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Abstract 

 

  Nowadays, the novel IoT application era has risen to the top, reaching a point that smart 

devices can also communicate between them. This new era introduced the need of 

continuous information exchange between the smart devices, which has as result that IoT 

applications produce vast amounts of data that need processing, and some of the applications 

require this processing to be of low or ideally no latency. The Fog and edge computing 

paradigms had emerged from these demands, as a solution, bridging the gap between users’ 

applications and the cloud by providing intermediate processing nodes, closer to the user 

application, that minimizes the processing latency, which is essential for time-critical 

applications.  

  Deployment of fog systems can be really complicated, and it demands effort, time and costs, 

making the life difficult for users that would like to test or evaluate their IoT applications. The 

solution for this challenge is the paradigm of fog emulators, along with workload generator 

softwares. With an IoT workload generator integrated with a fog emulator, users can produce 

or replay sensor data based on their sensors’ model description, and evaluate their 

applications with real IoT devices scenarios, by emulating real sensors easily, and without the 

need to purchase and set the real infrastructure.  

  This thesis introduces a novel IoT workload generator that (re)produces data from IoT 

devices in order for the users to be able to stress, evaluate and test their applications easily. 

Users can provide sensor models information, or recorded sensor data through datasets and 

the system will replay or produce new sensor messages data stream straight to the user’s 

application. The implementation provides a comprehensive sensor model realization, along 

with a scalable, extendable and  heterogeneous workload generator that gives the ability to 

the users of IoT applications to produce IoT data stream to their applications based on the 

user's input sensors configurations, regardless of the output data protocol or message format. 

On top of that, users can provide datasets of recorded real data that can be reproduced, with 

the ability to be customized, regarding the user’s preferences, and finally they can implement 

the existing input and output interfaces for new features matching their specific needs. 
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Chapter 1 

 

Introduction 

  

   IoT devices transform the physical world into a cyber-physical dynamic 

environment. Devices can now connect, interact, collaborate and communicate not 

only with humans, but even between them. The later ability creates a new potential to 

bring immense value into our lives. Thus, the bidirectional exchange of data between 

devices and humans helps us to amplify our abilities, and, consequently, makes our 

everyday life easier and more convenient. To this end, a novel IoT application era is 

created that boosts multiple sectors such as health care, industrial automation, 

transportation, smart-cities and of course our daily personal convenience. Just to get 

an idea of the potential use cases of IoT in our daily life, imagine a smart house that 

can monitor itself on its own without any human intervention. This smart house, can 

consist of smart lambs that can turn off if they are not needed, sensors that can 

sense fire or something not normal in the house, or cameras that monitor any strange 

behaviour and inform the owner, providing more security and safety to our life, and on 

top of that, saving money and energy for a better environment. However, all these IoT 

devices and applications produce much more data than their early stages while they 

are getting smarter. Recent calculations [1] estimate that every second 127 new 

devices get connected to the internet, which results in the estimation that 75 billion 

IoT devices will be online by 2025. The later contributes to a parallel increase of the 

generated IoT data. For instance, according to a new IDC forecast [2 , 3], connected 

IoT devices are expected to generate 79.4ZB of data in 2025 with more than 59 
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zettabytes (ZB) of data to be created, captured, copied, and consumed in the world 

this year.  

  This increased number of devices comes with an increased heterogeneity in terms 

of technologies, data types, formats and protocols. The combination of the 

heterogeneity and the vast amount of streaming data is one of the main bottlenecks 

in application development, testing and evaluation. In addition, with this growth of 

interconnected devices, which implies growth of generated data, the produced data 

volume rates cannot be controlled in a real testbed. Furthermore, the cost and the 

effort needed in setting and deploying hundreds or thousands of IoT sensors are only 

a few of the difficulties that users need to face and address for their new IoT systems 

to be tested. For a better understanding, let us introduce a representative use-case of 

a smart-city application that facilitates in monitoring of the city traffic and notify people 

for possible accidents. In such IoT service, distance between sensors, devices, 

servers etc, could be tens or hundreds of kilometres with the operator to be forced to 

waste a lot of time in order to just set a deployment for testing. Not only that, for a 

single change, the operator should redeploy and readjust partially (or even totally) the 

system. It is reasonable for this long back-and-forth procedure, to be costly in money 

for renting or purchasing the devices, and in terms of time and effort for placing IoT in 

their physical locations. In order for the users to bypass the above problems, they are 

forced to spend time in writing software-based IoT data generators of diverse 

devices, or waste time to find commercial software suites, where unluckily for them, 

they are not focusing on IoT data, hoping that they can find the right software to 

satisfy each user’s needs. Having said that, the question here, is whether a system 

can be implemented, and how, in order to address all the above-mentioned 

challenges for IoT applications in fog computing. 

  The current thesis answers the above question. In order to tackle all the above 

issues, we introduce an all-in-one IoT data generation framework, where the user 
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provides a model representation of her sensors’ properties and the system creates 

thousands of sensors in order to produce the data that the user’s application could 

produce in real life, making easier the integration and testing of real scenarios and 

handling the heterogeneity of the sensors nature and properties at the same time. In 

addition, our work can also replay real data from CSV datasets, with the ability to 

customize them, providing to the user the choice to use the same data from the 

dataset or mix real data with users’ preferences and customizations to produce 

synthetic data. Another great feature of our framework is that it supports the 

heterogeneity found in protocols and data representation of IoT devices. Generated 

data can be represented as JSON, XML, TXT etc. and can be published through 

HTTP, MQTT or using KAFKA broker. On top of that, users can extend the 

functionalities through programmable Interfaces in order to create for example more 

output protocols or add more input configuration features. Last but not least, 

statistical analysis of the data populated, dynamic change of the data and export of 

the generated data to dataset files, in order to be analysed or replayed later on if they 

want, are also supported. 

  Based on the above supported features the contributions for this work are: 1) A 

comprehensive model for describing IoT data generation, 2) a scalable multithreaded 

open source framework that simulates as closer to the reality the desired model 3) an 

heterogeneous IoT workload generator 4) a system that support experimentation with 

real-world scenarios and evaluation of their performance individually, or integrated  

with fog or edge emulators. 

  The rest of the thesis is structured as follows: In Chapter 2 a basic background 

knowledge with some terms and technologies will be introduced in order to get 

familiar with the context, along with some related works, while in the 
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Chapter 3 the first introduction of the system will be stated, with the requirements and 

an overview of the architecture. Chapter 4 presents some basic model mapping 

between the input and the entities of the system, but more details and 

implementation-wise information can be found in Chapter 5. Experiments and results 

for the system evaluation are explained in Chapter 6 and in the end, Chapter 7 

concludes the thesis. 
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Chapter 2 

 

Background Knowledge and Related Work 

 

2.1 Background Knowledge 

2.1.1 IoT 

2.1.2 IoT messages protocols 

2.1.3 Cloud - Fog - Edge Computing 

2.1.4 Fog emulators  

2.1.5 Workload Generators 

2.2 Related Work 

 

 

2.1 Background Knowledge 

 

  

2.1.1 IoT 

  

  Recently, a new era of applications was formed when devices started having 

abilities to do more intelligent stuff, exceeding their normal tasks. Devices can now 

communicate, learn [4], advise or even act on their own. In order to do more smart 

actions, these “smart” devices need to observe, sense and form the state of the 

environment they are located at any moment, using multiple sensors, or by 

exchanging information with other devices, in a way similar to what we as humans 

do, using our senses. These new capabilities for the devices were enabled from 

advancements in microelectronics and low-power communication protocols, 

improvements in wireless sensor networks, machine learning techniques and other
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 technologies. All these improvements or new techniques gave birth to this novel era 

that we call IoT so that it can drive “intelligence” in interconnected smart devices or 

portable objects (aka “things”) [5 , 6 , 7]. 

 The IoT era, brought potential and benefits to numerous sectors of our daily life, and 

lifestyle. Health care, industrial automation, transportation, resource monitoring and 

management are just a fraction of the benefited sections by IoT. Starting with health 

care, mobile tools for telemedicine, remote patient tracking technologies via 

wearables, or even unmanned aerial vehicles that can provide help, in conditions that 

human lives could be in risk, are just a few examples. Furthermore, smart houses 

using monitoring sensors, can monitor themselves in order to reduce energy 

consumption, and provide security and safety to the owners. In addition, smart cities 

using smart traffic lights and optimized public energy grids can offer traffic monitoring, 

improvement of resources consumption and efficiency. In transportation, 

interconnected autonomous cars, can drive themselves without human intervention, 

using cameras, radars, and other sensors to capture information about roads, traffic, 

and to prevent potential accidents. All of the above examples will result in devices 

that can be self-controlled, and humans will be released from the stress to monitor 

them and the effort do the tasks on their own.  

   

2.1.2 IoT messages protocols 

 

  A challenge for the IoT application developers, is to decide which output protocol 

their sensors message will have. The reason for this is that there is no official 

standardization yet for IoT devices protocol. Hence multiple data transfer protocols 

can be used, for example HTTP, MQTT, AMQT, CoAP etc. each with its advantages 

and drawbacks [7 , 8].  
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  2.1.2.1 Request-Response Protocols 

 

  2.1.2.1.1 HTTP 

   HTTP [9] is the most widely used and known data transfer protocol due to the 

internet explosion. HTTP protocol is a request–response application layer protocol in 

client-server computing model. Clients (e.g.: a web-browser) send request to the 

server, and the server replies with the requested resource in the response. For this 

type of protocol, the user must define the request URI endpoint that the HTTP 

request will be send to (the endpoint that the server will be listening to), and the 

clients or servers’ information (host/IP and port) that has the requested resource. If 

web services of HTTP protocol conform the REST software architecture style, which 

implies that they are using a uniform and predefined set of stateless operations or 

generally follow some global good practises and conventions and a set of constraints 

that ensure a scalable, fault-tolerant and easily extensible system, they also can be 

considered RESTFull web services.[10] 

  

2.1.2.2 Publish/Subscribe Protocols 

 

  Publish/Subscribe protocols differ from request-response in some basic concepts. 

For the publish-subscribe message pattern, we have 2 client entities, publishers and 

subscribers. In this design, devices or clients (called publishers) send-publish 

messages tagged with a topic. On the other end, other clients called subscribers, 

subscribe to topics, and they care about only the messages that are tagged with the 

topics they subscribed. Optionally and most of the times, in between there is an 

intermediate node, called broker server, that collects the messages from the 

publishers, group them based on the topics, and forwards them to the subscriber 
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clients that had subscribed previously to the broker based on the topic. In case that 

the broker exists, neither the publishers know which subscriber will collect their 

messages, neither the subscribers know from which publisher the data came from. In 

the other case, that the optional broker server is not supported, publishers multicast 

the messages. The concept overall is that publishers send data using topics, and 

these data eventually will be collected from subscribers. 

 

  2.1.2.2.1 MQTT 

  MQTT [11] is a lightweight message queuing and transport protocol. It is a publish / 

subscribe network protocol with purpose the transfer of messages between devices. 

As its name implies, it is suited for transport of telemetry data (sensors and actuators) 

and along with its lightweight nature, it is suited for M2M communication and 

ultimately for the IoT. MQTT protocol can consists of 2 network entities, MQTT broker 

and clients (publishers or subscribers) .The publisher client sends messages to the 

MQTT broker tagged with a topic, and the MQTT broker distributes the messages to 

clients that subscribed to the topic. MQTT relies on the TCP protocol for data 

transmission and can support QoS. QoS is a measurement of the agreement 

between a sender of a message and the receiver that guarantees the delivery of the 

message. There are 3 QoS levels in MQTT, 1) at most once (sender sends the 

messages and does not expect acknowledgement of delivery of the message from 

broker or other clients) , 2) at least once (the message is being re-tried until 

acknowledgement is received) , 3) exactly one (sender and receiver establish two 

level-handshake in order to assure that only one copy of the message was received). 

The configurations needed for this output protocol are broker servers’ information 

(ip and port) that the data will be published to, and the topic that they will be 

published to. 
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  2.1.2.2.2 KAFKA 

  KAFKA [12 , 13] is not an output protocol, but more accurately an open source 

streaming platform currently supported by the Apache Foundation. It uses the 

publish-subscribe message pattern and has similarities and same concepts as 

MQTT. KAFKA’s biggest different from MQTT protocol, is the scalability provided 

through the distributed and persistent data preservation, since KAFKA was designed 

to handle huge amount of streaming data. KAFKA also depends on Zookeeper. 

Zookeeper is a top-level software developed by Apache, and keeps track of the 

status of KAFKA cluster nodes, partitions, topic subscriptions etc. Asides from their 

differences, they share plenty of the information required in order to achieve data 

transfer. Users need to provide KAFKA broker servers information (port and ip) as 

well topics for the messages.  

 

2.1.3 Cloud - Fog - Edge Computing 
 

  In order for devices to intercommunicate, and learn, they need data that is 

previously generated and collected, and can be accessed from everywhere. All these 

data produced are being stored in the cloud. Cloud or cloud computing [14] is the 

availability of computer system resources (computing power and data storage), at 

any time, in which the user does not have direct management access . All the 

generated data can be stored using cloud computing, on datacentres all over the 

world, and can be accessible through the Internet at any time. The distance between 

a machine that wants to retrieve some data, and the cloud server that has these data, 

can vary, in worst case, it could be some continents away. Nowadays, a lot of 

applications are time critical that cannot afford the latency created by the distance of 

the machine that stores or is needed to process the data in order to return the desired 

information. This latency can downgrade the performance for these time critical 
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applications or even make them useless, if they need to process data in real 

time (some connected/driverless transport applications for example, where split-

second reactions may be essential). On top of that, IoT devices export huge amounts 

of raw data that they record every second, from which only a small fraction can be 

useful, increasing the data traffic around the internet, creating network congestion 

which will result to more latency to retrieve the desired information. 

  This increasing data rate and real-time analysis requirements create the need of a 

new approach to address them. From these requirements, edge and fog computing 

[15 , 16 , 17] emerged. The basic idea behind these new approaches is bring the 

processing as closer to the user device or application as possible, by placing some 

intermediate nodes between the cloud servers and the devices or even on the 

devices. With this technique, we aim to bridge this huge gap between end devices 

and the cloud servers, to minimize the latency and also handle properly the data 

stored to be only the valuable ones, to earn cloud storage. 

  Fog computing [15], is the method to place processing nodes, geographically in 

between the devices and the cloud servers. This new layer of processing, located 

between the devices and the cloud, consists of the fog nodes. In the lower level of the 

fog layer (closer to the devices), we can often find low-capacity machines that are 

located in the local network of the devices, and by moving from lower to higher level 

in the fog layer, the capabilities and the processing power of the fog nodes is being 

increased,  where in the top level we can find the cloud, that has theoretically 

unlimited processing resources and capabilities. The purpose of this newly created 

layer, is to process as much as possible the incoming data stream produced by the 

devices, with the goal to handle the problem of latency in processing for time-critical 

services, such as an autonomous car service that cannot afford processing in 

geographically-far nodes, and on top of that with this “local” processing, is being 

implied that the amount of data sent to the cloud is being reduced, cutting out 
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unnecessary data transfers, simplifies cybersecurity, decreases network and system 

response times and network congestion.  

   An even more enhancement of the fog computing approach is edge computing, 

which is the movement of the processing on the devices, eliminating even more the 

latency from applications to the fog nodes. This processing that can happen on the 

end users devices, would be the best solution, but usually edge nodes lack capacity 

and processing power in comparison to fog nodes, in order to make them more 

usable, practical and feasible (a mobile phone or sensor with more resources usually 

implies bigger size and to be more expensive).  

  This rising combination of edge and fog computing will support users' needs for 

greater performance and at the same time reduce the big data problem that it is 

meant to grow within this new IoT era.   

 

 2.1.4 Fog emulators  
 

  Fog and edge computing brought some challenges to for users that want to develop, 

deploy and test their IoT applications. In order for operators to just evaluate a single 

scenario of their IoT application in fog, they need to purchase, place, program and 

deploy the sensors, where this long procedure costs them in terms of money, 

valuable time and effort. In addition, this whole procedure needs to be reproduced for 

maybe each different testing scenario. These challenges for fog operators can be 

addressed by emulating the application instead of real deployment of testbeds. 

   Emulators are hardware or software tools that can realize or represent the 

behaviour of an application or a system at a host device or host infrastructure by 

minimizing the real deployment cost. These systems are useful due to the ease that 
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the user can manipulate the input or the state of a runtime application. Their main 

functionality is to represent the behaviour of the application, before it can be used in 

the real context, with users achieving less time and cost waste, as well as effort.  

  Fog-computing emulators need to be able to provide an execution environment that 

captures realistically the conditions and behaviour of a Fog application deployment, 

focusing on resource heterogeneity, controllable failure scenarios, scalable 

experimentation and monitoring capabilities. Fogify [18], is an example of a 

framework for fog-applications emulation, that aims in emulation of fog applications 

with the minimum effort for the users. Beyond the ease of the set up for the 

emulation, Fogify also supports runtime monitoring, assessment of deployment, 

resource and link heterogeneity and scheduled scenarios that can provide run-time 

changes for more wide test cases. Using the containerization infrastructure of both 

this work, and Fogify framework, the workload generator implemented, can be used 

perfectly along with Fogify, in order to provide a complete fog computing emulator, 

than can emulate and produce IoT devices data, providing a powerful tool to any IoT 

fog application developer with the ability to deploy, experiment, inject faults or 

different scenarios’ data stream and finally test their fog applications before 

introduced to public. 

 

 

2.1.5 Workload Generators 
 

  Fog emulators cannot generate data, not without a workload generator. Workload 

generators are software tools with purpose to generate synthetic workload for a 

benchmark or a real application in order to emulate the behaviour of end users. 

Usually, the input to such softwares are some models or properties regarding the 

nature or the required data that will be generated. The workload to be generated can 
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be data or even random calls just to stress an application and see how it would 

handle enormous amounts of requests that could happen in real life. There are a lot 

of types of workload generators, based on the application nature or the context of the 

application. Some main categories of workload generators are web-based systems’ 

[19] workload generators, database workload generators, CPU stress workload 

generators etc. Maybe the biggest and most used category nowadays is the web-

based workload generators, due to the explosion of the internet applications and 

trends. For the context of this thesis, an IoT workload generator for fog computing will 

be described. 

 

 

2.2 Related Work 

  

 

  The need for data generation frameworks, capable of modelling and generating rich 

data distributions from real-world data, was an open issue even before 2000s [20]. 

The first attempts to solve this problem came from the data management community 

[20 , 21]. These solutions provide domain-specific languages for dataset descriptions 

and well-implemented systems for dataset generation. However, they lack in the 

generation of streaming data, and most of these solutions are not web-based.  

  While the computations are being migrated from Cloud towards network Edge, it 

makes the process of evaluating computing systems even more challenging [22] and 

on top of that, the lack of comprehensive datasets leads to a need for synthesizing 

various datasets [23 , 24]. Covering this need, will also identify verification and 

validation of software, optimization of algorithms, and augmenting existing data with 

synthetic, as the benefits of synthetic data generation in an industrial IoT scenario. A 

And
rea

s I
oa

nn
ou



14 
 

 
 

recent attempt at datasets synthesis, is proposed in [23], where authors create a 

synthetic dataset from trajectory data, hotspot locations, and Wikipedia traffic. 

Similarly, Spaten [25] combines data from social media, POIs, and configurable 

parameters to create large synthetic datasets. Interestingly in [26], authors utilize 

Hadoop in order to implement a scalable generator of IoT data. The distributed nature 

of the system guarantees fast and large-scale execution, while the generated 

datasets reach thousands of gigabytes in size. However, all the above solutions lack 

generality, generate static datasets not streaming data, and are not easily extensible. 

 On the contrary, ELIoT [27] is an emulated IoT platform that provides out-of-the-box 

specific IoT sensors, like weather sensors, and emulates them realistically. 

Furthermore, Resense [28] is a system capable of replaying captured data from real 

sensors. Specifically, Resense captures real data from sensors and, when the user 

needs to reproduce them, it emulates "fake" sensors on edge devices, like 

raspberries, re-producing the captured IoT data. Even if those systems provide 

streaming generation of the data, are not easily extensible or are tailored only to 

specific sensor types. 

  Beyond the publications and research papers, plenty of commercial and 

professional tools and projects exist in repositories or on the internet that can 

generate specific IoT data. Httperf [29], for example, is a general purpose widely 

used tool for measuring web server performance, which also provides an embedded 

workload generator that produces HTTP requests. It is used mostly to stress a server 

with HTTP heavy workload in order to see the performance under a heavy number of 

requests. On the other hand, If the user wants to use MQTT protocol for the output 

messages, he can use for example the aws-iot-mqtt-load-generator 1  project that 

works ideally for IoT devices and MQTT output protocol. This system supports some 

 
1 https://github.com/amazon-archives/aws-iot-mqtt-load-generator 
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nice features, like Random generation functions that can be used for numbers by 

giving min and max values or generating text by using input weights to manipulate 

the random text generation or even expressions functions to generate the data. 

Furthermore, Apache JMeter 2, is an open source application designed to measure 

performance initially for web applications, but it has been expanded to support other 

test functions. One of the key features of JMeter, is the ability to process and 

evaluate HTTP calls, simulating the users submitting request to servers, and can 

measure the performance of the servers response times along with other metrics 

provided in user created tests. It can be extended, and configured and in addition can 

extract and process data from different response formats such as JSON, HTML, 

XML, etc . On top of that, it can send HTTP requests including payloads declared by 

the user and can also send requests with other output protocols using plugins. Even 

the tool provides numerous important features, and fulfils more than enough 

requirements and needs of a lot of web-based users, it cannot be easily used for 

generation for sensor-wise data stream, based on users sensor models. This is the 

most important reason that is not ideal for our context, since the support of a 

realization model that can comprehend the sensors, along with the generated data, 

based on user’s model configurations, is mandatory for IoT application evaluation on 

emulators.  All the above systems are decent, and can cover some or all of the needs 

of some users, but are not ideal for IoT applications or lack generality, which implies 

that many other IoT application users will not be benefited for emulation of their 

applications on fog or generally. On top of that, most of them are not extensible, and 

only few support multiple output protocols. Having said that, the wide range of 

protocols that IoT devices can use to exchange data (AMQP, CoAP, MQTT, HTTP 

etc.) [7 , 8], enhanced by the non-standardization for IoT data protocols and the wide 

area of context for IoT application use cases, are creating extra challenges for the 

 
2 https://jmeter.apache.org/ 
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users to find the ideal workload generator, especially if their system supports multiple 

IoT data protocols, or different specifications. The difference between all the existing 

work, and this implementation, is the support of the Heterogeneity existing under a lot 

of pillars in this novel IoT era (one of the most important is the support of multiple IoT 

output protocols), the scalability provided in terms of load generation, the ease of 

integration with fog computing emulators or simulator systems, or even individually 

and finally, the combination of a comprehensive sensor realization model with the 

provision of a general data stream generation framework that can be used or easily 

extended from different users or operators to cover all their needs, regardless of the 

use case or application specifications under the IoT context.  
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Chapter 3 

 

   System Description 

 

3.1 System requirements 

3.1.1 Heterogeneity 

3.1.2 Sensor Model realization 

3.1.3 Accuracy 

3.1.4 Extensibility - Configurability- Customization 

3.2 System overview 

3.2.1 System Capabilities and functionalities 

3.2.2 High Level System Architecture 

 

 

 

  In this chapter, the requirements that an IoT workload generator should have will be 

described, as well as an overview of the implemented functionalities and features of 

the system will be introduced.  

 

 

3.1 System requirements 
 

   

 3.1.1 Heterogeneity 
 

  The rise of the era of IoT, brought some challenges for users that want to deploy 

their IoT applications in a fog environment. The amount of different contexts of 
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applications, the lack of standardization in IoT protocols, and the wide range of 

different sensor properties, amplifies the support for heterogeneity in different levels, 

for IoT data generators. Users should be able to use a workload generator without 

restriction to their application context or their sensors’ nature. On top of that, a decent 

workload generator should be able to support multiple data representations, or 

formats and ideally to be easily extensible for the developers to include more in the 

future. A normal fog application could consist of multiple different IoT devices and 

sensors, that each one could communicate with different output protocols. This 

common scenario should not force the users to use different workload generators for 

each sensor protocol, neither to limit their application’s universal testing into divided 

test cases.  

 

 3.1.2 Sensor Model realization 
 

  One of the main requirements of an IoT workload generator is to be able to 

represent sensors as close as possible to reality. In order for this to be achieved, an 

accurate and representative realization model should be supported. Users firstly, 

need to extract the essential properties of their future emulated sensors from 

statistics of already exported real sensors data, or at least provide an estimation of 

the properties for their desired sensors. This should be the only action needed from 

the users, since after extracting and acquiring these properties and configurations, 

they should be able to easily provide these properties of the sensors in an abstract 

model that describes accurately or with approximation the real sensors, and the 

system to comprehend and realize the future created and emulated sensors, as real 

sensors that export real data. An ideal model realization should be able to support not 

only the common sensor properties shared by multiple different sensor types, but on 

top of that to support also the unique tailored properties or configurations for any IoT 
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sensor. This would provide the ability to any IoT application user, to describe his IoT 

sensor’s essential attributes and properties, and provide them to the system that 

would eventually emulate the sensors accurately, and produce data as close to the 

real data produced by the real sensors. 

 

3.1.3 Accuracy 
 

    One of the most essential requirements of an IoT workload generator is the 

accuracy of the data generated from the emulated sensors. The accuracy can be 

divided in 2 categories, the accuracy of the values of the generated data and the 

accuracy of the time that the data will be produced, or replayed. Having said that, 

firstly it is needless to point out the importance of the accuracy regarding the 

generated data stream from the workload generator. The workload generator should 

produce data that match and correspond to the configurations of the model provided, 

which implies that the emulated generated data could be data that the actual real 

sensors could produce. Beside the correct sensor emulation and accurate data 

production, workload generators should also be able to handle time-sensitive 

applications. The data generation rates in these kinds of applications should be 

retained with priority, in order for the users to test their application more correctly for 

real scenarios. On top of that, for the emulation of a timestamped dataset, it is 

redundant to point the importance for accurate message time population. In cases 

that users have the luxury to use exported datasets of real sensors, it is mandatory 

for the system to be able to replay the same exported data as they are being 

exported from the dataset.  

 

3.1.4 Extensibility - Configurability- Customization 
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  It is not a mandatory requirement, but a workload generator that supports extensible 

architecture or customizable configurations, is a more powerful tool, and of course 

more appealing to the users. Extensible interfaces that guide the user to expand 

functionalities or add new features, create the potential for users to be able to 

customize the workload generator to fulfil their more specific needs. Furthermore, it is 

more useful and user friendly that the developer doesn't need to change manually 

things for each test or run. A system that supports configurable properties provides a 

more dynamic behaviour that boosts flexibility. 

 

 3.2 System overview 
 

 

  In this section, a first introduction to the system will be happen, stating and briefly 

explaining the capabilities of it, along with the main implemented functionalities and 

features. Then, a high-level overview of the framework architecture will be described, 

with introduction to its main components. 

 

 3.2.1 System Capabilities and functionalities 

 

  The system is a data generation framework that is capable of 1) producing IoT data 

stream based on users’ configurations as much general as possible, by supporting 

the heterogeneity found in different IoT devices in terms of data representation, 

output protocols and message formats, and 2) to reproduce real sensor data from 

CSV dataset embedded with user customization, in order for any user to be able to 

test his IoT application’s behaviour and performance, before real public deployment, 
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easily, with convenience and accuracy. More specifically, the system has two main 

implemented functionalities, 1) the ability to produce mock data by emulating IoT 

sensors, based on the user’s provided sensor models and configurations, and 2) the 

ability to replay sensor data from provided CSV datasets.  

  For the first main functionality, the user provides through the input, properties and 

configurations about his real sensors (e.g.: type of the sensors, how often should 

each type of sensor be generating a new sensor message, the fields that each 

sensor message will be consist of, the format of the message etc.), along with 

execution information (the amount of desired sensor to be created, the output 

protocol of each generated sensor message etc), in order for the system to emulate 

the desired sensors, and start producing mock data. On top of that, the system can 

export the generated sensor data stream to TXT or CSV output files, along with 

statistics for later use. Another powerful tool for this main functionality is the ability to 

alter data population for specific sensors during runtime, with declared by the user 

scheduled actions, called scenarios. Using these scenarios, the system can schedule 

some events that can occur at a specific time in the future, after the system started 

producing data, and these scenarios can trigger the alternation of the values for the 

future generated data for specific sensors, in order that the desired sensors will 

produce different data for a period of time, or follow a different data population 

method (more on this later). 

  Regarding the second main implemented functionality, the system can reproduce 

sensor data from CSV dataset, in which dataset are stored the exported sensor 

messages from real sensors. Beyond the simple action to replay the data exactly like 

they exist in the dataset, the system supports some extra features for this 

implementation. The framework can ignore the timestamp of the dataset sensor data 

if the user provides a custom generation rate, and replay the data based on the 

custom generation rate. In addition, the framework can sort the dataset using external 
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sorting3  and finally it provides the ability to enhance the replayed sensor messages 

from the dataset, with runtime mock populated values for the fields of each message, 

using part of the implemented features of the first main functionality (produce mock 

data). 

   Beyond the two main functionalities, the framework supports some extra features. 

To begin with, It supports heterogeneity in data population, by generating data using 

different data representations (Double, String, Integer, Boolean, Object), different 

sensor message formats (JSON, TXT, XML), different output protocols (HTTP, 

MQTT, to KAFKA broker) and different data population methods (using constant 

values, random number generation between number range, following normal 

distribution or probabilistic distributions). Last but not least, the framework, provides 2 

fully extendable interfaces, one for input (to add more main functionalities beyond the 

2 already implemented - produce mock data, replay data form dataset) and one for 

output (to output to more output protocols, beyond the 3 already supported - HTTP, 

MQTT, to KAFKA broker), that any developer can extend in order to add even more 

features and fulfil his own specific needs.  

  Overall, the framework can provide generation of mock or synesthetic IoT sensor 

data, and replay real sensor data.  

 

 3.2.2 High Level System Architecture 

 

  In general, the system consists of some input functionalities, along with some output 

functionalities. In this section, we will see the hight level architecture of the system, 

and explain the flow, in high level. 

 
3 https://mvnrepository.com/artifact/com.google.code.externalsortinginjava/externalsortinginjava/0.4.5 
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Figure 3.2.2 1 depicts a high-level overview of the system’s architecture in a 

representative flow of the initialization and the start of generation of sensor data 

stream. The architecture can be divided in 3 different layers, the Control layer, the 

Emulation layer and the Output layer. The Control Layer is responsible to handle 

and verify the input of the user, and pass the processed input to the emulation layer. 

The Emulation layer, which consist of multiple emulation instances, each one 

generating data according to tis implementation, produces the data stream, and pass 

it to the output layer. Finally, the Output layer, will forward the generated data stream 

to the user nodes, through the desired output protocol.  

  More specifically, the deployment starts with the users creating and providing the 

needed input files to the system. The framework in order to successfully start 

producing data, requires some files. The first file that is mandatory, it’s called 

configs_file.json, in which the user has to provide information about the sensors, 

the output protocol and output nodes. Optionally, the user can provide a configuration 

file called workloadGenerator.cfg that stores key-value pair of runtime properties, 

and finally the datasets if he demands from the framework to replay data from them. 

Once the user has prepared the files and provided them, he can start the workload 

generator through the controller's API, and then the Controller parses the files and 

verifies their validity. More accurately, it evaluates if the configurations are 

syntactically correct, if all the mandatory information are provided and ensures that 

there are enough available underlying resources for the IoT devices emulation. If any 

inconsistency exists, the Controller returns an error message to the user and 

terminates the process. Otherwise, the Controller establishes connections with the 

output nodes from the input, that the generated data stream will be send to, and 

using the Coordinator service, instantiates the emulated IoT instances by invoking the 

related interface method for all the desired implementations through the Class 
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invoker and providing to each one the required parsed and processed configurations. 

After that, each emulator instance, using the required processed information provided 

by the Coordinator, it will do its internal validations and will start generating sensor 

messages, based on its implementation. With the interfaces on hand and hosted in 

every emulated IoT instance, each of the emulation instances is responsible for their 

own threads, creating one thread per sensor and monitoring and coordinating them, 

where a sensor thread simulates a sensor connected to the emulated IoT device. 

Furthermore, a sensor thread generates values based on descriptions provided by 

users or can just replay IoT data saved in CSV files. At the same time, the system 

collects statistics from the emulation layer and the generated sensors’ data. Thus, all 

produced data from the emulation instances are collected, and users can perform a 

post-execution analysis so as useful insight statistics to be created and exported or 

even users have the option to "replay" the same experiment in the future. Lastly, 

every emulated instance, packages the sensors' data into messages and propagates 

them to the output layer, which will handle the transfer to the required output 

destination nodes. With the messages received, the output processor is responsible 

to invoke the appropriate output protocol interface implementation for each message 

based on the user's description and disseminates the message to the proper 

application service through the defined channel (pub/sub, HTTP, etc.). Finally, all the 

produced data streams will be populated to the user’s application. 
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Figure 3.2.2 1: System High Level Architecture 
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Chapter 4 

 

   Model Mapping 

 

4.1 Modelling of IoT Sensors 

4.1.1 Input file, Sensor Prototypes & messages 

4.1.2 Produce Mock data feature modelling 

4.1.3 Replay data from dataset feature modelling 

4.2 Output Mapping 

 

 

  In this chapter, the modelling of sensors, output and generally information for the 

input configs_file.json will be explained, along with file instances for real life 

scenarios applications. 

  In order to demonstrate more easily the input file attributes, let us consider a 

scenario in which we have a company, that wants to create and sell an application 

that aims to provide safety and security to the owner of a smart house. The 

application will be monitoring, and processing sensors’ data produced by IoT devices 

in every room for a smart house and eventually will notify the owner of the house on 

time, if the house is under a physical or technical threat. Some threats for example 

would be a random fire at the house (could be detected through smoke detection and 

temperature sensor) or someone (maybe a thief) is in the house when the owner is 

not at the house (motion detection sensors). The idea here, is that all the needed 

sensors (motion detection, smoke detection, temperature sensors) will be constantly 

and continuously monitoring and populating the monitored data in order to represent 
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the state of the house at any given time. The application on the other end, will be 

collecting and processing all the generated data stream from the sensors, and will 

have the logic to understand when the house is under a threat, or something is not 

ordinary. Due to the importance of the time needed for these continuous streaming of 

data to be processed (if there is a fire at the house, the user must be informed as 

soon as the processing detects that from the data), the company cannot afford to let 

the processing happen in the cloud (due to the latency that the data will need to be 

transferred), so it should place an intermediate node with enough resources to do the 

processing geographically closer to the house owner’s region, using the fog 

computing concept and then the node would inform the user for any unfortunate 

event on time. This application could provide safety and security for the owner of the 

house at any time regardless if the owner is at home or not.  

     After the company has developed the application, of course it needs to test it 

through various scenarios, to evaluate the performance, and that indeed the user is 

being informed on time! For these testing scenarios, the company will need plenty of 

data to be produced according to each scenario or time period in the smart house. To 

this end, the company would be forced to go find and maybe rent, a house near to 

the fog node that the company owns, purchase all the above sensors, place them in 

the house, and program them or use them to provide data for each scenario. On top 

of that, every time that the company wants to test a different scenario, or use different 

types of sensors, it needs to do the same procedure again (remove the old sensors, 

purchase, locate and set up the new ones) for all the different testing scenarios. The 

long procedure of redeploying and adjusting each sensor for each testing scenario, 

results in waste of valuable effort, time and money. 

  It would be way easier, if the company could monitor and extract statistics for a 

single scenario, or at least create a basic estimation for the sensors, and provide this 

model to a workload generator, which will generate automatically data based on this 
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input sensor model. With this approach, the company could just edit he input 

properties of the sensors models for each scenario, without the need to redeploy or 

do some extra effort to place or change the real sensor, which will result in less time 

consuming and cost-free solution. All the actions that the company should do is to 

find, create a sensor model, and provide this model description to the system. Of 

course, it will need some time to extract the sensors properties from real sensors, (in 

order to achieve this, maybe it should collect statistics or at least have an idea of the 

populating behaviour of the properties of the sensors). An example based on the fire 

scenario, the company could try to set real fire at some safe place, and monitor the 

average behaviour of the temperature sensors, by giving emphasis to extract the 

alternation of the temperature, in order to have an estimation of the range for this 

scenario. Then, it could provide these statistics to the workload generator model, 

which will also alter the population of the temperature sensors, accordingly to the 

statistics for the real fire. In addition, the company could also provide the exact real 

monitored temperature sensor from the fire experiment, and the system can replay 

them customized. This way, the company would only need to find and provide the 

input with the sensors descriptions, and the framework will output all the generated 

data straight to the company’s application or node for faster process. 

  Having explained the tremendous benefits for the application users using such a 

tool, let us move deeper into how the users could provide the model description, 

according to their desired sensors properties. 

 

 

4.1 Modelling of IoT Sensors 
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  In this first chapter, all the sensor related mapping will be described, along with 

examples based on the above real-life scenario. 

 

4.1.1 Input file, Sensor Prototypes & messages  

   

  In this section, we provide details about the modelling of the IoT devices and the 

sensors that the user should provide to the system. More precisely, the user needs to 

provide a JSON file called configs_file.json that includes the properties and the 

output messages' structures for every emulated IoT device and sensor. The structure 

of the JSON file starts with a root field, called configs, and one of the child fields of 

the configs root field, which is called sensorDataConfigs has all the information 

related to the sensor modelling. In this field a list of sensorPrototypes should be 

provided. A SensorPrototype is an abstract representation of an emulated sensor 

type / IoT device and holds information regarding sensors for the same type. For 

example, if we have 2 different sensors types (temperature sensor and pressure 

sensor), the system would require 2 sensorPrototypes, one of each sensor type. 

Currently, the system materializes two implementations for the SensorPrototype, 

namely, the MockSensorPrototype that represents artificially created sensors and 

generates IoT data based on user-provided patterns, and DatasetSensorPrototype 

that is able to replay an existing IoT dataset. Of course, the user can provide a 

mixture or a combination of the SensorPrototypes implementation in each scenario’s 

input. We should note here that users are free to introduce new SensorPrototypes 

implementations by following the SensorPrototype abstraction class so as to 

implement user-driven functionalities in their emulation. In both prototypes, some 

attributes are common, like the sensorPrototypeName, which is mandatory for both of 

the materializations because is been utilized by the system as the identifier of the 

emulated device type, the GenerationRate that is the frequency of the data 
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production and can be either static or dynamic, and the sensorMessagePrototype 

that provides information about the structure of the output messages. More precisely, 

SensorMessagePrototype stores the properties for each sensor message fields, 

message format, and populated values that the sensors will produce.  

 

 

 

Figure 4.1.1 1: SensorMessagePrototype Structure 

 

  In  Figure 4.1.1 1 we can see the structure of the SensorMessagePrototype. The 

type attribute states the type of the message format that the message will be 

constructed and sent to the output node. Currently, XML, JSON, TXT types are 

supported. Moreover, each sensor message can have multiple fields, hence the list 

fieldPrototypes is introduced. In a FieldPrototype, the user declares the name of the 

populated field, the populated value type (String, Boolean, Integer, Double, Object), 

information regarding the method of the future populated value, and optionally the 

unit for the populated values. What is more, a sensor message field value, can be 

created using some existing data population methods. The currently implemented 

data population methods are using constant values, random number generation 

between number range, following normal distribution, or finally following probabilistic 

distributions. The first 2 methods (constant values, random number between number 

range), were chosen because they correspond to the basic and most simple data 

population methods, that a user can use if he does not knows the exact sensor 

properties population behaviour yet, but he knows an approximation or a range of the 
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values. On top of that, the system was enhanced with 2 more advanced and useful 

data population methods, the normal distribution (that uses mean and deviation) and 

probabilistic distributions (that uses key pair values of the actual value and the 

probability for this value to happen) in order to support data population that was 

exported using statistics. Of course, user can add more advanced data population 

methods, according to his needs.  

  Beyond the above-mentioned common properties each SensorPrototype subclass 

offers its own tailored properties which can be seen in the Figure 4.1.1 2 

 

Figure 4.1.1 2: SensorPrototype Model Diagram 
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4.1.2 Produce Mock data feature modelling 
 

 

  The implementation of the materialization of the SensorPrototype for the produce 

mock data by emulating sensors functionality, is the MockSensorPrototype . For 

this implementation, the user beside the common attributes that all sensorPrototypes 

share and stated above (sensorPrototypeName, generationRate, 

messageSensorPrototype) which are all mandatory for this materialization he should 

also provide some other runtime information about the emulated sensors that will be 

created. Initially, sensorsQuantity defines the quantity of the emulated sensors that 

the system will create for the each specific MockSensorPrototype (for example if the 

MockSensorPrototype with sensorPrototypeName “temperature_Sensors” has 

sensorsQuantity = 2, it implies that the system will create 2 temperature sensors). 

Optionally, users are able to declare an output file name (outputFile) that all the 

produced data streams from sensors of the same type (same MockSensorPrototype) 

will be exported. In this way, users can perform post-analysis or repeat the 

experiment later. Finally, users are able to introduce scenarios under each 

MockSensorPrototype, which are simply time scheduled alterations of the running 

emulated sensors. With the Scenarios users perform more complex and realistic 

experiments without the need of redeployment of the whole emulation at the 

emulation phase. Each scenario has a scenarioName as identifier and will perform on 

the sensor with sensorId of the MockSensorPrototype. The scenarioDelay and the 

scenarioDuration identify the time that the scenario will be executed from the 

beginning of the experiment and the duration of it, respectively. The 

scenarioFieldValueInfoList depicts the effects and value changes that the sensors will 
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experience at the duration of the scenario. Specifically, scenarioFieldValueInfoList is 

a list consisting of the fields (sensorFieldScenarioName) of the sensor that will 

change and their new value (sensorFieldScenarioGenerationRate) for the period of 

the scenario. 

 

 
Figure 4.1.2 1: MockSensorPrototype Input Example 
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  Figure 4.1.2 1 illustrates an example input for 1 MockSensorPrototype. In this input, 

we have the “temperature_sensor” MockSensorPrototype. The system will create 2 

emulated temperature sensors, that each one will be generating new data per 5 

seconds. All the output data stream of the 2 sensors will be exported to the 

“temperature_sensors.csv” file. Each sensor will be generating data, that consists of 

2 fields (temperature_in_celcius, temperature_in_farenheit) and each generated 

message will be of XML format. These 2 fields will be having double values 

(temperature), following the normal distributions provided, along with their unit. Also, 

in this input we have 2 scenarios of fires that will take place in two different rooms. 

For instance, in the first scenario, the values of the temperature sensor 1 will be 

increased up to 50 Celsius degrees at the 7th second of the experiment for 10 

seconds, while in the second scenario, the temperature of the sensor 0 will be 

increased up to 43 Celsius degrees starting from the 9th second of the experiment for 

10 seconds.  Figure 4.1.2 2 illustrates the initial generated data from 

temperature_output.csv file, based on the input in Figure 4.1.2 1 . 

 

Figure 4.1.2 2: Sample output for the input in Figure 4.1.2 1 
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4.1.3 Replay data from dataset feature modelling 
 

  For the other main functionality of the system, the ability to replay sensor data form 

dataset, the implementation materialization of SensorPrototype is called 

DatasetSensorPrototype. Here, users need to provide a DatasetSensorPrototype 

(under the sensorPrototypes field inside the configs_file.json) for each dataset (real 

sensor exported data). Each CSV datasetFile, will have recorded real sensor 

messages for each sensor prototype individually, that they will be replayed from the 

system including the ability to be expanded. The dataset should have real sensor 

messages in each row - record (every column will represent the value for each field) 

that will be attempted to be replayed using the timestamp column 

(timestampColumnName) of the row (sensor message) if the dataset is being 

timestamped (timestampedDataset), or user's preferences (generationRate) can be 

used, for each sensor message (records of dataset) time interval. In the first line of 

the CSV dataset, the names for each field (column) will be declared in order for the 

system to be able to do some more advanced and customizable processing for the 

data. Some more features for this input method are that the system can also sort the 

dataset using external sorting 4 if the dataset is not sorted (declared by 

sortedDataset) using a timestamp field and format (timestampFormat) provided in the 

configuration file and can send specific fields from each record 

(sensorMessagesFields) that the user desires (maybe all of them, none or some of 

them separated by comma). In addition, users can add more fields, so that the 

system can generate mock data using the messagePrototype field inherited from the 

SensorPrototype. These extra fields will be created on runtime. For datasets that 

 
4 https://mvnrepository.com/artifact/com.google.code.externalsortinginjava/externalsortinginjava/0.4.5 
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support exported messages for multiple sensors (of the same type) each sensor 

message can be mapped to the specific sensorId using the sensorIdColumn. Finally, 

if exportGenerationRate is set as true, the system will export the characteristics of the 

DatasetSensorPrototype, as a ready MockSensorPrototype configuration, so that the 

user can provide it to the other input feature to create mock data for the sensor 

type.  With all these capabilities, users can replay data from CSV dataset, with 

customized features (add more fields, send less fields, edit the generation rate etc.) 

and test her application with real dataset with the ability to edit or adjust it for multiple 

desired scenarios. 

   

  In Figure 4.1.3 1 the we can see an example of input for DatasetSensorPrototype. 

The instance is regarding the “motionDetection” sensors. Before moving to the next 

fields, let us have a look at some rows of the input dataset file which will be replayed 

(“motion_detection_output.csv”) which can be seen in Figure 4.1.3 2. In the rows of 

the CSV file, we can see the recorded messages that the company for example 

already exported from real sensors. The recorded messages have one field called 

“movement” with boolean values.      
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Figure 4.1.3 1: DatasetSensorPrototype Input Example 

  

 
Figure 4.1.3 2: Motion_detection_output.csv instance 
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  In the input instance (Figure 4.1.3 1), we can see firstly that the dataset is 

timestamped (timestampedDataset is true) and the dataset is already sorted 

(sortedDataset is true). This implies that, when the dataset will be attempted to be 

replayed, each sensor message (each row) will be reproduced based on the 

timestamp column with name “Timestamp” (timestampColumnName) of each row. 

The first message to be replayed (the first row with data in this case), will acquire the 

current date, and each following sensor message will be replayed based on the 

difference of the first row, and the difference of the timestamps of the 2 continuous 

rows of the dataset. So for example, if the first row was replayed at time 18:22:12 

from the workload generator, this means that the next message will be replayed at 

the same time (13:12:16 -13:12:16 = 0 seconds) but the 4th sensor message with 

timestamp 13:12:21 will be replayed after 5 seconds ( || 13:12:16 -13:12:21 || = 5 

seconds ), which means at 18:22:17 time of the workload generator. On top of that, it 

is visible that each message reproduction will be for the specified sensor in the 

column “sensorID” and that none of the fields of the CSV file will be used in the new 

replayed messages (sensorMessageFields is empty). Instead, each replayed 

message will be enhanced with mock fields that will be generated at runtime using 

the messagePrototype (Field “motionDuration” will follow probabilistic distribution, 

with 70 % probability to generate an integer between [0 .. 1], 25% probability to 

generate integer between [1 .. 2 ] and 5 %  probability to generate an integer between 

[2 .. 4] - Field “motionDistance” will be populating double random values between the 

range [0.0 ,  2.0]) and each reproduced message will be of JSON format. 
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4.2 Output Mapping 
 

 

  In the input configs_file.json file, users should also provide information regarding the 

output protocols and destinations that the generated streams will be sent to. Besides 

the Sensor input implementations, and the different messages type format supported 

(JSON, XML, TXT) the system supports an extensible interface for output protocols. 

Currently supports 3 output message protocols (HTTP, MQTT and using KAFKA 

broker) and their configurations’ implementation, but users can easily expand the 

system to support even more protocols by just implementing the output sensor 

protocol interface.  

  Regarding the output protocol information, the user must first declare the output 

protocol under the configs root field, inside the input configs_file.json that the 

messages will be sent with to the output nodes. Beyond that, users must provide the 

exclusive configurations for the declared protocol under protocolConfigs along with 

output nodes information.  

  In the Figure 4.2 1 we can see all the output information that the user must provide. 

The protocol is mandatory and must be one from the supported implementations and 

below we can see the configs needed for each protocol. (user should provide one key 

with protocolConfigs matching the output protocol’s required information) 
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Figure 4.2 1 :Output Protocol Configs 

      
 

  User must provide the corresponding configs for the protocol he declared under 

protocolConfigs. For the HTTP protocol, the user must provide the request endpoint 

(requestURI) that the messages will be sent to. Besides that, user should provide a 

list for httpServers that each sensor message request will be attempted to be sent to. 

For each httpServer the serverIp and serverPort are required. For the supported 

publish-subscribe protocols, the configs required are the same. For MQTT and 

KAFKA protocol, users must provide a list of brokerClusters details (list of MQTT 

broker serverPort and serverIp), and the for the Kafka related configs a list of 

kafkaBrokerClusters respectively. Finally, for both publish-subscribe protocols, the 

topic should be provided. 
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Chapter 5 

 

   Implementation Details 

 

 

5.1 Main Users actions 

5.1.1 Start of Workload Generator 

5.1.2 Stop of Workload Generator 

5.1.3 Restart of Workload Generator 

5.2 Extendable Interfaces Overview 

5.2.1 Output Protocol Interface 

5.2.2 SensorPrototype Input Interface 

5.3 Produce Mock Sensor Data Implementation 

5.3.1 Components and Association 

5.3.2 Class Modeling 

5.3.3 Flow 

5.4 Replay sensor data from Dataset Implementation 

5.4.1 Components and Association 

5.4.2 Dataset Thread Modeling 

5.4.3 Flow 

5.5 Output protocol Implementations 

5.6 API Endpoints 

5.6.1 Workload Generator Actions APIs 

5.6.2 Sensor Actions APIs 

 

 

 

  In this chapter more technical information will be provided, like how the system 

internally works, how the extendable interfaces are connected to the system and
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 what a developer needs to do to extend them, what are the exact procedures for 

each input and output currently implemented interface, as well as an introduction to 

the API endpoints that the system currently supports and their purpose. 

 

 

5.1 Main Users actions 
 

 

    In this first section of this chapter, the main actions that the user can do or request 

from the workload generator will be introduced, along with the workload generator 

states and each action’s workflow. 

  The basic actions that the user will be doing to the workload generator as soon as it 

is up and ready for execution, are to start (could mean initiate/initialize or resume), 

stop or restart it.          

  These actions have as a result for the workload generator to be in a different state 

at any time. In the Figure 5.1 1 below we can see how each of these actions affect 

the states of the workload generator. The continuous arrows imply that one action is 

needed for the workload generator to move to the next state, and the dashed lines, 

meaning that no action is required to move to this state. Let us briefly explain the 

below state diagram, before moving to each action workflow. Once the workload 

generator container is deployed, the workload generator state will be Ready. From 

this state (after the deployment) the only action that the user can trigger is the start, 

where in this state it can be considered as initiate/initialize, since it will cause the 

workload generator to be initiated and initialized by passing from the Initialized state, 

and then without further action start the workload generator, changing its state to 

Started.  From the Started state, the only action allowed is the stop action, which will 

make the workload generator to be paused temporarily causing it to change state to 
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Paused. There are 2 possible state transitions for the workload generator once being 

in Paused state. If the user apply the start action, which in this case can be 

considered as resume, will force the workload generator to resume from where it left, 

or the user can trigger the restart action, that will terminate all the pending or paused 

procedures of the workload generator, and completely causing it to restart from the 

beginning, by passing from the Stopped, Initialized and subsequently ending once 

again to the Started state again.  

 

 
Figure 5.1 1: State Transition diagram for Workload Generator 

   

  Now let us move on to explain in depth the flow and the internal procedures of each 

user action. 

 

5.1.1 Start of Workload Generator 
 

  When the workload generator container is up and ready to be used, the user can 

only do one action, to start it by executing the 1POST /workloadGenerator/start API. In 

the Figure 5.1.1 1 we can see the flow diagram for the start user action. Once this 

API is executed, which implies that the configs and the input files are already located 
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in the declared directory, the first thing that the workload generator will do is to verify 

that it is not already running. If it is, it will output an error to a user that the workload 

generator is already started. If it is not running, it will check whether it is already 

initialized and paused, or has not been initiated yet. 

  If it is not initiated yet, it will try to read and parse the configs_file.json. If the input 

file exists in the declared path, is a valid json, and has the configs as root field, it will 

move on to validate the output protocol and its protocolConfigs (as explained in the 

section 4.2 ) by invoking the “validateAndProcessConfigs” method for the output 

protocol interface implementation matching the provided protocol, and if the 

mandatory fields for each protocol are provided, and the protocol is supported, it will 

invoke the “initializeConnections” method for the output protocol interface 

implementation based on the protocol, to establish connections with the output 

nodes. Then, the system will try to read the sensorDataConfigs, and cast the 

sensorPrototypes list, each sensorPrototype to the according type 

(datasetSensorPrototype, mockSensorPrototype), leaving the internal validations for 

each different implementation on the implementation level. Final step, before the flow 

ends, the system will invoke the “initiate” implemented method for each 

sensorPrototype implementation that is provided in the sensorDataConfigs (each 

input method discussed in section 4.1), and if at least one of the implementations 

validate accordingly their input sensorPrototypes without any error and start the 

emission of sensor messages, the workload generator will be considered initialized, 

and will output success to the user through the API. If none of the implementations 

has been successfully initialized, it will be considered not initialized and will output the 

error to the user. 

  On the other hand, if the workload generator is initialized but not running (which is 

the case that it was running and then it was stopped), the system will invoke the 

“resume” implemented interface method for each initialized sensorPrototype input, 
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and again verify that at least one of the implementations resumed the sensor data 

generation successfully, otherwise will output that the workload generator could not 

be started to the user.  For each failure case in the flow the system will try to output 

according error to the user.

 

Figure 5.1.1 1: Flow Diagram for Start User Action 
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5.1.2 Stop of Workload Generator 
 

  The user can at any time pause or stop the workload generator (if it is running) with 

the2  API. For this flow, the system will verify that the workload generator is already 

started, if it is, then it will directly invoke each running input implemented interface 

“pause” method, where the goal for all the input interfaces, is to pause the data 

generation and all pending tasks that each one of them is running, until maybe the 

user will call the start again so the data generation will be resumed.  

 

5.1.3 Restart of Workload Generator   
   

  This action is not the same as the resume action (the workload generator starts 

again after the stop), and also can be triggered only when the workload generator is 

Paused (which implies it is initialized), otherwise it will output an error message. The 

purpose of this action is for the user to have the ability to change the input 

configs_file.json (maybe alter the output protocol or the sensorPrototypes for another 

test scenario and generally different input) and start again the workload generator 

from the beginning with the new input.  

  The restart procedure starts with the user calling the 1 

POST  /workloadGenerator/restart API which means that the system firstly sets the 

workload generator state as not initialized, and then invoking the “terminate” method 

for all of the running input interface implementations. In the continuation, it will also 

trigger the termination for the connections with the output protocol nodes, by calling 

the “terminate” method of the provided output protocol interface implementation. 

Finally, it will do exactly the same algorithm as the Start action (read and parse again 

the configs, parse the sensorDataConfigs and create the new sensorPrototypes, 
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establish connections with maybe the new output nodes or output protocol, and start 

the generation with the new input configs_file.json)  

 

 

5.2 Extendable Interfaces Overview 
   

 

  After we introduced some methods for the implemented interfaces, it is time to 

check the interfaces in more depth, in order for any developer to be able to extend 

them with their own implementation. 

 Before we go deeper with the interfaces and the implementations let me introduce a 

model I created, that is being used and passed on the implementations methods that 

the developer needs to use and to be aware of, which is called “Exchange”. 

 

 

 

 
Figure 5.2 1: Exchange Date Model 

 

  Figure 5.2 1 above, is the representation of the fields of the class Exchange. It is a 

flexible model that helps the developer pass information without constraints, and uses 

it also to manipulate the API response, that the user would like to see when triggering 

each user action. This object is being created and initialized once a new API call 

starts and is deleted once the API call finishes. It is easier to consider this model, as 

the exchange of information between methods, that are being passed and enhanced 

accordingly from method to method. Firstly, the body, responseCode, httpStatus 
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fields, are the fields that the developer does not have to edit (if he will, they will be 

overridden either way in the Controller when the API call finishes) and represent the 

response body and the HTTP Response Code, that will be returned to the user 

through the API response. So basically, the developer can use the properties Map, or 

the headers map (that are key value pairs), to pass information from method to 

method if he wants to. He can set a property for example like 

exchange.setProperty(“FLAG”, true), where the first parameter is the property name 

(String) and the second it is the actual property value (in this example boolean with 

value true), and he can retrieve the property value for this property in a later method 

by calling exchange.getProperty(“FLAG”, Boolean.class), that will return the value as 

boolean (or null if the value is not being set as boolean when the setProperty method 

was called), or exchange.getProperty(“FLAG”) that will return the object value of the 

property (in this case the developer has to cast it) 

 

5.2.1 Output Protocol Interface 
 

  In this section, we will introduce the output protocol interface, its current 

implementations and how it can be implemented to support more custom extensions. 

   

 
Figure 5.2.1 1: ISensorMessageSendService Interface along with its current implementations 

class model diagram 
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  In the Figure 5.2.1 1 above we can see the output interface, with name 

“ISensorMessageSendService”. This interface represents the way that the 

messages will be sent to the output node, and more specifically through which 

message transfer protocol or channel. Currently, there are 3 implementations, one for 

each of the output supported protocols (HTTP, MQTT, using KAFKA). All of the 

current implementations have implemented the 4 methods that the interface provides, 

and can of course have some extra exclusive fields that represent the protocol more 

accurately (e.g.: rootTopic for pub/sub protocols). 

  The first method, which will be the one to be called first from the Controller, is 

the validateAndProcessConfigs(JSONObject protocolConfigs). This method’s 

purpose is for each implementation to validate accordingly that the protocolConfigs 

passed as a JSONObject from the Controller (the input protocolConfigs the user 

provided in the configs_file.json), are the required and needed ones, based on each 

protocol (e.g.: requestURI for HTTP protocol and for the pub/sub protocols the 

rootTopic that the messages will have when being sent to the brokers).  

  Then, the initializeConnections() method will be invoked in order to initialize any 

needed configuration and establish connections with the user desired output nodes, 

and do the required processing based on the protocol, in order to be ready to send 

messages once they arrive (e.g.: pub/sub protocols to create Producer Clients). Once 

this method is finished successfully, it would imply that the implementation is ready to 

handle messages in order to send them to the already established connections with 

the output nodes. 

  The next and most important method is the sendMessage (String sensorId, String 

message, SensorMessageEnum contentType). This method's purpose, as the name 

implies, is to create the end packaged message and send it to the required 

And
rea

s I
oa

nn
ou



50 
 

 
 

destination, using the exclusive output protocol for the implementation. The 

arguments for this method are the populated sensor message, along with the 

sensorId and finally the message ContentType, in order to construct the message 

accordingly and send the packaged message to the desired server. 

  Finally, the last method that each output protocol implementation has to implement, 

is the terminate(). This method will be called from the Controller for each 

implementation, only when the user action is the restart, in order to terminate any 

pending task (e.g.: terminate ProducerClients for pub/sub protocols), and close 

smoothly the connections with the output machines (servers, or broker servers).  

  Any developer that wants to extend the interface, needs to give a 

new implementation by implementing the above-mentioned methods, and add his 

new Protocol in OutputProtocolEnum enumeration class. 

 

5.2.2 SensorPrototype Input Interface 
 

  As stated in Chapter 4, each sensorPrototype can be used along with an input 

method (to emulate sensors of a mockSensorPrototype and produce mock data, or to 

replay the data for the sensors of a datasetSensorPrototype from a CSV dataset). 

Both these 2 input methods are implementations of an interface, which can be 

extended in order for the user to create even more new input methods easily. It is 

important to mention that all the sensorPrototypes that share the same input method, 

will be used only by the implementation of the input method they are declared to.  
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Figure 5.2.2 1: ISensorDataProducerService Interface with its current implementations 

diagram 

 

 

 

  In the Figure 5.2.2 1 we can see the class diagram for the input method interface, 

along with the current implementations. The input method interface 

called  “ISensorDataProducerService” has currently 5 methods that each 

implementation must override. 

  Firstly, the initiate(Exchange exchange, ISensorMessageSendService 

sensorMessageSendService) method is the first one to be called from the Controller 

(in the start user action) that does the most important work, start generating sensor 

data stream according to its implementation logic. It should be noticed that the 

second parameter (sensorMessageSendService) for this method passed from the 

Controller, along with the exchange, is the implementation for the output protocol, 

that is already initialized and ready to be used. Hence the developer needs to use 

this implementation when he will be sending the messages, by calling the 

sendMessage (String sensorId, String message, SensorMessageEnum contentType) 

method for every sensor message that his implementation will generate. Thus, in this 

method, all the mandatory processing needs to happen, in order when the method 
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finishes, it would be meaning that all the sensorPrototypes that use this input method, 

have already been validated, and processed, and their sensors are triggered to 

generate a data stream using the provided protocol implementation.  

  A way to tell if the emission of the sensor messages started successfully to the 

Controller, in order to inform the user, is the method isStartedProducing(). This 

method, as the name suggests, it returns true if the emission of data stream started 

successfully, or false if something went wrong, in order for the Controller, to count 

how many of the implementations started, and inform the user if at least one started 

successfully that the workload generator is running (errors in the logs will be seen for 

the implementation that failed to start producing data)  

  Moving on, when the user trigger the stop action, the pause(Exchange exchange) 

method will be called for each implementation, in order to temporarily stop all the data 

production (might also pause the created threads), with a way that in the future, if the 

user attempts to resume the data production, it will be feasible to start from where it is 

left. 

  The way that the user can trigger the resume of the production of data, is by 

triggering the start action, as it is mentioned above, but this time, the method that will 

be called it would be the resume(Exchange exchange) instead of the initiate 

(because the workload generator is already initialized, and just paused). Like the 

name implies, the implementation will use this method in order to start the production 

of data, from where it left when the pause method was called. 

  Finally, when the user triggers the restart action, it is time to close all the pending 

tasks and clear all the sensors for the implementation, by using the method 

terminate(Exchange exchange). After the execution of this method, the system will 

consider the implementation as done, because it might never be used again (if the 

user does not provide new sensorPrototypes with the implementation input method), 
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hence all the sensors or threads, should be destroyed and free the space accordingly 

for future use. 

   

 
      

5.3 Produce Mock Sensor Data Implementation 

 

  In this section, the flow of the Produce Mock Data implementation for the input 

method interface will be introduced and explained, along with some technical details 

for its implementation. 

 

5.3.1 Components and Association 
 

  Before we go deeper with the implementation, let us transform the high-level 

workload generator  

Figure 3.2.2 1 flow from section 3.2.2 by replacing the emulation layer, with the 

current emulation instance implementation.   

  In the Figure 5.3.1 1 we can see the workload generator flow, that represents the 

scenario for this emulation instance. The user will provide the configs_file.json with 

the mockSensorPrototypes, and the Controller will do all the processing as the 

previous figure, and pass to this emulation instance implementation, the 

MockSensorPrototypes, along with the desired and initialized output protocol 

interface implementation. By observing the emulation layer for this instance, we see 

the created sensor threads, along with 2 new components, the WriterThread and the 

Scenario Manager. The WriterThread is the thread that has the job to receive sensor 

messages from the sensor threads to export them to the output files. The 
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Figure 5.3.1 1: Produce Mock Sensor Data Flow 

ScenarioManager component coordinates and monitors the management of the 

scenarios (scheduling, and execution using one thread per scenario -  more on that 

later). Now that we introduced the new components, it is easier to have a clearer view 

of the underlying architecture for this emulation instance. The emulation coordinator 

creates and initializes the WriterThread and the ScenarioManager and communicates 

with them based on the user actions. The most important functionality of course for 

the emulation coordinator, is to create and start the sensor threads, in order for the 

generation of the stream to be started. The output layer acts like it was explained in 

the previous initial Figure 3.2.2 1, sending the generated stream to the user 

application using the output protocol interface implementation and all the output files 

and statistics to the user.

 

And
rea

s I
oa

nn
ou



55 
 

 
 

 

 

5.3.2 Class Modelling 
 

  One step before we move on to the flow, let me introduce some main concepts and 

models that will be needed. Currently we are aware of the MockSensorPrototype 

entity. In this implementation, I introduced some other important models as well that 

affect the understanding of the implementation. To start with, there is the 

MockSensorPrototypeJob class, which is actually a wrapper class for 

MockSensorPrototype, that keeps also some runtime information about the 

MockSensorPrototype (the current running MockSensors for the relative 

MockSensorPrototype), and the mapping is one MockSensorPrototypeJob per 

MockSensorPrototype. The next class that I would like to mention, is the 

MockSensor. This class is a plain java model, where it could be considered as the 

representative model for each MockSensor that will be created. Each MockSensor, it 

is related with its MockSensorPrototype. Then we have the MockSensorJob class, 

which is maybe the most important one, because this class represents each running 

MockSensor. It can be considered as the running instance of each MockSensor, 

since each MockSensorJob has a reference to its MockSensor (that implies also to 

the MockSensorPrototype). All the functional logic for each MockSensor is located 

and can be executed in its own corresponding MockSensorJob, since each 

MockSensorJob it is a different thread, that has purpose to generate messages 

according to it is reference MockSensorPrototype properties.  
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Figure 5.3.2 1: Produce Mock Sensor Data class relation model diagram 

 

  It is easier to visualize the association, for all the previously mentioned classes in 

the Figure 5.3.2 1 above. We can see that each MockSensorPrototype is associated 

only with one MockSensorPrototypeJob and each MockSensorPrototypeJob is 

associated with one MockSensorPrototype, but one MockSensorPrototype can be 

associated with multiple MockSensors. It is reasonable, since each 

MockSensorPrototype can have multiple MockSensors, but on the other hand, it is 

strict that one MockSensor can belong only to one MockSensorPrototype. Moving on, 

each MockSensor is associated only with one MockSensorJob (and the reverse). The 

MockSensorJob is extending the Thread java class, since it is a Thread, and is 

related with another Thread, the WriterThread, if the user has provided the 

outputFile for the MockSensorPrototype that the MockSensor of the MockSensorJob 

is associated. It is worth to note here, that all the information that the user has 

And
rea

s I
oa

nn
ou



57 
 

 
 

provided in the configs_file.json regarding the mock sensor prototype can be found in 

the MockSensorPrototype (that will be cast through the input mapping from the 

configs_file.json) . Beyond that, everything else is created at runtime after processing 

and validations. 

 

5.3.3 Flow 
 

  Having mentioned the above, now we have a basic idea for the main and 

associated classes that this implementation is consisting of. Now let us go straight to 

the workflow. 

  In the  

Figure 5.3.3 1, the high-level flow for the initiate method of the Produce Mock Sensor 

Data Implementation can be seen. The whole flow starts after the Controller invokes 

the initiate method, that this implementation has overridden of the SensorPrototype 

Input Interface. Once the method starts, it will attempt to create and process the 

MockSensorPrototypeJobs, using the MockSensorPrototypes provided by the 

Controller. In this processing procedure, for each MockSensorPrototype a 

corresponding MockSensorPrototypeJob will be created and initialized, and then it 

will be validated if all the required fields are provided by the user. After some 

processing to cast and transform some of the fields that the user provided into data 

models, the MockSensorPrototypeJobs will be ready for use. In the continuation, if at 

least one provided MockSensorPrototype has the field outputFile (which means the 

user wants the data populated for all the sensors for the mock sensor prototype to be 

exported in a file) a WriterThread thread will be created. Some processing will 

happen in order for the WriterThread to store the information of the output file (name 

and file extension) for all the mock sensor prototypes that their data will be exported. 
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This WriterThread which will have only one instance, it will have a blocking queue, 

where the sensor messages that each MockSensorJob will be producing will be 

stored. The job for the WriterThread, is to pop the messages from its queue and 

attempt to write them to the according file (each mock sensor prototype can have 

different output filename). After this procedure, MockSensors will be created (one 

MockSensor model for every sensor in the MockSensorPrototype sensorsQuantity 

value) and will be linked with its own MockSensorPrototype. All the MockSensors 

quantity would be equal to the sum of all the sensorsQuantity values for all the 

MockSensorPrototypes). Now, is time for the real sensor Threads to be created. 

Based on the MockSensors, for each MockSensor, a MockSensorJob will be created, 

and will start to generate messages based on the MockSensorPrototype of its 

referenced MockSensor. A thing to add here, is that the MockSensorJob will have as 

reference also the one and only WriterThread (if the MockSensorPrototype of its 

referenced MockSensor was set to export) and the one and only Output Protocol 

Interface, that the Controller passed to the initiate method. At this point every 

emulated sensor (MockSensorJob) has started to producing data, and passing each 

produced message to the blockingQueue of the WriterThread, in order to be written 

to the according file if the user has declared so, and then to the 

ISensorMessageSendService implementation in the output layer in order to be 

forwarded to the user’s application. Last step before the initiate method for this 

implementation finishes, is to handle the scenarios. If at least a 

MockSensorPrototype has at least one scenario, the scenario will be validated, and if 

it is valid, the ScenarioManager will be initialized and schedule the scenario.  
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Figure 5.3.3 1: Produce Mock sensor data flow diagram 
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  The scenario management can be seen in the Figure 5.3.3 2 below. Each 

MockSensorPrototype can have multiple scenarios, and each scenario can be 

associated only with one sensor, through the “sensoId”. If at least scenario is found in 

at least a MockSensorPrototype, the ScenarioManager will be initialized, and create 

one ScenarioJob thread per Scenario, passing also to the ScenarioJob the 

MockSensorJob thread that will be informed for the according scenario (Scenario’s 

sensorId and MockSensorJob’s sensorId would be the same). Once the 

ScenarioManager creates all the needed ScenarioJob threads, it can be idle, until the 

user terminates or pauses the workload generator. Meanwhile, each created 

ScenarioJob thread, will have a timer and will be waiting for the amount of seconds 

provided in “scenarioDelay” for the scenario. Once the scenario time comes, the 

ScenarioJob thread will inform the corresponding MockSensorJob thread, by calling 

MockSensorJob’s triggerScenario(Scenario scenario) method and pass the scenario. 

After that it will be waiting until the scenarioDuration time in seconds has passed in 

order to inform the MockSensorJob that the scenario is over, by calling the 

terminateScenario() method. Finally, the ScenarioJob will terminate smoothly. 

Meanwhile from the time that the ScenarioJob called the triggerScenario method of 

the MockSensorJob, the MockSensorJob thread will be in scenarioMode and will be 

generating values according to the provided scenario’s scenarioFieldValueInfoList 

that stores which fields and what value they will be generating 

(sensorFieldScenarioName, sensorFieldScenarioGenerationRate), thought the 

scenario until the ScenarioJob calls the terminateScenario() method. 
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Figure 5.3.3 2: Scenario Management Class Diagram. 

 

 

  The pause method implementation is simpler. The state of the workload generator 

before the method been called from the Controller, is that we have now the sensor 

threads running producing mock sensor data, and potentially the WriterThread, along 
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with the ScenarioManager and its ScenarioJob threads doing their tasks. Like it is 

being explained in the Stop action, the purpose of this method is to temporarily pause 

all the running threads and actions. So, the implementation, firstly cancels all the 

scheduled or running scenarios (threads) through the ScenarioManager (if it is 

initialized), and then pauses all the sensor threads. Finally, it pauses also the 

WriterThread if it is initialized. By now, the sensor threads are in sleep mode, and will 

be notified to resume their task (to produce mock sensor data again) when and if the 

user triggers the start action. 

    Having said that, once the user calls the start action (after the stop action), it 

means that he wants to resume (resume method will be invoked) the generation of 

mock data. Then the implementation will trigger the sleeping sensor threads to wake 

up, by notifying them to resume their data production with the same behaviour. This 

will happen also to the WriterThread, which if it was sleeping, it will also wake up and 

start writing sensor messages from its queue to the appropriate output files. An 

important thing to note, is that the ScenarioManager, and all the previously scheduled 

scenarios, will not be rescheduled, since the scheduled time was with perspective 

the initialization of the workload generator. 

  Closing this implementation explanation, we have to also mention the terminate 

interface method implementation. The terminate method which can be called only 

when the user calls the restart action (after the stop action), implies that the previous 

implementation method called was the pause, which means that all the threads are 

currently sleeping. So, the next step is to wake them up and terminate them all 

smoothly. Precisely, it will terminate all sensor threads and the writer thread, and 

finally will free the memory for all the mockSensorPrototypes.  
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5.4 Replay sensor data from Dataset Implementation 

 

  In this section, some technical details, the flow and the implementation for the 

Replay Sensor Data from CSV file will be explained. 

5.4.1 Components and Association 
 

  Before we go deeper with the implementation, let us transform the high-level 

workload generator flow from  

Figure 3.2.2 1 by replacing the emulation layer, with the current emulation instance 

implementation. 

 Figure 5.4.1 1: Replay Sensor Data from Dataset Flow 
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  In the Figure 5.4.1 1 above we can see the workload generator flow, in the case that 

in the emulation layer, we will have the Replay Sensor Data from Dataset emulation 

instance. The user will provide the configs_file.json with the 

datasetSensorPrototypes, and the controller will do all the processing as the 

explained in  

Figure 3.2.2 1, and pass to this emulation instance implementation, the 

datasetSensorPrototypes along with the desired and initialized output protocol 

interface implementation. In the emulation layer for this implementation the emulation 

coordinator handles and monitors the threads for each sensor (for each dataset). 

Each thread represents a datasetSensorPrototype, because like it is being explained 

in previous chapters, for this implementation the user provides the dataset that has 

different exported messages for the same type of sensors. This implementation does 

not have as many components like the previous one. The important components in 

this emulation layer are the threads, where each one reproduces the messages 

accordingly from its dataset, and passes the generated data stream to the output 

layer in order to be transferred to the user application, and at the same time the 

threads store some statistics for the output data, for post analysis. 

 

5.4.2 Dataset Thread Modelling 

 

  Before moving on to the flow, let us quickly have an overview for the main 

component for this implementation, which is the thread per dataset that handles 

internally the reproduction of the dataset, customized.  
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Figure 5.4.2 1: Replay Sensor Data from Dataset Main Thread Class Diagram 

   

  In the  Figure 5.4.2 1 we can see the class diagram and the attributes for the main 

component for this implementation, the ReplayDatasetSensorPrototypeThread. As 

it is easy to guess, it extends the Thread java class, and the whole production for the 

messages happens in the run overridden method. Beside the flag attributes that 

represent its state (stop, pause, finished) it has also some other attributes that handle 

the statistics and evaluation for the dataset (recordCount, datasetValueStatistics, 

totalWaitTime). The most important field is of course the datasetSensorPrototype, 

that the thread will have as reference in order to replay the dataset for this 

SensorPrototype. Some other attributes, are for reading the dataset and parsing and 

reading the rows (formatter, bufferReader), and lastly the rest attributes are related 

with the functional part (datasetSensorPrototypeService) that handles the processing, 

the validations and the passing of the data to the output layer, and the 

datasetSensorPrototypeIsCorrectlySet to confirm that the dataset is valid. 

 

5.4.3 Flow 
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  Now that we have a basic understanding of the main components let us move 

straight to the implementation, by introducing the flow. Inside the initialize method for 

this implementation, the emulation coordinator creates one 

ReplayDatasetSensorPrototypeThread per DatasetSensorPrototype provided in the 

datasetSensorPrototype parameter from the Controller. Each thread then starts to 

process its DatasetSensorPrototype and validates if all the required and needed 

fields are provided and that they are correctly set up and valid. After the success 

validation and processing of the provided DatasetSensorPrototype, each thread will 

validate the data file. More precisely, it will make sure that the file exists and can be 

parsed, and that all the columns needed are there. If all the above procedures 

succeeded, then the thread will inform the coordinator that it is ready to start, and the 

coordinator will start it, in order to start replaying its dataset and reproducing the 

records for the sensors of the dataset. If at least one thread has been processed and 

validated successfully, the implementation is considered started, and will inform the 

controller with the isStartedProducing method. 
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Figure 5.4.3 1: Replay Sensor Data from Dataset Thread flow diagram 
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  Figure 5.4.3 1 depicts the flow for each ReplayDatasetSensorPrototypeThread. For 

the processing and the validation of the DatasetSensorPrototype, it is been validated 

that either a generation rate or the timestamp information is provided. Then, while 

validating and processing the dataset file, it verifies that the dataset file is indeed a 

CSV extension file, that the user provided columns that exist in the dataset (sensorId 

column and optionally the timestamp column) and finally, it can be sorted if the user 

declared so (based on the timestamp column for each row). After all the processing 

and validations happen, the thread starts to reproduce the data from the dataset 

(according to each row timestamp in comparison to the previous or if the user has 

provided a generation rate), and it will finish once all the dataset rows have been 

replayed.  

   

  For the pause, resume and terminate methods, the processes are straightforward. 

In the pause method, the coordinator pauses all the running threads (those that are 

still replaying rows), where in the resume, the coordinator will trigger the paused 

threads to resume the reproduction, from where they left. Finally, in the terminate 

method, the coordinator will notify all the running  threads to stop replaying, and 

finish.   

   
 

5.5 Output protocol Implementations  
   
 

 

  In this subchapter, we will briefly say some things for the implementations for the 

output protocol interface. As explained previously, the currently supported output 

protocols are HTTP, MQTT, and using KAFKA broker server. 
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  For the HTTP implementation, the validations happening in the 

validateAndProcessConfigs implemented method, is to verify that the user has 

provided the requestURI inside the protocolConfigs that the sensor messages will be 

sent to, along with the httpServers information. In the initializeConnections and 

terminate methods, the behaviour for this implementation is to do nothing, since the 

library used for HTTP calls does not need to establish any connection or terminate in 

order to send HTTP messages. The library used is the RestTemplate 5  Class of the 

Spring Framework 6. Using the provided methods of this class we are able to send 

HTTP requests (of all methods) to the output servers within the sendMessage 

method along with the needed request headers (the contentType that states the 

message format e.g.: JSON, XML, TEXT). 

  For the other 2 implementations for the pub/sub protocol, MQTT and KAFKA), the 

behaviour is the same, with the only difference in the library used. The MQTT 

implementation is using the Eclipse Paho 7 library to connect and send messages to 

the MQTT brokers, and the KAFKA implementation is using Apache Kafka 8 java 

library to connect and send the messages to a KAFKA broker. Having said that, in the 

validateAndProcessConfigs method, in both the implementations it is being checked, 

whether the user has provided the desired topic. On top of that, the mqttBrokers field 

is mandatory for the MQTT implementation and the kafkaBrokerClusters for the 

KAFKA respectively. In the initializeConnections  both of the implementations are 

setting the properties for the Client Producer based on the library they are using, in 

order to create Producer Clients, to send messages using the corresponding libraries 

 
5 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html 
6 https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html 
7 https://www.eclipse.org/paho/ 
8 https://kafka.apache.org/documentation/ 
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method through the sendMessage method to the desired brokers. Finally, they both 

disconnect and close their Producer Clients inside the terminate method. 

   

 

5.6 API Endpoints 
 

 

  In this last sub chapter of the Implementation chapter, we will provide the API 

endpoints that the user can use to trigger actions or to get information for the 

framework emulation instance. It is worth noting that the APIs are implemented based 

on the Spring Boot framework 9 architecture, which runs on top of Apache Tomcat 

servlet Container 10. The deployed application container will be listening to the same 

configurable port for all of the APIs. 

 

5.6.1 Workload Generator Actions APIs 
 

  The following APIs can be used to trigger workload Generator actions. 

 

1POST /workloadGenerator/start 
 

Description The user can use this API to trigger the execution of the application. 
This API is the entry point of data generation, and translated to the 
start user action explained in section 5.1.1 

PATH  /workloadGenerator/start 

Method POST 

Payload The payload of the API is an empty JSON object: {} 

Query 
Params 

The API can support one query param, called delay (in seconds) , 
which like the name implies, is the desired delay until the workload 
generator starts to produce data.  

 
9 https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/ 
10 http://tomcat.apache.org/tomcat-8.0-doc/ 
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Response: Success message (200 HTTP Response Code) if at least one 
SensorPrototype input implementation was successful, else detailed 
error message for some validation or missing input for the user (400 
HTTP Response Code) or (500 HTTP Response Code) for any 
unexpected error. 

 

  
2 POST  /workloadGenerator/stop  

Description The user can use this API to trigger the pause or stop of the 

application. This API can be used only after the 1POST 

/workloadGenerator/start  API and is translated to the stop user action 
explained in section 5.1.2 which pauses the data generation and all 
the pending processes, along with the workload generator. 

PATH  /workloadGenerator/stop 

Method POST 

Payload the payload of the API is an empty JSON object: {} 

Query 
Params 

The API can support one query param, called delay (in seconds) , 
which like the name implies, is the desired delay until the workload 
generator stops data production. 

Response Success message (200 HTTP Response Code) if the workload 
generator was stopped successfully, else detailed error message for 
some validation error when calling the API (400 HTTP Response 
Code) or (500 HTTP Response Code) for any unexpected error. 

 

 

 

1 POST  /workloadGenerator/restart 

Description The user can use this API to make the workload generator terminate 
all the current idle sensors and tasks, and to create new sensors 
based on the new input provided in the configs_file.json. Its main 
purposes are for the user to change input for testing different 
scenarios. This API can be used only after the 

POST  /workloadGenerator/stop  API and is translated to the restart 
user action explained in the section 5.1.3 

PATH  /workloadGenerator/restart 

Method POST 

Payload The payload of the API is an empty JSON object: {} 
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Query 
Params 

The API can support one query param, called delay (in seconds) , 
which like the name implies, is the desired delay until the workload 
generator restarts again the initialization flow with the new input.  

Response  Success message (200 HTTP Response Code) if the workload 
generator has restarted successfully, else detailed error message for 
some validation error when calling the API or wrong input (400 HTTP 
Response Code) or (500 HTTP Response Code) for any unexpected 
error. 

 

5.6.2 Sensor Actions APIs 
 

  The following APIs can be used to retrieve, create new or delete mockSensors and 

mockSensorPrototypes on runtime when the workload Generator is running and 

mockSensorPrototype input is initialized. The APIs are supporting only the 

mockSensorPrototype implementation.  

 

GET /mockSensors 

 

Description The user can use this API to get the total count and a list for all the 
created mockSensors along with each mockSensor’s 
mockSensorPrototype. 

PATH  /mockSensors 

Method GET 

Payload - 

Query 
Params 

The API can support one query param, called sensorId, which is to 
filter the response only for the specified sensor.  

Response Total count and list of all the mockSensors information, or information 
only for the sensor having the specified query (200 HTTP Response 
Code). Bad Request error If the workloadGenerator is not running 
(400 HTTP Response Code) or no mockSensorPrototype is initialized 
, Not Found (404 HTTP Response Code) if the mockSensor with 
specified sensorId does not exists, (500 HTTP Response Code) for 
any unexpected error. 
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POST /mockSensors 
 

Description The user can use this API to create and add more mockSensors at 
runtime for an already existing mockSensorPrototype. 

PATH  /mockSensors 

Method POST 

Payload The payload of the API is a JSON object with the needed quantity 
and the desired mockSensorPrototype’ Name:   
{ 
    "quantity": 15, 
    "mockSensorPrototypeName": "temperature_sensor" 
} 

Query 
Params 

- 

Response Success Created response (201 HTTP Response Code) which 
implies that the mockSensors were created successfully, or Bad 
Request error message (400 HTTP Response Code) if some 
parameter in the payload is not provided or no mockSensorPrototype 
is initialized, Not Found (404 HTTP Response Code) if the 
mockSensorPrototypeName does not exists and (500 HTTP 
Response Code) for any unexpected error. 

  
 

DELETE /mockSensors/{mockSensorId} 
 

 Description The user can use this API to stop the production and delete a 
mockSensor 

PATH  /mockSensors/{mockSensorId} 

Method DELETE 

Payload - 

Path 
Params 

The API requires one path param, called mockSensorId, which is the 
Id of the mockSensor to be deleted 

Response  Success No Content response (204 HTTP Response Code) which 
implies that the mockSensor specified was deleted, or Not Found 
(404 HTTP Response Code) if the mockSensorId provided does not 
exist, (500 HTTP Response Code) for any unexpected error. 
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GET /mockSensorPrototypes 

 

Description The user can use this API to get information about 
mockSensorPrototypes  

PATH  /mockSensorPrototypes 

Method GET 

Payload - 

Query 
Params 

 The API can support one query param, called 

mockSensorPrototypeName, which is to filter the response only for 
the specified mockSensorPrototype.  

Response Total count and list of all the mockSensorPrototypes information , or 
information only for the mockSensorPrototype having the specified 
query param as name (200 HTTP Response Code). Bad Request 
error If the workloadGenerator is not running or no 
mockSensorPrototype is initialized (400 HTTP Response Code), Not 
Found (404 HTTP Response Code) if the mockSensorPrototype with 
specified name does not exists, (500 HTTP Response Code) for any 
unexpected error. 

 

POST /mockSensorPrototypes 
  

Description The user can use this API to create new mockSensorPrototypes at 
runtime 

PATH  /mockSensorPrototypes 

Method POST 

Payload The payload of the API is JSON object same as the input for the 
mockSensorPrototype mapping in the configs_file.json  

Query 
Params 

 - 

Response Success Created response (201 HTTP Response Code) which 
implies that the mockSensorPrototype and its mockSensors were 
created successfully and started generating data successfully, or Bad 
Request error message (400 HTTP Response Code) if some 
mandatory parameter in the payload is not provided, and (500 HTTP 
Response Code) for any unexpected error. 
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DELETE /mockSensorPrototypes/{mockSensorPrototypeName} 
 

Description The user can use this API to stop the production and delete all the 
sensors for the specified mockSensorPrototype and then delete it 

PATH  /mockSensorPrototypes/{mockSensorPrototypeName} 

Method DELETE 

Payload - 

Path 
Params 

 The API requires one path param, called 
mockSensorPrototypeName, which is the name of the 
mockSensorPrototype to be deleted  

Response Success No Content response (204 HTTP Response Code) which 
implies that the mockSensorPrototype specified was deleted, or Not 
Found (404 HTTP Response Code) if the 
mockSensorPrototypeName provided does not exist and (500 HTTP 
Response Code) for any unexpected error. 
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Chapter 6 

 

   System Evaluation and Results 

 

 

6.1 Usability Evaluation 

6.1.1 Heterogeneity and Sensor Model Realizaiton Evaluation 

6.1.2 Accuracy Evaluation 

6.1.3 Extensibility Configurability Customization Evaluation 

6.1.4 Usability evaluation, through Integration with real Fog Emulator on a real 

scenario use case 

6.1.4.1 Increasing Workload Test 

6.1.4.2 Data Skewness Experiment 

6.2 Performance Evaluation and limitations 

6.2.1 Sensor Message Delay 

6.2.1.1 Input and Evaluation Methodology 

6.2.1.2 Evaluation Experiments 

6.2.1.2.1 Sensor Quantity Factor 

6.2.1.2.2 Generation Rate Factor 

6.2.1.2.3 Host Machine Resources Factor 

6.2.1.2.4 Sensors Quantity Limitation 

6.3 Evaluation Results Summary and System limitations 

 

 

 

  In this chapter, the implemented system will be evaluated, based on the initial 

requirements we set back in section 3.1. In addition, we will show its usability with 

some real scenarios in combination with a fog emulator, then we will do some
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 experiments to find what factors influence the performance, and finally we will find 

the limits of our system. 

 

6.1 Usability Evaluation 
 
  

   In order to evaluate the system, let us first recall the requirements that such a 

system should fulfil. When we were introducing the idea for a workload generator for 

IoT data, back to section 3.1, we mentioned some pillars that the system should 

support in order to be a workload generator for IoT devices that any user could use, 

and users could actually be benefited by using it. In this section we will try to 

demonstrate the heterogeneity and the accuracy requirements. 

 

6.1.1 Heterogeneity and Sensor Model Realization Evaluation  
  

 One of the most important challenges and requirements for a workload generator 

stated, was the Heterogeneity that the system should support, based on the wide 

variety of different IoT devices, sensors, their message formats, the output protocol 

and generally the range and differences between the scenarios that the users would 

like to test.  

  Our system can support currently 3 output protocols, and can be extended to 

support even more, and in addition it supports 3 of the most used message formats 

(JSON, XML, TEXT) , which also can be extended for more. On top of that, a wide 

range of sensors, and their properties can be achieved, using our abstract realization 

model. The system gives the ability to the user to provide any message field, or even 

nested fields, that results in a flexible usage in order to adjust the real sensors with 

the system model mapping. Last but not least, based on the abstraction and the 
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correct realization of our sensor model for the implementation of replaying real data, 

the user has the ability to provide almost any dataset, with real exported sensor data, 

in order to be replayed, boosting the heterogeneity and the generality of our 

realization models. 

 

  Let us demonstrate some of the above flexibilities, with some file instances for 

different CSV datasets for completely different applications (and different sensor 

types) and their corresponding input configs_file.json mapping configurations. 

 

Figure 6.1.1.1: Screenshot from a dataset that measured annual photovoltaic panels data in 
Cyprus 11 

 

Figure 6.1.1.2: Sensor Modelling Input inside configs_file.json for dataset from 

 Figure 6.1.1.1 

 
11 https://enedi.eu/ 
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Figure 6.1.1.3: Screenshot of a dataset that measured beach water quality in Chicago 12 

 

Figure 6.1.1.4:Sensor Modelling Input inside configs_file.json for dataset from Figure 6.1.1.3  

 

 

Figure 6.1.1.5: Screenshot of a Yellow Taxi Trip Data from NYC dataset 13 

 
12 https://data.world/cityofchicago/beach-water-quality-automated-sensors 
13 https://data.cityofnewyork.us/Transportation/2019-Yellow-Taxi-Trip-Data/2upf-qytp 
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Figure 6.1.1.6: Sensor Modelling Input inside configs_file.json for dataset from 

 Figure 6.1.1.5 

 

 

 
Figure 6.1.1. 7: Road traffic data instance from a dataset  for a city In Denmark 14 

 

 

 
14 http://iot.ee.surrey.ac.uk:8080/datasets.html 
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Figure 6.1.1.8: Sensor Modelling Input inside configs_file.json for dataset from  

Figure 6.1.1. 7 

 

 

In figures 6.1.1.1, 6.1.1.3, 6.1.1.5 and 6.1.1. 7 we can see 4 instances from 4 different 

datasets, for completely different applications, and on figures 6.1.1.2, 6.1.1.4, 6.1.1.6, 

6.1.1.8 their corresponding input configurations to the system, provided through the 

configs_file.json. In the first dataset (Figure 6.1.1.1), we can see the first rows of the 

dataset for an application that measured yearly photovoltaic panels data in Cyprus, 

while in the second one (Figure 6.1.1.3), beach water quality is been measured by 

some sensors at Chicago Park District beaches. In the third dataset (Figure 6.1.1.5), 

a screenshot from the Yellow Taxi Trip Data from NYC dataset can be seen and 

finally in the Figure 6.1.1. 7 exported road traffic data from a city in Denmark. It is 

obvious that all the datasets are completely irrelevant and different between them 

and each one having different fields, different timestamp formats, even different types 

for the values for each field, but still, our system can replay all of them easily, by just 

providing the correct input configs_file.json accordingly to the dataset. On top of that, 

even the same dataset could be replayed, with different input configs (maybe 
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different message format or output protocol). This experiment proves that our system 

can handle multiple and different dataset reproduction using our realization model.  

 

 

 

6.1.2 Accuracy Evaluation  

 

  Along with the heterogeneity, accuracy is equally important for an IoT workload 

generator. Not only the accuracy in terms of the data exported to be as real as the 

real sensor messages, but also accuracy in the time of the data production, that also 

should be exact as the real ones, in both of the 2 features provided (produce mock 

data, replay data from dataset). 

  In order to demonstrate the accuracy, for both time and generated data, let us 

consider the input at Figure 6.1.2 1. For this scenario, we have a temperature 

mockSensorPrototype, that has 2 temperature sensors, each one of them generating 

a new message after 2 seconds. Each generated message consists of a field called 

temperature that follows a normal distribution, with mean 20 and deviation 5. After 5 

seconds from the execution of the scenario, there is a fire that affects the sensor with 

id 1, making it change the normal distribution it follows, to a new one with mean 40 

and deviation 3 for a duration of 5 seconds. (The values and input configurations of 

this scenario are just indicative and not real measured for real fire and temperature 

sensors - Their purpose is to serve the prove of concept of the accuracy of the 

system in terms of correct messages generation) 

   

 

And
rea

s I
oa

nn
ou



83 
 

 

 
Figure 6.1.2 1: Input file that illustrated the data for the sensor message accuracy validation 
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  In the Figure 6.1.2 2  we can see the first rows that depicts the instance of 

temperatrue_output.csv file, that was exported for the above scenario. The first 

messages started to be produced at 21:39:28, and both sensors produced 

temperatures that followed the normal distribution declared. Then, after 5 seconds 

(21:39:33) where the fire scenario happens, only the sensor 1 will start producing 

temperature based on the scenario normal distribution (sensor with id 0 will keep 

following the initial normal distribution), because the sensor with sensorId 1 has to 

follow the scenario values generation (that follows different normal distribution with 

mean 40 and deviation 3). Finally, after 5 more seconds from the fire (10 seconds 

form the beginning of the execution -  21:39:38,  the fire scenario stops), and the 

temperature sensor 1, returned into producing temperatures based on the initial 

normal distribution. The values from the exported file prove the accuracy based on 

the input fields and the scenario provided. 

 

 
Figure 6.1.2 2: Exported first rows data from the temperature_output.csv file exported by the 

workload generator for the data accuracy validation experiment based on input in Figure 6.1.2 1  
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6.1.3 Extensibility, Configurability, Customization Evaluation  
 

  It is quite obvious, and it can be already observed, that the system promotes and 

encourages extensibility, and the customization for the inputs. In the sections 5.2.1 

and 5.2.2 , the ease of extending both input sensor Prototype features and output 

protocols can be seen. The provision of the interfaces, and the abstract methods, 

along with the detailed documentation for the purpose of each method, make any 

developer able to extend and implement functionalities fulfilling his personal 

application needs. On top of that, customization in an input dataset can be applied, 

giving the user the ability to use only the needed properties or data for the dataset, 

and create extra mock data based on his preferences. Finally, the input properties file 

(workloadGenerator.properties), and the spring boot framework, where the whole 

system is built on, can provide configurability to the user, even for different 

deployments for the same sensor input, to manipulate the execution run based on the 

machine available resources through the input workloadGenerator.properties file that 

stores key-value pairs of system/deployment/execution properties and the user 

desired values.  

 

6.1.4 Usability evaluation, through Integration with real Fog 

Emulator on a real scenario use case 
 

 

  In this section, we integrated the workload generator with a real Fog Computing 

emulator, named the Fogify [18] which is introduced in section 2.1.4 , to illustrate how 

useful a workload generator is for a testbed and how easily researchers are capable 

to evaluate different hypotheses. Again, our use case is inspired by smart homes, but 

in this scenario, a company manages a set of smart-homes, and it has deployed 
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monitoring sensors to observe them. Every sensor disseminates a set of metrics to a 

region-based broker queue, and then, an operator can submit streaming queries on 

top of a processing engine deployed on Fog. We utilized a high-performance queue, 

namely Kafka 15, as a broker and StreamSight [30] as the processing framework. 

StreamSight is built on top of Apache Spark 16 and is a streaming processing 

Framework for edge computing analytics. The Figure 6.1.4 1 presents how the real-

world topology for the scenario would be visualized, in which each region would 

generate its own sensor data, using different input configs file for its workload 

generator, and the StreamSight will process all the received stream from all regions), 

while Figure 6.1.4 2 illustrates the emulation, topology happened in our experiment 

using Fogify deployed on a single virtual machine! 

  The topology of the experiment is described by following Fogify's model, and Figure 

6.1.4 2 illustrates a high-level overview of it. Fogify will handle the instantiations and 

the interconnection of the other containerized services (Kafka, workload generator 

and Spark with StreamSight) on deployment using Fogify’s docker-compose 

specification extension and then it will emulate all the above services connected 

under the same network with properties and will distribute resources per service, 

while the user needs to provide only the queries for the StreamSight and the input 

configs for the workload generation (in this experiment we have just one instance – 

for one region, but it could be easily scaled to more instances, with the same way).   

 
15 https://kafka.apache.org/documentation/ 
16 https://spark.apache.org/docs/latest/ 
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More accurately for the experiment, all services have restricted processing 

capabilities (2cores at 1.4GHz with 2GB ram) and are connected to the same network 

with a network delay and bandwidth between the nodes to be 10ms and 100mbps 

respectively. All services along with the workload generator are containerized and 

initially described with docker-compose file. All of the experiments are run on top of a 

Virtual Machine with 16cores and 16GB of RAM and the workload generator is 

introduced to Fogify as a containerized service.  

Figure 6.1.4 1: Real topology of scenario 
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Figure 6.1.4 2: Emulation topology using Fogify on a virtual machine for the experiments 

 

Now that everything is deployed, and the spark using his worker cluster is ready to 

process the queries, we are ready to run the experiment. To this end, the operators' 

evaluation is twofold, firstly, they evaluate the scalability of the StreamSight by 

increasing periodically the number of sensors and measure the processing latency of 

the streaming engine, and secondly, they evaluate the effect of the data skewness on 

the performance. The skewness of values is known in distributed processing systems 

since the partitioning algorithms distribute the keys by following hash functions, thus 

some workers may force to process much more data than others. 

   The base workload generator input file used for the 2 experiments can be seen in 

Figure 6.1.4.1 1. For this set of experiments, we have KAFKA broker, hence the 

KAFKA protocol and the KAFKA protocolConfigs, and a general sensor prototype, 

where each sensor disseminates temperature, brightness and humidity. Temperature 
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follows a normal distribution with mean 35 and deviation 6, brightness can have an 

integer value in range [0..4], where 0 implies dark and by increasing the value we 

reach 4 which is shining, and all of the values of brightness following a probabilistic 

distribution (20 % for each one). Finally, we have humidity that is a random generated 

integer between [0..100]. Each sensor generate data per 1 second. 

 

 

Figure 6.1.4.1 1: Base Input file of workload generator for scenario  

And
rea

s I
oa

nn
ou



90 
 

 

6.1.4.1 Increasing Workload Test 

 

  In the first experiment, the operators submit a StreamSight query (Figure 6.1.4.1 2) 

that computes the overall average temperature of all sensors. Basically, the 

translation of the query is to calculate the average temperature for all sensors, by 

processing the sensor messages every 5 seconds and calculating the average 

temperature, using the sliding window technique on a window of 5 minutes. The 

system will be collecting data stream from the Kafka (generated from the workload 

generator) and per 5 seconds it will do the processing based on the collected data 

from the previous 5 minutes, and finally after 10 minutes of the experiment, it will 

output the results.       

  Since the operator needs to evaluate a various number of sensors, the operator 

simply can use the base input configs_file.json in Figure 6.1.4.1 1, and change 

gradually the sensorsQuantity to the desired number of sensors and submit the 

model to the generator. Specifically, the operator instantiates 500, 1000, 1500 

sensors in each experiment, each experiment runs for 10 minutes, and every sensor 

sends a datapoint with temperature, humidity, brightness, etc., every second. 

 

Figure 6.1.4.1 2: StreamSight Query for the average temperature of 5 minutes 
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Figure 6.1.4.1 3: Process latency based on the sensor number 

   

  Figure 6.1.4.1 3 depicts the Spark's processing latency in milliseconds for each 

quantity of sensors. It is obvious that the number of sensors, and consequently the 

amount of the data, dictates the streaming processing latency, since by increasing 

the sensorsQuantity, we will have more sensors which implies more sensor 

messages that need to be processed in the same period (5 second). With this 

experiment, the operator can be sure that the system will provide acceptable 

performance between 1000-1500 sensors, since even with 1500 sensors, the latency 

(almost 3 seconds) don’t exceeds the 5 seconds that is the interval processing time 

for the calculation of the query. 

 

  In a deeper analysis, Figure 6.1.4.1 4 illustrates the processing delay points for each 

number of sensors. Each point represents the processing latency for each batch, with 

the input tuples number equal to the sensor number (each sensor produces 1 sensor 

message per second). With this, we can observe the distribution of the processing 

delay for each sensor quantity. Specifically, even if the 500 sensors have the lowest 

processing delay, they have the largest deviation among the experiments. Given that 
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the processing latency should be less than the execution interval (in order for the 

system to be stable and do not build backpressure - 5 seconds in this experiment), 

the operators know that they cannot reduce the interval due to the unexpected 

deviation even in a low number of sensors.  

 

 

 

 

 

 

 

 

 

 
Figure 6.1.4.1 4: Latency of processing for each batch based on the sensors number( sensor 

messages number) 

 

6.1.4.2 Data Skewness Experiment 

 

  After the first experiment, users would like to evaluate how skewed values influence 

the performance of a processing engine. For that reason, they updated the previous 

query and group the average of the temperature by the brightness measurements 

(query in Figure 6.1.4.2 1). In order to provide skewed data, they used the base input 

(Figure 6.1.4.1 1) configs_file.json, but instead of changing the sensorsQuantity they 

changed the brightness field probabilities distributions. The brightness as explained 

before, is measured by ordinal values, from 0 (dark) to 4 (shinning). By following the 

generator modelling, the operators could describe the possibility of each group in the 

description of the sensors. In the first experiment, the brightness values are equally 
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distributed in every group (0: 20%, 1: 20%, 2: 20%, 3: 20%, 4: 20%), and in the 

second experiment, the values of the brightness are skewed (0: 5%, 1: 5%, 2: 5%, 3: 

5%, 4:80%).  

 

 

  Figure 6.1.4.2 2 depicts the average processing delay between skewed and non-

skewed values. We observe around 25% more processing delay when the workload 

has high skewness. This is reasonable since the data partitioning algorithms of big 

data engines, like Spark, do not take into account the size of the data and only hash 

the partition key to decide where the data should be placed. 

 

 

 

 

 

 

 

Figure 6.1.4.2 2: Results of experiment for skewed workload 

Figure 6.1.4.2 1: StreamSight Query for the average temperature of 5 minutes, grouped by 
brightness 
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  In conclusion for this set of experiments, the alterations of the sensor values and 

sensor quantity are crucial for the application performance evaluation. Furthermore, 

application owners can reveal hidden insights from their services and evaluate large-

scale scenarios. Finally, the IoT workload generators are essential building blocks for 

other systems, like fog & edge simulators and emulators, that currently use general-

purpose data generators. 

 

6.2 Performance Evaluation and limitations 
 

 

  In this section, after some experiments using different factors, the performance of 

the system, in combination with the system limitations, that affect the performance 

will be stated.  

  Before we move to the experiments, it is important to state and define what are the 

factors that determine the performance of our system. The performance of our 

system can be measured in 2 ways, both under the same requirement pillar, the 

accuracy. It is obvious that one of the performance evaluation factors is the accuracy 

of the data exported, in order to always follow the provided input sensor model 

configurations (e.g.: a sensor that has a message field with some random range 

value, can’t generate value for this field that exceeds the declared input range at any 

case - except in scenarios mode). This would be a violation in the system accuracy, 

for the sensor messages accuracy. The other factor that the accuracy can be 

measured is the frequency that each message is being produced. The user provides 

the desired sensor message generation rate (the interval time in seconds between 

each sensor message) or the dataset that will be replayed using some timestamp 
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column, and he expects the data to be generated in the correct time while testing his 

application. More precisely, the user would demand and want the data to be 

generated at the correct and real times with ideally zero or extremely small delay, that 

doesn't affect his application’s evaluation. The performance regarding the sensor 

messages accuracy can be seen in section 6.1.2 . 

   

6.2.1 Sensor Message Delay  

 

  In this section the performance based on the sensor messages delay will be 

evaluated. By sensor message delay, we refer to the case that the frequency 

between 2 successive messages is greater than the expected interval time. For 

instance, if the generation rate for one mockSensorPrototype is constant value of 2 

seconds, and the first message was sent at 10:00:00 and the next sensor message 

(by the same sensor) was sent at 10:00:04, this indicates that the delay was 2 

seconds, because the system was supposed to generate the second message at 

10:00:02. Of course, the delay can be accepted in some cases, that tends to zero, or 

generally doesn’t affect the testing of the user, so we have to set a rule in order to be 

able to test this factor. The most reasonable rule, in order for an average delay to be 

considered performance downgrade, it is not to exceed the required sensor message 

interval provided by the user, since this will stack the requests on the user 

application. For example, if the user provided that he wants the generation rate 

frequency to be 3 seconds, the threshold of supported input sensors, would be until 

sensors start to produce sensor messages with average delay exceeding the desired 

frequency (3 seconds in this example). 
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6.2.1.1 Input and Evaluation Methodology 

 

  Before moving to the experiments and the results let us first introduce the 

methodology used in order to evaluate the system performance, based on the sensor 

message delay. For this testing, in order to have an accurate evaluation and to 

isolate any external factors that could affect the evaluation and the machine 

performance, we make the input to be as simple as it can be, in order to cover the 

evaluation scenario and not to create overhead to the machine for anything else 

beyond the factor being tested.  

   In the Figure 6.2.1.1 the testing scenario input can be seen. As it is previously 

noted, we want to make the executions as simple without any external factor to affect 

the evaluation, hence we have just one mockSensorPrototype and one field, and no 

export to output file or scenarios since this would create extra overhead due to more 

threads running. The only things that will be changing (according to the factors and 

the experiments) are the sensorsQuantity value and the generationRate value. 
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Figure 6.2.1.1  1: Base Input file for sensor message delay accuracy experiments 

  
   

   

  Now that we introduced the input and the criteria, it is time to explain how the 

evaluation will happen, and more precisely how the delay is being measured. In order 

to be able to calculate the average delay of one mockSensorPrototype, i created an 

application that receives HTTP requests through the “/testing” endpoint from the 

workload generator (mock sensor messages), and process them accordingly, in order 

to calculate the average delay for one mockSensorPrototype. We prepare the HTTP 

application in order to know which sensor Prototype name should process. More 
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precisely, the preparation for the HTTP testing application happens with an API call. 

Through that API call, we inform the application with 2 things, 1) which sensor 

prototype name should only be processed (let us name this input as 

evaluationSensorPrototypeName) and 2) which is the expected generation rate for 

this sensor prototype (the interval message generation frequency for the sensors of 

this sensor prototype - let us name this input as expectedGenerationRate). Then, 

the application internally, when it is being prepared, creates a thread that receives 

these 2 inputs, and has a blocking queue, where the input messages will be stored 

with priority the timestamp. In the continuation, when the HTTP application receives a 

POST request from the workload generator (the request is the sensor message 

packaged along with the sensorId and the timestamp the request was sent form the 

workload generator, in the request payload) it puts it to the queue of the evaluation 

thread, and if the sensorId of the request (the sensorId contains the sensorPrototype 

name) matches the preparation input sensor prototype name 

(evaluationSensorPrototypeName), then the message will be processed else it will 

be ignored. After the evaluation thread filters the messages from its queue, it stores 

the necessary information for each message in order to use them to calculate the 

delay. The idea here is that, from the received packaged message, the thread keeps 

only the timestamp that the request was sent, the received messages count and 

the sum of the average delay for each sensor id. That way, the evaluation thread, 

knows at any time what is the current latest message timestamp for each sensorId , 

and when it receives a new message from the same sensor (same sensorId) it 

calculates the difference of the timestamps between the previous and the last 

messages of this sensor and checks if the difference is greater than the expected 

generation rate that the application had as input in the preparation 

(expectedGenerationRate). If the difference between the previous latest message of 

the same sensor and the current last message received is greater than the expected-

declared interval generation rate time, then it sums this delay, and increases the 
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requested messages counter for this sensor by 1. After the evaluation duration 

finishes, the thread calculates the average delay for each sensor (the sum of the 

delays divided by the requests count for the sensor) and when it has calculated the 

average delay for each sensor, it calculates also the average delay for all of the 

sensors (the sum of the average delays for all sensors for the specified sensor 

prototype divided by the sensors quantity) . The output of this equation will be 

considered the average delay for the testing scenario instance. 

 

Equation 6.2.1.1 1 : Equation used in order to calculate the average sensor message delay of 
a MockSensorPrototype 

 

  The Equation 6.2.1.1 1 express how the value of the average delay for one sensor 

prototype is calculated in the HTTP testing application for each instance of the 

evaluation.   
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6.2.1.2 Evaluation Experiments 

 

  Now that we have stated and explained the methodology of the experiments for the 

evaluation of the performance based on sensor message delay, let us see and 

introduce the experiments and analyse the results. 

  The different experiments happened based on different testing factors. The 3 factors 

that were tested are the input sensor quantity (sensorsQuantity) for the mock sensor 

message, the generation rate (generationRate) for the mock sensor message, and 

the processing power/resources of the hosted machine. Each experiment will run for 

5 minutes, and in the end the average sensor message delay will be calculated for 

each experiment. 

 

 

6.2.1.2.1 Sensor Quantity Factor 

 

  Probably the number 1 factor that could affect the system performance is the 

number of mock sensors to be created from the input. Since our system creates a 

thread for each emulated sensor, it is quite obvious and inevitable that there will be 

some constraints in the number of sensors that the system can handle, given the fact 

that no machine has unlimited processing resources in order to be able to process in 

parallel a huge amount of threads. With a huge input sensor number, which implies 

huge thread quantity to be created, the system performance could be affected.  

  For this experiment, we have the input file that can be seen in the Figure 6.2.1.1 1  

and the only variable would be the sensorsQuantity. We will run the experiment, for 

different sensors Quantities (500, 1000, 15000, 2000, 25000, 3000) and for each 

different sensorsQuantity, the duration until the end of the scenario and the 
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calculation for the final average sensor message delay using the methodology 

explained in section 6.2.1.1  will be 5 minutes, which is a period that gives us 

representative results.   

Sensor Number N Average Message Delay (s) 

500 0.00732 

1000 0.023679 

1500 0.026599 

2000 0.112249 

2500 0.195059 

3000 0.518606 

 

Table 6.2.1.2.1 1: Experiment results for input sensors number factor 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6.2.1.2.1 1: Graphical representation based on the results in Table 6.2.1.2.1 1: 
Experiment results for input sensors number factor for the sensor number factor experiment 
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  In Table 6.2.1.2.1 1 we can see the results for the evaluation of the system 

performance by factoring the number of sensors. In the first column is the number of 

sensors and in the seconds column, the average sensor message delay for the 

corresponding input number of sensors in a machine that hosted the application, 

within a docker container of 2 cores and 2 GB of RAM. Also, the Figure 6.2.1.2.1 1 

depicts the corresponding graphical representation for the measured results of the 

table. The first thing we notice is that the average delay, even for a small number of 

threads, exists but it is indeed insignificant (~0.007s ). Then, it can be observed 

clearly that as the number of sensors is increasing, the sensor message delay is also 

increasing smoothly, until it reaches the 2000, then it grows faster. Finally, for 3000 

sensors, the average delay is still way under the generation rate (2 seconds limit we 

set above). 

  In addition, the figures 6.2.1.2.1 2, 6.2.1.2.1 3, 6.2.1.2.1 4 illustrate the CPU usage 

using the cadvisor17 container in the testing hosted machine, that can create statistics 

and analyse the CPU at the container that the application runs. In the figures, we can 

see an instance of the CPU usage (percentage) per time for the docker container that 

the application was hosted while running the experiment for a different number of 

sensors. In the first figure(6.2.1.2.1 2) that represents an instance of CPU usage for 

sensorsQuantity = 1000, it can be seen that the usage is at low levels, by using on 

average only 22% of the available CPU cores. Then, In the Figure 6.2.1.2.1 3 where 

the input sensors number = 2000 we can see that the CPU usage is increased, and 

fluctuates between 30 - 45%, and finally at the Figure 6.2.1.2.1 4  the CPU usage can 

reach the 70%, when the input sensors number = 3000.  

 
17 https://github.com/google/cadvisor 
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Figure 6.2.1.2.1 2: CPU Usage using cadvisor on the hosted application docker container with 
2 cores for input sensors number = 1000 

 

 

 

Figure 6.2.1.2.1 3: CPU Usage using cadvisor on the hosted application docker container with 
2 cores for input sensors number = 2000 

 

 
Figure 6.2.1.2.1 4: CPU Usage using cadvisor on the hosted application docker container with 

2 cores for input sensors number = 3000 

 

 

  The results which are obvious, and quite expected, show firstly that the bigger the 

input number of sensors is, the more the performance will be affected. Also even the 

average delay for a small number of sensors is very small, tending to zero, it exists, 

and the reasons behind that is the delays for network calls to reach the HTTP 

application, and the fact that in order to have 0 delay, a machine should be able to 
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handle at the same time all the threads. Of course, this argument is not feasible yet, 

since the machines can’t reach this point yet and they work concurrently (using their 

multicore architecture) and not parallel, which implies that there will be time that the 

OS will have to do multiple thread context switches.  

  Context switch is the procedure when the thread inside the CPU is switched, 

voluntary (when the thread for example does i/o actions, like waiting for the response 

for the request or is sleeping state) or nonvoluntary (the CPU forces the thread to be 

switched because the OS interrupt time has running out, which means the thread is 

too long in the CPU and it needs to be switched in order for another thread to use it). 

The reason behind the context switches of threads is that all active threads can’t 

access the CPU at the same time. Regardless of the type of switch, the thread that 

will be switched out, cannot use the CPU, which implies that it will be waiting idle, 

until the OS switches it on again to resume its tasks. All this waiting, and the small 

amount time created due to the overhead of the OS to make the context switches 

while switching the threads, will be summed and it will produce this delay, which is 

inevitable.  

  Back to the experiment, the results verified our theory, and it is easy to see that 

when the sensor input is bigger, which implies that the threads created by the 

application and the OS are more, hence we will have more delay, affecting the 

performance of the workload generator, with one reasonable explanation the increase 

of context switches.  

6.2.1.2.2 Generation Rate Factor 

 

  We have seen that the number of sensors affects the performance of the workload 

generator, which was quite expected, but now let us check another more complex 

factor. In this experiment the factor that will be tested, is the generation rate for the 

sensors. For this experiment we will keep the input from  
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Figure 6.2.1.1 1 and we will test by gradually increasing the generation rate for the 

sensor messages to 6 and 10 seconds, if it affects the system performance and more 

accurately the average sensor message delay.  

  

 
Input 

Sensors 
Number (N) 

Average Message Delay (s) 

Expected Generation 
Rate = 2s 

Expected Generation 
Rate = 6s 

Expected Generation 
Rate = 10s 

500 0.00732 0.01241 0.018775 

1000 0.023679 0.040051 0.018022 

1500 0.026599 0.038017 0.016636 

2000 0.112249 0.065697 0.052392 

2500 0.195059 0.071678 0.056858 

3000 0.518606 0.106777 0.120352 

Table 6.2.1.2.2 1: Experiment results for generation rate factor 

 

 

  

 

 

 

Figure 6.2.1.2.2 1: Graphical representation based on the results in 
Table 6.2.1.2.2 1: Experiment results for generation rate factor 

And
rea

s I
oa

nn
ou



106 
 

 

 

   

 

 

 

 

 

  In the Table 6.2.1.2.2 1 we can see the results of this experiment along with the 

results for the previous. In the first column of the table we can see the results for the 

previous experiment (with generation rate 2 s) and in the next columns we can see 

the results for generations rate 6 and 10 s respectively. The figures 6.2.1.2.2 1, 

Figure 6.2.1.2.2 2 present the corresponding graphical representations for the new 

statistics.  

  The results show some patterns which are expected, but there is also an 

unpredictable behaviour, regarding the factor of generation rate. To begin with, also 

for different generation rates, the behaviour regarding the increase of sensor number 

is the same, since we have more average delay, with a bigger number of sensors. 

Also, between generation rate 2s and generation rate 6s, the performance is way 

better (~0.5s for 3000 sensors and generation rate 2s and ~0.1s for generations rate 

6s for same amount of sensors) when we have generation rate 6s, and one possible 

explanation would be that the context switches number would be less. The argument 

that the context switches will be less, comes from the idea that since the interval time 

between sensor messages is less, the number of context switches will be bigger ( 

more sensor messages will be sent since the interval time is less, implies more i/o). 

Figure 6.2.1.2.2 2: Graphical representation based on the results in 
Table 6.2.1.2.2 1: Experiment results for generation rate factor 
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On the other hand, between generation rate 6s and generation rate 10s, it is not clear 

which has better performance, since they are in the same level more or less. 

 

6.2.1.2.3 Host Machine Resources Factor 

 

  The last factor that we will examine, is the resources of the hosted machine. In the 

previous 2 experiments the machine used was a pc, with the workload generator as 

containerized service, with 2 available cores and 2 GB RAM, while in this experiment 

we will test the same scenarios as before, in a machine with more cores and 

available RAM, a server with 16 available cores and 16 GM RAM. Our guess is that 

due to the bigger number of available cores, the results will be better than the other 

machine with fewer resources. 

 

Input Sensor Number 
(N) 

Average Message Delay (s) 

 

Expected Generation 

Rate = 2s 

Expected Generation 

Rate = 6s 

Expected Generation 

Rate = 10s 

500 0.005412 0.016465 0.010333 

1000 0.00748 0.016077 0.018917 

1500 0.010654 0.018813 0.015203 

2000 0.024444 0.019979 0.023761 

2500 0.026832 0.018879 0.019488 

3000 0.139107 0.021722 0.026162 

 

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor 
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Figure 6.2.1.2.3 1: Graphical representation based on the results in  

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor for generation rate = 
2 s in machine with 16 cores 

 

Figure 6.2.1.2.3 2 : Graphical representation based on the results in  

Table 6.2.1.2.3 1: Experiment results for hosted machine cores factor for generation 
rate = 6 s in machine with 16 cores 

Figure 6.2.1.2.3 3: Graphical representation based on the results in Table 6.2.1.2.3 
1: Experiment results for hosted machine cores factor for generation rate = 10 s in 

machine with 16 cores 
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 The Table 6.2.1.2.3 1 depicts the results for the same experiments Sensor Quantity 

Factor, Generation Rate Factor on a more powerful machine, and the figures 6.2.1.2.3 

1, 6.2.1.2.3 2 , 6.2.1.2.3 3 its corresponding graphical representations based on the 

expected generation rate. 

 The performance overall is better than the machine with fewer cores, since the 

average delay is less in all the cases, and it is quite expected as the threads can now 

use more CPU cores, in comparison to the previous tested machine. The more cores 

a machine can have, it allows more parallel computing which implies more threads 

working at the same time (16 MAX in this scenario in comparison to the 2 in the 

previous). Having said that, with more threads using CPU at the same time, the 

waiting time will be less, hence the average delay will be also less.  

  Moving to the sensorsQuantity factor, it is needless to say that in this experiment 

also the sensors number is affecting the performance, since with 500 sensors the 

average delay for generation rate 2s is ~0.005s, while for 3000 sensors the average 

delay increases to ~0.13s (which is smaller than the 0.51s on the other machine). 

The last comment, regarding the generation rate, the behaviour is the same as the 

previous machine. For generation rate 6s the performance is better than generation 

rate 2s, and the difference between generation rate 6s and 10 s is not very obvious. 

  Overall, the results are better, but follow the same patterns as the previous 

machine. 

 

6.2.1.2.4 Sensors Quantity Limitation 
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  In this experiment we will try to stress the workload generator in order to find its 

limits. The first thing we would like to find is the limit of how many sensors can the 

system handle in relation to the cores of the hosted machine, until the system 

becomes unresponsive or does not function properly. Then, the other goal is to find a 

threshold of sensor quantity, based on the generation rate, that if the machine passes 

this threshold, then the delay would be not accepted. In order to find the threshold, 

we set the limit of accepted sensor message delay to be the same as the generation 

rate, since, if the system has more delay than this, it will build backpressure, because 

the requests will queue to the user application and the application won’t be able to 

process them in time. 

    The attempts will happen on 3 machines, one with 2 available cores, the other with 

8 available cores and finally a server with 16 cores. For each of the machines, we will 

stress the machine in order firstly to find its breaking point and then to find the 

threshold for the not accepted generation rate (using generation rates 2, 6, 10 

seconds). 

  Generation Rate 
2s 

Generation Rate 
6s 

Generation Rate 
10s 

Unresponsive Machine sensor limit 8000 8000 8000 

Delay exceeds the generation rate 
sensor limit 

4000 - - 

Table 6.2.1.2.4 1: Input Sensors number Performance Limitation on a machine with 2 
available cores 
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Generation Rate 
2s 

Generation Rate 
6s 

Generation Rate 
10s 

Unresponsive Machine sensor limit 10000 12000 12000 

Delay exceeds the generation rate 
sensor limit 

6500 - - 

Table 6.2.1.2.4 2:  Input Sensors number Performance Limitation on a machine with 8 
available  cores 

 

 
  

Generation Rate 
2s 

Generation Rate 
6s 

Generation Rate 
10s 

Unresponsive Machine sensor limit 30000 30000 30000 

Delay exceeds the generation rate 
sensor limit 

6000 15000 - 

Table 6.2.1.2.4 3: Input Sensors number Performance Limitation on a machine with 16 
available cores 

   

  On the tables 6.2.1.2.4 1, 6.2.1.2.4 2, 6.2.1.2.4 3 we see the thresholds for the 

experiments in the machines with available 2, 8 and 16 cores respectively. What we 

can see is that the only case that the delay exceeds the generation rate is for 

generation rate 2s, (with exception the machine with 16 cores that we were able to 

find the limit also for generations rate = 6s) since for bigger generation rates, the 

machine becomes unresponsive or the containers drop during our task to find the 

threshold of sensors that the delay exceeds the generation rate. More specifically, it 

is safe to assume that the maximum number of sensors that the system can emulate 

in order that the system performance don’t affect the users application evaluation is 

~6000 sensors for a decent machine (having more than 2 cores), while for machines 

with 2 cores the threshold is 4000 sensors. Also, for powerful machines having more 

than 8 cores, the threshold for generation rate bigger than 2s should be around 
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15000 sensors. The other thing that we wanted to find was the max number of 

sensors that the system can emulate without having functionality issues or errors 

based on the available cores of the hosted machine. If we have a look at the table, 

we see that the limits are more or less independent from the generation rate, and the 

sensor limit that the system can support starts from 8000 sensors in a weak machine 

with 2 cores, and grows until the huge number of 30000 sensors in a machine with 16 

cores. For a normal machine of 8 cores the limit of sensors that the system can 

satisfy without any issue is around 10000 sensors.  

 

6.3 Evaluation Results Summary and System 

limitations 
 

 

  After the experiments and the evaluation happened in the 2 previous sections, it is 

time to summarize the results, and give an overview of the usability and performance 

evaluation and the limitations of the system.  

  Firstly, the usability was evaluated based on the requirements we previously set that 

a workload generator should have, back to section 3.1. We did prove, that my 

workload generator could replay completely different applications’ exported sensor 

data from CSV datasets, that encourages the heterogeneity in sensor properties, 

sensor messages formats and even sensor output protocols. Then, we executed a 

use case with some sensors and some scenarios that could alter the data population 

during the data generation, and we confirmed the accuracy of the generated data 

values based on the input specifications. In addition, a whole sub chapter was 

dedicated to prove the extendibility of our system, demonstrating how easily the input 

and output interfaces can be implemented by any developer( section 5.2 ). 

Furthermore, we went a step deeper, in order to show our system usability, by 
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integrating it with a real fog emulator, and we illustrated how useful a workload 

generator is for testbeds or why it could be an essential brick for other systems like 

edge and fog simulators or emulators and finally how researchers or operators can 

also use it, not only to evaluate different hypothesis, but also to reveal hidden insight 

or do data analysis on it.  

  In addition to the usability, we were determined to find factors that could affect the 

system performance, which could be translated to the delay between sensor 

messages for the same sensor. Regarding the accuracy performance due to sensor 

delay, we first showed that the Sensor Quantity Factor could obviously affect the 

performance, since the increased number of sensors implies more threads in the host 

OS, which obviously don’t have unlimited resources to handle huge amounts of 

threads at the same time, mapping to the needed sensors. Beyond the influence of 

the input sensor number, the system worked quite decently in a weak machine with 2 

available cores, having just ~0.007s average sensor message delay, for input 500 

sensors, and generation rate 2s, and the delay is still small until the 3000 sensors, 

where it reaches the ~0.5s. After that experiment, we figured out that also the 

generation rate could alter the performance. Basically, the Generation Rate Factor 

between the sensor messages showed that with greater generation rate, the average 

sensor message delay potentially could be less, with the explanation that less context 

switches between the created threads inside the CPU will occur ( bigger message 

interval period implies less generated sensor messages). The last factor that was 

tested it was the Host Machine Resources Factor.  After replaying the same 

experiments (input sensor quantity along with different generation rates) in a more 

powerful server with 16 GB RAM and 16 cores, we saw the tremendous difference in 

the average sensor message delay. The average sensor message delay reached just 

the ~0.1 s for 500 input sensor messages and generation rate = 2s, being 5 times 

smaller than the delay found based on same metrics in a machine with 2 cores and 2 
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GB RAM. The delay was overall smaller than the weaker machine, but the patterns 

regarding the factors were quite the same. The more sensors the more the accuracy 

is dropping, and the bigger the generation rate, the smaller is the delay, but rather 

than that with a decent machine the performance downgrade, can’t seriously affect 

the users’ application evaluation. Having said that, finally we stressed the system to 

find its breaking point in terms of performance and generally its limits. After some 

vigorous stressing to 3 machines with different processing power, we found the limits 

when the machine’s performance doesn't affect the application regarding the delay. 

For generation rate 2s we found that the system can provide acceptable delay as 

long as the sensor input number is less than 4000 for a machine with few resources 

(2 cores) and around 6000 for decent machines providing CPU with more than 8 

cores. In addition, we found out that the system can safely emulate sensors less than 

8000, with this limit to reach even the 30000 as the machine power increases, before 

making the application unresponsive.  
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Chapter 7 

 

   Conclusion and future work 

 

 

7.1 Synopsis 

7.2 Conclusion 

7.3 Future work 

 

 

 

7.1 Synopsis 
 

 

  In an era that IoT applications are growing, and the deployment using fog computing 

is emerging, developers are facing various challenges in order to test and evaluate 

their IoT applications, hence an extra hand of help in the testing phase would be 

essential and appreciated. Having said that, IoT workload generators should not only 

provide the required data based on the users provided sensor models and properties, 

but also support heterogeneity in order to be used with plenty of developers in 

different scenarios, and make the process of integration with the fog easier. This 

implementation in comparison to the existing ones, encourages the heterogeneity 

found in IoT devices, in terms of different output protocols, different sensor message 

formats and data representations. On top of that, it can be easily extended, and 

finally using the provided sensor realization model, can comprehend different types of 

sensors, covering the gap of solutions that are tailored only to specific sensor types 
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or output protocols, lacking generality or cannot be easily extended. The 

implemented system, provides a real sensors comprehension model, along with an 

extendable, heterogenous IoT workload generator that can be also integrated with 

fog emulator and aims to help operators, academic researchers, users or developers 

to test, deploy, analyse and evaluate their IoT applications on fog, by making the 

procedure easier, convenient, and with less effort, cost and time wasted. 

 

  7.2 Conclusion 
 

 

  In this thesis, I demonstrate how a user can use the implemented workload 

generator, in order to produce data according to his needs, or replay recorder sensor 

data, straight to his application, regardless the output protocol or the sensor message 

formats, since the provided interfaces can be extended to cover the desired 

scenarios. The provided comprehensive model for describing the IoT devices, along 

with a scalable implementation of an IoT heterogeneous workload generator 

framework, can be used for users to experiment real world scenarios and evaluate 

their applications performance regardless of the application specific needs. The 

evaluation of the implementation demonstrates the accuracy performance for the 

exported sensor data, and the performance downgrade factors regarding the sensor 

message timing accuracy were extracted. It was proved that as bigger is the input 

sensor number, the greater will be the delay between interval time for sensor 

messages, and as greater is the declared frequency between sensor messages of 

the same sensor, the less will be the delay, due to less generated messages. A way 

to decrease the delay overall, is to use a hosted machine with more available 

processing resources (more cores), that with the support of parallel execution, 

minimizes the latency as it was observed and proved. In addition, we found the 
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limitations for our system. A single instance of our system can safely emulate until 

8000 sensors in a weak machine (2 cores) and around 30000 sensors in more 

powerful machines with 16 cores. Finally, we found that the system can emulate and 

handle up to 4000 sensors in order not to affect the performance for the user 

application in a machine with 2 cores, and this threshold increases to approximately 

6000 sensors in more decent machines with more than 8 cores, for generation rate 2 

seconds. Finally, we demonstrated how useful are workload generators in general, 

and to other systems as well, like edge or fog emulators. The integration of fog 

emulators with workload generators can provide better analytics and flexibility to the 

users, and users can extract more insights using this combination when testing their 

application before deploying it to the real world.  

 

 

  7.3 Future work 
 

 

  There are a lot of enhancements that this work can support, to make it even useful 

and widely used. The input and output interfaces, encouraging and yelling the 

implementation of more sensor prototypes, and more output protocols that current 

IoT devices support (for example CoAP output protocol). Mentioning the IoT devices 

heterogeneity, more advanced generation rates could be developed, to support more 

extreme values population methods through generation scenarios. Another 

enhancement that would make the system even more scalable, is the potential 

creation of a central control master, in order to support and monitor multiple instances 

of the workload generator and distribute the workload (or the sensors number) to 

make it support even more sensors.  
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Appendix   A 

 

 

A.1 Repository of Source Code for implementation 
 

The source code can be found in https://github.com/aioann01/IoT-workloadGenerator 

(personal) or through the UCY LINC LAB at https://github.com/UCY-LINC-

LAB/aioannou-ade2020-master-iot-workload-generator , along with sample files, and 

deployment docker-compose files. 
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