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Xvotipote Madnong Yo omotelespoTIKN EKnaidgvon Nevpovik@v AIKTO®V otV

popreyn Agvtepotayoig Aopg Hlpoteivov

Muyding AyaBokiéong

[Havemomuo Korpov, 2019

To medio g Omuovpylog UN-YPOUUK®OV GCULVOPTHCE®V Yoo TNV ToSvounon 1
KOTNYOPl0Toinot dedopévev and akorlovdicg avtipetoniletal eni Tov Tapdvtog and o
nowidio peBodwv Mnyovikig Mébnong. H mpdkinon avtg g dwdikaciog avédveral
otav mépav omd TV TANPOoQopic. Tov mponyeitar evoc onueiov pog akoiovdiog, M
TANPOQOPia TOL EMETAL LTOV TOV GNUEIOV Elval ETIONG GNUOVTIKY Y10 TNV JIEKTEPAIOOT
wog mpoPreymc N katnyopomoinong. Il cvykekpipéva, ce avty Vv katnyopio
npoPAnuatov, n enefepyacio evOg cLYKEKPUEVOL onpeiov TG akolovBing dedopévav
yiveton oyt pévo pe Baomn v TAnpogopia mov Tponyeitol and To aptoTeEPE TPOGS T dEELA
TOV oNUEIOV W TOY, AAAA KoL TNV TANpoYopia Tov émetal amd To deE1d TPOS To APLoTEPE
Tov dov onueiov. H apyttextovik] Nevpovikdv Awtoov Apeidpoung Avadpoong
(NAAA) oyedudotke and tovg Baldi et al. [Bioinformatics, vol. 15, pp. 937-946, 1999]
YW VO OVTILETOTIGEL QLT TNV Katnyopio. TPoPANUdTOV OTov 1 TANpo@opic. Tov
npornyeitol Kot 1 TANpoeopio mov Emetan eivan avaykaieg yioo v enefepyacio TV
dedopévov pag akolovdiog. H cuykekpuévn apyltektovikn amotedeiton amd dvo amid
Nevpovikd Aiktoa Avédpaonsg (NAA) ta omola enelepydlovtal v mAnpopopio mov
TPOTYEITOL KO TNV TANPOPOPIn IOV ETETOL EVOS CLUYKEKPIUEVOL onpeiov pia akoiovBiog
dedopévmv, avtictoryo. Avtd ta amontnTiKd HovTEAa ypetdloviot alyoptBpovg padnong
VYNNG anddoons OGOV apopd To YpOdVo GUYKAMONG Kot TIG aVAYKEG LVAUNG DOTE Vo

EKTTOLOEVOVTOL ATOJOTIKA Kot omoteAesatikd. ['evikdtepa, 1) eknaidevon tov NAA eivar



apkeTd mepimAokn Sladikacio pe amotéAespa va ivat €va avorytd BEpna otov Topéa TG

Mnyavikng MéOnong.

EmmAéov, ta NAA pmopodv va cuvdvactovv ce XOvoia (ensembles) Movtédwv
Mnyavikng Mébnong (EMMM) pe dAlo povtéda kot teyvikés Nevpikdv Aiktowv (NA)
Yo TEPATEP® PEATIOON TOV 0moTEAEGUATOV GE d1dpopa Tpofinquata. TEtoteg TexviKeég
NA etvon o0 prhok pviung Long-Short Term Memory, ta Echo State Networks, ot
Conceptors, ta Clockwork NAA 1 1o Zuvediktikd Nevpovikd Aiktvo (XNA). H
a&loAdynon g amdo0oNS TV SIKTO®V avTtdV pe Bdon tov Babud akpifelog TpoPieync
N ta&wounong oe kdmolo mPOPANua dev  eivar  wavomomtik. H o avénupévn
TOALTAOKOTNTO QVTAOV TV UeBOdWV amartel YpNyopo ¥pOvo GUYKAIONG Kol YOUNAES

OTOTNGELS VTOAOYIGTIKNG LVAUNG Y10 TV ETIAVGT ATOLTNTIK®OV TPOPANUATOV.

"Eva onpovtikd mpopinua tagvounong dedopévav and akorovdieg 6mov 1 mTAnpogopio
OV TPONYEiTOL Kot 1 TANPo@opio. mov Emetol £vOg onpeiov pog akoiovdiog sivor
OMUOVTIKN Yo TNV dleKmepaimon pag TpoPreyng, sivar 1o mpofinua g IIpoPieync
Agvtepotayovg Aopng Ipwteivov (ITAAIL). ‘Evag avéavopevog aptBuog mpoteivikav
aAAndovydv Tig omoieg cuvBEétovy apvocéa eivarl Yvootdc. Q61dc0, VIAPYEL ATOVGia
TANPOPOPIOG GYETIKA LE TNV TPIOIACTOTN OOUN OVTAOV TOV TPOTEIVOV, 1 omoia gival
oA onpoavtikn aeod Kabopilel ) Aettovpyia Tovg. H devtepotayng doun avtdv twv
TPOTEVIKOV aAANAoV IOV glvar Eva TeXVNTO VOAUEGO GTAOI0 HETAED TNG TPWTEIVIKNG
aAAnAovyiog Kot TG TPLEOAGTATNG dOUNG Ui0G TPMOTEIVIG, TO 0TOI0 VTOJEIKVVEL TIG
TOTIKEG TTUYEG TOV ApVOEEWV. AVTEG 01 TOTIKEG TTLYEG OMpovpyohvTon pe Pacn Tig
aAMAETIOPAGEIS TV apvoEE®mV OV PBpicKovTol TPV Kot HETA omd UIo GUYKEKPIUEVT

0éom g mpwteivng. To TpofAinua avtod givar mepimioko Kot ypetdleTor akydpifpovg mov



UTopovV va, eneEepyacTobV Kot v UdBovv Ta YOpaKTNPIoTIKE TOV JEOOUEVOV TMV

aKOAOLOLDV, £TCL MOTE VAL EMTVYOVY TO KAAVTEPO SLVATO OTOTELEGLA.

e avt ™ dwTpiPn, apyikd, Tapovcidlovpe pia TapoAiayn e opyitektovikng NNAA
nov oyeddotnke and tov Baldi et al. [Bioinformatics, vol. 15, pp. 937-946, 1999] yw
NV AVTWETOMIOT ToL TpofAnpatoc g [TAAIL Avti n apyitektovikn Bempeitar onpepa
o¢ pia and Tig PéATioteg apyttektovikég NA Yo TNV OVTIHETOTIOT GLTOV TOV
npoPAnuatoc. ITo cvykexpéva, gpappoloope v dw apyitektovikn NNAA mov
npotddnke and tov Baldi et al. [Bioinformatics, vol. 15, pp. 937-946, 1999], aAld
YPNOYOTOOVLE [0 TPOTOTOMNEVN dtadikacio ekpdOnong tov Siktvov. Xtdyog Hog
etvat va. Tpoodopicovpe TV GLUPOAN TOMIKNG KOU GUVOAIKNG OTOUOKPLGUEVNG
TANPOPOPIOG GE L0 TPMTEIVIKY 0KOAOLOIa Yo TNV TOTIKY| avadITAMOT| Hog TPOTEIVIC.
AT gmtuyyaveTon LETARAAAOVTOG TO UNKOG TOV TUNHOTOS TG TPMOTEIVIKNG akoAovBiag
nov ypnotponoteitar oav £i6000g 610 NAAA. Ta anoteAéopota pog yo €vo Kot pévo
NNAA givon BeAtiopéva oe oxéon pe ta anoteAéopota tov Baldi et al. [Bioinformatics,
vol. 15, pp. 937-946, 1999] xotd tpelg mocootwaieg povades Q3 (axpifela ovd
KatdAowro). Elvar emiong ovykpicipo pe to omOTEAECUATO TOV HOVIEA®V GUVOA®MV
NAAA mov gpeaviCovtat otig epyacieg twv Baldi et al. [Bioinformatics, vol. 15, pp. 937-
946, 1999], Pollastri et al. [Proteins, vol. 47, pp. 228-235, 2002], Cheng et al. [Nucleic
Acids Research, vol. 33, pp. W72-W76, 2005] kot Magnan & Baldi [Bioinformatics, vol.
30, pp. 2592-2597, 2014]. EmumAiéov, ypnowonomcape EMMM pe 6 NAAA yw
nepaltépw Pedtioon tov amotedeopdtov pog. To amoteléopato g peboddov pag
BeAtidvovtol aKOpo TEPLEGOTEPO ATV 1) ££000C TV SIKTO®V GIATPAPETOL LE [ol LEBOSO
uetd-eneEepyaciog dedopévav. H pébodog avt eivar Baciopévn otov adydpifpo Hidden

Markov Model. H pébodoc piktpapicpatog oto mpopinua ITAAIT ctoyxevel otnv Tapoyn



(QUOIKOYNUKG PEOAMOTIKMOV OTOTEAECUATOV, EVO cLVNO®G PeATdVEL TV TTPOPAENTIKN
amodoon oG peBodov Mnyavikng Mdébnong. Me Bdon avt v mAnpogopia,
TPOYUATOTOMGOUE U0 CLYKPLTIKY)  UEAETN oOxeTkd pe  dudeopeg  peBddovg
eutpapiopatog v o TpoPAnue g ITAAIL Zvykekpéva, ypnoiponoimvtag tdco
TeviKég Mnyavikng Mébnong 6co kar Eumelpicotg Kavoveg ya va giltpdpoope 1o
amoTeEAEoUATO TG LEBOOOV HOG, SIUMIGTOCUUE OTL LEGA OO QUTY) TV GUYKPITIKN LEAETT
MO TAOGAUE OTL O GLVOLOCUOG TV dVO PeBGd®V 00MNYel og Tepartépw PeAtivon Twv

OTTOTELECUATOV.

Metd amd avth TV apyikn peA&tn tov TpoPfiniuatog g ITAAIL npoywpovue 6to factkd
HEPOG OLTNG NG JWTPPNG OmOV AGYOAOVUOOTE HE TNV UEAETN OYESWOUOV KoL
epappoyns aAdyopiBuwv pabnong yw tig opyuektovikés NAAA ot omoiot eivor
Bacwopévor ommv mAnpoeopiag g Agvtepng Ilapaywyov (AIl). XZvykekpyiéva,
napovcidlovpe po pEBodo dmov epapuodletar o akydpiBuog Scaled Conjugate Gradient
(SCG) v IpdT™ Popd oe avt) TV apyltekToviky. Ewdwotepa, mapovoidlovps v
avamTuén kol gpoapuoyn pog owng pog mapoiiayns tov SCG, tov Hybrid Rectified
Scaled Conjugate Gradient (HR-SCG) i tig apyirextovikég NAAA. ¢ avtiBeon pe v
ocvppatikn péBodo katapacng Kiiong, n onoia ypnoomoteitat ylo v ekmaidocvon NA,
0 HR-SCG a&omotel 1060 Vv KAion 0G0 Kot TV KOUTLAOTNTO o GUVAPTNONG OE £val
OLYKEKPIUEVO onuelo Yo va methyel TV cVykAon tov adyopiBuov. To poviého €xet
dokyaotel oto mpdPAnpa ITAAIT ko €xel emrvyet 77,6 % Q3 axpifeia avd kotdAouro
0€ GLYKEKPEVO oVVOAO dedopévmv. EmmAéov, &xet amoderyBel 611 o HR-SCG Eemepvd
Tov aAyopiBpo pdbnong xatdPoacng kAiong yw ta NAAA d6cov agopd to YpOVO
ovykAong. Zvykekpuéva ypedletor mepinov 75% Aydtepo ypdvo GVYKAMONG GTO

npoPAnua IMAAIL Q¢ ek tovTOL, 0 AAYOPIOUOG Eival amOOOTIKOG KOl ATOTEAECUATIKOG



OTNV EKTOIOELON TOV TOAVTAOK®V apYTeEKTOVIKOV NAAA. Avtd £ivar moAD oMUovTIKO
OTIG TEPUTTMOELS TOV EYOVE LEYAAN GUVOAL OEOOUEVAOV 1| TOAAG TapdAAnia NAAA oe
XMMM. EmumAéov, mapovoidlovpe anoteAéopato amd pio topdpoto perétn émov €vag
dArlog oAyopiBpog pdabnong AIl €xet espappootel oty 0w apyrtektovikn. [lwo
ovykekpléva, o oiyopiBuoc Hessian Free Optimization ypnoyomomdnke yw tnv
ekmaidevon g apyrtektovikng NAAA ya 1o 1010 mpdPAnpa aAld Exetl emTyel mepimov

1% younAidtepn Q3 axpifeia and tov aiyopiBpo HR-SCG.

EmumAéov, ot televtaieg e€ehilelc kot ta amoteAéopota 6to medio v NA (dnA., Babu
MébOnon, Reservoir Computing xAm.) égovv ocifel tepdotia Peitioon oe ddpopa
npoPAnuato Tov oyetilovtal UE KOTNYOPLOMOMGELS 1| TPOPAEYEIS OEOOUEVOV OO
axolovbiec. TTaporo avtd, o€ TOAAG omd avtd o poviéAa NA, ot mopaAlayég Tovg,
KoOADC Kol oLYKEKPIUEVOL OAYOplOpol pudbnong dev €xovv ypnoylomondel moté 610
npoPAnua ITAAIL ITio cvykekpipéva, vdpyet ovorytd medio peAETng 10 omoio mpémet va
depeuvnbetl oyxetikd pe 1o mpoOPAnuo TIAAIT won tig peBddovg Clockwork NAA,
Yvvelktikd Nevpovikd Alktva (XNA) kot Reservoir Computing. Av kot k60e pio amod
aLTEG TIG LEBOOOVG £XEL TOL TAEOVEKTNLOTOL KOL TO, LELOVEKTILOLTO TG, KAOE pio péB0d0g
Exel €WK yapokINPoTIKA mov Bo pmopovoov va PeAtidcovv TV oakpifeln TV
AmOTELECUATOV, TOV ¥pOvo GOYKAONG TV OAyopiBumv pabnong, v avayvopion
BpayvmpodBeopwv kot pokporpdfecumv e£aptnoemy oto O1000YIKE Oedopéva, KAT.
Enopévag og avt t datpiP, mapovcidlovpe anoteAéspota pog véag pebodov 6mov
ONUIOVPYOVUE P10 KOVOTOUO OMEIKOVIGT) TOV TPOTEIVIKOV dEOOUEVMV GE LOPPT| EIKOVAG
nov avayvopiletor omd to ENA, anoteAés Lot TOV 10100 TPOPALOTOC XPNCLOTOIDVTOG
Clockwork NAA, pa véa apyttextovikn NAA apeidopopwv Echo State Networks o

amoteléopato Tov idov mpoPAnuatog oe poviéda Long-Short Term Memory. Té\og,



TOPOVGIALOVUE OMOTEAEGHLOTO HLOG VENS TPOGEYYIoNGS, 0oy amhd NA ekmoidevovton e
T0v olyopBpo Peitiotonoinong Hessian Free Optimization ywo to mpdpAnpa ITAAIL Ot
pebodoroyieg mov Pacilovtar ota ENA kot o andd NA gunpdcdiog tpopoddtnong tao
omoio. ekmodevovton pe tov Hessian Free Optimization €yovv emtdyel axpifela
npoPreync 80.4% Q3 avd koatdAouto m omoion omoteAel €va amd Ta LVYNAOTEPO

OTOTEAEGLLATO, TTOL OVOLPEPOVTOL GE QVTY] T SloTPIP).

Yvvolikd, ovtn mn OtpPn cvuPdAiier ot Pektioon oxeSGUOV KOl EKTOIOELONG
povtédwv NA ta onoia enelepyalovtan dedopéva and akorovdieg dmov emmAéov amd v
TANpoopio. TOv Tponyeital evog onueiov pag akolovbiog, n TANpoeopia mov EmeTan
aVTOV TOL onueiov givar emiong onuavTiKN Yo TV dleknepainon pog tpoPreyng. Xe
O6A0VG TOVG TOMOVG TV VIO peAéTn poviédwv NA, mapovcialovpe peBodoroyies,
OPYLITEKTOVIKES KOl OAYOPIOLLOVGS TTOV £YOVV TAEOVEKTILATO EVAVTL TOV YVOOTOV HeBOSV
OGOV 0Qopa TNV akpiPEL TOV ATOTEAECUAT®V 1 TV TOOTNTA TOV OTOTEAEGUATOV 1) TO

YpOVo chyKAong TV adyopifuwv 6to cuykekpiuévo tpofanua e ITAAIL



LEARNING SCHEMES FOR EFFICIENTLY TRAINING NEURAL
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The field of deriving non-linear functions to classify sequential data is currently dealt
with by a variety of Machine Learning methods. The procedure of learning sequential
data becomes even more challenging when the upstream and downstream information of
a sequence is also useful for the prediction or classification. More precisely, in this class
of problems, a specific location of sequential data is processed based on the information
from left to right before that point (the upstream information) and the information from
right to left after that point (the downstream information). The Bidirectional Recurrent
Neural Network (BRNN) architecture has been designed by Baldi et al. [Bioinformat-
ics, vol. 15, pp. 937-946, 1999] to deal specifically with this class of problems where the
upstream and downstream information is needed to process sequential data. This architec-
ture consists of two simple Recurrent Neural Networks (RNNs) which are used to process
the upstream and downstream information, respectively. These demanding models need
high performance learning algorithms in terms of convergence time and memory usage
to be trained effectively and efficiently. In general, training of RNNs is an open topic
in Machine Learning because it is usually complex. Furthermore, these models are usu-

ally combined in ensembles with other novel Neural Network models such as Long-Short
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Term Memory blocks, Echo State Networks, Conceptors, Clockwork RNNs or Convo-
lutional Neural Networks to enhance results. The accuracy rate of these models is not
satisfactory for predictive or classification purposes. The complexity of these methods
demands low convergence time and memory usage to solve demanding problems.

One main classification problem of sequential data, where the information before and
after a specific location of the sequence is important for prediction purposes is the se-
quence to structure problem of Protein Secondary Structure Prediction (PSSP). A grow-
ing number of protein sequences which are composed by amino acids is known. However,
there is missing information with respect to their 3D structure, which specifies their func-
tion. The Secondary Structure of these protein sequences is an artificial intermediate step
between the protein sequence and the 3D structure of a protein, which indicates the local
folds of protein sequence amino acids. These local folds are created based on the inter-
actions of amino acids which lie before and after a specific location of the protein. This
problem is complex and needs algorithms that can process and learn the characteristics of
the sequential data, in order to come up with better results.

In this thesis, we present a variation of the BRNN which was developed by Baldi et al.
[Bioinformatics, vol. 15, pp. 937-946, 1999] for tackling the PSSP problem. This archi-
tecture is currently considered as one of the optimal computational neural network type
architectures for addressing the problem. We implement the same BRNN architecture, but
we use a modified training procedure. More specifically, our aim is to identify the effect

of the contribution of local versus global information on the PSSP problem, by varying
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the length of the segment on which the RNNs operate for each residue position consid-
ered. Our results with a single BRNN are better than Baldi et al. [Bioinformatics, vol. 15,
pp- 937-946, 1999] by three percentage points (per residue Q3 accuracy) and comparable
to ensembles of BRNN models’ results which appear in Baldi et al. [Bioinformatics, vol.
15, pp. 937-946, 1999], Pollastri et al. [Proteins, vol. 47, pp. 228-235, 2002], Cheng
et al. [Nucleic Acids Research, vol. 33, pp. W72-W76, 2005] and Magnan & Baldi
[Bioinformatics, vol. 30, pp. 2592-2597, 2014]. Moreover, we have used ensembles
of 6 BRNNSs to enhance our results. In addition, our results improve even further when
sequence-to-structure output is filtered in a post-processing step, with a novel Hidden
Markov Model-based approach. Filtering of protein secondary structure prediction aims
to provide physicochemically realistic results, while it usually improves the predictive
performance. We performed a comparative study on this challenging problem, utilising
both machine learning techniques and empirical rules and we found that combinations of
the two lead to the highest improvement.

After these initial investigations, we move to the core part of the thesis, which is
the study of second order learning algorithms for the BRNN models. More specifically,
we present a second order method for training BRNNs for the PSSP problem where the
Scaled Conjugate Gradient (SCG) is applied for the first time on these models. In partic-
ular, we present the development and implementation of our variation of the SCG which

we call the Hybrid Rectified-Scaled Conjugate Gradient (HR-SCG) learning algorithm
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for BRNN architectures. In contrast to the conventional Gradient Descent learning al-
gorithm, the HR-SCG exploits both gradient and curvature information for convergence.
The model has been tested on the PSSP problem and achieved 77.6% per residue accuracy
on a specific PSSP dataset. Moreover, it has been shown that the HR-SCG outperforms
the GD learning algorithm for BRNNs in terms of convergence time, needing approx-
imately 75% less time on PSSP datasets. Hence, the algorithm is efficient for training
the complex BRNN architectures, a feature important with big datasets and facilitates fast
training of BRNN ensembles. Furthermore, we present results from a similar study where
another second order learning algorithm has been applied on the same architecture. More
specifically, the Hessian Free optimization algorithm has been used to train the BRNN
architecture for the PSSP problem but it has achieved approximately 1% lower accuracy
results than the HR-SCG algorithm.

Finally, the latest developments and results in the Neural Networks field (i.e., Deep
Learning, Reservoir Computing etc.) have shown huge improvement in several sequential
data-related problems. Nevertheless, many of these Neural Network models, their varia-
tions and specific learning algorithms have never been used for the PSSP problem. More
specifically, there is an open field to be investigated related to the PSSP problem and
Clockwork Recurrent Neural Networks, Convolutional Neural Networks and Reservoir
Computing methods. Although these techniques have their advantages and disadvantages
compared with each other, each one has specific characteristics related to accuracy, exe-

cution time, sorting with short and long term dependencies, etc. Hence, we present results
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on a novel image-like input representation method for the PSSP problem which is used
by Convolutional Neural Networks, results of the same problem with Clockwork Recur-
rent Neural Networks, with a novel Bidirectional Echo State Network architecture and
results of our data with Long-Short Term Memory BRNN methods. Finally, we present
results on a novel approach where simple Feed Forward Neural Networks trained with
the Hessian Free Optimization algorithm have been used for the PSSP problem showing
state of the art results. The methodologies based on Convolutional Neural Networks and
Feed Forward Neural Networks trained with the Hessian Free Optimization algorithm
have both achieved approximately 80.4% Q3 per residue accuracy which are the highest
results reported in this thesis.

Overall, one of the main contributions of this thesis is on the improvement of learning
in Neural Network models for sequential data where the upstream and downstream infor-
mation is important to process a specific location of sequential data. In all types of the
studied Neural Network models, we prescribe certain methodologies, architectures and
algorithms that have advantages over known methods in terms of accuracy or quality of

results or convergence time for the specific PSSP problem.
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Chapter 1

Introduction

1.1 Motivation

The field of deriving non-linear functions to classify sequential data is currently dealt
with by a variety of Machine Learning methods. Such methods include Recurrent Neural
Networks (RNNs) [Elman, 1990], Recurrent Decision Trees (RDTs) and Hidden Markov
Models [Dietterich, 2002]. The procedure of learning sequential data becomes even more
challenging when the upstream and downstream information of a sequence is also useful
for the prediction or classification. More precisely, in this class of problems, a specific
location of sequential data is processed based on the information from left to right before
that point (the upstream information) and the the information from right to left after that
point (the downstream information). One main classification problem of sequential data,

where the information before and after a specific location of the sequence is important for
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prediction purposes is the sequence to structure problem of Protein Secondary Structure
Prediction (PSSP) [Baldi et al., 1999]. This problem is complex and needs algorithms
that can process and learn the characteristics of the sequential data, in order to come up
with better results.

The most effective models for this kind of data are RNNs and more specifically the
BRNNs [Baldi et al., 1999; Schuster and Paliwal, 1997]. BRNNs are based on RNNs’
architecture theory which efficiently incorporates temporal dynamics [Elman, 1990] . In
general, training of RNNs is an open topic because it is usually complex. The most
important training algorithms for RNNs are the Real Time Recurrent Learning (RTRL)
[Ronald and Zipser, 1989], the Backpropagation Through Time (BPTT) [Werbos, 1990],
the Conjugate Gradient (CG) [Charalambous, 1992], Hessian Free Optimization (HFO)
[Martens, 2010; Martens and Sutskever, 2011] and the Extended Kalman Filters (EKF)
[Williams, 1992; Wang and Huang, 2011]. However, only the BPTT algorithm has been
modified and developed to train BRNN architectures.

RNNs are usually combined with other methods and algorithms to improve the sys-
tem’s accuracy. Such methods include ensemble [Dietterich, 2000; Zhou et al., 2002,
2010; Li et al., 2018a; Zheng et al., 2019] and filtering techniques [Kountouris et al.,
2012], Long-Short Term Memory (LSTM) blocks [Graves and Schmidhuber, 2005; Hochre-
iter and Schmidhuber, 1997], Echo State Networks (ESNs) [Jaeger, 2001, 2007; LukoSe-
vicius and Jaeger, 2009], Conceptors [Jaeger, 2014] and Clockwork RNNs (CW-RNN)
[Koutnik et al., 2014] as architectural improvements of RNNs. Furthermore, Convolu-

tional Neural Networks (CNNs) [Krizhevsky et al., 2012] have shown superior results in
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various sequential problems [Schmidhuber, 2015; Srinivas et al., 2016; Rawat and Wang,
2017]. These methods are new established fields in the Machine Learning (ML) field
which can build high quality feature extraction procedures and achieve high-performance
classification of sequential data.

The PSSP problem [Agathocleous et al., 2010, 2016; Baldi et al., 1999; Kountouris
et al., 2012] is an important problem in the biological sciences. The primary structure
of a growing number of proteins is known. However, there is missing information with
respect to their 3D structure, which specifies their function. Besides being important for
a basic understanding of life itself, knowledge of protein structure may assist in research
against disease, providing the means for improving the general quality of life.

The motivation of this research work is to develop novel optimization algorithms and
modeling methods that can make predictions on sequential data where important infor-
mation for a specific time-step of the sequence is located upstream and downstream, and
more specifically for the PSSP problem. It is important to note that PSSP is a sequence
to structure problem which means that by time-step we refer to a specific data point of a
protein input sequence and the ‘prediction’ is actually a classification of the protein SS,
which is spatial information rather than sequential. In other words, in the PSSP problem
we classify the SS of the proteins (rather than ‘predict’ the future in any way), based
on the protein sequence. This research has its highest impact in the field of machine

learning in general by allowing cross-fertilisation of ideas between the research areas of
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analytical learning optimisation algorithms and effective implementation of practical ap-
plications for the PSSP problem, which are based on human-technology interaction and

in the longer term, improve people’s quality of life.

1.2 Problem Statement - Hypothesis

The procedure of learning sequential data with BRNNS is challenging because of the
complexity of the data and the short and long range dependencies which can be found
in the sequences. The most common algorithm which has been modified and developed
to train the BRNN architectures is the BPTT. The disadvantage of this algorithm is that
it is based on the computation of a gradient vector of the output error measure with re-
spect to the network weights, which is a time consuming and complex process. In con-
trast, the Scaled Conjugate Gradient (SCG) algorithm, which has not been developed for
the BRNN architecture, has some advantages over the gradient descent algorithms. The
SCG algorithm is a second-order algorithm, which although is a gradient descent-based
method, it has been found to be superior to the conventional BPTT algorithm in terms
of accuracy, convergence rate and the vanishing-gradient problem in simpler RNN archi-
tectures [Hochreiter and Schmidhuber, 1997]. Moreover, the Hessian Free Optimization
algorithm (HFO) [Martens, 2010; Martens and Sutskever, 2011] is a second order algo-
rithm which, further to the SGC advantages, can work very well for fast optimizing non-
convex functions such as the training objective for simple FFNNs and RNNs [Martens,

2010]. Consequently, these algorithms alleviate most of the crucial issues that a training
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algorithm for sequential data must overcome [Dietterich, 2002]. Our initial focus is on

applying these learning algorithms on the BRNN architecture:

1. How can we develop and implement SCG for the BRNN architecture?

2. How can we do the same for the HFO learning algorithm?

3. Which are the results of these methods on the PSSP problem?

4. Which are the advantages and disadvantages compared to the BPTT learning algo-

rithm?

More challenges arise when studying RNNs and and other NN models for the PSSP

problem, which raise more questions to be answered:

1. Which is the difference in the results if we use global or local information to train

BRNNs?

2. How can we improve our results with ensemble methods?

3. Which is the best machine learning filtering method for the PSSP problem?

4. Is it possible to use filtering rules to improve the PSSP results?

5. Which combination between machine learning filtering methods and filtering rules

can show the best results?

6. How can we use ESN for the PSSP problem?

7. How can we use simple Feed-forward Neural Networks trained with SCG or HFO

learning algorithms for the PSSP problem?



8. How can we use CW-RNN for the PSSP problem?

9. How can we encode protein data to be classified by CNNs?

10. Can we combine these methods with LSTM-BRNNSs to improve results?

Research has shown that some second order learning algorithms can be very efficient
and effective for training RNN models to increase the performance for several problems
[Chang and Mak, 1999; Martens and Sutskever, 2011]. Furthermore, the combination of
these methods with ensemble and filtering methods, algorithm customizations and other
novel neural network models may improve the results in terms of convergence time and
memory usage. Therefore, how efficient and effective can these methods be for the chal-
lenging PSSP problem where the upstream and downstream information of a sequence is

also useful for the prediction?

1.3 Approach

This thesis explores several research areas, RNN models and training algorithms from
the ML area and PSSP from the Bioinformatics area, with main emphasis on developing
second order learning algorithms for BRNNs and other novel neural network models for
the PSSP problem.

The BRNN architecture of Baldi et al. [1999] is considered as one of the first and op-
timal computational neural network type architectures for addressing the PSSP problem.
Initially, we implement the same BRNN architecture, but we have used a modified train-

ing procedure. More specifically, our aim was to identify the effect of the contribution
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of local versus global information, by varying the length of the segment on which the
Recurrent Neural Networks operate for each residue position considered. For training the
network, the backpropagation learning algorithm with an online training procedure was
used, where the weight updates occur for every amino acid, as opposed to Baldi et al.
[1999], where the weight updates are applied after the presentation of the entire protein.
Furthermore, we have used ensemble of 6 BRNNSs to investigate the fluctuations in our
results. Finally, our results improve even further when sequence-to-structure output is
filtered in a post-processing step. We performed a comparative study on these results,
utilizing both machine learning filtering techniques and filtering based on empirical rules
to find the combinations which lead to the highest improvement.

After these initial investigations we moved to the core part of the thesis. The BRNN
architecture is demanding high performance learning algorithms in terms of convergence
time and memory usage to be trained effectively and efficiently. We have designed and
implemented a second order method for training BRNN s for the PSSP problem where the
SCG is applied for the first time on these models. More specifically, we have presented
the development and implementation of the Hybrid Rectified-Scaled Conjugate Gradient
(HR-SCG) learning algorithm for BRNN architectures which is based on the SCG learn-
ing algorithm. In contrast to the conventional Gradient Descent (GD) learning algorithm,
the HR-SCG exploits both gradient and curvature information for convergence. Further-
more, the HFO [Martens and Sutskever, 2011], another second order learning algorithm,

has been developed and applied for the first time on the BRNN architecture.
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In addition, we have investigated and combined neural network models which have
never been developed for the PSSP problem. We have applied new novel NN meth-
ods for the PSSP problem. Firstly, we have used a new RNN model which is called
Clockwork-RNNss to investigate their performance on the PSSP results. Furthermore, we
have developed a novel Bidirectional ESN architecture for the PSSP problem. More-
over, we have developed and implemented an innovative by design combination of CNNs
with Support Vector Machines (SVMs) [Dionysiou et al., 2018] as a solution to the PSSP
problem, with a novel two-dimensional (2D) input representation method, where Multi-
ple Sequence Alignment profile vectors are placed one under another. This method gave
an image-like representation of the protein data to be manipulated by the CNN models.
Finally, we have developed and implemented a novel approach with simple Feed-forward
Neural Networks trained the the powerful HFO learning algorithm for the PSSP problem.
The results of all these methods are compared with the current most efficient method for
the PSSP problem which is based on a LSTM-BRNN network [Heffernan et al., 2017].

In general, the approaches followed in this thesis can be summarised in three specific
sections: (a) We have investigated the initial BRNN model [Baldi et al., 1999] and other
methods to improve results for the PSSP problem, (b) We have designed and developed
new second order learning methods to train the BRNN architecture and (c) we have inves-
tigated and combined new novel techniques for the PSSP problem, based on state-of-art

neural network models and learning algorithms.



1.4 Outline

This thesis is structured as follows. Chapter 2 covers the literature review on the fields
of Neural Network models and PSSP problem. Chapters 3, 4 and 5 present our work so
far. Chapter 6 shows a general discussion on our work and finishes with our conclusions.
Finally, Chapters 7 refers to the future work based on this thesis.

Chapter 2 presents a survey on Neural Network models (Section 2.1) and learning
algorithms (Section 2.2) which are related to our work. Then, the Section 2.3 presents
the background and reviews the literature of the PSSP problem. In this section we present
the information needed from the field of Bioinformatics to understand the PSSP problem,
related work to this problem and the data we have used in this thesis.

The BRNN architecture of [Baldi et al., 1999] is considered as one of the optimal
computational neural network type architectures for addressing the PSSP problem. This
architecture is investigated in Chapter 3. In Section 3.2, we present a variation of the
Bidirectional Recurrent Neural Network (BRNN) which was initially developed by Baldi
et al. [1999]. We implement the same BRNN architecture, but we use a modified training
procedure. Moreover, in Section 3.3, we present ensembles of 6 BRNNs to enhance our
results. Based on this, we show results from multiple ensemble methods. In addition,
our results improve even further when sequence-to-structure output is filtered in a post-
processing step. In Section 3.4, we performed a comparative study on the challenging
problem of filtering methods, utilising both machine learning techniques and empirical

rules and we found that combinations of the two lead to the highest improvement.
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The need to train BRNNs with more efficient algorithms than existing methods, in
terms of accuracy and convergence time, has been the initial motivation for Chapter 4.
The SCG [Mgller, 1993b], a second-order learning algorithm, which has been found to
be superior to the conventional GD algorithm in terms of accuracy, convergence rate
and the vanishing-gradient problem [Hochreiter and Schmidhuber, 1997]. In addition,
the original form of the algorithm [Mgller, 1993b] does not depend on any parameters.
Concequently, Section 4.2 introduces the mathematical analysis and development of our
proposed HR-SCG algorithm to train the BRNN architecture for the PSSP problem which
is based on the SCG algorithm. Furthermore, in Section 4.3, we present the results from
the application of another powerful second order learning algorithm, the HFO [Martens,
2010; Martens and Sutskever, 2011] algorithm, on the same architecture and problem.

The latest developments and results in the NNs field have demonstrated huge po-
tential in several data-related problems. Nevertheless, many of these NN models, their
variations and specific learning algorithms have never been used for the PSSP problem.
More specifically, there is an open field to be investigated related to the PSSP problem
and CW-RNNs (Section 2.1.4), CNNs (Section 2.1.5), RC (Section 2.1.6) methods and
HFO algorithm (Section 2.2.3). Although these techniques have their advantages and
disadvantages compared between each other, each one has specific characteristics related
to accuracy, execution time, sorting with short and long term dependencies and quality
of results. Hence, in Chapter 5 we present results on an image-like input representation
method for the PSSP problem which is used by Convolutional Neural Networks (Section

5.2), results of the same problem on Clockwork Recurrent Neural Networks (Section
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5.3), results on a novel Bidirectional Echo State Network (Section 5.4) architecture and
results on a novel method of simple Feed-forward Neural Networks trained with the HFO
algorithm (Section 5.5).

Finally, in Chapter 6 and in Chapter 7, we present our Conclusions and Future work,
respectively. More specifically, we present an overview of the problem (Section 6.1), an
overview of our approach, results and conclusions (Section 6.2), presented approaches to
other problems (Section 6.3), contributions (Section 6.4) and dissemination of this PhD
work (Section 6.5). In Chapter 7, we present future work and potential contributions

based on this thesis.



Chapter 2

Survey: Neural Network algorithms and the PSSP

problem

2.1 Introduction

This chapter deals with an extensive literature review coverage of the field of Artificial
Neural Networks (ANN) and the PSSP problem. More specifically, we present ANN
models, algorithms and methodologies which are related to this thesis. Furthermore, we

present the PSSP problem and relevant datasets which have been used in this work.

12
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2.2 Artificial Neural Networks

2.2.1 Introduction to Artificial Neural Networks

An ANN is a Biological inspired Machine Learning algorithm which consists of nodes
or "neurons" (by analogy with their biological brain neurons). Each neuron of this algo-
rithm is a McCulloch and Pitts model [McCulloch and Pitts, 1943], which can be seen on
Figure I (right). Individual neurons take single or multiple inputs and produce an output
which is a non-linear transformation, through an activation function, of the product of
the input values and their corresponding weights. Those neurons can only perform trivial
functions. However, if those neurons are ordered in layered structures, they can solve
any complex non-linear non-convex function of any problem. This complex structure is
the Multi Layer Perceptron (MLP) structure, which is an ANN. An MLP ANN usually
consists of a non active input layer, which does not consists of neurons, one or two active
hidden layers and an active output layer. The structure of an MLP ANN can also be seen
on Figure 1 (left), where the Layer i is the input layer, the Layer j is the hidden layer and
the Layer k is the output layer.

The output of a feed-forward Neural Network is given by Equation 1 and Equation 2.
The input vector values x; are entered through the input Layer ¢, which propagate the z;
values to the hidden layer j through the connecting links. Each connecting link is associ-

ated with weight vector values v;; that modify the propagated x; values. Every neuron of
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Figure 1: On the left the McCulloch and Pitts model and the right a typical MLP artificial
neural network

the hidden Layer j is calculating its output through the Equation 1, where v;; are the con-
nection weights of the neurons, x; are the outputs of the non-active neurons of the input
layer, b; is a bias term and f is an activation function. Similarly, the output of each neuron
of the output Layer £ is calculated through the Equation 2, where w;;, are the connection
weights of the neurons, y; is the outputs of the hidden layers neurons, by, is a bias term and
f is an activation function. The activation function can be any monotonically increasing
and continuously differentiable function, like the sigmoid function (Equation 3), where u

denotes the slope of the sigmoid.
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In the case where a second hidden layer is used, the feed-forward procedure is similar

with the case where we have only one hidden layer. According to the Kolmogorov’s
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theorem [Kolmogorov, 1957] an MLP ANN with two active hidden layers can create
any hyper plane and separate any type of data in space, independently of the input data
dimension or the number of classes.

The algorithm that is used to train an MLP ANN is the standard Backpropagation
which is based on the gradient decent method [Rumelhart et al., 1986a; Werbos, 1974].
This algorithm is a mathematical model which tries to find a minimization solution for an
error function, based on the Gradient decent method. The weights of an MLP ANN are
adjusted, through an iterative training procedure, so that the error function is minimized.
The Backpropagation algorithm has two phases, the feed-forward phase and the backward
phase. During the first phase, the input data is given to the MLP ANN and the actual
outputs are calculated through Equation 1 and Equation 2. Then the backward phase
takes place. During this phase, the neurons’ weights and biases, which are initialized
randomly, must be trained in a way that the algorithm creates hyper-planes to separate
in the input data space. The difference of the desired and the actual neuron’s outputs is
calculated and represents the error of the data’s propagation through the system. After
that, this error is back propagated through the network and is used to adjust the neurons’
weights and biases. The adjustments on the neuron’s weights are done with the Equation 4
- Equation 7. More specifically, the Delta rule [Widrow and Hoff, 1960] is the summation
of the Equation 4 on a weight at time ¢t — 1 to give the new weight at time ¢. Continuing on
the feed-forward Equations, the weights that are attached to the output layer are trained
with the Equation 4 and Equation 5, where wy,; is the change to the weight from neuron

J to neuron k, 7 is the learning rate, ¢; is the desired output of a neuron and zj is the
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actual output of an output’s layer neuron. Similarly, the weights that are attached to the
hidden layers are trained with the Equation 6 and Equation 7, where vy; is the change to
the weight from neuron ¢ to neuron j, is the learning rate and y; is the actual output of a

hidden layer’s neuron.

Awy; = nory; “4)
5e = (1 — 2) (s — 1) 5)
Avji = ndjxi (6)
0; = y; (1 — ) Ek: 0wy %)

2.2.2 Recurrent Neural Networks

Further to ANN, Recurrent Neural Networks (RNN), have also processing units, which
are called "neurons", and abstract synaptic connections which propagate signals through
the network. The feature that distinguished them from ANNs is that the synaptic con-
nection topology can process cycles. This topology is biologically inspired and computa-
tionally more powerful than other modelling approaches, such as Hidden Markov Models
(HMMs), which have non-continuous internal states, feedforward neural networks and

SVMs [Cortes and Vapnik, 1995a], which do not have internal states at all.
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RNNs are an architecture that can enhance the power and capacity of simple ANN,
which give them the advantage of extracting patterns and learning features of temporal
sequence data. RNNs are universal approximators of dynamical systems [LukoSevicius
and Jaeger, 2009] and are well-known for their power to memorise time dependencies
and model nonlinear systems [Medsker and Jain, 2010]. They can be trained from ex-
amples to map input sequences to output sequences and in principle they can implement
any kind of sequential behaviour. More specifically, through their recurrent connections
they develop self-sustained temporal activation dynamics. This architecture upgrades the
simple functional ANN to complex dynamical systems. Furthermore, their internal states
manipulate the input history to a non linear transformation which produce a dynamical
memory for temporal context information.

The research area around RNNss is divided in two major groups. The first group uses
RNNs from their scientific perspective, as modelling biological brain, or as engineering
tool in the fields of Computational Neuroscience and Machine Learning, respectively. In
contrast, the second group uses RNNs from their dynamical systems perspective. The
first class of this group is RNNs with main characteristic of energy-minimizing stochastic
dynamics and symmetric connections. In this class, we can find models such as Hop-
field networks [Hopfield, 1982], Boltzmann Machines [Ackley et al., 1985] and Deep
Belief Networks [Hinton et al., 2006] which are trained mostly with unsupervised learn-
ing procedures. The second class of RNNs from the dynamical systems perspective have

the characteristic of deterministic update dynamics and directed connections which are
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trained with supervised learning algorithms and are used to transform an input time se-
ries into an output time series. This category on RNN models is the main target of this
research document.

A RNN architecture is the main aspect of the model and usually determines the al-
gorithm’s performance. Through the literature we can indicate different categories which
have been proposed to organize various RNN architectures. These categories depend on
the layer that the recurrence feedbacks are returned as network’s input (hidden or out-
put layer), canonical RNNs and dynamic MLPs [Tsoi, 1998], autonomous converging
and non-autonomous non-converging [Bengio, 1993], locally and output feedback, fully
connected or non-fully connected RNNs. The most famous RNN architecture are Feed-
Forward Time-Delayed (FFTD) [Waibel, 1989], Elman-type RNNs [Elman, 1990] and
Jordan-type RNNs [Jordan, 1986]. More specifically, all the typical dynamic neural net-
work architectures are described by [Peng and Magoulas, 2008] who specify the main
four categories of RNN architecture. These architectures are FFTD, Layered Recurrent
Network (LRN) [Elman, 1990], Nonlinear Autoregressive Network with Exogenous In-
puts (NARX) [Jordan, 1986] and fully RNNs (Figure 2).

The latter type of RNN models have some advantages as ML algorithms. These mod-
els under general assumptions they are universal approximators of dynamical systems
[Funahashi and Nakamura, 1993]. Furthermore, they exhibit recurrent connection path-
ways as biological brain modules. These advantages can give solutions for a wide range
of applications. Despite their potential dynamical power, these algorithms show limita-

tions on their performance on non-linear modelling which is still an open research area.
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Figure 2: Typical dynamic neural network architectures [Peng and Magoulas, 2008](See
text for more information)

These limitations arise mostly because of the gradient-descent based learning algorithms
which are used to train RNNs. Independently, a number of training algorithms have been
proposed to train RNNs but all suffer from the same issues which are still open problems
in the field of RNNs. Firstly, during training the network parameters gradually change
in a way that the network dynamics are driven through bifurcations [Doya, 1992]. This
leads to the degeneration of gradient information which cannot guarantee the algorithm
convergence. Secondly, long training times are shown for each single parameter update.
This situation is computationally expensive and creates a bound on network’s size. An-
other problem, is the well known vanishing gradient problem. The necessary information
exponentially diffuses over time [Bengio et al., 2004] which destroys the long-range mem-
ory of the network. Finally, global control parameters of complex learning algorithms are
not easily optimized which easily can create a chaotic system.

The state-of-the-art gradient decent learning algorithms are BPTT [Werbos, 1990]
and Real Time Recurrent Learning (RTRL) [Williams and Zipser, 1989]. BPTT unfolds

the RNN and builds an equivalent feedforward NN. Then the BP algorithm calculates in
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batch learning the gradient vector and derivatives to train the network. In contrast, RTRL
calculates the gradient history and derivatives in an online mode and propagates them
forward in time. Further to the general problems of gradient decent algorithms, BPTT
and RTRL have their own drawbacks. BPTT can learn data only in batch mode and needs
a significant amount of storage due to the fact that it stores all the states of the network.
RTRL drawbacks are the large computational time of O(N*) and storage requirements.
Another method which shows that converges faster, than the ones previously mentioned,
is the Atiya-Parlos Recurrent Learning (APRL) [Atiya and Parlos, 2000]. This method
can give more robust and accurate results. The main difference of this method is the
gradient vector calculation. This method does not use a pure gradient decent model but it
calculates the gradient vector with respect to neuron activations and not only the weights
directly. Furthermore, Extended Kalman Filters [Puskorius and Feldkamp, 1994] and
Expectation-Maximization algorithm [Ma and Ji, 1998] are used to train RNNs but with

no better results.

2.2.3 Bidirectional Recurrent Neural Networks

Predictions on sequential data are particularly challenging when both the upstream
and downstream information of a sequence is important for a specific time-step. Appli-
cation examples include Phoneme Speech Recognition (PSR) [Graves and Schmidhuber,
2005; Wollmer et al., 2009] and Bioinformatics problems, such as the PSSP [Baldi et al.,
1999; Agathocleous et al., 2010; Kountouris et al., 2012] and other related problems (e.g.,

Transmembrane Protein Topology Prediction (TMPTP) [Nugent and Jones, 2009]). In
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such sequence-based problems the events are dynamic and located downstream and up-
stream, i.e., left and right in the sequence. A ML model designed for such data must
learn to make predictions based on both directions of a sequence. To predict these events,
researchers utilise BRNN architectures [Baldi et al., 1999].

A typical BRNN architecture [Baldi et al., 1999] consists of two RNNs and a Feed
Forward Neural Network (FFNN). The novelty of this architecture is the contextual infor-
mation contained in the two RNNs, the Forward RNN (FRNN) and the Backward RNN
(BWRNN). The prediction at time-step ¢, for a segment at a time-series, is performed
based on the information contained in a sliding window W,. The FRNN iteratively pro-
cesses the information located on the left side of the position # to compute the forward
(upstream) context (F£}). Similarly, the BWRNN iteratively processes the information lo-
cated on the right side of the position ¢ to compute the backward (downstream) context
(By). Hence, the two RNNs are used to implement F; and B; (Figure 3). These RNNs
correlate each sequence separately and hold an internal temporary knowledge to form the
network’s internal memory [Elman, 1990].

The BRNN architectures are usually trained with an extension of the BPTT algorithm

[Frasconi et al., 1998] with the error propagated in both directions of the BRNN.

2.2.4 Clockwork-Recurrent Neural Networks

Clockwork-Recurrent Neural Network (CW-RNN) [Koutnik et al., 2014] is a recently
proposed, innovative architecture, which was created in order to address weaknesses of

RNNs, namely their difficulty to train successfully on long-term memory (Figure 4). The
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Figure 3: The BRNN architecture: Left (forward) and right (backward) context (F; and
By) are implemented by recurrent networks , where ¢! is the back-shift operator and ¢**
is the forward-shift operator as explained in Baldi et al. [1999]. The input layer is fed
with W,, Wy, W, and W, sliding windows (see text for description of the parameters).
The output layer O, has three softmax units associated with membership in each of the
three secondary structure classes for the current residue (position t). Functions ¢(), 5(),
and 7)() are implemented by feed-forward neural networks [Baldi et al., 1999].
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reduction of the number of parameters, its improvement in performance over specific
tasks, which were tested and the manner that speeds up evaluation compared to RNNss,
are indices that overpower the simple RNNs. These advantages are due to the fact that
the hidden layer of this architecture is composed of a number of modules, where each
module is making computations at its own clock speed, as they are all assigned a clock
period. Having these modules running at different speeds, computations are constrained
to take place in different time steps and this is how both the long-term dependency and the
vanishing-gradient problems are mitigated. As a result, at each time step only a number
of modules are executed which leads to faster training and evaluation. Another feature of
this architecture is the connections between the modules. Even though the modules are
internally fully-interconnected, only faster modules are connected to slower ones and not
vice-versa. This results in a smaller number of weights which is another reason as to why

CW-RNN trains and evaluates faster than RNNs.

2.2.5 Reservoir Computing

Recent advances in the field of RNNs, known as Reservoir Computing (RC) [LukoSe-
vicius et al., 2012], facilitated the practical application of RNNs and demonstrated better
performance than classical approaches. The two pioneering RC approaches were pro-
posed in 2001, the year which appears as the beginning of this ML field, under the names
ESN [Jaeger and Haas, 2004; Ozturk et al., 2007] and Liquid State Machines (LSM)
[Maass et al., 2002]. These approaches were proposed independently by [Jaeger, 2001]

and [Maass et al., 2002], respectively. These models have their roots in Computational
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Output

Input

Figure 4: The CW-RNN architecture is similar to a simpe RNN with an input, output
and hidden layer. The hidden layer is partitioned into ¢ modules each with its own clock
rate. Within each module the neu-rons are fully interconnected. Neurons in faster modules
¢ are connected to neurons in a slower modules j only if the clock peri-od T; < 7. This
figure is reprinted from Koutnik et al. [2014].

Neuroscience, due to their architecture, and in ML, because of the learning algorithms
they use.

RC models overcome the most common problems that appear generally in RNNGs.
The general curve of RC architectures and learning avoid the gradient decent training
algorithms. A RC algorithm consists of two parts. A randomly fixed recurrent neural net-
work is created, which is called the reservoir. This part of the algorithm is responsible for
a non linear transformation of the input signal to an output sequence of temporal vectors.
Readout is the second part of the algorithm which achieves a linear transformation of
reservoir’s output to an output signal. This concept was firstly approached by [Dominey
and Ramus, 2000]. Although their research was based on cortico-striatal circuits in the hu-
man brain (empirical cognitive neuroscience, functional neuroanatomy), they mentioned

that there is no learning in the recurrent connections, only between the State units and the
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Output units. They also said that the adaptation is based on a simple associative learning
mechanism. Furthermore they mentioned that the fact that the prefrontal network relies
in fixed random recurrent connection is worth nothing. The conclusions of [Dominey
and Ramus, 2000] did not have any impact in the evolution to RC field because only in
2008 ML RC researchers became aware of each other [Bengio et al., 2013]. However,
the experimental results of [Dominey and Ramus, 2000] have approved the theory be-
hind computational RC research. Since 2001, the RC field has shown great growth in the
aspects of RC architectures, reservoir and readout learning algorithms.

Today, RC methods, have become popular and constitute one of the basic paradigms
of RNN modelling [Lukosevicius et al., 2012]. Firstly, RC methods have outperformed
classical nonlinear prediction and classification algorithms in demanding problems like
speech recognition [Maass et al., 2004; Verstraeten et al., 2005; Dominey et al., 2006;
Blanc and Dominey, 2003] and EEG signal processing [Kindermans et al., 2010; Sussillo
et al., 2012]. Secondly, they are computationally universal for continuous time, con-
tinuous value real time system models [Maass et al., 2006]. Furthermore, this kind of
algorithms have biological plausibility. The principles of RC connections have been in-
spired from architectural and dynamical properties of mammalian brains to explain and
use the abilities of accurate computations in noisy physical substrate [Haeusler and Maass,
2007], accurate timing and representation of sequential information. The latter is widely
used to explain the sequential information processing especially in the speech recogni-
tion problem [Maass et al., 2004; Verstraeten et al., 2005; Dominey et al., 2006; Blanc

and Dominey, 2003]. Finally, RC models have the ability of extensibility and parsimony
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because of the fact that the reservoir is separated from the readout. Consequently, previ-
ous learned representations are not destroyed when new items are presented as input to
the model. This can be done by adding some new outputs and train them as a different
readout.

The work of [Jaeger, 2001] generally defines a basic constructive guide for a power-
ful ESN. More specifically, a big, sparsely and randomly connected reservoir can achieve
very promising results for a lot of problem. Also this work gives guidelines on how sparse
or dense the reservoir input and feedback weights should be. Furthermore, [Jaeger, 2001]
specifies the relation of the reservoir weight matrix spectral radius with memory and
non-linearity that a task requires. The latter ensures the echo state property of each im-
plementation. Nevertheless, lots of ESN implementations have appeared in the recent
years which modify the standards of initial the ESN reservoir model. The most common
modifications refer to the factor topology. Accordingly, some of these have to do with
small world networks [Liebald, 2004] and scale free random networks [Jiang et al., 2008]
and biologically inspired connection topologies. The most important conclusion of differ-
ent topologies is the evidence of "no free lunch" rule. Another topology, which has been
suggested for an ESN reservoir, is the layered reservoirs. This idea was motivated by the
fact that a reservoir in an abstract view is just one layer of recurrent connected neurons.
Finally, problems that have been shown with the amount of time scale of a reservoir, have
been solved with the replacement of simple neurons with LSTM neurons [Schmidhuber

et al., 2007], which unfortunately increase the complexity of the algorithm.
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Training only the readout of RC methods was the main learning procedure of the
method which was prooved through some findings. More specifically, [Steil, 2005] has
executed some training RNN simulations with the APRL [Atiya and Parlos, 2000] learn-
ing algorithm and then he investigated the way that the dynamics were changing over
time. During training of RNNs this algorithm leads to functional decomposition of the
method’s architecture into slowly changing reservoir dynamics and fast adapting readout
layer. Consequently, these findings become the basis to investigate the situation of train-
ing only a readout after a recurrent component. This method shows equivalent results
with other methods which train the whole recurrent structure but it is much faster than the
others. The complexity time of such learning algorithm is O(n) [Steil, 2005] in contrast
of O(n?) [Weiskopf et al., 2004] and O(n?) [Ronald and Zipser, 1989].

The most common structure of a readout is the original one single-layer readout
[Jaeger, 2001; Maass et al., 2002]. More specifically, the training algorithm which was
proposed for this structure was the linear regression algorithm. Linear regression gave
the advantages of fast learning and simplicity in a batch learning mode. In the case of
ESN, the application of linear regression to train the readout is a straight forward task.
In contrast, the case of LSMs with spiking neurons is more complicated and needs a
low pass filtering technique between the reservoir and readout [Carnell and Richardson,
2005]. Furthermore, evolutionary algorithms have been used to train the readout [Jiang
et al., 2008]. This method did not enhance the performance of a readout but it appears

useful when temporal data do not have a desirable output at each time-step.
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In the case of on-line weight adaptation several algorithms have been proposed to
train the single layer readout. The most common algorithms for this task are Least Mean
Square approaches. The most powerful algorithms to train online readouts however is
BackPropagation-Decorrelation (BPDC) [Steil, 2005]. BPDC is used to train only the
output weights of an ESN. More specifically, BPDC uses a one-step back propagation
of errors (virtual teacher forcing), temporal memory by decorrelating of activations and
a non-adaptive linear reservoir. The linear dynamical reservoir with fixed weights re-
ceives an input signal and provides a dynamical memory. If the states of the reservoir are
maximally decorrelated then the information processing capacity is maximal. Then the
one-step back propagation is used to map the reservoir echos with the desired outputs.
Generally, this algorithm produces high quality results with low computational power.
Finally, on-line training of LSMs with firing rate-coded readout have been achieved with

reward-modulated STDP [Legenstein et al., 2008].

2.2.5.1 Echo State Networks

ESN [Jaeger, 2001] constitute a basic and one of the most powerful RC methods. The
untrained RNN of this model is called dynamic reservoir. It takes as input a sequence of
data and produces in its output temporal representations of those inputs. These represen-
tations are called echoes and are used for the algorithm’s name.

The reservoir of ESNSs traditionally has sigmoidal hidden neurons (usually using the
tahn(.) function) which generally build a nonlinear relationship between the reservoir’s

input temporal data and the output echoes. This reservoir is randomly generated and does
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not need any training procedure. The reservoir of ESNs [Jaeger, 2001] is characterized
by the echo state property. More specifically, it says that the information from previous
inputs and previous state of the reservoir must decrease gradually and should not get
amplified. Furthermore, ESN echoes are passed though a trained (usually with batch
linear regression) readout and produce the desired output. The architecture of an ESN as
it was originally designed by Jaeger [2001] can be seen in Figures 5 and 6.

The theory behind the separation of reservoir and readout is based on general ML the-
ory and on the fact that both serve different purposes. The reservoir has the ability, like
kernel methods, to expand the input sequence to a higher dimensional, rich enough state
space. In contrast, the readout has the ability to map the reservoir output representations
to desired output signals [LukoSevicius and Jaeger, 2009]. This separation gives the ad-
vantage of generating and training these sub-models separately, which will produce the
detail requirement to achieve better performance.

In Figure 5 we can see the architecture of a simple ESN by [Ozturk et al., 2007]. In
order to explain how an ESN works we assume the existence of M input units, /V internal
units and L output units. Furthermore, u(n) is the value of input units at time n, x(n) is
the value of internal units at time n and y(n) is the value of output units at time n. The
connection weights between the input and the internal units are given by an NxM weight
matrix W, the connection weights between the internal units are given by an NxN
weight matrix W, the connection weights between the internal units and the output units
are given by an Lx N weight matrix 1/ °“ and finally the connection weights between the

output units and the internal units are given by an NxL weight matrix W*e* The internal



30

Input Layer Dynamical Reservoir Read-out
IIIIIIIIII: flllllllll: ’IIIIIIIIIs
. Twir ot W : sower .
[ ] : L. [ ] - n
] - - [
[ ] - - [ ] [
] - = (] [
: s : (] =
| ] [ ]
: : : ] :
L] L [ ]
. O . » .
[ ] - : n
: S u@) 3 :
n () l' ]
. - [ .
. . ] S —
| -
e S : y(n)
: SN :
[ ] : L. :
[ ] - - [
[ ] - L n
[ - - ]
: P :
] : . []
[ ] - - [
[ ] - - n
.IIIIIIIII| .'IIII IIII'. :IIIIIIIIII- back
f w

Figure 5: The ESN network architecture [Ozturk et al., 2007]

units’ activation is calculated by Equation 8, where f() is the activation function used for
the internal units. Usually the hyperbolic tangent function is used for f(). The output of
internal units feeds the readout, which calculates the network’s output in Equation 9. The
easiest way to train this system is by linearising the system around the current state z(n)
and create a Jacobian matrix, which can be seen on Equation 10. Then a linear regression

algorithm can train the system by calculating the weight vector W (Equation 10).

z(n+1) = f(W™u(n + 1) + Wa(n) + Wy (n)) (8)

y(n+1) = fYYW"z(n+ 1)) 9)
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f(nety(n))wyy  f(nety(n))wiz ... f(neti(n))wiy
f(neta(n))wer  f(nety(n))wey ...  f(netz(n))way

J(n+1)= W =F(n)W
f(nety(n))wyr  f(nety(n))wye ... f(nety(n))wyn

) (10)

ESNs have been used in all kinds of classification and prediction problems and in most
cases they outperform the classical ML methods [Maass et al., 2004; Verstraeten et al.,

2005; Dominey et al., 2006; Blanc and Dominey, 2003; Kindermans et al., 2010; Sussillo

et al., 2012].

K input N internal units L output
unlts ——— .

Figure 6: The ESN network architecture as it was firstly designed by [Jaeger, 2001]

2.2.5.2 Other Reservoir Computing Methods

LSM [Maass et al., 2002] is the second of the two initial RC models. This model was
introduced from the computational neuroscience field independently but during the same

period with ESNs. The basic idea of the model was the concept of randomness and some
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computational properties that appear in brain’s neural microcircuits [Maass et al., 2002,
2003]. Due to the latter, LSMs are a more biologically realistic model than other RC
methods. The initial model of [Maass et al., 2002] uses spiking integrate-and-fire neurons
with dynamic synaptic connections to build the reservoir. The LSM’s reservoir is called
the liquid and temporal vectors of its output sequence are called liquid states.

An approach that typically uses a smaller number of hidden neurons than ESNs and
LSMs is Evolino [Schmidhuber et al., 2007]. Evolino uses LSTM cells [Hochreiter and
Schmidhuber, 1997] and optimises their connection weights using an evolutionary algo-
rithm.

If we exclude the variations of most known RC methods (ESNs, LSM, and Evolino)
some other models are also under the umbrella of RC. One of these models is the Tem-
poral Recurrent Network (TRN) [Dominey and Ramus, 2000]. As we have already men-
tioned, [Dominey and Ramus, 2000] were the first who introduced the concept of RC.
Their algorithms are simple Neural Networks which introduce the idea of the reservoir
and are trained with the Least Mean Square methods and a gradient decent algorithm.
Over the ML field, the RC concept has also been used for harnessing the computational
power unconventional hardware. Such work has been done by [Schiirmann et al., 2005]
and [Schrauwen et al., 2008] on analog electronics, by [NikoliAG et al., 2007] on bio-
logical neural tissues and by [Vandoorne et al., 2008] on optical computers. Finally, an
other perspective of RC is the work of [Jones et al., 2007] who have built a reservoir with

computer-simulated gene regulation network of bacteria [Jones et al., 2007]. This latter
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network takes an input sequence of chemical stimuli and produces an output of protein

levels and mRNSs measures.

2.2.6 Deep Learning and Convolutional Neural Networks

The performance of ML algorithms is heavily dependent on the choice of data rep-
resentation (features) on which they are applied. For this reason, much of the actual
effort in deploying ML algorithms goes into the design of preprocessing pipelines and
data transformation that result in a representation of the data that can support effective
ML methods [Bengio et al., 2013]. Feature engineering is the process of transforming
data into useful information vectors based on prior knowledge. The weakness of such
methods is that in most cases we do not have all the prior knowledge due to hidden vari-
ables, unknown data distributions and data patterns. Consequently, the main concept of
transforming raw data to data with useful information probably does not work and has a
negative impact on the performance of applications. The ideal scenario is the construction
of powerful algorithms which could identify the hidden features and automatically create
the data representations. These algorithms should be able to be applied to any system,
with no other human effort, for prediction and classification purposes. This can be done
by powerful Representation Learning (RepL) algorithms. In simple words, a good data
representation can enhance the performance of a predictor or a classifier, does not need
any human effort [Vincent et al., 2010] and does not need any prior information on what
exactly the problem is. However, this ideal scenario does not always work and is heavily

dependent on the data probability densities. Although representation of data is one of the
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roots of ML algorithms, RepL has been established as a ML field only in the last few
years.

In general, such categories of algorithms are Manifold Learning for low dimensional
data [Cayton, 2005], Sparse Coding for sparse data [Olshausen, 1996; Goodfellow et al.,
2012], Auto-encoders [Bourlard and Kamp, 1988; Hinton and Zemel, 1994] and Deep
Learning [Hinton et al., 2006].

Deep Learning (DeL) is a group of RepL algorithms which are useful for training mul-
tilayer models [Bengio et al., 2013]. These models can be Deep Belief Neural Networks
[Hinton et al., 2006], Deep Boltzmann Machines [Sutskever et al., 2009], Recurrent Neu-
ral Networks (very deep networks with shared parameters), Convolutional Neural Net-
works or any other multilayer model. Deep architectures are the ideal models to solve
problems with complicated high-dimensional data, which include several tasks. These
tasks can be interpreted in multiple layer architectures that have the ability to sequentially
extract all the hidden features [Hinton et al., 2006; Bengio, 2009]. The special category
of RNNs have the added advantage of processing sequential complicated high dimen-
sional data. However, training such algorithms can be very difficult (Section 2.2.2). Deep
architectures can be trained with two main techniques. The first technique is called semi-
supervised procedure and the second one is based on generalization and optimization
steps. The first technique is well defined by [Weston et al., 2008] and is using unsu-
pervised dimensionality reduction methods to extract features and then use them to train
some layers or all the layers of deep architectures. The second technique, which is the

one that we are interested in, uses pre-training techniques to initialise deep architecture
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parameters and then an optimization algorithm to optimise the learning procedure. The
basic idea of these training algorithms, which is called Unsupervised Layerwise Feature
Stacking, is that they separate each layer distinct levels of concept which are trained
separately but each higher layer in the structure needs data from the previous layers to
be trained [Bengio, 2009]. Through this procedure, deep learning algorithms can iden-
tify multiple levels of representation which consist a hierarchy of features [Bengio et al.,
2013]. Each level of deep architectures can create a higher level of data abstraction based
on lower levels of data abstraction. In contrast with manifolds of data which can destroy
the input information, the distributions that are created on the data through deep learning
are simpler and linearly separable [Bengio et al., 2013]. According to [Erhan et al., 2010],
layerwise unsupervised pre-training can help the supervised learner because the training
on intermediate representations is guided and representations are easier to be learned than
learning all the information at once. Furthermore, [Bengio, 2009] said that is easier to
learn simpler concepts first and then build higher-level ones based on the simple ones.
Both observations lead to the concept of higher-level abstraction through a process of
learning better features from already extracted features. Empirically, the data represen-
tations of layerwise feature stacking methods had better results in terms of classification
and error minimization of deep architectures [Larochelle et al., 2009; Erhan et al., 2010;
Salakhutdinov and Hinton, 2009; Goodfellow et al., 2009].

A CNN is a class of deep, feedforward artificial neural networks (NN) that has suc-
cessfully been applied to analyzing visual imagery [Krizhevsky et al., 2012; Rawat and

Wang, 2017]. CNNs were inspired by the human visual system, where individual cortical
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neurons respond to stimuli, only in a restricted region of the visual field, known as the
receptive field. The receptive fields of different neurons partially overlap such that they
cover the entire visual field. CNNs have enjoyed a great success in large-scale image and
video recognition [Srinivas et al., 2016]. This has become possible due to the large public
image repositories, such as ImageNet [Krizhevsky et al., 2012], and high-performance
computing systems, such as GPUs or large-scale distributed clusters [Simonyan and Zis-
serman, 2014]. Overall, CNNs are in general a good option for feature extraction, im-
mense complexity sequence and pattern recognition problems [Krizhevsky et al., 2012;
Rawat and Wang, 2017; Srinivas et al., 2016; Simonyan and Zisserman, 2014; LeCun and
Bengio, 1998; Srinivas et al., 2016; Bluche et al., 2013; Graves et al., 2013].

CNN s are biologically-inspired variants of MLPs. The CNN architecture consists of
an input layer (inactive), multiple hidden layers and an output layer. Generally speaking,
CNNs combine three architectural ideas to ensure some degree of shift, scale, and distor-
tion invariance: local receptive fields, shared weights, and spatial subsampling/pooling
[LeCun and Bengio, 1998]. The hidden layers of a CNN typically consist of convolu-
tional layers, pooling layers and fully connected layers. There are four main operations
performed by a CNN: (a) convolution, (b) non linearity (Rectifier Linear Unit - ReLU),
(c) pooling or sub sampling, and (d) classification. One of the major characteristics of
CNNss is that they take advantage of the fact that the input would be like an “image”, so
they constrain the architecture in a more sensible way. Every layer of a CNN transforms
one volume of activations to another through a differential function. The arrangement of

a CNN’s neurons, unlike a regular NN, is in 3 dimensions: width, height and depth.



37

The Convolutional Layer (CL) is the core building block of a CNN that basically
performs the feature extraction process. The key hyperparameter of a CL is the kernel.
The kernel is basically a 2D array initialized with random values, and it is used to compute
dot products between the entries of the filter and the input volume at any position. The
stride is another important hyperparameter that defines the amount of sliding of the kernel
across the width and height of the input volume. The result of the kernel sliding over
the width and height of the input volume is the feature map, a 2D array holding the
responses/activations of the kernel at any spatial position. Moreover, the CNNs’ ability
to handle complex sequential data relies in part to the sparse connections of neurons.
More specifically, each neuron is connected to only a local region of the input volume
(i.e., receptive field), and as a result CNNs are capable of encoding complex sequential
data correlations in their structure. The Pooling Layer (PL) is another critical block, for
building a CNN. Generally speaking, a common technique for constructing a CNN is to
insert a pooling layer in-between successive CLs. The main purpose of a pooling layer is
to (a) reduce the representation size, (b) reduce the amount of computation in the NN, and
(c) control overfitting. The PL uses a filter of a certain dimension and resizes the input
given spatially, by striding the filter across the input volume and performing usually the
MAX operation.

The last layer of a CNN is usually a fully-connected Softmax output layer. Neverthe-
less, this final step can be practically realized with any suitable classifier. In particular, a
small advantage was reported when the softmax output layer of a CNN was replaced by a

linear SVM [Tang, 2013].
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2.3 Neural Network Learning Algorithms

2.3.1 First and Second Order Learning Algorithms

A number of first and second order optimization algorithms have been developed
[Burney et al., 2007] and are routinely used for training ANNs. More specifically, first
order learning algorithms use gradient information for optimization while second order
learning algorithms use both gradient and curvature information. Compared to each other,
first and second order ANN learning algorithms, have their advantages and disadvantages
in terms of convergence rate and memory consumption. Training ANNs with specific
learning algorithms for specific problems can improve results and minimize convergence
time. Although, many first and second order learning algorithms have been developed for
ANN:Ss, not all of them have been applied on RNN architectures.

The most common first order learning algorithm for training ANNs is the Backprop-
agation learning algorithm (BP) [Rumelhart et al., 1986a; Werbos, 1974] which is based
on the Gradient Descent (GD) method. BP is a powerful method which finds the deriva-
tives of an error function with respect to the tunable weights in the network [Riedmiller
and Braun, 1993; Burney et al., 2007; Liew et al., 2016]. More specifically, the network
weight values are updated along the negative of the gradient of the error function. The
BP learning algorithm works in both batch and stochastic learning modes. In batch mode
the algorithm is summing the error gradients of all the input records in the training data

to update the weights of the model. Consequently, averaging the error gradients makes
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the algorithm robust in noise but leads to a slow convergence rate. On the other hand, the
stochastic BP is updating the model’s weights each time a new input record is presented
to the input layer of the model. In contrast to batch BP, this method can reach conver-
gence much faster because it appears to avoid local minima [LeCun et al., 1998; Liew
et al., 2016]. In general, the speed of algorithm convergence can be controlled by the
learning rate parameter which is basically the step size of the GD method. To control this
parameter global and local adaptive algorithms have been suggested [Senior et al., 2013;
Liew et al., 2016]. Furthermore, this algorithm has been modified to train RNNs as well,
by forming the BPTT learning algorithm [Frasconi et al., 1998][Werbos, 1990]. Finally,
the GD method has been improved based on adaptive estimates of lower-order moments
to optimize stochastic objective functions. This method is called Adaptive Moment Esti-
mation (Adam) and it has shown improvement of convergence time for several problems
[Diederik and Jimmy, 2015].

Superior to first order learning algorithms are second order learning algorithms. These
learning algorithms can develop a unique step size for each weight [Burney et al., 2007],
which is usually done in two procedures. Firstly, the algorithm has to decide a direction in
weight space to minimize the error function. The most common algorithm to decide the
optimum direction is the line search algorithm [Johansson et al., 1991; Charalambous,
1992]. Then, the individual step size is calculated by variants of the Newton’s method
[Robitaille et al., 1993]. Thus, the gradient information is used to update a network’s
weight vector. Although the second order algorithms have many advantages against the

conventional gradient descent optimization algorithms [Mgller, 1993b], they have some
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computational drawbacks. Calculating the Hessian matrix, which contains the second-
order partial derivatives of a function, requires O(N?) memory complexity and O(N?)
computational complexity, where N is the number of network’s free parameters. Thus,
they are impractical for very large networks.

One very common second order learning algorithm is the Quasi-Newton method (QN)
which is based on the Newton’s method [Li and Yan, 1995]. The Newton’s method points
directly to a minimum of the error surface but it has to recalculate the Hessian matrix
repeatedly. The QN method overcomes this problem by calculating an approximation of
the Hessian matrix. Furthermore, a line search method is used to calculate the appro-
priate direction vector, which is time consuming. Clearly, the QN method can converge
really fast with a good Hessian matrix approximation [Liew et al., 2016]. Furthermore,
the Levenberg-Marquardt algorithm (LM) [Levenberg, 1944; Marquardt, 1963] has been
developed following similar principles as the QN method, but with much different mathe-
matical background. This algorithm has also a mechanism to calculate an approximation
of the Hessian matrix to be more efficient in terms of time complexity and memory con-
sumption. The LM algorithm has been shown through practice that it is suitable for train-
ing modest size ANNs [Liew et al., 2016]. Concluding, the most appropriate algorithm
between QN and LM for training a specific ANN depends on the network’s size and the
problem which has to be solved.

One of the most famous second order learning algorithms is the Conjugate Gradient
algorithm (CG) [Johansson et al., 1991; Charalambous, 1992]. Most of the second order

learning methods have been derived on the assumption of a quadratic error function with
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a positively-defined Hessian matrix. The CG algorithm calculates the direction and step
size information without explicit knowledge of the Hessian matrix. Hence, the costly
computation and evaluation of the Hessian matrix, which has to be done repeatedly, can
be avoided. More specifically, this algorithm is using conjugate vector information to
avoid the Hessian matrix calculation. Then, the line search method is used to calculate
the direction in weight space to minimize the error function. Finally, a number of search
functions have been developed and used for the algorithm to minimize to the most desir-
able step size [Battiti, 1989]. The CG does not have any great requirements in terms of
storage, which makes the algorithm eligible for networks with large numbers of weights.
The SCG learning algorithm [Mgller, 1993b], which is a variant of the CG, has been
developed to eliminate the time consuming line search procedure by using a Levenberg-
Marquardt approach to calculate and scale the step size. Consequently, the algorithm is
significantly improved in terms of execution time. Finally, CG-based methods converge
to the unique global optimum of quadratic functions in at most /N steps, where /N in the
number of a model’s weight vector length. This is a great advantage against (stochas-
tic) gradient descent, which takes very large numbers of steps to converge even for simple
quadratic problems. Consequently, this method has been used to improve the convergence
time of deep learning architectures [Le et al., 2011].

Moreover, the HFO [Martens, 2010; Martens and Sutskever, 2011] second order learn-
ing algorithm demonstrated promising results on problems such as the noiseless memo-
rization problem, the 3-bit temporal order problem and the random permutation problem

[Martens and Sutskever, 2011]. In this algorithm, the method of finite differences is used
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to create a Hessian Matrix approximation. The finite differences method is based on the
model’s gradient vector, which can be calculated much faster and in a way easier than the
Hessian Matrix. The system’s gradient vector and Hessian Matrix approximation are used
to compute the system’s Taylor expansion function. Then, the Preconditioned Conjugate
Gradient algorithm (PCG) [Martens and Sutskever, 2011], which is a variant of the CG
algorithm, is used to optimize the calculated Taylor expansion function. The PCG algo-
rithm is used to give a new step size and a direction to update the system’s parameters.
This algorithm which was based on the works of Mgller [1993b,a], Pearlmutter [1994]
and Gers et al. [2002], has proven that it can manage with the Fundamental Deep Learn-
ing Problem in RNNs [Schmidhuber, 2015]. Concequnetly, HFO has been applied on
deep NN architectures and it appeared to outperform other learning algorithms in specific
sequential problems [Martens and Sutskever, 2011].

Different ANN learning algorithms appear to have advantages and disadvantages, but
only few (i.e., CG and HFO learning algorithm) have been applied to RNNs [Charalam-

bous, 1992; Martens, 2010].

2.3.2 The Scaled Conjugate Gradient algorithm

SCG is an optimization learning algorithm which has been introduced by Mgller
[1993b,a]. This algorithm is based on the conventional CG learning algorithm but does
not contain any user-dependent parameters whose values are crucial for its success. More
specifically, this learning algorithm avoids a time consuming line search per learning it-

eration by using a step size scaling mechanism.
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The basic idea in replacing the line search algorithm of CG is based on a theorem
related to conjugate directions which can be found in [Hestenes, 1980] and is well ex-

plained in [Mgller, 1993b,a]. The idea is replaying the term s, = E" (wy,)py with:

E'(w, + oxpr) — E' (wy)

Ok

S =
where sy, is the second order information, E”(wy) is the Hessian Matrix and py, is set to

the negative of the model gradient vector E'.

The SCG learning algorithm to train Feedforward Neural Networks, as appeared in the

work of Mgller [1993b,a], can be seen is the next steps:

1. Choose weight vector wy, and scalars o > 0, \; > 0, A = 0.

Set pr = —F'(wy), ry = —E'(wy,), k = 1, success=true.

2. If success = true, then calculate second order information:

g
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4. If 6, <= 0 then make the Hessian Matrix positive definite:

_ )
M= 20— )

5k = _5k + )\k|pk|2



. Calculate step size ay:

Hi = p;f?”k
a = BE
k 5

. Calculate the comparison parameter Ay:

20k [ E(wy) — E(wy + agpr)]
T

Ay =

. If A;, >= 0 then a successful reduction in error can be made:

Wi1 = Wi + Sess(k)axpy

Tk+1 = _E,(warl)

success = true

If k mod N=0 then restart algorithm:

Pe+1 = Tk+1

|Tk+1|2 — Tk4+17k
M

Dk+1 = Tk+1 + BkDr

else: B =

If Ay > 0.75, then reduce the scale parameter:

else:

44
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)\_k = )\k

success=false

8. If A; < 0.25, then increase the scale parameter:

A =N+ (06(1 — Ag)/|pe?)

9. if the steepest descent direction r;, <> 0, then set & = k + 1 and go to 2 else

terminate and return wy.; as desired minimum.

2.3.3 The Hessian Free Optimization algorithm

HFO is a second order optimization learning algorithm which has been introduced by
Martens [2010] and Martens and Sutskever [2011]. The HFO is a minimization algorithm
of the twice-differentiable objective function f : R™ = R with regards to a vector of
parameters w € R". It is based on iteratively optimizing a sequence of local quadratic
approximations of an objective function in order to produce updates to the corresponding
weight vector w of a predefined model. This idea was taken by the classic Newton’s
methods [Robitaille et al., 1993].

In the simple form of HFO learning algorithm, the iteration ¢ produces a new weight
vector w; by minimizing the local quadratic model M, () of an objective function
f(w;—1 + §), which is formed using gradient and curvature information of the previ-

ous weight vector wy;. This can be seen in Equation 11, where f(w;_1 + §) is the local
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quadratic approximation of the objective function, B;_; is the curvature matrix and §x is

the direction vector.

1
flw—y +0) = M_1(6) = fwi—1) + 7 f (we—1) "6 + §5TBt_15 (11)

Minimizing the quadratic model means that an optimal search direction §x* is found
which will be used to update the weight vector w; based on Equation 12, where J; is
the minimizer of the quadratic approximation (Equation 11) and « € [0, 1] is the step
size which is calculated by a line search method [Johansson et al., 1991; Charalambous,

1992].

Wy = w—1 + ady (12)

Solving the system in Equation 11 in order to find the minimizer 6* is computationally
impractical and sometimes even impossible because of its O(n?) complexity [Martens
and Sutskever, 2011]. In order to avoid this, the linear Conjugate Gradient (CG) (Section
2.2.3.1) algorithm is used to partially optimize the quadratic model M. The resulting ap-
proximate minimizer 0* is then used to update the weight vector w of the model Equation

12.

2.3.3.1 Conjugate Gradient for HFO

CG is a specialized optimization algorithm which has been developed specifically
for quadratic objective functions of the form ¢(z) = 32" Az — b'x, where A € R"™™"

is positive definite (z7 Az > 0 V non zero column vector z) and b € R". During the
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application of CG on a quadratic model for calculating the new weight vector w (Equation
12), the calculations of z = §, A = Btl, b = V f(wy;) are needed. Also important is
taking into account that the constant term f(wy) can be ignored.

In the worst case scenario, CG algorithm will be converged in N steps, where NV is
the number of model’s free parameters (e.g., the length of weight vector w). Even if it
does not converge, the algorithm tends to make very good partial progress [Martens and
Sutskever, 2011]. More specifically, during the optimization, the preconditioning method
is used to accelerate the CG convergence. This is possible by transforming the coordinate
system using a preconditioning matrix P. The CG algorithm using preconditioning is
described in Figure 7.

Furthermore, a number of stopping criteria are used to give a balance between the
quality of a solution and the number of iterations needed to obtain an optimum solution.
More specifically, the relative progress of optimizing M is measured by Equation 13,
where z; is the j'" iteration of CG and k is the size of the window over witch the progress
is calculated [Martens and Sutskever, 2011]. CG can be terminated when s; is below
some constant value (e.g., 0.0001). However, deciding when to terminate the algorithm
can be an extremely complex and complicated process. Consequently, a number of more
advanced stopping criteria have been proposed which have nothing to do with the value

of M [Martens and Sutskever, 2011].

(13)
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Algorithm 2 Preconditioned conjugate gradient algorithm (PCG)
inputs: b, A, zo, P
Ty Aﬂ.’n —b
o +— solution of Py = ry
Po <+ —Yo
i 0
while termination conditions do not apply deo
Ty Ui

Tit1 + T; +oup;
Tip1 T + o Ap;
Yi+1 < solution of Py =7
Tiv1¥i+1
T Yi
Pitt — —Yir1 + Bisaps
i i+1
end while
output: x;

Biy1

Figure 7: The preconditioned CG, where x = 0§, B is the curvature matrix, A = B;1,
b =Vf(wl) and P is the preconditioning matrix [Martens and Sutskever, 2011].

2.3.3.2 Damping

The CG algorithm which is described in Section 2.2.3.1, requires the curvature matrix
B to be positive-definite. However, in ANN the objective function is usually non-convex
and B may not be positive-definite. Consequently, the minimizer of M may not exists,
which means that the CG method is not applicable. Moreover, in the early stages of opti-
mization, the minimizer 6* of a quadratic approximation model M can be very large and
aggressive, which means that is often located far beyond the region where the quadratic
approximation is reasonably trustworthy. These problems usually appear is second or-
der optimization algorithms. The damping methods have introduced to overcome these

problems [Martens and Sutskever, 2011].
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Damping methods essentially restrict the optimization of M to a trust region by aug-
menting M with penalty terms. These terms are designed to encourage the minimizer of
M to remain in the region where M is a good approximation for the objective function.

There are a number of damping methods proposed by Martens and Sutskever [2011],
which are directly applicable to HFO. For the purposes of this thesis, we are using the
Tikhonov Damping method with Levenberg-Marquardt heuristic [Nocedal and Wright,
2006]. Tikhonov regularization or Tikhonov damping is one of the most well-known
damping methods. This method is penalizing the quadratic model by introducing an ad-
ditional quadratic penalty term into the quadratic model M. Thus, instead of minimizing
M, we minimize a damped quadratic model. This model can be seen in Equation 14,
where B = B 4+ Al and A > 0 are scalar parameters determining the strength of the
damping.

NI(8) = M(5) + géT(S — £(0)75 + %5%5 (14)

In Equation 14, a good value of ) is critical for the success of Tikhonov damping. Too
high values for A will result in updates which resemble gradient descent with extremely
small learning rate. This usually discards all the benefits of second order learning algo-
rithms. On the other hand, too small values for A will aggressively optimize the quadratic
function which means very large weight updates that may increase the objective instead
of decreasing it. Consequently, dynamically adjusting the value of A based on Levenberg-

Marquardt heuristic is addressing these issues. This heuristic defines a reduction ratio
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based on Equation 15, where the reduction of the objective function is compared to the

quadratic model.

J(Or—1 + 6x) — f(Or—1)

15
M1 (k) (15)

p=

Furthermore, the Levenberg-Marquardt heuristic proposes two explicit rules to dy-

namically adapt the value of \:

1. pr>§lthen)\<——
2. pr>}lthen)\<——

3. else A <+ A

Despite the clear benefits of damping, it is important to note that they are very tricky
and must be used with care. If they are overused, they produce extremely reliable updates
which are simultaneously useless since they are too small. On the other hand, if they are
not properly calibrated they can produce updates which give the best reductions of the

objective function in early stages but may stack in local minima.

2.3.3.3 Gauss-Newton Matrix

A significant problem of CG is the use of HM as curvature matrix. The problem
appears because of the inability to apply the CG algorithm to a quadratic model when
the curvature matrix is not positive-definite. While the damping methods address this

issue, there is a more direct solution to deal with this problem. Instead of using the HM
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as the curvature matrix, another matrix can be used which is guaranteed to always be
positive semi-definite. This new matrix is the generalized Gauss-Newton matrix, which
is an approximation of the HM [Schraudolph, 2002]. The benefits of using this matrix
do not only lie in the fact that it is always positive semi-definite but also it tends to work
much better than HM in terms of efficiency and performance. This is even applied to
situations where HM is positive-definite and there is no problem in using it as curvature
matrix.

A combination of Gauss-Newton matrix and a damping method in the HFO learning

algorithm produces much better updates for a model’s weight vector w.

2.3.3.4 Evaluating the Hessian-Vector Multiplication

Based on the work of Martens [2010], no explicit evaluation and storing of HM is be-
ing done for the HFO algorithm. Instead, a dot product of a HM with the arbitrary vectors
v € R™ is being computed and utilized, which cost as much as a gradient evaluation.

By the definition of directional derivatives, if we consider the HM to be the first order
derivatives Jacobian matrix of the gradient, the H (w)v product is the directional derivative

of the gradient V f (w) in the direction v. H(w)v product is given by Equation 16.

H(w)v = lim Vf(w+ev) — Vf(w)

e—0 € (16)
While this may imply a finite-differences algorithm for computing Hv at the cost

of a single gradient evaluation, in practice finite-differences suffer from numerical er-

rors, which are extremely undesirable in neural network training. Consequently, another
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method is being used which avoids those errors. This method is called Forward Differen-
tiation (FD), originally proposed by Wengert [1964] and later adjusted to neural network
training by Pearlmutter [1994].

The idea behind FD is to make repeated use of the chain rule to the value of every node
of the gradient, like in the BP learning algorithm. More precisely, an R, (X)) operator is
defined, which denotes the directional derivative of X in direction v, as shown in Equation

17.

R, (X) = lim @+ e0) = X(0) _ 90X

e c == %U (17)
Since the R operator is a derivative operator, it obeys the usual rules of differentiation
which are shown in Equations 18-20. By applying these rules recursively to the gradient

calculation algorithm, the Hv product can be efficiently computed in a way similar to BP

algorithm.

R, (X +Y)=R,(X)+ R,(Y) (18)
R,(XY) = (R, X)Y + XR,Y (19)
R,(h(X)) = (R.X)I(X) (20)

Figure 8 shows the algorithm for a simple gradient evaluation, while Figure 9 shows
the modification of the gradient algorithm by applying the rules of differentiation to com-

pute the Hv product. Similarly, Figure 10 shows the algorithm for the Gv product, which
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input: a; = z; @ mapped to (W, Wy, ..., W, by, by, ... by).

/* Forward pass */

for all i from 1 to £ do
8; W['a['_]_ -+ b%
a; + ¢;(8i)

end for

/* Loss derivative computation */

Day dL(y, 2)
0z

z=ay

/* Backwards pass */
for all i from ¢ downto 1 do
Ds; + Da; ® ¢i(s:)
DW,; « Ds;a, ,
Dbg ~ DS;‘
Dﬂ‘.g_l — W;'—Dst-
end for

output: D@ as mapped from (DW,, DW,, ..., DW;, Dby, Dby, ..., Dby).

Figure 8: An algorithm for computing the gradient of a FENN, where L(yl; tl) is one of
the loss functions of Figure 11 [Martens and Sutskever, 2011]

input: v mapped to (RW1,...,RW¢, Rby,... ,Rfl)gl}

Rag + 0 (since ay is not a function of the parameters)
/* Forward pass */
for all i from 1 to £ do
Rs; + RW;a;_; + W;Ra;_; + Rb; (product rule)
Ra; « Rs;di(s;) (chain rule)
end for
a [ OL{y.= }
oL 7 |iea 8% L(y,
RDa, « R [ 2H¥:2) = dRo, = TLWA)| g,
0z W 4 day Oz r—a
/* Backwards pass */
for all i from £ downto 1 do
RDs; + RDa,; © ¢i(s:) + Da; ® R(i(s:)) (product rule)
= RDa; ® ¢}(si) + Da;: @ ¢¢(s:) ® Rs; (chain rule)
RDW,; + RDsia;_; + DsiRa]_; (product rule)
prl — RDS{
RDa;_ + RW;DS@ + Wt-TR’DSi (product rule)
end for

output: H(0; (z,y))v as mapped from (RDW/,..., RDW;,RDb,, ..., RDb;).

Figure 9: An algorithm for computing the H (w)v product in a FENN, where L(yl; tl) is
one of the loss functions of Figure 11 [Martens and Sutskever, 2011]
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input: v mapped to (RW1,..., RW¢, Rbi,...,Rb)
Ran +— 0

/* Forward pass */

for all i from 1 to £ do
Rs; + RW;a;_; + W;Ra;_; + Rb;
Ra; + Rs;ol(s;)

end for

&*L(y, 2)

RDG.E — 522

Ra,

2=ay

/* Backwards pass */

for all i from ¢ downto 1 do
H’;DS,; — HD&{ ® (ﬁ;(Si)
RDW; «+ RDs;a;
RDI.’); — RI)Sg'
RDG.;'-I — WJRDS;-

end for

output: G(6; (z,y))v as mapped from (RDW}, ..., RDW;, RDb,, ..., RDby).

Figure 10: An algorithm for computing the G(w)v product in a FENN, where L(yl;tl) is
one of the loss functions of Figure 11 [Martens and Sutskever, 2011]

Name ] L(y, 2) V:L(y,z) | Hr |
Squared error j=z g —vl? -y |I
Cross-entropy § = Sigmoid(z) | —ylogg — (1 —y)log(1 —3) -y diag(7 © (1-9))
| Cross-entropy (multi-dim) | § = Softmax(z) — 5. [yli log[§l: i—v diag(f) — 99

Figure 11: Typical loss functions with their derivatives and HMs [Martens and Sutskever,
2011]
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is similar to Hv but simpler. All these algorithms use the loss functions which appear in

Figure 11.

2.4 Protein Secondary Structure Prediction

2.4.1 Introduction

Proteins are an integral part of every living organism. In the human body, there are
more than 30,000 unique proteins, which perform a vast array of important functions in-
side the cells. They are responsible for DNA replicating and defending against infections,
as well as for many other functions required to sustain life.

They consist of organic compounds called amino acids connected to each other in long
chains. Each protein differentiates from another in structure and in function, depending
on the serial sequence of its amino acids. This is because the amino acids that make
up a protein interact with each other, which causes the protein to fold into a specific
three-dimensional structure. The structure is always the same for a specific protein, under
certain conditions, and this is what determines its function.

Studying the structure and functions of proteins facilitate the process of manufacturing
food supplements, drugs and antibiotics to further evolve the quality of life and health-
iness of people forward. The study of existing proteins is the key for treating diseases
and solving a number of biological problems, especially nowadays when technology has

made the process computationally easier, faster and significantly cheaper.
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In order to facilitate the process of studying proteins, a hierarchical approach has
been established to better observe the structure of the proteins in the various phases of
their formation. There are four layers of organization, which are the primary structure,
the secondary structure, the tertiary structure and finally, the quaternary structure. The
primary structure is the linear sequence of the amino acids, namely the order in which
amino acids appear in the protein when unfolded. The secondary structure defines the
way local segments of a protein are oriented in space, while the tertiary structure is the
three-dimensional shape of a protein, when the amino acid chain is folded, and is the one
that determines the specific function of a protein. Finally, a number of tertiary structures
folding together forms a quaternary structure.

Despite the fact that for millions of proteins, the primary structure is well documented,
only for a small fraction of those we know the secondary and tertiary structure. This is
because the current state-of-the art methodologies and instruments for protein structure
determination are incredibly costly in terms of both money and time. This is incredibly
serious, since the primary structure on its own, tells nothing about the actual function of
the protein. This resulted in the emergence of a number of computational techniques and
algorithms that attempt to predict the secondary and tertiary structure of a protein, given
its primary, which do so significantly faster and cheaper.

One of those techniques used on this problem - PSSP is the use of Machine Learning
algorithms. These algorithms are designed based on computational statistics and mathe-
matical optimization techniques, which give computer systems the ability to learn patterns

and idiosyncrasies of data, with the goal of being able to predict and classify new ones.
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There are a number of machine learning algorithms that have been used over time on this

problem, which are discussed in this thesis.

2.4.2 Proteins

Proteins are large, complex molecules made up of hundreds to thousands of smaller
units called amino acids, which are attached to one another in long chains. Proteins are
responsible for most of the functions within organisms and this is what classifies each
protein into a specific type. For example, there are structural proteins, which strengthen
cells, tissues and organs and defense proteins, namely the antibodies, which help organ-
isms fight infection, heal damaged tissue and evade predators.

In the human body, proteins are created mostly through the consumption of foods.
When food, which contains proteins, is consumed, the digestive system breaks it down
into amino acids, which enter the blood stream. The cells then gather the necessary amino
acids from the blood stream, to create the proteins it requires to perform any of the vast
array of functions possible. A diet poor of proteins results in few amino acids entering
the blood stream which weakens the immune system, causes exhaustion, dizziness and
possibly a number of other very serious diseases. This is because the cells do not have
enough amino acids to create the proteins required for each of the functions necessary to
sustain the human body.

Consequently, understanding the significant role of proteins in all aspects of living

organisms is important. However, what is necessary is to understand the core structure
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and function of each protein, in order to facilitate the process of creating food supple-
ments, drugs and antibiotics to further evolve the quality of life and healthiness of people
forward. The study of existing proteins, is the key for treating diseases and solving a num-
ber of biological problems, especially nowadays when technology has made the process
computationally easier and significantly faster.

Amino acids, or as they are often called, the building blocks of life are the sole compo-
nent of proteins. There are more than five hundred (500) naturally occurring amino acids
known, but only twenty (20) appear in the genetic code and in the formation of proteins
(Figure 13). Consequently, those amino acids are called the essential amino acids and are
found in most, but not in all proteins.

All amino acids are composed by one functional group of amine (-NH2) and carboxyl
(-COOH), along with a side chain, the R group, specific to each amino acid. The unique
side chain is what differentiates amino acids in their physical and chemical properties.
Moreover, depending on the chemistry of their side chain, amino acids are classified into
three (3) different categories. The first and largest group of amino acids has nonpolar
side chains, while the second has polar side chains, which are uncharged. The third one
has amino acids with positive and negative charges on their side chain. This is extremely
critical to the protein structure, since these side chains can interact and bond with one
another based on their chemistry, which forms the specific part of the protein in a certain
shape. This means that the sequence and location of amino acids in a particular protein
determines where the bends and folds occur in its three-dimensional structure. Finally,

every single amino acid has its amino group positively charged and its carboxylic group
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No. Amino acid 3-Letter 1-Letter Circles Circles

code code height radii

1 Alanine Ala A 0.0 1.0
2 Arginine Arg R 0.05 0.95
3  Asparagine Asn N 0.10 0.90
4  Aspartic acid Asp D 0.15 0.85
5 Cysteine Cys C 0.20 0.80
6 Glutamine Gln Q 0.25 0.75
7  Glutamic acid Glu E 0.30 0.70
8 Glycine Gly G 0.35 0.65
9 Histidine His H 0.40 0.60
10 Isoleucine Ile I 0.45 0.55
11 Leucine Leu L 0.50 0.50
12 Lysine Lys K 0.55 0.45
13  Methionine Met M 0.60 0.40
14 Phenylalanine Phe F 0.65 0.35
15 Proline Pro P 0.70 0.30
16 Serine Ser S 0.75 0.25
17  Threonine Thr T 0.80 0.20
18  Tryptophan Trp W 0.85 0.15
19 Tyrosine Tyr Y 0.90 0.10
20 Valine Val ) 0.95 0.05

Figure 12: List of all the 20 essential amino acids [Abo-Elkhier, 2012].

negatively charged. This facilitates the sequential connection between amino acids with
covalent bonds.

The way amino acids connect to each other is by peptide bonds, in units as small
as two or three amino acids, called dipeptides and tripeptides respectively, or in much
longer chains called polypeptides, forming a protein molecule. This process is called
condensation reaction and it extracts a water molecule as it joins the amino group of one
amino acid and the carboxyl group of a neighboring amino acid. What remains of each

amino acid after the junction, is called amino acid residue.
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Figure 13: The Central Dogma of Molecular Biology: DNA makes RNA makes proteins
(Nucleic Acids Book, www.atdbio.com, 2018, May 5)

Each amino acid is abbreviated into a single (or triple) character from the English
alphabet, meaning the amino acid sequence of a polypeptide can be represented as a
sequence of characters. This sequence is considered to be the primary structure of the
protein. As a result, any change in the sequence of the polypeptide, leads to the formation
of a completely different protein, along with a completely different set of properties and
functionalities.

The way each protein is assembled is encoded in the genes of an organism, the DNA.
More specifically, the unique amino acid sequence, which forms a protein, is specified
by the nucleotide sequence of the gene encoding that protein. In the case of the human
genome, there are around thirty-thousand (30,000) genes, each of which encodes a single,
unique protein.

The way it works is that the DNA makes RNA through a process called transcription
and the RNA makes proteins through a process called translation. This constitutes The
Central Dogma of Molecular Biology, which is illustrated in Figure 13.

The genetic code is basically a set of nucleotide triplets, called codons. Each combi-
nation of a triplet designates an amino acid, and since there are four (4) unique nucleotides

(adenine - A, uracil - U, guanine - G, and cytosine -C), the total number of triplets that
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The central dogma of molecular biology
5 ——| ATG | [ TcT | [ 7AC | [AAG | [ T6C | [ 616 |— 3
3 ——| Tac | [AGA | [ ATG | [ TTC | [ACG | [cac|— 5
‘ Transcription
5 ——|AUG | [ucu | | uac | | AAG | |uec | |GuG|— 3
‘ Translation
Protein
N-terminus C-terminus
H2N [Met | [ ser |[ Tyr | Lys || cys || val |— coon

Figure 14: Example of the central dogma. The first few amino acids for the alpha subunit
of hemoglobin [Bolsover et al., 2004].

can be arranged is sixty-four (43 = 64). However, there are only twenty (20) amino acids
that can be encoded naturally, which means some amino acids can be described by more
than one codon, or some codons do not encode any amino acids. Those codons, which
do not encode any amino acids, are called the stop codons and serve as a termination
signal for the translation process, meaning that when one is found, the polypeptide, or
the protein, translated up to that point is released. Figure 14 illustrates an example of the
translation from DNA to protein (the first few amino acids for the alpha subunit of the
protein hemoglobin), while Figure 15 examines the full table of codons, along with the
amino acid or the stop signal they encode.

In order to facilitate the process of studying proteins, a hierarchical approach has
been established to better observe the structure of the proteins in the various phases of

their formation. There are four layers of organization, which are the primary structure,
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Figure 15: The amino acids specified by each codon [Alkatib et al., 2012].
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(a) Primary structure
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(b) Secondary structure

Hydrogen bonds between o helix
amino acids at different
locations in polypeptide
chain 2
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Pleated sheet

(c) Tertiary structure (d) Quaternary structure
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-

B polypeptde

Figure 16: Layers of protein structure [Gupta et al., 2017].

the secondary structure, the tertiary structure and finally, the quaternary structure. It is
important to note that this organization of many hierarchical structures is strictly used
to make things easier for people to understand how proteins are formed. In organisms,

proteins have one single structure, which is three-dimensional.
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2.4.3 Evaluation Metrics

The most informative metrics to evaluate PSSP related models are per residue accu-
racy Qs and Segment Overlap (SOV) score [Rost et al., 1994; Zemla et al., 1999].

More specifically, the Q3 metric is defined as the three-state overall percentage of
correctly predicted residues:

1
Qs = 100N

Tes

> My, @1

where N, is the total number of residues and M;; is the number of residues observed
in state ¢ and predicted in state j, with ¢ and j € {H, FE, L} (i.e. M is the number of
residues predicted correctly in state 7).

Additionally, we can calculate the per-state accuracy, as the percentage of correctly

predicted residues in a particular state:

Mii

; = 100——
@ obs*

(22)

where obs’ is the number of residues observed in state i.
Furthermore, the SOV score [Zemla et al., 1999] is defined as a measure that is based
on the average overlap between the observed and the predicted segments instead of the

average per-residue accuracy:

v(s1,82) + (81, S2)
mazov(sy, Sg)

Xlen(sy) (23)

1 mino
SOV, = 100Xﬁi Z
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where s; and s, are segments of secondary structure in conformational state ¢ (i.e. H,
E, or C), len(s;) is the number of residues in segments, minov(sy, S2) is the length of
the actual overlap of s; and s, i.e. for which both segments have residues in state 7,
maxov(sy, $2) is the total extent for which either of the segments s; and s has a residue

in state ¢. The normalization value /N; is defined as:

N; = Z len(s1) + Z len(sy) (24)

and 0(s1, $2) is defined as:

d(s1, 82) = min(mazxov(sy, sg) — minov(sy, s2)) (25)

Finally, the Matthews correlation coefficient [Matthews, 1975], C;, provides a measure

for the performance at each state:

Dili — U;0;

C; = :
\/(pi + ;) (pi + 05) (i + u;) (i + 05)

(26)
with pi = Mii7 n; = Z Z Mjka
Jj#i k#i
0; :ZMJZ and U1:ZMU
j#i JFi

2.4.4 Protein Secondary Structure Prediction

The primary structure of a protein is the discrete sequence of amino acids, which

is basically the linear succession of amino acids in the protein, if its three-dimensional
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structure was to be unfolded. Using the one-character amino acid abbreviations, count-
less possibilities of protein formation exist. However, only a tiny subset of them has
actually been studied and most of the information that exists today about proteins is about
their primary structure. This is because the primary structure of a protein can easily be
translated from the genetic material, though no useful information regarding its function
can be extracted from it. However, various learning algorithms can be applied to it, to ac-
curately predict cheaply its secondary and tertiary structure, which is also the main focus
of this dissertation.

The secondary structure is the three-dimensional form of local segments of proteins.
The most common method of describing the secondary structure of proteins was defined
by the Dictionary of Protein Secondary Structure, or Dictionary for Secondary Structure
of Proteins (DSSP) [Kabsch and Sander, 1983] in short. Single character codes are used,
based on hydrogen bond patterns, to define the eight (8) types of secondary structure that
the DSSP classifies. These are the a-helix (H), 3-helix (G), w-helix (I), S-strand (E), 3-
bridge (B), S-turn (T), bend (S), and random coil (C) for residues which are not in any
of the other conformations. This last designation is unfortunate as no portion of protein
three-dimensional structure is truly random and it is usually not a coil. A number of
"other" secondary structures types have been proposed; however, they represent a small
fraction of residues and may not be a general structural principle of proteins. It is common
to group these eight (8) categories into three (3) to describe the nature of the shape of
the specific local segment of the protein. First, the helix conformations that obviously

contain the first three categories (H, G, I), and have helical form, the sheet conformations
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that contain the -strand (E) and S-bridge (B) categories, and finally Coil conformations
which contain everything else.

The tertiary structure is the way the polypeptide chain coils and turns to form a com-
plex molecular three-dimensional shape. This structure is what actually defines the func-
tions and properties of the protein. Despite its great significance only for a very small
portion of known proteins, there is a documented and fully defined tertiary structure. This
is because of the very expensive experimental procedures required and it is still today
a very important problem. Under certain conditions, such as protein temperature or pH
change, the original three-dimensional structure is destroyed and its properties and bio-
logical functions are altered, despite of the fact that the amino acid sequence is still the
same. This confirms that the 3D structure of the protein is what defines its function and
not the amino acid sequence it is made up of. However, under normal conditions, both
secondary and tertiary structures remain the same for each protein, since the linear se-
quence of amino acids (primary structure) is always the same and the following structures
are developed through the interactions between the R groups of the amino acids. The
layers of protein structure can be seen in Figure 16.

The prediction of a protein’s SS from its Primary Structure (PS) can be an important
intermediate step to the prediction of a protein’s three-dimensional (3D) structure [Yue
and Dill, 2000; PalAz et al., 2004]. A protein’s PS is a sequence composed of 20 different
amino acid types which are connected and interact to create the SS, the local (geometrical)
structural patterns defined by hydrogen bonding patterns which may be short, mid- or

even long-range. When an experimentally-determined 3D structure is available, each
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amino acid can be assigned to a SS class, usually under a commonly accepted scheme:
helix (H), extended (E) and coil/loops (L) [Kabsch and Sander, 1983].

Knowledge of a protein’s three-dimensional (3D) structure can be an important step in
studying the functional properties of protein molecules, which are the functional workhorses
in all living cells. Experimental biochemical methods for the characterization of the
molecular structures of individual proteins in atomic detail are expensive, time consum-
ing and -frequently- inefficient [Baldi et al., 1999]. Since genomic technologies provide
genetic sequences at an ever increasing pace, the gap between our knowledge of pro-
tein sequences (primary structures) and the corresponding experimentally determined 3D
structures is widening exponentially. Even though it has been reported that a high frac-
tion of residues from proteins encoded in the human genome and other model species can
be mapped to a 3D structure (either by experimental or theoretical methods) [Schwede,
2013], the same does not necessarily hold for non-model species, especially for some “ex-
otic" pathogens, whose genomes often encode protein molecules with peculiar sequence
features. For example, of the >5000 proteins encoded in the malaria-causing parasite
Plasmodium falciparum isolate 3D7 for which no experimental structural information
exists in the Protein Databank, less than half (2459) can be mapped onto 3D structures
using sequence similarity methods (source UniProt: https://www.uniprot.org/uniprot/ ac-

cessed May 9 2019).
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2.4.5 Related work

There is more than half a century’s worth of work on the PSSP problem. A num-
ber of machine learning algorithms have been developed and optimized for this specific
problem over the years, which resulted recently in accuracies >90% [Magnan and Baldi,
2014] in the Q3 accuracy score. However, the algorithms that managed to achieve such
high accuracies (>85%) have all used additional information and structural templates
from databases, called sequence-based structural similarity of a protein. This makes the
learning process and performance much better, relative to the more pure machine learn-
ing algorithms. Without relying on these structural templates, the three-state accuracy is
now at 82-84%, which is still good, considering the complexity of the problem. There is
still room for improvement, however, considering the theoretical limit of the three state
prediction of around 88-90% [Magnan and Baldi, 2014].

Observing the Figure 17 it is clear that despite its long history it was only until the
90’s that PSSP started getting more attention. That is because some major breakthroughs
were achieved during that period which resulted in gradually increasing the three-state
accuracy of the problem significantly.

Over the past 30 years, the accuracy for secondary structure predictive methodolo-
gies has improved significantly with machine learning techniques [Qian and Sejnowski,
1988] and evolutionary information from multiple sequence alignments [Rost and Sander,

1993] having a crucial role. Several artificial neural network (ANN) architectures have
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Figure 17: Number of publications for PSSP per year [Yang et al., 2016]

been used, such as feed-forward ANNs [Rost and Sander, 1993], [Jones, 1999], bidirec-
tional recurrent ANNs (BRNNs) [Baldi et al., 1999], [Pollastri et al., 2002], [Pollastri
and McLysaght, 2005] and cascade-correlation ANNs [Wood and Hirst, 2005][Chen and
Chaudhari, 2007], whilst SVMs have been proven successful over the past decade [Kies-
lich et al., 2016], [Hua and Sun, 2001], [Karypis, 2006], [Kountouris and Hirst, 2009].
Other methods used hidden Markov models (HMMs) [Karplus et al., 1999], [Lin et al.,
2005], multiple linear regression [Pan, 2001], [He and Pan, 2005] and nonlinear dynamic
systems [Green et al., 2009], whereas methods like JPred [Cuff et al., 1998] make con-
sensus secondary structure prediction. More recently, knowledge-based methods, such
as PROTEUS [Montgomerie et al., 2006] and HYPROSP [Wu et al., 2004], utilised

structural information, whilst the predictive accuracy was further improved through the
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use of remote homology information [Mooney and Pollastri, 2009]. A brief review
of these methodologies can be found in Kountouris and Hirst [2009]. Furthermore, a
more recent review presents all the latest developments on the field of PSSP which have
achieved more than 80% per residue accuracy [Yang et al., 2016]. These results rely
on increasingly larger databases of protein sequences, the use of templates and power-
ful deep learning models. More specifically, a method based on Deep Convolutional
Neural Fields (based on Convolutional Neural Networks) [Wang et al., 2016] and the
MUFold-SS method [Fang et al., 2018] have shown promising results. Finally, the work
of Heffernan et al. [2017], which is based on LSTM [Hochreiter and Schmidhuber, 1997]
BRNNSs, has shown an 84% Q3 accuracy which is one of the highest scores reported so
far [Yang et al., 2016]. These methods can improve one of the most common drawback
of the majority of PSSP methods, i.e., the failure to recognise long-range interactions
between [-strands leading to the formation of (5-sheets. Moreover, recent research ef-
forts demonstrate evidence that this issue may have arisen by the use of small and/or
non-representative datasets [Kieslich et al., 2016]. Current state-of-the-art methods for
predicting protein SS from PS are based on ML classifiers fed with sequence profile in-
puts and achieve around 82%-84% Q3, whereas the SOV metric [Zemla et al., 1999;
Zhang et al., 2011] is circa 73-75.

Furthermore, several PSSP prediction methodologies have used a multi-step process
with ensemble methods [Dietterich, 2000; Zhou et al., 2002, 2010; Li et al., 2018a; Zheng

et al., 2019] and filtering techniques [Kountouris et al., 2012] to improve the quality of
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results. Ensembles reduce the mis-predicted residues by averaging the results of mul-
tiple classifiers. For example, these methods show improved generalization capabilities
that outperform those of single networks [Granitto et al., 2005a]. However, for aggrega-
tion to be effective, the individual networks must be as accurate and diverse as possible.
The seminal work of Baldi et al. [1999], Pollastri et al. [2002] have shown results on the
SSpro method where they have used an ensemble of 11 BRNNs to achieve a prediction
accuracy of 78%. Moreover, the SCRATCH server uses the SSpro 5 method trained on
newer datasets to achieve an accuracy of 79% [Cheng et al., 2005; Magnan and Baldi,
2014]. This method has been trained and validated on a large dataset of approximately
11000 sequence profiles, using an elaborate training process where individual BRNNs
were trained on different subsets of the training data. Furthermore, this method uses an
ensemble of 100 BRNNs. With SSpro 5 these authors introduced an additional step of
using the observed secondary structure from homologs in the PDB to infer the final pre-
diction, reaching an accuracy of approximately 92%. In addition, filtering techniques
remove conformations that are physicochemically unlikely. For instance, helical confor-
mations in proteins usually consist of at least three, four or five residues for 3,¢-helix,
a-helix and 7-helix, respectively. Since the different types of helices are usually grouped
in a single category by PSSP methods, a predicted helical structure would be expected
to have a minimum number of three consecutive residues in order to fulfill geometric
and hydrogen-bonding requirements. Hence, predictions of isolated helical residues are
physicochemically unrealistic, because one residue cannot form a helix. To tackle this

problem, both machine learning algorithms [Chen and Chaudhari, 2007] and empirical
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rules have been used in the past [Rost and Sander, 1993; Salamov and Solovyev, 1995;
Wood and Hirst, 2005] with variable levels of success, highlighted in a comparative study

[Kountouris et al., 2012].

2.4.6 Data

High quality datasets for training and validation purposes are mandatory when con-
structing a prediction model. For the purposes of this thesis, we have used the CB513
dataset [Cuff and Barton, 1999], which is a non-redundant dataset consisting of 513 pro-
tein sequences and has been heavily used as a PSSP benchmark dataset. Furthermore,
we have also used a much bigger non-redundant dataset called PISCES [Wang and Dun-
brack Jr, 2003; Kieslich et al., 2016], consisting of 8632 protein chains.

Knowledge of a protein’s three-dimensional (3D) structure can be an important step in
studying the functional properties of protein molecules, which are the functional workhorses
in all living cells. Experimental biochemical methods for the characterization in atomic
detail of the molecular structures of individual proteins are expensive, time consuming
and -frequently- inefficient [Baldi et al., 1999]. Since genomic technologies provide ge-
netic sequences at an ever increasing pace, the gap between our knowledge of protein
sequences (primary structures, PS) and the corresponding experimentally determined 3D
structures is widening exponentially. Even though it has been reported that a high frac-
tion of residues from proteins encoded in the human genome and other model species can

be mapped to a 3D structure (either by experimental or theoretical methods) [Schwede,
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2013] the same does not necessarily hold for non-model species, especially for some “‘ex-
otic" pathogens, whose genomes often encode protein molecules with peculiar sequence
features. For example, of the >5000 proteins encoded in the malaria-causing parasite
Plasmodium falciparum isolate 3D7 for which no experimental structural information
exists in the Protein Databank, less than half (2459) can be mapped onto 3D structures
using sequence similarity methods (source UniProt: https://www.uniprot.org/uniprot/ ac-
cessed May 9 2019).

As an intermediate step for elucidating protein structures at atomic resolution (or
even as a compromise to the lack of such information), protein secondary structures (SS)
may provide lower resolution structural information. Protein secondary structure roughly
refers to (mostly) local geometrical structural patterns formed by the folded polypeptide
chains (linear polymers typically composed of different combination of 20 amino acid
residues). At the molecular level SS elements are usually defined by short-, mid- or
even long-range hydrogen bonding patterns between amino acid residues within the same
or (less frequently) different polypeptide chains. A commonly accepted scheme assigns
amino acid residues from an experimentally derived 3D structure into three SS classes:
helix (H), extended (E) and coil/loops (L).

Such information can be very useful both for providing constraints in efforts for pre-
dicting protein 3D structure, or as low-resolution -yet useful in several practical aspects-
structural information. Current state-of-the-art methods for predicting protein SS from
PS are based on ML classifiers fed with sequence profile inputs and achieve 75-80% per

residue accuracy (Q3); consensus or ensemble methods raise this figure to a few points



75

higher than 80% [Kieslich et al., 2016]. The most common drawback of the majority of
PSSP methods is the failure to recognise long-range interactions between [-strands lead-
ing to the formation of 3-sheets, even though recent research efforts demonstrate evidence

that this issue may have arisen by the use of small and/or non-representative datasets.

2.4.6.1 Sequence Databases

There are millions of documented proteins in various protein databases such as Protein
Information Resource (iProClass), Protein Data bank in Europe (PDBe), Protein Data
bank in Japan (PDBj) and RCSB Protein Data Bank. In those databases, information
regarding protein names, length, structures (primary, secondary, tertiary and quaternary)
exists, as well as many other biological information related to proteins. Those databases

were used to extract protein information to create the datasets used in PSSP.

2.4.6.2 Data Selection Criteria

Initially, we reduce redundancy of sequence datasets based on sequence similarity
using Cd-hit [Li and Godzik, 2006], thus keeping only representative sequences for ob-
taining meaningful training and validation datasets.

Itis of great importance to choose a suitable data set so that our models can be properly

trained, and several criteria should be fulfilled for the selection process:

1. We retained only entries determined by X-ray diffraction, for which we can apply
the resolution as a quantitative selection measure. In particular, a 3.0 A threshold

was used to discard structures of insufficient/questionable quality.
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2. We discarded entries with physical chain breaks, as empirically identified by at
least one pair of successive C'a atoms with a distance longer than 4.0 A, as well as

proteins with large segments of undefined secondary structure.

3. Chains with a length of less than 30 amino acids were discarded. This rule has been
set after some initial experiments where we have noticed that chains with less than
30 amino acids are predicted with almost 100% ()3 accuracy. This usually increases
the overall results in a way that the (3 accuracy is not representative for a specific

dataset. This rule has been also used by Baldi et al. [1999].

4. DSSP [Kabsch and Sander, 1983] (see below), should provide a valid output file

for any chain retained in the dataset.

2.4.6.3 Secondary Structure Assignment

The DSSP [Kabsch and Sander, 1983] (URL: http://swift.cmbi.ru.nl/gv/dssp/, ac-
cessed 28/01/2018) defined a standardized format of categorizing the secondary structures
of a protein. In this format, there are eight (8) different classes of secondary structures,
based on their shape and they are represented by a capital English letter. There are the
H (a-helix), G (31p-helix), I (7-helix), E (extended (-strand), B (isolated [-bridge), T
(turn), S (bend) and C (other/coil) (Figure 18) for residues which are not in any of the
other conformations. This last designation is unfortunate as no portion of protein three-
dimensional structure is truly random and it is usually not a coil. A number of "other"

secondary structures types have been proposed; however, they represent a small fraction
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of residues and may not be a general structural principle of proteins. It is common to
group these eight (8) categories into three (3) to describe the nature of the shape of the
specific local segment of the protein, which is the way they are categorized in this disser-
tation. More specifically, we reduce class assignments from the eight secondary structure
(SS) types provided by DSSP (i.e. a-helix (H) , 310-helix (G) , w-helix (I) , S-strand (E)
, B-bridge (B) , S-turn (T), bend (S) and ‘other’ (°.”)) into three SS states (Helical: H, G;
Extended: E, B; Random coil/Loop: I, T, S, ‘). From here onwards, we refer to these
states as H, E and C respectively. DSSP results were fetched from the DSSP website
(URL: http://swift.cmbi.kun.nl/gv/dssp/, accessed 20 April 2009) and transformed to the
3-state representation by an in-house parser. Since several protein chains contain seg-
ments of disordered regions where DSSP does not produce any output, for the purposes

of this work we have decided to exclude any such entries.

2.4.6.4 Multiple Sequence Alignment Preprocessing

Furthermore, Multiple sequence alignment (MSA) profiles have been used for data
preprocessing and PS encoding [Rost, 1996]. MSA profiles have been shown to enhance
machine learning-based PSSP, since they incorporate useful evolutionary information for
the encoding of each position of a protein.

MSAs have been shown to significantly increase protein secondary structure predic-
tion accuracy in recent applications [Rost and Sander, 1994]. This is because structure
is considered to be more conserved than sequence [Rost and Sander, 1994]. Every posi-

tion within an alignment contains an evolutionary record. We encode each input residue
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with a 20-dimensional vector, where ordinates correspond to the frequencies of the dif-
ferent 20 amino acid residues at the respective column of the MSA. Apparently, encoding
for single sequences at the input reduces to the orthogonal encoding scheme. For the
polypeptide chains collected with the previously described procedure, we have utilised
unweighted profiles available from the HSSP database [Schneider and Sander, 1996]
and from the PSI-BLAST [Altschul et al., 1997] search against the NCBI-NR (NCBI:

http://www.ncbi.nlm.nih.gov/) database.

2.4.6.5 The CB513 Dataset

CB513 dataset constitutes the major dataset of this thesis. It has been used as a bench-
mark dataset in all the methods appeared in this work. The origin of the CB513 [Cuff and
Barton, 1999] dataset was the dataset of Heinz-Uwe Hobohm (Pdb Select25, 2009) in
2009. This dataset originally contained 4019 proteins, with maximum similarity per pro-
tein pair of 25%. This is incredibly important in order to avoid a problem called selection
bias, where the data sample is not truly random and there is no even representation of all
classes of the problem. In selection bias, the trained model learns some classes better than
others, which results in poor classification/prediction on patterns in the testing set, which
belong to a poorly represented class on the training dataset.

From the initial 4019 proteins, only 513 finally remained. This is due to three main
reasons. First, proteins had to be in the PDB database and be encoded in the DSSP
format. Second, the secondary structure of those proteins should have been determined

by the X-Ray crystallography method or by the Nuclear Magnetic Resonance (NMR)
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Figure 18: Matrix with the abbreviations of the secondary structures grouped in 8 and 3
classes

method. Finally, there was some additional specific requirements, regarding both the
structure of amino acids in a protein as well as the clarity of the structure determination
by the X-Rays, Those conditions had to be set and followed, in order to create a dataset
which would actually be useful for the PSSP problem without negatively influencing the

classifications.

2.4.6.6 The PISCES Dataset

PISCES dataset [Kieslich et al., 2016] has also been used in this thesis. This dataset
contains 8632 protein sequences which have been retrieved from the PISCES protein
culling server [Wang and Dunbrack Jr, 2003]. The sequence identities are obtained from
PSI-BLAST alignments with position-specific substitution matrices derived from the non-
redundant protein sequence database.

PISCES dataset is based on a percent identity cutoff of 25% and resolution cutoff
of 3.0 . Furthermore, an R-factor cutoff of 1.0 was used for further evaluation of the

robustness of developed models.



Chapter 3

BRNN input sliding window and post-processing methods

3.1 Introduction

Successful protein secondary structure prediction is an important step towards mod-
elling protein 3D structure, with several practical applications. In the last four decades
several PSSP algorithms have been proposed but still there is room for improvement. This
improvement can be even achieved from enhancements on models or application of ML
techniques on existing methods.

The BRNN architecture of [Baldi et al., 1999] is considered as one of the optimal
computational neural network type architectures for addressing the problem. More specif-
ically, in this chapter, we present a variation of the Bidirectional Recurrent Neural Net-
work (BRNN) which was initially developed by Baldi et al. [1999]. We implement the

same BRNN architecture, but we use a modified training procedure. More specifically,

80



81

our aim is to identify the effect of the contribution of local versus global information on
the PSSP problem, by varying the length of the segment on which the Recurrent Neural
Networks operate for each residue position considered. Our results with a single BRNN
are better than Baldi et al. [1999] by three percentage points (Q3) and comparable to
ensembles of BRNN models’ results which appear in Baldi et al. [1999]; Pollastri et al.
[2002]; Cheng et al. [2005]; Magnan and Baldi [2014]. Moreover, we have used ensem-
bles of 6 BRNNs to enhance our results. In addition, our results improve even further
when sequence-to-structure output is filtered in a post-processing step, with a novel Hid-
den Markov Model-based approach. Filtering of protein secondary structure prediction
aims to provide physicochemically realistic results, while it usually improves the pre-
dictive performance. We performed a comparative study on this challenging problem,
utilising both machine learning techniques and empirical rules and we found that combi-

nations of the two lead to the highest improvement.

3.2 Training BRNN with weight updating for each residue

We have implemented the same BRNN architecture as Baldi et al. [1999], but we have
used a modified training procedure. More specifically, our aim is to identify the effect of
the contribution of local versus global information, by varying the length of the segment
on which the Recurrent Neural Networks operate for each residue position considered.
For training the network, the backpropagation learning algorithm with an online training
procedure is used, where the weight updates occur for every amino acid, as opposed

to [Baldi et al., 1999], where the weight updates are applied after the presentation of
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the entire protein. Our results with a single BRNN are better than [Baldi et al., 1999]
by three percentage points (Q3) and comparable to results of [Baldi et al., 1999] when
they use an ensemble of 6 BRNNs. In addition, our results improve even further when
sequence-to-structure output is filtered in a post-processing step, with a novel Hidden
Markov Model-based approach.

In the introductory work of BRNNs for PSSP [Baldi et al., 1999], for each position in
a sequence presented to the network, an input window is formed centered around this po-
sition. During the training phase, the protein is processed in its entirety before the weight
updates are made. In this work, our aim is to investigate how the prediction accuracy
could be improved by: (i) updating the weights at every residue, which in a way consti-
tutes a form of dynamic training and is more context-sensitive, and (ii) using different
filtering approaches (a novel method based on Hidden Markov Models and a cascaded

feed forward Artifical NN).

3.2.1 Data Collection and Preprocessing

In order to train and validate our models, we need a set of high quality data consisting
of proteins with experimentally determined 3D structures deposited in the RSCB Protein
Data Bank (PDB) (URL: http://www.pdb.org/, accessed 20 April 2009). Moreover, the
resulting dataset should be maximal (in order to capture the knowledge we currently have
available on protein structures) but also non-redundant, to avoid poor generalisation of the
BRNN. For this purpose we utilised the PDBSelect25 dataset (URL: http://bioinfo.tg.th-

giessen.de/pdbselect/, accessed 20 April 2009), which is regularly produced by analysis
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of the PDB with the algorithm described in [Hobohm et al., 1992]. This dataset contained
4019 polypeptide chains that shared less than 25% overall pair-wise sequence identity.
These data have been preprocessed based on the methods described in Sections 2.3.6.1-
2.3.6.4 . Consequently, we started with a dataset containing a total of 4019 protein chains,
of which 2656 corresponded to structures determined by X-ray crystallography. Follow-

ing the above procedure we ended up with 612 protein chains.

3.2.2 Modified Training Procedure for the BRNN Architecture

A NN must accept the amino acid at its input with all the necessary information that
it needs in order to produce the right output. Taking into account that the formation of
different secondary structural elements depends on the interaction between neighboring-
in-space (not necessarily in sequence) amino acid residues,we chose the BRNN archi-
tecture for its ability to encapsulate information included in the amino acid residues that
are coming before and after the residue at the examined position ¢; where ¢ denotes the
discrete time index in [1, 7], with T being the total length of the protein chain.

The BRNN we have used in this work is a modified version of the one shown in
Figure 3 (Section 2.1.3). The RNNs are used for taking into account the information con-
tained in a local segment of length L centered around position ¢. The FRNN processes
Jj = (Ls — 1)/2 amino acid residues located on the left side of the segment, computing
iteratively from the far left side of the window (i.e., in position ¢ — j) and moving to-
wards the right until position t (inclusive) by taking into account a sliding sub-segment

of length S1. The BWRNN processes the amino acids located on the right side of t, in
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a similar symmetric way. During the recurrent network processing, a kind of memory
is being formed since the NN correlates each sequence separately and holds an internal
temporary knowledge [Elman, 1990]. The output from the two recurrent NNs and the
output from the FFNN are correlated and predict the secondary structure state for residue

t as indicated in Equation 27.

Ot = n(Ft7Bta-[t) (27)

where 7)(.) is realised by the FFNN, Ft is the forward (upstream) context, Bt is the back-
ward (downstream) context and It is the input vector at time (sequence position) ¢t. In
the current work, we use an input vector encoding a single residue (corresponding to a
window size of unity in Baldi’s [Baldi et al., 1999] implementation). The contextual in-
formation from the protein is gathered into a pair of vectors Ft and Bt. Only after the Ft
and Bt are computed, the algorithm can predict the state (as in [Baldi et al., 1999]). In or-
der for the amino acids to be examined, two learnable non-linear state transition functions
¢() and () are applied. Algorithmically this is shown in Figure 19.

Once the data located within the input vector enters the BRNN, the Mean Square
Error function is applied and is used by the Backpropagation algorithm [Rumelhart et al.,
1986a] for the BRNN to be trained. Training is performed based on two alternative output
encoding schemes: (i) an orthogonal, and (ii) a "winner-take-all" (WTA). The former
scheme has three output units with binary values giving eight possible combinations, three
of which are assigned to the three reduced SS states, and the rest are arbitrarily considered

to be classified as random coil. The WTA encoding scheme, has three output units as well
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Figure 19: Modified Training Procedure for the BRNN Architecture, where v € (0, 1]
is a modified shift operator, which in effect adds a constant weight based on the impor-
tance given to the outputs of the FRNN and BWRNN. Intuitively, we chose 7 < 1 (thus
v —1 > 1) to reflect the fact that protein chains are synthesised from the N-terminal to
the C-terminal (i.e., from the left to the right side of the sequence respectively) with some
secondary structural elements forming co-translationally [Baram and Yonath, 2005].
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(corresponding to the reduced SS states) and assigns the SS state of the winning neuron
as the prediction for the examined residue. For both schemes, once the error is calculated,

the delta rule is applied to update the network weights.

3.2.3 Results and Discussion

A set of optimal NN parameters were empirically found following experimentation.
For training the network, the dataset of 612 polypeptide chains was randomly split to 513
proteins for training and 99 proteins for testing. Firstly, we explored BRNN architectures
with two hidden layers. More specifically, the FFNN was composed of two fully intercon-
nected hidden layers with 12 neurons each, whereas the BWRNN and FRNN consist of
two hidden layers each, with the first hidden layer having 13 and the second 12 neurons.
Our first experiments, utilising single sequences at the input, achieved a highest result of
66.59% (Q3) with optimal parameters: v = 0.7, learning rate o = 0.8, momentum m =
0.0, Ls = 15, SI = 3, and orthogonal output encoding. The next set of experiments was
performed using the MSA profiles as input. For 11 out of the 612 protein chains of the
initial data set an HSSP profile was not available, thus the data set was slightly reduced
to a total of 601 chains, which was again randomly split into a training and a test set of
504 and 97 protein chains respectively. Initially, the predictive accuracy value reached
on average 70.82% (Q3, with the aforementioned optimal parameters), almost 4% higher
than when training with single sequences. In order to improve the performance, we de-
cided to apply a randomisation procedure on the data at every iteration (i.e., when all the

training data is passed through the network). We consider randomisation to be equivalent
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to the insertion of noise during training, which could theoretically improve the results. As
predicted, randomisation does indeed improve the prediction accuracy, as illustrated in
Table 1. 1t has to also be noted that large L values gave better results than smaller ones.
We experimented with L values up to 60 (where data sets were modified accordingly to
exclude sequences shorter than L ), and from the results it was obvious that the optimal
L was 31 (which concurs with the input window size of [Baldi et al., 1999]. As it can
be seen from Table I the best result is 73.92% (Q3) accuracy; the corresponding SOV
measure is 63.02. Experimentation with varying the number of neurons in all the layers
of the constituent networks of the BRNN did not give any significant improvement in the
results reported above.

Secondly, we decided to reduce the complexity of the BRNN architecture by using
a single hidden layer. We also changed the output encoding to WTA. In addition, we
experimented with different hidden layer sizes and the optimal results (shown in Table 2,
columns 1 and 2) were obtained with: (i) a FFNN of 15 hidden neurons combined with
RNNs of 17 hidden neurons (rows 1-4), and (ii) a FFNN of 51 hidden neurons combined
with RNNs of 41 hidden neurons (rows 5-8). In order to assess whether these predictions
are significantly different, we performed four repetitions of each configuration (see Table
2), and descriptive statistics were calculated (data not shown). For the Q3s resulting
for the two configurations no statistically significant difference could be observed, with a
non-parametric Mann-Whitney test (p-value=0.57). As we can see from the results shown
in Table 2 there was a significant improvement of the Q3 prediction accuracy measure (up

to 76.07%) and a SOV of up to 65.36 compared to architectures with two hidden layers.
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Ly 15 17 19 21 23 29 31
Q3% 7294 73.14 72779 71.80 73.09 73.41 7392
Table 1: Prediction accuracy results with a BRNN architecture with two hidden layers for
different sizes of the local context window L,. MSA profiles were used as input (for all
parameter values, see text).

Knowing that filtering the initial sequence-to-structure network outputs improves the
prediction accuracy (see [Chen and Chaudhari, 2007] and references therein), we decided
to explore this possibility on our BRNN architectures which gave the best results (i.e.,
with one hidden layer). Two filtering approaches were employed, one based on a novel
Hidden Markov Model (HMM) and one based on a cascaded Artificial NN (ANN, similar
to the structure-to-structure network of [Rost and Sander, 1993]) for comparison. Ac-
cording to the results (shown in Table 2, columns 3-6), both filtering approaches improve
the results, in particular there is a significant increase in the SOV values (in the order of
up to 10%). More specifically, for both configurations the HMM filtering was produc-
ing significantly higher SOV values (Mann-Whitney test: p-value = 0.03 for both cases)
compared to the unfiltered results. In addition, the ANN filtering produced significantly
higher SOV values only for the second configuration (Mann-Whitney test: p-value =0.03)
but not for the first one (p-value=0.2). The increase in SOV was expected, since both
filtering procedures are known to eliminate biologically irrelevant predictions, especially
in cases where isolated residues are predicted in a SS state. For our best achieved results,
further analysis regarding the details of the prediction in different SS states has been con-
ducted. More specifically, we counted all possible instances of observed versus predicted
outcomes, through which confusion matrices were created, as shown in 7able 3.

Three are the main observations from the confusion matrices of Table 3:
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Q3% SOV Q3% & HMM SOV & HMM Q3% & ANN SOV & ANN
76.07 64.32 76.57 70.32 76.60 71.90
75.32  64.66 75.17 67.67 7547 72.90
75.14  62.12 76.38 68.13 75.59 63.05
74.81 65.36 74.69 67.99 75.11 69.88
75.26  64.53 75.75 69.55 76.04 70.40
7549 6445 75.90 69.51 76.33 72.91
76.07 6243 76.84 69.15 76.44 71.19
75.26  65.21 75.90 69.09 73.61 71.32

Table 2: Prediction accuracy results with a BRNN architecture with one hidden layer,
randomized input, WTA output encoding and MSA profiles as input. The first four rows
correspond to a BRNN architecture with a FENN of 15 hidden neurons and RNNs of
17 hidden neurons and the last four rows to a BRNN architecture with a FFNN of 51
hidden neurons and RNNs of 41 hidden neurons. The rightmost columns correspond to
the performance metrics after filtering with an HMM and a feed forward ANN.

Obs vs Pred H E C H E C
(a) (b)
H 62.63 339 3398 | 71.65 546 22.89
E 722 45.03 47.74 7.50 59.85 32.65
C 655 431 89.12 | 8.01 720 84.79
(c) (d)
H 73.24 439 2237 | 7274 416 23.37
E 577 60.62 33.61 0.00 57.99 4201
C 87 5724 84.01 0.00 1421 85.79
Table 3: Confusion matrices, showing the distribution of predictions for the three sec-
ondary structure states, for the best performing configurations: (a) for the best configura-
tion listed in Table I giving a Q3 of 73.92%, (b) best results of the unfiltered configuration
shown in Table 2 giving a Q3 of 76.07%, (c) best results of the configuration shown in
Table 2 filtered with a HMM giving a Q3 of 76.57%, and (d) best results of the config-
uration shown in Table 2 filtered with an ANN giving a Q3 of 76.60%. Note that the
displayed values correspond to the fraction of predicted residues with a given observed
state, expressed as a percentage.
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1. Helices (H) and loops (C) are pretty accurately predicted.

2. Extended structures (E) suffer from under-prediction. However, the novel HMM-

based filtering method seems to partially overcome this problem.

3. Most of the incorrect predictions involve the loop secondary structure state. Ob-
servation 1 was expected since (i) most other works on PSSP report similar trends,
and (i1) H and C are the most populated states in our datasets as opposed to strands
(observation 2). For observation 3, we believe this could be an artifact of our output
encoding scheme. It is worth pointing out that the ANN filtering method (see Table

3d) completely eliminates false predictions in the ‘H’ class.

3.2.4 Conclusions

In an attempt to tackle the PSSP problem, our modified training procedure for the
BRNN, where the main modification is the updating of the weights for each residue,
gives a prediction accuracy of Q3=76.07% with respective SOV = 64.32, which is better
than the state-of-the-art results of [Baldi et al., 1999] (Q3=73.6%) and clearly comparable
to the results obtained in [Baldi et al., 1999] when an ensemble of 6 BRNN based predic-
tors was used (i.e., Q3=75.1% on average). Even though we have a slight computational
overhead with our approach, where weight updates occur for each residue presented to
the BRNN, in practice our BRNNSs train (in the worst case) within a couple of hours, and
certainly we assume that (for most network parameter sets) our single BRNN would be

computationally cheaper than the ensemble of 6 BRNNs reported in [Baldi et al., 1999].
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Training time is not an issue for this type of applications, since it not anticipated that the
BRNNs will have to be trained very frequently; the most important issue in this applica-
tion is the prediction accuracy. Certainly, an exact comparison with [Baldi et al., 1999]
cannot be made, unless the same training and testing sets are used, but even with that
the optimal connectivity of Baldi’s architecture is not available (personal communication
with one of the authors of [Baldi et al., 1999], G. Pollastri).

In the work of Baldi et al. [Baldi et al., 1999], the BRNN has a short input window
of residues centered at the prediction site. Although this small window aims to avoid
overfitting, it does not capture variable long-range information, which is overcome by
unfolding the RNNs throughout the sequence. Despite the fact that we minimise the input
vector in order to contain information for a single residue, the novelty of our approach lies
firstly on the fact that we use a more elaborate computation within the recurrent context
windows (as described in Section 3.2.1), and secondly on updating network weights at
every amino acid residue. With the latter, even though we are not able to capture long-
range dependencies, we manage to more accurately take into account all available local
information and this seems to be justified from our results.

Improved prediction results were obtained when sequence-to-structure output was fil-
tered, in a post-processing step, in order to take higher order SS correlations into account.
In particular, our novel HMM-based filtering approach not only improved the unfiltered
results, but it was shown to be on average marginally better than a standard feed forward
ANN-based filtering approach and much better than the BRNN-based filtering results re-

ported in Chen and Chaudhari [2007]. We believe that if we were to use a ensemble of
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BRNN-based predictors with our training scheme and our novel filtering procedures, our
results would be even better. This ML techniques are investigated in Section 3.1.3 and

Section 3.1.4.

3.3 Ensemble methods

Ensemble methods is a category of well known methods which are used in ML to
improve the performance of a learning model [Dietterich, 2000; Zhou et al., 2002, 2010;
Lietal., 2018a; Zheng et al., 2019]. More specifically, through ensemble methods, instead
of training just one model and get a single prediction, we train multiple instances of same
or different methods and we combine the results.

There are a number of ensemble methods, some of which are more advanced and com-
plex than others [Dietterich, 2000; Zhou et al., 2002, 2010; Li et al., 2018a; Zheng et al.,
2019]. In this work, as we have seen in Section 3.1.2 and as we will see in the next sec-
tions, we use a relatively simple ensemble method which is called an averaging ensemble.
Essentially what it does it averages the outputs of its models. More specifically, in a sce-
nario for the PSSP problem, we calculate the output for each model and classify it into one
of the three classes available (H, E, and C). Then, the "winner takes all" method is used
to take the results of each model and the class with the most representations is the final
class of a specific input. Ensembles reduce the mis-predicted residues by averaging the
results of multiple classifiers. For example, these methods show improved generalization

capabilities that outperform those of single networks [Granitto et al., 2005a]. However,
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for aggregation to be effective, the individual networks must be as accurate and as diverse
as possible.

Consequently, random errors which might have occurred in some models are averaged
out, which results in ultimately slightly better predictions, given the simplicity of this en-
semble method. In more advanced ensembles, significant improvement may be achieved

but they are usually computationally more expensive and time consuming.

3.3.1 Ensemble of BRNNs

ANNSs were first employed for PSSP in Qian and Sejnowski [1988]. Since then, they
have been widely applied in this domain under different settings [Rost and Sander, 1993;
Jones, 1999]. In 1999, Baldi and colleagues [Baldi et al., 1999] implemented a BRNN
architecture to predict secondary structure, which was proven one of the most success-
ful approaches in the field. The predictive accuracy was boosted in a subsequent study
through the use of an ensemble of eleven BRNNs [Pollastri et al., 2002]. The BRNN ar-
chitecture is well described in Section 3.1.2. The FRNN processes the local information
contained at the left of the local window (upstream information), whereas the BWRNN
takes into account the amino acids at the right-hand side of the local window (downstream
information).

In our study which is presented in Section 3.1.2[ Agathocleous et al., 2010], we used
the same BRNN architecture of Baldi et al. [Baldi et al., 1999] but the training procedure
resulted in a significant increase of the predictive accuracy when a single BRNN is con-

sidered. Based on these results, we employ an ensemble of six BRNNs but, rather than
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Figure 20: The architecture of the ensemble of BRNNs, followed by the filtering of the
output. The Position Specific Scoring Matrices (PSSMs) values are given as input to
six BRNNs, which predict the secondary structure of each residue in the amino acid
sequence. Subsequently, the outputs are averaged and are given as input to the filtering
methods investigated in this study.

using a single residue in the central FFNN, we utilised a local window of five residues,
centred around the residue of interest. Thus, the classifier incorporates the local informa-
tion contained in the neighbouring residues. Each BRNN returns three real values for the
central residue of the local window, one for each secondary structure state. Subsequently,
the corresponding outputs for each state are averaged and, therefore, the output of the
ensemble is an array of three values for each residue. The resulting predictions are then

used for filtering. The overall architecture is illustrated in Figure 20.
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Figure 21: Ensemble methods: Results from ensembles of six BRNNSs, trained with the
10-fold cross-validation method on the CB513 dataset.

Furthermore, we have investigated how other ensemble methods can improve our re-
sults. More specifically, we have used six BRNNs to compare four different ensemble
methods: Voting, Borda Function, Average and Weighted Average. In this work, we have
used 10-fold cross validation method based on the CB513 dataset. We have trained six
BRNNSs for each fold of the CB513 dataset and then we have used the output results to
test and compare the four ensemble methods. In general, ensemble methods have manged
to improve the ()3 accuracy of single BRNNs approximately 2-3%. The results can be
seen in Figure 21. The Average Ensemble method of six BRNNSs has been shown the best

results for the PSSP problem.

3.4 Filtering methods for the PSSP problem

Several PSSP methods used a multi-step process and the final step includes filtering

the predictions to improve the quality of the results. This is accomplished by removing
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conformations that are physicochemically unlikely. For instance, helical conformations
in proteins are repetitive structures that consist of at least three, four or five residues for
respectively. Since the different types of helices are usually grouped in a single category
by PSSP methods, a predicted helical structure would be expected to have a minimum
number of three consecutive residues in order to fulfill geometric and hydrogen-bonding
requirements. Hence, predictions of single helical residues are physicochemically unre-
alistic, because one residue cannot make a turn in order to form a helix. To tackle this
problem, both machine learning algorithms [Chen and Chaudhari, 2007] and empirical
rules have been used in the past [Rost and Sander, 1993; Wood and Hirst, 2005; Salamov
and Solovyev, 1995]. Despite being employed widely, there is no clear indication for the
most effective filtering method in PSSP and, to the best of our knowledge, no study has
been carried out to find the most suitable filtering technique.

We have performed a comparative study on the challenging problem of filtering PSSP,
utilising both widely used empirical smoothing rules and machine learning techniques.
Using an ensemble of six BRNNs with per-residue weight updating [Agathocleous et al.,
2010], we predict the secondary structure on two non-redundant, non-homologous datasets
and, subsequently, we apply a number of filtering techniques to smooth the predictions.
Importantly, the SOV increases significantly in most cases. On the other hand, some
classifiers increase the per-residue accuracy, whereas others decrease it. The Logistic
function, the MLP and the SVMs were found to be superior to the tested methods in

terms of both Q3 and SOV score. Notably, the results improve even further when we
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use combinations of machine learning algorithms and empirical filtering rules. The work

described in this section has been published in Kountouris et al. [2012].

3.4.1 Dataset and preprocessing

The study was carried out using two non-redundant, non-homologous datasets. The
first, denoted as CB513, was compiled by Cuff and Barton [1999] and is well defined in
Section 2.3.5.1. CB513 has been widely utilised to compare several secondary structure
prediction methods in the literature, e.g. [Karypis, 2006; Kountouris and Hirst, 2009].
Because of its small size, this dataset was used to study the impact of various input coding
schemes. The second dataset was PDB-Select25 (version October 2008) [Hobohm et al.,
1992], a set of 4018 high quality X-ray and NMR structures with less than 25% sequence
similarity. From the initial set, we removed chains for which DSSP [Kabsch and Sander,
1983] did not return valid output, which resulted in a final set of 3977 protein chains.
Even though most typical PSSP methods are optimised to work with globular proteins,
we decided not to remove around 90 transmembrane proteins contained in this dataset.

Secondary structure was assigned based on the experimentally determined 3D struc-
tures using the established DSSP program [Kabsch and Sander, 1983], which assigns
secondary structure in eight states: H (a-helix), G (31p-helix), E (extended [3-strand), B
(isolated SB-bridge), T (turn), S (bend) and “_" (other/coil). Most of the existing methods
predict secondary structure using a three-state assignment. Hence, we reduce the above

representation into a three-state scheme, by assigning H, G, and I to the helix state (H),
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E and B to the extended state (E) and the rest to the loop state (L). This three-state rep-
resentation is also followed by the EVA secondary structure prediction validation server
[Rost and Eyrich, 2001].

Since their first use in PSIPRED [Jones, 1999], PSI-BLAST’s [Altschul et al., 1997]
PSSMs are utilised by the majority of PSSP methods. PSSMs are constructed using mul-
tiple sequence alignments and provide crucial evolutionary information about the protein
structure. PSSMs consist of N x 20 elements, where the /V rows correspond to the length
of the of amino acid sequence and the columns correspond to the 20 standard amino acids.
We generated a PSSM for each chain in the dataset using the BLOSUMG62 substitution
matrix [Henikoff and Henikoff, 1992] with an e-value of 0.001 and three iterations against
the NCBI non-redundant (nr) database, downloaded in February 2009. The database was
filtered by pfilt [Jones and Swindells, 2002] to remove low complexity regions, trans-
membrane spans and coiled coil regions. This filtering could be important for dealing

with transmembrane proteins.

3.4.2 Filtering techniques

We evaluate an array of machine learning algorithms to identify those that perform
better in filtering PSSP. More specifically, we employed the WEKA software package
[Witten and Frank, 2005] to test the following classification algorithms: Naive Bayes,
Simple Cart, Radial Basis Function (RBF) network initialised by k-Means clustering

(k = 3), IBk (nearest neighbour algorithm) with £ = 3, MLP, Random Forest, J48
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Figure 22: Experiments with different local window sizes for filtering PSSP (see text for
more information) using four machine learning algorithms on the CB513 dataset. The
predictive accuracy (left) and the SOV score (right) strongly depend on the size of the
local window used for filtering.

decision tree (C4.5) and Logistic function. The latter is an implementation of a multi-
nomial logistic regression function with a ridge estimator to avoid overfitting [leCessie
and vanHouwelingen, 1992].

Additionally, we employed SVMs to filter the predictions. More specifically, we used
the default one-against-one multi-class SVM provided by the LibSVM software package
[Chang and Lin, 2011]. We utilised the RBF kernel function and we set the kernel param-
eter, v, at %, where w is the length of the local window. Finally, the misclassification
penalty parameter, C', was equal to unity.

Moreover, we used a meta-classifier to combine two or more from the above algo-
rithms by using several voting schemes. More specifically, we employed the following
voting schemes (implemented in WEKA): (i) Majority Vote, (i1) Maximum probability,

(ii1)) Minimum probability, (iv) Product of probabilities and (v) Average of probabilities.
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Table 4: Filtering PSSP on the CB513 dataset using the method shown in the first column,
sorted by the highest predictive accuracy (Qs). w is the local window size for filtering
that maximises the SEL score for each method. In bold are the highest scores in the

corresponding column.

Filtering w Q Quy Qg Q. SOV SOVy SOVg SOV, Cy Cg Cp  SEL
method %) % %) (%)

LibSVM 19 7704 7802 6581 8240 7254 7192  68.64 70.80 0.718 0.635 0583 74.79
Logistic 19 7693 7869 6733 8076 7283 7243 6874 7131 0716 0.633 0582 74.88
MLP 5 7675 7794 6602 8168 7175 7072 6877 7017 0717 0626 0579 7425
Simple Cart 5 7665 7906 6678 80.11 7060 7091 6757 69.66 0712 0625 0580 73.63
SS-filt — 7643 7598 6223 8458 7125 7053 6692 7056 0711 0622 0578 73.84
No filtering — 7639 7712 6353 8287 6874 6875 6607 69.63 0706 0618 0580 7257
WH-filt — 7624 7477 6233 8506 6943 6731 6590 7035 0710 0616 0577 72.84
RBF Network 1 7623 8152 69.88 7544 6930 7173 6884 6686 0705 0618 0578 7277
Naive Bayes 37610 7868 7199 7627 7175 7137 7046  68.57 0710 0.629 0561 73.92
Viterbi 1 7598 7777 6393 81.14 6959 6958 6557  67.53 0705 0619 0562 72.79
148 3 7598 7897 6587 79.10 6853 6933 6684 67.84 0704 0610 0569 72.25
Random Forest 19 75.19 79.64 6858 7523 6676 6858  66.68 6494 0696 0.608 0.550 70.98
IBk (k=3) 13 7203 7867 6264 7181 6266 6798 6271  60.86 0.640 0566 0499  67.34

The combinations of filtering methods are selected based on the performance of the indi-

vidual learning techniques and they are discussed in Section 3.4.5. For the same purpose,

we implemented a HMM using the Viterbi algorithm [Viterbi, 1967]. A detailed descrip-

tion of the above algorithms is beyond the scope of this article, but a comprehensive

survey for many of them in the context of their potential in data mining was written by

Wu and co-workers [Wu et al., 2007]. All algorithms from WEKA and LibSVM were

used with the default parameters. The results presented here can be possibly improved by

optimising each algorithm individually.
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The ultimate goal of a classification algorithm is not to achieve high training accuracy,
but to classify successfully previously unseen examples. Hence, we use n-fold cross-
validation to estimate the generalisation error. More specifically, we divide the training
set into n subsets and, sequentially, we use n — 1 for training and the remaining one for
testing. This procedure is repeated n times, until all subsets are used once for testing. In
this paper, we report the results from 10-fold cross-validation on the CB513 dataset and
5-fold cross-validation on the PDB-Select25 dataset. For both datasets, the folds have
similar representation of helical, extended and loop residues. Moreover, in the case of
CB513, we ensure similar distributions of small/large protein chains as well as of the four
main SCOP classes (all-a, all-3, « +  and «/3) [Murzin et al., 1995]. The subsets are
available on request.

Additionally, we filtered PSSP using two empirical techniques that were previously
used to filter other PSSP methods. For this purpose, we implemented a custom software,
which uses regular expressions to perform the empirical filtering step. The first set of
smoothing rules (denoted as SS-filt) was compiled by Salamov and Solovyev [Salamov
and Solovyev, 1995] and contains the following three filtering rules: (i) replace single
helical residues with loop, i.e. 'H H !H — !H C !H; (i1) replace single strand residues
with loop, i.e. !E E 'E — !E C !E; and (iii) all strands of length two surrounded with
helices are replaced by helices, i.e. HE EH — H H H H. The second set of filtering rules
(denoted as WH-filt) consists of ten empirical rules that have been used to filter PSSP from
DESTRUCT and can be found in [Wood and Hirst, 2005]. The above rules are based on

empirical knowledge and aim to remove physicochemically unrealistic predictions.
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Table 5: Filtering PSSP on the PDB-Select25 dataset using the method shown in the first
column, sorted by the highest predictive accuracy (Qs). In bold are the highest scores in
the corresponding column.

Filtering Qs Quy Qg Qp SOV SOVy SOV SOV, Cy Cgr Cp  SEL
method %) (B (B (%)

LibSVM 7753 79.60 6598 8213 7229 7246 7144 7120 0724 0647 0589 7491
MLP 7728 7944  69.08 7997 7214 7255 7307 7087 0719 0.645 0585 7472
Logistic 77.04 7821 7020 7981 7182 7113 7376 7099 0713 0.643 0584 7443
Simple Cart 7702 80.08 6843 79.15 7096 7186 7246  70.16 0712 0.636 0586 73.99
148 7659 7989 67.63 7874 69.13 7072 7144  69.05 0705 0.628 0581 72.86
RBF Network 7643 8034 6890 7729 68.63 7085 7151 6855 0705 0619 0581 7253
SS-filt 76.19 7349 7379 7976 7080 6740 7628  70.88 0703 0.628 0579 73.49
No filtering 76.12 7442 7453 7841 6795 6500 7617 6922 0702 0622 0582 72.03
Random Forest  76.00 8125 70.09 7483 6578 69.01 7094 6497 0703 0.635 0563 70.89
Naive Bayes 7599 7733 7670 7448 7136 7074 7573 6881 0709 0.633 0563 73.68
Viterbi 7588 7572 7457 7673 7035 6799 7384 6823 0704 0.626 0.566 73.12
WH-filt 7574 7167 7362 8031 6876 63.69 7538 7057 0.696 0.618 0577 7225
IBk (k=3) 7345 8003 66.10 7197 6180 67.66 6838 6076 0.652 0.601 0522 67.63

Finally, combinations of machine learning algorithms and empirical algorithms were

also used. More specifically, a machine learning algorithm was applied at first and, subse-

quently, an empirical rule was used to filter the outputs. This approach resulted in further

improvement of the machine learning algorithms as discussed below.

3.4.3 Prediction accuracy assessment

To facilitate an objective comparison of the above learning methods, several measures

were used to assess the performance of each filtering technique, most of them defined in

the EVA server [Rost and Eyrich, 2001]. All the evaluation matrices have been defined in

Section 2.3.3.
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In addition, we define a selection criterion, denoted as SEL, which takes equally into
account the achieved Q3 and SOV scores, the most established assessment measures.

Therefore, the SEL score is calculated as follows:

Q3+ SOV

SEL =
2

(28)

3.4.4 Finding the best local window

A window of neighbouring residues is often used in secondary structure prediction
to capture additional information about local interactions [Rost, 2001] and, hence, we
investigate the use of a local window, w, for filtering, centred around the residue to be
predicted. More specifically, the ensemble of BRNNs has three output values for each
residue, one for each secondary structure state. Therefore, a local window of size w will
result in an input vector of 3 x w attributes for the filtering classifier. Due to different
design and capabilities, the size of the local window that maximises the predictive accu-
racy or the SOV is different for each classifier employed in this study. Using the CB513
dataset, we tested different input coding schemes for each method to find the best local
window in each case. Figure 22 shows how the predictive accuracy and the SOV measure
changes by varying the size of the local window. The selected window size was the one
that maximised the SEL score (Equation 28) for each machine learning technique tested,
thus taking into account both the Q3 and the SOV score. The drop of accuracy in the case

of MLP for w > 5 is most probably due to overfitting. After optimising the local window
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Table 6: Filtering PSSP using combinations of machine learning algorithms and empirical
rules. Firstly, a machine learning algorithm is employed for filtering (shown in the first
column) and, subsequently, the output is filtered by empirical rules (SS-filt or WH-filt) to
further improve PSSP. In bold are the highest Q3, SOV and SEL scores.

CB513 dataset PDB-Select25 dataset
SS-filt WH-filt SS-filt WH-filt
Classifier Q3 (%) SOV SEL Q3 (%) SOV SEL | Q3(%) SOV SEL Q3 (%) SOV SEL
LibSVM 77.02 7294 7498 76.85 7221 7453 7750  72.66 75.08 77.33 7198  74.65
Logistic 76.92 7342 7518 76.76 7252 74.64 77.04 72.64 74.84 76.89 7178 7434
MLP 76.74 7250 74.62 76.58 71.48  74.03 77.27 7291  75.09 77.15 72.15  74.65
Simple Cart 76.67 72.64  74.65 76.51 71.14  73.82 77.06 72770 74.88 76.89 7153 7421
RBF Network 76.54 7252 7453 76.39 70.61  73.50 76.66 71.54 7410 76.44 69.91 73.17
J48 76.21 7142 73.81 75.85 69.34  72.60 76.75 7173 7424 76.54  70.14 7334
Naive Bayes 76.11 72.10  74.10 75.96 71.50 7373 76.01 7179  73.90 75.82 71.11  73.47
Viterbi 75.98 68.59 7229 75.88 69.15 7252 75.88 7035 73.12 75.81 70.01 7291
Random Forest 75.71 71.58  73.64 75.49 69.12 7230 76.47 71.27  73.87 76.16 68.42 7229
1Bk (k=3) 73.33 68.73  71.03 73.01 6545 69.23 74.55 68.30 7142 74.14 65.14  69.64

sizes for each method on the CB513 dataset, we utlilised them for filtering PSSP on the

PDB-Select25 dataset.

3.4.5 Results and discussion

Table 4 shows the performance of each filtering method sorted by the highest accuracy,

after finding the local window size, w, that maximises the predictive accuracy (Qs) on

the CB513 dataset. The SVM achieved the highest predictive accuracy of 77.04%, an

absolute improvement of 0.65% compared to the unfiltered performance, while the SOV

score increased by 3.8, reaching the value of 72.54. However, it is the Logistic function

that achieved the highest SOV score of 72.83, an increase of 4.09, whereas its predictive

accuracy of 76.93% is ranked second to the tested methods. Notably, the Logistic function




105

has higher SEL score than the SVM, while it is also a faster classifier for this problem. In
addition, the MLP and the Simple Cart also achieve improved accuracies and SOV scores
higher than 70. Despite that only half of the machine learning algorithms increase their
accuracy after filtering, the majority of them increase the SOV significantly.

Table 5 shows the performance of each technique on the PDB-Select25 dataset, for
which the window sizes were optimised in the CB513 dataset (see Table 4). It is worth
mentioning that the overall performance of the unfiltered BRNN ensemble (“No Filter-
ing” row) is slightly lower for this larger dataset. This observation is consistent when all
three overall performance measures are considered, i.e. (3, SOV and SEL. Nonetheless,
the majority of the applied methods improve the predictive performance and a higher in-
crease is observed compared to the results on the CB513 dataset. The SVM is the most
accurate filtering method based on all three basic measures (Qs, SOV and SEL), showing
an improvement of around 1.4%, 4.4 and 2.9, respectively, while the Logistic function
and the MLP are amongst the most accurate techniques. In fact, the MLP performs par-
ticularly well on this dataset and is ranked second to the tested methods based on the
achieved Qs, SOV and SEL. Apart from the MLP, the RBF network and the J48 decision

tree perform better on the PDB-Select25 dataset than on the CB513 dataset.

3.4.5.1 Prediction accuracy per state

Notably, some machine learning techniques perform particularly well in the prediction
of individual states. More specifically, the RBF network and the Random Forest achieve

the highest per-state accuracy for helical residues on both datasets, even though their
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overall Q3 score is lower than that of the best performing methods. In fact, the RBF
Network increases the Qg accuracy by 4.4% on the CB513 dataset, which is more than
2.5% higher than the Qp score of the two best performing classifiers. On the PDB-
Select25 dataset, the Random Forest achieves a remarkable improvement of the Qy score
by 6.8%.

Similarly, the Naive Bayes classifier is very accurate in the prediction of extended
residues achieving Qg of 71.99% on the CB513 dataset, which is more than 4% higher
than the Qp achieved by the Logistic function, whereas it is more that 6% higher than the
Qg of the SVM. Importantly, its achieved Qz score of 76.7% on the PDB-Select25 dataset
is around 10.7% higher than that of the SVM. In contrast, all three algorithms perform
relatively poor in the prediction of loop residues, resulting in a low overall per-residue
accuracy.

Interestingly, the ensemble of BRNNs overpredicts extended residues with the utilisa-
tion of the PDB-Select25 dataset (see Table 5), but the application of filtering techniques
significantly affects the predictive performance. Some classifiers, such as the Naive Bayes
and the Viterbi algorithm, perform well for the prediction of extended residues, while oth-
ers, such as the LibSVM, decrease the Qg score. The explanation can be derived from the
size of secondary structure elements. While a-helices are usually long repetitive struc-
tures with an average length of about ten residues, most extended structures in proteins
are shorter than eight residues. Therefore, using a long local window may improve the
prediction of longer structures (helix and coil), but it may also decrease the predictive per-

formance of short extended structures. In fact, the Qg scores shown in Table 5 are usually
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Figure 23: Per state prediction after the application of filtering techniques on the PDB-
Select25 dataset. The y-axis corresponds to the number of residues and the x-axis to the
combinations of observed and predicted state. For instance, HE corresponds to residues
that are observed as helices (H) but are predicted as extended (E). The three columns at
each state show the number of residues for the unfiltered classifier (ensemble of BRNNS),
the LibSVM filtering and the combination of LibSVM and SS-filt, respectively.

higher for classifiers that use short local windows (from one to three residues) and lower
for classifiers that use long windows, such as 19 residues. In addition, the dataset size
seems to be important for the prediction of the extended class, which underrepresented in
experimentally determined structures and this is an additional reason it is more difficult to
predict. Thus, increasing the size of the dataset can provide crucial additional information

about the extended state.

3.4.5.2 Combining machine learning and empirical techniques

Interestingly, the empirical filtering does not increase the Qs score dramatically, but
it improves the SOV. The smoothing rules used in SS-filt are more effective than those

in WH-filt in terms of both Q3 and SOV. The empirical rules have better performance
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A 1AHB_A, 180-246
PriStr  VPSLATISLENSWSGLSKQIQLAQGN...
Real SS  LLLHHHHHHHHHHHHHHHHHHHHLLL. ..
No-Filt LLLLLEEEHLHLHLHHLHHHEHHLLL...
LibSWM LLLHHHEEHHHLLLHHLHHHHHHLLL . .
SS-Filt LLLHHHHHHHHLLLHHLHHHHHHLLL. ..

B 1HIW_S, 7-109

PriStr .. .QTGSEELRSLYNTIAVLYCVHQRIDVKDTKEA. ..
Real SS ...LLELHHHHHHHHHHHHHHHHHLLLLLLEHHHH. ..
No-Filt ...LLLLHHHHHHHLHEEEEHELLLEHHHELHHHH. ..
LibSWM .« . LLLLHHHHHHHHHHEEHHHLLLLHHLLLHHHH. . .
SS-Filt ...LLLLHHHHHHHHHHHHHHHLLLLHHLLLHHHH. ..
C ZDA7_A
PriStr .. . LPQEFVKEWFEQRKVYQYSNSRSGPSSG
Real SS ...LLHHHHHHHHHHHHHHHHLLLLLLLLLL
No-Filt ...LLLLEEEEHHHHHHHHHHLLLLLLLLLL
LibSWM . . . LLHHHEEHHHHHHHHHHHLLLLLLLLLL
SS-Filt ...LLHHHHHHHHHHHHHHHHLLLLLLLLLL
D 1MSO_B

PriStr FVNQHLCGSHLVEALYLVCGERGFFYTPKT
Real SS LLLELLLLHHHHHHHHHHHHHHLEEELLLL
No-Filt LLLLLHLLHHHEEEEEEHLLLLLEEELLLL
LibSWM LLLLLHLLHHHHHHHHHHLLLLLLEELLLL
SS-Filt LLLELLLLHHHHHHHHHHLLLLLLEELLLL

E 2ELN_A
PriStr GSSGSSGILLKCPTDGCDYSTPDKYKLQAHLKVHTALD
Real SS LLLLLLLLLEELLLLLLLLEELLHHHHHHHHHHHLLLL
No-Filt LLLLLLLEEELLLLLLLLLLLLLEHEEEEEEEELLHLL
LibSWM LLLLLLLLLLELLLLLLLLEELL LHHHHHHEHHHLHLL
SS-Filt LLLLLLLLLELLLLLLLLLLELLLHHHHHHLHHHLLLL

Figure 24: Five examples that show the effect of filtering on PSSP. The first line in each
case shows the PDB ID and the Chain ID. Sequences A and B are taken from CB513 and
the remaining sequences from PDB-Select25. The mispredictions are shown in shadow.
“PriStr" is the amino acid sequence; “Real SS" is the observed secondary structure; “No-
Filt" is the PSSP from the ensemble of BRNNs; “LibSVM is the PSSP filtered with
LibSVM and “SS-Filt" is the application of the SS-Filt empirical rules on the output
of LibSVM filtering. Secondary structure states are reported using the reduced three-state
scheme (see Section 3.4.1).

than some of the machine learning algorithms shown in Tables 4 and 5, but they come
short when they are compared with the best performing techniques, such as the SVM, the

Logistic function and the MLP.
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Nevertheless, a combination of machine learning techniques and empirical rules can
lead to a generally improved filtering in secondary structure prediction. As shown in Table
6, the quality of the prediction is improved when we apply empirical rules after filtering by
a machine learning algorithm. The empirical rules are manually created by scientists and,
hence, they provide physicochemically realistic information, which sometimes cannot
be captured by a learning algorithm. On both datasets, the predictive accuracy is not
improved for the best performing classifiers, but it is higher for algorithms that achieved
lower accuracies without the employment of the empirical rules (compare with Tables 4
and 5), such as the RBF Network and the Random Forest. Most importantly, combinations
of machine leaning techniques and empirical rules give a major boost to the SOV score
leading to an improvement of 2% in most cases, demonstrating the crucial information
provided by the empirical rules. On CB513, the Logistic function achieves the highest
SOV score of 73.42 when we apply the SS-filt rules, while the SVM has the highest
predictive accuracy. On PDB-Select25, the SVM remains the most accurate method in
terms of Qg, whilst the MLP achieves the highest SOV (72.91). In both datasets, the best
performing methods have SOV score greater than 72.5. As discussed above, the SS-filt
rules are more effective than the WH-filt rules and this is also observed in the results of
Table 6.

Figure 23 illustrates how the number of correct predictions or mispredictions changes
after filtering PSSP with LibSVM and the subsequent application of the SS-filt empirical
rules on the PDB-Select25 dataset. As stated above, the ensemble of BRNNs overpre-

dicts extended residues and this is reflected on the high percentage of correctly predicted
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Table 7: Filtering PSSP using combinations of machine learning algorithms with different
voting schemes on the CB513 dataset. The last three columns show the results after using
the SS-filt empirical rules. In bold are the highest scores in the corresponding column.

Classifiers Voting  w Machine learning only SS-filt

Q3 (%) SOV SEL Q3 (%) SOV SEL
Logistic + RBF + Random Forest Prod 3 76.71 71.74 7423 76.74 72776 7475
Logistic + Simple Cart + RBF Prod 5 76.54 70.50  73.52 76.53 72.02 7427
Logistic + Naive Bayes Prod 3 76.30 71.93 7412 76.31 7237 7434
Logistic + Naive Bayes Avg 3 76.28 7192 74.10 76.28 7237 7433
Logistic + Simple Cart + MLP Prod 9 77.11 7225  74.68 77.08 73.43  75.26
Logistic + Simple Cart + MLP Min 5 76.93 7217 7454 76.92 73.11 7501
Logistic + Simple Cart + MLP Max 11 76.95 72.16 7455 76.93 7322 75.07
Logistic + Simple Cart + MLP Avg 9 77.12 72.36  74.73 77.09 7346  75.27
Logistic + Simple Cart + MLP Maj 11 76.90 7175 7433 76.89 72.62 7476

extended residues, but also on the large number of mispredicted helical and loop residues
as extended (HE and LE states). This behaviour is smoothed after filtering with LibSVM,
which decreases the number of both correct predictions and mispredictions to extended
state, while improving the performance of helix and loop prediction. The application of
the empirical rules does not have a significant effect on the number of correctly predicted
residues, but, as discussed above, it improves the SOV score. The analysis of mispredic-
tions based on their dihedral angles, ¢ and v, did not reveal any particular trend since the
mispredicted residues are distributed all over the Ramachandran plot (data not shown).
Figure 24 shows five examples which demonstrate the possible effect of filtering on
the overall PSSP. Importantly, the use of the SVM filtering improves PSSP noticeably
and in some cases, such as examples D and E, leads in a significant improvement of
the predictive performance. Subsequently, the application of the SS-Filt rules is a final

refinement step, which smoothes the LibSVM predictions using rules that are well-defined
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a priori (Section 3.4.2), but its effect is not always significant for the overall predictive
performance. Importantly, the filtering step (LibSVM with SS-Filt) should be used as
a post-processing step which will refine the results of a PSSP method. The success of
any filtering technique strongly depends on the success of the initial prediction method.
Filtering can be highly beneficial for state-of-the-art PSSP methods because the output
of the initial method is fed as input to the filtering algorithm and, thus, this information
must be as accurate as possible. This is certainly a challenging task which is outside the
scope of this article, where we consider our intitial prediction method satisfactory given

its results.

3.4.5.3 Combining machine learning techniques

Based on the results shown in Tables 4 and 5, we tested various combinations of ma-
chine learning techniques using different voting schemes implemented in WEKA (see
Section 3.4.2) and the results are shown in Table 7 for the CB513 dataset. More specif-
ically, a number of machine learning algorithms are initially used for filtering and their
output is fed into a voting function, which decides for the final prediction. The voting
schemes based on the average probabilities and the product of probabilities achieve the
highest accuracies. The predictions are then filtered by the SS-filt empirical rules to fur-
ther improve the predictive performance. Given the extensive computational needs of the
SVM, we did not use it for the combinations presented in 7able 7. Instead, the Logistic
function was employed in combination with other machine learning techniques. The vot-

ing based on the average probability using the Logistic function, the Simple Cart and the
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MLP slightly improved the Q3 and SOV scores. However, the improvement is insignifi-
cant compared to the performance of the Logistic function alone. Moreover, combining
the Logistic function with classifiers that performed particularly well in the prediction of
helical and extended residues, such as the RBF Network and the Naive Bayes, did not have
positive impact on the overall performance. Due to the computational requirements and
given the insignificant improvement of predictive accuracy on the CB513 dataset, we did
not apply the above combinations of machine learning techniques on the PDB-Select25

dataset.

3.4.6 Conclusion

The aim of Kountouris et al. [2012] was to compare the performance of a variety
of filtering methods to the problem of PSSP, which has not been studied systemati-
cally, although it is utilised by a plethora of prediction methods. We employed both
machine learning algorithms and empirical methods and, using two non-redundant, non-
homologous sets of 513 and 3977 protein chains, respectively, we showed that the SVM,
the Logistic function and the MLP are the most suitable learning techniques to tackle this
problem. More importantly, combinations of machine learning techniques and empirical
smoothing rules can improve the quality of the predictions even further, particularly the
SOV score.

Based on the results presented in this article, we suggest the utilisation of the Logistic

function or the MLP followed by the application of the SS-filt empirical rules to filter
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PSSP. Despite achieving slightly lower predictive accuracy than the SVM, these classifiers
are much faster compared to the SVM and can lead to reliable filtering of the predictions.

Our findings are based on initial (sequence-to-structure) secondary structure predic-
tions obtained by a BRNN with per-residue weight updating. Different approaches at this
starting step are expected to yield different results, thus the impact of filtering methods
on alternative initial data, or their combinations, should be further investigated.

We are currently conducting a similar study to evaluate learning algorithms used for
ANN ensembles, instead of just averaging the outputs of a number of ANNSs. Finally,
since filtering is a common step in many protein structure prediction problems, such as
B-turn prediction [Shepherd et al., 2001], this comparative study can be useful for other

research fields in structural bioinformatics.

3.5 Chapter Contribution

A list of contributions resulted from this chapter is presented below:

1. The proof that the upper limit of a window size which can be captured from a simple

BRNN trained with the BPTT algorithm for the PSSP problem is 31 amino acids.

2. The proof that in a BRNN trained with BPTT, the local information of a window
around a specific residue is sufficient, compared to a method where the whole se-
quence is used for each residue. The results are comparable because in the second
case the information of long range dependencies is lost due to the vanishing gradi-

ent problem.
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. The introduction of the v parameter, a modified shift operator, which in effect adds
a constant weight based on the importance given to the outputs of the FRNN and

BwRNN.

. The comparison of PSSP filtering methods where it was shown that the SVM, the
Logistic function and the MLP are the most suitable learning techniques to tackle

this problem.

. The MLP, which is faster than SVM, can lead to reliable filtering of PSSP predic-

tions despite achieving slightly lower predictive accuracy than SVM.

. Combinations of machine learning techniques and empirical smoothing rules can

improve the quality of the predictions, particularly the SOV score.



Chapter 4

Training BRNNs with Second Order Learning algorithms

4.1 Introduction

The need to train BRNNs with more efficient algorithms than existing methods in
terms of accuracy and convergence time has been the initial motivation for this Chap-
ter. The SCG [Mgller, 1993b], a second-order learning algorithm, which has been found
to be superior to the conventional GD algorithm in terms of accuracy, convergence rate
and the vanishing-gradient problem [Hochreiter and Schmidhuber, 1997]. In addition,
the original form of the algorithm [Mgller, 1993b] does not depend on any parameters.
Concequently, Section 4.2 introduces the mathematical analysis and development of our
proposed Hybrid Rectified-Scaled Conjugate Gradient (HR-SCG) algorithm to train the
BRNN architecture for the PSSP problem which is based on the SCG algorithm. Fur-

thermore, in Section 4.3, we present the results from the application of another powerful

115
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second order learning algorithm, the HFO [Martens, 2010; Martens and Sutskever, 2011]

algorithm, on the same architecture and problem.

4.2 Training BRNNs with the HR-SCG learning algorithm

4.2.1 Introduction

ML is a subfield of Artificial Intelligence (Al) that provides a system the ability to
learn from data. Usually, ML methods consist of a trainable model and a learning al-
gorithm [Kotsiantis et al., 2007; Liew et al., 2016]. These methods are mostly used for
classification and prediction on static and sequential data.

Even though a number of theoretical ML algorithms has been designed to process and
make predictions on sequential data, the mining of such data types is still an open field
of research due to its complexity. Analysis and development of optimisation algorithms
for specific ML techniques for sequencial data must take into account how (a) to capture
and exploit sequential correlations, (b) to represent and incorporate loss functions, (c) to
identify long-distance dependencies, and (d) to make the optimisation algorithm fast [Di-
etterich, 2002]. One of the most successful classes of models which has been designed
to deal with these questions is Recurrent Neural Networks (RNNs) [Elman, 1990] which
belongs to the class of Artificial Neural Networks (ANNs). More specifically, ANNs are
universal function approximators [Hornik et al., 1989; Park and Sandberg, 1991; Scarselli
and Tsoi, 1998] and RNNs are universal approximators of dynamical systems [Funahashi

and Nakamura, 1993]. The connections between the nodes of these networks have the
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distinction of forming directed cycles which create an internal memory in the model to
process classification tasks with sequential data. Consequently, RNNs can associate pat-
terns which are located far away from each other on a sequence and create a kind of short
and long range dependencies between data.

Training RNNs is a demanding task in terms of time and space efficiency. At the
same time it is a difficult task because of the vanishing gradient and exploding gradient
problems, where the gradient is getting smaller as the information is moving backward
through hidden layers or is getting very big at the early layers of a model [Bengio et al.,
2004]. In order to train RNNs, several learning algorithms have been developed which
involve adjusting the network weights till a desirable mapping between input and output
sequence is formed. Those algorithms are mostly related to learning algorithms which
have been developed to train FFNNs and are well described in Battiti [1992]. The most
common class of RNN training algorithms is based on the gradient descent minimization
method which is applied on unfolded (through sequence) version of a RNN [Rumelhart
et al., 1986b], with the most well known learning algorithm for such models being the GD
based on Backpropagation Through Time (BPTT) [Werbos, 1990; Frasconi et al., 1998].
Unfortunately, this kind of algorithms have a poor convergence rate [Mgller, 1993b].
Moreover, they depend on parameters which have to be specified by the user and are
usually crucial for the performance of the algorithm. In order to improve these drawbacks,
more efficient algorithms need to be developed. As we have already mentioned, one
candidate algorithm is the SCG [Mgller, 1993b]. Since then many variants [Andrei, 2007;

Cetigli and Barkana, 2010; Fatemi, 2017] and many applications [Khadse et al., 2017;
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Gayathri and Kumarappan, 2015; Borkar et al., 2016] have been proposed but not all of
these have been designed or adopted for RNNs.

Moreover, predictions on sequential data are particularly challenging when both the
upstream and downstream information of a sequence is important for a specific time-
step. Application examples include Phoneme Speech Recognition (PSR) [Graves and
Schmidhuber, 2005; Wollmer et al., 2009] and Bioinformatics problems, such as Protein
Secondary Structure Prediction (PSSP) [Baldi et al., 1999; Agathocleous et al., 2010;
Kountouris et al., 2012] and other related problems (e.g., Transmembrane Protein Topol-
ogy Prediction (TMPTP) [Nugent and Jones, 2009]). In such sequence-based problems
the events are dynamic and located downstream and upstream, i.e., left and right in the se-
quence. A ML model designed for such data must learn to make predictions based on both
directions of a sequence. To predict these events, researchers utilise Bidirectional Recur-
rent Neural Network (BRNN) architectures [Baldi et al., 1999]. The BRNN architectures
are usually trained with an extension of the BPTT algorithm [Frasconi et al., 1998] with
the error propagated in both directions of the BRNN. To the best of our knowledge the
SCG algorithm has not been applied in the past for these models. Since the potential of
BRNNSs has not been fully realized, methods that address the difficulty of training this
kind of models are of great importance.

BRNNSs have been used widely on the PSSP problem [Baldi et al., 1999], PSR [Graves
and Schmidhuber, 2005; Wollmer et al., 2009] and healthcare [Kollias et al., 2018].
Knowledge of a protein’s secondary structure is important as a step towards elucidation

of its 3D structure, which is crucial to understand its function. This problem is even more
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pronounced since the rapid growth of the number of available protein sequences has far
outpaced the experimental determination of their structures. Thus, there is a growing need
for a computational approach to the problem of protein structure prediction. The predic-
tion of Secondary Structure (SS), i.e., the local structure commonly defined by hydrogen
bond patterns and local geometry, is a critical first step towards this end and, therefore, it
has attracted a great amount of interest over the past 60 years [Yang et al., 2016]. With
respect to their secondary structure, amino acid residues in protein chains are usually as-
signed into three main classes, namely helix, extended and coil/loop [Kabsch and Sander,
1983]. Ensembles of BRNNs trained with the GD algorithm have proved to be a very ef-
ficient method for the PSSP problem with accuracy of approximately of 76%-79% [Baldi
et al., 1999; Pollastri et al., 2002; Magnan and Baldi, 2014].

The need to train BRNNs with more efficient algorithms than existing methods, in
terms of accuracy and convergence time, has been the initial motivation for this work.
Concequently, this section introduces the mathematical analysis and development of our
proposed HR-SCG algorithm to train the BRNN architecture for the PSSP problem. It has
been recently shown that BRNNs combined with LSTM units [Hochreiter and Schmid-
huber, 1997] outperform typical BRNN architectures in terms of accuracy in the PSSP

problem [Heffernan et al., 2017].
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4.2.2 Methodology

Our methodology is based on BRNN architectures. This methodology has been de-
veloped to handle problems with sequential data where both the upstream and the down-
stream information of a sequence is important for predicting a specific time-step. Based
on the advantages and disadvantages of first and second order learning algorithms which
have been analysed in Chapter 2, we have chosen to apply the SCG learning algorithm

for BRNNS to handle this unique class of problems.

4.2.2.1 The BRNN Architecture

The BRNN architecture is based on the work of Baldi et al. [1999] and is well de-

scribed in (Section 2.1.3) (Figure 3). In contrast to this work, we use:

1. Rectified Linear Unit (ReLU) activation function instead of sigmoid activation func-
tion. ReLU in many cases appears to minimize the vanishing gradient problem [Le-
Cun et al., 2015]. Moreover, it has been shown that unfolded BRNNs can be trained

more efficiently with ReLLU [LeCun et al., 2015].

2. Mean Square Error (MSE) function instead of log likelihood error function.

In this RNN architecture, Layer O (Figure 3) is not an active layer. However, layers 1
and 2 have a ReL.U activation function (Equation 29), while layer 3 is a softmax output
layer. The individual transfer function takes a summed input of the previous layer’s output

multiplied by its corresponding weights, except for boxes U, F and B, where box U stands
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for input nodes, F for the set of forward states and B for the set of backward states, where
state is the output vectors of forward and backward RNNs at each previous time-step.
The links between boxes oF and F and between boxes oB and B represent the recursive

connections providing the information of the given number of states of current input U.

a(x) = max(0, z) (29)
Fy=¢(Fi1,Upy) (30)
B; = B(Biy1, Uny) (3D

where Uy, is the input nodes to hF' and Uy, is the input nodes to h 3.

The state functions of the BRNN are given by (30) and (31), with boundary conditions
as defined in Baldi et al. [1999]. In Figure 3, Layer O is the input layer which takes F;_1,
Uy and B, directly as its inputs, and Layer 1 is the hidden layer with inputs (32), (33)

and (34). Moreover, the hidden layer outputs are given by (35), (36) and (37).

N¢/

ITH
-1 = E U)Fj,z *Jig—1

+ZwUfHF j=1..N,

(32)

Nuc

hUje =Y wU -y j=1.N, (33)
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Nﬁ/

IH
hBji11 = E wB; ;- b

(34
+ZwUIHB j=1.N;
hje = oa(hFje1) (35)
Wiy = a(hUse) (36)
hiy = a(hBjei1) (37)

where Ny, IV,, and Ny are the numbers of hidden nodes in the corresponding sets, that is,
forward state, input and backward state, /V, ¢ is the dimensionality of the input vector to
hF', N,. is the dimensionality of the input vector to hU, N, is the dimensionality of the
input vector to h B, Ny and Ny represent the number of nodes in boxes oF and oB and

a() is the ReLU activation function (Equation 29).
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Furthermore, Layer 2 in Figure 3 represents the state layer of the architecture which

has inputs as defined by (38) and (39) outputs are defined by (40) and (41).

No
oF; = E wFZ-?Ohft
=1
Ng
oB; = E ngOhft
i=1
fi,t = OZ(OFi)

biﬂg = O{(OBi)

i=1..Ny

i=1..Ng

(38)

(39)

(40)

(41)
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Finally, Layer 3 in Figure 3 represents the output layer oU of the network, which
is a function of Fy_;, U; and B, as shown in (42). The network’s output is given by
Yi+ = softmax(oU; ;) with:

N¢/
OUi,t = Z IUFz‘j : fz‘,t
j=1

Ng/

-+ Z wBij . bi,t (42)
j=1
Nru

+ ZwUm . hUijt

J=1

where Nj,;; is the dimensions of AU layer; i stands for the position of a neuron in oU;,

wk;j, wB;; and wU;; are the connection weights between layer 2 and layer 3. Finally,

Y

fits biy and hU; ; are the outputs of each neuron at time ¢ of oF, oB and oU, respectively.

4.2.2.2 Development of the HR-SCG Algorithm for BRNNs

We have mathematically analysed and developed the corresponding training formulas
and optimisation procedure of the SCG learning algorithm for our BRNN architecture.
We call our methodology HR-SCG algorithm. Our methodology is hybrid because it uses
both the SCG and GD learning algorithms. The HR-SCG formulas were derived from
the unfolded version of our architecture. Since stationarity is assumed, the connection

weights do not change over time and the unfolding architecture of the BRNN (Figure 25)
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is as indicated in the work of Baldi et al. [1999]. In our work, we have used the cost

function:

1 S
E=—3" (Upit — Ypir)® (43)
2¢ p=1 =1

where W is the number of training patterns, s the number of neurons in the output layer,
Yp.. the target output and y,, ; ; the system output.
The general formula of the partial derivative of £/ with respect to any weight in Figure

3 can be written as below (16):

Z or (93/1 t aOUt )
8w w ayz,t aOUt ow

(44)
(90Ut

:_Z Uit — Yir) ~Yir - (1 — i) - 8w]

where 7' is the moving amount of the sliding window size.

The unfolded architecture of the BRNN (Figure 25) is again inspired from the work
of Baldi et al. [1999]. The time step ¢ represents the relative positions of patterns and
is decided by a sliding window of predefined-length. While this window is sliding, the
corresponding I/O pair and the states of the current time step are determined. As we have
already mentioned, since stationarity is assumed, the connection weights do not change

over time.

kiv = (Uit — Yir) - Yizr - (L — yir) (45)
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Figure 25: Unfolded architecture of the BRNN: The unfolded architecture of the BRNN
is inspired from the work of Baldi et al. [1999]. The time step ¢ represents the relative
positions of patterns and is decided by a predefined-length sliding window. While this
window is sliding, the corresponding I/O pair and the states of the current time step are
determined.

oUy = wp - F; + wUpo -n+wp - By (46)
Fy, = wFyo - hF, (47)
n=wUryg-U; (48)

By =wBpyo - hB; (49)

hFy, = wFrg - Fi_1 + wUppp - Uf,t (50)
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hB; = wBrg - Biy1 +wUinp - Upy (51
a(x)=0 for r <0
(52)
d(z)=1 for x>0

Finally, based on (44), we have calculated the derivatives which are used from the
HR-SCG algorithm for training the weights of the BRNN architecture in Figure 3. Based
on (30)-(42), we have set the auxiliary formulas k; ;, oU;, F}, n, B, hF; and hB,, which
appear in (45)-(51), respectively. These equations have been used with the partial deriva-
tive function (44) and the derivative of ReLLU activation function (52) to calculate the
partial derivatives on each layer of the BRNN weight vector as it appears in Figure 3. The

final formulas can be seen in (53)-(62).

OF 1 &
= S "(kiy - wp - hE, 53
Gy~ 2kt wr ) (53)

OF 1 <&
— —N"(kiy-wp - hB 54
FuoBrg = & 2o s - hB) (54)

OF 1 <&
EaiT E (kit - F3) (55)
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ajiH - %g(kzt ~wF - wFyo - Fy_4)
ajgm = %g(ki,t -wB - wByo - Bit1)
05511{ - %é(l@t ~wUpo - Uy)
aj(ihl, - éi(lﬂt ~wF - wFyo - Usy)
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(56)

(57)

(58)

(59)

(60)

(61)

(62)
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. OE oF oF
N [(9wFHO’ OwByo OwFyo’

oFE oF oFE oF
owUpo OwB’ OwFry OwBrg’

OF oF oF
owUrg’ OwUp’ 3wUZ-hB]

E'(w)

(63)

After the partial derivatives of the cost function (43) with respect to individual weights are
calculated, they are directly fed to the HR-SCG algorithm (Algorithm I). These formulas
(53)-(62) are used to calculate the unfolded BRNN gradient vector (63) which will be
used by the HR-SCG algorithm to update the BRNN weight vector.

Based on the analytical calculation of the BRNN gradient vector E’, we then use the
HR-SCG algorithm to train BRNNs. At the beginning of the algorithm, we initialize
the model’s weight vector WW. This is done by the Xavier initialization method [Glo-
rot and Bengio, 2010]. In the case of RNNs, initialization of a weight vector with very
small or very big weights must be avoided because it can lead to the vanishing and ex-
ploding gradient problems. Through our work many different weight vector initialization
approaches have been used based on a constant value W,,,;; and an initialization range of
—Winit < W < Wi, but they failed. In contrast, the Xavier weight initialization method
is based on the network’s size and it helps the error signal to reach deep into the network.
Although this method has been justified statistically only for sigmoid units [Glorot and
Bengio, 2010], it has been used to initialize the weights of our model in a distribution
which helps the optimization process to converge to a meaningful solution. Most of them

have been failed. Furthermore, we have initialized all the network’s recurrent weights
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with an identity matrix [Le et al., 2015]. In this way, all the new hidden state vectors
are copies of previous hidden vectors with an addition of the effect of current inputs re-
placing all negative states by zero. Therefore, the error derivatives for the hidden units
remain constant and no extra error-derivatives are added when they are backpropagated
through time. Generally, this method also helps to overcome the vanishing gradient and
the exploding gradient problems. Finally, the softmax output layer helps to avoid flattened
saddle points [Dunne and Campbelly, 1997], which can lead to a slow convergence rate.
As it can be seen in Algorithm 1, at the beginning of each HR-SCG iteration, the di-
rection vector py, is set to the negative of the model gradient vector £’ and the Scaling
Parameter S, is recalculated. Then the second order information Sj, is calculated. The
Hessian Matrix calculation demands O(/N?) memory usage and O(/N?) calculation com-
plexity. To surpass this complexity, the SCG uses a Hessian Matrix approximation calcu-
lation based on the model’s gradient vector and the direction vector to calculate Si. Then,
a LM approach is used to set the ¢; parameter, which identifies if the Hessian Metrix is
positively defined. This is a necessary condition for function minimization procedures. If
) 1s negative, the algorithm has to make the matrix positively defined. This information
is used to calculate the algorithm’s step size. Thus, the step size and direction vector are
used to calculate the new weight vector. At this step, if the error value is less than the
error at the previous iteration, the new weight vector is applied to the model. If the error
is not decreased for a number of iterations, it would mean that we have approached a
minimum. At this final point the GD algorithm is set for further optimization. Otherwise,

if the algorithm cannot converge, it is restarted.
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One of the most undesirable difficulties during the training of a RNN is the vanish-
ing gradient problem. A mechanism which introduces shortcut connections between the
forward and backward states of the time series has been used to form shorter paths along
the sequence where gradients can be propagated [Baldi et al., 1999]. Therefore, the gra-
dient information at each time step ¢ includes a strong signal from the whole sequence to
encounter for the vanishing gradient problem and consequently avoid long range depen-
dencies elimination. Thus, (64), (65) and (66) are used to calculate the final F;, B; and

Oy, respectively.

Ft = ¢(Ft717 th& Uf,t) (64)
Bt = 5<Bt—17 Bt—sa Ub,t) (65)
O, :n(Ft—sa~-'7E+57Bt—sa~-~7Bt+saUc,t) (66)

where F;_ /F;. s and B, 1/B;,, are the previous/next context states of F; and B, respec-
tively and U is the input vector at ?.

Furthermore, compared to the original SCG, we have introduced some minor modifi-
cations to the HR-SCG algorithm in order to increase the convergence rate and the ability
of the algorithm to search for the best solution in a complicated error surface of such a

BRNN network:
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Gradient Descent Method: In this work, the GD method has been combined with the
SCG learning algorithm to create a Hybrid first and second order learning algorithm.
Along the training procedure of a large BRNN model with complicated sequential data,
the error surface tends to be rough with multiple local minima. In this case, the SCG step
size might be too long for the algorithm to converge in a narrow valley. As a result the
error value may remain stable and the algorithm proceeds to restart mode. To surpass
this problem, before the algorithm is restarted, the HR-SCG algorithm switches to GD
mode with a very small learning rate. Consequently, the GD component of the HR-SCG
learning algorithm is using very small steps to reach the minimum. This can be seen in
lines 34-41 of Algorithm I. Since the SCG has already reached a minimum, only a few

steps of the GD are necessary.

Adaptive Step Size Scaling Parameter: We have introduced an adaptive step size scal-
ing parameter S.gg at step 7 of the SCG algorithm as defined in [Mgller, 1993b]. This
parameter is recalculated in each iteration of the algorithm as in (67). As it is well known,
a learning rate parameter, which appears in the GD learning algorithm, is highly related
to the optimization algorithm’s step size. Thus, we have modified the algorithm’s up-
date weight vector rule to introduce a learning rate like parameter. This can be seen in

(67),(68).

Sess(k) = Sessexp(—k) (67)
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W1 = Wy + Sess(k)agp (68)

where £ is the iteration number, ay is the step size and py, is the direction vector.

During the first iterations of the algorithm this scalar is high, assuming that the algorithm
has identified a direction to a minimum. Hence, we force the algorithm to use a big-
ger step size in a specific direction to approach a minimum faster. The adaptive scaling
parameter is exponentially decreasing as the algorithm approaches a minimum to avoid
losing the lowest point of the curve. Furthermore, this parameter is redefined each time
the SCG algorithm restarts (line 32 of Algorithm I). Empirically, the use of this parameter
1s mandatory for training a complicated BRNN architecture with the SCG algorithm. This

parameter can be seen in the weight vector update rule at lines 27 and 28 of Algorithm 1.

Restart Algorithm Condition: The original SCG algorithm is restarted if the number
of learning iterations surpasses the number of the network’s parameters. However, this
condition is meaningful only if the algorithm is used to optimize a quadratic function.
Clearly, in the case of the BRNN architecture this condition fails because the error surface
is much more complicated than a quadratic function. Hence, we have chosen to restart
the algorithm only if the algorithm shows slow development (training error<10~") and
after the constant number of 20 iterations. Furthermore, our implementation algorithm,

before a restart, stores all the weight vectors and the respective training errors. Finally,
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after the algorithm reaches the final training iteration, it returns a trained model with the
weight vector which was assigned to the lowest training error. Consequently, this version
of the algorithm is widely exploring the respective error surface and is less likely to get
stuck for a long time in a local minimum. This procedure can be seen in lines 33 to 53 of

Algorithm 1.

Dropout Method: During the training of BRNN architectures and more generally in any
large deep network, over-fitting may become a big problem. Dropout is a method which
was introduced in Srivastava et al. [2014] to address this problem by randomly dropping
units during the training procedure. Consequently, this prevents units from co-adapting

too much. This procedure is executed by doDropout() function in line 3 of Algorithm 1.

4.2.2.3 HR-SCG Time Complexity Analysis

The time complexity of the HR-SCG algorithm can be calculated based on the SCG
and GD time complexities. More specifically, each iteration of the SCG algorithm has
one call of E(w) and two calls of E'(w). For a network with N free parameters, the time
complexity of SCG per iteration is O(3N?), which can be reduced to O(2N?) because
the calculation of E’(w) may include O(N?) [Mgller, 1993b]. Furthermore, the time
complexity of the GD algorithm is O(N?). However, our algorithm is not using the GD

optimization at each iteration, so the correct time complexity is:

O(N?) + O(2N?) + O(M * N?) = O(N? + (M % N*))O(N?) (69)
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Algorithm 1 The HR-SCG BRNN learning algorithm

Require: initialize weight vector wj, max-

—

@

10:
11:
12:
13:

14:
15:

16:

17:
18:
19:
20:
21:

22:
23:

24:

25:
26:

27:
28:
29:

imum training epochs T, Scalar Scss,
scalars ¢ > 0, A; >0, A; =0

k=0, px = —E'(wk), 7« = —E'(wk),
k = 1, success=true
repeat

doDropout() //as in Srivastava et al.

74)

if success = true then
//calculate second order informa-

tion
Op = —
|Pe |
s — E'(wx + oxpr) — E'(wy)
3 or
bk = Py 8k
end if
//scale si

sk = Sk + (Ar — Ap)Dk )
8k = 0k + (A — Ak)|pkl
//make the Hessian Matrix positive
definite
if 6 <=0 then .
)
sk = 8k + (Ax — 2—k2)Pk
5 [P
k
—3)
Pk |
8k = —8k + A |pi|?
Ap = Ap
end if
//calculate step size ak
Bk = Dj. Tk
X = —k

)‘_k = Z(Ak —

k
//calculate the comparison parameter

Ag
Ap

if Ay > 0 then
//successful reduction in error can
be made
Scss(k) = Scssexp(—k)
Wet1 = Wi + Sess(k)akpr
Tk+1 = _El(wk—}—l)

_ 26k [B(wk) — E(wk + ckp)]
M

30:
31:
32:

A =0
success=true
//restart algorithm if N=0 or error
remains stable
if k mode N=0 or error is stable for
10 iterations then
//Gradient descent mode
if error is very low then
t=0
repeat
Wy = Wg
W1 = Wi + ap B (wy)
t=t+1
until error is stable
end if
//iterations surpasses the num-
ber of the network’s parameters
or error is stable — restart algo-

rithm

Pk+1 = Tk41
else 5

[Pes1|® = Tht1Tr
Br =
Hi

Pk+1 = Tk4+1 + BrPk

end if

if Ax > 0.75 then
//reduce the scale parameter
A = 1/2Ak
end if
else
//reduction in error is not possible
Ak = Ak
success=false
end if
if Ap < 0.25 then
//increase the scale parameter
A = 4
end if
if 7, = 0 then
//terminate the algorithm
return w41
end if
k=k+1

cuntilk =T
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where M is the number of GD’s iterations.

4.2.2.4 Training BRNNs with the HR-SCG

In this work, the HR-SCG learning algorithm has been used for training BRNNs to
handle the PSSP problem. Our methodology appears in Figure 26. As it can be seen,
we have 5 levels of processing. In the first level of our methodology, the PS of protein
sequences appears in MSA encoding. Input data is used from multiple BRNN classifiers
in the second level of our methodology. These BRNN classifiers are trained with the
HR-SCG method. Each BRNN returns three real values for the central residue of the
local window, one for each secondary structure state. Subsequently, the corresponding
outputs of each BRNN for each state are averaged through the ensembles level. Then,
the resulting predictions from the ensembles level are used for filtering [Kountouris et al.,
2012]. Finally, the last level of our methodology returns three real values, which represent

the predicted SS class for specific input data.

4.2.3 Results and Discussion

The HR-SCG methodology has been applied to the PSSP problem and through a thor-
ough experimental analysis, various results have been extracted. These results demon-

strate the efficiency and the effectiveness of the algorithm.
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Level 1: Level 2: Level 3: Level 4: Level 5:
Protein Data n BRNN Ensembles Filtering HorEorlL
Pre-processing classifiers Method Technique Output

-
-

Figure 26: The HR-SCG BRNN methodology for the PSSP problem:The methodology
has 5 levels of processing. Level 1 is used for Protein Data Pre-processing to feed each
one of the BRNNSs in Level 2. Level 3 and Level 4 use Ensemble and Filtering Methods,
respectively, to present a final output in Level 5.

4.2.3.1 Data Preparation and Simulation Details

Special care has been taken to retrieve datasets of the highest possible quality for the
PSSP problem relying in specialized resources. As we have already mentioned in Sec-
tions 2.3.6 , for the purposes of this work, we have used the CB513 [Cuff and Barton,
1999] and the PISCES [Wang and Dunbrack Jr, 2003; Kieslich et al., 2016] datasets,
which consist of 513 and 8632 protein chains respectively. More specifically, high res-
olution protein structural data have been obtained from the RCSB Protein Data Bank
(PDB; http://www.rcsb.org/). The data have been preprocessed as it has been described
in Sections 2.3.6.1-2.3.6.4 . During this procedure, the MSA files of CB513 and PISCES
datasets have been analyzed and cleaned up from data with short or no information. More
specifically, the PSI-BLAST has created some MSA files with arrays of zeros or arrays

with less amount of elements than expected. The respective protein sequences (342 in
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total) have been excluded from the training and testing datasets (7able 8). Furthermore,
we have followed a strict 10-fold cross-validation approach for the CB513 dataset and
6-fold cross-validation approach for the PISCES dataset as described in Kountouris et al.

[2012] and Wang and Dunbrack Jr [2003]; Kieslich et al. [2016], respectively.

Dataset Protein Sequence Name

Name

CB513 1COIA, IMCTI, ITIIC, 2ERLA, 1CEOA, IMRTA, 1WFBB, 6RLXC

PISCES IBBIA, 1BBI1B, 1BB1C, 1C9%4A, 1DPJB, IDTDB, 1F8VD, IGWMA, 1HX6A, 1KD8A,

IKPGA, 1KVEA, 1L2WI, IM3WA, 1IM45B, IM46B, IMCTI, IMQSB, IMWS5A,
1006A, 1P9IA, IPIMA, 1PINA, 1SVFB, 1TO1B, ITQEX, ITTWB, 1UGHB, 1UVQC,
1ZVZB, 1ZW2B, 2BPA3, 2BPTB, 2C5IP, 2C5KP, 2DS2A, 2ERLA, 2GWWB, 2HZSI,
2MLTA, 2P06A, 2PBDV, 2PLXB, 2QUOA, 2W4YA, 2WBYC, 2WFUA, 2WFVA,
2WWXB, 2X5CA, 2X5RA, 2XF7A, 2XZEQ, 3AJBB, 3C5TB, 3DT5A, 3ESYX, 3FBLA,
3GP2B, 3HOTC, 3HE4B, 3HESA, 3HESB, 3L9AX, 3LCNC, 3LIMA, 3M6ZA, 3NK4C,
30WTC, 3P06A, 3PLVC, 3QKSC, 3R46A, 3R4AA, 3RA3B, 3RF3C, 3RKLA, 3S1BA,
3SGPE, 3SHPA, 3SJHB, 3TQ2A, 3TWEA, 3TZ1B, 3U4VA, 3U4ZA, 3UCTA, 3UKXC,
3ULIA, 3V62C, 3V86A, 3VUSB, 3VU6B, 3VVIA, 3W8VA, 3W92A, 3WKNE,
3WOEB, 3WX4A, 3WY9C, 3ZTAA, 4A94C, 4BFHA, 4BLQA, 4BPLB, 4CIAA,
4CAYC, 4CU4B, 4CXFB, 4DACA, 4EHQG, 4F87A, 4FBWC, 4FTBD, 4FZ0M, 4G1AA,
4GVBB, 4H62V, 4H7RA, 4HS8MA, 4HSOA, 4HBIA, 4HBEA, 4HLBA, 4HRIA,
4I7ZE, 4TIKA, 4J4AA, 4JGLA, 4THKC, 4KVTA, 4KYTB, 4LOOB, 4M1XA, 4M6BC,
4MGPA, 4MISC, 4N3BB, 4N3CB, 40GQE, 40Q9A, 40YDB, 40ZKA, 4PCOC, 4PNSA,
4PNOA, 4PNAA, 4PNBA, 4PNDA, 4PW1A, 4QMFA, 4R0RA, 4R80A, 4RSTA, 4RIQC,
4TTLA, 4UEBB, 4W6YA, IMIQA, 1Q2HA, 1Q9UA, 1QV9A, 1SQWA, ITU9A,
1UILA, 1UV7A, 1V96A, IVPRA, IVR4A, IWPNA, IWV3A, IWWPA, 1YPYA,
1Z4RA, 2BDRA, 2CONA, 2CVIA, 2D59A, 2D68A, 2DTEA, 2E1FA, 2ERWA, 2FBOA,
2FI1A, 2G7SA, 2HL7A, 2HQLA, 2HX5A, 2IP6A, 2NPTA, 2NSOA, 201QA, 2038A,
204AA, 2099A, 20L5A, 20U1A, 20USA, 20X7A, 2P63A, 2PIXA, 2PWIA, 2Q3SA,
2Q3TA, 2R19A, 2R5SA, 2R85A, 2UVPA, 2V73A, 2VOPA, 2VSOA, 2WGSA, 2WVQA,
2YSPA, 2YF2A, 2ZEXA, 3BOFA, 3BPQA, 3BRVA, 3CODA, 3C4RA, 3CPTA, 3CRYA,
3CSXA, 3D33A, 3D30A, 3D55A, 3DFUA, 3DNXA, 3E0RA, 3ESLA, 3ESMA, 3F43A,
3F67A, 3F95A, 3FF5A, 3FH3A, 3G21A, 3GO9A, 3GP6A, 3HODA, 3HONA, 3HI6A,
3H35A, 3HLSA, 3100A, 314UA, 3176A, 3IBWA, 3IV4A, 3JQOA, 3KSRA, 3KTOA,
3KUPA, 3KVPA, 3L49A, 3L60A, 3L7HA, 3LQ9A, 3M5QA, 3MDIA, 3N7XA, 3NOQA,
3NRSA, 3NS4A, 30124, 3065A, 306QA, 30NQA, 30P6A, 3PS1A, 3PD7A, 3PLOA,
3Q0HA, 3Q18A, 3Q6CA, 3QH6A, 3RK6A, 3TESA, 3TS9A, 3TUOA, 3TVQA, 3USWA,
3U97A, 3UVOA, 3UVIA, 3VSSA, 3W6SA, 3ZCOA, 4APSA, 4AQ0A, 4BOQA, 4BSVA,
4BSXA, 4DHXA, 4EGSA, 4E6WA, 4F27A, 4F2LA, 4F4WA, 4F87A, 4FXTA, 4GITA,
4GOFA, 4GT9A, 4GUCA, 4H41A, 4HHVA, 4116A, 4I86A, 4THQA, 4J11VA, 4J5RA,
4391A, 4TX0A, 4K12A, 4K92A, 4KQIA, 4KTWA, 4L2WA, 4L3UA, 4LKUA, 4LQBA,
4LTBA, 4MOOA, 4MTUA, 4MYVA, 4N74A, 4NUAA, 4P2VA, 4P49A, 4P78A, 4PF3A,
4PSFA, 4Q53A, 4Q70A, 4QRNA, 4QSGA, 4R7RA, 4U90OA, 4X33A

Table 8: Protein sequences which have been excluded from the CB513 and PISCES
dataset. These protein sequences have been excluded from the datasets because of mis-
calculations of the PSI-BLAST.

As it has already been explained in Section 2.1.3 , the BRNN architecture consists
of a FFNN and two RNNs (FRNN and BwWRNN), where the contextual information is

contained. The network’s input vector at each time step ¢ consists of the MSA information
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AJ/A FP W, Wy We Sess  n hy Ny Spp Sour  Q3(%)
1 2761 25 3 3 1000 11 11 11 2 2 69.10
2 2761 25 3 3 10 11 11 11 2 2 69.64
3 2761 31 3 100 11 11 11 2 2 70.26
4 4178 31 3 15 10 7 10 7 2 0 72.90
5 5735 27 3 13 10 10 15 10 2 0 73.40
6 6484 23 3 11 10 11 20 11 2 0 71.80
7 7650 31 3 15 10 10 20 10 1 0 64.00
8 7850 27 3 15 10 10 20 10 2 0 73.84
9 8050 31 3 15 10 10 20 10 3 0 73.70

10 9038 27 3 13 10 7 30 7 2 0 73.10

Table 9: Experimental results using the CB513 dataset, where FP is the network’s Free
Parameters (see text for description of the parameters)

contained in the sliding window W, and the target output is the respective class of the
amino acid which is located in the center of W,. The FRNN iteratively processes the
(W, — 1)/2 residues located on the left side of the position t and the BwRNN iteratively

processes the (W, — 1)/2 residues located on the right side of the position ¢.

4.2.3.2 Optimizing BRNN and HR-SCG parameters

A single BRNN has been trained on different single folds of the CB513 dataset. At
this stage, we carried out multiple experiments to tune up BRNN and HR-SCG parameters
to extract the desirable results. The final Q3 and SOV results of each simulation were
extracted as the average of 10 different simulations on the same parameters of the BRNN
and HR-SCG algorithm.

One of the most important parameters with a big impact on the results is the sliding
window size. Particularly, we have used 3 window size parameters (Figure 3). The W,

parameter stands for the sliding window size on the PS. The Wy, window parameter
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Figure 27: Experimental results using the CB513 dataset as a test set for (a) W, (b)[Vy,
(c) We, (d) Sess, () Sgp and () Spye. The six bar charts show the impact of most important
BRNN parameters on the final results. A single BRNN has been trained at each time with
HR-SCG algorithm on the CB513 dataset. Multiple experiments have been carried out to
tune up BRNN parameters to maximize results (see text for description of the parameters
and results).
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represents the number of residues that are used as input to F; and B; at each time step
t. Subsequently, a sliding window of W, amino acids is moving from left to right for
(W, — 1)/2 residues to feed the F; and respectively a sliding window of W, amino
acids is moving from right to left for (W, — 1)/2 residues to feed the B,. Finally, the
W, window parameter represents the number of W, residues which are located at the
center of the window and are used as input to hy layer of the FFNN. The exact number
of input nodes for each window is 20 - w (w:window size), since each position in the PS
is encoded by 20 values in the MSA representation. Furthermore, we had to tune up the
parameters that determine the network’s architecture: n is the length of the context vectors
oF and oB, while N, indicates the number of hidden units in Ay layer and similarly Vg
indicates the number of hidden units in hy and hp layers. We have also used the already
mentioned adaptive step size scaling parameter S.gg. Finally, we have used the Sy, and
Sout, Which are the number of additional consecutive context vectors in the future and the
past of F;/Br and Oy, respectively. The performance of our model has been evaluated by
the percent of correctly predicted residues Q3 [Richards and Kundrot, 1988]. To extract
the optimized parameters, we have performed grid search to find the set of optimum
parameters. The most indicative results can be seen in Table 9. The highest Q3 accuracy
which has been achieved was 73.84%, for: W, = 27, Wy, = 3, W, = 15, Scgs = 10,
n =10, N, = 20, Ny = 10 and Sy, = 2 and S,,; = 0.

After we have tuned up the network architecture, we have investigated the impact of
the most important parameters on the results. These results can be seen in Figure 27

where we have kept the parameters which gave the highest accuracy constant except the
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one which is investigated. We have noticed that in order to maximize the algorithm’s
performance the three windows W,, Wy, and W, must have values of 27, 3 and 15,
respectively. Thus, shorter sliding windows do not provide the network with enough
information and longer sliding windows cannot be captured by the network. As it can be
seen from experiments in Figure 27(a), 28(b) and 28(c), the tuning up of these parameters
can vary the algorithm’s performance by more than 15%. The biggest variation in the
algorithm’s performance around the optimum parameters comes from the variation of
Wy Finally, a window of 1 or 2 amino acids does not contain enough information and
information of 5 amino acids cannot be captured by the network. Finally, the overall
results obtained using a window of 4 amino acids looks very similar to those obtained
by a window of 3 amino acids but we have chosen the later since it leads to a simpler
network. Furthermore, it is obvious that the network is fed with more information as we
increase the center window W, length. Consequently, as we can see from Figure 27(c)
the network’s accuracy is increased. The upper bound for this statement is when length
W. reaches 15. Further to this value the network’s accuracy remains practically stable.
In addition, we have noticed that the S.55 parameter should be set to 10 to increase the
convergence rate for this problem. During our simulations, we have used multiple values
for this parameter, but only if this number was in power of 10 we have noticed significant
changes on the results. As it can be seen in Figure 27(d), by dropping this parameter from
100 to 10, Q3 increased approximately 3.5%. The final Q3 metric has also increased by
7% after we increase the Sy, parameters from 1 to 2, as it can be seen in Figure 27(e). In

addition, as it can be seen from experiments in Figure 27(f), the network’s accuracy does
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Method Q3(%) Qu(%) Qr(%) Qiu(%) SOV SOVy SOVy SOV
S 7324 7213 6158 8038 6781 6656 6245  69.02
(73.69)  (75.92) (62.77) (78.87) (68.01) (66.07) (62.02) (70.56)

H 7380 7253 6231 8096 6791  66.63 6234  69.81
(74.12)  (75.92) (62.77) (78.87) (68.12) (65.98) (62.08) (70.32)

HD 73.85 72.43 62.47 81.09 67.93 66.59 62.29 70.14
(74.24)  (76.02) (63.00) (78.96) (68.20) (66.12) (62.03) (70.52)

HDE 76.24 75.50 65.22 82.73 70.83 70.13 65.96 71.02
(76.52)  (78.86) (65.37) (80.62) (71.94) (71.36) (66.15) (71.63)

HDEF 77.41 76.80 66.32 83.84 71.96 71.55 65.92 71.80
(77.61)  (80.35) (65.30) (81.99) (72.15) (71.85) (66.06) (71.65)
Table 10: Experimental results using the CB513 (PISCES) dataset under 10-(6-) fold
cross-validation, where S is a single BRNN trained with SCG algorithm, H is the Hybrid
method, D is the Dropout algorithm, E is the Ensemble method and F is the Filtering
Technique (see text for description of the parameters)

CB513 CB513 PISCES | PISCES
with with

Dropout Dropout
Sample Standard Deviation s | 0.74 0.22 0.54 0.11
Variance (Sample Standard) s2 | 0.55 0.05 0.29 0.01
Population Standard Deviation o | 0.70 0.20 0.51 0.11
Variance (Population Standard) o2 | 0.49 0.04 0.26 0.01

Mean (Average) | 73.80 73.85 74.12 74.24

Standard Error of the Mean | 0.23 0.07 0.17 0.04

Table 11: Statistics of Q3 results for 10 different training procedures of the HR-SCG
algorithm with and without Dropout method.
not have big variations when the S,,; parameter is increased more than 0. Consequently,

we have chosen to ignore this layer of network’s complexity.

4.2.3.3 Methodological Enhancements

Because of the size of the BRNN, which can have more than 7000 free parameters,
the weight initialization methodology was very important for the algorithm’s training pro-
cedure. Weight vector initialization with values in [—0.01, 0.01] were destructive for the

BRNN. The Q3 accuracy was 50%-55% (results not shown) and the exploding gradient
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Figure 28: The Dropout impact in HR-SCG algorithm: Average results of 10 different
training procedures of the HR-SCG algorithm. Each bar shows the minimum and max-
imum Q3 value of the 10 different training procedures. The dropout technique does not
improve the system’s accuracy but it reduces the variance of the final Q3 results from
multiple experiments of the CB513 and PISCES datasets.
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Figure 29: The HR-SCG BRNN methodology improvements: The improvements and
ML techniques which were applied to HR-SCG methodology have increased the BRNN
accuracy by approximately 4%.
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Figure 30: Graph of Confusion Matrix for Actual vs Predicted SS Classes on the
CB513 dataset: HH, EE and LL are the True Positive scores of our method for each class
after the average ensemble method and filtering technique. EH, LH, HE, LE, HL and EL
are the scores for the mispredicted classes where the first letter is the actual class and the
second letter is the predicted class. Based on an average of a 10-fold cross validation
evaluation, the method can predict correctly with 76,80%, 66.32% and 83.84% the H, E
and L classes, respectively.
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Figure 31: Comparison of HR-SCG to BPTT learning algorithm: On 9(a), the HR-
SCG learning algorithm needs much less training iterations than the conventional BPTT
learning algorithm. On 9(b) the testing error through multiple restarts of the algorithm.
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problem was demonstrated. The solution to this problem was the Xavier weight initializa-
tion method which is initializing the network’s weight vector with much smaller values
based on the network’s size. Consequently, the range of weight vector values was in
[—1 x 1074, 1 x 10~*]. As it can be seen in Table 10, the initial Q3 accuracy for a single
BRNN which was trained on the CB513 and PISCES datasets before any improvements
and ML techniques on the SCG learning algorithm were 73.24% and 73.69%, respec-
tively. This accuracy level was approximately 3% lower than the 76% of Baldi et al.
[1999] BRNN which is the obvious baseline benchmark for our algorithm.

One big improvement of our methodology is the transition between second to first
order learning algorithm. As it can be seen in Table 10, when the GD is included in
the methodology, the accuracy for both datasets is increased about 0.5%-0.6%. Conse-
quently, the Q3 accuracy for CB513 and PISCES datasets reached the 73.80% and 74.1%
of correct predictions respectively. This improvement makes our methodology hybrid and
through the small step size of GD algorithm, it can approach better the local minimum.
Furthermore, dropout has also been used for generalization purposes. In Figure 28, we
can see the average results of 10 different cross-validation experiments of our methodol-
ogy for the CB513 and PISCES datasets. As it can be seen, the dropout technique does
not significantly improve the system’s overall accuracy but it reduces the range between
the lowest and highest Q3 scores in simulations with the same parameters. This can also
be seen through the statistical results shown in Table 11. The standard deviation and con-
sequently the variance of the Q3 results for both datasets are decreased when the Dropout

method is introduced but without affecting any generalized information, as it can be seen
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from the results which are explained in the next paragraphs. This result allows us to get
more generalized results in less executions of the algorithm.

The major improvement in our results has been achieved with ensemble methods and
filtering techniques [Kountouris et al., 2012], which follows Baldi et al. [1999]. In this
paper, we employ an ensemble of six BRNNs. Each BRNN returns three real values for
the central residue of the local window, one for each secondary structure state. Subse-
quently, the corresponding outputs for each state are averaged and, therefore, the output
of the ensemble is an array of three values for each residue. The resulting predictions are
then used for Multilayer Perceptron filtering, as explained in Kountouris and Hirst [2009].
These techniques improved the accuracy and made our results comparable to Baldi et al.
[1999] work.

As it can be seen in Figure 29, the improvements and ML techniques which were
applied to our methodology have increased the BRNN accuracy by approximately 4%,
which make our results comparable to the results of other algorithms on the same prob-
lems. Furthermore, in Figure 30 we can see how the algorithm can manage with each SS
class. Obviously, in the case of CB513 dataset, the algorithm can predict correctly with
76,80%, 66.32% and 83.84% the H, E and L classes, respectively. Furthermore from Fig-
ure 29 we can obtain the mispredicted residues for each class. As it can be observed, the
H and E classes have much less mispredictions than the L class. Consequently, through all
the enhancements appeared in 7able 10, our methodology has achieved 77.41% Q3 accu-
racy and 71.96 SOV for the CB513 dataset. Furthermore, the methodology has achieved

77.61% Q3 accuracy and 72.15 SOV for the PISCES dataset.
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Here, it is important to mention that for comparison purposes, the CB513 and PISCES
datasets have been used to train the LSTM-BRNN of Heffernan et al. [2017], which has
been reported as the method with highest results on the same type of data for the PSSP
problem. The 10-fold cross validation on the CB513 dataset has achieved 76.2% Q3 and
the 6-fold cross validation on the PISCES dataset has achieved 81.5% Q3. As it can be
seen, the results of our method are slightly higher than the results of the LSTM-BRNN
method for the CB513 dataset and slightly lower for the PISCES dataset, so overall we can
say that for the same type of data the two methods give comparable results. Furthermore,
the results of this method on our datasets are much lower than the 84% Q3 which has been
reported in Heffernan et al. [2017]. This is due to the fact that different methods have been
used to create each dataset. In contrast to our datasets (Section 2.3.6), Heffernan et al.

[2017] combine two different types of profiles, PSI-BLAST and Hblits.

4.2.3.4 Comparison of HR-SCG to BPTT learning algorithm

Finally, in order to compare the computational performance of HR-SCG to BPTT
learning algorithm, we have used the same architecture and methodologies which gave as
the optimum results for the HR-SCG learning algorithm and has been explained in detain
in Sections 5.2 and 5.3, but trained with the BPTT learning algorithm. The results have
been taken from 10-fold and 6-fold cross validation approach for CB513 and PISCES
datasets, respectively.

The results on the PSSP problem have shown that a BRNN trained with both learning

algorithms can capture patterns and make predictions on complicated sequences where
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the information in both upstream and downstream direction is important. The BRNN
trained with BPTT has achieved 77.14% and 77.8% Q3 accuracy for the CB513 and
PISCES datasets, respectively. As it can be seen from the results, the Q3 accuracy on both
methodologies and datasets is comparable. Furthermore, as it can be seen on Figure 31(a),
the HR-SCG learning algorithm needs much less training iterations than the conventional
BPTT learning algorithm for the CB513 dataset. The HR-SCG algorithm is executing
approximately 400 gradient vector calculations in 200 epochs against the BPTT which
needs 1600 gradient calculations in 1600 epochs. The execution time of each gradient
vector calculation in both algorithms is comparable so it is obvious that our HR-SCG
algorithm is approximately 4 times faster than the BPTT algorithm. This is the most
significant advantage of our methodology against training the BRNN with a conventional
BPTT learning algorithm. Furthermore, Figure 31(b) is showing the training error of
multiple executions of the HR-SCG learning algorithm for the CB513 dataset. As it can be
observed, the algorithm is converging to the best available minimum after approximately
400 gradient vector calculations which is achieved after the algorithm is set 3 times in
restart mode. Moreover, Figure 31(c) shows the training error before several restart modes
of the algorithm further to the 400 gradient vector calculations. In this case, the algorithm
is converging to worst solutions. Consequently, the training early stopping technique has
been used and empirically set to the constant of 400 gradient vector calculations.

The need of less executions of the algorithm to converge is very important if we take

into account the latest developments in the field which demand very big datasets and
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network architectures, which consequently increase exponentially the amount of train-
ing time. In addition, many of these methods are combined in ensembles, as in Baldi
et al. [1999], where the training amount of time is even more increased. The number of
iterations needed to train BRNNs with HR-SCG linearly increases with the number of en-
sembles with much smaller slope than the BRNNs trained with the BPTT algorithm. This
is extremely important if we take into conciteration that an increasing size of ensembles
is used to improve the results of ML methods [Zhou et al., 2002; Granitto et al., 2005a;
Zhou et al., 2010].

Moreover, we have replicated the work of Baldi et al. [1999] (BaBRNN) and we have
trained it on the PICSES dataset. The purpose of this exercise was the direct comparison
of our results to the BABRNN method. The main difference between the BaBRNN and
our BRNN model (both trained with the BPTT method) is the way that the sequences are
fed to the network. In contrast to our window based method, BaBRNN is using the whole
sequence to predict the SS state of a sequence at a specific time-step. More specifically,
as described in the work of Baldi et al. [1999], we have built an ensemble of 6 BaBRNNSs
(n=12, hsb=9, N,=11, s;n=3 and s,ut=3). The 6-fold cross validation results on the
PICSES dataset has achieved the accuracy of 76.8%. Although BaBRNN is fed with
the whole sequence at each time-step and has achieved an accuracy of approximately
76%, the results are comparable to our window based BRNN method. In Baldi et al.
[1999], the vanishing gradient problem is responsible for the lack of capturing long range
dependencies in BaBRNN model. Consequently, shorter input sequences in a BRNN

have produced comparable results to the BaBRNN method. The comparable results can
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be justified because both methods are using the same simplified shortcut connections

between the forward and backward states to capture long-range information.

4.2.4 Conclusions

In this work, we present a second order method for training BRNNs for the PSSP
problem where the SCG is applied for first time on these models. More specifically,
we present the development and implementation of the HR-SCG learning algorithm for
BRNN architectures. In contrast to the conventional GD learning algorithm, the HR-SCG
exploits both gradient and curvature information for fast convergence. Through this paper,
the formulas of SCG learning algorithm have been developed in detail and modified for
the BRNN architecture. Furthermore, the HR-SCG methodology has also been enriched
with a version of GD and Dropout algorithms for faster, better and more accurate results.
Finally, ensemble methods and filtering techniques have been used to produce the final
results. To the best of our knowledge, the SCG algorithm has not previously been used
for training of a BRNN architecture.

The efficiency and effectiveness of our model has been tested on the PSSP problem.
It has achieved 77.4% per residue accuracy on the CB513 dataset and 77.6% per residue
accuracy on the PISCES dataset which compare well with other works based on BRNNS.
Moreover, the SOV values for the CB513 dataset is 71.96 and for the PISCES dataset is
72.15. Finally, as it has already been mentioned, the HR-SCG outperforms the GD learn-
ing algorithm for BRNNSs in terms of convergence time, needing approximately 75% less

convergence time on the CB513 and PISCES datasets. Hence, the algorithm is efficient
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for training the complex BRNN architectures, especially when there are big datasets or
even for fast training ensembles of BRNNS.

The final results on the PSSP problems have demonstrated that a BRNN trained with
our version of the SCG learning algorithm can capture patterns and make predictions on
complicated sequences where the information in both upstream and downstream direction
is important. Furthermore, the SCG learning algorithm needs much less training itera-
tions and parameters to tune up than the conventional BPTT learning algorithm. This is
very important if we take into account the latest developments in the field which demand
very big datasets and network architectures, which consequently increase exponentially
the training amount of time. In addition, many of these methods are used in ensemble
methods where the training amount of time is even more increased.

The accuracy of 100% will never be achieved for the PSSP problem because of the
presence of disordered regions, the ambiguities inherent in the definitions of secondary
structure, the errors and uncertainties contained in databases and the role of the solvent
and other molecules [Magnan and Baldi, 2014]. Nevertheless, the improvement and sys-
tematic combination of sequence profiles, machine learning methods and sequence-based
structural similarity methods seem to be the best strategy to improve the results related to
the PSSP problem. A contribution on any of these three categories, combined with other
data preprocessing and algorithmic methods may play a catalytic role on the general im-

provement of the PSSP problem results.
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4.3 Training BRNN with the HFO learning algorithm

Further to our work on training BRNNs with the HR-SCG, we have chosen to do the
same work but training our BRNN architecture with the HFO learning algorithm which
has been reported as one of the most powerful second order learning algorithms [Martens,
2010; Martens and Sutskever, 2011] for ANNSs but has never been used for the BRNN ar-
chitecture. In contrast to our work in HR-SCG, we have chosen a direct implementation
of the original form of HFO to train our models (Section 2.2.3). More specifically, we
have implemented the ML architecture which is described in Figure 3, but this time we
have chosen as a filtering technique the SVM models as reported in the work of Koun-
touris et al. [2012]. The method which has been used for validation purposes was 10-fold
cross-validation on the CB513 datasets. An it can be seen on Table 12, the method has
achieved an accuracy of 76.52% Q3 and 0.7161 SOV. The results are lower than the re-
sults reported in Table 10 for the HR-SCG learning algorithm for the CB513 dataset by
0.89% in terms of Q3 and 0.0035 in terms of SOV. The complexity of the model could

not be handled by the original form of the HFO learning algorithm.

4.4 Chapter Contribution

A list of contributions resulted from this chapter is presented below:

1. The SCG, a second order method, is applied for the first time for training BRNNs

for the PSSP problem.
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Fold  Q3(%) Qu(%) Qr(%) Qr(%) SOV
Foldo 7726 7952 6992  79.12 0.6982

Fold1 76.12 74.02 68.01 79.02 0.7076
Fold2 76.91 75.02 69.51 78.11 0.7142
Fold3 77.01 79.23 69.12 76.72  0.7131
Fold4 76.12 76.82 69.92 77.13  0.7314
Fold5 75.94 78.91 68.11 75.92  0.7075
Fold6 77.41 79.33 68.54 78.81 0.7231
Fold7 76.22 77.61 71.94 76.03 0.7381
Fold8 75.35 76.51 68.25 77.11 0.7061
Fold9 76.82 79.14 70.12 75.15 0.7212
Average 76.52 77.61 69.34 7731 0.7161

Table 12: Results of an ensemble of six BRNNs combined with an SVM for filtering
purposes: 10-fold cross-validation approach on the CB513 dataset.

2. The introduction of a hybrid learning algorithm where the GD method is used to

optimize the weights of a BRNN model updated with the SCG learning algorithm.

3. The introduction of an Adaptive Step Size Scaling Parameter which combined with

the SCG learning algorithm can train a simple BRNN in 75% less training time.

4. The HFO, a second order method, is applied for the first time for training BRNNs

for the PSSP problem.



Chapter 5

Efficient and effective methods for the PSSP problem

5.1 Introduction

As it has already been shown in Chapter 2, the latest developments and results in
the NNs field have demonstrated huge potential in several data-related problems. Nev-
ertheless, many of these NN models, their variations and specific learning algorithms
have never been used for the PSSP problem. More specifically, there is an open field
to be investigated related to the PSSP problem and CW-RNNs (Section 2.1.4), CNNs
(Section 2.1.5) methods and HFO algorithm (Section 2.2.3). Although these techniques
have their advantages and disadvantages compared between each other, each one has spe-
cific characteristics related to accuracy, execution time, sorting with short and long term

dependencies and quality of results. Hence, we present results on an image-like input
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representation method for the PSSP problem which is used by Convolutional Neural Net-
works, results of the same problem on Clockwork Recurrent Neural Networks, results on
a novel Bidirectional Echo State Network architecture and results on a novel method of

simple Feed-forward Neural Networks trained with the HFO algorithm.

5.2 CNNs in Combination with SVMs

5.2.1 Introduction

As we already discussed in this thesis, trying to extract features from complex sequen-
tial data for classification and prediction problems is an extremely difficult task. Deep
Machine Learning techniques, such as CNNs, have been exclusively designed to face this
class of problems. Furthermore, SVMs are a powerful technique for general classification
problems, regression, and outlier detection.

One challenging task for ML techniques is to make predictions on sequential data
which encode high complexity of interdependencies and correlations, such as the PSSP
problem. A ML model designed for such data has to be in position to extract relevant
features, and at the same time reveal any long/short range interdependencies in the se-
quence of data given. The major key point that needs to be considered when trying to
solve the PSSP problem is the complex sequence correlations and interactions between
the amino acid residues of a protein molecule. In order to maximize the prediction ac-
curacy of a proposed NN technique for a specific amino acid in a protein molecule, the

adjacent amino acids have to be considered by the proposed NN architecture.
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We have developed and implemented a hybrid machine learning method based on the
application of CNNs in combination with SVMs, for complex sequential data classication
and prediction [Dionysiou et al., 2018]. The main architecture of our methods is based on
Figure 3, but we have replaced the BRNNs with CNNs. Furthermore, we have designed
and implemented a novel two dimensional (2D) input representation method for sequen-
tial data and then we have tested it on the PSSP problem for 3-state secondary structure

(SS) prediction.

5.2.2 Data Representation

CNNs are capable of analyzing image-like inputs. The major obstacle on trying to
solve a complex sequential data classification problem with CNNs is the representation
of the data, in such a way that the network is able not only to understand the shape of
the input volume, but also to track the complex sequence correlations among the input
volume. Transforming the sequential data shape so as to make it look like an image,
allows CNNs to capture the complex sequence-structure relationship, including to model
the SS interactions among adjacent or distant amino acid residues in the PSSP problem.

Along these lines, we reorganised the input data shape so that the vectors of each
sample in the sequential data are placed one under another, and in such a way create an
image-like input that will be effectively read correctly and understood by the CNN. More
specifically, we have created images based on the MSA [Wallace et al., 2005] encoding

of each protein sequence. The size of each image was specified by:

1. Image Width: A sliding window size I/ on the PS of each protein.
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2. Image Height: The length of each MSA profile vectors of each amino acid on the

PS, which is a constant value that equals to 20 [Wallace et al., 2005].

At each time step, the sliding window is moving on a protein’s PS one step to the
right to create a new image representation for that specific segment of size . As it can
be seen in Figure 32, at each position of the image matrix, we have a normalized value
out of 100. This value indicates the appearance of a specific amino acid at a specific
location of the sequence based on its MSA profile. The MSA profile vector of the amino
acid for which we are looking at its SS is located vertically at the position (17//2) — 1
along the image width. This is the center of the image matrix. Consequently, at the rest
of the image locations, we have the MSA profiles of all the neighboring amino acids
which are located at the PS before and after the centered amino acid. This is the local
information needed to infer the SS of the centered amino acid. In particular, for PSSP we
have created a new input image by placing MSA profile vectors of each amino acid one
under another to construct a 2D representation of the MSA profiles of a certain number
of neighbouring amino acid residues (Figure 32). The basic idea behind this sequence
to image transformation is that the CNNs have been designed to extract features from
images. With this 2D input representation the CNN filters can scan the image and extract
local patterns and local dependencies from the neighboring amino acids to infer the SS of
the centered amino acid.

By sliding the kernel over the newly constructed input volume, CNNs are able to
perform feature extraction for each record data, but also consider neighboring correlations

and interactions, if any exist. Note that unlike other techniques, the attention given to any
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Figure 32: Example of Data Representation Method: An example of data represen-
tation of an input sample using a window size of 15 amino acids. Each line represents
the MSA profile vector for the specific amino acid. The SS label for the example input
sample showed in this figure, is the SS label for the middle amino acid.

neighboring record correlations is equally weighted across all the input volume, for each
sample given. This lets the CNN discover and capture any short, mid- and long range
correlations among the input records and consider them all equally in terms of the output
volume created. One of the major contributions of this work is this innovative input data

representation, especially designed for the complex sequential data of the PSSP problem.

5.2.3 Support Vector Machines (SVMs)

The main idea behind SVMs is that the input vectors are non-linearly mapped to a
higher dimensional feature space using an appropriate kernel function with the hope that
a linearly inseparable problem in the input space becomes linearly separable in the new
feature space, i.e., a linear decision surface can constructed [Vapnik, 1999]. An important

advantage of SVMs is that the search for the decision surface that maximizes the margin
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among the target class instances ensures high generalization ability of the learning ma-
chine [Meyer and Wien, 2001]. Their robust performance with respect to sparse and noisy
data makes them a good choice in a number of applications from text categorization to
protein function prediction [Furey et al., 2000]. Moreover, SVMs were shown to be the
best technique for filtering on the PSSP problem [Kountouris et al., 2012]. Given this, we
decided to test the filtering capabilities of SVMs on the CNNs’ SS prediction results, to
see whether the accuracy is improved, and correct the predicted SS of a protein molecule

gathered from an ensemble of CNNSs.

5.2.4 Results and Discussion

5.2.4.1 Optimising the Parameters

The CNN implementation using the innovative input data representation described in
Section 5.2.2 has been used and tested on the PSSP problem. To train the CNN, we have
used the already mentioned CB513 dataset. More specifically, the model’s input was a
combination of a certain number of neighboring amino acids MSA profile record vectors,
one under another, forming a 2D array. The target output label was the SS class for the
middle point amino acid that had been examined.

A single CNN has been trained each time. We have decided to track the optimal hy-
perparameter values using a specific fold after dividing CB513 dataset into ten (10) folds.
The main reason for optimizing the hyperparameters on a specific fold is the small size

of CB513 dataset. Accuracy results using different hyperparameter values on the other
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folds are not expected to vary considerably. During this phase, multiple experiments were
performed in order to tune up our model and finally achieve the highest results using the
CNN. These were Q3 of 75.155% and SOV of 0.713. CNNs with different numbers of
CLs, PLs, kernel sizes, strides, number of parallel filters in each CL, and GD optimiza-
tion algorithms (Figure 33) have been tested for optimising the parameter values. The
optimization algorithms used are: Gradient Descent (GD), Gradient Descent with mo-
mentum (GD with momentum), Adaptive Gradient Algorithm (AdaGrad) [Duchi et al.,
2011], RMSprop [Tieleman and Hinton, 2012], AdaDelta [Zeiler, 2012], Adaptive Mo-
ment Estimation (Adam) [Kingma and Ba, 2015]. The two most critical hyperparameters
that showed a big impact on the results are: (a) the optimization method used and (b) the
number of neighboring amino acids to be considered in each sample (window size). More
specifically, the parameter W is the number of total amino acids to be considered by the
CNN when trying to predict the SS of the floor(W/2) + 1 amino acid. Then, according to
the W parameter we reconstruct the input sample so as to become a 2D array with shape
W x 20. The results are shown in Figure 34. Unlike Wang et al. [2016] method, where
they use 42 input features for each residue in an one dimensional input vector format, we
use 20 x W (20 input features for each amino acid x window size) input features for each
residue in a two dimensional input vector format where each line represents the MSA
profile of an amino acid at any specific position. Generally speaking Wang’s et al. Wang
et al. [2016] 42 input features used include our 20 input features (MSA profile for each

amino acid) plus extra 22 input features for each amino acid. In this way, our method
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Figure 33: Optimizers: CNNs Q3 accuracy results using different Gradient Descent
(GD) optimization algorithms.

reduces the dimensionality of the problem without losing too much important informa-
tion. Moving forward, we had to tune up the parameters that determine the network’s
architecture.

To get a general idea about the CNN performance we have trained it using the CB513
dataset. After tuning up the network architecture, the following optimal CNN parameter
values resulted: (a) Number of convolutional layers: 3, (b) Number of Pooling Layers: 0,
(c) Kernel/Filter size: 2 x 2, (d) Stride: 1, (¢) Number of Parallel Filters per Layer: 5,
(f) Neurons Activation Function: Leaky ReL.U, and (g) Optimization method: Gradient
Descent with momentum=0.85. The number of neighboring amino acids (W) that leads to
some among the highest Q3 results and at the same time limiting the complexity of infor-
mation been used (i.e., minimizing the window) was 15. Moreover, no significant change
on Q3 accuracy results was noticed using larger window (W) sizes (Figure 34). Based

on the results, we realized that (i) smaller W values do not provide enough information
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Figure 34: Window Size: CNNs Q3 accuracy results with different window (W) sizes.

to the network regarding the adjacent interactions between amino acids, and (ii) larger W
values contain way too much (unnecessary in some way) information for the network to
be handled and decoded properly.

We did not use pooling layers for our CNN architecture due to the fact that subsam-
pling the features gathered from CNN is not relevant in the PSSP problem. Getting only
the maximum value of a spatial domain does not work in PSSP as every value extracted
from CLs may represent interactions of amino acids in a certain region. These are the

most important factors that lead to low Q3 and SOV results using PLs.

5.2.4.2 10-fold Cross-Validation on CB513

In order to to validate the robustness of the model as well as to prove its efficiency
to the exposure of various training and testing data, we had to complete the evaluation

of the PSSP problem on the CB513 dataset, using a 10-fold cross-validation test. All the
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Method Q3(%) Qu(%) Qr(%) Qr(%) SOV SOVyg SOVg SOV

CNN 75.155 69474 67.339 84,566 0.713  0.696 0.669 0.734

CNN Ensembles 78.914 72748  68.854 85.385 0.744 0.738  0.722  0.737

CNNEns. + ERFilt. 78.692  70.147 66921 87.053 0.756 0.669 0.713  0.731

CNN Ens. + SVM Filt. 80.40 80911 70.578 85.165 0.736  0.724  0.716  0.743

Table 13: Summary of the Results for All Methods.

experiments made are with the optimal parameters of the model as described in Section
5.2.4.1. As shown in Table 13, the Q3 and SOV accuracy results of CNN with 10-fold

cross-validation are 75.15% and 0.713 respectively.

5.2.4.3 Ensembles and External Rules Filtering

After tracking the optimal parameters for the CNN, we have performed six (6) experi-
ments for each fold. Then, in an attempt to maximize the quality of the results gathered as
well as to increase the Q3 and SOV accuracy, we proceeded with using the winner-take-
all ensembles technique [Granitto et al., 2005b; Fukai and Tanaka, 1997] on every single
fold separately. This technique obtains the predictions of a number of same ML model
experiments, and applies the winner takes all method on each amino acid residue SS class
predicted. The dramatically improved results are shown in Table 13.

Filtering the SS prediction using external empirical rules is usually the last step made,
as a final attempt to improve the quality of the results. This is accomplished by removing
conformations that are physicochemically unlikely to happen [Salamov and Solovyev,
1995]. Applying the external rules filtering on the CNN’s SS prediction, interestingly,
does not improve the Q3 score, but it improves the SOV. The results are shown in Table

13.
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5.2.4.4 Filtering using Support Vector Machines (SVMs)

CNNs showed very good results on the PSSP (Figure 33, 34 and Table 13). Never-
theless, as mentioned above, we tried to use SVMs to perform the filtering task. More
specifically, after gathering the predictions from the CNN we have trained a SVM using a
window of SS states predicted by the CNN. After performing several experiments using
different kernels, misclassification penalty parameters (C) [Cortes and Vapnik, 1995b],
Gamma values (G) [Cortes and Vapnik, 1995b] and window sizes (WIN), we have de-
cided for the optimal SVM parameters that lead to the highest Q3 and SOV accuracy on
the PSSP problem and which are: (a) Kernel: Radial Basis Function, (b) C=1, (¢) G =

0.001 and (d) WIN = 7. The results are shown in Table 14 and 15.

5.2.5 Summary of the Results

The results shown in Table 14 summarize the Q3 accuracy and SOV results gath-
ered, with all the methods discussed in this work, using 10-fold cross-validation. It is
shown that the CNN can achieve relatively high Q3 and SOV results (75.155% and 0.713
respectively) by its own. Nevertheless, the CNN using ensembles improved the Q3 ac-
curacy results by approximately 3% and SOV score by 0.031. Moving on, filtering the
results using External Rules mentioned above, decreases the overall Q3 accuracy results
to 78.692%, but dramatically increases the SOV score from 0.744 to 0.756. This was
expected as filtering with External Rules has previously been reported to improve SOV

scores, but at the same time decrease the overall Q3 accuracy [Baldi et al., 1999]. Finally,
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Method Q3(%) Qu(%) Qr(%) Qr(%) SOV SOVyg SOVg SOV

CNN 75.155 69474 67.339 84.566 0.713 0.696  0.669 0.734

CNN Ensembles 78.914 72748  68.854 85.385 0.744 0.738  0.722  0.737

CNNEns. + ERFilt. 78.692  70.147 66921 87.053 0.756 0.669 0.713  0.731

CNN Ens. + SVM Filt. 80.40 80911 70.578 85.165 0.736  0.724  0.716  0.743

Table 14: Summary of the Results for All Methods.

using the combination of CNN ensembles and SVM as a filtering technique, achieves
the highest Q3 accuracy results (80.40%). The Q3 values for different folds vary from
78.96% to 83.91% and the SOV from 0.71 to 0.78 Table 15. This indicates that the re-
sults for different folds are of comparable quality. Moreover, the accuracies for the three
classes, H, E, L, are calculated separately (see Qp, Qr, @1 and SOVy, SOVg, SOV,
in Table 15) for getting deeper insight on the quality of the classifier, and mispredictions
are quantified in a confusion matrix, graphically represented in Figure ??. As we can see
from Table 15, Q3 accuracy results gathered using CNN Ensembles and SVM filtering
are just over 80%, which is considered to be a high enough percentage when it comes
to PSSP, and which also makes this combination of NN techniques a good option when
it comes to complex sequential data classification and prediction problems. Heffernan
et al. [2017] method achieves 84.16% Q3 accuracy using Bidirectional Recurrent Neural
Networks without using a window, but these results are not directly comparable with our
results, as they make use of a much larger dataset that contains 5789 proteins, compared
to CB513 which contains 513 proteins.

As a conclusion to all the results presented in this section, we can see that the CNNs
can effectively detect and extract features from complex sequential data, by utilizing our
proposed image-like data representation method used to train the CNNs for the PSSP

problem. This is due to the fact that our CNN architecture was exclusively designed



Fold Q3(%) Qu(%) Qp(%) QL(%) SOV SOVy SOVg SOV,
0 7969 7977 7005 8475 074 073 071 _ 0.75
1 7974 7869 6806 8677 073 073 071 074
2 7896  78.64 6827 8494 072 071 071  0.73
37955 7909 6789 8612 071 072 070  0.73
4 7926 7855 7000 8479 073 072 073 072
5 7970 8027 7018 8431 073 071 072  0.73
6 7964 7985 6887 8526 073 073 071 074
7 8370 8768 7686 8391 076 073 071  0.77
8 8391 8753 7633 8462 078 075 074  0.79
9 7985 7904 6927 8618 073 071 072  0.73
Avg. 8040 8091  70.57 8516 0736 0724 0716 0.743
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Table 15: CNN Ensembles and SVM Filtering: Q3 and SOV Results for each Fold.

Q3 SOV

Sample Standard Deviation (s) | 1.8140 0.0141

Variance (Sample Standard) (s?) | 3.2906 0.0002
Mean (Average) | 80.4 0.736

Standard Error of the Mean (SEy) | 0.5736 0.0044

Table 16: CNN Ensembles and SVM Filtering: Statistical Analysis

Predictions and Mispredictions
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Figure 35: Confusion Matrix: Predictions and mispredictions of the secondary structure
classes H, E and C/L after applying ensembles on each fold using CB513 dataset. Q3

accuracy scores are shown for each class.
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to face such problems. In addition, SVMs seem to be a good technique to be used for
filtering the CNN output. The combination though, of these two ML algorithms seems to
be a particularly good option for complex feature extraction and prediction on sequential
data, as we take advantage of the benefits of both techniques. Finally, by observing the
results from the confusion matrix of Figure 35, we can conclude that the combination of
CNNs with SVMs filtering is a robust and high quality methodology and architecture, as it
maximizes the correct predictions for each SS class. Results are expected to be improved
by collecting more experiments for each fold, using larger datasets (e.g., PISCES) and

deploying more sophisticated ensemble techniques.

5.3 Clockwork Recurrent Neural Networks

In this work we apply a recently proposed recurrent neural network (RNN) architec-
ture, the Clockwork RNN (CW-RNN) [Koutnik et al., 2014] to the PSSP problem for the
first time. The CW-RNN is capable of overcoming the complexity of the problem as one
of its main advantages is its low execution time, due less parameters and computation of
less operations at each time step.

One of the drawbacks of even the most advanced PSSP methods, relates to capturing
existing long-distance dependencies, which are particularly important in S-stands inter-
acting to form (3-sheets. As we have already mentioned through out this thesis, among the
first type of methods that demonstrated a significant improvement towards better handling
these long-range dependencies are BRNNs. Unfortunately, even the BRNN approach

results to models incapable of fully learning long-range dependencies, which is key to
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Figure 36: Addition of dummy values: The PSSM profiles is padded with dummy values
before and after the sequence termini. W, = 11; X: dummy value.

succeed in the PSSP problem. This incapability largely rises because of the vanishing
gradient problem [Hochreiter and Schmidhuber, 1997]. This problem has been generally
(i.e., not in the PSSP problem) addressed by modifying the architecture of the RNN and
as such this is the case in the recently proposed CW-RNN [Koutnik et al., 2014] . The
novelty of this RNN model is that the hidden layer is partitioned into modules, where each
module is assigned a different clock period, corresponding to different levels of memory
span. As a consequence, every module is activated and executes computations only at the
time step which corresponds to it. These different modules attempt to provide a solution

to the long-range dependency problem.
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5.3.1 Methodology

5.3.1.1 Input Data

In this work the CB513 dataset has been used. Before using the MSA profiles, a
much more comprehensible form of input data was created. All of the input proteins were
added in a file with specific information about them. More specifically, each protein is
represented in the file in three lines. There is the name of the protein and the residues
which is referred to in the first line, the primary structure of the protein is written in
the second line and in the third one its secondary structure. This file was used in order
to match each protein with its MSA profile. It was also used for the construction of a
data structure, which contained all the information provided by that file and added a line
gap after each protein’s infor-mation to be filled in later on with its predicted secondary
structure.

The use of a sliding window W, was required for the model to be able to have access
to all the data available, both for training and validation. After loading the information
of each MSA profile, a matrix whose size is equal to (W, — 1)/2, with each of its rows
containing dummy values, is being added before and after it (Figure 36). By using the
sliding window technique in this way provides us with the capability to predict each
protein from its starting point and allows us to predict the middle amino acid residue of
each sliding window. As it is well known, an amino acid residue is directly influenced
by its surrounding amino acid residues, which determine the category of its secondary

structure, and this information is captured by using the sliding window.
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Next, after processing all of the above data, the final data structure, which consists of
all the sliding windows of all the proteins used for training is being constructed at its final
form. In parallel, the final form of the target values, where each value corresponds to each
sliding window is also being created. The above method is used to create the final form

of the validation data too.

5.3.1.2 Architecture and implementation

The implementation used was exactly as proposed by Koutnik et al. [2014]. Several
general changes had to be made for this specific implementation to be adjusted to the
PSSP problem. The input data had to be in a specific form for the model to accept it and
train properly. The size of the network’s input layer is equal to W, * 20. Each input - a
row of W, - represents an amino acid residue and the twenty numbers correspond to the
frequencies of different residue types aligned with the original sequence. The network
consists of three numerical outputs, which are mapped to the three broad secondary struc-
ture classes E, H and C. The decision of the class of the predicted amino acid residue is
taken following a simple Winner-Takes-All (WTA) method. Additionally, the model was
trained on a number of fixed size batches. The non-dynamic size of the batch, constrained
us to the choice of the size of training and validation data. In order to overcome this
constraint we decided to pad the validation data to the minimum number possible, which
would allow all of training data to be used. After each training batch, the training loss is
calculated and from the training predictions, the training accuracy for this specific batch

is also calculated. When an epoch ends, the model is tested on validation data and the
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validation loss and accuracy are computed similarly. Furthermore, because the training
data is divided into batches of fixed size, some information about a protein may be cut in
half at the beginning or the end of the batches. This requires the shuffling of the training
input to prevent the model on learning specific artifactual patterns about the data. At the
end of all epochs, two output files are created, using the predictions of training and vali-
dation data respectively. These files have the same structure as the input files except that
after the information of each protein a line with the predicted secondary structure of that
protein is added. As a result, each protein requires four lines of information in the output
files, which is its name, its primary and secondary structure and its predicted secondary
structure. These are required for ensembles and filtering (Section 3.1.3 and 3.1.4).

We identified an optimal architecture and relevant hyperparameters by trial and error.
More specifically, the set of clock periods which is used is symmetric and a part of it
was influenced by Fibonacci series, as proposed in the initial publication [Koutnik et al.,
2014]. The hidden layer of the model was partitioned in 28 modules and each one of
them was assigned a clock period. The weights were initialized with particularly small
values with a standard deviation of 0.01 and the biases with the value of 0. The activa-
tion function for the hidden layer was the hyperbolic tangent and for the output layer the
sigmoid. They are both non binary activators, their output is always bounded within a
specific range, so the activations will not blow up and the sigmoid can make clear dis-
tinctions on predictions as it tends to bring the activations on either side of its boundaries.
For the training of the model and the computation of the gradients the Adam optimizer

was selected among the available options, as it is computationally efficient and is well
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suited for this specific problem with a large dataset. Adam [Kingma and Ba, 2015] was
employed using the default values for betal (0.9) and beta2 (0.99) and a learning rate of
0.01. Gradient clipping, which is the clipping of the gradients between two numbers to
prevent them from becoming too large, was also used to alleviate the gradient exploding
problem.

After the optimization of the parameters each fold of the dataset has been executed
8 times. The application of ensembles was then carried out on each one of these folds
separately for a better out-come and their Q3 and SOV accuracy scores were computed.
Finally, external empirical rules were applied to the ensemble out-puts. These specific
rules try to correct and smooth the predictions of the model, by altering those parts of the
predicted secondary structure, which are physicochemically improbable. The empirical
technique used was SS-filt [Salamov and Solovyev, 1995], which consists of the filtering
rules that replace single-helical and single-strand residues with loop and all strands of
length two surrounded with helices are replaced by helices [Kountouris et al., 2012].

As it is already mentioned, one of the main features of the CW-RNN architecture
is its fast execution speed. It is already tested in specific tasks, where it overpowers
RNN in this sector [Koutnik et al., 2014]. This is because it is using less parameters
and carries less operations at each time step due to the smaller number of connections
between the neurons of its hidden layer. In the current paper the CW-RNN architecture
has demonstrated its speed capabilities at the PSSP problem as well.

As the number of neurons in the hidden layer grows, more complexity is added to the

model. For the runs used to determine the optimal number of neurons for the CW-RNN
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we recorded the execution times, to identify whether there is a clear relationship between
the execution time and the number of neurons in the hidden layer. As shown in Figure 43,
when the number of neurons increases, the execution time increases in a linear manner.
Given the observation that the results of the CW-RNN for the problem at hand did not
lead to better prediction accuracy, gives us the opportunity to stick to very simple models

which can get trained very fast (only a few minutes in out case).

5.3.2 Results and Discussion

We conducted several experiments in order to examine how each CW-RNN hyper-
parameter affects the results and decide an optimal set of parameters for achieving the
best result possible. The training and validation accuracies were estimated using the per-
residue accuracy Q3, and the Segment Overlap (SOV) score [Zemla et al., 1999]. After a
satisfying number of experiments, we have applied ensembles and filtering on them. The
main reason we were able to execute numerous experiments was the model’s astonish-

ingly fast time of execution.

5.3.2.1 Examination of the parameters

Clock periods
The slower modules of a CW-RNN act as a mechanism that fills up the gap between in-
formation and gradients which are a large number of time steps apart. The faster modules

make short term decisions, as they have shorter periods and are executed more often than
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Figure 37: Q3 and SOV accuracy scores for each clock period set shown in Table 17.
The red bar corresponds to Q3 and the green bar to SOV.

No. Clock Period Sets
1,2, 4,8, 16, 32, 64

64,32,16,8,4,2,1

1,2,4,8,16,8,4,2, 1

89,55,34,21,13,8,5,3,2, 1, 1

64,32,16,8,4,2,1,2,4,8, 16,32, 64

256, 128, 64,32,16,8,4,2,2,2,1,1,2,2,4,8, 16, 32
89,55,34,21,13,8,5,3,3,2,2,2,1,1,1,1,2,2,2,3,3,5,8, 13, 21, 34, 55, &9

N N R WD

Table 17: The sets of clock periods which were used to determine the optimal one.

the slower ones. The information that the faster modules process are seen and also pro-
cessed by the slower ones, when they are active, in order to make the correct correlations
between this information and the information that was already stored in their states since
the last time they were active. As a result, the clock periods are effectively the novelty of
the model and are considered to be the key in achieving good results, so we have started

experimenting on these first.
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Initially, we have tested the default clock periods in the CW-RNN implementation
(Set 1 in Table 17) resulting in relatively low Q3 and SOV values (Figure 37). Using
the same exact periods in reverse order (Set 2 in Table 17) increased the Q3 accuracy by
almost 4% and the SOV by more than 8 points. Next, we combined a part of each of the
above sets, hence the Clock Period Set 3, which resulted in an even better result than the
last two sets. The thought of this combination re-sulted due to the symmetry of the sliding
window with respect to the middle amino acid for which the prediction is performed, so
we used a symmetric set of periods. The 5th set was also tested using the same rationale
as the 3rd set and the accuracies slightly increased. The 6th set of periods was tried in
order to examine what would happen if there was no symmetry and faster modules would
be added to process more information at each time step. This had as a consequence the
marginal rise of the Q3 accuracy, but the moderate reduction of the SOV score.

Having in mind that there may be a connection between the periods, we thought of
using a series of periods with a slightly better connection between them. Clock Period
Set 4 was inspired by a small part of the Fibonacci series, which had as a result a quite
good accuracy. Finally, we combined the knowledge of the above experiments, which
was the symmetry of the clock periods, a part of the Fibonacci series and the addition of
more faster periods for the creation of 7th set. This set has caused the best result at the
Q3 score and we used it for all the next experiments. However, the SOV score moderately
decreased comparing it with the results from the 5th and 6th set.

We should note here, that the different clock period sets mentioned above correspond

to CW-RNNs with different numbers of modules (7, 7, 9, 11, 13, 18, 28 respectively).
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The differences displayed in Figure 37 relate to the effect of the different period sets and
not to the size of the network. Clock period sets 1 and 2 can show that even having the
same number of modules, the result depends on the right choice of the clock periods.

Optimizers
Three different optimizers available in this CW-RNN implementation were tested for their
efficiency and performance. Those were Adam, RMSprop and AdaGrad optimizers. The
rest of the parameters of the network were unchanged while testing the optimizers. More
specifically, the activation functions for hidden and output layers were the hyperbolic
tangent function and the sigmoid function respectively and the number of neurons in the
hidden layer was 28, one neuron for each module.

The Adam optimizer combines the advantages of both AdaGrad and RMSprop opti-
mizers. It enhances the efficiency of the optimizer on problems with sparse gradients by
maintaining a per-parameter learning rate and it is reported to be efficient on online and
non-stationary problems. Nevertheless, we examined the other two optimizers as well.
AdaGrad optimizer resulted in a low Q3 score and almost 4 times lower SOV score than
Q3, whereas the difference between these scores in other experiments is much smaller.
RMSprop optimizer was more suita-ble for this problem as the results were really close to
the ones obtained by the Adam optimizer which achieves the best results in this particular
dataset (Figure 38).

Activation functions

As it is already explained, the activation functions which were initially used were the
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Figure 38: Q3 and SOV accuracy scores for each optimizer. The red bar corresponds to
Q3 and the green bar to SOV.

hyperbolic tangent for the hidden layer and the sigmoid for the output layer. The compu-
tations on the weights of the hidden layer are crucial for the final result, so we decided to
change only the activation function of the hidden layer at each experiment. The rest of
the parameters of the network were unchanged. In more detail, the clock periods which
were used were the optimal ones , using the Adam optimizer and the number of neurons
in the hidden layer was 28, one neuron for each module. Three more experiments were
executed, after our initial one, in order to decide the proper activation function for the
hidden layer. As it can be seen in the bar charts of Figure 39, using the ReLU, the Q3
score was the lowest, but the SOV score was the highest, compared to the others. Despite
the fact that ReLU resulted in the highest SOV score, we decided to choose the hyperbolic
tangent. Its SOV is just a bit smaller than ReLU’s, but its Q3 is quite bigger. Next, by

using the sig-moid in both layers (already using it as the activation function of the output
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Figure 39: Q3 and SOV accuracy scores for each activation function. The red bar
corresponds to Q3 and the green bar to SOV.

layer), the results which were achieved were close to the best ones. In the last experiment
we used the softmax in the hidden layer and we obtained the lowest SOV score, but the
Q3 score was only almost 2% less than the best one.
Number of neurons

The first experiments were carried out by using the lowest number of neurons possible,
as the execution time also depends on the size of the network. Thus, we had to keep
the number of neurons as low as possible to achieve a really fast execution time. The
lowest number of neurons we were able to use is bounded by the number of modules
(which is equal to the number of clock periods of the model) and each module must have
at least 1 neuron. After achieving a satisfying Q3 and SOV scores with only 28 neurons
(i.e. 1 neuron per module), more neurons were added per module, in order to examine
if the model would be able to process more information for a better result. As shown in

Figure 40, by adding more neurons does not quite affect the Q3 and SOV scores. The
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Figure 40: Q3 and SOV accuracy scores for different number of neurons in the hidden
layer. The red bar corresponds to Q3 and the green bar to SOV.

enlargement of the network by adding more neurons, only adds more complexity to the
model, which has as a consequence the in-crease of its execution time but with roughly

the same scores being achieved.

5.3.2.2 10-fold cross-validation on CB513

The complete evaluation of the PSSP CB513 dataset results was per-formed using
a 10-fold cross-validation test. This validation had to be done in order to validate the
robustness of the model and to prove its efficiency to the exposure of various training
and testing data. All the executions were completed with the optimum parameters of the
model.

The results of the ensembles are shown in Table 18. Q3 values vary from 73.74% to
77.02% and SOV from 0.68 to 0.74. This indicates that the results for different folds are

of comparable quality (see also Table 19). Moreover, the accuracies for the three classes,



Fold Q3(%) Qu(%) Qp(%) Qr(%) SOV SOVy SOVg SOV
0 76.72 75.80 65.81 80.92 0.74 0.78 0.70 0.73

1 75.49 73.35 67.08 8149  0.70 0.72 0.70 0.70

2 75.70 73.39 64.48 81.37  0.72 0.74 0.69 0.71

3 76.90 68.52 60.35 84.37 0.74 0.72 0.63 0.73

4 75.10 72.02 56.70 82.15 0.73 0.74 0.62 0.72

5 73.74 63.30 62.06 82.35 0.70 0.65 0.66 0.71

6 76.00 71.53 61.94 8535 0.72 0.73 0.68 0.72

7 74.59 69.14 67.54 81.22  0.68 0.67 0.70 0.69

8 76.13 67.61 68.61 8224 0.74 0.70 0.71 0.73

9 77.02 77.63 63.39 84.17  0.72 0.81 0.67 0.72
Average 75.74 71.23 63.80 8256  0.72 0.73 0.67 0.72
Avg. 75.83 69.92 62.44 84.26 0.73 0.74 0.67 0.72
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Table 18: Q3 and SOV accuracy scores for each fold after the application of ensembles.

Q3 SOV

Sample Standard Deviation (s) | 1.05 0.02
Variance (Sample Standard) (s2) | 1.11 0.00
Mean (Average) | 75.74 0.72

Standard Error of the Mean (SEg) | 0.33 0.01

Table 19: Results after ensembles: statistical analysis

H, E, L, are calculated separately (see QH, QE, QL and SOVH, SOVE, SOVL in Table

18) for getting deeper insight on the quality of the classifier, and mispredictions are quan-

tified in a confusion matrix, graphically represented in Figure 41. The results presented

herein are comparable to those we have obtained using more complex BRNN models

[Kountouris et al., 2012], however requiring much less time for training the individual

models. Considering the above, the model is able to successfully train and be tested on

the different order of sequences of data each fold provides.

The application of filtering on the folds resulted in the slight increase of the overall Q3

(ranging between folds from 73.69% to 77.23%) and the overall SOV (ranging from 0.69

to 0.75) (see Table 20). Even though most of the folds have a decreased Q3 accuracy,



182

100 Predictions and Mispredictions

Q3(%) Accuracy

20

HH EH LH HE EE LE HL EL LL
Actual vs Predicted SS Classes

Figure 41: Predictions and mispredictions of the secondary structure classes H, E and
L after applying ensembles on each fold. The red bar corresponds to Q3 and the green
bar to SOV.

whereas only one of the folds has a decline in its SOV score, both those scores have
marginally risen due the rest of the folds with increased scores. The standard deviation
and variance of Q3 have slightly risen compared to the unfiltered predictions (compare
Table 20 to Table 21), whereas SOV remain the same despite their marginal increase of
their average. QH and QE are both decreased after filtering by approximately 1%, while
there is an increase in QL (Figure 42).

As it is already mentioned, one of the main features of the CW-RNN architecture is its
fast execution speed. It is already tested in specific tasks, where it overpowers RNN in this
sector. This is because it is using less parameters and carries less operations at each time
step due to the smaller number of connections between the neurons of its hidden layer. In
the current paper the CW-RNN architecture has demonstrated its speed capabilities at the

PSSP problem as well.



Fold Q3(%) Qu(%) Qp(%) QL(%) SOV SOVy SOV SOV,
0 7723 7506 6482 8317 075 079 070  0.73
1 7541 7149 6506 8353 072 073 069 071
2 7541 7149 6506 8353 072 073 069 071
37690  67.57 5888 8555 074 073 063 0.73
4 7506 7056 5510 8315 072 073 061 070
5 7369 6230 6023 8397 072 066 064 071
6 7628 7042 6127 8712 074 075 068  0.73
7 7500 6779 6550 8310 0.69 071  0.68  0.68
8 7605 6527 6721 8396 075 069 071 073
9 7723 7722 6124 8548 075 084 065 073
Avg. 7583 6992 6244 8426 073 074  0.67  0.72
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Table 20: Q3 and SOV accuracy scores for each fold after applying external empirical
rules on them.

Q3 SOV

Sample Standard Deviation (s) | 1.13 0.02
Variance (Sample Standard) (s?) | 1.28 0.00
Mean (Average) | 75.83 0.73

Standard Error of the Mean (SEy) | 0.36 0.01

Table 21: Results after external empirical rules: statistical analysis

Q3(%) Accuracy

100

40

20

Predictions and Mispredictions

62.78

3331

HE
Actual vs Predicted S5 Classes

EE LE

HL

EL LL

Figure 42: Predictions and mispredictions of the secondary structure classes H, E and
L after applying external empirical rules on each fold. The red bar corresponds to Q3 and
the green bar to SOV.
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Fold  Q3(%) Qu(%) Qp(%) Qr(%)
0 7755 79 67 82

1 76.35 79 62 82

2 76.9 79 62 81

3 77.36 78 63 83

4  76.17 76 60 83

5 74.54 75 59 81

6 76.6 74 63 84

7 76.14 73 64 83

8 75.7 74 65 82

9 77.1 78 62 83
Average 76.44 76.5 62.7 824

Table 22: Q3 and SOV accuracy scores for each fold after applying SVM filtering on
them.

Further to the empirical rules, we have also used a SVM as a filtering technique. The
results can be seen on Table 22. This filtering technique had improved the method’s Q3
per residue accuracy by approximately 0.5%.

As the number of neurons in the hidden layer grows, more complexity is added to the
model. For the runs used to determine the optimal number of neurons for the CW-RNN
we recorded the exe-cution times, to identify whether there is a clear relationship between
the execution time and the number of neurons in the hidden layer. As shown in Figure 43,
when the number of neurons increases, the execution time increases in a linear manner.
Given the observation that the results of the CW-RNN for the problem at hand did not
lead to better prediction accuracy, gives us the opportunity to stick to very simple models
which can get trained very fast (only a few minutes in out case).

In general, regardless of the complexity of the problem, the model finishes its exe-
cution in a short period of time and definitely much faster compared to typically used

architectures based on RNNs or BRNNs, with prediction quality in par with that of the
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Figure 43: Relationship between the execution time and the number of neurons on
the hidden layer of the CW-RNN.

much more complex recurrent architectures tested so far. Smaller batch sizes seem to
support the model to finish its execution faster. This feature has also allowed us to sys-
tematically experiment on the selec-tion of the hyperparameters and complete the 10-fold
cross-validation really fast.

In addition, the training speed of CW-RNNs make them ideal for building ensemble
classifiers of a large number of networks with different hyperparameters trained to learn
different aspects of the same training data. Moreover, our work strongly indicates that
CW-RNNSs may be appropriate for successfully tackling other related problems in protein

sequence analysis. This work has been presented in Dimitriou et al. [2018].
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Figure 44: The architecture of a BESN as described in this study.

5.4 Bidirectional ESN

A Bidirectional Echo State Network (BESN) consists of a ESN and a common output
layer (Figure 44). Furthermore, the ForESN processes the residue of interest and the in-
formation from the preceding amino-acids (upstream information), whereas the BackESN
takes the residue of interest and the subsequent amino-acids (downstream information).
This way we incorporate in our network the interactions among adjacent amino-acids.

The training procedure of the BESN is similar to the simple ESN (Section 2.1.5.1). A
sliding window is used to introduce the data to the reservoir, but instead of passing one
residue in each slide we pass a compound of residues. This smaller (internal) window is

called wy and wy for the ForESN and BackESN, respectively; this way the network also
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takes into account patterns of neighbouring amino-acids which help it improve its predic-
tions. After the residue of interest is processed from both reservoirs, we compute their
output by applying Equations 70 and 71 to each ESN (ForESN and BackESN) and then
adding their results. The outcome is three real values, one for each possible secondary
structure (C, E, H), the largest value is our prediction. In addition, for each prediction we
save the state X (threshold, reservoir values z(n) and input u(n)) in order to updated the

output weights (Wout) in each ESN based on Equations 72, after all data were presented.

z(n) =1 —a)z(n —1)+af(Wi[L;u(n)] + Wz(n —1) + Wpy(n—1))  (70)

where a(0; 1] is the leaking rate, the 1 in matrix [1; u(n)] is the threshold and f() is the

activation function used for the reservoir neurons. Usually the hyperbolic tangent function

is used for f().

y(n) = Wou[1; u(n); z(n)] (71)

where [1; u(n); z(n)] is a matrix with the concatenation of the threshold, the input value

u(n) and reservoir values x(n).

Wout - Y;fargetXT<XXT + 6[) -1 (72)

where Yj,,4e; 1s @ matrix with all the desired outputs y(n) of the shown input data until
now, X a matrix with the threshold and all the reservoir values z(n) and inputs u(n) until

now, X1 its transpose, 3 the regularization coefficient and I the identity matrix.
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Results on the CB513 dataset has shown the potentials of this model. The BESN, with
two reservoirs of 800 neurons each, has achieved an accuracy around 74% )3, without
any ensemble methods or filtering techniques. This model is using non-linear neurons
to achieve acceptable results in no time compared to the rest of the models which have
used in this work. More specifically, the BESN is trained with simple linear regression

learning algorithm which can update the model’s parameter in one time-step.

5.5 Simple FFNNs trained with HFO learning algorithm

RNNs have been successful in handling sequential data. Training RNNs is a demand-
ing task in terms of time and space efficiency because of the compexity of the models
where many paramters have to be handled to specify the model’s architecture and charac-
teristics. Furthremore, training of these models is a difficult task because of the vanishing
gradient and exploding gradient problems, where the gradient is getting smaller as the
information moving backward through hidden layers is getting very big at the early lay-
ers of a model Bengio et al. [2004]. The most common algorithm to train these models
is based on the GD minimization method. Unfortunately, this kind of algorithms have a
poor convergence rate Mgller [1993b]. Moreover, they depend on parameters which have
to be specified by the user and are usually crucial for the performance of the algorithm.

In order to improve these drawbacks, simple models and more efficient algorithms
need to be used. Simple FFNNs can be trained really fast with low demands in terms of
time and space. The most common learning algorithm for training FFNNs is the Back-

propagation learning algorithm (BP) Rumelhart et al. [1986b] which is based on the GD
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method. Unfortunatelly, it has been proven that FFNNs have poor results in this kind
of problems Qian and Sejnowski [1988]; Rost and Sander [1993]. On the other hand,
latest developments in the field of ANN training algorithms, such as the Hessian Free Op-
timization (HFO) Martens [2010]; Martens and Sutskever [2011] second order learning
algorithm, can converge faster and more accurately. This algorithm has been found to be
superior to the conventional BP algorithm in terms of accuracy, convergence rate and the
vanishing-gradient problem Martens [2010]; Martens and Sutskever [2011]. In addition,
the original form of the algorithm Martens [2010]; Martens and Sutskever [2011] does
not depend on any parameters.

The HFO Martens [2010]; Martens and Sutskever [2011] second order learning al-
gorithm demonstrated promising results on problems such as the noiseless memorization
problem, the 3-bit temporal order problem and the random permutation problem Martens
and Sutskever [2011]. In this algorithm, the finite differences method is applied on the
model’s gradient vector in order to quickly calculate an approximation of the Hessian Ma-
trix. The system’s gradient vector and Hessian Matrix approximation are used to compute
the system’s Taylor expansion function. Then, the Preconditioned Conjugate Gradient al-
gorithm (PCG) Martens and Sutskever [2011], which is a variant of the CG algorithm, is
used to optimize the calculated Taylor expansion function. The PCG algorithm is used
to give a new step size and a direction to update the system’s parameters. Moreover,
it has been proven that this algorithm, which was based on the works Mgller [1993b,a],

Pearlmutter [1994] and Gers et al. [2002], can manage well to train RNNs. Concequnetly,



190

HFO has been applied on deep ANN architectures and it was demostrated to outperform
other learning algorithms in specific sequential problems Martens and Sutskever [2011].

The need to build efficient methods in terms of accuracy, convergence time and sim-
plicity for sequential data where both the upstream and downstream information of a se-
quence is important for a specific time-step and more specifically for the PSSP problem,
has been the initial motivation for this work.

Consequently, in this work we demonstrate that providing profiles of protein se-
quences for training simple FFNNs with the HFO algorithm yield results comparing well
with much more complicated ANN architectures in the 3-state PSSP problem. Further-
more, we demonstrate that a simple majority vote of 5 HFO-trained FFNNs, coupled with
a SVM classifier for filtering purposes, achieves performance directly comparable to the
current state-of-the-art methods. In our approach, a single FFNN trained with the HFO
learning algorithm can achieve an approximately 79.6% per residue (()3) accuracy on the
PISCES dataset. Despite the simplicity of our method, the results are comparable to some
of the state of the art methods which have been designed for this problem. An average
ensemble method and filtering with Support Vector Machines have also been applied,
which increase our results to 80.4% per residue ((J3) accuracy. Moreover, the HFO does
not require tuning of any parameters which makes training much faster than other state of
the art methods, a very important feature with big datasets and facilitates fast training of

FFNN ensembles.
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Figure 45: Data Representation: Each amino acid is within a window (W) centered
at the residue of interest, encoded by a 20-dimensional MSA profile vector (see text for
more details).

5.5.1 Methodology

5.5.1.1 Data Representation

The major obstacle on trying to solve a complex sequential data classification problem
with any ANN is the representation of the data, in such a way that the network is able not
only to understand the shape of the input volume, but also to track the complex sequence
correlations among the input volume. Hence, multiple sequence alignment (MSA) pro-
files have been used for data preprocessing and PS encoding [Rost, 1996]. MSA profiles
have been shown to enhance machine learning-based PSSP, since they incorporate useful
evolutionary information for the encoding of each position of a protein. More specif-

ically, each amino acid on a protein PS is replaced by a 20-dimensional vector, which
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corresponds to the frequencies of 20 different amino acid types aligned to the query se-
quence after a PSI-BLAST [Altschul et al., 1997] search against the NCBI-NR (NCBI:
http://www.ncbi.nlm.nih.gov/) database.

As shown in Figure 45, the network’s input vector at each time-step ¢ consists of the
MSA information contained in a sliding window I/ on a protein PS. More specifically,
we have created an input volume by placing MSA [Wallace et al., 2005] profile vectors
of each amino acid one after another to construct a 1D representation of the MSA profiles
of a certain number of neighboring amino acid residues. Through this technique, the
attention given to any neighboring amino acid correlations is equally weighted across
all the input volume, for each W given. This lets the FENN discover and capture any
strong short range correlations among the input records and consider them all equally
in terms of the output volume created. The target output is the respective class of the
amino acid which is located in the center of a specific input W. The FRNN processes
simultaneously the residues located on the left and on the right side of the position ¢ to

predict the corresponding SS class.

5.5.1.2 The HFO learning algorithm

HFO [Martens, 2010; Martens and Sutskever, 2011] is a second order optimization
algorithm of real-valued objective functions. It is a variation of the standard Newton’s
method [Li and Yan, 1995] which uses local quadratic approximations to generate update
proposals. In high dimensionality problems, for which large ANN models with many

hidden layers are employed, first order optimization algorithms like GD can be extremely
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slow and ineffective due to the vanishing gradient problem [Hochreiter and Schmidhuber,
1997]. In GD methods, the updates are proportional to the gradient of the error func-
tion which is back-propagated through the layers of the model. Each time the error is
back-propagated, the gradient becomes vanishingly small which results in the front lay-
ers having close to zero information on how to update their weights, meaning slow to
completely ineffective training [Martens, 2010; Martens and Sutskever, 2011].

The advantage of using a second order optimization algorithm (i.e., Newton’s method
or HFO) is that these algorithms consider the curvature of the error surface (Hessian
Matrix (HM)) in their optimization process which results in extremely better step-wise
performance. More specifically, instead of fitting a plane at an initial solution and then
determining the step-wise jump like first order algorithms, second order methods find a
tightly fitting quadratic curve at that point and directly find the minimum of that curvature,
which is supremely fast and efficient. Computing the HM for a large ANN with thousands
to millions of free parameters however is not always possible due to the extremely high
memory requirements needed to store it. Concequently, while there have been a number
of Newton’s variations like Newton-CG, CG-Steihaug, Newton-Lanczos [Nash, 1984]
and Truncated Newton [Nash, 2000], none of them has been applied effectively to ANN
models and concequently their applications in this domain have been extremely limited
[Martens and Sutskever, 2011] .

The Hessian Free method proposes solutions to the high memory requirements of
second order learning algorithms, which enable it to be effective for ANN training. First

of all, it does not compute and store the whole HM. Instead, it computes just the dot
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product of the HM H with an arbitrary vector u (H - u) [Martens and Sutskever, 2011],
using mathematical methods like finite differences which cost as much as a single gradient
evaluation. This works really well for the HFO algorithm since it does not require the
explicit use of the HM, but rather many dot products based on H - u. Secondly, the
local quadratic objectives, which are approximated with second-order methods, can be
efficiently optimized using the linear conjugate gradient (CG) method [Johansson et al.,
1991; Charalambous, 1992] in order to compensate for the lack of the HM. While the CG
method needs N iterations to converge in quadratic function, where as /N is the number of
the free parameters of the network, there is a number of stopping criteria, which terminate
it at early stages when significant progress in the minimization process has been made.
This is extremely important since it is clearly impractical to wait for a complete CG
convergence when there is a very low margin of further minimization.

It is important to note that even though in HFO no HM is calculated, there are no ap-
proximations done and the H - u product is calculated accurately. The only difference be-
tween HFO and Newton’s method is that while the standard Newton’s method performs a
complete optimization of the approximated quadratic information, HFO does not. This is
because the CG does not fully converge [Martens, 2010]. However, the efficiency-related
benefits of avoiding the full HM calculation and inversion are clearly more beneficiary
than the extremely small difference in accuracy by the not fully converged CG.

Finally, although the H -u product can be calculated efficiently and accurately, it is not
the one usually used in HFO. Based on the same theory, the G - u product is used, where

G is an approximation of the HM which is called the Gauss-Newton matrix [Schraudolph,
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Figure 46: Our proposed methodology for the PSSP problem (see text for more de-
tails).

2002]. While it seems pointless to use an approximation instead of the correct curvature
matrix when there is no problem in efficiency, Gauss-Newton avoids some of the problems
that the HM may face and cause the algorithm to be completely ineffective. In fact,
comparing to the usage of the HM, the use of the G - © matrix consistently results in better

search directions utilizing half the memory and running twice as fast [Martens, 2010].

5.5.2 The proposed Methodology

In this work, the HFO learning algorithm has been used for training FFNNs to handle
the PSSP problem. Our methodology appears in Figure 46. As it can be seen, we have 5
levels of processing. In the first level of our methodology, the protein PS appears in MSA
encoding (Figure 45). Input data is used from 5 individual FFNNs in the second level

of our methodology. The small number of FFNNs has been chosen based on the work
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of Baldi et al. [1999] and Kountouris et al. [2012]. These FFENN classifiers are trained
with the HFO learning algorithm. Each FFNN returns three real values in the range (0,1)
for the central residue of a sliding local window W, one for each secondary structure
state. Subsequently, the corresponding outputs of each FENN for each state are averaged
through the ensembles level [Zhou et al., 2002, 2010]. Then, the resulting predictions
from the ensembles level are used for the filtering [Kountouris et al., 2012] procedure. In
the case of the PSSP problem, the filtering method which appears to have the best results
is based on SVM models [Kountouris et al., 2012]. Consequently, we have created a
stacked network architecture where an SVM model is used for filtering purposes. More
specifically, the predicted SS sequence of the average ensemble method is used as input
to the SVM model. Each predicted SS state is within a window (Wj,,,,,) centered at the
position ¢ of the residue of interest. For each position ¢ of the sequence, this window is
used as an input vector to the SVM which predicts the corresponding corrected SS state.
Finally, the last level of our methodology returns three real values, which represent the

predicted SS class for a specific input vector of a local window.

5.5.3 Results and Discussion

Our proposed methodology has been applied to the PSSP problem and through ex-
perimental analysis, various results have been extracted. These results demonstrate the

efficiency and the effectiveness of the method.
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Fold Q3(%) Qu(%) Qr(%) Qu(%) SOV SOV SOVy SOV
0 7943 7832 7409  79.04 0.7172 0.7365 0.7488 0.6957

1 79.38 77.28 73.51 79.62  0.7226  0.7278 0.7447 0.7055
2 79.57 78.05 72.84 79.45 0.7180 0.7319 0.7360 0.6994
3 79.87 78.63 74.29 79.80  0.7229 0.7398 0.7500 0.7056
4 79.58 79.18 73.64 79.81  0.7205 0.7470 0.7437 0.7027
Average  79.57 78.29 73.67 79.54 0.7202 0.7366 0.7446 0.7018

Table 23: Experimental results for a single FFNN: Q3 and SOV Results for each Fold of
PISCES dataset.

Fold Q3(%) Qu(%) Qr(%) Qn(%) SOV SOVyg SOVs SOV

0 8002 7728 7358 8180 0.7396 0.7464 0.7605 0.7214

1 80.11  77.19  73.69 8144 0.7560 0.7560 0.7624 0.7323

2 80.19 7683 7222 8233 0.7409 0.7395 0.7474 0.7284
38040 7732 73.62 8260 0.7468 0.7495 0.7618 0.7317

4 80.12 7808  73.07 8258 0.7460 0.7598 0.7563 0.7314
Average 8017  77.35 7324 8215 0.7459 07503 0.7577 0.7291

Table 24: Experimental results for an ensemble of 5 FFNNs trained with HFO: Q3 and
SOV Results for each Fold of PISCES dataset.

Fold Q3(%) Qu(%) Qr(%) Qr(%) SOV SOVyg SOVg SOV

0 80.24 77.75 73.30 81.78 0.7641 0.7800 0.7642 0.7313

1 80.27 77.05 73.62 81.71 0.7682 0.7684 0.7670 0.7369

2 80.43 77.28 71.80 8245 0.7653 0.7725 0.7504 0.7374

3 80.55 77.64 73.41 82.35 0.7699 0.7818 0.7659 0.7357

4 80.33 78.51 72.84 82.57 0.7683 0.7912 0.7598 0.7390
Average 80.37 77.65 72.99 82.17 0.7671 0.7788 0.7615 0.7361

Table 25: Experimental results for an ensemble of 5 FFNNs trained with HFO and filtered
with a SVM: Q3 and SOV Results for each Fold of PISCES dataset.
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5.5.3.1 Data Preparation and Simulation Details

Special care has been taken to retrieve datasets of the highest possible quality for the
PSSP problem relying in specialized resources. For the purposes of this work, we have
used the PISCES [Kieslich et al., 2016] dataset, which consists of 8632 protein chains.
More specifically, high resolution protein structural data have been obtained from the
RCSB Protein Data Bank (PDB; http://www.rcsb.org/). We have used the DSSP program
(URL: http://swift.cmbi.ru.nl/gv/dssp/, accessed 01/04/2019), to extract the SS class for
each amino acid in each dataset. The DSSP program uses the atomic coordinates and
hydrogen bond patterns for assigning each amino acid in one of eight classes: H (a-
helix), G (31¢-helix), I (7-helix), E (extended S-strand), B (isolated [3-bridge), T (turn), S
(bend) and C (other/coil). Then, we have reduced the eight classes to the three predefined
SS classes as: H, G, and I to the helix state (H), E and B to the extended state (E) and the
rest to the loop state (L). Moreover, MSA profiles have been used for data preprocessing
and PS encoding. Each protein sequence position is replaced by a 20-dimensional vector.
During this procedure, the MSA files of PISCES dataset have been analyzed and cleaned
up from data with short or no information (7able 8). Furthermore, we have followed a
strict 5-fold cross-validation approach as described in [Kieslich et al., 2016].

Thenetwork’s input vector at each time-step ¢ consists of the MSA information con-
tained in a local sliding window W and the target output is the respective class of the
amino acid which is located in the center of that local window. Firstly, a single FFNN has

been trained on different single folds of the PISCES dataset. At this stage, we carried out
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Q3 SOV
Sample Standard Deviation (s) | 0.1268 0.0023
Variance (Sample Standard) (s2) | 0.0160 5.678E-6
Mean (Average) | 80.37 0.7671
Standard Error of the Mean (SEg) | 0.0567 0.0010
Table 26: FFNN Ensembles and SVM Filtering: Statistical Analysis of Q3 accuracy

and SOV score for fold 0-4 results presented in Table 25

multiple experiments to tune up the architectural parameters of the FFNN trained with the
HFO learning algorithm. More specifically, we have concluded that, for the purposes of
our methodology, the optimum FFNN architecture is 1 hidden layer FFNN of 75 Sigmoid
neurons with Mean Square Error (MSE) function. Furthermore, we have used 3 neu-
rons of this category for the output layer. This architecture has full connectivity between
input-hidden and hidden-output layers. The only difference between the multiple FFNNs
is the random weight initialization. These models have been evaluated based on the Q3
and SOV metrics, but only the Q3 metric was used for tuning. Then, this specific FFNN
architecture has been successfully used for our proposed methodology (Section III). For
our experiments, a machine with 6 cores and 32GB RAM of a CISCO UCS C240 M5

server (2 x Intel Xeon 6140 Gold Processors) has been used.

5.5.3.2 Cross-Validation simulations

In order to validate the robustness of our proposed methodology as well as to prove
its efficiency to the exposure of various training and testing data, we had to complete the
evaluation of the PSSP problem on the PISCES dataset, using a 5-fold cross-validation
test. All the experiments made are with the optimal parameters of the proposed model. As

shown in Table 23, the ()3 accuracy and SOV score results of a single FFNN with a 5-fold
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Figure 47: Graph of Confusion Matrix for Actual vs Predicted SS Classes: HH, EE
and LL are the True Positive scores of our method for each class after the average ensem-
ble method and SVM filtering technique. EH, LH, HE, LE, HL and EL are the scores
for the mispredicted classes where the first letter is the actual class and the second letter
is the predicted class. Based on an average of a 5-fold cross validation evaluation, the
method can predict correctly with 84.41%, 70.60% and 83.61% the H, E and L classes,
respectively.

cross-validation are 79.57% ()3 and 0.728 SOV respectively. These results, compared to
the results of other methods which are mentioned in this thesis, are high enough to be
considered as a good solution for the PSSP problem. Given the simplicity of the model,
we can say that the learning algorithm is powerful enough to optimize the problem and
relate the neighboring amino acids to a SS based on the strong information which is
coming from local dependencies of a protein PS. Furthermore, as it can be seen from
Table 23, our method can predict better the H and L classes, where some difficulty is
shown in the prediction of E class.

A major improvement in the results of single FFNNs trained with the HFO algorithm
has been achieved when the average ensemble method and filtering techniques Kountouris
et al. [2012] have been used. In this thesis, we employ an ensemble of 5 FFNNs as it

has already been described. The results of the average ensemble method are shown in
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Table 24. Clearly, this method corrects some missclassified SS states, thus increasing
Q3 by 0.55% and SOV by 0.0234 overall. Based on these results, the average ensemble
method improves the method’s accuracy. Moreover, based on the SOV results, it improves
significantly the quality of the predicted SS sequence.

The resulting predictions are then used for SVM filtering, as explained in Kountouris
etal. [2012]. More specifically, after gathering the predictions from the average ensemble
method of FFNNs, we have trained a SVM using a window of SS states predicted by
the FFNNSs. In this case, we have used a 5-fold cross-validation approach based on the
folds which have been used for the training of our FFNNs. After performing several
experiments using different kernels, misclassification penalty parameters (C) Cortes and
Vapnik [1995b], Gamma values (G) Cortes and Vapnik [1995b] and window sizes (W),
we have decided on the optimal SVM parameters that lead to the highest ()3 accuracy and
SOV score on the PSSP problem and which are: (a) Kernel: Radial Basis Function, (b) C
=1, (¢) G=0.001 and (d) W, = 7. The final results are shown in Table 25. The final
results of our methodology are approximately 80.4% ()3 accuracy and 0.77 SOV for the
PISCES dataset. More specifically, the SVM filtering technique can increase the accuracy
of our proposed methodology by only 0.2% but it can improve significantly the quality of
results by approximately 0.02 SOV units.

As it can be seen in Tables 23 - 25, the ensemble methods and filtering techniques
which were applied to our methodology have increased the single FFNN accuracy by
approximately 0.8% and the SOV metric by 0.05. Furthermore, in Figure 47 we can see

how the algorithm can manage with each SS class. Obviously, in the case of the PISCES
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Figure 48: Q3 accuracy and SOV score for each FFNN optimizer. The red bar cor-
responds to ()3 accuracy and the yellow bar to SOV score. The SOV score has been
multiplied by 100 for presentation purposes (see text for more details).

dataset, the algorithm can predict correctly with 84.41%, 70.60% and 83.61% the H, E
and L classes, respectively. As it can be observed, the H and L classes are most often
predicted as such compared to the E class, a known shortcoming when applying FFNNs
in the PSSP problem. Moreover, in Table 26, we can see that the values of Standard
Deviation and Variance for the case of the ()3 metric are very small which indicates that
the algorithm behaves similarly between the different protein sequences of several dataset

folds.

5.5.3.3 Comparison of our methodology to other methods

Finally, in order to evaluate the accuracy, quality of results and computational perfor-
mance of our method, we have implemented other well known methods to compare their

results with our method using the same data. More specifically, we have used the same
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Figure 49: Length of training time of the FFNN Optimisers: The length of training
time in minutes is calculated based on the average 5-fold cross-validation training time
of the 5 FFNNs used in each ensemble. The label of each bar corresponds to *number of
iterations / average iteration execution time (min)’ (see text for more details).

5-fold cross validation approach with the PISCES dataset. Hence, we have used two dif-
ferent strategies. At first we have used other optimizers to train and compare the ensemble
of 5 FFNNs. Then, we have tested (using the same 5-fold cross validation procedure on
our dataset) well established ML methods that have been used on the PSSP.

The optimizers which were chosen to train the ensemble of FFNNs on the PISCES
dataset were the BP Rumelhart et al. [1986b] learning algorithm, as the most common
benchmark training algorithm in training FFNNs, and the Adam Diederik and Jimmy
[2015] learning algorithm, as one of the latest and most powerful developments in the
field of training algorithms for ANNs. Compared to the HFO learning algorithm, which
is a second order learning algorithm, both BP and Adam are first order gradient descent
learning algorithms. Although all the training algorithms were applied to the same FFNN
architecture, which is described in detail in Section IV(A), the results are indicative for

this problem. Nevertheless, further optimization can be done for the FFNN architectures
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which are trained with the BP and Adam algorithms. The parameters of each one of the
training algorithms were tuned through many executions on a single FFNN trained for
the PISCES dataset. In the case of BP we have identified as optimal the following set of
parameters: learning rate=0.01 and momentum=0.0. Similarly, in the case of Adam we
have used learning rate=0.001, betal=0.9, beta2=0.999. As it can be seen from Figure
48, the results of BP compared to Adam and HFO learning algorithms are very poor.
On the other hand, the HFO learning algorithm has achieved 0.8% better ()5 accuracy
and comparable SOV score compared to the Adam learning algorithm. As it can be seen
from Figure 49, although the HFO algorithm needs only 45 iterations to be trained, each
iteration requires an average execution time of 7.78 minutes. On the other hand, the BP
and the Adam algorithms need 200 iterations of 1.46 minutes and 100 iterations of 2.55
minutes each to be trained, respectively. An HFO iteration is executing multiple times
the PCG algorithm, a number which cannot be estimated before the completion of an
iteration. Therefore, the training time needed for HFO is approximately 290 minutes.
The lengh of this execution time is 17% and 27% more than the training time needed
for BP and Adam learning algorithms, respectively, despite needing much less iterations.
Nevertheless, the entire process of building FFENN classifiers is much faster with the HFO
learning algorithm because there are no parameters to be tuned compared to the three
parameters of the Adam learning algorithm which need to be optimised by trial and error.

Then, we have chosen to compare our method with an ensemble of 6 BRNNs trained
with the BPTT learning algorithm, as one of the most established methods for this prob-

lem Baldi et al. [1999]; Pollastri et al. [2002]; Cheng et al. [2005]; Magnan and Baldi
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[2014] and also with an LSTM-BRNN, as the method which has been reported as ob-
taining the highest results for the PSSP problem Heffernan et al. [2017]. The BRNN
architecture consisted of 1 hidden layer of 20 hyperbolic tangent neurons for the feed
forward subnetwork and 1 layer of 11 hyperbolic tangent neurons for each one of the
recurent subnetworks. Furthermore, the BPTT has been tuned to learning rate=0.1 and
momentum=0.001. The LSTM-BRNN consisted of 25 Bidirectional LSTM neurons and
it has been trained with the Adam learning algorithm where the parameters of learning
rate=0.001, betal=0.9, beta2=0.999 were used. Both methods methods use the Mean
Square Error function. As it can be seen in Figure 50, the BRNN trained with BPTT
has achieved 77.61% ()3 accuracy for the PISCES dataset, which is much lower than our
results which were approximately 80.4%. Furthermore, although LSTM-BRNNS are re-
ported to capture the long range depndencies of a sequence, it gave comparable overall
results to our (more local) method. Definitely, there needs to be more work in order to
compare the results of the two methods in such detail (work in progress). Given that our
method can capture very well the short range dependencies, the LSTM-BRNNs may face
difficulties in short range dependencies which results in the same accuracy to our method-
ology. Furthermore, our methodology provides an upper limit on what methods may be
able to capture when they rely on only local sequence patterns. The biggest advantage
of our methodology to these two methods is the simplicity of the models we use. This is
very important if we take into account the latest developments in the field which demand

very big datasets and network architectures, which consequently increase exponentially
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Figure 50: Q3 accuracy and SOV score for ANN models used for the PSSP problem.
The red bar corresponds to (03 accuracy and the yellow bar to SOV score. The SOV score
has been multiplied by 100 for presentation purposes (see text for more details).

the amount of training time. In addition, many of these methods are combined in ensem-
bles, as in Baldi et al. [1999], where the training amount of time is even more increased.
This is extremely important if we take into conciteration that an increasing size of ensem-
bles is often used to improve the results of ML methods Zhou et al. [2002]; Granitto et al.

[2005a]; Zhou et al. [2010].

5.5.4 Conclusion

In this work, we present a second order-based methodology for training simple FFNNs
for the challenging PSSP problem where both the upstream and downstream information
of a sequence is important for a specific time-step. In this methodology, to the best of our
knowledge the HFO learning algorithm is applied for the first time to this problem. More
specifically, we present the development and implementation of a methodology where

ensembles of FFNNSs are trained with the HFO learning algorithm for the PSSP problem.
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In contrast to the conventional GD learning algorithm, the HFO exploits both gradient and
curvature information for fast convergence. The results from the ensembles of FFNNs are
combined through average ensemble methods which are then fed for filtering purposes to
a SVM model for producing the final results.

The efficiency and effectiveness of simple FFNNs trained with the HFO learning al-
gorithm have been tested on the PISCES dataset, achieving approximately 79.6% Q3
accuracy and approximately 0.72 SOV score which compare well with other state of the
art methods. The average ensemble method and SVM filtering techniques have improved
even more the single FFNN ()3 accuracy by approximately 0.8% and the SOV metric by
0.05. The final results of our methodology are approximately 80.4% ()3 accuracy and
approximately 0.77 SOV score. In terms of accuracy, our proposed method outperforms
similar methodologies which are trained based on GD or Adam algorithms. Although, the
GD and Adam algorithms seem to converge faster than the HFO learning algorithm, the
process of building FFNN classifiers is much faster with the HFO because there are no
parameters to be tuned. Therefore, our ML method seems to be a particularly good option
for complex feature extraction and prediction on sequential data, as it takes advantage of
the benefits of these techniques.

At first glance, this method seems to have good chances to outperform in terms of
accuracy and convergence time some of the state of the art methods, such as SSpro
and SCRATCH Baldi et al. [1999]; Pollastri et al. [2002]; Cheng et al. [2005]; Mag-

nan and Baldi [2014] where hundreds of BRNNs are used to achieve an accuracy near
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to 80%. Hence, to conclude, the predicted sequences from many simulations of our pro-
posed methodology on different PSSP datasets must be carefully extracted and analyzed
compared to the results of these state of the art methods. Furthermore, our method has
comparable results with the method based on the LSTM-BRNN models which can handle
long range dependencies and it has been reported as the method with highest results on
this problem. In contrast, our approach provides an upper limit on what methods may be
able to capture when they rely on only local sequence patterns. Consequently, this method
takes advantage of the strong local dependencies of amino acids. Furthermore, the sim-
plicity of our models is very important if we take into account the latest developments in
the field with very big datasets, network architectures and ensembles of networks. Finally,
latest developments in the 3D structure prediction of a protein can benefit from our so-
lution on the PSSP problem. More specifically, AlQuraishi [2019a] has presented work,
based on deep learning methods, to predict the 3D structure of a protein from its PS. The
author has indicated a possible improvement to his methodology if he incorporate PSSP
results from other algorithms AlQuraishi [2019a].

The accuracy of 100% will probably never be achieved for the PSSP problem be-
cause of the presence of disordered regions, the ambiguities inherent in the definitions
of secondary structure, the errors and uncertainties contained in databases and the role
of the solvent and other molecules, as well as the inherent protein structural dynamics
Magnan and Baldi [2014]. Nevertheless, the improvement and systematic combination
of sequence profiles, machine learning methods and sequence-based structural similarity

methods seem to be the best strategy to improve the results related to the PSSP problem.
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A contribution on any of these three categories, combined with other data preprocessing
and algorithmic methods may play a catalytic role on the general improvement of the
PSSP problem results.

As a conclusion to all the results presented in this work, we can see that the second
order HFO learning algorithm can effectively detect and extract features from complex
sequential data like the PSSP problem. Furthermore, the combination of multiple ML
algorithms seem to be a particularly good option for complex feature extraction and pre-
diction on sequential data, as it takes advantage of the benefits of all techniques. Finally,
we demonstrate that a powerful learning algorithm, such as the HFO algorithm, applied
on simple ANN models for the PSSP problem can produce comparable results to the
most complicated ANN architectures which have been utilized for this problem. Also,
this work, gives the initiative to other techniques where powerful learning algorithms can
be used for complicated ANN architectures to produce even more accurate results for
the PSSP and other related problems. Moreover, these methods may be applied to more
problems where the upstream and downstream information is important for a specific

time-step of the sequence for more generic conclusions.

5.6 Long Sort-Term Memory BRNN (LSTM-BRNN)

The method which has been reported with the highest results for the PSSP problem
is based on the LSTM-BRNN architecture [Heffernan et al., 2017]. This method uses
the LSTM cells to capture the long-range dependencies of sequential data where both

the upstream and downstream information is important to make predictions on a specific



Fold Q3(%) Qu(%) Qp(%) Qr(%) SOV SOVyg SOVg SOV
Fold 0 80.99 78.38 73.50 80.19 0.7788 0.7828 0.7734 0.7292
Fold 1 80.50 76.86 73.44 80.25 0.7763 0.7648 0.7671 0.7353
Fold 2 80.39 74.52 68.35 84.54 0.7643 0.7483 0.7322 0.7374
Fold 3 80.14 75.82 65.20 85.82 0.7595 0.7618 0.7148 0.7339
Fold 4 80.46 75.14 71.93 83.79 0.7728 0.7641 0.7578 0.7441

Average 80.50 76.14 70.48 82.92 0.7703 0.7644 0.7491 0.7360
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Table 27: Results of the LSTM-BRNN methods: 5-fold cross-validation approach for
the PISCES dataset.

time-step of the sequence. Based on the work of Heffernan et al. [2017], we have trained

LSTM-BRNNSs with our PISCES dataset. The results of 5-fold cross validation are shown

in Table 27. This method has achieved an accuracy of 80.5% Q3 and 0.7703 SOV. This

work has been implemented for comparison purposes to our methods.

5.7 Chapter Contribution

A list of contributions resulted from this chapter is presented below:

1. The introduction of an image-like input representation of the protein MSA profiles

for the CNN networks.

2. The achievement of approximately 80.4% Q3 accuracy for the PSSP problem with

CNNe .

3. The introduction of a new BESN architecture to handle bidirectional sequences.

This architecture can be trained with a simple linear regression learning algorithm.

4. The application of the CW-RNN model to the PSSP problem with comparable re-

sults to BRNN but much faster training.
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5. The achievement of approximately 80.4% Q3 accuracy for the PSSP problem with
a novel method of simple Feed-forward Neural Networks trained with the HFO

learning algorithm.



Chapter 6

General Discussion and Conclusions

6.1 Overview of the problems

Learning, is a many-faceted phenomenon. The learning process includes the acquisi-
tion of new declarative knowledge, the development of cognitive skills through instruc-
tions and practice, the organizing of new knowledge into general, the effective repre-
sentation of data and finally, the discovery of new theories and facts through practice
and experimentation. Analysis of sequential data, feature extraction, prediction algo-
rithms/techniques and ML methods have been excessively studied. The procedure of
learning sequential data becomes even more challenging when both the upstream and
downstream information of a sequence is useful for making predictions at a specific time-
step. Processing this category of sequential data for classification, forecasting or data

mining purposes is still an open field of research due to its complexity. ML models,

212
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learning algorithms and methodologies for sequential data must take into account how to
(a) capture and exploit sequential correlations, (b) represent and incorporate loss func-
tions, (c) identify long-distance dependencies, and (d) make the optimisation algorithm
fast [Dietterich, 2002]. Many ML techniques have been developed under these standards
to handle sequential data but not many of them have been modified or developed to pro-
cess sequential data when both upstream and downstream information is important to
make predictions or classification at a specific time-step of a time-series. These methods
have to be developed and evaluated based on the accuracy, efficiency and effectiveness of
the models, evaluated in terms of computational time and space but also on the quality of
the results on related problems.

The most efficient and effective models to process sequential data are RNNs [Elman,
1990]. Based on the theory of these models, a specific architecture of RNNs has been
designed to handle the specific class of sequential data where both upstream and down-
stream information are needed. This architecture is called BRNN [Baldi et al., 1999;
Schuster and Paliwal, 1997]. BRNNs are based on RNNs’ architecture theory which effi-
ciently incorporates temporal dynamics [Elman, 1990]. Moreover, many ML models have
been used to handle sequential data. Such models are LSTM-RNNs, CNNs, CW-RNNs,

RC and simple FFNNs. The main questions here are:

1. How can we improve existing BRNN architectures?

2. How can we include these architectures in ML methodologies to improve their re-

sults?
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3. How can we improve the training procedures of these architectures through effi-
cient and effective learning algorithms in terms of accuracy, computational time

and quality of results?

4. Are these methods good enough for the class of sequential data they have been

designed for?

5. Which and how other ML methods can be evolved to handle this category of data?

6. Can we use RC methods or CW-RNNs to handle these problems?

7. How can we use CNNs in such problems? Can they show results which are compa-

rable to the results of other methods?

8. Can we use for the same class of data simple FFENNs trained with second order

learning algorithms (i.e., SCG or HFO)?

For the purposes of our work we have chosen the PSSP [Agathocleous et al., 2010,
2016; Baldi et al., 1999; Kountouris et al., 2012] problem, where the SS of a protein
sequence must be predicted only through the consecutive amino acids appearing in its PS
in order for its functionality to be specified. This problem belongs to the specific class
of sequential data where both upstream and downstream information are needed to make
predictions at a specific time-step of the sequence. The PSSP problem is an important
problem in the biological sciences. The PS of a growing number of proteins is known.
However, there is missing information with respect to their 3D structure. Besides being
important for a basic understanding of life itself, knowledge of protein structure may

assist in research against disease, providing the means for improving the general quality
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of life. One of the goals of this thesis is to examine how the existing results for the PSSP
problem can be improved either in terms of accuracy or training time of ML models.

The main purpose of this research work is to investigate current ML methods, design
and develop new modeling methods and novel optimization algorithms that can make
predictions on sequential data where important information for a specific time-step of
the sequence is located upstream and downstream, and more specifically for the PSSP
problem. This research has its highest impact in the field of ML in general by allowing
cross-fertilisation of ideas between the research areas of analytical learning optimisation
algorithms and effective implementation of practical applications for the PSSP problem,
which are based on human-technology interaction and in the longer term, improve peo-

ple’s quality of life.

6.2 Overview of the approaches, results and conclusions

Based on the problems and questions which have been raised in Section 6.1, we have
chosen our approach for this thesis. Firstly, we have chosen to study the BRNN architec-
ture of Baldi et al. [1999], which has been utilized to handle the PSSP problem. Based
on this method, we have also investigated a general methodology to improve the results
of this and other ML models based on ensemble methods and filtering techniques. Then,
we have investigated new optimization algorithms for BRNN architectures. Based on the
advantages and drawbacks of the famous BPTT learning algorithm, which has been used
to train BRNNs, we have chosen to investigate how we can apply second order learn-

ing algorithms on these architectures in an effort to improve learning for BRNNs. More



216

specifically, we have studied the SCG and HFO learning algorithms. Finally, we have
chosen other powerful ML models, algorithms and methods which have never been used
for this class of problems and we have investigated how can they be manipulated to work
for these difficult sequential problems. More specifically, we have used methods which
are based on CNNs, RC methods, CW-RNNs and simple FFNNs trained with the HFO
learning algorithm.

In Chapter 3, we wanted to investigate and improve existing BRNN architectures for
the PSSP problem. We also investigated how other ML methodologies like ensemble
methods and filtering techniques as post-processing and NN methods can be used to im-
prove the results of the PSSP problem. The initiation of this work has been inspired by the
work of Baldi et al. [1999]. The BRNN architecture of Baldi et al. [1999] is considered as
one of the most optimal computational neural network type architectures for addressing
the PSSP problem and in general the specific category of sequential data. Firstly, for the
purposes of this work, we have redeveloped the work of Baldi et al. [1999]. Through
this process we have sorted out limitations of the model based on the learning algorithms
and the lack of capturing long range dependencies. Based on these observations, we have
developed a variation of this methodology. We have implemented the same BRNN ar-
chitecture, but we have used a modified training procedure. More specifically, our aim
was to identify the effect of the contribution of local versus global information on the
PSSP problem, by varying the length of the segment on which the RNNs operate for each
residue position considered. Our results with a single BRNN are better than the results

of Baldi et al. [1999] by three percentage points (Q3) and comparable to ensembles of
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BRNN models’ results which appear in Baldi et al. [1999]; Pollastri et al. [2002]; Cheng
et al. [2005]; Magnan and Baldi [2014]. This outcome shows that the original BRNN
architecture trained with the standard BPTT learning algorithm finds difficulties in cap-
turing the long range dependencies.

Furthermore, in Chapter 3, we wanted to investigate and conclude in post-processing
methods which can improve the results of BRNNs for the PSSP problem. More specifi-
cally, we have been inspired again by the work of Baldi et al. [1999] to investigate how
ensemble methods can improve the outcome of BRNNs. Ensemble methods is a cate-
gory of well known methods which are used in ML to improve the performance of a
learning model [Dietterich, 2000; Zhou et al., 2002, 2010; Li et al., 2018a; Zheng et al.,
2019]. More specifically, through ensemble methods, instead of training just one model
and get a single prediction, we train multiple instances of same or different methods and
we combine the results. Then, the "winner takes all" method is used to take the results
of each model and the class with the most representations is the final class of a specific
input. Ensembles reduce the mis-predicted residues by combining the results of multiple
classifiers. We have investigated 4 different ensemble methods: Voting, Borda Function,
Average and Weighted Average. We have used ensembles of 6 BRNNs to enhance our
results and based on the results we have concluded that the best ensemble method is
the average ensemble method. This method has significantly improved the accuracy of
BRNNs by 2-3%. In addition, and trying to find the best post-processing methodology for

BRNN:S, our results improved even further when sequence-to-structure output is filtered
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in a post-processing step, with a novel Hidden Markov Model-based approach. Filter-
ing of protein secondary structure prediction aims to provide physicochemically realistic
results, while it usually improves the predictive performance.

The improvement we have noticed in our results based on Hidden Markov Model-
based filtering method has motivated us to perform a comparative study on the chal-
lenging problem of filtering PSSP, utilising both widely used empirical smoothing rules
and ML techniques. Using the average ensemble of 6 BRNNs with per-residue weight
updating [Agathocleous et al., 2010], we have predicted the SS on two non-redundant,
non-homologous datasets and, subsequently, we have applied a number of filtering tech-
niques to smooth the predictions. We have used many different ML techniques (Section
3.4). Importantly, the SOV increases significantly in most cases. On the other hand,
some classifiers increase the per-residue accuracy, whereas others decrease it. The Logis-
tic function, the MLP and the SVMs were found to be superior to the tested methods in
terms of both Q3 and SOV score. Notably, the results improve even further when we use
combinations of ML algorithms and empirical filtering rules. This work has been pub-
lished in Kountouris et al. [2012]. Based on the results of Chapter 3, we have concluded
that an average ensemble method combined with a SVM filtering method can improve
significantly both the accuracy and quality of results for the PSSP problem.

Training BRNNs with BPTT learning algorithm has many difficulties and drawbacks.
Firstly, during training the network parameters gradually change in a way that the network
dynamics are driven through bifurcations [Doya, 1992]. This leads to the degeneration

of gradient information which cannot guarantee the algorithm convergence. Secondly,
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long training times are shown for each single parameter update. This situation is com-
putationally expensive and creates a bound on the network’s size. Another problem is
the well known vanishing gradient problem. The necessary information exponentially
diffuses over time [Bengio et al., 2004] which destroys the long-range memory of the
network. Finally, global control parameters of complex learning algorithms are not easily
optimized which may lead to the creation of a chaotic system. Based on these difficulties
and drawbacks, we have studied new learning algorithms which have never been used for
BRNNs and how we can develop them for these architectures. Chang and Mak [1999]
and Martens and Sutskever [2011] have shown that second order learning algorithms can
be very efficient and effective for training RNN models to increase the performance for
several problems. Second order learning algorithms have been found to be superior to the
conventional BPTT algorithm in terms of accuracy, convergence rate and the vanishing-
gradient problem [Hochreiter and Schmidhuber, 1997]. After this initial investigation, in
Chapter 4 we have chosen to analytically design and develop the SCG [Mgller, 1993b]
learning algorithm for the BRNN architecture. Unfortunately, after several tries, this at-
tempt has suffered from stability issues and poor results. Based on the analysis of this be-
havior, we developed a variation of SCG learning algorithms which is applied for the first
time on BRNN architecture. In particular, we present the development and implementa-
tion of the Hybrid Rectified-Scaled Conjugate Gradient (HR-SCG) learning algorithm for
BRNN architectures which is based on the SCG. In contrast to the conventional Gradient
Descent learning algorithm, the HR-SCG exploits both gradient and curvature informa-

tion for convergence. Moreover, the HR-SCG methodology has also been enriched with
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a version of GD and Dropout algorithms for faster, better and more accurate results. The
model has been tested on the PSSP problem and achieved 77.6% per residue accuracy
on a specific PSSP dataset. Moreover, it has been shown that the HR-SCG outperforms
the BPTT learning algorithm for BRNNS in terms of convergence time, needing approx-
imately 75% less time on PSSP datasets. The final results on the PSSP problem have
demonstrated that a BRNN trained with our version of the SCG learning algorithm can
capture patterns and make predictions on complicated sequences where the information
in both upstream and downstream direction is important. Furthermore, the SCG learning
algorithm needs much less training iterations and parameters to tune up than the conven-
tional BPTT learning algorithm. This is very important if we take into account the lat-
est developments in the field which demand very big datasets and network architectures,
which consequently increase exponentially the amount of training time. In addition, many
of these methods are used in ensemble methods where the amount of training time is even
more increased. Furthermore, in Chapter 4, we have chosen to apply the HFO learning
algorithm to the BRNN architecture. Through the work of Martens and Sutskever [2011],
HFO is thought to outperform other learning algorithms. The final results of this model
have shown comparable results to BPTT and HR-SCG learning algorithms. A general
conclusion from this chapter is that powerful learning algorithms can improve signifi-
cantly the training time needed for BRNNSs but they all have comparable results in terms
of the model’s accuracy.

Finally, in Chapter 5, we wanted to investigate if the simple BRNN method is the

most appropriate or not to handle the PSSP problem and if not, to examine which ML
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methods can be evolved to handle this category of data used by the PSSP problem. This
stemmed from the fact that many powerful recent NN models, their variations and spe-
cific learning algorithms have never been used to handle sequential data where both the
upstream and downstream information is important to process a specific time-step of the
time-series. Consequently, many ML methods have never been used for the PSSP prob-
lem. Hence, there is an open field to be investigated related to the PSSP problem and
CW-RNNSs (Section 2.1.4), CNNs (Section 2.1.5), RC methods (Section 2.1.6) and simple
FFNNs with powerful learning algorithms, such as HFO have been used on this problem.
Although these techniques have their advantages and disadvantages compared to each
other, each one has specific characteristics related to accuracy, execution time, whether
they take into account short and long term dependencies, etc. Hence, in Chapter 5, we
have presented results on a novel image-like input representation method for the PSSP
problem which is used by CNNs, results of the same problem on CW-RNNSs, results on a
novel Bidirectional ESN architecture and results on simple FFNNs trained with the pow-
erful HFO learning algorithm. Also, based on the work of Heffernan et al. [2017], we
have presented results of LSTM-BRNNs on our datasets.

In Chapter 5, we have developed and implemented a hybrid machine learning method
based on the application of CNNs in combination with SVMs, for complex sequential
data classication and prediction [Dionysiou et al., 2018]. For the purposes of this work,
many attempts have been made to preprocess and encode the data in a way the CNN

can extract features and useful information. Unfortunately, many of them have failed.
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Finally, we have designed and implemented a novel two dimensional (2D) input repre-
sentation method for sequential data which was able to encode the sequential information
of the PS of a protein. Then we have tested it on the PSSP problem for 3-state sec-
ondary structure (SS) prediction. The results of this method were much better than the
results we have shown in Chapters 3-4. More specifically, improved results have been
obtained compared to BRNN methods. Clearly, the correct encoding of sequential data
in an image-like representation has enclosed all the necessary and important features of
the data. data. Moreover, impressive was the fact that these results were comparable to
the results of LSTM-BRNN method which was shown to be the best method of tackling
the PSSP in terms of accuracy [Heffernan et al., 2017]. Under the same scope, we have
used CW-RNNs and our BESN architecture for the PSSP problem. These methods did
not outperform CNNs or LSTM-BRNNSs but they have achieved good results in signif-
icantly less training, which is very important in case of ensemble methods where many
parallel models have to be trained. Finally, through this chapter, we have concluded that
very complicated NN models trained with the simple BPTT learning algorithm can give
the best results for the PSSP problem in terms of accuracy and quality of results. One
drawback of these models is that they are very complicated and need too much time to be
trained. Under this scope, we have indicated the need to build efficient methods in terms
of accuracy, convergence time and simplicity to handle sequential data where both the
upstream and downstream information of a sequence is important for a specific time-step.
Consequently, we have chosen to use simple FFNNs but trained with the very powerful

HFO learning algorithm. We have designed and implemented a ML method based on the
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application of ensembles of FFNNs trained with the HFO learning algorithm. The output
of the ensemble of FFNNSs is then filtered with an SVM model. Despite the simplicity
of the models which have been used in this latest experiment of ours, the results of this
method in terms of accuracy and the quality of results were comparable to CNNs and
LSTM-BRNN methods and much better than the methods used in Chapters 3-4.

If we assume that the PSSP problem can represent equally well the category of prob-
lems where both upstream and downstream information is important for processing a
specific time-step of a sequence, the simple BRNN architectures can make predictions
and extract useful information from this category of sequential data but might not be the
best option to solve this problem. Even if we use more sophisticated learning algorithms
than the state of the art BPTT, such as HR-SCG and HFO, we can slightly improve the
accuracy of the network and the quality of the predicted data, but still these complicated
architectures are suffering from the vanishing gradient problem which discards long range
dependencies. Nevertheless, the HR-SCG and HFO second order learning algorithms can
significantly decrease the convergence time of the model compared to BPTT, which is
very important in ML techniques where ensemble methods, filtering techniques and net-
work architectures are used to improve the quality of results. The drawbacks of simple
BRNNSs can be overcome by LSTM-BRNNs. Based on their capability to forget gates, the
LSTM blocks are making the cells able to learn when and what to forget. Consequently,
they can handle the vanishing gradient problem and improve the results of the PSSP prob-
lem by taking into account any long range dependencies of a protein PS. Further to this

variation of BRNN architectures which is based on LSTM cells, similar results can be
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retrieved from very powerful models such as CNNs trained with very simple learning
algorithms (i.e., BP) or very simple models such as FFNNs trained with very powerful
learning algorithms (i.e., HFO). BRNNs and CNNs are large NN architectures which
sometimes take days to be trained. On the other hand FFNNSs trained with the HFO learn-
ing algorithm, even if they cannot handle well the long range dependencies, they can be
trained easily and in much less computational time.

In this thesis, we have managed to present Q3 accuracy results for the PSSP problem
which fall in the range of 76%-81%. Through our research, we did not show any statistical
significance test results because they do not contribute on the accuracy results of the PSSP
problem. Nevertheless, the accuracy confidence interval in the context of the size of the
datasets used is robust enough due to the relatively large size of our datasets. The CB513
dataset consists of 84104 input vectors while the PISCES dataset consists of 1886698
input vectors. Both datasets are large enough to avoid any over-fitted or biased results.
The Q3 accuracy of 100% for the PSSP problem will never be achieved and should not
be expected [Magnan and Baldi, 2014]. This is due to the presence of disordered regions
in protein sequences, the ambiguities inherent in the definitions of SS as reflected by the
imperfect correlation between several programs for determining features from PDB files,
the errors and uncertainties contained in PDB database and the role of the solvent and
other molecules in determining structure which are not taken into consideration by most
present methods. Based on these uncertainties, a theoretical upper limit for the PSSP
problem with models where the input is the MSA sequence profiles is a Q3 accuracy of

88% [Rost and Sander, 1993]. Nevertheless, according to the work of Magnan and Baldi
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[2014], an acceptable accuracy when the input to a mode is MSA sequence profiles is
somewhere between 80%-85%. Finally, through an extensive study of related problems,
which are well described in Section 6.3, we concluded that these inherent limitations are
not the same in other sequence to structure prediction problems.

However, besides using MSA sequence profiles, there is potentially an additional way
of using sequence similarity to improve the predictive accuracy of the models. The Q3
accuracy can be further improved by providing additional protein domain information to
models. More specifically, if a portion of a protein sequence is similar to another se-
quence in the PDB, we can use the annotation of the PDB sequence to improve the results
of the predictive model. This method is called sequence-based structural similarity [Mag-
nan and Baldi, 2014]. This method works smoothly because it is well known that two
domains with similar sequences will in general have similar structures [Kaczanowski and
Zielenkiewicz, 2010]. The effectiveness of this method can be shown in the works of
Magnan and Baldi [2014] and Wang et al. [2016], where the Q3 accuracy for the PSSP
problem has been increased to approximately 93%. Obviously, these results are higher
compared to the theoretical limitation of 88% Q3, which is based only on MSA encod-
ing [Rost and Sander, 1993]. Nevertheless, because of the limitations which have been
analyzed in the previous paragraph, a theoretical accuracy of 100% is still not feasible.

Nowadays there is a debate on how large a dataset needs to be for the efficient train-
ing of an ANN model. With larger datasets, the ANN generalization capabilities are
increased, the over-fitting issues are decreased and rare patterns can be identified. The

same theory can be inferred for the PSSP problem. As we increase the size of a dataset
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then we avoid over-fitting in specific patterns which are common in a protein sequence
and effectively we increase the generalization capabilities of our models. A general prob-
lem in sequential data is that patterns which are related to long range dependencies are
difficult to be identified. As we increase a dataset size, these patterns become more com-
mon and can be identified and learned more accurately by a network. Finally, the protein
structures in worldwide databases are daily updated. In these databases new rare pat-
terns which are related to SS can be identified and must be used to improve an ANN’s
results. In this thesis, we have used the CB513 and the PISCES datasets which consist
of approximately 500 and 8000 protein sequences, respectively. As we can see from our
own results in Chapters 3-4, if we train the same methodology on the CB513 and on
the PISCES datasets then the latter results are higher. This indicates the need for new
larger datasets which will include new more informative MSA sequences to improve fur-
ther our methodologies’ results. Today only the PDB contains more than 140000 protein
structures. These sequences can be used for the development of new larger datasets to
train any one of our models. In the same direction, some recent works, like the one by
AlQuraishi [2019b], have published datasets in specific structures which can be used by
other researchers to train and compare their models.

A question which has been raised through this PhD work is how imbalanced all these
datasets are and how such an imbalance may affect the final results of each methodology.
For example, the CB513 dataset has data which correspond to 34% H, 22% E and 42%
C classes. On the other hand, the PISCES dataset consists of data which correspond to

39% H, 22% E and 38% C classes. Obviously, the datasets are imbalanced; therefore, we
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assume that new larger datasets would also be imbalanced. This issue might be related
to the final results of this thesis. As we can see from the confusion matrices of all our
methodologies (Figures 23, 30, 35, 41, 42 and 47), the predictive accuracy for each SS
class of all our models is analogous to the quantity of each class in our datasets. This can
be addressed through simple ML techniques where fragments from classes which have
less data can be used during the training procedure of a model more than once, so that the
models will be trained on more balanced datasets.

Finally, another question which must be answered, is the possibility of identical pro-
tein sequence fragments having different SS. This possibility would negatively affect our
results. Nevertheless, this possibility is very low. Although, identical protein sequence
fragments can be identified with different SS, this does not affect our results given that
each one of these proteins belong to a different family of evolutionary information. Con-
sequently, the MSA encoding profiles of all the identical protein sequence fragments are
different. Furthermore, most of our models use both short and long term interactions to
predict the SS of a specific fragment. Therefore, even if some short range interactions
which can be identified in protein sequence fragments are identical, the corresponding

long range interactions are different.

6.3 Presented approaches to other problems

Through this thesis we have chosen to analyze and evaluate our methods on the PSSP
problem. In particular, we investigated the approach of multiple ML algorithms and meth-

ods on processing sequential data where both the upstream and downstream information
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is important the make predictions, classification or in general extract useful information

for a specific time-step on the sequence. Nevertheless, these methods can be applied on

any other problem which belongs in the same class of sequential data. More specifically,

relevant problems to our methods are:

1. Transmembrane Protein Topology Prediction (TMPTP): Knowledge of the struc-

ture and topology of Transmembrane (TM) proteins is important since they are
involved in a wide range of important biological processes and more than half of
all drugs on the market target membrane proteins [Nugent and Jones, 2009]. How-
ever, due to experimental difficulties, this class of proteins is under-represented in
structural databases. Similarly to the PSSP problem, a TMPTP dataset consists of
the proteins’ PS and each amino acid can be assigned to a topology class: inside a
cell (I), outsite a cell (O) and inside a cell’s membrane (T). Such a dataset has been
introduced by Nugent and Jones [2009] which contained 131 sequences (TM131)
with all available crystal structures, verifiable topology and N-terminal locations.
As in the PSSP problem, MSA profiles can be used to represent a sequence’s PS.
Preliminary results for this dataset on training BRNNs with the SCG learning algo-

rithm can be found in our work of Agathocleous et al. [2016].

. Other problems related to Protein Sequence Processing (PSPr) : Transmembrane
Protein Residue Contacts [ Yang and Shen, 2018], Folding Membrane Proteins [Wang
et al., 2017], Signal Peptide Detection in Proteins [Savojardo et al., 2018], Predic-
tion of Ubiquitination Sites in Proteins [Hongli et al., 2019], Signal Peptide Predic-

tions[ Armenteros et al., 2019].
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3. Phoneme Speech Recognition (PSR): The speech processing and more specifically
the continuous speech recognition is a very difficult problem to be solved because it
is referrers to the asynchronous mapping of acoustic frames to sequences of linguis-
tic symbols [Graves and Schmidhuber, 2005; Wollmer et al., 2009; Graves, 2013].
Unfortunately, NNs can learn only synchronous mapping between sequences of
input-output pairs, therefore the datasets that we will use are consist of sequences
of acoustic frames-phonemes pairs. Those datasets can be taken from the TIMIT
Acoustic-Phonetic Continuous Speech Corpus (URL: www.ldc. upenn.edu/, ac-

cessed 29/04/2019).

4. Other problems related to Natural Language Processing (NLP): Translation [Sun-
dermeyer et al., 2014], Handwriting Recognition [Liwicki et al., 2007], Part-of-
speech tagging [Plank et al., 2016], Dependency Parsing [Grella and Cangialosi,

2018] and Entity Extraction [Dernoncourt et al., 2015].

The methods which have been developed in this thesis can be directly applied or
modified in order to be used on the above sequential problems. More specifically,
all the methods which have been developed in Chapters 3-5 can be directly applied
to the TMPTP or any other PSPr problem. The input to each one of our methodolo-
gies would remain the MSA profile vectors of each protein sequence. The output
of each one of our models would change by the desired output classes of those
problem. Our models would still be trained to identify short and long range de-
pendencies between the amino acids of the respective protein sequences. On the

other hand, most of our methods can modified in order to be able to be applied
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to PSR or any other NLP problem. Particularly, the input and the output of each
one of our models would be changed based on the sequential data which would
be processed. Again, our models would still be trained to identify short and long
range dependencies between phonemes, words or any other data which would be
presented to the algorithms. In this case, the our image-like representation method
and any empirical rule used as filtering technique in this thesis must be investigated

and redeveloped for the latter problems.

6.4 Contributions

A list of contributions resulted from this work is presented below.

1. The proof that the upper limit of a window size which can be captured from a simple

BRNN trained with the BPTT algorithm for the PSSP problem is 31 amino acids.

2. The proof that in a BRNN trained with BPTT, the local information of a window
around a specific residue is sufficient, compared to a method where the whole se-
quence is used for each residue. The results are comparable because in the second
case the information of long range dependencies is lost due to the vanishing gradi-

ent problem.

3. The introduction of the v parameter, a modified shift operator, which in effect adds
a constant weight based on the importance given to the outputs of the FRNN and

BwRNN.
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11.

12.
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The comparison of PSSP filtering methods where it was shown that the SVM, the
Logistic function and the MLP are the most suitable learning techniques to tackle

this problem.

. The MLP, which is faster than SVM, can lead to reliable filtering of PSSP predic-

tions despite achieving slightly lower predictive accuracy than SVM.

Combinations of machine learning techniques and empirical smoothing rules can

improve the quality of the predictions, particularly the SOV score.

The SCG, a second order method, is applied for the first time for training BRNNs

for the PSSP problem.

. The introduction of a hybrid learning algorithm where the GD method is used to

optimize the weights of a BRNN model updated with the SCG learning algorithm.

The introduction of an Adaptive Step Size Scaling Parameter which combined with

the SCG learning algorithm can train a simple BRNN in 75% less training time.

The HFO, a second order method, is applied for the first time for training BRNNs

for the PSSP problem.

The introduction of an image-like input representation of the protein MSA profiles

for the CNN networks.

The achievement of approximately 80.4% Q3 accuracy for the PSSP problem with

CNNEs.
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13. The introduction of a new BESN architecture to handle bidirectional sequences.

This architecture can be trained with a simple linear regression learning algorithm.

14. The application of the CW-RNN model to the PSSP problem with comparable re-

sults to BRNN but much faster training.

15. The achievement of approximately 80.4% Q3 accuracy for the PSSP problem with
a novel method of simple Feed-forward Neural Networks trained with the HFO

learning algorithm.

6.5 Dissemination of PhD work
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sion to IEEE Transactions on Cybernetics).
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Chapter 7

Future work

The primary objective of this thesis was the study of processing sequential data where
both the upstream and downstream information is important to make predictions at a
specific time-step of a sequence and more specifically the study of the PSSP problem.
This has been achieved through ML models, learning algorithms and methodologies. This
has been done through the investigation and study of well known ML algorithms which
have been utilized for this class of sequential data. More specifically, we have worked
with BRNNs and new novel learning algorithms for these architectures. Furthermore,
we have applied new novel ML methodologies on this class of sequential data and more
specifically on the PSSP problem. Based on our work, more questions and potential
approaches have been raised. The next major steps that have to be done in the near future
related to this thesis will include the combination of new learning algorithms and ANN

models for the PSSP problem and other related problems to this class of sequential data.
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One of the most important steps, which must done in the near future, is the generaliza-
tion of our methods to other related problems which belong to the same class of sequential
data. More specifically, as described in Section 6.3, other related to the PSSP problems
from the field of Bioinformatics and NLP can be processed with our ML. methods and
algorithms. Some of the most important problems where the BRNNs have been used
are TMPTP [Nugent and Jones, 2009], PSR [Graves and Schmidhuber, 2005; Wollmer
et al., 2009; Graves, 2013], Translation [Sundermeyer et al., 2014], Handwriting Recog-
nition [Liwicki et al., 2007], Part-of-speech tagging [Plank et al., 2016], Dependency
Parsing [Grella and Cangialosi, 2018] and Entity Extraction [Dernoncourt et al., 2015].
Although, multiple BRNN architectures have been utilized to handle these problems, the
latest developments in GD algorithms (i.e., Adam) and second order learning algorithms
combined with specific ANN models or ML methodologies shown in this thesis can be
used to improve the results in terms of accuracy, quality and convergence time. More
specifically, training BRNNs with second order learning algorithms or CW-RNNs have
the potentials to work for these problems. Moreover, architectures of ensemble meth-
ods combined with filtering techniques, stacked networks of CNNs and SVMs or simple
FFNNs trained with HFO learning algorithms could show interesting results for these
problems. Therefore, most of the methods which have been designed and developed in
this thesis can be directly or with minor changes applied to the majority of these problems.

Based on our methods, higher results in the PSSP problem can be achieved. In Chap-
ter 5, we have shown results of LSTM-BRNNSs trained on our datasets. These results

have a deviation of approximately 3% from the work of Heffernan et al. [2017]. This
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indicates the need for new larger datasets which will include new more informative MSA
sequences. These datasets will be developed based on the methods described in Section
2.3.6 and will directly applied on the methods developed in this thesis.

As we have discussed in Chapter 4, the original BRNN architecture by Baldi et al.
[1999] was trained using the BPTT learning algorithm. Although it resulted in good pre-
dictions, it suffers from problems like overfitting, slow convergence and getting stuck
in local minima. Using second order optimization algorithms, additional information is
used by the network which improves the optimization process in terms of both speed
and accuracy. However, calculating and using the Hessian Matrix (HM) is often pro-
hibiting due to its extremely large memory requirements. As we have seen in Chapter
4, the HR-SCG learning algorithm is addressing this problem by replacing the HM cal-
culation with an approximation vector based on conjugate vectors theory. Furthermore,
the HFO [Martens and Sutskever, 2011] learning algorithm [Martens, 2010; Martens and
Sutskever, 2011] is addressing the memory issues by replacing the HM by the product
of specific arbitrary vectors which costs just as much as a gradient calculation. On the
other hand, LSTM-BRNNs have reported some of the most accurate results in the PSSP
problem. Hence, we have to investigate how we can accelerate the training procedure and
improve the prediction accuracy of LSTM-BRNN models based on the outcome of this
thesis. As we have seen, the HR-SCG and HFO learning algorithms cannot improve the
results of a single BRNN but they can significantly decrease the training time needed for
these architectures. Furthermore, ensemble methods and filtering techniques can improve

significantly the accuracy of BRNNs. Training LSTM-BRNNS faster with the HR-SCG
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or HFO learning algorithms can lead to bigger ensemble architectures and consequently
to better results for problems related to sequential data. Consequently, we have to investi-
gate the application of the HFO learning algorithm on the LSTM-BRNN architecture: we
have to design and develop the HFO learning algorithm for the LSTM-BRNN architecture
and then we have to extract and compare results of these models for the PSSP problem, in
terms of training speed and accuracy. The same strategy can be followed for the HR-SCG
learning algorithm.

Then, we have to investigate how we can improve the performance of methods which
have been designed or used in this thesis on the PSSP and other problems as follows: (1)
we have to use the image-like input representation of PSSP sequences in deeper CNNs and
(2) we have to train the CW-RNN and BESN models on bigger datasets. After these are
done, we have to investigate how reservoir computing can be used on the PSSP and other
problems to improve the results in terms of accuracy and training time: (1) by applying
the Conceptors on the PSSP and other problems and (2) a new activation function which
can combine linear and non-linear information on the BESN model.

In Chapter 5, we have shown results from an image-like input representation of pro-
tein sequences which have been used to train shallow CNNs [Dionysiou et al., 2018].
This method has achieved very good results in terms of accuracy rate. Trying to extract
features from complex sequential data for classification and prediction problems is an
extremely difficult task. Deep ML techniques, such as CNNs, have been exclusively de-
signed to face this class of problems. Deep structures of CNNs have successfully been

applied for analyzing visual imagery [Krizhevsky et al., 2012; Rawat and Wang, 2017].
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Our work in Dionysiou et al. [2018] has shown very good results which fall in the ac-
cepted range for this problem of > 80 and < 85 [Magnan and Baldi, 2014]. Nevertheless,
to achieve these results, we have used a shallow CNN. Consequently, based on the same
image-like input representation of our data, we have to design and execute deeper CNN
models in an attempt to improve further our accuracy rate for the PSSP problem. Further-
more, images with bigger window size and more sophisticated CNN architectures must
be designed to investigate more the capabilities of these models. Under the same scope,
the latest development in deep learning has shown that Deep Residual CNNs [He et al.,
2015] and Dilated CNNs [Li et al., 2018b] have shown very good results in many prob-
lems. Interestingly, we have to replace the CNNs with these models to investigate if they
can improve even more the accuracy and quality of CNN results on the PSSP problem.
RC models overcome the most common problems that appear generally in RNNs.
The general RC architectures and learning avoid the gradient decent training algorithms
and their problems [Jaeger and Haas, 2004; Ozturk et al., 2007]. The RC methods can
be trained very fast with a simple linear regression learning algorithm. Thus, multiple
RC models can be designed in ensemble methods to improve the accuracy rate of the
PSSP problem. Conceptors [Jaeger, 2014] have been developed as an extension of the
well known ESN to create filters on a reservoir of neurons to extract more informative
features and consequently achieve better results on sequential problems. Furthermore,
our BESN’s results, which are shown in Chapter 5, are far from the state of the art results
but there is still work to be done. Through the literature is shown that memorization skills

of RC models are generally optimized in the case of reservoir units with linear activation
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functions [Jaeger, 2001b]. Furthermore, using reservoir units with non-linear activation
functions has the effect of degrading the memorization ability of the ESN but they are
very important in practical non-linear applications of ESNs [Inubushi and Yoshimura,
2017]. Those two observations have been combined by Di Gregorio et al. [2018] in simple
ESNs and have shown significant improvement in toy problems. Consequently, we have
to investigate if we can improve the results of the PSSP problem with these methods
by increasing the accuracy rate in very fast training time. To this effect, we could (1)
apply the Conceptors on the PSSP problem, (2) apply on the BESN the hybrid activation
function of Di Gregorio et al. [2018] and (3) design and develop a Bidirectional Conceptor
model with the hybrid activation function for the PSSP problem.

In Chapter 5, we have shown that simple FFNNs trained with the powerful HFO
learning algorithm can achieve results comparable to CNNs and LSTM-BRNN. These
models can achieve these results based on the local information of the sequence. Interest-
ingly, we have to investigate how can we combine these models to get information from
multiple points of a protein sequence. More specifically, we can get feature vectors from
FFNNs trained with the HFO learning algorithm and feed a LSTM-BRNN to combine
strong local and strong long range dependencies.

Moreover, CNNs trained with BP learning algorithm and combined with SVMs have
shown very good results. A combination of this methodology with the proven powerful
HFO learning algorithm can improve even better the results of these models for the PSSP

problem or at least decrease the high training time needed for these models.
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Finally, ensemble methods can improve the performance of a learning model [Diet-
terich, 2000; Zhou et al., 2002, 2010] by combining multiple instances of the same or
different models to improve results. In this thesis, we present results from multiple mod-
els which can capture feature of the protein sequences from different angles based on short
or long range dependencies. A detailed analysis of this thesis results can show where each
one of these model is stronger, i.e. short vs long range dependencies. A weighted com-
bination of these models and their results might increase the results of the PSSP problem
significantly. Consequently, we have to use a sophisticated weighted ensemble method to

combine the results of the models have been used or developed in this thesis.
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