
i

Master’s Thesis

IoT WORKLOAD GENERATOR

Andreas Ioannou

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

December 2020

And
rea

s I
oa

nn
ou

ii

IoT WORKLOAD GENERATOR

Andreas Ioannou

This thesis

was submitted in partial fulfilment of the

requirements for the Degree of Master of Science

at the University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

December, 2020

And
rea

s I
oa

nn
ou

iii

APPROVAL PAGE

Master of Science Thesis

IoT WORKLOAD GENERATOR

Presented by

Andreas Ioannou

Research Supervisor

George Pallis

Committee Member

Marios Dikaiakos

Committee Member

Dimitris Trihinas

University of Cyprus

 December, 2020

And
rea

s I
oa

nn
ou

iv

Acknowledges

 I would like to thank my family for the support they gave me during the whole years

of my studies. I am also grateful to my professor George Pallis that introduced me to

this topic and gave me this opportunity and specially to my supervisor Moysis

Symeonidis, for their guidance and their support whenever I needed help during this

difficult final year of my studies, which helped me complete this thesis and learn a lot

of new things.

And
rea

s I
oa

nn
ou

Abstract

 Nowadays, the novel IoT application era has risen to the top, reaching a point that smart

devices can also communicate between them. This new era introduced the need of

continuous information exchange between the smart devices, which has as result that IoT

applications produce vast amounts of data that need processing, and some of the applications

require this processing to be of low or ideally no latency. The Fog and edge computing

paradigms had emerged from these demands, as a solution, bridging the gap between users’

applications and the cloud by providing intermediate processing nodes, closer to the user

application, that minimizes the processing latency, which is essential for time-critical

applications.

 Deployment of fog systems can be really complicated, and it demands effort, time and costs,

making the life difficult for users that would like to test or evaluate their IoT applications. The

solution for this challenge is the paradigm of fog emulators, along with workload generator

softwares. With an IoT workload generator integrated with a fog emulator, users can produce

or replay sensor data based on their sensors’ model description, and evaluate their

applications with real IoT devices scenarios, by emulating real sensors easily, and without the

need to purchase and set the real infrastructure.

 This thesis introduces a novel IoT workload generator that (re)produces data from IoT

devices in order for the users to be able to stress, evaluate and test their applications easily.

Users can provide sensor models information, or recorded sensor data through datasets and

the system will replay or produce new sensor messages data stream straight to the user’s

application. The implementation provides a comprehensive sensor model realization, along

with a scalable, extendable and heterogeneous workload generator that gives the ability to

the users of IoT applications to produce IoT data stream to their applications based on the

user's input sensors configurations, regardless of the output data protocol or message format.

On top of that, users can provide datasets of recorded real data that can be reproduced, with

the ability to be customized, regarding the user’s preferences, and finally they can implement

the existing input and output interfaces for new features matching their specific needs.

And
rea

s I
oa

nn
ou

v

Table of Contents

Chapter 1: Introduction ... 1

Chapter 2: Background Knowledge and Related Work 5

2.1 Background Knowledge ... 5

2.1.1 IoT ... 5

2.1.2 IoT messages protocols ... 6

2.1.2.1 Request-Response Protocols .. 7

2.1.2.1.1 HTTP .. 7

2.1.2.2 Publish/Subscribe Protocols .. 7

2.1.2.2.1 MQTT ... 8

2.1.2.2.2 KAFKA .. 9

2.1.3 Cloud - Fog - Edge Computing .. 9

2.1.4 Fog emulators ...11

2.1.5 Workload Generators ..12

2.2 Related Work ..13

Chapter 3: System Description .. 17

3.1 System requirements ..17

3.1.1 Heterogeneity ...17

3.1.2 Sensor Model realization ..18

3.1.3 Accuracy ...19

3.1.4 Extensibility - Configurability- Customization...19

3.2 System overview ...20

3.2.1 System Capabilities and functionalities ...20

3.2.2 High Level System Architecture ..22

Chapter 4: Model Mapping .. 26

4.1 Modelling of IoT Sensors ...28

4.1.1 Input file, Sensor Prototypes & messages ..29

4.1.2 Produce Mock data feature modelling ...32

4.1.3 Replay data from dataset feature modelling ..35

4.2 Output Mapping ..39

And
rea

s I
oa

nn
ou

vi

Chapter 5: Implementation details ... 41

5.1 Main Users actions ..42

5.1.1 Start of Workload Generator ...43

5.1.2 Stop of Workload Generator ...46

5.1.3 Restart of Workload Generator ...46

5.2 Extendable Interfaces Overview ..47

5.2.1 Output Protocol Interface ..48

5.2.2 SensorPrototype Input Interface ...50

5.3 Produce Mock Sensor Data Implementation ...53

5.3.1 Components and Association ...53

5.3.2 Class Modelling ..55

5.3.3 Flow ..57

5.4 Replay sensor data from Dataset Implementation ...63

5.4.1 Components and Association ...63

5.4.2 Dataset Thread Modelling ...64

5.4.3 Flow ..65

5.5 Output protocol Implementations ...68

5.6 API Endpoints ...70

5.6.1 Workload Generator Actions APIs ..70

5.6.2 Sensor Actions APIs ...72

Chapter 6: System Evaluation and Results ... 76

6.1 Usability Evaluation ...77

6.1.1 Heterogeneity and Sensor Model Realization Evaluation77

6.1.2 Accuracy Evaluation ...82

6.1.3 Extensibility, Configurability, Customization Evaluation85

6.1.4 Usability evaluation, through Integration with real Fog Emulator on a real

scenario use case..85

6.1.4.1 Increasing Workload Test ...90

6.1.4.2 Data Skewness Experiment ...92

6.2 Performance Evaluation and limitations ..94

6.2.1 Sensor Message Delay ...95

6.2.1.1 Input and Evaluation Methodology ...96

6.2.1.2 Evaluation Experiments .. 100

6.2.1.2.1 Sensor Quantity Factor .. 100

And
rea

s I
oa

nn
ou

vii

6.2.1.2.2 Generation Rate Factor ... 104

6.2.1.2.3 Host Machine Resources Factor .. 107

6.2.1.2.4 Sensors Quantity Limitation ... 109

6.3 Evaluation Results Summary and System limitations 112

Chapter 7: Conclusion and future work ... 115

7.1 Synopsis ... 115

7.2 Conclusion .. 116

7.3 Future work ... 117

Bibliography and References ... 118

Appendix A ... 121

A.1 Repository of Source Code for implementation ... 121

And
rea

s I
oa

nn
ou

viii

List of tables

Table 6.2.1.2.1 1: Experiment results for input sensors number factor 101

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor 107

Table 6.2.1.2.4 1: Input Sensors number Performance Limitation on a machine with 2

available cores.. 110

Table 6.2.1.2.4 2: Input Sensors number Performance Limitation on a machine with 8

available cores ... 111

Table 6.2.1.2.4 3: Input Sensors number Performance Limitation on a machine with 16

available cores.. 111

And
rea

s I
oa

nn
ou

ix

List Of figures

Figure 3.2.2 1: System High Level Architecture ... 25

Figure 4.1.1 1: SensorMessagePrototype Structure .. 30

Figure 4.1.1 2: SensorPrototype Model Diagram .. 31

Figure 4.1.2 1: MockSensorPrototype Input Example ... 33

Figure 4.1.2 2: Sample output for the input in .. 34

Figure 4.1.3 1: DatasetSensorPrototype Input Example .. 37

Figure 4.1.3 2: Motion_detection_output.csv instance .. 37

Figure 4.2 1 :Output Protocol Configs .. 40

Figure 5.1 1: State Transition diagram for Workload Generator ... 43

Figure 5.1.1 1: Flow Diagram for Start User Action ... 45

Figure 5.2 1: Exchange Date Model ... 47

Figure 5.2.1 1: ISensorMessageSendService Interface along with its current implementations

class model diagram .. 48

Figure 5.2.2 1: ISensorDataProducerService Interface with its current implementations

diagram .. 51

Figure 5.3.1 1: Produce Mock Sensor Data Flow ... 54

Figure 5.3.2 1: Produce Mock Sensor Data class relation model diagram 56

Figure 5.3.3 1: Produce Mock sensor data flow diagram .. 59

Figure 5.3.3 2: Scenario Management Class Diagram. .. 61

Figure 5.4.1 1: Replay Sensor Data from Dataset Flow.. 64

Figure 5.4.2 1: Replay Sensor Data from Dataset Main Thread Class Diagram 65

Figure 5.4.3 1: Replay Sensor Data from Dataset Thread flow diagram 67

Figure 6.1.1.1: Screenshot from a dataset that measured annual photovoltaic panels data in

Cyprus .. 78

Figure 6.1.1.2: Sensor Modelling Input inside configs_file.json for dataset from 78

Figure 6.1.1.1 ... 78

Figure 6.1.1.3: Screenshot of a dataset that measured beach water quality in Chicago 79

Figure 6.1.1.4:Sensor Modelling Input inside configs_file.json for dataset from Figure 6.1.1.3

 ... 79

Figure 6.1.1.5: Screenshot of a Yellow Taxi Trip Data from NYC dataset 79

Figure 6.1.1.6: Sensor Modelling Input inside configs_file.json for dataset from 80

Figure 6.1.1.5 ... 80

Figure 6.1.1. 7: Road traffic data instance from a dataset for a city In Denmark 80

Figure 6.1.1.8: Sensor Modelling Input inside configs_file.json for dataset from 81

Figure 6.1.2 1: Input file that illustrated the data for the sensor message accuracy validation

 ... 83

Figure 6.1.2 2: Exported first rows data from the temperature_output.csv file exported by

the workload generator for the data accuracy validation experiment based on input in 84

Figure 6.1.4 1: Real topology of scenario ... 87

Figure 6.1.4 2: Emulation topology using Fogify on a virtual machine for the experiments ... 88

Figure 6.1.4.1 2: Base Input file of workload generator for scenario 89

Figure 6.1.4.1 1: StreamSight Query for the average temperature of 5 minutes.................... 90

And
rea

s I
oa

nn
ou

file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788701
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788703
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788704

x

Figure 6.1.4.1 3: Process latency based on the sensor number .. 91

Figure 6.1.4.1 4: Latency of processing for each batch based on the sensors number(sensor

messages number) ... 92

Figure 6.1.4.2 1: StreamSight Query for the average temperature of 5 minutes, grouped by

brightness ... 93

Figure 6.1.4.2 2: Results of experiment for skewed workload .. 93

Figure 6.2.1.1 1: Base Input file for sensor message delay accuracy experiments 97

Equation 6.2.1.1 1 : Equation used in order to calculate the average sensor message delay of

a MockSensorPrototype .. 99

Figure 6.2.1.2.1 1: Graphical representation based on the results in Table 6.2.1.2.1 1 for the

sensor number factor experiment ... 101

Figure 6.2.1.2.1 2: CPU Usage using cadvisor on the hosted application docker container with

2 cores for input sensors number = 1000 .. 103

Figure 6.2.1.2.1 3: CPU Usage using cadvisor on the hosted application docker container with

2 cores for input sensors number = 2000 .. 103

Figure 6.2.1.2.1 4: CPU Usage using cadvisor on the hosted application docker container with

2 cores for input sensors number = 3000 .. 103

Table 6.2.1.2.2 1: Experiment results for generation rate factor .. 105

Figure 6.2.1.2.2 1: Graphical representation based on the results in Table 6.2.1.2.2 1 for

generation rate = 6 s .. 105

Figure 6.2.1.2.2 2: Graphical representation based on the results in Table 6.2.1.2.2 1 for

generation rate = 10 s .. 106

Figure 6.2.1.2.3 1: Graphical representation based on the results in Table 6.2.1.2.3 1 for

generation rate = 2 s in machine with 16 cores ... 108

Figure 6.2.1.2.3 2 : Graphical representation based on the results in Table 6.2.1.2.3 1 for

generation rate = 6 s in machine with 16 cores ... 108

Figure 6.2.1.2.3 3: Graphical representation based on the results in Table 6.2.1.2.3 1 for

generation rate = 10 s in machine with 16 cores ... 108

And
rea

s I
oa

nn
ou

file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788707
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788707
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788716
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788716
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788717
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788717
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788718
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788718
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788719
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788719
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788720
file:///D:/andre/Andreas/PANEPISTIMIO/Master/Thesis/IoT%20Workload%20Generator%20For%20Fog%20Computing/Documentation/Workload%20Generator%20for%20IoT%20devices%20for%20Fog%20Computing.docx%23_Toc60788720

xi

Acronyms

IoT Internet of Things

HTTP Hyper Text Transfer Protocol

MQTT Message Queuing Telemetry Transport

AMQT Advance Messaging Queue Protocol

CoAP Constrained Application Protocol

OS Operation System

JSON JavaScript Object Notation

REST REpresentational State Transfer

URI Uniform Resource Identifier

API Application Programming Interface

QoS Quality of Service

M2M Machine to Machine

IP Internet Protocol

TCP Transmission Control Protocol

HTML HyperText Markup Language

CSV Comma-Separated Values

And
rea

s I
oa

nn
ou

1

Chapter 1

Introduction

 IoT devices transform the physical world into a cyber-physical dynamic

environment. Devices can now connect, interact, collaborate and communicate not

only with humans, but even between them. The later ability creates a new potential to

bring immense value into our lives. Thus, the bidirectional exchange of data between

devices and humans helps us to amplify our abilities, and, consequently, makes our

everyday life easier and more convenient. To this end, a novel IoT application era is

created that boosts multiple sectors such as health care, industrial automation,

transportation, smart-cities and of course our daily personal convenience. Just to get

an idea of the potential use cases of IoT in our daily life, imagine a smart house that

can monitor itself on its own without any human intervention. This smart house, can

consist of smart lambs that can turn off if they are not needed, sensors that can

sense fire or something not normal in the house, or cameras that monitor any strange

behaviour and inform the owner, providing more security and safety to our life, and on

top of that, saving money and energy for a better environment. However, all these IoT

devices and applications produce much more data than their early stages while they

are getting smarter. Recent calculations [1] estimate that every second 127 new

devices get connected to the internet, which results in the estimation that 75 billion

IoT devices will be online by 2025. The later contributes to a parallel increase of the

generated IoT data. For instance, according to a new IDC forecast [2 , 3], connected

IoT devices are expected to generate 79.4ZB of data in 2025 with more than 59

And
rea

s I
oa

nn
ou

2

zettabytes (ZB) of data to be created, captured, copied, and consumed in the world

this year.

 This increased number of devices comes with an increased heterogeneity in terms

of technologies, data types, formats and protocols. The combination of the

heterogeneity and the vast amount of streaming data is one of the main bottlenecks

in application development, testing and evaluation. In addition, with this growth of

interconnected devices, which implies growth of generated data, the produced data

volume rates cannot be controlled in a real testbed. Furthermore, the cost and the

effort needed in setting and deploying hundreds or thousands of IoT sensors are only

a few of the difficulties that users need to face and address for their new IoT systems

to be tested. For a better understanding, let us introduce a representative use-case of

a smart-city application that facilitates in monitoring of the city traffic and notify people

for possible accidents. In such IoT service, distance between sensors, devices,

servers etc, could be tens or hundreds of kilometres with the operator to be forced to

waste a lot of time in order to just set a deployment for testing. Not only that, for a

single change, the operator should redeploy and readjust partially (or even totally) the

system. It is reasonable for this long back-and-forth procedure, to be costly in money

for renting or purchasing the devices, and in terms of time and effort for placing IoT in

their physical locations. In order for the users to bypass the above problems, they are

forced to spend time in writing software-based IoT data generators of diverse

devices, or waste time to find commercial software suites, where unluckily for them,

they are not focusing on IoT data, hoping that they can find the right software to

satisfy each user’s needs. Having said that, the question here, is whether a system

can be implemented, and how, in order to address all the above-mentioned

challenges for IoT applications in fog computing.

 The current thesis answers the above question. In order to tackle all the above

issues, we introduce an all-in-one IoT data generation framework, where the user

And
rea

s I
oa

nn
ou

2

provides a model representation of her sensors’ properties and the system creates

thousands of sensors in order to produce the data that the user’s application could

produce in real life, making easier the integration and testing of real scenarios and

handling the heterogeneity of the sensors nature and properties at the same time. In

addition, our work can also replay real data from CSV datasets, with the ability to

customize them, providing to the user the choice to use the same data from the

dataset or mix real data with users’ preferences and customizations to produce

synthetic data. Another great feature of our framework is that it supports the

heterogeneity found in protocols and data representation of IoT devices. Generated

data can be represented as JSON, XML, TXT etc. and can be published through

HTTP, MQTT or using KAFKA broker. On top of that, users can extend the

functionalities through programmable Interfaces in order to create for example more

output protocols or add more input configuration features. Last but not least,

statistical analysis of the data populated, dynamic change of the data and export of

the generated data to dataset files, in order to be analysed or replayed later on if they

want, are also supported.

 Based on the above supported features the contributions for this work are: 1) A

comprehensive model for describing IoT data generation, 2) a scalable multithreaded

open source framework that simulates as closer to the reality the desired model 3) an

heterogeneous IoT workload generator 4) a system that support experimentation with

real-world scenarios and evaluation of their performance individually, or integrated

with fog or edge emulators.

 The rest of the thesis is structured as follows: In Chapter 2 a basic background

knowledge with some terms and technologies will be introduced in order to get

familiar with the context, along with some related works, while in the

And
rea

s I
oa

nn
ou

4

Chapter 3 the first introduction of the system will be stated, with the requirements and

an overview of the architecture. Chapter 4 presents some basic model mapping

between the input and the entities of the system, but more details and

implementation-wise information can be found in Chapter 5. Experiments and results

for the system evaluation are explained in Chapter 6 and in the end, Chapter 7

concludes the thesis.

And
rea

s I
oa

nn
ou

5

Chapter 2

Background Knowledge and Related Work

2.1 Background Knowledge

2.1.1 IoT

2.1.2 IoT messages protocols

2.1.3 Cloud - Fog - Edge Computing

2.1.4 Fog emulators

2.1.5 Workload Generators

2.2 Related Work

2.1 Background Knowledge

2.1.1 IoT

 Recently, a new era of applications was formed when devices started having

abilities to do more intelligent stuff, exceeding their normal tasks. Devices can now

communicate, learn [4], advise or even act on their own. In order to do more smart

actions, these “smart” devices need to observe, sense and form the state of the

environment they are located at any moment, using multiple sensors, or by

exchanging information with other devices, in a way similar to what we as humans

do, using our senses. These new capabilities for the devices were enabled from

advancements in microelectronics and low-power communication protocols,

improvements in wireless sensor networks, machine learning techniques and other

And
rea

s I
oa

nn
ou

6

 technologies. All these improvements or new techniques gave birth to this novel era

that we call IoT so that it can drive “intelligence” in interconnected smart devices or

portable objects (aka “things”) [5 , 6 , 7].

 The IoT era, brought potential and benefits to numerous sectors of our daily life, and

lifestyle. Health care, industrial automation, transportation, resource monitoring and

management are just a fraction of the benefited sections by IoT. Starting with health

care, mobile tools for telemedicine, remote patient tracking technologies via

wearables, or even unmanned aerial vehicles that can provide help, in conditions that

human lives could be in risk, are just a few examples. Furthermore, smart houses

using monitoring sensors, can monitor themselves in order to reduce energy

consumption, and provide security and safety to the owners. In addition, smart cities

using smart traffic lights and optimized public energy grids can offer traffic monitoring,

improvement of resources consumption and efficiency. In transportation,

interconnected autonomous cars, can drive themselves without human intervention,

using cameras, radars, and other sensors to capture information about roads, traffic,

and to prevent potential accidents. All of the above examples will result in devices

that can be self-controlled, and humans will be released from the stress to monitor

them and the effort do the tasks on their own.

2.1.2 IoT messages protocols

 A challenge for the IoT application developers, is to decide which output protocol

their sensors message will have. The reason for this is that there is no official

standardization yet for IoT devices protocol. Hence multiple data transfer protocols

can be used, for example HTTP, MQTT, AMQT, CoAP etc. each with its advantages

and drawbacks [7 , 8].

And
rea

s I
oa

nn
ou

7

 2.1.2.1 Request-Response Protocols

 2.1.2.1.1 HTTP

 HTTP [9] is the most widely used and known data transfer protocol due to the

internet explosion. HTTP protocol is a request–response application layer protocol in

client-server computing model. Clients (e.g.: a web-browser) send request to the

server, and the server replies with the requested resource in the response. For this

type of protocol, the user must define the request URI endpoint that the HTTP

request will be send to (the endpoint that the server will be listening to), and the

clients or servers’ information (host/IP and port) that has the requested resource. If

web services of HTTP protocol conform the REST software architecture style, which

implies that they are using a uniform and predefined set of stateless operations or

generally follow some global good practises and conventions and a set of constraints

that ensure a scalable, fault-tolerant and easily extensible system, they also can be

considered RESTFull web services.[10]

2.1.2.2 Publish/Subscribe Protocols

 Publish/Subscribe protocols differ from request-response in some basic concepts.

For the publish-subscribe message pattern, we have 2 client entities, publishers and

subscribers. In this design, devices or clients (called publishers) send-publish

messages tagged with a topic. On the other end, other clients called subscribers,

subscribe to topics, and they care about only the messages that are tagged with the

topics they subscribed. Optionally and most of the times, in between there is an

intermediate node, called broker server, that collects the messages from the

publishers, group them based on the topics, and forwards them to the subscriber

And
rea

s I
oa

nn
ou

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Stateless_protocol

8

clients that had subscribed previously to the broker based on the topic. In case that

the broker exists, neither the publishers know which subscriber will collect their

messages, neither the subscribers know from which publisher the data came from. In

the other case, that the optional broker server is not supported, publishers multicast

the messages. The concept overall is that publishers send data using topics, and

these data eventually will be collected from subscribers.

 2.1.2.2.1 MQTT

 MQTT [11] is a lightweight message queuing and transport protocol. It is a publish /

subscribe network protocol with purpose the transfer of messages between devices.

As its name implies, it is suited for transport of telemetry data (sensors and actuators)

and along with its lightweight nature, it is suited for M2M communication and

ultimately for the IoT. MQTT protocol can consists of 2 network entities, MQTT broker

and clients (publishers or subscribers) .The publisher client sends messages to the

MQTT broker tagged with a topic, and the MQTT broker distributes the messages to

clients that subscribed to the topic. MQTT relies on the TCP protocol for data

transmission and can support QoS. QoS is a measurement of the agreement

between a sender of a message and the receiver that guarantees the delivery of the

message. There are 3 QoS levels in MQTT, 1) at most once (sender sends the

messages and does not expect acknowledgement of delivery of the message from

broker or other clients) , 2) at least once (the message is being re-tried until

acknowledgement is received) , 3) exactly one (sender and receiver establish two

level-handshake in order to assure that only one copy of the message was received).

The configurations needed for this output protocol are broker servers’ information

(ip and port) that the data will be published to, and the topic that they will be

published to.

And
rea

s I
oa

nn
ou

9

 2.1.2.2.2 KAFKA

 KAFKA [12 , 13] is not an output protocol, but more accurately an open source

streaming platform currently supported by the Apache Foundation. It uses the

publish-subscribe message pattern and has similarities and same concepts as

MQTT. KAFKA’s biggest different from MQTT protocol, is the scalability provided

through the distributed and persistent data preservation, since KAFKA was designed

to handle huge amount of streaming data. KAFKA also depends on Zookeeper.

Zookeeper is a top-level software developed by Apache, and keeps track of the

status of KAFKA cluster nodes, partitions, topic subscriptions etc. Asides from their

differences, they share plenty of the information required in order to achieve data

transfer. Users need to provide KAFKA broker servers information (port and ip) as

well topics for the messages.

2.1.3 Cloud - Fog - Edge Computing

 In order for devices to intercommunicate, and learn, they need data that is

previously generated and collected, and can be accessed from everywhere. All these

data produced are being stored in the cloud. Cloud or cloud computing [14] is the

availability of computer system resources (computing power and data storage), at

any time, in which the user does not have direct management access . All the

generated data can be stored using cloud computing, on datacentres all over the

world, and can be accessible through the Internet at any time. The distance between

a machine that wants to retrieve some data, and the cloud server that has these data,

can vary, in worst case, it could be some continents away. Nowadays, a lot of

applications are time critical that cannot afford the latency created by the distance of

the machine that stores or is needed to process the data in order to return the desired

information. This latency can downgrade the performance for these time critical

And
rea

s I
oa

nn
ou

10

applications or even make them useless, if they need to process data in real

time (some connected/driverless transport applications for example, where split-

second reactions may be essential). On top of that, IoT devices export huge amounts

of raw data that they record every second, from which only a small fraction can be

useful, increasing the data traffic around the internet, creating network congestion

which will result to more latency to retrieve the desired information.

 This increasing data rate and real-time analysis requirements create the need of a

new approach to address them. From these requirements, edge and fog computing

[15 , 16 , 17] emerged. The basic idea behind these new approaches is bring the

processing as closer to the user device or application as possible, by placing some

intermediate nodes between the cloud servers and the devices or even on the

devices. With this technique, we aim to bridge this huge gap between end devices

and the cloud servers, to minimize the latency and also handle properly the data

stored to be only the valuable ones, to earn cloud storage.

 Fog computing [15], is the method to place processing nodes, geographically in

between the devices and the cloud servers. This new layer of processing, located

between the devices and the cloud, consists of the fog nodes. In the lower level of the

fog layer (closer to the devices), we can often find low-capacity machines that are

located in the local network of the devices, and by moving from lower to higher level

in the fog layer, the capabilities and the processing power of the fog nodes is being

increased, where in the top level we can find the cloud, that has theoretically

unlimited processing resources and capabilities. The purpose of this newly created

layer, is to process as much as possible the incoming data stream produced by the

devices, with the goal to handle the problem of latency in processing for time-critical

services, such as an autonomous car service that cannot afford processing in

geographically-far nodes, and on top of that with this “local” processing, is being

implied that the amount of data sent to the cloud is being reduced, cutting out

And
rea

s I
oa

nn
ou

11

unnecessary data transfers, simplifies cybersecurity, decreases network and system

response times and network congestion.

 An even more enhancement of the fog computing approach is edge computing,

which is the movement of the processing on the devices, eliminating even more the

latency from applications to the fog nodes. This processing that can happen on the

end users devices, would be the best solution, but usually edge nodes lack capacity

and processing power in comparison to fog nodes, in order to make them more

usable, practical and feasible (a mobile phone or sensor with more resources usually

implies bigger size and to be more expensive).

 This rising combination of edge and fog computing will support users' needs for

greater performance and at the same time reduce the big data problem that it is

meant to grow within this new IoT era.

 2.1.4 Fog emulators

 Fog and edge computing brought some challenges to for users that want to develop,

deploy and test their IoT applications. In order for operators to just evaluate a single

scenario of their IoT application in fog, they need to purchase, place, program and

deploy the sensors, where this long procedure costs them in terms of money,

valuable time and effort. In addition, this whole procedure needs to be reproduced for

maybe each different testing scenario. These challenges for fog operators can be

addressed by emulating the application instead of real deployment of testbeds.

 Emulators are hardware or software tools that can realize or represent the

behaviour of an application or a system at a host device or host infrastructure by

minimizing the real deployment cost. These systems are useful due to the ease that

And
rea

s I
oa

nn
ou

12

the user can manipulate the input or the state of a runtime application. Their main

functionality is to represent the behaviour of the application, before it can be used in

the real context, with users achieving less time and cost waste, as well as effort.

 Fog-computing emulators need to be able to provide an execution environment that

captures realistically the conditions and behaviour of a Fog application deployment,

focusing on resource heterogeneity, controllable failure scenarios, scalable

experimentation and monitoring capabilities. Fogify [18], is an example of a

framework for fog-applications emulation, that aims in emulation of fog applications

with the minimum effort for the users. Beyond the ease of the set up for the

emulation, Fogify also supports runtime monitoring, assessment of deployment,

resource and link heterogeneity and scheduled scenarios that can provide run-time

changes for more wide test cases. Using the containerization infrastructure of both

this work, and Fogify framework, the workload generator implemented, can be used

perfectly along with Fogify, in order to provide a complete fog computing emulator,

than can emulate and produce IoT devices data, providing a powerful tool to any IoT

fog application developer with the ability to deploy, experiment, inject faults or

different scenarios’ data stream and finally test their fog applications before

introduced to public.

2.1.5 Workload Generators

 Fog emulators cannot generate data, not without a workload generator. Workload

generators are software tools with purpose to generate synthetic workload for a

benchmark or a real application in order to emulate the behaviour of end users.

Usually, the input to such softwares are some models or properties regarding the

nature or the required data that will be generated. The workload to be generated can

And
rea

s I
oa

nn
ou

13

be data or even random calls just to stress an application and see how it would

handle enormous amounts of requests that could happen in real life. There are a lot

of types of workload generators, based on the application nature or the context of the

application. Some main categories of workload generators are web-based systems’

[19] workload generators, database workload generators, CPU stress workload

generators etc. Maybe the biggest and most used category nowadays is the web-

based workload generators, due to the explosion of the internet applications and

trends. For the context of this thesis, an IoT workload generator for fog computing will

be described.

2.2 Related Work

 The need for data generation frameworks, capable of modelling and generating rich

data distributions from real-world data, was an open issue even before 2000s [20].

The first attempts to solve this problem came from the data management community

[20 , 21]. These solutions provide domain-specific languages for dataset descriptions

and well-implemented systems for dataset generation. However, they lack in the

generation of streaming data, and most of these solutions are not web-based.

 While the computations are being migrated from Cloud towards network Edge, it

makes the process of evaluating computing systems even more challenging [22] and

on top of that, the lack of comprehensive datasets leads to a need for synthesizing

various datasets [23 , 24]. Covering this need, will also identify verification and

validation of software, optimization of algorithms, and augmenting existing data with

synthetic, as the benefits of synthetic data generation in an industrial IoT scenario. A

And
rea

s I
oa

nn
ou

14

recent attempt at datasets synthesis, is proposed in [23], where authors create a

synthetic dataset from trajectory data, hotspot locations, and Wikipedia traffic.

Similarly, Spaten [25] combines data from social media, POIs, and configurable

parameters to create large synthetic datasets. Interestingly in [26], authors utilize

Hadoop in order to implement a scalable generator of IoT data. The distributed nature

of the system guarantees fast and large-scale execution, while the generated

datasets reach thousands of gigabytes in size. However, all the above solutions lack

generality, generate static datasets not streaming data, and are not easily extensible.

 On the contrary, ELIoT [27] is an emulated IoT platform that provides out-of-the-box

specific IoT sensors, like weather sensors, and emulates them realistically.

Furthermore, Resense [28] is a system capable of replaying captured data from real

sensors. Specifically, Resense captures real data from sensors and, when the user

needs to reproduce them, it emulates "fake" sensors on edge devices, like

raspberries, re-producing the captured IoT data. Even if those systems provide

streaming generation of the data, are not easily extensible or are tailored only to

specific sensor types.

 Beyond the publications and research papers, plenty of commercial and

professional tools and projects exist in repositories or on the internet that can

generate specific IoT data. Httperf [29], for example, is a general purpose widely

used tool for measuring web server performance, which also provides an embedded

workload generator that produces HTTP requests. It is used mostly to stress a server

with HTTP heavy workload in order to see the performance under a heavy number of

requests. On the other hand, If the user wants to use MQTT protocol for the output

messages, he can use for example the aws-iot-mqtt-load-generator 1 project that

works ideally for IoT devices and MQTT output protocol. This system supports some

1 https://github.com/amazon-archives/aws-iot-mqtt-load-generator

And
rea

s I
oa

nn
ou

15

nice features, like Random generation functions that can be used for numbers by

giving min and max values or generating text by using input weights to manipulate

the random text generation or even expressions functions to generate the data.

Furthermore, Apache JMeter 2, is an open source application designed to measure

performance initially for web applications, but it has been expanded to support other

test functions. One of the key features of JMeter, is the ability to process and

evaluate HTTP calls, simulating the users submitting request to servers, and can

measure the performance of the servers response times along with other metrics

provided in user created tests. It can be extended, and configured and in addition can

extract and process data from different response formats such as JSON, HTML,

XML, etc . On top of that, it can send HTTP requests including payloads declared by

the user and can also send requests with other output protocols using plugins. Even

the tool provides numerous important features, and fulfils more than enough

requirements and needs of a lot of web-based users, it cannot be easily used for

generation for sensor-wise data stream, based on users sensor models. This is the

most important reason that is not ideal for our context, since the support of a

realization model that can comprehend the sensors, along with the generated data,

based on user’s model configurations, is mandatory for IoT application evaluation on

emulators. All the above systems are decent, and can cover some or all of the needs

of some users, but are not ideal for IoT applications or lack generality, which implies

that many other IoT application users will not be benefited for emulation of their

applications on fog or generally. On top of that, most of them are not extensible, and

only few support multiple output protocols. Having said that, the wide range of

protocols that IoT devices can use to exchange data (AMQP, CoAP, MQTT, HTTP

etc.) [7 , 8], enhanced by the non-standardization for IoT data protocols and the wide

area of context for IoT application use cases, are creating extra challenges for the

2 https://jmeter.apache.org/

And
rea

s I
oa

nn
ou

16

users to find the ideal workload generator, especially if their system supports multiple

IoT data protocols, or different specifications. The difference between all the existing

work, and this implementation, is the support of the Heterogeneity existing under a lot

of pillars in this novel IoT era (one of the most important is the support of multiple IoT

output protocols), the scalability provided in terms of load generation, the ease of

integration with fog computing emulators or simulator systems, or even individually

and finally, the combination of a comprehensive sensor realization model with the

provision of a general data stream generation framework that can be used or easily

extended from different users or operators to cover all their needs, regardless of the

use case or application specifications under the IoT context.

And
rea

s I
oa

nn
ou

17

Chapter 3

 System Description

3.1 System requirements

3.1.1 Heterogeneity

3.1.2 Sensor Model realization

3.1.3 Accuracy

3.1.4 Extensibility - Configurability- Customization

3.2 System overview

3.2.1 System Capabilities and functionalities

3.2.2 High Level System Architecture

 In this chapter, the requirements that an IoT workload generator should have will be

described, as well as an overview of the implemented functionalities and features of

the system will be introduced.

3.1 System requirements

 3.1.1 Heterogeneity

 The rise of the era of IoT, brought some challenges for users that want to deploy

their IoT applications in a fog environment. The amount of different contexts of

And
rea

s I
oa

nn
ou

18

applications, the lack of standardization in IoT protocols, and the wide range of

different sensor properties, amplifies the support for heterogeneity in different levels,

for IoT data generators. Users should be able to use a workload generator without

restriction to their application context or their sensors’ nature. On top of that, a decent

workload generator should be able to support multiple data representations, or

formats and ideally to be easily extensible for the developers to include more in the

future. A normal fog application could consist of multiple different IoT devices and

sensors, that each one could communicate with different output protocols. This

common scenario should not force the users to use different workload generators for

each sensor protocol, neither to limit their application’s universal testing into divided

test cases.

 3.1.2 Sensor Model realization

 One of the main requirements of an IoT workload generator is to be able to

represent sensors as close as possible to reality. In order for this to be achieved, an

accurate and representative realization model should be supported. Users firstly,

need to extract the essential properties of their future emulated sensors from

statistics of already exported real sensors data, or at least provide an estimation of

the properties for their desired sensors. This should be the only action needed from

the users, since after extracting and acquiring these properties and configurations,

they should be able to easily provide these properties of the sensors in an abstract

model that describes accurately or with approximation the real sensors, and the

system to comprehend and realize the future created and emulated sensors, as real

sensors that export real data. An ideal model realization should be able to support not

only the common sensor properties shared by multiple different sensor types, but on

top of that to support also the unique tailored properties or configurations for any IoT

And
rea

s I
oa

nn
ou

19

sensor. This would provide the ability to any IoT application user, to describe his IoT

sensor’s essential attributes and properties, and provide them to the system that

would eventually emulate the sensors accurately, and produce data as close to the

real data produced by the real sensors.

3.1.3 Accuracy

 One of the most essential requirements of an IoT workload generator is the

accuracy of the data generated from the emulated sensors. The accuracy can be

divided in 2 categories, the accuracy of the values of the generated data and the

accuracy of the time that the data will be produced, or replayed. Having said that,

firstly it is needless to point out the importance of the accuracy regarding the

generated data stream from the workload generator. The workload generator should

produce data that match and correspond to the configurations of the model provided,

which implies that the emulated generated data could be data that the actual real

sensors could produce. Beside the correct sensor emulation and accurate data

production, workload generators should also be able to handle time-sensitive

applications. The data generation rates in these kinds of applications should be

retained with priority, in order for the users to test their application more correctly for

real scenarios. On top of that, for the emulation of a timestamped dataset, it is

redundant to point the importance for accurate message time population. In cases

that users have the luxury to use exported datasets of real sensors, it is mandatory

for the system to be able to replay the same exported data as they are being

exported from the dataset.

3.1.4 Extensibility - Configurability- Customization

And
rea

s I
oa

nn
ou

20

 It is not a mandatory requirement, but a workload generator that supports extensible

architecture or customizable configurations, is a more powerful tool, and of course

more appealing to the users. Extensible interfaces that guide the user to expand

functionalities or add new features, create the potential for users to be able to

customize the workload generator to fulfil their more specific needs. Furthermore, it is

more useful and user friendly that the developer doesn't need to change manually

things for each test or run. A system that supports configurable properties provides a

more dynamic behaviour that boosts flexibility.

 3.2 System overview

 In this section, a first introduction to the system will be happen, stating and briefly

explaining the capabilities of it, along with the main implemented functionalities and

features. Then, a high-level overview of the framework architecture will be described,

with introduction to its main components.

 3.2.1 System Capabilities and functionalities

 The system is a data generation framework that is capable of 1) producing IoT data

stream based on users’ configurations as much general as possible, by supporting

the heterogeneity found in different IoT devices in terms of data representation,

output protocols and message formats, and 2) to reproduce real sensor data from

CSV dataset embedded with user customization, in order for any user to be able to

test his IoT application’s behaviour and performance, before real public deployment,

And
rea

s I
oa

nn
ou

21

easily, with convenience and accuracy. More specifically, the system has two main

implemented functionalities, 1) the ability to produce mock data by emulating IoT

sensors, based on the user’s provided sensor models and configurations, and 2) the

ability to replay sensor data from provided CSV datasets.

 For the first main functionality, the user provides through the input, properties and

configurations about his real sensors (e.g.: type of the sensors, how often should

each type of sensor be generating a new sensor message, the fields that each

sensor message will be consist of, the format of the message etc.), along with

execution information (the amount of desired sensor to be created, the output

protocol of each generated sensor message etc), in order for the system to emulate

the desired sensors, and start producing mock data. On top of that, the system can

export the generated sensor data stream to TXT or CSV output files, along with

statistics for later use. Another powerful tool for this main functionality is the ability to

alter data population for specific sensors during runtime, with declared by the user

scheduled actions, called scenarios. Using these scenarios, the system can schedule

some events that can occur at a specific time in the future, after the system started

producing data, and these scenarios can trigger the alternation of the values for the

future generated data for specific sensors, in order that the desired sensors will

produce different data for a period of time, or follow a different data population

method (more on this later).

 Regarding the second main implemented functionality, the system can reproduce

sensor data from CSV dataset, in which dataset are stored the exported sensor

messages from real sensors. Beyond the simple action to replay the data exactly like

they exist in the dataset, the system supports some extra features for this

implementation. The framework can ignore the timestamp of the dataset sensor data

if the user provides a custom generation rate, and replay the data based on the

custom generation rate. In addition, the framework can sort the dataset using external

And
rea

s I
oa

nn
ou

22

sorting3 and finally it provides the ability to enhance the replayed sensor messages

from the dataset, with runtime mock populated values for the fields of each message,

using part of the implemented features of the first main functionality (produce mock

data).

 Beyond the two main functionalities, the framework supports some extra features.

To begin with, It supports heterogeneity in data population, by generating data using

different data representations (Double, String, Integer, Boolean, Object), different

sensor message formats (JSON, TXT, XML), different output protocols (HTTP,

MQTT, to KAFKA broker) and different data population methods (using constant

values, random number generation between number range, following normal

distribution or probabilistic distributions). Last but not least, the framework, provides 2

fully extendable interfaces, one for input (to add more main functionalities beyond the

2 already implemented - produce mock data, replay data form dataset) and one for

output (to output to more output protocols, beyond the 3 already supported - HTTP,

MQTT, to KAFKA broker), that any developer can extend in order to add even more

features and fulfil his own specific needs.

 Overall, the framework can provide generation of mock or synesthetic IoT sensor

data, and replay real sensor data.

 3.2.2 High Level System Architecture

 In general, the system consists of some input functionalities, along with some output

functionalities. In this section, we will see the hight level architecture of the system,

and explain the flow, in high level.

3 https://mvnrepository.com/artifact/com.google.code.externalsortinginjava/externalsortinginjava/0.4.5

And
rea

s I
oa

nn
ou

23

Figure 3.2.2 1 depicts a high-level overview of the system’s architecture in a

representative flow of the initialization and the start of generation of sensor data

stream. The architecture can be divided in 3 different layers, the Control layer, the

Emulation layer and the Output layer. The Control Layer is responsible to handle

and verify the input of the user, and pass the processed input to the emulation layer.

The Emulation layer, which consist of multiple emulation instances, each one

generating data according to tis implementation, produces the data stream, and pass

it to the output layer. Finally, the Output layer, will forward the generated data stream

to the user nodes, through the desired output protocol.

 More specifically, the deployment starts with the users creating and providing the

needed input files to the system. The framework in order to successfully start

producing data, requires some files. The first file that is mandatory, it’s called

configs_file.json, in which the user has to provide information about the sensors,

the output protocol and output nodes. Optionally, the user can provide a configuration

file called workloadGenerator.cfg that stores key-value pair of runtime properties,

and finally the datasets if he demands from the framework to replay data from them.

Once the user has prepared the files and provided them, he can start the workload

generator through the controller's API, and then the Controller parses the files and

verifies their validity. More accurately, it evaluates if the configurations are

syntactically correct, if all the mandatory information are provided and ensures that

there are enough available underlying resources for the IoT devices emulation. If any

inconsistency exists, the Controller returns an error message to the user and

terminates the process. Otherwise, the Controller establishes connections with the

output nodes from the input, that the generated data stream will be send to, and

using the Coordinator service, instantiates the emulated IoT instances by invoking the

related interface method for all the desired implementations through the Class

And
rea

s I
oa

nn
ou

24

invoker and providing to each one the required parsed and processed configurations.

After that, each emulator instance, using the required processed information provided

by the Coordinator, it will do its internal validations and will start generating sensor

messages, based on its implementation. With the interfaces on hand and hosted in

every emulated IoT instance, each of the emulation instances is responsible for their

own threads, creating one thread per sensor and monitoring and coordinating them,

where a sensor thread simulates a sensor connected to the emulated IoT device.

Furthermore, a sensor thread generates values based on descriptions provided by

users or can just replay IoT data saved in CSV files. At the same time, the system

collects statistics from the emulation layer and the generated sensors’ data. Thus, all

produced data from the emulation instances are collected, and users can perform a

post-execution analysis so as useful insight statistics to be created and exported or

even users have the option to "replay" the same experiment in the future. Lastly,

every emulated instance, packages the sensors' data into messages and propagates

them to the output layer, which will handle the transfer to the required output

destination nodes. With the messages received, the output processor is responsible

to invoke the appropriate output protocol interface implementation for each message

based on the user's description and disseminates the message to the proper

application service through the defined channel (pub/sub, HTTP, etc.). Finally, all the

produced data streams will be populated to the user’s application.

 And
rea

s I
oa

nn
ou

25

Figure 3.2.2 1: System High Level Architecture

And
rea

s I
oa

nn
ou

26

Chapter 4

 Model Mapping

4.1 Modelling of IoT Sensors

4.1.1 Input file, Sensor Prototypes & messages

4.1.2 Produce Mock data feature modelling

4.1.3 Replay data from dataset feature modelling

4.2 Output Mapping

 In this chapter, the modelling of sensors, output and generally information for the

input configs_file.json will be explained, along with file instances for real life

scenarios applications.

 In order to demonstrate more easily the input file attributes, let us consider a

scenario in which we have a company, that wants to create and sell an application

that aims to provide safety and security to the owner of a smart house. The

application will be monitoring, and processing sensors’ data produced by IoT devices

in every room for a smart house and eventually will notify the owner of the house on

time, if the house is under a physical or technical threat. Some threats for example

would be a random fire at the house (could be detected through smoke detection and

temperature sensor) or someone (maybe a thief) is in the house when the owner is

not at the house (motion detection sensors). The idea here, is that all the needed

sensors (motion detection, smoke detection, temperature sensors) will be constantly

and continuously monitoring and populating the monitored data in order to represent

And
rea

s I
oa

nn
ou

27

the state of the house at any given time. The application on the other end, will be

collecting and processing all the generated data stream from the sensors, and will

have the logic to understand when the house is under a threat, or something is not

ordinary. Due to the importance of the time needed for these continuous streaming of

data to be processed (if there is a fire at the house, the user must be informed as

soon as the processing detects that from the data), the company cannot afford to let

the processing happen in the cloud (due to the latency that the data will need to be

transferred), so it should place an intermediate node with enough resources to do the

processing geographically closer to the house owner’s region, using the fog

computing concept and then the node would inform the user for any unfortunate

event on time. This application could provide safety and security for the owner of the

house at any time regardless if the owner is at home or not.

 After the company has developed the application, of course it needs to test it

through various scenarios, to evaluate the performance, and that indeed the user is

being informed on time! For these testing scenarios, the company will need plenty of

data to be produced according to each scenario or time period in the smart house. To

this end, the company would be forced to go find and maybe rent, a house near to

the fog node that the company owns, purchase all the above sensors, place them in

the house, and program them or use them to provide data for each scenario. On top

of that, every time that the company wants to test a different scenario, or use different

types of sensors, it needs to do the same procedure again (remove the old sensors,

purchase, locate and set up the new ones) for all the different testing scenarios. The

long procedure of redeploying and adjusting each sensor for each testing scenario,

results in waste of valuable effort, time and money.

 It would be way easier, if the company could monitor and extract statistics for a

single scenario, or at least create a basic estimation for the sensors, and provide this

model to a workload generator, which will generate automatically data based on this

And
rea

s I
oa

nn
ou

28

input sensor model. With this approach, the company could just edit he input

properties of the sensors models for each scenario, without the need to redeploy or

do some extra effort to place or change the real sensor, which will result in less time

consuming and cost-free solution. All the actions that the company should do is to

find, create a sensor model, and provide this model description to the system. Of

course, it will need some time to extract the sensors properties from real sensors, (in

order to achieve this, maybe it should collect statistics or at least have an idea of the

populating behaviour of the properties of the sensors). An example based on the fire

scenario, the company could try to set real fire at some safe place, and monitor the

average behaviour of the temperature sensors, by giving emphasis to extract the

alternation of the temperature, in order to have an estimation of the range for this

scenario. Then, it could provide these statistics to the workload generator model,

which will also alter the population of the temperature sensors, accordingly to the

statistics for the real fire. In addition, the company could also provide the exact real

monitored temperature sensor from the fire experiment, and the system can replay

them customized. This way, the company would only need to find and provide the

input with the sensors descriptions, and the framework will output all the generated

data straight to the company’s application or node for faster process.

 Having explained the tremendous benefits for the application users using such a

tool, let us move deeper into how the users could provide the model description,

according to their desired sensors properties.

4.1 Modelling of IoT Sensors

And
rea

s I
oa

nn
ou

29

 In this first chapter, all the sensor related mapping will be described, along with

examples based on the above real-life scenario.

4.1.1 Input file, Sensor Prototypes & messages

 In this section, we provide details about the modelling of the IoT devices and the

sensors that the user should provide to the system. More precisely, the user needs to

provide a JSON file called configs_file.json that includes the properties and the

output messages' structures for every emulated IoT device and sensor. The structure

of the JSON file starts with a root field, called configs, and one of the child fields of

the configs root field, which is called sensorDataConfigs has all the information

related to the sensor modelling. In this field a list of sensorPrototypes should be

provided. A SensorPrototype is an abstract representation of an emulated sensor

type / IoT device and holds information regarding sensors for the same type. For

example, if we have 2 different sensors types (temperature sensor and pressure

sensor), the system would require 2 sensorPrototypes, one of each sensor type.

Currently, the system materializes two implementations for the SensorPrototype,

namely, the MockSensorPrototype that represents artificially created sensors and

generates IoT data based on user-provided patterns, and DatasetSensorPrototype

that is able to replay an existing IoT dataset. Of course, the user can provide a

mixture or a combination of the SensorPrototypes implementation in each scenario’s

input. We should note here that users are free to introduce new SensorPrototypes

implementations by following the SensorPrototype abstraction class so as to

implement user-driven functionalities in their emulation. In both prototypes, some

attributes are common, like the sensorPrototypeName, which is mandatory for both of

the materializations because is been utilized by the system as the identifier of the

emulated device type, the GenerationRate that is the frequency of the data

And
rea

s I
oa

nn
ou

30

production and can be either static or dynamic, and the sensorMessagePrototype

that provides information about the structure of the output messages. More precisely,

SensorMessagePrototype stores the properties for each sensor message fields,

message format, and populated values that the sensors will produce.

Figure 4.1.1 1: SensorMessagePrototype Structure

 In Figure 4.1.1 1 we can see the structure of the SensorMessagePrototype. The

type attribute states the type of the message format that the message will be

constructed and sent to the output node. Currently, XML, JSON, TXT types are

supported. Moreover, each sensor message can have multiple fields, hence the list

fieldPrototypes is introduced. In a FieldPrototype, the user declares the name of the

populated field, the populated value type (String, Boolean, Integer, Double, Object),

information regarding the method of the future populated value, and optionally the

unit for the populated values. What is more, a sensor message field value, can be

created using some existing data population methods. The currently implemented

data population methods are using constant values, random number generation

between number range, following normal distribution, or finally following probabilistic

distributions. The first 2 methods (constant values, random number between number

range), were chosen because they correspond to the basic and most simple data

population methods, that a user can use if he does not knows the exact sensor

properties population behaviour yet, but he knows an approximation or a range of the

And
rea

s I
oa

nn
ou

31

values. On top of that, the system was enhanced with 2 more advanced and useful

data population methods, the normal distribution (that uses mean and deviation) and

probabilistic distributions (that uses key pair values of the actual value and the

probability for this value to happen) in order to support data population that was

exported using statistics. Of course, user can add more advanced data population

methods, according to his needs.

 Beyond the above-mentioned common properties each SensorPrototype subclass

offers its own tailored properties which can be seen in the Figure 4.1.1 2

Figure 4.1.1 2: SensorPrototype Model Diagram

And
rea

s I
oa

nn
ou

32

4.1.2 Produce Mock data feature modelling

 The implementation of the materialization of the SensorPrototype for the produce

mock data by emulating sensors functionality, is the MockSensorPrototype . For

this implementation, the user beside the common attributes that all sensorPrototypes

share and stated above (sensorPrototypeName, generationRate,

messageSensorPrototype) which are all mandatory for this materialization he should

also provide some other runtime information about the emulated sensors that will be

created. Initially, sensorsQuantity defines the quantity of the emulated sensors that

the system will create for the each specific MockSensorPrototype (for example if the

MockSensorPrototype with sensorPrototypeName “temperature_Sensors” has

sensorsQuantity = 2, it implies that the system will create 2 temperature sensors).

Optionally, users are able to declare an output file name (outputFile) that all the

produced data streams from sensors of the same type (same MockSensorPrototype)

will be exported. In this way, users can perform post-analysis or repeat the

experiment later. Finally, users are able to introduce scenarios under each

MockSensorPrototype, which are simply time scheduled alterations of the running

emulated sensors. With the Scenarios users perform more complex and realistic

experiments without the need of redeployment of the whole emulation at the

emulation phase. Each scenario has a scenarioName as identifier and will perform on

the sensor with sensorId of the MockSensorPrototype. The scenarioDelay and the

scenarioDuration identify the time that the scenario will be executed from the

beginning of the experiment and the duration of it, respectively. The

scenarioFieldValueInfoList depicts the effects and value changes that the sensors will

And
rea

s I
oa

nn
ou

33

experience at the duration of the scenario. Specifically, scenarioFieldValueInfoList is

a list consisting of the fields (sensorFieldScenarioName) of the sensor that will

change and their new value (sensorFieldScenarioGenerationRate) for the period of

the scenario.

Figure 4.1.2 1: MockSensorPrototype Input Example

And
rea

s I
oa

nn
ou

34

 Figure 4.1.2 1 illustrates an example input for 1 MockSensorPrototype. In this input,

we have the “temperature_sensor” MockSensorPrototype. The system will create 2

emulated temperature sensors, that each one will be generating new data per 5

seconds. All the output data stream of the 2 sensors will be exported to the

“temperature_sensors.csv” file. Each sensor will be generating data, that consists of

2 fields (temperature_in_celcius, temperature_in_farenheit) and each generated

message will be of XML format. These 2 fields will be having double values

(temperature), following the normal distributions provided, along with their unit. Also,

in this input we have 2 scenarios of fires that will take place in two different rooms.

For instance, in the first scenario, the values of the temperature sensor 1 will be

increased up to 50 Celsius degrees at the 7th second of the experiment for 10

seconds, while in the second scenario, the temperature of the sensor 0 will be

increased up to 43 Celsius degrees starting from the 9th second of the experiment for

10 seconds. Figure 4.1.2 2 illustrates the initial generated data from

temperature_output.csv file, based on the input in Figure 4.1.2 1 .

Figure 4.1.2 2: Sample output for the input in Figure 4.1.2 1

And
rea

s I
oa

nn
ou

35

4.1.3 Replay data from dataset feature modelling

 For the other main functionality of the system, the ability to replay sensor data form

dataset, the implementation materialization of SensorPrototype is called

DatasetSensorPrototype. Here, users need to provide a DatasetSensorPrototype

(under the sensorPrototypes field inside the configs_file.json) for each dataset (real

sensor exported data). Each CSV datasetFile, will have recorded real sensor

messages for each sensor prototype individually, that they will be replayed from the

system including the ability to be expanded. The dataset should have real sensor

messages in each row - record (every column will represent the value for each field)

that will be attempted to be replayed using the timestamp column

(timestampColumnName) of the row (sensor message) if the dataset is being

timestamped (timestampedDataset), or user's preferences (generationRate) can be

used, for each sensor message (records of dataset) time interval. In the first line of

the CSV dataset, the names for each field (column) will be declared in order for the

system to be able to do some more advanced and customizable processing for the

data. Some more features for this input method are that the system can also sort the

dataset using external sorting 4 if the dataset is not sorted (declared by

sortedDataset) using a timestamp field and format (timestampFormat) provided in the

configuration file and can send specific fields from each record

(sensorMessagesFields) that the user desires (maybe all of them, none or some of

them separated by comma). In addition, users can add more fields, so that the

system can generate mock data using the messagePrototype field inherited from the

SensorPrototype. These extra fields will be created on runtime. For datasets that

4 https://mvnrepository.com/artifact/com.google.code.externalsortinginjava/externalsortinginjava/0.4.5

And
rea

s I
oa

nn
ou

36

support exported messages for multiple sensors (of the same type) each sensor

message can be mapped to the specific sensorId using the sensorIdColumn. Finally,

if exportGenerationRate is set as true, the system will export the characteristics of the

DatasetSensorPrototype, as a ready MockSensorPrototype configuration, so that the

user can provide it to the other input feature to create mock data for the sensor

type. With all these capabilities, users can replay data from CSV dataset, with

customized features (add more fields, send less fields, edit the generation rate etc.)

and test her application with real dataset with the ability to edit or adjust it for multiple

desired scenarios.

 In Figure 4.1.3 1 the we can see an example of input for DatasetSensorPrototype.

The instance is regarding the “motionDetection” sensors. Before moving to the next

fields, let us have a look at some rows of the input dataset file which will be replayed

(“motion_detection_output.csv”) which can be seen in Figure 4.1.3 2. In the rows of

the CSV file, we can see the recorded messages that the company for example

already exported from real sensors. The recorded messages have one field called

“movement” with boolean values.

And
rea

s I
oa

nn
ou

37

Figure 4.1.3 1: DatasetSensorPrototype Input Example

Figure 4.1.3 2: Motion_detection_output.csv instance

And
rea

s I
oa

nn
ou

38

 In the input instance (Figure 4.1.3 1), we can see firstly that the dataset is

timestamped (timestampedDataset is true) and the dataset is already sorted

(sortedDataset is true). This implies that, when the dataset will be attempted to be

replayed, each sensor message (each row) will be reproduced based on the

timestamp column with name “Timestamp” (timestampColumnName) of each row.

The first message to be replayed (the first row with data in this case), will acquire the

current date, and each following sensor message will be replayed based on the

difference of the first row, and the difference of the timestamps of the 2 continuous

rows of the dataset. So for example, if the first row was replayed at time 18:22:12

from the workload generator, this means that the next message will be replayed at

the same time (13:12:16 -13:12:16 = 0 seconds) but the 4th sensor message with

timestamp 13:12:21 will be replayed after 5 seconds (|| 13:12:16 -13:12:21 || = 5

seconds), which means at 18:22:17 time of the workload generator. On top of that, it

is visible that each message reproduction will be for the specified sensor in the

column “sensorID” and that none of the fields of the CSV file will be used in the new

replayed messages (sensorMessageFields is empty). Instead, each replayed

message will be enhanced with mock fields that will be generated at runtime using

the messagePrototype (Field “motionDuration” will follow probabilistic distribution,

with 70 % probability to generate an integer between [0 .. 1], 25% probability to

generate integer between [1 .. 2] and 5 % probability to generate an integer between

[2 .. 4] - Field “motionDistance” will be populating double random values between the

range [0.0 , 2.0]) and each reproduced message will be of JSON format.

And
rea

s I
oa

nn
ou

39

4.2 Output Mapping

 In the input configs_file.json file, users should also provide information regarding the

output protocols and destinations that the generated streams will be sent to. Besides

the Sensor input implementations, and the different messages type format supported

(JSON, XML, TXT) the system supports an extensible interface for output protocols.

Currently supports 3 output message protocols (HTTP, MQTT and using KAFKA

broker) and their configurations’ implementation, but users can easily expand the

system to support even more protocols by just implementing the output sensor

protocol interface.

 Regarding the output protocol information, the user must first declare the output

protocol under the configs root field, inside the input configs_file.json that the

messages will be sent with to the output nodes. Beyond that, users must provide the

exclusive configurations for the declared protocol under protocolConfigs along with

output nodes information.

 In the Figure 4.2 1 we can see all the output information that the user must provide.

The protocol is mandatory and must be one from the supported implementations and

below we can see the configs needed for each protocol. (user should provide one key

with protocolConfigs matching the output protocol’s required information)

And
rea

s I
oa

nn
ou

40

Figure 4.2 1 :Output Protocol Configs

 User must provide the corresponding configs for the protocol he declared under

protocolConfigs. For the HTTP protocol, the user must provide the request endpoint

(requestURI) that the messages will be sent to. Besides that, user should provide a

list for httpServers that each sensor message request will be attempted to be sent to.

For each httpServer the serverIp and serverPort are required. For the supported

publish-subscribe protocols, the configs required are the same. For MQTT and

KAFKA protocol, users must provide a list of brokerClusters details (list of MQTT

broker serverPort and serverIp), and the for the Kafka related configs a list of

kafkaBrokerClusters respectively. Finally, for both publish-subscribe protocols, the

topic should be provided.

And
rea

s I
oa

nn
ou

41

Chapter 5

 Implementation Details

5.1 Main Users actions

5.1.1 Start of Workload Generator

5.1.2 Stop of Workload Generator

5.1.3 Restart of Workload Generator

5.2 Extendable Interfaces Overview

5.2.1 Output Protocol Interface

5.2.2 SensorPrototype Input Interface

5.3 Produce Mock Sensor Data Implementation

5.3.1 Components and Association

5.3.2 Class Modeling

5.3.3 Flow

5.4 Replay sensor data from Dataset Implementation

5.4.1 Components and Association

5.4.2 Dataset Thread Modeling

5.4.3 Flow

5.5 Output protocol Implementations

5.6 API Endpoints

5.6.1 Workload Generator Actions APIs

5.6.2 Sensor Actions APIs

 In this chapter more technical information will be provided, like how the system

internally works, how the extendable interfaces are connected to the system and

And
rea

s I
oa

nn
ou

42

 what a developer needs to do to extend them, what are the exact procedures for

each input and output currently implemented interface, as well as an introduction to

the API endpoints that the system currently supports and their purpose.

5.1 Main Users actions

 In this first section of this chapter, the main actions that the user can do or request

from the workload generator will be introduced, along with the workload generator

states and each action’s workflow.

 The basic actions that the user will be doing to the workload generator as soon as it

is up and ready for execution, are to start (could mean initiate/initialize or resume),

stop or restart it.

 These actions have as a result for the workload generator to be in a different state

at any time. In the Figure 5.1 1 below we can see how each of these actions affect

the states of the workload generator. The continuous arrows imply that one action is

needed for the workload generator to move to the next state, and the dashed lines,

meaning that no action is required to move to this state. Let us briefly explain the

below state diagram, before moving to each action workflow. Once the workload

generator container is deployed, the workload generator state will be Ready. From

this state (after the deployment) the only action that the user can trigger is the start,

where in this state it can be considered as initiate/initialize, since it will cause the

workload generator to be initiated and initialized by passing from the Initialized state,

and then without further action start the workload generator, changing its state to

Started. From the Started state, the only action allowed is the stop action, which will

make the workload generator to be paused temporarily causing it to change state to

And
rea

s I
oa

nn
ou

43

Paused. There are 2 possible state transitions for the workload generator once being

in Paused state. If the user apply the start action, which in this case can be

considered as resume, will force the workload generator to resume from where it left,

or the user can trigger the restart action, that will terminate all the pending or paused

procedures of the workload generator, and completely causing it to restart from the

beginning, by passing from the Stopped, Initialized and subsequently ending once

again to the Started state again.

Figure 5.1 1: State Transition diagram for Workload Generator

 Now let us move on to explain in depth the flow and the internal procedures of each

user action.

5.1.1 Start of Workload Generator

 When the workload generator container is up and ready to be used, the user can

only do one action, to start it by executing the 1POST /workloadGenerator/start API. In

the Figure 5.1.1 1 we can see the flow diagram for the start user action. Once this

API is executed, which implies that the configs and the input files are already located

And
rea

s I
oa

nn
ou

44

in the declared directory, the first thing that the workload generator will do is to verify

that it is not already running. If it is, it will output an error to a user that the workload

generator is already started. If it is not running, it will check whether it is already

initialized and paused, or has not been initiated yet.

 If it is not initiated yet, it will try to read and parse the configs_file.json. If the input

file exists in the declared path, is a valid json, and has the configs as root field, it will

move on to validate the output protocol and its protocolConfigs (as explained in the

section 4.2) by invoking the “validateAndProcessConfigs” method for the output

protocol interface implementation matching the provided protocol, and if the

mandatory fields for each protocol are provided, and the protocol is supported, it will

invoke the “initializeConnections” method for the output protocol interface

implementation based on the protocol, to establish connections with the output

nodes. Then, the system will try to read the sensorDataConfigs, and cast the

sensorPrototypes list, each sensorPrototype to the according type

(datasetSensorPrototype, mockSensorPrototype), leaving the internal validations for

each different implementation on the implementation level. Final step, before the flow

ends, the system will invoke the “initiate” implemented method for each

sensorPrototype implementation that is provided in the sensorDataConfigs (each

input method discussed in section 4.1), and if at least one of the implementations

validate accordingly their input sensorPrototypes without any error and start the

emission of sensor messages, the workload generator will be considered initialized,

and will output success to the user through the API. If none of the implementations

has been successfully initialized, it will be considered not initialized and will output the

error to the user.

 On the other hand, if the workload generator is initialized but not running (which is

the case that it was running and then it was stopped), the system will invoke the

“resume” implemented interface method for each initialized sensorPrototype input,

And
rea

s I
oa

nn
ou

45

and again verify that at least one of the implementations resumed the sensor data

generation successfully, otherwise will output that the workload generator could not

be started to the user. For each failure case in the flow the system will try to output

according error to the user.

Figure 5.1.1 1: Flow Diagram for Start User Action

And
rea

s I
oa

nn
ou

46

5.1.2 Stop of Workload Generator

 The user can at any time pause or stop the workload generator (if it is running) with

the2 API. For this flow, the system will verify that the workload generator is already

started, if it is, then it will directly invoke each running input implemented interface

“pause” method, where the goal for all the input interfaces, is to pause the data

generation and all pending tasks that each one of them is running, until maybe the

user will call the start again so the data generation will be resumed.

5.1.3 Restart of Workload Generator

 This action is not the same as the resume action (the workload generator starts

again after the stop), and also can be triggered only when the workload generator is

Paused (which implies it is initialized), otherwise it will output an error message. The

purpose of this action is for the user to have the ability to change the input

configs_file.json (maybe alter the output protocol or the sensorPrototypes for another

test scenario and generally different input) and start again the workload generator

from the beginning with the new input.

 The restart procedure starts with the user calling the 1

POST /workloadGenerator/restart API which means that the system firstly sets the

workload generator state as not initialized, and then invoking the “terminate” method

for all of the running input interface implementations. In the continuation, it will also

trigger the termination for the connections with the output protocol nodes, by calling

the “terminate” method of the provided output protocol interface implementation.

Finally, it will do exactly the same algorithm as the Start action (read and parse again

the configs, parse the sensorDataConfigs and create the new sensorPrototypes,

And
rea

s I
oa

nn
ou

47

establish connections with maybe the new output nodes or output protocol, and start

the generation with the new input configs_file.json)

5.2 Extendable Interfaces Overview

 After we introduced some methods for the implemented interfaces, it is time to

check the interfaces in more depth, in order for any developer to be able to extend

them with their own implementation.

 Before we go deeper with the interfaces and the implementations let me introduce a

model I created, that is being used and passed on the implementations methods that

the developer needs to use and to be aware of, which is called “Exchange”.

Figure 5.2 1: Exchange Date Model

 Figure 5.2 1 above, is the representation of the fields of the class Exchange. It is a

flexible model that helps the developer pass information without constraints, and uses

it also to manipulate the API response, that the user would like to see when triggering

each user action. This object is being created and initialized once a new API call

starts and is deleted once the API call finishes. It is easier to consider this model, as

the exchange of information between methods, that are being passed and enhanced

accordingly from method to method. Firstly, the body, responseCode, httpStatus

And
rea

s I
oa

nn
ou

48

fields, are the fields that the developer does not have to edit (if he will, they will be

overridden either way in the Controller when the API call finishes) and represent the

response body and the HTTP Response Code, that will be returned to the user

through the API response. So basically, the developer can use the properties Map, or

the headers map (that are key value pairs), to pass information from method to

method if he wants to. He can set a property for example like

exchange.setProperty(“FLAG”, true), where the first parameter is the property name

(String) and the second it is the actual property value (in this example boolean with

value true), and he can retrieve the property value for this property in a later method

by calling exchange.getProperty(“FLAG”, Boolean.class), that will return the value as

boolean (or null if the value is not being set as boolean when the setProperty method

was called), or exchange.getProperty(“FLAG”) that will return the object value of the

property (in this case the developer has to cast it)

5.2.1 Output Protocol Interface

 In this section, we will introduce the output protocol interface, its current

implementations and how it can be implemented to support more custom extensions.

Figure 5.2.1 1: ISensorMessageSendService Interface along with its current implementations

class model diagram

And
rea

s I
oa

nn
ou

49

 In the Figure 5.2.1 1 above we can see the output interface, with name

“ISensorMessageSendService”. This interface represents the way that the

messages will be sent to the output node, and more specifically through which

message transfer protocol or channel. Currently, there are 3 implementations, one for

each of the output supported protocols (HTTP, MQTT, using KAFKA). All of the

current implementations have implemented the 4 methods that the interface provides,

and can of course have some extra exclusive fields that represent the protocol more

accurately (e.g.: rootTopic for pub/sub protocols).

 The first method, which will be the one to be called first from the Controller, is

the validateAndProcessConfigs(JSONObject protocolConfigs). This method’s

purpose is for each implementation to validate accordingly that the protocolConfigs

passed as a JSONObject from the Controller (the input protocolConfigs the user

provided in the configs_file.json), are the required and needed ones, based on each

protocol (e.g.: requestURI for HTTP protocol and for the pub/sub protocols the

rootTopic that the messages will have when being sent to the brokers).

 Then, the initializeConnections() method will be invoked in order to initialize any

needed configuration and establish connections with the user desired output nodes,

and do the required processing based on the protocol, in order to be ready to send

messages once they arrive (e.g.: pub/sub protocols to create Producer Clients). Once

this method is finished successfully, it would imply that the implementation is ready to

handle messages in order to send them to the already established connections with

the output nodes.

 The next and most important method is the sendMessage (String sensorId, String

message, SensorMessageEnum contentType). This method's purpose, as the name

implies, is to create the end packaged message and send it to the required

And
rea

s I
oa

nn
ou

50

destination, using the exclusive output protocol for the implementation. The

arguments for this method are the populated sensor message, along with the

sensorId and finally the message ContentType, in order to construct the message

accordingly and send the packaged message to the desired server.

 Finally, the last method that each output protocol implementation has to implement,

is the terminate(). This method will be called from the Controller for each

implementation, only when the user action is the restart, in order to terminate any

pending task (e.g.: terminate ProducerClients for pub/sub protocols), and close

smoothly the connections with the output machines (servers, or broker servers).

 Any developer that wants to extend the interface, needs to give a

new implementation by implementing the above-mentioned methods, and add his

new Protocol in OutputProtocolEnum enumeration class.

5.2.2 SensorPrototype Input Interface

 As stated in Chapter 4, each sensorPrototype can be used along with an input

method (to emulate sensors of a mockSensorPrototype and produce mock data, or to

replay the data for the sensors of a datasetSensorPrototype from a CSV dataset).

Both these 2 input methods are implementations of an interface, which can be

extended in order for the user to create even more new input methods easily. It is

important to mention that all the sensorPrototypes that share the same input method,

will be used only by the implementation of the input method they are declared to.

And
rea

s I
oa

nn
ou

51

Figure 5.2.2 1: ISensorDataProducerService Interface with its current implementations

diagram

 In the Figure 5.2.2 1 we can see the class diagram for the input method interface,

along with the current implementations. The input method interface

called “ISensorDataProducerService” has currently 5 methods that each

implementation must override.

 Firstly, the initiate(Exchange exchange, ISensorMessageSendService

sensorMessageSendService) method is the first one to be called from the Controller

(in the start user action) that does the most important work, start generating sensor

data stream according to its implementation logic. It should be noticed that the

second parameter (sensorMessageSendService) for this method passed from the

Controller, along with the exchange, is the implementation for the output protocol,

that is already initialized and ready to be used. Hence the developer needs to use

this implementation when he will be sending the messages, by calling the

sendMessage (String sensorId, String message, SensorMessageEnum contentType)

method for every sensor message that his implementation will generate. Thus, in this

method, all the mandatory processing needs to happen, in order when the method

And
rea

s I
oa

nn
ou

52

finishes, it would be meaning that all the sensorPrototypes that use this input method,

have already been validated, and processed, and their sensors are triggered to

generate a data stream using the provided protocol implementation.

 A way to tell if the emission of the sensor messages started successfully to the

Controller, in order to inform the user, is the method isStartedProducing(). This

method, as the name suggests, it returns true if the emission of data stream started

successfully, or false if something went wrong, in order for the Controller, to count

how many of the implementations started, and inform the user if at least one started

successfully that the workload generator is running (errors in the logs will be seen for

the implementation that failed to start producing data)

 Moving on, when the user trigger the stop action, the pause(Exchange exchange)

method will be called for each implementation, in order to temporarily stop all the data

production (might also pause the created threads), with a way that in the future, if the

user attempts to resume the data production, it will be feasible to start from where it is

left.

 The way that the user can trigger the resume of the production of data, is by

triggering the start action, as it is mentioned above, but this time, the method that will

be called it would be the resume(Exchange exchange) instead of the initiate

(because the workload generator is already initialized, and just paused). Like the

name implies, the implementation will use this method in order to start the production

of data, from where it left when the pause method was called.

 Finally, when the user triggers the restart action, it is time to close all the pending

tasks and clear all the sensors for the implementation, by using the method

terminate(Exchange exchange). After the execution of this method, the system will

consider the implementation as done, because it might never be used again (if the

user does not provide new sensorPrototypes with the implementation input method),

And
rea

s I
oa

nn
ou

53

hence all the sensors or threads, should be destroyed and free the space accordingly

for future use.

5.3 Produce Mock Sensor Data Implementation

 In this section, the flow of the Produce Mock Data implementation for the input

method interface will be introduced and explained, along with some technical details

for its implementation.

5.3.1 Components and Association

 Before we go deeper with the implementation, let us transform the high-level

workload generator

Figure 3.2.2 1 flow from section 3.2.2 by replacing the emulation layer, with the

current emulation instance implementation.

 In the Figure 5.3.1 1 we can see the workload generator flow, that represents the

scenario for this emulation instance. The user will provide the configs_file.json with

the mockSensorPrototypes, and the Controller will do all the processing as the

previous figure, and pass to this emulation instance implementation, the

MockSensorPrototypes, along with the desired and initialized output protocol

interface implementation. By observing the emulation layer for this instance, we see

the created sensor threads, along with 2 new components, the WriterThread and the

Scenario Manager. The WriterThread is the thread that has the job to receive sensor

messages from the sensor threads to export them to the output files. The

And
rea

s I
oa

nn
ou

54

Figure 5.3.1 1: Produce Mock Sensor Data Flow

ScenarioManager component coordinates and monitors the management of the

scenarios (scheduling, and execution using one thread per scenario - more on that

later). Now that we introduced the new components, it is easier to have a clearer view

of the underlying architecture for this emulation instance. The emulation coordinator

creates and initializes the WriterThread and the ScenarioManager and communicates

with them based on the user actions. The most important functionality of course for

the emulation coordinator, is to create and start the sensor threads, in order for the

generation of the stream to be started. The output layer acts like it was explained in

the previous initial Figure 3.2.2 1, sending the generated stream to the user

application using the output protocol interface implementation and all the output files

and statistics to the user.

And
rea

s I
oa

nn
ou

55

5.3.2 Class Modelling

 One step before we move on to the flow, let me introduce some main concepts and

models that will be needed. Currently we are aware of the MockSensorPrototype

entity. In this implementation, I introduced some other important models as well that

affect the understanding of the implementation. To start with, there is the

MockSensorPrototypeJob class, which is actually a wrapper class for

MockSensorPrototype, that keeps also some runtime information about the

MockSensorPrototype (the current running MockSensors for the relative

MockSensorPrototype), and the mapping is one MockSensorPrototypeJob per

MockSensorPrototype. The next class that I would like to mention, is the

MockSensor. This class is a plain java model, where it could be considered as the

representative model for each MockSensor that will be created. Each MockSensor, it

is related with its MockSensorPrototype. Then we have the MockSensorJob class,

which is maybe the most important one, because this class represents each running

MockSensor. It can be considered as the running instance of each MockSensor,

since each MockSensorJob has a reference to its MockSensor (that implies also to

the MockSensorPrototype). All the functional logic for each MockSensor is located

and can be executed in its own corresponding MockSensorJob, since each

MockSensorJob it is a different thread, that has purpose to generate messages

according to it is reference MockSensorPrototype properties.

And
rea

s I
oa

nn
ou

56

Figure 5.3.2 1: Produce Mock Sensor Data class relation model diagram

 It is easier to visualize the association, for all the previously mentioned classes in

the Figure 5.3.2 1 above. We can see that each MockSensorPrototype is associated

only with one MockSensorPrototypeJob and each MockSensorPrototypeJob is

associated with one MockSensorPrototype, but one MockSensorPrototype can be

associated with multiple MockSensors. It is reasonable, since each

MockSensorPrototype can have multiple MockSensors, but on the other hand, it is

strict that one MockSensor can belong only to one MockSensorPrototype. Moving on,

each MockSensor is associated only with one MockSensorJob (and the reverse). The

MockSensorJob is extending the Thread java class, since it is a Thread, and is

related with another Thread, the WriterThread, if the user has provided the

outputFile for the MockSensorPrototype that the MockSensor of the MockSensorJob

is associated. It is worth to note here, that all the information that the user has

And
rea

s I
oa

nn
ou

57

provided in the configs_file.json regarding the mock sensor prototype can be found in

the MockSensorPrototype (that will be cast through the input mapping from the

configs_file.json) . Beyond that, everything else is created at runtime after processing

and validations.

5.3.3 Flow

 Having mentioned the above, now we have a basic idea for the main and

associated classes that this implementation is consisting of. Now let us go straight to

the workflow.

 In the

Figure 5.3.3 1, the high-level flow for the initiate method of the Produce Mock Sensor

Data Implementation can be seen. The whole flow starts after the Controller invokes

the initiate method, that this implementation has overridden of the SensorPrototype

Input Interface. Once the method starts, it will attempt to create and process the

MockSensorPrototypeJobs, using the MockSensorPrototypes provided by the

Controller. In this processing procedure, for each MockSensorPrototype a

corresponding MockSensorPrototypeJob will be created and initialized, and then it

will be validated if all the required fields are provided by the user. After some

processing to cast and transform some of the fields that the user provided into data

models, the MockSensorPrototypeJobs will be ready for use. In the continuation, if at

least one provided MockSensorPrototype has the field outputFile (which means the

user wants the data populated for all the sensors for the mock sensor prototype to be

exported in a file) a WriterThread thread will be created. Some processing will

happen in order for the WriterThread to store the information of the output file (name

and file extension) for all the mock sensor prototypes that their data will be exported.

And
rea

s I
oa

nn
ou

58

This WriterThread which will have only one instance, it will have a blocking queue,

where the sensor messages that each MockSensorJob will be producing will be

stored. The job for the WriterThread, is to pop the messages from its queue and

attempt to write them to the according file (each mock sensor prototype can have

different output filename). After this procedure, MockSensors will be created (one

MockSensor model for every sensor in the MockSensorPrototype sensorsQuantity

value) and will be linked with its own MockSensorPrototype. All the MockSensors

quantity would be equal to the sum of all the sensorsQuantity values for all the

MockSensorPrototypes). Now, is time for the real sensor Threads to be created.

Based on the MockSensors, for each MockSensor, a MockSensorJob will be created,

and will start to generate messages based on the MockSensorPrototype of its

referenced MockSensor. A thing to add here, is that the MockSensorJob will have as

reference also the one and only WriterThread (if the MockSensorPrototype of its

referenced MockSensor was set to export) and the one and only Output Protocol

Interface, that the Controller passed to the initiate method. At this point every

emulated sensor (MockSensorJob) has started to producing data, and passing each

produced message to the blockingQueue of the WriterThread, in order to be written

to the according file if the user has declared so, and then to the

ISensorMessageSendService implementation in the output layer in order to be

forwarded to the user’s application. Last step before the initiate method for this

implementation finishes, is to handle the scenarios. If at least a

MockSensorPrototype has at least one scenario, the scenario will be validated, and if

it is valid, the ScenarioManager will be initialized and schedule the scenario.

And
rea

s I
oa

nn
ou

59

Figure 5.3.3 1: Produce Mock sensor data flow diagram

And
rea

s I
oa

nn
ou

60

 The scenario management can be seen in the Figure 5.3.3 2 below. Each

MockSensorPrototype can have multiple scenarios, and each scenario can be

associated only with one sensor, through the “sensoId”. If at least scenario is found in

at least a MockSensorPrototype, the ScenarioManager will be initialized, and create

one ScenarioJob thread per Scenario, passing also to the ScenarioJob the

MockSensorJob thread that will be informed for the according scenario (Scenario’s

sensorId and MockSensorJob’s sensorId would be the same). Once the

ScenarioManager creates all the needed ScenarioJob threads, it can be idle, until the

user terminates or pauses the workload generator. Meanwhile, each created

ScenarioJob thread, will have a timer and will be waiting for the amount of seconds

provided in “scenarioDelay” for the scenario. Once the scenario time comes, the

ScenarioJob thread will inform the corresponding MockSensorJob thread, by calling

MockSensorJob’s triggerScenario(Scenario scenario) method and pass the scenario.

After that it will be waiting until the scenarioDuration time in seconds has passed in

order to inform the MockSensorJob that the scenario is over, by calling the

terminateScenario() method. Finally, the ScenarioJob will terminate smoothly.

Meanwhile from the time that the ScenarioJob called the triggerScenario method of

the MockSensorJob, the MockSensorJob thread will be in scenarioMode and will be

generating values according to the provided scenario’s scenarioFieldValueInfoList

that stores which fields and what value they will be generating

(sensorFieldScenarioName, sensorFieldScenarioGenerationRate), thought the

scenario until the ScenarioJob calls the terminateScenario() method.

And
rea

s I
oa

nn
ou

61

Figure 5.3.3 2: Scenario Management Class Diagram.

 The pause method implementation is simpler. The state of the workload generator

before the method been called from the Controller, is that we have now the sensor

threads running producing mock sensor data, and potentially the WriterThread, along

And
rea

s I
oa

nn
ou

62

with the ScenarioManager and its ScenarioJob threads doing their tasks. Like it is

being explained in the Stop action, the purpose of this method is to temporarily pause

all the running threads and actions. So, the implementation, firstly cancels all the

scheduled or running scenarios (threads) through the ScenarioManager (if it is

initialized), and then pauses all the sensor threads. Finally, it pauses also the

WriterThread if it is initialized. By now, the sensor threads are in sleep mode, and will

be notified to resume their task (to produce mock sensor data again) when and if the

user triggers the start action.

 Having said that, once the user calls the start action (after the stop action), it

means that he wants to resume (resume method will be invoked) the generation of

mock data. Then the implementation will trigger the sleeping sensor threads to wake

up, by notifying them to resume their data production with the same behaviour. This

will happen also to the WriterThread, which if it was sleeping, it will also wake up and

start writing sensor messages from its queue to the appropriate output files. An

important thing to note, is that the ScenarioManager, and all the previously scheduled

scenarios, will not be rescheduled, since the scheduled time was with perspective

the initialization of the workload generator.

 Closing this implementation explanation, we have to also mention the terminate

interface method implementation. The terminate method which can be called only

when the user calls the restart action (after the stop action), implies that the previous

implementation method called was the pause, which means that all the threads are

currently sleeping. So, the next step is to wake them up and terminate them all

smoothly. Precisely, it will terminate all sensor threads and the writer thread, and

finally will free the memory for all the mockSensorPrototypes.

And
rea

s I
oa

nn
ou

63

5.4 Replay sensor data from Dataset Implementation

 In this section, some technical details, the flow and the implementation for the

Replay Sensor Data from CSV file will be explained.

5.4.1 Components and Association

 Before we go deeper with the implementation, let us transform the high-level

workload generator flow from

Figure 3.2.2 1 by replacing the emulation layer, with the current emulation instance

implementation.

 Figure 5.4.1 1: Replay Sensor Data from Dataset Flow

And
rea

s I
oa

nn
ou

64

 In the Figure 5.4.1 1 above we can see the workload generator flow, in the case that

in the emulation layer, we will have the Replay Sensor Data from Dataset emulation

instance. The user will provide the configs_file.json with the

datasetSensorPrototypes, and the controller will do all the processing as the

explained in

Figure 3.2.2 1, and pass to this emulation instance implementation, the

datasetSensorPrototypes along with the desired and initialized output protocol

interface implementation. In the emulation layer for this implementation the emulation

coordinator handles and monitors the threads for each sensor (for each dataset).

Each thread represents a datasetSensorPrototype, because like it is being explained

in previous chapters, for this implementation the user provides the dataset that has

different exported messages for the same type of sensors. This implementation does

not have as many components like the previous one. The important components in

this emulation layer are the threads, where each one reproduces the messages

accordingly from its dataset, and passes the generated data stream to the output

layer in order to be transferred to the user application, and at the same time the

threads store some statistics for the output data, for post analysis.

5.4.2 Dataset Thread Modelling

 Before moving on to the flow, let us quickly have an overview for the main

component for this implementation, which is the thread per dataset that handles

internally the reproduction of the dataset, customized.

And
rea

s I
oa

nn
ou

65

Figure 5.4.2 1: Replay Sensor Data from Dataset Main Thread Class Diagram

 In the Figure 5.4.2 1 we can see the class diagram and the attributes for the main

component for this implementation, the ReplayDatasetSensorPrototypeThread. As

it is easy to guess, it extends the Thread java class, and the whole production for the

messages happens in the run overridden method. Beside the flag attributes that

represent its state (stop, pause, finished) it has also some other attributes that handle

the statistics and evaluation for the dataset (recordCount, datasetValueStatistics,

totalWaitTime). The most important field is of course the datasetSensorPrototype,

that the thread will have as reference in order to replay the dataset for this

SensorPrototype. Some other attributes, are for reading the dataset and parsing and

reading the rows (formatter, bufferReader), and lastly the rest attributes are related

with the functional part (datasetSensorPrototypeService) that handles the processing,

the validations and the passing of the data to the output layer, and the

datasetSensorPrototypeIsCorrectlySet to confirm that the dataset is valid.

5.4.3 Flow

And
rea

s I
oa

nn
ou

66

 Now that we have a basic understanding of the main components let us move

straight to the implementation, by introducing the flow. Inside the initialize method for

this implementation, the emulation coordinator creates one

ReplayDatasetSensorPrototypeThread per DatasetSensorPrototype provided in the

datasetSensorPrototype parameter from the Controller. Each thread then starts to

process its DatasetSensorPrototype and validates if all the required and needed

fields are provided and that they are correctly set up and valid. After the success

validation and processing of the provided DatasetSensorPrototype, each thread will

validate the data file. More precisely, it will make sure that the file exists and can be

parsed, and that all the columns needed are there. If all the above procedures

succeeded, then the thread will inform the coordinator that it is ready to start, and the

coordinator will start it, in order to start replaying its dataset and reproducing the

records for the sensors of the dataset. If at least one thread has been processed and

validated successfully, the implementation is considered started, and will inform the

controller with the isStartedProducing method.

And
rea

s I
oa

nn
ou

67

Figure 5.4.3 1: Replay Sensor Data from Dataset Thread flow diagram

And
rea

s I
oa

nn
ou

68

 Figure 5.4.3 1 depicts the flow for each ReplayDatasetSensorPrototypeThread. For

the processing and the validation of the DatasetSensorPrototype, it is been validated

that either a generation rate or the timestamp information is provided. Then, while

validating and processing the dataset file, it verifies that the dataset file is indeed a

CSV extension file, that the user provided columns that exist in the dataset (sensorId

column and optionally the timestamp column) and finally, it can be sorted if the user

declared so (based on the timestamp column for each row). After all the processing

and validations happen, the thread starts to reproduce the data from the dataset

(according to each row timestamp in comparison to the previous or if the user has

provided a generation rate), and it will finish once all the dataset rows have been

replayed.

 For the pause, resume and terminate methods, the processes are straightforward.

In the pause method, the coordinator pauses all the running threads (those that are

still replaying rows), where in the resume, the coordinator will trigger the paused

threads to resume the reproduction, from where they left. Finally, in the terminate

method, the coordinator will notify all the running threads to stop replaying, and

finish.

5.5 Output protocol Implementations

 In this subchapter, we will briefly say some things for the implementations for the

output protocol interface. As explained previously, the currently supported output

protocols are HTTP, MQTT, and using KAFKA broker server.

And
rea

s I
oa

nn
ou

69

 For the HTTP implementation, the validations happening in the

validateAndProcessConfigs implemented method, is to verify that the user has

provided the requestURI inside the protocolConfigs that the sensor messages will be

sent to, along with the httpServers information. In the initializeConnections and

terminate methods, the behaviour for this implementation is to do nothing, since the

library used for HTTP calls does not need to establish any connection or terminate in

order to send HTTP messages. The library used is the RestTemplate 5 Class of the

Spring Framework 6. Using the provided methods of this class we are able to send

HTTP requests (of all methods) to the output servers within the sendMessage

method along with the needed request headers (the contentType that states the

message format e.g.: JSON, XML, TEXT).

 For the other 2 implementations for the pub/sub protocol, MQTT and KAFKA), the

behaviour is the same, with the only difference in the library used. The MQTT

implementation is using the Eclipse Paho 7 library to connect and send messages to

the MQTT brokers, and the KAFKA implementation is using Apache Kafka 8 java

library to connect and send the messages to a KAFKA broker. Having said that, in the

validateAndProcessConfigs method, in both the implementations it is being checked,

whether the user has provided the desired topic. On top of that, the mqttBrokers field

is mandatory for the MQTT implementation and the kafkaBrokerClusters for the

KAFKA respectively. In the initializeConnections both of the implementations are

setting the properties for the Client Producer based on the library they are using, in

order to create Producer Clients, to send messages using the corresponding libraries

5 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
6 https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html
7 https://www.eclipse.org/paho/
8 https://kafka.apache.org/documentation/

And
rea

s I
oa

nn
ou

70

method through the sendMessage method to the desired brokers. Finally, they both

disconnect and close their Producer Clients inside the terminate method.

5.6 API Endpoints

 In this last sub chapter of the Implementation chapter, we will provide the API

endpoints that the user can use to trigger actions or to get information for the

framework emulation instance. It is worth noting that the APIs are implemented based

on the Spring Boot framework 9 architecture, which runs on top of Apache Tomcat

servlet Container 10. The deployed application container will be listening to the same

configurable port for all of the APIs.

5.6.1 Workload Generator Actions APIs

 The following APIs can be used to trigger workload Generator actions.

1POST /workloadGenerator/start

Description The user can use this API to trigger the execution of the application.
This API is the entry point of data generation, and translated to the
start user action explained in section 5.1.1

PATH /workloadGenerator/start

Method POST

Payload The payload of the API is an empty JSON object: {}

Query
Params

The API can support one query param, called delay (in seconds) ,
which like the name implies, is the desired delay until the workload
generator starts to produce data.

9 https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
10 http://tomcat.apache.org/tomcat-8.0-doc/

And
rea

s I
oa

nn
ou

71

Response: Success message (200 HTTP Response Code) if at least one
SensorPrototype input implementation was successful, else detailed
error message for some validation or missing input for the user (400
HTTP Response Code) or (500 HTTP Response Code) for any
unexpected error.

2 POST /workloadGenerator/stop

Description The user can use this API to trigger the pause or stop of the

application. This API can be used only after the 1POST

/workloadGenerator/start API and is translated to the stop user action
explained in section 5.1.2 which pauses the data generation and all
the pending processes, along with the workload generator.

PATH /workloadGenerator/stop

Method POST

Payload the payload of the API is an empty JSON object: {}

Query
Params

The API can support one query param, called delay (in seconds) ,
which like the name implies, is the desired delay until the workload
generator stops data production.

Response Success message (200 HTTP Response Code) if the workload
generator was stopped successfully, else detailed error message for
some validation error when calling the API (400 HTTP Response
Code) or (500 HTTP Response Code) for any unexpected error.

1 POST /workloadGenerator/restart

Description The user can use this API to make the workload generator terminate
all the current idle sensors and tasks, and to create new sensors
based on the new input provided in the configs_file.json. Its main
purposes are for the user to change input for testing different
scenarios. This API can be used only after the

POST /workloadGenerator/stop API and is translated to the restart
user action explained in the section 5.1.3

PATH /workloadGenerator/restart

Method POST

Payload The payload of the API is an empty JSON object: {}

And
rea

s I
oa

nn
ou

72

Query
Params

The API can support one query param, called delay (in seconds) ,
which like the name implies, is the desired delay until the workload
generator restarts again the initialization flow with the new input.

Response Success message (200 HTTP Response Code) if the workload
generator has restarted successfully, else detailed error message for
some validation error when calling the API or wrong input (400 HTTP
Response Code) or (500 HTTP Response Code) for any unexpected
error.

5.6.2 Sensor Actions APIs

 The following APIs can be used to retrieve, create new or delete mockSensors and

mockSensorPrototypes on runtime when the workload Generator is running and

mockSensorPrototype input is initialized. The APIs are supporting only the

mockSensorPrototype implementation.

GET /mockSensors

Description The user can use this API to get the total count and a list for all the
created mockSensors along with each mockSensor’s
mockSensorPrototype.

PATH /mockSensors

Method GET

Payload -

Query
Params

The API can support one query param, called sensorId, which is to
filter the response only for the specified sensor.

Response Total count and list of all the mockSensors information, or information
only for the sensor having the specified query (200 HTTP Response
Code). Bad Request error If the workloadGenerator is not running
(400 HTTP Response Code) or no mockSensorPrototype is initialized
, Not Found (404 HTTP Response Code) if the mockSensor with
specified sensorId does not exists, (500 HTTP Response Code) for
any unexpected error.

And
rea

s I
oa

nn
ou

73

POST /mockSensors

Description The user can use this API to create and add more mockSensors at
runtime for an already existing mockSensorPrototype.

PATH /mockSensors

Method POST

Payload The payload of the API is a JSON object with the needed quantity
and the desired mockSensorPrototype’ Name:
{
 "quantity": 15,
 "mockSensorPrototypeName": "temperature_sensor"
}

Query
Params

-

Response Success Created response (201 HTTP Response Code) which
implies that the mockSensors were created successfully, or Bad
Request error message (400 HTTP Response Code) if some
parameter in the payload is not provided or no mockSensorPrototype
is initialized, Not Found (404 HTTP Response Code) if the
mockSensorPrototypeName does not exists and (500 HTTP
Response Code) for any unexpected error.

DELETE /mockSensors/{mockSensorId}

 Description The user can use this API to stop the production and delete a
mockSensor

PATH /mockSensors/{mockSensorId}

Method DELETE

Payload -

Path
Params

The API requires one path param, called mockSensorId, which is the
Id of the mockSensor to be deleted

Response Success No Content response (204 HTTP Response Code) which
implies that the mockSensor specified was deleted, or Not Found
(404 HTTP Response Code) if the mockSensorId provided does not
exist, (500 HTTP Response Code) for any unexpected error.

And
rea

s I
oa

nn
ou

74

GET /mockSensorPrototypes

Description The user can use this API to get information about
mockSensorPrototypes

PATH /mockSensorPrototypes

Method GET

Payload -

Query
Params

 The API can support one query param, called

mockSensorPrototypeName, which is to filter the response only for
the specified mockSensorPrototype.

Response Total count and list of all the mockSensorPrototypes information , or
information only for the mockSensorPrototype having the specified
query param as name (200 HTTP Response Code). Bad Request
error If the workloadGenerator is not running or no
mockSensorPrototype is initialized (400 HTTP Response Code), Not
Found (404 HTTP Response Code) if the mockSensorPrototype with
specified name does not exists, (500 HTTP Response Code) for any
unexpected error.

POST /mockSensorPrototypes

Description The user can use this API to create new mockSensorPrototypes at
runtime

PATH /mockSensorPrototypes

Method POST

Payload The payload of the API is JSON object same as the input for the
mockSensorPrototype mapping in the configs_file.json

Query
Params

 -

Response Success Created response (201 HTTP Response Code) which
implies that the mockSensorPrototype and its mockSensors were
created successfully and started generating data successfully, or Bad
Request error message (400 HTTP Response Code) if some
mandatory parameter in the payload is not provided, and (500 HTTP
Response Code) for any unexpected error.

And
rea

s I
oa

nn
ou

75

DELETE /mockSensorPrototypes/{mockSensorPrototypeName}

Description The user can use this API to stop the production and delete all the
sensors for the specified mockSensorPrototype and then delete it

PATH /mockSensorPrototypes/{mockSensorPrototypeName}

Method DELETE

Payload -

Path
Params

 The API requires one path param, called
mockSensorPrototypeName, which is the name of the
mockSensorPrototype to be deleted

Response Success No Content response (204 HTTP Response Code) which
implies that the mockSensorPrototype specified was deleted, or Not
Found (404 HTTP Response Code) if the
mockSensorPrototypeName provided does not exist and (500 HTTP
Response Code) for any unexpected error.

And
rea

s I
oa

nn
ou

76

Chapter 6

 System Evaluation and Results

6.1 Usability Evaluation

6.1.1 Heterogeneity and Sensor Model Realizaiton Evaluation

6.1.2 Accuracy Evaluation

6.1.3 Extensibility Configurability Customization Evaluation

6.1.4 Usability evaluation, through Integration with real Fog Emulator on a real

scenario use case

6.1.4.1 Increasing Workload Test

6.1.4.2 Data Skewness Experiment

6.2 Performance Evaluation and limitations

6.2.1 Sensor Message Delay

6.2.1.1 Input and Evaluation Methodology

6.2.1.2 Evaluation Experiments

6.2.1.2.1 Sensor Quantity Factor

6.2.1.2.2 Generation Rate Factor

6.2.1.2.3 Host Machine Resources Factor

6.2.1.2.4 Sensors Quantity Limitation

6.3 Evaluation Results Summary and System limitations

 In this chapter, the implemented system will be evaluated, based on the initial

requirements we set back in section 3.1. In addition, we will show its usability with

some real scenarios in combination with a fog emulator, then we will do some

And
rea

s I
oa

nn
ou

77

 experiments to find what factors influence the performance, and finally we will find

the limits of our system.

6.1 Usability Evaluation

 In order to evaluate the system, let us first recall the requirements that such a

system should fulfil. When we were introducing the idea for a workload generator for

IoT data, back to section 3.1, we mentioned some pillars that the system should

support in order to be a workload generator for IoT devices that any user could use,

and users could actually be benefited by using it. In this section we will try to

demonstrate the heterogeneity and the accuracy requirements.

6.1.1 Heterogeneity and Sensor Model Realization Evaluation

 One of the most important challenges and requirements for a workload generator

stated, was the Heterogeneity that the system should support, based on the wide

variety of different IoT devices, sensors, their message formats, the output protocol

and generally the range and differences between the scenarios that the users would

like to test.

 Our system can support currently 3 output protocols, and can be extended to

support even more, and in addition it supports 3 of the most used message formats

(JSON, XML, TEXT) , which also can be extended for more. On top of that, a wide

range of sensors, and their properties can be achieved, using our abstract realization

model. The system gives the ability to the user to provide any message field, or even

nested fields, that results in a flexible usage in order to adjust the real sensors with

the system model mapping. Last but not least, based on the abstraction and the

And
rea

s I
oa

nn
ou

78

correct realization of our sensor model for the implementation of replaying real data,

the user has the ability to provide almost any dataset, with real exported sensor data,

in order to be replayed, boosting the heterogeneity and the generality of our

realization models.

 Let us demonstrate some of the above flexibilities, with some file instances for

different CSV datasets for completely different applications (and different sensor

types) and their corresponding input configs_file.json mapping configurations.

Figure 6.1.1.1: Screenshot from a dataset that measured annual photovoltaic panels data in
Cyprus 11

Figure 6.1.1.2: Sensor Modelling Input inside configs_file.json for dataset from

 Figure 6.1.1.1

11 https://enedi.eu/

And
rea

s I
oa

nn
ou

79

Figure 6.1.1.3: Screenshot of a dataset that measured beach water quality in Chicago 12

Figure 6.1.1.4:Sensor Modelling Input inside configs_file.json for dataset from Figure 6.1.1.3

Figure 6.1.1.5: Screenshot of a Yellow Taxi Trip Data from NYC dataset 13

12 https://data.world/cityofchicago/beach-water-quality-automated-sensors
13 https://data.cityofnewyork.us/Transportation/2019-Yellow-Taxi-Trip-Data/2upf-qytp

And
rea

s I
oa

nn
ou

80

Figure 6.1.1.6: Sensor Modelling Input inside configs_file.json for dataset from

 Figure 6.1.1.5

Figure 6.1.1. 7: Road traffic data instance from a dataset for a city In Denmark 14

14 http://iot.ee.surrey.ac.uk:8080/datasets.html

And
rea

s I
oa

nn
ou

81

Figure 6.1.1.8: Sensor Modelling Input inside configs_file.json for dataset from

Figure 6.1.1. 7

In figures 6.1.1.1, 6.1.1.3, 6.1.1.5 and 6.1.1. 7 we can see 4 instances from 4 different

datasets, for completely different applications, and on figures 6.1.1.2, 6.1.1.4, 6.1.1.6,

6.1.1.8 their corresponding input configurations to the system, provided through the

configs_file.json. In the first dataset (Figure 6.1.1.1), we can see the first rows of the

dataset for an application that measured yearly photovoltaic panels data in Cyprus,

while in the second one (Figure 6.1.1.3), beach water quality is been measured by

some sensors at Chicago Park District beaches. In the third dataset (Figure 6.1.1.5),

a screenshot from the Yellow Taxi Trip Data from NYC dataset can be seen and

finally in the Figure 6.1.1. 7 exported road traffic data from a city in Denmark. It is

obvious that all the datasets are completely irrelevant and different between them

and each one having different fields, different timestamp formats, even different types

for the values for each field, but still, our system can replay all of them easily, by just

providing the correct input configs_file.json accordingly to the dataset. On top of that,

even the same dataset could be replayed, with different input configs (maybe

And
rea

s I
oa

nn
ou

82

different message format or output protocol). This experiment proves that our system

can handle multiple and different dataset reproduction using our realization model.

6.1.2 Accuracy Evaluation

 Along with the heterogeneity, accuracy is equally important for an IoT workload

generator. Not only the accuracy in terms of the data exported to be as real as the

real sensor messages, but also accuracy in the time of the data production, that also

should be exact as the real ones, in both of the 2 features provided (produce mock

data, replay data from dataset).

 In order to demonstrate the accuracy, for both time and generated data, let us

consider the input at Figure 6.1.2 1. For this scenario, we have a temperature

mockSensorPrototype, that has 2 temperature sensors, each one of them generating

a new message after 2 seconds. Each generated message consists of a field called

temperature that follows a normal distribution, with mean 20 and deviation 5. After 5

seconds from the execution of the scenario, there is a fire that affects the sensor with

id 1, making it change the normal distribution it follows, to a new one with mean 40

and deviation 3 for a duration of 5 seconds. (The values and input configurations of

this scenario are just indicative and not real measured for real fire and temperature

sensors - Their purpose is to serve the prove of concept of the accuracy of the

system in terms of correct messages generation)

And
rea

s I
oa

nn
ou

83

Figure 6.1.2 1: Input file that illustrated the data for the sensor message accuracy validation

And
rea

s I
oa

nn
ou

84

 In the Figure 6.1.2 2 we can see the first rows that depicts the instance of

temperatrue_output.csv file, that was exported for the above scenario. The first

messages started to be produced at 21:39:28, and both sensors produced

temperatures that followed the normal distribution declared. Then, after 5 seconds

(21:39:33) where the fire scenario happens, only the sensor 1 will start producing

temperature based on the scenario normal distribution (sensor with id 0 will keep

following the initial normal distribution), because the sensor with sensorId 1 has to

follow the scenario values generation (that follows different normal distribution with

mean 40 and deviation 3). Finally, after 5 more seconds from the fire (10 seconds

form the beginning of the execution - 21:39:38, the fire scenario stops), and the

temperature sensor 1, returned into producing temperatures based on the initial

normal distribution. The values from the exported file prove the accuracy based on

the input fields and the scenario provided.

Figure 6.1.2 2: Exported first rows data from the temperature_output.csv file exported by the

workload generator for the data accuracy validation experiment based on input in Figure 6.1.2 1

And
rea

s I
oa

nn
ou

85

6.1.3 Extensibility, Configurability, Customization Evaluation

 It is quite obvious, and it can be already observed, that the system promotes and

encourages extensibility, and the customization for the inputs. In the sections 5.2.1

and 5.2.2 , the ease of extending both input sensor Prototype features and output

protocols can be seen. The provision of the interfaces, and the abstract methods,

along with the detailed documentation for the purpose of each method, make any

developer able to extend and implement functionalities fulfilling his personal

application needs. On top of that, customization in an input dataset can be applied,

giving the user the ability to use only the needed properties or data for the dataset,

and create extra mock data based on his preferences. Finally, the input properties file

(workloadGenerator.properties), and the spring boot framework, where the whole

system is built on, can provide configurability to the user, even for different

deployments for the same sensor input, to manipulate the execution run based on the

machine available resources through the input workloadGenerator.properties file that

stores key-value pairs of system/deployment/execution properties and the user

desired values.

6.1.4 Usability evaluation, through Integration with real Fog

Emulator on a real scenario use case

 In this section, we integrated the workload generator with a real Fog Computing

emulator, named the Fogify [18] which is introduced in section 2.1.4 , to illustrate how

useful a workload generator is for a testbed and how easily researchers are capable

to evaluate different hypotheses. Again, our use case is inspired by smart homes, but

in this scenario, a company manages a set of smart-homes, and it has deployed

And
rea

s I
oa

nn
ou

86

monitoring sensors to observe them. Every sensor disseminates a set of metrics to a

region-based broker queue, and then, an operator can submit streaming queries on

top of a processing engine deployed on Fog. We utilized a high-performance queue,

namely Kafka 15, as a broker and StreamSight [30] as the processing framework.

StreamSight is built on top of Apache Spark 16 and is a streaming processing

Framework for edge computing analytics. The Figure 6.1.4 1 presents how the real-

world topology for the scenario would be visualized, in which each region would

generate its own sensor data, using different input configs file for its workload

generator, and the StreamSight will process all the received stream from all regions),

while Figure 6.1.4 2 illustrates the emulation, topology happened in our experiment

using Fogify deployed on a single virtual machine!

 The topology of the experiment is described by following Fogify's model, and Figure

6.1.4 2 illustrates a high-level overview of it. Fogify will handle the instantiations and

the interconnection of the other containerized services (Kafka, workload generator

and Spark with StreamSight) on deployment using Fogify’s docker-compose

specification extension and then it will emulate all the above services connected

under the same network with properties and will distribute resources per service,

while the user needs to provide only the queries for the StreamSight and the input

configs for the workload generation (in this experiment we have just one instance –

for one region, but it could be easily scaled to more instances, with the same way).

15 https://kafka.apache.org/documentation/
16 https://spark.apache.org/docs/latest/

And
rea

s I
oa

nn
ou

87

More accurately for the experiment, all services have restricted processing

capabilities (2cores at 1.4GHz with 2GB ram) and are connected to the same network

with a network delay and bandwidth between the nodes to be 10ms and 100mbps

respectively. All services along with the workload generator are containerized and

initially described with docker-compose file. All of the experiments are run on top of a

Virtual Machine with 16cores and 16GB of RAM and the workload generator is

introduced to Fogify as a containerized service.

Figure 6.1.4 1: Real topology of scenario

And
rea

s I
oa

nn
ou

88

Figure 6.1.4 2: Emulation topology using Fogify on a virtual machine for the experiments

Now that everything is deployed, and the spark using his worker cluster is ready to

process the queries, we are ready to run the experiment. To this end, the operators'

evaluation is twofold, firstly, they evaluate the scalability of the StreamSight by

increasing periodically the number of sensors and measure the processing latency of

the streaming engine, and secondly, they evaluate the effect of the data skewness on

the performance. The skewness of values is known in distributed processing systems

since the partitioning algorithms distribute the keys by following hash functions, thus

some workers may force to process much more data than others.

 The base workload generator input file used for the 2 experiments can be seen in

Figure 6.1.4.1 1. For this set of experiments, we have KAFKA broker, hence the

KAFKA protocol and the KAFKA protocolConfigs, and a general sensor prototype,

where each sensor disseminates temperature, brightness and humidity. Temperature

And
rea

s I
oa

nn
ou

89

follows a normal distribution with mean 35 and deviation 6, brightness can have an

integer value in range [0..4], where 0 implies dark and by increasing the value we

reach 4 which is shining, and all of the values of brightness following a probabilistic

distribution (20 % for each one). Finally, we have humidity that is a random generated

integer between [0..100]. Each sensor generate data per 1 second.

Figure 6.1.4.1 1: Base Input file of workload generator for scenario

And
rea

s I
oa

nn
ou

90

6.1.4.1 Increasing Workload Test

 In the first experiment, the operators submit a StreamSight query (Figure 6.1.4.1 2)

that computes the overall average temperature of all sensors. Basically, the

translation of the query is to calculate the average temperature for all sensors, by

processing the sensor messages every 5 seconds and calculating the average

temperature, using the sliding window technique on a window of 5 minutes. The

system will be collecting data stream from the Kafka (generated from the workload

generator) and per 5 seconds it will do the processing based on the collected data

from the previous 5 minutes, and finally after 10 minutes of the experiment, it will

output the results.

 Since the operator needs to evaluate a various number of sensors, the operator

simply can use the base input configs_file.json in Figure 6.1.4.1 1, and change

gradually the sensorsQuantity to the desired number of sensors and submit the

model to the generator. Specifically, the operator instantiates 500, 1000, 1500

sensors in each experiment, each experiment runs for 10 minutes, and every sensor

sends a datapoint with temperature, humidity, brightness, etc., every second.

Figure 6.1.4.1 2: StreamSight Query for the average temperature of 5 minutes

And
rea

s I
oa

nn
ou

91

Figure 6.1.4.1 3: Process latency based on the sensor number

 Figure 6.1.4.1 3 depicts the Spark's processing latency in milliseconds for each

quantity of sensors. It is obvious that the number of sensors, and consequently the

amount of the data, dictates the streaming processing latency, since by increasing

the sensorsQuantity, we will have more sensors which implies more sensor

messages that need to be processed in the same period (5 second). With this

experiment, the operator can be sure that the system will provide acceptable

performance between 1000-1500 sensors, since even with 1500 sensors, the latency

(almost 3 seconds) don’t exceeds the 5 seconds that is the interval processing time

for the calculation of the query.

 In a deeper analysis, Figure 6.1.4.1 4 illustrates the processing delay points for each

number of sensors. Each point represents the processing latency for each batch, with

the input tuples number equal to the sensor number (each sensor produces 1 sensor

message per second). With this, we can observe the distribution of the processing

delay for each sensor quantity. Specifically, even if the 500 sensors have the lowest

processing delay, they have the largest deviation among the experiments. Given that

And
rea

s I
oa

nn
ou

92

the processing latency should be less than the execution interval (in order for the

system to be stable and do not build backpressure - 5 seconds in this experiment),

the operators know that they cannot reduce the interval due to the unexpected

deviation even in a low number of sensors.

Figure 6.1.4.1 4: Latency of processing for each batch based on the sensors number(sensor

messages number)

6.1.4.2 Data Skewness Experiment

 After the first experiment, users would like to evaluate how skewed values influence

the performance of a processing engine. For that reason, they updated the previous

query and group the average of the temperature by the brightness measurements

(query in Figure 6.1.4.2 1). In order to provide skewed data, they used the base input

(Figure 6.1.4.1 1) configs_file.json, but instead of changing the sensorsQuantity they

changed the brightness field probabilities distributions. The brightness as explained

before, is measured by ordinal values, from 0 (dark) to 4 (shinning). By following the

generator modelling, the operators could describe the possibility of each group in the

description of the sensors. In the first experiment, the brightness values are equally

And
rea

s I
oa

nn
ou

93

distributed in every group (0: 20%, 1: 20%, 2: 20%, 3: 20%, 4: 20%), and in the

second experiment, the values of the brightness are skewed (0: 5%, 1: 5%, 2: 5%, 3:

5%, 4:80%).

 Figure 6.1.4.2 2 depicts the average processing delay between skewed and non-

skewed values. We observe around 25% more processing delay when the workload

has high skewness. This is reasonable since the data partitioning algorithms of big

data engines, like Spark, do not take into account the size of the data and only hash

the partition key to decide where the data should be placed.

Figure 6.1.4.2 2: Results of experiment for skewed workload

Figure 6.1.4.2 1: StreamSight Query for the average temperature of 5 minutes, grouped by
brightness

And
rea

s I
oa

nn
ou

94

 In conclusion for this set of experiments, the alterations of the sensor values and

sensor quantity are crucial for the application performance evaluation. Furthermore,

application owners can reveal hidden insights from their services and evaluate large-

scale scenarios. Finally, the IoT workload generators are essential building blocks for

other systems, like fog & edge simulators and emulators, that currently use general-

purpose data generators.

6.2 Performance Evaluation and limitations

 In this section, after some experiments using different factors, the performance of

the system, in combination with the system limitations, that affect the performance

will be stated.

 Before we move to the experiments, it is important to state and define what are the

factors that determine the performance of our system. The performance of our

system can be measured in 2 ways, both under the same requirement pillar, the

accuracy. It is obvious that one of the performance evaluation factors is the accuracy

of the data exported, in order to always follow the provided input sensor model

configurations (e.g.: a sensor that has a message field with some random range

value, can’t generate value for this field that exceeds the declared input range at any

case - except in scenarios mode). This would be a violation in the system accuracy,

for the sensor messages accuracy. The other factor that the accuracy can be

measured is the frequency that each message is being produced. The user provides

the desired sensor message generation rate (the interval time in seconds between

each sensor message) or the dataset that will be replayed using some timestamp

And
rea

s I
oa

nn
ou

95

column, and he expects the data to be generated in the correct time while testing his

application. More precisely, the user would demand and want the data to be

generated at the correct and real times with ideally zero or extremely small delay, that

doesn't affect his application’s evaluation. The performance regarding the sensor

messages accuracy can be seen in section 6.1.2 .

6.2.1 Sensor Message Delay

 In this section the performance based on the sensor messages delay will be

evaluated. By sensor message delay, we refer to the case that the frequency

between 2 successive messages is greater than the expected interval time. For

instance, if the generation rate for one mockSensorPrototype is constant value of 2

seconds, and the first message was sent at 10:00:00 and the next sensor message

(by the same sensor) was sent at 10:00:04, this indicates that the delay was 2

seconds, because the system was supposed to generate the second message at

10:00:02. Of course, the delay can be accepted in some cases, that tends to zero, or

generally doesn’t affect the testing of the user, so we have to set a rule in order to be

able to test this factor. The most reasonable rule, in order for an average delay to be

considered performance downgrade, it is not to exceed the required sensor message

interval provided by the user, since this will stack the requests on the user

application. For example, if the user provided that he wants the generation rate

frequency to be 3 seconds, the threshold of supported input sensors, would be until

sensors start to produce sensor messages with average delay exceeding the desired

frequency (3 seconds in this example).

And
rea

s I
oa

nn
ou

96

6.2.1.1 Input and Evaluation Methodology

 Before moving to the experiments and the results let us first introduce the

methodology used in order to evaluate the system performance, based on the sensor

message delay. For this testing, in order to have an accurate evaluation and to

isolate any external factors that could affect the evaluation and the machine

performance, we make the input to be as simple as it can be, in order to cover the

evaluation scenario and not to create overhead to the machine for anything else

beyond the factor being tested.

 In the Figure 6.2.1.1 the testing scenario input can be seen. As it is previously

noted, we want to make the executions as simple without any external factor to affect

the evaluation, hence we have just one mockSensorPrototype and one field, and no

export to output file or scenarios since this would create extra overhead due to more

threads running. The only things that will be changing (according to the factors and

the experiments) are the sensorsQuantity value and the generationRate value.

And
rea

s I
oa

nn
ou

97

Figure 6.2.1.1 1: Base Input file for sensor message delay accuracy experiments

 Now that we introduced the input and the criteria, it is time to explain how the

evaluation will happen, and more precisely how the delay is being measured. In order

to be able to calculate the average delay of one mockSensorPrototype, i created an

application that receives HTTP requests through the “/testing” endpoint from the

workload generator (mock sensor messages), and process them accordingly, in order

to calculate the average delay for one mockSensorPrototype. We prepare the HTTP

application in order to know which sensor Prototype name should process. More

And
rea

s I
oa

nn
ou

98

precisely, the preparation for the HTTP testing application happens with an API call.

Through that API call, we inform the application with 2 things, 1) which sensor

prototype name should only be processed (let us name this input as

evaluationSensorPrototypeName) and 2) which is the expected generation rate for

this sensor prototype (the interval message generation frequency for the sensors of

this sensor prototype - let us name this input as expectedGenerationRate). Then,

the application internally, when it is being prepared, creates a thread that receives

these 2 inputs, and has a blocking queue, where the input messages will be stored

with priority the timestamp. In the continuation, when the HTTP application receives a

POST request from the workload generator (the request is the sensor message

packaged along with the sensorId and the timestamp the request was sent form the

workload generator, in the request payload) it puts it to the queue of the evaluation

thread, and if the sensorId of the request (the sensorId contains the sensorPrototype

name) matches the preparation input sensor prototype name

(evaluationSensorPrototypeName), then the message will be processed else it will

be ignored. After the evaluation thread filters the messages from its queue, it stores

the necessary information for each message in order to use them to calculate the

delay. The idea here is that, from the received packaged message, the thread keeps

only the timestamp that the request was sent, the received messages count and

the sum of the average delay for each sensor id. That way, the evaluation thread,

knows at any time what is the current latest message timestamp for each sensorId ,

and when it receives a new message from the same sensor (same sensorId) it

calculates the difference of the timestamps between the previous and the last

messages of this sensor and checks if the difference is greater than the expected

generation rate that the application had as input in the preparation

(expectedGenerationRate). If the difference between the previous latest message of

the same sensor and the current last message received is greater than the expected-

declared interval generation rate time, then it sums this delay, and increases the

And
rea

s I
oa

nn
ou

99

requested messages counter for this sensor by 1. After the evaluation duration

finishes, the thread calculates the average delay for each sensor (the sum of the

delays divided by the requests count for the sensor) and when it has calculated the

average delay for each sensor, it calculates also the average delay for all of the

sensors (the sum of the average delays for all sensors for the specified sensor

prototype divided by the sensors quantity) . The output of this equation will be

considered the average delay for the testing scenario instance.

Equation 6.2.1.1 1 : Equation used in order to calculate the average sensor message delay of
a MockSensorPrototype

 The Equation 6.2.1.1 1 express how the value of the average delay for one sensor

prototype is calculated in the HTTP testing application for each instance of the

evaluation.

And
rea

s I
oa

nn
ou

100

6.2.1.2 Evaluation Experiments

 Now that we have stated and explained the methodology of the experiments for the

evaluation of the performance based on sensor message delay, let us see and

introduce the experiments and analyse the results.

 The different experiments happened based on different testing factors. The 3 factors

that were tested are the input sensor quantity (sensorsQuantity) for the mock sensor

message, the generation rate (generationRate) for the mock sensor message, and

the processing power/resources of the hosted machine. Each experiment will run for

5 minutes, and in the end the average sensor message delay will be calculated for

each experiment.

6.2.1.2.1 Sensor Quantity Factor

 Probably the number 1 factor that could affect the system performance is the

number of mock sensors to be created from the input. Since our system creates a

thread for each emulated sensor, it is quite obvious and inevitable that there will be

some constraints in the number of sensors that the system can handle, given the fact

that no machine has unlimited processing resources in order to be able to process in

parallel a huge amount of threads. With a huge input sensor number, which implies

huge thread quantity to be created, the system performance could be affected.

 For this experiment, we have the input file that can be seen in the Figure 6.2.1.1 1

and the only variable would be the sensorsQuantity. We will run the experiment, for

different sensors Quantities (500, 1000, 15000, 2000, 25000, 3000) and for each

different sensorsQuantity, the duration until the end of the scenario and the

And
rea

s I
oa

nn
ou

101

calculation for the final average sensor message delay using the methodology

explained in section 6.2.1.1 will be 5 minutes, which is a period that gives us

representative results.

Sensor Number N Average Message Delay (s)

500 0.00732

1000 0.023679

1500 0.026599

2000 0.112249

2500 0.195059

3000 0.518606

Table 6.2.1.2.1 1: Experiment results for input sensors number factor

Figure 6.2.1.2.1 1: Graphical representation based on the results in Table 6.2.1.2.1 1:
Experiment results for input sensors number factor for the sensor number factor experiment

And
rea

s I
oa

nn
ou

102

 In Table 6.2.1.2.1 1 we can see the results for the evaluation of the system

performance by factoring the number of sensors. In the first column is the number of

sensors and in the seconds column, the average sensor message delay for the

corresponding input number of sensors in a machine that hosted the application,

within a docker container of 2 cores and 2 GB of RAM. Also, the Figure 6.2.1.2.1 1

depicts the corresponding graphical representation for the measured results of the

table. The first thing we notice is that the average delay, even for a small number of

threads, exists but it is indeed insignificant (~0.007s). Then, it can be observed

clearly that as the number of sensors is increasing, the sensor message delay is also

increasing smoothly, until it reaches the 2000, then it grows faster. Finally, for 3000

sensors, the average delay is still way under the generation rate (2 seconds limit we

set above).

 In addition, the figures 6.2.1.2.1 2, 6.2.1.2.1 3, 6.2.1.2.1 4 illustrate the CPU usage

using the cadvisor17 container in the testing hosted machine, that can create statistics

and analyse the CPU at the container that the application runs. In the figures, we can

see an instance of the CPU usage (percentage) per time for the docker container that

the application was hosted while running the experiment for a different number of

sensors. In the first figure(6.2.1.2.1 2) that represents an instance of CPU usage for

sensorsQuantity = 1000, it can be seen that the usage is at low levels, by using on

average only 22% of the available CPU cores. Then, In the Figure 6.2.1.2.1 3 where

the input sensors number = 2000 we can see that the CPU usage is increased, and

fluctuates between 30 - 45%, and finally at the Figure 6.2.1.2.1 4 the CPU usage can

reach the 70%, when the input sensors number = 3000.

17 https://github.com/google/cadvisor

And
rea

s I
oa

nn
ou

103

Figure 6.2.1.2.1 2: CPU Usage using cadvisor on the hosted application docker container with
2 cores for input sensors number = 1000

Figure 6.2.1.2.1 3: CPU Usage using cadvisor on the hosted application docker container with
2 cores for input sensors number = 2000

Figure 6.2.1.2.1 4: CPU Usage using cadvisor on the hosted application docker container with

2 cores for input sensors number = 3000

 The results which are obvious, and quite expected, show firstly that the bigger the

input number of sensors is, the more the performance will be affected. Also even the

average delay for a small number of sensors is very small, tending to zero, it exists,

and the reasons behind that is the delays for network calls to reach the HTTP

application, and the fact that in order to have 0 delay, a machine should be able to

And
rea

s I
oa

nn
ou

104

handle at the same time all the threads. Of course, this argument is not feasible yet,

since the machines can’t reach this point yet and they work concurrently (using their

multicore architecture) and not parallel, which implies that there will be time that the

OS will have to do multiple thread context switches.

 Context switch is the procedure when the thread inside the CPU is switched,

voluntary (when the thread for example does i/o actions, like waiting for the response

for the request or is sleeping state) or nonvoluntary (the CPU forces the thread to be

switched because the OS interrupt time has running out, which means the thread is

too long in the CPU and it needs to be switched in order for another thread to use it).

The reason behind the context switches of threads is that all active threads can’t

access the CPU at the same time. Regardless of the type of switch, the thread that

will be switched out, cannot use the CPU, which implies that it will be waiting idle,

until the OS switches it on again to resume its tasks. All this waiting, and the small

amount time created due to the overhead of the OS to make the context switches

while switching the threads, will be summed and it will produce this delay, which is

inevitable.

 Back to the experiment, the results verified our theory, and it is easy to see that

when the sensor input is bigger, which implies that the threads created by the

application and the OS are more, hence we will have more delay, affecting the

performance of the workload generator, with one reasonable explanation the increase

of context switches.

6.2.1.2.2 Generation Rate Factor

 We have seen that the number of sensors affects the performance of the workload

generator, which was quite expected, but now let us check another more complex

factor. In this experiment the factor that will be tested, is the generation rate for the

sensors. For this experiment we will keep the input from

And
rea

s I
oa

nn
ou

105

Figure 6.2.1.1 1 and we will test by gradually increasing the generation rate for the

sensor messages to 6 and 10 seconds, if it affects the system performance and more

accurately the average sensor message delay.

Input

Sensors
Number (N)

Average Message Delay (s)

Expected Generation
Rate = 2s

Expected Generation
Rate = 6s

Expected Generation
Rate = 10s

500 0.00732 0.01241 0.018775

1000 0.023679 0.040051 0.018022

1500 0.026599 0.038017 0.016636

2000 0.112249 0.065697 0.052392

2500 0.195059 0.071678 0.056858

3000 0.518606 0.106777 0.120352

Table 6.2.1.2.2 1: Experiment results for generation rate factor

Figure 6.2.1.2.2 1: Graphical representation based on the results in
Table 6.2.1.2.2 1: Experiment results for generation rate factor

And
rea

s I
oa

nn
ou

106

 In the Table 6.2.1.2.2 1 we can see the results of this experiment along with the

results for the previous. In the first column of the table we can see the results for the

previous experiment (with generation rate 2 s) and in the next columns we can see

the results for generations rate 6 and 10 s respectively. The figures 6.2.1.2.2 1,

Figure 6.2.1.2.2 2 present the corresponding graphical representations for the new

statistics.

 The results show some patterns which are expected, but there is also an

unpredictable behaviour, regarding the factor of generation rate. To begin with, also

for different generation rates, the behaviour regarding the increase of sensor number

is the same, since we have more average delay, with a bigger number of sensors.

Also, between generation rate 2s and generation rate 6s, the performance is way

better (~0.5s for 3000 sensors and generation rate 2s and ~0.1s for generations rate

6s for same amount of sensors) when we have generation rate 6s, and one possible

explanation would be that the context switches number would be less. The argument

that the context switches will be less, comes from the idea that since the interval time

between sensor messages is less, the number of context switches will be bigger (

more sensor messages will be sent since the interval time is less, implies more i/o).

Figure 6.2.1.2.2 2: Graphical representation based on the results in
Table 6.2.1.2.2 1: Experiment results for generation rate factor

And
rea

s I
oa

nn
ou

107

On the other hand, between generation rate 6s and generation rate 10s, it is not clear

which has better performance, since they are in the same level more or less.

6.2.1.2.3 Host Machine Resources Factor

 The last factor that we will examine, is the resources of the hosted machine. In the

previous 2 experiments the machine used was a pc, with the workload generator as

containerized service, with 2 available cores and 2 GB RAM, while in this experiment

we will test the same scenarios as before, in a machine with more cores and

available RAM, a server with 16 available cores and 16 GM RAM. Our guess is that

due to the bigger number of available cores, the results will be better than the other

machine with fewer resources.

Input Sensor Number
(N)

Average Message Delay (s)

Expected Generation

Rate = 2s

Expected Generation

Rate = 6s

Expected Generation

Rate = 10s

500 0.005412 0.016465 0.010333

1000 0.00748 0.016077 0.018917

1500 0.010654 0.018813 0.015203

2000 0.024444 0.019979 0.023761

2500 0.026832 0.018879 0.019488

3000 0.139107 0.021722 0.026162

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor

And
rea

s I
oa

nn
ou

108

Figure 6.2.1.2.3 1: Graphical representation based on the results in

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor for generation rate =
2 s in machine with 16 cores

Figure 6.2.1.2.3 2 : Graphical representation based on the results in

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor for generation
rate = 6 s in machine with 16 cores

Figure 6.2.1.2.3 3: Graphical representation based on the results in Table 6.2.1.2.3
1: Experiment results for hosted machine cores factor for generation rate = 10 s in

machine with 16 cores

And
rea

s I
oa

nn
ou

109

 The Table 6.2.1.2.3 1 depicts the results for the same experiments Sensor Quantity

Factor, Generation Rate Factor on a more powerful machine, and the figures 6.2.1.2.3

1, 6.2.1.2.3 2 , 6.2.1.2.3 3 its corresponding graphical representations based on the

expected generation rate.

 The performance overall is better than the machine with fewer cores, since the

average delay is less in all the cases, and it is quite expected as the threads can now

use more CPU cores, in comparison to the previous tested machine. The more cores

a machine can have, it allows more parallel computing which implies more threads

working at the same time (16 MAX in this scenario in comparison to the 2 in the

previous). Having said that, with more threads using CPU at the same time, the

waiting time will be less, hence the average delay will be also less.

 Moving to the sensorsQuantity factor, it is needless to say that in this experiment

also the sensors number is affecting the performance, since with 500 sensors the

average delay for generation rate 2s is ~0.005s, while for 3000 sensors the average

delay increases to ~0.13s (which is smaller than the 0.51s on the other machine).

The last comment, regarding the generation rate, the behaviour is the same as the

previous machine. For generation rate 6s the performance is better than generation

rate 2s, and the difference between generation rate 6s and 10 s is not very obvious.

 Overall, the results are better, but follow the same patterns as the previous

machine.

6.2.1.2.4 Sensors Quantity Limitation

And
rea

s I
oa

nn
ou

110

 In this experiment we will try to stress the workload generator in order to find its

limits. The first thing we would like to find is the limit of how many sensors can the

system handle in relation to the cores of the hosted machine, until the system

becomes unresponsive or does not function properly. Then, the other goal is to find a

threshold of sensor quantity, based on the generation rate, that if the machine passes

this threshold, then the delay would be not accepted. In order to find the threshold,

we set the limit of accepted sensor message delay to be the same as the generation

rate, since, if the system has more delay than this, it will build backpressure, because

the requests will queue to the user application and the application won’t be able to

process them in time.

 The attempts will happen on 3 machines, one with 2 available cores, the other with

8 available cores and finally a server with 16 cores. For each of the machines, we will

stress the machine in order firstly to find its breaking point and then to find the

threshold for the not accepted generation rate (using generation rates 2, 6, 10

seconds).

 Generation Rate
2s

Generation Rate
6s

Generation Rate
10s

Unresponsive Machine sensor limit 8000 8000 8000

Delay exceeds the generation rate
sensor limit

4000 - -

Table 6.2.1.2.4 1: Input Sensors number Performance Limitation on a machine with 2
available cores

And
rea

s I
oa

nn
ou

111

Generation Rate
2s

Generation Rate
6s

Generation Rate
10s

Unresponsive Machine sensor limit 10000 12000 12000

Delay exceeds the generation rate
sensor limit

6500 - -

Table 6.2.1.2.4 2: Input Sensors number Performance Limitation on a machine with 8
available cores

Generation Rate
2s

Generation Rate
6s

Generation Rate
10s

Unresponsive Machine sensor limit 30000 30000 30000

Delay exceeds the generation rate
sensor limit

6000 15000 -

Table 6.2.1.2.4 3: Input Sensors number Performance Limitation on a machine with 16
available cores

 On the tables 6.2.1.2.4 1, 6.2.1.2.4 2, 6.2.1.2.4 3 we see the thresholds for the

experiments in the machines with available 2, 8 and 16 cores respectively. What we

can see is that the only case that the delay exceeds the generation rate is for

generation rate 2s, (with exception the machine with 16 cores that we were able to

find the limit also for generations rate = 6s) since for bigger generation rates, the

machine becomes unresponsive or the containers drop during our task to find the

threshold of sensors that the delay exceeds the generation rate. More specifically, it

is safe to assume that the maximum number of sensors that the system can emulate

in order that the system performance don’t affect the users application evaluation is

~6000 sensors for a decent machine (having more than 2 cores), while for machines

with 2 cores the threshold is 4000 sensors. Also, for powerful machines having more

than 8 cores, the threshold for generation rate bigger than 2s should be around

And
rea

s I
oa

nn
ou

112

15000 sensors. The other thing that we wanted to find was the max number of

sensors that the system can emulate without having functionality issues or errors

based on the available cores of the hosted machine. If we have a look at the table,

we see that the limits are more or less independent from the generation rate, and the

sensor limit that the system can support starts from 8000 sensors in a weak machine

with 2 cores, and grows until the huge number of 30000 sensors in a machine with 16

cores. For a normal machine of 8 cores the limit of sensors that the system can

satisfy without any issue is around 10000 sensors.

6.3 Evaluation Results Summary and System

limitations

 After the experiments and the evaluation happened in the 2 previous sections, it is

time to summarize the results, and give an overview of the usability and performance

evaluation and the limitations of the system.

 Firstly, the usability was evaluated based on the requirements we previously set that

a workload generator should have, back to section 3.1. We did prove, that my

workload generator could replay completely different applications’ exported sensor

data from CSV datasets, that encourages the heterogeneity in sensor properties,

sensor messages formats and even sensor output protocols. Then, we executed a

use case with some sensors and some scenarios that could alter the data population

during the data generation, and we confirmed the accuracy of the generated data

values based on the input specifications. In addition, a whole sub chapter was

dedicated to prove the extendibility of our system, demonstrating how easily the input

and output interfaces can be implemented by any developer(section 5.2).

Furthermore, we went a step deeper, in order to show our system usability, by

And
rea

s I
oa

nn
ou

113

integrating it with a real fog emulator, and we illustrated how useful a workload

generator is for testbeds or why it could be an essential brick for other systems like

edge and fog simulators or emulators and finally how researchers or operators can

also use it, not only to evaluate different hypothesis, but also to reveal hidden insight

or do data analysis on it.

 In addition to the usability, we were determined to find factors that could affect the

system performance, which could be translated to the delay between sensor

messages for the same sensor. Regarding the accuracy performance due to sensor

delay, we first showed that the Sensor Quantity Factor could obviously affect the

performance, since the increased number of sensors implies more threads in the host

OS, which obviously don’t have unlimited resources to handle huge amounts of

threads at the same time, mapping to the needed sensors. Beyond the influence of

the input sensor number, the system worked quite decently in a weak machine with 2

available cores, having just ~0.007s average sensor message delay, for input 500

sensors, and generation rate 2s, and the delay is still small until the 3000 sensors,

where it reaches the ~0.5s. After that experiment, we figured out that also the

generation rate could alter the performance. Basically, the Generation Rate Factor

between the sensor messages showed that with greater generation rate, the average

sensor message delay potentially could be less, with the explanation that less context

switches between the created threads inside the CPU will occur (bigger message

interval period implies less generated sensor messages). The last factor that was

tested it was the Host Machine Resources Factor. After replaying the same

experiments (input sensor quantity along with different generation rates) in a more

powerful server with 16 GB RAM and 16 cores, we saw the tremendous difference in

the average sensor message delay. The average sensor message delay reached just

the ~0.1 s for 500 input sensor messages and generation rate = 2s, being 5 times

smaller than the delay found based on same metrics in a machine with 2 cores and 2

And
rea

s I
oa

nn
ou

114

GB RAM. The delay was overall smaller than the weaker machine, but the patterns

regarding the factors were quite the same. The more sensors the more the accuracy

is dropping, and the bigger the generation rate, the smaller is the delay, but rather

than that with a decent machine the performance downgrade, can’t seriously affect

the users’ application evaluation. Having said that, finally we stressed the system to

find its breaking point in terms of performance and generally its limits. After some

vigorous stressing to 3 machines with different processing power, we found the limits

when the machine’s performance doesn't affect the application regarding the delay.

For generation rate 2s we found that the system can provide acceptable delay as

long as the sensor input number is less than 4000 for a machine with few resources

(2 cores) and around 6000 for decent machines providing CPU with more than 8

cores. In addition, we found out that the system can safely emulate sensors less than

8000, with this limit to reach even the 30000 as the machine power increases, before

making the application unresponsive.

And
rea

s I
oa

nn
ou

115

Chapter 7

 Conclusion and future work

7.1 Synopsis

7.2 Conclusion

7.3 Future work

7.1 Synopsis

 In an era that IoT applications are growing, and the deployment using fog computing

is emerging, developers are facing various challenges in order to test and evaluate

their IoT applications, hence an extra hand of help in the testing phase would be

essential and appreciated. Having said that, IoT workload generators should not only

provide the required data based on the users provided sensor models and properties,

but also support heterogeneity in order to be used with plenty of developers in

different scenarios, and make the process of integration with the fog easier. This

implementation in comparison to the existing ones, encourages the heterogeneity

found in IoT devices, in terms of different output protocols, different sensor message

formats and data representations. On top of that, it can be easily extended, and

finally using the provided sensor realization model, can comprehend different types of

sensors, covering the gap of solutions that are tailored only to specific sensor types

And
rea

s I
oa

nn
ou

116

or output protocols, lacking generality or cannot be easily extended. The

implemented system, provides a real sensors comprehension model, along with an

extendable, heterogenous IoT workload generator that can be also integrated with

fog emulator and aims to help operators, academic researchers, users or developers

to test, deploy, analyse and evaluate their IoT applications on fog, by making the

procedure easier, convenient, and with less effort, cost and time wasted.

 7.2 Conclusion

 In this thesis, I demonstrate how a user can use the implemented workload

generator, in order to produce data according to his needs, or replay recorder sensor

data, straight to his application, regardless the output protocol or the sensor message

formats, since the provided interfaces can be extended to cover the desired

scenarios. The provided comprehensive model for describing the IoT devices, along

with a scalable implementation of an IoT heterogeneous workload generator

framework, can be used for users to experiment real world scenarios and evaluate

their applications performance regardless of the application specific needs. The

evaluation of the implementation demonstrates the accuracy performance for the

exported sensor data, and the performance downgrade factors regarding the sensor

message timing accuracy were extracted. It was proved that as bigger is the input

sensor number, the greater will be the delay between interval time for sensor

messages, and as greater is the declared frequency between sensor messages of

the same sensor, the less will be the delay, due to less generated messages. A way

to decrease the delay overall, is to use a hosted machine with more available

processing resources (more cores), that with the support of parallel execution,

minimizes the latency as it was observed and proved. In addition, we found the

And
rea

s I
oa

nn
ou

117

limitations for our system. A single instance of our system can safely emulate until

8000 sensors in a weak machine (2 cores) and around 30000 sensors in more

powerful machines with 16 cores. Finally, we found that the system can emulate and

handle up to 4000 sensors in order not to affect the performance for the user

application in a machine with 2 cores, and this threshold increases to approximately

6000 sensors in more decent machines with more than 8 cores, for generation rate 2

seconds. Finally, we demonstrated how useful are workload generators in general,

and to other systems as well, like edge or fog emulators. The integration of fog

emulators with workload generators can provide better analytics and flexibility to the

users, and users can extract more insights using this combination when testing their

application before deploying it to the real world.

 7.3 Future work

 There are a lot of enhancements that this work can support, to make it even useful

and widely used. The input and output interfaces, encouraging and yelling the

implementation of more sensor prototypes, and more output protocols that current

IoT devices support (for example CoAP output protocol). Mentioning the IoT devices

heterogeneity, more advanced generation rates could be developed, to support more

extreme values population methods through generation scenarios. Another

enhancement that would make the system even more scalable, is the potential

creation of a central control master, in order to support and monitor multiple instances

of the workload generator and distribute the workload (or the sensors number) to

make it support even more sensors.

And
rea

s I
oa

nn
ou

118

Bibliography and References

[1] M. Vega, 2020 [Online]. Available: https://review42.com/internet-of-things-stats

[2] IDC, 2019 [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS45213219

[3] IDC, 2020 [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS46286020

[4] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu and M. Stanley, "A brief survey of
machine learning methods and their sensor and IoT applications", 2017 8th International
Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1-8, Larnaca
2008, doi: 10.1109/IISA.2017.8316459.

[5] S. Madakam, R. Ramaswamy and S. Tripathi, "Internet of Things (IoT): A Literature
Review.", Journal of Computer and Communications, vol. 3, no. 5, pp. 164-173, 2015, doi:
10.4236/jcc.2015.35021.

[6] I. Lee, K. Lee, "The Internet of Things (IoT): Applications, investments, and challenges for
enterprises", Business Horizons, vol. 58, issue 4,pp. 431-440, ISSN 0007-6813, 2015,
https://doi.org/10.1016/j.bushor.2015.03.008.(http://www.sciencedirect.com/science/article/pii/
S0007681315000373)

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications", IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015, doi:
10.1109/COMST.2015.2444095.

[8] N. Naik, "Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP
and HTTP", IEEE International Systems Engineering Symposium (ISSE), pp. 1-7, Vienna
2017, doi: 10.1109/SysEng.2017.8088251.

[9] R. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, 1999

[10] [Online]. Available: https://en.wikipedia.org/wiki/Representational_state_transfer

[11] U. Hunkeler, H. L. Truong and A. Stanford-Clark, "MQTT-S — A publish/subscribe
protocol for Wireless Sensor Networks", 2008 3rd International Conference on
Communication Systems Software and Middleware and Workshops (COMSWARE '08), pp.
791-798, Bangalore 2008, doi: 10.1109/COMSWA.2008.4554519.

[12] ApacheKafka.[Online].Available:http://kafka.apache.org/documentation.html#introduction

[13] A. Sharma, "Apache Kafka: Next Generation Distributed Messaging System",
International journal of scientific engineering and technology research, vol. 03, issue 47, pp.
9478-9483, ISSN 2319-8885, Dec. 2014, http://www.infoq.com/articles/apache-kafka

[14] A. Youssef, "Exploring Cloud Computing Services and Applications", Journal of
Emerging Trends in Computing and Information Sciences, Jul. 2012

[15] S. Yi, C. Li, and Q. Li, "A Survey of Fog Computing: Concepts, Applications and Issues",
In Proceedings of the 2015 Workshop on Mobile Big Data (Mobidata '15), pp. 37–42, New
York 2015, https://doi.org/10.1145/2757384.2757397

And
rea

s I
oa

nn
ou

119

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the internet
of things", In Proceedings of the first edition of the MCC workshop on Mobile cloud computing
(MCC '12), pp. 13–16, New Work 2012, https://doi.org/10.1145/2342509.2342513

[17] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and Challenges", in
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016, doi:
10.1109/JIOT.2016.2579198.

[18] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. Dikaiakos, “Fogify: A fog
computing emulation framework”, in Proceedings of the 5th ACM/IEEE Symposium on Edge
Computing, ser. SEC ’20, New York 2020

[19] M. Curiel and A. Pont, "Workload Generators for Web-Based Systems: Characteristics,
Current Status, and Challenges", in IEEE Communications Surveys & Tutorials, vol. 20, no. 2,
pp. 1526-1546, Secondquarter 2018, doi: 10.1109/COMST.2018.2798641.

[20] N. Bruno and S. Chaudhuri, "Flexible database generators", In VLDB, pp. 1097–1107,
2005.

[21] J. E. Hoag and C. W. Thompson, "A parallel general-purpose synthetic data generator",
SIGMOD Record, vol. 36, issue 1, pp.19-24, March 2007,
https://doi.org/10.1145/1276301.1276305

[22] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and S. Dustdar, “Synthesizing
plausible infrastructure configurations for evaluating edge computing systems”, in 3rd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX Association, Jun. 2020.
[Online]. Available: https://www.usenix.org/conference/hotedge20/presentation/rausch

[23] O. Kolosov, G. Yadgar, S. Maheshwari and E. Soljanin, “Benchmarking in the dark: On
the absence of comprehensive edge datasets”, in 3rd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 20). USENIX Association, Jun. 2020. [Online]. Available:
https://www.usenix.org/conference/hotedge20/presentation/kolosov

[24] D. Libes, D. Lechevalier and S. Jain, "Issues in synthetic data generation for advanced
manufacturing", 2017 IEEE International Conference on Big Data (Big Data), pp. 1746-1754,
Boston 2017, doi: 10.1109/BigData.2017.8258117.

[25] T. D. Doudali, I. Konstantinou and N. Koziris, "Spaten: A spatio-temporal and textual big
data generator", 2017 IEEE International Conference on Big Data (Big Data), pp. 3416-3421,
Boston 2017, doi: 10.1109/BigData.2017.8258327.

[26] J. W. Anderson, K. E. Kennedy, L. B. Ngo, A. Luckow and A. W. Apon, "Synthetic data
generation for the internet of things", 2014 IEEE International Conference on Big Data (Big
Data), pp. 171-176, Washington 2014, doi: 10.1109/BigData.2014.7004228.

[27] A. Mäkinen, J. Jiménez and R. Morabito, "ELIoT: Design of an emulated IoT platform",
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pp. 1-7, Montreal 2017, doi: 10.1109/PIMRC.2017.8292769.

[28] D. Giouroukis, J. Hülsmann, J. V. Bleichert, M. Geldenhuys, T. Stullich, et al.. ,
"Resense: Transparent Record and Replay of Sensor Data in the Internet of Things", 22nd
International Conference on Extending Database Technology (EDBT), Lisbon Mar. 2019. ⟨hal-

02056767⟩

[29] D. Mosberger and T. Jin, "Httperf—a tool for measuring web server performance",
SIGMETRICS Perform. Eval. Rev. 26, pp. 31–37, 3 Dec. 1998
https://doi.org/10.1145/306225.306235

[30] Z. Georgiou, M. Symeonides, D. Trihinas, G. Pallis and M. D. Dikaiakos, "StreamSight: A
Query-Driven Framework for Streaming Analytics in Edge Computing", 2018 IEEE/ACM 11th

And
rea

s I
oa

nn
ou

120

International Conference on Utility and Cloud Computing (UCC), pp. 143-152, Zurich 2018,
doi: 10.1109/UCC.2018.00023.

And
rea

s I
oa

nn
ou

121

Appendix A

A.1 Repository of Source Code for implementation

The source code can be found in https://github.com/aioann01/IoT-workloadGenerator

(personal) or through the UCY LINC LAB at https://github.com/UCY-LINC-

LAB/aioannou-ade2020-master-iot-workload-generator , along with sample files, and

deployment docker-compose files.

And
rea

s I
oa

nn
ou

https://github.com/aioann01/IoT-workloadGenerator
https://github.com/UCY-LINC-LAB/aioannou-ade2020-master-iot-workload-generator
https://github.com/UCY-LINC-LAB/aioannou-ade2020-master-iot-workload-generator

