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Abstract

Current telecommunication and information systems are designed based on Shannon’s operational
definitions of coding-capacity for reliable communication, which utilizes encoders and decoders,
to combat communication noise and to remove redundancy in data. Current dynamical control
systems are designed by utilizing feedback controllers, actuators and sensors, to ensure stability,
robustness, and optimal performance. One of the key challenges in the upcoming years is the devel-
opment and design of intelligent hierarchical communication and control systems which simulta-
neously control and transmit information. This thesis focuses on developing universal operational
definitions, to any dynamical system with inputs and outputs, called Control-Coding Capacity of
dynamical systems, 1.e., the designer’s ability to develop an controller-encoder pair to simultane-
ously control the system and encode information, transmit it through the dynamical system to any
process attached to it, and reconstruct it using decoders, with arbitrary small error probability.

We choose to work with Additive Gaussian Noise (AGN) channels with finite memory on the
noise, because these channels are widely employed to model band-limited channels and are highly
realistic since the can adequately describe physical channels under practical scenarios. We begin
our analysis by calculating the feedback capacity both for stable and unstable noise, where we
show that feedback does not always increase the capacity. We have done the analysis for memory
1, which can be easily generalized to arbitrary finite memory. Subsequently, we have provided
achievable rates without feedback which are induced by a causal input process. We have consid-

ered both independent and identically distributed (iid) processes and Markov processes.

v



[TobhoyoC

To TeéyovTa CUCTAUAT TNAETIXOWVWVIGY XAl TANEOPOELWY EY0uY oyedlaoTel ue Bdorn Toug e-
TYELENOLoXoUS 0ptooU¢ Tou Shannon GyeTxd Ue TNV xavoTnTa Xwdixomoinone Yo allomo T
ETUXOVOVIO, TIOU YENOWOTOLE! XWOIXOTONTES XAl ATOXWOXOTONTES, YIO TNV XATATOAEUNOT) TOU
YopUfou emxowvmviog ot Yl TNV e€dhedrn Twv TAcovaoudteny ot dedopéva. Ta tpéyovta
OLVOUIXE. CUCTAUATA EAEYYOLU EYOUV OYEDLNOTEL UE TN YENOT EAEYXTWV OVADEAUOTS, EVEQYO-
TOUNTWY X UoUNTARWY, Yia TN Blo@dMoT oTodepdTNTOG, AvTOYAC Xot BEATIOTNG amdOOCT.
Mio anéd Tic Baowéc TEoxAAoES To EROUEVY YEoVIaL Elval 1) avaTTUEN ot O OYEBLOUOS E€u-
VWV CUCTNUATWY IEQUEYIXNG ETUXOVWVING Xat EAEYYOU, Tol OTtolal THUTOYPOVA EAEYYOUV Xl
UeTadlBouy Thnpogopieg. Autr 1 SlaTEBr, EMIXEVIPMVETUL GTNY AVATTUEY XUVOAXDY ETLYELN-
OLOXOY OPIOUMY, OF OTOLOONTOTE BUVUUIXO GUO TN UE ELGOBOUE X £OBOUE, TOU OVOUALEToL
Y WENTLXOTNTA EAEY Y OU-XOOLXOTIOMONG DUVIUIXGDY CUCTNUATOY, T.Y. 1) IXAVOTNTO TOU GYEDINC TN
var ovamTOEeL (EUY0g EAEYHTH-XWOLXOTOTY YLol TUUTOYPOVO EAEYYO TOU GUC TAUNTOS XAl XD
%0TO{NONE TANPOPORLWY, UETABOCTS UEGE TOU BUVOUIXOU CUC THUAUTOS OF OTOLONTOTE Blepyasia
TIOU GUVOEETOL UE AUTO, XAl AVUXAUTUACKELY| TOU Y PTOULOTIOLOVTIG UTOXWOXOTOMNTES, Ye avdaipeTta
uxer) miovoTnTo opdAUATOC.

Emiéyoupe va doukéouue ue xavihia Additive Gaussian Noise (AGN) pe menepaopévn tviun
o710 YopuPo, ETELDY| AUTE TA XAUVAALAL YENOYLOTOLOUVTAL EVREMS YIX T1) LOVIEAOTOINGT XAVUALGDY
TEPLOPLOPEVOL EVPOVE o Efvan EEUIPETIXG PEANOTIXG, XoME UTOPOUY Vo TERPLYPAPOLY ETUEXMS
TOL (PUOLXAL XOVAALOL OE TROXTIXG OEVEIpLaL.  EEXIVIUE TNV avdAuGT| Hog LToAOYILovTag TNV yw-
ENTOTNTA UE AVADEAOT) TOGO Yol 6ToERS 600 xou Yo oo Toy) Vopufo, 6mou delyvouue 6Tt
1 avddpaot 6ev audvel TavTa TV ywenTixotnTe. Eyouue xdvel Ty avdiuorn i uviun 1, 7
omolo unopel €ixoha var yevixeutel o avdalpetn TENEQUOUEVT UVAUTY. XTN GUVEYELX, EYOUUE
TORAEEL EPIXTEC TIHES YWEIC oVATEOPOBOTNCT| TOL TEOXAAOUVTOL OO Uil ALTLdT Sladxacio et
caywyne. Eetdooue 1660 aveldptnTeg xou TauTOONUES XoTaveunuéves (iid) diadixaoiec 600

o Otodxaciec Markov.
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Chapter 1

Introduction

An important class of practical problems in Shannon’s reliable communication over noisy chan-
nels is the additive Gaussian noise (AGN) channel. Such problems are often classified into: (i)
memoryless AGN channels, with or without feedback; (ii)) AGN channels with memory, with or

without feedback. The feedback may be noiseless or noisy.

Two fundamental questions for the sub-class of additive Gaussian noise (AGN) channels with

memory and noiseless feedback, are:
(Q1): Feedback and non-feedback capacity of the AGN channel;

(Q2): Feedback coding scheme of communicating a Gaussian random process 0, € N(0, G(%)I),l‘ =
. .. .. A
1,...,n, and the coding scheme of communicating digital messages w € .}, = { 1,2,...,[2" },

which achieve the feedback, or non-feedback capacity of the channel.

This thesis is focused on the question Q1. We derive the feedback capacity of AGN channels,
driven by Autoregressive Moving Average noise and we show our answer, which contradicts sev-

eral results found in the literature.

1.1 Problem, Motivation, and Main Results

We consider the additive Gaussian noise (AGN) channel defined by
1

n
Y, =X, 4+Vi, t=1,....n, —E{Z(X,)z}gx, K € [0,00) (1.1.1)
L |

where

A . . .
X" ={X1,Xs,...,X,} is the sequence of channel input random variables (RVs) X; : Q — R,

1



CHAPTER 1. INTRODUCTION 2

Y”" = {Y1,Ya,...,Y,} is the sequence of channel output RVs ¥; : Q — R,

yn 2 {V1,...,V,, } is the sequence jointly Gaussian distributed RVs V; : Q — R, with distribution
Py« (dV"), not necessarily stationary or ergodic.

We wish to introduce the feedback capacity of the AGN channel (1.1.1) under two distinct formu-

lations of code definition and noise model.

Case 1) Formulation. The feedback code does not assume knowledge of the initial state of the noise
at the encoder and the decoder (see Definition 1.1.1), and the noise sequence V" is represented by
a partially observable' state space realization, with state sequence S” (see Definition 1.1.2).

Case I) formulation is consistent with the Cover and Pombra formulation of code definition and
noise model, for which the optimal channel input with feedback and the “n—finite transmission”

feedback capacity are derived in [3, eqn(11) and eqn(10)], using the information measure?,

n

c/(x) 2 sup Y HY Y ) —H(V") (1.1.2)
Py ity 1=l SE{ R (X,)z}gxtzl
provided the supremum exists, and where H (-) denotes differential entropy.
For a feedback code that assumes knowledge of the initial state of the noise or the channel, S| = s,
at the encoder and the decoder (see Definition 1.1.3), it follows from [3, eqn(11) and eqn(10)], that

the information measure is

n
C(k,s) 2 sup Y HE Y s)—HV"[s).  (1.1.3)

x,|xf Lyt—1 o= 1,...n: E{Z (X,)z‘slzs}@(t:

Case II) Formulation. The feedback code assumes knowledge of the initial state of the noise or the
channel, S; = s, at the encoder and the decoder (see Definition 1.1.3), and the noise sequence V"
assumes a state space realization with state sequence S”, that presupposes the noise V/~! (including
the initial state) uniquely defines the noise state sequence S’ and vice-versa fort =1,...,n.

Case II) formulation is consistent with the Yang, Kavcic, and Tatikonda [1], code definition and
noise model (see [ |, Section II, in particular Section I1.C, I)-III)]), for which the optimal channel
input with feedback and n—finite transmission feedback capacity are derived in [I, Theorem 1],
using the information measure,

PP (,s) & sup

Py st yt—1 1= 77"*E{): (’)2

HY YU s)—HWV"s).  (1.14)

N
™=
L

S]ZS}EK'

IPartially observable means that knowledge of V/~! and initial state do not specify the state S'.
2¢)% (k) is identified using the converse coding theorem [3].
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To clarify the reasons which motivated us to analyze Case I) and II) formulations, we wish to
mention two technical issues, which are not clarified in [2,4—7] and lead to fundamental confusions
as well as incorrect interpretation of the results.

First, to make the transition from the channel input distributions Py yr-1 yr—1,# = 1,...,n of Case
I) formulation (1.1.2), to Pxf‘ st y-1 st = 1,...,n of Case II) formulation, (1.1.4), the conditions

stated in (1.1.6), (1.1.7) are necessary (as easily verified from the converse coding theorem).

PXI|XI_1 yi-l :PX,\vf—l.,Yt—‘ always holds by channel definition Y; = X3+ Vi, k=1,...,n
(1.1.5)
=Py, xi-1y-1 g if the initial state § = s is known to the feedback code  (1.1.6)

=Py gy g if (V=18 = 5) uniquely defines S’ and vice-versa. (1.1.7)

Second, the analysis of the asymptotic per unit time limits of (1.1.2)-(1.1.4), and their variants
(when the supremum over distributions and limit over n — oo are interchanged), require certain
technical necessary and/or sufficient conditions for the limits to be finite, for the joint process
(X:,Y;),t = 1,... to be stationary or asymptotically stationary, and for the rates to be independent

of the initial data, S| = s.

Our choice of Case 1) and II) formulations is further motivated by the believe [2, 4—7], that Kim’s
characterizations of feedback capacity, in the frequency domain [2, Theorem 4.1], and in the time
domain [2, Theorem 6.1], correspond to the Cover and Pombra code definition and noise model.
We show this believe is false. We also show the characterization of feedback [2, Theorem 6.1, i.e.,
Crp] does not correspond to the limit of a jointly stationary or asymptotically stationary process,
(X:,Y;), one-sided, i.e., r € {1,2,...}, or double-sided, i.e., 7 € {...,—1,0,1,...}. In particular, it
will become apparent in subsequent parts of this paper that [2, Theorem 6.1, i.e., Crg], presupposed
Case II) formulation, and corresponds to the per unit time limit of (1.1.4) (with supremum and limit
interchanged). Further, that since feedback capacity in [2, Theorem 6.1, i.e., Crp] is characterized
with zero innovations process of the channel input (see [2, Lemma 6.1]), it then follows (from the
convergence properties of Kalman-filters [8] [?]), that the value of feedback capacity is necessarily

zeroi.e., Crg =0.

Case I) Formulation of Feedback Code and Noise Definitions. For Case I) formulation we

consider the code of Definition 1.1.1 (due to [3]).

Definition 1.1.1. Time-varying feedback code [3]
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(a) A noiseless time-varying feedback code for the AGN Channel (1.1.1), is denoted by (2"%,n),
n=1,2,..., and consists of the following elements and assumptions.

(i) The uniformly distributed messages W : Q — ., 2 {1, 2,... ,Z”R}.

(ii) The time-varying encoder strategies, often called codewords of block length n, defined by’

éa[O.,n](K) £ {Xl = el(W),XQ = eZ(WaXhYl) o X, = en(W,Xn_l,Yn_l) :

(oo <)

(iii) The average error probability of the decoder functions y* — d,(y") € .#,, defined by
PLor = P{da(Y") £ W} = an Z P{d,(v") # W }. (1.1.8)

A
(iv) The channel input sequence “X" = {X1,...,X,} is causally related* to V""", which is equivalent

to the following decomposition of the joint probability distribution of (X",V"):

Pxn./vn :Pvn‘vrhl)(n PX,1|X”717V"*1 ce PV2|V1 ,XZPX2|X1.,V1PV1 |X1PX1 (119)

n
:Pvn HPXT|Xt717vt71, that iS, Pw‘vtfl’xt == PVr|Vt71 . (1110)
t=1

That is, X' < Vil & Vi is a Markov chain, fort = 1,...,n. As usual, the messages W are inde-
pendent of the channel noise V".

A rate R is called an achievable rate with feedback coding, if there exists a sequence of codes
(2"R n),n=1,2,..., such that PE’;ZW — 0 as n — oo, The feedback capacity C/*(x) is defined

as the supremum of all achievable rates R.

For Case I) formulation we consider a noise model which is consistent with the Cover and Pombra
noise model, i.e., V" is jointly Gaussian distributed, Py» = xi_ Py, -1, and induced by the par-

tially observable state space (PO-SS) realization of Definition 1.1.2.

Definition 1.1.2. A time-varying PO-SS realization of the Gaussian noise

3The superscript e(-) on E¢ indicates that the distribution depends on the strategy e(-) € Elo,n) (K)-
4A notion found in [3], page 39, above Lemma 5.
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A time-varying PO-SS realization of the Gaussian noise V"' € N(0,Kyn) is defined by

Stv1 =AS+BW;, t=1,....n—1 (1.1.11)
Vi=GS +NW;, t=1,...,n, (1.1.12)
S1 € N(us,,Ks,), Ks, =0, (1.1.13)
W, € N(0,Kw,), Kw, =0, t=1...,n anindep. Gaussian process, W' indep. of Si,
(1.1.14)
SiQ RS, WiQR™, Vi:Q R, RENKyN =0, t=1,...,n (1.1.15)

where (A;,B;,Cy, Ny, s, , Ks, , Kw,) are nonrandom for all t, and ng,n,, are finite positive integers.
A time-invariant PO-SS realization of the Gaussian noise V" € N(0,Kyn) is defined by (1.1.11)-
(5285), with (A[,B[,C[,N[,Km) = (A,B,C,N,KW),VI.

For Case I) formulation we use the terminology “partially observable”, which is standard in filter-
ing theory [9], because the noise V" induces a distribution Py» = X;’zva, vi-1s and PV, yi-1 cannot
be expressed as a function of the state of the noise, i.e., V/~! does not uniquely define §’. The PO-
SS realization is often adopted in many practical problems of engineering and science, to realize

jointly Gaussian processes V.

We should emphasize that for Case I) formulation, the code of Definition 1.1.1 and the PO-SS
realization of Definition 1.1.2, the following two conditions must be respected (to be consistent
with [3]):

(A1) The initial state Sy of the noise is not known at the encoder and the decoder, and

(A2) at each t, the representation of the noise V'—! by the PO-SS realization of Definition 1.1.2,
does not uniquely determine the state of the noise S' and vice-versa, i.e., it is a partially observable

realization.

It is easy to verify that conditions (A1) and (A2) are indeed, consistent with the Cover and Pombra
[3] formulation, see for example, the code definition in [3, page 37], the characterization of the
n—finite transmission feeback capacity given in [3, eqn(11)], and the coding theorems given in [3,

Theorem 1].

Case II) Formulation of Feedback Code and Noise Definitions. For Case II) formulation we
pressupose:
Condition 1. The initial state of the noise or the channel S| = s is known to the encoder and the

decoder.
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Condition 2. Given a fixed initial state S| = s, known to the encoder and the decoder, at each t,

the channel noise V'~ uniquely defines the state of the noise S' and vice-versa.

By Condition 1 the code is that of Definition 1.1.3, below, which is different from the code of
Definition 1.1.1.

Definition 1.1.3. A code with initial state known at the encoder and the decoder
A variant of the code of Definition 1.1.3, is a feedback code with the initial state of the noise or
channel S1 = s, known to the encoder and decoder strategies, denoted by (s,2"™% . n), n=1,2,....

The code (s,2"%,n), n=1,2,... is defined as in Definition 1.1.1, with (ii), (iii), (iv) replaced by

G (%) 2{ X1 = e1(W, 1), = e (W, $1,X1,11) ... Xy = en(W, 51, X"~y

1 noo
n_HEe{i;)(Xt) ’sl :s} < K'}, Vi dS (Y1) € My, (1.1.16)
n
Py ynis, =Pynjs, [ [Pyt yiois,  thatis, Py xig, =Py, (1.1.17)
t=1

A
The initial state may include S; = (V°_,,Y°.)), etc.

—o00) & —o0

For Case II) formulation it is obvious (from the converse to the coding theorem), that the optimal
channel input conditional distribution is expressed as a function of the state of the noise, $”, due to
(1.1.6), (1.1.7).

Our approach is based on the following two step procedure.

Step # 1. We apply a linear transformation to the Cover and Pombra optimal channel input pro-
cess [3, eqn(11)] (see (1.2.18)-(1.2.24) which are reproduced from [3] for the convenience of the
reader), to equivalently represent it by a linear functional of the past channel noise sequence, the
past channel output sequence, and an orthogonal Gaussian process, i.e., an innovations process.

That is, X" is uniquely represented, since it is expressed in terms of the orthogonal process.

Step # 2. We express the optimal input process by a functional of a sufficient statistic, which
satisfies a Markov recursion, and an orthogonal innovations process. It then follows that the Cover
and Pombra characterization of the “n—block” formula [3, eqn(10)] (see (1.2.18) and (1.2.19)) is
equivalently represented by a sequential characterization. The problem of feedback capacity is then
expressed as the maximization of the per unit time limit of a sum of (differential) entropies of the

innovations process of the channel output process, over two sequences of time-varying strategies
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of the channel input process. The covariance of the innovations process is a functional of the

solutions of two generalized matrix DREs.

1.2 The Cover and Pombra Characterizations of Capacity and
Related Literature

First, we recall the Cover and Pombra [3] characterization of feedback capacity, since we use it
to derive our new sequential characterizations of the n—FTFI capacity (to avoid new independent
derivations).

Cover and Pombra applied the converse coding theorem and the maximum entropy principle of

Gaussian distributions to identify the characterization of the n—FTFI capacity [3, eqn(10)] by’

2

/P (k) max H(Y")—H((V") (1.2.18)

(BrKgn ): %tr{E(X”(X”)T) }g;c

T
= max llog ‘(Bn+I"X”)KV’i§<Bn ’+In><n) + Kz |
v

2
(Br.Kgn): %tr{B" Kyn (B")T+Kn }gx

(1.2.19)

where the distribution Py is induced by a jointly Gaussian channel input process X" [3, eqn(11)]:

t—1

X;=Y B ;Vi+Z, t=1,....n, (1.2.20)
j=1

X'—B'V'+7Z", Y'= <B”+1nxn>vn+2”, (1.2.21)

Z" is jointly Gaussian, N(0,K), Z" is independent of V", (1.2.22)

X" = [ X X ... X, }T and similarly for the rest, B’ is a lower diagonal matrix, (1.2.23)

1

—E{ i(xt)z} - %tr {E(X"(X")T>} <. (1.2.24)

o3

The notation N(0, Kzn) means the random variable Z" is jointly Gaussian with mean E{Z"} =0
and covariance marix Kz» = E{Z" (Z")T}, and I, denotes an n by n identity matrix.

The feedback capacity, C/?(x), is characterized by the per unit time limit of the n—FTFI capacity
[3].

|
(k)2 lim ~ClP(x). (1.2.25)

n—oon

SWe use H(X) to denote differential entropy of a continuous-valued RV X, hence we indirectly assume the prob-
ability density functions exist.
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The direct and converse coding theorems, are stated in [3, Theorem 1].
Over the years, considerable efforts have been devoted to compute C,{b(K) and C/*(x), [1, 2,
—6, 10], often under simplified assumptions on the channel noise. In addition, bounds are de-
scribed in [1 1, 12], while numerical methods are developed in [13], mostly for time-invariant AGN
channel, driven by stationary noise. We should mention that most papers considered a variant
of (1.2.25), by interchanging the per unit time limit and the maximization operations, under the
assumption: the joint process (X",Y"),n = 1,2,... is either jointly stationary or asymptotically
stationary (see [2,4,5, 10]), and the joint distribution of the joint process (X",Y"),n =1,2,... is
time-invariant.
Yang, Kavcic and Tatikonda [!] and Kim [2] analyzed the feedback capacity of the AGN chan-
nel (1.1.1) driven by a stationary noise, described the power spectral density (PSD) functions
Sy (e/?),0 € [~x,7):

e (1-zk a<k>e{k9) (1-xk, a<k>e—{k9)
(1-xh e ) (1 - Tk clk)e 49

Je()] < 1, Ja(k)] < 1, ¢(k) # a(k).

(1.2.26)

More specifically, the analysis by Yang, Kavcic and Tatikonda considered a specific state space
realization of the noise PSD (1.2.26), pressuposed a Case II) formulation (see [, Section II, in

particular Section II.C, I)-III), Theorem 1, Section III]):

The initial state of the noise, S| = s, is known to the encoder and the decoder, and the initial state

and noise (s,V' _]) uniquely define the noise state S', and vice versa, for all t.

Kim also analyzed the feedback capacity of the AGN channel (1.1.1) driven by a stationary noise
described by the PSD (1.2.26), and by a state space realization of the noise V" (see [2, Section VI]).
A major point of confusion, which should be read with caution is that Kim’s characterization of
feedback capacity in time-domain [2, Theorem 6.1], does not state the conditions based on which
this characterization is derived. The reader, however, can verify from [2, Lemma 6.1 and comments
above it], that the characterization of feedback capacity [2, Theorem 6.1], presupposed a Case II)

formulation, precisely as Yang, Kavcic and Tatikonda [1].

1.3 Thesis Organization

The rest of this thesis is organized as follows.
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In Chapter 2, we derive new equivalent sequential characterizations and formulas of the Cover and
Pombra “n—block or transmission” feedback capacity formula [3, eqn(11)], that is, for Case I)
formulation, C,{ b(K), which have not appeared elsewhere in the literature. In particular, we derive
equivalent realizations to the Cover and Pombra optimal channel input process X" [3, eqn(11)],
which are linear functionals of a finite-dimensional sufficient statistic and an orthogonal inno-
vations process. From these new realizations, follows the sequential characterizations of the
“n—block or transmission” feedback capacity formula [3, eqn(11)], henceforth called the “n—finite
transmission feedback information (n—FTFI) capacity”, which are expressed as functionals of two

generalized matrix difference Riccati equations (DRE) of filtering theory of Gaussian systems.

In Chapter 3, we derive results analogous to 1), for Case II) formulation e.g., C,{b(K,s) and for

C,{b’s(ic,s), as special cases of Case I).

In Chapter 4, we analyze the asymptotic per unit time limit of the sequential characterizations of
the n—FTFI capacity, denoted by C/*(x), C/"°(k,s), C/>59(k,s), when the supremum and limit
over n — oo are interchanged. We identify necessary and/or sufficient conditions for the asymp-
totic limit to exist, and for the optimal joint process (X;,Y;),7 = 1,..., to be asymptotically station-
ary, in terms of the convergence properties of two generalized matrix difference Riccati equations
(DRES) to their corresponding two generalized matrix algebraic Riccati equations (AREs). Use in
made of the so-called detectability and stabilizability conditions of generalized Kalman-filters of
Gaussian processes [3, 9]. More specifically, C,J,C b’S(K, s) is a functional of one generalized DRE,
while C,{‘b(K),C,J; b(K, s), are functionals of two generalized DREs. Also, we show that for certain
noise models, and under certain conditions, it holds that C/2° (k. s) = C/*(x), i.e., these values do

not depend on the initial state or initial distributions.

In Chapter 5, we calculate the maximum feedback capacity C/?5°(k,s), and we show that it
doesn’t always exist. Otherwise, there is always an achievable rate. Also, for our simplicity, we

prefer to use an ARMA (a,c) scalar noise representation.

Finally, in Chapter 6, we highlight the main findings and suggest future potential work.



Chapter 2

Feedback Capacity with Unknown Initial
State

In this chapter we derive equivalent sequential characterizations, for C;fb(ic) defined by (1.1.2),

1.e., the Cover and Pombra n—FTFI capacity characterization (1.2.19) of Case I) formulation,
We organize the presentation of the material as follows:

1) Section 2.1. The main result is Theorem 2.1.1, which gives an equivalent sequential char-
acterization of the Cover and Pombra characterization C,{b(lc), i.e., of (1.2.18), (1.2.19). Our
derivation is simple; we apply a linear transformation to the Cover and Pombra Gaussian opti-
mal channel input X" (1.2.20), to represent X;, by a linear function of (V=1 Y'~1) or equiva-
lently (X’~!,¥’~1) and an orthogonal Gaussian innovations process Z;, which is independent of
(-l x Lyl y=Yfort=1,...,n.

We apply Theorem 2.1.1 to the time-varying PO-SS(a,, ¢;, b} ,b?,d},d?) noise (see Example 2.1.1),
and to the nonstationary autoregressive moving average ARMA(a,c), a € (—o0,00) ¢ € (—o0,0)
noise, and to the stationary ARMA(a,c),a € (—1,1),c € (—1,1) noise (see Example 2.1.2), which

is found in many references, such as, [2].

2) Section 2.2. The main result is Theorem 2.2.1, which gives the sequential characterization
of n—FTFI capacity for time-varying AGN channel (1.1.1) driven by the PO-SS realization of
Definition 1.1.2, for the code of Definition 1.1.1. Our derivation is based on identifying a finite-
dimensional sufficient statistic to express X; as a functional of the sufficient statistic, instead of
(vi=Ly"=!) or (X’~1,¥’~1), and an orthogonal Gaussian innovations process. This characteriza-

tion further simplifies the sequential characterization of C,{b(K) given in Theorem 2.1.1 (i.e., the

10
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equivalent of (1.2.19)).
In Corollary 2.2.2 we present the application of Theorem 2.2.1 to the ARMA(a,c),a € (—0,00),c €
(—o0,00) noise of Example 2.1.2, and show that the n—FTFI capacity is expressed in terms of so-

lutions to two DREs.

For Gaussian distributed Random Variables, we use the follows. Px € N(ux,Kx),Kx = 0 denotes
a Gaussian distributed RV X, with mean value py and covariance matrix Ky = cov(X,X) = 0,
defined by

i 2E{X}, Ky =cov(X,X)2 E{ <X —E{X}) (X—E{X})T}. 2.0.1)

Given another Gaussian random variables Y : Q — R™ n, € Z", which is jointly Gaussian dis-
tributed with X, i.e., the joint distribution is Py y, the conditional covariance of X given Y is
defined by

Kyyy = cov(X,X‘Y) éE{ (X —E{X(Y}) (X —E{X‘Y})T‘Y} (2.0.2)

—E{ (X—E{X‘Y}) (X-E{X(Y})T} (2.0.3)

where the last equality is due to a property of jointly Gaussian distributed RVs.
Given three arbitrary RVs (X,Y,Z) with induced distribution Py y 7, the RVs (X,Z) are called
conditionally independent given the RV Y if Pz x y = Pz)y. This conditional independence is often

denoted by, X <+ Y < Z is a Markov chain.

2.1 Preliminary Characterizations of »—FTFI Capacity of AGN
Channels Driven by Correlated Noise

We start with preliminary calculations, for the feedback code of Definition 1.1.1, which we use to
prove Theorem 2.1.1. These calculations are introduced for the sake of clarity and to establish our
notation.

For the feedback code of Definition 1.1.1, by the channel definition (1.1.1), i.e., (1.1.10), the
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conditional distribution of ¥; given Y'~! =y/=1 X" =X/, is

P{Y, edy|lY' =y L X' =X} =P{Y, edyly" ' =y L X =XV ="} by (1.1.])
(2.1.4)
=Py (vixbv €dy), 1=2,m, by (1.1.10)
(2.1.5)
Py i (2.1.6)
=P, (dy|x;,v'" 1), (2.1.7)
P{y, dy‘YO — 0. X" =x'} =Py, iy, =Py (dylx). (2.1.8)

We introduce the set of channel input distributions with feedback, which are consistent with the

code of Definition 1.1.1, not necessarily generated by the messages W, as follows:
A D 1 < 2
Pl (k) 2 {P,(dx,|x’ LYY E Py iyt =1, ne ,;EP<Z (%) ) < x}. (2.1.9)
=1
By Definition 1.1.1, we have 5[0,;1] (k) C ,@[07,4 (k). Moreover, by the channel definition, any pair

of the sequence triple (V/,X",Y") uniquely defines the remaining sequence. Thus, the identity

holds:

- A _ _ _ 1 - n 2
P 0. (K) 2 {Pt(dxt|vf Ly Nr=1,...,n: n—i—lEP(Z (%) ) < K} — P (K). (2.1.10)

1=1
We also emphasize that, by Definition 1.1.1, for a given feedback encoder strategy e(-) € E o (x),
ie., x; = e (w),xa = ea(w,x1,¥1),...,X = ex(w,x"~1,y"~1) the conditional distributions of ¥;

given (Y'~!, W) = (yy~!,w) depend on the strategies, e(-) as follows:

Py yo (el ow) DRyl {es w7 =1,y W) @.1.11)
Op, (dy [{ejwad 1y 1) =1,y w) (21.12)
@Pt(dyty{e,(w,xﬂ,yf*l) cj=1, v hw) (2.1.13)
@ c(dye {e;(w, /Ly s j=1,0 v (2.1.14)
(é)P,(dy,|et(w,x’_1,yt_l),vt_l) (2.1.15)

(a) is due to knowledge of the distribution of the strategies e;(-),j = 1,...,t, the code definition,

and the recursive substitution, x; = e (w),x2 = ea(W,x1,y1),...,e,(w,x’ "1 y/~1), where x¥'~! is
specified by the knowledge of the strategies, e;(+),j = 1,...,t — 1 and the knowledge of (y'~2,w),

(b) is due to knowing x; :ej(w,xj_l,yj_l),yj,j: 1,...,t—1specifiesv;=y;—xj,j=1,...,t—
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1,
(¢) is due to the fact that, any pair of the triple (x’,y",V") specifies the remaining sequence, i.e.,

knowing (¥ ~!,v/~1) specifies y'~!, and hence y* ! is redundant,
(d) is due to the conditional independence Py, yi-1 1y = Py jyi-1 x1,

(e) is due to (1.1.10), i.e., PVIWHXI = P‘/t|vz—l, and the channel definition.

By the channel definition Y, = X; +V;,# =1,...,n, then each e(-) € &) , (k) is also expressed as

—

_ - a) _
xp =e1(w) =er1(w), x2=-ex(w,x1,y1) =é(w,x1,v1,y1) = e2(w,v1,y1), ...,

17yn71) = én(W;-xnilyvnil;ynil) @ En(wavniaynil)? we %(n) (2116)

Xp = ep(w, X"

where () is due to the channel definition, i.e., the presence of X' ~! in &(-,*~!,-) can be removed,

since it is redundant, and specified by (v'~!,y*~1). Consequently, we have the identity

1 /2
Elon(K) 2 {Xl =21 (w),x2 =2(wv1,y1) . Xy = En(w" Ly ) ZEe(Z(Xt)Z) < K}
i=1

= &0.(x). (2.1.17)

In the next theorem we present our preliminary equivalent sequential characterization of the Cover
and Pombra characterization C;}” (K), i.e., of (1.2.18), under encoder strategies &y, (k) = g[o,n} (x),

and channel input distributions &g ) (k) = & (k). Unlike the Cover and Pombra [3] realiza-

tion of X", given by (1.2.20)), at each time 7, X; is driven by an orthogonal Gaussian process Z;.

Theorem 2.1.1. Information structures of maximizing distributions for AGN Channels

Consider the AGN channel (1.1.1), i.e., with noise distribution Pyn, and the code of Defini-
tion 1.1.1. Then the following hold.
(a) The inequality holds,

n n —
sup Y HO(RY"H) < sup Y HP(BY' (2.1.18)
El.)(K)1=1 Do (K)1=1

where the conditional (differential) entropy H(Y,|Y'~) is evaluated with respect to the probability
distribution P¢(dy;|y' "), defined by

Pi(dy |y ") = / P (dy e, (w vy VT P dw,av YY), 1=0,...n. (2.1.19)
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and H?(Y, [Y'~1) is evaluated with respect to the probability distribution Ptﬁ(a’y, ly'~1), defined by
PP (dy |y ") = / P, (dy:|xi, v ") PP (dx, vy Y PP (@ YY), 1=0,...,n. (2.1.20)

(b) The optimal channel input distribution {P(dx,v' =1,y 1)t =1,...,n} € @[Oﬂ] (x), which max-
imizes Y|, HF(Y,|Y’*1) of part (a), i.e., the right hand side of (2.1.18), is induced by a channel
input process X", which is conditionally Gaussian, with linear conditional mean and nonrandom
conditional covariance, given by

— Iyt—1 2yt—1 —
EP{XI Vtil,Ytil} _ { FtV —|—FtY , fO}" t—2,...,n (2.1.21)

0, for t=1,

A
KX;|V’_1 7Yt—l = Ccov (Xt 7Xt

VLY ) =K, =0, t=1,...,n (2.1.22)

and such that the average constraint holds and (1.1.10) is respected.
(c) The optimal channel input distribution {P(dx,V' =1,y 1)t =1,...,n} € ?[O,n] (x) of part (b),

is induced by a jointly Gaussian process X", with a realization given by

= Er}vjv#ti‘irijyjjuzt, X\=27Z, t=2,....n, (2.1.23)
j=1 j=1
=rvliry-l4+z, (2.1.24)
Z € N(0,Kz), t=1,...,n a Gaussian sequence, (2.1.25)
Z, independent of (V7' X"V Y'Y r=1,...n, (2.1.26)
Z" independent of V", (2.1.27)
%E{ y (%)) <. (2.1.28)
=1
(T1,T2 Kz € (—o0,00) X (—o00,00) X [0,00)  nonrandom. (2.1.29)

(d) An equivalent characterization of the n—FTFI capacity C,J:b(K), defined by (1.2.18), (1.2.19),

is given by
Cclb(x) = sup Z Py —HWV") (2.1.30)
e{y 1(x,) pex=!
where the supremum is over all (F},F,Z,KZ,),t =1,...,n of the realization of part (c), that induces

the distribution Py(dx,V'~',y~,t =1,...,n

Proof. See Appendix 7.1. [
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Theorem 2.1.2. Converse coding theorem for code of Definition 1.1.1
Consider the AGN channel (1.1.1).
(a) Any achievable rate R for the code of Definition 1.1.1 satisfies

|
R<C(x) 2 lim ~C/*(x), (2.1.31)

n—soo n

cl (k) = sup HE (V)Y —H(V™) (2.1.32)

Pi(dx =1y =D t=1,...n: %E{ Y (Xt)z}SK

™=

t=1

provided the supremum exists and the limit exists, where the right hand side of (2.1.32) is given in

Theorem 2.1.1.

Proof. Follows from standard arguments, using Fano’s inequality (see also [3]) and Theorem 2.1.1.
[

Remark 2.1.1.
(a) From the realization of X" given by (2.1.23), we can recover the Cover and Pombra [3] real-

ization (1.2.20), by recursive substitution of Y~ into the right hand side of (2.1.23), as follows.

i—1 -1
X, =Y T Vi+Y T}Y+Z7 (2.1.33)
j=1 j=1
r—1 t—2
=Y OV Y Y 4T (X +20) +2, (2.1.34)
Jj=1 j=1
1—1
=) BV, +Z;, by recursive substitution of X1,...,X;_1,Y1,...,Y,_» (2.1.35)
j=1

for some Z; € (O’KZ) which is jointly correlated, and some nonrandom B, j, as given by (1.2.20)
and (1.2.21). Clearly, (2.1.35) is precisely (1.2.20).

(b) Unlike the Cover and Pombra [ 3] realization of X", i.e., (1.2.20), the realization of X" given by
(2.1.23), is such that, at each time t, X; depends on (V'=',Y'~1,Z,), where Z' is an innovations or
orthogonal process, i.e., (2.1.26) holds.

(c) In subsequent parts of the paper we show that the minimizing sequence X" given by (2.1.23) is
such that T? = —T'},t =2,...,n. Then we derive an equivalent sequential characterization of the
Cover and Pombra n—FTFI capacity (1.2.19), which is simplified further, by the use of a sufficient

statistic (that satisfies a Markov recursion).
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To characterize C,{b(ic) using Theorem 2.1.1.(d) we need to compute the (differential) entropy

H(V") of V. The following lemma is useful in this respect.

Lemma 2.1.1. Entropy H(V") calculation from generalized Kalman-filter of the PO-SS noise re-
alization.
Consider the PO-SS realization of V" of Definition 1.1.2. Define the conditional covariance and

conditional mean of S; given V=1 by

Vz—l) = E{ (S, —§t> (S, —§t>T

p écov (St, S;

VH}, 5, éE{St

v’—l}, t=2,....n,

(2.1.36)
A A A
X :COV(Sl,Sl) = Kgl, S = Us, . (2137)
Then the following hold.
(a) The conditional distribution of V; conditioned on V' ~Uis Gaussian, i.e.,
PVt|Vt71 EN(‘UMVAthl,KVt'thl), t= 1,...,” (2138)

VIT1} Ky i 2 cov(Viy ViV,

(b) The conditional mean and covariance Ly, i1, Ky, -1 are given by the Generalized Kalman-

where [y, yi-1 2 E{V,

filter recursions, as follows.

(i) The optimal mean-square error estimate S, satisfies the generalized Kalman-filter recursion

Sie1 =AS, + M, (%), Si= Hs; (2.1.39)
Mi(Z) 2 (A=t + BKyNT ) (N.Kw,NT )

t(&) = (A C + KW, IVy Kw,N; +C:L:C; ; (2.1.40)
= Vt—E{Vz VH} —V,—C8 =C(S—S)+NW, t=1,....n, (2.1.41)
I e N(O,Kf[), t =1,...,n is an orthogonal innovations process, i.e., I is independent of
I, for all t # s, and I, is independent of V™!, (2.1.42)
K;, = cov(l, i) = GECT +NKw, N (2.1.43)

.. A a . .
(ii) The error E; = S; — S, satisfies the recursion

E 1 =MCH(E)E 4+ My (Z)NW;, Ey =818, t=1,...,n, (2.1.44)
A
MtCL(Z[) :A[ —Mt(zt)ct. (2.1.45)



CHAPTER 2. FEEDBACK CAPACITY WITH UNKNOWN INITIAL STATE 17

(iii) The covariance of the error is such that E{E,EtT} = Y, and satisfies the generalized matrix

DRE
L1 =AZAT + Bk B! — (AZCT +BKw N ) (NKwN] +Cxc] ) -
(azmcl +B;KWtNtT>T, t=1,....n, £ =Ks, =0, T = 0. (2.1.46)
(iv) The conditional mean and covariance [y, i1, Ky, |yi-1 are given by

Wy i1 =G, 1=1,...,n, (2.1.47)
Ky, yi-1 =K; = GECl +NKwN], t1=1,...,n. (2.1.48)

(v) The entropy of V", is given by
n 1 ¢ T T
H(V") =5} log (27re [CIEIC, + N, Kw,N; D (2.1.49)
=1

Proof. (a), (b).(1)-(iv). The generalized Kalman filter of the PO-SS realization of V" and accom-
panied statements can be found in many textbooks [9]. However, it is noted that f,,r =2,...,n,
I, =V, are all independent Gaussian. For example, to show show (2.1.44) we write the recursion

for E, =S, — S, using part (i) and the realization of S;. (b).(v) By the chain rule of joint entropy

then
H(V")=H(V}) + Zn:H(V,\V’_I) (2.1.50)
t=2
:H(v1)+zn:H(1/,—E{w VH}WH) 2.1.51)
t=2

n
=H(V})+ ZH(f,), by orthogonality of ], 2 Vi — E{V,
=2

Vf—l} and V-l (2.1.52)
From (2.1.52) and (2.1.48), then follows (2.1.49), from the entropy formula of Gaussian RVs. []

Next we introduce an example of a PO-SS realization of the noise that we often use.
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Example 2.1.1. A time-varying PO-SS(a;, ct,b},btz,dtl,dtz) noise realization is defined by

St =aS;+bW+b?W2, t=1,2,....n—1 (2.1.53)
Vi=cS +dW +d?W?, t=1,...n, (2.1.54)
S1 € N(us,,Ks,), Ks, >0, VWGN(O,KWT,-), Kyi >0, i=12, t=1,....n, (2.1.55)
WL and W?" indep. seq. and indep. of S, (2.1.56)
a; € R, ¢ €R, b; € R, dti eR, i=1,2,Vt are nonrandom, (2.1.57)

A A
biobi = (b)) Ky + (b7)*Ky2, biods = blKynd! + b} Ky2d?,

diodi 2 (d)) Ky + (@) Ky > 0, V. (2.1.58)

The next corollary is an application of Lemma 2.1.1 to the time-varying PO-SS noise of Exam-

ple 2.1.1.

Corollary 2.1.1. The entropy H(V") of the PO-SS(ay,c;,b},b?,d},d?) noise of Example 2.1.1 is

computed from Lemma 2.1.1 with the following changes:

C[ — C¢, Al‘ — ay, B[K‘/VrNtT — b[ 0] dt, B[KV[/ZB? — bt o b[, NtK{/VthT — dt Odt.
(2.1.59)

Proof. This is easily verified. O

From Corollary 2.1.1 we have the following observations.

Remark 2.1.2. Consider the PO-SS(a;,c;,b},b?,d},d?) noise of Example 2.1.1. Then the follow-
ing hold.

(a) Consider the code of Definition 1.1.2. At each time t, the optimal channel input process is
either realized by the Cover and Pombra process X; given by (1.2.20), or equivalently by (2.1.23),
ie, X, = ’J;ll B Vi j+Z = Z’j;ll F}JV]- + Z’J.;ll F%ij +Z;. Moreover, X; cannot be expressed in
terms of the state S', because by (2.1.53) and (2.1.54) the noise sequence V'~! does not specify S',

fort=1,... n

We also apply our results to various versions the autoregressive moving average (ARMA) noise
model, such as, the double-side and single-sided, stationary version of the ARMA noise, previ-

ously analyzed in [2] and in many other papers.
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Example 2.1.2. The time-invariant ARMA(a,c) noise
(a) The time-invariant one-sided, stable or unstable, autoregressive moving average

(ARMA(a,c),a € (—eoo,00),c € (—o0,0)) noise, is defined by

V=V + W, —aW,_y, YieZy 21{1,2,...),
Vo € N(O,KVO), Ky, >0, Wy EN(O,KWO), Kw, >0, W, € N(0,Kw), Kw >0,
{Wo,W1,...,.W,} indep. seq. and indep. of Vy,

¢ € (—o0,00), a€ (—oo,), cFa.

To express the AR(a,c) in state space form we define the state variable of the noise by

A Vi —aW
St:M, Vl€Z+
c—da

Then, the state space realization of V" is

Sir1=cS+W,, VteZy,

V, = (c—a)SH—W;, YVt €y,

(c) Ky, + (a) K,
(¢-a)

We note that the AR(a, c) is not necessarily stationary or asymptotically stationary.

A special case of the AR(a,c) is the AR(c) noise (i.e., with a = 0) defined by

K, = , Ky, >0, Ky, >0 both given.

Vi=cVi14+W, t=1,2,..., Ky, >0, Ky >0.

(b) Double-Sided Wide-Sense Stationary ARMA(a,c),a € [—1,1],c € (—1,1) Noise.
A double-sided wide-sense stationary ARMA(a,c) noise is defined by

V=V 4 W —aW,y, YteZ2 (.., —1,0,1,...}, la|<1,]e| <1.

19

(2.1.60)
(2.1.61)
(2.1.62)
(2.1.63)

(2.1.64)

(2.1.65)
(2.1.66)

(2.1.67)

(2.1.68)

(2.1.69)

where Wy, ¥t € 7 is an independent and identically distributed Gaussian sequence, i.e., Wy €

N(0,Kw), Vt. The power spectral density (PSD) of the wide-sense stationary noise is (this cor-

responds to [2, eqn(43) with L = 1]) is given by

oA <l—ae‘9> <l—ae*"9>
Sy (e’®) =Ky , el <1, la| <1, ¢#a, Ky >0.

(1-ce®) (1-ce?)

(2.1.70)
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We define the state process by

Vi1 —aW,_
s £ Ty e 2.1.71)

c—a

Then the stationary state space realization of V;,Nt € Z is

Siii=cSi+W, VieZ, (2.1.72)
Vt=<c—a)St+W,, VieZ (2.1.73)

provided the initial covariances, cov(S;,S;),cov(S;,V;),cov(V;,V;) are chosen appropriately (see
Proposition 2.1.1).

(c) One-sided Wide-Sense Stationary ARMA(a,c),a € [—1,1],c € (—1,1).

The one-sided wide-sense stationary ARMA(a,c) noise is defined as in part (a) with ¥t € 7 2
{...,—1,0,1,...,} replaced by ¥Vt € Z 2 {1,2,...,}and (2.1.71)-(2.1.73) hold, ¥t € Z., provide

the initial covariances are chosen appropriately (see Proposition 2.1.1).

Remark 2.1.3. ARMA(a,c) noise of Example 2.1.2

(a) Consider any of the AR(a,c) of Example 2.1.2. For the code of Definition 1.1.2, as stated in
Remark 2.1.2.(a), the channel input process X" cannot be expressed in terms of the state S".

(b) The statement of part (a), also holds for the double-sided and the one-sided wide-sense station-
ary AR(a,c),a € [—1,1],c € (—1,1) of Example 2.1.2.(D), (c).

In the next proposition we state conditions for the stable realizations of Example 2.1.2.(a), i.e.,
AR(a,c),a € [—1,1],c € (—1,1) to be asymptotically stationary, and for the realizations of Exam-
ple 2.1.2.(b), (c) to be stationary. For stationary noise we also determine the initial conditions of

the generalized Kalman-filter of Lemma 2.1.1.

Proposition 2.1.1. Asymptotically stationary and stationary ARMA(a, c) noises of Example 2.1.2
(a) The realization of the double-sided ARMA(a,c),a € [—1,1],c € (—1,1) noise of Example 2.1.2.(b)

is stationary if the following conditions hold.

A A A
di = cov(S,,S,) =Ks,, dip= cov(S,,Vt) =Ks,v,, dyp=cov(V;,V;) =Ky,, are constants

(2.1.74)
where the constants (dy1,d12,d») are given by
2
K c—a)Kw c—a) Ky
di ==, dn= % dry = (—)2+KW. (2.1.75)
1—c 1—c 1—c
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Similarly, the one-sided ARMA(a,c),a € [—1,1],c € (—1,1) noise of Example 2.1.2.(c) is station-
ary if the above equations hold Nt € 7., 2 {1,2,...}.

(b) The realization of the ARMA(a,c) noise of Example 2.1.2.(a) is asymptotically stationary if
acl[-1,1],ce(—1,1).

Proof. See Appendix 7.2. [

2.2 A Sufficient Statistic Approach to the Characterization of
n—FTFI Capacity of AGN Channels Driven by PO-SS Noise

Realizations

The characterization of the n—FTFI capacity via (1.2.19), equivalently given in Theorem 2.1.1.(d),
although compactly represented, is not very practical, because the input process X" is not expressed
in terms of a sufficient statistic that summarizes the information of the channel input strategy. Over
the years, such stochastic optimization problems enjoyed much progress via the use of a sufficient
statistic [14].

In this section, we wish to identify a sufficient statistic for the input process X;, given by (2.1.23),
called the state of the input, which summarizes the information contained in (V/~!,¥/=1). It will
then become apparent that the characterization of the n—FTFI capacity for the Cover and Pombra
formulation and code of Definition 1.1.1, can be expressed as a functional of two generalized
matrix DREs.

First, we invoke Theorem 2.1.1 and Lemma 2.1.1 to show that for each time #, X; is expressed as

Xt:At<§,—E{§, YH}> V7, t=1,....n, (2.2.76)
$ 2 E{S, yi-! } = E{S, y'-! } 2.2.77)
For non-feedback, X; is expressed as
X; = AS; +DZ, (2.2.78)
Si+1 =AS; +BZ, (2.2.79)

The above representation means, at each time #, the state of the channel input process X; is (St, S’,) .

We show that S, satisfies another generalized Kalman-filter recursion.
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Now, we prepare to prove (2.2.76) and the main theorem. We start with preliminary calculations.

P{Y, edy|Y'"" ', X'} =P,(dy|X,,V'""), t=2,....n, by channel definition (2.2.80)
—P,(dy|X,,V'"1,§), by S, = E{S, VH} (2.2.81)
=P, (dy|X;, V"1, 5,,7Y), by (2.1.41),ie.,V; =CS;+1 (2.2.82)
=P,(dy|X;,S;), by Y, =X, +V, =X, +CS;+1; and (2.1.42).  (2.2.83)

At r = 1 we also have IP’{Yl € dy‘Xl} = Py (dy|X;). By (2.2.83), it follows that the conditional

distribution of ¥; given Y/~ =y~ 1 is

P, (dyly ) = / P, (dylxs, § )Py (di|$,y VP (ds, Y1), t=2,...n, (2.2.84)

Pl(dyl) Z/Pl (dy|x,,§1)P1(dx1|§1)P1(d§1). (2.2.85)

From the above distributions, at each time #, the distribution of X; conditioned on (V* _l,Y ! _1),
given in Theorem 2.1.1, is also expressed as a linear functional of (S,,Y’_l), fort=1,...,n.

The next theorem further shows that for each ¢, the dependence of X; on Y~ ! is expressed in terms
of E{St

terization of the Cover and Pombra n—FTFI capacity, C;f b(K).

Y! _1} fort =1,...,n, and this dependence gives rise to an equivalent sequential charac-

Theorem 2.2.1. Equivalent characterization of n—FTFI Capacity C,{b(K) for PO-SS Noise real-
izations

Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with the PO-SS
realization of Definition 1.1.2, and the code of Definition 1.1.1. Consider also the generalized
Kalman-filter of Lemma 2.1.1.

Define the conditional covariance and conditional mean of S; given Y'~!, by
A " A
K; =cov (St, S;

A A ~  2N\T N ~
Y’_l):E{<St—S,> (S,—S,) } S,éE{S,

S Bus,, Ki20. (2.2.87)

Yf-l}, t=2,....n, (2.2.86)

Then the following hold.
(a) An equivalent characterization of the n—FTFI capacity C,{b(lc), defined by (1.2.20)-(1.2.19), is

CilP(x)= sup Y HYY"")—H(V") (2.2.88)
Pho ()=
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where (X", Y") is jointly Gaussian, and

H(V") is the entropy of V" given in Lemma 2.1.1, i.e., (2.1.49), (2.2.89)
I" is the innovations process of V" given in Lemma 2.1.1, (2.2.90)
=X+V, t=1,...,n, (2.2.91)
V,=CS, +1, (2.2.92)
P (dy |y ") = /P, (dyloxe, $6)Pr(dxe S,y " DP(dS [y ), t=2,...,m, (2.2.93)
Pi(dy) = [ Paldyia, 51)Py (dxf51) Py (d51), (22.94)
P, (dy |y ~") € N(ty, yr-1, Ky yi-1), (2.2.95)
Hy,y,_, IS linear in Y'~' and KYt|Yr—1 is nonrandom, (2.2.96)
Py (dxi|$i,y 1) € Nty g, yi1: Ky [, yi-1)s (2.2.97)
Hy, (3, yr-1 is linear in (S;,Y'""') and KXz\fnY"l is nonrandom, (2.2.98)
P () = {Pi(dxfs,y ) =1, %E( y (x)?) <x}. (2.2.99)

t=1

(b) The optimal jointly Gaussian process (X",Y") of part (a) is represented by

X,:A,(S,—§[)+Z,, t=1,....n, (2.2.100)
Z; € N(0,Kz) independent of (X’_',Vt_],§’,§t,ﬁ,Y"'), t=1,...,n, (2.2.101)
I, e N(0,K;) independent of (Xffl,v’*l,ﬁf,yfflﬁt), r=1,....n, (2.2.102)
1/,:A,(§,-§,> NZ 4V, t=1,....n, (2.2.103)

— A, ( 8, —@) +CS 41 +7, (2.2.104)
%E{ Zn:(xt)z} s %Zn: (AKAT +K7,). (2.2.105)

where A; is nonrandom.
The conditional mean and covariance, S; and K;, are given by generalized Kalman-filter equations,

as follows.
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(i) S; satisfies the Kalman-filter recursion

Siv1 =AS + B, KL, S = ps,, (2.2.106)

A
F(ZK) = (A (A+C) T+ M(E0Ky ) { Ky + K+ (M +C)K (A +G) T} @2.107)

L2y, —E{Y, Y’_'} —Y,-CS, = (A, +C,) (St —Et) ti+7, t=1,...n (2.2.108)
I, € N(0,K;), t=1,...,n is an orthogonal innovations process, i.e., I; is independent of

I, for all t # s, and I, is independent of V™!, (2.2.109)
Ky i1 = Ky, = cov(i,1;) = (A, +c,) K, (A, +C,) ' +K; +K7, (2.2.110)
K; given by (2.1.43). (2.2.111)

(ii) The error E = S, —Et satisfies the recursion
E.o1 = FCL(S,, K)E, + F(%:,K,) (f, +Zt>, Bi=8-8,=0, t=1.....n (22112
FCL(S,, K,) éA,—F,(Z,,K,)(A;-l—G). (2.2.113)

(iii) K; = E{E,ET} satisfies the generalized DRE

Koo = AKAT + M, (5)K; (M (2) " — (4K, (A +C) " +M (2K ) (K; + K,
+ (A +GC)Ki (A +C,)T> y (A,K, (A+C)" +Mt(zt)K,;)T,
Ki>0, t=1,...,n, K =0. (2.2.114)

(c) The characterization of the n—FTFI capacity, C,{b(K) of part (a) is

Ly g Syt

Y log

clb(x) = su =
n (%) p a e g,

(Arkz ) =1, TE{ X7, (XI)Z}SK

(2.2.115)

T
1 n <Al‘ +Ct)K[ <A[+Ct> +Kiz +KZZ
= sup = Zlog ( >
2 & K;
(Akz ) i=1on: L¥r (AKAT 4Kz )<k T 1= !

(2.2.116)

Proof. See Appendix 7.3. [

Remark 2.2.1. On the characterization of n—FTFI capacity of Theorem 2.2.1
The characterization of n—FTFI capacity C,{ b(K) given by (2.2.116), involves the generalized ma-

trix DRE K; which is also a functional of the generalized matrix DRE ¥, of the error covariance



CHAPTER 2. FEEDBACK CAPACITY WITH UNKNOWN INITIAL STATE 25

of the state S" from the noise output V". This feature is not part of the analysis in [ ], because the
problems treated by the author are fundamentally different from the Cover and Pombra formula-

tion.

In the next corollary we apply Theorem 2.2.1 to obtain the characterization of n—FTFI capacity
cl b(K’) of the AGN channel driven by the PO-SS(a;,¢;,b},b?,d},d?) noise.

Corollary 2.2.1. The n—FTFI capacity C}" (k) of the AGN channel driven by the PO-SS(a;,c;, b} ,b?,d!,d?)
noise is obtained from Lemma 2.1.1 and Theorem 2.2.1, by using (2.1.59).

Proof. This is easily verified, as in Corollary 2.1.1. [

In the next corollary we apply Theorem 2.2.1 to the stable and unstable ARMA(a,c) noise, to
obtain the characterization of n—FTFI capacity C,J:b(K). It is then obvious that for the stable
ARMA(a,c),a € [—1,1],c € (—1,1) noise, the characterization of C,J,Cb(K) involves two gener-

alized DREs, contrary to the analysis in [2,4-7], for the same noise model.

Corollary 2.2.2. Characterization of n—FTFI Capacity C,{b(K)for the ARMA(a,c),a € (—oo,00),c €
(_°°7 °°>

Consider the time-varying AGN channel defined by (1.1.1) and the code of Definition 1.1.1.

(a) For the nonstationary ARMA(a,c),a € (—oo,00),¢c € (—o0,00) noise of Example 2.1.2.(a), the

characterization of the n—FTFI capacity, C,{b(K) is

2
{2 <A[—|—c—a> K +K; +Ky,
CI(x) = sup —Zlog( ) (2.2.117)
(Akz, ) a=1m: SE{ 37, (%) 25 K
Kz ) =1 SE{ER (%)}
subject to the constraints
2 2 2
K1 =<C) K; + (Mt(zl‘)) Kft - (CK’ (A’ +C—a) +M’(ZI)KIA’>
~1
'(K@ + Kz, + (At+C—a)2Kt> , K1=0, t=1,...,n, (2.2.118)

Kz >0, K, >0, c#a, Kyw>0, t=1,....n (2.2.119)
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and where
-1
My(%) = (e (c—a) + K ) (Kw+ (c—a)’m) (2.2.120)
Kj, = (C—a)zzﬂrl(w, t=1,...,n, (2.2.121)

2 —1
Lot = ()’ T+ K — (cZi(c—a) +Kw) (Kw+(c—a)’%) , r=1,..n,  (22.122)

2 2
Y =Ky = (c0)" K, + (a0) "Kiwo. (2.2.123)

)

The optimal jointly Gaussian process (X",Y") is obtained from Theorem 2.2.1.(b), by invoking,

Ai—c, Gi—c—a, Bi—1, Ny— 1, t=12,...,n. (2.2.124)

(b) For the nonstationary AR(c),c € (—eo,o0) noise of Example 2.1.2.(c), the characterization of
the n—FTFI capacity C,J,cb(K) is obtained from part (a) by setting a =0, i.e.,

2
(A, + c) K+ (c) 2y + Ky + Kz,

1 n
Clb(x) = sup —Zlog( 5 )
() -t 3E{zE, (1) i (€)% + K
(2.2.125)
subject to the constraints K;, Y, are the nonnegative solutions of the generalized RDEs:
2
Koo =(c) Ko+ (c) % + K — (eKi (A +¢) + () °Z + Ky )
~1
. ((C)ZZ, +Kw + Kz, + (A +c)21<,) LK =0, t=1,...n, (2.2.126)
2 ~1
Tt =(0)’ %+ Kw — ()’ +Kw) (Kw+(0)°%,)
Y =Ks, =Kg, >0, t=1,....n. (2.2.127)

Proof. (a) The first part follows directly from Theorem 2.2.1, by using (2.2.124). [



Chapter 3

Feedback Capacity with Known Initial State

In this chapter we derive equivalent sequential characterizations, for
i) C,{b(K,s) defined by (1.1.3), as a degenerated case of C,{b(K), and

i) cl b’S(K, s) defined by (1.1.4) of Case II) formulation, as a degenerated case of cl b(K).

We organize the presentation of the material as follows:

1) In Section 3.1, we follow a similar process of Section 2.1 as in Chapter 2, which gives an
equivalent sequential characterization of the Cover and Pombra characterization C,{b(K, s), i.e.,
of (1.2.18), (1.2.19). We utilize the Definition code 1.1.3 and our derivation is similar; we ap-
ply a linear transformation to the Cover and Pombra Gaussian optimal channel input X" (1.2.20),
to represent X;, by a linear function of (V'~!,Y'~! s) or equivalently (X'~!,¥'~! s) and an or-
thogonal Gaussian innovations process Z;, which is independent of (Z'~!,X’~1 v/=1 y'=1 ) for
t=1,...,n.

We apply Theorem 3.1.1 to the time-varying PO-SS(a;, ¢;, b}, b?,d},d?) noise (see Example 2.1.1),
and to the nonstationary autoregressive moving average ARMA (a,c),a € (—o0,)

¢ € (—o0,00) noise, and to the stationary ARMA(a,c),a € (—1,1),c € (—1,1) noise (see Exam-
ple 2.1.2), which is found in many references, such as, [2]. However, our characterizations of
n—FTFI capacity are fundamentally different from past literature, because these depend on whether

we consider C,J,Cb(K),C,{b(K, s) or C{b’s(lc, s).

2) Section 3.2. The main result is Corollary 3.2.1, which gives the sequential characterization
of n—FTFI capacity for time-varying AGN channel (1.1.1) driven by the PO-SS realization of

Definition 1.1.2, for the code of Definition 1.1.3. Our derivation is based on identifying a finite-

27
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dimensional sufficient statistic to express X; as a functional of the sufficient statistic, instead of
(V=L y"=1 or (X’~!,Y’~1), and an orthogonal Gaussian innovations process. This characteriza-
tion further simplifies the sequential characterization of C,{b(lc) given in Theorem 3.1.1 (i.e., the
equivalent of (1.2.19)).

In Corollary 3.2.3 we present the application of Corollary 3.2.1 to the ARMA(a,c),a € (—o0,),c €
(—o0,00) noise of Example 2.1.2, and show that the n—FTFI capacity is expressed in terms of so-
lutions to two DRE:s.

From Corollary 3.2.3, we conclude following:

(1) Neither the time-domain characterization [2, Theorem 6.1] (see [2, Theorem 5.3]) nor the fre-
quency domain characterization [2, Theorem 4.1], correspond to the Cover and Pombra character-
ization of feedback capacity (when the limit and maximization operations are interchanged) of the
nonstationary and stationary ARMA (a, ¢) noise of Example 2.1.2.

(i1) For the characterizations given in [2, Theorem 6.1 and Theorem 4.1], to be correct, it is neces-

sary that Conditions 1 and 2 hold.

3) Section 3.3. The main result is Proposition 3.3.1, which further clarifies that the formulation

of [1] and the formulation that let to [2, Theorem 6.1], are based on Case II) formulation.

3.1 Sequential Characterization of n—FTFI Capacity for Case
II) Formulation

In this section we consider Case II) formulation, and we derive the characterization of feedback
capacity, C,{b’S(K, s), of the AGN channel (1.1.1) driven by a noise V" of Definition 1.1.2, i.e., for
the code of Definition 1.1.3, (5,2"% n), n = 1,2,..., when Conditions 1 and 2 of Section 1.1 hold.

Definition 3.1.1. AGN channels driven by noise with invertible PO-SS realizations

The PO-SS realization of the noise of Definition 1.1.2 is called invertible if it satisfies the condition:

(Al) Given the initial state S| = S| = s, the noise V=1 uniquely specifies the state S', for t =

1,...,n, and vice versa.

Corollary 3.1.1. Characterization of n—FTFI Capacity for Case II) formulation
Consider the AGN channel (1.1.1) driven by a noise V" of Definition 3.1.1, and the code of
Definition 1.1.3, (s,Z”R,n), n=1,2,..., that is, Conditions I and 2 of Section 1.1 hold.
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Define the n—FTFI Capacity for a fixed initial state S1 = S} = s, by

IS (k,s5) = sup HP(Y"|s) —H(V"|s) (3.1.1)

where the set 73

0, ]( K) is defined by

1 n
Py ()2 {P,(dx,|x’_1,yl_l,s),t —1,...n: ZEf(Z (X,)z) < ;c}. (3.1.2)

t=1

and where EY means S| = S| = s is fixed, and the joint distribution depends on the elements of

P00 (%)
Then the following hold.
(a) The n—FTFI capacity, for a fixed S| = s is characterized by
n PM n
/" (k,s)= sup Y HY (YY" ls)= Y HV V7!, (3.1.3)
@fé’_‘fl](,()t 1 =1

where the @?{id (x) is defined by

—, A (= _ 1 "
32[0%](1() = {Pﬁw(dxtlst;yt l,S),t =1,...,n ?EPM<I_ZI (Xz)2> < K} (3.1.4)

and where (1.1.10) is respected, I_’?/I(dxt]st, y'~1.5), is conditionally Gaussian, with linear condi-

tional mean and nonrandom conditional covariance, given by'

s slyt—1 ¢s —
E{X s,y s} =5} = A(S-B{SIfrtsi=s}) for 1=2m g
0, for t=1,
Ky syt 55— = v (X, Xi|S3,Y' 71 8} =5) =Kz, 20, 1=1,....n. (3.1.6)

and H (Y;|Y'~'s) is evaluated with respect to the probability distribution P,FM (dy:|y' ', s), defined
by

PPM(d}’t|y )8 /Pt dyt|x,s:) P PM(dxt‘Stay 175) P?M(dsz|y[_las)a t=1,...,n.  (3.1.7)
(b) Define the conditional means and conditional covariance for a fixed S| = s, by
— A ~N\NT
Yl s; :s)zEPM{<S;—S;> (s:-8) | (3.1.8)

YH,Sizs}, 1=2,...,n, K Zcov(s},8]$] =5)=0, $ =5 (3.19)

K} 2cov (81,8
S R

IThe notation S, = S7,t =2,...,n means this sequence is generated from (1.1.11), when the initial state is fixed,
S] = S‘i =S.
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The optimal channel input distribution of part (a) is induced by a jointly Gaussian process process

X", with a realization given by

Xt:A,<Sf—§f> N7 X\ =71, 1=2,....n, (3.1.10)
Z; € N(0,Kz) independent of (S;, X" Lvi=ly™=1 t=1,...n, (3.1.11)
Y,:A,(S;‘—§f>+zt+vt, t=1,...n, (3.1.12)

=A(SI-8) +CS;+NW + 7, (3.1.13)
1E5M{i(x,)2} _ly (AKIAT +K7,) < (3.1.14)
n n

t=1 t=1

where A, is nonrandom.

The conditional means and conditional covariance §f and K} are given by the generalized Kalman-
filter, as follows equations.

(i) S} satisfies the Kalman-filter recursion

S =ASHR(K)E, Si=s, (3.1.15)

A -1
F(KS) = (4K (A +C) T+ BN ) {NKwNT + Kz, + (A +G)K (A +C) |
(3.1.16)

A ~ ~
F=Y,-CGS = (M+GC)(S—8))+NWi+2Z, t=1,....n, (3.1.17)
I; € N(0,Kps), t=1,...,n an orthogonal innovations process, i.e., I is independent of

I, for all t # k, and I} is independent of Y71, (3.1.18)

Ky, yi-1, = Kpy = cov(l;, I|S] =s) = (A, + C,) K’ (At +Ct) ! +NKwN! +K7.  (3.1.19)
(ii) The error E} 2 Sf— §; satisfies the recursion
5, =FCL(K)ES + F(K?) (NtW, —|—Zt), E =8 -8=0 t=1,...n, (3.1.20)
FCL(K?) éAt—E(K,S)(A,+C,>. (3.1.21)
(iii) K} = E{Ef (Ef) T} satisfies the generalized DRE
5. =AKAT + B, Ky, BT — (BtKW,NtT +AK (A +GC) T) {NthNtT YKy,

—1 T
+(AH+C)K (A +C) ) (BKWNT +AK (A +C))

K'=0, K}=0, t=1,....n. (3.1.22)
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(c) The characterization of the n—FTFI capacity of part (a) is

C)P (x,9)
n Ky jyi-1
- sup Y log = (3.1.23)
(MK ) a=toom: B3, (%) V=t DYV
T
- (At+Ct>K,S<At+Ct> +NKw NI+ Kz,
= L )
wp 2 ; o8 N, Ky, N
(ArKz ) o=t TE{ ¥ (%) x5
(3.1.24)
Proof. See Appendix 7.4. [

Remark 3.1.1. Comments on the per unit time limit of C,J;b7s(1<, s)
(b) The asymptotic analysis of C/*° () and C1"°(k,s) of Chapter 4, i.e., based on Definition 4.1.1,
applies naturally to Corollary 3.1.1, by considering Cfb’S’O(K,s).

In the next remark we clarify the relation of Corollary 3.1.1 and the analysis of [1] and [Z].

Remark 3.1.2. Relations of Corollary 3.1.1 and [1,]

(a) The problem analyzed in []] is precisely C{b’S(K, s), when the noise is stationary and Gaussian,
i.e., it corresponds to Case IlI) formulation. Corollary 3.1.1 is derived in []] for the degenerate
case of a time-invariant realization of the noise V", i.e., of Definition 3.1.1. However, the asymp-
totic analysis of [], Section VI] should be read with caution, because it did not account for the
necessary and/or sufficient conditions for convergence of the sequence Xj,t = 1,2,... generated
by the time-invariant version of the generalized DRE (3.1.22) i.e., lim, . X; = X% = 0, where
X > 0 is the unique and stabilizing solution of a corresponding generalized ARE.

(b) The problem analyzed [”] that let to [2, Theorem 6.1, Crg], is the per unit time limit of
C,{b’S(K,s), when the noise is stationary, two-sided or one-sided (asymptotically stationary) and
Gaussian, i.e., it corresponds to Case IlI) formulation. The characterization of feedback capac-
ity presented in [2, Theorem 6.1, Crp] presupposed the following hold ((i)-(iii) are also assumed
in [1, Section VI]).

(i) The feedback code is Definition 1.1.3, i.e., (5,2"% n).

(ii) The noise is time-invariant and stable, and the PO-SS realization of the noise is invertible, as
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presented in Definition 3.1.1.

(iii) The definition of rate is C/*5°(x,s), with supremum and per unit time limit interchanged, and
the supremum taken over using time-invariant channel input distributions.

(iv) the innovations covariance of the channel input process is zero, i.e., K7, = Kz = 0,Vt.

Items (i)-(iv) are confirmed from [2, Lemma 6.1] (and comments above), which is used to de-
rive [2, Theorem 6.1, Crg].

However, the characterization of feedback capacity in [2, Theorem 6.1, Crp] should be read with
caution, because the stabilizability condition is violated, because Theorem 5.2.1.(1) is not ac-
counted for. When Theorem 5.2.1.(1) is accounted for, then the only unique and stabilizing solution
of the generalized ARE presented in [2, Theorem 6.1, Crg], is the zero solution, which then implise
Crp = 0. That is, the rate as defined in [?] exists if and only if Kz > O.

The above technical matters are discussed extensively in [15], for the case of the AR(c),c €
(—o0,00), where it is also shown that feedback does not increase capacity for ¢ € (—1,1), i.e.,

for the stationary AR(c) noise.

Notation 3.1.1. For the feedback code of Definition 1.1.3, with initial state S| = s, known to the en-

coder and the decoder; all the sets from Section 2.1 Py ;1 (K), P05 (K), Elo,n]> & (0,0 aTe replaced

by 32[307”] ( K) ) ﬁfo,n] ( K) ’ é"[f)’n] )

t=1,....x1 =e;(w,s),x2 = e (W,v1,Y1,5) ..., Xn = en(W,Vv

gf(,’n}, to indicate the distributions and codes are P, (dx;|vV =",y 1, s),
n—1 ,y”_1 ,8), etc. i.e., these depend on

S.

Theorem 3.1.1. Information structures of maximizing distributions for AGN Channels

Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with the PO-SS
realization of Definition 1.1.2, and the code of Definition 1.1.3, with initial state S1 = S} = s fixed.
Then the following hold.
(a) The n—FTFI capacity C,{b(lc, s) is given by

Cl(k,s) 2 sup HE(Y"]s) — H(V"|s). (3.1.25)
5&{2;;1 (Xt)zlsl }gx
t—1 t—1
X =Ds+Y T, Vi1+ YT} ¥+2Z, t=1,..n (3.1.26)
j=1 j=1

.j,thj,KZ,),j =1,...,t —1,t = 1,...,n of the realization

of X", that induces the distribution Ft(dxt|vt_1, yt_l,s),t =1,...,n, and all statements of Theo-

where the supremum is over all (l"o,l"t1

rem 3.1.1 and Lemma 2.1.1 hold, with the conditional distribitions, expectations, and entropies



CHAPTER 3. FEEDBACK CAPACITY WITH KNOWN INITIAL STATE 33

replaced by the corresponding expressions with fixed S| = s.
(b) A necessary condition for Condition 2 of Section 1.1 to hold is
(i) N;W; uniquely defines C;1B;W;,Vt.
Moreover, if (i) holds then the entropy H(V"|s) of part (a) is given by
1
H(V"s) =3 ) log (2neN,KW,N,T). (3.1.27)

t=1

Proof. See Appendix 7.5. [

Remark 3.1.3. It is easy to verify that for the code of Definition 1.1.3 that assumes knowledge
of the initial state S1 = s, then C,{b(K, s) is directly obtained from Theorem 3.1.1, as a degenerate
case (an independent derivation is easily produced following the derivation of Corollary 3.1.1,

with slight variations).

By utilizing Theorem 3.1.1 we can derive the converse coding theorems stated below for the feed-

back codes of Definition 1.1.3.

Theorem 3.1.2. Converse coding theorems for code of Definition 1.1.3
Consider the AGN channel (1.1.1).
(a) Any achievable rate R for the code of Definition 1.1.3 (with initial state S| = s) satisfies

1
R<C(x,5) 2 lim ~Cl%(x,s), (3.1.28)

n—svoo )
c/(x,s) = sup HE (Y)Y s)—H(V"|s). (3.1.29)

— 2
Pt(dX[|Vt_l ,yz_l 7‘Y)7t:l7"'7n: %ES{ Z:’:l (Xl)

™=

t=1

Sl}SK‘

where E¢{-} means the expectation is for a fixed S| = s, provided the supremum exists and the limit
exists, and where the right hand side of (3.1.29) is obtained from Theorem 3.1.1, by replacing all

conditional distributions, entropies, etc, for fixed initial state S| = s (see Notation 3.1.1).

Proof. Follows from standard arguments, using Fano’s inequality (see also [3]) and Theorem 3.1.1.
O]

Proof. From (2.1.52) and (2.1.48), then follows (2.1.49), from the entropy formula of Gaussian
RVs. [

From Lemma 2.1.1 in Chapter 2, follows directly the next corollary of the entropy H(V"|s), when
S1 = s 1s fixed.
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Corollary 3.1.2. Conditional entropy H(V"|s),S| = s of the PO-SS noise realization.

Consider the PO-SS realization of V" of Definition 1.1.2, for fixed S| = s, and denote the state pro-
cess generated by recursion (1.1.11), by*, S; = Si,t=2,...,n,81 =8] =s. Replace the conditional
covariance and conditional mean (2.1.36) and (2.1.37), by

n ~N\T
vl ) :E{ (Sf—Sf) <S§—Sf>

vffl,si}, r=2...n, Si=s $Z5 I Zcov(s] S =0. (3131

A
¥ =cov(S},S]

v’—l,si}, (3.1.30)

$ éE{S;"

Then all statements of Lemma 2.1.1 hold, with the changes,
T X, I =0, Pyt Py, S8, 8§ =s, etc,t=1,....,n. (3.1.32)
In particular, the conditional entropy of V" conditioned on S| = S| = s, is given by
H(V"|s) Z log (2me|GEICT + Nk N |) (3.1.33)
where Xj,t =2,... n satisfies the generalized DRE (2.1.46) with initial condition X} = 0.

Proof. Follows directly from Lemma 2.1.1 and (3.1.30),(3.1.31) . L]

Next we introduce an example of a PO-SS realization of the noise that we often use.

Remark 3.1.4. Consider the PO-SS(a,, ct,b},btz,dtl,dtz) noise of Example 2.1.1. Then the follow-
ing hold.

(a) Consider the code of Definition 1.1.3, i.e., with a fixed initial state S1 = S} = s. By Corol-
lary 3.1.2 using (2.1.59), then H(V"|s) is computed from Lemma 2.1.1, with £; = X} = 0, and
(3.1.33) reduces to

1 n
H(V"|s) —52 (27:6[ 2y +nton,]) (3.1.34)
where ¥ is the solution of (2.1.46) with 1 = X{ = 0 (using (2.1.59)).

Remark 3.1.5. ARMA(a,c) noise of Example 2.1.2
(a) Consider the nonstationary AR(a,c),a € (—oo0,00),c € (—co,00) of Example 2.1.2.(a).
(i) Assume the code of Definition 1.1.3, with initial state V) = vo known to the encoder. By (2.1.64),

— aW,
§p =g =000y (3.1.35)

c—da

2We often use the notation S; = S} to emphasize that the S; process is generated for §; = S] = s fixed.
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and hence knowledge of Vy = vg at the encoder does not determine S‘l)o, because for this to hold the

encoder requires knowledge of Wy. It then follows that H(V"|vy) is computed Corollary 3.1.2,

2
K
T =30 = (a)—Wg and (3.1.33) reduces to (3.1.36)
C— Cl)
H(V"|vp) = Z log (2e| (¢)’}" + K |) (3.137)

where £° is the solution of (2.1.46) with initial data ¥, = Kg, = X" = (a) KWO , Kw, > 0.

c—a

(ii) Assume the code of Definition 1.1.3, with initial state S| = s or (Vo,Wy) = (vo,wo) are known

to the encoder. Then by Corollary 3.1.2,

H(V"vo, wo) = Zlog <2ﬂeKW) (3.1.38)

By (2.1.64),, S| = M and a necessary condition for Conditions 1 of Section 1.1 to hold, i.e.,
S| = s is known the the encoder and the decoder is: both (Vo,Wp) = (vo,wo) are known to the
encoder and the decoder.

(b) The statements of parts (a), (b) also hold for the double-sided and the one-sided wide-sense
stationary AR(a,c),a € [—1,1],c € (—1,1) of Example 2.1.2.(b), (c).

(c) Case II) formulation discussed in Section 1.1, requires Conditions I and 2 to hold. For any of
the AR(a,c) noise models, then Conditions 1 and 2 hold if and only if S| = s1 or (Vo, Wo) = (vo, wo)
are known to the encoder. Clearly, the values of H(V") under Case I) formulation is fundamentally
different from the value of H(V"|s),S| = s under Case II) formulation. Consequently, in general,
C,{b(K) given by (2.1.30) is fundamentally different from C,{b(K,s) i.e., that corresponds to a fixed
initial state S1 = s, known to the encoder and the decoder, and to the channel input distribution.
(d) From parts (a)-(c) it is clear that Kim’s characterization of feedback capacity for the stationary
ARMA(a,c),a € [—1,1],c € (—1,1) that uses [2, Theorem 6.1, Crg] (which is derived based on [,
Lemmas 6.1]) presupposed that the encoder and the decoder assumed knowledge of S| = S = s.

Remark 3.1.6. Consider the stationary double-sided or one-sided ARMA(a,c),a € [—1,1],c

€ (—1,1) of Example 2.1.2. From in Proposition 2.1.1, and in particular the initial data S1,%,
it is clear that even if the encoder and the decoder know the initial state Vy, then H(V"|vy) #
%Zle log <27reKW>. In this case, the value of C,{b(K, vo) defined by (3.1.29) is fundamentally
different from the formulation in [ ] and [2] that let to the characterization of feedback capacity [,
Theorem 6.1 ].
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In the next corollary we further clarify the difference between Case I) formulation and Case II)
formulation, by stating the analogue of Theorem 3.1.1 for the code of Definition 1.1.3, i.e., when

S1 = 8] = s is fixed.

In the next remark we illustrate that H(V"|s) given by (3.1.27) follows directly from Lemma 2.1.1,
by fixing §; = §] = s, and assuming N;W; uniquely defines C;1B;W;, Vr.

Remark 3.1.7. The n—FTFI capacity for code of Definition 1.1.1 versus code of Definition 1.1.3.

Consider the generalized Kalman-filter of the PO-SS noise realization, of Lemma 2.1.1, and
assume the initial state of the noise Sy is known, i.e., S| = 8] = s or § = §] = s =0, and N;W,
uniquely defined C;1B;W;,Vt. Then all statements of Lemma 2.1.1 hold, by replacing (Z,,S,) by
(X3,8%) for t = 1,2,...,. Since, X satisfies the generalized DRE (2.1.46) with initial condition
X =0, then it is easy to deduce that ¥} =0, for t = 1,2,...,n is a solution. Substituting ¥ =
0,t=1,2,...,nin(2.1.49) we obtain (3.1.27), as expected.

3.2 A Sufficient Statistic Approach

In this section, we wish to identify a sufficient statistic for the input process X;, given by (3.1.26),
where the initial state is known and fixed to the encoder and the decoder S| = s, which summarizes
the information contained in (V’~!,¥’=1 S;). On the other hand, for a code that assumes knowl-
edge of the initial state and the state of the noise, and Conditions 1 and 2 hold, the characterization

of the n—FTFI capacity is expressed as a functional of one generalized DRE (see [1]).

Corollary 3.2.1. Equivalent characterization of n—FTFI Capacity C,{b(K,s) for PO-SS Noise re-
alizations Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with the
PO-SS realization of Definition 1.1.2, and the code of Definition 1.1.3, with initial state 1 = S} = s
fixed, and replace (2.2.86), (2.2.87) by

vi-ls =) :E{(,—E[)(,—S:)T} (3.2.39)
2

Ytil,Sl :S}, t=

A A
K; = K} =cov (Sf,Sf

S, =52 E{S, s, Ki=K=0.  (3.2.40)
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Then
CIP(k,s) = sup ZH (YY"t s) —H(V"s), (3.2.41)
P (K)1=1
@%in}(K> = {Pz(dXxW,y"l,S),t E —E(Z 2|y =s> < K} (3.2.42)

where H(V"|s) is given by Corollary 3.1.2, and the statements of Theorem 2.2.1 hold with the
above changes, and all conditional entropies, distributions, expectations, etc, defined for fixed

S 1= S{ = S.
Proof. Itis easily verified from the derivation of Theorem 2.2.1, by fixing §; = §] = . 0

In the next corollary we apply Theorem 2.2.1 to obtain the characterization of n—FTFI capacity
Cl”(x,s) of the AGN channel driven by the PO-SS(a;, ¢, b}, b?,d!, d?) noise.

Corollary 3.2.2. In the next corollary we apply Theorem 2.2.1 to the stable and unstable ARMA(a,c)
noise, to obtain the characterization of n—FTFI capacity C,{b(K,s). It is then obvious that for the
stable ARMA(a,c),a € [—1,1],c € (—1,1) noise, the characterization of C,{b(K, §) involves one

generalized DRE, contrary to the analysis in [2, 4—7], for the same noise model.

Corollary 3.2.3. Characterization of n—FTFI Capacity C,{b(K, s) for the ARMA(a,c),a € (—oo,00),c €
(—o0,0)

Consider the time-varying AGN channel defined by (1.1.1) and the code of Definition 1.1.3.

(a) For the nonstationary ARMA(a,c),a € (—eo,00),¢c € (—o0,00) noise of Example 2.1.2.(a), the
characterization of the n—FTFI capacity, cl b(K, s) s,

The optimal jointly Gaussian process (X",Y") is obtained from Theorem 2.2.1.(b), by invoking,

Ai—c, Co—c—a, Bi—1, Nj— 1, t=1,2,...,n. (3.2.43)
If X1 = 0 or the initial state is fixed, S1 = S| = s, then

S=X=0, K; =Ky, M(Z)=M()=1, t=1.2,... (3.2.44)

2
o 1 <A,—|—c—a) K’ +Kw + Kz,
Cl7(k,s) = sup 5 Z log ( Ko )
(ArKz, ) a=Lwn: L¥0, ((At)thS—i—KZt)gk =1

(3.2.45)
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subject to the constraints
S 2 S N 2
5 =(0)’K; + K — (K} (A +c—a) + Ky )
~1
.(KZ, + (A,+c—a)2K,S+KW> L KI=0, K'>0, Kz >0, t=1,...,n. (3.2.46)
(c) For the nonstationary AR(c),c € (—eo,o0) noise of Example 2.1.2.(c), with £; = 0 or a fixed

initial state Sy = S1 = s, then ¥, = £] = 0,K; = Kw, M, (%) = M, (X)) = 1,1 = 1,2,..., and the

characterization of the n—FTFI capacity is given by

2
1 & (A,—{—C) K[S—l—Kw—l—KZt
Cclb(k,s) = sup —Zlog( )
2 23 Kw
(ArKz ) a=t,n: Ly, ((A,) K’S+KZI>§K -
(3.2.47)
subject to the constraint

s 2 s s 2 205\

S = (0K + K — (ck: (A +¢) +Kw) (Kw+Kz + (A+)°KF)
Ki=0,t=1,...,n. (3.2.48)

Remark 3.2.1. By Corollary 3.2.3.(a) it is obvious that, if £y = 0, i.e., K5, = Kw, = 0, which
means S| = S} = s is fixed, and hence (Vo,Wy) = (vo,wo) is fixed (and known to the encoder and
the decoder), see (2.1.64), then ¥y =X{ =0, and C,{b(K) = C,{b(K, §), which depends on the initial
state §1 = S| = s. To ensure for large enough n the rate %Cn(K, s) is independent of s, it is necessary
to identify conditions for convergence of solutions K}t =1,2,... of generalized DRE (3.2.46) to a
unique limit, lim, .. K;, = K > 0, that does not depend on the initial data K} = 0. We address
this problem in Chapter 4.

3.2.1 Case II) Formulation: A Degenerate of Case I) Formulation

Theorem 2.2.1 gives the n—FTFI capacity for Case I) formulation. However, since Case II) for-
mulation is a special case of Case I) formulation, we expect that from Theorem 2.2.1 we can
recover the characterization of the n—FTFI capacity for Case II) formulation, i.e., when the code
is (5,2"® n), n=1,2,..., and Conditions 1 and 2 of Section 1.1 hold. We show this in the next

corollary.
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Corollary 3.2.4. The degenerate n—FTFI Capacity C,J,Cb(lc) of Theorem 2.2.1 for Case II) formu-
lation

Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with PO-SS realiza-
tion of Definition 1.1.2, and suppose the following hold.

1) The code is (5,2"%.n), n=1,2,..., and
2) Conditions 1 and 2 of Section 1.1 hold.

Then the following hold.

(a) Corollary 3.1.2 holds, i.e., all statements of Lemma 2.1.1 hold with (;,8;) replaced by (X$,S?)
as defined by (3.1.30), (3.1.31). In particular, (X$,85) = (0,8?) for t = 1,2,..., and H(V") =
H(V"|s) is given by (3.1.27).

(b) All statements of Theorem 2.2.1 hold with (;,5;) replaced by (X$,8?), as in part (a), and
(K,,Et) defined by (2.2.86), (2.2.87) reduce to

K; =K} = cov (S,s,S;v

il sy = s), (3.2.49)

YL = s Kj = 0,8 =5, 1 =2,
In particular, the optimal input process X" of Theorem 2.2.1.(c) degenerates to
X,:A,(Sf—§>+zt, X\ =7, t=2,....n. (3.2.50)

(c) The characterization of n—FTFI capacity, C,J,cb(K) of Theorem 2.2.1 degenerates to C,J,cb’S(K, s)
defined by

n
I () = €S (1) 2 sup 3 log

(A,,Kzt) a=1,..n %ES{ a (X,)Z}gxtzl

Bxprets (3.2.51)

KV[|VI71,S

T
{ 2 (A,-i—C,)K,S(At-i-Ct) +NKy, NI + K,
: L )
Sup > Lo NKw NI

(3.2.52)
K=K’ = ES{Ets (Ef) T} satisfies the generalized DRE
S =AKAT +BKy,BT — (BtKWtNtT +AK (A +GC) T) {NthN,T YKy
+ (A +C)KS (A, Jrct)T}_1 (B,KW,N,T +AKS (A +ct))T,
K=0, Ki=0, t=1,...,n. (3.2.53)

and the optimal input process
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Proof. (a) The statements about Lemma 2.1.1 follow from Remark 3.1.7. (b) The statements about
Theorem 2.2.1 are easily verified by replacing all conditional expectations, distributions, etc, for
a fixed initial state S1 = S = s, and using part (a), i.e., (Zf,ﬁf) = (0,S),r=1,2,.... (c) Follows
from parts (a), (b). [

3.3 Comments on the Formulation of [1] and [2]

It is easily verified that Yang, Kavcic and Tatikonda [1] analyzed C,{b(lc, s) defined by (3.1.29),

under Case II) formulation. This is further discussed in the following remark.

Remark 3.3.1. Prior literature on the time-invariant stationary noise of PSD (1.2.26)

Yang, Kavcic and Tatikonda [ ] ] analyzed the AGN channel driven by a stationary noise with PSD
defined by (1.2.26) (see [, Theorem 1]). The special case of (2.1.70) is found in [/, Section VI.B,
Theorem 7].

The analysis in [ ] ] presupposed the following formulation:

(i) the code is (S,Z"R,n), n=1,2,..., where S| = §| = s is the initial state of the noise, known to

the encoder and the decoder, as discussed in Definition 1.1.3,

(ii) Conditions 1 and 2 of Section 1.1, hold, and
(iii) the n—FTFI capacity formula is C,{b(K,s) defined by (3.1.29).

It is important to emphasize that in [, Section I1.C] a specific realization of the PSD is considered
to ensure Conditions 1 and 2 hold, i.e., the analysis in [ | | presupposed a stationary noise and Case

11) formulation.

Now, we ask:

Given the PSD of the noise defined by (1.2.26), and the double-sided realization [2, eqn(58)], i.e.,
the analog of time-invariant version of the PO-SS realization of Definition 1.1.2, or its analogous
one-sided realization, what are the necessary conditions for the feedback capacity of [2, Theo-
rem 6.1] to be valid?

The answer to this question is: Conditions 1 and 2 of Section 1.1 are necessary conditions. We

show this in the next proposition.

Proposition 3.3.1. Conditions for validity of the feedback capacity characterization of [2, Theo-
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rem6.1]

Consider the AGN channel (1.1.1) driven by a stationary noise with PSD defined by (1.2.26) with
the double-sided or one-sided realization [2, eqn(58)], (i.e., analog of time invariant of Defini-
tion 1.1.2).

Then a necessary condition for [2, Theorem 6.1] to hold is
PXt|Xt71,Yi;,] :PX,|St,Yi;1’ t= 1,..., (3354)
Further, Conditions I and 2 of Section 1.1 are necessary and sufficient for equality (3.3.54) to hold.

Proof. See Section 7.6. O

Remark 3.3.2. Comparison of Cover and Pombra Characterization and [2, Theorem 6.1, Crg]

By Proposition 3.3.1, it follows that the characterization [2, Theorem 6.1, Cgg] corresponds to
Case Il) formulation and not to Case 1) formulation. It is also noted that the optimization problem
of [2, Theorem 6.1, Crg] is precisely the optimization problem investigated by Yang, Kavcic, and
Tatikonda [ 1, Section VI], with the additional restriction that the innnovations part of the channel

input is taken to be zero in [2, Theorem 6.1, Crp], i.e., see [2, Lemma 6.1 and comments above it].



Chapter 4

Asymptotic Analysis

In this chapter we address the asymptotic per unit time limit of the n—FTFI capacity. Our analysis

includes the following.

1) In Section 4.1, we mention the fundamental differences of entropy rates of jointly Gaussian

stable versus unstable noise processes.

2) In Section 4.2, we give necessary and/or sufficient conditions expressed in terms of detectabil-
ity and stabilizability conditions of generalized DREs [8, 9], for existence of entropy rates, and

asymptotic stationarity of the joint process (X", Y"),n=1,2,....

3) In Section 4.3, we represent additional oversights of the characterizations of feedback capacity
or rates, of the formulas presented in [2, Theorem 6.1], which are related to the convergence

properties of generalized DRE:s.

This chapter also reconfirms that, in general, the asymptotic analysis of the n—FTFI capacity of a
feedback code that depends on the initial state of the channel, i.e., S| = §] = s, is fundamentally
different from a code that does not depend on the initial state. The analysis of the asymptotic per
unit time limit of CJ b(K,s) of AGN channels driven by AR(c),c € (—oo,00) noise, i.e., stable and

unstable, is found in [15]. We consider the following definition of rate.

42



CHAPTER 4. ASYMPTOTIC ANALYSIS 43

4.1 Fundamental Differences of Entropy Rates of Jointly Gaus-
sian Stable Versus Unstable Noise

Definition 4.1.1. Per unit time limit of C1”° () and C1"°(x,s)
Consider the AGN channel defined by (1.1.1), driven by the time-invariant PO-SS realization of
Definition 1.1.2, and the code of Definition 1.1.1. Define the per unit time limit of the n—FTFI

capacity with the limit and supremum operations interchanged, by

1 1
LI sup lim -{H(Y") —H(v")} <C(k) 2 lim ~c/(x)
2 n—oon n—oon
lim, e JE{ X1, (%) f <k
4.1.1)
where the supremum is taken over all time-invarinat distributions with feedback P?(,|X’—1 pro1 =
P;’([Wt_l yi-1,t = 1,2, such that (X", Y"),n=1,2,..., is jointly asymptotically stationary Gaus-
sian.

For code (s,2"R n), n = 1,2,..., with initial state S\ = S} = s of Definition 1.1.3, C'"°(k) is
replaced by CIP (K,s), which is defined by (4.1.1), with differential entropies, conditional expec-

tations, conditional distributions, defined for fixed S} = s.

We should exphasize that our definition of rate is consistent with the definition of rates considered
in [2,4-7], i.e., the interchange of limit and supremum. However, unlike [2, 4—7] we treat the gen-
eral time-invariant stable and unstable, PO-SS noise realization of Definition 1.1.2, not necessarily
stationary or asymptotically stationary.

We should emphasize that, in general, and irrespective of whether the noise is stable or unstable,
the entropy rates that appear in (4.1.1) may not exist. To show existence of the limits C/(x) and
C’P(x,s) we need to identify necessary and/or sufficient conditions, using the characterization
of Theorem 2.2.1, when the channel input strategies are restricted to the time-invariant strategies
A =AN" K7, =K7,t=1,2,.... Clearly, by (4.1.1), whether the limit as n — oo exists, and supre-
mum over channel input distributions exists, depend on the convergence properties of the coupled

generalized matrix DREs, ¥, K0 = K,,(A”,K5,X), as n — .

First, we recall the following definition, which is standard and it is found in many textbooks.

Definition 4.1.2. Entropy rate of continuous-valued random processes

Let X; : Q — R"™ ny € Z a random process defined on some probability space (Q,.F ,P). The
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entropy rate (differential) is defined by

1
Hr(X®)2 lim ~H(X1,Xa,...,Xy) (4.1.2)

n—oon

when the limit exists.
The next theorem qunatifies the existence of entropy rates of stationary Gaussian processes [9].

Theorem 4.1.1. The entropy rate of stationary zero mean full rank Gaussian process [9]
Let X; : Q — R"™ n, € Z, ¥Vt € 7 be an stationary Gaussian process, with zero mean, and full
rank covariance of X". Let 5% denote the Hilbert space of RVs generated by {X, :s <t,s,t € Z. },

and define the innovations process by

A X X T
Z,:E{(X —E{X, %;_1}> <Xt—E{X, %;_1}) }>0 (4.1.3)
and its limit
2 lim 3, (4.1.4)
n—>c0

Then the entropy rate is given by

H, (X“)—@lo (27re)+l lim lznllo A (4.1.5)
R —2 g 2n<—>oont:1 g d o
=7 Jog (27€) + L log %) (4.1.6)
21 2

when it exists.
An application of Theorem 4.1.1 is given in the next proposition [16].

Proposition 4.1.1. Entropy rate of Gaussian process described by PSD (1.2.26)
Let V; Nt € 7 be a real, scalar-valued, stationary Gaussian noise with PSD (1.2.26), with a
corresponding time-invariant stationary realization (similar to Definition 1.1.2). Then the entropy

rate is given by

Hr(V*=) = %log (2meKw). 4.1.7)
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Proof. See Section 7.7. O

The next remark is trivial; it is introduced for subsequent comparison.

Remark 4.1.1. Let V;,Vt € 7. be the nonstationary ARMA(a,c),a € (—oo,00),¢c € (—o0,00) noise
of Example 2.1.2. Then the conditional entropy of V" for fixed initial state S| = §] = s, is given by

N | 1

Hg(V™|s) = lim_ ZH(v"|s) = nhﬂmy)ﬂ Z —log (27eKw) = 5 log (2meKw ). (4.1.8)

The next lemma identifies fundamental conditions for the existence of the entropy rate of the time-
varying PO-SS noise realization of Definition 1.1.2 (if §; = §] = s is not fixed), and includes the

entropy rate Hg(V*) of the nonstationary ARMA (a,c),a € (—oo,),c € (—o0,0) noise of Re-
mark 4.1.1.

Lemma 4.1.1. Entropy rate of the time-varying PO-SS noise realization of Definition 1.1.2
Consider the time-varying PO-SS noise realization of Definition 1.1.2. Then the following hold.
(a) The joint entropy of V", when it exists, is given by

n 1 n
H(V") = ; =3 glog (2meK;) (4.1.9)
where I;,t = 1,...,n is a zero mean covariance KI? 2 cov(f,,ft), Gaussian orthogonal innovations
process of V", defined by
P2y — E{v, V’_'}, t=1,....n (4.1.10)

that is, I; is independent of I, Vk # t.
(b) Suppose the sequence Kft,t =1,2,...,n, is such that

lim K; =K; > 0. (4.1.11)

n—-yoo

Then the entropy rate of V; Nt € 7., is given by

|
Hgr(V=) = lim —ZH(It)zilog (2meK?). (4.1.12)

n—oon =1

Proof. See Appendix 7.8. 0
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Remark 4.1.2. Entropy rate of nonstationary Gaussian noise

By Lemma 4.1.1, a necessary condition for existence of the entropy rate of nonstationary Gaussian
process V" is the convergence of the covariance of the Gaussian orthogonal innovations process
of V", i.e., of K; 2 cov(ly, ), since lim, %H(V”) = limn%w%):?zl H(l;). We can determine
such necessary and/or sufficient conditions from the convergence properties of the Generalized

Kalman-filter equations [, 9] of Lemma 2.1.1.

To address the asymptotic properties of estimation errors generated by the recursions of General-
ized Kalman-filters, such as, E;,t = 1,2, ... of Theorem 2.2.1, generated by (2.2.112), we need to

introduce the stabilizing solutions of generalized AREs. The next definition is useful in this respect.

4.2 Convergence Properties of Generalized Kalman-Filter Equa-
tions

Definition 4.2.1. Stabilizing solutions of generalized marix AREs
Let (A,G,Q,S,R,C) € RI%49 x RI* xx RF*¥Kk 5 RFXP 5 RPXP x RPX4,
Define the generalized time-invariant matrix DRE
P =APAT +GOGT — (ABCT n GS) (R n CBCT> - (ABCT n GS> ' P = given,
(4.2.13)
Pest t=1,..., R=R" 0,

—1
FCL(P) 2 A - (APCT + GQGT> (R + CPCT) C.

Define also the corresponding generalized matrix ARE
T T T r\ ! T T X
P=APAT + GOGT — (APC +GS> <R+CPC ) .<APC +GS) L PeSTY (4214
A solution P = PT > 0 to the generalized matrix ARE (4.2.14), assuming it exists, is called sta-
bilizing if spec (F CL (P)) € D,. In this case, we say FCL(P) is asymptotically stable, that is, the

eigevalues of FCL(P) are stable.

With respect to any of the above generalized matrix DRE and ARE, we introduce the important
notions of detectability, unit circle controllability, and stabilizability. We use these notions to char-

acterize the convergence properties of solutions of generalized matrix DREs, P,, as n — oo, to a
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unique nonnegative stabilizing solution P of the generalized matrix ARE. These notions are used
to identify necessary and/or sufficient conditions for the error recursions of generalized Kalman-
filters, such as, E;,t = 1,2,... of Theorem 2.2.1, generated by (2.2.112), to converge in mean-

square sense, to a unique limit.

Definition 4.2.2. Detectability, Stabilizability, Unit Circle controllability

Consider the generalized matrix ARE of Definition 4.2.1, and introduce the matrices
A"EA-GSR'C, B*20-SRT'ST, B =p"1(B). (4.2.15)

(a) The pair {A, C } is called detectable if there exists a matrix K € R9*P such that spec (A —KC) €
Dy, i.e., the eigenvalues A of A— KC lie in D, (stable).

(b) The pair {A*,GB*’%} is called unit circle controllable if there exists a K € R¥*9 such that
spec(A* — GB*’%K) ¢ {c e C:|c| =1}, ie., all eigenvalues A of A* — GB*K are such that
AL 1.

(c) The pair {A*,GB*’%} is called stabilizable if there exists a K € R¥*? such that spec(A* —
GB*v%K) € Dy, i.e., all all eigenvalues A of A* — GB*1K lie in D,.

(d) The pair {A,C } is called observable if the rank condition holds,

C

CA
rank(6) =q, 62| 7 | (4.2.16)

cAs-!
(e) The pair {A*, GB*’%} is called controllable if the rank condition holds,

rank(€) = q, e [ GB*: A*GB*: ... ( *)‘I*IGB*% } 4.2.17)

It is well-known that, if the pair {A7 C } is observable then it is stabilizable, and if the pair {A*, GB*? }

is controllable then it is stabilizable [9].

In the next theorem we summarize known results on sufficient and/or necessary conditions for
convergence of solutions {P,,r = 1,2,...,n} of the generalized time-invariant DRE (4.2.13), as
n — oo, to a nonnegative P > 0, which is the unique stabilizing solution of a corresponding gen-

eralized ARE (4.2.14).
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Theorem 4.2.1. /8, 9] Convergence of time-invariant generalized DRE

Let{P,,t =1,2,...,n} denote a sequence that satisfies the time-invariant generalized DRE (4.2.13)
with arbitrary initial condition P; > 0.

The following hold.

(1) Consider the generalized DRE (4.2.13) with zero initial condition, i.e., Py = 0, and assume, the
pair {A,C } is detectable, and the pair {A*, GB*’%} is unit circle controllable.

Then the sequence {P; :t = 1,2,...,n} that satisfies the generalized DRE (4.2.13), with zero initial
condition Py = 0, converges to P, i.e., lim,__,. P, = P, where P satisfies the generalized marix
ARE (4.2.14) if and only if the pair {A*, GB*'/%} is stabilizable.

(2) Assume, the pair {A,C } is detectable, and the pair {A*,B*’%} is unit circle controllable. Then
there exists a unique stabilizing solution P > O to the generalized ARE (4.2.14), i.e., such that,
spec(FL(P)) € D,, if and only if {A*, GB*’%} is stabilizable.

(3) If {A,C} is detectable and {A*, GB*’%} is stabilizable, then any solution P,,t = 1,2,...,n to the
generalized matrix DRE (4.2.13) with arbitrary initial condition, P; > 0 is such that lim,__,.. P, =
P, where P > 0 is the unique solution of the generalized matrix ARE (4.2.14) with spec (F CL (P)) €

D, i.e., it is stabilizing.

An application of Theorem 4.2.1 to the generalized Kalman-filter of Lemma 2.1.1 for the time-
invariant PO-SS realization), is given in the next corollary; it identifies conditions for existence of

the entropy rate Hg(V*).

Corollary 4.2.1. The entropy rate of PO-SS noise realization based on the generalized Kalman-
filter

Let¥? =%,,t =1,2,... denote the solution of the generalized matrix DRE (2.1.46) of the general-
ized Kalman-filter of Lemma 2.1.1 of the time-invariant PO-SS realization of V" of Definition 1.1.2,
ie, (Ay,B;,C,Ni,Kw,) = (A,B,C,N,Kyw),Vt, generated by

-1
01 =ASIAT + BKy BT — (A%7CT + BKwNT ) (NEyNT +Cx0CT )
T
.(AZ{’CT+BKWNT> , X0=0, t=1,...,n, ¥{=Ks, = 0. (4.2.18)

-1
MEL(Z%) 24— M(20)C, M(x°) = (AZ"CT + B,KWNT> <NKWNT + CZ”CT> . (42.19)
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Let ¥ = X1 = 0 be a solution of the corresponding generalized ARE
~1
£ =AX~A” + BKy B — (AX°CT + BKyNT ) (NKwN” +Cx7CT)
T \7T
. (AZ“C +BKwN ) . (4.2.20)
Define the matrices

GOG” £ BKywBT, GSZ BKywN”, RENKwNT — G2B, 02Ky, SZKyNT
4.2.21)

—1 T
A" 2 A—BKwNT (NKyNT)"'C, B £ Ky — KwN” (NKWNT) (KWNT> . (4222

Then all statements of Theorem 4.2.1 hold with (G,Q,S,R) as defined by (4.2.21).

In particular, suppose

(i) {A,C} is detectable, and

(i) {A*,GB*2 Y} is stabilizable.

Then any solution ¥7,t = 1,2,...,n to the generalized matrix DRE (4.2.18) with arbitrary initial
condition, ¥{ = 0 is such that lim, . X, = X%, where X7 = 0 is the unique solution of the gener-
alized matrix ARE (4.2.20) with spec(M““(£7)) € D, i.e., it is stabilizing.

Moreover, the entropy rate of V"' is given by
Hr(V®)=H(*) = %log (27re [CZ“’CT +NKWNT] ) VIS = 0, Vi (4.2.23)
where
I

C(S—S7°) +NW, € N(0,CZ™CT + NKywNT), t=1,2,..., (4.2.24)

is the stationary Gaussian innovations process, i.e., with X7 replaced by ¥, and the entropy rate

Hg(V*) is independent of the initial data X > 0.
Proof. This is a direct application of Theorem 4.2.1. The last part follows from Lemma 4.1.1. [
Next we apply Corollary 4.2.1 to the nonstationary AR(a,c),a € (—eo,00),c € (—o0,00) noise.

Lemma 4.2.1. Properties of solutions of DREs and AREs of AR(a,c),a € (—eo,00),c € (—o0,00)

noise and entropy rate Hg(V*)
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Consider the AR(a,c),a € (—o0,00),c € (—o0,00) noise of Example 2.1.2.(a), and the DRE ¥¢ =
Y, t =1,...,n, generated by Corollary 3.2.3.(a), i.e.,

2 —1
t = ()5 + K — (e (c—a) +Kw) (Kw+ (c—a)’5?) , r=1,..n  (4229)

(c) K, + () Ko _

(or-w)

where Ky > 0,c # a, Ks, > 0,Kyw, > 0. Let X > 0 be a solution of the corresponding generalized
ARE

X0 =Ks, = (4.2.26)

£ = (¢)’5" + Ky — (eX(c—a) + K ) ’ (Kw+ (c—a)’z”) N\ (4.2.27)
Then,
{A,CY={c,c—a}, {A*,GB"2}={a,0}. (4.2.28)

and the following hold.
(1) The pair {A,C} = {c,c —a} is detectable V¢ € (—oo0,00),a € (—oo,00) (the restriction ¢ # a is
always assumed).
(2) The pair {A*, GB*’%} = {a,0} is unit circle controllable if and only if |a| # 1 (Vc € (—o0,00)).
(3) The pair {A*, GB*’%} = {a,0} is stabilizable if and only if a € (—1,1) (V¢ € (—o0,0)).
(4) Suppose ¢ € (—o0,) and |a| # 1. The sequence {¥¢,t = 1,2,...,n} that satisfies the gen-
eralized DRE with zero initial condition, X{ = 0 converges to X%, i.e., lim, ,. X, = X%, where
Y > 0 satisfies the ARE (4.2.27) if and only if the {A*,GB*’%} = {a,0} is stabilizable, equiva-
lently, |a| < 1. Moreover, the two solutions of the quadratic equation (4.2.27) are, without imposing
X>*>0are
0 the unique, stabilizing, ¥~ > 0 solution of (4.2.27)
¥ ={ Ky(a-1)
(ca)”

That is, lim,, . 22 = X% =0 is the unique and stabilizing solution £~ > 0 of (4.2.27), i.e., such
that |MCE(£°)| < 1, if and only if |a| < 1.
(5) Suppose ¢ € (—oo,0) and |a| < 1. Then any solution ¥,t = 1,2, ... n to the generalized DRE

< 0 the non-stabilizing, X < 0 solution of (4.2.27) . (4.2.29)

(4.2.25) with arbitrary initial condition, £ > 0 is such that lim,,__,., X = X%, where X > 0 is the
unique solution of the generalized ARE (4.2.27) with MCE(X*) € (—1,1) i.e., it is stabilizing, and
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moreover £° = (.
(6) Suppose ¢ € (—oo,00) and |a| < 1. The entropy rate of V;,N't € Z.., is given by

He(V™) = lim - Z—log (27e[(c—a)x? + Kw] ) :%mg (2meKy), VI >0. (42.30)

n—eon |

Proof. See Appendix 7.9. [

To gain additional insight, in the next remark we discuss the application of Lemma 4.2.1 to the
AR(c),c € (—oo,0) noise.

Remark 4.2.1. Entropy rate Hgr(V>) of the AR(c),c € (—o0,0) noise

From Lemma 4.2.1 we can determine conditions for existence of the entropy rate Hg(V*) of the
nonstationary AR(c),c € (—oo,00) noise defined by (2.1.68), by setting a = 0.

In particular, X7 ,t = 1,...,nis the solution of (4.2.25-4.2.26), with (see Corollary 3.2.3.(b), (2.2.127)),
and (4.2.27) degenerates to the ARE,

2 —1
£ = ()2 + Kw — ((0)’z” + Kw ) " (Kw + (¢)’z”) (4.2.31)
For a =0, by (4.2.28) the pair {A,C} = {c,c} is detectable, and the pair {A*, GB*’%} ={0,0} is
stabilizable. The two solutions of the ARE (4.2.31), without imposing X > 0, are

(4.2.32)

s _ 0 the unique, stabilizing, nonnegative solution of the ARE
N <0 the non-stabilizing, negative solution) of the ARE

That is, lim,__,o X0 = X% > 0, where X~ = 0 is the unique (stabilizing) solution of the ARE, and

corresponds to the stable eigenvalue of the error equation (see (2.1.44), i.e., ML (X%) = ¢ — g—wc =
0.

Next we compute the entropy rate Hg(V*) of the time-invariant nonstationary PO-SS(a, c,b',b?,d",d?)
noise of Corollary 2.1.1 to show fundamental differences from the entropy rate Hg(V*) of the

AR(a,c) noise of Lemma 4.2.1.

Lemma 4.2.2. Properties of solutions of DREs and AREs of PO-SS(a,c,b' = b,b*> = 0,d' =
0,d” = d) noise and entropy rate Hg(V*)
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Consider the the time-invariant nonstationary PO-SS(a,c, b',b> =0,d' =0,d*> = d) noise of Ex-
A
ample 2.1.1, and the sequence X7 =¥;,t = 1,...,n, generated by the DRE of Lemma 2.1.1, i.e.,
0 20 2 o \? 2 200 !
fo = (@)% + () Ky — (a%7e) (@) Ko+ (0)°57) s 1=1,000m,
{=Ks, >0, £V >0 (4.2.33)

where (b) 2KWl >0, (d) szzv > 0. Let X > 0 be the corresponding solution of generalized ARE

£ = (a)’2" + (b) Ky — <a2°°c>2 (@)’ K2+ (€)°z7) o (4.2.34)

Then

D=

{A,CY={a,c}, {A*,GB"7}={a,b(Ky1)?}. (4.2.35)

and the following hold.

(1) The pair {A,C} = {a,c} is detectable V¢ € (—o0,00),a € (—o0,00),¢ # 0. If ¢ = 0 the pair
{A,C} ={a,0} is detectable if and only if |a| < 1.

(2) The pair {A*, GB*’%} = {a,b(KWl)%} is unit circle controllable if and only if ’b(KWI)%‘ #1,
Va € (—o0,00),¢ € (—o0,00).

(3) The pair {A*,GB*2} = {a,b(KWl)%} is stabilizable lfb(le)% #0, Va € (e0,00), ¢ € (—o0,00).
If‘b(KWI)% = 0 the pair {A*,GB*’%} = {a,0} is stabilizable if and only if |a| < 1.

(4) Define the set

g2 {(a,c, (b) K1) € (—o0,00)% x [0, e0) :
(i) the pair {A,C} = {a,c} is detectable, and
1
(ii) the pair{A*, GB*’%} ={a,b(Ky1)?} is stabilizable}. (4.2.36)

For any (a,C,b(le)%) € L, any solution X0t = 1,2,...,n to the (classical) DRE (4.2.33) with
arbitrary initial condition, ¥ > 0 is such that lim, . X, = X*, where ¥ > 0 is the unique
solution of the (classical) ARE (4.2.34) with MCE(£°) € (—1,1) i.e., it is stabilizing.
(5) For any (a,c, szWI) € L% of part (4) the entropy rate of V;,Vt € Z, is given by

n

Hr(V™) = lim ! ) %log (27[6[(0)22? + (d)zKWzD

n—oon —1

= %log (2me[(c)?£7+ (d) Ky2]), VE] >0, (4.2.37)

Proof. Follow from Theorem 4.2.1. [
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Next, we turn our attention to the convergence properties of the entropy rate Hg(Y*), which is

needed for the characterization of C/??(k) of Definition 4.1.1.

Theorem 4.2.2. Asymptotic properties of entropy rate Hr(Y*) of Theorem 2.2.1

Let Kt =1,..., be the solution of the generalized DRE (3.2.46) of the generalized Kalman-filter
of Theorem 2.2.1, corresponding to the time-invariant PO-SS realization of V" of Definition 1.1.2,
(A;,B;,Ci, Ny, Ky,) = (A,B,C,N,Kw),Vt, with time-invariant strategies (A;,Kz,) = (A”,K7),Vt,
generated by

71 = AKPAT +M(Z))Kp (M(2)) r_ (AK;’ (A*+C) +M (E?)K,;a) (KI +K7

+ (AR (A7 +0)) (AP (A7 +0)T + M(EDK;)

K =K'"+=0, t=1,....n, K{ =0 (4.2.38)

where

Kjo = CE?CT +NKwNT, Y7 is a solution of (4.2.18), M(X°) is given by (4.2.19),  (4.2.39)
FCL(Z° K°) 2 A — F(2°,K°) (A°° +c) , (4.2.40)
F(Z,K°) = (AK* (A% +C)" +M(2")K, ) { Ko + Kz= + (A7 + C)K? (A" +c)T}_l. (4.2.41)
Define the corresponding generalized ARE by
K™ = AK=AT + M(Z°)K; (M(27)) " — (AK°° (A=+C)" +M(Z°°)KIAN> <Kiw e
+ (A" + )k (A +0)") y (4K=(A+0)" + MK ), K2 =K"T =0, (4.242)
where

K;. = CE™CT + NKwN”, X¢ is a solution of (4.2.20), M(X>) is given by (4.2.19). (4.2.43)

Introduce the matrices

C(A) 2 A" +C, GOG" 2 M(2™)K;.. (M(E™))

ooy O 0o A 0o A A
R(KZ):Kiw—l—KZ. — G:M(Z ), Q:Kiw, S:Kjoo,

T7 GS é M(Zm)Kim7

-1
A* (A" KS) 2 A~ M(Z°)K. (Kim +K§°) <A°° + C) ,

-1
B'(KZ) = Kp- —Kj- (Ki- + K5 ) K- (4.2.44)
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Suppose the detectability and stabilizability conditions of Lemma 4.2.1.(i) and (ii) hold.

Then, all statements of Theorem 5.2.1 hold with (C(A”),G,Q,S,R(KY)) as defined by (4.2.44).

In particular, suppose

(i) {A,C(A”)} = {A,A” +C} is detectable, and

(ii) {A*(A”,K3),GB*1(KZ)} is stabilizable.

Then any solution K/ ,t =1,2,...,n to the generalized matrix DRE (4.2.42) with arbitrary initial
condition, K{ = 0 is such that lim, .. K7 = K=, where K = 0 is the unique solution of the
generalized matrix ARE (4.2.42) with spec (FCL(K“’,E“’)) €D, ie., it is stabilizing.

Moreover, the entropy rate of Y" is given by

1 T
Hi(Y*) = H([7) = 5 log (271:6 [(A‘” +c) K> <A°° + C) + K. +K§°} ) , VKO =0, Vi
(4.2.45)

where

I =(A"+C) (S;’°—§;;) +1° 47, € N(0; (A +C)K* (A" +C)" + Ko +K3),
t=1,2,..., (4.2.46)

is the stationary Gaussian innovations process, i.e., with (K7, X7) replaced by (K*,X%).

Proof. Since the detectability and stabilizability conditions of Lemma 4.2.1 hold, then the state-
ments of Corollary 4.2.1 hold. By the continuity property of solutions of generalized difference
Riccati equations, with respect to its coefficients (see [V]), and the convergence of the sequence
lim, . X, = X%, where X > 0 is the unique stabilizing solution of (4.2.20), then the statements
of Theorem 4.2.2 hold, as stated. In particular, under the detectability and stabilizability condi-
tions (i) and (ii), then lim,,.. K = K=, where K= > 0 is the unique and stabilizing solution of
(4.2.42). ]

In the next lemma we apply Theorem 4.2.2 to the AR(a,c),a € (—o0,00),¢ € (—o0,00) noise of
Example 2.1.2.(a), using Lemma 4.2.1.

Lemma 4.2.3. Consider the AR(a,c),a € (—o0,00),c € (—oo,00) noise of Example 2.1.2.(a), and
the DRE Y7 2 Yt =1,...,nand ARE of Lemma 4.2.1, (4.2.25)-(4.2.28).
Let K/,t = 1,...,n denote the solution of the DRE of Corollary 3.2.3.(a), when A; = A*, K7, =
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K7 K = K?,Vt, i.e., given by

2
% =(0)°K? + (M) Ky — (oK? (A™ +c—a) + M(Z))Kp )

-1
(Kfto‘f‘K;‘f‘(A‘”—{—C—a)zKlo) s [(10:07 t:lw._’n’ (4247)
K7 >0, K’ >0, t=1,...,n (4.2.48)
and where
—1
M(x() = (CE? (c—a) +Kw) (Kw +(c— a)ZZf) : (4.2.49)
KIA,U: (c_a)ZZtO+KW7 [:1,...71’1. (4250)

Define the set

e {(a,c) € (—o0,00)2,a# ¢ (i) the pair {A,C} = {a,c —a} is detectable, and
(ii) the pair{A*, GB*?é} ={a,0} is stabilizable}. (4.2.51)
Forany (a,c) € £, let K* > 0 be a corresponding solution of the ARE (evaluated atlim,__,.. X, =

¥*=0),

2 _
K* =(¢) K"+ Ky — (K™ (A +c—a) +Kw) (Kw+K5 + (A" +c—a)’K”) | 42.52)

K7 >0, Kw > 0. (4.2.53)
and define the pairs
{A,C(A"} ={c,A” +c—a}, (4.2.54)
{A"(A™.K7), GB"2 (K7)} =
{e— K (Kw+Kz) " (A" +c—a), (Kw— (Kw) (Kw +K5) ) . (4.2.55)
Then the following hold.

(1) Suppose A”+c —a # 0. Then {A,C(A”} = {c,A” +c —a} is detectable ¥(a,c) € (—oo,0)2.
(2) Suppose A~ +c—a=0. Then {A,C(A*} = {c,0} is detectable for if and only if |c| < 1
Va € (—oo,00).

(3) Suppose K7 = 0. Then the pair {A*7GB*’%} = {—A"+a,0} is unit circle controllable if and
only if |[A—a| # 1 Va € (—oo,00).

(4) Suppose A~ +c—a #0,|A—a| # 1 V(a,c) € (—,)?, and Kz = 0. The sequence K?,t =
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1,2,...,n that satisfies the generalized DRE (4.2.47) with zero initial condition, K{ = 0, converges
to K* >0, i.e, lim,_,. K] = K%, where K™ satisfies the generalized ARE,

2
K” = ()’ K™+ Ky — (K™ (A +c—a) +Kw ) (Kw+ (A" +c—a)’K”) , K*>0

(4.2.56)
if and only if the {A*, GB*’%} = {—A"+a,0} is stabilizable, equivalently, |A* —a| < 1.
Moreover, the solutions of the ARE (4.2.56), under the stabilizability condition, i.e., |A” —a| < 1,
are
0 the unique, stabilizing, K > 0 solultion of (4.2.56)
k= ={ x((ra) ) N . (4.2.57)
(A°°+c—a)2 < 0 the non-stabilizing, K= < 0 solution of (4.2.56) .

That is, lim,, . Z?l = X% =0 is the unique and stabilizing solution £~ > 0 of (4.2.56), i.e., such
that IMCE(22)| < 1, if and only if [N —al < 1.

Proof. The statements follow from Lemma 4.2.1, Theorem 4.2.2 (and general properties of Theo-

rem 4.2.1). [

Remark 4.2.2. From Lemma 4.2.3.(4) follows that if K7 = 0 then the unique and stabilizing solu-
tion is K* = 0 and corresponds to |N” — a| < 1. This is an application of Theorem 4.2.1.(1).

In the next theorem we characterize the asymptotic limit of Definition 4.1.1, by invoking Theo-

rem 2.2.1, Corollary 4.2.1, and Theorem 4.2.2.

Theorem 4.2.3. Feedback capacity C'"°(x) of Theorem 2.2.1
Consider C'°(x) of Definition 4.1.1 corresponding to Theorem 2.2.1, i.e., the PO-SS realization
of V" of Definition 1.1.2 is time-invariant, (A;, By, Ct, N, Kw,) = (A,B,C,N,Kw ), Vt, and the strate-
gies are time-invariant, (A¢,Kz,) = (A*,K3),Vt.
Define the set
7 2{(A" KZ) € (=o0,09) X [0,%) :

(i) {A,C} of Corollary 4.2.1 is detectable,

(ii) {A*, GB*’%} of Corollary 4.2.1 is stabilizable, (A*,B*) defined by (4.2.22)

(iii) {A,C(A*)} = {A,A” +C} of Theorem 4.2.2 is detectable,

(iv) {A*(A“,K}"),GB*v% (K7)} of Theorem 4.2.2 is stabilizable}. (4.2.58)
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Then
CrP(x) = sup
(A=k3): limu e L1 (A=KP(A=)T+KG ) <k
T
P (AR (AT HC) +CRICT + NKWNT + K3
lim -~ 3" log ( A . )} 259
n—voo 20 =~ CXYCT + NKwN
T
| (Aw n c) K> <A°° + c) +C2CT + NKyNT + K3
= sup = log ( o T T >
. CT=CT + NKyN
(4.2.60)
where

P*(k) é{<A°°,K§°) € P K5 >0, AK=(A") +KZ <«
K® is the unique and stabiizing solution of (4.2.42), i.e., |[FCL(X*, K*)| < 1
MEL(E=)| < 1} 4.2.61)

X% is the unique, stabiizing solution of (4.2.20), i.e.,

provided there exists K € [0,00) such that the set 2*(K) is non-empty.

Moreover, the maximum element (A”,K5) € 27%°(K), is such that it induces asymptotic stationarity
of the joint input and output process, and C/® (k) is independent of the initial conditions K{ >
0,X9 = 0.

Proof. By Definition 4.1.1, Theorem 2.2.1, Corollary 4.2.1, and Theorem 4.2.2, then follows
(4.2.59). We defined the set &> using the detectability and stabilizability conditions of Corol-
lary 4.2.1, and Theorem 4.2.2 to ensure convergence of solutions {(K?,X?) :t = 1,2,...,n} of the
generalized matrix DREs to unique nonnegative, stabilizing solutions of the corresponding gener-
alized matrix AREs. Then, for any element (A*,K>’) € & both summands in (4.2.59) converge.
This establishes the characterization of the right hand side of (4.2.60). OJ

4.3 Oversights of the characterizations of feedback capacity

Conclusion 4.3.1. Degenerate version of Theorem 4.2.3 for feedback code of Definition 1.1.3, i.e.,
(5,2 n), n=1,2,...
(a) The characterization of feedback capacity CI*°(k,s) of the AGN channel (1.1.1) driven by a
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noise V" of Definition 1.1.2, for the code of Definition 1.1.3, i.e., (s,2"8 n), n=1,2,..., is a de-
generate case of Theorem 4.2.3, and corresponds to X, = X}, t = 1,...,X; = X{ = 0. In particular,
since Theorem 4.2.3 characterizes Cf b’(’(K) for all initial data £y = 0, then includes 1 = X =0,
and follows that C/%° (k) = C/%°(k,s), where C/°(k,s) independent of the initial state S = s.

(b) The maximal information rate of [ |, Theorem 7 and Corollary 7.1], i.e., of Case II) formulation,
should be read with caution, because the condition of Theorem 4.2.1.(1) are required for conver-
gence. Similarly, the characterization of feedback capacity of [2, Theorem 6.1 ] which correspond
to Case Il) formulation, violates Theorem 4.2.1.(1), because is states that a zero variance of the
innovations process is optimal, i.e., K7 = 0. Consequently, subsequent papers that build on [ ] to

derive additional results, such as, [4—7], should be read with caution.

We apply Theorem 4.2.3 to obtain C/%°(x) of AR(a,c),a € (—o,),c € (—oo,) noise.

Corollary 4.3.1. Consider the AR(a,c),a € (—o0,00),c € (—o0,00) noise of Example 2.1.2.(a).
Define the set

7 2L (A" K3) € (—e0,00) x [0,00) :
(i) c € (—o0,00),a € (—1,1),c #a,
(ii) the pair {A,C(A=)} 2 {c,A= +c —a} is detectable,
(ii) the pair {A*(A”,K7), GB*2 (K7)} is stabilizable, where
A*(A™,KZ) 2 c— Ky (Kw +K3) (A" +c—a),

GB"3 (K3) = (Kw — (Kw)* (Kw +K3) ") : 3

Then,
2
(A°°+c—a) K=+ Ky + K
CIP (k) = sup 5 log ( % ) =C(x,s), Vs (4.3.62)
(A=Kk3)e2=(x) w
where,

77() = { (A", K5) € 271 ()K" +K7 < x,

K= >0 is the unique and stabiizing solution of
2 —1
K* = (c)’K™+Kw — (K™ (A" +c—a) + K ) (Kw+K5 + (A +c—a)’k”) |} 43.63)
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provided there exists K € [0,00) such that the set % (K) is non-empty.
Moreover, C'"° (k) and C/° (k) are independent of £1 > 0 and s, respectively, and the following
identities hold.

Cc’Po(x) = /b0 (k,s) = C/P50(k,s), Vs (4.3.64)

Proof. The first part is an application of Theorem 4.2.3, Lemma 4.2.1, and Lemma 4.2.3. It re-
mains to show (4.3.64). The equality C/?°(x) = C/?°(k,s), Vs holds by Conclusion 4.3.1.(a). The
last equality holds, because for the AR(a,c),a € (—o0,00),¢c € (—o0,0) noise, if the initial state
S1 = 8] = s is known to the encoder and the decoder, then Conditions 1 of Section 1.1 holds, and

in addition Condition 2 holds, as easily verified from the equations (2.1.65), (2.1.66). ]

Remark 4.3.1. From Corollary 4.3.1 we obtain the degenerate cases, AR(c),c € (—eo,00), noise
i.e., setting a = 0. The various implications of the detectability and stabilizability conditions for
the AR(c),c € (—oo,00) noise are found in [ 15, see Theorem III.1 and Lemma II1.2]. The complete
analysis of the corresponding C'"°(k,s) is found in [15], and states that for stable AR(c), and

time-invariant strategies, then feedback does not increase capacity.



Chapter 5

Feedback Capacity of ARMA(a,c)noise

5.0.1 Problem Formulation
We introduce the precise mathematical formulation, and the underlying assumptions based on
which we derive the results of this chapter. We consider the time-varying AGN channel defined by

1 n
Y,=X,+V,, t=1,...n, ES{Z(Xt)z}SK, K € [0,00) (5.0.1)

n =1

where

X" ={X1,X2,...,X,} is the sequence of channel input random variables (RVs) X; : Q — R,

Y" ={Y},Ya,...,Y,} is the sequence of channel output RVs ¥; : Q — R,

V" ={Vy,...,V,} conditioned on the initial state S} = s, is a sequence of jointly Gaussian dis-
tributed RVs V; : Q@ — R, and V" € N(0, Kyns, ),

S1 = s, is known to the encoder and decoder,

N(0,Kyns,) denotes the distribution of the Gaussian RV V" conditional on S}, with zero condi-
tional mean, and conditional variance Kyng, ,

E,{-} denotes expectation for fixed initial state S| = s.

Definition 5.0.1. The time-invariant ARMA(a, c) noise

A time-invariant autoregressive moving average noise , with initial state S1 = s, is defined by

Vi=cVioi+ W —aW,y, Vo=vo, Wo=wp, t=1,...,n,

W, € N(0,Ky,), t=1,...,n, indep. Gaussian, indep. of Vo € N(0,Ky,),
Ky, >0, Ky, =Kw >0, a€ (—o,0), c€ (—oo,0), cH#a,
t=1,...,n non-random.

ARMA(a,c) :

(5.0.2)

60
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Remark 5.0.1. ARMA (a,c) in state-space representation.

To express the ARMA(a,c) in state form we define the state variable of the noise by
Vi1 —aW,_
(Ol el PR F (5.0.3)

c—da

Then, the state space realization of V,, is

S =cSi AW t=1,....n (5.0.4)
Vi=(c—a)S;+W,, t=1,....n (5.0.5)
2 2
K K
Ks, = (c) (VO + (322) WO, Ky, >0, Kw, >0 both given. (5.0.6)
c—a

For the stable noise, ARMA(a,c),a € [—1,1],c € (—1,1), the variance defined by Ky, 2 E(V,)Z,

satisfies Ky, = (c—a)?Ks, +Kw,Ks, > 0,t = 1,...,n. The stable ARMA(a,c) noise is called asymp-
(c—a)*Ky
1—c2
ARMA (a,c) without an initial state is defined by (5.0.2), fort =1,...,n, withV; € N(0,Ky, ), Ky, >
0, independent of W; € N(0,Kw,),Kw, > 0,t = 1,...,n. Similarly, the stable ARMA(a,c) noise

, for all initial values Ky, > 0, i.e.,

totically stationary if lim, .. Ky, =

without an initial state is called asymptotically stationary if Ky, = (¢ — a)szl +Kw,Ky, > 0,t =

(c—a)’Ky

2, for all initial values Ky, > 0, [c| < 1,|a| < 1. That is,

2
the invariant distribution of the noise is N(0, (C_li)cfw),c €(—1,1),ae[-1,1].

1,...,n, converges, lim, .. Ky, =

At this stage, we introduce the feedback code and non-feedback code of the AGN channel.

Definition 5.0.2. Feedback and non-feedback codes

(a) A noiseless time-varying feedback code' for the AGN Channel, is denoted by

‘5%’ é { n,[Myl,s,x,&,):n=1,2,... } and consists of the following elements and assumptions.
(i) The set of uniformly distributed messages W : Q — 4" {1 2,...,[M,]}.

(ii) The set of codewords of block length n, defined by the set’

o () é{Xl — e (W,81), X2 = e2(W,S1,X1, Y1), -, X = en(W,S1, X" 1 y"=1) ;
1
¢ < . .0.
— (Z(X,))_K} (5.0.7)

=0

(iii) The decoder functions (s,y") — dy(s,y") € A (") with average error probability

PLior(s) = P{a(S1,1") £ W|s1 = s}

( (S1,7" ;Aw)gsn. (5.0.8)

I'A time-varying feedback code means the channel input distributions Py xi-1 y-15,1 = 1,...,n are time-varying.
2The superscript e(-) on E¢ is used to denote that the distribution depends on the strategy e(-) € Elon) (K)-
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where P{ means the distribution depends on e(-) € & (k) and Sy = s is fixed.
(iv) “X" is causally related to V"' [3, page 39, above Lemma 5], which is equivalent to the
following decomposition of the joint probability distribution of (X",V") given S|.

n
PX”,V"|SI :Pvn|Sl HPX,«‘thl,thl,Sl . (509)
=1
n
:PV"|51HPXI‘XI_I,Yt_l,SN bth :Xt_’_‘/t (5010)
t=1
The coding rate is r, = 1 logf |. Given an initial state S| = s, a rate R(s) is called an achievable

rate, if there exists a code sequence %Z+’ satisfying lim,,__,. &, = 0 and liminf, % log[M, ] >
R(s).

The operational definition of the feedback capacity of the AGN channel, for fixed S1 = s, is
C(k,s) = sup {R(s) : R(s) is achievable}.

(b) A time-varying code without feedback for the AGN Channel, denoted by %gfb, is the restriction

of the time-varying feedback code CK%, to the subset é”[ ]( K) C &jo,n)(K), defined by

&0 (k) —{Xl =P W,81), X = &P (W,81,X1), ... Xy = €T (W, 51, X" 1) :

[0.1]
_Ee"f”(zn: ) } (5.0.11)

Since the code sequence (Kéf depends on S| = s, then in general, the rate R(s), and also C(k,s)
depend on s. The Cover and Pombra AGN Channel [3], characterization of feedback capacity,
and optimal channel input are recalled in Section 1.2, to emphasize that the assumptions based
on which these are derived are fundamentally different from the assumptions based on which [2,

Theorem 6.1] (and equivalently [2, Theorem 4.1]) are derived.

Feedback Capacity of Time-Varying Channel Input Strategies. Consider the feedback code of
Definition 5.0.2.(a), 1.e., ‘Kﬁ. Given the elements of the set & (x), by the maximum entropy

principle of Gaussian distributions, similar to Cover and Pombra [3], the upper bound holds>.
IC(W;Y"|s) <H(Y"[s) —H(V"|s), if H(Y"|s) is evaluated at a Gaussian Pyxs, (5.0.12)

where H(X|s) stands for differential entropy of RV X conditioned on the initial state S| = s. Fur-
ther, the upper bound in (5.0.12) is achieved [3], if the input X" is jointly Gaussian for fixed S| =,

3The superscript e means the underlying distributions are induced by the channel distribution and the elements of
the set e(+) € &, (k).
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satisfies the average power constraint, and respects (5.0.9). By the chain rule of mutual informa-
tion, I¢(W;Y"|s) = Y1, I¢(W;Y,|Y"" 5), and the data processing inequality, then the following
inequality holds:

sup I°(W;Y"|s) < sup H(Y"|s)—H(V"|s), by (5.0.1)
o) (K) I ey, (X,)z}gK
(5.0.13)
where the supremum in the right hand side of (5.0.13) is taken over conditionally Gaussian time-
varying distributions Py i1 yr1 5,0 = 1,...,n, such that (X",Y") are jointly Gaussian for fixed
S1 ==, and (5.0.9) is respected.

Define, as in [3], the n—finite transmission feedback information (FTFI) capacity of code Cfgf, by

CalK,s) 2 sup H(Y"|s) — H(V"]s) (5.0.14)

Py, it yi 1 g, 4= Lo e {x, (X,)z}gx

provided the supremum element exists in the set. From the converse and direct coding theorems
in [3, Theorem 1], it then follows that the characterization of feedback capacity of code %”%f , 18

given by

1
C(k,v0) = lim —C,(k,s) (5.0.15)

n—oon

provided the limit exists.

Capacity Without Feedback of Time-Varying Channel Input Strategies. Let CZf b(K,s) be defined
as in (5.0.14), with the time-varying feedback distributions PX,\ xi-1yi-1g,,t =1,...,n, replaced by
the time-varying non-feedback distributions Py y:-1 g, = 1,...,n, called n—finite transmission
without feedback information (FTwFI) capacity. The non-feedback capacity of the code %gb of
Definition 5.0.2.(b), is characterized by C"/?(x,s) = lim,, e %Cﬁf b(K, s), provided the limit is
defined.

This brings us to the next definition of capacity, where conditions for existence of the limits of

average power and entropy rates are characterized, and they part of our problem formulation.

Feedback Capacity of Time-Invariant Channel Input Strategies. We consider (5.0.14), (5.0.15)
with the per unit time limit and supremum operations interchanged, and time-invariant codes and
induced distributions, called strategies. To ensure the feedback capacity (to be defined shortly) is

well-posed, we introduce the following condition:
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(C1) Channel input strategies with feedback are time-invariant, the consistency condition (5.0.9)

holds, and the following limits exists and they are finite:
o 1 2 T
() limy e SE Y| (X7) 7} € [0, 00), (ii) limy—seo {H(Y"|s) —H(V"|s5)} € [0,00).

We define the operational information feedback capacity under condition (C1), as follows.

A .1
C(k,s) 2 sup lim —{H(Y"|s) —H(v"\s)} (5.0.16)
n—soon
limy,— 0 %E{ Y (X,) 2 } <x, subject to (C1)
where the supremum is taken over all jointly Gaussian channel input processes X" ,n=1,2,... with
feedback, or distributions with feedback Py, -1 yi-1 5, =1,2,.. ., such that xX"Y",n=1,2,...,

is jointly Gaussian, for S| = s, and (C1) holds.

Capacity Without Feedback of Time-Invariant Channel Input Strategies. Similar to (5.0.16), we

also analyze the non-feedback capacity analog, under condition (C1), which is defined as follows.

confb (k. 5) 2 sup lim l{H(Y”|s) —H(v"|s)} (5.0.17)
timy o LE{ 37, (%) }<x. subject to (CD)" "

where the supremum is taken over all jointly Gaussian channel input processes X",n = 1,2,...,
without feedback or distributions without feedback, denoted by Py X151 = 1,2,..., such that
(X", Y"),n=1,2,... is jointly Gaussian for §; = s, (C1) holds (with Py y:-1 y:i1 g, replaced by
PX,‘ X155 and (5.0.9) is respected, for n = 1,2,.... To our knowledge, for AGN channels driven
by an unstable noise V", no closed form expression of non-feedback capacity is ever reported in
the literature.

Given the above formulation, in this paper we obtain answers to the various questions listed under

Problem 5.0.1.

Problem 5.0.1. Main problem

Given C*(k,s) defined by (5.0.16), and C*"/*(k,s) defined by (5.0.17), of the AGN channel
driven by a time-invariant stable and unstable, ARMA(a,c) noise, i.e., ¢ € (—o0,00):
(a) What are necessary and/or sufficient conditions for (C1) to hold?
(b) What are necessary and/or sufficient conditions for joint asymptotic stationarity of the process
(X", Y", V") n=1,2,... or the marginal processes X" and Y",n=1,2,...2.
(c) What are the characterizations and closed form formulas of feedback capacity C*(x,s) =
C(k),Vs?
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(d) How do we extract simple lower bounds on non-feedback capacity, C>"'? (., s) = C*"/?(k), Vs

from the characterizations of feedback capacity?

To address Problem 5.0.1 we make use of the identities

1
lim —H(Y"|s) = lim — ZHY,Yf Us)= lim - ZHY, E{y|Y" sty ls) (5.0.18)

n—oon n—-c0 n n—->»o0 n
=1lim -) H I Y E{y|y'! ,§ ¢ an indep. innovations process
ey Z 1) t— { 7| } p- P

(5.0.19)

Then, we identify necessary and/or sufficient conditions for the limits in (5.0.18) and
lim,, %EY{ Yo (X,)z} to exist and to be finite, and we provide answers to the questions of

Problem 5.0.1, from the properties of the innovations process.

5.0.2 Methodology of the Chapter

Our methodology is based on the following main steps.

Step 1. We characterize Cy, (K, s) defined by (5.0.14), i.e., the n—FTFI capacity, of the AGN channel
driven by a time-varying ARMA (a;,c;) noise. We also give a lower bound on the characterization
of the n—FTwFI capacity CZf b(K, s), using a Gaussian channel input process, which is realized by

an ARMA(A;) process,
Xt = AI‘XZ—I +Z[, Xl = Zl, A[ S (_00,00), t= 27 ...4n (5020)

where Z" an independent Gaussian sequence, independent of (V" S7).

Step 2. We characterize the feedback capacity C*(x,s) = C*(k), Vs defined by (5.0.16), and we
give a lower bound on the characterization of C*"/? (i, s) defined by (5.0.17), of the AGN channel
driven by a time-invariant stable or unstable noise, ARMA(a,c),a € (—o0,00),¢c € (—o0,00). Our
analysis identifies necessary and/or sufficient conditions for condition (C1) to hold, expressed in
terms of the convergence properties of generalized difference Riccati equations (DREs) and al-
gebraic Riccati equations (AREs), of estimating the channel state, that is, the noise V", from the
channel output process Y, and the initial state S1 = s, for n = 1,2,.... This step is analogous
to [17, Theorem 4.1], although the models considered in [17] involve a classical control DRE and
ARE.

Step 3. We derive a closed form formula of feedback capacity C*(x,s) = C*(k), Vs, that shows

there are multiple regimes of capacity, and these regimes depend on the parameters (a,c, Ky, k).
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Our feedback capacity formulae C* (k) for AGN channels driven by stable noise ARMA(a,c),a €
[—1,1],c € (—1,1) is fundamentally different from the one obtained using the characterization
of feedback capacity in [2, Theorem 6.1]. We show this difference is mainly attributed to the ap-
pended detectability and stabilizability conditions on the characterization of our feedback capacity,
to ensure the optimal channel input process X" is such that the limits, lim;, %Es{ Yo (X,) 2} €
[0,00), limy,—eo LH(Y"[5) € [0,00) exist, and the joint process (X",Y"),n = 1,2,... is asymptoti-
cally stationary, which are not accounted for, in [2, Theorem 6.1].

We also give an achievable lower bound on the non-feedback capacity C="/?(k,s), based on
(5.0.20), with A; = 0,1, i.e., X; = Z;, Z",n=1,... an independent and identically distributed
(IID) sequence, and holds for stable and unstable ARMA(a,c),a € (—o0,00),c € (—o0,00) noise.
Step 4. We identify an oversight in the characterization of feedback capacity given in [2, The-
orem 6.1, Cpp] (i.e., the analog of the limiting expression of C*(k,s) without the stabilizability
condition), which presupposes a zero variance of the innovations part of the channel input process
is optimal. We show that a zero variance of the innovations process, implies the characterization
of feedback capacity, based on [2, Theorem 6.1, Crp], is necessarily the zero solution Crp = 0,

otherwise,Crp does not correspond to the limiting value of (5.0.16).

We structured the chapter as follows.

In Section 5.1, we derive the characterization of the n—FTFI capacity, and the lower bound on the
characterization of the n—FTwFI capacity, for AGN channels driven by the ARMA (a;,c¢;) noise
(Section 5.1.1), and present a preliminary elaboration on technical issues that are integral part of
capacity definition (5.0.16).

In Section 5.2, we present the derivations of feedback capacity formulas of C*(k,s) = C*(k), Vs,
1.e., (5.0.16), and the achievable lower bounds on the non-feedback capacity cenfb (x,s), for sta-

ble and unstable noise, using the asymptotic analysis of generalized Kalman-filters [&, 9].

5.1 Characterizations of n—FTFI and n—FTwFI Capacity

In this section we present the following main results.

(1) Theorem 3.1.1 (Section 5.1.1), which gives the characterization of n—FTFI capacity for time-
varying feedback codes of Definition 5.0.2.(a),

(2) Corollary 5.1.1 (Section 5.1.3), which gives a lower bound on the n—FTwFI capacity for time-
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varying non-feedback codes of Definition 5.0.2.(b), based on a Markov channel input process

without feedback, and follows directly from Theorem 3.1.1.

5.1.1 Characterization of n—FTFI Capacity

Below, we introduce the characterization of the n—FTFI capacity, for an AGN channel, driven
by the time-varying ARMA (a;,¢;) noise, for the feedback code of Definition 5.0.2.(a). Our pre-
sentation, of the next theorem, is based on the degenerate case of the general characterization of
the n—FTFT capacity of AGN channels, derived in [18]. We should mention that although, [1],
treats AGN channels driven by stable noise, some parts of the representation given below can be

extracted from the analysis of [ 1, Section II-V].

Theorem 5.1.1. Characterization of n—FTFI Capacity for AGN Channels Driven by ARMA(ay,c;)
Noise

Consider the AGN channel (5.0.1) driven by a time-varying ARMA (a;,c;) noise, i.e., (5.0.2), and
the code of Definition 5.0.2.(a). Then the following hold.

(a) The optimal time-varying channel input distribution with feedback, for the optimization prob-
lem C,(K,s) defined by (5.0.14), is conditionally Gaussian, of the form

PXt‘Xr—l,Y'71,51 :PX;|S,,YF1,S17 t=1,...,n (5.1.21)

and it is induced by the time-varying jointly Gaussian channel input process X", with a represen-
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tation*

Xt:At(S,—§,> A (5.1.22)

X, =7, (5.1.23)

Z, € N(0,Kz), t=1,...,n a Gaussian sequence, (5.1.24)

Z; independent of (V71 X"V Y7L 8, t=1,....n, (5.1.25)

Vi=(c;—a)S;+W;, S1=s, a € (—o0,00),¢; €(—00,00), t=1,...,n, (5.1.26)

Y,:Xﬁ—Vt:At(S,—gt)—i—Zt—i—Vt (5.1.27)
=A(Si=8) + (a—a)S +W+2, (5.1.28)

W, € N(0,Kw,) t=1,...,n a Gaussian sequence, (5.1.29)

Y, :Z1—|—<c1—a1>S|+Wl, S =s. (5.1.30)

Sir1=c85+W, S1=s, t=2,....n (5.1.31)

1 1 2 122 2

‘Es{ ) (%) } ==Y { (At) Kz+Kz,} <K, (5.1.32)

o3 =

(At,Kz,) € (—o0,00) X [0,00)  scalar-valued, non-random, (5.1.33)

5, éEs{St y'-ls, = s} (5.1.34)
A N\ 2

Kt:Es{<St—S,> } Ki=0, t=2....n (5.1.35)

Further, H(Y"|s) — H(V"|s), (S;,K;),t =1,...,n are determined by the generalized’ time-varying
Kalman-filter and generalized time-varying difference Riccati equation (DRE), of estimating V"

fromY", given below.

Generalized Kalman-filter Recursion for (5.1.26)-(5.1.30) [, 9]:

Se1= S, +Mi(Ki, A Kz)l, Sy =s, (5.1.36)
I éYt—Es{Y, Y”l} —y, — <c,—at)§t, L=Z+W,, t=1,....n, (5.1.37)
_ (A,+c, —at) (S, —S}) Y7 4W, (5.1.38)

A 2 —1
MK A Kz) = (K ek (Ao —a) ) (Kz + K+ (A +a—a) K) L (5.1.39)

4The fact that X; = Z;,K; =0, §1 = s is due to the code definition, i.e., S; = s is known to the encoder.
SUnlike [1], we use the term generalized, because, the conditions for the asymptotic analysis to hold, are funda-
mentally different from those of asymptotic analysis of classical Kalman-filter equations.
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Generalized Time-Varying Difference Riccati Equation:

2
(K‘/Vf + C[Kt (At —+cr — at>>

Kit1 =c; K, + Ky, — . K>0, K =0, t=2,...n,

2
<Kzt + Ky, + <A, fe— a,) Kt>
(5.1.40)

YN ~
Error Recursion of the Generalized Kalman-filter, E; = S; — S;,t =1,...,n:

Evv1 = Fi(Ko A Kg ) B — MK A K7 (24 W) + W By =$1-81 =0, 1=2,...n.

(5.1.41)
F(Ki, A Kz) 2 ¢, — My(Ky, A K7 (At Yo —a,) (5.1.42)
Entropy of Channel Output Process:
H(Y"|s) = iH(Y,|Y’_1,s) = fH(Yt —E{yy" sy ls) = iH(I,ys). (5.1.43)
=1 =1 =1

(b) The characterization of the n—FTFI capacity C,(k,s) defined by (5.0.14) is

CalK:5) = sup % Zn: log ( (A’ +a— at);[(, +K7, +KWz>
(A,,Kz,),tzl,...,n: Lyn, { (Af)zKH‘KZt}SK t=1 A
(5.1.44)
subject to: K;,t = 1,...,n satisfies recursion (5.1.40) and Kz, > 0,t = 1,...,n. (5.1.45)

Proof. (a) The information structure (5.1.21) follows, from a degenerate case of [18]. The rep-
resentation of the jointly Gaussian process X", defined by (5.1.22), such that Z" satisfies (5.1.24)
and (2.1.26), is also a degenerate case of [18], where the channel is more general, of the form
Y, =CG_1Y,—1 + DX + Dy 1 X1 + Vi, Vi = BVi—1 + W, where (C;;—1,D;,Dy;—1,F;) are non-
random, i.e., with past dependence on channel inputs and outputs. Expressions (5.1.26)-(5.1.35)
follow directly from (5.1.22), and the channel definition. The generalized Kalman-filter equations
follow from standard texbooks, i.e., [9]. (5.1.43) follows from the independent property of the
innovations process. (b) Follows from (5.0.14), (5.1.43), H(V"|s) = Y,,—; H(W;), and part (a). [

Remark 5.1.1. By the definition of the innovations process and entropy, (5.1.38) and (5.1.43), it
follows that whether the limit exists, lim, o L {H(Y"|s) — H(V"|s)} = lim, 0+ Y7 | {H(L;) —
H (W,)} € [0,00) is determined from the limiting covariance of the innovations process I" and noise

W, Similarly, for lim, .. %Es{ Y (Xt)z} € [0,00) by (5.1.32).
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5.1.2 Converse Coding Theorem for AGN Channels

By Theorem 3.1.1, the characterization of n—FTFI capacity, C,(k,s), is expressed in terms of
the mean-square error K;,t = 1,...,n, that satisfies the time-varying generalized RDE (5.1.40).
We recall the error recursion of the generalized Kalman-filter given by (5.1.41). Note that recur-
sion (5.1.41) is linear time-varying, hence its convergence properties, in mean-square sense, i.e.,
K, = Es{ (E,)Z} are determined by the properties of F;(K;, As, Kz, ) and M;(K;, A, Kz,), At Kz, ,t =
1,2,.... Hence, in general, lim, . K, = lim,_,. Es{ (E,Z)z} does not converge, for arbitrary
F(K:,At,Kz,) and M; (K, A¢,K7,), A, Kz,,t = 1,2,.... In view of the error recursion (5.1.41), we

have the following theorem.

Theorem 5.1.2. Converse coding theorem
Consider the feedback code Cﬁsz of Definition 5.0.2.(a).
Converse Coding Theorem. If there exists a feedback code ‘Ksz, i.e., with & — 0, as n — oo,

then the code rate R(s) satisfies:

1
R(s) < C(k,s) 2 lim —Cy(x,s), Cyu(x,s) defined in Theorem 3.1.1.(b) (5.1.46)

n—seo 1
provided the following conditions hold:
(C1) the maximizing element, denoted by (A} ,KZ),t = 1,...,n which satisfies the average power
constraint exists, and

(C2) the limit exists and it is finite.

Proof. Conditions (C1) and (C2) follow from the above discussion, and the converse coding theo-

rem follows from [3]. ]

Remark 5.1.2. By the average power (5.1.32) and optimization problem (5.1.44), it is necessary
to identify sufficient and/or necessary conditions such that the maximizing element, (A;k,KZ),t =
1,...,n, exists in the set, and to ensure convergence of K, = ES{ (En)z} (that satisfies the time-
varying DRE (5.1.40)), as n — oo, to a finite number, such that the limit in (5.1.46) is finite.
However, to ensure C(K,s) is independent of s, it is necessary that the limit is also independent
of s. On the other hand, if the limit C(K,s) depends on S| = s, then one needs to consider a
formulation based on compound capacity, by taking infimum over all initial states S| = s, as done,
for example, in [19], for finite state feedback channels, otherwise different s give rise to different

rates.
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5.1.3 Lower Bound on Characterization of n—FTwFI Capacity

Next, we give a lower bound on the characterization of n—FTwFI Capacity, for the non-feedback

code of Definition 5.0.2.(b), which follows directly from Theorem 3.1.1.

Corollary 5.1.1. Lower bound on characterization of n—FTwFI Capacity for AGN Channels
Driven by ARMA(a;,c;) Noise

Consider the AGN channel (5.0.1) driven by a time-varying ARMA(a;,c;) noise, i.e., (5.0.2), and
the code without feedback, of Definition 1.1.1.(b). Define the information theoretic optimization
problem of capacity without feedback, i.e., the analog of (5.0.14), by

Ca(k,s) 2 sup H(Y"|s) — H(V"|s) (5.1.47)

Pyixi—ts) =T %Ev{ X (Xz>2}§1<

provided the supremum exists. Then the following hold.
(a) A lower bound on C,Zf b(K, s) is obtained by the conditionally Gaussian, time-varying channel

input distribution without feedback, given by
Pyx1s =Pxix s, 1=1,...,n (5.1.48)

which is induced by the time-varying jointly Gaussian channel input process X", with a represen-
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tation
Xt:Atthl—i_Zty t:2,...,n, (5149)
X, =7, (5.1.50)
Z, € N(0,Kz,), t=1,...,n a Gaussian sequence, (5.1.51)
Z: independent of (V7' XLyl s, r=1,...n, (5.1.52)
V, = (c,—at>St+Wt, Si=s, a€(—o0,m),c € (—o0,), 1=2,....n,  (5.1.53)
Yl‘:Xl+‘/l: <A¢)X,,1—|—(C,—at>st+ﬂ/,—|—zt, t=1,...,n, (5154)
Y, :Zl—i—<c1—a1>Sl—|—W1, S =s, (5.1.55)
Define a new state, S, é < Si ) .Then,
Xi—1
§t+] :Ztgl‘ +§[W[, Where, (5156)
W25 ) 52 (g) B e w2 (5)
At == (0 At y S[ == Xt_l ; Bt == 0 1 and Wt == Zt . (5157)
Y, =C;S; +N,W;, where, (5.1.58)
Cl(—a A) andN,2(1 1), (5.1.59)
1 1 2 1 & 2
B Y ()= Y {(A) Ky +Kz <, (5.1.60)
n t=1 3
(At,Kz) € (—o0,00) X [0,00)  scalar-valued, non-random, (5.1.61)
2
Kx, 2 E, (X,) , (5.1.62)

ES RS (5.1.63)

A —_ =\ /=— =21\T
K,:Es{<St—St)<S,—St> } t=1,....n. (5.1.64)

Further, (:S’\,,Kt),t =1,...,n are determined by the generalized time-varying Kalman-filter and
generalized time-varying difference Riccati equation (DRE), of estimating s fromY", and Kx, ,t =

1,...,n is determined by the time-varying Lyapunov difference equation, given below.
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Generalized Kalman-filter Recursion for (5.1.49)-(5.1.59) [8, 9]:

§[+1 :Zt§t+M:lfb(K;)It, 31 :/gl, t= 2,...,” (5165)

I,éY,—Es{Y, YH} (5.1.66)

—CS,+NW, - CES{E Y’_l} (5.1.67)
_C, (St st) YNW, LL=Zi+Wi, t=1,....n, (5.1.68)
MK, 2 (Z,K,CT +EEWWIT) (N,Fmﬁf +5,K,CT) ' here, (5.1.69)
Kw, 2 (Kw, Kz). (5.1.70)
I, t=1,....n, anorthogonal innovations process. (5.1.71)

Generalized Time-Varying Difference Riccati Equation:

=T —=— —T (= T —— —T\(m, =T —= T\ (+, =T == —T\1
Kio1 = AKA; +BKy B - (AKC, +BEwN, ) (CKC +NKwN;) (AKC +BEwN,) |
(5.1.72)
K;>0, Kj=0, t=1,...,n, (5.1.73)
Time-Varying Difference Lyapunov Equation:
Ky, = A’Kx_,+Kz, Kx >0, Kx,=0, t=1,...,n, (5.1.74)

Error Recursion of the Generalized Kalman-filter, E,nfb 2 S;—Sit=1,....n:

Etnﬁ =Si11 =S4
— A4S, +BW, —AS: — M(K)I,
— A4S, +BW, — A5 — M(K,) [@ (S} —E) +N,Wt]
(Z, —M(Kt)a> (St —St) + (E, —M(K,)]V,)W,, (5.1.75)
—5,-8,=0, t=1,..n (5.1.76)

(b) The lower bound characterization of the n—FTwFI capacity C,rl’fb(K‘, s), defined by (5.1.47), is

T —— T
1 & K N KwN
CZfb(K,s)ZCZ]Z;;(K,S)é sup _Z (Ct tCl—f— ! W t)
’ _ 25 N,Kw N,
(Aikz ) i=1n: Ly 1{(/\,) Ky, +Kz J<x 1= 1AWy
(5.1.77)

subject to: K;,Kx,,t = 1,...,n satisfy recursions (5.1.73), (5.1.74), and Kz, > 0,t =1,...,n
(5.1.78)
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Proof. (a) Similar to the feedback capacity of Theorem 5.1.1, by the maximum entropy of Gaus-
sian distributions, the maximizing distributions Py, yi-1 5 ,# =1,...,n for the optimization problem
(5.1.47) are conditionally Gaussian, such that (X",Y") for S| = s, is jointly Gaussian, the average
power constraint is satisfied, and condition (5.0.9) is respected. Clearly, the restriction to distribu-
tions that satisfy (5.1.48) result in a lower bound on C,':f b(K, s) defined by (5.1.47). Note that the
restriction to (5.1.48) is precisely the restriction of feedback distributions (5.1.21) to non-feedback
distributions. The rest of the equations follow, similarly to Theorem 3.1.1.(a), if the channel is
used without feedback, i.e., X; = A;X;_| +Z;. The rest of the expression of part (a) are obtained as

in Theorem 3.1.1.(a). (b) The derivation follows from the expressions of part (a). [

Remark 5.1.3. Corollary 5.1.1 is useful, because the lower bound is much easier to compute,
compared to C,',lf b(K,s), defined by (5.1.47), where the supremum is taken over all jointly Gaus-
sian channel input processes X",n = 1,2,..., without feedback or distributions without feedback,

PXZ‘XFISI ga=1,2,....

5.2 New Formulas of Feedback Capacity

In this section we derive a closed form formulae for feedback capacity C*(k,s), defined by
(5.0.16), and lower bounds on capacity without feedback confb (x,s), defined by (5.0.17), of AGN
channels driven by ARMA (a,c), stable and unstable noise, when channel input strategies or distri-
butions are time-invariant. This section includes material on basic properties of generalized DRE:s,

AREs, and definitions and implications of the notions of detectability and stabilizability.

5.2.1 Characterization of Feedback Capacity for Time-Invariant Channel
Input Distributions

We restrict the class of channel input distributions of Theorem 3.1.1 to the class of time-invariant
distributions. We note that our restriction is weaker than the analysis in [2], which presupposes
stationarity or asymptotic joint stationarity of the joint Gaussian process (X", Y"),n=1,2,... (the
author also considers a double sided joint process). However, unlike [ 1, 2], we do not assume the
ARMA (a, c) noise is stable.

By Theorem 3.1.1, and restricting the channel input strategies to the time-invariant channel input
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strategies, (As,Kz) = (A”,K;),t = 1,...,n, with corresponding X; = X/, SA} = §;’, Y, =Y =1,

E; = E°, K; = K? (not necessarily stationary), then we have the following representation®.

Xt0:A°°<St—§§’> YZ0, X0=Z0, t=2,....n, (5.2.79)
V,:<c—a>s,+W,, Si=s, t=2,...n, (5.2.80)
YO =X 1V, :A“(S, —§f> n (c—a)S;—I—WmLZ,O, f=1,....n, (5.2.81)
YO =70+ (c—a>51 AW, S =s, (5.2.82)
7 ~N(0,K7), t=1,...,n is a Gaussian sequence, (5.2.83)
Z° isindependent of (V! X%l yol=1 g\ t=1,... n, (5.2.84)
T
COV({ WKIZO } ’ [ W,th;’ } )= [ % KWIT/K; ! (5-2.85)
%E{ZZI (x)*} = :lt):l (A™)?K? + K3 < K, (5.2.86)
(A“,K}z) € (—o0,00) X{O,oo) are non-random, (5.2.87)
Pyos, yoi1.s, = P7(dx|S;, y7ls), t=1,...,n, thatis, the distribution is time-invariant
(5.2.88)
where (§,0 ,K?),t = 1,...,n satisfy the generalized Kalman-filter and time-invariant DRE, given
below.

Generalized Kalman-filter Recursion:

§§’+1 =87+ M(KS A KD, 5 =35, (5.2.89)
ey’ (c—a)E;’ P=Z0+W, t=1,..n, (5.2.90)
= ( +c— )( )+Z"+Wt, (5.2.91)

2 -1
M(K?,A™,KZ) = (Kw+cl<"< +c—a>> (K§°+Kw+ <A°°—|—c—a> Kf) . (52.92)
I, t=1,...,n, anorthogonal innovations process. (5.2.93)

Generalized Time-Invariant Difference Riccati Equation:

2
(Kw +ckp (A" +c—a))
0 =c*K? + Ky —

S K0, KI=0, t=1,..n,
(K;+KW+(A°°+c—a) Kf)
(5.2.94)

The variation of notation is judged necessary to distinguish it from the time-varying channel input strategies
(A+,Kz,) and corresponding distributions Py ix-1y-1g = Po(dx ¥y s) =1, 0
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We should emphasize that the Kalman-filter recursion (5.2.89) is time-varying, but the DRE (5.2.94)
is time-invariant.

Then the analog of the error recursion (5.1.41), for time-invariant strategies, is the following.

/\ ~
Error Recursion of the Generalized Kalman-filter, EY = S; —S7,t =1,...,n:

0 = F(KO, A" K3)E? —M(Kf,A‘”,K}")(Zf+Wt) YW ES=0,1=1,....n, (5.2.95)
Z°eN(0,KS), t=1,2,....n. (5.2.96)

t
4

F(K,A°KS) 2 ¢ — M(K?, A", K3) (A°° —l—c—a), (5.2.97)

Note that recursion (5.2.95) is linear time-varying. Hence, lim,— . K7 = lim,_ ES{ (E,f)z}
is not expected to exists, and to be bounded, for arbitrary (F (K7, A*,K5),M(K?,A*,K7)),t =
1,2,.... Indeed, the convergence properties of the sequence K7,K7,...,K; generated by (5.2.94),
as n — oo, are characterized by the detectability and stabilizability conditions [, 9] (which
we introduce shortly). These conditions ensure existence of a finite, unique nonnegative limit,
lim, ., K = K, such that the stability property holds: lim, .. F (K7,A”,K;) = F(K*,A”,K}) €

(—1,1), and moreover that K* > 0 is the unique solution of a generalized ARE.

Next, we define the characterization of the n—FTFI capacity, its per unit time limit, and the alter-

native definition, with the per unit time limit and maximization interchanged.

Definition 5.2.1. Characterizations of asymptotic limits
Consider the characterization of the n—FTFI capacity of Theorem 3.1.1, restricted to the time-
invariant strategies (Ay = A”, Kz, = K*),t = 1,...,n, as defined by (5.2.79)-(5.2.94).

(a) The characterization of the n—FTFI capacity for time-invariant strategies is defined by

2
"] A +c—a) K’ +K;+ K

Co(x,s) 2 sup Z—log<( ) KE+ K W) (5.2.98)

2 =12 Ky

(A=kz): Iyr, (A°) Kevrky<x'=
subject to: K{,t = 1,...,n satisfies recursion (5.2.94) and K7 > 0,t =1,...,n (5.2.99)
provided the supremum exists in the set. The per unit time-limit is then defined by
0 AR 1 0
C’(x,s) = lim —Cy(x,s). (5.2.100)

n—soo 1

provided the supremum exists and the limit exists and it is finite.

(b) The characterization of the n—FTFI capacity for time-invariant strategies, with limit and max-
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imization interchanged is defined by

A°°+c—a)2Kf+K§°+KW)

C=(k,s) = sup nli_n}wr—lzilog(( o

(A=Kz): timy e LY (Aw)zK;’+K;§x =1
(5.2.101)

provide the limit exists and it is finite and the supremum also exists in the set.

To ensure C*(k,s) defined by (5.2.101) is well defined, i.e., that the optimal time-invariant channel
input strategy or distribution ensures the limit exits, it is finite, and C*(k,s) is independent of
s, we shall impose condition (C1). We shall express condition (C1) in terms of properties of
generalized time-invariant DREs and AREs, introduced in the next section. That is, we shall

address Problem 5.0.1.

5.2.2 Convergence Properties of Time-Invariant Generalized DREs

We recall that in the study of mean-square estimation, and in particular, the filtering theory, of
time-invariant jointly Gaussian processes described by linear recursions, driven by Gaussian noise
processes, and of jointly stationary Gaussian processes, the concepts of detectability and stabiliz-
ability, have been very effective [8, 9]. In this section, we summarize these concepts in relation to
the properties of generalized DREs and ARE:s. It is then obvious how these concepts generalize to

AGN channels driven by Gaussian noise with limited memory.

Let {K;,t = 1,2,...,n} denote a sequence that satisfies the time-invariant generalized DRE with

arbitrary initial condition

(KW+cKt<A+c—a>>2

K. 1=K, + Ky — . Ki=given, t=1,...,n. (5.2.102)

2
(KZ+KW+ <A+c—a> Kt>
We note that a solution of (5.2.102) is a functional of the parameters of the right hand side, that
is, K; = Ky(a,c,Kw,A,Kz,K;),t = 1,...,n. To discuss the properties of the generalized DRE
(5.2.102), we introduce, as often done in the analysis of generalized DREs [9] and [&, Section 14.7,
page 540], the following definitions.

A

A A A
A=c¢, C=A+c—a, A*=c—KyR'C, B~1 2

S

1
Ky B (5.2.103)

REK,+Kw, B2 1—Ky(Kz+Kw) . (5.2.104)
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By (5.2.92) and (5.2.97), we also have

M(K,A,Kz) = (Kw +AKC) (R+ (C)°K) o (5.2.105)

F(K,AKz)=A—M(K,AKz)C. (5.2.106)

The generalized algebraic Riccati equation (ARE) corresponding to (5.2.102) is

2
(Kw—l—cK(A—l—c—a))
K=K + Ky —

., K>0. (5.2.107)
(KZ+KW+<A+c—a> K)

Next, we introduce the definition of asymptotic stability of the error recursion (5.2.95).

Definition 5.2.2. Asymptotic stability
A solution K > 0 to the generalized ARE (5.2.107), assuming it exists, is called stabilizing if
|F(K,A,Kz)| < 1. Inthis case, we say F (K, A, Kz) is asymptotically stable, that is, |F (K,A,Kz)| <

1.

With respect to any of the above generalized DRE and ARE, we define the important notions of

detectability, unit circle controllability, and stabilizability.

Definition 5.2.3. Detectability, Stabilizability, Unit Circle controllability

(a) The pair {A, C } is called detectable if there exists a G € R such that |A — GC| < 1 (stable).
(b) The pair {A*,B*%} is called unit circle controllable if there exists a G € R such that |A* —
B*1G| # 1.

(c) The pair {A*,B*’%} is called stabilizable if there exists a G € R such that |A* — B*7%G| <1

The next theorem characterizes, detectability, unit circle controllability, and stabilizability [&, 20].

Lemma 5.2.1. [&, 20] Necessary and sufficient conditions for detectability, unit circle controlla-
bility, stabilizability

(a) The pair {A,C } is detectable if and only if there exists no eigenvalue, eigenvector {A,x},
Ax = Ax such that |A| > 1, and such that Cx =0

(b) The pair {A*,B*’%} is unit circle uncontrollable if and only if there exists no eigenvalue, eigen-

vector {A,x}, xA* = Ax such that |A| = 1, and such that B*ix=0.
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(c) The pair {A*,B*’%} is stabilizable if and only if there exists no eigenvalue, eigenvector {A,x},
XA* = xA such that |A| > 1, and such that xB*7 =0

In the next theorem we summarize known results on sufficient and/or necessary conditions for con-
vergence of solutions {K;,t = 1,2,...,n} of the generalized time-invariant DRE, as n — oo, to a

nonnegative K, which is the unique stabilizing solution of a corresponding generalized ARE.

Theorem 5.2.1. /8, 9] Convergence of time-invariant generalized DRE

Let{K;,t =1,2,...,n} denote a sequence that satisfies the time-invariant generalized DRE (5.2.102)
with arbitrary initial condition.

Then the following hold.

(1) Consider the generalized RDE (5.2.102) with zero initial condition, i.e., Ki = 0, and assume,
the pair {A,C } is detectable, and the pair {A*,B*’%} is unit circle controllable.

Then the sequence {K; :t = 1,2,...,n} that satisfies the generalized DRE (5.2.102), with zero

initial condition K1 = 0, converges to K, i.e., lim,__,. K;,, = K, where K satisfies the ARE

(KW+CK(A+c—a)>2

K=K+ Ky — (5.2.108)

(KZ+KW+ (A+c—a)2K>

if and only if the pair {A*,B*’% } is stabilizable.

(2) Assume, the pair {A,C} is detectable, and the pair {A*,B*’%} is unit circle controllable. Then
there exists a unique stabilizing solution K > 0 to the generalized ARE (5.2.102), i.e., such that,
|[F(K,A,Kz)| < 1, if and only if{A*,B*%} is stabilizable.

(3) If {A,C} is detectable and {A*,B*’%} is stabilizable, then any solution K;,t = 1,2,...,n to the
generalized RDE (5.2.102) with arbitrary initial condition, K| is such that lim,__,. K,, = K, where
K > 0 is the unique solution of the generalized ARE (5.2.102) with |F(K,A,Kz)| < 1, i.e., it is

stabilizing.

We should mentioned that Theorem 5.2.1.(1) follows by combining [8, Lemma 14.2.1, page 507]
of classical DREs and AREs with [8, Section 14.7] of generalized DREs and AREs. Theo-
rem 5.2.1.(2) is given in [8, Theorem E.6.1, page 784]. Theorem 5.2.1.(3) is obtained from [9,
Theorem 4.2, page 164], and also [&].

From the properties of generalized DREs and AREs of Theorem 5.2.1, we have the next lemma.
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Lemma 5.2.2. Properties of Solutions of DREs and AREs for different cases

Consider the definitions (5.2.103) ,(5.2.104).

(1) Suppose ¢ € (—1,1). Then the pair {A,C} is detectable.

(2) Suppose Kz = 0. Then the pair {A*,B*’%} is unit circle controllable if and only if |A —a| # 1.
(3) Suppose Kz = 0. Then the pair {A*,B*’%} is stabilizable if and only if |A —a| < 1.

(4) Suppose ¢ € (—1,1),Kz = 0. The sequence {K;,t = 1,2,...,n} that satisfies the generalized
DRE with zero initial condition, i.e.,

2
(KW-I-CK,(A-I—c—a)>
Ki1 =K+ Ky —

e, Ki=0, t=1...n (5.2.109)
<KW + (A+c—a) K[>
converges to K, i.e., lim,__, K, = K, where K satisfies the generalized ARE (5.2.107) if and only
if the {A*,B*’%} is stabilizable, equivalently, |A —a| < 1.

(5) Suppose Kz =0, and |A — a| # 1, with the corresponding ARE,

2
KW+CK(A+c—a>
2

K =K + Ky — . (5.2.110)
(Kw+ (A+c—a)’K)
Then, the two solution, are given by
2
K ((A—a)*~1)
K=0, K= , Ac—a+#0 (5.2.111)

<A+c—a>2

Moreover, K =0 is the unique and stabilizing solution K > 0 to (5.2.110), i.e., such that |F (K,A,Kz)| <
1, if and only if |A —a| < 1.

Proof. See Appendix 7.10. [

In the next remark we make some comments on [2, Theorem 6.1], i.e., that a zero variance of the

innovations process is not the optimal value.

Remark 5.2.1. Asymptotic stationarity of optimal process of [?]
Consider the characterization of feedback capacity given in [2, Theorem 6.1, ¥ satisfying eqn(61)],
in which the variance of the innovations process is replaced by a zero value (see comment be-

low [2, Theorem 6.1]). Then ¥ = 0 is one solution of [2, ¥ satisfying eqn(61)].
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We ask: what are necessary and/or sufficient conditions for convergence lim,. %, = ¥, where
Y. > 0 is the unique limit that stabilizes the estimation error of the noise?

By the multidimensional version of Theorem 5.2.1.(1), and Lemma 5.2.2.(3), then the limit lim,__.. X,
converges if and only if the stabilizability condition holds. For the ARMA(a,c) noise model, since
the characterization of feedback capacity given [2, Theorem 6.1], presupposes a zero variance
of the innovations process, i.e., K; = 0, then the value of feedback capacity [?, Theorem 6.1,

Crp = O,VK’ S [0,00)].

5.2.3 Feedback Capacity of AGN Channels Driven by Time-Invariant Sta-
ble/Unstable ARMA (a,c) Noise

In this section we analyze the asymptotic per unit time limit of the n—FTFI capacity of Defi-
nition 5.2.1, by making use of the properties of generalized DREs and AREs of Section 5.2.2 to
identify sufficient and necessary conditions, such that condition (C1) holds. Then we derive closed
form expressions for C*(k,s) = C*(x),Vs defined by (5.2.101). We show that, there are multiple

regimes of feedback capacity; in some regimes feedback does not increase capacity.

First, we define the main problem of asymptotic analysis.

Problem 5.2.1. Problem of feedback capacity C*(K,s) for stable/unstable time-invariant ARMA (a,c)
noise

Consider the characterization of the n—FTFI capacity of Theorem 3.1.1, and restrict the admissi-
ble strategies or distributions to the time-invariant strategies or distributions, defined by (5.2.79)-
(5.2.87), which generate (X", Y*").

Define the per unit time limit and maximum by

(A°°+c—a)2K;’+K;’+KW)

A 1 &
C(k,)2 max lim — Y lo ( 5.2.112
(x,5) P L t; g o ( )
where the average power constraint is defined by
L@["g,w}(ic)é{(A"",K}"):Xt":A""(St—@’)qLZt", XO=270 1=2,....n,
Z° € N(0,K3), K >0, nll_r>no°ZEs<[_Zl (x?) ) :nh—r?ooﬁ,;(/\ )2K? + K < K}. (5.2.113)

Determine sufficient and/or necessary conditions such that

(a) the per unit time limit exists, it is finite, i.e., condition (C1) holds, and
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(b) the maximum over (A”,K3) exists, and the optimal strategy is such that C*(x,s) = C* (k) is

independent of the initial state s.

In the next theorem we provide the answer to Problem 5.2.1, by invoking Theorem 5.2.1.

Theorem 5.2.2. Feedback capacity C*(Kk,s)
Consider the Problem 5.2.1, defined by (5.2.112), (5.2.113).
Define the set

oo A oo o0
77 2{ (A" K5) € (—0,0) x [0,%9) :
(i) the pair {A,C} = {A,C(A™)} is detectable,
(ii) the pair {A*,B*’%} = {A*(K;’),B*’% (K7)} is stabilizable}. (5.2.114)

Where {A,C}, {A*,B*’%} are given by (5.2.103), (5.2.104).
Then,

A 1 <(A°°+c—a)2K°°+K§°+KW>

C(k,s) = C(x) .

(5.2.115)
(A=Kk3)e2=(x) 2

that is, C*(K,s) is independent of s, where
P (k) é{(A‘”,K;) e 77Ky >0, (A°)’K"+KS <k,

2
(KW+CK°°(A°°+c—a))
K® =K+ Ky —

(K; + K + (A= +c— a)2K°°>

K% > 0 is unique and stabilizable, i.e.,

F(K=,A",KS)| < 1}, (5.2.116)

F(K*,A",K3) éc—M(K“,Aw,K;)(Aerc—a), (5.2.117)
2 —1

M(K= A" K7) = (K + K= (A" +c—a) ) (K7 +Kw+ (A" +c—a) k) (52.118)

provided there exists k € [0,00) such that the set 2*(K) is non-empty.

Moreover, the maximum element (A*,K5) € &%(x), is such that,

(i) if the noise is stable, ie., a € [—-1,1], ¢ € (—1,1) then the input and the output processes
(X?,Y?),t = 1,... are asymptotic stationary, and

(ii) if the noise is unstable i.e., a ¢ [—1,1], ¢ ¢ (—1,1) then input and the innovations processes

(X?,1?),t = 1,... are asymptotic stationary.
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Proof. The sequence {K? :t = 1,2,...,n} satisfies the time-invariant generalized DRE (5.2.94),
with zero initial condition, K{ = 0. Then for elements in the set &, an application of Theo-
rem 5.2.1.(1), (2), states that the sequence generated by (5.2.94) converges, i.e., lim,, . K}, = K,
where K* = K*(A*,K57) > 0 is the unique stabilizing solution of the generalized ARE given in

(5.2.116). Hence, the following summands converge, and so the limits exist and they are finite.

N ) o0 w0\ 2 oo | oo
nh_r)an[;((A )’K?+K7) = (A) K7 +K7, (5.2.119)
n oo _ \2go oo oo _ 2o oo
lim i210g<(A +c—a)°K; +KZ+KW> :llog((/\ +c—a) K*+K; +KW>_
n—>°°2l’lt:1 Kw 2 Ky

(5.2.120)

This establishes the characterization of the right hand side of (5.2.115), and its independence on s.
The last part of the theorem follows from the asymptotic properties of the Kalman-filter, i.e., for (i)
E?,t=1,...1s asymptotically stationary, which implies X’ = A”E/ +Z/,t =1, ..., the innovations
process I/t =1,...and Y? =X’ +V,,t = 1,... are asymptotically stationary, and similarly for (ii)

but Y,? = X+ V;,t = 1,... is not asymptotically stationary, because V;,# = 1,... is unstable. 0

Clearly, the set &7, defined in Theorem 5.2.2 characterizes condition (C1), and (5.2.115) charac-
terizes the asymptotic limit of feedback capacity defined by (5.0.16).
In the next remark, we discuss some aspects of Theorem 5.2.2, and we show that 22 (k) C &?* is

non-empty for some values of k € [0, o).

Remark 5.2.2. Comments on Theorem 5.2.2

(1) Theorem 5.2.2 characterizes the feedback capacity C*(k,s) = C*(x), independently of s, for
AGN channels, driven by stable or unstable ARMA(a,c) noise, i.e., a € (—oo0,00), ¢ € (—o0,00).

(2) Let (A™*K;"™) € 2%(K) denote the optimal pair for the optimization problem C™(x). Then
we need to characterize the set of all k € [0,0) such that (A>*K;"*) € 2% (k).

Case 1-Stable. Ifa € [—1,1], c € (—1,1), then for K; =0, by Lemma 5.2.2, {A,C} is detectable
and {A*,B*%} is stabilizable if and only if |A” —a| < 1. For such a choice of (A”,K;) € 2%,
then K= = 0, and 7% (k) in non-empty for all k € [0,00).

Case 2-Unstable. If |a| > 1, |c| > 1, then for K =0, by Lemma 5.2.2, {A*,B*%} is stabilizable if
and only if |N” —a| < 1, and there exists a G € (—oo,00) such that |A —GC| = |c — G(A” +c—a)| <
1, ie., taking G = 1, then {A,C} detectable if and only if |A* —a| < 1. For such a choice of
(A”,K7) € P, then K* = 0, and hence &% (K) in non-empty for all x € [0,o).
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However, from Case I and Case 2, if we use K;”* = 0 then C*(x) = 0,Vk € [0,). On the other
hand, in Theorem 5.2.3, we show there always exists a non-feedback channel input strategy that

induces a strictly positive achievable rate.

In the next lemma we give necessary conditions for the optimization problem C*(k) defined by

(5.2.115).

Lemma 5.2.3. Necessary conditions for the optimization problem of Theorem 5.2.2
Suppose there exists a policy (A*,K;"™") € 22* (k) for the optimization problem C* (k) in (5.2.115).
Define the Lagrangian by
A oo
LA™ K5, K™, A) = (A +c—a) K™ + K5 + K

_}L]{<K°°—CZK°°—KW) <K§°+Kw+ (A°°—|—c—a)2[{°°) + <Kw+cK°°(A°°+c—a)>2}

. QLQ((A“’)ZK‘” YK x) N ( —K°°> . /14<—K§°>, (5.2.121)
A2 (M A, ) €RY, c#a, Ky > 0. (5.2.122)
Then the following hold.

(i) Stationarity:

)

—Z (A", K; , K™, A =0 5.2.123

aKg (A, K7 K7, )Aw:/\w,*7K;:K;’*,K°°:K°°»*77L:7L* ’ ( )
d

—Z (A", K7, K™, A =0 5.2.124

OA® (A™ K7, K™,4) A==A=* K3=K," K==K=* A=A* ’ ( )
d

—Z(A”,K; , K", A =0. 5.2.125

0K (A™ K7, K, )Aw:Aw,*,K;:K;”*,Kw:K%*,A:)L* ( )

(ii) Complementary Slackness:

A (A”’*)ZK‘”’* FEC - K‘) =0, MK™ =0, AJKZ* =0, (5.2.126)
A (K = K — K ) (K5 + K + (A + e —a) K=) (5.2.127)
2
+ (Kw + K=" (A" +c—a)) | =0, (5.2.128)
Primal Feasibility:
(A™*)?K™* + K" <k, K3 >0, K>* >0, (5.2.129)

2
<K°°’* PR KW> (K;”* + K+ (A e a)2K°°7*> + (KW + K=" (A 4 — a)) —0.
(5.2.130)
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(iii) Dual Feasibility:
A € (=o0,), Ay >0, A7 >0, A7 >0. (5.2.131)
Further, if either K, = 0 or K** = 0 then C*(x) = 0,Vk € [0,00).

Proof. The conditions are a consequence of the optimization problem. We show the last part.

Suppose K ™ = 0. Then by the generalized ARE (5.2.130) there are two solutions, K** = 0

Kw((A® -1 . o
and K=" = WE( a))z ) . By Lemma 5.2.2, then a necessary and sufficient condition for sta-
A®+c—a

bilizability of the pair {A*,B*'é} is |[A”* —a| < 1. Hence, the only non-negative stabilizing so-
lution is K** = 0. However, K=* = 0,K,"" = 0 implies C(k) = 0,Vk € [0,). Now, suppose
K*=* = 0. Then by the generalized ARE (5.2.130), necessarily K, ™ = 0, because Ky > 0 and
hence C*(k) = 0,Vx € [0,00). This completes the proof. O

Achievable Rates Without Feedback for Stable and Unstable ARMA (a,c) Noise

, if
A==0
it exists, it is an achievable rate. For A* = 0, by (5.2.79), the channel input is an independent

If we replace A in the optimization problem of Theorem 5.2.2 by A” = 0, then C*(x)

innovations process X’ = Z/,t = 1,...,n, and hence the code does not use feedback. The rate

C (k) o is indeed achievable, if we ensure the detectability of the pair {A,C} and stabilizabil-

1S

ity of the pair {A*,B*’%} are satisfied, when A = 0. In the next theorem, we show C*(k) o

an achievable rate without feedback, and we calculate its value.

Theorem 5.2.3. Achievable rates without feedback for stable and unstable ARMA(a, c) noise for
the case where ¢ # a

For A= =0, define the set
ocon AN oo
et :{KZ € [0,00) :
(i) the pair {A,C}‘Am = {A,C(Aw)}‘Am  is detectable, (5.2.132)

(ii) the pair {A*,B*2}

1
= {A"(K7), B2 (K7 ‘ s stabili } 2.1
o {A*(K7),B"2(K3)} . stabilizable ;. (5.2.133)

where,
K
A =c, =c—a, A" =c— W (c—a),
A®=0 A>= A®=0 K7+ Kw
1 Kw 3
B3| =Ky (1- ) (5.2.134)
A>=0 Kw + K7
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For A~ =0, define the channel input and output processes by

X0=27° t=1,..n, (5.2.135)
Vi=(c—a)S;+W;,, Vo=vog, Wo=wp, S1=s5 (5.2.136)
Vi =(c—a)Si+ W, (5.2.137)
YO =X°+V, = (c—a)S; + W, +2°, (5.2.138)
YO = (c—a)S; + W +20. (5.2.139)

(1) A lower bound on non-feedback capacity C>"/" (i, s) is Cz’g"f b(K) given by

- —a)’K” +KZ + K,
"t (k,5) > C(k) —CLI’gnfb(K) 2 max —10g<<c a) K"+ K7 + W)
A==0 Kzeao (x) 2 Kw
(5.2.140)
where,
eI () é{Kg’ e oMb KT >0, Ky <k,
2
(KW +cK=(c— a)>
K” = ?K” + Ky — , (5.2.141)
CarT——
K* > 0 is unique and stabilizing, i.e., |F"'* (K=, K3)| < 1}, (5.2.142)
FUP (K= K3 2c — MM (K™, K3)e, (5.2.143)
—1

MY (K, KD) 2 <KW 4 ek (e — a)> (K;’ + Ky + (c— a)2K°°> (5.2.144)

provided there exists K € [0,00) such that the set 2, nf b(K) is non-empty.

Moreover, Czoé"f b(K) is an achievable rate without feedback, i.e., the optimal channel input strategy
induces asymptotic stationarity of the joint input and output process, and (5.2.115) with A~ =0 is
independent of the initial state S| = s.

(2) The lower bound on non-feedback capacity of (1) is given by

2K=* 4+ Kk + Ky
Kw

(o) 1 -
Cpi" (1) = 5 log ((C 2 ) K€" (a,¢Ky) (5.2.145)
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where the two solutions of Riccati equation (5.2.141) and K.,"*, are given by

(1) (1) (1) 50 (1) ) (=) B
(

"

>0, k& X" aKy),

2(c—a) ’

K=" = ;
—k(1-c?)—Kw (1—a? —\/ k(1=c2)+Kw (1-a? +4(c—a 2K K
(1) 4w (=) < )2 " )) feze) b <0, k€ X>"(c,a,Ky),
L 2<C7a)
(5.2.146)
K;’* =K, (5.2.147)
A= (g0 Ky) 2 {K €[0,00): K™ > 0} = [0, c0) (5.2.148)

where, the first solution is the unique and non-negative solution.

Proof. (1) Note that by setting A* = 0, then the representation of channel input X" defined by
(5.2.79)-(5.2.94) is used without feedback, and this is a lower bound on the non-feedback capacity.
Hence, the statements follow from Theorem 5.2.2, as a special case.

Solving (5.2.141) gives (5.2.146). We check the detectability or the pair {A,C}’Aw . and the
stabilizability or the pair {A*,B*2}

A*=0
(a) The pair {A,C} ‘A""*O = {c,c —a} is detectable if there exists a G € R, such that |A — GC| =

lc—G(c—a)| < 1.

Since there is G such that, c — G(c —a) = 0, i.e., G = =, then {A,C} ‘Am:o is detectable.
(b) The pair {A*,B*2} -
Ky >0 K2 >0. O

0 given by (5.2.134), is always stabilizable, because B*2 > 0 and

In the next Definition, we discuss a special case of the time-invariant ARMA(a, ¢) noise, of Defini-

tion 5.0.1.

Definition 5.2.4. Moving Average MA(a) noise
Suppose ¢ = 0. Hence, by Definition 5.0.1 we have the time-invariant stable or unstable noise

MA(a),a € (—oo,00), which is defined by,

V=W, —aW,_,, YteZ.21{1,2,...}, (5.2.149)
Wo € N(0,Kw,), Ky, >0, W € N(0,Kw), t=1,2,..., Ky >0, (5.2.150)
{Wo,W1,...,W,} indep. seq. and indep. of Vy, a € (—oo,0) (5.2.151)
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By Remark 5.0.1, then the state variable is,
A

S =Wy, VteZy (5.2.152)

and the state space realization of V" is

Si1=W, Si=Wy=s, VieZ,, (5.2.153)
V, = —aS;+W, VieZ,, (5.2.154)
Ks, = Kyw,, K, > 0. (5.2.155)

Corollary 5.2.1. Achievable rates without feedback for stable and unstable MA(a) noise
For A~ =0 and c = 0, define the set

ek é{K; € [0,%0) :

) th ir{A,C ={A,C(A” s detectable, 5.2.156
(i) the pair {A, }A"":O,C:O {A,C(A™)} - is detectable ( )
1 1
i) the pair {A*,B"3 = {A*(K3),B*2 (K3 ‘ s stabilizabl }
(ii) the pair { }AMZO,CZO {A*(KY) (K7)} A0t is stabilizable
(5.2.157)
where,
Ky
A =0, C’ =—a, A" =ad———,
A*=0,c=0 A==0,c=0 A*=0,c=0 aKZ-i—KW
1 K 3
B2 =Ky (1- )’ (5.2.158)
A°=0,c=0 Kw + Kz

For A= = 0, define the channel input and output processes by

X0 =27, t=1,....n, (5.2.159)
Y =X’ 4V, = —aS; + W, + 27, (5.2.160)
Y? = —aS, + W +Z. (5.2.161)

(1) A lower bound on non-feedback capacity C>"/" (i, s) is Czoénf b(K) given by
A <a2K°°—|—K§°+KW>

M (ke 5) > C(x — ey max = log
LB KW

A==0,c=0 Kze 7o (k) 2

(5.2.162)
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where,
7y e) 2{Kz € 75 K7 >0, K <x,
K2
K= — Ky — 4 (5.2.163)
(K5 +Kw +a2K>)
K* > 0 is unique and stabilizing, i.e., |F"? (K>, K3)| < 1} (5.2.164)
Further,
- 1 2K 4k + K
CLénbe() _ _log ((l K+ W>’ K€ [0700) (52165)
2 Kw
When,
2
—k— Ky (1—a®) + \/<1<+KW(1 —a?)) +4a2Kix
Ko — . (5.2.166)

2a?

Proof. This is a special case of the Theorem 5.2.3, where we replace the variable ¢ withc =0. [

In the next theorem, we derive closed form expressions for the feedback capacity, by solving the
optimization problem of Theorem 5.2.2.

First, by the definition of the sets & and ﬂg’ nfb of Theorem 5.2.2 and Theorem 5.2.3, we have

P = gttt a2 {(A“,K;) € P A" £ o}. (5.2.167)

Thus, if (A®,K;) € 27>:IP then the channel input process applies feedback, and if Ky € 2§ b

then the channel input process does not apply feedback.

Theorem 5.2.4. Feedback capacity-solution of optimization problem of Theorem 5.2.2

(1) The non-zero feedback capacity C*(x) defined by (5.2.115), for a stable and unstable ARMA(a, c)
noise, i.e, a € (—o0,0), ¢ € (—o0,0), with ¢ # 0,c? # 1,¢* # 2,¢ # a, occurs in the set 2>/, and
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is given, as follows.

2 00, %
| A +c—a) K> + K2 + K
C* (k) = ~ log (( c—a) z W), k€ 4 (a,c,Kw) (5.2.168)
2 Kw
2
Kw (ac— 1) + K<C2 — 1) — K** <a—c>
A= = (5.2.169)
K>* (c2 — 2) <a - c)
2
K+ (A7) K =k, (5.2.170)
{es] A 00k 00, %
H (a,c,KW):{KE[O,oo): K> >0, K >0} (5.2.171)

where K= is the unique positive and stabilizing solution, i.e., |F (K** A>* K7 *)| < 1.

Further, for any x € ¥ *(a,c,Kw), then

Kw(2a —c+a*c® —2d%c) +cx(? — 1)?

K=" = 5.2.172
c(c2—1)(a—c)? ’ ( )
s Kw(a—c)*(1 —ac)

AT = 5.2.173
Kw(2a — c+a*c® —2a%c) + ck(c? —1)%’ ( )
K(c(c2 —1)(Kw(2a — c +a*c® —2a%c) + cx(c® — 1)2> — K% (a—c)*(1 —ac)?

K, =

c(c2—1) (KW(Za —c+a2c3 —2a%c) +cx(c? — 1)2>
(5.2.174)

(2) The non-zero feedback capacity C*(x), Kk € #*(a,c,Kw) of part (1), is restricted to the

regions:
Region A: ¢ € (1,v/2) U (v/2,%0),a [% H L for K> Koin, (5.2.175)
1 _
Region B: c € (—00,—\/5) U (— \/E,—l),a € (—00, E} U [ﬁ,oo), for K > Kyin. (5.2.176)
where,
. B Kw (1 — ac) (Zac —acd -+ \/63 (a2§3 —6ac+4a+4c3 — 3c)) (52.177)
2¢2 (2 —1)
Proof. See Appendix 7.11. 0

Theorem 5.2.5. The non-zero feedback capacity C*(x) by Theorem 5.2.2, for a stable and unsta-
ble ARMA(a,c) noise, i.e, a € (—o0,), ¢ € (—o0,00), with ¢ # 0,c? # 1,¢* # 2,¢ # a, occurs in
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Figure 5.2.1: Feedback capacity C*(x) for k € £ *(a,c,Ky) based on (5.2.115) and lower bound

on nofeedback capacity Cfl}nf b(K) for k € [0,00) based on (5.2.145), of the AGN channel driven
by ARMA(a,c) noise, for various values of a = 0.2, ¢ € (—o0,00) and Ky = 1.

the set 2 and is given, as follows.

2 00, %
1 A" +c—a)" K"+ K, +K
lOg(( ) Z w

C*(k) ==
(k) =5 Ko

2
Kw (ac— 1) + K(c2 — 1> — K** (a—c)
AT =

k= (@-2) (o)

2
K+ (A7) K =k,

H(a,e.Kw) = {xe0,): K2 >0, K7 >0f

where K™ is the unique positive and stabilizing solution, i.e.,

>, ke X(a,c,Ky)

F(K™* A" K3 < 1.

(5.2.178)

(5.2.179)

(5.2.180)

(5.2.181)
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Further, for any x € > (a,c,Kw), then

Kw(2a —c+a’c® —2a%c) +cx(c® — 1)?
c(c2—1)(a—c)? ’

B Ky (a—c)*(1 —ac)

"~ Kw(2a—c+a*c® —2a%c) +ck(c2 —1)%’

K(c(c2 —1)(Kw(2a — ¢+ a*c® —2a%c) +ck(c? — 1)2> — K% (a—c)*(1—ac)?

Koo7>k —

(5.2.182)

A (5.2.183)

c(c2—1) (KW(2a —c+a?c3 —2d%c) +cx(c? — 1)2>
(5.2.184)

Proof. See Appendix 7.11. [
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Rate (bits/Channel use)
I
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-+c = 0.5, a = 0 Achievable rate without feedback
=c = 0.5, a = 0.2 Achievable rate without feedback
-c = 0.5, a = 0.4 Achievable rate without feedback

Figure 5.2.2: Lower bound achievable rate for no-feedback Czc};"f b(K) for x € [0,00) based on
(5.2.145), of the AGN channel driven by ARMA (a,c) noise, for various values of a € (—co,o0),
c=0.5and Ky = 1.

From the previous theorem it then follows the next theorem, that states feedback does not increase
capacity C*(x) defined by (5.2.115), for the two regions .#*"/?(a,c) and #="/*(a,c,Ky).

Theorem 5.2.6. Feedback does not increase capacity for certain regions
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-+ ¢ = 0, a = 0.2 Achievable rate without feedback

Figure 5.2.3: Comparison between AR(c) noise and MA(a) noise, for various values of a € 0,0.2,
ce€0.2,0and Ky = 1.

Feedback does not increase capacity C*(x) defined by (5.2.115), for the following regions:

Region 1: Outside the Region A (5.2.185)
—c 1
00 — < Kni 2.
e.g,c€ (LVU(V2e), a€ [, ], fork < iun, (5.2.186)
Region 2: Outside the Region B (5.2.187)

e.g. c€ (—o0,—V2)U(-v2,-1), ae(—oo,%]u[cz_—_cz,oo), for K < Kin,  (5.2.188)

Region3: c€ [—1,1],a €R for k € [0,0). (5.2.189)

Where |c| > 1 corresponds to the unstable noise, and |c| < 1 to the stable.

Proof. By Theorem 5.2.4 we deduce that, if A” #£ 0, i.e., if feedback is used, then there does
not exists a non-zero value of C*(x), for k € [0,00). On the other hand, by Theorem 5.2.3, an
achievable rate without feedback exists for all k € [0,e0), by letting A~ = 0, and Cfé"f b(K) is a

lower bound on capacity without feedback. [

For the regions of Theorem 5.2.3 it doesn’t exist a feedback capacity. However, there is an achiev-

able rate (5.2.165), which is calculated in Theorem 5.2.3. Further, it’s important to understand that,
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for the regions that there exists a feedback capacity, we have an achievable rate too, but it’s less than
the feedback capacity. In general, we have always an achievable rate, and sometimes a greater feed-
back capacity. In Figure 5.2.1, we see that, whether |c| < 1, then we have only an achievable rate.
Otherwise, for |c| > 1, we have an always an achievable rate, but there exists a greater feedback
capacity after a specific power constraint. It’s also important to emphasize that we keep the value
of a as a constant to show that the feedback capacity and the achievable rate for no-feedback are
analogous with the value c. These illustrate that feedback capacity C*(k) for k € £ (c,Kw ) is an
increasing function of the parameter, |c| € [1,o0), that is, the more unstable ARMA (a, c¢) noise the
higher the value of capacity C* (k). Further, the lower bound on nofeedback capacity Cfé"f b(K) is
achievable for all x € [0,0), for stable and unstable ARMA(a,c),a € (—oo0,00), ¢ € (—o0,0) noise,
because the IID channel input process, induces asymptotic stationarity and ergodicity of the chan-
nel output process. As illustrated in Figure 5.2.1, for values of |c| > 1, feedback capacity occurs at
K > Kpin, from (5.2.177).

In Figure 5.2.2, we decided to keep the value of ¢ as a constant, because we need to show that
whether the value of a is increasing the achievable rate is decreasing. For a = 0, we have the max-
imum achievable rate that we could have.

We have in mind that, the AGN channel is driven by ARMA (a,c) noise, which consists of AR(c)
and MA(a). So, in the Figure 5.2.3 we compare which of the two noise models, gives more
Achievable rate and we see that AR(c) noise model is better.

In conclusion, we have always an achievable rate, but feedback capacity only in Regimes (5.2.175),
(5.2.176). Further, whether the initial state S; = s is known to the encoder and decoder, it’s better

AGN channel driven by AR(c).
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Conclusion

The n-finite transmission feedback information (FTFI) capacity for additive Gaussian noise (AGN)
channels with feedback, is characterized, and lower bounds on the characterization of the n-finite
transmission without feedback information (FTwFI) capacity are derived. The channel is driven by
unit memory stable and unstable Autoregressive Moving Average Noise, where the initial state is
known to the encoder and the decoder. It is shown that closed form feedback capacity formulas are
derived, when channel input strategies or distributions are time-invariant, which does not always
exist e.g., the noise is stable for certain unstable noise. However, lower bound on the non-feedback
capacity is also derived, based on Markov channel input distributions, i.e., induced by a Gaussian
Markov channel input process, and also by an independent and identically distributed channel
input process. This achievable rate always holds for any autoregressive moving average noise

model, whether it is stable or unstable.

6.1 Future Work

In the future, we would be interested to deal with the following topics:

(1) To derive a closed form expression of feedback capacity, when the AGN channel is driven by
Autoregressive Moving Average Noise, where the state is not known either to the encoder or the
decoder.

(2) To derive a closed form expression of feedback capacity, when the channel is driven by Au-
toregressive Moving Average Noise with memory.

(3) Work on several problems, with time-varying channel input strategies.

95
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Appendix

7.1 Proof of Theorem 2.1.1

(a) Consider an element of & (k). Then the conditional entropies H*(Y;[Y'~1),r = 1,...,n are
defined, provided the conditional distributions of ¥; conditioned on Y'~!, i.e., P?(dy,|y' 1), for

t =1,...,n, are determined. By the reconditioning property of conditional distributions, then

Pe(dy; [y 1) :/Pf(dytly’_l,w, VY P (dw,av Ty Y, 1=0,...,n (7.1.1)

:/Pt(dyt|Et(w,v’_1,yt_1),vt_l) P (dw, vy ™h), by (2.1.15), (2.1.16).
(7.1.2)

Hence, (2.1.19) is shown. Similarly, consider an element of @[07,4(1(). Then the conditional
entropies H (Y;[Y'~1),t = 1,...,n are defined, provided the conditional distributions of ¥; con-
ditioned on Y1, ie., Ptp(dyt y*~!) for t = 1,...,n, are determined. By (2.1.7) and (2.1.8), then
(2.1.20) is obtained. Since g[o,n} (x) C @[Oﬂ} (x) it then follows the inequality (2.1.18).

(b) This part follows by the maximum entropy principle of Gaussian distributions. That is, under
the restriction (1.1.10), then a conditional Gaussian element of {P(dx,[V' "1,y 1), =1,...,n} €
ﬁ[oﬂ} (x), with linear conditional mean and nonrandom conditional covariance induces a jointly

Gaussian distribution of the process (X”,Y"), such that the marginal distribution of Y” is jointly

Gaussian. Below, we provide alternative proof that uses the Cover and Pombra characterization of

96
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the n—FTFI capacity, given by (1.2.20)-(1.2.19). Consider (1.2.20) and define the process

7,27, —E{Zl}, (7.1.3)
Z éZ—E{Z X’*l,vffl,yffl}, t=2,....n, (7.1.4)
=7, —E{Z V’_I,Yt_l}, since X'~ ! is uniquely defined by (V/~!,y'~1). (7.1.5)

Then, Z; is a Gaussian orthogonal innovations process, i.e., Z; is independent of (X t—1 V! _1,

Y'=1), fort=2,...,n,and E{Z,} =0, fort =1,...,n. By (1.2.20), we re-write X;,f = 1,...,n as,

r—1

X, =Y B Vi+Z, t=1,....n, (7.1.6)

j=1
t—1 _

=Y BV, +E{Zt VH,YH} 7. by(7.15) (7.1.7)
j=1

(@' = ( V! -

=) B ;Vi+I; ( yi-1 ) +7;, for some I'; nonrandom (7.1.8)
j=1
t—1 t—1

=Y 1 Vvi+ Y. T7¥;+2, forsome (I I?) (7.1.9)
j=1 j=1

=Vl 12y~ 17, by definition (7.1.10)

where (a) is due to the by joint Gaussianity of (Z",X",Y"). From (7.1.10) and the independence
of Z; and (X'~!, V=1 Y'=1), fort =2,...,n, it then follows (2.1.21), and also (2.1.22).

(c) The statements follow directly from the representation of part (b), while the independence of
Z" and V" is due to the code definition, i.e., Definition 1.1.1.(1v).

(d) The statement follows from (a)-(c).

7.2 Proof of Proposition 2.1.1

(a) The covariances of the realization of the ARMA(a,c) noise of Example 2.1.2.(b) satisfy the

recursions

2
Ks,, =Ks,+Ky, Koy =(c—a)Ks, Ky=(c—a)Ks+Ky, VeZ (@211

1

If the recursion Ky, , = czKSt + Kw 1s initiated at the stationary value Kg, = dj; = lli—”éz, then

Ks,,, = dy1,Vt = 2,3,...,, and hence §;,Vt € Z is stationary, which then implies stationarity of
Vi, Vt € Z. Hence, if (2.1.74) holds then (V;,S,),Vt € Z is stationary. By simple calculations it
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then follows (2.1.75). Similarly for the one-sided ARMA(a,c). (b) By the above covariances,
for all Kg, > 0, then lim,, .. K, = K’, where Kg* = cngf’ + Kyw, which then implies K¢* = dj;.
Similarly, lim,, . Ks, v, = Kg‘:v =dy2, lim, . Ky, = K = d»>. The initial data are determined

from mean-square estimation of jointly Gaussian RVs, as follows.

SAl :E{Sl ‘V()} = E{CS() —f—W()’V()}

-1
:E{cso +W0} +cov(cSo+W0,V0){cov(v0,vo)} (VO —E{VO}) (7.2.12)
:<cd12 +Kw>d2_21V0, (7.2.13)

2 -1
1 =cov(S1, S ‘vo) — cov(S1,81) — {cov(Sl,Sl)} {cov(vo,vo)} (7.2.14)
=dy —d}dy, (7.2.15)

The last part is obvious.

7.3 Proof of Theorem 2.2.1

(a) Clearly, (2.2.104)-(2.2.99), follow directly from Theorem 3.1.1, and the preliminary calcula-
tions, prior to the statement of the theorem. However, (2.2.104)-(2.2.99) can also be shown inde-
pendently of Theorem 3.1.1, by invoking the maximum entropy property of Gaussian distributions,
as follows. By Lemma 2.1.1, then H(V") = Y"_, H(;). By the maximum entropy principle, then
H(Y") is maximized if Py~ is jointly Gaussian, the average power constraint holds, and (1.1.10)
is respected. By (2.2.83), and (2.2.93), (2.2.94), if (2.2.93)-(2.2.99) hold, then (X",Y") is jointly
Gaussian, and hence H(Y") is maximized. This shows (a).

(b) Step 1. By (2.2.97) and (2.2.98), an alternative representation of X" to the one given in Theo-
rem 3.1.1, and induced by (2.1.23), is

X =08 +02v""' 17, t=1,...,n, (7.3.16)
7, satisfies (2.2.101). (7.3.17)

for some nonrandom (I"', I"?). Upon substituting (7.3.16) into the channel output ¥” we have
Y, =S, +T2Y'" "'+ Z, 4V, t=1,....n (7.3.18)
:(r} +C,)§,+F§Yf—1 Y Z 4k, by (2.1.41). (7.3.19)

The right hand side of (7.3.19) is driven by two independent processes, Z;,t = 1,...,n and [;,t =

1,...,n, which are also mutually independent. Further, the right hand side of (7.3.19) is a linear
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function of a state process S‘,,t =1,...,n, which satisfies the recursion (2.1.39):
Siv1 = A8+ M (), Si = us,, (7.3.20)

Note that the right hand side of (7.3.20) is driven by the orthogonal process f;, which is independent
of V=1 and hence of S, and also independent of Y. By (2.2.101), Z is independent of ¥'~! and
of S,. By (7.3.19) and (7.3.20), it follows that :SA\';,t =1,...,n satisfies a generalized Kalman-filter
recursion, similar to that of Lemma 2.1.1, and hence the entropy H(Y") can be computed using the
innovations process of Y, as in Lemma 2.1.1.

Define the orthogonal Gaussian innovations process /" of Y by

I én—E{n YH}, t=1,....n (71.3.21)
=(r'+6) ($=3) +h-e{i|y '} +2, by 7319 (7.3.22)
- (r} + Ct) (S, _ §,> +i+7, byl indep. of Y"1, E{I,} —0 (7.3.23)
The entropy of Y is computed as follows.
n
HY" =Y H(y|y'") (7.3.24)
=1
n
= Z H(L|Y'™Y), by (7.3.21) and a property of conditional entropy (7.3.25)
=1
n
= Z H(I,), by orthogonality of I, and Y'~!. (7.3.26)

N
Il
—_

By (7.3.23) the Gaussian innovations process I” does not depend on the strategy I'2, and conse-
quently by (7.3.26) the entropy H(Y") does not depend on the strategy 2.
Step 2. Let g, (Y'~1) E 2y~ t=1,...,n. By (7.3.16) and (7.3.17), it then follows,

—E{ Y () }_ {Z (18, + (v~ 1)+Zt) } (7.3.27)
- N 2n  m
{Z (F S+ ) }+ZKZ,,
=1 =1
by indep. of Z; and (V/~1,S,,¥'~1). (7.3.28)

By mean-square estimation theory, then the choice of g(+) that minimizes the right hand of (7.3.28)

18

(V' =g = FIE{St Y™ 1}:-r}s§, t=1,...n. (7.3.29)
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Hence, th = —Ftl , V. Let Ay = F,l ,Vt, and substitute into the recursion (7.3.19), to obtain (2.2.104),
and into the average power (7.3.28), to obtain (2.2.105). Hence, the derivation of (2.2.100)-
(2.2.105) is completed.

It then follows that (2.2.106)-(3.2.46) are the generalized Kalman-filter recursions, of estimating
the new state process S;,7 = 1,...,n that satisfies recursion (7.3.20), from the channel output pro-
cess Y; that satisfies the recursion (2.2.104).

(c) By the entropy of Gaussian RVs, upon substituting (7.3.26), (2.1.49), into (2.2.88), then it fol-
lows (3.1.24). By substituting (2.2.110) and (2.2.111) into (3.1.24), then it follows (2.2.116). This

completes the proof.

7.4 Proof of Corollary 3.1.1

First, note that the analog of Theorem 3.1.1.(a), for the code (s,2"% n), n =1,2,... is (3.1.1)
and (3.1.2), because P, (dx;|x' ',y s) = Pi(dx, V' ~1,y'~1s),t = 1,...,n. Define @f(,?n}(ic) as in
(3.1.2) with ¥ ! replaced by v "' r =1,...,n.
(a) Then
P(dx, X1y ) =R (dx V1 y L so), t=1,....n, byY, =X, +V, (7.4.30)
=P, (dx;|s",y""!,5), Definition 3.1.1. (7.4.31)

The PO-SS realization, for fixed S| = s is then

V,=CS, +NW,, Si=s, t=1,....n, (7.4.32)
Stt1 =A:S: +BW,, S =s. (7.4.33)

Then
P, (dy |,y s) =P(dy [¥ vy s) (7.4.34)
P(dy/|x',s',y'"',s), by Definition 3.1.1, (A1) (7.4.35)
—P,(dy:|x,5"), by ¥ =X,+V; and (7.4.32) (7.4.36)
@P,(dyt |xi,8¢,5), by mutually independence of (Wy,...,W,,S1). (7.4.37)

The probability distribution P;(dy,|y'~!,s) is then given by

Ptﬁ(d)’t‘yt_l’s) :/Pt(dyt|xtast)Pt(dxt|st7yt_lvs)

®P?(ds,|yt*1,s), t=1,...,n, byreconditioning and (7.4.37). (7.4.38)
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The pay-off is the sum of conditional entropies Y7, H(Y;|Y’~!,s), and the constraint is (3.1.2).
By Definition 1.1.2, the state S;,# = 2,...,n is Markov, that is, PS,|SH =Pg,s, st =2,...,n. By
(7.4.38) and the Markov property of §”, then, it can be shown that, at each time 7, the input distribu-
tion P (ds; |y ~', ) depends on P;(dx;|s;,y/~',s),j=1,...,t— 1 and noton P, (dx;|s/, yi ' s), j =
1,...,t—1. It then follows (3.1.3) and (3.1.4), by letting P; (dx;|s;,y' ~',s) = Fﬁw(dxt]st,y’_l,s),t =
1,...,n. It should be noted that (3.1.3) and (3.1.4) also follow from a slight variation of the deriva-
tion given in [, Theorem 1]. By the maximum entropy principle of Gaussian distributions it then
follows that the distribution Fﬁw(dx,\s,,y’ ~1s), is conditionally Gaussian, with linear conditional

mean and nonrandom conditional covariance, given by

P -1 o\ MSHTS A2 for t=2,....n
E" X s, ,S}—{O, o 11 (7.4.39)
Kys,5-1.5 = cov(X, X, |S, Y71, 8) =Kz, =0, t=1,....n. (7.4.40)

Then (7.4.39) and (7.4.40) follow by repeating the derivation of the same step in Theorem 2.2.1.
This completes the derivation of all statements of part (a).
(b), (c). By part (a) and using the generalized Kalman-filter, as in Theorem 2.2.1, then the state-

ments are shown.

7.5 Proof of Theorem 3.1.1

(a) Since we have assumed S; = s is fixed, and known to the encoder and the decoder, then The-
orem 3.1.1 still holds, by replacing all conditional distributions, expectations and entropies, by
corresponding expressions with fixed S; = s. Hence, (2.1.30) is replaced by (3.1.25), and (2.1.23)
is replaced by (3.1.26) (since the code is allowed to depend on S; = s). (b) From the PO-SS real-
ization of Definition 1.1.2 with S| = s fixed, it follows that a necessary condition for Conditions
1 of Section 1.1 to hold is (i). The expression of entropy (3.1.27) is easily obtained by invoking
condition (i), and properties of conditional entropy. That is, H(V;|s) = H(C1S; +NiW;|S] =5) =
H(N1W;|S1 =s) = H(N;W;) by independence of W) and S}, and H(V»|Vy,s) = H(V2|V},S1 =) =
H(C3S7 + NoWh|C1S1 + NiW, S| = 5) = H(CS2 + NoWh [Ny W, St = 5) = H(CA 1S+ CoBIW) +
NoWL [N\ W, St = 5) = H(N;WL|[NiWLL, St = s) = H(NaWa), ete. This completes the proof.
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7.6 Proof of Proposition 3.3.1

Since the proof of [2, Theorem 6.1] is based [2, Lemma 6.1], where the channel input X; is ex-
pressed as X; = A(St — E{S,

a necessary for [2, Theorem 6.1] to hold. Next, we show Conditions 1 and 2 of Section 1.1 are

Y£;1> ,t =1,..., where A is a nonradom vectors, then (3.3.54) is

necessary and sufficient for equality (3.3.54) to hold. To avoid complex notation, we prove the
claim for the realization of Example 2.1.2.(a). Suppose the initial state S| of the noise is S| = 51
is known to the encoder and the decoder, and without loss of generality take s; = 0, which by

(2.1.71), implies Vo = 0, Wy = 0O (as often done in [2]). Then, the following hold.

S1=0 = Vi=W, S=W =V, by (2.1.72),(2.1.73), (7.6.41)
(S; = 0,V;) uniquely define S, = ¢Sy +W; =W, =V, by (2.1.72), (2.1.73), (7.6.42)
Vy = (c _ a) S+ Wa, S3=cSa+Ws=cVi+Wa, by (2.1.72), 2.1.73), (7.6.43)
(S1 =0,V1, V) uniquely define (S, S3), (7.6.44)
repeating, then (S; =0,V),...,V;_1) uniquely define (S,,S3,...,8;), Ve =3,4,....  (7.6.45)

From (7.6.41)-(7.6.45) it then follows, that for any §; = s, including, s; = 0, known the the

encoder that the equalities hold:

PX,\XH,Y’*1 S T Ex vty lsy by Y =Xi +V; (7.6.46)

=Pyigyis, =1, (7.6.47)

We can go one step further to identify the information structure of optimal channel input distribu-

tions using (7.6.47), that is, to show P

XSyl s, = PXI|S“Yt—1 sp 1= 1,..., by repeating to proof

of [1, Theorem 1]. However, for the statement of the proposition this is not necessary.
Suppose either §; = s1 is not known to the encoder, i.e., Vo = vy, Wy = wq are not known to the
encoder, and S; # 0, while the optimal channel input is expressed as a function of the state of the

noise, S”, that is,

PX[‘XZ_] ,Yi;l :PX[|V[_1,YL;1 = PX[‘S’,YLZJ’ t= 1, ey (7.6.48)

Then by (2.1.72) and (2.1.73), it follows that V| = (c — a) S1+Wi,8, =aS; + Wi, hence knowledge
of V; does not specify S», and similarly, V! does not specify S, for r = 2,3,.... Hence, we arrive

at the contradiction of equality (7.6.48). This competes the proof.
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7.7 Proof of Proposition 4.1.1

(a) This 1s shown in [16] by using the Szego formula and Poisson’s integral formula.

(b) By definition,

H(V"s;) =Y HV,[V'" 51) (7.7.49)
=1

H((c—a)S1+Wi|s1)+H((c—a)Sy+W,|Vi,s1) +...+H((c—a)Sn+Wn\V"_1,s1) (7.7.50)

=H((Wy|s1)+H((c—a)Ss+Wa|Vy,s1,Wi) + ...+ H((c—a)Sy + W, |V s1) (7.7.51)

=H(W))+H(Wa) +...+H((c—a)S, +W,|V" 1 s1), byS,=aS+W (7.7.52)
n

= Z by repeating the proceedure (7.7.53)

Since W, € N(0,Kw),Kw > 0,t = 1,...,n, then (4.1.8) is obtained.

7.8 Proof of Lemma 4.1.1

(a) This is due to Lemma 2.1.1.(v).
(b) By taking the per unit time limit (4.1.9), and utilizing the hypothesis (4.1.11), the continuity of
the log(+) and the fact that, for any convergent sequence a,,n = 1,2,..., i.e., lim, . a, = a, then

,%Z?:l a, — a, as n —» oo, then it follows (4.1.12).

7.9 Proof of Lemma 4.2.1

From Corollary 3.2.3.(a) we deduce that X7 = Y t=1,... nsatisfies (4.2.25) with initial condition
(4.2.26). By Definition 5.2.3 the corresponding generalized algebraic Riccati equation is (4.2.27),
and pairs {A,C} and {A*, GB*’%} are given by (4.2.28).

(1) By Definition 5.2.3, for ¢ # a the pair {A,C} = {c,c —a} is observable, and hence detectable.
(2) By Definition 5.2.3, the pair {A*,GB*’%} = {a,0} is unit circle controllable if and only if
jal # 1.

(3) By Definition 5.2.3, the pair {A*, GB*’%} = {a,0} is stabilizable if and only if a € (—1,1).

(4) This follows from Theorem 5.2.1.(1) and parts (1), (2) and (3). Since (4.2.27) is a quadratic
K (a>~1)

,and
(Cia>2 an

equation we can solved it explicitly to verify the two solutions are X = 0 and £~ =

the statement of (4.2.29).
(5) For values ¢ € (—o0,0) and |a| < 1, the pair {A,C} = {c¢,c —a} is detectable and the pair
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{A%, GB*é} = {a,0} is stabilizable, and the statement follows from Theorem 5.2.1.(3).
(6) (4.2.30) follows from Lemma 4.1.1.(b), by invoking Corollary 3.2.3.(a), i.e., Ki, = (c — a) 22;’ +
Kw,t =1,...,n, where X is generated by (4.2.25), and part (5).

7.10 proof of Lemma 5.2.2

(1) We utilize the equation 5.2.110 and the scalar representation of the equation 4.2.13, of the
Definition 4.2.1,

2 —1
K* = A2K” + G0 — (AK°°C+ GS) (R + C2K°°) . K, = given. (7.10.54)

Hence,A =c¢,C =c—a+A. By c € (—1,1), then there always exists a P € R, such that |A — PC| =
lc—=P(c—a+A)| <1,ie.,take P = 1. This shows (1).

(2) Since Kz = 0, then B = 1 — Ky (Kz + Ki) ' = 0,B" = K3B} = 0, A" = ¢ — Ky (K +
Kz)flC =c— (c —a +A) = a— A, and hence, there exists a P € R, such that |[A* —B*7%P| =
la— A| # 1, if and only if |a — A| # 1. This shows (2).

(3) Since Kz = 0, similar to the prove in (2), there exists a P € R, such that [A* —B*’%P| =la—Al <
1, if and only if |a — A| < 1. This shows (3).

(4) Since ¢ € (—1,1),Kz = 0, then, by (1), the pair {A,C} is detectable, by (2) the pair {A*,B*%}
is unit circle controllable, if and only if |a — A| # 1 and by (3) the pair {A*,B*’%} is stabilizable, if
and only if |a — A| < 1. By Theorem 5.2.1.(1) we deduce the claim. This shows (4).

(5) Clearly, (5.2.110) is equivalent to the quadratic equation

K*(A+c—a)’—K((A—a)’ = 1)Kw =0. (7.10.55)

Hence, the two solutions are (5.2.111). The last statement is also obtained by applying Theo-
rem 5.2.1.(2), as follows. By (1), {A,C} is detectable, by (2), {A*,B*v%} is unit circle controllable,
if and only if |a — A| # 1, and by (3), {A*,B*é} is stabilizable, if and only if |a —A| < 1. By
invoking Theorem 5.2.1.(2), the non-negative solution K = 0 is unique and stabilizable, if and only

if [a—A| < 1.

7.11 proof of Lemma 5.2.3

At this point we calculate the maximum feedback capacity from Theorem 5.2.2, driven by ARMA(a, c)

noise of Definition 5.0.1 and we examine for which regions we have a feedback capacity, using the
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necessary conditions of Lemma 5.2.3.

(i) By the stationarity conditions of Lemma 5.2.3, i.e., (5.2.123)-(5.2.126), with A = (41,42, A3, A4):

a 00k (>} >

Semd (N K K A7) = 1= A7 (K ) ’*—KW> M EAI =0,  (7.11.56)
VA
8 09, % 0, % * 00, % 00, % * 00, % 0%

S LN K K20 = (A +e—a)k= =2 { (k= = k™" — Ky )

(A e —a) K=+ (Ki + K™ (A" +c—a) ) eK™ } = LA™K =0, (7.1157)
0 2

o= (N KF K07 = (A‘”’*—l—c—a) —Qtl*{(l —c2> <K§+KW

2
+ (A™* +c—a) 2K°°’*) + (K‘”’* — 2K — KW> <A°°7* +c— a) +

2c(Kiy + K= (A" +c—a) ) (A" +e—a) } - 23 (A“’*)z +45 =0, (7.11.58)

First of all, we will find the values of the Lagrangian multipliers A = (A1, A, A3, A4), through some
steps.

Suppose A; # 0. Then, by complementary slackness (5.2.126), we have A;K; " = 0, which implies
K7 ™ = 0, and hence we have K=* = 0. By complementary slackness (5.2.126), we also have
A ((A°°7*)2K°°’* +K;" —«) =25 (0— k) =0, hence for any k¥ >0, A; = 0. This implies C*(x) =
0, k € [0,0) hence the rate is zero. Similarly, if A} # 0, then K, * =0and K=* =0, which lead to a
zero rate. However, by (i), i.e., by Theorem 5.2.3, we know that for A™* = O,KE° o # 0, we exhibit
a non-zero rate, which is a lower bound on the nofeedback rate. Hence, for the rest of the derivation
we characterize the set of all values k € #"*(a,c,Kw ), that is, we assume A5 = 0,4, =0, and treat
the case K ¢ £ (a,c, Ky ) separately.

(iii) By complementary slackness (5.2.126), then A; K" = 0. Suppose A} = 0. By (7.11.56), then

1—Af <K°°’* — 2K —KW> =0, (7.11.59)
1— )LZ* =+ )Ll*KW

Af (1 — cz>

K™* €[0,00) iff K™= >0, Af #0, 2#1. (7.11.60)

(iv) By (7.11.57), we have

<A°°’* Yo a) Ko — /11*{ (K“’* _ PR KW> (A“”* Yo a) K

+ (KW + K= (A o — a)) CKM’*} AT = 0. (7.11.61)
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By complementary slackness (5.2.126), then A;K** = 0. Suppose A = 0. By (7.11.61), with
K=" >0,

(A‘X”* +c— a) - 11*{ <K°°’* —PK™F — KW> (A°°7* +c— a>
+ (Kw + K=" (A" +c—a) Je} 1A =0, K" >0, (7.11.62)

Substituting A} from (7.11.59) into (7.11.62), and solving for A; we obtain

c—a

A = 7.11.63
! K=*(A=*c?+c—a) +aKy ( )
Substituting A" into (7.11.59) we also obtain
—c)(K=*(c? = 1)+ K
A=1- (a—c) (K™ ("~ 1) + Kw) (7.11.64)

K=*(A®*c2 4 ¢ —a) + aKwy
(v) Now, we show A; # 0 (although it follows from the above calculations). Suppose Ay = 0,4, =

0, and A = 0. Then (7.11.57) is given by 2K** ( —a+A"*+c— A°°’*/12*) =0, and is satisfied if

K**=0 or —a+A™"+c—A""A; =0 (7.11.65)

For K=* = 0, then K;’* =0, and by (7.11.59) we have A = 1. By the complementary slackness,
A5 ((A=>*)2K=>* + K" — k) =0, then A5°(— k) = 0, hence A3 = 0, unless k = 0. This contradicts
the value A; = 1. Hence, A = 0 and K=* = 0 are not possible choices. Suppose A =0 and
K>* >0, hence (7.11.65) holds, and by (7.11.59) we have A5 = 1. By (7.11.65) then ¢ = 0. Since,
¢ # 0, otherwise the channel is driven by MA(a) noise and in Theorem (na valw to applicaiton) we
will show that there isn’t the optimum solution. Then, the only choice is A" # 0.

(vi) Suppose Ay = 0,4, =0, and A; = 0. Now,we show by contradiction that A} # 0. By (7.11.59)
then

1—Af <K°°’* 2K KW> —0. (7.11.66)
Substituting (7.11.66) into (7.11.57) we have
A (K + K™ (A" 4~ a) ) oK™ =0, (7.11.67)
Substituting (7.11.66) into (7.11.58) we have
— 7Ll*{ (1 — c2> (K; +Kw + (A" +c— a)zK“’*>

+2¢ (K + K™ (A" +c—a) ) (A" +¢) | =0, (7.11.68)
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Substituting (7.11.66) into the ARE (5.2.130) we have

2
% (K" + K+ (A" +c—a) K™ ) + (K + oK™ (A" +c—a) ) =0.  (7.11.69)
1

By (7.11.66) then A; # 0. Since A; # 0, then by (7.11.67), we have K** = 0 or Ky +cK** (A°°’* +
c— a) = 0. However, either choice, when substituted into (7.11.69) implies Ky = 0, which con-
tradicts our assumption that Ky > 0. Hence, we deduce A} # 0.
(vii) By the above analysis we consider A = 0,4, =0, A # 0,4 # 0, and (7.11.63), (7.11.64)
hold. By (7.11.58), then the following holds:
2
<A°°’* +c— a) - 7L1*{ (1 - cz> (K;* +Kw + (A~ +c— a)2K°°’*>
5 2
+ <K°°’* — K —Kw) <A°°’* +c— a)
2
+2e(Ky -+ K™ (A7 kema) ) (A7 +ea) oA (A7) =0, K750, @010

Since we have (A°°**)2K°°7* + K, =k, then K, = Kk — (A°°7*)2K°°7* € (0,00). Substituting
(Af,A5) and K" into (7.11.70), we obtain

P K(l —cz> +KW<1 —ac)
(a—c> (A°°(2—c2)+c—a>

2
Ky (ac— 1> + K<C2 — 1) — K= (a—c)
AT = (7.11.71)

T k(e ) (e

Substituting A™* and K, ™ into the generalized ARE (5.2.130) we obtain:

>0 <—

<K°"’*c2 — K=" 4 KW) (KW (2a—c)+ck—K**c(a— c)z)
c2-2

<c2 - 1> ’ (KW (2a—c)+ck—K=*c(a— c)2>

@y

We assume that ¢ # a and ¢? # 2.

_I_

2

=0 (7.11.72)
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o) ()
02 C a ac—a2c2 02 —02
K°°*< (Kw(c*+2a* -2 )+ k(1 )))

)

(KW(2a —c)+ CK') ((02 - 1)2 (Kw(2a—c) +ck) + cKw (c? —2)*(a— c)2>

+

( >2< ) 2>2 =0 (7.11.73)
a—c 2 —
ook _ _C<KW(26’2 +c? —a*c? —2ac) + 2k (1 — c2)>
c 2c<cz—l> <a—c>2
\/(CZ ~2)"(Kwle—2a+ @) +ex(@ - 1)’ (7.11.74)

2c(e2—1) (a—c)2

Also, we assume that ¢ # 0 and ¢? # 1.

Hence, we have two solutions:

—c(KW(2a2+cz—a2c2—2ac)+62K(1 c2)> ’c —ZHKW (c—2a+a’c)+ck(c? —1)‘
K™ =
e 1) (a—e)
(7.11.75)
—C<KW(2a2—|—cz—a2c2—2ac) +c2x(1 —cz)) - ’cz —2HKW(C—2a+a2c)—|—cK(c2— 1)‘
K" =

2c(e2—1) <a—c>2

The variable ¢ can take any value except ¢ # a, ¢ # 0, ¢> # 1 and ¢? # 2. Thus, we deduce the

(7.11.76)

following cases of solutions.
Case 1. ¢ > /2. In addition, Kw(c—2a+ a’c) + cK(c2 — 1) > 0, always holds, because ¢ > 0,
Kk>0,c2—1>0and Ky > 0. Also, ¢ —2a+a’c is positive, because the discriminant of this

expression is negative
Ky (c—2a+a’c)

Thus, we have Kk > — (1)

which always holds.



CHAPTER 7. APPENDIX 109

The first solution is

ws  Kw(2a—c+a’c® —2d%c) +cx(c® —1)?

K= 7.11.77
! c(c2—1)(a—c)? ’ ( )
0o, % Kw(a—c)*(1 —ac)

AT = 7.11.78
! Kw(2a — c+a*c3 —2a%c) + ck(c2 —1)?2 ( )

K(c(c2 — 1) (Kw(2a —c+a*c® —2a*c) + cx(c? — 1)2) — K% (a—c)*(1—ac)?
K" =
: c(c2—1) (KW(Za —c+a?c3 —2d?%c) +cx(c? — 1)2>
(7.11.79)
c(a—c)? )
Al = S =c". 7.11.80
U™ Kw(e—2a+d%c)+ck(2—1) M =c ( )
The second solution is
ws Kw(2a—c)+ck
K, = 7.11.81
2 C(a—c)z 9 ( )
o — K
ATF = (a = c)(aKy +cx) (7.11.82)
Kw (¢ —2a) —ck
ook I<W(I<Wa2 + Kcz) (7.11.83)
% ¢(2aKw +cKy —ck)’ o
AP
A =— cla—c) . A =0. (7.11.84)

Kw(c—2a+a%c)+ck(c?—1)

The second solution is always rejected, because A, should be A, # 0. Thus, we will continue with
the one and only valid solution K‘lx’* The case 1 and the rest of the cases that we show below, are
mentioned to the feedback case. So, we should check for every case whether Kf”* 1s valid. More

specifically, we need to check if K| > 0, KZ *>0and A] > 0.

Set,

Ky (c—2a+a*c) — Kya*c(c* — 1)

ki = @1y , (7.11.85)
Ky (1— -2 2 —\/A3(a’c3 —6ac? +4a+4c3 -3

D w (1l —ac)(ac ac+c 2\/2c (ag ac* +4a+4c c))’ (7.11.86)

2c¢%(c*—1)

Kw (1 —ac)(ac® —2ac+c* ++/c3(a?c3 — 6ac? +4a+4c3 -3¢

i, — KwllZac)( 202??2_(1)2 ), (7.11.87)

K" >0, for k > Kk and k > 0, fora € |:02_f2’ %} ,
A7 >0, for k € [0,00) and

KZ’* > 0, for k € [0, k2) U (K3,0).
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Thus, we consider a set <7 (a, ¢, Kw ), which is not empty.

A (a,c,Kw) = a4 (a,c,Kw) N (a,c,Kw) (7.11.88)
o % 0% — 1
A a,c,Ky) 2 {K‘E [0,00) : K;7" > 0,4, >0,c € (\/E,oo),ae [ﬁ,;],x> K‘l}
(7.11.89)

*>0,ce (\/5,00),1(6 [O,Kz)U(K37°°)}
(7.11.90)

Pa,c,Ky) = {K €[0,0),a € (—o0,00) : K

)
1

Case 2. ¢ < —v/2. In addition, Ky (c — 2a + a*c) + ck(c* — 1) < 0, always holds, because ¢ < 0,
Kk>0,c2—1<0and Ky > 0. Also, ¢ —2a+ a?c is negative, because the discriminant of this
expression is negative.

Thus, we have k¥ > %ﬁazd

The only valid solution is (7.11.77)-(7.11.80).

which always holds.

K1°°’* >0, for k > k; and Kk > 0, fora € (—00,%] U [C{f w),
A7 >0, for k € [0,00) and
KZ’* > 0, for k € [0, k) U (K3,00).

Thus, we consider a set % (a, ¢, Ky ), which is not empty.
ah(a,c,Ky) = o (a,c,Kw) N5 (a,c,Ky) (7.11.91)
oy (a,c,Ky) 2 {K € [0,00) : K77* > 0,A7" > 0,¢ € (—o0, —V/2),
1 —c
ac (—oo,—} [Z—,oo),x> :q} (7.11.92)
c cc—2

A (a,e.Ki) = {0 €[0,00),a € (—o0,00) 1 K5 >0, € (—0,=/2), K € [0,15) U (i3, 0) |
(7.11.93)

> C

Case 3. v/2 > ¢ > 1. In addition, Ky (c — 2a +a*c) +ck(c? — 1) > 0, always holds, because ¢ > 0,
Kk>0,c2—1>0and Ky > 0. Also, ¢ —2a+ d?c is positive, because the discriminant of this
expression is negative.

Thus, we have x > %ﬁa%)

The only valid solution is (7.11.77)-(7.11.80).

which always holds.

K" >0, for k > kj and k > 0, fora € L_z_fz, %},
A7 >0, for k € [0,00) and

KZ’* > 0, for k € [0, k2) U (K3,0).
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Thus, we consider a set %3(a, ¢, Ky ), which is not empty.

oty(a,c,Ky) = o (a,c,Kw) N .ot (a,c,Ky) (7.11.94)
1 T o)« K o0 —c 1
A (a,c,Kw) = {k € [0,0) 1 K77 >0, >o,ce(1,\/§),ae[62_2,6},K>K1}
(7.11.95)
%z(a,c,Kw)é{Ke[O,oo),ae(—oo,oo):KZ’*>0,c€(1,\/§),K6[O,Kz)u(ig,oo)}
(7.11.96)

Case 4. —/2 < ¢ < —1. In addition, Kw(c—2a +a2c) +ck(c? — 1) < 0, always holds, because
c<0,>0,c2—1<0and Ky > 0. Also, c —2a+da®c is negative, because the discriminant of

this expression is negative.

—Kw (c—2a+a’c)
c(c2-1)

The only valid solution is (7.11.77)-(7.11.80).

Thus, we have Kk > which always holds.

KT’* >0, for kK > Ky and Kk > 0, fora € (—oo,%] U [c{—_cz,oo>,
A >0, for k € [0,00) and
K7 >0, for x € [0,Kk2) U (153, 0).

Thus, we consider a set 7% (a, ¢, Ky ), which is not empty.

dy(a,c,Kw) = o} (a,c,Kw) N (a,c,Kw) (7.11.97)
) (a,c,Ky) = {Ke [0,00) : K7 > 0,4 > 0,¢ € (—o0,V/2),
1 —c
ac <_°°’E}U[c2——2’°°>"<> K1} (7.11.98)
AHa,c,Ky) 2 {K‘ € [0,0),a € (—o0,00) : K" > 0,¢ € (—o0,7/2), K € [0, K2) U (K3,oo)}
(7.11.99)

We saw that for any of the sets, <7 (a,c,Kw), <% (a,c,Kw), <#(a,c,Kw), “(a,c,Ky), that is,
unstable noise, the conditions K} > 0, K;”* > 0 and A; > 0 always hold. In conclusion, for any
unstable case (i.e., |c| > 1), we have a non-zero feedback capacity. Also, there is a minimum power
constraint, which is positive (we take the intersection of all the power constraints for any case).
Otherwise, whether the power K is less than the constraint, it means that we have an achievable
rate (see Theorem 5.2.3).

Now, we have to check for feedback capacity, for the stable cases |c| < 1, ¢ # 0.

Earlier we saw that the second absolute value was always positive or negative for each case. In

the following cases, this is not obvious, because the discriminant of ¢ — 2a + a’cis positive. More
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specifically, for ¢ € (—1,0), we see that,

Solving the quadratic equation, ¢ — 2a + a’c, we have,
§=B>—day=c*—1>0
1—V1-¢? 1++vV1—c?

o = —, 0O =———hence, (7.11.100)

C C

c—2a+a*c>0, fora € (az,a;) and c —2a+a*c < 0, fora € (—eo,a) U (ay,0) (7.11.101)

On the other hand for ¢ € (0,1), we have,

c—2a+a*c <0, fora € (ay,az) and ¢ —2a+a*c > 0, for a € (—eo,a;) U (ay, ), (by 7.11.100)

(7.11.102)

So, to include all the cases, we will break the cases 5 and 6 in sub-cases, as follow,

Case 5: ck(c? — 1)+ Ky(c —2a+a’*c) >0
1. ¢ € (—1,0), where, ck(c?—1) >0

(@) a € (ay,ay), where, Ky (c —2a+a*c) > 0, (see 7.11.100)

Hence, the inequality ck(c? — 1) + Ky (¢ — 2a+ a*c) > 0, implies k > (@)

which always holds.

The only valid solution is (7.11.77)-(7.11.80).
Ky (c—2a+ad*c)—Kya*c(2—1)

00, %
K, >0, forx < @12 ,

—Kw (c—2a+ad*c)

B

lix’ ™ > 0, which never holds, because we assumed before that the denominator of

(7.11.84) is positive and that implies c(a — ¢)* > 0 too. However, it doesn’t exist,

because ¢ is negative, and c(a — c)? < 0 gives us a contradiction.

(b) a € (—o0,az) U (ay,), where, Ky (c —2a+a*c) <0, (see 7.11.100)
Hence, the inequality ck(c? — 1) + Ky (¢ — 2a+ a*c) < 0, implies k >
The only valid solution is (7.11.77)-(7.11.80).

c(c2-1)

),ix’ ™ > 0, never holds, like the previous sub-case, because of ¢ € (—1,0).

2. ¢€(0,1), where, ck(c>—1) <0

(a) a € (ay,ay), where, Ky (c —2a+a*c) <0, (see 7.11.100)
Hence, the inequality ck(c? — 1) + Kw (c — 2a+a*c) > 0 doesn’t exist.

Ky (c—2a+a’c)
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(b) a € (—o0,az) U (ay,), where, Ky (c —2a+a*c) <0, (see 7.11.100)
Hence, the inequality ck(c? — 1) + Ky (c — 2a+a*c) > 0, implies k <
The only valid solution is (7.11.77)-(7.11.80).

K7 >0, for k < Ky ,
A7 >0, for k € [0,00),
K™ >0, for k € [0, k) U (K'3,<><>)}.

Ky (c—2a+d’c)
c(1—c?)

This sub-case can’t give us feedback capacity, because,

Kw(c—2a+ad’c)
c(1—c?)
Kw(1—ac)(ac® —2ac+c* — \/3(a2c® — 6ac? +4a+4c3 —3c))
2c2(c2—1)2

That means there isn’t any intersection between the power constraints.
Case 6: ck(c?> — 1)+ Ky (c—2a+a’*c) <0
1. ¢ € (—1,0), where, ck(c? —1) >0

(a) a € (az,ay), where, Ky (c —2a+a’c) > 0, (see 7.11.100)
Hence, the inequality ck(c? — 1) + Ky (c — 2a+ a*c) > 0 doesn’t exist.

(b) a € (—o0,a3) U (ay,), where, Ky (c — 2a+a*c) <0, (see 7.11.100)
Hence, the inequality ck(c? — 1) + Ky (c — 2a+ d?c) < 0, implies k < X (;(ﬁaga%)
The only valid solution is (7.11.77)-(7.11.80).
K" >0, for k < Ky ,
A7 >0, for k € [0,00),
K™ >0, for k € [0, k) U (K3,<>°)}.
This sub-case can’t give us feedback capacity because,
Kw(c—2a+a*c) — Kya*c(c* — 1)
c(c2—1)2

Kw(1—ac)(ac® —2ac+c* — \/3(a2c — 6ac? + 4a+4c3 —3c))
2c2(c2—1)?2

K1 <K —

That means there isn’t any intersection between the power constraints.

2. c€(0,1), where, ck(c>—1) <0
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(a) a € (a1,ay) where, Ky (c —2a+a*c) <0, (see 7.11.100)

Ky (c—2a+d’c)

Hence, the inequality CK‘(02 —1)+Kw(c—2a+ azc) < 0, implies k > o)

which always holds.

The only valid solution is (7.11.77)-(7.11.80).

K77 >0, for k < K ,

A{" > 0, which never holds, because we assumed before that the denominator of
(7.11.84) is negative and that implies c¢(a — c)> < 0 too. However, it doesn’t exist,

because c is positive, and c(a — c¢)? > 0 gives us a contradiction.

(b) a € (—o0,ay) U (ay,), where, Ky (c —2a+a*c) > 0, (see 7.11.100)
2
Hence, the inequality ck(c? — 1) + Ky (c — 2a+a*c) < 0, implies k > %
The only valid solution is (7.11.77)-(7.11.80).

l]w > 0, never holds, like the previous sub-case, because of ¢ € (0, 1).

Until here, we see that feedback does not increase capacity for the regime, ¢ € ( -1, 1), aclR,
K€ [O,oo). Cases 5 and 6 correspond to the stable noise cases. However, there is an achievable

rate, which is calculated in no-feedback capacity Theorem 5.2.3.
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