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Abstract

The intense urbanization and the associated anthropogenic activities place numer-

ous challenges to urban air quality modeling. However before we get to the point

to predict the urban air quality, it is important to study and understand the phys-

iochemical processes that occur in the urban atmosphere. The motivation of this

thesis is to investigate the interactions between different atmospheric processes by

addressing their multi-scale nature. Therefore, this thesis suggests novel methods

in order to understand, provide insight and contribute in multi-scale modeling of

multi-scale problems.

Specifically, Multi-Resolution Analysis (MRA), based on Discrete Wavelet Anal-

ysis, is proposed as a formal framework to represent two-dimensional (2D) urban

morphology data (e.g building height, planar packing density) and building-related

attributes (e.g. energy demands), for the derivation of associated boundary layer

parametrization in atmospheric modeling. The objective of this study is to highlight

the sensitivity of the various prognostic models (meteorological models, pollutant

dispersion models) depending on how the morphological attributes of an area are

configured, to propose a rigorous method of calculating and using these building-

related attributes in various prognostic models at different study scales and to pro-

vide quantitative results that will help to the modeling of flow and dispersion field of

different urban areas. The MRA results, confirm that the method is able to represent

the morphological parameters of an urban area in a coherent way and has the ability

to take into account the uniqueness of each area.

Besides the scale-adaptive and spatially-varying parametrization and represen-

tation of urban-related attributes, this thesis proposes the application of Wavelet

Transform Modulus Maxima (WTMM), as a scheme of Continuous Wavelet Trans-

form (CWT), in the analysis of long-term atmospheric measurements. Monitored

meteorological and air-quality data were collected from a sub-urban station in the
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form of time-series and they were analysed using WTMM analysis to gain insight

into the multi-scale behavior of the sub-urban atmosphere. For a better understand-

ing of the aforementioned times-series dataset a statistical analysis was conducted

in order to investigate in more detail what lessons we can learn from monitoring

measurements with regard to dispersion modeling of air pollutants as well as about

the various related anthropogenic activities associated with them or to unveil a pos-

sible impact of phenomena occurring at larger scales (e.g dust events from Sahara

Desert). The results of this study show that both the behavior of the atmosphere and

the concentrations of pollutants are part of a multi-scale system. Therefore, the use

of the multi-scale analysis through Wavelet Transform (WT) on the above-mentioned

database, is necessary in order to extract quantitative results that will help to the

modeling of flow and dispersion field. The derived scaling laws are determined by

calculating the singularity spectrum D(h), where a range of self-similar indices (h)

measure the amount of repeating structures in their time-series. The analysis shows

that the wind speed obeys the −5/3 law suggested by Kolmogorov only when the

atmosphere lies within stable regime as defined by Monin-Obukhov theory. On the

contrary under unstable regimes in the atmosphere, where the isotropy is perturbed,

different laws are deduced. In addition, the results of the WTMM analysis suggest

that the stability of the atmosphere plays a significant role in the behavior of the

atmospheric flow and determines the observed scaling laws in the data.
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Chapter 1

Introduction

Atmosphere is dominated by a wide range of spatial and temporal scales, with continuous

interactions taking place between the atmosphere itself and the earth’s surface. Moreover, the

impact of urbanization has been realized in a variety of aspects of life, ranging from the urban

micro-climate and more broadly atmospheric research, to the energy demands for heating and

cooling for indoor thermal comfort. Before we get to the point to predict reliably urban air

quality, it is important to understand the physicochemical processes that occur in the urban

atmosphere. This Chapter introduces the motivation and background as well as the objectives

and contribution of this thesis. Finally, the structure and the overall outline of the thesis is

provided.

1.1 Spatio-temporal scales in the urban atmosphere

1.1.1 Turbulence in the atmospheric boundary layer

Turbulent flows always occur at high Reynolds numbers and over a wide range of

length and time scales. The Reynolds number is a non-dimensional number which

shows the ratio between the inertial and viscous forces. For turbulence to develop,

the inertial forces must be much larger than the viscous forces according to equation:

Re =
UL
ν

(1.1)

where U is the mean velocity of the flow, L is the characteristic length scale and ν is

the fluid viscosity.
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Figure 1.1: Turbulent jets at different Reynolds numbers (a) relatively low Reynolds number (b)

relatively high Reynolds number (adopted from [105])

The range of scales that are encountered in a turbulent flow span from integral

scale to Kolmogorov scale. Integral scale is called the larger scale that is determined

by the physical boundaries of the flow and contains the full energy of the flow.

The smallest length scale is called Kolmogorov length scale and is determined by

viscosity. Fig. 1.1 illustrates a simple multi-scale problem where two different

turbulent jet flows with different Reynolds number present the same integral scale.

Thus, the two flows in integral scale seem identical. However, the two flows are

entirely different. The main difference between the two turbulent flows is the size

of the smallest eddies: a turbulent flow at a relatively low Reynolds number has a

relatively coarse small-scale structure. Thus for the purpose of accurate prediction

of the behavior of a multi-scale flow, there is a need for careful consideration of the

scales to be modeled and their role.

The usual practice in multi-scale modeling of a physical flow phenomenon is

done by parameterizing the effect of smaller scales and by considering the influence
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of larger scales as the boundary conditions of the flow problem. The ultimate aim

of multi-scale modeling is to arrive at an approach that shares the efficiency of the

macroscopic models as well as the accuracy of the microscopic models. Therefore,

there is a need to use techniques that are rigorous in extracting conclusions and

deductions across the scales for any multi-scale problem, such as dynamic problems

in the atmosphere.

An approach to study a turbulent flow (among other approaches [31]), is done

by observing the long term timeseries of the flow velocity in the time (temporal

variation of velocity at a single point) or in the space domain (spatial variation of

velocity at multiple points). In order to study the correlation of velocity increments

in a turbulent flow, Taylor [104] in 1935 proposed the use of Fourier Transform (FT)

as a tool which can describe the complete behavior of turbulence. In the power

spectrum three major (Fig. 1.2) spectral regions can generally be identified. The

energy-containing range, where energy is produced by buoyancy and shear and

this region appears in low frequency area of the spectrum. The second region is

the inertial sub-range, where according to Kolmogorov’s second hypothesis there

exists an intermediate range of frequencies, for which energy cascades from larger

to smaller scales with a power exponent law equals to β = −5/3. Finally, at the

high frequency end of the spectrum, there is the dissipation range where viscosity

dominates and the turbulent kinetic energy (TKE) is dissipated into heat.

Power spectra, like those in Fig. 1.2, are derived in the wavenumber (k) domain

but the issue is that most of the times the data are obtained using time-resolved

single-point measurements. In order to address this issue Taylor’s frozen-in flow

hypothesis [33], states that when the turbulent fluctuations evolve slowly compared

to the mean velocity (i.e low turbulence intensities), temporal and spatial variations

of flow velocities behave in the same way. In 1962, Kolmogorov modified the

homogeneity assumption of the flow field by introducing an energy dissipation rate

ε(x) that varies with the spatial location x. Introducing a spatially-varying energy

dissipation rate implies a multi-fractal behavior of the flow field [69].

This thesis studies the fully developed atmospheric turbulence, namely when

inertial forces prevail over the viscous forces and very large turbulent scales occur in

the flow. Flows in the atmosphere can easily fulfill essential criteria for the validity

of Kolmogorov’s theory at turbulent flows with inherent large Reynolds numbers.

These criteria are that:
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Figure 1.2: Three major spectral regions (i) energy-containing range, (ii) inertial subrange and (iii)

dissipation range, in the power spectrum of spatial variation velocity of a flow

1. the ratio of the largest scale L of flow to the smallest Kolmogorov length scale

lk of flow is very large, i.e. L/lk � 1, and

2. for the dissipation to be confined to the smallest scales, the ratio of the spectrum

of the strain rate at the smallest scales to the strain rate at the largest scales

must be larger than 1, i.e. ε(νε)(−1/3)/(U2/L), where kinematic viscosity, ν, and

large-scale motions of the flow, U, were also necessary to be introduced in

order to define a length scales.

When Re0.75
� 1 and Re0.25

� 1, criterion (1) and (2) are satisfied respectively.

Despite the significant and important steps that have been taken by scientists to

understand the nature of turbulence, nevertheless there are still areas of application

of turbulence that need to be studied more. For example the progress in our un-

derstanding of turbulence in the urban atmosphere has been slow mostly because

of lack of availability of appropriate field datasets, that is associated with practical

difficulties due to the inhomogeneity and specificities of the urban morphology. This

thesis among other things, attempts to provide some insight about the behaviour of

turbulence in the urban atmosphere.
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1.1.2 Urban texture characterization

The boundary layer over an urban area is of particular interest as it is in this layer

of the atmosphere that the majority of observations in urban areas are made [102].

It is the lowest part of the atmosphere and is influenced by the land use and the

anthropogenic processes. It is therefore important to know what these observations

represent.

Urban morphology characterization is crucial for the parametrization of bound-

ary layer development over urban areas; one of the main complications is the three-

dimensional (3D) variation of the urban canopies and textures, which are often re-

duced to and represented by a one-dimensional (1D) varying parametrization. For

example, for the atmospheric boundary layer, we know that based on the Monin-

Obukhov similarity theory [73], the vertical profile (Fig. 1.3) of the mean horizontal

wind speed can be described by:

U(z) =
u∗
κ

ln
z − d

z0
(1.2)

where κ = 0.4 is the von Karman constant, u∗ is the friction velocity, and z0 and d are

the aerodynamic roughness length and the zero-plane displacement, respectively.

It is important to note that Eq. 1.2 is valid within inertial sub-layer (constant-

stress layer) and in conditions of neutral stability. In addition, it is noted that the

aerodynamic parameters z0 and d are physically realistic only if Eq. 1.2 is applied

over a statistically homogeneous fetch [39].

Figure 1.3: Schematic diagram showing the typical vertical profile of the mean horizontal wind

velocity and scale lengths within an urban boundary layer, UBL.
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1.1.3 Stochastic versus deterministic processes

In a broad range of disciplines, we find as main objective of the studies the un-

derstanding of the generating mechanisms that govern a process, for the purpose

of modeling the process and forecasting its future values. For this purpose, the

main form that is commonly used is timeseries data [112]. The ordering set of

samples prescribed by the time (or space) index (e.g. minutes/hours/days/years or

meter/kilometers etc.) is important, because usually enables us to unveil possible

temporal (or spatial) correlation between the random variables of the stochastic pro-

cess. Many of the processes occuring in the real world are stochastic, which means

that these processes are not described by a deterministic law which controls the out-

come. For example, turbulence in fluid dynamics, heart beat in cardiology, exchange

rates in economic sciences and so forth, are stochastic processes of which it is not

possible to predict their future values accurately [60]. Within the framework of this

thesis, monitored meteorological and air-quality data are collected from a sub-urban

station in the form of timeseries and they are analysed using WT analysis to gain

insight into the multi-scale behavior of the sub-urban atmosphere.

A stochastic timeseries is described completely by all the joint probability dis-

tributions of its values. If the joint distributions remain invariant with respect to

time the stochastic time series is said to be stationary; otherwise is non-stationary.

The mathematical description of stationary stochastic time series is relatively sim-

pler than that of non-stationary and it is well developed and documented. An

important type of non-stationary time series, X(t), that appears across a wide range

of disciplines, is that whose joint distributions of their scaled -in-time versions,

P(X(σt1),X(σt2)), are the same with the joint distributions of their scaled-in-values

versions P(σhX(t1), σhX(t2)). In other words, a self similar system behaves in a similar

way when viewed at different scales (scale-independent) on a dimension - space or

time, either the system is stochastic or deterministic. If a non-stationary series can

be made stationary by differencing d-times, this series is said to have d unit roots

and the process I(d) is called difference stationary process of order d [112]. For example,

an I(2) series contains two unit roots so the difference operation need to be applied

twice to induce stationarity in the timeseries. The presence of unit roots means that

the effects of an abrupt change to the system are not only persistent, but also they are

propagated so that a given shock will have an increasingly large influence through
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the time.

Thus, there is a need of using methods for optimization of modeling and fore-

casting of behavior stochastic processes like urban flow, turbulence and pollution

dispersion in complex urban environments. These methods should be able to take

into account the multi-scale nature of a process and be able to reveal scaling laws

that may exist in atmospheric processes [74]. However, these processes often have

the same behavior across different scales, exhibit the characteristic feature of self

similarity and are governed by scaling laws. Multi-scale processes which present a

scaling law or scaling laws, apart from self-similarity, can be characterized by the

concepts of fractality or long-range correlation. Even though these notions are not

equivalent, are connected and both posses a common characteristic, invariant rela-

tionship between different scales [97]. For example, fractals are repeating self-similar

structures in a statistical sense, across all scales of the process.

It has been found that if a stochastic process is difference stationary process (i.e

has stationary increments), the stationarity of the timeseries, and therefore the long-

term correlation in timeseries fluctuations, is associated with a self-similarity index

[1, 17, 27], the Hurst exponent (h), where h (among other things) measures how

singular the process is in the neighborhood of a given observed value.

At this point, in order to highlight the usefulness of the Hurst exponent as a metric

of characterizing a stochastic process, the notion of the singularity point should be

introduced. In Complex Analysis, singularities are extremely important points that

characterize the behaviour of analytic functions. Singularities are small-scale events

which are scale invariant. A point at which the first derivative of f (t) fails to exist,

is called a singular point or singularity of the function. The Lipschitz exponent

h (namely Hurst exponent for point or Hölder exponent for function) provides a

uniform regularity measurement over time intervals or at any specific point v as

well. If h < 1 at point v, then the function f is not differentiable at v, whereas h

characterizes the singularity type.

In fluid dynamics problems wherein the stochastic approach is used to study

turbulent flows, it was found that the asymptotic decay β of the power spectrum (see

1.1.1) is linearly related with the uniform irregularity index h of a process [75]. The

limitation of power spectrum approach for determing the characteristic regularity

(or singularity) of the analysing dataset is that the obtained characteristic regularity

is global and it cannot describe the singularity at particular locations or points in the
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timeseries. In 1974, to overcome this issue, Mandelbrot [66] introduced the notion

of singularity spectrum D(h) to study multi-fractal signals, which are signals with

various singularities at different points.

Taylor’s Eq. 1.3 relates differentiability of a signal with local polynomial approxi-

mations. If function f (t) is m-times differentiable in [v−δ, v+δ] , Taylor’s polynomial

expansion in the neighbourhood of v is:

p(t) =

m−1∑
k=0

f k(v)
k!

(t − v)k (1.3)

and the approximation error ε(t) is calculated by

ε(t) = f (t) − p(t) (1.4)

If function f (t) is n = bhc times continuously differentiable at the point v and if there

exists M > 0, the error εv(t) satisfies:

|ε(t)| ≤M|t − v|h,∀t ∈ R (1.5)

and inserting Eq.1.4 in Eq.1.5

| f (t) − p(t)| ≤M|t − v|h,∀t ∈ R (1.6)

Eq. 1.5 implies that the Hurst exponent h determines the upper bound of εv(t). Thus

hv > n measures how irregular the function f is at the point v. For example, a

function f that is bounded but discontinuous at v hv = 0, whilst if hv < 1, then f is

not differentiable at v and h characterizes the singularity type. More details about

the Hurst exponent and its association with singular points and self-similarity in

timeseries can be found in many textbooks, as for example in Mallat [64].

There are two different types of singular points: Isolated and non-isolated sin-

gular points. Isolated singularities are singularities where within a neighborhood

of radius r, the function has no other singularities close to it. On the other hand

non-isolated singularities are singularities where no such neighbourhood can be

found and they appear in highly irregular signals such as multi-fractals signals. The

two types of non-isolated singularities are: (i) Natural boundaries (i.e cusps) and (ii)

Branch cuts (i.e ridge, edge, chirps).

As it has already been mentioned in the previous paragraph, the long-term

correlation in timeseries fluctuations of a stochastic process, is associated with the
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self-similarity index. Specifically, if a given stochastic process is difference stationary

and exhibits exponents in the range 1
2 < h ≤ 1, then the timeseries is said to have

a long-term correlation behavior [3], which implies that a value of the timeseries

is affected not only by its most recent values but also by its long-term history. For

values of h in the range 0 ≤ h < 1
2 , the difference stationary process has short-term

correlation and if h = 1
2 , the values of the timeseries are uncorrelated. Furthermore,

if a given stochastic process is difference stationary and exhibits exponents in the range
1
2 < h ≤ 1, then the timeseries has long-term correlation behavior [3], which implies

that a value of the timeseries is affected not only by its most recent values but also

by its long-term history. For 0 ≤ h < 1
2 the difference stationary process has short-term

correlation and if h = 1
2 , the values of the timeseries are uncorrelated.

1.2 Literature review

The literature review of this thesis will be divided into two parts. The first part

deals with issues related to urban morphology description and modeling, while the

second part concerns the description of atmospheric data as stochastic processes.

1.2.1 Urban morphology

A focus in atmospheric research has been the understanding and appropriate repre-

sentation of the urban effects and particularly of their aerodynamic characteristics,

used to describe the vertical variation of the mean horizontal wind velocity (U) in

various numerical models. For example, meso-scale meteorological models rely on

urban building datasets in order to determine several urban canopy parameters,

such as the urban surface cover and morphological parameters, for accurate pre-

dictions of air quality and atmospheric pollution dispersion [9, 16, 93, 100]. Due to

the multi-scale nature of air pollution dispersion, numerical modeling faces several

challenges such as: (i) the spatial complexity of the underlying surfaces must be

addressed, (ii) the spatial and temporal complexity of pollutant emissions must be

addressed as well, (iii) applications require outputs at increasingly finer or adaptive

grid resolutions in order to take into account the scale of observation.

The advantage of using Eq. 1.2 within numerical weather prediction models

resides in the continuity with the surrounding rural areas, where a similar profile
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to that depicted in Eq. 1.2 is adopted but with different z0 and d parameters; in

addition, the use of Eq. 1.2 has a negligible impact on the computational cost

[67]. Unfortunately however, due to the inherent complexities of urban geometries

there are great difficulties in correctly estimating the z0 and d parameters for urban

surfaces. Two classes of methods have been developed in order to estimate z0 and d:

(i) the morphometric methods that use the building elevation data to calculate the

set of geometric input parameters that the forecasting model requires (e.g. [24, 89])

and (ii) the micro-meteorological methods that use field observations (e.g. [36, 38,

114]). However, in the absence of complete sets of wind-speed measurements, z0

and d, frequently are estimated via the use of morphometric models, which relate

these aerodynamic parameters to various geometric properties of the urban surface

[37]. These models become increasingly attractive as substantial and detailed urban

morphological data become available (e.g. Cities Revealed c© The GeoInformation

Group 2008). Moreover, it is well-established (e.g. [8]) that the airflow and associated

dispersion processes within and above urban areas occur over a wide range of spatial

scales. Specifically, four horizontal spatial scales have been introduced based on

geophysical distinctions: (i) the regional scale, that is the larger surrounding area that

is mutually influenced by the city area, extending up to several hundred km in the

horizontal, (ii) the city scale, over which the urban area varies, i.e. up to 50 km, (iii) the

neighborhood scale, which bridges the range of scales between street and city scales,

i.e. from 0.2 to 10 km in the horizontal, and (iv) the street scale, up to 200 m in the

horizontal [84]. Although these spatial scales can be unambiguously defined from

the physical/geographical identification point of view, they are arbitrarily specified

in terms of fluid dynamics, since the scale demarcation does not derive from the

observing fluid dynamics but from the geographical identification perspective; this

point becomes particularly important when model nesting and chemical reactions

(and their corresponding time scales) need to be taken into account in association

with the corresponding spatial and therefore time scale of mixing of pollutants to

calculate the pollutant concentration field [78, 80].

Currently atmospheric numerical models addressing airflow and pollution dis-

persion are tailored to observe at a particular scale where the urban scale rather

lies at one of the extremes of the range of scales present in the problem: large-scale

weather models address regional- or global-scale variations, in which urban areas

(and their associated effects) are represented as a parametrized effect, often occurring
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at a sub-grid scale of the model; on the other hand, engineers most often address-

ing local-scale models (often of the building/street scale or neighborhood scale)

acknowledge the need to use appropriate boundary conditions to reflect the city or

the surrounding urban area that the buildings or neighborhood comprise, which in

turn derive from a more macroscopic characterization of the city (e.g. [76, 86]).

It should be noted that the macroscopic characterization of such heterogeneous

urban areas is always derived for a constant velocity and flow direction in relation

to the urban morphology. Therefore, when describing surface-layer wind profiles

it is normally necessary to calculate aggregated values of z0 and d that account for

the heterogeneity of the surface. This could be achieved so far, via source area

modeling [94, 95] or blending methods [7]. Other studies have attempted to charac-

terize such spatially heterogeneous geometries and roughness with an agglomerated

z0 and d (e.g. [53]) despite the fact that direct validation becomes difficult to fully

address [18]. As a result of the emerging need for a spatially-varying characteriza-

tion of urban morphologies, simple uniform square grids, ”neighborhood regions”,

have been recently used, of horizontal resolutions ranging from 150 m to 1 km (by

e.g. [6, 41, 89]). In order to provide such spatial variation of larger areas, morpho-

metric models are then applied to the individual neighborhoods and the deduced

parametrization schemes most frequently involve a statistical characterization of the

urban building geometry, e.g. with the derivation of an average building height, a

standard deviation in building height and the packing densities, all derived from a

pre-specified area size (e.g. [83]).

Using the statistics of an urban morphology in the conventional way that is

currently used is useful, as illustrated in the range of applications reviewed. How-

ever, such use of the statistics is unable to provide a distinctive characterization of

a city or urban area; for example two urban sub-areas may yield the same statistics

quantitatively, while being qualitatively different in morphology.

In a recent study by Millward et al. [71], a methodology was developed using

an adaptive grid for providing a spatially-varying characterization of z0 and d, as a

function of the local planar packing density,λp, and local mean building height, H̄,

estimated using the morphological data within each grid cell. A convergence crite-

rion (arbitrarily specified as admitted by authors) was also used in order to specify

small-enough normalized changes (of either λp or H̄) for statistical homogeneity and

therefore to estimate the relevant aerodynamic parameters. It was accepted that, if
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more stringent values than those specified for the convergence criterion in the study

were used, the methodology failed to detect the city’s boundaries, while if higher,

more lenient, values for the convergence criterion were used, the results appeared

to be unsatisfactory resulting into excessively small sub-areas. Finally, Millward et

al. [71] concluded that there is a need for a more formal mathematical process to

determine the most appropriate values of all these aerodynamic parameters.

There are two important implications arising from the existence of various scale-

referenced models and the need for derivation of relevant parametrizations from var-

ious urban (or other) datasets of given pre-specified size: (a) the use of appropriate

representation of urban (or other) datasets in the corresponding scale or resolution

of a numerical model requires a coherent framework to associate the appropriate

sets of data to be represented both in the model and sub-grid parametrizations, and

(b) a spatially-varying characterization of any parametrization, e.g. the roughness

length or zero-plane displacement should take into account the spatial heterogeneity

in a structured and consistent way for any agglomeration of data. Therefore, for the

purposes of improved modeling and forecasting of the behavior of urban winds,

turbulence and pollutants dispersion, there is a need for finding a method which

represents the spatial complexity of the urban morphology at different scales. The

method used in this PhD thesis to understand and model multi-scale phenomena in

the urban atmosphere is the multi-scale analysis method based on Wavelet Transform

(WT), which has the capacity for multi-scale sampling and multi-scale representa-

tion of information. Comprehensive details about the theory and methodology of

MRA will be given later in the manuscript in Chapter 2.

1.2.2 The multi-fractal behavior of stochastic processes

A number of multi-fractal methods such as Wavelet Transform Modulus Maxima

(WTMM) [64] and Multi-fractal Detrended Fluctuation Analysis (Mf-DFA) [51] were

developed and their performance was tested [40, 62], as methods allowing us to

study complex objects which are not necessarily fractal but their variations exhibit

self-similar behavior. In an attempt to carry out a comparative study between

WTMM and Mf-DFA methods, Oświȩcimka et al. [85] used different sorts of artifi-

cial signals generated by well-known mathematical model and found that WTMM

performs poorly with signals that include singularities of strength h > 1. Thereby
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they recommend the use of Mf-DFA method in the cases where one does not know

a priori the fractal properties of a process or they suggest a careful use of WTMM

method by choosing the proper parameters of the method. In this thesis, WTMM

method was selected due to its inherent property of being well-localized in time,

taking into considerations all the constrains and limitations that the method has.

During the last two decades, the aforementioned multi-fractal methods were

applied at meteorological variables or wind-tunnel data to study their scaling prop-

erties. The application of Mf-DFA method on wind speed time series with different

resolution [32, 54], indicate the presence of multi-fractal behavior. Furthermore,

these studies show singularity spectra with dominant h exponent which do not co-

incide with Kolmogorov’s second hypothesis, but without specification of under

which atmospheric conditions this variation of exponents h is observed. This in-

vestigation is the novelty of the current study. Contrary to atmospheric field data,

wind tunnel measurements, that inherently contain constraints on the spatial scale,

appear to verify the Kolmogorov’s ideas [46,106]. For example, longitudinal velocity

signal obtained by Gagne and collaborators in the large wind tunnel S1 of ONERA

at Modane (integral scale L = 7m, dissipation scale n = 0.27mm) was analysed using

the WTMM method [75]. Results show that D(h) is maximum at 1/3, as predicted by

the Kolmogorov second hypothesis.

On the other hand, Hosokawa and Yamamoto [43] in their study provide evi-

dence against Kolmogorov’s hypothesis on turbulence theory. In addition, there are

studies were the multi-fractal methods were applied to time series of meteorolog-

ical or air quality variables such as temperature [56, 57, 103], cloud structures [55],

solar radiation [111] or particulate matter [113], where they reveal the multi-fractal

structure of such timeseries measurements.

1.3 Objectives and Contribution of the thesis

This thesis is intended to provide useful insight and understanding to multi-scale

phenomena in the urban atmosphere. The main objectives of this research are as

follows:

1. To provide novel means for a scale-adaptive and spatially-varying representa-

tion of building data for multi-scale modeling studies. Within this framework,
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the Multi-Resolution Analysis (MRA), is applied to the urban building datasets

of a number of European and North-American cities in order to obtain rigor-

ously scale-adaptive spatially-varying representations of the different urban

datasets. As a result of the above, it appears that MRA results can be used

in order to quantify the uniqueness of any urban area in essence a DNA-like

description of a city.

2. To extend the use of MRA method to the derivation of spatially varying de-

scriptions of more urban parameters, such as the aerodynamic urban canopy

parameters or the building energy demand for heating and cooling.

3. To investigate the multi-scale nature of the fluid dynamics and dispersion in a

turbulent atmosphere by using high-resolution atmospheric data.

Most of the results presented in Chapters 3-5 are based on published articles

declared in Publications section.

1.4 Structure of the thesis

The main body of the thesis contains six Chapters and the content of each chap-

ter is described below. Two Appendices are included to provide complementary

explanatory background to the main body of the thesis.

Chapter 2 presents the fundamental framework of multi-scale analysis based on

Wavelet Transform. Besides the description of the mathematical concepts that were

used throughout this thesis, Chapter 2 describes comprehensively how some of the

theory and the ideas implemented in the methodology can be interpreted through

the output results.

Chapter 3 describes the atmospheric field measurements collected for the purpose

of this thesis, as well as the processing methods that were used. Also a statistical

description of datasets from seven (7) different cities is given, this involves three (3)

European cities (London, Marseille and Nicosia) and four (4) North-American cities

(New York City, Phoenix, Seattle and Oklahoma). The aim of this chapter is through

description of the dataset to unveil qualitatively the spatial and temporal multi-scale

nature of such data.

Chapter 4 contains an overview of the novel methodology Multi-Resolution

Analysis (MRA), as a scale-adaptive spatially-varying representation method. Its
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effectiveness is demonstrated in detail, in an example for Oklahoma City building

data. Furthermore, this chapter, demonstrates the further application of MRA to

urban building datasets for a number of European and North-American cities and

it explores the connection between urban scale-building attributes, such as energy

demands versus other urban dynamic features (e.g. city breathability).

Chapter 5 investigates the multi-scale behavior and explores them in terms of

the stationarity and multi-fractality behavior demonstrated in high resolution atmo-

spheric data. Moreover, through the Wavelet Transform Modulus Maxima (WTMM),

the possible statistical connection between the atmospheric flow field and dispersion

field was investigated.

Chapter 6 summarizes the main findings in this dissertation and provides rec-

ommendations for future research work. The main contributions of this research are

also highlighted.
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Chapter 2

Mathematical methods for multi-scale

and multi-resolusion analysis

This Chapter, presents the fundamental mathematical tools of multi-scale analysis based on

Wavelet Transform. Continuous Wavelet Analysis and its implementation in 1D atmospheric

timeseries data will be presented first, followed by the definition of Orthogonal Wavelet

Analysis and its implementation as a Multi-resolution Analysis in 2D building-related data.

Also Chapter 2 describes how some of the theory and the methodology ideas can be interpreted

through the output results.

2.1 Wavelet Transform: The microscope tool

Before we get to the point to predict the urban air quality, it is important to study and

understand the physiochemical processes that occur in the urban atmosphere. In this

direction, particular emphasis is given to understand multi-scale phenomena. This

section presents the theory of Continuous Wavelet Analysis and how it is applied in

1D timeseries data, in the light of the discussion in the Chapter 1, about the stochastic

processes and their multi-fractal behavior.

2.1.1 Short History of Wavelets

In signal analysis, the classical FT analysis represents the original information (sig-

nal) into the frequency domain. However, functions that are localized in the time
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domain have Fourier spectra that are spread out across the frequency domain and

vice versa [29]. In time-frequency analysis of a signal, like the way of analyzing tur-

bulent flows (see Chapter 1), the classical FT analysis is inadequate. To overcome this

drawback, Dennis Gabor in 1946, first introduced the Windowed-Fourier Transform,

i.e. Short-Time Fourier Transform (STFT) known later as Gabor transform.

Wavelet analysis was originally introduced in order to improve seismic signal

analysis by switching from STFT analysis to new better algorithms to detect and

analyse abrupt changes in signals. In 1982 the French geophysicist Jean Morlet,

introduced the concept of a wavelet which means small wave. Immediately, Alex

Grossmann, a theoretical physicist, studied inverse formula for the WT. The joint

collaboration of Morlet and Grossmann yielded a detailed mathematical study of

the CWT and their various applications, of course without the realization that simi-

lar results had already been obtained in 1950’s by Calderon, Littlewood, Paley and

Franklin. The modern applications of wavelet theory are as diverse as wave propa-

gation, data compression, signal processing, image processing, pattern recognition,

computer graphics etc.

2.1.2 Wavelet Transform detects singularities

Wavelets are functions with compact support. Because they are irregular and often

non symmetrical, they are good at describing constant frequency (stationary) signals,

anomalies, pulses and other events that start and stop within the signal. Although

the exact time and the exact frequency of a signal cannot be associated and deter-

mined simultaneously, a relationship between scale and frequency can be obtained.

In addition to the concept of frequency which describes accurately the property of

periodicity, another useful concept is that of scale, which is used to describe features

with no-periodic properties. A WT is also adapted to analyse the scaling evolution

of transients with zooming procedures across scales. In order to extract more infor-

mation with regard to the multi-scale behavior of the measured quantities the CWT

is used. The wavelet coefficients, W(u, s), of a given time series f (t) are given by:

W(u, s; f (t), ψ(t)) =

∫
∞

−∞

f (t)
1
√

s
ψ∗(

t − u
s

)dt (2.1)

where ψ(t) is the mother wavelet function, which is non-zero only over a finite time

interval and its integral over that interval is zero. These two conditions render ψ(t)
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a small wave, hence its name. The mother wavelet can be dilated or compressed

through the scale parameter s. For s > 1, ψ(t) is dilated whereas for s < 1 is

compressed. In order to enable analysis for all the time period of f (t), the dilated or

compressed wavelet should be translated across the period that f (t) is defined. This

is achieved by the use of u, which is known as the translation parameter. The integral

(2.1) is interpreted as a measure of similarity at a translation u between compressed

or dilated versions of ψ(t) and f (t). If ψ function is real and has a zero average,

a wavelet coefficient W fv(u, s) measures the variation of f in a neighborhood of v

that has a size proportional to s. For example sharp signal transitions create large-

amplitude wavelet coefficients. A set of theorems [64] prove that wavelets which

are well localized in time and decay towards low frequencies - meet the properties

of compact support and have n vanishing moments respectively - result in wavelet

transform to be interpreted as a multi-scale differential operator of order n [96]. The

wavelet transform can be written as:

W f (u, s) = sn dn

dun ( f ? θ̄s)(u) (2.2)

with θ̄s = s1/2θ(−t/s) and θ is the Gaussian function. The resulting W f (u, s) is the

nth-derivative of f averaged in the neighborhood of u and smoothed by a dilated

version of the Gaussian function. The use of derivatives of Gaussian (DoG) function

is proposed because DoG guarantee that all maxima lines propagate up to the finest

scales. If A =
∫
∞

∞
θ(t)dt , 0 then the convolution f ? θ̄s(t) can be interpreted as

weighted average of function f at fine scales.

Wavelet modulus maximum is defined as a point (up, sp) such that |W f (u, s)| is

locally maximum at u = up. Mallat and Hwang [65] proved that f can be singular

in the neighborhood of v if and only if there exists a constant number A > 0 and if

there is a sequence of wavelet maxima points (up, sp) that converges towards v at fine

scales.

|W f (u, s)| ≤ Ash+1/2 (2.3)

⇔ log2 |W f (u, s)| ≤ log2 A + (h +
1
2

) log2 s (2.4)

Eq. 2.4 implies that Hurst exponent h, as defined in Subsection 1.1.3, is estimated

by the slope of a log-log plot of the CWT amplitude versus the scale log2s. Mallat [64]

underlies the concept that WT can find isolated singular events and characterize more

complex multi-fractal signals having non-isolated singularities. These modulus
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maxima points may or may not be along the same maxima line. As a result, all

singularities are detected by following the wavelet transform modulus maxima at

fine scales. This result is very useful for studying processes like multi-fractal signals

since these are signals with singularities vary from point to point. In addition, a

typical feature of a fractal signal is that it has a non-integer degree of differentiability.

Muzy et al. [75] in order to calculate the singularity spectrum D(h), which depicts

the range of different h that exist in a multi-fractal process, used a function called

partition function. The partition function Z measures the sum at a power q of all

wavelet modulus maxima. The idea of using a partition function Z was taken from

statistical mechanics where Z connects the macroscopic thermodynamic quantities

of a systems with the micro-state details of the system.

The data processing and analysis based on WTMM method, was implemented

in Matlab c© by using the software FracLab c© v2.1 (http://fraclab.saclay.inria.fr/ ) which it

was developed by INRIA.

2.2 Multi-Resolution Analysis (MRA)

Wavelets were developed before the conception of MRA and they constitute the

fundamental building blocks of the Continuous Wavelet Transform (CWT). CWT

exploits the intuitive notion of scale, as a multiple of time or space variable, in

order to create a signal processing technique that enables multi-scale signal analysis.

MRA through a set of axioms, introduced by Mallat [64] and Meyer [70], formalizes

the notion of scale. The axioms of MRA provided theorems that stimulated the

development of:

(a) orthogonal scaling functions and wavelets; the former are used to sample at

various scales whereas the latter hold the details removed from lower scales

during higher scale sampling, and

(b) fast analysis and synthesis algorithms.

In this thesis, MRA is proposed as a formal framework to represent urban mor-

phologies consistently across different scales and resolutions of models and datasets

for the derivation of associated boundary-layer parametrizations; this is mainly due

to the capacity of MRA for multi-scale sampling [74]. By being able to represent

the urban information (at each selected level-resolution) as an approximation and a
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detail, it can provide appropriate and consistent representations of urban data across

different scales and resolutions of models. Due to this capacity, MRA has been at-

tractive for applications in several fields, e.g. in soil science for surface roughness

characterization [48, 110], in the detection of street features in urban fabric [4, 21, 42]

as well as in environmental fluid dynamics [109] and turbulence characterization

through coherent structure identification [26, 28–30, 45]. Recently it has been re-

ported that the MRA provides the ability to retain and quantify the unique character

of each and every city, and as a function of grid size [19].

The subsections that follow describe the MRA in the context of the application of

this thesis. The current Subsection 2.2.1 describes the theory of 1D MRA whereas its

extension to 2D is described in Subsection 2.2.2.

2.2.1 The 1D formulation of the MRA

MRA formalizes the notion of scale through labeled, by integers j ∈ Z, subspaces V j

of the space L2(R) of finite energy signals as follows: each signal (or function) in V j

contains information up to resolution 2 j. In the theory of MRA a function, known

as the scaling function φ(t), plays a prominent role, since it creates the subspaces

V j, it dictates the wavelet creation methodology and enables multi-scale sampling.

Through MRA axioms it can be shown that the scaling function of support δt, has a

pulse-like shape and can be normalized to unit area∫
∞

−∞

φ(t)dt = 1 (2.5)

The axioms of MRA postulate the existence of a sequence of nested subspaces,

V j of L2(R), such that . . .V j ⊂ V j+1 ⊂ V j+2 . . ., where j denotes an integer, while the

original signal f can be projected on to any of the subspaces, V j, as f j. Both f j and

V j belong to the Hilbert function space of finite energy signals, denoted as L2(R)

where R denotes the set of real numbers. In addition they postulate the existence

of a scaling function that can be used to generate these spaces. The complete list of

MRA axioms which can be found in many textbooks as for example [22, 49, 64].

Moreover, it is important to point out that the space V j is considered to contain

information up to resolution of 2 jτ. This means that V j can be deconstructed into an

approximation subspace V j+1 that contains information up to a resolution of 2 j+1τ.

Furthermore the detail subspace contains the details removed from resolution 2 jτ in
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order to obtain the next level approximation with a resolution of 2 j+1τ expressed as

W j+1 is the orthogonal complement of V j+1 in V j expressed as

V j = V j−1 ⊕W j−1 (2.6)

The most important mathematical consequence of MRA axioms is the existence

of a function φ(t), the so-called scaling function, of compact support δt (bounded

interval over which φ(t) is non-zero) whose translates
(
φn = φ(t − n)

)
generate an

orthonormal basis of V0 (the space on which the original/initial fs is projected).

Since any function that has a pulse-like shape and satisfies Eq. 2.5 can be used to

approximate the impulse function it can furthermore be used to sample a function

at a higher scale, as opposed to the actual values sampled at sharp instants by the

impulse function.

In addition since V j ⊂ V j+1, the following functional equation of the scaling

function φ, called dilation equation can be deduced,

φ(t) =
√

2
∑

n

hnφ(2t − n) (2.7)

where the coefficients hn are given by hn = 〈φ(t), φ(2t − n)〉 and they can be thought

of as a sequence of low-pass filter coefficients. These coefficients determine the

scaling function and they are very important because, (a) they are used to construct

the wavelet function, and (b) their convolution with the analyzing signal yields

computational analysis and synthesis procedures.

Wavelet functions in MRA are created through the orthogonal complements,

W j−1, of V j−1 in V j. As consequence an f j ∈ V j can be decomposed into

f j = f j+1 + d j+1 (2.8)

where f j+1 and d j+1 ∈W j+1 . f j+1 is interpreted as the approximation of f j at the scale

2 j+1 whereas d j+1 ∈ W j+1 as the detail of g j that exists at scale 2 j but is lost at scale

2 j+1 in order to get f j+1. Given an integer k > j by recursively substituting fl where

j + 1 < l ≤ k in Eq. 2.8 can be written as

f j = fk +

k∑
l= j+1

dl (2.9)

which is the sum of its approximation at scale 2k with the sum of all its details lost

from the intermediate scales between 2 j and 2k.
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As in the case of the approximation spaces V j, each space W j has orthonormal

basis constituted by translated and dilated versions, ψ j,n = 1
√

2 jψ
(

t−2 jn
2 j

)
of a function

ψ ∈ W0, called the mother wavelet. A signal f ∈ L2((R)) can be projected on a

function d j ∈W j

d j =
∑

n

〈 f , ψ j,n(t)〉ψ j,n(t) (2.10)

Therefore the detail removed from approximation f j−1 to obtain f j at higher scale

is kept by the inner products 〈 f , ψ j,n(t)〉. Since ψ( t
2 ) belongs to W1 and W1 is the

orthogonal complement to V1 in V0 then ψ(t) can be written as

ψ(t) =
√

2
∑

n

gnψ(2t − n) (2.11)

where gn are considered as coefficients of a differencing (high-pass) filter. These

coefficients can be obtained from the averaging coefficients hn by

gn = (−1)nh̄1−n (2.12)

where the over-line denotes complex conjugation.

In applications, analysis is done on a sampled signal fs assumed to belong to V0

and hence it is set to f0. Then f0 is decomposed up to a level k according to Eq. 2.9

and reconstructed back according to

f0 = fk +

k∑
l=1

dl (2.13)

Fig. 2.1 depicts diagrammatically the decomposition and reconstruction. In this

figure the corresponding levels and subspaces are identified. The maximum value

of k is dictated by the number of samples of f0 and the actual wavelet is used. The

functional Eqs. 2.11 and 2.7 are satisfied by many different sets of coefficients hn and

gn. This means that there is a multitude of different mother wavelets and scaling

functions. In the light of the application of MRA on urban building datasets, Section

4.1 describes the properties and the selection rationale of these functions.

2.2.2 The 2-D formulation of the MRA

MRA can also be defined on L2(R2), the space of 2-D finite energy signals f (x, y) , by

taking the tensor product [64]

V2
j = V j ⊗ V j (2.14)
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Figure 2.1: The 1D decomposition and reconstruction of a sampled signal f0

of the approximation spaces V j of the 1D MRA.

As a consequence of the tensor product a scaling function,φ(x, y) ∈ V2
j , associated

with the 2D MRA is obtained by the product of the scaling function φ with itself,

φ2(x, y) = φ(x)φ(y) (2.15)

Therefore, MRA for L2(R2) can be defined by a sequence of nested subspaces . . .V2
j ⊂

V2
j+1 ⊂ V2

j+2 . . .. The basis of each V2
j is given by the translated dilated versions

φ2
j(n1,n2) = φ j,n1(x)φ j,n2(y) j,n1,n2 ∈ (Z) of the scaling function φ2(x, y). The basis of the

orthogonal complements, W2
j+1 , of V2

j+1 in V2
j constitute the 2D wavelets. The basis

can be constructed from the 1D basis of V j and W j by noticing that,

V2
j = V j ⊗ V j = V2

j−1 ⊕W2
j−1 (2.16)

and then by substituting V2
j−1 ⊕W2

j−1 and exploiting the distributive property of ⊕

over ⊗ it can be shown that

W2
j−1 = (V j−1 ⊗ V j−1) ⊕ (W j−1 ⊗ V j−1) ⊕ (W j−1 ⊗W j−1) (2.17)

and hence it can be deduced that the basis of W2
j−1 are the dilated and translated

versions of the following functions,

ψ2
hor(x, y) = φ(x)ψ(y) (2.18)
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Figure 2.2: The 2D decomposition and reconstruction of a sampled signal f 2
0

ψ2
ver(x, y) = ψ(x)φ(y) (2.19)

ψ2
diag(x, y) = ψ(x)ψ(y) (2.20)

which play the role of the 2D wavelets.

A 2D signal, i.e. an image f j(x, y) ∈ L2(R2) can be projected on an f j(x, y) in

V2
j = V j ⊗ V j by,

f j
(
x, y

)
=

∞∑
n1,n2=−∞

〈 f (x, y), φ2
j,(n1,n2)〉φ

2
j,(n1,n2) (2.21)

Similar to the 1D case f j(x, y) is interpreted as the approximation of f at scale

2 jδxδy, which is reconstructed from its samples 〈 f (x, y), φ2
j,(n1,n2)〉 taken at the same

scale.

According to Eqs. 2.18-2.20 three separate projections, dV j⊗W j , dW j⊗V j , dW j⊗W j in the

corresponding orthogonal spaces V j ⊗W j, W j ⊗ V j, W j ⊗W j can be obtained. The

projection in V j ⊗W j is obtained by,

dV j⊗W j

j

(
x, y

)
=

∞∑
n1,n2=−∞

〈 f (x, y), ψV j⊗W j

(n1,n2) (x, y)〉ψV j⊗W j

(n1,n2) (x, y) (2.22)

and the projections in W j ⊗V j and W j ⊗W j are obtained by using similar equations.

Approximations at higher scales, (lower resolutions) are obtained by removing

details along the horizontal, vertical and diagonal directions of the image. The
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details removed across the vertical, horizontal and diagonal directions are given

by the inner products f (x, y), ψV j⊗W j
n1,n2

(x, y), f (x, y), ψW j⊗V j
n1,n2

(x, y) and f (x, y), ψW j⊗W j
n1,n2

(x, y)

respectively.

As a consequence an f j(x, y) ∈ V2
j can be written as,

f j(x, y) = f j+1(x, y) + [dH
j (x, y) + dV

j (x, y) + dD
j (x, y)] (2.23)

or

f j(x, y) = fk(x, y) +

k∑
l= j+1

(dH
l (x, y) + dV

l (x, y) + dD
l (x, y)) (2.24)

which indicates that 2D MRA decomposes iteratively a given two dimensional signal,

f (x, y) to smoother parts at larger scales by removing details from lower scales.

2.2.3 Interpretation of 2D MRA methodology

In the light of the application of MRA in meso-scale atmospheric modeling what

follows below is a short interpretation of MRA methodology description. Approx-

imation at level 1 is obtained by an averaging process over cells of size of 2 × 2

pixels (of the original resolution); similarly approximation at level 2 is obtained by

an averaging process over cells of size of 2 × 2 cells of the previous resolution (i.e.

of 4 × 4 pixels of the original resolution) and similarly for all the subsequent levels,

with approximation at the kth level being the result of the averaging process over a

cell of 2k
× 2k pixels of the original resolution.

The selection of the proper scaling and wavelet functions in the MRA is dictated

by the nature of the application. For urban datasets the square shape of the Haar

function is proposed, since it enables the demarcation of the characteristics of an

urban area domain, where buildings have similar square- or rectangular-like shapes.

An additional advantage of the Haar function is that its operation corresponds to

simple averaging and differencing of 2 cell × 2 cell neighbourhoods [82]. Since

this is the first time that MRA is applied in the field of atmospheric modelling

and particularly in relation to urban effects, this Subsection illustrates the selection

rationale of the analysing function, by means of a comparison between the Haar,

Symlet 4 and Daubechie 4 scaling and wavelet functions. Fig. 2.3 shows the 1-D and

2-D Haar, Symlet 4 and Daubechie 4 scaling and wavelet functions.

The shape of the Haar scaling function dictates that all the values in the neigh-

bourhood are equally weighted. For instance, at the first level of decomposition,
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Figure 2.3: The Haar and Symlet 4 scaling and wavelet functions illustrated in 1-D (top row) and 2-D

(bottom row) forms.

the Haar wavelet transform performs sequential averaging and differencing of 2 × 2

adjacent pixels; conceptually, this process can be viewed as a structural averaging

process in which the height difference between adjacent buildings in the horizontal

(x1), vertical (x2) and diagonal directions is tracked. On the contrary the Symlet 4

and Daubechie 4 scaling functions weigh unequally the corresponding values. Symlet

4 adds the highest weight to the central value of the neighbourhood and then the

weights decay symmetrically towards the boundaries of the neighbourhood. On the

other hand, Daubechie 4 adds most of the weight to the values of the left boundary

in 1D cases and at the bottom left corner in the 2D cases. So, due to the shape of

the Symlet 4 and Daubechie 4 functions, they could be used for example in detecting

or capturing phenomena dominated by peaks or sudden occurrences. Thus for the

MRA analysis of building database information it is recommended that the Haar

analysing function is used.

If we consider that we apply the Haar analysing function on urban building

datasets (due to its particular characteristics as discussed before, the value of each

of the resulting cells in the yielded approximation at each level of the analysis cor-

responds to the weighted average of the height over the entire cell area. Alongside,

Horizontal (HD), Vertical (VD) and Diagonal (DD) details at the same level of anal-

ysis are directional averaging and differencing in the corresponding directions. Fig.
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2.2 depicts the approximation and details obtained at different level: for example in

the third row of 2.2, the approximation of image f 2
0 at level 2 obtained from the MRA

of the approximation at level 1, while the remaining three images HD2, VD2, DD2

show the details removed from the approximation at level 1 in order to obtain the

approximation at level 2. The size of the cells in the images of the approximations

is determined by the size of the support of the scaling function at the corresponding

scale. In order to obtain HD2 the values of four specific cells from image at level 1

are firstly averaged across the rows, and subsequently, the difference of the values

resulting from the averaging process and appearing in the same column are com-

puted. This reflects the Haar analysing function part depicted under the title wavelet

function (1) in Fig. 2.3a, where over its first half support takes the value 1 and over

its first other half support the 1 value. As a consequence, in the plot of Fig. 2.2

entitled HD2, adjacent cells, above or beneath each other, have opposite values. This

indicates the changes at the scale 21dx1 × 21dx2 along the vertical direction. A similar

operation of that discussed above, but performed in the other direction, namely row

differencing first and then column averaging, gives the plot entitled VD. It is evident

that the outcome is the average of the differences and again, due to the support shape

of the Haar analysing function, horizontal neighbouring cells have opposite values.

This indicates the changes of the 21dx1 × 21dx2 scale along the horizontal. Finally, in

a similar way, DD2 image represents the actual computations that generate the DD2

image plot at level 2 as also indicated by Eq. 2.20. A more detailed description of

the methodology in the light of the application of MRA on urban building datasets

is given in Section 4.1.1.

The MRA analysis was implemented in Matlab c© using its wavelet toolbox. It is

important to note that in MRA analysis, the number of computations required to

analyse a signal composed of N samples is proportional to N. For example using an

i5 CPU 2.4 GHz, the time elapsed during the MRA of a dataset at a resolution of

1195 × 1185 pixels is 6.24 sec.
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Chapter 3

Summary of survey datasets

The aim of this chapter is to present an overiew of the datasets to be used in this thesis for

unveiling their multi-scale nature. The data involves atmospheric field measurements and

urban building data for various cities. In this chapter, the atmospheric field measurements

which were collected, are presented as well as the various building-related attributes of seven

(7) different cities are described: three (3) European cities (London, Marseille and Nicosia)

and four (4) North-American cities (New York City, Phoenix, Seattle and Oklahoma). This

way of presentation (i.e. first the discrete 2D data topics are presented followed by the

presentation of timeseries data topics) is retained in all subsequent chapters of the thesis,

clearly due to practical reasons, since the elaboration of this thesis began by analysing 2D

discrete data related to urban morphology.

3.1 Building geometry-related datasets

The classical description of spatially heterogeneous urban landscapes most fre-

quently involves a statistical characterisation of the buildings in a certain region

by a mean building height H̄, a standard deviation of the building height σ, and

the packing densities - the fraction of the plan surface area covered by building

elements, λp and the frontal area index of the elements, λ f , as a function of wind

direction - which in turn determine the aerodynamic characteristics of the urban area

(e.g. aerodynamic surface roughness length z0 and zero-plane displacement d) [89],

as described in the following equations:
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H̄ =

∑m
i=1 Hi

m
(3.1)

σ =

√∑m
i=1

(
Hi − H̄

)2

m − 1
(3.2)

H̄AW =

∑m
i=1 HiAp,i∑m

i=1 Ap,i
(3.3)

λp =

∑m
i=1 Ap,i

AT
(3.4)

λ f =

∑m
i=1 A f ,i

AT
(3.5)

where m is the total number of buildings in the urban datasets and AT is the total

planar area of the domain.

A number of models has been developed that attempt to relate the aerodynamic

roughness length (normalized over the mean building height), z0/H̄, and the zero-

plane displacement (normalized over the mean building height), d/H̄, to the sim-

plified geometrical parameters of the underlying surface; the plan and frontal area

densities, λp and λ f respectively (e.g. [47,52,63,90,91,99]). An important issue is the

difficulty of accurately estimating z0 and d from measurements, which arises from

some associated inconsistencies between the experiments and the methodologies

used to estimate these parameters. Consequently, there is large scatter in reported

values of z0 and d, even from wind-tunnel experiments over identical uniform ar-

rays [37]. A comprehensive review of many of these models concluded that, in real

urban areas, estimates of both z0 and d parameters can be highly uncertain [37].

Despite this uncertainty there have been a few methods based on morphometric

concepts proposed to determine both z0 and d. The methods are divided into three

sets:

(i) the simplest and most frequently used set is the height-based rule-of-thumb,

that z0 and d are directly proportional to the mean building height

(ii) the second set utilizes the fraction of the plan surface area covered by roughness

elements λp and
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(iii) the third set uses the frontal area index of the elements as a function of wind

direction, λ f .

Here, the morphometric relations proposed by Kastner-Klein and Rotach [52]

were used as an example. These morphometric relations were derived based on

wind-tunnel measurements over a scaled model of a real city area in order to deduce

z0 and d over the λp packing density parameter, as follows:

z0

H̄
= 0.072λp[exp{−2.2(λp − 1)} − 1] (3.6)

d
H̄

= 0.4λp[exp{−2.2(λp − 1)} + 0.6λp] (3.7)

Although such urban morphological measures are useful in certain type of prob-

lems, they are unable to describe uniquely an urban area or the city as a whole in

atmospheric modeling; two cities or urban areas could yield the same or very sim-

ilar UCPs, while being quite different in morphology and thereby in aerodynamic

behavior. In addition these values of H̄, λp for example, depend on the size of the

domain (neighborhood) and may not necessarily be representative of the scale and

grid size of the simulation. In fact, the methodology used is not sensitive to the

exact morphometric model used for the derivation of the aerodynamic parameters.

The discrepancies noted in the recent literature (e.g by [72]), as arising from the pla-

nar packing densities estimated over different domain area sizes and the associated

parametrization of z0 and d are attributed to the weakness to relate and reference

morphology parameters at different scales, that the MRA methodology can formally

address and therefore overcome. This will be discussed further in the light of the

results in Chapter 5.

3.1.1 Overview of the building datasets of survey cities

The 2D data information that was used in this thesis is simply a pixilated image of

the urban area, where the value of each pixel refers to the height of the built element

above the ground. Therefore, it gives a full, three-dimensional description of the

urban building area. In the representation of the λp as a pixilated image, each pixel

of the image with the original (highest) resolution, a pixel that represents part of a

built area or a building gets a value of 1 while open, unbuilt pixel areas get a value
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of 0. During this conversion process the pixel resolution must be chosen, and this

is important in determining how accurately the geometry is represented. For all

datasets that were used, each pixel corresponds to a 1m × 1m area and the color of

each pixel maps to the corresponding building height.

Conventional statistics of the H̄ and λp of the depicted urban area within each

city are summarized in Table 3.1. The statistical analysis is based solely on the data

that we had at our disposal. The results are considered very satisfactory as they do

not differ by more than 5% from the corresponding values found in the literature

Table 3.1: Comparison of statistical building height parameters

Domain Size Mean Building

Height H̄ (m)

Standard

Deviation σ (m)

Area-Weighted

Mean Building

Height H̄AW (m)

Planar

Packing

Density λp

London 1112m × 1253m 22.20 6.66 22.52 0.29

Marseille 650m × 825m 9.11 5.50 10.67 0.21

Nicosia 600m × 610m 8.10 3.66 8.38 0.40

New York 1420m × 1780m 71.78 54.39 60.67 0.51

Oklahoma 1310m × 1280m 25.17 27.35 22.77 0.22

Phoenix 1590m × 1730m 16.23 21.24 18.21 0.26

Seattle 1480m × 1700m 35.23 39.49 32.04 0.26

What follows below is a short description of each dataset for each city.

(a) London: London is the largest city of the United Kingdom. The study area for

the purposes of this thesis is located in Paddington area. The extent of the study

area is approximately rectangular and covers an area of 1112m× 1253m (Fig.3.1).

The plan area fraction, λp, of the investigated area is 0.29 and the mean building

height, H̄, is 22.2 m with a standard deviation, σ, of 6.66 m (Table 3.1).

(b) Marseille: Marseille is the second largest city in France and is located on the

southeast coast of France; thus it can be considered as a typical Mediterranean

city. The study area is an area of the city called Saint Marcel. This study focuses

on an area of 640m × 825m (Fig.3.2). The plan area fraction, λp, in the study

area is 0.21 and the mean building height, H̄, is 9.1 m with a standard deviation,

σ, of 5.5 m (Table 3.1). The building dataset was obtained in the framework

of the EUREQUA ANR project and is based on data from the French National

Geographic Institute (IGN).
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(c) Nicosia: Nicosia is the capital and largest city on the island-country of Cyprus

and its morphological structure reflects that of a Mediterranean city. The study

area is centred around Ledras Street which is characterized by densely packed

buildings of one or two stories-high with irregular footprints, flat terrace-type

roofs, and internal courtyards. This study focuses on an area of 600m × 610m

(Fig.3.3). The plan area fractionλp in the study area is 0.40 and the mean building

height H̄ is 8.1 m with a standard deviation σ of 3.7 m (Table 3.1). The urban

building dataset, was derived from the European Research Project TOPEUM [76].

(d) New York City: New York City is the most populous city in the U.S.A. and it

is characterized by its many skyscrapers and some of the tallest buildings in

the world. The study area is located in Midtown Manhattan just to the south

of Central Park and covers an area of 1420m × 1780m. (Fig.3.4). The plan area

fraction, λp, in the study area is 0.51 and the mean building height, H̄, is 71.8 m

with a standard deviation, σ, of 54.4 m (Table 3.1). The building data set was

obtained from the National Geospatial-Intelligence Agency (NGA).

(e) Oklahoma: Oklahoma is the capital and the largest city of the U.S.A. State of

Oklahoma. The investigated area is the Central Business District (CBD) and

derives from the urban dataset by Burian et al. [10]. The dataset covers an area

of 1310m× 1280m (Fig.3.5) with a plan area fraction, λp, of 0.22, a mean building

height, H̄, 25.2 m and a standard deviation, σ, of 27.4 m. (Table 3.1).

(f) Phoenix: Phoenix is the capital and largest city of the U.S.A. State of Arizona, as

well as the sixth most populous city in the U.S.A.. The corresponding building

data covers a study domain of 1590m × 1730m (Fig.3.6) and includes almost the

Phoenix downtown core [12]. The plan area fraction, λp, in the study area is 0.26

and the mean building height, H̄, is 16.2 m with a standard deviation, σ, of 21.2

m (Table 3.1).

(g) Seattle: Seattle is the largest city in the Pacific Northwest region of the U.S.A..

The building data cover mainly the Seattle downtown area (Fig.3.7) and extend

over a domain of 1480m × 1700m [11]. The plan area fraction, λp, in the study

area is 0.26 and the mean building height, H̄, is 35.2 m with a standard deviation,

σ, of 39.5 m (Table 3.1).
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Figure 3.1: Building elevation dataset of London (1112m × 1253m). (a) Left side images depict the

Google image of study area. (b) Right side images depict the digitized building elevation datasets.

Each pixel corresponds to 1m × 1m.

Figure 3.2: Building elevation dataset of Marseille (640m × 825m). (a) Left side images depict the

Google image of study area. (b) Right side images depict the digitized building elevation datasets.

Each pixel corresponds to 1m × 1m.

Figure 3.3: Building elevation dataset of Nicosia (600m×610m). (a) Left side images depict the Google

image of study area. (b) Right side images depict the digitized building elevation datasets. Each

pixel corresponds to 1m × 1m.
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Figure 3.4: Building elevation dataset of New York City (1420m× 1780m). (a) Left side images depict

the Google image of study area. (b) Right side images depict the digitized building elevation datasets.

Each pixel corresponds to 1m × 1m.

Figure 3.5: Building elevation dataset of Oklahoma (1310m × 1280m). (a) Left side images depict the

Google image of study area. (b) Right side images depict the digitized building elevation datasets.

Each pixel corresponds to 1m × 1m.

Figure 3.6: Building elevation dataset of Phoenix (1590m × 1730m). (a) Left side images depict the

Google image of study area. (b) Right side images depict the digitized building elevation datasets.

Each pixel corresponds to 1m × 1m.
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Figure 3.7: Building elevation dataset of Seattle (1480m × 1700m). (a) Left side images depict the

Google image of study area. (b) Right side images depict the digitized building elevation datasets.

Each pixel corresponds to 1m × 1m.

3.2 The dataset for the urban building energy demands

A key challenge in analysing urban-scale energy data is to make sense of large

amounts of spatio-temporal data associated with energy consumption in a manner

that is useful, tractable, efficient, and flexible for decision-makers. So far, the study

of urban-scale energy consumption due to buildings has followed the archetype

approach where a few samples of representative buildings within a city are selected

and analysed and then the results are extrapolated across the entire city or district

[23, 107].

A complete dataset has recently emerged from Tian et al. [107], where a range of

information on building geometry used, (building heights, population), and energy

consumption for heating and cooling has been available for the London Westminster

Borough. In particular, each building within the borough is simulated using a

dynamic energy model in order to derive the corresponding hourly consumptions

for heating, cooling, and power. The simulation process and the associated outputs

are described in Choudhary and Tian [20] and Tian et al. [107]. In summary, high

resolution maps are used to create a 3D geometric model of each building within

the Westminster borough. The maps give precise information regarding use of the

building, its orientation, height, as well as adjacencies with neighbouring buildings

(for calculating solar gains).

This information, together with other data sources (energy performance certifi-

cate data per building) result in an input model for annual energy simulation at

hourly time steps (the simulations are carried out using the energy simulation soft-

ware eEnergyPlus (v6.0). The outputs include diurnal variations of energy demand
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for typical days in different seasons per building. The results are verified against

publically available data provided by UK Department of Energy and Climate Change

(DECC). These include hourly heating, cooling and power demand per building.

Fig. 3.8 shows the spatial visualization of the Westminsters Borough data as

derived for (i) the building heights across the city, (ii) packing density (λp) and

(iii) population density. The dataset concerns the central business district (CBD) of

Westminster City, with an approximate coverage area size of 6000 × 7000 m2 at an

initial (highest) resolution of 10m × 10m per pixel. As noted from Fig. 3.8, the tallest

buildings of Westminster Borough are located centrally and eastward, where most

of the buildings are designated as offices and retail stores [107]. On the other hand,

most of the population is located mainly in the south and northwest areas (Fig. 3.8d).

Figure 3.8: Westminster’s Borough central business district (CBD) depicted as a Google image/map

(a) and as digitized map for building height (b), planar packing density -λp (c) and population density

(d) of the corresponding area. Each pixel of the dataset corresponds to 10m × 10m of physical area
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In Chapter 5, it will be presented how possible associations of building height,

packing density (λp) and population density with energy demands, can be con-

cluded, taking into account observations that these parameters are expected to have

high impact on energy demand (e.g. [20]).

3.3 Atmospheric data in urban scale

In this section, an assessment of long-term measurements of particulate matter (PM)

and gaseous pollutants as well as the meteorological conditions in Nicosia is pro-

vided, using the data that were collected in the form of time-series, from Air Quality

Monitoring Station (AQMS) of University of Cyprus (UCY) over a period of past 69

months. Statistical analysis of the dataset provides the most significant conditions

and parameters that affect the air quality in the area.

Table 3.2: Standards and guidelines of the criteria urban air pollutants (CO, NO2, PM10)

Pollutant Concentration Averaging period Legal nature
Permitted exceedences

each year
Description

Carbon monoxide

(CO)

10 mg/m3

(11.6 ppm)

Maximum daily

8 hour mean

Limit value

entered into force

01/01/2005

n/a

Limit value for

the protection of

human health

Nitrogen dioxide

(NO2)

200 µg/m3

(105 ppb)
1 hour

Limit value

entered into force

01/01/2010

18

Limit value for

the protection of

human health

40µg/m3

(21 ppb)
1 year

Limit value

entered into force

01/01/2010

n/a

Limit value for

the protection of

human health

30 µg/m3

(16 ppb)
1 year

Limit value

entered into force

01/01/2010

n/a

Limit value for

the protection of

vegetation

Particulate Matter

(PM10)

50 µg/m3 24 hours

Limit value

entered into force

01/01/2005

35

Limit value for

the protection of

human health

40 µg/m3 1 year

Limit value

entered into force

01/01/2005

n/a

Limit value for

the protection of

human health

The impact of air pollution on public health - especially the airborne particulate

matter (PM) - has been of major interest during the last years both to the air quality

management community and regulatory authorities (Heal et al., 2012; Middleton et
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Table 3.3: Natural and anthropogenic sources of criteria pollutants

Compounds Natural sources Antropogenic sources Scales

Spatial Temporal

CO

(Carbon Monoxide)

Forest fires Incomplete

combustion of fossil

fuels and wood
100 Km

(Regional Scale)
6-9 months

Atmospheric oxidation of

natural hydrocarbons and

methane

Motor vehicles

Oxidation of

hydrocarbons

Industrial processes

Blast furnaces

NOx

(Nitrogen oxides)

Forest fires Combustion of oil, gas

and goal
1 Km

(Urban Scale)
1 day

Anaerobic processes in

soil

Atmospheric

transformation of NO

Electric storms

Particulate Matter

Mineral dust Industrial dust

10 Km

(Meso-scale)
1 year

Sea salt Black carbon

Volcanic dust Organic aerosol

Biological debris Sulphates from SO2

Sulphates from DMS Nitrates from NOx

Sulphates from volcanic

SO2

Organic aerosol from bio-

genic VOC

al., 2008). The European Union Directive on Air Quality 2008/50/EC [25] sets the

general legislative framework on assessing the air quality in populated areas (Table

3.2). This legislative framework has also recommended target values for harmful

pollutants to public health, environment and the built infrastructure [58]. These

pollutants include nitrogen oxides (NOx), carbon monoxide (CO), PM with diameter

of 10 µm or less (PM10) and Sulfur Dioxide (SO2). The prescribed standard values

are intended to protect public health, including the health of ”sensitive” populations

such as asthmatics, children, and the elderly as well as to protect public welfare,

including protection against decreased visibility [44], damage to animal health [87],

crops and vegetation [5] and buildings [108].

Air quality in an area is defined by the meteorological conditions and the levels

of emissions. The former is known to exhibit strong annual and seasonal variations
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modulated by the respective changes of large scale atmospheric circulation [98]. The

latter change from year to year, as a result of changes in the intensity of activities

that emit pollutants because of socio-economic reasons such as wood burning for

heating due to the economic crisis [92]. The sources of pollution are related to traffic,

industrial and domestic anthropogenic activities which could be local or elsewhere,

whilst sinks are mainly due to chemical reactions or depositions (e.g. dry and

wet) (Table 3.3). Usually the concentrations of pollutants due to local sources are

those which significantly affect the air quality in an area. However, background

concentrations of pollutants in an urban environment play a key role throughout the

equilibrium of urban pollution. There are cases where background concentrations

are greater than concentrations associated with local sources.

3.3.1 Data acquisition

3.3.1.1 Site description

Continuous monitoring data were collected in the South-East Mediterranean basin

in the period from 1st April 2008 to 31st December 2013 using the AQMS of UCY;

the station is located at the South East (SE) outskirts of Nicosia city, in the New

UCY Campus. The initial location of the station was in the proximity of the UCY

Student Halls Campus and next to a busy road with a traffic light at about 250 m

away controlling a T-junction (Fig. 3.9). Therefore, the station measurements during

that period were considered as urban roadside measurements. On 12th April 2011,

the station was relocated 1 km away from the previous location of the station in the

North East (NE) direction (Fig. 3.9); it is considered as a rural background location,

because the surrounding area is open with agricultural fields and the small road

located 30 m in front of the station has very sparse road traffic. Any construction

activities taking place during the monitoring period were also noted, since they may

affect the air quality of the surrounding area [59]. Such construction and road works

were in progress in the UCY New Campus area during 2008.

3.3.1.2 Instrumentation and data collection

All continuous monitoring data were reported on hourly average intervals over the

period from 2008 to 2013. This data streaming was performed using WinAQMS

and WinCollect softwares (Ecotech 2007). WinAQMS software was also used for
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Figure 3.9: Google Earth image depicting the two different locations of the University of Cyprus

AQMS in Nicosia, Cyprus. Positions A and B are the initial and new locations of the station,

respectively. Wind rose shows the wind directions in the area based on daily averaged values.
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calibration, maintenance and monitoring of instruments performance on a weekly-

basis during the study period. AQMS station measures meteorological parameters

such as wind speed (WS), wind direction (WD), ambient temperature (AT), baro-

metric pressure (BP), relative humidity (RH), rain fall (RF) and solar radiation (SR).

Concentration measurements of nitrogen monoxide (NO), nitrogen dioxide (NO2),

nitrogen oxides NOx (= NO + NO2), PM10 and CO were also taken; the samples for

these measurements were at 3 m height above ground level.

A Model48i-analyser and Model 42i (Thermo Fisher Scientific Inc.) were used

to carry out measurements of CO and NOx concentrations respectively. Sampling

rate of NOx and CO analysers is 10 sec, and once the period of 60 min has elapsed,

WinAQMS calculates the hourly-average value of NOx and CO concentration by

using the 10 s data values. In a same way, WinAQMS calculates the hourly-average

value for all instruments and sensors. Finally an ambient particulate monitor, a

Tapered Element Oscillating Microbalance (TEOM; 1400ab; Thermo Fisher Scientific

Inc.) was used to measure gravimetrically the PM10 levels.

Statistical values of the mean and standard deviation are shown in Table 3.4

and were calculated over the actual collected measurements and not over the entire

possible data encapsulated in the time period of observation. Specifically, the mea-

surements contained 40 224, 36 607 and 40 907 samples of NOx, CO and PM10 hourly

measurements respectively, which corresponds to 80%, 73% and 81% of possible

data over the entire period, respectively. It is also noted that from the above number

of records, a total of 34 368 hourly data correspond to simultaneous hourly measure-

ments of NOx, CO and PM10 concentrations. Any missing values that exist in the

dataset (i.e. gaps that appear in time series plots) are either because of maintenance

or calibration processes on instruments or instruments being out of service due to

some failure e.g. a power-cut.

3.3.2 Overall description of atmospheric data

The collected hourly data were analysed using Matlab c© [68] and R c© statistical soft-

ware [88]. These data are presented either in the form of a time-series plot or wind

rose. The red vertical line in the time series plots marks the time of relocation of the

AQMS station from its initial position to its current one in the University Campus.

In the present study, the frequency distribution was deduced for the wind speed and
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Table 3.4: Statistical analysis of atmospheric and air quality parameters during the period of 1st April

2008 to 31st December 2013. The words Aver and SD stand for the average value and standard

deviation, respectively. Note: BP=Barometric pressure; RH=Relative humidity; RF=Rainfall (annual

cumulative); AT=Ambient temperature; SR=Solar radiation; WS=Wind speed; WD=Wind direction.

Parameters Year

Aver, (SD) 2008 2009 2010 2011 2012 2013

BP (mbar) 1001.0 (12.7) 999.9 (5.2) 998.2 (5.1) 1002.7 (5.6) 1002.1 (6.1) 1005.1 (4.8)

RH (%) 61.7 (20.1) 64.5 (19.9) 63.7 (19.7) 65.3 (18.2) 66.0 (18.9) 59.3 (20.1)

RF (mm) 0 (0.4) 0 (0.4) 0 (0.4) 0.7 (0.4) 0.9 (0.4) 0 (0.4)

AT (oC) 21.6 (7.5) 19.0 (8.1) 20.8 (8.6) 19.6 (8.4) 18.5 (8.6) 21.0 (8.9)

SR (W/m2) 226.5 (303.7) 202.8 (287.6) 211.3 (295.0) 208.0 (291.7) 205.0 (291.5) 73.57 (151.1)

WS (m/s) 1.7 (1.2) 1.6 (1.2) 1.6 (1.2) 2.2 (1.6) 2.2 (1.6) 2.5 (1.5)

WD (deg) 225.9 (89.0) 223.9 (88.1) 217.8 (86.4) 191.1 (102.4) 189.6 (110.5) 200.8 (110.5)

NOx (ppb) 15.5 (35.7) 8.5 (13.3) 18.0 (21.0) 13.9 (19.9) 11.1 (13.9) 15.9 (18.0)

CO (ppm) 0.5 (0.4) 2.4 (0.9) 2.0 (0.6) 1.0 (1.4) 1.3 (0.5) 0.5 (0.4)

PM10 (µg/m3) 67.4 (70.6) 31.5 (50.8) 11.5 (22.8) 27.3 (31.9) 30.1 (29.6) 28.6 (20.5)

wind direction data in order to study the dominant-prevailing winds regime and its

seasonal variability as well as the levels of pollutant concentrations in Nicosia area.

Fig. 3.10 f-h shows the time series of NOx, CO and PM10 and Table 3.4 summarizes

the yearly averaged values (with their corresponding standard deviation) of the three

criteria pollutants. The highest annual average values for NOx were observed during

2010 to be 18.0± 21.0 ppb and the lowest values were observed during 2012 to be 11.1

± 13.9 ppb. Regarding CO measurements, it must be noted that there is a relatively

high proportion of missing concentration data in 2008 and in 2013 (25% and 28%

respectively) and therefore the year exhibiting the higher or lower CO concentration

cannot be concluded confidently. However the year 2010 showed the highest annual

average value of CO as 2.0 ± 0.6 ppm. The atmospheric pollution levels reported for

other Mediterranean cities [50] provide NOx concentrations levels to range between

49.9 ± 22.0 and 197.5 ± 14.1 ppb, while CO concentration to be between 1.9 ± 0.6

and 6.2 ± 1.2 ppm. For PM10, the annual average in 2008 was found to be 67.44 ±

70.55 µg/m3; it is noted that during that year construction works were carried all

around in the broader area of the University Campus. The lowest average annual

concentration for PM10 (11.48 ± 22.80 µg/m3) was recorded during 2010. Kanakidou

et al. [50] reported annual average PM10 levels that reached 75.5 ± 27.5 µg/m3 (for

June 1999-May 2000) in Athens PM10 on a busy central street. Therefore, comparison

of the above results with the results in an urban area in S-E Mediterranean shows
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that the air pollution level at the outskirts of Nicosia is moderate.

Figure 3.10: The time series data of hourly values over the period extending from 1st April 2008 to

31st December 2013: (a) Ambient Temperature, AT (oC), (b) Solar radiation, SR (W/m2), (c) Relative

humidity, RH (%), (d) Rainfall, RF (mm), (e) Wind Speed,WS (m/s), (f) NOx (ppb), (g) CO (ppm), (h)

PM10 (µg/m3). Vertical red line depicts the time of AQMS relocation.
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The distribution of wind direction and speed over the whole period of mea-

surements is best represented using the wind rose diagrams. Fig. 3.11 presents

the hourly frequency distribution during the measurement period. The frequency

distribution function is indicated by the concentric circles and the wind speed fre-

quency distribution for a particular wind sector is given by the radial dimension of

the radius. The center of each plot represents a wind speed of zero, which increases

radially outwards. This figure indicates that winds in Nicosia exist within the wind

sectors of 270.0 ± 22.5 (West; W) and 292.5 ± 22.5 (West to North-West; W-NW) for

most of the time. Furthermore, strong winds above 4.0 m/s occur mainly from the

same sectors. The overall probability of occurrence of strong winds on these sectors

is approximately 6%.

Figure 3.11: Wind rose diagram of the Wind speed (m/s) and Wind Directions (o) over the measurement

period extending from 1st April 2008 to 31st December 2013 using hourly data.

The annual wind speed frequency distribution - using hourly average values - is

presented in Fig. 3.12. It is observed that W and W-NW wind directions dominate

the period of 2008-2013, except in 2011 when West and West to South-West (W-SW)

are the predominant wind directions. As shown in Fig. 3.12, during the year of 2012,
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winds in North-West (NW) and W-SW directions are also present. The frequency of

occurrence of NW and W-SW wind directions in 2012 is 11% and 12%, respectively.

Figure 3.12: Wind rose diagrams depict the hourly frequency distribution from top left to bottom

right for 2008, 2009, 2010, 2011, 2012 and 2013.

Table 3.5: Long-term seasonal average values for criteria pollutants NOx, CO and PM10 as well as WS

and AT. All data represents a time span of 1st April 2008 to 31st December 2013. The words Aver and

SD stand for average value and standard deviation, respectively.

Factor
NOx (ppb)

Aver (SD)

CO (ppm)

Aver (SD)

PM10 (µg/m3)

Aver (SD)

WS (m/s)

Aver (SD)

AT (oC)

Aver (SD)

Winter 20.0 (23.4) 1.9 (1.2) 25.3 (42.4) 1.5 (1.3) 10.7 (4.1)

Spring 10.5 (13.3) 1.5 (0.9) 36.9 (41.8) 2.0 (1.5) 18.1 (7.1)

Summer 8.1 (27.0) 1.5 (1.1) 29.4 (42.9) 2.4 (1.5) 28.2 (5.3)

Autumn 13.3 (16.1) 1.4 (1.2) 34.1 (43.3) 1.9 (1.3) 21.2 (6.5)

Table 3.5 presents the seasonal average values of NOx, CO and PM10 over the

entired monitored period. The highest seasonal average value for NOx was observed
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to be in the winter season, equal to 19.95 ± 23.36 ppb, while the lowest seasonal

average was observed for the summer period and found to be 8.09 ± 26.93 ppb. For

the CO concentrations, the highest seasonal average value was found to be for the

winter season equalling 1.91 ± 1.18 ppm, while the lowest seasonal average value

(1.39 ± 1.24 ppm) was observed during autumn season. On the contrary, the highest

concentrations of PM10 were measured during the seasons of spring and autumn

where the predominant wind directions are from the WN-W sector.
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Chapter 4

MRA results on the 2D urban building

data

This chapter presents the results from the application of the MRA in the urban building

databases; these include three European cities (London, Marseille and Nicosia) and four

North-American cities (New York City, Oklahoma, Phoenix and Seattle). The main objective

of this analysis is to illustrate how multi-scale representations of an urban area can be

obtained rigorously and how a distinctive capability is manifested. Specifically the capability

of MRA to reconstruct the original urban ”signal” from the decomposed approximations

and details enables the urban dataset to hold its signature through the levels.

4.1 The application of MRA on OKC data

This section illustrates through an example, the application of MRA on an urban

building database in order to obtain multi-scale representations of such an urban

information. The illustrated example is taken from Oklahoma City (OKC) and

a detailed building database and associated statistics of the broader OKC can be

found in Burian et al. [10]. The investigated area specifically derives from the Central

Business District (CBD) and has an approximate size of 1200 × 1200 m2. This urban

area is depicted in Fig. 4.1 at a resolution of 1195 × 1185 pixels, where each pixel

corresponds to a 1 × 1 m2 area and the colour of each pixel maps the corresponding

building height. The accuracy in the mapping of the actual geometries is within
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Figure 4.1: The Oklahoma City (OKC) Central Business District (CBD) depicted as Google image - to

the left, and as digitized building elevation image - to the right.

Figure 4.2: Example of MRA results using the Haar (left) and Symlet 4 (right) functions to the OKC-

CBD area.

3 m for the vertical direction and within 5 m for the horizontal directions. This

urban database information as represented in Fig. 4.1 will be treated as our 2D

signal to be analysed using MRA. The MRA was applied to all urban datasets that

were described in Chapter 3. The MRA analysis was implemented in Matlab c© using

its wavelet toolbox. The scaling and wavelet functions that were descriped in

Subsection 2.2.3 (i.e Haar, Symlet 4 and Daubechie 4 functions), were applied to the

OKC building database and the results are depicted in Fig. 4.2. All sets of functions

identify the sub-area where the city’s tallest buildings are located, however the three

scaling and wavelet functions give completely different qualitative and quantitative

results with regard to the rest of the building information analysis. Symlet 4 and

Daubechie 4 scaling function, as opposed to the Haar function, are not constant

50

PETROS M
OUZOURID

ES



over their support. This means that the approximation values at the scale 28
× 28

corresponding to the Symlet 4 and Daubechie 4 analysis are not the same over their

support and hence the 28
× 28 cells are not demarcated as in the case of the Haar

scaling function.

4.1.1 The interpretation of MRA results

At this point, before proceeding to MRA results of all urban datasets, a brief com-

putation of the analysed approximation and detail components is demonstrated plus

some of the theory and the methodology ideas are interpreted. As indicated in

Chapter 2, the approximation component at the kth level can be decomposed accord-

ing to Eq. 2.21 into an approximation component at the (k+1)th level by removing the

vertical (dV), horizontal (dH) and diagonal (dD) detail components. The total detail

removed from the approximation at the kth level in order to yield the approximation

at the (k+1)th level is the summation
∑k

l= j+1(dH
l (x, y) + dV

l (x, y) + dD
l (x, y)).

It is important to mention that the cells’ size in the images of the approximations is

determined by the size-scale of the support of the scaling function at the correspond-

ing level. Due to this attribute and given that the supports are of scale proportional

to 2 j, where j denotes the jth level of MRA, the (largest) highest level of MRA analysis

that can be obtained is given by the integer j that generates a scale of 2 j that can be

contained in the smallest dimension of the domain; i.e. the smallest integer j close to

log2 d, where d is the smallest dimension of the domain. For example if a domain has

dimensions 600m × 1200m, the largest level of analysis would be log2 600, rounding

to 9, so the (largest) highest level of analysis of this example is level 9.

Fig. 4.3 demonstrates four (4) out of the ten (10) reconstructed approximations

and details obtained from the MRA of the OKC-CBD urban 2D signal, with the single

plot at the top of the figure being the digitized image that is analysed. The plots in

the two following rows depict the approximation and detail reconstructions of the

urban signal at levels 1 and 2 respectively. There are 10 levels overall resulting from

MRA since the size and resolution of the original 2D OKC-CBD urban signal allows

up to 210
× 210 (1024× 1024) m2 to be covered/completed. The number denoting each

level, corresponds to the exponents e.g. 1, 2 of the scales (as area sizes) 21
× 21 and

22
× 22 m2 respectively, that are used to label the scales. The fourth row (level 8) of

Fig. 4.3 illustrates schematically the outcome of the same process at the scale 28
× 28
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m2 .

More specifically, the reconstructed approximation at level 1 in the first row

of Fig. 4.3 is obtained by removing the reconstructed details shown in the three

remaining plots of the first row entitled Horizontal Detail 1-HD1, (West-East or x-

direction), Vertical Detail 1-VD1, (North-South or y-direction), and Diagonal Detail 1,

DD1, from the original, digitized image at the top of the figure. The plot denoted as

HD1 depicts the reconstructed detail at level 1 that simulates changes in the vertical

direction within the scale 21
× 21 m2.

Figure 4.3: Illustrations of the reconstructed approximations and details of the multi-resolution

analysis (MRA) of the digitized image of the OKC-CBD at different MRA levels using the Haar

scaling and wavelet function. The encircled part in red of the digitized image at the top of the figure

is presented as zoomed plots in Fig. 4.4

The inner products in Eq. 2.22 measure the variation within the scale 21
×21 m2 in

the vertical direction, and thereby where these variations are high it appears as high

values in the plot HD1. Changes occurring along the horizontals and diagonals of
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Figure 4.4: Zoomed plots of the reconstructed approximation and details of the multi-resolution

analysis (MRA) of the digitized image of the OKC-CBD area at scale 21
× 21 m2 (level 1) using the

Haar scaling and wavelet function.

the image at 21
×21 m2 are depicted in the plots denoted as VD1 and DD1 respectively.

What exactly happens in the plots at level 1 becomes clearer if the encircled area, for

example appearing in Fig. 4.4 is zoomed and the corresponding results observed.

In Approximation 1, A1, the edges and corners of the buildings are smoothed, simply

because they are adjacent to non-built, empty space. The removed details that

cause the edges and corners to smooth out during the approximation process are

reconstructed in the detail part as HD1, VD1, DD1 in the same row (level 1).

The value in each cell in the larger scale approximation component is obtained by

computing the average of the values of the four (4) cells of the previous scale that were

coalesced to create the bigger cell at the higher scale. The details removed during

the averaging process are not rejected but retained in the detail components at the

previous level. As an illustration of the analysis the complete MRA decomposition

of OKC-CBD is given in Fig. 4.5. The last column in Fig. 4.5 contains only the total

summation of the detail components of each row of the complete decomposition

featured in Fig. 4.5. The total details at each level j correspond to the sum dx
j +dy

j +dd
j

of Eq. 2.23. The MRA decomposition of each city studied in this thesis is given in Figs.

A.1-A.12 in Appendix A. For each MRA result of urban dataset that is shown in Figs.

A.1-A.12, the highest level of analysis was determined by the corresponding domain

dimension (see Table 3.1). Therefore for the largest multi-resolution representation

of urban building morphology, a signal with larger dimensions or finer resolution

than 1m × 1m per pixel is required.
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Figure 4.5: MRA results of the 2D urban building database of OKC-CBD. The leftmost column depicts

the approximation components at each level that were obtained by removing the horizontal, vertical

and diagonal details whose components are shown by the three plots on the right following the

approximation in each row. The rightmost image (in each row - Level of MRA) depicts the total

details (which is the summation of the horizontal, vertical and diagonal details as per Eq. 2.17).
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In order to facilitate the process of reproducing MRA results, the research group

by Dr. Neophytou and collaborators has developed a user friendly tool to produce

rigorously scale-adaptive and spatially-varying representations of urban informa-

tion datasets using the MRA method. Scaler c© is a tool designed specifically to facili-

tate basic applications, such as the processing of data in terms of griding, scaling and

establishing appropriately scaled model inputs to various modeling systems. Scaler

tool helps to address the macroscopic feedback of urban canopies into larger scale

models. It represents and resolves (grid) data fields (Approximation) and sub-grid

information (Details) at different scales, using the MRA method. Fig. 4.6 illustrates

the schematic concept of MRA method. The total length of the developed code is

892 lines.

The main features concerning the usage of Scaler tool, are shown in Appendix B

Figure 4.6: An overview of concept schematic of MRA method.

4.2 MRA results of urban building data and their inter-

pretations

The MRA was conducted for all the urban databases addressed in the thesis and a

summary of the results from the last three levels of approximations of all the featured

cities (London, Marseille, Nicosia and New York City, Oklahoma, Phoenix and Seat-

tle) is presented in Figs. 4.7 and 4.14 - both for the urban morphological parameters

of H̄, λp and the aerodynamic parameters. The detailed results containing the ap-
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proximation and total details at each level of the MRA for each of the featured cities

in this thesis (London, Marseille, New York, Phoenix, Seattle) are also separately

presented for reference in Figs. A.1 to A.12 in Appendix A.

At this point it is important to note that the MRA methodology permits a coher-

ent inter-comparison between the different urban datasets, which can be made at

different scales. From the interpretation point of view, it is also noted that in the case

of analysing the variability of the urban building height, the numerical value of the

approximation at each level is the area-weighted built-height average (i.e. an average

including the empty, unbuilt space in between the built-up parts of the area), i.e.

H(level)
app = λp × H̄AW, and not a statistical mean. It should also be noted that the MRA

results of mean building height H̄ and planar packing density λp that presented in

Table 3.1, are calculated over the entire urban study area.

In the cases considered here, North American cities show (based on conventional

statistical means listed in Table 1) a smaller λp than European cities, except New

York City, which has the biggest value λp=0.50. In contrast, North American cities

have greater building heights (listed in Table 3.1). The MRA analysis provides qual-

itatively similar results for building heights values for each city, but the quantitative

difference which is observed between statistical results and the MRA results stems

from the different means of obtaining mean building height. It is also noted that the

results which are depicted in Fig. 4.7 are calculated concerning only the cell marked

with a value and not the entire study area. For example, the values H(9)
app = 4.30m

and λ(9)
p = 0.48 correspond to the Nicosia area with grid dimensions 512m × 512m

(Level 9) and not for the entire region with dimensions of 600m× 610m. In the MRA

deduced results of the average building or built height (the main value of the central

cell at the higher level of analysis) indicate that for example New York’s largest built

height H(10)
app is 39.76m, while Nicosia has the smallest building height H(9)

app equal to

4.30m. Similarly, the MRA analysis provides quantitative results for λp with statisti-

cal values of Table 3.1 for each city. MRA deduced results of λp (the main value of

the central cell) indicate that New York is the city with the largest λp equal to λapp(10)
p

= 0.50. In contrast Marseille and Oklahoma are the cities with the smallest λp. For

a more precise presentation in Fig. 4.7, the actual values of the MRA output results

per cell are also featured except for the segmented cells at the edges of the different

domains.

As an example of comparative differences between the MRA deduced results
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Figure 4.7: The MRA results (for the last three reconstructed approximations) of the building height,

H, and the planar packing density, λp for European and North-American cities.
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with results reported in the literature, Ratti et al. [89] report a value of λp of London

at the neigborhood scale of 0.55 (for a domain size of 0.2km × 0.2km). Comparing

the results of London’s λp in Fig. 4.7 at the nearest scale to that reported in Ratti et

al. [89] is that of Level 8, corresponding to cell sizes of 256m × 256m the central cells

of the corresponding image, we note that the central cells do have values close to

0.55 but they are surrounded by many cells of much lower values; going to Level

9 approximation, we note that there is a higher spatial variation in the λp values,

resulting at a value at the largest approximation scale (of 1024m × 1024m) of 0.38.

This example illustrates the scale-dependence of the values of λp and the sensitivity

of its actual numerical value. Levels 9 and 10 depicted in Fig. 4.7 are the resolutions

that currently mesoscale models may be run and therefore the capacity of such a

spatially-varying representation or description of urban-morphology parameters is

advantageous.

4.2.1 Searching the DNA of a city using MRA

A number of test cases have been constructed and investigated in order to illustrate

the capacity and potential of the MRA application in the context of multi-scale

numerical weather modelling: (i) in the first, reference case, the MRA of the actual

OKC-CBD area is performed; this case is also used as the benchmark case for the

comparisons with the subsequent test cases; (ii) a second test case is constructed

in order to manifest the influence of different distributions of building height in a

specified area with the same statistical urban morphology parameters as those in

the benchmark case; and (iii) a third test case is performed in order to illustratethe

extent of the influence of a particular building in pre-specified areas.

The specific settings in the test cases are summarized below.

Test case 1 (Benchmark case) This case analyses the actual OKC-CBD area as a

digitized signal. This case is considered the reference benchmark case.

Test case 2 (Sibling city) This case investigates a very similar, hypothetically re-

constructed OKC-CBD area, where the distribution of heights of the buildings is now

changed while the original built plan area of the actual OKC-CBD area is retained.

The new resulting values of the statistical parameters, i.e. the average building
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height of the area, the area-weighted average building height and the building-

height standard deviation, are kept the same (within 1% accuracy) as those of the

benchmark case (Test case 1). Specifically, the height of 28 buildings in the OKC-CBD

area was changed, corresponding to the 9.7% of the overall 290 buildings. Fig. 4.8

depicts the modified OKC-CBD urban area analysed in Test case 2. The aim be-

hind this investigation is to reveal the MRA capacity of identifying or distinguishing

apparently similar urban cases (e.g. with the same building-height averages and

building height standard deviations).

Test case 3 In this case the range of impact (or influence) of a building in pre-

specified surrounding neighbourhoods of different sizes or scales is investigated.

Specifically, this is done by constructing a modified urban area in which the partic-

ular building under investigation is removed from the original-reference OKC-CBD

urban database. Here one of the tallest buildings was removed. The building whose

impact is examined in Test case 3 (and therefore removed from the original database)

is the Bank One Building with a mapped height of 150m and a 2250 m2 plan area;

as a consequence of this removal, the resulting average building height is 24.7 m

corresponding to a 2.1% change of the original-reference and the resulting standard

deviation is 26.4m corresponding to 3.5%. All test cases performed are summarized

in Table 4.1.

4.2.1.1 The actual OKC-CBD Area (Test Case 1 - Benchmark)

The results obtained from the application of the MRA to the original OKC-CBD urban

dataset (Test case 1 - benchmark) using the Haar analysing function are presented in

Fig. 4.5; specifically, the resulting approximation and details that the MRA yields

at 10 successive levels of the analysis are shown for this urban dataset. At low

levels of the MRA (e.g. level 2 or 3) where the size of the averaging cell is still

relatively small compared to the urban database information resolution, the obtained

approximations, as seen in Fig. 4.5, may not yield discernible differences. However,

as the level of analysis increases and the cell size of the averaging (and differencing)

process increases, the differences in the distribution of the averaged urban height

become more evident. For example, the cell at the OKC-CBD centre, i.e. at the point

(600, 600) in (x1, x2) coordinates, has a value at the Approximation level 8 of 19.61 m,

which is the sum of the values of the cells containing the point in the approximation
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at level 9 (i.e. 10.37 m), in the Horizontal, the Vertical as well as the Diagonal Details

of the same cell at level 9, i.e. 1.77, 6.17, and 1.31 m respectively. Similarly, at the

level 10 for example, the yielded approximation provides an average height of 5.94

m, which corresponds to the average area-weighted building height of that area,

taking into consideration the unbuilt-empty spaces. This stratified or structural

averaging process leads to an average of the area 1024×1024 m2, which corresponds

to λpH̄AW. In terms of physical interpretation, this value is in agreement with the

average building height of the area (22.8 m) and the planar packing density (the built

fraction area, 0.22); if an area-weighted average is calculated, taking into account the

fraction of the unbuilt area, this yields 5.0 m.

A particular advantage of this ”stratified”-structural averaging process is that

the removed details are tracked at each level of analysis, and therefore sub-cell

information can also be provided. Moreover, the removed horizontal, vertical and

diagonal details provide directional differences in the heights of the cells areas and

can be possibly associated with other currently used statistical measures in the

urban morphology characterization. It is also noted that the different values of

approximations obtained at the different levels of MRA are the samples of the urban

database at the corresponding scales/grid sizes associated with model resolution

(also mentioned in Section 2.2.2).

From the above, MRA is illustrated to be a powerful methodology for multi-scale

numerical weather prediction models; it provides gridded and scaled attributes of

cities as well as sub-grid information for a hierarchy of scales of such numerical

models. Moreover, the ability to track the details at every stage of averaging, and

thus scale, enables a unique identification or rather a quantification of the uniqueness

of a city. This will be further discussed in the light of the results for the next test case

presented below.

4.2.1.2 The sibling OKC-CBD Case (Test case 2)

A hypothetical, sibling OKC-CBD case has been constructed such that the built plan

area as well as the average building height and standard deviation of the building

heights were the same as the real, reference OKC-CBD, but only the distribution of

building heights across the domain was differentiated. Table 4.1 lists the number of

buildings that were modified. Fig. 4.8 depicts the modified database as digitized

60

PETROS M
OUZOURID

ES



Table 4.1: Basic urban building morphology statistics for Oklahoma City (OKC) and test cases

Test case 1

(Reference)

Real OKC

Test case 2 Test case 3

Average building height H̄ (m) 25.17 25.17 24.65

Standard deviation σ (m) 27.35 27.16 26.38

Area-weighted average building height H̄AW (m) 22.77 22.14 22.27

Planar packing density λp 0.221 0.221 0.220

Total number of volumes 290 290 289

Number of changed buildings 28 1

% Change of buildings 9.7 0.3

images to be analysed as well as the associated results obtained from the application

of the MRA at all levels. In addition, a zoomed view of the level 8 analysis for both

siblings, the real and hypothetical OKC-CBD, is presented in Fig. 4.9 depicting the

approximation as well as the horizontal, vertical and diagonal details for both cases;

the colour bar scales in the plots were kept the same in both cases to facilitate direct

comparison. By direct inspection, it becomes obvious that MRA yields a different

multi-resolution representation of the area city with the same H̄, λp and H̄AW. At the

level 10 (last) of the analysis (e.g. in Fig. 4.8) where the averaging cell is nearly the

entire investigated area, both approximations yield the same average (as one would

expect).

However because of this directional differencing that the details provide through

their tracking, a distinction between the two cases is made possible through the

horizontal, vertical and diagonal details. In fact, the addition of all the details

(obtained at each level of analysis) would provide all the subtracted detail from the

original urban database in obtaining the (final) approximation, i.e. the overall area-

weighted building-height average. In addition, this cell-like or rather matrix-like

tracking of the details can be used to assess the impact of the removed details at

different resolutions of mapping (visualization), of the city, which in turn can be

linked with topological information and therefore dynamics of an urban problem.

In contrast, conventional statistics currently used, such as the standard deviation

of the building heights, cannot be insightful enough in relation to the dynamics

since the spatial variability collapses to a single value. Due to its capacity, MRA
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Figure 4.8: The complete MRA results of a slightly modified (hypothetically-reconstructed) OKC-

CBD area in which the plan area remains the same but the distribution of the heights of the buildings

are modified, such that the new, yielded average building height and the standard deviation of the

building height are the same as the original case [hypothetical sibling OKC-CBD area/Test case 2].

encodes the unique information that an urban building database embodies. By

having the approximation of the last level and the details of all the MRA levels, we

can reconstruct the original urban building database signal.

In addition to the scale-adaptive description of the urban morphology (building

height and planar packing density), the boundary-layer aerodynamic parameters

have also been derived. As it was shown in Section 3.1, the surface roughness length

z0 can be expressed as a function of the packing density λp, or λ f , and the average

building height H̄, based on various morphometric and other models. In order to

determine z0 and d, the multi-resolution approximations of the building height and

the correspondingλp (of area sizes of 250×250 m2 and above) are used in conjunction

with the morphometric model by Kastner-Klein and Rotach (2004).

Using Eqs. 3.6 and 3.7, scale-adaptive values of z0 and d were obtained at

scales of 250 m (that is a representative of a neighbourhood scale) and above using

corresponding values of H̄ and λp at the corresponding levels of MRA, i.e. at cell-

sizes of 256× 256 m2, 512× 512 m2 and 1024× 1024 m2 corresponding respectively to

levels 8, 9 and 10 of the MRA. Figure 4.10 depicts the scale-adaptive results ofz0 and

d for the cases of the actual Oklahoma City (Test case 1) and the hypothetical sibling
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Figure 4.9: Direct comparison between the Reference and Sibling OKC-CBD areas (Test cases 1 and

2) with zoomed plots of the approximation and details obtained at level 8 from the MRA results.

Figure 4.10: The representation of aerodynamic description of OKC-CBD area at a scale higher than

250 m. (I) MRA deduced results; (II) Calculated parameters based on Kastner-Klein and Rotach [52]

model. (a) Results refer to original/Benchmark case; (b) Results refer to hypothetical Sibling OKC-

CBD area /Test case 2.
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Oklahoma City (Test case 2). Although the average building/floor height and packing

density over the entire domain (1310× 1280 m2) are the same in both cases, the MRA

deduced results depicted in Fig. 4.10 for example, shows the spatial differentiation

of the aerodynamic parameters of the two sibling cases enabled exactly because of

the structural averaging process.

Such capacity of representation corresponds to potential sub-grid-scale informa-

tion that can be held in climate models with a coherent scale-adaptive capacity. This

also resolves a weakness that has been identified in recent literature in specifying

sub-domain areas of variable sizes in a rather arbitrary way in order to derive the

corresponding aerodynamic parametrization for boundary-layer flow (e.g. [72]).

4.2.1.3 Some advantages of the MRA results

Test case 3 (OKC-CBD area with removal of the tallest building): Building on the

MRA capacity for a unique encoding/representation of a city and scaled attributes

of it, this Test case 3 illustrates how the impact of a particular building can be

deduced both in the entire domain as well as in different pre-specified sub-domains

- e.g. of different sizes. Test case 3 (as listed in Table 4.1) was constructed by

removing the tallest building (The Bank One Building) in the actual OKC-CBD area

which was examined as the benchmark case (Test case 1). The selected building

which is depicted encircled in Fig. 4.11 has a height of 150 m and a plan area of

2250 m2. The values of the new average building height and the new standard

deviation are reduced by 2.0 and 3.5% respectively. This confirms that the final level

of analysis yields approximation and details that are consistent with the variation

in the conventional average building height: the cell value in the approximation

obtained in the last analysis level is 2% smaller than that in Fig. 4.5. Although

these observations confirm the expected output of the MRA and its association and

consistency with conventional statistical measures, the most attractive feature from

the MRA analysis in this case is that the differences observed in the approximations

yielded at different levels (or scales) of the MRA reveal and represent the impact of

the removed building in the scaled attributes. Fig. 4.12 shows directly for the sake of

ease and clarity of observation the difference between the MRA results obtain for the

original OKC-CBD domain i.e. including the tallest building (Fig. 4.5) and the MRA

results obtained for the same domain but excluding the tallest building. In fact, the
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results in Fig. 4.12 show that the removal of the tallest building becomes evident

right from the first level of analysis (i.e. the denser resolution) while at higher levels

of analysis (coarser resolutions), the impact of the building is manifested differently

in different adjacent cells. This capacity enables useful deductions relevant to urban

planning deriving from the quantified evaluation of the impact of individual (or

complex of) buildings within a domain or sub-domain area. This illustrates in

another way how MRA can quantify the uniqueness of an urban database.

In addition to scale-adaptive representations, MRA also allows us to distinguish

between urban databases that contain similar information. Fig. 4.13 shows the ap-

proximations at Level 9, that were reconstructed using the approximations and details

at Level 10, which were obtained for Phoenix and Seattle planar packing density λp

2D urban datasets. The DNA-like description arises from the fact that the tracking of

the details at each level of the MRA process enables at any point, to obtain/retrieve

the very original urban information signal (by adding the approximation of a partic-

ular, desired level with the details discarded at the previous levels). This example,

apart from the schematic description of the methodology, highlights the potential

of the methodology to distinguish between seemingly similar datasets of urban

morphology.

Figure 4.11: The complete MRA results of the original OKC-CBD area with the encircled (in red)

tallest building removed [Test case 3].
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Figure 4.12: The depiction of the impact of the tallest building of OKC-CBD area (in different sub-

domains at different scales) as a result of the subtraction between the approximations and the details

of benchmark case (Test case 1) and the corresponding approximations and the details of Test case 3.

Phoenix and Seattle have the same value of λp at Level 10, which corresponds to

a cell size of 1024m × 1024m. However, at Level 9, the results are entirely different.

Respectively, for the case of the city of Seattle, the removal of information, in going

from the approximation at Level 9 to Level 10, is its corresponding result of total details

at Level 10. Therefore, what becomes obvious is that although both cities have the

same value of λp for the cell size of 1024m × 1024m, at level 9 of the analysis entirely

different results are obtained for each city. On the other hand, the third column

of Fig. 4.13, depicts the total details across all the levels of analysis (according to

summation in parentheses of Eq. 2.24) that were removed from the original urban

building signal, in order to obtain the λp at approximation at level 10. Therefore by

having the approximation of the last level of analysis and the total details of all MRA

levels, we can recover the original urban building ”signal”.

Due to this capability of retaining the details removed at each level the MRA

can encode the unique information that an urban building database contains. As a

result it provides an innovative means to perform rigorous scale-adaptive, spatially-

varying descriptions of any urban area while retaining the capability of reconstruct-

ing the original dataset, should it be needed in order to get the distinctive signature
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Figure 4.13: Example of the approximations and total details obtained from the MRA analysis of the

planar packing density λp of the 2D urban building databases of Phoenix and Seattle (corresponding

to the domain size of 1024 m × 1024 m) enabling distinction between the two cities despite the

identical value of λp.
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of a city i.e. a DNA-like description.

4.2.2 Derivation of urban aerodynamic parameters using MRA re-

sults

A further example of depicting an urban attribute (e.g. a set of UCPs) across different

scales and resolutions are the z0 and the d. The MRA-deduced results for the H̄ and

λp of each city, were used together with the morphometric model by Kastner-Klein

and Rotach [52] (Eqs. 3.6-3.7) in order to derive spatially-varying scale-adaptive

descriptions of z0 and d.

Figure 4.14: MRA-deduced parameters (for the last three levels) of the surface roughness length, z0,

and the zero-plane displacement, d, using the Kastner-Klein and Rotach [52] model for European and

North-American cities.
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Fig 4.14 depicts the calculated results of the urban morphological parameters of

z0 and d, for the European and North American cities. Therefore, the results show

that Phoenix, Seattle and London have similar values of z0, Marseille has the lowest

(z0 = 0.15 m) and New York the highest (z0 = 2.07 m, the main value of the central

cell).

From this analysis and results, the homogeneity or heterogeneity of a city can

be quantified and thereby deduced in the three directions - horizontal (x-direction),

vertical (y-direction), diagonal and finally the total homogeneity of the domain. In

order to illustrate the capacity of MRA to deduce the homogeneity/heterogeneity of

a city, MRA details of Level 8 of each urban dataset, were normalized with their cor-

responding statistical mean building height (listed in Table 3.1). Level 8 corresponds

to 256m × 256m cell/grid- resolution and was chosen because the length of 250 m

can be considered as a representative scale of a neighbourhood while be a minimum

length of boundary layer adjustment at this neighbourhood scale.

Figure 4.15: MRA results of the horizontal, vertical, diagonal and total details of Level 8 (in color)

and their corresponding black-and-white conversion for the homogeneity description of the building

height, H.

As a first attempt to classify systematically the homogeneity of a city, it was set that

regions/cells in coloured images of Fig. 4.15, with (normalized) values smaller than
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0.1 (the floor height of each cell normalized over the statistical mean building height

is smaller than 0.1) can be characterized as a homogeneous regions and depicted

as black cells, while regions with values bigger than 0.1 can be characterized as a

heterogeneous regions and depicted as white cells. The choice of this threshold

of 0.1 is arbitrary, however a generic methodology is proposed to characterize and

visualize the homogeneity/heterogeneity of a city at the neighbourhood scale.

Comparing the results for Total Homogeneity in Fig. 4.15 across the different cities

shows, for example, that the featured North-American cities have a spatial spread

of heterogeneity across the urban domain, while the featured European cities seem

to concentrate the heterogeneity at larger patches and in specific parts of the urban

domain. Moreover, the above proposed method of characterizing the homogeneity

of the city yields different patterns of homogeneity. For example, by comparing the

results of the cities of New York and Nicosia, it was found that the percentage of

black cells (homogeneous regions) per total area of each city is the same and equal

to 78%, but the pattern of homogeneity is completely different.

Directional homogeneity can also be identified in the neighbourhoods; for ex-

ample, Nicosia has mainly vertical heterogeneity, while Phoenix and Settle have

horizontal (x-direction) and vertical (y-direction) heterogeneity which means that

these cities have abrupt changes in the heights of buildings occur along the horizon-

tal x-axis and vertical y-axis of domain. On the other hand New York City, is the

most heterogeneous city since it is the city with the largest abrupt changes in the

building heights in all directions.

4.3 MRA results of urban building energy demands and

their interpretations

The main feature of the MRA is that it is scale-flexible and thus scale-adaptive,

allowing thereby identification of appropriate spatial resolution at which data of a

given quantity of interest can be presented. Indeed, MRA has been successfully

used so far for its scale-adaptive and spatially-varying characterization capacity in

the atmospheric urban boundary layer characterization and parametrization. This

Section illustrates the application of MRA analysis on energy consumption data and

discusses its use in urban energy management and planning. The urban-building
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and energy-demand datasets of the London Westminster Borough, derived from

Tian et al [107], were used.

4.3.1 Visualization and insights into the urban energy data through

the MRA analysis

In this sub-section, the results obtained using the MRA on the urban data of the

CBD-London Westminster City Borough are first presented; this presentation is also

a means of visualization of the various scale-adaptive representations of the urban

information. The representations of MRA results shown in Fig. 4.16 depict the

scale-adaptive representation of daily average of heating demands (kWh/100m2) of

a typical winter weekend day for London Westminster Borough. There are 9 levels

overall resulting from MRA since the size and resolution of the original 2D urban

signal allows up to (29
× 10)× (29

× 10) to be covered completely. The label denoting

each level corresponds to the exponents (e.g. 1, 2, 3) of the scales given in a power of

two format (as area sizes). The size of each cell in the relevant level of approximation

is listed in brackets for each scale. In the following paragraphs it will be explained

why this kind of representations can provide useful information.

At this point it should be noted that the numerical values of the cells in the

approximation components should be considered as densities, i.e. quantity per

surface area of the cell at the corresponding approximation level. For example, to

interpret the results of Fig. 4.16, the encircled ”Approximation” and ”Total Detail”

results at Level 7 will be used. The encircled ”cell” at approximation of Level 7

denotes that the mean heating energy demand per 100 m2 in the corresponding

region of Westminster Borough, is 1.72 kWh/100m2. This outcome may seem very

low compared to the original values of the datasets. This is due to the averaging

process (see Section 4.1.1) which takes into account also any unbuilt area within the

considered region and such unbuilt area does not have any energy demand. In the

case that one is interested in the overall energy demand of the encircled area, then

this mean value should be multiplied by the area of the corresponding region, i.e.

1.72 [kWh/100m2]×(27
×10)× (27

×10) = 28.18 MWh. The mean total energy demand

per area - for an urban region - for different scales and different zones/regions can

be similarly estimated.

The four cells encircled in the figure showing Total Details of Level 7 denote the
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Figure 4.16: The scale-adaptive representations and associated sub-grid information as obtained

through MRA analysis for the average daily Heating Demands (kWh/100m2) for a typical winter

weekend day.
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summation of the details (in all three directions horizontal, vertical and diagonal)

removed from the previous approximation of Level 6 in order to provide the approx-

imation of Level 7. Positive values of Total Details at Level 7 imply that the mean

energy demand of the small cell in approximation of Level 6 is lower than the mean

value of the corresponding cell that encloses it at approximation of Level 7; whereas

negative values imply the opposite. If the values of total details in a region are close

to zero, it is implied that the parameter is homogeneous across its lower level.

By using MRA, spatial-area-based visualization of the energy data is possible. It

can allow rapid comparisons across neighborhoods within a district - both in terms

of energy demand, as well as influencing features such as building heights, pack-

ing densities, breathability, etc. This visualization approach is fundamentally more

efficient than collecting individual properties on a building-by-building basis and

aggregating them over pre-allocated neighborhoods. Furthermore, MRA naturally

enables peak-hour identification and localization of best-neighboring candidate zone

area for extra energy supply in case of power failures. There are few urban energy

models that allow attributes at high-resolution to be explored easily and flexibility

across neighborhoods within a district and this represents a key barrier to their use-

fulness in practice. In this initial proof-of-concept study, full-day (24-hr) evolutions

are analysed using urban-scale energy demands for heating and cooling on typical

weekends and week days over different seasons.

4.3.1.1 Homogeneity in energy demands within neighbourhoods

The ability of MRA to implement multi-scale sampling, without discarding the re-

dundant details from the corresponding smaller scales at each Level, can be exploited

to identify the energy demand homogeneity in a given region/zone. Using Fig. 4.16

as example, it is recalled that approximation Level 6 (cell size 640 × 640 m2) was

obtained by subtracting from approximation Level 5 (cell size is 320 × 320 m2) the

corresponding difference called Total Details 6 in the image of cell size 320 × 320

m2. The results of Total Details determine which neighbourhoods in an urban area

have large (or small) and positive (or negative) energy differences from their sur-

rounding neighbourhoods. Fig. 4.17 shows Total Details for three different levels of

approximation.

As described in Section 4.3.1, net values at Total Details figures imply the homo-
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Figure 4.17: A snapshot (at 0800 hours) from the accompanied movie showing the visualization of

the diurnal time evolution of the MRA results obtained for the energy-demand differences from their

surrounding neighbourhoods at the Approximation Levels (a) 1 (left), (b) 6 (middle) and (c) 9 (right).

[Please watch the full accompanied video denoted as Fig. 4.17].

geneity of the energy demand across the total area, where positive values denote

lower approximation energy demand at the small cell at lower approximation level

compare to the corresponding cell that encloses it at higher approximation level;

whereas negative values denote the opposite. Thereby according to Fig. 4.17, there

are no differences across neighbourhoods in Level 1 because the difference with a

lower Level is very close to zero. Level 6 clearly shows a higher difference (from

Level 5) towards eastern part of Westminster - which is also the area with a large

number of smaller and more varied buildings. These variations are smoothed when

one moves across to Level 9.

4.3.2 Identification of spatial and temporal evolution of energy de-

mands

This sub-section presents the scale-adaptive ability of MRA method to represent

energy demands exhibiting spatial and temporal variation. In addition, it examines

the results obtained from different analysing functions against their ability to identify

peak energy demand both in terms of location and time during the day.

4.3.2.1 Time evolution of energy demands with respect to spatial scale of neigh-

bourhoods

The aim of the analysis is to shift our vision regarding the daily energy demand

variation from the building scale- to the neighbourhood scale of variable size. Fig.

4.18 (movie) shows the daily evolution of heating demand during winter (Fig. 4.18a)

and cooling demand during summer (Fig. 4.18b) in the Westminster Borough at three
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Table 4.2: Identification of peak hours of heating and cooling demands for typical days over different

seasons

Heating Cooling

WeekEnd WeekDay WeekEnd WeekDay

Winter 0500 0500 1300 1300

Spring 0600 0600 1200 1400

Summer 0400 0400 1200 1300

Autumn 0500 0500 1400 1200

different scales; at a relatively small scale (size 20 m× 20 m), a medium scale (size 640

m × 640 m) and the largest scale (of size 5.12 km × 5.12 km). At each different scale

the timing of peak energy demands for cooling and heating across the entire domain

was identified. The MRA results show that the peak hour of energy demand over

the total area and during a typical day is independent of the Approximation Level or

scale (see Table 4.2). What is varying across the spatial scales is the numerical value of

the energy demand at the corresponding region/zone. These results verify the ability

of MRA to correctly capture the energy demand data: Indeed, as described in Tian et

al. [107], the energy simulations of buildings that yielded this dataset do not consider

variations in operational schedules across similar types of buildings. For example,

all office buildings follow the same occupancy patterns and are subjected to the same

outdoor weather conditions. However, the simulations take into account features

such as geometry, orientation, and thermal properties uniquely per building. One

would therefore expect no variations in peak energy demand across spatial scales,

as neighbourhoods within the Westminster borough tend to be dominated by a

uniform building type. Some variations are possible and attributable to the presence

of different types of buildings within a particular scale. The numerical value of

energy demand, on the other hand, is expected to vary depending on the physical

features of buildings within a scale.

A similar analysis was conducted for all the seasons of the year, for both the

heating and the cooling demands; Table 4.2 summarizes the peak hour of heating and

cooling demands observed over the different seasons of a year for typical weekdays

and weekend days.
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Figure 4.18: A snapshot (at 0800 hours) from the accompanied movie showing the diurnal time

evolution of (a) the cooling and (b) the heating demands of a typical summer and winter day. [Please

watch the full accompanied video denoted as Fig. 4.18].

4.3.2.2 Identification of the locations of peak energy demands

The aim of this study is to investigate the ability of the MRA analysis to correctly

identify peak energy demands across different scale-adaptive representations. The

movies in 4.19 present the heating energy demand density (kWh/100m2) during a

typical winter day in London Westminster borough using the three different scaling

functions: Haar, Symlet 4 and Daubechie 4 functions, also referred to in Section 4.1.

The results from the MRA analysis using the Haar scaling function yield quantita-

tive values that are consistent with the conventional average value of energy demand

in every individual cell (at a given resolution), thus smoothening any patterns of

variation within. Symlet 4 and Daubechie 4 functions exhibit a different behaviour

and are used to detect sudden occurrences appearing across neighbouring cells. For

example, by using theSymlet 4 scaling function and depending on the resolution level

of analysis, the local areas exhibiting the peak values of heating/cooling demands

can be identified more precisely.

Fig. 4.19 summarises these results: At approximation Level 6 (left column of

Fig.4.19), the peak demand identified by Symlet 4 (middle row) and Daubechie 4

(bottom row) is very similar. However, the results are different at approximation

Level 9 (i.e. at enlarged neighborhood, of size corresponding to 5.12 km), albeit in

the same corner of the region. These differences, at approximation Level 9, are due
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Figure 4.19: A snapshot (at 0800 hours) from the accompanied movie showing the diurnal time

evolution of the MRA results obtained at the Approximation Level 6 (left column) and Approximation

Level 9 (right column) using the Haar (top), Symlet 4 (middle) and Daubechie 4 (lower row) scaling

functions. [Please watch the full accompanied video denoted as Fig.4.19
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to the actual shape of the scaling function (as described in the methodology Fig.

2.3). As aforementioned, in the MRA analysis, different scaling functions must be

carefully selected according to the nature of the data. For example, if building-

height information across the area is considered, the Haar analysing function is

recommended due to its multi-scale representation. Symlet 4 and Daubechie 4, on the

other hand, can provide smoothening representations (at larger neighborhood sizes)

while retaining peak occurrences across neighborhoods within a district.

4.3.3 Connecting urban-scale building energy demands data with

other urban features

4.3.3.1 Relating energy demands with building and population-density parame-

ters

The interpretation of built environment at city scale is a complex task because of the

variability of a number of factors such as the physical characteristics of the buildings

and the influence of urban conditions. A key challenge in analysing urban-scale

energy data is to make sense of large amounts of spatio-temporal data associated with

energy consumption in a manner that is useful, tractable, efficient, and flexible for

decision-makers. Through the MRA analysis, it is possible to examine the influence

of physical features and/or urban context on energy demand.

To do so, the 2D correlation coefficients (R) between the MRA approximations of

energy demands and (i) the population density and (ii) the building and land use

parameters (building height and planar packing density - λp) at different (resolu-

tion) Levels were derived. Typically, a 2D correlation coefficient is used to detect

similarities between two images or two 2D signals. The aim in this investigation is

to observe the daily variation of the correlation between the energy demands with

these parameters across different scales (i.e Levels of Approximation). The results in

Fig. 4.20 show the values of these correlations as the Approximation Level changes

as well as their temporal evolution during the day.

Specifically, results in Fig. 4.20 depict a high correlation between the energy

demands of a typical winter day and the physical characteristics of buildings (build-

ing height and packing density). The correlation coefficient between the energy

demands of a typical winter day and the built area characteristics (buildings height

and planar packing density) is found to be higher than 0.93 during daytime for ap-
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Figure 4.20: Diurnal variation of the Correlation Coefficient, R of heating demands with (a) building

height (b) planar packing density and (c) population density across different levels of Approximation

(i.e. area sizes) for a typical winter day.

proximation Level 6 (cell size 640 m× 640 m) and above. This result can be attributed

to the fact that in the day-time hours there is full business activity, especially at offices

and retail stores. Contrary, during the nocturnal hours, where the population is less

active (not working), the correlation of energy demands with population appears

(as expected) significantly lower. Generally, the correlation between the heating

energy demands with the population residing in the Westminster area exhibits low

correlation values, probably because during most of the day time, the residences

are unoccupied, therefore there is no energy demand. The only case where there

is a high correlation between the heating energy demands and the population, is

between 18:00 - 19:00 at approximation Level 9. This occurs because this is rather a

transition time in the peoples activity where the usual working hours end and people

move to the place of their residence. As a result, residences which were previously

unoccupied become occupied space and thus there is an increasing energy demand.

Therefore, the conclusion is that the energy demand is strongly related to the popu-

lation between the hours 18:00 - 19:00 as far as the temporal patterns are concerned.

This conclusion covers and concerns the entire region of Westminster Borough. It is

noted that as the spatial scale of examination of the correlation coefficient becomes

smaller, the actual quantitative value of the correlation coefficient is reduced, this

is because it becomes more inclusive of other cross-neighboring cells effects and
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Figure 4.21: The correlation coefficients of the heating energy demands (of a typical winter day at

peak hour 05:00) with respect to (a) building height (b) population and (c) planar packing density.

the number of cells accounting for the calculation is larger (for the finite-size area

considered in this example). However, in all cases the diurnal pattern remains the

same both for the typical winter, spring, summer and autumn days.

Fig. 4.21 shows the scale-adaptive representations (from Levels 6 and above) of

the spatially-varying correlation coefficients. The collective value of the correlation

coefficient between the heating energy demands of a typical winter day with respect
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to building height, population and packing density, at the peak hour of 05:00 is listed

below each figure. This figure illustrates the sensitivity of the correlation coefficient

to the neighbourhood (scale)-size; it appears that for the building characteristics

(building height and planar packing density the correlation coefficient across scales

is consistent. However, the correlation coefficient between heating demand and

population at 05:00 is weak and random across scales. This is indicative of the fact

that large areas within the Westminster borough are non-residential and therefore

there is no consistent heating demand during non-work hours.

4.3.3.2 Relating energy demands with city breathability

It is accepted that high-resolution urban-scale energy datasets are not yet widely

available and neither yet easily-possible to collect. On the contrary, physical in-

formation of buildings is more widely available and if not, it is more accessible to

collect or obtain. In recent studies of urban fluid dynamics, it was found that it

is possible to relate physical forms of cities (using detailed building information)

with the aerodynamical response of the urban configurations, particularly in terms

of the air flow within the street canyons [79]. In particular, the capacity of a city to

ventilate itself and thereby remove heat or pollutants, or other scalars from its street

canyons was termed by Neophytou and Britter [77] as city breathability. Moreover,

Panagiotou et al. [86], showed that breathabilities vary across a district and these

variations are consistent with the packing density of each neighborhood within the

district. In this thesis, it is postulated that the heat accumulation that occurs in a

neighborhood are correlated with the heating or cooling demands of buildings. For

example, a high level of heat flux within a canyon must correspond to lower heating

or higher cooling demand from buildings within the same canyon.

Therefore, further to the methodology part described in Sections 4.1 and 4.1.1,

MRA results of the energy data were used to derive correlations that can associate the

energy demands of the urban area with the breathability capacity and the packing

density of urban areas. It has to be noted that such an association is not exhaustive

of the all other contributing and confounding parts in forming the energy demands

of an urban area: it serves to quantify only the contribution which stems from the

air flow ventilation through the urban streets and buildings.

The breathability capacity is quantified using the exchange velocity which is an
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Figure 4.22: The variation of breathability capacity as quantified by the normalized exchange velocity,

Ṽex , with the planar packing density, p; the regression line was derived using the experimental results

by Neophytou et al. [79] (plotted in this graph).

indicator of the air volume flux exchange at the rooftop levels [79]. Exchange velocity

is the rate at which fresh, cool air enters the street canyons from the rooftops level

and at the same time warm polluted air from within the street canyons escapes above

the rooftop levels. This rate, as quantified by the exchange velocity and termed as

breathability, determines eventually the outdoor air conditions (temperature and

pollution levels) within street canyons and thereby the demands for heating or

cooling within buildings. The breathability capacity as a function of the packing

density of an urban area was tested in laboratory experiments by Neophytou et

al. [79]. Fig. 4.22 shows the variation of the normalized exchange velocity with the

urban canopy morphological parameter λp as presented by Neophytou et al. [79].

For the objectives of this study, that is the scale-adaptive representation of city

breathability, we assume a linear variation of the non-dimensional with the geometric

packing density λp, as suggested from the experimental results. The initial values of

Ṽex (corresponding to the initial resolution of the urban building data) were deduced

by using the packing density data of Fig. 3.8b and Eq. 4.23 as follows

Ṽex(λp) = −0.064λp + 0.048 (4.1)
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Having illustrated the ability to identify transient spatial structures of energy

demand in relation to features of buildings (heights), neighborhood (packing den-

sity) and context (population), this section examines the relationship between city

breathability with associated energy demands of the city. City breathability, as used

by Panagiotou et al. [86], is the capacity of a city to ventilate itself and thereby re-

move heat (or pollutants) from its street canyons. Thereby, the heat accumulation

that occurs in the canyon can be linked to the cooling demands of buildings for sat-

isfying the needs of indoor thermal comfort (be it for heating). Panagiotou et al. [86]

quantified the city breathability as a dynamic parameter called exchange velocity

and showed that different breathability capacities can occur within a district with

the its variation being linked to the local packing density of an urban area.

Fig. 4.23 shows the diurnal variation of the correlation coefficient between the

cooling demands and the breathability capacity (as quantified by the exchange veloc-

ity parameter) on a typical summer day for different resolution levels (neighborhood

sizes). The results indicate an overall negative correlation throughout the day con-

firming (as expected) that high energy demands are associated with low ventilation

(breathability) capacity. The diurnal variation of the correlation coefficient is marked

by a quasi-steady variation in the middle day period from 06:00 to 19:00 hours with

a numerical value ranging from -0.5 at the smallest scale to -0.9 at the largest scales

showing the strong interrelation of the two. The actual absolute numerical values

of the correlation coefficient (at a given time in the day) reduces as the size of the

neighborhood areas considered is smaller a feature also observed and discussed

in the previous scale-adaptive variations of such correlation coefficients. However,

the variation in the quantitative value of the correlation coefficient across the Lev-

els (i.e. different scales of consideration) is likely to contain sensitivities of heating

demands to other parameters than breathability which emerge more evidently at

smaller scales (i.e. more locally than globally).

Fig. 4.24 shows the MRA analysis results across the entire CBD-London West-

minster City domain of (a) the packing density, (b) the city breathability, (c) the

energy demand for cooling over a typical summer day and (d) the energy demand

for heating over a typical winter day - both at 13:00 hours. The information on the

breathability (normalized exchange velocity) spatial variation was computed using

the packing density information map at the original resolution and the correlation

relation (Eq. 4.1) between the packing density and the normalized exchange velocity
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Figure 4.23: Variation of correlation between heating demands of a typical winter day and exchange

velocity.

Figure 4.24: MRA deduced results of (a) packing density, λp, (b) breathability (normalized exchange

velocity), (c) cooling demands of a typical summer day at 13pm and (d) heating demands of a typical

winter day at 1300 hours.

(as a quantitative measure of breathability). The selection of the energy demand data

at 13:00 hours was made based on the fact that this is still during the normal working

hours and it does not exhibit much transitive changes (e.g. during morning arrival

at or afternoon departure from work.

Fig. 4.24 very interestingly shows that areas or zones with high energy demands

for either heating or cooling are areas with low breathability (low values of normal-

ized exchange velocity).
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4.4 Chapter concluding remarks

The key conclusions drawn from this Chapter are summarised below:

1. MRA can be applied on a number of urban building databases in order to

provide scale-adaptive, spatially-varying representations of the urban building

databases for atmospheric modeling.

2. MRA can be used for distinction between urban databases recognized as iden-

tical or similar based on conventional statistics. This provides a sound basis

for rigorous inter-comparisons between different urban datasets as well as for

appropriate representations - suitably adapted to the referenced resolution for

mesoscale models. Also, the spatial structure of the MRA results can envision

homogeneity and heterogeneity and enables its quantification.

3. It was illustrated how MRA-deduced results for the building/floor height and

λp can be used in conjuction with suggested morphometric models in the

literature in order to derive associated coherent, scale adaptive boundary-layer

parameterizations of z0 and d over different domain area sizes/cells.

4. By using a rigorous scale-adaptive approach of MRA, the level of association

of urban energy demands with other urban features such as built packing den-

sity, urban ventilation and population was investigated and unveiled. Further,

correlations of the energy demands with urban information such as the build-

ing packing density, building height, population and urban ventilation were

deduced and was presented how sensitive such correlations are to scale/size of

the district considered.
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Chapter 5

Results of the multi-fractal analysis of

the flow dynamics and dispersion in a

turbulent atmosphere

Chapter 5 studies the multi-scale nature and presents the multi-fractal behaviour of high

resolution atmospheric data. In order to investigate the multi-fractal nature of atmospheric

flow field, the dispersion field and their possible connection, field measurements of meteoro-

logical and air quality variables were used. The measurements that were used in this chapter

concern the period extending from 1st January 2013 to 30th September 2015.

5.1 Background motivation for multi-fractal behavior

of the atmospheric data

At first, there will be a brief presentation of some evidence suggesting the multi-

scale behavior of the atmosphere and then the results of multi-fractal method of

atmospheric timeseries will be presented and discussed.

5.1.1 Local scale effect on Air Quality measurements

In order to identify the presence and characteristics of different sources of air pol-

lution, bivariate polar plots were used. These plots are constructed by partitioning
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wind speed/direction data with the same values - and their corresponding concen-

tration data - into wind speed/direction bins (boxes). Then (for each bin) the mean

concentration value is calculated. For better visualization, and quick directional

information of potential sources, adjacent bins with the mean concentration values,

are smoothed by using smoothing techniques (see [14] for details).

Plots such as those shown in Fig. 5.1 represent continuous concentration surfaces

that use smoothing techniques. Therefore colour bars should not be interpreted as

measurement values. The conclusions drawn from Fig. 5.1a-c is that the concen-

tration pattern between the three pollutants is different. In the case of NO2 high

concentrations are observed when winds occur along NW-SE direction and the

wind speed is smaller than 2 m/s. Additional contribution on NO2 concentrations is

observed when winds occur along SW sector with wind speed and the wind speed

up to 3 m/s. Fig. 5.1b shows that CO high concentrations were observed in almost

all directions with either large or small wind speeds.

Table 5.1 summarizes both the anthropogenic and natural processes that exist in

the surrounding area and affect PM10 concentrations. Apart from traffic, which is the

main anthropogenic activity, agriculture processes may also have a contribution to

PM10 concentrations since the areas in NE and SE regions are agricultural. Fig. 5.1c

shows that high PM10 concentrations are observed mainly when winds blow along

NW sector and the wind speed is larger than 6 m/s at this time. Moreover, high PM10

concentrations are measured when winds occur along the East North-East (E-NE)

and South South-East (S-SE) sectors, and wind speeds are larger than 6 m/s. As seen

in Fig. 5.1, PM10 concentrations originating from the E-NE and S-SE sectors appear

to be arising from the agricultural processes (e.g. field plowing).

While such a representation of the concentration measurements is very useful

and can lead to important conclusions, care should be taken in interpreting such

representations as this can be misleading at the same time. For example, bivariate

polar plots of Fig. 5.1a-c do not take into account the frequency of observation of

each measurement and how these measurements affect the overall mean concen-

tration [13]. Smoothed surfaces in Fig. 5.1d-f are more representative since they

provide an indication of the weighted concentration (i.e. multiplied by the fre-

quency of occurrence, bin frequency, divided by the total frequency) in order to give

an improved representation of the conditions that dominate the overall mean con-

centration. The weighted bivariate polar plots are shown as a continuous-smoothed
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Figure 5.1: Bivariate polar plots for (a) NO2, (b) CO, (c) PM10 (hourly average values were used for all

pollutants). These plots present (as smoothed surfaces) how concentrations vary depending on the

local wind speed and wind direction. Bivariate-polar-plot surfaces are smoothed in order to provide

an indication of the overall pattern. Bivariate polar plots (d) NO2, (e) CO, (f) PM10 represent the

same measurements in a different way; all wind speed direction bins were multiplied by frequency

of occurrence in order to highlight the main and different sources that dominate the overall mean

concentration.

89

PETROS M
OUZOURID

ES



Table 5.1: Anthropogenic and natural processes exist in the surrounding area, and the level of their

influence on PM10 concentration in region. Symbols ++, + , –, - and 0 denote great gain, gain, great

loss, loss and no effect of the corresponding processes on PM10 concentration, respectively.

Processes in the surrounding area Effect on PM10

concentrations

Exhaust emissions ++

Emissions from abrasion processes 0

(i.e tyre-wear, break lining)

Local anthropogenic

process

Road dust resuspension +

Building works +

Agriculture processes ++

Wind dust resuspension ++

Regional beckgrounf sources ++

Natural processes Sea salt +

Dry deposition -

Wet deposition -

surface and present the concentration data in polar coordinates for the purpose of

possible source identification. As a result, Fig. 5.1d-f shows that all three pollutants

were derived from the same local road traffic sources from the NW sector; in addi-

tion, they indicate that the main emissions of PM10 are local (small wind speeds),

stemming mainly from the NW sector. However, as it was shown in Fig. 5.1a-c,

exceedances or large concentration values were observed when dominant winds are

coming from NW, E-NE and S-SE sectors with high wind speed. Therefore what is

considered necessary is to use both types of plots for understanding the pollutants

dispersion in the study area. Quantification of the exact proportion amongst the

concentration due to local sources and regional-background concentrations require

dedicated detailed studies, which is beyond the scope of current work. The above

results allow to conclude that concentrations of NO2, CO and PM10 are primarily due

to local road traffic (see Fig. 5.2). The concentrations of NO2 and CO do not exceed

the limit values of EU Directive, whereas PM10 concentrations exhibit exceedances.

High PM10 concentrations values were observed when dominant winds are coming

from NW, E-NE and S-SE sectors with wind speed over about 6 m/s.
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Figure 5.2: The study area with the bivariate polar plots of criteria pollutants (NOx, CO, PM10) for

visualization of emission sources.

5.1.2 Regional scale effect on PM10 exceedances

In order to study the regional effect on PM10 concentrations, predictions of BSC/DREAM

model during the dates with exceedences of PM10 concentrations were studied. Pre-

dictions of BSC/DREAM model for the two days with the highest daily average

concentration - 24th January 2009 and 18th May 2009, as well as a day that was

observed the limit daily mean value of 50 µg/m3 (20th June 2012), were chosen to

present. In addition, three days between 28th May 2010 until 30th May 2010 were

selected to present the temporal evolution of the forecasting of Sahara dust trans-

portation over the atmosphere of Cyprus. The colours on Fig. 5.3 images illustrate

the dust load (g/m2) and the wind vectors at 3000 m over the Mediterranean sea

(3000 m above the sea level is the height where the model calculates the dust load);

the exact date and time of the prediction is also referenced in the images. The wind

vectors indicate the origin of air masses which carried the particulate matter and

therefore we can deduce the region of origin of dust transport.

Fig. 5.3 presents the temporal evolution of predicted dust load for three con-

secutive days starting from 28th May 2010 until 30th May 2010, as a representative

example of a comparison between PM10 concentration measurements and aerosol

load prediction. The average daily value of PM10 concentrations were 67.8 µg/m3,

55.9 µg/m3 and 20.7 µg/m3 respectively. On 28th and 29th May 2010 the model pre-

diction for aerosol load is 0.05-0.3 g/m2 whereas the prediction for 29th May of 2010

is 0.0 - 0.05 g/m2.
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Figure 5.3: Dust load results (g/m2) from the BSC/DREAM model at 3000 m over the Mediterranean

sea as evolution of dust transport phenomena from 28th May 2010 until 30th May 2010; the model

yields a prediction every six hours.

Figure 5.4: Dust load results (g/m2) from the BSC/DREAM model at 3000 m over the Mediterranean

sea as evolution of dust transport phenomena during the days of 24th January 2009 (top row), 18th

May 2009 (middle row) and 20th June 2012 (bottom row).
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On 24th January 2009 the average daily value was 332.4 µg/m3 whilst on 18th May

2009 the average value was 259.0 µg/m3. During these days, model predicts that

dust particles transported from the western Saharan region to Cyprus with a high

aerosol load (0.75-1.5 g/m2), whilst on 20th June 2012 the aerosol load was 0.05-0.3

g/m2 (see Fig. 5.4). Furthermore, wind vectors confirm the transport of air masses

from Africa from the W sector. These results are a strong indication of the effect

of regional background dust concentrations on PM10 exceedences, result that is also

found for other locations, such as London by Charron et al. [15] using backward

trajectories methods.

5.2 The multi-fractal nature of the dispersion and flow

field

The aim of this Chapter, is to investigate the multi-fractal behavior of the meteo-

rological variables of wind speed (WS), ambient temperature (AT) and air quality

measurements of concentrations of carbon monoxide (CO) and particulate matter

with diameter of 10µm or less (PM10) compare to LMO, and estimate their h exponent

under different atmospheric conditions. Before the results are presented, a brief de-

scription of the characteristic length scales and the corresponding Reynolds numbers

of the atmosphere in which the measurements were taken, is given.

Atmospheric data collected over a 33-month period in a sub-urban atmospheric

boundary layer were used. The Reynolds number (see Eq. 1.1), based on the

atmospheric boundary layer height, over the entire period ranged from 0.7 × 106 to

1×109, satisfying the pre-requisite of a high Reynolds number flow. The atmospheric

boundary layer height, Ha, ranged from 50 to 2018m, signifies in this analysis the

largest scale in the flow Lo (See Table 5.2). The ratio of the largest, Lo , to the smallest,

Kolmogorov, scale, n , ranged from 9 × 104 to 3 × 106. The Reynolds number based

on the Taylor micro-scale λ, Reλ , ranged from 280 to 8845, which is considered

sufficiently high.

In atmospheric boundary layer apart from wind shear, TKE is generated by

buoyant forces as well. Based on the Monin-Obukhov similarity theory, LMO is

physically interpreted, as the height at which the buoyant production of TKE is

equal to that produced by the shearing action of the wind. Monin-Obukhov length
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Table 5.2: Summary of dataset and Atmospheric Boundary Layer properties, of the study area during

the period between 1st Jan. 2013-30th Sep. 2015. Also, the table, presents the number of sub-datasets

that were used during the study period, using hourly average data and one average value per minute

data

Conditions H [m] LMO [m]

Characteristics of

the measurement period

extending from

1st Jan. 2013-30th Sep. 2015

Re = 0.7 × 106
− 1 × 109

Reλ = 280 − 8845m

Percentage of data1

falling in the corresponding

stability conditions

Min Mean Max Min Mean Max

Stable

(H/LMO<1)
41.8% 50 127 953 3 56 833

Neutral

(-0.3 ≤ H/LMO<1)
2.9% 50 738 2018 -10000 1058 10000

Unstable

(H/LMO<0.3)
24.8% 63 715 1948 -5000 -162 -3

Hourly average data 14 sub-datasets

One average value per minute
Stable 19 sub-datasets

Unstable 19 sub-datasets

is defined as:

LMO =
−u3
∗

κgFθo/ρcpTo
(5.1)

where u∗ is the friction velocity at the ground surface, κ = 0.4 is the von Karman

constant, g is the acceleration due to gravity, Fθo the surface heat flux, To is the surface

temperature and ρ, cp are the density and specific heat capacity of the air respectively.

Based on the Monin-Obukhov length, the atmospheric stability is divided into

the following three broad classes, Stable (S), Neutrally stable (N) and Unstable (US)

class defined by:

Stable : H/LMO ≥ 1, (5.2a)

Neutral : −0.3 ≤ H/LMO < 1, (5.2b)

Unstable : H/LMO < 0.3 (5.2c)

For the collected dataset, it was found that 41.8% of the data falls in the S class,

2.9% of the data falls in the N stable class and the 24.8% falls in the US class (the rest

of 30.5% of the data cannot classified because of missing data).

Data processing for multi-fractality

This Chapter, proposes the use of WTMM method to analyse the collected mea-

surements, due to the inherent property of the method to be well-localized in time

and therefore its capacity to locate isolated singular events and to characterize more
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complex multi-fractal signals having non-isolated singularities. The purpose of this

section is to obtain an insight on what are the optimal requirements of the followed

methodology in order to calculate the Dc(h) of the stochastic process (hereafter we

denote the calculated singularity spectrum with Dc(h)) as reliably as possible com-

pare to the theoretical D(h). The derivation of Dc(h) of real monitoring data raises

issues on the numerical method which was followed; issues stemming from the

discretization of the real signal and by applying the method to that discrete signal.

Despite the fact that simulation data can be obtained by-design to adhere or con-

form to various data analysis requirements, laboratory and particularly field data

have some inherent restrictions: either, due to the limited and finite feasible time

duration of data acquisition affecting the ratio of the largest to smallest time scales

present in the signal for a given sampling frequency, or due to the variability of the

natural conditions in the field hence restricting further the length of a signal. Addi-

tional practical unexpected problems hindering data acquisition may arise such as

the forced or accidental interruption of power supply and thereby acquisition. Such

practical restrictions bring up theoretical signal-processing issues which unavoid-

ably have to be treated appropriately to ensure that any deductions are unaffected

by such practical restrictions.

Here, we explore the performance of the multi-fractal method as a function of

different implementation parameters in order to avoid spurious deductions relating

to physical insights. The implementation parameters that were investigated are:

(i) the duration of timeseries; (ii) the number of intermediate scales that should be

used in order to calculate the wavelet coefficients (since the calculation of wavelet

coefficients for an infinite number of scales is computationally impossible) and (iii)

the length of neighborhood size where |W f (u, s0)| is locally maximum and the range

of q that the analysis is valid. A stochastic signal of fractional Brownian Motion (fBm)

with pre-selected h = 0.8 exponent (Fig. 5.5), was selected in order to investigate

optimum configuration of the method.

The fBm signal is the only signal to our knowledge which is computationally

feasible to reproduce a stochastic signal with capacity to be of mono- or multi-fractal

nature [34].

The results of analysis of the artificial constructed signal fBm with h = 0.8 as a

function of the aforementioned parameters are presented in singularity spectra of Fig.

5.6. The left branch of D(h) is obtained for positive values of q’s and characterizes the
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Figure 5.5: A realization of stochastic signal of fractional Brownian motion (fBm) with pre-selected

h = 0.8 exponent and signal length = 214.

(a) (b)

(c) (d)

Figure 5.6: Singularity spectra Dc(h) of artificial signal fBm as a function of the dataset samples length

(a), the number of intermediate scales (b), as a function of q parameter (c) and the size of neighborhood

that |W f (u, s0)| is locally maximum (d).
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(a) (b)

Figure 5.7: An example of power spectrum (a) and singularity spectrum (b) of a realization of fBm

with h = 0.8 (Fig. 5.5) in order to verify the satisfaction of Eq.5.3.

strongest singularities, whilst the right branch is associated with the weakest local

singularities in time series [81] and is obtained for negative parameter q. Therefore

the length of each branch of D(h), implies the kind of singularities that are dominant

in the signal.

Fig. 5.7b presents the optimal requirements of the method in order to achieve

numerical convergence of calculated h to the prescribed h = 0.8. According to the

results of Fig. 5.7b, the minimum number of samples needed were 211, the size of

intermediate scales to be at least 256 and the selection of q parameter should be in

the range −3 ≤ q ≤ 3. Furthermore, the optimum length of neighborhood size where

|W f (u, s0)| is locally maximum is recommended to be equal to 16 samples. Moreover,

to confirm the validity of WTMM results, the power spectrum of all sub-datasets

was computed to verify the linear connection between the asymptotic decay β of

power spectrum and the dominant h exponent according to the equation [97]:

β = 2h + 1 (5.3)

For sake of demonstration of the methodology, Fig. 5.7 presents the power (5.7a)

and singularity (5.7b) spectrum of realization of fBm with h = 0.8 of Fig.5.5.

5.2.1 Multifractal analysis

In this section we will investigate the multi-fractal behavior of the fluid dynamics

and dispersion field. We apply the WTMM method in 14 sub-datasets of hourly

average measurements of the meteorological variables of WS, AT and air quality
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measurements of concentrations of CO and PM10, to unveil the underlying scaling

laws of their timeseries. It is important to mention that most of the sub-datasets that

were analysed in this Chapter, could not met the minimum criterion of the optimum

number of samples either due to physical restriction in atmospheric conditions (e.g

atmospheric stability), either due to practical problems in data acquisition.

The application of WTMM in the above-mentioned datasets leads to the calcula-

tion of the corresponding singularity spectrum Dc(h). Results show that all four (4)

variables exhibit a multi-fractal behavior. In each case there is a range of the domi-

nant h which occurs for each variable. For example in the case where hourly average

collected data of wind speed (consecutive measurements for a period between 3

or 4 weeks) is studied, the Dc(h) of the flow field exhibits a range of dominant h

between 0.18 and 0.44, where the statistically prevalent observed value is h = 0.33.

This value is equal to the value of h under the second hypothesis of Kolmogorov for

the homogeneous velocity field of fluid. As already mentioned, the analysis showed

that there are some cases where the dominant observed value of Dc(h) differs from

the second hypothesis of Kolmogorov. This diversity indicates that there is no uni-

versal scaling law which describes the flow field of the atmosphere. Also, diversity

of dominant h was observed to the rest studied variables, since the D(h) of AT has

a range of dominant h between 0.76 and 1.02, the dominant h for chemically inert

pollutant PM10 varies between -0.19 and 0.41, and the dominant h for chemically

reacting pollutant CO varies between 0.38 and 0.7.

Fig. 5.8 shows the spectrum of Dc(h) of hourly average measurements of (a) WS

and (b) PM10 (c) AT and (d) CO. For clarity, Fig. 5.8 does not depict all results, but

4 out of a total of 14 sub-datasets. Curves with the same color-line in 5.8a and 5.8b

correspond to the same measurement period.

5.2.2 Multi-fractal behavior in the light of different stability con-

ditions

To study the influence of atmospheric stability in the observed self-similarity (h), 19

sub-datasets obtained under stable conditions and 19 sub-datasets obtained under

unstable conditions were studied, using recorded field data with sampling rate

one-average value per minute. The use of such data will show whether ”deeper

observation” in scales (i.e smaller scales), different scalling laws can be deduced for
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(a) (b)

(c) (d)

Figure 5.8: The singularity spectra Dc(h) of 4 out of total 14 sub-datasets of hourly average measure-

ments of (a) WS and (b) PM10 (c) AT and (d) CO. Curves with the same color-line correspond to the

same measurement period.
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Figure 5.9: The dominant Hurst exponent of the 38 different sub-datasets versus the ration of Monin-

Obukhov length over the height above ground of the wind measurements z0 under stable (black) and

unstable (red) conditions

the investigated stochastic processes.

Fig. 5.9 shows that when the atmosphere is stable (i.e the mean value of the ratio

H/LMO ≥ 1) and at the same time the mean value of LMO over the height above ground

of the wind measurements,z0, is z0/LMO ≤ 1 , (with standard deviation less than 1),

the statistically dominant scaling law of the flow field corresponds to Kolmogorov’s

−5/3 law, in agreement with Kolmogorov’s hypothesis for statistical independence

of large and small scales. So in our measurements under the aforementioned sta-

bility conditions in the atmosphere there is a local isotropy on the smallest scales of

turbulence and the flow field is homogeneous.

In addition, Fig. 5.9 shows that under unstable conditions, the flow dynamics

exhibit different behavior than under stable conditions (black-color results). Specif-

ically, when the atmosphere is unstable (red-color results), the dominant h of flow

field was found to be negative. Suggesting that under unstable conditions, there

are continued and very fast changes in the flow field (i.e sharp velocity gradients),

which has also been reported in previous studies [2]. Therefore we can state that

there is a local heterogeneity in the smallest scales of turbulence and the flow field

is anisotropic.

The dataset analysis for the dispersion field reveals the same qualitative results
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(a) (b) (c)

Figure 5.10: Maximum Hurst exponent of the 19 different sub datasets versus the ratio of Monin-

Obukhov length over the height above ground of the wind measurements, z0, for (a) the chemically

inert pollutant PM10, (b) chemically reacting pollutant CO and (c) ambient temperature AT under

stable conditions in the atmosphere.

(a) (b) (c)

Figure 5.11: Maximum Hurst exponent of the 19 different sub datasets versus the ratio of Monin-

Obukhov length over the height above ground of the wind measurements, z0, for (a) the chemically

inert pollutant PM10 and (b) chemically reacting pollutant CO and (c) ambient temperature AT under

unstable conditions in the atmosphere.

under stable and unstable conditions, i.e multi-fractal behavior of the concentra-

tions, long-range correlation of the chemically inert pollutant PM10 and short-range

dependence of the chemically reacting pollutant CO.

The analysis showed that under stable conditions, the dominant h for a chemi-

cally inert pollutant such as PM10 varies between 0.82 and 1.78 whilst the dominant

h for a chemically-reacting pollutant such as CO varies between 0.35 and 0.68 (Fig.

5.10). Further, it was found that under unstable conditions, the dominant h for the

chemically inert pollutant PM10 varies between 0.92 and 1.93 whilst the dominant h

for the chemically reacting pollutant CO varies between -0.11 and 0.36 (Fig. 5.11).

This wide range of exhibited dominant h concentration fields, verify that the phys-

iochemical processes which take place in the atmosphere occur over a wide range of

spatial and temporal scales.
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In the case of the ambient temperature data, it was found that the atmospheric

stability affects the results as well. Under stable conditions the dominant h of ambient

temperature varies between −0.09 and 0.94, whilst under unstable conditions the

dominant h of ambient temperature varies between 0.29 and 1.40. Therefore, the

ambient temperature exhibits a multi-fractal structure; with a wide range of values

of h according to their atmospheric stability conditions during the data acquisition.

In order to deeply understand this difference over the season, there is still work

needed to be done. For example the study should be done by using more selection

criteria, like diurnal/nocturnal variability of measurements.

5.2.3 Relating multi-fractality with long-range correlation

The goal of this section is to interpret the physical meaning of the results on the

multi-fractal behavior of the measured field data. As described in Section 1.1.3, the

long- or short-term correlation in timeseries fluctuation is associated with h when

the stochastic process has stationary increments.

Two different stationarity tests, the Augmented Dicky - Fuller (ADF) and Kwiat-

kowski - Phillips - Schmidt - Shin (KPSS) test, were used in order to test the hy-

pothesis that an observable time series is a stationary trend or whether a timeseries

has stationary increments. The difference between the two methods is that the null

hypothesis of the ADF-test is the unit root hypothesis (the alternative hypothesis

corresponds to a no unit root process), whilst the null hypothesis of KPSS-test corre-

sponds to a trend-stationary process and the alternative corresponds to a unit root

process. By using both tests; the unit root and the stationarity test, one can distin-

guish whether the timeseries is stationary or non-stationary at a certain confidence

level or whether the timeseries data (or the test) is not sufficiently informative to be

sure whether the timeseries is stationary or not.

The analysis indicates that the datasets of the chemically inert pollutant (PM10)

and chemically reacting pollutant (CO) timeseries have unit root regardless of the

stability of the atmosphere, which means that any abrupt change in the concentra-

tion of these pollutants, will have an increasingly large influence on the atmosphere

through the time. For example high values of h (h > 0.5) for chemically inert pollu-

tant PM10 indicate long-range correlation of data fluctuation which in turn is likely

indication of trans-boundary pollution transport. On the other hand, the traffic-
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Table 5.3: Results of the stationarity tests for wind speed (WS), ambient temperature (AT) data, the

chemically inert pollutant (PM10) and chemically reacting pollutant (CO)

ADF-test KPSS-test

Stable Conditions

WS Stat. with linear drift Non-Stationary

AT Stat. with linear drift Non-Stationary

PM10 Unit root Non-Stationary

CO Unit root Non-Stationary

Unstable Conditions

WS Stat. with linear drift Non-Stationary

AT Stat. with linear drift Non-Stationary

PM10 Unit root Non-Stationary

CO Unit root Non-Stationary

related chemically reacting pollutant CO also exhibit a multi-fractal behavior, but

the low observed values of h confirm the short range correlation of data fluctua-

tion and thereby a rapid change in CO emission rate, associated with load, has a

significant impact on the CO concentration.

In the cases where we analysed the wind speed (WS) and ambient temperature

(AT) timeseries, the results are not sufficiently informative to be sure whether the

process is stationary or not. For example, the ADF test presents the timeseries of

both variables to be stationary with linear drift, whilst the KPSS test estimates the

timeseries of both variables to be non-stationary. This conclusion is independent of

the atmospheric stability. Table 5.3 summarizes the results of the corresponding test

where each test was conducted for p-value equal to 0.05.

5.3 Chapter concluding remarks

The key conclusions drawn from this Chapter are summarised below:

1. Numerical simulations using the Dust REgional Atmospheric Model (DREAM)

give a strong indication that the high PM10 concentrations and the PM10 ex-

ceedances are strongly associated with high regional background dust concen-

trations transported during westerly winds e related to Saharan episodes.
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2. The multi-fractal behavior of meteorological and air quality field measure-

ments is revealed. Also the results of this study are in agreement with results

of other studies and verify the multi-fractal behavior of fluid dynamics and

dispersion in a turbulent atmosphere

3. Based on the analysis of atmospheric measurements, the statistically dominant

scaling law of the flow field, varies according to the sample rate or the stability

conditions of the atmosphere during the data acquisition. Also, important

results were obtained by analysing recorded field data with sampling rate

per-minute- average value. For example, when the stability of the atmosphere

satisfies the condition H/LMO ≥ 1 (i.e stable conditions) and at the same time the

mean value of LMO over the height above ground of the wind measurements,

z0, is z0/LMO ≤ 1 (with standard deviation less than 1) then the D(h) of the flow

field exhibit the statistically dominant scaling law of −5/3 which corresponds

to Kolmogorovs−5/3 law. This result leads to the conclusion that Kolmogorovs

hypothesis for statistical independence of large and small scales is valid

4. Finally, stationarity test on pollutants concentration shows that the time-series

of the chemically inert pollutant (PM10) and chemically reacting pollutant (CO)

are non-stationary regardless of the stability of the atmosphere. This implies

that any sudden change in the concentration of pollutants, this change will

have a permanent impact on the statistics of their time-series.
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Chapter 6

Conclusions and Future Work

Chapter 6 summarizes the conclusions drawn from the overall results obtained in Chapters

4 and 5. Moreover, Chapter 6 provides suggestions for future work.

6.1 Summary and Conclusions

In this thesis, it has been illustrated how schemes of WT can be used as a rigorous

method to deduce scale-adaptive or scale-aware conclusions and extract scaling laws

for different types of atmospheric dynamic problems.

The conclusions of this thesis concerning the 2D urban morphology or building-

related data are summarised as follows:

1. This thesis illustrates how the MRA can be applied on a number of urban

building databases, in order to obtain scale-adaptive, spatially-varying repre-

sentations of the urban building information. For models, the MRA provides

gridded and scaled attributes as well as sub-grid information for a hierarchy

of grid sizes. The MRA can, in principle, provide a powerful means to explore

and utilize information at the sub-grid scale to inform the mesoscale analy-

ses, a very powerful resource for multi-scale modeling studies. Specifically,

by analysing the urban signal into an approximation and a detail, different rep-

resentations of the urban building database can be obtained with respect to

different scales or resolutions, namely levels of analysis. Moreover, the spatial

or structured representation of the MRA results envisions homogeneity and
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heterogeneity and enables its quantification. This provides a sound basis for

rigorous inter-comparisons between different urban datasets as well as for ap-

propriate representations - suitably adapted to the referenced resolution for

meso-scale models.

2. In addition, the use of MRA as a methodology for conducting the multi-scale

analysis of the energy demand data, has enabled a rigorous structural con-

nection to be made between physics at local-scale and larger scales (including

neighborhood or city or other scales), thereby achieving a much-clearer un-

derstanding of the role of different parameters in the behavior of an urban-

scale complex system. MRA methodology enables a more reliable decision-

making to be made (e.g. motivated to implement strategies for reduction of

building-energy-demands at specific scale) due to its capability to represent

efficiently high-resolution data at coarser-resolution without losing the local

(high-resolution) information. More specifically, MRA analysis enables identi-

fication of spatial and temporal structures within the dataset.

3. MRA has been shown to enable useful methods of determining scale-adaptive

and spatially-varying descriptions of aerodynamic urban canopy parameters

as a given example of determination of z0 and d. Finally, through a discus-

sion of examples it was shown that MRA can provide an innovative means

to distinguish between urban databases and cities, and in the light of the pre-

sented results it can be said that MRA encodes the unique information of an

urban morphology database the same way as the DNA encodes the genetic

information of all living organisms of the same species - in essence providing

a DNA-like description of a city.

Within the framework of WTMM method, the multi-scale nature of the flow

and dispersion field was studied, exposing the existence of scaling laws in atmo-

spheric processes. In terms of 1D atmospheric timeseries data the conclusions are

summarised as follows:

1. The main outcome obtained from the study of field measurements of me-

teorological and air quality variables is that their multi-fractal structure was

confirmed, exhibiting a wide range of values of Hurst exponents h, over a spec-

trum, D(h), according to the season that the data was collected. Overall, the
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findings about the multi-fractality of atmospheric flow field are in agreement

with these of other studies [35, 54, 56, 61].

2. It has been found that based on the analysis of atmospheric measurements,

the statistically dominant scaling law of the flow field, varies according to

the sample rate or the measuring period of data. For example, in the case

hourly average collected data of wind speed of consecutive measurements (for

a period between 3 or 4 weeks) is studied, the statistically dominant observed

value is h = 0.33, which is equal to the value of h under the second hypothesis

of Kolmogorov for the homogeneous velocity field of fluid.

3. At the same time, the analysis showed that there are some cases where the

dominant observed value of D(h) differs from the second hypothesis of Kol-

mogorov. This diversity indicates that there is not a universal scaling law

which describes the flow field of the atmosphere. The stability of atmosphere

appears to play a significant role in the behavior of the atmospheric flow, so it

determines the observed scaling laws.

4. Also, novel results were obtained by analysing recorded field data with sam-

pling rate per-minute-average value. The analysis of such data showed that

the stability of the atmosphere appears to play a significant role in the behavior

of the atmospheric flow, which stability determines the observed scaling laws

in the data.

Based on the results of this thesis, it is concluded that applications of Wavelet

Transform can be used in order to understand and model multi-scale phenomena in

the urban atmosphere.

6.2 Suggestions for future work

The subject and area of research offer a good scope for future work to to deeply

understand the different multi-scale nature and behavior of atmospheric processes.

There are some recommendations that should be considered for future work:

1. An extension of the application of MRA methodology to additional urban

related attributes in order to provide an objective and automated link with

urban classification such as the Local Climate Zone as defined in Stewart and
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Oke [101], would help current global initiatives such as WUDAPT. Specifically,

additional thermal parameters such as the albedo, sky view factor, surface

admittance, previous surface fraction would be extremely useful since they

are still sensitive parameters in of meso-scale models (e.g. WRF/urban mod-

eling system). Moreover, the creation and the enrichment with more data of

global databases such as WUDAPT, will strengthen the efforts of the scien-

tific community for more accurate prediction of the dynamic behavior of the

atmosphere.

2. The application of CWT and OWT to the existing dataset by using different

Wavelet Toolboxes or different programming environments (e.g Python, Java)

as an attempt to understand and overcome computational issues, such as

those mentioned in Chapter 5. In addition the wavelet coefficients of this new

analysis will be presented in a different way such as Mallat’s representation,

in order to understand and gain new insight in multi-scale modeling of multi-

scale problems in the atmosphere.

3. Finally, the study towards investigating the multi-fractal behavior of flow and

dispersion field should be continued. For example the study of multi-fractal

behavior of atmospheric processes should be done by using more selection

criteria, like diurnal/nocturnal variability of measurements over different type

of the urban built settings, climate regions and seasons, so that the various

numerical models to be provided with reliable physical insights in order to be

able to simulate all possible dynamic conditions in the urban atmosphere.
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Appendix A

MRA deduced results of urban
building datasets

A.1 Building attributes

For completeness of the presentation of results, Appendix A presents the MRA
deduced results of urban building datasets of European cities (London, Marseille)
and North-American cities (New York City, Oklahoma, Phoenix and Seattle).
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Figure A.1: MRA results of analysis of the 2-D urban building database of London.
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Figure A.2: MRA deduced results of the planar packing density λp parameter for the database of
London.
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Figure A.3: MRA results of analysis of the 2-D urban building database of Marseille.
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Figure A.4: MRA deduced results of the planar packing density λp parameter for the database of
Marseille.
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Figure A.5: MRA results of analysis of the 2-D urban building database of New York City.
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Figure A.6: MRA deduced results of the planar packing density λp parameter for the database of
New York City.
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Figure A.7: MRA results of analysis of the 2-D urban building database of Oklahoma.
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Figure A.8: MRA deduced results of the planar packing density λp parameter for the database of
Oklahoma.
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Figure A.9: MRA results of analysis of the 2-D urban building database of Phoenix.
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Figure A.10: MRA deduced results of the planar packing density λp parameter for the database of
Phoenix.
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Figure A.11: MRA results of analysis of the 2-D urban building database of Seattle.
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Figure A.12: MRA deduced results of the planar packing density λp parameter for the database of
Seattle.
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Appendix B

Scaler: A standalone GUI for MRA
analysis

Appendix B describes the use of the Scaler, a user-friendly Graphical User Interface
(GUI) tool, which was developed to calculate easily and quickly scale-adaptive and
spatially-varying representations of urban information datasets using the MRA.

B.1 General Information

Scaler c© is a GUI tool developed to produce rigorously scale-adaptive and spatially-
varying representations of urban information datasets using the MRA. Scaler c© re-
solves spatial data aggregated at different scales to yield ”Approximations” and
the subgrid residuals at each and every such scale is retained as ”Details”. It
is freely available tool in WUDAPT Portal for non-profit research purposes. The
standalone executable version allows the user to run Scaler c© without a MATLAB c©

license and without purchasing extra toolboxes. Scaler c© is designed to run un-
der Windows 7/10 (32 & 64bit) operating system. Before running the program,
it is necessary to install the MATLAB Runtime for R2012a - 32bit (7.17) (https:
//www.mathworks.com/products/compiler/mcr/). The MATLAB Compiler Run-
time (MCR) does not require a MATLAB license and can be used to run any MATLAB
compiled program on computers which do not have MATLAB installed.

A detailed presentation and discussion of the underlying theory of the Multi-
Resolution Analysis (MRA) are given in Chapter 2 and results of MRA in a number of
applications are presented in Chapter 5. Further applications of MRA are envisaged
through the use and the further tailored development of Scaler for the WUDAPT
initiative [19].

B.2 Calculation steps

Urban morphology may be in LCZ maps, Google image, CAD or any other ”image
format” which includes a 3-D information of an urban area. However, urban infor-
mation data input for Scaler is required in the form of a pixilated image (2-D matrix),
where the value of each pixel refers to the value of the parameter of interest (e.g.
energy demand, building height, packing density etc).

The application menu hosts the following selections:
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• Click File > Open and select your file domain based on the MAT-files (*.mat)
type.

(a) (b)

Figure B.1

• Type the name of the analysing urban dataset on the text field ”[City Name]”.

Figure B.2
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• Select the analysing parameter. If your analysing parameter is not listed, choose
the option and set the new name of your analysing parameter.

• Select the units of your analysing parameter. If the units of your analysing
parameter are not listed, choose the option and set the new units of your
analysing parameter.

Figure B.3

• Set the accuracy/resolution of the original dataset, namely what is the cor-
responding physical area of each pixel/cell of dataset. By default, the accu-
racy/resolution of the dataset is given 1 pixel to 1m × 1m of physical area.

• Select the analysing function to perform the MRA analysis
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Figure B.4

• Press the ”Analyse” button in order to execute the calculations.

• By default, the lower left image is the Approximation MRA result at the last
Level of analysis and the lower right image is the Total Details MRA result at
the corresponding Level.
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Figure B.5

• Select a number from the Level popup button, to visualise the Approximation
and Total Details result at the corresponding Level of analysis.
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Figure B.6

Click Visualise > Approximation. The application plots (visualises) Ap-
proximations up to the last level of analysis.

Click Visualise > Total Details (Single Level). The application plots (visu-
alises) Total Details up to the last level of analysis.

Click Visualise > Cumulative Total Details (All Levels). The application
plots (visualises) the cumulative Total Details up to the last level of analysis.
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Figure B.7

Click File > Open and select ”Export Data”. Scaler automatically exports
the numerical results of Approximations, Horizontal, Vertical, Diagonal, Total
and Cumulative Total Details into a MATLAB array file (.m).
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