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Abstract

Current telecommunication and information systems are designed based on Shannon’s operational

definitions of coding-capacity for reliable communication, which utilizes encoders and decoders,

to combat communication noise and to remove redundancy in data. Current dynamical control

systems are designed by utilizing feedback controllers, actuators and sensors, to ensure stability,

robustness, and optimal performance. One of the key challenges in the upcoming years is the devel-

opment and design of intelligent hierarchical communication and control systems which simulta-

neously control and transmit information. This thesis focuses on developing universal operational

definitions, to any dynamical system with inputs and outputs, called Control-Coding Capacity of

dynamical systems, i.e., the designer’s ability to develop an controller-encoder pair to simultane-

ously control the system and encode information, transmit it through the dynamical system to any

process attached to it, and reconstruct it using decoders, with arbitrary small error probability.

We choose to work with Additive Gaussian Noise (AGN) channels with finite memory on the

noise, because these channels are widely employed to model band-limited channels and are highly

realistic since the can adequately describe physical channels under practical scenarios. We begin

our analysis by calculating the feedback capacity both for stable and unstable noise, where we

show that feedback does not always increase the capacity. We have done the analysis for memory

1, which can be easily generalized to arbitrary finite memory. Subsequently, we have provided

achievable rates without feedback which are induced by a causal input process. We have consid-

ered both independent and identically distributed (iid) processes and Markov processes.
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Πρόλογος

Τα τρέχοντα συστήματα τηλεπικοινωνιών και πληροφοριών έχουν σχεδιαστεί με βάση τους ε-

πιχειρησιακούς ορισμούς του Shannon σχετικά με την ικανότητα κωδικοποίησης για αξιόπιστη

επικοινωνία, που χρησιμοποιεί κωδικοποιητές και αποκωδικοποιητές, για την καταπολέμηση του

θορύβου επικοινωνίας και για την εξάλειψη των πλεονασμάτων στα δεδομένα. Τα τρέχοντα

δυναμικά συστήματα ελέγχου έχουν σχεδιαστεί με τη χρήση ελεγκτών ανάδρασης, ενεργο-

ποιητών και αισθητήρων, για τη διασφάλιση σταθερότητας, αντοχής και βέλτιστης απόδοσης.

Μία από τις βασικές προκλήσεις τα επόμενα χρόνια είναι η ανάπτυξη και ο σχεδιασμός έξυ-

πνων συστημάτων ιεραρχικής επικοινωνίας και ελέγχου, τα οποία ταυτόχρονα ελέγχουν και

μεταδίδουν πληροφορίες. Αυτή η διατριβή, επικεντρώνεται στην ανάπτυξη καθολικών επιχειρη-

σιακών ορισμών, σε οποιοδήποτε δυναμικό σύστημα με εισόδους και εξόδους, που ονομάζεται

χωρητικότητα ελέγχου-κωδικοποίησης δυναμικών συστημάτων, π.χ. η ικανότητα του σχεδιαστή

να αναπτύξει ζεύγος ελεγκτή-κωδικοποιητή για ταυτόχρονο έλεγχο του συστήματος και κωδι-

κοποίησης πληροφοριών, μετάδοσης μέσω του δυναμικού συστήματος σε οποιαδήποτε διεργασία

που συνδέεται με αυτό, και ανακατασκευή του χρησιμοποιώντας αποκωδικοποιητές, με αυθαίρετα

μικρή πιθανότητα σφάλματος.

Επιλέγουμε να δουλέψουμε με κανάλια Additive Gaussian Noise (AGN) με πεπερασμένη μνήμη

στο θόρυβο, επειδή αυτά τα κανάλια χρησιμοποιούνται ευρέως για τη μοντελοποίηση καναλιών

περιορισμένου εύρους και είναι εξαιρετικά ρεαλιστικά, καθώς μπορούν να περιγράψουν επαρκώς

τα φυσικά κανάλια σε πρακτικά σενάρια. Ξεκινάμε την ανάλυσή μας υπολογίζοντας την χω-

ρητικότητα με ανάδραση τόσο για σταθερό όσο και για ασταθή θόρυβο, όπου δείχνουμε ότι

η ανάδραση δεν αυξάνει πάντα την χωρητικότητα. ΄Εχουμε κάνει την ανάλυση για μνήμη 1, η

οποία μπορεί εύκολα να γενικευτεί σε αυθαίρετη πεπερασμένη μνήμη. Στη συνέχεια, έχουμε

παράξει εφικτές τιμές χωρίς ανατροφοδότηση που προκαλούνται από μια αιτιώδη διαδικασία ει-

σαγωγής. Εξετάσαμε τόσο ανεξάρτητες και ταυτόσημες κατανεμημένες (iid) διαδικασίες όσο

και διαδικασίεςMarkov.
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Chapter 1

Introduction

An important class of practical problems in Shannon’s reliable communication over noisy chan-

nels is the additive Gaussian noise (AGN) channel. Such problems are often classified into: (i)

memoryless AGN channels, with or without feedback; (ii) AGN channels with memory, with or

without feedback. The feedback may be noiseless or noisy.

Two fundamental questions for the sub-class of additive Gaussian noise (AGN) channels with

memory and noiseless feedback, are:

(Q1): Feedback and non-feedback capacity of the AGN channel;

(Q2): Feedback coding scheme of communicating a Gaussian random process Θt ∈N(0,σ2
Θt
), t =

1, . . . ,n, and the coding scheme of communicating digital messages w∈Mn
4
=
{

1,2, . . . ,d2nRe
}

,

which achieve the feedback, or non-feedback capacity of the channel.

This thesis is focused on the question Q1. We derive the feedback capacity of AGN channels,

driven by Autoregressive Moving Average noise and we show our answer, which contradicts sev-

eral results found in the literature.

1.1 Problem, Motivation, and Main Results

We consider the additive Gaussian noise (AGN) channel defined by

Yt = Xt +Vt , t = 1, . . . ,n,
1
n

E
{ n

∑
t=1

(Xt)
2
}
≤ κ, κ ∈ [0,∞) (1.1.1)

where

Xn 4= {X1,X2, . . . ,Xn} is the sequence of channel input random variables (RVs) Xt : Ω→ R,

1
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CHAPTER 1. INTRODUCTION 2

Y n 4= {Y1,Y2, . . . ,Yn} is the sequence of channel output RVs Yt : Ω→ R,

V n 4= {V1, . . . ,Vn} is the sequence jointly Gaussian distributed RVs Vt : Ω→ R, with distribution

PV n(dvn), not necessarily stationary or ergodic.

We wish to introduce the feedback capacity of the AGN channel (1.1.1) under two distinct formu-

lations of code definition and noise model.

Case I) Formulation. The feedback code does not assume knowledge of the initial state of the noise

at the encoder and the decoder (see Definition 1.1.1), and the noise sequence V n is represented by

a partially observable1 state space realization, with state sequence Sn (see Definition 1.1.2).

Case I) formulation is consistent with the Cover and Pombra formulation of code definition and

noise model, for which the optimal channel input with feedback and the “n−finite transmission”

feedback capacity are derived in [3, eqn(11) and eqn(10)], using the information measure2,

C f b
n (κ)

4
= sup

PXt |Xt−1,Yt−1 ,t=1,...,n: 1
n E
{

∑
n
t=1

(
Xt

)2}
≤κ

n

∑
t=1

H(Yt |Y t−1)−H(V n) (1.1.2)

provided the supremum exists, and where H(·) denotes differential entropy.

For a feedback code that assumes knowledge of the initial state of the noise or the channel, S1 = s,

at the encoder and the decoder (see Definition 1.1.3), it follows from [3, eqn(11) and eqn(10)], that

the information measure is

C f b
n (κ,s)

4
= sup

PXt |Xt−1,Yt−1,S,t=1,...,n: 1
n E
{

∑
n
t=1

(
Xt

)2
∣∣∣S1=s

}
≤κ

n

∑
t=1

H(Yt |Y t−1,s)−H(V n|s). (1.1.3)

Case II) Formulation. The feedback code assumes knowledge of the initial state of the noise or the

channel, S1 = s, at the encoder and the decoder (see Definition 1.1.3), and the noise sequence V n

assumes a state space realization with state sequence Sn, that presupposes the noise V t−1 (including

the initial state) uniquely defines the noise state sequence St and vice-versa for t = 1, . . . ,n.

Case II) formulation is consistent with the Yang, Kavcic, and Tatikonda [1], code definition and

noise model (see [1, Section II, in particular Section II.C, I)-III)]), for which the optimal channel

input with feedback and n−finite transmission feedback capacity are derived in [1, Theorem 1],

using the information measure,

C f b,S
n (κ,s)

4
= sup

PXt |St ,Yt−1,S,t=1,...,n: 1
n E
{

∑
n
t=1

(
Xt

)2
∣∣∣S1=s

}
≤κ

n

∑
t=1

H(Yt |Y t−1,s)−H(V n|s). (1.1.4)

1Partially observable means that knowledge of V t−1 and initial state do not specify the state St .
2C f b

n (κ) is identified using the converse coding theorem [3].
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CHAPTER 1. INTRODUCTION 3

To clarify the reasons which motivated us to analyze Case I) and II) formulations, we wish to

mention two technical issues, which are not clarified in [2,4–7] and lead to fundamental confusions

as well as incorrect interpretation of the results.

First, to make the transition from the channel input distributions PXt |X t−1,Y t−1, t = 1, . . . ,n of Case

I) formulation (1.1.2), to PXt |St ,Y t−1,S, t = 1, . . . ,n of Case II) formulation, (1.1.4), the conditions

stated in (1.1.6), (1.1.7) are necessary (as easily verified from the converse coding theorem).

PXt |X t−1,Y t−1 =PXt |V t−1,Y t−1 always holds by channel definition Yk = Xk +Vk,k = 1, . . . ,n
(1.1.5)

=PXt |X t−1,Y t−1,S if the initial state S = s is known to the feedback code (1.1.6)

=PXt |St ,Y t−1,S if (V t−1,S = s) uniquely defines St and vice-versa. (1.1.7)

Second, the analysis of the asymptotic per unit time limits of (1.1.2)-(1.1.4), and their variants

(when the supremum over distributions and limit over n −→ ∞ are interchanged), require certain

technical necessary and/or sufficient conditions for the limits to be finite, for the joint process

(Xt ,Yt), t = 1, . . . to be stationary or asymptotically stationary, and for the rates to be independent

of the initial data, S1 = s.

Our choice of Case I) and II) formulations is further motivated by the believe [2, 4–7], that Kim’s

characterizations of feedback capacity, in the frequency domain [2, Theorem 4.1], and in the time

domain [2, Theorem 6.1], correspond to the Cover and Pombra code definition and noise model.

We show this believe is false. We also show the characterization of feedback [2, Theorem 6.1, i.e.,

CFB] does not correspond to the limit of a jointly stationary or asymptotically stationary process,

(Xt ,Yt), one-sided, i.e., t ∈ {1,2, . . .}, or double-sided, i.e., t ∈ {. . . ,−1,0,1, . . .}. In particular, it

will become apparent in subsequent parts of this paper that [2, Theorem 6.1, i.e., CFB], presupposed

Case II) formulation, and corresponds to the per unit time limit of (1.1.4) (with supremum and limit

interchanged). Further, that since feedback capacity in [2, Theorem 6.1, i.e., CFB] is characterized

with zero innovations process of the channel input (see [2, Lemma 6.1]), it then follows (from the

convergence properties of Kalman-filters [8] [9]), that the value of feedback capacity is necessarily

zero i.e., CFB = 0.

Case I) Formulation of Feedback Code and Noise Definitions. For Case I) formulation we

consider the code of Definition 1.1.1 (due to [3]).

Definition 1.1.1. Time-varying feedback code [3]
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CHAPTER 1. INTRODUCTION 4

(a) A noiseless time-varying feedback code for the AGN Channel (1.1.1), is denoted by (2nR,n),

n = 1,2, . . ., and consists of the following elements and assumptions.

(i) The uniformly distributed messages W : Ω→Mn
4
=
{

1,2, . . . ,2nR}.

(ii) The time-varying encoder strategies, often called codewords of block length n, defined by3

E[0,n](κ),
{

X1 = e1(W ),X2 = e2(W,X1,Y1) . . . ,Xn = en(W,Xn−1,Y n−1) :

1
n

Ee
( n

∑
t=1

(Xt)
2
)
≤ κ

}
.

(iii) The average error probability of the decoder functions yn 7−→ dn(yn) ∈Mn, defined by

P(n)
error = P

{
dn(Y n) 6=W

}
=

1
2nR

2nR

∑
W=1

P
{

dn(Y n) 6=W
}
. (1.1.8)

(iv) The channel input sequence “Xn 4= {X1, . . . ,Xn} is causally related4 to V n”, which is equivalent

to the following decomposition of the joint probability distribution of (Xn,V n):

PXn,V n =PVn|V n−1,Xn PXn|Xn−1,V n−1 . . . PV2|V1,X2PX2|X1,V1PV1|X1PX1 (1.1.9)

=PV n

n

∏
t=1

PXt |X t−1,V t−1, that is, PVt |V t−1,X t = PVt |V t−1. (1.1.10)

That is, X t ↔ V t−1↔ Vt is a Markov chain, for t = 1, . . . ,n. As usual, the messages W are inde-

pendent of the channel noise V n.

A rate R is called an achievable rate with feedback coding, if there exists a sequence of codes

(2nR,n),n = 1,2, . . ., such that P(n)
error −→ 0 as n −→ ∞. The feedback capacity C f b(κ) is defined

as the supremum of all achievable rates R.

For Case I) formulation we consider a noise model which is consistent with the Cover and Pombra

noise model, i.e., V n is jointly Gaussian distributed, PV n = ×n
t=1PVt |V t−1 , and induced by the par-

tially observable state space (PO-SS) realization of Definition 1.1.2.

Definition 1.1.2. A time-varying PO-SS realization of the Gaussian noise

3The superscript e(·) on Ee indicates that the distribution depends on the strategy e(·) ∈ E[0,n](κ).
4A notion found in [3], page 39, above Lemma 5.
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CHAPTER 1. INTRODUCTION 5

A time-varying PO-SS realization of the Gaussian noise V n ∈ N(0,KV n) is defined by

St+1 = AtSt +BtWt , t = 1, . . . ,n−1 (1.1.11)

Vt =CtSt +NtWt , t = 1, . . . ,n, (1.1.12)

S1 ∈ N(µS1 ,KS1), KS1 � 0, (1.1.13)

Wt ∈ N(0,KWt ), KWt � 0, t = 1 . . . ,n an indep. Gaussian process, W t indep. of S1,
(1.1.14)

St : Ω→ Rns, Wt : Ω→ Rnw, Vt : Ω→ R, Rt
4
= NtKWt N

T
t � 0, t = 1, . . . ,n (1.1.15)

where (At ,Bt ,Ct ,Nt ,µS1,KS1,KWt ) are nonrandom for all t, and ns,nw are finite positive integers.

A time-invariant PO-SS realization of the Gaussian noise V n ∈ N(0,KV n) is defined by (1.1.11)-

(5.2.85), with (At ,Bt ,Ct ,Nt ,KWt ) = (A,B,C,N,KW ),∀t.

For Case I) formulation we use the terminology “partially observable”, which is standard in filter-

ing theory [9], because the noise V n induces a distribution PV n =×n
t=1PVt |V t−1 , and PVt |V t−1 cannot

be expressed as a function of the state of the noise, i.e., V t−1 does not uniquely define St . The PO-

SS realization is often adopted in many practical problems of engineering and science, to realize

jointly Gaussian processes V n.

We should emphasize that for Case I) formulation, the code of Definition 1.1.1 and the PO-SS

realization of Definition 1.1.2, the following two conditions must be respected (to be consistent

with [3]):

(A1) The initial state S1 of the noise is not known at the encoder and the decoder, and

(A2) at each t, the representation of the noise V t−1 by the PO-SS realization of Definition 1.1.2,

does not uniquely determine the state of the noise St and vice-versa, i.e., it is a partially observable

realization.

It is easy to verify that conditions (A1) and (A2) are indeed, consistent with the Cover and Pombra

[3] formulation, see for example, the code definition in [3, page 37], the characterization of the

n−finite transmission feeback capacity given in [3, eqn(11)], and the coding theorems given in [3,

Theorem 1].

Case II) Formulation of Feedback Code and Noise Definitions. For Case II) formulation we

pressupose:

Condition 1. The initial state of the noise or the channel S1 = s is known to the encoder and the

decoder.
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CHAPTER 1. INTRODUCTION 6

Condition 2. Given a fixed initial state S1 = s, known to the encoder and the decoder, at each t,

the channel noise V t−1 uniquely defines the state of the noise St and vice-versa.

By Condition 1 the code is that of Definition 1.1.3, below, which is different from the code of

Definition 1.1.1.

Definition 1.1.3. A code with initial state known at the encoder and the decoder

A variant of the code of Definition 1.1.3, is a feedback code with the initial state of the noise or

channel S1 = s, known to the encoder and decoder strategies, denoted by (s,2nR,n), n = 1,2, . . ..

The code (s,2nR,n), n = 1,2, . . . is defined as in Definition 1.1.1, with (ii), (iii), (iv) replaced by

E s
[0,n](κ),

{
X1 = e1(W,S1),X2 = e2(W,S1,X1,Y1) . . . ,Xn = en(W,S1,Xn−1,Y n−1) :

1
n+1

Ee
{ n

∑
i=0

(Xt)
2
∣∣∣S1 = s

}
≤ κ

}
, yn 7−→ ds

n(y
n,vo
−∞) ∈Mn, (1.1.16)

PXn,V n|S1 =PV n|S1

n

∏
t=1

PXt |X t−1,V t−1,S1
, that is, PVt |V t−1,X t ,S1

= PVt |V t−1,S1
. (1.1.17)

The initial state may include S1
4
= (V 0

−∞,Y
0
−∞), etc.

For Case II) formulation it is obvious (from the converse to the coding theorem), that the optimal

channel input conditional distribution is expressed as a function of the state of the noise, Sn, due to

(1.1.6), (1.1.7).

Our approach is based on the following two step procedure.

Step # 1. We apply a linear transformation to the Cover and Pombra optimal channel input pro-

cess [3, eqn(11)] (see (1.2.18)-(1.2.24) which are reproduced from [3] for the convenience of the

reader), to equivalently represent it by a linear functional of the past channel noise sequence, the

past channel output sequence, and an orthogonal Gaussian process, i.e., an innovations process.

That is, Xn is uniquely represented, since it is expressed in terms of the orthogonal process.

Step # 2. We express the optimal input process by a functional of a sufficient statistic, which

satisfies a Markov recursion, and an orthogonal innovations process. It then follows that the Cover

and Pombra characterization of the “n−block” formula [3, eqn(10)] (see (1.2.18) and (1.2.19)) is

equivalently represented by a sequential characterization. The problem of feedback capacity is then

expressed as the maximization of the per unit time limit of a sum of (differential) entropies of the

innovations process of the channel output process, over two sequences of time-varying strategies
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CHAPTER 1. INTRODUCTION 7

of the channel input process. The covariance of the innovations process is a functional of the

solutions of two generalized matrix DREs.

1.2 The Cover and Pombra Characterizations of Capacity and
Related Literature

First, we recall the Cover and Pombra [3] characterization of feedback capacity, since we use it

to derive our new sequential characterizations of the n−FTFI capacity (to avoid new independent

derivations).

Cover and Pombra applied the converse coding theorem and the maximum entropy principle of

Gaussian distributions to identify the characterization of the n−FTFI capacity [3, eqn(10)] by5

C f b
n (κ)

4
= max(

Bn,KZn
)

: 1
n tr

{
E
(

Xn(Xn)T
)}
≤κ

H(Y n)−H(V n) (1.2.18)

= max(
Bn,KZn

)
: 1

n tr

{
Bn KVn (Bn)T+KZn

}
≤κ

1
2

log
|
(
Bn + In×n

)
KVn
(
Bn + In×n

)T
+KZn|

|KVn|
(1.2.19)

where the distribution PY n is induced by a jointly Gaussian channel input process Xn [3, eqn(11)]:

Xt =
t−1

∑
j=1

Bt, jVj +Zt , t = 1, . . . ,n, (1.2.20)

Xn = BnVn +Zn
, Yn =

(
Bn + In×n

)
Vn +Zn

, (1.2.21)

Zn is jointly Gaussian, N(0,KZn), Zn is independent of Vn, (1.2.22)

Xn 4=
[

X1 X2 . . . Xn
]T and similarly for the rest, Bn is a lower diagonal matrix, (1.2.23)

1
n

E
{ n

∑
t=1

(Xt)
2
}
=

1
n

tr
{

E
(

Xn(Xn)T
)}
≤ κ. (1.2.24)

The notation N(0,KZn) means the random variable Zn is jointly Gaussian with mean E{Zn} = 0

and covariance marix KZn = E{Zn
(Zn

)T}, and In×n denotes an n by n identity matrix.

The feedback capacity, C f b(κ), is characterized by the per unit time limit of the n−FTFI capacity

[3].

C f b(κ)
4
= lim

n−→∞

1
n

C f b
n (κ). (1.2.25)

5We use H(X) to denote differential entropy of a continuous-valued RV X , hence we indirectly assume the prob-
ability density functions exist.
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CHAPTER 1. INTRODUCTION 8

The direct and converse coding theorems, are stated in [3, Theorem 1].

Over the years, considerable efforts have been devoted to compute C f b
n (κ) and C f b(κ), [1, 2,

4–6, 10], often under simplified assumptions on the channel noise. In addition, bounds are de-

scribed in [11,12], while numerical methods are developed in [13], mostly for time-invariant AGN

channel, driven by stationary noise. We should mention that most papers considered a variant

of (1.2.25), by interchanging the per unit time limit and the maximization operations, under the

assumption: the joint process (Xn,Y n),n = 1,2, . . . is either jointly stationary or asymptotically

stationary (see [2, 4, 5, 10]), and the joint distribution of the joint process (Xn,Y n),n = 1,2, . . . is

time-invariant.

Yang, Kavcic and Tatikonda [1] and Kim [2] analyzed the feedback capacity of the AGN chan-

nel (1.1.1) driven by a stationary noise, described the power spectral density (PSD) functions

SV (e jθ ),θ ∈ [−π,π]:

SV (e jθ )
4
=KW

(
1−∑

L
k=1 a(k)e jkθ

)(
1−∑

L
k=1 a(k)e− jkθ

)
(

1−∑
L
k=1 c(k)e jkθ

)(
1−∑

L
k=1 c(k)e− jkθ

) , |c(k)|< 1, |a(k)|< 1, c(k) 6= a(k).

(1.2.26)

More specifically, the analysis by Yang, Kavcic and Tatikonda considered a specific state space

realization of the noise PSD (1.2.26), pressuposed a Case II) formulation (see [1, Section II, in

particular Section II.C, I)-III), Theorem 1, Section III]):

The initial state of the noise, S1 = s, is known to the encoder and the decoder, and the initial state

and noise (s,V t−1) uniquely define the noise state St , and vice versa, for all t.

Kim also analyzed the feedback capacity of the AGN channel (1.1.1) driven by a stationary noise

described by the PSD (1.2.26), and by a state space realization of the noise V n (see [2, Section VI]).

A major point of confusion, which should be read with caution is that Kim’s characterization of

feedback capacity in time-domain [2, Theorem 6.1], does not state the conditions based on which

this characterization is derived. The reader, however, can verify from [2, Lemma 6.1 and comments

above it], that the characterization of feedback capacity [2, Theorem 6.1], presupposed a Case II)

formulation, precisely as Yang, Kavcic and Tatikonda [1].

1.3 Thesis Organization

The rest of this thesis is organized as follows.
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CHAPTER 1. INTRODUCTION 9

In Chapter 2, we derive new equivalent sequential characterizations and formulas of the Cover and

Pombra “n−block or transmission” feedback capacity formula [3, eqn(11)], that is, for Case I)

formulation, C f b
n (κ), which have not appeared elsewhere in the literature. In particular, we derive

equivalent realizations to the Cover and Pombra optimal channel input process Xn [3, eqn(11)],

which are linear functionals of a finite-dimensional sufficient statistic and an orthogonal inno-

vations process. From these new realizations, follows the sequential characterizations of the

“n−block or transmission” feedback capacity formula [3, eqn(11)], henceforth called the “n−finite

transmission feedback information (n−FTFI) capacity”, which are expressed as functionals of two

generalized matrix difference Riccati equations (DRE) of filtering theory of Gaussian systems.

In Chapter 3, we derive results analogous to 1), for Case II) formulation e.g., C f b
n (κ,s) and for

C f b,S
n (κ,s), as special cases of Case I).

In Chapter 4, we analyze the asymptotic per unit time limit of the sequential characterizations of

the n−FTFI capacity, denoted by C f b,o(κ), C f b,o(κ,s), C f b,S,o(κ,s), when the supremum and limit

over n −→ ∞ are interchanged. We identify necessary and/or sufficient conditions for the asymp-

totic limit to exist, and for the optimal joint process (Xt ,Yt), t = 1, . . . , to be asymptotically station-

ary, in terms of the convergence properties of two generalized matrix difference Riccati equations

(DREs) to their corresponding two generalized matrix algebraic Riccati equations (AREs). Use in

made of the so-called detectability and stabilizability conditions of generalized Kalman-filters of

Gaussian processes [8, 9]. More specifically, C f b,S
n (κ,s) is a functional of one generalized DRE,

while C f b
n (κ),C f b

n (κ,s), are functionals of two generalized DREs. Also, we show that for certain

noise models, and under certain conditions, it holds that C f b,o(κ,s) =C f b(κ), i.e., these values do

not depend on the initial state or initial distributions.

In Chapter 5, we calculate the maximum feedback capacity C f b,S,o(κ,s), and we show that it

doesn’t always exist. Otherwise, there is always an achievable rate. Also, for our simplicity, we

prefer to use an ARMA(a,c) scalar noise representation.

Finally, in Chapter 6, we highlight the main findings and suggest future potential work.STELIO
S LO

UCA



Chapter 2

Feedback Capacity with Unknown Initial
State

In this chapter we derive equivalent sequential characterizations, for C f b
n (κ) defined by (1.1.2),

i.e., the Cover and Pombra n−FTFI capacity characterization (1.2.19) of Case I) formulation,

We organize the presentation of the material as follows:

1) Section 2.1. The main result is Theorem 2.1.1, which gives an equivalent sequential char-

acterization of the Cover and Pombra characterization C f b
n (κ), i.e., of (1.2.18), (1.2.19). Our

derivation is simple; we apply a linear transformation to the Cover and Pombra Gaussian opti-

mal channel input Xn (1.2.20), to represent Xt , by a linear function of (V t−1,Y t−1) or equiva-

lently (X t−1,Y t−1) and an orthogonal Gaussian innovations process Zt , which is independent of

(Zt−1,X t−1,V t−1,Y t−1) for t = 1, . . . ,n.

We apply Theorem 2.1.1 to the time-varying PO-SS(at ,ct ,b1
t ,b

2
t ,d

1
t ,d

2
t ) noise (see Example 2.1.1),

and to the nonstationary autoregressive moving average ARMA(a,c), a ∈ (−∞,∞) c ∈ (−∞,∞)

noise, and to the stationary ARMA(a,c),a∈ (−1,1),c∈ (−1,1) noise (see Example 2.1.2), which

is found in many references, such as, [2].

2) Section 2.2. The main result is Theorem 2.2.1, which gives the sequential characterization

of n−FTFI capacity for time-varying AGN channel (1.1.1) driven by the PO-SS realization of

Definition 1.1.2, for the code of Definition 1.1.1. Our derivation is based on identifying a finite-

dimensional sufficient statistic to express Xt as a functional of the sufficient statistic, instead of

(V t−1,Y t−1) or (X t−1,Y t−1), and an orthogonal Gaussian innovations process. This characteriza-

tion further simplifies the sequential characterization of C f b
n (κ) given in Theorem 2.1.1 (i.e., the

10
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CHAPTER 2. FEEDBACK CAPACITY WITH UNKNOWN INITIAL STATE 11

equivalent of (1.2.19)).

In Corollary 2.2.2 we present the application of Theorem 2.2.1 to the ARMA(a,c),a∈ (−∞,∞),c∈
(−∞,∞) noise of Example 2.1.2, and show that the n−FTFI capacity is expressed in terms of so-

lutions to two DREs.

For Gaussian distributed Random Variables, we use the follows. PX ∈ N(µX ,KX),KX � 0 denotes

a Gaussian distributed RV X , with mean value µX and covariance matrix KX = cov(X ,X) � 0,

defined by

µX
4
= E{X}, KX = cov(X ,X)

4
= E

{(
X−E

{
X
})(

X−E
{

X
})T}

. (2.0.1)

Given another Gaussian random variables Y : Ω→ Rny,ny ∈ Zn
+, which is jointly Gaussian dis-

tributed with X , i.e., the joint distribution is PX ,Y , the conditional covariance of X given Y is

defined by

KX |Y = cov(X ,X
∣∣∣Y ) 4=E

{(
X−E

{
X
∣∣∣Y})(X−E

{
X
∣∣∣Y})T ∣∣∣Y} (2.0.2)

=E
{(

X−E
{

X
∣∣∣Y})(X−E

{
X
∣∣∣Y})T}

(2.0.3)

where the last equality is due to a property of jointly Gaussian distributed RVs.

Given three arbitrary RVs (X ,Y,Z) with induced distribution PX ,Y,Z , the RVs (X ,Z) are called

conditionally independent given the RV Y if PZ|X ,Y = PZ|Y . This conditional independence is often

denoted by, X ↔ Y ↔ Z is a Markov chain.

2.1 Preliminary Characterizations of n−FTFI Capacity of AGN
Channels Driven by Correlated Noise

We start with preliminary calculations, for the feedback code of Definition 1.1.1, which we use to

prove Theorem 2.1.1. These calculations are introduced for the sake of clarity and to establish our

notation.

For the feedback code of Definition 1.1.1, by the channel definition (1.1.1), i.e., (1.1.10), theSTELIO
S LO
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CHAPTER 2. FEEDBACK CAPACITY WITH UNKNOWN INITIAL STATE 12

conditional distribution of Yt given Y t−1 = yt−1,X t = xt , is

P
{

Yt ∈ dy
∣∣∣Y t−1 = yt−1,X t = xt}=P

{
Yt ∈ dy

∣∣∣Y t−1 = yt−1,X t = xt ,V t−1 = vt−1},by (1.1.1)

(2.1.4)

=PVt |V t−1

(
vt : xt + vt ∈ dy

)
, t = 2, . . . ,n, by (1.1.10)

(2.1.5)

=PYt |Xt ,V t−1 (2.1.6)

≡Pt(dy|xt ,vt−1), (2.1.7)

P
{

Y1 ∈ dy
∣∣∣Y 0 = y0,X1 = x1}=PY1|X1 ≡ P1(dy|x1). (2.1.8)

We introduce the set of channel input distributions with feedback, which are consistent with the

code of Definition 1.1.1, not necessarily generated by the messages W , as follows:

P[0,n](κ)
4
=
{

Pt(dxt |xt−1,yt−1)
4
= PXt |X t−1,Y t−1, t = 1, . . . ,n :

1
n

EP
( n

∑
t=1

(
Xt
)2
)
≤ κ

}
. (2.1.9)

By Definition 1.1.1, we have E[0,n](κ) ⊆P[0,n](κ). Moreover, by the channel definition, any pair

of the sequence triple (V t ,X t ,Y t) uniquely defines the remaining sequence. Thus, the identity

holds:

P [0,n](κ)
4
=
{

Pt(dxt |vt−1,yt−1), t = 1, . . . ,n :
1

n+1
EP
( n

∑
t=1

(
Xt
)2
)
≤ κ

}
= P[0,n](κ). (2.1.10)

We also emphasize that, by Definition 1.1.1, for a given feedback encoder strategy e(·) ∈ E
[0,n](κ),

i.e., x1 = e1(w),x2 = e2(w,x1,y1), . . . ,xn = en(w,xn−1,yn−1) the conditional distributions of Yt

given (Y t−1,W ) = (yt−1,w) depend on the strategies, e(·) as follows:

Pe
Yt |W,Y t−1(dyt |,yt−1,w)

(a)
=Pt(dyt |{e j(w,x j−1,y j−1) : j = 1, . . . , t},yt−1,w) (2.1.11)

(b)
=Pt(dyt |{e j(w,x j−1,y j−1) : j = 1, . . . , t},yt−1,vt−1,w) (2.1.12)
(c)
=Pt(dyt |{e j(w,x j−1,y j−1) : j = 1, . . . , t},vt−1,w) (2.1.13)
(d)
=Pt(dyt |{e j(w,x j−1,y j−1) : j = 1, . . . , t},vt−1) (2.1.14)
(e)
=Pt(dyt |et(w,xt−1,yt−1),vt−1) (2.1.15)

(a) is due to knowledge of the distribution of the strategies e j(·), j = 1, . . . , t, the code definition,

and the recursive substitution, x1 = e1(w),x2 = e2(w,x1,y1), . . . ,et(w,xt−1,yt−1), where xt−1 is

specified by the knowledge of the strategies, e j(·), j = 1, . . . , t−1 and the knowledge of (yt−2,w),

(b) is due to knowing x j = e j(w,x j−1,y j−1),y j, j = 1, . . . , t−1 specifies v j = y j−x j, j = 1, . . . , t−
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1,

(c) is due to the fact that, any pair of the triple (xt ,yt ,vt) specifies the remaining sequence, i.e.,

knowing (xt−1,vt−1) specifies yt−1, and hence yt−1 is redundant,

(d) is due to the conditional independence PVt |V t−1,X t ,W = PVt |V t−1,X t ,

(e) is due to (1.1.10), i.e., PVt |V t−1,X t = PVt |V t−1 , and the channel definition.

By the channel definition Yt = Xt +Vt , t = 1, . . . ,n, then each e(·) ∈ E[0,n](κ) is also expressed as

x1 =e1(w) = e1(w), x2 = e2(w,x1,y1) = ẽ2(w,x1,v1,y1)
(a)
= e2(w,v1,y1), . . . ,

xn = en(w,xn−1,yn−1) = ẽn(w,xn−1,vn−1,yn−1)
(a)
= en(w,vn−1,yn−1), w ∈M (n). (2.1.16)

where (a) is due to the channel definition, i.e., the presence of xt−1 in ẽt(·,vt−1, ·) can be removed,

since it is redundant, and specified by (vt−1,yt−1). Consequently, we have the identity

E [0,n](κ),
{

x1 = e1(w),x2 = e2(w,v1,y1) . . . ,xn = en(w,vn−1,yn−1) :
1
n

Ee
( n

∑
i=1

(Xt)
2
)
≤ κ

}
= E[0,n](κ). (2.1.17)

In the next theorem we present our preliminary equivalent sequential characterization of the Cover

and Pombra characterization C f b
n (κ), i.e., of (1.2.18), under encoder strategies E[0,n](κ)=E [0,n](κ),

and channel input distributions P[0,n](κ) = P [0,n](κ). Unlike the Cover and Pombra [3] realiza-

tion of Xn, given by (1.2.20)), at each time t, Xt is driven by an orthogonal Gaussian process Zt .

Theorem 2.1.1. Information structures of maximizing distributions for AGN Channels

Consider the AGN channel (1.1.1), i.e., with noise distribution PV n , and the code of Defini-

tion 1.1.1. Then the following hold.

(a) The inequality holds,

sup
E [0,n](κ)

n

∑
t=1

He(Yt |Y t−1)≤ sup
P [0,n](κ)

n

∑
t=1

HP(Yt |Y t−1) (2.1.18)

where the conditional (differential) entropy He(Yt |Y t−1) is evaluated with respect to the probability

distribution Pe
t (dyt |yt−1), defined by

Pe
t (dyt |yt−1) =

∫
Pt(dyt |et(w,vt−1,yt−1),vt−1) Pe

t (dw,dvt−1|yt−1), t = 0, . . . ,n. (2.1.19)
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and HP(Yt |Y t−1) is evaluated with respect to the probability distribution PP
t (dyt |yt−1), defined by

PP
t (dyt |yt−1) =

∫
Pt(dyt |xt ,vt−1) PP

t (dxt |vt−1,yt−1) PP
t (dvt−1|yt−1), t = 0, . . . ,n. (2.1.20)

(b) The optimal channel input distribution {P(dxt |vt−1,yt−1), t = 1, . . . ,n}∈P [0,n](κ), which max-

imizes ∑
n
t=1 HP(Yt |Y t−1) of part (a), i.e., the right hand side of (2.1.18), is induced by a channel

input process Xn, which is conditionally Gaussian, with linear conditional mean and nonrandom

conditional covariance, given by

EP
{

Xt

∣∣∣V t−1,Y t−1
}
=

ß
Γ1

t Vt−1 +Γ2
t Yt−1, for t = 2, . . . ,n

0, for t = 1,
(2.1.21)

KXt |V t−1,Y t−1
4
= cov

(
Xt ,Xt

∣∣∣V t−1,Y t−1)= KZt � 0, t = 1, . . . ,n (2.1.22)

and such that the average constraint holds and (1.1.10) is respected.

(c) The optimal channel input distribution {P(dxt |vt−1,yt−1), t = 1, . . . ,n} ∈P [0,n](κ) of part (b),

is induced by a jointly Gaussian process Xn, with a realization given by

Xt =
t−1

∑
j=1

Γ
1
t, jVj +

t−1

∑
j=1

Γ
2
t, jYj +Zt , X1 = Z1, t = 2, . . . ,n, (2.1.23)

= Γ
1
t Vt−1 +Γ

2
t Yt−1 +Zt , (2.1.24)

Zt ∈ N(0,KZt ), t = 1, . . . ,n a Gaussian sequence, (2.1.25)

Zt independent of (V t−1,X t−1,Y t−1), t = 1, . . . ,n, (2.1.26)

Zn independent of V n, (2.1.27)

1
n

E
{ n

∑
t=1

(
Xt
)2
}
≤ κ, (2.1.28)

(Γ1
t ,Γ

2
t ,KZt ) ∈ (−∞,∞)× (−∞,∞)× [0,∞) nonrandom. (2.1.29)

(d) An equivalent characterization of the n−FTFI capacity C f b
n (κ), defined by (1.2.18), (1.2.19),

is given by

C f b
n (κ) = sup

1
n E
{

∑
n
t=1

(
Xt

)2}
≤κ

n

∑
t=1

HP(Yt |Y t−1)−H(V n) (2.1.30)

where the supremum is over all (Γ1
t ,Γ

2
t ,KZt ), t = 1, . . . ,n of the realization of part (c), that induces

the distribution Pt(dxt |vt−1,yt−1), t = 1, . . . ,n.

Proof. See Appendix 7.1.
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Theorem 2.1.2. Converse coding theorem for code of Definition 1.1.1

Consider the AGN channel (1.1.1).

(a) Any achievable rate R for the code of Definition 1.1.1 satisfies

R≤C f b(κ)
4
= lim

n−→∞

1
n

C f b
n (κ), (2.1.31)

C f b
n (κ) = sup

Pt(dxt |vt−1,yt−1),t=1,...,n: 1
n E
{

∑
n
t=1

(
Xt

)2}
≤κ

n

∑
t=1

HP(Yt |Y t−1)−H(V n) (2.1.32)

provided the supremum exists and the limit exists, where the right hand side of (2.1.32) is given in

Theorem 2.1.1.

Proof. Follows from standard arguments, using Fano’s inequality (see also [3]) and Theorem 2.1.1.

Remark 2.1.1.

(a) From the realization of Xn given by (2.1.23), we can recover the Cover and Pombra [3] real-

ization (1.2.20), by recursive substitution of Y t−1 into the right hand side of (2.1.23), as follows.

Xt =
t−1

∑
j=1

Γ
1
t, jVj +

t−1

∑
j=1

Γ
2
t, jYj +Zt (2.1.33)

=
t−1

∑
j=1

Γ
1
t, jVj +

t−2

∑
j=1

Γ
2
t, jYj +Γ

2
t,t−1

(
Xt−1 +Zt−1

)
+Zt (2.1.34)

=
t−1

∑
j=1

Bt, jVj +Zt , by recursive substitution of X1, . . . ,Xt−1,Y1, . . . ,Yt−2 (2.1.35)

for some Zt ∈ (0,KZt
) which is jointly correlated, and some nonrandom Bt, j, as given by (1.2.20)

and (1.2.21). Clearly, (2.1.35) is precisely (1.2.20).

(b) Unlike the Cover and Pombra [3] realization of Xn, i.e., (1.2.20), the realization of Xn given by

(2.1.23), is such that, at each time t, Xt depends on (Vt−1,Yt−1,Zt), where Zt is an innovations or

orthogonal process, i.e., (2.1.26) holds.

(c) In subsequent parts of the paper we show that the minimizing sequence Xn given by (2.1.23) is

such that Γ2
t = −Γ1

t , t = 2, . . . ,n. Then we derive an equivalent sequential characterization of the

Cover and Pombra n−FTFI capacity (1.2.19), which is simplified further, by the use of a sufficient

statistic (that satisfies a Markov recursion).
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To characterize C f b
n (κ) using Theorem 2.1.1.(d) we need to compute the (differential) entropy

H(V n) of V n. The following lemma is useful in this respect.

Lemma 2.1.1. Entropy H(V n) calculation from generalized Kalman-filter of the PO-SS noise re-

alization.

Consider the PO-SS realization of V n of Definition 1.1.2. Define the conditional covariance and

conditional mean of St given V t−1 by

Σt
4
=cov

(
St ,St

∣∣∣V t−1) = E
{(

St− Ŝt

)(
St− Ŝt

)T ∣∣∣V t−1
}
, Ŝt

4
= E

{
St

∣∣∣V t−1
}
, t = 2, . . . ,n,

(2.1.36)

Σ1
4
=cov

(
S1,S1) = KS1, Ŝ1

4
= µS1. (2.1.37)

Then the following hold.

(a) The conditional distribution of Vt conditioned on V t−1 is Gaussian, i.e.,

PVt |V t−1 ∈ N(µVt |V t−1,KVt |V t−1), t = 1, . . . ,n (2.1.38)

where µVt |V t−1
4
= E

{
Vt

∣∣∣V t−1},KVt |V t−1
4
= cov

(
Vt ,Vt

∣∣∣V t−1).

(b) The conditional mean and covariance µVt |V t−1 ,KVt |V t−1 are given by the Generalized Kalman-

filter recursions, as follows.

(i) The optimal mean-square error estimate Ŝt satisfies the generalized Kalman-filter recursion

Ŝt+1 = At Ŝt +Mt(Σt)Ît , Ŝ1 = µS1, (2.1.39)

Mt(Σt)
4
=
(

AtΣtCT
t +BtKWt N

T
t

)(
NtKWt N

T
t +CtΣtCT

t

)−1
, (2.1.40)

Ît
4
=Vt−E

{
Vt

∣∣∣V t−1
}
=Vt−Ct Ŝt =Ct

(
St− Ŝt

)
+NtWt , t = 1, . . . ,n, (2.1.41)

Ît ∈ N(0,KÎt ), t = 1, . . . ,n is an orthogonal innovations process, i.e., Ît is independent of

Îs, for all t 6= s, and Ît is independent of V t−1, (2.1.42)

KÎt
4
= cov(Ît , Ît) =CtΣtCT

t +NtKWt N
T
t . (2.1.43)

(ii) The error Et
4
= St− Ŝt satisfies the recursion

Et+1 =MCL
t (Σt)Et +Mt(Σt)NtWt , E1 = S1− Ŝ1, t = 1, . . . ,n, (2.1.44)

MCL
t (Σt)

4
=At−Mt(Σt)Ct . (2.1.45)
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(iii) The covariance of the error is such that E
{

EtET
t
}
= Σt and satisfies the generalized matrix

DRE

Σt+1 =AtΣtAT
t +BtKWt B

T
t −

(
AtΣtCT

t +BtKWt N
T
t

)(
NtKWt N

T
t +CtΣtCT

t

)−1

.
(

AtΣtCT
t +BtKWt N

T
t

)T
, t = 1, . . . ,n, Σ1 = KS1 � 0, Σt � 0. (2.1.46)

(iv) The conditional mean and covariance µVt |V t−1,KVt |V t−1 are given by

µVt |V t−1 =Ct Ŝt , t = 1, . . . ,n, (2.1.47)

KVt |V t−1 =KÎt =CtΣtCT
t +NtKWt N

T
t , t = 1, . . . ,n. (2.1.48)

(v) The entropy of V n, is given by

H(V n) =
1
2

n

∑
t=1

log
(

2πe
[
CtΣtCT

t +NtKWt N
T
t

])
(2.1.49)

Proof. (a), (b).(i)-(iv). The generalized Kalman filter of the PO-SS realization of V n and accom-

panied statements can be found in many textbooks [9]. However, it is noted that Ît , t = 2, . . . ,n,

Î1 = V1 are all independent Gaussian. For example, to show show (2.1.44) we write the recursion

for Et = St − Ŝt using part (i) and the realization of St . (b).(v) By the chain rule of joint entropy

then

H(V n) =H(V1)+
n

∑
t=2

H(Vt |V t−1) (2.1.50)

=H(V1)+
n

∑
t=2

H(Vt−E
{

Vt

∣∣∣V t−1
}
|V t−1) (2.1.51)

=H(V1)+
n

∑
t=2

H(Ît), by orthogonality of Ît
4
=Vt−E

{
Vt

∣∣∣V t−1
}

and V t−1 (2.1.52)

From (2.1.52) and (2.1.48), then follows (2.1.49), from the entropy formula of Gaussian RVs.

Next we introduce an example of a PO-SS realization of the noise that we often use.STELIO
S LO
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Example 2.1.1. A time-varying PO-SS(at ,ct ,b1
t ,b

2
t ,d

1
t ,d

2
t ) noise realization is defined by

St+1 = atSt +b1
t W 1

t +b2
t W 2

t , t = 1,2, . . . ,n−1 (2.1.53)

Vt = ctSt +d1
t W 1

t +d2
t W 2

t , t = 1, . . . ,n, (2.1.54)

S1 ∈ N(µS1 ,KS1), KS1 ≥ 0, W i
t ∈ N(0,KW i

t
), KW i

t
≥ 0, i = 1,2, t = 1, . . . ,n, (2.1.55)

W 1,n and W 2,n indep. seq. and indep. of S1, (2.1.56)

at ∈ R, ct ∈ R, bi
t ∈ R, di

t ∈ R, i = 1,2,∀t are nonrandom, (2.1.57)

bt ◦bt
4
=
(
b1

t
)2KW 1

t
+
(
b2

t
)2KW 2

t
, bt ◦dt

4
= b1

t KW 1
t

d1
t +b2

t KW 2
t

d2
t ,

dt ◦dt
4
=
(
d1

t
)2KW 1

t
+
(
d2

t
)2KW 2

t
> 0, ∀t. (2.1.58)

The next corollary is an application of Lemma 2.1.1 to the time-varying PO-SS noise of Exam-

ple 2.1.1.

Corollary 2.1.1. The entropy H(V n) of the PO-SS(at ,ct ,b1
t ,b

2
t ,d

1
t ,d

2
t ) noise of Example 2.1.1 is

computed from Lemma 2.1.1 with the following changes:

Ct 7−→ ct , At 7−→ at , BtKWt N
T
t 7−→ bt ◦dt , BtKWt B

T
t 7−→ bt ◦bt , NtKWt N

T
t 7−→ dt ◦dt .

(2.1.59)

Proof. This is easily verified.

From Corollary 2.1.1 we have the following observations.

Remark 2.1.2. Consider the PO-SS(at ,ct ,b1
t ,b

2
t ,d

1
t ,d

2
t ) noise of Example 2.1.1. Then the follow-

ing hold.

(a) Consider the code of Definition 1.1.2. At each time t, the optimal channel input process is

either realized by the Cover and Pombra process Xt given by (1.2.20), or equivalently by (2.1.23),

i.e., Xt = ∑
t−1
j=1 Bt, jVt, j +Zt = ∑

t−1
j=1 Γ1

t, jVj +∑
t−1
j=1 Γ2

t, jYj +Zt . Moreover, Xt cannot be expressed in

terms of the state St , because by (2.1.53) and (2.1.54) the noise sequence V t−1 does not specify St ,

for t = 1, . . . ,n.

We also apply our results to various versions the autoregressive moving average (ARMA) noise

model, such as, the double-side and single-sided, stationary version of the ARMA noise, previ-

ously analyzed in [2] and in many other papers.
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Example 2.1.2. The time-invariant ARMA(a,c) noise

(a) The time-invariant one-sided, stable or unstable, autoregressive moving average

(ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞)) noise, is defined by

Vt = cVt−1 +Wt−aWt−1, ∀t ∈ Z+
4
= {1,2, . . .}, (2.1.60)

V0 ∈ N(0,KV0), KV0 ≥ 0, W0 ∈ N(0,KW0), KW0 ≥ 0, Wt ∈ N(0,KW ), KW > 0, (2.1.61)

{W0,W1, . . . ,Wn} indep. seq. and indep. of V0, (2.1.62)

c ∈ (−∞,∞), a ∈ (−∞,∞), c 6= a. (2.1.63)

To express the AR(a,c) in state space form we define the state variable of the noise by

St
4
=

cVt−1−aWt−1

c−a
, ∀t ∈ Z+ (2.1.64)

Then, the state space realization of V n is

St+1 = cSt +Wt , ∀t ∈ Z+, (2.1.65)

Vt =
(

c−a
)

St +Wt , ∀t ∈ Z+, (2.1.66)

KS1 =

(
c
)2KV0 +

(
a
)2KW0(

c−a
)2 , KV0 ≥ 0, KW0 ≥ 0 both given. (2.1.67)

We note that the AR(a,c) is not necessarily stationary or asymptotically stationary.

A special case of the AR(a,c) is the AR(c) noise (i.e., with a = 0) defined by

Vt = cVt−1 +Wt , t = 1,2, . . . , KV0 ≥ 0, KW > 0. (2.1.68)

(b) Double-Sided Wide-Sense Stationary ARMA(a,c),a ∈ [−1,1],c ∈ (−1,1) Noise.

A double-sided wide-sense stationary ARMA(a,c) noise is defined by

Vt = cVt−1 +Wt−aWt−1, ∀t ∈ Z 4= {. . . ,−1,0,1, . . .}, |a| ≤ 1, |c|< 1. (2.1.69)

where Wt ,∀t ∈ Z is an independent and identically distributed Gaussian sequence, i.e., Wt ∈
N(0,KW ), ∀t. The power spectral density (PSD) of the wide-sense stationary noise is (this cor-

responds to [2, eqn(43) with L = 1]) is given by

SV (e jθ )
4
=KW

(
1−aeiθ

)(
1−ae−iθ

)
(

1− ceiθ
)(

1− ce−iθ
) , |c|< 1, |a| ≤ 1, c 6= a, KW > 0. (2.1.70)
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We define the state process by

St
4
=

cVt−1−aWt−1

c−a
, ∀t ∈ Z. (2.1.71)

Then the stationary state space realization of Vt ,∀t ∈ Z is

St+1 = cSt +Wt , ∀t ∈ Z, (2.1.72)

Vt =
(

c−a
)

St +Wt , ∀t ∈ Z (2.1.73)

provided the initial covariances, cov(St ,St),cov(St ,Vt),cov(Vt ,Vt) are chosen appropriately (see

Proposition 2.1.1).

(c) One-sided Wide-Sense Stationary ARMA(a,c),a ∈ [−1,1],c ∈ (−1,1).

The one-sided wide-sense stationary ARMA(a,c) noise is defined as in part (a) with ∀t ∈ Z 4=
{. . . ,−1,0,1, . . . ,} replaced by ∀t ∈Z+

4
= {1,2, . . . ,} and (2.1.71)-(2.1.73) hold, ∀t ∈Z+, provide

the initial covariances are chosen appropriately (see Proposition 2.1.1).

Remark 2.1.3. ARMA(a,c) noise of Example 2.1.2

(a) Consider any of the AR(a,c) of Example 2.1.2. For the code of Definition 1.1.2, as stated in

Remark 2.1.2.(a), the channel input process Xn cannot be expressed in terms of the state Sn.

(b) The statement of part (a), also holds for the double-sided and the one-sided wide-sense station-

ary AR(a,c),a ∈ [−1,1],c ∈ (−1,1) of Example 2.1.2.(b), (c).

In the next proposition we state conditions for the stable realizations of Example 2.1.2.(a), i.e.,

AR(a,c),a ∈ [−1,1],c ∈ (−1,1) to be asymptotically stationary, and for the realizations of Exam-

ple 2.1.2.(b), (c) to be stationary. For stationary noise we also determine the initial conditions of

the generalized Kalman-filter of Lemma 2.1.1.

Proposition 2.1.1. Asymptotically stationary and stationary ARMA(a,c) noises of Example 2.1.2

(a) The realization of the double-sided ARMA(a,c),a∈ [−1,1],c∈ (−1,1) noise of Example 2.1.2.(b)

is stationary if the following conditions hold.

d11
4
= cov

(
St ,St

)
= KSt , d12

4
= cov

(
St ,Vt

)
= KSt ,Vt , d22

4
= cov(Vt ,Vt) = KVt , are constants

(2.1.74)

where the constants (d11,d12,d22) are given by

d11 =
KW

1− c2 , d12 =

(
c−a

)
KW

1− c2 , d22 =

(
c−a

)2KW

1− c2 +KW . (2.1.75)
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Similarly, the one-sided ARMA(a,c),a ∈ [−1,1],c ∈ (−1,1) noise of Example 2.1.2.(c) is station-

ary if the above equations hold ∀t ∈ Z+
4
= {1,2, . . .}.

(b) The realization of the ARMA(a,c) noise of Example 2.1.2.(a) is asymptotically stationary if

a ∈ [−1,1],c ∈ (−1,1).

Proof. See Appendix 7.2.

2.2 A Sufficient Statistic Approach to the Characterization of
n−FTFI Capacity of AGN Channels Driven by PO-SS Noise
Realizations

The characterization of the n−FTFI capacity via (1.2.19), equivalently given in Theorem 2.1.1.(d),

although compactly represented, is not very practical, because the input process Xn is not expressed

in terms of a sufficient statistic that summarizes the information of the channel input strategy. Over

the years, such stochastic optimization problems enjoyed much progress via the use of a sufficient

statistic [14].

In this section, we wish to identify a sufficient statistic for the input process Xt , given by (2.1.23),

called the state of the input, which summarizes the information contained in (V t−1,Y t−1). It will

then become apparent that the characterization of the n−FTFI capacity for the Cover and Pombra

formulation and code of Definition 1.1.1, can be expressed as a functional of two generalized

matrix DREs.

First, we invoke Theorem 2.1.1 and Lemma 2.1.1 to show that for each time t, Xt is expressed as

Xt = Λt

(
Ŝt−E

{
Ŝt

∣∣∣Y t−1
})

+Zt , t = 1, . . . ,n, (2.2.76)

Ŝt
4
= E

{
St

∣∣∣V t−1
}
, ̂̂St

4
= E

{
Ŝt

∣∣∣Y t−1
}
. (2.2.77)

For non-feedback, Xt is expressed as

Xt = ΛtSt +DZt (2.2.78)

St+1 = ASt +BZt (2.2.79)

The above representation means, at each time t, the state of the channel input process Xt is
(

Ŝt ,
̂̂St

)
.

We show that ̂̂St satisfies another generalized Kalman-filter recursion.
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Now, we prepare to prove (2.2.76) and the main theorem. We start with preliminary calculations.

P
{

Yt ∈ dy
∣∣∣Y t−1,X t}=Pt(dy|Xt ,V t−1), t = 2, . . . ,n, by channel definition (2.2.80)

=Pt(dy|Xt ,V t−1, Ŝt), by Ŝt = E
{

St

∣∣∣V t−1
}

(2.2.81)

=Pt(dy|Xt ,V t−1, Ŝt , Ît−1), by (2.1.41), i.e., Vt =Ct Ŝt + Ît (2.2.82)

=Pt(dy|Xt , Ŝt), by Yt = Xt +Vt = Xt +Ct Ŝt + Ît and (2.1.42). (2.2.83)

At t = 1 we also have P
{

Y1 ∈ dy
∣∣∣X1
}
= P1(dy|X1). By (2.2.83), it follows that the conditional

distribution of Yt given Y t−1 = yt−1 is

Pt(dyt |yt−1) =
∫

Pt(dy|xt , ŝt)Pt(dxt |ŝt ,yt−1)Pt(dŝt |yt−1), t = 2, . . . ,n, (2.2.84)

P1(dy1) =
∫

P1(dy|xt , ŝ1)P1(dx1|ŝ1)P1(dŝ1). (2.2.85)

From the above distributions, at each time t, the distribution of Xt conditioned on (V t−1,Y t−1),

given in Theorem 2.1.1, is also expressed as a linear functional of (Ŝt ,Y t−1), for t = 1, . . . ,n.

The next theorem further shows that for each t, the dependence of Xt on Y t−1 is expressed in terms

of E
{

Ŝt

∣∣∣Y t−1
}

for t = 1, . . . ,n, and this dependence gives rise to an equivalent sequential charac-

terization of the Cover and Pombra n−FTFI capacity, C f b
n (κ).

Theorem 2.2.1. Equivalent characterization of n−FTFI Capacity C f b
n (κ) for PO-SS Noise real-

izations

Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with the PO-SS

realization of Definition 1.1.2, and the code of Definition 1.1.1. Consider also the generalized

Kalman-filter of Lemma 2.1.1.

Define the conditional covariance and conditional mean of Ŝt given Y t−1, by

Kt
4
=cov

(
Ŝt , Ŝt

∣∣∣Y t−1
)
= E

{(
Ŝt− ̂̂St

)(
Ŝt− ̂̂St

)T}
, ̂̂St

4
= E

{
Ŝt

∣∣∣Y t−1
}
, t = 2, . . . ,n, (2.2.86)̂̂S1

4
=µS1, K1

4
= 0. (2.2.87)

Then the following hold.

(a) An equivalent characterization of the n−FTFI capacity C f b
n (κ), defined by (1.2.20)-(1.2.19), is

C f b
n (κ) = sup

P Ŝ
[0,n](κ)

n

∑
t=1

H(Yt |Y t−1)−H(V n) (2.2.88)
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where (Xn,Y n) is jointly Gaussian, and

H(V n) is the entropy of V n given in Lemma 2.1.1, i.e., (2.1.49), (2.2.89)

În is the innovations process of V n given in Lemma 2.1.1, (2.2.90)

Yt = Xt +Vt , t = 1, . . . ,n, (2.2.91)

Vt =Ct Ŝt + Ît , (2.2.92)

Pt(dyt |yt−1) =
∫

Pt(dy|xt , ŝt)Pt(dxt |ŝt ,yt−1)Pt(dŝt |yt−1), t = 2, . . . ,n, (2.2.93)

P1(dy1) =
∫

P1(dy|xt , ŝ1)P1(dx1|ŝ1)P1(dŝ1), (2.2.94)

Pt(dyt |yt−1) ∈ N(µYt |Y t−1,KYt |Y t−1), (2.2.95)

µYt |Yt−1 is linear in Y t−1 and KYt |Y t−1 is nonrandom, (2.2.96)

Pt(dxt |ŝt ,yt−1) ∈ N(µXt |Ŝt ,Y t−1,KXt |Ŝt ,Y t−1), (2.2.97)

µXt |Ŝt ,Y t−1 is linear in (Ŝt ,Y t−1) and KXt |Ŝt ,Y t−1 is nonrandom, (2.2.98)

P Ŝ
[0,n](κ)

4
=
{

Pt(dxt |ŝt ,yt−1), t = 1, . . . ,n :
1
n

E
( n

∑
t=1

(
Xt
)2
)
≤ κ

}
. (2.2.99)

(b) The optimal jointly Gaussian process (Xn,Y n) of part (a) is represented by

Xt = Λt

(
Ŝt− ̂̂St

)
+Zt , t = 1, . . . ,n, (2.2.100)

Zt ∈ N(0,KZt ) independent of (X t−1,V t−1, Ŝt , ̂̂St
, Ît ,Y t−1), t = 1, . . . ,n, (2.2.101)

Ît ∈ N(0,KÎt ) independent of (X t−1,V t−1, Ŝt ,Y t−1, ̂̂St
), t = 1, . . . ,n, (2.2.102)

Yt = Λt

(
Ŝt− ̂̂St

)
+Zt +Vt , t = 1, . . . ,n, (2.2.103)

= Λt

(
Ŝt− ̂̂St

)
+Ct Ŝt + Ît +Zt , (2.2.104)

1
n

E
{ n

∑
t=1

(Xt)
2
}
=

1
n

n

∑
t=1

(
ΛtKtΛ

T
t +KZt

)
. (2.2.105)

where Λt is nonrandom.

The conditional mean and covariance, ̂̂St and Kt , are given by generalized Kalman-filter equations,

as follows.STELIO
S LO
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(i) ̂̂St satisfies the Kalman-filter recursion

̂̂St+1 = At
̂̂St +Ft(Σt ,Kt)It ,

̂̂S1 = µS1, (2.2.106)

Ft(Σt ,Kt)
4
=
(

AtKt
(
Λt +Ct

)T
+Mt(Σt)KÎt

){
KÎt +KZt +

(
Λt +Ct

)
Kt
(
Λt +Ct

)T
}−1

(2.2.107)

It
4
= Yt−E

{
Yt

∣∣∣Y t−1
}
= Yt−Ct

̂̂St =
(

Λt +Ct

)(
Ŝt− ̂̂St

)
+ Ît +Zt , t = 1, . . . ,n, (2.2.108)

It ∈ N(0,KIt ), t = 1, . . . ,n is an orthogonal innovations process, i.e., It is independent of

Is, for all t 6= s, and It is independent of V t−1, (2.2.109)

KYt |Y t−1 = KIt
4
= cov

(
It , It
)
=
(

Λt +Ct

)
Kt

(
Λt +Ct

)T
+KÎt +KZt , (2.2.110)

KÎt given by (2.1.43). (2.2.111)

(ii) The error Êt
4
= Ŝt− ̂̂St satisfies the recursion

Êt+1 = FCL
t (Σt ,Kt)Êt +Ft(Σt ,Kt)

(
Ît +Zt

)
, Ê1 = Ŝ1− ̂̂S1 = 0, t = 1, . . . ,n, (2.2.112)

FCL
t (Σt ,Kt)

4
= At−Ft(Σt ,Kt)

(
Λt +Ct

)
. (2.2.113)

(iii) Kt = E
{

Êt ÊT
t
}

satisfies the generalized DRE

Kt+1 = AtKtAT
t +Mt(Σt)KÎt

(
Mt(Σt)

)T −
(

AtKt
(
Λt +Ct

)T
+Mt(Σt)KÎt

)(
KÎt +KZt

+
(
Λt +Ct

)
Kt
(
Λt +Ct

)T
)−1(

AtKt
(
Λt +Ct

)T
+Mt(Σt)KÎt

)T
,

Kt � 0, t = 1, . . . ,n, K1 = 0. (2.2.114)

(c) The characterization of the n−FTFI capacity, C f b
n (κ) of part (a) is

C f b
n (κ) = sup(

Λt ,KZt

)
,t=1,...,n: 1

n E
{

∑
n
t=1

(
Xt

)2}
≤κ

1
2

n

∑
t=1

log
KYt |Y t−1

KVt |V t−1
(2.2.115)

= sup(
Λt ,KZt

)
,t=1,...,n: 1

n ∑
n
t=1

(
ΛtKtΛ

T
t +KZt

)
≤κ

1
2

n

∑
t=1

log
((Λt +Ct

)
Kt

(
Λt +Ct

)T
+KÎt +KZt

KÎt

)
.

(2.2.116)

Proof. See Appendix 7.3.

Remark 2.2.1. On the characterization of n−FTFI capacity of Theorem 2.2.1

The characterization of n−FTFI capacity C f b
n (κ) given by (2.2.116), involves the generalized ma-

trix DRE Kt which is also a functional of the generalized matrix DRE Σt of the error covariance
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of the state Sn from the noise output V n. This feature is not part of the analysis in [2], because the

problems treated by the author are fundamentally different from the Cover and Pombra formula-

tion.

In the next corollary we apply Theorem 2.2.1 to obtain the characterization of n−FTFI capacity

C f b
n (κ) of the AGN channel driven by the PO-SS(at ,ct ,b1

t ,b
2
t ,d

1
t ,d

2
t ) noise.

Corollary 2.2.1. The n−FTFI capacity C f b
n (κ) of the AGN channel driven by the PO-SS(at ,ct ,b1

t ,b
2
t ,d

1
t ,d

2
t )

noise is obtained from Lemma 2.1.1 and Theorem 2.2.1, by using (2.1.59).

Proof. This is easily verified, as in Corollary 2.1.1.

In the next corollary we apply Theorem 2.2.1 to the stable and unstable ARMA(a,c) noise, to

obtain the characterization of n−FTFI capacity C f b
n (κ). It is then obvious that for the stable

ARMA(a,c),a ∈ [−1,1],c ∈ (−1,1) noise, the characterization of C f b
n (κ) involves two gener-

alized DREs, contrary to the analysis in [2, 4–7], for the same noise model.

Corollary 2.2.2. Characterization of n−FTFI Capacity C f b
n (κ) for the ARMA(a,c),a∈ (−∞,∞),c∈

(−∞,∞)

Consider the time-varying AGN channel defined by (1.1.1) and the code of Definition 1.1.1.

(a) For the nonstationary ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of Example 2.1.2.(a), the

characterization of the n−FTFI capacity, C f b
n (κ) is

C f b
n (κ) = sup(

Λt ,KZt

)
,t=1,...,n: 1

n E
{

∑
n
t=1

(
Xt

)2}
≤κ

1
2

n

∑
t=1

log
((Λt + c−a

)2
Kt +KÎt +KZt

KÎt

)
(2.2.117)

subject to the constraints

Kt+1 =
(
c
)2Kt +

(
Mt(Σt)

)2KÎt −
(

cKt
(
Λt + c−a

)
+Mt(Σt)KÎt

)2

.
(

KÎt +KZt +
(
Λt + c−a

)2Kt

)−1
, K1 = 0, t = 1, . . . ,n, (2.2.118)

KZt ≥0, Kt ≥ 0, c 6= a, KW > 0, t = 1, . . . ,n (2.2.119)
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and where

Mt(Σt)
4
=
(

cΣt
(
c−a

)
+KW

)(
KW +

(
c−a

)2
Σt

)−1
, (2.2.120)

KÎt =
(
c−a

)2
Σt +KW , t = 1, . . . ,n, (2.2.121)

Σt+1 =
(
c
)2

Σt +KW −
(

cΣt
(
c−a

)
+KW

)2(
KW +

(
c−a

)2
Σt

)−1
, t = 1, . . . ,n, (2.2.122)

Σ1 = KS1 =

(
c0
)2KS0 +

(
a0
)2KW0(

c0−a0

)2 . (2.2.123)

The optimal jointly Gaussian process (Xn,Y n) is obtained from Theorem 2.2.1.(b), by invoking,

At 7−→ c, Ct 7−→ c−a, Bt 7−→ 1, Nt 7−→ 1, t = 1,2, . . . ,n. (2.2.124)

(b) For the nonstationary AR(c),c ∈ (−∞,∞) noise of Example 2.1.2.(c), the characterization of

the n−FTFI capacity C f b
n (κ) is obtained from part (a) by setting a = 0, i.e.,

C f b
n (κ) = sup(

Λt ,KZt

)
,t=1,...,n: 1

n E
{

∑
n
t=1

(
Xt

)2}
≤κ

1
2

n

∑
t=1

log
((Λt + c

)2
Kt +

(
c
)2

Σt +KW +KZt(
c
)2

Σt +KW

)
(2.2.125)

subject to the constraints Kt ,Σt are the nonnegative solutions of the generalized RDEs:

Kt+1 =
(
c
)2Kt +

(
c
)2

Σt +KW −
(

cKt
(
Λt + c

)
+
(
c
)2

Σt +KW

)2

.
((

c
)2

Σt +KW +KZt +
(
Λt + c

)2Kt

)−1
, K1 = 0, t = 1, . . . ,n, (2.2.126)

Σt+1 =
(
c
)2

Σt +KW −
((

c
)2

Σt +KW

)2(
KW +

(
c
)2

Σt

)−1
,

Σ1 = KS1 = KS0 ≥ 0, t = 1, . . . ,n. (2.2.127)

Proof. (a) The first part follows directly from Theorem 2.2.1, by using (2.2.124).STELIO
S LO
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Chapter 3

Feedback Capacity with Known Initial State

In this chapter we derive equivalent sequential characterizations, for

i) C f b
n (κ,s) defined by (1.1.3), as a degenerated case of C f b

n (κ), and

ii) C f b,S
n (κ,s) defined by (1.1.4) of Case II) formulation, as a degenerated case of C f b

n (κ).

We organize the presentation of the material as follows:

1) In Section 3.1, we follow a similar process of Section 2.1 as in Chapter 2, which gives an

equivalent sequential characterization of the Cover and Pombra characterization C f b
n (κ,s), i.e.,

of (1.2.18), (1.2.19). We utilize the Definition code 1.1.3 and our derivation is similar; we ap-

ply a linear transformation to the Cover and Pombra Gaussian optimal channel input Xn (1.2.20),

to represent Xt , by a linear function of (V t−1,Y t−1,s) or equivalently (X t−1,Y t−1,s) and an or-

thogonal Gaussian innovations process Zt , which is independent of (Zt−1,X t−1,V t−1,Y t−1,s) for

t = 1, . . . ,n.

We apply Theorem 3.1.1 to the time-varying PO-SS(at ,ct ,b1
t ,b

2
t ,d

1
t ,d

2
t ) noise (see Example 2.1.1),

and to the nonstationary autoregressive moving average ARMA(a,c),a ∈ (−∞,∞)

c ∈ (−∞,∞) noise, and to the stationary ARMA(a,c),a ∈ (−1,1),c ∈ (−1,1) noise (see Exam-

ple 2.1.2), which is found in many references, such as, [2]. However, our characterizations of

n−FTFI capacity are fundamentally different from past literature, because these depend on whether

we consider C f b
n (κ),C f b

n (κ,s) or C f b,S
n (κ,s).

2) Section 3.2. The main result is Corollary 3.2.1, which gives the sequential characterization

of n−FTFI capacity for time-varying AGN channel (1.1.1) driven by the PO-SS realization of

Definition 1.1.2, for the code of Definition 1.1.3. Our derivation is based on identifying a finite-

27
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dimensional sufficient statistic to express Xt as a functional of the sufficient statistic, instead of

(V t−1,Y t−1) or (X t−1,Y t−1), and an orthogonal Gaussian innovations process. This characteriza-

tion further simplifies the sequential characterization of C f b
n (κ) given in Theorem 3.1.1 (i.e., the

equivalent of (1.2.19)).

In Corollary 3.2.3 we present the application of Corollary 3.2.1 to the ARMA(a,c),a∈ (−∞,∞),c∈
(−∞,∞) noise of Example 2.1.2, and show that the n−FTFI capacity is expressed in terms of so-

lutions to two DREs.

From Corollary 3.2.3, we conclude following:

(i) Neither the time-domain characterization [2, Theorem 6.1] (see [2, Theorem 5.3]) nor the fre-

quency domain characterization [2, Theorem 4.1], correspond to the Cover and Pombra character-

ization of feedback capacity (when the limit and maximization operations are interchanged) of the

nonstationary and stationary ARMA(a,c) noise of Example 2.1.2.

(ii) For the characterizations given in [2, Theorem 6.1 and Theorem 4.1], to be correct, it is neces-

sary that Conditions 1 and 2 hold.

3) Section 3.3. The main result is Proposition 3.3.1, which further clarifies that the formulation

of [1] and the formulation that let to [2, Theorem 6.1], are based on Case II) formulation.

3.1 Sequential Characterization of n−FTFI Capacity for Case
II) Formulation

In this section we consider Case II) formulation, and we derive the characterization of feedback

capacity, C f b,S
n (κ,s), of the AGN channel (1.1.1) driven by a noise V n of Definition 1.1.2, i.e., for

the code of Definition 1.1.3, (s,2nR,n), n = 1,2, . . ., when Conditions 1 and 2 of Section 1.1 hold.

Definition 3.1.1. AGN channels driven by noise with invertible PO-SS realizations

The PO-SS realization of the noise of Definition 1.1.2 is called invertible if it satisfies the condition:

(A1) Given the initial state S1 = Ss
1 = s, the noise V t−1 uniquely specifies the state St , for t =

1, . . . ,n, and vice versa.

Corollary 3.1.1. Characterization of n−FTFI Capacity for Case II) formulation

Consider the AGN channel (1.1.1) driven by a noise V n of Definition 3.1.1, and the code of

Definition 1.1.3, (s,2nR,n), n = 1,2, . . ., that is, Conditions 1 and 2 of Section 1.1 hold.
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Define the n−FTFI Capacity for a fixed initial state S1 = Ss
1 = s, by

C f b,S
n (κ,s) = sup

Ps
[0,n](κ)

HP(Y n|s)−H(V n|s) (3.1.1)

where the set Ps
[0,n](κ) is defined by

Ps
[0,n](κ)

4
=
{

Pt(dxt |xt−1,yt−1,s), t = 1, . . . ,n :
1
n

EP
s

( n

∑
t=1

(
Xt
)2
)
≤ κ

}
. (3.1.2)

and where EP
s means S1 = Ss

1 = s is fixed, and the joint distribution depends on the elements of

Ps
[0,n](κ).

Then the following hold.

(a) The n−FTFI capacity, for a fixed S1 = s is characterized by

C f b,S
n (κ,s) = sup

P
s,M
[0,n](κ)

n

∑
t=1

HPM
(Yt |Y t−1,s)−

n

∑
t=1

H(Vt |V t−1,s) (3.1.3)

where the P
M
[0,n](κ) is defined by

P
s,M
[0,n](κ)

4
=
{

PM
t (dxt |st ,yt−1,s), t = 1, . . . ,n :

1
n+1

EPM

s

( n

∑
t=1

(
Xt
)2
)
≤ κ

}
(3.1.4)

and where (1.1.10) is respected, PM
t (dxt |st ,yt−1,s), is conditionally Gaussian, with linear condi-

tional mean and nonrandom conditional covariance, given by1

E
{

Xt

∣∣∣Ss
t ,Y

t−1,Ss
1 = s

}
=

{
Λt

(
Ss

t −E
{

Ss
t

∣∣∣Y t−1,Ss
1 = s

})
for t = 2, . . . ,n

0, for t = 1,
(3.1.5)

KXt |Ss
t ,Y t−1,Ss

1=s
4
= cov

(
Xt ,Xt

∣∣∣Ss
t ,Y

t−1,Ss
1 = s

)
= KZt � 0, t = 1, . . . ,n. (3.1.6)

and HP(Yt |Y t−1,s) is evaluated with respect to the probability distribution PPM

t (dyt |yt−1,s), defined

by

PPM

t (dyt |yt−1,s) =
∫

Pt(dyt |xt ,st) PPM

t (dxt |st ,yt−1,s) PPM

t (dst |yt−1,s), t = 1, . . . ,n. (3.1.7)

(b) Define the conditional means and conditional covariance for a fixed S1 = s, by

Ks
t
4
=cov

(
Ss

t ,S
s
t

∣∣∣Y t−1,Ss
1 = s) = EPM{(

Ss
t − Ŝs

t

)(
Ss

t − Ŝs
t

)T}
, (3.1.8)

Ŝs
t
4
=EPM{

Ss
t

∣∣∣Y t−1,Ss
1 = s

}
, t = 2, . . . ,n, Ks

1
4
= cov

(
Ss

1,S
s
1|Ss

1 = s) = 0, Ŝs
1
4
= s. (3.1.9)

1The notation St = Ss
t , t = 2, . . . ,n means this sequence is generated from (1.1.11), when the initial state is fixed,

S1 = Ss
1 = s.
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The optimal channel input distribution of part (a) is induced by a jointly Gaussian process process

Xn, with a realization given by

Xt = Λt

(
Ss

t − Ŝs
t

)
+Zt , X1 = Z1, t = 2, . . . ,n, (3.1.10)

Zt ∈ N(0,KZt ) independent of (S1,X t−1,V t−1,Y t−1), t = 1, . . . ,n, (3.1.11)

Yt = Λt

(
Ss

t − Ŝs
t

)
+Zt +Vt , t = 1, . . . ,n, (3.1.12)

= Λt

(
Ss

t − Ŝs
t

)
+CtSs

t +NtWt +Zt , (3.1.13)

1
n

EPM

s

{ n

∑
t=1

(Xt)
2
}
=

1
n

n

∑
t=1

(
ΛtKs

t Λ
T
t +KZt

)
≤ κ (3.1.14)

where Λt is nonrandom.

The conditional means and conditional covariance Ŝs
t and Ks

t are given by the generalized Kalman-

filter, as follows equations.

(i) Ŝs
t satisfies the Kalman-filter recursion

Ŝs
t+1 = At Ŝs

t +Ft(Ks
t )I

s
t , Ŝ1 = s, (3.1.15)

Ft(Ks
t )
4
=
(

AtKs
t
(
Λt +Ct

)T
+BtKWt N

T
t

){
NtKWt N

T
t +KZt +

(
Λt +Ct

)
Ks

t
(
Λt +Ct

)T
}−1

,

(3.1.16)

Is
t
4
= Yt−Ct Ŝs

t =
(
Λt +Ct

)(
Ss

t − Ŝs
t
)
+NtWt +Zt , t = 1, . . . ,n, (3.1.17)

Is
t ∈ N(0,KIs

t
), t = 1, . . . ,n an orthogonal innovations process, i.e., Is

t is independent of

Is
k , for all t 6= k, and Is

t is independent of Y t−1, (3.1.18)

KYt |Y t−1,s = KIs
t

4
= cov

(
It , It |Ss

1 = s
)
=
(

Λt +Ct

)
Ks

t

(
Λt +Ct

)T
+NtKWt N

T
t +KZt . (3.1.19)

(ii) The error Es
t
4
= Ss

t − Ŝs
t satisfies the recursion

Es
t+1 =FCL

t (Ks
t )E

s
t +Ft(Ks

t )
(

NtWt +Zt

)
, Es

1 = Ss
1− Ŝs

1 = 0, t = 1, . . . ,n, (3.1.20)

FCL
t (Ks

t )
4
= At−Ft(Ks

t )
(

Λt +Ct

)
. (3.1.21)

(iii) Ks
t = E

{
Es

t
(
Es

t
)T} satisfies the generalized DRE

Ks
t+1 =AtKtAT

t +BtKWt B
T
t −

(
BtKWt N

T
t +AtKs

t
(
Λt +Ct

)T
){

NtKWt N
T
t +KZt

+
(
Λt +Ct

)
Ks

t
(
Λt +Ct

)T
}−1(

BtKWt N
T
t +AtKs

t
(
Λt +Ct

))T
,

Ks
t � 0, Ks

1 = 0, t = 1, . . . ,n. (3.1.22)
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(c) The characterization of the n−FTFI capacity of part (a) is

C f b,S
n (κ,s)

= sup(
Λt ,KZt

)
,t=1,...,n: 1

n Es

{
∑

n
t=1

(
Xt

)2}
≤κ

n

∑
t=1

log
KYt |Y t−1,s

KVt |V t−1,s
(3.1.23)

= sup(
Λt ,KZt

)
,t=1,...,n: 1

n Es

{
∑

n
t=1

(
Xt

)2}
≤κ

1
2

n

∑
t=1

log
((Λt +Ct

)
Ks

t

(
Λt +Ct

)T
+NtKWt N

T
t +KZt

NtKWt N
T
t

)
.

(3.1.24)

Proof. See Appendix 7.4.

Remark 3.1.1. Comments on the per unit time limit of C f b,S
n (κ,s)

(b) The asymptotic analysis of C f b,o(κ) and C f b,o(κ,s) of Chapter 4, i.e., based on Definition 4.1.1,

applies naturally to Corollary 3.1.1, by considering C f b,S,o(κ,s).

In the next remark we clarify the relation of Corollary 3.1.1 and the analysis of [1] and [2].

Remark 3.1.2. Relations of Corollary 3.1.1 and [1, 2]

(a) The problem analyzed in [1] is precisely C f b,S
n (κ,s), when the noise is stationary and Gaussian,

i.e., it corresponds to Case II) formulation. Corollary 3.1.1 is derived in [1] for the degenerate

case of a time-invariant realization of the noise V n, i.e., of Definition 3.1.1. However, the asymp-

totic analysis of [1, Section VI] should be read with caution, because it did not account for the

necessary and/or sufficient conditions for convergence of the sequence Σs
t , t = 1,2, . . . generated

by the time-invariant version of the generalized DRE (3.1.22) i.e., limn−→∞ Σs
n = Σ∞ � 0, where

Σ∞ � 0 is the unique and stabilizing solution of a corresponding generalized ARE.

(b) The problem analyzed [2] that let to [2, Theorem 6.1, CFB], is the per unit time limit of

C f b,S
n (κ,s), when the noise is stationary, two-sided or one-sided (asymptotically stationary) and

Gaussian, i.e., it corresponds to Case II) formulation. The characterization of feedback capac-

ity presented in [2, Theorem 6.1, CFB] presupposed the following hold ((i)-(iii) are also assumed

in [1, Section VI]).

(i) The feedback code is Definition 1.1.3, i.e., (s,2nR,n).

(ii) The noise is time-invariant and stable, and the PO-SS realization of the noise is invertible, as
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presented in Definition 3.1.1.

(iii) The definition of rate is C f b,S,o(κ,s), with supremum and per unit time limit interchanged, and

the supremum taken over using time-invariant channel input distributions.

(iv) the innovations covariance of the channel input process is zero, i.e., KZt = KZ = 0,∀t.
Items (i)-(iv) are confirmed from [2, Lemma 6.1] (and comments above), which is used to de-

rive [2, Theorem 6.1, CFB].

However, the characterization of feedback capacity in [2, Theorem 6.1, CFB] should be read with

caution, because the stabilizability condition is violated, because Theorem 5.2.1.(1) is not ac-

counted for. When Theorem 5.2.1.(1) is accounted for, then the only unique and stabilizing solution

of the generalized ARE presented in [2, Theorem 6.1, CFB], is the zero solution, which then implise

CFB = 0. That is, the rate as defined in [2] exists if and only if KZ > 0.

The above technical matters are discussed extensively in [15], for the case of the AR(c),c ∈
(−∞,∞), where it is also shown that feedback does not increase capacity for c ∈ (−1,1), i.e.,

for the stationary AR(c) noise.

Notation 3.1.1. For the feedback code of Definition 1.1.3, with initial state S1 = s, known to the en-

coder and the decoder, all the sets from Section 2.1 P[0,n](κ),P [0,n](κ),E[0,n],E [0,n] are replaced

by Ps
[0,n](κ),P

s
[0,n](κ),E

s
[0,n],E

s
[0,n], to indicate the distributions and codes are Pt(dxt |vt−1,yt−1,s),

t = 1, . . . ,x1 = e1(w,s),x2 = e2(w,v1,y1,s) . . . ,xn = en(w,vn−1,yn−1,s), etc. i.e., these depend on

s.

Theorem 3.1.1. Information structures of maximizing distributions for AGN Channels

Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with the PO-SS

realization of Definition 1.1.2, and the code of Definition 1.1.3, with initial state S1 = Ss
1 = s fixed.

Then the following hold.

(a) The n−FTFI capacity C f b
n (κ,s) is given by

C f b
n (κ,s)

4
= sup

1
n Es

{
∑

n
t=1

(
Xt

)2
∣∣∣S1

}
≤κ

HP(Y n|s)−H(V n|s). (3.1.25)

Xt =Γ
0s+

t−1

∑
j=1

Γ
1
t, jVj−1 +

t−1

∑
j=1

Γ
2
t, jYj +Zt , t = 1, . . . ,n. (3.1.26)

where the supremum is over all (Γ0,Γ1
t, j,Γ

2
t, j,KZt ), j = 1, . . . , t − 1, t = 1, . . . ,n of the realization

of Xn, that induces the distribution Pt(dxt |vt−1,yt−1,s), t = 1, . . . ,n, and all statements of Theo-

rem 3.1.1 and Lemma 2.1.1 hold, with the conditional distribitions, expectations, and entropies
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replaced by the corresponding expressions with fixed S1 = s.

(b) A necessary condition for Condition 2 of Section 1.1 to hold is

(i) NtWt uniquely defines Ct+1BtWt ,∀t.
Moreover, if (i) holds then the entropy H(V n|s) of part (a) is given by

H(V n|s) = 1
2

n

∑
t=1

log
(

2πeNtKWt N
T
t

)
. (3.1.27)

Proof. See Appendix 7.5.

Remark 3.1.3. It is easy to verify that for the code of Definition 1.1.3 that assumes knowledge

of the initial state S1 = s, then C f b
n (κ,s) is directly obtained from Theorem 3.1.1, as a degenerate

case (an independent derivation is easily produced following the derivation of Corollary 3.1.1,

with slight variations).

By utilizing Theorem 3.1.1 we can derive the converse coding theorems stated below for the feed-

back codes of Definition 1.1.3.

Theorem 3.1.2. Converse coding theorems for code of Definition 1.1.3

Consider the AGN channel (1.1.1).

(a) Any achievable rate R for the code of Definition 1.1.3 (with initial state S1 = s) satisfies

R≤C f b(κ,s)
4
= lim

n−→∞

1
n

C f b
n (κ,s), (3.1.28)

C f b
n (κ,s) = sup

Pt(dxt |vt−1,yt−1,s),t=1,...,n: 1
n Es

{
∑

n
t=1

(
Xt

)2
∣∣∣S1

}
≤κ

n

∑
t=1

HP(Yt |Y t−1,s)−H(V n|s). (3.1.29)

where Es{·} means the expectation is for a fixed S1 = s, provided the supremum exists and the limit

exists, and where the right hand side of (3.1.29) is obtained from Theorem 3.1.1, by replacing all

conditional distributions, entropies, etc, for fixed initial state S1 = s (see Notation 3.1.1).

Proof. Follows from standard arguments, using Fano’s inequality (see also [3]) and Theorem 3.1.1.

Proof. From (2.1.52) and (2.1.48), then follows (2.1.49), from the entropy formula of Gaussian

RVs.

From Lemma 2.1.1 in Chapter 2, follows directly the next corollary of the entropy H(V n|s), when

S1 = s is fixed.

STELIO
S LO

UCA



CHAPTER 3. FEEDBACK CAPACITY WITH KNOWN INITIAL STATE 34

Corollary 3.1.2. Conditional entropy H(V n|s),S1 = s of the PO-SS noise realization.

Consider the PO-SS realization of V n of Definition 1.1.2, for fixed S1 = s, and denote the state pro-

cess generated by recursion (1.1.11), by2, St = Ss
t , t = 2, . . . ,n,S1 = Ss

1 = s. Replace the conditional

covariance and conditional mean (2.1.36) and (2.1.37), by

Σ
s
t
4
=cov

(
Ss

t ,S
s
t

∣∣∣V t−1,Ss
1) = E

{(
Ss

t − Ŝs
t

)(
Ss

t − Ŝs
t

)T ∣∣∣V t−1,Ss
1

}
, (3.1.30)

Ŝs
t
4
=E
{

Ss
t

∣∣∣V t−1,Ss
1

}
, t = 2, . . . ,n, Ss

1 = s, Ŝs
1
4
= s, Σ

s
1
4
= cov

(
Ss

1,S
s
1|Ss

1) = 0. (3.1.31)

Then all statements of Lemma 2.1.1 hold, with the changes,

Σt 7−→ Σ
s
t , Σ

s
1 = 0, PVt |V t−1 7−→ PVt |V t−1,Ss

1
, Ŝt 7−→ Ŝs

t , Ŝs
1 = s, etc, t = 1, . . . ,n. (3.1.32)

In particular, the conditional entropy of V n conditioned on S1 = Ss
1 = s, is given by

H(V n|s) = 1
2

n

∑
t=1

log
(

2πe
[
CtΣ

s
tC

T
t +NtKWt N

T
t

])
(3.1.33)

where Σs
t , t = 2, . . . ,n satisfies the generalized DRE (2.1.46) with initial condition Σs

1 = 0.

Proof. Follows directly from Lemma 2.1.1 and (3.1.30),(3.1.31) .

Next we introduce an example of a PO-SS realization of the noise that we often use.

Remark 3.1.4. Consider the PO-SS(at ,ct ,b1
t ,b

2
t ,d

1
t ,d

2
t ) noise of Example 2.1.1. Then the follow-

ing hold.

(a) Consider the code of Definition 1.1.3, i.e., with a fixed initial state S1 = Ss
1 = s. By Corol-

lary 3.1.2 using (2.1.59), then H(V n|s) is computed from Lemma 2.1.1, with Σ1 = Σs
1 = 0, and

(3.1.33) reduces to

H(V n|s) = 1
2

n

∑
t=1

log
(

2πe
[(

ct
)2

Σ
s
t +nt ◦nt

])
(3.1.34)

where Σs
t is the solution of (2.1.46) with Σ1 = Σs

1 = 0 (using (2.1.59)).

Remark 3.1.5. ARMA(a,c) noise of Example 2.1.2

(a) Consider the nonstationary AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) of Example 2.1.2.(a).

(i) Assume the code of Definition 1.1.3, with initial state V0 = v0 known to the encoder. By (2.1.64),

S1 = Sv0
1 =

cv0−aW0

c−a
, V0 = v0 (3.1.35)

2We often use the notation St = Ss
t to emphasize that the St process is generated for S1 = Ss

1 = s fixed.
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and hence knowledge of V0 = v0 at the encoder does not determine Sv0
1 , because for this to hold the

encoder requires knowledge of W0. It then follows that H(V n|v0) is computed Corollary 3.1.2,

Σ1 = Σ
v0
1 =

(
a)2KW0(
c−a

)2 , and (3.1.33) reduces to (3.1.36)

H(V n|v0) =
1
2

n

∑
t=1

log
(

2πe
[(

c
)2

Σ
v0
t +KW

])
(3.1.37)

where Σ
v0
t is the solution of (2.1.46) with initial data Σ1 = KS1 = Σ

v0
1 =

(
a
)2

KW0(
c−a
)2 ,KW0 ≥ 0.

(ii) Assume the code of Definition 1.1.3, with initial state S1 = s or (V0,W0) = (v0,w0) are known

to the encoder. Then by Corollary 3.1.2,

H(V n|v0,w0) =
1
2

n

∑
t=1

log
(

2πeKW

)
. (3.1.38)

By (2.1.64),, S1
4
= cV0−aW0

c−a , and a necessary condition for Conditions 1 of Section 1.1 to hold, i.e.,

S1 = s is known the the encoder and the decoder is: both (V0,W0) = (v0,w0) are known to the

encoder and the decoder.

(b) The statements of parts (a), (b) also hold for the double-sided and the one-sided wide-sense

stationary AR(a,c),a ∈ [−1,1],c ∈ (−1,1) of Example 2.1.2.(b), (c).

(c) Case II) formulation discussed in Section 1.1, requires Conditions 1 and 2 to hold. For any of

the AR(a,c) noise models, then Conditions 1 and 2 hold if and only if S1 = s1 or (V0,W0) = (v0,w0)

are known to the encoder. Clearly, the values of H(V n) under Case I) formulation is fundamentally

different from the value of H(V n|s),S1 = s under Case II) formulation. Consequently, in general,

C f b
n (κ) given by (2.1.30) is fundamentally different from C f b

n (κ,s) i.e., that corresponds to a fixed

initial state S1 = s, known to the encoder and the decoder, and to the channel input distribution.

(d) From parts (a)-(c) it is clear that Kim’s characterization of feedback capacity for the stationary

ARMA(a,c),a∈ [−1,1],c∈ (−1,1) that uses [2, Theorem 6.1, CFB] (which is derived based on [2,

Lemmas 6.1]) presupposed that the encoder and the decoder assumed knowledge of S1 = Ss
1 = s.

Remark 3.1.6. Consider the stationary double-sided or one-sided ARMA(a,c),a ∈ [−1,1],c

∈ (−1,1) of Example 2.1.2. From in Proposition 2.1.1, and in particular the initial data Ŝ1,Σ1,

it is clear that even if the encoder and the decoder know the initial state V0, then H(V n|v0) 6=
1
2 ∑

n
t=1 log

(
2πeKW

)
. In this case, the value of C f b

n (κ,v0) defined by (3.1.29) is fundamentally

different from the formulation in [1] and [2] that let to the characterization of feedback capacity [2,

Theorem 6.1].
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In the next corollary we further clarify the difference between Case I) formulation and Case II)

formulation, by stating the analogue of Theorem 3.1.1 for the code of Definition 1.1.3, i.e., when

S1 = Ss
1 = s is fixed.

In the next remark we illustrate that H(V n|s) given by (3.1.27) follows directly from Lemma 2.1.1,

by fixing S1 = Ss
1 = s, and assuming NtWt uniquely defines Ct+1BtWt ,∀t.

Remark 3.1.7. The n−FTFI capacity for code of Definition 1.1.1 versus code of Definition 1.1.3.

Consider the generalized Kalman-filter of the PO-SS noise realization, of Lemma 2.1.1, and

assume the initial state of the noise S1 is known, i.e., S1 = Ss
1 = s or S1 = Ss

1 = s = 0, and NtWt

uniquely defined Ct+1BtWt ,∀t. Then all statements of Lemma 2.1.1 hold, by replacing (Σt , Ŝt) by

(Σs
t , Ŝ

s
t ) for t = 1,2, . . . ,. Since, Σs

t satisfies the generalized DRE (2.1.46) with initial condition

Σs
1 = 0, then it is easy to deduce that Σs

t = 0, for t = 1,2, . . . ,n is a solution. Substituting Σs
t =

0, t = 1,2, . . . ,n in (2.1.49) we obtain (3.1.27), as expected.

3.2 A Sufficient Statistic Approach

In this section, we wish to identify a sufficient statistic for the input process Xt , given by (3.1.26),

where the initial state is known and fixed to the encoder and the decoder S1 = s, which summarizes

the information contained in (V t−1,Y t−1,S1). On the other hand, for a code that assumes knowl-

edge of the initial state and the state of the noise, and Conditions 1 and 2 hold, the characterization

of the n−FTFI capacity is expressed as a functional of one generalized DRE (see [1]).

Corollary 3.2.1. Equivalent characterization of n−FTFI Capacity C f b
n (κ,s) for PO-SS Noise re-

alizations Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with the

PO-SS realization of Definition 1.1.2, and the code of Definition 1.1.3, with initial state S1 = Ss
1 = s

fixed, and replace (2.2.86), (2.2.87) by

Kt = Ks
t
4
=cov

(
Ŝs

t , Ŝ
s
t

∣∣∣Y t−1,S1 = s
)
= E

{(
Ŝs

t −
̂̂Ss
t

)(
Ŝs

t −
̂̂Ss
t

)T}
, (3.2.39)̂̂St =

̂̂Ss
t
4
= E

{
Ŝs

t

∣∣∣Y t−1,S1 = s
}
, t = 2, . . . ,n, ̂̂S1 =

̂̂Ss
1
4
= s, K1 = Ks

1 = 0. (3.2.40)
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Then

C f b
n (κ,s) = sup

P Ŝs
[0,n](κ)

n

∑
t=1

H(Yt |Y t−1,s)−H(V n|s), (3.2.41)

P Ŝs

[0,n](κ)
4
=
{

Pt(dxt |ŝs
t ,y

t−1,s), t = 1, . . . ,n :
1
n

E
( n

∑
t=1

(
Xt
)2
∣∣∣Ss

1 = s
)
≤ κ

}
(3.2.42)

where H(V n|s) is given by Corollary 3.1.2, and the statements of Theorem 2.2.1 hold with the

above changes, and all conditional entropies, distributions, expectations, etc, defined for fixed

S1 = Ss
1 = s.

Proof. It is easily verified from the derivation of Theorem 2.2.1, by fixing S1 = Ss
1 = s.

In the next corollary we apply Theorem 2.2.1 to obtain the characterization of n−FTFI capacity

C f b
n (κ,s) of the AGN channel driven by the PO-SS(at ,ct ,b1

t ,b
2
t ,d

1
t ,d

2
t ) noise.

Corollary 3.2.2. In the next corollary we apply Theorem 2.2.1 to the stable and unstable ARMA(a,c)

noise, to obtain the characterization of n−FTFI capacity C f b
n (κ,s). It is then obvious that for the

stable ARMA(a,c),a ∈ [−1,1],c ∈ (−1,1) noise, the characterization of C f b
n (κ,s) involves one

generalized DRE, contrary to the analysis in [2, 4–7], for the same noise model.

Corollary 3.2.3. Characterization of n−FTFI Capacity C f b
n (κ,s) for the ARMA(a,c),a∈ (−∞,∞),c∈

(−∞,∞)

Consider the time-varying AGN channel defined by (1.1.1) and the code of Definition 1.1.3.

(a) For the nonstationary ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of Example 2.1.2.(a), the

characterization of the n−FTFI capacity, C f b
n (κ,s) is,

The optimal jointly Gaussian process (Xn,Y n) is obtained from Theorem 2.2.1.(b), by invoking,

At 7−→ c, Ct 7−→ c−a, Bt 7−→ 1, Nt 7−→ 1, t = 1,2, . . . ,n. (3.2.43)

If Σ1 = 0 or the initial state is fixed, S1 = Ss
1 = s, then

Σt = Σ
s
t = 0, KÎt = KW , Mt(Σt) = Mt(Σ

s
t ) = 1, t = 1,2, . . . (3.2.44)

C f b
n (κ,s) = sup(

Λt ,KZt

)
,t=1,...,n: 1

n ∑
n
t=1

((
Λt

)2
Ks

t +KZt

)
≤κ

1
2

n

∑
t=1

log
((Λt + c−a

)2
Ks

t +KW +KZt

KW

)
(3.2.45)
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subject to the constraints

Ks
t+1 =

(
c
)2Ks

t +KW −
(

cKs
t
(
Λt + c−a

)
+KW

)2

.
(

KZt +
(
Λt + c−a

)2Ks
t +KW

)−1
, Ks

1 = 0, Ks
t ≥ 0, KZt ≥ 0, t = 1, . . . ,n. (3.2.46)

(c) For the nonstationary AR(c),c ∈ (−∞,∞) noise of Example 2.1.2.(c), with Σ1 = 0 or a fixed

initial state S1 = Ss
1 = s, then Σt = Σs

t = 0,KÎt = KW ,Mt(Σt) = Mt(Σ
s
t ) = 1, t = 1,2, . . ., and the

characterization of the n−FTFI capacity is given by

C f b
n (κ,s) = sup(

Λt ,KZt

)
,t=1,...,n: 1

n ∑
n
t=1

((
Λt

)2
Ks

t +KZt

)
≤κ

1
2

n

∑
t=1

log
((Λt + c

)2
Ks

t +KW +KZt

KW

)
(3.2.47)

subject to the constraint

Ks
t+1 =

(
c
)2Ks

t +KW −
(

cKs
t
(
Λt + c

)
+KW

)2(
KW +KZt +

(
Λt + c

)2Ks
t

)−1
,

Ks
1 = 0, t = 1, . . . ,n. (3.2.48)

Remark 3.2.1. By Corollary 3.2.3.(a) it is obvious that, if Σ1 = 0, i.e., KS0 = KW0 = 0, which

means S1 = Ss
1 = s is fixed, and hence (V0,W0) = (v0,w0) is fixed (and known to the encoder and

the decoder), see (2.1.64), then Σ1 = Σs
1 = 0, and C f b

n (κ) =C f b
n (κ,s), which depends on the initial

state S1 = Ss
1 = s. To ensure for large enough n the rate 1

nCn(κ,s) is independent of s, it is necessary

to identify conditions for convergence of solutions Ks
t , t = 1,2, . . . of generalized DRE (3.2.46) to a

unique limit, limn−→∞ Ks
n = K∞ ≥ 0, that does not depend on the initial data Ks

1 = 0. We address

this problem in Chapter 4.

3.2.1 Case II) Formulation: A Degenerate of Case I) Formulation

Theorem 2.2.1 gives the n−FTFI capacity for Case I) formulation. However, since Case II) for-

mulation is a special case of Case I) formulation, we expect that from Theorem 2.2.1 we can

recover the characterization of the n−FTFI capacity for Case II) formulation, i.e., when the code

is (s,2nR,n), n = 1,2, . . ., and Conditions 1 and 2 of Section 1.1 hold. We show this in the next

corollary.
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Corollary 3.2.4. The degenerate n−FTFI Capacity C f b
n (κ) of Theorem 2.2.1 for Case II) formu-

lation

Consider the time-varying AGN channel defined by (1.1.1), driven by a noise with PO-SS realiza-

tion of Definition 1.1.2, and suppose the following hold.

1) The code is (s,2nR,n), n = 1,2, . . ., and

2) Conditions 1 and 2 of Section 1.1 hold.

Then the following hold.

(a) Corollary 3.1.2 holds, i.e., all statements of Lemma 2.1.1 hold with (Σt , Ŝt) replaced by (Σs
t , Ŝ

s
t )

as defined by (3.1.30), (3.1.31). In particular, (Σs
t , Ŝ

s
t ) = (0,Ss

t ) for t = 1,2, . . ., and H(V n) =

H(V n|s) is given by (3.1.27).

(b) All statements of Theorem 2.2.1 hold with (Σt , Ŝt) replaced by (Σs
t , Ŝ

s
t ), as in part (a), and

(Kt ,
̂̂St) defined by (2.2.86), (2.2.87) reduce to

Kt = Ks
t = cov

(
Ss

t ,S
s
t

∣∣∣Y t−1,Ss
1 = s

)
, (3.2.49)̂̂St = Ŝs

t = E
{

Ss
t

∣∣∣Y t−1,Ss
1 = s

}
, Ks

1 = 0, Ŝs
1 = s, t = 2, . . . ,n

In particular, the optimal input process Xn of Theorem 2.2.1.(c) degenerates to

Xt = Λt

(
Ss

t − Ŝs
t

)
+Zt , X1 = Zt , t = 2, . . . ,n. (3.2.50)

(c) The characterization of n−FTFI capacity, C f b
n (κ) of Theorem 2.2.1 degenerates to C f b,S

n (κ,s)

defined by

C f b
n (κ) =C f b,S

n (κ,s)
4
= sup(

Λt ,KZt

)
,t=1,...,n: 1

n Es

{
∑

n
t=1

(
Xt

)2}
≤κ

n

∑
t=1

log
KYt |Y t−1,s

KVt |V t−1,s
(3.2.51)

= sup(
Λt ,KZt

)
,t=1,...,n: 1

n E
{

∑
n
t=1

(
Xt

)2}
≤κ

1
2

n

∑
t=1

log
((Λt +Ct

)
Ks

t

(
Λt +Ct

)T
+NtKWt N

T
t +KZt

NtKWt N
T
t

)
.

(3.2.52)

Kt = Ks
t = Es

{
Es

t
(
Es

t
)T} satisfies the generalized DRE

Ks
t+1 =AtKtAT

t +BtKWt B
T
t −

(
BtKWt N

T
t +AtKs

t
(
Λt +Ct

)T
){

NtKWt N
T
t +KZt

+
(
Λt +Ct

)
Ks

t
(
Λt +Ct

)T
}−1(

BtKWt N
T
t +AtKs

t
(
Λt +Ct

))T
,

Ks
t � 0, Ks

1 = 0, t = 1, . . . ,n. (3.2.53)

and the optimal input process
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Proof. (a) The statements about Lemma 2.1.1 follow from Remark 3.1.7. (b) The statements about

Theorem 2.2.1 are easily verified by replacing all conditional expectations, distributions, etc, for

a fixed initial state S1 = Ss
1 = s, and using part (a), i.e., (Σs

t , Ŝ
s
t ) = (0,Ss

t ), t = 1,2, . . .. (c) Follows

from parts (a), (b).

3.3 Comments on the Formulation of [1] and [2]

It is easily verified that Yang, Kavcic and Tatikonda [1] analyzed C f b
n (κ,s) defined by (3.1.29),

under Case II) formulation. This is further discussed in the following remark.

Remark 3.3.1. Prior literature on the time-invariant stationary noise of PSD (1.2.26)

Yang, Kavcic and Tatikonda [1] analyzed the AGN channel driven by a stationary noise with PSD

defined by (1.2.26) (see [1, Theorem 1]). The special case of (2.1.70) is found in [1, Section VI.B,

Theorem 7].

The analysis in [1] presupposed the following formulation:

(i) the code is (s,2nR,n), n = 1,2, . . ., where S1 = Ss
1 = s is the initial state of the noise, known to

the encoder and the decoder, as discussed in Definition 1.1.3,

(ii) Conditions 1 and 2 of Section 1.1, hold, and

(iii) the n−FTFI capacity formula is C f b
n (κ,s) defined by (3.1.29).

It is important to emphasize that in [1, Section II.C] a specific realization of the PSD is considered

to ensure Conditions 1 and 2 hold, i.e., the analysis in [1] presupposed a stationary noise and Case

II) formulation.

Now, we ask:

Given the PSD of the noise defined by (1.2.26), and the double-sided realization [2, eqn(58)], i.e.,

the analog of time-invariant version of the PO-SS realization of Definition 1.1.2, or its analogous

one-sided realization, what are the necessary conditions for the feedback capacity of [2, Theo-

rem 6.1] to be valid?

The answer to this question is: Conditions 1 and 2 of Section 1.1 are necessary conditions. We

show this in the next proposition.

Proposition 3.3.1. Conditions for validity of the feedback capacity characterization of [2, Theo-
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rem 6.1]

Consider the AGN channel (1.1.1) driven by a stationary noise with PSD defined by (1.2.26) with

the double-sided or one-sided realization [2, eqn(58)], (i.e., analog of time invariant of Defini-

tion 1.1.2).

Then a necessary condition for [2, Theorem 6.1] to hold is

PXt |X t−1,Y t−1
−∞

= PXt |St ,Y t−1
−∞

, t = 1, . . . , (3.3.54)

Further, Conditions 1 and 2 of Section 1.1 are necessary and sufficient for equality (3.3.54) to hold.

Proof. See Section 7.6.

Remark 3.3.2. Comparison of Cover and Pombra Characterization and [2, Theorem 6.1, CFB]

By Proposition 3.3.1, it follows that the characterization [2, Theorem 6.1, CFB] corresponds to

Case II) formulation and not to Case I) formulation. It is also noted that the optimization problem

of [2, Theorem 6.1, CFB] is precisely the optimization problem investigated by Yang, Kavcic, and

Tatikonda [1, Section VI], with the additional restriction that the innnovations part of the channel

input is taken to be zero in [2, Theorem 6.1, CFB], i.e., see [2, Lemma 6.1 and comments above it].
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Chapter 4

Asymptotic Analysis

In this chapter we address the asymptotic per unit time limit of the n−FTFI capacity. Our analysis

includes the following.

1) In Section 4.1, we mention the fundamental differences of entropy rates of jointly Gaussian

stable versus unstable noise processes.

2) In Section 4.2, we give necessary and/or sufficient conditions expressed in terms of detectabil-

ity and stabilizability conditions of generalized DREs [8, 9], for existence of entropy rates, and

asymptotic stationarity of the joint process (Xn,Y n),n = 1,2, . . ..

3) In Section 4.3, we represent additional oversights of the characterizations of feedback capacity

or rates, of the formulas presented in [2, Theorem 6.1], which are related to the convergence

properties of generalized DREs.

This chapter also reconfirms that, in general, the asymptotic analysis of the n−FTFI capacity of a

feedback code that depends on the initial state of the channel, i.e., S1 = Ss
1 = s, is fundamentally

different from a code that does not depend on the initial state. The analysis of the asymptotic per

unit time limit of C f b
n (κ,s) of AGN channels driven by AR(c),c ∈ (−∞,∞) noise, i.e., stable and

unstable, is found in [15]. We consider the following definition of rate.

42
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4.1 Fundamental Differences of Entropy Rates of Jointly Gaus-
sian Stable Versus Unstable Noise

Definition 4.1.1. Per unit time limit of C f b,o
n (κ) and C f b,o

n (κ,s)

Consider the AGN channel defined by (1.1.1), driven by the time-invariant PO-SS realization of

Definition 1.1.2, and the code of Definition 1.1.1. Define the per unit time limit of the n−FTFI

capacity with the limit and supremum operations interchanged, by

C f b,o(κ)
4
= sup

limn−→∞
1
n E
{

∑
n
t=1

(
Xt

)2}
≤κ

lim
n−→∞

1
n

{
H(Y n)−H(V n)

}
≤C f b(κ)

4
= lim

n−→∞

1
n

C f b
n (κ)

(4.1.1)

where the supremum is taken over all time-invarinat distributions with feedback Po
Xt |X t−1,Y t−1 =

Po
Xt |V t−1,Y t−1, t = 1,2, . . ., such that (Xn,Y n),n = 1,2, . . . , is jointly asymptotically stationary Gaus-

sian.

For code (s,2nR,n), n = 1,2, . . ., with initial state S1 = Ss
1 = s of Definition 1.1.3, C f b,o(κ) is

replaced by C f b,o(κ,s), which is defined by (4.1.1), with differential entropies, conditional expec-

tations, conditional distributions, defined for fixed Ss
1 = s.

We should exphasize that our definition of rate is consistent with the definition of rates considered

in [2, 4–7], i.e., the interchange of limit and supremum. However, unlike [2, 4–7] we treat the gen-

eral time-invariant stable and unstable, PO-SS noise realization of Definition 1.1.2, not necessarily

stationary or asymptotically stationary.

We should emphasize that, in general, and irrespective of whether the noise is stable or unstable,

the entropy rates that appear in (4.1.1) may not exist. To show existence of the limits C f b,o(κ) and

C f b,o(κ,s) we need to identify necessary and/or sufficient conditions, using the characterization

of Theorem 2.2.1, when the channel input strategies are restricted to the time-invariant strategies

Λt = Λ∞,KZt = K∞
Z , t = 1,2, . . .. Clearly, by (4.1.1), whether the limit as n−→∞ exists, and supre-

mum over channel input distributions exists, depend on the convergence properties of the coupled

generalized matrix DREs, Σn,K0
n ≡ Kn(Λ

∞,K∞
Z ,Σ), as n−→ ∞.

First, we recall the following definition, which is standard and it is found in many textbooks.

Definition 4.1.2. Entropy rate of continuous-valued random processes

Let Xt : Ω→ Rnz,nx ∈ Z+ a random process defined on some probability space (Ω,F ,P). The
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entropy rate (differential) is defined by

HR(X∞)
4
= lim

n−→∞

1
n

H(X1,X2, . . . ,Xn) (4.1.2)

when the limit exists.

The next theorem qunatifies the existence of entropy rates of stationary Gaussian processes [9].

Theorem 4.1.1. The entropy rate of stationary zero mean full rank Gaussian process [9]

Let Xt : Ω→ Rnx ,nx ∈ Z+,∀t ∈ Z+ be an stationary Gaussian process, with zero mean, and full

rank covariance of Xn. Let H X
t denote the Hilbert space of RVs generated by {Xt : s≤ t,s, t ∈ Z+},

and define the innovations process by

Σt
4
= E

{(
Xt−E

{
Xt

∣∣∣H X
t−1

})(
Xt−E

{
Xt

∣∣∣H X
t−1

})T}
� 0 (4.1.3)

and its limit

Σ
4
= lim

n−→∞
Σn (4.1.4)

Then the entropy rate is given by

HR(X∞) =
nx

2
log
(
2πe
)
+

1
2

lim
n←→∞

1
n

n

∑
t=1

log |Σt | (4.1.5)

=
nx

2π
log
(
2πe
)
+

1
2

log |Σ| (4.1.6)

when it exists.

An application of Theorem 4.1.1 is given in the next proposition [16].

Proposition 4.1.1. Entropy rate of Gaussian process described by PSD (1.2.26)

Let Vt ,∀t ∈ Z+ be a real, scalar-valued, stationary Gaussian noise with PSD (1.2.26), with a

corresponding time-invariant stationary realization (similar to Definition 1.1.2). Then the entropy

rate is given by

HR(V ∞) =
1
2

log
(
2πeKW

)
. (4.1.7)
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Proof. See Section 7.7.

The next remark is trivial; it is introduced for subsequent comparison.

Remark 4.1.1. Let Vt ,∀t ∈ Z+ be the nonstationary ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise

of Example 2.1.2. Then the conditional entropy of V n for fixed initial state S1 = Ss
1 = s, is given by

HR(V ∞|s) 4= lim
n−→∞

1
n

H(V n|s) = lim
n−→∞

1
n

n

∑
t=1

1
2

log
(
2πeKW

)
=

1
2

log
(
2πeKW

)
. (4.1.8)

The next lemma identifies fundamental conditions for the existence of the entropy rate of the time-

varying PO-SS noise realization of Definition 1.1.2 (if S1 = Ss
1 = s is not fixed), and includes the

entropy rate HR(V ∞) of the nonstationary ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of Re-

mark 4.1.1.

Lemma 4.1.1. Entropy rate of the time-varying PO-SS noise realization of Definition 1.1.2

Consider the time-varying PO-SS noise realization of Definition 1.1.2. Then the following hold.

(a) The joint entropy of V n, when it exists, is given by

H(V n) =
n

∑
t=1

H(Ît) =
1
2

n

∑
t=1

log
(
2πeKÎt

)
(4.1.9)

where Ît , t = 1, . . . ,n is a zero mean covariance KÎt
4
= cov(Ît , Ît), Gaussian orthogonal innovations

process of V n, defined by

Ît
4
=Vt−E

{
Vt

∣∣∣V t−1
}
, t = 1, . . . ,n (4.1.10)

that is, Ît is independent of Îk,∀k 6= t.

(b) Suppose the sequence KÎt , t = 1,2, . . . ,n, is such that

lim
n−→∞

KÎn
= K∞

Î > 0. (4.1.11)

Then the entropy rate of Vt ,∀t ∈ Z+, is given by

HR(V ∞) = lim
n−→∞

1
n

n

∑
t=1

H(Ît) =
1
2

log
(
2πeK∞

Î

)
. (4.1.12)

Proof. See Appendix 7.8.
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Remark 4.1.2. Entropy rate of nonstationary Gaussian noise

By Lemma 4.1.1, a necessary condition for existence of the entropy rate of nonstationary Gaussian

process V n is the convergence of the covariance of the Gaussian orthogonal innovations process

of V n, i.e., of KÎt
4
= cov(Ît , Ît), since limn→∞

1
nH(V n) = limn→∞

1
n ∑

n
t=1 H(Ît). We can determine

such necessary and/or sufficient conditions from the convergence properties of the Generalized

Kalman-filter equations [8, 9] of Lemma 2.1.1.

To address the asymptotic properties of estimation errors generated by the recursions of General-

ized Kalman-filters, such as, Et , t = 1,2, . . . of Theorem 2.2.1, generated by (2.2.112), we need to

introduce the stabilizing solutions of generalized AREs. The next definition is useful in this respect.

4.2 Convergence Properties of Generalized Kalman-Filter Equa-
tions

Definition 4.2.1. Stabilizing solutions of generalized marix AREs

Let (A,G,Q,S,R,C) ∈ Rq×q×Rq×k×Rk×k×Rk×p×Rp×p×Rp×q.

Define the generalized time-invariant matrix DRE

Pt+1 = APtAT +GQGT −
(

APtCT +GS
)(

R+CPtCT
)−1

.
(

APtCT +GS
)T

, P1 = given,

(4.2.13)

Pt ∈ Sq×q
+ , t = 1, . . . , R = RT � 0,

FCL(P)
4
= A−

(
APCT +GQGT

)(
R+CPCT

)−1
C.

Define also the corresponding generalized matrix ARE

P =APAT +GQGT −
(

APCT +GS
)(

R+CPCT
)−1

.
(

APCT +GS
)T

, P ∈ Sq×q
+ . (4.2.14)

A solution P = PT � 0 to the generalized matrix ARE (4.2.14), assuming it exists, is called sta-

bilizing if spec
(
FCL(P)

)
∈ Do. In this case, we say FCL(P) is asymptotically stable, that is, the

eigevalues of FCL(P) are stable.

With respect to any of the above generalized matrix DRE and ARE, we introduce the important

notions of detectability, unit circle controllability, and stabilizability. We use these notions to char-

acterize the convergence properties of solutions of generalized matrix DREs, Pn, as n −→ ∞, to a
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unique nonnegative stabilizing solution P of the generalized matrix ARE. These notions are used

to identify necessary and/or sufficient conditions for the error recursions of generalized Kalman-

filters, such as, Et , t = 1,2, . . . of Theorem 2.2.1, generated by (2.2.112), to converge in mean-

square sense, to a unique limit.

Definition 4.2.2. Detectability, Stabilizability, Unit Circle controllability

Consider the generalized matrix ARE of Definition 4.2.1, and introduce the matrices

A∗
4
= A−GSR−1C, B∗

4
= Q−SR−1ST , B∗ = B∗,

1
2
(
B∗,

1
2
)T

. (4.2.15)

(a) The pair
{

A,C
}

is called detectable if there exists a matrix K ∈Rq×p such that spec
(
A−KC

)
∈

Do, i.e., the eigenvalues λ of A−KC lie in Do (stable).

(b) The pair
{

A∗,GB∗,
1
2
}

is called unit circle controllable if there exists a K ∈ Rk×q such that

spec
(
A∗ −GB∗,

1
2 K
)
/∈ {c ∈ C : |c| = 1}, i.e., all eigenvalues λ of A∗ −GB∗,

1
2 K are such that

|λ | 6= 1.

(c) The pair
{

A∗,GB∗,
1
2
}

is called stabilizable if there exists a K ∈ Rk×q such that spec
(
A∗−

GB∗,
1
2 K
)
∈ Do, i.e., all all eigenvalues λ of A∗−GB∗,

1
2 K lie in Do.

(d) The pair
{

A,C
}

is called observable if the rank condition holds,

rank
(
O
)
= q, O

4
=


C

CA
...

CAq−1

 . (4.2.16)

(e) The pair
{

A∗,GB∗,
1
2
}

is called controllable if the rank condition holds,

rank
(
C
)
= q, O

4
=
î

GB∗,
1
2 A∗GB∗,

1
2 . . .

(
A∗
)q−1GB∗,

1
2

ó
. (4.2.17)

It is well-known that, if the pair
{

A,C
}

is observable then it is stabilizable, and if the pair
{

A∗,GB∗,
1
2
}

is controllable then it is stabilizable [9].

In the next theorem we summarize known results on sufficient and/or necessary conditions for

convergence of solutions {Pt , t = 1,2, . . . ,n} of the generalized time-invariant DRE (4.2.13), as

n−→ ∞, to a nonnegative P� 0, which is the unique stabilizing solution of a corresponding gen-

eralized ARE (4.2.14).
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Theorem 4.2.1. [8, 9] Convergence of time-invariant generalized DRE

Let {Pt , t = 1,2, . . . ,n} denote a sequence that satisfies the time-invariant generalized DRE (4.2.13)

with arbitrary initial condition P1 ≥ 0.

The following hold.

(1) Consider the generalized DRE (4.2.13) with zero initial condition, i.e., P1 = 0, and assume, the

pair
{

A,C
}

is detectable, and the pair
{

A∗,GB∗,
1
2
}

is unit circle controllable.

Then the sequence {Pt : t = 1,2, . . . ,n} that satisfies the generalized DRE (4.2.13), with zero initial

condition P1 = 0, converges to P, i.e., limn−→∞ Pn = P, where P satisfies the generalized marix

ARE (4.2.14) if and only if the pair
{

A∗,GB∗,
1
2
}

is stabilizable.

(2) Assume, the pair
{

A,C
}

is detectable, and the pair
{

A∗,B∗,
1
2
}

is unit circle controllable. Then

there exists a unique stabilizing solution P � 0 to the generalized ARE (4.2.14), i.e., such that,

spec
(
FCL(P)

)
∈ Do, if and only if {A∗,GB∗,

1
2} is stabilizable.

(3) If {A,C} is detectable and {A∗,GB∗,
1
2} is stabilizable, then any solution Pt , t = 1,2, . . . ,n to the

generalized matrix DRE (4.2.13) with arbitrary initial condition, P1 � 0 is such that limn−→∞ Pn =

P, where P� 0 is the unique solution of the generalized matrix ARE (4.2.14) with spec
(
FCL(P)

)
∈

Do i.e., it is stabilizing.

An application of Theorem 4.2.1 to the generalized Kalman-filter of Lemma 2.1.1 for the time-

invariant PO-SS realization), is given in the next corollary; it identifies conditions for existence of

the entropy rate HR(V ∞).

Corollary 4.2.1. The entropy rate of PO-SS noise realization based on the generalized Kalman-

filter

Let Σo
t = Σt , t = 1,2, . . . denote the solution of the generalized matrix DRE (2.1.46) of the general-

ized Kalman-filter of Lemma 2.1.1 of the time-invariant PO-SS realization of V n of Definition 1.1.2,

i.e., (At ,Bt ,Ct ,Nt ,KWt ) = (A,B,C,N,KW ),∀t, generated by

Σ
o
t+1 =AΣ

o
t AT +BKW BT −

(
AΣ

o
t CT +BKW NT

)(
NKW NT +CΣ

o
t CT

)−1

.
(

AΣ
o
t CT +BKW NT

)T
, Σ

o
t � 0, t = 1, . . . ,n, Σ

o
1 = KS1 � 0. (4.2.18)

MCL(Σo)
4
=A−M(Σo)C, M(Σo)

4
=
(

AΣ
oCT +BtKW NT

)(
NKW NT +CΣ

oCT
)−1

. (4.2.19)
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Let Σ∞ = Σ∞,T � 0 be a solution of the corresponding generalized ARE

Σ
∞ =AΣ

∞AT +BKW BT −
(

AΣ
∞CT +BKW NT

)(
NKW NT +CΣ

∞CT
)−1

.
(

AΣ
∞CT +BKW NT

)T
. (4.2.20)

Define the matrices

GQGT 4= BKW BT , GS
4
= BKW NT , R

4
= NKW NT =⇒ G

4
= B, Q

4
= KW , S

4
= KW NT

(4.2.21)

A∗
4
= A−BKW NT(NKW NT)−1C, B∗

4
= KW −KW NT

(
NKW NT

)−1(
KW NT

)T
. (4.2.22)

Then all statements of Theorem 4.2.1 hold with (G,Q,S,R) as defined by (4.2.21).

In particular, suppose

(i) {A,C} is detectable, and

(ii) {A∗,GB∗,
1
2} is stabilizable.

Then any solution Σo
t , t = 1,2, . . . ,n to the generalized matrix DRE (4.2.18) with arbitrary initial

condition, Σo
1 � 0 is such that limn−→∞ Σo

n = Σ∞, where Σ∞ � 0 is the unique solution of the gener-

alized matrix ARE (4.2.20) with spec
(
MCL(Σ∞)

)
∈ Do i.e., it is stabilizing.

Moreover, the entropy rate of V n is given by

HR(V ∞) = H(Î∞
t ) =

1
2

log
(

2πe
[
CΣ

∞CT +NKW NT
])

, ∀Σo
1 � 0, ∀t (4.2.23)

where

Î∞
t
4
=C

(
St− Ŝ∞

t
)
+NWt ∈ N(0,CΣ

∞CT +NKW NT ), t = 1,2, . . . , (4.2.24)

is the stationary Gaussian innovations process, i.e., with Σo
t replaced by Σ∞, and the entropy rate

HR(V ∞) is independent of the initial data Σo
1 � 0.

Proof. This is a direct application of Theorem 4.2.1. The last part follows from Lemma 4.1.1.

Next we apply Corollary 4.2.1 to the nonstationary AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise.

Lemma 4.2.1. Properties of solutions of DREs and AREs of AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞)

noise and entropy rate HR(V ∞)
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Consider the AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of Example 2.1.2.(a), and the DRE Σo
t
4
=

Σt , t = 1, . . . ,n, generated by Corollary 3.2.3.(a), i.e.,

Σ
o
t+1 =

(
c
)2

Σ
o
t +KW −

(
cΣ

o
t
(
c−a

)
+KW

)2(
KW +

(
c−a

)2
Σ

o
t

)−1
, t = 1, . . . ,n, (4.2.25)

Σ
o
1 = KS1 =

(
c0
)2KS0 +

(
a0
)2KW0(

c0−a0

)2 ≥ 0. (4.2.26)

where KW > 0,c 6= a, KS0 ≥ 0,KW0 ≥ 0. Let Σ∞ ≥ 0 be a solution of the corresponding generalized

ARE

Σ
∞ =

(
c
)2

Σ
∞ +KW −

(
cΣ

∞
(
c−a

)
+KW

)2(
KW +

(
c−a

)2
Σ

∞

)−1
. (4.2.27)

Then,

{A,C}= {c,c−a}, {A∗,GB∗,
1
2}= {a,0}. (4.2.28)

and the following hold.

(1) The pair {A,C} = {c,c−a} is detectable ∀c ∈ (−∞,∞),a ∈ (−∞,∞) (the restriction c 6= a is

always assumed).

(2) The pair {A∗,GB∗,
1
2}= {a,0} is unit circle controllable if and only if |a| 6= 1 (∀c ∈ (−∞,∞)).

(3) The pair {A∗,GB∗,
1
2}= {a,0} is stabilizable if and only if a ∈ (−1,1) (∀c ∈ (−∞,∞)).

(4) Suppose c ∈ (−∞,∞) and |a| 6= 1. The sequence {Σo
t , t = 1,2, . . . ,n} that satisfies the gen-

eralized DRE with zero initial condition, Σo
1 = 0 converges to Σ∞, i.e., limn−→∞ Σo

n = Σ∞, where

Σ∞ ≥ 0 satisfies the ARE (4.2.27) if and only if the {A∗,GB∗,
1
2} = {a,0} is stabilizable, equiva-

lently, |a|< 1. Moreover, the two solutions of the quadratic equation (4.2.27) are, without imposing

Σ∞ ≥ 0 are

Σ
∞ =


0 the unique, stabilizing, Σ∞ ≥ 0 solution of (4.2.27)
KW

(
a2−1

)(
c−a
)2 < 0 the non-stabilizing, Σ∞ < 0 solution of (4.2.27) . (4.2.29)

That is, limn−→∞ Σ0
n = Σ∞ = 0 is the unique and stabilizing solution Σ∞ ≥ 0 of (4.2.27), i.e., such

that |MCL(Σ∞)|< 1, if and only if |a|< 1.

(5) Suppose c ∈ (−∞,∞) and |a|< 1. Then any solution Σo
t , t = 1,2, . . . ,n to the generalized DRE

(4.2.25) with arbitrary initial condition, Σo
1 ≥ 0 is such that limn−→∞ Σo

n = Σ∞, where Σ∞ ≥ 0 is the

unique solution of the generalized ARE (4.2.27) with MCL(Σ∞) ∈ (−1,1) i.e., it is stabilizing, and
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moreover Σ∞ = 0.

(6) Suppose c ∈ (−∞,∞) and |a|< 1. The entropy rate of Vt ,∀t ∈ Z+, is given by

HR(V ∞) = lim
n−→∞

1
n

n

∑
t=1

1
2

log
(

2πe
[
(c−a)2

Σ
o
t +KW

])
=

1
2

log
(
2πeKW

)
, ∀Σo

1 ≥ 0. (4.2.30)

Proof. See Appendix 7.9.

To gain additional insight, in the next remark we discuss the application of Lemma 4.2.1 to the

AR(c),c ∈ (−∞,∞) noise.

Remark 4.2.1. Entropy rate HR(V ∞) of the AR(c),c ∈ (−∞,∞) noise

From Lemma 4.2.1 we can determine conditions for existence of the entropy rate HR(V ∞) of the

nonstationary AR(c),c ∈ (−∞,∞) noise defined by (2.1.68), by setting a = 0.

In particular, Σo
t , t = 1, . . . ,n is the solution of (4.2.25-4.2.26), with (see Corollary 3.2.3.(b), (2.2.127)),

and (4.2.27) degenerates to the ARE,

Σ
∞ =

(
c
)2

Σ
∞ +KW −

((
c
)2

Σ
∞ +KW

)2(
KW +

(
c
)2

Σ
∞

)−1
(4.2.31)

For a = 0, by (4.2.28) the pair {A,C} = {c,c} is detectable, and the pair {A∗,GB∗,
1
2} = {0,0} is

stabilizable. The two solutions of the ARE (4.2.31), without imposing Σ∞ ≥ 0, are

Σ
∞ =

®
0 the unique, stabilizing, nonnegative solution of the ARE

−KW
c2 < 0 the non-stabilizing, negative solution) of the ARE

(4.2.32)

That is, limn−→∞ Σo
n = Σ∞ ≥ 0, where Σ∞ = 0 is the unique (stabilizing) solution of the ARE, and

corresponds to the stable eigenvalue of the error equation (see (2.1.44), i.e., MCL(Σ∞) = c− KW
KW

c=

0.

Next we compute the entropy rate HR(V ∞) of the time-invariant nonstationary PO-SS(a,c,b1,b2,d1,d2)

noise of Corollary 2.1.1 to show fundamental differences from the entropy rate HR(V ∞) of the

AR(a,c) noise of Lemma 4.2.1.

Lemma 4.2.2. Properties of solutions of DREs and AREs of PO-SS(a,c,b1 = b,b2 = 0,d1 =

0,d2 = d) noise and entropy rate HR(V ∞)
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Consider the the time-invariant nonstationary PO-SS(a,c,b1,b2 = 0,d1 = 0,d2 = d) noise of Ex-

ample 2.1.1, and the sequence Σo
t
4
= Σt , t = 1, . . . ,n, generated by the DRE of Lemma 2.1.1, i.e.,

Σ
o
t+1 =

(
a
)2

Σ
o
t +
(
b
)2KW 1−

(
aΣ

o
t c
)2((

d
)2KW 2 +

(
c
)2

Σ
o
t

)−1
, t = 1, . . . ,n,

Σ
o
1 = KS1 ≥ 0, Σ

o
t ≥ 0 (4.2.33)

where
(
b
)2KW 1 ≥ 0,

(
d
)2K2

W > 0. Let Σ∞ ≥ 0 be the corresponding solution of generalized ARE

Σ
∞ =

(
a
)2

Σ
∞ +

(
b
)2KW 1−

(
aΣ

∞c
)2((

d
)2KW 2 +

(
c
)2

Σ
∞

)−1
. (4.2.34)

Then

{A,C}= {a,c}, {A∗,GB∗,
1
2}= {a,b

(
KW 1

) 1
2}. (4.2.35)

and the following hold.

(1) The pair {A,C} = {a,c} is detectable ∀c ∈ (−∞,∞),a ∈ (−∞,∞),c 6= 0. If c = 0 the pair

{A,C}= {a,0} is detectable if and only if |a|< 1.

(2) The pair {A∗,GB∗,
1
2} = {a,b

(
KW 1

) 1
2} is unit circle controllable if and only if |b

(
KW 1

) 1
2 | 6= 1,

∀a ∈ (−∞,∞),c ∈ (−∞,∞).

(3) The pair {A∗,GB∗,
1
2}= {a,b

(
KW 1

) 1
2} is stabilizable if b

(
KW 1

) 1
2 6= 0, ∀a∈ (∞,∞),c∈ (−∞,∞).

If b
(
KW 1

) 1
2 = 0 the pair {A∗,GB∗,

1
2}= {a,0} is stabilizable if and only if |a|< 1.

(4) Define the set

L ∞ 4=
{
(a,c,

(
b
)2KW 1) ∈ (−∞,∞)2× [0,∞) :

(i) the pair {A,C}= {a,c} is detectable, and

(ii) the pair{A∗,GB∗,
1
2}= {a,b

(
KW 1

) 1
2} is stabilizable

}
. (4.2.36)

For any (a,c,b
(
KW 1

) 1
2 ) ∈L ∞, any solution Σo

t , t = 1,2, . . . ,n to the (classical) DRE (4.2.33) with

arbitrary initial condition, Σo
1 ≥ 0 is such that limn−→∞ Σo

n = Σ∞, where Σ∞ ≥ 0 is the unique

solution of the (classical) ARE (4.2.34) with MCL(Σ∞) ∈ (−1,1) i.e., it is stabilizing.

(5) For any (a,c,b2KW 1) ∈L ∞ of part (4) the entropy rate of Vt ,∀t ∈ Z+, is given by

HR(V ∞) = lim
n−→∞

1
n

n

∑
t=1

1
2

log
(

2πe
[
(c)2

Σ
o
t +
(
d
)2KW 2

])
=

1
2

log
(
2πe
[
(c)2

Σ
∞ +

(
d
)2KW 2

])
, ∀Σo

1 ≥ 0. (4.2.37)

Proof. Follow from Theorem 4.2.1.
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Next, we turn our attention to the convergence properties of the entropy rate HR(Y ∞), which is

needed for the characterization of C f b,o(κ) of Definition 4.1.1.

Theorem 4.2.2. Asymptotic properties of entropy rate HR(Y ∞) of Theorem 2.2.1

Let Ko
t , t = 1, . . . , be the solution of the generalized DRE (3.2.46) of the generalized Kalman-filter

of Theorem 2.2.1, corresponding to the time-invariant PO-SS realization of V n of Definition 1.1.2,

(At ,Bt ,Ct ,Nt ,KWt ) = (A,B,C,N,KW ),∀t, with time-invariant strategies (Λt ,KZt ) = (Λ∞,K∞
Z ),∀t,

generated by

Ko
t+1 = AKo

t AT +M(Σo
t )KÎo

t

(
M(Σo

t )
)T −

(
AKo

t
(
Λ

∞ +C
)T

+M(Σo
t )KÎo

t

)(
KÎo

t
+K∞

Z

+
(
Λ

∞ +C
)
Ko

t
(
Λ

∞ +C
)T
)−1(

AKo
t
(
Λ

∞ +C
)T

+M(Σo
t )KÎo

t

)T
,

Ko
t = Ko,T

t � 0, t = 1, . . . ,n, Ko
1 = 0 (4.2.38)

where

KÎo
t
=CΣ

o
t CT +NKW NT , Σ

o
t is a solution of (4.2.18), M(Σo) is given by (4.2.19), (4.2.39)

FCL(Σo,Ko)
4
= A−F(Σo,Ko)

(
Λ

∞ +C
)
, (4.2.40)

F(Σo,Ko)
4
=
(

AKo(
Λ

∞ +C
)T

+M(Σo)KÎo

){
KÎo +KZ∞ +

(
Λ

∞ +C
)
Ko(

Λ
∞ +C

)T
}−1

. (4.2.41)

Define the corresponding generalized ARE by

K∞ = AK∞AT +M(Σ∞)KÎ∞

(
M(Σ∞)

)T −
(

AK∞
(
Λ

∞ +C
)T

+M(Σ∞)KÎ∞

)(
KÎ∞ +K∞

Z

+
(
Λ

∞ +C
)
K∞
(
Λ

∞ +C
)T
)−1(

AK∞
(
Λ

∞ +C
)T

+M(Σ∞)KÎ∞

)T
, K∞ = K∞,T � 0. (4.2.42)

where

KÎ∞ =CΣ
∞CT +NKW NT , Σ

o
t is a solution of (4.2.20), M(Σ∞) is given by (4.2.19). (4.2.43)

Introduce the matrices

C(Λ∞)
4
= Λ

∞ +C, GQGT 4= M(Σ∞)KÎ∞

(
M(Σ∞)

)T
, GS

4
= M(Σ∞)KÎ∞ ,

R(K∞
Z )
4
= KÎ∞ +K∞

Z . =⇒ G
4
= M(Σ∞), Q

4
= KÎ∞ , S

4
= KÎ∞,

A∗(Λ∞,K∞
Z )
4
= A−M(Σ∞)KÎ∞

(
KÎ∞ +K∞

Z

)−1(
Λ

∞ +C
)
,

B∗(K∞
Z )
4
= KÎ∞−KÎ∞

(
KÎ∞ +K∞

Z

)−1
KÎ∞ . (4.2.44)
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Suppose the detectability and stabilizability conditions of Lemma 4.2.1.(i) and (ii) hold.

Then, all statements of Theorem 5.2.1 hold with (C(Λ∞),G,Q,S,R(K∞
Z )) as defined by (4.2.44).

In particular, suppose

(i) {A,C(Λ∞)}= {A,Λ∞ +C} is detectable, and

(ii) {A∗(Λ∞,K∞
Z ),GB∗,

1
2 (K∞

Z )} is stabilizable.

Then any solution Ko
t , t = 1,2, . . . ,n to the generalized matrix DRE (4.2.42) with arbitrary initial

condition, Ko
1 � 0 is such that limn−→∞ Ko

n = K∞, where K∞ � 0 is the unique solution of the

generalized matrix ARE (4.2.42) with spec
(
FCL(K∞,Σ∞)

)
∈ Do i.e., it is stabilizing.

Moreover, the entropy rate of Y n is given by

HR(Y ∞) = H(I∞
t ) =

1
2

log
(

2πe
[(

Λ
∞ +C

)
K∞

(
Λ

∞ +C
)T

+KÎ∞ +K∞
Z

])
, ∀Ko

1 � 0, ∀t
(4.2.45)

where

I∞
t =

(
Λ

∞ +C
)(

Ŝ∞
t −

̂̂S∞
t
)
+ Î∞

t +Zt ∈ N(0;
(
Λ

∞ +C
)
K∞
(
Λ

∞ +C
)T

+KÎ∞ +K∞
Z ),

t = 1,2, . . . , (4.2.46)

is the stationary Gaussian innovations process, i.e., with (Ko
t ,Σ

o
t ) replaced by (K∞,Σ∞).

Proof. Since the detectability and stabilizability conditions of Lemma 4.2.1 hold, then the state-

ments of Corollary 4.2.1 hold. By the continuity property of solutions of generalized difference

Riccati equations, with respect to its coefficients (see [9]), and the convergence of the sequence

limn−→∞ Σ∞
n = Σ∞, where Σ∞ � 0 is the unique stabilizing solution of (4.2.20), then the statements

of Theorem 4.2.2 hold, as stated. In particular, under the detectability and stabilizability condi-

tions (i) and (ii), then limn−→∞ Ko
n = K∞, where K∞ � 0 is the unique and stabilizing solution of

(4.2.42).

In the next lemma we apply Theorem 4.2.2 to the AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of

Example 2.1.2.(a), using Lemma 4.2.1.

Lemma 4.2.3. Consider the AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of Example 2.1.2.(a), and

the DRE Σo
t
4
= Σt , t = 1, . . . ,n and ARE of Lemma 4.2.1, (4.2.25)-(4.2.28).

Let Ko
t , t = 1, . . . ,n denote the solution of the DRE of Corollary 3.2.3.(a), when Λt = Λ∞,KZt =
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K∞
Z ,Kt = Ko

t ,∀t, i.e., given by

Ko
t+1 =

(
c
)2Ko

t +
(
M(Σo

t )
)2KÎo

t
−
(

cKo
t
(
Λ

∞ + c−a
)
+M(Σo

t )KÎo
t

)2

.
(

KÎo
t
+K∞

Z +
(
Λ

∞ + c−a
)2Ko

t

)−1
, Ko

1 = 0, t = 1, . . . ,n, (4.2.47)

K∞
Z ≥0, Ko

t ≥ 0, t = 1, . . . ,n (4.2.48)

and where

M(Σo
t )
4
=
(

cΣ
o
t
(
c−a

)
+KW

)(
KW +

(
c−a

)2
Σ

o
t

)−1
, (4.2.49)

KÎo
t
=
(
c−a

)2
Σ

o
t +KW , t = 1, . . . ,n. (4.2.50)

Define the set

L ∞ 4=
{
(a,c) ∈ (−∞,∞)2,a 6= c : (i) the pair {A,C}= {a,c−a} is detectable, and

(ii) the pair{A∗,GB∗,
1
2}= {a,0} is stabilizable

}
. (4.2.51)

For any (a,c)∈L ∞, let K∞≥ 0 be a corresponding solution of the ARE (evaluated at limn−→∞ Σ∞
n =

Σ∞ = 0),

K∞ =
(
c
)2K∞ +KW −

(
cK∞

(
Λ

∞ + c−a
)
+KW

)2(
KW +K∞

Z +
(
Λ

∞ + c−a
)2K∞

)−1
. (4.2.52)

K∞
Z ≥0, KW > 0. (4.2.53)

and define the pairs

{A,C(Λ∞}= {c,Λ∞ + c−a}, (4.2.54)

{A∗(Λ∞,K∞
Z ),GB∗,

1
2 (K∞

Z )}={
c−KW

(
KW +K∞

Z
)−1(

Λ
∞ + c−a

)
,
(

KW −
(
KW
)2(KW +K∞

Z
)−1
) 1

2}. (4.2.55)

Then the following hold.

(1) Suppose Λ∞ + c−a 6= 0. Then {A,C(Λ∞}= {c,Λ∞ + c−a} is detectable ∀(a,c) ∈ (−∞,∞)2.

(2) Suppose Λ∞ + c− a = 0. Then {A,C(Λ∞} = {c,0} is detectable for if and only if |c| < 1

∀a ∈ (−∞,∞).

(3) Suppose K∞
Z = 0. Then the pair {A∗,GB∗,

1
2} = {−Λ∞ +a,0} is unit circle controllable if and

only if |Λ−a| 6= 1 ∀a ∈ (−∞,∞).

(4) Suppose Λ∞ + c− a 6= 0, |Λ− a| 6= 1 ∀(a,c) ∈ (−∞,∞)2, and KZ = 0. The sequence Ko
t , t =
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1,2, . . . ,n that satisfies the generalized DRE (4.2.47) with zero initial condition, Ko
1 = 0, converges

to K∞ ≥ 0, i.e., limn−→∞ Ko
n = K∞, where K∞ satisfies the generalized ARE,

K∞ =
(
c
)2K∞ +KW −

(
cK∞

(
Λ

∞ + c−a
)
+KW

)2(
KW +

(
Λ

∞ + c−a
)2K∞

)−1
, K∞ ≥ 0

(4.2.56)

if and only if the {A∗,GB∗,
1
2}= {−Λ∞ +a,0} is stabilizable, equivalently, |Λ∞−a|< 1.

Moreover, the solutions of the ARE (4.2.56), under the stabilizability condition, i.e., |Λ∞−a|< 1,

are

K∞ =


0 the unique, stabilizing, K∞ ≥ 0 solultion of (4.2.56)

KW

((
Λ∞−a

)2
−1
)

(
Λ∞+c−a

)2 < 0 the non-stabilizing, K∞ < 0 solution of (4.2.56) .
(4.2.57)

That is, limn−→∞ Σ0
n = Σ∞ = 0 is the unique and stabilizing solution Σ∞ ≥ 0 of (4.2.56), i.e., such

that |MCL(Σ∞)|< 1, if and only if |Λ∞−a|< 1.

Proof. The statements follow from Lemma 4.2.1, Theorem 4.2.2 (and general properties of Theo-

rem 4.2.1).

Remark 4.2.2. From Lemma 4.2.3.(4) follows that if K∞
Z = 0 then the unique and stabilizing solu-

tion is K∞ = 0 and corresponds to |Λ∞−a|< 1. This is an application of Theorem 4.2.1.(1).

In the next theorem we characterize the asymptotic limit of Definition 4.1.1, by invoking Theo-

rem 2.2.1, Corollary 4.2.1, and Theorem 4.2.2.

Theorem 4.2.3. Feedback capacity C f b,o(κ) of Theorem 2.2.1

Consider C f b,o(κ) of Definition 4.1.1 corresponding to Theorem 2.2.1, i.e., the PO-SS realization

of V n of Definition 1.1.2 is time-invariant, (At ,Bt ,Ct ,Nt ,KWt ) = (A,B,C,N,KW ),∀t, and the strate-

gies are time-invariant, (Λt ,KZt ) = (Λ∞,K∞
Z ),∀t.

Define the set

P∞ 4=
{
(Λ∞,K∞

Z ) ∈ (−∞,∞)× [0,∞) :

(i) {A,C} of Corollary 4.2.1 is detectable,

(ii) {A∗,GB∗,
1
2} of Corollary 4.2.1 is stabilizable, (A∗,B∗) defined by (4.2.22)

(iii) {A,C(Λ∞)}= {A,Λ∞ +C} of Theorem 4.2.2 is detectable,

(iv) {A∗(Λ∞,K∞
Z ),GB∗,

1
2 (K∞

Z )} of Theorem 4.2.2 is stabilizable
}
. (4.2.58)
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Then

C f b,o(κ) = sup(
Λ∞,K∞

Z

)
: limn−→∞

1
n ∑

n
t=1

(
Λ∞Ko

t (Λ
∞)T+K∞

Z

)
≤κ

{

lim
n−→∞

1
2n

n

∑
t=1

log
((Λ∞ +C

)
Ko

t

(
Λ∞ +C

)T
+CΣo

t CT +NKW NT +K∞
Z

CΣo
t CT +NKW NT

)}
(4.2.59)

= sup(
Λ∞,K∞

Z

)
∈P∞(κ)

1
2

log
((Λ∞ +C

)
K∞

(
Λ∞ +C

)T
+CΣ∞CT +NKW NT +K∞

Z

CΣ∞CT +NKW NT

)
(4.2.60)

where

P∞(κ)
4
=
{
(Λ∞,K∞

Z ) ∈P∞ : K∞
Z ≥ 0, Λ

∞K∞(Λ∞)T +K∞
Z ≤ κ,

K∞ is the unique and stabiizing solution of (4.2.42), i.e., |FCL(Σ∞,K∞)|< 1

Σ
∞ is the unique, stabiizing solution of (4.2.20), i.e., |MCL(Σ∞)|< 1

}
(4.2.61)

provided there exists κ ∈ [0,∞) such that the set P∞(κ) is non-empty.

Moreover, the maximum element (Λ∞,K∞
Z )∈P∞(κ), is such that it induces asymptotic stationarity

of the joint input and output process, and C f b,o(κ) is independent of the initial conditions Ko
1 �

0,Σo
1 � 0.

Proof. By Definition 4.1.1, Theorem 2.2.1, Corollary 4.2.1, and Theorem 4.2.2, then follows

(4.2.59). We defined the set P∞ using the detectability and stabilizability conditions of Corol-

lary 4.2.1, and Theorem 4.2.2 to ensure convergence of solutions {(Ko
t ,Σ

o
t ) : t = 1,2, . . . ,n} of the

generalized matrix DREs to unique nonnegative, stabilizing solutions of the corresponding gener-

alized matrix AREs. Then, for any element (Λ∞,K∞
Z ) ∈P∞ both summands in (4.2.59) converge.

This establishes the characterization of the right hand side of (4.2.60).

4.3 Oversights of the characterizations of feedback capacity

Conclusion 4.3.1. Degenerate version of Theorem 4.2.3 for feedback code of Definition 1.1.3, i.e.,

(s,2nR,n), n = 1,2, . . .

(a) The characterization of feedback capacity C f b,o(κ,s) of the AGN channel (1.1.1) driven by a
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noise V n of Definition 1.1.2, for the code of Definition 1.1.3, i.e., (s,2nR,n), n = 1,2, . . ., is a de-

generate case of Theorem 4.2.3, and corresponds to Σt = Σs
t , t = 1, . . . ,Σ1 = Σs

1 = 0. In particular,

since Theorem 4.2.3 characterizes C f b,o(κ) for all initial data Σ1 � 0, then includes Σ1 = Σs
1 = 0,

and follows that C f b,o(κ) =C f b,o(κ,s), where C f b,o(κ,s) independent of the initial state Ss
1 = s.

(b) The maximal information rate of [1, Theorem 7 and Corollary 7.1], i.e., of Case II) formulation,

should be read with caution, because the condition of Theorem 4.2.1.(1) are required for conver-

gence. Similarly, the characterization of feedback capacity of [2, Theorem 6.1] which correspond

to Case II) formulation, violates Theorem 4.2.1.(1), because is states that a zero variance of the

innovations process is optimal, i.e., K∞
Z = 0. Consequently, subsequent papers that build on [2] to

derive additional results, such as, [4–7], should be read with caution.

We apply Theorem 4.2.3 to obtain C f b,o(κ) of AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise.

Corollary 4.3.1. Consider the AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise of Example 2.1.2.(a).

Define the set

P∞ 4=
{
(Λ∞,K∞

Z ) ∈ (−∞,∞)× [0,∞) :

(i) c ∈ (−∞,∞),a ∈ (−1,1),c 6= a,

(ii) the pair {A,C(Λ∞)} 4= {c,Λ∞ + c−a} is detectable,

(ii) the pair {A∗(Λ∞,K∞
Z ),GB∗,

1
2 (K∞

Z )} is stabilizable, where

A∗(Λ∞,K∞
Z )
4
= c−KW

(
KW +K∞

Z
)−1(

Λ
∞ + c−a

)
,

GB∗,
1
2 (K∞

Z )
4
=
(

KW −
(
KW
)2(KW +K∞

Z
)−1
) 1

2
}
.

Then,

C f b,o(κ) = sup(
Λ∞,K∞

Z

)
∈P∞(κ)

1
2

log
((Λ∞ + c−a

)2
K∞ +KW +K∞

Z

KW

)
=C f b(κ,s), ∀s (4.3.62)

where,

P∞(κ)
4
=
{
(Λ∞,K∞

Z ) ∈P∞ :
(
Λ

∞
)2K∞ +K∞

Z ≤ κ,

K∞ ≥ 0 is the unique and stabiizing solution of

K∞ =
(
c
)2K∞ +KW −

(
cK∞

(
Λ

∞ + c−a
)
+KW

)2(
KW +K∞

Z +
(
Λ

∞ + c−a
)2K∞

)−1}
(4.3.63)

STELIO
S LO

UCA



CHAPTER 4. ASYMPTOTIC ANALYSIS 59

provided there exists κ ∈ [0,∞) such that the set P∞(κ) is non-empty.

Moreover, C f b,o(κ) and C f b,o(κ,s) are independent of Σ1≥ 0 and s, respectively, and the following

identities hold.

C f b,o(κ) =C f b,o(κ,s) =C f b,S,o(κ,s), ∀s (4.3.64)

Proof. The first part is an application of Theorem 4.2.3, Lemma 4.2.1, and Lemma 4.2.3. It re-

mains to show (4.3.64). The equality C f b,o(κ) =C f b,o(κ,s),∀s holds by Conclusion 4.3.1.(a). The

last equality holds, because for the AR(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise, if the initial state

S1 = Ss
1 = s is known to the encoder and the decoder, then Conditions 1 of Section 1.1 holds, and

in addition Condition 2 holds, as easily verified from the equations (2.1.65), (2.1.66).

Remark 4.3.1. From Corollary 4.3.1 we obtain the degenerate cases, AR(c),c ∈ (−∞,∞), noise

i.e., setting a = 0. The various implications of the detectability and stabilizability conditions for

the AR(c),c ∈ (−∞,∞) noise are found in [15, see Theorem III.1 and Lemma III.2]. The complete

analysis of the corresponding C f b,o(κ,s) is found in [15], and states that for stable AR(c), and

time-invariant strategies, then feedback does not increase capacity.
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Chapter 5

Feedback Capacity of ARMA(a,c)noise

5.0.1 Problem Formulation

We introduce the precise mathematical formulation, and the underlying assumptions based on

which we derive the results of this chapter. We consider the time-varying AGN channel defined by

Yt = Xt +Vt , t = 1, . . . ,n,
1
n

Es

{ n

∑
t=1

(Xt)
2
}
≤ κ, κ ∈ [0,∞) (5.0.1)

where

Xn = {X1,X2, . . . ,Xn} is the sequence of channel input random variables (RVs) Xt : Ω→ R,

Y n = {Y1,Y2, . . . ,Yn} is the sequence of channel output RVs Yt : Ω→ R,

V n = {V1, . . . ,Vn} conditioned on the initial state S1 = s, is a sequence of jointly Gaussian dis-

tributed RVs Vt : Ω→ R, and V n ∈ N(0,KV n|S1),

S1 = s, is known to the encoder and decoder,

N(0,KV n|S1) denotes the distribution of the Gaussian RV V n conditional on S1, with zero condi-

tional mean, and conditional variance KV n|S1 ,

Es{·} denotes expectation for fixed initial state S1 = s.

Definition 5.0.1. The time-invariant ARMA(a,c) noise

A time-invariant autoregressive moving average noise , with initial state S1 = s, is defined by

ARMA(a,c) :


Vt = cVt−1 +Wt−aWt−1, V0 = v0, W0 = w0, t = 1, . . . ,n,
Wt ∈ N(0,KWt ), t = 1, . . . ,n, indep. Gaussian, indep. of V0 ∈ N(0,KV0),
KV0 ≥ 0, KWt = KW > 0, a ∈ (−∞,∞), c ∈ (−∞,∞), c 6= a,
t = 1, . . . ,n non-random.

(5.0.2)

60

STELIO
S LO

UCA



CHAPTER 5. FEEDBACK CAPACITY OF ARMA(A,C)NOISE 61

Remark 5.0.1. ARMA(a,c) in state-space representation.

To express the ARMA(a,c) in state form we define the state variable of the noise by

St =
cVt−1−aWt−1

c−a
, t = 1, . . . ,n (5.0.3)

Then, the state space realization of Vn is

St+1 = cSt +Wt t = 1, . . . ,n (5.0.4)

Vt = (c−a)St +Wt , t = 1, . . . ,n (5.0.5)

KS1 =
(c)2KV0 +(a)2KW0

(c−a)2 , KV0 ≥ 0, KW0 ≥ 0 both given. (5.0.6)

For the stable noise, ARMA(a,c),a ∈ [−1,1],c ∈ (−1,1), the variance defined by KVt

4
= E

(
Vt
)2,

satisfies KVt =(c−a)2KSt +KW ,KS1 ≥ 0, t = 1, . . . ,n. The stable ARMA(a,c) noise is called asymp-

totically stationary if limn−→∞ KVn =
(c−a)2KW

1−c2 , for all initial values KV0 ≥ 0, i.e., |c|< 1, |a| ≤ 1.

ARMA(a,c) without an initial state is defined by (5.0.2), for t = 1, . . . ,n, with V1 ∈N(0,KV1),KV1 ≥
0, independent of Wt ∈ N(0,KWt ),KWt > 0, t = 1, . . . ,n. Similarly, the stable ARMA(a,c) noise

without an initial state is called asymptotically stationary if KVt = (c− a)2KSt +KW ,KV1 ≥ 0, t =

1, . . . ,n, converges, limn−→∞ KVn =
(c−a)2KW

1−c2 , for all initial values KV1 ≥ 0, |c|< 1, |a| ≤ 1. That is,

the invariant distribution of the noise is N(0, (c−a)2KW
1−c2 ),c ∈ (−1,1),a ∈ [−1,1].

At this stage, we introduce the feedback code and non-feedback code of the AGN channel.

Definition 5.0.2. Feedback and non-feedback codes

(a) A noiseless time-varying feedback code1 for the AGN Channel, is denoted by

C f b
Z+

4
=
{
(n,dMne,s,κ,εn) : n = 1,2, . . . ,

}
, and consists of the following elements and assumptions.

(i) The set of uniformly distributed messages W : Ω→M (n) 4= {1,2, . . . ,dMne}.
(ii) The set of codewords of block length n, defined by the set2

E[0,n](κ),
{

X1 = e1(W,S1),X2 = e2(W,S1,X1,Y1), . . . ,Xn = en(W,S1,Xn−1,Y n−1) :

1
n+1

Ee
s

( n

∑
i=0

(Xt)
2
)
≤ κ

}
. (5.0.7)

(iii) The decoder functions (s,yn) 7−→ dn(s,yn) ∈M (n), with average error probability

P(n)
error(s) = P

{
dn(S1,Y n) 6=W

∣∣∣S1 = s
}
=

1
dMne

dMne

∑
w=1

Pe
s

(
dn(S1,Y n) 6=W

)
≤ εn. (5.0.8)

1A time-varying feedback code means the channel input distributions PXt |X t−1,Y t−1,S1
, t = 1, . . . ,n are time-varying.

2The superscript e(·) on Ee
s is used to denote that the distribution depends on the strategy e(·) ∈ E[0,n](κ).
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where Pe
s means the distribution depends on e(·) ∈ E[0,n](κ) and S1 = s is fixed.

(iv) “Xn is causally related to V n” [3, page 39, above Lemma 5], which is equivalent to the

following decomposition of the joint probability distribution of (Xn,V n) given S1.

PXn,V n|S1 =PV n|S1

n

∏
t=1

PXt |X t−1,V t−1,S1
. (5.0.9)

=PV n|S1

n

∏
t=1

PXt |X t−1,Y t−1,S1
, by Yt = Xt +Vt . (5.0.10)

The coding rate is rn , 1
n logdMne. Given an initial state S1 = s, a rate R(s) is called an achievable

rate, if there exists a code sequence C f b
Z+ , satisfying limn−→∞ εn = 0 and liminfn−→∞

1
n logdMne ≥

R(s).

The operational definition of the feedback capacity of the AGN channel, for fixed S1 = s, is

C(κ,s), sup
{

R(s) : R(s) is achievable
}

.

(b) A time-varying code without feedback for the AGN Channel, denoted by C n f b
Z+ , is the restriction

of the time-varying feedback code C f b
Z+ , to the subset E n f b

[0,n](κ)⊂ E[0,n](κ), defined by

E n f b
[0,n](κ),

{
X1 = en f b

1 (W,S1),X2 = en f b
2 (W,S1,X1), . . . ,Xn = en f b

n (W,S1,Xn−1) :

1
n

Een f b

s

( n

∑
i=1

(Xt)
2
)
≤ κ

}
. (5.0.11)

Since the code sequence C f b
Z+ depends on S1 = s, then in general, the rate R(s), and also C(κ,s)

depend on s. The Cover and Pombra AGN Channel [3], characterization of feedback capacity,

and optimal channel input are recalled in Section 1.2, to emphasize that the assumptions based

on which these are derived are fundamentally different from the assumptions based on which [2,

Theorem 6.1] (and equivalently [2, Theorem 4.1]) are derived.

Feedback Capacity of Time-Varying Channel Input Strategies. Consider the feedback code of

Definition 5.0.2.(a), i.e., C f b
Z+ . Given the elements of the set E[0,n](κ), by the maximum entropy

principle of Gaussian distributions, similar to Cover and Pombra [3], the upper bound holds3.

Ie(W ;Y n|s)≤ H(Y n|s)−H(V n|s), if H(Y n|s) is evaluated at a Gaussian PY n|S1 (5.0.12)

where H(X |s) stands for differential entropy of RV X conditioned on the initial state S1 = s. Fur-

ther, the upper bound in (5.0.12) is achieved [3], if the input Xn is jointly Gaussian for fixed S1 = s,

3The superscript e means the underlying distributions are induced by the channel distribution and the elements of
the set e(·) ∈ E[0,n](κ).
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satisfies the average power constraint, and respects (5.0.9). By the chain rule of mutual informa-

tion, Ie(W ;Y n|s) = ∑
n
t=1 Ie(W ;Yt |Y t−1,s), and the data processing inequality, then the following

inequality holds:

sup
E[0,n](κ)

Ie(W ;Y n|s)≤ sup
PXt |Xt−1,Yt−1,S1

,t=1,...,n: 1
n Es

{
∑

n
t=1

(
Xt

)2}
≤κ

H(Y n|s)−H(V n|s), by (5.0.1)

(5.0.13)

where the supremum in the right hand side of (5.0.13) is taken over conditionally Gaussian time-

varying distributions PXt |X t−1,Y t−1,S1
, t = 1, . . . ,n, such that (Xn,Y n) are jointly Gaussian for fixed

S1 = s, and (5.0.9) is respected.

Define, as in [3], the n−finite transmission feedback information (FTFI) capacity of code C f b
Z+ , by

Cn(κ,s)
4
= sup

PXt |Xt−1,Yt−1,S1
,t=1,...,n: 1

n Es

{
∑

n
t=1

(
Xt

)2}
≤κ

H(Y n|s)−H(V n|s) (5.0.14)

provided the supremum element exists in the set. From the converse and direct coding theorems

in [3, Theorem 1], it then follows that the characterization of feedback capacity of code C f b
Z+ , is

given by

C(κ,v0) = lim
n−→∞

1
n

Cn(κ,s) (5.0.15)

provided the limit exists.

Capacity Without Feedback of Time-Varying Channel Input Strategies. Let Cn f b
n (κ,s) be defined

as in (5.0.14), with the time-varying feedback distributions PXt |X t−1,Y t−1,S1
, t = 1, . . . ,n, replaced by

the time-varying non-feedback distributions PXt |X t−1,S1
, t = 1, . . . ,n, called n−finite transmission

without feedback information (FTwFI) capacity. The non-feedback capacity of the code C n f b
Z+ of

Definition 5.0.2.(b), is characterized by Cn f b(κ,s) = limn−→∞
1
nCn f b

n (κ,s), provided the limit is

defined.

This brings us to the next definition of capacity, where conditions for existence of the limits of

average power and entropy rates are characterized, and they part of our problem formulation.

Feedback Capacity of Time-Invariant Channel Input Strategies. We consider (5.0.14), (5.0.15)

with the per unit time limit and supremum operations interchanged, and time-invariant codes and

induced distributions, called strategies. To ensure the feedback capacity (to be defined shortly) is

well-posed, we introduce the following condition:
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(C1) Channel input strategies with feedback are time-invariant, the consistency condition (5.0.9)

holds, and the following limits exists and they are finite:

(i) limn−→∞
1
nEs
{

∑
n
t=1
(
Xt
)2} ∈ [0,∞), (ii) limn−→∞

1
n

{
H(Y n|s)−H(V n|s)

}
∈ [0,∞).

We define the operational information feedback capacity under condition (C1), as follows.

C∞(κ,s)
4
= sup

limn−→∞
1
n E
{

∑
n
t=1

(
Xt

)2}
≤κ, subject to (C1)

lim
n−→∞

1
n

{
H(Y n|s)−H(V n|s)

}
(5.0.16)

where the supremum is taken over all jointly Gaussian channel input processes Xn,n= 1,2, . . . with

feedback, or distributions with feedback PXt |X t−1,Y t−1,S1
, t = 1,2, . . ., such that (Xn,Y n),n= 1,2, . . . ,

is jointly Gaussian, for S1 = s, and (C1) holds.

Capacity Without Feedback of Time-Invariant Channel Input Strategies. Similar to (5.0.16), we

also analyze the non-feedback capacity analog, under condition (C1), which is defined as follows.

C∞,n f b(κ,s)
4
= sup

limn−→∞
1
n E
{

∑
n
t=1

(
Xt

)2}
≤κ, subject to (C1)

lim
n−→∞

1
n

{
H(Y n|s)−H(V n|s)

}
(5.0.17)

where the supremum is taken over all jointly Gaussian channel input processes Xn,n = 1,2, . . . ,

without feedback or distributions without feedback, denoted by PXt |X t−1,S1
, t = 1,2, . . ., such that

(Xn,Y n),n = 1,2, . . . is jointly Gaussian for S1 = s, (C1) holds (with PXt |X t−1,Y t−1,S1
replaced by

PXt |X t−1,S1
, and (5.0.9) is respected, for n = 1,2, . . .. To our knowledge, for AGN channels driven

by an unstable noise V n, no closed form expression of non-feedback capacity is ever reported in

the literature.

Given the above formulation, in this paper we obtain answers to the various questions listed under

Problem 5.0.1.

Problem 5.0.1. Main problem

Given C∞(κ,s) defined by (5.0.16), and C∞,n f b(κ,s) defined by (5.0.17), of the AGN channel

driven by a time-invariant stable and unstable, ARMA(a,c) noise, i.e., c ∈ (−∞,∞):

(a) What are necessary and/or sufficient conditions for (C1) to hold?

(b) What are necessary and/or sufficient conditions for joint asymptotic stationarity of the process

(Xn,Y n,V n),n = 1,2, . . . or the marginal processes Xn and Y n,n = 1,2, . . .?.

(c) What are the characterizations and closed form formulas of feedback capacity C∞(κ,s) =

C∞(κ),∀s?
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(d) How do we extract simple lower bounds on non-feedback capacity, C∞,n f b(κ,s) =C∞,n f b(κ),∀s
from the characterizations of feedback capacity?

To address Problem 5.0.1 we make use of the identities

lim
n−→∞

1
n

H(Y n|s) = lim
n−→∞

1
n

n

∑
t=1

H(Yt |Y t−1,s) = lim
n−→∞

1
n

n

∑
t=1

H(Yt−E
{

Yt |Y t−1,s
}
|Y t−1,s) (5.0.18)

= lim
n−→∞

1
n

n

∑
t=1

H(It), It
4
= Yt−E

{
Yt |Y t−1,s

}
an indep. innovations process

(5.0.19)

Then, we identify necessary and/or sufficient conditions for the limits in (5.0.18) and

limn−→∞
1
nEs
{

∑
n
t=1
(
Xt
)2} to exist and to be finite, and we provide answers to the questions of

Problem 5.0.1, from the properties of the innovations process.

5.0.2 Methodology of the Chapter

Our methodology is based on the following main steps.

Step 1. We characterize Cn(κ,s) defined by (5.0.14), i.e., the n−FTFI capacity, of the AGN channel

driven by a time-varying ARMA(at ,ct) noise. We also give a lower bound on the characterization

of the n−FTwFI capacity Cn f b
n (κ,s), using a Gaussian channel input process, which is realized by

an ARMA(Λt) process,

Xt = ΛtXt−1 +Zt , X1 = Z1, Λt ∈ (−∞,∞), t = 2, . . . ,n (5.0.20)

where Zn an independent Gaussian sequence, independent of (V n,S1).

Step 2. We characterize the feedback capacity C∞(κ,s) = C∞(κ),∀s defined by (5.0.16), and we

give a lower bound on the characterization of C∞,n f b(κ,s) defined by (5.0.17), of the AGN channel

driven by a time-invariant stable or unstable noise, ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞). Our

analysis identifies necessary and/or sufficient conditions for condition (C1) to hold, expressed in

terms of the convergence properties of generalized difference Riccati equations (DREs) and al-

gebraic Riccati equations (AREs), of estimating the channel state, that is, the noise V n, from the

channel output process Y n, and the initial state S1 = s, for n = 1,2, . . .. This step is analogous

to [17, Theorem 4.1], although the models considered in [17] involve a classical control DRE and

ARE.

Step 3. We derive a closed form formula of feedback capacity C∞(κ,s) = C∞(κ),∀s, that shows

there are multiple regimes of capacity, and these regimes depend on the parameters (a,c,KW ,κ).
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Our feedback capacity formulae C∞(κ) for AGN channels driven by stable noise ARMA(a,c),a ∈
[−1,1],c ∈ (−1,1) is fundamentally different from the one obtained using the characterization

of feedback capacity in [2, Theorem 6.1]. We show this difference is mainly attributed to the ap-

pended detectability and stabilizability conditions on the characterization of our feedback capacity,

to ensure the optimal channel input process Xn is such that the limits, limn−→∞
1
nEs
{

∑
n
t=1
(
Xt
)2}∈

[0,∞), limn−→∞
1
nH(Y n|s) ∈ [0,∞) exist, and the joint process (Xn,Y n),n = 1,2, . . . is asymptoti-

cally stationary, which are not accounted for, in [2, Theorem 6.1].

We also give an achievable lower bound on the non-feedback capacity C∞,n f b(κ,s), based on

(5.0.20), with Λt = 0,∀t, i.e., Xt = Zt , Zn,n = 1, . . . an independent and identically distributed

(IID) sequence, and holds for stable and unstable ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise.

Step 4. We identify an oversight in the characterization of feedback capacity given in [2, The-

orem 6.1, CFB] (i.e., the analog of the limiting expression of C∞(κ,s) without the stabilizability

condition), which presupposes a zero variance of the innovations part of the channel input process

is optimal. We show that a zero variance of the innovations process, implies the characterization

of feedback capacity, based on [2, Theorem 6.1, CFB], is necessarily the zero solution CFB = 0,

otherwise,CFB does not correspond to the limiting value of (5.0.16).

We structured the chapter as follows.

In Section 5.1, we derive the characterization of the n−FTFI capacity, and the lower bound on the

characterization of the n−FTwFI capacity, for AGN channels driven by the ARMA(at ,ct) noise

(Section 5.1.1), and present a preliminary elaboration on technical issues that are integral part of

capacity definition (5.0.16).

In Section 5.2, we present the derivations of feedback capacity formulas of C∞(κ,s) =C∞(κ),∀s,

i.e., (5.0.16), and the achievable lower bounds on the non-feedback capacity C∞,n f b(κ,s), for sta-

ble and unstable noise, using the asymptotic analysis of generalized Kalman-filters [8, 9].

5.1 Characterizations of n−FTFI and n−FTwFI Capacity

In this section we present the following main results.

(1) Theorem 3.1.1 (Section 5.1.1), which gives the characterization of n−FTFI capacity for time-

varying feedback codes of Definition 5.0.2.(a),

(2) Corollary 5.1.1 (Section 5.1.3), which gives a lower bound on the n−FTwFI capacity for time-
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varying non-feedback codes of Definition 5.0.2.(b), based on a Markov channel input process

without feedback, and follows directly from Theorem 3.1.1.

5.1.1 Characterization of n−FTFI Capacity

Below, we introduce the characterization of the n−FTFI capacity, for an AGN channel, driven

by the time-varying ARMA(at ,ct) noise, for the feedback code of Definition 5.0.2.(a). Our pre-

sentation, of the next theorem, is based on the degenerate case of the general characterization of

the n−FTFT capacity of AGN channels, derived in [18]. We should mention that although, [1],

treats AGN channels driven by stable noise, some parts of the representation given below can be

extracted from the analysis of [1, Section II-V].

Theorem 5.1.1. Characterization of n−FTFI Capacity for AGN Channels Driven by ARMA(at ,ct)

Noise

Consider the AGN channel (5.0.1) driven by a time-varying ARMA(at ,ct) noise, i.e., (5.0.2), and

the code of Definition 5.0.2.(a). Then the following hold.

(a) The optimal time-varying channel input distribution with feedback, for the optimization prob-

lem Cn(κ,s) defined by (5.0.14), is conditionally Gaussian, of the form

PXt |Xt−1,Y t−1,S1
= PXt |St ,Y t−1,S1

, t = 1, . . . ,n (5.1.21)

and it is induced by the time-varying jointly Gaussian channel input process Xn, with a represen-
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tation4

Xt = Λt

(
St− Ŝt

)
+Zt , t = 1, . . . ,n, (5.1.22)

X1 = Z1, (5.1.23)

Zt ∈ N(0,KZt ), t = 1, . . . ,n a Gaussian sequence, (5.1.24)

Zt independent of (V t−1,X t−1,Y t−1,S1), t = 1, . . . ,n, (5.1.25)

Vt = (ct−at)St +Wt , S1 = s, at ∈ (−∞,∞),ct ∈ (−∞,∞), t = 1, . . . ,n, (5.1.26)

Yt = Xt +Vt = Λt

(
St− Ŝt

)
+Zt +Vt (5.1.27)

= Λt

(
St− Ŝt

)
+
(

ct−at

)
St +Wt +Zt , (5.1.28)

Wt ∈ N(0,KWt ) t = 1, . . . ,n a Gaussian sequence, (5.1.29)

Y1 = Z1 +
(

c1−a1

)
S1 +W1, S1 = s, (5.1.30)

St+1 = ctSt +Wt S1 = s, t = 2, . . . ,n (5.1.31)

1
n

Es

{ n

∑
t=1

(
Xt
)2
}
=

1
n

n

∑
t=1

{(
Λt

)2
Kt +KZt

}
≤ κ, (5.1.32)

(Λt ,KZt ) ∈ (−∞,∞)× [0,∞) scalar-valued, non-random, (5.1.33)

Ŝt
4
= Es

{
St

∣∣∣Y t−1,S1 = s
}

(5.1.34)

Kt
4
= Es

ß(
St− Ŝt

)2
™
, K1 = 0, t = 2, . . . ,n. (5.1.35)

Further, H(Y n|s)−H(V n|s), (Ŝt ,Kt), t = 1, . . . ,n are determined by the generalized5 time-varying

Kalman-filter and generalized time-varying difference Riccati equation (DRE), of estimating V n

from Y n, given below.

Generalized Kalman-filter Recursion for (5.1.26)-(5.1.30) [8, 9]:

Ŝt+1 = ct Ŝt +Mt(Kt ,Λt ,KZt )It , Ŝ1 = s, (5.1.36)

It
4
= Yt−Es

{
Yt

∣∣∣Y t−1
}
= Yt−

(
ct−at

)
Ŝt , I1 = Z1 +W1, t = 1, . . . ,n, (5.1.37)

=
(

Λt + ct−at

)(
St− Ŝt

)
+Zt +Wt , (5.1.38)

Mt(Kt ,Λt ,KZt )
4
=
(

KWt + ctKt

(
Λt + ct−at

))(
KZt +KWt +

(
Λt + ct−at

)2
Kt

)−1
, (5.1.39)

4The fact that X1 = Z1,K1 = 0, Ŝ1 = s is due to the code definition, i.e., S1 = s is known to the encoder.
5Unlike [1], we use the term generalized, because, the conditions for the asymptotic analysis to hold, are funda-

mentally different from those of asymptotic analysis of classical Kalman-filter equations.
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Generalized Time-Varying Difference Riccati Equation:

Kt+1 =c2
t Kt +KWt −

(
KWt + ctKt

(
Λt + ct−at

))2

(
KZt +KWt +

(
Λt + ct−at

)2
Kt

) , Kt ≥ 0, K1 = 0, t = 2, . . . ,n,

(5.1.40)

Error Recursion of the Generalized Kalman-filter, Et
4
= St− Ŝt , t = 1, . . . ,n :

Et+1 = Ft(Kt ,Λt ,KZt )Et−Mt(Kt ,Λt ,KZt )
(

Zt +Wt

)
+Wt , E1 = S1− Ŝ1 = 0, t = 2, . . . ,n.

(5.1.41)

Ft(Kt ,Λt ,KZt )
4
= ct−Mt(Kt ,Λt ,KZt )

(
Λt + ct−at

)
(5.1.42)

Entropy of Channel Output Process:

H(Y n|s) =
n

∑
t=1

H(Yt |Y t−1,s) =
n

∑
t=1

H(Yt−E
{

Yt |Y t−1,s
}
|Y t−1,s) =

n

∑
t=1

H(It |s). (5.1.43)

(b) The characterization of the n−FTFI capacity Cn(κ,s) defined by (5.0.14) is

Cn(κ,s)
4
= sup(

Λt ,KZt

)
,t=1,...,n: 1

n ∑
n
t=1

{(
Λt

)2
Kt+KZt

}
≤κ

1
2

n

∑
t=1

log
((

Λt + ct−at
)2Kt +KZt +KWt

KWt

)
(5.1.44)

subject to: Kt , t = 1, . . . ,n satisfies recursion (5.1.40) and KZt ≥ 0, t = 1, . . . ,n. (5.1.45)

Proof. (a) The information structure (5.1.21) follows, from a degenerate case of [18]. The rep-

resentation of the jointly Gaussian process Xn, defined by (5.1.22), such that Zn satisfies (5.1.24)

and (2.1.26), is also a degenerate case of [18], where the channel is more general, of the form

Yt = Ct−1Yt−1 +DtXt +Dt,t−1Xt−1 +Vt , Vt = FtVt−1 +Wt , where (Ct,t−1,Dt ,Dt,t−1,Ft) are non-

random, i.e., with past dependence on channel inputs and outputs. Expressions (5.1.26)-(5.1.35)

follow directly from (5.1.22), and the channel definition. The generalized Kalman-filter equations

follow from standard texbooks, i.e., [9]. (5.1.43) follows from the independent property of the

innovations process. (b) Follows from (5.0.14), (5.1.43), H(V n|s) = ∑t=1 H(Wt), and part (a).

Remark 5.1.1. By the definition of the innovations process and entropy, (5.1.38) and (5.1.43), it

follows that whether the limit exists, limn−→∞
1
n

{
H(Y n|s)−H(V n|s)

}
= limn−→∞

1
n ∑

n
t=1
{

H(It)−
H(Wt)

}
∈ [0,∞) is determined from the limiting covariance of the innovations process In and noise

W n. Similarly, for limn−→∞
1
nEs

{
∑

n
t=1
(
Xt
)2
}
∈ [0,∞) by (5.1.32).
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5.1.2 Converse Coding Theorem for AGN Channels

By Theorem 3.1.1, the characterization of n−FTFI capacity, Cn(κ,s), is expressed in terms of

the mean-square error Kt , t = 1, . . . ,n, that satisfies the time-varying generalized RDE (5.1.40).

We recall the error recursion of the generalized Kalman-filter given by (5.1.41). Note that recur-

sion (5.1.41) is linear time-varying, hence its convergence properties, in mean-square sense, i.e.,

Kt = Es
{(

Et
)2} are determined by the properties of Ft(Kt ,Λt ,KZt ) and Mt(Kt ,Λt ,KZt ),Λt ,KZt , t =

1,2, . . .. Hence, in general, limn−→∞ Kn = limn−→∞ Es
{(

En
)2} does not converge, for arbitrary

Ft(Kt ,Λt ,KZt ) and Mt(Kt ,Λt ,KZt ),Λt ,KZt , t = 1,2, . . .. In view of the error recursion (5.1.41), we

have the following theorem.

Theorem 5.1.2. Converse coding theorem

Consider the feedback code C f b
Z+ of Definition 5.0.2.(a).

Converse Coding Theorem. If there exists a feedback code C f b
Z+ , i.e., with εn −→ 0, as n −→ ∞,

then the code rate R(s) satisfies:

R(s)≤C(κ,s)
4
= lim

n−→∞

1
n

Cn(κ,s), Cn(κ,s) defined in Theorem 3.1.1.(b) (5.1.46)

provided the following conditions hold:

(C1) the maximizing element, denoted by (Λ∗t ,K
∗
Zt
), t = 1, . . . ,n which satisfies the average power

constraint exists, and

(C2) the limit exists and it is finite.

Proof. Conditions (C1) and (C2) follow from the above discussion, and the converse coding theo-

rem follows from [3].

Remark 5.1.2. By the average power (5.1.32) and optimization problem (5.1.44), it is necessary

to identify sufficient and/or necessary conditions such that the maximizing element, (Λ∗t ,K
∗
Zt
), t =

1, . . . ,n, exists in the set, and to ensure convergence of Kn = Es
{(

En
)2} (that satisfies the time-

varying DRE (5.1.40)), as n −→ ∞, to a finite number, such that the limit in (5.1.46) is finite.

However, to ensure C(κ,s) is independent of s, it is necessary that the limit is also independent

of s. On the other hand, if the limit C(κ,s) depends on S1 = s, then one needs to consider a

formulation based on compound capacity, by taking infimum over all initial states S1 = s, as done,

for example, in [19], for finite state feedback channels, otherwise different s give rise to different

rates.
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5.1.3 Lower Bound on Characterization of n−FTwFI Capacity

Next, we give a lower bound on the characterization of n−FTwFI Capacity, for the non-feedback

code of Definition 5.0.2.(b), which follows directly from Theorem 3.1.1.

Corollary 5.1.1. Lower bound on characterization of n−FTwFI Capacity for AGN Channels

Driven by ARMA(at ,ct) Noise

Consider the AGN channel (5.0.1) driven by a time-varying ARMA(at ,ct) noise, i.e., (5.0.2), and

the code without feedback, of Definition 1.1.1.(b). Define the information theoretic optimization

problem of capacity without feedback, i.e., the analog of (5.0.14), by

Cn f b
n (κ,s)

4
= sup

PXt |Xt−1,S1
,t=1,...,n: 1

n Es

{
∑

n
t=1

(
Xt

)2}
≤κ

H(Y n|s)−H(V n|s) (5.1.47)

provided the supremum exists. Then the following hold.

(a) A lower bound on Cn f b
n (κ,s) is obtained by the conditionally Gaussian, time-varying channel

input distribution without feedback, given by

PXt |X t−1,S1
= PXt |Xt−1,S1, t = 1, . . . ,n (5.1.48)

which is induced by the time-varying jointly Gaussian channel input process Xn, with a represen-
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tation

Xt = ΛtXt−1 +Zt , t = 2, . . . ,n, (5.1.49)

X1 = Z1, (5.1.50)

Zt ∈ N(0,KZt ), t = 1, . . . ,n a Gaussian sequence, (5.1.51)

Zt independent of (V t−1,X t−1,Y t−1,S1), t = 1, . . . ,n, (5.1.52)

Vt =
(

ct−at

)
St +Wt , S1 = s, at ∈ (−∞,∞),ct ∈ (−∞,∞), t = 2, . . . ,n, (5.1.53)

Yt = Xt +Vt =
(

Λt

)
Xt−1 +

(
ct−at

)
St +Wt +Zt , t = 1, . . . ,n, (5.1.54)

Y1 = Z1 +
(

c1−a1

)
S1 +W1, S1 = s, (5.1.55)

Define a new state, St
4
=

Å
St

Xt−1

ã
.Then,

St+1 = AtSt +BtW t , where, (5.1.56)

At
4
=

Å
ct 0
0 Λt

ã
, St

4
=

Å
St

Xt−1

ã
, Bt

4
=

Å
1 0
0 1

ã
and W t

4
=

Å
Wt
Zt

ã
. (5.1.57)

Yt =CtSt +NtW t , where, (5.1.58)

Ct
4
=
(
ct−at Λt

)
and Nt

4
=
(
1 1

)
. (5.1.59)

1
n

Es

{ n

∑
t=1

(
Xt
)2
}
=

1
n

n

∑
t=1

{(
Λt

)2
KXt−1 +KZt

}
≤ κ, (5.1.60)

(Λt ,KZt ) ∈ (−∞,∞)× [0,∞) scalar-valued, non-random, (5.1.61)

KXt

4
= Es

(
Xt

)2
, (5.1.62)

Ŝt+1
4
= Es

{
St+1

∣∣∣Y t
}
, (5.1.63)

Kt
4
= Es

ß(
St− Ŝt

)(
St− Ŝt

)T
™
, t = 1, . . . ,n. (5.1.64)

Further, (Ŝt ,Kt), t = 1, . . . ,n are determined by the generalized time-varying Kalman-filter and

generalized time-varying difference Riccati equation (DRE), of estimating Sn from Y n, and KXt , t =

1, . . . ,n is determined by the time-varying Lyapunov difference equation, given below.STELIO
S LO
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Generalized Kalman-filter Recursion for (5.1.49)-(5.1.59) [8, 9]:

Ŝt+1 = At Ŝt +Mn f b
t (Kt)It , Ŝ1 = ŝ1, t = 2, . . . ,n (5.1.65)

It
4
= Yt−Es

{
Yt

∣∣∣Y t−1
}

(5.1.66)

=CtSt +NtW t−CtEs

{
St

∣∣∣Y t−1
}

(5.1.67)

=Ct

(
St− Ŝt

)
+NtW t , I1 = Z1 +W1, t = 1, . . . ,n, (5.1.68)

Mn f b
t (Kt)

4
=
(

AtKtC
T
t +BtKWt N

T
t

)(
NtKWt N

T
t +CtKtC

T
t

)−1
, where, (5.1.69)

KWt

4
=
(
KWt KZt

)
. (5.1.70)

It , t = 1, . . . ,n, an orthogonal innovations process. (5.1.71)

Generalized Time-Varying Difference Riccati Equation:

Kt+1 = AtKtA
T
t +BtKWt B

T
t −
(

AtKtC
T
t +BtKWt N

T
t

)(
CtKtC

T
t +NtKWt N

T
t

)−1(
AtKtC

T
t +BtKWt N

T
t

)T
,

(5.1.72)

Kt ≥ 0, K1 = 0, t = 1, . . . ,n, (5.1.73)

Time-Varying Difference Lyapunov Equation:

KXt = Λ
2
t KXt−1 +KZt , KXt ≥ 0, KX0 = 0, t = 1, . . . ,n, (5.1.74)

Error Recursion of the Generalized Kalman-filter, En f b
t

4
= St− Ŝt , t = 1, . . . ,n :

En f b
t+1 = St+1− Ŝt+1

= AtSt +BtW t−At Ŝt−M(Kt)It

= AtSt +BtW t−At Ŝt−M(Kt)
[
Ct

(
St− Ŝt

)
+NtW t

]
(

At−M(Kt)Ct

)(
St− Ŝt

)
+
(

Bt−M(Kt)Nt

)
W t , (5.1.75)

E1 = S1− Ŝ1 = 0, t = 1, . . . ,n. (5.1.76)

(b) The lower bound characterization of the n−FTwFI capacity Cn f b
n (κ,s), defined by (5.1.47), is

Cn f b
n (κ,s)≥Cn f b

n,LB(κ,s)
4
= sup(

Λt ,KZt

)
,t=1,...,n: 1

n ∑
n
t=1

{(
Λt

)2
KXt−1+KZt

}
≤κ

1
2

n

∑
t=1

log
(CtKtC

T
t +NtKWt N

T
t

NtKWt N
T
t

)
(5.1.77)

subject to: Kt ,KXt , t = 1, . . . ,n satisfy recursions (5.1.73), (5.1.74), and KZt ≥ 0, t = 1, . . . ,n.
(5.1.78)
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Proof. (a) Similar to the feedback capacity of Theorem 5.1.1, by the maximum entropy of Gaus-

sian distributions, the maximizing distributions PXt |X t−1,S1
, t = 1, . . . ,n for the optimization problem

(5.1.47) are conditionally Gaussian, such that (Xn,Y n) for S1 = s, is jointly Gaussian, the average

power constraint is satisfied, and condition (5.0.9) is respected. Clearly, the restriction to distribu-

tions that satisfy (5.1.48) result in a lower bound on Cn f b
n (κ,s) defined by (5.1.47). Note that the

restriction to (5.1.48) is precisely the restriction of feedback distributions (5.1.21) to non-feedback

distributions. The rest of the equations follow, similarly to Theorem 3.1.1.(a), if the channel is

used without feedback, i.e., Xt = ΛtXt−1+Zt . The rest of the expression of part (a) are obtained as

in Theorem 3.1.1.(a). (b) The derivation follows from the expressions of part (a).

Remark 5.1.3. Corollary 5.1.1 is useful, because the lower bound is much easier to compute,

compared to Cn f b
n (κ,s), defined by (5.1.47), where the supremum is taken over all jointly Gaus-

sian channel input processes Xn,n = 1,2, . . . , without feedback or distributions without feedback,

PXt |X t−1,S1
, t = 1,2, . . ..

5.2 New Formulas of Feedback Capacity

In this section we derive a closed form formulae for feedback capacity C∞(κ,s), defined by

(5.0.16), and lower bounds on capacity without feedback C∞,n f b(κ,s), defined by (5.0.17), of AGN

channels driven by ARMA(a,c), stable and unstable noise, when channel input strategies or distri-

butions are time-invariant. This section includes material on basic properties of generalized DREs,

AREs, and definitions and implications of the notions of detectability and stabilizability.

5.2.1 Characterization of Feedback Capacity for Time-Invariant Channel
Input Distributions

We restrict the class of channel input distributions of Theorem 3.1.1 to the class of time-invariant

distributions. We note that our restriction is weaker than the analysis in [2], which presupposes

stationarity or asymptotic joint stationarity of the joint Gaussian process (Xn,Y n),n = 1,2, . . . (the

author also considers a double sided joint process). However, unlike [1, 2], we do not assume the

ARMA(a,c) noise is stable.

By Theorem 3.1.1, and restricting the channel input strategies to the time-invariant channel input
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strategies, (Λt ,KZt ) = (Λ∞,K∞
Z ), t = 1, . . . ,n, with corresponding Xt = Xo

t , Ŝt = Ŝo
t , Yt =Y o

t , It = Io
t ,

Et = Eo
t , Kt = Ko

t (not necessarily stationary), then we have the following representation6.

Xo
t = Λ

∞

(
St− Ŝo

t

)
+Zo

t , Xo
1 = Zo

1 , t = 2, . . . ,n, (5.2.79)

Vt =
(

c−a
)

St +Wt , S1 = s, t = 2, . . . ,n, (5.2.80)

Y o
t = Xo

t +Vt = Λ
∞

(
St− Ŝo

t

)
+
(

c−a
)

St +Wt +Zo
t , t = 1, . . . ,n, (5.2.81)

Y o
1 = Zo

1 +
(

c−a
)

S1 +W1, S1 = s, (5.2.82)

Zo
t ∼ N(0,K∞

Z ), t = 1, . . . ,n is a Gaussian sequence, (5.2.83)

Zo
t is independent of (V t−1,Xo,t−1,Y o,t−1,S1), t = 1, . . . ,n, (5.2.84)

cov(
ï

Wt
Wt +Zo

t

ò
,

ï
Wt

Wt +Zo
t

òT

) =

ï
KW KW
KW KW +K∞

Z

ò
, (5.2.85)

1
n

Es

{ n

∑
t=1

(
Xo

t
)2
}
=

1
n

n

∑
t=1

(
Λ

∞
)2Ko

t +K∞
Z ≤ κ, (5.2.86)

(Λ∞,K∞
Z ) ∈ (−∞,∞)× [0,∞) are non-random, (5.2.87)

PXo
t |St ,Y o,t−1,S1

= P∞(dxt |St ,yt−1,s), t = 1, . . . ,n, that is, the distribution is time-invariant
(5.2.88)

where (Ŝo
t ,K

o
t ), t = 1, . . . ,n satisfy the generalized Kalman-filter and time-invariant DRE, given

below.

Generalized Kalman-filter Recursion:

Ŝo
t+1 = cŜo

t +M(Ko
t ,Λ

∞,K∞
Z )I

o
t , Ŝo

1 = s, (5.2.89)

Io
t
4
= Y o

t −
(

c−a
)

Ŝo
t , Io

1 = Zo
1 +W1, t = 1, . . . ,n, (5.2.90)

=
(

Λ
∞ + c−a

)(
St− Ŝo

t

)
+Zo

t +Wt , (5.2.91)

M(Ko
t ,Λ

∞,K∞
Z )
4
=
(

KW + cKo
t

(
Λ

∞ + c−a
))(

K∞
Z +KW +

(
Λ

∞ + c−a
)2

Ko
t

)−1
, (5.2.92)

Io
t , t = 1, . . . ,n, an orthogonal innovations process. (5.2.93)

Generalized Time-Invariant Difference Riccati Equation:

Ko
t+1 =c2Ko

t +KW −

(
KW + cKo

t

(
Λ∞ + c−a

))2

(
K∞

Z +KW +
(

Λ∞ + c−a
)2

Ko
t

) , Ko
t ≥ 0, Ko

1 = 0, t = 1, . . . ,n,

(5.2.94)

6The variation of notation is judged necessary to distinguish it from the time-varying channel input strategies
(Λt ,KZt ) and corresponding distributions PXt |X t−1,Y t−1,S1

= Pt(dxt |xt−1,yt−1,s), t = 1, . . . ,n.
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We should emphasize that the Kalman-filter recursion (5.2.89) is time-varying, but the DRE (5.2.94)

is time-invariant.

Then the analog of the error recursion (5.1.41), for time-invariant strategies, is the following.

Error Recursion of the Generalized Kalman-filter, Eo
t
4
= St− Ŝo

t , t = 1, . . . ,n:

Eo
t+1 = F(Ko

t ,Λ
∞,K∞

Z )E
o
t −M(Ko

t ,Λ
∞,K∞

Z )
(

Zo
t +Wt

)
+Wt , Eo

1 = 0, t = 1, . . . ,n, (5.2.95)

Zo
t ∈ N(0,K∞

Z ), t = 1,2, . . . ,n. (5.2.96)

F(Ko
t ,Λ

∞,K∞
Z )
4
= c−M(Ko

t ,Λ
∞,K∞

Z )
(

Λ
∞ + c−a

)
, (5.2.97)

Note that recursion (5.2.95) is linear time-varying. Hence, limn−→∞ Ko
n = limn−→∞ Es

{(
Eo

n
)2}

is not expected to exists, and to be bounded, for arbitrary (F(Ko
t ,Λ

∞,K∞
Z ),M(Ko

t ,Λ
∞,K∞

Z )), t =

1,2, . . .. Indeed, the convergence properties of the sequence Ko
1 ,K

o
2 , . . . ,K

o
n generated by (5.2.94),

as n −→ ∞, are characterized by the detectability and stabilizability conditions [8, 9] (which

we introduce shortly). These conditions ensure existence of a finite, unique nonnegative limit,

limn−→∞ Ko
n =K∞, such that the stability property holds: limn−→∞ F(Ko

n ,Λ
∞,K∞

Z )=F(K∞,Λ∞,K∞
Z )∈

(−1,1), and moreover that K∞ ≥ 0 is the unique solution of a generalized ARE.

Next, we define the characterization of the n−FTFI capacity, its per unit time limit, and the alter-

native definition, with the per unit time limit and maximization interchanged.

Definition 5.2.1. Characterizations of asymptotic limits

Consider the characterization of the n−FTFI capacity of Theorem 3.1.1, restricted to the time-

invariant strategies (Λt = Λ∞,KZt = K∞), t = 1, . . . ,n, as defined by (5.2.79)-(5.2.94).

(a) The characterization of the n−FTFI capacity for time-invariant strategies is defined by

Co
n(κ,s)

4
= sup(

Λ∞,K∞
Z

)
: 1

n ∑
n
t=1

(
Λ∞

)2
Ko

t +K∞
Z ≤κ

n

∑
t=1

1
2

log
((

Λ∞ + c−a
)2Ko

t +K∞
Z +KW

KW

)
(5.2.98)

subject to: Ko
t , t = 1, . . . ,n satisfies recursion (5.2.94) and K∞

Z ≥ 0, t = 1, . . . ,n (5.2.99)

provided the supremum exists in the set. The per unit time-limit is then defined by

Co(κ,s)
4
= lim

n−→∞

1
n

Co
n(κ,s). (5.2.100)

provided the supremum exists and the limit exists and it is finite.

(b) The characterization of the n−FTFI capacity for time-invariant strategies, with limit and max-
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imization interchanged is defined by

C∞(κ,s)
4
= sup(

Λ∞,K∞
Z

)
: limn−→∞

1
n ∑

n
t=1

(
Λ∞

)2
Ko

t +K∞
Z ≤κ

lim
n−→∞

1
n

n

∑
t=1

1
2

log
((

Λ∞ + c−a
)2Ko

t +K∞
Z +KW

KW

)
(5.2.101)

provide the limit exists and it is finite and the supremum also exists in the set.

To ensure C∞(κ,s) defined by (5.2.101) is well defined, i.e., that the optimal time-invariant channel

input strategy or distribution ensures the limit exits, it is finite, and C∞(κ,s) is independent of

s, we shall impose condition (C1). We shall express condition (C1) in terms of properties of

generalized time-invariant DREs and AREs, introduced in the next section. That is, we shall

address Problem 5.0.1.

5.2.2 Convergence Properties of Time-Invariant Generalized DREs

We recall that in the study of mean-square estimation, and in particular, the filtering theory, of

time-invariant jointly Gaussian processes described by linear recursions, driven by Gaussian noise

processes, and of jointly stationary Gaussian processes, the concepts of detectability and stabiliz-

ability, have been very effective [8, 9]. In this section, we summarize these concepts in relation to

the properties of generalized DREs and AREs. It is then obvious how these concepts generalize to

AGN channels driven by Gaussian noise with limited memory.

Let {Kt , t = 1,2, . . . ,n} denote a sequence that satisfies the time-invariant generalized DRE with

arbitrary initial condition

Kt+1 = c2Kt +KW −

(
KW + cKt

(
Λ+ c−a

))2

(
KZ +KW +

(
Λ+ c−a

)2
Kt

) , K1 = given, t = 1, . . . ,n. (5.2.102)

We note that a solution of (5.2.102) is a functional of the parameters of the right hand side, that

is, Kt ≡ Kt(a,c,KW ,Λ,KZ,K1), t = 1, . . . ,n. To discuss the properties of the generalized DRE

(5.2.102), we introduce, as often done in the analysis of generalized DREs [9] and [8, Section 14.7,

page 540], the following definitions.

A
4
= c, C

4
= Λ+ c−a, A∗

4
= c−KW R−1C, B∗,

1
2
4
= K

1
2

W B
1
2 (5.2.103)

R
4
= KZ +KW , B

4
= 1−KW

(
KZ +KW

)−1
. (5.2.104)
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By (5.2.92) and (5.2.97), we also have

M(K,Λ,KZ)
4
=
(

KW +AKC
)(

R+
(
C
)2K

)−1
, (5.2.105)

F(K,Λ,KZ) = A−M(K,Λ,KZ)C. (5.2.106)

The generalized algebraic Riccati equation (ARE) corresponding to (5.2.102) is

K = c2K +KW −

(
KW + cK

(
Λ+ c−a

))2

(
KZ +KW +

(
Λ+ c−a

)2
K
) , K ≥ 0. (5.2.107)

Next, we introduce the definition of asymptotic stability of the error recursion (5.2.95).

Definition 5.2.2. Asymptotic stability

A solution K ≥ 0 to the generalized ARE (5.2.107), assuming it exists, is called stabilizing if

|F(K,Λ,KZ)|< 1. In this case, we say F(K,Λ,KZ) is asymptotically stable, that is, |F(K,Λ,KZ)|<
1.

With respect to any of the above generalized DRE and ARE, we define the important notions of

detectability, unit circle controllability, and stabilizability.

Definition 5.2.3. Detectability, Stabilizability, Unit Circle controllability

(a) The pair
{

A,C
}

is called detectable if there exists a G ∈ R such that |A−GC|< 1 (stable).

(b) The pair
{

A∗,B∗,
1
2
}

is called unit circle controllable if there exists a G ∈ R such that |A∗−
B∗,

1
2 G| 6= 1.

(c) The pair
{

A∗,B∗,
1
2
}

is called stabilizable if there exists a G ∈ R such that |A∗−B∗,
1
2 G|< 1.

The next theorem characterizes, detectability, unit circle controllability, and stabilizability [8, 20].

Lemma 5.2.1. [8, 20] Necessary and sufficient conditions for detectability, unit circle controlla-

bility, stabilizability

(a) The pair
{

A,C
}

is detectable if and only if there exists no eigenvalue, eigenvector {λ ,x},
Ax = λx such that |λ |> 1, and such that Cx = 0

(b) The pair
{

A∗,B∗,
1
2
}

is unit circle uncontrollable if and only if there exists no eigenvalue, eigen-

vector {λ ,x}, xA∗ = λx such that |λ |= 1, and such that B∗,
1
2 x = 0.
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(c) The pair
{

A∗,B∗,
1
2
}

is stabilizable if and only if there exists no eigenvalue, eigenvector {λ ,x},
xA∗ = xλ such that |λ | ≥ 1, and such that xB∗,

1
2 = 0.

In the next theorem we summarize known results on sufficient and/or necessary conditions for con-

vergence of solutions {Kt , t = 1,2, . . . ,n} of the generalized time-invariant DRE, as n −→ ∞, to a

nonnegative K, which is the unique stabilizing solution of a corresponding generalized ARE.

Theorem 5.2.1. [8, 9] Convergence of time-invariant generalized DRE

Let {Kt , t = 1,2, . . . ,n} denote a sequence that satisfies the time-invariant generalized DRE (5.2.102)

with arbitrary initial condition.

Then the following hold.

(1) Consider the generalized RDE (5.2.102) with zero initial condition, i.e., K1 = 0, and assume,

the pair
{

A,C
}

is detectable, and the pair
{

A∗,B∗,
1
2
}

is unit circle controllable.

Then the sequence {Kt : t = 1,2, . . . ,n} that satisfies the generalized DRE (5.2.102), with zero

initial condition K1 = 0, converges to K, i.e., limn−→∞ Kn = K, where K satisfies the ARE

K = c2K +KW −

(
KW + cK

(
Λ+ c−a

))2(
KZ +KW +

(
Λ+ c−a

)2K
) (5.2.108)

if and only if the pair
{

A∗,B∗,
1
2
}

is stabilizable.

(2) Assume, the pair
{

A,C
}

is detectable, and the pair
{

A∗,B∗,
1
2
}

is unit circle controllable. Then

there exists a unique stabilizing solution K ≥ 0 to the generalized ARE (5.2.102), i.e., such that,

|F(K,Λ,KZ)|< 1, if and only if {A∗,B∗, 1
2} is stabilizable.

(3) If {A,C} is detectable and {A∗,B∗, 1
2} is stabilizable, then any solution Kt , t = 1,2, . . . ,n to the

generalized RDE (5.2.102) with arbitrary initial condition, K1 is such that limn−→∞ Kn = K, where

K ≥ 0 is the unique solution of the generalized ARE (5.2.102) with |F(K,Λ,KZ)| < 1, i.e., it is

stabilizing.

We should mentioned that Theorem 5.2.1.(1) follows by combining [8, Lemma 14.2.1, page 507]

of classical DREs and AREs with [8, Section 14.7] of generalized DREs and AREs. Theo-

rem 5.2.1.(2) is given in [8, Theorem E.6.1, page 784]. Theorem 5.2.1.(3) is obtained from [9,

Theorem 4.2, page 164], and also [8].

From the properties of generalized DREs and AREs of Theorem 5.2.1, we have the next lemma.
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Lemma 5.2.2. Properties of Solutions of DREs and AREs for different cases

Consider the definitions (5.2.103) ,(5.2.104).

(1) Suppose c ∈ (−1,1). Then the pair {A,C} is detectable.

(2) Suppose KZ = 0. Then the pair {A∗,B∗, 1
2} is unit circle controllable if and only if |Λ−a| 6= 1.

(3) Suppose KZ = 0. Then the pair {A∗,B∗, 1
2} is stabilizable if and only if |Λ−a|< 1.

(4) Suppose c ∈ (−1,1),KZ = 0. The sequence {Kt , t = 1,2, . . . ,n} that satisfies the generalized

DRE with zero initial condition, i.e.,

Kt+1 = c2Kt +KW −

(
KW + cKt

(
Λ+ c−a

))2(
KW +

(
Λ+ c−a

)2Kt

) , K1 = 0, t = 1, . . . ,n (5.2.109)

converges to K, i.e., limn−→∞ Kn = K, where K satisfies the generalized ARE (5.2.107) if and only

if the {A∗,B∗, 1
2} is stabilizable, equivalently, |Λ−a|< 1.

(5) Suppose KZ = 0, and |Λ−a| 6= 1, with the corresponding ARE,

K = c2K +KW −

(
KW + cK

(
Λ+ c−a

))2(
KW +

(
Λ+ c−a

)2K
) . (5.2.110)

Then, the two solution, are given by

K = 0, K =
KW

((
Λ−a

)2−1
)

(
Λ+ c−a

)2 , Λ+ c−a 6= 0 (5.2.111)

Moreover, K = 0 is the unique and stabilizing solution K≥ 0 to (5.2.110), i.e., such that |F(K,Λ,KZ)|<
1, if and only if |Λ−a|< 1.

Proof. See Appendix 7.10.

In the next remark we make some comments on [2, Theorem 6.1], i.e., that a zero variance of the

innovations process is not the optimal value.

Remark 5.2.1. Asymptotic stationarity of optimal process of [2]

Consider the characterization of feedback capacity given in [2, Theorem 6.1, Σ satisfying eqn(61)],

in which the variance of the innovations process is replaced by a zero value (see comment be-

low [2, Theorem 6.1]). Then Σ = 0 is one solution of [2, Σ satisfying eqn(61)].
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We ask: what are necessary and/or sufficient conditions for convergence limn←→Σn = Σ, where

Σ≥ 0 is the unique limit that stabilizes the estimation error of the noise?

By the multidimensional version of Theorem 5.2.1.(1), and Lemma 5.2.2.(3), then the limit limn−→∞ Σn

converges if and only if the stabilizability condition holds. For the ARMA(a,c) noise model, since

the characterization of feedback capacity given [2, Theorem 6.1], presupposes a zero variance

of the innovations process, i.e., K∞
Z = 0, then the value of feedback capacity [2, Theorem 6.1,

CFB = 0,∀κ ∈ [0,∞)].

5.2.3 Feedback Capacity of AGN Channels Driven by Time-Invariant Sta-
ble/Unstable ARMA(a,c) Noise

In this section we analyze the asymptotic per unit time limit of the n−FTFI capacity of Defi-

nition 5.2.1, by making use of the properties of generalized DREs and AREs of Section 5.2.2 to

identify sufficient and necessary conditions, such that condition (C1) holds. Then we derive closed

form expressions for C∞(κ,s) =C∞(κ),∀s defined by (5.2.101). We show that, there are multiple

regimes of feedback capacity; in some regimes feedback does not increase capacity.

First, we define the main problem of asymptotic analysis.

Problem 5.2.1. Problem of feedback capacity C∞(κ,s) for stable/unstable time-invariant ARMA(a,c)

noise

Consider the characterization of the n−FTFI capacity of Theorem 3.1.1, and restrict the admissi-

ble strategies or distributions to the time-invariant strategies or distributions, defined by (5.2.79)-

(5.2.87), which generate (Xo,n,Y o,n).

Define the per unit time limit and maximum by

C∞(κ,s)
4
= max

P∞

[0,∞]
(κ)

lim
n−→∞

1
2n

n

∑
t=1

log
((

Λ∞ + c−a
)2Ko

t +K∞
Z +KW

KW

)
(5.2.112)

where the average power constraint is defined by

P∞

[0,∞](κ)
4
=
{
(Λ∞,K∞

Z ) : Xo
t = Λ

∞
(
St− Ŝo

t
)
+Zo

t , Xo
1 = Zo

1 , t = 2, . . . ,n,

Zo
t ∈ N(0,K∞

Z ), K∞
Z ≥ 0, lim

n−→∞

1
n

Es

( n

∑
t=1

(
Xo

t
)2
)
= lim

n−→∞

1
n

n

∑
t=1

(Λ∞)2Ko
t +K∞

Z ≤ κ

}
. (5.2.113)

Determine sufficient and/or necessary conditions such that

(a) the per unit time limit exists, it is finite, i.e., condition (C1) holds, and
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(b) the maximum over (Λ∞,K∞
Z ) exists, and the optimal strategy is such that C∞(κ,s) = C∞(κ) is

independent of the initial state s.

In the next theorem we provide the answer to Problem 5.2.1, by invoking Theorem 5.2.1.

Theorem 5.2.2. Feedback capacity C∞(κ,s)

Consider the Problem 5.2.1, defined by (5.2.112), (5.2.113).

Define the set

P∞ 4=
{
(Λ∞,K∞

Z ) ∈ (−∞,∞)× [0,∞) :

(i) the pair {A,C} ≡ {A,C(Λ∞)} is detectable,

(ii) the pair {A∗,B∗, 1
2} ≡ {A∗(K∞

Z ),B
∗, 1

2 (K∞
Z )} is stabilizable

}
. (5.2.114)

Where {A,C},{A∗,B∗, 1
2} are given by (5.2.103), (5.2.104).

Then,

C∞(κ,s) =C∞(κ)
4
= max(

Λ∞,K∞
Z

)
∈P∞(κ)

1
2

log
((

Λ∞ + c−a
)2K∞ +K∞

Z +KW

KW

)
(5.2.115)

that is, C∞(κ,s) is independent of s, where

P∞(κ)
4
=
{
(Λ∞,K∞

Z ) ∈P∞ : K∞
Z ≥ 0,

(
Λ

∞
)2K∞ +K∞

Z ≤ κ,

K∞ = c2K∞ +KW −

(
KW + cK∞

(
Λ∞ + c−a

))2(
K∞

Z +KW +
(
Λ∞ + c−a

)2K∞

)
K∞ ≥ 0 is unique and stabilizable, i.e., |F(K∞,Λ∞,K∞

Z )|< 1
}
, (5.2.116)

F(K∞,Λ∞,K∞
Z )
4
=c−M(K∞,Λ∞,K∞

Z )
(

Λ
∞ + c−a

)
, (5.2.117)

M(K∞,Λ∞,K∞
Z )
4
=
(

KW + cK∞

(
Λ

∞ + c−a
))(

K∞
Z +KW +

(
Λ

∞ + c−a
)2

K∞

)−1
(5.2.118)

provided there exists κ ∈ [0,∞) such that the set P∞(κ) is non-empty.

Moreover, the maximum element (Λ∞,K∞
Z ) ∈P∞(κ), is such that,

(i) if the noise is stable, i.e., a ∈ [−1,1], c ∈ (−1,1) then the input and the output processes

(Xo
t ,Y

o
t ), t = 1, . . . are asymptotic stationary, and

(ii) if the noise is unstable i.e., a /∈ [−1,1], c /∈ (−1,1) then input and the innovations processes

(Xo
t , I

o
t ), t = 1, . . . are asymptotic stationary.
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Proof. The sequence {Ko
t : t = 1,2, . . . ,n} satisfies the time-invariant generalized DRE (5.2.94),

with zero initial condition, Ko
1 = 0. Then for elements in the set P∞, an application of Theo-

rem 5.2.1.(1), (2), states that the sequence generated by (5.2.94) converges, i.e., limn−→∞ Ko
n = K∞,

where K∞ = K∞(Λ∞,K∞
Z ) ≥ 0 is the unique stabilizing solution of the generalized ARE given in

(5.2.116). Hence, the following summands converge, and so the limits exist and they are finite.

lim
n−→∞

1
n

n

∑
t=1

((
Λ

∞
)2Ko

t +K∞
Z

)
=
(
Λ

∞
)2K∞ +K∞

Z , (5.2.119)

lim
n−→∞

1
2n

n

∑
t=1

log
((

Λ∞ + c−a
)2Ko

t +K∞
Z +KW

KW

)
=

1
2

log
((

Λ∞ + c−a
)2K∞ +K∞

Z +KW

KW

)
.

(5.2.120)

This establishes the characterization of the right hand side of (5.2.115), and its independence on s.

The last part of the theorem follows from the asymptotic properties of the Kalman-filter, i.e., for (i)

Eo
t , t = 1, . . . is asymptotically stationary, which implies Xo

t =Λ∞Eo
t +Zo

t , t = 1, . . ., the innovations

process Io
t , t = 1, . . . and Y o

t = Xo
t +Vt , t = 1, . . . are asymptotically stationary, and similarly for (ii)

but Y o
t = Xo

t +Vt , t = 1, . . . is not asymptotically stationary, because Vt , t = 1, . . . is unstable.

Clearly, the set P∞, defined in Theorem 5.2.2 characterizes condition (C1), and (5.2.115) charac-

terizes the asymptotic limit of feedback capacity defined by (5.0.16).

In the next remark, we discuss some aspects of Theorem 5.2.2, and we show that P∞(κ)⊆P∞ is

non-empty for some values of κ ∈ [0,∞).

Remark 5.2.2. Comments on Theorem 5.2.2

(1) Theorem 5.2.2 characterizes the feedback capacity C∞(κ,s) =C∞(κ), independently of s, for

AGN channels, driven by stable or unstable ARMA(a,c) noise, i.e., a ∈ (−∞,∞), c ∈ (−∞,∞).

(2) Let (Λ∞,∗K∞,∗
Z ) ∈P∞(κ) denote the optimal pair for the optimization problem C∞(κ). Then

we need to characterize the set of all κ ∈ [0,∞) such that (Λ∞,∗K∞,∗
Z ) ∈P∞(κ).

Case 1-Stable. If a ∈ [−1,1], c ∈ (−1,1), then for K∞
Z = 0, by Lemma 5.2.2, {A,C} is detectable

and {A∗,B∗ 1
2} is stabilizable if and only if |Λ∞− a| < 1. For such a choice of (Λ∞,K∞

Z ) ∈P∞,

then K∞ = 0, and P∞(κ) in non-empty for all κ ∈ [0,∞).

Case 2-Unstable. If |a|> 1, |c| ≥ 1, then for K∞
Z = 0, by Lemma 5.2.2, {A∗,B∗ 1

2} is stabilizable if

and only if |Λ∞−a|< 1, and there exists a G∈ (−∞,∞) such that |A−GC|= |c−G(Λ∞+c−a)|<
1, i.e., taking G = 1, then {A,C} detectable if and only if |Λ∞− a| < 1. For such a choice of

(Λ∞,K∞
Z ) ∈P∞, then K∞ = 0, and hence P∞(κ) in non-empty for all κ ∈ [0,∞).
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However, from Case 1 and Case 2, if we use K∞,∗
Z = 0 then C∞(κ) = 0,∀κ ∈ [0,∞). On the other

hand, in Theorem 5.2.3, we show there always exists a non-feedback channel input strategy that

induces a strictly positive achievable rate.

In the next lemma we give necessary conditions for the optimization problem C∞(κ) defined by

(5.2.115).

Lemma 5.2.3. Necessary conditions for the optimization problem of Theorem 5.2.2

Suppose there exists a policy (Λ∞,∗,K∞,∗
Z )∈P∞(κ) for the optimization problem C∞(κ) in (5.2.115).

Define the Lagrangian by

L (Λ∞,K∞
Z ,K

∞,λ )
4
=
(
Λ

∞ + c−a
)2K∞ +K∞

Z +KW

−λ1

{(
K∞− c2K∞−KW

)(
K∞

Z +KW +
(
Λ

∞ + c−a
)2K∞

)
+
(

KW + cK∞
(
Λ

∞ + c−a
))2}

−λ2

(
(Λ∞)2K∞ +K∞

Z −κ

)
−λ3

(
−K∞

)
−λ4

(
−K∞

Z

)
, (5.2.121)

λ
4
= (λ1,λ2,λ3λ4) ∈ R4, c 6= a, KW > 0. (5.2.122)

Then the following hold.

(i) Stationarity:

∂

∂K∞
Z

L (Λ∞,K∞
Z ,K

∞,λ )
∣∣∣
Λ∞=Λ∞,∗,K∞

Z =K∞,∗
Z ,K∞=K∞,∗,λ=λ ∗

= 0, (5.2.123)

∂

∂Λ∞
L (Λ∞,K∞

Z ,K
∞,λ )

∣∣∣
Λ∞=Λ∞,∗,K∞

Z =K∞,∗
Z ,K∞=K∞,∗,λ=λ ∗

= 0, (5.2.124)

∂

∂K∞
L (Λ∞,K∞

Z ,K
∞,λ )

∣∣∣
Λ∞=Λ∞,∗,K∞

Z =K∞,∗
Z ,K∞=K∞,∗,λ=λ ∗

= 0. (5.2.125)

(ii) Complementary Slackness:

λ
∗
2

(
Λ

∞,∗)2K∞,∗+K∞,∗
Z −κ

)
= 0, λ

∗
3 K∞,∗ = 0, λ

∗
4 K∞,∗

Z = 0, (5.2.126)

λ
∗
1

{(
K∞,∗− c2K∞,∗−KW

)(
K∞,∗

Z +KW +
(
Λ

∞,∗+ c−a
)2K∞,∗

)
(5.2.127)

+
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))2}

= 0. (5.2.128)

Primal Feasibility:

(Λ∞,∗)2K∞,∗+K∞,∗
Z ≤ κ, K∞,∗

Z ≥ 0, K∞,∗ ≥ 0, (5.2.129)(
K∞,∗− c2K∞,∗−KW

)(
K∞,∗

Z +KW +
(
Λ

∞,∗+ c−a
)2K∞,∗

)
+
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))2

= 0.

(5.2.130)
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(iii) Dual Feasibility:

λ
∗
1 ∈ (−∞,∞), λ

∗
2 ≥ 0, λ

∗
3 ≥ 0, λ

∗
4 ≥ 0. (5.2.131)

Further, if either K∗Z = 0 or K∞,∗ = 0 then C∞(κ) = 0,∀κ ∈ [0,∞).

Proof. The conditions are a consequence of the optimization problem. We show the last part.

Suppose K∞,∗
Z = 0. Then by the generalized ARE (5.2.130) there are two solutions, K∞,∗ = 0

and K∞,∗ =
KW

((
Λ∞−a

)2
−1
)(

Λ∞+c−a
)2 . By Lemma 5.2.2, then a necessary and sufficient condition for sta-

bilizability of the pair {A∗,B∗, 1
2} is |Λ∞,∗− a| < 1. Hence, the only non-negative stabilizing so-

lution is K∞,∗ = 0. However, K∞,∗ = 0,K∞,∗
Z = 0 implies C∞(κ) = 0,∀κ ∈ [0,∞). Now, suppose

K∞,∗ = 0. Then by the generalized ARE (5.2.130), necessarily K∞,∗
Z = 0, because KW > 0 and

hence C∞(κ) = 0,∀κ ∈ [0,∞). This completes the proof.

Achievable Rates Without Feedback for Stable and Unstable ARMA(a,c) Noise

If we replace Λ∞ in the optimization problem of Theorem 5.2.2 by Λ∞ = 0, then C∞(κ)
∣∣∣
Λ∞=0

, if

it exists, it is an achievable rate. For Λ∞ = 0, by (5.2.79), the channel input is an independent

innovations process Xo
t = Zo

t , t = 1, . . . ,n, and hence the code does not use feedback. The rate

C∞(κ)
∣∣∣
Λ∞=0

is indeed achievable, if we ensure the detectability of the pair {A,C} and stabilizabil-

ity of the pair {A∗,B∗, 1
2} are satisfied, when Λ∞ = 0. In the next theorem, we show C∞(κ)

∣∣∣
Λ∞=0

is

an achievable rate without feedback, and we calculate its value.

Theorem 5.2.3. Achievable rates without feedback for stable and unstable ARMA(a,c) noise for

the case where c 6= a

For Λ∞ = 0, define the set

P∞,n f b
0

4
=
{

K∞
Z ∈ [0,∞) :

(i) the pair {A,C}
∣∣∣
Λ∞=0

≡ {A,C(Λ∞)}
∣∣∣
Λ∞=0

is detectable, (5.2.132)

(ii) the pair {A∗,B∗, 1
2}
∣∣∣
Λ∞=0

≡ {A∗(K∞
Z ),B

∗, 1
2 (K∞

Z )}
∣∣∣
Λ∞=0

is stabilizable
}
. (5.2.133)

where,

A
∣∣∣
Λ∞=0

= c, C
∣∣∣
Λ∞=0

= c−a, A∗
∣∣∣
Λ∞=0

= c− KW

KZ +KW
(c−a),

B∗,
1
2

∣∣∣
Λ∞=0

= K
1
2

W

(
1− KW

KW +KZ

) 1
2

(5.2.134)
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For Λ∞ = 0, define the channel input and output processes by

Xo
t = Zo

t , t = 1, . . . ,n, (5.2.135)

Vt = (c−a)St +Wt , V0 = v0, W0 = w0, S1 = s (5.2.136)

V1 = (c−a)S1 +W1, (5.2.137)

Y o
t = Xo

t +Vt = (c−a)St +Wt +Zo
t , (5.2.138)

Y o
1 = (c−a)S1 +W1 +Zo

1 . (5.2.139)

(1) A lower bound on non-feedback capacity C∞,n f b(κ,s) is C∞,n f b
LB (κ) given by

C∞,n f b(κ,s)≥C∞(κ)
∣∣∣
Λ∞=0

=C∞,n f b
LB (κ)

4
= max

K∞
Z ∈P

∞,n f b
0 (κ)

1
2

log
((c−a)2K∞ +K∞

Z +KW

KW

)
(5.2.140)

where,

P∞,n f b
0 (κ)

4
=
{

K∞
Z ∈P∞,n f b

0 : K∞
Z ≥ 0, K∞

Z ≤ κ,

K∞ = c2K∞ +KW −

(
KW + cK∞(c−a)

)2(
K∞

Z +KW +(c−a)2K∞

) , (5.2.141)

K∞ ≥ 0 is unique and stabilizing, i.e., |Fn f b(K∞,K∞
Z )|< 1

}
, (5.2.142)

Fn f b(K∞,K∞
Z )
4
=c−Mn f b(K∞,K∞

Z )c, (5.2.143)

Mn f b(K∞,K∞
Z )
4
=
(

KW + cK∞(c−a)
)(

K∞
Z +KW +(c−a)2K∞

)−1
(5.2.144)

provided there exists κ ∈ [0,∞) such that the set P∞,n f b
0 (κ) is non-empty.

Moreover, C∞,n f b
LB (κ) is an achievable rate without feedback, i.e., the optimal channel input strategy

induces asymptotic stationarity of the joint input and output process, and (5.2.115) with Λ∞ = 0 is

independent of the initial state S1 = s.

(2) The lower bound on non-feedback capacity of (1) is given by

C∞,n f b
LB (κ) =

1
2

log
((c−a)2K∞,∗+κ +KW

KW

)
, κ ∈K ∞,n f b(a,c,Kw) (5.2.145)
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where the two solutions of Riccati equation (5.2.141) and K∞,∗
Z , are given by

K∞,∗ =



−κ

(
1−c2

)
−KW

(
1−a2

)
+

√(
κ

(
1−c2

)
+KW

(
1−a2

))2

+4
(

c−a
)2

KW κ

2
(

c−a
)2 ≥ 0, κ ∈K ∞,n f b(c,a,KW ),

−κ

(
1−c2

)
−KW

(
1−a2

)
−

√(
κ

(
1−c2

)
+KW

(
1−a2

))2

+4
(

c−a
)2

KW κ

2
(

c−a
)2 ≤ 0, κ ∈K ∞,n f b(c,a,KW ),

(5.2.146)

K∞,∗
Z = κ, (5.2.147)

K ∞,n f b(a,c,KW )
4
=
{

κ ∈ [0,∞) : K∞ ≥ 0
}
= [0,∞) (5.2.148)

where, the first solution is the unique and non-negative solution.

Proof. (1) Note that by setting Λ∞ = 0, then the representation of channel input Xo,n defined by

(5.2.79)-(5.2.94) is used without feedback, and this is a lower bound on the non-feedback capacity.

Hence, the statements follow from Theorem 5.2.2, as a special case.

Solving (5.2.141) gives (5.2.146). We check the detectability or the pair {A,C}
∣∣∣
Λ∞=0

and the

stabilizability or the pair {A∗,B∗, 1
2}
∣∣∣
Λ∞=0

.

(a) The pair
{

A,C
}∣∣∣

Λ∞=0
= {c,c− a} is detectable if there exists a G ∈ R, such that |A−GC| =

|c−G(c−a)|< 1.

Since there is G such that, c−G(c−a) = 0, i.e., G = c
c−a , then

{
A,C

}∣∣∣
Λ∞=0

is detectable.

(b) The pair {A∗,B∗, 1
2}
∣∣∣
Λ∞=0

given by (5.2.134), is always stabilizable, because B∗,
1
2 > 0 and

KW > 0 K∞
Z > 0.

In the next Definition, we discuss a special case of the time-invariant ARMA(a,c) noise, of Defini-

tion 5.0.1.

Definition 5.2.4. Moving Average MA(a) noise

Suppose c = 0. Hence, by Definition 5.0.1 we have the time-invariant stable or unstable noise

MA(a),a ∈ (−∞,∞), which is defined by,

Vt =Wt−aWt−1, ∀t ∈ Z+
4
= {1,2, . . .}, (5.2.149)

W0 ∈ N(0,KW0), KW0 ≥ 0, Wt ∈ N(0,KW ), t = 1,2, . . . , KW > 0, (5.2.150)

{W0,W1, . . . ,Wn} indep. seq. and indep. of V0, a ∈ (−∞,∞) (5.2.151)
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By Remark 5.0.1, then the state variable is,

St
4
=Wt−1, ∀t ∈ Z+ (5.2.152)

and the state space realization of V n is

St+1 =Wt , S1 =W0 = s, ∀t ∈ Z+, (5.2.153)

Vt =−aSt +Wt , ∀t ∈ Z+, (5.2.154)

KS1 = KW0, KW0 ≥ 0. (5.2.155)

Corollary 5.2.1. Achievable rates without feedback for stable and unstable MA(a) noise

For Λ∞ = 0 and c = 0, define the set

P∞,n f b
0

4
=
{

K∞
Z ∈ [0,∞) :

(i) the pair {A,C}
∣∣∣
Λ∞=0,c=0

≡ {A,C(Λ∞)}
∣∣∣
Λ∞=0,c=0

is detectable, (5.2.156)

(ii) the pair {A∗,B∗, 1
2}
∣∣∣
Λ∞=0,c=0

≡ {A∗(K∞
Z ),B

∗, 1
2 (K∞

Z )}
∣∣∣
Λ∞=0,c=0

is stabilizable
}
.

(5.2.157)

where,

A
∣∣∣
Λ∞=0,c=0

= 0, C
∣∣∣
Λ∞=0,c=0

=−a, A∗
∣∣∣
Λ∞=0,c=0

= a
KW

KZ +KW
,

B∗,
1
2

∣∣∣
Λ∞=0,c=0

= K
1
2

W

(
1− KW

KW +KZ

) 1
2

(5.2.158)

For Λ∞ = 0, define the channel input and output processes by

Xo
t = Zo

t , t = 1, . . . ,n, (5.2.159)

Y o
t = Xo

t +Vt =−aSt +Wt +Zo
t , (5.2.160)

Y o
1 =−aS1 +W1 +Zo

1 . (5.2.161)

(1) A lower bound on non-feedback capacity C∞,n f b(κ,s) is C∞,n f b
LB (κ) given by

C∞,n f b(κ,s)≥C∞(κ)
∣∣∣
Λ∞=0,c=0

=C∞,n f b,a
LB (κ)

4
= max

K∞
Z ∈P

∞,n f b
0 (κ)

1
2

log
(a2K∞ +K∞

Z +KW

KW

)
(5.2.162)
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where,

P∞,n f b
0 (κ)

4
=
{

K∞
Z ∈P∞,n f b

0 : K∞
Z ≥ 0, K∞

Z ≤ κ,

K∞ = KW −
KW

2(
K∞

Z +KW +a2K∞

) (5.2.163)

K∞ ≥ 0 is unique and stabilizing, i.e., |Fn f b(K∞,K∞
Z )|< 1

}
(5.2.164)

Further,

C∞,n f b
LB (κ) =

1
2

log
(a2K∞,∗+κ +KW

KW

)
, κ ∈ [0,∞) (5.2.165)

When,

K∞,∗ =
−κ−KW

(
1−a2)+…(κ +KW

(
1−a2

))2
+4a2KW κ

2a2 . (5.2.166)

Proof. This is a special case of the Theorem 5.2.3, where we replace the variable c with c = 0.

In the next theorem, we derive closed form expressions for the feedback capacity, by solving the

optimization problem of Theorem 5.2.2.

First, by the definition of the sets P∞ and P∞,n f b
0 of Theorem 5.2.2 and Theorem 5.2.3, we have

P∞ = P∞,n f b
0

⋃
P∞, f b, P∞, f b 4=

{
(Λ∞,K∞

Z ) ∈P∞ : Λ
∞ 6= 0

}
. (5.2.167)

Thus, if (Λ∞,K∞
Z ) ∈P∞, f b then the channel input process applies feedback, and if K∞

Z ∈P∞,n f b
0

then the channel input process does not apply feedback.

Theorem 5.2.4. Feedback capacity-solution of optimization problem of Theorem 5.2.2

(1) The non-zero feedback capacity C∞(κ) defined by (5.2.115), for a stable and unstable ARMA(a,c)

noise, i.e, a ∈ (−∞,∞), c ∈ (−∞,∞), with c 6= 0,c2 6= 1,c2 6= 2,c 6= a, occurs in the set P∞, f b, andSTELIO
S LO
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is given, as follows.

C∞(κ) =
1
2

log
((

Λ∞,∗+ c−a
)2K∞,∗+K∞,∗

Z +KW

KW

)
, κ ∈K ∞(a,c,KW ) (5.2.168)

Λ
∞,∗ =

KW

(
ac−1

)
+κ

(
c2−1

)
−K∞,∗

(
a− c

)2

K∞,∗
(

c2−2
)(

a− c
) (5.2.169)

K∞,∗
Z +

(
Λ

∞,∗
)2

K∞,∗ = κ, (5.2.170)

K ∞(a,c,KW )
4
=
{

κ ∈ [0,∞) : K∞,∗ > 0, K∞,∗
Z > 0

}
(5.2.171)

where K∞,∗ is the unique positive and stabilizing solution, i.e., |F(K∞,∗,Λ∞,∗,K∞.∗
Z )|< 1.

Further, for any κ ∈K ∞(a,c,KW ), then

K∞,∗ =
KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2

c(c2−1)(a− c)2 , (5.2.172)

Λ
∞,∗ =

KW (a− c)2(1−ac)
KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2 , (5.2.173)

K∞,∗
Z =

κ

(
c(c2−1)(KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2

)
−K2

W (a− c)2(1−ac)2

c(c2−1)
(

KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2
) .

(5.2.174)

(2) The non-zero feedback capacity C∞(κ), κ ∈ K ∞(a,c,KW ) of part (1), is restricted to the

regions:

Region A: c ∈
(
1,
√

2
)
∪
(√

2,∞
)
,a ∈
ï −c

c2−2
,
1
c

ò
, for κ > κmin, (5.2.175)

Region B: c ∈
(
−∞,−

√
2
)
∪
(
−
√

2,−1
)
,a ∈

(
−∞,

1
c
]
∪
[ −c

c2−2
,∞
)
, for κ > κmin. (5.2.176)

where,

κmin =
KW
(
1−ac

)(
2ac−ac3− c2 +

»
c3
(
a2c3−6ac2 +4a+4c3−3c

))
2c2
(
c2−1

)2 (5.2.177)

Proof. See Appendix 7.11.

Theorem 5.2.5. The non-zero feedback capacity C∞(κ) by Theorem 5.2.2, for a stable and unsta-

ble ARMA(a,c) noise, i.e, a ∈ (−∞,∞), c ∈ (−∞,∞), with c 6= 0,c2 6= 1,c2 6= 2,c 6= a, occurs in
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Figure 5.2.1: Feedback capacity C∞(κ) for κ ∈K ∞(a,c,KW ) based on (5.2.115) and lower bound
on nofeedback capacity C∞,n f b

LB (κ) for κ ∈ [0,∞) based on (5.2.145), of the AGN channel driven
by ARMA(a,c) noise, for various values of a = 0.2, c ∈ (−∞,∞) and KW = 1.

the set P∞, f b, and is given, as follows.

C∞(κ) =
1
2

log
((

Λ∞,∗+ c−a
)2K∞,∗+K∞,∗

Z +KW

KW

)
, κ ∈K ∞(a,c,KW ) (5.2.178)

Λ
∞,∗ =

KW

(
ac−1

)
+κ

(
c2−1

)
−K∞,∗

(
a− c

)2

K∞,∗
(

c2−2
)(

a− c
) (5.2.179)

K∞,∗
Z +

(
Λ

∞,∗
)2

K∞,∗ = κ, (5.2.180)

K ∞(a,c,KW )
4
=
{

κ ∈ [0,∞) : K∞,∗ > 0, K∞,∗
Z > 0

}
(5.2.181)

where K∞,∗ is the unique positive and stabilizing solution, i.e., |F(K∞,∗,Λ∞,∗,K∞.∗
Z )|< 1.STELIO

S LO
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Further, for any κ ∈K ∞(a,c,KW ), then

K∞,∗ =
KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2

c(c2−1)(a− c)2 , (5.2.182)

Λ
∞,∗ =

KW (a− c)2(1−ac)
KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2 , (5.2.183)

K∞,∗
Z =

κ

(
c(c2−1)(KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2

)
−K2

W (a− c)2(1−ac)2

c(c2−1)
(

KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2
) .

(5.2.184)

Proof. See Appendix 7.11.
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Figure 5.2.2: Lower bound achievable rate for no-feedback C∞,n f b
LB (κ) for κ ∈ [0,∞) based on

(5.2.145), of the AGN channel driven by ARMA(a,c) noise, for various values of a ∈ (−∞,∞),
c = 0.5 and KW = 1.

From the previous theorem it then follows the next theorem, that states feedback does not increase

capacity C∞(κ) defined by (5.2.115), for the two regions K ∞,n f b(a,c) and K ∞,n f b(a,c,KW ).

Theorem 5.2.6. Feedback does not increase capacity for certain regions
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Figure 5.2.3: Comparison between AR(c) noise and MA(a) noise, for various values of a ∈ 0,0.2,
c ∈ 0.2,0 and KW = 1.

Feedback does not increase capacity C∞(κ) defined by (5.2.115), for the following regions:

Region 1: Outside the Region A (5.2.185)

e.g., c ∈
(
1,
√

2)∪
(√

2,∞
)
, α ∈

[ −c
c2−2

,
1
c
]
, for κ ≤ κmin, (5.2.186)

Region 2: Outside the Region B (5.2.187)

e.g., c ∈
(
−∞,−

√
2
)
∪
(
−
√

2,−1
)
, α ∈

(
−∞,

1
c
]
∪
[ −c

c2−2
,∞
)
, for κ ≤ κmin, (5.2.188)

Region 3: c ∈
[
−1,1

]
,α ∈ R for κ ∈

[
0,∞

)
. (5.2.189)

Where |c| ≥ 1 corresponds to the unstable noise, and |c|< 1 to the stable.

Proof. By Theorem 5.2.4 we deduce that, if Λ∞ 6= 0, i.e., if feedback is used, then there does

not exists a non-zero value of C∞(κ), for κ ∈ [0,∞). On the other hand, by Theorem 5.2.3, an

achievable rate without feedback exists for all κ ∈ [0,∞), by letting Λ∞ = 0, and C∞,n f b
LB (κ) is a

lower bound on capacity without feedback.

For the regions of Theorem 5.2.3 it doesn’t exist a feedback capacity. However, there is an achiev-

able rate (5.2.165), which is calculated in Theorem 5.2.3. Further, it’s important to understand that,
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for the regions that there exists a feedback capacity, we have an achievable rate too, but it’s less than

the feedback capacity. In general, we have always an achievable rate, and sometimes a greater feed-

back capacity. In Figure 5.2.1, we see that, whether |c|< 1, then we have only an achievable rate.

Otherwise, for |c| ≥ 1, we have an always an achievable rate, but there exists a greater feedback

capacity after a specific power constraint. It’s also important to emphasize that we keep the value

of a as a constant to show that the feedback capacity and the achievable rate for no-feedback are

analogous with the value c. These illustrate that feedback capacity C∞(κ) for κ ∈K ∞(c,KW ) is an

increasing function of the parameter, |c| ∈ [1,∞), that is, the more unstable ARMA(a,c) noise the

higher the value of capacity C∞(κ). Further, the lower bound on nofeedback capacity C∞,n f b
LB (κ) is

achievable for all κ ∈ [0,∞), for stable and unstable ARMA(a,c),a ∈ (−∞,∞),c ∈ (−∞,∞) noise,

because the IID channel input process, induces asymptotic stationarity and ergodicity of the chan-

nel output process. As illustrated in Figure 5.2.1, for values of |c| ≥ 1, feedback capacity occurs at

κ > κmin, from (5.2.177).

In Figure 5.2.2, we decided to keep the value of c as a constant, because we need to show that

whether the value of a is increasing the achievable rate is decreasing. For a = 0, we have the max-

imum achievable rate that we could have.

We have in mind that, the AGN channel is driven by ARMA(a,c) noise, which consists of AR(c)

and MA(a). So, in the Figure 5.2.3 we compare which of the two noise models, gives more

Achievable rate and we see that AR(c) noise model is better.

In conclusion, we have always an achievable rate, but feedback capacity only in Regimes (5.2.175),

(5.2.176). Further, whether the initial state S1 = s is known to the encoder and decoder, it’s better

AGN channel driven by AR(c).
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Chapter 6

Conclusion

The n-finite transmission feedback information (FTFI) capacity for additive Gaussian noise (AGN)

channels with feedback, is characterized, and lower bounds on the characterization of the n-finite

transmission without feedback information (FTwFI) capacity are derived. The channel is driven by

unit memory stable and unstable Autoregressive Moving Average Noise, where the initial state is

known to the encoder and the decoder. It is shown that closed form feedback capacity formulas are

derived, when channel input strategies or distributions are time-invariant, which does not always

exist e.g., the noise is stable for certain unstable noise. However, lower bound on the non-feedback

capacity is also derived, based on Markov channel input distributions, i.e., induced by a Gaussian

Markov channel input process, and also by an independent and identically distributed channel

input process. This achievable rate always holds for any autoregressive moving average noise

model, whether it is stable or unstable.

6.1 Future Work

In the future, we would be interested to deal with the following topics:

(1) To derive a closed form expression of feedback capacity, when the AGN channel is driven by

Autoregressive Moving Average Noise, where the state is not known either to the encoder or the

decoder.

(2) To derive a closed form expression of feedback capacity, when the channel is driven by Au-

toregressive Moving Average Noise with memory.

(3) Work on several problems, with time-varying channel input strategies.
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Appendix

7.1 Proof of Theorem 2.1.1

(a) Consider an element of E [0,n](κ). Then the conditional entropies He(Yt |Y t−1), t = 1, . . . ,n are

defined, provided the conditional distributions of Yt conditioned on Y t−1, i.e., Pe
t (dyt |yt−1), for

t = 1, . . . ,n, are determined. By the reconditioning property of conditional distributions, then

Pe
t (dyt |yt−1) =

∫
Pe

t (dyt |yt−1,w,vt−1) Pe
t (dw,dvt−1|yt−1), t = 0, . . . ,n (7.1.1)

=
∫

Pt(dyt |et(w,vt−1,yt−1),vt−1) Pe
t (dw,vt−1|yt−1), by (2.1.15), (2.1.16).

(7.1.2)

Hence, (2.1.19) is shown. Similarly, consider an element of P [0,n](κ). Then the conditional

entropies HP(Yt |Y t−1), t = 1, . . . ,n are defined, provided the conditional distributions of Yt con-

ditioned on Y t−1, i.e., PP
t (dyt |yt−1) for t = 1, . . . ,n, are determined. By (2.1.7) and (2.1.8), then

(2.1.20) is obtained. Since E [0,n](κ)⊆P [0,n](κ) it then follows the inequality (2.1.18).

(b) This part follows by the maximum entropy principle of Gaussian distributions. That is, under

the restriction (1.1.10), then a conditional Gaussian element of {P(dxt |vt−1,yt−1), t = 1, . . . ,n} ∈
P [0,n](κ), with linear conditional mean and nonrandom conditional covariance induces a jointly

Gaussian distribution of the process (Xn,Y n), such that the marginal distribution of Y n is jointly

Gaussian. Below, we provide alternative proof that uses the Cover and Pombra characterization of
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the n−FTFI capacity, given by (1.2.20)-(1.2.19). Consider (1.2.20) and define the process

Z1
4
=Z1−E

{
Z1

}
, (7.1.3)

Zt
4
=Zt−E

{
Zt

∣∣∣X t−1,V t−1,Y t−1
}
, t = 2, . . . ,n, (7.1.4)

=Zt−E
{

Zt

∣∣∣V t−1,Y t−1
}
, since X t−1 is uniquely defined by (V t−1,Y t−1). (7.1.5)

Then, Zt is a Gaussian orthogonal innovations process, i.e., Zt is independent of (X t−1,V t−1,

Y t−1), for t = 2, . . . ,n, and E
{

Zt
}
= 0, for t = 1, . . . ,n. By (1.2.20), we re-write Xt , t = 1, . . . ,n as,

Xt =
t−1

∑
j=1

Bt, jVj +Zt , t = 1, . . . ,n, (7.1.6)

=
t−1

∑
j=1

Bt, jVj +E
{

Zt

∣∣∣V t−1,Y t−1
}
+Zt , by (7.1.5) (7.1.7)

(a)
=

t−1

∑
j=1

Bt, jVj +Γt

Å
Vt−1

Yt−1

ã
+Zt , for some Γt nonrandom (7.1.8)

=
t−1

∑
j=1

Γ
1
t, jVj +

t−1

∑
j=1

Γ
2
t, jYj +Zt , for some (Γ1

·,·,Γ
2
·,·) (7.1.9)

=Γ
1
t Vt−1 +Γ

2
t Yt−1 +Zt , by definition (7.1.10)

where (a) is due to the by joint Gaussianity of (Zn,Xn,Y n). From (7.1.10) and the independence

of Zt and (X t−1,V t−1,Y t−1), for t = 2, . . . ,n, it then follows (2.1.21), and also (2.1.22).

(c) The statements follow directly from the representation of part (b), while the independence of

Zn and V n is due to the code definition, i.e., Definition 1.1.1.(iv).

(d) The statement follows from (a)-(c).

7.2 Proof of Proposition 2.1.1

(a) The covariances of the realization of the ARMA(a,c) noise of Example 2.1.2.(b) satisfy the

recursions

KSt+1 = c2KSt +KW , KSt ,Vt =
(

c−a
)

KSt , KVt =
(

c−a
)2

KSt +KW , ∀t ∈ Z. (7.2.11)

If the recursion KSt+1 = c2KSt + KW is initiated at the stationary value KS1 = d11 = KW
1−c2 , then

KSt+1 = d11,∀t = 2,3, . . . ,, and hence St ,∀t ∈ Z is stationary, which then implies stationarity of

Vt ,∀t ∈ Z. Hence, if (2.1.74) holds then (Vt ,St),∀t ∈ Z is stationary. By simple calculations it
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then follows (2.1.75). Similarly for the one-sided ARMA(a,c). (b) By the above covariances,

for all KS1 ≥ 0, then limn−→∞ KSn = K∞
S , where K∞

S = c2K∞
S +KW , which then implies K∞

S = d11.

Similarly, limn−→∞ KSn,Vn = K∞
S,V = d12, limn−→∞ KVn = K∞

V = d22. The initial data are determined

from mean-square estimation of jointly Gaussian RVs, as follows.

Ŝ1 =E
{

S1

∣∣∣V0

}
= E

{
cS0 +W0

∣∣∣V0

}
=E
{

cS0 +W0

}
+ cov(cS0 +W0,V0)

{
cov(V0,V0)

}−1(
V0−E

{
V0

})
(7.2.12)

=
(

cd12 +KW

)
d−1

22 V0, (7.2.13)

Σ1 =cov(S1,S1

∣∣∣V0) = cov(S1,S1)−
{

cov(S1,S1)
}2{

cov(V0,V0)
}−1

(7.2.14)

=d11−d2
11d−1

22 (7.2.15)

The last part is obvious.

7.3 Proof of Theorem 2.2.1

(a) Clearly, (2.2.104)-(2.2.99), follow directly from Theorem 3.1.1, and the preliminary calcula-

tions, prior to the statement of the theorem. However, (2.2.104)-(2.2.99) can also be shown inde-

pendently of Theorem 3.1.1, by invoking the maximum entropy property of Gaussian distributions,

as follows. By Lemma 2.1.1, then H(V n) = ∑
n
t=1 H(Ît). By the maximum entropy principle, then

H(Y n) is maximized if PY n is jointly Gaussian, the average power constraint holds, and (1.1.10)

is respected. By (2.2.83), and (2.2.93), (2.2.94), if (2.2.93)-(2.2.99) hold, then (Xn,Y n) is jointly

Gaussian, and hence H(Y n) is maximized. This shows (a).

(b) Step 1. By (2.2.97) and (2.2.98), an alternative representation of Xn to the one given in Theo-

rem 3.1.1, and induced by (2.1.23), is

Xt = Γ
1
t Ŝt +Γ

2
t Y t−1 +Zt , t = 1, . . . ,n, (7.3.16)

Zt satisfies (2.2.101). (7.3.17)

for some nonrandom (Γ1
· ,Γ

2
· ). Upon substituting (7.3.16) into the channel output Y n we have

Yt =Γ
1
t Ŝt +Γ

2
t Y t−1 +Zt +Vt , t = 1, . . . ,n (7.3.18)

=
(

Γ
1
t +Ct

)
Ŝt +Γ

2
t Y t−1 +Zt + Ît , by (2.1.41). (7.3.19)

The right hand side of (7.3.19) is driven by two independent processes, Zt , t = 1, . . . ,n and Ît , t =

1, . . . ,n, which are also mutually independent. Further, the right hand side of (7.3.19) is a linear
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function of a state process Ŝt , t = 1, . . . ,n, which satisfies the recursion (2.1.39):

Ŝt+1 = At Ŝt +Mt(Σt)Ît , Ŝ1 = µS1, (7.3.20)

Note that the right hand side of (7.3.20) is driven by the orthogonal process Ît , which is independent

of V t−1 and hence of Ŝt , and also independent of Y t−1. By (2.2.101), Zt is independent of Y t−1 and

of Ŝt . By (7.3.19) and (7.3.20), it follows that ̂̂St , t = 1, . . . ,n satisfies a generalized Kalman-filter

recursion, similar to that of Lemma 2.1.1, and hence the entropy H(Y n) can be computed using the

innovations process of Y n, as in Lemma 2.1.1.

Define the orthogonal Gaussian innovations process In of Y n by

It
4
=Yt−E

{
Yt

∣∣∣Y t−1
}
, t = 1, . . . ,n (7.3.21)

=
(

Γ
1
t +Ct

)(
Ŝt− ̂̂St

)
+ Ît−E

{
Ît
∣∣∣Y t−1

}
+Zt , by (7.3.19). (7.3.22)

=
(

Γ
1
t +Ct

)(
Ŝt− ̂̂St

)
+ Ît +Zt , by Ît indep. of Y t−1, E

{
Ît
}
= 0 (7.3.23)

The entropy of Y n is computed as follows.

H(Y n) =
n

∑
t=1

H(Yt |Y t−1) (7.3.24)

=
n

∑
t=1

H(It |Y t−1), by (7.3.21) and a property of conditional entropy (7.3.25)

=
n

∑
t=1

H(It), by orthogonality of It and Y t−1. (7.3.26)

By (7.3.23) the Gaussian innovations process In does not depend on the strategy Γ2, and conse-

quently by (7.3.26) the entropy H(Y n) does not depend on the strategy Γ2.

Step 2. Let gt(Y t−1)
4
= Γ2

t Y t−1, t = 1, . . . ,n. By (7.3.16) and (7.3.17), it then follows,

1
n

E
{ n

∑
t=1

(Xt)
2
}
=

1
n

E
{ n

∑
t=1

(
Γ

1
t Ŝt +gt(Y t−1)+Zt

)2}
(7.3.27)

=
1
n

E
{ n

∑
t=1

(
Γ

1
t Ŝt +gt(Y t−1)

)2}
+

n

∑
t=1

KZt ,

by indep. of Zt and (V t−1, Ŝt ,Y t−1). (7.3.28)

By mean-square estimation theory, then the choice of g(·) that minimizes the right hand of (7.3.28)

is

gt(Y t−1) = g∗t (Y
t−1) =−Γ

1
t E
{

Ŝt

∣∣∣Y t−1
}
=−Γ

1
t
̂̂St , t = 1, . . . ,n. (7.3.29)
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Hence, Γ2
t =−Γ1

t ,∀t. Let Λt
4
=Γ1

t ,∀t, and substitute into the recursion (7.3.19), to obtain (2.2.104),

and into the average power (7.3.28), to obtain (2.2.105). Hence, the derivation of (2.2.100)-

(2.2.105) is completed.

It then follows that (2.2.106)-(3.2.46) are the generalized Kalman-filter recursions, of estimating

the new state process Ŝt , t = 1, . . . ,n that satisfies recursion (7.3.20), from the channel output pro-

cess Yt that satisfies the recursion (2.2.104).

(c) By the entropy of Gaussian RVs, upon substituting (7.3.26), (2.1.49), into (2.2.88), then it fol-

lows (3.1.24). By substituting (2.2.110) and (2.2.111) into (3.1.24), then it follows (2.2.116). This

completes the proof.

7.4 Proof of Corollary 3.1.1

First, note that the analog of Theorem 3.1.1.(a), for the code (s,2nR,n), n = 1,2, . . . is (3.1.1)

and (3.1.2), because Pt(dxt |xt−1,yt−1,s) = Pt(dxt |vt−1,yt−1,s), t = 1, . . . ,n. Define P
s
[0,n](κ) as in

(3.1.2) with xt−1 replaced by vt−1, t = 1, . . . ,n.

(a) Then

Pt(dxt |xt−1,yt−1,s) =Pt(dxt |vt−1,yt−1,s0), t = 1, . . . ,n, by Yt = Xt +Vt (7.4.30)

=Pt(dxt |st ,yt−1,s), Definition 3.1.1. (7.4.31)

The PO-SS realization, for fixed S1 = s is then

Vt =CtSt +NtWt , S1 = s, t = 1, . . . ,n, (7.4.32)

St+1 = AtSt +BtWt , S1 = s. (7.4.33)

Then

Pt(dyt
∣∣xt ,yt−1,s) =Pt(dyt

∣∣xt ,vt−1,yt−1,s) (7.4.34)

Pt(dyt
∣∣xt ,st ,yt−1,s), by Definition 3.1.1, (A1) (7.4.35)

=Pt(dyt
∣∣xt ,st), by Yt = Xt +Vt and (7.4.32) (7.4.36)

(a)
=Pt(dyt |xi,st ,s), by mutually independence of (W1, . . . ,Wn,S1). (7.4.37)

The probability distribution Pt(dyt |yt−1,s) is then given by

PP
t (dyt

∣∣yt−1,s) =
∫

Pt(dyt
∣∣xt ,st)Pt(dxt |st ,yt−1,s)

⊗PP
t (dst

∣∣yt−1,s), t = 1, . . . ,n, by reconditioning and (7.4.37). (7.4.38)
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The pay-off is the sum of conditional entropies ∑
n
t=1 H(Yt |Y t−1,s), and the constraint is (3.1.2).

By Definition 1.1.2, the state St , t = 2, . . . ,n is Markov, that is, PSt |St−1 = PSt |St−1, t = 2, . . . ,n. By

(7.4.38) and the Markov property of Sn, then, it can be shown that, at each time t, the input distribu-

tion PP
t (dst |yt−1,s) depends on P j(dx j|s j,y j−1,s), j = 1, . . . , t−1 and not on P j(dx j|s j,y j−1,s), j =

1, . . . , t−1. It then follows (3.1.3) and (3.1.4), by letting Pt(dxt |st ,yt−1,s) = PM
t (dxt |st ,yt−1,s), t =

1, . . . ,n. It should be noted that (3.1.3) and (3.1.4) also follow from a slight variation of the deriva-

tion given in [1, Theorem 1]. By the maximum entropy principle of Gaussian distributions it then

follows that the distribution PM
t (dxt |st ,yt−1,s), is conditionally Gaussian, with linear conditional

mean and nonrandom conditional covariance, given by

EPM
t

{
Xt

∣∣∣St ,Y t−1,S
}
=

ß
Λ1S+ΓtSt +Γ2

t Y t−1 for t = 2, . . . ,n
0, for t = 1,

(7.4.39)

KXt |St ,Y t−1,S
4
= cov

(
Xt ,Xt

∣∣∣St ,Y t−1,S
)
= KZt � 0, t = 1, . . . ,n. (7.4.40)

Then (7.4.39) and (7.4.40) follow by repeating the derivation of the same step in Theorem 2.2.1.

This completes the derivation of all statements of part (a).

(b), (c). By part (a) and using the generalized Kalman-filter, as in Theorem 2.2.1, then the state-

ments are shown.

7.5 Proof of Theorem 3.1.1

(a) Since we have assumed S1 = s is fixed, and known to the encoder and the decoder, then The-

orem 3.1.1 still holds, by replacing all conditional distributions, expectations and entropies, by

corresponding expressions with fixed S1 = s. Hence, (2.1.30) is replaced by (3.1.25), and (2.1.23)

is replaced by (3.1.26) (since the code is allowed to depend on S1 = s). (b) From the PO-SS real-

ization of Definition 1.1.2 with S1 = s fixed, it follows that a necessary condition for Conditions

1 of Section 1.1 to hold is (i). The expression of entropy (3.1.27) is easily obtained by invoking

condition (i), and properties of conditional entropy. That is, H(V1|s) = H(C1S1 +N1W1|S1 = s) =

H(N1W1|S1 = s) = H(N1W1) by independence of W1 and S1, and H(V2|V1,s) = H(V2|V1,S1 = s) =

H(C2S2 +N2W2|C1S1 +N1W1,S1 = s) = H(C2S2 +N2W2|N1W1,S1 = s) = H(C2A1S1 +C2B1W1 +

N2W2|N1W1,S1 = s) = H(N2W2|N1W1,S1 = s) = H(N2W2), etc. This completes the proof.
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7.6 Proof of Proposition 3.3.1

Since the proof of [2, Theorem 6.1] is based [2, Lemma 6.1], where the channel input Xt is ex-

pressed as Xt = Λ

(
St −E

{
St

∣∣∣Y t−1
−∞

)
, t = 1, . . ., where Λ is a nonradom vectors, then (3.3.54) is

a necessary for [2, Theorem 6.1] to hold. Next, we show Conditions 1 and 2 of Section 1.1 are

necessary and sufficient for equality (3.3.54) to hold. To avoid complex notation, we prove the

claim for the realization of Example 2.1.2.(a). Suppose the initial state S1 of the noise is S1 = s1

is known to the encoder and the decoder, and without loss of generality take s1 = 0, which by

(2.1.71), implies V0 = 0,W0 = 0 (as often done in [2]). Then, the following hold.

S1 = 0 =⇒ V1 =W1, S2 =W1 =V1, by (2.1.72), (2.1.73), (7.6.41)

(S1 = 0,V1) uniquely define S2 = cS1 +W1 =W1 =V1, by (2.1.72), (2.1.73), (7.6.42)

V2 =
(

c−a
)

S2 +W2, S3 = cS2 +W2 = cV1 +W2, by (2.1.72), (2.1.73), (7.6.43)

(S1 = 0,V1,V2) uniquely define (S2,S3), (7.6.44)

repeating, then (S1 = 0,V1, . . . ,Vt−1) uniquely define (S2,S3, . . . ,St), ∀t = 3,4, . . .. (7.6.45)

From (7.6.41)-(7.6.45) it then follows, that for any S1 = s1, including, s1 = 0, known the the

encoder that the equalities hold:

PXt |X t−1,Y t−1
−∞ ,S1

=PXt |V t−1,Y t−1
−∞ ,S1

, by Yt = Xt +Vt (7.6.46)

=PXt |St ,Y t−1
−∞ ,S1

, t = 1, . . . , (7.6.47)

We can go one step further to identify the information structure of optimal channel input distribu-

tions using (7.6.47), that is, to show PXt |St ,Y t−1
−∞ ,S1

= PXt |St ,Y t−1
−∞ ,S1

, t = 1, . . ., by repeating to proof

of [1, Theorem 1]. However, for the statement of the proposition this is not necessary.

Suppose either S1 = s1 is not known to the encoder, i.e., V0 = v0,W0 = w0 are not known to the

encoder, and S1 6= 0, while the optimal channel input is expressed as a function of the state of the

noise, Sn, that is,

PXt |X t−1,Y t−1
−∞

=PXt |V t−1,Y t−1
−∞

= PXt |St ,Y t−1
−∞

, t = 1, . . . , (7.6.48)

Then by (2.1.72) and (2.1.73), it follows that V1 =
(
c−a

)
S1+W1,S2 = aS1+W1, hence knowledge

of V1 does not specify S2, and similarly, V t does not specify St , for t = 2,3, . . . . Hence, we arrive

at the contradiction of equality (7.6.48). This competes the proof.
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7.7 Proof of Proposition 4.1.1

(a) This is shown in [16] by using the Szego formula and Poisson’s integral formula.

(b) By definition,

H(V n|s1) =
n

∑
t=1

H(Vt |V t−1,s1) (7.7.49)

=H((c−a)S1 +W1|s1)+H((c−a)S2 +W2|V1,s1)+ . . .+H((c−a)Sn +Wn|V n−1,s1) (7.7.50)

=H((W1|s1)+H((c−a)S2 +W2|V1,s1,W1)+ . . .+H((c−a)Sn +Wn|V n−1,s1) (7.7.51)

=H(W1)+H((W2)+ . . .+H((c−a)Sn +Wn|V n−1,s1), by S2 = aS1 +W1 (7.7.52)

=
n

∑
t=1

H(Wt), by repeating the proceedure (7.7.53)

Since Wt ∈ N(0,KW ),KW > 0, t = 1, . . . ,n, then (4.1.8) is obtained.

7.8 Proof of Lemma 4.1.1

(a) This is due to Lemma 2.1.1.(v).

(b) By taking the per unit time limit (4.1.9), and utilizing the hypothesis (4.1.11), the continuity of

the log(·) and the fact that, for any convergent sequence an,n = 1,2, . . ., i.e., limn−→∞ an = a, then
1
n ∑

n
t=1 an −→ a, as n−→ ∞, then it follows (4.1.12).

7.9 Proof of Lemma 4.2.1

From Corollary 3.2.3.(a) we deduce that Σo
t
4
= Σt , t = 1, . . . ,n satisfies (4.2.25) with initial condition

(4.2.26). By Definition 5.2.3 the corresponding generalized algebraic Riccati equation is (4.2.27),

and pairs {A,C} and {A∗,GB∗,
1
2} are given by (4.2.28).

(1) By Definition 5.2.3, for c 6= a the pair {A,C}= {c,c−a} is observable, and hence detectable.

(2) By Definition 5.2.3, the pair {A∗,GB∗,
1
2} = {a,0} is unit circle controllable if and only if

|a| 6= 1.

(3) By Definition 5.2.3, the pair {A∗,GB∗,
1
2}= {a,0} is stabilizable if and only if a ∈ (−1,1).

(4) This follows from Theorem 5.2.1.(1) and parts (1), (2) and (3). Since (4.2.27) is a quadratic

equation we can solved it explicitly to verify the two solutions are Σ∞ = 0 and Σ∞ =
KW

(
a2−1

)(
c−a
)2 , and

the statement of (4.2.29).

(5) For values c ∈ (−∞,∞) and |a| < 1, the pair {A,C} = {c,c− a} is detectable and the pair
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{A∗,GB∗,
1
2}= {a,0} is stabilizable, and the statement follows from Theorem 5.2.1.(3).

(6) (4.2.30) follows from Lemma 4.1.1.(b), by invoking Corollary 3.2.3.(a), i.e., KÎt =
(
c−a

)2
Σo

t +

KW , t = 1, . . . ,n, where Σo
t is generated by (4.2.25), and part (5).

7.10 proof of Lemma 5.2.2

(1) We utilize the equation 5.2.110 and the scalar representation of the equation 4.2.13, of the

Definition 4.2.1,

K∞ = A2K∞ +G2Q−
(

AK∞C+GS
)2(

R+C2K∞

)−1
, K1 = given. (7.10.54)

Hence, A = c,C = c−a+Λ. By c∈ (−1,1), then there always exists a P∈R, such that |A−PC|=
|c−P(c−a+Λ)|< 1, i.e., take P = 1. This shows (1).

(2) Since KZ = 0, then B = 1−KW
(
KZ + KW

)−1
= 0,B∗,

1
2 = K

1
2

W B
1
2 = 0, A∗ = c−KW

(
KW +

KZ
)−1C = c−

(
c− a+Λ

)
= a−Λ, and hence, there exists a P ∈ R, such that |A∗−B∗,

1
2 P| =

|a−Λ| 6= 1, if and only if |a−Λ| 6= 1. This shows (2).

(3) Since KZ = 0, similar to the prove in (2), there exists a P∈R, such that |A∗−B∗,
1
2 P|= |a−Λ|<

1, if and only if |a−Λ|< 1. This shows (3).

(4) Since c ∈ (−1,1),KZ = 0, then, by (1), the pair {A,C} is detectable, by (2) the pair {A∗,B∗, 1
2}

is unit circle controllable, if and only if |a−Λ| 6= 1 and by (3) the pair {A∗,B∗, 1
2} is stabilizable, if

and only if |a−Λ|< 1. By Theorem 5.2.1.(1) we deduce the claim. This shows (4).

(5) Clearly, (5.2.110) is equivalent to the quadratic equation

K2(
Λ+ c−a

)2−K
((

Λ−a
)2−1

)
KW = 0. (7.10.55)

Hence, the two solutions are (5.2.111). The last statement is also obtained by applying Theo-

rem 5.2.1.(2), as follows. By (1), {A,C} is detectable, by (2), {A∗,B∗, 1
2} is unit circle controllable,

if and only if |a−Λ| 6= 1, and by (3), {A∗,B∗, 1
2} is stabilizable, if and only if |a−Λ| < 1. By

invoking Theorem 5.2.1.(2), the non-negative solution K = 0 is unique and stabilizable, if and only

if |a−Λ|< 1.

7.11 proof of Lemma 5.2.3

At this point we calculate the maximum feedback capacity from Theorem 5.2.2, driven by ARMA(a,c)

noise of Definition 5.0.1 and we examine for which regions we have a feedback capacity, using the
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necessary conditions of Lemma 5.2.3.

(i) By the stationarity conditions of Lemma 5.2.3, i.e., (5.2.123)-(5.2.126), with λ =(λ1,λ2,λ3,λ4):

∂

∂K∞
Z

L (Λ∞,∗,K∞,∗
Z ,K∞,∗,λ ∗) = 1−λ

∗
1

(
K∞,∗− c2K∞,∗−KW

)
−λ

∗
2 +λ

∗
4 = 0, (7.11.56)

∂

∂Λ∞
L (Λ∞,∗,K∞,∗

Z ,K∞,∗,λ ∗) =
(

Λ
∞,∗+ c−a

)
K∞,∗−λ

∗
1

{(
K∞,∗− c2K∞,∗−KW

)
(

Λ
∞,∗+ c−a

)
K∞,∗+

(
KW + cK∞,∗(

Λ
∞,∗+ c−a

))
cK∞,∗

}
−λ

∗
2 Λ

∞,∗K∞,∗ = 0, (7.11.57)

∂

∂K∞
L (Λ∞,K∞

Z ,K
∞,λ ∗) =

(
Λ

∞,∗+ c−a
)2
−λ

∗
1

{(
1− c2

)(
K∗Z +KW

+
(
Λ

∞,∗+ c−a
)2K∞,∗

)
+
(

K∞,∗− c2K∞,∗−KW

)(
Λ

∞,∗+ c−a
)2

+

2c
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))(

Λ
∞,∗+ c−a

)}
−λ

∗
2

(
Λ

∞,∗
)2

+λ
∗
3 = 0, (7.11.58)

First of all, we will find the values of the Lagrangian multipliers λ = (λ1,λ2,λ3,λ4), through some

steps.

Suppose λ ∗4 6= 0. Then, by complementary slackness (5.2.126), we have λ ∗4 K∞,∗
Z = 0, which implies

K∞,∗
Z = 0, and hence we have K∞,∗ = 0. By complementary slackness (5.2.126), we also have

λ ∗2
((

Λ∞,∗)2K∞,∗+K∞,∗
Z −κ

)
= λ ∗2

(
0−κ

)
= 0, hence for any κ > 0, λ ∗2 = 0. This implies C∞(κ) =

0,κ ∈ [0,∞) hence the rate is zero. Similarly, if λ ∗3 6= 0, then K∞,∗
Z = 0 and K∞,∗= 0, which lead to a

zero rate. However, by (i), i.e., by Theorem 5.2.3, we know that for Λ∞,∗ = 0,K∞,∗
Z 6= 0, we exhibit

a non-zero rate, which is a lower bound on the nofeedback rate. Hence, for the rest of the derivation

we characterize the set of all values κ ∈K ∞(a,c,KW ), that is, we assume λ ∗3 = 0,λ ∗4 = 0, and treat

the case κ /∈K ∞(a,c,KW ) separately.

(iii) By complementary slackness (5.2.126), then λ ∗4 K∞,∗
Z = 0. Suppose λ ∗4 = 0. By (7.11.56), then

1−λ
∗
1

(
K∞,∗− c2K∞,∗−KW

)
−λ

∗
2 = 0, (7.11.59)

K∞,∗ ∈ [0,∞) iff K∞,∗ =
1−λ ∗2 +λ ∗1 KW

λ ∗1

(
1− c2

) ≥ 0, λ
∗
1 6= 0, c2 6= 1. (7.11.60)

(iv) By (7.11.57), we have(
Λ

∞,∗+ c−a
)

K∞,∗−λ
∗
1

{(
K∞,∗− c2K∞,∗−KW

)(
Λ

∞,∗+ c−a
)

K∞,∗

+
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))

cK∞,∗
}
−λ

∗
2 Λ

∞,∗K∞,∗ = 0. (7.11.61)
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By complementary slackness (5.2.126), then λ ∗3 K∞,∗ = 0. Suppose λ ∗3 = 0. By (7.11.61), with

K∞,∗ > 0, (
Λ

∞,∗+ c−a
)
−λ

∗
1

{(
K∞,∗− c2K∞,∗−KW

)(
Λ

∞,∗+ c−a
)

+
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))

c
}
−λ

∗
2 Λ

∞,∗ = 0, K∞,∗ > 0. (7.11.62)

Substituting λ ∗2 from (7.11.59) into (7.11.62), and solving for λ ∗1 we obtain

λ
∗
1 =

c−a
K∞,∗(Λ∞,∗c2 + c−a)+aKW

(7.11.63)

Substituting λ ∗1 into (7.11.59) we also obtain

λ
∗
2 = 1−

(
a− c

)(
K∞,∗(c2−1)+KW

)
K∞,∗(Λ∞,∗c2 + c−a)+aKW

(7.11.64)

(v) Now, we show λ ∗1 6= 0 (although it follows from the above calculations). Suppose λ ∗3 = 0,λ ∗4 =

0, and λ ∗1 = 0. Then (7.11.57) is given by 2K∞,∗(−a+Λ∞,∗+ c−Λ∞,∗λ ∗2
)
= 0, and is satisfied if

K∞,∗ = 0 or −a+Λ
∞,∗+ c−Λ

∞,∗
λ
∗
2 = 0 (7.11.65)

For K∞,∗ = 0, then K∞,∗
Z = 0, and by (7.11.59) we have λ ∗2 = 1. By the complementary slackness,

λ ∗2
(
(Λ∞,∗)2K∞,∗+K∞,∗

Z −κ) = 0, then λ ∞
2 (−κ) = 0, hence λ ∗2 = 0, unless κ = 0. This contradicts

the value λ ∗2 = 1. Hence, λ ∗1 = 0 and K∞,∗ = 0 are not possible choices. Suppose λ ∗1 = 0 and

K∞,∗ > 0, hence (7.11.65) holds, and by (7.11.59) we have λ ∗2 = 1. By (7.11.65) then c = 0. Since,

c 6= 0, otherwise the channel is driven by MA(a) noise and in Theorem (na valw to applicaiton) we

will show that there isn’t the optimum solution. Then, the only choice is λ ∗1 6= 0.

(vi) Suppose λ ∗3 = 0,λ ∗4 = 0, and λ ∗2 = 0. Now,we show by contradiction that λ ∗2 6= 0. By (7.11.59)

then

1−λ
∗
1

(
K∞,∗− c2K∞,∗−KW

)
= 0. (7.11.66)

Substituting (7.11.66) into (7.11.57) we have

λ
∗
1

(
KW + cK∞,∗(

Λ
∞,∗+ c−a

))
cK∞,∗ = 0. (7.11.67)

Substituting (7.11.66) into (7.11.58) we have

−λ
∗
1

{(
1− c2

)(
K∗Z +KW +

(
Λ

∞,∗+ c−a
)2K∞,∗

)
+2c

(
KW + cK∞,∗(

Λ
∞,∗+ c−a

))(
Λ

∞,∗+ c
)}

= 0. (7.11.68)

STELIO
S LO

UCA



CHAPTER 7. APPENDIX 107

Substituting (7.11.66) into the ARE (5.2.130) we have

1
λ ∗1

(
K∞,∗

Z +KW +
(
Λ

∞,∗+ c−a
)2K∞,∗

)
+
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))2

= 0. (7.11.69)

By (7.11.66) then λ ∗1 6= 0. Since λ ∗1 6= 0, then by (7.11.67), we have K∞,∗= 0 or KW +cK∞,∗(Λ∞,∗+

c− a
)
= 0. However, either choice, when substituted into (7.11.69) implies KW = 0, which con-

tradicts our assumption that KW > 0. Hence, we deduce λ ∗2 6= 0.

(vii) By the above analysis we consider λ ∗3 = 0,λ ∗4 = 0, λ ∗1 6= 0,λ2 6= 0, and (7.11.63), (7.11.64)

hold. By (7.11.58), then the following holds:(
Λ

∞,∗+ c−a
)2
−λ

∗
1

{(
1− c2

)(
K∞,∗

Z +KW +
(
Λ

∞,∗+ c−a
)2K∞,∗

)
+
(

K∞,∗− c2K∞,∗−KW

)(
Λ

∞,∗+ c−a
)2

+2c
(

KW + cK∞,∗(
Λ

∞,∗+ c−a
))(

Λ
∞,∗+ c−a

)}
−λ

∗
2

(
Λ

∞,∗
)2

= 0, K∞,∗ > 0. (7.11.70)

Since we have
(
Λ∞,∗)2K∞,∗ + K∞,∗

Z = κ , then K∞,∗
Z = κ −

(
Λ∞,∗)2K∞,∗ ∈ (0,∞). Substituting

(λ ∗1 ,λ
∗
2 ) and K∞,∗

Z into (7.11.70), we obtain

K∞,∗ =
κ

(
1− c2

)
+KW

(
1−ac

)
(

a− c
)(

Λ∞(2− c2)+ c−a
) > 0 ⇐⇒

Λ
∞,∗ =

KW

(
ac−1

)
+κ

(
c2−1

)
−K∞,∗

(
a− c

)2

K∞,∗
(

c2−2
)(

a− c
) (7.11.71)

Substituting Λ∞,∗ and K∞,∗
Z into the generalized ARE (5.2.130) we obtain:

(
K∞,∗c2−K∞,∗+KW

)(
KW (2a− c)+ cκ−K∞,∗c(a− c)2

)
c2−2

+(
c2−1

)2(
KW (2a− c)+ cκ−K∞,∗c(a− c)2

)2

(
c2−2

)2(
a− c

)2 = 0 (7.11.72)

We assume that c 6= a and c2 6= 2.
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(
K∞,∗

)2(c2(c2−1)(a− c)2

(c2−2)2

)
+

K∞,∗
(c2(KW (c2 +2a2−2ac−a2c2)+ c2κ(1− c2)

)(
c2−2

)2

)
+

(
KW (2a− c)+ cκ

)((
c2−1

)2(KW (2a− c)+ cκ
)
+ cKW (c2−2)2(a− c)2

)
(

a− c
)2(

c2−2
)2 = 0 (7.11.73)

K∞,∗
1,2 =

−c
(

KW (2a2 + c2−a2c2−2ac)+ c2κ(1− c2)
)

2c
(

c2−1
)(

a− c
)2

±

…(
c2−2

)2(
KW (c−2a+a2c)+ cκ(c2−1)

)2

2c
(

c2−1
)(

a− c
)2 (7.11.74)

Also, we assume that c 6= 0 and c2 6= 1.

Hence, we have two solutions:

K∞,∗
1 =

−c
(

KW (2a2 + c2−a2c2−2ac)+ c2κ(1− c2)
)
+
∣∣∣c2−2

∣∣∣∣∣∣KW (c−2a+a2c)+ cκ(c2−1)
∣∣∣

2c
(

c2−1
)(

a− c
)2

(7.11.75)

K∞,∗
2 =

−c
(

KW (2a2 + c2−a2c2−2ac)+ c2κ(1− c2)
)
−
∣∣∣c2−2

∣∣∣∣∣∣KW (c−2a+a2c)+ cκ(c2−1)
∣∣∣

2c
(

c2−1
)(

a− c
)2

(7.11.76)

The variable c can take any value except c 6= a, c 6= 0, c2 6= 1 and c2 6= 2. Thus, we deduce the

following cases of solutions.

Case 1. c >
√

2. In addition, KW (c− 2a+ a2c)+ cκ(c2− 1) > 0, always holds, because c > 0,

κ ≥ 0, c2− 1 > 0 and KW > 0. Also, c− 2a+ a2c is positive, because the discriminant of this

expression is negative.

Thus, we have κ > −KW (c−2a+a2c)
c(c2−1) which always holds.

STELIO
S LO

UCA



CHAPTER 7. APPENDIX 109

The first solution is

K∞,∗
1 =

KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2

c(c2−1)(a− c)2 , (7.11.77)

Λ
∞,∗
1 =

KW (a− c)2(1−ac)
KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2 (7.11.78)

K∞,∗
Z1

=
κ

(
c(c2−1)(KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2

)
−K2

W (a− c)2(1−ac)2

c(c2−1)
(

KW (2a− c+a2c3−2a2c)+ cκ(c2−1)2
) .

(7.11.79)

λ
∗
1 =

c(a− c)2

KW (c−2a+a2c)+ cκ(c2−1)
, λ

∗
2 = c2. (7.11.80)

The second solution is

K∞,∗
2 =

KW (2a− c)+ cκ

c(a− c)2 , (7.11.81)

Λ
∞,∗
2 =

(a− c)(aKW + cκ)

KW (c−2a)− cκ
, (7.11.82)

K∞,∗
Z2

=
KW (KW a2 +κc2)

c(2aKW + cKW − cκ)
. (7.11.83)

λ
∗
1 =− c(a− c)2

KW (c−2a+a2c)+ cκ(c2−1)
, λ

∗
2 = 0. (7.11.84)

The second solution is always rejected, because λ2 should be λ2 6= 0. Thus, we will continue with

the one and only valid solution K∞,∗
1 . The case 1 and the rest of the cases that we show below, are

mentioned to the feedback case. So, we should check for every case whether K∞,∗
1 is valid. More

specifically, we need to check if K∞,∗
1 > 0, K∞,∗

Z1
> 0 and λ ∗1 > 0.

Set,

κ1 =
KW (c−2a+a2c)−KW a2c(c2−1)

c(c2−1)2 , (7.11.85)

κ2 =
KW (1−ac)(ac3−2ac+ c2−

√
c3(a2c3−6ac2 +4a+4c3−3c))

2c2(c2−1)2 , (7.11.86)

κ3 =
KW (1−ac)(ac3−2ac+ c2 +

√
c3(a2c3−6ac2 +4a+4c3−3c))

2c2(c2−1)2 . (7.11.87)

K∞,∗
1 > 0, for κ > κ1 and κ ≥ 0, for a ∈

[
−c

c2−2 ,
1
c

]
,

λ
∞,∗
1 > 0, for κ ∈ [0,∞) and

K∞,∗
Z1

> 0, for κ ∈ [0,κ2)∪ (κ3,∞).
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Thus, we consider a set A1(a,c,KW ), which is not empty.

A1(a,c,KW ) = A 1
1 (a,c,KW )∩A 2

1 (a,c,KW ) (7.11.88)

A 1
1 (a,c,KW )

4
=
{

κ ∈ [0,∞) : K∞,∗
1 > 0,λ ∞,∗

1 > 0,c ∈ (
√

2,∞),a ∈
[ −c

c2−2
,
1
c

]
,κ > κ1

}
(7.11.89)

A 2
1 (a,c,KW )

4
=
{

κ ∈ [0,∞),a ∈ (−∞,∞) : K∞,∗
Z1

> 0,c ∈ (
√

2,∞),κ ∈ [0,κ2)∪ (κ3,∞)
}

(7.11.90)

Case 2. c < −
√

2. In addition, KW (c−2a+a2c)+ cκ(c2−1) < 0, always holds, because c < 0,

κ ≥ 0, c2− 1 < 0 and KW > 0. Also, c− 2a+ a2c is negative, because the discriminant of this

expression is negative.

Thus, we have κ > −KW (c−2a+a2c)
c(c2−1) which always holds.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ > κ1 and κ ≥ 0, for a ∈

(
−∞, 1

c

]
∪
[
−c

c2−2 ,∞
)

,

λ
∞,∗
1 > 0, for κ ∈ [0,∞) and

K∞,∗
Z1

> 0, for κ ∈ [0,κ2)∪ (κ3,∞).

Thus, we consider a set A2(a,c,KW ), which is not empty.

A2(a,c,KW ) = A 1
2 (a,c,KW )∩A 2

2 (a,c,KW ) (7.11.91)

A 1
2 (a,c,KW )

4
=
{

κ ∈ [0,∞) : K∞,∗
1 > 0,λ ∞,∗

1 > 0,c ∈ (−∞,−
√

2),

a ∈
(
−∞,

1
c

]
∪
[ −c

c2−2
,∞
)
,κ > κ1

}
(7.11.92)

A 2
2 (a,c,KW )

4
=
{

κ ∈ [0,∞),a ∈ (−∞,∞) : K∞,∗
Z1

> 0,c ∈ (−∞,−
√

2),κ ∈ [0,κ2)∪ (κ3,∞)
}

(7.11.93)

Case 3.
√

2 > c > 1. In addition, KW (c−2a+a2c)+cκ(c2−1)> 0, always holds, because c > 0,

κ ≥ 0, c2− 1 > 0 and KW > 0. Also, c− 2a+ a2c is positive, because the discriminant of this

expression is negative.

Thus, we have κ > −KW (c−2a+a2c)
c(c2−1) which always holds.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ > κ1 and κ ≥ 0, for a ∈

[
−c

c2−2 ,
1
c

]
,

λ
∞,∗
1 > 0, for κ ∈ [0,∞) and

K∞,∗
Z1

> 0, for κ ∈ [0,κ2)∪ (κ3,∞).
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Thus, we consider a set A3(a,c,KW ), which is not empty.

A3(a,c,KW ) = A 1
3 (a,c,KW )∩A 2

3 (a,c,KW ) (7.11.94)

A 1
3 (a,c,KW )

4
=
{

κ ∈ [0,∞) : K∞,∗
1 > 0,λ ∞,∗

1 > 0,c ∈ (1,
√

2),a ∈
[ −c

c2−2
,
1
c

]
,κ > κ1

}
(7.11.95)

A 2
3 (a,c,KW )

4
=
{

κ ∈ [0,∞),a ∈ (−∞,∞) : K∞,∗
Z1

> 0,c ∈ (1,
√

2),κ ∈ [0,κ2)∪ (κ3,∞)
}

(7.11.96)

Case 4. −
√

2 < c < −1. In addition, KW (c− 2a+ a2c)+ cκ(c2− 1) < 0, always holds, because

c < 0, κ ≥ 0, c2−1 < 0 and KW > 0. Also, c−2a+a2c is negative, because the discriminant of

this expression is negative.

Thus, we have κ > −KW (c−2a+a2c)
c(c2−1) which always holds.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ > κ1 and κ ≥ 0, for a ∈

(
−∞, 1

c

]
∪
[
−c

c2−2 ,∞
)

,

λ
∞,∗
1 > 0, for κ ∈ [0,∞) and

K∞,∗
Z1

> 0, for κ ∈ [0,κ2)∪ (κ3,∞).

Thus, we consider a set A4(a,c,KW ), which is not empty.

A4(a,c,KW ) = A 1
4 (a,c,KW )∩A 2

4 (a,c,KW ) (7.11.97)

A 1
4 (a,c,KW )

4
=
{

κ ∈ [0,∞) : K∞,∗
1 > 0,λ ∞,∗

1 > 0,c ∈ (−∞,
√

2),

a ∈
(
−∞,

1
c

]
∪
[ −c

c2−2
,∞
)
,κ > κ1} (7.11.98)

A 2
4 (a,c,KW )

4
=
{

κ ∈ [0,∞),a ∈ (−∞,∞) : K∞,∗
Z1

> 0,c ∈ (−∞,
√

2),κ ∈ [0,κ2)∪ (κ3,∞)
}

(7.11.99)

We saw that for any of the sets, A1(a,c,KW ), A2(a,c,KW ), A3(a,c,KW ), A4(a,c,KW ), that is,

unstable noise, the conditions K∞,∗
1 > 0, K∞,∗

Z1
> 0 and λ ∗1 > 0 always hold. In conclusion, for any

unstable case (i.e., |c|> 1), we have a non-zero feedback capacity. Also, there is a minimum power

constraint, which is positive (we take the intersection of all the power constraints for any case).

Otherwise, whether the power κ is less than the constraint, it means that we have an achievable

rate (see Theorem 5.2.3).

Now, we have to check for feedback capacity, for the stable cases |c|< 1, c 6= 0.

Earlier we saw that the second absolute value was always positive or negative for each case. In

the following cases, this is not obvious, because the discriminant of c−2a+a2c is positive. More
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specifically, for c ∈ (−1,0), we see that,

Solving the quadratic equation, c−2a+a2c, we have,

δ = β
2−4αγ = c2−1 > 0

α1 =
1−
√

1− c2

c
, α2 =

1+
√

1− c2

c
hence, (7.11.100)

c−2a+a2c > 0, for a ∈ (a2,a1) and c−2a+a2c < 0, for a ∈ (−∞,a2)∪ (a1,∞) (7.11.101)

On the other hand for c ∈ (0,1), we have,

c−2a+a2c < 0, for a ∈ (a1,a2) and c−2a+a2c > 0, for a ∈ (−∞,a1)∪ (a2,∞), (by 7.11.100)
(7.11.102)

So, to include all the cases, we will break the cases 5 and 6 in sub-cases, as follow,

Case 5: cκ(c2−1)+KW (c−2a+a2c)> 0

1. c ∈ (−1,0), where, cκ(c2−1)> 0

(a) a ∈ (a2,a1), where, KW (c−2a+a2c)> 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)> 0, implies κ > −KW (c−2a+a2c)
c(c2−1) ,

which always holds.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ < KW (c−2a+a2c)−KW a2c(c2−1)

c(c2−1)2 ,

λ
∞,∗
1 > 0, which never holds, because we assumed before that the denominator of

(7.11.84) is positive and that implies c(a− c)2 > 0 too. However, it doesn’t exist,

because c is negative, and c(a− c)2 < 0 gives us a contradiction.

(b) a ∈ (−∞,a2)∪ (a1,∞), where, KW (c−2a+a2c)< 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)< 0, implies κ > KW (c−2a+a2c)
c(c2−1) .

The only valid solution is (7.11.77)-(7.11.80).

λ
∞,∗
1 > 0, never holds, like the previous sub-case, because of c ∈ (−1,0).

2. c ∈ (0,1), where, cκ(c2−1)< 0

(a) a ∈ (a1,a2), where, KW (c−2a+a2c)< 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)> 0 doesn’t exist.
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(b) a ∈ (−∞,a2)∪ (a1,∞), where, KW (c−2a+a2c)< 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)> 0, implies κ < KW (c−2a+a2c)
c(1−c2)

.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ < κ1 ,

λ
∞,∗
1 > 0, for κ ∈ [0,∞),

K∞,∗
Z1

> 0, for κ ∈ [0,κ2)∪ (κ3,∞)
}

.

This sub-case can’t give us feedback capacity, because,

KW (c−2a+a2c)
c(1− c2)

<

KW (1−ac)(ac3−2ac+ c2−
√

c3(a2c3−6ac2 +4a+4c3−3c))
2c2(c2−1)2 .

That means there isn’t any intersection between the power constraints.

Case 6: cκ(c2−1)+KW (c−2a+a2c)< 0

1. c ∈ (−1,0), where, cκ(c2−1)> 0

(a) a ∈ (a2,a1), where, KW (c−2a+a2c)> 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)> 0 doesn’t exist.

(b) a ∈ (−∞,a2)∪ (a1,∞), where, KW (c−2a+a2c)< 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)< 0, implies κ < KW (c−2a+a2c)
c(1−c2)

.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ < κ1 ,

λ
∞,∗
1 > 0, for κ ∈ [0,∞),

K∞,∗
Z1

> 0, for κ ∈ [0,κ2)∪ (κ3,∞)
}

.

This sub-case can’t give us feedback capacity because,

κ1 < κ2 =⇒ KW (c−2a+a2c)−KW a2c(c2−1)
c(c2−1)2 <

KW (1−ac)(ac3−2ac+ c2−
√

c3(a2c3−6ac2 +4a+4c3−3c))
2c2(c2−1)2 .

That means there isn’t any intersection between the power constraints.

2. c ∈ (0,1), where, cκ(c2−1)< 0
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(a) a ∈ (a1,a2) where, KW (c−2a+a2c)< 0, (see 7.11.100)

Hence, the inequality cκ(c2− 1)+KW (c− 2a+ a2c) < 0, implies κ > KW (c−2a+a2c)
c(1−c2)

,

which always holds.

The only valid solution is (7.11.77)-(7.11.80).

K∞,∗
1 > 0, for κ < κ1 ,

λ
∞,∗
1 > 0, which never holds, because we assumed before that the denominator of

(7.11.84) is negative and that implies c(a− c)2 < 0 too. However, it doesn’t exist,

because c is positive, and c(a− c)2 > 0 gives us a contradiction.

(b) a ∈ (−∞,a2)∪ (a1,∞), where, KW (c−2a+a2c)> 0, (see 7.11.100)

Hence, the inequality cκ(c2−1)+KW (c−2a+a2c)< 0, implies κ > KW (c−2a+a2c)
c(1−c2)

.

The only valid solution is (7.11.77)-(7.11.80).

λ
∞,∗
1 > 0, never holds, like the previous sub-case, because of c ∈ (0,1).

Until here, we see that feedback does not increase capacity for the regime, c ∈
(
− 1,1

)
, a ∈ R,

κ ∈
[
0,∞

)
. Cases 5 and 6 correspond to the stable noise cases. However, there is an achievable

rate, which is calculated in no-feedback capacity Theorem 5.2.3.
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