaptive eMEGA to run a smaller experiment based on a

large experiment that we would like to run with eMEGA [78] and [245], for identifying a range of

settings that we can use for our eMEGA with the problem we are trying to solve, in order to get better

solutions.

The proposed Self-Adaptive MOEA is a meta-level algorithmic approach influenced by Grefen-

stette [33] and Shahsavar et al. [40]. The meta-level/outer level is the algorithm that is responsible

for the self adaptive techniques and is a Multi-Objective Genetic Algorithm (MOGA) implementa-

tion. The inner level is the actual eMEGA, shown in dotted rectangles in Figure 12. The algorithmic

framework of Self-Adaptive MOEA is shown in Figure 19.

The outer level of Self-Adaptive MOEA is a MOGA that operates on two population sets, the

working population and the Pareto Archive (PA) set. The working population consists of individuals

subjected to objective performance calculation and obtained through evolution in a single iteration.

The PA supports a form of elitism aimed at preserving promising solutions found throughout evolution

and ensuring that the final Pareto approximation will contain the best solutions found [267]. The

pseudocode of Self-Adaptive MOEA is shown in Figure 18.

Figure 18: The Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) pseu-
docode.

The individuals the algorithm operates on, are chromosomes of fixed length that are generated

from an alphabet where each gene has a different type and value ranges. The chromosome is shown
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in Figure 20. In regards to the chromosome details, the gene in position 0 represents the mutation

probability, which is a random selection from a Cauchy distribution in a user provided range, the

gene in position 1 represents the crossover probability, which is a random selection from a Cauchy

distribution [268] in a user provided range, the gene in position 2 represents the selection type of

eMEGA, which can be one of ”best”, ”tournament” and ”roulette”, and finally the gene in position 3

represents the diversity type of eMEGA, which can be one of ”phenotype” and ”genotype”. In Figure

21 examples of Self-Adaptive MOEA’s chromosome are depicted, and their crossover outcome.

Self-Adaptive MOEA due to its chromosome nature and size it uses only one type of mutation,

flip bit/gene, and one point crossover.

During the development of Self-Adaptive MOEA we implemented the following objective fitness

functions to evaluate its population. These objective fitness functions are:

• Non Dominated Solutions Percentage: where for each individual it calculates the percentage

of non dominated solutions over the total number of solutions.

• Unique Solutions Percentage: where for each individual it calculates the percentage of unique

solutions over the total number of solutions.

• Pareto Front Hypervolume: where for each individual it calculates the hypervolume [41] of

its PFs. Hypervolume measures the space covered by each PF from a reference point. This

might be the target if it is known or a starting point from the initial population. i.e. if the

reference point is a starting point then the PF with the larger hypervolume value yields better

results.

At initialization phase of Self-Adaptive MOEA (Figure 19) the algorithm initializes the Cauchy

Distribution sample ranges for the mutation and crossover probabilities, initializes the alphabet to be

used, initializes the starting working population in a random manner and then initializes the MOOP

objective fitness function scorer.

Once Self-Adaptive MOEA initializes then it generates the starting working population for the

second/inner level eMEGAs (Figure 19).
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At the training phase, the first step includes running one iteration of several eMEGAs in paral-

lel, collecting and evaluating their results, then applying Self-Adaptive MOEA’s MOOP objective

fitness function scorer to obtain the list of fitness scores for each individual in Self-Adaptive MOEA’s

working population. The list of fitness scores are used to select the parents to be reproduced, and

later are used in the Pareto ranking procedure to set the rank for each individual. The second step

includes Self-Adaptive MOEA’s reproduction process, where it is running offsprings eMEGAs in

parallel, using a set of generated offsprings settings, collecting and evaluating their results. Then in

the third step, the algorithm merges the working population with the offspring population and applies

Self-Adaptive MOEA’s MOOP objective fitness function scorer to obtain the list of fitness scores

for each individual in Self-Adaptive MOEA’s merged population. The combined population forms

the new working population. The algorithm then proceeds to calculate an efficiency score for each

individual. The efficiency score of each individual is then used to update the PA. The current PA is

replaced with a subset of the working population that favours individuals with high efficiency score.

Following that the algorithm selects the new working population. After that Self-Adaptive MOEA

checks for stopping criteria.

When the algorithm meets its stopping criteria returns Self-Adaptive MOEA’s last working pop-

ulation, which are the proposed eMEGA settings and the last working population of eMEGAs in-

stances.

Self-Adaptive MOEA inherits features that are found in MEGA line-up of algorithms. In order

to avoid duplicate work and the resulting performance degrade, Self-Adaptive MOEA incorporates

two additional mechanisms worth special mention. The first mechanism is a chromosome cache

that contains each and every chromosome evaluated during the execution of the algorithm. This

includes all members of the initial population as well as the complete set of offspring generated in all

iterations. The size of the cache is limited since it only includes the identity (ID) and fitness scores of

the chromosome measured in some previous iteration. An associative memory hash data structure is

used to store the cache to ensure negligible cost to the execution run time. When new chromosomes

need to be evaluated against the set of objectives the cache is used to identify whether a specific
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chromosome has been previously scored and, if so, omit the potentially costly fitness evaluation

process and return the values calculated previously. The choice of a chromosome ID is crucial to

the success of this scheme since it needs to guarantee that different chromosomes have different IDs

and identical chromosomes have the same ID. The second mechanism, active during the evolutionary

steps, simply checks and removes those offspring that are identical to some parent chromosomes.

Pareto archiving is an elitist mechanism designed specifically to preserve good non-dominated

solutions from getting lost [133]. The mechanism uses a secondary population where non-dominated

solutions found during previous iterations are stored. In each iteration, Self-Adaptive MOEA merges

the PA with the current population before the efficiency score calculation step and uses this larger set

as the current, working population. This extended population is used during the parent selection step.

The PA is then reset based on the efficiency scores of the extended working population. Note that the

size of the PA is typically set to a large number so as to allow the storage and preservation of a number

of solutions exceeding the user-defined population size. When the number of non-dominated solutions

exceeds the size of the PA, clustering of the solutions is used to appropriately reduce the number of

the elite solutions. Specifically, solutions are eliminated from the most populous clusters while care

is exercised to preserve solutions from under-represented clusters. The mechanism is a result of

observations made during runs of initial versions of Self-Adaptive MOEA where some promising

solutions were lost due to the large number of Pareto solutions found. This paradox, partly caused

by the success of Pareto based MOOP methods in generating large, dense populations with multiple

non-dominated solutions, resulted in the obligatory elimination of good solutions since the number

of non-dominated individuals exceeds the size of the population. Zitzler [133] already identified

the problem and proposed techniques based on PF archiving and creation of an elite population of

solutions.

Self-Adaptive MOEA has a unique feature that separates it from MEGA line-up of algorithms,

as briefly described above, it uses multi-alphabet based chromosomes where each gene has different

type and value ranges. The chromosome has been described above and is shown in Figure 20. The

genetic operators that can be applied on Self-Adaptive MOEA’s chromosomes are due to their nature:
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• Flip gene mutation, selects a random gene and then changes its value with a random selection

from the appropriate set of sample values, and

• One point crossover, where two chromosomes are split in a random point and then their re-

spective parts are rejoined to form two new chromosomes.
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Figure 19: The Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA)
framework.
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Figure 20: The Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) chro-
mosome, in detail. The gene in position 0 represents the mutation probability, which is a random
selection from a Cauchy distribution in user provided range, the gene in position 1 represents the
crossover probability, which is a random selection from a Cauchy distribution in user provided
range, the gene in position 2 represents the selection type of Multi-Objective Evolutionary Algo-
rithm (MOEA), which can get one of ”best”, ”tournament” and ”roulette”, and finally the gene in
position 3 represents the diversity type of Multi-Objective Evolutionary Algorithm (MOEA), which
can get one of ”phenotype” and ”genotype”.

Figure 21: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) chromo-
some examples. Example depiction of crossover outcome.
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Chapter 6

Results and Discussion for Self-Adaptive Multi-Objective Evolutionary

Algorithm in Molecular De Novo Design

This chapter describes the tests performed and the results obtained. The purpose of the first exper-

iment (Section 6.1) Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA)

was to compare it with elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) and Multi-

Objective Algorithm for Replacement of Fragments (MOARF) [254] in a problem with a known

target. In the second experiment (Section 6.2), Self-Adaptive MOEA was used to design Estrogen

Receptor-α (ER-α) inhibitors based on structural similarity to Tamoxifen and structural dissimilarity

to Ibuproxam. In the third experiment (Section 6.3), Self-Adaptive MOEA was used to design ER-α

inhibitors based on structural and chemical properties similarity to Tamoxifen. In the fourth exper-

iment (Section 6.4), Self-Adaptive MOEA was used to design ER-α inhibitors based on structural

and chemical properties similarity to Raloxifene. In the fifth experiment (Section 6.5), Self-Adaptive

MOEA was used to design Proteasome B5 inhibitors based on structural and chemical properties

similarity to Ixazomib.

For the experiment described in Section 6.1, Self-Adaptive MOEA uses the following two objec-

tive fitness functions:

• Non Dominated Solutions Percentage: where for each individual it calculates the percentage

of non dominated solutions over the total number of solutions.
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• Unique Solutions Percentage: where for each individual it calculates the percentage of unique

solutions over the total number of solutions.

For the experiments described in Sections 6.2 to 6.5, Self-Adaptive MOEA uses the following two

objective fitness functions:

• Non Dominated Solutions Percentage: where for each individual it calculates the percentage

of non dominated solutions over the total number of solutions.

• Pareto Front Hypervolume: where for each individual it calculates the hypervolume [41] of

its Pareto Front (PF)s.

All experiments were performed on a Linux Virtual Machine, with the specifications shown in

Table 5. A note in regards to the way eMEGA and Self-Adaptive MOEA work and how they utilise

the machine they run on: eMEGA utilises only a single process while Self-Adaptive MOEA utilises

three processes, one is used by the outer loop algorithm and the remaining two are used to run up to

2 instances of the inner loop algorithm. Self-Adaptive MOEA can be enabled to utilise all available

cores of the machine but we restricted it to using only three cores as we run to memory usage issues.

Table 5: Specifications of the computational system the experimental runs were performed

Linux Virtual Machine
CPU 4x Virtual CPU @ 2GHz
RAM 16GB
OS CentOS 6

6.1 Validation of Self-Adaptive Multi-Objective Evolutionary Algorithm

This experiment is a means to compare Self-Adaptive MOEA with eMEGA and MOARF in a

well defined problem where there is a single known target. There are documented solutions from

MOARF that approximate the target in both chemical properties and structure [254]. The target of

the experiment is the known CDK2 inhibitor Seliciclib (CYC202, R-roscovitine)1 seen in Figure 22.
1https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL14762
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Figure 22: Seliciclib (CYC202, R-roscovitine).

6.1.1 Methodology

The objective of the experiment was to design molecules that have structural and chemical de-

scriptors similarity to the target molecule of Seliciclib (CYC202, R-roscovitine) (Figure 22). For Self-

Adaptive MOEA there is a secondary objective that is to propose near optimal settings for eMEGA

that can be used to obtain hopefully better results by running a tuned eMEGA later.

Structural similarity is an objective fitness function that calculates a fitness score for a molecule to

the target molecule, computed as the graph distance based on their Maximum Common Substructure

(MCS)2 , an in-house implementation based on RApid Similarity CALculation (RASCAL) [269].

Chemical descriptors similarity is an objective fitness function that calculates a fitness score for a

molecule to the target molecule, computed as the distance of their chemical descriptors vector. The

chemical descriptors are based on an in-house implementation of atom pairs and topological torsions

calculations for each molecule [270] and [271].

Table 6: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) experimental design settings

Dataset Objectives Population Iterations Evolutionary Operations
Dataset 1 Structural Similarity

Chemical Descriptors
Similarity

500 500
Mutation Probability: 15%
Crossover Probability: 80%
Selection Type: Roulette
Diversity Type: Genotype

Dataset 2

2https://en.wikipedia.org/wiki/Maximum_common_subgraph
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The objectives for the molecular design algorithm were, structural similarity based on Soergel

distance [272] and chemical descriptors similarity based on Euclidean distance [272] to the target

molecule of Seliciclib (Figure 22). The optimization process was aimed to minimize both of those

objectives to 0.

For input we used two freely available commercial molecule datasets, the first is Maybridge’s

Screening Library3 that contains 53953 molecules (Dataset 1), and the second is Asinex’s Elite

Libraries4 that contains 104577 molecules (Dataset 2).

The experiment was divided into two sub-experiments one for each dataset. The algorithms ini-

tial population was selected at random from each dataset. The sub-experiments for eMEGA used a

population size of 500. Mutation probability was set to 15% while crossover probability was set to

80%. Parent selection was set to roulette. For the elitist generation selection eMEGA was set to use

genotype diversity. Multiple runs, a total of five, were performed for each parameter settings combi-

nation with different initial populations to avoid drawing conclusions from chance results produced

by single runs. Results were assessed after 500 iterations. A synopsis of eMEGA settings can be

found in Table 6.

For Self-Adaptive MOEA the settings were slightly different, due to reasons that are stated in

Discussion section 6.1.3. Self-Adaptive MOEA has to initialize two Multi-Objective Evolutionary

Algorithms (MOEAs) the first level is responsible the self-adaptive technique and the second level is

a set of eMEGAs that perform the molecular design.

The first level MOEA (here on referred as Self-Adaptive MOEA) works on a population size of 20

that are the settings for the second level eMEGAs. Self-Adaptive MOEA’s chromosome is shown in

Figure 20. Self-Adaptive MOEA operates with a mutation probability set to 15% while the crossover

probability was set to 80%. Parent selection was set to roulette. For the elitist generation selection

Self-Adaptive MOEA was set to use phenotype diversity. The second level eMEGAs operate on a

population size of 100. Multiple runs, a total of five, were performed for each parameter settings
3http://www.maybridge.com/portal/alias__Rainbow/lang__en/tabID__146/

DesktopDefault.aspx
4http://asinex.com/libraries-html/
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combination with different initial populations to avoid drawing conclusions from chance results pro-

duced by single runs. Results were assessed after 100 iterations. A synopsis of Self-Adaptive MOEA

settings can be found in Table 7.

Table 7: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) experimen-
tal design settings

Self-Adaptive MOEA
Dataset Objectives Population Iterations Evolutionary Operations

Dataset 1 Non Dominate Solutions
Percentage
Unique Solutions
Percentage

20 100
Mutation Probability: 15%
Crossover Probability: 80%
Selection Type: Roulette
Diversity Type: Phenotype

Dataset 2

eMEGAs
Dataset 1 Structural Similarity

Chemical Descriptors
Similarity

100 1
Defined during run time.
Based on Self-Adaptive
MOEA’s chromosomes.

Dataset 2

6.1.2 Results

eMEGA runs using the Maybridge dataset returned relatively good results with the majority of

their final Pareto front solutions in the range of 0 to 0.3 for both of the objectives.

In Figure 23 we are showing the consolidated results from Maybridge dataset from all runs,

shaded by their dominance rank, with a total of 2381 molecules. In Figure 24 we are showing the top

10 non dominated solutions from Maybridge dataset from all runs. All solutions within the range of 0

to 0.5 for both objectives are considered good solutions, though we decided to use the non dominated

solutions for the docking experiment just for sake of simplicity. Figure 25 shows the target molecule

and the Top 10 molecules, the red highlighted part of the molecules is their common core.

Similarly eMEGA results with the Asinex dataset returned relatively good results with the major-

ity of their final Pareto front solutions in the range of 0 to 0.3 for both of the objectives.

In Figure 26 we are showing the consolidated results from Asinex dataset from all runs, shaded

by their dominance rank, with a total of 1835 molecules. In Figure 27 we are showing the top 10 non

dominated solutions from Asinex dataset from all runs. Figure 28 shows the target molecule and the

Top 10 molecules, the red highlighted part of the molecules is their common core.
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Figure 23: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) results for Maybridge
dataset.

The execution time for each run of eMEGA using Dataset 1 and Dataset 2 are shown in Figure

29.

Self-Adaptive MOEA runs using the Maybridge dataset returned relatively good results with the

majority of their final Pareto front solutions in the range of 0 to 0.4 for both of the objectives.

In Figure 30 we are showing the consolidated results from Maybridge dataset from all runs,

shaded by their dominance rank, with a total of 473 molecules. In Figure 31 we are showing the

top 10 non dominated solutions from Maybridge dataset from all runs. Figure 32 shows the target

molecule and the Top 10 molecules, the red highlighted part of the molecules is their common core.

The other important output of Self-Adaptive MOEA are the proposed settings for eMEGA for

the given problem. In Table 8 there are the Top 10 proposed settings, collected from all runs of

Self-Adaptive MOEA with the Maybridge dataset.
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Figure 24: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) Top 10 results for May-
bridge dataset.

Self-Adaptive MOEA runs using the Asinex dataset returned relatively good results with the ma-

jority of their final Pareto front solutions in the range of 0 to 0.4 for both of the objectives.

In Figure 33 we are showing the consolidated results from Asinex dataset from all runs, shaded

by their dominance rank, with a total of 496 molecules. In Figure 34 we are showing the top 10 non

dominated solutions from Asinex dataset from all runs. Figure 35 shows the target molecule and the

Top 10 molecules, the red highlighted part of the molecules is their common core.

The other important output of Self-Adaptive MOEA are the proposed settings for eMEGA for

the given problem. In Table 9 there are the Top 10 proposed settings, collected from all runs of

Self-Adaptive MOEA with the Asinex dataset.

The execution time for each run of Self-Adaptive MOEA using Dataset 1 and Dataset 2 are shown

in Figure 36.

Chri
sto

s C
. K

an
na

s



89

Figure 25: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) Top 10 results for May-
bridge dataset compared with Seliciclib, the red highlighted part of the molecules is their common
core.

Finally we compared all the Top 10 results together and with MOARF’s results [254]. Figure 37

is a chart of the results compared together and relative to the target, Seliciclib.

MOARF’s results molecular structure is shown with comparison to Seliciclib in Figure 38.

6.1.3 Discussion

Population size enables an Evolutionary Algorithm (EA) to prescribe the search space. For exam-

ple, a larger population size will facilitate a larger search space coverage for the algorithm. Certainly,

the search functionality is also dependent on the objectives and the reproduction operators, as they

are the functions that guide the search for solutions.

eMEGA and Self-Adaptive MOEA usually have different population sizes due to their different

nature of operation. eMEGA needs to have a population size to ensure that it covers satisfactorily

the molecular search space. While Self-Adaptive MOEA needs to have a population size to ensure

that it covers satisfactorily the search parameters space of the internal eMEGAs. The larger the
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Figure 26: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) results for Asinex dataset.

population size is, more data have to be stored in memory, more offsprings will have to be generated,

more scoring and evaluations will have to be performed and finally more comparisons will have to be

computed during the clustering that is required for the selection of the next generation.

From Figures 25 and 28 we can see that the molecules generated from eMEGA are very similar to

the target molecule, Seliciclib (Figure 22). The molecules generated from Maybridge dataset (Figure

25) have a different common core with Seliciclib, than the molecules generated from Asinex dataset

(Figure 28). Similarly Figures 32 and 35 depict Self-Adaptive MOEA’s molecules in comparison with

Seliciclib, where we can see that are very similar to the target molecule, Seliciclib (Figure 22). Again

the molecules generated from Maybridge dataset (Figure 32) have a different common core with

Seliciclib, than the molecules generated from Asinex dataset (Figure 35). In Figure 38 we are seeing

that MOARF’s molecules are very similar to the target molecule, Seliciclib (Figure 22). Though their

common core is different from the common cores from eMEGA and Self-Adaptive MOEA results.
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Figure 27: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) Top 10 results for Asinex
dataset.

The common core between Seliciclib and each respective experiment and algorithm is different, there

are only minor similarities between them. When further more comparing all common cores between

them from Figures 25, 28, 32, 35 and 38 we see that the common cores are different. Each algorithm

and experiment finds a different common core, the only similarity is the central aromatic ring with

the two nitrogens.

From Figure 37 we can see that MOARF approximates the target molecule better than eMEGA

and Self-Adaptive MOEA, because it generates new molecules: (a) in a more chemical correct way,

with less stochastic operations, and (b) it starts from a selected core for the target and then attaches

new fragments on to it. Self-Adaptive MOEA seems to explore the space better than eMEGA and

MOARF, despite the fact that its proposed solutions are not as good as MOARF’s or eMEGA’s ones.

That is because Self-Adaptive MOEA during the iterative process it bounces all over the place while
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Figure 28: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) Top 10 results for Asinex
dataset compared with Seliciclib, the red highlighted part of the molecules is their common core.

trying to select both the fittest solutions from eMEGAs and the fittest settings for those eMEGAs that

most of the time contradict from one eMEGA instance to another.

From Tables 8 and 9 we can see that different settings are favoured for each dataset. For the

Maybridge dataset a mutation probability around 17%, a crossover probability around 80%, for se-

lection type either roulette or tournament and for diversity type both selections are valid ones, are the

preferred options. For the Asinex dataset a mutation probability around 10%, a crossover probability

above 96%, for selection type either best or tournament and for diversity type both selections are valid

ones, are the preferred options. From this we can understand that the datasets behave differently for

the given problem, Maybridge seems to prefers more balanced settings, while Asinex dataset seems

to prefers crossover more which means that the algorithm prefers to combine parts of molecules to

changing a molecule slightly. It is a surprising result to see that for Asinex dataset the algorithm

prefers best as selection type over roulette. Tournament selection in general is known to be more

versatile than best and roulette, so there is no surprise why it is preferred for both datasets. Some-

thing important that we notice from these results, is that the objective fitness scores for the proposed
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Figure 29: elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) execution time per run for
Maybridge and Asinex datasets. Time is wall clock time.

settings are very high, which means that the actual percentage is really low, below 5%. From this we

can conclude the following: (a) the eMEGA instances generate a large number of identical solutions,

despite the fact that they have different configurations, this is something that we noticed with previ-

ous experiments when comparing Multi-Objective Evolutionary Graph Algorithm (MEGA), eMEGA

and Multi-Objective Genetic Algorithm (MOGA) [245], and (b) the objective fitness functions we

choose to use in Self-Adaptive MOEA compete with each other, which means that having eMEGAs

generating a high number of unique and non dominated solutions (above 20%) proves to be a difficult

task.

Self-Adaptive MOEA experiments were configured to have a lower population size and itera-

tions, because: (a) it uses multiple instances of eMEGA during each iteration, which means more

solutions are generated and evaluated per iteration, (b) its purpose is to perform a smaller version of

the experiment, which will guide us to the configuration of eMEGA for a larger experiment, (c) due

to eMEGA’s current unoptimised state it requires a lot of resources (especially RAM) for large runs,

taking into account that Self-Adaptive MOEA runs multiple instances of eMEGA. During the process

of performing the experiments and acquiring results, there were a lot of failures to the process mainly

Chri
sto

s C
. K

an
na

s



94

Figure 30: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) results for
Maybridge dataset.

due to running out of memory, and a couple of times unfortunately due to unknown reasons, where

there was not enough information to specify the problem.

From the execution times of eMEGA for Dataset 1, shown in Figure 29 we can see that eMEGA

requires 26 to 27 hours to complete. Similarly for Dataset 2 it requires 24 to 25 hours. When we

compare the execution times we see that they are consistent across runs. Dataset size and content

might have some influence on the execution time. At the beginning, the dataset size affects the time

required to sample the starting population. Further on, the dataset contents affect the evolutionary

process.

Similarly the execution times of Self-Adaptive MOEA, shown in Figure 36, are consistent across

runs (excluding the outliers). For this experiment the execution time for Maybridge dataset is around

4 to 5 hours and for Asinex dataset around 6 to 7 hours. As to eMEGA dataset size and content might
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Figure 31: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) Top 10
results for Maybridge dataset.

have some influence on the execution time. At the beginning, the dataset size affects the time required

to sample the starting population. Further on, the dataset contents affect the evolutionary process.

When comparing the execution times of Self-Adaptive MOEA and eMEGA we have to do an

extrapolation for the execution time of Self-Adaptive MOEA, since for this experiment it performed

100 iterations in comparison to the 500 iterations performed by eMEGA. As such the extrapolated

estimate of the total time required by Self-Adaptive MOEA, assuming that each iteration needs the

same amount of time, is at least 25 hours.Chri
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Figure 32: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) Top 10
results for Maybridge dataset compared with Seliciclib, the red highlighted part of the molecules is
their common core.

Table 8: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) Top 10 pro-
posed settings for elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) for Maybridge
dataset

Mutation
Probability

Crossover
Probability

Selection
Type

Diversity
Type

Non
Dominated
%

Unique
Solutions %

Rank

0.03 0.69 roulette genotype 0.90 0.99 1
0.17 0.82 roulette phenotype 0.91 0.96 1
0.17 0.81 tournament phenotype 0.93 0.95 1
0.03 0.69 roulette phenotype 0.93 0.96 1
0.0 0.96 roulette phenotype 0.98 0.85 1

0.18 0.81 roulette phenotype 0.92 0.96 1
0.08 0.73 tournament phenotype 0.95 0.95 1
0.09 0.80 tournament genotype 0.98 0.93 1
0.17 0.82 best genotype 0.91 0.97 2
0.17 0.82 roulette genotype 0.93 0.96 2

Note: The numbers for ’Non Dominated %’ and ’Unique Solutions %’ are 1 minus the actual %. The smaller the number listed here the

better. ’Rank’ is their non dominance rank.
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Figure 33: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) results for
Asinex dataset.

Table 9: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) Top 10 pro-
posed settings for elite Multi-Objective Evolutionary Graph Algorithm (eMEGA) for Asinex dataset

Mutation
Probability

Crossover
Probability

Selection
Type

Diversity
Type

Non
Dominated
%

Unique
Solutions %

Rank

0.11 1.0 best phenotype 0.99 0.93 1
0.14 0.96 tournament phenotype 0.96 0.96 1
0.09 0.69 tournament genotype 0.98 0.94 1
0.14 0.97 best phenotype 0.96 0.96 1
0.11 0.69 tournament genotype 0.96 0.96 1
0.10 1.0 best phenotype 0.99 0.94 1
0.09 0.69 tournament genotype 0.96 0.96 1
0.14 0.97 roulette phenotype 0.97 0.95 1
0.09 0.71 tournament genotype 0.96 0.96 2

Note: The numbers for ’Non Dominated %’ and ’Unique Solutions %’ are 1 minus the actual %. The smaller the number listed here the

better. ’Rank’ is their non dominance rank.
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Figure 34: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) Top 10
results for Asinex dataset.Chri
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Figure 35: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) Top 10
results for Asinex dataset compared with Seliciclib, the red highlighted part of the molecules is their
common core.

Figure 36: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) execution
time per run for Maybridge and Asinex datasets. Time is wall clock time.
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Figure 37: Compare all Top 10 results with Multi-Objective Algorithm for Replacement of Fragments
(MOARF)’s results and Seliciclib.Chri
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Figure 38: Compare Multi-Objective Algorithm for Replacement of Fragments (MOARF)’s results
with Seliciclib.Chri

sto
s C

. K
an

na
s



102

6.2 Use Case 1: Design ER-α inhibitors based on similarity to Tamoxifen and similarity to

Ibuproxam

6.2.1 Methodology

The objective of the experiment was to design molecules that have structural similarity to Tamox-

ifen5 (Figure 39) and structural similarity to Ibuproxam6 (Figure 40).

Figure 39: Tamoxifen.

Figure 40: Ibuproxam.

The objectives for the molecular design algorithm were, structural similarity based on Soergel

distance [272] to Tamoxifen Citerate (Figure 39), and structural similarity based on Soergel distance
5https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL83
6https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL292707
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to Ibuproxam (Figure 40). The optimization process was aimed to minimize both of those objectives

to 0.

Structural similarity is an objective fitness function that calculates a fitness score for a molecule

to the target molecule, computed as the graph distance based on their MCS7 , an in-house implemen-

tation based on RASCAL [269].

For input we used a collection of molecules retrieved from the latest version of ZINC database,

ZINC158 . We selected molecules using the filters clean (Substances with ”clean” reactivity), in-

vitro (Substances reported or inferred active at 10 uM or better in direct binding assays) and now

(Immediate delivery, includes in-stock and agent). The collection contains 7035 molecules.

The Self-Adaptive MOEA works on a population size of 50 that are the settings for the second

level eMEGAs. Self-Adaptive MOEA’s chromosome is shown in Figure 20. Self-Adaptive MOEA

operates with a mutation probability set to 15% while the crossover probability was set to 80%.

Parent selection was set to roulette. For the elitist generation selection Self-Adaptive MOEA was set

to use phenotype diversity. The second level eMEGAs operate on a population size of 250. eMEGAs

operate on mutations probability in the range of 0 to 0.2 and crossover probabilities in the range of

0.8 to 1.0. Results were assessed after 500 iterations. A synopsis of Self-Adaptive MOEA settings

can be found in Table 10.

Table 10: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) experimen-
tal design settings

Self-Adaptive MOEA
Dataset Objectives Population Iterations Evolutionary Operations

ZINC15
clean,
in-vitro,
now

Non Dominate Solutions
Percentage
Pareto Front
Hypervolume

50 500 Mutation Probability: 15%
Crossover Probability: 80%
Selection Type: Roulette
Diversity Type: Phenotype

eMEGAs
ZINC15
clean,
in-vitro,
now

Structural Similarity (Ta-
moxifen)
Structural
Similarity (Ibuproxam)

250 1 Defined during run time.
Based on Self-Adaptive
MOEA’s chromosomes.

7https://en.wikipedia.org/wiki/Maximum_common_subgraph
8http://zinc15.docking.org/
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The final solutions were filtered and we selected the ones with objective fitness score lower than

0.5 for each objective. As the objectives used, describe the distance to specific target molecules, we

would like to have solutions that are closer (in case of similarity) from the defined target.

In order to validate the effectiveness of the proposed solutions, as a last step we perform a docking

experiment to ER-α using the AutoDock Vina [232] tools provided by Life Sciences Informatics

(LiSIs) [238]. The selected solutions were docked to ER-α 3ERT.

6.2.2 Results

In Figure 41 all the proposed solutions in objective space, are shown and in Figure 42 the non

dominated proposed solutions in objective space, are shown. All solutions within the range of 0 to

0.5 for both objectives are considered good solutions, though we decided to use the non dominated

solutions for the docking experiment just for sake of simplicity. The solutions fill the space in an

arc between the range of 0 to 0.6 for both objectives. In total there are 29 non dominated solutions,

represented by 22 unique points. As pointed above we are interested for the solutions between 0 and

0.5 range for both objectives. Which are the 10 non dominated solutions shown in Figure 43.

Table 11 shows the docking experiments results, sorted in ascending order at Docking Affinity

column. Figures 44, 45, 46, 47, 48, 49, 50, 51, 52 and 53 show the selected molecules at their docked

position to ER-α docking site.

Table 11: AutoDock Vina docking to ER-α results

Molecule Id Docking Affinity (kcal/mol)
Tamoxifen Citrate -8.2
DnD 6 SP 20 4 X 13a -7.9
DnD 31 SP 150 37 M 19 -7.9
DnD 8 SP 9 2 M 13 -7.8
DnD 4 SP 199 49 X 46b -7.7
DnD 12 SP 75 18 M 13 -7.6
DnD 31 SP 6 1 M 16 -7.2
DnD 15 SP 168 41 M 0 -7.2
Ibuproxam -7.2
DnD 11 SP 74 18 M 4 -7.1
DnD 31 SP 193 48 X 76b -6.9
DnD 1 SP 78 19 X 84a -6.8
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Figure 41: Designed molecules in objective space.

The secondary output of Self-Adaptive MOEA are the proposed settings for eMEGA for the

problem. In Table 12 there are the non dominated proposed settings.

6.2.3 Discussion

As shown from the docking experiment results in Table 11, the selected solutions have good

docking affinity to ER-α, which is between -6.8 and -7.9 kcal/mol. From the visualisation of the

docking conformations of the solutions in Figures 44, 45, 46, 47, 48, 49, 50, 51, 52 and 53, we see

that the solutions fit well in the docking site of the protein. The proposed molecules are small in size,

with two exceptions (Figures 51 and 53).

From Table 12 we understand that the preferred eMEGA parameter settings are:
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Figure 42: Non dominated designed molecules in objective space.

• Mutation Probability of 15 - 16%,

• Crossover Probability of 88%,

• Parent Selection based on Tournament Selection, and

• Next Generation (Population) Selection based on Genotype Diversity.

This experiment required 106 hours (106:16:43) to complete the 500 iterations. The execution

was split up into 10 batches of 50 iterations and on average each batch required on average 9 hours

and 19 minutes.
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Figure 43: Designed molecules 2D depictions.

From discovery informatics point of view the selected designed compounds look promising. Fur-

ther investigation is required to investigate the behaviour of the protein-ligand complex, which re-

quires in-vitro experiments.
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Figure 44: Designed molecule DnD 6 SP 20 4 X 13a docked to ER-α, in reference with Tamoxifen
Citrate (magenta) and Ibuproxam (orange).

Table 12: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) non domi-
nated settings for elite Multi-Objective Evolutionary Graph Algorithm (eMEGA)

Mutation
Probability

Crossover
Probability

Selection
Type

Diversity
Type

Non
Dominated
%

Pareto
Hypervolume Rank

0.16 0.80 tournament genotype 0.63 0.34 1
0.16 0.88 tournament genotype 0.63 0.34 1
0.16 0.89 tournament genotype 0.63 0.34 1
0.16 0.89 roulette genotype 0.65 0.34 1
0.01 0.94 best genotype 0.62 0.43 1

Note: The numbers for ’Non Dominated %’ are 1 minus the actual %. The smaller the number listed here the better. ’Rank’ is their non

dominance rank.

Figure 45: Designed molecule DnD 31 SP 150 37 M 19 docked to ER-α, in reference with Tamox-
ifen Citrate (magenta) and Ibuproxam (orange).
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Figure 46: Designed molecule DnD 8 SP 9 2 M 13 docked to ER-α, in reference with Tamoxifen
Citrate (magenta) and Ibuproxam (orange).

Figure 47: Designed molecule DnD 4 SP 199 49 X 46b docked to ER-α, in reference with Tamox-
ifen Citrate (magenta) and Ibuproxam (orange).
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Figure 48: Designed molecule DnD 12 SP 75 18 M 13 docked to ER-α, in reference with Tamox-
ifen Citrate (magenta) and Ibuproxam (orange).

Figure 49: Designed molecule DnD 31 SP 6 1 M 16 docked to ER-α, in reference with Tamoxifen
Citrate (magenta) and Ibuproxam (orange).
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Figure 50: Designed molecule DnD 15 SP 168 41 M 0 docked to ER-α, in reference with Tamox-
ifen Citrate (magenta) and Ibuproxam (orange).

Figure 51: Designed molecule DnD 11 SP 74 18 M 4 docked to ER-α, in reference with Tamoxifen
Citrate (magenta) and Ibuproxam (orange).
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Figure 52: Designed molecule DnD 31 SP 193 48 X 76b docked to ER-α, in reference with Tamox-
ifen Citrate (magenta) and Ibuproxam (orange).

Figure 53: Designed molecule DnD 1 SP 78 19 X 84a docked to ER-α, in reference with Tamoxifen
Citrate (magenta) and Ibuproxam (orange).
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6.3 Use Case 2: Design ER-α inhibitors based on similarity to Tamoxifen

6.3.1 Methodology

The objective of the experiment was to design molecules that have structural and chemical de-

scriptors similarity to Tamoxifen9 (Figure 39).

The objectives for the molecular design algorithm were, structural similarity based on Soergel

distance [272] and chemical descriptors similarity based on Euclidean distance [272] to Tamoxifen

Citerate (Figure 39). The optimization process was aimed to minimize both of those objectives to 0.

Structural similarity is an objective fitness function that calculates a fitness score for a molecule

to the target molecule, computed as the graph distance based on their MCS10 , an in-house imple-

mentation based on RASCAL [269].

Chemical descriptors similarity is an objective fitness function that calculates a fitness score for a

molecule to the target molecule, computed as the distance of their chemical descriptors vector. The

chemical descriptors are based on an in-house implementation of atom pairs and topological torsions

calculations for each molecule [270] and [271].

For input we used a collection of molecules retrieved from the latest version of ZINC database,

ZINC1511 . We selected molecules using the filters clean (Substances with ”clean” reactivity), in-

vitro (Substances reported or inferred active at 10 uM or better in direct binding assays) and now

(Immediate delivery, includes in-stock and agent). The collection contains 7035 molecules.

The Self-Adaptive MOEA works on a population size of 50 that are the settings for the second

level eMEGAs. Self-Adaptive MOEA’s chromosome is shown in Figure 20. Self-Adaptive MOEA

operates with a mutation probability set to 15% while the crossover probability was set to 80%.

Parent selection was set to roulette. For the elitist generation selection Self-Adaptive MOEA was set

to use phenotype diversity. The second level eMEGAs operate on a population size of 250. eMEGAs

operate on mutations probability in the range of 0 to 0.2 and crossover probabilities in the range of
9https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL83

10https://en.wikipedia.org/wiki/Maximum_common_subgraph
11http://zinc15.docking.org/
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0.8 to 1.0. Results were assessed after 100 iterations. A synopsis of Self-Adaptive MOEA settings

can be found in Table 13.

Table 13: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) experimen-
tal design settings

Self-Adaptive MOEA
Dataset Objectives Population Iterations Evolutionary Operations

ZINC15
clean,
in-vitro,
now

Non Dominated Solutions
Percentage
Pareto Front
Hypervolume

50 100 Mutation Probability: 15%
Crossover Probability: 80%
Selection Type: Roulette
Diversity Type: Phenotype

eMEGAs
ZINC15
clean,
in-vitro,
now

Structural Similarity
Chemical Descriptors
Similarity

250 1 Defined during run time.
Based on Self-Adaptive
MOEA’s chromosomes.

The final solutions were filtered and we selected the ones with objective fitness score lower than

0.5 for each objective. As the objectives used, describe the distance to specific target molecules, we

would like to have solutions that are closer (in case of similarity) from the defined target.

In order to validate the effectiveness of the proposed solutions, as a last step we perform a docking

experiment to ER-α using the AutoDock Vina [232] tools provided by LiSIs [238]. The selected

solutions were docked to ER-α 3ERT.

6.3.2 Results

In Figure 54 all the proposed solutions in objective space, are shown and in Figure 55 the non

dominated proposed solutions in objective space, are shown. All solutions within the range of 0 to

0.5 for both objectives are considered good solutions, though we decided to use the non dominated

solutions for the docking experiment just for sake of simplicity. The solutions fill the space in an arc

between the range of 0 to 0.1 in Y-axis and 0.1 to 0.2 in X-axis. In total there are 4 non dominated so-

lutions, represented by 3 unique points. As pointed above we are interested for the solutions between

0 and 0.5 range for both objectives. Which are the 4 non dominated solutions shown in Figure 56.

Table 14 shows the docking experiments results, sorted in ascending order at Docking Affinity

column. Figures 57, 58, 59 and 60 show the selected molecules at their docked position to ER-α

docking site.
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Figure 54: Designed molecules in objective space.

The secondary output of Self-Adaptive MOEA are the proposed settings for eMEGA for the

problem. In Table 15 there are the non dominated proposed settings.

6.3.3 Discussion

As shown from the docking experiment results in Table 14, the selected solutions have very good

docking affinity to ER-α, which is between -9.6 and -10.1 kcal/mol. From the visualisation of the

docking conformations of the solutions in Figures 57, 58, 59 and 60, we see that the solutions fit well

in the docking site of the protein. The proposed molecules are small in size.

From Table 15 we understand that the preferred eMEGA parameter settings are:
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Figure 55: Non dominated designed molecules in objective space.

• Mutation Probability of 3%,

• Crossover Probability of 98%,

• Parent Selection based on Tournament Selection, and

• Next Generation (Population) Selection based on Genotype Diversity or Phenotype Diversity.

This experiment required 29 hours (29:35:36) to complete the 100 iterations. The execution was

split up into 2 batches of 50 iterations and on average each batch required on average 14 hours and

48 minutes.
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Table 14: AutoDock Vina docking to ER-α results

Molecule Id Docking Affinity (kcal/mol)
Tamoxifen Citrate -8.2
DnD 42 SP 194 48 X 96b -10.1
DnD 17 SP 199 49 M 4 -10
DnD 33 SP 189 47 X 66b -9.9
DnD 48 SP 193 48 M 5 -9.6

Figure 56: Designed molecules 2D depictions.

From discovery informatics point of view the selected designed compounds look promising. Fur-

ther investigation is required to investigate the behaviour of the protein-ligand complex, which re-

quires in-vitro experiments.

Table 15: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) non domi-
nated settings for elite Multi-Objective Evolutionary Graph Algorithm (eMEGA)

Mutation
Probability

Crossover
Probability

Selection
Type

Diversity
Type

Non
Dominated
%

Pareto
Hypervolume Rank

0.03 0.98 tournament genotype 0.98 0.15 1
0.03 0.98 tournament phenotype 0.98 0.15 1

Note: The numbers for ’Non Dominated %’ are 1 minus the actual %. The smaller the number listed here the better. ’Rank’ is their non

dominance rank.
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Figure 57: Designed molecule DnD 42 SP 194 48 X 96b docked to ER-α, in reference with Tamox-
ifen Citrate (magenta).

Figure 58: Designed molecule DnD 17 SP 199 49 M 4 docked to ER-α, in reference with Tamox-
ifen Citrate (magenta).
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Figure 59: Designed molecule DnD 33 SP 189 47 X 66b docked to ER-α, in reference with Tamox-
ifen Citrate (magenta).

Figure 60: Designed molecule DnD 48 SP 193 48 M 5 docked to ER-α, in reference with Tamox-
ifen Citrate (magenta).
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6.4 Use Case 3: Design ER-α inhibitors based on similarity to Raloxifene

6.4.1 Methodology

The objective of the experiment was to design molecules that have structural and chemical de-

scriptors similarity to Raloxifene12 (Figure 61).

Figure 61: Raloxifene.

The objectives for the molecular design algorithm were, structural similarity based on Soergel

distance [272] and chemical descriptors similarity based on Euclidean distance [272] to Raloxifene

(Figure 61). The optimization process was aimed to minimize both of those objectives to 0.

Structural similarity is an objective fitness function that calculates a fitness score for a molecule

to the target molecule, computed as the graph distance based on their MCS13 , an in-house imple-

mentation based on RASCAL [269].

Chemical descriptors similarity is an objective fitness function that calculates a fitness score for a

molecule to the target molecule, computed as the distance of their chemical descriptors vector. The

chemical descriptors are based on an in-house implementation of atom pairs and topological torsions

calculations for each molecule [270] and [271].
12https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL81
13https://en.wikipedia.org/wiki/Maximum_common_subgraph
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For input we used a collection of molecules retrieved from the latest version of ZINC database,

ZINC1514 . We selected molecules using the filters clean (Substances with ”clean” reactivity), in-

vitro (Substances reported or inferred active at 10 uM or better in direct binding assays) and now

(Immediate delivery, includes in-stock and agent). The collection contains 7035 molecules.

The Self-Adaptive MOEA works on a population size of 50 that are the settings for the second

level eMEGAs. Self-Adaptive MOEA’s chromosome is shown in Figure 20. Self-Adaptive MOEA

operates with a mutation probability set to 15% while the crossover probability was set to 80%.

Parent selection was set to roulette. For the elitist generation selection Self-Adaptive MOEA was set

to use phenotype diversity. The second level eMEGAs operate on a population size of 250. eMEGAs

operate on mutations probability in the range of 0 to 0.2 and crossover probabilities in the range of

0.8 to 1.0. Results were assessed after 50 iterations. A synopsis of Self-Adaptive MOEA settings can

be found in Table 16.

Table 16: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) experimen-
tal design settings

Self-Adaptive MOEA
Dataset Objectives Population Iterations Evolutionary Operations

ZINC15
clean,
in-vitro,
now

Non Dominated Solutions
Percentage
Pareto Front
Hypervolume

50 50 Mutation Probability: 15%
Crossover Probability: 80%
Selection Type: Roulette
Diversity Type: Phenotype

eMEGAs
ZINC15
clean,
in-vitro,
now

Structural Similarity
Chemical Descriptors
Similarity

250 1 Defined during run time.
Based on Self-Adaptive
MOEA’s chromosomes.

The final solutions were filtered and we selected the ones with objective fitness score lower than

0.5 for each objective. As the objectives used, describe the distance to specific target molecules, we

would like to have solutions that are closer (in case of similarity) from the defined target.

In order to validate the effectiveness of the proposed solutions, as a last step we perform a docking

experiment to ER-α using the AutoDock Vina [232] tools provided by LiSIs [238]. The selected

solutions were docked to ER-α 3ERT.
14http://zinc15.docking.org/
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6.4.2 Results

In Figure 62 all the proposed solutions in objective space, are shown and in Figure 63 the non

dominated proposed solutions in objective space, are shown. All solutions within the range of 0 to

0.5 for both objectives are considered good solutions, though we decided to use the non dominated

solutions for the docking experiment just for sake of simplicity. The solutions fill the space in an arc

between the range of 0 to 0.2 in Y-axis and 0.2 to 0.3 in X-axis. In total there are 2 non dominated

solutions. As pointed above we are interested for the solutions between 0 and 0.5 range for both

objectives. Which are the 2 non dominated solutions shown in Figure 64.

Figure 62: Designed molecules in objective space.
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Figure 63: Non dominated designed molecules in objective space.

Table 17 shows the docking experiments results, sorted in ascending order at Docking Affinity

column. Figures 65 and 66 show the selected molecules at their docked position to ER-α docking

site.

Table 17: AutoDock Vina docking to ER-α results

Molecule Id Docking Affinity (kcal/mol)
Raloxifene -2.2 (-11.7 PubChem)
DnD 31 SP 194 48 M 49 -8.2
DnD 34 SP 197 49 X 13a -5.9

The secondary output of Self-Adaptive MOEA are the proposed settings for eMEGA for the

problem. In Table 18 there are the non dominated proposed settings.
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Figure 64: Designed molecules 2D depictions.

Figure 65: Designed molecule DnD 31 SP 194 48 M 49 docked to ER-α, in reference with Ralox-
ifene (magenta).

6.4.3 Discussion

As shown from the docking experiment results in Table 17, the selected solutions have good

docking affinity to ER-α, which is between -5.9 and -8.2 kcal/mol. From the visualisation of the

docking conformations of the solutions in Figures 65 and 66, we see that the solutions fit well in the

docking site of the protein.

From Table 18 we understand that the preferred eMEGA parameter settings are:

• Mutation Probability of 13%,

• Crossover Probability of 98%,

• Parent Selection based on Roulette Selection, and

• Next Generation (Population) Selection based on Genotype Diversity.
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Figure 66: Designed molecule DnD 34 SP 197 49 X 13a docked to ER-α, in reference with Ralox-
ifene (magenta).

Table 18: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) non domi-
nated settings for elite Multi-Objective Evolutionary Graph Algorithm (eMEGA)

Mutation
Probability

Crossover
Probability

Selection
Type

Diversity
Type

Non
Dominated
%

Pareto
Hypervolume Rank

0.13 0.99 roulette genotype 1.0 0.27 1
0.13 0.99 roulette genotype 1.0 0.27 1
0.13 0.99 roulette genotype 1.0 0.27 1
0.13 0.99 roulette genotype 1.0 0.27 1
0.13 0.99 roulette genotype 1.0 0.27 1
0.13 0.99 tournament genotype 1.0 0.27 1

Note: The numbers for ’Non Dominated %’ are 1 minus the actual %. The smaller the number listed here the better. ’Rank’ is their non

dominance rank.

This experiment required 5 hours (05:28:27) to complete the 50 iterations.

From discovery informatics point of view the selected designed compounds look promising, de-

spite the low docking affinity of the molecule in Figure 66. It is known that Raloxifene (Figure 61)

binds to ER-α by different mechanism than Tamoxifen (Figure 39) [273]. Further investigation is

required to investigate the behaviour of the protein-ligand complex, which requires in-vitro experi-

ments.
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6.5 Use Case 4: Design Proteasome B5 inhibitors based on similarity to Ixazomib

Proteasome subunit beta type-5 as known as 20S proteasome subunit beta-5 is a protein that in

humans is encoded by the PSMB5 gene. This protein is one of the 17 essential subunits (alpha

subunits 17, constitutive beta subunits 17, and inducible subunits including beta1i, beta2i, beta5i) that

contributes to the complete assembly of 20S proteasome complex. In particular, proteasome subunit

beta type-5, along with other beta subunits, assemble into two heptameric rings and subsequently

a proteolytic chamber for substrate degradation. This protein contains ”chymotrypsin-like” activity

and is capable of cleaving after large hydrophobic residues of peptide. The eukaryotic proteasome

recognized degradable proteins, including damaged proteins for protein quality control purpose or key

regulatory protein components for dynamic biological processes. An essential function of a modified

proteasome, the immunoproteasome, is the processing of class I Major Histocompatibility Complex

peptides.

6.5.1 Methodology

The objective of the experiment was to design molecules that have structural and chemical de-

scriptors similarity to Ixazomib15 (Figure 67) which is a known Proteasome B5 inhibitor (PSMB5).

Figure 67: Ixazomib.
15https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3545432
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The objectives for the molecular design algorithm were, structural similarity based on Soergel

distance [272] and chemical descriptors similarity based on Euclidean distance [272] to Ixazomib

(Figure 67). The optimization process was aimed to minimize both of those objectives to 0.

Structural similarity is an objective fitness function that calculates a fitness score for a molecule

to the target molecule, computed as the graph distance based on their MCS16 , an in-house imple-

mentation based on RASCAL [269].

Chemical descriptors similarity is an objective fitness function that calculates a fitness score for a

molecule to the target molecule, computed as the distance of their chemical descriptors vector. The

chemical descriptors are based on an in-house implementation of atom pairs and topological torsions

calculations for each molecule [270] and [271].

For input we used a collection of molecules retrieved from the latest version of ZINC database,

ZINC1517 . We selected molecules using the filters clean (Substances with ”clean” reactivity), in-

vitro (Substances reported or inferred active at 10 uM or better in direct binding assays) and now

(Immediate delivery, includes in-stock and agent). The collection contains 7035 molecules.

The Self-Adaptive MOEA works on a population size of 50 that are the settings for the second

level eMEGAs. Self-Adaptive MOEA’s chromosome is shown in Figure 20. Self-Adaptive MOEA

operates with a mutation probability set to 15% while the crossover probability was set to 80%.

Parent selection was set to roulette. For the elitist generation selection Self-Adaptive MOEA was set

to use phenotype diversity. The second level eMEGAs operate on a population size of 250. eMEGAs

operate on mutations probability in the range of 0 to 0.2 and crossover probabilities in the range of

0.8 to 1.0. Results were assessed after 50 iterations. A synopsis of Self-Adaptive MOEA settings can

be found in Table 19.

The final solutions were filtered and we selected the ones with objective fitness score lower than

0.5 for each objective. As the objectives used, describe the distance to specific target molecules, we

would like to have solutions that are closer (in case of similarity) from the defined target.
16https://en.wikipedia.org/wiki/Maximum_common_subgraph
17http://zinc15.docking.org/
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Table 19: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) experimen-
tal design settings

Self-Adaptive MOEA
Dataset Objectives Population Iterations Evolutionary Operations

ZINC15
clean,
in-vitro,
now

Non Dominated Solutions
Percentage
Pareto Front
Hypervolume

50 50 Mutation Probability: 15%
Crossover Probability: 80%
Selection Type: Roulette
Diversity Type: Phenotype

eMEGAs
ZINC15
clean,
in-vitro,
now

Structural Similarity
Chemical Descriptors
Similarity

250 1 Defined during run time.
Based on Self-Adaptive
MOEA’s chromosomes.

In order to validate the effectiveness of the proposed solutions, as a last step we perform a docking

experiment to Proteasome B5 using the AutoDock 4 [274]. The docking experiments were performed

by Dr. Erika Loizidou.

6.5.2 Results

In Figure 68 all the proposed solutions in objective space, are shown and in Figure 69 the non

dominated proposed solutions in objective space, are shown. All solutions within the range of 0 to

0.5 for both objectives are considered good solutions, though we decided to use the non dominated

solutions for the docking experiment just for sake of simplicity. The solutions fill the space in an arc

between the range of 0.1 to 0.3 in Y-axis and 0.3 to 0.5 in X-axis. In total there are 3 non dominated

solutions. As pointed above we are interested for the solutions between 0 and 0.5 range for both

objectives. Which are the 3 non dominated solutions shown in Figure 70.

Table 20 shows the docking experiments results, sorted in ascending order at Docking Affinity

column. Figures 71, 72 and 73 show the selected molecules at their docked position to Proteasome

B5 docking sites.

Table 20: AutoDock 4 docking to Proteasome B5 results

Molecule Id Docking Affinity (kcal/mol)
DnD 19 SP 196 48 X 59b -7.19
DnD 49 SP 193 48 X 123b -6.68
DnD 1 SP 196 48 X 67a -6.08
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Figure 68: Designed molecules in objective space.

The secondary output of Self-Adaptive MOEA are the proposed settings for eMEGA for the

problem. In Table 21 there are the non dominated proposed settings.

6.5.3 Discussion

As shown from the docking experiment results in Table 20, the selected solutions have good

docking affinity to Proteasome B5, which is between -6.08 and -7.19 kcal/mol. From the visualisation

of the docking conformations of the solutions in Figures 71, 72 and 73, we see that the solutions fit

well in the docking sites of the protein.

From Table 21 we understand that the preferred eMEGA parameter settings are:
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Figure 69: Non dominated designed molecules in objective space.

• Mutation Probability of 9%,

• Crossover Probability of 98%,

• Parent Selection based on Roulette Selection, and

• Next Generation (Population) Selection based on Genotype Diversity or Phenotype Diversity.

This experiment required 23 hours (23:09:38) to complete the 50 iterations.
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Figure 70: Designed molecules 2D depictions.

Figure 71: Designed molecule DnD 19 SP 196 48 X 59b docked to Proteasome B5.

From discovery informatics point of view the selected designed compounds look promising, but

unfortunately we can not compare them to Ixazomib’s docking affinity as AutoDock 4 does not iden-

tify the Boron atom present in Ixazomib (Figure 67) and as such it can not perform a docking experi-

ment to compare it. Further investigation is required to investigate the behaviour of the protein-ligand

complex, which requires in-vitro experiments.

6.6 Overall Discussion

The execution time of Self-Adaptive MOEA depends on a multitude of parameters, i.e. the max-

imum iterations, population size, the contents of the starting population and the evolutionary search

parameters (mutation and crossover probabilities).
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Figure 72: Designed molecule DnD 49 SP 193 48 X 123b docked to Proteasome B5.

Table 21: Self-Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA) non domi-
nated settings for elite Multi-Objective Evolutionary Graph Algorithm (eMEGA)

Mutation
Probability

Crossover
Probability

Selection
Type

Diversity
Type

Non
Dominated
%

Pareto
Hypervolume Rank

0.10 0.98 tournament phenotype 1.0 0.44 1
0.10 0.98 roulette phenotype 1.0 0.44 1
0.10 0.98 roulette genotype 1.0 0.43 1
0.10 0.98 roulette phenotype 1.0 0.44 1
0.09 0.98 roulette genotype 1.0 0.44 1

Note: The numbers for ’Non Dominated %’ are 1 minus the actual %. The smaller the number listed here the better. ’Rank’ is their non

dominance rank.

Use cases 1 to 4 use the same settings for Self-Adaptive MOEA except for the iteration number

and the molecular design objectives, which are different for every use case. As such we can compare

their execution times and derive some conclusions for Self-Adaptive MOEA’s efficiency. As seen

previously on the dedicated use cases sections the algorithm requires a few hours to a few days to

complete a given task. With the help of Table 22 we are investigating the average time that is required

for Self-Adaptive MOEA to complete an iteration. To do so we make an estimation by dividing the

total time, in hours, by the number of iterations. From the results we see that the average time per

iteration is not constant. Use cases 1 and 2 require 13 and 18 minutes per iteration while use case

3 requires only 7 minutes per iteration, and lastly use case 4 requires an astonishing 29 minutes per
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Figure 73: Designed molecule DnD 1 SP 196 48 X 67a docked to Proteasome B5.

iteration. These discrepancies can be attributed to the difficulty of the problem and the load of the

system.

The number of iterations was heuristically derived to guarantee that convergence has been achieved.

Numerous runs were carried out, starting from a small number of iterations and increasing it stepwise.

The generated solutions were investigated qualitatively.

It is important to remember that Self-Adaptive MOEA executes a number of eMEGAs per itera-

tion, which in use cases 1 to 4 are 50 eMEGAs for the first half and an additional number of eMEGAs

for the second half, based on the evolutionary process stochastic nature. Each eMEGA proposes

250 solutions so Self-Adaptive MOEA has 12500 (50 x 250) solutions to look into at the first half

of the iteration, though many of them are identical solutions, because the different eMEGAs start

from the same population and eventually will make the same decisions (select identical mutations

and crossover pairs), so the actual number of unique solutions is much lower.

As mentioned in the use cases discussion sections the proposed solutions look promising, but

further investigation is required to investigate the behaviour of their protein-ligand complex, which

requires in-vitro experiments.
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Table 22: Self-Adaptive MOEA’s total time and the estimated average time per iteration for use cases
1 to 4.

Use Case
Execution Time

(Hours:Minutes:Seconds)
Iterations

Average Time
per

Iteration
(Minutes)

1 106:16:43 500 13 (107/500)
2 29:35:36 100 18 (30/100)
3 05:28:27 50 7 (6/50)
4 23:09:38 50 29 (24/50)

Looking at the Self-Adaptive MOEA proposed final settings for eMEGA for each experiment

we noticed that different search parameters were proposed. This occurs due to the difference in the

nature of the respective problem as the algorithm has to search in different regions of the molecular

search space of candidate solutions. With regards to the preferred crossover rate, in all use cases Self-

Adaptive MOEA prefers high crossover rate, as it enables eMEGA to perform a better global search.

With regards to the preferred mutation rate, in use cases 1 (Section 6.2), 3 (Section 6.4) and 4 (Section

6.5) a high mutation rate is also preferred, as this enables eMEGA to achieve a better local search. In

contrast to use case 2 (Section 6.3) where the preferred mutation rate is low (3%), which shows that for

the specific problem the local search does not produce good solutions. With regards to the preferred

parent selection mechanism, in use cases 1 (Section 6.2) and 2 (Section 6.3) tournament selection is

the preferred selection mechanism, which means that eMEGA selects the fittest individuals as parents.

In contrast, in use cases 3 (Section 6.4) and 4 (Section 6.5) roulette selection is the preferred selection

mechanism, which means that eMEGA selects individuals as parents in a stochastic approach based

on the efficiency of each individual. With regards to the preferred diversity selection mechanism

that is a clustering of the population based on chromosome or objective fitness scores, in use cases

1 (Section 6.2) and 3 (Section 6.4) genotype diversity is preferred as it enables eMEGA to select

individuals for the next generation based on the diversity of their chromosomes. In contrast, in use

cases 2 (Section 6.3) and 4 (Section 6.5) genotype and phenotype diversity are equally preferred as

the first enables eMEGA to select individuals for the next generation based on their chromosome

diversity and the latter enables eMEGA to select individuals for the next generation based on the

diversity of their objective fitness scores.
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6.7 Concluding Remarks

In the validation experiment Self-Adaptive MOEA performed reasonably well considering that

it run for less iterations (100) than eMEGA (500 iterations). The proposed solutions covered larger

region in the objective space. Similarly in the use cases presented, Self-Adaptive MOEA proposes

interesting solutions in relative low iteration numbers, but with the need of more execution time.

This is due to the architecture of the algorithm that involves executing several instances of the inner

algorithm (eMEGA in this case). Due to this feature Self-Adaptive MOEA generates and evaluates a

large number of solutions per iteration.

In every experiment Self-Adaptive MOEA was used for, preferred a different set of search pa-

rameters for its inner algorithm (eMEGA). This should have been expected to some extend as each

problem has to search in different region of the vast chemical space, using a different starting point

featured by the starting population.

Self-Adaptive MOEA has been built with adaptability in mind that is to be able to be used with

different inner MOEAs adapted for other problems. To aid this decision the objective fitness func-

tions for the self-adaptive part of Self-Adaptive MOEA (outer loop) are designed to evaluate the

effectiveness and the progression of any MOEA used in the inner loop.

The chosen chromosome structure enables Self-Adaptive MOEA to be expandable with addi-

tional search parameters for optimisation and for future implementations of additional self-adaptive

techniques, i.e. select applied evolutionary operators.

Self-Adaptive MOEA has been designed to leverage multi-core parallelism, where possible, by

running a number of eMEGAs concurrently. This number is defined by the number of cores the

system has minus 1, which is reserved for the controlling parent process that also runs the self-

adaptive techniques.
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Chapter 7

Concluding Remarks and Future Work

This chapter discusses our concluding remarks for Life Sciences Informatics (LiSIs) and Self-

Adaptive Multi-Objective Evolutionary Algorithm (Self-Adaptive MOEA), and provides our thoughts

for future work.

7.1 Concluding Remarks

7.1.1 Concluding Remarks for Life Sciences Informatics platform

To the best of our knowledge LiSIs was the first free web based Scientific Workflow Management

System (SWMS) for the community of Life Sciences Informatics, although there were at least two

other SWMS desktop based platforms (Taverna [49], [55], [56] and KNIME [60], [61]), though it was

the first to utilise a web based interface. At its current stage (the objective of GRANATUM project1

) it features a Web based Virtual Screening platform, focused for Cancer Chemoprevention Research.

LiSIs as an integrated web based Virtual Screening (VS) framework achieved its goal to the fullest.

We managed to implement a platform that is adaptable, expandable and scalable (on HPC cluster

or on cloud based servers), features that are inherited from Galaxy. With some extra work on the

available tools LiSIs, noted in Section 7.2.1, will be able to achieve the scalability of Galaxy.
1www.granatum.org
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LiSIs was successfully used to support our expert partners in Cancer Chemoprevention with their

hypotheses. We implemented a number of Scientific Workflows (SWs) that were: (a) preparing dock-

ing models, (b) preparing predictive models, (c) performing docking experiments, (d) using predic-

tive models to predict biochemical properties and behaviour, and (e) performing VS workflows. As

shown in Sections 4.9 and 4.11 LiSIs was successful in identifying novel cancer chemopreventive

agents from molecules retrieved from Indofine’s datasets.

LiSIs was build with in mind to be expanded in the future with tools featuring the algorithms from

Multi-Objective Evolutionary Graph Algorithm (MEGA) framework.

A general concluding remark about the bottlenecks of SWMS are: (a) the need of dedicated hard-

ware and/or software for specific tasks, i.e. docking, molecular dynamics, and (b) the heterogeneity

in Input/Output (I/O) capabilities, information flow and scalability among the tools comprising the

SWMS requires deep knowledge of the weaker players performance since it will affect the whole

performance of the pipeline.

7.1.2 Concluding Remarks for Self-Adaptive Multi-Objective Evolutionary Algorithm

Self-Adaptive MOEA was used to design molecules that bear similarity to Seliciclib2 (Section

6.1), Tamoxifen3 (Sections 6.2 and 6.3), Raloxifen4 (Section 6.4) and Ixazomib5 (Section 6.5),

across different experiments.

In general Self-Adaptive MOEA compared to elite Multi-Objective Evolutionary Graph Algo-

rithm (eMEGA): (a) searches a larger space, (b) generates far more solutions per iteration, (c) pro-

poses solutions in wider range, (d) requires more time for the same iterations (due to the fact that

runs multiple eMEGAs per iteration), (e) evaluates different sets of parameter options for eMEGA

for the given problem, and (f) proposes the fittest parameter sets that should be used from eMEGA

for the given problem. The last two points are important specifically when we need to fine tune our
2https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL14762
3https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL83
4https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL177798
5https://www.ebi.ac.uk/chembl/compound/inspect/CHEMBL3545432
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Multi-Objective Evolutionary Algorithm (MOEA), because the general approach of finding what pa-

rameter settings yield better results in any given MOEA requires to perform multiple experiments

with different settings before focusing to the set of parameters that yields better solutions.

Someone would expect that Self-Adaptive MOEA would have outperformed eMEGA, because

in theory changing the settings that drive the evolutionary process should make the algorithm be

more efficient and intelligent. In practice we noticed that it performs slightly worse. The reasons are:

(a) how an algorithm performs is not dictated only by its parameters, (b) input data and data generated

during the iterative process have a significant role, and (c) Self-Adaptive MOEA’s true use case is to

provide us with information of how the underlying algorithm, eMEGA in our case, behaves with the

data given to it within the problem to solve, in order to configure eMEGA in a way to tackle with the

problem as good as it can.

Self-Adaptive MOEA is a useful tool for fine tuning the underlying MOEA to approximate a

given problem. In the hands of an experienced user it can prove very powerful, as the expert can

guide Self-Adaptive MOEA to the range of settings and the algorithm will propose the ones that

tackle the problem better.

Our proposed Self-Adaptive MOEA has been built with adaptability in mind to be able to be used

with different MOEAs in the inner loop. So we decided to implement objective fitness functions

(Section 5.3) that would be able to be used to evaluate the effectiveness and the progression of any

MOEA. This decision also helps to use Self-Adaptive MOEA for other applications different from

molecular De Novo Design (DND). This also applies, given that some prior information about the

model of the problem under investigation is known.

By choosing to use the specific chromosome (Figure 20) in our Self-Adaptive MOEA we made

the algorithm expandable with additional search parameters for optimisation and for future imple-

mentations of additional self-adaptive techniques.

It is highlighted that the main Self-Adaptive MOEA’s features are: (a) objective fitness functions

that can evaluate the effectiveness and the progression of MOEAs, and (b) an expandable chromosome

for MOEA’s search parameters. These enable the Self-Adaptive MOEA framework to be configurable
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so that is able to use different MOEAs or Multi-Objective Optimization (MOO) algorithms in the

inner loop, and as such is applicable in problems in various disciplines. This is possible because

Self-Adaptive MOEA’s domain problem solving functionality is the responsibility of the inner loop

algorithm. Though, for this to be possible the following two modifications are required: (a) define the

MOO algorithm that is used in Self-Adaptive MOEA’s inner loop, and (b) formulate a model of the

domain problem to solve.

From the first iterations of the design phase we realised that Self-Adaptive MOEA would bene-

fit greatly if we leveraged multi-core parallelism. Because Self-Adaptive MOEA relies on running

multiple eMEGAs (with different search parameters) per iteration. The decision was to implement

Self-Adaptive MOEA to use all cores of the system, by assigning one eMEGA process per core. This

approach helps to reduce Self-Adaptive MOEA’s execution time. Though this decision has a caveat,

running multiple eMEGAs requires also to have sufficient memory for each active eMEGA. From our

experience a single eMEGA requires 6GB to 10GB of RAM, on large scale experiments. As such

we can deploy Self-Adaptive MOEA on a cloud based machine, i.e. Amazon Web Services6 and

Google Cloud Platform7 , with sufficient amount of memory per core to perform large experiments.

7.2 Future Work

A number of different research directions have already been initiated to expand on the work pre-

sented in this thesis. These initiatives can be grouped into two general categories; the first involves

research on algorithmic enhancements and improvements of the computational performance of LiSIs

while the second focuses on research on algorithmic enhancements, improvements of the computa-

tional performance and on problem specific applications of the Self-Adaptive MOEA. The potential

directions of future work are outlined below.
6https://aws.amazon.com/
7https://cloud.google.com/
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7.2.1 Future Work for Life Sciences Informatics platform

As stated above LiSIs has so much potential and was developed with future upgrade-ability and

expandability.

The first step would be to develop LiSIs 2.0, based on the updated Galaxy8 , and changing the

tools to a form that will enable them to be deployed via Galaxy’s specialised Tool Shed9 ,10 . This

will make LiSIs up to date and re-enable its scalability functionality.

The second step would be to update LiSIs with a feature to visualise intermediate results from

various tools, as there is the need for the users to be able to see these results. In the current version,

tools that generate these intermediate results, store them in a binary format as there are data that

should not be altered.

The third step would be to expand LiSIs tools with tools featuring the MEGA line-up of algo-

rithms and Self-Adaptive MOEA. This work will expand LiSIs tools in the region of molecular DND.

An interesting research route would be to explore resource management in SWMSs, with a goal

to suggest SW optimisation approaches. This research could have two branches: (i) Novel Scien-

tific Workflow Multi-Objective Optimization approaches: Identify and implement novel MOO

approaches for optimising the design of SWs on a SWMS, (ii) Novel Multi-Objective Optimization

scheduling approaches of Scientific Workflows: Identify and implement novel MOO approaches

for scheduling and optimising the execution of SWs on a SWMS.

7.2.2 Future Work for Self-Adaptive Multi-Objective Evolutionary Algorithm

The proposed Self-Adaptive MOEA has been designed to be adaptable, expandable and scal-

able (utilising multi-core parallelism). We should exploit these features to transform it to a ro-

bust Multi-Objective Optimization Problem (MOOP) and Many-Objective Optimization Problem

(MaOOP) framework for searching near optimal solutions in a wide range of problems.
8https://galaxyproject.org/
9https://new.galaxyproject.org/toolshed/

10https://toolshed.g2.bx.psu.edu/
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We noticed that Self-Adaptive MOEA proposed interesting solutions in all problems that has been

applied to. As mentioned in Sections 6.1.3, 6.2.3, 6.3.3, 6.4.3 and 6.5.3 further in-vitro investigation

is required to understand the behaviour of the proposed designed molecules in real environment.

As stated previously in Section 6.1.3 Self-Adaptive MOEA and its underling eMEGA are resource

hungry algorithms specifically in large experiments. This should be addressed in the near future, as

many optimisations can be implemented primarily in the MEGA framework. This will also benefit

all the variations of MEGAs. This work can be the core of a future Ph.D. as it tackle the problem of

algorithm optimisation via memory management and parallelism.

At the current state of Self-Adaptive MOEA the self-adaptive technique is applied only on the

parameters of the underlying MOEA. As shown in Section 3.5, MOEA’s behaviour is not driven only

by its parameters, but also by the genetic operators that is using. When there are multiple mutation and

crossover operators to choose from, in practice we leave it to chance or we enable the ones we think

might work better with our problem and data. There has been substantial research in self-adaptive

techniques that try to tackle the problem of choosing the operators the underlying MOEA works on.

Self-Adaptive MOEA should be updated to have a self-adaptive technique for the genetic operators

eMEGA can use.

The MEGA framework provides access to different variations of MEGA: (a) that use a niching

mechanism (see eMEGA [245]), and (b) that use a local search algorithm to enhance MEGA’s be-

haviour (see STagnation Identification and Resolution (STIR) in [245]). This is an interesting work

as these different versions of MEGA operate on different settings and data structures.

An interesting implementation would be to apply Self-Adaptive MOEA in completely different

problems by adapting Self-Adaptive MOEA to use other MOEAs and implementing models for other

problems. For this to be possible, the following must be implemented: (a) do minor modifications to

Self-Adaptive MOEA in order to be able to use any MOO algorithm with a simple parameter change,

(b) define the MOO algorithm that is used in Self-Adaptive MOEA’s inner loop, and (c) formulate a

model of the domain problem to solve. An example of a generic problem, used in Computer Science
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to evaluate search algorithms, is the Travelling Salesman Problem11 which can be expanded to be a

MOOP.

7.3 Closing Paragraph

The research presented in this thesis introduces frameworks and algorithmic approaches applied

in the domain of Life Sciences for Virtual Screening and Multi-Objective Molecular De Novo Design.

The knowledge and expertise gained alongside with the platform and frameworks developed should

be used towards exploring solutions for precision medicine.

11http://www.math.uwaterloo.ca/tsp/
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