
DEPARTMENT OF COMPUTER SCIENCE

ALGORITHMS AND INDEXING STRUCTURES
FOR SPATIAL BIG DATA

Constantinos Costa

A Dissertation Submitted to the University of Cyprus in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

JULY, 2018

Con
sta

nti
no

s C
os

ta

© Constantinos Costa, 2018

Con
sta

nti
no

s C
os

ta

VALIDATION PAGE

Doctoral Candidate: Constantinos Costa

Doctoral Dissertation Title: ALGORITHMS AND INDEXING STRUCTURES

FOR SPATIAL BIG DATA

The present Doctoral Dissertation was submitted in partial fulfillment of the require-

ments for the Degree of Doctor of Philosophy at the Department of Computer Science

and was approved on the JULY 02, 2018 by the members of the Examination Com-

mittee.

Examination Committee:

Research Supervisor
Dr. Demetrios Zeinalipour-Yazti

Committee Member
Prof. Marios D. Dikaiakos

Committee Member
Prof. George S. Samaras

Committee Member
Prof. Panos K. Chrysanthis

Committee Member
Dr. Herodotos Herodotou

i

Con
sta

nti
no

s C
os

ta

DECLARATION OF DOCTORAL CANDIDATE

The present Doctoral Dissertation was submitted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy of the University of Cyprus. It is a product

of original work of my own, unless otherwise mentioned through references, notes, or

any other statements.

Constantinos Costa

ii

Con
sta

nti
no

s C
os

ta

Περίληψη

Ζούμε στην εποχή των μεγάλων δεδομένων, όπου παράγονται ετερογενή δεδομένα τα οπο-

ία αποθηκεύονται με εκθετικό ρυθμό. Τα παραδοσιακά συστήματα διαχείρισης δεδομένων

δεν είναι ικανά να συλλέγουν, να διαχειρίζονται και να επεξεργάζονται τα μεγάλα δεδο-

μένα μέσα σε ανεκτά χρονικά πλαίσια. Σημαντικό μέρος των μεγάλων δεδομένων είναι

τα χωρικά μεγάλα δεδομένα (Spatial Big Data - SBD), τα οποία αντιπροσωπεύουν γε-

ωγραφικές δομές δεδομένων που υπερβαίνουν και πάλι την ικανότητα των παραδοσιακών

χωρικών υπολογιστικών συστημάτων λόγω του όγκου, της ποικιλίας και της ταχύτητας

των δεδομένων. Τα SBD φέρνουν πολλές νέες προκλήσεις για νέες αρχιτεκτονικές διαχε-

ίρισης SBD. Συγκεκριμένα, οι πιο πρόσφατες δουλειές χρησιμοποιούν κατανεμημένα πε-

ριβάλλοντα για την υλοποίηση χωρικών τελεστών όπως, kNN, συνένωσης, αθροίσματος

και επιλογής πάνω από τις αρχιτεκτονικές μεγάλων δεδομένων. Επιπρόσθετα, αρκετές

από τις προηγούμενες λύσεις χρησιμοποιούν τεχνικές κατανεμημένης ευρετηρίασης για

την ενίσχυση της διαδικασίας αποθήκευσης και της εκτέλεσης των χωρικών τελεστών.

Δυστυχώς, οι προτεινόμενες αρχιτεκτονικές είναι αγνωστικές ως προς τις δυνατότητες

επεξεργασίας και αποθήκευσης του συστήματος και δεν καταφέρνουν να διατηρήσουν τη

βελτιστοποιημένη απόδοση αποθήκευσης και να ικανοποιήσουν τις απαιτήσεις για αναλυ-

τικά και επιχειρησιακά ερωτήματα σε πραγματικό χρόνο.

Σε αυτή τη διδακτορική διατριβή παρουσιάζουμε αλγόριθμους και δομές δεδομένων

που επιλύουν σημαντικές προκλήσεις των ΣΒΔ, ειδικότερα σε ότι αφορά τον χρόνο α-

πόκρισης σε επερωτήσεις και την αποδοτικότητα αποθήκευσης δεδομένων. Οι ερευνητικές

συνεισφορές της διατριβής πλαισιώνονται μέσα σε μια νέα αρχιτεκτονική η οποία βασίζεται

στην απόδοση, με ονομασία SPATE+
, όπου η αποθήκευση, η ευρετηρίαση, η επεξεργασία

iii

Con
sta

nti
no

s C
os

ta

επερωτήσεων και τα συστατικά της εφαρμογής μπορούν να επιτύχουν καλύτερη απόδοση

από τις εξελίξεις αιχμής. Η αρχιτεκτονική SPATE+
χρησιμοποιεί συμπιεσμένα δεδομένα

χωρίς απώλεια της αρχικής πληροφορίας για να αποθηκεύσει τα πρόσφατα ρεύματα SBD

με τον πιο συμπαγή τρόπο, διατηρώντας τη δυνατότητα για πλήρη ανάλυση των δεδομένων.

Το SPATE+
εξασφαλίζει την προοδευτική απώλεια της λεπτομέρειας των δεδομένων, που

ονομάζεται φθορά δεδομένων, καθώς τα δεδομένα γερνούν με το χρόνο. Συγκεκριμένα,

παρουσιάζουμε ένα νέο καινοτόμο τελεστή φθοράς για Μεγάλα Τηλεπικοινωνιακά Δε-

δομένα (TBD), με ονομασία TBD-DP (Επίρρηση Δεδομένων). Ο τελεστής TBD-DP

βασίζεται σε γνωστούς αλγόριθμους μηχανικής μάθησης για να γενικεύσει τα TBD σε

συμπαγή μοντέλα τα οποία μπορούν να αποθηκευτούν και να επερωτηθούν όταν είναι

απαραίτητο.

Η αρχιτεκτονική SPATE+
είναι εννοιολογικά χωρισμένη σε τρία επίπεδα: (ι) αποθήκευ-

ση και ευρετηρίαση, όπου επιτυγχάνεται υψηλή απόδοση αποθήκευσης χρησιμοποιώντας

τα συστατικά στοιχεία συμπίεσης και αποσύνθεσης. Αυτή η κατηγορία περιλαμβάνει

επίσης ένα χωροχρονικό ευρετήριο με τέσσερα επίπεδα χρονικών αναλύσεων που ελαχι-

στοποιούν το χρόνο απόκρισης για ερωτήματα αναζήτησης δεδομένων. (ιι) τελεστές, όπου

ένας τελεστής ερωτημάτων AkNN υψηλής απόδοσης υπερβαίνει τις τελευταίες τεχνικές

από την άποψη της αποτελεσματικής κατανομής, αντιγραφής και διύλισης δεδομένων. (ι-

ιι) εφαρμογές, όπου ένα αποτελεσματικό πλαίσιο εξερεύνησης ερωτημάτων, με ονομασία

SPATE, παρέχει νέες λειτουργίες εξερεύνησης δεδομένων στο χρήστη. Επιπλέον, μια

ανώνυμη εφαρμογή ανταλλαγής μηνυμάτων, με ονομασία Rayzit, χρησιμοποιεί SBD για

να συνδέσει άμεσα τους χρήστες με τους πλησιέστερους γείτονες (kNN) καθώς κινο-

ύνται στον χώρο για να εκθέσει τις συνεισφορές των συστατικών που είναι μέρος της

αρχιτεκτονικής SPATE+
.

iv

Con
sta

nti
no

s C
os

ta

Abstract

We live in the big data era where heterogeneous data is produced and stored at an

exponential rate. Recently, many solutions have emerged to handle big data for which

traditional data management systems are not capable to capture, manage, and process

the data within a tolerable elapsed time. A significant portion of big data is Spatial

Big Data (SBD), which represents massive geographic objects that again exceed the

capability of traditional spatial computing systems due to volume, variety and velocity

characteristics. SBD brings many new challenges for novel SBD management architec-

tures. Particularly, recent works are utilizing distributed environments to implement

spatial operators like kNN, Joins, Aggregations and Selections on top of big data archi-

tectures. Additionally, several of the previous solutions are using distributed indexing

techniques to enhance the storing process and the spatial operators. Unfortunately,

the proposed architectures are agnostic of underline processing and storage capabilities

failing to maintain optimized storage efficiency and satisfy the requirements for online

analytical and operational queries.

In this PhD thesis we present algorithms and indexing structures that tackle critical

challenges brought forward by SBD, namely query response time and storage efficiency.

We frame our research contributions in the context of a novel performance-driven archi-

tecture, named SPATE+, where the storage, indexing, query processing and application

components of the architecture can achieve better utilization and efficiency than the

state-of-the-art. SPATE+ uses lossless data compression to ingest recent streams of

SBD in the most compact manner retaining full resolution for data exploration tasks.

More importantly, it takes care of the progressive loss of detail in information, called

v

Con
sta

nti
no

s C
os

ta

decaying, as data ages with time. Particularly, we present a novel decaying operator

for Telco Big Data (TBD), coined TBD-DP (Data Postdiction). TBD-DP relies on

existing machine learning algorithms to abstract TBD into compact models that can

be stored and queried when necessary.

SPATE+ is conceptually divided into three layers: (i) storage and indexing, where

high storage efficiency is achieved using the compression and decay components. This

category also includes a spatio-temporal index with four levels of temporal resolutions

minimizing the query response time for data exploration queries; (ii) operators, where

a high performance AkNN query operator outperforms state-of-the-art techniques in

terms of efficient partitioning, replication and refinement; and (iii) applications, where

an efficient query exploration framework, called SPATE, provides novel data explo-

ration functionalities to the user. We also present an anonymous crowd messaging

application, called Rayzit, which utilizes SBD to connect the users instantly to their

k Nearest Neighbors (kNN) as they move in space, to expose the contributions of the

components that are part of SPATE+.

vi

Con
sta

nti
no

s C
os

ta

Acknowledgments

First of all, I would like to thank my thesis advisor, Associate Professor Demetrios

Zeinalipour-Yazti for his constant guidance and encouragement throughout my PhD

studies. I would like to thank him for his infinite patience and his perfectionism that

allowed me to learn how to do high quality research. Particularly, I would like to thank

him for the ample time he devoted for teaching me how to review, write and present

with a high level of scientific professionalism.

Secondly, I would like to thank the fellow researchers at the Data Management

Systems Laboratory (DMSL). I would like to thank Dr. George Chatzimilioudis and

Dr. Andreas Konstantinidis for allowing me to have a close collaboration with them

and expand my research horizon.

I would like to thank my parents, Despoina and Ermogenis for their unconditional

love and support, through this long process. I sincerely thank my brother, Dr. Mario

Costa, who devoted a lot of time helping with personal and work stuff during my

studies.

I truly thank my best friend, Diomidis Papadiomidous for being supportive throug-

hout my studies and the exceptional help for proof reading my work. I would like to

thank Dr. Andreas Diavastos for the intriguing discussions about work and life during

lunches, coffee breaks and dinners.

I also thank my friends for providing support and opportunities to escape from

everything. Thank you Elena Michael, Giorgos Hadjizorzis, Ioanna Herakleous, Kyria-

kos Herakleous, Onisiforos Onoufriou, Penny Toungoulou, Salwmi Demou, Theodoros

demetriou, Claire Papadopoulou, Demetris Trihinas, George Matheou, Marios Mintzis,

vii

Con
sta

nti
no

s C
os

ta

George Larkou and George Nikolaides.

A big thank you goes to all those of you who have been on my side during my

graduate studies. Your love and support is definitely appreciated.

viii

Con
sta

nti
no

s C
os

ta

Dedication

I dedicate this dissertation to my wonderful deeply missed mom, who passed away

during my PhD studies.

She was a constant source of motivation and inspiration for my life. She taught me

how to face the upcoming challenges with faith and humility.

Although she is not here, she will always provide me with strength to carry on and

achieve my goals.

Thank you!

ix

Con
sta

nti
no

s C
os

ta

Contributions of this Thesis

Journal publications:
1. Georgios Chatzimilioudis, Constantinos Costa, Demetrios Zeinalipour-Yazti,

Wang-Chien Lee. ”Crowdsourcing Emergency Data in Non-Operational Cellular
Networks”, Information Systems (InfoSys ’17), Elsevier Science Ltd., Volume 64,
Pages: 292 - 302, Oxford, UK, 2017.

2. Georgios Chatzimilioudis, Constantinos Costa, Demetrios Zeinalipour-Yazti,
Wang-Chien Lee and Evaggelia Pitoura. ”Distributed In-Memory Processing of
All k Nearest Neighbor Queries”, IEEE Transactions on Knowledge and Data
Engineering (TKDE ’16), Volume 28, Pages: 925-938, 2016

Conference and workshop proceedings:
3. Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, Deme-

trios Zeinalipour-Yazti, and Mohamed F. Mokbel. “Decaying Telco Big Data
with Data Postdiction”, Proceedings of the 19th IEEE International Conference
on Mobile Data Management (MDM ’18), IEEE Computer Society, ISBN: 978-
1-5386-4133-0, pp. 106–115, June 25 - June 28, 2018, AAU, Aalborg, Denmark,
2018.

4. Constantinos Costa, Andreas Charalampous, Andreas Konstantinidis, Deme-
trios Zeinalipour-Yazti, and Mohamed F. Mokbel. “TBD-DP: Telco Big Data
Visual Analytics with Data Postdiction”, Proceedings of the 19th IEEE Inter-
national Conference on Mobile Data Management (MDM ’18), IEEE Computer
Society, ISBN: 978-1-5386-4133-0, pp. 280–281, June 25 - June 28, 2018, AAU,
Aalborg, Denmark, 2018.

5. Constantinos Costa, Georgios Chatzimilioudis, Demetrios Zeinalipour-Yazti,
Mohamed F. Mokbel. “Towards Real-Time Road Traffic Analytics using Telco
Big Data”, Proceedings of the 11th Intl. Workshop on Real-Time Business In-
telligence and Analytics, collocated with VLDB 2017 (BIRTE ’17), ACM Inter-
national Conference Proceedings Series, pp. 5:1–5:5, August 28, 2017, Munich,
Germany, ISBN: 978-1-4503-5425-7/17/08, 2017.

6. Constantinos Costa, Georgios Chatzimilioudis, Demetrios Zeinalipour-Yazti,
Mohamed F. Mokbel. “Efficient Exploration of Telco Big Data with Compression
and Decaying”, Proceedings of the IEEE 33rd International Conference on Data
Engineering (ICDE ’17), IEEE Computer Society, pp. 1332-1343, April 19-22,
2017, San Diego, CA, USA, ISBN: 978-1-5090-6543-1, 2017.

7. Constantinos Costa, Georgios Chatzimilioudis, Demetrios Zeinalipour-Yazti,
Mohamed F. Mokbel. “SPATE: Compacting and Exploring Telco Big Data”,
Proceedings of the IEEE 33rd International Conference on Data Engineering
(ICDE ’17), IEEE Computer Society, pp. 1419-1420, April 19-22, 2017, San
Diego, CA, USA, ISBN: 978-1-5090-6543-1, 2017.

x

Con
sta

nti
no

s C
os

ta

8. Georgios Chatzimilioudis, Constantinos Costa, Demetrios Zeinalipour-Yazti,
Wang-Chien Lee and Evaggelia Pitoura. “Distributed In-Memory Processing of
All k Nearest Neighbor Queries (Extended Abstract)”, Proceedings of the IEEE
32nd International Conference on Data Engineering (ICDE ’16), IEEE Computer
Society, pp. 1490–1491, Helsinki, Finland, ISBN: 978-1-5090-2020-1, 2016.

9. Constantinos Costa, Chrysovalantis Anastasiou, Georgios Chatzimilioudis and
Demetrios Zeinalipour-Yazti. “Rayzit: An Anonymous and Dynamic Crowd Mes-
saging Architecture”, Proceedings of the 3rd IEEE International Workshop on
Mobile Data Management, Mining, and Computing on Social Networks, colloca-
ted with IEEE MDM ’15 (Mobisocial ’15), Vol. 2, pp. 98-103, Pittsburgh, PA,
USA, 2015.

xi

Con
sta

nti
no

s C
os

ta

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Problem Statement and Hypothesis . 6

1.2.1 Research Questions . 6

1.3 Thesis Statement and Contributions . 10

1.3.1 Thesis Statement . 11

1.3.2 Contributions . 11

1.4 Dissertation Outline . 13

2 Related Work 15

2.1 Big Data Architectures . 15

2.1.1 Query Processing . 15

2.1.2 Resource Management and Storage Systems 18

2.1.3 Real-time Processing Systems 19

2.2 Spatial Big Data Architectures . 21

2.2.1 Spatial Big Data Query Processing 21

2.3 Spatial Big Data Visualization . 24

2.3.1 Spatial Visualization Systems 25

3 Efficient Exploration of TBD with Compression and Decaying 27

3.1 Introduction . 28

3.2 Preliminaries . 30

3.2.1 The Anatomy of a Telco Network 31

3.2.2 The Structure of Telco Big Data 32

3.3 SPATE: Overview . 34

3.3.1 Problem Formulation . 34

3.3.2 Our Solution . 35

3.4 SPATE: Storage (Compression) Layer 36

3.4.1 Terminology and Desiderata . 36

3.4.2 Lossless Compression Libraries 37

xii

Con
sta

nti
no

s C
os

ta

3.4.3 Microbenchmark . 38

3.5 SPATE: Indexing (Decaying) Layer . 39

3.5.1 Incremence Module . 39

3.5.2 Highlights Module . 40

3.5.3 Decaying Module . 41

3.5.4 Indexing Schemes Comparison 42

3.6 SPATE: Application Layer . 42

3.6.1 Query Evaluation and Processing 43

3.7 Experimental Testbed and Methodology 43

3.7.1 Compared Frameworks . 44

3.7.2 Experimental Testbed . 44

3.7.3 Datasets . 45

3.7.4 Metrics . 45

3.7.5 Data Exploration Tasks . 46

3.8 Experimental Evaluation . 47

3.8.1 Performance over varying day-periods 48

3.8.2 Performance over days of the week 49

3.8.3 Response time . 49

3.9 Related Work . 51

3.9.1 Telco Big Data Research . 51

3.9.2 Compressing Incremental Archives 53

3.10 Summary . 54

4 Decaying Telco Big Data with Data Postdiction 55

4.1 Introduction . 55

4.2 System Model and Problem Formulation 58

4.2.1 Problem Formulation . 58

4.3 The TBD-DP operator . 59

4.3.1 Construction Algorithm . 60

4.3.2 Recovery Algorithm . 63

4.3.3 Performance Analysis . 64

4.4 Prototype Description . 65

4.5 Experimental Methodology and Evaluation 66

4.5.1 Methodology . 67

xiii

Con
sta

nti
no

s C
os

ta

4.5.2 Experiment 1: Performance Evaluation 70

4.5.3 Experiment 2: Control Experiments 72

4.6 Related Work . 73

4.7 Summary . 73

5 Crowdsourcing Emergencies in Non-Operational Cellular Networks 74

5.1 Introduction . 75

5.2 System Model . 79

5.2.1 Emergency Network Model . 80

5.3 Centralized AkNN Query Processing 81

5.3.1 Background on Proximity . 81

5.3.2 Proximity with Grid Partitioning 81

5.3.3 Prox: An Optimized Candidate Set Bound 84

5.3.4 Akin: Bulk Candidate Set Construction without a k+-heap . . . 86

5.3.5 Internal Pruning of Candidate Set: Prox+ and Akin+ 87

5.4 Experimental Evaluation . 88

5.4.1 Datasets . 88

5.4.2 Evaluated Algorithms . 89

5.4.3 Evaluation Metrics . 90

5.4.4 Control Experiments . 91

5.4.5 Comparison Against Existing Work 92

5.5 Related Work . 93

5.5.1 kNN for Spatial Data . 93

5.5.2 kNN for Spatio-Temporal Data 93

5.5.3 Mobile User Community Network 95

5.6 Summary . 95

6 Distributed In-Memory Processing of All k Nearest Neighbors 96

6.1 Introduction . 96

6.2 The Spitfire Algorithm . 101

6.2.1 Spitfire: Overview and Highlights 101

6.2.2 Step 1: Partitioning . 103

6.2.3 Step 2: Replication . 105

6.2.4 Step 3: Refinement . 107

xiv

Con
sta

nti
no

s C
os

ta

6.2.5 Running Example . 108

6.3 Correctness and Analysis . 108

6.3.1 Correctness of the computeECB function 109

6.3.2 Correctness of Spitfire . 110

6.3.3 Computational Cost of computeECB 111

6.3.4 Communication Cost of Replication 111

6.3.5 Optimal border segment size . 112

6.3.6 Replication Factor: Spitfire vs. PGBJ 113

6.4 Experimental Evaluation . 113

6.4.1 Experimental Testbed . 113

6.4.2 Datasets . 115

6.4.3 Evaluated Algorithms . 116

6.4.4 Metrics and Configuration Parameters 117

6.4.5 Varying Number of Users (n) 117

6.4.6 Network I/O Performance . 120

6.4.7 Partitioning and Load Balancing 121

6.4.8 Varying Number of Neighbors (k) 122

6.4.9 Varying Number of Servers (m) 123

6.5 Background and Related Work . 124

6.5.1 Goal and Design Principles . 124

6.5.2 Parallel AkNN Algorithms . 125

6.5.3 Distributed AkNN Algorithms: Bottom-Up 126

6.5.4 Distributed AkNN Algorithms: Top-Down 126

6.6 Summary . 128

7 SPATE+Applications 129

7.1 The SPATE Application . 129

7.1.1 Overview of SPATE . 130

7.1.2 SPATE Prototype . 131

7.1.3 Query Exploration Interfaces 131

7.2 The Rayzit Application . 133

7.2.1 Introduction . 134

7.2.2 Motivating Examples . 135

7.2.3 Related Work And Background 136

xv

Con
sta

nti
no

s C
os

ta

7.2.4 The Rayzit Architecture . 138

7.2.5 Rayzit Application . 141

7.2.6 Data Analysis and Evaluation 143

7.2.7 Summary . 145

8 Conclusions and Future Work 146

8.1 SPATE+: A Performance-driven Architecture for Spatial Big Data Ma-

nagement . 146

8.2 Future Work . 148

8.3 Broad Impact . 149

xvi

Con
sta

nti
no

s C
os

ta

List of Figures

1.1 SPATE+architecture components . 3

1.2 A spatial join of objects between relation R and S 4

3.1 SPATE is an efficient telco big data exploration framework that deploys

compression, decaying and exploration of the collected data. 29

3.2 The anatomy of a typical telco network architecture that generates telco

big data streams consumed by SPATE. 31

3.3 The relational schema of the telco’s data shows the first 10 out of ∼200

attributes of the CDR data and all the attributes of the NMS and CELL

data. 31

3.4 The entropy of each attribute in (Left) CDR data, (Center) NMS data,

and (Right) CELL data. 33

3.5 The multi-resolution spatio-temporal index in SPATE. Our index has 4

levels of temporal resolutions with each leaf level containing 2 spatial

dimensions (x,y) and N additional domain-specific dimensions (e.g., re-

lated to CDR and NMS). The red line denotes the decaying data fungus

that evicts progressively the oldest leaf and non-leaf nodes of the tree. 40

3.6 Ingestion time: We compare SPATE against RAW and SHAHED on

real data partitioned by day period. 46

3.7 Disk space: We compare SPATE against RAW and SHAHED on real

data partitioned by day period. 48

3.8 Ingestion time: We compare SPATE against RAW and SHAHED on

real data partitioned by day of week. 49

3.9 Disk space: We compare SPATE against RAW and SHAHED on real

data partitioned by day of week. 50

3.10 Response time for simpler tasks T1-T4: We compare SPATE

against RAW and SHAHED on the complete real dataset. 52

3.11 Response time for heavier tasks T5-T8: We compare SPATE

against RAW and SHAHED on the complete real dataset. 53

xvii

Con
sta

nti
no

s C
os

ta

4.1 Data Prediction (top): aims to find the future value of some tuple.

Data Postdiction (bottom): aims to recover the past value of some

tuple, which has been deleted to reduce the storage requirements, using

a ML model. 56

4.2 System Model: The TBD-DP operator works on the storage layer of

a typical TBD stack and abstracts the incoming data signals (D) into

abstract models (md) that are organized in a tree data structure (B). . 57

4.3 TBD-DP Operator Overview. 60

4.4 The conceptual steps of the proposed TBD-DP construction and reco-

very algorithm. 61

4.5 The TBD-DP operator implemented inside the spatio-temporal SPATE

architecture. The interface enables users to carry out high resolution

visual analytics, without consuming enormous amounts of storage. The

savings are quantified numerically with bar charts and visually with

heatmaps of telco and indoor positioning data. 66

4.6 Performance Evaluation: TBD-DP evaluation in terms of storage capa-

city S as a percentage to the RAW data (left) and accuracy in terms of

NRMSE on the decayed set of data (right) in all datasets. 69

4.7 Control Experiment - Decaying factor f : examining the storage capacity

S and NRMSE of the proposed TBD-DP approach while varying f . . . 69

4.8 Control Experiment - Learning Models: examining the storage capacity

S and NRMSE of the proposed TBD-DP approach while combined with

various ML models. 70

4.9 Control Experiment - Number of neurons in LSTM: examining the storage

capacity S and NRMSE of the proposed TBD-DP approach while va-

rying the number of neurons. 70

4.10 Performance Evaluation: TBD-DP evaluation in terms of time percen-

tage for the decayed set of data in all datasets. 71

5.1 (left) Large crowd protesting in Syria (Reuters 2014), (right) Woman

using her mobile while waiting for help in China floods (Reuters 2012). 75

5.2 Our Rayzit [1] crowd messenger enabling users to interact with their k

geographic Nearest Neighbors. 78

xviii

Con
sta

nti
no

s C
os

ta

5.3 A visualization of a k+-heap (denoted as Sc) for a specific cell c, com-

prises of three structures: Oc, Kc and Bc. 83

5.4 (Running Example) The construction of Sc with k=2. The candidate set

Sc of c is {o0, o1, o2, o3, o4, o5, o6} and is represented by the area within the

dotted line with the rounded corners. Set Sc includes all users Oc inside

c (solid line cell), users inside Kc the lighter square ring and the users Bc

inside the darker ring. Any node outside Sc (e.g., user x) is guaranteed

NOT to be a kNN of any user inside cell c. The 2-nearest neighbors for

the nodes in c are kNN (o0) = {o1, o2} and kNN (o6) = {o5, o0}. 85

5.5 Datasets (top row) and population histograms (bottom row) for an in-

dicative 3x3 partitioning. 89

5.6 CPU time for all algorithms using the datasets: a) Oldenburg; b) Geolife;

and c) Rayzit. The plots show that: (i) Proximity without any optimi-

zations has the worst performance; (ii) Internal Pruning (using the “+”)

has a higher impact on Prox rather than on Akin, making Prox+ the al-

gorithm with the best CPU-time performance; (iii) the more skewed the

dataset is (e.g., Geolife) the more improvement the speed-up achieved

by our optimizations. 91

5.7 CPU time for the best algorithms using the datasets: a) Oldenburg; b)

Geolife; and c) Rayzit. The plots show Prox+ and Akin+ outperform

adapted state-of-the-art AkNN query processing algorithms YPK and

CPM that apply iterative deepening principle rather than bulk compu-

tation of the search space. 91

5.8 a) In Proximity the candidate set is pre-constructed for all users of the

same cell (e.g., o1 and o2); whereas b) for existing state-of-the-art algo-

rithms the candidate set needs to be iteratively discovered by expanding

a ring search for each user separately into neighboring cells. 94

6.1 (Left) Our Rayzit crowd messenger enabling users to interact with their k

geographic Nearest Neighbors. (Right) Distributed main-memory AkNN

computation in Rayzit is enabled through the Spitfire algorithm. . . . 98

6.2 Spitfire Overview: (i) Space partitioning to equi-depth quadrants; (ii)

Replication between neighboring Oi and Oj using ECji and ECij, re-

spectively; and (iii) Local refinement within each Oi ∪ ECi. 101

xix

Con
sta

nti
no

s C
os

ta

6.3 Server s1 sends {o1, o2} to s2, {o1, o2} to s3, and {o2, o4} to s4. 107

6.4 (Top) o2 hides o1 from o3, (Bottom) Segment b hides o1 from o3. 107

6.5 Replication factor f in Spitfire (left) and PGBJ (right) shown as shaded

areas in both figures. 112

6.6 Our Rayzit and experimental architecture. 114

6.7 Datasets (top row) and population histograms (bottom row) for an in-

dicative 3x3 partitioning. 115

6.8 AkNN query response time with increasing number of users. We com-

pare the proposed Spitfire algorithm against the three state-of-the-art

AkNN algorithms and a centralized algorithm on four datasets. 118

6.9 Partitioning and Replication step response time with increasing number

of users. 119

6.10 Refinement step response time with increasing number of users and for

each available dataset. 120

6.11 Replication factor f with increasing number of users. The optimal value

for f is 1, signifying no replication. 121

6.12 Low level Network I/O (NI/O) measurements for Spitfire and PGBJ.

Spitfire consumes 2.5x less NI/O. 121

6.13 Partitioning step: load balancing achieved (less is better). H-BNLJ and

H-BRJ achieve optimal load balancing (standard deviation among server

load ≈ 0). 122

6.14 The effect of k on response time. 122

6.15 The effect of k on the replication factor f 123

6.16 The effect of m on response time and the replication factor f 123

7.1 SPATE is an efficient telco big data exploration stack that enables a

wide range of smart city applications with a minimal storage cost. It

deploys compression, decaying and exploration of the collected data in

a unified way. 130

7.2 SPATE-UI: A spatio-temporal telco data exploration user interface we

developed on top of Google Maps, which enables combining network

models (e.g., coverage heatmaps) with real network measurements (e.g.,

CDR, NMS, CELL) encapsulated in the compressed SPATE structure. 132

xx

Con
sta

nti
no

s C
os

ta

7.3 Screenshots of the Rayzit app: (Left) Live feed of rayz messages;

(Center) Sending a new rayz along with the power bar and an attachment

(image, audio, video); and (Right) a set of replies to a rayz. 133

7.4 Rayzit distributed architecture . 139

7.5 (Left) The icons in Rayzit: A user can “star” a post (1), “re-rayz” a

post to their k closest peers (2), attach a file to new post (3), setting

a distance cut-off parameter if needed (4), “power up” (5) or “power

down” (6) a post and its author. (Right) The anti-spam power bar: the

power of each user decreases as they post, and increases every 24 hours

or every time one of their posts is “powered up”. 141

7.6 Rayzit global user community. 142

7.7 (Left) Distribution of Rayzit users across regions in log scale. (Right)

Average duration of each user session (reading and/or posting) in log

scale. 142

7.8 (Left) Average time elapse between a post (rayz) and all its replies.

(Right) The average and maximum distance between the locations of a

post (rayz) and its replies, grouped by number of replies per post. . . . 143

xxi

Con
sta

nti
no

s C
os

ta

List of Tables

1.1 Popular Data Storage Solutions . 8

2.1 Big data and SBD architectures . 26

3.1 Lossless Compression with Different Libraries in SPATE (Average results

per 30-min snapshot) . 38

4.1 Summary of Notation . 59

5.1 Summary of Notation . 80

5.2 Build-up phase of Sc in Prox as object locations are inserted 86

5.3 Algorithm Complexities under Best-case and Worst-case distributions. . 90

6.1 Values used in our experiments . 117

6.2 Summary of Notation . 125

6.3 Algorithms for Distributed Main-Memory AkNN Queries 128

7.1 Taxonomy of anonymous social net applications 137

xxii

Con
sta

nti
no

s C
os

ta

Chapter 1
Introduction

In recent years, heterogeneous data is generated and collected at an exponential rate.

We live in the big data era and we need to be able to process, analyze and extract

information from data in order to exploit all the opportunities of the future. Particu-

larly, social networks, like Facebook, Twitter, Google+, Instagram, are producing tons

of terabytes each day and this data can be used for useful prediction and speculation in

multiple areas. Furthermore, data is continuously populated through scientific experi-

ments and sensor measurements. For example the CERN1 experiments are generating

one petabyte of data every second [2]. In addition, the economy is focusing more on

big data as an imperative source with critical information in terms of wealth. Conse-

quently, big data bring many new challenges for technology, innovation and computer

society.

Data derived from mobile devices have spatial attributes due to the location pri-

mitive that is omnipresent in the modern world. These attributes change the way

we process and analyze such big data, introducing new requirements considering the

spatial aspect. Geographic Information Systems (GISs) were the first spatial software

artifacts utilizing spatial databases as a processing engine and storage layer. The gro-

wth of geo-tagged data from social networks redirect the focus on spatial systems,

which have the capabilities to geo-tag images, geo-tag videos and geo-tag text. The

rapid and dynamic growth of the data has shifted the focus of big data architectures

to Spatial Big Data (SBD) architectures.

SBD can also be generated in batches by the infrastructure of a telecommunication

company (telco), also named Telco Big Data (TBD). While social networks are expan-

ding, the amount of broadband mobile data is increasing exponentially and the telecom
1CERN: https://home.cern/

1

Con
sta

nti
no

s C
os

ta

operators have an essential need for novel big data processing infrastructures in order

to accommodate and analyze the vast amount of spatio-temporal network-level data.

For example, a telco collects 5TBs per day, i.e., almost 2PBs per year, in a single city

of 10M cell phone customers [3].

Numerous recent big data architectures have been proposed to the above challenges,

thus a spatial big data architecture can be abstracted. It is important to mention that

spatial big data architectures share similarities with typical big data architectures,

due to the similar techniques that are required for storing, processing and analyzing

the incoming data. We can divide the overall architecture into four layers as shown

in Figure 1.1: (i) the application layer, which is responsible for presenting the end

result to the user; (ii) the spatial layer, where the spatial query processing is executed

based on spatial partitions and indexes over a big data infrastructure; (iii) the big data

processing layer, where the massive incoming data is processed; and finally (iv) the

storage layer, where the data can be stored in a scalable manner. Traditional systems

do however lack designated internal structures and components to deal with volume

and velocity. In order to comprehend the challenges and the contributions of this work,

we present the rest of the thesis based on the following three categories.

• Storage and Indexing: Spatial management systems present different charac-

teristics and require different architectures. In a wider perspective, spatial big

data architectures need to have different techniques than the ones designed for

big data architectures. Distributed processing and big data storage solutions,

such as Hadoop [4] and HDFS [5], were proposed in order to scale these systems

in terms of storage and processing. However, these solutions can not always be

applied and match the requirements of spatial data analysis. Particularly, spatial

indexes can be used in order to boost the performance of spatial query execution.

Common indexes include Grid (spatial index), Z-order (curve), Quadtree, Octree,

UB-tree, R-tree, etc. For example, a nearest neighbor query can easily be answe-

red with an R-tree index [6], but using an R-tree in a distributed environment is

nearly impossible due to the high computation cost of constructing the index.

• Operators: All the spatial query operators are inspired from traditional da-

tabase management systems and are categorized into three sets: aggregation,

selection and join.

– Spatial Aggregation: The purpose of a spatial aggregation query is to com-

2

Con
sta

nti
no

s C
os

ta

����������	
����

�
��
��
�
��

�
	

�
��
�

�

	�

�������
�������	�
����

���
����
������
����

���
����
�������	�
����

����������	
���

���

����������	�	���

��	����������

�������

��	�����

��	��

����

���	��

 	�
�
������

!���	��"�	��
���

#���$���

�
�
�
��
�
��
�
��
��
�
��

�
	

�
��
�

�

	�

�����
�

������

�����
���"�����	
��� %���

����������	

" #

������

������

�

�	����	�

Figure 1.1: SPATE+architecture components

bine several geometric characteristics in order to produce the result. For

example a union query may be “find the average area of all countries”.

– Spatial Selection: The spatial selection query finds all the containing points

within a query range or a query region, where the query region includes

query rectangle, circle, polygon and point. An example range query might

include “Find all continents that are contained by a supplied query region”.

– Spatial Join: A Spatial join is a traditional Cartesian product between two

relations with the main condition based upon the spatial property of the

object. To give a better explanation of what the spatial join is, we provide

an example with geometric shape object in Figure 1.2. The figure illustrates

how a spatial join will find the intersecting objects of relations R and S. The

spatial join will return the intersection of objects r1 ∩ s2, r2 ∩ s2, r2 ∩ s3, and

r3 ∩ s2 [7]. An example of a spatial join query would be “Find roads that

cross rivers” [8].

• Applications: Visualizing spatial big data improves the understanding on unex-

plained behaviors, situations and incidents. The resulted data of an online spatial

big data exploration task can be visualized in form of visual analytics, reports or

served through an Application Programming Interface (API).

During the last years, applications based on geospatial social networks have trans-

formed the way individuals express and publish their opinions, feelings or thoug-

3

Con
sta

nti
no

s C
os

ta

Y

X

s2
r3

s3
s1

r2

r1

Figure 1.2: A spatial join of objects between relation R and S, where R = r1, r2, r3 and S =

s1, s2, s3.

hts on various topics [9]. Combining the above with the increased amount of

sensors on portable devices [10], gives the opportunity to extend the functiona-

lity and the intelligence of social networks. This is already illustrated by real

world examples like EARS, a real time decision support system for earthquakes

based on social networks [11].

A SBD architecture is continuously manipulating highly sensitive data and should

comply with the privacy and confidentiality rules. The EU General Data Protection

Regulation (GDPR), which went into force on May 2018, requires all data sharing

layers of the big data architectures to provide the necessary data protection operations

and tools to the users. In Chapter 2, we include the related work about privacy of

spatial big data. Our proposed architecture is designed to cope with data privacy as a

complementary task, but technical privacy contributions are not the focus of this PhD

thesis.

1.1 Motivation

This chapter provides the motivation behind this Thesis. Particularly, we describe

how important the storage and indexing of SBD over a distributed architecture can be

without the degradation for response time. The execution of all the query operators

over those data have an imperative role to mobile applications, ranging from social

4

Con
sta

nti
no

s C
os

ta

networking, gaming and entertainment to emergency response and crisis management.

SBD can elevate the intelligence of a social network due to the fact that the location

defines user interests and inquiries. Geospatial social networks provide a new way for

human interaction and communication. On the other hand, Telco SBD, i.e, TBD, holds

concealed value that can be exploited by telecommunication companies and the public

opening new opportunities for novel solutions (e.g., real-time road traffic prediction).

Geospatial Social Networks: Classical social networks, like Facebook.com, Twit-

ter.com, Foursquare.com, SnapChat.com and WeChat.com, create a static social graph

based on the friendships between users. Friendship links need to be requested and con-

secutively accepted/rejected in order to be formed, causing the social graph to be built

very slowly.

In contrast, applications like Secret.ly, YikYakapp.com, and Whisper.sh create dy-

namic social graphs based on the user’s location [12]. YikYak connects you with the

users within a 10 mile range and preserves anonymity. Secret and Whisper have no dis-

tance limit, but they store information about the user’s profile (i.e., user id) decreasing

user’s anonymity. WeChat also has a feature that allows you to greet other WeChat

users that are around you, which compromises the anonymity of somebody aiming to

stay anonymous. Rayzit is an anonymous social network that enables anonymous inte-

ractions with the k nearest neighbors using state-of-the-art technology. Particularly, a

dynamic social graph based on kNN is created where all users will always be connected

and the anonymity and privacy of the user will be preserved.

Telco Spatial Big Data Processing: In recent years there has been considerable

interest from telcos to extract concealed value from their network data. Consider for

example a telco in the city of Shenzhen, China, which serves 10 million users. Such a

telco is shown to produce 5TB per day [13] (i.e., thousands to millions of records every

second). Huang et al. [14] break their 2.26TB telco big data per day down as follows:

(i) Business Supporting Systems (BSS) data, which is generated by the internal work-

flows of a telco (e.g., billing, support), accounting to a moderate of 24GB per day and;

(ii) Operation Supporting Systems (OSS) data, which is generated by the Radio and

Core equipment of a telco, accounting to 2.2TB per day and occupying over 97% of

the total volume.

Effectively processing telco big data workflows can unlock a wide spectrum of chal-

lenges, ranging from network plan optimization and user experience assessment [14]

5

Con
sta

nti
no

s C
os

ta

to city planning and urban engineering [15] [16]. Zhang et al. [13] have developed

OceanRT that improves the visualization capabilities of telco big data by the usage of

standard spatio-temporal indexes. Iyer et al. [15] present CellIQ to optimize queries,

such as “traffic hotspots” and “hand-off sequences with performance problems”, using

graph processing. Huang et al. [14] empirically demonstrate that churn prediction per-

formance can be significantly improved with telco big data by integrating both BSS

and OSS data. Luo et al. [16] propose a framework to predict user behavior involving

more than one million telco users. Prior work is mainly concerned with the analytic

exploration of telco big data, while this work optimizes the operational ability of such

tasks. SPATE is an innovative telco big data exploration framework that includes vi-

sual and declarative interfaces for a variety of telco-specific data exploration tasks [17].

Particularly, the SPATE UI (User Interface) allows the user to execute a variety of

template queries. The query bar includes snapshot queries and recurring queries (in

the form of a time-machine) for drop calls and downflux/upflux, heatmap statistics

and settings.

1.2 Problem Statement and Hypothesis

This chapter defines the problem domains which are being researched in the context

of this Thesis. Additionally, research questions are provided based on the motivation

described in Chapter 1 in order to comprehend the contribution of the ongoing work.

1.2.1 Research Questions

The primary research questions studied in this thesis are the enhancement of queries

and analytics over large amounts and a variety of spatial big data. The research topic

has a broad spectrum so it is necessary to analyze it in more specific questions. The

questions researched in this thesis are provided below.

• Storage and Indexing: One key challenge in this new era of telco big data is to

minimize the storage costs associated with the data exploration tasks, as big data

traces and computed indexes can have a tremendous storage and I/O footprint

on the data centers of telcos. Although the volume of electronically stored data

doubles every year, storage capacity costs decline only at a rate of less than 1/5

per year [18]. Storing big data locally, due to the sensitive nature of data that

6

Con
sta

nti
no

s C
os

ta

cannot reside on public cloud storage, adds great challenges and costs that reach

beyond the simplistic capacity cost calculated per GB [19]. From an operator’s

perspective, the requirement is to: (i) incrementally store big data in the most

compact manner, and (ii) improve the response time for data exploration queries.

These two objectives are naturally conflicting, as conjectured in [20].

RQ 1 How can we store incremental spatial big data in the most compact

manner, and at the same time improve the response time for data

exploration queries?

Hypothesis: The storage space needed to accumulate big data and the response

time for data exploration tasks can be improved using innovative indexing struc-

tures.

• Storage and Indexing: Effectively storing and processing TBD workflows can

unlock a wide spectrum of challenges, ranging from churn prediction of subscri-

bers [14], city localization [21], 5G network optimization, user-experience asses-

sment [15–17] and road traffic mapping [22]. Even though the acquisition of TBD

is instrumental in the success of the above scenarios, telcos are reaching a point

where they are collecting more data than they could possibly exploit. This has

the following two implications: (i) it introduces a significant financial burden on

the operator to store the collected data locally. Notice that the deep storage of

data in public clouds, where economies-of-scale are available (e.g., AWS Glacier),

is not an option due to privacy considerations; and (ii) it imposes a high com-

putational cost for accessing and processing the collected data. For example, a

petabyte Hadoop cluster, using between 125 and 250 nodes, costs ∼1M USD [23]

and a linear scan of 1PB would require almost 15 hours. For completion, we

provide a summary of the most recent costs for cloud data storage in July 2018,

based on the wasabi2 storage cost comparison tool with 20% percentage download

API calls per month in Table 1.1.

RQ 2 How can we achieve a pre-specified reduction of Telco Big Data

(TBD) without additional storage space capacity and being able to

recover the decayed data accurately and efficiently?
2Wasabi Technologies, Inc: https://wasabi.com/pricing/

7

Con
sta

nti
no

s C
os

ta

Table 1.1: Popular Data Storage Solutions

Vendor Price per year

Amazon (AWS) ∼540K USD

Microsoft (Azure) ∼257K USD

Google (Google Cloud Storage) ∼529K USD

Wasabi ∼62K USD

Hypothesis: A pre-specified reduction of TBD can be achieved using state-of-the-

art machine learning techniques representing accurately the initial data that will

be removed from the system minimizing the storage requirements. The decayed

data can be recovered using the stored machine learning models.

• Operators: A cellular network is deemed non-operational when there is no

(sufficient) network connectivity. This might happen due to damage caused by

a disaster or due to overloading caused by an unexpectedly large crowd trying

to access telecommunication services simultaneously. Each cellular tower has a

limited capacity of users it can service simultaneously. Specifically, each cellular

tower has a limitation on its communication bandwidth to the carrier (backhaul

bandwidth).

When the cellular network is non-operational, users can not rely on online services

for their whereabouts, well-being and communication. Meanwhile, the authori-

ties may not be able to receive all the information needed for intelligent synthesis

in order to enable advanced services. In other words, the crowd is not able to

generate possibly valuable information (e.g., sensors, tweets) and the authorities

are not able to collect this information. Consider the example of a disaster re-

sponse, the authorities need to operate in four phases: (i) decision making; (ii)

implementation in the field; (iii) evaluation of the results; and (iv) making decisi-

ons. The right situational awareness is the key for decision making in such cases.

The crisis management operator needs to have the right tools to communicate

with the affected citizens. The operator has to evaluate and monitor the situation

in order to learn and optimize operations in real time. It would be an omission

that could lead to the loss of human lives, if technology could not support the

8

Con
sta

nti
no

s C
os

ta

crowd to generate data (e.g., reporting locations, victims using communication

and social services to spread their situation) and the crisis management operator

to collect and process this data during these phases.

RQ 3 How can we create an overlay network that could connect cellular

users by exploiting any available device-to-device short-range com-

munication technology?

Hypothesis: Centralized techniques can be developed to allow the fast computa-

tion of the All k Nearest Neighbors (AkNN) graph on a mobile device for non-

operational cellular network scenarios. Then, an overlay network can be created

to connect all the devices using the AkNN graph of each device.

• Operators: In the age of smart urban and mobile environments, the mobile

crowd generates and consumes massive amounts of heterogeneous data [24]. Such

streaming data may offer a wide spectrum of enhanced science and services,

ranging from mobile gaming and entertainment, social networking, to emergency

and crisis management services [1]. However, such data present new challenges

in cloud-based query processing.

One useful query for the aforementioned services is the All kNN (AkNN) query:

finding the k nearest neighbors for all moving objects every few seconds (batch

mode). Formally, the kNN of an object o from some dataset O, denoted as

kNN(o,O), are the k objects that have the most similar attributes to o [25].

Specifically, given objects oa,ob,oc, ∀ob ∈ kNN(oa, O) and ∀oc ∈ O−kNN(oa, O)

it always holds that dist(oa, ob)≤dist(oa, oc). An All kNN (AkNN) query generates

a kNN graph. It computes the kNN(o,O) result for every o ∈ O and has a

quadratic worst-case bound. An AkNN query can alternatively be viewed as

a kNN Self-Join: Given a dataset O and an integer k, the kNN Self-Join of O

combines each object oa ∈ O with its k nearest neighbors from O, i.e., O./kNNO =

{(oa, ob)|oa, ob ∈ O and ob ∈ kNN(oa, O)}.

A real-world application based on such a query is Rayzit [1]3, our award-winning

crowd messaging architecture, that connects users instantly to their k Nearest

Neighbors (kNN) as they move in space. Similar to other social network appli-

cations (e.g., Twitter, Facebook), scalability is key in making Rayzit functional
3Rayzit: https://rayzit.cs.ucy.ac.cy/

9

Con
sta

nti
no

s C
os

ta

and operational. Therefore we are challenged with the necessity to perform a

fast computation of an AkNN query every few seconds in a scalable architecture.

The wide availability of off-the-shelf, shared-nothing, cloud infrastructures brings

a natural framework to cope with scalability, fault-tolerance and performance is-

sues faced in processing AkNN queries. Only recently researchers have proposed

algorithms for optimizing AkNN queries in such infrastructures [26, 27].

Solving the AkNN problem efficiently in a distributed fashion requires the object

set O be partitioned into disjoint subsets Oi corresponding to m servers (i.e.,

O = ⋃
1≤i≤mOi). To facilitate local computations on each server and ensure

correctness of the global AkNN result, servers need to compute distances across

borders for the objects that lie on opposite sides of the border and are close enough

to each other. In any performance-driven distributed algorithm, the efficiency is

determined predominantly by the network messaging cost (i.e., network I/O).

Therefore, the goal is to minimize the number of objects transferred (replicated)

between servers during the computation of the AkNN query.

Another factor in a distributed system is balancing the workload assigned to each

computing node si, such that each si will require approximately the same time

to compute the distances among objects.

RQ 4 How can we develop a scalable and high-performance distributed al-

gorithm that solves the AkNN problem in a fast batch mode using a

shared-nothing cloud infrastructure of m servers?

Hypothesis: The points can be partitioned geographically in order to compute

common kNN candidates per partition. This will allow the utilization of the

distributed environment minimizing the network I/O and improving the overall

performance.

1.3 Thesis Statement and Contributions

In this section, we provide the thesis statement and describe the main contributions of

this thesis that provide answers to the research questions posed in Section 1.2.

10

Con
sta

nti
no

s C
os

ta

1.3.1 Thesis Statement

To meet the response time and storage needs of SBD exploration tasks while efficiently

utilizing system resources, a complete SBD analytic stack must have storage capabilities

with compression and decaying, indexing with multiple levels of temporal and spatial

resolutions and efficient spatial query operators.

1.3.2 Contributions

• We propose an innovative telco big data exploration stack, coined SPATE, whose

objectives are two-fold: (i) minimizing the storage space needed to incrementally

retain data over time; and (ii) minimizing the response time for spatiotemporal

data exploration queries over recent data. We have measured the efficiency of

our proposition using a real telco trace and a variety of telco-specific tasks, such

as OLAP and OLTP querying, clustering, regression and privacy sanitizing, and

showed that we can achieve comparable response times to the state-of-the-art with

an order of magnitude less storage space. In the future, we aim to investigate a

variety of advanced smart city application scenarios on top of SPATE, namely an

automated car traffic mapping system and an emergency recovery system after

natural disasters.

Our architecture answers RQ 1 as it is described in Chapter 3.

• We present a novel decaying operator for Telco Big Data (TBD), coined TBD-

DP (Data Postdiction). TBD-DP relies on existing ML algorithms to abstract

TBD into compact models that can be stored and queried when necessary. Our

proposed TBD-DP operator has the following two conceptual phases: (i) in an

offline phase, it utilizes a Long Short Term Memory (LSTM)-based hierarchical

ML algorithm to learn a tree of models (coined TBD-DP tree) over time and

space; (ii) in an online phase, it uses the TBD-DP tree to recover data within

a certain accuracy. In our experimental setup, we measure the efficiency of the

proposed operator using a ∼10GB anonymized real telco network trace. Our

experimental results in Tensorflow over HDFS are extremely encouraging as they

show that TBD-DP saves an order of magnitude storage space while maintaining

a high accuracy on the recovered data.

Our decay operator answers RQ 2 as it is described in Chapter 4.

11

Con
sta

nti
no

s C
os

ta

• We develop techniques that generate the kNN graph of an arbitrary crowd of

smartphone users that interconnect through short-range communication techno-

logies, such as, Wi-Fi Direct, 3G/LTE direct and Bluetooth v4.0 (BLE). We

present two efficient algorithms, namely Akin+ and Prox+, optimized to work on

a resource-limited mobile device. These algorithms partition the user space and

compute shared candidate sets per partition. Prox+ uses a custom heap data

structure to update the candidate set as new users are inserted, whereas Akin+

uses a bulk bottom-up construction of a simple heap to compute the candidate

set once all users have been inserted. Our experiments verify the theoretical ef-

ficiency of the algorithms and shows that Prox+ and Akin+ are very well suited

for large scale and skewed data scenarios.

Our techniques answer RQ 3 and is described in Chapter 5.

• We present Spitfire, a scalable and high-performance distributed algorithm that

solves the AkNN problem using a shared-nothing cloud infrastructure. Our al-

gorithm offers several advantages over the state-of-the-art algorithms in terms of

efficient partitioning, replication and refinement. Theoretical analysis and expe-

rimental evaluation show that Spitfire outperforms existing algorithms reported

in recent literature, achieving scalability both on the number of users and on the

number of k nearest neighbors.

Spitfire algorithm answers to RQ 4 as it is described in and Chapter 6.

• We implement a prototype of SPATE using a modern SPARK-based processing

architecture with HDFS and an RDBMS for catalog management (see Figure 7.1).

The SPATE UI (User Interface) is implemented in HTML5/CSS3 along with

extensive AngularJS. An illustrative network exploration interface is shown in

Figure 4.5. We have implemented a query sidebar that allows the user to execute

a variety of template queries. The query bar includes snapshot queries and recur-

ring queries (in the form of a time-machine) for drop calls and downflux/upflux,

heatmap statistics and settings. Furthermore, quick access buttons are provided

so that users are able to choose between the available network modalities (2G,

3G, 4G).

• We present an innovative architecture for anonymous dynamic social networks,

coined Rayzit, which enables anonymous interactions with the k nearest neig-

12

Con
sta

nti
no

s C
os

ta

hbors. An industrial quality application was implemented that utilizes the afo-

rementioned architecture. We presented and analyzed the data collected from

this application and draw interesting conclusions about this new type of dynamic

social networking. Our experimental results also confirm our initial hypothesis

that the number of the replies is related to the location of the original rayz (i.e.,

the rayz with the most replies has a maximum range of 8 meters).

Our applications were build on top of our proposed architecture and are presented

in Chapter 7.

1.4 Dissertation Outline

This thesis is organized into 9 chapters. A detailed dissertation outline of the thesis is

presented below.

Chapter 1 presents a brief introduction, the motivation, the problem domains

and the research questions, which are being researched in the context of this PhD

thesis.

Chapter 2 describes the background and related work about the Big Data and

Spatial Big Data architectures.

Chapter 3 introduces an innovative Telco Big Data exploration framework that

aims to minimize the storage space needed to incrementally retain data over time

and minimize the response time for spatiotemporal data exploration queries over

recent data.

Chapter 4 presents a novel decaying operator for Telco Big Data (TBD) that

aims to make a statement about the past value of some data, which does not

exist anymore as it had to be deleted to free up disk space.

Chapter 5 proposes techniques that generate a k-Nearest-Neighbor (kNN) over-

lay graph of an arbitrary crowd that interconnects over some short-range com-

munication technology.

Chapter 6 presents a distributed algorithm that provides a scalable and high-

performance AkNN processing framework.

13

Con
sta

nti
no

s C
os

ta

Chapter 7 describes an application for Telco Big Data analysis over the architec-

ture described in Chapter 3 and a novel anonymous crowd messaging application,

which utilizes the location of each user to connect them instantly to their k Ne-

arest Neighbors (kNN) as they move in space.

Chapter 8 summarizes the contributions of our research and possible directions

for future research.

14

Con
sta

nti
no

s C
os

ta

Chapter 2
Related Work

2.1 Big Data Architectures

In this section we present several state of the art systems that cope with general big

data, covering Query Processing, Resource Management and Real-time Systems (also

referred to as interactive or online analytics).

2.1.1 Query Processing

In the recent years, the amount of generated data from a variety of sources is increasing

with tremendous speed. The term big data is referring to data that grows exponentially.

The processing and storing layer of the systems that can absorb this kind of data should

be able to answer specific queries or predict the future of a business or even to extract

important correlations between unrelated data. Nowadays the most common technique

for processing and analyzing big data is to develop solutions in parallel and distributed

processing frameworks, such as Hadoop or Spark.

Hadoop [28]: Hadoop is an open source cluster computing framework that allows

the distributed processing of large data sets across clusters of computers using simple

programming models. Hadoop has one or more master nodes that are running a name

node service. In particularly, the master node maintains an index that describes where

each chunk is placed in a Hadoop Distributed File System (HDFS). The remaining

nodes in the cluster are data nodes that store the data in the cluster. MapReduce is

the programming model of Hadoop. The jobs consist of two phases: the MAP and the

REDUCE phase. During the MAP phase, the input is parsed and processed producing

key-value pairs that will be forwarded to a specific reducer based on the key. During

15

Con
sta

nti
no

s C
os

ta

the REDUCE phase an aggregation is applied on key-value incoming data and the

output is produced.

Spark [29]: Spark is an open source cluster computing framework that has in-memory

primitives, in contrast to Hadoop’s disk-based MapReduce model, allowing to load data

into a cluster’s memory and query it repeatedly. Spark requires a cluster manager and

a distributed storage system. Spark provides distributed task dispatching, scheduling,

and basic I/O functionalities. The programming abstraction is called Resilient Dis-

tributed Datasets (RDDs), which is a logical collection of data partitioned across the

cluster. RDDs can be created by referencing datasets in external storage systems, or

by applying coarse-grained transformations (e.g., map, filter, reduce, join) on existing

RDDs. Instead of specialized programming models for one type of application, Spark

provides a first-class control of distributed datasets to the user.

MISO [30]: As the amount of data is increasing, new architectures are evolving in

order to accommodate the huge amount of workload. Due to the variety of data, orga-

nizations have to maintain various storage systems to retain functionality. As a result,

extracting and combining the data from different stores quickly becomes important

in order to conclude meaningful results. The system that combines several storage

systems is called a multistore system. Specifically, Jeff LeFerve et al. present their

method, MISO, which describes how a multi-store processing query engine is con-

structed. Specifically, MISO contains a HIVE1 database for the heavy processing and

a commercial warehouse management system (DBMS) for the lightweight filtering and

querying.

epiC [31]: In this work the researchers developed a new system to achieve a high

utilization of processing power over a distributed enviroment, coined epic, which is an

extensible system that introduces a general actor-like concurrent programming model,

independent of the data processing model in order to process the data in parallel. The

authors state that their system outperforms Hadoop in terms of flexibility, performance

and extensibility. The execution of the system is following the Pagerank algorithm [32]

and the units are isolated and can process data independently. Each unit can send

messages to other units through the master network.

Flink [33]: In data analysis, iterative algorithms are used in many occasions such

as machine learning or graph analysis. As a result, in order to run those algorithms

over very large data, it was necessary to utilize the distributed and parallel nature of a
1Hive: https://hive.apache.org/

16

Con
sta

nti
no

s C
os

ta

cluster. A recent work of Ewen et al. presented Flink system that can achieve a high

throughput and utilize all the components efficiently. Recently, Stratosphere became an

Apache Incubator project under the name Apache Flink2. The purpose of the system

is to provide the necessary programming interfaces and the programming model for

writing programs in MapReduce fashion. It allows the developement of iterative and

incremental algorithms instead of the traditional Hadoop MapReduce paradigm, using

a unique data flow.

Spark SQL (Shark) [34]: At this point we can easily understand that there are a

variety of big data processing systems and that these systems can be used to satisfy

possible requirements according to the organization needs. One obstacle is that most of

them provide complex query languages and require high programming skills to achieve

a high performance response to each query. Armbrust et al. present a declarative SQL

language in order to provide a simple way to construct jobs that can run in parallel, uti-

lizing the infrastructure to answer a query over huge amounts of data. Spark SQL is an

ancestor of Shark [35] over the Spark framework. Additionally, Spark code and Spark

SQL can be combined in the same Spark job utilizing the Catalyst Optimizer [34] and

switch from the well known Resilient Distributed Datasets (RDDs) to DataFrames uti-

lizing the full potential of Spark cluster. As described by the authors, the performance

results of the DataFrames are better than the traditional Spark template.

Initially, DBMS could not rely on main memory for all operations and transactions

of a big data systems. As the price of main memory decreased and its memory size

increased, new main memory architectures were established [36]. This allows higher

performance by avoiding the costly network and disk I/O. RDDs provide a new more

efficient way to utilize the main memory of a cluster. Particularly, most of the distri-

buted systems including Hadoop are based on an acyclic data flow model. The records

are loaded from the file system and forwarded to a Directed Acyclic Graph (DAG) of

deterministic operators and then stored again into the file system. Zaharia et al. [29]

support that RDDs are suitable for iterative algorithms and several optional features

like caching the aforementioned RDDs into the worker memory retaining the scalability

and the fault tolerance of the system. The authors present how the RDDs work on

Spark and how they can avoid any possible insufficient memory problem. Specifically,

if memory is not enough to cache the RDDs on each machine then the machine is forced

to use less space and consequently the final performance is degraded.
2Flink: https://flink.apache.org/

17

Con
sta

nti
no

s C
os

ta

It is important to understand the challenges in improving performance of big data

analytics. As many researchers consider that the most costly factor is I/O, a recent

work of Ousterhout et al. showed that the bottlenecks of big data processing systems

are actually CPU and network performance [37]. In addition, the data layout of the

query is considered to affect the network latency and CPU cost as the data could be

either column or row oriented [38]. Sarma et al. showed how the upper and lower

bounds can be computed in order to minimize the cost of a MapReduce job and how

the trade-offs can be used [39]. The authors illustrated some bounding methods for

several examples (e.g., Hamming distance, Triangle finding, Finding instances of other

graphs) and calculated the upper and lower bounds for them.

MapReduce is a state-of-the-art framework as we previously mentioned but it is only

used for offline analytics. In order to achieve high performance processing required for

answering queries in an online manner time, MapReduce should pipeline the output

instead of writing the intermediate parts to the disk as described in [40].

Big data processing is very important for organizations, especially for the telecom-

munication industry. Churn prediction is the biggest challenge for a telco organization

due to the high dependencies on customer decisions [14]. Huang et al. presented telco

churn prediction with big data providing a new big data platform for telco processing.

In fact, the authors described a new architecture with storage and processing techno-

logies such as Spark SQL, Hive and Hadoop. The telco dataset mainly consists of Call

Detailed Records (CDRs) that contain users information like their calling number, data

usage history, package type, cell tower ID, account balance, etc. and mobile broad-

band (MBB) data that keeps all the information from the network, specifically from

the radio network controller (RNC).

Finally, it is necessary to present how the big data architectures can be evalua-

ted and how the big data system can be benchmarked. BigBench was proposed from

Ahmad Ghazal et al. in order to provide a data model and data generator that ad-

dresses velocity, variety and volume of structured, semi-structure and unstructured big

data [41].

2.1.2 Resource Management and Storage Systems

As previously presented, several big data processing systems need various kind of re-

sources (e.g., memory, disk storage, processing power, network throughput, etc.) in

18

Con
sta

nti
no

s C
os

ta

order to operate at high performance rates on a parallel or distributed cluster environ-

ment. In this section, we present several mechanisms that allow the efficient utilization

of underlying components of the infrastructure. Those mechanisms are called resource

managers; a well known example is the Hadoop’s resource manager coined YARN 3.

Mesos [42]: Hindman et al. present a resource manager, named Mesos, that can

support several distributed processing frameworks at the same time. Actually, Mesos

shares resources in order to allow frameworks to achieve data locality on each node. The

authors illustrate how the Mesos architecture incorporates Hadoop and MPI (Message

Passing Interface [43]) schedulers. Furthermore, Mesos achieves fault tolerance using

ZooKeeper4.

Mbal [44]: Adaptive load balancing and in-memory caching is the subject of a work

presented by IBM Research [44]. Cheng et al. presented MBal, which is a high perfor-

mance in-memory object caching framework with adaptive load balancing mechanisms.

The article illustrates how Memcached5 is used in order to cache objects across the clus-

ter and how MBal overcomes the weaknesses of objects that have skew distribution. In

addition, the authors provide a performance analysis of showing an important increase

of throughput. As a result, the cost of developing applications on Amazon EC2 clus-

ter is minimized in contrast with the Memchached technique. In addition, innovative

techniques are trying to eliminate the bottleneck of the storage latency by constructing

a memory layer that can be accessed like a distribute in-memory file system such as

Tachyon [45].

2.1.3 Real-time Processing Systems

Nowadays, big data real-time processing is very critical for any business decisions and

future plans for any organization [46]. We have already discussed various works based

on Hadoop and MapReduce paradigm but these solutions are not capable to handle fast

changing business environments. In this section, we will describe several real-time and

near real-time platforms that can process and extract conclusions in a small amount

of time.

Hadoop Online [40]: Hadoop was not able to cope with real-time processing due

to the blocking behavior between mappers and reducers. Condie et al. proposed a
3YARN: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
4ZooKeeper: https://zookeeper.apache.org/
5Memcached: https://memcached.org/

19

Con
sta

nti
no

s C
os

ta

new solution coined Hadoop Online Prototype (HOP), which aims to pipeline the data

between internal operators. The authors present how this modified MapReduce version

can support continuous queries and adapt the existing MapReduce program without

any changes.

OceanRT [13]: Zhang et al. proposed OceanRT, which is a real-time analytics system

that can be used over large temporal data. The user can submit a HiveQL query at

any node in the cluster managed by Zookeeper. The system has a Parsing Engine that

is responsible to deliver the query to the Access Query Engine (AQE). It consists of

a parser, an optimizer and a dispatcher. Furthermore, the AQE will decide how the

query plan will be executed using Hive, HBase or a traditional RDBMS.

CEP [47]: CEP was proposed by Stojanovic et al. in order to solve real-time big

data processing based on existing efficient infrastructures like Storm6. The authors

describe that due to the high mobile sensing, data create the opportunity to extract

important information that may be used in real-time applications. They describe a

mobile system coined mCEP, which processes the real-time events on the mobile device.

Mobile sensors are responsible to forward the event to the event stream manager,

which sends an event to CEP engine or to the action handler or sends the events to

the server pub/sub mechanism. It is important to notice that there is a real-time

processing component, which can process the data in real-time and consists of two

sub-components, the CEP engine and the situation analyzer. CEP engine is able to

utilize the distributed enviroment to process the event in real-time. In addition, authors

provide a detailed analysis of their system illustrating the semantics of the incoming

data and how their CEP engine can process the data in a distributed manner and store

them into a scalable storage, specifically RIAK7 and 4store8.

It is important to monitor these systems especially in scientific big data batch

clusters due the high complexity of several jobs. Specifically, Kuehn at al. proposed a

new tool that can achieve low performance overheads and does not affect the running

jobs [48]. Monitoring the jobs running in the system is one of the most important

factors to keep the cluster available and in an efficient mode.

AIM [49]: Big data often can satisfy one type of analytics either online transaction

processing (OLTP) or online analytical processing (OLAP) analytics. Bruan et al.
6Storm: https://storm.apache.org/
7RIAK: https://basho.com/products/#riak
84store: http://4store.org/

20

Con
sta

nti
no

s C
os

ta

explain how a big data DBMS can satisfy both types of analytics. Particularly, the

authors present AIM that was developed in order to be able to process mixed workloads

and answer event stream processing and analytic queries in a short response time. The

system can provide distributed execution like Storm and Hadoop in order to provide

high scalability but it can also run as a single machine system. AIM consists of three

layers, an event stream processing layer (ESP), a storage layer develop as a key-value

store and a SQL query processing layer (RTA). In addition, the authors state that

when more CDRs are imported into the system the administrator can simply add more

nodes to the ESP layer. The storage subsystem adapts several in-memory techniques

in order to provide a high performance and a small response time without affecting

the consistency. Additionally, the storage system has a columnar storage layout based

on partition attributes across (PAX) [50] in order to minimize the response time for

analytic queries.

Bouillet et al. from IBM describe how 6 billion CDRs can be processed per day

in real-time, as they are generated by the network machines [51]. The solution was

developed on top of IBM’s InfoSphere Streams middleware. The specific application

is a mediation and analytics solution that is capable to consume all the CDRs stream

producing real-time analytics. The system can scale up due to region wise parallelism

and intra-Region parallelism. In addition, optimized in-memory lookups for database

queries and bloom filter for duplication elimination boost the overall performance.

The authors state that they used an optimistic fault tolerance and occasionally create

checkpoints.

2.2 Spatial Big Data Architectures

In this section we will present the most recent SBD architectures. Moreover, we will

present all the spatial operators that we described in the introduction including the

implementation of our own k Nearest Neighbors (kNN) operator.

2.2.1 Spatial Big Data Query Processing

As we have already mentioned, geospatial application is at the center of big data

research and industry due to the high sensing capabilities of mobile devices. In the

previous chapter we have discussed about the big data processing challenges such as

21

Con
sta

nti
no

s C
os

ta

network and disk I/O costs. After the partitioning, the objects can be placed into the

minimum boundary regions (MBR) using Hilbert curve-ordering to preserve locality.

The same challenges are applied to the SBD processing with several extra requi-

rements like a global spatial index that is needed to retrieve answers for a spatial

query. Zhong et al. described how the spatio-temporal query processing is achieved

efficiently and effectively over Hadoop [52]. Particularly, the authors have designed

a geospatial data system that utilizes the locality of the data in the HDFS using a

partitioning data model. Furthermore, they have provided a distributed indexing fra-

mework, which is used for pruning the search space and consequently minimizing the

I/O cost. Additionally, they also provided a MapReduce algorithm that can improve

the query computation efficiency along with a caching mechanism.

Asterix [53]: As we have already presented in the introduction, we are living in

the “Big Data” era because data generation rate is extremely high especially in social

networks, blogs, online communities, etc. As a consequence, new big data challenges

derived based on the requirements against data management platforms. Particularly,

the system should be scalable, flexible, manageable and have analytic capabilities as

mentioned in [53]. The authors of this specific work, presented ASTERIX, which is a

scalable warehouse with a web data integration style. The authors present their own

data model and query language for describing, querying and analyzing data. According

to the authors, ASTERIX is partitioning the data using LSM-based B+trees. In this

specific system the authors adapt the Fuzzy matching in order to answer fuzzy selection

queries and fuzzy join queries. In addition, the system provides an engine for executing

spatial aggregation using a spatial grid technique.

OceanST [3]: OceanST was developed by Huawei [3] to manage huge volumes of

telco big data. OceasST is a distributed solution based on Spark and MapReduce. It

consists of 3 layers: (i) the storage layer where all the records and indexed and stored

over HDFS; (ii) the functional layer where all the exact and approximate queries are

provided through an API; and the application layer that incorporates the graphical

user interface (GUI).

AQWA [54]: Aly at al. presented a system with an adaptive partitioning technique

of SBD, called AQWA, and evaluated the performance using k nearest neighbor queries

workloads. AQWA is incrementally updating the partitioning according to the wor-

kload. Particularly, AQWA has a k-d tree index on which the leaf node indicates the

partition in the distributed file system along with a grid that keeps track of the number

22

Con
sta

nti
no

s C
os

ta

of points existing in a region. As a result, the selected partitions can be passed into

a MapReduce job minimizing the I/O cost. Finally, the partitioning can be changed

based on the workload data and their distribution.

SBD processing has many challenges in terms of collecting, storing and analyzing

the input data that may have a sparse distribution with spatial, temporal and network

features [55]. Kelly et. al faced the aforementioned computational issue while analyzing

call detail records (CDRs), which are data collected during mobile phone sessions.

Their system currently consists of Hadoop, Hive and Spark clusters utilizing the HDFS

and using R9 for statistical analysis and graphic representation.

At this point, it is important to mention that user privacy should be maintained

through the processing cycle especially in telco big data analytics. The information

that are stored through the telecommunication organizations should be anonymized in

order to keep the sensitive data private. A well-known technique is the k-anonymity

model that guarantees a high level of anonymization and consequently a high level of

privacy [56]. In contrast, Hu at al. presented Differential Privacy (DP) for the telco big

data in order to avoid several attacks and weaknesses of the k-anonymity and several k-

anonymity adaptations [57]. Particularly, the authors provided a detailed experimental

and analytical evaluation of churn prediction accuracy over telco big data. By analyzing

the results the authors concluded that the DP solution can be very restrictive for real

data mining tasks, unless the privacy budget parameter ε is relaxed.

CellIQ [15]: CellIQ is a system that can provide real-time network data analytics

and answer to spatial queries based on the collected data from the cellular network.

Particularly, CellIQ is capable to detect and track spatio-temporal traffic hotspots and

handoff sequences with abnormal failure sequences. This system takes advantage of the

spatial and temporal locality to optimize the overall performance. The authors showed

that their system outperforms the existing cellular systems by using the optimizations

we have described. Iyer et al. have divided CellIQ into three operations, the sliding

window operation, the time window operation and the spatial operation. Their solution

is based on the Berkeley Data Analysis Stack (BDAS). BDAS includes several of the

technologies that we previously mentioned like Spark, Tachyon, Mesos, Yarn, etc. The

solution was written by using the RDDs and the GraphX API to incorporate specific

optimizations like data placement, radius based message broadcast, spatial aggregation,

differential graph update and incremental graph updates.
9https://www.r-project.org

23

Con
sta

nti
no

s C
os

ta

SpatialHadoop [58]: Eldawy et al. created SpatialHadoop, which is an extension

to Hadoop that adds spatial data awareness in each Hadoop phase. Particularly, Spa-

tialHadoop adds a simple and expressive high level language for spatial data types

and operations. In addition, SpatialHadoop adapts traditional spatial index structures

such as Grid, R-tree and R+-tree, to form a two-level spatial index [59]. Furthermore,

SpatialHadoop has several spatial operations, including range query, kNN and spatial

join. The experimental evaluation shows that SpatialHadoop outperforms Hadoop for

spatial data processing orders of magnitude. Particularly, the input file, which is a

heap file, is passed to FileSplitter. The FileSplitter divides the file into n splits, where

n is the number of the slave nodes in the cluster and then the parts are read from a

RecordReader that extracts the key-value pairs to the mapper function. On the other

hand, in SpatialHadoop the FileSpitter is replaced with a SpatialFileSplitter, which is

an extended splitter that exploits the global indexes on spatially indexed input files

to early prune file blocks. In addition, the record reader is replaced with a SpatialRe-

cordReader, which reads the splits from the previous step and process them based on

local indexes for a better performance during the map function.

The increasing rate of the data generated due to the continuous expanding of sen-

sing capabilities affects the energy consumption of a mobile/sensor network. Data

preservation in sensor networks with spatial correlation is one of the problems that

Crary et al. addressed. They proposed a solution to minimize the energy and storage

needed to preserve the big data inside the sensor network [60]. In addition, continuous

queries over a sensor network drain energy, causing problems and failures to the sensor

network. Andreou et al. proposed a solution to solve this problem, which involved the

development of an energy-driven tree construction algorithm that can minimize the

energy consumption and maximize the efficiency of the system [61].

2.3 Spatial Big Data Visualization

In this section we present how SBD systems can represent the processed result graphi-

cally. Specifically, we present systems that can show analytics over a map layer and a

system that uses a GIS for medical imaging.

24

Con
sta

nti
no

s C
os

ta

2.3.1 Spatial Visualization Systems

CyberGIS [62]: As we have already discussed, the spatio-temporal data are very

important in order to extract results and critical information from the collected data

[63]. In addition, when data contain geographical attributes it’s necessary to provide

a visualization of the data to the end users. Geographic Information Systems (GIS)

have been providing this functionality over the years but with the increasing rate of

the populated data, the existing solutions can’t absorb the massive workload. Wang

et al. proposed a new generation of GIS for the SBD to face the problem, called

CyberGIS. CyberGIS can efficiently absorb and process the huge amount of data. Its

noticeable that the CyberGIS is using the Hadoop Distributed File System (HDFS) to

store the data and several of the parallel and distributed systems we have previously

mentioned. In fact, the processing system is utilizing Hadoop, MPI, Spark, Shark and

several in-situ algorithms in order to provide the end result to the users.

Hadoop-GIS [64]: Aji et al. state that SBD has common techniques with the systems

previously mentioned and the proposed solution, which is based on Hadoop, is called

Hadoop − GIS. Hadoop-GIS takes advantage of the global partition indexing and

on-demand spatial indexes to answer spatial queries efficiently. The query engine of

Hadoop-GIS is based on RESQUE, which we have described in the previous section.

Hadoop-GIS spatially partitions the data into buckets (or tiles) that are forwarded to

MapReduce in order to be processed in parallel. Then the result tiles are merged and

stored in HDFS. Moreover, spatial global and local indexes are created in order to

extract the requested features and then aggregate them to the final results stored in

HDFS.

In Table 2.1 we compare the SPATE+ and the systems from the literature based on

their ability to process big data, answer spatial queries, respond in real-time, provide

visualization methods, using compression and decay techniques. These parameters

were chosen in order to show the historical evolution of the systems.

25

Con
sta

nti
no

s C
os

ta

System Big Data Spatial Real-time Visualization Compression Decay

MISO [30] YES NO NO NO NO NO

epiC [31] YES NO NO NO NO NO

Stratosphere [33] YES NO NO NO NO NO

Spark SQL [34] YES NO YES* NO NO NO

MapReduce Online [40] YES NO YES NO NO NO

OceanRT [13] YES NO YES NO NO NO

CEP [47] YES NO YES NO NO NO

AIM [49] YES NO YES NO NO NO

ASTERIX [53] YES YES NO YES NO NO

AQWA [54] YES YES NO NO NO NO

CellIQ [15] YES YES YES NO NO NO

SpatialHadoop [58] YES YES NO YES NO NO

CyberGIS [62] YES YES NO YES NO NO

Hadoop-GIS [64] YES YES NO YES NO NO

SPATE+ [17, 65] YES YES YES YES YES YES

Table 2.1: Big data and SBD architectures

26

Con
sta

nti
no

s C
os

ta

Chapter 3
Efficient Exploration of Telco Big Data with

Compression and Decaying

In the realm of smart cities, telecommunication companies (telcos) are expected to play

a protagonistic role as they can capture a variety of natural phenomena on an ongoing

basis, e.g., traffic in a city, mobility patterns for emergency response or city planning.

The key challenges for telcos in this era is to ingest in the most compact manner huge

amounts of network logs, perform big data exploration and analytics on the generated

data within a tolerable elapsed time. This chapter introduces SPATE, an innovative

telco big data exploration framework whose objectives are two-fold: (i) minimize the

storage space needed to incrementally retain data over time; and (ii) minimize the

response time for spatiotemporal data exploration queries over recent data. The storage

layer of our framework uses lossless data compression to ingest recent streams of telco

big data in the most compact manner retaining full resolution for data exploration

tasks. The indexing layer of our system then takes care of the progressive loss of detail

in information, coined decaying, as data ages with time. The exploration layer provides

visual means to explore the generated spatio-temporal information space. We measure

the efficiency of the proposed framework using a 5GB anonymized real telco network

trace and a variety of telco-specific tasks, such as OLAP and OLTP querying, privacy-

aware data sharing, multivariate statistics, clustering and regression. We show that

out framework can achieve comparable response times to the state-of-the-art using an

order of magnitude less storage space.

27

Con
sta

nti
no

s C
os

ta

3.1 Introduction

Unprecedented amounts and variety of spatiotemporal big data are generated every

few minutes by the infrastructure of a telecommunication company (telco). The rapid

expansion of broadband mobile networks, the pervasiveness of smartphones, and the

introduction of dedicated Narrow Band connections for smart devices and Internet of

Things (NB-IoT) [66] have contributed to this explosion. An early example of the data

volume and velocity of telco big data is described in [3], where a telco collects 5TBs

per day, i.e., almost 2PBs per year, in a single city of 10M cell phone customers.

Data exploration queries over big telco data are of great interest to both the telco

operators and the smart city enablers (e.g., municipalities, public services, startups,

authorities, and companies), as these allow for interactive analysis at various granula-

rities, narrowing it down for a variety of tasks including: network plan optimization

and user experience evaluation, precise marketing, emergency response, urban plan-

ning and new urban services [3, 13–15, 67]. Data exploration and visualization might

be the most important tools in the big data era [68–70], where decision support makers,

ranging from CEOs to front-line support engineers, aim to draw valuable insights and

conclusions visually.

One key challenge in this new era of telco big data is to minimize the storage costs

associated with the data exploration tasks, as big data traces and computed indexes can

have a tremendous storage and I/O footprint on the data centers of telcos. Although the

volume of electronically stored data doubles every year, storage capacity costs decline

only at a rate of less than 1/5 per year [18]. Storing big data locally, due to the sensitive

nature of data that cannot reside on public cloud storage, adds great challenges and

costs that reach beyond the simplistic capacity cost calculated per GB [19]. From a

telco’s perspective, the requirement is to: (i) incrementally store big data in the most

compact manner, and (ii) improve the response time for data exploration queries. These

two objectives are naturally conflicting, as conjectured in [20].

In this chapter we present SPATE1, a SPAtio-TEmporal framework that uses both

lossless data compression and lossy data decaying to ingest large quantities of telco big

data in the most compact manner. Compression refers to the encoding of data using

fewer bits than the original representation and is important as it shifts the resource
1SPATE: “a large number of things that appear or happen in a short period of time” (Merriam-

Webster dictionary)

28

Con
sta

nti
no

s C
os

ta

���� ������� �����������

��	
�

�����

����	
���	�

���
���

��	
�

���������

���
������

������

��	
�

������

�	��
����	�

Figure 3.1: SPATE is an efficient telco big data exploration framework that deploys compres-

sion, decaying and exploration of the collected data.

bottlenecks from storage- and network-I/O to CPU, whose cycles are increasing at a

much faster pace [71–73]. It also enables data exploration tasks to retain full resolution

over the most important collected data. Decaying on the other hand, as suggested

in [74], refers to the progressive loss of detail in information as data ages with time

until it has completely disappeared (the schema of the database does not decay [75]).

This enables data exploration tasks to retain high-level data exploration capabilities

for predefined aggregations, without consuming enormous amounts of storage.

SPATE can be regarded as a domain-specific streaming data warehouse, which is

divided into the following layers: (i) the Storage layer, which passes newly arrived

network streams (coined snapshots), arriving with a periodic clock, through a lossless

compression process that stores the results on a replicated big data file system for

availability and performance; (ii) the Indexing layer, which provides the structures

for efficient data exploration but also invokes the decaying process. Particularly, it is

responsible for storing the upcoming snapshots on disk with the incremence module, for

identifying interesting event summaries with the highlights module and for decaying the

oldest leaf nodes of the index, i.e., by pruning-off parts of the tree index using a provided

decaying function (i.e., data fungus). Indexing is the standard mechanism to speed up

queries in incremental spatio-temporal querying and visualization systems [3,13,15,70];

and (iii) the Application Layer, which holds components responsible for processing user

queries and presenting results through a spatio-temporal visual user interface and a

declarative SQL user interface.

We evaluate the performance of the SPATE framework using a 5GB anonymized

29

Con
sta

nti
no

s C
os

ta

real telco big data trace, whose structure is explained in the next section. To show

the utility of SPATE, we carry out a variety of telco-specific querying tasks, such as

OLAP and OLTP querying, clustering, regression and privacy sanitization. Our results

indicate that SPATE requires sub-linear storage space with respect to the amount of

data ingested, an update time of only a few seconds without affecting the online data,

and a data exploration response time that is independent of the queried temporal

window. SPATE achieves similar query response times to state-of-the-art solutions [70],

but using only a fraction of the data storage space.

There is no prior work that studies data decay and efficient data exploration for

telco big data in combination. In previous work, custom data management systems

have been designed with the objectives to save storage space using compression, and

speed up temporal range queries using indices [76–79]. None of these considers the

notion of “decay” as expressed in [74], which suggests sacrificing either accuracy or

read efficiency for less frequently accessed data to save space. Furthermore, these

solutions are tailored specifically for managing scientific (floating point) data.

In contrast, we focus on (i) compressing and decaying incremental telco big data,

which mostly contains string and integer values; (ii) on spatiotemporal data exploration

queries in a telco setting, and (iii) we also develop our solution on top of off-the-shelf

open source systems (e.g., Hadoop, Spark) that are widely used in industry, with low

installation, administration and maintenance costs.

Our contributions can be summarized as follows:

• We apply efficient compression algorithms in order to reduce the storage space

and minimally affect query response time to exploratory search queries in a telco

big data setting.

• We introduce a multi-resolution spatio-temporal index that supports the notion

of data decaying.

• We provide an extensive experimental evaluation using a variety of telco-specific

tasks to show the benefits of our approach.

3.2 Preliminaries

In this section we describe the special characteristics of telco big data and the telco

network that produces them.

30

Con
sta

nti
no

s C
os

ta

���

����

���	
��
��

�����

���

���

���
�������� �����������

����

��� ����

���	���
��

�����

��������

 ����
�!

�����

"
!#	
!#$

 ����%����

����!�

�����

������

��%���$$
��

���

������

��

��	����
!���������%$

���

&��

���

��%�	
���� �
		
�!

���

���������

���

��

���

Figure 3.2: The anatomy of a typical telco network architecture that generates telco big data

streams consumed by SPATE.

���

���

����

�������� �	
��� ������� ���������� ��������	
�� ��� 	�� ���������� �������������� ����������� ���

������������ ��������� ��� ��� �����	�� ������	�� ������ ��������

�������������� ��	����������� ������������� ���	���������

Figure 3.3: The relational schema of the telco’s data shows the first 10 out of ∼200 attributes

of the CDR data and all the attributes of the NMS and CELL data.

3.2.1 The Anatomy of a Telco Network

A telco network consists of the Radio and the Core Network, as shown in Figure 3.2.

A Radio Network operates in three different modes, namely GSM/GPRS, UMTS and

LTE. The Global System for Mobile Communications (GSM) is the standard developed

for voice communications in a digital circuit-switched cellular network (2G). To allow

for data communication, the GSM standard expanded over time to become a packet-

switched network via General Packet Radio Service (GPRS). The Universal Mobile

Telecommunications System (UMTS) extends GPRS to deal with increased data needs

and constitutes the third generation (3G) mobile cellular system that moves toward

an all-IP network. Finally, the Long-Term Evolution (LTE) standard was developed

to increase the capacity and speed using a different radio interface together with Core

Network improvements. It is sometimes called the fourth generation (4G) mobile cel-

lular system. Overall, all three modes interleave one another to offer the best possible

coverage to the users. In the future, fifth generation (5G) networks are expected to

improve the radio coverage, capacity, data rate and latency with technologies like fem-

tocells, millimeter waves, massive MIMO, beamforming and full duplex [80], i.e., mainly

advancing the Radio Network.

31

Con
sta

nti
no

s C
os

ta

The GSM operation is supported by base stations called Base Transceiver Stations

(BTS), which are controlled by Base Station Controllers (BSC). Each BTS is equipped

with transceivers for transmitting and receiving radio signals, antennas and components

for encrypting and decrypting the messages using the BSC. The BSC controls hundreds

of BTSs and is responsible for the allocation of radio channels, receives measurements

from the mobile phones, and controls hand-overs from BTS to BTS. It ultimately

combines the multiple low-capacity connections of its BTSs into combined “virtual”

connections that are sent over to the Mobile Switching Center (MSC) in the Core

Network. Finally, it provides data to the Operation Support Subsystem (OSS), whose

data will be described extensively in the next subsection.

The UMTS operation is supported by base stations, called Node B, which are

controlled by Radio Network Controllers (RNC). The RNC provides similar functions

to that of BSC, only for the UMTS network. RNC connects to the circuit-switched Core

Network through the Serving GPRS Support Node (SGSN). The RNC also provides

data to the OSS. The LTE operation is supported by base stations, called eNode B,

which can directly connect to the core network. The Mobility Management Entity

(MME) authenticates the wireless devices connected to eNode Bs and is involved in

hand-offs between LTE and previous standards.

The data generated by the network can be considered as data streams, which are

aggregated continuously on the telco’s data center for operational purposes but also

replicated to an exploration and visualization system like SPATE, for efficient indexing,

querying, visual exploration and analysis.

3.2.2 The Structure of Telco Big Data

Typical telco big data streams [14] consist of: (i) Business Supporting Systems (BSS)

data, which are used to run the telco business operations related to customers (e.g.,

orders, payment issues, revenues). BSS are associated with the following specific ty-

pes of data and stored in conventional SQL databases: User Base Behavior (UBB)

records, compliance records, billing records, as well as voice/message Call Detailed

Records (CDR). BSS data has only a limited volume of around 24GB per day (for a

2M+ clientele of a China telco) [14] and were widespread within telco operational and

analytical IT infrastructure even before the big data era; and (ii) Operation Suppor-

ting Systems (OSS) data, which is generated by the telco’s computer systems used to

32

Con
sta

nti
no

s C
os

ta

 0

 1

 2

 3

 4

 5

 50 100 150 200

E
nt

ro
py

Attributes

CDR: Entropy of Attributes

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

E
nt

ro
py

Attributes

NMS: Entropy of Attributes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

E
nt

ro
py

Attributes

CELL: Entropy of Attributes

Figure 3.4: The entropy of each attribute in (Left) CDR data, (Center) NMS data, and

(Right) CELL data.

manage its networks and stored in NoSQL big data stores. OSS comprises of data in

the following parts: Circuit Switch (CS), Packet Switch (PS) - often referred as Mo-

bile BroadBand (MBB) data - and Measurement Report (MR). CS data describe call

connection quality, PS data describe users’ web behavior (e.g., web speed, connection

success rate) and MR includes a variety of measurement reports (e.g., for estimating

user location [21]). By analyzing OSS one can observe important call connection qua-

lity statistics and user experience indicators. As a representative source of OSS, we use

Network Measurement System (NMS) reports that contain counters for call drop rates,

call duration measurements, antenna throughput. OSS data has a volume of around

2.2TB per day, occupying over 97% data volume of the entire dataset [14].

A CDR contains only metadata with fields that describe a specific telecommunica-

tion session (i.e., transaction), but does not contain the actual content of that tran-

saction. For example, a CDR describing a phone call may contain the phone numbers

of the calling and receiving party, the start time, end time, call type, and duration of

that call. CDR is the primitive data source for customer billing purposes. On the ot-

her hand, the OSS logs contain aggregated performance counters for the three different

network types. In general, the data is highly structured and comprises of relational

records based on a predetermined schema with a large number (∼ 200) of attributes

that take mostly nominal text and interval-scaled discrete numerical values (see Figure

3.3).

We analyzed a real anonymized dataset in an effort to understand what compression

ratios can be achieved. The time duration of the dataset was 1 week and it consisted of

about 1.7M CDR and 21M NMS records coming from approximately 300K users. The

total size of the dataset was 5GB. Based on Shannon’s source coding theorem [81], the

minimum number of bits needed to express a symbol given a set of possible symbols

S and their probabilities P is −∑
pi∈P log2 pi, and the maximum compression ratio

possible is inversely proportional to the entropy H = −∑
pi∈P pi log2 pi of the data. In

33

Con
sta

nti
no

s C
os

ta

Figure 3.4, we plot the entropy of the attributes included in three different file types

that arrive at a telco data center. Looking at the first plot that corresponds to CDR

data files, it immediately stands out that most attributes have an entropy smaller than

1 and some even have an entropy of 0. This confirms that high compression ratios can

be achieved. The attributes that have 0 entropy are optional attributes that usually

are left blank.

The data arrives at the data center in batches, called henceforth snapshot data

noted by di, in the form of horizontally segmented files every 30 minutes, a period

we call ingestion cycle or epoch. A snapshot di contains records of user activity (e.g.,

phone call completion) or network activity that took place at some timepoint within

the corresponding ingestion cycle, and records that express aggregate values over the

same ingestion cycle (e.g., call drops, throughput). Each snapshot di can be seen as a

table of records (rows) with a predefined set of attributes (columns).

Regarding the spatial information inherent within the telco network data, every

record is linked to a specific cell ID c. Each cell ID corresponds to a cell that covers a

specific area ac and is attached to a base station that has a known location. Therefore,

we can not talk about spatial data in the traditional sense, as each record is only

associated with a specific geographical cellular area ac that usually spans hundreds of

meters and estimating user location, as in [21], is outside the scope of this work.

3.3 SPATE: Overview

In this section we provide an overview of the SPATE architecture, which consists of

three layers (see Figure 3.1): the storage, the indexing and the application layer. We

start out with a problem formulation and then outline our solution.

3.3.1 Problem Formulation

Given a telco setting, where telco big data arrives periodically in batches, we want to:

(i) minimize the space needed to store/archive data; and at the same time (ii) minimize

response time for spatiotemporal data exploration queries and tasks.

Given storage space S needed for storing data before any compression is performed,

storage space Sc needed for the data after compression and storage space Si needed

for storing the access method information (e.g., index), we can measure the ratio of

34

Con
sta

nti
no

s C
os

ta

contribution towards the first objective as O1 = S/S ′, where S ′ = Sc + Si. Similarly,

given the query response time T over the uncompressed data and the query response

time Tci over compressed and indexed data, we can measure the ratio of contribution

towards the second objective of this work as O2 = T/Tci.

3.3.2 Our Solution

We express our solution in three layers overviewed next and described in detail in the

following sections:

Storage Layer implements the compression logic in SPATE. The Storage layer pas-

ses newly arrived network snapshots through a lossless compression process storing the

results on a replicated big data file system for availability and performance. This com-

ponent is responsible for minimizing the required storage space with minimal overhead

on the query response time. The intuition is to use compression techniques that yield

high compression ratios but at the same time guarantee small decompression times. We

particularly use GZIP compression that offers high compression/decompression speeds,

with a high compression ratio and has maximum compatibility with I/O stream libra-

ries in the big data ecosystem we use. The storage layer is basically only responsible

for the leaf pages of the SPATE index described in the next layer.

Indexing Layer is responsible for minimizing the query response time for data ex-

ploration queries. It maintains and uses a multi-resolution spatiotemporal index that

consists of the Incremence module and the Highlights module. The Incremence mo-

dule receives the newly arriving snapshot di and incorporates it into the index by

incrementing it on the right-most path. The Highlights module combines data from

the stored snapshots to create efficient representations of interesting events, called

“highlights”. These highlights are constructed for each day, month and year and the

end of each such period, respectively. The highlights of a month are constructed from

the daily highlights, and the highlights of a year are constructed from the monthly

highlights. Finally, this layer is also responsible for the gradual decay of the data. It

does so by pruning-off parts of the tree index by using the notion of data fungus we

will explain.

35

Con
sta

nti
no

s C
os

ta

Application Layer implements the querying module and the user interface. In our

case, we present the Data Exploration module, which receives a data exploration query

Q(a, b, w) and based on a, b, and w uses the index to combine the needed highlights

to answer the query. Finally, SPATE is equipped with an easy-to-use map-based web

interface that hides the complexity of the system and accesses all SPATE functionality.

Details of the web interface are described in Section 3.6.

3.4 SPATE: Storage (Compression) Layer

This section describes the lowest layer of the SPATE framework that relates to storage.

The SPATE storage layer takes care of compressing snapshots of telco streams as they

arrive periodically. In our setting, exploratory queries need to be able to perform exact

queries over recent data, therefore our compression mechanisms have to be lossless.

In the following subsections we provide basic compression terminology and the desi-

derata of our approach. We then provide a qualitative description of various lossless

compression libraries that are compared against in a microbenchmark that follows.

3.4.1 Terminology and Desiderata

We start out with some basic terminology and then provide our objectives. Given

a lossless compression codec c and a dataset d that occupies space S, the codec can

compress d into Sc space in compression time Tc1. The compression ratio, which quan-

tifies the reduction in data size produced by a data compression algorithm, is defined

by rc = S/Sc and depends on both c and d. Finally, c can decompress d back to its

original state in decompression time Tc2.

The first objective of SPATE relates to saving space. Particularly, the compression

mechanism needs to achieve a high compression ratio. On the other hand, the query

response time needs to be kept low (second objective), therefore the compression me-

chanism needs to have a small decompression time, since this overhead will be paid for

every query. It is important to notice that our approach is not particularly concerned

with the compression time, as the compression cost is only paid for a single snapshot

in each round. One final argument of concern is compatibility with existing stream

readers. For example, GZIP [82] is widely supported by various environments and its

usage provides maximum portability.

36

Con
sta

nti
no

s C
os

ta

3.4.2 Lossless Compression Libraries

In this section we overview some traditional and some emerging big data lossless com-

pression libraries, which can be linked directly to existing big data processing software

like SPATE. These libraries also have respective standalone command-line tools.

• GZIP [82]: is a traditional file format and a software library used for file com-

pression and decompression. It is based on the DEFLATE algorithm that uses

a combination of Lempel-Ziv coding (LZ77) [83] and Huffman coding. In LZ77,

repeated occurrences (in a look-ahead buffer) are replaced with pointers to a re-

cently encoded sequence (sliding window buffer). In this sense, it is a sequential

data compression technique with a dictionary that is constructed during the en-

coding process. On the contrary, in Huffman coding, a one-to-one symbol-to-code

map is constructed based on occurrence probabilities of symbols in a learning cor-

pus (i.e., entropy-based). The DEFLATE algorithm, defined through RFC1951,

is then a hybrid algorithm that consists of a series of blocks encoded in either

LZ77 or Huffman and preceded by a respective header.

• 7z [84]: is another traditional dictionary-based compression tool and library

based on the LZMA and LZMA2 algorithms. Like GZIP, it aims to build a good

statistical model or “dictionary” for the input data upon which bit sequences of

frequently encountered data can be compacted more densely.

• SNAPPY [85]: is a modern open-source compression and decompression library

by Google that aims for maximum compression speed as opposed to maximum

compression ratios. In SNAPPY, the compressed files are reported to be 20% to

100% bigger than other compression tools but compression and decompression

speeds are reported to be faster due to an optimized implementation. The library

has been used extensively by Google in its BigTable, MapReduce and internal

RPC systems.

• ZSTD [86]: is another modern open-source lossless compression/decompression

library developed by Facebook, which targets real-time compression scenarios.

ZSTD (aka Zstandard) uses new generation entropy coders HUFF0 (Huffman)

and FSE (Fine State Entropy), which are designed to perform well on modern

CPUs and belong to the Asymmetric Numeral Systems (ANS) family of entropy

37

Con
sta

nti
no

s C
os

ta

Table 3.1: Lossless Compression with Different Libraries in SPATE (Average results per

30-min snapshot)

XXXXXXXXXXXXXXXXXX
Objectives

Libraries
GZIP 7z SNAPPY ZSTD

Compress. Ratio (rc) 9.06 11.75 4.94 9.72

Compress. Time (Tc1) in sec 21.37 20.99 21.39 21.07

Decompress. Time (Tc2) in sec 0.11 0.12 0.13 0.11

algorithms. Compared to prior tools, ZSTD allows building domain-specific trai-

ning dictionaries.

3.4.3 Microbenchmark

Our objective in this subsection is to empirically assess the presented compression libra-

ries as part of the SPATE storage layer, which stores snapshots in a directory hierarchy.

Our dataset includes 200 snapshots from the 5GB anonymized and uncompressed telco

dataset that comprises of 1.7M CDR and 21M NMS records. Our microbenchmark is

performed on top of an HDFS v2.5.2 filesystem (more details about the testbed are pro-

vided in Section 3.7). We particularly focus on the three common metrics: compression

ratio rc, compression time Tc1 and decompression time Tc2.

Table 3.1 shows the results of our evaluation. Our first observation is that rc is

similarly satisfactory for GZIP, 7z and ZSTD. On the other hand, SNAPPY shows

that its rc is only half as good as the rest of the libraries so it might not be a good

alternative for SPATE. The Tc1 and Tc2 results relate to compression and decompression

time, respectively, for a single snapshot and are measured in seconds. Looking at these

numbers we clearly observe that Tc1 takes always more time than Tc2, which is very

typical for compression algorithms. Looking at the costs more carefully, we observe that

the Tc1/Tc2 ratio is about 200 instead of the more typical 2. This is attributed to the

fact that SPATE performs many additional CPU-bound functions in each compression

round, such as parsing. Finally, SNAPPY does not expose any speed benefits overall,

as the slow I/O is hiding its benefits.

As a conclusion, we denote that the SPATE storage layer can operate with a va-

riety of libraries, each of them coming with different performance trade-offs. In our

38

Con
sta

nti
no

s C
os

ta

implementation and evaluation, we chose the GZIP library, which was readily availa-

ble from within the java.util.zip core libraries and was also supported readily by

certain parts of the application layer described in Section 3.6.

3.5 SPATE: Indexing (Decaying) Layer

The Indexing layer provides the structures for efficient data exploration but also invokes

the decaying process. Particularly, it is responsible for augmenting the upcoming

snapshots on disk with the incremence module, identifying interesting event summaries

with the highlights module and decaying the oldest leaf nodes of the index, i.e., by

pruning-off parts of the tree index using the so called data fungus. In the remainder

of this section, we outline the three modules of the SPATE indexing layer.

3.5.1 Incremence Module

This module is responsible for the incremental construction of a multi-resolution spatio-

temporal index as data snapshots are ingested by SPATE. Our index has 4 levels of

temporal resolutions (i.e., epoch (30 minutes), day, month, year), with each leaf level

containing 2 spatial dimensions (x,y) and N additional domain-specific dimensions (e.g.,

CDR and NMS).

Figure 3.5 shows an example index in SPATE. As we can see, the root node points

to year-nodes, each representing a single year. Each year node points to 12 month-

nodes, each representing a single month. Similarly, the month nodes point to their

corresponding day-nodes, and each day node points to its corresponding 48 snapshot

leaves.

Every time a new snapshot arrives, it is compressed by the storage layer and then

the temporal index is incremented on its right-most path. If the new snapshot belongs

to an incomplete day, it is just added as a leaf under the existing right-most day-node.

Else, we first need to add a new dummy day-node. If this new day is the first day of

a new month, we also need to add a new dummy month-node. Similarly, if the new

month is the first month of a new year, we first need to add a new dummy year-node.

Each leaf node could store an additional spatial index (e.g., R-tree or quad-tree

variant) to speed up data exploration queries within a snapshot. For example, a query

like: “find the aggregates regarding some object of interest in a given spatial bounding

39

Con
sta

nti
no

s C
os

ta

���

�

���� ���� ��������

����	

��

�����

���

���

���

���

��� ���

���

����

���

	

��� ��� ��� ��� ��� ��� ��� ���

���

�� �� �� �� �� �� �� ��

��� ��� ��� ��� ��� ���

Figure 3.5: The multi-resolution spatio-temporal index in SPATE. Our index has 4 levels of

temporal resolutions with each leaf level containing 2 spatial dimensions (x,y) and N additional

domain-specific dimensions (e.g., related to CDR and NMS). The red line denotes the decaying

data fungus that evicts progressively the oldest leaf and non-leaf nodes of the tree.

rectangle for a specific time range” could benefit from such an embedded spatial index

after reaching the leaf level of the index. Such an index would allow to quickly scan

the attributes stored per snapshot. However, snapshots are usually not very large

(i.e., have a 30 min timespan), thus an additional index would only provide modest

additional query response time benefits at the price of additional storage space that

we aim to minimize.

3.5.2 Highlights Module

To enable interactive data exploration we compute “highlights” from the underlying

raw data for each internal node of the temporal index structure. Such highlights

are effectively materialized views to long-standing queries of users (e.g., the drop-

call counters, bandwidth statistics), which are executed in a periodic manner as the

snapshots stream to SPATE. In this sense, the highlights can be perceived as an OLAP

cube whose construction cost is amortized over time. Building the highlights cube

enables the application layer, we will describe next, to swiftly go over the generated

statistics for visualization purposes. Consequently, users can drill down or roll up to

the desired aggregates without additional delays.

Below we outline the operation of the highlights module: At the end of each day,

when all the snapshots of that day have been added as leaves, the highlights of that

40

Con
sta

nti
no

s C
os

ta

day are calculated from the compressed data of its snapshots, and are stored in the

day-node. They are also forwarded to the parent month-node, which increments its

own monthly highlights. Similarly, at the end of each month/year, the highlights of

that month/year are calculated from the highlights of its days/months and are stored

in the month/year-node and forwarded to its parent node, which in-turn increments its

own highlights. This way the root will store the highlights of all the completed years.

The computation is based on the frequency of occurrence of a value in the data.

Frequent values with an occurrence frequency above threshold θ are treated as no-

highlights, whereas values with an occurrence frequency below threshold θ are con-

sidered highlights. A highlight is described by its type (in case of categorical data)

or its peaking point (in case of continuous numerical values) and its duration. It is

important to observe that for each level of resolution (day, month, year) a separate

frequency threshold θi can be used, e.g., lower thresholds for higher levels resolution.

3.5.3 Decaying Module

The last module of the indexing layer deals with decaying of compressed snapshot

data and aggregated highlights. Decaying refers to the progressive loss of detail in

information as data ages with time until it has completely disappeared. Kersten refers

to the existence of data fungus in [74], e.g., “Evict Grouped Individuals”, which helps

in the decaying processing. In our work, we chose a data fungus, we coin “Evict Oldest

Individuals”, as it helps us to deal more pragmatically with telco network signals, where

more recent signals contain more important operational value that needs to be retained

fully.

We particularly devise a scheme where operators chose the rate at which the tem-

poral decaying policy becomes effective. The red line in Figure 3.5, denotes one hypot-

hetical such policy that aims to retain up to one year of data exploration with full

resolution along with yearly progressive decay. This policy is translated into a continu-

ous decaying process where leaf and non-leaf entries of the spatio-temporal index are

purged from replicated storage in a sliding window manner.

The result of the decaying process is that the data exploration warehouse can

retain the highest possible data exploration resolution for predefined aggregate queries

over extremely long time windows without consuming enormous amounts of storage.

Otherwise, the storage overheads would soon enforce administrators to delete large

41

Con
sta

nti
no

s C
os

ta

quantities of telco big data traces, purging at the same time the hope to learn valuable

insights from big data at the macroscopic scale.

3.5.4 Indexing Schemes Comparison

OceanST [3] uses a 3-level partitioning scheme. The first level, named bucket level,

partitions tuples according to the hash values of user-id as well as provides coarse ranges

of time. The second level, named region layer, creates a spatial index on location (long,

lat). The third level, named block layer, partitions the previous level in finer ranges

of time and actual data in 64MB blocks (i.e., HDFS v1 block sizes). There are two

additional data structures to support advanced and approximate queries. The in-block

index aims to refine the spatiotemporal granularity of the index structure. The inverted

index indicates the index leaf nodes, which are 3-dimensional quadtree associated with

the attribute value of interest. On the other hand, SHAHED [70] employs a multi-

resolution spatio-temporal index for efficient data indexing and retrieval. The indexing

process is taking place at the end of the uncertainty module, where the new cleaned

data is added to the current spatio-temporal index structure. Periodic monthly and

yearly execution compacts the index structures for efficiency. The index consists of

two modes: (i) temporal mode, where the data is organized in three different temporal

resolutions; and (ii) spatial mode, where the data is stored in the form of an aggregate

quadtrees. The leaf level of the spatial index partition is divided spatially using a

uniform grid.

SPATE indexing scheme deploys a multi-resolution spatio-temporal index with com-

pression (described in Section 3.5.1) and decaying (described in Section 3.5.3) at the

leaf levels that none of the competing approaches provide. Additionally, SPATE pro-

vides a multi-granular highlight component that allows interactive data exploration

queries (described in Section 3.5.2).

3.6 SPATE: Application Layer

In this section we present the Application layer that holds components responsible for

receiving user queries and presenting the results. These are implemented in the query

exploration interfaces, according to a query evaluation process we outline.

42

Con
sta

nti
no

s C
os

ta

3.6.1 Query Evaluation and Processing

This module receives a data exploration query and accesses the index maintained by

the Indexing layer of SPATE.

In our setup, a data exploration query Q(a, b, w) consists of an attribute selection a,

a spatial bounding box b, and a temporal window of interest w. A b can cover an area a

few hundreds of square meters up to several hundreds of square kilometers. Similarly,

a temporal window can span a few hours to several months or even years. A query

Q(a, b, w) can be expressed as “Explore the values of a within the spatial box b and

temporal window w”. Such queries have direct applicability to interactive visualization

tools used for data exploration that present data overlaying a geographical map. The

users zoom into the map (thus defining the b) and select the attributes (a) and the

time period (w), for which they would like to observe the query results as snapshots or

as a video (i.e., “playback highlights in fast-forward”).

Given a data exploration query Q(a, b, w) the index is accessed to find the temporal

node whose period completely covers w. For example, if the temporal window is from

15 September 2016 until 15 October 2016, the index is accessed up to the year level and

the highlights of year-node 2016 are retrieved. Once the correct temporal node is found,

all highlight summaries or actual available data whose spatial bounds completely cover

b are then retrieved.

SPATE might retrieve records for a larger period than the one requested. However,

this is not a problem given that users very often like to have a quick glance to the

period before and after the chosen window. In this case, our decision to retrieve a

larger period serves as an implicit prefetching mechanism. When users decide to focus

on a smaller window within w, it is considered as a data exploration query Q(a, b, w′)

with |w′| < |w|, which can be served directly from the cache of the user interface that

is explained in the Chapter 7.

3.7 Experimental Testbed and Methodology

To validate our proposed ideas and evaluate SPATE, we have implemented a trace-

driven experimental testbed on which we conducted a comprehensive set of experi-

ments. Particularly, we compare SPATE against two competing approaches for three

different metrics and eight different usage scenarios.

43

Con
sta

nti
no

s C
os

ta

3.7.1 Compared Frameworks

Our aim in this experimental evaluation is to compare the following three frameworks:

• RAW: This is the default solution that stores the telco snapshots as data files

on the HDFS file system without any compression, indexing or decaying.

• SHAHED: This is a MapReduce-based system for querying and visualizing

spatio-temporal satellite data proposed in [70]. SHAHED is appropriate for on-

line querying and visualization, but does not deploy compression or decaying in

its internal structures. To allow fair comparison, we isolated the spatio-temporal

aggregate index of SHAHED, part of SpatialHadoop 2.4 [58], and executed it

along with the other frameworks in Spark [87].

• SPATE: This is the framework proposed in this work. SPATE aims to minimize

the usage of disk space by retaining fast spatio-temporal querying means.

3.7.2 Experimental Testbed

Our experimental testbed is implemented on top of a Hadoop Distributed File System

(HDFS) [88] along with Apache Hive [88] for online querying and Apache Spark [87] for

offline (i.e., data-intensive distributed in-memory) data processing. Our testbed stores

data in either text format (for RAW and SHAHED) or compressed (for SPATE). We

use an HDFS file system with 64MB block size and default replication 3. In order

to streamline the trace-driven experimental evaluation process, we have formulated

the evaluation tasks as individual Scala programs submitted directly to the Spark

computation master. In this way, we managed to circumvent additional latencies and

overheads introduced by the query exploration interfaces introduced in Section 3.6.

Our evaluation is carried out on the DMSL-UCY laboratory VCenter IaaS data-

center, a private cloud, which encompasses 5 IBM System x3550 M3 and HP Proliant

DL 360 G7 rackables featuring single socket (8 cores) or dual socket (16 cores) Intel(R)

Xeon(R) CPU E5620 @ 2.40GHz, respectively. The datacenter is managed through

a VMWare vCenter Server 5.1 that connects to the respective VMWare ESXi 5.0.0

hosts. The computing cluster, deployed over our VCenter IaaS, comprises of 4 Ubuntu

14.04 server images, each featuring 8GB of RAM with 2 virtual CPUs (@ 2.40GHz).

The images utilize slow 7.2K RPM RAID-5 SAS 6 Gbps disks, available through a

44

Con
sta

nti
no

s C
os

ta

IBM storage system DS3512, formatted with VMFS 5.54 (1MB block size). Each node

features the following frameworks, i.e., Hadoop v2.5.2, Spark 1.6.0 and Hive 2.0.

3.7.3 Datasets

We utilize an anonymized dataset of telco traces comprising of 1.7M call detail records

(CDR), 21M network measurements records (NMS) and 3660 cells (CELL) coming

from 1192 2G, 3G and LTE antennas distributed in an area of about 6000 km2. The

data traffic is created from about 300K users and has a total size of ∼5GB. To evaluate

the ingestion and querying time of our propositions for various day periods, we have

generated the following four large datasets based on the arrival time of the snapshots:

• Morning Dataset: was generated by extracting the data that have time arrival

between 5 am to 12 pm (noon).

• Afternoon Dataset: was generated by extracting the data that have time ar-

rival between 12 pm to 5 pm.

• Evening Dataset: was generated by extracting the data that have time arrival

between 5 pm to 9 pm.

• Night Dataset: was generated by extracting the data that have time arrival

between 9 pm to 5 am.

In order to better understand the behavior of our real dataset, we have additionally

partitioned the dataset into seven zones at the granularity of week days (i.e., Monday

to Sunday).

3.7.4 Metrics

We utilize three metrics, the first two targeting the storage and indexing process and

the third one the data querying and exploration process, as follows:

• Ingestion Time: this measures the cost incurred for storing each arriving snaps-

hot and incrementing the index. Given a compression library c and a data snaps-

hot d, the ingestion time includes the compression time Tc1 needed to compress

d and the time needed to run the Incremence module that adds the data into our

spatiotemporal index.

45

Con
sta

nti
no

s C
os

ta

 10

 20

 30

 40

 50

 60

Morning Afternoon Evening Night

In
ge

st
io

n
tim

e
(s

ec
)

INGESTION: Ingestion time per snapshot
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Figure 3.6: Ingestion time: We compare SPATE against RAW and SHAHED on real data

partitioned by day period.

• Space: this measures the total space S ′ that data and index occupy throughout

the whole distributed system in Megabytes (MB). Space S ′ is calculated after all

incoming snapshots have been compressed and ingested.

• Response Time: this measures the response time for answering a query in

seconds (sec). The time is being calculated from the query submission until the

answer is calculated. This includes the accessing of the spatiotemporal index, the

decompression of the retrieved data and the presentation of the results. Times

are averaged over five iterations measured in seconds.

3.7.5 Data Exploration Tasks

Our experimental evaluation has been conducted based on an a diverse mix of OLTP,

OLAP, privacy sanitization, statistics, data mining, and Machine Learning (ML) wor-

kloads. All aforementioned workloads are driven by a telco-specific domain task. We

particularly formulated the following eight tasks segmented into two groups: (i) T1-T5

represent basic operational and analytical queries as well as privacy sanitization tasks

that were executed without Spark parallelization; and (ii) T6-T8 represent heavier

46

Con
sta

nti
no

s C
os

ta

computational tasks that were executed with Spark parallelization.

T1. Equality: This task aims to retrieve the download and upload bytes for a reque-

sted snapshot, e.g., SELECT upflux, downflux FROM CDR WHERE ts=‘‘201601221530’’;

T2. Range: this aims to retrieve the download and upload bytes for a requested

time window, e.g., SELECT upflux, downflux FROM CDR WHERE ts>=‘‘2015’’ AND

ts<=‘‘2016’’;

T3. Aggregate: this aims to retrieve the NMS counters for the drop calls of each cell

tower and calculate the drop call rate for each cluster of cells, e.g., SELECT cellid,

SUM(val) FROM NMS WHERE ... GROUP BY cellid;

T4. Join: this query involves a self-join among two CDR tables. Particularly, it

aims to identify the products that have changed their location (as identified by the cell

towers).

T5. Privacy: This task retrieves and anonymizes the result set based on the k-

anonymity model proposed in [56] through the ARX [89] Java library. Particularly, it

generates a k-anonymized dataset by generalizing, substituting, inserting, and remo-

ving information as appropriate in order to make the quasi-identifiers indistinguishable

among k rows.

T6. Statistics: This task aims to generate a variety of multivariate statistics using

Spark’s Machine Learning (ML) library (i.e., Statistics.colStats(observations)).

The goal is to calculate the column-wise max, min, mean, variance, number of non-zeros

and the total count.

T7. Clustering: This task aims to cluster a specific range of snapshots using the

k-means algorithm in Spark based on the CDR and NMS data.

T8. Regression: This task estimates relationships among the attributes in our data-

set using linear regression over a specific temporal window. Spark’s Machine Learning

(ML) library is used (i.e., regression.LinearRegression).

3.8 Experimental Evaluation

In this section we carry out an extensive experimental evaluation that aims to uncover

the performance properties of our propositions.

47

Con
sta

nti
no

s C
os

ta

 0.1

 1

 10

 100

Morning Afternoon Evening Night

S
pa

ce
 (

G
B

)

SPACE: Disk space for the whole real dataset

RAW
SHAHED

SPATE

Figure 3.7: Disk space: We compare SPATE against RAW and SHAHED on real data

partitioned by day period.

3.8.1 Performance over varying day-periods

This experimental series studies the effect that the various day periods (i.e., morning,

afternoon, evening, night) have on the ingestion time and disk space needed to index

and store the incoming snapshots of both NMS and CDR data.

In Figure 3.6 we see that SPATE has the slowest ingestion time, although still

comparable (i.e., a maximum of 1.25x slower). We also observe that the data load per

snapshot affects the ingestion time only negligibly, assuming that the data load varies

among day periods. Even though SPATE is somewhat slower during ingestion, its

benefits are manifested in Figure 3.7, where we observe that SPATE requires an order

of magnitude less disk space compared to the other techniques. This performance is

also steady with respect to the varying data loads associated with each different day

period.

We conclude that SPATE achieves a large improvement in expensive disk space re-

quirements trading-off a negligible overhead on the ingestion time. Since each snapshot

arrives only every 30 minutes (i.e., 1800 seconds) and the ingestion completes within

two orders of magnitude less time, we can claim that the small delay in ingestion time

is acceptable.

48

Con
sta

nti
no

s C
os

ta

 10

 20

 30

 40

 50

 60

Mon Tue Wed Thu Fri Sat Sun

In
ge

st
io

n
tim

e
(s

ec
)

INGESTION: Ingestion time per snapshot
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Figure 3.8: Ingestion time: We compare SPATE against RAW and SHAHED on real data

partitioned by day of week.

3.8.2 Performance over days of the week

This experimental series studies the effect that the various week days (i.e., Monday

through Sunday) have on the ingestion time and disk space needed to index and store

the incoming snapshots of both NMS and CDR data. In Figure 3.8, we see again that

SPATE has the slowest ingestion time, although still comparable (i.e., a maximum of

1.2x slower this time). We also observe that the data load per snapshot affects the

ingestion time only negligibly, assuming that the data load varies between days. In

Figure 3.9, we observe that SPATE requires again an order of magnitude less disk

space. This performance is also steady with respect to the varying data loads among

week days. The conclusion here is similar, SPATE achieves a large improvement in

disk space, trading-off a negligible overhead on the ingestion time.

3.8.3 Response time

This experimental series studies the response time each ingestion framework achieves

for the tasks described in Section 3.7.5 using the CDR dataset.

In Figure 3.10, we present the query response time for the simpler tasks T1-T5, all

49

Con
sta

nti
no

s C
os

ta

 0.01

 0.1

 1

 10

Mon Tue Wed Thu Fri Sat Sun

S
pa

ce
 (

G
B

)

SPACE: Disk space for the whole real dataset

RAW
SHAHED

SPATE

Figure 3.9: Disk space: We compare SPATE against RAW and SHAHED on real data

partitioned by day of week.

of which either involve a single scan or a nested loop on the data stored on HDFS. We

observe that SPATE is only slightly slower than SHAHED for T1-T3 and T5 (i.e., from

0.1s to 3s), which is due to the fact that SPATE requires time to decompress the files

stored on the HDFS before returning the results. On the other hand, for the join task

T4, SPATE achieves a 4-5x speed up compared to SHAHED, mainly due to the fact

that T4 involves a nested loop and that such a loop is much faster in SPATE where

the HDFS input streams are already compressed in GZIP.

In Figure 3.11, we present the query response time for the heavier tasks T6-T8 in

log-scale, which are executed with Spark parallelization on. Our first observation is

that the query response time of all three tasks are now in the order of many thousand

seconds, but SPATE remains close the running time of SHAHED in all cases. The

second observation is that some tasks, such as the k-means computation in T7 and

the Linear Regression in T8, the query response time benefits for SPATE are not so

apparent. This happens as both T7 and T8 are CPU-bound rather than I/O-bound

problems and as such, the existence of compressed input streams is not helping the

query response time significantly. The significant benefit of SPATE over the other two

frameworks for T7 and T8 are still of course that it requires significantly less storage

50

Con
sta

nti
no

s C
os

ta

(i.e., 10x reduction). For all eight tasks, SPATE requires the least storage space, i.e.,

0.49GB vs. 5.37GB and 5.32GB required by SHAHED and RAW, respectively.

3.9 Related Work

In this section we present existing research on telco big data and on compressing

incremental archives. These works are not directly comparable to SPATE, but are

presented for completeness.

3.9.1 Telco Big Data Research

Telco big data research falls in the following categories: (i) real-time analytics and

detection; (ii) experience, behavior and retention analytics; and (iii) privacy. There is

also traditional telco research not related to big data, but it comprises of topics related

to business support services (BSS) data in relational databases.

Real-time Analytics and Detection: Zhang et al. [13] developed OceanRT, which

was one of the first real-time telco big data analytic demonstrations. Yuan et al. [3] pre-

sent OceanST which features: (i) an efficient loading mechanism of ever-growing telco

MBB data; (ii) new spatiotemporal index structures to process exact and approximate

spatiotemporal aggregate queries. Iyer et al. [15] present CellIQ to optimize queries

such as “spatiotemporal traffic hotspots” and “hand-off sequences with performance pro-

blems”. It represents the snapshots of cellular network data as graphs and leverages

on the spatial and temporal locality of cellular network data. Zhu et al. [21] deal with

the usage of telco MR data for city-scale localization, which is complementary to the

scope of our work.

Braun et al. [49] develop a scalable distributed system that efficiently processes

mixed workloads to answer event stream and analytic queries over telco data. Bouil-

let et al. [51] develop a system on top of IBM’s InfoSphere Streams middleware that

analyzes 6 billion CDR per day in real-time. Abbasoğlu et al. [90] present a system for

maintaining call profiles of customers in a streaming setting by applying scalable dis-

tributed stream processing. All aforementioned efforts have a similar scope to SPATE,

but don’t incorporate concepts of compression or decaying of data.

Experience, Behavior and Retention Analytics: Huang et al. [14] empirically

demonstrate that customer churn prediction performance can be significantly impro-

51

Con
sta

nti
no

s C
os

ta

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

T1 T2 T3 T4 T5

R
es

po
ns

e
tim

e
(s

ec
)

TASKS: Response time
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Figure 3.10: Response time for simpler tasks T1-T4: We compare SPATE against RAW

and SHAHED on the complete real dataset.

ved with telco big data. Although BSS data have been utilized in churn prediction

very well in the past decade, the authors show how with a primitive Random Forest

classifier telco big data can improve churn prediction accuracy from 68% to 95%. Luo

et al. [16] propose a framework to predict user behavior involving more than one mil-

lion telco users. They represent users as documents containing a collection of changing

spatiotemporal “words” that express user behavior. By extracting the users’ space-

time access records from MBB data, they learn user-specific compact topic features

that they use for user activity level prediction. Ho et. al. [91] propose a distributed

community detection algorithm that aims to discover groups of users that share similar

edge properties reflecting customer behavior. Iterative learning algorithms are not the

primary target for SPATE, but can be supported at similar costs to RAW data (i.e.,

decompression occurs in first iteration).

Privacy: Hu et al. [57] study Differential Privacy for data mining applications over

telco big data and show that for real-word industrial data mining systems the strong

privacy guarantees given by differential privacy are traded with a 15% to 30% loss

of accuracy. Privacy and confidentiality are critical for telcos’ reliability due to the

highly sensitive attributes of user data located in CDR, such as billing records, calling

52

Con
sta

nti
no

s C
os

ta

 1

 10

 100

 1000

 10000

 100000

 1x106

T6 T7 T8

R
es

po
ns

e
tim

e
(s

ec
)

TASKS: Response time
(Arrival rate = 30 mins)

RAW
SHAHED

SPATE

Figure 3.11: Response time for heavier tasks T5-T8: We compare SPATE against RAW

and SHAHED on the complete real dataset.

numbers, call duration, data sessions, and trajectory information. SPATE deals with

privacy-aware data sharing as a functionality for next generation smart applications.

3.9.2 Compressing Incremental Archives

Domain-specific compression techniques have previously been proposed, e.g., for com-

pressing spatiotemporal climate data [73], text document collections [92], scientific

simulation floating point data [76–79], and floating point data streams [93]. None of

these prior works has been proposed for distributed systems and can not be directly

applied to telco data, which mostly contains generic string and integer values.

Works [94–96] have studied differential compression techniques and the trade-off

between compression ratio and decompression times for incremental archival data. Dif-

ferential compression is a topic we will investigate more carefully in the future as it

can reduce the storage layer overheads in each acquisition cycle.

53

Con
sta

nti
no

s C
os

ta

3.10 Summary

In this chapter, we proposed an innovative telco big data exploration stack, coined

SPATE, whose objectives are two-fold: (i) minimizing the storage space needed to

incrementally retain data over time; and (ii) minimizing the response time for spatio-

temporal data exploration queries over recent data. We have measured the efficiency

of our proposition using a real telco trace and a variety of telco-specific tasks, such as

OLAP and OLTP querying, clustering, regression and privacy sanitizing, and showed

that we can achieve comparable response times to the state-of-the-art with an order of

magnitude less storage space.

54

Con
sta

nti
no

s C
os

ta

Chapter 4
Decaying Telco Big Data with Data Postdiction

In this chapter, we present a novel decaying operator for Telco Big Data (TBD), coined

TBD-DP (Data Postdiction). Unlike data prediction, which aims to make a statement

about the future value of some tuple, our formulated data postdiction term, aims to

make a statement about the past value of some tuple, which does not exist anymore

as it had to be deleted to free up disk space. TBD-DP relies on existing Machine

Learning (ML) algorithms to abstract TBD into compact models that can be stored

and queried when necessary. Our proposed TBD-DP operator has the following two

conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML

algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in

an online phase, it uses the TBD-DP tree to recover data within a certain accuracy.

In our experimental setup, we measure the efficiency of the proposed operator using a

∼10GB anonymized real telco network trace and our experimental results in Tensorflow

over HDFS are extremely encouraging as they show that TBD-DP saves an order of

magnitude storage space while maintaining a high accuracy on the recovered data.

4.1 Introduction

In recent years there has been considerable interest from telecommunication companies

(telcos) to extract concealed value from their network data. Consider for example

a telco in the city of Shenzhen, China, which serves 10 million users. Such a telco is

shown to produce 5TB per day [13] (i.e., thousands to millions of records every second).

Huang et al. [14] break their 2.26TB per day Telco Big Data (TBD) down as follows:

(i) Business Supporting Systems (BSS) data, which is generated by the internal work-

flows of a telco (e.g., billing, support), accounting to a moderate of 24GB per day and;

55

Con
sta

nti
no

s C
os

ta

Deleted Recorded Predicted

t = now

Data Prediction

Data Postdiction

Future

Decay window

Figure 4.1: Data Prediction (top): aims to find the future value of some tuple. Data

Postdiction (bottom): aims to recover the past value of some tuple, which has been deleted

to reduce the storage requirements, using a ML model.

(ii) Operation Supporting Systems (OSS) data, which is generated by the Radio and

Core equipment of a telco, accounting to 2.2TB per day and occupying over 97% of the

total volume. Additionally, in [18] it is shown that the amount of storage doubles every

year and storage media costs decline only at a rate of less than 1/5 per year. Finally,

high-availability storage mandates low-level data replication (e.g., in HDFS the default

data replication is 3).

Consequently, we claim that the vision of infinitely storing all IoT-generated velocity

data on fast high-availability or even deep storage will gradually become too costly and

impractical for many analytic-oriented processing scenarios.

To this end, data decaying [74, 97] (or data rotting) has recently been suggested

as a powerful concept to complement traditional data reduction techniques [98, 99],

e.g., sampling, aggregation (OLAP), dimensionality reduction (SVD, DFT), synopsis

(sketches) and compression. Data decaying refers to “the progressive loss of detail in

information as data ages with time”. In data decaying recent data retains complete

resolution, which is practical for operational scenarios that can continue to operate

at full data resolution, while older data is either compacted or discarded [17, 74, 97].

Additionally, the decaying cost can be amortized over time, matching current trends

in micro-batching (e.g., Apache Spark). Unfortunately, data decaying currently relies

on rather straightforward methodologies, such as rotational decaying (i.e., FIFO) [97],

or decaying based on specific queries [17] rather than the complete dataset itself. Our

aim in this work is to expand upon these developments to provide more intelligent and

generalized decaying operators.

In this chapter, we present a novel decaying operator for Telco Big Data, coined

TBD-DP (Data Postdiction) (see Figure 4.1). Unlike data prediction, which aims to

make a statement about the future value of some tuple in a TBD store, data postdiction

56

Con
sta

nti
no

s C
os

ta

���

����

���	
����
�� ������������
����������

��������

�
����������

�����	��
������� ����� ��
���
�

!�"� ��������� #��$���$% !�	��&��	�

D

d
p

d
p

.
.
.

D’md md md md

cl
i

cl
i

cl
i

r
t

r
t

.

.

.

t

TBD-DP

c

r

c

r

c

r

B

Figure 4.2: System Model: The TBD-DP operator works on the storage layer of a typical

TBD stack and abstracts the incoming data signals (D) into abstract models (md) that are

organized in a tree data structure (B).

aims to make a statement about the past value of some tuple that does not exist

anymore, as it had to be deleted to free up space. TBD-DP relies on existing Machine

Learning (ML) algorithms to abstract TBD into compact models that can be stored

and queried when necessary. Our proposed TBD-DP operator has the following two

conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical ML

algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in

an online phase, it uses the TBD-DP tree to recover data with a certain accuracy.

We claim that the LSTM model is capturing the essence of the past through its short

and long-term dependencies, similarly to how the brain retains both recent information

and important old information at a high resolution.

To understand the operational aspects of our proposed TBD-DP operator, consi-

der Figure 4.2, where we show how incoming telco data signals are absorbed by the

TBD architecture and stored on high-availability and fast storage (i.e., D). This helps

to carry out operational tasks (e.g., alerting services and visual analytics) with full

data resolution. Subsequently, in the first phase of TBD-DP, we utilize a specialized

Recurrent Neural Network (RNN) composed of Long Short Term Memory (LSTM)

units, which has the ability to detect long-term correlations in activity data and the

trained model has a small disk space footprint [100]. This enables TBD-DP to utilize

minimum storage capacity of the decayed data by representing them with LSTM mo-

dels on the disk media (D’) and provide real-time postdictions with high accuracy in

57

Con
sta

nti
no

s C
os

ta

a subsequent recovery phase, which will be initiated on-demand (i.e., whenever some

high-level operator requests the given data blocks).

The contributions of this work are summarized as follows:

• We propose a TBD decay operator that deploys the notion of data postdiction

using off-the-shelf LSTM-based prediction models.

• We propose the DP-tree, which is a hierarchical index to organize the generated

models in a data structure to enable the efficient recovery of data when necessary.

• We measure the efficiency of the proposed operator using a ∼10GB anonymized

telco network trace, showing that TBD-DP can be a premise for efficient TBD

analytics in the future. We also summarize a prototype architecture and user

interface we have developed for the management of TBD.

4.2 System Model and Problem Formulation

This section formalizes our system model, assumptions and problem. The main symbols

and their respective definitions are summarized in Table 4.1.

A typical Telco system, illustrated in Figure 4.2, is composed of the Telco network,

which is responsible for providing telecommunication services, and a Telco data ma-

nagement system, such as SPATE [17], which is responsible for the efficient analytical

exploration of Telco datasets. The data arrives at the data center in batches, called

henceforth data snapshots noted by dp, in the form of horizontally segmented files

within an ingestion period p. A snapshot dp contains multiple records rt created at a

certain timestamp t. Each record rt consists of a predefined set of attributes including

the cell id cr that represents the spatial information inherent within the Telco network.

Particularly, each cell id cr corresponds to a cell that covers a geographical cellular

area that usually spans hundreds of meters or even kilometers. Finally, the cells are

spatially grouped into clusters cli, i = i . . . k for facilitating the postdiction process by

creating a model mdi, i = i . . . k for each cli as this will be explained in the next section.

4.2.1 Problem Formulation

Research Goal. Given a Telco setting, this work aims at achieving a pre-specified

decaying of TBD with minimum additional storage space capacity and being able to

58

Con
sta

nti
no

s C
os

ta

Table 4.1: Summary of Notation

Notation Description

p, dp, D Ingestion period, data snapshot of one p, set of all dps

t, rt Timestamp within an ingestion cycle, record at t

C, cr, cli Set of all cell towers, Cell of record r, cluster of records i = 1, . . . , k

mdi,MD LSTM model of cluster cli, set of all models

f Decaying factor: percentage of data to be removed

recover the decayed data accurately and efficiently.

The efficiency of the proposed techniques to achieve the above goal is measured by the

following objectives:

Definition 4.2.1. Storage Capacity (S) is the total storage space required for achie-

ving decaying of data based on a pre-specified decaying factor f .

Definition 4.2.2. Normalized Root Mean Square Error (NRMSE) is the per-

centage of the correctly recovered decayed data. It is measured by the normalized

root-mean-square error, which is the normalized difference between the actual data

(x1,t) and the predicted data (x2,t), where t is a discrete time point and ymax, ymin the

maximum and minimum observed differences, formally:

NRMSE =

√
1
n

∑n
t=1(x1,t − x2,t)2

(ymax − ymin)

4.3 The TBD-DP operator

In this section, we introduce the proposed TBD-DP operator and discuss its two in-

ternal algorithms, namely, the Construction (data model creation) and the Recovery

(data recreation), which capture its core functionality as illustrated in Figure 4.3.

The Construction algorithm can be triggered either by the user, or automatically

when the total storage capacity reaches a certain level. In both cases, the data are

initially clustered based on spatial characteristics and then ordered based on temporal

information. Finally, postdiction models based on the LSTM machine learning appro-

ach are generated for each cluster and the real data is decayed by f%. The Recovery

59

Con
sta

nti
no

s C
os

ta

TBD-DP

tt - m t - d

B

f

Decayed D’

Used Disk Space D Unused Space

t+n

Load

Store

Construction

w/ TBD-DP
w/o TBD-DP

r
t

r
t

.

.

.

t

Recovery

Recovered

Data

Figure 4.3: TBD-DP Operator Overview.

algorithm utilizes the postdiction models for retrieving the decayed data by adopting

a proposed DP-tree based algorithm.

4.3.1 Construction Algorithm

Algorithm 1 outlines the major steps of the construction algorithm. Initially, the

decaying factor f specifies the percentage of the whole dataset D that will be decayed,

and consequently the decayed subset D′ ⊆ D that will be utilized for generating the

postdiction models. In the spatial partitioning step (Step 1 - lines 2-5), k ≤ |C| clusters

are created by using the cell tower locations. Particularly, each cluster cli, i = 1, . . . , k

is represented by a cell tower (in cases where k < |C| then the closest cell towers are

merged using a kNN approach until we finally generate k clusters). This allows us to

construct less models based on the network topology resulting to less computations. k

is calculated based on the resources of the system. Then the MAP function associates

all records rt ∈ D′ with the previously created clusters by taking into consideration

their cell id cr attribute. By the end of this function execution, k clusters of cell

towers with their associate records will be created. Then all records of each cluster

are ordered based on their timestamp (i.e., time originally generated) by using the

ORDER function of the temporal ordering step (Step 2 - lines 6-8). This allows the

neural network to be created correctly based on a continuous time series. Finally, the

learning step (Step 3 - lines 9-12) generates k postdiction models mdi for each cluster

cli by using a specialized Recurrent Neural Network (RNN) known as the Long Short

Term Memory (LSTM) model [101].

Specifically, the LEARNING function generates, for each cluster at each iteration,

an LSTM model that relies on a structure called a memory cell, which is composed

of four main elements: an input gate, a neuron with a self-recurrent connection (a

60

Con
sta

nti
no

s C
os

ta

EF

AB

CD

GH

E

F

C

D

CellID Counter … Value Timestamp

A c1 v1 t1

B c3 v3 t1

A c2 v2 t2

B c4 v4 t2

A

B ...

cl
1

cl
3

cl
2

cl
4

cl
1

cl
5

cl
1

cl
4

cl
3

Step 1: Spatial Partitioning Step 2: Temporal Ordering

Step 3: Hierarchical

 Model

MAP(rt, cli)|i = 1, . . . k &

ORDER(cli)

LEARNING(cli) &

md

1

CD

EF

GH

cl
2

md

2

G

I

H

J

cl
5

IJ

cl
5

CellID Counter … Value Timestamp

I c1 v1 t1

J c3 v3 t1

I c2 v2 t2

J c4 v4 t2

md

3

md

4

md

5

cl
1

Step 1: Index Lookup

LOOKUP(L,B)

md
1

RECREATE(B′, t)

Step 2: Recreate part of the Decayed

Dataset using LSTM model

CellID Counter … Value Timestamp

A c1 v1 t1

A c2 v2 t2

A c3 ? t3

A c4 ? t4

Construction Algorithm Recovery Algorithm

Figure 4.4: The conceptual steps of the proposed TBD-DP construction and recovery algo-

rithm.

connection to itself), a forget gate and an output gate. A memory cell is updated at

every time-step by using the following parameters and equations:

• xt is the input to the memory cell layer at time-step t

• Wi,Wf ,WC and Wo are weight matrices

• bi, bf , bC and bo are bias vectors

The forget gate layer:

ft = σ(Wf × [ht−1, xt] + bf),

decides what information is going to be thrown away from the memory cells. The input

gate layer:

it = s(Wi[ht−1, xt] + bi),

decides which values to be updated. The tanh layer decides what new information we

are going to store in the memory cells using:

C̃t = tanh(WC [ht−1, xt] + bC).

Moreover, the update memory cells function:

Ct = ft × Ct−1 + it × C̃t,

used to forget the things decided to be forgotten earlier and scale the new candidate

values by a pre-specified state value.

Finally, the update hidden cells function:

ot = σ(Wo[ht−1, xt] + bo)

61

Con
sta

nti
no

s C
os

ta

Algorithm 1 - TBD-DP Construction Algorithm
Input: Dataset D, C set of cell towers, Number of clusters k

Output: B: Set of models MD (DP-tree structure)

. Step 0: Decaying Pre-processing

1: D′ ← f of D . Select f% of D to be decayed

. Step 1: Spatial Partitioning

2: Create k ≤ |C| clusters cli . Use cell towers locations

3: for all rt ∈ D′ do

4: cli ←MAP (rt, cli)|i = 1, . . . k . Associate records to clusters

5: end for

. Step 2: Temporal Ordering

6: for i = 1 to k do

7: cli ← ORDER(cli) . Sort records in clusters based on timestamp

8: end for

. Step 3: Hierarchical Model

9: for i = 1 to k do

10: mdi ← LEARNING(cli) . Create an LSTM model for each cli

11: Insert mdi in B

12: end for

and a sigmoid layer that decide what parts of the cell state to output,

ht = ot ∗ tanh(Ct).

The Construction algorithm outputs a set of postdiction models B in a DP-tree

for facilitating the recovery algorithm that follows. At the end of the Construction

algorithm execution, the D′ set of data is removed for saving storage space and it is

conceptually replaced by the final B set of postdiction models, where |B| << |D′|.

Example: Consider the scenario in Figure 4.4 where there are 10 cell towers {A, ..., J}.

First, the Construction algorithm creates k = 5 clusters {cl1,...,cl5} denoted with the

solid line that surrounds the cell towers in Step 1 of Figure 4.4 (left). The MAP

function associates the records to a cluster based on the cell id cr (e.g., all records

related to A and B are grouped into cl1). Then, the ORDER function sorts the records

of each cluster based on their timestamp t as shown in Step 2 of Figure 4.4 (center).

Finally, for each cluster cli a model mdi is trained and inserted into a DP-tree index

using the cell ids as keys, as shown in Figure 4.4 (right).

62

Con
sta

nti
no

s C
os

ta

Decay Principle of TBD-DP: Decaying refers to the progressive loss of detail in

information as data ages with time until it has completely disappeared. Kersten refers

to the existence of data fungus in [74] with a decaying operator coined “Evict Grou-

ped Individuals (EGI)”. The given EGI operator performs biased random decaying,

resembling the rotting process in nature (e.g., in fruits with fungus). In our previous

work [17], we used the First-In-First-Out (FIFO) data fungus, i.e., “Evict Oldest In-

dividuals”, which retains full resolution for recent data but abstracts older data into

compact aggregation models. Both EGI and FIFO do not retain full resolution for im-

portant instances that occurred in the past. Consequently, data would have been rotted

and purged either randomly or based on its timestamp. This is called the long-term

dependency problem [102]. In this work, we chose a radically new decaying technique

that could be termed as LSTM data fungus, which is explicitly designed to avoid the

long-term dependency problem. Particularly, the TBD-DP operator replaces the data

with abstract LSTM models, which capture the essence of the past, i.e., both recent

data and important old data is retained at the highest possible resolution.

4.3.2 Recovery Algorithm

Algorithm 2 outlines the Recovery algorithm that utilizes the DP-tree structure (B)

of postdiction models of Algorithm 1 for retrieving a selected subset from the decayed

data, i.e., pD′ ⊆ D′. For doing this, the Recovery algorithm inputs the set of models

B as well as some spatiotemporal information L and R that will specify the amount

of the decayed data to be retrieved. For example, L can be a cellular tower’s location

or a user’s location associated to a cellular tower and R can be a range of timestamps,

within which a number of records were generated and stored in D′. In any case, L and

R will be utilized by the DP-tree LOOKUP function for deciding a subset of models

B′ ⊆ B in line 13 that will be used for creating the pD′ dataset in line 15.

Example: Consider the scenario of Figure 4.4 (Recovery Algorithm) where the data

of cell tower A (part of cl1) needs to be recovered for timestamps t1,...,t4. LOOKUP

retrieves the LSTM model md1 for cluster cl1 created from all records related to cell

towers A and B as shown in Step 1 of the given figure. In Step 2, the Recovery algorithm

recreates the values of cell tower A for each timestamp t recovering in this way a part

of the decayed data pD′ using the selected LSTM model.

63

Con
sta

nti
no

s C
os

ta

Algorithm 2 - TBD-DP Recovery Algorithm
Input: L: spatial input; R: temporal input; B: set of postdiction models in a DP-tree structure

Output: Partial decayed dataset pD′

1: procedure LOOKUP(k,node) . The number of children is b.

2: if node is a leaf then

3: return node

4: end if

5: switch k do

6: case k < k0

7: return LOOKUP(k, p0)

8: case ki ≤ k < ki+1

9: return LOOKUP(k, pi+1)

10: case kd ≤ k . Each node has at most d ≤ b

11: return LOOKUP(k, pd+1)

12: end procedure

. Step 1: Index Lookup

13: B′ ← LOOKUP (L,B) . Select a subset of postdiction models

. Step 2: Recreate part of the Decayed Dataset using LSTM model

14: for all t ∈ R do

15: pD′ = RECREATE(B′, t) . Retrieve decayed data of specific time periods.

16: end for

4.3.3 Performance Analysis

The secondary focus of TBD-DP is the efficient decaying of data and consequently

the minimization of TBD storage space while maintaining a high accuracy during data

recovery.

According to Definition 4.2.1 the total storage space S is equal to the actual data

minus the decayed data based on f , plus any additional storage required by the decaying

approach to achieve an optimal recreation of the decayed data. When there is no

decaying f = 0% then S = |D|+ |B| (B could have been used for predicting future D

values), which is the size of the actual (raw) data D and the size of the set of prediction

models B. In the case of TBD-DP, S = |D| − |D′|+ |B|, which is the actual data size

minus the size of the decayed dataset |D′| = |D|×f% plus the size of a set of models B,

where |D| >> |D′|+ |B|. When f = 100% then all data are decayed and the required

storage space of TBD-DP is S = |B|. In the case of sampling, the storage space is equal

64

Con
sta

nti
no

s C
os

ta

to S = |D|−|V |, which is the actual data size minus a sample set V = sampling(D′, s)

generated by sampling the decayed dataset D′ with a pre-specified rate s. Note that

|D| − |D′| + |B| << |D| − |V | for a reasonable s that provides an NRMSE similar to

TBD-DP.

According to Definition 4.2.2 the NRMSE measures the similarity of the decayed

dataset D′ and the recovered dataset pD′. Therefore, in cases where the decaying

factor is f = 0%, which corresponds to a low |D′| = 0 and no decaying is applied then

NRMSE = 0. When f = 100%, which corresponds to a high |D′| = |D| and all data are

discarded then NRMSE >> 0. Moreover, it is reasonable to assume that in sampling,

where a sample set V of the decayed data D′ is permanently discarded with a sampling

rate s then, its NRMSE (V,D′) will be equal to the normalized difference between the

sampled and the actual data. Finally, the NRMSE of the proposed TBD-DP will be

equal to the normalized difference between the predicted data of the LSTM model and

the actual data, i.e., NRMSE (pD′, D′).

4.4 Prototype Description

We have developed a complete prototype architecture that integrates TBD-DP as part

of the TBD Awareness project 1. Our proposed architecture comprises of three layers

(see Figure 4.2), namely Storage Layer, Indexing Layer and Application Layer.

The Storage layer passes newly arrived network snapshots through a lossless com-

pression process storing the results on a replicated big data file system for availability

and performance. This component is responsible for minimizing the required storage

space with minimal overhead on the query response time. The intuition is to use

compression techniques that yield high compression ratios but at the same time gua-

rantee small decompression times. We particularly use GZIP compression that offers

high compression/decompression speeds, with a high compression ratio and maximum

compatibility with I/O stream libraries in a typical big data ecosystem we use. Addi-

tionally, this layer uses the TBD-DP operator in order to provide the decay methods

for the next layer. The storage layer is basically only responsible for the leaf pages of

the SPATE index described in the next layer.

The Indexing Layer uses a multi-resolution spatio-temporal index, which is incre-

mented on the rightmost path with every new data snapshot that arrives (i.e., every
1TBD Awareness, https://tbd.cs.ucy.ac.cy/

65

Con
sta

nti
no

s C
os

ta

Figure 4.5: The TBD-DP operator implemented inside the spatio-temporal SPATE archi-

tecture. The interface enables users to carry out high resolution visual analytics, without

consuming enormous amounts of storage. The savings are quantified numerically with bar

charts and visually with heatmaps of telco and indoor positioning data.

30 minutes). In addition, the component computes interesting event summaries, called

“highlights”, from data stored in children nodes and stores them at the parent node.

For each data exploration query, the internal node that covers the temporal window of

the query is accessed, and its highlights are used to answer the query.

The Application Layer implements the querying module and the data exploration

interfaces, which receive the data exploration queries in visual or declarative mode and

use the index to combine the needed highlights and snapshots to answer the query.

SPATE is equipped with an easy-to-use map-based web interface layer that hides the

complexity of the system through a simple and elegant web interface.

4.5 Experimental Methodology and Evaluation

This section presents an experimental evaluation of our proposed TBD-DP operator.

We start-out with the experimental methodology and setup, followed by two experi-

ments. Particularly, in the first experiment, the performance of TBD-DP is compared

against two baseline approaches and two decaying-based approaches with respect to

various metrics on a set of anonymized datasets. The second experiment examines the

influence of several control parameters on the performance of TBD-DP.

66

Con
sta

nti
no

s C
os

ta

4.5.1 Methodology

This section provides details regarding the algorithms, metrics and datasets used for

evaluating the performance of the proposed approach.

Testbed: Our evaluation is carried out on the DMSL VCenter IaaS datacenter, a pri-

vate cloud, which encompasses 5 IBM System x3550 M3 and HP Proliant DL 360 G7

rackables featuring single socket (8 cores) or dual socket (16 cores) Intel(R) Xeon(R)

CPU E5620 @ 2.40GHz, respectively. These hosts have collectively 300GB of main

memory, 16TB of RAID-5 storage on an IBM 3512 and are interconnected through a

Gigabit network. The datacenter is managed through a VMWare vCenter Server 5.1

that connects to the respective VMWare ESXi 5.0.0 hosts. Computing Nodes: The

computing cluster, deployed over our VCenter IaaS, comprises of 4 Ubuntu 16.04 server

images, each featuring 8GB of RAM with 2 virtual CPUs (@ 2.40GHz). The images

utilize fast local 10K RPM RAID-5 LSILogic SCSI disks, formatted with VMFS 5.54

(1MB block size). Each node uses Hadoop v2.5.2.

We utilize anonymized measurements from a real Telco operator that comprises of

1192 real cell towers (i.e., 3660 cells of 2G, 3G and LTE networks) distributed in an

area of 5,896 km2. The cells are connected through a Gigabit network to a datacenter.

Each cell tower keeps several UMTS/GSM network logs for the performance of the

tower and forwards the information through the base station controller (BSC) or the

radio network controller (RNC) to be stored. There is a CDR server that generates call

detail records (CDRs) for incoming and outgoing calls in the enterprise. When a CDR

is generated in the CDR server, the management server and third-party application

can use SFTP to obtain the CDR from the CDR server. Then the Telco can query the

CDRs for call/data information and check outgoing call/data fees with the carrier.

Algorithms: The proposed TBD-DP operator is compared with the following approa-

ches:

• RAW: does not apply any decaying on the whole dataset.

• COMPRESSION: the decayed dataset is compressed with the GZIP library,

which has been shown in [17] to offer the best balance between compression/-

decompression speeds, compression ratios and compatibility with I/O stream

libraries.

67

Con
sta

nti
no

s C
os

ta

• SAMPLING: a sampling method that picks every second item in the input

stream, yielding a 50% sample size.

• RANDOM: uniformly randomly select one record from the decayed dataset.

Note that RAW and RANDOM are the baseline approaches used to demonstrate

the trade-off between the storage capacity and the NRMSE objectives.

Datasets: We utilize an anonymized dataset of telco traces comprising of ∼ 100M

network measurements records (NMS) and 3660 cells (CELL) coming from 2G, 3G

and LTE antennas. The data traffic is created from about 300K objects and has

a total size of ∼10GB. We constructed 6 realistic datasets from real TBD obtained

through SPATE described in Section 4.5.1 based on the Key Performance Indicators

(KPIs) [103].

• Calls (CS): the number of calls ended normally during snapshot dt.

• Call Drops (CSD): the number of calls dropped during snapshot dt.

• Handover Attempts (HA): the amount of handovers into or from the cells

attempted during a snapshot dt.

• Handovers (HS): the number of successful handovers into or from the cells

during a snapshot dt.

• Call Setup Attempts (CSA): the amount of call setup processes attempted

during snapshot dt.

• Call Setups (CE): the amount of successful call setup processes during snapshot

dt.

Metrics: We evaluate the performance of TBD-DP using the metrics defined in Section

4.2.1 in all experiments:

• Storage Capacity (S): measures the total space that data and the DP-tree

index occupy together, as a percentage of storage required by the RAW method

(no decaying, no compression).

• Normalized Root Mean Square Error (NRMSE): measures the error of the

recovered data D′ using the NRMSE formula provided at the end of Section 4.2.

68

Con
sta

nti
no

s C
os

ta

 0

 50

 100

 150

 200

CS
CSD HA HS

CSA CE

P
er

ce
nt

ag
e

of
 R

A
W

SPACE: Disk space for the whole real dataset
(f=50%, neurons=16x16, model=LSTM)

RAW
COMPRESSION

SAMPLING
TBD-DP

RANDOM

 0

 50

 100

 150

 200

CS
CSD HA HS

CSA CE

N
R

M
S

E

ACCURACY: NRMSE for the whole real dataset
(f=50%, neurons=16x16, model=LSTM)

RAW
COMPRESSION

SAMPLING
TBD-DP

RANDOM

Figure 4.6: Performance Evaluation: TBD-DP evaluation in terms of storage capacity S as

a percentage to the RAW data (left) and accuracy in terms of NRMSE on the decayed set of

data (right) in all datasets.

 0

 20

 40

 60

 80

 100

 120

 140

CS
CSD HA HS

CSA CE

P
er

ce
nt

ag
e

of
 R

A
W

TBD-DP: Disk space for varying decay factor (f)
(neurons=16x16, model=LSTM)

f=25%
f=50%
f=75%

f=100%

 0

 20

 40

 60

 80

 100

 120

 140

CS
CSD HA HS

CSA CE

N
R

M
S

E

TBD-DP: NRMSE for varying decay factor (f)
(neurons=16x16, model=LSTM)

f=25%
f=50%
f=75%

f=100%

Figure 4.7: Control Experiment - Decaying factor f : examining the storage capacity S and

NRMSE of the proposed TBD-DP approach while varying f .

A lower NRMSE value indicates a higher accuracy in the recovered data. NRMSE

is the most appropriate metric due to the facts that the error of the postdiction

value is calculated for specific values (i.e., recall = 1) and allows the comparison

between datasets or models with different scales.

Parameters: In all experiments the simulation parameters were configured as follows:

(i) decay factor f = 50% (indicating the percentage on which we execute the LSTM);

(ii) the ML model is LSTM and the number of neurons 16 x 16. The influence of each of

those parameters on the proposed approach is investigated individually in Experiment

2 by fixing the rest of the parameters accordingly.

69

Con
sta

nti
no

s C
os

ta

 0

 20

 40

 60

 80

 100

 120

 140

CS
CSD HA HS

CSA CE

P
er

ce
nt

ag
e

of
 R

A
W

TBD-DP: Disk space for varying the learning network
(f=50%, neurons=16x16)

RNN
GRU

LSTM

 0

 20

 40

 60

 80

 100

 120

 140

CS
CSD HA HS

CSA CE

N
R

M
S

E

TBD-DP: NRMSE for varying the learning network
(f=50%, neurons=16x16))

RNN
GRU

LSTM

Figure 4.8: Control Experiment - Learning Models: examining the storage capacity S and

NRMSE of the proposed TBD-DP approach while combined with various ML models.

 0

 20

 40

 60

 80

 100

 120

 140

CS
CSD HA HS

CSA CE

P
er

ce
nt

ag
e

of
 R

A
W

TBD-DP: Disk space for varying the number of neurons
(f=50%,model=LSTM)

4x4
8x8

16x16
32x32

 0

 20

 40

 60

 80

 100

 120

 140

CS
CSD HA HS

CSA CE

N
R

M
S

E

TBD-DP: NRMSE for varying the number of neurons
(f=50%, model=LSTM)

4x4
8x8

16x16
32x32

Figure 4.9: Control Experiment - Number of neurons in LSTM: examining the storage capa-

city S and NRMSE of the proposed TBD-DP approach while varying the number of neurons.

4.5.2 Experiment 1: Performance Evaluation

In the first experiment, we evaluate the performance of the proposed TBD-DP operator

against all four algorithms and over all datasets introduced in Section 4.5.1, with respect

to space capacity (as a percentage to the RAW data) and accuracy (in terms of NRMSE

on the decayed set of data).

Figure 4.6 clearly demonstrates the trade-off between the space capacity S and the

NRMSE objectives on the results of the baseline approaches, since RAW (no decaying)

approach obtained the worst possible S = 100% of the whole dataset, and the lowest

error NRMSE = 0. In contrast, the RANDOM (almost all data are decayed) approach

obtained the best possible S = 50% of the whole dataset and the worst NRMSE

≈ 100 on the decayed dataset, for a decaying factor f = 50%. The results of the

three other approaches appear in between the results of the two baseline approaches.

The proposed TBD-DP operator, however, provides around 25% and 50% better space

70

Con
sta

nti
no

s C
os

ta

 0

 20

 40

 60

 80

 100

CS
CSD HA HS

CSA CS

TOTAL

P
er

ce
nt

ag
e

of
 to

ta
l t

im
e

(%
)

TIME: Precentage of time for learning and postdiction process
(f=50%, neurons=16x16, model=LSTM)

Learning
Postdiction

Figure 4.10: Performance Evaluation: TBD-DP evaluation in terms of time percentage for

the decayed set of data in all datasets.

capacity S compared to COMPRESSION and SAMPLING approaches, respectively.

This is due to the fact that the additional space required by the set of LSTM models

is much less than the sample set of SAMPLING and the compressed decayed dataset

of COMPRESSION.

In terms of NRMSE, the TBD-DP outperforms the SAMPLING approach by 50%,

on average, in all datasets. The COMPRESSION approach provides an optimal NRMSE

= 0, since it does not apply any prediction on the decayed data, but recovers them

via decompression, when requested. The COMPRESSION approach however, can not

be customized to achieve an even lower disk space occupancy. On the other hand, the

TBD-DP can be configured, through its f parameter, to achieve a space occupancy

that will fit the space budget of the application. This particular parameter will be

investigated in the next experiment.

Figure 4.10 shows the time for the whole process of the TBD-DP to finish including

the postdiction process. The postdiction process takes much less time in comparison

with learning process due to the LSTM network chain. The preprocessing step takes a

huge part of the whole process due to network and disk IO.

71

Con
sta

nti
no

s C
os

ta

4.5.3 Experiment 2: Control Experiments

In Experiment 2, we examine the influence of several control parameters on the per-

formance of the proposed TBD-DP in terms of S and NRMSE. Specifically, we vary

the decay factor (f), the ML models and the number of neurons on LSTM.

Figure 4.7 shows how the decaying factor f , and consequently the amount of data

that will be decayed and represented by LSTM models, affect the S and NRMSE of

the proposed TBD-DP operator. The results show that the storage capacity required

by the TBD-DP decreases as the decaying factor increases, which is reasonable due to

the fact that the highest f is, the more data need to be decayed and therefore more

disk space will be released. The accuracy of the proposed TBD-DP however, is not

influenced, since NRMSE remains almost the same for all decaying factors, in most

datasets. This shows the scalability and generalizability of the proposed approach,

which is not influenced from the increase on the decaying dataset size. It is also

important to note that the variations on the NRMSE obtained by TBD-DP between

the datasets is mainly due to the different characteristics of each dataset.

Figure 4.8 examines the performance of the TBD-DP operator in terms of S and

NRMSE when combined with three different ML models, namely, the traditional Re-

current Neural Network (RNN), the Gated Recurrent Unit (GRU) [104] and the Long

Short Term Memory (LSTM) that is finally adopted by the proposed approach. The

results show that TBD-DP maintains a similar storage capacity for different learning

models, with a slight increase (about 1%) when the LSTM model is used. In terms

of NRMSE, however, the TBD-DP+LSTM combination clearly outperforms the other

two combinations providing around 75% less error, on average.

Finally, Figure 4.9 examines how the number of neurons of the LSTM model influ-

ences the TBD-DP’s performance. The results support our previous observations on

the scalability and generalizability of the proposed TBD-DP approach. The increase

on the number of neurons slightly influences the TBD-DP in terms of storage capacity,

since the required space slightly increases. This is reasonable since the increase on

the number of neurons results in “bigger” models that require more disk space to be

stored. The additional required space, however, is almost negligible compared to the

disk space needed to store the actual data before decaying. In terms of NRMSE, the

increase on the number of neurons does not influence the performance of the TBD-DP

operator, since NRMSE remains almost the same while varying this control parameter.

72

Con
sta

nti
no

s C
os

ta

4.6 Related Work

Sampling refers to the process of randomly selecting a subset of data elements from a

relatively large dataset. Sophisticated techniques, such as Bernoulli and Poisson sam-

pling, choose data elements using probabilities and statistics. Chaudhuri et al. [105]

proposed stratified sampling where the probability of the selection is biased. In order

to encounter the big data sampling issue, Zeng et al. [106] implemented G-OLA, which

is a model that generalizes online aggregation in order to support general OLAP que-

ries utilizing delta maintenance algorithms. Particularly, BlinkDB [107] allows users

to choose the error bounds and the response time of query using dynamic sampling

algorithms. SciBORQ [108] is a framework that allows the user to choose the quality

of the query result based on multiple interesting data samples called impressions.

Several works have adapted the sampling processes to create synopsis of data in

order to achieve low response time for ad-hoc queries [108]. Data sketches [98] are

compact data structures that enable to efficiently estimate the count of occurences in

massive data (contrary to Bloom filters, it encodes a potentially massive number of

item types in a small array). Additionally, Wei et al. proposed persistent sketches that

can answer queries at any prior time [109] and have the ability to merge in order to

answer a generalization query [110].

4.7 Summary

In this chapter, we present a novel decaying operator for Telco Big Data (TBD), coined

TBD-DP (Data Postdiction). TBD-DP relies on existing ML algorithms to abstract

TBD into compact models that can be stored and queried when necessary. Our propo-

sed TBD-DP operator has the following two conceptual phases: (i) in an offline phase,

it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models (coined

TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree

to recover data within a certain accuracy. In our experimental setup, we measure the

efficiency of the proposed operator using a ∼10GB anonymized real telco network trace

and our experimental results in Tensorflow over HDFS are extremely encouraging as

they show that TBD-DP saves an order of magnitude storage space while maintaining

a high accuracy on the recovered data.

73

Con
sta

nti
no

s C
os

ta

Chapter 5
Crowdsourcing Emergency Data in Non-Operational

Cellular Networks

In overloaded or partially broken (i.e., non-operational) cellular networks, it is impera-

tive to enable communication within the crowd to allow the management of emergency

and crisis situations. To this end, a variety of emerging short-range communication

technologies available on smartphones, such as, Wi-Fi Direct, 3G/LTE direct or Blue-

tooth/BLE, are able to enable users nowadays to shape point-to-point communication

among them. These technologies, however, do not support the formation of overlay

networks that can be used to gather and transmit emergency response state (e.g.,

transfer the location of trapped people to nearby people or the emergency response

guard.) In this chapter, we develop techniques that generate the k-Nearest-Neighbor

(kNN) overlay graph of an arbitrary crowd that interconnects over some short-range

communication technology. Enabling a kNN overlay graph allows the crowd to connect

to its geographically closest peers, those that can physically interact with the user and

respond to an emergency crowdsourcing task, such as seeing/sensing similar things as

the user (e.g., collect videos and photos). It further allows for intelligent synthesis

and mining of heterogeneous data based on the computed kNN graph of the crowd

to extract valuable real-time information. We particularly present two efficient algo-

rithms, namely Akin+ and Prox+, which are optimized to work on a resource-limited

mobile device. We use Rayzit, a real-world crowd messaging framework we develop,

as an example that operates on a kNN graph to motivate and evaluate our work. We

use mobility traces collected from three sources for evaluation. The results show that

Akin+ and Prox+ significantly outperform existing algorithms in efficiency, even under

a skewed distribution of users.

74

Con
sta

nti
no

s C
os

ta

Figure 5.1: (left) Large crowd protesting in Syria (Reuters 2014), (right) Woman using her

mobile while waiting for help in China floods (Reuters 2012).

5.1 Introduction

In the age of smart urban and mobile environments, the mobile crowd generates and

consumes massive amounts of heterogeneous data [24, 111]. Such streaming data offer

the potential of enhanced science and services, such as emergency and crisis manage-

ment services, among others. The availability of such services is specifically important

in scenarios where a cellular network becomes non-operational.

A cellular network is deemed non-operational when there is no (sufficient) net-

work connectivity. This might happen due to damage caused by a disaster (e.g., major

flooding), or due to overloading caused by an unexpectedly large crowd trying to access

telecommunication services simultaneously, e.g., consider the connection problems mo-

bile users have faced during public celebrations of New Year’s Eve.

Each cellular tower has a limited capacity of users it can service simultaneously.

Specifically, each cellular tower has a limitation on its communication bandwidth to

the carrier (backhaul bandwidth), a limitation on the aggregate bandwidth capacity

offered by the spectrum and protocol used for wireless communication, and a limitation

on the capacity of the network gears [112].

The following are some real-world scenarios making a network non-operational.

These are cases where emergency and crisis management services are needed the most.

Ad-Hoc Event Services Large ad-hoc events can be cultural festivals (e.g., Wood-

stock, Old Car enthusiast gatherings), sporting events, conventions and fairs, ad-hoc

demonstrations (e.g., Occupy Wall Street 2011) and ad-hoc protests (e.g., Egypt 2013,

Syria 2014, Romania 2014, Hong Kong 2014) as seen in Figure 5.1 (left). In such

75

Con
sta

nti
no

s C
os

ta

scenarios, being able to monitor and provide communication within the crowd can aid

organizing authorities to better manage the crowd1 and prevent lethal crowd disasters2,3.

Additional services can also be applied, like new entertainment services4 and crowd-

games5.

Crowdsourced Emergency Response During a disaster, mobile users can be both

victims and rescuers involved not only in receiving but also providing help from/to their

neighboring peers (see Figure 5.1 (right)). In this scenario, providing communication

means within the crowd and streaming information to the first response team is vitally

important because it can aid in organizing the crowd, allocating peer-to-peer aid and

experts, and distributing tools and medicine optimally. This would enable better mana-

gement of the disaster monitoring and response cycle, where citizens can get involved

in decision making, data acquisition, and advanced planning6. In a real world example,

it was the citizen’s joint efforts to map the 2012 floods in China that materialized faster

and more accurately than that government-sanctioned map7.

When the cellular network is non-operational, users can not rely on online services

for their whereabouts, well-being and communication. Meanwhile, the authorities may

not be able to receive all the information needed for intelligent synthesis in order to

enable advanced services. In other words, the crowd is not able to generate possibly

valuable information (e.g., sensors, tweets) and the authorities are not able to collect

this information. Consider the example of a disaster response, the authorities need to

operate in four phases: (i) rapid and effective actions to avoid making the emergency

worse; (ii) implementation in the field; (iii) evaluation of the results; and (iv) personnel

management in emergencies. The right situational awareness is the key for decision

making in such cases. The crisis management operator needs to have the right tools

to communicate with the affected citizens. The operator has to evaluate and monitor

the situation in order to learn and optimize operations in real time. It would be an

omission that could lead to the loss of human lives, if technology could not support

the crowd to generate data (e.g., reporting locations, victims using communication and
1WorkingWithCrowds, Online: http://www.workingwithcrowds.com/
2Love Parade disaster, Online: http://goo.gl/2FpIbm
3Hillsborough disaster, Online: http://goo.gl/xvLRlc
4Opphos, Online: https://www.sics.se/projects/opphos
5CrowdControlGames, Online: http://crowdcontrolgames.com/
6Insight Project EU, Online: http://www.insight-ict.eu/
7Eric Blattberg “The Crowd Maps Beijing Floods” 2012, Online: http://goo.gl/0DHZ4v

76

Con
sta

nti
no

s C
os

ta

social services to spread their situation) and the crisis management operator to collect

and process this data during these phases.

It is imperative, therefore, to be able to create some overlay network that would con-

nect cellular users by exploiting any available device-to-device short-range communi-

cation technology (e.g., Wi-Fi Direct, 3G/LTE direct or Bluetooth/BLE). It is equally

important to ensure that this overlay network is operational, therefore hot-spots (e.g.,

too many devices trying to connect to each other), bottlenecks and disconnected com-

ponents need to be avoided. For this reason we opt for using a kNN overlay graph to

configure a communication network, since it guarantees an upper limit of connections

per user and according to the crowd size n we can easily set the parameter k to gua-

rantee that the graph is fully connected. Particularly, it leads to connected topologies

if the degree k > log2n [113]. In the Emergency Response scenario for example, the

location of the users in the crowd can be first collected using a breadth-first-search bro-

adcast over Wi-Fi Direct [114,115] and then the computation of kNN overlay network

can take place with the propositions in this work, determining which mobile nodes will

connect to each other.

Specifically for mobile environments, valuable information can be mined based on

the relations within k geographically nearest neighbors (kNN) [116–120]. Similar to a

graph formed by social relationships, a kNN graph is formed by connecting each user

to its geographically nearest neighbors. Such a graph can be mined and queried to pro-

duce valuable information, e.g., link prediction, shortest hop-distance, large connected

communities, socialization suggestions, most central people, most influential people,

etc [121].

In this chapter, we develop centralized techniques that allow for the fast computa-

tion of the kNN graph in-situ on a mobile device for non-operational cellular network

scenarios. With the kNN graph at hand, we can then create an overlay network that

connects each victim with its k geographically closest users and use this to enable a

variety of advanced services. The efficiency of the algorithm allows for frequent re-

computations in order to adapt to the movement of the crowd. Our solution however

is not designed as a continuous operator, where prior network state is utilized in sub-

sequent network formations, mainly because of the transient network structure of the

crowd. On the contrary, we opt for a stateless solution that is re-computed in-situ in an

ongoing manner (e.g., every minute). We use Rayzit [1]8, a real-world crowd messaging
8Rayzit – Rayz your message, Online: https://rayzit.cs.ucy.ac.cy

77

Con
sta

nti
no

s C
os

ta

Figure 5.2: Our Rayzit [1] crowd messenger enabling users to interact with their k geographic

Nearest Neighbors.

framework we develop, as an example that operates on a kNN graph to motivate and

evaluate our work (see Figure 5.2).

In our previous work, we have presented a centralized algorithm, called Proxi-

mity [122], which deals with All k Nearest Neighbors (AkNN) queries on a server that

can collect the geographic coordinates of users on an ongoing basis. In this work, we

re-focus the problem formulation by tackling the AkNN query-processing problem in

emerging short-range communication overlay topologies. Particularly, we deal with

AkNN computations directly on a smartphone of a crisis management operator that

physically resides on the place of an emergency event where an overloaded or partially

broken cellular network may exist. Our new contributions are summarized as follows:

• We adapt the previously proposed Proximity algorithm to operate in scenarios

where the cellular network base stations are not operational. Particularly, we

apply the following improvements: (i) we deploy a pre-processing step that parti-

tions the space using an equi-width grid and implement the Proximity algorithm

on top of this partition; (ii) we propose an optimization that implements a com-

pact bound for the candidate set and achieving reduced CPU time. This new

bound still guarantees correctness of results; (iii) we propose a bulk processing

method for the construction of the candidate set that trades slightly higher me-

mory usage for smaller CPU times; and (iv) propose a new pruning heuristic for

the final search phase. This heuristic is based on the fact that the candidates

78

Con
sta

nti
no

s C
os

ta

are already ordered. As a result, the candidate bound can be decreased as the

nearest neighbors for a specific user are found while the candidate set is scanned.

• We provide an analytical study for the performance, scalability and correctness

of our algorithm, showing that it can perform very well independent of the de-

ployment scale and the distribution of input objects.

• We conduct an extensive experimental evaluation that validates our analytical

results and shows the superiority of our propositions over competitive algorithms.

Particularly, we use three different datasets to test implementations of proposed

algorithms and find significant performance improvements.

The remainder of the chapter is organized as follows. Section 5.5 provides the

related work on AkNN query processing. Section 5.2 provides our problem definition,

system model and desiderata. Section 5.3 presents the phases and algorithms of our

AkNN framework, and analyzes correctness and complexity. Section 5.4 presents an

extensive experimental evaluation and Section 5.6 concludes the chapter.

5.2 System Model

This section formalizes our system model and design principles. Our main notation is

summarized in Table 5.1.

The k Nearest Neighbors (kNN) of an object o from some dataset O, denoted as

kNN(o,O), are the k objects that have the most similar attributes to o [25]. Formally,

given objects oa , ob , oc and ∀ob ∈ kNN(oa, O) and ∀oc ∈ O − kNN(oa, O), it always

holds that dist(oa, ob) ≤ dist(oa, oc)9.

An All kNN (AkNN) query, viewed as a generalization of the basic kNN query,

computes the kNN(o,O) result for every o ∈ O and has a quadratic worst-case bound.

An AkNN search can alternatively be viewed as a kNN Self-Join operation: Given a

dataset O and an integer k, the kNN Self-Join of O combines each object oa ∈ O with its

k nearest neighbors from O, i.e., OnkNNO = {(oa, ob)|oa, ob ∈ O and ob ∈ kNN(oa, O)}.

Research Goal. Given a set of objects O with their locations in a bounding area, a

resource-poor query processor QP computes the AkNN result of O by minimizing CPU

time.
9In our discussion, dist can be any Lp-norm, such as Manhattan (L1), Euclidean (L2) or Chebyshev

(L∞).

79

Con
sta

nti
no

s C
os

ta

Table 5.1: Summary of Notation

Notation Description

o,O, n Object o, set of all o, n = |O|

kNN(o,O) k nearest neighbors of o in O

AkNN(O) k nearest neighbors of every o in O

dist(oa, ob) Lp-norm distance between oa and ob

c, C,Oc Cell c, set of all c, objects in c

Sc Candidate Set of c

Let O be a set of n mobile users moving in a planar area, denoted by their current

locations, which can either be obtained at a fine granularity (e.g., GPS and RadioMaps)

or coarse granularity (e.g., Cell ID and Wi-Fi ID databases). Assume that there is a

mobile device, denoted as QP (Query Processor), which collects the locations of all

users in user set O. Our main desiderata is to minimize CPU time on QP , given that

this determines the energy consumption of QP and also determines how frequently the

kNN networks can be re-computed.

5.2.1 Emergency Network Model

In a disaster scenario with a non-operational cellular network, the first task is to con-

struct an ad-hoc communication network that would enable information routing within

the crowd. This can be done using existing technologies (e.g., Wi-Fi Direct [112]) and

algorithms [114, 123], assuming that each user can directly communicate with peers

that are within a certain communication radius. With the initial ad-hoc network in

place, each user can send out a request to construct a query routing tree, using techni-

ques like [61, 124–126], in order to collect the location of the users in the crowd and

compute the kNN graph. We assume that only one request completes, e.g., by letting

the request with the oldest initiation timestamp dominate. Therefore, one user within

each connected overlay network retrieves the needed locations and computes the kNN

graph.

80

Con
sta

nti
no

s C
os

ta

5.3 Centralized AkNN Query Processing

In this section, we introduce Proximity, a centralized AkNN query processing frame-

work [122] we developed previously. We then describe the adaptations undertaken to

make it functional for non-operational cellular network scenarios using a grid partitio-

ning. Subsequently, we also propose two optimizations, namely Prox and Akin, which

reduce the CPU time for the AkNN computation. We conclude with some further

improvements upon Prox and Akin, coined Prox+ and Akin+, which are founded on

more powerful pruning heuristics than their basic counterparts.

5.3.1 Background on Proximity

The Proximity framework is designed in such a way that it is: (i) Memory-resident,

since the dynamic nature of mobile user makes disk resident processing prohibitive; (ii)

Specifically designed for highly mobile and skewed distribution environments performing

equally well in congested and sparsely-deployed scenarios; and (iii) Infrastructure-ready,

since it does not require any additional infrastructure or specialized hardware.

The original Proximity algorithm exploits the natural geographic partitioning that

is provided by the Network Connectivity Points (NCP) of a cellular network (e.g.,

cell towers). This partitioning allows for the derivation of kNN candidate sets, which

provide the AkNN answer-set in linear time. Particularly, for every timestep Proximity

works in two phases: In the first phase one k+-heap data structure is constructed per

NCP, using the location reports of users (the k+-heap will be discussed more thoroughly

in 5.3.2). In the second phase, the k-nearest neighbors for each user are determined by

scanning the respective k+-heap and the results are reported back to the users.

5.3.2 Proximity with Grid Partitioning

In this section we adapt the Proximity algorithm such that it is effective even under

a non-operational cellular network, where there are no NCPs to naturally partition

the space. In Algorithm 1 we outline the proposed solution that operates over a grid

partitioning of the space into equi-width cells C. In Algorithm 2 we discuss in more

detail the specifics of the insertion procedure of the basic underlying k+-heap data

structure.

Algorithm 1 (Outline): Each cell c ∈ C contains a disjoint subset Oc ⊂ O of objects.

81

Con
sta

nti
no

s C
os

ta

Algorithm 3 . Proximity with Grid Partitioning
Input: User locations O, set C of all grid cells

Output: kNN answer-set for each user in O

1: for all c ∈ C do

2: initialize Sc . Initialize our k+-heap

3: end for

4: for all o ∈ O do . Phase 1: build k+-heap

5: for all c ∈ C do

6: insert(o, Sc)

7: end for

8: end for

9: for all o ∈ O do . Phase 2: scan k+-heap

10: kNN 0 = ∅ . Conventional k-max heap

11: c← o.cell

12: for all o′ ∈ Sc do

13: if o′ is a kNN of o then

14: update(kNNo, o
′)

15: end if

16: end for

17: end for

Algorithm 3 computes a correct candidate set Sc for each cell c ∈ C by constructing

a k+-heap data structure for each cell (lines 1-8). In the second phase, the kNN for

each user o ∈ O are determined by scanning the respective k+-heap and computing

kNN(o, Sc) (lines 9-17).

The k+-heap consists of three separate data structures (see Figure 5.3): (i) an

unordered list of internal objects lying inside the boundary of c (coined Oc); (ii) a

conventional k-max-heap (coined Kc) capturing the closest external candidates; and

(iii) an ordered list of external boundary objects (coined Bc), which are necessary

besides Kc for the correct computation of any AkNN query.

The Kc and Bc structures are defined according to definitions 5.3.1 and 5.3.2, re-

spectively. In Definition 5.3.3, we conclude with a formal definition of the k+-heap

(coined Candidate Set, Sc).

Definition 5.3.1 (Kc, k-max-heap of cell c). Given a set of external users O − Oc,

which is ordered with ascending distance dist(o, c) to the border of cell c, set Kc consists

of the top-k elements of this set.

82

Con
sta

nti
no

s C
os

ta

����������	
 �����	����	� ����	�

��������	
��
���

Figure 5.3: A visualization of a k+-heap (denoted as Sc) for a specific cell c, comprises of

three structures: Oc, Kc and Bc.

Definition 5.3.2 (Bc, Boundary Set of cell c). Given a cell c and its kth closest external

user to the border of c, set Bc consists of all users o ∈ O − (Oc ∪ Kc) with distance

dist(o, c) < dist(kthc, c) + diagc from the border of c. In other words Bc consists of all

users o ∈ O with distance dist(kthc, c) < dist(o, c) < dist(kthc, c) + diagc.

Definition 5.3.3 (Sc, Candidate Set of cell c). Given a cell c and its Oc, Kc and Bc

sets, the candidate set Sc of c consists of users o ∈ Oc ∪Kc ∪Bc.

Performance Analysis of Prox: Assuming a grid size of
√
n cells and uniform data

distribution of n objects, Algorithm 3 runs in O(n1.5 log
√
n) time. Particularly, the

loop at line 1 runs in O(
√
n). The loop at line 4 runs in O(n1.5log

√
n), given that the

insertion procedure of the heap runs in O(log
√
n). Finally, the last loop in line 9 runs

in O(n1.5), given that each k+-heap has O(
√
n) users under a uniform distribution

assumption. In the worst-case distribution, where all users fall in a single cell this

algorithm runs in O(n2) time.

Algorithm 2 (Insertion): We now discuss in more detail the specifics of the insertion

procedure of the k+-heap. When inserting a new element onew into the k+-heap of c,

we distinguish among four cases (see Algorithm 4): (i) onew is covered by c and belongs

to set Oc (line 2), (ii) onew belongs to set Kc (line 4), (iii) onew belongs to set Bc (line

11), or (iv) onew does not belong to the candidate set Sc = Oc ∪Kc ∪Bc of cell c (line

13). In case (i) the element is inserted into the Oc list. In case (ii) we need to insert

onew into heap K (line 5) and move the current head kthc from K to the boundary list

B (lines 7-8). This yields a new head kth′c in K (line 9). Every time the kthc changes,

the boundary list B needs to be updated, since it might need to evict some elements

83

Con
sta

nti
no

s C
os

ta

Algorithm 4 . k+-heap: Insert(onew, c)
Input: Object to be added onew, Cell c of k+-heap

Output: Sc updated

1: kthc ← head(Kc)

2: if contained inside(onew, c) then

3: insert(onew, Oc)

4: else if dist(onew, c) < dist(kthc, c) then

5: insert(onew,Kc)

6: if K heap has more than k elements then

7: kthc ← pophead(Kc)

8: insert(kthc, Bc)

9: Update boundary(head(Kc))

10: end if

11: else if dist(onew, c) < dist(kthc, c) + diagc then

12: insert(onew, Bc)

13: else

14: discard onew

15: end if

according to Definition 5.3.2. In case (iii) we insert onew into the ordered boundary

list B (line 12). Note that the sets Kc and Bc are formed as elements are inserted into

the k+-heap. The first k elements inserted in the empty k+-heap define the Kc set. In

case (iv) the element is discarded.

5.3.3 Prox: An Optimized Candidate Set Bound

Our initial Proximity algorithm has a suboptimal bound determining the candidate

set per cell. Here we propose a tighter bound, coined Prox, which is founded on

the observation that the K ′c set inside a k+-heap could have been constructed from

objects that reside both inside a cell and outside a cell, as opposed to the original

Proximity algorithm, where the Kc set emerged from objects residing outside a given

cell only. Particularly, we use the following definition to define the optimized candidate

set bound:

Definition 5.3.4 (K ′c, smaller Kc). Given a set of any user in O, which is ordered

with ascending distance dist(o, c) to the border of cell c, set K ′c consists of the top-k

elements of this set.

Note that the difference of Kc to K ′c is that the former definition includes only users

84

Con
sta

nti
no

s C
os

ta

�����

���
�

����
�

�
��

�
�

��
�

���
�

	

�
��

�
�

��
�

���
�

	

�
��

�
�

��
�

���
�

���
�

���
	

	

��

�
�

�
��

���
��

���
�

o
5

o
6

o
0

o
1

o
2

o
3

o
4

x

�
�

�
�

�
�

Figure 5.4: (Running Example) The construction of Sc with k=2. The candidate set Sc of c is

{o0, o1, o2, o3, o4, o5, o6} and is represented by the area within the dotted line with the rounded

corners. Set Sc includes all users Oc inside c (solid line cell), users inside Kc the lighter

square ring and the users Bc inside the darker ring. Any node outside Sc (e.g., user x) is

guaranteed NOT to be a kNN of any user inside cell c. The 2-nearest neighbors for the nodes

in c are kNN(o0) = {o1, o2} and kNN(o6) = {o5, o0}.

outside cell c. This does not allow for a tight bound and a minimum cut-off threshold

θc. Particularly, by expanding the scope of K ′c, immediately makes B′c smaller or equal

in size to Bc. This effectively allows Prox to process a smaller search space, as the S ′c
set now comprises of B′c∪Oc∪K ′c, as opposed to Bc∪Oc∪Kc. Another way to present

the difference is to mention that with Prox, it holds that dist(kth′c, c) ≤ dist(kthc, c).

Running Example of Prox: We shall now present a running example of Prox in Fi-

gure 5.4. Consider that the following object locations arrive atQP : O = {o0, o1, o2, o3, o4, o5, o6, ox}.

Every object is again inserted into every k+-heap on the QP (see Algorithm 3, lines

1-5). The order in which the objects are inserted into a k+-heap does not affect the

correctness of the candidate set. For our example, assume that the objects are inserted

in the order seen in the first column of Table 5.2. For every insertion we can see the

contents of S ′c in the same Table (i.e., last three columns). For simplicity, we only

follow the operation on the S ′c of cell c (that similarly applies to all cells).

When object o4 is inserted into S ′c it is added to the heap K ′c, which records the

closest objects around the cell border of c (both internal and external objects to c).

The same logic applies to the next object ox. At this point, however, the K ′c heap

85

Con
sta

nti
no

s C
os

ta

Table 5.2: Build-up phase of Sc in Prox as object locations are inserted

Object Set K ′
c Set B′

c Set Oc

o4 {o4} {} {}

ox {ox, o4} {} {}

o2 {o4, o2} {ox} {}

o3 {o3, o2} {o4, ox} {}

o1 {o2, o1} {o3, o4} {}

o5 {o2, o1} {o3, o4, o5} {}

o6 {o2, o1} {o3, o4, o5} {o6}

o0 {o0, o1} {o2, o3, o4, o5} {o6, o0}

gets full (assume it is a 2-max-heap). The third insertion of o2 into K ′c evicts ox from

K ′c (given that in Figure 5.4, o2 and o4 are the closer to the boundary c than ox). It

however does not discard ox, given that it might still be a good candidate for some

hypothetical other object oy in c (e.g., one that resides on the opposite site of the cell).

Before transferring it blindly to Bc, ox is checked against the new threshold: θ′c =

dist(o4, c) + diagc. Given that ox is below θ′c, it is inserted into Bc. Alternatively,

ox would have been discarded. A similar procedure is followed for the next three

insertions, i.e., o3, o1 and o5. It is important to mention that on each insertion, θ′c
might become smaller. Every time this happens, objects inside B′c have to be re-

evaluated and discarded accordingly (e.g., ox is discarded when o1 is inserted). As a

concluding remark, notice that any “inside” object (e.g., o6 and o0), is automatically

added to Oc but these objects are also considered for K ′c (i.e., in our example only o0

qualifies to be part of K ′c as it is close to the border c).

Phase 1 of Algorithm 3 is completed and the candidate sets are ready after all

objects are inserted into the Sc sets. In phase 2 the server scans a single S ′c for each

user ox, according to the cell ox is mapped to. For users o0 and o6, the server QP scans

Sc = o2, o1, o3, o4, o5, o6 and finds nearest neighbors {o2, o1} and {o5, o0}, respectively.

5.3.4 Akin: Bulk Candidate Set Construction without a k+-

heap

In this section, we introduce an alternative technique, called Akin, to reduce the CPU

time for the candidate set construction. Our proposition is founded on a bulk con-

86

Con
sta

nti
no

s C
os

ta

Algorithm 5 . Akin(O, Sc) Algorithm
Input: Candidate set Sc and set of objects O

Output: Sc updated

1: construct Min Heap Hc from O based on dist(o, c)

2: kthc = extract top k objects from Hc

3: θc = diagc + dist(kthc, c)

4: for all o ∈ O do

5: if dist(o, c) < θc then

6: Sc = Sc ∪ o

7: end if

8: end for

9: Sc = Sc ∪Oc

struction of the search space without a k+-heap. Particularly, we adopt the linear-time

heap construction algorithm proposed by Robert Floyd in [127]. The given algorithm,

makes the necessity of breaking our initial search space into three sub-structures un-

necessary, given that a single heap is constructed for the complete search space of each

cell in linear time.

In Algorithm 5, we present our Akin algorithm for the search space construction

of cell c ∈ C. Particularly, we scan once each object o ∈ O to build a k-min heap Hc

based on the minimum distance dist(o, c) between o and the cell-border (line 1). The k

objects are then scanned from Hc to determine threshold θc of c. We subsequently scan

objects o ∈ O once again to determine the set Sc of objects that satisfy the threshold

(lines 4-8). At the end of the execution, we carry out the union of Oc and Sc to derive

the updated search space.

Performance Analysis of Akin: Assuming a grid size of
√
n cells and uniform data

distribution of n objects, Algorithm 5 runs in O(n1.5) time. Particularly, the heap

construction in line 1 takes O(n) using the Floyd algorithm. The subsequent loop in

line 4 also takes O(n), consequently the above complexity is O(n) for each cell. For all
√
n cells the AkNN computation cost is O(n1.5). In the worst-case distribution, where

all users fall in a single cell this algorithm runs in O(n2) time.

5.3.5 Internal Pruning of Candidate Set: Prox+ and Akin+

In this section we introduce an internal pruning strategy of the candidate set Sc, which

is applicable to both the Prox and the Akin algorithms introduced earlier. We denote

87

Con
sta

nti
no

s C
os

ta

the respective algorithms with the extension ‘+’, if they use this further optimization,

i.e., Prox+ and Akin+. The particular strategy can be applied once the Sc search

space has been constructed, at which point the algorithm is ready to return the AkNN

results for each user.

Particularly, the internal pruning heuristic is founded on the observation that the

internal structures of the Sc structure (i.e., Oc, Kc and Bc), can be accessed in a

particular order to maximize the possibility of converging early-on with the AkNN

result-set for each user. Particularly, the heuristic strategy attempts to refine the

pruning threshold θc as soon as possible, by beginning the exploration of the Sc set

from Oc, then if necessary proceed to Kc and finally, if again necessary, proceed to the

exploration of Bc. Our experimental evaluation in Section 5.4 reveals that the internal

pruning heuristic provides a significant improvement to both Prox and Akin.

5.4 Experimental Evaluation

To evaluate our proposed algorithms we conduct a set of experiments, using three

traces of real datasets, in comparison with existing state-of-the-art algorithms. We run

all experiments on a virtual octa-core computing node.

The goal of this evaluation is to compare the overall efficiency of our proposed algo-

rithms with existing state-of-the-art algorithms in centralized AkNN query processing.

Efficiency is determined by the running time and, in case of running the algorithm on

a mobile device, by the energy consumed. Since our algorithms are centralized, both

running time and energy consumed are proportional to the CPU time needed for the

computation.

5.4.1 Datasets

In our experiments we use the following realistic and real datasets (depicted in Figure

5.5):

Oldenburg (realistic): The initial dataset is generated with the Brinkhoff spatio-

temporal generator [128], including 5K vehicle trajectories in a 25km x 25km area of

Oldenburg, Germany. The generated spatio-temporal dataset is then decomposed on

the temporal dimension, in order to generate realistic spatial datasets of 100, 1000 and

10K users.

88

Con
sta

nti
no

s C
os

ta

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
0) OLDENBURG: Data distribution (n=104)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
0) GEOLIFE: Data distribution (n=104)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
02)

RAYZIT: Data distribution (n=2*104)

Figure 5.5: Datasets (top row) and population histograms (bottom row) for an indicative 3x3

partitioning.

Geolife (realistic): The initial dataset is obtained from the Geolife project at Mi-

crosoft Research Asia [129], including 1.1K trajectories of users moving in the city of

Beijing, China over a life span of two years (2007-2009). Similarly to Oldenburg, the

generated spatio-temporal dataset is decomposed on the temporal dimension, in order

to generate realistic spatial datasets of 100, 1000 and 10K users.

Rayzit (real): This is a real spatial dataset of 20K coordinates captured by our Rayzit

service during February 2014. We intentionally do not scale this dataset up to more

users, in order to preserve the real user distribution.

Figure 5.5 (second row) shows the population histograms for the three respective

datasets, when split into nine equi-width partitions. The standard deviation among

the buckets for a total population of 10K objects is: (i) 900 objects in Oldenburg, (ii)

2K objects in Geolife, and (iii) 33 objects for Rayzit.

5.4.2 Evaluated Algorithms

We first evaluate the proposed algorithms in order to experimentally validate the ideas

and superiority of our propositions. Our proposed algorithms are:

Proximity: This algorithm is proposed in our previous work [122] for answering AkNN

queries in an operational cellular network, which exploits the natural partitioning de-

termined by the Network Connectivity Points (cell towers). We implement Proximity

on top of the grid partitioning pre-processing step discussed in Section 5.3.2.

Prox: This algorithm implements the optimized candidate set bound, introduced in

Section 5.3.3 and founded on the observation that the K ′c set inside a k+-heap could

89

Con
sta

nti
no

s C
os

ta

have been constructed from objects that reside both inside a cell and outside a cell.

Akin: This algorithm implements the optimized candidate set construction algorithm,

introduced in Section 5.3.4. Note that it does not make use of the k+-heap structure,

rather uses a heap constructed in linear time.

Prox+: This is the same algorithm as Prox but with the internal pruning strategy

described in Section 5.3.5. This optimization allows the final step to terminate earlier.

Akin+: This is the same algorithm as Akin but with the internal pruning strategy

described in Section 5.3.5. This optimization allows the final step to terminate earlier.

We also take existing state-of-the-art algorithms for answering a kNN query for a

single user, including Yu et al. [130] and Mouratidis et al. [131]. We adapt them to

answer an AkNN query. In addition, we compare the adaptation of existing work to

our best algorithms.

YPK and CPM : These methods iteratively enlarge a range search to find the kNN

for the user (see Figure 5.8b). The search space starts from the cell of the user and

iteratively visits neighboring cells until at least k neighbors are found. It is guaranteed

that no further neighboring cell can have a user that is closer. For our experiments,

we use this adaptation as a baseline for comparison.

In Table 5.3, we summarize the time complexity for each of the above algorithms

according to the respective data distribution, where “Best” denotes the uniform distri-

bution and “Worst” the worst distribution that corresponds to each algorithm.

Table 5.3: Algorithm Complexities under Best-case and Worst-case distributions.

Algorithm Best Worst

Proximity, Prox, Prox+ O(n1.5log
√
n) O(n2)

Akin, Akin+ O(n1.5) O(n2)

CPM/YPK O(n1.5) O(n2.5)

5.4.3 Evaluation Metrics

CPU time is the metric we use for our evaluation. All algorithms under evaluation

are centralized and, thus, do not require any communication. Therefore, CPU time

captures both the running time and the energy consumed by the computing node (e.g.,

mobile device) to run the AkNN algorithm. The CPU times are averaged over five

90

Con
sta

nti
no

s C
os

ta

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

OLDENBURG: Response Time for varying number of users
(k=16)

Proximity
Prox
Akin

Prox+

Akin+

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

GEOLIFE: Response Time for varying number of users
(k=16)

Proximity
Prox
Akin

Prox+

Akin+

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

RAYZIT: Response Time for varying number of users
(k=16)

Proximity
Prox
Akin

Prox+

Akin+

Figure 5.6: CPU time for all algorithms using the datasets: a) Oldenburg; b) Geolife; and

c) Rayzit. The plots show that: (i) Proximity without any optimizations has the worst per-

formance; (ii) Internal Pruning (using the “+”) has a higher impact on Prox rather than

on Akin, making Prox+ the algorithm with the best CPU-time performance; (iii) the more

skewed the dataset is (e.g., Geolife) the more improvement the speed-up achieved by our op-

timizations.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

OLDENBURG: Response Time for varying number of users
(k=16)

CPM
YPK

Prox+

Akin+

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

GEOLIFE: Response Time for varying number of users
(k=16)

CPM
YPK

Prox+

Akin+

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

RAYZIT: Response Time for varying number of users
(k=16)

CPM
YPK

Prox+

Akin+

Figure 5.7: CPU time for the best algorithms using the datasets: a) Oldenburg; b) Geolife;

and c) Rayzit. The plots show Prox+ and Akin+ outperform adapted state-of-the-art AkNN

query processing algorithms YPK and CPM that apply iterative deepening principle rather

than bulk computation of the search space.

iterations and are measured in milliseconds. Note that all figures are plotted with the

time (y-axis) in log-scale, thus the actual difference in efficiency between the algorithms

is larger than it visually appears.

5.4.4 Control Experiments

In this experimental series, we evaluate our proposed optimizations. We increase

the workload by growing the number of online users (n) exponentially using n =

102, 103, 104 for all datasets.

All plots in Figure 5.6 show that Proximity without any optimizations has the worst

performance. They also show that using bulk heap construction (i.e., Akin) instead of

a k+-heap (i.e., Prox) we achieve better performance. Looking at the ’+’ optimization

(i.e., the internal pruning strategy), it is evident that Akin+ and Prox+ outperform

their counterparts (i.e., Akin and Prox) every time.

91

Con
sta

nti
no

s C
os

ta

It is interesting to notice that Akin+ does not outperform Prox+, even though Akin

outperforms Prox, and Akin+ outperforms Akin. This is happening because the pruning

power inside the candidate set of Akin+ is smaller compared to Prox+. As described

in Section 5.3.4, Akin includes also internal objects in the computation of the Kc set

resulting in a Kc area that is narrower and closer to the cell border. Therefore, when

the kNNs of an internal object can not be guaranteed by the objects inside the cell (Oc

set), then there is a much higher chance for Akin+ to continue the kNN search in the

much larger boundary set (Bc) instead of guaranteeing the kNNs by just expanding to

the Kc set, as opposed to Prox+.

Comparing the various datasets, we conclude that the more skewed the dataset is

(e.g., Geolife) the more improvement the speed-up achieved by our optimizations. This

stands also when we look at the growing workload. Generally, the proposed optimizati-

ons in this chapter always outperform our original algorithm Proximity, specifically for

large workloads and skewed datasets where they reach a 10% speed-up (Figure 5.6b).

5.4.5 Comparison Against Existing Work

In this experimental series, we compare our best algorithms (i.e., Prox+, Akin+)

against the state-of-the-art (i.e., YPK, CPM). Again, we increase the workload of the

system by growing the number of online users (n) exponentially using n = 102, 103, 104

for all datasets (other than Rayzit, which is kept at 104 as explained previously).

Figure 5.7 shows that there are only two instances where a state-of-the-art algo-

rithm (i.e., YPK) outperforms any of our algorithm (i.e., Akin+), i.e., for the lightest

workloads n = 102. Looking at the workload, it shows that the our algorithms achieve

greater speed-up as the workload increases. Comparing datasets, it is evident that the

more skewed the dataset the greater the speed-up achieved by our algorithms.

It can clearly be observed, that the algorithms proposed in this chapter outperform

existing approaches for any workload and skewness of dataset. The more skewed the

dataset is (i.e., Geolife) the more improvement the speed-up of our algorithms, speci-

fically they reach a 10% speed-up (Figure 5.7b). This is in line with our theoretical

comparison in Table 5.3, where the time complexity of the state-of-the-art is greater

for the worst-case data distribution.

92

Con
sta

nti
no

s C
os

ta

5.5 Related Work

We provide a summary of existing state-of-the-art research works on neighborhood

queries and categorize them according to the characteristics of these queries. Existing

works can be classified in spatial data applications and spatio-temporal data applica-

tions.

5.5.1 kNN for Spatial Data

kNN search is a classical problem with many centralized algorithms that find appli-

cations in computational geometry [132–134] and image processing [135, 136]. An All

kNN (AkNN) query, which can be viewed as a generalization of the basic kNN query,

generates a kNN graph. For large datasets residing on disk (external memory), works

like Zhang et al. [137], Chen et al. [138], and Sankaranarayanan et al. [139] exploit

possible indices on the datasets and propose algorithms for R-tree based AkNN search.

For smaller problems, where data fits inside main memory, early work in the domain

of computational geometry has proposed several solutions. Clarkson et al. [132] was

the first to solve the ANN problem followed by Gabow et al. [134], Vaidya [140] and

Callahan [133]. Given a set of points, a special quad-tree is used in [132–134] and a

hierarchy of boxes to divide the data and compute the ANN is proposed in [140]. The

worst case running time, for both building the needed data structures and searching

in these techniques, is O(nlogn), where n is the number of points in the system. For

the AkNN problem, the algorithms developed in [132, 133] propose an algorithm with

O(kn+nlogn), while the algorithm in [140] achieves O(knlogn)-time complexity.

5.5.2 kNN for Spatio-Temporal Data

In spatio-temporal data applications the datasets consist of objects and queries that

move over time in some Euclidean space. Existing works in this category only tackle

the problem of answering a k-nearest neighbor query for a single user over time (CkNN

query).

For large-scale disk-resident datasets, Tao et al. [141], Benetis et al. [142], Iwerks et

al. [143], Raptopoulou et al. [144], and Frentzos et al. [145] assume that the velocity of

the moving objects is fixed and the future position of an object can be estimated. Huan

et al. [146] assume that there is only some uncertainty in the velocity and direction

93

Con
sta

nti
no

s C
os

ta

o2

o1

(a)

o1

o2

(b)

Figure 5.8: a) In Proximity the candidate set is pre-constructed for all users of the same cell

(e.g., o1 and o2); whereas b) for existing state-of-the-art algorithms the candidate set needs to

be iteratively discovered by expanding a ring search for each user separately into neighboring

cells.

of the moving objects. Accordingly, they propose algorithms to optimize the case

were the future position estimation can also be uncertain. This set of works uses

time parameterized R-trees to efficiently search for the nearest neighbors. Kollios et

al. [115] propose a method to answer NN queries for moving objects in 1D space. Their

method is based on the dual transformation where a line segment in the native space

corresponds to a point in the transformed space, and vice-versa. Xiong et al. [147]

focus on multiple kNN queries and propose an incremental search technique based on

hashing objects into a regular grid, keeping CPU time in mind. The main objective of

these works on disk-resident data is to minimize disk I/O operations, considering CPU

time only as a secondary objective in the best case.

Main-memory processing is usually mandatory for spatio-temporal applications,

where objects are highly mobile. The intensity of the location updates is very restrictive

for disk-based storage and indexing, and demands optimization in respect to the CPU

time. Yu et al. [130] (YPK) followed by Mouratidis et al. [131] (CPM) and Hu et

al. [148] optimize kNN queries in a similar fashion as Xiong et al. do for disk-resident

data. Data objects are indexed by a grid in main-memory (see Figure 5.8) given a

system-defined parameter value for the grid size. For each query they both use a form

of iteratively enlarging a range search to find the kNN. Assuming a grid size of
√
n

cells, their stateless solution has a time complexity of O(n1.5) for uniform distributions

and O(n2.5) for the worst-case distribution, where the search for most of the users needs

to be deepened iteratively until it covers most of the space.

94

Con
sta

nti
no

s C
os

ta

5.5.3 Mobile User Community Network

Similar to the motivating examples in the previous section, Konstantinides et al. [149]

present a distributed search architecture for intelligent search of objects in a mobile

social community. Their framework is founded on an in-situ data storage model, where

captured objects remain local on smartphones. It searches over a sophisticated struc-

ture that is computed dynamically and optimizes several conflicting objectives in a

single run. Then a decision-making subsystem is utilized to tune the retrieval preferen-

ces of the query user. Their framework yields high query recall rates with minimized

CPU time on each mobile device.

5.6 Summary

In this chapter, we develop techniques that generate the kNN graph of an arbitrary

crowd of smartphone users that interconnect through a short-range communication

technology, such as, Wi-Fi Direct, 3G/LTE direct or Bluetooth v4.0 (BLE). We present

two efficient algorithms, namely Akin+ and Prox+, optimized to work on a resource-

limited mobile device. These algorithms partition the user space and compute shared

candidate sets per partition. Prox+ uses a custom heap data structure to update

the candidate set as new users are inserted, whereas Akin+ uses a bulk bottom-up

construction of a simple heap to compute the candidate set once all users have been

inserted. Our experiments verify the theoretical efficiency and shows that Prox+ and

Akin+ are very well suited for large scale and skewed data scenarios.

95

Con
sta

nti
no

s C
os

ta

Chapter 6
Distributed In-Memory Processing of

All k Nearest Neighbor Queries

A wide spectrum of Internet-scale mobile applications, ranging from social networking,

gaming and entertainment to emergency response and crisis management, all require

efficient and scalable All k Nearest Neighbors (AkNN) computations over millions of

moving objects every few seconds to be operational. Most traditional techniques for

computing AkNN queries are centralized, lacking both scalability and efficiency. Only

recently, distributed techniques for shared-nothing cloud infrastructures (big data ar-

chitectures) have been proposed to achieve scalability for large datasets. These batch-

oriented algorithms are sub-optimal due to inefficient data space partitioning and data

replication among processing units. In this chapter we present Spitfire, a distributed

algorithm that provides a scalable and high-performance AkNN processing framework

for both big data architectures but also more traditional High-Performance compu-

ting architectures. Our proposed algorithm deploys a fast load-balanced partitioning

scheme along with an efficient replication-set selection algorithm, to provide fast main-

memory computations of the exact AkNN results in a batch-oriented manner. We

evaluate, both analytically and experimentally, how the pruning efficiency of the Spit-

fire algorithm plays a pivotal role in reducing communication and response time up

to an order of magnitude, compared to three other state-of-the-art distributed AkNN

algorithms executed in distributed main-memory.

6.1 Introduction

In the age of smart urban and mobile environments, the mobile crowd generates and

consumes massive amounts of heterogeneous data [24]. Such streaming data may offer

96

Con
sta

nti
no

s C
os

ta

a wide spectrum of enhanced science and services, ranging from mobile gaming and

entertainment, social networking, to emergency and crisis management services [1].

However, such data present new challenges in cloud-based query processing.

One useful query for the aforementioned services is the All kNN (AkNN) query:

finding the k nearest neighbors for all moving objects. Formally, the kNN of an object

o from some dataset O, denoted as kNN(o,O), are the k objects that have the most

similar attributes to o [25]. Specifically, given objects oa,ob,oc, ∀ob ∈ kNN(oa, O)

and ∀oc ∈ O−kNN(oa, O) it always holds that dist(oa, ob)≤dist(oa, oc)1. An All kNN

(AkNN) query generates a kNN graph. It computes the kNN(o,O) result for every

o ∈ O and has a quadratic worst-case bound. An AkNN query can alternatively

be viewed as a kNN Self-Join: Given a dataset O and an integer k, the kNN Self-

Join of O combines each object oa ∈ O with its k nearest neighbors from O, i.e.,

O./kNNO = {(oa, ob)|oa, ob ∈ O and ob ∈ kNN(oa, O)}.

A real-world application based on such a query is Rayzit [1]2, our award-winning

crowd messaging architecture, that connects users instantly to their k Nearest Neig-

hbors (kNN) as they move in space (Figure 6.1, left). Similar to other social network

applications (e.g., Twitter, Facebook), scalability is key in making Rayzit functional

and operational. Therefore we are challenged with the necessity to perform a fast

computation of an AkNN query every few seconds in a scalable architecture. The

wide availability of off-the-shelf, shared-nothing, cloud infrastructures brings a natu-

ral framework to cope with scalability, fault-tolerance and performance issues faced

in processing AkNN queries. Only recently researchers have proposed algorithms for

optimizing AkNN queries in such infrastructures.

Specifically, the state-of-the-art solution [26] consists of three phases, namely par-

titioning the geographic area into sub-areas, computing the kNN candidates for each

sub-area that need to be replicated among servers in order to guarantee correctness

and finally, computing locally the global AkNN for the objects within each sub-area

taking the candidates into consideration. The given algorithm has been designed with

an offline (i.e., analytic-oriented) AkNN processing scenario in mind, as opposed to an

online (i.e., operational-oriented) AkNN processing scenario we aim for in this work.

The performance of [26] can be greatly improved, by introducing an optimized partiti-
1In our discussion, dist can be any Lp-norm distance metric, such as Manhattan (L1), Euclidean

(L2) or Chebyshev (L∞).
2Rayzit: https://rayzit.cs.ucy.ac.cy/

97

Con
sta

nti
no

s C
os

ta

s1

s4s3

s2O1

O8

O2

O3

O5

O4

O7

O6 O9

O10O11

Figure 6.1: (Left) Our Rayzit crowd messenger enabling users to interact with their k geo-

graphic Nearest Neighbors. (Right) Distributed main-memory AkNN computation in Rayzit

is enabled through the Spitfire algorithm.

oning and replication strategy. These improvements, theoretically and experimentally

shown to be superior, are critical in dramatically reducing the AkNN query processing

cost yielding results within in a few seconds, as opposed to minutes, for million-scale

object scenarios.

Solving the AkNN problem efficiently in a distributed fashion requires the object

set O be partitioned into disjoint subsets Oi corresponding to m servers (i.e., O =⋃
1≤i≤mOi). To facilitate local computations on each server and ensure correctness

of the global AkNN result, servers need to compute distances across borders for the

objects that lie on opposite sides of the border and are close enough to each other.

Consider the example illustrated at the right side of Figure 6.1, where 11 objects

are partitioned over 4 spatial quadrants, each being processed by one of four servers

{s1 . . . s4}. Now assume that we are interested in deriving the 2NN for each object

{o1 . . . o11}. By visually examining the example, we can identify that the 2NN(o1, O)

are {o2, o8}. Although o8 indeed resides along with o1 on s1, the same does not apply

to o2, which resides on s2. Consequently, in order to calculate dist(o1, o2), we will first

need to transfer o2 from s2 to s1. The same problem also applies to other objects (e.g.,

2NN(o8, O) = {o7, o1} and 2NN(o6, O) = {o7, o8}).

In any performance-driven distributed algorithm, the efficiency is determined pre-

dominantly by the network messaging cost (i.e., network I/O). Therefore, in this work

we address the problem of minimizing the number of objects transferred (replicated)

98

Con
sta

nti
no

s C
os

ta

between servers during the computation of the AkNN query.

Another factor in a distributed system is balancing the workload assigned to each

computing node si, such that each si will require approximately the same time to

compute the distances among objects. By examining Figure 6.1 (right), we can see

that s4 would require to compute 15 distances among 6 objects (i.e., local objects

{o4, o5, o9, o10, o11} and transferred object {o3}), while s3 would need to compute only

3 distances among 3 objects (i.e., local objects {o6, o7} and transferred object {o8}).

This asymmetry, means that s3 will complete 5 times faster than s4. In fact, s4 lies on

the critical path of the computation as it has the highest load among all servers.

Consequently, in this work we also address the problem of quickly deriving a fair

partitioning of objects between si that would yield a load-balanced execution and thus

minimize synchronization time.

In this chapter we present Spitfire, a scalable and high-performance distributed

algorithm that solves the AkNN problem in a fast batch mode using a shared-nothing

cloud infrastructure of m servers. To address the aforementioned load balancing and

communication issues, Spitfire starts out by partitioning O into disjoint sub-areas of

approximately equal population using a fast equi-depth partitioning scheme. It then

uses a threshold-based pruning algorithm to determine minimal replication sets to be

exchanged between servers. Particularly, each server si receives from its neighboring

servers a set of replicated objects potentially of interest, coined External Candidates

(ECi). ECi supplements server si with all the needed external objects to compute the

correct kNN for every o ∈ Oi, i.e., kNN(o,ECi ∪Oi) = kNN(o,O).

Particularly, Spitfire completes in three discrete phases. First, we devise a simple

but fast centralized hash-based adaptation of equi-depth histograms [150] to partition

the inputO into disjoint subsets achieving good load balancing inO(n+
√
nm) time. To

do this we first hash the objects based on their locations into a number of sorted equi-

width buckets on each axis and then partition each axis sequentially by grouping these

buckets in an equi-depth fashion. Subsequently, each si computes a subset of Oi, coined

External Candidates ECji, which is possibly needed by its neighboring sj for carrying

out a local AkNN computation in the next phase. The given set ECji is replicated from

si to sj. Finally, each si performs a local Oi ./kNN (Oi ∪ ECi) computation, which is

optimized by using a heap structure along with internal geographic grouping and bulk

processing.

Spitfire completes in only one communication round, as opposed to two communi-

99

Con
sta

nti
no

s C
os

ta

cation rounds needed by the state-of-the-art [26], and its precise replication scheme has

better pruning power, thus minimizing the communication cost/time as it is shown both

analytically and experimentally in this work. The CPU time of Spitfire is O(fSpitfire
n2

m2)

and its communication cost O(fSpitfiren), as this will be shown in Sections 6.2. We

show that factor fSpitfire is always smaller than the factor achieved by the state-of-the-

art [26]. Finally, Spitfire is implemented using the Message Passing Interface (MPI)

framework [43]. This makes it particularly useful to large-scale main-memory data pro-

cessing platforms (e.g., Apache Spark [29]), which have no dedicated AkNN operators.

In our previous work [122], we have presented a centralized algorithm named Prox-

imity, which deals with AkNN queries in continuous query processing scenarios. In

this chapter, we completely refocus the problem formulation to tackle the distributed

in-memory AkNN query processing problem and propose the Spitfire algorithm. Our

new contributions are summarized as follows:

• We devise Spitfire, a distributed algorithm that solves the AkNN problem in a

fast batch mode, offering both scalability and efficiency. It encapsulates a number

of innovative internal components, such as: (i) a novel linear-time partitioning

algorithm that achieves sufficient load-balancing independent of data skewness,

(ii) a new replication algorithm that exploits geometric properties towards mini-

mizing the candidates to be exchanged between servers, and (iii) optimizations

added to the local AkNN computation proposed in [122].

• We provide a formal proof of the correctness of our algorithm and a thorough

analytical study of its performance.

• We conduct an extensive experimental evaluation that validates our analytical

results and shows the superiority of Spitfire. Particularly, we use four datasets

of various skewness to test real implementations of AkNN algorithms on our 9-

node cluster, and report an improvement of at least 50% in the pruning power of

replicated objects that have to be communicated among the servers.

The remainder of the chapter is organized as follows. Section 6.5 provides our pro-

blem definition, system model and desiderata, as well as an overview of the related work

on distributed AkNN query processing. Section 6.2 presents our Spitfire algorithm with

a particular emphasis on its partitioning and replication strategies, whereas Section 6.3

100

Con
sta

nti
no

s C
os

ta

Oi

Adj
i

EC
i

o
a

o
b

A
i

on s
i

Oj

B
i

(∀b∈A
i

) EC
ji

A
j

on s
j

[A
x

: Sub-Area | s
x

: Server | O
x

: Object Subset]

b

Figure 6.2: Spitfire Overview: (i) Space partitioning to equi-depth quadrants; (ii) Replication

between neighboring Oi and Oj using ECji and ECij, respectively; and (iii) Local refinement

within each Oi ∪ ECi.

analyzes its correctness and complexity. Section 6.4 presents an extensive experimental

evaluation and Section 6.6 concludes the chapter.

6.2 The Spitfire Algorithm

In this section we propose Spitfire, a high-performance distributed main-memory algo-

rithm. We outline its operation and intrinsic characteristics and then detail its three

internal steps that capture the core functionality, namely partition (Partitioning/Split-

ting), computeECB (Replication) and localAkNN (Refinement). The name Spitfire is

derived by a syllable play using the meaning of these three steps, namely Split, Refine

replicate, which implies good mechanical performance.

6.2.1 Spitfire: Overview and Highlights

As shown in [122], grouping the points geographically and computing common kNN

candidates per group, instead of computing the kNN for each point separately, signifi-

cantly improves performance. Furthermore, partitioning is necessary for distribution,

thus such algorithms, which geographically group their points, inherently lend them-

selves as distributed solutions. For the above reasons, the solution we propose in this

work also belongs to the category of “top-down” distributed AkNN solutions.

Overview: In Spitfire, the input O is processed in a single communication round,

101

Con
sta

nti
no

s C
os

ta

involving the three discrete steps shown in Algorithm 1 and explained below (please

see Figure 6.2 along with the description):

• Step 1 (Partitioning): Initially, O is partitioned into (disjoint) sub-areas with

an approximately equal number of objects, i.e., O = ⋃
1≤i≤mOi. We use a sim-

ple but fast centralized hash-based adaptation of equi-depth histograms [150] to

achieve good load balancing in O(n+
√
nm) time. It first hashes the objects ba-

sed on their locations into a number of sorted equi-width buckets on each axis and

then partitions each axis sequentially by grouping these buckets in an equi-depth

fashion. Let each Oi belong to area Ai handled by server si, Bi be the border

segmentations surrounding Ai and Adji be the adjacent servers to si (handling

adjacent areas to Ai).

• Step 2 (Replication): Subsequently, each si computes a subset of Oi, coined

External Candidates ECji, which is possibly needed by its neighboring sj for

carrying out a local AkNN computation in Step 3 (refinement). The given set

ECji is transmitted by si to sj (i.e., left-dashed area within Oi, as depicted in

Figure 6.2). Since each sj applies the above operation as well, we also have the

notion of ECij. The union of ECij for all neighboring sj ∈ Adji defines the

External Candidates of Oi, i.e., ECi = ⋃
1≤j≤Adji ECij. The cardinality of all ECi

defines the Spitfire replication factor, i.e.,

fSpitfire = 1
n

m∑
i=1
|ECi|+ 1 (6.1)

• Step 3 (Refinement): Finally, each si performs a local Oi ./kNN (Oi ∪ ECi)

computation, which is optimized by using a heap structure along with internal

geographic grouping and bulk processing.

The CPU time of Spitfire is T (n) = n+
√
nm + fSpitfire

n2

m2 , as this will be shown in

Sections 6.2.2 and 6.2.4, respectively. Its communication cost is the total number of

objects communicated over the network, i.e., C(n) = fSpitfiren.

Highlights: Spitfire’s main advantages to prior work follow:

• Fast Batch Processing: Spitfire is suitable for online operational AkNN

workloads as opposed to offline analytic AkNN workloads. Particularly, it is

able to compute the AkNN result-set every few seconds as opposed to minutes

required by state-of-the-art AkNN algorithms configured in main-memory.

102

Con
sta

nti
no

s C
os

ta

Algorithm 6 - Spitfire Distributed AkNN Algorithm
Input: n Objects O in Area A, m Servers S, Parameter k

Output: AkNN of O

. Step 1: Partitioning (centrally)

1: Areas = partition(A,m) . (Algo. 7, Sec. 6.2.2)

2: for all Ai ∈ Areas do

3: determine Oi, Adji and Bi

4: transmit Oi to server si ∈ S

5: end for

. Step 2: Replication (parallel on each si)

6: for all b ∈ Bi do . Find candidates needed by each Aj

7: ECb =computeECB(b,Oi) . (Algo. 8, Sec. 6.2.3)

8: ECji=ECji ∪ ECb . Append to ECji results.

9: end for

10: for all Aj ∈ Adji do . Exchange External Candidates

11: Asynchronous send ECji to adjacent server sj

12: Asynchronous receive ECij from adjacent server sj

13: ECi = ECi ∪ ECij . Append to ECi results.

14: end for

. Step 3: Refinement (parallel on each si)

15: localAkNN(Oi,ECi) . (Algo. 9, Sec. 6.2.4)

• Effective Pruning: Spitfire uses a pruning strategy that achieves replication

factor fSpitfire, which is shown analytically and experimentally to be always better

than that achieved by state-of-the-art AkNN algorithms.

• Single Round: Spitfire is a single round algorithm as opposed to state-of-the-art

AkNN algorithms that require multiple rounds.

6.2.2 Step 1: Partitioning

To fully utilize the processing power of the available servers in the cluster, it is desirable

to allocate an evenly balanced workload. This functionality has to be carried out in

a fast batch-oriented manner, in order to accommodate the real-time nature of crowd

messaging services such as those offered by Rayzit. Particularly, our execution has to

be carried out every few seconds. As the partitioning is to be used by each AkNN

query, the result will not be useful after a few seconds (i.e., when the next AkNN

103

Con
sta

nti
no

s C
os

ta

Algorithm 7 - partition(A,m) Algorithm
Input: object space A, number of partitions m, set of objects O, number of buckets per axis paxis

1: partitions = ∅, 1≤s≤m . initialize final partitions

2: xpartitionr=∅, 1≤r≤d
√
me . initialize x-axis partitions

3: xbuckets = equi-width hash ∀o ∈ O into px buckets

4: for all bucket in xbuckets do

5: if |xpartitionr|+ 1
2 |bucket|> n√

m
and r<

√
m then

6: r = r + 1

7: end if

8: xpartitionr ← bucket

9: end for

10: for all part in xpartitions do

11: empty all ybuckets

12: ybuckets=equi-width hash ∀o∈part into py buckets

13: for all bucket in ybuckets do

14: if |partitions|+ 1
2 |bucket|> n

m and s<
√
m then

15: s = s+ 1

16: end if

17: partitions ← bucket

18: end for

19: end for

query is executed). We consequently have not opted for traditional space partitioning

index structures (e.g., k-d trees, R-trees, etc.), as these require a wasteful O(nlogn)

construction time.

Our partition function runs on a master node centrally and uses a hash-based adap-

tation of equi-depth histograms [150] for speed and simplicity. Instead of ordering the

objects on each axis and then partitioning each axis sequentially for a time complexity

of O(nlogn), our partition function first hashes the objects, based on their location,

into paxis < n sorted equi-width buckets on each axis, and then partitions each axis by

grouping these buckets for O(n+
√
mn) time.

Particularly, our partition function (Algorithm 7) splits the x-axis into px equi-

width buckets and hashes each object o in O in the corresponding x-axis bucket (Line

3). Then it groups all x-axis buckets into d
√
me vertical partitions (xpartition) so that

no group has more than n√
m

+1
2 |bucket| objects (Line 4-9). The last x-axis partition

gets the remaining buckets. Next, it splits the y-axis into py equi-width buckets. For

each generated vertical partition xpartitioni it hashes object o ∈ xpartitioni into the

104

Con
sta

nti
no

s C
os

ta

corresponding bucket (Line 12). Then it groups all y-axis buckets into d
√
me partitions

so that no group has more than n
m

+1
2 |bucket| objects (Line 13-18). The last y-axis

partition gets the remaining buckets.

The result is m partitions of approximately equal population, i.e., n
m

+1
2 |bucket|.

The more buckets we hash into, i.e., larger values for px and py, the more “even”

the populations will be. The time complexity of the partition function is determined

by the number n of objects to hash into each bucket (px + py) (Lines 3 and 12) and

the nested-loop over all
√
m xpartitions (Lines 10-19). In our setting, px<

√
n and

py<
√
n are used in the internal loop (Lines 13-18). Thus, the total time complexity is

O(n+
√
mn) = O(n), since n > m.

6.2.3 Step 2: Replication

The theoretical foundation of our replication algorithm is based on the notion of “hi-

ding”, analyzed in detail later in Section 6.3.1. Intuitively, given the kNNs of a line

segment or corner b and a set of points Oi on one side of b, it is guaranteed that any

point belonging to the opposite side of b, other than the given kNNs of b, is not a kNN

of Oi.

Each server si computes the External Candidates ECji for each of its adjacent

servers sj ∈ Adji (Algorithm 6, Line 6-9). It runs the computeECB algorithm for each

border segment or corner b ∈ Bi (Line 7) and combines the results according to the

adjacency between b and Adji (Line 8).

computeECB (Algorithm 8) scans all the objects in Oi once to find the kNN(b, Oi),

i.e., the k objects with the smallest mindist to border b (Line 2), where mindist(o, b)=

minp∈b{dist(o, p)} and p is any point on b. Note, that the partitioning step guarantees

that each server will have at least k objects if m < n
k
− |bucket|.

A pruning threshold θb is determined by kNN(b, Oi) and used to prune objects

that should not be part of ECb. Specifically, threshold θb is the worst (i.e., largest)

maxdist(o, b) of any object o ∈ kNN(b, Oi) to border b (Line 3), where maxdist(o, b) is

defined as maxdist(o, b)=maxp∈b {dist(o, p)}.

θb = argmaxp∈kNN(b,Oi){maxdist(p, b)} (6.2)

Given θb, an object o ∈ Oi is part of ECb if and only if its mindist to b is smaller

than θb (Line 4-8) (based on Theorem 1, Section 6.3). Formally,

ECb = {o|o ∈ Oi ∧mindist(o, b) < θb} (6.3)

105

Con
sta

nti
no

s C
os

ta

Algorithm 8 - computeECB(b,Oi) Algorithm
Input: border segment (or corner) b, object set Oi

1: construct Min Heap Hb from Oi based on mindist(o, b)

2: kNN(b,Oi) = extract top k objects from Hb

3: θb ← maxp∈kNN(b,Oi){maxdist(p, b)}

4: for all o ∈ Oi do

5: if mindist(o, b) < θb then

6: ECb = ECb ∪ o

7: end if

8: end for

9: return ECb

Algorithm 9 - localAkNN(Oi,ECi) Algorithm
Input: External Candidates ECi and set of objects Oi

1: partition the area Ai into a set of cells Ci

2: for all cells c ∈ Ci do

3: construct Min Heap Hc from Oi on mindist(o, c)

4: kNN(c,Oi) = extract top k objects from Hc

5: θc ← maxp∈kNN(c,Oi){maxdist(p, c)}

6: for all o ∈ Oi do

7: if mindist(o, c) < θc then

8: ECc = ECc ∪ o

9: end if

10: end for

11: compute kNN(o,Oc ∪ ECc),∀o ∈ Oc

12: end for

As si completes the computation of ECji for an adjacent server sj ∈ Adji, it sends

ECji to sj and receives ECij′ from some s′j ∈ Adji that has completed the respective

computation in an asynchronous fashion (Algorithm 6, Line 10-14). When all servers

complete the replication step, each si have received set ECi=
⋃
sj∈Adji ECij.

In the example of Figure 6.3, server s1 has O1= {o1, o2, o3, o4} and wants to run

computeECB for b=be. The 2 neighbors 2NN(b, O1) of border b are {o1, o2} and there-

fore θb=maxdist(o1, b) (since maxdist(o1, b)>maxdist(o2, b)). Objects o3 and o4 do not

qualify as part of ECb, since mindist(o3, b)>θb and mindist(o4, b)>θb, thus ECb={o1, o2}.

106

Con
sta

nti
no

s C
os

ta

O13

e

O3 O1

ba

d

g h i

f

c

O4
O2

O5

O6

O7
O11

O8

O10O9

O12

s1 s2

s3s4

Figure 6.3: Server s1 sends {o1, o2} to s2, {o1, o2}

to s3, and {o2, o4} to s4.

O3O1 O2

b

O3O1

Figure 6.4: (Top) o2 hides o1 from o3,

(Bottom) Segment b hides o1 from o3.

6.2.4 Step 3: Refinement

Having received ECi, each server si computes kNN(o,Oi ∪ ECi),∀o ∈ Oi (Algorithm

6, Line 15). Any centralized main-memory AkNN algorithm [122, 132] that finds the

kNNs from Oi ∪ ECi for each object o ∈ Oi (a.k.a. kNN-Join between sets Oi and

Oi ∪ ECi) can be used for this step.

In Spitfire, we partition sub-area Ai of server si into a grid of equi-width cells Ci.

Each cell c ∈ Ci contains a disjoint subset Oc ⊂ Oi of objects. Next, we compute locally

a correct external candidate set ECc for each cell c ∈ Ci (similarly to the replication

step). Finally, we find the kNNs for each object o ∈ Oi by computing kNN(o,Oc∪ECc).

In Algorithm 9, objects o∈Oi are scanned once to build a k-min heap Hc for each

cell c∈Ci based on the minimum distance mindist(o, c) between o and the cell-border

(Line 3). The first k objects are then popped from Hc to determine threshold θc, based

on Equation (6.2) (Lines 4-5). Objects o∈Oi are scanned once again to determine the

External Candidates ECc that satisfy the threshold as in Equation (6.3) (Lines 6-10).

Finally, si computes kNN(o,Oc ∪ ECc),∀o ∈ Oc (Line 11).

Given optimal load balancing, the building phase (heap construction and Exter-

nal Candidates) completes in O(n
m

) time, whereas finding the kNN within Oc ∪ ECc

completes in O(fSpitfire
n
m

) time, where n
m

= |Oi|.

107

Con
sta

nti
no

s C
os

ta

6.2.5 Running Example

Given an object set O, assume that a set of servers {s1, s2, s3, s4} have been assigned to

sub-areas {abde, bcfe, efih, dehg}, respectively (see Figure 6.3). In the following, we dis-

cuss the processing steps of server s1. The objects of s1 are O1={o1, o2, o3, o4}, its adja-

cent servers are Adji={s2, s3, s4}, and its border segments areB1 = {a, ab, b, be, e, ed, d, da}.

For simplicity we have defined the border segments to be a one-to-one mapping to the

corresponding adjacent servers. As shown, border segment be is adjacent to server s2,

corner e is adjacent to server s3, and segment ed is adjacent to server s4.

Server s1 locally computes ECb for each b ∈ Bi. It does so by scanning all objects

o ∈ O1 and building a heap Hb for each border segment b based on mindist(o, b). The

k closest objects to each b are popped from Hb as a result. In our example, {o1, o2} are

the k closest objects to segment be, {o1, o2} are the k closest objects to e, and {o2, o4}

are the k closest objects to segment ed.

For each segment b, its pruning threshold θb is determined by the largest maxdist

of its closest objects computed in the previous step. For instance, for segment be this

is θb = maxdist(o1, be), since maxdist(o1, be) > maxdist(o2, be). Given the thresholds θb,

all objects o ∈ O1 are scanned again and the condition mindist(o, b) < θb is checked for

each segment b. If this condition holds then object o is part of ECb. In our example,

ECbe = {o1, o2}, ECe = {o1, o2} and ECed = {o2, o4}. Now s1 sends ECbe to s2, ECe to

s3, and ECed to s4, based on the adjacency described earlier.

Similarly, the above steps take place in parallel on each server. Therefore, s1 receives

from s2 the ECbe of set O2, from s3 the ECe of set O3, and from s4 the ECed of set

O4. Hence, server s1 will be able to construct its EC1 = ⋃
b∈Bi

ECb = {o5, o6, o7, o8}.

The External Candidate computation completes and the local kNN refinement phase

initiates computing kNN(o,Oi ∪ ECi), ∀o ∈ Oi on each server si.

6.3 Correctness and Analysis

In this section we first show that our algorithm leads to a correct AkNN result, i.e.,∑m
i kNN(o,ECi ∪Oi) = kNN(o,O), based on the External Candidates determined by

computeECB. Then, we analyze its computational and communication cost.

108

Con
sta

nti
no

s C
os

ta

6.3.1 Correctness of the computeECB function

To prove correctness, we show that it suffices to compute the External Candidates

ECBi
to border Bi in order to find the External Candidates ECi of the whole area Ai,

given area Ai, its border Bi, and the necessary objects around Bi. In the following, we

first define the notion of point hiding.

Definition 6.3.1 (Point Hiding). Given three points o1, o2, o3 on a line, which holds

the following relationship dist(o1, o3) = dist(o1, o2) + dist(o2, o3), we say that o2 hides

o1 and o3 from each other.

In Figure 6.4 (top) point o2 hides o1 and o3 from each other.

Lemma 1. Given three points o1, o2, o3 where o2 hides o1 from o3 and the fact that o1

is not a kNN of o2, it holds that o1 is not a kNN of o3, and vice versa.

Proof. To prove that o1 is not a kNN of o3 it suffices to prove that there are k points

closer than o1 is to o3. The fact that o1 is not a kNN of o2 means that there are k

other points, {p1, p2, ..., pk}, in space that are closer to o2 than is o1, dist(pi, o2) ≤

dist(o1, o2). It holds that dist(pi, o3) ≤ dist(o1, o2) + dist(o1, o3) − dist(o2, o1) based

on trigonometry, which gives dist(pi, o3) ≤ dist(o1, o3). Therefore there are k points,

namely {p1, p2, ..., pk}, that are closer to o3 than is o1 �

Similarly, we can extend the notion of hiding from a point to a line segment, i.e.,

border. In Figure 6.4 (bottom) segment b hides o1 and o3 from each other.

Definition 6.3.2 (Segment Hiding). Given two points o1, o3, and a segment b, we say

that b hides o1 and o3 from each other, when there is always a point o ∈ b that hides

o1 and o3 from each other.

Lemma 2. Given two points o1 and o3, a segment b that hides o1 from o3, and the fact

that o1 is not a kNN of any point on b, it holds that o1 is not a kNN of o3, and vice

versa.

Proof. It suffices if it holds that dist(ki, o3) ≤ dist(o1, o3) for 1 ≤ i ≤ k. Given that o1

is not a kNN of any point p ∈ b, then for each p there are k other points {k1, k2, ..., kk}p

in space. It holds that dist(kp
′

i , o3) ≤ dist(o1, o3) − dist(o1, p
′) + dist(o1, p

′) based on

trigonometry, which gives dist(kp
′

i , o3) ≤ dist(o1, o3) for 1 ≤ i ≤ k. �

109

Con
sta

nti
no

s C
os

ta

Since border Bi of area Ai hides every point that is outside Ai from the points

inside Ai, we can easily extend Lemma 1 and Lemma 2 into Lemma 3:

Lemma 3. Given an area Ai, its objects Oi and its border segments Bi, then any

object x outside area Ai, i.e., x < Oi, that is not a kNN of some point of border Bi is

guaranteed not to be a kNN of any object inside Ai.

6.3.2 Correctness of Spitfire

The correctness of computeECB performed on a single server assumes that for a given

border b the server has access to all the kNN candidates of b. In a distributed environ-

ment this may not be the case as some candidates of b might span over several servers.

More specifically, this happens when a server has less than k objects or when there is

a θb that is greater than the side of the sub-area Ai assigned to the server.

The result of Spitfire is always correct since it deals with both cases gracefully. In

particular, given a dataset of size n, Spitfire does not allow m to be set such that n
m
< k

and furthermore, at the end of the partitioning step (Algorithm 7) it iterates through

the m generated partitions partitions, 1≤s≤m, to check whether |partitions| < k. If

this is the case, Spitfire re-instantiates itself using only m/2 servers in order to produce

partitions with larger population.

To handle the second case, Spitfire also computes the side lengths of each partition

during the partitioning step (Algorithm 7) and checks on each server during the repli-

cation step whether for any b ∈ Bi it holds that θb > partition side length in Algorithm

8. If this is the case, Spitfire re-instantiates itself using only m/2 servers in order to

produce partitions with bigger side lengths. The above controls are not shown in the

Algorithms for clarity of presentation.

Given that each server si receives ECi computed by function computeECB over all

adjacent servers sj ∈ Adji we get:

Theorem 1. Given an object set O that is geographical partitioned into disjoint subsets

O = ⋃
1≤i≤mOi, the bounding border Bi of each Oi, and the segmentation of Bi into

segments b ∈ Bi, it holds that kNN(o,O)=∑m
i kNN(o,Oi ∪ ECi), ∀o ∈ Oi if and only if

ECi = ECBi
= ⋃

b∈Bi
ECb,∀1 ≤ i ≤ m.

Proof. Directly from Equation (6.3) and Lemma 3 �

110

Con
sta

nti
no

s C
os

ta

6.3.3 Computational Cost of computeECB

The computational cost is directly affected by the replication factor fSpitfire achieved by

Spitfire. Assume that the border Bi of area Ai is divided into |Bi| equi-width border

segments b ∈ Bi, with width db.

Lemma 4. Given n objects, m servers, |B| number of segments for each area bor-

der, and the optimal allocation of objects to the servers n
m

, the time to compute the

candidates ECi for each sub-area is O(|B|·(n
m

+klog n
m

)).

Proof. Assuming optimal partitioning and an equal number of segments for each ser-

ver, it holds that |Oi| = n
m

and |B| = |Bi| for each si, respectively. In Algorithm

8 computeECB is invoked for each border segment b ∈ Bi in order to compute the

candidates ECi. Determining kNN(Bi, Oi) (Line 1) and θi (Line 3) has time complex-

ity O(n
m

+klog n
m

). Scanning set Oi to determine ECb using θb (Lines 4 - 8) has time

complexity O(n
m

). Therefore, each server spends O(|B|(n
m

+klog n
m

)) time to compute

the candidates to be transmitted to its neighbors. �

Theorem 2. Given n objects, m servers, parameter k, the perimeter PA of area A, the

length db of each border segments, and the optimal allocation of objects to the servers
n
m

, the time to compute the candidates ECi for each sub-area is O(PA
√
m

db
(n
m

+ klog n
m

)).

Proof. In Lemma 4 we can replace the number of segments |B| by the total length

L over the length of the segments db as follows: |B| = L/db. The total length of all

borders based on the partition algorithm is L =
√
m ∗ Ax +

√
m ∗ Ay, as each axis

is partitioned
√
m times. Aaxis represents the length of area A along the given axis.

Therefore, |B|=PA
√
m

2db
�

6.3.4 Communication Cost of Replication

The computational cost is directly affected by the replication factor fSpitfire, which is

the cardinality of the External Candidate set ECi for each server si (see Equation (6.1)

in Section 6.2). Each ECi consists of the k closest objects to its border Bi plus the

objects alti whose mindist is smaller than θi, as described Section 6.2.3:

|ECi| = k + |alti| (6.4)

111

Con
sta

nti
no

s C
os

ta

Oib

θSpitfire

r

θPGBJ

Oi

Figure 6.5: Replication factor f in Spitfire (left) and PGBJ (right) shown as shaded areas in

both figures.

We can only analyze the replication factor f further if we make an assumption

about the distribution of objects. Hereafter, we assume that the distribution is uniform.

Further, w.l.o.g. we assume that we use border segments of the same diameter db to

compose the borders between sub-areas.

Lemma 5. Given a uniform distribution of n objects over area A, m servers with

border segment diameter db, and an AkNN query, the alternative external candidate

population is |alti| ≈ n
A
·(db+

√
kA
nπ

)2−k.

Proof. The proof is omitted due to space limitation. �

Theorem 3. Given a uniform distribution of n objects over area A, m servers with

border segment diameter db, and an AkNN query, the replication factor is

fSpitfire ≈
m

A
· (db +

√
kA

nπ
)2 + 1

Proof. Follows from Equations (6.1), (6.4) and Lemma 5. �

6.3.5 Optimal border segment size

Given a cluster setup (m), a dataset (A, n), the CPU speed of the servers, the LAN

speed, an AkNN query (k) and the border segment size db used in Spitfire, we can

estimate the total response time as follows:

T = CPU · PA · n
db
√
m

+ LAN · n ·m
A

· (db +
√
kA

nπ
)2

112

Con
sta

nti
no

s C
os

ta

Given that the only parameter we can fine-tune is the segment length db, we find

the optimal value for db that minimizes the above equation as follows:

db = argmindb
T (6.5)

6.3.6 Replication Factor: Spitfire vs. PGBJ

In this section, we qualitatively explain the difference of the replication factors fSpitfire

and fPGBJ achieved by the replication strategies adopted in Spitfire and PGBJ, re-

spectively. We use Figure 6.5 to illustrate the discussion.

In Spitfire, the cutoff distance for the candidates θSpitfire (defining the shaded bound)

is determined by the maximum distance of the k closest external objects to the border

segment b (let this be of length d). Now assume that all external objects are located

directly on the border b. In this case, θSpitfire = d. On the other extreme, assume that

the external objects are exactly d distance from the border b where their worst case

maximum distance to a border point would be
√

2 · d. In this case, θSpitfire =
√

2 · d.

In PGBJ, the maximum distance between a pivot (+) and its assigned objects

defines the radius r of a circular bound (dashed line), centered around the pivot. θPGBJ

is determined by the maximum distance of the k closest objects to the pivot plus r.

Now assume that all objects are located directly on the pivot. In this case, r = 0 and

θPGBJ = 0. On the other extreme, assume that all objects are on the boundary of the

given Voronoi cell. In this case, θPGBJ = 2 · r. When d=r, θSpitfire has a
√

2 advantage

over θPGBJ.

6.4 Experimental Evaluation

To validate our proposed ideas and evaluate Spitfire, we conduct a comprehensive

set of experiments using a real testbed on which all presented algorithms have been

implemented. We show the evaluation results of Spitfire in comparison with the state-

of-the-art algorithms.

6.4.1 Experimental Testbed

Hardware: Our evaluation is carried out on the DMSL VCenter3 IaaS datacenter, a

private cloud, which encompasses 5 IBM System x3550 M3 and HP Proliant DL 360 G7
3DMSL VCenter @ UCY. https://goo.gl/dZfTE5

113

Con
sta

nti
no

s C
os

ta

MPI
MPI

MPI

MPI

MPI MPI

WWW

WWW

Spitfire Cluster

•

•

•

T
a
c
h
y
o
n

Experimental data

H
D
F
S

Load

Balancer

Load

Real User data

Figure 6.6: Our Rayzit and experimental architecture.

rackables featuring single socket (8 cores) or dual socket (16 cores) Intel(R) Xeon(R)

CPU E5620 @ 2.40GHz, respectively. These hosts have collectively 300GB of main

memory, 16TB of RAID-5 storage on an IBM 3512 and are interconnected through a

Gigabit network. The datacenter is managed through a VMWare vCenter Server 5.1

that connects to the respective VMWare ESXi 5.0.0 hosts.

Computing Nodes: The computing cluster, deployed over our VCenter IaaS, com-

prises of 9 Ubuntu 12.04 server images (i.e., denoted earlier as si), each featuring 8GB

of RAM with 2 virtual CPUs (@ 2.40GHz). The images utilize fast local 10K RPM

RAID-5 LSILogic SCSI disks, formatted with VMFS 5.54 (1MB block size). Each

node features Hadoop v0.20.2 along with memory-centric distributed file system Ta-

chyon v0.5.0 [45]. It also features the Parallel Java Library4 to accommodate MPI [43]

message passing in Spitfire.

Rayzit Service [1]: Our service, outlined in Section 6.1, features a HAProxy5 HTTP

load balancer to distribute the load to respective Apache HTTP servers (see Figure 6.6).

Each server also features a Couchbase NoSQL document store6 for storing the messages

posted by our users. In Couchbase, data is stored across the servers in JSON format,

which is indexed and directly exposed to the Rayzit Web 2.0 API. In the backend,

we run the computing node cluster that carries out the AkNN computation as discus-

sed in this work. The results are passed to the servers through main memory (i.e.,

MemCached) every few seconds.
4Parallel Java. https://goo.gl/uOQsDX
5HAProxy. http://haproxy.1wt.eu/
6Couchbase. https://www.couchbase.com/

114

Con
sta

nti
no

s C
os

ta

a

b

c

d

e

f

g

h

i

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
03)

RANDOM: Data distribution (n=106)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
03)

OLDENBURG: Data distribution (n=106)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
03)

GEOLIFE: Data distribution (n=106)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
02)

RAYZIT: Data distribution (n=2*104)

Figure 6.7: Datasets (top row) and population histograms (bottom row) for an indicative 3x3

partitioning.

6.4.2 Datasets

In our experiments we use the following synthetic, realistic and real datasets (depicted

in Figure 6.7):

Random (synthetic): This dataset was generated by randomly placing objects in

space, in order to generate uniformly distributed datasets of 10K, 100K and 1M users.

Oldenburg (realistic): The initial dataset was generated with the Brinkhoff spatio-

temporal generator [128], including 5K vehicle trajectories in a 25km x 25km area of

Oldenburg, Germany. The generated spatio-temporal dataset was then decomposed

on the temporal dimension, in order to generate realistic spatial datasets of 10K, 100K

and 1M users.

Geolife (realistic): The initial dataset was obtained from the Geolife project at

Microsoft Research Asia [129], including 1.1K trajectories of users moving in the city

of Beijing, China over a life span of two years (2007-2009). Similarly to Oldenburg,

the generated spatio-temporal dataset was decomposed on the temporal dimension, in

order to generate realistic spatial datasets of 10K, 100K and 1M users.

Rayzit (real): This is a real spatial dataset of 20K coordinates captured by our Rayzit

service during February 2014. We intentionally did not scale this dataset up to more

users, in order to preserve the real user distribution.

Figure 6.7 (second row) shows the population histograms for the four respective

datasets, when split into nine equi-width partitions. The standard deviation among

the buckets for a total population of 1M objects is: (i) 2K in Random; (ii) 90K in

Oldenburg; and (iii) 200K in Geolife. For Rayzit, which has a population of 20K, the

standard deviation is 3.3K.

115

Con
sta

nti
no

s C
os

ta

6.4.3 Evaluated Algorithms

We compare one centralized and four distributed algorithms, which have been confir-

med to generate identical correct results to the AkNN query.

Proximity [122]: This centralized algorithm runs on a single server and groups objects

using a given space partitioning of cellular towers in a city. It computes the candidates

kNNs of each area and scans those for each object within the area. Although this

centralized algorithm is not competitive, we use it as a baseline for putting scalability

into perspective.

H-BNLJ [151]: This is the two-phase MapReduce algorithm analyzed in Section 6.5.4,

which partitions the object set randomly in
√
m disjoint sets and creates their m

possible pairs. Each server performs a kNN-join among each pair. Finally, the local

results are gathered and the top-k results are returned as the final k nearest neighbors

of each object.

H-BRJ [151]: This is the same algorithm as H-BNLJ, only it exploits an R-tree when

performing the kNN-join to reduce the computation time.

PGBJ [26]: This is the two-phase MapReduce algorithm analyzed in Section 6.5.4,

which partitions the space based on a set of pivot points generated in a preprocessing

step. The candidate set is then computed based on the distance of each point to each

pivot. We use the original implementation kindly provided by the authors of PGBJ

that comes with the following configurations: (i) the number of pivots used is set to

P = 4000 (i.e., ≈
√
n, for n = 1M objects).

Spitfire: This is the algorithm proposed in this work. The only configuration para-

meter we use is the optimal border segment size db, which is derived with Equation

(6.5), given the provided cluster of m nodes, the preference k, a dataset (A,n), the

CPU speed of the servers and the LAN speed.

The traditional Hadoop implementation transfers intermediate results between tasks

through a disk-oriented Hadoop Distributed File System (HDFS). For fair comparison

we port all MapReduce algorithms to UC Berkeley’s Tachyon [45] in-memory file sy-

stem to enable memory-oriented data-sharing across MapReduce jobs. As such, the

algorithms presented in this section have no Disk I/O operations, i.e., we are thus only

concerned with minimizing Network I/Os (NI/Os).

116

Con
sta

nti
no

s C
os

ta

Table 6.1: Values used in our experiments

Section Dataset n k m

6.4.5 ALL [104, 105, 106] 64 9

6.4.6 Random 106 64 9

6.4.7 ALL 106 (104 Rayzit) 64 9

6.4.8 Random, Rayzit 106 (104 Rayzit) 4i, 1 ≤ i ≤ 5 9

6.4.9 Random 106 64 [3, 6, 9]

6.4.4 Metrics and Configuration Parameters

Response Time: This represents the actual time required by a distributed AkNN

algorithm to compute its result. We do not include the time required for loading the

initial objects to main memory of the m servers or writing the result out. We use

this setting to capture the processing scenarios deployed in our real Rayzit system

architecture. Times are averaged over five iterations measured in seconds and plotted

in log-scale, unless otherwise stated.

Replication Factor (f): This represents the number of times the n objects are repli-

cated between servers to guarantee correctness of the AkNN computation. f determines

the communication overhead of distributed algorithms, as described in Section 6.5. A

good algorithm is expected to have a low replication factor (when f=1 there is no

replication of objects).

We also extend our presentation with additional Network I/O (NI/O) and Ser-

ver Load Balancing measurements. Table 6.1 summarizes all parameters used in the

experiments.

6.4.5 Varying Number of Users (n)

In this experimental series, we increase the workload of the system by growing the

number of online users (n) exponentially and measure the response time and replication

factor of the algorithms under evaluation.

Total Computation: In Figure 6.8, we measure the total response time for all algo-

rithms, datasets and workloads. We can clearly see that Spitfire outperforms all other

algorithms in every case. It is also evident that H-BNLJ and H-BRJ do not scale.

H-BRJ achieves the worst time for 106 users. Adding up the values shown in Figures

117

Con
sta

nti
no

s C
os

ta

 1

 10

 100

 1000

 10000

 100000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

RANDOM: Total Computation for varying number of users
(k=64, m=9)

Proximity
H-BNLJ
H-BRJ
PGBJ

Spitfire

O
ut

 O
f M

em
or

y

O
ut

 O
f M

em
or

y
O

ut
 O

f M
em

or
y

 1

 10

 100

 1000

 10000

 100000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

OLDENBURG: Total Computation for varying number of users
(k=64, m=9)

Proximity
H-BNLJ
H-BRJ
PGBJ

Spitfire

O
ut

 O
f M

em
or

y

O
ut

 O
f M

em
or

y
O

ut
 O

f M
em

or
y

 1

 10

 100

 1000

 10000

 100000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

GEOLIFE: Total Computation for varying number of users
(k=64, m=9)

Proximity
H-BNLJ
H-BRJ
PGBJ

Spitfire

O
ut

 O
f M

em
or

y

O
ut

 O
f M

em
or

y
O

ut
 O

f M
em

or
y

 1

 10

 100

 1000

 10000

 100000

2*104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

RAYZIT: Total Computation for varying number of users
(k=64, m=9)

Proximity
H-BNLJ
H-BRJ
PGBJ

Spitfire

Figure 6.8: AkNN query response time with increasing number of users. We compare the pro-

posed Spitfire algorithm against the three state-of-the-art AkNN algorithms and a centralized

algorithm on four datasets.

6.9 and 6.10 and comparing to the total response time in Figure 6.8, it becomes obvi-

ous that most of H-BRJ’s response time is spent in communication, which is indicated

theoretically by its communication complexity of O(
√
mn) shown in Table 6.3. We

focus on comparing only Spitfire and PGBJ for the rest of our evaluation.

For 104 online users, Spitfire outperforms all algorithms by at least 85% for all

dataset, whereas for 105 Spitfire outperforms PGBJ, by 75%, 75% and 53% for the

Random, Oldenburg and Geolife datasets, respectively.

Spitfire and PGBJ are the only algorithms that scale. For a million online users

(n=106), Spitfire and PGBJ are the fastest algorithms, but Spitfire still outperforms

PGBJ by 67%, 75%, 14% for the Random, Oldenburg and Geolife datasets, respectively.

The small percentage noted for the Geolife dataset is attributed to the fact that this

dataset is highly skewed (as observed in Figure 6.7), and that PGBJ achieves better load

balancing (as shown later in Section 6.4.7), which in turn leads to a faster refinement

step.

Partitioning and Replication: In Figure 6.9 we measure the response time for the

partitioning and replication steps in isolation. The theoretical time complexities, as

presented in Table 6.3, confirm the outcomes: PGBJ is growing faster with the number

of users n, while the other algorithms have only linear growth. These plots also show

118

Con
sta

nti
no

s C
os

ta

 0.01

 0.1

 1

 10

 100

 1000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

RANDOM: Partitioning and Replication for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

 0.01

 0.1

 1

 10

 100

 1000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

OLDENBURG: Partitioning and Replication for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

 0.01

 0.1

 1

 10

 100

 1000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

GEOLIFE: Partitioning and Replication for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

 0.01

 0.1

 1

 10

 100

 1000

2*104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

RAYZIT: Partitioning and Replication for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

Figure 6.9: Partitioning and Replication step response time with increasing number of users.

that the partitioning step of Spitfire features an important advantage: speed. Spitfire

requires only ∼91 milliseconds, as opposed to PGBJ ∼263 milliseconds. In Spitfire we

have opted for a much faster partitioning algorithm, even if that results in a slightly

longer refinement process. Finally, it is also evident that the response time of these

steps is independent of the dataset skewness.

Refinement: Figure 6.10 shows that the response time for the refinement step in

PGBJ is independent of the dataset skewness, as opposed to Spitfire. Specifically,

PGBJ achieves a response time of approximately 200 seconds for 106 users using any

dataset. For the same amount of users Spitfire achieves a response time of 90, 100, or

800 seconds depending on the skewness of the dataset. The partitioning step in PGBJ

is more sophisticated and produces a more even distribution. This means greater

computational cost (Figure 6.9) but reduced response times for refinement (Figure

6.10) due to better load balancing. On the other hand, Spitfire strikes a better balance

in these two steps, i.e., the much faster partitioning step makes up for the slower

refinement step to achieve a much better overall performance.

Replication Factor: In Figure 6.11 we measure the replication factor for the distribu-

ted algorithms. It is noteworthy that the replication factor fSpitfire of Spitfire is always

close to the optimal value 1. Spitfire only selects a very small candidate set around the

border of each server (Algorithm 8 in Section 6.2.3). As analyzed in Section 6.3.6, in

the worst case scenario fSpitfire is only
√

2 times smaller than fPGBJ, but we see that

119

Con
sta

nti
no

s C
os

ta

 0.1

 1

 10

 100

 1000

 10000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

RANDOM: Refinement for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

O
ut

 O
f M

em
or

y

 0.1

 1

 10

 100

 1000

 10000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

OLDENBURG: Refinement for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

O
ut

 O
f M

em
or

y

 0.1

 1

 10

 100

 1000

 10000

104 105 106R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

GEOLIFE: Refinement for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire
O

ut
 O

f M
em

or
y

 0.1

 1

 10

 100

 1000

 10000

2*104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of online users (n)

RAYZIT: Refinement for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

Figure 6.10: Refinement step response time with increasing number of users and for each

available dataset.

for real datasets fSpitfire is at least half of fPGBJ. Finally, fH-BNLJ = fH-BRJ = 2
√
m = 6

independently of n, as described in Section 6.5.4.

This experimental series demonstrates the algorithmic advantage that Spitfire offers,

free from any effect that the implementation framework might add.

6.4.6 Network I/O Performance

We examine the underlying Network I/O (NI/O) activity taking place in PGBJ and

Spitfire in order to better explain the results of Section 6.4.5. For brevity, we only

present the Random dataset with n=106 online users, using m=9 servers and searching

for k=64 NN. The other datasets produce similar results. We measured the Network

I/O cost using nmon7.

Figure 6.12 shows that Spitfire features almost no NI/O in its partitioning step,

while the respective step for PGBJ is quite intensive and lengthy. In fact, the total

network traffic for PGBJ is 215 MB while for Spitfire it is only 84 MB. The above

observations are compatible with our analysis, where we showed that fSpitfire has a
√

2

advantage over fPGBJ in the worst case. Here the advantage of Spitfire over PGBJ is

even greater than
√

2 (i.e., 2.5x).
7nmon for Linux. http://nmon.sourceforge.net/

120

Con
sta

nti
no

s C
os

ta

 1

 3

 5

 7

 9

 11

104 105 106

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of Users (n)

RANDOM: Replication factor for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

 1

 3

 5

 7

 9

 11

104 105 106

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of Users (n)

OLDENBURG: Replication factor for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

 1

 3

 5

 7

 9

 11

104 105 106

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of Users (n)

GEOLIFE: Replication factor for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

 1

 3

 5

 7

 9

 11

2*104

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of Users (n)

RAYZIT: Replication factor for varying number of users
(k=64, m=9)

H-BNLJ
H-BRJ
PGBJ

Spitfire

Figure 6.11: Replication factor f with increasing number of users. The optimal value for f

is 1, signifying no replication.

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400

K
ilo

by
te

s
(K

B
)

Time in seconds

 Spitfire: Average WRITE NETWORK I/O
(n=106, m=9, k=64, dataset=RANDOM)

Refine
(462)

Replicate
(38407)

Partition
(3082)

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400

K
ilo

by
te

s
(K

B
)

Time in seconds

 Spitfire: Average READ NETWORK I/O
(n=106, m=9, k=64, dataset=RANDOM)

Refine
(474)

Replicate
(38735)

Partition
(3282)

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600 700

K
ilo

by
te

s
(K

B
)

Time in seconds

 PGBJ: Average WRITE NETWORK I/O
(n=106, m=9, k=64, dataset=RANDOM)

MR1
(30960)

MR2
(91166)

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600 700

K
ilo

by
te

s
(K

B
)

Time in seconds

 PGBJ: Average READ NETWORK I/O
(n=106, m=9, k=64, dataset=RANDOM)

MR1
(27446)

MR2
(65468)

Figure 6.12: Low level Network I/O (NI/O) measurements for Spitfire and PGBJ. Spitfire

consumes 2.5x less NI/O.

6.4.7 Partitioning and Load Balancing

In Section 6.4.5, we observe that for certain skewed datasets the competitive advantage

of Spitfire over PGBJ is relatively small (e.g., in Geolife it is 14%). In this experimental

series, we analyze in further depth the performance of the load balancing subrouti-

nes deployed in both PGBJ and Spitfire, respectively. Going back to our analysis in

Section 6.5.4, we recall that PGBJ achieves a close to optimal partitioning using the
√
n pivots, but at a higher computational cost. Here we experimentally validate these

analytical findings.

Figure 6.13 shows that the partitioning technique used by PGBJ achieves almost

full load-balancing (i.e., ± 270 for 106 objects), while Spitfire achieves a less balanced

workload among servers (i.e., ± 20,315 for 106 objects). Clearly, such a workload

distribution will force certain servers to perform more distance calculations and will

require higher synchronization time. Note, that the load balancing achieved by H-

BNLJ and H-BRJ is optimal (standard deviation of object load on servers ≈ 0 not

121

Con
sta

nti
no

s C
os

ta

 10

 100

 1000

 10000

 100000

RANDOM OLDENBURG GEOLIFE RAYZIT

N
um

be
r

of
 U

se
rs

 in
 lo

g-
sc

al
e

Dataset

Partitioning Step: Standard deviation of server load
(n=106, k=64, m=9)

PGBJ
Spitfire

Figure 6.13: Partitioning step: load balancing achieved (less is better). H-BNLJ and H-BRJ

achieve optimal load balancing (standard deviation among server load ≈ 0).

 10

 100

 1000

 10000

 100000

4 16 64 256 1024

R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of NN (k)

RANDOM: Total Computation for varying parameter k
(n=106, m=9)

PGBJ
Spitfire

 1

 10

 100

4 16 64 256 1024

R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(s

ec
)

Number of NN (k)

RAYZIT: Total Computation for varying parameter k
(n=2*104, m=9)

PGBJ
Spitfire

Figure 6.14: The effect of k on response time.

depicted in the figure), because they do not perform spatial partitioning but rather

arbitrarily split the original object set into equally sized subsets.

6.4.8 Varying Number of Neighbors (k)

In this experiment, we exponentially increase the query parameter k by a factor of 4

and study its effect on the response time and the replication factor f of both Spitfire

and PGBJ. We use the Random dataset of n = 106 online users and the 2∗104 Rayzit

dataset. It is expected that an increasing k increases the workload for the distributed

AkNN solutions, as the number of objects exchanged among servers is increased.

In Figure 6.14, we observe that Spitfire scales linearly with the increase in k for

both datasets. This confirms our analytical result in Section 6.3, which shows Spitfire’s

122

Con
sta

nti
no

s C
os

ta

 1

 1.5

 2

 2.5

 3

4 16 64 256 1024

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of NN (k)

RANDOM: Replication factor for varying parameter k
(n=106, m=9)

PGBJ
Spitfire

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

4 16 64 256 1024

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of NN (k)

RAYZIT: Replication factor for varying parameter k
(n=2*104, m=9)

PGBJ
Spitfire

Figure 6.15: The effect of k on the replication factor f .

 0

 200

 400

 600

 800

 1000

 1200

 1400

3 6 9

R
es

po
ns

e
tim

e
(s

ec
)

Number of servers (m)

RANDOM: Total Computation for varying number of
 servers (n=106, k=64)

PGBJ
Spitfire

 1

 1.5

 2

 2.5

 3

3 6 9

R
ep

lic
at

io
n

fa
ct

or
 (

f)

Number of servers (m)

RANDOM: Replication factor for varying number of servers
(n=106, k=64)

PGBJ
Spitfire

Figure 6.16: The effect of m on response time and the replication factor f .

computational time and replication factor to be sub-linearly proportional to k. Spitfire

is almost two orders of magnitude faster than PGBJ for k = 1024.

Figure 6.15 shows that the replication factor f of Spitfire, not only scales well

with an increasing k, but also has a very low absolute value. Particularly, fSpitfire is

less than 1.07 for k ≤ 64, and it barely reaches 1.25 for k = 1024, showing more

than a 95% improvement over fPGBJ. This is one of the main reasons for the better

response times exhibited by Spitfire in the previous experiments. Therefore, Spitfire

outperforms PGBJ in scalability when the workload is increased by searching for more

nearest neighbors.

6.4.9 Varying Number of Servers (m)

In this experiment we evaluate the effect that the number of servers (m) has on the

response time and the replication factor of the distributed algorithms under evaluation.

In Figure 6.16 (left), we observe that with more servers Spitfire becomes faster than

PGBJ, indicating that Spitfire utilizes the computational resources better than PGBJ.

Figure 6.16 (right) shows that the replication factor of Spitfire grows slightly faster

123

Con
sta

nti
no

s C
os

ta

than that of PGBJ. This experiment confirms Theorem 3 in Section 6.3, where fSpitfire

is shown to increase as the number m of servers increases. Nevertheless, the absolute

difference of the replication factor between Spitfire and PGBJ remains significantly

large, making Spitfire the better choice. Comparing the two plots in Figure 6.16 it

becomes evident that the replication factor f increases slower than the performance

gain with respect to the number of servers, a characteristic that proves the scalability

of Spitfire.

6.5 Background and Related Work

This section formalizes the problem, describes the general principles needed for effi-

ciency, and overviews existing research on distributed algorithms for computing AkNN

queries. Such solutions can be categorized as “bottom-up” or “top-down” approaches.

We shall express the AkNN query as a kNN Self-Join introduced earlier. Our main

notation is summarized in Table 6.2.

6.5.1 Goal and Design Principles

In this section we outline the desiderata and design principles for efficient distributed

AkNN computation.

Research Goal. Given a set of objects O in a bounding area A and a cloud computing

infrastructure S, compute the AkNN result of O using S, maximizing performance,

scalability and load balancing.

Performance: In a distributed system the main bottleneck for the response time is

the communication cost, which is affected by the size of the input dataset for each

server. Synchronization, handshake, and/or header data are considered negligible in

such environments [39]. Therefore, the lower bound of the communication cost is

achieved when the total input of the servers equals to the size of the initial data set

O. However, additional communication cost is incurred when some objects need to be

transmitted (replicated) to more than one server. Thus, the input is augmented with

a number of replicated objects, which is denoted as replication factor f .

Scalability: To accommodate the growth of data in volume, an efficient data pro-

cessing algorithm should exploit the computing power of as many workers as possi-

ble. Unfortunately, increasing the number of workers usually comes with an increased

124

Con
sta

nti
no

s C
os

ta

Table 6.2: Summary of Notation

Notation Description

o,O, n Object o, set of all o, n = |O|

si, S,m Server si, set of all si, m = |S|

kNN(o,O) k nearest neighbors of o in O

dist(oa, ob) Lp-norm distance between oa and ob

A,Ai, Oi Area, Sub-Area i, Objects in sub-area i

b, Bi A border edge of Ai, set of all b ∈ Ai
Adji Set of all Aj adjacent (sharing b) to Ai
ECi External Candidates of Ai

communication cost. A scalable solution would require that the replication factor f

increases slower than the performance gain with respect to the number of servers.

Load Balancing: To fully exploit the computational power of all servers and minimize

response time, an efficient algorithm needs to distribute work load equally among

servers. In the worst case, a single server may receive the whole load, making the

algorithm slower than its centralized counterpart. The work load is determined by the

number of objects that are assigned to a server. Therefore, load balancing is achieved

when the object set is partitioned equally.

6.5.2 Parallel AkNN Algorithms

There is a significant amount of previous work in the field of computational geometry,

where parallel AkNN algorithms for special multi-processor or coarse-gained multi-

computer systems are proposed. The algorithm proposed in [133] uses a quad-tree

and the well-separated pair decomposition to answer an AkNN query in O(logn) using

O(n) processors on a standard CREW PRAM shared-memory model. Similarly, [152]

proposes an algorithm with time complexity O(n · log n
m

+ t(n,m)), where n is the

number of points in the data set, m is the number of processors, and t(n,m) is the

time for a global-sort operation. Nevertheless, none of the above algorithms is suitable

for a shared-nothing cloud architecture, mainly due to the higher communication cost

inherent in the latter architectures.

125

Con
sta

nti
no

s C
os

ta

6.5.3 Distributed AkNN Algorithms: Bottom-Up

The first category of related work on distributed solutions solve the AkNN problem

bottom-up by applying existing kNN techniques (e.g., iterative deepening from the

query point [137]) to find the kNN for each point separately. The authors in [153]

propose a general distributed framework for answering AkNN queries. This framework

uses any centralized kNN technique as a black box. It determines how data will be initi-

ally distributed and schedules asynchronous communication between servers whenever

a kNN search reaches a server border. In [154] the authors build on the same idea, but

optimize the initial partitioning of the points onto servers and the number of commu-

nication rounds needed between the servers. Nevertheless, it has been shown in [122]

that answering a kNN query for each object separately restricts possible optimizations

that arise when searching for kNNs for a group of objects that are close.

6.5.4 Distributed AkNN Algorithms: Top-Down

The second category of related work on distributed solutions solve the AkNN problem

top-down by first partitioning the object set into subsets and then computing kNN can-

didates for each area in a process we call replication. These batch-oriented algorithms

are directly comparable to our proposed solution, therefore we have summarized their

theoretical performance in Table 6.3. All existing algorithms in this category happen to

be implemented in the MapReduce framework, therefore we overview basic MapReduce

concepts before we describe these algorithms.

Background: MapReduce [155] (MR) is a well established programming model for

processing large-scale data sets with commodity shared-nothing clusters. Programs

written in MapReduce can automatically be parallelized using a reference implementa-

tion, such as the open source Hadoop framework8, while cluster management is taken

care of by YARN or Mesos [42]. The Hadoop MapReduce implementation allows pro-

grammers to express their query through map and reduce functions, respectively. For

clarity, we refer to the execution of these MapReduce functions as tasks and their

combination as a job. For ease of presentation, we adopt the notation MR#.map and

MR#.reduce to denote the tasks of MapReduce job number #, respectively. Main-

memory computations in Hadoop can be enforced using in-memory file systems such

as Tachyon [45].
8Apache Hadoop. https://hadoop.apache.org/

126

Con
sta

nti
no

s C
os

ta

Hadoop Naive kNN Join (H-NJ [26]). This algorithm is implemented with 1

MapReduce job. In the map task, O is transferred to all m servers triggering the

reduce task that initiates the nested-loop computation Oi ./kNN O (Oi contains n/m

objects logically partitioned to the given server). H-NJ incurs a heavy O(n2

m
) processing

cost on each worker during the reduce step, which needs to compute the distances of

Oi to O members. It also incurs a heavy O(mn) communication cost, given that each

server receives the complete O. The replication factor achieved is fH-NJ = m.

Hadoop Block Nested Loop kNN Join (H-BNLJ [151]). This algorithm is

implemented with 2 MapReduce jobs, MR1 and MR2, as follows: In MR1.map, O is

partitioned into
√
m disjoint sets, creating m possible pairs of sets in form of (Oi, Oj),

where i, j ≤
√
m. Each of the m pairs (Oi, Oj) is sent to one of the m servers. The

communication cost for this action is O(
√
mn), attributed to the replication of m pairs

each of size n√
m

. The objective of the subsequent MR1.reduce task is to allow each

of the m servers to derive the “local” kNN results for each of its assigned objects.

Particularly, each si performs a local block nested loop kNN join Oi ./kNN Oj. The

results of MR1.reduce have to go through a MR2 job, in order to yield a “global” kNN

result per object. Particularly, MR2.map hashes the possible
√
m kNN results of an

object to the same server. Finally, MR2.reduce derives the global kNN for each object

using a local top-k filtering. The CPU cost of H-BNLJ is O(n2

m
), as each server performs

a nested loop in MR1.reduce. The replication factor achieved is fH-BNLJ = 2
√
m.

Hadoop Block R-tree Loop kNN Join (H-BRJ [151]). This is similar to H-

BNLJ, with the difference that an R-tree on the smaller Oi set is built prior to the

MR1.reduce task, to alleviate its heavy processing cost shown above. This reduces

the join processing cost during MR1.reduce to O(n√
m

log n√
m

). The communication cost

remains O(
√
mn) and the incurred replication factor is again fH-BRJ = 2

√
m.

Hadoop Partitioned Grouped Block kNN Join (PGBJ [26]): This is the state-

of-the-art Hadoop-based AkNN query processing algorithm that is implemented with 2

MapReduce jobs, MR1′ and MR2′, and 1 pre-processing step according to the following

logic: in a preprocessing step, a set of approximately
√
n random pivots in space is

generated [26].

During MR1′.map, each object in O is mapped to its closest pivot, thus partitioning

O into
√
n sets (i.e., O=⋃

1≤j≤
√
nOj). This takes O(n 3

2/m) time, since on each server

127

Con
sta

nti
no

s C
os

ta

Table 6.3: Algorithms for Distributed Main-Memory AkNN Queries

[n: objects | m: servers | f : replication factor | f << m < n]
Algorithm Preproc. Part. & Repl. Refinement Communic.

H-NJ [26] - O(n) O(n2

m
) O(mn)

H-BNLJ [151] - O(n) O(n2

m
) O(

√
mn)

H-BRJ [151] - O(n) O(n√
m

log n√
m

) O(
√
mn)

PGBJ [26] O(
√
n) O(n1.5/m) O(fPGBJ

n2

m2) O(fPGBJn)

Spitfire - O(n) O(fSpitfire
n2

m2) O(fSpitfiren)

the distance of n/m objects is measured against
√
n pivots. At the same time, the

maximum and minimum distances between Oj objects and its corresponding pivot are

recorded as lower and upper pruning thresholds for subsequent filtering. In MR2′.map,

the given bounds define a set of objects around each partitionOj that must be replicated

to Oj (coined Fj). MR1′.reduce in PGBJ is void.

During MR2′.map, the
√
n subsets defined during MR1′.map are geographically

grouped together into m clusters (i.e., O=⋃
1≤i≤mOi) using a grouping strategy, which

greedily attempts to generate clusters of equal population around some m geometrically

dispersed pivots. For each generated cluster Oi, a set Fi is derived based on the union

of the respective Fj sets of the cluster defined earlier. Having Fi defined, it allows

MR2′.reduce to perform a straightforward Oi ./kNN (Oi∪Fi) to generate the result set.

The replication factor is fPGBJ= 1
n

∑m
i=1 |Fi| + 1. The CPU cost is O(

√
n) for the

preprocessing step, O(n
m

√
n) for MR1′ and O(fPGBJ

n2

m2) in MR2′. PGBJ only distribu-

tes O over m servers and then exchanges fPGBJn candidates between servers, therefore

its communication cost is O(fPGBJn).

6.6 Summary

In this chapter we present Spitfire, a scalable and high-performance distributed algo-

rithm that solves the AkNN problem using a shared-nothing cloud infrastructure. Our

algorithm offers several advantages over the state-of-the-art algorithms in terms of ef-

ficient partitioning, replication and refinement. Theoretical analysis and experimental

evaluation show that Spitfire outperforms existing algorithms reported in recent litera-

ture, achieving scalability both on the number of users and on the number of k nearest

neighbors.

128

Con
sta

nti
no

s C
os

ta

Chapter 7
SPATE+Applications

In this chapter, we present two innovative applications that have been built on top

of the SPATE+architecture. The applications exploit the component contributions of

this thesis.

7.1 The SPATE Application

In this section we present SPATE [17], a framework that uses both lossless data com-

pression and lossy data decaying to ingest large quantities of telco big data in the

most compact manner. Compression refers to the encoding of data using fewer bits

than the original representation and is important as it shifts the resource bottlenecks

from storage- and network-I/O to CPU, whose cycles are increasing at a much faster

pace. It also enables data exploration tasks to retain full resolution over the most im-

portant collected data. Decaying on the other hand, as suggested in [74], refers to the

progressive loss of detail in information as data ages with time until it has disappeared.

SPATE enables data exploration tasks to retain high-level data exploration capa-

bilities for predefined aggregate queries over extremely long time windows, without

consuming enormous amounts of storage. It is shown to offer similar performance

to the state-of-the-art for telco-specific tasks [17]. Our objective is to minimize the

storage costs associated with telco big data exploration tasks, as storage overheads will

inevitably lead to the deletion of valuable data, missing in this way the hope to learn

valuable insights at the macroscopic scale.

129

Con
sta

nti
no

s C
os

ta

STORAGE LAYER

INDEXING LAYER

APPLICATION LAYER

HDFS

SPATE UI SPATE SQL

SPARKHIVE
Data Input

Service
RDBMS

Highlights

Incremence

Decay/Compression

Figure 7.1: SPATE is an efficient telco big data exploration stack that enables a wide range

of smart city applications with a minimal storage cost. It deploys compression, decaying and

exploration of the collected data in a unified way.

7.1.1 Overview of SPATE

We express our solution in three layers (see Figure 7.1), namely Storage Layer, Indexing

Layer and Application Layer.

The Storage layer passes newly arrived network snapshots through a lossless com-

pression process storing the results on a replicated big data file system for availability

and performance. This component is responsible for minimizing the required storage

space with minimal overhead on the query response time. The intuition is to use com-

pression techniques that yield high compression ratios but at the same time guarantee

small decompression times. We particularly use GZIP compression that offers high

compression/decompression speeds, with a high compression ratio and maximum com-

patibility with I/O stream libraries in the big data ecosystem we use. The storage

layer is basically only responsible for the leaf pages of the SPATE index described in

the next layer.

The Indexing Layer uses a multi-resolution spatio-temporal index, which is incre-

mented on the rightmost path with every new data snapshot that arrives (i.e., every

30 minutes). In addition, the component computes interesting event summaries, called

“highlights”, from data stored in children nodes and stores them at the parent node.

130

Con
sta

nti
no

s C
os

ta

For each data exploration query, the internal node that covers the temporal window

of the query is accessed, and its highlights are used to answer the query. Finally, this

layer is also responsible for the gradual decay of the data. It does so by pruning-off

parts of the index tree in using the so called data fungus.

The Application Layer implements the querying module and the data exploration

interfaces, which receive the data exploration queries in visual or declarative mode and

use the index to combine the needed highlights and snapshots to answer the query.

SPATE is equipped with an easy-to-use map-based web interface layer that hides the

complexity of the system through a simple and elegant web interface.

7.1.2 SPATE Prototype

We have implemented a prototype of SPATE using a modern SPARK-based processing

architecture with HDFS and an RDBMS for catalog management (see Figure 7.1). The

SPATE UI (User Interface) is implemented in HTML5/CSS3 along with extensive

AngularJS. An illustrative network exploration interface is shown in Figure 7.2. We

have implemented a query sidebar that allows the user to execute a variety of template

queries. The query bar includes snapshot queries and recurring queries (in the form of

a time-machine) for drop calls and downflux/upflux, heatmap statistics and settings.

Furthermore, quick access buttons are provided so that user is able to choose between

the available network modalities (2G, 3G, 4G). The hardware stack of our SPATE

installation resides on our laboratory DMSL datacenter and interaction will be achieved

over cable or Wi-Fi using a standard laptop, a tablet or smartphones we will bring along

at the conference.

7.1.3 Query Exploration Interfaces

We have realized two separate interfaces for the SPATE framework: (i) SPATE-UI,

which is a visual spatio-temporal data exploration interface developed on top of Google

Maps; and (ii) SPATE-SQL, which is a declarative data exploration interface in Apache

Hue (Hadoop User Experience).

The SPATE-UI interface allows the user to interactively navigate in space and

time (see Figure 7.2). Particularly, the user can set a temporal and spatial predicate

and observe the behavior of vital network statistics and how these compare to precom-

puted network models. For instance, the network coverage is a precomputed heatmap

131

Con
sta

nti
no

s C
os

ta

Figure 7.2: SPATE-UI: A spatio-temporal telco data exploration user interface we developed

on top of Google Maps, which enables combining network models (e.g., coverage heatmaps)

with real network measurements (e.g., CDR, NMS, CELL) encapsulated in the compressed

SPATE structure.

model that is overlayed and can be visually compared against the real measurements

that are loaded from storage to memory through the SPATE structure. The above

effectively translates to the execution of a variety of spatial range queries on top of the

SPATE structure. We will show in our experimental section that both range queries as

well as other OLTP and OLAP queries retain desirable retrieval properties (response

time) at enormous storage savings. The SPATE-UI finally also provides a search box

that enables a user to narrow the spatial bounding box based on well-known Points-

of-Interests (POIs) organized by Google or some other provider (e.g., Openstreetmap).

The SPATE-UI also contains a query bar that enables the execution of template que-

ries for drop calls and downflux/upflux, heatmap statistics (e.g., showing the RSSi

signal intensity around antennas), satellite/terrain map layers (e.g., for Cellular signal

propagation faults due to the terrain) and others.

The SPATE-SQL interface allows expert users and data scientists to explore the

collected data through declarative SQL. The current configuration currently allows all

basic SELECT-FROM-WHERE block queries, nested queries, joins, aggregates, etc.

directly through the compressed Hadoop Distributed File System (HDFS) representa-

tion of the SPATE structure, which aims to provide means for ad-hoc query execution

with the same storage savings with SPATE-UI.

132

Con
sta

nti
no

s C
os

ta

What do you suggest i should

taste in this restaurant?

Is any one around to chat?

What a wonderful picture! don’t

you think?

Hmm

What a wonderful picture! don’t

you think? Has anyone seen the dog in

the picture?

Find the dog in the picture

Check the 88th street, i’ve seen

Figure 7.3: Screenshots of the Rayzit app: (Left) Live feed of rayz messages; (Center)

Sending a new rayz along with the power bar and an attachment (image, audio, video); and

(Right) a set of replies to a rayz.

7.2 The Rayzit Application

The smartphone revolution has introduced a new era of social networks where users

communicate over anonymous messaging platforms to exchange opinions, ideas and

even carry out commerce. These platforms enable individuals to establish social inte-

ractions between strangers based on a common interest or attribute. In this chapter we

present Rayzit1, a novel anonymous crowd messaging architecture, which utilizes the

location of each user to connect them instantly to their k Nearest Neighbors (kNN) as

they move in space. Contrary to the very large body of location-based social networks

that suffer from bootstrapping issues, our architecture enables a user to always interact

with the geographically closest possible users around. We establish this communication

using a fast computation of an All kNN query that generates a dynamic global social

graph every few seconds. We present motivating application scenarios and the detailed

back-end architecture that allows Rayzit to scale. We have collected and analyzed data

from the interactions of thousands of active users and confirm our claims.
1Rayzit: https://rayzit.cs.ucy.ac.cy/

133

Con
sta

nti
no

s C
os

ta

7.2.1 Introduction

During the last years, social networks have transformed the way individuals express

and publish their opinions, feelings or thoughts on various topics [9]. A new trend

even shows that social networks are starting to become the main commerce platforms,

instead of web-apps and online shopping carts2. Combining the above with the incre-

ased amount of sensors on portable devices [10], gives the opportunity to extend the

functionality and the intelligence of social networks. This is already illustrated by real

world examples like EARS, a real time decision support system for earthquakes based

on social networks [11].

The location of a user very often defines their interests and inquiries, therefore, po-

pular location-based social networks with billions of users (i.e., Foursquare.com, YikYa-

kapp.com, goTinder.com) have emerged. Furthermore, anonymous networks have been

on the rise, where users do not need to create a profile in order to communicate with

others, rather they stay anonymous and have an automatic communication link to a

subgroup of users based on some criteria (e.g., location).

In this chapter, we present an anonymous dynamic crowd messaging architecture,

coined Rayzit, which is based on generating a kNN network among users by connecting

each user to their k geographically closest peers at each moment. Traditionally, social

networks like Facebook.com, Twitter.com and others are created based on explicit

friendship links that yield a static social graph. Such a static graph requires time

to become interconnected, changes very slowly and its links require user decision and

actions to be created and destroyed (i.e., request or accept friendship, un-friend). In

contrast, Rayzit uses a kNN graph, which is developed automatically using the current

locations of users in the system. This dynamic graph guarantees k links for each user

instantly without any user decision or action [119], leading to communication network

that is as diverse as one’s physical neighborhood.

Our solution utilizes a combination of state-of-the-art computational techniques

and crowdsourcing concepts to provide a new compelling social interaction experience

through our award-winning app3, allowing a user to instantly engage in anonymous

conversations around them, and using crowdsourcing mechanism to determine the in-

appropriateness or popularity of posts. Additionally, we have deployed the Rayzit app
2Chris Messina ”Conversational Commerce”: https://goo.gl/xJBolh
3Appcampus: http://www.appcampus.fi/

134

Con
sta

nti
no

s C
os

ta

and collected interaction data over a 1 year period from thousands of users, and present

our findings through experimental analysis conducted on this data. Such an instant net-

work provides opportunities for advanced location-based services, e.g., location-based

marketplace and marketing [156] or disaster relief [157].

7.2.2 Motivating Examples

During a disaster, mobile users can be both victims and rescuers involved in receiving

but also providing help from/to their neighboring peers. In such a scenario, con-

structing a kNN graph can enable communication within the crowd, aid in organizing

the crowd, allocating peer-to-peer aid and experts, and distributing tools and medicine

optimally. In a real world example, it was the citizen’s joint efforts to map the 2012

floods in China that materialized faster and more accurately than the government-

sanctioned map4.

In large ad-hoc events, like cultural festivals (e.g., Woodstock, Old Car enthusiast

gatherings, etc.), sporting events, conventions and fairs, demonstrations (e.g., Occupy

Wall Street 2011, Egypt Protests 2013, Syria Protests 2014, Rossa Montana Protests

Bucharest 2014, Hong Kong Protests 2014, Pakistan 2014, etc.), monitoring the kNN

graph centrally and providing communication within the crowd can aid organizing aut-

horities to manage the crowd5, prevent crowd disasters6,7, enable new viral marketing

strategies, entertainment services8 and crowd-games9.

To the best of our knowledge, this is the first anonymous crowd messaging archi-

tecture that is utilizing the proximity and the dynamic social environment of a kNN

network. With the rise of conversational commerce, where commerce is done over

messaging services, and crowdsourcing platforms, e.g., TaskRabbit.com, new types of

marketplaces will be generated. In this landscape our anonymous crowd messaging

platform can offer new possibilities.

The rest of the Section is organized as follows: Subsection 7.2.3 looks at the related

work, Subsection 7.2.4 introduces our Rayzit architecture thoroughly covering each of

its modules. Subsection 7.2.5 presents our prototype application developed for several
4The Crowd Maps Beijing Floods: https://goo.gl/0DHZ4v
5WorkingWithCrowds: http://www.workingwithcrowds.com/
6Love Parade disaster: https://goo.gl/2FpIbm
7Hillsborough disaster: https://goo.gl/xvLRlc
8Opphos: http://www.sics.se/projects/opphos
9CrowdControlGames: http://crowdcontrolgames.com/

135

Con
sta

nti
no

s C
os

ta

platforms (Windows Phone and iOS), Subsection 7.2.6 provides a small evaluation

using Rayzit data while Subsection 7.2.7 looks into future issues and concludes the

section.

7.2.3 Related Work And Background

Here, we highlight background and related work in social networks, Big data infra-

structures, crowdsourcing techniques and discuss how a kNN network can be efficiently

computed.

Social Networks: Classical social networks, like Facebook.com, Twitter.com, Snap-

Chat.com, Foursquare.com and WeChat.com, create a static social graph based on

the friendships between user. Friendship links need to be requested and consecutively

accepted/rejected in order to be formed, causing the social graph to be built very

slowly.

In contrast, applications like Secret.ly, YikYakapp.com, and Whisper.sh create dy-

namic social graphs based on the user’s location [12]. YikYak connects you with the

users within a 10 mile range and preserves anonymity. Secret and Whisper have no dis-

tance limit, but they store information about the user’s profile (i.e., user id) decreasing

user’s anonymity. WeChat also has a feature that allows you to greet other WeChat

users that are around you, which compromises the anonymity of somebody aiming to

stay anonymous.

Rayzit is the only application that creates a dynamic social graph based on kNN

and a customizable distance cutoff setting, guaranteeing at the same time that you

will always be connected no matter how far your neighbors are. In addition, Rayzit

preserves the anonymity and privacy of the user, since it does not require an account

and discards any information regarding the status of the social kNN graph.

In order to comprehend the difference between the aforementioned social networks

we present a small taxonomy in Table 7.1. We choose all the important characteristics

that apply to current social networks. In addition, we include the kNN feature that

only applies to Rayzit.

Crowdsourcing: Crowdsourcing is a process that involves outsourcing tasks to a

distributed group of an undefined crowd through an open call for monetary or ethi-

cal benefit. There are many examples of crowdsourcing systems, e.g., MTurk.com,

136

Con
sta

nti
no

s C
os

ta

Table 7.1: Taxonomy of anonymous social net applications

Application Distance kNN Anonymous Location

Facebook No No No Yes

Twitter No No No Yes

Foursquare Yes No No Yes

SnapChat No No No Yes

WeChat Yes No No Yes

Secret Yes No Partial Yes

YikYak 10 miles No Yes Yes

Whisper Yes No Partial Yes

Rayzit Custom Yes Yes Yes

Topcoder.com, CrowdFlower.com, and TaskRabbit.com. One of the best crowdsour-

cing system examples is the ESP game, where the users implicitly collaborate to label

images as a side effect while playing the game [158].

It is known that social networks need a mechanism to detect intruders, spammers,

attackers [159]. Anonymous services have emerged that can filter out abusive and

harmful messages. Most social networks are currently outsourcing this difficult task to

external surveillance companies, some of which embrace crowdsourcing solutions. In

contrast, Rayzit uses an in-situ crowdsourcing mechanism to remove abusive messages.

Conversational Commerce: There is a shift towards using social networks, mes-

saging platforms and even simple SMS to deliver products to customers, who prefer

expressing their needs by texting instead of looking for online vendors and following

the classical online retail procedure. Magic10 and Scratch11, allow users to register to

an SMS service and ask for anything they need. The applications personnel figures out

a way and a price to deliver, and after confirming with the requestor, the delivery plan

is implemented. The application Nativeapp.com is offering advanced travel agency

services through messaging. The instant messaging app imQQ.com has been offering

shopping services to its users since 2007 in China using virtual money. Path Talk12

10Magic: http://getmagicnow.com/
11Scratch: http://www.tryscratch.com/
12Path Talk: http://path.com/talk

137

Con
sta

nti
no

s C
os

ta

allows its users to message businesses directly to order goods.

Online VoIP and messaging applications, such as Skype.com, Viber.com, Tango.me,

Kakao.com, LINE.me, WeChat.com, Facebook Messenger, and even SnapChat already

sell digital products and are moving towards the direction of general e-commerce13.

AkNN Computation: The k Nearest Neighbors (kNN) of a user u from some dataset

U , denoted as kNN(u, U), are the k users that have the most similar attributes to u [25].

kNN search is a classical Computer Science problem with many centralized algorithms

that find applications in computational geometry [132–134], image processing [136],

spatial databases [137,138,160], and social networks [161]. An All kNN (AkNN) query,

viewed as a generalization of the basic kNN query, computes the kNN(u, U) result for

every u ∈ U and has a quadratic worst-case bound.

There are several AkNN algorithms optimized for offline analytics, aimed at memory-

resident data [122,132–134,140], but also disk-resident data [116,137,138,162]. Moreo-

ver, there are previous works that were utilizing the kNN properties in order to extend

a social network to gain accuracy and predictability [119].

Big Data and Data Mining: Social networks have billions of users generating pe-

tabytes of data every day. Additionally, the growth of smartphones, wearables and

portable devices add new information such as location, biometrics values and environ-

mental metrics increasing the internet traffic. In most cases the multidimensional data

values consist of the user’s location and the profile of the user as described by Jensen

et al [163].

As a result, Big data infrastructures are necessary in order to accommodate the huge

volume of the multidimensional data. Moreover, it is common that data is communica-

ted and stored using semistructured formats such as JSON, XML etc. Consequently, a

high performance NoSQL database management system is typically used to store, edit

and manipulate the aforementioned data.

7.2.4 The Rayzit Architecture

In this subsection, we describe our Rayzit crowd messaging architecture. The archi-

tecture consists of various components that provide the required functionalities for the

end-user.
13Forbes: http://goo.gl/s0gYEM

138

Con
sta

nti
no

s C
os

ta

Web Servers (Play 2.0 framework)

 Social Network Module
AkNN
Engine

Big data
Module

Distributed Storage (Couchbase, Memcached & Gluster FS)

Figure 7.4: Rayzit distributed architecture

The Rayzit architecture comprises of several modules utilizing state-of-the-art techno-

logy. It features a HAProxy14 HTTP load balancer to distribute the workload to re-

spective WWW servers (see Figure 7.4). Each WWW features a Play 2.015 server and

a Couchbase NoSQL document store16 for storing the messages posted by our users.

In Couchbase, data is stored across the cluster in JSON format, which is indexed and

directly exposed to the Rayzit Web 2.0 API. In the backend, we also run the compu-

ting cluster that carries out the AkNN computation as we have already discussed in

Section 7.2.3. The results are passed to the WWW servers through main memory (i.e.,

Memcached) every few seconds.

Load balancer and Web servers: Rayzit has multiple web servers in order to

support a large amount of requests at the same time. In order to achieve this, we use

HAproxy, a lightweight load balancer, to distribute the load to each web server. The

web servers are deployed using the Play 2.0 framework, which is stateless, scalable, fast

and thus can absorb large numbers of requests. In addition, the web servers host the

Faye17 system in order to serve a live feed for the end-user. Faye is a publish-subscribe

messaging system based on the Bayeux protocol.

14HAProxy: http://haproxy.1wt.eu/
15Play: http://www.playframework.com/
16Couchbase: http://www.couchbase.com/
17Faye: http://faye.jcoglan.com/

139

Con
sta

nti
no

s C
os

ta

Social Network Module: The architecture can incorporate any application that

wants to use the kNN network. In our case we have implemented and incorporated our

Rayzit messaging app. The users can broadcast their messages to the k closest users or

forward messages they see in order to propagate them to their own k closest neighbors.

The proposed architecture maintains a core engine that generates the needed AkNN

links in a distributed manner described next.

AkNN Engine: Finding the k geographically nearest neighbors of all users is known

as the All k Nearest Neighbors (AkNN) query. AkNN query processing algorithms are

used in several offline analytic queries. Recent techniques have shown how to scale

such queries to shared-nothing cloud architectures using algorithms implemented in

MapReduce. Yet, these algorithms are very slow for online operational queries, as

needed by Rayzit, even when operating in distributed main-memory (e.g., Tachyon as

opposed to HDFS).

Rayzit mandates AkNN query executions every few seconds, so that users can ex-

change microblog messages with their k geographically closest neighbors in an online

manner. For this reason, we have developed a fast AkNN algorithm in our previous

work [122]. This implementation makes use of a fast partitioning algorithm that achie-

ves good load balancing, and a technique to identify a minimal set of points to exchange

between neighboring partitions in order to compute the correct answer to the AkNN

query in a distributed and parallel fashion.

Distributed Storage: Rayzit architecture was built on a Big data NoSQL document-

oriented database that is optimized for intensive applications. Couchbase was chosen

in order to maximize the scalability and the performance of our system. We achieve a

low latency access to the high volume of documents due to the Memcached layer [164].

Note, that our Rayzit app also allows users to attach files in their posts (i.e., photos,

audio and videos). Therefore, a distributed file system needs to complement our propo-

sed architecture in order to handle these media files. We use the Gluster18 file system

in order to secure the capability of scaling up to several petabytes and maintain a 24/7

service for thousands of clients.

18Gluster: http://www.gluster.org/

140

Con
sta

nti
no

s C
os

ta

(1)
(2)
(3)
(4)
(5)
(6)

Figure 7.5: (Left) The icons in Rayzit: A user can “star” a post (1), “re-rayz” a post to their

k closest peers (2), attach a file to new post (3), setting a distance cut-off parameter if needed

(4), “power up” (5) or “power down” (6) a post and its author. (Right) The anti-spam power

bar: the power of each user decreases as they post, and increases every 24 hours or every

time one of their posts is “powered up”.

Big Data Management Module: Rayzit has thousands of users and it is necessary

to monitor the users’ behavior considering offensive, bullying and inappropriate messa-

ges. Consequently, we construct a Big data module in order to feed the administrator

monitor panel with the required information.

Each message can be reported by any user in the crowd and the report is stored in

our NoSQL database. We adopt a crowdsourcing majority vote technique to reach a

decision. A single query extracts the reported rayz messages from the database, which

consequently can be removed.

7.2.5 Rayzit Application

Rayzit was launched in 2014 and has redefined anonymous messaging and social inte-

ractions. The main functionality of an anonymous social network is to provide ways for

users to publish opinions, thoughts or gossip while preserving anonymity. Connecting

each user with the k geographical closest peers (strangers) allows them to communicate

anonymously. These connections are updated as users move.

The Rayzit mobile application allows users to send messages (rayzes) with media

attachments, and reply to rayz posts based on a kNN network. In more details, the

messages will be sent to the k nearest users. For each rayz that a user sends, the

power of the user is decreasing (see Figure 7.5 (right)). When the power of a user

reaches 0 they can not post or reply any more (see Figure 7.5). This functionality was

incorporated in order to minimize spamming. The power of the user is fully reset every

141

Con
sta

nti
no

s C
os

ta

Figure 7.6: Rayzit global user community.

 0.1

 1

 10

 100

P
er

ce
nt

ag
e

of
 s

es
si

on
s

(%
)

Session distribution between regions

Asia (rest)
Mid.East

Europe
N.Amer
S.Amer

 0.1

 1

 10

 100

<3s <10s <30s <60s <3m <10m <30m >30m

P
er

ce
nt

ag
e

of
 s

es
si

on
s

(%
)

Length of session

Session duration histogram

Figure 7.7: (Left) Distribution of Rayzit users across regions in log scale. (Right) Average

duration of each user session (reading and/or posting) in log scale.

24 hours or if the user’s rayz is powered up by another user. In addition, a user can

star or re-rayz any rayz which they consider interesting. Re-rayzing is the procedure

of re-posting an existing rayz to one’s own k nearest peers (similar to the re-tweet

functionality in Twitter) and therefore propagating the post to more users.

Figure 7.6 shows the collection of active users in Rayzit. It is evident that most

users have their nearest neighbors inside a small area. Now consider the scenario, where

somebody has lost their dog and want to start looking in the neighborhood in order

to find it and at the same time ask for help from the social network. Rayzit offers this

functionality out of the box. The user can post a picture of the dog, which the users

in the vicinity will see. If someone sees a dog that matches the attached picture (see

in Figure 7.3 (right)), they can reply to the post with whereabouts and/or photos of

the lost pet.

In order to comprehend how the Rayzit architecture works, consider the aforemen-

142

Con
sta

nti
no

s C
os

ta

 20

 40

<1m <1h <1d <1w >1w

P
er

ce
nt

ag
e

of
 r

ep
lie

s
(%

)

Average response time of replies

Average time to reply to original rayz(%)

 5

 10

 15

 20

[1-10] (10-20] (20-30] (30-40] (40-50] >50 >100

D
is

ta
nc

e
(k

m
)

Number of replies per post

Average and Maximum distance between post and its replies

Avg
Max

Figure 7.8: (Left) Average time elapse between a post (rayz) and all its replies. (Right) The

average and maximum distance between the locations of a post (rayz) and its replies, grouped

by number of replies per post.

tioned scenario in terms of communication interactions. First of all, the client sends

the rayz attaching a photo of the lost dog. The post, the photo, and their location is

sent to the load balancer, which assigns them to a web server. The responsible web

server stores the rayz through the Big data module. Then the social network module

uses the dynamic social AkNN network computed by the AkNN engine in order to

propagate the rayz to the k nearest neighbors. The k nearest neighbors will receive the

rayz into their live feed and they can reply if they have any information.

7.2.6 Data Analysis and Evaluation

In this subsection, we have collected data produced by our Rayzit application and

provide a brief data analysis. The data consists of several elements such as UUID and

timestamp. Furthermore, we conduct experiments for evaluating and analyzing the

performance of Rayzit.

Our evaluation focuses on two aspects: (1) the average percentage of replies per

rayz at a specific time; and (2) how the distance affects the number of replies. We used

Flurry.com analytics to get usage and distribution statistics of Rayzit app.

Session Measurements: In this experiment we study the usage of Rayzit app in

respect to region and duration of interaction.

The histograms in Figure 7.7 show the distribution of sessions in percentage. The

session length is defined simply as the length of time between the start application

event and the end application event. The Figure 7.7 (right) plots the distribution of

the sessions by displaying the number of sessions for which the session length falls into

143

Con
sta

nti
no

s C
os

ta

predefined duration slots.

Figure 7.7 (left) plots the distribution of sessions in percentage for each region. More

than 87.6% of sessions are created in Asia, and more than 7.2% of them in Middle East.

4.3% of all sessions are created in Europe. Only 0.7% of sessions are created in North

America. Only 0.2% of the sessions have been created in South America.

Figure 7.7 (right) plots the distribution of Rayzit’s sessions across duration time

slots. It is noticeable that 1% of the sessions is completed within 3 seconds. 7.50%

completed between 3 and 10 seconds and 16.20% observed between 10 and 30 seconds.

19% of the sessions completed between 30 and 60 seconds. The time slot of 1 to 3

minutes has the maximum percentage with 29%. Furthermore, 17% completed within

10 minutes and 4.3% between 10 and 30 minutes. Finally, only the 4.3% completed

after 30 minutes. Consequently, the AkNN engine needs to deliver the dynamic kNN

graph in less than a minute to satisfy most users.

Interaction Measurements: In this experiment we study how users interact through

Rayzit, and in particular how fast a user replies to a post and how the distance affects

interaction.

We used real data that was collected through the Rayzit back-end. The data include

the time and location stamp of a post or a reply. The time between a rayz and a reply

is presented in time slots: (< 1m) less than a minute, (< 1h) between a minute and

an hour, (< 1d) between an hour and a day, (< 1w) between a day and a week and

(> w) more than a week. The average and maximum distances of the replies for each

rayz were measured in order to depict how the distance affects the number of replies.

Figure 7.8 (left) plots the distribution of the reply arrival time, which is the time

between each reply and the original rayz. 28% of replies arrive within the first minute

of the original rayz, and more than 28% of replies arrive within a day. Only 10% of

replies arrive with in the first hour. 26% of replies arrive between the first day and

the first week. Only the 8% of replies arrive one week or more after the rayz creation.

This confirms our intuition for the temporal dimension of a rayz: it is very unlikely to

get attention after a while.

Figure 7.8 (right) plots the distance that a rayz can reach. It is noticeable that

rayz posts with 1 - 50 replies have a maximum distance of almost 15km. Rayz posts

with more than 50 replies have 10km maximum distance and 2km average distance.

Moreover, rayz posts with more than 100 replies have only 8m maximum and 6m

144

Con
sta

nti
no

s C
os

ta

average distance. This validates our initial claim that the nearest users are more likely

to be related to a specific subject than the faraway users.

7.2.7 Summary

This section presents an innovative architecture for anonymous dynamic social net-

works, coined Rayzit, which enables anonymous interactions with the k nearest neig-

hbors using state-of-the-art technology. An industrial quality application was imple-

mented that utilizes the aforementioned architecture. We presented and analyze the

data collected from this application and draw interesting conclusions about this new

type of dynamic social networking. Our experimental results also confirm our initial

hypothesis that the number of the replies is related to the location of the original rayz

(i.e., the rayz with the most replies has a maximum range of 8 meters).

145

Con
sta

nti
no

s C
os

ta

Chapter 8
Conclusions and Future Work

In this chapter, we summarize the contributions of this thesis and present future di-

rections for research.

Storage and Indexing: The completion of the PhD thesis will provide a good star-

ting point to start developing new storage and indexing techniques using decay and

compression. This will allow new researchers to accelerate their work for efficient

storage and indexing over spatial big data.

Operators: In this PhD thesis, we focused on join operators due to their high com-

plexity and popularity in a real world applications. Particularly, we implemented new

distributed algorithms with high performance in order to answer queries like AkNN .

This will allow new researchers to explore and compare new join algorithms for spatial

big data with the ones we have already published.

Applications: Novel applications could be implemented over the SPATE+ archi-

tecture. Through the PhD thesis, Rayzit and SPATE applications were developed

providing detailed analysis and evaluation of the underlying architecture.

8.1 SPATE+: A Performance-driven Architecture

for Spatial Big Data Management

SPATE+ presents a complete performance-driven architecture, which provides efficient

storage, indexing and query processing of spatial big data. SPATE+ minimizes the

storage space needed to incrementally retain data over time and the response time for

146

Con
sta

nti
no

s C
os

ta

spatiotemporal data exploration queries over recent data. Additionally, we developed

a novel decaying operator for Telco Big Data (TBD), coined TBD-DP. TBD-DP relies

on existing ML algorithms to abstract TBD into compact models that can be stored

and queried when necessary.

SPATE+ integrates techniques that generate the kNN graph of an arbitrary crowd of

smartphone users that interconnect through a short-range communication technology,

such as, Wi-Fi Direct, 3G/LTE direct or Bluetooth v4.0 (BLE). We present two efficient

algorithms, namely Akin+ and Prox+, optimized to work on a resource-limited mobile

device. These algorithms partition the user space and compute shared candidate sets

per partition. Prox+ uses a custom heap data structure to update the candidate set as

new users are inserted, whereas Akin+ uses a bulk bottom-up construction of a simple

heap to compute the candidate set once all users have been inserted. Spitfire is a scala-

ble and high-performance distributed operator that solves the AkNN problem using a

shared-nothing cloud infrastructure. Our SPATE+ operator offers several advantages

over the state-of-the-art algorithms in terms of efficient partitioning, replication and

refinement.

We have implemented two real applications on top of SPATE+: (i) SPATE is im-

plemented in HTML5/CSS3 along with extensive AngularJS. An illustrative network

exploration interface is shown in Figure 4.5. We have implemented a query sidebar

that allows the user to execute a variety of template queries. The query bar inclu-

des snapshot queries and recurring queries (in the form of a time-machine) for drop

calls and downflux/upflux, heatmap statistics and settings. Furthermore, quick access

buttons are provided so that user is able to choose between the available network moda-

lities (2G, 3G, 4G); and (ii) Rayzit enables anonymous interactions with the k nearest

neighbors using the Spitfire algorithm resided in the proposed architecture.

We have measured the efficiency of our proposition using a real telco trace and a

variety of telco-specific tasks, such as OLAP and OLTP querying, clustering, regression

and privacy sanitizing, and showed that we can achieve comparable response times to

the state-of-the-art with an order of magnitude less storage space. Additionally, we

measured the efficiency of the proposed operator using a ∼10GB anonymized real telco

network trace and our experimental results in Tensorflow over HDFS are extremely

encouraging as they show that TBD-DP saves an order of magnitude storage space

while maintaining a high accuracy on the recovered data. Considering the operator

category, our experiments verify the theoretical efficiency and show that Prox+ and

147

Con
sta

nti
no

s C
os

ta

Akin+ are very well suited for large scale and skewed data scenarios. Theoretical

analysis and experimental evaluation show that Spitfire outperforms existing algorithms

reported in recent literature, achieving scalability both on the number of users and on

the number of k nearest neighbors.

8.2 Future Work

In this chapter we describe future directions that can be realized after the completion

of the PhD thesis.

In the future, we aim to investigate a variety of advanced smart city application

scenarios on top of SPATE+, namely an automated car traffic mapping system and an

emergency recovery system after natural disasters.

We will generalize the data decaying operators beyond TBD into new domains (e.g.,

signals from other type of IoT). This task might give space to new ML algorithms.

Additionally, we aim to theoretically derive the accuracy/efficiency bounds of our data

postdiction framework. Furthermore, we will provide extensions to allow streaming

computation of TBD-DP learning with velocity data. We also plan to carry out an

extensive experimental study that will focus solely on decaying of big data.

Additionally, we plan to study the temporal extensions to support more grace-

fully higher-rate AkNN scenarios with streaming data, as well as AkNN queries over

high-dimensional data. We also plan to provide an approximate AkNN version of

Spitfire. Finally, we are interested in developing online geographic hashing techniques

at the network load-balancing level and also port our developments to general open-

source large-scale data processing architectures (e.g., Apache Spark [162] and Apache

Flink [33]).

Finally, we will investigate further the advantages of the dynamic AkNN graph in

order to enhance user experience in our social application. In addition, better content

filtering mechanisms will be studied in order to provide the best possible quality to the

users.

148

Con
sta

nti
no

s C
os

ta

8.3 Broad Impact

This work has enabled the development of a new generation SBD systems that provide

new user experiences and new opportunities of growth in the telecommunication sector.

Consequently, all kinds of applications based on our research can be further enhanced

for telemedicine (e.g., remote patient monitoring, more accurate diagnostics), scientific

investment (e.g., environmental startups), security (e.g., cyber security attack recogni-

tion), entertainment (e.g., optimized media scheduling, churn prevention), e-commerce

(e.g., targeted advertisements, location based marketing) and games (e.g behavioral

analysis, personalized modes).

149

Con
sta

nti
no

s C
os

ta

Bibliography

[1] C. Costa, C. Anastasiou, G. Chatzimilioudis, and D. Zeinalipour-Yazti, “Rayzit:
An anonymous and dynamic crowd messaging architecture,” in 2015 16th IEEE
International Conference on Mobile Data Management, vol. 2, June 2015, pp.
98–103.

[2] A. Barczyk, A. Mughal, H. Newman, I. Legrand, M. Bredel, R. Voicu,
V. Lapadatescu, and T. Wildish, “Towards managed terabit/s scientific data
flows,” in Proceedings of the Fourth International Workshop on Network-Aware
Data Management, ser. NDM ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 23–27. [Online]. Available: http://dx.doi.org/10.1109/NDM.2014.8

[3] M. Yuan, K. Deng, J. Zeng, Y. Li, B. Ni, X. He, F. Wang, W. Dai, and
Q. Yang, “Oceanst: A distributed analytic system for large-scale spatiotemporal
mobile broadband data,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1561–1564,
Aug. 2014. [Online]. Available: http://dx.doi.org/10.14778/2733004.2733030

[4] “Apache Hadoop.” [Online]. Available: http://hadoop.apache.org/

[5] “Hadoop Distributed File System (HDFS).” [Online]. Available: http:
//hadoop.apache.org/

[6] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’84. New York, NY, USA: ACM, 1984, pp.
47–57. [Online]. Available: http://doi.acm.org/10.1145/602259.602266

[7] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, Mar. 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1206049.1206056

[8] W. Pedrycz and S.-M. Chen, Eds., Information Granularity, Big Data, and Com-
putational Intelligence. Springer International Publishing, 2015.

[9] M. Watanabe and T. Suzumura, “How social network is evolving?: A
preliminary study on billion-scale twitter network,” in Proceedings of the 22Nd
International Conference on World Wide Web, ser. WWW ’13 Companion.
Republic and Canton of Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2013, pp. 531–534. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487788.2487988

[10] T. Steiner, “Dc proposal: Enriching unstructured media content about
events to enable semi-automated summaries, compilations, and improved
search by leveraging social networks,” in Proceedings of the 10th International
Conference on The Semantic Web - Volume Part II, ser. ISWC’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 365–372. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2063076.2063108

[11] M. Avvenuti, S. Cresci, A. Marchetti, C. Meletti, and M. Tesconi, “Ears
(earthquake alert and report system): A real time decision support system
for earthquake crisis management,” in Proceedings of the 20th ACM SIGKDD

150

Con
sta

nti
no

s C
os

ta

http://dx.doi.org/10.1109/NDM.2014.8
http://dx.doi.org/10.14778/2733004.2733030
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://doi.acm.org/10.1145/602259.602266
http://doi.acm.org/10.1145/1206049.1206056
http://doi.acm.org/10.1145/1206049.1206056
http://dl.acm.org/citation.cfm?id=2487788.2487988
http://dl.acm.org/citation.cfm?id=2063076.2063108

International Conference on Knowledge Discovery and Data Mining, ser. KDD
’14. New York, NY, USA: ACM, 2014, pp. 1749–1758. [Online]. Available:
http://doi.acm.org/10.1145/2623330.2623358

[12] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao,
“Whispers in the dark: Analysis of an anonymous social network,” in
Proceedings of the 2014 Conference on Internet Measurement Conference, ser.
IMC ’14. New York, NY, USA: ACM, 2014, pp. 137–150. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663728

[13] S. Zhang, Y. Yang, W. Fan, L. Lan, and M. Yuan, “Oceanrt: Real-time
analytics over large temporal data,” in Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD
’14. New York, NY, USA: ACM, 2014, pp. 1099–1102. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2594513

[14] Y. Huang, F. Zhu, M. Yuan, K. Deng, Y. Li, B. Ni, W. Dai, Q. Yang,
and J. Zeng, “Telco churn prediction with big data,” in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD. New York, NY, USA: ACM, 2015, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2742794

[15] A. P. Iyer, L. E. Li, and I. Stoica, “Celliq: Real-time cellular network
analytics at scale,” in Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’15. Berkeley,
CA, USA: USENIX Association, 2015, pp. 309–322. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789792

[16] C. Luo, J. Zeng, M. Yuan, W. Dai, and Q. Yang, “Telco user activity
level prediction with massive mobile broadband data,” ACM Trans. Intell.
Syst. Technol., vol. 7, no. 4, pp. 63:1–63:30, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2856057

[17] C. Costa, G. Chatzimilioudis, D. Zeinalipour-Yazti, and M. F. Mokbel, “Efficient
exploration of telco big data with compression and decaying,” in 2017 IEEE
33rd International Conference on Data Engineering (ICDE), ser. ICDE’17. San
Diego, CA, USA: IEEE, April 2017, pp. 1332–1343.

[18] C. LaChapelle, “The cost of data storage and management: where is the it headed
in 2016?” 2016. [Online]. Available: http://www.datacenterjournal.com/cost-
data-storage-management-headed-2016/

[19] Z. Li, A. Mukker, and E. Zadok, “On the importance of evaluating storage sy-
stems’ $costs,” in 6th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), Philadelphia, PA, 2014.

[20] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ailamaki,
and M. Callaghan, “Designing access methods: The rum conjecture,” in Intl.
Conf. on Ext. Database Technology (EDBT), 2016.

[21] F. Zhu, C. Luo, M. Yuan, Y. Zhu, Z. Zhang, T. Gu, K. Deng, W. Rao, and
J. Zeng, “City-scale localization with telco big data,” in Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,

151

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2623330.2623358
http://doi.acm.org/10.1145/2663716.2663728
http://doi.acm.org/10.1145/2588555.2594513
http://doi.acm.org/10.1145/2723372.2742794
http://dl.acm.org/citation.cfm?id=2789770.2789792
http://doi.acm.org/10.1145/2856057
http://www.datacenterjournal.com/cost-data-storage-management-headed-2016/
http://www.datacenterjournal.com/cost-data-storage-management-headed-2016/

ser. CIKM. New York, NY, USA: ACM, 2016, pp. 439–448. [Online]. Available:
http://doi.acm.org/10.1145/2983323.2983345

[22] C. Costa, G. Chatzimilioudis, D. Zeinalipour-Yazti, and M. F. Mokbel,
“Towards real-time road traffic analytics using telco big data,” in Proceedings of
the International Workshop on Real-Time Business Intelligence and Analytics,
BIRTE, Munich, Germany, August 28, 2017, 2017, pp. 5:1–5:5. [Online].
Available: http://doi.acm.org/10.1145/3129292.3129296

[23] E. Savitz, “Forbes magazine,” 2012, [Online; April 16, 2012]. [Online]. Available:
https://goo.gl/eM1uwV

[24] E. C. H. Ngai, M. B. Srivastava, and J. Liu, “Context-aware sensor data dissemi-
nation for mobile users in remote areas,” in 2012 Proceedings IEEE INFOCOM,
March 2012, pp. 2711–2715.

[25] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’95. New York, NY, USA: ACM, 1995, pp.
71–79. [Online]. Available: http://doi.acm.org/10.1145/223784.223794

[26] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing
of k nearest neighbor joins using mapreduce,” Proc. VLDB Endow.,
vol. 5, no. 10, pp. 1016–1027, Jun. 2012. [Online]. Available: http:
//dx.doi.org/10.14778/2336664.2336674

[27] G. Chatzimilioudis, D. Zeinalipour-Yazti, W. Lee, and M. D. Dikaiakos,
“Continuous all k-nearest-neighbor querying in smartphone networks,” in 13th
IEEE International Conference on Mobile Data Management, MDM 2012,
Bengaluru, India, July 23-26, 2012, 2012, pp. 79–88. [Online]. Available:
http://dx.doi.org/10.1109/MDM.2012.19

[28] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc., 2009.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceedings of
the 9th USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 2–2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228301

[30] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Polyzotis, and
M. J. Carey, “Miso: Souping up big data query processing with a multistore
system,” in Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’14. New York, NY, USA: ACM, 2014, pp.
1591–1602. [Online]. Available: http://doi.acm.org/10.1145/2588555.2588568

[31] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu, “epic: An
extensible and scalable system for processing big data,” Proc. VLDB
Endow., vol. 7, no. 7, pp. 541–552, Mar. 2014. [Online]. Available:
http://dx.doi.org/10.14778/2732286.2732291

152

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2983323.2983345
http://doi.acm.org/10.1145/3129292.3129296
https://goo.gl/eM1uwV
http://doi.acm.org/10.1145/223784.223794
http://dx.doi.org/10.14778/2336664.2336674
http://dx.doi.org/10.14778/2336664.2336674
http://dx.doi.org/10.1109/MDM.2012.19
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://doi.acm.org/10.1145/2588555.2588568
http://dx.doi.org/10.14778/2732286.2732291

[32] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120. [Online].
Available: http://ilpubs.stanford.edu:8090/422/

[33] S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl, “Iterative
parallel data processing with stratosphere: An inside look,” in Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’13. New York, NY, USA: ACM, 2013, pp. 1053–1056. [Online].
Available: http://doi.acm.org/10.1145/2463676.2463693

[34] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
sql: Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD
’15. New York, NY, USA: ACM, 2015, pp. 1383–1394. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2742797

[35] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: Sql and rich analytics at scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD
’13. New York, NY, USA: ACM, 2013, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/2463676.2465288

[36] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. A. Wood, “Implementation techniques for main memory database
systems,” in Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’84. New York, NY, USA: ACM, 1984,
pp. 1–8. [Online]. Available: http://doi.acm.org/10.1145/602259.602261

[37] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making
sense of performance in data analytics frameworks,” in Proceedings of the
12th USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’15. Berkeley, CA, USA: USENIX Association, 2015, pp. 293–307.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2789770.2789791

[38] J. Dittrich and J.-A. Quiané-Ruiz, “Efficient big data processing in hadoop
mapreduce,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2014–2015, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.14778/2367502.2367562

[39] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman, “Upper
and lower bounds on the cost of a map-reduce computation,” Proc.
VLDB Endow., vol. 6, no. 4, pp. 277–288, Feb. 2013. [Online]. Available:
http://dx.doi.org/10.14778/2535570.2488334

[40] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “Mapreduce online,” in Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855711.1855732

[41] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen,
“Bigbench: Towards an industry standard benchmark for big data analytics,”

153

Con
sta

nti
no

s C
os

ta

http://ilpubs.stanford.edu:8090/422/
http://doi.acm.org/10.1145/2463676.2463693
http://doi.acm.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2463676.2465288
http://doi.acm.org/10.1145/602259.602261
http://dl.acm.org/citation.cfm?id=2789770.2789791
http://dx.doi.org/10.14778/2367502.2367562
http://dx.doi.org/10.14778/2535570.2488334
http://dl.acm.org/citation.cfm?id=1855711.1855732

in Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp.
1197–1208. [Online]. Available: http://doi.acm.org/10.1145/2463676.2463712

[42] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 295–308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972488

[43] P. S. Pacheco, Parallel Programming with MPI. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 1996.

[44] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching framework
with adaptive load balancing,” in Proceedings of the Tenth European Conference
on Computer Systems, ser. EuroSys ’15. New York, NY, USA: ACM, 2015, pp.
4:1–4:16. [Online]. Available: http://doi.acm.org/10.1145/2741948.2741967

[45] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proceedings of the ACM Symposium on Cloud Computing, ser. SOCC
’14. New York, NY, USA: ACM, 2014, pp. 6:1–6:15. [Online]. Available:
http://doi.acm.org/10.1145/2670979.2670985

[46] X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing systems for
big data,” in Proceedings of the 18th International Database Engineering &
Applications Symposium, ser. IDEAS ’14. New York, NY, USA: ACM, 2014,
pp. 356–361. [Online]. Available: http://doi.acm.org/10.1145/2628194.2628251

[47] N. Stojanovic, L. Stojanovic, Y. Xu, and B. Stajic, “Mobile cep in real-time
big data processing: Challenges and opportunities,” in Proceedings of the 8th
ACM International Conference on Distributed Event-Based Systems, ser. DEBS
’14. New York, NY, USA: ACM, 2014, pp. 256–265. [Online]. Available:
http://doi.acm.org/10.1145/2611286.2611311

[48] E. Kuehn, M. Fischer, C. Jung, A. Petzold, and A. Streit, “Monitoring data
streams at process level in scientific big data batch clusters,” in Proceedings
of the 2014 IEEE/ACM International Symposium on Big Data Computing, ser.
BDC ’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 90–95.
[Online]. Available: http://dx.doi.org/10.1109/BDC.2014.21

[49] L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann, D. Widmer,
A. Avitzur, A. Iliopoulos, E. Levy, and N. Liang, “Analytics in motion: High
performance event-processing and real-time analytics in the same database,”
in Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD. New York, NY, USA: ACM, 2015, pp.
251–264. [Online]. Available: http://doi.acm.org/10.1145/2723372.2742783

[50] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
relations for cache performance,” in Proceedings of the 27th International
Conference on Very Large Data Bases, ser. VLDB. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001, pp. 169–180. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645927.672367

154

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2463676.2463712
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://doi.acm.org/10.1145/2741948.2741967
http://doi.acm.org/10.1145/2670979.2670985
http://doi.acm.org/10.1145/2628194.2628251
http://doi.acm.org/10.1145/2611286.2611311
http://dx.doi.org/10.1109/BDC.2014.21
http://doi.acm.org/10.1145/2723372.2742783
http://dl.acm.org/citation.cfm?id=645927.672367

[51] E. Bouillet, R. Kothari, V. Kumar, L. Mignet, S. Nathan, A. Ranganathan, D. S.
Turaga, O. Udrea, and O. Verscheure, “Processing 6 billion cdrs/day: From re-
search to production (experience report),” in Proceedings of the 6th ACM Inter-
national Conference on Distributed Event-Based Systems, ser. DEBS ’12. New
York, NY, USA: ACM, 2012, pp. 264–267.

[52] Y. Zhong, X. Zhu, and J. Fang, “Elastic and effective spatio-temporal query
processing scheme on hadoop,” in Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, ser. BigSpatial
’12. New York, NY, USA: ACM, 2012, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/2447481.2447486

[53] S. Alsubaiee, A. Behm, R. Grover, R. Vernica, V. Borkar, M. J. Carey, and
C. Li, “Asterix: Scalable warehouse-style web data integration,” in Proceedings
of the Ninth International Workshop on Information Integration on the Web, ser.
IIWeb ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:4. [Online]. Available:
http://doi.acm.org/10.1145/2331801.2331803

[54] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy,
and T. Qadah, “Aqwa: Adaptive query workload aware partitioning of big
spatial data,” Proc. VLDB Endow., vol. 8, no. 13, pp. 2062–2073, Sep. 2015.
[Online]. Available: http://dx.doi.org/10.14778/2831360.2831361

[55] I. Kelley and J. Blumenstock, “Computational challenges in the analysis
of large, sparse, spatiotemporal data,” in Proceedings of the Sixth
International Workshop on Data Intensive Distributed Computing, ser. DIDC
’14. New York, NY, USA: ACM, 2014, pp. 41–46. [Online]. Available:
http://doi.acm.org/10.1145/2608020.2608025

[56] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570, Oct. 2002. [Online].
Available: http://dx.doi.org/10.1142/S0218488502001648

[57] X. Hu, M. Yuan, J. Yao, Y. Deng, L. Chen, Q. Yang, H. Guan, and
J. Zeng, “Differential privacy in telco big data platform,” Proc. VLDB
Endow., vol. 8, no. 12, pp. 1692–1703, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2824032.2824067

[58] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce Framework for
Spatial Data,” in 31st IEEE International Conference on Data Engineering,
ICDE 2015, Seoul, South Korea, April 13-17, 2015, 2015, pp. 1352–1363.

[59] H. Samet, “Modern database systems,” W. Kim, Ed. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1995, ch. Spatial Data Structures, pp.
361–385. [Online]. Available: http://dl.acm.org/citation.cfm?id=187362.187464

[60] N. Crary, B. Tang, and S. Taase, “Data preservation in data-intensive sensor
networks with spatial correlation,” in Proceedings of the 2015 Workshop on
Mobile Big Data, ser. Mobidata ’15. New York, NY, USA: ACM, 2015, pp.
7–12. [Online]. Available: http://doi.acm.org/10.1145/2757384.2757389

[61] P. Andreou, A. Pamboris, D. Zeinalipour-Yazti, P. K. Chrysanthis, and G. Sama-
ras, “Etc: Energy-driven tree construction in wireless sensor networks,” in 2009

155

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2447481.2447486
http://doi.acm.org/10.1145/2331801.2331803
http://dx.doi.org/10.14778/2831360.2831361
http://doi.acm.org/10.1145/2608020.2608025
http://dx.doi.org/10.1142/S0218488502001648
http://dx.doi.org/10.14778/2824032.2824067
http://dl.acm.org/citation.cfm?id=187362.187464
http://doi.acm.org/10.1145/2757384.2757389

Tenth International Conference on Mobile Data Management: Systems, Services
and Middleware, May 2009, pp. 513–518.

[62] S. Wang, H. Hu, T. Lin, Y. Liu, A. Padmanabhan, and K. Soltani, “Cybergis for
data-intensive knowledge discovery,” SIGSPATIAL Special, vol. 6, no. 2, pp. 26–
33, Mar. 2015. [Online]. Available: http://doi.acm.org/10.1145/2744700.2744704

[63] S. Shekhar, V. Gunturi, M. R. Evans, and K. Yang, “Spatial big-data challenges
intersecting mobility and cloud computing,” in Proceedings of the Eleventh
ACM International Workshop on Data Engineering for Wireless and Mobile
Access, ser. MobiDE ’12. New York, NY, USA: ACM, 2012, pp. 1–6. [Online].
Available: http://doi.acm.org/10.1145/2258056.2258058

[64] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop gis:
A high performance spatial data warehousing system over mapreduce,” Proc.
VLDB Endow., vol. 6, no. 11, pp. 1009–1020, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.14778/2536222.2536227

[65] C. Costa, G. Chatzimilioudis, D. Zeinalipour-Yazti, and M. F. Mokbel, “Spate:
Compacting and exploring telco big data,” in 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), April 2017, pp. 1419–1420.

[66] Ericsson.com, “Cellular Networks For Massive IoT – enabling low power wide
area applications,” 2016. [Online]. Available: https://goo.gl/Sf2Cj4

[67] J. Reades, F. Calabrese, A. Sevtsuk, and C. Ratti, “Cellular census: Explorations
in urban data collection,” IEEE Pervasive Computing, vol. 6, no. 3, pp. 30–38,
2007.

[68] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and analytics:
From big data to big impact.” MIS quarterly, vol. 36, no. 4, pp. 1165–1188, 2012.

[69] TeraLab, “TeraLab Data Science for Europe,” 2016. [Online]. Available:
http://www.teralab-datascience.fr/

[70] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and S. Ghani,
“Shahed: A mapreduce-based system for querying and visualizing spatio-
temporal satellite data,” in 2015 IEEE 31st International Conference on Data
Engineering, April 2015, pp. 1585–1596.

[71] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to compress -
compute vs. io tradeoffs for mapreduce energy efficiency,” in Proceedings of the
First ACM SIGCOMM Workshop on Green Networking, ser. Green Networking
’10, 2010, pp. 23–28.

[72] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross, “Improving
i/o forwarding throughput with data compression,” in 2011 IEEE Intl. Confe-
rence on Cluster Computing, Sept 2011, pp. 438–445.

[73] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating online
compression to accelerate large-scale data analytics applications,” in Parallel &
Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on.
IEEE, May 2013, pp. 1205–1216.

156

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2744700.2744704
http://doi.acm.org/10.1145/2258056.2258058
http://dx.doi.org/10.14778/2536222.2536227
https://goo.gl/Sf2Cj4
http://www.teralab-datascience.fr/

[74] M. L. Kersten, “Big data space fungus,” in CIDR 2015, Seventh Biennial Confe-
rence on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,
2015, Online Proceedings, 2015.

[75] M. Stonebraker, R. Castro, F. Dong Deng, and M. Brodie, “Database decay and
what to do about it.” 2016. [Online]. Available: https://goo.gl/tJNa9m

[76] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross, and
N. F. Samatova, “Compressing the incompressible with isabela: In-situ reduction
of spatio-temporal data,” in European Conference on Parallel Processing. Sprin-
ger, 2011, pp. 366–379.

[77] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.-S. Chang, S.-H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross et al., “Isobar preconditioner for effective and
high-throughput lossless data compression,” in 2012 IEEE 28th International
Conference on Data Engineering. IEEE, 2012, pp. 138–149.

[78] J. Jenkins, I. Arkatkar, S. Lakshminarasimhan, D. A. Boyuka II, E. R. Schendel,
N. Shah, S. Ethier, C.-S. Chang, J. Chen, H. Kolla et al., “Alacrity: Analytics-
driven lossless data compression for rapid in-situ indexing, storing, and querying,”
in Transactions on Large-Scale Data-and Knowledge-Centered Systems X. Sprin-
ger, 2013, pp. 95–114.

[79] E. Soroush and M. Balazinska, “Time travel in a scientific array database,” in
Data Engineering (ICDE), 2013 IEEE 29th International Conference on. IEEE,
2013, pp. 98–109.

[80] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and emerging
technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.

[81] C. Shannon, “A mathematical theory of communication, bell system technical
journal 27: 379-423 and 623–656,” Mathematical Reviews (MathSciNet): MR10,
133e, 1948.

[82] “Gzip.” [Online]. Available: http://gzip.org/

[83] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Inf. Theor., vol. 23, no. 3, pp. 337–343, Sep. 2006.

[84] “7z.” [Online]. Available: http://7-zip.org/

[85] “Snappy.” [Online]. Available: http://google.github.io/snappy/

[86] “Zstd.” [Online]. Available: https://github.com/facebook/zstd

[87] “Apache Spark.” [Online]. Available: http://spark.apache.org/

[88] “Apache Hive.” [Online]. Available: http://hadoop.apache.org/

[89] “Arx data anonymization tool.” [Online]. Available: http://arx.deidentifier.org/

[90] M. A. Abbasoğlu, B. Gedik, and H. Ferhatosmanoğlu, “Aggregate profile
clustering for telco analytics,” Proc. VLDB Endow., vol. 6, no. 12, pp. 1234–1237,
Aug. 2013. [Online]. Available: http://dx.doi.org/10.14778/2536274.2536284

157

Con
sta

nti
no

s C
os

ta

https://goo.gl/tJNa9m
http://gzip.org/
http://7-zip.org/
http://google.github.io/snappy/
https://github.com/facebook/zstd
http://spark.apache.org/
http://hadoop.apache.org/
http://arx.deidentifier.org/
http://dx.doi.org/10.14778/2536274.2536284

[91] Q. Ho, W. Lin, E. Shaham, S. Krishnaswamy, T. A. Dang, J. Wang, I. C.
Zhongyan, and A. She-Nash, “A distributed graph algorithm for discovering
unique behavioral groups from large-scale telco data,” in Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management,
ser. CIKM. New York, NY, USA: ACM, 2016, pp. 1353–1362. [Online].
Available: http://doi.acm.org/10.1145/2983323.2983354

[92] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query proces-
sing with optimized document ordering,” in Proceedings of the 18th international
conference on World wide web. ACM, 2009, pp. 401–410.

[93] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor for
double-precision floating-point data,” IEEE Transactions on Computers, vol. 58,
no. 1, pp. 18–31, 2009.

[94] F. Douglis and A. Iyengar, “Application-specific delta-encoding via resemblance
detection.” in USENIX Annual Technical Conference, General Track, 2003, pp.
113–126.

[95] L. L. You, K. T. Pollack, D. D. Long, and K. Gopinath, “Presidio: a framework
for efficient archival data storage,” ACM Transactions on Storage (TOS), vol. 7,
no. 2, p. 6, 2011.

[96] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and A. Parameswaran,
“Principles of dataset versioning: Exploring the recreation/storage tradeoff,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1346–1357, 2015.

[97] M. L. Kersten and L. Sidirourgos, “A database system with amnesia.” in CIDR,
2017.

[98] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Found. Trends
databases, vol. 4, no. 1–3, pp. 1–294, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1561/1900000004

[99] D. Barbará, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,
Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala,
K. A. Ross, and K. C. Sevcik, “The new jersey data reduction report,”
IEEE Data Eng. Bull., vol. 20, no. 4, pp. 3–45, 1997. [Online]. Available:
http://sites.computer.org/debull/97DEC-CD.pdf

[100] K. Krishna, D. Jain, S. V. Mehta, and S. Choudhary, “An lstm based system
for prediction of human activities with durations,” Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 147:1–147:31, Jan. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3161201

[101] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[102] Y. Bengio, P. Frasconi, and P. Simard, “The problem of learning long-term de-
pendencies in recurrent networks,” in IEEE International Conference on Neural
Networks, 1993, pp. 1183–1188 vol.3.

158

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2983323.2983354
http://dx.doi.org/10.1561/1900000004
http://sites.computer.org/debull/97DEC-CD.pdf
http://doi.acm.org/10.1145/3161201
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[103] J. Laiho, A. Wacker, and T. Novosad, Radio Network Planning and Optimisation
for UMTS. John Wiley & Sons, 2006.

[104] R. Dey and F. M. Salemt, “Gate-variants of gated recurrent unit (gru) neural
networks,” in 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), Aug 2017, pp. 1597–1600.

[105] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified sampling for
approximate query processing,” ACM Trans. Database Syst., vol. 32, no. 2, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1242524.1242526

[106] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica, “G-ola: Generalized
on-line aggregation for interactive analysis on big data,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’15. New York, NY, USA: ACM, 2015, pp. 913–918. [Online].
Available: http://doi.acm.org/10.1145/2723372.2735381

[107] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: Queries with bounded errors and bounded response times on very
large data,” in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp. 29–42.
[Online]. Available: http://doi.acm.org/10.1145/2465351.2465355

[108] L. Sidirourgos, Martin, and P. Boncz, “Sciborq: Scientific data management with
bounds on runtime and quality,” in In Proc. of the Int’l Conf. on Innovative Data
Systems Research (CIDR, 2011, pp. 296–301.

[109] Z. Wei, G. Luo, K. Yi, X. Du, and J.-R. Wen, “Persistent data sketching,”
in Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’15. New York, NY, USA: ACM, 2015, pp.
795–810. [Online]. Available: http://doi.acm.org/10.1145/2723372.2749443

[110] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and
K. Yi, “Mergeable summaries,” in Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, ser. PODS
’12. New York, NY, USA: ACM, 2012, pp. 23–34. [Online]. Available:
http://doi.acm.org/10.1145/2213556.2213562

[111] C.-J. Wang and W.-S. Ku, “Anonymous sensory data collection approach for
mobile participatory sensing,” in Data Engineering Workshops (ICDEW), 2012
IEEE 28th International Conference on, April 2012, pp. 220–227.

[112] Y.-B. Lin and J. Y.-B. Lin, Wireless and Mobile Network Architectures, 1st ed.
New York, NY, USA: John Wiley & Sons, Inc., 2000.

[113] B. Bollobás, Modern graph theory. Springer Science & Business Media, 1998.

[114] S. Trifunovic, B. Distl, D. Schatzmann, and F. Legendre, “Wifi-opp: Ad-hoc-less
opportunistic networking,” in Proceedings of the 6th ACM Workshop on
Challenged Networks, ser. CHANTS ’11. New York, NY, USA: ACM, 2011, pp.
37–42. [Online]. Available: http://doi.acm.org/10.1145/2030652.2030664

159

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/1242524.1242526
http://doi.acm.org/10.1145/2723372.2735381
http://doi.acm.org/10.1145/2465351.2465355
http://doi.acm.org/10.1145/2723372.2749443
http://doi.acm.org/10.1145/2213556.2213562
http://doi.acm.org/10.1145/2030652.2030664

[115] G. Kollios, D. Gunopulos, and V. J. Tsotras, “Nearest neighbor queries
in a mobile environment,” in Proceedings of the International Workshop
on Spatio-Temporal Database Management, ser. STDBM ’99. London,
UK, UK: Springer-Verlag, 1999, pp. 119–134. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=646518.756858

[116] C. Xia, H. Lu, B. C. Ooi, and J. Hu, “Gorder: An efficient method for knn
join processing,” in Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, ser. VLDB ’04. VLDB Endowment, 2004,
pp. 756–767. [Online]. Available: http://dl.acm.org/citation.cfm?id=1316689.
1316755

[117] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using k-nearest
neighbour graph,” in Proceedings of the Pattern Recognition, 17th International
Conference on (ICPR’04) Volume 3 - Volume 03, ser. ICPR ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 430–433. [Online]. Available:
http://dx.doi.org/10.1109/ICPR.2004.671

[118] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach,
D. J. Hand, and D. Steinberg, “Top 10 algorithms in data mining,”
Knowl. Inf. Syst., vol. 14, no. 1, pp. 1–37, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10115-007-0114-2

[119] N. Lathia, S. Hailes, and L. Capra, “knn cf: A temporal social network,”
in Proceedings of the 2008 ACM Conference on Recommender Systems, ser.
RecSys ’08. New York, NY, USA: ACM, 2008, pp. 227–234. [Online]. Available:
http://doi.acm.org/10.1145/1454008.1454044

[120] W. Liu, J. Wang, and S. fu Chang, “Hashing with graphs,” in In ICML, 2011.

[121] C. Aggarwal, “An introduction to social network data analytics,” in Social
Network Data Analytics, C. C. Aggarwal, Ed. Springer US, 2011, pp. 1–15.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4419-8462-3 1

[122] W.-C. Lee, D. Zeinalipour-Yazti, G. Chatzimilioudis, and M. D. Dikaiakos, “Con-
tinuous all k-nearest-neighbor querying in smartphone networks,” 2012 13th
IEEE International Conference on Mobile Data Management (MDM), vol. 00,
pp. 79–88, 2012.

[123] P. Kolios, A. Pitsillides, and O. Mokryn, “Bilateral routing in emergency response
networks,” in ICT 2013, May 2013, pp. 1–5.

[124] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis, and G. Samaras, “Mint
views: Materialized in-network top-k views in sensor networks,” in 2007 Inter-
national Conference on Mobile Data Management, May 2007, pp. 182–189.

[125] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis, G. Samaras, and A. Pit-
sillides, “The micropulse framework for adaptive waking windows in sensor net-
works,” in 2007 International Conference on Mobile Data Management, May
2007, pp. 351–355.

[126] G. Chatzimilioudis, A. Cuzzocrea, and D. Gunopulos, “Optimizing query routing
trees in wireless sensor networks,” in 2010 22nd IEEE International Conference
on Tools with Artificial Intelligence, vol. 2, Oct 2010, pp. 315–322.

160

Con
sta

nti
no

s C
os

ta

http://dl.acm.org/citation.cfm?id=646518.756858
http://dl.acm.org/citation.cfm?id=646518.756858
http://dl.acm.org/citation.cfm?id=1316689.1316755
http://dl.acm.org/citation.cfm?id=1316689.1316755
http://dx.doi.org/10.1109/ICPR.2004.671
http://dx.doi.org/10.1007/s10115-007-0114-2
http://doi.acm.org/10.1145/1454008.1454044
http://dx.doi.org/10.1007/978-1-4419-8462-3_1

[127] R. W. Floyd, “Algorithm 245: Treesort,” Commun. ACM, vol. 7, no. 12, pp.
701–, Dec. 1964. [Online]. Available: http://doi.acm.org/10.1145/355588.365103

[128] T. Brinkhoff, “A framework for generating network-based moving objects,”
Geoinformatica, vol. 6, no. 2, pp. 153–180, Jun. 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1015231126594

[129] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation mode
from raw gps data for geographic applications on the web,” in Proceedings
of the 17th International Conference on World Wide Web, ser. WWW
’08. New York, NY, USA: ACM, 2008, pp. 247–256. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367532

[130] X. Yu, K. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries over mo-
ving objects,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st Inter-
national Conference on, April 2005, pp. 631–642.

[131] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring,” in Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’05. New York, NY, USA: ACM, 2005, pp. 634–645. [Online].
Available: http://doi.acm.org/10.1145/1066157.1066230

[132] K. Clarkson, “Fast algorithms for the all nearest neighbors problem,” in Foun-
dations of Computer Science, 1983., 24th Annual Symposium on, Nov 1983, pp.
226–232.

[133] P. B. Callahan, “Optimal parallel all-nearest-neighbors using the well-
separated pair decomposition,” in Proceedings of the 1993 IEEE 34th
Annual Foundations of Computer Science, ser. SFCS ’93. Washington,
DC, USA: IEEE Computer Society, 1993, pp. 332–340. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.1993.366854

[134] H. N. Gabow, J. L. Bentley, and R. E. Tarjan, “Scaling and related techniques
for geometry problems,” in Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, ser. STOC ’84. New York, NY, USA: ACM, 1984,
pp. 135–143. [Online]. Available: http://doi.acm.org/10.1145/800057.808675

[135] Y.-R. Wang, S.-J. Horng, and C.-H. Wu, “Efficient algorithms for the all nearest
neighbor and closest pair problems on the linear array with a reconfigurable
pipelined bus system,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 16, no. 3, pp. 193–206, March 2005.

[136] T. Lai and M.-J. Sheng, “Constructing euclidean minimum spanning trees and all
nearest neighbors on reconfigurable meshes,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 7, no. 8, pp. 806–817, Aug 1996.

[137] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao, “All-nearest-neighbors queries
in spatial databases,” in Proceedings of the 16th International Conference on
Scientific and Statistical Database Management, ser. SSDBM ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 297–. [Online]. Available:
https://doi.org/10.1109/SSDBM.2004.12

161

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/355588.365103
http://dx.doi.org/10.1023/A:1015231126594
http://doi.acm.org/10.1145/1367497.1367532
http://doi.acm.org/10.1145/1066157.1066230
http://dx.doi.org/10.1109/SFCS.1993.366854
http://doi.acm.org/10.1145/800057.808675
https://doi.org/10.1109/SSDBM.2004.12

[138] Y. Chen and J. Patel, “Efficient evaluation of all-nearest-neighbor queries,” in
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on,
April 2007, pp. 1056–1065.

[139] J. Sankaranarayanan, H. Samet, and A. Varshney, “A fast all nearest
neighbor algorithm for applications involving large point-clouds,” Comput.
Graph., vol. 31, no. 2, pp. 157–174, Apr. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.cag.2006.11.011

[140] P. M. Vaidya, “An o(n log n) algorithm for the all-nearest-neighbors problem,”
Discrete Comput. Geom., vol. 4, no. 2, pp. 101–115, Jan. 1989. [Online].
Available: http://dx.doi.org/10.1007/BF02187718

[141] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao, “All-nearest-neighbors queries
in spatial databases,” in Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on, June 2004, pp. 297–306.

[142] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest neighbor and
reverse nearest neighbor queries for moving objects,” in Database Engineering
and Applications Symposium, 2002. Proceedings. International, 2002, pp. 44–53.

[143] G. S. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in Proceedings of
the 29th International Conference on Very Large Data Bases - Volume 29,
ser. VLDB ’03. VLDB Endowment, 2003, pp. 512–523. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1315451.1315496

[144] K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos, “Fast nearest-
neighbor query processing in moving-object databases,” GeoInformatica, vol. 7,
no. 2, pp. 113–137, 2003. [Online]. Available: http://dx.doi.org/10.1023/A%
3A1023403908170

[145] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algorithms for nearest
neighbor search on moving object trajectories,” Geoinformatica, vol. 11, no. 2,
pp. 159–193, Jun. 2007. [Online]. Available: http://dx.doi.org/10.1007/s10707-
006-0007-7

[146] Y.-K. Huang, S.-J. Liao, and C. Lee, “Efficient continuous k-nearest neighbor
query processing over moving objects with uncertain speed and direction,” in
Proceedings of the 20th International Conference on Scientific and Statistical
Database Management, ser. SSDBM ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 549–557. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
69497-7 37

[147] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases,” in
Proceedings of the 21st International Conference on Data Engineering, ser.
ICDE ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 643–654.
[Online]. Available: http://dx.doi.org/10.1109/ICDE.2005.128

[148] H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring continuous
spatial queries over moving objects,” in Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD

162

Con
sta

nti
no

s C
os

ta

http://dx.doi.org/10.1016/j.cag.2006.11.011
http://dx.doi.org/10.1007/BF02187718
http://dl.acm.org/citation.cfm?id=1315451.1315496
http://dx.doi.org/10.1023/A%3A1023403908170
http://dx.doi.org/10.1023/A%3A1023403908170
http://dx.doi.org/10.1007/s10707-006-0007-7
http://dx.doi.org/10.1007/s10707-006-0007-7
http://dx.doi.org/10.1007/978-3-540-69497-7_37
http://dx.doi.org/10.1007/978-3-540-69497-7_37
http://dx.doi.org/10.1109/ICDE.2005.128

’05. New York, NY, USA: ACM, 2005, pp. 479–490. [Online]. Available:
http://doi.acm.org/10.1145/1066157.1066212

[149] A. Konstantinidis, D. Zeinalipour-Yazti, P. Andreou, G. Samaras, and P. K.
Chrysanthis, “Intelligent search in social communities of smartphone users,”
Distrib. Parallel Databases, vol. 31, no. 2, pp. 115–149, Jun. 2013. [Online].
Available: http://dx.doi.org/10.1007/s10619-012-7108-0

[150] M. Muralikrishna and D. J. DeWitt, “Equi-depth multidimensional histograms,”
in Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’88. New York, NY, USA: ACM, 1988, pp.
28–36. [Online]. Available: http://doi.acm.org/10.1145/50202.50205

[151] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large data in
mapreduce,” in Proceedings of the 15th International Conference on Extending
Database Technology, ser. EDBT ’12. New York, NY, USA: ACM, 2012, pp.
38–49. [Online]. Available: http://doi.acm.org/10.1145/2247596.2247602

[152] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable parallel geometric
algorithms for coarse grained multicomputers,” in Proceedings of the
Ninth Annual Symposium on Computational Geometry, ser. SCG ’93.
New York, NY, USA: ACM, 1993, pp. 298–307. [Online]. Available:
http://doi.acm.org/10.1145/160985.161154

[153] E. Plaku and L. E. Kavraki, “Distributed computation of the knn graph for large
high-dimensional point sets,” J. Parallel Distrib. Comput., vol. 67, no. 3, pp. 346–
359, Mar. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2006.10.004

[154] N. Nodarakis, S. Sioutas, D. Tsoumakos, G. Tzimas, and E. Pitoura,
“Rapid aknn query processing for fast classification of multidimensional
data in the cloud,” CoRR, vol. abs/1402.7063, 2014. [Online]. Available:
http://arxiv.org/abs/1402.7063

[155] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online].
Available: http://doi.acm.org/10.1145/1327452.1327492

[156] H. Gao, J. Tang, X. Hu, and H. Liu, “Modeling temporal effects of human
mobile behavior on location-based social networks,” in Proceedings of the 22nd
ACM international conference on Conference on information & knowledge
management, ser. CIKM ’13. New York, NY, USA: ACM, 2013, pp. 1673–1678.
[Online]. Available: http://doi.acm.org/10.1145/2505515.2505616

[157] D. Yang, D. Zhang, K. Frank, P. Robertson, E. Jennings, M. Roddy, and
M. Lichtenstern, “Providing real-time assistance in disaster relief by leveraging
crowdsourcing power,” Personal Ubiquitous Comput., vol. 18, no. 8, pp.
2025–2034, Dec. 2014. [Online]. Available: http://dx.doi.org/10.1007/s00779-
014-0758-3

[158] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing systems on the
world-wide web,” Commun. ACM, vol. 54, no. 4, pp. 86–96, Apr. 2011. [Online].
Available: http://doi.acm.org/10.1145/1924421.1924442

163

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/1066157.1066212
http://dx.doi.org/10.1007/s10619-012-7108-0
http://doi.acm.org/10.1145/50202.50205
http://doi.acm.org/10.1145/2247596.2247602
http://doi.acm.org/10.1145/160985.161154
http://dx.doi.org/10.1016/j.jpdc.2006.10.004
http://arxiv.org/abs/1402.7063
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/2505515.2505616
http://dx.doi.org/10.1007/s00779-014-0758-3
http://dx.doi.org/10.1007/s00779-014-0758-3
http://doi.acm.org/10.1145/1924421.1924442

[159] A. Bozzon, M. Brambilla, and S. Ceri, “Answering search queries with
crowdsearcher,” in Proceedings of the 21st International Conference on World
Wide Web, ser. WWW ’12. New York, NY, USA: ACM, 2012, pp. 1009–1018.
[Online]. Available: http://doi.acm.org/10.1145/2187836.2187971

[160] M. Renz, N. Mamoulis, T. Emrich, Y. Tang, R. Cheng, A. Zufle, and
P. Zhang, “Voronoi-based nearest neighbor search for multi-dimensional
uncertain databases,” in Proceedings of the 2013 IEEE International Conference
on Data Engineering (ICDE 2013), ser. ICDE ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 158–169. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.2013.6544822

[161] N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A general framework for
geo-social query processing,” Proc. VLDB Endow., vol. 6, no. 10, pp. 913–924,
aug 2013. [Online]. Available: http://dx.doi.org/10.14778/2536206.2536218

[162] B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-joins in large
relational databases (almost) for free,” in Data Engineering (ICDE), 2010 IEEE
26th International Conference on, March 2010, pp. 4–15.

[163] C. S. Jensen, A. Kligys, T. B. Pedersen, and I. Timko, “Multidimensional data
modeling for location-based services,” The VLDB Journal, vol. 13, no. 1, pp. 1–
21, Jan. 2004. [Online]. Available: http://dx.doi.org/10.1007/s00778-003-0091-3

[164] C. Xu, X. Huang, N. Wu, P. Xu, and G. Yang, “Using memcached to promote
read throughput in massive small-file storage system,” in 2010 Ninth Internati-
onal Conference on Grid and Cloud Computing, Nov 2010, pp. 24–29.

164

Con
sta

nti
no

s C
os

ta

http://doi.acm.org/10.1145/2187836.2187971
http://dx.doi.org/10.1109/ICDE.2013.6544822
http://dx.doi.org/10.14778/2536206.2536218
http://dx.doi.org/10.1007/s00778-003-0091-3

	Introduction
	Motivation
	Problem Statement and Hypothesis
	Research Questions

	Thesis Statement and Contributions
	Thesis Statement
	Contributions

	Dissertation Outline

	Related Work
	Big Data Architectures
	Query Processing
	Resource Management and Storage Systems
	Real-time Processing Systems

	Spatial Big Data Architectures
	Spatial Big Data Query Processing

	Spatial Big Data Visualization
	Spatial Visualization Systems

	Efficient Exploration of TBD with Compression and Decaying
	Introduction
	Preliminaries
	The Anatomy of a Telco Network
	The Structure of Telco Big Data

	SPATE: Overview
	Problem Formulation
	Our Solution

	SPATE: Storage (Compression) Layer
	Terminology and Desiderata
	Lossless Compression Libraries
	Microbenchmark

	SPATE: Indexing (Decaying) Layer
	Incremence Module
	Highlights Module
	Decaying Module
	Indexing Schemes Comparison

	SPATE: Application Layer
	Query Evaluation and Processing

	Experimental Testbed and Methodology
	Compared Frameworks
	Experimental Testbed
	Datasets
	Metrics
	Data Exploration Tasks

	Experimental Evaluation
	Performance over varying day-periods
	Performance over days of the week
	Response time

	Related Work
	Telco Big Data Research
	Compressing Incremental Archives

	Summary

	Decaying Telco Big Data with Data Postdiction
	Introduction
	System Model and Problem Formulation
	Problem Formulation

	The TBD-DP operator
	Construction Algorithm
	Recovery Algorithm
	Performance Analysis

	Prototype Description
	Experimental Methodology and Evaluation
	Methodology
	Experiment 1: Performance Evaluation
	Experiment 2: Control Experiments

	Related Work
	Summary

	Crowdsourcing Emergencies in Non-Operational Cellular Networks
	Introduction
	System Model
	Emergency Network Model

	Centralized AkNN Query Processing
	Background on Proximity
	Proximity with Grid Partitioning
	Prox: An Optimized Candidate Set Bound
	Akin: Bulk Candidate Set Construction without a k+-heap
	Internal Pruning of Candidate Set: Prox+ and Akin+

	Experimental Evaluation
	Datasets
	Evaluated Algorithms
	Evaluation Metrics
	Control Experiments
	Comparison Against Existing Work

	Related Work
	kNN for Spatial Data
	kNN for Spatio-Temporal Data
	Mobile User Community Network

	Summary

	Distributed In-Memory Processing of All k Nearest Neighbors
	Introduction
	The Spitfire Algorithm
	Spitfire: Overview and Highlights
	Step 1: Partitioning
	Step 2: Replication
	Step 3: Refinement
	Running Example

	Correctness and Analysis
	Correctness of the computeECB function
	Correctness of Spitfire
	Computational Cost of computeECB
	Communication Cost of Replication
	Optimal border segment size
	Replication Factor: Spitfire vs. PGBJ

	Experimental Evaluation
	Experimental Testbed
	Datasets
	Evaluated Algorithms
	Metrics and Configuration Parameters
	Varying Number of Users (n)
	Network I/O Performance
	Partitioning and Load Balancing
	Varying Number of Neighbors (k)
	Varying Number of Servers (m)

	Background and Related Work
	Goal and Design Principles
	Parallel AkNN Algorithms
	Distributed AkNN Algorithms: Bottom-Up
	Distributed AkNN Algorithms: Top-Down

	Summary

	SPATE+Applications
	The SPATE Application
	Overview of SPATE
	SPATE Prototype
	Query Exploration Interfaces

	The Rayzit Application
	Introduction
	Motivating Examples
	Related Work And Background
	The Rayzit Architecture
	Rayzit Application
	Data Analysis and Evaluation
	Summary

	Conclusions and Future Work
	SPATE+: A Performance-driven Architecture for Spatial Big Data Management
	Future Work
	Broad Impact

