
DEPARTMENT OF COMPUTER SCIENCE

Low-Cost Approximate and Adaptive Monitoring

Techniques

Demetris Trihinas

A Dissertation Submitted to the University of Cyprus

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

December, 2017

Dem
etr

is 
Trih

ina
s



c© Demetris Trihinas, 2017

Dem
etr

is 
Trih

ina
s



VALIDATION PAGE

Doctoral Candidate: Demetris Trihinas

Doctoral Dissertation Title: Low-Cost Approximate and Adaptive Monitoring

Techniques

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Computer Science and was

approved on December 18, 2017 by the members of the Examination Committee.

Examination Committee:

Committee Chair
Andreas Pitsillides

Research Supervisor

Marios D. Dikaiakos

Research Supervisor

George Pallis

Committee Member
Rizos Sakellariou

Committee Member
Sarunas Girdzijauskas

Committee Member
Elias Athanasopoulos

iii

Dem
etr

is 
Trih

ina
s



DECLARATION OF DOCTORAL CANDIDATE

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other state-

ments.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Full Name of Doctoral Candidate]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Signature of Doctoral Candidate]

iv

Dem
etr

is 
Trih

ina
s



Περίληψη

Με τη ευρεία διάδοση έξυπνων συσκευών και τη καθολική αναγνώριση που έχουν απο-

κτήσει στη συνείδηση των καταναλωτών, η υπολογιστική νοημοσύνη όπως τη γνωρίζουμε,

εξελίσσεται με συνέπεια να επηρεάζει την καθημερινότητά μας και να διαμορφώνει αυτό

που γνωρίζουμε, ως το Διαδίκτυο των Πραγμάτων. Για τον λόγο αυτό, βλέπουμε ότι ο υ-

πολογισμός έχει αρχίσει να μεταφέρεται στις πηγές παραγωγής δεδομένων, που βρίσκονται

κατανεμημένες στη άκρη του διαδικτύου, με σκοπό τη δημιουργία αναλυτικών γνώσεων

σε πραγματικό χρόνο για όλους σχεδόν τους τομείς της βιομηχανίας. Ωστόσο, για την

παραγωγή ενός τέτοιου πλούτου γνώσεων, απαιτείται έντονη επεξεργασία και διαρκής με-

ταφορά δεδομένων μέσω διαδικτύου. Αυτό έχει ως αποτέλεσμα την αυξημένη κατανάλωση

ενέργειας για τις ίδιες τις πηγές, ενώ οι υπηρεσίες επεξεργασίας ροών δεδομένων, συνεχώς

επιφορτίζονται και αγωνίζονται να είναι αποτελεσματικές. Παρά τις προσπάθειες αύξησης

της ενσωμάτωσης έξυπνων συσκευών με τις δυνατότητες επεξεργασίας που παρέχονται

από υπολογιστικές νεφέλες, εξακολουθούν να υπάρχουν ανασταλτικοί παράγοντες όπως

περιορισμοί στο εύρους ζώνης και χρονικές καθυστερήσεις δικτύου λόγω απόστασης.

Σε αυτή τη διατριβή, αντιμετωπίζουμε την επεξεργασία ροών δεδομένων σε πραγμα-

τικό χρόνο και την καλύτερη ενεργειακή απόδοση σε κατανεμημένες πηγές δεδομένων,

αναπτύσσοντας προσεγγιστικές και προσαρμοστικές τεχνικές παρακολούθησης χαμηλού

κόστους ως μέσο αντιμετώπισης αυτών των προκλήσεων. Εάν μπορεί να γίνει ανεκτός

ένας βαθμός ανακρίβειας στον υπολογισμό, τότε προσεγγιστικές τεχνικές παρακολούθη-

σης, όπως η προσαρμοστική δειγματοληψία (sampling), το φιλτράρισμα (filtering) και

η βασιζόμενη σε μοντέλα διάδοση δεδομένων (model-based dissemination), μπορούν

να μειώσουν σημαντικά την κατανάλωση ενέργειας και τη ποσότητα των δεδομένων που
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κατακλύζουν υπηρεσίες επεξεργασίας ροής δεδομένων. Αυτό επιτυγχάνεται προσαρμόζο-

ντας δυναμικά, στη ίδια τη πηγή και με χαμηλό κόστος, το ρυθμό συλλογής και διάδοσης

μετρικών με βάση την τρέχουσα διακύμανση και την κατανομή της ροής δεδομένων. Για

να επιτευχθεί αυτό, εισάγουμε ένα προσεγγιστικό αλγοριθμικό μοντέλο μάθησης χαμηλού

κόστους ικανό να παρακολουθεί την εξέλιξη και τη μεταβλητότητα της ροής δεδομένων

σε πραγματικό χρόνο, επιτρέποντας έτσι στις τεχνικές παρακολούθησης, που αναπτύξα-

με, να προσαρμόζουν το ρυθμό συλλογής και διάδοσης μετρικών με βάση τη ικανότητα

του αλγοριθμικού μοντέλου να εκτιμήσει σωστά τι θα συμβεί στη συνέχεια στη ροή δε-

δομένων. Ιδιαίτερη προσοχή λαμβάνεται για τη διαρκή προσαρμογή του αλγοριθμικού

μοντέλου, εισάγοντας στη εκτίμηση μεταβολής της ροή δεδομένων προσαρμοστική στάθ-

μιση παραμέτρων (adaptive parameter weighting), ανίχνευση τάσεων (trend detection)

και εμπλουτισμό συμπεριφοράς εποχικότητας (seasonality knowledge enrichment), έτσι

ώστε να αναγνωρίζονται άμεσα απότομες αλλαγές στην διακύμανση της ροής και να ξε-

περνιούνται τυχόν καθυστερήσεις στην διαδικασία εκτίμησης.

Στη συνέχεια, παρουσιάζουμε το AdaM, που είναι μια αυτόματα προσαρμοζόμενη βι-

βλιοθήκη παρακολούθησης που σχεδιάστηκε για να ενσωματώνεται στον πυρήνα λογισμι-

κού πηγών δεδομένων (π.χ. συσκευές IoT) για να παρέχει προσαρμοστική παρακολούθη-

ση ενσωματώνοντας τις χαμηλού κόστους προσεγγιστικές τεχνικές παρακολούθησης για

προσαρμοστική δειγματοληψία και φιλτράρισμα, που αναπτύχθηκε στο πλαίσιο της διατρι-

βής. Στη συνέχεια, παρουσιάζουμε το ADMin, ένα πρόσθετο (plugin) που αναπτύχθηκε

για να διευρύνει τη λειτουργικότητα του AdaM, προσφέροντας προσαρμοστική διάδοση

δεδομένων βασισμένη σε μοντέλα, για να προσαρμόσει αποτελεσματικά, στη ίδια τη πηγή,

τον ρυθμό με τον οποίο οι πηγές παρακολούθησης διανέμουν μετρήσεις μέσω διαδικτύου.

Κλείνουμε, με αξιολόγηση της αποτελεσματικότητας και ακρίβειας της βιβλιοθήκης μας,

διεξάγοντας εκτενής σειρά πειραμάτων με πραγματικά δεδομένα από εφαρμογές υπολογι-
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στικών νεφελών, φορητές συσκευές σώματος, φωτοβολταϊκά και έξυπνες υπηρεσίες μέσων

μαζικής μετακίνησης. Τα αποτελέσματα δείχνουν ότι το AdaM είναι σε θέση να προσαρ-

μόσει δυναμικά τον ρυθμό συλλογής και διάδοσης μετρικών, ενώ επιτυγχάνει ισορροπία

μεταξύ απόδοσης και ακρίβειας. Ιδιαίτερα, για τις αξιολογούμενες εφαρμογές, το AdaM

μπορεί να μειώσει την κατανάλωση ενέργειας κατά τουλάχιστον 83%, τον όγκο δεδομένων

κατά 71%, τις καθυστερήσεις ανίχνευσης μετατόπισης στη μοντελοποίηση κατά 61%, δια-

τηρώντας πάντοτε την ακρίβεια πάνω από 89% σε σύγκριση με άλλες προσαρμοστικές

βιβλιοθήκες.
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Abstract

As consumers embrace the widespread of ubiquitously connected “smart” devices,

computing as we know it evolves in surprising ways impacting our everyday life

and forming what is known as the Internet of Things (IoT). With the prevalence

of IoT we are seeing intelligence aggressively deployed at the edge to produce

real-time analytic insights for almost all industry sectors. However, to produce

such an unprecedented wealth of insights intense processing and constant data

dissemination over the network is still required. This results in increased energy

consumption for monitoring sources while cloud and streaming services consuming

IoT data are constantly overwhelmed and struggling to be effective. Despite attempts

of augmenting IoT devices with the power of the cloud, there still exist numerous

inhibitors masked under constant data movement such as bandwidth limitations

and network latencies.

In this thesis, we tackle real-time data processing and energy-efficiency on the

edge of monitoring networks by developing low-cost approximate and adaptive

monitoring techniques as the remedy to these challenges. If a degree of inaccuracy

can be tolerated, approximate monitoring techniques such as adaptive sampling,

filtering and model-based dissemination, can significantly reduce the energy con-

sumption of monitoring sources and the amount of data flooding streaming services

by dynamically adapting, in place and inexpensively, the metric collection and dis-

semination rate when stables phases in the data stream are detected. To achieve this,

we introduce a low-cost approximate and probabilistic algorithmic learning model

capable of capturing runtime knowledge from the monitoring data evolution and

iv
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variability, thus allowing our adaptive monitoring techniques to adjust the metric

collection and dissemination rate of the monitoring source based on the confidence

of the algorithmic model to correctly estimate what will happen next in the data

stream. Specific consideration is taken to fine-tune the algorithmic model at run-

time by introducing adaptive parameter weighting, trend detection and seasonality

behavior enrichment so that our algorithms immediately identify abrupt transient

changes in the metric stream evolution and overcome any lagging effects in the

estimation process.

Afterwards, we introduce AdaM, a lightweight framework designed and devel-

oped to be embeddable in the software core of monitoring sources (e.g., IoT devices)

to provide adaptive monitoring by incorporating the low-cost approximate moni-

toring techniques for adaptive sampling and filtering, developed in the scope of this

thesis. Next, we introduce ADMin, a plugin developed to extend the functionality of

the AdaM framework by offering model-based adaptive dissemination to efficiently

adapt, in place, the rate at which monitoring sources disseminate metrics. We con-

clude by evaluating the efficiency and accuracy of our framework by performing a

thorough experimentation study with testbeds using real-world data from cloud ap-

plications, wearables, photovoltaics and intelligent transportation services. Results

show that AdaM is able to dynamically adapt both the collection and dissemination

rate of a monitoring source; while achieving a balance between efficiency and accu-

racy. Particularly, for the evaluated testbeds, AdaM can reduce energy consumption

by at least 83%, data volume by 71%, shift detection delays in model-based dissemi-

nation by 61% while maintaining accuracy always above 89% in comparison to other

state-of-the-art adaptive frameworks.
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Chapter 1
Introduction

1.1 Thesis Motivation

Monitoring is the act of observing the behavior of a system for the purpose of ensur-

ing that certain properties are maintained [1]. These properties may be quantitative,

meaning that the observed behavior is measurable (e.g., system performance) or

qualitative, meaning the observed behavior is evaluated towards its expected out-

come (e.g., data integrity) [2]. The main purpose of monitoring is to gain actionable

insights that enable the entity of interest –either this may be a developer, an operator,

or even another system– to take appropriate actions to better manage and maintain

the deployed system. For most enterprises, information is generated, stored and

processed along familiar routes [3]. Information related to system utilization, cus-

tomer transactions and social activity is monitored from its birth, lodged in small or

large data stores and analysed to generate reports for decision-making across vari-

ous management chains, to manage health and resource requirements, as well as, to

investigate and recover from failures. For these reasons, monitoring is a crucial part

of any system under deployment [4].

But the predictable pathways shaping information propagation are changing: the

physical world is becoming an information system itself [5]. Sensors and actuators with

“smart” processing capabilities embedded in internet-enabled physical devices are

becoming the tools for understanding the complexity of the global inter-connected

world we inhabit [6]. These devices capture and exchange continuous data streams

with other network-enabled devices, services and human-beings, forming, what is

known as, the Internet of Things (IoT) [7]. From smart transportation and home

appliances, to retail innovations, surveillance, and manufacturing, we are starting
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Figure 1.1: The IoT developer perspective (upper image) and the reality (lower image) behind the

cloud powering the Internet of Things

to see intelligence aggressively deployed to produce real-time analytic insights.

With intelligence comes the need to compute at the edge, and a variety of IoT

offerings are opening up new and disruptive opportunities [8]. However, to produce

such an unprecedented wealth of insights intense processing and constant data

dissemination over the network are still required [9] [10]. This results in increased

energy consumption for IoT devices while cloud and streaming services that are

constantly overwhelmed with IoT data are struggling to be effective [11].

As IoT continues to spread across almost all industries it triggers a massive influx

of big data [12] [13]. This data delivers knowledgeable insights that hold the potential

to scrutinize, model and predict individual and collective behavior. According to

Gartner [14], 8.4 billion IoT devices will be in use by the end of 2017, up 31% from

2016, and will reach 21 billion by 2020. As an illustrating example, the expectations

for self-driving autonomous vehicles is that 4GB of telemetry data will be generated

every day while requiring real-time processing for the vehicle to make correct and

timely decisions [15]. Multiply this number by thousands, millions or even billions

of vehicles and other sensing devices scattered across multiple locations in an urban

environment and even powerful organizations equipped with high-performance

distributed data engines such as Apache Spark and Hadoop reach their limits as

the velocity and volume of sensed data keeps increasing [16] [17]. Therefore, it is

no wonder that these billions of “things” already impact the digital universe with
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Raspberry Pi (v2 model B) Power

Idle state 420mA (2.1W)

Max CPU load (400%) 800-1100mA (4W)

Max CPU load (400%) + disk I/O 900-1200mA (4.5W)

Max CPU load (400%) + disk I/O + metric value

dissemination over the network

1250-1400mA (6.25W)

Table 1.1: IoT micro-controller power consumption benchmark test

monitoring data generated from IoT devices accounting for 2% of the digital data in

2012 with a projection that by 2020 it will rise well above 12% [18].

With trends in cloud monitoring moving towards providing Monitoring-as-a-

Service to ease end-user management of the monitoring infrastructure it is only nat-

ural that IoT follows [19]. However, despite attempts to augment IoT devices which

have limited processing capabilities with the power of the cloud there still exist

numerous inhibitors masked under constant data movement such as bandwidth lim-

itations, network latencies, pricing and continuous location awareness [20]. This is

particularly evident in Figure 1.1, where although IoT applications usually view the

cloud as the center between all connected devices, the harsh reality is that the entire

Internet backbone may sit between the cloud and the monitoring sources scattered

across the logical extremes of the monitored IoT network [21]. Therefore, extend-

ing cloud monitoring beyond providing de-centralized endpoints (e.g., monitoring

servers) in front of high performance data stores to accommodate the challenges of

sensing the physical world while still enabling Monitoring-as-a-Service is a complex

task that must be tackled by the next generation of IoT and cloud solutions [22].

Thus, it seems only inevitable that monitoring data must be processed at the edge

of the network for shorter response times, more efficient processing and significantly

less network pressure. Edge computing is a term coined to reflect the distribution

of applications, services and (data) processing to sources constituting the logical

extremes of a network [23]. Instead of IoT devices like activity monitors, drones and

self-driven vehicles simply sensing the physical world and needing to constantly

communicate over the network with a central service for instructions, monitoring

data analysis is performed in place to accomplish timely vital tasks and reduce data

movement. Hence, edge computing is, in turn, often referred to as the brains fueling
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the new generation of the Internet of Things [24].

As IoT devices become “smarter” by embracing the capabilities provided by edge

computing, battery life becomes a luxury as intense processing results in increased

energy consumption [25] [26]. To date, a number of monitoring tools claim to be

suitable for IoT settings as they are capable of running on limited resources while

metric processing is left to powerful monitoring servers and analytic insight pro-

cessing engines. For instance, traditional system (e.g., Nagios [27], Ganglia [28],

Zabbix [29]) and cloud monitoring tools (e.g., CloudWatch [30], AzureWatch [31],

Ceilometer [32]) have been offering for physical hosts and virtual machines, per-

formance metrics such as CPU, memory and network utilization for years now.

Collecting these metrics, for server monitoring, is merely the task of parsing OS

written files (e.g., from /proc/* for Linux OS’s) while popular application probing

APIs (e.g., New Relic [33], JCatascopia [34]) extend the reach of cloud monitoring

tools to provide application-level monitoring as well.

However, this assumption is far from true in cases where the monitoring task must

sense the physical world, collect external stimulus and then perform, in place, costly

analysis [35]. Table 1.1 presents such a case where power consumption triples as

processing and data dissemination load are added to an idle IoT device. This is even

more evident in IoT settings comprised of mobile and edge devices equipped with

small batteries [36]. For example, the new generation of activity monitoring wear-

ables differ from their predecessors in providing heartrate monitoring. Heartrate

monitoring is based on photoplethysmography (PPG) signal analysis where green

LEDs scatter light on the wrist which is reflected by the arteries as the heart pumps

blood. This results in an AC signal processed by the wearable with peak detection

algorithms to estimate the current heartrate. This intense process is the main rea-

son battery life on the aforementioned devices has dropped from 5-7 days to 3-5

days [26] [37]. Therefore, monitoring tools without self-adapting capabilities to re-

duce energy consumption and network traffic are unsuitable for IoT settings and it

is no wonder why taming data volume and velocity, as well as, energy efficiency are

considered as great challenges transitioning from the big data era to IoT [38] [39].
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1.2 Thesis Scope

In this thesis, we tackle real-time data processing and energy-efficiency on the edge of

monitoring networks by developing low-cost approximate and adaptive monitor-

ing techniques as the remedy to these challenges. It is simply inefficient to sense the

physical world and propagate all monitoring data for analysis to the cloud, espe-

cially in periods where the monitoring data stream volatility is low; doing so requires

a great deal of processing and energy consumption on the monitoring source itself.

In turn, all the back-and-forth communication between monitoring sources and the

cloud, negatively impacts performance while quickly saturating the monitoring net-

work bandwidth and thus, preventing scalability. Hence, if a degree of inaccuracy

can be tolerated, approximate monitoring techniques can significantly reduce the

energy consumption of monitoring sources (e.g., IoT devices) and the amount of

data vastly streamed to cloud consuming services.

In this thesis we explore the use of low-cost approximate and adaptive tech-

niques such as adaptive sampling, filtering and model-based dissemination, to

tackle the challenges introduced in monitoring networks with processing conducted

at the edge. Thus, particular interest is put in dynamically adapting the metric col-

lection and dissemination rate of monitoring sources which are the two prime energy

drains for embedded and mobile sensing devices. With “approximate” we refer to

techniques basing their decision mechanisms on an estimation model capturing and

predicting the runtime evolution of the monitoring data stream within certain accu-

racy guarantees. In turn, with “adaptive” we refer to techniques capable of adapting

the properties of a monitoring source (e.g., IoT device) based on the predicaments

of the estimation model. Emphasis is given on presenting techniques that are de-

signed for smart and battery-powered devices with limited processing capabilities

and which can be used in place and inexpensively.

Adaptive sampling is the process of dynamically adjusting the sampling rate1

based on a runtime estimation model following the current monitoring data stream

evolution, such that when stable phases in the data stream are detected, the sampling

rate is reduced to ease on device processing and energy consumption. Hence, in the

case of a wearable device featuring heartrate monitoring, if stable phases exist in the

1 Also referred throughout the literature as the sensing rate, collection rate and monitoring rate
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data stream featuring user heartrate data, then the device will spend more time in

idle state instead of performing costly analysis that drains limited processing and

energy resources. In turn, when the evolution of the monitoring data fluctuates in

time, the sampling rate is increased to immediately capture and notify users of event

violations and possible risks.

On the other hand, adaptive dissemination is the process of applying approxi-

mation techniques to sensed monitoring data to reduce the communication overhead

by suppressing the dissemination of consecutive datapoints with “little” change in

their metric values. Hence, energy required to transmit values over the network is

reduced in favor of exact precision and, at the same time, the volume and velocity of

data streamed to cloud consuming services is regulated to ease processing. A low-

cost approximate technique tailored for this task is filtering. A monitoring source

featuring filtering capabilities, does not transmit the latest collected datapoint(s) if

their values have not “changed” more than a range of values since last reported. How

much “change” is considered as “little” depends on the type of filter with adaptive

filtering being the process of dynamically adapting the range of accepted values

to achieve certain filtering guarantees while at the same time obeying the accuracy

guarantees given by the user. Another approach is model-based dissemination

where, instead of disseminating metric values, we favor modeling the monitoring

data stream so that consuming entities infer metric values from the model, triggering

a model update only when shifts in the stream evolution render it as inaccurate.

Despite advancements in the field, current approximate and adaptive techniques

for monitoring networks with processing conducted at the edge still require mature-

ness as in many cases these techniques: (i) require excessive profiling to configure

optimal framework parameters, a task difficult for users; (ii) present large runtime

footprint in regards to energy consumption or resource utilization reducing the ben-

efits of introducing adaptiveness in the end; (iii) fail to acknowledge abrupt and

transient shifts in the evolution of monitoring data or assume that once determined

there will be no distribution shifts in the monitoring stream value base; or (iv) require

coordination from server-side components.

In light of striking a balance between efficiency and accuracy, for the adaptive tech-

niques introduced in the scope of the thesis, we have developed a low-cost approx-

imate and probabilistic algorithmic learning model capable of capturing runtime

knowledge from the metric stream evolution and variability. With this, the metric
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collection and dissemination rate of a monitoring source will be dynamically ad-

justed based on the confidence of each technique to correctly estimate what will

happen next in the metric stream. Specific consideration is taken to fine-tune each

algorithmic approximate technique, at runtime, by introducing adaptive parameter

weighting, trend detection and seasonality behavior enrichment so that our algorithms

immediately identify abrupt transient changes in the monitoring data stream evo-

lution and overcome any lagging effects in the estimation process. To increase the

applicability of our adaptive techniques, we introduce AdaM, a lightweight frame-

work embeddable in the software core of monitoring sources (e.g., IoT devices) that

provides adaptive monitoring by incorporating the low-cost approximate monitor-

ing techniques for adaptive sampling and filtering. Next, we introduce ADMin,

a plugin developed to extend the functionality of the AdaM framework by offer-

ing model-based adaptive dissemination to efficiently adapt, in place, the rate at

which monitoring sources disseminate metrics. After undergoing a thorough exper-

imentation study on testbeds using real-world and publically available data from

cloud applications, wearables, internet security services, photovoltaics, and intel-

ligent transportation services; results show that, in comparison to State-of-the-Art

adaptive techniques, AdaM is able to achieve a balance between efficiency and

accuracy.

1.3 Thesis Statement and Contributions

In this thesis we argue that,

if a degree of inaccuracy can be tolerated, low-cost approximate and adaptive

monitoring techniques that are capable of dynamically adjusting the metric

collection and dissemination rate, can effectively tackle real-time data processing

and energy-efficiency on the edge of monitored networks.

Towards advancing the State-of-the-Art, this thesis makes the following contribu-

tions:

• We present a comprehensive overview of the monitoring tool landscape with

focus on monitoring and managing distributed application deployments at

scale. Particular emphasis is given in presenting the limitations the current

monitoring tools have when introduced to the unique settings of the IoT
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world. Monitoring at the edge implies significant costs which affects monitor-

ing sources due to increased resource and energy demands for data sensing and

processing, and network scalability due to increased data movement, network

latencies, and limited bandwidth. In light of these challenges, we explore the

limitations of following a fixed periodicity approach for both metric collection

and dissemination which are considered the prime energy drains for mobile

edge devices. We then, formally define the problem along with a common

notation and introduce the concepts of approximate and adaptive monitoring.

• We develop three low-cost approximate and adaptive monitoring techniques

to tackle the challenges introduced in monitoring networks with processing

conducted on the edge. Adaptive Sampling dynamically adjusts the intensity

of the metric collection process depending on the evolution and variability of

the monitoring data stream to reduce the overhead imposed to a monitoring

source; Adaptive Filtering discards consecutive metric values that do not differ

more than a range of values that is adjusted to given accuracy guarantees in

order to reduce the volume of data disseminated over the network; while

rather than transmitting metric values, Model-Based Dissemination favors

modeling the monitoring data stream so that consuming entities infer metric

values from the model, triggering a model update only when shifts in the

stream evolution render the model inaccurate.

• We introduce the design of a low-cost approximate and probabilistic learning

model to capture runtime knowledge of the monitoring data stream evolution

and variability. In order for the model to immediately identify abrupt transient

changes in the data stream evolution and overcome any lagging effects in

the estimation process adaptive parameter weighting, trend detection and

seasonality behavior enrichment are introduced to the estimation model.

• We design and develop AdaM, a lightweight framework embeddable in the

software core of monitoring sources (e.g., IoT devices) that provides adaptive

monitoring by incorporating the developed techniques introduced in this the-

sis for adaptive sampling and filtering. Next, we introduce ADMin, a plugin

developed to extend the functionality of the AdaM framework by offering

model-based adaptive dissemination. Thus, AdaM is able to dynamically ad-
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just both the rate at which monitoring metrics are collected and disseminated to

interested receiving entities based on extracted runtime knowledge capturing

the evolution and variability of the metric stream. By accomplishing this, en-

ergy consumption and data volume are reduced, allowing monitoring sources,

such as edge devices, to preserve energy and resource utilization, while at the

same time ease processing on monitoring data receiving services. AdaM has

been initially developed in Java for IoT devices (e.g., Raspberry Pi’s, Android

devices) but as it features no external source code dependencies, we show that,

it can also be ported to other real-world settings and popular programming

frameworks.

• We evaluate the efficiency and accuracy of the developed adaptive monitoring

techniques by performing a thorough experimentation study that compares

AdaM to other State-of-the-Art adaptive frameworks. All deployed testbeds

use real-world and publically available data from cloud applications, wear-

ables, internet security services, photovoltaics and intelligent transportation

services. To the best of our knowledge, this is the only study extending the

experimentation to include, beyond an accuracy evaluation, both an on device

performance and energy consumption comparison. For the evaluated testbeds,

our results show that AdaM can reduce energy consumption by at least 83%,

data volume by 71%, shift detection delays in model-based dissemination by

61%, while always maintaining accuracy above 89% in comparison to other

state-of-the-art adaptive frameworks. Thus, big data services consuming IoT

data can truly benefit in terms of lower monitoring costs, achieve greater scal-

ability and efficiently utilize underlying resources when embedding AdaM in

the software core of their monitoring sources.

1.4 Thesis Organisation

The remainder of this thesis is structured as follows:

Chapter 2 provides context for the thesis by describing background information and

concepts related to the Internet of Things and Edge Computing, while highlighting

advancements in Monitoring Tools relevant to the thesis contributions.
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Chapter 3 formally states and defines the research challenges tackled by the thesis

and introduces the concepts of low-cost approximate and adaptive monitoring.

Chapter 4 discusses relevant work in relation to approximate and adaptive moni-

toring by introducing the current State-of-the-Art after trawling the literature and

industry advancements.

Chapter 5 introduces the AdaM framework developed to provide adaptive moni-

toring for IoT devices. Particular focus is given in presenting the algorithmic logic

behind AdaM’s adaptive sampling and filtering techniques, while afterwards a thor-

ough experimentation study is conducted to evaluate AdaM efficiency and accuracy

towards other adaptive frameworks.

Chapter 6 introduces the ADMin plugin developed to extend the functionality of the

AdaM framework to support model-based adaptive dissemination. Focus is given

to show how the AdaM estimation model can be extended to support model-based

dissemination while afterwards an evaluation is conducted to compare ADMin to

other adaptive dissemination frameworks.

Chapter 7 concludes the thesis and outlines future work as a direct product of the

thesis contributions.

1.5 Thesis Assumptions

In this thesis we focus on adapting the collection and dissemination rate of a moni-

toring source to allow the sensing and network controlling units of the monitoring

source to remain for longer periods of time in idle state when the workload does not

change. While monitoring data collection and dissemination constitute the primary

energy for mobile and embedded devices, certain control functions prevent either

the sensing unit and/or the network controlling unit to remain in idle state. For exam-

ple, physical devices may consume energy not only for metric transmission, but also

when conducting control operations driven by network layer protocols (e.g., main-

taining routing tree, probing ongoing communication at the MAC layer) [9]. This is
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often not mentioned when introducing adaptive monitoring techniques, leading to

a misguided and overly optimistic view of software-oriented adaptive techniques.

Adapting the network layer control functionality, which is tightly coupled to the

underlying hardware and network, is out of the thesis scope. Therefore this as-

sumption holds for this thesis as well. Nonetheless, when evaluating our adaptive

monitoring techniques, real-world testbeds will be deployed and extensive experimentation

related to device energy consumption will always be present.

There exist cases in the edge computing realm where for low-capability devices,

a single thread is dedicated to the monitoring task. This means the same periodicity

is used to collect datapoints for all metrics reported by the device. In this case,

adapting the periodicity per metric, will result in unexpected behavior. For example,

let us consider a device monitoring the production of a photovoltaic (PV) panel with

a single thread used to collect both the current (IDC) and voltage output (VDC). An

adaptive sampling technique may suggest that for the current, the periodicity should

be 2s while for the voltage, 5s is adequate. At this point multiple strategies may

be considered: should 2s or 5s be used?, should the average be used?, or, should

a particular metric be prioritized? This specific case is often not mentioned when

trawling the literature. It can be advocated that this is usually evident in remote

sensing devices where metric probing (e.g., PV panel production) is not energy or

compute intensive and therefore will not greatly benefit from adapting the metric

collection periodicity. Thus, a fixed periodicity is often used. This assumption will

hold for this thesis as well. However, it is this type of case where enabling (adaptive)

filtering and model-based adaptive dissemination, with or without (adaptive) sampling, can

be very beneficial for metric digesting and storage entities, which without data volume

reduction are quickly overwhelmed with data and struggle to be effective.

When trawling the literature, a number of advanced adaptive monitoring tech-

niques assume a one-dimensional (univariate) data stream, while in the case where

more than one metrics of interest are collected by the monitoring source, each is

published as a separate and independent data stream. For instance, an IoT device

reporting weather conditions may publish the following metrics as independent

streams: temperature, humidity and air pollution. Nonetheless, not all metric classes

can be described in a single dimension (e.g., GPS coordinates, displacement, veloc-

ity and acceleration), and considering each dimension as a separate metric stream

is both meaningless and error prone. However, support for high-dimensionality
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(multivariate) metric classes is not straightforward and as dimensionality increases

the complexity of the algorithmic process increases as well, and may harm the in-

troduction of adaptivity in the end. Assuming univariate data streams as input for

the introduced adaptive techniques holds for this thesis as well. Therefore, although

we will not bound the number of data streams published by a monitoring source,

we will limit the discussion to univariate metric classes. However, we note that the

formal definition of each introduced low-cost adaptive monitoring technique holds

for multivariate monitoring data streams as well.

Finally, it must be noted that in addition to energy consumption and the “big

data” generated by edge devices, security and data privacy are another set of chal-

lenges that must be addressed to increase the wider adoption and applicability of

IoT. Protecting user privacy is vital, especially, in cases where data is collected from

device owners (e.g., heartrate, blood pressure, activities, location) and the actions

performed by the device (e.g., operating machinery in production chain, vehicle

steering) are sensitive. The current State-of-the-Art for privacy preserving in data

publishing is differential privacy where sensitive data is perturbed by a random-

ized algorithm, so that the output remains roughly the same even if any single

tuple in the input data is arbitrarily modified. It has been shown that the addition

of adaptive sampling and filtering to differential privacy can potentially increase

protection, or at least provide the same level of privacy guarantee, by removing

consecutive datapoints with high correlation [40] [41]. This prevents adversaries

from inferring both datapoint values and data expectancy (when datapoints are re-

leased) from the protected data, while also reducing the privacy cost by applying

differential privacy to a subset of the data stream. Nonetheless, privacy preserving

alone cannot limit all potential attacks without appropriate security enforcement

measures (e.g., secure channel establishment). For instance, with the addition of

adaptive techniques to remove correlated data, adversaries via side-attacks may not

be able to infer datapoint values but can assume datapoint significance and network

traffic patterns [42]. Therefore, while this thesis does not deal with security and

privacy-preserving, it goes without mentioning that any developed adaptive technique

for monitoring data sources in the IoT and Edge Computing realm must complement and

not compromise enforced security and privacy-protecting mechanisms.
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Chapter 2
Background

2.1 The Internet of Things

The Internet of Things is a novel network paradigm referring to the pervasive presence

of a variety of everyday objects, denoted as “things”, that are inter-connected to

achieve certain design goals [43]. Such goals usually envision automating certain

jobs or tasks (e.g., smart lighting, self-tracking) to improve and impact our everyday

lives and work. The concept of “things” in the network infrastructure refers to

any physical, or virtual, participating actors such as real world objects, human

beings, and intelligent software agents [44]. The purpose of the IoT is to create

an environment in which the basic information from inter-connected autonomous

actors can be efficiently shared with others in real-time.

There are many definitions of the “Internet of Things” in the research and rele-

vant industrial communities, with the term first coined by Kevin Ashton (1999) to

describe how the Internet will, someday, be connected to the physical world [45].

However, Ashton was simply inspired by Mark Weiser’s vision (1988) for ubiquitous

computing, who stated that the time where computing power will be made avail-

able by any device, at any location and in any format, is fast approaching [46].

Another popular definition is by Atzori et al. [47], denoting that merging together

the words “Internet” and “Things” semantically means a world-wide network of

inter-connected objects uniquely addressable, based on standard communication

protocols. Nonetheless, although not a new concept, IoT is only now becoming a

reality due to recent advances in microelectronics (e.g., nano bio-sensors [48], printed

electronics [49]), telecommunications (e.g., RFID, NFC, Bluetooth 4.0 [38]) and data-
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Figure 2.1: The “Edge” in cloud computing

mining (e.g., distributed AkNN [50], PCA on streams [51], location-based pattern

matching [52], outlier/event detection [16], timeseries dimensionality reduction [53]).

Examples highlighting these advances in the multiple and different domains that

the Internet of Things has infiltrated, include:

• Intelligent transportation services (ITS), where smart wireless sensors and

cameras embedded in roads, traffic lights, parking spots, public transportation

and even citizen vehicles can help in reducing traffic congestion, carbon dioxide

emissions, time to park, accident/incident reporting time but most importantly

prevent incidents by reporting abnormalities and mechanical deficiencies [54].

Early ITS adopters include the cities of Dublin with its smart bus service used to

detect and alert operators of road congestion and traffic incidents [55]; Toronto

with its experimental smart traffic flow service reducing travel times by 26%;

and Los Angeles with its smart parking service reducing, on average, for a 15

block radius carbon dioxide emissions by 730 tons [56].

• The medicine and heath sector, where wearable devices are monitoring human

activity and biosignals with self-tracking data also capable of assisting doctors

in taking more accurate and patient-centralized decisions [57]. For example,

such is the case of a patient rushed to the ER with atrial fibrillation (a fast
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and irregular heartbeat) where the ER doctors could only decide on the right

treatment after tracker data confirmed his abnormal heart rate happened the

same time the patient had a seizure [58]. Also pill-shaped microcameras are

now capable of traversing the human digestive tract, sending back thousands

of images to pinpoint sources of illness [59].

• Smart metering and (renewable) power grids, where low-power and bi-

directional connectivity (e.g., zigbee, bluetooth 4.0, LORA) along with edge

analytics embedding cognitive capabilities into meters, are being integrated by

utility companies, manufactures and distributors to move beyond capturing

operational costs towards ensuring resource efficiency, accurate diagnostics

and optimized billing [60]. In particular, smart meters, feeding into power

grids, are allowing to better manage bi-directional power flows in and out of

grids, and give consumers the insights needed to understand energy infras-

tructure investments, such as in the case of micro-controllers monitoring the

production and health of PV panels to detect and predict consumption patterns

and quality degradation due to external conditions (e.g., the weather) [61].

• Agriculture, where precision farming equipment connected through wireless

links to data collected from remote satellites and ground sensors can take into

account crop conditions and adjust the way each individual part of a field is

farmed - for instance, by spreading extra fertilizer on areas that need more

nutrients [62]. In turn researchers have created devices to track the movement,

biosignals and interactions between cows to improve cattle health and increase

profitability through breeding between cows in narrow estrus windows lasting

only a few hours [63].

• Retailing, where customer profile data (e.g., interests, shopping trends, recent

purchases) along with readings from smart sensors, RFID tags and bluetooth

beacons interacting with customers through monitors or their smartphones to

assist, increase sales, provide additional product information, offer discounts

at points of sale and close purchases.
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Device CPU Speed Memory Price

Intel NUC 1.3 GHz 16 GB $300

Typical Phones 2 GHz 2 GB $300

Discarded Phones 1 GHz 512 MB $40

BeagleBone Black 1 GHz 512 MB $55

Raspberry Pi (model B) 900 MHz 512 MB $35

Arduino Uno 16 MHz 512 MB $22

mbed NXP LPC1768 96 MHz 32 KB $10

Activity Wearable (Fitbit) 32 MHz 128 MB $150

Table 2.1: The wide spectrum of IoT platforms are constraint in terms of processing capabilities

2.2 Edge Computing

With no doubt, the backbone powering the Internet of Things is the cloud [21]. Over

the past decades, the cloud is revolutionizing the ICT industry to the point where

any person, with even basic technical skills, can access via the internet, vast and scal-

able computing resources by shifting IT spending to a pay-as-you-use model [64].

For small businesses and startups, this well-established argument is sound. Cloud

computing eliminates capital expense of buying hardware and diminishes costs for

configuring and running on-site computing infrastructures of any size [65] [66].

Thus, riding on the early popularity of the cloud, IoT developers saw potential for

their applications and peripherals (e.g., sensors, actuators) generating massive mon-

itoring streams but residing on hardware featuring limited processing capabilities

(e.g., Arduino, Raspberry Pi, Beagle Board), as depicted in Table 2.1. These “things”,

as depicted in Figure 2.1, communicate directly with the cloud, or through mobile

gateways denoted as cloudlets [67], and interact with each other through web ser-

vices, with developers naturally adopting the cloud as a universal and centralized

computation and storage backend for the intensive analytic jobs required by IoT

services [68]. Recent studies show that indeed more than 50% of today’s IoT services

reside in the cloud1 with IoT developers revealing that reduced capital expenses and

simplified resource management are driving cloud adoption [69] [70].

Although, performing computing tasks on the cloud is an efficient way for data

1 This number increases to 67% for production-ready services
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Figure 2.2: Simple Sensing vs Edge Computing

processing, since the computing power of the cloud outclasses the capability of

mobile and remote IoT devices, compared to the fast developing data processing

speed, network bandwidth remains standstill [71]. Thus, with the growing volume

of data generated at the logical extremes of IoT networks, data dissemination is

becoming a bottleneck constraining the cloud computing paradigm. To illustrate

this challenge, consider that a Boeing 787 generates about 5GB of data per second,

although the link bandwidth between the airplane and the base station on the ground

is not large enough for such data transmission [72]. In turn, Uber, the world’s largest

on-demand taxi service, receives approximately 3 million car telemetry updates per

second and monitors more than 500 million metrics for its daily taxi services [73]. If

all the data needs to be sent to the cloud for processing, response time will be large.

Not to mention that current network bandwidth and reliability would be challenged

for its capability of supporting large numbers of data sources.

Thus, it seems only inevitable that monitoring data must be processed at the

edge of the network for shorter response times, more efficient processing and signif-

icantly less network pressure. Edge computing refers to the enabling technologies

allowing computation to be performed at the logical extremes of the network, such

as on downstream data, on behalf of cloud services, and upstream data, on behalf

of IoT services [74]. In this context, edge sources differ from traditional sensing devices

in that sensory data are processed in place and converted from raw signals to contextually

relevant information, as depicted in Figure 2.2. Thus, the rationale of edge comput-

ing is that computing should happen at the proximity of the data source with the

“Edge” constituting any computing and network resources along the path between
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(a) Compute Cycles (b) Energy Consumption

Figure 2.3: Average compute cycles and energy consumption comparison for metric collection on an

IoT device with ARM processor (1 core 32MHz, 128MB RAM) and a 35mAh battery

data sources and the cloud [10]. However, computing at the edge does not come

without challenges. Sensing the physical world, requires collecting external stimu-

lus and then performing, in place, costly analysis [36]. In particular, the monitoring

task is strained from limited processing capability devices while, at the same time,

intense processing leads to increased energy consumption, and thus, less battery

life [75]. Figure 2.3 depicts a comparison between collecting system-level metrics

extracted from OS-written files and metrics which are the process of sensing and

processing external stimulus (e.g., step counting, heartrate monitoring) obtained

from an Android Wear wearable device. Thus, offloading computation from the

cloud to the edge possesses great benefits, however, while IoT hardware capabilities

are projected to increase, battery capacity and bandwidth are, simply, not growing

at the same rate [76].

2.3 Monitoring

Even before the advent and dominance of the cloud as a widely accepted computing

paradigm, a number of monitoring solutions were already available for monitoring

diverse ICT infrastructural resources such as networks, storage elements, physical

servers and computing clusters [77]. To date, monitoring tools such as Ganglia [28],

Nagios [27], Zabbix [29], IBM Tivoli [78] and GridICE [79] are popular among system

administrators and are under constant development because of their diverse mon-

itoring capabilities, simplicity and (under some deployment models) low-runtime
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Figure 2.4: Nagios active and passive mode

footprint. Monitoring tools typically follow the client-server architectural paradigm.

This paradigm is often attributed as an agent-based monitoring architecture where

agents2 are placed on each element intended to be monitored (e.g., physical host,

virtual machine) and are responsible for the metric collection process and subse-

quent metric dissemination to monitoring server(s). In turn, monitoring servers

are the entities responsible for digesting, processing and storing monitoring metrics

to a database backend and for agent coordination. Additional functionality that

monitoring servers may offer, include: (i) providing analytic insights by further

processing collect metrics (e.g., Monalytics [80], MELA [81], VScope [82]); (ii) deter-

mining threshold violations set by system admins or users such as SLA violations

(e.g., Cacti [83], LoM2HiS [84]); and (iii) providing various alerting channels for

event detection such as SMS or email alerting (e.g., Nagios [27], Zabbix [29]).

Centralized monitoring solutions use either one monitoring server to poll all as-

signed agents for monitoring metrics [27] [83] [85]; or multiple monitoring servers

are in use but with the caveat that these tools incorporate centralized components

(e.g., directory services, schedulers, data stores) which are potential single-points-of-

failure [86] [87] [88]. Among the most notable centralized solutions is Nagios [27].

Nagios is a monitoring tool which supports two deployment alternatives, as de-

picted in Figure 2.4. For Nagios either a central server is responsible for periodically

pulling monitoring updates via a plugin executor (Nagios NRPE) installed within

2 Agents are also referred to in the literature as monitors, data sources, or collectors
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Figure 2.5: Ganglia monitoring system architecture – Reprinted from [Massie et al., PC, 2004] [28]

every monitored element (active mode) or a service check executor (Nagios NSCA)

provides asynchronous push-based notifications from monitored elements to the

central server (passive mode). Typically, centralized solutions (e.g., JAMM [85],

PCMons [87]), are used for service status monitoring, although Nagios and Cacti

(another open-source solution resembling Nagios) also offer resource utilization

monitoring (e.g., CPU, memory usage).

To enhance scalability, robustness and fault-tolerance, an hierarchy of monitor-

ing servers can be utilized to provide distributed monitoring. Monitoring tools

following this approach include Ganglia [28], Zabbix [29], Lattice [89], GMonE [90]

and OpsView [91]. Figure 2.5 depicts an abstract architectural overview of the open-

source and popular Ganglia monitoring tool. In this setting, Ganglia servers (named

gmetads) are connected together to form a tree-based hierarchy [28]. Each server is in

charge of periodically aggregating metrics originating from agents (named gmonds)

residing on nodes in the same cluster, via a multicast-based listening protocol, and

then distributing aggregated cluster metrics further up the hierarchy. The obvious

downside of this approach is that while the per-message processing overhead other-

wise imposed to a central monitoring server is reduced, servers comprising the tree

have to relay monitoring data for all monitoring tasks. Thus, monitoring servers

closer-to-the-root are overloaded by relaying costs in large and distributed deploy-

ments. In [22] we show that hierarchical monitoring tools feature intrusive runtime

footprints on user-paid resources as the deployment scales to include multiple met-

rics generated at high frequencies from more than 150 virtual instances.
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Figure 2.6: Monitoring-as-a-Service at a high-level

Cloud monitoring tools such as Amazon CloudWatch [30], Paraleap Azure-

Watch [31] and RackSpace CloudMonitor [92] provide monitoring capabilities to

their virtual infrastructure service consumers. Monitoring information is usually

accessible via APIs or intuitive graphical dashboards, although the metric collection

methodology of these tools is considered proprietary and is not revealed. Addition-

ally, although cloud service providers also enable custom application-specific metric

collection, consumers must alter their applications accordingly to export metrics di-

rectly to the central monitoring service. Moreover, in many cases metric collection is

limited to a fixed periodicity (e.g., CloudWatch periodicity is 5min; lowered to 1min

with a premium fee). However, monitoring information is only useful if collected in

meaningful time intervals, which vary for different metrics. Most importantly, despite

the fact that these tools are easy to use, fully documented and well-integrated with

the underlying platform, their biggest disadvantage is that they are commercial and

proprietary which limits their operation to specific cloud providers. Thus, these

tools lack in terms of portability and interoperability.

Nonetheless, what makes the aforementioned monitoring tools popular with

cloud consumers along with other State-of-the-Art and third-party cloud applica-

tion monitoring solutions such as New Relic APM [33], Datadog [93] and AppDy-

namics [94], is that they offer Monitoring-as-a-Service (MaaS). Just as with other

paradigms comprising the X-as-a-Service economy [95], MaaS eases the management

of the monitoring infrastructure as service providers enable multi-tenant and scalable

monitoring over the internet following a pay-as-you-use model [96]. MaaS providers

typically offer users monitoring libraries supporting both IaaS and PaaS deploy-

ment models for various programming languages (e.g., java, ruby, python) and

frameworks (e.g., tomcat, django, sql). These tools expose APIs for resource utiliza-

tion metric collection, application performance monitoring and custom application-
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specific metric collection. Metrics are usually periodically disseminated to shared

data warehouses allowing users, depending on their subscription model, to perform

queries on real-time and historical data, and produce analytic insights.

However, although recent trends in monitoring present a movement towards

Monitoring-as-a-Service, there still exist a number of challenges, especially, in the

field of the Internet of Things and Edge Computing, such as:

• The sensing challenge in the metric collection process where edge devices must

sense the physical world by powering hardware peripherals (e.g., accelerom-

eter) and perform analysis on the device itself to produce insights which is

usually compute and energy intensive;

• The increased movement of monitoring data from (mobile) edge devices (e.g.,

wearables, traffic sensors) across geo-distributed availability zones to central

monitoring and processing endpoints;

• Data restrictions and security risks of disseminating sensitive human, gover-

nance and application performance data across availability zones especially

when moving from IaaS monitoring to application and client-side monitoring

(e.g., health tracking, traffic patterns, customer behavior, sale transactions);

• Providing rapid elasticity in the form of horizontal, vertical or diagonal scaling

of either the service or the monitoring infrastructure requires topology insights

from sources spanning across the edge of the network in order to distribute load

while baring in mind user strategies such are optimization for performance,

costs and network latencies.

For these reasons various approaches mentioned in what follows attempt to

provide monitoring solutions which propose architectures or features that dealt with

the challenges of rapid elasticity, data movement and sensitive data dissemination.

An interesting approach is suggested by Calero et al. [96] who introduce Mon-

PaaS. MonPaaS is a private cloud (on-premise), distributed and agent-less monitor-

ing solution. For MonPaaS, instead of providing one shared monitoring processing

tier, a dedicated monitoring server is allocated per application to provide consumers

with secure and dedicated monitoring services, administration capabilities for the

deployment and a graphical user interface. This approach is much similar to the Xen

hypervisor approach where “Dom0” is the management entity providing services
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to the virtualization stack with specialized management privileges for the rest of the

virtual hosts [97]. A similar approach is also suggested by Koller et al. [98] who

introduce a data-oriented pipeline for producing analytic insights where data collec-

tion is performed via VM introspection instead of the use of agents to reduce on-VM

monitoring overhead. However, as with MonPaaS, while scalability is claimed, with

the use of only one monitoring server per application, intra-service monitoring is

bounded by the monitoring intensity and number of running instances.

In regards to elasticity, a handful monitoring solutions attempt to tackle the

challenge of elasticity support but limit portability at different levels of the cloud.

Specifically, Carvalho et al. [99] propose the use of passive checks by each physi-

cal host to notify the central monitoring server about the virtual instances that are

currently instantiated. Katsaros et al. [100] extend Nagios through the implemen-

tation of NEB2REST, a REST event broker utilized to provide elasticity capabilities

through an abstraction layer between monitoring agents and the management layer.

A more interesting approach is followed by Clayman et al. [89]. The authors in-

troduce Lattice, a cloud monitoring framework, which monitors not only physical

hosts but also virtual instances. Lattice can be utilized to monitor elastically adaptive

environments. In particular, the process of determining the existence of new VMs is

performed at the hypervisor level. A controller is the responsible entity for retrieving

a list of running VMs from the hypervisor, detecting if new VMs have been added

or removed. However, while Lattice offers elasticity support it moves the depen-

dency to the hypervisor layer as it is tightly coupled to Xen hypervisor. In turn,

Lattice cannot monitor applications distributed across multiple cloud regions due

to its limited multicast network communication model. Moreover, Lattice features

an excessive runtime footprint. Another approach is Panoptes [101], which utilizes

a pub/sub communication model between agents and servers to enhance private

cloud monitoring performance. Specifically, Panoptes requires a broker (similar to a

directory service), which acts as a central contact point for newly instantiated mon-

itoring agents to: (i) contact and request a list of available monitoring servers; (ii)

notify all monitoring servers of their existence, and (iii) wait for monitoring servers

to start the subscription process, which is a significant overhead for rapidly elastic

environments.

On the other hand, to cope with significant network latencies and bandwidth

limitations, while supporting rapid elasticity along with providing autonomicity
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Figure 2.7: P2P-based monitoring architecture – Adapted from [Ward et al., IEEE DIDC, 2014] [103]

of the monitoring infrastructure in large and distributed topologies, a number of

monitoring solutions suggest moving towards a P2P monitoring architecture. As

depicted in Figure 2.7, in this setting monitored elements (e.g., VMs, sensors) form a

gossiping overlay network to propagate monitoring information in order to ease the

coordination of the monitoring infrastructure and query computation. Gossip de-

notes periodic and pairwise propagation of the current state between two monitored

peers. When a new monitored element is instantiated, it must be bootstrapped based

on some peer placing policy to join the network. The monitoring state propagation

rate from a single peer to all other peers can be described by the following equation:

Si+1 = T · F ·
Si · Xi

n
(2.1)

where S is the number of susceptible processes (those which have not yet received

the state update), T is the updating period, F is the fanout value, X is the number of

infected processes (have received the new state), n is the number of processes and i is

the current time interval. Therefore, the propagation delay is reduced by decreasing

the updating period at which gossiping occurs (thus increasing the frequency) or by

increasing the fanout value (thus increasing the number of targeted peers).

One of the first P2P-based monitoring tools was proposed by Kutare et al. [102]

who introduce Monalytics. Monalytics is a flexible monitoring framework attempt-

ing to move online data analysis in the monitoring layer to reduce delays and

computation costs of obtaining real-time analytic insights. What makes Monalytics

interesting is that the authors introduce the concept of Distributed Computation

Graphs (DCGs). DCGs allow system administrators to configure their virtual in-
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Figure 2.8: JCatascopia architecture overview – Reprinted from [Trihinas et al., IEEE TCC, 2016] [22]

stances in any topology that suits their needs (e.g., centralized, star, hierarchical,

P2P) with an overlay gossip network formed only by monitoring servers (named

brokers) which run user-defined functions (e.g., aggregation, filter functions) to-be-

applied on collected monitoring data from the underlying VMs. While an interesting

approach, dedicated monitoring infrastructure is required per application and elas-

tic scaling is not supported. Another P2P-based approach is Varanus introduced

by Ward et al. [103]. Varanus is a monitoring system which leverages a multi-tier

P2P architecture to achieve in situ monitoring, thus providing a system capable of

not only monitoring the underlying services but also the monitoring system itself.

Varanus supports the use of monitoring layers, as depicted in Figure 2.7, to en-

able the use of different updating periods per layer. This achieves low propagation

rates in groups of VMs with a high correlation among them but at the same time

lower updating frequencies can be used for gossip among instances of different

groups and cloud availability zones (denoted as regions) to not saturate bandwidth.

Nonetheless, what makes Varanus interesting is that it enables rapid elasticity and

autonomicity by (de-)provisioning monitoring peers based on resource utilization

to load balance the computational cost of imposed monitoring queries. However, as

shown in [22] and [104] solely considering peer resource utilization for elasticity con-

trol is restrictive and is not the only bottleneck. Specifically, in large-scale distributed

monitoring topologies important contributing limiting factors include the commu-

nication overhead imposed by constant monitoring data dissemination, status and

health message exchanging and agent coordination, as well as, the processing and

archiving rate of the monitoring servers and database backend respectively.

Finally, JCatascopia [22] is an open-source, multi-layer and portable cloud mon-
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Figure 2.9: Monitoring topology configurations – Reprinted from [Trihinas et al., IEEE TCC,

2016] [22]

itoring framework. JCatascopia runs in a non-intrusive and transparent manner

to any underlying cloud as neither the metric collection process nor metric dis-

tribution and storage are dependent on the underlying platform. As depicted in

Figure 2.8, JCatascopia is a modular framework comprised of multiple components

where monitoring stakeholders (e.g., cloud consumers, monitoring providers) are

free to configure the overlay communication network interconnecting monitoring

agents and servers to focus on scalability, locality or logic of separation. Thus, in contrast

to Varanus, the overlay monitoring topology is transparent to the underlying moni-

toring agents, and consequently to user VMs. This means that no reconfiguration is

required when the topology adapts or when substituted, even at runtime, with a dif-

ferent configuration. In turn, similar to Monalytics, JCatascopia monitoring servers

can be distributed across the network to form a P2P gossiping network, as depicted

in Figure 2.9. However, in this arrangement, while all monitoring servers (peers)

have the same monitoring responsibilities (e.g. receive, process, store metrics) some

peers also act as seeds with a seed being responsible for bootstrapping new peers

joining the network and monitoring the health of the monitoring servers assigned

to it, in par with P2P distributed database communication protocols [105].

In addition to allowing developers configure the monitoring topology, JCatas-

copia supports rapid elastic deployments by featuring a novel agent bootstrapping

process based on a variation of the pub/sub communication protocol to dynamically

detect when monitoring instances have been (de-)provisioned [34]. This process

diminishes the need for re-contextualization when providing elasticity support, by

continuously reflecting the current topology and resource configuration. In contrast

to Lattice [89] and the proposed Nagios extensions [99] [100], it supports elasticity

without requiring any special entities deployed on physical nodes, nor does it re-
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Figure 2.10: Monitoring agent bootstrapping and placement – Reprinted from [Trihinas et al., IEEE

TCC, 2016] [22]

quest information from the hypervisor regarding the VMs currently running in an

application deployment. Specifically, in this setting there are two deviations from

the classic pub/sub: (i) monitoring servers bind to a network location as the less

dynamic components of the monitoring infrastructure; and (ii) it is the publishers

(monitoring agents) which initiate the subscription process. As with any pub/sub

implementation, after initialization metrics are published from monitoring agents

to the metric stream. Thus, in contrast to other monitoring tools following a classic

pub/sub communication model (e.g., Panoptes [101]), the significant overhead in

highly adaptive deployments where provisioned monitoring agents must first con-

tact a central pub/sub broker to receive the location of all N monitoring servers, notify

them of their existence and then await M monitoring servers to express interest in

receiving monitoring stream updates, is reduced to M direct messages3.

To determine M candidate monitoring servers for connection, JCatascopia pro-

vides developers with the ability to either select or implement their own monitoring

agent placement policy. Specifically, when a new monitoring agent attempts to es-

tablish a connection to the monitoring network, the placement policy is used to

determine candidate monitoring server(s). Such placement policies may include: (i)

assigning monitoring agents to servers based on fairness, thus following a round-

robin distribution; (ii) based on locality, where monitoring agents are assigned to

the closest, in terms of latency, monitoring server(s) or in a multi-cloud scenario,

to monitoring servers in the same availability zone; and (iii) based on monitoring

server utilization, where agents are load-balanced among monitoring servers.

3 Usually M << N with M = 1 if no redundancy mechanism is followed
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Chapter Summary. This chapter provides a comprehensive overview of the Internet

of Things with focus given in highlighting the challenges introduced when aug-

menting IoT with the power of the cloud to process the wealth of data produced by

IoT devices. With the growing volume of data generated at the logical extremes of

IoT networks, data dissemination is becoming a bottleneck constraining the cloud

computing paradigm with IoT services also exhibiting pricing charges for incom-

ing/outgoing traffic to/from the cloud. To overcome these challenges it seems only

inevitable that Edge Computing is adopted, where data is processed in place or at

the proximity of the IoT device to achieve shorter response times and significantly

reduce network pressure. Towards this, new advancements in monitoring tools can,

potentially, bring data computation closer to the actual metric producers. However,

Edge Computing introduces new challenges as IoT devices feature limited process-

ing capabilities while intense processing results in increased energy consumption

and less battery life. Therefore, while these monitoring tools seem a better fit for the

unique settings of IoT networks with monitoring sources scattered across the edge,

certain questions still remain unanswered. In particular, how do we deal with the

high velocity of data generated from remote data sources in an attempt to offload

cloud services from being constantly overwhelmed with IoT data and are struggling

to be effective? and, how do we deal with the energy deficit introduced to remote

data sources when monitoring the physical world due to intense metric sensing and

dissemination?
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Chapter 3
Problem Statement

This Chapter introduces and formally defines the problem domains researched in

the context of the PhD thesis.

3.1 Preliminaries

We define a monitoring stream1 M = {di}
n
i=0 referring to a metric of interest and pub-

lished by a monitoring source (e.g., IoT device) to a receiving entity (e.g., base station)

as a large stochastic sequence of independent and identically distributed (i.i.d) dat-

apoints, denoted as di, where i = 0, 1, ...,n and n → ∞. A monitoring source may

publish numerous metric streams and for multiple recipients, albeit each stream is

limited to a single metric of interest. For instance, an IoT device reporting weather

conditions may publish the following metric streams: temperature, humidity and

air pollution, with readings reported to local government branches and (open) data

repositories [106] [107]. Thus, the number of metric streams published by a mon-

itoring source is not bounded. Monitoring sources and receiving entities may be

co-located, either physically or virtually, although in an edge realm the norm is for

monitoring sources to be remote and distant from monitoring data recipients.

Each datapoint di is a tuple (mid, ti, vi) described, at the minimum, by a unique

identifier mid denoting the monitoring source origin, a timestamp ti and a value vi.

Although, a datapoint can potentially have multiple value dimensions (e.g., GPS

coordinates are characterized by latitude and longitude), we will limit the scope of

1 The terms monitoring stream and metric stream are interchangeable terms used throughout the

thesis
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Figure 3.1: Exemplary metric stream

the problem to univariate metric classes2, where vi 7→ R. In turn, A datapoint may

include a set of other attributes (e.g., area of coverage) where A = {attr1, ..., attrz}

and |A| = z. Although for brevity, and unless otherwise stated, when describing

a datapoint we will omit these attributes without loss of generality. Furthermore,

datapoint values are numeric, meaning, the type of the data must be quantitative

and arithmetic operations can be used to compute the degree of difference between

metric values. This also holds in the case of nominal datapoint values (e.g., blood

type, current timezone, machine IP address) where a mapping to a numerical plane

is both meaningful (e.g., frequency of an IP address) and provided. Finally, the

number of generated datapoints depend solely on the task assigned to the monitoring

source. Therefore, receiving entities have no control on the input rate, with datapoint

dissemination scheduled by monitoring sources based on some push-based metric

delivery protocol (e.g., pub/sub) [34] [101].

3.2 Defining the Terms “Low-Cost”, “Approximate” and

“Adaptive”

With “approximate” we will refer to techniques basing their decision mechanisms

on estimation models capturing and predicting the runtime evolution of a moni-

toring stream within certain accuracy guarantees. In turn, with “adaptive” we will

refer to techniques capable of adapting the properties of a monitoring source based

on the predicaments of the utilized estimation model(s). Specifically, we will focus

on adaptive techniques capable of dynamically changing the monitoring intensity

and the rate at which metrics are disseminated through the network based on the

evolution and variability of the load imposed to the referenced monitoring source.

2Although the domain of a metric (vi 7→ R,Rn,Rn×m, etc.) does not alter the problem formulation,

certain implementation decisions are tightly coupled to the metric dimensionality (see Section 7.2)
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Figure 3.2: Metric stream obtained from a wearable device counting steps

Emphasis is given on introducing techniques capable of providing in-place and in-

expensive adaptive monitoring. This means that the “adaptiveness” is handled on

the monitoring source itself in order to offload processing and continuous commu-

nication between edge devices and services consuming monitoring streams. In turn,

the costs, in regards to resource utilization and time, of applying adaptive monitoring

techniques are (much) less than leaving the monitoring process as is.

3.3 Adaptive Sampling

For a monitoring stream M, periodic sampling is the process of triggering the metric

collection mechanisms of a monitoring source every T time units. Thus, for a metric

stream indexed by I ⊆ Z+, with T denoting a fixed time interval (e.g., 1s, 10s,

1min), the ith datapoint (i ∈ I) is collected at time ti = i · T. Due to its simplicity this

process is widely adopted by many monitoring tools (e.g., Ganglia [28], Zabbix [29]).

Although a number of monitoring tools allow users to configure the metric collection

periodicity, this process is performed before initialization and cannot be altered at

runtime [28] [29] [89]. For example, the open-source and popular Ganglia monitoring

tool [28], allows users to change the collect every parameter located in the Ganglia

configuration file before initialization. However, after initialization to alter metric

collection, the monitoring process must stop and start again, if it is to acknowledge
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Figure 3.3: State-of-Charge (SoC) projection for a wearable with a lithium battery

further changes to the periodicity of a metric stream.

In this thesis we argue that using a fixed periodicity on monitoring sources,

especially when battery-powered and with limited processing capabilities, features

a number of constraints. For example, consider the monitoring stream extracted

from a wearable device introduced in Figure 3.2. If a small T is utilized (e.g. T = 1s),

a high volume of data is generated and must be disseminated through the network to

be processed or stored for further use although there exists phases of low datapoint

value fluctuation in the monitoring stream. On the other hand, if a larger periodicity

is used (e.g. T = 5s, T = 10s), then sudden events or significant insights may remain

undetected. Most importantly, if the monitoring task must collect external stimulus

and then perform costly analysis, such as in the case of human activity monitoring

from wearable devices, then significant energy consumption is required to collect a

single datapoint of a monitoring stream. This is particularly evident in Figure 3.3

which depicts an estimation of the state of charge for a lithium battery3 found on

a wearable device (35mAh capacity), powering the monitoring source publishing

the previous metric stream for various sampling periods. Nonetheless, even in the

case where data sensing is not an intense process for the monitoring source, if a

high collection rate is used then the volume of data generated introduces a new

challenge as services consuming monitoring streams from multiple and numerous

edge sources can be quickly overwhelmed, thus restricting further service scalability.

Therefore, from Figures 3.2 and 3.3 we conclude that it is both resource and energy

consuming, for both monitoring sources at the edge and monitoring data recipients,

to periodically collect datapoints, especially when consecutive metric values (e.g.,

3 State-of-Charge (SoC) is a linear algorithmic process used to model the energy capacity remaining

in a lithium battery [75]

32

Dem
etr

is 
Trih

ina
s



Figure 3.4: Adaptive sampling vs periodic sampling when applied to a metric stream

vi−2, vi−1, vi, ...) do not vary. In general, because sampling depends on the data and

its evolution in time, we argue that using a fixed sampling period is not effective, as

metrics and insights are only useful if collected in meaningful time intervals.

To accommodate the challenges introduced from periodic sampling, adaptive

sampling is used. Adaptive sampling is the process of applying approximation

techniques to dynamically adapt the sampling period Ti of a monitoring source

(e.g., IoT device), based on some estimation model, denoted as ρ(M), capturing

runtime information of the metric stream evolution. Hence, when the datapoint

values of the monitoring stream are relatively stable, and therefore the monitoring

stream can be approximated by the estimation model, the sampling period should be

increased to reduce the volume of data generated and the energy consumed by the

monitoring source for datapoint collection. In turn, when the values fluctuate and

the estimation model cannot approximate the monitoring stream within certain user-

defined accuracy guarantees, the sampling period should be decreased or restored

to a (default) minimum value in order to preserve accuracy and immediately report

any unexpected and sudden events. In any case, how large of an adjustment is

required, is dependent to some evaluation metric, denoting the ability, or better

the confidence, of the approximate technique to (correctly) estimate and follow the

metric stream current evolution within the certain accuracy guarantees given by the

user. Hence, if the estimation model ρ(·) is able to approximate the metric stream

within the given accuracy guarantees then an increase in the sampling period can be

considered, whereas if distribution shifts are introduced in the metric stream value

base, and are unexpected, a decrease in the sampling period should be considered

in order to obey the given guarantees.

Therefore, assume di to be the latest datapoint of M, and that Ti accepts discrete

integer values in the range [Tmin,Tmax] ⊆ Z+ without loss of generality. Now, suppose

M is periodically sampled every Tmin time units, opposed to M′ which is a recon-

structed version of the original metric stream via adaptive sampling, as depicted in
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Figure 3.5: Monitoring service scalability with monitoring sources periodically collecting and dis-

seminating metric updates

Figure 3.4. Let err denote the difference of M′ from M based on some evaluation

metric which will be used to evaluate the accuracy of the estimation process. Hence,

the goal of adaptive sampling is to provide a sampling function f (·), capable of finding

the maximum T ∈ [Tmin,Tmax] to collect di+1, based on an estimation of the metric

stream evolution ρ(M), such that the difference between M′ and M is upper bounded

by the user-defined maximum tolerable imprecision γ, for the range t ∈ [ti, ti + T].

Thus, the problem is summarized with the following equation:

T∗ = arg max
T

{ f (d,T, ρ(M), err(M,M′)) | err < γ, T ∈ [Tmin,Tmax]} (3.1)

Intuitively, as γ → 0 the metric stream M′
→ M, but, the sampling period

T → Tmin, defeating the purpose of adaptive sampling. To reduce data volume

and preserve energy, an adaptive technique is likely to select, at any given time, a

sampling period where T > Tmin, which is only applicable if a degree of imprecision

is tolerable. Therefore, it is desirable to select a sampling function which achieves a balance

between efficiency and accuracy.

3.4 Adaptive Dissemination

Monitoring stream dissemination is another fundamental process of monitoring

services commonly implemented by periodically disseminating collected datapoints,

such that for a fixed period of time D, the ith datapoint of a metric stream indexed

by I ⊆ Z+, is reported to interested receiving entities at ti = i · D. Based on this,

all collected datapoints are reported to respected receiving entities and therefore,
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Figure 3.6: IoT device energy consumption for metric stream dissemination

under expected circumstances, no data loss will occur for datapoint dissemination.

Due to its simplicity, this approach is widely adopted by monitoring systems (e.g.,

Nagios [27]) although it is also common for monitoring systems to follow certain

aggregation policies (e.g., Ganglia [28]) where dissemination is triggered only when

a window W of k datapoints |W j| = K, indexed by J ⊆ Z+ and { j | j = i/K ∧ j ∈ J}, is

collected. However, for mobile and battery-powered sensing devices, metric stream

dissemination to (distant) consuming services is another primary energy drain [9].

Let us now assume that one receiving entity exists and that it is interested in

receiving a metric stream, such as the one depicted in Figure 3.2. The energy

consumed by the network unit of a monitoring source residing on a micro-controller

running TinyOS when disseminating the aforementioned metric stream is shown in

Figure 3.6. From this figure we observe that the energy consumed is significantly

reduced if the dissemination period D, is lowered. In particular, the amount of

energy to send a message of x bytes is given by µs + βsx + εs, where µs and βs

represent the per-message and per-byte dissemination costs, whereas εs is the energy

consumed for state transitions and therefore, the energy required for the IoT device

network unit to transition from idle to active and then to a transmitting state [108].

Based on the above, reducing either the number or size of messages sent through

the network is required to optimize energy-efficiency [36]. Nonetheless, βs is typ-

ically at least two orders of magnitude smaller4 than µs. Therefore, assuming, as

mentioned in Section 3.1, that a datapoint is described in a minimal form (e.g., a

timestamp and a value) or that compression is available by the monitoring tool

when an aggregation policy is applied, it is evident that to reduce on device energy

4 Typical values for a Mica2 microcontroller are βs = .0144 mJ/byte, µs = .645 mJ and εs = .331 mJ
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Figure 3.7: Adaptive dissemination applied on a metric stream

consumption and ease processing at the receiver-side, the velocity of datapoints

disseminated across the network must be reduced. Reducing the velocity of dissem-

inated datapoints also offloads computationally interested recipients consuming

monitoring streams from remote monitoring sources as mentioned in the previous

section and depicted in Figure 3.5. However, as with periodic sampling, reducing the

dissemination rate risks delaying interested receiver notification of sudden events

and significant insights. Hence, in this thesis, we argue that periodically dissem-

inating metric streams features energy and resource constraints, especially when

consecutive datapoints (or window of datapoints) do not vary. In general, because

dissemination depends on the data and its evolution in time, we argue that using

a fixed dissemination rate is not effective, as metrics and insights are only useful if

disseminated in meaningful time intervals.

To accommodate the challenges introduced from periodic dissemination, adaptive

dissemination is used. Adaptive dissemination is the process of applying approxima-

tion techniques to sensed datapoints in order to reduce the communication overhead

imposed directly to a monitoring source (e.g., energy consumed by IoT device) and

indirectly to a network of monitoring sources (e.g., IoT network data overwhelm),

by suppressing the dissemination of consecutive datapoints with “little” change in

their metric values. How much “change” is considered as “little” depends on the

approximation technique and the certain accuracy guarantees given by the user.

In particular, we will consider that accuracy guarantees are given in the form of

confidence guarantees δ ∈ [0, 1], denoting the probability with which estimated

datapoints are approximated from sensed datapoints.

To reduce to the communication overhead, each monitoring source must maintain

a runtime estimation model, denoted as ρ(M), capturing knowledge of the monitor-
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ing stream evolution. This model is then disseminated to interested receivers. Let

the model be reported at the ith time interval. From this point, the receiver oper-

ates under the assumption that sensed datapoints can be approximated within the

given confidence by a forecasting function of the estimation model, denoted as f (·).

Therefore, subsequent k-datapoints reported at tk = ti + k · T | k ⊆ Z+
∧ k > i, are

inferred from the model with di+k|i = f (ρ(M), di). At the same time, the monitoring

source withholds datapoint dissemination, interacting with the receiver only when

a decision function, denoted as g(·), detects shifts in the metric stream that render the

model no longer able to describe the metric stream evolution within the given user-

defined accuracy guarantees. At this point the monitoring source must disseminate

to the receiver an updated parameterization of the estimation model.

Based on this, let M′ depict the reconstructed version of M from f (·) at the receiver

side at a given k time interval, dist to denote the difference of M′ from M based on

some distance metric, and η(δ) to denote the accuracy budget given by the user in

the form of confidence guarantees. Assuming dissemination for a model update

was triggered at the ith time interval then the problem of detecting a shift in the

monitoring stream in a subsequent tk, is summarized with the following equation:

g(M,M′, t) =


trigger model update, dist > η(δ)

suppress dissemination, otherwise
(3.2)

Hence, the goal of adaptive dissemination is twofold: (i) provide an estima-

tion model alongside a forecasting function capable of approximating the runtime

evolution of the monitoring stream; and (ii) provide a decision function capable of

detecting when shifts in the monitoring stream render the current model parameter-

ization, shared among monitoring source and receivers, no longer able to describe

the monitoring stream within the given accuracy guarantees.

3.5 Adaptive Filtering

A specialized case of adaptive dissemination is filtering. In particular, filtering is the

process of suppressing datapoint dissemination when consecutive datapoint values

differ less than a range of values. Hence, energy required by a monitoring source

to transmit metrics over the network, as well as, the velocity at which data arrive to

services consuming monitoring streams are reduced while adhering to certain user-
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Figure 3.8: Adaptive filtering R ∈ [0, 3] compared to fixed range filtering R = 1

defined accuracy guarantees. Thus, a monitoring source with filtering capabilities

does not transmit the latest collected datapoint if its value has not “changed” since

last reported. As in adaptive dissemination, how much “change” is considered as

“little” depends on the decision function used by the filter and the certain accu-

racy guarantees given by the user or as a configuration parameter to the monitored

application. Nonetheless, while filtering is used to suppress metric stream dissem-

ination, forecasting is not used to provide an approximate version of the original

metric stream. Hence, the metric stream recipient, assumes that the values of any

unreported datapoints remain unchanged.

However, depending on the type of filter in use, the number of datapoints filtered

may vary. For example, suppose a fixed filter range approach is followed. The

datapoint di with value vi is filtered, if vi ∈ [vi−1−R, vi−1 + R], where R ⊆ R+ is a fixed

filter range. Although this approach is simple and followed by monitoring tools, it

features a number of disadvantages. Specifically, using a fixed filter range, assumes

that the user has previous knowledge of the metric evolution and that it will not

change in the future. Otherwise, there is no guarantee that any values will be filtered

at all [109]. For instance, let us consider the metric stream M, presented in Figure 3.8,

where the filter range R is enabled once and set to a fixed value. From Figure 3.8, we

observe that a phase of high variability is both preceded and followed by a phase of

low variability, where metric values vi oscillate between [vi−1−R−ε, vi−1 +R+ε] with

ε→ 0. With a fixed filter in use, no datapoints are filtered. That is because the filter

cannot adapt to the current data variability, extending its range to encapsulate near-

by values, thus satisfying the reduction guarantees and, at the same time, adhering

to the accuracy requirements of the user.

To overcome the above issues, an adaptive filter technique is used. Adaptive

filtering is the process of dynamically adjusting the filter range R based on the
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current variability of the metric stream, denoted as q(M). Adaptive filtering must

target filtering values without requiring for users to “guess” what filter range should

be used, as depicted in Figure 3.8. Thus, suppose M′ is a reconstructed version of M

with an adaptive filter range R ∈ (0,Rmax]. Let err denote the difference of M′ from

M based on some error evaluation metric. After collecting di, the goal of adaptive

filtering, is to provide a filtering function f (·) capable of finding the maximum R

to apply on di+1 based on the variability of the metric stream q(M), such that the

difference between M′ and M is upper-bounded by the user-defined maximum

tolerable imprecision γ. Hence, the problem is summarized with the following

equation:

R∗ = arg max
R

{ f (d,R, q(M), err(M,M′)) | err < γ, R ∈ (0,Rmax]} (3.3)

Intuitively, as γ → 0 the timeseries M′
→ M, but then the filter range R → 0,

defeating even the purpose of filtering with a fixed range R. To reduce network

traffic an adaptive filtering technique is likely to select, at any given time, a filter

range where R > 0, which is only applicable if a degree of imprecision is tolerable.

Chapter Summary. This chapter presents the problem domains investigated in the

scope of the thesis by highlighting the limitations of following a fixed periodicity

approach for both metric collection and dissemination which are considered the

prime energy drains for mobile edge devices. To tackle these limitations we introduce

the concept of low-cost approximate and adaptive monitoring and provide a formal

definition for three such techniques. Adaptive Sampling dynamically adjusts the

intensity of the metric collection process depending on the evolution and variability

of the monitoring data stream to reduce the overhead imposed to a monitoring

source. Adaptive Filtering discards consecutive metric values that do not differ more

than a range of values that is adjusted to given accuracy guarantees in order to reduce

the volume of data disseminated over the network. In turn, rather than transmitting

metric values, Model-Based Dissemination favors modeling the data stream so that

consuming entities infer metric values from the model, triggering a model update

only when shifts in the stream evolution render the model as inaccurate.
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Chapter 4
Related Work

Other than distributed system and network monitoring [11] [110] [111], “adaptive-

ness” finds wide applicability in various application domains such as signal process-

ing [10] [112], wireless sensor networks [108] [113], biosignal reporting [26] [114] and

differential privacy preserving [40] [41]. Embracing adaptive monitoring to either

offload processing via data reduction or dynamically adjust the monitoring inten-

sity to optimize energy efficiency; is a form of edge mining albeit not limited to the

Internet of Things. This is acknowledged in the literature overview that follows by

including any adaptive monitoring techniques that may fit the requirement settings

of IoT networks. In turn, although a number of hardware-specific techniques are

still being proposed, especially for signal processing [115] [116] [117], trends show

that IoT is moving towards software-defined realms to quickly provision, manage,

monitor and orchestrate IoT services with “adaptivity” being envisioned as a man-

ageable asset for monitoring services [8] [20]. Hence, in what follows, a number of

software-defined techniques for adaptive monitoring are presented.

4.1 Adaptive Sampling Techniques

One of the first software-defined sampling techniques for remote monitoring sources

was introduced by Rastogi et al. [40]. In particular, the authors are motivated by the

lack of privacy preserving mechanisms for monitoring user sensitive information in

the form of timeseries collected by heath and activity tracking services (e.g., wear-

ables monitoring user weight and calorie consumption). The authors propose using

a Discrete Fourier Transformation (k-DFT) [118] which first perturbs coefficients of

a finite timeseries adding laplacian noise [119] to each of the coefficients to ensure
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Figure 4.1: Abstract overview of envisioned software-defined monitoring agents in the Monitoring

4.0 era

user privacy. To reduce the intensity of this process1 instead of transmitting the full

length of the timeseries comprised of n-coefficients the k most significant coefficients

are selected (k < n). Trusted service providers can afterwards reconstruct the original

timeseries (k = n) or a k-approximated version (k < n) from the inverse k-DFT. The

obvious downside of this technique is that while at the receiver-side there appears to

be adaptivity in the metric stream collection process, due to discarding coefficients,

in reality all datapoints are still collected at the remote monitoring source.

To address these challenges Alippi et al. introduce ASA [120]. In particular, ASA

performs summarizations on windows of consecutive datapoints in the form of either

a cumulative sum (CUSUM) or an exponential weighted moving average (EWMA).

Upon initialization ASA requires from users two parameters: δ and h. With δ the

authors denote the difference of the current window summary from the previous

summary. If the difference is more (less) than δ, then an decrement (increment) in

the sampling period must be considered. However, a change is triggered only if h

consecutive violations are detected to reduce, as claimed by the authors, the false

positives that induce a continuous change in the sampling period (Algorithm 1).

Nonetheless, as with Rastogi et al. [40], n-length datapoint windows still must be

collected before applying this technique, thus limiting real-time applicability.

Similar to ASA is Payless [110], a network monitoring tool for Software Defined

Networks (SDNs) introduced by Chowdhury et al. For Payless, the polling rate of

the monitoring server is increased by a small constant, denoted as α, if the difference

between the current datapoint is larger than a threshold ∆1. Otherwise, if the

1 Naive FFT features an O(n2) complexity while various advance DFT approaches reduce the

complexity up to O(n log n)
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Algorithm 1 ASA Adaptive Sampling – Adapted from [Alippi et al., IEEE Trans. on

Instrumentation and Measurement, 2010] [120]
Input: W window of datapoints, δ difference to detect, h number of consecutive

(non-) differences before adapting sampling period

Output: T sampling period

1: scur ← doSummarization(W) // e.g., CUSUM, EWMA

2: if |scur − sprev| > δ then

3: h1 ← h1 + 1, h2 ← 0

4: if h1 ≥ h then

5: T← (1 − δ) · T

6: end if

7: else

8: h2 ← h2 + 1, h1 ← 0

9: if h2 ≥ h then

10: T← (1 + δ) · T

11: end if

12: end if

13: sprev ← scur

14: return T

difference is less than ∆2 then the polling rate is divided by another constant, denoted

as β. In turn, Andreolini et al. [111] introduce an adaptive sampling technique

similar to Payless, but instead of comparing the current datapoint value to user-

defined thresholds, the current variability (standard deviation) is used as a more

suitable mechanism to discriminate stable from variable states. While ASA, Payless

and [111] are interesting approaches, they require a number of parameters and user-

defined policies to be set once upon initialization and cannot change at runtime, thus

assuming that the metric stream datapoint value distribution will always remain

relevant.

A different approach is followed by Meng et al. [11], who propose an adap-

tive sampling framework for cloud networks. Specifically, the authors suggest that

an adaptive sampling framework should follow a violation-likelihood detection

approach. Thus, the sampling rate is increased when metric values approach a user-

defined threshold denoted as θ, and restored to a fixed interval when a violation is
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Figure 4.2: Adaptive Sampling Based on Threshold Violation Likelihood – Reprinted from [Meng et

al., IEEE Transactions on Computers, 2013] [11]

unlikely to occur (e.g., ui << θ) based on the probability of mis-detecting a violation

during the gap between two consecutive datapoint values, as depicted in Figure 4.2.

While an interesting perspective, this framework is a server-side solution not appli-

cable to the lightweight monitoring sources comprising IoT networks. In turn, as

a threshold-based technique, it fails to detect variances in the metric evolution for

values far from the threshold. Thus, it is limited to adaptive sampling tailored solely

for anomaly detection.

A more intuitive approach is proposed by Fan et al. [121]. In particular, the

authors introduce FAST, an adaptive sampling framework which uses a PID con-

troller [122] as part of a control loop enabling user differential privacy (Figure 4.3).

Specifically, FAST computes an estimate of what sampling period should be used to

collect the next datapoint based on the adjustment given by the PID controller which

is fed by the current estimation error and the time intervals between previously col-

lected datapoints in an attempt to balance a given inaccuracy budget (Algorithm 2).

Thus, if the metric stream values are going through rapid changes the estimation

error will increase. In response, the FAST PID controller will detect this error and

increase the sampling rate accordingly.

However, FAST’s adaptive sampling technique is aggressive producing large

sampling periods as the motivation behind its development is applying a costly

user-differential policy on each sampled interval [41]. Thus, it requires a Kalman

filter [123] which generates estimates for non-sampled datapoints to reduce the

estimation error. However, as the Kalman filter is used to filter signal noise, this

approach does not work well for abrupt transient signals where large portions of the

signal are lost due to smoothing. In addition, even for slightly less volatile signals

extensive profiling of its parameters, along with the PID controller parameters, are
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Figure 4.3: FAST Adaptive Sampling PID Controller – Adapted from [Fan et al., IEEE TKDE,

2014] [41]

still required to increase accuracy. Most importantly, while energy is preserved

from not constantly performing costly sensing (e.g., heartrate monitoring), as non-

sampled datapoints are still estimated to increase accuracy, data volume reduction

is minimum.

Jain et al. [124] introduce a technique capable of adapting the sampling period

for nodes comprising a Wireless Sensor Network (WSN). The period to collect the

next datapoint is a two-step process, where first, the sampling period is estimated

based on a Kalman filter, much similar to FAST, and selected within a range of pos-

sible sampling periods (Ti ∈ [Tlow,Thigh]). However, this range of possible sampling

periods is provided, by a central “synchronization” service allocating different band-

width budgets to sensor nodes in the WSN based on the variability of their readings

(e.g., sensors with high variability are allocated a larger range of sampling periods).

This second step is considered an additional overhead stressing the system when the

number of sensors, and consequently their readings, vastly scale. On the other hand,

Tata et al. [125] introduce an optimization model for edge monitoring determining

which metrics should be monitored and the frequencies at which these metrics are

to be monitored. In particular, the authors introduce an iterative approach where

the resource constraints of the monitoring source and the volatility of the metric

stream are considered as input for a constraint-based linear optimizer (CPLEX) in

which the metric frequencies are re-optimized whenever an environmental event or

a monitored metric value triggers the need for such re-optimization.

In turn, Gaura et al. [10] propose a number of edge mining techniques and

algorithms specifically tailored to IoT networks. With respect to adaptive sampling,
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Algorithm 2 FAST Adaptive Sampling – Adapted from [Fan et al., IEEE TKDE,

2014] [41]
Input: Z sliding vector containing recent datapoint readings, ξ user-defined PID

setpoint threshold and θ magnitude of change

Output: T sampling period and Y latest prediction state vector

1: E← estError(Z,Y) //control loop error (e.g., mean absolute error)

2: ∆new ← PID(E,∆old) //proposed adjustment

3: T← max{Tmin, bT + θ · (1 − e
∆new−ξ

ξ )c}

4: for k = 1 : T − 1 do

5: Y[k]← applyKalman(Z,Y)

6: end for

7: ∆old ← ∆new

8: return T, Y

the authors propose L-SIP, a linear algorithm, similar to ASA (Algorithm 1), but with

the difference that it encodes the current state of a monitoring source as a point in

time with attributes the datapoint value and its rate of change y = (y, ẏ)T. This is

performed by using as a state estimation function either an exponential weighted

moving average (EWMA) [126] or a Kalman filter, with the sampling rate increasing

if the difference between the observed and prediction value are larger than a user-

defined estimation error. L-SIP is an interesting lightweight algorithm suitable for

adaptive sampling on IoT devices, but exhibits two downsides: (i) it is slow to react

to highly transient and abrupt fluctuations in the metric stream; and (ii) it is left

to the user to determine, via profiling, which state encoding method suits best her

needs.

Finally, Bailis et al. [127] introduce Adaptable Damped Reservoir (ADR) sampling

for MacroBase which maintains a non-uniform sample of datapoints from ingested

metric streams that is exponentially weighted towards more recent points. Thus,

to promptly reflect changes in the underlying metric stream, MacroBase adopts

weighted sampling, in which the probability of data retention decays over time.

Specifically, the ADR maintains a running count cw of datapoints inserted into the

reservoir of size k. When a new datapoint is collected and is considered for insertion,

cw is incremented by one (or an arbitrary weight, if desired). With probability

k/cw, the datapoint is placed into the reservoir and a random datapoint is evicted
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Figure 4.4: Dynamic Filter Range Window Updating from Server-side Stream Coordinator –

Reprinted from [Olston et al., SIGMOD, 2010] [130]

from the reservoir. When the ADR is decayed via a periodic timer, which means

the reservoir decays at a pre-specified rate measured according to real time, its

running count is multiplied by a decay factor, cw := (1 − a)cw. While MacroBase

stream consumers observe adaptivity by probabilistically selecting datapoints of

significance in arbitrary windows, similar to the k-DFT approach suggested by

Rastogi et al., still all datapoints are collected with the periodicity unaltered.

4.2 Adaptive Filtering Techniques

Clayman et al. [109] introduce an extension to the Lattice monitoring tool [89] that

allows users, through an API interface, to enable fixed filtering for the metrics offered

by the respected monitoring tool where the user prior to monitoring instantiation

must determine the filter range and metrics that filtering will be applicable. Another

notable monitoring tool supporting filtering is Dargos from Povedano-Molina et

al [128]. In particular, Dargos users are provided with the tooling to enable low

and high filter ranges per monitored metric with the addition of a time-to-live (TTL)

parameter so as for the monitoring source to send at least one monitoring state

update every TTL intervals to signal that it is still active.

A different approach is followed by Jain et al. who introduce Star [129], an

hierarchical monitoring tool with filtering and aggregation capabilities. In regards

to filtering, Star assumes a tree-based monitoring hierarchy and requires from users

to define upon initialization an error budget δT that denotes the maximum inaccuracy

any subtree part of the hierarchy will report to its parent node for each monitored
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Algorithm 3 JCatascopia Adaptive Filtering – Adapted from [Trihinas et al.,

IEEE/ACM CCGrid, 2014] [34]
Input: vi and ti current value and timestamp, N window length to adjust filter range,

f iltering target and step the user-defined filter guarantee and step adjustment

Output: R new filter range, f ilteredVals percentage of values actually filtered

1: if vi ∈ [vi−1 − R, vi−1 + R] then

2: filter(vi)

3: count← count + 1

4: end if

5: if ti % N == 0 then

6: f ilteredVals← count/N

7: if f ilteredVals < f iltering target then

8: R← R + step

9: else

10: R← R − step

11: end if

12: end if

13: return R, f ilteredVals

metric. This arrangement reduces network load by filtering small updates that fall

within the range of values cached by a subtree’s parent. In particular, after a node A

with error budget δT reports a range for a given metric [vmin, vmax] to its parent node

(where vmax ≤ vmin + δT ), if node A receives an update from one of its child nodes,

node A can skip updating its parent node as long as it can ensure that the true value

of the metric for the subtree lies between vmin and vmax.

Olston et al. [130] introduce a server-side framework for filtering continuous data

streams from remote monitoring sources. This approach involves users specifying

a precision requirement with data sources sending updates to a central server node

when new values differ significantly from the previously reported values. If this

precision requirement cannot be met, the central server will adjust the filter range at

each data source, as depicted in Figure 4.4. However, this adaptive filter adjustment

is only feasible if data generated at different sources follow a certain similar pattern

on all nodes. In turn, Kim et al. [131] introduce a supervised learning approach

for metric filtering in IoT networks where a naive Bayesian classifier is trained to
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detect and label “normal” from “eventful” activity hidden in IoT monitoring streams.

In this approach “normal” data is used solely for model training and is afterwards

filtered so as to offload computationally IoT management services by only providing

them with updates regarding monitoring sources in “eventful” states (e.g., device

malfunction). In particular, the detection function of the proposed approach is used

to predict the data characteristics through the naive Bayesian classifier using stored

training examples while in the case of an “event” a k-nearest neighbour process is

used to weight the significance of the event.

On the other hand, in Trihinas et al. [34], we introduce an adaptive filtering

algorithm enabling monitoring systems such as JCatascopia to autonomously adjust

the filter range depending on the percentage of values previously filtered to achieve

certain user-defined filtering guarantees. Specifically, as depicted in Algorithm 3,

after the collection of a window length of N metric values, the algorithm compares

the percentage of values filtered to a f iltering target defined by the user, adjusting

the filter range accordingly. If the target was not achieved then the filter range is

increased stepwise (R ← R + step) and in turn if a more aggressive approach was

followed, thereby violating the user-defined filtering guarantees, the filter range

is decreased (R ← R − step). In turn, Du et al. [132] follow a similar approach

to us, but also show that network traffic generated by monitoring sources can be

further reduced if monitoring tools suppress metric dissemination by sending only

the median from a fixed window of collected values, whenever the current metric

value has not changed more than a pre-defined threshold.

Finally, Fbflow is a tool used at Facebook to monitor the network activity of

the database fleet [133]. An Fbflow agent resides on each machine listening to the

nflog socket and parses the headers to extract network traffic information. These

parsed headers are then streamed to Scribe and indexed by Hive. Because of the

intensiveness of the monitoring process, data is collected at a millisecond range,

all data streams (250,000+ machines is the user profile database) cannot be digested

for analysis, indexing and storage. Thus, Fbflow applies filtering on each machine,

where instead of transmitting a new datapoint at t j, it is modeled as a moving process

(p j) and the rate of change from the previous reported value at ti is monitored,

ri, j = p j/pi. Inferring whether ri, j is within an expected range allows the Fbflow agent

to decide if filtering should be applied. To decide if the ratio ri, j is expected, Fbflow

aggregates and models the ratios within the machine jurisdiction (e.g., rack, cluster,
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datacenter) as a normal distribution. The probability of the machine ri, j is then

compared with the jurisdiction distribution and a change is deemed unexpected if

the probability of ri, j is above or below a certain threshold. The downside is that

when low variability is evident in the machine jurisdiction (e.g., due to efficient

load balancing) then minor changes to a machine’s ratio are “falsely” signaled as

unexpected due to not adapting the jurisdiction model sensitivity.

4.3 Adaptive Dissemination Techniques

Deligiannakis et al. [113] introduce one of the first adaptive dissemination tech-

niques for remote edge sources. In particular, the authors suggest a traffic reduction

framework capable of running on the remote sensing device. Their framework con-

siders buffering large amounts of metric values at each sensing device and, rather

than transmitting the total of the buffer contents, it transmits a base signal (wavelet)

of fewer values which is then used to reconstruct an approximate version of the

original signal. The downside of this approach is that it requires for a large portion

of the signal to be made available and stored on the device so as to provide an

estimation. In turn, Silberstein et al. [108] introduce CONCH. Specifically, CONCH

is an edge-monitoring mechanism for sensing networks, where monitoring query

response collection and dissemination is suppressed if responses do not differ across

the nodes comprising the network. The proposed mechanism reduces bandwidth

and energy consumption inferred from constant monitoring response dissemination

by discovering spatio-temporal data correlations among the edge nodes of the net-

work but with the caveat that sensors must have knowledge of the entire network

topology or its neighborhood if a partitioning scheme is followed.

Another relevant monitoring framework is Sieve [4], which targets reducing the

dimensionality of collected metric streams from large-scale micro-service deploy-

ments. This is achieved by collecting, at first, all metric streams and then applying a

k-shape clustering [134] so that similar-behaving metrics are clustered together. Af-

ter clustering, Sieve picks a representative metric from each cluster and only stores

and uses the representative to infer metric behavior for metrics of the cluster. This

significantly reduces the metric dimensionality as k metric streams are indexed in-

stead (k << N). The downside of this approach is that it assumes that the metric

stream behavior is always as expected, as there is no provision for anomalous be-
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Figure 4.5: LANCE System Architecture – Reprinted from [Werner et al., ACM SenSys, 2011] [112]

havior, and that the value-base distribution will not change in time, thus reducing

the need for subsequent clustering.

ADWIN [135] is an adaptive shift detection framework for streams. It uses a

Naive Bayes predictor to maintain up-to-date estimations of the conditional prob-

abilities describing a metric stream and is able to reduce shift detection delays and

the false alarm ratio. To achieve this, it follows a linear approach with two sliding

windows to detect shifts based on given confidence intervals. However, while dis-

semination is triggered when a shift is detected, all metric values collected up to

the shift are still disseminated. In turn, Matsubara et al. propose RegimeCast [136],

a tensor-based monitoring framework that detects arbitrary length shifts in metric

streams. RegimeCast also forecasts possible future events (e.g., a person after sweep-

ing floor most likely will mop it). However, the downside of RegimeCast is that its

algorithmic process is computationally intensive and, thus, operates as a server-side

framework to coordinate and support IoT devices remotely.

Similar to the adaptive filtering step-wise techniques, previously introduced,

Kim et al. [114] propose using a feedback loop to dynamically adjust the metric

dissemination rate of mobile biosignal reporting devices. In particular, the authors

suggest monitoring the Received Signal Strength Indication (RSSI)2 modeled as a

weighted average summarizing the n−latest datapoints. If the RSSI exceeds or

2 RSSI is a measure of the strength of the power level that a client is receiving from a radio

transmitting device [137]

50

Dem
etr

is 
Trih

ina
s



Algorithm 4 G-SIP Adaptive Dissemination – Adapted from [Gaura et al., IEEE

Trans. on Sensors, 2013] [10]
Input: z sliding vector containing recent stream datapoint readings, tnew current

timestamp, and ε user-defined acceptable imprecision

Output: ynew latest state at mon. source and ys predicted state at receiver-side (sink)

1: ynew = (y, ẏ)T
← estimateLocalState(z, yold, told) //based on dEWMA

2: ys ← predictSinkState(ysink, tnew)

3: if eventful(ynew, ys, ε) || tnew − told > T then

4: transmit(ynew, tnew)

5: ysink ← ynew

6: end if

7: yold ← ynew

8: told ← tnew

9: return ynew

drops below certain high/low thresholds then the dissemination rate of the device is

adjusted accordingly by a user-defined positive/negative step value. However, unlike

conventional dissemination control protocols used in signal monitoring, instead of

using a fixed threshold (TH), the authors suggest using a Variable Threshold Level

(VTL = TH ± β · σ) adjusted based on the RSSI variability, denoted by the signal

standard deviation (σ), and β denoting a user configurable allowance parameter.

However, while the aforementioned approaches are interesting, they assume that no

distribution shifts will occur in the monitoring stream evolution at runtime.

A more comprehensive approach for IoT and WSN networks is followed by

Werner et al. [112]. Specifically, the authors introduce LANCE, a framework for sig-

nal collection that reduces bandwidth and energy consumed for monitoring stream

dissemination over the network. LANCE sends summaries of windowed data, usu-

ally in the form of an average, from nodes part of a sensor network to metric stream

receivers referred to as data sinks. Data sinks then decide as to how useful the data

are by comparing summaries to user-defined policies (e.g., metric value thresholds).

Thus, if the summary violates the defined policy, the high resolution data described

by the summary should be retrieved from the remote sensor; otherwise the data is

discarded. Since summaries are disseminated across the network and not the en-

tire window length of data values, both energy and bandwidth are preserved when
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summaries denote that no significant changes in the metric stream have occurred.

Finally, Gaura et al [10] introduce G-SIP, an adaptive dissemination framework

for IoT devices with similar logic to LANCE. In particular, G-SIP disseminates mon-

itoring updates only when the metric stream value distribution produced by the

monitoring source changes in a way that cannot be predicted from previous value

knowledge by the interested entity receiving monitoring state updates. As a predic-

tion mechanism, G-SIP uses an exponential weighted average to follow the rate at

which the metric stream changes in time. Therefore, if the rate of change exceeds

a user-defined threshold, thus labelling the change as “eventful”, metric updates

are sent to the remote receiving entity, otherwise dissemination is suppressed with

the latest monitoring state update being filtered (Algorithm 4). While LANCE and

G-SIP are interesting approaches targeting adaptive dissemination, the downside of

these frameworks is that they are either slow to react to abrupt and volatile monitor-

ing streams and/or static thresholds are used which are fixed once upon initialization.

Chapter Summary. After trawling the literature and industry advancements, this

chapter presents relevant work in relation to adaptive sampling, adaptive filtering

and model-based adaptive dissemination. Despite advancements in the field, the

current State-of-the-Art in approximate and adaptive techniques for monitored net-

works with processing conducted at the edge, still require matureness as in many

cases these techniques: (i) require excessive profiling to configure optimal frame-

work parameters, a task difficult for users; (ii) present large runtime footprint in

regards to energy consumption or resource utilization reducing the benefits of intro-

ducing adaptiveness in the end; (iii) fail to acknowledge abrupt and transient shifts

in the evolution of monitoring data or assume that once determined there will be no

distribution shifts in the monitoring stream value base; or (iv) require coordination

from server-side components.
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Chapter 5
AdaM: The Adaptive Monitoring Framework

5.1 Overview

To address the challenges introduced in this thesis, we have designed and devel-

oped the Adaptive Monitoring framework1. AdaM is a lightweight framework

embeddable in the software core of monitoring sources (e.g., IoT devices) that pro-

vides model-based adaptive monitoring. In particular, AdaM dynamically adjusts

the rate at which monitoring metrics are collected and disseminated to interested

receiving entities based on extracted runtime knowledge capturing the evolution

and variability of the metric stream. By accomplishing this, energy consumption

and data volume are reduced, allowing monitoring sources, such as IoT and edge

devices, to preserve energy and resource utilization, while at the same time ease

processing on monitoring data receiving services.

To achieve this, AdaM incorporates low-cost adaptive and probabilistic learning

algorithms for adaptive sampling, filtering and model-based dissemination, ad-

justing the metric collection and dissemination rate of the monitoring source based

on the confidence of each algorithmic model to correctly estimate what will happen

next in the metric stream. In turn, specific consideration is also taken so that the al-

gorithmic model is fine-tuned at runtime by introducing adaptive parameter weighting,

trend detection and seasonality behavior enrichment in order for the adaptive monitor-

ing techniques to immediately identify abrupt transient changes in the monitoring

stream evolution and overcome any lagging effects in the estimation process.

AdaM has been initially developed in Java to support IoT devices, such as micro-

controllers (e.g., Raspberry Pi) and Android (wear) devices, but as it features no

1http://linc.ucy.ac.cy/AdaM/
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Figure 5.1: AdaM - the adaptive monitoring framework

external source code dependencies it can also be ported to other real-world settings

and popular programming frameworks. Real-world examples include cloud mon-

itoring (Section 5.7.2) and intelligent transportation services (Section 5.7.2), while

AdaM has also been ported to R for offloading graph metric computation [138], and

Python for efficient data stream processing in Apache Flink [139]. Figure 5.1 depicts

a high-level and abstract overview of AdaM embedded in the software core of an

IoT device, where it coordinates metric sensing and dissemination by interacting, as

a proxy, between the Sensing and Network Unit of the IoT device.

In particular, when the Sensing Unit of the IoT device collects a new datapoint

(di) it is passed through the AdaM API to the Low-Cost Approximate Stream Estimation

module. This module updates a local reference estimation model capturing the mon-

itoring stream evolution and variability, while also maintaining in the Model Base a

number of online statistics (e.g., mean, standard deviation, estimation confidence)

that are used by AdaM’s adaptive algorithms and may also be of interest to users

and metric stream receiving entities. The adaptive techniques offered by AdaM

share the estimation model by reusing both extracted knowledge and intermediate

results to reduce the overhead imposed to the monitoring source even more. In

turn, to assist the estimation process to better follow the current monitoring stream

evolution, adaptive parameter weighting, trend detection and seasonality behavior enrich-

ment are used to immediately identify abrupt transient changes in the monitoring

stream evolution and also reduce any lagging effects in the estimation process, as

IoT data such as human body indicators and environmental data, present such be-
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havior [140] [141]. In the particular case where seasonality enrichment is not helpful

in the estimation process, AdaM detects this using online statistical testing, thus

ignoring its contribution.

After updating the local reference estimation model, the Adaptive Sampling mod-

ule will use the current monitoring stream evolution and variability to return a new

estimation of the sampling period (Ti+1) and a confidence interval for the current

estimation. The Sensing Unit may then use Ti+1 to collect the next datapoint (di+1)

and return to an idle state. If adaptive filtering is enabled as an intermediate between

the adaptive sampling and dissemination module, then the current measurement is

forwarded to the Adaptive Filtering to decide if the current datapoint (di) should be

discarded or not. In turn, the filter range (Ri+1) is adjusted based on the monitoring

stream variability and an indicator of the current variability is made available to

users via the AdaM API. If the datapoint is not filtered, it will be forwarded to the

AdaM Adaptive Dissemination module.

If model-based dissemination is enabled, then instead of disseminating metric

values, AdaM favors sending estimation model updates from which interested re-

ceiving entities can infer the metric values. Therefore, after filtering, the Adaptive

Dissemination module is used to determine if there is a distribution shift in the

monitoring stream value-base, thus rendering the estimation model as inconsistent

or if the datapoint Local Buffer has reached maximum capacity. If so, the Network

Unit of the IoT device is enabled and a compressed message containing an updated

version of the estimation model and the contents of the local storage, is disseminated

to interested receivers. Otherwise, monitoring dissemination is suppressed with the

Network Unit remaining in an idle state to preserve energy.

In the remainder of this Chapter, we will introduce the Low-Cost Approximate

Stream Estimation module which is used to capture runtime knowledge of the mon-

itoring stream evolution and variability, and then, elaborate on how the sampling

rate and filter range are dynamically adjusted by the Adaptive Sampling and Adap-

tive Filtering modules, respectively. In the next Chapter, we will introduce ADMin,

a plugin developed to offer Model-Based Adaptive Dissemination by advancing the

functionality of the AdaM framework to include seasonality knowledge enrichment,

datapoint forecasting and runtime shift detection.
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5.2 Requirements and Objectives

Obviously, if a degree of inaccuracy cannot be tolerated for a certain monitoring

task (e.g., hospital patient vitals) then any framework or technique adapting the

properties of a monitoring source, either this is the metric collection or dissemination

rate, will fail. Therefore, absolute guarantees defeat the purpose of approximate and

adaptive monitoring. Nonetheless, even in the case of fixed-rate monitoring, there are

no guarantees that the sampling rate is optimal and even with the utilization of a

potentially high sampling rate, error, or better inaccuracy, in the form of unreported

points of interest can still be masked between two consecutive datapoints. In turn,

if a degree of imprecision is tolerable but the estimation model cannot follow the

metric stream evolution, then constant model training will be required, especially in

the case of model-based adaptive dissemination. Hence, while metric dissemination

will be replaced with model updating, the energy drain, from activating the network

controller, will not be reduced.

Thus, the following requirements must be taken into consideration when design-

ing a framework for adaptive monitoring:

R1: The estimation process must be lightweight and performed in place right on

the monitoring source itself.

R2: The estimation process must be efficient, meaning it must infer overall less

costs than actually collecting and disseminating all datapoints and later discarding

them at the receiver-side.

R3: While parameters of the framework can be tweaked, no user should be

required to enter “magic numbers” for any given parameter.

R4: The framework must be practical, achieving good performance for numerous

and diverse real-life testbeds.

R5: The framework must ensure that the user-defined accuracy guarantees are

obeyed at all times.

Hence, our main objective is to provide an estimation model capable of captur-

ing runtime knowledge of the metric stream evolution and variability to produce

approximate datapoint values within given confidence guarantees and detect when

these guarantees are violated to update the model, used by the underlying adaptive

monitoring techniques, in real-time. This will allow monitoring sources (e.g., IoT

devices) to preserve energy by reducing the volume of both sampled and dissem-
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inated monitoring data while ensuring accuracy guarantees are maintained at all

times.

5.3 Monitoring Stream Data Model

The following requirements must be met to attach a data stream whose properties

will be dynamically adjusted by the AdaM framework:

• Incoming datapoints are tuples that must be in delimiter-separated format (de-

fault separator is ‘,’) and include the following ordered fields: the monitoring

source id, current timestamp in unix format, current value, and an optional list

of attributes.

datapoint: <srcID,timestamp,val,[attr,]>

• If a srcID is not defined for a monitoring stream then AdaM will provide a

unique identifier. Any incoming datapoints with no srcIDwill be assumed to

be of the same origin.

• Datapoint values must be numeric (e.g., int, long or float), meaning, the type

of the data must be quantitative and arithmetic operations can used to compute

the degree of difference between metric values. In turn, AdaM only accepts

univariate datapoint values, meaning datapoints must be one-dimensional.

5.4 Low-Cost Approximate Metric Stream Estimation

To satisfy the aforementioned set of requirements and objectives, we base our ap-

proach such that the estimation model used by the introduced adaptive monitoring

techniques, is maintained in constant time and space (O(1) complexity), thus sat-

isfying R1, which requires low-cost estimation model able to run on monitoring

sources (e.g., IoT devices) with limited processing capabilities. In turn, our esti-

mation model incorporates enough knowledge of the metric stream to allow us to

provide long-range approximations, thus reducing continuous model updates and

satisfying R2. Applying an adaptive algorithm is only meaningful if the process

can be done inexpensively and online. Therefore, the cost of applying adaptiveness

must be less than actually collecting the datapoints and then discarding them. The
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Algorithm 5 AdaM: Approximate and Adaptive Estimation Model
Input: current datapoint di with timestamp ti and value vi

Output: updated estimation model

1: if ti > 0 then

compute current distance

2: δi ← |vi − vi−1| (eq. 5.1)

compute estimation error, and p- and z- value

3: εi ← δi − δ̂i

4: Pi,Zi ← probDistro(εi, σ̂i) (eq. 5.5)

update estimation model for next time interval

5: µi ← updPEWMAwithTrend(Pi, δi, xi) (eq. 5.7)

6: xi ← updHoltTrend(µi) (eq. 5.6)

update estimated and observed moving variance

7: σi, σ̂i+1 ← updSD(µi, xi,δi, εi) (eq. 5.8)

compute current estimation confidence

8: ci ← calcConfidence(σi, σ̂i) (eq. 5.10)

computer upper/lower control boundaries

9: BHi,BLi ← calcBounds(δi, σerr) (eq. 5.9)

10: else

11: δ̂i+1 = µi ← v0, σ̂i+1 ← 0 //init values

12: end if

13: return estModel(δ̂i+1, σ̂i+1, ci, σerr)

adaptive monitoring framework supports model parameterization, although as in-

put for each adaptive technique to be used, only requires from the user to provide

the certain accuracy guarantees that must be obeyed by the estimation model, thus

satisfying R3. No domain-specific information for the monitoring data is required,

thus providing a generic framework and satisfying R4. Dynamically adjusting the

properties of a monitoring source is based on the ability of the algorithmic process

to (correctly) estimate what will happen next in the metric stream. If an estimation

cannot be made within certain confidence intervals obeying the accuracy guaran-

tees given by the user the adaptive technique will rollback to a fixed approach to

ensure accuracy over efficiency at all times, thus satisfying R5. In light of the above,

Algorithm 5 presents our approximate and adaptive estimation model.
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At first, we will compute the distance δi between the current two consecutive

datapoint values, as follows:

δi = |vi − vi−1| (5.1)

The distance δi is used to update the local reference runtime evolution of the

metric stream ρ(M). We compute the current metric evolution (steps 2-7) by using

a moving average, denoted as µi. This provides an estimation of the evolution

followed by the metric stream, and is used to estimate the distance of the next two

consecutive values, denoted as δ̂i+1. Intuitively, a large distance between the two

consecutive values denotes a shift in the metric evolution. Hence, if a large distance

is not expected, a decrease in the sampling period should be considered, whereas

if the distance is small, then an increase in the sampling period can be considered.

Moving averages provide one-step ahead predictions. They are easy to compute and

are calculated on the fly with knowledge of only the previous valueµi−1. Equation 5.2

presents an example of a cumulative Simple Moving Average (SMA) where values

of a sliding window are aggregated evenly:

µi =
δi + (i − 1)µi−1

i
, i ≥ 1 (5.2)

While a SMA can be used, it weighs all values the same. This is not desired as

recent disrupts in the metric evolution should be highly valued in a dynamic metric

stream. To address this, an Exponential Weighted Moving Average (EWMA) can be

used, where a weighting factor (0 < α < 1) is introduced to decrease exponentially

the effect of older values [142], as presented in Equation 5.3. While the EWMA is

a better suit for our needs it still features one significant drawback; it is volatile to

abrupt transient changes. Therefore, any assumption made that the EWMA only

changes gradually with respect to the parameterization (exponential weighting), is

not always the case [143]. Specifically, the EWMA, as depicted in Figure 5.2, is

slow to acknowledge sudden spikes after large stable phases, and, if stable phases

follow sudden bursts, spike effects are preserved in the estimation. This results in

overestimating subsequent δi’s which affect the accuracy of an adaptive technique.

µi =


δi, i = 1

αµi−1 + (1 − α)δi, i > 1
(5.3)
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Probabilistic Weighting. To dynamically adjust the weighting based on the proba-

bility density of the given observation, we adopt a Probabilistic EWMA (PEWMA).

The PEWMA acknowledges sufficiently abrupt transient changes, adjusting quickly

to long-term shifts in the metric evolution and when incorporated in our algorithmic

estimation process (steps 2-7), it requires no parameterization, scaling to numerous

datapoints. Equation 5.4 presents the PEWMA where instead of a fixed weighting

factor, we introduce a probabilistically adaptable weighting factor ãi = α(1− βPi). In

this equation, the p-value, is the probability of the current δi to follow the modeled

distribution of the metric stream evolution. In turn, β is a weight placed on Pi and

as β→ 0 the PEWMA converges to a common EWMA2.

µi =


δi, i = 1

α(1 − βPi)µi−1 + (1 − α(1 − βPi))δi, i > 1
(5.4)

The logic behind probabilistic reasoning is that the current δi depending on its

p-value will contribute respectively to the estimation process. Therefore, we update

the weighting by 1−βPi so that sudden ”unexpected” spikes are accounted for in the

estimation process, however, offer little influence to subsequent estimations, thus re-

straining the model from overestimating subsequent δi’s. In turn, if an “unexpected”

value turns out to be a shift in the metric stream evolution, as the probability kernel

shifts, subsequent “unexpected” values are awarded with greater p-values, allowing

them to contribute more to the estimation process.

Assuming, as mentioned in Section 3.1, a stochastic and i.i.d distribution as the

bare minimum for a metric stream, we adopt a Gaussian kernel N(µ, σ2), which

satisfies the aforementioned requirements. Thus, Pi is the probability of δi evaluated

under a Gaussian distribution, which is computed by Eq. 5.5. Nonetheless, we note

that while a Gaussian distribution is assumed, if prior knowledge of the distribution

is made available and given by the user then only step 4 from Algorithm 5 must

change in the estimation process.

Pi =
1
√

2π
exp(−

z2
i

2
)

Zi =
δi − δ̂i

σ̂i

(5.5)

2 For simplicity in our model evaluation we will consider β = 1
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In Equation 5.5, δi − δ̂i denotes the estimation error εi which is the difference be-

tween the observed and estimated distance, while σ̂i denotes the (moving) standard

deviation.

Trend Detection. While adaptive weighting refrains the model from overestimation

at bursty time intervals, it does not account for monotonic phases of upward and

downward trends which often introduce time lagging effects in the estimation pro-

cess [13]. To fine-tune the estimation process by capturing possible trends, we use

Holt’s Trend Method to estimate the current monotonic growth/decay in the metric

stream evolution [144].

xi =


δi − δi−1, i = 2

ξ (µi − µi−1) + (1 − ξ) xi−1, i > 2
(5.6)

Equation 5.6 depicts how the trend, denoted as xi, is updated at each time interval,

where ξ is a smoothing weight in the range [0, 1] with values near 1 denoting a

preference to favor recent trends. Thus, any lagging effects in the estimation process

are reduced by boosting the moving average to the appropriate value base with

the PEWMA for δ̂i+1 now also incorporating an additive trend component (eq. 5.7).

It may be argued that a statistical test (e.g., Mann-Kendall test) should be used to

decide if the additive trend affects positively the estimation. However, with adaptive

weighting based on the “expectiveness” of the estimated δi this is not needed as the

additive component including the trend, in Equation 5.7, will receive a low weighting

ãi and, thus, reduce its contribution to the estimation when a trend is not evident.

µi = ãi(µi−1 + xi−1) + (1 − ãi)δi (5.7)

At this point, the metric stream evolution ρ(M), encapsulated by δ̂i+1 and σ̂i+1, can

be efficiently updated with only previous value knowledge and without repeatedly

scanning the entire stream (n→∞), as follows:
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Figure 5.2: AdaM estimation model compared to an EWMA-based estimation model

ãi ← α(1 − βPi)

θ1 ← ãi · (θ1 + xi) + (1 − ãi) · δi

θ2 ← ãi · θ2 + (1 − ãi) · δ2
i

δ̂i+1 ← θ1

σ̂i+1 ←

√
θ2 − θ2

1

(5.8)

Figure 5.2 depicts a comparison between AdaM and an estimation model limited

to an EWMA [120]. We observe that AdaM is quick to adjust to shifts in the metric

evolution, and in contrast to the EWMA, after spikes it does not overestimate sub-

sequent values. Having estimated the standard deviation, when the next sample is

collected, the algorithm will update the actual observed moving standard deviation

σi for δi and σerr for εi (step 7). We note that, σerr is not used in adaptive sampling but

in adaptive filtering. Also, σerr is a useful statistic for users since from σerr, the current

moving estimation δi and a multiplier K; high/low estimation control boundaries for

detecting outliers and performing change detection are computed as follows:

Bi,high, Bi,low ← δi ± K · σerr (5.9)

On the other hand, σi is used to calculate the current confidence, denoted as ci

(step 8). The confidence (ci ≤ 1) is a ratio computed from the difference between the

estimated and the observed standard deviation (eq. 5.10) and is used as our error

evaluation metric which denotes the ability of the algorithmic process to (correctly)

estimate what will happen next in the metric stream. This supports our framework

to “reward” larger property adjustments when estimations fall within the accuracy
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intervals defined by the user and rollback to a fixed approach when satisfactory

estimations cannot be provided. Thus, the semantics behind the confidence is that:

the more “confident” the algorithm is, the larger the property adjustment (e.g., periodicity)

for the monitoring source can be. Hence, as σ̂i → σi the confidence ci → 1.

ci = 1 −
|σ̂i − σi|

σi
(5.10)

Based on the above, let us consider the case of an adversary purposely feeding

AdaM with datapoints that do not adhere the adopted metric value distribution

model. In this case, the confidence of the estimation model will be low. If the

confidence, at any point, cannot provide an estimation satisfying the maximum

tolerable imprecision, then any employed adaptive technique (e.g., adaptive sam-

pling) will rollback to a fixed approach (e.g., periodic sampling) to ensure accuracy

is met. Hence, accuracy is guaranteed by AdaM while efficiency depends on the

incoming data arrival distribution with efficiency maximized if both the data and

the estimation model adhere to a common distribution.

5.5 Adaptive Sampling

Adaptive sampling is the process of dynamically adjusting the periodicity Ti at

which a metric stream is sampled based on the evolution and variability of the

metric stream while still adhering to the accuracy guarantees given by the user. We

base our approach such that the estimated sampling period Ti+1 to collect the next

datapoint, is dependent to the current sampling period Ti, increasing if variability

of the load decreases, and, in turn, decreasing if variability increases. How large

of an adjustment is required, is dependent on the confidence metric ci, denoting

the confidence of the algorithm to (correctly) estimate and follow the metric stream

current evolution. Therefore, when the estimation model is “confident”, the adaptive

sampling algorithm will output/award larger sampling periods. Hence, in contrast

to threshold-based techniques which adjust the sampling rate solely based on the

datapoint value vi, our approach considers the metric stream evolution, as well as,

the confidence of the estimation. The reason for this lies in the failure of threshold-

based techniques [10] [11] to detect variances in the metric stream when values are far

from the threshold (e.g. vi << τ, where τ a user-defined threshold). Hence, events

remain undetected such as in the case of low rate DDoS attacks [145]. Similarly,
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Algorithm 6 Adaptive Sampling
Input: imprecision γ ∈ [0, 1] given by user and confidence ci

Output: Ti+1

Ensure: {Ti+1 | Ti+1 ∈ Z
+ and Ti+1 ∈ [Tmin,Tmax]}

if Ti+1 can be adjusted (either up or down) based on the determined confidence ci, and user-defined

imprecision γ, then do so, else rollback to default Tmin

1: if ti > 0 then

2: if (ci ≥ 1 − γ) then

3: Ti+1 ← Ti + λ · (1 +
ci−γ

ci
) (eq. 5.11)

4: if (Ti+1 > Tmax) then

5: Ti+1 ← Tmax

6: end if

7: else

8: Ti+1 ← Tmin

9: end if

10: else

11: Ti+1 ← Tmin //init values

12: end if

13: return Ti+1

stable phases with high values will fail to receive a sampling period decrement as

well, as a violation is still probable.

Thus, after updating the estimation model, Algorithm 6 is used to perform adap-

tive sampling. Having computed the current confidence (eq. 5.10), we then compare

it to the acceptable user-defined imprecision, denoted as γ from the problem def-

inition. The imprecision parameter (γ ∈ [0, 1]) is used to set the sensitivity while

computing a new sampling period Ti+1 (eq. 5.11).

Ti+1 =


Ti + λ · (1 +

ci−γ
ci

), ci ≥ 1 − γ

Tmin, else
(5.11)

Intuitively, if γ → 0 then our algorithm converges to a periodic sampling ap-

proach (unless an “exact” estimation is made). In turn, if γ→ 1 an adjustment will

take place on each interval even if a confident estimation cannot be made. Hence,
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if the algorithm cannot provide an estimation within a certain confidence interval,

then our adaptive sampling algorithm will rollback to the default sampling period

Tmin for the next datapoint estimation di+1. Moreover, in contrast to stepwise tech-

niques [110] [120] which adjust the sampling rate solely based on a step function

(e.g., Ti+1 ← Ti±Tstep), our approach is quick to react to highly volatile metric streams

adapting the sampling rate based on its confidence to the appropriate period in the

range [Tmin,Tmax].

The complexity of our approach is O(1) constant time, since all calculations are

based on previous collected values and do not require the entire metric stream to be

available. Moreover, the imprecision γ, is the only parameter which is user-defined

in the estimation process. Nonetheless, users are free to change: (i) λ which is an

optional multiplicity factor (e.g. default λ = 1) to be used if a more aggressive

approach should be followed; and (ii) the weights α and ξ, although as shown in

our evaluation, α and ξ may take a wide range of values due to the probabilistic

weighting process and can be left to default values for a small imprecision penalty.

5.6 Adaptive Filtering

Metric filtering is the process of suppressing datapoints when consecutive datapoint

values differ less than a range of values, denoted as R. Therefore, the current

datapoint di with value vi is filtered, if vi ∈ [vi−1−R, vi−1 + R]. However, this assumes

that the user has previous knowledge of the datapoint value distribution and that

it will not change in the future, otherwise, there is no guarantee any values will be

filtered at all. To address this downside, we adopt Adaptive Filtering, to dynamically

adjust the filter range R based on the metric stream variability while still adhering

to the accuracy guarantees defined by the user. Thus, the job of adaptive filtering is

to adjust the filter range in an attempt to filter consecutive datapoints but only if the

accuracy guarantees given by the user can be obeyed.

In our approach, the filter range R is dependent to the metric stream variability.

The reason for this lays in the failure of stepwise techniques [34] [132], which adjust

R incrementally based on the number of datapoints previously filtered, in cases such

as biosignal monitoring where precision is required in a small range of values [130].

For instance, let us consider glucose monitoring as a suitable example where the

filter range is adapted (Ri ← Ri−1 ± rstep) based on stepwise adjustments, denoted as
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Algorithm 7 AdaM: Adaptive Filtering

Input: µi, σi and σerr from estimation model

Output: Ri+1

Ensure: {Ri+1 | Ri+1 ∈ [Rmin,Rmax], 0 ≤ Rmin ≤ Rmax}

if metric stream not dispersed and inaccuracy budget permits it then Ri+1 can be widen,

else it is shortened

1: if ti > 0 then

2: Fi ← calcFanoFactor(σi, µi) (eq. 5.12)

3: if Fi < 1 then

4: if σerr < γ then

5: Ri+1 ← Ri + λ · (γ−σerr

γ ) (eq. 5.13)

6: if (Ri+1 > Rmax) then

7: Ri+1 ← Rmax

8: end if

9: else

10: Ri+1 ← Ri

11: end if

12: else

13: Ri+1 ← Rmin

14: end if

15: end if

16: return Ri+1

rstep. In this case, ignoring metric variability will result in filtering out critical values,

if rstep is too large, or, if too small, will require multiple (delayed) adjustments to

achieve the desired value-base when filtering must occur.

To show the extent of the variability in relation to the current evolution of the

monitoring stream, we utilize the Fano factor [146]. In particular, the Fano factor

(F ≥ 0), like the index of dispersion, is a normalized measure of the dispersion of a

probability distribution, which is used to quantify whether a set of datapoints are

currently clustered (F < 1) or dispersed compared to a statistical model. The Fano

factor is calculated over a time window, denoted as W, as the ratio of the variance σ2

to the mean µ, as presented in Equation 5.12:
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F =
σ2

w

µw
(5.12)

Algorithm 7 depicts how AdaM employs adaptive filtering. To provide both the

variance σ2 and the mean µ, no additional calculations are required, as both σi and

µi are the probabilistically weighted output of the metric stream evolution provided

by the estimation model. This also deficits the need of using a window of datapoints

as both σi and µi capture previous value knowledge and apply weighting to adjust

the contribution of each datapoint accordingly. Intuitively, when σi decreases, the

Fano factor Fi follows, indicating a decrease in the variability of the metric stream.

Having computed Fi, we then compare σerr to the user-provided maximum tolerable

imprecision, denoted as γ. If Fi indicates the metric stream is not dispersed and σerr is

less than γ, then the filter range is widen, in an attempt, to filter near-by values while

still remaining in the accuracy guarantees defined by the user (eq. 5.13). Otherwise, if

Fi indicates the metric stream is currently over-dispersed, the filter range is shortened

or restored to a default value in order to report abnormalities in the data.

Ri+1 =


Ri + λ · (γ−Fi

γ ), Fi < 1 and σerr < γ

Ri, Fi < 1 and σerr > γ

Rmin, else

(5.13)

As with adaptive sampling, the adaptive filtering algorithm has a O(1) constant

time and space complexity, as Ri+1 is computed from its previous value, while µi, σi

and σerr are the output of the runtime estimation model described in the previous

section. Additional parameter configurable by users, is λ, a multiplier used as an

aggressiveness indicator.

5.7 Experimentation Study

In this section we present a thorough evaluation of AdaM adaptive sampling and fil-

tering modules, based on public data from cloud services, internet security services,

wearables and intelligent transportation systems. First, we present an on device

evaluation of AdaM compared to other adaptive techniques. Second, we present a

scalability evaluation based on two different big data streaming services which ben-

efit from embedding AdaM in their edge nodes to lower data volume and velocity
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while preserving accuracy.

5.7.1 On Device Accuracy & Efficiency Evaluation

We compare AdaM to three state-of-the-art adaptive techniques frameworks that

are suitable for IoT devices: L-SIP [10], i-EWMA [110] and FAST [41], introduced in

detail in Chapter 4. Briefly:

• L-SIP is a linear technique for adaptive sampling which uses a double expo-

nential moving average to produce estimates of the current data distribution

based on the rate sample values change in time.

• i-EWMA3 is a technique encompassing a moving average which increases the

sampling period incrementally by one time unit (Ti+1 ← Ti + Tunit), when the

estimated error ε is under a user-defined imprecision value γ, and decreases it

(Ti+1 ← Ti − Tunit), when ε > γ.

• FAST is a framework for differential privacy using a PID controller to determine

the periodicity accompanied by a Kalman filter to predict values at non sampled

points. To configure the Kalman filter R parameter a training phase of 10

intervals was introduced. As differential privacy is not under-evaluation, it is

not enabled.

Unless otherwise stated, the user-defined imprecision is set to γ = 0.1, the aggres-

siveness to λ = 1 and the moving average and trend weights to α = 0.45 and ξ = 0.7.

Traces, Testbeds and Evaluation Metrics

Table 5.1 depicts the datasets used for the evaluation. Instead of simple trivial traces

(e.g., linear, sinusoidal loads), we have selected seven publicly available real-world

complex traces to truly reveal the strengths and disadvantages of each algorithm.

Figures [5.6a-5.6f] depict these traces. The experiments for the first four traces were

run on a Raspberry Pi (model B) with 512MB of RAM and an ARM processor (single-

core, 700MHz) while emulating the data load of each trace. The Raspberry Pi was

selected as a suitable testbed, as it features similar limited processing capabilities

of other “smart” devices (e.g., IoT home appliances). The Fitbit Step and Heart

3 i-EWMA is the EWMA-based version of ASA introduced in the related work
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Trace

Name

Origin Description

Memory

Trace

Cloud

Server

A memory trace of 105 samples originating from a physical

server running a java sorting benchmark [147].

CPU

Trace

Cloud

Server

A CPU trace from a physical server of 800 samples from the

Carnegie Mellon RainMon project [148].

Disk IO

Trace

Cloud

Server

A Disk I/O trace from a physical server of 415 samples from

the Carnegie Mellon RainMon project [148].

TCP

Trace

Internet

Security

Service

An incoming TCP network traffic trace from an internet se-

curity service of 500 samples from the port activity monitor

of the Cyber Defense SANS Technology Institute [149].

Step

Trace

Wearable A fitness step trace of 287 samples from a Fitbit Charge de-

vice [150].

Heart

Trace

Wearable A fitness heartrate trace of 287 samples from a Fitbit Charge

device [150].

Calorie

Trace

Wearable A fitness calorie trace of 287 samples from a Fitbit Charge

device [150].

Table 5.1: Description of traces datasets used for performance and accuracy evaluation

readings were fed, via SensorSimulator, to the Android Wear emulator hosting an

app computing steps and heartrate measurements. The processing capabilities of

the emulator are set to the specifications of a Fitbit Charge (single-core ARM 32MHz

processor, 128MB Memory). We note that the Fitbit calorie trace was not fed to the

Android Wear emulator, as explained shortly, calories are computed via human body

indicators and heartrate measurements. Hence, this trace is used as ground truth

to evaluate the techniques under comparison. We evaluate each technique towards

their estimation accuracy and ability to efficiently use device resources. Also, our

Fitbit data harvestor 4 is open-sourced and made available for anyone interested

in extracting from Fitbit their own data in raw form. We evaluate each technique

towards their estimation accuracy and ability to efficiently use the monitoring source

underlying resources, as follows:

Accuracy: we evaluate an adaptive technique estimation accuracy by measuring the

4 https://github.com/dtrihinas/FitbitDataExtractor
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mean absolute percentage error (MAPE) from the original timeseries ground truth

for each trace. Equation 5.14 depicts how the MAPE is calculated, where Ai is the

actual value for the ith datapoint and Ei is the estimated value. For each adaptive

technique, when a datapoint is not collected, Ei is considered the last reported value.

MAPEn =
1
n

n∑
i=1

|
Ai − Ei

Ai
| · 100% (5.14)

Efficiency: we evaluate efficiency by measuring the processing, network and energy

overhead imposed to the device by each technique. In particular, we measure: (i)

CPU cycles consumed to process the load imposed by each trace; (ii) network overhead,

where we assume no aggregation technique is available and thus, a datapoint, if not

filtered, is disseminated to the receiver-end; and (iii) energy consumption, based on

the energy model for mobile embedded devices adopted from [75] and presented in

Equation 5.15.

E = Pidle · τidle + Pcpu · τcpu + Pio · τwait + Pnet · τnet (5.15)

In this model, Pidle denotes power in idle state; Pcpu processor power (including L1

cache and memory); τcpu the CPU time; Pi/o power for I/O; τwait the I/O time; τnet the

network transmission time; while Pnet power consumed for transmitting datapoints

over the network. We also note that, processing measurements denoting the time

spent in compute, i/o and data transmission were acquired with perf 5, while power

level measurements were acquired by powertop6 after obtaining a power profile

(power in idle, active, transmission state) of the underlying device by wattch [151].

Experiments

At first, we compare AdaM sampling (λ=1, λ=2) to i-EWMA and L-SIP based on

the MAPE evaluation metric. These three algorithms use moving averages in their

estimation process. Therefore, MAPE is evaluated under different settings for the

moving average parameter (α) to find the best configuration. We set the minimum

sampling period to 1 time interval, equal to the sampling period used to collect the

trace ground truth, and set the maximum sampling period to 10 time intervals. We

note that FAST is not presented in this test, as it does not use a moving average. Also,

5 https://perf.wiki.kernel.org/
6 https://01.org/powertop
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(a) Memory Trace (b) CPU Trace

(c) Disk I/O Trace (d) TCP Trace

(e) Step Trace (f) Heart Trace

Figure 5.3: MAPE comparison of techniques using moving average estimator

FAST sampling is aggressive producing only a few sampling points and without

applying a Kalman filter for smoothing, its MAPE is very high. Therefore, a test

without the filter enabled, is meaningless. To be fair, we present its MAPE in

subsequent comparisons while enabling filtering (see Fig. 5.10). Figures [5.3a-5.3f]

depict the MAPE metric of each trace for the techniques under comparison.

First, we observe that AdaM (λ=1) for all traces features the lowest error. In its

best setting, AdaM’s MAPE is always under 10% except for the Disk trace, where it is
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Figure 5.4: Difference in MAPE when using trend in estimation

Figure 5.5: Influence of max tolerable imprecision to estimation

slightly above at 11%. Even, in a more aggressive setting (λ=2) AdaM still achieves

a low error percentage and is comparable to L-SIP. AdaM sampling achieves a low

MAPE due to the the adaptive weighting process which provides the estimation

model with the ability to immediately detect abrupt transient changes in each trace.

Moreover, due to the adaptive weighting, we observe that AdaM can take a wide

range of values for the α parameter ([0.3 − 0.6]) with a deviation always under 3%

from the best configuration. In turn, with the introduction of the trend component to

the estimation model (eq. 5.7), AdaM accuracy is improved by shedding 2-5% of the

error. This is depicted in Figure 5.4, where for a wide range of settings for the trend

parameter, denoted as ξ, the error is reduced compared to not considering trends

at all (Fig. 5.4 depicts only the three most challenging traces). Thus, the analysis

conducted shows that profiling to find optimal parameter settings for the estimation process

incorporated in AdaM is not always required if slight imprecision is acceptable.

Next, we evaluate the influence of the maximum tolerable impression (γ), the

only parameter that must be set by the user, to the overall estimation error (MAPE).
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(a) Memory Trace (b) CPU Trace

(c) Disk I/O Trace (d) TCP Trace

(e) Step Trace (f) Heart Trace

Figure 5.6: Comparison of traces generated via AdaM towards the original traces

Figure 5.5 depicts the evaluation conducted, where in all imprecision configurations,

and for all traces, AdaM’s MAPE is well below the acceptable imprecision threshold

(MAPE < γ), thus highlighting the importance of the confidence metric, even for γ-

values which indicate a high imprecision tolerance. Furthermore, Figure 5.6 depicts

AdaM compared to the original traces, where we observe that AdaM always follows

the data evolution even in highly abrupt and fluctuating phases.

At this point, we compare all algorithms efficiency based on the overhead im-
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Figure 5.7: Compute overhead comparison

Figure 5.8: Energy consumption comparison

posed to the monitoring source. We note that for all subsequent experimentations

AdaM incorporates trend detection in its estimation process with ξ left to the default

setting. In this test we include FAST, as well as, AdaM with filtering (R ∈ [0, 2]).

At first, we observe (Fig. 5.7) that filtering does not impose additional overhead

to AdaM as the overhead in all cases is well under 1%, while the gains from re-

duced network traffic (Fig. 5.9) are significant as an average reduction of 74% is

achieved. Nonetheless, with adaptive filtering, AdaM yields a slightly increased

error when compared to only enabling adaptive sampling (Fig. 5.10). However,

as the user-defined inaccuracy budget (γ) permits further approximation, accuracy

is slightly sacrificed. This improves device efficiency by significantly reducing the

network overhead, and consequently energy consumption (Fig. 5.8), with a slightly
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Figure 5.9: Outgoing network traffic comparison

Figure 5.10: Mean Absolute Percentage Error (MAPE) comparison

increased MAPE which is never increased more than 3% (disk trace). It should also

be mentioned that the selected filtering range (R ∈ [0, 2]) is not the optimal setting

(R∗ ∈ [0, 1.2]) for the testbed inaccuracy budget (γ=0.1). In general, when comparing

to periodic sampling, AdaM succeeds in reducing data volume by 74%, energy consump-

tion by at least 71%, while accuracy is, in all cases, greater than 92% and with filtering,

greater than 89%. Most importantly, in the case of biosignal monitoring where costly

signal analysis is performed energy consumption is reduced by more than 86% (Fig. 5.8).

Moreover, as with initial MAPE comparison, AdaM outperforms i-EWMA and

L-SIP. AdaM is able to achieve this due to its low complexity and the introduction of

the confidence metric which supports the estimation process to select the appropriate

T. Nonetheless, its overhead is slightly larger in some traces (e.g., cpu trace) than the
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Figure 5.11: Wearable device calories comparison

FAST algorithm. FAST’s aggressiveness, which computes larger sampling periods,

results to slightly lower energy consumption and network traffic. However, this does

not come for free. In Figure 5.10, we observe that for FAST to achieve this, significant

accuracy is sacrificed, especially for traces featuring limited linearity (e.g., CPU, disk

trace) in contrast to AdaM which features a low-cost approximate and adaptive estimation

model capable of achieving a balance between efficiency and accuracy.

To illustrate the importance of maintaining accuracy, especially in the case of

wearable devices, we compute calorie consumption where no further external stim-

ulus is required. Energy expenditure (calories/min) is an algorithmic process based

on human body indicators (age, weight, height) and heartrate monitoring7 [152].

Figure 5.11 depicts the initial calorie trace provided by a Fitbit Charge device and the

traces computed by AdaM and FAST. We observe that AdaM provides a better esti-

mation than FAST with AdaM’s error growing from 6.42% in heartrate monitoring

to 9.07% in calorie counting, while FAST’s error increases from 13.61% to 21.83%. To

grasp on the gains of sacrificing 9% accuracy when embedding AdaM to a wearable,

we perform a battery life expediency test. Specifically, we first calculate the average

hourly device consumption in milliamps (mA), denoted as IDC, from the temporal

energy consumption (Ei) and the voltage8 (Vi) driving the device (eq. 5.16). Battery

life, denoted as BL, is then computed from battery capacity (BC), and device con-

sumption (IDC). Battery capacity is set to the capacity of a Fitbit Charge (35mAh) and

the multiplicity factor β is set to 0.7 which is industry standard practice to account

7 Fitbit/Garmin also perform additional server-side fine-tuning to produce better calorie estimates

based on other parameters (e.g., exercise type, type of food consumed)
8 In idle state voltage is 1.7V but when driving peripherals (e.g. accelerometer) it scales up to 3.3V
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Figure 5.12: Cloud monitoring topology

for external factors affecting battery runtime (e.g., temperature).

IDC =
1
n
·

n∑
i

Ei · τi

Vi
(5.16)

BL = β ·
BC

IDC
(5.17)

From our estimations, a wearable device without AdaM has a device consump-

tion of 0.239mA and battery life expediency, on average, of 4.26 days (between 3-5

days, as claimed by the wearable designers). However, a device with AdaM embedded

in its software core is able to reduce consumption by 0.094mA and increase battery life from

4 days to an additional 2.94 days thus expanding battery life from 3-5 days to 6-7 days on a

wearable device offering step, calorie and heartrate monitoring.

5.7.2 Big Data Streaming Service Scalability Evaluation

In the next set of experiments, we intend to showcase the benefits of integrating

AdaM to edge nodes of two different big data streaming services in regards to the

velocity of which data is generated and scalability of the overall system.

Cloud Monitoring

In this case we study how cloud monitoring benefits by embedding AdaM in mon-

itored VMs to reduce data velocity and ease monitoring server processing on an

Openstack private cloud deployment. To show this we take advantage of the open-

source JCatascopia monitoring framework [22] which offers integration endpoints

for adaptive algorithms and is capable of running on linux-based IoT devices (e.g.,

Raspberry Pi). We embed AdaM in the source code of JCatascopia-Agents (metric

77

Dem
etr

is 
Trih

ina
s



collectors), such that they are capable of adapting the sampling rate and the metric

filter range. Hence, JCatascopia-Agents upon initialization, randomly select 1 of the

4 server traces (Memory, CPU, Disk I/O and Network) introduced earlier to emulate

the behavior of a Raspberry Pi. For each trace we set the minimum sampling period

to 500ms, in order to generate a high volume of data. We use these traces, and not

random collected data, as we have confirmed from our evaluation that AdaM can

reconstruct each of the available traces with high accuracy.

Figure 5.12 depicts the topology of a JCatascopia cloud deployment. Initially the

deployment is comprised of 1 JCatascopia-Agent and every 5 minutes a new agent is

instantiated and added to the deployment until we reach a capacity of 80. Collected

metrics are disseminated from Agents to a JCatascopia-Server (4VCPU, 4GB RAM)

where they are processed and stored to the monitoring database. We evaluate data

velocity by measuring archiving time, which is the average time required by the

JCatascopia-Server to process and store a received metric. We use this topology to

compare AdaM (γ = 0.1,T ∈ [1, 10],R ∈ [0, 2]) against (i) using periodic sampling

(T = 500ms) for metric collection; and (ii) using periodic sampling (T = 500ms) along

with filtering on the JCatascopia-Server (we show results for R = 1% which was the

best filtering configuration).

Figure 5.13 depicts the results of our comparison, where we observe that without

any adaptive techniques data velocity follows an exponential growth. In turn,

when filtering is added to the JCatascopia-Server, thus on the server side, archiving

time is comparable to AdaM but only up to 30-35 VMs. After that, archiving time

increases exponentially as the per-message dissemination and storage overhead is

the actual bottleneck for cloud monitoring services. However, if data sources utilize

AdaM’s adaptive capabilities on the edge, data velocity is reduced and a more linear growth

is achieved.

Intelligent Transportation System (ITS)

Next, we present a thorough evaluation of an ITS with AdaM embedded in the edge

nodes of the overall system. The ITS topology is depicted in Figure 5.14 and is a

(simplified) replica of the Dublin Smart City Bus Network [153] comprised of:

• 1000 buses with GPS tracking devices sending periodic updates to the ITS.

Each update reports 16 metrics including: location, bus id and area of coverage.
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Figure 5.13: Cloud monitoring scalability evaluation

Figure 5.14: ITS topology

Most importantly, in each update is an estimate of the current route delay (how

many seconds off schedule is the bus);

• An Apache Kafka queueing service for bus updates to be dequeued by the

ITS processing engine. The Kafka instance resides on a x-large VM (16VCPU,

16GB RAM). The queueing service is also used by the ITS processing engine to

enqueue results for the dashboard;

• The distributed processing engine powered by Apache Spark to process bus

updates. The Apache Spark cluster is comprised of 5 large worker nodes (8

VCPU, 8GB RAM, 40GB Disk) with a batch window of 1 second;

• A dashboard used by ITS operators to view the results.

We have created a Bus Emulator9 to emulate the tracking behavior of Dublin

buses. Each bus instance initially receives a busID and from there on, it emulates

the behavior of the specific bus by sending updates to the ITS based on publically

available and real data collected from 1000 Dublin buses for an entire month (Jan

2014).The ITS processing engine pulls data from the queue service every time interval

9https://github.com/dtrihinas/JobEmulator
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Figure 5.15: Apache spark streaming total delay

and processes bus updates. With processing we denote the intensive task of checking

per bus if the current route delay is over one standard deviation from its average

delay in the current city block based on a weekly sliding window. If the delay is

lower than this threshold, the message is discarded. If not, the processing engine

increases an aggregator counting the number of buses with delays in the area and

signals a warning if more than 10 violations are detected in a 5 min sliding window.

Hence, ITS operators always receive timely warnings via the bus network to further

investigate and take action or not.

For our experiments, the topology is initially configured to host 50 buses and

every 10 minutes 50 more buses are added to the network until we reach a topology

with 1000 buses. First, we set the sampling period of each bus to 1 time interval

which is the dataset ground truth. In the second and third test the sampling period

is set to 5 and 10 intervals respectively. Afterwards, we embed AdaM to each bus

emulator (γ = 0.15, λ = 1, T ∈ [1, 10], R ∈ [0, 3]). We also evaluate the ITS service

with T=1 along with filtering made available on Apache Spark (results shown for

R = 1.8 which was the best configuration after testing). We perform this test to show

that even if filtering is enabled at the cloud-side, the scheduling time in distributed

data engines is a cost that should not be ignored. Thus, we monitor the total delay

imposed to the Apache Spark cluster, which includes both processing and scheduling

time. Processing time denotes the time required to parse a batch of updates, while

scheduling time denotes the time from which a batch is dequeued up to the time

it starts being processed. In order for a Spark cluster to be considered as stable,

the total delay must be comparable to the batch window. Otherwise, if the delay is
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Figure 5.16: Percentage of correctly reported warnings per area

continuously increasing, batches are queued and not processed immediately as the

system is unable to keep up. Therefore, the system is characterized as unstable [154].

Figure 5.15 depicts the total delay metric as the number of buses and message

velocity increase. We observe that for T=1 (ground truth periodicity), the system

becomes unstable after 572 buses. As the total delay grows exponentially, the system

becomes unstable and we terminate the experiment run. Similarly, for T=1 with

filtering enabled and with sampling period set to T=5, the system after 632 and 746

buses respectively is unstable again. Remarkably, for T=10, the maximum number

of buses is reached with the system slightly rising above the threshold at 971 buses.

On the other hand, with AdaM embedded in each bus emulator we observe that at

817 buses the threshold is violated for the first time, however the maximum number

of buses is achieved without the need to terminate the deployment. At this point

one may argue that a solution to the high data influx is auto-scaling where the ITS

service dynamically scales by provisioning additional resources (e.g., Spark nodes)

to cope with the overwhelming load [22]. However, auto-scaling should be used

wisely as scaling large data-intensive infrastructures, other than monetizing costs

for resources, involves hidden costs such as the time cost for data (re-)balancing,

replication, and the additional network overhead [104] [155]. Hence, if auto-scaling

can be avoided or postponed for latter in favor of a smaller cluster achieving the same

throughput, then it should.

After evaluating the total delay, we proceed to an accuracy evaluation by com-

paring the correct and false reported warnings per Dublin area by each experiment

run to the ground truth. From Figures 5.15-5.17 we observe that although a T=10
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Figure 5.17: Percentage of falsely reported warnings per area

sampling period features the lowest streaming delay, the percentage of correctly

reported warnings merely spans from 0% to 38%, while the false alarm percentage

spans from 11% to 19%. For T=5, the percentage of correctly reported warnings

spans from 17% to 63%, while the false alarm percentage spans from 7% to 17%. On

the other hand, AdaM achieves a percentage of correctly identified warnings of at

least 87% in all Dublin areas except for the CF city block where it correctly detects

8 in a total of only 12 actual warnings. Remarkably, AdaM, with a significantly

lower streaming delay, is even comparable to using T=1 with filtering enabled at the

cloud-side. In turn, AdaM’s percentage of falsely reported warnings is significantly

lower than utilizing a fixed periodicity as its estimation mechanism is able to quickly

detect and adapt the periodicity to follow abrupt and transient fluctuations in a bus

monitoring stream. Hence, AdaM is able to adapt, at the edge, the monitoring intensity

while satisfying the accuracy guarantees set upon initialization.

In turn, Figure 5.18 depicts the average occurrence of each sampling period per

hour of a weekday for buses servicing the Central Dublin area (day buses operate

between 6am-11.59pm). We observe that for hours with high traffic such as morning

rush hours (e.g., 7-9am), lunch time (e.g., 12-13pm) and afternoon rush hours (e.g.,

17-19pm), high sampling rates (T = 1-2s) are preferred, while the rest of the day low

sampling rates are preferred. However, one must note the variety of sampling rates

used throughout each hour of the day justifying the need for adaptive monitoring.

Hence, AdaM is able to adapt in place and inexpensively the monitoring intensity, thus

reducing the volume and velocity of incoming data to distributed big data streaming services

while preserving accuracy.
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Figure 5.18: Sampling periods used by buses in the central dublin area per hour of the day

Chapter Summary. This chapter introduces AdaM, a software library offering low-

cost approximate and adaptive monitoring for software agents and IoT devices.

AdaM uses probabilistic learning by incorporating in its software core a proba-

bilistic exponential weighted moving average (PEWMA) which captures the metric

stream runtime evolution and variability. To immediately identify abrupt and tran-

sient changes in the metric stream evolution and overcome any lagging effects in the

estimation process, AdaM uses adaptive parameter weighting and trend detection

to fine-tune the algorithmic learning model at runtime. AdaM dynamically adjusts

the metric collection periodicity and filtering range based on the estimation model

“confidence” which is an (error) evaluation metric denoting the ability of the model

to correctly estimate what will happen next in the metric stream. This supports

our framework to “reward” larger property adjustments (e.g., increase periodicity)

when estimations fall within the accuracy intervals given by the user or rollback to a

fixed approach when satisfactory estimations cannot be made. Thus, if a “confident”

estimation cannot be made, AdaM will rollback to a fixed approach (e.g., periodic

sampling) to ensure accuracy guarantees are obeyed over efficiency. After perform-

ing a thorough experimentation study using real-world data from cloud applications,

internet security services, wearables, and intelligent transportation services, results

show that AdaM can significantly reduce energy consumption by at least 83% and

the volume of generated data by at least 71%, while maintaining accuracy always

above 89%. Thus, big data services consuming IoT data can truly benefit in terms of

lower monitoring costs, achieve greater scalability and efficiently utilize underlying

resources when embedding AdaM in the software core of their monitoring sources.
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Chapter 6
ADMin: A Plugin for Model-Based Adaptive

Dissemination

6.1 Overview

In this chapter we introduce ADMin, a plugin developed to extend the function-

ality of the AdaM framework by offering model-based adaptive dissemination to

efficiently adapt, in place, the rate at which monitoring sources (e.g., IoT devices)

disseminate metrics to receiving entities based on the evolution and variability of

the metric stream. In particular, when the values of a metric stream can be inferred

by an estimation model, instead of sending these values, ADMin favors dissem-

inating updates referring to the estimation model. From the estimation model,

metric receiving entities can then infer any missing values. In turn, dissemination

to metric receivers is withheld by monitoring sources and enabled only when shifts

are detected, thus, rendering the current model as no longer able to describe the

metric stream evolution within the confidence guarantees given by the user. This

significantly reduces the communication overhead imposed directly to a monitoring

source (e.g., energy consumed by IoT device) and indirectly to a network of monitor-

ing sources (e.g., IoT network data overwhelm), by suppressing from dissemination

consecutive datapoints with “little” change in their metric values that can be inferred

by the estimation model.

Figure 6.1 depicts a high-level abstract overview of the ADMin plugin integrated

in the AdaM framework, where focus is drawn on the flow describing how model-

based adaptive dissemination is achieved. In particular, ADMin adopts the low-cost

approximate stream estimation model of the AdaM framework used to capture the
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Figure 6.1: ADMin plugin for AdaM framework

runtime evolution and trend of the monitoring stream and extends it to also include

a seasonal component. The module in charge of this task is the Seasonality Enrichment

module, which detects if seasonality enrichment provides a more accurate estimation

of the metric stream evolution via online statistical testing. If so, it enriches the model

with seasonality knowledge; otherwise, the estimation will roll-back to the model’s

previous estimation state. Although seasonality enrichment is optional for the AdaM

framework, as shown in Section 6.4.2, if a metric stream exhibits such behavior,

the estimation error and shift detection delay can be significantly reduced. However,

detecting the optimal seasonal periodicity is a complex problem by itself [140]. Thus,

the user may enable ADMin to integrate and utilize the lightweight tensor-based

and parameter-free ComCube framework to determine the near-optimal seasonal

periodicity [141].

After updating the estimation model, the Datapoint Inference module will then

label the current datapoint as “expected” or “unexpected”. If the datapoint is “ex-

pected”, meaning it can be inferred by the forecasting function of the estimation

model within the confidence intervals given by the user, it is suppressed; otherwise,

the datapoint is locally stored and will be disseminated when dissemination is trig-

gered as such datapoints may be of interest. Next, the Runtime Shift Detection module

determines if there is a shift in the metric stream evolution rendering the estimation

model as inconsistent or if the local storage has reached maximum capacity. If so,

a compressed message containing an updated version of the estimation model and

the contents of the local storage is passed to the Network Unit of the IoT device to
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Algorithm 8 ADMin: Low-Cost Approximate Estimation Model

Input: datapoint d(ti, vi), confidence δ given by user and local storage bu f

Output: updated estimation model

Ensure: µi, σi, xi, si are initialized and k← 0 after dissemination

compute p– and z–value

1: Pi,Zi ← probDistro(vi, v̂i, σi) (eq. 5.5)

update estimation model

2: µi, σi ← updPEWMAwithTrendandSeason(Pi, vi, xi, si) (eq. 6.3)

3: xi ← updTrend(µi)

4: si ← updSeasonality(µi, xi,L)

if datapoint is unexpected then store in buffer

5: if isDatapointUnexpected(vi,Pi,Zi) then

6: bu f ← vi

7: end if

8: y1 ← µi + kXi (eq. 6.4)

9: y2 ← µi + kXi + Si

is seasonality enrichment beneficial?

10: if T–Test(δ, σi, y1) > T–Test(δ, σi, y2) then

11: v̂i+1 ← y1

12: else

13: v̂i+1 ← y2

14: end if

15: k← k + 1

16: return estModel(v̂i+1, µi, σi, xi, si)

be disseminated to interested receivers. Otherwise, monitoring dissemination is

suppressed with the Network Unit remaining in an idle state.

6.2 Seasonality Enrichment and Datapoint Inference

Seasonality is defined as the tendency of a series of data, in our case a metric stream,

to exhibit behavior that repeats itself every L periods (e.g., hourly, daily) [140]. It

is, thus, an indicator of a pattern of regular periodic and predictable fluctuations in

a metric stream [156]. IoT data, such as human body indicators and environmental
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(a) Reported vehicles from road sensor (b) Air temperature from weather station

(c) Human heartrate from wearable (d) Current production from photovoltaic panel

Figure 6.2: Data exhibiting seasonality effects

data, present seasonality behavior [126]. In particular, and as depicted in Figure 6.2,

environmental data such as temperature, humidity and air quality, gradually change

from their previous timestamped values and exhibit predictable behavior when

following climate cycles. In turn, human activity and (self-)tracking data exhibit

seasonality due to repeatable patterns of human social activity and habits (e.g., time

we rest, go to work, exercise, etc.). Additional cases which exhibit seasonal behavior

include, but are not limited to, smart metering and quality control in manufacturing,

home appliances and electricity distribution.

Algorithm 8 depicts how the low-cost approximate estimation model of the AdaM

framework can be updated to include a seasonal component and datapoint infer-

ence without any alterations required to the other adaptive monitoring techniques

comprising the framework. In this context, the seasonality contribution, denoted as

si, is computed by adopting the Holt-Winter’s method to update the seasonality con-

tribution of a moving average at runtime by applying exponential smoothing across

seasons in addition to smoothing over consecutive datapoints of the moving average
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evolution and trend [157]. Equation 6.1 and 6.2 depict how the seasonal contribution

si is updated at each seasonal cycle withω denoting a smoothing weight in the range

[0, 1] with values near 1 showing a preference to favor recent seasonal effects and

with a zero value converging to the weighted moving average µi. In turn, xi denotes

the trend component.

si =


0, i < L

ω (vi − µi − xi) + (1 − ω) si−L, i > L
(6.1)

The reason for introducing two equations for si is because the seasonal component

may take two forms. Specifically, it can be additive (Equations 6.1 and 6.4), indicat-

ing that the seasonal component is added with the trend component to bring the

(moving) average to the appropriate value-base in the current seasonal cycle, or mul-

tiplicative (Equations 6.2 and 6.4), in which the seasonal component is proportional

to the underlying trend.

si =


0, i < L

ω ( vi
µi−xi

) + (1 − ω) si−L, i > L
(6.2)

The distinguishing characteristic between the two forms is that in the additive

case, the series shows seasonal fluctuations regardless of the overall level of the

metric stream, while, in the multiplicative case, the amplitude of the seasonal contri-

bution depends on the overall upward/downward level of the metric stream. When

in doubt, the additive model can be used, although knowledge of a multiplicative

component can contribute in reducing time lagging effects in the estimation process.

Level: µi = ãi (µi−1 + xi−1) + (1 − ãi)(vi − si−L)

Trend: xi = ξ(µi − µi−1) + (1 − ξ)xi−1

Seasonality: si = ω(vi − µi − xi) + (1 − ω)si−L

(6.3)

With the addition of the seasonal component, the estimation model, introduced

in Section 5.4, comprised of the PEWMA moving average and trend can now be

entirely expressed with Equation 6.3. With the model updated iteratively and with

only previous value knowledge, the metric stream can now be approximated by

using Equation 6.4 to infer the values for subsequent k-datapoints.

Additive: v̂i+k|i = µi + k xi + si−L+k+
L

Multiplicative: v̂i+k|i = (µi + k xi) · si−L+k+
L

(6.4)
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Algorithm 9 ADMin: Datapoint Expectency

Input: datapoint d(ti, vi), z-value based on confidence δ given by user

Output: datapoint expectency

1: z← z score(δ)

2: if (vi > µi − z · σi) && (vi < µi + z · σi) then

3: label← true //datapoint within confidence intervals

4: else

5: label← false

6: end if

7: return: label

where k+
L = b(k−1) mod Lc+1, denotes that the estimate for the seasonal component

used in this time interval was last updated L time intervals ago.

To reduce the volume of disseminated data, ADMin will suppress “expected”

datapoints, as depicted in Algorithm 9. This means that any datapoints that can

be approximated by the estimation model within the confidence intervals given

by the user will not be disseminated to interested metric receivers. Rather, metric

stream receiving entities can use the model to infer (subsequent) datapoint values

that are not disseminated. Intuitively, the more consecutive datapoints that can be

approximated by the model the larger the compression of the metric stream will

be. Nonetheless, uncertainties in the form of anomalies can be introduced when

sensing the physical world. Thus, “unexpected” datapoints are locally stored and

disseminated when dissemination is triggered1.

However, in real-life systems perfect seasonal behavior is rarely observed. Rather,

seasonality behavior is exhibited although irregularities in the form of noise, often

not of fixed length, are introduced in the seasonal cycle [126]. This is particularly,

evident in Figures 6.2b-d, where considering prior knowledge may result in over-

estimating subsequent vi’s, if the current metric stream evolution completely differs

from the seasonal behavior [140]. For example, let us consider the production of a

PV, depicted in Figure 6.3, and as a representative seasonal contribution the previ-

ous day hourly average (Si−L). This will lead to overestimating the production of PV

panel when the current day weather significantly differs from the previous day. To

1 Anomalies can be a sign of quality degradation for an IoT device
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Figure 6.3: Overestimating seasonal contribution when considering daily seasonal periodicity

address such irregularities, ADMin embraces the use of two online pairwise T-tests

which are conducted after each seasonal cycle to evaluate and select which contri-

bution –before (y1) or after (y2)– seasonality knowledge enrichment, allows us to

deliver a more accurate estimation. Thus, in the case where seasonality enrichment

is not beneficial such as the highlighted example, the seasonal contribution is not

taken into consideration in the outputted forecasts of the estimation model.

Finally, a note on the selection of the seasonal periodicity. ADMin, through its API

allows users to configure the periodicity of the seasonal cycle prior initialization.

In cases, where the seasonal cycle is obvious, such as in the case of environment

data (e.g., temperature, humidity) this task may seem trivial. However, in general,

detecting the optimal seasonal periodicity is deemed a complex problem by itself and

by nature it cannot be solved on a low-power device at runtime [140]. Thus, the user

may enable ADMin to utilize ComCube [141], which is a lightweight and parameter-

free framework embracing a tensor-based approach to determine the near-optimal

seasonal periodicity and update it frequently.

6.3 Runtime Shift Detection

Shift detection2 is the process of monitoring the probabilistic distribution of a series of

data in order to detect points in time where the statistical properties of the series have

changed. These statistical properties may refer to the mean, variance, correlation or

spectral density of a metric stream [158]. Several algorithms are available for shift

detection such as BCPD, which adopts a binary segmentation approach and models

the problem as a bayesian process [159], and SWAB, which considers shift detection

2 Also commonly referred to as change point detection
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Algorithm 10 ADMin: Runtime Shift Detection

Input: estModel, confidence δ, local storage bu f and actTime denoting if actual shift

time is returned

Output: shift detected notification and msg for dissemination

Ensure: length(bu f ) < max(bu f ) otherwise trigger dissemination

1: if dissemination triggered at ti−1 then

2: hi ← updShiftThres(δ, σi) (eq. 6.8)

3: end if

4: ci ← updLikelihood(vi, v̂i, µi, σi) (eq. 6.7)

5: Ci,low, Ci,high ← updCusum(ci) (eq. 6.5)

6: Gi,low, Gi,high ← updDecision(ci) (eq. 6.6)

7: if Gi,{low, high} > hi then

8: if actTime == true then

9: ts ← getActShiftTime(Ci,low, Ci,high) (eq. 6.6)

10: return msg(ts, bu f , estModel)

11: else

12: return msg(bu f , estModel)

13: end if

14: end if

15: return

a clustering problem between sliding windows of a timeseries [160]. In turn, PELT

is an algorithm used to detect the optimal shifts in the evolution of a data series that

introduces a pruning function to reduce the complexity [161]. Nonetheless, these

algorithms are not suited for IoT settings as they cannot be used on streaming data

or are too complex and cannot react to changes in real time.

Having taken the above into consideration, we adopt the Cumulative Sum

test (CUSUM) which is a probabilistic likelihood shift detection algorithm that is

lightweight and can be used in an online and incremental fashion [162]. Algo-

rithm 10 introduces an abstract overview of our adaptive shift detection approach.

The CUSUM, denoted as Ci, embraces a hypothesis test for detecting shifts in i.i.d

timeseries, such as metric stream (M) depicted in Figure 6.4. In particular, there

are two hypothesis θ′ and θ′′ with probabilities P(M, θ′) and P(M, θ′′), where the
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Figure 6.4: CUSUM shift detection overview

first corresponds to the statistical distribution of the metric stream prior to a shift

(i < ts) and the second to the distribution after a shift (i > ts) with ts denoting the

time interval the shift occurs. The CUSUM is computed with sequential probability

testing on the instantaneous log-likelihood ratio given for a metric stream at the i-th

time interval, as follows:

ci = ln
P(Mi, θ′′)
P(Mi, θ′)

Ci,{low, high} = Ci−1,{low, high} + ci

(6.5)

where low and high denote the separation of the CUSUM to identify both positive

and negative shifts respectively.

The typical behavior of the log-likelihood ratio includes a negative drift before a

shift and a positive drift after the shift. Thus, the relevant information for detecting

a shift in the evolution of the metric stream lays in the difference between the value

of the log-likelihood ratio and the current minimum value. A decision function,

denoted as Gi, is used to determine a shift in the metric stream when its outcome

surpasses a threshold (also referred to as a decision interval) denoted as h and

measured in standard deviation units. The time interval at which a shift actually

occurs, is computed from the CUSUM as follows:

Gi,{low, high} = {Gi−1,{low, high} + ci}
+

ts = arg min
j≤s≤i

(Cs−1)
(6.6)

In Equation 6.6, G+ = sup(G, 0), ti is the time ADMin detects the shift and t j is the

time the last shift prior ts occurs. Now, let us consider the particular case of a metric

stream constituted of i.i.d datapoints with the metric stream supposed to undergo
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Figure 6.5: CUSUM delayed shift detection due to metric stream gradual trend

possible shifts in its evolution modelled by a moving average as in the case of the

estimation model previously introduced. Thus, θ′ and θ′′ can be rewritten as µ′ and

µ′′ respectively, with µ′ representing the current evolution, while µ′′ the output of

the estimation model with µ′′ = µ′ + ε, and ε denoting the estimated magnitude of

change of the metric stream evolution. As the metric stream evolution is used to

provide an estimation for v̂i, the magnitude of change is equal to ε = v̂i−vi. In turn, let

P(M, µ′) and P(M, µ′′) be modeled and computed from Equation 5.5 when adopting a

Gaussian kernel as in the case of our estimation model. With some calculations [163],

ci in Equation 6.5 is rewritten, as follows, to perform the decision-making process

with only previous value knowledge:

ci,{low, high} = ±
|ε|

σ2
i

(vi − µ
′
∓
|ε|
2

) (6.7)

However, the CUSUM test features two drawbacks. First, determining the actual

ts requires linear time. In regards to this drawback, if exact knowledge of ts is

not required, then ti, the time a shift is detected from ADMin, can be used as an

approximate answer. Nonetheless, in cases of metric streams with gradual trends,

as depicted in Figure 6.5, ti may greatly differ from ts [164]. However, in the case

where trend and seasonality behavior knowledge is added to the estimation process,

the metric stream is approximated by ADMin with greater accuracy by quickly

adapting to unexpected, abrupt and volatile changes of the metric stream. Thus,

with the estimated magnitude of change approximating the actual change in the

evolution of the metric stream (ε̂ → ε), the decision function is able to reduce shift

detection delays. Second, when the monitoring stream is relatively stable, and thus
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the stream variance is deemed as low (σi → 0), the CUSUM is prone to falsely

signaling that a shift is detected, and thus, model updates are triggered although

not needed. Hence, we follow an adaptive approach where h is updated after a

model update is triggered, based on the number of standard deviations respecting

the given user-defined confidence (δ) and an optional positive value (hmin) is used to

restrict the sensitivity of the CUSUM so as to not oscillate between low values when

the monitoring stream is relatively stable.

hi = max{hmin, h(δi, σi)} (6.8)

6.4 Experimentation Study

In this section we present a thorough evaluation of ADMin by comparing its perfor-

mance and accuracy to other state-of-the-art adaptive frameworks with the experi-

mentation based on real-life testbeds and traces.

We compare ADMin to three frameworks: G-SIP [10], LANCE [112] and AD-

WIN [135], introduced in detail in Chapter 4. Briefly,

• G-SIP is a framework which uses an EWMA as its estimation model, to follow

the rate at which the metric stream evolution changes in time, triggering dat-

apoint dissemination only if this rate exceeds a threshold policy. We adopt a

policy which determines if the estimation falls in the confidence interval given

as input by the user.

• LANCE is, a similar to G-SIP, framework which also uses an EWMA as its

estimation model but for summarizing datapoint values in a given window

(N = 32 gave the best results). The receiver downloads the datapoints only if

the summarization exceeds a threshold policy. We will adopt a similar policy

to G-SIP.

• ADWIN, on the other hand, is a framework which follows a linear approach

with two sliding windows used to detect shifts in the metric stream (N = 20

gave the best results). ADWIN uses a Naive Bayes predictor as its estimation

model.

We compare all frameworks to ADMin under different configurations and conduct

each experiment with a tight confidence parameter of δ = 0.9. For the frameworks
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Trace

Name

Origin Data

Points

Optimal

Shifts

Description

PV

Current

PV

Panel

1209598 194 A Photovoltaic (PV) current production

trace collected from a PV panel every 1

second for a period of 2 weeks in Jan

2015

Tempera-

ture

Meteo

Station

1209598 572 A Temperature trace collected from a

remote weather station monitoring the

temperature every 1 second for a period

of 2 weeks in Jan 2015

Heartrate Wearable 40908 202 A Heartrate trace collected from a Fit-

bit Charge wearable device monitoring

beats per minute (bpm) of the person

wearing the device for a month (Jun

2016)

Table 6.1: Decription of traces used for performance and accuracy evaluation

using a moving average, we set the smoothing weight to α = 0.45, which is the

best configuration for both G-SIP and LANCE. We will also leave the trend and

seasonality smoothing weight for G-SIP and ADMin to a default value of ξ = 0.9

and ω = 0.45 respectively.

6.4.1 Traces, Testbeds and Evaluation Metrics

Table 6.1 presents an overview of the real-life traces used to evaluate the frameworks

under comparison. In this table we also present the optimal number of shifts in the

metric stream that comprise the ground truth for our evaluation, as obtained from

PELT, an optimal offline shift detection algorithm [161]. In turn, Figures 6.6a-6.6c

visually depict these traces, where, at a glance, one can observe that each of these

traces exhibit irregular seasonality behavior.

The experiments for the PV and Temperature traces are run on a Raspberry

Pi (model B) with 512MB of RAM and an ARM processor (single-core, 700MHz)

while emulating the data load of each trace. The Raspberry Pi was selected as a
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(a) PV Panel Production Trace

(b) Weather Station Temperature Trace

(c) Heartrate Trace from Wearable Device

Figure 6.6: Depiction of traces used for performance and accuracy evaluation

suitable testbed, as it features similar limited processing capabilities of other “smart”

devices (e.g., home monitors). The Heartrate raw readings were fed to the Android

Wear Emulator hosting an app computing heartrate BPMs. We set the processing

capabilities of the emulator to the specifications of a Fitbit Charge wearable device
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(single-core ARM 32MHz processor, 128MB Memory). We evaluate each framework

towards towards their estimation accuracy and ability to efficiently use resources.

Accuracy: we evaluate an adaptive technique by measuring shift detection accuracy

in relation to both the number of correctly detected shifts (true positives) and the

number of false alarms (false positives) when compared to the ground truth; and

shift detection delay, which is the difference in time to when a framework detects a

shift from the actual time of occurrence.

Efficiency: we evaluate efficiency by, first, measuring the overall data volume reduc-

tion and accuracy at the receiver-side; and, secondly, by measuring the overhead

in relation to total energy consumption on the testbed device based on the energy

consumption model introduced in Section 5.7.1.

6.4.2 Experiments

At first, let us denote the different configurations for our framework. ADMin

denotes our framework without any seasonality enrichment while ADMin S1 and

ADMin S2 feature seasonality configurations. Specifically,

• ADMin S1 follows a Holt-Winters additive approach and uses a static sea-

sonal period configured once upon initialization and representing seasonal

knowledge corresponding to the previous day hourly average (e.g., for the

current day at 11.05am the average between 11-11.59am of the previous day is

considered).

• ADMin S2, on the other hand, uses the output of the ComCube framework [141],

which provides a near-optimal approximation of the seasonal periodicity (L in

eq. 6.3).

In our first evaluation we compare each framework ability to detect the actual

shifts in the evolution of the metric stream. From Figures 6.7a-6.7c, we observe that

ADMin achieves, in all configurations, high accuracy approaching the ground truth.

ADWIN has a slightly lower accuracy although it is comparable to ADMin (less than

10% difference). However, G-SIP and LANCE feature shift accuracy that significantly

varies between traces and is never higher than 73% and 65% respectively. Most

importantly, we note the high number of false alarms observed from LANCE and

G-SIP due to their restrictive shift detection process. On the other hand, ADMin is
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Framework PV Current

(Time Intervals)

Temperature

(Time Intervals)

Heartrate

(Time Intervals)

ADWIN 9.34 ± 3.47 9.94 ± 3.84 10.39 ± 3.96

G-SIP 10.02 ± 3.96 11.76 ± 4.16 14.17 ± 4.93

LANCE 10.78 ± 4.12 12.63 ± 3.92 15.97 ± 4.12

ADMin 6.04 ± 2.19 7.12 ± 1.97 8.03 ± 2.78

ADMin S1 3.13 ± 2.03 5.11 ± 2.10 6.22 ± 2.83

ADMin S2 2.62 ± 1.94 3.23 ± 2.26 4.73 ± 2.43

Table 6.2: Metric Stream Evolution Shift Detection Delay

able to achieve a low false alarm ratio and when incorporating seasonality knowledge this

ratio is drastically reduced. Specifically, with seasonal knowledge ADMin false alarm ratio

is under 10% and at least 47% less than the other frameworks.

Table 6.2 depicts the average time required to detect a shift in the evolution of the

metric stream. We observe that ADMin outperforms the other frameworks by reducing

shift detection time by at least 29% due to its runtime shift detection which incorporates

enough knowledge of the stream estimation process to quickly identify actual from false shifts

in the confidence intervals given by the user. Moreover, ADMin S1 and ADMin S2 are

able to reduce shift detection time even more. For traces with irregular seasonality

behavior such as the temperature and heartrate trace where more than one seasonal

cycles may exist (e.g., daily, weekday, weekend patterns) ADMin clearly outperforms

the other frameworks. Specifically, ADMin S2 achieves a reduction in shift detection

time of at least 67%. This also justifies the use of low-cost streaming frameworks

such as ComCube, which support ADMin by fine-tuning the seasonal periodicity.

Hence, ADMin is able to reduce the time required to detect shifts in the metric stream

evolution by at least 29% and when incorporating seasonality knowledge to the estimation

model reduction is at least 67% when compared to other frameworks.

In the next set of experiments we compare the ability of each framework to reduce

on device energy consumption (Figure 6.8), as well as, the volume of IoT data and

estimation error at the receiver-side (Figures 6.9a-6.9b). We note that, ADWIN is

not present in the receiver-side comparison as it does not apply a data reduction

scheme to the metric stream. Moreover, a reference baseline approach is added
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(a) PV Current Trace

(b) Weather Station Temperature Trace

(c) Heartrate Trace

Figure 6.7: Shift Detection Accuracy Comparison
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Figure 6.8: On Device Energy Consumption Comparison

to the comparison where dissemination is withhold by applying a 10 time interval

aggregation scheme.

From Figure 6.8 we observe that ADWIN features the largest energy footprint

although we have previously shown that it is able to detect shifts in the metric

stream with accuracy comparable to ADMin. This is due to the complexity of the

ADWIN algorithm, linear in space and time, along with the absence of a data reduc-

tion scheme resulting in significant energy spent for datapoint dissemination and

the algorithm itself. On the other hand, LANCE, G-SIP and ADMin have similar

complexity requirements. However, as previously shown, LANCE and G-SIP fea-

ture a high false alarm ratio which enables the network controller of the IoT device

at least x2 times more than ADMin. In turn, from Figure 6.9a one can observe that

the data reduction model of LANCE and G-SIP are not as efficient as ADMin. In

the case of LANCE, downloading the entire window length of data when the sum-

mary is labeled as meaningful drastically affects performance. For G-SIP, not enough

knowledge is preserved in the estimation model (only comprised of an EWMA) after

datapoint dissemination, often triggering dissemination in subsequent intervals for

model updating. Nonetheless, ADMin is able to reduce data volume by at least 71%

which accounts for a reduction in energy consumption of at least 83%. Most importantly,

from Figure 6.9b one can observe that in regards to accuracy ADMin outperforms the

other frameworks by always maintaining accuracy at the receiver to at least 86%, increasing

to at least 91% when seasonality behavior is acknowledged by the estimation model.
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(a) Data Reduction Comparison

(b) Receiver-Side Mean Absolute Percentage Error

Chapter Summary. This chapter introduces the ADMin plugin developed to extend

the functionality of the AdaM framework to support model-based adaptive dissem-

ination to lower the communication overhead in IoT networks, especially, when

monitoring data features seasonal patterns and trends. To achieve this, ADMin

adopts the low-cost approximate stream estimation model of the AdaM framework

used to capture the runtime evolution and trend of the monitoring stream and ex-

tends it to also include a seasonal component to reduce the estimation error and

model shift detection delays. In the case where seasonality enrichment is not benefi-

cial to the estimation process, ADMin via online statistical testing will determine this

and remove the contribution of the seasonal component. Runtime shift detection is

applied to determine if the sensed datapoints can be inferred by the disseminated

estimation model within the confidence intervals given by the user and if not, then a
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dissemination is triggered with an updated version of the estimation model param-

eterization. After performing a thorough experimentation study using real-world

data from photovoltaics, weather stations and wearable devices, results show that

ADMin reduces energy consumption by at least 76%, data volume by 60%, while

maintaining accuracy always above 86% when compared to a baseline approach.

When incorporating seasonality knowledge, energy consumption is reduced by at

least 83%, data volume by 71% while accuracy is always above 91%. Most impor-

tantly, the false alarm rate and shift detection delays are reduced by 47% and 61%

respectively, when compared to other IoT frameworks.
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Chapter 7
Conclusions and Future Work

7.1 Conclusions

With the prevalence of the Internet of Things we are starting to see intelligence, in

the form of internet-enabled “smart” devices, aggressively deployed at the edge to

produce real-time analytic insights for almost all industry sectors. However, to pro-

duce such an unprecedented wealth of insights, intense processing and constant data

dissemination over the network are still required. This results in increased energy

consumption for monitoring sources while cloud and streaming services consuming

IoT data are constantly overwhelmed and struggling to be effective. Despite attempts

of augmenting IoT devices with the power of the cloud there still exist numerous

inhibitors masked under constant data movement such as bandwidth limitations

and network latencies. Thus, processing monitoring data on the “edge” is a valid

option for IoT, albeit intense processing results in increased energy-consumption

and for battery-powered devices this mean less battery life.

In this thesis, we tackle real-time data processing and energy-efficiency on the

edge of monitoring networks by developing low-cost approximate and adaptive

monitoring techniques as the remedy to these challenges. Hence, our main idea is

that if a degree of inaccuracy can be tolerated, approximate monitoring techniques

such as adaptive sampling, filtering and model-based dissemination, can signifi-

cantly reduce the energy consumption of monitoring sources and the amount of

data transmitted, over the network, to streaming services by dynamically adapting,

in place and inexpensively, the metric collection and dissemination rate based on the

metric stream evolution and variability.
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As presented extensively in the thesis, IoT devices can greatly benefit from “adap-

tivity” as monitoring data collection and dissemination are the two prime energy

drains in embedded and mobile sensing devices. To achieve this, we have designed

and developed AdaM, a lightweight framework embeddable in the software core of

monitoring sources (e.g., IoT devices) to provide model-based adaptive monitoring

by incorporating the low-cost approximate monitoring techniques introduced in the

scope of this thesis. AdaM is able to dynamically adapt the monitoring intensity and

the amount of data disseminated through the network by incorporating a low-cost

estimation model with the ability to capture the runtime evolution and variability

of a metric stream within certain accuracy guarantees. This allows the algorithms

we have developed, to adjust the metric collection and dissemination rate of the

monitoring source based on the confidence of the estimation model to correctly es-

timate what will happen next in the metric stream. As we show, while designing

AdaM, specific consideration was taken to fine-tune the algorithmic model at run-

time by introducing adaptive parameter weighting, trend detection and seasonality

behavior enrichment so that our algorithms immediately identify abrupt transient

changes in the metric stream evolution and overcome any lagging effects in the

estimation process. By accomplishing this, energy consumption and data volume

are reduced, allowing monitoring sources to preserve energy and ease processing at

data receiving endpoints, while still preserving accuracy.

After performing a thorough experimentation study with testbeds using real-

world data from cloud applications, wearables, photovoltaics and intelligent trans-

portation services, our results show that AdaM succeeds in being able to dynamically

adapt both the collection and dissemination rate of a monitoring source and, thus,

is a viable solution that is lightweight, practical and achieves a balance between

efficiency and accuracy for numerous, diverse and real data streams.

Highlighting our framework and the conducted evaluation:

• For the evaluated testbeds, AdaM can significantly reduce energy consumption

by at least 83% and the volume of generated data by at least 71%, while

maintaining accuracy always above 89%. These results are achieved without

additional monitoring costs, due to: (i) AdaM being placed on the monitoring

source which eliminates the need for additional communication; (ii) the entire
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estimation process which features an O(1) time and space complexity; and (iii)

the ability of the estimation process to capture and adapt to the evolution of

the metric stream even in highly abrupt and transient phases.

• With the integration of the ADMin plugin to AdaM, IoT networks streaming

monitoring data and featuring seasonal patterns and trends, can greatly benefit

in terms of lower communication overhead and on-device energy consump-

tion, by employing model-based dissemination. In contrast to other evaluated

frameworks, with the employment of an estimation model capturing the run-

time evolution, trends, and seasonal behavior; ADMin can reduce data volume

by at least 71% while maintaining accuracy always above 91%. Most impor-

tantly, ADMin reduces by 61% the time needed to detect shifts in the metric

stream behavior. Hence, by utilizing ADMin, monitoring services can signif-

icantly reduce the estimation error by timely adapting to highly abrupt and

transient shifts in the data stream.

• With a wide range of real-world datasets originating from different application

domains, we show that in contrast to the other under-comparison techniques,

the estimation process of the AdaM framework ensures that the user-defined

accuracy guarantees are obeyed at all times. In particular, AdaM is capable of

capturing the metric stream evolution based on the confidence of the estimation

model to correctly estimate what will happen next in the metric stream and

is able to follow and adapt to the evolution of the metric stream even in

highly abrupt and transient phases. This supports our framework to “reward”

larger property adjustments (e.g., periodicity) when estimations fall within

the accuracy intervals defined by the user and rollback to a fixed approach

when satisfactory estimations cannot be provided. Thus, if a “confident”

estimation cannot be made, AdaM will rollback to a fixed approach (e.g.,

periodic sampling) to ensure, at all times, the accuracy guarantees are obeyed

over efficiency. Hence, in the case of either an adversary attack or a data stream

which does not present any correlations among consecutive datapoints, AdaM

will be at least as effective as a fixed approach to ensure accuracy.

• While a number of parameters can be configured, especially for the AdaM esti-

mation model, the analysis conducted shows that with probabilistic weighting
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significant profiling to find the optimal settings is not required and if slight im-

precision (< 3%) is acceptable a wide range of values can be used. Therefore,

novice users need only to set the maximum acceptable imprecision (error) and

can define the min/max range for sampling, filtering and dissemination rate.

• AdaM as a lightweight framework developed in java and with no external de-

pendencies, it can be deployed to numerous monitoring sources and streaming

settings. To date, AdaM has can be deployed on Raspberry Pi micro-controllers,

Linux-based environments, Android Wear devices and cloud monitoring tools

with adaptive interfaces (e.g., JCatascopia [22]). In turn, AdaM has also been

ported to, R, for offloading temporal graph metric computation [138], and

Python, for efficient data stream processing in Apache Flink [139].

For the discussion to be thorough, we note the limitations of the AdaM framework

which can be considered as the operational boundaries of our framework as well:

• A monitoring stream attached to AdaM must produce one-dimensional uni-

variate datapoints. Multivariate datapoints such as GPS coordinates are not

supported. In turn, datapoint values must be numeric. Nominal values can be

supported but only if a mapping to numerical values is valid and provided.

• AdaM prioritizes accuracy over efficiency. This means AdaM will always

attempt to satisfy the user-given accuracy guarantees following a more cautious

approach, which will rollback to a fixed approach, when the evolution of the

metric stream cannot be captured by the AdaM estimation model. In any case,

AdaM will be at least as effective as a fixed approach.

• AdaM makes no assumption of the resource capabilities of the underlying

hardware the monitoring source resides on, so that it adjusts the estimation

process depending on the resources made available. This means that the

estimation process of the AdaM framework does not make any distinction

between a low-power sensing device and a powerful computing server.

7.2 Future Work

The results of this thesis show that if a degree of inaccuracy can be tolerated, low-cost

approximate and adaptive monitoring techniques can significantly reduce the energy
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consumption of monitoring sources and the amount of data transmitted, over the

network, to streaming services by dynamically adapting, in place and inexpensively,

the metric collection and dissemination rate based on the metric stream evolution and

variability. At the same time, new research directions arise from the outcomes of this

work and can be further exploited to increase wide-spread adoption of approximate

monitoring and applicability of the AdaM framework.

AdaM for micro-services

The micro-service architectural paradigm arises from the decomposition of an ap-

plication into smaller pieces (services) organized around discrete business capa-

bilities [165]. The boundaries between these units are usually comprised of func-

tional APIs that expose the core capabilities of each service. Large systems are

then composed of many (micro-) services, whereby communication is a central in-

gredient [166]. Micro-services are ideal for supporting a wide range of domains

spanning web, mobile and IoT with software teams stating that faster innovation via

micro-services is ideal for rapid development, testing, handling failures and (elastic)

scaling. In light of this, the EU co-funded Unicorn project [167], aims to empower

the startup eco-system by delivering a unified framework that simplifies the design,

deployment and management of secure and elastic-by design cloud applications that

follow the micro-service architectural paradigm. To reduce monitoring costs, which

are billable and noticeable in distributed topologies, data movement across cloud

sites, and the intrusiveness on containerized deployments, we plan to integrate the

AdaM framework in the open-source micro-service Spring Cloud ecosystem, devel-

oped by Netflix [168]. Hence, the Unicorn project will apply low-cost approximate

and adaptive techniques with AdaM for micro-service monitoring to reduce the

monitoring footprint and the velocity of data disseminated over the network.

Adapting the “temporality” of temporal networks

Temporal networks1 are networks in which the interactions among a set of elemen-

tary units change over time and can be modelled in terms of temporal graphs, which

are time-ordered sequences of graphs over a set of nodes [169]. In such graphs, the

concepts of node adjacency and reachability crucially depend on the exact temporal

1 Also referred to as time-varying networks or dynamic networks
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ordering of the links [170]. With the physical world becoming an information system

itself, temporal graphs are becoming very popular as they feature the analytical ben-

efits of static graph analysis while at the same time retain all temporal information

and interactions that may be available [171]. Examples of such temporal networks

include email/sms exchange networks, face-to-face interaction networks, vehicular

networks and online social networks (OSNs) [172]. While temporal graphs feature

multiple benefits, computing complex graph metrics such as betweenness centrality,

components and maximum clique size, in short time intervals, is a challenging and

resource-intensive task even for organizations equipped with large-scale distributed

(graph) processing engines [173]. At the same time, monitoring sources distributed

at the edge of the monitored network and comprising the nodes of the temporal

graph must, timely, disseminate and receive processed data.

AdaM could be used to adapt the periodicity at which graph metrics are com-

puted if a graph monitoring stream at each distinct time interval outputs graph

instances. Still, adaptive sampling dynamically adjusts the monitoring intensity

based on the runtime evolution and variability of the metric stream, thus based on

the monitoring stream temporal effects. Thus, if the temporal evolution and variabil-

ity of the metric representing the graph stream introduces “stable” phases then the

periodicity of the metric computation is reduced to preserve resources. Otherwise,

the periodicity is increased to capture sudden events and insights. However, there

exist cases of metrics (e.g., graph diameter) where the temporal evolution of the

metric may introduce “stable” phases although the structure of the graph drastically

differs from instances of the graph in previous time intervals. Thus, while reducing

the periodicity based on temporal effects of a graph metric may preserve resources

by computationally offloading graph processing engines, it hinders the challenge

of missing structural changes which might capture and reveal significant insights

(e.g., capacity management). Therefore, an adaptive implementation developed to

adapt the “temporality” of graphs to reduce the compute and network overhead

of both graph processing engines and monitored sources comprising the network

while still preserving given accuracy guarantees, must consider and correlate both

temporal and structural volatility effects. Thus, our main idea is to extend the al-

gorithmic learning model of the AdaM framework to acknowledge, in time, graph

topology structure knowledge to allow the estimation process of the adaptive sam-

pling implementation to adapt within given confidence intervals the periodicity of
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the computation of graph metrics.

Making sense of the plethora of monitoring data from the dashboard

Monitoring data visualization of streaming telemetry is increasingly prevalent in

modern data platforms and applications. Data volumes continue to rise, fueled

in large part by an increasing number of automated sources, including sensors,

processes, and devices. For example, Facebook reports that their production infras-

tructure generates over 12 million datapoints per second [133] while Uber receives

more than 3 million telemetry updates per second [73]. As a result, the past several

years have seen an explosion in the development of platforms for managing, stor-

ing, and querying large-scale metric streams of timestamped data. However, many

existing systems simply plot raw monitoring streams as they arrive, often obscuring

as data volume and the plethora of metrics increase, large-scale trends, seasonal

patterns and runtime shifts in the stream evolution.

While the AdaM framework is able to significantly reduce the volume of mon-

itoring data based on the evolution and variability of the metric stream and it is

able to accurately detect, in time, runtime shifts in the estimation model, visualizing

trends, seasonal behavior and evolution shifts, is a complex task by itself. To address

this, our main idea is two-fold: (i) to reduce the plethora of metric streams reported

per application, clustering can be used to group metrics featuring spatio-temporal

correlations and, thus, reduce the dimensionality of the metric space by filtering out

metrics that carry redundant information; and (ii) along with AdaM approximate

and probabilistic learning scheme which can be used for metric stream smooth-

ing, various mechanisms can be applied to ease visualization and pinpoint trends

and shifts in the evolution of a metric stream (e.g., bandit-based hyperparameter

tuning [174], kurtosis-based ”roughness” measure [175], and MDP outlier-aware

detection [127]).

Supporting multivariate metric streams

The algorithmic implementation of the estimation process part of the AdaM frame-

work, currently supports one-dimensional metric streams with the monitoring source

properties (e.g., periodicity) dynamically adjusted based on the evolution of a met-

ric stream characterized by univariate one-dimensional datapoint values. However,
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there exist cases of metrics that cannot be referenced as one-dimensional datapoints,

such as GPS coordinates which are characterized by latitude and longitude. To

support metric classes of higher dimensionality, where vi 7→ Rk and k denotes the

metric dimensionality, the estimation process of the AdaM framework must be ex-

tended to support multivariate metric streams. To this end, the PEWMA depicting

the metric stream evolution can be extended to a probabilistic Multivariate Moving

Average outputting a K−dimensional vector, thus, linearly scaling the computation

towards the dimensionality of the metric stream [176]. However, as the estimation

process confidence metric depends on the variance of the metric stream evolution,

a covariance matrix is required for K-dimensional metrics which is a K × K matrix.

This, significantly increases the computation effort of the estimation process and can

negatively affect the overall benefits in introducing adaptiveness to the monitoring

process. To address the challenges introduced in supporting multivariate metric

classes, we envision adopting dimensionality reduction to computationally ease the

estimation process. However, this process is not straightforward, with meaningful

projections to lower-dimensional spaces only possible if correlations among the di-

mensions exist, which introduces another challenge, selecting a low-cost exploratory

process to detect correlations in multivariate metric streams [177].
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[137] S. González-Valenzuela, M. Chen, and V. C. Leung, “Mobility support for
health monitoring at home using wearable sensors,” IEEE Transactions on In-
formation Technology in Biomedicine, vol. 15, no. 4, pp. 539–549, 2011.

[138] Luis F. Chiroque, “AdaM sampling implemented in R,” https://github.com/
luisfo/adaptivegraphmonitoring, 2016.

[139] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl, “Optimized on-
demand data streaming from sensor nodes,” in Proceedings of the 2017 Sympo-
sium on Cloud Computing, ser. SoCC ’17. New York, NY, USA: ACM, 2017, pp.
586–597.

[140] A. G. Barnett and A. J. Dobson, Introduction to Seasonality. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 49–74.

[141] Y. Matsubara, Y. Sakurai, and C. Faloutsos, “Non-linear mining of competing
local activities,” in 25th Int’l Conference on World Wide Web (WWW ’16), 2016,
pp. 737–747.

[142] S. W. Roberts, “Control Chart Tests Based on Geometric Moving Averages,”
Technometrics, vol. 1, no. 3, 1959.

[143] K. M. Carter and W. W. Streilein, “Probabilistic reasoning for streaming
anomaly detection,” in Statistical Signal Processing Workshop (SSP), 2012 IEEE.
IEEE, 2012, pp. 377–380.

120

Dem
etr

is 
Trih

ina
s

https://github.com/luisfo/adaptivegraphmonitoring
https://github.com/luisfo/adaptivegraphmonitoring


[144] C. Holt, “Forecasting seasonals and trends by exponentially weighted moving
averages,” International Journal of Forecasting, vol. 20, no. 1, pp. 5 – 10, 2004.

[145] Y. Xiang, K. Li, and W. Zhou, “Low-rate ddos attacks detection and traceback
by using new information metrics,” IEEE Transactions on Information Forensics
and Security, vol. 6, 2011.

[146] U. Fano, “Ionization yield of radiations. ii. the fluctuations of the number of
ions,” Phys. Rev., vol. 72, pp. 26–29, Jul 1947.

[147] Java Microbenchmark Kit, https://goo.gl/zRTQDv.

[148] I. Shafer, K. Ren, V. N. Boddeti, Y. Abe, G. R. Ganger, and C. Faloutsos,
“RainMon: An Integrated Approach to Mining Bursty Timeseries Monitoring
Data,” in Proceedings of the 18th ACM SIGKDD International Conference, ser.
KDD ’12. NY, USA: ACM, 2012, pp. 1158–1166.

[149] SANS Technology Institute, https://isc.sans.edu/port.html.

[150] Fitbit Data Extractor, https://github.com/dtrihinas/FitbitDataExtractor.

[151] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Computer Architec-
ture, 2000. Proceedings of the 27th Int. Symposium on, June 2000, pp. 83–94.

[152] H. Hiilloskorpi, M. Pasanen, and M. Fogelholm, “Use of heart rate to predict
energy expenditure from low to high activity levels,” Int’l. journal of sports
medicine, vol. 24, 2003.

[153] Jesse Berst, “Dublin uses real-time data to reduce congestion,” http://goo.gl/
kGIvJJ, 2013.

[154] Sandy Ryza, “Apache Spark Streaming Performance Tuning,” http://goo.gl/
jPi728, Mar 2015.

[155] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman, “Upper and Lower
Bounds on the Cost of a Map-reduce Computation,” Proceedings of the VLDB
Endowment, vol. 6, no. 4, pp. 277–288, 2013.

[156] C. Hu, Y. Hu, W. Xu, P. Shi, and S. Fu, Understanding Popularity Evolution Pat-
terns of Hot Topics Based on Time Series Features. Cham: Springer International
Publishing, 2014, pp. 58–68.

[157] S. Gelper, R. Fried, and C. Croux, “Robust forecasting with exponential and
holt–winters smoothing,” Journal of forecasting, vol. 29, no. 3, pp. 285–300, 2010.

[158] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Ap-
plication. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[159] D. Barry and J. A. Hartigan, “A bayesian analysis for change point problems,”
Journal of the American Statistical Association, vol. 88, no. 421, pp. 309–319, 1993.

[160] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segment-
ing time series,” in Data Mining, 2001. ICDM 2001, Proceedings IEEE Interna-
tional Conference on. IEEE, 2001, pp. 289–296.

121

Dem
etr

is 
Trih

ina
s

https://github.com/dtrihinas/FitbitDataExtractor
http://goo.gl/kGIvJJ
http://goo.gl/kGIvJJ
http://goo.gl/jPi728
http://goo.gl/jPi728


[161] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of changepoints
with a linear computational cost,” Journal of the American Statistical Association,
vol. 107, no. 500, 2012.

[162] Y. Luo, Z. Li, and Z. Wang, “Adaptive cusum control chart with variable
sampling intervals,” Computational Statistics & Data Analysis, vol. 53, no. 7, pp.
2693 – 2701, 2009.

[163] P. Granjon, “The cusum algorithm-a small review,” 2013.

[164] W. Jiang, L. Shu, and D. W. Apley, “Adaptive cusum procedures with ewma-
based shift estimators,” IIE Transactions, vol. 40, no. 10, pp. 992–1003, 2008.

[165] J. Thones, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, Jan 2015.

[166] Martin Fowler, “Microservices - a definition of this new architectural term,”
2014.

[167] Unicorn EU co-funded project, http://unicorn-project.eu/.

[168] Spring cloud netflix micro-services, https://cloud.spring.io/spring-cloud-
netflix/.

[169] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora, “Graph
metrics for temporal networks,” in Temporal Networks. Springer, 2013, pp.
15–40.

[170] A. Galati, V. Vukadinovic, M. Olivares, and S. Mangold, “Analyzing tem-
poral metrics of public transportation for designing scalable delay-tolerant
networks,” in Proceedings of the 8th ACM Workshop on Performance Monitoring
and Measurement of Heterogeneous Wireless and Wired Networks, ser. PM2HW2N
’13. New York, NY, USA: ACM, 2013, pp. 37–44.

[171] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and its Appli-
cations, vol. 388, no. 6, pp. 1007–1023, 2009.

[172] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, “Temporal distance metrics
for social network analysis,” in Proceedings of the 2Nd ACM Workshop on Online
Social Networks, ser. WOSN ’09. New York, NY, USA: ACM, 2009, pp. 31–36.
[Online]. Available: http://doi.acm.org/10.1145/1592665.1592674

[173] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in
temporal graphs,” Proc. VLDB Endow., vol. 7, no. 9, pp. 721–732, May 2014.
[Online]. Available: http://dx.doi.org/10.14778/2732939.2732945

[174] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Efficient hyperparameter optimization and infinitely many armed
bandits,” CoRR, vol. abs/1603.06560, 2016. [Online]. Available: http:
//arxiv.org/abs/1603.06560

[175] R. Kang, C. Wang, P. Wang, Y. Ding, and J. Wang, “Pattern Matching with
Adaptive Granularity Over Streaming Time Series,” ArXiv e-prints, Oct. 2017.

[176] N. Chen, Z. Li, and Y. Ou, “Multivariate exponentially weighted moving-
average chart for monitoring poisson observations,” Journal of Quality Technol-
ogy, vol. 47, no. 3, p. 252, 2015.

122

Dem
etr

is 
Trih

ina
s

http://doi.acm.org/10.1145/1592665.1592674
http://dx.doi.org/10.14778/2732939.2732945
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560


[177] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(cma-es),” Evolutionary computation, vol. 11, no. 1, pp. 1–18, 2003.

123

Dem
etr

is 
Trih

ina
s


	Introduction
	Thesis Motivation
	Thesis Scope
	Thesis Statement and Contributions
	Thesis Organisation
	Thesis Assumptions

	Background
	The Internet of Things
	Edge Computing
	Monitoring

	Problem Statement
	Preliminaries
	Defining the Terms ``Low-Cost'', ``Approximate'' and ``Adaptive''
	Adaptive Sampling
	Adaptive Dissemination
	Adaptive Filtering

	Related Work
	Adaptive Sampling Techniques
	Adaptive Filtering Techniques
	Adaptive Dissemination Techniques

	AdaM: The Adaptive Monitoring Framework
	Overview
	Requirements and Objectives
	Monitoring Stream Data Model
	Low-Cost Approximate Metric Stream Estimation
	Adaptive Sampling
	Adaptive Filtering
	Experimentation Study

	ADMin: A Plugin for Model-Based Adaptive Dissemination
	Overview
	Seasonality Enrichment and Datapoint Inference
	Runtime Shift Detection
	Experimentation Study

	Conclusions and Future Work
	Conclusions
	Future Work




