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Περίληψη 

 

Η παρούσα Διδακτορική Διατριβή επικεντρώνεται στη μελέτη των μηχανισμών 

αντιδράσεων μεταφοράς ηλεκτρονίου (ΜΗΛ) και μεταφοράς ενέργειας (ΜΕΝ) σε μοριακά 

συστήματα. Ο κύριος στόχος της ερευνητικής μου δραστηριότητας ήταν να αναπτύξω 

καλύτερη φυσική κατανόηση όσον αφορά τον ενεργό έλεγχο των αντιδράσεων ΜΗΛ και 

ΜΕΝ σε μοριακά σύμπλοκα. Ο έλεγχος των μηχανισμών ΜΗΛ και ΜΕΝ είναι ζωτικής 

σημασίας σε βιολογικά και τεχνητά φωτοβολταϊκά υλικά καθώς και στον ευρύτερο τομέα 

της μοριακής ηλεκτρονικής. Χρησιμοποιώντας θεωρητικά μοριακά μοντέλα, δότη (ΔΟ) –

γέφυρας (ΓΕ) – δέκτη (ΔΕ), και πραγματοποιώντας προσομοιώσεις, υπολογισμούς           

ab initio σε πραγματικά μόρια και αναλυτικές μεθοδολογίες, αναπτύξαμε ένα φορμαλισμό  

και υπολογιστικά εργαλεία που μας δίνουν τη δυνατότητα ανάλυσης του ελέγχου 

διαδικασιών ΜΗΛ και ΜΕΝ σε μόρια. 

Η κύρια ερευνητική συνιστώσα της παρούσας Διατριβής, αφορά το πεδίο του ελέγχου 

μοριακών αντιδράσεων ΜΗΛ μέσω εφαρμογής υπέρυθρων (IR) παλμών διέγερσης που 

διαταράσσουν τις δονήσεις του μορίου. Η βασική ιδέα μπορεί διαισθητικά να περιγραφεί 

με ένα μόριο ΔΟ-ΓΕ-ΔΕ το οποίο πραγματοποιεί ΜΗΛ μέσω φωτοδιέγερσης από το ΔΟ 

στο ΔΕ διαμέσου των ενδιάμεσων ηλεκτρονιακών καταστάσεων της ΓΕ. Η επιλεκτική 

διέγερση συγκεκριμένων δονητικών καταστάσεων ΓΕ με παλμούς IR προκαλεί 

χρονοεξαρτημένες μεταβολές στις ενέργειες των ηλεκτρονιακών καταστάσεων ΓΕ καθώς 

και στις ηλεκτρονιακές συζεύξεις μεταξύ των καταστάσεων DΟ-ΓΕ και ΔΕ-ΓΕ, 

επηρεάζοντας έτσι το ρυθμό ΜΗΛ. Αυτού του είδους ο έλεγχος είναι ιδιαίτερα επωφελής, 

αφού η διέγερση IR είναι σχετικά μη επιβλαβής, υπό την έννοια ότι δεν μεταβάλλει τις 

ηλεκτρονιακές καταστάσεις του συστήματος ΔΟ-ΓΕ-ΔΕ και κυρίως δεν προκαλεί μη 

αντιστρεπτές αλλαγές στη μοριακή δομή. Έχουν πραγματοποιηθεί μερικά πειράματα 

δονητικού ελέγχου ΜΗΛ χρησιμοποιώντας δράση παλμών IR. Τα πειράματα 

πραγματοποιήθηκαν σε διαφορετικά μοριακά συστήματα και όλα παρουσιάζουν 

σημαντική αλλά διαφορετικού βαθμού επίδραση της διέγερσης IR στο ρυθμό ΜΗΛ. Στη 

δική μου ερευνητική εργασία χρησιμοποιήσαμε θεωρητικά μοριακά μοντέλα ΔΟ-ΓΕ-ΔΕ 

και υπολογισμούς ab initio σε συγκεκριμένα μόρια, για να διερευνήσουμε τους 

περιορισμούς που υπάρχουν στη δυνατότητα να επηρεαστεί σημαντικά ο ρυθμός ΜΗΛ 

μέσω δονητικής διέγερσης με δράση παλμού IR. Οι περισσότεροι περιορισμοί προέρχονται 

από τη φύση του μοριακού δονητικού φάσματος, την ισχύ της σύζευξης ηλεκτρονίου-
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δονήσεων, την ισχύ της αλληλεπίδρασης μεταξύ μοριακών δονήσεων και ακτινοβολίας IR 

και την ισχύ της αλληλεπίδρασης μορίου-διαλύματος. Επίσης, υπάρχουν περιορισμοί που 

προέρχονται από τη πειραματική διάταξη και οι οποίοι καθορίζουν τα χαρακτηριστικά των 

παλμών IR διέγερσης. Έχοντας αυτούς τους περιορισμούς υπόψη, προτείνουμε εύρος 

παραμέτρων και μοριακές αρχιτεκτονικές που αυξάνουν το δονητικό έλεγχο των ΜΗΛ για 

γρήγορες διαδικασίες ΜΗΛ. 

Επιπρόσθετα στη παρούσα Διατριβή μελετήσαμε αντιδράσεις ΜΕΝ (ή μεταφοράς 

εξιτονίων) τριπλής κατάστασης μέσω του μηχανισμού Dexter. Οι μοριακές ΜΕΝ σε μόρια 

ΔΟ-ΓΕ-ΔΕ, πραγματοποιούνται μέσω των ενδιάμεσων καταστάσεων εξιτονίων της ΓΕ. Η 

μεταφορά εξιτονίου είναι συνδυασμένη μεταφορά δύο σωματιδίων, ενός ηλεκτρονίου και 

μίας οπής, μεταξύ διαφορετικών εντοπισμένων περιοχών του μορίου. Η συνδυασμένη 

μεταφορά δύο σωματιδίων είναι πολύ πιο πολύπλοκη από τη μεταφορά ενός σωματιδίου 

(ηλεκτρονίου ή οπής). Στην ερευνητική εργασία αναπτύξαμε μια νέα θεωρητική και 

υπολογιστική περιγραφή μονοπατιών σύζευξης μέσω καταστάσεων ΓΕ για μηχανισμούς 

ΜΕΝ σήραγγος (tunneling). Είναι σημαντικό να αναφέρω ότι ο θεωρητικός φορμαλισμός 

που έχουμε αναπτύξει, λαμβάνει υπόψη τη συνεισφορά εξιτονίων ΓΕ στη σύζευξη ΜΕΝ 

(οι συνεισφορές εξιτονίων ΓΕ έχουν αγνοηθεί από προηγούμενες θεωρίες). Έχουμε 

παρατηρήσει δύο ανταγωνιστικούς μηχανισμούς μονοπατιών σύζευξης. Σε μόρια με 

μικρές ΓΕ ή/και μεγάλα ενεργειακά φράγματα δυναμικού στη ΓΕ (tunneling barriers), οι 

εξιτονικές καταστάσεις ΔΟ-ΔΕ καθορίζουν κυρίως τη σύζευξη. Εν αντιθέσει σε μόρια με 

μεγαλύτερες ΓΕ ή/και μικρότερα φράγματα δυναμικού στη ΓΕ η σύζευξη ΜΕΝ εξιτονίων 

τριπλής κατάστασης πραγματοποιείται κυρίως μέσω των εξιτονικών καταστάσεων ΓΕ. 

Επιπρόσθετα έχουμε αναπτύξει αναλυτικά μοντέλα ΔΟ-ΓΕ-ΔΕ για να κατανοήσουμε τη 

συμπεριφορά των μονοπατιών ΔΟ-ΔΕ και ΓΕ ως συνάρτηση του μήκους της ΓΕ και των 

ενεργειακών καταστάσεων της γέφυρας. 
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Abstract 

 

This Ph.D. Thesis focuses on electron transfer (ET) and energy transfer (EnT) mechanisms 

in molecular systems. The main objective of my research work was to develop a physical 

understanding of how to control actively electron and energy propagation through 

molecules. Such control of ET and EnT flow is vital in biological and artificial solar 

energy conversion materials and in molecular electronics. Using theoretical models of 

donor (D) – bridge (B) – acceptor (A) molecules, and employing simulations, ab initio 

computations on real molecules and analytical methodologies, I described frameworks that 

enable the active control of ET and EnT reactions. 

A major component of this Thesis is in the field of vibrational control of molecular ET 

reactions by application of infrared (IR) pulses. The basic idea can be intuitively described 

by a D-B-A molecule that undergoes photoinduced bridge-mediated D-to-A ET. Selective 

IR (vibrational) excitation of specific bridge vibrational modes influences the ET rate by 

modulating the bridge electronic state energies and the bridge-mediated D-to-A electronic 

coupling. This type of ET rate control is exciting since IR excitation is chemically 

innocent, in the sense that it does not alter the electronic states of the D-B-A system and 

neither does it cause irreversible changes to the molecular structure. Some experiments of 

vibrationally-controlled molecular ET using IR pulses have been realized. The experiments 

were performed on different molecular systems and all of them demonstrated significant 

but different levels of IR-induced ET rate modulation. In my research work we used 

theoretical models of D-B-A molecules and ab initio computations on specific classes of 

molecules, to explore the constraints on achieving enhanced vibrational perturbation of ET 

rates with application of IR excitation pulses. Most of the constraints stem from molecule-

specific characteristics, such as the nature of molecular vibrational spectra, the strengths of 

the electron–vibrational coupling, the interaction strengths between molecular vibrations 

and IR radiation and the strength of the molecule-solvent interaction. There also 

constraints that stem from experimental setups that produce the IR excitation pulses 

characteristics. Having these constraints in mind, we suggest parameter regimes and 

molecular architectures that may enhance the vibrational control of ET for fast ET 

reactions. 
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Another part of this Thesis is devoted for triplet exciton (“Dexter”) EnT and in particular 

on bridge-mediated Dexter EnT systems. The simplest intuitive way to describe EnT is to 

consider it as a coupled motion of two particles, an electron and a hole, between different 

localized molecular regions. This adds considerable richness to the mediation process, 

compared to single-particle (electron or hole) transfer. In this research work we developed 

a single-particle coupling-pathway theory for bridge-mediated triplet EnT and provided 

formulas and computational schemes to assess the bridge exciton contribution to the 

triplet-exciton coupling (ignored by earlier theories). We find two competing coupling 

pathway mechanisms. At shorter distances and/or high tunneling gaps, donor-acceptor 

charge-transfer exciton virtual states dominate the triplet EnT coupling. At longer distances 

and/or lower tunneling gaps, virtual exciton states of the bridge (with both electron and 

hole on the bridge), mediate the transport. We further developed D-B-A models to 

illustrate single-particle and two-particle (exchange) EnT pathways and to formulate an 

intuitive framework of EnT pathways that demonstrates strong analogies to ET pathways 

and their interferences. 
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Chapter 1: Introduction 

 

Molecular electron transfer and energy transfer reactions are of tremendous importance in 

molecular and chemical science, in engineering and biology, e.g., in biological and 

artificial solar energy conversion materials and molecular electronics [1-4]. An exciting 

topic of intensive study, especially the last few years, is the development of new 

experimental and theoretical/computational methodologies that give the necessary tools to 

control actively charge and energy flow in molecular systems [1,5]. 

Theoretical studies by S. Skourtis, D. Beratan and colleagues, e.g., [6-8] predicted that 

infrared (IR) excitation of spatially-localized vibrational modes of electron transfer (ET) 

molecules may be used to control ET kinetics. The idea is as follows: if we consider an 

electron donor (D) – bridge (B) – electron acceptor (A) molecule that undergoes 

photoinduced D-to-A ET mediated by the electronic states of the intervening B, the IR 

excitation of the B vibrational modes before or after initiation of ET could make it possible 

to control the D-to-A ET rate by modulating the molecular structure. This type of ET rate 

control is advantageous because it does not alter the electronic state of the molecular ET 

system or irreversibly change its molecular structure. It is, therefore, reversible and 

repeatable without inducing photodamage. 

Motivated by these ideas, I. Rubtsov and co-workers performed in 2009 the first 

experiment of vibrationally-controlled molecular ET using IR laser pulses [9]. The ET 

system consists of an anthracene-derived acceptor connected to a dimethylaniline-

containing donor linked by guanosine-cytidine (GC) hydrogen bonds. Selective IR 

excitation of the bridge G-C H-bonds reduces the D-to-A ET rate by 60%. It took up to 

2014-15 to obtain further solid verification of the original idea from new experiments [10-

12] that achieved a high IR-perturbation effect on molecular ET rates (from 28% [11] to 

100% [10]). J. Weinstein and co-workers [10] demonstrated 100% switch off of D-to-A ET 

by IR excitation of the high-frequency bridge carbon-carbon triple-bond vibrations for an 

electronically excited covalent trans-acetylide platinum(II) D-B-A system. The ability to 

switch off ET is exciting, but it is also of essential importance to be able to switch on ET. 

In addition, I. Rubtsov and co-workers [11] reported IR-induced enhanced ET rate 

modulations in Re(I) D-A complexes. Specifically, IR excitation of the bipyridine ring 

stretching modes on the acceptor, exhibit 28% faster D-to-A ET. The new experimental 
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successes and the status of the field are described in two recent news articles in the journals 

Nature Chemistry [13] and Physics Today [14]. Despite of the recent experimental 

progress in controlling molecular ET rates by IR excitation, a full theoretical understanding 

of all the factors that determine the ET rate modulations is lacking. Detailed understanding 

of the IR modulation mechanism is needed to explain the ET rate changes induced by the 

IR excitation and to design structures with specific ET properties that enable enhanced 

control of the ET rates by IR excitation  

A large components of my research work as a Ph.D. student was in this field under the 

supervision of Prof. S. Skourtis and in collaboration with Prof. D. Beratan and his group at 

Duke University USA. The collaboration was funded by the Cyprus Research Promotion 

Foundation, through the project “Vibrational Control of Electron Transfer” ΔΙΕΘΝΗΣ/ 

ΣΤΟΧΟΣ/0311/04. I used theoretical models of D-B-A molecules and ab initio 

computations on real molecules to explore the constraints on achieving strong vibrational 

perturbation of ET rates with IR pulses. These constraints stem from molecule-specific 

characteristics, such as the nature of molecular vibrational spectra and the strengths of the 

electron–vibrational coupling, and from the interaction strengths between molecular 

vibrations and infrared radiation. In this research work, I suggested parameter regimes and 

molecular architectures that may enhance the vibrational control of ET for fast ET 

reactions. The suggested molecular architectures may allow the control of ET pathways in 

multiple B (D–Bi–A) systems via selective IR excitations of B modes. The advantage of 

using B vibrations to perturb bridge-mediated ET rates is due to the possibility to 

manipulate ET pathways selectively, without altering the electronic states of the molecular 

ET system or causing irreversible photochemical changes to the ET structures. 

Specifically, I find that the IR-induced ET rate perturbation is enhanced if the ET 

mechanism is coherent resonant through-bridge tunneling and if the timescales of ET and 

vibrational relaxation of the IR-excited B mode are of the same order. This work has been 

cited by some of the main experimentalists in the field [12] who performed the experiment 

in [10]. I will extensively discuss this research work in Chapter 4. 

In addition, part of my research work was dedicated to triplet-energy (exciton) transfer 

models, for bridge-mediated exciton transfer systems (the so-called Dexter energy transfer 

systems). When the exciton donor and the exciton acceptor states are triplets, a one-

electron tunneling and a two-electron exchange interaction enable the energy transfer from 

donor to acceptor. In many molecular energy transfer systems the donor and acceptor 
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molecules are connected by a bridge which mediates donor-to-acceptor triplet energy 

transfer [15-20]. 

In collaboration with Prof. D. Beratan and his group at Duke University USA we 

developed a coupling-pathway theory for bridge-mediated triplet energy transfer, a process 

controlled by the structure of the bridge between donor and acceptor species. In this 

research work we provide formulas and computational schemes to assess the bridge 

exciton contribution to the triplet-exciton coupling, which earlier theories did not account 

for. Our description of the exciton coupling pathways relies on a configuration-interaction 

single-excitations (CIS) framework, which tracks the coupled motion of two particles 

(electron and hole). We find two competing coupling pathway mechanisms. At shorter 

distances and/or high tunneling gaps, the electron and hole propagate sequentially from 

donor to acceptor, accessing donor-acceptor charge-transfer exciton virtual states. In this 

regime the relevant virtual exciton states of the bridge have either a single electron or a 

single hole. At longer distances and/or lower tunneling gaps, virtual exciton states of the 

bridge mediate the transport, where both electron and hole reside on the bridge. Molecular 

design strategies can modulate these competing mechanisms and their distinctive 

dependences on molecular structure. Our coupling-pathway theory enables a structure-

function analysis of the triplet energy transfer coupling at the atomic-level, a step forward 

to our task to control energy transfer reactions in a wide range of energy transfer systems. 

It may also explain the enhanced triplet energy transfer rates non-compatible with the 

standard energy transfer theories [21,22]. My own contribution to this project was to 

develop and to code Green’s function formulas for the exciton-pathway analysis of the 

bridge-mediated triplet-exciton coupling. I also analyzed some simple models for the 

triplet exciton bridge pathways and for their interferences. 

In the remaining of this first Chapter, I give an introductory theoretical description of 

electron transfer and energy transfer procedures in molecular systems, essential for the 

following Chapters. 
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1.1 Electron Transfer in Molecules 

This section is a brief overview of some of the basic concepts of molecular electron 

transfer reactions. The electron transfer process can be understood as a spontaneous 

electron transition from an initial state spatially localized at the electron donor part of the 

molecular system to a final state spatially localized at the acceptor part of the system. The 

electronic transition dynamics are always accompanied by instantaneous nuclear 

rearrangement and by the interplay between electronic and nuclear dynamics. In the 

following, theories of electron transfer rates will be discussed accompanied by 

presentations of the different regimes of electron transfer rates. 

 

1.1.1 Molecular Hamiltonian 

Let us first consider a molecule composed of elN  electrons and nucN  nuclei atoms. The 

Cartesian coordinates and momenta will be denoted as 
jr  and 

jp , for electrons, and 
nR , 

nP  for the nuclei, respectively. The total molecular Hamiltonian operator has the general 

form  

ˆ ˆ ˆ ˆ
mol el nucH T T V   . (1.1) 

ˆ
elT  is the electron kinetic energy, ˆ

nucT  is the nuclear kinetic energy and V̂  is the potential 

energy of the system. The kinetic energies of the electrons and nuclei are given by 

2 2

1 1

ˆ ˆ,
2 2

el nucN N
j n

el nuc

j nel n

p P
T T

m M 

   , (1.2) 

where elm  is the electron mass and nM  the mass of the nth nucleus. The potential energy 

includes electron-electron and nuclear-nuclear Coulomb repulsion interactions and the 

corresponding attractive Coulomb interactions between electrons and nuclei 

2 22

00 0

1 1ˆ ˆ ˆ, , .
2 2 44 4

el nuc el nucN N N N

m n n
el el nuc nuc el nuc

i j m n j nm ni j j n

z z e z ee
V V V

R Rr r r R 
  

 

   
 

    (1.3) 

mz , nz  are the atomic numbers of the mth and nth nucleus. 

The time independent molecular Schrödinger equation is  
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   ˆ ; ;molH r R r R   . (1.4) 

  is a multi-particle wavefunction, where  1 2, ,...,
elNr r r r  and  1 2, ,...,

nucNR R R R  

denote the electronic and nuclear Cartesian coordinates, respectively.   denotes the 

energy of either the ground or any of the excited eigenstates of the system. 

 

1.1.2 Born-Oppenheimer Approximation 

Solving eq. (1.4) is a highly difficult task and due to the large numbers of particles the 

Schrödinger equation cannot be solved analytically and approximations are required. One 

first adopts the Born-Oppenheimer approximation which is based on the large mass 

difference of electrons and nuclei  2000n elM m . Due to this difference, electrons can be 

considered to move much faster than nuclei and to respond almost instantaneously to any 

changes in the nuclear configuration [1,2,23]. This further implies that the nuclear motion 

alters electron-nuclear interactions only adiabatically and does not trigger transitions 

between different electronic states [1]. Thus, we can separate the wavefunction  ;r R  

into two components (the so-called Born-Oppenheimer Separation), i.e., 

     ; ;BO

el vibr R r R R   , (1.5) 

where  ;el r R  is the electronic wavefunction at each nuclear geometry and  vib R  is 

the nuclear wavefunction. Importantly, the electronic wavefunction will only 

parametrically depend on the nuclear coordinates.  

Following the arguments above, we can ignore the nuclear kinetic energy operator as 

compared to the electron kinetic energy operator ( ˆ ˆ
nuc elT T , since 2000n elM m ). This 

approximation leads us to the definition of the Born-Oppenheimer Hamiltonian

ˆ ˆ ˆBO

mol nucH H T  . Hence,  

   ˆ ˆ ˆ; ;BO el

nuc nucH r R H r R V   , (1.6a) 

                                         ˆ ˆ ˆ ˆ;el

el el nuc el elH r R T V V    . (1.6b) PANAYIO
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The Born-Oppenheimer Hamiltonian ˆ BOH  is comprised of the electronic Hamiltonian ˆ elH  

and the nuclear-nuclear repulsion interactions ˆ
nuc nucV  . ˆ elH  consists of the kinetic energy 

operator of the electrons ˆ
elT , the attractive interactions between electrons and nuclei ˆ

el nucV   

and the electron-electron repulsion interactions ˆ
el elV  . Both of the Hamiltonians, ˆ BOH  and 

ˆ elH  carry a parametric dependence on the nuclear coordinates. 

Therefore, instead of solving the Schrödinger equation for the total molecular Hamiltonian   

eq. (1.4), we solve the respective Schrödinger equation within the Born-Oppenheimer 

approximation  

     ˆ ; ;BO BO BO BOH r R E R r R    (1.7) 

where,  BOE R  are the eigenenergies of the ˆ .BOH   BOE R  defines a hypersurface in the 

space of nuclear coordinates R , the potential energy surface (PES) for the nuclear motions 

in a specific electronic state. If we consider the nuclei as classical particles, then the total 

force exerted on every individual nucleus from the elN  electrons and the remaining 

1nucN   nuclei atoms will be 

 
n

BO

n RF E R   (1.8) 

for nucleus n . Equation (1.8) is proved using the Feynman-Hellmann theorem, that 

considers a system with a Hamiltonian  ˆ
iH L  that depends on some parameters  iL . The 

respective Hamiltonian eigenstates   and eigenvalues E  also depend on parameters 

 .iL  

       ˆ
i i i iH L L E L L   . (1.9) 

The Feynman-Hellmann theorem states that 

       ˆ
i i i i

i i

E L L H L L
L L

 
  

 
, (1.10) 

which directly relates the derivative of the total energy of the system to the expectation 

value of the derivative of the Hamiltonian with respect to a general parameter iL . The 

Feynman-Hellmann theorem demonstrates that all the forces in the system can be 
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calculated using classical electrostatics (e.g., eq. (1.8)), as long as the electron densities are 

computed from the Schrödinger equation. 

To prove eq. (1.8) we set in eqs. (1.9) and (1.10)    ˆ ˆ BO

iH L H R ,    BO

iE L E R ,

   BO

iL R    and eq. (1.8)  becomes 

       ˆ; ;
n n

BO BO BO BO

R RE R r R H r R      (1.11) 

where, ˆ ˆ ˆ
n n n

BO

R R el nuc R nuc nucH V V     and eq. (1.11) will be 

       

           

ˆ ˆ; ;

; ; ; ; .

n n n

BO BO BO

R R el nuc R nuc nuc

BO BO BO BO

el n n m

E R r R V V r R

r R F r R r R F r R

 

 

     

     
 (1.12) 

The first term on the right-hand site of eq. (1.12) el nF   is the average attractive force 

exerted on nucleus n  from the elN  electrons and the second term n mF   is the average 

repulsive force exerted on nucleus n  from the remaining 1nucN   nuclei atoms  m n . 

Thus the summation of these two terms gives the total force exerted on every individual 

nucleus n  from the elN  electrons and the remaining 1nucN   nuclei atoms, demonstrating 

eq. (1.8). 

 

1.1.3 Diabatic and Adiabatic States  

Let us now consider the simplest case scenario of a molecule consisting of donor and 

acceptor parts with respective donor-localized (D) and acceptor-localized (A) diabatic 

electronic states. Often in ET experiments the molecule is photoexcited by a laser pulse to 

prepare the initial donor state. Subsequently, a second laser pulse is applied to monitor the 

decay of the donor state and/or the rise of the acceptor state (pump-probe experiment). The 

ET from donor to acceptor parts is carried by an electronic coupling between donor and 

acceptor states. We present the simplest two-state model for the ET problem (Fig. 1.1). The 

electronic Hamiltonian in the donor-acceptor diabatic representation is generally given by 

     ˆ el

D A DAH E R D D E R A A V D A A D    , (1.13) 
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where DAV  is the D-A electronic coupling matrix element.  DE R ,  AE R  are the D and A 

diabatic PES energies (solid lines in Fig. 1.1) and R  is a collective coordinate (normal 

mode) [1,2,24] that modulates  DE R  and  AE R  (Fig. 1.1). The above model is the 

simplest model, because it assumes two electronic states and a single reaction coordinate. 

Diagonalization of ˆ elH  (eq. (1.13)) for every R  gives the adiabatic representation of ˆ elH . 

The adiabatic ˆ elH  is written as 

   ˆ el

g eH E R g g E R e e  , (1.14) 

where g  and e  are the ground and excited adiabatic electronic states, with energies 

 gE R  and  eE R , respectively (dashed lines in Fig. 1.1). The ground adiabatic PES 

 gE R  is well described by the double well potential in Fig. 1.1 (lower dashed line curve) 

with respect to a single reaction coordinate. Also the excited adiabatic PES  eE R  (upper 

dashed line curve) can be seen in Fig. 1.1. Even though, most of the electronic structure 

calculations initially compute the adiabatic states, several diabatization procedures exist 

[25-31], to obtain the respective diabatic states. 

 
Figure 1.1: Adiabatic and diabatic representation of PES versus reaction coordinate R  which can 

be some collective nuclear coordinate. The adiabatic (red dashed line) curves, for the ground 
gE  

and excited eE  states, and the diabatic (blue solid line) curves for donor DE  and acceptor AE  

states are shown. 

 

Reaction coordinate 

Energy 

DE AE

R

gE

eE

PANAYIO
TIS ANTONIO

U



9 
 

1.1.4 Regimes of Electron Transfer 

To give a qualitative description and to further distinguish the different (nonadiabatic and 

adiabatic) ET regimes, in the following we will apply a theoretical treatment, based on the 

Landau-Zener theory [1,2,24,32-36] of ET in which the D and A electronic state energies 

are time dependent and cross. We first describe the D-A ET system within a single 

classical reaction coordinate which is time dependent (i.e.,  R R t ). The respective 

diabatic D-A electronic Hamiltonian is given by 

       ˆ el

D A DAH E R t D D E R t A A V D A A D    , (1.15) 

where   DE R t ,   AE R t  represents diabatic PES localized at D and A, respectively     

(Fig. 1.1). Initially we assume that the electronic state is D and that the reaction coordinate 

(and respective energies) start to move on the D PES far away from the crossing point 

 resR  with the A PES. At a time window rest  the reaction coordinate reaches the 

resonance  region   res resR t R  during which the D and A electronic energies cross, such 

that    D res A res resE R E R E  . 

The D to A transition probability for this crossing event can be estimated adopting the 

Landau-Zener approach which assumes a linear time dependence of the reaction coordinate 

around the resonance region. We thus perform a Taylor expansion around the resonance 

region for both PES, i.e.,  

    
resres

D A

D A res res

tR

dE dR
E R t E t t

dR dt

      
       

     

. (1.16) 

The D to A Landau-Zener transfer probability is given by 

 
2

1 exp 2DAP    
 

, (1.17) 

where LZ Rabi    is the Landau-Zener (or the so-called Massey) parameter written as a 

ratio of two times, the Rabi time and the Landau-Zener time. The Rabi time is 

Rabi DAh V  , which applied to a resonant time-independent D-A system. This time 

interval is a good estimate for the time required in a (time-independent) resonant D-A 
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system, i.e., when D A DAE E V  , to induce a complete donor to acceptor transition 

 1DAP  . In addition the Landau-Zener time 

   
res res

DA

LZ

D At R

V

dR dt dE dR dE dR
 


, (1.18) 

is the time spent by the D and A energies in the resonance region in a time-dependent D-A 

system described by eq. (1.16). 

In the nonadiabatic limit the motion of the reaction coordinate in the crossing-resonance 

region ( D A DAE E V  ) is so fast such that the D and A energies do not remain in 

resonance for long enough time in order to induce a complete D to A transition, i.e., 

1LZ Rabi   . In this nonadiabatic ET regime the exponent in eq. (1.17) can be 

expanded in a Taylor series such that the D to A transition probability becomes 

proportional to the square of the electronic coupling   22
2DA DAP V    and the 

corresponding nonadiabatic ET rate is proportional to 
2

DAV  (e.g., eq. (1.19)). In the 

nonadiabatic limit the probability of electron transfer for every energy crossing is small. 

In the opposite limit  1LZ Rabi    the ET is called adiabatic. The D and A energies 

remain in resonance for long enough time, i.e., 1LZ Rabi    and induce a complete D 

to A transition. The probability of electron transfer is 100% for each crossing  1DAP  . 

Adiabatic ET can be visualized as the rearrangement of the reaction coordinate from the D 

minimum diabatic PES to the A minimum diabatic PES by crossing the intermediate 

potential barrier (e.g., see gE  adiabatic PES in Fig. 1.1). The respective adiabatic ET rate 

can be expressed as a standard Arrhenius type /act BE K T

DAk e
 , where actE  is the activation 

energy to reach the resonance region. 

 

1.1.5 Classical Marcus Electron Transfer Theory in Nonadiabatic Regime 

Let us now present a description of ET reactions rates, starting our considerations in the 

high temperature limit. Despite the fact that molecular nuclear motions are of quantum 

nature the (classical) high temperature limit is applicable if the energy of a characteristic 
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vibrational quantum   of the reaction coordinate R  is much smaller than the thermal 

energy BK T   BK T  . In this situation (Figs. 1.1 and 1.2) the vibrational dynamics of 

the system along R  (vibrational modes) can be described using classical physics. 

In molecular ET reactions the observable quantity is often the D to A ET rate and the main 

model describing ET reactions is the nonadiabatic Marcus-rate expression [1,2,24,32-37]. 

The ET rate is a product of a classical Boltzmann factor (see eq. (1.20)) and a tunneling 

probability  

22
DA DA FCk V


 . (1.19) 

It is worth mentioning that in nonadiabatic ET reactions the tunneling matrix elements 

(electronic couplings DAV ) that induce ET from D to A are weak and therefore the ET rate 

is limited by these electronic couplings. 

 
Figure 1.2: Potential energy surfaces of the ET system when the electron is at the initial (D) and 

the final (A) electronic states ( DE  and AE  respectively).  

 

The potential energy (diabatic Born-Oppenheimer, Fig. 1.2) surfaces seen by the ET 

system when the electron is at the D or at the A electronic state generally present different 

energetic characteristics, i.e., different minimum energy values min min

D AE E , where 

 

 

0

( )AE R

R

 
 

min

DR

( )DE R




Potential 

Energy 

Resonance  

Region 

actE

Reaction coord. 
min

AR

min

DE

min

AE

resR

 D resE R
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 min min ,D D DE E R   min min

A A AE E R  and different reaction-coordinate values min min

D AR R  

(see Fig. 1.2). With the electron at D, the reaction coordinate fluctuates around the 

conformation that minimizes DE , more precisely around min

DR , which is not a D-A 

resonance conformation  min

D resR R  and the system has to wait for a thermal fluctuation 

of the reaction coordinate to bring D and A to resonance. The classical (high-temperature) 

Boltzmann probability (or the classical Franck-Condon factor) for this activation step to 

the resonance conformation is [1,2,24,32-37] 

 
1

exp /
4

FC act B

B

E K T
K T




  , (1.20) 

 
2

0

0 min min,
4

act D

E
E E E E






 
    . (1.21) 

actE  is the activation energy to reach the resonance conformation resR  (Fig. 1.2)

    res D res A resE E R E R  . 
0E  is the energetic difference between the D and A 

minimum energy conformations, which is frequently called as the driving force of the ET 

reaction and   denotes the reorganization energy given by    min min

/ / / /D A A D D A D AE R E R    

or, equivalently, by  
22 / 2A Dm R R   , where /D AE , /D AR  are the electronic state 

energies and reaction coordinates for D and A respectively. The reorganization energy is 

defined as the energy required to “reorganize” the system to the new equilibrium 

coordinate conformation. 

D to A ET may only proceed if the total energy of the system (ET molecule and solvent) is 

conserved. Energy-conserving ET occurs when the D and A electronic state energies DE  

and AE  are in resonance  D AE E .  

Generally, a collective set of system motions, described by the reaction coordinates R , 

modulates the energies of the D and A electronic states, i.e.,     D DE t E R t  and 

    A AE t E R t . Thermal fluctuations of the reaction coordinate bring the system to a 

D-to-A resonance conformation resR  for which    D res A resE R E R  and thus enable ET. 

Thus, eqs. (1.19)-(1.21) can be derived from the Landau-Zener nonadiabatic result as 

follows. The D to A ET only proceeds if the system is in the resonance conformation resR . 
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The total energy needed for the reaction coordinate R  to reach resR  should be 

mintot

D actE E E   (see Fig. 1.2). If  mintot

D actE E E   then the reaction coordinate R  will 

pass through resR  two times per period 2  . For every time  rest  resR  is reached, the D 

to A transfer probability will be given by the Landau-Zener transfer probability in the 

nonadiabatic limit 

 
   

2
2

res res

DAtot

DA

D At R

V
P E

dR dt dE dR dE dR





, (1.22) 

and the respective D to A Landau-Zener ET rate will be given by 

   2
2

tot tot

DA DAk E P E



   , (1.23) 

since the resonance conformation resR  is reached two times per period, when the total 

energy is mintot

D actE E E  . 

For an ensemble of D-A molecules, the ET rate is given by a product of a Boltzmann 

probability average over the D PES and the D to A Landau-Zener ET rate eq. (1.23) for 

every energy crossing 

   
 D res

tot tot tot

DA DA Boltz

E R

k dE k E P E



  , (1.24a) 

 

min

tot
B

tot
B

D

E K T
tot

Boltz

E K Ttot

E

e
P E

dE e











, 
(1.24b) 

where mintot

D actE E E  . This calculation leads to the Marcus rate expression eq. (1.19). 

 

1.1.6 Quantum Electron Transfer Theory in Nonadiabatic Regime 

In the foregoing discussion it was assumed that the nuclear motion (reaction coordinate    

R ) is classical. Next we assume that BK T   holds for all the vibrational degrees of 

freedom participating in the ET reaction and change to a quantum description of nuclear 

motion [1,2,32-34]. For simplicity we assume that there is one high frequency vibrational 

mode whose equilibrium position (minimum conformation energy with the electron at D or 
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A) changes upon ET from D to A. In the quantum mechanical description of the process 

the total Hamiltonian of the system will be (Fig. 1.3) 

ˆ ˆ ˆ ˆel vi el viH H H H    , (1.25) 

where “el” denotes electronic, “vi” vibrational and “el-vi” electronic-vibrational couplings. 

The electronic Hamiltonian is 

 min minˆ el

D A DAH E D D E A A V D A A D    , (1.26) 

where min

DE , min

AE  describes the D and A electronic site energies and DAV  the intersite 

electronic coupling between D and A. The respective vibrational Hamiltonian is given by 

   
2 2

2

ˆ ˆ ˆ ,

ˆ 1ˆ , ,
2 2 2

K

vi vi vi

D A

vi R
K K K K K

n

H H H

P m
H K K R R K K n n n K D A

m




 

 
      

 


 (1.27) 

where Kn  denotes the vibrational eigenstates when the electron is in D or A and 

 1 2Kn   the respective vibrational eigenenergies. Further, we assume linear electron-

vibrational coupling and the corresponding electron-vibrational Hamiltonian is given by 

   ˆ el vi

A AH A A F R R       , (1.28) 

where AF  is the force exerted on the vibrational mode as the electron transfers from         

D to A.  

Having established the Hamiltonian (eqs. (1.25)–(1.28)) for the desired ET system we can 

now further split the Hamiltonian into two parts 

 0ˆ ˆ ˆH H V       ,     
     0 0 0ˆ ˆ ˆ

D AH H H       ,      ˆ
DAV V D A A D  , (1.29a) 

                           
2 2

20 min
ˆ

ˆ
2 2

R
D D D

P m
H E R R D D

m

  
    
  

, (1.29b) 

   
2 22

20 min

2

ˆ
ˆ

2 2 2

R A
A A A

P Fm
H E R R A A

m m





  
     
  

, (1.29c) 

where  0
Ĥ  is the time independent unperturbed Hamiltonian and V̂  is a weak time 

independent perturbation. 
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The eigenstates and eigenvalues of the unperturbed Hamiltonian will be 

D

k

A

n D

n A


  
  
  

   ,   
 

 

min

min

1/ 2 , 0,1,...

1/ 2 , 0,1,...

D D D

k

A A A

E n n
E

E n n



 

    
  

     
, (1.30) 

where k  are electron-vibrational (vibronic) states and   is the corresponding 

reorganization energy and is defined as  
22 / 2A Dm R R   2 2/ 2AF m  . 

The D-to-A ET rate is given by the Fermi golden-rule for time independent perturbation 

  
2 2 min min2 ˆ

BD

D A

D A

E K T

DA D A D n A n

n n

ne
k D V A n n E E E E

Z






    , (1.31) 

where,  1/ 2
Dn DE n  ,  1/ 2

An AE n   and BD

D

E K T

n

nZ e


 .  

ˆD V A  is the electronic coupling between D and A. D An n  is the overlap between the 

vibrational eigenstates     ,
D An D n AX R R X R R   and in the form of an integral

    
*

D AD A n D n An n dR X R R X R R





   . 

The square of the overlap integral is the Franck-Condon factor, which is given by [38,39] 

 
 

2
2 !

exp
!

D A

D A

A

n n

n nA
D A n

D

n
n n L

n

  

  



        
           

       
 (1.32) 

where, λ is the reorganization energy and 
 D A

A

n n

nL


 the  Laguerre polynomial 

 
   

   0

!

! ! !

kp
q

p

k

x p q
L x

k q k p k

  
  

  
 . 
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Figure 1.3: Potential energy surfaces of the ET system when the electron is at the initial 

 DD n and the final  AA n vibronic state. 

 

1.1.7 Through-Bridge Electron Transfer Mechanisms 

The simple picture of direct D to A ET, discussed in previous sections, in many molecular 

ET systems is not directly applicable to systems where D and A are connected by a bridge 

and the ET reactions proceed through the intermediate bridging units connecting D with A. 

Due to the large variety of molecular ET structures and architectures, the mechanisms of 

bridge-mediated biomolecular and molecular ET are variable and include coherent deep 

tunneling, coherent resonant tunneling and thermally activated hopping [1,2,24,32-35,37], 

where the term “coherent”, refers to the electron’s propagation through the molecular 

bridge. 

Coherent deep tunneling is the transfer mechanism where the intermediate bridge (B) states 

between donor (D) and acceptor (A) states presents a tunneling barrier for the transferring 

electron (Fig. 1.4) with a height .BE  BE  is the average D/A to B energy gap and is 

much greater than BK T  ( BK  is Boltzmann's constant and T  is the temperature). Thermal 

fluctuations bring D and A into resonance, while the B sites remain off-resonant, causing 

the electron to tunnel through the B. During the tunneling process the electron occupies the 

B electronic states with very low probabilities and for very short times. The B states are 

min

DR
min

AR

0

( )AE R

R

( )DE R

Potential 

Energy 

min

DE

min

AE

 ,D Dn E

 ,A An E

Reaction coord. resR

PANAYIO
TIS ANTONIO

U



17 
 

not perturbed by the transferring electron and the electronic coherence in the B is 

maintained.  

 

Figure 1.4: Coherent deep tunneling mechanism  B BE K T . The B electronic states are 

energetically higher than the D and A states which are in a resonant conformation. ET from D to A 

is induced by a tunneling matrix element eq. (1.33) between D and A states.  

 

Bridge-mediated ET, especially in the coherent deep tunneling regime, a process controlled 

by the structure of the bridge medium between D and A sites, influence the D-A electronic 

coupling. Bridge-mediated ET often involves long distance ET and due to the large D-A 

separations the direct D-A electronic coupling ( DAV ) is negligibly weak and the ET takes 

place in the nonadiabatic regime. The effective electronic coupling ( DAT ) that induces ET 

from D to A is described by a tunneling matrix element [1,2,24,32-35,37]  

 exp 2 /DA e B DAT m E R   
 

, (1.33) 

where DAR  is the D to A distance and 2 /el e Bm E    is an electron tunneling decay 

constant. Equation (1.33) is based on a simple average-tunneling-barrier model that 

provides an intuitive understanding of effective D-A electronic coupling ( DAT ) but fails to 

give an accurate description of the D-A coupling in different molecular systems with 

different system specific characteristics.  

To compute a more accurate expression of the D-A effective tunneling matrix element         

( DAT ) consider for instance a D-B-A molecular system in the coherent deep tunneling 

regime (Fig. 1.4) in which D and A states are in resonance conformation and B states are 

off resonant in respect to D and A. The D-B-A system’s electronic Hamiltonian is given by 

Energy 

Distance 

D A 

B 

ΔΕ
Β
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ˆ ˆ ˆ ˆel

DA BH H H V   , (1.34) 

where ˆ
DAH  is the D-A subsystem Hamiltonian, ˆ

BH  is the B subsystem Hamiltonian and 

V̂  is the interaction Hamiltonian between D-A and B subsystems. The D-A Hamiltonian is  

 ˆ
DA res res DAH E D D E A A V D A A D    , (1.35) 

where the direct D-A electronic coupling ( DAV ) is weak and can be neglected for large D-A 

separations. The B Hamiltonian is  

 
1

,

1 1

ˆ
B B B

i i j

N N N

B B i i B B i j j i

i i j i

H E B B V B B B B


  

    , (1.36) 

where BN  is the number of bridge states. The interaction Hamiltonian between D-A and B 

subsystems is 

   , ,

1

ˆ
B

i i

N

D B i i A B i i

i

V V D B B D V A B B A


      . (1.37) 

The bridge-mediated D to A effective tunneling matrix element is given by [32,40] 

 ˆˆ ˆ
DA B tunT D V G E V A , (1.38) 

where tun resE E  and  

   
   

 

1
ˆ ˆ ˆ

B B

k k

B tun tun B B
k tun k

G E E I H
E E

 

  


 , (1.39) 

where ˆ
BG  is the bridge Green function and 

 B

k , 
 B

kE  denote the eigenstates and 

eigenenergies of ˆ
BH , respectively. The above expressions are valid for the tunneling limit 

[32,40], i.e., 
   ˆ 1
B B

k tun kD V E E    and 
   ˆ 1
B B

k tun kA V E E   . 

For simplicity let’s assume a D-B-A molecular system with a single bridge unit. For such a 

situation the bridge Hamiltonian becomes ˆ
B BH E B B  and according to eqs. (1.38) and 

(1.39) the bridge-mediated D to A effective tunneling matrix element is obtained as 
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DB BA
DA

res B

V V
T

E E



, (1.40) 

for the case of a single bridge unit. For the more general case of a larger number of bridge 

units the bridge-mediated D to A effective tunneling matrix element will be of the form  

11 1 2

1 2

,, ,

,

N NB B

NB

NB

B BD B B B

DA B A

res B res B res B

VV V
T V

E E E E E E




  

 (1.41) 

for BN  bridge units [1,2,33,40,41]. 

In the opposite limit when the bridge electronic states can be brought to resonance with the 

D and A states (by thermal fluctuations) we consider briefly two other mechanisms. Let’s 

start our discussion with the coherent resonant tunneling mechanism [1,2,24,32-37]. In the 

resonant tunneling regime (Fig. 1.5a) ET from D to A take place when thermal fluctuations 

(structural and solvent) bring the B electronic states in resonance with the D and/or A 

states  B BE K T  . In this case the B electronic states are occupied by the transferring 

electron with high probability. Similar to the deep tunneling regime the B occupation time 

is too short for the B to respond to the transferring electronic charge and the coherence in 

the B is maintained. 

The thermally activated hopping mechanism  B BE K T   can become relevant for ET 

reactions in molecular systems with longer bridges and at higher temperatures [1,2,24,32-

37]. In the hopping regime (Fig. 1.5b) the D and the nearest neighbor B site get into 

resonance and the electron tunnels from D to the B. Now the electron stays long enough in 

the B and the B responds to the electronic charge, trapping the electron in a B electronic 

state. ET from B to A may occur if a thermally activation event brings the B electronic 

state occupied by the electron in energetic resonance with the A electronic state. 

The determinants of ET mechanisms include the molecular (electronic) structure, the 

structure of the solvent and their dynamics. The D, A moieties of an ET molecular system 

can be metal atoms, aminoacids or other small organic molecules. The deep tunneling 

mechanism where the D and A electronic states are energetically well separated from B 

electronic states, usually involves metal D and A moieties embedded in an organic bridge. 

The resonant tunneling and hopping mechanisms, where the D and A electronic states have 
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similar energies to the B electronic states, often involve D, A and B electronic states that 

are either all metal or all organic. 

 
Figure 1.5: (a) Coherent resonant tunneling mechanism. ET from D to A take place when thermal 

fluctuations bring the B states in resonance with the D and/or A states. Electronic coherence in the 

B is maintained because the occupation time of B states is too short for the B to respond. (b) In the 

thermally activated hopping mechanism, ET can be visualized to take place as a sequence of 

multiple consecutive tunneling steps. Initially the D and the nearest neighbor B site get into 

resonance and the electron tunnels to the B. Due to the long occupation time of the B, the B 

responds to the electronic charge and traps the electron in the B. An activation step is necessary for 

ET to A. 

 

The ET mechanisms introduced in this section, apply to ET reactions for which the time 

scale of ET is long compared to the time scale of thermal relaxation. For example eqs. 

(1.19)-(1.21) and (1.31) further assumes that the reaction coordinate dynamics of the 

system is thermally equilibrated prior to ET and this assumption leads to the Boltzmann 

(Franck-Condon) activation factors in the rate expressions (eqs. (1.19), (1.31)). For fast ET 

reactions for which the time scale of ET is similar to the time scale of thermal relaxation, 

this assumption is not valid. In this situation complete thermalization of the reaction 

coordinate is not possible prior to ET. This is often the case with fast (psec) photo-excited 

ET where ET competes with vibrational relaxation. These cases need theoretical and 

computational methods that go beyond the Marcus-type nonadiabatic rate expressions and 

this regime of ET will be extensively described in the following Chapters (Chapter 2       

and 4). 
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1.2 Energy Transfer in Molecules 

This section is a brief introduction to energy transfer reactions between and within 

molecules. In addition to ET, energy transfer (EnT) processes occur in many molecular 

systems. Both ET and EnT can be viewed as special cases of nonradiative decay of an 

excited electronic state and often offer independent excited states deactivation pathways 

[35]. EnT involves the transfer of both an electron and a hole from an initial to a final 

electronic state, as compared to the single particle electron or hole transfer (ET or HT), 

respectively. More precisely, in EnT reactions the initial photoexcitation (absorption) leads 

to the formation of a bound electron-hole pair, the so-called donor exciton which is 

subsequently transferred to a different location in the molecule or to another molecule, 

forming the acceptor exciton. There are three mechanisms (types of electronic donor-

acceptor couplings) that mediate EnT reactions. The one-electron mediated tunneling and 

the two-electron Coulomb and exchange mechanisms. 

Consider two molecules or molecular fragments, in close proximity to each other. Initially, 

the D molecule is photoexcited by an external laser pulse and the A molecule is unaffected 

and still in its ground electronic state. Electronic interactions among the D and A 

molecules lead to the transfer of an electron-hole pair from D to A. The Hamiltonian of the 

system is given by (eq. (1.6b)) 

   1 2ˆˆ ˆe e
H h V  , (1.42) 

where 
 1ˆ e

h  is an one-electron operator and 
 2ˆ e

V  is a two-electron operator.  
 1ˆ e

h  describes 

the electron kinetic energy  ˆ
elT  and the Coulomb attraction interaction between              

the electrons with the nuclei  ˆ
el nucV  . 

 2ˆ e
V  describes the electron-electron repulsive 

interactions  ˆ
el elV  . In the following section we will compute the Hamiltonian matrix 

elements between exciton states in a localized basis using a simple model for the cases 

when the exciton donor and exciton acceptor are: i) singlet states 
1

D , 
1

A  and ii) 

triplet states 
3

D , 
3

A  (e.g., Fig. 1.6). PANAYIO
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Figure 1.6: Schematic diagram demonstrating singlet and triplet states. a) Donor singlet state 

1

D , b) Acceptor singlet state 
1

A , c) Donor triplet state 
3

D  and d) Acceptor triplet 

state 
3

A . 

 

1.2.1 The Matrix Elements between Donor and Acceptor Exciton States: A Simple 

Model  

Consider a four-electron donor-exciton (D), acceptor-exciton (A) system where now each 

of the fragments, are described by two orbitals (Fig. 1.7), the highest occupied molecular 

orbital (HOMO) denoted as D  and A  and the lowest unoccupied molecular orbital 

(LUMO) denoted as *D  and *A , respectively. Figure 1.7a shows the donor and acceptor 

fragments in their ground many-electron state configuration. Initially the D molecule is 

excited by an external laser pulse, in which one electron has been promoted from the 

HOMO ( D ) to the LUMO ( *D ) and the A molecule remains in its ground electronic 

state and specifically in its HOMO ( A ) (Fig. 1.7b). Electronic interactions between the D 

and A fragments enable EnT from D to A in which D subsystem is in its ground state and 

the A subsystem in its excited state (Fig. 1.7c). 
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D
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Figure 1.7: Schematic representation of the electronic structure of a four-electron D-A exciton 

system. Both of the fragments are described by two orbitals, the HOMO and the LUMO orbitals 

D , *D  and A , *A  for D and A fragments, respectively. a) Shows the ground state four-

electron configuration of the D-A system. b) D is in its excited state and the A in its ground state. c) 

Energy is transferred from D to A through electronic interactions, in which D is in its ground state 

and the A in its excited state. 

 

To describe the many-electron states we use Slater determinants. The ground state 0  is 

described by a single Slater determinant, which is an antisymmetrized product of four spin 

orbitals, each a product of a spatial orbital   and a spin function, one corresponding to 

spin up ( ) and the other to spin down (  ) 

0 , , ,D D A A         . (1.43) 

The excited donor many-electron state (Fig. 1.7b) is described by two possible Slater 

determinants, in which the electron spin (  or  ) is interchanged between the ground D  

and excited *

D  spatial orbital 

                                       
1 *, , ,D D D A A         , (1.44a) 

2 * , , ,D D D A A         . (1.44b) 

Similarly, the excited acceptor many-electron state (Fig. 1.7c) is also described by two 

possible Slater determinants 

1 *, , ,A D D A A         , (1.45a) 

2 *, , ,A D D A A         . (1.45b) 

(a) (b) 

e 

D
 

D
e e 

*D

A 

*A

e e 
A
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D 
D

*D

A 

*A

e e 
A

e 

e 

D 
D

e e 

*D

A 

*A
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A

e 
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By taking appropriate linear combinations of these determinants (eqs. (1.44) and (1.45)) 

we can form the respective singlet states 

 
1 2

1 1

2
D D D     , (1.46a) 

 
1 2

1 1

2
A A A     , (1.46b) 

and triplet states 

 
1 2

3 1

2
D D D     , (1.47a) 

 
1 2

3 1

2
A A A     . (1.47b) 

Now we are in position to compute the Hamiltonian matrix elements for our simple four-

electron model for the case when donor and acceptor are singlet and triplet states. 

Applying the Slater rules [42] and the orthonormality of the spin (e.g.,    1    

and     0   ) we obtain for the singlet case 

                       
   1 21 1 1 1 1 1ˆˆ ˆe e

D A D A D AH h V        , (1.48a) 

                       
 11 1

* * * *
ˆ e e h

D A D A DA DA D Ah V S V S    , (1.48b) 

     
     21 1

* * * *
ˆ 2

e

D A D D A A D A D AV            , (1.48c) 

and for the triplet case  

                       
   1 23 3 3 3 3 3ˆˆ ˆe e

D A D A D AH h V        , (1.49a) 

                       
 13 3

* * * *
ˆ e e h

D A D A DA DA D Ah V S V S    , (1.49b) 

                       
   23 3

* *
ˆ e

D A D A D AV        , (1.49c) 

where 
* *

e

D AV  is the ET coupling matrix element between excited D ( *D ) and A ( *A ) 

orbitals and h

DAV  is the corresponding HT coupling matrix element between ground D ( D ) 

and A ( A ) orbitals. * *D AS  and DAS  are the overlap matrix elements between the LUMO 

and HOMO orbitals, respectively. The two electron integrals  
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         3 3 1

* * 1 2 1 * 1 12 2 * 2D D A A D D A Ak d r d r r r r r r         , (1.50a) 

         3 3 1

* * 1 2 * 1 * 1 12 2 2D A D A D A D Ak d r d r r r r r r         , (1.50b) 

( 2

04k e  ) are Coulombic matrix elements. The first two-electron integral 

 * *D D A A     eq. (1.50a) is the Coulomb integral that describes the classical Coulomb 

repulsion interactions between electronic charge densities localized at D and A, 

respectively. The second two-electron integral  * *D A D A     eq. (1.50b) is the 

exchange integral and does not have a simple classical interpretation. The    * 1 * 1D Ar r   

    2 2D Ar r   terms are the overlap densities between the LUMO (HOMO) D and A 

molecular orbitals. 

The one-electron contribution for both singlet (eq. (1.48b)) and triplet (eq. (1.49b)) cases 

are the same but the two-electron contributions are not. Comparing the two-electron 

contributions for the singlet (eq. (1.48c)) and for the triplet (eq. (1.49c)) cases we can see 

that the Coulomb contribution (eq. (1.50a)) is absent for the triplet case. The Coulomb 

interaction in eq. (1.50a) of the singlet case is the dominant contribution which is 

characteristic of Förster energy transfer mechanism for singlet states. In the triplet case 

only the exchange contribution eq. (1.50b) is present and this is the Dexter energy transfer 

historically associated with the EnT coupling of the Dexter mechanism. 

 

1.2.2 Coulomb and Exchange Distance Dependencies  

In the previous section we derived the Hamiltonian matrix elements between singlet and 

triplet D and A excitons. We now consider only the two-electron contributions, namely the 

Coulomb and exchange integrals (eqs. (1.50a), (1.50b)), in order to derive their distance 

dependencies of the Förster and Dexter EnT mechanisms, respectively. The one-electron 

contributions eqs. (1.48b) and (1.49b), common to both singlet and triplet cases, 

demonstrate an exponential D-A distance ( DAR ) decay behavior and are well described by 

tunneling matrix elements of the form in eq. (1.33).  

Let’s first consider the  * *D D A A     present only in the singlet case (eq. (1.48c)). This 

term can be written as  
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     3 3 1

* * 1 2 * 1 12 * 2

0

1

4
D D A A DD AAd r d r r r r     



  , (1.51) 

where      * 1 1 * 1DD D Dr e r r     and      * 2 2 * 2AA A Ar e r r     are called D and A 

transition charge densities and 12 2 1r r r  . We further assume that the spatial extent 

(similar to the molecular sizes) of the *DD  and *AA  is much smaller than the D-A 

separation.  Under these assumptions we may expand the Coulomb interaction eq. (1.51) in 

a multipole series with respect to the center of mass displacements 
1D Dr r R   , 

2A Ar r R    where 
DR  and 

AR  are the center of masses of the two molecules. Thus, we 

express 12 A DA Dr r R r     where Dr , A DAr R  ( DA A DR R R   is the center of 

mass D-A distance).  We further define the D and A transition dipole moments matrix 

elements as 

   3 3

* 1 * 1 * 2 * 2,DD DD D AA AA Ad r r r d r r r        . (1.52) 

Performing initially a Taylor expansion for 1D DAr R  the 1

12r  term becomes  

 
3

12

1 1 1 A DA

D

A DA D A DA A DA

r R
r

r r R r r R r R




   


   

   
. (1.53) 

Subsequently, we perform Taylor expansions for 1A DAr R  on the components of         

eq. (1.53) to get 

3

1 1 DA A

A DA DA DA

R r

r R R R






 


, (1.54a) 

    
3 3 3 5

3
A DA DA D DA ADA D D A

D

A DA DA DA DA

r R R r R rR r r r
r

r R R R R

    




   
   


, (1.54b) 

and the respective  1

12r  term becomes  

  
3 3 3 5

12

1 1
3

DA D DA ADA A DA D D A

DA DA DA DA DA

R r R rR r R r r r

r R R R R R

        
     . (1.55) PANAYIO
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Substituting eq. (1.55) into eq. (1.51) we see that the first three terms of eq. (1.55) do not 

contribute to the overall Coulomb interaction, since the molecular orbitals are orthonormal 

to each other, i.e.,  3

1 * 1 0DDd r r   and  3

2 * 2 0AAd r r  . This finally yields the D-A 

Coulomb interaction within the multipole expansion 

 
  * * * *

* * 3

0

ˆ ˆ31

4

DD AA DD DA AA DA

D D A A

DA

R R

R

   
   



    
 
 
 

, (1.56) 

where ˆ
DAR  is a unit vector in the direction from D to A.  

We have thus shown that the Coulomb  * *D D A A     term eq. (1.56) is approximated 

by the dipole-dipole interaction, which is the crucial interaction among neutral D and A 

molecules. The dipole-dipole interaction decays as 3

DAR  and is directly depended on the 

orientation of the individual D and A transition dipole moments. 

The exchange matrix element  * *D A D A     eq. (1.50b) is a short range interaction and 

only contributes to the EnT coupling for short D-A separations, due to its strong 

dependence on the degree of overlap between the D and A molecular orbitals (see Fig. 

1.8). The exchange interaction eq. (1.50b) may be rewritten as  

     3 3 1

* * 1 2 * * 1 12 2

0

1

4

e h

D A D A D A DAd r d r S r r S r   


  , (1.57) 

where      * * * *1 1 1

e

D A D A
S r r r   and      2 2 2

h

DA D AS r r r   are overlap densities (Fig. 

1.8) between the LUMO (HOMO) D and A molecular orbitals. As the D-A distance 

increases the magnitude of the orbital overlap is approximately exponentially decreased, 

i.e., * *
el DARe

D A
S e


  and hole DARh

DAS e


 , where el , hole  are electron and hole tunneling 

decay constants. Due to this orbital overlap reduction, as a function of D-A distance, the 

exchange interaction contribution for large D-A separations is negligible and therefore can 

be ignored, compared to the Coulomb  * *D D A A     term in eq. (1.48c) for the case of 

singlet EnT. PANAYIO
TIS ANTONIO
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Figure 1.8: Electron and hole donor and acceptor molecular orbitals overlap densities (red areas), 

* *

e

D A
S  and 

h

DAS , respectively. The orbital overlap densities are approximately exponentially 

decreased as D-A separation DAR  increases. 

 

Having now demonstrated the Coulomb and exchange two-electron contribution distance 

dependencies, we briefly discuss the effect of these two-electron terms in the D-to-A EnT 

process. Let’s consider, EnT between D and A segments for the four-electron D-A exciton 

system (Fig. 1.7) of Section 1.2.1. Assume, initially that D fragment is excited (Fig. 1.7b). 

EnT from D-to-A may take place either with both (Coulomb and exchange) or only with 

one (exchange) two-electron interaction, depending on if we are dealing with singlet or 

triplet cases, respectively (see eqs. (1.48) and (1.49)).  

 

1.2.3 Förster Energy Transfer Mechanism 

The Förster EnT mechanism refers to singlet exciton transfer (Fig. 1.9) between D and A 

molecules in which the distance between D and A molecules is large enough, relative to 

their molecular sizes (thus physical contact between D and A is not a requirement for the 

EnT process to occur).  

Förster’s theory identifies the most dominant term in eqs. (1.48a)-(1.48c) to be the 

 * *2 D D A A     term in eq. (1.48c) which is approximated as a dipole-dipole 

interaction, i.e., 

D
A

*D


*A


DAR

Energy 

Distance 

* *

e

D AS

h

DAS
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  * * * *1 1

* * 3

0

ˆ ˆ. 3 . .1ˆ 2
4

DD AA DD DA AA DAForster

D A D D A A S

DA

R R
H V

R

   
   




      (1.58) 

where *DD  and *AA  are transition dipole moments of the D and A molecules, DAR  is the 

D to A distance and ˆ
DAR  is a unit vector in the direction from D to A. Through the dipole-

dipole interaction, the energy excitation initially localized at the D molecule is transferred 

to the A molecule or similar the initial singlet exciton state localized at D is transferred      

to A. 

 
Figure 1.9: Schematic representation of Förster EnT. (a) Initially, the D molecule is excited and 

can be described by a singlet exciton state. Dipole-dipole Coulomb interactions trigger EnT from D 

to A. (b) The energy excitation initially localized at the D molecule is transferred to the A 

molecule. D molecule is now in its ground state and the A in its excited state which is described by 

a singlet exciton state.  

 

The Förster EnT coupling eq. (1.58) 3

DAR  distance dependence enables EnT to occur 

efficiently for large D-A separations if appropriate conditions, such as good spectral 

overlap (see the following) and desirable EnT enhanced orientation of the individual 

transition dipole moments *DD  and *AA  are fulfilled.  The Förster mechanism ignores the 

one-electron (eq. (1.48b)) and exchange (( * * |D A D A    ) in eq. (1.48c)) terms because 

they decay exponentially with distance DAR  and thus show a weaker dependence than 3

DAR . 
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1.2.4 Dexter Energy Transfer Mechanism 

The Dexter EnT mechanism describes triplet to triplet EnT via two-electron exchange 

interactions between D and A molecules. The Dexter EnT mechanism is a short range 

mechanism and requires either physical contact between D and A molecules, so that direct 

overlap of D and A orbitals to be significant, or D and A molecules to be connected 

through a bond or other molecules that will act as an intermediate bridge for D-to-A EnT 

process to occur.  

Figure 1.10 illustrates schematically triplet to triplet D-to-A EnT. Initially, D molecule is 

in its excited electronic state, described by a triplet exciton state (see eq. (1.47a)). The D-

to-A EnT may be viewed as a double particle transfer process initiated through the 

exchange interaction among the particles. The exchange interaction  * *D A D A     eq. 

(1.50b) enables simultaneously ET from D LUMO  *D  to A LUMO  *A  and HT 

from D HOMO  D to A HOMO  A . In that way, via double particle exchange 

between the HOMO and LUMO orbitals of the D and A molecules the energy excitation 

initially localized at the D molecule is transferred to the A molecule or similar the initial 

triplet exciton state localized at D is transferred to A.  

 

 
Figure 1.10: Schematic representation of Dexter EnT. a) Initially, the excited D molecule is 

described by a triplet exciton state. Exchange interactions enable EnT from D to A. b) The energy 

excitation initially localized at the D molecule is transferred to the A molecule. D molecule is now 

in its ground state and the A in its excited state which is described by a triplet exciton state.  

 

The Dexter triplet-triplet EnT coupling is commonly given by an approximate expression 

[43], which in addition to the two-electron exchange contribution also takes into account 

one particle (ET and HT) contributions  

(a) (b) 

D
 

A 
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13 3

* *3 3

* *

ˆ

ˆ 2

e
D A

e h

D A DADexter

D A tr D A D A

CT

h

V V
H V

E
   

 


    


, 

(1.59) 

where  * *D A D A     is the two-electron exchange integral given by eq. (1.50b), 

* *
el DARe

D AV e


  is the ET coupling matrix element between excited D and A orbitals and 

hole DARh

DAV e


  is the corresponding HT coupling matrix element between ground D and A 

orbitals. CTE  is the energy difference between the triplet D-A charge-transfer 

configuration, in which a hole occupies the ground D (A) orbital and an electron the 

excited A (D) orbital, with locally triplet excited D configuration, in which both electron 

and hole occupies D ground and excited orbitals. Historically only the exchange term was 

considered for the Dexter EnT mechanism. However, the one-electron term can be of equal 

magnitude to the exchange term and it is often included when discussing the Dexter 

interaction. 

Since both of the single particle electronic coupling matrix elements (
* *

e

D AV , h

DAV ) and the 

exchange interaction, demonstrate exponentially D-A distance dependence (i.e., eq. 

(1.33)), the overall Dexter triplet-triplet EnT coupling approximately falls off 

exponentially with D-A distance [19] and eq. (1.59) suggest a distance decay constant 

approximately equal to the sum of the electron and hole decay constants [16]. Furthermore, 

the exponential sensitivity of the Dexter coupling to distance makes triplet-triplet EnT 

particularly sensitive to molecular structure and energetics. We show that eq. (1.59) does 

not provide a complete description of the triplet EnT coupling for bridge-mediated EnT 

and we suggest generalizations of the equations (Chapter 5). 

 

1.2.5 Donor to Acceptor Energy Transfer Rate 

In the nonadiabatic limit (weak electronic coupling) EnT can be described by the golden-

rule approximation, similar to ET (eqs. (1.19) and (1.31)). The D-to-A EnT (golden-rule) 

rate expression is 

22
DA DA FCk V


 , (1.60) PANAYIO
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where DAV  is the D-A electronic coupling eq. (1.48) for singlet excitons and eq. (1.49) for 

triplet excitons. FC  is an appropriate Franck-Condon factor for D and A exciton energies 

[1,2,35].   

The Franck-Condon factor FC  can be formulated in a way similar to ET, in its classical or 

quantum mechanical representation (eqs. (1.20) and (1.32)). The most important distinct 

feature of EnT in comparison to ET version of Franck-Condon factor (e.g., [44]), is that in 

EnT reactions the Franck-Condon factor can be approximated by the spectral overlap (Fig. 

1.11) of donor emission (fluorescence) *( )D D
F


 spectrum with acceptor absorption *( )A A

A


 

spectrum 

   * *( ) ( )FC D D A A
dE F E A E



 
   (1.61) 

with (see Fig. 1.12), 

   * * * *

*

2

( )

1
4

4
BD D D D D D D D

B D D

F E exp E E k T
k T

 
 

    
  

, (1.62a) 

   * * * *

*

2

( )

1
4

4
BA A AA AA AA

B AA

A E exp E E k T
k T

 
 

    
  

. (1.62b) 

 

 

 

 

Figure 1.11: Schematic description of EnT (top) showing de-excitation (fluorescence) of the D to 

the ground state which is accompanied by excitation (absorption) of the A to the excited state. Both 

processes demonstrate transitions to multiple vibrational levels. Energy conservation is ensured by 

spectral overlap of D emission and A absorption (bottom).  

 

Donor Emission Acceptor Absorption 

Energy 

Transfer 
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Figure 1.12: Potential energy surfaces when the D and A exciton states are singlets. (a) Donor 

emission (fluorescence) and (b) acceptor absorption. The reorganization energies and driving forces 

included in D emission eq. (1.62a) and A absorption eq. (1.62b) spectrum are shown. 

 

The above equations correlate experimental observables, such as emission and absorption 

spectra, to complicated theoretical descriptions of nuclear overlap factors and nuclear 

reorganization energies included in the Franck-Condon factor.  

In Chapter 5 we study bridge-mediated Dexter triplet energy transfer systems and further 

develop a general theoretical formulation to account for bridge-mediated exciton pathways 

contributions ignored by earlier theories (e.g., eq. (1.59)). 
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Chapter 2: Theoretical Methodologies 

 

 

Theoretical models with isolated systems that do not interact with the surrounding 

environment (thermal bath) are oversimplified models. A realistic description of molecular 

systems demands to take into account the interactions between the quantum system of 

interest with the surrounding environment. These interactions results in energy exchange 

between the system and its environment, which is frequently termed as relaxation or 

energy dissipation in general. A typical situation encountered in the condensed phase is a 

molecular system interacting with its surrounding environment (solvent). The system is 

experimentally investigated with spectroscopic techniques (e.g., pump-probe experiments, 

see Chapter 4) by means of external electromagnetic fields. Experimentalists seek to 

extract detail information from the experimentally obtained spectra, about the dynamics of 

the molecular system of interest under the influence of its solvent-environment. The 

corresponding theoretical description of these condensed phase experiments is the density 

matrix formalism, which will be discussed in detail in this Chapter (Section 2.1), 

specifically its reduced description (Section 2.2) that focuses on the molecular system 

degrees of freedom and traces over the respective environmental degrees of freedom.  In 

the remaining of this Chapter we present the Lindblad form of the master equation that 

describes the time evolution of the reduced density matrix of a molecular quantum system 

coupled to a thermal bath. 
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2.1 Density Operator 

Consider a quantum system characterized by a Hamiltonian operator Ĥ , and a time 

dependent wavefunction ( )t  which represents the quantum system’s state. Further 

consider a dynamical variable ,A  described by an operator ˆ ,A  whose expectation value at 

any time t  is given by the matrix element 

ˆ ˆ( ) ( ) ( )A t t A t  . (2.1) 

The wavefunction ( )t , using an arbitrary orthonormal basis set  n , can be expanded 

as 

( ) ( )n

n

t n c t  , (2.2a) 

and the respective Hermitian conjugate of the wavefunction will be 

*( ) ( )m

m

t c t m  . (2.2b) 

Substituting ( )t  and ( )t  in the expectation value of operator Â  (eq. (2.1)) we get 

* *

, ,

ˆ ˆ( ) ( ) ( ) ( ) ( )n m n m mn

n m n m

A t c t c t m A n c t c t A   . (2.3) 

We can now introduce the density operator for the state ( )t [1,2] which is defined as the 

outer product of the wavefunction and its conjugate 

ˆ( ) ( ) ( )t t t   . (2.4) 

When the density operator is expanded in the basis set  n  we get 

*

, ,

ˆ( ) ( ) ( ) ( )n m nm

n m n m

t c t c t n m t n m     (2.5) 

where, *( ) ( ) ( )nm n mt c t c t   is the density operator matrix element. The expectation value of 

operator Â  (eq. (2.3)) as a function of the density operator will be 
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,

ˆ ˆ ˆ( ) ( ) ( )mn nm

n m

A t A t Tr A t   
  , (2.6) 

where  Tr  refers to tracing (summing) over the diagonal elements of the matrix. 

Until this point we have considered an ensemble of identically prepared quantum systems 

all described by the same state (wavefunction) ( )t , the so-called pure state. In the same 

manner the quantum systems ensemble is said to be in a pure state or, equivalently, that we 

have a pure-state ensemble. Generally, most of the quantum systems are not in a pure state. 

Their statistical ensembles consist of different quantum-states ( )k t  with probabilities 

kP , i.e., the corresponding density operator is given by 

ˆ( ) ( ) ( )k k k

k

t P t t    (2.7) 

where, 0kP 
 
and normalized 1K

k

P  . 

When 0kP   for k k  and 1kP    then the system is in a pure state described by a single 

wavefunction 
k  . If however, 0kP   for different ( )k t , ˆ( ) ( ) ( )k k k

k

t P t t    

represents a system in a statistical mixture or a mixed ensemble (mixed state).  The 

expectation value of operator Â  for a mixed state is given by 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )k k k

k

A t P t A t Tr A t    
  , (2.8) 

where the density operator is given by eq. (2.7). 

 

2.1.1 Properties of the Density Operator 

In the following we will introduce some of the most important properties of the density 

operator. 

i. The density operator is always Hermitian 

†ˆ ˆ( ) ( )t t  . (2.9) 
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ii. The density operator diagonal elements are real and positive 

2

( ) 0nn k k k k k

k k

t P n n P n       . (2.10) 

The diagonal element nn  give the probability to find the system in the 

corresponding quantum state n  and for this reason, diagonal elements are 

referred to as populations. The off-diagonal elements  mn t , where n m  are 

complex numbers and most often contain time dependent phase factors that 

describe the evolution of coherent superposition and are referred to as coherences.  

iii. The normalization condition is 

 ˆ( ) 1Tr t  . (2.11) 

iv. For a pure state, 

2ˆ ( ) 1Tr t    , (2.12) 

whereas for mixed state 

2ˆ ( ) 1Tr t     (2.13) 

 

2.1.2 Time Evolution of the Density Operator 

The equation of motion for the density operator can be found from the time evolution of 

( )t  and the definition of density operator. For instance let’s consider the pure state, 

where ˆ( ) ( ) ( )t t t   . We get 

ˆ( )
( ) ( ) ( ) ( )

d t d d
t t t t

dt dt dt


   

   
    
   

. (2.14) 

Using the Scrödinger equation and its Hermitian conjugate 

ˆ( ) ( )
d i

t H t
dt
        ,      †ˆ( ) ( )

d i
t t H

dt
   (2.15) 

we get   

 † †ˆ( ) ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
d t i i i

H t t t t H H t t H
dt


           , (2.16) 
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and taking into account that the Hamiltonian is Hermitian, finally yields the quantum 

Liouville equation, also known as the Liouville - Von Neumann equation 

ˆ( ) ˆ ˆˆ ˆ, ( ) ( )
d t i i

H t L t
dt


     

 
. (2.17) 

L̂  is called Liouvillian superoperator, whose action on the density operator is given by the 

relationship 

ˆ ˆˆ ˆ( ) , ( )L t H t  
 

. (2.18) 

Generally, the Liouville - Von Neumann equation (eq. (2.17)) also holds for a mixed state, 

ˆ( ) ( ) ( )k k k

k

t P t t   . This applies because ˆ ( ) ( ) ( )k k kt t t    satisfies the 

Liouville - Von Neumann equation. 

 

2.1.3 Time Evolution of the Density Operator in Hilbert and Liouville space 

A state  t  evolves according to the time-dependent Scrödinger equation. For a time-

independent Hamiltonian      ˆexp 0t i H t   
 

, so that the time evolution for 

the density operator of a pure state will be 

     
 

   
 

 †

ˆ ˆ/ /

ˆ ˆ
ˆ 0

ˆ 0 0
H H

iHt iHt

U t U t

t t t e e



       
(2.19) 

where, 

 
ˆ /ˆ H iHtU t e , (2.20) 

is the time evolution operator in Hilbert space. Equation (2.19) is often written as a 

function of the Liouvillian superoperator 

 
 

 
ˆ /

ˆ

ˆ ˆ 0
L

iLt

U t

t e   
(2.21) 

where, 

 
ˆ /ˆ L iLtU t e , (2.22) 

is the time evolution superoperator in Liouville space which is defined as  
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ˆ ˆ ˆ/ / /ˆ ˆ0 0iLt iHt iHte e e   . (2.23) 

Equations (2.19) – (2.23) also holds for a mixed state, ˆ( ) ( ) ( )k k k

k

t P t t   . 

 

2.1.4 Liouville Space and Tetradic Notation 

The space in which the density operator is represented by a vector is called Liouville space. 

We now consider a two-level system Hamiltonian, composed by an unperturbed 

Hamiltonian 0Ĥ  and a perturbation V̂  

0ˆ ˆ ˆH H V  . (2.24) 

The eigenvectors of the unperturbed Hamiltonian 0Ĥ  are a , b  and the corresponding 

eigenvalues are aE , bE . We further assume that the total Hamiltonian in the unperturbed 

eigenvectors representation has the following form 

ˆ
a b ab baH E a a E b b V a b V b a    , (2.25) 

and the respective density operator will be 

ˆ ( ) ( ) ( ) ( )aa bb ab bat a a t b b t a b t b a        . (2.26) 

Equations (2.25) and (2.26) in matrix representation will take the form 

a ab

ba b

E V
H

V E

 
  
 

, (2.27) 

( ) ( )
( )

( ) ( )

aa ab

ba bb

t t
t

t t

 


 

 
  
 

. (2.28) 

We can further proceed and derive the time evolution of the density matrix (eq. (2.28)) 

using the Liouville equation, 
ˆ( ) ˆ ˆ, ( )

d t i
H t

dt


  

 
. This results in four coupled equations 

for the density matrix elements [2], PANAYIO
TIS ANTONIO

U



42 
 

 

 

   

   

,

,

,

.

aa ab ba ba ab

bb ba ab ab ba

ab a b ab ab bb aa

ba b a ba ba aa bb

i
V V

i
V V

i i
E E V

i i
E E V

  

  

   

   

  

  

    

    

 (2.29) 

We rewrite these equations in a matrix form in order to obtain the respective Liouville 

space representation of the Liouvillian superoperator L̂  and the equation

ˆ( ) ˆ ˆ( )
d t i

L t
dt


   in the unperturbed a , b  basis. In addition we rewrite the 2 2  

density matrix in Hilbert space (eq. (2.28)) as a vector with four components in Liouville 

space, 

 

 

 

 

 

( ) ( )
( )

( ) ( )

aa

aa ab bb

ba bb ab

ba

t

t t t
t t

t t t

t



  
 

  



 
 

         
  
 

. (2.30) 

Therefore, the above equations for the density matrix elements may be written as [2] 

 

 

0 0

0 0

0

0

ba abaa aa

ba abbb bb

ab ab a bab ab

ba ba b aba ba

L

V V

V Vd i

V V E Edt

V V E E



 

 

 

 

    
    

     
     
          

. 
(2.31) 

The representation of the Liouvillian superoperator in Liouville space is given by a 4 4

matrix 

 

 

0 0

0 0

0

0

ba ab

ba ab

ab ab a b

ba ba b a

V V

V V
L

V V E E

V V E E

 
 

 
  
    

. (2.32) 

This form is not limited to the current two-level system but is widely general. 
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2.1.5 N-level system in Hilbert space and its representation in Liouville space 

If we consider a N-level Hilbert space system characterized by a Hamiltonian Ĥ  and a 

complete basis set of functions  , ,...j k , the Liouville equation jk  matrix element will 

be 

     , , , 1
jk

jm mk jm mk
jk jk

m

d i i
H H H H j k m N

dt


                  . (2.33) 

The above equation may be rewritten as 

,

,

jk

jk mn mn

m n

d i
L

dt


    (2.34) 

where, 

*

,jk mn jm kn kn jmL H H   . (2.35) 

Expressing now the N N  density matrix as 2 1N   vector [2]   

 
 

 

jk

mn

t

t

t







 
 
 
 
 
 
 
 

, (2.36) 

we obtain the representation of 
ˆ( ) ˆ ˆ( )

d t i
L t

dt


   in Liouville space,  ,

d i
L

dt


 

 

where the 
2 2N N  Liouvillian superoperator matrix elements will be 

*

,jk mn jm kn kn jmL H H   . Since each element mn  is labeled by two indices, the matrix 

elements of L  are labeled by four indices (tetradic matrix representation of a 

superoperator). 

 

2.2 The Reduced Density Operator 

Most of the experiments in physics perform measurements over a system which is a small 

fraction of an infinitely larger system, that often describes the environment (thermal bath) 

and with which the system consistently interacts. The measurements provide detailed 

information about the dynamics of the system of interest under the influence of its 
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environment. The theoretical analog of these experimental measurements is the reduced 

description of the density operator that focuses on the system’s degrees of freedom and that 

traces over the respective environmental degrees of freedom. 

Let us denote with S  the quantum system of interest and with B  the surrounding bath that 

describes the environment (also a quantum system). The Hamiltonian that describes the 

total quantum system is [1-4]      

                                                     
0ˆ ˆ ˆ SBH H V  , (2.37a) 

0ˆ ˆ ˆS BH H H  , (2.37b) 

where the zeroth order Hamiltonian 
0Ĥ  describes uncoupled system and thermal bath, and 

ˆ SBV  is the system-bath interaction. We further denote as    ,s b  the orthonormal sets 

of eigenstates of ˆ SH  and ˆ BH , respectively. The density operator ̂  of the total system 

(system–bath) may be expressed in the sb s b  representation as 

, ,

, ,

ˆ ˆ,sb s b sb s b

s b s b

sb s b sb s b      

 

     . (2.38) 

The reduced description of the system S  will give a density operator 

, ,

,

ˆ ˆ,s s s s

s s

s s s s    



    (2.39) 

in the system space.  

Physical measurements of the system S  can be described by operators that solely act on 

system states 

,

,

ˆ S

s s

s s

A A s s



 . (2.40) 

The reduced density operator has the property that the average of any system operator ˆ SA    

is given by 

ˆ ˆ ˆˆ ˆS S S

S

s

A s A s Tr A   
  . (2.41) 

We can also obtain the same average from the total quantum system  

ˆ ˆ ˆ ˆˆ ˆ ˆS S S S

S B

sb sb s b

A Tr A sb A sb sb s b s b A sb  
 

       
    . (2.42) 
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Since, ˆ SA  is a system’s operator it satisfies 

, ,
ˆ S

s s b bs b A sb A  
    (2.43) 

then, 

 
,

ˆ ˆ ˆˆ ˆS S S

S B

s s b

A sb s b s A s Tr Tr A 


   
  . (2.44) 

Comparing eq. (2.41) with eq. (2.44) for the average value of the operator ˆ SA  we conclude 

that 

 ˆˆ
BTr  . (2.45) 

The time evolution of the density operator for the total system is 

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,S B SBd i i i i
H H H V

dt


               

       
. (2.46) 

To determine the corresponding differential equation that describes the time evolution of 

the reduced density operator of the system we trace over the bath degrees of freedom  BTr  

on both sides of  ˆd dt  (eq. 2.46). We observe that [1] 

ˆ ˆ ˆˆ ˆ ˆ, , ,S S S

B BTr H H Tr H        
     

  and   ˆ ˆ ˆ, , 0B

B b

b

Tr H E    
   , (2.47) 

this leads to: 

 
ˆ ˆ ˆ ˆˆ, ,S SB

B

d i i
H Tr V

dt


      

   
. (2.48) 

The differential equation for the time evolution of the reduced density operator differs 

from the corresponding differential equation for the total density operator and can be only 

solved approximately because it contains the calculation of BTr . Usually the eigenstates of 

the thermal bath are infinite in number and their exact form is unknown. 

 

2.3 The Operator-Sum Representation 

Suppose, that initially the system and the environment are completely uncorrelated and the 

respective total density matrix is given by a product state of the form 
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     ˆ ˆˆ0 0 0B    , (2.49a) 

                                                ˆ 0 0 0B

B B  , (2.49b) 

where    ˆ ˆ0 0B

STr      is the initial density matrix of the environment, assumed to be 

in a pure state. 

The time evolution of the density matrix is given by a time evolution operator  ˆ
SBU t  (eqs. 

(2.19), (2.20)), that acts both on the system and the environment 

        †ˆ ˆˆ ˆ 0 0 0SB B B SBt U t U t   . (2.50) 

To obtain the time evolution of the reduced density matrix of the system we perform a 

trace over the environmental degrees of freedom (e.g., eq. (2.45))  

          

     

     

†

†

†

ˆ ˆˆˆ ˆ 0 0 0

ˆ ˆˆ0 0 0

ˆ ˆˆ 0 ,

B b SB B B SB b

b SB B B SB b

t Tr t U t U t

U t U t

M t M t





 


    

  



    











 (2.51) 

where,  b  is an orthonormal basis set for the environment and the partial matrix 

elements    ˆ ˆ 0b SB BM t U t   are the Kraus operators [5-7] that act on system space. 

The Kraus operators describe the effect of the environment on the reduced density matrix 

of the system, as their definition contains information about the initial state of the 

environment and the combined system-environment dynamics. Further, Kraus operators 

satisfy the completeness property 

   †ˆ ˆ ˆM t M t I 


 . (2.52) 

The introduced operator-sum representation (or Kraus representation) [5-7] defines a 

dynamical quantum map ̂ . The dynamical map ̂  generates the time evolution of the 

reduced density matrix of the system. The map ̂  is usually termed as a superoperator, 

since it represents an operator that acts on some other operator. ̂  can be regarded as an 

input-output map that takes an input state  ˆ 0  to an output state  ˆ t . Equation (2.51) is 

the Kraus decomposition of this map for the density operator which, in terms of Kraus 

operators, is given by 
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           †ˆ ˆ ˆˆ ˆ ˆ0 0t M t M t t 


        . (2.53) 

Every set of Kraus operators (which are not unique) that satisfy the completeness condition 

(eq. (2.52)) can be realized by a map of eq. (2.53) form. A superoperator (or Kraus) map ̂  

must fulfill the following properties in order to efficiently describe a physical process:  

i. ̂  is a linear map on operators, e.g.,      ˆ ˆ ˆˆ ˆ ˆ ˆ
a b a ba b a b         . 

ii. It is trace preserving or decreasing, e.g.,    ˆ ˆ ˆTr Tr   
 

 for any state ̂ . 

iii. It preserves positivity and gives non-negative eigenvalues e.g.,  ˆˆ ˆ0 0.     

iv. ̂  is a completely positive map. Suppose, there is another system S   apart from 

the system S . Further, suppose that ˆ S  is a positive map for S  (i.e., property iii). 

The map ˆ S  is completely positive if ˆ ˆ
S SI   , acting on S S  is also positive    

( ˆSI   is the identity operator for S  ). 

Any map that satisfies the aforementioned properties is a Kraus map and corresponds to a 

physical process. 

 

2.3.1 Generalization of the Map’s Time Evolution  

We will try to generalize the dynamical map ̂  expression eq. (2.53), starting our 

discussion by propagating the total density matrix of eq. (2.50) forward in time. From time 

t  to t dt  

       †ˆ ˆˆ ˆ; ;SB SBt dt U t dt t t U t dt t     , (2.54) 

where  ˆ ;SBU t dt t  is the time evolution operator that evolves the total system from time 

t  to t dt . To first order in dt , 

   ˆˆ ˆ; 1SB

i
U t dt t H t dt   . (2.55) 

Substituting eq. (2.55) into eq. (2.54) and keeping only terms of order dt  gives 
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ˆˆ ˆ ˆ,

ˆ ˆ ˆˆ ˆ ˆ, , ,S B SB

i
t dt t H t t dt

i i
t H t t dt H t V t t dt

  

  

   
 

      
   

 (2.56) 

which can be described by a map of the form in eq. (2.53) that takes the system from time 

t  to t dt , 

       ˆˆˆ ˆ;Bt dt Tr t dt t dt t t              . (2.57) 

In terms of Kraus operators 

         †ˆ ˆ ˆˆ ˆ; ; ;t dt t t M t dt t t M t dt t 


         . (2.58) 

We will restrict our attention to master equations, that can be expressed under some 

approximations, as first order differential equations that are local in time, e.g.,  

     ˆˆ ˆ
d

t t t
dt
     , (2.59) 

where ˆ  is a superoperator or dynamical map that acts on  ˆ t . This equation is local in 

time, in the sense that the time evolution of ̂  at time t  depends only on ̂  evaluated 

exclusively at time t  and not from any previous times. In other words, we are interested in 

Markovian open system dynamics, in which the environment does not retain any history, 

neither keeps memory, of the earlier states of the system of interest. 

Let’s return to eqs. (2.57) to (2.59) and express them as 

           

     †

ˆˆˆ ˆ ˆ ˆ;

ˆ ˆˆ; ; ,

t dt t dt t t t t t dt

M t dt t t M t dt t 


   



           

  
 (2.60) 

where ˆ , the generator of dynamics that only depends on state ̂  at time t  and not on the 

whole previous history, is commonly called the Lindbladian. Equation (2.58) shows that ˆ  

can be expressed in terms of Kraus operators.  

We now need to find the explicit form of Kraus operators that give Markovian dynamics. 

There must be one Kraus operator that becomes the identity operator when 0dt  . We 

thus define this operator as 
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   0
ˆˆ ˆ;M t dt t I G t dt    , (2.61) 

where Î  is the identity operator and Ĝ  is an arbitrary operator that could depend on t . 

The Kraus decomposition of 0M̂   will be  

                † †

0 0
ˆ ˆˆ ˆˆ ˆ ˆ ˆ; ;M t dt t t M t dt t t G t t t G t dt           (2.62) 

(keeping only terms of order dt ). From eq. (2.60) we see that all other Kraus operators 

with 0   must be of the form 

   ˆˆ ;M t dt t t dt   , (2.63) 

since their Kraus decomposition 
†ˆ ˆˆM M   has to be proportional to dt , i.e., 

           † †ˆ ˆˆ ˆˆ ˆ; ;M t dt t t M t dt t t t t dt       . (2.64) 

Operator  ˆ t  is sometimes called the μth Lindblad operator. 

The overall map must be trace preserving, 
†ˆ ˆ ˆM M I 

 , and keeping only order dt  

terms we get  

       † †

1

ˆ ˆ ˆ ˆG t G t t t 


   . (2.65) 

Thus we can define the Ĝ  operator as 

       †

1

1ˆ ˆ ˆ ˆ
2

G t t t i A t 


   , (2.66) 

where Â  is an arbitrary operator. We see from eq. (2.56), after taking the trace over the 

bath degrees of freedom, that Â  is proportional to the system Hamiltonian, i.e.,  

   
1ˆ ˆ SA t H t  . (2.67) 

Therefore, the time evolution of the density operator eqs. (2.57) and (2.58) becomes PANAYIO
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†

† † †

ˆ ˆˆ ˆ; ;

ˆˆ ˆ,

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ,
2

S

t dt M t dt t t M t dt t

i
t H t t dt

t t t t t t t t t dt

 


     


 

 

  

   

  
 

 
   

 





 (2.68) 

and the respective time evolution of the differential equation of the reduced density 

operator of the system  ˆˆ
BTr   consistent with eq. (2.56) will be 

     

                  † † †

ˆˆ ˆ,

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ .
2

Sd i
t H t t

dt

t t t t t t t t t     


 

  

  
 

 
   

 


 (2.69) 

This is the Lindblad form of Master equation, and is the most general form for the density 

matrix differential equation that describes Markovian dynamics. 

 

2.4 Deriving the Master Equation from First Principles 

In this Section, we adopt the Born-Markov approximations and further derive a master 

equation expression that describes Markovian dynamics, e.g., first order differential 

equations that are local in time.  

 

2.4.1 Interaction Picture Description of the Density Operator 

Consider again the composite system-environment Hamiltonian of eq. (2.37a)  

0ˆ ˆ ˆ SBH H V  , (2.70) 

where 
0ˆ ˆ ˆS BH H H   (eq. (2.37b)) describes the system and thermal bath uncorrelated to 

each other, and ˆ
SBV  describes the interaction between them. The interaction representation 

for the density operator of the system and the bath is given by 

     
0 0ˆ ˆ/ /ˆ ˆ  

I iH t iH tt e t e   . (2.71) 

The equation of motion for the density matrix in the interaction representation is 
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           ˆˆ ˆ,
I SB I Id i

t V t t
dt
   

 
 (2.72) 

where, 

     
0 0ˆ ˆ/ /ˆ ˆ  

SB I iH t SB iH tV t e V t e . (2.73) 

The respective reduced density matrices in the interaction picture, for the system and the 

thermal bath can be defined as 

       ˆˆ I I

Bt Tr t  
 

     ,            ˆ ˆ=
B I I

St Tr t  
 

. (2.74) 

 

2.4.2 Iterative Solution by Integration  

Integrating now eq. (2.72) we obtain 

               
0

ˆˆ ˆ ˆ0 ,

t
I I SB I Ii

t dt V t t      
  . (2.75) 

Substituting eq. (2.75) for 
   ˆ I

t  in the right-hand side of eq. (2.72) gives 

                   

                   

0

2

0

ˆ ˆˆ ˆ ˆ, 0 ,

1ˆ ˆ ˆˆ ˆ, 0 , , .

t
I SB I I SB I I

t
SB I I SB I SB I I

d i i
t V t dt V t t

dt

i
V t dt V t V t t

  

 

  
        

   

        
    





 (2.76) 

Tracing over the bath degrees of freedom  BTr  in eq. (2.76) we derive the reduced density 

matrix of the system 

            
            2

0

ˆ ˆˆ , 0

1 ˆ ˆ ˆ, , .

I SB I I

B

t
SB I SB I I

B

d i
t Tr V t

dt

dt Tr V t V t t

 



  
 

    
  

 (2.77) 

Until this point of the discussion we did not adopt any approximation and eq. (2.77) is an 

exact description of the time evolution of the system’s reduced density operator. In the 

forthcoming considerations we will briefly describe the successive approximations 

implemented in eq. (2.77) to derive the Lindblad form of the Master equation. 
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2.4.3 Born-Markov Approximation 

The Born approximation states that the system-bath coupling ˆ SBV  is a sufficiently weak 

interaction, such that the influence of the system on the bath is negligible for a large bath 

(large compared to the size of the system) [7,8]. Within the Born approximation we can 

treat the bath density matrix as time-independent     B I Bt   and express the total 

density operator of the (system-bath) system as a product state for all times 

       ˆ ˆI I Bt t    . (2.78) 

We can further express the total system-bath density operator as a function of two 

contributions 

           ˆ ˆˆI I corr IBt t t      . (2.79) 

The first term in the right-hand site of eq. (2.79) is the total density operator in the absence 

of system-bath correlations. The second term describes the influence of the correlations 

among the dynamics of the system and the dynamics of the bath in the time evolution of 

the total density operator. We define c  to be the time after which the correlations between 

system and bath disappear or, in other words, the characteristic timescale in which the 

thermal-bath loses the information (energy) obtained from the system. We further assume 

that c  is extremely small compared to the propagation time  t , such that the 

environment has no memory about the earlier states of the interacting system, defining this 

way a Markovian process.   

Due to weak system-bath interaction for a large environment (Born approximation) and 

because c t  , the correlations contributions to the time evolution of the density matrix 

are negligible. Therefore, we can safely assume the absence of system-bath correlations at 

initial times and that the total density operator is well described by a product state of eq. 

(2.78) form. The initial density matrix can be written as        ˆ ˆ0 0
I I B    , and the 

commutator of eq. (2.77), without loss of generality, can be assumed to be zero, i.e., 

       ˆ ˆ, 0 0
SB I I

V t   
 

. (2.80) 

Substituting eqs. (2.78) and (2.80) into eq. (2.77) the reduced density matrix of the system 

becomes 
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                2

0

1 ˆ ˆˆ ˆ, ,

t
I SB I SB I I B

B

d
t dt Tr V t V t t

dt
       

   . (2.81) 

This is an integro-differential equation since the differential change of the system reduced 

density operator 
 ˆ I

  at time t , depends on an integral of 
 ˆ I

  over all previous times 

.t t  This can be further simplified using the Markov approximation, which transforms   

eq. (2.81) into a time-local differential equation. 

We first assume slow variations of the density matrix with respect to the propagation time 

 t  and replace 
   ˆ I

t   in the right-hand site of eq. (2.81) by the density matrix at the 

present time 
       ˆ ˆI I

t t     

                2

0

1 ˆ ˆˆ ˆ, ,

t
I SB I SB I I B

B

d
t dt Tr V t V t t

dt
      

   . (2.82) 

The above substitution         ˆ ˆI I
t t    implies that we assume that the propagation 

time t  is too small relative to the characteristic time of evolution of the total density 

operator. Since the dynamics of the total density operator is determined primarily by the 

thermal-bath, the characteristic time of evolution of the density operator is expressed as 

Bt . Consequently we assume that Bt t    and equivalently that the system-bath 

interaction ˆ
SBV  is too weak.  

In contrast to eq. (2.81), eq. (2.82) is the time-local Born-Markov master equation for the 

reduced density matrix of the system, described by a differential equation of the form of 

eq. (2.59), i.e., 

           ˆˆ ˆI I Id
t t t

dt
  

 
, (2.83) 

that determines the time evolution of 
 ˆ I

  at time t  exclusively by terms of 
 ˆ I

  evaluated 

at time t  and not from earlier times. 
 ˆ I

 is a superoperator or dynamical map that acts on 

   ˆ I
t . The most general form of 

 ˆ I
, consistent with a completely positive and trace 

preserving map is the Lindblad form (eq. 2.69). The time-local Born-Markov master 

equation for the reduced density matrix in the interaction representation (eqs. (2.82) and 

(2.83)), when transformed to the Schrödinger picture must be consistent with eq. (2.69), 

i.e., 
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                  † † †

ˆˆ ˆ,

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ .
2

Sd i
t H t t

dt

t t t t t t t t t     


 

  

  
 

 
   

 


 (2.84) 

This is the Lindblad form of master equation, and it is the most general form for the 

density matrix differential equation that describes Markovian dynamics.  

Equation (2.84) can be written as  

         ˆ ˆˆ ˆ ˆcoh dissd
i t L t t L t t

dt
    , (2.85) 

where        ˆ ˆˆ ˆ,coh SL t t H t t  
 

 is the coherent part and    ˆ ˆdissL t t  is the dissipative 

part of the Liouvilian for the system,  

                      † † †1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2

dissL t t i t t t t t t t t t     


   
 

   
 

 . (2.86) 

The above term contains dissipation effects between the system of interest and its 

environment, such as population relaxation decay rates between different states of the 

system. Further, it often contains decay rates that do not involve any energy exchange 

between the system and its environment, e.g., pure dephasing rates associated with relative 

phase decay between the system’s states, describing fluctuations in the energy gap between 

system’s states due to their coupling to the bath (see following Section).  

 

2.4.4 Lindblad Forms of the Master Equation in Liouville Space 

Consider a two-level system Hamiltonian 

ˆ S

a b ab baH E a a E b b V a b V b a    , (2.87) 

where a , b  are the eigenstates and aE , bE  are the eigenvalues of the unperturbed 

Hamiltonian, respectively. abV , baV  are external perturbations that directly couple 

eigenstates a  and b . 

Expressing eq. (2.85) using Liouville space we get  
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, , , ,

, , , ,

, , , ,

, , , ,

aa aa aa bb aa ab aa baaa aa

bb aa bb bb bb ab bb babb bb

ab aa ab bb ab ab ab baab ab

ba aa ba bb ba ab ba baba ba

d i
L

dt

L L L L

L L L Ld i

L L L Ldt

L L L L




 

 

 

 



    
    
     
    
     

    

, 
(2.88) 

where L  is the matrix representation of the total Liouvilian composed by the coherent and 

the dissipative parts (eqs. (2.85) and (2.86)) 

ˆ ˆ ˆcoh dissL L L  . (2.89) 

The matrix representation of the coherent part cohL  corresponds to the real part of the     

total Liouvilian and its representation in terms of the system’s a , b  states has the form     

(eq. (2.32)) 

 

 

0 0

0 0

0

0

ba ab

ba abcoh

ab ab a b

ba ba b a

V V

V V
L

V V E E

V V E E

 
 

 
  
    

, (2.90) 

which is also given by eq. (2.35)  

*

,

coh S S

jk mn jm kn kn jmL H H   . (2.91) 

The second part of the total Liouvilian eq. (2.89), the dissipative part  ˆdissL , is often taken 

to consist of two components, the population relaxation  r̂elL  and the pure dephasing 

 ˆpdL  components 

ˆ ˆ ˆdiss rel pdL L L  . (2.92) 

As discussed previously, the dissipative Liouvilian (both population relaxation and pure 

dephasing parts), for closed quantum systems with respect to energy (population) exchange 

with the surrounding environment (thermal bath) must have the Lindblad form that 

preserve the total probability  aaa
t . Thus, the population relaxation part is often taken 

to be 
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           ˆ ˆ ˆrel rel rel

a bL L L  , (2.93a) 

      
† † †1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ , ,

2

rel rel rel rel rel rel rel

k k k k k k kL i k a b   
 

    
 

, (2.93b) 

           ˆ ˆ,rel rel rel rel

a a b b b ab a a b     , (2.93c) 

where ˆrel

kL  are the population relaxation Liouvilians and r̂el

k  are the respective population 

relaxation Lindblad operators. The population relaxation Liouvilians in the matrix 

representation is 

0 0 0 0 0 0

0 0 0 0 0 0

1 1,0 0 0 0 0 0
2 2

1 1
0 0 0 0 0 0

2 2

a b b a

a b b a

rel rel

a b b a

rel rel

a b b a

rel rel
rel rel

a b

rel rel

L i L i
 

 

 

 

    
   
    

   
       

   
   

      
   

. (2.94) 

The pure dephasing part is usually of the form 

      
† † †1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

2

b
pd pd pd pd pd pd pd

k k k k k k

k a

L i   


 
   

 
 , (2.95a) 

                 ,
ˆ ; ,pd pd

k a b k k k a b   , (2.95b) 

where ˆpd

k  are the pure dephasing Lindblad operators.  The pure dephasing Liouvilian in 

matrix representation is  

,

,

0 0 0 0

0 0 0 0

0 0 0

0 0 0

a b

a b

pd
pd

pd

L i

 
 
 

  
 
 
 

. (2.96) 

The total Liouvilian composed by the coherent and the dissipative part eq. (2.89), becomes 

   

   

,

,

1
.0

2

1
0

2

a b b a a b

a b b a a b

relax relax

a b b a ba ab

relax relax

a b b a ba ab

relax relax pure

ab ab a b

relax relax pure

ba ba b a

i i V V

i i V V

L V V E E i

V V E E i
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Equation (2.97) shows that the perturbation directly couples populations to coherences but 

the coherences are not directly coupled to each other, demonstrating an exponential decay 

of the off-diagonal elements of the reduced density matrix over time 

     
,

/2
purerelax relax

a b b a a ba b
ti E E t

ab t e e  
         , (2.98a) 

     
,

/2
purerelax relax

a b b a a bb a
ti E E t

ba t e e  
         . (2.98b) 

For open quantum systems with respect to population exchange with the environment, the 

total probability is not conserved and the population relaxation Liouvilians are replaced by 

0 0 0 00 0 0

0 0 00 0 0 0

11 , 0 0 00 0 0
22

11
0 0 00 0 0

22

b aa b

b aa b

rel

a b

rel

b a

rel rel relrel
a b

relrel

L i L i








   
   

   
   

       
   
   

     
  

. (2.99) 

In comparison to eq. (2.94), the positive population relaxation rates are eliminated, so that 

energy (population) exchange can occur between the system and the environment. 
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Chapter 3: Computational Methodologies 

 

 

The major aim of most approaches of quantum-chemical computational methods is to 

determine molecular electronic and vibrational structure. The leading approximation used 

in most methods is the Born-Oppenheimer approximation discussed in Section 1.1.2. Due 

to the complex and relatively large molecular structures, electronic and vibrational 

structure computations are routinely solved using existing quantum chemistry computer 

programs. In this Chapter I give a brief description of the basic concepts of computational 

techniques that are used in the following Chapters. I mainly performed ab initio electronic 

structure calculations using the ADF and the Gaussian 09 package programs. The Latin 

term ab initio means “from the beginning” and describes computational methods that are 

derived from exact theoretical quantum mechanical principles, not relying on empirical or 

experimental parameters. The basic idea is that the Schrödinger equation is solved using 

approximate electronic wavefunctions, with only input the values of fundamental constants 

and the atomic numbers of the nuclei. 
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3.1 Hartree-Fock Theory 

The Hartree-Fock (HF) method is conceptually the starting point for a variety of electronic 

structure calculations [1-4]. The key approximation of HF method is to model the elN  

electron ground state wave function 0  as a single Slater determinant [5], which is 

approximated as an antisymmetrized product of elN  orthonormal spin orbitals  x , each 

a product of a spatial orbital  r  and a spin function, one corresponding to spin up 

    and the other to spin down     

     

     

     

1 1 1

2 2 2

0

1

!

e e e

i j k

i j k

el

i N j N k N

x x x

x x x

N

x x x

  

  

  

  . (3.1) 

In the equation above ix  indicates both space and spin coordinates and the factor  
1 2

!elN


 

is a normalization factor. The above Slater determinant consists of elN  spin orbitals  x  

occupied by elN  electrons, but it does not explicitly define which electron occupies any of 

the individual spatial orbitals. Most importantly, the wavefunction is antisymmetric with 

respect to an interchange of any two electrons coordinates and further fulfills the Pauli 

Exclusion Principle.  

Within the Born-Oppenheimer approximation the molecular Hamiltonian is given (eq. 1.6) 

by 

                                               ˆ ˆ ˆBO el

nuc nucH H V   , (3.2a) 

ˆ ˆ ˆ ˆel

el el nuc el elH T V V    . (3.2b) 

The essence of the HF method is that the electron-electron Coulomb repulsion interactions 

ˆ
el elV   are treated in an “average” way, such that each individual electron is considered to be 

embedded in the average electrostatic field of the nuclei and the remaining 1elN   

electrons [1,2]. Further, the nuclear-nuclear Coulomb repulsion interactions ˆ
nuc nucV   are 

considered constant and initially they are ignored (but added at the end of the calculation in 

order to compute Born-Oppenheimer energies, see Chapter 1). 
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The computational methodology of the HF method is based on the variational principle. 

The principle states that the best wave function of the form in eq. (3.1) is the one that gives 

the lowest possible expectation value for the ground state energy 0E   

0 0 0
ˆ elE H     , (3.3) 

(which is always greater or equal to the true ground state energy   of a given 

Hamiltonian). As a result, the variational principle obtains an upper bound to the true 

ground state energy. This minimization/optimization process of the energy 0E  with respect 

to variations of spin orbitals, leads to the Hartree-Fock equation [1,2]    

     1 1 1
ˆ

i i if x x x   , (3.4) 

where i is the energy of spin orbital i  and f̂  is the Fock operator. f̂  is an effective 

one-electron operator, defined as the sum of the core-Hamiltonian ˆ cH , the Coulomb 

operator Ĵ , and the exchange operator K̂ , i.e., 

       1 1 1 1
ˆ ˆ ˆ ˆc

a a

a

f x H x J x K x   
  . (3.5) 

The sum in eq. (3.5) is over the occupied orbitals. The core-Hamiltonian  1
ˆ cH x  of a 

single-electron, e.g., chosen to be electron one  1x , consists of the electron kinetic energy 

operator and the corresponding attractive Coulomb interaction between the electron and 

the nuclei 

     1 1 1
ˆ ˆ ˆc

el el nucH x T x V x  . (3.6) 

The Coulomb operator ˆ
aJ  acting on spin orbital i  represents the average potential that an 

electron in spin orbital i  at position 1x  experiences due to the charge distribution from an 

electron in spin orbital a . It is defined as 

         * 1

1 1 2 2 12 2 1
ˆ

a i a a iJ x x dx x r x x    
  . (3.7) 

The exchange operator ˆ
aK  acting on spin orbital i , arises from the antisymmetric nature 

of the determinantal wave function and does not have a simple classical interpretation like 

the Coulomb term. It is defined as  
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         * 1

1 1 2 2 12 2 1
ˆ

a i a i aK x x dx x r x x    
  . (3.8) 

In the following discussion we will briefly describe Roothan’s [6] method for solving 

computationally the HF equations. 

Roothan introduces a set of known spatial basis functions, which convert the complex HF 

equations into a problem that can be solved by standard matrix manipulation techniques. 

We will limit our discussion to the restricted closed-shell Hartree-Fock (RHF) method, 

because this is the method we used in our computations in Chapter 5.  The RHF method 

assumes that each spin orbital  x  for the elN  electron ground state wavefunction 
0

RHF  

is constrained to have the same spatial function  r  for     (spin up) and     (spin 

down) spin functions. In other words, every spatial orbital  r  is doubly occupied by 

electrons with opposite spins.  

A restricted set of elN  spin orbitals  i x  has the following form [1] 

 
   

   
, 1, , 2

j

i el

j

r
x j N

r

  


  


 


 (3.9) 

and the corresponding RHF elN  electron ground state wavefunction is 

0

1

!

RHF

elN
    

             

               

               

               

1 1 1 1 1 1 2 1 1 2 1 1

1 2 2 1 2 2 2 2 2 2 2 2

1 1 2 2

el el

el el

el el el el el el el el el el

N N

N N

N N N N N N N N N N

r r r r

r r r r

r r r r

           

           

           

. 

(3.10) 

 

In order to obtain the Roothan equations we need to convert the general spin orbital HF 

equation (eq. (3.4)) to a spatial orbital equation. For closed-shell systems with doubly 

occupied spatial orbitals, the HF equations for the individual spatial orbital wavefunctions 

are 

     1 1 1
ˆ

i i if r r r   . (3.11) 
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Similar to eq. (3.4) f̂  is the Fock operator, which is defined as the sum of the core-

Hamiltonian ˆ cH , the Coulomb operator Ĵ , and the exchange operator K̂ , 

                                    
2

1 1 1 1
ˆ ˆ ˆ ˆ2

elN
c

a a

a

f r H r J r K r   
  , (3.12a) 

                                  1 1 1
ˆ ˆ ˆc

el el nucH r T r V r  , (3.12b) 

         * 1

1 1 2 2 12 2 1
ˆ

a i a a iJ r r dr r r r r    
  , (3.12c) 

                                     * 1

1 1 2 2 12 2 1
ˆ

a i a i aK r r dr r r r r    
  . (3.12d) 

These equations are analogous to eqs. (3.4)–(3.8) for spin orbitals, with the only difference 

being the factor of two present for the Coulomb operator. Also, the sum in eq. (3.12a) is 

over the 2elN  occupied spatial orbitals   a r . 

As we have eliminated spin functions from the HF equations we can express molecular 

orbitals as a linear combination of atomic orbitals (LCAO-MO procedure) using known 

spatial basis functions, which describe atomic orbitals (localized on individual atoms). For 

a finite set of K  atomic orbital basis functions  r , ( 1, 2, , K  ) we express each 

unknown spatial molecular orbital wavefunction i  as a linear combination of these basis 

functions, i.e., 

1

, 1, 2, ,
K

i iC i K 


 


  , (3.13) 

where 
iC  are unknown expansion coefficients. Using now eq. (3.13) the problem of 

calculating the molecular orbitals has been transformed to the problem of computing the 

expansion coefficients 
iC .  Substituting eq. (3.13) to the HF equation (eq. (3.11)) gives  

     1 1 1
ˆ

i i if r C r C r   

 

    . (3.14) 

Multiplication of both sides of eq. (3.14) by  *

1r  and integration over all space, yields a 

matrix equation of the following form 

         * *

1 1 1 1 1 1 1
ˆ

i i iC dr r f r r C dr r r     

 

       . (3.15) 
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We can now define two matrices, the overlap matrix S  and the Fock matrix F  with 

elements 

                                               *

1 1 1S dr r r     , (3.16) 

     *

1 1 1 1
ˆF dr r f r r      (3.17) 

(both of them are K K  Hermitian matrices). With the above definitions of S  and F  eq. 

(3.15) becomes 

1 ,2 , ,i i iF C S C i K   
 

   . (3.18) 

These are the Roothan equations, which in a more compact notation can be written as a 

single matrix equation 

F C S C , (3.19) 

where C  is a K K  matrix composed of the expansion coefficients 
iC  and   is an 

K K  diagonal matrix of the orbitals energies i . 

To further proceed and to determine the molecular orbitals i  and orbital energies i  we 

need to solve the matrix eq. (3.19). Unfortunately, the solution of this matrix equation is 

not as simple as might be expected and cannot be solved directly because the Fock matrix 

elements involve integrals over the Coulomb and exchange operators. To obtain the 

explicit form of the Fock matrix elements we substitute eq. (3.12a) into eq. (3.17)  

     

             

*

1 1 1 1

2
* *

1 1 1 1 1 1 1 1 1

ˆ

ˆ ˆ ˆ2 .
elN

c

a a

a

F dr r f r r

dr r H r r dr r J r K r r

  

   

 

   



   
 



 
 (3.20) 

From the first term of the right hand side of eq. (3.20) we can define a core-Hamiltonian 

matrix, whose elements are composed by one-electron integrals describing the kinetic 

energy and nuclear attraction of an electron 

     *

1 1 1 1
ˆc c el el nucH dr r H r r T V         , (3.21a) 

                                  *

1 1 1 1
ˆel

elT dr r T r r     , (3.21b) 

                                  *

1 1 1 1
ˆel nuc

el nucV dr r V r r   

  . (3.21c) 
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Substituting eq. (3.13) into the two-electron terms of eq. (3.20) we get  

   

   

2
* 2

2 ,

elN
c

c

F H C C

H P

   
 

 


   

   

    

    




 (3.22) 

where 
2

*2
elN

P C C  


   is the charge density matrix. The Fock matrix elements eq. 

(3.22) involve a one-electron part ( cH ) and a two-electron part that depends on the 

density matrix P  and on a set of two-electron integrals of the form 

         
2

* 1 *

1 2 1 1 12 2 2

04

e
dr dr r r r r r        



  . (3.23) 

Because the number of two-electron integrals to evaluate is large, their efficient calculation 

poses a difficulty in a HF calculation. For a set of K  basis functions   the number of 

two-electron integrals to evaluate is of order 4K . This number often approaches several 

millions of two-electron integrals.  

Having now demonstrated the basic mathematical formulation of the HF method it is clear 

that the HF equations are really nonlinear equations and cannot be solved by a single 

diagonalization. Thus the HF equations need to be solved iteratively or self-consistently 

and the respective computational solution procedure is known as the self-consistent-field 

(SCF) method. The basic idea of the SCF method is simple. We initially choose a set of 

spatial basis functions    and subsequently guess a set of trial expansion coefficients 

 iC . We therefore construct the trial molecular orbital wavefunctions  i  (e.g., eq. 

(3.13)). We then calculate all the required molecular integrals, such as the overlap matrix 

elements S , the one-electron core-Hamiltonian elements cH , and the two-electron 

integrals     and then solve eq. (3.19) for a new set of expansion coefficients  iC  

(which correspond to a new set of molecular orbitals  i ). Using these new molecular 

orbitals we can obtain updated matrix elements S , cH , and     and repeat the 

procedure until self-consistency is reached (e.g., until a convergence criterion for the 

ground state energy has been satisfied). 
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3.2 Configuration Interaction 

The HF ground state wavefunction is an approximation and definitely does not represent 

the exact wavefunction. HF theory treats the interactions among electrons in an average 

way: each electron is exposed to an average potential arising from all the other electrons. 

This deficiency of the HF theory is simply summarized by stating that the HF method 

ignores electron correlation. In this Section we will consider the method of configuration 

interaction [1,2] as a means for: i) improving the HF method’s approximations with respect 

to electron correlation, ii) for computing excited states. 

In the configuration interaction (CI) method the exact elN -electron ground state 

wavefunction may be expressed as a linear combination of all possible elN -electron 

determinants (developed using a complete basis set). These determinants are described by 

reference to the RHF elN -electron ground state wavefunction 
0

RHF  (eq. (3.10). The exact 

electronic wavefunction   is of the following form 

0 0

RHF x x xy xy xyz xyz

i i ij ij ijk ijk

ix i j i j k
x y x y z

c c c c
  
  

             
(3.24) 

which is also known as the full CI wave function. 0

RHF  is the RHF best Slater 

determinant describing the ground electronic state, also called the “reference” state. x

i  

is a singly excited determinant, in which an electron in an occupied spin orbital i  in the 

reference state, has been promoted to an unoccupied (virtual) spin orbital x . xy

ij  is a 

doubly excited determinant in which two electrons have been promoted, compared to the 

reference state, one from i  to x  and one from j  to y . xyz

ijk  is the triply excited 

determinant, etc., up to and including elN -tuply excited determinants. The c ’s are 

expansion coefficients and the limits in the summations, e.g., i j  ( x y ), ensure that we 

sum every individual excited determinant only once. 

The energy obtained from the exact wave function eq. (3.24) is the exact ground state 

energy 0  ( 0 Ĥ    ) of the system. The difference between this exact energy 0

and the HF-limit energy 
0

RHFE  ( 0 0 0
ˆRHF RHF RHFE H   ), is called the correlation energy  PANAYIO
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defined as 0 0

RHF

corrE E  (when the basis functions used to represent the molecular 

orbitals are of infinite number and compose a complete basis set). 

 

3.3 Configuration Interaction Singles 

In this Section we will consider CI calculations of excited state energies, namely the 

configuration interaction singles (CIS) method that gives accurate excitation energies only 

for transitions that are dominated by single excitations [1,7,8]. To obtain singly excited 

state energies within the CIS method one must truncate the full CI wave function (eq. (3. 

24)) to include only single excitations, described by the singly excited determinants x

i  

with respect to the RHF ground state wavefunction 0

RHF .  The CIS wavefunction can be 

expanded as 

0 0

RHF x x

CIS i i

ix

c c     . (3.25) 

In the CIS approach both spin singlet and spin triplet states can be generated, and the 

Hamiltonian matrix elements among CIS basis states for spin singlet states are 

   1 1

0
ˆ 2x y RHF

i j ij xy ij xy xy ijH E F F ix jy ij xy          . (3.26) 

For spin triplet states the Hamiltonian matrix elements are 

 3 3

0
ˆx y RHF

i j ij xy ij xy xy ijH E F F ij xy         . (3.27) 

0

RHFE  is the RHF ground state energy, the 
xyF  and 

ijF  are Fock matrix elements from the 

HF theory, and the two-electron integrals present in eqs. (3.26) and (3.27) describe the 

Coulomb ( |ix jy ) and exchange ( |ij xy ) two-electron interactions. In the CIS method the 

Hamiltonian is diagonalized to obtain many-electron excited eigenstates and the 

corresponding excited state eigenenergies. Each CIS excitation energy is the difference 

between the CIS excited state energy given by an eigenvalue of eqs. (3.26) and (3.27) and 

the RHF ground state energy 
0 .RHFE  The CIS computational method is commonly used to 

predict absorption and fluorescence emission spectra of molecules. 
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3.4 Density Functional Theory 

Density functional theory (DFT) is presently one of the most successful computational 

approaches for molecular electronic structure calculations [2-4]. DFT is an alternative to 

wavefunction-based electronic structure methods, e.g., the HF method discussed in    

Section 3.1. The basic idea of DFT is that the properties of an electronic system, more 

often the ground state energy of the system, are expressed in terms of functionals (i.e., 

functions of another function) of the total electron probability density. Hence, the 

abbreviation DFT describes the use of functionals of the electron density. 

The DFT method has its roots in the 1920s, where independently L.H. Thomas and E. 

Fermi [9,10] developed an entirely new approach to the calculation of the electronic 

structures of atoms, namely the Thomas-Fermi model, based on the uniform electron gas. 

Thomas and Fermi managed to demonstrate that the kinetic energy of electrons is directly 

related to the electron density. A more solid theoretical framework of the DFT method was 

given by P. Hohenberg and W. Kohn in the 1960s [11]. The Hohenberg-Kohn existence 

theorem demonstrates that the electron density uniquely determines all the electronic 

properties of the ground state of a molecular system. This powerful statement reduces the 

many-electron problem of solving a elN -wavefunction in 3 elN  dimensional space to 

solving electron density functionals in 3 dimensional space.  

The ground-state electron density  r  is the central quantity in DFT and it is defined as 

the total electron density at a particular point r  in space, for a system of elN  electrons. 

 r  further determines the total number of electrons as  elN dr r  . Within the 

Born-Oppenheimer approximation the electronic Hamiltonian of the system given by eq. 

(3.2b) is reproduced here in a modified notation in order to clearly indicate the crucial term 

of the external potential 

ˆ ˆ ˆ ˆel

el ext el elH T V V    . (3.28) 

In eq. (3.28) the interaction between electrons and nuclei  ˆ
el nucV   are included in the 

external potential ( ˆ
extV ). 
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The aforementioned Hohenberg-Kohn existence theorem states that the external potential

ˆ
extV , and hence the total ground state energy of a molecule is a unique functional of the 

ground state electron density, i.e., 

     
 

   ˆ

HK

el

el el el ext

E

E H T V dr r V r



          . 
(3.29) 

The second theorem, the variational theorem of Hohenberg-Kohn [2,11], states that any 

new trial density function  r  results in a new external potential and thus a new 

wavefunction  . In that way the ground state energy can be obtained variationally. More 

precisely, using this new wavefunction   as a trial function for the molecular system with 

Hamiltonian of eq. (3.28), and using the variation theorem gives 

   ˆ elE H E       . (3.30) 

Equation (3.30) clearly shows that for a trial density function  r , the obtained energy 

functional  E   is always greater than the true ground state energy  E   of the 

molecular system. The variation principle further implies that the desired ground-state 

electron density corresponds to a minimum of the energy functional (eq. (3.29)) under the 

restriction that the total number of electrons  elN dr r   in the system is kept constant 

as  r  is varied.  

P. Hohenberg and W. Kohn [11], proved the above theorem. W. Kohn and L. J. Sham [12] 

demonstrated how such a calculation actually can be carried out. Specifically, they 

managed to transform the many-electron problem of elN  interacting electrons in a static 

average potential to a problem of elN  non-interacting electrons embedded in an effective 

external potential. They further showed that the electron density of the reference non-

interacting system  ref r  is identical to the true electron density  r . 

The total energy functional of the molecular system (eq. (3.29)) can be written in terms of 

the reference system and some complementary correction terms [2,3] 

         

                  .

el el el ext

ref ext el ref el el

E T V dr r V r

T J dr r V r T T V J

   

      





  

      




 (3.31) 
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 refT   is the kinetic energy of the electrons and  J   is the classical Coulombic 

interaction between electrons of the reference system the non-interacting electrons. The 

total energy functional (eq. (3.31)) of the molecular system can be written as 

           ref ext XCE T J dr r V r E         (3.32) 

where, 

         XC el ref el elE T T V J        . (3.33) 

 XCE   is the exchange-correlation energy functional.  XCE   contains the difference in 

the kinetic energy of the true system,  elT  , and of the non-interacting reference system, 

 refT  .  XCE   also contains the difference between the true electron-electron 

interactions,  el elV  , and the non-interacting system Coulomb interaction  J  . 

To find the ground state energy of the molecular system we need to minimize the system’s 

energy functional eq. (3.32) with respect to the density,  

 
 

 
 
 

reff

eff

TE
V r

r r

  

 
  . (3.34) 

The effective potential is defined as  

   
 
 

 
 

XC

eff ext

J E
V r V r

r r

   

 
   . (3.35) 

The derivative of the Coulombic contribution functional  J   is  

 
 

 2

04

J re
dr

r r r

  

 




 , (3.36) 

and we further define the exchange-correlation potential to be the derivative of the 

exchange-correlation energy functional  XCE    

 
 
 

XC

XC

E
V r

r

 


 . (3.37) PANAYIO
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To find the electron density that minimizes the energy functional (eq. (3.32)) Kohn and 

Sham introduced the concept of one-electron Kohn-Sham orbitals KS

i . The electron 

density of the elN -electron non-interacting system is expressed as a function of the Kohn-

Sham orbitals 

   
2

1

elN
KS

i

i

r r 


 . (3.38) 

 E   in eq. (3.32) is written in terms of the Kohn-Sham orbitals which are varied in order 

to compute  E   . The resulting equation for the Kohn-Sham orbitals that minimize 

 E   is 

     
2

2

ˆ

2

KS

KS KS KS

i eff i i i

e

H

V r r r
m

  
 
    
 

. 
(3.39) 

ˆ KSH  is the one-electron Kohn-Sham Hamiltonian, KS

i  is the corresponding energy of the 

Kohn-Sham orbital KS

i , and  effV r  is the effective potential defined in eq. (3.35).  

In conclusion, to obtain the electron density of a molecular system, the Kohn-Sham 

equations (eq. (3.39)) are solved with the insertion of the effective potential eq. (3.35). 

Since the effective potential contains functionals of the electron density, the solution of the 

Kohn-Sham equations needs to be found in a self-consistent (e.g., iterative) way, starting 

with an initial guess for the electron density. Then the effective potential is calculated and 

eq. (3.39) is solved to obtain the Kohn-Sham equations for the KS

i . From the obtained 

orbitals KS

i  a new electron density is calculated using eq. (3.38) and the previous 

calculations are repeated until convergence is reached. 

It must be emphasized that DFT would be an exact theory and the Kohn-Sham formulation 

would lead to the exact energy of the system if the exchange-correlation functional 

 XCE   were known. The main challenge in DFT is to develop approximate forms of high 

accuracy for the exchange-correlation energy functional  XCE  , which most often is the 

main source of error in DFT calculations due to the approximate nature of  XCE  . Even 

though the exact form of  XCE   is not known there are many ways to approximate this 

functional, which is generally divided into two separate terms, 
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     XC X CE E E    . (3.40) 

The first term is the exchange functional  XE   describing exchange energy and the 

second term is the correlation functional  CE   that describes correlation energy, 

respectively. In terms of contributions, the exchange functional  XE   is the dominant 

term in the exchange-correlation functional  XCE  .  

In most electronic structure calculations  XCE   is commonly approximated within the 

local density approximation (LDA), which only depends on the electron density at each 

point in space, or within the generalized-gradient approximation (GGA) that depends not 

only on the electron density at a point but also on its gradient there. There also exist hybrid 

functionals in which the  XCE   is developed as a linear combination of a Hartree-Fock 

exchange contribution with a density-functional exchange contribution. 

 

3.5 Time-dependent Density Functional Theory 

Time-dependent density functional theory (TDDFT) is an extension of DFT used to 

investigate the properties and dynamics of multi-electron molecular systems under the 

influence of time-dependent external potentials (perturbations), i.e., electromagnetic fields. 

TDDFT is commonly used to extract excited states features such as excitation energies and 

photo-absorption spectra. 

TDDFT is a more recent development compared to DFT. It is based on the Runge-Gross 

theorem [13] which can be considered as the time-dependent equivalent of the Hohenberg-

Kohn theorem [11] introduced in the foregoing Section. The Runge-Gross theorem states 

that for a given initial state, there is a unique one-to-one mapping between the time-

dependent external potential, under which the system time-evolves, and its time-dependent 

electron density  ,r t . That is, for the same initial state, two (or even more) different 

external potentials cannot give the same electronic probability density  ,r t .  

Given the Runge-Gross theorem, the major challenge is to develop an effective potential of 

elN -electrons non-interacting system that gives the same electron density that would be 

obtained by a physical elN -electrons interacting system. This is the time-dependent 
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analogue of Kohn-Sham approach discussed in the previous Section. In the time-dependent 

Kohn-Sham approach, the Kohn-Sham orbitals  ,KS

i r t  obey the time-dependent 

Schrödinger equation  

     
2

2 , , ,
2

KS KS

i eff i i

e

V r t r t i r t
m t

 
  
    

 
. (3.41) 

The effective potential of a non-interacting system is defined as  

       , , , ,eff ext J XCV r t V r t V r t V r t          , (3.42) 

where  ,extV r t  is the external potential,  ,JV r t    is the Coulombic potential 

contribution, and  ,XCV r t    is the exchange correlation potential. 

The time-dependent electronic density is obtained from the Kohn-Sham orbitals as  

   
2

1

, ,
elN

KS

i

i

r t r t 


 . (3.43) 

The time-dependent Kohn-Sham equations (eq. (3.41)) are solved in a self-consistent way, 

starting with the solution of a set of static Kohn-Sham equations (as in eq. (3.39)) in order 

to obtain a set of elN  ground state orbitals 
   0KS

i r , 

         
2

0 02

0,
2

KS KSKS

i eff i i i

e

V r t r r
m

  
 
    
 

. (3.44) 

The elN  static ground-state Kohn-Sham orbitals 
   0KS

i r  are taken as initial orbitals  

     0

0, , 1, ,
KSKS

i i elr t r i N    (3.45) 

and propagated in a time window  0 ,t T  using eq. (3.41). Then the electron density (eq. 

(3.43)) is calculated and used to estimate the Kohn-Sham effective potential (eq. (3.42)) for 

the propagated time window.  For this calculated effective potential eq. (3.41) is further 

propagated in the same time window  0 ,t T  and a new set of orbitals  ,KS

i r t  are 

obtained. Using these new orbitals one can calculate a new electron density and 

subsequently a new effective potential.  This procedure is repeated until self-consistency is 
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reached, that is, convergence has been met within a predefined tolerance criterion (among 

the final and the previously calculated effective potential for the same time window).   

In the case of a weak time-dependent external perturbation (i.e., a weak electromagnetic 

field) we do not need to solve the full time-dependent Kohn-Sham equations (eq. (3.41). 

Consider for instance, that for times before the application of the external perturbation the 

system is its ground state, described by the ground state electron density  r . When the 

external perturbation IV  is turned on, it induces changes to the electron density. Thus, we 

can express electron density in a perturbative series, i.e., 

       1 2, , ,r t r r t r t       , (3.46) 

where  1 ,r t  is the linear (first-order),  2 ,r t  is the quadratic (second-order), etc., 

response of the electron density to the perturbation IV .  

Since we consider a weak perturbation, we take into account only linear response of the 

density to the perturbation IV  (i.e.,  1 ,r t ). The linear term of the density response to the 

perturbation in frequency domain is [14-16] 

     1 , , ; ,Ir dr r r V r        , (3.47) 

where  , ,r r    is the linear density-density response function of the system.  

Using perturbation theory, the computation of the  , ,r r    for the full elN -electron 

interacting system is a very difficult task. To evaluate  , ,r r    we adopt the time-

dependent Kohn-Sham methodology that uses a reference non-interacting elN -electron 

system. The respective  1 ,r   in the Kohn-Sham formulation will be 

     1 , , ; ,KS

KS Ir dr r r V r         (3.48) 

where, KS

IV  is the linear change of the effective Kohn-Sham potential 
effV . KS  is the linear 

density-density response function of a non-interacting elN -electron system, which in terms 

of the unperturbed stationary (ground-state) Kohn-Sham orbitals can be written as [14-16] 
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       * *

0
,

, ; lim

KS KS KS KS

k j j k

KS k j
n

j k jk

r r r r
r r f f

in

   
 

 





 
  

 
  (3.49) 

where, kf , 
jf  are the Fermi occupation factors (one or zero). KS  has poles at frequencies 

jk  that correspond to the excitations energies of the non-interacting system. The 

respective true excitations energies of the interacting system are given by [14-16] 

 jk jkK     (3.50) 

where, 
jk  is the energy difference between the Kohn-Sham eigenvalues of the 

unoccupied orbital j  and the occupied orbital k .  jkK   is a correction term that arises 

from the external-perturbation-induced variations on the JV  and XCV  potentials (eq. 

(3.42)). 

The linear response of the electron density to the external perturbation, provide us formulas 

(eqs. (3.49) and (3.50)) to calculate the excitation energies and the respective absorption 

spectrum. 

 

3.6 Gradient Methods and Molecular Properties 

In the previous Sections we gave a brief description of computational methodologies, such 

as the HF and DFT methods, whose primary goal is to determine the electronic structure of 

a molecular system. As long as the electronic eigenstates and eigenenergies are computed, 

several other molecular properties can immediately be determined. A most significant 

computation is finding the equilibrium molecular geometry for a ground or excited 

electronic state, by computing the minimum of the corresponding Born-Oppenheimer 

energy surface. 

We will initiate this discussion with a description of the geometry optimization procedure 

[2,17], which is essential for a variety of other computations that require the optimized 

equilibrium molecular structure. Geometry optimization is the process of finding an atomic 

arrangement that minimizes the molecular Born-Oppenheimer potential energy surface. To 

find the Born-Oppenheimer potential surface minimum we need to compute first order 
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energy gradients with respect to nuclear coordinates ( iR ) that represent the forces exerted 

on a nucleus by electrons and other nuclei, i.e., 

0
BO

BO

i

i

E
F

R


  


. (3.51) 

The optimized equilibrium geometry in principle is the molecular geometry for which all 

of the computed forces (eq. (3.51)) are close to zero, within a predefined tolerance. These 

zero net forces actually only characterize a stationary point on the potential surface. To 

further distinguish if this stationary point is the desirable minimum of the potential and not 

a maximum or a saddle point, we need to compute second energy derivatives with respect 

to nuclear coordinates 
2 BO

i jE R R   , and to obtain the so-called Hessian matrix. We now 

diagonalize the Hessian matrix, and if the obtained eigenvalues of the Hessian matrix are 

all positive, the computed stationary point of the potential surface defines the equilibrium 

molecular structure. 

Furthermore, second energy derivatives of the optimized equilibrium molecular structure 

with respect to nuclear coordinates determine force constants for harmonic vibrational 

normal mode frequencies [2,17]. Within the assumption of small displacements of the 

nuclei from their equilibrium positions we obtain the matrix of force constants, which we 

further express in mass-weighted Cartesian coordinates 
i iq m R , i.e.,  

2 BO

ij

i j

E
K

q q



 

. (3.52) 

Diagonalization of the force constant 
ijK , gives the normal modes as eigenvectors and the 

respective eigenvalues ( K ) are directly related to the harmonic vibrational normal mode 

frequencies as  

K K  . (3.53) 

In addition to second order derivatives, higher order derivatives with respect to nuclear 

coordinates, describe anharmonic corrections to the vibrational frequencies. Finally, mixed 

second energy derivatives with respect to a nuclear normal mode coordinate iQ  and an 

electric field component produces dipole moment derivatives ( IR iQ  ) that determine 

infrared intensities of the ith fundamental vibrational band [17-19] 
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2

2

0

1

4 3

A i IR
i

i

N g
A

c Q

 



 
  

 
, (3.54) 

where AN , c  and ig  are Avogadro’s number, the velocity of light and the degeneracy of 

the ith band, respectively. 

 

3.7 Electronic Couplings – Charge Transfer Integrals  

As we have seen in Chapter 1, one of the most crucial factors of charge transfer (electron 

or hole) theoretical models is the electronic coupling, which is also referred to as the 

charge transfer integral. To calculate electronic couplings for our models (see Chapter 4) 

we used the DFT Kohn-Sham approach implemented in ADF program [17,19] and further 

exploited ADF’s unique feature for calculating electronic couplings using the fragment 

approach. 

In several charge transport theoretical models, the whole system is divided into fragments 

(e.g., D, B, A). In ADF transport computations [20-22], the total system can be split up 

into smaller interacting subsystems in which a charge (electron or hole) is localized on an 

individual fragment and can thus transfer from one fragment to another. The electron or 

hole orbital is approximated with a fragment molecular orbital. To compute the charge 

transfer coupling between initial and final electron (hole) fragment molecular orbitals, 

ADF builds a Hamiltonian 

 ˆ
i i i f f f if i f f iH V             , (3.55) 

where i , f  denotes (initial and final) fragment molecular orbitals, i (
f ) is the 

energy of the orbital i ( f ), and 
ifV  is the electronic coupling (also known as effective 

generalized transfer integral) between the orbitals. 

This tight-binding model (eq. (3.55)) requires accurate values of site energies and 

electronic couplings. These parameters are calculated from the matrix elements of the 

molecular Kohn-Sham Hamiltonian in the basis of fragment orbitals (a unique feature of 

the ADF program that allows one to use molecular orbitals on individual molecules as a 

basis set in calculations on a system composed of two or more molecules [19,21,22]). 
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The electronic coupling (effective generalized transfer integral) between the fragment 

molecular orbitals is defined to be [21,22] 

 
2

2

1

if if i f

if

if

J S
V

S

  



. (3.56) 

ˆ KS

if i fJ H   and ˆ KS

i f i f i fH   , where ˆ KSH  is the Kohn-Sham Hamiltonian. 

ifS  are the spatial overlap integrals between fragment orbitals defined as if i fS   .  

In ADF the fragment LUMO’s are used for electron-transfer calculations and the 

corresponding fragment HOMO’s are used for hole-transfer calculations [19,21,22]. 

 

3.8 Electron-Phonon Couplings 

To calculate the electron-phonon coupling parameters of the effective models in Chapter 4 

(also known as electron-vibrational coupling parameters) we used the ADF FCF module 

[23-25]. FCF denotes Franck-Condon factors, already introduced in Chapter 1. These are 

the squares of the overlap integrals of vibrational wave functions (e.g., eq. (1.32)), and they 

enter the formulas for the initial and final vibronic states.  

ADF’s FCF module, computes the Franck-Condon factors for the transition between a pair 

of electronic states and also computes all other parameters, which characterize the vibronic 

transition (such as reorganization energies and electron-phonon couplings). The specific 

module computes normal modes and normal-mode reorganization energies for electron and 

hole insertion at the DFT level, using geometry optimization for the neutral and the 

charged molecules.  

When a molecule undergoes an electronic transition from an initial to a final electronic 

state, in addition to the change of the electronic state, the equilibrium positions of the 

nuclei also change, and the normal modes are modified and displaced. This phenomenon 

was first considered by Duschinsky and is abbreviated as the Duschinsky effect [26]. In the 

ADF FCF implementation the displacement of the nuclei in the normal modes is given by 

[19,24]     

 1 2

0 0 0

Tk L m B x x   , (3.57) 

PANAYIO
TIS ANTONIO

U



78 
 

where k  is the normal coordinate displacement vector. k  gives the displacements between 

the initial and final state equilibrium geometries, in terms of initial state normal 

coordinates. L  is the normal coordinate mode matrix, which transforms the mass-weighted 

displacement coordinates into normal coordinates. m  is a matrix with the mass of the nuclei 

on the diagonal, 0B  is the zero-order axis-switching matrix and 0x  and 0x  are equilibrium 

position vectors of the nuclei. The primed terms refer to the initial electronic state and the 

unprimed terms refer to the final electronic state. The equilibrium geometries of both states 

must be oriented with respect to each other around the center of mass in order to obtain 

maximum possible symmetry elements in common. To remove the six translational and 

rotational degrees of freedom ADF further rotates one of the states succeeding in that way 

maximum overlap between the states. This is implemented through the zero-order axis-

switching 0B  [24].  

If the displacement vector k  eq. (3.57) is known, it is straightforward to further calculate 

the dimensionless electron-phonon couplings defined as [19] 

1 2

2
ADF k

 
  
 

 (3.58) 

where    is the reduced frequencies vector [25]. 

The reorganization energy per mode i  is given by  

 2

i i ADF i
   . (3.59) 

We extract the desirable electron-phonon couplings using ADF’s FCF module, in order to 

incorporate them in the electron-vibrational Hamiltonian of eq. (1.28), 

 ˆ ˆel vi

elH el el F R    
 

. (3.60) 

elF  is the force exerted by the electron on the normal-mode oscillator and R̂  is the 

displacement of the normal-mode oscillator. Using a dimensionless displacement for the 

oscillator in eq. (3.60), i.e., ˆˆ 2 is R m , the electron-vibrational coupling term 

becomes   ˆ
elel el a s  where 2el el ia F m  . Combining now the reorganization 

energy definition of eq. (1.30), that is 2 2/ 2i el iF m   , with the reorganization energy  as 
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obtained by the ADF’s FCF module ((eq. (3.59)), leads to the definition of the electron-

phonon coupling which is directly related to ADF’s dimensionless electron-phonon 

coupling ADF . 

 
2

el el i i i ADF i
i

a F
m

   


      , (3.61) 

for a specific normal mode i . 
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Chapter 4: Vibrational Control of Electron Transfer Reactions 

 

Molecular vibrations and electron-vibrational interactions are central to the control of 

biomolecular electron and energy-transfer rates. The vibrational control of molecular 

electron-transfer reactions by infrared pulses may enable the precise probing of electronic-

vibrational interactions and of their roles in determining electron-transfer mechanisms. 

This type of electron-transfer rate control is advantageous because it does not alter the 

electronic state of the molecular electron-transfer system or irreversibly change its 

molecular structure. For bridge-mediated electron-transfer reactions, infrared (vibrational) 

excitation of the bridge linking the electron donor to the electron acceptor was suggested as 

being capable of influencing the electron-transfer rate by modulating the bridge-mediated 

donor-to-acceptor electronic coupling. This kind of electron-transfer experiment has been 

realized, demonstrating that bridge-mediated electron-transfer rates can be changed by 

exciting vibrational modes of the bridge. Here, we use simple models and ab initio 

computations to explore the physical constraints on one’s ability to vibrationally perturb 

electron-transfer rates using infrared excitation. These constraints stem from the nature of 

molecular vibrational spectra, the strengths of the electron-vibrational coupling, and the 

interaction between molecular vibrations and infrared radiation. With these constraints in 

mind, we suggest parameter regimes and molecular architectures that may enhance the 

vibrational control of electron transfer for fast coherent electron-transfer reactions. 

Biomolecular electron-transfer and energy-transfer reactions are central to bioenergetics 

and to cellular function [1-13]. Molecular motions are critical in determining the electron-

transfer (ET) rates for long-distance biological electron-transfer reactions mediated by 

through-bridge tunneling. Such biomolecular ET systems have weak bridge-mediated 

electron-donor to electron-acceptor couplings (tunneling matrix elements), so their ET 

rates are nonadiabatic and relatively slow (time scales longer than ns). Low frequency 

molecular motions influence these nonadiabatic ET rates by modulating the donor-acceptor 

electronic energy gap and the donor-acceptor couplings.    

Recently, it was recognized that biomolecular electron and energy-transfer reactions in the 

nearly-adiabatic or adiabatic regimes may also depend critically on bridge molecular 

motions that cause fluctuations in electronic site-energies and inter-site electronic 

couplings, or that serve as electronic energy sinks (e.g., ref. [14-16] and references 
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therein). In such transport systems, fast and partially coherent transport is possible over 

relatively large distances (greater than nm), often with high transport efficiency [16,17]. 

Questions that are of central interest in this strong coupling regime is how molecular 

motion tunes the transport mechanism and how the motion influences electronic 

coherences [15,16,18]. Similar questions apply to transport in molecular junction systems, 

e.g., ref. [19,20]. 

Recently, two-dimensional spectroscopy experiments provided evidence that vibrational 

(in addition to electronic) coherences may improve the efficiency of the primary charge 

separation events in photosynthesis (ref. [21,22] and references therein). A natural 

approach to probing the vibrational control of electron-transfer and energy-transfer rates 

experimentally is to identify vibrational modes that influence the transport rate and to 

perturb these modes selectively by IR-excitation [10,23-27]. Since these biomolecular 

transport systems often have complex electronic and vibrational spectra, it is productive to 

use simpler and smaller molecular model systems in both experiment and theory. Further, 

small molecules may be used as building blocks for transport devices whose transport rates 

and yields may be controlled by IR excitation.  

Consider a donor (D) – bridge (B) – acceptor (A) molecule that undergoes photoinduced 

nonadiabatic electron transfer (ET) mediated by the electronic states of the intervening 

bridge [7-12]. Exciting the B vibrational modes before or after the electronic excitation 

could make it possible to control the D-A ET rate by modulating the B state energies and 

the D-B (A-B) electronic couplings [23-26]. This idea was initially discussed in the context 

of molecular architectures that offer parallel D-B-A tunneling pathways [23-25]. In 

systems where the bridge connecting D to A provides two different interfering electron 

tunneling pathways (i.e., involving different groups of atoms), the selective excitation of  B 

vibrational modes localized in one pathway may lead to the exchange of the excess 

vibrational energy of the B modes with the tunneling electron. This energy exchange 

leaves an inelastic-tunneling marker of the route taken by the electron and thus “labels” the 

path of the electron. As such, one can built a molecular double slit experiment or a which-

way interferometer based upon molecular ET [23-26].  

Several challenges are faced in accomplishing the vibrational control of electron tunneling 

pathway interferences, as the interferences are sensitive to thermal structural fluctuations 

and to dephasing [10,25,28]. A more modest goal is to perturb the D-B-A ET rate by 

modulating the elastic bridge-mediated D-A tunneling interaction [9,10]. The first 
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experiment that performed this modulation was reported in ref. [27] using mid-IR pulses 

with UV-pump/mid-IR/VIS-probe spectroscopy. The ET system has an anthracene-derived 

acceptor connected to a dimethylaniline-containing donor linked by guanosine-cytidine 

(GC) hydrogen bonds. Mid-IR excitation was targeted to drive bridge G-C H-bond motion 

that influences the D-A coupling. The reported fractional changes in charge separation and 

recombination rates were approximately 60%. More recently, ET rate modulation by IR 

excitation was demonstrated in ref. [29] for an electronically excited covalent trans-

acetylide platinum(II) D-B-A system. Excitation of the high-frequency bridge carbon-

carbon triple-bond vibrations leads to the switching off of ET. In addition, ref. [30] 

reported IR-induced ET rate modulations of 28% in Re(I) D-A complexes. In spite of the 

theoretical [23-26] and recent experimental progress [29-36], it remains challenging to 

explain the rate modulations in these systems and to design structures that enable enhanced 

control of the ET rates by IR excitation. 

ET rate control is an example of quantum transport driven by external fields [37,38]. The 

aims of this study are to further explore the feasibility of perturbing bridge-mediated ET 

rates by exciting selected B vibrations with infrared (IR) pulses and to suggest 

experimental observables and molecular architectures to enable the measurement of IR-

induced ET rate perturbations. The advantage of using B vibrations (rather than D or A 

vibrations) to perturb bridge-mediated ET rates is derived from the possibility of 

manipulating ET pathways – and thus kinetics – selectively, without perturbing the donor 

and acceptor electronic states. 

 

4.1 Kinetic Rate Models 

What experimental observables can be used to probe the effects of IR excitation on the ET 

rate?  What are that D-B-A rate-network architectures that enable effective control of ET 

rates by IR excitation? We first examine simple examples using simple kinetic rate models 

that suggest answers to these questions. 

 

4.1.1 Populations vs. Yields in a single D single A molecular architecture 

We consider a linear DBA system and a pump-probe experiment where a UV (VIS) pulse 

excites the D electronic state to initiate ET, and an IR pulse excites selected B vibrational 

PANAYIO
TIS ANTONIO

U



84 
 

modes (Fig. 4.1). The final D and/or A state population is probed directly by UV (VIS) 

pulses. We assume that the D-to-A ET rate is much faster than the back rate (both with and 

without the IR pulse), and we ignore the back rate (this assumption does not change the 

generic conclusions, but it gives simple analytical expressions). In the absence of the IR 

pulse, the ET rate is k . The IR pulse changes k  for a period of time (related to the width of 

the pulse and to the time scale of vibrational relaxation), i.e.,  k k t .  The changes in 

this rate may be due to the quantum interference effects linked to the IR-pulse, to changes 

in the conformational energy landscape, or to other sources.  

 

Figure 4.1: DBA ET where a UV (VIS) pulse excites the D electronic state initiating ET to the A 

state, and an IR pulse excites selected B vibrational modes. The final A state population is either 

probed by another UV (VIS) pulse or indirectly if A is involved in a chemical reaction whose rate 

is measurable. 

 

In the absence of IR excitation, the rate equations are    D DdP t dt kP t   and 

   A DdP t dt kP t , and the A state population is given by      0 1 expA DP t P kt       

with    0A DP P  . With IR excitation, the rate is changed as    IR
k k t 

 ( ) ,IRk k t  where    ( ) ( )

0

IR IRk t k f t t    .  0f t t  is a normalized function with 

width t  and 
( )IRk   is generally a small perturbation (assuming that the influence of the 

IR excitation on the molecule is nondestructive and reversible). The final A state 

population is given by          0
0 1 exp

t IR

A DP t P dt k t     with    0A DP P  . Thus, 

the pulse does not change the final A population. The population changes induced by IR 

excitation are transient and disappear at some time after the application of the pulse.  

time τ Τ 

UV pump 
Mid-IR  UV (or VIS) 

probe 

D  B  A 

ET rate: k 
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Figure 4.2 shows an example where the D electronic state participates in an irreversible 

chemical reaction that produces the product X, i.e.,    X D X DdP t dt k P t . The infinite 

time yield of the product X is    
0

 X D X DY k dt P t


   . We assume that D Xk k  
so 

that the time evolution of the D population is determined predominantly by ET to A. For 

0 tt t   , the D survival probability is       ( ) ( )0 exp .IR IR

D DP t P k k t    The 

fractional change in the D X   reaction yield upon application of the IR pulse is       

   

 

    

   

( )

( ) ( ) ( )

0

( )

0

X X

X

IR

IR D D IR IR

IR

D

dt P t P t
Y Y k k

I
Y kk k

dtP t

 








  

     
 




. (4.1) 

Therefore, we can measure time-dependent changes in the ET rates induced by application 

of an IR pulse by measuring the yield of a competing reaction from the photochemically 

prepared D state. 

 

Figure 4.2: DBA ET where a UV (VIS) pulse excites the D electronic state that initiates ET to the 

A state, and an IR pulse excites selected B vibrational modes. The D state is involved in a 

competing chemical reaction that produces the product X. By measuring the fractional change upon 

IR excitation of the infinite time yield of this reaction it is possible to deduce the fractional change 

in the ET rate induced by IR (eq. (4.1)). 

 

4.1.2 Populations vs. Yields in a single D multiple A molecular architecture 

The above examples considered a linear DBA architecture. For more complex 

architectures, perturbations of the ET rates by finite IR pulses change both the long-time 

populations and yields. For example, consider a donor D connected to left and right B units 

UV pump Mid-IR  

D  B  A 

ET rate: k 

X 

Reaction rate: k
D


X
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( LB , RB ), each with independent A moieties ( LA , RA ), (Fig. 4.3). Photoinduced ET        

may proceed to LA  and to RA  with rates Lk  and Rk , respectively. The rate equations               

are      D L R DdP t dt k k P t   ,    
LA L DdP t dt k P t  and    .

RA R DdP t dt k P t  

Therefore, 

 

 
L

R

A L

A R

P k

P k





, (4.2a) 

   

   
L R

L R

A A L R

A A L R

P P k k

P P k k

   


   
. (4.2b) 

For a symmetric system with L Rk k k  , (e.g., L RB B  and L RA A ), selective excitation 

of IR vibrational modes on one of the B units, (e.g., LB ) may be accessible if isotopic 

substitutions are made to one of the units [23-25]. If D is prepared in its electronic excited 

state and LB  is excited by the IR pulse, then      ( )IR IR

Lk t k k t  . The ratios in eq. (4.2) 

become   

   
   

( )

L

R

IR IR
A

IR

A

P k k

kP

 



, (4.3a) 

       
       

( )

2

L R

L R

IR IR IR
A A

IR IR

A A

P P k

kP P

  


  
 (4.3b) 

(assuming weak perturbation,    ( ) ( )

0

IR IRk t k f t t    ). The asymmetry in the L/R A 

populations following the IR pulse (eq. (4.3b)) is a direct measure of 
( )IRk .  Further, if LA   

and RA  participate in separate reactions that produce the products LX  and RX  i.e., 

 
 

 
 

( ) ( )L R L RL R L RX A X AdP t dt k P t , then 

   
   

( )

L

R

IR IR
A

IR

A

Y k k

kY

 



, (4.4a) 

       
       

( )

2

L R

L R

IR IR IR
A A

IR IR

A A

Y Y k

kY Y

  


  
, (4.4b) 

assuming 
L L R RA X A Xk k k  . 

PANAYIO
TIS ANTONIO

U



87 
 

 

Figure 4.3: A D moiety is connected via left and right B units ( LB , RB ) to A moieties ( LA , RA ). 

Upon photo-excitation of D, irreversible ET is initiated simultaneously to LA   and to RA   (with ET 

rates Lk  and Rk ). For this system architecture, the IR excitation of one B unit can irreversibly 

affect the directionality of ET. In addition, the asymmetry in the infinite-time yield of the LA  and 

RA  can give a direct measure of the IR perturbation of the ET rate.  

 

In summary, the influence of time-dependent IR perturbations on ET rates can be measured 

using time-independent observables (e.g., long-time populations and reaction yields) if 

secondary reactions compete with ET. ET systems with a single D and multiple A units 

(connected by independent links) are good candidates for directly measuring the influence 

of IR pulses on ET rates. Importantly, in such systems, pulsed-IR excitation can change the 

relative populations and yields of the charge-separated states, and may influence the 

directionality of ET without causing irreversible photochemical changes to the ET 

structures. The ability to change the yields of competing reactions using small external 

fields is familiar in the context of magnetic sensing by molecular and biomolecular 

compasses, where a weak external magnetic field affects the yield ratio of singlet and 

triplet reaction products produced by ET [39]. 

 

4.2 The IR perturbation of ET rates: low vs. high frequency ET-active vibrations 

Now, we switch to a quantum mechanical (rather than a kinetic) formulation to study how 

molecular B vibrations perturb ET rates through their excitation. Given a candidate DBA 

molecule for vibrational control of the ET rate, the first step is to identify the B vibrations 

that influence ET by modulating the B electronic state energies and/or D-B (A-B) 

electronic couplings. These “ET-active” modes may be of low and/or high frequency. 

Since vibrational energy relaxation time scales are usually in the range of hundreds fs to a 

UV pump 

B
R
  A

R
 

ET rate: k
R
 

Mid-IR  

A
L
  B

L
  

ET rate: k
L
 

D 
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few ps [40-42], there are different strategies to perturb bridge-mediated ET by IR 

excitation of bridge modes. These strategies depend on the time scale of ET and on the 

nature of the ET-active modes.  

We first consider the case of high-frequency IR-active/ET-active bridge vibrational modes      

( BK T  ). Modes of this kind are targets for IR control of ET because they can be 

selectively excited and they remain in an excited state for a relatively long time, as they are 

not embedded in a mode continuum that produces very rapid intramolecular vibrational 

redistribution (IVR). If the ET timescale is of the order of the mode lifetime, then an 

experiment with ET triggering followed by IR excitation (Fig. 4.1) could modulate the ET 

rate “as the electron transfers” and possibly while the electronic motion is coherent.   

 

4.3 Vibronic Hamiltonian Models 

In previous studies [23-26], IR-modulation of ET was introduced in the context of simple 

quantum Hamiltonian models. Here, we use a more involved vibronic-state quantum-

mechanical density matrix formulation that takes into account the effects of vibrational 

relaxation. Vibrational relaxation effects are critical since the de-excitation of the IR-

vibrations that are selected for ET rate modulation influence the magnitude of the 

modulation. Further, in this study we aim to explore a realistic ET system and experimental 

parameter regimes that are likely to be optimal for the IR perturbation of ET (e.g., 

electronic structure, vibrational and electron-phonon coupling parameters, IR-molecule 

coupling and IR-pulse characteristics). 

Our simple model D-B-A ET system (Fig. 4.1) incorporates vibrational relaxation and IR 

perturbation. The DBA system (S) Hamiltonian is  

ˆ ˆ ˆ ˆ ˆ ˆ
S D B A DB ABH H H H V V     , (4.5) 

where ˆ
DH , ˆ

BH  and ˆ
AH  are vibronic D, B and A Hamiltonians and ˆ

DBV  and ˆ
ABV  are  D-B 

and A-B electronic interaction Hamiltonians. Each of the D, B and A Hamiltonians are of 

the form 

 ˆ ˆ ˆ ˆ , ,el vi el vi

K K K KH H H H K D B A    , (4.6) PANAYIO
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where “el” denotes electronic, “vi” vibrational and “el-vi” electronic-vibrational-couplings. 

ˆ el

KH  describe site energies for the relaxed D, B and A electron (or hole) states (the energies 

are denoted as 0

DE , 0

BE  and 0

AE , respectively). ˆ vi

KH  describe the high-frequency modes that 

are perturbed by ET and that may also be excited by IR.  For ˆ el vi

KH 
, we assume linear 

electron-vibrational coupling. The ˆ
DBV  and ˆ

ABV  Hamiltonians contain the D-B and A-B 

electronic couplings. We consider a system that is coupled to two high-frequency 

vibrational modes. The first oscillator (frequency B ) is perturbed when the electron 

occupies the B state and the second oscillator (frequency A ) is perturbed when the 

electron occupies the A state (Fig. 4.4a). For each of the oscillators, we denote the 

oscillator eigenstates in the absence of the electron-vibrational coupling as “unrelaxed” and 

use the symbol 
un . With the electron-vibrational coupling turned on, we denote the 

oscillator eigenstates as “relaxed” and we use the symbol 
Rn . In summary, the system 

electronic Hamiltonian is       

   

0 0 0ˆ

.

el

D B A

el el

DB AB

H E D D E B B E A A

V D B B D V B A A B

  

   
 (4.7) 

 

Figure 4.4: (a) Schematic diagram of the model system in eqs. (4.7)-(4.13). The system is 

comprised of a D, B and A electronic state and two oscillators, one coupled to the B state and the 

other to A state.  (b) Diagram showing that the oscillator-electronic state coupling is linear. The 

oscillator state dynamics is dissipative with vibrational relaxation rates 
rel

   . In this work we 

focus on fast coherent ET, where the ET rate is of the order of the vibrational relaxation rates. 
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In the unrelaxed oscillator representation, the vibrational Hamiltonian is  

1 1ˆ
2 2u u

B A

vi u u u u u u

B B B B A A A A

n n

H n n n n n n 
   

      
   

  , (4.8) 

and the electron-vibrational interaction Hamiltonian is 

   ˆ ˆ ˆel vi

B AH B B F R A A F R         
   

, (4.9) 

where R̂  and R̂  are the displacements of the B and A oscillators and BF  and AF  are    

the forces exerted by the electron on the B and A oscillators. The vibronic states                 

of the system are product states. For example, in the unrelaxed representation, 

; , u u

B Ael vi vi el n n  , where el  D , B  or A . Using dimensionless displacements       

for the oscillators in eq. (4.9), i.e., ˆˆ 2 B Bs R m  , ˆˆ 2 A As R m   , the electron-

vibrational coupling terms are   ˆ
BB B a s  and   ˆ

AA A a s , where 

2B B B Ba F m    and 2A A A Aa F m     are in units of energy (Fig. 4.4b).  

The interaction of the B oscillator with the IR field is described by the Hamiltonian 

   
2 2/2, ,

, 0

ˆ ˆ
ˆ ˆ ˆ( ) ( , , ) cosIRtB IR B IR

B IR IR IR IRV t R E t R E e t
R R

  
 

  
      

 
, (4.10) 

where 0E  is the field intensity. 
,

ˆ
B IR  is the vibronic dipole operator, and ( , , )IR IRE t      

represents a Gaussian electric field pulse of frequency IR  centered  at time   with width 

IR . The IR frequency is assumed to be resonant with a vibrational transition of the B 

oscillator. Setting ˆˆ 2s R m  gives    
2 2/2

,
ˆ ( ) cosIRt

B IR IR IRV t a e t
  

   , where the 

IR field-to-mode coupling strength is    0 , 2IR B IR B Ba E R m     (in units of 

energy).  

The effect of vibrational energy transfer and relaxation of the two oscillators, due to 

interactions with the remaining vibrational degrees of freedom, are included in the 

dissipative relaxation terms. The time evolution of vibronic populations and coherences of 

the system is described by a stochastic Liouville equation for the system density matrix 

 ˆ t , given by 
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ˆ
ˆ ˆˆ ˆcoh diss

d t
i L t t L t

dt


   , (4.11) 

where      ,
ˆ ˆ ˆˆ ˆ( ),coh

S B IRL t t H V t t   
 

 is the coherent part and  ˆ ˆdissL t  is the 

dissipative part, chosen to have the Lindblad form that preserves the total probability. The 

dissipative part contains decay rates rel

    between vibrational states   and    of the 

system modes, i.e., 

 † † †

,

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2

rel rel rel rel rel rel relL i            

 

             



   , (4.12) 

where ˆrel rel

       
   (Fig. 4.4b). On the basis of vibronic states in the unrelaxed 

representation, eqs. (4.11) and (4.12) become 

 
 

 

 

; , ; ; ,

,
; , ; ; ,

ˆ ˆ ˆ( ),

1
ˆ ˆ1 1 ; 1, ; 1, ; , ; ,

2

1
ˆ1 1 ; , 1 ; , 1

2

i i j j

i i j j

el n n el n n

S B IR
el n n el n n

rel

B i j i i j j i j i i j j

rel

A i j i i j j i j

t
i H V t t

t

i n n el n n el n n n n el n n el n n

i n n el n n el n n n n el




 



  

  


  
 

 
             

 

              ˆ; , ; , ,i i j jn n el n n
 

  
 
 

 (4.13) 

where the rel

    for ,K B A  are given by  1 1rel rel

n n Kn      [43]. The above Liouville 

equation is solved with and without the intermediate IR excitation, since at time  0t   the 

electronic state is the donor D, and the high frequency oscillators vibrations are in their 

ground unrelaxed states. To connect with the observables in eqs. (4.1)-(4.4), we compute 

the time evolution of the D and A probabilities with and without the IR perturbation             

(  DP t ,  ( )IR

DP t  and  AP t ,  ( )IR

AP t , respectively). 

To perform the necessary calculations we have developed an extensive numerical code (see 

Appendix) that solves the Liouville equation (eq. (4.13)). The code is written in MATLAB 

and its present form is optimized for speed and computational memory usage. Importantly, 

the code is readily expandable, and allows one to increase the number of electronic and 

vibrational states of the system. This gives us the flexibility to adjust the complexity of the 

D-B-A system model. 
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4.4 Parameter Search 

Equations (4.7)-(4.13) contain a large number of parameters: the electronic energies and 

couplings (eq. (4.7)), the frequencies of the oscillators (eq. (4.8)), the electron-phonon 

coupling constants (eq. (4.9)), the molecule-IR pulse coupling (eq. (4.10)), and the 

vibrational decay rates (eq. (4.13)). This parameter space can be partially reduced because 

many of the parameters have restricted ranges for typical molecular structures.  

In the following, we will often compare the electron-vibrational coupling energy, 

2K K K Ka F m    (K=B,A), to the vibrational energy level spacing K . In 

particular, 
K K K K Ka S     where K  is the reorganization energy for 

charging and KS  is the Huang-Rhys factor for the mode K  [44] (Fig. 4.4b). For high-

frequency modes, 1K Ka   , for typical organic species (see below).  

For the IR field-to-mode coupling strength,    0 , 2IR B IR B Ba E R m    , we vary the 

ratio IR B
a  , which is the ratio of the IR field-to-mode coupling strength to the energy-

level spacing between vibrational levels of the mode involved in an IR-induced transition. 

We can partially constrain IRa  by using typical values of 
,B IR R   for IR-active high-

frequency normal modes of organic molecules. 

Several parameters of the model are largely system dependent (the electronic site-energies 

and couplings in eq. (4.7) and the phonon and electron-phonon parameters in eqs. (4.8) and 

(4.9), respectively). These parameters determine the ET mechanism (e.g., deep tunneling, 

resonant tunneling, or thermally-activated hopping). However, their values must be such 

that the D-to-A ET timescale is of the order of or less than the lifetime of the excited ET-

active IR-active mode, otherwise the excited mode energy will be lost before ET takes 

place. To associate the parameter exploration with ET systems that support fast ET, we 

consider the rigid D-Bn-A pi-stacked structures of Therien and co-workers [45] as an 

example.  In these systems, the electron donor is a Zn porphyrin, the acceptor is a quinone, 

and the bridge is comprised of a variable number of phenyl rings connected by naphthalene 

pillars (Fig. 4.5a). These structures are chosen because the photo-induced D-to-A electron 

transfer time scale for the single-bridge structure (2a-Zn) and double-bridge structure (3a-

Zn) are 600 fs and 3 ps, respectively [45] (of the order of typical lifetimes of high-

frequency modes). Further, since we are seeking reversible effects of IR excitation, it is 
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natural to consider rigid systems with high frequency modes that, when excited, do not 

change the structure of the molecule irreversibly. This condition is also satisfied by the 

chosen molecular systems. Thus, we imagine introducing IR-active oscillators (e.g., CN 

groups) to the phenyl of the bridge (Fig. 4.5b) so that one may perform the experiment 

indicated in Fig. 4.1. We intend to use these CN-modified molecules to derive some of the 

parameters for the model indicated in eqs. (4.7)-(4.10). 

 

Figure 4.5: (a) The pi-stacked D-B-A systems that are used as a case study for photo-induced ET. 

The Zinc-porphyrin is the D, the B is comprised of phenyl rings connected by naphthalene units 

and the A is quinone [45]. Photo-induced ET rates are 600 fs for 2a-Zn and 3 ps for 3a-Zn. We 

envisaged adding IR active groups to the B units such as CN in order to probe for IR perturbed ET 

(e.g., as in Fig. 4.1). (b) A CN group substitution to the phenyl of the B. 

 

We briefly describe the computation of model parameters for the CN-modified 2a-Zn 

system (denoted 2a-Zn-CN) in Fig. 4.5, using DFT implemented in the ADF program [46]. 

We used the GGA PBE functional with TZ2P basis sets and the frozen core approximation 

to obtain the energies of the virtual orbitals for the isolated D (porphyrin), B ((naphthalene-

phenyl/CN)–naphthalene) and A (quinone) fragments of the 2a-Zn-CN molecule. We also 

used ADF’s charge-transfer-integral module to compute the electronic couplings between 

the virtual orbitals. The energies obtained for the fragment LUMO orbitals and for the 

electronic couplings between them are shown in Fig. 4.6 (the fragment LUMO orbitals are 

shown in Fig. 4.7). For excited state ET, these LUMO orbitals represent D, and possible B 

and A orbitals for ET. Fig. 4.6 shows that in these pi-stacked systems, 0.2el el

DB ABV V eV   

and / 1el

DB DBV E   ( / 1el

AB ABV E   ). 

(a) 

 Bridge  

modifications  -CN 

 (b)  
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Figure 4.6: Energies of LUMO molecular orbitals of the D, B and A fragments of 2a-Zn-CN (Fig. 

4.5). The red lines represent the charge transfer integrals between these states. All computations 

were performed using the ADF program [46]. 

 

Figure 4.7: The LUMO orbitals of the isolated D, B and A fragments of the 2a-Zn-CN (Fig. 4.5). 

The B LUMO (middle) is delocalized over the phenyl ring and the connecting naphthalenes. 

 

To make contact with the experiments in ref. [45], we also computed the 2a-Zn-CN 

molecule’s absorption spectrum using TDDFT and compared to the experiment using ADF 

with the same methods as described above. The experimental absorption spectrum for 2a-

Zn has a peak centered at ~ 550 ,nm  and the excitation that initiates photo-induced ET is 

centered near this wavelength [45]. The ADF computed spectrum for 2a-Zn-CN contains a 

band at about 585nm  and the corresponding excited states contains HOMO-1/HOMO to 

LUMO+1/LUMO+2 
*   excitations localized on the porphyrin subunit of 2a-Zn-CN. 

These 
*   states resemble the corresponding excited states computed for the isolated 

porphyrin fragment (Fig. 4.7, left), and the   and 
*  orbitals involved are very close to 

the HOMO-1/HOMO and LUMO/LUMO+1 orbitals of the fragment (LUMO and 

LUMO+1 are energetically very close). Further, the computed minimum energy HOMO to 

LUMO transition for 2a-Zn-CN  involves a   orbital HOMO localized on the porphyrin D  

-2.926eV  

0.212el

DBV eV

0.249el

ABV eV

0.00007el

DAV eV

0.288
L LD BE eV  1.984

L LB AE eV 

1.696
L LD AE eV 

-4.622eV  

B (LUMO)  

A (LUMO)  

D (LUMO) 

-2.638eV  

Energy 

D B A 
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subunit (very close to the HOMO of the isolated porphyrin fragment), and a LUMO that is 

localized on the quinone subunit and that approximates the LUMO of the isolated quinone 

fragment (Fig. 4.7 right). Therefore the D, and A orbitals and their energies for 2a-Zn-CN 

ET are well represented by the values computed for the isolated fragments shown in Fig. 

4.6. The D state is energetically higher than the A state ( 0 0

D AE E  in Fig. 4.4), and the B 

electronic states present a tunneling barrier for ET. 

The electron-phonon coupling parameters of our effective model (eq. (4.9)) depend on the 

delocalization of the bridge orbitals occupied by the electron during ET. Although the 

bridge LUMO shown in Fig. 4.7 is delocalized over the phenyl ring and the connecting 

naphthalenes, there are higher-energy bridge virtual orbitals that are more localized on the 

phenyl ring. To obtain representative values for the electron-phonon coupling parameters 

for bridge virtual orbitals with different extents of delocalization, we use the ADF FCF 

module [47-49]. The module computes normal modes and normal-mode reorganization 

energies for electron and hole insertion at the DFT level (using geometry optimization for 

the neutral and the charged molecules).  

In our computations of bridge electron-phonon coupling parameters, we use either a bridge 

fragment that incorporates the central phenyl ring with a CN group and the naphthalene 

units, or a fragment with just the central phenyl ring with a CN group (all capped with 

hydrogens). The high frequency normal modes involving CN group vibrations are the same 

for both bridge fragments and partially delocalize on the phenyl near the CN bond. 

However, the lowest energy virtual orbital that is occupied by the electron in the anionic 

bridge fragment of the ADF computation (the LUMO of the fragment), has different 

localizations for the two bridge types. For the larger bridge structure, the LUMO is 

delocalized over the phenyl ring and the naphthalene units (as in Fig. 4.7). For the smallest 

bridge structure, the LUMO is localized on the phenyl ring (mimicking virtual orbitals of 

the phenyl ring – naphthalene bridge with energies higher than the LUMO bridge of Fig. 

4.7). This methodology allows us to access a range of electron-phonon parameter values 

typical of electron insertion in delocalized and localized bridge virtual orbitals. We find 

that for a bridge virtual orbital delocalized over the phenyl and naphthalene rings (Fig. 4.7, 

middle), the highest B Ba   ratio for a CN localized normal mode is 210B Ba    

(where 0.28B eV  , 0.002Ba eV , 52 10B eV   ). For bridge virtual orbitals that are 

mostly localized on the phenyl ring, the highest B Ba   ratio is 0.4B Ba                      

( 0.28B eV  , 0.11Ba eV , 0.04B eV  ). We use this range of parameters in our model. 
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To obtain electron-phonon coupling parameters for the acceptor, we use the ADF FCF 

module using the A (quinone) fragment. We choose the quinone mode with the highest 

value of the A Aa   ratio ( 0.2A eV  , 0.15Aa eV  and 0.11A eV  ).  

The IR field-to-mode coupling strength    0 , 2IR B IR B Ba E R m     (eq. (4.10)) 

depends on the electric field strength 0E . We consider a typical mid-IR pulsed laser with a 

repetition rate of 1KHz , an energy per pulse of about 10 J , a pulse duration of 

100IR  fs and a pulse diameter of about 50 m .  From the power of one pulse and the 

pulse diameter, we can compute the intensity I of the laser beam and calculate 0E  (using 

2

0 00.5I cE , where 0  is the electric permittivity of vacuum and c  is the velocity of 

light). By relating 
,B IR R   to the integrated absorption intensity A  of the IR-exited mode, 

we find 11

01.464 10 /IR Ba E A    (see Supplement), where IRa  and B  are in units 

of eV, 0E  is in units of V/cm and A  in units of km/mole. Both A  and B  are computed 

for the CN localized mode using ADF. The result is 
23 10IR B

a    , which is quite 

small, as expected for high frequency modes.  

However, if we consider the case where the molecular structure is adsorbed and/or located 

in close proximity to rough metal surfaces, metal island films, or metal particles, the 

molecular IR absorption intensities may be significantly enhanced. This phenomenon of IR 

absorption enhancement is called “surface-enhanced infrared absorption” (SEIRA) (for 

reviews see ref. [50-52]), and the SEIRA absorption intensity is often expressed as 

SEIRA SEIRAA A f  , where 10 1000SEIRAf   . Therefore, the SEIRA effect may allow 

greater flexibility upon varying the magnitude of IRa  in an experiment, 

11

01.464 10 /IR SEIRA Ba E f A   .  We use a conservative value of 40SEIRAf   to bring 

IRa  up to magnitudes that could be accessible by SEIRA experiments. For high-frequency 

CN modes, this enhancement gives 0.2.IR B
a    Since we are considering SEIRA 

experiments, we have to allow the possibility of fast vibrational relaxation of the IR-

excited mode in the simulations. Therefore, we vary 1/ rel

B  from sub-ps (100 fs) to ps 

values. 
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To summarize, we have obtained a set of model parameter values for a class of DBA ET 

systems that perform fast (sub-ps to ps) photo-induced ET. These values will be used         

as a starting point in our numerical exploration of IR-perturbed ET. Using our             

model (eqs. (4.7)-(4.11)), we compute  KP t ,  ( )IR

KP t  (K=D,B,A), and the integrals              

 
0

T

KdtP t  and   ( )

0

T
IR

KdtP t  (K=D,A) that are necessary for computing yields. The time 

T  in the integrals is the time required for the IR-perturbed D, B, and A probabilities to 

return to their unperturbed values (this is always the case since the IR pulse is of finite 

width). In the examples shown in the figures, we report the fractional changes in D and A 

yields computed over finite times ,T    

   

 

( )

0 0

0

T T
IR

D D

D T

D

dt P t dt P t
I

dt P t



 


, (4.14a) 

   

 

( )

0 0

0

T T
IR

A A

A T

A

dt P t dt P t
I

dt P t



 


. (4.14b) 

The large values of KI  suggest that the IR perturbations of the ET rates can be observed 

via yield measurements of reactions that involve either D or A. The IR pulse is always 

applied during the ET event. We choose the initial state with electron on D and the 

oscillators in their unrelaxed ground states ( 0 0u u

B AD ). For the final state, the electron 

is transferred fully to A, the bridge oscillator is in an unrelaxed state, and the acceptor 

oscillator in a relaxed state (
u R

B AA n n ). In all computations we maintain initial state to 

final state resonance which ensures that the unperturbed (no IR) ET rate is ~ps timescale. 

Further, in eq. (4.10), the pulse width IR  is ~100 fs and IR B
a   can vary between  

3x10
-2

 and ~0.2 (the minimum value mimics a solution-phase experiment and the 

maximum value, a SEIRA experiment with ~40 times enhancement, see Supplement). 

B B
a   can vary between ~10

-2
 and ~0.5 (delocalized versus localized bridge orbitals). 
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4.5 Results 

Our simulations show that the effect of IR on the D, B and A probabilities and on the ET 

yields (eq. (4.14)) is negligible for the parameters derived for 2a-Zn-CN, even for high 

IRa  values compatible with SEIRA experiments and for the largest Ba . This is because 

the B LUMO is off-resonant with the D LUMO, thus creating a high tunneling barrier for 

the electron as it transfers from D to A (Fig. 4.6). Therefore, the transferring electron does 

not occupy the bridge with high probability, and the IR excitation of the B oscillator (eq. 

(4.10)) cannot perturb ET even with very strong surface-enhanced fields. A design solution 

to produce stronger IR perturbations of ET is to change the D, B or A moieties so that the 

B LUMO energy lies between the D and A LUMO energies in order to obtain energetic 

resonance ( 0 0 0

D B AE E E  ). In this case, the transferring electron may occupy the bridge 

with high probability.  Several examples of this regime are discussed below. 

Figure 4.8 shows the time evolution of the D, B and A probabilities with and without IR 

for the parameters derived from the computations on 2a-Zn-CN (Fig. 4.5 and 4.6) and with 

a large 0.2IR Ba   . In the simulation we have set 0 0 0

D B AE E E   to mimic the regime 

of ET where the bridge electronic states can be occupied by the transferring electron      

with high probability. The vibrational relaxation time is 1 ps and / 1el rel

BV                             

( / 333el rel

DB BV    and / 338el rel

AB BV   ). The effect of the IR pulse on the yields is 10-65% 

(Table 4.1). Therefore, if the B orbital energy is brought within the D-A energy gap,            

( 0 0 0

D B AE E E  ), the IR-perturbation of the D and A yields can be substantial. This energy 

shift can be achieved in our model compound by adding substituents to the porphyrin ring 

or to the bridge. For example, we performed ADF computations using the GGA PBE 

functional with TZ2P basis to confirm that the bridge LUMO energy can be tuned between 

the D and A LUMO energies by substituting electron-withdrawing groups (e.g., -NO2,          

-CHO, -CN, -CF3) on the phenyl ring. Similarly, the D LUMO can be lifted above the B 

LUMO by substituting electron-donating groups on the porphyrin (e.g., -NH2, -CH3,            

-OCH3) [53]. 
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Figure 4.8: Time evolution of D, B and A probabilities with and without the IR pulse for the model 

in eqs. (4.7) and (4.8) using some of the parameters computed for the 2a-Zn-CN molecule (Figs. 

4.5 and 4.6). The electronic Hamiltonian parameters are: 
0 0DE eV , 

0 0.24BE eV  , 

0 0.57AE eV   and 0.233el

DBV eV , 0.237el

ABV eV . 
0

BE  is brought to a value between 
0

DE  and 

0

AE  while maintaining initial-to-final vibronic state resonance. The vibrational and electronic-

vibrational Hamiltonian parameters are: 0.28B eV  , 0.2A eV  , 0.11Ba eV  and  

0.15 .Aa eV  The vibrational relaxation time scales are ps, 0.0007rel rel

B A eV    . For the 

IR-perturbation, 0.06IRa eV , 0 500t  fs and 100IR  fs.  The effect of IR-excitation is 

significant, giving 0.35DI   and 0.1AI   (eq. (4.14) with 6T  ps). Observe that in this system 

/ 333el rel

DB BV    and / 338el rel

AB BV   . Defining the ET time scale ET  to be approximately the 

time when the unperturbed acceptor probability passes through ~50% ( 0.5AP  ), and 

1 ,rel rel

B B    we have 1000rel

B  fs and 1000ET  fs . 

0t (fs) DI  AI  

500 0.344 -0.077 

700 0.399 -0.093 

1000 0.462 -0.096 

1500 0.549 -0.105 

2000 0.604 -0.118 

3000 0.654 -0.118 

4000 0.668 -0.112 

5000 0.671 -0.113 

Table 4.1: D and A fractional yields (eq. (4.14)) as a function of IR pulse delay 0t  for the system 

of Fig. 4.8 (vibrational relaxation time of ps, / 1el rel

BV   ). The effect of the IR-pulse is larger 

for the D yield and it is maximized for the longer time delays. 
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To demonstrate the robustness of the above result to changes in system parameters, Figs. 

4.9 and 4.10 show the same system as in Fig. 4.8 with a vibrational relaxation time of 1 ps, 

but with different values for the electronic couplings that lower the ratios of /el rel

BV   

while maintaining / 1el rel

BV   . We see that the ET-perturbation effect is relatively robust 

to changes in elV  in the regime / 1el rel

BV   , especially with respect to DI . Further, if the 

electronic couplings are not symmetric ( el el

DB ABV V ) the IR-perturbation to the D yield can 

be enhanced by up to 40% for short IR-pulse delay times 0t  (Table 4.3). 
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Figure 4.9: As in Fig. 4.8 but with weaker couplings ( 0.003el

DBV eV , 0.002el

ABV eV ), such that 

the ratios /el rel

BV   are lowered ( / 4el rel

DB BV   , / 3el rel

AB BV   ). The pulse is applied at 

0 2000t  fs, and the other parameters are the same as in Fig. 4.8. The effect of IR-excitation is not 

very different from Fig. 4.8 for the D fractional yield, 0.13DI   , but it is reduced for the A 

fractional yield, 0.04AI  . For this system 1000rel

B  fs, and 7600ET  fs.  

 

0t (fs) DI  AI  

200 -0.147 0.045 

2000 -0.130 0.040 

4000 -0.098 0.025 

6000 -0.073 0.015 

8000 -0.053 0.008 

 

Table 4.2: D and A fractional yields (eq. (4.14)) as a function of IR pulse delay 0t  for the system 

of Fig. 4.9 (vibrational relaxation time of ps, / 1el rel

BV   ). The effect of the IR-pulse is reduced 

compared to the case of Table 4.1. 
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Figure 4.10: As in Fig. 4.9 but with very asymmetric inter-site coupling ( 0.003el

DBV eV ,

0.02el

ABV eV , / 4el rel

DB BV   , / 30el rel

AB BV   ). The pulse is applied at 0 2000t  fs and the 

other parameters are the same as in Fig. 4.9. The effect of IR-excitation is comparable to Fig. 4.9, 

with 0.21DI    and 0.04AI  . For this system 1000rel

B  fs and 1870ET  fs.  

 

0t (fs) DI  AI  

200 -0.404 0.083 

1000 -0.343 0.078 

2000 -0.216 0.032 

4000 -0.080 0.008 

Table 4.3: D and A fractional yields (eq. (4.14)) as a function of IR pulse delay 0t  for the system 

of Fig. 4.10 (vibrational relaxation time of ps, / 1el rel

BV   ). The effect of the IR-pulse is larger 

for the D yield and it is maximized for the shorter time delays (35-40%). 

 

Figure 4.11 shows the influence of faster-than-ps vibrational relaxation of the B oscillator         

(1/ 164rel

B  fs), keeping the other parameters of the system as in Fig. 4.8. In this case, the 

electronic couplings are symmetric and / 60el rel

DB BV   , / 60el rel

AB BV   . The effect of 

increasing the vibrational relaxation rate while keeping / 1el rel

BV    is to enhance the IR 

perturbation for the D yield to values close to 70% ( 0.7DI  , 0.1AI   ). This 

enhancement is robust with as the IR-pulse delay time changes (Table 4.4). Figure 4.12 

shows the same system as in Fig. 4.11 where the A-B coupling is reduced to introduce a 

coupling asymmetry ( / 60el rel

DB BV    and / 5el rel

AB BV   ). The asymmetry, as in the case 
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of Fig. 4.10 (Table 4.3), enhances the yields with 0.93DI   and 0.19AI   . The IR 

perturbations are largely independent of the IR-pulse delay times (Table 4.5). 
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Figure 4.11: As in Fig. 4.8 but with faster vibrational relaxation time scales of 164 fs                              

( 0.004rel rel

B A eV    ), giving / 60el rel

DB BV    and / 60el rel

AB BV   . The pulse is applied at 

0 500t  fs and the other parameters are the same as in Fig. 4.8. The effect of IR-excitation on the 

D yield is large,  0.7DI   ( 0.1AI   ). For this system 164rel

B  fs and 207ET  fs.  

 

0t (fs) DI  AI  

200 0.598 -0.106 

500 0.698 -0.112 

700 0.739 -0.122 

1000 0.751 -0.126 

Table 4.4: D and A fractional yields (eq. (4.14)) as a function of IR pulse delay 0t  for the system 

of Fig. 4.11 where the vibrational relaxation time is reduced to 164 fs and / 1el rel

BV   . The 

effect of the IR-pulse is enhanced for the D yield compared to the case of Table 4.3 and it remains 

relatively constant as a function of the delay time. The yield perturbation is of the order of 70 % for 

D and 10% for A. 
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Figure 4.12: As in Fig. 4.11 (164 fs vibrational relaxation) with asymmetry in the electronic 

couplings giving / 60el rel

DB BV    and / 5el rel

AB BV   . The pulse is applied at 0 500t  fs. For this 

system 164rel

B  fs and 292ET  fs and 0.93DI   and 0.19AI   .  

 

0t (fs) DI  AI  

200 0.954 -0.171 

300 0.818 -0.150 

500 0.931 -0.189 

700 0.963 -0.216 

1000 0.883 -0.206 

Table 4.5: D and A fractional yields (eq. (4.14)) as a function of IR pulse delay 0t  for the system 

of Fig. 4.12 with unsymmetric electronic couplings and / 1el rel

BV    (vibrational relaxation time 

of 164 fs). The effects of the IR-pulse remain relatively constant as a function of the delay time. 

The yield perturbation is of the order of 100% for D and 20% for A. 

 

In the above simulations, /el rel

DB BV   and /el rel

AB BV   are greater than unity. This is due to 

the relatively high coupling values (imposed by the pi-stacking DBA arrangements in the 

molecules used as an example), and the sub-ps to ps lifetime of the bridge CN vibrational 

mode excited by IR. If these ratios are reduced, the effect of the IR on the D and A yields 

is also reduced. In Fig. 4.13, we show the effect of reducing /el rel

BV   to values less than 

1 (the other parameters are the same, as in Figs. 4.11 and 4.12). The IR-perturbation to the 

ET yields drops to 10% and 4% for D and A, respectively (eq. (4.14)). Table 4.6 shows 

that the 10% perturbation persists for all time delays of the IR pulse. 
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Figure 4.13: As in Figs. 4.11 and 4.12 (vibrational relaxation time scales of 164 fs), but with 

reduced couplings giving / 0.75el rel

DB BV   and / 0.5el rel

AB BV   . The pulse is applied at 

0 3000t  fs, and the other parameters are the same as in Fig. 4.12. The effect of IR-excitation is 

greatly diminished, 0.1DI   and 0.04AI    because the ratios /el rel

BV   are below unity. For 

this system 164rel

B  fs and 6326ET  fs.  

 

0t (fs) DI  AI  

200 -0.079 0.015 

1000 -0.012 -0.037 

3000 0.122 -0.039 

5000 0.139 -0.038 

6000 0.132 -0.035 

Table 4.6: D and A fractional yields (eq. (4.14)) as a function of IR pulse delay 0t  for the system 

of Fig. 4.13 (vibrational relaxation time of 164 fs). The effects of the IR-pulse on the yields are 

reduced compared to Tables 4.4 and 4.5 because / 1el rel

BV   . 

 

A general trend is observed in Figs. 4.8-4.13 if we define the ET time scale ET  to be 

approximately the time when the unperturbed acceptor probability passes through ~50%          

( 0.5AP  ), and we compare this time to the vibrational relaxation time of the IR-perturbed 

B mode, 1rel rel

B B   . For Figs. 4.8 and 4.10-4.12, rel

B ET   (the time scales of ET and 

vibrational relaxation are of the same order), and for Figs. 4.9 and 4.13, rel

B ET   (the 

vibrational relaxation of the B mode is faster than ET). In Figs. 4.8 and 4.10-4.12               

the application of the IR perturbation targeting the B mode leads to a significant                

PANAYIO
TIS ANTONIO

U



105 
 

IR effect on the D, A populations and the yields ( 0.1 0.96,  0.01 0.22D AI I  ).            

In contrast, in Figs. 4.9 and 4.13, the IR-perturbation effect is much smaller                            

( 0.01 0.15,  0.01 0.05D AI I  ). 

Our simulations indicate that IR perturbations of ET yields can be substantial if the 

electron-vibrational coupling is significant (up to the realistic value of 0.5B B
a   ) and 

if the transport mechanism is resonant through-bridge tunneling with / 1el rel

BV   , 

provided that the IR-perturbation is strong (e.g., 0.2IR B
a   ). Such strong IR 

perturbation is readily achievable via SEIRA experiments. The B Ba   ratio is never 

taken to be much greater than unity because this would give unrealistic electron-vibrational 

coupling constants Ba  given that B  is always a few tenths of eV (as we are considering 

high frequency ET-active modes that lie above the mode continuum). 

In summary, we have shown that in D-B-A systems where the ET mechanism is coherent 

resonant tunneling, the ET rate can be perturbed during electron transfer by IR excitation 

of a high-frequency B ET-active mode. The ET rate perturbation is enhanced if the ET 

system’s  D-B and A-B electronic couplings are sufficiently large such that the overall ET 

time is of the order of the vibrational relaxation time of the system’s IR-perturbed mode. 

These conditions are valid for systems with realistic electron-vibrational coupling values      

( 1B Ba   ), and they can give up to 100% changes in the ET yields if the IR-pulse 

perturbation is strong, within the limits that can be achieved by SEIRA experiments.  

 

4.6 IR perturbation of slow ET rates with low-frequency ET-active vibrations 

The typical vibrational-relaxation and energy-redistribution times of excited vibrational 

modes in molecules are sub-ps to a few ps. Most bridge-mediated ET time scales are much 

longer than ps. In this regime of slow ET (slow with respect to vibrational relaxation), 

bridge ET-active modes (modulating B electronic state energies and/or D-B (A-B) 

electronic couplings) may have periods much longer than ps. Such “low frequency” ET-

active modes lie deep in the mode continuum of the molecule and are very difficult to 

excite directly and selectively by IR. Even if these modes could be excited, they would be 

likely to lose their excess energy to the mode continuum on a very fast time scale (sub-ps). 

Therefore, to perturb the ET rate using the low-frequency ET-active modes, the latter must 
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serve as a sink of excess energy supplied to the system via other high-frequency modes 

that can be selectively excited by IR. ET must be initiated when the excess vibrational 

energy has reached the ET-active modes, such that the ET reaction will take place in a 

nonequilibrium ensemble of these modes. Further, the ET-active modes should be able to 

retain the excess energy for a sufficiently long time to sustain the nonequilibrium ET 

ensemble. 

To illustrate this point, consider bridge-mediated ET where the ET mechanism is through-

bridge elastic tunneling and the ET timescales are much longer than ps [1,2,11]. Often, the 

bridge-mediated D-A coupling is very sensitive to bridge vibrations [54,55], e.g., when the 

relevant electron-tunneling pathways contain through-space or hydrogen bond steps (i.e., 

soft vibrations) [9-12,56,57]. In this case, where access to a wide range of structures           

is possible and the time scale of interchange is rapid, the rate is given by 

  22
D A DA FCeq

k T 

 , where FC  is the Franck-Condon factor and 

2

DA eq
T  is the 

thermal equilibrium average of 2

DAT . Consider high-frequency IR-active modes that transfer 

excess energy to the ET-active modes that modulate 
DAT  (when the former are excited by 

IR) on a time scale of IVR  (Fig. 4.14a). If ET is initiated at a time IVR  after IR excitation, 

the ET rate is  ( ) 22
D A

IR

DA FCneq
k T 


 , where 

2

DA neq
T  is an average over a 

nonequilibrium ensemble (with respect to the ET-active modes) which modulates the D-A 

coupling (Fig. 4.14b). 

Therefore, the ET system must have vibrations that modulate ET pathways, and these 

vibrations must also be sinks for the excess energy supplied to the system by the excitation 

of high-frequency IR-active modes. It is thus essential to have computational tools that can 

identify the molecular electron tunneling pathways, the ET-active modes that modulate 

them, the IVR pathways that deactivate the ET-active modes, and the corresponding IVR 

timescales, IVR . The computation of time-dependent tunneling pathways and 
2

DA eq
T  is 

quite familiar [10], but the computation of IVR pathways and IVR time scales remains a 

challenging task [40-42]. Combining electron tunneling and IVR pathway design in order 

to maximize 
2

DA neq
T  is possible in the context of classical nonequilibrium molecular 

dynamics simulations (that model the effect of IR excitation) coupled to electronic 

structure computations on DBA structures derived from the nonequilibrium ensemble (the 

subject of a future paper [58]).  
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Figure 4.14: The nonadiabatic ET time scales are much slower than vibrational energy 

redistribution time scales. Due to the long distance between D and A, low-frequency bridge modes 

modulate the bridge-mediated D-A tunneling matrix element. Low frequency modes cannot be 

selectively excited by IR and lose their excitation energy very fast to the continuum. In this 

situation a design principle for perturbing the ET rate with IR is to use high-frequency IR-active 

modes that dump their energy to the low-frequency ET-active modes (a). If this energy transfer is 

of a time scale IVR , the IR excitation must be applied at time IVR  prior to the UV (VIS) excitation 

that initiates ET. This strategy will create a nonequilibrium bridge structural ensemble and a 

corresponding non-equilibrium DAT  ensemble described by a probability density  neq

DAP T  (Fig. 

4.14b, upper). If  neq

DAP T  is sufficiently different from the thermal (equilibrium) probability 

density  eq

DAP T  (Fig. 4.14b, lower), the nonadiabatic ET rate will change upon excitation with 

IR.  

 

4.7 Conclusions 

Previous theoretical studies of IR-pulse control of ET rates [23-26] motivated experiments 

on small D-B-A systems that demonstrate that ET rate modulation is possible by targeting 

specific bridge ET-active modes [27,29]. These experiments showed different levels of IR-

induced modulation and the challenges now are to understand the parameter regimes that 

enhance the magnitude of the effect and to suggest ET systems and experimental designs 

that optimize ET rate control. Another central challenge is to understand the influence of 

vibrational energy redistribution (and dephasing) that is likely to decrease the influence of 

vibrational excitation of ET-active modes on ET rates and yields.  To this end, we have 

explored the feasibility of perturbing bridge-mediated ET by exciting ET-active bridge 

(a) 

UV pump 

IR  

D  

B  

A 

τIVR  

time 

IR  

τIVR  

UV pump (ET initiation) 
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vibrations with a single IR pulse using a density matrix (Lindblad-type) model that takes 

into account vibrational relaxation. We also presented experimental observables, pulse 

sequences and molecular architectures that may enable measurement of IR-pulse 

perturbations to bridge-mediated ET rates. The suggested molecular architectures may also 

allow control of ET pathways in D-B-A systems via selective IR excitations of bridge 

modes.  

In this work, we explored two scenarios for IR control, one for slow nonadiabatic ET rates 

(slower than vibrational relaxation times) and the other for fast ET rates (of the order of 

vibrational relaxation times). The main focus of our study was the fast ET rate regime 

(~ps) where the aim was to perturb ET “as the electron transfers” by directly exciting an 

IR-active ET-active bridge mode with a subpsec period and a frequency above the mode 

continuum. In this fast ET regime, vibronic coherences are likely to influence ET as long 

as the solvent environment does not destroy such coherences on time scales faster than the 

ET time scale. The IR perturbation changes the ET rate by directly affecting these 

coherences. 

We find that two important generic conditions need to be satisfied to have a measurable 

IR-perturbing effect on the ET rate “as the electron transfers”. First, the B electronic state 

must be occupied with substantial probability during ET. Since the IR pulse weakly 

perturbs the bridge oscillator, and the bridge oscillator interacts with the occupied B 

electronic state, the state should have large occupation during ET in order to perturb ET 

sufficiently with IR. This means that the B state cannot create a very deep tunneling barrier 

for the transferring electron. The second condition relates to the competition between 

vibrational relaxation and ET. If the timescale of ET into B (from D) and out of B (to A) is 

slower than typical vibrational relaxation times of the B oscillator excited state, effects of 

the IR pulse on ET as the electron transfers will be diminished. By the time ET to (and 

from) the bridge takes place, the IR-excited oscillator will have relaxed to the ground state 

and the IR pulse will not influence ET. 

This timescale-competition condition can be roughly described as follows: if the D-B 

system is isolated by turning off the B-A electronic coupling then the D-to-B ET timescale 

should be comparable to or shorter than the B oscillator vibrational relaxation timescale. 

The same should hold for the B-to-A ET time scale if the B-A system is isolated by turning 

off the D-B electronic coupling. It must be emphasized that in this work we are not 

analyzing a simple activation (heating) effect of the IR pulse. That is, if B vibrational 
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relaxation is fast and it takes place before ET from B-to-A, then IR excitation of B after 

vibrational relaxation could activate ET to A. The regime studied here is different; it is the 

IR-pulse perturbation (disturbance) of coherent ET prior to or during vibrational relaxation. 

For typical and moderate bridge electron-vibrational couplings, the IR-perturbation effect 

is substantial only for relatively strong IR fields that are accessible via surface enhanced 

infrared absorption settings. An alternative to surface enhanced IR for augmenting the 

vibrational excitation of the bridge (albeit less specifically) is to attach heat source 

molecules to the bridge [59]. These molecules (e.g., azobenzene) undergo rapid internal 

conversion when excited electronically, damping the excess electronic energy to 

neighboring vibrations.  

For the slow ET rate regime modulated by low-frequency ET-active bridge modes, IR-

excitation of high frequency bridge modes should be designed to change the thermal ET 

ensemble to a nonequilibrium ensemble of the ET-active modes. This is possible only if 

the ET-active modes serve as a sink for the excess vibrational energy supplied by the IR-

pulse. Alternatively it is interesting to explore whether THz pulses that directly excite the 

low frequency ET active modes can be used to perturb ET. Designing ET systems with 

such characteristics requires realistic simulations of IVR pathways coupled to ET 

pathways, and such simulation protocols are the subject of a follow up paper. 

 

4.8 Supplement 

An ultrafast pulsed laser periodically emits pulses of energy, with a specific repetition rate 

[60] (Fig. 4.15). Typical mid-IR pulses of interest can be generated with a repetition rate of 

1KHz  (a pulse every 1ms , Fig. 4.15), with energy per pulse of about 1 10 J  and pulse 

duration 100IR  fs and with pulse diameter of about 50 m . In the D-B-A systems 

under study the ET time scale is of order ps. After ET initiation, and within a ps time 

interval, we assume that one IR pulse can be applied, centered at 0t  (where 0t   in eq. 

(4.10)). In order to calculate the power of one pulse, we divide the generated pulse energy 

with the pulse duration, which is described by its width .IR  From the power of one pulse 

and the pulse diameter we can compute the intensity I of the laser beam (power per unit 

area). The intensity is then set equal to 2

0 00.5I cE , where 0  is the electric permittivity 

of vacuum, c  the velocity of light and 0E  is an average of the electric field strength. Using 
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this latter equation and the previously computed value of I  we can derive a value for 0E  

in units V/cm that corresponds to the pulse characteristics. 

 

Figure 4.15: Representation of the generated pulses. K : number of pulses in the time interval kt . 

 

If we assume Beer’s law (
0

aCI I e ), the integrated absorption intensity of an infrared 

transition is defined as [61] 

  01
ln

band band

I
A a d d

C I
  

 
   

 
   (4.15) 

where 0I  is the intensity of radiation incident on the sample at wavenumber  , I  is the 

transmitted intensity, a  is the absorptivity, C  is the sample concentration and  the path 

length. The range of integration is over a spectral region of interest. 

The integrated absorption intensity of the ith fundamental vibrational band, iA  in 

/km mole , is related to the dipole moment derivative with respect to the ith mass-weighted 

normal mode coordinate, iQ  by [46,61,62] 

2

2

0

1

4 3

A i IR
i

i

N g
A

c Q

 



 
  

 
 (4.16) 

where AN , c  and ig  are Avogadro’s number, the velocity of light and the degeneracy of 

the ith band, respectively, and 04  permits use of SI units. 

Time 

1 K 2 

tk 
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In our models we defined the IR pulse perturbation as (eq. (4.10)) 

 0 , 2 .IR B IR B Ba E R m     Using eq. (4.16) where 
i BQ m R  to solve for 

, ,B IR iQ   and substituting into IRa , gives  

11

01.464 10 /IR i Ba E A    (4.17) 

in units of eV. 

We use this equation to compute IRa  with the value of 0E  as derived from the pulse 

characteristics above, and with iA  and B  values computed for the CN normal mode of 

interest using the ADF normal mode module. This gives the lowest limit of 

2/ 3 10 .IR Ba      

To obtain upper limits for /IR Ba   we consider the surface enhancement infrared 

absorption (SEIRA) effect. This effect is described by introducing an enhancement      

factor for the molecule’s specific absorption intensity ( SEIRA

i i SEIRAA A f ), where 

10 1000.SEIRAf    Therefore, taking into account the SEIRA effect,   

 11

01.464 10 /IR SEIRA i Ba E f A     (4.18) 

where IRa  and B  are in units of eV, 0E  is in units of V/cm  and iA  in units of km/mole. 

We use 40SEIRAf   (a conservative value) to obtain the upper limit of / 0.2.IR Ba     
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Chapter 5: Dexter Energy Transfer Pathways 

 

Energy transfer with an associated spin change of the donor and acceptor, Dexter energy 

transfer, is critically important in solar energy harvesting assemblies, damage protection 

schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer 

between chemically linked donors and acceptors is bridge mediated, presenting an enticing 

analogy with bridge-mediated electron and hole transfer. However, Dexter coupling 

pathways must convey both an electron and a hole from donor to acceptor, and this adds 

considerable richness to the mediation process. We dissect the bridge-mediated Dexter 

coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. 

Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances 

or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole 

both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy 

gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-

particle pathway framework developed here shows how Dexter energy-transfer rates 

depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and 

quantum interference among pathways. 

A compelling challenge in supramolecular chemistry is to direct the flow, fission, and 

fusion of excitons in molecular assemblies [1–4]. When donor or acceptor species undergo 

a spin change during energy transfer, a two-particle or Dexter interaction enables the 

energy transfer because the Förster (dipole–dipole) coupling is spin forbidden [5]. 

Developing design principles for Dexter energy transfer is a considerable challenge 

compared with that of single-electron (hole) transfer because of the combinatorial growth 

in the number of mediating (virtual) two-particle states with system size [6–9]. As with 

single-particle (electron or hole) transfer, Dexter energy transfer arises from donor–

acceptor coupling mediated by molecular species [10]. Here, we develop a coupling 

pathway theory for bridge-mediated Dexter energy transfer and explore the relative 

contributions of bridge and donor–acceptor charge-transfer excitons to the transport. 

A wide variety of critical chemical systems rely on bridge-mediated Dexter transfer of 

triplet excitons. The lowest-energy electronic excited states of transition metal complexes 

used for solar-energy harvesting are often high spin, and the excitation energy usually 

flows to a low-spin ground state acceptor [3]. In the electro-optics underpinning light-
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emitting diodes based on metal-containing chromophores, the exchange of energy between 

low- and high-spin excited states is crucial for device efficiency [11]. As well, protection 

of biological light-harvesting machinery from damage induced by sensitized singlet 

oxygen formation relies on a Dexter energy transfer quenching mechanism [12]. The 

strong dependence of the Dexter coupling on the bridge structure indicates that triplet 

energy-transfer materials offer additional control (compared with the case for Förster 

energy transfer) through the manipulation of the bridge-mediated coupling. 

Dexter’s 1953 analysis of spin-forbidden excitation energy transfer between donor (D) and 

acceptor (A) moieties in contact invoked coupling via the electron–electron Coulomb 

operator [5]. However, most Dexter systems of interest today involve chemically bridged 

species. In addition to the two-electron interaction identified by Dexter, one-electron 

interactions (applied to second or higher order) also couple D to A. The term “Dexter 

coupling” is now understood to arise from both one- and two-electron interactions that may 

be mediated by a bridge (see Section 5.1), and two-state approximations to the Dexter 

coupling that include both contributions are well known [13]. Pioneering kinetic studies of 

bridge-mediated Dexter energy transport in molecules have been reported by Closs et al. 

[14], Albinsson et al. [15], Harriman et al. [16], and Spieser [10]; and considerable recent 

attention has turned to Dexter energy transfer at nanoparticle–molecule junctions [4]. 

Despite the crucial role played by bridge-mediated Dexter energy transfer, a general 

framework to assess coupling pathway-mediated Dexter interactions and their interferences 

is lacking. We formulate a theory for bridge-mediated Dexter coupling pathways that 

allows the appraisal of specific coupling mechanisms. 

Our description of Dexter coupling pathways relies on a configuration-interaction single-

excitations (CIS) framework, motivated by schemes used to assess bridge-mediated 

interactions for single-electron/hole transfer [6,7], adapted here to track the coupled motion 

of two particles. Pathway decompositions allow molecular-level understanding of energy, 

orbital symmetry, and interference effects on energy-transfer rates. The framework 

developed here allows analysis of Dexter-pathway coupling mechanisms in the language of 

virtual exciton pathways mediated by the bridge. We find that Dexter pathways through 

short bridges with high tunneling-energy gaps are dominated by charge-transfer virtual 

exciton intermediates (donor–acceptor charge-transfer excitons (DAE)) with one particle 

(electron or hole) on D and the other on A. The coupling in this short-distance high-barrier 

regime is consistent with an early conjecture of Closs et al. [14] and with the picture of 

Harcourt et al. [13]. At longer distances or lower bridge energy gaps, however, bridge-
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localized virtual excitons (without DAE intermediates) dominate the Dexter coupling. 

These virtual excited states of the bridge, or bridge excitons (BE), are characterized by 

electron-hole pairs localized on the bridge. We provide formulas to assess the BE 

contribution to the Dexter coupling, because the earlier theories did not account for these 

BE intermediates. 

We denote the donor, bridge, and acceptor chemical fragments in the energy transfer (EnT) 

system as D, B, and A, respectively. To describe the electron/hole charge distributions in 

these regions we use a  ,   notation. For an exciton with both the hole and the electron 

localized in a single D, B, or A region, we use R  (R=D, B, or A, where the plus sign 

indicates a hole, and the minus sign indicates an electron). For an exciton with electron and 

hole localized in separate regions R  and R , we use R R  . A specific exciton state 

(configuration) with hole in orbital i  and excited electron in orbital x  is denoted ,i x . 

Specific excited-electron orbitals x , y  are denoted with the *  notation. 

 

5.1 Two-State Energy Transfer Kinetics 

Nonadiabatic triplet-to-triplet (tr) EnT is well described in the golden-rule approximation 

when the (resonant) donor and acceptor electronic transitions are at much lower energies 

than all other electronic transitions. The golden rule rate is 

22
tr FCk V


 , (5.1) 

where trV  is the bridge-mediated donor–acceptor coupling and FC  is the Franck–Condon 

factor associated with molecular and medium polarization that brings the donor and 

acceptor excitation energies into coincidence [17,18]. 

A commonly used expression for the bridge-mediated Dexter coupling is given in eq. (5.2) 

[19]. We find that eq. (5.2) does not capture these crucial BE contributions to the Dexter 

coupling, and we provide more general formulas that account for the BE contributions. The 

approximate Dexter coupling between D-centered  *,D D  and A-centered  *,A A  

triplet excited states is 
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* *

* *

ˆ ˆ
2

h e

tr

CT

D V A D V A
V DA D A

E



. (5.2) 

D , *D , (and A , *A ) denote hole-occupied and electron-occupied diabatic orbitals 

that are mostly localized on the D (and A) fragments with tails on B. These orbitals can be 

written in a basis of zeroth-order hole or electron orbitals that are fully localized on           

D, B, or A fragments; i.e., br

DD d  , *

* * br

D
D d  , br

AA a   and 

*

* * br

A
A a  , where d   *d  and a   *a  are the zeroth-order D-localized and 

A-localized basis orbitals and br  are the bridge tails. 

In equation (5.2), ˆ hD V A  is the bridge-mediated hole-tunneling matrix element 

between D  and A , and * *ˆ eD V A  is the bridge-mediated electron-tunneling matrix 

element between *D  and *A  ( ˆ hV  and ˆ eV  denote the hole- and electron-tunneling 

operators of the one-electron Hamiltonian). CTE  is the energy difference between the 

triplet donor–acceptor charge-transfer exciton state *,D A  (or *,A D ) and the          

triplet donor state *,D D . In the CT states, a hole occupies the D  A                    

orbital and an electron the *A  *D  orbital.  * *DA D A  is the Coulomb exchange 

integral          * *

* * 3 3 1

1 2 1 1 12 2 2D A D A
DA D A k d rd r r r r r r      ( 2

04k e  ) [5,19]. 

Equation (5.2) indicates that *,D D  and *,A A  are coupled by both a one-electron/hole 

Hamiltonian operator (to second order) and a two-electron Coulomb Hamiltonian operator 

(to first order) [5,19]. 

In eq. (5.2), ˆ hD V A  and * *ˆ eD V A  are the couplings that cause hole or electron D-to-

A CT reactions mediated by through-bridge tunneling [7]. There are numerous approaches 

to compute these couplings [6,17,18,20]. Diabatization approaches compute the diabatic 

orbitals D  *D , and A  *A  and then obtain the matrix elements of ˆ hV  and ˆ eV  

[14,21–23]. Green’s function (GF) strategies based on the Löwdin projection         

technique [7] express ˆ hD V A  and * *ˆ eD V A  in terms of the zero-order d , *d  and 

a , *a  orbitals mentioned above, i.e., ˆ hD V A  ˆˆ ˆh h

Bd V G V a  and * *ˆ eD V A 
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* *ˆˆ ˆe e

Bd V G V a , where  
1

ˆ ˆ ˆ
B t B BG E I H



   is the single-particle bridge GF ( ˆ
BH  is the 

bridge Hamiltonian and tE  is the electron- or hole-tunneling energy). 

The GF approach is useful to interpret ˆ hD V A   * *ˆ eD V A  as a sum of through-

bridge hole (electron)-coupling pathways [7], symbolized by D BA D B A D BA                          

( D BA D B A D BA     ). Thus, the first term in eq. (5.2) describes the contribution      

of single-particle transfer (SPT) pathways to the triplet-EnT coupling                                    

trV  ( D BA D B A D BA DB A DBA          and D BA D B A D BA     

DB A DBA   ). Equation (5.2) suggests that this contribution always involves DAE 

virtual intermediates with charge distributions D BA   or D BA  . We formulate a general 

GF approach to analyze trV  in terms of more general triplet exciton tunneling pathways. 

We show that eq. (5.2) excludes an important class of triplet BE virtual mediating states      

( DB A). For long bridges or low bridge tunneling barriers, these BE pathways dominate 

the Dexter coupling. 

 

5.2 Characteristics of the Dexter Coupling 

Experimental and theoretical studies of Dexter transport have been carried out in rigid and 

flexible molecules, in polymers, in polymer assemblies, and in metal–organic frameworks 

[3,24,25]. Dexter rates drop approximately exponentially with distance [10], and eq. (5.2) 

suggests a distance decay constant equal to the sum of the electron and hole superexchange 

decay constants [14]. Experimental studies of Harriman found that some Dexter rates 

decay with exponential decay constants as small as 0.1 Å
−1

 for Ru(II)–Os(II) terpyridyl 

complexes linked by 1,4-diethynylene-2,5-dialkoxy-benzene bridges [16]. Albinsson et al. 

found exponential decay constants of 0.45 Å
−1

 for phenylene ethynelene linked porphyrins 

[15]. For alkane linkers, Closs et al. found large decay exponents, 2.8 Å
−1

 [14]. Computed 

decay constants as large as 3.4–3.8 Å
−1

 were reported by Curutchet and Voityuk for 

through-solvent Dexter transport [26]. Experimental and theoretical studies clearly indicate 

that Dexter couplings depend on the structure and energetics of the bridge. 

 
PANAYIO

TIS ANTONIO
U



120 
 

 

Figure 5.1: (A) Schematic view of the electron-then-hole DAE pathways (upper route via 
*,d a ), 

hole-then-electron DAE pathways (lower route via 
*,a d ), and mixed electron/hole bridge-

exciton BE pathways (routes through the center block of the bridge-exciton states  *,n mb b ). The 

DAE pathways (upper and lower routes, dotted lines) avoid the BE manifold  *,n mb b . The BE 

pathways (dashed lines to and from the center block) avoid 
*,d a  and 

*,a d . (B) Schematic 

diagrams of hole- and electron-occupied orbitals in the DAE state 
*,d a  and in a BE state 

*

1 2,b b . For example, NLMO orbitals 1b  and 
*

2b  could correspond to the first   bond and the 

second 
*  antibond of the alkane bridge in Fig. 5.2A. 
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5.3 CIS Model in a Localized Basis 

We use a CIS approach [27] to describe the tr Dexter coupling. CIS methods were found to 

describe tr EnT couplings accurately in earlier studies [21–23]. We use an orthogonal basis 

of natural localized molecular orbitals (NLMOs) that are mostly two-center bonding (e.g., 

  and  ) and two-center antibonding orbitals (e.g., 
*  and 

* ) with occupations of two 

and zero, respectively [28]. A triplet CIS configuration is defined as †

0
ˆ ˆ,

x i
i x  

 
  , 

where ˆ
i




 destroys a spin-down electron (creates a hole) in occupied NLMO spatial orbital 

i    i r , and †ˆ
x




 creates a spin-up electron in virtual NLMO spatial orbital x    x r . 

0  is a ground-state restricted Hartree–Fock Slater determinant (linear combinations of 

,i x  must be used for triplet states [29]). 

The NLMO representation for i  and x  produces an intuitive interpretation of a triplet 

basis state ,i x  as an exciton with hole and electron localized on different (D, B, A) 

molecular segments. The ,i x  basis set can be divided into different groups (Fig. 5.1). 

*,d d  and *,a a  describe triplet exciton states with the electron and hole entirely 

localized in D and A regions, respectively. *,d a  and *,a d  describe DAE states with a 

hole on D (orbital d ) and an electron on A (orbital *a ) or the reverse (an electron on 

*d  and a hole on a ). There is a set of states  *, nd b  with an electron on B (one of the 

 *

nb  NLMOs) and a hole on D, as well as a set  *, na b  with an electron on B and a hole 

on A. (In Fig. 5.1, braces    denote multiple ,i x ). The  *,nb d  and  *,nb a  sets 

contain all states with a hole on B and an electron on either D or A. Finally,  *,n mb b  

contains all BE basis states with both an electron and a hole on B. We establish a 

framework to understand how these sets of configurations mediate the Dexter coupling 

(Fig. 5.1). 

The Hamiltonian elements among CIS basis states are [29] 

 , , , , ,
ˆ, ,ix jy i j x y x y i jH i x H j y F F ij xy     , (5.3) 
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where 
,i jF  and 

,x yF  are Fock matrix elements that arise from the (mean field) Hartree–

Fock theory. Each diagonal Fock matrix element 
,i iF  (

,x xF ) corresponds to the energy of 

the NLMO i  ( x ); each off-diagonal Fock matrix element 
,i jF  (

,x yF ) corresponds to the 

electronic interaction between orbital i  and orbital j  (orbital x  and orbital y ) [28,29] 

         3 3 1

1 2 1 1 12 2 2i j x yij xy k d r d r r r r r r     , (5.4) 

( 2

04k e  ) are Coulomb matrix elements. It is useful to separate the CIS Hamiltonian 

matrix elements (eq. (5.3)) into diagonal 
 ˆ di

h  and off-diagonal V̂  parts 

     , , ,
ˆ, ,

di di

ix ix x x i ih i x h i x F F ii xx    , (5.5) 

and 

   1 2

, , ,
ˆ, ,

p p

ix jy ix jy ix jyV i x V j y V V   . (5.6) 

 ˆ di
h  (eq. (5.5)) contains the electron and hole NLMO orbital energies (

,x xF  and 
,i iF , 

respectively) and the electron–hole Coulomb attraction energy,  ii xx . The off-diagonal 

interaction (eq. (5.6)) contains one-particle   1

,

p

ix jyV  and two-particle   2

,

p

ix jyV  components.

 1

, , , , ,

p

ix jy i j x y x y i jV F F    (Fig. 5.1). These Fock matrix elements 
,i jF  and 

,x yF  describe, e.g., 

the through-bond (or through-anti-bond) interactions familiar in electron-transfer theory. 

   2

,

p

ix jyV ij xy   is the two-electron pure exchange interaction. 

The term BE used for the  *,n mb b  CIS basis states does not imply that a physical BE state 

in a molecular system corresponds to a single *,n mb b . Physical BE states are eigenstates of 

the Hamiltonian submatrix involving the BE basis states, i.e., the submatrix with elements 

* *ˆ, ,n m k lb b H b b . These eigenstates, which are linear combinations of the *,n mb b , are 

denoted 
*bb  (eigenenergies 

*bbE ). 
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5.4 Exact Energy Transfer Splittings in Model Compounds 

We focus on a simple set of n-alkyl–bridged dienes and norbornanes (Fig. 5.2) to study 

bridge-mediated EnT couplings, including their distance, energy-gap, molecular-

conformation, and coupling-pathway dependence. For all of the molecules in Fig. 5.2 we 

choose the donor and acceptor segments to be the left (L) and right (R) C C  bonds, and 

we set * *, ,L Ld d    and * *, ,R Ra a   . These states are quasi-resonant with each 

other and are off-resonance with the other ,i x , ensuring that the *,d d  to *,a a  Dexter 

coupling is an entirely virtual process. We then scan the energy difference 

* * * *ˆ ˆ, , , ,d d H d d a a H a a  until we find two eigenstates   of Ĥ  (eq. (5.3)) 

given by   * *1 2 , ,d d a a  
   
  , where   is small, and it contains the 

contribution to   of all ,i x  other than *,d d  and *, .a a  

 

Figure 5.2: (A) Alkyl-bridged diene model compound with seven bridging   bonds. The alkane 

bridge is planar, and the left and right C C  bonds are twisted approximately 60o in opposite 

directions out of the CC-bonded bridge plane. These double bonds are taken to be the D and A. In 

our computations (Fig. 5.3), the number of bridge   bonds is varied from 4 to 13. (B) Example of 

disordered alkyl-bridged diene model compound with seven bridging   bonds used in the 

computations of Tables 5.1 and 5.2. (C) Norbornyl bridged diene model compound with two 

parallel C C  bonds (D and A). These compounds with n = 1, 2 are used in the computations 

shown in Tables 5.3 and 5.4. (D) Norbornyl bridged diene model compound with orthogonal 

C C  bonds (D and A) with symmetry-forbidden triplet EnT. 
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In this virtual coupling (tunneling) regime, the energy eigenvalues E  of 
  are near 

each other and are separated from the other energy eigenvalues. This setup provides a 

definition of an “exact” coupling trV  between *,d d  and *,a a  as one-half of the 

splitting computed by diagonalizing the full Hamiltonian matrix H  in eq. (5.3) 

 
2

tr

E E
V

 
 . (5.7) 

Figure 5.1 shows that the bridge-mediated *,d d  to *,a a  EnT coupling can be mediated 

by the virtual states *,d a  and *,a d  (DAE) or the virtual-state manifold  *,n mb b  (BE). 

We therefore define the exact tr EnT coupling mediated by DAE as 

       2
dae dae dae

trV E E   , where 
 dae

E  are obtained by diagonalizing the H  matrix (eq. 

(5.3)) with all elements containing the *,n mb b  states in Fig. 5.1 set to zero. By 

construction, 
 dae

trV  is thus mediated by DAE rather than by BE. Similarly, we define the 

exact tr EnT coupling mediated by BE as 
       2
be be be

trV E E   , where 
 be

E  are obtained 

by diagonalizing the H  matrix with all elements containing the *,d a  and *,a d  states 

in Fig. 5.1 set to zero. 

 

5.5 Contributions of DAE and BE Virtual Intermediates to the Dexter Coupling 

In our quantum computations, we used restricted Hartree–Fock methods implemented in 

Gaussian 09 [30] with a 6–31G basis. Figure 5.3A shows trV , 
 dae

trV , and 
 be

trV  as a 

function of bridge length for the extended alkane systems of Fig. 5.2A. Figure 5.3A, Inset 

indicates the relative magnitude of the DAE and BE contributions (
      dae dae be

tr tr trV V V , 

as well as the contribution of 
      be dae be

tr tr trV V V , respectively) as a function of bridge 

length. Figures 5.2A and 5.3A show that the BE contribution in extended alkane bridges 

with more than seven to eight CC bonds is larger than the DAE contribution. The relative 

BE contribution is larger for bridges with smaller tunneling barriers. To explore this 

switching effect, we shift the energies of all bridge NLMO diagonal Fock matrix elements,  
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* *, ,n n
x x b b

F F  and 
, ,n ni i b bF F  in eq. (5.5), so that the energy gaps aver ( * *,n nb b

F ) * *,d d
F   and  

,d dF aver (
,n nb bF ) are reduced (aver indicates the average value). We ensure that the 

energy-shifted systems remain in the tunneling regime. That is, we can still find two 

eigenstates   of H  (eq. (5.3)) equally delocalized over *,d d  and *,a a  with small 

amplitude on the bridge. Then, we compute trV , 
 dae

trV , and 
 be

trV , using the new CIS 

Hamiltonian.  

 

Figure 5.3: (A) Dexter coupling and the BE and DAE contributions to the couplings for linear 

alkanes (Fig. 5.2A) as a function of bridge length. (B) Same structures as in A, where the average 

energy gaps aver ( * *,n nb b
F ) * *,d d

F  and 
,d dF aver (

,n nb bF ) are lowered. 
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Figure 5.3B shows trV , 
 dae

trV , and 
 be

trV  as a function of bridge length for the extended 

alkane structures used in Fig. 5.2A, where we have set the aver ( * *,n nb b
F ) * *,d d

F            

6.15 eV and 
,d dF aver (

,n nb bF ) 6.35 eV (compared with the original values             

aver ( * *,n nb b
F ) * *,d d

F 11.32 eV and 
,d dF aver (

,n nb bF ) 11.52 eV in Fig. 5.3A). For the 

seven-bond bridge in Fig. 5.3B, the lowest BE eigenstate 
*

min

bb  is 2.2 eV above *,d d , 

whereas the DAE state *,d a  is 10.8 eV above *,d d  (as opposed to values of 12.4 eV 

and 10.8 eV, respectively for the seven-bond bridge in Fig. 5.3A). Therefore, for the lower 

barrier systems in Fig. 5.3B, the BE contribution dominates the coupling for all bridge 

lengths, becoming more than two orders of magnitude larger than the DAE contribution for 

longer bridges. Figure 5.3B shows that the BE contribution produces large trV  matrix 

elements of the order 10
−2

–10
−3

 eV. 

To investigate the effects of molecular conformations on the alkane systems, we sampled 

structures by choosing random torsional angles and optimizing these conformations with 

restricted Hartree–Fock methods using a 6–31G basis set (RHF/6–31G). The folded 

structures thus generated (Fig. 5.2B) were used to compute trV  values and the DAE and BE 

coupling contributions as a function of energy gap. In Table 5.1, we show trV , 
 dae

trV , and 

 be

trV  for five folded alkanes with seven CC bonds that have aver ( * *,n nb b
F ) * *,d d

F 11.32 eV 

and 
,d dF aver (

,n nb bF ) 11.52 eV. Table 5.2 shows trV , 
 dae

trV , and 
 be

trV  for the structures 

in Table 5.1 with lowered the energy gaps to aver ( * *,n nb b
F ) * *,d d

F 6.15 eV and   

,d dF aver (
,n nb bF ) 6.35 eV (the same energy gap as in Fig. 5.3B). In most cases, the BE 

contribution is greater than or approximately equal to the DAE contribution. The Dexter 

couplings for the conformationally sampled alkane bridges are smaller compared with     

the couplings for the extended alkane bridges (for the seven-CC bond bridge,     

41.27 10trV   eV in Fig. 5.3A, and for the partially folded seven-CC bond bridges in 

Table 5.1, 51.67 10trV    eV). 
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Conformation  trV eV     be

trV eV     dae

trV eV  

Conf1 5.07×10-7 1.10×10-6 1.25×10-6 

Conf2 8.90×10-7 9.36×10-7 1.48×10-7 

Conf3 1.66×10-5 1.42×10-6 1.46×10-5 

Conf4 2.06×10
-5

 9.77×10
-6

 1.38×10
-5

 

Conf5 4.47×10-5 1.27×10-5 2.89×10-5 

Table 5.1: Total Dexter coupling and BE and DAE contributions of seven-bond folded alkanes 

(Fig. 5.2B). 

 

Conformation  trV eV     be

trV eV     dae

trV eV  

Conf1 2.14×10-4 2.17×10-4 1.33×10-6 

Conf2 4.67×10-5 4.68×10-5 1.58×10-7 

Conf3 2.34×10-5 4.26×10-5 1.58×10-5 

Conf4 2.68×10-4 2.43×10-4 2.46×10-5 

Conf5 1.60×10-4 1.12×10-4 3.41×10-5 

Table 5.2: Total Dexter coupling and BE and DAE contributions of seven-bond folded alkanes 

(Fig. 5.2B) with lowered average energy gaps compared with the values for Table 5.1. 

 

The trends in the coupling mechanism apply to more complex bridged structures. Tables 

5.3 and 5.4 show trV , 
 dae

trV , and 
 be

trV  for norbonyl bridged systems (Fig. 5.2C) where, as 

with the linear alkanes, we choose the donor and acceptor segments to be the L and R 

C C  bonds, and we set * *, ,L Ld d    and * *, ,R Ra a   . In Table 5.3, we 

examine two bridge lengths with n=1,2 (Fig. 5.2C). In Table 5.4, we use the same 

structures as in Table 5.3 with lowered energy gaps. The aver (
,n nb bF ) values are increased 

by 4.90 eV and the aver ( * *,n nb b
F ) values are lowered by 4.90 eV. The splittings shown in 

Tables 5.3 and 5.4 indicate that the BE contribution dominates the Dexter coupling as the 

chain length grows and the tunneling barrier drops. As a final example, we consider a 

norbonyl system with orthogonal donor/acceptor C C  bonds (Fig. 5.2D). In this 

structure, the Dexter coupling is symmetry forbidden ( 132.10 10trV   eV) and both        

BE and DAE contributions are symmetry forbidden (
  133.70 10
dae

trV   eV and 

  131.53 10
be

trV   eV, within the numerical noise). 
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To summarize, the splitting computations find that the Dexter coupling is mediated by BE 

virtual states, rather than by DAE virtual states; i.e., 
 be

tr trV V  and 
   be dae

tr trV V  for low 

tunneling energy gaps and/or long bridges. The distance at which the transition from DAE 

to BE dominance occurs is structure and energy gap dependent. 

 

Number of 

bridge units 
 trV eV     be

trV eV     dae

trV eV  

n=1 4.00×10-2 9.86×10-3 2.91×10-2 

n=2 2.42×10-3 8.65×10-4 1.48×10-3 

Table 5.3: trV , 
 be

trV , and 
 dae

trV  for the polynorbornyl bridged model compounds with n = 1, 2 

(see Fig. 5.2C for the molecular structures). The edge D, A C=C bonds are parallel. 

 

Number of 

bridge units 
 trV eV     be

trV eV     dae

trV eV  

n=1 1.13×10-1 5.89×10-2 4.36×10-2 

n=2 2.39×10-2 2.01×10-2 2.70×10-3 

Table 5.4: trV , 
 be

trV , and 
 dae

trV  for the polynorbornyl bridged model compounds with n=1, 2 (see 

Fig. 5.2C for the molecular structures) with parallel D, A C=C bond fragments. For these 

computations the energy gaps were lowered compared to their values in Table 5.3. 

 

5.6 Triplet Energy Transfer Pathways 

Having established the importance of BE contributions to the Dexter coupling trV , we 

return to our consideration of eq. (5.2). Our focus is the first single-particle transfer (SPT) 

term, which is a product of D-to-A electron transfer (ET) and hole transfer (HT) couplings. 

To understand the contributions of this term to trV , we develop a general GF pathway 

description of trV , 
 dae

trV , and 
 be

trV , using Löwdin (effective Hamiltonian) projection 

methods that are applicable to tunneling matrix element computations. Below, trT , 
 dae

trT , 

and 
 be

trT  denote the Löwdin projection (GF) expressions for trV , 
 dae

trV , and 
 be

trV , 

respectively. The Löwdin projection expression for trV  is given by 
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 * *ˆ, ,ef

tr tT d d H E a a , 

   ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆef

t tH E PHP PHQG E QHP  , 

(5.8) 

where * * * *ˆ , , , ,P d d d d a a a a   is the projection operator for the DAE subspace 

and  * * * *ˆ ˆ , , , ,Q I d d d d a a a a    is the projection operator for the complementary 

subspace containing all exciton states ,i x  other than *,d d  and *,a a . Given the 

subspace grouping of Fig. 5.1 

* * * * * * *
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

db bd ba ab da ad bb
Q Q Q Q Q Q Q Q       , (5.9) 

where *

* *ˆ , ,n ndb n
Q d b d b , *

* *ˆ , ,
da

Q d a d a ,  etc. *

* *

,

ˆ , ,n m n mbb n m
Q b b b b  is the 

projection operator for the BE subspace, etc.  
1

ˆ ˆ ˆ ˆˆG E EQ QHQ


  
 

 is the exact GF for 

the CIS Hamiltonian (eq. (5.3)) in the Q̂  subspace ( ˆ ˆˆQHQ ). tE  is the tunneling energy that 

can be adjusted so that trT  is infinite order in perturbation theory so that tr trT V  (e.g., refs. 

[7,31] and Section 5.10). We also define 
 dae

trT  and 
 be

trT  in the same way that we defined 

 dae

trV  and 
 be

trV  (eqs. (5.18) and (5.19)). That is, we use equations identical to eq. (5.8) 

where we zero out all Ĥ  matrix elements that contain *,d a  and *,a d  states (for 
 be

trT ) 

or all Ĥ matrix elements containing *,n mb b  (for 
 dae

trT ). The important conclusion is that 

for all systems in Fig. 5.2 and all tunneling energy gaps, we can reproduce the splitting-

derived  trV , 
 dae

trV , and 
 be

trV  values, using the Löwdin GF expressions for trT , 
 dae

trT , and 

 be

trT , respectively, thus confirming that the Löwdin projection method is applicable 

(Tables 5.5–5.7). 

 

 1E eV   2E eV   trT eV   trV eV  

6.32 6.52 2.60×10-3 2.52×10-3 

11.32 11.52 1.22×10-4 1.27×10-4 

Table 5.5: Couplings for a linear alkane system with a bridge of seven CC bonds (Fig. 5.2A) as a 

function of energy gap ΔE. 1E aver  ( * *,n nb b
F ) * *,d d

F , 
2 ,d dE F aver   (

,n nb bF ). 
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 1E eV   2E eV   trT eV   trV eV  

6.32 6.52 2.93×10-3 2.32×10-3 

11.32 11.52 6.04×10-5 6.59×10-5 

Table 5.6: BE contribution to the Dexter couplings as a function of energy gap for the linear alkane 

systems in Table 5.5. 

 

 1E eV   2E eV   trT eV   trV eV  

6.32 6.52 1.65 ×10-4 1.72×10-4 

11.32 11.52 6.27×10-5 6.81×10-5 

Table 5.7: DAE contribution to the Dexter coupling as a function of energy gap for the linear 

alkane systems in Table 5.5. 

 

5.7 Donor-Acceptor Exciton vs. Bridge-Exciton Triplet Energy Transfer Pathways 

We derive a generalized GF expression for the first (SPT) term of eq. (5.2). This term 

contains electron-transfer ˆ eV  and hole-transfer ˆ hV  off-diagonal operators. Therefore, in 

eq. (5.8), we replace the total CIS Hamiltonian Ĥ  (eq. (5.3)) with a Hamiltonian 
 ˆ ne

H  

where the pure exchange terms ( |ij xy ) in the off-diagonal elements 
,ix jyV  of eq. (5.6) are 

ignored (ne means no exchange). Therefore, 
   ˆˆ ˆ ˆne di e hH h V V   , where 

 ˆ di
h  is the 

diagonal part of the CIS Hamiltonian (eq. (5.5)) (containing the Coulomb attraction terms 

 ii xx ), and 
, ,

ˆ, ,e

i j x yi x V j y F , 
, ,

ˆ, ,h

x y i ji x V j y F  . Replacing Ĥ  by 
 ˆ ne

H  in 

trT  (eq. (5.8)), we obtain pathway expressions for the SPT components of the total Dexter 

coupling (Table 5.8), of the DAE mediated coupling, and of the BE-mediated coupling. 

These expressions (eqs. (5.27), (5.31), and (5.33)) are denoted 
 tr ne

T ,  
 dae

tr ne
T , and  

 be

tr ne
T , 

respectively, to emphasize that they do not include the effects of pure-exchange 

interactions in transferring electrons and holes. The final result is 

   
 

 
 dae be

tr ne tr ne tr ne
T T T  , (5.10) 

where 
 
 dae

tr ne
T  in eq. (5.10) describes DAE pathways and is given by 
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  * *

*

* *

*

* * * *

* * * *

ˆ ˆˆ ˆ ˆ ˆ, , , ,

ˆ ˆˆ ˆ ˆ ˆ, , , ,

e e h h

dae db ba

tr ne

t da

h h e e

bd ab

t ad

d d V G V d a d a V G V a a
T

E E

d d V G V a d a d V G V a a

E E






 (5.11) 

(eq. (5.37)). 
 
 be

tr ne
T  in eq. (5.10) describes BE pathways 

 
 

* * *

* * *

* * *

* * *

* *

* *

* *

* *

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

be e h e h

tr ne db bb ba

h e h e

bd bb ab

e h h e

db bb ab

h e e h

bd bb ba

T d d V G V G V G V a a

d d V G V G V G V a a

d d V G V G V G V a a

d d V G V G V G V a a







 (5.12) 

(eq. (5.38)). tE  is the exciton tunneling energy. The ˆ
KG  are 

 ˆ ne
H  GFs for the      

individual subspaces K  of virtual intermediate states shown in Fig. 5.1. 

   
1

ˆ ˆ ˆ ˆˆ ne

K t t K K KG E E Q Q H Q


  
 

, where the ˆ
KQ  are the projection operator components of 

eq. (5.9). 

The DAE contribution 
 
 dae

tr ne
T  in eq. (5.11) is the generalized GF pathway expression for the 

first (SPT) component of eq. (5.2). It describes EnT as a sequence of two complete D-to-A 

electron and hole tunneling steps (first term, D BA D B A D BA DB A       

DBA ; second term D BA D B A D BA DB A DBA         ). In the 

framework of Fig. 5.1, eq. (5.11) contains all of the upper and lower tunneling paths 

connecting *,d d  to *,a a  via virtual DAE states *,a d  and *,d a , respectively 

(avoiding the BE manifold *,n mb b . *

* *ˆˆ ˆ, ,e e

db
d d V G V d a  and *

* *ˆˆ ˆ, ,e e

ab
a d V G V a a  are 

the bridge-mediated electron tunneling matrix elements for photo-excited electron transfer 

from *d  to *a . Similarly, *

* *ˆˆ ˆ, ,h h

ba
d a V G V a a  and *

* *ˆˆ ˆ, ,h h

bd
d d V G V a d  are the 

bridge-mediated hole tunneling matrix elements for photo-excited hole transfer from a  

to d . These matrix elements include the influence of electron-hole Coulomb attraction. 

The bridge exciton contribution,  
 be

tr ne
T  (eq. (5.12)), describes all tunneling pathways from 

*,d d  to *,a a  through the virtual BE manifold *,n mb b  in Fig. 5.1 (avoiding the       
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DAE states) (first two terms, D BA D B A DB A DB A DBA        and 

D BA D B A  DB A DB A DBA    ; last two terms, D BA D B A  

DB A DB A DBA    and D BA D B A DB A DB A DBA       ). 

 

 1E eV   2E eV  
   tr ne

T eV     tr ne
V eV  

6.32 6.52 5.59 ×10-3 5.41×10-3 

11.32 11.52 1.55×10-4 1.53×10-4 

Table 5.8: Single-particle component to the Dexter couplings (i.e., using a CIS Hamiltonian with 

no pure exchange) as a function of energy gap for the linear alkane systems in Table 5.5. 

 

5.8 Rapid Growth in the Number of Bridge-Exciton Intermediate States with Chain 

Length 

Ignoring pure exchange when computing the Dexter coupling is not generally sound. For 

the systems studied in Fig. 5.2A, the average exchange contribution to the Dexter coupling 

in the long chain limit (Fig. 5.2A) is about 25% of trV . The analysis above finds that the 

SPT component of the Dexter coupling contains DAE and BE pathway terms that            

are of the same order in ˆ eV  and ˆ hV . Therefore, DAE and BE pathways must                  

both be considered; it is not appropriate to retain only 
 
 dae

tr ne
T  (which is analogous                

to the first term in eq. (5.2)) without keeping the  
 be

tr ne
T  term as well. For bridges             

with N  bonding/antibonding orbitals ( nb , *

mb ), the number of BE CIS configurations        

*,n mb b  is at least 
2N . Therefore, the number of BE eigenstates 

*bb  of the                     

submatrix * *ˆ, ,n m k lb b H b b  (or 
 * *ˆ, ,
ne

n m k lb b H b b ) is also 
2N . In eq. (5.12) for 

 
 be

tr ne
T , 

   
2 * * *

*
1

ˆ N bb bb bb

tbb L
G E E 


   (where 

*bbE  is the eigenvalue of BE eigenstate 

*bb ). As the bridge length N  grows, the number of possible BE virtual intermediates 

*bb  grows as 
2N  (as opposed to the two DAE intermediates *,d a  and *,a d in eq. 

(5.11)). Thus, BE pathways are important for long bridge lengths or low energy gaps, 

where omitting the BE contribution to the Dexter coupling may introduce errors of one to 

two orders of magnitude. 
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5.9 Conclusions 

We have found that bridge-exciton tunneling pathways dominate triplet energy transfer 

mediation in the long-distance/small tunneling gap regime accessed in many molecular 

structures of current interest. As well, we have developed a coupling pathway description 

for bridge-mediated triplet Dexter coupling. The Dexter coupling is exponentially sensitive 

to donor-acceptor distance and to bridge structure, suggesting that these EnT rates and their 

directionality may be manipulated by the bridge structure. As with bridge-mediated 

electron and hole transfer, control can be realized by using pathway interference effects, 

bridge energetics, and through-bond/through space coupling trade-offs. The theory enables 

an atomic-level description for the origins of Dexter coupling, a necessary step toward 

controlling Dexter coupling interactions in a wide range of systems of current interest in 

energy science and molecular biophysics. 

The most significant result of the Dexter pathway analysis is the demonstration that virtual 

bridge-exciton intermediate states (Fig. 5.1, center) can dominate the EnT coupling for 

long bridges and low tunneling-energy bridges. This BE-mediated coupling, and thus the 

Dexter coupling, cannot be expressed as a simple product of electron and hole donor-to-

acceptor tunneling steps. Indeed, Curutchet and Voityuk’s studies of Dexter couplings 

through solvent found Dexter decay exponents to be smaller than the sum of the electron- 

and hole-mediated superexchange coupling decay exponents [26]. The coupling pathway 

dissections introduced here are sufficiently general to enable the further development of 

structure–function relations for Dexter energy-transfer interactions. 

 

5.10 Supplement 

Pathway Analysis 

The full CIS Hamiltonian Ĥ  of the system in the local NLMO representation is 

 , , , ,
ˆ, , i j x y x y i ji x H j y F F ij xy    . (5.13) 

To proceed with the Löwdin projection method we write the identity operator in the ,i x  

basis as a sum of projection operators, ˆˆ ˆI P Q  , where 
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* * * *ˆ , , , ,P d d d d a a a a   (5.14) 

and 1 2
ˆ ˆ ˆQ Q Q  , with 

* * * *1
ˆ ˆ ˆ ˆ ˆ

db bd ba ab
Q Q Q Q Q    , (5.15) 

                                            * * *2
ˆ ˆ ˆ ˆ

da ad bb
Q Q Q Q   . (5.16) 

In the equation above the ˆ
KQ  are projection operators for the bridging subspaces of Fig. 

5.1 e.g., *

* *ˆ , ,n ndb n
Q d b d b , *

* *

,

ˆ , ,n m n mbb n m
Q b b b b , etc. 

From the above definitions, and using the projection technique, we can obtain a GF 

expression ( trT ) for the splitting-derived total EnT coupling ( trV ). This is done by deriving 

an effective two-state Hamiltonian ˆ efH  defined on the subspace P̂  of *,d d  with *,a a . 

The off-diagonal matrix element ( *,d d  to *,a a ) of ˆ efH  is trT ; i.e., 

 * *ˆ, ,ef

tr tT d d H E a a ; 

   ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆef

t tPH E P PHP PHQG E QHP  , 

(5.17) 

where the GF  
1

ˆ ˆ ˆ ˆˆ
t tG E E Q QHQ



  
 

 is infinite order in all matrix elements                    

of ˆ ˆˆQHQ . Here tE  is the tunneling energy; i.e., 
 0

t tE E , where 
 0 * *ˆ, ,tE d d H d d

* *ˆ, ,a a H a a  as a first approximation. tE  can be improved iteratively, e.g., 

        1 0 0* * * *ˆ ˆ, , , , 2ef ef

t t tE d d H E d d a a H E a a   [7,31], in which case the 

above expression for trT  also becomes infinite order in all matrix elements of ˆ ˆˆQHQ . With 

the iterative readjustment of tE , eq. (5.17)  can reproduce the value of trV  in the tunneling 

limit. 

The Löwdin projection expression 
 be

trT  for the splitting-derived 
 be

trV  is obtained by an 

equation similar to eq. (5.17) where Ĥ  is replaced by 
 ˆ be

H , the CIS Hamiltonian in the 

,i x  representation with DAE states *,d a  and *,a d  deleted. Therefore 

   * *ˆ, ,
be ef

tr be tT d d H E a a ; (5.18) 
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1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆbe be be beef

be t tPH E P PH P PH Q E Q QH Q QH P


   
 

. 

Similarly, the Löwdin projection expression 
 dae

trT for the splitting-derived 
 dae

trV  is 

   * *ˆ, ,
dae ef

tr dae tT d d H E a a ; 

         
1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆdae dae dae daeef

dae t tPH E P PH P PH Q E Q QH Q QH P


   
 

, 

(5.19) 

where 
 ˆ dae

H  is the CIS Hamiltonian in the ,i x  representation with all BE states *,n mb b

deleted. 

To derive single particle pathway contributions to the EnT coupling, we define a 

Hamiltonian operator without pure exchange ( |ij xy ) interactions as 

     1ˆˆ ˆne di p
H h V  , (5.20) 

where 
 ˆ di

h  is the diagonal part and 
 1ˆ ˆ ˆp e hV V V   is the off-diagonal part. The matrix 

elements of the diagonal Hamiltonian are given by (eq. (5.5)) 

   , ,
ˆ, ,

di

x x i ii x h i x F F ii xx   . (5.21) 

The matrix elements of the off-diagonal Hamiltonian 
 1ˆ p

V  are given by the electron or 

hole transfer terms 

, , , ,
ˆ ˆ, , , , ,e h

i j x y x y i ji x V j y F i x V j y F    . (5.22) 

The exact (spitting-derived)  tr ne
V , 

 
 dae

tr ne
V , and 

 
 be

tr ne
V  are computed from diagonalization of 

 ˆ ne
H  (by analogy to trV , 

 dae

trV , and 
 be

trV ). We obtain GF expressions  tr ne
T , 

 
 dae

tr ne
T , and 

 
 be

tr ne
T  for  tr ne

V , 
 
 dae

tr ne
V , and 

 
 be

tr ne
V . 

Replacing Ĥ  by 
 ˆ ne

H  in eq. (5.17) gives 

             * * * *ˆ ˆ ˆˆ ˆ ˆ, , , ,
ne ne ne ne

t ttr ne
T E d d H a a d d H QG E QH a a  , (5.23) PANAYIO
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where the GF      
1

ˆ ˆ ˆ ˆˆne ne

t tG E E Q QH Q


  
 

. To proceed further, we ignore the direct 

matrix element 
 * *ˆ, ,
ne

d d H a a , which is zero for long-distance EnT. We then get 

           1 1* *ˆ ˆ ˆˆ ˆ, ,
p ne p

t ttr ne
T E d d V QG E QV a a . (5.24) 

Using again the projection technique for    1 1
ˆ ˆ ˆne

tQG E Q  in eq. (5.24), 

     
1

1 1 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆne

t tQG E Q EQ Q H Q Q R E Q


   
 

. (5.25) 

In the equation above          
* * * *1 1

ˆ ˆˆ ˆ ˆ ˆ ˆne ne ne ne ne

db bd ba ab
Q H Q H H H H    , where 

   ˆ ˆˆ ˆne ne

K K KH Q H Q  

denotes the full Hamiltonians for these subspaces (
 ˆ ne

H  is given in eq. (5.20)).  1 1
ˆ ˆˆ

tQ R E Q  

is a resolvent operator given 

       
1

1 1

1 1 1 2 2 2 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

nep p

tQ R E Q QV Q EQ Q H Q Q V Q


  
 

 (5.26) 

that can be written as a sum of two resolvent operators 
 ˆ dae

R  and 
 ˆ be

R  describing effective 

couplings between the  *, nd b    *,nb d  and  *,nb a    *, na b  subspaces mediated 

by the DAE (dae) and BE (be), respectively 

In summary, the GF expression  tr ne
T  for the splitting-derived EnT coupling  tr ne

V  is 

          * * * *

* *ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,
nee h e h

t ttr ne db bd ab ba
T E d d V Q V Q G E Q V Q V a a   , (5.27) 

where 
, ,

ˆ, ,e

i j x yi x V j y F , 
, ,

ˆ, ,h

x y i ji x V j y F  , tE  is the tunneling energy, and 

                  * * * * * * * *

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆne ne ne ne ne dae be

t t db bd ba ab db bd ba ab
G E E Q Q Q Q H H H H R R



          
 

. (5.28) 

 ˆ dae
R  and 

 ˆ be
R  are resolvent operators that describe effective couplings between the 

 *, nd b    *,nb d  and  *,nb a    *, na b  subspaces mediated by the DAE (dae: 

*,d a  and *,a d ) and BE (be:  *,n mb b ), respectively. The resolvents are 

       * * * * * * * * * *
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆdae e h h e

t t tdb da da da ba bd ad ad ad ab
R E Q V Q G E Q V Q Q V Q G E Q V Q  , (5.29) 
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and  

     

 

 

 

* * * * *

* * * * *

* * * * *

* * * * *

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ ,

be h e

t tdb bb bb bb ba

e h

tbd bb bb bb ab

h h

tdb bb bb bb ab

e e

tbd bb bb bb ba

R E Q V Q G E Q V Q

Q V Q G E Q V Q

Q V Q G E Q V Q

Q V Q G E Q V Q









 (5.30) 

where    
1

ˆ ˆ ˆ ˆne

K t t K K KG E E Q Q H Q


  
 

 are the GFs for the subspaces ˆ
KQ . 

From eq. (5.27), we can obtain an exact expression for the effective EnT coupling 

mediated by the DAE (and not the BE) denoted 
 
 dae

tr ne
T  if we remove 

 ˆ be
R  (the bridge-

exciton contribution) from 
 ˆ ne

G  in eq. (5.28). Namely, 

 
        * * * *

* *ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,
dae daee h e h

ttr ne db bd ab ba
T d d V Q V Q G E Q V Q V a a   , (5.31) 

where 

                * * * * * * * *

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆdae ne ne ne ne dae

t t db bd ba ab db bd ba ab
G E E Q Q Q Q H H H H R



         
 

. (5.32) 

Similarly, we can obtain an exact expression for the EnT coupling mediated by BE (and 

not DAE) denoted  
 be

tr ne
T  if we remove the DAE contribution (

 ˆ dae
R ) from 

 ˆ ne
G  in eq. 

(5.28); i.e., 

 
        * * * *

* *ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,
be bee h e h

ttr ne db bd ab ba
T d d V Q V Q G E Q V Q V a a   , (5.33) 

where 

                * * * * * * * *

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆbe ne ne ne ne be

t t db bd ba ab db bd ba ab
G E E Q Q Q Q H H H H R



         
 

. (5.34) 

To simplify the expression for  tr ne
T  we write 

 ˆ ne
G  in eq. (5.28) as 

          
1

1ˆ ˆ ˆ ˆne dae be

t tG E G E R R


   
 

, 

         * * * *

1 1 1 1 1ˆ ˆ ˆ ˆ ˆ
t t t t tdb bd ba ab

G E G E G E G E G E        , 
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where    
1

ˆ ˆ ˆ ˆne

K t t K K KG E E Q Q H Q


  
 

 are the GFs for the subspaces ˆ
KQ . To first       

order in 
   ˆ ˆdae be

R R , 
              ˆ ˆ ˆ ˆˆ ˆne dae be

t t t tG E G E G E R R G E  . Substituting this 

approximate equation into eq. (5.27) gives 

   
 

 
 dae be

tr ne tr ne tr ne
T T T , (5.36) 

where  

 
  * *

*

* *

*

* * * *

* * * *

ˆ ˆˆ ˆ ˆ ˆ, , , ,

ˆ ˆˆ ˆ ˆ ˆ, , , ,

e e h h

dae db ba

tr ne

t da

h h e e

bd ab

t ad

d d V G V d a d a V G V a a
T

E E

d d V G V a d a d V G V a a

E E






 (5.37) 

is the lowest-order (in 
 ˆ dae

R ) expression for the D-A exciton contribution to  tr ne
T  and 

 
 

* * *

* * *

* * *

* * *

* *

* *

* *

* *

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

be e h e h

tr ne db bb ba

h e h e

bd bb ab

e h h e

db bb ab

h e e h

bd bb ba

T d d V G V G V G V a a

d d V G V G V G V a a

d d V G V G V G V a a

d d V G V G V G V a a







 (5.38) 

is the lowest-order (in 
 ˆ be

R ) expression for the bridge exciton contribution to  tr ne
T . 

The terms *

* *ˆˆ ˆ, ,e e

db
d d V G V d a  and *

* *ˆˆ ˆ, ,e e

ab
a d V G V a a  in the expression for       

 
 dae

tr ne
T  are the bridge-mediated electron tunneling matrix elements. Similarly, 

*

* *ˆˆ ˆ, ,h h

ba
d a V G V a a  and *

* *ˆˆ ˆ, ,h h

bd
d d V G V a d  are the bridge-mediated hole tunneling 

matrix elements. Strictly speaking, these matrix elements describe excited-state bridge-

mediated electron and hole transfer DA couplings, rather than electron- or hole-shift DA 

couplings 

For the compounds under study and for all energy gaps mentioned in the main text (Fig. 

5.2 and 5.3), we find that trT , 
 dae

trT , and 
 be

trT  approximate well the splitting-derived                  

trV , 
 dae

trV , and 
 be

trV  even within one iteration with 
 0

t tE E  or 
 1
tE 
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      0 0* * * *ˆ ˆ, , , , 2ef ef

t td d H E d d a a H E a a . This also holds for the 
 tr ne

T , 
 
 dae

tr ne
T , 

and 
 
 be

tr ne
T  to the splitting-derived 

 tr ne
V , 

 
 dae

tr ne
V , and 

 
 be

tr ne
V  values. Examples are given in 

Tables 5.5–5.8.  
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Chapter 6: Dexter Energy Transfer Pathways Analysis in 

Eigenstate and Local Basis 

 

Energy transfer (EnT) pathway analysis provides a molecular-level understanding of EnT 

couplings. The framework developed in the previous Chapter (eqs. (5.11) and (5.12)) 

allows the analysis of bridge-mediated triplet-EnT coupling pathways. In the previous 

Chapter we demonstrated the importance of bridge exciton contributions to the overall 

Dexter coupling and provided formulas that assess these contributions (which are ignored 

by previous theories). This Chapter is devoted to further pathway analysis of the single-

particle (SPT) contributions (eqs. (5.11) and (5.12)) and the two-particle exchange 

contribution (eq. (5.2)) to the triplet EnT coupling.  

Specifically, in Section 6.1 we further analyze the bridge-mediated SPT component of the 

coupling (eq. (5.12)) in the bridge-eigenstate-basis. This method allows the decomposition 

of eq. (5.12) in terms of individual bridge-exciton-eigenstate pathways. Using the alkane 

molecules we find the virtual bridge-exciton eigenstates that contribute in the SPT 

coupling. In Section 6.2 we develop simple D-B-A models to illustrate SPT EnT pathways 

(using eqs. (5.11) and (5.12)) and to derive analytically the bridge-exciton dominance of 

the triplet EnT coupling as the bridge length increases. Equations (5.11) and (5.12) ignore 

pure exchange contributions to the EnT couplings. These exchange contributions are 

reconsidered in Section 6.3 where we develop D-B-A models to illustrate exchange EnT 

pathways and we formulate an intuitive framework that demonstrates strong analogies to 

electron transfer pathways. 
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6.1 Dexter Energy Transfer Pathways Analysis in Eigenstate Basis 

In this Section we derive a bridge-eigenstate-basis formulation for  
 be

tr ne
T  (eq. (5.12)). We 

use this formulation to decompose  
 be

tr ne
T  into the individual pathway components for some 

of the alkane systems studied in the previous Chapter. 

 

6.1.1 CIS Hamiltonian in Eigenstate Basis 

The CIS Hamiltonian without pure exchange ( |ij xy ) interactions in the NLMO 

representation is defined as (eq. (5.20)) 

     1ˆˆ ˆne di p
H h V  , (6.1) 

where 
 ˆ di

h  is the diagonal part given by 
   , ,
ˆ, , |

di

x x i ii x h i x F F ii xx    (eqs. (5.5) and 

(5.21)), and 
 1ˆ ˆ ˆp e hV V V   is the off-diagonal part, given by the matrix elements 

, ,
ˆ, ,e

i j x yi x V j y F  and , ,
ˆ, ,h

x y i ji x V j y F   (eq. (5.22)). The term (ne) means no 

exchange. 

To express 
 ˆ ne

H  in an eigenstate basis representation we write the identity operator in the 

CIS NLMO basis  ,i x  as a sum of projection operators ˆˆ ˆI P Q  , 

* * * * * * * *ˆ , , , , , , , ,P d d d d d a d a a d a d a a a a    . (6.2) 

P̂  is the projection operator containing the donor  *,d d  and acceptor  *,a a  exciton 

states, and the donor-acceptor (DAE) charge transfer (CT) exciton states  * *, , ,d a a d . 

Q̂  is the projection operator for the complementary subspace containing all other NLMO 

exciton states ,i x , i.e., 

* * * * *
ˆ ˆ ˆ ˆ ˆ ˆ

db bd ba ab bb
Q Q Q Q Q Q     , (6.3) 

where *

* *ˆ , ,n ndb n
Q d b d b , *

* *ˆ , ,n nab n
Q a b a b , *

* *

,

ˆ , ,n m n mbb n m
Q b b b b , etc.  
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In the following, for the subspaces *
ˆ

db
Q , *

ˆ
bd

Q , *
ˆ

ba
Q , *

ˆ
ab

Q  and *
ˆ

bb
Q  we will use eigenstate 

representations. For example, for the bridge exciton (BE) projection operator *
ˆ

bb
Q we use 

the basis of BE eigenstates  
*bb . These BE eigenstates satisfy the following equation  

  
* * *

* *
ˆ ˆˆ ne bb bb bb

bb bb
Q H Q E  , (6.4) 

where 
*bbE  are the BE eigenvalues. Similarly, for *

ˆ
db

Q  we use the eigenstates          

 
*db

m  of 
 

* *
ˆ ˆˆ ne

db db
Q H Q , etc. Therefore, in eq. (6.3) the projection operators are 

* *

*
ˆ db db

m mdb m
Q   ,

* *

*
ˆ bb bb

bb
Q   , etc. 

The reason for this change of basis is two-fold. First it simplifies the perturbation theory 

analysis of the triplet EnT coupling  
  be

tr ne
T  which leads to the pathway picture. Second, 

the eigenstates  
*bb  describe physical bridge-excitons (i.e., eigenstates with both 

electron and hole in the bridge).  

 

6.1.2 Pathways Analysis in Eigenstate Basis 

Our starting point is eq. (5.12) 

 
 

* * *

* * *

* * *

* * *

* *

* *

* *

* *

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ, , .

be e h e h

tr ne db bb ba

h e h e

bd bb ab

e h h e

db bb ab

h e e h

bd bb ba

T d d V G V G V G V a a

d d V G V G V G V a a

d d V G V G V G V a a

d d V G V G V G V a a







 (6.5) 

The ˆ
KG  are 

 ˆ ne
H  Green functions for the individual subspaces K  of virtual intermediate 

eigenstates, i.e., 
 

1
ˆ ˆ ˆ ˆˆ ne

K K K KG EQ Q H Q


  
 

. In the new “eigenstate” representation the  

ˆ
KG  simplify, e.g.,    

2 * * *

*
1

ˆ N bb bb bb

tbb
G E E 


  , where tE  is the exciton 
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tunneling energy. For bridges with N  bonding/antibonding NLMO orbitals  *,n mb b , 

the number of BE eigenstates/eigenvalues is 
2N . 

To express the bridge-exciton contribution, 
 
 be

tr ne
T  (eq. (6.5)), in the eigenstate 

representation we dissect eq. (6.5) into four independent terms, as anticipated by the four 

independent terms present in 
 
 be

tr ne
T  eq. (6.5) 

* * *

* *ˆ ˆ ˆˆ ˆ ˆ ˆ, ,e h e h

db bb ba
A d d V G V G V G V a a , (6.6a) 

* * *

* *ˆ ˆ ˆˆ ˆ ˆ ˆ, ,h e h e

bd bb ab
B d d V G V G V G V a a , (6.6b) 

* * *

* *ˆ ˆ ˆˆ ˆ ˆ ˆ, ,e h h e

db bb ab
C d d V G V G V G V a a , (6.6c) 

* * *

* *ˆ ˆ ˆˆ ˆ ˆ ˆ, ,h e e h

bd bb ba
D d d V G V G V G V a a . (6.6d) 

For instance, let’s consider only the first term of 
 
 be

tr ne
T  (eq. (6.6a)), and insert into             

eq. (6.6a) the BE Green function    
2 * * *

*
1

ˆ N bb bb bb

tbb
G E E 


  . The *

ˆ
bb

G  

insertion leads to the division of eq. (6.6a) into two parts 

  *

*

*

1
ˆˆ ˆ, e h bb

db
A d d V G V  , (6.7a) 

  *

*

*

2
ˆˆ ˆ ,bb e h

ba
A V G V a a , (6.7b) 

and eq. (6.6a) may be expressed as a sum over the BE eigenstates of the product of 
 

1A  

and 
 

2A  

   2

*

1 2

N

bb

t

A A
A

E E



 . (6.8) 

Inserting the respective Green functions    
* * *

*
1

ˆ N db db db

m m t mdb m
G E E 


   and 

   
* * *

*
1

ˆ N ba ba ba

n n t nba n
G E E 


  in eqs. (6.7a) and (6.7b) we get 

 

* * *

*

*

1

ˆ ˆ, e db db h bb
N

m m

db
m t m

d d V V
A

E E

  



 , (6.9a) 
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* * *

*

*

2

ˆ ˆ ,bb e ba ba h
N

n n

ba
n t n

V V a a
A

E E

  



 . (6.9b) 

Thus, the first term of 
 
 be

tr ne
T  (eq. (6.6a)), becomes 

* * * * * *
2

* * *

* *ˆ ˆ ˆ ˆ, ,1
.

e db db h bb bb e ba ba h
N N N

m m n n

db bb ba
m n t m t t n

d d V V V V a a
A

E E E E E E

      
      
  (6.10) 

Equation (6.10) describes the total contribution of the first “A” pathway (see Figs. 6.2 and 

6.3) to the 
 
 be

tr ne
T .  

This expression (eq. (6.10)) does not provide detailed information about the individual 

pathway contributions through the bridge-eigenstate manifold 
*bb . To further analyze 

the total “A” pathway contribution into its 
*bb  components, we restrict the summations 

in eq. (6.10) over specific eigenstates. In particular, the BE eigenstates 
*bb  summation 

is reduced to a smaller fragment   of the total 
2N  BE eigenstates, and the summations 

over the 
*db

m  and 
*ba

n  eigenstates are modified in order to exclusively select only a 

specific eigenstate 
*db

m   and 
*ba

n  . Thus, if we sum over specific 
*db

m  , 
*ba

n   and 

*bb 
 eigenstates, eq. (6.10) becomes 

* * * * * *

* * *

* *

, ,

1

ˆ ˆ ˆ ˆ, ,1
.

e db db h bb bb e ba ba h

m m n n

m n db bb ba

t m t t n

d d V V V V a a
A

E E E E E E

     
   

  

  

 
      
  (6.11) 

Using eq. (6.11) we can perform a detailed inspection of the individual pathway 

contributions through the respective 
*bb  BE components. Similar analysis may be 

carried out for the remaining three terms of eq. (6.5) (eqs. (6.6b)-(6.6d)) such that 
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* * * * * *

* * *

* *

, ,

1

ˆ ˆ ˆ ˆ, ,1
,

h bd bd e bb bb h ab ab e

m m n n

m n bd bb ab

t m t t n

d d V V V V a a
B

E E E E E E

     
   

  

  

 
      


 

 (6.12a) 

* * * * * *

* * *

* *

, ,

1

ˆ ˆ ˆ ˆ, ,1
,

e db db h bb bb h ab ab e

m m n n

m n db bb ab

t m t t n

d d V V V V a a
C

E E E E E E

     
   

  

  

 
      


 

(6.12b) 

* * * * * *

* * *

* *

, ,

1

ˆ ˆ ˆ ˆ, ,1
.

h bd bd e bb bb e ba ba h

m m n n

m n bd bb ba

t m t t n

d d V V V V a a
D

E E E E E E

     
   

  

  

 
      


 

(6.12c) 

The total BE pathway contribution 
 
 be

tr ne
T  over specific 

*db

m  , 
*ba

n   and 
*bb 

 

eigenstates will be 

 
   , , , , , , , ,

, ,

be

m n m n m n m ntr ne
m n

T A B C D           
  

    . (6.13) 

 

6.1.3 Pathway Topology of the Most Important Bridge-Exciton Pathways in Extended 

Alkane Systems 

In our numerical investigation we used the ab-initio data, obtained by RHF methods 

implemented in Gaussian 09 with 6-31G basis, for the seven-CC bond bridge of the 

extended alkane system of Fig. 6.1. Keeping everything else the same we shift the energies 

of all bridge NLMO diagonal Fock matrix elements, * *, ,n n
x x b b

F F  and , ,n ni i b bF F  in eq. 

(6.1), so that the energy gaps 1E aver  ( * *,n nb b
F ) * *,d d

F  and 2 ,d dE F aver   ( ,n nb bF ) are 

reduced ( aver indicates the average value) with respect to the original system energy gaps  

( 1 11.32E eV  , 2 11.52E eV  ). We further ensure that the energy-shifted systems 

remain in the tunneling regime. That is, we can still find two eigenstates   of 
 ne

H  

(eq. (6.1)) equally delocalized over *,d d  and *,a a  with small amplitude on the bridge. 

Reducing the energy gaps 1E  and 2E , while retaining the tunneling limit (see previous 

Chapter), increases the BE contribution up to ~50 times. Pathways analysis demonstrates 

that BE transfer can be described by 5 intermediate BE eigenstates (with the lowest 

energies) each creating 4 pathways (Fig. 6.2) and their sum (Fig. 6.3). Thus overall, we 
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obtain 20 distinct dominant pathways in the bridge-exciton eigenstates basis. Table 6.1 

summarizes the obtained results, e.g., for the original system energy gaps ( 1 11.32E eV  ,

2 11.52E eV  ) 72.3% of 
 
 be

tr ne
V  or 79.4% of 

 
 be

tr ne
T  can be described by the first 5 lowest 

bridge eigenvalues. For these 5 lowest bridge eigenvalues, the main pathways 

contributions are: 20.9% for pathways 
2,1,5A  and 

1,2,5B , 4.6% for pathway 
2,2,5C  and 53.6% 

for pathway 
1,1,5D . The table clearly demonstrates that the dominant through bridge 

pathway is the 1,1,5D  pathway. 

 

Figure 6.1: Alkyl-bridged diene model compound with seven bridging   bonds. The alkane 

bridge is planar, and the left and right C C  bonds are taken to be the D and A. 

 

         

         

Figure 6.2: Pathway topology of most important pathways in the BE eigenstate basis. The DA CT 

intermediates do not contribute.  

 

Pathway A
2,1,5

 

 

Pathway B1,2,5 

 

 

Pathway C2,2,5 

 

Pathway D1,1,5 
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 1E eV   2E eV   
 be

tr ne
V  

 
   be

tr ne
T eV  , ,m nA     

, ,m nB     
, ,m nC     , ,m nD     

6.32 6.52 88.9 83.9 16.5 16.5 3.3 63.7 

7.32 7.52 77.1 75.1 -0.2 21.5 4.1 74.6 

8.32 8.52 93.7 93.7 18.7 18.7 3.7 58.9 

11.32 11.52 72.3 79.4 20.9 20.9 4.6 53.6 

Table 6.1: Pathway analysis using eqs. (6.11) and (6.12) for , ,m nA    , , ,m nB    , , ,m nC    , and , ,m nD     

pathway contributions (Figs. 6.2 and 6.3) over specific m , n  and   eigenvalues as a function of 

energy gaps 1E aver  ( * *,n nb b
F ) * *,d d

F , and 
2 ,d dE F aver   (

,n nb bF ). 
 
 be

tr ne
V  is the exact 

splitting-derived BE coupling, and 
 
 be

tr ne
T  is the total BE coupling contribution using eq. (6.5). 

 

 

Figure 6.3: The scheme demonstrates the sum of the dominant pathways from 
*,d d  to 

*,a a  

through the BE eigenstate basis manifold. The first pathway 2,1,5A  is 
* **

2, db bbd d   

* *

1 ,ba a a  , the second pathway 1,2,5B  is 
* * **

1 2, bd bb abd d      

*,a a , the third pathway 2,2,5C  is 
* * ** *

2 2, ,db bb abd d a a      , and the 

fourth pathway 1,1,5D  is 
* * ** *

1 1, ,bd bb bad d a a      . 

 

 

 

Pathways: 

        A
2,1,5

 

        B
1,2,5

 

        C
2,2,5

 

        D
1,1,5
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6.2 Single-Particle Dexter Energy Transfer Pathways Analysis in a Local Basis 

In this section we develop simple D-B-A models to illustrate analytically single-particle 

Dexter energy transfer pathways. Through this analysis we intend to obtain an intuition for 

the single-particle pathway expressions of the total Dexter coupling and, further, to 

demonstrate the bridge-exciton pathways dominance in the coupling as the bridge length 

increases. In the following we will use the formulation developed in the previous Chapter 

for the single-particle DAE-mediated  
  dae

tr ne
T  and BE-mediated  

  be

tr ne
T  couplings, where 

the pure exchange interactions are ignored (given by eqs. (5.11) and (5.12)). Further, we 

will use the localized (NLMO) representation for the bridge electron and hole orbitals (i.e., 

the *, nd b , *,n mb b  exciton representation,  etc.), and lowest order perturbation theory in 

the off-diagonal matrix elements between localized orbitals. 

 

6.2.1 One-Site Bridge 

For a one-site bridge (Fig. 6.4) all ˆ
KQ  are one-state projection operators, i.e., 

* *

*
ˆ , ,dbQ d b d b      ,     

* *

*
ˆ , ,bbQ b b b b . (6.14) 

Therefore,    
1ˆ , ,i x t t i xG E E E i x i x


   and eqs. (5.11) and (5.12) simplify to 

 
 

   
* * * * * * * *

* * * ** *

1 1
e e e eh h h h

dae d b a b db ab db ab d b a b

tr ne

t t t tt tdb ba bd abda ad

V V V VV V V V
T

E E E E E E E EE E E E

       
        

                  
, (6.15) 

and 

 
 

   
* * * * * * * *

* * * ** *

1 1
e h e h h e h e

db ab db abbe d b a b d b a b

tr ne

t t t tt tdb ba bd abbb bb

V V V V V V V V
T

E E E E E E E EE E E E

       
        

                  
 (6.16) 

   
* * * * * * * *

* * * ** *

1 1
.

e h h e h e e h

db ab db abd b a b d b a b

t t t tt tdb ab bd babb bb

V V V V V V V V

E E E E E E E EE E E E
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It should be noted that the energy gaps 
t i xE E  in the equations above contain both one-

particle (electron and hole) and two-particle (electron-hole Coulomb attraction) 

contributions since 
   , ,
ˆ, ,

di

i x x x i iE i x h i x F F ii xx    .  

Equations (6.15) and (6.16) show the lowest-order DA-CT and BE pathways contributions 

to the *,d d -to- *,a a coupling.  In this model there is one bridge exciton state *,b b  and 

two DA CT exciton states, *,d a  and *,a d . However, the number of pathways that visit 

the DA CT exciton states are less than the pathways that avoid these states and visit the BE 

state. 

 

 

Figure 6.4: (a) Electron and hole transfer couplings for a linear one-site bridge system. (b) Exciton 

subspaces in local basis (NLMOs) and the coupling topology between the subspaces.  

*d d *d b
*d a

*b b*b d

*a d *a b
*a a

*b a

* *

e

d b
V * *

e

a b
V

h

dbV

h

abV

* *

e

d b
V

* *

e

d b
V

* *

e

a b
V

* *

e

a b
V

h

dbV h

dbV

h

abV h

abV

(b) 

*d *b *a

bd a

* *

e

d b
V * *

e

a b
V

h

dbV h

abV

(a) 
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To simplify the expressions, we define * *CT t tda ad
E E E E E     , where * *t dd aa

E E E   

and replace individual state energy gaps by average ones, i.e., we assume that 

* *ET t tdb ab
E E E E E     , * *HT t tba bd

E E E E E      and *BE t bb
E E E    and eqs. 

(6.15) and (6.16) become 

 
  * * * *2

e e h h
dae d b a b db ab

tr ne

CT ET HT

V V V V
T

E E E

   
    
      

, (6.17) 

and 

 
  * * * * * * * * * * * *2 1 1

.

e e h h e e h h e e h h

db ab db ab db abbe d b a b d b a b d b a b

tr ne

BE ET HT BE ET ET BE HT HT

V V V V V V V V V V V V
T

E E E E E E E E E

     
       
                  

 (6.18) 

Assuming HT ETE E   , we find that 
 
 

 
 be dae

tr ne tr ne
T T  if 2BE CTE E   . Therefore, the BE 

pathways and the DA CT exciton pathways can be of similar magnitude even for a single 

bridge unit. The DA CT exciton pathway coupling (eq. 6.17) is proportional to the product 

of electron and hole couplings, or the lowest-order perturbation theory couplings of 

electron- and hole-mediated ET theory [1-7]. However, the BE coupling (eq. 6.18) contains 

mixed electron and hole energy denominators, so the Dexter coupling is not always simply 

proportional to the product of the electron and hole couplings. We show below that the 

relative dominance of these competing terms is bridge-length dependent. 

 

6.2.2 Linear Two-Site Bridge with Nearest Neighbor Couplings 

We now examine a linear two-site bridge with nearest-neighbor couplings indicated in        

Fig. 6.5. From eqs. (5.11) and (5.12) we compute 
 
 dae

tr ne
T  and  

 be

tr ne
T  to lowest-order in                   

 1p
V  by writing    

1
ˆ ˆ ˆ ˆˆ ne

K t t K K KG E E Q Q H Q


  
 

 as      
1

11ˆ ˆ ˆˆˆ p

K t K t K KG E g E Q V Q


  
 

, 

where    
1

ˆˆ ˆ ˆˆ di

K t t K K Kg E E Q Q h Q


  
 

 is the K-subspace Green’s function corresponding 

to the diagonal part of the subspace Hamiltonian, eq. (5.5). Substituting into eqs. (5.11) and 

(5.12) the perturbative expansion          1ˆ ˆ ˆˆˆ ˆ ˆp

K t K t K t K K K tG E g E g E Q V Q g E    we 

find 
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  * * * * * *

1 1 2 21 1 2 2

2 2

2
e e e h h h

db b b abd b b b a bdae

tr ne

CT ET HT

V V V V V V
T

E E E

 
 

    

, (6.19) 

i.e., two lowest-order DA exciton pathways, and 

 
  * * * * * * * * * *

1 1 1 2 2 21 1 1 2 2 2

* * * * * * * *
1 1 1 2 21 1 1 2 2

3

2

2e h e h e h e h e h

db db b b ab abd b d b b b a b a bbe

tr ne

ET HT BE ET HT

e h e h e e h h

db db b b abd b d b b b a b

ET HT BE

V V V V V V V V V V
T

E E E E E

V V V V V V V V

E E E

     
       
              

   
    
         

* * * * * * * *
1 1 21 1 1 2 1 2 2

* * * * * * * *
1 1 2 2 21 1 2 2 2

2

2 2

2 2

HT

e h e h h e eh
db db abd b d b b b b b a b

ET HT BE ET

h h e e e h e h

db b b ab abd b b b a b a b

HT BE ET HT

E

V V V V V V VV

E E E E

V V V V V V V V

E E E E

 
 
  

    
      
           

     
      

             

* * * * * * * *
1 2 21 1 2 1 2 2 2

* * * * * *
1 1 2 21 1 2 2

* * * *
11 1 2

2 2

2 2

2

1

e e h e h e hh
db ab abd b b b b b a b a b

ET BE ET HT

h h e h e e

db b b abd b b b a b

HT BE ET

e e h

dbd b b b

ET

V V V V V V VV

E E E E

V V V V V V

E E E

V V V

E

    
     

           

    
     

         






* *
1 2 22

2

1
,

e h h

b b aba b

BE HT

V V V

E E

   
   
      

 

(6.20) 

i.e., eighteen lowest-order BE pathways that involve at least one bridge-exciton state and 

no DA excitons. Here, * *CT t tda ad
E E E E E     , where * *t dd aa

E E E  . To further 

simplify the expressions we replace individual state energy gaps by average ones,           

i.e., we assume that * *
i i

ET t tdb ab
E E E E E     , * *

i i
HT t tb a b d

E E E E E      and 

*
i j

BE t b b
E E E   . The rapid growth of the number of bridge exciton pathways compared to 

the DA exciton pathways is reflected in the distance-dependence of the coupling.  
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Figure 6.5: (a) Electron and hole transfer couplings for a linear two-site bridge system. (b) Exciton 

subspaces in local basis (NLMOs) and the coupling topology between the subspaces.  

 

 

 

  

   

(a) 

(b) 
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6.2.3 Parallel Two-Site Bridge with Nearest Neighbor Couplings and no cross-talk 

Chemical bridges consist of multiple coupling pathways that generate constructive and 

destructive interferences. Searching for correlations between ET pathway and EnT       

pathway interferences is promising, since the structural basis of pathway interference 

effects in single-particle transfer (SPT) is well understood [8-15].  A popular model for 

SPT pathway interferences (ET or HT) is the double-slit parallel bridge with two-bridge 

units and no cross-talk [15,16] (e.g., Fig. 6.6). For example, if in this model system with 

parallel SPT ET pathway amplitudes of opposite signs and parallel SPT HT pathway 

amplitudes of the same signs, the ET pathways interfere destructively while the HT 

pathways interfere constructively. As a result, the effective SPT couplings 

* *

* *ˆˆ ˆ 0e e e

B d a
d V G V a T   and ˆˆ ˆ 0h h h

B dad V G V a T  , where  
1

ˆ ˆ ˆ
B t B BG E I H



   is the 

single-particle bridge GF ( ˆ
BH  is the bridge Hamiltonian and tE  is the electron- or hole-

tunneling energy). 

Thus we now consider a parallel two-site bridge with no couplings between the two bridge 

units as shown in Fig. 6.6. From eqs. (5.11) and (5.12) we find 

 
  * * * * * * * *

1 1 2 2 1 1 2 2
2

e e e e h h h h

d b a b d b a b db ab db abdae

tr ne

CT ET HT

V V V V V V V V
T

E E E

   
   

       

, (6.21) 

i.e., eight lowest-order DA exciton pathways (shown in Figs. 6.7 and 6.8), and  

 
  * * * * * * * *

1 1 1 2 2 1 2 1 1 2 2 2

e e e eh h h h h h h h

d b db ab db ab a b d b db ab db ab a bbe

tr ne

ET BE ET ET BE ET

V V V VV V V V V V V V
T

E E E E E E

           
           
                         

 (6.22) 

                

* * * * * * * * * * * * * * * *
1 1 1 2 2 1 2 1 1 2 2 2

* * * *
11 1 1

e e e e e e e eh h h h

db d b a b d b a b ab db d b a b d b a b ab

HT BE HT HT BE HT

e h e

dbd b a b ab

ET BE

V V V V V V V VV V V V

E E E E E E

V V V V

E E

           
           

                         

   
   
       

* * * *
21 1 2

* * * * * * * *
1 22 2 1 2 2 2

e h eh h
dbd b a b ab

HT ET BE HT

e h e e h eh h
db dbd b a b ab d b a b ab

ET BE HT ET BE HT

V V V V

E E E E

V V V V V VV V

E E E E E E
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* * * * * * * *
1 11 1 1 1 2 2

* * * *
22 1 1 2

e h e e h eh h
ab abdb d b a b db d b a b

HT BE ET HT BE ET

e h eh h
abdb d b a b db

HT BE ET HT

V V V V V VV V

E E E E E E

V V VV V

E E E E

          
           

                         

      
       

              

* * * *
22 2 ,

e h e

abd b a b

BE ET

V V V

E E

   
   
        

 

i.e., sixteen lowest-order BE pathways (shown in Figs. 6.9 to 6.12).  

If, in the system of Fig. 6.6, we set * *
1

e e

d b
V V  and * *

2

e e

d b
V V   (with * * * *

1 2

e e e

a b a b
V V V  , 

1 2

h h h

db dbV V V   and 
1 2

h h h

ab abV V V  ), then 
 
 

0
dae

tr ne
T   in eq. (6.21) (Figs. 6.7 and 6.8) and 

 
 

0
be

tr ne
T   in eq. (6.22) (Figs. 6.9 to 6.12). Therefore, in a parallel double-slit bridge, 

destructive interferences that reduce single ET  * *

e

d a
T  or HT  h

daT  interactions will also 

reduce the EnT coupling 
 tr ne

T . Although couplings will depend on structure, this example 

demonstrates the power of triplet EnT pathway analysis. 

 

 

Figure 6.6: Nearest neighbor parallel two-bridge site-system without cross-talk that supports both 

ET (top, black) and HT (bottom blue) pathways. The color scheme is used in the following figures 

to distinguish between ET-mediated and HT-mediated exciton pathways. 

1

h

abV

2

h

abV
2

h

dbV

1

h

dbV

* *
1

e

d b
V
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2

e

d b
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e
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e
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Figure 6.7: Lowest-order DA-CT exciton pathways for the parallel two-bridge-site system of Fig. 

6.6 (eq. (6.21)). The diagrams show the four pathways that involve the D B A 
 intermediate. 
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Figure 6.8: Lowest-order DA-CT exciton pathways for the parallel two-bridge-site system of Fig. 

6.6 (eq. (6.21)). The diagrams show the four pathways that involve the D B A 
 intermediate. 
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Figure 6.9: Lowest-order bridge-exciton pathways for the parallel two-bridge-site system of Fig. 

6.6 (eq. (6.22)). The diagrams show the first and second terms of eq. (6.22) (four pathways). 
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Figure 6.10: Lowest-order bridge-exciton pathways for the parallel two-bridge-site system of Fig. 

6.6 (eq. (6.22)). The diagrams show the third and fourth terms of eq. (6.22) (four pathways). 
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Figure 6.11: Lowest-order bridge-exciton pathways for the parallel two-bridge-site system of Fig. 

6.6 (eq. (6.22)). The diagrams show the fifth to eighth terms of eq. (6.22) (four pathways). 
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Figure 6.12: Lowest-order bridge-exciton pathways for the parallel two-bridge-site system of Fig. 

6.6 (eq. (6.22)). The diagrams show the 9th to 12th terms of eq. (6.22) (four pathways). 
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6.2.4 N-Site Bridge  

As the number of bridge sites increases, the contribution to the overall EnT coupling 

arising from BE pathways increases rapidly and dominates the coupling. For a bridge with 

N-sites, there are many classes of BE pathways distinguished by the number of bridge 

exciton states *,n mb b  that are visited to lowest order in ˆ eV  and ˆ hV . For a nearest-neighbor 

N-site bridge model (Fig. 6.13a), the lowest-order BE pathway class with the maximum 

number of BE states is shown in Fig. 6.13b. The total contribution to the EnT coupling 

arising from this BE pathway class is given by 

 
  * * * * * * * *

e h h e e h h e

db db ab abbe d b d b a b a b

tr ne

ET HT HT ET

V V V V V V V V
T BE

E E E E

   
       

         
, (6.23) 

where 

   
 

* *

1 1

2 1

2
N N

e h

bbb b

N

BE

V VN
BE

N E

 



 
 

 
. (6.24) 

We assumed that * *
jdb db

E E  ( * *
jab ab

E E ) , * *
jb d bd

E E  ( * *
jb a ba

E E )  and * *
i jb b bb

E E . tE  

and the energy gaps E  are defined as above. This energy denominator absorbs the 

distance dependent Coulomb attraction energies for the many virtual states. There are thus 

 
2

exp 1.4
N

N
N

 
  

 
 (for large N) bridge-exciton pathways in eq. (6.24).   

For comparison, there are only two DA CT exciton pathways for the N-bridge-site system 

that contribute a coupling of 

 
   

 

 
 

* * * * * *

1 1

2
N N

e e e h h h

db bb abdae d b b b a b

tr ne N N

CT ET HT

V V V V V V
T

E E E

    
   
     

  

. (6.25) 
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Figure 6.13: (a) Model of a linear N-site bridge with nearest-neighbor couplings that support 

through-bridge ET (top) and through-bridge HT (bottom). (b) Diagram showing the total 

contribution of those lowest-order BE pathways that visit the maximum number of BE states 

*,n mb b . The number of lowest-order 
*

1 1,b b -to-
*,N Nb b  paths within the BE subspace (central 

box) grows exponentially with N. 
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6.3 Double-Particle Exchange Energy Transfer Pathways Analysis in Local Basis 

Here, we establish a pathway decomposition of the two-particle exchange components 

 * *D A DA  of the total Dexter coupling (ignored in the previous Sections). The pathway 

analysis of  * *D A DA  enables the development of structure function relations for the 

exchange interactions. 

 

6.3.1 Dexter Energy Transfer through a Single Bridge Site 

The exchange contribution to the D-to-A triplet EnT coupling (second term of eq. (5.2)), is 

given by   

       * *

2
* * 3 3

1 2 1 2

0 1 24

e h

DAtr ex D A

e
T D A DA d r d r S r S r

r r

 
     

  . (6.26) 

The D , *D   and  A , *A  denote diabatic orbitals that, in the tunneling regime, are 

mostly localized on the D and A fragments with tails on B (see Chapter 5). These orbitals 

can be written in a basis of zeroth-order orbitals that are fully localized on                          

D, B, or A fragments; i.e., br

DD d  , *

* * br

D
D d  , br

AA a   and 

*

* * br

A
A a  , where d  ( *d ) and a  ( *a ) are the zeroth-order D-localized       

and A-localized basis orbitals and br  are the bridge tails. In eq. (6.26) 

     * * * *1 1 1

e

D A D A
S r r r   and      2 2 2

h

DA D AS r r r   are overlap densities for the 

electron and hole donor and acceptor molecular orbitals, respectively (which are assumed 

real).  *

*

1 1D
r r D  ,  *

*

1 1A
r r A  , etc., are orbital wavefunctions.  

We use the chemists notation for the two-electron integrals 

         * *

2
* * 3 3

1 2 1 1 2 2

0 1 24
ki j

e
i j k d r d r r r r r

r r
   



 
    
  . (6.27) 

 PANAYIO
TIS ANTONIO

U



165 
 

 

Figure 6.14: (a) D-B-A system with one bridge unit. (b) Model for comparing ET and HT donor-

acceptor couplings to the triplet exciton (Dexter) donor-acceptor coupling. 

 

A minimalistic D-B-A system model Hamiltonian consists of six zeroth-order orbitals, two 

for each site (Fig. 6.14) given by 

                                            int
ˆ ˆ ˆ ˆ ˆ

D B AH H H H V     (6.28) 

where, 

   *

* *ˆ
D d d

H d d d d   , (6.29a) 

*

* *ˆ
B b b

H b b b b   , (6.29b) 

 *

* *ˆ
A a a

H a a a a   , (6.29c) 

where i , *i
  are the respective zeroth-order orbital energies for the ground and exited 

states. The interaction Hamiltonian int
ˆ ˆ ˆh eV V V   is given by 

   ˆ h h h

db abV V d b b d V a b b a    , (6.30a) 

   * * * *

* * * * * * * *ˆ e e e

d b a b
V V d b b d V a b b a    . (6.30b) 

Energy 

*d *a

*b

b

d a

eE

hE

* *

e

d b
V

* *

e

a b
V

h

dbV h

abV

(a) 

(b) 

D B A 

PANAYIO
TIS ANTONIO

U



166 
 

The hole-mediated ( h

dbV , h

abV ) and electron-mediated ( * *

e

d b
V , * *

e

a b
V ) coupling elements are 

the donor-bridge and acceptor-bridge electronic interactions, and the direct D-to-A 

through-space interaction is assumed to be equal to zero ( 0h

daV  , * * 0e

d a
V  ). We further 

assume that b  and *b  orbitals are off resonance with d , *d , a  and *a  orbitals (Fig. 6.14). 

That is, all of the following values are much less than one  h

db b dV   ,  h

ab b aV   , 

 * * * *

e

d b b d
V    and  * * * *

e

a b b a
V   . As such, the D-to-A hole-mediated and electron-

mediated couplings are weak through-bridge tunneling interactions. 

In the electron and hole tunneling limit, we can use lowest-order perturbation theory in the 

donor-bridge and acceptor-bridge electronic interactions to describe the mixed D-B and B-

A orbitals (i.e., D , *D , A , *A ), identical to the lowest-order perturbation theory 

treatment for pure ET and HT [1-7]. Hence, 

h

db

h

bd

V
D d b

E
 


, (6.31a) 

h

ab

h

ba

V
A a b

E
 


, (6.31b) 

and, 

* *

* *

* * *

e

d b

e

b d

V
D d b

E
 


, (6.32a) 

* *

* *

* * *

e

a b

e

b a

V
A a b

E
 


. (6.32b) 

Here, 
h

ij i jE      and * * * *

e

i j i j
E     . Substituting eq. (6.31) and (6.32) into eq. (6.26), 

and retaining terms up to fourth-order in the electronic couplings, we find the Dexter 

coupling up to fourth order in ij ijV E  

       
4

* *

1
tr ex tr ex

i

T d a da T i


  . (6.33) 
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* * * *

* * * *

* * * *

* * * *

1

,

h h

db ab

tr ex h h

bd ba

e e

d b a b

e e

b d b a

V V
T d a ab d a db

E E

V V
a b da d b da

E E

   
     

    

   
    
       

 (6.34) 

 

       

   

* * * *

* * * *

* * * *

* * * *

* *

* *

* * * *

* * * *

2

e eh h

db ab d b a b

tr ex h h e e

bd ba b d b a

e eh h

a b ab a b db

e h e h

ba bdb a b a

e

d b

e

b d

V VV V
T d a bb b b da

E E E E

V VV V
d b db d b ab

E E E E

V

E

    
                 

      
                   

 
  
  

   
* *

* *

* * * * ,

eh h

ab d b db

h e h

ba bdb d

VV V
a b db a b ab

E E E

    
            

 
(6.35) 

 

     

 

 

* *

* *

* *

* *

* * * *

* * * *

* *

* *

* *

* *

* *

3

e h h

a b ab db

tr ex e h h

ba bdb a

e h h

d b ab db

e h h

ba bdb d

e e h

a b d b ab

e e h

bab a b d

e

a b

e

b a

V V V
T d b bb

E E E

V V V
a b bb

E E E

V V V
b b db

E E E

V

E

   
          

   
          

   
           




 
* *

* *

* * ,

e h

d b db

e h

bdb d

V V
b b ab

E E

   
         

 (6.36) 

and 

     
* * * *

* * * *

* *4

e e h h

a b d b db ab

tr ex e e h h

bd bab a b d

V V V V
T b b bb

E E E E

    
              

. (6.37) 

In simple electron tunneling, the lowest-order donor-acceptor coupling would be 

proportional to db abV V E  where E  is the tunneling energy gap between the quasi-

degenerate donor and acceptor states and the nearest energy bridge orbital. In contrast, the 

lowest-order Dexter couplings contain two-electron integrals  * *i j k . The largest two-

electron integrals describe Coulombic attraction between populations on the bridge and 

appear first in the fourth-order term 
   4

tr ex
T . Motivated by the neglect of differential 
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overlap (NDO) approximation, we could suggest that this fourth-order term dominates 

 tr ex
T  because of its enhanced Coulomb integral and strongest overlap. In this 

approximation, 
     4

tr ex tr ex
T T . Interestingly, this term is the product of the bridge-

mediated D-A ET tunneling matrix element and the HT tunneling matrix element 

* * * *

* *

e e

e d b a b

ed a

V V
T

E



     ,     

h h
h db ab

da h

V V
T

E



 (6.38) 

and the Coulomb integral  * *b b bb , i.e.,  

     
* * * *4

e h

d a da

tr ex e h

T T
T b b bb

E E

  
       

. (6.39) 

These expressions are the analogues of the lowest-order perturbation theory interactions 

for ET and HT [1-7], respectively. The hole and electron denominators are different, as 

there are two different “tunneling energies” rather than just one as would be the case in 

electron transfer. We assumed here that d a   and * *d a
   such that h h h

bd baE E E      

and * * * *

e e e

b d b a
E E E     .  

 

6.3.2 Dexter Energy Transfer through a multi-site Bridge  

Consider the multi-site linear bridges shown in Fig. 6.15. The total Hamiltonian is given by     

eq. (6.28), where the donor and acceptor Hamiltonians are 

                                            *

* *ˆ
D d d

H d d d d   , (6.40a) 

                                            *

* *ˆ ,A a a
H a a a a    (6.40b) 

and the bridge Hamiltonian is 

ˆ ˆ ˆ ˆ ˆ ˆh e h e eh

B B B B B BH H H V V V     . (6.41) 

The bridge Hamiltonian is divided into electron, hole, and mixed electron-hole parts 

ˆ
i

h

B b i i

i

H b b    ,   *

* *ˆ
i

e

B i ib
i

H b b , (6.42a) 
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                                     ˆ
i j

h h

B b b i j j i

i j

V V b b b b  , (6.42b) 

                                     * *

* * * *ˆ
i j

e e

B i j j ib b
i j

V V b b b b  . (6.42c) 

We will assume that    *
ii

e h

t b tb
E E    so that we may ignore electron-hole 

tunneling interaction, as is often assumed in ET and HT through large energy gap bridges 

[3,6,7,17]. 

The interaction Hamiltonian between donor (acceptor) and the bridge is int
ˆ ˆ ˆh eV V V   with 

                   ˆ
i i

h h h

db i i ab i i

i i

V V d b b d V a b b a     , (6.43a) 

                   * * * *

* * * * * * * *ˆ
j j

e e e

j j j jd b a b
j j

V V d b b d V a b b a     . (6.43b) 

In the tunneling limit, the donor and acceptor mixing onto the bridge is given by 

 ˆ ˆh h h

tD d G E V d  , (6.44a) 

 ˆ ˆh h h

tA a G E V a  , (6.44b) 

and, 

 * * *ˆ ˆe e e

tD d G E V d  , (6.45a) 

 * * *ˆ ˆe e e

tA a G E V a  , (6.45b) 

where h

t d aE     and * *

e

t d a
E     are the hole and electron tunneling energies, and 

ˆ hG , ˆ eG  are hole and electron bridge-Green’s functions 

    
1

ˆ ˆ ˆ ˆh h h

B BG E E I H V


   , (6.46a) 

    
1

ˆ ˆ ˆ ˆe e e

B BG E E I H V


   . (6.46b) 

Substituting eqs. (6.44) and (6.45) into eq. (6.26), we get the following terms for the 
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   * * * *

* *

* * * *
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† * * † * *
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1

,
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j i

j i

j i

b a j b d itr ex
b b

j ib a b d
b b

T T d a db T d a b a

S d b da S b a da

 

 

 

 
 (6.47) 
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 (6.49) 

and 

     * * * *

* *

† † * *

, ,, ,
4

i ji j

i ji j

i j i j b d b atr ex b d b a
b bb b

T S S b b bb T T , (6.50) 

where 
,

ˆ ˆh h

i jT i G V j  and 
,

ˆ ˆe e

i jS i G V j .  

For example, the fourth-order term (eq. (6.50)) includes only bridge Coulombic 

interactions, e.g.,  * *

i i j jb b b b ,  * *

i j k kb b b b , etc. If in this term we ignore the exchange 

interactions  * *

i j i jb b bb , where i j , we get 

       * * * * * * * *

† † * * † † * *

, , , ,, , , ,
1

4
i i j ji i i i

N N

i i i i b d b a i i j j b d b atr ex b d b a b d b a
i i j

T S S b b bb T T S S b b b b T T
 

   . (6.51) PANAYIO
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Here, N is the number of bridge sites. We can further expand    ˆ ˆh h h

tG E G E  and 

   ˆ ˆe e e

tG E G E  in the ,i jS  and 
,i jT  terms in powers of ˆ h

BV  and ˆ e

BV , respectively. The 

corresponding Dyson expansions are 

ˆ ˆˆ ˆ ˆh h h h h

BG g g V g        ,     ˆ ˆˆ ˆ ˆe e e e e

BG g g V g    (6.52) 

where    
1

ˆ ˆˆ h h

Bg E E I H


   and    
1

ˆ ˆˆ e e

Bg E E I H


  .  

Assuming identical nearest-neighbor interaction matrix elements in the chain, and retaining 

only the lowest-order terms in the Dyson expansions, we get perturbative approximations 

to the terms in eq. (6.51). For example, for the first term in eq. (6.51), 

 * * * *

† † * *

, ,, ,
1

i ii i

N

i i i i b d b ab d b a
i

S S b b bb T T


 , (6.53) 

we get 

 
 

 

 

 

 

 

 

 

* * * ** * * *
11

1 1

* *

1 1
1

NN

N ii i N ie ee e h h h h
N

db bb ab bba b b bd b b b

i i i i i N i i N i
e e h h

i

V VV V V V V V
b b bb

E E E E

  

   


     
     
          

    

 . (6.54) 

In the language of tunneling pathways analysis, eq. (6.54) is the product of five terms 

summed over all bridge sites i : (1) the electron propagation amplitude from the donor to 

the bridge site i , (2) the electron propagation amplitude from bridge site i  to the acceptor, 

(3) the hole propagation amplitude from the donor to the bridge site i , (4) the hole 

propagation amplitude from the bridge site i  to the acceptor, and (5) the Coulombic 

attraction between populations (exciton binding energy) at bridge site i . The product terms 

in eq. (6.54) take the familiar (lowest-order pathway) form  , 1i i ii
V E   where the 

numerator coupling elements reflect the structure and interactions of each bridging unit and 

the denominator energy gap reflects the barrier (at frozen nuclear geometry) for injecting 

an electron (or hole) onto bridge site i . 
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Figure 6.15: (a) D-B-A system with multiple bridge units. (b) The bridge is represented in a 

zeroth-order bonding and anti-bonding orbitals (one bonding and one anti-bonding orbital per 

bridge unit). These orbitals could be two-center bonds and anti-bonds. 

 

6.3.3 Interferences among Dexter Coupling Pathways  

Dexter EnT pathways interfere coherently, as do single ET pathways. We examine a model 

system with two parallel bridge sites that each support electron- and hole-coupling 

pathways (Fig. 6.16). In the total Hamiltonian, of eq. (6.28)  

* *
1 21 2

* * * *

1 1 1 1 2 2 2 2
ˆ

B b bb b
H b b b b b b b b       , (6.55) 

and int
ˆ ˆ ˆh eV V V  , with  

                    
   

   
1 1

2 2

1 1 1 1

2 2 2 2

ˆ

,

h h h

db ab

h h

db ab

V V d b b d V a b b a

V d b b d V a b b a

   

   
 (6.56a) 

   

   

* * * *
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2 2

* * * * * * * *

1 1 1 1

* * * * * * * *

2 2 2 2

ˆ

.

e e e

d b a b

e e

d b a b

V V d b b d V a b b a

V d b b d V a b b a

   

   
 (6.56b) 
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Figure 6.16: Double slit D-B-A system model for relating ET and HT donor-acceptor couplings to 

the triplet exciton (Dexter) donor-acceptor coupling. The bridge is represented in a local bonding 

and anti-bonding orbital representation. It is assumed that the two parallel bridge units are not 

coupled to each other by tunneling interactions. 

 

Using the same approximations that led to eq. (6.54) we find 
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 (6.57) 

which can be rewritten as 

D 

B
1
 

A 

B
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 (6.58) 

where 
   * * * * * *

i i

e i e e e

id a d b a b
T V V E   and 

   
i i

h i h h h

da db ab iT V V E  . If we retain only the largest 

two-electron integrals  * * |i i i ib b bb , the first two terms survive and we get a coherent sum of 

two parallel Dexter pathway interactions 
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. (6.59) 

This result may be generalized to the case of two parallel bridges denoted upper  U  and 

lower  L  with UN  and LN  sites, respectively 
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 (6.60) 

The two-electron integrals in the above summation represent electron-hole attractions 

between bonding and anti-bonding charge densities, and are negative in value (i.e., exciton 

binding energies).  
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Chapter 7: Conclusions 

 

The major objective of this Thesis was to further explore new theoretical/computational 

strategies that will enable the active control of electron transfer (ET) and energy transfer 

(EnT) reactions in molecular systems. We developed analytical frameworks based on 

donor (D) – bridge (B) – acceptor (A) molecular models, and employed numerical 

simulations and ab initio electronic structure computations of real molecules. The broader 

impact of this work on the research field is that it provides new powerful theoretical tools, 

for the ultimate task to control ET and EnT in molecular structures and materials. 

Specifically in Chapter 4, we established “design principles” for modifying specific ET 

molecules and experimental setups, in order to enhance the control of ET through 

application of infrared (IR) pulses. In Chapters 5 and 6 we developed a coupling-pathway 

theory for bridge-mediated triplet EnT, where we suggest improved formulas that take into 

account bridge-exciton contributions to EnT pathways which have been ignored until now 

in previous studies. We further used the formulation to demonstrate how to decompose the 

EnT coupling into coupling pathways, and to identify dominant through-bridge exciton 

pathways in EnT molecules. 

In Chapter 4 I explored the feasibility of perturbing bridge-mediated ET with the 

application of a single IR pulse (for a realistic pulse-parameter regime), that selectively 

excites ET-active bridge vibrational modes. To describe the IR-perturbed ET reaction, I 

use a dissipative density matrix (Lindblad-type) model that takes into account the effects of 

vibrational relaxation. I suggested parameter regimes and molecular architectures that may 

enable the measurement of IR-pulse perturbations to bridge-mediated ET rates. The main 

focus of this study was on the fast ET rate regime (~ps) where the aim is to perturb ET “as 

the electron transfers”. This is done by directly exciting an IR-active ET-active bridge 

mode with a subpsec period and a frequency above the mode continuum. I find that two 

important generic conditions need to be satisfied in order to have a measurable IR-

perturbing effect on the ET rate “as the electron transfers”. First, the bridge electronic state 

must be occupied with substantial probability during ET. This means, that the B state 

cannot create a very deep tunneling barrier for the transferring electron. Thus, the IR-

perturbation effect is maximized for coherent resonant through-bridge tunneling. The 

second condition relates to the timescale-competition between ET and vibrational 

relaxation. If the timescale of ET and vibrational relaxation of the IR-excited B mode are 
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of the same order, the IR-induced ET rate perturbation is enhanced. In contrast, if the 

vibrational relaxation of the IR-excited B mode is faster than ET, the effects of the IR 

pulse on the ET rate as the electron transfers will be diminished. Finally, I have observed 

that for typical and moderate bridge electron-vibrational couplings, the IR-perturbation 

effect is substantial only for relatively strong IR fields that are accessible via surface 

enhanced infrared absorption settings. 

In Chapter 5 we have developed a coupling pathway description for the bridge-mediated 

triplet EnT (Dexter) coupling. The most important result of our pathway analysis was the 

demonstration that bridge-exciton contributions to the overall triplet EnT coupling can be 

significant, and definitely cannot be ignored (as implicitly done by previous theories). 

Specifically, our theoretical and computational analysis showed that virtual bridge-exciton 

intermediate states dominate the triplet EnT coupling for long bridges and/or low 

tunneling-energy gap bridges. Further, the exponential sensitivity of the triplet EnT 

coupling to D-A distance and to bridge structure (and energetics), suggests that the bridge-

mediated D-to-A triplet EnT rates and their directionality may be controlled by 

manipulating the bridge structure. The developed theory enables an atomic-level 

description for the origins of triplet EnT coupling, a necessary step toward controlling 

triplet EnT coupling interactions in a wide range of systems of current interest in energy 

science and in molecular biophysics. The single-particle coupling pathway analytical 

formulation introduced is sufficiently general to enable the further development of 

structure–function relations for triplet EnT interactions. This formulation was further used 

in Chapter 6 in the bridge-eigenstate basis in order to decompose and to identify the 

dominant through-bridge pathways for some D-B-A EnT systems. In addition to the single-

particle coupling pathway framework, I further developed D-B-A models that take into 

account double-particle exchange contributions to illustrate exchange EnT pathways, 

which demonstrate strong analogies to ET pathways. 
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Appendix 

Numerical code that solves the Liouville equation for      ˆ ˆ ˆel vit t t     for 

modelling infrared-perturbed electron transfer 

 

To perform the necessary calculations of Chapter 4 I developed an extensive numerical 

code that solves the Liouville equation (eq. (4.13)). The code is written in MATLAB and 

its present form is optimized for speed and computational memory usage. The numerical 

code incorporates D, B, A electronic states and two normal mode oscillators, one coupled 

to the bridge state and the other to acceptor state (see Fig. 4.4). Thus it includes in total 

el vibN N N   vibronic states, where 
vib B AN n n  , and Bn  and 

An  are the vibrational 

modes (states) of the first and second oscillator, respectively. Importantly, the code is 

readily expandable, and allows one to increase the number of electronic and vibrational 

states of the system. This gives us the flexibility to adjust the complexity of the D-B-A 

system model. 

The structure of the code is based on five basic parts and is illustrated in Fig. A.1. The 

parts that construct the equations: (i) the DBA system Hamiltonian (eqs. (4.5)-(4.9)), (ii) 

the time dependent Hamiltonian of the IR field (eq. (4.10)), (iii) the dissipative part 

consisting of vibrational relaxation decay rates (eq. (4.12)), (iv) the Liouville equation (eq. 

(4.13)). The part that solve the equations and compute observables: (v) computes the time 

evolution of the D and A probabilities with and without the IR perturbation (  DP t , 

 ( )IR

DP t  and  AP t ,  ( )IR

AP t , respectively) performing partial vibrational traces ( Trvib ) or 

electronic traces ( Trel ) of the total system density matrix      ˆ ˆ ˆel vit t t    . 

Translation from Hilbert space indices (states) to Liouville space indices (states) and vice 

versa is an essential procedure, and for this reason a function was created, build-in the 

code, which efficiently transforms the individual Hamiltonians from Hilbert to Liouville 

space. 

All the Hamiltonians/Liouvilians are created using a nearest-neighbors approach. More 

precisely I build an array of indices of vibronic states that are coupled, and an array of the 

Hamiltonian (couplings) elements for these states. I do not store full matrices but only 
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create on the fly using the above arrays the elements that appear in the Liouville equation 

(eqs. (4.11) and (4.13)). 

 

 

Figure A.1: Flowchart demonstrating the structure of the numerical code. 
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