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Abstract

The dissertation derives a Koppelman integral representation formula on smooth compact
toric varieties representing (0, ¢) smooth forms taking values in specific line bundles by re-
ducing our construction to the fact that the singular sets of the kernels involved are along
the ’exceptional set’ of the specific varieties. As an application, we study the vanishing of
the Dolbeault cohomology groups of (0,¢q) forms over smooth compact toric varieties with
values in various lines bundles. Even if these results are already known, the novelty here lies
on the fact that our method gives an explicit solution to the O-equation on the varieties in

question.

We further study the boundary behaviour of a weighted Koppelman integral representation
formula on C™ with a specific choice of weight. Through the use of this specific formula,
we manage to recover the extension result in [27] and [30] that if a function f has the ’one
dimensional extension property’ for every complex line [ meeting a domain D C C" where
1/t can be extended from 9D NI to DN, then f can be extended to a holomorphic function
in D which is also continuous on the boundary dD. On one hand, the results are close in
spirit to those to be found in [27] and [30], but on the other hand are surprising because the
kernels involved are not harmonic as the B-M kernel is. Thus, the independence of the results
from the choice of the contributing kernels indicates somewhat the topological nature of the

results.



ITepirndm

Yy nopodoa dlatelBr) xataoxeudlouye Evay ohoxhnewtixd TOto Koppelman oe opaiéc cuuno-
velc Topixéc ToAamhétnTeg Tou avomopotd (0, q) ouahéc Sopopinés noppéc, ol onolec hoyufBd-
VOUV THEC OF CUYXEXQPUEVES UOVOOLIOTUOTEG OLavUoUTIXEG 0éoueg. Ol eumAexduevol muprveg
NG AVATOEAOC TUOTS XATAOKEVALOVTOL £TOL WO TE ToL WdlovTa Toug onueio va Bploxovtol 610 "ex-
ceptional set” Twv ev Adyw moAlamhotAtwy. ¢ EPOPUOYY, HEAETAUE TEPLTTWOELC OTIC OTOIES
ol xAdoelc ouvouohoyiog Dolbeault twv (0, g) Loppdv ot oparéc cuunayelc TOMATAGTNTES TOU
TolpVouV TWES O BLAPORES BLUVUCUOTIXES BEOUES Efval TETELUUEVES. AV Xt T amoTEAEGUATO AUTE
elvon 101 YVOOTE, 1) xouvoToula €8¢ EYYELTOL GTO YEYOVOS OTL 1) U080 Yag BIvEL Uil avaAUTIXN

Mo g 0-eElowong 6TiC eV MYe TOMATAOTNTES.

[Tepoutépew yehetolue T cuvoplaxt cuuTepLpopd evog weighted Koppelman tdmou oto C" 6mou
€Y OUUE YENOWOTOLACEL Lol CUYXEXEWEVT ETLAOYY| Bdpouc. Mo ta péow tng Yenong tou Tirou
oUTOV, AVATOPEYOUUE TO AMOTENEOHO ETEXTAOTS oL Bploxeton oto dpdpa [27] xau [30], dTL av o
ouvdptnon f éxet Ty povodido oty Widtnto enéxtaons ' (‘one dimension extension property’)
v x&de evdelo Tov cuvavtd éva ywplo D C C™ xau emnhéov, n 1/t unopel vo enextadel and
0 0D Nl oto D NI, t6te 1 f umopel va emextadel oc ohduoppn ouvdpetnorn cto D 7 onola
elvon ouveyric oto 0D. Agevog, o anotehéopato Yag eival xovTtd GTO TVEDUA TWY VTG TOLY WY
amotehecudtwy ov Beloxovton ota dpdpa [27] xou [30], ag’ etépou eivor exmhnxTind eneldy| ot
EUTAEXOUEVOL TIUPHVEC O TNV TERIMTWOT o Oev elvon apuovixol omwe tov mupriva B-M. Eto 7
aveopTnola TwY AMOTEAEOUATWY And TNV ETAOYT] TV TURHV®Y LTOBNAMVEL TNV TOTOROYIXY| QUOT

TWV ATOTEAEOUATOV.
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Introduction

Weighted integral representation formulas for representing holomorphic functions are intro-
duced by M. Andersson and B. Berndtsson in [3], where they also construct solutions of the
O-equation. More recently, M. Andersson in [1] provided a general method to get weighted
integral representation formulas for (0, ¢q) forms for domains D cC C™. The same author in
[2] introduce new formulas for matrices of holomorphic functions (as a continuation of [1])

and application to interpolation and division problems.

Koppelman integral representation formulas for (0, ¢) forms with values in a line bundle on
projective space was constructed by B. Berndtsson [5], based on the ideas of G. M. Henkin
and P. L. Polyakov [19]. Two years later, T. Hatziafratis in [17] obtained integral represen-
tation formulas for the solution of O-equation on domains in algebraic submanifolds which
are complete intersections of the complex projective space. More recently, E. Gétmark [14],
[15] was able to deduce a Weighted Koppelman formula for (p, ¢) forms on an n-dimensional
complex manifold X in the case when the section defining the diagonal of X x X is global.
This method offers a Kopppelman formula for (p, q) forms taking values in line bundles over
P", but it is also applied on (0,q) forms taking values in L* @ L! bundle over the cartesian

product of projective spaces P x P™. The solution to d-problem can also be derived.

The construction of a Koppelman formula on a complex manifold X is achieved by finding
suitable kernels K and P that satisfy the current equation 0K = [A] — P, [A] being the

integration current over the diagonal A = {(¢,2): ( = z} of X x X.

Other kernels leading to integral representations (not global) for holomorphic functions on an
open set associated with a toric variety are obtained by A. Shchuplev, A. Tsikh and A. Yger
in [38] and A. Shchuplev in [37]. The integral representation of such functions became also an
object for study by A. A. Kytmanov [26], who constructed kernels for holomorphic functions
on d-circular domains in C¢ (connected with the two dimensional toric variety) by using
an analog of the Fubini-Study form. Later on, A. A. Kytmanov and A. Y. Semusheva [28]

derived kernels on toric varieties by generalizing the Bochner-Martinelli form in C™.



The aims of the thesis

Our contribution is to present a formula of the 'Koppelman type’ on some toric projective
varieties by reducing our construction to the fact that the singular set of kernels involved
is along the ’exceptional sets’ of the varieties in question. As a particular case, we are able
to recover the Koppelman integral representation formula on P x P™ in a Gotmark’s work
[15], but with different representatives. In general, our method illustrates through examples,
such as the Hirzebruch surface, that it provides a general method for representing (0, ¢) forms

which take values in different line bundles over smooth compact toric varieties.

One important consequence of our results is that they allow us to study the vanishing of
Dolbeault cohomology groups of (0, ¢) forms over smooth compact toric varieties with values

in various line bundles by constructing explicit solutions to the O-problem.

In the present thesis, we also prove results about the boundary behaviour of a weighted
Koppelman formula on C" with a specific choice of weight by extending the corresponding
results related to the Bochner-Martinelly type integral ([25],[29]). A proof of a Hartog’s
phenomenon that can be found in [27] and [30] is achieved through this specific weighted
Koppelman formula, although the kernels involved fail to be harmonic. More precisely, we
reprove by different method the result of A. A. Kytmanov, that a function f € C(0D) having
a ’one dimensional extension property’ for every complex line [ meeting a domain D C C"
and the function 1/¢ can be extended from dD NI to D NI, can be extended to a holomorphic

function in D which is also continuous on the boundary 9D.

We begin in Chapter 1 by introducing the notion of toric varieties, and present some results
related to them, following [6], [11] and [12]. A number of examples illustrate the construction
involved. Moreover, appropriate line bundles and sheaves on the above varieties are con-
structed. We also present the Weighted Koppelman formula on C"* and on P™. Finally the
chapter concludes with the notion of the multi-logarithmic residue current and the proof of

a generalized Poincaré-Lelong formula.

The second chapter is devoted to the study of the boundary properties of a weighted Koppel-
man type integral formula with a specific choice of weight. The results obtained are similar
to those in [25],[29] for the Bochner-Martinelli type integrals, the most important one being

the analogous Jump Theorem for weighted Koppelman type integrals.

The third chapter, containing the main results of the thesis, deals with the construction of



a toric Koppelman formula for (0, ¢) forms on a compact projective toric variety X taking
values in a line bundle V, where £ = Ox(D) is the sheaf induced by the ample divisor
D. This construction exhibits quite complicated combinatorial properties inherited from
the nature of the toric varieties. A crucial tool here is the analogue of a Poincaré-Lelong
formula for a set of holomorphic functions {fi,..., fy—n—1} of holomorphic functions. Our
strategy is to embed the n-dimensional toric variety X into PN~ and derive a Weighted
Koppelman formula whose kernels have singularities exactly at the exceptional set of the

toric variety.

Applications of the above to finding explicit generators of cohomology groups and explicit
solutions to the O-problem on a toric variety are given in the fourth chapter. By using the
dual nature of the Koppelman formula, we also study the cohomology groups for (n, ¢)-forms
on X taking values in the dual bundle and in its k-fold tensor product while an isomorphism

related to the cotangent sheaf of (0,n) forms allows to further extend our results.



Chapter 1

Preliminaries

This chapter introduces some notions and results related to multidimensional complex anal-
ysis and toric geometry. Geometric, combinatorial and arithmetic aspects of toric varieties
which will be used throughout this work, are presented in this introductory chapter. The

material used draws heavily on [6], [11] and [12].

In this chapter we present the Weighted Koppelman formula on C" (with its proof) and
the Koppelman formula for differential forms with values in a line bundle over P". The
generalization to the toric setting is the main purpose of this thesis. Our approach is inspired

by results in [1], [14], [15].

We conclude this chapter by defining the logarithmic residue current connected with a tuple
of holomorphic functions f = (f1,..., fp) in C" and give a generalization of a Poincaré-Lelong

formula. This material has been borrowed from [7] and [39].

1.1 Toric Varieties

This section introduces some general notation and explores various aspects related to toric
varieties by realising them through multiple examples. Toric varieties constitute a rich class
of algebraic varieties which admits special algebraic and geometric properties defined by com-
binatorial information. There are several definitions for toric varieties but the predominant
one states that an n-dimensional toric variety is an irreducible variety X containing a torus
T ~ (C*)" := (C\ {0})" as a Zariski open subset such that the action of 7" on itself extends
to an algebraic action of 7' on X. (The algebraic action is an action 7' x X — X given by a

morphism.)

Every n-dimensional toric variety X = Xy is directly related to a set of cones, namely the



fan ¥ in R™ of X.

1.1.1 The construction of X

Let M and N be free abelian groups of finite rank such that M := Homgy(N,Z) is the dual
space of N. Picking a Z-basis of N gives an isomorphism N ~ Z" while its dual basis, that
is the basis of M, yields that M ~ Z". According to these isomorphisms, a pairing between

the two groups becomes the standard dot product on R™ denoted by

() + MxN—>Z

(myn) = aiby + - ayby,

for m = (a1,...,a,) € M and n = (by,...,b,) € N. The notations Mr = M ®z R ~ R"™ and

Nr = N ®z R >~ R™ are scalar extensions of M and N, respectively.

A subset ¢ C Ny is called a convex polyhedral cone if there exist vi,...,vs € Ng such

that

o := Cone(vy,...,vs) = {Zaivi‘ai 20} C Ng. (1.1)

i=1

Its dimension is defined as the dimension of the interior of a minimal subspace of R" containing
o. A cone is strongly conver if and only if 0 N (—o) = {0}, while a cone is called smooth if its

minimal set of generators forms part of a Z-basis of V.

A dual cone & of the cone o is defined by
d={me Mg : (m,u) > 0for allu € o}.

Hence, every dual cone is associated with a semigroup S, = d M. This semigroup is finitely

generated according to the Gordan’s Lemma [6, Proposition 1.2.17]. Then S, can be written

in the form S, = Z>omy + -+ + Z>omy, for my,...,my € S, and k € Z*. The vector
m = (¢1,...,¢n) € S, determines a character which is a group homomorphism y™ : T'— C*
defined by

X"ty tn) =20

Hence, x™ is turned into a Laurent monomial due to the isomorphism 7" ~ (C*)". Thus, the
elements of the algebra C[S,| generated by the characters {x""};, can be interpreted as the

C-valued polynomial functions on S,.



An affine toric variety corresponding to & is the chart U,, which is identified with the spectrum
of the algebra C[S,| (the spectrum being the set of maximal ideals equipped with Zariski
topology) due to the close connection between affine varieties and ideals. The chart is written
then as

U, = Spec C[S,].

A toric variety is described fully by a set of cones with specific characteristics. Let 7 be a

face of a cone o, which is a subset of o such that some a; in (1.1) are equal to zero.

Definition 1.1.1 The fan ¥ C Ny of a toric variety X is a finite collection of strongly convex
polyhedral cones such that:
(i) Every face of a cone o € 3, is also in X.

(ii) For all o1, o9 € %, the intersection o1 N oy is a face of each cone o1, oo in X.

The dimension of the fan is the maximal dimension of its cones. The fan is called smooth if
every cone in Y is smooth. In this case, the toric variety X is also smooth. The support of a

fan ¥ is denoted by

X = U o C Ng.
cEX

We say that the fan X is complete if its support |X| is all of Ng and the toric variety X
inherits the property of completeness from its fan. Complete is equivalent to being compact

in the classical topology.

Now, the combinatorial data of the fan tell us how to glue together the collection of the affine
varieties U, for every o € 3 and obtain the toric variety X. More precisely, let o1,09 € 3,
T =o01Noy and u € g1 N (—0d2). If my,...,my is a system of generators of 1 N M, then
without loss of generality, we may assume mj = w. Since £u € 7 and § C 7, TNZ" is
generated by my, ..., mr = u,mi+1 = —u. The additive relation my + mgy1 = 0 turns into

the multiplicative relation x"* x™#+1 = 1 in C[7 N M]. Thus, the projection

mi

(X ""7ka7ka+1)H(Xmlﬁ"'7xmk)

identifies U, with the open subset Uy, \ {x* = 0}. Similarly, one can obtain that U, =

Uy, \ {x™* = 0}. The composition of the above isomorphisms yields that

Usy \{X"=0}2U; 2U,, \ {x " =0}

According to this rule, the affine varieties can be glued along affine varieties associated with

their common faces, so that the toric variety X related to the fan arises.



Some examples of well-known toric varieties are the following.

Example 1.1.1 The one-dimensional cones op = [0,00) C R and 07 = (—00,0] C R with
7 = 09N o1 = {0} are describing the fan of the complex projective space P. Since ¢y = o9

and o7 = o1, the corresponding charts are

Usy = SpeC(C[iL‘])
Us, = Spec(Clz7']).

These two charts are glued along their common face 7 = {0} since U, = U,, \ {z = 0}
and U, = U,, \ {71 = 0} through the isomorphisms (z,z7!) — z and (z,27!) — 27}
respectively. Indeed, this is the fan of the complex projective space P!. Actually, if we look
at the homogeneous coordinates ({p, (1) of P! and maps x + (1/(o, then the standard open
cover {U;}i_y of P! with Uy = {(Co,¢1)|¢o # 0} and Uy = {({o,¢1)[¢1 # 0} identifies with

{Um’ 1'1:0'

Example 1.1.2 Let us consider the two-dimensional fan ¥ with cones o9 = Cone(ey, e2),
o1 = Cone(eg, —e; — e2) and oo = Cone(e;, —e; — e2). Then 6y = Cone(ey,e2), 01 =
Cone(—ey + e2, —e1), g3 = Cone(—eg, €1 — e3) and the corresponding charts are given by the

spectra of the following rings:

Uso, = Spec(Clz,y])
Uy, = Spec(C[m_l,aj_ly])

Us, = Spec(Clzy~',y7")).

These charts are glued together along their common faces and P? is obtained. In particular,
let 7 = {ea} be the common face of op and o1 and e; € 6oN(—d1). Then U, = U,, \ {z = 0}
according the projection (x,y,27%) — (z,y) and U, = Uy, \ {z~! = 0} through the mapping

Va=ty x) — (27127 ly). Then U,, is glued with U,,. Similarly, the gluing of the

(z~
remaining charts is obtained. As in the previous example, the change of coordinates according
to the rules z — % and y — % identify the standard affine open sets U; of P? with Us, C Xy

for every i = 0,1,2. Thus, Xy, ~ P2,

Example 1.1.3 Generalizing the two previous examples, we describe the construction of

the fan of P". We consider the standard basis {e;}!'; of N = Z" and let, also, eg =



—e1 — ey — -+ — ey, Then, the n-dimensional cone o; for ¢ = 0,...,n is defined by

o; = Cone(eg, ..., [ei],...,en),

where the notation [e;] denotes that the vector e; is omitted. As in the previous examples it

is easy to verify that the collection {Uy, }I" is the usual open cover {U;}}" , of P™.

There are several examples of toric varieties, but one that we will deal with it later on, is
the Hirzebruch surface H,. The index r varies for » > 0, in such a way that a collection of

surfaces arises.

Example 1.1.4 The 2-dimensional Hirzebruch surface H, is presented by a fan consisting
of the four cones o1 = Cone(ey,ez), 0o = Cone(ey, —ez), 03 = Cone(—e; + rey, —ez) and
oy = Cone(—e; + reg,ez). Observe that 61 = o1, do = 02 g3 = Cone(—re; — ea, —ey),

g4 = Cone(re; + e2, —eq) such that the corresponding charts are

S
w V) —
I I I
w v w»w
SIS RS
D D D
[« [« [«
e a a
5 ' B
IS
H : S~—
3 N—
<
=

X
=~
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<
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The arising toric variety, after the gluing of the charts U,,, is the surface H,.

Example 1.1.5 A particular case of a Hirzebruch surface for r = 1 is denoted by H. Its fan is
spanned by the vectors ey, ea, —e1, —e; —ea. The formation of the four cones is the following:
o1 = Cone(ey, e2), 0o = Cone(—eq, e3), 03 = Cone(—e, —e;—ez) and o4 = Cone(—ej—ea, 7).

Then 1 = 01, g9 = 09 03 = Cone(—ej + e, —e3), o4 = Cone(e; — ez, —es) and

Uy, = Spec(Clz,y])
Uy, = Spec(Clz l,y])
Usy = Spec(Clz~'y,y™ ')
Usy = Spec(Cly™" ay™)),

are the charts building the toric variety H, in a manner (gluing) similar to the the previous

examples.

All previous examples concern smooth, compact toric varieties since their corresponding fans

are smooth and compete. The next example presents a particular case of a weighted projective



space which is compact but not smooth.

Example 1.1.6 Another interesting example of a toric variety is the weighted projective
space P(1,1,2) induced by the fan constructed by the vectors ej, ea and —e; — 2e2. The
generated cones are g = Cone(eq, e2), 01 = Cone(eg, —e1 —2e3) and o9 = Cone(—e —2e3, €1)
while the corresponding dual cones and their realted charts are gy = o9 = Cone(ey, e2),

g1 = Cone(—ey, —2e1 + 2e9), o9 = Cone(—es, 21 — €3) and

Us, = Spec(Clz,y])
Us, = Spec(Clz~',27%y))

Us, = Spec(Cly "2y ']).

After the gluing of the affine varieties Uy, for i = 0,1, 2, we obtain the desired toric variety
P(1,1,2). Actually, this particular toric variety is not smooth due to the contribution of the

non-smooth cone oy in the fan of P(1,1,2).

It is important to mention that a new toric variety is generated by taking the product of two
toric varieties. More precisely, let X1, X5 be two toric varieties with their corresponding fans
being 31 C Ny, Yo C No, respectively. The product of two fans ¥; x Xo = {07 X 02‘@ €}
is also a fan in Ny X Ny and the toric variety Xy, «y,, which corresponds to this fan is
isomorphic to the product X; x Xy ([6, Proposition 3.1.14]). An example of such a toric

variety is the product of projective spaces, described below.

Example 1.1.7 Let X be the fan consisting of the cones ogg = Cone(ey, e2), 0190 = Cone(—ey, e3),

o11 = Cone(—ey, —ez) and og; = Cone(eq, —ez). Then o3 = 045, Vi,j = 0,1 and

Usyy =~ Spec(Clz,y])

(Clz,y
Uso =~ Spec(Clz™1,y])
(Cla"h ™)
(Cla,y™

D

Us,, =~ Spec(C]

Usyy =~ Spec(Clz,

Gluing the local charts according to the rule described in example 1.1.1, leads to the identi-

fication of spaces Xy ~ P! x P!,

Similarly, one can realize P x P as a toric variety, which is the space of main importance

in this thesis.

Example 1.1.8 Consider the n-cartesian product of P!, (P!)" with contributing vectors for



the n-dimensional fan the vectors ey, ..., e, and —eq,..., —e,. The constructed n-dimensional
cones are 2" and each one is produced by n linearly independent vectors from the above

collection of elements.

1.1.2 Quotient construction of a Toric Variety

This section generalizes the construction of projective space as the quotient space of the affine

space minus the origin in other words

P (o))

where C* acts on C"*! by scalar multiplication. A toric variety X can be represented as a

quotient
Xy = (Cd \ Z(z)) /G,

where the set Z(X) is the exceptional set and G is a reductive group. Both objects are defined
and described briefly below.

Let vy,...,vq4 € Z™ (d > n) be the generators of the cones of ¥ and (i,...,(y be the
corresponding homogeneous coordinates. If (5 := ij o (j, then one defines the exceptional

set
Z(%) = {C e C?: ¢ = 0 for all n-cones o in E} . (1.2)

On the other hand, the reductive group G is described by the following:

d
G = {V—(V1,~- ,Vd) € ((C*)d’:HV;ej’Ui> =1lforl1<j Sn}.
i=1

Example 1.1.9 In the realization of P! x P! as a toric variety with generators v; = eq,
vy = —eq, v3 = eg and vy = —eg, observe that the exceptional set Z(X) is generated by the

relations (1(3 =0, (14 = 0, (2(3 = 0 and (24 = 0. That is,
Z(%) = {0} x C>*UC? x {0}.
Now, (v1,v9,v3,14) € G if and only if V1V2_1 = 1/31/4_1 = 1. Hence, the reductive group is

G = {(H’:Uﬂ)‘v)‘)

p A€ C*}
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and the quotient realization of the above space is given by
P! x P! = (C*\ ({0} x C*UC? x {0})) /G.

Example 1.1.10 The exceptional set Z(3) of the Hirzebruch surface H, is described by the
relations (14 = 0, (1¢2 =0, (2(3 = 0 and (34 = 0. Thus,

Z(E)={G=CG=0U{G=_=0}

On the other hand, to determine the group G, take a vector (v1, v2,v3,v4) € G. By calculating
the group G acting on C*\ Z(X), we observe that v; Yug = o] Vo, L' — 1, or equivalently,

v1 = v3 and v4 = vy, It turns out that

G= {()\,,LL,)\,)\TIM)

p,A € C )L
Thus, H, is realized as the quotient space H, = (C*\ Z(%)) /G.

Example 1.1.11 In the particular case of the Hirzebruch surface H (see example 1.1.5), the

exceptional set is

Z(X)={G=CG=0}U{{=_=0}

with corresponding reductive group being

G = {()\/'L7 A?M? A)

p,A € C}.
Example 1.1.12 Similarly, in example 1.1.6, we deduce that the exceptional set of P(1, 1,2)
is

Z(¥)={0=0=0=0}

while its reductive group is described by
G={(\MAA)|xeC}.

Thus,
P(1,1,2) = C*\ {0}/G.
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1.1.3 Divisors and Sheaves on Toric Varieties

Global information on toric varieties can be collected by using the notions of divisors and
sheaves. A prime divisor D of an irreducible variety X is an irreducible subvariety of codi-

mension 1. To each such divisor corresponds a ring of the type
Ox.p={¢ € C(X): ¢is defined on U C X open andU N D # P}

where C(X) is the field of rational functions on X.

The free abelian group generated by the prime divisors is denoted by Div (X) and an element
D of Div (X), the so-called Weil divisor, is the sum D = )", a;D;, where a finite number
of coefficients a; € Z are different from zero, while the D, represent distinct prime divisors
of X. If the coefficients a; are all non negative, then the divisor D is called effective and
is symbolized by D > 0. Moreover, two Weil divisors D;, Dy on X are said to be linearly
equivalent, if there exists a non-zero rational function f such that div(f) = Dy — Dy. We

denote linear equivalence by D1 ~ D».

If f e C(X)*, then f defines the principal divisor of f which equals div (f) = >, vp(f)D,
where the summation is over all the prime divisors D C X and vp(f) is called the order of
vanishing of f along D. If vp(f) = n > 0 then the order of vanishing of f along D is n and
when vp(f) = n < 0, f has a pole of order |n| along D. The group of principal divisors is
denoted by Divg (X).

A Cartier divisor D on a toric variety X is a locally principal divisor. That is, for an open
cover {U,;}ier of X, the restriction D|y, is principal in {U;} for every ¢ € I. Moreover, if
DIy, = div (fi)|v, for i € I, then {(U;, fi) }ier are the local data for D. The Cartier divisors
form the group CDiv(X). Hence, the Class group and the Picard group are defined as the

quotients
Cl(X) =Div (X)/Divg (X) and Pic(X) = CDiv(X)/Divg(X)

respectively. It is important to mention that the two groups coincide, Cl (X) = Pic (X) if X
is smooth [6, Theorem 4.0.22].

In particular, let {v;}&; be the set of generators of the cones of an n-dimensional fan 3. To

each vector v; there corresponds a variable (; and a divisor

D; = div(G),

12



fort=1,...,d. The variables (; are not necessary independent. The divisor of the character
X" on X for m € My, which is the divisor of a rational function with respect to (; according

to the rule ™ = Hle Cfm’vi> , can be expressed by

d
div (x™) = (m,v;) D;. (1.3)

=1

Example 1.1.13 Let us continue the example 1.1.3, related to the fan of P, where the
generators are vg = —€j — +++ — €p, V] = €1,...,U, = €. If D; = div((;), where (; is the

variable assigned to each vector v;, for i = 0,...,n, then, according to (1.3),
0~ div(x%9) = —Do+ Dj

for every j = 1,...,n. It turns out that the divisors are equivalent (Dg ~ - -+ ~ D)) and that
Cl(P™) is generated by the class of one of those divisors. Without loss of generality, we can

write Cl (P") = [Dy] which leads to the isomorphism Cl (P") ~ Z.

Example 1.1.14 Consider the toric variety P! x P! whose fan’s generators are the vectors

vl = ey, Vg = —eq, V3 = e9 and vy = —esy. Then,

0 ~ diV(Xel):D]_—DQ

0 ~ div(x*®) = D3 — Dy.
Thus CI(P! x P!) ~ Z? which is generated by [D;] = [D2] and [D3] = [D4]

Example 1.1.15 The fan of the Hirzebruch surface H, is generated by v = —ej + reo,

vy = e, v3 = €1 and vy = —eg. Then, Cl(H,) ~ 72 since

0 ~ div(x*)=-D1+ D3

0 ~ div(x*®®) =rDy1+ Dy — Dy.

Example 1.1.16 Similarly to the previous example, the particular case of the Hirzebruch
surface in example 1.1.5 has CI(H) ~ Z? and the classes of its divisors fulfill the relations

[Da] = [Dy4] and [D1] = [D3] + [D4].

Example 1.1.17 Since the contributing vectors of the weighted projective space P(1,1,2)
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are vg = —ej — 2eg, v1 = e1 and vy = eo, then

0 ~ div (Xel) =—Dg+ D,

0 ~ diV(XeQ):—2D0+D2.

This means that the equivalence classes satisfy the following relationships [Dy] = [D1] and

[Ds] = [2Dy].
Cartier divisors induce some important sheaves on X constituting the substructure for the
rest of the present work. Let {U;} be an open cover of U such that U = J, U;.
Definition 1.1.2 A sheaf F := F(U)ycx of Ox(U) modules is a collection of rational
sections on U such that:

o If V C U and f € F(U) then the restriction f|y belongs to F(V).

o If f; € F(U;), for each i, satisfies the compatibility condition
fi|UiﬂU]' = f]|UzﬂUJ fOI' au i?j?

then there exists an element f € F(U) with f|y, = f; for all 4.

By using the gluing property of sheaves, we can find global sections on X from local sections.
These functions are called sections of F over U and the module of section F(U) can also be

expressed as I'(U, F).

In the case of a compact toric variety X, the global holomorphic sections are the constant

ones. Thus, if Ox is the sheaf of holomorphic functions defined by

U— Ox(U) := {f:U — C|fis holomorphic on U}
= {f e C(X)"|div(f)lv = 0} U{0}, (1.4)

where U C X open, then I'( X, Ox) = C.

To every Weil divisor D, one associates a sheaf Ox (D) which is defined by
U — Ox(D)(U) = {f € C(X)*|(div(f) + D)|y = 0} U {0},

In particular, this is the sheaf of rational functions such that the multiplication of each one by
the generating function of the divisor D is a holomorphic function. This notion gives rise to

global analysis on compact projective toric varieties, where the global sections are quotients

14



of ’homogeneous’ functions.
If Dy ~ Dy then Ox(D;) ~ Ox(D2), (6, Proposition 4.0.29]).

Now, by taking a Weil divisor D on X, D = ) .a;D; and by recalling the divisor of the

rational function x™ in (1.3), the relation
divix™)+D >0
is reformulated as
(m,vi) +a; >0, (1.5)
for every i = 1,...,d. Hence, the polyhedron Pp can be defined.

Definition 1.1.3 The polyhedron Pp of a Weil divisor D is defined as

Pp:={me€ Mg : (m,v;) > —a;,foralli=1,--- ,d}.

This definition provides a direct way to determine the global sections of Ox (D).

Proposition 1.1.1 [6, Proposition 4.3.3] If D is a torus-invariant Weil divisor on X, then
Ox (D) is determined by the polyhedron Pp according to the relation

IX,0x(D)= B Cx"= P c-x™

div(x™)+D>0 mePpNM

Example 1.1.18 Since the Class group of P” is isomorphic to Z (see example 1.1.13) and
since equivalent divisors induce isomorphic sheaves, it is sufficient to study the sheaf Opn (kD)
for k > 0 in order to obtain global sections. The polyhedron Pyp, is k times the convex hull of
the vectors ey, es, ..., e,, where ¢; is the standard basis of R". So, by considering characters

as Laurent monomials x™(t) = t{* - - -t for m = (c1,...,¢n) € Pip,, we get
L(P", Opn(kDy)) ~ {f € C[t1, ..., tn]|deg(f) < k}.

Here Clty,...,t,] is the polynomial ring in variables ¢1, ..., %,. In the next section, a homog-

enization of such polynomials yields

[(P", Opn (kDy)) ~ {f € C[¢p, - - -, Cn]’fis homogeneous with deg(f) = k}.
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Example 1.1.19 By considering D = kDo+ID4 with k,1 > 0 on P! xP! (see example 1.1.14),
the arising polyhedron Pp is the rectangle with vertices (0,0), (k,0),(0,1), (k,1). Hence,
Proposition 1.1.1 implies that for x™(t) = ¢{*¢5? with m = (c1,¢2) € Pp

D(P! x PY, Opi,p1 (D)) =~ {f € Clt1, 2] |deg(f) < (k. 1)}

~ {fe€ (C[Cl,@,(g,@]{fis homogeneous withdeg(f) = (k,1)}.

The degree of f is due to the total coordinate ring which is described in the next section.

1.1.4 The Total Coordinate Ring

Recall that in a toric variety X we introduced the variables (;, corresponding to the generators

v; of the fan of X. Then, one considers the ring

S =ClGq, ...,

to be the total coordinate ring of the toric variety X. This ring has a close connection to the
algebra and geometry of X. In particular, the grading of S by Cl(X), gives us the degree of

each variable (; and the meaning of a ’homogeneous’ polynomial in a toric variety.

More specifically, one considers the short exact sequence
0—M %z, 5 cux) - o,
i

where the map a sends m € M to div(x™) = >, (m,v;) D;, while 3 sends a Weil divisor to
its divisor class in C1(X). If ¢* = J]%, ¢*, then its degree is defined as

=154

d
deg(¢*) = deg (H Cf”) =Y aDi].
=1 %

If Sy is the corresponding graded piece of S for A = D € Cl(X), then S\ ~ I'(X,O0x (X))
([6, Proposition 5.3.7]). We say that f € Sy is homogeneous of degree X or f is called

D-homogeneous.

The global sections I'(X, Ox (D)) of the sheaf Ox (D) have a connection to the coordinate
ring described as follows. If m € Pp N M, where D = Zle a;D;, then, following [6], the

D-homogenization of x™ is defined to be the monomial

¢l = T ¢fmvte (1.6)

i=1
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(m,D)

where ( belongs to S, due to the Pp-inequalities (1.5).

Example 1.1.20 The total coordinate ring of P! x P! is the ring C[(1, (2, (3, (4], where the
variables (; are not independent. Since v; = e, vo = —eq, v3 = e and v4 = —eg, there is an

exact sequence

4
0— 2> @zp, L7 —0,
p=1

where
a(ay,a2) = a1 Dy — a1 Ds + ag D3 — ag Dy
and
B(a1Dy + aaDy + a3Ds + agDy) = (a1 + ag, a3 + ay).

Thus, deg(C1) = deg(¢2) = (1,0), deg(Cs) = deg(¢s) = (0,1) and deg(¢i"¢3*¢5°¢4") = (a1 +
az, a3+ ay). Thus, from now on, by the term a ’homogeneous polynomial’ on P! x P! we will

refer to a bihomogeneous polynomial, whose ’degree’ is determined by the degree [, a;D;].
Namely, let A\ = kD + [Dy € CI(P! x P') and Op1,p1(kDy + IDy) = Opiypi(k,1) be the
associated sheaf to Sz ;). Then

I (B! % P, Opiypa (K, 1)) = Sy,

which means that the global sections of Op1 p1(k,[) are homogeneous polynomials of degree
k in (1, (o and of degree [ in (3, (4. The homogenization of a Laurent polynomial x™ = t‘ftg

for m = (a,b) € Prp,+ip, is

a b
(D) = cpckachcl? = chel <C1> (Q”) ,
C2 G4

with respect to (2, (4. Then, if we recall the example 1.1.19 and take f € I’ (Pl x P, Op1 ypa (K, l)),

the homogenization of such polynomial is

F=diclr (2.2

and the isomorphism in (1.6) is deduced.
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1.1.5 Local Coordinates on a Toric Variety

On an n-dimensional toric variety X, let {v1,...,v4} be the generators of the fan ¥ of X. Let

& be a dual cone such that & = Cone(u,...,u,). Forevery j = 1,...,n, the monomials
d=n+s

Ci(uj,w)
11

expressed in homogeneous coordinates (p,---,{4 of X, are regular in the chart U,. They
define a system of affine coordinates (¢{,...,(7), where ¢ = x". Every chart U, can be

expressed as the quotient

U‘T = {(Cb' . 'agn+s) € Cn+S\Z(E)a CnJrl "'<n+s 7& 0} /G

The rational functions (7 satisfy [¢7,...,¢7, 1. ., 1] = [C1y .-+ G-

Moreover, since
d=n+s

H C;ujvvﬁzgj ﬁ C;“jv'”i)
=1

i=n+1
and Hgl:nﬂ C;ujm") # 0, it is implied that the divisor D; = div((;) in Uy is

Djly, = div(¢]), VYji=1,...,d.

If D= Zd "% a;D;, then D|y, = (a1 D1+ - anDy)|y, because Uy = X\ (Dpy1U--- Dyis).
As a consequence,

D|y, = div ﬁ ¢7) “)

Example 1.1.21 Let U,,; for ¢,j = 0,1 be the charts of P! x P!. We will concentrate on
the chart Us,,,, which corresponds to the cone og9 = Cone(vi,v3) = Cone(e,e2). Similar

observations will also hold in the remaining charts. The chart Uy, is defined by

Unoo = {(C11 G2, G, Ca) € T\ {{0} x C2UC2 x {01}, @@;Ao}/

and (7% = g, 500 = ES are the rational functions defining the local coordinates. Moreover,

D1 |U(,00 = div (2)

Dslu,,, = div (gi)
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In general, if D = kDy + [Dy, then

Dly,,, = div(1)
_ (G
D|Uf710 - (kD2)|Uglo—le -
Gl
k l
Dly, . = (kDy+IDy)y, = div <C2> <<4>
11 11 Cl Cg
_ (a)
D|Uom = (ZD4)’U001—C11V 2.
@)

1.1.6 Line bundles and transition functions

The notion of vector bundles is a topological construction on a variety X that arises by
attaching a vector space to every point of X. A vector bundle contains important global
information, a property that makes it a useful and necessary tool in the case of compact toric

varieties (where the global holomorphic functions are the constant ones).

Definition 1.1.4 A wvector bundle V of rank r over a variety X is a manifold which satisfies
the following.
There is a morphism 7 : V' — X and an open cover {U;} of X such that:

(i) There is an isomorphism
pPi - W_I(Ui) — Uz X (Cr, Vi (17)

such that p; followed by a projection pr onto U; is equal to 7T|W71(Ui), in other words pro p; =
T|z—1(1,)- The functions p; are called trivializations.

(ii) For every 1, j, there exist g;; € GL,(I'(U; N Uj, Ox)) such that the composition
piopj_l (UinUj) xC"— (U;NU;) x C"

is given by

(x,v) — (2, gijv).

The g;; are called the transition functions and by construction they satisfy the compatibility

conditions:
gk =9gijogjx onU;NU;NU, and g;; = gj_i1 on U; NU;. (1.8)

A vector bundle of rank 1 is called line bundle. Bundles are directly related to sections.
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Definition 1.1.5 A (global) section of a vector bundle V' is a mapping
s: X =V

such that mos = idx.

Since there are no non-trivial holomorphic functions on a complete toric variety, from now
on, we are going to work with bundles and sections instead of functions (see also Section

1.1.3).

Vector bundles and sheaves are related as described in the next proposition. More precisely,
the notion of transition functions associates naturally the sheaf of a Cartier divisor with a

sheaf of sections of a line bundle.

Proposition 1.1.2 [6, Proposition 6.0.16] If X is a variety with open cover {U;} and for
every i,j, we have gi; € GL.(I'(U; N U;,Ox)) satisfying the compatibility conditions (1.8),
then:

(i) There is a vector bundle of rank r over X, whose transition functions are the g;;.

(11) A global section s : X — V is uniquely determined by a collection of r-tuples s; € O

such that on U; N Uj, s; = gijs; for all i, j.

For example, let V' be a line bundle (r = 1) on a smooth toric variety X, {Uy, }; be its covering
induced by the cones of its fan and s : X — V be a global section. If p,, : 71 (Uy,) ~ Uy, x C

are the corresponding trivializations given in (1.7) and 7 is the projection mapping such that

7 : Uy, x C — C, one can construct functions

Sg; 2 Uy, = C (1.9)

(3

that are defined on the open set U,, of X (and are zero homogeneous with respect to the

homogeneity of X ) such that

(1.10)

=T 0p;0
Soy = T O P; SUO'Z'

or, equivalently, s,; = pg, © S|y, , where p,, = 7 o p,,. Moreover, observe that on U,, N
7
Uy,

_ _ ~~1 _ ~ _ = ~—1 — .. — ..
S0, = Po, ©8 = P, © Py, © Po; © S = Pa; © Py, O So; = Gij © So; = GijSa, (1.11)

indicating that the functions s,;, s,; are compatible for every i, j € I and then s is realized
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through the use of the family {s,, };. Since the transition functions are holomorphic, one can

observe that the action of the 9 on (1.11) yields
5501- = gijgsaj

on Uy, N Uy, and thus the family {5301}1‘ determines similarly the form Os.

Also, the following theorem is of importance.

Theorem 1.1.1 [6, Theorem 6.0.18] On a toric variety, the sheaf L = Ox (D) of a Cartier

divisor is the sheaf of sections of a line bundle Vp — X.

In particular, if D is a Cartier divisor, then it is locally principal and thus, for an open cover
{Ui} of X, we get D|y, = div(f;)|y, for f; € C(X)*. By using the local data of D, {U;, fi},
we can construct a line bundle V; with transition functions g;; = f;/f;, since they satisfy
the compatibility conditions. Moreover, the functions (gz-j)k also satisfy these conditions and
they constitute the transition functions of a new line bundle (V)¥, that is the k-fold tensor

products of V. with itself.

Example 1.1.22 The sheaf of sections Opn (kDy) (see Example 1.1.18) which is also denoted
by Opn (k) indicating its independence from any choice of divisor from the collection {D;}!" ,,
induces the line bundle denoted by L*. This bundle is the k-fold tensor product of the
hyperplane bundle L of P™ with itself. Namely, if {U;}?" o (U; = {(Co,--.,{n)|C # 0}) is the
standard open covering of P, then the local data of Dy (Dg ~ Dy ~ --- ~ D,,) lead to the

N\ kK
- (9

of the line bundle L*, 7 : L¥ — P!. The sheaf of sections of L¥ is the sheaf Opn (kD).

transition functions

Example 1.1.23 Recall the sheaf Op1yp1 (kD2+1Dy). From the local data of the divisor D =

1

kD3 + 1Dy, we observe that the transition functions with respect to the covering {Us,, }2-7 =0

(see example 1.1.7) are given by
goo,10 = (Cl>k goo,01 = (Cg)l 900,11 = <Cl>k <C3>l
’ CY Ca) 7 G/) \G/)’
g1o,01 = <42>k <<3>l g10,11 = (&’)l g11,01 = <C2>k
’ G Gi) 7 G) 7 6
These transition functions satisfy the conditions (1.8) and hence give a line bundle 7 : V; —

P! x P! where V; = L* @ L' such that the sheaf of sections of this line bundle is the sheaf
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L = Opiypt (kDQ + lD4).

1.1.7 Ample Divisors

The notion of ample divisors is pivotal for the rest of this work due to the projective embed-

ding that they induce in the case of compact toric varieties.

Let D be a Cartier divisor on a complete toric variety X.

Definition 1.1.6 The divisor D is a very ample divisor if
(i) D has no basepoints i.e. for every p € X, there is a section s € I'( X, O(D)) with s(p) # 0.

(ii) The mapping

ép: X — PN!

p o= X)), X" (p)) (1.12)

where m; € PpNZ", forevery i =1,..., N and N = |PpNZ"|, is a closed embedding (¢p is
an injective, continuous and closed map meaning that ¢p (W) C PN~ is closed for all closed

subsets W C X).

The divisor D is ample when kD is very ample for some integer £ > 0. In the particular case

of a smooth complete toric variety, the divisor D is ample if and only if it is very ample.

The vectors m; for every ¢ = 1,..., N are called the integral points of the polytope Pp and

if X is a compact toric variety, then X is called projective.

According to [6] (see Proposition 5.4.7.), ¢p : X — PN~!is the Zariski closure X (subvariety
of PN=1) of the image of ®p : T — PN-! (qSD‘T = ®p), where T is the torus and ¢p maps

the point ¢t = (t1,...,t,) € T into (X" (t),...,x™ ™ (¢)) . One can write

¢p(X) =@p(T) = X. (1.13)

Moreover the image (x™ (p),...,x™V(p)) of a point p in X through the map ¢p can be

expressed equivalently as
d d
(H CZ‘<m1’Ui>, L H Csmmvi))
i=1 i=1

with respect to the variables ((1, ..., {4), while by applying the D-homogenization argument,

22



the image is given by

d d
(H UL | | gij’”f”“f) . (1.14)
i=1 =1

Hence, these polynomials give an explicit construction of the quotient of the toric variety X

by mapping C%\ Z(X) to the projective space via these polynomials.

When D = Zgzl a;D; is a Cartier divisor, there exists m, € M such that
(Mg, v;) = —a; (1.15)

for every i = 1,...,d and for each n-dimensional cone ¢ € X.

There are simple conditions to determine whether a divisor is an ample divisor.
Proposition 1.1.3 [6, Theorem 6.1.7] The following are equivalent:

(i) D has no basepoints.

(ii) my € Pp for every n-dimensional cone o € 3.

(iii) {my|o € X} is the set of vertices of Pp.

Proposition 1.1.4 [6, Lemma 6.1.18] The divisor D is ample if and only if m, € Pp and

Mg, # Mg, for every two n-dimensional cones 01,09 € ¥ with o1 # o2.

Now, there is an easy way-formula to compute ample divisors on a smooth complete toric
variety. Let 7 = o N o’ for 0,0’ two disjoint n- dimensional cones of ¥ and a vector v; be
a generator of the cone ¢’ but not of 0. Then a necessary and sufficient condition to decide

whether a divisor D = Z?:l a;D; is ample, is the following.
Proposition 1.1.5 The divisor D is ample if and only if
(Mg, vj) > —aj (1.16)

for every n-dimensional cone o, where v; is satisfying the assumptions of the previous para-

graph.
Example 1.1.24 Recall the fan of P' x P! with generators v; = ey, vo = —ej, vz = e and
vy = —eo. The Class and Picard groups are equal and

Pic(P! x P') = CI(P! x P') ~ {kDs + IDy|k,l € Z}.
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The relation (1.15) yields that
me, = (0,0), mg, = (k,0), mgyy = (k, 1), mg, = (0,1).

Hence, by considering the divisor D = kD + [ Dy, it turns out that D is very ample if and
only if k,1 > 0, according to (1.16).

In general, if D = Z?Zl a; D;, then
D ~ (a1 + az) Dz + (a3 + aq) Dy,
which is ample if and only if a; + a2 > 0 and as + a4 > 0.

Example 1.1.25 Let us consider the Hirzebruch surface H,. By example 1.1.15,
Pic(H,) = Cl(H,) ~ {kDs3 + IDy4lk,l € Z}.
The vectors m,, are
Mg, = (—k,0), mg, = (=k,1),myy = (rl,1),ms, = (0,0).

Let D = kD3 + [Dy4. Then, (1.16) yields that D is ample if and only if k,1 > 0.

Now, if D = 2?21 a; D;, then
D ~ (a1 — rag + az) D3 + (az + a4)Dy.
Thus, D is ample if and only if a1 — ras 4+ a3 > 0 and ag + a4 > 0.

Example 1.1.26 In the particular case of the Hirzebruch surface H of example 1.1.16, the
Picard group is given by

Pic(H) = Cl(H) ~ {kDs3 + ID4|k,l € Z},
as in the previous example. The vectors m,, are
me, = (0,0), mg, = (k,0),mgy = (k,l — k), mg, = (0,1).

Let D = kD3 + [Dy4. Then, (1.16) yields that D is ample if and only if k£, > 0 and | > k, as

opposed to the previous example.
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Example 1.1.27 By recalling the weighted projective space P(1,1,2) (see example 1.1.12)
and taking the divisor D = 2Dy, then my, = (0,0), m,, = (2,0) and m,, = (0,1). Since m,,

satisfies the wall inequality (1.16) for every ¢ = 0, 1,2, the divisor D is ample.

1.2 Weighted Koppelman formula on C"

Let &, 4(2) be the space of smooth (p, ¢) forms in the open set 2 C C" while D, ,(2) C &y 4(2)
denotes the subspace of smooth (p,q) forms which are also compactly supported in 2. In
other words, D, 4(£2) is the space of (p,q) test forms on Q. This space is endowed with the
topology of uniform convergence: the sequence {¢;} € D, 4(12) tends to zero if and only if
supp ¢ C K CC , for a fixed K and both ¢; and all its derivatives tend uniformly to
zero. A current 1 of bidegree (p,q) on Q, written as ¢ € £, 4(£2), is a linear continuous form
Y Dyp_pn—q(Q) = C. If ¢ is a form on Dj,—p (), the value of ¢ at ¢ is denoted by
< 1, ¢ >. According to distribution theory, every (p,q) form ¢ with coefficients in £} ()

loc

defines a current of bidegree (p, q)

<wb>= [ $AD € Dipu (@),

Thus, the dual pairing < 1, ¢ > is often replaced by the integral notation.

Moreover, if Z an (n — p)-dimensional complex submanifold of a complex manifold X, then

a (p,p)-current of integration over Z is defined by

<[Z],¢ >:= /Z ¢, ¢ € Dn_pnp(X).

In order to integrate the form ¢ on Z one can use the partition of unity and local coordinates.
If {U;} is an open cover of Z and the restriction of ¢ on Z, ¢‘Z, is supported on a chart

w; : U; = V; where V; is an open set of C" then

<mw>—é¢>kwm%.

Moreover, with every closed analytic subset Z of a complex manifold X of dimension (n — p)
there is also an associated current of integration defined by integration an (n —p,n — p) test

form on X over the regular points of Z.

Currents inherit properties of differential forms like the ’commutative law’ of the wedge

product such that if ¢ € £,,(Q) and w € & 4(Q), a (p + r, ¢ + s)- current arises, following
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the rule

<YAw g >=<P,wAd>=(=1)PrI0T) < GAY ¢ > €Dy prnqs(). (1.17)

The exterior differentiation of the current ¢ € £, ,(€2) is defined by
<O, ¢ >= (1P <,06 >, ¢ € Dnpn—q-1(Q), (1.18)

as a consequence of the classical Stokes formula. According to this rule, 9y and di provide

also currents of bidegree (p + 1,¢) and (p+ 1,q + 1), respectively.

Consider a pair of multivariables z = (21,...,2,) € Qand ¢ = ((1, ..., () € Q. For notational
convenience, following [1], we are also making use of the settings £™(Q) = @)_o Ek k+m ()

for the space of smooth forms while L7,

() = Dj_o Lik+m(Q) for the corresponding
space of currents. Let n(¢,z) = z — (. It is a (0,0) form vanishing over the diagonal
A={C=2/((¢z) € QxQ}. Define E* = {dn,...,dn,} C 17 (2 x Q) to be the dual bundle
of E = span{ey,...,e,}, observe that the basis element of E are the dual elements for the

base of E*.

Following [1], [2], the (1,0)- vector field 0, is defined to be

= 0
5,2—( = 27TiZ(ZZ‘ — Cl)f
P 9¢;

This contraction acts on smooth differential forms by interior multiplication (=) according to

the rule

0

ac 9% = 0i
where ¢; ; is the Kronecker delta. It is easy to observe that d._. anticommutes with the
0- operator (i.e. 5C—z5 = —564_2). Furthermore, one considers the operator V determined
by

V= v(—z = 6C—Z — 0.

Since d¢—, lowers degree in z; by one, while 0 increases the conjugate degree by one. Thus

V maps £™ to LM,

Definition 1.2.1 A weight g is defined to be any smooth form g € £°(£2 x Q) satisfying both

conditions gpo(z,2) =1 and Vg = 0.

Introducing weights to the problem of finding a form u € \(E* @7y ;) such that Vu = 1-[A],
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is transforming the problem to finding a form K € A(E*@®1Tj ;) satisfying the equation
VK =g —[A] (1.19)

in the current sense. Here [A] denotes the current of integration over the diagonal A of

Q x Q. More precisely, K will belong to £_1. (2 x Q) since in the right hand side of (1.19),

curr

[A] belongs to £9,,..(Q x Q) and g € £L°(Q x Q).

curr

In the case of representing (p, ¢) forms, a suitable choice of K results from the wedge product

of a weight g with a contraction of the Bochner-Martinelli form, namely

b "L b A (Ob)FT
k=1

where z and ¢ are both considered to be variables. The (1,0) form b(z, () is given by

b(z,¢) = LM

= 1.21
2mi |z — (]2 (121)

where 0 acts on both ¢ and z variables.

In particular, if 2z is considered to be a fixed point in (2 rather than a variable (this happens in
the case of smooth functions), then 0 indicates the derivative d; and hence b can be written

in the simpler form
1 2 (3 — (s
b= — Z (ZJ Cj)dcj (1‘22)
since dc_,b = 1. Thus, in this particular case, the form u equals

u= ib/\ (Ob)k-1. (1.23)
k=1

Put K = (uA ¢g)nn—1 and P = g, , then the equation (1.19) becomes
0K =[A]— P (1.24)

and the desired Koppelman formula in C" is deduced. More specifically, one has the following

Theorem [1].

Theorem 1.2.1 Assume that D CC Q and ¢ € &,4(D). Then ¢(z) can be represented as
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the sum of integrals

() = KA¢+/L)KA5¢+5Z/DK/\¢>+/DP/\¢, (1.25)

oD
by means of the form K and the smooth form P and the integrals are taken over the ¢ variable.

Proof. At first, observe that if ¢ has a compact support in D, then the boundary integral
vanishes. Since the representation (1.25) has a dual meaning, consider a test form i €
Dp—pn—q(€2) that is acting on the right hand side of the renewed (1.25). Then, by making

use Stokes theorem and having in mind the equality of currents (1.24), it turns out that

/Z(/CK/\5¢+<§Z/CK/\¢+/CPA¢>A¢

= /ZCK/\dgb/\l/J—i-(—1)p+q/Z<K/\<;5/\d1/J+/ZCP/\¢/\¢
= /KAd(qb/\i/J)—i-/ PApANY
26 26

= /ZCdK/\gZ)/\w—F/ZCP/\qb/\l/J

= /;CéK/\qb/\?b—F/z

= /([A]—P)/\¢/\¢+/ PANGNY
z,C z,¢

)

- /Zg[A]Aquw—/wa.

)

PAOAY
¢

Otherwise, in the case when ¢ does not have a compact support, ¢ can be decomposed into
a compactly supported form ¢ in D and a form ¢o that equals to zero in a neighborhood
of z such that ¢ = ¢1 + ¢2. According to the previous paragraph, it remains to show that
(1.25) holds for ¢y. Similarly, one takes a test form ) with the additional property of having
support in the vanishing neighborhood of ¢2. Then

/( KA(]ﬁQ)/\l/J:/ de (K N ¢2) N

z BD Z:C

- /d(K/\¢2)A1/1—/ do (K N ¢2) N
Z,C Z:C

:/Z’

= /([A]—P)A¢2A1,ZJ—/ K/\é@/\qp—/ 0. (K A ¢2) N
26 2 2

dKA¢2Aw/ KAdqbgAw/ ds (K A o) A
¢ 2, z,¢

- /f’“w_/wa“w_/Z,CKA%?W_/Z,ch(KA(bz)W’
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or, equivalently

/Z¢2A¢ = /Z( 8DKA¢2+/DK/\5¢2+5Z/DKA¢2+/DP/\¢2>A¢.

Hence, a Koppelman representation formula for ¢ is obtained by combining the corresponding

formulas for ¢1 and ¢s. O

For the spaces £(D) of smooth functions on D and O(D) of holomorphic functions on D, one

has the following result.

Corollary 1.2.1 If ¢ € £(D), the Weighted Koppelman formula is reformulated as follows:

B(z) = K/\¢+/DKA8¢+/DPA¢, o€ E(D). (1.26)

oD

Moreover, if ¢ € O(D) then

b(z) = KA¢+/ PA¢, ¢€O(D). (1.27)
oD D

Proof. In particular, when a function ¢ € £(D) for D cC Q, the third term of the Koppelman
formula does not exist. Then (1.26) is trivial. Moreover, if ¢ € O(D) then the second term
of (1.26) also vanishes and (1.27) is deduced. O

Remark 1.2.1 The Koppelman representation formula (1.27) is also valid for functions
which are continuous on D and holomorphic on D, whenever D can be approximated by
an increasing (with respect to C) sequence of domains (this is the case when the 0D is
reasonable). More precisely, if p is a defining function of D, we can assume that p is a C!
function in a neighborhood U of 9D such that DNU = {p < 0}, dDNU = {p = 0} and
dp # 0 in U. For a sufficiently small ¢ > 0, if we set D, := {p < —e}, then the Koppelman
formula (1.27) is valid on each D, and a limiting procedure as ¢ — 0 yields the desired result.

Thus, if ¢ € A(D) = O(D)NC(D), then

é(z) = KA¢+/DPA¢. (1.28)

oD

1.3 Weighted Koppelman formula on P”

A Weighted Koppelman formula which provides integral representations for sections on a
line bundle, is a generalization of the corresponding formula on C™. Since P" is compact

and the global holomorphic functions are the constant ones, the handling of the global object
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leads to the the use of the line bundle L* (see Example 1.1.22) with the corresponding sheaf
of sections being Opn(kDy) (the sheaf of meromorphic functions that are isomorphic with

k-homogeneous polynomials on C"*! according to the example 1.1.18).

Let £ 4(Q, L¥) be the space of (0, q) forms on Q C P" taking values in L¥, in other words the
space of sections belonging to the vector bundle A%9T*(Q) @ L*. A form on C"*! is called
projective if it arises from the pullback of a differential form on P™ through the canonical
projection of C**1\ {0} in P". Hence, ¢ € 507q(Q,Lk) if its pullback to C**! is a k-
homogeneous projective form of bidegree (0,q). All the forms that appear in the Weighted

Koppelman formula on P are projective forms on C**!, in order to be well-defined.

To decide whether a (p,0)-form f on C**! is projective or not, E. Gétmark formulated in

[14] a necessary and sufficient condition which says that f is projective if and only if
"~ 9
Scf =2mi Yy Cimmf=0.
L

Similarly, a (p, q) form f on C**! is projective if and only if it is both d¢ and d¢ closed.

Instead of the Bochner-Martinelli form, which plays a fundamental role in the construction of

the kernels on C", here (following the ideas of Gétmark [14]) we consider the (1,0) form

~ z. C-d
v:z'dC—(ﬂ)C(’iO (1.29)
that takes values in L[IC] & L[IZ] and
v " v A (Qu)kt
u = VZ,U = (521})16 (130)
k=1

which is a contraction of v. The vector field 6, = 2miy ;" zia%i was introduced instead of

the corresponding field d._, in C", while V, =4, — 0. An extension of the notion of weights

to P" also exists. According to [14], a smooth form g € LY is a projective weight in P™ if
k—m

V.9 =0, goo([z],[2]) = 1 and g, takes values in Lig™® Lg}_k for some fixed m. A specific
weight

Gz 1 (¢ d
=P 2m"9< i ) (1.31)

is used here such that oo takes values in the line bundle L[_Cll ® L[lz}, while o 1 in L?C] & L?Z}.

Hence, the kernels K and P are defined by
K= (@A™, 1 and P=(a""),,
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respectively and they satisfy the current equation 0K = [A] — P. The power of the weight o
was chosen such that the integrands in the Weighted Koppelman formula on P" take values
in the trivial line bundle (being of homogeneity zero in ¢ variable) for a form ¢ € &y 4(D, L¥)

where D CC 2. Hence, the Koppelman formula on P™ follows:

Theorem 1.3.1 If D CC Q for some domain Q C P" and ¢ € £ 4(D, L¥), then

#(z) = K/\d>+/DK/\8¢—|—GZ/DK/\¢+/DP/\¢, (1.32)

oD
where the integrals are taken over the ( variable.

The form « can be replaced by any other projective weight, g, such that
K=unNg)pn1 and P =g,y (1.33)

Hence, ¢ will take values in different line bundles according to the choice of the projective

weight, such that the integrals take values in the trivial line bundle.

1.4 Multi-Logarithmic Residue current

Let f = (f1,..., fp) be a p-tuple of holomorphic functions in a domain G C C" (p < n)
defining a complete intersection which means that Zy = f~'(0) N G has dimension n — p.

The residual current O (%) =A_,0 (i) introduced in [7] is defined by

Jj=1 f]
_ /1 qﬁ
<d(=),6>=1lim / S 1.34
<f> ¢ 50 fi- o fp ( )
1£5(2)|=¢;(8)
1<j<p

where ¢ € Dy, ,—p(G) and 6 — (€1(9), ..., €p(d)) is an admissible path, that is,

€;(9)
6—0 6?—1—1 (9)

=0 foranyje{l,...,p—1}and anyk € N.

The limit of (1.34) is independent of the admissible path. For notational convenience let
T°(f) ={z: 1fi(2)] = ¢(0).5 =1,....,p}.

This current is associated with the multi-logarithmic residue current which is denoted by

51 . dfl dfp
< 0= ANdf,¢ >:= lim “— AN...AN== A0, 1.35
7 f, ¢ >:= lim i o A ¢ (1.35)

for a ¢ € Dy—pn—p(G).
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Following [39], we first define the geometric multiplicity pq(g) of a holomorphic mapping
g : Uy — C" defined in a neighborhood U, C C", where a is an isolated zero of g. If the
closure U, does not contain any other zero of g except of z = a, then there exists a positive
number ¢ such that for almost all ¢ belonging to the polydisc {¢ : |(j| < e}, the mapping
w = g(z) — ¢ has only simple (isolated) zeros in U, (in other words the Jacobian J,, = dw/0z
is nonzero at these points). Moreover, the number of these zeros is finite and independent of
the choice of the point ¢ and the neighborhood U, ([39]). We refer to, the number of such

simple zeros as the geometric multiplicity p4(g) of g at a.

Now, in view of the preceding paragraph, let us also define the multiplicity us(f) of f along
the irreducible components S, where S are the irreducible components of Z;. For each regular
point a in Z;, that is a point for which there is a neighborhood U such that Z; N U is a
complex submanifold of U, let L, be a complex plane transversal to the tangent plane of Z
at a and lp41,...,l, be the corresponding linear functions. The geometric multiplicity jq(g)
of the system g = (f1,..., fp,{p+1,--.,0n) which remains constant for any transversal plane
L, and for any regular point a lying on one irreducible component S of Z; due to Rouche’s

Theorem, defines the multiplicity us(f). Then,
| o= us(5) [ & 6€DrpnylO).

The following theorem constitutes a fundamental tool in our construction. It can be viewed

as a generalization of the ’classical’ Poincaré-Lelong formula which is the following result for

p=1.

Theorem 1.4.1 [7] Let f = (f1,..., fp) be a p-tuple of holomorphic functions in a domain
G C C" defining a complete intersection Z; = f~1(0) N G. Then,

Ly élAd =
<2m> < ? If, ¢ >= Zfﬁba

where ¢ € Dy,_p, —p(G).

Proof. Following [39], we consider a holomorphic function ¢ on G such that ¢ vanishes on
the singular points of Z; located in the support of ¢. Then (f,9) : G — CPt! is a complete

intersection in a neighborhood of the supp ¢ and according to [39] the identity

51 R
<8f/\df,¢>—}%%1_1>% o AN fp/\qb (1.36)

holds, where T%" = T(f

pr) is the tube constructed from the restriction of f to the domain
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D" ={z € G: |[¢(z)| > r} (no any singular point of Zy N supp ¢ is contained in the tube).
A sequence {rj} that tends to zero can be constructed such that r? are noncritical values for
the restriction of |/|? on the regular part of Zy. For each k, let Kk = Zy ND"™ Nsupp ¢ and
{UF} be a finite open cover for each K* in G. A parametrization of these open sets allows
us to write U¥ N D™ = U’ x U” where U’ is a neighborhood of CP with coordinates 2’ =
(21,...,2p) while U" is a neighborhood of zero in C"? with coordinates z” = (zp41,...,2n)

and Z;NUE =0 xU".

By using a partition of unity argument subordinate to {U¥}, a family of functions n* : K* —
[0,1] satisfying >° nk = 1 and supp(n,) C UE is constructed, such that the theorem is

reduced to proving the equation

d d
i [ B n e nbo = ripas(h) [ b
6—0 T&Tk fl P ZfﬂUlIf
or, equivalently,
d, d,
lim LN . (zm)z’)ﬂs(f)/ k. (1.37)
6—0 TS k(U xU") f1 fp o' xU""

In the above integrals, ug(f) is the multiplicity of the mapping f along the irreducible
component S intersecting U¥. The integral on the left hand side of (1.37) is modified to an
iterated integral according to the following argument. The tube T%™ N (U’ x U”) can be
split into the analytic sets A(() = {f = {} N{U’ x U"} where ¢ runs over the distinguished
boundary I = {¢ € CP : ICil = €j(6),j =1,...,p}. Hence, one can find a proper analytic
subset V' such that A({) is smooth in a neighborhood V of the origin in CP outside V' (see
[39]). Since the path is admissible, I'’ does not intersect V and T%"*N (U’ x U") is decomposed
into the nonsingular fibres A(¢). Moreover, f = (f1,..., fp) does not have zeros on 9U’ x U”
since 0/ x U"” = {f = 0} N U* and A(() for ¢ close to zero does not intersect OU’ x U”.
Let m: A(¢) — U” denotes the projection mapping of the analytic set A(¢) C U’ x U” into
U” and set o equal to the discriminant set of this covering over U” which is the image of
the analytic set {25/ = 0} N A(¢). The number of sheets of the covering 7 identifies with
the multiplicity of f along 0/ x U” (= ps(f) along a component S of the analytic set Zf

intersecting U¥). Then,

lim %/\.../\d—fp

0—0 T6:7k ﬂ(U’XU”) f1 fp

Anky = lim dQA.../\dgp/ nte (1.38)
0—0 J1s G Cp A(C)
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where the inner integral on the right hand side will be denoted by h({) and satisfies

- ki EoV(r=L(2")) = kY= L(2").
WO = [ o= [ ol @)= | wboe @)

Note that h(() is continuous for ¢ € V. Letting { — 0, since all the sheets of the covering 7
tend to 0’ x U”, we get

h(0) = us(f)/ o

0'xu”

and hence, the right hand side of the (1.38) yields (270)Pps(f) Jo/ s n nk¢. It turns out that
equation (1.37) holds. Thus,

: dfy dfp . / . /
lim = A...AN== A= (2m)P = (2m)P
lim | p o= @ri ) ps(f) | 6= (2m) x
and the result follows. O
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Chapter 2

Boundary properties of functions
representable by Weighted
Koppelman formula and related

Hartogs phenomenon

In the present chapter we establish results concerning the boundary behaviour of weighted
Koppelman type integral with a specific choice of weight. Our model are the related results
concerning Bohner-Martinelli (B-M) type integrals to be found in [26] and [29]. The dif-
ferential forms involved in the Koppelman kernel have term contained in B-M integration
kernel, but in the case under study the kernels involved are not harmonic. Thus, to some
extend the results obtained are on the one hand close in spirit to those found in [30] and [31],
but on the other hand they are also surprising because the kernels involved do not have the

aforementioned property of B-M kernel.

2.1 Jump Theorems for a Weighted Koppelman formula

A jump theorem for a Weighted Koppelman formula holds for continuous functions satisfying
a Holder condition. This theorem can be generalized on functions that are continuous and
integrable in the boundary of a domain D. We also derive a result concerning d-normal

derivative of the Koppelman integrals.

35



2.1.1 A Jump Theorem for continuous functions satisfying a Holder con-

dition

In this section we assume that D is a domain in C" which has a boundary 0D of class C',
that is, we can write

D={zeC":p(z) <0}

where p is a real-valued function of class C' in some neighborhood of D and dp # 0 on

oD.

For a specific choice of a weight in the Weighted Koppelman formula on C™ (Section 1.2), all
the results in this chapter are derived. However, we point out that other weights with similar
properties may contribute in deducing similar results. It is straightforward to see that the

form

oI — =P
h = 1- Y
(2 V(e
is a weight in C" (see Definition 1.2.1) since ho(z,2) = 1 and Vi = 0. Moreover, h can be

written in the following simpler form

- 1 S dlK— 4P
h(C7z) T + |< ! Z|2 T 8271'2(1 + |C - Z|2) (21)

where hoo(C,2) = = 0(1) while h11(¢,2) = 052522 = O(I¢ — 2[7). The

1
THC—217 2mi(L+1C—27

weight g is defined to be g = h™. Its component of bidegree (n — k,n — k), namely

n _
In—kn—k = (hn)n—k,n—k = (k’) (h0,0)k(hl,l)n k’

satisfies the growth estimate g,,—p n—r = O(|¢ — 2| 72(=k)) for every k= 1,...,n.

By using this weight ¢ in the construction of the Koppelman kernel, it takes the following

form:
K = (u/\g)n,nfl:Zuk,k—l/\gn—k,n—kz
k=1
3 @)am—zPA<5mc—ﬁjklA< 1 )kc;am—d2>"k
— (2mi)" ¢ — 2] ¢ — 2|2 L+[¢— 2 L4+ [¢ — 2[? '

k=1

Quotient rule B B
SOIC—2P _00lc— P olC—2 dlc— 2P
¢ — 2 [ N (S N (-
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and multiplication by the form 9|¢ — z|2/|¢ — 2|2, imply that

o)==, 50l¢—=> _0I¢C—=f  09|¢— =
¢ — =27 [ e R T

Similarly, one obtains

o) —=z> 5 0lc—=2*> _9lK—z 90IC— 2
0 = A .
¢ —2[? L+[C—2P  [C—2*  1+]C—z]?

Hence,
_ () I
"o kzl(27”')”|C—Z|2k(1+|g_z|2)n8C 2| A (90|¢ — z|%)
; (1) (n —1)! n

2 T - A 2 G e)

where d([j] denotes the wedge product d(iA. . .AdC, from which the differential dC_j is omitted
while d¢ = d(; A ... Ad(,. Observe that

K:<1 1+rc—z|2) Zrc—z\%“"” b

where uy, ,—1 is the term of the form w in (1.20) with bidegree (n,n — 1) (in other words,

Upn—1 is the Bochner-Martinelli kernel). Since

1 1 1

< < 2.
R R T e 23
for every k =1,...,n, it turns out that
K(¢,2) = O(I¢ —2'72"). (2.4)

On the other hand, using the identities 9| — z|> AD|¢ — 2| = 0, 9|¢ — 2| AD|¢ — 2|? = 0 and
nd|¢ — 2|2 NO|C — 2|2 A (00]¢ — z|?)" 1 = |¢ — 2|2(9D|¢ — z|?)™, the kernel P takes the explicit
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form

A PR et A
P = gun=(hy) _<a%ﬂ1+C—ZW>

09|¢ — #I? 0¢ — 2> N OIC — =[*\"
<27”'(1 +IC—27) 2wl +]¢ - 2P)? >
1 \"[(001¢ —2*)"  ndl¢ — 2 AOIC — 2> A (DOIC — 2/*)" "
<m> [(1+ ¢ == (1 4[¢ — 2>+
L\"_(99¢—=*)"
<27W> (141¢ — z[>)"*!

n(n—1)

1\" —1)"z n! _
- () wrpm .

One observes that the boundary behavior of Weighted Koppelman type integrals will depend

mainly on the part K of the kernels involved.

Recall that a function ¢ satisfies the Holder condition with the exponent a > 0 in 9D if

6(¢) = ¢(2)] < CI¢ = 2[%, for (,z € ID, (2.6)

where C' > 0. For notational convenience, let C*(0D) be the class of continuous functions

that satisfy Holder condition with exponent « given in (2.6).

Let ¢ € C*(0D). The next lemma guarantees the extension of ¢ to a neighborhood V(9D)
of 0D, as a function satisfying the Holder condition with the same exponent a. This key

lemma is known but its proof is given for the completeness of the thesis.

Lemma 2.1.1 If ¢ € C%(0D) then ¢ can be extended as a function satisfying a Hélder
condition with the same exponent o in a neighborhood V(9D) of D such that D C V(9D).
In order to prove this extension lemma, we quote an auxiliary result.

Lemma 2.1.2 Let u be a real function in 0D such that w € C*(0D). Then, u can be extended
to V(0D) D D, such that Hélder condition holds in V(OD) with the same exponent c.

Proof. Let us define

U(¢) :== ZSG%%W(Z) = Clz =], (2.7)

for ¢ € V(0D) D D. We will show that U is the required extension of u. Observe that,
U(¢) = u(() for ¢ € 9D because u(z) — C|z — (|* < u(¢) by the Holder condition and this

upper bound u(() is attained for ¢ = z.

Now, consider ¢ and ¢’ be any two points in V(9D). Hence, U(¢) and U(¢’) are both finite.
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Without loss of generality, we can assume that U(¢) > U({’). Then, U satisfies a Holder

condition in V(9D) since

0<UQ)-UK) = SE%%[U(Z) —Clz—¢|*] = SE%I})[U(Z) —Clz = (7]
< sup [(u(z) = Clz = ¢|*) = (u(z) = Clz = {'|%)]
z€0D
= sup [Clz = {[* = Clz = (|°]
z€0D
< sup [C(]z = +[¢ =) = Clz =[]
z€0D
< ClK-¢', (2.8)

where we used the triangle inequality |z — {'| = |z = ¢+ (= '] < |z = (| +|¢ — ¢/| and the
increasing monotonicity of the function g(t) = t* for ¢t > 0 while g(¢) satisfies the inequality
g(t1) + g(t2) > g(t1 + t2) as a concave function. It turns out that U satisfies the Holder
condition on V(9D). O

Now, we can turn back to the proof of Lemma 2.1.1.

Proof Lemma 2.1.1. We begin with the fact that ¢(z) as a complex function can be written
in the form ¢(z) = Re¢(z) + ilme(z). The functions Re¢(z) and Im¢(z) satisfy a Holder

TL%/R?H

condition with exponent « in 9D C C , since

[Rep(C) —Reg(z)] < [0(¢) = ¢(2)| < C|¢ — 2" for (,z€0D
and similarly

Im¢(¢) — Ime(2)] < C|¢—z|* for (,z€dD.

By lemma 2.1.2, Re¢(2) and Im¢(z) as real functions in 9D can be extended to V(9D) D D
as functions satisfying a Holder condition on V' (9D) with the same exponent « and we denote

these extended functions by U(z) and V(z), respectively. Hence,
0(2) =U(2) +iV(2)

is the extension of ¢(z) on V(0D) D D such that

6(¢) —o(2)] = |U) —U(2) +i(V(¢) = V(2))]
< U =UE)|+ V() - V()|
< 2010 - =%,
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and the result follows. In the sequel by abusing the notation, we will denote q~5 by ¢ too.
O

Remark 2.1.1 The extension of Holder condition of an ¢ € C*(9dD) also holds outside D.
Modifying slightly the previous construction, one can observe that the relation (2.8) also

holds for ¢,¢’ € C"\ D. To be more precise, let

U(C) := sup [u(z) —C|z—(¢|*], for (€C"\D
z€0D

be the extension of the real function u(¢) in C" \ D (see Lemma 2.1.2). Then, in view of

(2.8), the inequality

UQ) - <cie-d" (2.9)

also holds for ¢, ¢’ € C"\ D, if U(¢) and U({’) are both finite. The inequality (2.9) is preserved
even if one of the values of U(¢) and U((’) is finite and the other one is infinite (without loss
of generality assume that oo = U(¢) > U(¢’) ), since (2.8) also holds under this modification.
Then, the case of U(¢) and U({") being both infinite is impossible since by choosing ¢’ € 9D,
U({’) is finite and then U(¢) for ¢ € C™\ D must be also finite in view of (2.9). It turns out
that U(() is finite for every ¢ € C™ \ D and analogously to Lemma 2.1.1, ¢ can be extended

as a function satisfying a Holder condition with the same exponent v in C™ \ D.

Lemma 2.1.1 allows us to consider the function ®(z) defined by

3(z)= [ HOK(C2)+ /D HOP(C,2), =¢ 0D (2.10)

oD
for an ¢ € C*(0D) where K and P are given explicitly in (2.2) and (2.5), respectively.

Let @1 be the sum of the integrals in (2.10) when 2z € D, while ®~ denotes the same sum
when 2 ¢ D. Observe that the kernel P which is defined in (2.5) is an (n,n) smooth form with
coefficients smooth functions in z € D and thus, it has no singularities. It implies that the
integral [, #(¢)P(¢,z) is well-defined (since ¢(¢) has been extended). However, the kernel
K described by (2.2), has singularities when {¢ = z} due to the denominator of u. Thus, we
consider the principal value of the boundary integral in the Koppelman type representation
(2.10):

P. V. (K (¢, 2) = lim #(O)K(C,2), ze€dD. (2.11)

oD e=0F JoD\B(z,e)

Later on, we will prove the existence of this limit.
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Following ([26]), let us define 7(z) to be the solid angle of the tangent cone to the surface 9D

at z. More precisely, define
Vol S (z, €)
— lim -2 =9
7(2) v Vol S(z,¢€) ’

where ST(z,¢) is the part of the sphere S(z,¢) = {¢ : [ — z| = €} lying in D, that is
St (z,e) = DN S(z,¢). Then, the following lemma holds.

Lemma 2.1.3

P.V. K((,2z)=1(2) —/D P(¢, 2),

oD

for z € 0D.

Proof. By the definition of the principal value at z € 9D, one has

PV. [ K(,z) = lim K((, 2)
oD e=0% JoD\B(z,e)

= i K K . 2.12
Tim, ( Lo KG2+ [ <<,z>) (212)

Notice that the change of the sign of the second integral in (2.12) is due to the opposite
orientation of S(z,€) in order to distinguish it from the respective orientation of 0D. By
applying Stokes’ theorem, the first term of the expression (2.12) can be rewritten to the

form

/ K = / oK = dK = — / P,
O(D\B(z,¢)) D\ B(z,¢) D\B(z,¢) D\ B(z,¢)

since the kernels K and P satisfy the current equation dK = [z] — P according to (1.24),
where [z] is the Dirac measure at z considered as the (n,n) current point evaluation at z.

Now, as € — 0T, we get that

lim K= —/ P. (2.13)
=0 J9(D\B(z,¢)) D

For the second integral of (2.12), the behavior of the restriction of the kernel K through the

sphere S(z, €) have to be explored. According to [27], the form d([j] Ad( is expressed with re-

spect to the Lebesgue surface measure do after passing to the real coordinates (z1, ..., Zn, Y1, ..

due to C™ = R?". The restrictions of the forms dz[j] A dy and dx A dy[j] to the boundary
0D equal to (—1)/yjdo and (—1)"*~1v;,,do where ~; is the j-th dirrection cosine of the
normal vector to dD. In particular,

ap 1 op 1

9P d P :
g Oz 2|gradp| e Intg 0y, 2|gradp|
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2
where |gradp| = \/Z &Ck (C’?Tpk) ] Since, % = % (m +ig- ), after expressing

dC[j] A dC in terms of dz[j] A dy and dx A dy[j], it follows that

pe _ 1 0p do
dClj] Adc],,, =2n (1)t =2 . 2.14
A &lap UG Terad) 219
In particular, if do is the area element on the sphere then
Y WTNG = Z)dllil e g, =2 NiMedo. (2.15)

J=1

Thus, a substitution of the above form (2.15) into the explicit form of the Koppelman kernel
(2.2) yields that

"L (7)) (n—1)12ntine

S(z,€) = P (27-‘-2')77,62]6(1 + 62)71

K|

which leads to

(M) (n—1)12ntire
K(C,2) = 1d
/S+(z,e) (< z) (27”) k(l ) /SJf(z,e) 7
(

1
2n—1-(2k=1) (,,
(k)u Ty s VoS (.0)

n\ €2k Vol(St(z,¢))
<l<:> (1+€2)" Vol(S(z,¢))

B
Il

[
M:

M

1

I
M=

B
Il

1

When € — 0T, one observes that the only non-trivial term corresponds to the case k = n.

Hence,
, . Vol(ST(z,¢))
1 K = lim ————F% = . 2.16
A S K907 B Vs )~ (210
The result follows from substitution of (2.13) and (2.16) into (2.12). O
Let F(z) be the function defined by the integral
FE) = [ @0 = e)K(G). zeT\oD, (217)

Observe that, F'(z) has no singularity for z € C™ \ 0D. On the other hand for (,z € 9D one

has

[6(0) = ¢()| K (¢, 2)| < CI¢ — 2|*F"do, (2.18)
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since K (¢, z) = O(|¢ — z|*=%7).

The above statement guarantees the absolute convergence of F(z) for z € 9D thus making
F(z) to be well-defined over the whole C™.

Lemma 2.1.4 If ¢ satisfies a Hélder condition with exponent o, 0 < a < 1 in V(9D), then

F(z) satisfies the same Hélder condition in V(0D).

In order to prove this result, let us denote by

B (G — %) B (G — %)
I O [ N N [ e (e Ok

A;(C, 772 (2.19)

and prove the following auxiliary lemma.

Lemma 2.1.5 Let 2!, 22 be two points in V(0D) such that |z* — 22| = § for a small enough
§ > 0 and let the ball B(2',20) C V(OD). If ¢ = ((1,.--,Cn) € 0D N (B(24,26))° then

88,2, 2)] = 60(I¢ — 2|72,

for every j € {1,...,n}.
Proof of Lemma 2.1.5. Observe that for every j € {1,...,n}, one has

22

¢ =2 PRA+ ¢ = 21P)

‘Aj(év 21722)‘ n + KTJ - §j2| ‘Agk(C7zlvz2) ) (220)

where

1 1

n 1,2y . —
(G2, 27) = € — 212k (1 4 | — 212)n  |¢ — 222k (1 + |¢ — 22[2)n

(2.21)

In order to estimate A%, (¢, 2!, 2?), one uses the binomial expansion of (1+|¢—27]*)", j = 1,2

to get

1 1
(=PRI IC— =P (= 2PHL+ ¢ = 2P
I = 2P o (IC = 22 — ¢ — 2! Tl (DI~

C—2PHC - 2P+ - 2 PP +IC- 2P

‘Agk(gazlsz)‘ =

Hence, the above expression can be equivalently written as

¢— 2121 ¢— 121
e ) (e - )
(L+[C =22 +]¢ =22

|45, (¢, 21, 2%)|

(2.22)
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A geometric sequence argument yields that, for each 0 <1 < n,

S S i |<—z1|2l\|c—z2|—|<—z1\2”z2’“:1 ¢
[ I L - s
(5|C—Zl‘2l 204+2k—1 C_Z2 s
— 22k[f _ 1 _
C—2PFC— 2] 22 |¢—=
By combining the above relations, we get
1 1

‘Agk(47 217 ZQ)‘ -

C=2TPRA+IC—2TP)m - IC= PR+ ¢ - 22
20+2k—1 | (=22 |*
6% (DIC— 2P S 5

S AHC - AP IC = 2P — 2P — )

The use of (2.3) yields that the first term of (2.20) is less or equal than §/|¢ — 2!|?", while

the second term of (2.20) is

1‘2l S

[¢—= 1 2042k—1 | (—22
62?:0 (7) (1+|C_z1|2)l (1+|<‘_Zl|2)nfl Zs:O ‘Ci;l
|< - ZIHC _ Z2|2n_1

2A+2k—1 | ¢—22|°
52?:0 (7) 2 5=0 2}21

= T - P

G — 271 | A5 (¢, 24, 2%)| <

(2.23)

Now, since ¢ can be chosen close enough to D N (B(zl, 25))c such that the following in-
equality

2

SIC=# <lC=# <2 -2,

holds, one can write that

n N 221 c— 2| n s\ 2R o s
Z (l) Z ; — < <l> Z <2) = Constant.
=0 s=0 =0 s=0
and hence,
- § - 2?71 . Constant
G5 = 21 [454(¢, 2, 27| < e = 90Uc=A
Then, the result arises. ]

Proof of Lemma 2.1.4. As in the proof of the preceding lemma, consider two points in V(0D),
namely z', 22 such that |z! — 22| = §, for a small enough §. Let the ball B(z!,26§) in V(D).
By taking the projections of 2/ onto 9D N B(z!,2§), a local compactness argument allows to

change the domain of integration from dD N B(z!,2J) to the (2n — 1)-dimensional sphere of
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radius 0. Then, by using polar coordinates in this sphere, one can observe that

I — 2|1 72do < . (2.24)

dDNB(21,25)

Hence, by using (2.18), for j = 1,2

/ (6() = 9(=)) K (¢, )| < € / ¢ = 27|12

DNB(z1,26) O0DNB(z1,25)

< C(26)* / I — 27172 de < Cyo°. (2.25)

ODNB(z1,26)

The difference between the integrals F/(z!) from F(22) along 9D N (B(z',26))¢ instead of D,
yields that

(¢<c>—¢<z2>)K<<,z2>— / (6(0) — 6(=1) K (¢, 2Y)

dDN(B(21,26)) aDN(B(21,26))°

= (¢<c> — ¢(2%)) (K(¢,2%) — K(¢, 2"))

ODN(B(z1,28))¢

(=Y — 6(=2) / K(C, =), (2.26)

8DN(B(=1,26))°

By using Lemma 2.1.5, since ¢ satisfies the Holder with exponent «, one can observe that

(¢(C) _ ¢(22)) (K(Ca 22) - K(Cv Zl)) < CY3(S / |C - Zl’a72nd0'.
D(B(z",26))° ODN(B(=1,26))¢
(2.27)

For the second term of (2.26), it is enough to show that integral faDm( B(21,28))¢ K(¢,2Y) is

bounded since then,

6(=1) — 6(=2)| / K(¢.2Y| < o6, (2.28)

DN(B(21,26))°

where we used the fact that ¢ satisfies a Holder condition in dD. In particular, Lemma 2.1.3

implies that for z € 9D, where |7(z)| < 1, one has

P.V. K((, 2) / P(¢, 2)

oD

45



and

J,71-

[
D

/ < >n (9]¢ = =[*)"
27 14— z[?)nt+L

B nldV

B ‘/ ( ) (1+ ¢ — 22t

< < > n'Vol <C5,

since (00|¢C — z|2)™ = (09|¢|*)™ = n!(2i)"dV .
A combination of (2.25), (2.27) and (2.28) leads to

F(2) = F(:Y| < Ced® + Cyo / C = 2e2ndg
dDN(B(21,26))°

= Cpo% + Cs6 / ¢ — 2o Y¢ — 2o
DN(B(21,26))¢

< Cgd% + Cr6 - 6971 / ¢ — 2H 2o < Cgé“,

dDN(B(21,28))¢

since @ < 1 and a similar argument to (2.24) provides that the last integral is bounded.

O]

Hence, the principal value of the boundary integral (2.11) makes sense. More precisely, this

integral can be written in the form

PV. [ K26 = PV. /8 00 = 6D K(G2) + 9PV, [ K(G)

oD oD

- / (6(0) — 3(=2)) K(C,2) + d(2)P.V. / K(C2),  (229)
oD oD

where the right hand side of (2.29) exists according to Lemma 2.1.3 and Lemma 2.1.4.

For reasons of simplicity, we also introduce the functions

GH(z) = B+ (2) - / (6(C) — 6(2)) P(C,2), 2€D (2.30)
D

while
G (2) =2 (2) - /D (¢(C) — ¢(2)) P(¢,2), z€V(OD)\D. (2.31)

The next theorem ensures that both G and G~ can be extended continuously to D as
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functions satisfying a Holder condition such that, for z € 9D, one has

GT(2) =G (2) =0T (2) — ® (2).

Theorem 2.1.1 Let D be a bounded domain with piecewise-smooth boundary 0D and con-
sider a function ¢ € C*(0D) for 0 < a < 1. Then, GT extends as a function of class C*(D)
while G~ extends as a function of class C*(C™ \ D). Furthermore, the following equalities

concerning the boundary values of G+ and G~ hold:

@Q

+

N3
Il

(1 + [ Pleo) - T<z>> o)+ PV [ GOR(2)
¢ = ([ Pea-r@) o0 +ry. [ sor@).

for z € dD. Moreover,

#(z) = GT(2)—G (2), for z€dD. (2.32)

Proof. For a function ¢ € C*(9D) , Lemma 2.1.1 implies that ¢ also satisfies the same Holder
condition in V(9D). Observe that

GHz) = oH(z) - / (6(0) — 6(2)) P(C. )
D
- / HOK(C,2) + 6(2) / P(C.2)
oD D
[ @00 -6 K+ o0 (/w K@)+ [ P<<,z>), (2.33)

or equivalently, using the definition of F' given in (2.17) and Koppelman representation for-

mula
GT(2) = F(2)+ ¢(2), z€D. (2.34)

Thus, Lemmas 2.1.1 and 2.1.4 imply that GT extends continuously to D as a function of
class C®(D). Similarly , G~ extends continuously to C*\ D as a function of class C*(C™\ D)

since

G (2) = /({)D (6(¢) — d(2)) K(C, 2) = F(2), 2€V(9D)\D, (2.35)

due to the vanishing of the second term in the right hand side of (2.33) outside of D. Here,

we also used Remark 2.1.1.
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In order to express GT(z) and G~ (z) with respect to ¢(z) for z € 9D, one can observe

that

/ HOK(C.z) = / (6(C) — 6(2)) K (¢, 2) + 6(2) / K(C. 2)
OD\B(zse) OD\B(z.e)

8D\ B(z,¢)

for € sufficiently small. As € — 0%, Lemmas 2.1.3 and 2.1.4 imply that

F(z) = /aD (6(0) — 8(2)) K(C. 2)
- PV /8 (00~ o) K(.2)
= P.V./aD H(OK(C,2) — d(2)PV. | K(C,2). (2.36)

oD

Hence,

GT(z) = F(2)+6é(z2) = (1 —P.V. K(¢, z)) o(z) + P.V./a d(O)K (¢, 2),

oD D

in view of (2.34). According to Lemma 2.1.3,

+Z: Z)— T\Z z . V. zZ .
o (2) (1+/DP<<,> <>)¢<>+Pv SOKC:)  (237)

oD
follows.

Analogously to the case of GT(2) and using (2.17), we deduce that

G (2) = F(z) = <—P.V. /8 KL z)) () + P.V. /d HOK(2)
_ < /D P, 2) —T(z)> 6(z) + P.V. /a IRIGLICORNCED

By subtracting (2.38) from (2.37), we get the desired Jump Theorem, that is,

GT(2) -G (2) = ¢(z), for zc€dD.

Corollary 2.1.1 If the assumptions of Theorem 2.1.1 are valid, then

#(z) =01 (2) —d (2), z€0D. (2.39)

Proof. This is an immediate consequence of (2.32) by substituting the definitions of G*(z)
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and G~ (z) and then simplifying since both G*(z) and G~ (z) extend to dD. O

2.1.2 Jump Theorem on weighted Koppelman type integrals of continuous

functions

Let us consider a bounded domain D with C' boundary D and f a continuous function
on 0D. We follow a similar construction as in ([29]) for the jump theorem for continuous

functions and Bochner-Martinelli kernel.

Fix a point 20 € 9D. We construct a right circular double cone V,o with vertex at the point
2% and axis the normal to &D at this fixed point while the angle between the axis and the
generator of the cone, namely f3, is less than 7/2. We also take two points 2™ € V,o N D and

27 € V,oN (C"\ D) such that
alzt =20 <27 = 20 < bl2t - 20, (2.40)

for some positive finite constants a and b (a < b) that are independent on the points z*. The
next lemma shows that both the Koppelman kernel K((,z) from (2.2) and the projection
kernel P((,z) from (2.5) with the specific choice of the weight considered in the previous
paragraph are not affected by unitary transformations. This fact allows the translation of
2% to 0 and the tangent plane to dD at z° to the plane T'= {w € C" : Imw, = 0}, while
the contributing kernels of the Koppelman representation formula remain unchanged under

these transformations, as in the case of B-M kernel ([29]).

Lemma 2.1.6 The kernels K((,z) and P((,z) are invariant with respect to unitary trans-

formations.

Proof. The forms that are involved in K((,z) are those in [29] with some extra distances
in front that are invariant under unitary transformations. More precisely, under the unitary
transformation given by ¢ = A¢ (where A is a unitary complex matrix satisfying A*A =
AA* =T and A* is the conjugate transpose of A), the distance |( — z| remains the same since

A preserves the inner product, d¢ = det Ad¢ = ¢ d¢’ and

(—1)/71(G = Z)dCl] = det A* Y (=1)P7H(G, — 2,)dC[p]

n n
=1 p=1

J

such that

(174G — 2)dCli] A d¢ =D (1PN, — 2)dC [p) A dC

j=1 p=1
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Moreover, the relation
dC A d¢ = detA - detA*d¢ Ad¢ = d¢’ Ad¢

shows that the kernel P((, z) is also invariant under the unitary transformation. ]

For reasons of simplicity, we introduce the function

Kf(z)= [ fOK((z2), z¢0dD. (2.41)

oD

The notations K f(z) and K~ f(z) denote the value of the above function, defined by integral

for z € D and z ¢ D, correspondingly. In a similar way, we also consider the function

Pf(z) = /D FOP(C.2), =¢ oD, (2.42)

and denote its value by Pt f(z), P~ f(z) for the interior and exterior points of D, respec-

tively.

Theorem 2.1.2 If f € C(OD), then for every point 2° € D

im (KT + PFED)) = (Kf(ET) + PFET))] = fE).

Proof. Following [29], making use the unitary transformation and translation, we can as-
sume that the point 20 = 0 and the tangent plane to dD at 2" is the hyperplane T =
{w € C" : Imw, = 0}, while the kernels K((,z) and P((,z) are invariant under these
transformations, according to Lemma 2.1.6. Hence, by applying the Implicit function The-
orem, the parametrization in a neighborhood of 0 on the surface 0D is, then, given by
G =wiye oy CGuo1 = Wp—1,Cn = up +ip(w), for w = (w1, ..., Wp—1,u,) € T, where ¢(w) is a
function of class C! in a neighborhood W of 0 in the hyperplane T such that ¢(w) = o(|w|)
and [((w)| < C1|w|, for C; > 0.

If 2+ are the corresponding projections of z* onto the Imw,,, then

s+ bzt
7] alzt|cos B <|77] < Sl

z
cos B’ cos B’

|zi — Ei] < ]2i|tan6, \zi] <

(2.43)

in view of (2.40).

According to [29], a (2n — 1)-dimensional ball B’ = B(zp,€) NT C W for 2° = 0 is fixed such
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that
lw— 2% < Cal¢(w) — 2% (2.44)

holds for w € B’, where Cs is a constant independent of the point 2z = 0. By making use

that 2% = (0,...,0,iyF) where y© are the imaginary parts of zF, then
C(w)] < Chlw| < Crlw — 2*| (2.45)

is also deduced for w € B'.

Now, we derive an inverse inequality which is required in our case. For w € B’, one can

obtain the inequality

C(w) — 2% < [¢(w) —w| + |w— FF| + |5 — 2¥]
< [p(w)] + [w — 25| + £ tan 8
< |p(w)| + [w — 2| + tan flw — 27|
< Cslw — 3% (2.46)

since |2%| < |w — ¥, where Cj is also a constant independent of the point 2% = 0.

The subtraction of (K f(z7)+ Pf(z7)) from (K f(z*)+ Pf(z")) yields that

(Kf(z4) + PF(=Y) — (Kf(=7) + Pi(=))
- / (F(O) = F(0) (K(C.2%) — K(C =) + F(22) / (K(C =) — K(C =)

oD oD
4 / FO) (PG =) = PG, 5)).
D
(2.47)

Letting 2% goes to 20, the vanishing of the last integral is trivial. The second integral in

(2.47) equals to 1 as z* tends to 20, since

/ (K(C.2")~K(C.2) = 1+ / (P(¢.27) — P(¢,2™))
oD D

and hence,

lim (K¢, 2N~ K(27)) = 1+/D lim (P(¢,27) = P(¢,27)) =1,

2£—=20 Jop 2E—20

due to the fact that the location of 20 (20 ¢ D) allows the change of the order between the
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limit and integral.

+ 5 20, We split

Then, the theorem follows if the limit of first integral in (2.47) vanishes as z
this integral in two integrals. The first one is taken over I' = B(z", €) N 0D while the second

one is taken over its complement of I' in dD. It is straight forward to see that

b, (f(O) = F(") (K(¢.z7) = K(¢,27)) =0, (2.48)
z£—=20 Jap\T

since the limit can pass through the integral (z° ¢ 9D\ T).

On the other hand,we will see that the integral over I' behaves in manner similar to the
case of Bochner-Martinelli kernel. In order to study the boundary behavior of the integrals

involved, taking into account the kernel K (2.2), let

- (G —z) G —z%)
(F ot — j _ j
IR e e I D L e B P b
Then,
{Aj(f,zﬂz‘)\ < ’Aj(C,z+,z_)|—|—‘Bj(2+,2_,z+,z_) , (2.49)
where
(ot ) = G _ G
A N e TR e U
and
o ot . 2l %
BJ(Z 2,2, ) = ‘C72+’2k(1+|<72+|2)n B |{72*|2k(1+|C—z*|2)”' (2.51)

Computations similar to (2.23) give the estimate

20+2k—1 &= Z—|s—(2l+2k)

G2+ 127]) o= (n — 2042k
]‘C_z—‘Qn Z(JK‘Z a Z (= 2H[sHT

=0 s=0

IN

|A;(¢, 2T, 27)|

where we used the inequality (2.3). The relations (2.44), (2.45) and (2.46) simplify even more
the last inequality. Actually

CiC3™ (21 + 127])
|lw— z7|?n

|4;(¢,2%,27))|

IA

20+2k—1 — ~ 15—
C22l+2k 3|w—z ‘s (21+2k)

n
n
. Z CQH—Qk w— 5" 2042k Z
<l> 3 | ’ 02—s—l|w_2+‘5

=0 s=0

(2.52)
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Two more inequalities are provided in order to reduce the modulus |w — 27| and |w — z7| to

a multiple of a same quantity. Assume that a; := acos 8 < 1. Hence,

n—1 n—1
w2 = (Dl ud ()2 > | Y il + ud o+ (ayd)? = [w - anZt
i=1 i=1
and
n—1 n—1
w—27] = (D il 4 (ya)2 > (| Y wil? + e+ (aayd)? = [w— ar 2T,
i=1 i=1

where we used the inequality (2.43). Thus,
lw — %] > |w —a127). (2.53)

On the other hand,

. 1| 1 .
jw— 27| < . Z|wi|2+u%+(a1yf{)2:a—1|w—a1z+|
i=1

while, since |Z7| < by|z 1| for by = b/ cosf and by > a; (b>aand 0 <cosfB < 1),

n—1 n—1
. by b1 s
o =27 Dl )2 < O S i) = (o~
i= i=
By letting C4 := max{1/ai, b1 /a1 }, we get
lw — 5| < Cylw — a1 27). (2.54)
Combining the inequalities (2.53) and (2.54), one deduces from (2.52) that
G103 (12" + 1271)
(E o o 2
’A](C,Z y % )’ S |U}—CL12+|2”
n 2042k—1 ~214+2k+1 s+ |5—(21+2k)
T\ ~2l+2k ~20+2k s+ (20+2k & jw— a1z
.Z(l)cg Cy ‘w—a1z Z |w—a1§+\5
=0 s=0
di)zt|

(2.55)

lw— a2’

where d; depends on a,b, Cy,Cs,Cs,Cy and 5.
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The second term of (2.49) can be bounded by the same quantity. Actually

Exd |27 ds |2t
|<_Z+|2n |<_27|2n — ’w_a12+|2n'

(2.56)

Hence,
- ds|ZT|
Az ) < —2 L
‘ J(C )‘— |wfa12+|2n
Now, if dS is the surface area element on the surface T, then there is a constant d4 independent
of 2Y such that the Lebesgue surface measure on I', do, satisfies the inequality do < d4dS.
Moreover, due to the assumption of the continuity of f in 9D , for each § > 0, we can choose

a ball B’ for a radius e independent of z° such that
|f(¢(w)) — f(0)] <46, for weB.

Consequently,

a1|2+|dS
B (|l +af|ZH?)
s+
< [ s
7 ([wf* +ag[ZH[2)"

[ ¢~ o) (K(g,zﬂ—K(c,z))' < dso

where this last integral is a constant independent of Z* in view of [29]. Thus,

lim / (F(O) — F(=9) (K(¢.2") — K(C27)) =0
T

2E—20
and the result follows. O
Corollary 2.1.2 If f € C(0D) and (Kt f + Pt f) is continuous in D , then (K~ f + P~ f)

extends continuously to C" \ D. Conversely, if (K~ f + P~ f) is continuous in C" \ D then
(K*f + PTf) extends continuously to D.

This corollary is a non-trivial result in several complex variables in comparison to the one-

dimensional case.
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2.1.3 Jump Theorem for the 0-Normal Derivative of the weighted Kop-

pelman type integrals

Similarly to the case of the Bochner-Martinelli type integral studied in [29], we define the

derivatives

o), (2.57)

where p is the defining function of a domain D = {z € C" : p(z) < 0} and 0D € C?. Then,
according to [29] (more details can be found in Section 2 of [42]) there exists a neighborhood
V of D where p € C?>(V) such that:

1. |gradp| = 3 in V,

2. If 25 €V (27 € D and 2~ € C"\ D) are the points on the normal to dD at z satisfying
|zt — 2| = |27 — z|, then %(zi) = g—(z) and é%(zi) = 92.(3) and

p
2k

T 0%
dp N dp
=2 an =25

fork=1,2,...,n.

Hence, the d-normal derivatives of Kf form (2.41) and Pf from (2.42) are defined as fol-

lows:

0K 0K 9p
On(K[) = o5, P =2 55 O (2.58)
k=1 k=1
and, similarly,
= O(Pf) L =O(Pf) Op
n(Pf) =2 5= pr=2) T D (2.59)
k=1 k=1
such that
_ " OKf+P “OKf+Pf)d
Ou(Kf+ Pf) = (J(;Zf)pkzz (cng)azp, (2.60)
=1 k =1 k k

Taking into account the previous section, according to (2.2) and (2.14), one has

=1t () i (n — En) 5 g
B i P e (S 2

 (n—=1)! Zn: (?) 2 om=1 %(Em — Zm)do

B S = T

J=1
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where we used the fact that |gradp| = 1/2 in the neighborhood V of 0D.

In full analogy with (2.21), let us define

" P 1 _ 1
O T iGN T ) TR v priy ) EAR G
and
C(¢ 2" / ntJ (2.62)

T PRI [ — e ) T G A [ — 2T

Let C(¢,27) be the corresponding term where 27 is replaced by 2~ in the preceding expres-

sion. Hence, it is easy to observe that
C(¢,27) = C(¢z7) = JASIL(G =Y 27) + (n+ i) A5 (¢ 2%, 27). (2.63)

By applying the d-normal derivative into the difference of K f(z~) from K f(z%) according
to the rule (2.58) and by using the above notations, we get

(K f(z7)) = Ou(K f(27))
RS OK(¢,2%)  OK((,27)\ dp(2)
a 2; (/ar) 7<) < 9z, 0z > Oz )

=Nz, 27) + Ja(zT,27), (2.64)
where
R (k)] =~ 90(2) 00(O) N~ (7 4 (0 %o
YICED — /an(C); o OC, ;(y) 5(C,2)do (2.65)
and
net ey = D g
Q oD
n @ _Z+ n 87 B 2+ n n Z+
LZ G D G m;()cm )
_n@ _Z—ni_—z_nn 27)| do
> o) X g G m>j§:jl<j>c<<, )| do. (260

Lemma 2.1.7 The integral Jo(z+,27) defined by (2.66) is invariant with respect to unitary

transformations.

Proof. According to Lemma 2.1.6, the distance | — z| does not change under unitary trans-
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formation. No changes happen in the function p and in the area element do, too. Following
29], S0, 0p/021 (ke — 2x) and S0 0p/OCm(Cm — Zm) are also invariant under unitary
transformation since 2 = >0 ajkz; and Y i agjbsy = 05 where A = |lajg||},—; is the

unitary matrix and B = [|bj[|7,_; is its inverse matrix. O

The next theorem indicates that the jump theorem of the d-normal derivative of the sum
of the Koppelman integral 9, K f(z) (see 2.58) and Projection integral 9, Pf(z) (see 2.59) is

zero. Following [29], one formulates the following theorem.

Theorem 2.1.3 Let f € C(OD) for a domain D with D € C2. Then,

lim [0, (Kf(z")+Pf(z%)) = 0n (Kf(z7)+ Pf(z7))] =0.

2tz

The limit is independent of z € OD. Thus, if On (K f(z%) + Pf(z%)) extends continu-
ously to D , then 0, (Kf(z~)+ Pf(27)) extends continuously to C* \ D. Conversely, if
On (Kf(27)+ Pf(27)) estends continuously to C"*\ D then 9, (K f(z%) + Pf(z1)) extends

continuously to D.

Proof. Firstly, observe that

lim [én (Kf(z*) + Pf(z*)) — 0, (Kf(z*) + Pf(z*))]

= lim (OnK f(z7) — 0K f(27)) + lim (OnPf(z") = 0nPf(z7)).

The second limit vanishes directly since the limit can pass through the integrals. The first

limit requires a different approach since the integration is along 0D.

Without loss of generality, we can assume that f(z) = 0 at the point z € dD. As in the previ-
ous theorem, the point z can be translated to 0 and the tangent plane to 9D at z is taken to the
plane T' = {w € C" : Imw,, = 0}. Moreover, the equations (1 = wi,...,(p—1 = Wp—1,Cn =
Uy, + i¢(w), parameterize OD in a neighborhood of 0. The point w = (w1,...,wp—1,u,) € T
and ¢(w) is a function of class C? in a neighborhood W of the origin satisfying the following
inequalities, according to [29] (more details can be found in Section 22 of [40]):

1. |¢p(w)| < Clw|?, for w e W,

2. [0¢/0u;| < Ci|wl|, for j =1,...,n,

3. |0¢/0v;| < Chlwl, for j=1,...,n—1,

where u; = Rew; and v; = Imw;. Let, also, z* = (0,...,0,4iy,). Since 0¢/0w; =

—(0p/0w;)/(0p/Oyn) and |0p/0yn| > Ca > 0, for w € W, it is obtained that

o
OCk

<<<w>>] < Cylul and '55(““’”‘ < Cyful, (2.67)
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forwe W and k=1,...,n— 1. Moreover, a constant Cy exists such that

[{(w)] < Cafw]. (2.68)

All the preceding constants are independent of the point z under consideration.

For a fixed € > 0, we consider a ball B’ = B(0,¢) N'T C W such that

fCw)] < & webB (2.69)
{z€C":(21,...,2n-1,Rez,) € B |Imz,|<a}CW, for a>0, (2.70)
C2lyn| + Clw]?) < d<1, for |y, <a and weB. (2.71)
In view of [29], the equality
1 B 1
Clw) = 252w — 252 [1 = (F2¢yn — ¢?)|w — 2*[72]

that holds leads to following major inequality:

|(£20yn — ¢°)| _ ClwP@lya| + Clwl?)

<C(2 Clwl?) <d <1, 2.72
\w—ziP = Iw\2+y% < C2lyn| + Clw[?) < ( )

for |y,| < a and w € B’. Hence, by the convergence of the geometric sequence with first term

equals to 1 and ratio be the expression (+2¢y, — ¢?)/|w — z%|?, one can get
1 (£20y, — ¢°)
=1+—"——"h
1 — (£2¢y, — ¢?)|w — 2%|~2 + lw — z%|? (w, 2),

where h(z,w) is uniformly bounded for |y,| < a and w € B’ according to (2.72). Then, it
follows that
2
1 1+ C20 ) (w, 2)

|C(w) — z%|?s - lw — 2|28 , (2.73)

for a positive integer s and hs(w, z) are also uniformly bounded functions for |y,| < a and

we B

Weaker inequalities are directly generated by using (2.72) and (2.73):

42
Clw) =22 = Jw—2*P [Lﬁwynw]

|w — z%|2
42
< ]w—zi\Q 1+ ’(i2¢yn ¢ )|
|w — 2%|2
< 2w —2E? = 2w — 2T (2.74)
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and

1 < Cy . Cy
|C(w) _ 21‘25 — \w _ z:l:|2s - |w _ z+’25'

(2.75)

LetI' = {¢ € 0D : ( = ¢(w),w € B'}. In order to explore the first integral J; of 9, (K f(21))—
On(K f(27)) that is given explicitly in (2.65) over I, we first estimate the A3i(¢ 2t 27)
involved term. One can observe that

120 (DIC = 24C — 27 ' Bjpa(¢, 2*, 27))|
A+ [C=2z )+ ¢ == )" .

| A5;(¢, 27, 27)| (2.76)

where Bj (¢, z%,27) = K_ZJ}PHM — K_Z}PHQZ in view of (2.22). Then, the relation (2.73)
yields that

_ 1 C5(2lyn| + Clwl?)
By(¢, 2T, 2 — = , 2.77
R Sl B (Tt 270
in view of (2.72) since the equality |w — 27| = |w — 27| = |w|? + y2 holds. Therefore, (2.76)
can be rewritten as
n
- n ¢ —2F|* (=2~ !2l
AN (¢, 2 27| < ( > - 1(¢, 27, 27)
- = L) ey P |
o e (DIC= =P IB(¢ 2t 27|
= (= 2+ |22
. O ()2 PO+ Clu)
= Jw— A% 2\ lw — 2|20 +2
Cs(2 Clw|?
6(2|yn| + Clw]*) (2.78)

(lw* +y2)"

Now, if Jir(z1,27) denotes the restriction of the integral .J; described in (2.65) over the

surface I'; then

et = R g Z PRI S (1) g . o

7j=1
2|yn| + C\W|2
B (wP+y3)"

IN

Cy ds, (2.79)

where dS is the surface element of the plane T satisfying do < CsdS, for some constant

Cs.

Hence, according to [29],

|Yn|dS [Yn|dS
/ T2 1 9 S T2 1 o = COIlSt, (280)
B ([wl” +v7) 7 (|w]* +47)
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and

|w|*dsS / ds /R d|wl
Tl 2r = o e sg2y=t ~ %21 | Tar g g2yt = fom-1, (281
Iy BT a7 = Jo TolP gyt~ 7ty T gyt = Fomon (280

where R is the radius of the ball B’ and 09,1 is the area of the unit sphere in R?®~!. Here,
polar coordinates in B’ have been introduced such that dS = |w|*"~2d|w| A dw (dw is the
surface area element in the unit sphere in R?"~1). Consequently, there exists a constant Cq

independent of the z and ¥, such that
}JLF(ZJr,Zi)‘ < Cye.

For the integral J1(z",27) in the rest of the 9D, that is J; yp\r(2",27), the result is trivial

since as z¥ — 0, the integral Jiop\r(z", 27) tends directly to zero.

According to Lemma 2.1.7, the integral J(2",27) is invariant with respect to the unitary
transformation. Thus, the integral Jo(z*,27) due its explicit form given in (2.66) requires

the computation of the following expression in order to be investigated ([29]):

k=1 mlacm
n—1 .
[ 9p = + i 9p o 2, 2
- (G — 25 — = == (U2 2 T 20yn),
2 2490, (Cn — 2) 28€n(u + &% 4+ yp, F 20yn)

since Op/dz, = 1/2(dp/dzy — iDp/dyx) = —i/20p/dyx. Hence, the integral Jo(z,27) over

I" is reduced to integral

(et ) = 2 1@

i = 9 - i O0p 9 9 o — (n

=1

n

_ _zn,iP, —*_iiﬂ 2 2 29 <n>c Ny
( 2 Zacm m(Cn Zn) 28Cn (Un+¢ +y, + (z)yn)); j (g,z ) o.

Since the equality (2.63) holds, then we can split the above integral into the following three

integrals

. o ' n—1
Ly = —W/,f@)(Z S G+ 12+ +yn>>

< ) Agizlj z+,z_)+(n—l—j)Agfl(C,er,z_) do, (2.82)
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=1 j=1
(2.83)
while
-1 n
i(n—1)! / — 0Op _  Op n
L. = - — 2L c(c,
2 | Q) mz_lagmcmn ac, 2ow) | 2 (;)C6#D)
= J
(2.84)
For the last two terms, according to the definitions of C'(, 2%) (see (2.62)) observe that
C10 Cll
C¢, 25| < = .
e e T
Thus,
I+ < Mle/ (M2‘w| lynl + Msfwl” ‘Z/n <M / [ynldS = Mjxe
A B (lw]? + )" * (Jwl? + g2)"
By similar computations with (2.76) and making use (2.77) for s = j+1+ 1, we obtain
J— [0 (TIC = 24 PG = 27 By
58020 = e e
where [Bj1141(¢,27,27)| < % Since, for every 0 <1 <n+1,
A2 2 +2 M
C— =P — = -t ; -

(1 + ‘C N Z+‘2)n+1(1 + |C _ Z—|2)n+1 - |C Z+‘2 n+l—j) — (‘w|2 +y )n—i—l —j—1
holds in view of (2.74) and (2.75), then

M7|yn| My
(Jwl> +y2)" 2 (lw]* + y7)"

n+1 + —
‘A23+2 ) 2 )‘

arises. Similarly, one can observe

My|yn| n Mg
(w2 +y2)" 2 (Jw|> 4 y2)+

n+1 + -
agic 24,27
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Hence, returning back to (2.82), we get

ba] < Mye / [Mialwf? + Caluwl (juwl? + C?lwl* + 2)]
B/

[ Mi3|yn| My ] g
(Jw[ +y2)" 2~ (Jw]* +y2)" !
Yyn|dS

dS
< M15€/ 5 v T M166/ e o = M176;
B ([0 +y7)" g (Wl +y7)"!

where we used the results in (2.80) and (2.81). Thus,

lim I|r = 0.
A, Bl

The integral I2[gp\r tends directly to zero as 2+ goes to z since the limit can pass through

the integral. O

2.2 An application of weighted Koppelman formula for a Har-

togs phenomenon in C"

Let us consider a bounded domain D in C" containing the origin with connected smooth

boundary 0D (of class C?) and a set of one-dimensional complex lines [ of the form
l:{C:Cj :Zj—i-bjt,j:l,...,n,tEC},

where z = (21,...,2,) €C" and b = (by,...,b,) € CP"L.

A function f € C(0D) has a one-dimensional holomorphic continuation property along the
complex line I (I N ID # 0) ([30],[31]) if there exists a function f; satisfying the following

properties:
1. fec(Dnl)
2. fy = f on the set 9D N1
3. f; is a holomorphic function in the interior points of D N 1.

The main results in monograph [27] prove that for some domains D C C" functions having
the above one-dimensional holomorphic continuation property extend holomorphically into
D. We prove the same results using weighted Koppelman formulas instead of B-M kernel
used previously. The novelty here is the fact that the Koppelman kernel K is not harmonic

as opposed to the B-M kernel, but the same results can be deduced.
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The contributing kernels K and P in this paragraph are those introduced in (2.2) and (2.5).
Since the Koppelman kernel K = 22:1 Uk k—1 \ Gn—k,n—k involves the well-known B-M kernel
defined by

un,n_l— )1,2'2 11@ Pndc[]Adg (2.86)

Jj=1

for £ = n, the corresponding term in K kernel will be treated similarly as B-M kernel.
It is known that w, ,—1 is harmonic in C", but we give the proof for completeness of the

thesis.

Lemma 2.2.1 The contributing form u, ,—1 in (2.86) of the kernel K is harmonic in C",

Proof. Rewriting u, ,—1 equivalently as

D) g
s = i 0 () 2 Kl el

the harmonicity of u, ,—1 arises form the coefficients of this form that are harmonic functions

of z in C™. In particular,

d? < 1 >:_(n—1)+n(”—1)|Ck—Zk|2

02,0z, \ |C — 2[*"—2 ¢ — 2" ¢ — 2Ptz

for every k =1,...,n. Then, A (W) > by azw% (lc_z‘gn_2> = 0. It turns out that

Un n—1 is harmonic. ]

At this point, let us introduce the notation

aoéun,n—l o a”aHUn,n—l
0z ozt -9z
for any multi-index o = (a1, ..., a,) and ||of| = a1 + -+ - + ay.

The next lemma is formulated in [29] with its proof.
Lemma 2.2.2 [29] The restriction of upn—1 and ((G — 2;)0%Uppn—1/02% for j = 1,...,n,
into curve 0D N1 C C, for a bounded domain D of C™, is given by the following relations:

dt

Un,n-1(C, 2)[apnr = A(b) A n
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and

8O‘un,n,1 dt
(G — %) e lopr = H(b) A Aall’

where \(b) and u(b) are differential forms with respect to direction b € CP"!,

Proof. Since db = dby A --- A db, = 0, then

dCy A NGl g

= (bydt +tdby) A ... A (bpdt + tdby,)

ddaDﬂl
= ") (1) hydt A dblj], (2.87)

where db[j] denotes the wedge product db where db; is omitted. Similarly, one can ob-

tain
Z — 2)dCl5)] g pry = Z 1)/~ 1b;dblj (2.88)

Hence, the restriction of u, ,—1 along 0D N1 yields

(=1 m 1)1 RN j—1 :
nn—1| - = bdb AltT E —1)Y27 b;dt A db
Unn—1{ypn; (2mi)" ’b’Zn’t’Qn Z . (-1) j [J]

dt

where A\(b) is an (n — 1,n — 1) form with respect to b.

For the second part of the lemma, by repeating the steps of the proof that can be found in

[29], observe that w, ,—1 can be equivalently written in the form

tnn1 = 3 (=112 gz n
= 9G;

where h((,z) = %W The derivatives

0°h (=Dl (n 4[] = 2)1(¢ — 2)*
gze  (2mi)" IC — z2r+2lal-2
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where (( — 2)* = (¢ — 21)™ -+ - ((n — 2n)?", yield that

n

0%Up n—1 _ (n+ |lof| —2)! Z(—l)j aj(c —2)ame

0z° N (2mi)n = I — z[2nt2la-2 dc[j] A dg
(n+llafl = D! (¢ —=2)*
=11 Jc = zpral Yen=1(6:2); (2.90)

where (¢ —2)*7% = (¢1—21) -+ (G —2j)% ™% -+ ((n — 2n)“". By multiplying % with

(¢j — zj) for every j = 1,...,n, then the change of coordinates through the substitutions

¢j — z; = bjt on D N1 yields that

0%Un n—1 dt
where (b) is also an (n — 1,n — 1) form with respect to b. O

Lemma 2.2.3 Let assume that the function

=

can be extended holomorphically from 0D N1

mto DNI. Then W can be also extended holomorphically from 0D N1 into DNI.

Proof. Let ¢(t) be the holomorphic extension of % from 0D NI to DNI. Then for t € 9D NI

one has that

1 1 (1)
1+ |b|2|t]? E(3+b2t) o)+ b2t ®) (2.92)
and that w(t) is meromorphic on D. By continuity, w(t) is also positive in an open ’annulus’
U,. Since 9D NI is compact, we can take a ’smaller’ annulus such that V, C U.. The function
w(t) is holomorphic in U, and w(V,) C (0,400). But, by the open mapping theorem, this
implies that w(t) = ¢ on V. for some constant ¢ < 1, since otherwise the image of V. would

be an open subset of C sitting inside R which is impossible. Hence, w(t) = ¢ on 9D NI.

Therefore,
S0 =2 0E )
or, equivalently ,
bl“c
o) = <,

for every direction b € CP"~ 1. Thus, in view of (2.92), w(t) has holomorphic extension to

Dnl. O

Thus the domains for which % has a holomorphic extension are those for which their in-

tersections with complex lines gives discs with varying smoothly radii since |t|> = |1b|_fc on
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oD nNl.

Lemma 2.2.4 If f € C(OD) has a one-dimensional holomorphic continuation property along
the complex line l (1N AD) and F is a biholomorphism from D to G, where G is a domain,

then f* = fo F~':G — C has a one-dimensional continuation property along F(1).

Proof. First of all, observe that f* € C(0G). Let € > 0 and zy € 9D such that F'(z9) = wg €
OG. Since f € C(OD), it is continuous at 29 = F~!(wp) and there exists d; > 0 such that for
z € 0D,

2= Flwo) <81 then |£(2) — £ (F~'(wo)] <.

But, since F'~! is also continuous at wg, then there exists do > 0 such that for w € 9G,
Hw—on < 09 then HF_l(w)—F_l(wo)H < 1.
Combining these two inequalities, then for w € G

|lw—wo| <2 then |f(F'(w))—f(F '(wo))|<e.

Now, let zop € DN1I. Since F(DNI) = F(D)NF(l) =GN F(l), then wyg = F(z9) € GNF(I).
According to the one-dimensional holomorphic continuation property along [, there exists
fi € C(DN1) which is holomorphic in the interior points of D NI such that f; = f on 9D N 1.
Hence, the 1 x n-dimensional Jacobian matrix of the partial derivatives of f; with respect to

the i-coordinate z; of z

8% Z (2.93)

Jr(20) = [821

exists in a neighborhood of zy. Moreover, the holomorphicity of F~1 = (Ffl, oo, F7h on

G N F(l) in a neighborhood of wy implies that the n x n-dimensional Jacobian matrix of

Ffl

T2 (o) = {WL - (2] = v (29)

8’[1)]'
is well-defined, since F' is a biholomorphism.

Let frqy = fio F~'. Then fj, € C(GNF(])) and

* —1 —1 *
Frwlocarm = 1o F  ognrm = o F Hoonrw = £ locnra
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since F~1(0GNF(1)) = F-Y(F(@DnNI)) =dDNl and f; = f on dD NI. The holomorphicity
of f;“(l) in the interior points of G N F(l) is deduced according to the fact that the 1 x n-
dimensional Jacobian matrix of the partial derivatives of f;(l) at wq is the product of the

Jacobian matrices in (2.93) and (2.94), namely

Jf;;(l) (’LU()) = Jfl(ZO) : prl(wO). (295)
Thus, f;i(l) is the required extension of f*. =

Lemma 2.2.5 If f € C(0D) has a one-dimensional holomorphic continuation property for
every complex line | meeting D and the function 1/t can be extended from D N1 to D N1,
then K= f + P~ f =0 in C"\ D.

Proof. Assume that z lies in the unbounded component of C™\ D, following [25]. By making
an orthogonal linear transformation and a translation in C", we can assume that z = 0 and
the complex hyperplane {z : z; = 0} does not intersect D. The kernels in the Koppelman
representation formula stay invariant as shown in Lemma 2.1.6 and the line [ is assumed to
bel={C:(j=0bjt,j=1,...,n,t € C} after these transformations. A change of variables
defined by

G=1/vi and (G=wvj/vu for j=2,....n (2.96)
yields that
~1/v¥ 0 ... 0
dC = ey Aty = —vg/v?  1/vy 0 :_dvl :erdvn :—dv/v?ﬂ,
: 1
—vp /i 0 ... 1/n

which is well-defined since C"\{z : z; = 0} is mapped biholomorphically onto C"\{v : v; = 0}.
Let F being this biholomorphism defined by (2.96) and G be the image of D under F such
that the hyperplane C™ \ {v : v1 = 0} does not intersect G and F(0D) = 0G.

Consider the (n + 1) x n matrix

G G ... G
Civl Cévl te C;lﬂl
M
C{vn Cévn . 7/wn
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where ¢, denotes the derivative of §; with respect to vy,. If A; denotes the determinant of

the above matrix where (j + 1)-row is omitted, then

1/v va/ur ... vp /Ul
—1/v? —wve/v ... —vp/v?
1/v7, j=1
Aj = 0 /vy ... 0 = ,
0, J#1
0 0 1/v1

and thus

D (VTG =) Ajdolj) = dof] /o7
j=1 Jj=1
Since K ((, z) is transformed into

K601 = 3 g s LGl 4

k=1 j=1

under the initial orthogonal linear transformation and translation in C™) we obtain that,
2

under the change of coordinate system given in (2.96), the Koppelman kernel becomes

K(C 0) _ (_1)n(n B 1)' Zn: (Z)|U1|2k @ d@[l] AN dv[l]
’ N (2mi)™ p (T4 |vi2 4. Jop?)™ v1 (L |va]?2+ ... |vs]?)F
()" (n=1)! ¢ (1) |vr]* dvy
- — AA 3 s Un )y
(2mi)™ ; (T4 o2 4. Jop )™ v k(v2 Un)
where A\g(ve,...,v,) = %,

The lines [ = {( : f = bjt, j =1,...,n,t € C} are mapped into lines Iy, v, = {v:v) =
1/bit,vj = bj/b1, j = 2,...,n} through the biholomorphism F' in (2.96) and hence, in view
of Lemma 2.2.4, the one dimensional holomorphic extension property of f along [ leads to

the one dimensional holomorphic extension property of f* along the lines Iy, . 4, -

Moreover, since 1/t can be extended from 9D N1 to D N1, then Lemma 2.2.3 shows that

W can be also extended from 9D N1 to DN and in particular [t|* = ¢(b), where c(b) is

a function which depends on |b|. Hence, the biholomorphism F' defined in (2.96) extends the

holomorphic continuation of W from 0D N1 to D NI, into the holomorphic extension
2
of 1+|v1\2+||1j}21||2+~“+\“n|2 from 0G N1y, v, t0 G Ny, .. v, as a consequence of Lemma 2.2.4.

|’L)1|2k

(I+[v1 ]2+ +]vn [?) 0y can be

v, Thus,

-----

Furthermore, |v1|? = |b1|%|t‘2 = |b1|2lc<b) along 0G Ny,

also extended from 0G N1y, . 4, to G Ny, . ., since the hyperplane {v : v; = 0} does not

'In this case, the line is a curve with no self-intersection.
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intersect G.

Therefore, if G’ is the projection of G under the mapping v — (ve,...,v,), we reduce the

integration dD into iterated integration with respect to the direction:

FOK(C0) = T =Dl g (Z) /G (v, vn)

oD @mi)r -~

‘U1|2k

*(v
/8Gﬂlvl A )(1 + v+ A+ [vn]?) 01

,,,,, vn

dvl =0.

Note that, G Ny, . 4, is a smooth curve, since it is the image of 9D N under F' (biholo-

n

morphism). Hence, K~ f =0 in C"\ D.

Under the assumptions of this Lemma, P~ f also vanishes in C"\ D. Actually, the projection

n(n—1)

kernel P((,z) is transformed to P((,0) = (2;)}1)(1% d¢ A dC (see (2.5)), for z lying in

the unbounded component of C* \ D, and

(_1)71(71271) n'
P(vy, ... = ' do A d
(V15 ,0n) 27)) (1 + [v12 + - - - + [vg[2)"H] U
n(n+1)
(=) =z (n-1) < dvy > _
= . 0 do[l] A dvl1],
(2mi)™ vi(1+ o124+ -+ |va[?)™ 1] (1
after the change of variables given in (2.96). Hence, if G” is the projection of G under the
n(n+1)
mapping v — (ve,...,v,) and C),, = %, then

/ F(OP(C,0)
D

_ Cn/”dz‘)[l]/\dv[l] /Gm

= C, [ dv[l]Adofl] / fr(w)

G" dGNLy,

= dvl
*(v)O
vnf ) <01(1+\01!2+“'+|vn\2)">

dvl
vi(1+ o124+ o |2)"

,,,,, vn

by Stoke’s Theorem. But the last inner integral vanishes, by the same argument which led

to the vanishing of the boundary integral. Thus, P~f = 0 in C"\ D. O

Theorem 2.2.1 If f € C(OD) has a one-dimensional holomorphic continuation property for
every complex line | meeting D and the function 1/t can be extended from 0D N1 to D NI,
then there exists a function F € O(D)NC(D) and F = f on dD.

Proof. We will show that the extension of f is given by the weighted Koppelman type

integral formula in the case of holomorphic functions (see Remark 1.2.1), where K and P are
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the kernels which were introduced in this chapter. Namely, let F' be defined by

Fz) = [ FOK(C)+ /D FOP(C 2) (2.97)

oD

where K = (WA g)nn—1 = D pey Ukk—1 A Gn—kn—ks P = gnn, and g is the weight used in the
Jump theorem, that is, g = A" for h=1—-V,_, (#TCZZIQ)) Then the kernels K and P

are those that are described in (2.2) and (2.5), respectively.

Firstly, we split the first integral in (2.97) into the sum of integrals

f(C Z/ F(Ouk k=1 A Gn—kn— k—ZAn kn—ks (2.98)

where A, _p 1 = faD f(Q)uk k-1 A gn—kn—k- The holomorphicity of the boundary integral
is derived by the holomorphicity of each one of the above terms as will be shown below.
Following [31], in order to show that Ag ¢ is holomorphic, the functions Ao g forj=1,....n

are introduced:
Ao = | O = 2)unn-1 A goo. (2.99)

Applying the product rule for the Laplace operator A = Y7, 82?2%

8f 8h Z@f Ooh

(fh)_hAf+fAh+Z I

on f(¢)(¢j — 2j)Unn—190,0, one has that
_ O(tnn-190,0)
ALF(6)(G = 2)tnn-1900] = F(C)G = ) Alunn-1g00) = F(6) 251000,
j

However, letting the Laplace operator act again on the form wu, ,—190,0, yields

6unn 0 8unn 0
A(Uunn-1900) = Ungn— 1A900+Z Oz 1(9920 Z 0z : 8920

due to the harmonicity of wuy,—1 (Lemma 2.2.1). A combination of the above relations

provides that

0Ap0 8Unn 1 agOO
> = —AA] nyn— A
azj 0,0 + / f )u 1240,0 + aD Z azs azs
+ Z Ottnn-1 9900 (2.100)

BD 825 823
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Each of the above contributing terms will be explored, separately due to the complexity of

each term.
For the first term of (2.100), one can observe that for multi-indices o = (ay,...,a,) and
Y=, Yn)
0*(Uunn-1900) Z M1 0% 90,0
- v—— ol - —a—
o0z« 02 0z 0z~
where v < o means that y1 < aq,...,v, < oy, while ¢, is some constant. Since gg o = hg,o =
1/(141¢—2[»m,
Pgoo _ (n+Bl-1!  (C—2)°
0z8 (n—1!  (1+]|¢C— z[2)n Bl

for a multi-index 8 = (f1,...,Sn) and by changing the variables in terms of b and ¢, it takes

the form

6'890,0‘ (et 8] - 1)wels
928 1900 ™ (n Z1)I(1 + [b]2e[2)n+BI

(2.101)

Now, by applying Lemma 2.2.2, deduce that

0% (tn—190.0) tlla=ll
(G — ZJ)T‘aDm i Z Va, (D) t(1 + |b]2|¢]2)n+Hla= Adt,
0<y<a

where v ~(b) = (n+ |la — 7| = 1)!eyu(b)0*~7/(n — 1)!. Thus,

5o [, FOG = 2000

tho=ll
N Yoy bt)dt. 2.102
2 /@n 1 /am (1 + [bJ2]¢|2)n a1l flz+0t) (2.102)

0<y<a

In view of Lemma 2.2.3, since we assumed that the function 1/¢ can be extended holomor-

phically from 9D N1 to D N, the vanishing of (2.102) follows.

In order to show that the second term of (2.100) vanishes, we have to compute Agp . Direct

. . . . 89(),0 _ TL(C'—Z')
differentiation yields 0% = [T 2L z‘j)n“. Consequently,

%900 —-n n(n+1)[¢ — z?

02,02,  (1+|C— 22" " (1 +]¢— z2)nt2

Hence

2 2
go0 —n® +n|¢ — 2|
A = E =
900 = az](?z] (14 ¢ — z|?)nt2
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Direct computations imply that,

Ago| o —nP P n n?+n
lopne T BRI E T (T BRI (U P

Thus, if A1(b) = b;A(b)

F(O(G — zj)u2,1A00,0
oD

n n?+n
= (b - +bt)dt =0,
/CIP"I 1( )/(‘)Dﬂl <(1 + |b‘2|t|2)n+1 (1 + |b|2|t|2)n+2> f(Z )

where we used the Lemma 2.2.3.

In order to explore the third term in (2.100), one can observe that

aun,nfl
(Cj - zj)aigs‘aDﬂl = M(b) A

dt
t
according to Lemma 2.2.2, while a direct differentiation with respect to zs provides

a90,0 _ n(&s_gs)
9y = TRICzpymer Thus

690,0 } N ni)sf
Dz obnlt (1 4 ’b|2|t|2)n+1'
It turns out that
Q-1 9900 £1(b)
P — 2 ! : = dt 2.1
(G — %) 9z: 0z, |asz (1 + [B]2[¢[2)n 1 A at, (2.103)
for each s = 1,...,n, where & (b) = nbsu(b). A combination of Fubini’s Theorem and Lemma

2.2.3 lead to the vanishing of the the third term of (2.100).

The fourth term of (2.100) is treated like the third one and a similar result arises. Observe

that
OUup.n—1 - ., 0 (Oh — . n((s — Zs)
n=l -l AC[finde = e —2s)
on .~ 2TV ag (o, ) KU = e e
and 2900 — _nl&=21) _ while the change of coordinates in terms of b and ¢ gives

9z, = TGPy

On,n—1 090,0 _ &(b) Adt

(G — %) 9z. 07, {asz (1 + [B]2[¢[2)n )

where &(b) = n?b;|bs|2A(b)/|b|*>. Hence, the fourth integral in (2.100) also vanishes.

On the other hand, direct differentiation with respect to z; implies the holomorphicity of
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the remaining terms A,y ,—; for Kk = 1,...,n — 1 in the representation of F(z) in (2.98).

According to the explicit form of K (see (2.2))

(n— 1)1 (1) X0y (=171 = 2)dC[j] A dC

Uk k—1 N Gn—kn—k =

(2i)n ¢ = 2L+ ¢ = 22)" ’
(2.104)
one can obtain that
0 (Wkgom1 A Gn—tn—t)  (n— 1) (1) 271 (=1)785dC[5] A d¢
9z Co@m)n ¢ PR IC - 2
(n—1)! () (G = 25)[k + (k+n)[C — 2P} X0, (=1)7 (¢ — Z;)dCl5] A d¢
(2i)" (I¢ = 2R (1 4+ ¢ — 2[*) ’
while a change of coordinates yields
O (Ukk—1 A Gn—kn—k) (= DIG) X 1)763db[5] A 371 (=1)7b;db|j]
9z opr (2w ||
dt

A‘t‘2k72n+2(1 + ’b|2|t|2)n
(n = 1)!1(3) bs S5y (1) 1b;db[i] A 37 (—1)7~ b dbls]

+ (27Ti)" |b|2k+2
[(k + n)|b|%|t|? + k]dt
‘t‘2k72n+2(1 + ’b|2|t|2)n+1 :
Hence,
a Uu 1 A gni . t 2n72k72dt t 2n72kdt
( L= — it k) = 53(1)) ’ ’ 21412\ 10 +£4(b) ’ ’ 21112\n+1"
9z oD (1 + [b[2[¢[%) (L + [o[*[¢[%)

where £3(b) and &4(b) are functions of b depending on degree k of the forms involved. The

equality

_ n+1—p
[t>tnP) Cip,g (D)
2[(2\ntq Z 5 Tp—1ti° (2.105)
W+ PP~ 22 (4 PRl

holds for every g > —p, where ¢; , 4(b) are functions of b depending on ¢, p and ¢, leads to the

vanishing of the following integrals for every k =1,...,n—1

aAn—k ek / ‘t‘Zn—2k—2
o ¢ b/ A (2 b
070 Jopnar SO fop TRy

|t|2" 2k
bt)dt
+/um—1 &4(0) /am (L gyt /(= bt

due to Lemma 2.2.3.
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The holomorphicity of the second term in (2.97) related to the kernel P((, z) follows from
direct differentiation of P and an argument similar to the one that has been used in Lemma

2.2.5. In particular, after differentiating the kernel P in (2.5) with respect to Zs, one gets

OP (1" (DG —2) o
05~ @m)r+]c— Py N

where dC Ad( =dCi A - ANdCy ANdCy A -+ AdC,. Tts restriction on D N1 is

(n—1)(n+2)

oP (=) 2 (n+ 1) bt|tPr?
OZs|pr (2mi)" (L+ [bf2[¢[2)m+2
D (=17 pidblg) | A [ D (1) bidbls) | dE A dt
j=1 j=1
- - 1
= L;(b __dt |,
20 ()
where
(_1)n(n2+1) (’[’L—|— ]_)'b c: 12(b) n B n
li(b) = G (z+1)]b|2z D (=17 bidbl5] | A (1) "b;dolj) |
j=1 j=1

by using (2.105). Hence, Stoke’s Theorem yields

1
/ 828 Z/cw M /amz [+ ey (& o0dt = 0.

It turns out that F = KT f + PTf € O(D) and f = F on 9D in view
of Lemma 2.2.5 and Theorem 2.1.2. O

Remark 2.2.1 Lemma 2.2.5 and Theorem 2.2.1 can be formulated under the weaker assump-
tion of the one-dimensional holomorphic continuation property of f along almost complex
lines [ meeting a germ of a generic manifold that lies in a neighborhood of zero inside D. The

idea of the proof follows along the same lines as in [27] with obvious modification.

The ball B(0,r) is a sufficient domain where this Hartogs phenomenon is valid.

Example 2.2.1 ([30]) Let us consider the ball B(0,7) and S = dB(0,r). In order to apply
the previous Theorem, we have to show the function 1/¢ can be extended holomorphically
from SN to B(0,r)NI. Firstly, it is easy to observe that intersection between the ball B(0, )
and the line [ (z € B(0,r), |b|] = 1) is a circle G defined by

Gi={t:|t+ (2,0) > <7 —|z|* +|{2,b) [°}.
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This is verified directly, if we substitute the equation of the line [ into the equation of the

ball B(0,7) = {|z|? = r?}. Then,
22+ (2,bE) + (bt, 2) + |t|* < r?,
which implies that
lt+(2,0) 2 = [t*+ (2, b8) + (bt,2) + | (z,b) > < r* — |22 + [ (2,0) >. (2.106)
On the boundary of the circle, the above relation becomes equality such that

1 t+(z,b)

t 2|22 —t(z,0b)

The denominator of this function does not vanish in G, since otherwise, it would imply that

T‘27|Z‘2

t="Tp But this is impossible, since, if we substitute ¢ into (2.106), then

(r? — |2*)?

2 2
- <0
P i

while, on the other hand, |z| < r. Thus, 1/t is holomorphically extended from S N into
B(0,7) Nl and consequently, Theorem 2.2.1 holds in the case of the ball B(0,7) C C2.

Example 2.2.2 Let D be a bounded domain such that at least half of its boundary is a
semi-sphere and the rest of its boundary belongs to the class C?. Let S be the part the sphere.
Then, the line meeting semi-sphere cover all the directions of the lines [ meeting D. Thus,
the intersection of 9D N1 contains part of SN and in view of Example 2.2.1, 1/¢ can also be

extended from 0D NI to DNI. It turns out that Theorem 2.2.1 is also valid on such domains.

Theorem 2.2.1 can be also extended on some quasi-circular domains. A domain D in C" is
called quasi-circular if (€92, ... e"92,) € D for any (21,...,2,) € D, where m; € Z7

and # € R. If m; = --- = m,,, then D is called a circular domain.

Circular and quasi-circular domains are special cases of invariant domains under an action
of a compact Lie group. In particular, consider a quasi-circular domain G and let p be a
holomorphic linear action of the unit circle S' (S! is a Lie subgroup of GL;(C)) on C" given
by p(A)(2) = (A™z1,...,A™nz,), for A € St. Then, O(C")? := {f € O(C") : fop(\) =
fforallA € St} = C. If m; = --- = my, the above statement shows that circular domains

are also invariant under the action p.

Theorem 2.2.2 [24] Let G; be compact Lie groups for which there are continuous represen-
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tations p;j : G; — GL(C™). Let, also, Q; be Gj-invariant bounded domains in C" under the
action p; such that O(C")Pi = C. Suppose that g : Q11 — Qo is a proper holomorphic mapping
and the two domains contain 0. Then

(1) g can extend holomorphically to an open neighborhood of Q.

(2) If in addition g—(0) = {0}, then g is a polynomial mapping.

Corollary 2.2.1 Let D C C" be an invariant bounded domain under an action p of a
compact Lie group. If D is biholomorphic to B(0,r) and f € C(OD) has a one-dimensional
holomorphic continuation property for every complex line | meeting D, then there exists a

function F € C(D)NO(D) and F = f on dD.

Proof. According to Theorem 2.2.2, the biholomorphism can be extended from D to B(0,r).

Hence, a combination of Theorem 2.2.1 and Lemma 2.2.4 leads to the desired result.

Example 2.2.3 Let B? be the unit ball in C? and Q) = {(w1,w2) € C? : Jw1]? + |wy —
wf| < 1}. Then ¢y (21, 22) = (21, 22 + 2F) is a biholomorphism from B? to € which can be
hibolomorphically extended to the boundaries (Theorem 2.2.2). Hence, Theorem 2.2.1 also
holds on €.

Example 2.2.4 Let us consider the Cartan domain
I, = {ZeMBx3,C): 2" = -Z13 - Z2Z* > 0%},

where Z* denotes the complex-conjugate to the transposed matrix of Z (Z!). A linear

biholomorphism between IT3 and the three-dimensional unit ball B3 exists as follows [23]:

F:Bs — II3,

(21722723) = —Z21 0 zZ3
This biholomorphism is extended holomorphically to the closures of these two circular do-

mains according to Theorem 2.2.2. Hence, Theorem 2.2.1 holds on IIs.

Example 2.2.5 Theorem 2.2.1 is also valid on another Cartan type domain, denoted by

L, ={ZeM1xn,C):I, - ZZ* > 0},

’If A € M(m x m,C), A > 0 means that A is positive definite i.e. X'AX = > k=1 ajxX; Xk > 0 for all
X e (C™)".
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since I, ~ B,.
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Chapter 3

Koppelman formula on Toric

Varieties

The aim in this chapter is to derive a toric Koppelman integral formula representing smooth
(0, ¢)-forms on an n-dimensional smooth compact toric variety X taking values in line bundle
Vr. The bundle V7 is the induced line bundle of an ample divisor D with |Pp NZ"| = N and
N < 2n+ 2 (see Section 1.1.6). This formula is also extended for forms taking values in the

k-fold tensor product of V., (Vo )F =V, ®--- @ V.
N——’
k—times

As a particular case of our result, we are able to recover partly the Koppelman integral formula
on P x P™ proved by E. Gétmark in [15], but with different representatives. However, our
construction has the added benefit of yielding koppelman integral representation formulas on
some toric projective varieties by taking into account that the singular set of kernels involved

has to be along the exceptional set of the varieties in question.

3.1 The projective embedding

Let D = Zg=1 a;D; be an ample divisor on an n-dimensional smooth compact toric variety
X. The notion of ample divisors has a fundamental role in the present thesis since they

induce a projective embedding (1.12) of X into Pn_1

ép: X —» PN!

IP)Nfl

and a Weighted Koppelman formula on the projective space exists.
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Let us recall the polyhedron (definition 1.1.3)
Pp ={m e Mg : (m,v;) > —a;,for alli =1,--- /d},

where n +1 < d < N and the integral points {m1,...,mny} = Pp NZ". The definition
of the polyhedron guarantees that one of the integral points is the zero vector and we set
my = (0,...,0) € R™, since a; will be chosen to be non-negative. Between the integral points,
there exists N —n — 1 equalities such that each one is constructed by four vectors from the
above collection of points according to the following way. For each j =1,...,N —n — 1, we
set mj2 to be the vectors whose distance to origin is more than one unit (these vectors are
exactly N —n — 1). Then, for each mjz, one can always find vectors m; 3 and m; from the
collection of the integral points such that these three vectors form a triangle or a degenerate

triangle (if mj3 = mj4). Thus, the three vectors fulfill the equation
mj3 + mjqg — my2 =0
or, equivalently, if we denote mj; = m; = (0,...,0), then
mj1 + Mjo = M3 + My (3.1)

forevery j=1,...,N —n—1.

As mentioned in Section 1.1.7 (according to [6]), the toric variety X is the Zariski closure of

the closed embedding ¢p such that ¢p(X) = ®p(T) = X. In the following proposition, we
will prove that X is a complete intersection in PV ~! arising by the zero set of polynomials

induced from equations (3.1).

Proposition 3.1.1 The toric variety X is realized globally as the zero set of N —n — 1

2-homogeneous holomorphic polynomials f; : cN-=¢C,j=1,...,.N—n—1.

Proof. Recall that Pp N M = {mq,...,my} where "™ = szl n,im“v’“> fori =1,...,N
(recall that vy for k = 1,...,d are the generators of the fan of X and 7 the corresponding

homogeneous variable for each vy) span I'(X, Ox (D)) = Ox (D) and let

ép: X — PN!

p o= (XD, XY (D) (3.2)

be the corresponding embedding of the ample divisor D. According to the preceding discus-

sion, one can construct N —n — 1 equalities described in (3.1) that are translated into the
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sections

fio= Xy — sy (3.3)
for every j = 1,...,N —n — 1. Then each f; : CV — C is interpreted as 2-homogeneous
polynomial, by corresponding for each x"* the variable z;, ¢ = 1,..., N and X is realized as

the intersection of zero sets of these polynomials. One can say that these polynomials are
defined locally in a chart U, of the toric variety X by changing the characters x"" for each ¢ =

(my,op)

1,..., N to the homogeneous coordinates of X through the rule x™i = szl U .

Now, through the homogenization argument described in (1.6), one can construct polynomials
fj having a global nature on X by corresponding each z; to the homogenization of x™, that
is szl n,im"’kaak. Then, X is considered to be a complete intersection in PV~! given
globally by the intersection of the zero sets of those (N —n — 1) 2-homogeneous polynomials.

O]

The following Lemma is crucial, as it allows to connect the sections on X with the restrictions’

of those from PV—1,

Lemma 3.1.1 Let ¢p : X — PN~ be the closed projective embedding defined in (3.2). Then

Ox(D) = ¢ Opx—1(1).

Proof. The set {szl n,imi’v’“Ha’“ }N | of linearly independent global sections of the line bun-
dle V. (corresponding to the divisor D) being the homogenization of the set {x™i}Y,,
constitutes a coordinate system on X embedded in PY~! by ¢p from (3.2). Indeed, if
Vi= {p e X[, n,imi’kaak (p) # O}, then {V;} defines an open covering of X. Moreover,
the map V; x C — 7~ 1(Vi) C V¢ such that (p,\) — A[¢_, n,im"’v’“Ha’“ (p) is an isomorphism
between open sets of X x C and open sets of the line bundle V. Under the embedding ¢p,

the transition functions on V; N V; of the line bundle V are the functions

d (mj,vk)+ak d (my,vk) m;
gX = Lk=1Tk _ =1l _X
v d (ma,vx)+ag, d (ma,ox) m;
[Te=1 [Te=1 i X
The transition functions 91')5 are the pull back of the transition functions gE.Nfl = 'Z—J on

U;NU; of the hyperplane bundle L in PN=1, where z; are the projective variables of PN~ for
i=1....,N and {U;} = {z € PY~1 . z; # 0} is the standard open covering of PN~!. Then,
Ox (D) ~ ¢},0pn-1(1). O
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Let & 4(X,Vz) be the space of (0,¢) forms on X taking values in the corresponding line
bundle V; of an ample divisor D such that £ = Ox (D). We say that ¢ is a (0,¢) smooth
form taking values in V; by writing ¢ € & 4(X, V), if ¢ is a section of the vector bundle
A% T*(X )@V, where T*(X) is the cotangent bundle of the smooth toric variety X. Recalling
the notation from Section 1.1.6, if 7/ : A»?T*(X) ® Vz — X is the corresponding morphism
of the bundle, {U,, }; is the covering of X and

po, : (7" HU,,) = Uy, x C (3.4)

are the trivializations of this bundle, one can construct a family of (0, ¢) forms {¢,, }; defined
on Uy, C X. These forms {¢,, }; are zero homogeneous (with respect to the homogeneity on

X) and satisfy

iU, = Po; © O, (3.5)

where p,, = T o ps, and 7 : Uy, x C — C is the projection mapping. Moreover,
¢0’i = gij¢0j7 on UO'i m UO'J' (36)

Hence, the family {¢,,}; determines ¢ € &y 4(X, V) in view of Proposition 1.1.2.

Moreover, in view of Section 1.1.3, the family {5¢0i}i determines J¢ since ggb(,i = gijégbgj
on Uy, NU,,;, after the action of the O-operator on (3.6). Observe that d¢ € Eo,q+1(X, V)
takes values in the same bundle with ¢ which indicates that the bundle V, is closed under

the d-operator.
Taking into account the notion of projective forms (see Section 1.3), we define, by analogy,

the toric projective forms.

Definition 3.1.1 Let d be the number of generators of the smooth toric variety X. We say

that a form on C is toric projective if it is the pullback of a form on X through the projection
T:CIN\Z() —» X

(Uh---ﬂ?d) = [771a---777d]-

Hence, one can adapt the corresponding homogeneity of a projective form in our case. We
say that a form ¢ belongs to the space & 4(X, V) if its pullback to C? through 7 is a D-

homogeneous toric projective form on C? (according to the degree of a monomial which is
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defined in Section 1.1.4 ).

In particular, let 7y, be the restriction of 7 to a chart U, of X such that

Ty, :CI\Z(8) — U,

(T’177T]d) — (ng?""n’]i?]‘?""l)?

where 77 = x" = H‘j:l nfuj 1) The vectors {v;}L | and {u;}j_; are the generators of the

fan of X and of the dual cone &, respectively (see Section 1.1.5).

If D= Z?Zl a;D; and ¢ € & 4(X, V), then on the corresponding chart U, we have that 7%¢
is a differential form in C%\ Z(X) locally described by

To=mp, b= . Gy, na) d@i)7 A Ad(,)°

1<i1 <...<iq<n

where g;, i, (m,...,nq) are D-homogeneous rational functions with respect to the homoge-
neous coordinates 11, ..., 14 of X. Without loss of generality, we assume that the coefficients
Giy...ig(M1, - - - ;M) do not contain any 7;. A homogenization of the above form with respect to

D (see (1.6) or [43]) yields
d
o= > J1¢ G, f,ng) d@i,)7 A Ad(7s,)° (3.7)
1<iy <..<ig<ni=1
Actually, the form (3.7) is the restriction of the global form to the chart U,.

The following Lemma is crucial since it verifies that V, = L, where V is the line bundle of
the toric variety X corresponding to the sheaf £ = Ox (D) while L is the hyperplane bundle
of PN=1 corresponding to the sheaf Opn—1(Dp).

Lemma 3.1.2 If ¢ € & 4(X, (V2)F), then through the embedding ¢p, ¢ can be extended to a
(0,q) form on PN=1 taking values in L*, denoted by ¢ and writing p € & o(PN 1, L¥) such

that p|x = ¢.

Proof. In view of the preceding paragraph, the pullback of ¢ € & 4(X, (Vo)) is a kD-

homogeneous toric projective form on C?\ Z(X) such that

d k
TLe= Y (Hna> Giroig(nF s om3) d(@i)7 A=+ A d(75,)°

1<i1<...<ig<n \i=1

on a chart U, of X, where n{,...,n? are the local coordinates of the chart U,. Under the

embedding ¢p, the (0, q) form ¢ on X is extended to a form ¢ on PNY~! of the same bidegree
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such that if 7 : CV \ {0} — PV~ is the projection mapping of CV to PNY~! and

i  CV\{0} — PN

(Clw"?CN) = (1797 Cf]\]

G ""Cl)

is its restriction of 7 on the chart U; = {¢ € PN=1: (1 # 0}, then

e S G, <C1”"’<1)d(§1 Aend(E (3.8)

1<1<...<jg<N—1

with respect to the projective variables (1, ..., (v of PV~1. This follows from the identification
that exists between the projective variables (1,...,(x of PV~ (left hand side of (3.9)) and

the homogeneous coordinates 71, . .., nqg of X (right hand side of (3.9)) through the map

(Cl, - ,CN) — (H n§m17m>+ai’ e Hni(mN,’UH—O—ai) _ (H n;zi’ o H m{mN,vi)—i-ai) ‘
=1 i=1 i=1 i=1

(3.9)

It turns out that ¢ € 507q(IP)N_1, LF), since its pullback to C" is a k-homogeneous projective

form according to (3.8) (see Section 1.3). O

Example 3.1.1 Let us consider the (very) ample divisor D = Dy + Dy on P! x P!, Then,
PpnM ={(0,0,(1,0),(0,1),(1,1)} and the corresponding closed embedding is given by

¢pyip, P xP! — P?

moMmn3 N3
p — (X(O’O),x(l’D),x(l’l),x(O’l))=(1,,,) (3.10)
M2 1M2M4 N4

on the chart where 172 # 0 and 74 # 0. The embedding is independent of the choice of
the chart. One can observe that the image of the embedding can be written in the form
(n2ma, mna, mns3, n2m3), indicating the global character of the embedding. This is the well-

known Segre embedding. Thus, P! x P! is realized as the zero set of the polynomial

f — X(OD)X(LI) _ X(O’I)X(l’o)

in P2. The line bundle corresponds to the divisor D = Dy + Dy and thus is V; = L' @ L.
The preceding Lemma implies that the embedding ¢p,+p, in (3.10) guarantees the extension

of ¢ € E4(Pt x PL,LF ® LF) to a form ¢ € & 4(P3, L¥) such that p|p1p1 = ¢.

Now, if we take D = kDy + 1Dy for k,l > 0, then the corresponding embedding is defined by
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.l 1 kl+k-+l1
®kDysiD, Pt x P —  PRIFRE

(0.0) \1L0) (k0) (LD D (D)

p — (9 x X x D)

k l k l
(e () 6 () 6
7772’ ’ 72 ’ ' 2 N4 Y 72 M4

(3.11)

on the chart where 12 # 0 and n4 # 0. As before, the embedding can be expressed in a
global form by multiplying each coordinate of the right hand side of (3.11) by n5n}. Observe
that this map is the composition of the Veronese embedding (v, ;) with Segre embedding.
The zero set of the (kl + k + [ — 2) polynomials that are derived from the integral points of
Pyp, 11D, leads to the variety P! x PL. Observe that the restriction of the embedding (3.11) in
the case when k = [, an ¢ € & ,(P! x P!, L* ® L¥) is extended to a form ¢’ € Eovq(IF’kqu, LY
(Lemma 3.1.2). But as k becomes larger, the dimension of the projective space increases
rapidly. However, this embedding allows the extension of differential forms on P! x P! taking

values in L* ® L! into differential forms on P*+5+! taking values in L', even if k # [.

The two extensions ¢ € & 4(P3, L) and ¢ € 507q(IP’k2+2k,L1) of ¢ € & 4(Pt x P LF ® LF)
arising form the embedding ¢p,+ p, and ¢xp,+kp,, repsectively are compatible since by taking

Y = QkDo+kD, © ¢Bl+D4, one can extend ¢ € &4 (B3, L*) to ¢’ € &4 (Pk2+2k, Ll).

Example 3.1.2 Consider, now, the cartesian product of projective spaces P"* x P™. This

toric variety is associated with a fan ¥ C R®™™ produced by the vectors e1, e, ..., €,, —€1 —
= €y Cntly €nt s e vy €ty —€ntl — * '+ — €ntm, Where {e;} is the standard basis of R" ™.
Then for each ray from the above, we denote its generator by v; for every ¢ = 1,..., n+m+2.

While by 7;, we denote the corresponding homogeneous coordinate and by D; = div(n;) the
corresponding divisor. As mentioned in Section 1.1.3 the divisor of a character x! on P" x P™

, for [ € Z"*™ is given by

n+m
div(x') = Y (L,vi) Di.
i=1
Then,
0 ~ div(x®)=D;— Dpy1, forl <i<n and
0 ~ div (X6n+j) = Dn+j+1 — Dpyma2 forl < j <m.
Thus CI(P* x P™) ~ Z? which is generated by [Di] = --- = [Dpy1] and [Dyi2] = -+ =

[Dy+m+2]. Without loss of generality, we can choose the Cartier divisor D = Dy, 41+ Dpym+2
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in order to take global information for sections of P x P™ taking values in the corresponding

line bundle of the sheaf Opnypm (D), that is in line bundle L' ® L!.

The associated polyhedron Pp is described by the vectors [ € R™t™ satisfying the following:
(l,v;) >0, for each p #n +1,n+m+ 2, while (I, v,41) > —1 and (I, vp4m+2) > —1. These

inequalities are equivalent to:

(I,e;) >0, foreachl <i<n+m

(l,—e; —---—ep)>—1 and
<la —Cp+l — en—i—m) > —1.
If i = (a1,...,an4m), then a; > 0 for each 1 < i < n+m, —a; —--- —a, > —1 and
—Qpt+1 — " — Gpam > —1, or equivalently, a; > 0 foreach 1 <i<n+m,a;1+---+a, <1
and anp41 4+ -+ appm < 1.
Let us consider the vectors
mi ;= (0,..., % ,...,0,0,..., % ,...,0) e RM™ (3.12)
i—position Jj—position

for0<i<nandn+1<j<n+morj=0. The zero value of i or j means that there is no
unit in the first n or the last m positions of m; j, respectively. The argument in the previous
paragraph shows that Pp is an (n + m)-dimensional cube with (nm + n + m + 1) vertices,

that are precisely the vectors m; ; for the above possible values of 7 and j.

Now, the Wall inequality in (1.16) indicates that the divisor D = Dy, 41+ Dp4pmy2 on P x P

is very ample. Thus, the closed embedding defined by

¢p: PP xPT o prminim

where

ép(p) = (X"(p), X0 (D), - .-, X0 (p), X0 (D), . .., X0 (p),

X (D), X (D), XL (D) X () (3.13)

is induced.
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We define polynomials f; ; : C™m ™+l 5 C for 1 <i <nandn+1 < j <n+m, given by

— 0,0 . Ml nt+1 _ ,M10 . M0,n+1
fine1 =X Xt — x X ot

__ ~A,M0,0 . 4, M1, _ yM1,0 | 4 M0,
finem = X X" —x X

_ +,M0,0 Mpn+1 _ +,Mn,0 . +,M0,n+1
fn7n+1_x - X n,n+ X n X n+

fn,ner = Xmo,o : an'n+m - an,o : Xmo,ner. (3'14)

Then, the associated variety is described by the zero set of the above system of polynomials

due to the following trivial equalities between the generating vectors of the polyhedron Pp:

mo,0 + Mintl = M1,0 + Mopnt1
mo,0 + M1 n+m = M1,0 + M0 n+m
mo,0 + Mnnt+1 = Mn,o + Mo,n+1

mo,0 + Mnn+m = Mnp,0 T M0n+m-

Introducing the variables z;; to replace the characters x™, it becomes obvious to see that
these polynomials are holomorphic with homogeneity two. The cardinality nm of the induced
polynomials, that is the number of the integral points that have distance more than 1 from
the zero vector, coincides with the codimension of the associated variety and is nm+n+m —
(n+m) = nm. The embedding ¢p in (3.13) gives rise to the extension of the (0, ¢) forms on
P" x P taking values in L* ® L* into (0, q) forms on P+ taking values in LF, in view

of Lemma 3.1.2.

Example 3.1.3 In the particular case of the Hirzebruch surface H (see example 1.1.26), the

very ample divisor D = D3 4 2D, induces the embedding

Opsrap, i X — P!

2
TNz n2 1

p (X(O’O)v X(LO)’ X(1’1)7 X(0’1)7 X(O’Q)) = (1) I RN 3) )
n3M4 TNy M4 Ty

(3.15)
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since Pp N M = {(0,0),(1,0),(1,1),(0,1),(0,2)}. This embedding has a local form that
holds on the chart of H where 13 # 0 and 74 # 0. However, this local representation can be
extended to H by taking the image of ¢p,y2p, to be (303, n1na, mmn2, M2n304,m373). Hence,

X is expressed by the zero set of the system of polynomials

fio= 00, ML 01, (10)

(0,0),,(0,2) _

f2 o= X% XODXOD, (3.16)

Following Lemma 3.1.2, an ¢ € &4 (M, (Vz)¥) is extended to an ¢ € & 4(P*, L¥), where V.
is the corresponding line bundle of the sheaf £ = Ox (D3 + 2Dy).

3.2 A toric weight in X

Let t = (t1,...,t,) and 7 = (71,...,7,) be two vector variables belonging in the algebraic
torus "= (C\ {0})™ and recall from Section 3.1 that the vectors my, ..., my are the integral
points of the polyhedron Pp. A parametrization of PN~! given by x™ = t™ = tT} . -t??
foreachi=1,...,N (N >n+1), where m{ for a = 1,...,n denotes the a-coordinate of the

vector m;, modifies the map (3.2) to the following equivalent form:
op(t) = (t™, ..., t"N). (3.17)

This is the map &p = d)D‘T introduced in Section 1.1.7.

Let us define

N N
1 n
P(t)y=>Y "t =) "t -ty (3.18)
i=1

i=1
to be the Laurent polynomial in the torus T generated by the integral points of Pp N Z™

with coefficients equal to one. We introduce the particular (1,1) form, called toric weight

a’', defined by

al = a%jo + arﬂl

where

n

— N (= ; N (= 1 = r

g = P(r-t) (0™ i (Tat)™ - (Tuln)™ (3.19)
) - - i - ! i ‘
L R DA (D DR TR
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and
T 1 = 2
aj; = ——2m861nP(|7\ ).

Observe that over the diagonal ¢t = 7 of T' x T, one has that ago(t,t) =1

Elementary computations, allow to write alTJ explicitly. Namely,

ormi = 9 (Tlmg .. 7—;21?> = Zm?ﬂiﬂgil (Tmi [(I]) dTa

a=1
n L nd n d
= N w2y g (3.20)
a=1 Ta a=1 Ta
mé . . . m} m ..
where 7"i[a] denotes that 7, ° is omitted from the product 77 = Ty YTt Simi-
larly,
- .dm
oT™m Zm Fm b, (3.21)
Tb
b=1
Furthermore,
N n N .
1 n a__ a .
P(r*) = 0 <Z Eetiei .--|rn|2mi) =3 mir" T w (|77 al) dra
i=1 a=1i=1
n N
d
= DD il (3.22)
a=1 i=1
and
n N dTi
aP(|7)?) > mbr P _b (3.23)
b=1 =1
Hence,
1 = 1 -0P(7]?
T 2
= ——881 P Ot
al,l . n (’T‘ ) 27” (’T‘ )
1 Za 122 1ma|7_|2mzd7l;a
2m iy [T
N N N
w o | Somgmllrre (el ) (S mbpeem) |
_ _LZZ i=1 _ A= i=1 7, d7a
2m’b 1a=1 §|’2m N 2 Th Ta
— = T 7 T my
i=1 (zgl| | )
(3.24)
Corollary 3.2.1 The contributing vectors from the collection of elements {mi,...,mn} in
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the toric weight a{l are:

1. along the form component dTy, A dtg for a #b and 1 < a,b < n. That is, for every pair
of vectors {m;, m;} such that both the a-coordinate and the b-coordinate of the vectors
m; and m; are different and no other pair of vectors {my,,my,}, 1 < p < £ for an index
¢ satisfying

m; +mj; =my, +my,, V1 <p</

and

(m¢ —m§)(m} —mf) = = (m, —mf,)(mf, —m]),

are present.

2. along the form component d7, A dr, for 1 < a < n. For every pair of vectors {m;, m;}
such that the components of m; and m; in the a-coordinate are different, the corre-

sponding term in the form, is non-trivial.

Proof. This is a consequence of the definition of offl. Observe that the coefficient of the form

@ A Lo for fixed a and b can be written equivalently as
b Ta

- ! S [P (g — @) (mb — mb) (3.25)

. N2 J J
271 (Z? |7_|2m2) 1<i,j<n
i#]

and the first result follows. If a = b, each term of the above summation vanishes if and only

7 a __ a
if m =mj.

Example 3.2.1 In P x P, the toric weight offl has only terms containing differentials
coming both either from P™ or from P™. Moreover, the weight is decomposed in two forms

where one depends only on P™ and the other one only on P™.

More precisely, let us recall the vectors constructing the polyhedron of P™ x P™ (see (3.12))
mi;=(0,...,1,...,0,0,...,1,...,0),

for0 <i<n,n+1<j<n+morj=0. Fixa pair (a,b) with 1 < a < n and
n+1<b<n+m. Without loss of generality, let a = 1 and b = n + 1 (the other cases
are treated similarly). According to the first part of Corollary 3.2.1, in order to compute the
coefficient of the form d7 Adr, in a{l, it is sufficient to look at the pairs of vectors that have

different coordinates in positions @ = 1 and b = n+ 1. These pairs of vectors are given below:

(a) mo,0 with min+1 and mon+41 with mio,
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(b) my,0 with my 41 and my o with mq 5,41 for 2 <k <n,
(c) mopt1 with my; and mg; with mq pqq for n +2 <10 <n+m,

(d) m1p41 with my; and my; with my 4 for 2<k<nandn+2 <1 <n+m.

However, observe that each of the above cases gives a trivial result. For example, the vectors

in case (a) satisfy the equalities
m,0 + Min+l = Mon+l +M10

and

1 1 1 1 1 1 1 1
(m1,n+1 - mo,o)(m?;gﬂ - m% )= *(mo,n+1 - m1,0)(mg;§,+1 - m?g )-

Similar equations are valid in the remaining cases and the result follows.

Furthermore, from the initial definition of the toric weight of{l, one has

P(r?) = 3 et
2%

n+m

n
_ |T|2m0’O+Z|T’2mi‘O+ Z ‘T|2m0’j—|— Z |7_|2mi7j
=1

j=n+1 1<i<n
n+1<j<n+m
n n+m
= (1+Z’T‘2m¢,o> 1+ Z |T’2mo,j
i=1 j=n+1
n n+m
= (1+Zm|2> 1+ ) |l
=1 j=n+1
Thus, we get
T ) - 2
04171 = —%881DP(‘T| )
1 n 1 n+m
= 9 J2) _ _— 5 2
= —5-00I <1+Z|m> 5-:00In 1+‘Z |
=1 j=n+1
1 < —< T;dT; > 1 e T:dT;
= 5D ) 55 9] L . (3.26)
o 2\ e e) " 2 O\ e

However in general toric varieties, such a separation of variables is not possible.

Example 3.2.2 If we look, now, at the particular case of the Hirzebruch surface in example
3.1.3, none of the terms of the form present in the weight 041T71 vanishes. To be more precise,
the contributing vectors in the terms of the form along d7; A dm and d7» A dmp are the pairs

{ma,ms} and {ms,ms} in view of Corollary 3.2.1, since {my, m3} and {mso, m4} (the pairs
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that have different components in every position) satisfy the equalities
m1+m3 =ma+ my

and

(my —mg)(mi —mg) = —(my — my)(mj — m3).

Hence, by substituting the contributing vectors m; in a{l (see (3.24)) and simplifying each

term in the toric weight, one obtains:

1 14 2|m|? + 2|m|* + || )
T
a = —— dm Ndr
1,1 2mi (1+ |72 + [ + [m1 222 + |52 '
1 = 2 92 2
L ; 7'17'2|7;2| ( +2|7'2|2) dn Adry
2mi (14 112 + |72]? + |71 72]? + |m2]*)
1 —1172|722(2 + |72|?)

- dm N d
27i (1+ 112 + [? + 712 [ma? + a2 2 7

1 A+ mP)A A+ [+ 4l + ()
211 (1 + ’7’1|2 + |7'2|2 + |7’1‘2’T2’2 + ’T2|4)2

dTo N dro. (3.27)

The construction of the particular kernel in the toric representation, that we will present later
on, involves the form (a{l)” which is the wedge n-product of a{l. This form is well-defined

in the torus T' C X.

By following the technique developed by A. Shchuplev in [37], the form (a{l)" can be written
as a linear combination of forms. The coefficients of this linear combination involve determi-

nants of minor of matrices whose lines (columns) contain vectors {mq,...,my}.

Proposition 3.2.1 Let A be the matrix

1 ... 1
1 1
A=| N (3.28)

and A; be the determinant of the minor matriz obtained by (n+1) columns of the (n+1) x N

matriz A. Then, the (n,n)-form (o{l)" equals to

1\" n!
T \n __ - .
el = (~z) mEmrEEE
> det?(Ay)|r[*matt 2 i1 dr A dr
|J|=n+1

1<1< <jnp1 <N
(3.29)
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where dT7 ANdt = dTy NdTi A -+ ANdT, ANdT,. The sum is taken over all increasing subsets of

the index set 1 < j1 < -+ < Jpy1 < N.

Proof. From (3.24), observe at first that (afl)” is the product of

1\" n!
- driy NdTi N - NdT, Nd
<2Qrwmmwwwﬁ n Tn G

and the (n 4+ 1) x (n + 1) determinant

L Sl Smpjrp
oml|T|2mi ) )
e L N S T L
. n 2m; . .
Sl e S e

By taking W as a common factor of the first column of the determinant, we get that

the determinant is equal to

)DF ’T‘Qmi )DF mzl|7|2mi DY m?|7|2mi
1 > mil\T|2mi > m}m}|7|2mi e D m}m?|7]2mi
> |r]2m
SoymplTPre S mprm| TP S mm TP

Hence, the matrix whose determinant is the above one, is written as the product of two

matrices

I ompT™ L mlr™
T . TN
1.-m1 1, _mpn
myT N (5
myT"™ o miy TN
FON TN my TN

where the first matrix has dimension (n + 1) x N, while the second one has dimension

N x (n+1).

Cauchy-Binet formula [13, p.9], implies that the determinant of the above product is expressed
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by the sum

T L 7 Min41 7M1 m} T mf 7
1 rmj, 1 Min+1
Z m]17‘ Ce .7n+17-
1<n <. <jn41SN
L UL R n mjn+1 _mjn+1 1 _mjn+l n _mjn+1
mg T ceeomy T T mj T ceeomyg T

Factoring out the term 7% from the i-column of the first determinant and 7% from the
i-row of the second column for every i = 1,...,n+ 1, the above summation is equal to
1 1 1 m]l-1 m;-ll
Z |7 [Pt 2 My mjl"“ ‘
1<j1 <. n 1 SN : :
m?l . m?nH 1 mjl'n+1 ?n+1
or, equivalently,
Do frPra e det?(Ay).
|J|=n+1
Thus, the result follows. ]

The form (offl)” has a similar form with the Fubini-Study form ([37]) w of a toric variety
defined by
1 /(i\", - .
W= <2> (00In P(|7[*))
where P(t) =) . ¢;t"™ is a Laurent polynomial in the n-dimensional torus T' with m; be only
the vertices of the polyhedron Pp and ¢; be some non-negative coefficients. Observe that,

when the integral points coincide with the vertices of the polyhedron Pp (for example, this

happen in the case of P! x P! with D = Dy + Dy), then

1 n
(a{l)" =nl! <—> w, (3.30)
with ¢; equal to 1.

Corollary 3.2.2 The collection of vectors {mj,,...,mj, .} from the N elements

{mi,...,mn} contributes a non-trivial term to (a{l)” if and only if the (n + 1) extended

L

vectors {(1,mj,, ..

) ,m?l), o (1 m}n+1, ... ,m?n+l)} in R*1 are linearly independent.

Proof. This is a direct consequence of Proposition 3.2.1 since every term of the summation

vanishes if and only if det(A;) = 0.
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Let us denote by A% P* the (n+1—k)x (n+1—k) matrix constructed by (n+1—k) columns of
the matrix A where p; +1, ..., pr + 1 rows are omitted while the index 1 < p; < ... <pr <n
is increasing. Hence, similar computations to those in Corollary 3.2.1 lead to the form
(af )"

)

Proposition 3.2.2 The (n — k,n — k)-form (a{l)”_k equals to

e 1\ (n—k)
N S

det Am,...,pk det Aql’m’qk T 2mj1+m+2m]’"*k+1
Z Z ( J ) ( J )| | d?[q]/\dT[p]

|J|=n—k+1 1<p1<...<pr<n T[p]T[q]
1<i1 < dn_ptr1<N 1<q1<...<qp<n
(3.31)
where T[p| is the product Ty -- -1, where Tp,,...,Tp, are omitted while T[q] is the product
T -« Tn, where Tg,, ..., Ty, are omitted and d7[q) A dr[p| results from deleting the differentials
drp,,...,d7p, and d7y,,...,d7,, in dT ANdT and writing the remaining terms of dT and dt in
increasing order of indices, alternately.
Proof. As in the previous proposition,
1\"* (n—k)
T —k
()" " ={-5-]  pamer*
2mi P(|7]?)
1 YmglrPme L Y mi A
S ymylr|mi i i
y Z W Simym|T P ST mm TP dt[q] N dr[p]
1<p1<...<pp< : : Tlpl7la]
1I2< <a=n M
lemr,rh;—lnl Zz m?m} ‘T|2mi to Zz m?m?|7—|2ml D1yeesDk
y ql""’qk
where | -+ |p1,...p denotes the determinant of a matrix where p; + 1,...,pg + 1 columns and
Lol
q1+1,...,q;+ 1 rows are deleted. Hence,
1\ (n—k)
(el )" =(—-5= _n—k}_ X
’ 2mi P(|r|?)n—k+1
> I SimplrPre s X mp TP
Smil TP S mbmlr P S mpml |7 [P dtlq] N dr[p)

x ) TR TPl
1<pi1<...<pp<n : ce . : T[p}T[Q]
1<qi<...<qp<n

Zimﬂﬂ?mi Zim?m}|7|2mi Zim?mﬂﬂ?mi o
TN
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Cauchy-Binet formula implies that the above determinant can be rewritten as

T 7 Mint1 T my T
]: mg ]‘ mjn 1
Z my T my T
|J|=n—k+1
n My n Mjnt1 FMin41 no =My,
miT mj T S ceoomp T —
or, equivalently,
1 n
1 1 L my coomy
1 1
Z |7-’2mjl+m+2mjn7k+l mjl e mjn+1
|J|=n—k+1
n n 1 n
Mo M g g b My s M PlyeesPk
_ P1y-Pk q1,--5Gk 2my) 4 2my
= > det( APV PR )det(A% )| 721 In—kt1
|J|=n—k+1
1<1 < <jn—k+1<N
Then, (3.31) follows. O
In particular, according to the preceding proposition
(OéT )nfl N n :
11 271 P(|7)?)"
det(AP)det(AL)|r|>mirt+2min
> > (A )det [J])‘[|] drlgl Adrlpl.  (3.32)
T|p|T
|J|=n 1<p<n pITlq
1<1 <. <jn<N 1<q<n
Corollary 3.2.3 For p and q fized in (0[{71)”_1, the collection of vectors {mj,,...,m;,}
from the N elements {m1,...,my} contributes a non-trivial term in the form containing the

terms d7[q] A dr[p] if and only if all the following conditions are valid:

1. The n-vectors {(1,mj,)p,...,(1,m;j,)p} in R™ are linearly independent. Recall that
(1,mj,), denotes the extended vector (1,m]1i, ...,mj,), where (p + 1)-th coordinate is

omitted.
2. The n-vectors {(1,m;j,)q, ..., (1,mj,)q} in R™ are linearly independent.

3. There doesn’t exist any other collection of n-vectors {mj, ,...,mj, } , 1 <r < £ for

an index ¢ satisfying

m]l++m]n:mjr1++m]rn7 V1§TS£
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and

¢
det(AD)det(A%) = — " det( A )det(A ).

r=1

Proof. This is an immediate consequence of expression (3.32). O

3.3 Integral representation on a smooth Toric Variety

Let X be an n-dimensional smooth compact toric variety and D be an ample divisor that
induces a line bundle V; where £ = Ox(D) is the sheaf in which sections and forms take
values. Our aim is to derive an integral representation Koppelman formula for these forms in
the dual sense, by constructing the kernels for the representation having their singular points

along the exceptional set of the toric variety.

A crucial point in our construction is the use of the result Ox (D) ~ ¢},Opn-1(1) (Lemma
3.1.1). This is the starting point of our construction, since a form on X that takes values
in the line bundle V; (£ = Ox (D)) can be extended to a form on PY~! which takes values
in the hyperplane bundle L corresponding to the sheaf Opn-1(1). This procedure reduces
all computations to ones on PN~ ( where N is the number of the integral points of the
polyhedron Pp). Taking into account the existing Koppelman formula on projective space
(Section 1.3), we are able to construct a toric Koppelman formula on some projective toric
varieties. The integrals in the toric Koppelman formula that take place on X are well-defined

PN—1 with respect to the projective variables

since the zero homogeneity of the integrands on
Ci,y...,Cy of PN~ ig translated’ to the corresponding zero homogeneity of the integrands

on X with respect to the homogeneous coordinates 71, ...,n4 of X, through the embedding
¢D.

For this derivation, we prove an analogue of the generalization of the Poinacaré-Lelong for-
mula (see Theorem 1.4.1) which shrinks the support of the integrands from PY~! down to X.
This is illustrated through the use of a wedge product of vector fields and a specific projective

weight that are introduced later in the text.

Let us recall the toric variables t = (¢1,...,t,) and 7 = (71, ..., 7,) which were introduced in
Section 3.2. Through the embedding ¢p in (3.17), one can extend the algebraic torus T to
PN_l

the projective space and write

(™, W) = (21,...,2y) € PN (3.33)
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and

(T™ TN = (G, ... Cy) € PV (3.34)

The preceding rules state the correspondence between the projective and toric variables.

Let us recall the polynomials (3.3)
fj = X"tz — xMas M, j=1...,N—n—1.

As we have assigned to each x"" = ¢ the variable z;;, then every polynomial f; : cN =cC

takes the form

fj(z) = Zj1%j2 — Zj3%j4, j = 1,...,N—TL— 1. (3.35)

In view of Section 1.4, we are going to modify the generalization of the Poinacaré-Lelong
formula (see Theorem 1.4.1) in the case of algebraic varieties lying in a projective space
which are complete intersections. In particular, if f = (f1,..., fn—n—1) is the tuple of 2-
homogeneous polynomials in CV given explicitly in (3.35), then the toric variety X = Z; =
f71(0) which is the intersection of the hypersurfaces {f; =0} for j =1,..., N —n — 1 with

dimX = n is a complete intersection in PV =1 due to Proposition 3.1.1.

Taking into account that differentiation is not ’closed’ with respect to forms in the projective
space, a new operator replacing d is introduced following [18]. This leads to the integra-
tion current on X through the logarithmic residue current that resembles in some sense the

Poincaré-Lelong formula.

Following [18], we define the operator
D :=d —2dlog|¢|?

on CV\ {0}. Observe that, for each j = 1,..., N —n—1, Df; is a projective form on C¥ \ {0}

as opposed to the corresponding form df;. More precisely,

5cDf; = o (df; — 2f;01og |C[?)

N9
= QWiiZ:QaQ—' (df] 2f; Z ICIQde>
_ (Z i 3fa ) —0, (3.36)
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since by differentiating f;(A) = A2f;(¢) for ¢ = ((1,...,{n) with respect to A € C, one can

observe that

N

> a2 a0 (3.37)
i=1 !

Hence, the vanishing of (3.36) follows from (3.37) for A = 1 and D f; is a projective form on

C" by using the necessary and sufficient condition given in Section 1.3.

For notational convenience, let
N—n—1

Df= N Df

j=1
the (N —n — 1,0) projective form on CV (recall that this is a a form arises form the pullback

of a form in PV~! through the canonical projection).

In view of Section 1.4, we introduce the residual current

()= A ()

J=1

(see (1.34)) and the multi-logarithmic residue current
1 N—n—1 1 N—-n—1
E?Nﬁ: A\ 5<.>A N\ dfi (3.38)

in CV (see 1.35). In order for the multi-logarithmic residue current to be well defined in
PN=1 the involved forms must be projective. Thus, instead of using multi-logarithmic residue

current in (3.38), we introduce the corresponding current in CV given by
1 N—n—1 - 1
95 ADf = N 8<f>A /\ D (3.39)
j=1 ’

where the forms df; in (3.38) are replaced by the projective forms Df;. However, the two
currents in (3.38) and (3.39) coincide and an analogue of Theorem 1.4.1 holds. This is the

content of the following theorem.

Theorem 3.3.1 Let f = (f1,..., fN_n_1) be the 2-homogeneous polynomials in C described
by (3.35), defining the toric variety X = f~1(0) as a complete intersection in PN~1. Then,

1 N—n—1 1
- ZAD _
(zm.> <07 ADfp> /X*”’

holds for ¢ € Dy n(PN=1 LYY, where LO is the trivial line bundle.
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Proof. 1t is sufficient to observe that the equality

8—/\Df:5i/\.../\5

ANDfiAN...ANDfn_n_1

f fl fN—n—l
= 5l/\/\5 L A (dfy —2f1310g‘€‘2>/\.../\(di_n_l —2fN_n_1610g\§\2)
fi fN=n-1
=1 = 1
= aﬁA.../\aﬁvﬂ%1 ANdfi Ao ANdfN—n1
= 5} A df

holds on C¥ \ {0} in the current sense in view of the definition of the logarithmic residue
current in (1.35), since f = (f1,...,fN-—n—1) = 0 on X. Then, the required result is a
consequence of Theorem 1.4.1. The current integration of the form ¢ € D, (PNt LY) over
X makes sense, since in view of Lemma 3.1.2, the restriction of ¢ on X gives a section

¢ € Dpn(X, (Vz)?) through the map (3.2) of embedding of X into the projective space PV ~1.

O
Following [4], we assign to each f;(z) = zj12j2 — #3254, j = 1..., N —n — 1, its projective
Hefer form defined in CV \ {0} x CN \ {0} by
. 1 C-d C-d
H7(2,() = o [(sz + agjo) (del - C’C’f(ﬂ) + (zj1 + aGj1) (de2 - éhC‘QCCp) +

;. C-d
— (zja + agja) (de3 . ﬂggc@'?») — (23 + agj3) (de4 - C|C|2CCJ4>} :

(3.40)

This form has terms of bidegree (1,0) and (2, 1) due to the contribution of the weight « given
explicitly in (1.31).

The polynomials f; do affect our representation, and this is reflected through the use of these
Hefer forms H’ defined in (3.40) and more specifically, through their terms of bidegree (1,0),

as it will be shown later.

For notational simplicity, let us define the form
H:= N\ H (3.41)

which has terms of bidegree (N —n — 1 + k, k) for every k = 0,1,..., N —n — 1 due to the
terms of bigeree (1,0) and (2,1) that constitute each H7.

Proposition 3.3.1 There is a wedge product of vector fields ynN—_n—1 N ... AN y1 defined on
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PN=L such that

YNon—1 Ao Aim(dfi Ao Adfn—po1) = (2m)N L

where = denotes interior multiplication.

Proof. Let us consider the vector fields

2w 0
i=——, for j=1,....N—n—1, 3.42
’Y] le 8C]2 J ( )
defined on the chart Uy = {1 = (51 # 0} of PN—1. Thus 7, are also well-defined on the
chart U, of X where Hl 1 mi" # 0 due to the correspondence (3.9). Since, each f;(¢) =

G162 — Gj3Gya, the (1,0) form df; equals to
dfy = ¢jdGja + CjadCin — CjadCia — CjadCys.

It is easy to observe that vy;—df; = 2mi for each j. However, since the variables (j; for
j=1,...,N—n—1and k = 1,...,4 are not independent, some of the vectors 7; may
provide a non-trivial result when they also act on a differential form df;, for [ # j. Arranging
the vectors mjp for j = 1,...,N —n — 1 (see Section 3.1) in increasing order of distance
from the origin and letting the wedge product of vector fields yny_n—1 A ... A 1 act on
dfi A...NdfnN_n_1, one can deduce that the vector vy_,,_1 must act on dfy_,,_1 for a non-
trivial result, then ynx_,—2 acts only on dfy_,—2 and so on. Then, each vector field v; acts

on the corresponding form df; such that

—n—
YN-n-1 Ao Ar=(dfy Ao AdfN—n—1) /\ fyj—dfj (2mi)N L

O

For notational convenience denote by v := yn_n—1/A...A7v1. Now, if we apply the vector field
v on the current [X] and use a combination of Theorem 3.3.1 with the preceding proposition,
then the following equation in the current sense is deduced for a smooth test form ¢ on PN~1

taking values in L2(V="=1) (recall that cp} = ¢, where ¢ is an (n, n) test form taking values
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in the corresponding line bundle of X due to the identification V; = L):

<AN-n—1 A AM[X] g >= /N IN—net A ATT[X] A
o
= = [ A A A
PN-1

= —/ YN=n—=1/N...\NY17Q
X

N—n—1
1 - Dfi Dfn-no
- " \omi ! — N N AN YNp—1 N AT
( > 51_%/|fj|ej(5) TN-n—1 Qi

21 4 f1 fN-n-1
1 \Vt Df Dfn_n-1
= (= li a1 A | == AL AN
<27m') ali’%/w:ej(é) Won-1 . AT (fl SRR e >MD
— 1\ (N—n-1) L
o ( 1 6—>0/fj EJ -'fonfl
= (=1)N-n-1? <a<f> © >, (3.43)

N-—n—1)?

where the sign (—1)( arises due to the sign (—1)N¥="~! that is induced from the

commutation of each ; with the (0, N —n — 1) form 5% = 5% AL _1 —. Actually,
the current equality (3.43) holds on the chart U, of X where the v; are well-defined but one
can observe the equality can be also obtained on every chart of the covering {Uy,, }; of X by

introducing an equivalent divisor to D (see Section 1.1.3) and similar vector fields ;.

In view of (3.43), in order to change the domain of integration from PV¥~! to X in the
Weighted Koppelman formula on PN—1 (Section 1.3), we introduce a suitable projective
weight involving the current 5% which is presented below. This construction extends the

approach of [18]. We set

1 1 N—-n—1 , 5
<f1( )f1 +H /\8ﬁ> A <fN—n—1(Z) P +H A O ) . (3.44)

N—n—1

Observe that g is a projective weight since go o([2], [2]) = 1, and satisfies the equation Vg = 0.

To be more precise,

<fj()f]+HJ/\afJ> = (6, )<fj()f]+HJAafJ>

= —fi(z )af + VL HY /\Gf—] (3.45)

Since,

¢-d¢ . ¢ ¢-d¢
V2<d@' P 9) - 27”(“’“’ |<|§CJ> (|<|2>CJ

= 2mi(zj — adj)
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and V,a = 0, due to the explicit form (3.40) of H7, we get

vij - [(Zj2 + O(CjQ)(Zjl — OéCﬂ) + (Zjl + ale)(zﬂ - O‘Cﬂ)

| =

—(2ja + aCja) (23 — a(j3) — (23 + alj3) (zja — alja)]

= fi(z) = a®f;(¢)-

Substituting the equality in (3.45), one has

1

1
f + HINO— >:—f O—+ fi(z a?f;(¢ 0 3.46
Vo (5G] + B AL ) = <00 + [0 - P50 =0 (3d0)
and V,g = 0.
The contributing term of the weight g in our representation will be
<H1Aa > /\<HN‘"‘1/\5 ! )
fl fN—n—l
=1 = 1
= enoH'ALLLCHNTTIAD AL AD
N7 f fN—n—l
~1
= cnpH NO—, (3.47)
S
(N—n—2)(N—n-—1)
where ¢y, = (—1 2 , leading to integration on X, in view of (3.43).

For N <2(n+1),let K = g Aa??" N Ay and P = g A a?t2"N be the 'modified’ kernels
in the Weighted Koppelman formula on PVY~! (see Theorem 1.3.1) where u and « are given
explicitly in (1.30) and (1.31), leading to the required toric representation formula. In order
to show that these kernels lead to well-defined integrals in the formula (1.32), we have to
check that the sum of the homogeneity of the forms involved (integrands) is zero with respect

to the (-variable in PN —1,

In particular, the weight a in (1.31), has components of bidegree (0,0) and (1, 1) with homo-

geneities —1 in ¢, 1 in z and 0 both in ¢ and z, respectively. Hence,

_ 24+ 2n—- N
(a?t2n N)k,k:< L >a(2)462" Nkaf ) for k<24+2n—N

is —(242n— N — k)-homogeneous in ¢ and (2+2n— N — k)-homogeneous in z. Furthermore,

one deduces that
N-—n—1

n
j=1

is —2(N —n—1)-homogeneous in ¢ and 0 in z, since every polynomial f;(¢) is 2-homogeneous in

¢ and does not contain any z. The component with bidegree (1,0) of the forms H7, (H7) g, is
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1-homogeneous both in ¢ and z, for every j = 1,..., N—n—1, while the term of bidegree (2, 1)
of H/, (HJ )2,1 is 2-homogeneous in ¢ and 0-homogeneous in z. Adding the homogeneities,

one gets that

min{n,24+2n—N} 1

_1 _
<H A= A a2+2n—N> — Z HN*I*k,TL*k A (8) A (a2+2n—N)k .
f N-1,N—-1 =0 f 0,N—n—1 ’

is —1-homogeneous in ¢ and 1-homogeneous in z. Since ¢ € & 4(X, V) is extended to a (0, q)
form ¢ which is 1-homogeneous in ¢ (¢ € & 4(P¥ 71, L)) by Lemma 3.1.2, the homogeneities
of the forms involved in the integrand P A ¢ are balanced and the corresponding integral is

well-defined.

On the other hand, the form

v A (Ov)i !

1<I<N-1
(5zv)l -

upi—1 =

)

which takes values in Ll[d ® L[;]l (since v in (1.29) takes values in L[lc] ® L[_z]1 ), gives us that

the form

-1
<H A= AN A u>
f N—1,N—2

51 242n-N
= ZHN—I—k—l,n—k—l A <8) A (22N A
k|l f 0,N—n—1 ’

is —1-homogeneous in ¢ and 1-homogeneous in z. Thus, the integrals related to the kernel

K are also well-defined.

Remark 3.3.1 In the preceding paragraph, the added condition N < 2(n + 1) is due to the
fact that the power of the weight «, leading to well-defined integrands, must be a non-negative
integer. We also claim that the number N of the integral points of the polyhedron Pp satisfies
the inequality N > 2n, in the case of an n-dimensional, non-trivial, smooth compact toric
variety X (X # P"). The last statement is based on the classification of smooth compact

toric varieties ([20],[35]) and the following discussion justifies this claim.

We assume that X is an n-dimensional, non-trivial, smooth compact toric variety, whose fan
is generated by d n-dimensional vectors in R™. Then, d > n+ 1. T. Oda in [35] proved that
any smooth and complete fan composed by n + 1 vectors in R™ determines P". This actually
follows from the smoothness of the cones constructing the fan of X since the determinant of
the generators of each cone must be equal to 1 or —1. Thus, one can further assume that

d > n+2 , according to the initial assumption that X is a non-trivial projective toric variety.
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We will prove that the number o(n) of the n-dimensional cones (mazimal cones), composing
the complete fan of X, is greater than or equal to 2n. Moreover, observe that each of these
cones induces a distinct vector and the set of these vectors constitutes the set of vertices
of Pp (see Section 1.1.7). Hence, since the number N of the integral points is at least the

number of the vertices of Pp, we establish the initial statement that

N > o(n) > 2n.

We prove that o(n) > 2n, for n > 2 through the method of mathematical induction. Firstly,

for n = 2, the result is trivial since 0(2) > d > n + 2 = 4. For n = 3, following [35],

0(3)=2d—4>2(n+2)—4=2n=6.

In general, for the n-dimensional case, we reduce the proof to the case of d = n + 2. Then,

the generalization of the result follows immediately since d > n + 2.

Following [20], every n dimensional smooth compact toric variety with d = n + 2 generators

and n > 2 is isomorphic to the toric variety whose fan is composed by the following vectors

in R™:
u = e, 1<1<r
T
Upyl = — Z’Uz‘
i=1
vj = e, 1 <j<s—1
r s—1
vy = Z a;e; — Zvj, (3.48)
i=1 j=1
where ay,...,a, are integers with 0 < a; < ag < ... < a, and 7, s are positive integers such

that r > 1,2<s<nandr+s=n+1. If weset U= {uy,...,ur41} and V = {v1,...,vs},

then the maximal cones of this toric variety are of the forms

Cone (UUV)\ {us,v}), 1 <i<r+1,1<j<s.

Hence, o(n) = (r + 1)s. We assume that

on)=(r+1)s>2n (3.49)

and we will prove that the number of the maximal cones of an (n + 1)-dimensional smooth

compact toric variety X with d = n + 3, satisfies o(n + 1) > 2(n + 1). The generating
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vectors are of the form (3.48) that correspond in the (n + 1)-dimensional case, such that

on+1)=(r+2)soro(n+1)=(r+1)(s+1). In view of (3.49),
on+1)=(r+2)s=(r+1)s+s>2n+2=2(n+1)

or

on+1)=@r+1)(s+)=FrC+1)s+(r+1)>2n+2=2(n+1).

Both cases establish the initial statement.

Theorem 3.3.2 Let X be an n-dimensional smooth compact toric variety and ¢ € € 4(X, Vy),
where V¢ is the line bundle corresponds to an ample divisor D = Zle a;D;. For L= 0Ox(D)
and |Pp NZ" = N such that N <2(n+ 1), we have

CN,n¢(Z):/X/C/\gqf)—l—gz/X/C/\gb—{—/X'P/\gb (3.50)

d —n— —_n—
on X = () {z€CV\ {0} : fi(z) = 0}, where Oy = (—1)" 5 ——+1,
i=1

K=~ (H A a2TI=N A u) and P = ~— (H A a2+2”*N) are the kernels of the representation

formula and the integrals are taken with respect to the  variable.

Before we prove Theorem 3.3.2, we point out that the construction, that leads to the formula
(3.50), holds on (Cﬁ (z €U : fi(z) =0}y =U, = {h € X : [[L, h% # 0}, where U; =
{z e PN71: ;é::(l)} On every chart of the covering {U,,}; of X, a similar construction
holds by introducing an equivalent divisor D and a similar vector field which is well-defined
on the corresponding chart. Moreover, on the intersection Uy, N Uy, # () of two charts for
every i,j, the two integral representations formulas that arise, are equal (as we will prove
in the next section). Thus, the integral representation formula (3.50) is independent of the
selected chart. Since the forms ¢, K and P are well-defined on every point in X, one can write
that the integrands are taken over the whole variety X indicating the global character of the
Theorem 3.3.2. The statements of the theorems 3.4.3, 3.6.1 and 3.6.2 should be understood

similarly.

Proof. Let ¢ € & 4(X, V). According to Lemma 3.1.2, ¢ can be extended to an ¢ €
€ovq(]P’N ~1 L) and thus, ¢ can be represented by a Weighted Koppelman representation for-
mula on PY~! (Theorem 1.3.1). Let

K=gAN?T" N Ay and P=gAa?T2n N

be the corresponding kernels in the integral representation formula on PN~! where g =
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(N—n—2)(N—n—1)

ennH A 5% and cyp, = (—1) 2 . Observe, that the boundary integral in (1.32)
vanishes due to the compact nature of PN~1. Now, the Koppelman formula on PV 1 implies

that ¢ can be represented by the following formula

olz) = / gA 22N Ay A 5@ + 0, g 2N Ay A %)
]pN 1

PN-1
+/ g A a2+2n—N A @
PN-1

1 _
= CcNn HAI= NPT N Aundp
)2 ! /

5 51 242n—N
N -
+en 0. H/\Of/\oz ANuNp

PN-1

1
+an/ HAO= AP =N Ao,
) f

where all the integrals are well-defined on PN~! in view of the preceding discussion. Then,

(3.43) yields

on the chart U, of X, where v = yny_n_1 A ... Ay1. However, since the exterior product is

graded anti-commutative, we get
HAy=[X] = ()N =Dy [X] A H.
Therefore,

p(z) = CN,n/ y-[ XA H A 22N A u A Dy
P

N-—1

+
)
2
3
Qi

z/ YA[XTAH AP N Aunp
pPN-1

Y[ X]AH APV A g

= —cNp 'y (H/\oz2+2" N/\u)/\&p

Q)\ \\

—CNn H/\a2+2" N/\u)/\gp

—CcNp [ Y (H A 042+2"_N) A p. (3.51)

><\
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Let us denote by
K=~ (H A TN A u) and P =~- (H A a2+2”_N)

the Koppelman kernel and Projection kernel on X, respectively. If we set Cn,, = —cnn =
(N—n—=2)(N—n-1) . . . . .
(—1) 2 +1 then the desired representation formula for ¢ on U, is obtained since

olx = ¢. O

3.4 Explicit computations of Projection and Koppelman ker-

nels in toric variables

The present section is devoted to the explicit computation of the Projection and Koppelman
kernels. The goal is to study the relationship between them as well as the geometry of the

"infinity’ of the toric variety.

The forms involved in the kernels IC and P of the toric Koppelman formula (Theorem 3.3.2)
are expressed with respect to the projective variables (21,. .., 2y, (1, ..., (y) of PN=1 x PN—1
(that take values in some line bundles with respect to z and ¢). This fact does not illustrate
the contribution of the homogeneous coordinates hy,...,hg and n1,...,m4 of X x X in our
construction. Thus, we begin, by letting the vector fields v;, 7 = 1,...,N —n — 1, act
on the involved forms expressed in projective variables on ﬂle{q € Uy : fi(¢) = 0} that
corresponds to the chart U, = {szl n." # 0} of X. We restrict the contributing terms on

T x T following the rules

mm

n 1
zi:tmizt;ni St and ermi:ﬁmi‘--ml
for every i =1,..., N, where t = (t1,...,t,) € T and 7 = (71,...,7,) € T. Then, in order to
pass to the homogeneous coordinates h = (h1,...,hq) € C¢ and n = (n1,...,nq) € C? such

that (h,n) € X x X, one can follow the rules

d d
e = TIp™ ) and 77 = T ni™, (3.52)
k=1 k=1
for ¢ = 1,..., N and express the involved forms in terms of the homogeneous coordinates

(h,n) of X x X locally in a chart U, of X. In this setting, the forms and thus the kernels of
the representation are zero homogeneous (in other words take values in the trivial line bundle

(V)0 of X) and the arising formula corresponds to the form ¢, related to ¢ through (3.5).

107



Since the relation between ¢ and ¢, can be written as

M|y, = (H") (3.53)

the toric Koppelman formula for representing ¢, on U, is adjusted to ¢ by multiplying
the kernels by H’“ L ’;k Moreover, for a divisor D = ZZZI apDy ~ ZZ:I b Dy, if Uy, =

k 1Mk

{szl nt # 0} and U,, = {ngl 77,2’“ # 0} are two charts of X, then observe that on

Uy, N Uoj one obtains
d d nak d )
) o = () (s
k=1 k=1 "Ik k=1
d

U)‘Udi = <

= (H ) gljd)az <H M, > ¢03 —~ ¢<n)‘Uajv (3'54)
k=1

where g;; = <g’“ ! n’;k> are the transition functions of the line bundle V; corresponding to
k=17l
the divisor D. Hence, the representation formulas are compatible on the intersections of the

charts and a well defined local representation for ¢ arises on every chart of the covering of

X.

The computations are voluminous in particular for the case of the Koppelman kernel. How-
ever, we know in advance that the singularities of the involved kernels are located on the
exceptional set Z(3) of the toric variety X. More precisely, according to [6] (see Lemma

5.4.6)

d
H m] Vi +a1

mj € PD> =2Z(%) (3.55)
holds, which implies that the zero set of the monomials in the left hand side of (3.55) is
identified with the exceptional set of the toric variety. This happened since the variables
appearing in these monomials are precisely the variables appearing in the monomials n; =
ij ¢o 1; defining the exceptional set Z(X) of X (see (1.2)). Thus, since the involved forms
of the kernels on PV ~! have denominators |(|?> = Zfil |¢i|? vanishing on the exceptional set
of the projective space, then the singularities of our kernels are located on the exceptional
set of X through the correspondence (3.9) between the projective variables of PY~1 and the

homogeneous coordinates of X.
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3.4.1 The Projection kernel

We will now derive an explicit form of the Projection kernel
P = ")/—\(H A a2+2n—N>

in Theorem 3.3.2 with respect to the the toric variables (¢,7) € T' x T. Thus, we present
the contributing terms in the Projection kernel with respect to the projective variables
(21,...,2N,Cly ., () of PY=1 x PN=1 and hence their toric analogues by parameterizing

the projective variables into toric variables through the rules (3.33) and (3.34).

We begin with the term of bidegree (1,0) of the Hefer form H7((, z) in (3.40). Recall that it

IP)N—l

corresponds in x PN=1 to each polynomial

Ji = X" = XX = zjnzge — 23254

in (3.3) for j=1,...,N —n — 1. In view of (3.40),

. 1
(H'(20)10 = 77| (dG1 + 21dGo — 2jad(s — 2j3dGa)
¢-d¢
¢]?
+a,0(Cj2dCi1 + Ci1dCe — CadCys — jad(ja)

= d
_O[O,O(CjQle + Cj1<]2 — Cj4<j3 - CJ3C‘74)C|<’2C )

— (2521 + 2j1Cj2 — 2543 — 2j3Cj4)

(3.56)

where agg = ¢ - 2/[¢|%. Since f;(¢) = ¢j1¢j2 — (j3¢a = 0 on X, the last two terms of the

preceding expression vanish and

; 1
(H(%0)1 = 1 |(z2dG + 2ndG2 — 2jadCy — 2j3dCja)
¢-d¢

—(zj2G51 + 2152 — 2jaCj3 — Zj3<j4)W (3.57)
On the other hand, every vector field v = %% acts by interior multiplication on forms
following the rule

0
afczﬁde = 0ijs

on (L {¢ €Uy : fi(¢) =0} (U = {¢ e PN1: ¢ = ¢y #0}) that corresponds to the chart

U, = {Hizl ng’“ # 0} of X, according to (3.9). Thus, if we let the vector field v, = %632
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act on the Hefer form (HY(z, C))l o in (3.56), then one can observe that

Ve (H?)1,0(¢, 2)

o - . _
- 74742;1 [(ij + OZO,OCjZ) <_’C<k’22<j1> + (Zjl + a0,0le) (5% — ’2172292>
_(Zj4 + ozo,on4) <—’?‘22Cj3> — (Zj3 + a070§j3) (_é]ﬁ<j4>]
Cr2

T 2GalCP [(zj2G1 + 2j1Gj2 = 2jajs — 2j3Gj4)

(zj1 + a0,0Gj1)

+a0,0(Cj21 + C1Gi2 — Gays — (j3Ca)] + 2 5{;.
Since the polynomials f; vanish on X, it turns out that
j _ Ch2
Ve (H)1,0(¢,2) = — 5 (25261 + 2j1Gj2 — 2jaCj3 — 2j3(j4)
2¢k1/C|
57
+ 2 (0,061 + Z1) - (3.58)

2Ck1

Similarly, the contribution of the form (H7)a1((, 2)(see (3.40)) in our construction is non-

trivial only when the corresponding vector field v; acts on it. This follows from the fact

that
(H2(G,2) = G (GadGn + G = GadGys = GadGa)
-
_(Llr,; (G261 + GinGja = Gajs — GjaGjn) wa =0 (3.59)

due to the vanishing of the polynomials f; on X. While the action of a vector field on the
Hefer form (H’ )2,1 yields

Wwo(H)2n = gl [a : &2 <_’C522<j1> + o, S (—Eﬁ@z)

dmi |1 G ] e I
oy (~ighee) —on e (o)
—le‘?rgz (Gi1Gj2 — GjsGja) =0 (3.60)
for k # j and
o = 5= S (Gt o)
— a;’l. (3.61)

Moreover, by recalling that the term aq; of bidegree (1,1) of the weight a (see (1.31)), is
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equal to

a1 = =5 0(C - dC/|CP),

it is not difficult to deduce that

2mi 0
- - 9 d
wmans = 2 d oG /o)
1 (G >
= —0 < . 3.62
G\l 20
The last equality in (3.62) is due to the fact that 9/9(x2 anticommutes with 9, meaning that
0
3Ck2 0= 83(k2

Now, in order to express the involved forms in the initial toric variables (¢,7) in T X
T, recall that the variables (z1,...,2n,C1,...,Cn) of PY=1 x PN=1 can be replaced by
(g ooty o r™N ) of T x T, taking into account that ¢ = t;nzl e t;n? and 7™ =
Tin . T " The existing relations between the projective and the toric variables lead to the

following equalities:

N
P = Y lalP = Z!T\zml: (I>),
i=1

_ da
C-d¢ = d(¢P) = d(P(|r]) sz%m L

a=1 i=1

n
d
dGgi = Y mrme T (3.63)
a=1 a

To distinguish the forms expressed in the projective variables (z,¢) in PV ~! x PN~ from the
corresponding forms with respect to toric variables, an index 7' is added to the exponent of

the second one.

Lemma 3.4.1 The toric analogue of the contributing forms in the Projection kernel P are
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given by

(ijltmjg PR Mg ij4tmj3) Z m‘.l‘7-|2mi

A 1 <&
H] T — _ 7 2
( )1,0(7—7t) Ari E , { ZZ ‘T|2mi

a=1
+ (MG T2 4 Gy T — TS — TS }d:a,
a
=m,
(e (HI)0) T = —o L (g g g g
2% TP
O (1
+5(040,0 + 1),
T
- i Y11
(u(E))T = H
( ) a<wm)§fmwm R O e A
Ve 1 - = o | & - -
P(rR)) &=\ P (3, [7[2m)? 7

onT x T, where aao and 041T71 are the forms given explicitly in (3.19) and (3.24).

Proof. The toric Hefer form (H’ ){0 on T x T is obtained by the corresponding projective
Hefer form H7 (¢, z) on PN=1 x PV=1 given in (3.57), after restricting the projective variables
(z,() to the toric variables (¢, 7) under the rules z; = t™ and (; = 7™ and using the relations

(3.63).

The (0,0) smooth form (%ﬂ(Hj )170)T on T x T arises from the corresponding projective
form v (H7)1,0(¢, 2) in (3.58) by following the same rules, where we also used that mj; =
(0,...,0) and that g = (- 2/|¢|? can be expressed with respect to the toric variables in the
form aao = P(7-t)/P(|7|?).

Similarly, in view of (3.60) and (3.61), the restriction on the toric variables yields the toric

form (y,—(H7)21)7 since the form

1 - _
=———9(-d 2
11 5.-70(C - d¢/IC)
on PN—1 x PN-1 ig transformed into the form on T x T

1 -
T 2
— - P
afy = —5-00P (")

N N N
w o [ Smemblrm (S mgprp ) (3 mbrfm

I _i ZZ i=1 . <z_1 ) <1—1 ) @ A %
i N N 2 T Ta
b=1 a=1 z |7-’2mi (Z ’T‘Qmi>
=1

i=1

by using the derivation laws (3.20) and (3.21) of toric variables, leading to the toric weight
alTJ (see (3.24)), which was introduced in Section 3.2.
)T

At last, y,—aq 1 in (3.62) is transformed to (yy—aq,1)", after passing to the toric variables
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(t,7) €T x T. O

Proposition 3.4.1 The vectors from the collection of elements {m1,...,mn} generating the
toric variety and contribute to the coefficient of the form d7, in (yg—a11), for a fized b, are

those which have different b-coordinate with the vector mys.

Proof. 1t is a straight forward result since

(e—arn)” = [Z <mk2 f) ’T\Qmi] @7 (3.64)

(i |T!2m’ (s |2 7o

according to the Proposition 3.4.1. For a fixed b, the coefficient of the form %’7 is Zf\il (mz2

and each term of the above summation vanishes if and only if mZQ = mé’. Then, the result is

trivial. ]

Remark 3.4.1 The contributing forms in the toric Koppelman formula can be written with
respect to the homogeneous coordinates (hi,...,hqg,m1,...,1n4) of X x X on the chart U, =

{H‘Izzl Nk # 0} of X by using the rules (3.52), namely

tm = ﬁ h,imi’v’“> and 7" = ﬁ n,imi’vk>
k=1
such that the forms arising are zero homogeneous as quotients of homogeneous functions of
the same degree with respect to ¢ and z. For example, after replacing the toric coordinates
with the homogeneous coordinates of X into (3.24), the toric form a1T71 takes the following
form that contains only the homogeneous coordinates (1, ..., (s since a{l does not contain
the variable ¢:

N b d
o | mem (kn |nk\2<mwk>)
3 =1

1 —
T =1
“1 = 271 Z N (d
b=1 a=1 Z <H |77k’2<m“vk>>
i=1

k=1

(e (L)) (50t (f )
(& (fweev)

d
d (H 771<:b7vk>> d ( H 77 (ea,vi )
k=1 k=1

A )
b (enon) (eason)
IT 7. I
k=1 k=1
where e, = (0, ..., 1 ,...,0). Similarly, one can obtain the local writing of the rest of

a—position
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the forms with respect to the homogeneous coordinates of X on U,.
Now, we are ready to write down explicitly the Projection kernel of the Koppelman toric

representation formula in Theorem 3.3.2 with respect to toric variables.

Theorem 3.4.1 The explicit form of the Projection kernel P = ~— (H A a2+2n*N) defined
by (3.3.2) in toric variables over T x T is

1\" n!
PT = ([—— dr Nd
e e

N-n-1 FMk2 (kaltmkz + 72 Mkl MRS TR ka4tmk3)
n+1)al, + Z
(n+1)ag o 2 [ S

Z det?(A |T]2mj1+"'+2mjn+1
|J|=n+1

N—n—1 _ )
+ Z Z 1)P=11 kaz_kaQ > mylT[Pm

h2 >l

= 1<p<n
1<qg<n

|: (kal 2 TR $TEL T3 TR ka4tmk3) ZZ mf|7—|2mi

P

+ (milemtmkz + mi27—mk2tmk1 ming’“Stm’“‘* mi47—mk4tmk3):|

+1

> det(Ayp)det(Ayg)|r| Pt H2man 5 (3.65)
|J|=n

Proof. Theorem 3.3.2, implies that the projection kernel P with respect to the projective

variables (z,¢) € PN=1 x PN~ is given by

P o= [r(E AaN)]
s & (H/\a2+2n_N)N—1n
—n— N-n—1N-n—1
= /\ 21 NN | o /N HE A QSN
j=1 k=1 j=1

(3.66)

where v = yny_p—1 A ... Ay and /\N 1 Hi [k] is the wedge product of the Hefer forms
(H7)9, for 1 < j < N —n — 1 such that the form (Hk)m is replaced by the corresponding
one (H¥)1 g, for some 1 < k < N —n — 1. These are the contributing terms in P due to the

dimension n of the toric variety and the dimension N — 1 of the projective space.

Let us denote the first term of (3.66) by P; and the second one by P,. Since the contribution

of each (H7)y; is non-trivial, when the corresponding vector field v; acts on it (see (3.59),
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(3.60) and (3.61)), we get

N—n—1
Pro= /\ Moy Aaion— N
7=1
N—n—1
= N\ w@aneiTN
j=1
B (aLl)N—n—l/\ 24+2n—-N
N 2 1+2n— N

242n—-N
= 2D ontan)

> (ap,0)(ag )t T2

with respect to the projective variables in PN~! x PN~1. While by passing to the toric

variables in T x T' through (3.33) and (3.34), we get

(24+2n — N)
Pl = TN a1 agolog)™, (3.67)

where aao = 1133((;':52)) and (al )" are given explicitly in 7" x T" in Proposition 3.2.1.

On the other hand, Py, which is obtained from the second term of (3.66), describes the
geometry of the variety X since the polynomials in (3.3) induce terms in the structure of it

by the contribution of the Hefer forms of bidegree (1,0). More precisely, Ps equals to

N—n—1N—-n—1

j 242n—N
Py = v Z /\ HY k] A oy Do "y
k=1 j=1
N—n—1 N—-n—1
= D woH e Ny (H)2a A3ty
k=1 j=1
i#k
N—n—1 N—-n—1
Yo Ho N\ v (H)ag Apmad iy
k=1 j=1
ik
N—n—1
+ (H" 1o Ao (H)2) A N\ o (HP )20 Aad 5N
i>k p=1
p#k.j
N—-n—1
+ > (= (H )o0) A (H )10 A /\ Y (H )21 Ao 57,
i<k =1
p#k,a

since the (N —n —2) of the (N —n —1) vector fields +; act on the corresponding Hefer forms
(H’ )2,1. On the other hand, the vector field 7y, provides a non trivial either if it acts on a3

or on (H*); 9. Now,

vwaﬁiﬁﬁ % = Y (on,1)* T N=(@2+2n- N)(Oél,l)HQ"_N%ﬁOél,l,

115



therefore applying the relation (3.61), we get that

N—-n—1 a1\ N-n—2
Py = ) Vkﬁ(Hk)l,o/\< 2’) A(ang)*F2n =N
k=1

o N—-n—2
= 3 A ()T A2 - N (an) Y A A

k=1 2 '
k a1 app\N—n=3 94om—N
+Z(H )10 A <_’Yk_‘7> A (7> A (aq1)
>k
11 o N—n—3 _
+ <7kﬂ427 ) A (Hk)LO A (#) A (a171)2+2n N7
i<k
or, equivalently
1 N—n—1
P = o3 ( > Vk—(ffk)Lo) (a11)"
k=1
N—n—1
24+2n—N N -—-—-n—-2 B
B ( oN—n—3 T oN-n-2 ) ( > (H"oA WFO‘M) (o,)" !
k=1
1 N—n—1
= oN-n—2 ( > Vk—%ffk)Lo> (a11)"
k=1
n N—-n—1
ToN-n—32 ( Z (H")1,0 /\’Yk_‘al,1> (ap 1)t
k=1

with respect to the projective variables in PV ~1 x PN~1. Hence, we pass to the toric variables

(t,7) in T x T by applying Proposition 3.4.1 and using the relation (3.32). Thus, the toric

analogue PJ of Py can be rewritten in the form

pT (a{l)" Nzn:l T2 (TRLETRS R PR TR TV kA TS ) vol 41
= — (6%
2 ON-n—1 Tl AGER 0,0
—n—1
n
_2N—n—2 Z Z
k=1 1<p<n
12q<n

1 {_ (kaltmk2 U2 UL K3 TR ka4tmk3) ZZ mf|7—|2mi

4mi AR
d
+ (mngmm 2 m£27—mk2tmkl _ mgskastmm _ m£47—mk4tmk3) }TT’P
p
o (ke Fe () dr
> TP (32 |7[2mi)?

1 e (n—1)! det(AJm)det(AJ,q)’T‘thJr“'Jerj"
( 27”'> P(|r[?)" L;ﬂ 7[pl7ld]

Tq

dr(q] A drp],

since only the differentials dr, of (H k){o and d7, of (yy—a11)? provide a non-trivial contri-

bution when they are multiplied by (a{l)”_l. Now, in order to put the differentials dr, and
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d7, into the form d7[q] A dr[p] with correct order, a sign (—1)?~9! appears. Hence, in view

of Proposition 3.2.1, a substitution of the form (afl)” into the above expression yields

1\" n!
Py = (- d7 A d
2 < 27ri> ON—n—T[ 2. 7| 2P (|7 [2)" A

Nil |: TR (TTRLET | T2 TR TS TR T4 TS )

T
) +0500+].
> TP ’

Z det?(Ay)|r|[2mant T 2min g,
|J|=n+1

1\" !
+ (5= " dr A dr
2mi ) 2N=n=L |2 2P (7] 2)n
N—n—1

Z Z p q—1 <mz =mas _ FMk2 Zz m3|7‘2m1>
=1 1<p<n ’ 2 I
1<g<n

(kal tMe2 | M2 MEL _ FME3EMEL ka4tmk3) ZZ mf|7—|2mi
{_ > TP

+ (milekltka + mi TMe24MEL m£37mk3tmk4 _ m£47mk4tmk3> }
2

D det(Ayp)det(Ayg)|r|P ot M
|J|=n

Then, by factoring out the above form, 77;[ is simplified into the expression

1 \" n!
P = (—— d7 Nd
: < 2m'> =T [ PR( R
N-n-1 FMk2 (Tmmtmm 4 TR UL T3 TR ka4tmk3) T
Z { [_ s +ago+1
> |r[Pm

Z det?(A )| [ 2
|J|=n+1
=M q|.-12m;
4 p q—1 <mz FME2 _ T Zz m; |T| Z)
E 2 ;

2
| St Do [
1<¢<n

(kaltmkz + T2l PR3 ETRA ka4tmk3) Z mp‘7—|2mi
7 7
[_ > TP

+ (mlemmtmm + mzszmtmkl _ mggTWkstmm _ m247—mk4tmk3) ]

3 det(Ayp)det(Ayg)|r|2ms - 2mm } (3.68)
|J|=n

If we add the forms P{ and PJ given by (3.67) and 3.68) respectively, then the explicit form
(3.65) of the projection kernel PT" is deduced.
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3.4.2 The Koppelman kernel

The computation of the Koppelman kernel is rather complicated since the contributing terms
are more numerous than those of the Projection kernel and contain the differentials d¢, dC
and dz with respect to the projective variables (z,() € PN-1 x PN—1_ This is a consequence
of the existence of the form u(z,¢) in PV~1 x PV=1 (see (1.30)) taking part in the structure
of K =~—(H A a*=" Aq). Hence its toric analogue KT has differentials of dr, d7 and dt.
However, the fact that the singularities of this kernel are located on the exceptional set of X
as in the case of the Projection kernel is deduced by the initial construction, without making

the explicit computations.

Similarly to the case of the Projection kernel in the previous section, we first compute the
contributing forms in K and the action of each vector field v; on them with respect to the
projective variables (z,¢) € PN~1 x PN~ Subsequently, their toric analogues are obtained

by applying the rules (3.33) and (3.34).

Let us recall the projective form v involving in the contraction of the form u = v/V v (see

Section 1.3) given by

(z-¢)(C - d¢)

PR T

(3.69)

for (2,¢) € PN=1 x PN~ Recall the action of the vector fields v, = %% for every

k=1,...,N —n—1holds on N_,{¢ € Uy : f;(¢) = 0} ¢ PN~ corresponding to the
chart U, = {szl nek O} of X. One can easily observe that the interior multiplication of

Y = 2252~ on v yields the (0,0) form

VU = ZTIZ [%2 - T|2< Ck2] 5 (3.70)

with respect to the projective variables of PV~ x PN=1 while the action of the derivative 0

on v in (3.69), since J acts on both ¢ and z variables, provides the following (1, 1) form:

- -dz)(C - d ~(C-d
c‘)v:dz-dg——(C @?g C)—(z()(?(ﬂdf).

Let C be the (1,1) form in PV~ x PV~! expressed in the projective coordinates, defined

by

¢ d2)(C-do)

Cimdz-dc— P (3.71)
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One can observe that
ov=C +27i(z-()aq1. (3.72)

n PV=1 x PN~ where a1 1 is the term of bidegree (1, 1) of the weight « in (1.31). If 7, acts
on C (see(3.71)), then

[ S Gl 79

leading to
Y=0v = Y~C + 27i(Z - ()y—on 1, (3.74)

in view of (3.72). The form v;—aq,; has already computed in (3.62). Furthermore, the form

uii—1, that is the term of w in (1.30) having bidegree (i,7 — 1), is given by

(3.75)

where 6,v = 27i ||2]? — (& %( )} Now, if we let the vector field vy = y%; A ... Ay, act on

u;;—1 for an increasing sequence of indices 1 < k1 < ... < kj; < N —n — 1 with j <4, one
can observe that

u[J] .: Y o O W [’U A (év)i—l]
i1 YJ i,0—1 VJ (5ZU),L'

3 J (-1) l(l 1>+(J l)(J+l 3)(2_1)(1__2)”'(2,_‘],_%1)
Z (5ZU)Z'

=1

j A
v\ 00 A (90)
r=1+#l
1) . C J -
o G Do) Atun @)~ a0)
P r=1

holds on PV~=1 x PN¥=1 since the j (1,0)-vector fields act on j of the i — 1 projective forms
Ov (this happens if j <4 — 1) or one of them act on v and the remaining j — 1 vector fields
on j — 1 of the i — 1 forms dv. According to (3.72), the form (év)i_j equals to

i—j

(. > 27-” i k( C)i_j_kck(al,l)i_j_k‘

k=0
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If we set P(n, k) to be the number of k-permutations of elements {1,2,...,n}, then

P(n,k)=nn—1)(n—2)---(n—k+1),

and one can rewrite U%],l in the form
; W(-1) , G-=D(+=3) j
M () E s P15 1) y i
7 (0:v)

r=1%#£1

] . .
A3 (1) g )

(_1 2 P(Z_lv.j

- v A -0v
((Sz’U)z /\ Vky

r=1

7

—j-1 ..
A <l_?f_1>(2wi)i_j_k(5()i_j_l_k CHaga) ™71 7r (3.77)
k=0

In this section, for notational convenience, we also introduce the notation
i
k'm
/\ Ve(hm)~HLG 1] (3.78)
m=1

that denotes the action of the wedge product of(i—|[J|) (|J| < i) vector fields vy, A.. . Avg;,, on
i Hefer forms of bidegree (1, 0) such that the vector fields act on the (i—|.J|) Hefer forms while
the rest |J| (1,0)-Hefer forms are not affected by any vector field. Arbitrary permutations of

vector fields on the (1,0)-Hefer forms is allowed in view of (3.58). Let, also

l
oz[ll}l = /\ Vi, D001 (3.79)
i=1

for an increasing sequence of indices 1 < k; < ... < k; < N —n — 1, where each ~y;, —aq 1 has

been already computed in (3.62).

Lemma 3.4.2 The toric analogues of the projective forms v, C,0v and u;;—1 on T x T are
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given by

N N
) mm) (z mé‘\TPmZ‘)
d7a

n N (
oI = mitmir™ — =1 ~ =1
a=1 | i=1 D |7_|2mi Ta
i=1
N N
n o n N (Z m?tmi’/'mi) (Z m?’T‘Qmi> i dr
¢t = Y mimiErir - S = Shpte
° N ty Ta
b=1a=1 | i=1 Z |7-’2m¢
i=1
N
(81})T = CT 4+ 2mi (Z fmiTmi> a{l,
i=1
where a{l is given explicitly in (3.24). Moreover, if
N N
: o (B) o)
(E:0)7 = 2mi |3 [P — N L= :
= > 2
i=1
then
= i—1 i—1 (i—1 . T ) i—1—k
o TA(@0D)T AT ()N [2ri (8 e o)
i1 = / = : .
" ((0zv)T)’ ((0z0)T)’

Proof. By restricting the coordinates from projective (z,¢) € PV=1 x PN=1 to toric variables

(t,7) € T x T according to the rules defined in (3.33) and (3.34), the results arise from from

the forms v, C, Ov and uj i—1 given explicitly with respect to the projective variables in (3.69),

(3.71),(3.72) and (3.75), respectively. We also use the relations (3.63).

O]

Proposition 3.4.2 The contributing vectors for the coefficient of the form dr, in v’ given

in Lemma 3.4.2, are the pairs of vectors from the collection of elements {m1,...,my} that

have different components in a-th coordinate.

Proof. Notice that the (1,0) form v” is rewritten equivalently on 7' x T as

n

ol = L Z Z g™ 7|2 (mf—m?) %

% |7[2mi a=1 | 1<ij<n Ta
7 - =0 >
i=1 i 7

Then, the result is trivial.

According to the next proposition, the form C” has a similar behavior with offl.

(3.80)
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Proposition 3.4.3 The contributing vectors from the collection of elements {mq,...,my}

in the form CT are:

1. along the form component dt, A dr, with 1 < a,b < n. Every pair of vectors {m;,m;}
such that both a-th coordinate and bth -coordinate of m; and m; are different, the

corresponding form is non-trivial.

2. along the form component dt, Adr, for 1 < a <n. Every pair of vectors {m;,m;} such
that the components of m; and m; in a-th coordinate are different, the corresponding

form is non-trivial.

Proof. The result follows from the definition of the form CT. More precisely, the results are
consequences of the fact that the coefficient of the form %b A % for fixed a and b is also

expressed by

1 (& N N N
P (Z m?m?tmifmi> (Z !TF”“) - (Z mbP”m> (Z m?|f|2mi>]
2 [P L=t i=1 i=1 i=1
=1

. S P (mg ) (! — )
2m; [ 1<4,j<n
R

O]

The form (CT)" *can be expressed with determinants, along the lines for computation of the

form (afl)"_k. For this purpose, we introduce the (n + 1) x N matrix

Tm TN
_ m%fml .. m}vme
At,7) = . . . (3.81)
mytTt o mtmw

and denote by A?,l(’t-'7"?’)q’“ the (n +1 — k) X (n + 1 — k) matrix constructed by (n + 1 — k)
columns of the matrix A(¢,7) in (3.81) where ¢; + 1,...,qx + 1 rows are omitted while the

index 1 < ¢q; <...< g <nisincreasing.
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Proposition 3.4.4 The form (CT)"=F restricted on T x T equals to

_ n —k)!
(CT)n k _ SV )
> [rfm

det(Agl""’pk)det(A?]l(%g)q"')ij1+"‘+mjn_k+1 )
Z Z gl [p] dt[q] A dT[p]
|J|=n—k+11<p1<..<px<n q
1<q1<...<qp<n

(3.82)

where dt[q] A dr[p] is resulting from deleting the differentials dr,,,...,drp, and dtq,, ..., dtg,
in dt N\ dr and writing the remaining terms of dt and dr in increasing order of indices,

alternatively.

Proof. Similarly to the computation of the form (alTJ)"_k, we get that (CT)"~F is the product

of (n — k)! with

1 > mi|T[Pm > mi|T [P

2 %fmi i Fm; i Fm; i n
S Sy e ST m e di[g) A dr[p)

Zi |T|2mi
2. | ; PR

1<pi<..<pp<n
1<qi<..<qx<n

SEren s g S e |
q1,---59k
Hence,
Tyt =
Zi |7—|2mi
ZZ|T’2m’ Z@ mZ1’T|2m’L Zlmﬂﬂ?mz
S mitmirme S omimltmirme S mlm i ditlg] A dr[p]

2 : . - : tlglT[p]

1<p1<...<pp<n
1<q1<...<qx<n

nim; ~m; N, larm; -m; oy MM -
domptTiTme S mPm iy S mm e
q1;---,9k

The Cauchy-Binet formula yields that the above determinant can be rewritten as

7M1 .. FMin+1 T my 7'M
1 gmjy Lo Ming
Z mjlt .. m3n+1t
|J|=n—k+1
m* i .. o om? a1 TMing1 . om 7 Mnt
J1 In+1 Q1,5 Qk In+1 P, Dk
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7M1 FMn41 1 m]l-1 S
= Z M1t MG, e m;l tra m}nﬂimjnﬂ
|J|=n—k+1 : :
my min m}lnﬂfmjnﬂ o 1 mjl.n+1 coomy —
and the result follows. ]

Lemma 3.4.3 If the vector field v, = 2mi/(;10/0Cka acts on the projective forms v, C and
Ov by interior multiplication, then the restriction of the variables of the derived forms with

respect to toric vartables on T x T yields

T g TR (30 2™
L]
" M2 (Z ml?fmiTmi) dty,
(fykﬂC’)T = —2m mZ2Eka— LN —,
2 S|

(r=0v)T = (y—=C)" + 2mi (Z Eme) (Ye—e1)”,

7

T

where (y,—ai,1)" is given in Proposition 3.4.1. Moreover, the toric analogue of (3.77) on

T x T is given by

G 1)+(J l)(JH 3)

=1 r=1%£l

1—j . . N i—j—k
A < > 27” i—j—k (Z —'mZTrm) (CT)k(ail)ifjfk

k=0

(0P 19) 7, ( J m)
((0-0)T)’ A
1 N

e i—j—1—k
A Z < - j — 1) (271'%)2 j—k (Z fmleZ> (CT)k(afl)ifjflfk'
=0

i=1

T

Proof. The forms are derived from the corresponding projective forms (3.70), (3.73), (3.74)
and (3.77) through the parameterizations z; = t" and (; = 7™ for each j =1,..., N where
(2,0) € PN~ x PN-L O

Proposition 3.4.5 The contributing vectors in (y,—w)’

(j # k2) for j = 1,...,N while in the coefficient of dt, of the form (v—C)T are the same

are the pairs of vectors {mya, m;}

pairs of vectors which satisfy the extra condition that the b-th coordinates of these vectors are
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not both zero.

Proof. It is an immediate consequence of the fact that (y;—v)? can be written, equivalently,

in the form
(o)t = = ||2m Zrma (F2gms — ey | (3.83)
=1 177

while (7,—C)T can be expressed in the form

b

O = sy 1172%2[27%( Rl mm] W

The toric analogue of (3.78) and (3.79) on T x T are expressed by
i ; )
/\ %(km)ﬁHl /\ (% ko) ,0) /] (3.84)
m=1 m=1

and

T
0‘[1”1 </\ Ve 1) /\ Ve mon1) (3.85)

respectively, where their involved forms are given in Lemma 3.4.1.

After the preparation lemmas, we are ready, now to write down the toric analogue KT of the
kernel IC in the toric Koppelman formula , explicitly. In view of Remark 3.3.1, the number N
of the integral points of the polyhedron Pp is at least equals to 2n, where n is the dimension

of X. If welet v = ynN_n_1A...A71 act on the form (H Aa?T2"=N Au) of bidegree (N —1,n),
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then

_ 242n—N _ 242n—N
K = [~(HAa A u)]n,n—l =y-(H Mo A u)N—l,n—l
N—n—1
j 24+2n—N
= 7 /\ H%,l A 0‘2:—7\7 Auto
Jj=1
N—n—1 N—n—1
j 242n—N
+y Z Z /\ Hlky, ..o ki) Aot 230 Ay
i=1 1<k1<..<k;<N-n—1 j=1
N—n—1 N—n—1
+v Z H’ [k‘l, ey kjl] AN Oz%igg:% N Uj5—1
i=1 1<k1<..<k;<N-n—1 j=1
N—-n—1 N—n—1
+y- Z Z /\ H’ [k‘l, ceey k‘l] AN a%ﬁﬁ:% ANUj—1,-2
=2 1<k1<..<k;<N—-n—1 j=1
= K1+ Ko+ K3+ Ky, (3.86)

with respect to the projective variables (z,¢) € PN=1 x PN~=1 The /\?[:_1”_1 Hilky, ... ki
is the wedge product of Hg,1 where Hé“l, e ,Hgfl have been replaced by the corresponding
(1,0) forms. Some of the above terns may not appear in K due to the dimensions n and

N.

We are going to examine each one of the four K;, separately. As we will see, the last three
terms describing the geometry of the variety due to the contribution of the (1,0) Hefer forms,
are given by a similar formula while the first term, K1, has the simplest form and its toric

analogue K7 on T x T does not contain any differentials related to the ¢ variable.

Lemma 3.4.4 The toric analogue K1 of the term Ky on T x T is

2+ 2n—N)(1+2n—N .
( ) ) (@2 (@T )™ ATy, (3.87)

T
ICl 2N—7L ’

Proof. Recall that v = yy_pn—1 A ... Ay. Since only the form H§,1 gives a non-trivial result

when the corresponding vector field ~; acts on it (see (3.59),(3.60), (3.61)), we get

N—-n—1
j 24+2n—N
Ki = ~— /\ H%,l /\042:77\[ AU
J=1

_ N/’ilﬁth A<2+2n—N
A J 2,1 M — N

B Q11 N—n—1 24+2n— N

- (T) ( 2n — N

24+2n—N)(1+2n—- N .
= 2]\)f(—n ) (20,0)%(1,1)" 1 A .

)(ao,o>2<a1,1>2” Aurg

)(ao,o>2<a1,1>2” Aurg
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Hence, a change of coordinates from the projective variables (z,¢) € PVN~1 x PN~1 to the
toric variables (¢,7) € T x T following the rules z; = t™ and (; = 7" for j =1,..., N yields
the desired formula (3.87), where of  is given in (3.19), uf ; arises from Lemma 3.4.2 while

(oz{l)”_1 has been computed in (3.32). O

Observe that neither the weight alT71 nor the form u{o have any differentials dt’s or dt ’s and
the Hefer forms induced by the vanishing polynomials f; do not take part in the Ky term. In
the case under study, the term K! exists only when N = 2n since X! =0 when N = 2n + 1

or N =2n+ 2, in view of (3.87).

The rest of the contributing terms in the kernel K expressed in (3.86) are much more compli-
cated due to the existence of Hefer forms of bidegree (1,0) which do not vanish, independently

of the action on them by the vector field ~;.

At this point, we introduce the notation sign(J — [), that is, a sign depends on the order of

the following;:

e the action of the (i —|J|) vector fields (from the collection {7,, ...,V } of the i vector
fields) on the (i — |J]) (1,0)-Hefer forms (from the collection {Hf}o, . ,Hffo})

e the action of the (|J| — ) vector fields (from the rest |J| vector fields that do not act

before) on a term the form w of a suitable bidegree
e the action of the rest [ vector fields on [ forms aq 1.
Hence, the last three terms of (3.86) can be simplified according to the following lem-

mas.

Lemma 3.4.5 The toric analogue K1 of the second term Ko in (3.86) on T x T is given by

2422 - N)1+2m—N
KF = Z DD

1<k1 <. .<ki<N—n—1

mln{z,nfzfl}

> > sign(J —1)P(n—i—1,)

1=0 1<|J|<i
1< <. <Ji<k;

- T
: T T .
(/\ %(kmeﬁmﬂ) (alh) (wih]) @l (389)
m=1
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Proof. Since

N-—-n—1 N-—-n—1 '
Ky = = > N Hlky, . kA2 A
i=1 1<k;<..<k;<N-n—-1 j=1
(24+2n—N)(1+2n—N) 9
N—-n—1 N—n—1 '
o > N Holk kA (010)™ N Mg |
i=1 1<k;<..<k;<N-n-1 j=1

where v = ynv_p—1 A ... A 71, we observe that the N — n — i — 1 Hefer forms of bidegree

(2,1) are modified to (%)N—n—iq

after the action of the corresponding vector fields on
them with no any sign appears, in view of (3.59), (3.60) and (3.61). Then, if | from the
remaining ¢ (1,0)-vector fields act on [ from the n —i — 1 forms a1 (I < min{i,n —i —1}),
then P(n — i — 1,l)a[1[}1(a171)"_l_i_1 is deduced. For, I < |J| < 4, the |J| — [ vector fields

lead to the induced form ugi;l]l by their action on the form wu;y11. The sum of the forms

7

A 'yT(km)—'Hf’g [J] arising from the action of the last i — |J| vector fields,
1<k1<...<k;<N—-n—1m=1 ’
indicates that each (1,0) vector field can act on any (1,0)-Hefer form from the collection

{Hf}o, . ,Hffo} and the rest |J| (1,0) Hefer forms stay invariant. It turns out that Ky is

written in the form (3.88), after passing to the toric variables. O

One can observe that the term K2 is non trivial only when N = 2n since N > 2n ( Remark

3.3.1), as in the case of the term K7.

Lemma 3.4.6 The toric analogue K1 of the third term K3 on T x T is given by

N—n—1
24 2n— N
]CT A OéT
3 § : 9N—n—i—1 0,0 § :
i=1 1<k <...<k;<N—n—1

min{s,n—1i}

> > sign(J —1)P(n—i,1)

=0 I<|J|<i
1<51<...<5:<k;

% T
(A vcaer-stin) - (afl)” ()"t

m=1

(3.89)
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Proof. The form K3 is equal to

N—n—1 N—n—1
- ] 242n—N
Ky = | Y N Hok, o kil Ao N A
i=1 1<k <..<k;<N-n—1 j=1
= (2+2n—N)a00
N—n—1 N—n—1
1 1+2n—N
o Z H][kil,...,ki] AN (aLl) +2n Nuji—1 |,
i=1 1<k <..<k;<N-n—1 j=1

where v = Yn_n—1 A ... A7y1. After letting the suitable N —n —i — 1 vector fields act on the
corresponding N —n—i—1 (H),,; Hefer forms for 1 <i < N —n—i, the form (%)N_n_i_l
appears while the rest ¢ vector fields give a non trivial result by acting on any contributing
form in K3. Namely, any [ (I < i) from the i vector fields act on [ terms from the n — i

(I < min{i,n —i}) forms oy, such that P(n — i,l)a[ll}l(am)"*l*i is obtained. The |J| —1

71 (see 3.77), while the

(I < |J| £ i) vector fields act on the form u;;—1, resulting in the u;",_
remaining i — |.J| vector fields act on i —|J| (1,0) Hefer (1,0) forms (with respect to arbitrary
permutations of vector fields on these Hefer forms) and leave the rest |J| Hefer froms of
i
bidegree (1,0) unchanged. Then, the term > A 'yT(km)—'Hf}'} [J] arises and
1<k1<..<k;<N—n—1m=1 ’
the explicit form of ICg is deduced by passing to the toric variables through the rules (3.33)

and (3.34). O

As opposed to the preceding terms comprising the kernel X7, the form IC3T contributes in the

toric Koppelman kernel X7 when N = 2n or N = 2n + 1.

Lemma 3.4.7 The term ICZ on T x T is given by

N—n—1
K= Y s Y
4 = 9N—n—i—1
i=2 1<k <...<ki<N—-n—1

min{i,n—i+1}

> > sign(J —)P(n—i+1,1)

1=0 1<|J|<min{i,l+i—1}
1< <o <Jminfs,i+i-1) <ki

, T
. T T .
</\ %(zcmef,Ta[J]) (o)) (wis) @To =t (3.90)

m=1

Proof. Similar computations with Lemmas 3.4.5 and 3.4.6 lead to the explicit form of ICZ.

O]

The contribution of K7 in the construction of KT is non trivial when the difference between

the dimension of the projective space PV~1 and the corresponding one of the toric variety X
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is at least equals to 2 or, equivalently, when N and n satisfy the inequality
N —n>3. (3.91)

Theorem 3.4.2 The toric Koppelman kernel KT consists of the four terms KT, KT, IC3T and
KI' depending on the dimensions n and N, which are described by (3.87), (3.88), (3.89) and

(3.90), respectively.

Observe that the contribution of the Hefer (1,0) forms to the terms K2, K" and KT induce
the geometric characteristics of the toric variety coming from the vanishing polynomials f;

along this variety.

Theorem 3.4.3 If X is an n-dimensional smooth compact projective toric variety and ¢ €
£0,(X,Vy), where Vi is the induced line bundle of an ample divisor D = Zizl ax Dy (such
that L = Ox (D)) and |Pp NZ"| = N satisfying N < 2(n+ 1) then fort €T

CNnd(t) = /T KT A0 + ét/T KT A¢+ /T PTA ¢, (3.92)

where PT and KT are given explicitly in Theorems 3.4.1 and 3.4.2 with respect to toric

variables. Moreover, for h € U, = {Hizl hik # 0}

CN,n¢(h) = /X K:hom A éd) + 5h /X IChom A ¢ + /X Phom A ¢a (393)

where Phom and Kyom are the "homogenization’ of PT and KT on U,, respectively with respect
to the homogeneous coordinates h = (hy,...,hq) and n = (n1,...,nq) on X x X given by

d a d a
hy* hk
Pho Hk‘—l k PT and lcho Hk:l k ICT7

d d
[Tt m" [Teer i
after expressing PT and KT with respect to the homogeneous coordinates through the rules
i = Hi:l h,imi’v'“> and ™ = szl T],imwvm' The kernels Phom and Knom take values in

(V) © (Vi) and their singularities are located along the exceptional set of X.

Proof. The first part of the Theorem is a direct consequence of Theorem 3.3.2 after passing
to the toric variables (t,7) € T x T, while the involved kernels have been computed explicitly

in Theorems 3.4.1 and 3.4.2, respectively.

In order to derive the formula (3.93), by using the relation connecting the toric variables

on T x T with the homogeneous coordinates on X x X, namely " = szl hlimi’v’“> and
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T = Hk N m“v’“ , the formula (3.92) can be rewritten as

CNnto(h / KT A dpy + ah/ KT A ¢g + / PTA ¢y (3.94)

on the chart U, of X, where ¢, is the zero homogeneous (with respect to the homogeneous
coordinates of X) (0,q) form as defined in (3.5). In view of Section 3.1, the family {¢s,}:
determines the form ¢ € & 4(X, V) since on Uy, NU,,; for every i, j, the forms ¢,, and ¢,

are compatible (see also (3.54)) while

d
My, = ] 10 do(n). (3.95)
k=1

Hence, one can multiply the representation formula (3.94) by szl hy* and pass this product
into the integrals of the right hand side of (3.94) (since the integrals are taken over the n
variable), such that

d d d d

O TL 600 = [ 10" A0+ 00 [ TT8K7 noot [ TLHEPT A
k=1 X k=1 X k=1 X k=1

or, equivalently,

Cnno(h) = Hklk’CTAa¢+a/HkleT/\¢+ HklkPT Ao
x M’ [l 7k X Ty it

on the chart U, of X. If we set

a d a
Hk 1 hkk PT and IChom — Hk:l hkk

K (3.96)
Hk 17" | s

Phom —

the representation formula (3.93) is obtained.

Recall that the initial kernels P and K that we have constructed in Theorem 3.3.2 are —1-
homogeneous in ¢ variable and 1-homogeneous in z variable in P¥~! x PN~ due to the
’endowed’” homogeneity of P and K (that can be found in a preceding discussion of The-
orem 3.3.2). Hence, we passed to the toric variables from the projective ones using the
parameterizations 2" = t"™ and (" = 7™, for every ¢ = 1,...,N leading to the ker-
nels P7 and KT. The change of coordinates t" = szl h,imi’vw and 7 = ngl n,imi’vw
allows to express the kernels P7 and K7 with respect to the homogeneous coordinates
n = (m,...,¢q) and h = (hy,...,hg) on U,. This procedure replacing each projective
variable of PY~! by a quotient of homogeneous variables, yields zero homogeneous ker-

nels. Hence, one can factor out g’“ 177’“ from P7 and KT (this fraction arises by mak-
k= 1
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ing common denominator in the expansions of the numerator and denominator of the con-
tributing forms in the kernels and then simplify) such that the remaining factors are the
forms Ppom and Kpom, respectively in view of (3.96). Thus, Phom and Kpem take values in
(V) @ (Ve)p)- The denominator of the kernels in toric form is the polynomial P(|7]?).
This polynomial is modified to Zf\il szl \nk|2(<mi’”k>+ak) after changing of coordinates to
the homogeneous ones and multiplying by szl Ink|?** in order to ’clear its denominator’.
Actually, Zfil szl |7 |2((mi:vk)F08) §5 the "homogenization’ of P(|7|?) in view of (1.6). This
verifies that the singularities of the kernels are located along the exceptional set Z(X) of X

in view of (3.55), as we initially claimed at the beginning of the present chapter. [

Theorem 3.4.3 is independent from the choice of the chart U, (of the covering {Uy,}; of X)
since an equivalent divisor can be chosen for each chart and a similar construction yields the

desired formula. Recall that, in view of (3.54),

d"U% - ¢‘Ugj

on Uy, N Uy, of X for every i,j. Thus, if D = Zi:l ap Dy ~ ZZ:1 by Dy, and U,, =
{ngl hik # 0} and Us; = {szl hg’“ # 0} are two corresponding charts, then the rep-
resentation formula (3.93) for ¢ on Us,, and the corresponding one on U, are identified on
their intersection. Hence,
d d b
e it i

T
Phom,Ugi > ¥ arn Uy = T5d br PUaj = Phom,Ugj (3.97)
k=1"Tlg Hk;:1 Mk

and

d ag d b
K _ Hk:l hk T Hk:l hk: T
hom, Uy, — d ar ' “Us, Us.

= = Khom.t,. (3.98)
d b om,Us
k=1 "k [Tie1mit ! ’

on Uy, N Uy;. The subscript Uy, and Uy, denotes the chart where the corresponding kernels
are defined. Thus, Theorem 3.4.3 derives a well-defined integral representation formula (3.93)

on every chart for the global object ¢ € & 4(X, V).

We remark here that unlike the case of projective spaces or product of projective spaces,

bringing the local representation to ’common’ denominator does not give a global object.

O]

Remark 3.4.2 The required condition N < 2(n + 1) between the dimensions of the toric
variety and of the induced projective space is somehow restrictive. For example, in view of

the embedding (3.11), on representing (0,q) forms on P! x P! taking values in L* ® L' for
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0 < g < n+ m, this necessary condition implies kl + k 4+ [ < 5. Thus, our Theorem is valid
when k=l=1ork=1,l=2o0r k=2,1=1.

Moreover, taking into account the Example 3.1.2 related to the cartesian product P" x P™,
one can observe that when nm < n 4+ m + 1, one can derive a representation formula for

Eo,q(P" x P™ L' ® L'). This is satisfied in the following cases:
en=1mecZ orncZ  m=1
en=2m=3orn=3,m=2.

In the particular case of Hirzebruch surface H, according to the Example 3.1.3, since N =5
and n = 2, one can get a toric Koppelman representation formula (in view of Theorem 3.4.2)

for £ 4(H, V) where £ = Oy (D) is the sheaf of the divisor D = D3 + 2D, and 0 < ¢ < 2.

However, Theorem 3.4.2 cannot be applied on representing smooth forms that take values on
line bundles corresponding to ample divisors with bigger D-homogeneity. This happens since
the necessary condition N < 2(n + 1) of the Theorem 3.4.2 is not fulfilled. For example, by
considering the divisor D = D3 + 3D, then

Ppn M ={(0,0),(1,0),(1,1),(1,2),(0,1),(0,2),(0,3)}

(see Examples 1.1.26 and 3.1.3). Thus, the number of the integral points due to the corre-
sponding embedding are N =7 while 7= N >2(n+1) =2(2+1).

3.5 Examples

In this section we present two examples that illustrate the above construction.

Example 3.5.1 (Koppelman formula for (0, q) forms taking values in L' ® L' on P! x P!).
According to Example 3.1.1 n = 2, N = 4 while the contributing vectors are
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Then, the Laurent polynomial P(t) = 1+ 1 + to + t1ta = (1 + ¢1)(1 + t2) is induced and

B P(’/_'-t) 1+ Tty + Toty + Tt ity (1+7_'1t1>(1+7_'2t2)

~P(r?) 1+ mP P+ nPnP T A+ R+ )

Since,
1111
A=[10 110
0 011
for |J| = 3 we obtain that
detA(Lg,g) = 1, detA(LgA) = 1, detA(LQA) = 1, detA(27374) =1. (399)

Similarly, for |J| = 2, the following table is obtained.

Table 3.1: Table of det A

detA%m) =0 detA%m) =1
detA%l’g) =1 detA%l’?)) =1
detA%lA) =1 detA%lA) =0
detA%zB) =1 detA%zB) =0
detA%QA) =1 detA%M) =-1
detA%gA) =0 detA%?)A) =-1

By substituting the suitable vectors into the explicit form of the Projection kernel given in
Theorem 3.4.1, the kernel P? corresponding to smooth (0, q) forms on P! x P! taking values

in L' ® L' is obtained. After factoring out the contributing terms in P, it turns out that

pT _ (_;i>2(4(1+m1)(1+m2)

dr N drt.
T+ mPRa+[mP)E Y

Since the arising kernel is simple, we are going to find also the kernel P}op, following Theorem
3.4.3. The rules (3.33) and (3.34) connecting the toric variables with the homogeneous ones

on the chart Uy, = {ha, hy # 0} of P! x P! are transformed into
m 13 hi hs

T =—,T2 = — and t1 = tgzhf.
4

sy 3.100
Up) 14 ha ( )

Hence, PT is written on the chart Uy, into the form

pT <_1> 2 <772774> 4(Mh1 + fi2ho) (3hs + Naha)
2mi hahy ) (Im]? =+ n21?)3(1n3? + [n4]?)3
(M2di — Mdm2) A (nednm — nudnz) A (adis — 3dna) A (nadns — n3dna).
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Following Theorem 3.4.3,

hah

Phom = A,PT

274

(_1)2 4(7hy + M2h2)(i3hs + faha)
2mi ) (Im[? + |n2?)*(Insl? + [maf?)?

(M2dny — Mmdn2) A (Gedny — nidnz) A (adnz — f3dig) A (nadns — n3dng)3.101)

on the chart Uy, of P! x PL. Similarly, one can find Pyom on the remaining three charts of
P! x P!. Each case yields the same kernel Ppopn, thus the Projection kernel (3.101) holds on

the whole variety in this specific example.

Comparing our kernel with the corresponding Projection kernel in a Gotmark’s work [15]

representing (0, ¢) forms taking values in L' ® L! on P x P™, that is,

P G 0 () (5
(L)

where n = (N1, -, 0n+1), W' = (Mnt2y- - s Dntm+2), We observe that the two kernels are

exactly the same when n = m = 1, although the approach to the problem is different.

The Koppelman kernel requires rather long computations. This fact is justified by the ex-
istence of contributing forms which have differentials either only in 7 variable or both in ¢
and 7 variables. Firstly, following Lemmas 3.4.2, the terms that are related with the leading

form u are given below:

T
T & v
ul,O i (5zU)T
1 (1+ EQTQ)(El —7) (1+ 7?17'1)(52 —T)
= d d
(6.0)T [ 1+ ] [y 20

where

(5ZU)T — o |:(1 + ]t1\2)(1 + ‘t2|2) _ (1 + t_lTl)(l + 527'2)(1 + fltl)(l + T2t2):| '

(L4 ) (1 +[72[?)

Moreover, Lemma 3.4.3 yields that

(1ui0)” = (’ypv)T: 2 t‘lt—Q_7'17'2(1+75171)(1+t27'2)]
| (0=0)T (0:0)7 T+ P+ mP) |
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On the other hand, by example 3.2.1 for n = m = 1, we get

o — _1( dm Ndn dTy N\ dmy >
L1 2mi \ (1 +|71]2)2 (14 |m[?)2 )’

while the use of Lemma 3.4.2 implies that

1+t_27'2 _ Tl(t_g—fg)
ct = 224y hdn+ —2=—2
T+[n2 0T T T n)?
To(t1 — 71) 1+tm

1+ |m)? 1+ |72

dit; A dmy

dta Adr + dty A drs.

Therefore, according to the toric form (9v)T (see Lemma 3.4.2), we can write

N
(o)t = T +2mi (Z gmi7_m2'> 04{,1

i=1
B mdﬂ A dry +Tll(f|_72|?dt] A dro
m diz A dry + 111;5;1;2 dts A dr
- - +(T21§1\;;§2T2)d71 ANdry — ( +(tll$)‘7(_;;);27—2)d7'2 A drs,
while
r v A ()T
21 = W
N - .
- Kézi)T]Q g +(i1—?\)7'1(]12)—;(t12f)|5'2;22) TZ)dﬁ AdTy A dro

(l—i-t_lTl)(l—FfQTg)Q(fl—’l_'l) B
— d7o Ndrmo A dr
(L4721 + |m2?)? SR

((1 + ZQTQ)(t_Q — 7_'2)

dt; Adm A dmy

(1+[m2?)
(1?1 — fl)(l +£1T1> _
dto ANdTi A d
(I+[mp) 20T
In view of Lemma 3.4.1, we obtain
7 7
(mi—a11)’ = > dm + !

)2d77'2

(1+ m?)?(1 + [72f?) (14 1) (1 + [72f?
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thus, by using Lemma 3.4.3 one can observe that

(fylﬁgv)T = (’71—|C)T + 27 <Z PnZTmZ> (’yl—@él’l)T
7

= 2 Iy = 2 Iy

1+t _ _ 1+t _
menl (Lt o) ]dtl—Qm' {tl— nnl (+hn) | 5
+ 1?1+ |72[?) (L4 m ) + |m2f?)
27Ti772(1+7§171>(1+1?2T2) - 27Ti’7‘1(1+7i7‘1)(1+b%7‘2)

A+ PR +1=P) T @+ R+ )2

= —2mi [tg — a

dTo

and

21 |:_t_1(1 + t_lTl)(l + 7?27'2)({2 — fg)dﬁ A dry

(n-u21)’ = T2 272 2
[(62v)"] (L4 [m1]?)2(1 + [72[?)
7L+ ) (1 + tome)?(f1 — 71)
(L4 7)1 + [72]?)?
77'2(1 + 7?17'1)2(1 + 7?27'2)(7?2 — 772)
(L4 m]2)2(1 + [72[?)?
b+t + )t —T1)
(I+ 721+ |m2f?)?
71(1 4 tam)(t2 — T2)
(L4 7?1+ |m2?)
Cti(t —7)
(L+|m1]?)

d7o A dm

dm N dmy

d7e N dTo

ta(ts — 7o)
(1 |2\)
71)
)

dt; Ndr) — ————==dt] ANdTo

7'2(1 + t17'1)(

dto A\ drm +
2 em <1+|n\><1+v|

dta N ClTQ] .

Moreover, according to Lemma 3.4.1

1 [(r2 —t2)(1 +71t1) (11 — t1) (1 + Tata)
H{, = — d d
10 47 1+ |m)? m 14 |7m|? 2
while
1 (1 + 7ot 1 H(1+ 7t
(,yl_‘HLO)T — ( + |7—1‘ )( + 72 2) +( + ‘7—2’ )( + 71 1).

200+ m ) (X + [2f?)

Hence, the contributing terms in the Koppelman kernel can be derived briefly, below. The
kernel KT corresponding to the toric Koppelman representation formula for these forms is

given explicitly as follows:

Kt = k{+K3+K73,

137



since n = 2 and N = 4. The first term is given by

(24+2n—N)(1+2n—N) _
Ki = oN—n (%T,O)Q(aﬁ)n "A UlT,o

1
= 5(013,0)2(04{1)1 N u{,o

- (1+ 71t1)2(1 + Tota)?
4mi(6,0)T (1 + |71[2)3(1 + | 72[2)3
[(1 +t171)(t2 — 72)

(1 +t_27'2)(1?1 — fl)

dT Ndm Adry + dTo Ndmo A dm

1+ |m|? 1+ |m)?
The second one is given by
. J
K = (ado)? D sign()P(0,0)(m~HYT[J](ub])”

0<|J|<1
= (00,0) [(m~H10)" Augy — H g A (y1-ug,)" ]
(1 4+ 71t1)%(1 + Tot2)3(1 + 171 (1 + fom2) (72 — £2)
2 ((0:0)7)* (1 + 71|25 (1 + |2 [2)
[(1 +7t)(1+tm)+ (1 + ]71|2)(1 + |t1]2)} drm ANdri A dry
(14 71t1)3(1 + Tot2)?(1 + t171) (1 + t2m2) (71 — t1)
2(6:v)2(1 + [ [2)* (1 + [m2f?)°
[(1+Roto) (1 + tome) + (L4 |72|*) (1 + [t2]?)] d72 A dro A dy
(14 71t1)3(1 + Tato)?(t2 — T2)
2(0:0)2(L+ |11[?)3 (1 + [2[*)*
[(1+ Toto) (1 + fame) 4+ (1 + [2*) (1 + [t2]?)] dts Adri A dre
(14 71t1)%(1 + Tate)3 (81 — 71)
2(0:0)?)(1 + [ P)H(L + |2[?)?
(L +Ft) X+ Em) + L+ [ *) (L + [ta]*)] dEa A dre A dry.

The computation deriving the term K2 is the following:

Ky

1
250" Y sign(J — )P 1) —~HYT[I) ()T @y T (@F )
1=0 I<|J|<1

204%:0 [(’yl—'HLo)T A u{o A offl — H;":O A (’ylﬂuLo)T A a{l — Hfo A (71—|041,1)T A u{o}
B (1 + 771t1)(1 + f2t2)2(52 — f'g)
271 (0,0)T (1 + |71 |2)4(1 + |2|?)3
[+ )X+ [61]?) + (L4 7ita) (L + Tam)| dmy A dry A diy
(L 7t)* (1 + Tote) (b — 71)
2midv(1 + |11 2)3(1 + |m2|?)4
(1 + 7)1+ [t2]?) + (1 + Tot2) (1 + Tom2)] dTo A dro A dry.

and (6ZU)T — o [(1 + ’tl‘g)(l + ‘t2|2) _ (1+f171)(1+fz7'2)(1+ﬁt1)(1+7"2t2)] _Note that the fourth

(I [?) (A+]72[?)

term ICZ of the Koppelman kernel does not exist in this example since N —n = 2 which is

opposed to inequality (3.91). Similarly, following Theorem 3.4.3 the kernel Kyom on Uy, is
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given by
_ hahy

KT+ kT 4+t
N2n4 N2 (K1 + Ky +Ks)

after expressing the involved terms in the homogeneous coordinates following (3.100). As in
the case of Ppom, the same form /Cjon, holds on every chart of P! x P! and thus on the whole

variety.

One can observe that denominators of the kernels Pjom and Kpom are powers of the factors

(I f? +In2l?) and  (Ins|* + |nal?)

verifying that the singular points are located along the exceptional set

{m=m=0}U{n=n=0}

of P x PL. O

Since, the computations involved in the kernel KT are tedious, in the next example, we are
going to find explicitly the Projection kernel P while a more general form for the kernel KT

with explicit expressions of its involved forms are presented.

Example 3.5.2 ( Koppelman formula for (0,q) forms taking values in V; on H). Let us
consider the particular case of a Hirzebruch surface, H, that was studied in Example 3.1.3

where n = 2, N = 5. Since the contributing vectors are

mi = my =ma = (0,0)

me = my3 = (1,0)

ms3 = miz = (1,1)

my = mig=maoz=mg = (0,1)
ms = maoy = (0,2),

the corresponding Laurent polynomial equals to P(t) = 1+t + ta + t1t + t3 and

P(7T-t) 1+ Tty + Tote + T Tolite + 7_—22t%
P(rP) 1+ mP + mPnl? + n? + |nl*

T _
Qpo =

The matrix A is

11111
A=101100
00112
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For |J| = 3 we obtain that

detA(LQ’g) = ]., detA(173,4) = 1, detA(17274) = 1, detA(27374) =1
detA(17275) — 2, detA(1,375) e 2, detA(1,475) = O,

detA(2,375) = 1, detA(2,475) = —1, detA(37475) = —1,

Similarly, for |J| = 2,

Table 3.2: Table of det A

detA%l’z) =0 detA%l’z) =1
detA%L?)) =1 detA%LB) =1
detA%M) =1 detA%M) =0
detA%m) =2 detA%m) =0
detA%m) =1 detA%m) =0
detA%M) =1 detA%M) =-1
detA%Q’g)) =2 detA%Q’g)) =-1
detA%gA) =0 detA%gA) =-1
detA%sﬁ) =1 detA%sﬁ) =-1
detA%M) =1 detA%M) =0

Using Theorem 3.4.1, since n = 2 and IV = 5 we get the kernel P in the case of representing

smooth (0, ¢) forms taking values in V; on H, where L is the sheaf induced by the divisor
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D = D3 + 2Dy. More precisely,

1)\2 1
T = (—— dr Ndt
< 27”) 201+ |72 4 7122 + [72[? + |m2[*)?

{[-ATe(m —t1)(r2 — t2) + 3(1 + Tit1 + Tota + TiTatits + T3 t3)

—75 (12 — t2)” + 2(1+ |11 |* + |11 P2 * + |7l + 2| )]

(L+ |7+ 5|+ 5|nl* + |11 272 + |72l + |2|%)

— [?2(1 + \7'2]2 + ]7'2|4)(7'2 —t2) (t1ﬁ(1 + ]7’2’2) +(1+ \7’2\2 + \T2]4))

+ 73 P A+ )P (2 — t2)°] (L+ [nP) (L + 1] + 4] + 7] )

— PR+ 1 = ) (r —t2) (07 (1 + [7]?) + (1 + |72 + I72[*))

— Hn P+ n) (1 + )2+ ) (r — t2)?] 1222+ 7))

— [ARA+ |nf + |nh)(n = t) (Rl + 1] + 2[) + 1+ 1> = |2h)
—7 T P(1+ |7l (72 — t2)

(oo (L +[m* + 2ln*) + 2+ 20 + 1Pl + [m2)] 1222 + [72f)

— [ﬁ(l + | - ]7'2]4)(7'1 —t1) (tzfg(l + | 4 2m)?) + (1 + | - \7'2\4))
+ 7 (1 + |71 2 (2 + |72 |?) (12 — t2)

(tamo(1+ 11 + 272 *) + (2 + 2> + [ [P| 2l + |72[*))]

(14 2|7 + 22" + 2|9} . (3.102)

Hence, the form Py on the chart U, = {n3ns # 0} of H

such that PT is the form in (3.102) where we replaced

m _ 2 hi ha

T = T2 —_— and t1:

- ; 77 2= 7.
7374 4 hahy hy

(3.103)

On the other hand, the contributing kernels in the Koppelman kernel are the forms K2

(Lemma 3.4.6) and X! (Lemma 3.4.7) since N = 2n + 1 (N = 5, n = 2) and the relation

N — n = 3 satisfies the inequality (3.91), correspondingly.
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In view of Lemma 3.4.6,

2 1 min{2,2—i}
T .
S D 1 DI SR D
i=1 1<k1<k;<2  1=0 1<|J|<i
1<51<5:i<k;

T
(/\% ~HY | J]) ()" () @l (3109

while Lemma 3.4.7 yields

1
KT = Z Z Z sign(J —1)

1=k1<ko=2 [=0 l§|J‘§l+1
1<j1 <jl+1 <2

T
(/\ e (o) " HEG | J]) (a[l”l) (E‘,’J”)T(afl)l—l. (3.105)

We are going to find explicitly the contributing vectors in IC3T and K1 Firstly, according to

Lemma 3.4.1
T1(m1 — |2
(HY)o = 471m‘{(72—t2) [— 17 Pt(l\)f(é; | )_1_1] i
To(To — T 2 - 2
+(n—t) [_ 2(72 t2)(;(":_|2;| + 2|m2|?) +1} de}j
- 1 77—1(7'2 — t2)2(1 _|-7—2|2)
(H2)£O T Ami { [_ P(|r?) } dm
To(To — T 2 . 2
o g gt .
while
(m=(H 10" = _7172(712]—352‘(27)2 1), %(ag:o +1),
. 7_'2(7-1 — tl)(TQ _ t2)
(2= (HN)10)" =~ 2P(72)
(m—(H*)10)" = iR —h)?
| 2P(|7?)
and
F2(ry — 2
(e (H*)10)" = _22(132(17\22)) + %(Oon,o +1).
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Recall from Example 3.2.2 that

oli = 2’72’5;(&}5? L i
R 2 2
g
— 7 2 2
i Tmlgilr(yi; 20 47 nan
2 2 2 4
_21m(1+ 7] )(1+(]!DT(1|IT’2;4ITQI 170D b n i

Moreover, due to the action of the vector fields on o1 (see Lemma 3.4.1), one has

T_ N7 2 NG
(m—ai)’ = (P(|7]2)2 {(1 + |n2|” + [72[7) 7

R T NP S CEtY
2

and
dTo

(y2mar1)" = @2 {—|7’1|2(1 + |7'2|2)d;;1 + 1+ )2+ |72|2)%2} (3.107)

such that (a[ﬂ)T = (y1ma11)T A (2—a11)T. In view of Lemma 3.4.2,

T _ |z - _f1(1+|7'2’2)P(5'T)
= [ - P o
_ 9 2\ p(7 .
+ [tz(l + 171 + tom2) — I s ’72_2| )P T)} dr
P(|7[?)

and (6,v)T = 27i [P(\t‘Q) — PEDPET) | el that u{o = L)T In addition,

P(Ir[?) (6.0
[ _ 2(1 —|-L?27'2)(1 + |7‘2|2) _
ol = (1—|—t27’2)— |T1| :| dty N dm
I P(|7]?)
[ T17a(1 + ¢ 2t 1 2 _
+ |t — nr(l+hn+ ;TQ)( + 172l ):| dta N dmy
I P(7?)
[ 7or1 (1 + t2m2)(1 2421m?)] -
T P Tom1 (1 4 tam)( —|-2|T1| + 2|my| )} dfy A dr
I P(|7?)
17 . 21+ fimy + 26m) (1 + 12+ 2/m2)] -
+ |(L+ 17 +4lam) — 7?1+ tam + ;Jf_)’g) = Inl” +2/m[") dta N\ dra,
and hence,
(o)t =T + 2miP(t- 7‘)04{1
while

T oI A (51})T
(o))

The form v and C after the action of the vector fields on them through the use of Lemma
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3.4.3 are modified to

|- TRP@E-T) T o TPE-T)
(y1—w)T = 2mi [tltg - } and (y2—w)" = 2mi
P(|[?) > P(?)
while
. _ f'2|T1‘2(1+t_2T2) _ _ f‘1|72‘2(1+t_1T1+2t_2T2) _
(’yl—\C)T = —2m I:(tg — dty + [ t1 — dto
P(|7]?) P(|7]?)
and
92 - _ 9 _ _
. T1TH (1‘|‘t27'2) — — 7'2|T2| (1+t17’1 +2t27’2) _
(’ygﬁC)T = =27 [—dtl + [ 2ty — dta| .
P(|r]?) P(|r]?)

Hence, one can find the forms
(3i-00)T = (36C)T + 27 P(E- ) (ima1),

for i = 1,2. At last, the form (u[;]l)T is derived by

o _ Qo) A @) T A (i)

(viuz2,1 (0.0)T - (6.0)T

for ¢ =1 or 7 = 2 while

1)@+(2—l)(1—0
[(6-0)"]?

(W) = (12 A1) ~uz))’ = ()" (=) "

1<i<2

in view of (3.76).

The substitution of the preceding forms into K1 in (3.104) and K7 in (3.105) lead to the
explicit form of KT which is omitted due to the voluminous computations. Hence, if we
replace the toric variables with the homogeneous ones through the use of (3.103), we observe

that

on the chart U, = {n3ns # 0} of H.

One again observe here, that the singularities of the kernels are located on the exceptional

set

{m =mn3=0}U{n2=m =0}
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of H since by passing to the homogeneous coordinates (11, 12,m3,m4) € H,

2

o i

n3N4

4
2
14

2
nimn2
303

2
2
74

Pl = 32 [T e =

i=1 k=1

- -

while a ’homogenization” argument (by simplifying the denominators) shows that the denom-

inator of the representation kernels vanishes if and only if

5 4
S OTT imwlPmeveitan = na2nal* + g nal® + [ml[n2l® + In2l* ns]nal® + n2l* s[> = 0
=1 k=1

O

In the next paragraph, we formulate a toric Koppelman formula representing smooth forms

taking values in (V) for k € Z7, overtaking partly the "trouble’ of large homogeneities.

3.6 The toric Koppelman formula for sections on (V)"

By extending the toric Koppelman representation formula(Theorem 3.3.2), one can also ob-

tain a formula for (0,¢) forms on X taking values in (Vz)* = V; ®--- ® Vz. The bundle
—_———

k—times
(Vz)F is a different manifold from the bundle V; and the generalization of an integral formula

for sections taking values in V, to ones taking values in (V[;)k, is non trivial. However, our
method in this section not only extends the result of the previous section, but also constructs
integral formulas on smooth compact toric varieties on which the previous construction can-
not be applied due to the restriction N < 2(n-+1). This is achieved by using the extension of
a section ¢ € &4 (X7 (Vg)k) to a section ¢ € Eovq(IP’Nfl, L*) through the closed embedding
¢p (3.2) of X into PN~ (Lemma 3.1.2), where D is the divisor inducing the line bundle V,

without increasing the number of integral points of the associated polyhedron.

For example, let us recall Example 3.1.1 where the corresponding embedding (3.10) of the
divisor D = Dy + D4 extends the section ¢ € &, (IP’1 x P LF® Lk') to the section ¢ €
Eo,q (P3, Lk) through the closed embedding ¢ p,+p,, while a section ¢ € & 4 (]P’l x Pl LF & Lk’)
can also be extended to the section ¢’ € &4 (IP"“QJF%, Ll) through the embedding ¢xp,+1p,
n (3.11) (when k£ =1). Observe that the two extensions coincide when k = 1 while for k£ > 1,
the two extensions are compatible, since by taking ¢ = ¢xp,+kp, © qﬁf)i +p,» one can extend

¢ € En,q (P3,LF) into ¢’ € &g ([[!>1<32+2k7 Ll),

The number of integral points belonging to the corresponding polyhedron in the second

approach increases rapidly as k becomes larger and the toric Koppelman formula becomes
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useless for k£ > 1, due to the failure of satisfaction of the necessary condition in Theorem
3.3.2:
k2 4+2k+1=N<2(n+1)=6.

On the other hand, the first approach has the benefit that while preserving the number of
integral points constant, with the method developed in the previous sections, it leads to
integral formulas for sections in &4 (IP’1 xPLLF® Lk) for every £ € N and the involved
kernels look like the preceding ones for k = 1 (with slight modifications). Some extra terms
may be added in their construction, in general. Furthermore, as opposed to the previous
case, the 'renewed’ condition N < 2n + k 4+ 1 will appear, generously providing integral
representations for large k. Hence, we are able to construct representations for sections

taking values in (V)¥ for these values of k .

To avoid confusion between the kernels of this type of integral representation formulas and
the preceding one, we denote by K£*) and P*) the Koppelman and Projection kernels corre-
spondingly of the toric Koppelman represenation formula for (0, ¢) forms on X taking values
in (Vz)*, with respect to the projective variables (z,¢) € PN=1 x PN~1 Hence, KV = K

while P = P,

Theorem 3.6.1 Let X be an n-dimensional smooth compact toric variety and
¢ € &g (X, (Vg)k) for k > 1, where V; is the induced line bundle of an ample divisor
D = Zi:l ar Dy, (such that L = Ox (D)) satisfying |Pp NZ"| = N <2n+k+ 1. Then,

Cnnd(2) = /X K® A d¢+ 0. /X KW A ¢+ /X PR A ¢ (3.108)

d
on the chart X = () {z € CN\ {0} : fi(z) = 0}, where K*) = ~— (H A aF P2 H1=N A and
i=1

PE) =y (H A ak+2”+1_N) are the kernels of the representation and v = YN—n—1A\... A71.

Proof. According to Lemma 3.1.2, the form ¢ € & 4(X, (Vz)¥) is extended to a form ¢ €
Sovq(]P’N —1 L¥). The homogeneities of the integrands are balanced in view of the preceding

discussion to Theorem 3.3.2 and hence, the proof follows along the lines of the proof of

Theorem 3.3.2. O

The number of the contributing terms in the explicit forms of kernels depends on the dimen-
sions n, N and the number k. The forms P; and P2 composing the Projection kernel of the
toric Koppelman representation formula for forms taking values in V, are modified in the
case of forms taking values in (V)¥, according to the next remark 3.6.1. Extra terms may

be added in the construction of the kernel P. Analogous results hold for the kernel K.

146



Remark 3.6.1 The forms involved in the kernel Pfk) corresponding to the representation of

an ¢ € & 4(X, (Ve)¥) are

N-n—1
P = =N @D A @Y

j=1
1 k+2n+1-N ko T
2N7n71 < 2n_|_ 1—N ) (04070) (al,l)n
B 1 k+2n+1—-—N
- 2m+2-N\ 2n+1-N

) (ap,0)" 1Py, (3.109)

taking into account computations similar to ones involved in derivations of (3.67). Analo-

gously,

N—n—1N—-n—

- n—1
R B A Hj[k]A(a)ISISZ*}VN)
N

k=1  j=1

N—n—1N—-n—1
k+2n+1—N ~ . .
- (A e i XA kA G
k=1 J=1
k+2n+1—-N _
- < oo N >(a0,0)’“ Ip,, (3.110)

Combining the above result with the form PJ given explicitly in (3.68), one has that the
toric analogue (Pg(k))T of 732(k) onT x T is

k+2n+1-N k—1
(p(k))T _ (b " n!( ot N ) (a0,0) dF A dr
2 21 ) 2N=n=l 2. |7, |2 P(|7|2)n L
Np-l Tk (7MELEME2 o PR ML TS T A TR ) T
Z { [_ AR +opo+1
k=1 i
Z det?(Ay)|r[2man T T2 min
|J|=n+1

4 Z p q—1 <mk27mk2 B FMk2 Zz mg|7'|2mz)
S > TP
1<g<n

(kaltmkg _|_ kagtmkl o kagtmk4 _ ka4tmk3) § : mP’T|2mi
2 2
[_ Do ||2mi

+ (mleMM R mz27—mk2tmk1 ngkaStmk4 mz47—mk4tmk3) ]

D det(Ayp)det(Ayg)|r[*mat R }
|J]=n

In particular, if N = n 4 2 then no any other terms except of Pfk) and PQ(k) contribute to

the construction of P*). Then, the expression of the Projection kernel with respect to toric
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variables is

(PO)T = (P“”) + P

k+2n+1—-N k—1
_ ("5 n ) (@00) dr A dr
o ON=n=1|m 2. |7, |2 P(|7|2)H]

<2n—|—2—

+N—n—1>a070

_n- FME2 (Tmmtmkz + 7ME2 ML T3 M k4 ka4tmk3)

! kZ I& I .

Z det2 AJ)|7_|2mj1+"'+2mjn+l

|J|=n+1
N—n—1 _ )
p qg—1 q =mpo Tk2 Zz mg‘T|2mZ
+ Z Z MioT Iy
k=1 1<p<n Ez|7—| ¢
1<g<n

(Tmm k2 U2 Mkl M3 PR 7—mk4tmk3) Zl mii”T‘Qmi
[_ > |T|2mi

4 (milekl k2 miQkaztmm _ mi37'mk3tmk4 _ m£47-mk4tmk3) ]

> det(Ayp)det(Ayg)|r|P it F2man
|J|=n

Similar observations lead to the connections between the ICgk), IC(k), ICék) and ICflk) with the

corresponding one for k = 1. Firstly, in view of Lemma 3.4.4 and Lemma 3.4.5,

o _ TSN w_ o)
KV = e Qoo K and Ky” = ~5iio Ao ag G (3.111)
( 2n—N ) ( 2n—N )

while the forms ICék) and ICZ(Lk) arising from Lemma 3.4.6 and Lemma 3.4.7 are equal to

k+2n+1—N
(k) ( 2n+1-N ) k—1 % (k+2n+1-N 1
=T —F 7 112
K = gn o Coo ks and K ( M4 N agy' K, (3.112)

with respect to the projective variables on PV—! x PN—1 By transferring the results into

toric variables, corresponding relations arise between their toric analogues on T' x T'.

Moreover, in view of Lemma 3.4.7, if N = n + 2, then lCElk) term does not exist since i = 2

while N —n — 1 = 1. Thus,
KW = k) 4 e 4 el (3.113)

Theorem 3.6.2 Let X be an n-dimensional smooth compact toric variety and

¢ € E0.4(X, (Vi)K) for k > 1, where Vi is the induced line bundle of an ample divisor D with
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L = Ox(D) satisfying |Pp NZ"| = N < 2n+k+1. Then, for h € Uy = {[f_, h%* # 0}
Cnnd(h / IChom A O¢ + O, / IChOrn N+ / Phom N @, (3.114)

where 77}(1’211 and K}(llz)m are the homogenization’ of (P¥)T and (K¥)T on the corresponding
chart, respectively with respect to the homogeneous coordinates h = (hy,...,hq) and n =

(m,...,ma) on X x X given by

d ai\F d w\ K
k i= hil i hiz
,Pl(lozn = (1_[dlal> (P(k))T and (K(k))hom = (%) (K(k))T,
A =1 "1

after expressing (PUNT and (KT with respect to the homogeneous coordinated through the
rules t™i = ngl h,imbvk) and T = Hizl n,imi’v’“>. The kernels P and K take values

hom hom
in (V) )[77] (Vﬁ)Fh]-

Proof. This result is a generalization of the representation (3.93) for ¢ € &y 4(X, (V2)F).

Observe that, here, the equation (3.95) connecting ¢ with the family {¢,, }; is reformulated

My, = (Hn >k¢a

and hence the proof is similar to the corresponding one of Theorem 3.4.3. O

to

Remark 3.6.2 On the one hand, Theorem 3.6.2 constitutes a generalization of Theorem 3.4.3
since by applying Theorem 3.6.2, one can derive integral formulas for sections with bigger
homogeneities on varieties satisfying Theorem 3.4.3. In particular, one can take formulas for
(0, q) forms taking values in (L¥) @ (L)X on P! x P!, whenever A > kl+k+1—4 for k, 1, \ € Z7.
This arises from example 3.1.1 yielding that N —1 = kl+k+(. Furthermore, integral formulas
can be constructed on smooth (0, ¢) forms taking values in the bundle L¥ ® L* over P* x P™,
whenever k > nm —n — m for k,n,m € Z*. Here, we used the example 3.1.2 leading that
the number of the integral points corresponding to the divisor D = D,11 + Dpimy2, 18
N =nm+n+m+ 1. The formula 3.114 also holds on the Hirzebruch surface #, for (0, q)
smooth forms taking values in (V;)¥, where £ = Oy (D3 + 2D,) and k € N (see example
3.1.3).

On the other hand, Theorem 3.6.2 also provides integral formulas on smooth compact toric
varieties failing to satisfy the necessary condition N < 2(n+ 1) of Theorem 3.4.3 for any line
bundle corresponding to an ample divisor. An example of such variety is presented in the

following example.
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Example 3.6.1 We consider the 3-dimensional smooth compact toric variety X whose fan
is generated by the vectors v1 = e1,v9 = e3,v3 = —e; —e3,v4 = €3,v5 = €1+ 2e3 —e3. The six
maximal cones composing its fan are o1 = Cone(ey, ea,e3), o2 = Cone(eq, e, e1 + 2e2 — e3),
o3 = Cone(e1, —e1 — e, e3), 04 = Cone(ey, —e; —eg, €1 +2e3 —e3), 05 = Cone(ez, —e1 — €3, €3)

and og = Cone(eg, —e1 — ea, €1 + 2e3 — e3). Since,

Pic(X) = CI(X) ~ {kD; + IDs|k, 1 € Z},

we take D = kDs+1D5. Then, the condition (1.15) yields that m,, = (0,0,0), ms, = (0,0,1),
Moy = (0,k,0), mg, = (0,k,2k + 1), my, = (k,0,0) and my, = (k,0,k + ) while D is ample
if and only of k,1 > 0. Hence, by choosing k = [ = 1, the integral points of the corresponding

polyhedron are
PpNZ3={(0,0,0),(0,0,1),(0,1,0),(0,1,3),(1,0,0), (1,0,2), (1,0,1), (0,1,1),(0,1,2)}.

Thus, N =9 > 2(n+ 1) = 8 and X does not satisfy Theorem 3.4.3, under these conditions.
However, for k > 2, the number N satisfies the inequality N < 2n + k4 1 and thus Theorem

3.6.2 derives well-defined integral representation formulas for (0,¢) forms taking values in

(Vg)k, where £ = OX(D;; + D5).

3.7 Examples

This paragraph is a continuation of the Section 3.5, generalizing the examples related to

P! x P! and Hirzebruch surface .

Example 3.7.1 (Koppelman formula for (0, ¢) forms taking values in L* @ L¥ on P' x P1). If
¢ € & 4(P' xP, LF®LF), then the Projection kernel (P*)T of an ¢ € & ,(P* x P!, LF@ LF) is
also obtained in view of Remark 3.6.1. More precisely, by similar computations with Example

3.5.1, the Projection kernel with respect to the toric variables on T x T is given by

(k) S GO
ENT 5 n

- (- = diAd
(P) < 2m’> T+ PP+ [ N

KQZk> (L+7it1)(1+ 7ato) + (1 4+ 7it1)(1 + 7ata)

(1N (k)2 + At)R (L + Rt
- 27”/ (1 + |7—1‘2)k+2(]— + |7-2|2)k+2

d7 N dT.

By using (3.100), one can write (P®)T with respect to the homogeneous coordinates as

150



follows:

(PUINT  _ <_1>2 (nm)k (k +1)2(71hy + fl2ho)* (7Ishs + f1aha)*
2mi hahy (I % + [m22)*2(In3]? + [na|?)*+2
(M2diy — mudnz) A (nadny — nidnz) A (Qadiz — n3dig) A (nadns — n3dna),

while Theorem 3.6.2 yields

W (haha " _er
Phom - <772774> (P )
<_1>2 (k + 1)%(71hy + M2ho)* (733 + faha)*
2mi (Im]? + [m2 )2 (In3|? + [na|?)*+2
(M2dny — Mmdi2) A (n2dn1 — n1dn) A (adiz — 13dis) A (nadnz — n3dny)

on the chart Uy, of P! x PL.

As in Example 1.1.7, we observe that our kernel holds on the whole variety and it is identified

with the corresponding one in a Gétmark’s work [14].

Moreover, according to Remark 3.6.1, the Koppelman kernel of the representation on 7" x T

is

where (IC(lk))T, (ICék))T, (ICék))T are expressed with respect to KT, KI and K1 (the explicit
forms of the second ones are given in Example 3.5.1), according to the analogous relations of

(3.111) and (3.112) in toric variables. More precisely,

k1

k — k — k
(KT = (adio)* KT, (K5 = (afip)* K7 and  (k57)T = ==

(aao)k_llCT,
where ol , = (T4 Tt) o pernel IC(k) on U, is gi b
0.0 = . bo 000 1S given by

(A+|m1]2) (1+]72]?)
hohy \ *
k) :< 2 4) KN
hom M274 ()

hom

after applying the rules (3.100) in (X*)). In this specific example, the kernel K™ consti-
tutes a global form as the kernel P}(llzzn

Example 3.7.2 (Koppelman formula for (0,¢) forms taking values in (Vz)*¥ on H). Let us
recall Example 3.5.2. By considering an ¢ € & 4(H, (Vz)¥) where £ = Oy (D3 + 2Dy), one

can observe that the kernel (P*)7 constitutes from the forms (P{k))T and (Pék))T following
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the rules (3.109) and (3.110), respectively such that
(P = (ag0)" ' PT and  (PY)T = (afo)* P
and an extra term denoted by (P?Ek))T which arises from the toric analogue of

P = 4 (H11,0 A Hfg A 0/5,2)

k _
- (k _ 2) alg,og’yﬁ (Hio A HigA(a11)?)

where v = 2 A 71, such that

O = (1)t

2 2
T
S Sosignt A (v HIEH) PO (0],)* . (3.115)
m=1

1=k1<ko=2 1=0

The signl is depending on the order of the action of the [ vector fields on the (1,0) Hefer
forms and on the order of the action of the (2 — 1) vector fields on the corresponding number
of the forms 1. The involved forms were given briefly in the Example 3.5.2. Hence, the

Projection kernel is the sum

(POYT = (PPN + (P ()T
= (abo)*PT + (af o) PF + (PY)T

= (af )P + (P,

where PT is the Projection kernel for representing (0, q) forms taking values in V., expressed

. . k . 1471t +Toto+71 Tot 1 ta+72t2
briefly in (3.102), (73§ ))T is given by (3.115) and O‘%:o = 1+|:11|21+‘Z|§‘72T|12TJ2F|;2‘22J:|2722|4.

On the other hand, the Koppelman kernel of this representation is given by
()T = ()T + ()
with no extra terms added such that
(K" = (o) Kf and ({)T = (afly) KT

(KT and KT are expressed in (3.104) and (3.105) respectively) due to the equations given in
(3.112). Hence
(KT = (ago)" KT,
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where KT is the Koppelman kernel in the case of representing smooth (0,q) forms taking

values in V.
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Chapter 4

Some applications of Koppelman
toric integral representation

formula

4.1 Cohomology of line bundles on Toric varieties

Using the toric integral representation formula derived in the third chapter, we are going
to construct explicit solution of the d-problem on an n-dimensional smooth compact toric
variety X. This leads to the vanishing of the Dolbeault cohomology groups H%4(X, V) of
(0,q)-forms, 0 < g < n, that take values in a line bundle V, corresponding to the sheaf

L = Ox(D) of an ample divisor D, for some cases.

The Dolbeault cohomology groups H%4(X, V) of (0, q) forms taking values in V, over X is
defined by -
_ Ker{? : 507q(X, Vg) — 807q+1(X, Vg)}

Im{d : £9,4-1(X, V) = E0,4(X, V2)}

H™ (X, V) :

for the chain complex
d d d
e — 507q_1(X, V[;) — 50,q(X, V[;) — 50,q+1(X, VE) — e

The Dolbeault operator is the d-operator, acting on smooth forms taking values in V.

Applying Dolbeault’s Theorem ([10]), one can identify the Dolbeault cohomology group
H%4(X, V) of (0,q)-forms with the g-th sheaf cohomology group H%(X, Ox (D)) of the sheaf
Ox (D), due to an isomorphism that exists between the two groups. Following [6], the ¢-

th cohomology group HY(X,F) of a sheaf F on X is realised through the following exact
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sequence of sheaves

05 Fgt Dgrdyigedy
that leads to the complex of global sections
rx, 6% L rx,gh S rx,g?) L.
such that d?*! o d? = 0, for all ¢ > 0. Hence, HY(X,F) = Ker(d?)/Im(d?"!), where d~! is

the zero map 0 — I'(X, G°).

There are several treatments of H9(X,Ox (D)) and some of them can be found in [6] and
[34]. M. Demazure in [9] proved that the group H4(X, Ox (D)) is trivial for ¢ > 0, whenever
D is a Cartier divisor with no basepoints (see Definition 1.1.6 ) on a smooth compact toric
variety X. This is known as the Demazure Vanishing Theorem. We present in brief this

result, following the lines of [34]. Let
Zpm :={u € Ng : (m,u) > ¢p(u)},

where ¢p : [X] — R is a linear function such that ¢p(v;) = —a; (D = Zle a;D;), for each

generator v;, ¢ = 1,...,d, of the fan. A natural decomposition of the sheaf cohomology yields
that
HY(X,0x(D)) = P HE, (Na,C)n. (4.1)
meM

where H%D’m (Ng, C)ym is the cohomology group of Ng with repect to the character x™, with
support Zp ,, and with coefficients in C. The group H%D,m(NR’ C) is defined as the relative
cohomology group H?(Ng\ Zp m,, C) through a long exact sequence. Since Ng\ Zp , is either
empty (if m € Pp) or a convex set (if m € M \ Pp), this set is contractible leading that the
group HY(Ng \ Zp m,C) is trivial for ¢ > 0. Thus, H%D’m (N, C) is also trivial for all ¢ > 0
and m € M. In view of (4.1), H1(X,Ox (D)) = 0 for ¢ > 0. Applying Dolbeault’s Theorem,

this result can be reformulated as

H%(X,V;) =0, forevery ¢ > 0.

Our contribution is an alternative proof of the above result, based on the ’original’ definition
of the Dolbeault cohomology. Our approach constructs explicit solutions of the d-equation
on the varieties under study, thus illustrating the Demazure Vanishing Theorem for some

cases from an analytic point of view.
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Theorem 4.1.1 Let X be an n-dimensional smooth compact toric variety and Vy be a line
bundle over X corresponding to an ample divisor D with |Pp NZ"| = N < 2(n+ 1). Then,

the cohomology group HY(X,V;) of (0,q)-forms, 0 < q < n, is trivial.

Proof. The result follows from the integral representation formula (3.93) of ¢ € &y 4(X, Vi)
on every chart U, derived in Theorem 3.4.3. It is sufficient to construct a solution of the
0-equation Opw = ¢ on every chart U, and verify that the solution is compatible on the
intersection of the charts. Let ¢ be a O-closed (0, q)-form for 0 < ¢ < n taking values in
Ve on X. Since 0¢ = 0, the integral f x Khom A 0¢ vanishes on every chart U, of X. The
integral f x Phom A ¢ also vanishes on every chart Uy, because the left hand side of (3.93) is
just the form ¢(h) of bidegree (0, ¢) that contains differentials of h variable, while [ Ppom A ¢
includes only differentials of 1 variable. This is due to the fact that the kernel Pyop is the
homogenization of PT, where the second one has only differentials of 7 variable, in view of

Theorem 3.4.1. Hence, in view of (3.93)

CN,n¢(h) = gh /X ,Chom A ¢ (4'2)

on U,. It implies that the form w,(h) = Oy, [ + Khom,u, A ¢ is the solution of the J-equation
on U,. Moreover, on the intersection Uy, N Uy, of two charts, since ¢ly, = qﬁ]UUj (see
(3.54)) and Knom,u,, = lChom,Uoj (see (3.98)), ws, = wy;. Therefore, the cohomology group
H%(X, V) for 0 < g < n is trivial. O

A generalization of the above result is also obtained.

Theorem 4.1.2 The cohomology group H*4(X, (V)¥) for 0 < q < n is trivial, when N <

2n+k+1 and k is a positive integer.

Proof. The proof follows along arguments, similar to those in the proof of Theorem 4.1.1.

O]

Some illustration examples are presented below.

Example 4.1.1 Let X be the product P! x P! and consider the space of (0,q) forms taking
values in L¥ ® L'. According to the suitable projective embedding (see Example 3.1.1),
N —1 =kl + k + 1 and since N must satisfy the inequality N < 2(n + 1) (according to the
assumptions of Theorem 4.1.1), then kl + k+1 <5 (n=2and N =6). Then, k =1=1 or
k=1,l=2o0r k= 2,1 =1. Now, by applying Theorem 4.1.1, for the specific choices of k
and [, the cohomology groups H%(P! x P!, L*¥ ® L!) for 0 < ¢ < 2 are trivial. Generally, in
view of Theorem 4.1.2, H%4(P! x P (L*)* @ (L')*) is trivial for k,! and A which are positive
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integers satisfying the inequality A > kl + k + [ — 4. In view of (4.2), ¢(z) takes the form

o(h) = B /X Kbom A 6.

Example 4.1.2 According to the Example 3.1.2, the divisor D = D41+ Dpypmio of P xP™
lead to a projective embedding where N = nm + n 4+ m + 1. Then, Theorem 4.1.2 provides
that HO%4(P" x P™, L* @ L*) = 0 for 0 < ¢ < n +m and k,n,m satisfying the inequality

k>nm-—n—m.

Example 4.1.3 In the case of (P!)3 := P! x P! x P!, the integral vectors
(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1),(1,0,1),(1,1,1) of the associated polyhe-
dron (for D = Dy + D4 + Dg) induce an embedding in P7. Theorem 4.1.2 yields that
HO%((PY)3 LF ® L* ® L¥) = 0 for 0 < ¢ < 3 and k being every positive integer.

Example 4.1.4 The divisor D = D3 + D, on Hirzebruch surface H, leads to embedding

in P* and in P® when r» = 1 and r = 2, respectively. Let Vér)

be the corresponding bundle
in each case. Hence, both cases satisfy that N < 2(n + 1). Applying Theorem 4.1.2, the
cohomology groups H%(H,, (VL(T))’“) =0for 0 < ¢<2 r=1,2 and k being every positive

integer.

Now, recall the Example 3.2.2 of the particular case of a Hirzebruch surface denoted by

H.

Example 4.1.5 The application of Theorem 4.1.2 on Example 3.2.2, yields that
HY(H, (V)F) for 0 < ¢ <2 and k € N is trivial, where £ = O (D3 + 2Dy).

4.2 Cohomology of the dual bundle on Toric varieties

The dual nature of the Koppelman formula allows also the study of the cohomology group

H™4(X,VY) and H™(X, (VY)¥) for 0 < q¢ < n, where VY is the dual bundle of V. corre-

sponding to the dual sheaf £V while (VY)* = V) ® ---® V/. The dual sheaf £V satisfies
~—_——

k—times
L® LY = Ox = C (recall that Ox is the sheaf of holomorphic functions, that are the con-

stant ones) and since £ = Ox (D), then LY = Ox (D)"Y ~ Ox(—D) (Proposition 8.0.6 in [6]).

Thus, VEv is the line bundle corresponding to the divisor —D.

Let us denote by < .,. > the duality pairing in the Koppelman representation formula and
Y be the symmetric form of ¢, meaning that if ¢ € & n—q(X,Vz) for 0 < ¢ < n then

Y € Enq(X, V), in view of the preceding paragraph.

157



Theorem 4.2.1 Let X be an n-dimensional smooth compact toric variety and V' be the
dual bundle of Vi, where L = Ox(D) with |[Pp NZ"| = N < 2(n+1). If ¢ € &, 4(X,V)),

0<q<n, then

Covnth(17) = 8 / Kiom A9+ / Kom A Bth + / Phom A ¥ (4.3)

on the chart Uy, = {szl nk # 0} of X, where Phom and Knom are the "homogenization’ of
PT and KT on Uy, respectively with respect to the homogeneous coordinates on X, given in

Theorem 3.4.3. The integrals in (4.3) are taken over the h variable.

Proof. Let ¢ € & pn—q(X,Vr) for 0 < ¢ < n and ¢ be the symmetric form of ¢ such that
Y € Enq(X, V). Since ¢(z) on U, can be represented by

CN,n < ¢7¢ >=< walchom A 577¢ >+ < w:éh(lchom A ¢> >+ < wyphom A (ZS >

with respect to the dual pairing notation, according to Theorem 3.4.3 (formula (3.93)) then

the properties of currents given in (1.17) and (1.18), derive the following formula:

CN,n < 1/}7 ¢ > = (_1)n+q < ]Chom A "lﬂ, 577¢ > +(_1)n+q+1 < 5111/}; K:hom A ¢ >
+ <,Phom/\w7¢ >

- <577(1Chom/\1/})7¢>+<’Ch0m/\5h¢a¢>+<7)hom/\¢u¢>
on U,. Thus, the formula (4.3) is obtained. O

Remark 4.2.1 In view of Theorem 3.6.2, if 1 € &, o(X, (VY)¥) and N < 2n + k + 1, then

Cnnt(7) = 8, / (K*)) mp+/( )T/\8t¢+/T(P(k))T/\1/J. (4.4)

with respect to the toric variables (¢,7) on T' x T while, after passing to the homogeneous

coordinates (h,7n) on X x X, one has

Cnanth(n) = 0 / /chomw+/ kP A D), ¢+/ PF A4 (4.5)

on U,.

The Corollary that follows is a realization of the Toric Serre Duality (see Theorem 9.2.10 in
[6]) for the varieties under study. In particular, the Toric Serre Duality in our case shows
that there exists isomorphism exists between the cohomology groups of (0,q) forms taking

values in a line bundle V; and the (n,n — ¢q) forms of complementary bidegree taking values
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in the dual bundle VY. Namely,
H%(X, V)~ H" X, VY) for 0<q<n, (4.6)
where £ = Ox (D) and LY = Ox(—D).

Corollary 4.2.1 Let X be an n-dimensional smooth compact toric variety with D being am-
ple divisor satisfying |PpNZ"| = N and N < 2(n+1). If V) is the dual bundle corresponding
to the sheaf LY = Ox(—D), then the cohomology group H™(X, V) is trivial, for 0 < g < n.
In general, H™1(X, (Vﬁv)k) is trivial for 0 < g <n when N < 2n+k+ 1 and k is a positive

integer.

Proof. If we consider 1 to be a d-closed (n, q)-form for 0 < ¢ < n, then the second integral in
(4.3) vanishes on every chart U, of X. Moreover, f ¥ Phom A ¢ = 0 on every chart U, since
there are not enough dh’s. Actually, in the third integral of (4.3), Phom is an (n,n) form in
dn’s and dij’s since PT is an (n,n) form in d7’s and d7’s and 1(n) is an (n,q) form in dn’s

and dn’s with ¢ # n. Then,

Cwa(??) = 67] /X ’Chom A ¢ (47)

on U,, which means that ws(n) = Cnn [ ~ Khom,u, N % is a solution of the 0-equation
Ow =1 on U,. As in Theorem 4.1.1, the solutions We; and wg, of the J-equation on the two
corresponding charts Uy, and U,; respectively, are identified on its intersection Uy, N Us;.
Hence, the first result follows. The general statement holds similarly by following Remark

4.2.1. O

The Corollary 4.2.1 is illustrated through the following examples.

Example 4.2.1 In view of Example 4.1.1, Corollary 4.2.1 yields that the groups
H?4(P! x P!, L7% @ L) are trivial for 0 < ¢ < 2 and for the following choices of k and I:
k=1l=1ork=1,1=2ork=21=1. In general, H»I(P' x P! (L7")* @ (L7H)*) = 0

whenever k,l and A which are positive integers satisfying the inequality A > kl + k + 1 — 4.

Example 4.2.2 Taking into account Example 4.1.2, Corollary 4.2.1 yields that the cohomol-
ogy groups H"t™4(P" x P™, L %@ L_k) are trivial for 0 < ¢ < n+m k,n, m being positive

integers satisfying the inequality & > nm —n — m.

Example 4.2.3 Following Example 4.2.3, the groups H>?((P1)3, L=*@ L~*® L") are trivial,

where 0 < ¢ < 3 and k positive integer.
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Example 4.2.4 Let us recall the Example 4.1.4. If V¥ is the induced dual line bundle
corresponding to the divisor —Ds — Dy, we observe that the groups H29(H,,(VY)¥) are

trivial, whenever 0 < g < 2, r = 1,2 and k is positive integer.

Example 4.2.5 In view of Example 4.1.5, if we apply Corollary 4.2.1 on H, then one can
observe that H%%(H, (VY )¥) is trivial, whenever 0 < ¢ < 2 and k € N, where £V = Oy (—D3—
2Dy).

4.3 Further results about Cohomology groups

The present Section is devoted to extend the results of the preceding two sections, through

the following Lemma.

Lemma 4.3.1 Let X be an n-dimensional toric variety, where the set {v;,i = 1,...,d} of

the generators of the cones of 3 spans Ngr ~ R"™. Then

A"is=ox (-3

holds, where each D; is the corresponding divisor of the homogeneous variable z; for every

i=1,....d.

Proof. Fix a basis ey, ..., e, of M ~ Z" and for each subset {vi,,...,v;, } C {vi,i=1,...,d}
constituting a generator system for an n-dimensional cone o of the fan ¥ of X, we get the

n X n determinant

det(vr) = det((e;, vi,))-

This determinant depends on the ordering of the i; and it is either equal to 1 or —1 due to

h;

in

the smoothness of each cone. If h;

e are the corresponding homogeneous coordinates

of the generating vectors vj,, ..., v;,, then the (n,0) form

Q=" det(v) (Hh ) dhi, A ... Ndhg, (4.8)

[I|l=n il

is a global form on X taking values in the line bundle Ox <Z§l:1 Di). This means that the
bundle A "7 1 (X)®0x (Zle Di> is trivial which turns out that A ™17, (X) ~ Ox (— Ele D7;>.
O

An alternative proof of Lemma 4.3.1 can be found in [6].
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Theorem 4.3.1 Let X be an n-dimensional smooth compact toric variety, whose polyhedron

Pp has N integral points, where N < 2n+ k+ 1. Then, the following holds:
1. HY(X,V}) =0, when 0 < ¢ <n and L' = Ox (kD + Y.\, D;)
2. H*(X,V}) =0, when 0 < ¢ <n and L = Ox(—kD — S Dy),

Proof. The first part of the Theorem is a consequence of Lemma 4.3.1 and Theorem 4.1.2. To
be more precise, in view of Lemma 4.3.1, we get the isomorphism &y 4(X, (V2)*) =~ &, (X, V)
where £ = Ox (D) while £ = Ox (kD + S>% | D;). This isomorphism is illustrated by
considering a form ¢ € &, 4(X,V}) which can be written as the wedge product of a form
¢ € E0.4(X, (V)F) with the (n,0)-form Q defined by (4.8). Since H%(X, (V)¥) is trivial for

0 < ¢ <n (Theorem 4.1.2), then H™?(X,V}) is also trivial for 0 < ¢ < n. In particular,
Y(h) = ¢(h) AQUR) = Cnyp <5h/ KA ¢) AQ = Cnndh <</ K" A ¢) A Q)
X X

on Uy, since © does not contain any h. Then w,(h) = Cn (fX Ing)m A gb) A Q(h) con-
stitutes a solution of Opwy, = ¥(h) on U,. Since, a solution w, can be found on every chart
U,, a similar argument with Theorem 4.1.1 and Corollary 4.2.1 yields the first part of the

Theorem.

Similarly, in order to prove the second part of theorem, one consider the isomorphism
Eo0,0(X, (V£)F) ~ &, 4(X, V}) in an inverse way. According to Corollary 4.2.1, the cohomology
groups H™9(X, (VY)¥) (LY = Ox(—D)) are trivial for 0 < ¢ < n, when N < 2n + k + 1
and hence H%(X,V/) are also trivial for 0 < ¢ < n and £" = Ox(—kD — 25:1 D;). The
explicit solution of the d-equation on U, for an 1’ € E0,¢(X, V) arises in the following way.
The wedge product of ¢'(n) with (n) (€2(n) is given by (4.8) where h is replaced by 7) yields
an (n,q) form denoted by ¥(n) = 1'(n) A Q(n), that takes values in (VY)*. Hence, in view
of Corollary 4.2.1, Cnpnth(n) = 0y [y Kk®)

hom

A on U, (by writing the solution with respect
to the homogeneous coordinates 7y, ...,nq of X on U,). The solution will arise if we manage

to express the kernel K" s k)

hom tom =K' AQ on Uy, where K is a (0,n — 1) form in terms

of n and Q(n) = 37—, det(vr) (Higl ;) dniy A ... Adn;, such that for each I = {i1,..., i},
the set {vj,,...,v;, } is a generator system for an n-dimensional cone o of the fan ¥ of X.

Then

YAQ=0 = COnndy [ K Azp_cN,nén/ch’AQAw

on U, and we(n) = Cnp [ (=1)"" DK’ A4p will be a solution of the equation J,w = 9'(n)
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on U,. In order to find the (0,n — 1) form K’, observe that

> <H 77i> dniy iy N o AN dniy

[I|=n \i¢I

> 1T Inif?

[[|=n id]

AQ(n) =dm A ...dng, (4.10)

holds on X, since the denominator Z‘ I|=n Hi¢ 7 Ini|* vanishes on the exceptional set Z(X) of

X (see the definition of Z(X) in (1.2)). Then, K’ is the (0,n — 1) part of

Z <H 772) dnin+1 ARERA dTh‘d

o) A M=n \igl ’
hom >0 I Iml
[I|=ni¢l
because ' A Q2 = ICfl]Z)m in view of (4.10). O

Theorem 4.3.1 allows to extend further the examples of the preceding two sections.

Example 4.3.1 In view of first statement in Theorem 4.3.1, the cohomology groups H>4(PP! x
P!, LM*2 @ LA2) are trivial for A > kl + k+1—4 and 0 < ¢ < 2, since D1 ~ Dy
and D3 ~ Dy. Similarly, the second statement of Theorem 4.3.1 implies that the groups
HO(P! x P!, L=*~2® L=A=2) are also trivial for &, and A being positive integers satisfying

the inequality A > kl+k+1—4and 0 < g < 2.

Example 4.3.2 Applying Theorem 4.3.1, we get that the cohomology groups
HHma(prox P LRt @ pRmAl) — 0 for 0 < ¢ < n +m and
HOY(P" x P, L~F"1 @ L=F—m=1) = 0 for 0 < q < n + m, whenever k,n,m satisfying the

inequality &k > nm —n —m. Here, we used that D; ~ ...~ Dpyq and Dyqo ~ ... ~ Dypimyo.

Example 4.3.3 According to Theorem 4.3.1, H39((P1)3, L*+2 @ LF2 @ LF+2) = 0 for 0 <
g <3and HO((P)3 L 2@ L %20 L %2) =0 for 0 < g < 3, when k is a positive integer.

Example 4.3.4 For r = 1,2, the groups H*(H,,V}) are trivial for 0 < ¢ < 2, where
L'= 0Oy, (k+2—7r)Ds+ (k+2)Dy) and H*(H,,V}) are also trivial for 0 < ¢ < 2, where
L' =0y, (—(k+2—7r)Ds — (k4 2)Dy4) and k is every positive integer. The homogeneities

arise from the equivalent relations between the divisors: Dy ~ D3 and rD1 + Dy — Dy ~ 0.

Example 4.3.5 If £’ = Oy ((k+2)D3+(2k+3)Dy4) and L” = Oy (—(k+2)D3—(2k+3)Dy) are
these specific sheaves on H, then the cohomology groups H%4(H, V) are trivial for 0 < ¢ < 2
and HO9(H, V/') are also trivial for 0 < ¢ < 2, whenever k € N. Here, we used that Dy ~ Dy

and Dy ~ D3+ Dy.
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4.4 A realization of the isomorphism between

H(X, (Ve)") and H""(X, (V)")

Let us consider a holomorphic section ¢ on an n-dimensional smooth compact toric variety
X taking values in V. Then, only the third integral of (3.93) remains to represent ¢ and

this statement is formulated in the next theorem.

Theorem 4.4.1 Let X be an n-dimensional smooth compact toric variety and V be the line
bundle corresponding to the sheaf L = Ox (D), where D = Zizl ax Dy satisfying |Pp NZ"| =

N <2(n+1). If ¢ is a holomorphic section taking values in V., then

CN,n¢(h) = / Phom A ¢ (4‘11)
X
on U, = {szl hi* # 0}, where Phom, is the "homogenization’ of PT on U, given in Theorem
9.4.3.

Proof. Tt is an immediate consequence of Theorem 3.4.3 since ¢ = 0 and the integral
Oh f X Khom A ¢ on U, vanishes because ¢(h) does not contain any dh’s and there is no other
term contains dh’s in the representation to be cancelled out with that term (Phom has only

differentials of dip’s and dn’s). Then, the representation formula (4.11) is deduced. [

Theorem 4.4.1 is a realization of the Proposition 1.1.1, that is

HY(X, V) =T(X,0x(D))= € C-x™
mePpnNM

In such a way, this confirms the correctness of the construction of the Projection kernel, based

on the integral points of the polyhedron Pp.

Remark 4.4.1 If ¢ is a holomorphic section taking values in (V)* for N < 2n+ k41, then

Crmd(h) = /X P A (4.12)

on Uy, according to Theorem 3.6.2.

The isomorphism between the cohomology groups H**(X, V) and H™"(X, V') verifies that
the cohomology group H™™(X,V,') is also non-trivial. A realization of this isomorphism

takes place in the next theorem.

Theorem 4.4.2 Let ¢ be a smooth form of bidegree (n,n) on X taking values in V). Then
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Y is O-exact if and only if the duality pair < ,¢ >= 0 for every holomorphic section ¢

taking values in V.

Proof. For the necessity, we suppose that 1) is O-exact. This means that there is a form
w of bidegree (n,n — 1) such that dw = ¢. Applying Stoke’s theorem and making use the
holomorphicity of ¢, we get

<w,¢>>=/Xw¢=/Xéw¢>=/XwA5¢=o,

for every holomorphic section ¢ taking values in V.
For the sufficiency, assume that < 1, ¢ >= 0 for every holomorphic section ¢ taking values
in V.. Observe that,

< ,Phomwa ¢ >=< w,,Phomﬁb >= CN,n < ¢7 ¢ >=0

on U,, where we used Theorem 4.4.1 and the property (1.17) of currents. The current
equation holds on every chart U,. Using Corollary 4.2.1 and the toric representation formula

(4.3), we deduce that 1 is 0-exact. O

Theorem 4.4.2 illustrates the isomorphism
HYY(X, V)= H"™(X,V}),

which is a particular case of the Toric Serre Duality (4.6) when g = n. O

Generally, one can also observe that
H(X, (Vg)*) 2 H™(X, (V)P),

when N < 2n + k + 1, according to a similar argument with the one used in the proof of

Theorem 4.4.2.

As we have already seen the cohomology group H™"(X, (VY )¥) for N < 2n +k + 1 is non-
trivial. However, there is a necessary and sufficient condition leading to the vanishing of the

d-equation related to a smooth (n,n) form on X taking values in (V).

Theorem 4.4.3 Let ¢ be a smooth form of bidegree (n,n) on X taking values in (Vﬁv)k
where L =0x (D), k>1 and N <2n+k+ 1. Then, the (n,n — 1) form

w(n) = Cnp / Ko A, (4.13)
X
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where K}(llz)m is the "homogenization’ of the Koppelman kernel (IC(k))T on Uy, given in Theorem

3.6.2, is a solution of the equation Ow = v on Uy, if and only if 1 satisfies

JRGRRTEY
X

on Uy, for every (ai,...,aq) € (Z>0)? so that ayDy + - -+ aqDy ~ kD and where hy, ..., hq

are the homogeneous coordinates on X.

Proof. We assume first that [ h{*---h3%p = 0 on U,, for every (ai,...,aq) € (Z0)?
satisfying a1 Dy + - -+ + agDg ~ kD. Recall that, according to Theorem 3.6.2, P}Em)n takes
values in (V)* with respect to the homogeneous coordinates h on X and it does not contain
any h. Thus, S % Phozn A1) = 0 on U,. Moreover, due to the full bidegree of 1), we get dp1) = 0

and the second term in the representation (4.5) disappears. Hence, (4.5) yields

CN nd] 8 / IChom

on U, such that w(n) = Cny [ K

W A1 is a solution of the equation dyw = (1) on
Us.

On the other hand, if there is a solution w satisfying the equation dw = ) on U, then

/hi‘l---hgdw:/h?l---hgdéw:—/é(hgl---hgd)m:o,
X X X

where we used the property (1.18) of currents as an application of Stoke’s theorem.

Example 4.4.1 Let us denote by Oy 1 (P" xP"™) the space of holomorphic sections on P x P
taking values in L'® L' when nm < n+m+1 (n = 1 and m = r for every r € Z* or n = r and
m=1lorn =2andm = 3orn = 3andm = 2). We consider the divisor D = Dy, 11+ Dyt m+2

on P x P (see Example 3.1.2). Hence, the assumptions of Theorem 4.4.1 are satisfied and

C’N n+m¢ / Phom A ¢a (414)

on Us = {hp1hnyme220}, for each ¢ € Oy 1(P" x P™), where Cnppm = (—1)<nm Dnm“

We derive explicitly the Projection kernel P7 with respect to the toric variables and then
Phom on the chart U,. However, instead of applying Proposition 3.4.1, which describes the
final form of the Projection kernel, we are going to use relations (3.67) and (3.68). Actually

the weight alTJ has been already computed in (3.26) thus avoiding having determinants of
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big order. First of all,

_ +
ol — 1"a<ngn>_1”ma 7dr; |
’ 2mi = \ 1+ 3 i |mf? 2mi L \ 1+ Z?;ﬁ1 |71

by (3.26). Then,

n—l—m

) (n+m)!
i

- (-3
" TdT; nm TidT;

— A 0 J_J 4.15
Ao () A <1+Z”+m W) v il

=n+1 j=n+1

(a

because dr; A dr; = 0. Hence, (3.67) yields that

(n+m—nm+1)
P;‘F = onm aoT,o(aripl)ner-

Since

ol P(f't): (L+>0 7 z)(1+2?+ﬁ1@ )
WU P(TR) (1 T mP A+ T )

( 1 >”+m (n+m —nm+1)(n+m)!

21 2y

n+m n _ n+m —
(L4 D00 7ta) (L + D500 Titg) /\ ( TidT; )/\ /\ 8< 7;dT; >’

1+ [r) A+ [7) 1+ 14|72

i=1 =n-+1

(4.16)

where |7]? =Y | |5]? and |72 = Z?g{ll |52

In order to find the second term of the Projection kernel, PJ, we consider Hefer forms H®J
of the polynomials f; ; for 1 < i < nmandn+1 < j < n+m (see (3.14)) and ~;; the
corresponding vector fields. Then, since N = nm +n+ m+ 1 and the dimension of the toric

variety X = P” x P™ is n 4+ m, we get that

n nt+m
Py = G [Z > (wi—Hp) ]( L)

k=1l=n+1
n+m n n+m
kl T -1
2nm “onm—1 Z Z H™ 10 ’Ykl_‘al 1) ] (alyl)ner (417)
k=1l=n+1
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according to (3.68), where

1
(Hﬁ’ol)T = 47_‘_2,{(7'1 —ty)dr + (1% — tg)dm

n+m _
7;dT;

n —
TidT; idT;
St (2 TRt 2 TR
i=1 j=n+1

while
L[ 7w —th)(n —t)
—~HIHT = [ +ajy+1|.

(We,l 1,0) 9 (1 + |T|2)(1 + |T/|2) 0,0

Moreover,
T ) 5 Tk Tk = a)
- = 0 0 .
oo = 5 () 7 (o)

Then,

P _ _L nt+m (n+m)!
2 2i 27m(1 + |7]2) (1 + |7]2)

{L47 t+ =D+ ] [L+ 7+ (m =D+ 7))
+nm(1+7-t)(1+7 1)}

I 7dT; ' A 7dT
a 1Wig ]2
A8(1+vw> A o) (4.18)

i=1 =n+1

By adding the terms P{ and P2 which are given explicitly in (4.16) and (4.18), respectively,
we get a simpler form of the Projection kernel PT:

- U2mi) 2w P

{(n+m+1)A+7-t)1+7-t)

+[1+7t+n—-D)A+ [P [1+7 ¢+ (m—-DA+|7P)]}

A T;:dT; nAm TidT
y (T i 4.1
Ao () A o(r17e): (419

=n-+1

Now, let n = (m1,...,mn+1) and ' = (42, .- -, Mntm+2) being the projective homogeneous
coordinates of P and P™, respectively. A change of coordinates on P™ x P™ from toric to
projective homogeneous on U, in (4.19), will give us the required formula. Recall that, every

coordinate 7; corresponds to 7;/nn+1 for ¢ = 1,...,n, while 7; is equal to n;j41/Mntm+2 for
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j=n+1,...,n+mon U,. Then,

A = ([ Tidmi L [5(n-dn\]"
A8<1+|Tr2> - ()

and

nAme fdej 1 |- ﬁ’-dn' m
A o\ime) = wPUe )]
j=n+1 '

Hence, the kernel Ppom, being the homogenization’ of the kernel PT representing O11(P" x

P™) when nm < n +m + 1 is given by !

hn+1hn+m+2

T

7)hom = —P
TIn+1Tn+m~+2

- (=) (3" o
[(n+m+1)(7-h)(y - 1)

hn e hn m
; (77 et (- 1>|n|2“> (77’ 4 (m— D)y 22 *)}
Mn+1 Mn+m—+2

PO POl

!This formula is valid on the chart U, = {nnt17ntm+2 # 0} of P* x P™ and it is given by a similar form
on the remaining charts of this variety.
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