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Περίληψη

Ο στόχος αυτής της διατριβής είναι να μελετήσω την κοινωνική κινητικότητα χρησιμο-

ποιώντας καινοτόμες οικονομετρικές μεθόδους που παρέχουν τόσο θεωρητική όσο και

εμπειρική συμβολή στην υπάρχουσα βιβλιογραφία.

Στο Κεφάλαιο 1 μελετάται η μετάδοση της ευημερίας από γενιά σε γενιά, εστιάζοντας

στον ρόλο των επενδύσεων των γονιών στα παιδιά κατά τη διάρκεια της παιδικής ηλικίας

και της νεαρής ηλικίας, χρησιμοποιώντας δεδομένα από τη βάση δεδομένων Panel Study

of Income Dynamics (PSID). Σε αντίθεση με την πλειονότητα της βιβλιογραφίας η ο-

ποία επικεντρώνεται σε έναν μόνο αριθμό που συνοψίζει την κινητικότητα μεταξύ γενεών,

η ανάλυσή μας εστιάζει σε μια καμπύλη που καταγράφει τη διαγενεıακή τροχιά κατά τη

διάρκεια της πορείας ζωής ενός ατόμου. Χρησιμοποιούμε functional data analysis, μια

μέθοδο ανάλυσης δεδομένων που μας επιτρέπει να κατασκευάσουμε εκτιμήσεις των τροχι-

ών της κινητικότητας μεταξύ γενεών. Διαπιστώνουμε ότι οι γονικές επενδύσεις είναι πιο

παραγωγικές στην πρώιμη και όψιμη εφηβική ηλικία ή στην νεαρή ενηλικίωση, ένα εύρημα

το οποίο υποδεικνύει ότι η χρονική στιγμή κατά την οποία γίνονται επενδύσεις στην εκ-

παίδευση και το ανθρώπινο κεφάλαιο είναι πολύ σημαντική. Επιπλέον, υπάρχουν στοιχεία

ετερογένειας λόγω της κοινωνικοοικονομικής κατάστασης και της οικογενειακής δομής

των παιδιών. Τέλος, ο χρόνος κατά τον οποίο τα παιδιά που προέρχονται από δυσπραγο-

ύσες οικογένειες βιώνουν κάποιο σοκ (διαζύγιο, θάνατος ενός γονιού ή οικονομικό σοκ)

αποτελεί σημαντικό παράγοντα για την ανοδική τους κινητικότητα.

Στο Κεφάλαιο 2 αναπτύσσουμε μια νέα τάξη μοντέλων κοινωνικής αλληλεπίδρασης που

γενικεύουν το Spatial autoregressive model έτσι ώστε να επιτρέπει την παρουσία ετε-

ρογένειας με τη μορφή threshold effects. Αυτά τα μοντέλα μπορούν να εφαρμοστούν

για να εξηγήσουν μια σειρά μη γραμμικών φαινομένων όπως περιπτώσεις όπου τα άτο-

μα παραμένουν παγιδευμένα στη φτώχεια (poverty traps). Συγκεκριμένα, προτείνουμε

ένα γενικό μοντέλο Threshold Spatial Autoregressive (TSAR), το οποίο αποτελεί γε-

νίκευση τόσο τουMixed regressive, spatial autoregressive model όσο και του Spatial

autoregressive model και επιτρέπει την ύπαρξη ενδογενών κοινωνικών αλληλεπιδράσεων

ανά διαφορετικό καθεστώς. Αναπτύσσουμε μια μέθοδο GMM σε δύο βήματα για την

εκτίμηση των παραμέτρων του μοντέλου και δείχνουμε την συνέπεια και την ασυμπτωτι-

κή κανονικότητα των προτεινόμενων εκτιμητών. Τέλος, αξιολογούμε την απόδοση των

μεθόδων μας χρησιμοποιώντας Monte Carlo προσομοιώσεις.

Στο Κεφάλαιο 3 μελετάμε τη στατιστική συμπερασματολογία σχετικά με τις threshold

παλινδρομήσεις ενώ υπάρχει αβεβαιότητα ως προς ποιο είναι το πραγματικό μοντέλο. Αυτό

το πρόβλημα προκύπτει όταν κάποιος ενδιαφέρεται να ελέγξει την ύπαρξη μη γραμμικο-

τήτων τύπου threshold, αλλά υπάρχει αβεβαιότητα σχετικά με το σύνολο των μεταβλητών

που πρέπει να συμπεριληφθούν στο μοντέλο. Η τυπική προσέγγιση για την αντιμετώπι-
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ση της αβεβαιότητας του μοντέλου είναι η post − sıngle προσέγγιση, δηλαδή αρχικά η

επιλογή των μεταβλητών ελέγχου (για παράδειγμα μέσω κάποιων ελέγχων υποθέσων)

και στη συνέχεια η εξαγωγή συμπερασμάτων. Εντούτοις, η post − sıngle προσέγγιση

οδηγεί σε σοβαρές στρεβλώσεις στο μέγεθος και στην ισχύ ενός ελέγχου για ύπαρξη μη

γραμμικοτήτων τύπου threshold. Στο παρόν κεφάλαιο υιοθετούμε την post−double προ-
σέγγιση των Belloni, Chernozhukov, και Hansen (2011) στο πλαίσιο των threshold

παλινδρομήσεων και δείχνουμε ότι ο ελεγχος υποθέσων μετά τη χρήση αυτής της μεθόδου

λειτουργεί καλά τόσο σε μέγεθος όσο και σε ισχύ. Τέλος, αυτό το κεφάλαιο αξιολογεί

την απόδοση της προτεινόμενης μεθόδου μέσω προσομοίωσης Monte Carlo.
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Abstract

The broad aim of my thesis is to study social mobility using novel econometric methods

that provide both theoretical and empirical contributions in the existing literature.

In Chapter 1 we study the intergenerational transmission of well-being by focusing on

the role of trajectories of exposures during childhood and young adulthood using PSID

data. Our analysis shifts the focus from a single number that summarizes the inter-

generational mobility to a curve that captures the intergenerational trajectory over the

life-course of an individual. In doing so, we employ a functional data analysis approach

that allows us to construct estimates of trajectories of intergenerational mobility. We

find that parental investments are more productive in the early and late childhood or

young adulthood, highlighting the importance of the timing of human capital invest-

ments. Furthermore, we uncover evidence of heterogeneity due to socioeconomic status

and family structure that suggests that the timing of the shocks for the disadvantaged

children is an important factor for their upward mobility.

In Chapter 2 we develop a new class of social interaction models that generalize the

spatial autoregressive model to allow for threshold effects. These models can be applied

to explain a range of nonlinear phenomena such as poverty traps. In particular, we

propose a general Threshold Spatial Autoregressive (TSAR) Model, which nests both

mixed regressive, spatial autoregressive model as well as the spatial autoregressive

model and allows for regime specific endogenous as well as contextual effects. We

develop a two-step GMM method for the estimation of the threshold and regression

parameters and show consistency and asymptotic normality of the proposed estimators.

Finally, we assess the performance of our methods using a Monte Carlo simulation.

In Chapter 3 we study inference in threshold regressions in the presence of model

uncertainty. This problem arises when one is interested in testing for the presence

of threshold type nonlinearities but there exists uncertainty about the set of controls.

The standard approach to deal with model uncertainty is the post-single approach,

that is, select the control variables and then draw an inference. However, post-single

selection leads to severe size and power distortions. Following Belloni, Chernozhukov,

and Hansen (2011) this chapter uses a post-double selection procedure to construct a

threshold test that is valid under model uncertainty and performs well in both size and

power. Finally, this chapter evaluates the finite sample performance of the proposed

method via a Monte Carlo simulation.
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Introduction

Social mobility is one of the most important aspects of inequality and refers to how the

socio-economic position (outcomes and socioeconomic characteristics) of the children

as they grow-up to become adults relates to that of their parents. While social mobility

captures both the intragenerational and intergenerational aspects of the transmission

of socioeconomic status, the latter is of particular importance as it can be used to study

poverty traps. Despite the vast work, the literature has not provided satisfactory an-

swers to the questions of persistent inequality and poverty traps. My thesis addresses

various challenges by proposing three complementary approaches that focus on inter-

generational trajectories of income, threshold-type nonlinearities due to neighborhood

effects and model uncertainty in the context of threshold regressions.

Specifically, in the first chapter we study the intergenerational trajectories of the off-

springs. Chapter 2 develops an econometric model which allow us to study poverty

traps in the context of social networks and provides an empirical illustration. Chapter

3 studies inference on threshold regressions under model uncertainty. Chapter 2 has

given rise to a joint paper with Andros Kourtellos and Yiguo Sun while Chapters 1

and 3 have generated a number of joint papers with Andros Kourtellos.

In Chapter 1, we shift the focus from a single number that summarizes the intergen-

erational mobility to a curve that captures the intergenerational trajectory over the

life-course of an individual using functional data analysis. The standard empirical

approach in the economics literature on intergenerational mobility focuses on intergen-

erational elasticity of income (IGE). The IGE is the slope of the coefficient of a log-log

linear regression model of child’s permanent income on parent’s permanent income

controlling for some characteristics. Its magnitude determines the degree of intergen-

erational mobility; for example, a value close to 1 implies greater persistence of the

intergenerational transmission of income, suggesting lower mobility. However, there is

no apriori reason to believe that a simple average of observed income is a sufficient

statistic for permanent income since it ignores important mechanisms that affect off-

spring’s income. Several studies have investigated the importance of critical periods

in the human capital development of a child (Cunha and Heckman (2007) and Cunha,

1

ANTRI C
. K

ONSTANTIN
ID

I



Heckman, and Schennach (2010)), as well as the dynamic complementarity in invest-

ments in different periods and the interaction with the timing of borrowing constraints

(Caucutt and Lochner (2017)). In this chapter, we examine the role of the timing of

parental income during childhood and young adulthood years using annual or bian-

nual data from the Panel Study of Income Dynamics. Additionally, we investigate the

heterogeneity in the intergenerational trajectories of income due to the socioeconomic

status and structure of the family. We propose the intergenerational trajectories model

using functional regression and we estimate an intergenerational elasticity function,

which captures the intergenerational effect of the resources available to child at age t.

Overall, we find that the parental income in early and late childhood is important for

the outcomes of children as adults, while parental investments for young adulthood can

be at least as productive as the ones in early and late childhood. The socioeconomic

background of the parents affects the intergenerational trajectories of the offspring and

the timing of parental income shocks plays a key role in offsprings’ long run outcomes.

Finally, early family shocks seem to affect more parental investments, making them

less productive. This chapter contributes to the literature of intergenerational mobility

by providing a complementary approach that focuses on intergenerational trajectories

of income, taking into account for heterogeneity with respect to socioeconomic status

of parents and the effects of income and family ’shocks’.

In Chapter 2, motivated by our empirical work on intergenerational mobility, we pro-

pose a new class of social interaction models that generalize the Spatial Autoregression-

Mixed Regression to allow for threshold effects that capture the heterogeneity in the

endogenous social interaction effects. Threshold-type nonlinearity is suggested by sev-

eral economic theories such as models of income dynamics and poverty traps and more

generally by models that feature multiple equilibria due to incomplete markets, in-

creasing returns, complementarities, etc. One particular class of models that pro-

duces threshold-like nonlinearities are models of neighborhood effects. For example,

threshold-like behavior can arise in a model with strict stratification of neighborhoods

by income (Benabou (1996) and Durlauf (1996a,b)). We consider a two-step GMM

estimator and develop an asymptotic distribution theory for the GMM estimators of

the regression parameters as well as for the threshold parameter. While the first step

GMM estimator is consistent, it is not efficient. Hence, we propose a second step esti-

mator that aims at addressing this issue by obtaining a quasi-optimal estimator. Our

framework nests both the fixed and diminishing threshold effect, and the threshold

parameter estimate is normally distributed. We provide Monte Carlo simulations that

show the finite sample performance of our estimators. Moreover, we propose a test for

the threshold effect which features the Davies problem (that the threshold parameter is

not identified under the null). The econometric methodology developed in this chapter

is applicable to many interesting phenomena such as poverty traps. This chapter con-

tributes to the literature of Spatial Autoregression-Mixed Regression by considering
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threshold-type nonlinearities.

Chapter 3 addresses the issue of model uncertainty with respect to the variables se-

lection in the context of threshold regressions. In many economic contexts, applied

economists have little guidance on the variables that should be included in the model,

mainly due to the fact that the validity of one theory does not logically exclude other

mechanisms from also being relevant. The usual approach is to select variables using

a test for the statistical significance or selection criteria or a shrinkage and selection

method in high dimensional framework and then conduct inference as if the real model

was chosen. However, the choice of the variables affects the inference about the thresh-

old. We are extending the post-double selection method of Belloni, Chernozhukov,

and Hansen (2011), to the threshold regressions framework. The ideas of post-double

selection method is based on the partialling out technique of Frisch-Waugh-Lovell in

the linear setting, the Neyman’s C(α) test in the nonlinear setting (Neyman (1979)),

and Robinson (1988) in the semi-parametric setting. First, it is shown that the stan-

dard post-single selection methods have adverse effects in the size and power of the

bootstrap-based threshold test proposed by Hansen (1996). Then, we proceed in show-

ing how the proposed post-double selection procedure restores the distortion of the size

and power of the threshold test. Monte Carlo simulations suggest that post-double se-

lection restores the size and the power of the relevant bootstrap threshold test. This

chapter contributes to the literature of the threshold regressions framework by propos-

ing a post-double selection procedure to construct a threshold test that is valid under

model uncertainty. This methodology can be applied to a range of interesting applica-

tions, in both empirical microeconomics and macroeconomics (e.g., intergenerational

mobility, child development literature, and cross-country growth studies).

3

ANTRI C
. K

ONSTANTIN
ID

I



Chapter 1

Intergenerational Trajectories

1.1 Introduction

The standard empirical approach in the economics literature on intergenerational mo-

bility focuses on intergenerational elasticity of income (IGE) which is the slope of the

coefficient of a linear regression model of child’s permanent income on parent’s perma-

nent income controlling for some characteristics. The magnitude of the IGE coefficient

determines the degree of intergenerational mobility. An IGE close to zero implies

greater mobility while an IGE value close to one implies higher degree of persistence,

that is, immobility across generations. While the IGE model is a statistical model, un-

der certain assumptions the linear IGE model can be interpreted as a behavioral model,

which is implied by the classical theory of family income or investment models; see, for

example, Becker and Tomes (1979). Broadly speaking these models focus on the inter-

generational transmission mechanism of income, which stems from the dependence of

education investments in parental income. This model is often augmented with credit

constraints that capture the idea that parents cannot borrow against children’s future

income because they cannot provide credible repayment assurances (Becker and Tomes

(1986) and Loury (1981)).

One key aspect in the implementation of the IGE model is the measurement of per-

manent income which is latent. The standard empirical practice measures permanent

income as an average over several years. The idea is that transitory components av-

erage out to zero if a large enough time horizon is used. However, there is no reason

to assume that transitory components average out to zero over the lifetime of an indi-

vidual. For example, if the variance of the transitory component is not constant over

the life cycle of the individual, then the age at which father’s earnings are measured
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is also important.1 More importantly, using a simple average as a proxy of perma-

nent income completely ignores the importance of critical and sensitive periods in the

development of a child. Cunha and Heckman (2007) and Cunha, Heckman, and Schen-

nach (2010)) emphasize the importance of the timing of human capital investments

and dynamic complementarity in investments. In fact the dynamic complementarity

can also interact with the timing of borrowing constraints in subtle ways (Caucutt

and Lochner (2017)). Carneiro and Heckman (2003) argue, the inability of children

to borrow money to buy themselves out of family and neighborhood disadvantage is a

kind of market failure that plays a critical role in their labor market outcomes. The

importance of timing is not limited to family investments but more generally extends

to cover the impact of prenatal and early childhood environments on long run outcomes

(Almond and Currie (2011)). Heckman and Mosso (2014) summarize the evidence on

the divergence in skills from early childhood and how these gaps play a decisive role

in determining the life course social and economic outcomes of an individual. These

reasons suggest that the standard IGE approach that proxies the permanent income

with a simple average ignores important intergenerational mechanisms at work.2

In this chapter we take a different approach. We argue that the notion of permanent

income as it was conceptualized by Friedman (1957) was not statistical but rather be-

havioral. In fact, broadly defined, the permanent component of income can be viewed

as the effect of the factors that the individual perceives as the determinants of her

life-time nonhuman and human wealth including personal attributes (abilities, per-

sonality, experience, occupation), family characteristics (e.g., marital status), location

(e.g., schools, economic activity, social capital). Hence, there is no apriori reason to

believe that a simple average of observed income is a sufficient statistic for permanent

income, which in turn can be used to measure intergenerational mobility. Therefore,

we treat the annual income data as discrete signals of a latent income process, which

allows us to measure mobility by intergenerational income trajectories over the ages of

exposure of children and young adults. Put differently, we shift the focus of the analysis

from scalars to curves that map the trajectory of parent’s outcomes to the trajectory

of child’s outcomes. In doing so, we employ a functional regression approach that

treats the observations as “snapshots” of an underlying latent curve to uncover trends

and accelerations in the intergenerational trajectories that may be revelatory of the

importance of the timing of shocks over the entire lifetime of an individual.

Remarkably, the literature has focused on the linear IGE model and much of the

discussion is limited to minimizing the problems of attenuation and life-cycle biases.3

1Mazumder (2005, 2015) argue that these biases can be addressed by constructing long time aver-
ages centered at age 40.

2These income shocks are generally endogenous due to parents’ choices but this issue is beyond
the scope of this paper.

3For example, Mazumder (2015) provides a systematic analysis of the two biases.
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A notable exception is Carneiro, Italo, Salvanes, and Tominey (2018) who examine the

role of the timing of parental income during their childhood years using administrative

data from Norway. In particular, they estimate semi-parametric regressions of human

capital outcomes on the discounted household income for the years when the child was

between 0 and 17 years that proxies the permanent income, and two other measures

of income at different stages of childhood that correspond to middle (ages 6-11) and

late (ages 12-17). They find that when households income is shifted from middle

childhood to either the early years or later childhood, the child can achieve optimal

outcomes. Our analysis generalizes their work by considering labor market outcomes of

the offspring using annual and bi-annual data that extend the age of exposure to include

transition to adulthood (18-24) using a functional data approach. In the same spirit,

Chausse, Chen, and Couch (2015) develop a multivariate functional regression method

and provide a simple illustration of its usefulness in the context of intergenerational

mobility. Yet, both of these analyses stop short from providing a full understanding of

the intergenerational impact of the timing of shocks.

This paper builds on the aforementioned line of work by having the following three

contributions. First, we examine the role of the timing of parental income during their

childhood years in the US data based on PSID data. Second, we employ a functional

data approach that allows the use of annual or bi-annual data and extend the time-

span to include young adulthood. In contrast, the analysis by Carneiro, Italo, Salvanes,

and Tominey (2018) is limited to three aggregate periods during childhood. Third, we

investigate the heterogeneity in the intergenerational trajectories of income due to the

socioeconomic status and structure of the family. There are several reasons why we

should expect such heterogeneity in the intergenerational trajectories. One reason is

the presence of intergenerational credit constraints by which we mean the inability of

parents to borrow against the future income of offspring in order to invest in education

(e.g., Loury (1981) and Galor and Zeira (1993), Han and Mulligan (2001)). Another

possibility is the presence of intragenenational Aiyagari-type credit constraints that in-

corporate endogenous labor supply, human capital accumulation, and various psychic

costs (Hai and Heckman (2017)). A third possibility is the presence of neighborhood ef-

fects that emphasize the importance of social factors in the intergenerational dynamics

(Benabou (1996) and Durlauf (1996a,b)).

Our findings, based on intergenerational trajectories, suggest a richer and more nuanced

characterization of the intergenerational mobility process than the standard empirical

practice which is based on the IGE coefficient. In particular, not only we find that

parental income in early and late childhood is important for their long run outcomes

but also, parental income for young adulthood can be at least as productive as the

ones in early and late childhood. More importantly, we provide ample of evidence that

the shape of intergenerational trajectories may crucially depend on the socioeconomic
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background of the parents and family structure. Finally, we show that the shape of

these trajectories is also sensitive to the timing of the shocks. Specifically, middle

income and non-intact families exhibit higher sensitivity to shocks. Our results can be

interpreted as suggestive evidence for the existence of complementarities in investments

in human capital across periods in the spirit of Cunha, Heckman, and Schennach (2010).

The paper is organized as follows. Section 1.2 describes our data. Section 1.3 reviews

the standard empirical approach that focuses on the linear IGE model. Section 1.4

presents the functional data approach and section 1.5 presents our results. Section 1.6

discusses future work and section 1.7 concludes and discusses future work.

1.2 Data

The data are drawn from the Panel Study of Income Dynamics (PSID). PSID is a

longitudinal household survey starting in 1968 with a nationally representative sample

of over 18,000 individuals living in 5,000 families in the United States. We use the

Survey Research Center, which is nationally representative. Adult children are linked

to parents regardless of whether the parents are biological or adoptive. Specifically, we

use as parent’s income the income of the person that the child is living with at each

age.

In our empirical analysis we investigate two age of exposures sample periods: a shorter

sample period provides the annual incomes of parents when their children were 1 to 18

years old and a longer sample period extends the coverage to 24 years old but sampled

biannually.4 Henceforth, we will refer to these sample as short sample and long sample,

respectively. In the short sample the children were born between 1968 to 1979 while in

the long sample they were born between 1968 to 1981. The need for considering two

samples is due to the unavailability of data for older children. The effective sample

size shrinks from 580 in the case of short sample to 212 in the case of the long sample.

The years 19-24 are expected to capture parental investments and timing of events

related to college education and other transfers during the transition of adulthood of

their offsprings.5 In that case, the size increases to 887 in short sample and to 685 in

the long sample. Another reason we sample income biannual is the fact that after 1997

the survey is conducted biannually in PSID. As our baseline, we consider the annual

short sample and the biannual long sample. When we consider heterogeneity, we use

biannual short and long sample.

4When income is sampled biannually, we take the average of the discounted income by the age of
child.

5We trimmed observations both at the bottom and at the top by 3% to account for outliers.
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Child’s income as an adult is measured by labor income as a 3-year average centered

at 35 years old. Labor income includes labor part of farm income and business income,

wages, bonuses, overtime, commissions, professional practice, labor part of income from

roomers and boarders or business income; the use of child’s labor income as opposed

to child’s family income emphasizes our focus on human capital investment and direct

labor market outcomes and avoids possible implications of assortative mating (e.g.,

Mazumder (2005), Mazumder (2015) and Landers and Heckman (2016)).

Parent’s income when the child is at age a is measured by family income discounted

with the age of the child defined as the taxable income of all earners in the family,

from all sources, and transfer payments in order to capture all the resources available

for parental investments on the child. The transfer payments include amount of aid to

dependent children, aid to dependent children with unemployed fathers (ADC, AFDC)

for the Head and Wife and for the entire family, income of Head and Wife for other

Welfare, from Social Security, other retirement pay, pensions or annuities, from un-

employment, or workmen’s compensation, from alimony or child support, help from

relatives, head’s income from other sources, other transfer income of wife and transfer

income from others in family. The ages of the parents vary from the ages of 16 to

70. For example, in the case of the short sample, when the child is at age 1 parents

are on average 27 years old and when the child is at age 18 parents are on average

44 years old. All income measures are converted to 2011 dollars using the Consumer

Price Index and adjusted for family size, by dividing with the square root of the family

size. Finally, we compute the logarithm of both parents’ income and child’s average

income.6.

In measuring permanent income one has to deal with two challenges. Single-year

measures of parental incomes are subject to transitory variations and measurement

error, that may result to downward bias. This problem is known as attenuation bias.

A typical method to address this problem is to average parents’ income over several

years. Solon (1992) argued that by using a 5-year average of income instead of a

single year of income the bias shrinks substantially. Mazumder (2005) argued that

even using a 5-year average may lead to a bias because the transitory variance in

earnings is highly persistent. A second challenge is the lifecycle bias, which refers to

the timing of measurement of income, that is, the income will not be representative of

the individual’s life time income if it is measured at either too young or too old ages.

This bias can occur for at least two reasons (Mazumder (2015)). First, individuals

with higher permanent income often have steeper income distributions that those with

lower income and second, transitory fluctuations typically are much higher when the

individuals are either too young or too old. Haider and Solon (2006) and Mazumder

(2015) show this bias is minimized around 40.

6Negative or zero parental income values are set to one, while zero labor incomes are set to missing.
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Our focus on the age of exposures shifts the focus from measurement issues to modeling

issues but also imposes restrictions on how we address the above challenges. In par-

ticular, in this chapter we are interested in modeling the intergenerational trajectories

of income using annual income observations for up to 24 years for the parents and 3

years for the children centered at the age of 35.7 As we discuss below our method

explicitly takes into account the fact that these observations are measured with error.

In addition to the annual income we also use the annual stock of income defined as the

annual cumulative income of an individual. This measure reflects the idea that if tim-

ing matters then parental investments can be better captured by the stock of human

and asset wealth at any point of time. In fact the idea of using cumulative income and

inputs is often used in the human capital literature (e.g., Bernal and Keane (2011)).

There is also a statistical reason for using the stock of income variable. This variable

is intrinsically continuous at any point of time and hence, it is expected to have more

information than the annual income.

Beyond income we use offspring’s and father’s years of schooling and educational at-

tainment. Educational attainment is measured by years of completed schooling for

High School Graduates and College Graduates. For family structure we consider intact

and non-intact families. An intact family is defined as a family for which both parents

stayed together for the entire childhood of the offspring until the age of 18 or until

the offspring left home to create her own household; whichever occurs earlier. A non-

intact family is then defined as all the other types of families including blended and

single-parent families.8 Finally, as an additional offspring’s outcome we use complete

years of education. We include individuals that are at least 25 years old, in an age that

typically educational attainment is measured.

Table 1.1-Panel A presents descriptive statistics for the baseline short and long sample

when we consider permanent labor outcome as dependent variable. Figure 1.1 presents

the income profiles for parent’s income for the baseline samples. They show that

parent’s income increases until the child is around 20 years old and then stabilizes

with a small decrease at age 24. Table 1.1-Panel B presents descriptive statistics for

the baseline short and long sample when we consider father’s years of schooling as

an additional regressor. Table 1.1-Panel C presents descriptive statistics when the

offspring’s outcome is completed years of schooling. In that case, in the short sample

we have 820 individuals who were born between 1968 to 1979 when we consider annual

parental incomes. When we consider biannual samples, the size increases to 1907 in

short sample and to 1392 in the long sample and the individuals were born between

1968 to 1988.

7We have chosen a three-year average in order to maximize our sample; a five-year average was
also considered but the sample size would not allow us to make a comprehensive analysis.

8Unfortunately our small sample size does not allow us to distinguish among the various types of
shocks that generate non-intact families such as death in the family, divorce, child out-of-wedlock, etc.
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1.3 The standard approach

The standard empirical model focuses on intergenerational elasticity of income (IGE)

given by the coefficient β in the following linear regression model,

yo,i = α + βyp,i + γ′xi + ei, (1.1)

where yo,i and yp,i denote the logarithms of the permanent incomes of the offspring

and parent, respectively. These permanent incomes are proxied by simple averages,

yo,i = 1
S

∑S
s=1 yo,i,s and yp,i = 1

T

∑T
t=1 yp,i,t, where yo,i,s = log(Yi,t) and yp,i,t = log((1 +

r)−tYp,i,t), respectively.9 xi is a kx × 1 vector of other controls, typically involving age

and age-squared that account for life cycle considerations when measuring permanent

income. ei is the regression error. As discussed in the introduction the magnitude of

the IGE coefficient β determines the degree of intergenerational mobility. An IGE close

to zero implies greater mobility while an IGE value close to one implies higher degree

of immobility across generations.

One problem with the IGE model (1.1) is that it ignores the parental influence during

the ages of exposure of children and young adults. A naive generalization of (1.1) that

allows for such exposure effects is given by

yo,i = α +
T∑
t=1

βtyp,i,t + γ′xi + ei, (1.2)

This model embodies effects during the ages of exposures when β1 = ... = βT 6= 0.

This hypotheses can be tested using a joint Wald test.10 Alternatively, under the

normalization
∑T

t=1 βt = 1 equation (1.2) can be rewritten as the sum of average

income and future higher order differences

yo,i = α + βyp,i + β

(
T−1∑
j=1

β∗T−(j−1)∆
T−jyp,i,T−(j−1)

)
+ γ′xi + ei (1.3)

where
∑T−1

j=1 β
∗
T−(j−1) = 0. This equation implies that the traditional linear IGE re-

gression which only conditions on a proxy of permanent income will result in omitted

variable bias when future higher order differences are correlated with the proxy of

permanent income.11

9While the discounting is typically ignored in the literature, we use it for it is closer to the theoretical
notion of permanent income. We assume r = 0.03.

10Note that (1.2) and the standard IGE non-nested are not nested due to the logarithmic transfor-

mation. For robustness purposes we also explore the model yo,i = α+ βlog
(∑T

t=1 βt(1 + r)−tYi,t

)
+

γ′xi + ei. Under H0 : β1 = ... = βT = 1/T we obtain the standard IGE.
11Note that this formulation as well as the DWH test applied to equation (1.4) can be viewed as a

special case of Andreou, Ghysels, and Kourtellos (2010) who studied mixed frequency models when a
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Table (1.2) provides evidence that the standard IGE model that emphasizes the per-

manent income as the driving force of long run outcomes and ignores the childrearing

and developmental trajectories is not supported by the data. In particular, viewing the

problem of testing for the standard IGE model as a problem of omitted variables we

can view the annual income variables and their higher order differences as instrumental

variables zi ∈ {{yp,i,j}Tj=1, {∆T−jyp,i,T−(j−1)}Tj=1}. We can then test for the null of no

omitted variable bias (i.e., standard IGE model) by testing for H0 : δ = 0 using a

standard Durbin-Wu-Hausman (DWH) test in the auxiliary regression

yo,i = γ0 + γ1yp,i + δv̂i + u∗i , (1.4)

where v̂i = yp,i − π′zi. Table (1.2) provides p-values for the above LM test using

both the short and long sample and two kinds of instruments. Columns 2 and 3 use

as instrumental variables the annual parental income variables at age j one-at-a-time

while Columns 4 and 5 use as instrumental variables the cumulative income up to age

j,
∑j

k=1 yp,i,j. We see that there is ample of evidence that the IGE model (1.1) is not

supported by the data. In particular, the evidence against the IGE model is strongest

for the case of stock and especially for the ages of middle and late childhood.12

Next, we propose a methodology that shifts the focus from IGE coefficients to intergen-

erational mobility curves that can capture the life course trajectories of an individual.

1.4 A functional approach

In this section we propose to study patterns of intergenerational mobility using a

functional data approach that explicitly model trajectories. Traditional methods are

limited in their capacity to capture the dynamics of functions. For example, if we

want to study how the annual changes in family resources predict changes in offspring

outcomes the linear IGE model (1.1) is unsuitable. The naive model (1.2) is also

problematic because it does not model the trajectories as curves but rather as distinct

parameter estimates rendering the interpretation of the results difficult. As a result

this approach is subject to the incidental parameter problem since the parameters of

the model increase with the number of years of exposure.

The idea of functional data analysis is to treat data as discrete measurements of an

underlying continuous smooth stochastic L2 process. Note that functional data are in-

trinsically infinite-dimensional and hence, subject to the curse of dimensionality. This

high-frequency variable is used to predict a low-frequency variable.
12While the results that include age effects are a bit weaker they do not alter the main conclusion

that the linear IGE is not supported by the data. Those results are available upon request.
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challenge is overcome by assuming smoothness such as the existence of continuous sec-

ond derivatives, which is in fact a regularization assumption as it allows measurements

at neighboring time points to be combined. Smoothing also allows handling missing

values, sparse longitudinal data, and for measurement error by exploiting the repeated

measurements for each individuals.

Specifically, the intergenerational income data are treated as n triplets (yo,j, yp,j, tj),

j = 1, ..., n, where tj lies in a bounded interval τ . yo,ij is assumed to be the ith signal of

a smooth latent function yo(·) so that yoj = yo(·) + uoj, where yo(·) is random function

and uj ∼ i.i.d zero mean error. yp,ij can be defined likewise.13 Ramsay and Silverman

(1997) provide an excellent introduction on functional data analysis. Morris (2015)

and Wang, Chiou, and Muller (2016) provide more recent surveys of estimation issues

and applications of this approach.

In particular, using functional data analysis we can generalize the linear IGE model

(1.1) to the intergenerational trajectories model

yo,i = α +

∫
τ

β(t)yp,i(t)dt+ γ′xi + ei, (1.5)

where β(t) is the intergenerational elasticity function, which captures the intergenera-

tional effect of the resources available to child at age t.

Furthermore, functional regression analysis allows for both functional offspring out-

comes (dependent variable) and functional parental outcomes (explanatory variables)

to vary over periods in highly nonlinear way allowing for measurement errors. Thus,

unlike the naive model (1.2), the functional regression approach can capture how intra-

and inter-offspring and parental outcomes coevolve. Assuming we can observe child’s

income over multiple periods we can also allow for a functional dependent variable

using a function-on-function functional linear regression

yo,i(s) = α(s) +

∫
τ

β(t, s)yp,i(t)dt+ γ′xi + ei(s) (1.6)

The above intergenerational trajectories models can be generalized in a number of

ways that can provide more insights about the patterns of intergenerational mobility

by accounting for both static and dynamic heterogeneity. We discuss these extensions

after we present our baseline results.

13More generally, the functions are not required to have the same set of argument values for all
replications of each function, i = 1, ..., n, that is, (yij , tij), j = 1, ..., ni with yij = yi(·) + uij .
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1.4.1 Estimation issues

Estimation of the functional regression model (1.5) is intrinsically an infinite dimen-

sional problem. Typically, estimation is based on series estimation methods using

splines or Fourier or principal components. Here we opt to use B-spline basis due to

their computational speed and stability given the nature of our data. In particular,

we apply smoothing both on the functional coefficients β(t) as well as the regressor,

in our baseline case, the parent’s income yp,i(t). Smoothing β(t) reduces collinearity

in the regression, and makes the estimates more efficient and more interpretable while

smoothing yp,i(t) reduces the measurement error of yp,i(t) and allows for sparse and

irregular data.

More precisely, let {φ1(t), φ2(t), ...} be a sequence of B-spline basis functions in L2

space defined over a time interval τ = [t0, tT ]. We assume that β(t) and yp,i(t) are

approximated by the following B-spline basis functions

β(t) =

Kβ∑
k=1

bkφk(t) = b′φKβ(t) (1.7)

and

yp,i(t) =
L∑
l=1

ci,lφl(t) = c′iφL(t) (1.8)

where φKβ(t) = (φ1(t), . . . , φKβ(t)(t))′ and φL(t) = (φ1(t), . . . , φL(t)(t))′ are Kβ×1 and

L× 1 vectors of B-spline basis functions, respectively. bi and ci are the corresponding

vectors of B-spline coefficients.

Given that B-splines bases are not necessarily orthonormal define Jkl =
∫
τ
φk(t)φl(t)

′dt.

Then we can estimate (1.5) by least squares.

Sn(α, b, γ) =
n∑
i

yo,i − α− Kβ∑
k=1

L∑
l=1

ci,lJklbk − γ′xi

2

. (1.9)

Regularization is imposed by choosing the number of basis functions Kβ and L which

should depend on the sample size. We choose the number of basis functions using the

generalized cross-validation (GCV) method, which is more reliable than cross-validation

which tends to under-smooth.14 Finally, we provide inference using bootstrap confi-

14We also explored an estimation method regularization with a roughness penalty (e.g., Cardot,
Ferraty, and Sarda (2003)) based on the second derivative that aim at avoiding excessive local
roughness with similar findings. To this end, the penalized LS criterion is given by S∗n(α, b, γ, λ) =
Sn(α, b, γ) + λ

∫
τ
(D2β(t))2dt where D2 is a linear differential operator and λ > 0 is a smoothing pa-

rameter that controls the trade-off between roughness and smoothness chosen by cross-validation. Our
investigations did not yield substantially different results at least in the set of models we investigated
so far.
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dence intervals using 1000 replications.

1.5 Results

1.5.1 Income trajectories

We begin our analysis by presenting our baseline findings. Figures 1.2(a)-(b) show the

estimates of intergenerational elasticity function β̂(t) of model (1.5) for both the short

and long samples.15 These estimates are plotted together with 90% wild bootstrap

confidence intervals. The short sample covers three childhood periods of annual parent’s

income: early (1-6), middle (6-12), and late (12-18). The long sample extends the

period to include the transition to young adulthood (18-24) with the difference that

parent’s income is sampled biannually.16

In general, our results show that the intergenerational elasticity function exhibits evi-

dence of temporal heterogeneity (nonlinear pattern) for the ages of exposure following

a subtle U-shape. This heterogeneity is strongest and with significant effects mainly

for the long sample. Nevertheless, the prevailing pattern in Figures 1.2(a)-(b) is that

parent’s income is more productive in the early and late childhood. This finding is

consistent with the finding of Carneiro, Italo, Salvanes, and Tominey (2018) who find

that parent’s income in the early and late childhood years is more important for the

offspring’s educational outcome than parent’s income in the middle years. Our results

show that the importance of the late childhood carries over into young adulthood.17

While we find that the importance of early years is stronger in the long sample than

the short sample, in both cases β̂(t) appears to be decreasing and reaches its minimum

in the middle childhood. This evidence supports the findings of the literature on the

human capital formation and the evolution of skills that emphasizes the importance

of early human capital investments (e.g., Cunha and Heckman (2007) and Cunha,

Heckman, and Schennach (2010)).

More insights about the life course dynamics can be obtained by considering the stock

of income that can be used to generate human capital and wealth. Recall that an

individual generates income via the labor market based on her level of human capital.

Also note that at any given age throughout childhood and young adulthood, offspring’s

15We present our results without controlling for the age of parents since in general, ages are not
significant and controlling for them does not change our main results, substantively.

16For comparison purposes, Figure A1 of the Appendix shows the corresponding figures for the
bi-annual short sample.

17Figure A2 of the Appendix investigates the impact of the added individuals in the long sample by
plotting the trajectories until the age of 18 for both analysis 1 to 18 (upper panel) and 1 to 24 (upper
panel) and keeping the same number of individuals.
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human capital is a partial weighted sum of all current and past parent’s of some func-

tion of human capital investments. If parent’s annual income determines the human

capital investments at any given age then we should expect that offspring’s income is

determined by the trajectory of the cumulative parent’s income of parents

yo,i = α +

∫
τ

β(t)ỹp,i(t)dt+ γ′xi + ei, (1.10)

where ỹp,i(t) =
∑t

j=0 yp,i,j. β(t) captures the intergenerational trajectory of exposure

to the stock of the resources available to child at age t. If the life-time human cap-

ital and wealth of the parents is the only thing that matters then we would expect

that only the stock of the last period to matter. We also compute the partial effect

∂yo,i/∂ỹp,i(t) =
∫ T
t
β(j)d(j) which captures the current as well as all future effects of

the age of exposures effects.

Figures 1.2 (c)-(d) present the corresponding findings based on equation (1.10). We

see substantial temporal variation hovering around zero with an expanding variance

for both samples. Interestingly, ỹp,i exhibits a strong upward trend for both short and

long samples in their corresponding latter periods. This upward trend starts after the

age of 15 for the short sample and after the age of 21 for the long sample.

Overall, we find that the parental income in early and late childhood is important for

the outcomes of children as adults, consistent with the findings of Carneiro, Italo, Sal-

vanes, and Tominey (2018), the literature on human capital development and comple-

mentarities in the human capital production function Cunha and Heckman (2007) and

Cunha, Heckman, and Schennach (2010)), and income uncertainty and partial insur-

ance (e.g., Blundell, Pistaferri, and Preston (2008)). Moreover, we find that parental

investments for young adulthood can be at least as productive as the ones in early

and late childhood. These findings provide evidence that income shocks that affect

parental human capital investments in children can in turn affect their long run labor

market outcomes. One interpretation of our findings is that the presence of income

uncertainty and partial insurance can give rise to environments where investments in

children respond to parental income shocks. Alternatively, in the presence of dynamic

complementarities parents may find it optimal to shift resources from middle to early

and late childhood as well as young adulthood.

1.5.2 Heterogeneity

In this section we investigate the heterogeneity of the trajectories with respect to

parental income, parental education, and family structure. This type of analysis will

reveal whether the age of exposure for long run outcomes matters differentially for dif-
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ferent types of family environments. As discussed in the introduction this heterogeneity

may be manifestation of borrowing constraints or neighborhood effects.

Specifically, we consider threshold-type regressions with pre-specified regimes (sub-

samples)

yo,i =

q∑
j

(
αj +

∫
τ

βj(t)yp,i(t)dt+ γ′jxi

)
I(zi = j) + ei, (1.11)

where I(zi = j) is an indicator function that takes the value 1 if zi = j and otherwise

is 0.18 Equation (1.11) partitions the baseline model (1.5) into q-disjoint regimes. We

mainly focus on the results for the long sample but we also include in the Appendix

results based on the short sample.

1.5.2.1 Parent’s permanent income

We start by describing our results in Figures 1.4, 1.5, and 1.6 from sub-sample func-

tional regressions where the regimes are determined by parent’s permanent income

quartiles using the long sample. Generally, the results show that individuals born to

parents from different socioeconomic background have different trajectories. In par-

ticular, we highlight the following findings. First, Figure 1.4(a) and 1.5(a) show that

children born to disadvantaged parents experience substantial negative exposure effects

up until age 3 and profiles with very steep positive gradients. This finding is in contrast

with how the trajectories of other quartiles behave during early childhood which start

at positive values and follow decreasing trajectory. The substantial negative exposure

effects in middle childhood suggest that disadvantaged parents would choose to transfer

resources to late childhood since those investments are more productive. What is more

striking is their trajectory during young adulthood which also exhibits a decreasing

pattern as opposed to the other quartiles. Figure 1.6 illustrates this sharp difference

in the partial effects of the trajectory of the stock of income. One possible justification

of these results is the impossibility of parents to borrow against their child’s future

earnings. In this case parental wealth is a binding constraint and thus children coming

from constrained families will have lower early and late investments (Becker and Tomes

(1986)).

Second, the trajectory of the most advantaged group in Figure 1.5(d) appears to be

the reflection of Figure 1.5(a) over the age-axis. There are substantial positive effects

in early, middle, and young adulthood periods. Interestingly, the uptick during young

adulthood becomes stronger by parental income suggesting the importance of parental

18One problem with this analysis is that it assumes an apiori partition of the sample. In other
words, the classification is not data driven. A natural generalization is to use classification methods
such as functional regression trees methods or functional threshold regression.

16

ANTRI C
. K

ONSTANTIN
ID

I



transfers for university education, which in turn will determine the labor market out-

comes of the child. Figures 1.5(d) and Figure 1.3(c) clearly documents the importance

of the stock of income during young adulthood.

Third, while the trajectories of the third quartile in Figure 1.4(c) exhibit higher uncer-

tainty, it is worth noting that on average the third quartile exhibits higher persistence.

This finding is consistent with Durlauf, Kourtellos, and Tan (2017) who find evidence

of more persistence in earnings outcomes for members of middle income families.

Finally, we investigate the importance of the timing of family disadvantage by mea-

suring the quartiles of permanent income using information only from early or late

childhood. The relative impact of the timing of disadvantage can be attributed to the

relative impact borrowing constraints or family shocks that change the family struc-

ture occurred in the early childhood rather than late childhood or young adulthood.

Figures 1.7 and 1.8 show the intergenerational income and stock trajectories between

early and late for the four quartiles, respectively. Figure 1.9 superimposes the partial

effects for the four quartiles.19 In general, as expected we find that the trajectories in

the bottom of the income distribution are the least sensitive to the timing of the shock.

Interestingly, the trajectories of the third quartile exhibit the most sensitivity. For

instance, Figure 1.9(c) shows that trajectories of the partial effects of income stocks

are much stronger for the ones whose parents experience late shock.

In sum, the results show that the socioeconomic background of the parents affect

the intergenerational trajectories of the offspring. Children coming from the most

disadvantaged background exhibit very different trajectories than other groups. There

are considerable negative effects during middle childhood that indicates that parents

choose to move investments from middle to late childhood since those investments are

more productive. A possible explanation for these findings, is the existence of binding

credit constraints. For children of the most advantaged parents, there are notable

positive effects in early, middle, and early adulthood periods; especially in the early

adulthood. Furthermore, consistent with the findings of Durlauf, Kourtellos, and Tan

(2017), we find evidence of of relatively higher immobility in the middle of the income

distribution rather than for the relatively disadvantaged and relatively affluent. More

importantly, however, the degree of immobility is not only determined by socioeconomic

class but also by the timing of parental income shocks.

19Figures A7 and A8 of the Appendix provide the corresponding figures for the short sample.
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1.5.2.2 Father’s education

One possibility is that higher levels of parental permanent income are associated with

higher levels of parental education. Hence, we investigate heterogeneity with respect

to the education level of father.

Figures 1.10, 1.11, and 1.12 present our results on intergenerational trajectories when

we split the sample based on whether fathers graduated from high school or from

college. Overall, our results are confirmatory of the heterogeneity by parent’s income

but weaker especially for the annual income trajectories.

In particular, the trajectories of non-high school graduates (Figures 1.10(a) and 1.11(a))

and non-college graduates (Figures 1.10(c) and 1.11(c)) appear to be similar to the

trajectories of individuals whose parents had the lowest income. Likewise the patterns

exhibited by the relative more advantageous groups in terms of income are similar to

the trajectories of children whose father had at least high-school or college education.

Furthermore, Figure 1.12(a) shows that the trajectories of the partial effects of the

stock income are always higher for the offsprings with fathers with at least high-school

education relative to those with fathers who did not graduate from high-school. What

is striking is the strong uptick for the offsprings with fathers with at least high-school

education. This evidence suggests that father’s education plays a key role in both early

and late investments and thereby their long-run outcomes; see for example Keane and

Woplin (2001) and Becker, Kominers, Murphy, and Spenkuch (2018).

Interestingly, comparing the same trajectories for offsprings with fathers with at least

a college degree against those with fathers with non-college degree (Figure 1.12(b)),

we find that the former sub-sample exhibits weaker effects possibly due to substitution

effects.

In sum, we find evidence that father’s education is important for the outcomes of the

children as adults, through early and late childhood investments.

1.5.2.3 Family structure

Another source of heterogeneity in the intergenerational trajectories is due to family

structure which influences the parent-child interactions (e.g., Moon (2014), Heckman

and Mosso (2014)). Figures 1.13, 1.14, 1.15 show the income and stock trajectories for

non-intact and intact family structures and the partial effects of the stock of income
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for the short sample.20 For the non-intact sample we also distinguish between the

individuals who experienced a family shock in their early childhood and those with a

family shock in their late childhood.

The trajectories for the non-intact sub-samples exhibit interesting patterns. Focusing

on Figure 1.13(b) that does not distinguish between the timing of the shock, we see

a sharp decrease in the trajectory of income, becoming negative around the age of 3,

and reaching a minimum at the age of 6. Then it becomes positive after age 10 and

stabilizes in the late childhood. This pattern seems to be driven by individuals who

experienced early shock as it is implied by the Figures 1.13(c)-(d). It is also worth

pointing out that on average the partial effects of the stock of income for the children

who experienced late shock are much higher than those who experienced early shocks.

This suggests that those early family shocks tend to make the family investments less

productive. Finally, we note that the trajectories of childhood exposures for the intact

families exhibit a similar behavior as the bi-annual baseline (full) sample in Figure

(A1).

Overall, the results indicates that early family shocks seem to affect more the parental

investments, making them less productive.

1.5.3 Additional results

In this section we provide four additional investigations for robustness purposes. First,

we redo the main analysis using child’s schooling attainment as an outcome variable

instead of child’s income in Figures 1.16-1.19. Figure 1.16 shows the results for the

intergenerational trajectories of income, stock of income, and partial effects of the stock

of income. Not surprisingly, we find that the results using schooling attainment are

generally similar to our main analysis that relies on child’s income. For example, Figure

1.16(a) shows that the estimated curve exhibits the same subtle U-shape pattern as

in the case of child’s income in Figures 1.2(b). One notable difference, is the shape of

partial effects of the stock of income for offsprings whose parent’s permanent income lie

in the first quartile in Figure 1.19. While in the case of income the trajectory of partial

effects is decreasing from late childhood and turning even negative in adulthood, the

corresponding trajectory in the case of schooling attainment is less decreasing for the

same period, remains positive, and becomes increasing in the late young adulthood.

This difference may be attributable to unobservables related to labor market shocks

that affect the most disadvantaged offsprings.

20We opt to use short sample for family structure since the size of the non-intact subsample for the
long sample is much smaller.
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Second, in Figure 1.20 we investigate how our baseline results change if we analyze

daughters and sons, separately. Interestingly, we find that the trajectory of parent’s

income for daughters appears to have an inverted U shape in the early childhood while

for sons it appears to have a decreasing shape. Furthermore, we find that parent’s

income also appears to be important in the late childhood in both samples with the

difference that in the long sample it follows an inverted-U pattern before it increases

again during the young adulthood. This effect appears to be stronger for the daughters

than the sons which may reflect the relative dependence of daughters on parents during

young adulthood. This suggests that the time variation in the resources available to

daughters has substantially more impact on their labor market outcomes than the

corresponding effects for the sons.

Third, we take seriously a criticism that our analysis is likely to be highly correlated.

Figure 1.21 investigates a model that considers the trajectory of income growth ex-

periences gp,i(t) = yp,i,t − yp,i,t−1 for t = 2, ..., T conditional on initial income yp,i,1.

Consistent, with the findings based on parent’s annual income and stock of income

our results show that the trajectory of growth rates plays an important role for child’s

income for all ages of exposure and for both samples with the largest effects occurring

in the early and late periods. Furthermore, we find that the coefficients of initial in-

come are 0.40 and 0.42 for short and long samples, respectively. In both samples the

coefficients of initial income is statistical significant at 1%, highlighting the importance

of initial resources when a child is born.

Finally, we consider how the intergenerational trajectories respond to the inclusion of

factors that may proxy the permanent income of the parents beyond annual income.

Figure 1.22 of present results of equations (1.5) and (1.10) that condition on father’s

education. In general, we find our results remain qualitatively unaltered.

In summary, we find that our main conclusions are not altered when we use child’s

schooling attainment as an outcome variable, examine separately sons and daughters,

consider different transformations of the parent’s income such as growth rates, and

condition on additional control variables such as father’s education.

1.6 Future work

In terms of future work, an important and natural extension to our work is to investigate

the role of dynamic complementarity, which means that human capital investments at

different ages exhibit synergies and bolster each other (Cunha and Heckman (2007)

and Cunha, Heckman, and Schennach (2010)). The idea of dynamic complementarity
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combines the ideas of self-productivity of skills and complementarity. An increase in

current investments leads to an increase in next period’s skills but because these skills

exhibit self-productivity, in the sense that skills produced at one stage beget skills at

later stages, current investments and future investments are always complements as

long as future investments and future skills are contemporaneously complements. In

fact, given that the marginal product of increasing investments is increasing in skills

in any future period and the fact that future investments are complements with future

skills, the degree of complementarity between current and future investments will be

stronger, the stronger the future contemporaneous complementarity.

The ideas of dynamic complementarity are particularly important for policy making.

If there exist such dynamic complementarities then policies that promote early human

capital investments can have two implications. First, such policies make later policies

that promote the formation of human capital more productive, and second, if early

investments are not accompanied by later investments, those early policies are not

effective. Cunha and Heckman (2007) summarize the empirical evidence on life cycle

skill formation and present a model that accounts for a multistage technology of skill

formation that features self productivity and dynamic complementarity.

There are two possible approaches that allows for modelling interaction between income

at different ages. First, following Yao and Muller (2010), we could estimate model

yo,i = α +

∫
τ

β1(t)yp,i(t)dt+

∫
τ

∫
τ

β2(t, s)yp,i(t)yp,i(s)dtds+ γ′xi + ei (1.12)

An alternative semiparametric way would be to consider a varying coefficient functional

linear regression model

yo,i = α(zi) +

∫
τ

β(zi, t)yp,i(t)dt+ γ′xi + ei (1.13)

where zi = (x̄iearly, x̄imiddle, x̄ilate, x̄iadulthood) is the vector of average of parental income

during early, middle, late childhood and early adulthood, respectively.

The above analysis will enable us to have some more insights of the policy implications

of our empirical results. We have found that early and late investments are more

productive than investments during middle childhood when the compulsory education

starts (which starts between five and eight and ends somewhere between ages sixteen

and eighteen, depending on the state). Our findings, along with the results of early

interventions for children from disadvantaged families (e.g. Abecadarian Project, Perry

Preschool experiment, Chicago child-parent programm) suggest that early investments

are crucial for the human capital development of the offsprings. Ability gaps between

individuals coming from different socioeconomic groups open up at early stages of life
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and remediation efforts in schooling years are not effective, since they do not eliminate

these ability gaps (Hansen, Heckman, and Mullen (2004)).

Moreover, recent literature in the economics of human capital development establishes

the importance of multiple skills distinguishing between cognitive and non cognitive

skills, showing that earlier stages are crucial for the development of cognitive skills

while later stages are crucial for the development of non-cognitive skills (Cunha, Heck-

man, and Schennach (2010)). Another important fact we want to investigate is that for

the skill formation multiple forms for investments including parental time investments

should be taken into account (Bernal (2008), Bernal and Keane (2010), Del Boca,

Flinn, and Wiswall (2014)). Time investments might be substitutes or complements

for goods investments, while spending time with children allows parents assess the abil-

ities of their children and make more targeted investments. We are going to employ the

Child Development Supplement (CDS) and Transition to Adulthood (TA) of the PSID

data that include additional information on children and their parents including time

use (diary) data, health, skills assessments, parenting styles, learning environment in

the home, and socio-emotional characteristics of children and their parents. This rich

database will allow us to consider models with functional outcome variables as well as

generally provide a better understanding of the underlying mechanisms of intergener-

ational dynamics (e.g., Del Boca, Flinn, and Wiswall (2016), Caetano, Kinsler, and

Teng (2017)).

Another avenue of future work is to consider the endogeneity of income shocks by

modeling the timing of parental investments as in Cunha, Heckman, and Schennach

(2010). Alternatively, the income variable can be decomposed into permanent and

transitory components as in Carneiro, Salvanes, and Tominey (2016) and Abbott and

Gallipoli (2019). Furthermore, a methodological extension of our work is to consider

data functional mixture models (Yao, Fu, and Lee (2011)) and varying coefficient

functional models (Wu, Fan, and Muller (2010) and Zhang and Wang (2015)) that can

provide further insights for the presence of borrowing constraints and neighborhood

influences. We are going to investigate the robustness of our results to other types of

functional forms, e.g., orthonormal polynomials, as they could provide better properties

in terms of efficiency. Moreover, we could consider other consistent information criteria

beyond the GCV to choose the optimal order of the basis functions.

1.7 Conclusion

In this chapter we propose a novel way to measure intergenerational mobility of eco-

nomic status. We argue that functional regressions provide a flexible and parsimonious
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way to capture the intergenerational effects of higher frequency influences during the

age of exposure during childhood and young adulthood in ways not captured by the

current empirical practice. We find that parental investments are generally more pro-

ductive in the early and late childhood or young adulthood, suggesting that income

shocks play a major role in parental human capital investments in children and in their

long run outcomes. More importantly, we find that the timing of the shocks related to

socioeconomic status and family structure can have a key role in the upward mobility

of individuals, especially for disadvantaged children.
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1.8 Figures

Figure 1.1: Intergenerational Trajectories of Income

This figure presents the average annual parental income per age of individual. Figure 1.1(a) presents

the average annual parental income for the short baseline sample, while Figure 1.1(b) presents the

average annual parental income for the long baseline sample.

(a) Short Sample

(b) Long Sample
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Figure 1.2: Intergenerational Trajectories of Income

This figure presents the baseline results from model (1.5). Figure 1.2(a)-(b) present estimates of the

intergenerational elasticity of income β̂(t) for the short and long samples, respectively. Figures 1.2(c)
and 1.2(d) present the corresponding functions for the stock of income from equation (1.10). The red
dotted lines represent 90% bootstrap confidence bands.

(a) Income - Short Sample (b) Income - Long Sample

(c) Stock of Income - Short Sample (d) Stock of Income - Long Sample
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Figure 1.3: Partial Effects of the Stock of Income

This figure presents the trajectories of partial effects of stock of income in equation (1.10) for the
short and long samples.
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Figure 1.4: Intergenerational Trajectories of Income by Parental Income
Quartiles

This figure presents the baseline results from model (1.5) for the long sample. Figures 1.4(a), (b),

(c), (d) present the estimates of intergenerational elasticity function β̂(t) based on the long sample
for the first, second, third and fourth parent’s permanent income quartile respectively. The red
dotted lines represent the bootstrap confidence bands.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure 1.5: Intergenerational Trajectories of the Stock of Income by Parental
Income Quartiles

This figure presents the baseline results from model (1.10), based on the long sample. Figures 1.5(a),
(b), (c), (d) present the estimates for the first parent’s permanent income quartile, second, third and
fourth quartile respectively. The red dotted lines represent the bootstrap confidence bands.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure 1.6: Partial Effects of the Stock of Income based on Parental Income
Quartiles

This figure presents the trajectory partial effects of equation (1.10). The red line corresponds to first
parental permanent income quartile, the green line to the second quartile, the blue line to third
quartile and the cyan line to fourth quartile.
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Figure 1.7: Timing of Income Shocks - Trajectories of Income

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the long sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.

(a) First Quartile - Early (b) First Quartile - Late

(c) Second Quartile - Early (d) Second Quartile - Late

(e) Third Quartile - Early (f) Third Quartile - Late

(g) Fourth Quartile - Early (h) Fourth Quartile - Late
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Figure 1.8: Timing of Income Shocks - Trajectories of Stock of Income

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the long sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.

(a) First Quartile - Early (b) First Quartile - Late

(c) Second Quartile - Early (d) Second Quartile - Late

(e) Third Quartile - Early (f) Third Quartile - Late

(g) Fourth Quartile - Early (h) Fourth Quartile - Late
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Figure 1.9: Timing of Income Shocks - Trajectories of Partial Effects of In-
come

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the long sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (c) Fourth Quartile
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Figure 1.10: Intergenerational Trajectories of Income by Father’s Education

This figure presents the baseline results from model (1.5) based on the long sample, for subsamples
based on father’s education. Figures 1.10(a)-(b) present the estimates of intergenerational elasticity

function β̂(t) for individual’s with non-high school graduates fathers and for individual’s with high
school graduates fathers, respectively, and Figures 1.10(c)-(d) for individual’s with non-college
graduates fathers and for individual’s with college graduates fathers.

(a) Non-high School Graduates (b) High School Graduates

(c) Non-college Graduates (d) College Graduates
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Figure 1.11: Intergenerational Trajectories of the Stock of Income by Father’s
Education

This figure presents the baseline results from model (1.10) based on the long sample, for subsamples
based on father’s education. Figure 1.11(a)-(b) present the estimates for individual’s with non-high
school graduates fathers and with for individual’s high school graduates fathers, and 1.11(c)-(d) for
individual’s with non-college graduates fathers and for individual’s with college graduates fathers.

(a) Non-high School Graduates (b) High School Graduates

(c) Non-college Graduates (d) College Graduates
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Figure 1.12: Partial Effects of the Stock of Income by Father’s Education

This figure presents the trajectory partial effects of equation (1.10) based on the long sample, for
subsamples based on father’s education. Figure 1.12(a) presents the estimates of partial effects for
individual’s with non-high school graduates fathers with green line and for individual’s with high
school graduates fathers with red line. Figure 1.12(b) presents the estimates of partial effects for
individual’s with non-college graduates fathers with green line and for individual’s with college
graduates fathers with red line.

(a) Based on High School Graduation

(b) Based on College Graduation
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Figure 1.13: Intergenerational Trajectories of Income by Family Structure

This figure presents the results from model (1.5) based on the family structure and family shocks.
Figures 1.13(a) and (b) display the estimates for intact and non-intact families, respectively. Figures
1.13(c) and (d) present the estimates for non-intact families when an early and a late family shock
occurred, respectively.

(a) Intact (b) Non-Intact

(b) Non-Intact (early shock) (c) Non-Intact (late shock)
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Figure 1.14: Intergenerational Trajectories of the Stock of Income by Family
Structure

This figure presents the results from model (1.10) based on the family structure and family shocks.
Figures 1.14(a) and (b) display the estimates for intact and non-intact families, respectively. Figures
1.14(c) and (d) present the estimates for non-intact families when an early and a late family shock
occurred, respectively.

(a) Intact (b) Non-Intact

(b) Non-Intact (early shock) (c) Non-Intact (late shock)
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Figure 1.15: Partial Effects of the Stock of Income by Family Structure

(a) Intact vs Non-intact

(a) Non-intact (early) vs. Non-intact (late)
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Figure 1.16: Schooling Attainment: Intergenerational Trajectories

(a) Bi-annual Income

(b) Stock of Income

(c) Partial Effects of Stock of Income
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Figure 1.17: Schooling Attainment: Intergenerational Trajectories of Income
by Parental Income Quartiles

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure 1.18: Schooling Attainment: Intergenerational Trajectories of the
Stock of Income by Parental Income Quartiles

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure 1.19: Schooling Attainment: Partial Effects of the Stock of Income
based by Parental Income Quartiles
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Figure 1.20: Intergenerational Trajectories of Income for Daughters and Sons

This figure presents the corresponding baseline results from models (1.5) and (1.10) for females and
males. The red dotted lines represent 90% bootstrap confidence bands.

(a) Income - Daughters (b) Income - Sons

(c) Stock of Income - Daughters (d) Stock of Income - Sons
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Figure 1.21: Intergenerational Trajectories of Growth rates

This figure presents the trajectory of income growth experiences.
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Figure 1.22: Intergenerational Trajectories of Stock of Income by Father’s
Education

This figure presents the baseline results from model (1.5) and (1.10) that include parent’s education
for annual income and stock of income and for both short and long samples.

(b) Biannual Income - Long Sample

(d) Stock of Income - Long Sample
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1.9 Tables

Table 1.1: Summary Statistics

Panel A. Baseline Sample

Short Sample (n = 580)

Mean Std. Dev. Min Max

Labor Income of Individual 43649 22680 2646 105550

Parental Permanent Income 71438 23502 20417 158692

Age of mother at birth 25 5 16 44

Age of father at birth 28 6 17 48

Long Sample (n = 580)

Mean Std. Dev. Min Max

Labor Income of Individual 43538 21798 2646 105086

Parental Permanent Income 73997 24383 19649 158811

Age of mother at birth 25 5 16 46

Age of father at birth 28 6 17 48

Panel B. Father’s Education Sample

Short Sample (n = 573)

Mean Std. Dev. Min Max

Labor Income of Individual 43815 22731 2646 105550

Parental Permanent Income 71805 23365 20417 158692

Father’s Education 13 2 3 17

Long Sample (n = 677)

Mean Std. Dev. Min Max

Labor Income of Individual 43686 21842 2646 105086

Parental Permanent Income 26177 9078 7968 60557

Father’s Education 13 2 3 17

Panel C. Schooling Sample

Short Sample (n = 820)

Mean Std. Dev. Min Max

Individual’s Years of Schooling 14 2 8 17

Parental Permanent Income 26538 9223 7658 63234

Long Sample (n = 1392)

Mean Std. Dev. Min Max

Individual’s Years of Schooling 14 2 8 17

Parental Permanent Income 26432 9683 5150 65437
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Table 1.2: Testing the Standard IGE Model

This table presents the p-values for the LM test testing the null hypothesis of no omitted variable
bias using both the short and long sample and two kinds of instruments. Columns 2 and 3 use as
instrumental variables the annual parental income variables at age j one-at-a-time while Columns 4
and 5 use as instrumental variables the cumulative income up to age j.

Annual Stock
Age Short Long Short Long

1 0.94 0.78 0.94 0.78

2 0.41 0.77 0.55 0.67

3 0.96 0.51 0.58 0.81

4 0.14 0.40 0.53 0.84

5 0.81 0.62 0.72 0.97

6 0.75 0.90 0.52 0.83

7 0.06 0.05 0.37 0.34

8 0.02 0.02 0.05 0.04

9 0.04 0.09 0.06 0.05

10 0.10 0.10 0.02 0.04

11 0.46 0.23 0.03 0.02

12 0.85 0.93 0.13 0.09

13 0.86 0.46 0.03 0.02

14 0.40 0.89 0.03 0.04

15 0.03 0.25 0.07 0.02

16 0.02 0.30 0.68 0.04

17 0.91 0.25 0.01 0.01

18 0.01 0.36 0.09 0.08

19 - 0.11 - 0.55

20 - 0.44 - 0.81

21 - 0.16 - 0.57

22 - 0.23 - 0.92

23 - 0.50 - 0.92

24 - 0.31 - 0.78
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Chapter 2

Threshold Spatial Autoregression

2.1 Introduction

The study of social influences on individual behavior has attracted a lot of interest in

economics recently. The idea of social interactions is that individual choices are directly

influenced by the characteristics and choices of others. When choices are driven by

social factors there exists complementarity among agents in a group (e.g., classroom,

neighborhood) that generates interdependencies. This means that there exist incentives

for an individual to behave similarly to others either because of social norms, social

identity, peer effects, etc. The surveys by Durlauf and Ioannides (2010) and Benhabib,

Bisin, and Jackson (2011a,b) discuss the various classes of social interaction models

and their empirical applications.

The standard empirical models of social interactions are the linear-in-means model by

Manski (1993) and the spatial autoregression mixed regression (e.g., Anselin (1988)).

One problem with this type of models is that the linear functional form rules out

interesting phenomena.1 For example, consider an idealistic intergenerational model of

poverty traps where the equilibrium law-of-motion is described by an intergenerational

dynamic relationship between the child’s permanent income and parent’s permanent

income conditional on the permanent income of other individuals in the neighborhood

and whether parent face credit constraints when making human capital decision about

their child. Such a model can be captured by a simple generalization of the linear

1Since the work of Schelling social interactions models have been used to explain a range of phe-
nomena including growth (Cooper and John (1988)), technology adoption (Durlauf (1993)), crime
(Glaeser, Sacerdote, and Scheinkman (1996)), delinquent behavior (Card and Giuliano (2013), oc-
cupations (Pan (2015)) among others. A common characteristic of all these models is their ability
to generate multiple equilibria, which implies that a small change in fundamentals may lead to large
differences in group behavior. That is, there exists a tipping point in the strength of social interactions
that leads to an abrupt emergence of two distinct regimes in the underlying outcome variable.
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mixed regressive spatial autoregressive model that allows for poverty traps depending

on whether parents’ income is above or below a threshold value γ.

yci,n = κ2 + δκI(ypi,n ≤ γ) + α
∑
j 6=i

wij,ny
c
j,n + βypi,n + ei,n, (2.1)

where yci,n is the child’s log permanent income and ypi,n is the parents’ income. wij,n are

weights that capture the degree of influence that individual j has on i and define her

social network. δκ = κ1 − κ2 and the indicator function, I(ypi,n ≤ γ) takes the value 1

if ypi,n ≤ γ and 0 otherwise, one. When β, which is interpreted as the intergenerational

elasticity (IGE) between the parent and child, is close to zero, parents’ income is

a weaker predictor of child’s income implying greater mobility. In contrast, when

β is close to one, the child’s position in the income distribution is more dependent

on her background. Note that when δκ = 0 and wij,n = 1 we obtain the linear-in-

means model. It is straightforward to see that the linear model-in-means model or the

linear mixed regressive spatial autoregressive model will be biased because the omitted

threshold term δαI(ypi,n ≤ γ), is correlated with parents’ income. Hence, the estimated

IGE will not consistently estimate the structural parameter β. More generally, the

threshold effects may be present in the other parameters beyond the intercept which

may exacerbate the bias. Therefore, in this paper we generalize the above simple model

to allow general threshold type nonlinearities including threshold effects in the spatial

autoregressive coefficient α, network weights wij,n, and regression coefficients β.

In particular, this paper develops a new class of social interaction models that generalize

the spatial autoregressive model to allow for threshold type nonlinearities by proposing

a general Threshold Spatial Autoregressive (TSAR) Model, which nests both mixed

regressive, spatial autoregressive model as well as the spatial autoregressive model.

Our model allows for regime specific endogenous and as well as contextual effects. En-

dogenous effects occur when the tendency of an agent’s behavior depends on the group

behavior while the choices are simultaneously determined. Exogenous or contextual ef-

fects occur when agent’s behavior depends on the characteristics of others in the group.

Endogenous effects are captured by spatial lags in our framework and constitute the

most salient effects as their presence is often associated with social multipliers, multiple

equilibria, and phase transitions. Specifically, we allow for either the network to be

different across regimes or the marginal rate of substitution between private and social

components of utility to be different across regimes or both.

Our estimation method generalizes the GMM estimation method of Lee (2007) to the

case of threshold regression and develop a statistical theory for the threshold parame-

ter as well as the regression coefficients including the spatial autoregressive coefficients.

Specifically, we consider a two-step GMM estimator under the assumption of indepen-

dent but heteroskedastic errors. The first-step estimates the objective function of GMM
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estimator for each value of the threshold parameter in a bounded set of values using an

initial weight matrix. The estimated threshold parameter is then obtained as the argu-

ment that minimizes this objective function. The spatial autoregression coefficients and

the slope coefficients are computed given the estimated threshold parameter. Finally,

in the second-step, we obtain a quasi-optimal GMM estimator using a regime-specific

weighting matrix by constructing appropriate moment functions using the first-step

GMM estimator.

We contribute to the literature by providing a unifying framework in which we can sub-

sume most commonly used social interaction models while allowing for general thresh-

old effects. Our model can be viewed as a generalization of the Spatial Autoregressive

Model (SAR) - mixed regressive model to allow for threshold type nonlinearities. The

SAR mixed regressive model was proposed by Cliff and Ord (1973) and its 2SLS/IV

estimation was studied by Anselin (1980), Kelejian and Prucha (1998), and Lee (2007)

among others. GMM estimation was first studied by Lee (2007) and further studied

by Lin and Lee (2010) among others. Interestingly, recently, there is an interest in

nonlinear spatial regression models (e.g., Su and Jin (2010), Malikov and Sun (2017)).2

However, none of these studies consider threshold type nonlinearities. Inference in

threshold regressions is generally difficult. Chan (1993) showed that the asymptotic

distribution of the threshold estimator depends on many nuisance parameters including

the marginal distribution of the regressors. To overcome this difficulty, Hansen (2000)

assumed that the difference between the slope coefficients of the two regimes decreases

as the sample size grows and derived a useful asymptotic approximation, albeit non-

standard. Our framework nests both the fixed and diminishing threshold. As in Seo

and Shin (2016) we exploit the smoothness of the GMM criterion to show consistency

and asymptotic normality for our estimators.

The rest of the paper is organized as follows. In Section 2.2, we propose a general

TSAR model. Section 2.3 presents our GMM estimation method. Section 2.4 derives

limiting results for the proposed estimators and Section 2.5 proposes bootstrap infer-

ence. Section 2.6 reports Monte Carlo simulation results to assess the finite sample

performance of our methods. Section 2.7 discusses future work and 2.8 concludes. Fi-

nally, we delay all the mathematical proofs in the Appendix. We define the column

and row sum matrix norms of an n× n matrix A as ||A||1 and ||A||∞ respectively, and

the spectral norm ||A||sp = λ
1/2
max(AA′).

2There is also a literature that considers social interaction models in discrete choice models (e.g.,
Brock and Durlauf (2001a, 2002)), duration models (e.g., Sirakaya (2006), de Paula (2009)), and
regression discontinuity methods (RDD) (e.g., Card and Rothstein (2008)).
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2.2 TSAR Model

We propose a new class of social interaction models that generalize the Spatial Autore-

gression - Mixed Regression to allow for threshold effects in the endogenous as well as

contextual effects.

Let the ith individual’s outcome be denoted by yi,n and her individual characteristics
by a k1-dimensional vector xi,n of stochastic variables, where the first element of this
vector is a constant. We consider an n × n fixed (predetermined) weight matrix Wn

which has zero diagonal elements and its (i, j)th element is denoted by wij,n. We split
our sample based on a threshold random variable zi,n. Specifically we consider the
following threshold model with social interactions

yi,n =

{
α11y

m−
i,n (w, λ) + α12y

m+
i,n (w, λ) + β′1xi,n + γ′11x

m−
i,n (w, λ) + γ′12x

m+
i,n (w, λ) + ei,n, zi,n ≤ λ

α21y
m−
i,n (w, λ) + α22y

m+
i,n (w, λ) + β′2xi,n + γ′21x

m−
i,n (w, λ) + γ′22x

m+
i,n (w, λ) + ei,n, zi,n > λ

(2.2)

where {ei,n} is a sequence of independent errors with zero mean and finite variance, and

we denote ymi,n(w) =
∑

j 6=iwij,nyj,n, xmi,n(w) =
∑

j 6=iwij,nxj,n, w−ij,n (λ) = wij,n1{zj,n ≤
λ}, ym−i,n (w, λ) =

∑
j 6=iw

−
ij,n (λ) yj,n, xm−i,n (w, λ) =

∑
j 6=iw

−
ij,n (λ)xj,n, ym+

i,n (w, λ) = ymi,n(w)−
ym−i,n (w, λ), and xm+

i,n (w, λ) = xmi,n(w)− xm−i,n (w, λ).

Our model includes two kinds of endogenous social effects that capture social pressures.

Let us focus on the lower regime; the first term (α11) captures regime specific social

effects while the second term (α12) captures across regime social effects. In general we

would expect the former term to capture conformity effects while the second term to

capture nonconformity effects.

Rearranging model (2.2) yields

yi,n = αymi,n(w) + δα2y
m−
i,n (w, λ) + β′xi,n + γ′xmi,n(w) + δ′γ2

xm−i,n (w, λ)

+ δα1y
m
i,n(w)1{zi,n ≤ λ}+ δααy

m−
i,n (w, λ)1{zi,n ≤ λ}+ δ′βxi,n1{zi,n ≤ λ}

+ δ′γx
m
i,n(w)1{zi,n ≤ λ}+ δ′γγx

m−
i,n (w, λ)1{zi,n ≤ λ}+ ei,n

(2.3)

where α = α22, β = β2, γ = γ22, δα2 = α21− α22, δγ2 = γ21− γ22, δα1 = α12− α22, δβ =

β1−β2, δαα = (α11−α12)−(α21−α22), δγ = γ12−γ22 and δγγ = (γ11−γ12)−(γ21−γ22).

Equation (2.3) nests several theoretically appealing models. When modeling social

effects in the context of threshold models it is reasonable to assume that social effects

are formed based only on regime-specific information, that is, α12 = α21 = γ12 = γ21 =

0. In contrast, when δα2 = δγ2 = δαα = δγγ = 0 then we obtain a social interaction

model that assumes that the formation of social effects occurs regardless of the regime;

it is solely based on the reference group. Finally, equation (2.3) nests the mixed spatial

autoregressive (MRSAR) model when δα2 = γ = δγ2 = δα1 = δαα = δβ = δγ = δγγ = 0.
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Let xi(λ) = xi,n1{zi,n ≤ λ} and define the matrix Xn(λ) and Xn by stacking the

elements xi(λ) and xi, respectively. And, we introduce three n × n weight matrices

Wn(λ), W−
n,λ and W−

n (λ) whose (i, j)th element equals w−ij,n (λ) = wij,n1{zj,n ≤ λ},
w∗−ij,n (λ) = wij,n1{zi,n ≤ λ} and w−λ,ij,n = 1{zi,n ≤ λ}w−ij,n (λ), respectively. We then

rewrite model (2.3) in matrix form

Yn = α0WnYn +Xn(Wn)θβ0 + Yn(Wn, λ0)δα0 +Xn(Wn, λ0)δθβ0
+ en (2.4)

where Yn = [y1,n, . . . , yn,n]′, en = [e1,n, . . . , en,n]′.

Also, we denote Xn(Wn) = [Xn,WnXn], Yn(Wn, λ) = [W−
n,λYn,Wn(λ)Yn,W

−
n (λ)Yn],

Xn(Wn, λ) = [Xn(λ),Wn(λ)Xn, W−
n,λXn,W

−
n (λ)Xn], θβ = (β′, γ′)′ to be a (2k1) × 1

vector of slope coefficients of the upper regime, and δα = (δα1 , δα2 , δαα)′ and δθβ =

(δ′β, δ
′
γ2
, δ′γ, δ

′
γγ)
′ to be the 3 × 1 and (4k1) × 1 vectors of threshold effects. In (2.4),

α0, θβ0 , δα0 and δθβ0
denote the true parameters of the model. This model nests the

linear social interactions model when δα0 = δθβ0
= 0, under which model (2.4) is the

so-called spatial Durbin regression model.

Let Sn(θy, λ) = In−αWn−δα1W
−
n,λ−δα2Wn(λ)−δααW−

n (λ), where θy = (α, δ′α)′ and the

errors for any possible values of the parameter space en(θ) = Sn(θy, λ)Yn−Xn(Wn)θβ−
Xn(Wn, λ)δθβ , where θ = (α, δ′α, θ

′
β, δ
′
θβ
, λ)′. Moreover, we denote θ∗ = (θ′β, δ

′
θβ

)′ and

θ∗∗ = (θ′β, δ
′
θβ
, α, δ′α)′. Then the reduced form is given by

Yn = S−1
n Xn(Wn)θβ0 + S−1

n Xn(Wn, λ0)δθβ0
+ S−1

n en, (2.5)

if Sn is non-singular, where Sn = Sn(θy0, λ0). This generally leads to

E [(AnYn)′en] =tr
[
(AnS

−1
n )
′
E (ene

′
n)
]
6= 0 for An = Wn, W−

n,λ0
, Wn(λ0), and W−

n (λ0)

where tr(·) is the trace operator.

We start with regularity conditions on the weight matrices, Wn, W−
n,λ, Wn(λ), W−

n (λ)

and Sn(θy, λ).

Assumption 1.

(1.1) ρ
(
α0Wn + δα1,0W

−
n,λ0

+ δα2,0Wn(λ0) + δαα,0W
−
n (λ0)

)
< 1, where ρ(A) is the largest

eigenvalue of matrix A in absolute values, and the spatial weight matrix Wn and

S−1
n have finite row- and column-sum norm.

(1.2) The parameter vector θ0 = (α0, δ
′
α0
, θ′β0

, δ′θβ0
, λ0)′ is an interior point of a compact

set Θ = Θ∗∗×Λ in the Euclidean Space Rkθ , where kθ = 6k1 + 5 and Λ =
[
λ, λ̄
]
.

Also, δα1,0 = cα1n
−a, δα2,0 = cα2n

−a, δαα,0 = cααn
−a, δβ0 = cβn

−a, δγ0 = cγn
−a,

δγ2,0 = cγ2n
−a and δγγ,0 = cγγn

−a with cα1 , cα2 , cαα, cβ, cγ, cγ2 , cγγ 6= 0 and 0 ≤
a < 1

2
.
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Assumption (1.1) is a crucial assumption for the analysis of spatial estimators, as it

imposes limits on the correlations of the spatial elements. Following Seo and Shin

(2016) our framework nests both the fixed threshold effect as in Chan (1993) and

diminishing threshold effect framework of Hansen (2000). Assumption (1.2) states

that the threshold effect gets small as the sample size increases, when 0 < a < 1
2
, while

when a = 0, we have the fixed threshold effect.

We proceed by stating the assumptions necessary to derive the asymptotic properties

of our estimator

Assumption 2.

(2.1) {ei,n}’s are independent (0, σ2
i ) errors, independent of {zi,n} with finite moments

larger than the fourth order. Moreover, max1≤i≤nE|ei,n|4+η < M < ∞ for some

η > 0.

(2.2) The threshold variable zi,n is i.i.d. with a continuous and bounded density, f (·),
such that f(λ0) > 0.

(2.3) We consider a linear transformation of the moment equations angn (θ), where an

is a matrix with a full row rank greater than or equal to kθ and converges to a

constant full row rank matrix a0.

This set of assumptions is similar to Seo and Shin (2016). Assumptions (2.1)-(2.2) are

also used in Hansen (2000). Assumption(2.3) is crucial for deriving the asymptotic

distribution of our GMM estimator.

As opposed to Seo and Shin (2016), we use both linear and quadratic moments as

suggested by Lee (2007). However, our moment conditions are different than those of

Lee (2007) due to the existence of regime specific social effects and the fact that the

threshold parameter is unknown and needs to be estimated.

Let Qn be an n× kQ matrix of initial instrumental variables (IV) with kQ > kθ∗∗ . For

example, we can use Xn, WnXn, W 2
nXn, W 3

nXn,. . . after removing linearly dependent

components.3 The moment conditions corresponding to the orthogonality conditions of

Qn and en are E(Q′nen) = 0. The quadratic moments are based on a class of constant

n×n matrices denoted by P1n = {Pn : diag (Pn) = 0}. As shown in Lin and Lee (2010),

by selecting matrices from P1n, the corresponding quadratic moments are defined as

follows: E [(Pjnen)′en] = 0, where matrices Pjn are selected from P1n, for j = 1, . . . ,m.

3While the initial matrix of instruments is not regime specific, we propose regime specific instru-
ments that allow us to obtain a more efficient second-step estimator.
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Assumption 3. The matrices in P1n are uniformly bounded in both row and column

sums in absolute values. The elements of Qn are uniformly bounded. Both Xn and Qn

have full rank.

The GMM estimator is derived from the minimization of Jn(θ) = gn(θ)′a′nangn(θ). The

set of moment conditions E(gn(θ)) for the GMM estimation is given by a (kQ +m)× 1

vector where gn(θ) is the set of empirical moments

gn(θ) =


en(θ)′P1nen(θ)

...

en(θ)′Pmnen(θ)

Q′nen(θ)

 . (2.6)

Before proceeding with the identification condition we introduce the following notation

Define Gn = WnS
−1
n , Gn(λ) = Wn(λ)S−1

n , G−n,λ = W−
n,λS

−1
n and G−n (λ) = W−

n (λ)S−1
n .

Additionally, X∗n,λ =[Xn(Wn), Xn(Wn, λ)] and X∗n = X∗n,λ0
, θ∗ = (θ′β, δ

′
θβ

)′ and θ∗0 =

(θ′β0
, δ′θβ0

)′.

Furthermore,

X̃(Wn, λ) = (X∗n, X
∗
n −X∗n,λ, GnX

∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0,

(Gn(λ0)−Gn(λ))X∗nθ
∗
0, (G

−
n,λ0
−G−n,λ)X∗nθ∗0, (G−n (λ0)−G−n (λ))X∗nθ

∗
0),

Θ̃ = ((θ∗0 − θ∗)′, θ∗′, α0 − α, δα2,0 − δα2 , δα1,0 − δα1 , δαα,0 − δαα, δα2 , δα1 , δαα).

Then the error term can be decomposed as follows

en(θ) = dn(θ) + [An(θy, λ) + In] en (2.7)

where dn(θ) = X̃(Wn, λ)Θ̃′ and

An(θy, λ) = (α0−α)Gn + (δα2,0 − δα2)Gn(λ0) + (δα1,0 − δα1)G−n,λ0
+ (δαα,0− δαα)G−n (λ0)

+ δα2(Gn(λ0)−Gn(λ)) + δα1(G−n,λ0
−G−n,λ) + δαα(G−n (λ0)−G−n (λ)).

From equation (2.7), we can see that while the first part of en(θ) depends on all pa-

rameters of the model, the second term only depends only on the spatial autoregressive

parameters θy and the threshold parameter λ.

Taking the expectation of (2.6) and using the above notation we obtain

E(gn(θ))

=


E(dn(θ)′P1ndn(θ)) + tr {ΓnE(An(θy, λ)′P s1n)}+ tr {ΓnE(An(θy, λ)′P1nAn(θy, λ)}

...

E(dn(θ)′Pmndn(θ)) + tr {ΓnE(An(θy, λ)′P smn)}+ tr {ΓnE(An(θy, λ)′PmnAn(θy, λ)}
E(Q′ndn(θ))


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where P s
jn = Pjn+P ′jn for j = 1, 2, . . . ,m and Γn = diag(σ2

1, . . . , σ
2
n). The parameter θ0

is identified as long as a0 limn→∞ n
−1E(gn(θ)) = 0 has a unique root at θ0 ∈ Θ, where

a0 is a constant full rank matrix. We then examine under which conditions linear and

quadratic moments have a unique solution at θ0 and the identification condition is

summarized in Assumption 4.

The linear moments corresponding to E(Q′ndn(θ)) will have a unique solution under

Assumption (4.1), where

G(Qn, θ) =
∂E(Q′ndn(θ))

∂θ′
=
[
Gθy (λ) , Gθβ , Gδθβ

(λ), Gλ(δα, δθβ , λ)
]

is a kQ × kθ matrix with

Gθy (λ) =
∂E(Q′ndn(θ))

∂θ′y
= −E

[
Q′nGnX

∗
nθ
∗
0, Q

′
nGn(λ)X∗nθ

∗
0, Q

′
nG
−
n,λX

∗
nθ
∗
0, Q

′
nG
−
n (λ)X∗nθ

∗
0

]
Gθβ =

∂E(Q′ndn(θ))

∂θ′β
= −E [Q′nXn(Wn)]

Gδθβ
(λ) =

∂E(Q′ndn(θ))

∂δ′θβ
= −E [Q′nXn(Wn, λ)]

and

Gλ(δα, δθβ , λ) =
∂E(Q′ndn(θ))

∂λ

= −f (λ)
[
E(Q′nXn|λ), E(Q′nWnXn|λ), E(Q′nWnXn|λ), E(QnWn (λ)Xn|λ) + E(QnW

−
n,λXn|λ)

]
δθβ

−f (λ)
[
E(Q′nGnX

∗
nθ
∗
0 |λ), E(Q′nGnX

∗
nθ
∗
0 |λ), E(QnGn (λ)X∗nθ

∗
0 |λ) + E(QnG

−
n,λX

∗
nθ
∗
0 |λ))

]
δα.

A trivial violation of the rank condition, Assumption (4.1), occurs if (i) θ∗0 = 0 or Xn

is irrelevant, or (ii) δα0 = 0 and δθβ0
= 0 or threshold effect does not exist.

From (2.5), we have

Yn= S−1
n X∗nθ

∗
0 + un = (In − Sn)S−1

n X∗nθ
∗
0 +X∗nθ

∗
0 + un

= [GnX
∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0]θy0 +X∗nθ

∗
0 + un (2.8)

where un = S−1
n en and un therefore follows a SAR model, un = (α0Wn + δα1,0W

−
n,λ0

+

δα2,0Wn(λ0) + δαα,0W
−
n (λ0))un + en. Assuming that threshold effect does exist and Xn

contain relevant regressors in predicting Yn, we consider an example that the rank con-

dition of Assumption (4.1) is violated. Specifically, in parallel to Lee (2007) we consider

the following example that X∗n and [GnX
∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0] are

linearly dependent. That is, there exists a 6k1 ×4 non-zero constant matrix c0 such that

X∗nc0 = [GnX
∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0]. Then, model ( 2.8) becomes

Yn =X∗n (c0θy0 + θ∗0) + un, (2.9)
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and Gn (Qn, θ0) does not have full rank as[
Gθy (λ0) , Gθβ , Gδθβ

(λ0)
]

= −E [Q′nX
∗
nc0, Q

′
nXn(Wn), Q′nXn(Wn, λ0)]

is linearly dependent in column. For model (2.9), if
(
θ′y0
, λ

0

)′
is identified from using

the quadratic moments, we have 0 = E [Q′ndn(θ)] = E [Q′nX
∗
n (θ∗0 − θ∗)] so that θ∗0 is

identified as X∗n has full rank. That is, the model is identified under Assumption (4.2)

if Assumption (4.1) fails to hold.

Assumption 4

(4.1) G(Qn, θ) has a full rank over θ ∈ Θ and maxλ∈Λ F (λ) < 1; or

(4.2) (i) E (Q′nX
∗
n) has the full rank 6k1 and is linearly independent of

naGλ(δα0 , δθβ0
, λ0);

(ii) Dn has the full rank 4 for some m ≥ 4, where we denote

Dn =


tr [ΓnE (P s

1nGn)] . . . tr [ΓnE (P s
mnGn)]

tr {ΓnE [P s
1nGn(λ0)]} . . . tr {ΓnE [P s

mnGn(λ0)]}
tr
{

ΓnE
[
P s

1nG
−
n,λ0

]}
. . . tr

{
ΓnE

[
P s
mnG

−
n,λ0

]}
tr {ΓnE [P s

1nG
−
n (λ0)]} . . . tr (ΓnE {ΓnE [P s

mnG
−
n (λ0)]})

 .

Assumption (4.1) is a global identification condition, while Assumption (4.2) is a local

identification condition derived from equation (B8), given in Appendix B, evaluated at

the true parameter value. The global condition, when Assumption (4.1) fails to hold,

has a lot less transparent expression than the local identification condition and requires

extra notation defined for equation (B8).

2.3 Estimation

In this section, we describe our two-step GMM estimators, where the first-step GMM

estimator is an initial estimator that is consistent and asymptotically normally dis-

tributed, but its asymptotic efficiency can be improved further as all the IVs and the

Pjn’s matrices in the quadratic moment conditions can be non optimal according to

the reduce form model (2.5).

Step 1. Given an initial weight matrix a′nan, the GMM estimator of θ is given by

θ̂ = arg min
θ∈Θ

Jn(θ), where Jn(θ) = gn(θ)′a′nangn(θ). However, for practical reasons

we estimate the objective function of GMM estimator for each value of the threshold
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parameter in a bounded set of values Λ =
[
λ, λ̄
]
. Conditional on λ, we can obtain the

GMM estimator of θ∗∗ by concentration

θ̂∗∗(λ) = arg min
θ∗∗

Jn(θ∗∗, λ),

where Jn(θ∗∗, λ) = gn(θ∗∗, λ)′a′nangn(θ∗∗, λ). Then, we obtain the GMM estimator of θ

by

λ̂ = arg min
λ∈Λ

Jn(θ̂∗∗(λ), λ) and θ̂∗∗(λ̂) = arg min
θ∗∗

Jn(θ∗∗, λ̂) (2.10)

Step 2. We improve the efficiency of our initial estimator by considering regime specific

moment functions. Motivated by the reduce form model (2.5) we define the empirical

moments

ĝn(θ) =


en(θ)′P̂1nen(θ)

...

en(θ)′P̂4nen(θ)

Q̂′nen(θ)

 (2.11)

where

P̂1n = WnS
−1
n (θ̂y, λ̂)− diag

(
WnS

−1
n (θ̂y, λ̂)

)
P̂2n = W−

n,λ̂
S−1
n (θ̂y, λ̂)− diag

(
W−
n,λ̂
S−1
n (θ̂y, λ̂)

)
P̂3n = Wn(λ̂)S−1

n (θ̂y, λ̂)− diag
(
Wn(λ̂)S−1

n (θ̂y, λ̂)
)

P̂4n = W−
n (λ̂)S−1

n (θ̂y, λ̂)− diag
(
W−
n (λ̂)S−1

n (θ̂y, λ̂)
)

and

Q̂n = [WnS
−1
n (θ̂y, λ̂)[Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ],

W−
n,λ̂
S−1
n (θ̂y, λ̂)[Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ],

Wn(λ̂)S−1
n (θ̂y, λ̂)[Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ],

W−
n (λ̂)S−1

n (θ̂y, λ̂)[Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ],

Xn(Wn), Xn(Wn, λ̂)]

after removing redundant terms.

In addition, given the initial consistent estimator calculated in the first step, we can

construct a matrix Ω̂n to estimate Ωn = E [gn(θ0)gn(θ0)′], where gn(θ) equals ĝn(θ)

with θ̂ replaced with θ0 and the mathematical expression of Ωn as shown in Theorem
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1 in the next section with m = 4, we define

Ω̂n =


tr
(

Γ̂nP̂1n

(
Γ̂nP̂1n

)s)
. . . tr

(
Γ̂nP̂1n

(
Γ̂nP̂4n

)s)
0′kQ

...
. . .

...
...

tr
(

Γ̂nP̂4n

(
Γ̂nP̂1n

)s)
. . . tr

(
Γ̂nP̂4n

(
Γ̂nP̂4n

)s)
0′kQ

0kQ . . . 0kQ Q̂′nΓ̂nQ̂n

 (2.12)

where Γ̂n = diag
{
ê2

1,n, . . . , ê
2
n,n

}
is an n× n diagonal matrix and êi is the ith element

of the estimated residual ên = Sn(θ̂y, λ̂)Yn − Xn(Wn)θ̂β − Xn(Wn, λ̂)δ̂θβ . Then, the

second-step GMM estimator of θ is given by

θ̃ = arg min
θ∈Θ

ĝn(θ)′Ω̂−1
n ĝn(θ) (2.13)

but evaluated through concentration of the objective function in a similar way as in

the first step.4

2.4 Asymptotic Theory

In this section we develop a statistical theory for the threshold parameter as well as

the regression coefficients including the spatial autoregressive coefficients. Proposition

1 shows the consistency of the GMM estimator, while Theorem 1 shows that the

asymptotic distribution of the GMM estimator follows a normal distribution. The

following assumption imposes a pointwise law of large numbers result that is used to

show the consistency of our estimator.

Assumption 5. For any given θ ∈ Θ, (i) n−1Q′nχnX
∗
nθ
∗
0 = E (Q′nχnX

∗
nθ
∗
0) + op (1),

where χn = Gn, Gn(λ), G−n,λ, and G−n (λ); (ii) n−1Q′nX
∗
n,λθ

∗ = n−1E
(
Q′nX

∗
n,λθ

∗)+op (1);

(iii) n−1d′n (θ)
(∑m

j=1 anjPjn

)
dn (θ) = n−1E

[
d′n (θ)

(∑m
j=1 anjPjn

)
dn (θ)

]
+ op (1).

Assumption 5 is a high-end assumption for the law of large numbers, where As-

sumption 5(i) ensures n−1Q′ndn (θ) = n−1E (Q′ndn (θ)) + op (1) holds for θ ∈ Θ, and

Assumption 5(ii) is a law of large number result for a second-order U statistic of

dn(θ)= X∗nθ
∗
0 + (α0 − α)GnX

∗
nθ
∗
0 −δα2Gn(λ)X∗nθ

∗
0 − δα1G

−
n,λX

∗
nθ
∗
0 −δααG−n (λ)X∗nθ

∗
0 −X∗n,λθ∗.

It is beyond the current scope of this paper to give a rigid proof of such LLN results,

we therefore assign it as an assumption.

Proposition 2.1 Under Assumptions 1-5, the identification condition holds which im-

4A third-step estimator can further provide efficiency gains using residuals and parameter estimates
from second-step.
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plies that a0 limn→∞ n
−1E(gn(θ)) = 0 has a unique root at θ0 ∈ Θ, and the GMM

estimator is consistent.

Theorem 1 Under Assumptions 1-5, we have

√
nH−1

n

(
θ̂∗∗ − θ∗∗0
λ̂− λ0

)
=

√n(θ̂∗∗ − θ∗∗0 )
n

1
2
−a
(
λ̂− λ0

) d→ N (0,Σn) , (2.14)

where we denote Hn = diag (I6k1+4, n
a),

Σn = lim
n→∞

[
1

n
HnΛ′na

′
nan

1

n
ΛnHn

]−1 [ 1

n
HnΛ′na

′
nan

1

n
Ωna

′
nan

1

n
ΛnHn

] [
1

n
HnΛ′na

′
nan

1

n
ΛnHn

]−1

,

Ωn = E
[
gn(θ0)gn(θ0)′

]

=


tr (ΓnP1n (ΓnP1n)s) . . . tr (ΓnP1n (ΓnPmn)s) 0′kQ

...
. . .

...
...

tr (ΓnPmn (ΓnP1n)s) . . . tr (ΓnPmn (ΓnPmn)s) 0′kQ
0kQ . . . 0kQ E(Q′nΓnQn)

 ,(2.15)

and Λn= −∂E(gn(θ0))/∂θ′ and ΛnHn has full column rank.

Applying Lemma A.1 in Lin and Lee (2010) gives (2.15). And, by (B8) in Appendix

B, we have

Λn =


tr [ΓnE (P s

1nGn)] tr {ΓnE [P s
1nGn(λ0)]} tr

{
ΓnE

[
P s

1nG
−
n,λ0

]}
tr {ΓnE [P s

1nG
−
n (λ0)]} 0′6k1

tr {ΓnE [P s
1nϕ2 (θy,0, λ0)]}

...
...

...
...

...
...

tr [ΓnE (P s
mnGn)] tr {ΓnE [P s

mnGn(λ0)]} tr
{

ΓnE
[
P s
mnG

−
n,λ0

]}
tr {ΓnE [P s

mnG
−
n (λ0)]} 0′6k1

tr {ΓnE [P s
mnϕ2 (θy,0, λ0)]}

E(Q′nGnX
∗
nθ
∗
0) E(Q′nGn(λ0)X∗nθ

∗
0) E(Q′nG

−
n,λ0

X∗nθ
∗
0) E(Q′nG

−
n (λ0)X∗nθ

∗
0) E(Q′nX

∗
n) Gλ(δα0 , δθβ0

, λ0)

 . (2.16)

Our model nests both Lee (2007) and Seo and Shin (2016). Equation (3.2) of Lee (2007)

is a submatrix of Λn as it does not contain the regime specific components. On the other

hand, excluding the spatial matrices will allow us obtain Seo and Shin (2016) model.

This theorem says that our estimator follows the normal distribution asymptotically

regardless of whether a = 0 or 0 < a < 1
2
, since we exploit the smoothness of the

GMM criterion to reduce the rate of convergence as in Seo and Shin (2016). For the

estimation of the threshold parameter, λ0, the GMM estimator converges at slower

speed than what one would expect from a least-square based estimator, see Chan

(1993) and Hansen (2000) for example. However, the GMM estimator of λ0 enjoys the

conveience of constructing the classic t-statistic in making inference of λ = λ0.

While the GMM estimator in Theorem 1 allows for an arbitrary unknown heteroskedas-

ticity, it is not efficient. Our second step estimator aims at addressing this issue by
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obtaining a quasi-optimal estimator. In particular, by the generalized Schwartz in-

equality, the “optimal” weighting matrix is the inverse of the variance matrix Ωn =

E [gn(θ0)gn(θ0)′]. In the case of homoskedastic errors, the best selection of Pjn and Qn

is available and thus, an optimal GMM is feasible. However, as argued by Lin and

Lee (2010), in the heteroskedastic case, an optimal estimator may not be feasible be-

cause the best selection involves matrix Γn, which is generally unknown. In this sense,

the second-step estimator is quasi-optimal and using a consistent estimator of Ω−1
n we

obtain a feasible quasi-optimal GMM estimator. The following proposition is used to

support the use of Ω̂n in (2.13).

Proposition 2.2 Under Assumptions 1-5, n−1(Ω̂n−Ωn) = op(1), where Ω̂ n is defined

in (2.12) and Ωn equals Ω̂ n with θ̂ replaced with θ0.

Then, the quasi-optimal GMM estimator is derived from minimizing ĝn(θ)′Ω̂−1
n ĝn(θ) as

long as n−1Ω̂n is consistently estimated. Theorem 2 establishes that the quasi-optimal

estimator will be asymptotically normal with variance (limn→∞ n
−1H ′nΛ′nΩ−1

n ΛnHn)
−1

assuming the following regularity condition for Ωn in Assumption 6. Finally, we ob-

tain asymptotically valid inferences from the quasi-optimal GMM estimator by re-

estimating Ωn and Λn using the second-step residuals.

The variance matrix Ωn must satisfy the following regularity condition.

Assumption 6. The matrix, limn→∞ n
−1Ωn, exists and is nonsingular.

Theorem 2 Under Assumptions 1-6, we obtain the quasi-optimal GMM estimator

from minimizing ĝn(θ)′Ω̂−1
n ĝn(θ), which has the limiting distribution√n(θ̃∗∗ − θ∗∗0 )
n

1
2
−a
(
λ̃− λ0

) d→ N (0,Σ∗n) , (2.17)

with Σ∗n = (limn→∞ n
−1HnΛ′nΩ−1

n ΛnHn)−1, where Λn with m = 4 and Pjn equals P̂jn

with θ̂ replaced with θ0 for j = 1, 2, 3, 4.

To make statistical inference on θ̂ , we need to find a consistent estimator for Σ∗n. How-

ever, E
[
P s
jnϕ2 (θy,0, λ0)

]
as an element of Λn contains terms like f (λ0) andE

(
P s
jnGn|λ0

)
,

E
(
P s
jnG

−
n,λ0
|λ0

)
, and E

(
P s
jnGn (λ0) |λ0

)
, and these unknown terms have to be esti-

mated nonparametrically by kernel method, which makes the estimate of Λn depend

on a bandwidth parameter value. The overall accuracy of an estimate of Λn may not

be robust to the choice of the bandwidth parameter. Therefore, bootstrap-based in-

ference (e.g., Anselin (1988) and Taspinar and Vijverberg (2018), Gupta (2018)) for θ̂,

although time consuming, is recommended.
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Next, we propose a bootstrap procedure for inference including a threshold test for

linearity.

2.5 Bootstrap Inference

The bootstrap procedure for confidence intervals is summarized below

(i) Using the second-step estimator θ̃ defined in equation (2.13), we obtain the de-

meaned residuals ε̂n = ẽn(θ̃)−ι′ẽn(θ̃)/n where ẽn(θ̃) = Sn(θ̃y, λ̃)Yn−Xn (Wn) θ̃β−
Xn

(
Wn, λ̃

)
δ̃θβ and ι is the n× 1 vector.

(ii) The bootstrap sample of residuals ε∗n=(ε∗1,n, ..., ε
∗
n,n)′ is generated from a two point

distribution P
(
ε∗i,n = ε̂i,n(1 +

√
5)/2)

)
=(
√

5−1)/(2
√

5) and P
(
ε∗i,n = ε̂i,n(1−

√
5)/2)

)
= (
√

5 + 1)/(2
√

5), where ε̂i,n is the ith demeaned residual. Then, these residuals

are used to generate y∗n = Sn(θ̃y, λ̃)−1
(
Xn (Wn) θ̃β +Xn

(
Wn, λ̃

)
δ̃θβ + ε∗n

)
.

(iii) Using the bootstrap sample {y∗in, xi,n}, i=1, .., n and weight matrix Wn and ap-

plying the estimation in Section 2.3 we obtain bootstrap analogs of the empirical

moments g∗b,n(θ) and the second-step GMM estimator θ̃∗b .

(iv) Repeat steps (ii)− (iii) B times and compute bootstrap standard errors s∗(θ) =√
V̂ ∗n , where V̂ ∗n = 1

B

∑B
b=1(θ̃∗b −

¯̃θ∗b )
2 and 100(1−α)% bootstrap confidence inter-

vals [θ̃j − q∗(1− α/2), θ̃j − q∗(α/2)], where θ̃j is an element j of the vector θ̃ and

q∗(·) is the quantile function of θ̃∗b − θ̃b.

Next, we consider testing the null hypothesis H0 : δα = δθβ = 0 under which the

model (2.4) reduces to the linear spatial Durbin regression model (SAR). However, the

inference is not standard because the threshold parameter λ is not identified under

the null of the linear SAR model; this issue is also known as the Davies problem.

Following Hansen (1996) we employ a bootstrap sup-LR type supD test that can be

used to approximate its asymptotic distribution

supD = sup
λ

(JSAR − JTSAR(λ)). (2.18)

where JTSAR(λ) = ĝn(θ̃(λ))′Ω̂−1
n ĝn(θ̃(λ)) where θ̃(λ) is the second-step estimator for a

given λ and JSAR = ĝn(θ̆)′Ω̂−1
n ĝn(θ̆)) where θ̆ is the second-step GMM estimator under

the restrictions δα = δθ = 0, θ̃ is the estimator (2.13) and ĝn are the empirical moments

defined in (3.9).

The bootstrap residuals u∗i , i = 1, ..., n are generated with random draws from i.i.d.

N(0, 1). Then, set y∗i = ĕiu
∗
i , where ĕi = ẽi− ¯̃ei. For each bootstrap sample {y∗b,in, xi,n},
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i=1, .., n and weight matrix Wn, we estimate the second step GMM estimator of the

SAR model and obtain its J-statistic J bSAR, from the bth bootstrap sample. For each

λ ∈ Λ, estimate the second step GMM estimator of the TSAR model and obtain its J-

stat J bTSAR(λ). Next, construct the Distance statistic supD∗b = supλ(J
b
SAR−J bTSAR(λ)).

Then calculate bootstrap p-value p∗ = 1
n

∑B
b=1 1{supD∗b > supD}.5

2.6 Monte Carlo

We first consider the following data generating process

yi,n = αymi,n(w) + 3xi,n + δα1y
m
i,n(w)1{zi,n ≤ 0}+ δβxi,n1{zi,n ≤ 0}+ ei,n, (2.19)

where xi,n is a scalar regressor, zi,n is the threshold variable and ei,n is an i.i.d. N(0, 1)

error.

We set the persistence of the spatial autoregressive coefficient at α = 0.4 and explore

various experiments that allow to vary the threshold effects δα1 = 0, 0, 1, 0.3, 0.5 and

δβ = 0, 1, 2, 3.6 We use three alternative predetermined weight matrices: The Toledo

spatial matrix WO (98 × 98) based on the 5 nearest neighbors of 98 census tracts in

Toledo, Ohio.For larger sample sizes of n = 196 and 392 we use block diagonal matrices

with the Toledo spatial matrix as their diagonal blocks.

Tables 2.1-2.5 present the 5th, 50th and 95th quantiles of the distributions of our

estimators for three sample size that correspond to the aforementioned weight matri-

ces. Columns 2-4 present the two-stage least squares estimator using the matrix of

instrumental variables Qn = (Xn,WnXn,W
2
nXn,W

3
nXn,W

4
nXn)′. Columns 5-7 present

the first-step GMM estimator using (Q′nQn)−1 as weighting matrix and quadratic mo-

ments. Columns 8-10 present the second-step GMM estimator using residuals and

estimators of the first-step as initial estimates and reiterating the first-step. Columns

11-13 present a third-step estimator using residuals and estimators of the second-step

as initial estimates and reiterating the second-step. Each table presents four different

panels for different values of the threshold effect δβ and each panel shows results for

four different values of δα1 . When δβ = δα1 = 0 the DGP is the linear model. Finally,

we note that our results can be viewed as conservative since we always estimate an

unrestricted model regardless of the true DGP.

Table 2.1 shows the results for the estimator of the threshold parameter. Overall, we

51{supD∗ > supD} takes the value 1 when supD∗ > supD and both supD∗b and supD are positive
and 0 otherwise.

6The choice of α = 0.4 and δα1 values was made in a way that ensures that Assumption 1 holds.
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can see that as the sample size and the threshold effects increase, the 50th quantile

approaches the true threshold parameter and the width of the distribution shrinks.

While there are efficiency gains as δβ increases for fixed values of δα1 , there are no

gains in efficiency when δα1 increases for fixed values of δβ. We should note that all

the estimators appear to center at the true threshold parameter. However, examining

the width of the distribution, we see that the GMM does not exhibit efficiency gains

over the 2SLS, perhaps due to the slow convergence rate.

Tables 2.2 and 2.3 show the results for the threshold effects of the SAR threshold

coefficient δα1 and the SAR coefficient α, respectively. When δα1 = 0 the threshold

effect of the SAR threshold coefficient δα1 is estimated accurately regardless of δβ.

However, when δα1 6= 0, the estimators of δα1 shows a finite sample bias that decreases

as δβ increases. Similarly, in the case of the SAR coefficient α, Table 2.3 shows that

all estimators accurately estimate α and the 2nd step estimator appears to offer great

improvements in efficiency over the first-step estimator in all cases. Importantly, the

2nd step estimator appears to offer great improvements in efficiency for both δα1 and α

over the first-step estimator in all cases. The third-step estimator also provides a small

improvement in terms of efficiency but generally not in terms of finite sample bias.

Table 2.4 and 2.5 provide a more nuanced characterization of the performance of the

estimators of δβ and β. In particular, while the 50th quantile approaches the true value

and the width of the distribution shrinks when δβ = 0 for all values of δα1 , there is

a finite sample bias for δβ 6= 0. Interestingly, the first-step GMM or 2SLS estimator

appears to be better in terms of bias than the second-step estimator and at least as

good as the third-step one. As expected, however, the second-step GMM estimator

provides substantial efficiency gains. The efficiency gains of the third-step estimator

generally appear small. The results for β also show bias for δβ 6= 0 but it generally

smaller compared to the bias of the estimators for δβ. Both larger sample size and

third-step estimators appear to reduce the bias to negligible levels.

An alternative possibility is to allow the social network to be different across regimes.

Therefore, we consider a second data generating process

yi,n =


α1

∑
j 6=iwij,n1{zj,n ≤ 0}yj,n + β1xi,n + ei,n, zi,n ≤ 0

α2

∑
j 6=iwij,n1{zj,n > 0}yj,n + β2xi,n + ei,n, zi,n > 0

(2.20)

where xi,n is a scalar regressor, zi,n is the threshold variable and ei,n is an i.i.d. N(0, 1)

error.

We set the persistence of the spatial autoregressive coefficient α2 = 0.4 and the slope
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coefficient β2 = 3 of the upper regime and vary the spatial autoregressive coefficient α1

and the slope coefficient β1 of the lower regime by varying δα1 = α1−α2 = 0, 0, 1, 0.3, 0.5

and δβ = β1 − β2 = 0, 1, 2, 3. We use two alternative predetermined weight matrices:

The Toledo spatial matrix WO (98× 98) based on the 5 nearest neighbors of 98 census

tracts in Toledo, Ohio.For the larger sample size of n = 196 we use a block diagonal

matrice with the Toledo spatial matrix as its diagonal blocks.

Tables 2.6-2.10 present the 5th, 50th and 95th quantiles of the distributions of our

estimators for two sample size that correspond to the aforementioned weight matrices

for Model 2. The same structure as in tables 2.1-2.5 is applied.

Table 2.6 shows the results for the estimator of the threshold parameter. Overall, we

can see that as the sample size and the threshold effects increase, the 50th quantile

approaches the true threshold parameter. We found similar results in terms of efficiency,

as in the first DGP. There are efficiency gains as δβ increases for fixed values of δα1 , while

there are no gains in efficiency when δα1 increases for fixed values of δβ. Although, all

the estimators appear to center at the true threshold parameter, we see that the GMM

does not exhibit efficiency gains over the 2SLS, perhaps due to the slow convergence

rate.

Tables 2.7 and 2.8 show the results for the threshold effects of the SAR threshold

coefficient δα1 and the SAR coefficient α2, respectively. We see that third step GMM

estimator of δα1 performs better in terms of finite sample bias and provides efficiency

gains. Regarding α2, we can see that the second and third step GMM estimator provide

as well gains in terms of finite sample bias and efficiency.

Table 2.9 and 2.10 displays the estimators of δβ and β. While δβ is accurately estimated

when δβ = 0, there is a bias in the opposite case, which however decreases as δβ

increases. The second and third step GMM estimators provide considerable efficiency

gains in comparison with 2sls and first step GMM estimator. In general, the same

picture applies for β, although the bias is smaller.

In sum, the results show that our estimators generally accurately estimate the param-

eters of the model. While the quasi-optimal second-step (or third) estimator does not

appear to provide efficiency gains for the estimation of the threshold parameter, it

can provide substantial improvements in the efficiency of the estimators for the slope

parameters of the model.
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2.7 Future Work

In future work we plan to illustrate the empirical relevance of our model by providing an

empirical application on intergenerational mobility and social influences. In particular,

we will study two possible mechanisms that give rise to poverty traps. First, models of

credit constraints such as Galor and Zeira (1993) and Han and Mulligan (2001) suggest

that intergenerational mobility threshold-type regressions emerge as distinct intergener-

ational transmission relationships for constrained and unconstrained families. Second,

models of neighborhood effects such as Benabou (1996) and Durlauf (1996a,b) show

that parental income plays a role in the quality of the neighborhood in which a child

grows up. The quality of neighborhood, in turn, affects future adult income in order

to produce threshold-like relationships between parent and offspring income. The idea

is that both lagged and contemporaneous feedbacks from the behavior of the members

of a neighborhood to the offspring’s future outcomes. While lagged feedbacks capture

neighborhood effects during childhood, contemporaneous feedbacks capture the idea

that neighborhoods constitute an intergenerational transmission mechanism because

they provide access to information about employment opportunities. Disadvantaged

localities act as barriers to the job opportunities for poor individuals due to lack of

hiring networks and general access to information (e.g., Conley and Topa (2001), Topa

(2001)). The basic assumption of the two aforementioned papers is that residents of

one tract exchange job information with residents of neighboring tracts and that phys-

ical distance is an essential determinant of the creation of these networks; the costs of

creating and preserving social ties increase with social distance, whereas local institu-

tions such as churches or local businesses help in creating social ties. Therefore, we will

treat the census tract as a representative unit of location and assume that a sufficient

statistic for the effects of others on a given adult’s income is given by a weighted av-

erage of income of others, where the weights depend on whether the individual resides

in the same census tract or nearby tracts. 7 Since the average commuting distance is

equal to 16 miles, we will consider as adjacent tracts the tracts that are in a radius of

16 miles of the centre of the tract. We consider as the tract of residence the tract that

individual lived the three years prior the year we have first observed the income used

for the construction of permanent income.

The data will be drawn from the Panel Study of Income Dynamics (PSID). PSID is a

longitudinal household survey starting in 1968 with a nationally representative sample

of over 18,000 individuals living in 5,000 families in the United States. We will use

the Survey Research Center national sample and employ measures of the parent’s and

child’s family income, which include the taxable income of all earners in the family,

from all sources, and transfer payments. Furthermore, in order to account for the fact

7The weights are functions of the distance between the centers of the tracts.
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that PSID data are not geographically stratified, we will use Tract contextual data

from Neighborhood Change Database (NCDB) such as population density, proportion

of black minorities, as well as the proportion of persons over 25 years old who have

a bachelors or graduate/professional degree, persons over 25 years old who have com-

pleted 9-12 years of schooling and persons over 25 years old who who have completed

high school but no college.8

Following the literature of threshold regressions, our model can be extended to multiple

regimes. Typically, this estimation is performed sequentially, accounting for the order

of testing as in Gonzalo and Pitarakis (2002) who suggest repartitioning.

Our model could also be extended to the case where the weight matrices are given

exogenously for each regime and hence different socioeconomic matrices are considered

across the two regimes. For example, let us assume we study poverty traps and for the

formation of the social network, we take into account neighboring tracts. The nature

of interactions is intrinsically different for poor and rich people. Therefore, k−nearest
neighbors could be considered for the poor, and m− nearest for rich, where k 6= m.

2.8 Conclusion

In this chapter we propose a general threshold spatial autoregression model that nests

several models including the spatial autoregression model and spatial autoregression

model - mixed regression. Using a framework that allows for both fixed and dimin-

ishing threshold effects we develop a two-step GMM estimation method that exploit

both linear and quadratic moment conditions and study the limiting properties of the

estimators of the threshold parameter and slope parameters of spatial lags and regres-

sion coefficients. In particular, the first-step estimator is based on an initial matrix

of instruments by exploiting the powers of the exogenous spatial weight matrix. and

second-step estimator uses regime specific instruments. Finally, we assess the perfor-

mance of the proposed estimation method using a Monte Carlo simulation.

8We would like thank Giulio Zanella who kindly provided us with the NCDB data.
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2.9 Tables

Table 2.1: Model 1 - Threshold Parameter (λ0 = 0)
n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -0.73 -0.03 0.67 -0.71 -0.03 0.63 -0.75 -0.09 0.70 -0.75 0.00 0.69

196 -0.69 0.08 0.66 -0.67 -0.02 0.63 -0.70 0.01 0.71 -0.70 -0.01 0.70
392 -0.65 0.00 0.64 -0.65 -0.05 0.61 -0.70 -0.04 0.69 -0.69 0.00 0.69

δα = 0.1
98 -0.71 0.02 0.65 -0.71 -0.07 0.61 -0.76 -0.02 0.69 -0.77 -0.06 0.70

196 -0.65 0.01 0.64 -0.65 0.00 0.64 -0.73 0.02 0.70 -0.69 0.05 0.70
392 -0.65 0.00 0.65 -0.64 -0.03 0.61 -0.71 -0.02 0.68 -0.69 -0.03 0.68

δα = 0.3
98 -0.70 -0.04 0.65 -0.70 -0.05 0.63 -0.77 -0.01 0.68 -0.75 -0.03 0.67

196 -0.67 -0.03 0.66 -0.66 -0.02 0.62 -0.71 0.03 0.68 -0.70 -0.01 0.65
392 -0.66 0.01 0.67 -0.64 -0.05 0.61 -0.69 0.00 0.67 -0.69 -0.03 0.67

δα = 0.5
98 -0.70 -0.01 0.66 -0.72 -0.06 0.61 -0.70 -0.03 0.65 -0.70 -0.03 0.64

196 -0.67 -0.03 0.65 -0.66 -0.07 0.63 -0.67 0.00 0.67 -0.68 -0.01 0.67
392 -0.64 0.02 0.64 -0.63 0.02 0.62 -0.67 -0.01 0.66 -0.66 -0.02 0.66

Panel B: δβ = 1

δα = 0
98 -0.69 -0.01 0.65 -0.71 -0.02 0.62 -0.72 -0.03 0.64 -0.71 -0.04 0.63

196 -0.64 -0.01 0.60 -0.65 -0.02 0.63 -0.67 0.02 0.65 -0.69 -0.01 0.67
392 -0.63 -0.01 0.62 -0.62 -0.01 0.60 -0.66 -0.03 0.64 -0.68 -0.02 0.62

δα = 0.1
98 -0.67 -0.02 0.60 -0.69 -0.02 0.60 -0.71 -0.02 0.65 -0.72 -0.02 0.65

196 -0.65 0.00 0.63 -0.67 -0.01 0.64 -0.65 0.02 0.67 -0.68 0.03 0.65
392 -0.60 -0.02 0.60 -0.63 -0.05 0.61 -0.64 -0.03 0.66 -0.65 -0.05 0.63

δα = 0.3
98 -0.68 -0.01 0.60 -0.71 -0.06 0.60 -0.68 0.00 0.63 -0.70 -0.06 0.64

196 -0.63 0.00 0.62 -0.64 -0.03 0.62 -0.64 0.00 0.63 -0.63 -0.02 0.64
392 -0.62 0.00 0.62 -0.62 -0.03 0.62 -0.66 0.00 0.63 -0.66 0.00 0.63

δα = 0.5
98 -0.66 -0.02 0.61 -0.66 -0.02 0.61 -0.69 -0.02 0.64 -0.68 -0.01 0.60

196 -0.61 -0.01 0.59 -0.63 -0.06 0.62 -0.63 0.00 0.62 -0.61 0.00 0.65
392 -0.61 -0.01 0.58 -0.61 0.00 0.62 -0.62 -0.01 0.64 -0.65 -0.02 0.62
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Model 1 - Threshold Parameter (λ0 = 0) (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 -0.64 -0.02 0.53 -0.68 -0.03 0.58 -0.69 -0.03 0.59 -0.71 -0.04 0.58

196 -0.54 0.00 0.54 -0.61 -0.02 0.60 -0.61 -0.01 0.62 -0.60 -0.01 0.59
392 -0.52 -0.01 0.52 -0.59 -0.01 0.59 -0.62 -0.01 0.59 -0.61 -0.01 0.59

δα = 0.1
98 -0.59 -0.02 0.53 -0.67 -0.02 0.62 -0.65 -0.01 0.59 -0.61 -0.01 0.59

196 -0.53 -0.01 0.52 -0.62 -0.02 0.59 -0.58 0.01 0.62 -0.61 -0.01 0.61
392 -0.47 0.00 0.53 -0.62 -0.04 0.57 -0.62 -0.03 0.60 -0.60 -0.01 0.59

δα = 0.3
98 -0.58 -0.01 0.56 -0.64 0.00 0.62 -0.62 -0.01 0.59 -0.63 -0.01 0.59

196 -0.56 -0.01 0.51 -0.62 -0.03 0.59 -0.59 -0.01 0.58 -0.60 -0.01 0.58
392 -0.48 -0.01 0.51 -0.61 -0.02 0.58 -0.61 -0.02 0.57 -0.61 -0.01 0.58

δα = 0.5
98 -0.58 -0.03 0.53 -0.66 -0.03 0.61 -0.61 -0.02 0.57 -0.59 -0.02 0.57

196 -0.57 -0.01 0.57 -0.61 -0.05 0.57 -0.60 -0.02 0.56 -0.59 -0.01 0.57
392 -0.46 0.00 0.50 -0.59 -0.01 0.59 -0.60 -0.01 0.58 -0.58 -0.01 0.56

Panel D: δβ = 3

δα = 0
98 -0.50 -0.01 0.44 -0.63 -0.02 0.59 -0.57 -0.02 0.49 -0.56 -0.02 0.54

196 -0.39 -0.01 0.48 -0.60 -0.02 0.57 -0.57 0.00 0.55 -0.55 0.00 0.55
392 -0.40 0.00 0.32 -0.57 0.00 0.53 -0.56 -0.02 0.56 -0.57 -0.01 0.54

δα = 0.1
98 -0.48 -0.01 0.46 -0.67 -0.02 0.56 -0.59 -0.01 0.55 -0.59 -0.02 0.54

196 -0.43 -0.01 0.45 -0.62 -0.02 0.59 -0.58 0.00 0.52 -0.56 0.00 0.53
392 -0.36 0.00 0.40 -0.59 -0.02 0.57 -0.58 -0.02 0.54 -0.58 -0.01 0.49

δα = 0.3
98 -0.51 -0.02 0.49 -0.65 -0.03 0.58 -0.56 -0.01 0.55 -0.58 -0.01 0.56

196 -0.36 -0.01 0.44 -0.58 -0.01 0.56 -0.57 0.00 0.52 -0.53 -0.02 0.52
392 -0.40 0.00 0.31 -0.59 -0.02 0.55 -0.58 0.00 0.59 -0.54 -0.01 0.51

δα = 0.5
98 -0.48 -0.01 0.44 -0.65 -0.02 0.55 -0.54 -0.01 0.54 -0.59 -0.02 0.52

196 -0.38 -0.01 0.38 -0.60 -0.02 0.57 -0.54 -0.01 0.52 -0.54 -0.01 0.56
392 -0.35 0.00 0.34 -0.56 -0.02 0.56 -0.53 -0.01 0.53 -0.55 -0.01 0.51
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Table 2.2: Model 1 - Threshold Effect of the SAR Coefficient δα1

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -3.51 -0.06 4.42 -2.35 0.00 2.34 -0.79 -0.01 0.74 -0.57 0.01 0.58

196 -3.95 -0.05 3.55 -2.55 -0.05 2.60 -0.49 0.00 0.51 -0.33 0.00 0.35
392 -3.90 0.04 3.54 -2.62 -0.01 2.82 -0.33 0.00 0.35 -0.24 0.00 0.25

δα = 0.1
98 -3.18 0.07 3.44 -2.44 0.07 2.57 -0.61 0.11 0.76 -0.43 0.13 0.67

196 -3.61 0.15 3.72 -2.50 0.10 2.65 -0.32 0.13 0.64 -0.21 0.12 0.52
392 -3.46 0.32 4.29 -2.58 0.22 2.50 -0.18 0.13 0.49 -0.09 0.12 0.40

δα = 0.3
98 -3.09 0.41 3.57 -2.01 0.39 2.88 -0.29 0.39 1.19 -0.09 0.35 1.00

196 -3.74 0.50 4.06 -2.32 0.39 2.84 -0.09 0.38 1.00 0.07 0.35 0.82
392 -3.93 0.53 3.91 -2.21 0.41 2.72 0.10 0.38 0.86 0.14 0.34 0.74

δα = 0.5
98 -2.74 0.64 3.49 -1.83 0.58 2.82 0.05 0.59 1.47 0.13 0.57 1.33

196 -3.30 0.69 3.93 -1.98 0.75 3.10 0.24 0.62 1.35 0.26 0.57 1.22
392 -2.62 0.87 4.49 -1.80 0.68 3.11 0.28 0.61 1.18 0.31 0.54 1.07

Panel B: δβ = 1

δα = 0
98 -3.21 0.04 3.10 -2.12 0.04 2.46 -0.57 -0.01 0.63 -0.48 0.00 0.42

196 -3.16 -0.02 3.45 -2.26 -0.02 2.36 -0.38 0.00 0.34 -0.30 0.00 0.26
392 -3.40 0.07 3.08 -2.36 0.05 2.28 -0.23 0.00 0.25 -0.18 0.00 0.19

δα = 0.1
98 -2.99 0.19 3.12 -1.82 0.19 2.31 -0.43 0.12 0.67 -0.29 0.09 0.54

196 -3.31 0.16 3.43 -2.27 0.12 2.38 -0.23 0.12 0.53 -0.15 0.10 0.42
392 -3.00 0.27 3.44 -2.13 0.21 2.47 -0.12 0.11 0.46 -0.06 0.10 0.34

δα = 0.3
98 -2.50 0.43 2.94 -1.84 0.34 2.38 -0.11 0.35 0.99 -0.03 0.33 0.80

196 -2.69 0.28 3.32 -1.88 0.34 2.49 0.05 0.36 0.86 0.10 0.32 0.74
392 -3.05 0.49 3.46 -2.00 0.39 2.44 0.12 0.35 0.73 0.15 0.32 0.68

δα = 0.5
98 -2.29 0.56 3.07 -1.62 0.54 2.68 0.12 0.57 1.26 0.20 0.53 1.19

196 -2.58 0.62 3.44 -1.64 0.55 2.40 0.29 0.58 1.18 0.30 0.54 1.09
392 -2.51 0.77 3.40 -1.75 0.65 2.63 0.33 0.57 1.05 0.31 0.53 1.02
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Model 1 - Threshold Effect of the SAR Coefficient δα1 (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 -2.71 0.04 2.73 -1.83 0.04 2.27 -0.53 -0.01 0.45 -0.43 -0.01 0.36

196 -2.71 -0.03 2.65 -2.18 -0.04 1.74 -0.32 0.00 0.30 -0.21 0.00 0.22
392 -2.91 0.04 2.58 -2.19 0.02 2.05 -0.23 -0.01 0.21 -0.16 0.00 0.17

δα = 0.1
98 -2.30 0.12 2.41 -1.76 0.07 2.16 -0.31 0.11 0.62 -0.25 0.10 0.46

196 -2.99 0.13 2.78 -2.01 0.12 2.09 -0.15 0.11 0.48 -0.10 0.10 0.35
392 -2.50 0.18 2.92 -1.91 0.21 2.28 -0.07 0.10 0.37 -0.05 0.11 0.29

δα = 0.3
98 -2.62 0.28 2.77 -1.70 0.30 2.01 -0.07 0.32 0.84 0.02 0.31 0.74

196 -2.12 0.30 2.82 -1.61 0.35 2.17 0.07 0.33 0.71 0.11 0.32 0.64
392 -2.58 0.39 2.79 -1.80 0.38 2.27 0.15 0.33 0.67 0.17 0.32 0.61

δα = 0.5
98 -2.03 0.50 2.93 -1.59 0.46 2.34 0.15 0.53 1.26 0.24 0.53 1.06

196 -2.06 0.57 2.88 -1.45 0.55 2.44 0.29 0.55 1.02 0.30 0.53 0.96
392 -2.27 0.63 3.19 -1.60 0.62 2.46 0.32 0.54 0.98 0.34 0.51 0.92

Panel D: δβ = 3

δα = 0
98 -2.44 -0.02 2.15 -1.85 -0.02 1.79 -0.39 -0.01 0.37 -0.27 0.00 0.31

196 -2.41 0.00 2.80 -1.82 -0.02 1.99 -0.26 0.00 0.26 -0.20 0.00 0.21
392 -2.48 0.04 2.38 -1.91 0.04 1.88 -0.20 0.00 0.19 -0.15 0.00 0.15

δα = 0.1
98 -2.48 0.09 2.20 -2.07 0.12 1.98 -0.28 0.12 0.56 -0.19 0.11 0.46

196 -2.74 0.10 2.43 -1.92 0.12 1.94 -0.16 0.11 0.44 -0.09 0.10 0.30
392 -2.02 0.14 2.55 -1.66 0.18 2.23 -0.08 0.10 0.34 -0.04 0.10 0.28

δα = 0.3
98 -2.02 0.33 2.55 -1.38 0.30 2.20 -0.02 0.32 0.81 0.04 0.32 0.72

196 -2.02 0.29 2.35 -1.47 0.34 2.24 0.11 0.32 0.68 0.13 0.31 0.64
392 -2.18 0.35 2.46 -1.78 0.34 2.12 0.16 0.32 0.64 0.17 0.31 0.57

δα = 0.5
98 -1.64 0.46 2.40 -1.47 0.43 2.04 0.20 0.52 0.99 0.24 0.51 1.03

196 -1.66 0.49 2.43 -1.26 0.49 2.22 0.29 0.53 1.01 0.33 0.51 0.95
392 -1.94 0.56 2.60 -1.44 0.50 2.33 0.35 0.54 0.93 0.37 0.52 0.88
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Table 2.3: Model 1 - SAR Coefficient α = 0.4

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -1.64 0.41 2.18 -0.75 0.39 1.67 -0.02 0.39 0.79 0.09 0.39 0.70

196 -1.61 0.43 2.57 -0.90 0.43 1.72 0.11 0.39 0.68 0.19 0.39 0.60
392 -1.60 0.38 2.30 -0.99 0.39 1.76 0.22 0.40 0.59 0.25 0.40 0.53

δα = 0.1
98 -1.34 0.40 2.23 -0.92 0.40 1.67 -0.01 0.39 0.72 0.04 0.40 0.68

196 -1.51 0.39 2.44 -0.81 0.42 1.80 0.05 0.39 0.63 0.13 0.39 0.57
392 -1.71 0.32 2.25 -0.94 0.35 1.74 0.15 0.39 0.54 0.23 0.40 0.50

δα = 0.3
98 -1.34 0.39 2.16 -0.87 0.38 1.56 -0.16 0.36 0.68 -0.07 0.38 0.63

196 -1.57 0.32 2.31 -1.03 0.36 1.78 -0.08 0.36 0.59 0.04 0.38 0.54
392 -1.60 0.30 2.18 -0.95 0.37 1.53 0.01 0.37 0.54 0.09 0.39 0.51

δα = 0.5
98 -1.22 0.38 2.00 -0.81 0.40 1.54 -0.21 0.37 0.68 -0.15 0.38 0.63

196 -1.57 0.31 2.25 -1.00 0.33 1.60 -0.27 0.35 0.60 -0.08 0.37 0.57
392 -1.68 0.24 1.92 -0.97 0.33 1.56 -0.09 0.37 0.55 -0.02 0.39 0.54

Panel B: δβ = 1

δα = 0
98 -1.21 0.39 2.13 -0.81 0.37 1.49 0.07 0.39 0.74 0.14 0.39 0.64

196 -1.35 0.41 2.08 -0.79 0.41 1.73 0.19 0.39 0.61 0.24 0.40 0.55
392 -1.29 0.37 2.09 -0.88 0.38 1.61 0.24 0.40 0.54 0.28 0.40 0.51

δα = 0.1
98 -1.25 0.38 1.95 -0.80 0.36 1.35 0.04 0.39 0.68 0.14 0.40 0.62

196 -1.42 0.38 2.14 -0.82 0.41 1.64 0.13 0.39 0.58 0.19 0.40 0.55
392 -1.35 0.32 1.89 -0.91 0.35 1.54 0.20 0.39 0.52 0.28 0.40 0.49

δα = 0.3
98 -0.95 0.34 1.83 -0.72 0.39 1.43 -0.07 0.37 0.63 0.10 0.39 0.59

196 -1.11 0.42 1.94 -0.82 0.39 1.46 0.03 0.38 0.55 0.12 0.39 0.53
392 -1.37 0.34 2.16 -0.77 0.37 1.53 0.10 0.39 0.51 0.14 0.39 0.50

δα = 0.5
98 -1.09 0.40 1.79 -0.70 0.39 1.51 -0.11 0.37 0.64 -0.04 0.38 0.59

196 -1.19 0.36 2.03 -0.67 0.43 1.55 -0.15 0.37 0.56 0.04 0.38 0.54
392 -1.16 0.30 1.84 -0.82 0.35 1.48 -0.04 0.39 0.54 0.04 0.39 0.54
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Model 1 - SAR Coefficient α = 0.4 (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 -0.82 0.39 1.87 -0.78 0.38 1.43 0.14 0.40 0.71 0.18 0.41 0.64

196 -0.94 0.41 1.84 -0.48 0.42 1.55 0.21 0.40 0.59 0.25 0.39 0.52
392 -0.91 0.38 1.82 -0.62 0.38 1.51 0.26 0.40 0.53 0.29 0.39 0.50

δα = 0.1
98 -0.78 0.40 1.62 -0.62 0.40 1.34 0.10 0.38 0.61 0.17 0.39 0.58

196 -0.88 0.39 1.85 -0.63 0.40 1.50 0.15 0.39 0.56 0.25 0.40 0.53
392 -1.18 0.36 1.74 -0.66 0.35 1.41 0.24 0.40 0.51 0.28 0.40 0.48

δα = 0.3
98 -0.94 0.42 1.81 -0.53 0.41 1.39 0.05 0.38 0.60 0.13 0.39 0.57

196 -0.85 0.41 1.62 -0.53 0.40 1.35 0.12 0.39 0.55 0.15 0.39 0.52
392 -1.03 0.36 1.77 -0.61 0.38 1.47 0.16 0.39 0.51 0.17 0.39 0.50

δα = 0.5
98 -0.93 0.42 1.72 -0.53 0.44 1.47 -0.07 0.39 0.60 0.05 0.39 0.57

196 -0.80 0.37 1.63 -0.55 0.40 1.36 0.06 0.38 0.54 0.06 0.39 0.53
392 -0.96 0.35 1.83 -0.75 0.36 1.49 -0.02 0.39 0.53 0.11 0.40 0.52

Panel D: δβ = 3

δα = 0
98 -0.78 0.41 1.61 -0.51 0.42 1.34 0.17 0.40 0.61 0.20 0.40 0.57

196 -0.92 0.40 1.69 -0.55 0.42 1.35 0.23 0.40 0.56 0.25 0.40 0.51
392 -0.76 0.38 1.65 -0.51 0.38 1.44 0.27 0.40 0.52 0.30 0.40 0.49

δα = 0.1
98 -0.70 0.41 1.64 -0.58 0.39 1.49 0.12 0.39 0.60 0.20 0.39 0.57

196 -0.76 0.41 1.89 -0.47 0.40 1.39 0.17 0.40 0.55 0.26 0.40 0.51
392 -0.81 0.37 1.46 -0.80 0.36 1.34 0.26 0.40 0.51 0.31 0.40 0.48

δα = 0.3
98 -0.79 0.38 1.49 -0.48 0.40 1.30 0.07 0.39 0.58 0.11 0.38 0.55

196 -0.62 0.41 1.52 -0.57 0.39 1.31 0.11 0.39 0.52 0.20 0.39 0.50
392 -0.66 0.38 1.62 -0.45 0.40 1.54 0.17 0.40 0.50 0.22 0.39 0.49

δα = 0.5
98 -0.59 0.43 1.40 -0.44 0.44 1.37 0.06 0.39 0.59 0.11 0.39 0.56

196 -0.62 0.42 1.53 -0.44 0.42 1.28 0.07 0.39 0.54 0.09 0.40 0.52
392 -0.70 0.38 1.52 -0.49 0.41 1.40 0.12 0.39 0.51 0.18 0.40 0.50
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Table 2.4: Model 1 - Slope Coefficient δβ

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -1.81 0.03 1.93 -3.10 0.04 3.32 -0.72 0.02 0.69 -0.70 0.01 0.76

196 -1.79 -0.01 1.78 -3.48 0.05 3.58 -0.54 0.01 0.49 -0.52 0.01 0.51
392 -1.50 -0.04 1.49 -3.39 0.03 3.29 -0.36 -0.02 0.33 -0.36 -0.01 0.35

δα = 0.1
98 -2.05 -0.04 1.82 -3.16 0.11 3.32 -0.75 0.00 0.73 -0.75 0.02 0.75

196 -1.73 -0.05 1.62 -3.28 -0.01 3.48 -0.48 0.01 0.51 -0.49 0.00 0.49
392 -1.58 0.01 1.60 -3.50 -0.03 3.30 -0.35 0.00 0.35 -0.35 0.00 0.31

δα = 0.3
98 -1.90 0.02 2.06 -3.31 0.09 3.34 -0.69 -0.01 0.72 -0.68 0.01 0.68

196 -1.54 0.00 1.69 -3.76 -0.13 3.02 -0.51 0.01 0.45 -0.49 0.00 0.45
392 -1.54 -0.03 1.47 -3.31 0.02 3.25 -0.33 -0.01 0.32 -0.32 -0.01 0.29

δα = 0.5
98 -1.93 -0.02 2.03 -3.27 -0.01 3.25 -0.73 -0.01 0.72 -0.71 0.00 0.72

196 -1.79 0.00 1.85 -3.28 -0.01 3.31 -0.49 0.01 0.46 -0.43 0.01 0.45
392 -1.46 0.00 1.55 -3.49 -0.05 3.33 -0.32 -0.01 0.33 -0.30 0.00 0.30

Panel B: δβ = 1

δα = 0
98 -0.88 0.96 2.86 -2.50 1.04 4.34 0.54 1.18 2.56 0.46 1.09 2.32

196 -0.76 0.93 2.54 -2.62 1.06 4.23 0.67 1.19 2.22 0.58 1.07 2.20
392 -0.85 0.96 2.48 -2.47 1.24 4.24 0.73 1.19 2.04 0.66 1.07 2.02

δα = 0.1
98 -0.88 1.05 2.87 -2.25 1.09 4.14 0.52 1.18 2.44 0.48 1.10 2.35

196 -0.78 0.93 2.58 -2.27 1.09 4.49 0.66 1.17 2.19 0.61 1.07 2.08
392 -0.66 0.95 2.41 -2.23 1.15 4.32 0.71 1.20 2.05 0.68 1.08 2.01

δα = 0.3
98 -1.11 0.96 2.79 -2.40 0.95 4.19 0.53 1.15 2.31 0.48 1.11 2.30

196 -0.85 1.00 2.68 -2.65 1.06 4.43 0.66 1.18 2.24 0.63 1.09 2.10
392 -0.67 0.91 2.42 -2.58 1.13 4.42 0.72 1.16 2.04 0.67 1.07 2.05

δα = 0.5
98 -1.18 0.98 3.02 -2.26 1.03 4.36 0.49 1.13 2.33 0.46 1.07 2.12

196 -0.81 1.00 2.78 -2.37 1.05 4.08 0.65 1.17 2.16 0.61 1.08 2.02
392 -0.52 0.90 2.44 -2.57 0.99 4.12 0.73 1.14 1.98 0.68 1.08 1.99
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Model 1 - Slope Coefficient δβ (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 0.16 1.88 3.52 -1.74 2.04 5.04 1.36 2.18 4.09 1.33 2.05 4.05

196 0.41 1.96 3.55 -1.65 2.09 5.48 1.53 2.22 3.89 1.47 2.10 3.74
392 0.32 1.92 3.57 -1.70 2.26 5.66 1.61 2.20 3.76 1.49 2.08 3.68

δα = 0.1
98 -0.25 1.94 3.64 -2.02 2.00 5.40 1.47 2.23 4.06 1.33 2.11 3.69

196 0.12 1.87 3.36 -1.78 2.06 5.34 1.51 2.21 3.87 1.45 2.07 3.63
392 0.56 1.93 3.35 -2.18 2.07 5.26 1.54 2.20 3.62 1.51 2.12 3.71

δα = 0.3
98 -0.31 1.87 3.80 -1.85 2.02 5.56 1.40 2.19 3.94 1.38 2.12 3.87

196 0.09 1.95 3.63 -2.00 2.01 4.98 1.53 2.16 3.69 1.47 2.08 3.58
392 0.32 1.91 3.37 -1.58 2.24 5.74 1.57 2.19 3.71 1.48 2.08 3.62

δα = 0.5
98 -0.15 1.94 4.02 -2.21 2.01 5.49 1.39 2.14 3.93 1.38 2.08 3.68

196 -0.01 1.91 3.75 -2.01 2.09 5.13 1.56 2.17 3.69 1.46 2.08 3.58
392 0.42 1.89 3.35 -1.96 2.05 5.38 1.55 2.16 3.55 1.53 2.06 3.49

Panel D: δβ = 3

δα = 0
98 1.09 2.94 4.87 -0.79 3.08 6.47 2.29 3.21 5.42 2.26 3.08 5.51

196 1.18 2.87 4.69 -0.93 3.09 6.68 2.39 3.20 5.23 2.30 3.05 4.91
392 1.12 2.92 4.64 -0.85 3.30 6.95 2.47 3.23 5.19 2.36 3.05 4.92

δα = 0.1
98 0.97 2.93 4.96 -1.23 3.11 6.57 2.25 3.20 5.55 2.24 3.13 5.14

196 1.09 2.93 4.70 -1.01 3.11 6.74 2.47 3.21 5.24 2.32 3.06 5.05
392 1.29 2.90 4.53 -1.71 3.02 6.58 2.41 3.18 5.22 2.37 3.06 5.10

δα = 0.3
98 0.61 2.82 4.85 -1.31 2.94 6.40 2.27 3.18 5.24 2.20 3.07 5.47

196 1.17 2.89 4.77 -0.58 3.12 7.05 2.39 3.18 5.24 2.32 3.10 5.17
392 1.33 2.93 4.55 -0.54 3.26 6.94 2.47 3.18 5.56 2.32 3.05 4.98

δα = 0.5
98 0.62 2.84 4.96 -1.16 3.03 6.92 2.29 3.13 4.96 2.29 3.10 5.46

196 1.21 2.96 4.81 -1.18 3.14 6.76 2.43 3.18 5.19 2.32 3.09 5.26
392 1.30 2.92 4.57 -1.13 3.14 6.78 2.48 3.18 5.19 2.36 3.08 5.04
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Table 2.5: Model 1 - Coefficient β

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 1.97 2.99 4.00 1.31 2.99 4.69 2.62 3.00 3.37 2.60 3.00 3.42

196 2.03 3.00 3.98 1.37 2.98 4.75 2.70 3.00 3.30 2.71 2.99 3.30
392 2.22 3.01 3.79 1.35 2.97 4.76 2.81 3.00 3.19 2.80 3.00 3.19

δα = 0.1
98 2.03 3.02 4.15 1.42 2.95 4.70 2.57 3.01 3.43 2.57 3.00 3.43

196 2.21 3.02 3.94 1.23 3.00 4.74 2.72 3.00 3.28 2.72 3.00 3.29
392 2.25 3.00 3.81 1.38 3.02 4.85 2.82 3.01 3.20 2.83 3.00 3.20

δα = 0.3
98 1.93 2.98 3.99 1.27 2.91 4.69 2.55 2.99 3.42 2.60 2.99 3.37

196 2.08 2.99 3.80 1.49 3.08 4.83 2.73 2.99 3.31 2.75 2.99 3.26
392 2.27 3.02 3.83 1.37 2.98 4.83 2.81 3.00 3.19 2.84 3.00 3.17

δα = 0.5
98 1.85 3.01 3.98 1.29 3.01 4.64 2.57 3.00 3.41 2.60 3.00 3.38

196 2.15 2.99 3.96 1.26 3.00 4.68 2.73 3.00 3.31 2.74 3.00 3.25
392 2.17 3.01 3.83 1.34 3.03 4.77 2.83 3.01 3.19 2.82 3.01 3.16

Panel B: δβ = 1

δα = 0
98 1.99 3.06 3.95 1.29 3.03 4.67 1.97 2.96 3.34 2.13 2.98 3.39

196 2.22 3.07 3.83 1.25 3.01 4.78 2.05 2.94 3.25 2.18 2.98 3.29
392 2.18 3.05 3.90 1.22 2.95 4.86 2.16 2.97 3.22 2.30 2.99 3.28

δα = 0.1
98 1.88 3.02 3.98 1.21 3.00 4.79 1.97 2.95 3.32 2.14 2.98 3.37

196 2.11 3.03 3.99 1.12 3.00 4.75 2.04 2.95 3.27 2.26 2.98 3.29
392 2.22 3.04 3.81 1.13 2.98 4.73 2.15 2.97 3.25 2.23 2.99 3.27

δα = 0.3
98 1.95 3.05 4.08 1.29 3.10 4.93 2.04 2.95 3.37 2.21 2.98 3.39

196 2.06 3.02 4.03 0.97 3.03 4.75 2.10 2.95 3.28 2.25 2.97 3.28
392 2.23 3.04 3.90 1.28 3.00 4.71 2.15 2.98 3.23 2.21 2.99 3.26

δα = 0.5
98 1.96 3.04 4.17 1.31 3.03 4.80 2.14 2.97 3.37 2.23 2.98 3.36

196 1.95 3.00 3.87 1.33 3.06 4.63 2.14 2.94 3.27 2.23 2.98 3.28
392 2.23 3.05 3.78 1.28 3.03 4.85 2.22 2.98 3.25 2.26 3.00 3.27
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Model 1 - Coefficient β (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 2.05 3.04 4.12 1.29 3.05 4.82 1.55 2.97 3.53 1.56 2.99 3.61

196 2.11 3.04 3.91 1.05 2.96 4.87 1.52 2.95 3.39 1.80 2.98 3.46
392 2.20 3.04 3.86 1.11 2.95 4.73 1.57 2.98 3.36 1.69 2.99 3.45

δα = 0.1
98 2.02 3.08 4.14 1.04 3.09 5.00 1.53 2.93 3.40 1.70 2.97 3.46

196 2.21 3.07 3.94 1.15 3.04 4.78 1.41 2.95 3.41 1.87 2.98 3.49
392 2.27 3.02 3.75 1.08 3.07 5.08 1.67 2.99 3.43 1.61 2.99 3.47

δα = 0.3
98 1.92 3.08 4.21 0.92 3.05 4.87 1.52 2.95 3.44 1.67 2.97 3.48

196 2.11 3.03 3.99 1.33 3.02 4.93 1.72 2.97 3.40 1.82 2.98 3.47
392 2.24 3.05 3.85 1.01 2.96 4.77 1.72 2.98 3.43 1.74 2.99 3.47

δα = 0.5
98 1.97 3.04 4.15 1.03 3.09 5.06 1.68 2.99 3.50 1.75 2.99 3.50

196 2.06 3.06 4.09 1.24 3.06 4.98 1.70 2.98 3.40 1.83 2.99 3.45
392 2.24 3.05 3.83 1.15 3.04 4.94 1.74 2.98 3.42 1.89 3.00 3.42

Panel D: δβ = 3

δα = 0
98 1.93 3.04 4.14 1.04 2.99 4.79 1.54 2.96 3.44 1.49 2.98 3.61

196 2.05 3.06 4.10 1.05 3.01 5.01 1.28 2.96 3.49 1.61 2.98 3.59
392 2.13 3.04 3.94 0.84 2.94 4.94 1.33 2.98 3.50 1.51 3.00 3.61

δα = 0.1
98 1.87 3.03 4.27 1.01 3.03 5.03 1.04 2.96 3.63 1.57 2.99 3.61

196 1.98 3.04 4.15 0.97 3.04 4.91 1.26 2.96 3.48 1.39 2.99 3.58
392 2.15 3.04 3.93 1.03 3.08 5.36 1.45 2.98 3.58 1.64 3.00 3.58

δα = 0.3
98 1.92 3.10 4.26 1.16 3.08 5.16 1.34 2.95 3.57 1.32 2.97 3.62

196 2.05 3.05 3.98 0.85 3.01 4.72 1.20 2.96 3.58 1.43 2.98 3.57
392 2.13 3.03 3.93 0.89 2.95 4.74 1.07 2.98 3.52 1.51 3.00 3.58

δα = 0.5
98 1.95 3.08 4.29 0.99 3.04 5.03 1.52 2.94 3.58 1.31 2.98 3.53

196 1.97 3.05 4.05 0.81 3.02 5.03 1.33 2.97 3.50 1.40 2.99 3.58
392 2.17 3.04 3.96 0.84 2.99 5.01 1.37 2.98 3.47 1.59 3.00 3.61
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Table 2.6: Model 2 - Threshold Parameter (λ0 = 0)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -0.66 -0.02 0.62 -0.65 -0.02 0.63 -0.69 -0.01 0.62 -0.66 -0.05 0.63

196 -0.62 0.00 0.61 -0.58 0.01 0.65 -0.61 -0.01 0.62 -0.60 0.00 0.62
δα = 0.1

98 -0.69 -0.03 0.63 -0.68 -0.04 0.59 -0.65 -0.01 0.60 -0.63 -0.01 0.61
196 -0.63 0.00 0.63 -0.65 0.01 0.61 -0.61 0.00 0.65 -0.63 0.01 0.64

δα = 0.3
98 -0.65 -0.03 0.60 -0.64 -0.02 0.58 -0.63 -0.02 0.57 -0.63 -0.02 0.58

196 -0.61 0.00 0.61 -0.57 0.02 0.62 -0.61 0.01 0.60 -0.60 0.02 0.64
δα = 0.5

98 -0.64 -0.02 0.62 -0.62 0.00 0.57 -0.56 -0.01 0.55 -0.54 0.00 0.56
196 -0.59 0.01 0.59 -0.61 0.01 0.62 -0.56 0.01 0.62 -0.58 0.01 0.63

Panel B: δβ = 1

δα = 0
98 -0.66 -0.01 0.57 -0.65 -0.01 0.62 -0.63 -0.04 0.63 -0.64 -0.02 0.59

196 -0.57 0.00 0.54 -0.58 0.00 0.61 -0.59 0.00 0.61 -0.61 -0.01 0.58
δα = 0.1

98 -0.66 -0.03 0.60 -0.64 -0.03 0.59 -0.62 -0.02 0.55 -0.62 -0.01 0.58
196 -0.59 -0.01 0.56 -0.62 0.00 0.59 -0.63 0.00 0.60 -0.60 0.00 0.61

δα = 0.3
98 -0.64 -0.02 0.52 -0.61 -0.02 0.58 -0.59 -0.02 0.55 -0.59 -0.02 0.59

196 -0.56 0.00 0.55 -0.58 0.00 0.60 -0.57 0.00 0.60 -0.54 0.00 0.61
δα = 0.5

98 -0.61 -0.03 0.51 -0.61 -0.01 0.55 -0.53 -0.01 0.53 -0.56 -0.01 0.51
196 -0.55 0.00 0.56 -0.58 0.01 0.58 -0.56 0.00 0.55 -0.56 0.01 0.59
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Model 2 - Threshold Parameter (λ0 = 0) (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 -0.58 -0.02 0.50 -0.63 -0.03 0.56 -0.62 -0.01 0.55 -0.64 -0.02 0.55

196 -0.48 -0.01 0.45 -0.60 0.00 0.61 -0.61 0.00 0.57 -0.63 -0.01 0.56
δα = 0.1

98 -0.53 -0.03 0.48 -0.64 -0.02 0.60 -0.61 -0.01 0.57 -0.61 -0.02 0.52
196 -0.48 0.00 0.48 -0.58 0.00 0.58 -0.62 -0.01 0.54 -0.57 0.00 0.57

δα = 0.3
98 -0.55 -0.03 0.51 -0.61 -0.02 0.57 -0.53 -0.01 0.52 -0.53 -0.01 0.50

196 -0.49 -0.01 0.44 -0.57 -0.01 0.55 -0.55 0.00 0.58 -0.51 0.00 0.61
δα = 0.5

98 -0.47 -0.02 0.48 -0.53 -0.02 0.50 -0.47 -0.02 0.45 -0.44 -0.01 0.46
196 -0.44 0.00 0.47 -0.54 0.00 0.62 -0.53 0.00 0.55 -0.50 0.00 0.59

Panel D: δβ = 3

δα = 0
98 -0.50 -0.02 0.37 -0.62 -0.02 0.56 -0.59 -0.01 0.51 -0.58 -0.01 0.53

196 -0.39 -0.01 0.33 -0.54 -0.01 0.56 -0.58 0.00 0.56 -0.54 -0.01 0.56
δα = 0.1

98 -0.45 -0.02 0.42 -0.63 -0.03 0.56 -0.59 -0.01 0.52 -0.55 -0.01 0.56
196 -0.35 -0.01 0.38 -0.57 0.00 0.56 -0.57 0.00 0.54 -0.56 0.00 0.54

δα = 0.3
98 -0.47 -0.01 0.39 -0.58 -0.01 0.57 -0.55 -0.01 0.48 -0.48 -0.01 0.47

196 -0.38 -0.01 0.31 -0.51 0.00 0.55 -0.52 0.00 0.56 -0.51 0.00 0.55
δα = 0.5

98 -0.39 -0.01 0.45 -0.56 -0.01 0.51 -0.45 -0.02 0.41 -0.46 -0.02 0.46
196 -0.36 -0.01 0.35 -0.54 0.00 0.56 -0.46 0.00 0.50 -0.50 0.00 0.58
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Table 2.7: Model 2 - Threshold Effect of the SAR Coefficient δα1

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -2.20 -0.01 2.41 -1.71 0.00 1.90 -0.97 0.01 1.01 -0.63 0.00 0.80

196 -3.67 0.06 3.89 -2.68 -0.03 2.42 -1.50 0.00 1.42 -1.08 -0.02 1.02
δα = 0.1

98 -2.35 0.10 2.51 -1.81 0.11 1.73 -0.79 0.10 1.17 -0.52 0.10 0.99
196 -3.54 0.18 4.22 -2.44 0.17 2.66 -1.30 0.11 1.70 -0.87 0.09 0.96

δα = 0.3
98 -2.21 0.25 2.64 -1.42 0.28 2.00 -0.34 0.34 1.56 -0.31 0.32 1.44

196 -3.43 0.30 3.71 -2.36 0.26 2.82 -0.76 0.31 1.63 -0.54 0.31 1.50
δα = 0.5

98 -1.73 0.49 2.78 -1.21 0.45 2.03 -0.25 0.52 1.73 -0.08 0.49 1.48
196 -3.28 0.43 3.65 -2.27 0.49 2.90 -0.55 0.53 2.66 -0.35 0.49 2.06

Panel B: δβ = 1

δα = 0
98 -2.08 -0.04 2.21 -1.56 0.00 1.50 -0.64 0.03 0.86 -0.49 0.02 0.67

196 -3.16 0.02 3.28 -2.22 0.07 2.36 -0.96 0.01 0.91 -0.66 0.02 0.63
δα = 0.1

98 -1.89 0.20 2.50 -1.58 0.17 1.81 -0.60 0.12 0.99 -0.48 0.11 0.91
196 -2.94 0.15 3.60 -2.13 0.16 2.36 -0.79 0.14 1.23 -0.58 0.12 0.92

δα = 0.3
98 -1.99 0.27 2.37 -1.44 0.27 1.85 -0.30 0.32 1.50 -0.14 0.31 1.19

196 -2.60 0.34 3.44 -1.73 0.33 2.54 -0.55 0.35 1.54 -0.33 0.33 1.38
δα = 0.5

98 -2.00 0.42 2.64 -1.19 0.46 2.17 -0.08 0.51 1.52 0.03 0.51 1.48
196 -2.85 0.51 3.63 -2.01 0.47 2.75 -0.33 0.55 1.92 -0.08 0.53 2.17
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Model 2 - Threshold Effect of the SAR Coefficient δα1 (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 -1.69 0.00 1.92 -1.52 0.04 1.58 -0.58 0.01 0.80 -0.39 0.01 0.54

196 -2.49 -0.02 2.62 -2.11 0.06 1.95 -0.63 0.02 0.93 -0.53 0.02 0.63
δα = 0.1

98 -1.72 0.07 1.96 -1.36 0.08 1.56 -0.50 0.11 0.95 -0.33 0.11 0.75
196 -2.65 0.07 3.12 -2.18 0.14 2.31 -0.60 0.15 1.08 -0.44 0.13 0.84

δα = 0.3
98 -1.77 0.27 2.30 -1.35 0.28 1.88 -0.20 0.33 1.22 -0.09 0.33 1.34

196 -2.01 0.35 3.10 -1.80 0.38 2.29 -0.42 0.35 1.44 -0.29 0.33 1.12
δα = 0.5

98 -1.79 0.43 2.48 -1.14 0.48 1.90 -0.02 0.52 1.45 0.10 0.52 1.52
196 -2.53 0.57 3.37 -1.63 0.54 2.66 -0.26 0.55 1.88 -0.03 0.53 1.57

Panel D: δβ = 3

δα = 0
98 -1.76 0.02 1.95 -1.46 -0.03 1.41 -0.46 0.03 0.70 -0.37 0.01 0.56

196 -2.07 0.03 2.48 -2.08 0.05 1.87 -0.53 0.03 0.82 -0.54 0.02 0.64
δα = 0.1

98 -1.57 0.09 1.83 -1.56 0.14 1.76 -0.43 0.12 0.90 -0.35 0.11 0.69
196 -2.51 0.09 2.82 -2.17 0.13 2.16 -0.58 0.13 1.05 -0.49 0.12 0.84

δα = 0.3
98 -1.45 0.31 1.92 -1.21 0.29 1.70 -0.16 0.33 1.17 -0.13 0.31 1.13

196 -1.83 0.32 2.66 -1.79 0.37 2.29 -0.39 0.34 1.27 -0.21 0.33 1.02
δα = 0.5

98 -1.57 0.41 2.44 -1.13 0.44 1.89 -0.06 0.52 1.44 0.18 0.51 1.40
196 -2.26 0.53 3.00 -1.86 0.54 2.47 -0.13 0.53 1.67 -0.02 0.55 1.64
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Table 2.8: Model 2 - SAR Coefficient α2 = 0.4

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -0.77 0.40 1.49 -0.59 0.40 1.28 0.08 0.44 1.10 0.14 0.43 0.93

196 -1.64 0.32 2.29 -0.92 0.34 1.93 -0.34 0.37 1.33 -0.11 0.38 1.29
δα = 0.1

98 -0.71 0.42 1.59 -0.39 0.40 1.29 0.10 0.44 1.06 0.14 0.42 0.92
196 -1.84 0.35 2.19 -1.02 0.32 1.67 -0.44 0.39 1.15 -0.01 0.39 1.10

δα = 0.3
98 -0.92 0.44 1.65 -0.58 0.41 1.29 0.00 0.41 0.98 0.10 0.41 0.90

196 -1.51 0.36 2.30 -0.94 0.37 1.82 -0.31 0.36 1.14 -0.21 0.36 0.97
δα = 0.5

98 -0.86 0.44 1.72 -0.52 0.44 1.38 0.05 0.41 0.96 0.16 0.42 0.93
196 -1.50 0.38 2.25 -1.11 0.37 1.83 -0.76 0.37 1.07 -0.15 0.39 1.02

Panel B: δβ = 1

δα = 0
98 -0.67 0.44 1.69 -0.43 0.38 1.31 0.07 0.42 0.95 0.15 0.41 0.86

196 -1.43 0.34 2.06 -1.01 0.31 1.68 -0.16 0.36 1.12 -0.01 0.37 0.85
δα = 0.1

98 -1.00 0.38 1.57 -0.52 0.38 1.39 0.07 0.41 0.96 0.15 0.42 0.85
196 -1.86 0.34 2.30 -0.97 0.31 1.82 -0.33 0.37 1.08 -0.04 0.37 0.87

δα = 0.3
98 -0.81 0.44 1.72 -0.51 0.43 1.51 -0.01 0.41 0.90 0.12 0.42 0.84

196 -1.52 0.35 1.94 -1.07 0.34 1.64 -0.25 0.36 1.05 -0.10 0.36 0.81
δα = 0.5

98 -0.95 0.44 1.76 -0.61 0.44 1.43 0.00 0.40 0.88 0.15 0.40 0.79
196 -1.75 0.37 2.44 -1.11 0.37 1.81 -0.36 0.38 1.05 -0.27 0.37 0.85
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Model 2 - SAR Coefficient α2 = 0.4 (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 -0.87 0.40 1.40 -0.57 0.38 1.31 -0.01 0.42 0.94 0.16 0.41 0.78

196 -1.09 0.36 2.06 -0.91 0.30 1.75 -0.22 0.37 0.90 -0.07 0.37 0.81
δα = 0.1

98 -0.65 0.41 1.56 -0.51 0.41 1.34 0.09 0.42 1.00 0.11 0.40 0.82
196 -1.69 0.40 2.22 -0.97 0.33 1.81 -0.27 0.36 0.94 -0.05 0.38 0.84

δα = 0.3
98 -0.92 0.42 1.68 -0.68 0.41 1.46 -0.02 0.40 0.88 0.09 0.40 0.86

196 -1.34 0.35 1.84 -0.93 0.31 1.75 -0.39 0.36 1.04 -0.13 0.37 0.85
δα = 0.5

98 -0.89 0.45 1.83 -0.57 0.42 1.41 0.00 0.40 0.87 0.10 0.40 0.83
196 -1.52 0.37 2.47 -1.16 0.34 1.76 -0.40 0.38 1.02 -0.09 0.38 0.85

Panel D: δβ = 3

δα = 0
98 -0.78 0.39 1.60 -0.49 0.41 1.42 0.00 0.40 0.82 0.10 0.41 0.78

196 -1.12 0.35 1.89 -0.96 0.30 1.79 -0.24 0.36 0.86 -0.05 0.38 0.78
δα = 0.1

98 -0.70 0.40 1.53 -0.50 0.39 1.55 -0.07 0.40 0.88 0.09 0.40 0.86
196 -1.46 0.39 2.16 -0.86 0.34 2.02 -0.28 0.38 0.97 -0.10 0.39 0.95

δα = 0.3
98 -0.73 0.38 1.58 -0.65 0.41 1.43 -0.02 0.41 0.93 0.12 0.41 0.85

196 -1.02 0.37 1.89 -1.04 0.30 1.96 -0.30 0.38 1.00 -0.13 0.38 0.82
δα = 0.5

98 -0.99 0.45 1.79 -0.64 0.44 1.55 -0.03 0.40 0.98 0.09 0.40 0.74
196 -1.31 0.38 2.37 -1.11 0.36 2.10 -0.38 0.39 0.98 -0.22 0.38 0.83
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Table 2.9: Model 2 - Slope Coefficient δβ

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 -1.74 0.01 1.68 -2.73 0.03 3.58 -0.77 0.02 0.87 -0.70 0.03 0.78

196 -1.28 -0.01 1.27 -3.01 0.02 2.94 -0.54 0.01 0.50 -0.49 0.01 0.47
δα = 0.1

98 -1.87 0.00 1.59 -3.21 -0.02 3.02 -0.82 0.01 0.91 -0.75 0.02 0.69
196 -1.41 0.01 1.33 -2.91 -0.02 2.71 -0.56 0.01 0.53 -0.45 0.00 0.48

δα = 0.3
98 -1.76 0.05 2.01 -3.11 0.01 3.29 -0.78 0.00 0.75 -0.83 0.01 0.72

196 -1.40 0.01 1.40 -3.10 -0.01 3.02 -0.51 -0.01 0.49 -0.48 0.00 0.50
δα = 0.5

98 -1.79 0.05 1.98 -3.81 -0.06 3.75 -0.82 -0.02 0.80 -0.70 -0.03 0.72
196 -1.18 -0.01 1.45 -3.18 -0.02 3.37 -0.52 0.00 0.56 -0.54 0.00 0.48

Panel B: δβ = 1

δα = 0
98 -0.65 0.95 2.73 -2.27 0.93 4.11 0.46 1.12 2.50 0.39 1.09 2.35

196 -0.34 0.94 2.29 -1.85 0.92 4.24 0.60 1.09 2.00 0.62 1.08 2.09
δα = 0.1

98 -0.84 0.92 2.51 -2.59 0.96 4.37 0.43 1.08 2.36 0.43 1.07 2.55
196 -0.53 0.92 2.28 -2.07 0.95 4.28 0.60 1.11 2.21 0.63 1.09 2.02

δα = 0.3
98 -0.86 0.91 2.72 -2.24 0.90 4.33 0.37 1.06 2.33 0.43 1.04 2.27

196 -0.44 0.90 2.31 -2.26 0.93 4.22 0.61 1.09 2.04 0.63 1.10 2.06
δα = 0.5

98 -1.06 0.95 3.03 -2.92 0.98 4.85 0.37 1.06 2.27 0.30 1.05 2.08
196 -0.46 0.91 2.31 -3.08 0.88 4.33 0.61 1.09 2.16 0.60 1.07 2.08
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Model 2 - Slope Coefficient δβ (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 0.15 1.87 3.61 -1.70 1.83 4.96 1.38 2.12 3.94 1.37 2.12 3.88

196 0.62 1.90 3.25 -0.82 1.91 5.54 1.54 2.14 3.91 1.52 2.13 3.91
δα = 0.1

98 -0.11 1.86 3.55 -2.34 1.81 5.24 1.37 2.14 4.05 1.41 2.13 3.95
196 0.29 1.88 3.33 -1.40 1.83 5.04 1.56 2.13 4.02 1.54 2.13 3.98

δα = 0.3
98 -0.22 1.80 3.68 -2.79 1.89 5.56 1.38 2.12 3.87 1.36 2.05 3.72

196 0.65 1.91 3.33 -1.13 1.85 5.28 1.58 2.13 3.97 1.60 2.10 3.83
δα = 0.5

98 -0.47 1.96 4.56 -2.69 1.83 6.16 1.39 2.08 3.57 1.36 2.06 3.58
196 0.36 1.87 3.47 -1.85 1.82 6.00 1.52 2.10 3.84 1.54 2.10 3.84

Panel D: δβ = 3

δα = 0
98 1.00 2.83 4.74 -0.75 2.81 6.25 2.25 3.19 5.50 2.38 3.11 5.55

196 1.34 2.92 4.29 -0.54 2.83 6.38 2.42 3.15 5.68 2.48 3.16 5.61
δα = 0.1

98 0.94 2.89 4.79 -1.02 2.99 6.78 2.34 3.16 5.73 2.31 3.14 5.88
196 1.14 2.84 4.34 -0.58 2.77 6.80 2.46 3.12 5.92 2.53 3.12 5.58

δα = 0.3
98 0.64 2.80 4.82 -1.39 2.85 6.37 2.36 3.12 5.82 2.33 3.11 5.48

196 1.41 2.89 4.42 -0.60 2.78 6.89 2.49 3.13 5.60 2.52 3.11 5.40
δα = 0.5

98 0.24 2.95 5.54 -2.43 2.83 7.78 2.34 3.09 5.25 2.41 3.10 5.17
196 1.13 2.84 4.54 -1.82 2.82 6.63 2.52 3.09 5.45 2.54 3.13 5.52
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Table 2.10: Model 2- Coefficient β

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: δβ = 0

δα = 0
98 2.11 3.00 3.98 1.19 2.97 4.53 2.55 2.99 3.44 2.59 2.99 3.39

196 2.27 3.00 3.64 1.53 3.00 4.57 2.70 3.00 3.30 2.70 3.00 3.31
δα = 0.1

98 2.16 3.01 3.97 1.51 3.02 4.59 2.55 3.00 3.52 2.55 3.00 3.44
196 2.26 2.98 3.74 1.60 3.03 4.55 2.68 3.00 3.29 2.70 3.00 3.26

δα = 0.3
98 1.89 2.95 3.95 1.28 2.98 4.63 2.53 2.98 3.43 2.55 2.98 3.42

196 2.26 2.99 3.70 1.53 3.01 4.58 2.71 3.01 3.31 2.71 3.01 3.29
δα = 0.5

98 1.92 2.96 4.00 1.19 3.04 4.79 2.57 3.00 3.42 2.58 3.00 3.42
196 2.25 2.99 3.70 1.31 3.02 4.67 2.68 3.00 3.31 2.73 3.00 3.27

Panel B: δβ = 1

δα = 0
98 2.04 3.05 3.85 1.30 3.07 4.61 1.90 2.97 3.37 2.23 2.97 3.40

196 2.25 3.04 3.73 1.31 3.04 4.48 2.28 2.98 3.30 2.30 2.98 3.29
δα = 0.1

98 2.16 3.05 3.98 1.16 3.04 4.80 2.17 2.98 3.41 2.04 2.98 3.38
196 2.30 3.04 3.80 1.24 3.04 4.59 2.21 2.97 3.27 2.28 2.98 3.27

δα = 0.3
98 2.10 3.03 3.95 1.25 3.04 4.61 2.27 2.98 3.40 2.26 2.98 3.39

196 2.28 3.04 3.72 1.22 3.06 4.66 2.22 2.97 3.29 2.19 2.97 3.27
δα = 0.5

98 1.93 3.02 4.12 0.98 3.03 5.23 2.32 2.99 3.35 2.41 2.99 3.38
196 2.25 3.05 3.78 1.25 3.05 5.07 2.22 2.96 3.26 2.22 2.97 3.26

85

ANTRI C
. K

ONSTANTIN
ID

I



Model 2 - Coefficient β (Continued)

n 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel C: δβ = 2

δα = 0
98 2.09 3.08 4.03 1.30 3.14 4.84 1.55 2.97 3.49 1.57 2.98 3.48

196 2.27 3.04 3.82 1.32 3.06 4.39 1.61 2.96 3.35 1.66 2.98 3.40
δα = 0.1

98 2.09 3.10 4.09 1.34 3.14 4.96 1.72 2.96 3.47 1.70 2.98 3.43
196 2.23 3.07 3.93 1.25 3.10 4.69 1.61 2.98 3.40 1.58 2.97 3.37

δα = 0.3
98 2.06 3.09 4.21 0.85 3.07 5.43 1.62 2.96 3.41 1.98 2.98 3.44

196 2.24 3.06 3.77 1.09 3.13 4.62 1.41 2.95 3.35 1.63 2.96 3.29
δα = 0.5

98 1.61 3.00 4.37 0.86 3.09 5.57 2.02 2.97 3.36 2.03 2.98 3.36
196 2.18 3.05 3.89 0.82 3.08 4.96 1.58 2.97 3.31 1.52 2.96 3.29

Panel D: δβ = 3

δα = 0
98 2.05 3.10 4.13 1.04 3.12 4.77 1.41 2.95 3.53 1.34 2.98 3.44

196 2.22 3.05 3.92 0.96 3.12 4.85 1.13 2.97 3.37 1.08 2.96 3.43
δα = 0.1

98 1.97 3.07 4.19 0.88 3.06 4.98 1.22 2.94 3.51 1.02 2.95 3.45
196 2.23 3.07 4.04 0.99 3.14 4.81 0.91 2.97 3.36 1.14 2.97 3.34

δα = 0.3
98 1.88 3.08 4.30 1.14 3.12 5.31 1.35 2.95 3.47 1.56 2.96 3.41

196 2.18 3.05 3.94 0.91 3.10 4.88 1.05 2.96 3.34 1.21 2.95 3.34
δα = 0.5

98 1.52 3.01 4.48 0.52 3.10 5.63 1.68 2.97 3.40 1.82 2.97 3.38
196 2.13 3.08 4.03 1.13 3.09 5.45 1.21 2.96 3.29 1.04 2.96 3.30
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Chapter 3

Inference in Threshold Regression

after Model Selection

3.1 Introduction

The problem of model uncertainty is pervasive in economic applications because eco-

nomic theory does not provide strong guidance about the variables to be included

in the model mainly because the relevant theories are openended. That is, in many

economic contexts there do not exist good theoretical reasons to include a particular

set of theories or proxies a priori because these theories or proxies provide mutually

compatible explanations of the underlying economic phenomenon. Brock and Durlauf

(2001b) introduced the concept of openendedness who argued that this problem makes

the coefficient estimates of interest fragile (Leamer (1978)). This means that inclusion

or exclusion of a variable can result in substantial changes in magnitudes, loss of statis-

tical significance, or, even switch signs. A standard approach to model uncertainty is to

engage in model selection based on a post-single approach, that is, apply a conservative

test or a selection criterion or a shrinkage and selection method in high-dimensional

contexts (e.g., lasso) and then reestimate the model. However, these model selection

methods do not explicitly address the impact of model uncertainty on inference and

under certain cases they can give rise to misleading inference (e.g., Hansen (2005), Leeb

and Potscher (2008), Potscher (2009)).

In this chapter, we are interested in making inference on threshold regression when

there is uncertainty about the set of relevant regressors. A threshold regression model

classifies observations into regime-specific models depending on whether the observed

value of a threshold variable is above or below a threshold parameter. Usually, each
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regime obeys a linear model, although it can be extended to other nonlinear functions

as well. Both the regression coefficients and the threshold parameter are estimated by

the data. This model has been widely applied to various micro and macro contexts.

For example, Durlauf and Johnson (1995) and Tan (2010) in cross-country growth

behavior; Papageorgiou (2002) and Glushenkova, Kourtellos, and Zachariadis (2018)

in trade; Durlauf, Kourtellos, and Tan (2017) in intergenerational mobility; Hansen

(2017) in public debt. However, issue of model uncertainty was never been explicitly

addressed in these studies.

Of course, the idea of incorporating model uncertainty within threshold regressions

framework is not a new one. Kapetanios (1999) used information criteria to select the

lag order in SETAR models. Lee, Seo, and Shin (2016) developed a LASSO estimator

which both selects covariates and estimates the threshold parameter γ. These selection

methods may work well when the coefficient on the nuisance or control variable is either

“considerably away from zero” or “negligibly different from zero”. However, when it is

“moderately close to zero” then such post-single approaches can give rise to substantial

size and power distortions in the threshold effect test.

We propose that the post-double selection method of Belloni, Chernozhukov, and

Hansen (2011, 2014) (hereafter, referred to as BCH) can be applied in constructing

a threshold test, which is valid under model uncertainty. BCH developed their method

in the context of treatment effects. The ideas of post-double selection method is based

on the partialling out technique of Frisch-Waugh-Lovell in the linear setting, the Ney-

man’s C(α) test in the nonlinear setting (Neyman (1979)), and Robinson (1988) in the

semi-parametric setting. In particular, we extend the post-double method to threshold

regression, which can be viewed as a regression discontinuity model with an unknown

discontinuity point (Yu (2014)). One challenge is that under the null of no thresh-

old effects the threshold parameter (sample split value) is not identified. This makes

the inference not standard even before one considers the issue of model uncertainty.

Nevertheless, we show that the post-double procedure can still be successfully applied

to construct moment conditions that are immune to model selection. In this way we

address the issue of model uncertainty.

The chapter is organized as follows. Section 3.2 illustrates the problem of post-single

approach in a simple threshold model and how the post-double approach can be applied

to solve this issue. Section 3.3 presents our model and provides theoretical results of

the post-double approach. Section 3.4 presents our Monte Carlo experiments. Section

3.5 concludes and discusses future work.
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3.2 Implications of model selection

We begin our analysis by illustrating the problem of inference on threshold effects in the

context of threshold regression when there is uncertainty about the set of regressors.

To fix ideas we illustrate this problem in an idealistic environment of poverty traps

where the entire family dynasty of child becomes trapped in a low-income regime

when the parent’s permanent income is below a certain threshold value conditional

on some variables that captures family or neighborhood environment. Similarly, the

entire family dynasty of child always remains in the high-income regime when parent’s

permanent income is above a threshold value. Such threshold type models are implied,

for example, by the existence of borrowing constraints (e.g., Galor and Zeira (1993)

and Han and Mulligan (2001)) or from the existence of social influences in models

with strict stratification of neighborhoods by income (e.g., Benabou (1996), Durlauf

(1996a), Durlauf and Seshadri (2018)). Our problem is that we wish to make inference

on the presence of poverty trap but economic theory does not identify exactly the

set of control variables. For instance, these variables may include proxies related to

segregation, income distribution, local public finance institutions, early education, K-12

education, college education, local labor market, family structure, social capital.

In particular, let the dependent variable yi denote the child’s permanent income and

let the threshold variable qi denote the parent’s permanent income. Consider a simple

threshold model that allows for such poverty traps using different intercepts depending

on whether parent’s income is above or below an unknown threshold parameter γ

yi = θ0 + awi + δ0di(γ0) + ei, i = 1, ..., n (3.1)

where di(γ0) = 1{qi ≤ γ0} is an indicator function that takes the value 1 if qi ≤ γ0 and

0 otherwise and wi is a scalar variable that captures the environment in which children

develop. δ0 = ζ0− θ0 is the difference between the regime specific intercepts. ei|(wi, qi)
is i.i.d from N(0, σ2

e) and {yi, wi, qi}ni=1 is an i.i.d sample from a DGP Pn, where the

means and variances of yi, wi, qi are normalized to be zero and one, respectively.

In this chapter we are concerned with testing the null hypothesis H0 : δ0 = 0 when there

is uncertainty about the inclusion of wi. The standard post-single-selection method for

inference applies a model selection method to (3.1) and then reestimates the model

and makes inference on δ0 accordingly. Note that the threshold parameter of γ0 can

be estimated by a concentrated least squares method. Under certain assumptions the

asymptotic distribution of the estimator of γ0 involves two independent Brownian mo-

tions and the confidence intervals for γ0 can be obtained by an inverted likelihood ratio

approach (Hansen (2000)). The regression coefficients for the two regimes are then ob-

tained using least-squares estimation on the two sub-samples, separately, with standard
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asymptotic theory. Under the null hypothesis of a linear model (i.e., no threshold ef-

fect), the threshold parameter, γ, is not identified, and hence inference is not standard.

Hansen (1996) proposed a bootstrap procedure under which the bootstrap statistic

approximates the asymptotic distribution and hence p-values constructed from the

bootstrap are asymptotically valid assuming correct specification and no uncertainty

about the inclusion of wi. What happens to the properties of this bootstrap test when

one first engages in the selection of wi?

3.2.1 Post-single selection

We first explain the problem of the standard post selection method assuming γ0 is

known using standard omitted variable arguments as in BCH. Then, the argument

trivially carries over to the case of estimated threshold parameter γ0 since the bootstrap

method of Hansen (1996) will be invalid. This is because the bootstrap supLR test will

no longer be valid as it will based on an inconsistent conditional distribution function

and hence it will no longer mimic well the asymptotic distribution of the t-test of δ0.

Without loss of generality assume that γ0 is known and

di(γ0) = κwi + ui (3.2)

where ui|wi is i.i.d. from N(0, σ2
u) and ui is independent of ei. This also implies that

σ2
d = κ2σ2

w + σ2
u. Finally, let cn = σe

σw
√

1−ρ2
, where n is the sample size and ρ = κσw

σd

is the correlation between di(γ0) and wi. We assume that (3.1) and (3.2) hold for the

collection of all DGPs Pn ∈ P .1

The nuisance variable wi affects both directly the outcome variable yi and indirectly

via its effect on the threshold variable in equation (3.2). In the presence of uncertainty

about the inclusion of wi, standard post-single selection method will exclude wi with

probability 1 if

|a| ≤ n−1/2lncn, for some ln →∞, (3.3)

and include wi with probability 1 if

|a| > n−1/2lncn, for some l′n > ln, (3.4)

where ln and l′n are slowly varying sequences. These sequences are important because

they determine the behavior of the δ̂(γ0).

1We assume that all true parameter values and the DGP may change with the sample size n to
capture the idea of a close to zero coefficient.
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In particular, when a is large enough so that there exist sequences of models Pn such

that (3.4) holds, wi is included with probability one and standard inference based on

asymptotic normality is valid. Similarly, when a = o(1/
√
n), and ρ is bounded away

from one then wi is excluded with probability one and again standard inference based

on asymptotic normality is valid because the omitted variable bias due to the exclusion

of regressor is small enough.

However, there are plausible sequences of DGPs where post-single selection generates

substantial omitted variable bias. For example, consider the case when the coefficient

on the uncertain regressor wi is “moderately close to zero”, that is, a = ln√
n
cn. In this

case, standard conservative inference (e.g., t-test) will exclude wi with probability one.

Note that √
n(δ̂(γ0)− δ0)

σn
=

√
nEn(di(γ0)ei)

σnEndi(γ0)2︸ ︷︷ ︸
(i)

+

√
nEn(di(γ0)wi)a

σnEndi(γ0)2︸ ︷︷ ︸
(ii)

(3.5)

where σ2
n = σ2

e/σ
2
d. While term (i)

d→ N(0, 1), |(ii)| ≥ 1
2
|ρ|

1−ρ2 ln ∝ ln → ∞. This

implies that the standard post-selection estimator is neither asymptotically normal

nor
√
n-consistent ∣∣∣∣∣

√
n(δ̂(γ0)− δ0)

σn

∣∣∣∣∣→∞.

3.2.2 Post-double selection

In this chapter we show that a post-double procedure proposed by BCH can be adapted

to provide robust inference for the threshold effect in the sense that the threshold test

is not sensitive to inclusion or exclusion of the control variable wi. As discussed in the

introduction the post-double procedure is based on the idea of partialling out technique

of Frisch-Waugh-Lovell theorem.

To see this, first consider the case of known γ0. The post double procedure works as

follows:

Step 1: Select to include wi if it is a significant regressor of yi based on a conservative

t-test in model (3.1) .

Step 2: Select to include wi if it is a significant regressor of di(γ0) based on a conser-

vative t-test in model (3.2) .

Step 3: If wi is selected in at least one of steps 1 and 2 use model (3.1) otherwise use

model

yi = θ + δdi(γ0) + ei (3.6)
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to make inference on δ.

Therefore, the post double procedure implies that we exclude wi with probability 1 if

both

|a| < l′n√
n
cn and |κ| < l′n√

n
(σu/σw), (3.7)

which means that to exclude wi we require both |a| = Op(
1√
n
) and |κ| = Op(

1√
n
). So

when wi is excluded, the omitted variable bias is negligible |ii| ≤ 2 l′2n√
n
→ 0, and hence

the post-double estimator δ̃(γ0) is consistent and asymptotically normal
√
n(δ̃(γ0)−δ0)

σn
→

N(0, 1), as n→∞ regardless of whether wi is included or excluded.

In other words, the post-double procedure constructs moment conditions for the pa-

rameter of interest δ0 that are robust to misspecification, in the sense that they have an

immunization condition. That is, we can estimate the empirical analog of the moment

condition M(δ0, a) = 0, where δ0 is the parameter of interest and a is the nuisance

parameter and enjoy the property that

dM(δ0, a)

da
= 0, (3.8)

which means the moments are locally unaffected by minor perturbations of the nuisance

parameter around the true parameter values.

We can obtain more intuition by illustrating the above immunization property in the

context of model (3.1). In doing so, note that the above procedure can be viewed as

an application of the Frisch-Waugh-Lovell theorem.

1. Regress yi on wi and obtain residuals ũy.

2. Regress di(γ0) on wi and obtain the residuals ũd(γ0).

3. Regress ũy on ũd(γ0).

Then, for the known γ0 the resulting moment condition is

E((ũy − ũd(γ0)δ0)ũd(γ0)) = 0 (3.9)

which is the empirical analog of

M(δ0, a) = E([(yi − E(yi|wi)) − (di(γ0) − E(di(γ0)|wi)δ0)][di(γ) − E(di(γ0)|wi)]), for

which the derivative of the moment condition is free of a

dE([(yi − E(yi|wi))− (di(γ0)− E(di(γ0)|wi)δ0)][di(γ0)− E(di(γ0)|wi)])
da

|a=a0 = 0.

(3.10)
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Hence, when estimation and inference is based on the empirical analog of moments

M(δ0, a), post double procedure implies that dM(δ0,a)
da

= 0. In this sense, inference on δ

is immune from model uncertainty.

In threshold regressions, however, the threshold parameter γ is unknown and it is

estimated. In this case, we do not have di(γ) but d̂i = di(γ̂) and the moment condition

(3.9) is replaced by E([(yi − E(yi|wi)) − (d̂i − E(d̂i|wi)δ0)][d̂i − E(d̂i|wi)]. If we show

that E(d̂i − E(d̂i|wi))
p→ E(di(γ) − E(di(γ)|wi)), then the condition (3.8) will hold

in the case of the threshold regressions framework as well. However, we do not know

if there is a threshold effect or not. In the case of a threshold effect then E(d̂i −
E(d̂i|wi))

p→ E(di(γ0) − E(di(γ0)|wi)), while in a linear model E(d̂i − E(d̂i|wi))
p→

di(γ
∗)− E(di(γ

∗)|wi), where γ∗ is a random variable.

In the next section, we show that the threshold parameter estimator obtained by a lin-

ear model indeed converges in distribution to a random variable γ∗ and that the above

immunization property carries over to case of estimated γ. Therefore, the results of

post-double selection are naturally extended to threshold regressions. Next, we proceed

to formally define the threshold regression model and the post-double procedure.

3.3 The threshold model

We start by generalizing model (3.1) to include the focus (k−1)×1 vector of regressors

xi in addition to the doubtful scalar regressor wi

yi =

{
a1wi + ϑ′1xi + ei, qi ≤ γ,

a2wi + ϑ′2xi + ei, qi > γ,
(3.11)

where qi can be part of xi or the same as wi. It is useful to rewrite model (3.11)

as a single equation. Define hi = [xi, wi]
′, hi(γ) = [xi1{qi ≤ γ}, wi1{qi ≤ γ}]′, and

θ = [ϑ, a]′, and δ = [δ1, δ2]′ then

yi = θ′hi + δhi(γ) + ei (3.12)

where E(ei|hi, qi) = 0.

In our case the parameters of interest are ϑ1, ϑ2 (or ϑ and δ1 equivalently) and the

nuisance parameters are a and δ2. Hence,we are interested in testing

H0 : δ1 = 0 vs. H1 : δ1 6= 0 (3.13)

when one engages in selection of the doubtful regressor wi. It is important to point
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out that the uncertainty about the inclusion of wi may affect the presence of threshold

effects, since imperfect model selection may lead to substantial omitted variable bias,

which in turn will result to inconsistent conditional distribution function.

3.3.1 Post-double procedure

Consider the auxiliary system of k − 1 regression equations

xi(γ) = W ′
iΠ + Ui, (3.14)

where E(Ui|Wi) = 0 and Wi = diag{wi, ...., wi}.2

Step 1: Select to include wi if it is a significant regressor of yi based on a conservative

joint Wald test in model (3.11), i.e.,

H0 : a1 = a2 = 0 vs. H1 : Not H0 (3.15)

Step 2: Select to include wi if it is a significant regressor of xi(γ̂) based on a conser-

vative joint Wald test in the SUR model (3.14), i.e.,

H0 : Π = 0 vs. H1 : Π 6= 0, (3.16)

Step 3: If wi is selected in at least one of steps 1 and 2 use model (3.12) otherwise

use model

yi =

{
ϕ′1xi + ei, qi ≤ λ,

ϕ′2xi + ei, qi > λ,
(3.17)

to make inference on δ1.

3.3.2 Inference in Step 1

In the first step test, we perform a test for the inclusion of wi in our model, which will

be later tested for threshold effects. Consequently, we do not know a priori if we have

a linear or a threshold model and we do not want to put any extra restrictions on ϑ1

and ϑ2.

Therefore it is important that the inference on wi should be valid regardless of whether

the true model is linear or threshold model. We are going to show that the inference

2Equivalently, we can estimate the system equation-by-equation.
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on wi in step 1, is valid both in the presence and absence of threshold effects in the rest

parameters. The following assumption is necessary to derive the asymptotic properties

of Step 1 test. Let M(γ) = E(hih
′
i1{qi ≤ γ}), D(γ) = E(hih

′
i|qi = γ) and V (γ) =

E(hih
′
ie

2
i |qi = γ) and f(q) the density function of qi,γ0 the true value of γ, D = D(γ0),

V = V (γ0), f = f(γ0) and M = E(hih
′
i).

Assumption 1

1.1 (hi, qi, ei) is i.i.d.

1.2 E(ei|Fi−1) = 0.

1.3 E|hi|2r <∞ and E|hiei|2r <∞.

1.4 For all γ ∈ Γ, E(|hi|2r|qi = γ) ≤ C and E(|hi|2re2r
i |qi = γ) ≤ C for some C <∞,

f(γ) ≤ f̄ <∞.

1.5 f(γ), D(γ), V (γ) are continuous at γ = γ0.

1.6 δn = c−αn with c 6= 0, 0 < α < 1
2
.

1.7 c′Dc > 0, c′V c > 0 and f > 0.

1.8 M > M(γ) > 0 for all γ ∈ Γ.

Assumption (1.1) is an assumption for the dependence. Assumption (1.2) guarantees

the correct specification of the conditional mean. Assumptions (1.3) and (1.4) are un-

conditional and conditional moment bounds. Assumption (1.5) requires the threshold

variable to have a continuous distribution, and the conditional variance to be con-

tinuous at γ, which excludes regime-dependent heteroskedasticity. Assumption (1.6)

states that the difference in regression slopes gets small as the sample size increases

(we are taking an asymptotic approximation valid for small values of δn) and allows us

to reduce the rate of convergence, in order to derive a simpler asymptotic distribution.

Assumption (1.7) is a full-rank condition needed to have nondegenerate asymptotic

distributions. Assumption( 1.8) is a conventional full-rank condition which excludes

multicollinearity.

Since we are agnostic about the presence of threshold effects, we need to keep in mind

that the asymptotic behavior of γ̂ will depend on whether the true model is linear

or threshold. The following Proposition describes the asymptotic distribution in each

case.

Proposition 3.1 Under Assumption 1, H0 : a1 = a2 = 0 and E(ei)
4 < κ < ∞ we

have:

95

ANTRI C
. K

ONSTANTIN
ID

I



1. n1−2α(γ̂ − γ0)
d−→ ωT when ϑ1 6= ϑ2.

2. γ̂
d−→ γ∗ = F−1

q (λ∗) when ϑ1 = ϑ2.

where ω = C′V C
(C′DC)2f

, T = argmax−∞<r<∞[−1
2r+W (r)], F(.) denoting the distribution func-

tion of qi and I(qi ≤ γ) ≡ I(F (qi) ≤ λ), λ̂
d−→ λ∗ and λ∗ = argmax

λ∈[λ,λ]
B′u(1, λ)Bu(1, λ) +

(E
1/2
xx′Bu(1)−E1/2

xx′,γBu(1, λ)′(Exx′−Exx′,γ)−1(E
1/2
xx′Bu(1)−E1/2

xx′,γBu(1, λ)) and Exx = E(x′ixi)

and Exx,γ = E(x′ixi1{qi ≤ γ}).

The first result is the standard result in threshold regressions as it was shown in Hansen

(2000). The second result, shows that the threshold parameter estimated while the

true model is linear, converges in distribution to an argument that maximizes a linear

combination of squares of Brownian bridges.

Next, we construct the Wald statistic and derive its asymptotic distribution under the

two alternative cases:

Wn(γ̂) =
(R′β̂)′(R′(X(γ̂)′X(γ̂))−1R)−1(R′β̂)

s2
(3.18)

where R is a selection matrix, γ̂ is the γ estimated under the null, s2 is the residual

variance calculated under the alternative, β̂ = [ϑ, a, δ1, δ2] and X(γ) is the matrix with

stacked elements [xi1{qi ≤ γ}, wi1{qi ≤ γ}, xi1{qi > γ}, wi1{qi > γ}].

The following Proposition, shows us that irrespectively of the presence of threshold

effects or not, the Wald statistic converges in distribution to a chi-squared distribution.

Proposition 3.2 Under Assumption 1, H0 : a1 = a2 = 0, E(ei)
4 < κ <∞ and α < 1

4
:

Wn(γ̂)
d−→ χ2

2 (3.19)

holds if

1. ϑ1 6= ϑ2.

2. ϑ1 = ϑ2 and ei is independent of xi.

Hence, the Wald test is valid and the BCH method carries over to threshold regressions

framework.
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In the next section, we assess the performance of the Wald statistic in finite samples.

Furthermore, we perform two Monte Carlo experiments to highlight the implications

of the post single selection method on the size of the test, and the performance of the

proposed post double selection method.

3.4 Monte Carlo

In this section we show that the standard post-single selection can have adverse con-

sequences in the bootstrap threshold test approach of Hansen (1996) both in terms of

size and power. We also provide evidence that a post-double approach restores the

properties of the bootstrap threshold test.

Consider the following data generating process which represents a linear model

yi = a1wi + ϑ′1xi + ei, qi ≤ γ

yi = a2wi + ϑ′2xi + ei, qi > γ
(3.20)

and

qi = cwi + vi (3.21)

where v1i ∼ N(0, 0.01), xi = [1, x1i], x1i ∼ N(0, 1) , wi ∼ N(0, 1), ei ∼ N(0, 0.25),

ϑ1 = ϑ2 = (2, 2)′, a1 = a2 = 0, c = 0.8.

Furthermore, consider the data generating process that represents a threshold regres-

sion model

yi = a1wi + ϑ′1xi + ei, qi ≤ γ

yi = a2wi + ϑ′2xi + ei, qi > γ
(3.22)

and

qi = cwi + vi (3.23)

where v1i ∼ N(0, 0.01),xi = [1, x1i], x1i ∼ N(0, 1) , wi ∼ N(0, 1), ei ∼ N(0, 0.25),

ϑ1 = (3, 3),ϑ2 = (2, 2)′, a1 = a2 = 0, c = 0.8.

Table (3.1) shows the size of the test of the null hypothesis H0 : a1 = a2 = 0 for

different sample sizes (n=100,250, 500). The number of simulation draws were 1000.

We can see that in both cases of a linear and a threshold model, the size of the test is

very close to 0.05. We, further assess the power of the test by varying a. Table (3.1)

displays also the results of this exercise. As the magnitude of a increases, the power

of the tests becomes larger and approaches 1 in both linear and threshold regression.
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Note that a changes with the sample size so we can not comment about the power as

the sample size increases because a decreases.

Having shown that the first step step is valid without the need of knowledge for the

presence or not of threshold effects, we now return to the post single selection method

and its implications on the size of the test.

We are considering two different data generating processes in order to justify our con-

cerns about typical post selection procedure. We are trying to capture cases in which

the regressor for which we face uncertainty is correlated with the regressors that they

should be included and the threshold varible in order to create omitted variable bias of

a significant amount that will affect the inference for threshold effects. In the first data

generating process, the regressor of question is both correlated with threshold effects

and the regressor that should be included, while in the second is correlated ony with

the threshold effect. We use 1000 simulations and consider three different sample sizes

n = 100, 250, 500.

For the first DGP, we face uncertainty about the inclusion of threshold variable qi as

a regressor, which is also correlated with x1i

yi = 2 + 2x1i + awi + (δo + δ1x1i + δ2wi)(1{γ}) + ei

x1i = cwi + vi

where ei ∼ N(0, 1), vi ∼ N(0, 1), qi ∼ N(0, 1) and wi = qi.

We control the degree of correlation between wi and x1i by varying c. Furthermore,

we vary a, the coefficient of wi in DGP. 3 In the left panel of Table (3.2), the size of

the test after post single procedure is presented. As a increases the distortion of the

size increases, because the omitted variable bias increases. As c increases, hence the

correlation with the included regressor x1i increases, the distortion of the size decreases,

since the effect of wi is captured from x1i.

In our second DGP, wi is correlated with qi through the equation qi = cwi + vi, hence

the omitted variable bias will occur due to the correlation with the threshold effect

yi = a1wi + ϑ′1xi + ei, qi ≤ γ

yi = a2wi + ϑ′2xi + ei, qi > γ

3We tried several values of a and we present those that created distortion of the size. Higher
values, for example a = 7√

n
did not create distortion of the size because their effect was large enough

to be chosen from the first step size, while cases with lower values such as a = 1
4
√
n

did not create

substantial bias that would affect inference.
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and

qi = cwi + vi

where vi ∼ N(0, 0.01), x1i ∼ N(0, 1) , wi ∼ N(0, 1), ei ∼ N(0, 0.25).

We vary a and c as before. The results are displayed in the left panel of Table (3.2).

It is worth noting that when c = 0 we do not observe any distortion of the size. This

is the case where the regressor for which we face uncertainty is not correlated with

none of the regressors we are interested in conducting inference and hence no omitted

variable bias arises. Overall, we can see that the distortion of size is higher for higher

values of c, since the omitted variable bias increases. As a increases we observe increase

and then decrease probably due to the fact that 4√
n

is in some times chosen due to its

magnitude.

We have shown that under model uncertainty, the standard model selection method

may lead to large omitted variable bias, which in turn will affect the size of the threshold

test.

We have assesed the size of the test through the previous Monte Carlo simulations.

The results for DGP 1 and DGP 2 are presented in the right panels of Table (3.2). For

both DGP’s, the distortion of the size is minimized and in some cases even eliminated.

Overall, the results seem to be better for DGP 1. The reason is that wi is correlated

with both x1i and the threshold effect through qi, hence it is more possible to be chosen

in the second step, thus less possible for omitted variable bias to arise.

We assess the performance of the method in terms of power as well. The results are

displayed in Table (3.3) for each data generating process. When the threshold effect

increases, the power of the test increases as expected. Morever for a given value of

the threshold effect, the power of the test increases as the sample size increases, as

expected.

3.5 Conclusion and Future Work

This chapter contributes to the literature of threshold regression by proposing a thresh-

old test which is valid in the presence of uncertainty about the set of relevant regressors.

We show that standard post-single selection practices can have adverse consequences

in the bootstrap threshold test approach of Hansen (1996) both in terms of size and

power. Following Belloni, Chernozhukov, and Hansen (2011, 2014), we propose a post-

double selection that constructs moment conditions for the threshold effect that are

robust to misspecification, in the sense that they have an immunization condition. Fi-
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nally, a Monte Carlo simulation illustrates that post-double selection restores the size

and the power of the bootstrap threshold supWald test.

In terms of future work, we believe that our proposed paper is immediately applicable

to a wide range of questions with broad policy significance such as in intergenerational

mobility, child development literature, and cross-country growth studies as discussed

in the introducation. Methodologically, a natural extension of this paper is to consider

a high dimensional regression model with a possible threshold along the lines of Lee,

Seo, and Shin (2016) who propose a method of estimating and selecting relevant control

variables from a set of many potential covariates. Another fruitful avenue to deal with

model uncertainty is to generalize existing model averaging methods that apply to

linear models (e.g., Brock and Durlauf (2001b), Raftery, Madigan, and Hoeting (1997),

Hansen (2007, 2010)) to account for threshold effects.
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3.6 Tables

Table 3.1: First step test - Size and power
This table shows the size (a=0) of the test of the null hypothesis H0 : a1 = a2 = 0 and the power of the
test (a = 1/

√
n, 2/

√
n, 4/

√
n )for different sample sizes (n=100,250, 500). The left panel corresponds

to a linear model and the right panel to a threshold model.

Linear Model Threshold Model

a 0 1/
√
n 2/

√
n 4/

√
n 0 1/

√
n 2/

√
n 4/

√
n

sample size

100 0.04 0.19 0.65 1 0.05 0.55 0.86 0.98

250 0.04 0.17 0.66 1 0.06 0.59 0.91 1

500 0.04 0.16 0.65 1 0.04 0.59 0.92 1
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Table 3.2: Size of the test Ho : ϑ1 = ϑ2

This table shows the size of the test of the null hypothesis Ho : ϑ1 = ϑ2. Panel A displays the size
of the test for DGP 1 and Panel B for DGP 2, for different sample sizes (n=100,250, 500). Each
panel is divided into two subpanels. The left subpanel corresponds to the post-single method and the
right subpanel to the post-double method. We control the degree of correlation between wi and x1i
by varying c. a is the coefficient of wi in DGP.

Post-Single Post-Double

Values of c Values of c
0 0.2 0.8 1 0 0.2 0.8 1

Values of a
Panel A: DGP 1

n=100

1/
√
n 0.10 0.09 0.07 0.06 0.06 0.05 0.04 0.05

2/
√
n 0.27 0.28 0.16 0.13 0.06 0.06 0.04 0.05

4/
√
n 0.70 0.68 0.46 0.38 0.09 0.08 0.04 0.05

n=250

1/
√
n 0.10 0.09 0.07 0.06 0.05 0.05 0.04 0.04

2/
√
n 0.30 0.28 0.16 0.14 0.06 0.05 0.04 0.04

4/
√
n 0.73 0.72 0.51 0.41 0.09 0.06 0.04 0.04

n=500

1/
√
n 0.10 0.10 0.08 0.06 0.07 0.06 0.06 0.06

2/
√
n 0.29 0.28 0.17 0.13 0.07 0.06 0.06 0.06

4/
√
n 0.75 0.72 0.50 0.41 0.10 0.07 0.06 0.06

Panel B: DGP 2

n=100

1/
√
n 0.06 0.22 0.28 0.28 0.03 0.07 0.07 0.08

2/
√
n 0.06 0.47 0.71 0.71 0.03 0.08 0.10 0.12

4/
√
n 0.05 0.07 0.12 0.13 0.03 0.05 0.07 0.07

n=250

1/
√
n 0.05 0.24 0.27 0.28 0.04 0.04 0.06 0.06

2/
√
n 0.05 0.48 0.72 0.72 0.04 0.06 0.10 0.09

4/
√
n 0.04 0.06 0.10 0.12 0.04 0.04 0.05 0.05

n=500

1/
√
n 0.05 0.25 0.31 0.30 0.05 0.05 0.07 0.05

2/
√
n 0.05 0.49 0.73 0.73 0.05 0.07 0.08 0.07

4/
√
n 0.05 0.07 0.11 0.11 0.05 0.05 0.06 0.05
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Table 3.3: Power of the test-Post double method
This table shows the power of the post double procedure. Panel A displays the power for DGP 1
and Panel B for DGP 2, for different sample sizes (n=100,250, 500). Each panel is divided into two
subpanels. The left subpanel corresponds to δ0 = δ1 = 0.5, δ2 = 0.05 and the right subpanel to
δ0 = δ1 = 1, δ2 = 0.05 . a is the coefficient of wi in DGP.

Values of c Values of c
0 0.2 0.8 1 0 0.2 0.8 1

Values of a
Panel A: DGP 1

n=100

1/
√
n 0.136 0.13 0.125 0.132 0.27 0.28 0.34 0.38

2/
√
n 0.116 0.115 0.125 0.132 0.26 0.26 0.34 0.38

4/
√
n 0.118 0.115 0.125 0.132 0.24 0.25 0.34 0.38

n=250

1/
√
n 0.27 0.23 0.30 0.32 0.47 0.48 0.75 0.81

2/
√
n 0.25 0.22 0.30 0.32 0.47 0.48 0.75 0.81

4/
√
n 0.22 0.21 0.30 0.32 0.42 0.47 0.75 0.81

n=500

1/
√
n 0.34 0.32 0.52 0.58 0.67 0.73 0.95 0.97

2/
√
n 0.33 0.32 0.52 0.58 0.66 0.73 0.95 0.97

4/
√
n 0.29 0.31 0.52 0.58 0.64 0.72 0.95 0.97

Panel B: DGP 2

n=100

1/
√
n 0.55 0.34 0.26 0.27 0.66 0.43 0.40 0.40

2/
√
n 0.47 0.30 0.22 0.23 0.60 0.39 0.37 0.37

4/
√
n 0.47 0.27 0.19 0.20 0.60 0.37 0.34 0.33

n=250

1/
√
n 0.64 0.45 0.46 0.47 0.72 0.57 0.70 0.71

2/
√
n 0.60 0.40 0.42 0.43 0.69 0.53 0.68 0.68

4/
√
n 0.60 0.39 0.40 0.41 0.69 0.53 0.67 0.67

n=500

1/
√
n 0.72 0.55 0.66 0.66 0.74 0.71 0.88 0.88

2/
√
n 0.69 0.53 0.64 0.64 0.72 0.70 0.88 0.88

4/
√
n 0.69 0.52 0.63 0.63 0.72 0.69 0.87 0.87
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Conclusions

The present dissertation aims in providing three complementary approaches to the

study of intergenerational mobility. We contribute to the literature of intergenerational

mobility by proposing novel econometric methods in order to address limitations in

existing methodologies.

In the first chapter, we focus on the timing of parental investments during childhood

and young adulthood. Surprisingly, much of the literature has focused on the lin-

ear model and the IGE coefficient, ignoring timing which is a very important aspect

of parental investments. Using functional regressions we treat the observations as

“snapshots” of an underlying latent curve, where annual income data are treated as

discrete signals of a latent income process. Hence, the object of interest is a curve

that captures the intergenerational trajectory of an individual. We find that parental

investments during early and late childhood or young adulthood are generally more

productive than middle childhood. These findings indicate that income shocks play a

crucial role in parental human capital investments in children and in their long run

outcomes. We further investigate the heterogeneity of the trajectories with respect to

parental income, parental education, and family structure. Timing of the shocks re-

lated to socioeconomic status and family structure plays a key role in intergenerational

trajectories of individuals, especially for disadvantaged children.

In Chapter 2, a general threshold spatial autoregression model is proposed which nests

several models including the spatial autoregression model and spatial autoregression-

mixed regression model. Our framework allows for both fixed and diminishing threshold

effects and we develop a two-step GMM estimation method that exploit both linear and

quadratic moment conditions. We study the limiting properties of the estimators of the

threshold parameter and slope parameters of spatial lags and regression coefficients.

Exploiting the smoothness of the GMM criterion, we reduce the rate of convergence of

the threshold parameter. As a result, not only the estimators of the slope parameters of

spatial lags and regression coefficients, but the estimator of the threshold parameter as

well, are normally distributed. We assess the performance of the proposed estimation

method using a Monte Carlo simulation.
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Chapter 3 contributes to the literature of threshold regression by proposing a threshold

test which is valid under misspecification, in the sense that we face uncertainty about

the set of relevant regressors. We show the implications of the standard post-single

selection practices on the size of the bootstrap threshold test approach of Hansen

(1996). Adopting the method of Belloni, Chernozhukov, and Hansen (2011, 2014)

to threshold regressions, we propose a post-double selection that constructs moment

conditions for the threshold effect that are robust to misspecification. Monte Carlo

Simulations show that post-double selection restores the size and the power of the

bootstrap threshold supWald test.
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Appendix A

Figure A1: Intergenerational Trajectories of Bi-annual Income (short sample)

This figure presents the estimates of models (1.5) and (1.10) for the bi-annual short sample.

(a) Bi-annual Income

(b) Bi-annual Stock of Income

(c) Bi-annual Partial Effects
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Figure A2: Restricted Bi-annual Sample

This figure presents results restricting the bi-annual sample to include same individuals in both
short and long samples. A2(a) displays the estimates from model (1.5) and A2(b) from model (1.10).
The upper panel of each sub-figure correspons to short sample and the lower to the long sample.

(a) Bi-annual Income

(b) Bi-annual Stock of Income
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Figure A3: Restricted Sample

This figure presents the partial effects of stock of income for daughters and sons, when the short
sample is restricted to have the same number of individuals as the long.
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Figure A4: Intergenerational Trajectories of Annual Income by Parental In-
come Quartiles (short sample)

This figure presents the baseline results from model (1.5) based on the short sample. Figures A4(a),

(b), (c), (d) present the estimates of intergenerational elasticity function β̂(t) for the first parent’s
permanent income quartile, second, third and fourth quartile respectively. The red dotted lines
represent the bootstrap confidence bands.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure A5: Intergenerational Trajectories of Stock of Income by Parental
Income (short sample)

This figure presents the baseline results from model (1.10) based on the short sample. Figures A5(a),
(b), (c), (d) present the estimates for the first parent’s permanent income quartile, second, third and
fourth quartile respectively. The red dotted lines represent the bootstrap confidence bands.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure A6: Partial Effects of Stock of Income by Parental Income Quartiles

This figure presents the trajectory partial effects of equation (1.10) based on the short sample. The
red line corresponds to first parental permanent income quartile, the green line to the second
quartile, the blue line to third quartile and the cyan line to fourth quartile.
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Figure A7: Timing of Income Shocks - Trajectories of Income (short sample)

This figure compares the intergenerational trajectories of income for the short sample based on
quartiles of parent’s income during early childhood against the ones based on quartiles of parent’s
income during late childhood.

(a) First Quartile - Early (b) First Quartile - Late

(c) Second Quartile - Early (d) Second Quartile - Late

(e) Third Quartile - Early (f) Third Quartile - Late

(g) Fourth Quartile - Early (h) Fourth Quartile - Late
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Figure A8: Timing of Income Shocks - Trajectories of Stock of Income (short
sample)

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the short sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.

(a) First Quartile - Early (b) First Quartile - Late

(c) Second Quartile - Early (d) Second Quartile - Late

(e) Third Quartile - Early (f) Third Quartile - Late

(g) Fourth Quartile - Early (h) Fourth Quartile - Late
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Figure A9: Timing of Income Shocks - Trajectories of Income

This figure compares the intergenerational trajectories of income for the long sample based on
quartiles of parent’s income during early childhood against the ones based on quartiles of parent’s
income during late childhood.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (c) Fourth Quartile
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Figure A10: Timing of Income Shocks - Trajectories of the Stock of Income

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the long sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.

(a) First Quartile (b) Second Quartile

(c) Third Quartile (c) Fourth Quartile
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Figure A11: Intergenerational Trajectories of Annual Income by Father’s
Education

This figure presents the results from model (1.5) based on the short sample for the sub-samples
based on father’s education.

(a) Non-high School Graduates (b) High School Graduates

(c) Non-college Graduates (d) College Graduates

124

ANTRI C
. K

ONSTANTIN
ID

I



Figure A12: Intergenerational Trajectories of Stock of Income by Father’s
Education

This figure presents the results from model (1.10) based on the short sample for sub-samples based
on father’s education.

(a) Non-high School Graduates (b) High School Graduates

(c) Non-college Graduates (d) College Graduates
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Figure A13: Partial Effects of Stock of Income by Father’s Education

This figure presents the trajectory partial effects of equation (1.10)based on the short sample for
sub-samples based on father’s education.

(a) Based on High School Graduation

(b) Based on College Graduation
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Figure A14: Intergenerational Trajectories by Family Structure

This figure presents

(a) Early Shock - flows (b) Late Shock - flows

(c) Early Shock - stock (d) Late Shock - stock
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Figure A15: Schooling Attainment: Intergenerational Trajectories (Short
Sample)

(a) Bi-annual Income

(b) Stock of Income

(c) Partial Effects of Stock of Income
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Figure A16: Schooling Attainment: Intergenerational Trajectories of Income
by Parental Income Quartiles - Schooling Attainment (Short Sample)

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure A17: Schooling Attainment: Intergenerational Trajectories of the
Stock of Income by Parental Income Quartiles (Short Sample)

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile
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Figure A18: Schooling Attainment: Partial Effects of the Stock of Income
based by Parental Income Quartiles (Short Sample)
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Figure A19: Partial Effects of the Stock of Income

This figure presents the trajectories of partial effects of stock of income in equation (1.10) for the
short and long samples. The red line corresponds to the baseline (pooled) sample, the green line to
the daughters and the blue line to sons’.

(a) Short Sample

(b) Long Sample
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Figure A20: Intergenerational Trajectories of Growth rates (Short Sample)

This figure presents the trajectory of income growth experiences.
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Figure A21: Intergenerational Trajectories of Stock of Income by Father’s
Education (Short Sample)

This figure presents the baseline results from model (1.5) and (1.10) that include parent’s education
for annual income and stock of income and for both short and long samples.

(a) Annual Income

(c) Stock of Income
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Figure A22: Schooling Attainment: Intergenerational Trajectories of the
Stock of Income by Parental Income Quartiles (Short Sample)

(a) First Quartile (b) Second Quartile

(c) Third Quartile (d) Fourth Quartile

135

ANTRI C
. K

ONSTANTIN
ID

I



Figure A23: Schooling Attainment: Partial Effects of the Stock of Income
based by Parental Income Quartiles (Short Sample)
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Figure A24: Partial Effects of the Stock of Income

This figure presents the trajectories of partial effects of stock of income in equation (1.10) for the
short and long samples. The red line corresponds to the baseline (pooled) sample, the green line to
the daughters and the blue line to sons’.

(a) Short Sample

(b) Long Sample
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Figure A25: Intergenerational Trajectories of Growth rates (Short Sample)

This figure presents the trajectory of income growth experiences.
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Figure A26: Intergenerational Trajectories of Stock of Income by Father’s
Education (Short Sample)

This figure presents the baseline results from model (1.5) and (1.10) that include parent’s education
for annual income and stock of income and for both short and long samples.

(a) Annual Income

(c) Stock of Income
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Appendix B

B6.1 Derivatives

Lemma B1 Suppose that An and Bn are n × kA and n × kB matrices with column

sums uniformly bounded in absolute value. Then

1. ∂E(A′nWn(λ)Bn)
∂λ

= A′nWnBnf(λ)

2.
∂E(A′nW

−
n,λBn)

∂λ
= A′nWnBnf(λ)

3. ∂E(A′nW
−
n (λ)Bn)
∂λ

= 2F (λ) f (λ)A′nWnBn

Proof: Note that under Assumption 2 we have

dE [1 (zj,n ≤ λ)]

dλ
= f (λ)

dE [1 (zi,n ≤ λ) 1 (zj,n ≤ λ)]

dλ
=

d [F (λ)]2

dλ
= 2F (λ) f (λ)

for any i 6= j.

Then, applying Property 17.1(a) in Seber (2008) gives

∂E(A′nWn(λ)Bn)

∂λ
= A′n

∂E(Wn(λ))

∂λ
Bn =f (λ)A′nWnBn

∂E(A′nW
−
n,λBn)

∂λ
= A′n

∂ E(W−
n,λ)

∂λ
Bn = f (λ)A′nW nBn

∂E(A′nW
−
n (λ)Bn)

∂λ
= A′n

∂ E(W−
n (λ))

∂λ
Bn = 2F (λ) f (λ)A′nWnBn

as An, Bn and Wn are all nonstochastic and the (i, j)th element of E(Wn(λ)), E(W−
n,λ),

and E(W−
n (λ)) equal wij,n(λ) = wij,n1 (zj,n ≤ λ), wij,n(λ) = wij,n1 (zj,n ≤ λ), and

wij,n1 (zi,n ≤ λ) 1 (zj,n ≤ λ), respectively. This completes the proof of this lemma.
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B6.2 Structural Error

First, we obtain the structural error

en(θ) = Sn(θy, λ)Yn −Xn (Wn) θβ −Xn (Wn, λ) δθβ , (B1)

where

Sn(θy, λ)= Sn + (α0 − α)Wn + (δα2,0 − δα2)Wn(λ0) + (δα1,0 − δα1)W−
n,λ0

+(δαα0 − δαα)W−
n (λ0) + δα2(Wn(λ0)−Wn(λ)) + δα1(W−

n,λ0
−W−

n,λ)

+δαα(W−
n (λ0)−W−

n (λ)), (B2)

and from the reduced form model (2.5) we have

Yn = S−1
n

[
Xn(Wn)θβ0 +Xn(Wnλ0)δθβ0

+ en

]
= Xn(Wn)θβ0 +

[
α0Wn + δα2,0Wn(λ0) + δα1,0W

−
n,λ0

+ δαα,0W
−
n (λ0)

]
S−1
n Xn(Wn)θβ0

+ Xn(Wnλ0)δθβ0
+
[
α0Wn + δα2,0Wn(λ0) + δα1,0W

−
n,λ0

+ δαα,0W
−
n (λ0)

]
S−1
n Xn(Wn, λ0)δθβ0

+ S−1
n en

= Xn(Wn)θβ0 +
[
α0Gn + δα2,0Gn(λ0) + δα1,0G

−
n,λ0

+ δαα,0G
−
n (λ0)

]
Xn(Wn)θβ0

+ Xn(Wnλ0)δθβ0
+
[
α0Gn + δα2,0Gn(λ0) + δα1,0G

−
n,λ0

+ δαα,0G
−
n (λ0)

]
Xn(Wnλ0)δθβ0

+ S−1
n en,

where the second equality follows from (In − A)(In − A)−1 = In which implies (In −
A)−1 = In + A(In − A)−1 and the third equality uses the definitions of Gn = WnS

−1
n ,

Gn(λ) = Wn(λ)S−1
n , G−n,λ = W−

n,λS
−1
n , and G−n (λ) = W−

n (λ)S−1
n .

As defined in Section 2, X∗n,λ =[Xn(Wn), Xn(Wn, λ)], X∗n = [Xn(Wn), Xn(Wn, λ0)],

θy0 = (α0, δα2,0 , δα1,0 , δα0α0)′ and θ∗0 = (θ′β0
, δ′θβ0

)′, model (B3) can be rewritten as

Yn = X∗nθ
∗
0 +

[
GnX

∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0

]
θy0 + S−1

n en. (B3)

Substituting (B2) and (B3) into equation (B1) gives

en(θ) = dn(θ) + [An(θy, λ) + In] en (B4)

where

dn(θ)= X∗n(θ∗0 − θ∗) + (X∗n −X∗n,λ)θ∗ + (α0 − α)GnX
∗
nθ
∗
0 + (δα2,0 − δα2)Gn(λ0)X∗nθ

∗
0

+(δα1,0 − δα1)G−n,λ0
X∗nθ

∗
0 + (δαα,0 − δαα)G−n (λ0)X∗nθ

∗
0 + δα2(Gn(λ0)−Gn(λ))X∗nθ

∗
0

+δα1(G−n,λ0
−G−n,λ)X

∗
nθ
∗
0 + δαα(Gn(λ0)− −G−n (λ))X∗nθ

∗
0
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and

An(θy, λ)= (α0 − α)Gn + (δα2,0 − δα2)Gn(λ0) + (δα1,0 − δα1)G−n,λ0
+ (δαα,0 − δαα)G−n (λ0)

+δα2(Gn(λ0)−Gn(λ)) + δα1(G−n,λ0
−G−n,λ) + δαα(G−n (λ0)−G−n (λ)).

Next, we obtain the identification condition.

B6.3 Identification Conditions

Substituting (B4) into (2.6) and taking expectation, we obtain the (m+kQ)×1 column

vector of linear and quadratic moments

E(gn(θ)) =



E(dn(θ)′P1ndn(θ)) + tr(ΓnE(An(θy, λ)P s1n)) + tr(ΓnE(An(θy, λ)′P1nAn(θy, λ))

.

.

.

E(dn(θ)′Pmndn(θ)) + tr(ΓnE(An(θy, λ)P smn)) + tr(ΓnE(An(θy, λ)′PmnAn(θy, λ))

E(Q′ndn(θ))

.

(B5)

The identification condition states that a0 limn→∞ n
−1E(gn(θ)) = 0 has a unique root

at θ0 ∈ Θ. Applying Taylor expansion gives

E [gn(θ)] = E [gn(θ0)] +
∂E
[
gn(θ̄)

]
∂θ′

(θ − θ0)

where θ̄ lies between θ and θ0.

Evidently, there will be a unique θ0 satisfying a0 limn→∞ n
−1E(gn(θ)) = 0 if ∂E(gn(θ))/ ∂θ′

has a full rank kθ over θ ∈ Θ.

Firstly, we calculate ∂E(Qndn(θ))/ ∂θ′, where

E(Q′ndn(θ)) = E{Q′n[X∗n(θ∗0 − θ∗) + (X∗n −X∗n,λ)θ∗ + (α0 − α)GnX
∗
nθ
∗
0

+ (δα2,0 − δα2)Gn(λ0)X∗nθ
∗
0 + (δα1,0 − δα1)G−n,λ0

X∗nθ
∗
0

+ (δαα0 − δαα)G−n (λ0)X∗nθ
∗
0 + δα2(Gn(λ0)−Gn(λ))X∗nθ

∗
0

+ δα1(G−n,λ0
−G−n,λ)X

∗
nθ
∗
0 + δαα(Gn(λ0)− −G−n (λ))X∗nθ

∗
0]}
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Applying straightforward calculations gives

Gθy (λ) =
∂E(Q′ndn(θ))

∂θ′y
= −E

[
Q′nGnX

∗
nθ
∗
0, Q

′
nGn(λ)X∗nθ

∗
0, Q

′
nG
−
n,λX

∗
nθ
∗
0, Q

′
nG
−
n (λ)X∗nθ

∗
0

]
Gθβ =

∂E(Q′ndn(θ))

∂θ′β
= −E [Q′nXn(Wn)]

Gδθβ
(λ) =

∂E(Q′ndn(θ))

∂δ′θβ
= −E [Q′nXn(Wn, λ)] .

Also, we obtain

Gλ(δα, δθβ , λ) =
∂E(Q′ndn(θ))

∂λ

= −f (λ)
[
E(Q′nXn|λ), E(Q′nWnXn|λ), E(Q′nWnXn|λ), E(QnWn (λ)Xn|λ) + E(QnW

−
n,λXn|λ)

]
δθβ

−f (λ)
[
E(Q′nGnX

∗
nθ
∗
0 |λ), E(Q′nGnX

∗
nθ
∗
0 |λ), E(QnGn (λ)X∗nθ

∗
0 |λ) + E(QnG

−
n,λX

∗
nθ
∗
0 |λ))

]
δα.

where applying Lemma B1 gives

∂

∂λ
E [Q′nXn(λ)δβ]

=
n∑
i=1

∂

∂λ
E
[
Qi,nx

′
i,nδβ1{zi ≤ λ}

]
=

n∑
i=1

∂

∂λ

∫ λ

−∞
E
[
Qi,nx

′
i,nδβ|zi,n

]
f (zi,n) dzi,n

=
n∑
i=1

E
(
Qi,nx

′
i,nδθβ |λ

)
f (λ) = E (Q′nXnδβ|λ) f (λ) ,

∂

∂λ
E [Q′nWn (λ)Xnδγ2 ]

=
n∑
i=1

∑
j 6=i

wij,n
∂

∂λ
E
[
Qi,nx

′
j,nδγ21{zj,n ≤ λ}

]
=

n∑
i=1

∑
j 6=i

wij,n
∂

∂λ

∫ λ

−∞
E
[
Qi,nx

′
j,nδγ2|zj,n

]
f (zj,n) dzj,n

=
n∑
i=1

∑
j 6=i

wij,nE
(
Qi,nx

′
j,nδγ2|λ

)
f (λ) = E (QnWnXnδγ2|λ) f (λ) ,

∂

∂λ
E
[
Q′nW

−
n,λXnδγ

]
=

n∑
i=1

∑
j 6=i

wij,n
∂

∂λ
E
[
Qi,nx

′
j,nδγ1{zi ≤ λ}

]
=

n∑
i=1

∑
j 6=i

wij,nE
(
Qi,nx

′
j,nδγ|λ

)
f (λ) = E (QnWnXnδγ|λ) f (λ) ,
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and applying the Leibniz rule

d

dx

∫ b(x)

a(x)

g (x, y) dy = g (x, b (x)) b′ (x)− g (x, a (x)) a′ (x) +

∫ b(x)

a(x)

dg (x, y)

dx
dy

we obtain

∂

∂λ
E
[
Q′nW

−
n (λ)Xnδγγ

]
=

n∑
i=1

∑
j 6=i

wij,n
∂

∂λ
E
[
Qi,nx

′
j,nδγγ1 (zi,n ≤ λ) 1 (zj,n ≤ λ)

]
=

n∑
i=1

∑
j 6=i

wij,n
∂

∂λ

∫ λ

−∞
E
[
Qi,nx

′
j,nδγγ1 (zi,n ≤ λ) |zj,n

]
f (zj,n) dzj,n

=
n∑
i=1

∑
j 6=i

wij,nE
[
Qi,nx

′
j,nδγγ1 (zi,n ≤ λ) |λ

]
f (λ)

+
n∑
i=1

∑
j 6=i

wij,n

∫ λ

−∞

∂

∂λ
E
[
Qi,nx

′
j,nδγγ1 (zi,n ≤ λ) |zj,n

]
f (zj,n) dzj,n

= E
[
QnW

−
n,λXnδγγ|λ

]
f (λ)

+
n∑
i=1

∑
j 6=i

wij,n

∫ λ

−∞

{
∂

∂λ

∫ λ

−∞
E
[
Qi,nx

′
j,nδγγ|zi,n, zj,n

]
f (zi,n) dzi,n

}
f (zj,n) dzj,n

= E
[
QnW

−
n,λXnδγγ|λ

]
f (λ) +

n∑
i=1

∑
j 6=i

wij,n

∫ λ

−∞
E
[
Qi,nx

′
j,nδγγ|λ, zj,n

]
f (λ) f (zj,n) dzj,n

= E
(
QnW

−
n,λXnδγγ|λ

)
f (λ) +

n∑
i=1

wij,nE
[
Qi,nx

′
j,nδγγI (zj,n ≤ λ) |λ

]
f (λ)

= E
(
QnW

−
n,λXnδγγ|λ

)
f (λ) + E (QnWn (λ)Xnδγγ|λ) f (λ) .

We proceed to show that if the rank condition of Assumption (4.1) fails, we can identify

(θ′β0
, δ′θβ0

)′, as long as
(
θ′y0
, λ0

)′
is identified from using the quadratic moments. By (2.5),

we have

Yn= S−1
n X∗nθ

∗
0 + un = (In − Sn)S−1

n X∗nθ
∗
0 +X∗nθ

∗
0 + un

= [GnX
∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0](α0, δα1,0 , δα2,0 , δαα,0)′ +X∗nθ

∗
0 + un

(B6)

where un = S−1
n en and un therefore follows a SAR model, un = (α0Wn + δα1,0W

−
n,λ0

+

δα2,0Wn(λ0) + δαα,0W
−
n (λ0))un + en. In parallel to Lee (2007) we consider the following

example that X∗n and [GnX
∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0] are linearly de-

pendent. That is, there exists a 6k1×4 non-zero constant matrix c0 such that
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X∗nc0 = [GnX
∗
nθ
∗
0, Gn(λ0)X∗nθ

∗
0, G

−
n,λ0

X∗nθ
∗
0, G

−
n (λ0)X∗nθ

∗
0]. Then, model ( B6) becomes

Yn =X∗n (c0θy0 + θ∗0) + un, (B7)

and

Q′ndn(θ) = Q′nX
∗
n [θ∗0 − θ∗ + c0 (θy − θy0)] +Q′n [Xn(Wn, λ0)−Xn(Wn, λ)] δθβ

+Q′n
[
(Gn(λ0)−Gn(λ))X∗nθ

∗
0, (G

−
n,λ0
−G−n,λ)X

∗
nθ
∗
0, (G

−
n (λ0)−G−n (λ))X∗nθ

∗
0)
]

(δα2 , δα1 , δαα)

and Gn (Qn, θ) does not have full rank as[
Gθy (λ) , Gθβ , Gδθβ

(λ)
]

= −E [Q′nX
∗
nc0, Xn(Wn), Q′nXn(Wn, λ)]

are linearly dependent in column. For model (B7), if
(
θ′y0
, λ0

)′
is identified from using

the quadratic moments, we have 0 = E [Q′ndn(θ)] = E [Q′nX
∗
n (θ∗0 − θ∗)] so that θ∗0 is

identified as X∗n has full rank.

Secondly, for j = 1, . . . ,m, we calculate

∂E
[
en (θ)′ Pjnen(θ)

]
∂θ′

= E

[
en(θ)′P s

jn

∂ en(θ)

∂θ′

]
where we have

∂ en(θ)

∂θ′
=

[
∂ en(θ)

∂θ′y
,
∂ en(θ)

∂θ′β
,
∂ en(θ)

∂δ′θβ
,
∂ en(θ)

∂λ

]
and

∂ en(θ)

∂θ′y
=

∂dn(θ)

∂θ′y
+
∂ [An(θy, λ)en]

∂θ′y

= −
[
GnX

∗
nθ
∗
0, Gn(λ)X∗nθ

∗
0, G

−
n,λX

∗
nθ
∗
0, G

−
n (λ)X∗nθ

∗
0

]
−
[
Gnen, Gn(λ)en, G

−
n,λen, G

−
n (λ)en

]
∂ en(θ)

∂θ′β
=
∂dn(θ)

∂θ′β
+
∂ [An(θy, λ)en]

∂θ′β
= −Xn (Wn)

∂ en(θ)

∂δ′θβ
=
∂dn(θ)

∂δ′θβ
+
∂ [An(θy, λ)en]

∂δ′θβ
= −Xn (Wn, λ)

and

∂ en(θ)

∂λ
=

∂dn(θ)

∂λ
+
∂ [An(θy, λ)en]

∂λ

= −
∂X∗n,λ
∂λ

− δα2

∂Gn(λ)X∗nθ
∗
0

∂λ
− δα1

∂G−n,λX
∗
nθ
∗
0

∂λ
− δαα

∂G−n (λ)X∗nθ
∗
0

∂λ

−

(
δα2

∂Gn(λ)

∂λ
+ δα1

∂G−n,λ
∂λ

+ δαα
∂G−n (λ)

∂λ

)
en.
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Therefore, we obtain

∂E
[
en (θ)′ Pjnen(θ)

]
∂θ′

= ∆1 (θ) + ∆2 (θ)

where we have

∆1 (θ) = E

[
dn(θ)′P s

jn

∂ en(θ)

∂θ′

]
= E

[
dn(θ)′P s

jn

[
∂ en(θ)

∂θ′y
,
∂ en(θ)

∂θ′β
,
∂ en(θ)

∂δ′θβ
,
∂ en(θ)

∂λ

]]
= −E

{
dn(θ)′P s

jn

[
GnX

∗
nθ
∗
0, Gn(λ)X∗nθ

∗
0, G

−
n,λX

∗
nθ
∗
0, G

−
n (λ)X∗nθ

∗
0, Xn (Wn) , Xn (Wn, λ) ,

∂X∗n,λ
∂λ

+ δα2

∂Gn(λ)X∗nθ
∗
0

∂λ
+ δα1

∂G−n,λX
∗
nθ
∗
0

∂λ
+ δαα

∂G−n (λ)X∗nθ
∗
0

∂λ

]}
≡ −E

{
dn(θ)′P s

jn

[
GnX

∗
nθ
∗
0, Gn(λ)X∗nθ

∗
0, G

−
n,λX

∗
nθ
∗
0, G

−
n (λ)X∗nθ

∗
0, Xn (Wn) ,

Xn (Wn, λ) , ϕ1 (θy, λ)]}

and

∆2 (θ) = E

[
e′n [An(θy, λ) + In]′ P sjn

∂ en(θ)

∂θ′

]
= −E

[
e′n [An(θy, λ) + In]′ P sjn

[
GnX

∗
nθ
∗
0, Gn(λ)X∗nθ

∗
0, G

−
n,λX

∗
nθ
∗
0, G

−
n (λ)X∗nθ

∗
0,

Xn (Wn) , Xn (Wn, λ) , 0n]]

−E
[
e′n [An(θy, λ) + In]′ P sjn

[
Gnen, Gn(λ)en, G

−
n,λen

, G−n (λ)en, 0n×(2k1), 0n×(2k1),
∂ en(θ)

∂λ

]]
= −E

{
e′n [An(θy, λ) + In]′ P sjn

[
Gnen, Gn(λ)en, G

−
n,λen

, G−n (λ)en, 0n×(2k1), 0n×(2k1),(
δα2

∂Gn(λ)

∂λ
+ δα1

∂G−n,λ
∂λ

+ δαα
∂G−n (λ)

∂λ

)
en

]}
≡ −

[
tr
(
ΓnE

{
[An(θy, λ) + In]′ P sjnGn

})
, tr
(
ΓnE

{
[An(θy, λ) + In]′ P sjnGn(λ)

})
,

tr
(

ΓnE
{

[An(θy, λ) + In]′ P sjnG
−
n,λ

})
, tr
(
ΓnE

{
[An(θy, λ) + In]′ P sjnG

−
n (λ)

})
, 0n×(2k1),

0n×(2k1), tr
(
ΓnE

{
[An(θy, λ) + In]′ P sjnϕ2 (θy, λ)

})]
.

Taking together the results above gives

(
∂E[gn(θ)]

∂θ′

)′
= −



E [dn(θ)′P s
1nGnX

∗
nθ
∗
0] + tr {ΓnE [χ1(θy, λ)Gn]} . . . E [dn(θ)′P s

mnGnX
∗
nθ
∗
0] + tr {ΓnE [χm(θy, λ)Gn]} E [Q′nGnX

∗
nθ
∗
0]′

E [dn(θ)′P s
1nGn(λ)X∗nθ

∗
0] + tr {ΓnE [χ1(θy, λ)Gn(λ)]} . . . E [dn(θ)′P s

mnGn(λ)X∗nθ
∗
0] + tr {ΓnE [χm(θy, λ)Gn(λ)]} E [Q′nGn(λ)X∗nθ

∗
0]′

E
[
dn(θ)′P s

1nG
−
n,λX

∗
nθ
∗
0

]
+ tr

{
ΓnE

[
χ1(θy, λ)G−n,λ

]}
. . . E

[
dn(θ)′P s

mnG
−
n,λX

∗
nθ
∗
0

]
+ tr

{
ΓnE

[
χm(θy, λ)G−n,λ

]}
E
[
Q′nG

−
n,λX

∗
nθ
∗
0

]′
E
[
dn(θ)′P s

1nG
−
n,λX

∗
nθ
∗
0

]
+ tr {ΓnE [χ1(θy, λ)G−n (λ)]} . . .E

[
dn(θ)′P s

mnG
−
n,λX

∗
nθ
∗
0

]
+ tr (ΓnE {ΓnE [χm(θy, λ)G−n (λ)]})E [Q′nG

−
n (λ)X∗nθ

∗
0]
′

E [dn(θ)′P s
1nXn(Wn)]′ . . . E [dn(θ)′P s

mnXn(Wn)]′ E [Q′nXn(Wn)]′

E [dn(θ)′P s
1nXn(Wn, λ)]′ . . . E [dn(θ)′P s

mnXn(Wn, λ)]′ E [Q′nXn(Wn, λ))]′

E [dn(θ)′P s
1nϕ1 (θy, λ)] + tr {ΓnE [χ1(θy, λ)ϕ2 (θy, λ)]} . . . E [dn(θ)′P s

mnϕ1 (θy, λ)] + tr {ΓnE [χm(θy, λ)ϕ2 (θy, λ)]} Gλ(δα, δθβ , λ)′


(B8)
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where we denote χj(θy, λ) = [An(θy, λ) + In]′ P s
jn for j = 1, . . . ,m, to make the notation

short.

From (B8), we see that ∂E [gn(θ)] /∂θ′ can still be a full rank matrix even if As-

sumption (4.1) fails to hold. However, the mathematical expression of the global

identification condition can be messy. We therefore include the local identification

condition in the main context, i.e., Assumption (4.2), which is the condition under

which ∂E [gn(θ0)] /∂θ′ is a full rank matrix. Specifically, we have

(
∂E[gn(θ0)]

∂θ′

)′
= −



tr [ΓnE (P s
1nGn)] . . . tr [ΓnE (P s

mnGn)] E [Q′nGnX
∗
nθ
∗
0]′

tr {ΓnE [P s
1nGn(λ0)]} . . . tr {ΓnE [P s

mnGn(λ0)]} E [Q′nGn(λ0)X∗nθ
∗
0]′

tr
{

ΓnE
[
P s

1nG
−
n,λ0

]}
. . . tr

{
ΓnE

[
P s
mnG

−
n,λ0

]}
E
[
Q′nG

−
n,λ0

X∗nθ
∗
0

]′
tr {ΓnE [P s

1nG
−
n (λ0)]} . . . tr (ΓnE {ΓnE [P s

mnG
−
n (λ0)]}) E [Q′nG

−
n (λ0)X∗nθ

∗
0]
′

02k1 . . . 02k1 E [Q′nXn(Wn)]′

04k1 . . . 04k1 E [Q′nXn(Wn, λ0))]′

tr {ΓnE [P s
1nϕ2 (θy,0, λ0)]} . . . tr {ΓnE [P s

mnϕ2 (θy,0, λ0)]} Gλ(δα0 , δθβ0
, λ0)′


(B9)

since dn(θ0)= 0, An(θy,0, λ0) = 0n×n, and for j = 1, . . . ,m, χj(θy,0, λ0) = P s
jn and

E
[
P s
jnϕ2 (θy,0, λ0)

]
= δα2E

[
P s
jn

∂Gn(λ0)

∂λ

]
+ δα1E

[
P s
jn

∂G−n,λ0

∂λ

]
+ δααE

[
P s
jn

∂G−n (λ0)

∂λ

]
= (δα2 + δα1)E

(
P s
jnGn|λ0

)
f (λ0) + δααf (λ0)

[
E
(
P s
jnG

−
n,λ0
|λ0

)
+ E

(
P s
jnGn (λ0) |λ0

)]
.

(B10)

B6.4 Proofs of Consistency and Asymptotic Normality

Proof of Proposition 2.1: Firstly, we have E [gn (θ0)] = 0 and the proof given in

Appendix B6.3 shows that E [gn (θ)] = 0 if and only θ = θ0 under Assumptions 1-4.

Hence, applying Lemma 2.3 in Newey and McFadden (1994) implies that Jn(θ) has a

unique minimum value of zero at true parameter value θ0.

Secondly, we need to show that maxθ∈Θ ‖n−1angn(θ)− n−1anE [gn(θ)]‖ = op (1). By

(B4), we have

en (θ)′
(

m∑
j=1

anjPjn

)
en (θ) = d′n (θ)

(
m∑
j=1

anjPjn

)
dn (θ) + ln (θ) +mn (θ) , (B11)

where ln (θ) = dn (θ)′
(∑m

j=1 anjP
s
jn

)
[An(θy, λ) + In] en
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and mn (θ) = e′n[An(θy, λ) + In]′
(∑m

j=1 anjPjn

)
[An(θy, λ) + In] en.

Because Wn, An(θy, λ) and
∑m

j=1 anjP
s
jn both have finite column sum norm for any

θ ∈ Θ and the elements of Xn are uniformly bounded and strictly exogenous, applying

Lemma A.4 and Lemma A.3 in Lin and Lee (2010), we obtain n−1ln (θ) = Op

(
n−1/2

)
and n−1mn (θ) = n−1E [mn (θ)] +Op

(
n−1/2

)
uniformly over θ ∈ Θ, respectively. Simi-

larly, we have n−1Q′nen (θ) =n−1Q′ndn (θ)+Op

(
n−1/2

)
uniformly over θ ∈ Θ by Lemma

A.4 in Lin and Lee (2010). As dn(θ) is continuous in θ∗∗ and λ enters into dn(θ) in

the form indicator function, the stochastic equicontinueity result is expected to hold

for n−1angn(θ)− n−1anE [gn(θ)]. Then, applying Lemma 2.8 in Newey and McFadden

(1994), we obtain maxθ∈Θ ‖n−1angn(θ)− n−1anE [gn(θ)]‖ = op (1) under Assumptions

1-5.

Taking together all the results above implies θ̂
p→ θ0 by Theorem 2.1 in Newey and

McFadden (1994). This completes the proof of this Proposition.

Proof of Theorem 1: Under Assumptions 1-5, we have shown that E [gn(θ)] = 0

is differentiable function of θ and has a unique solution at an interior point θ0 ∈ Θ,

and that limn→∞HnΛ′na
′
nanΛnHn is non-singular, where Λn= −∂E(gn(θ0))/∂θ′ and

Hn = diag(I6k1+4, n
a). Since ∂E [gn(θ0)]/ ∂λ linearly depends on δα,0 and δθβ0

by (B9)

and the two parameter vectors are of order n−a for some 0 ≤ a < 1
2
, we use the weight

matrix Hn to rescale Λn such that ΛnHn has full column rank. In addition, applying

Lemma A.5 in Lin and Lee (2010) and Cramer-Wold theorem, we obtain

1√
n
angn(θ0)

d→ N(0, lim
n→∞

1

n
anΩna

′
n), (B12)

where Ωn = V ar(gn(θ0)). Moreover, because gn(θ) and E [gn (θ)] are both continuous in

θ∗∗ and the elements involving the indicator function of λ satisfies Hölder inequality, the

empirical process
√
n [gn(θ)− E (gn(θ))] is stochastically equicontinuous, which implies

sup
‖θ−θ0‖≤hn

√
n ‖gn(θ)− gn(θ0)− E (gn(θ))‖

1 +
√
n| ‖θ − θ0‖

= op(1) (B13)

for any hn → 0 as n → ∞. Hence, applying the central limit theorem of Newey and

McFadden (1994) (Theorem 7.2) completes the proof of this theorem.

Before we proceed with the proof of Proposition 2.2 we first introduce several different

matrix norms for an n × m matrix An = (aij). (i) ‖An‖max = max1≤i≤n,1≤j≤n |aij|.
(ii) ‖An‖sp denotes the spectral norm of An. (iii) ‖An‖1 = max1≤j≤m

∑n
i=1 |aij| and

‖An‖∞ = max1≤i≤n
∑m

j=1 |aij|. Also, we denote ρ (Bn) = max1≤i≤n |λi (Bn)| for any

square matrix Bn of size n.
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Lemma B2 Under Assumptions 1-5, we have∥∥∥S−1
n

(
θ̂y, λ̂

)
− S−1

n

∥∥∥
sp

= op (1),
∥∥∥Q̂n −Qn

∥∥∥
sp

= op (1) and
∥∥∥P̂jn − Pjn∥∥∥

sp
= op (1) for

j = 1, . . . , 4, where replacing θ̂ by θ0 in Q̂n and P̂jn gives Qn and Pjn, respectively.

Proof: By Theorem 1,
√
nH−1

n

(
θ̂ − θ0

)
= Op (1), and we estimate Sn = Sn (θy,0, λ0) =

In − α0Wn − δα1,0W
−
n,λ0
− δα2,0Wn(λ0)− δαα,0W−

n (λ0) by Ŝn = Sn(θ̂y, λ̂) = In − α̂Wn −
δ̂α1W

−
n,λ̂
− δ̂α2Wn(λ̂)− δ̂ααW−

n (λ̂). By Property 4.67 in Seber (2008), we have

||Ŝ−1
n − S−1

n ||sp = ||Ŝ−1
n

(
Ŝn − Sn

)
S−1
n ||sp ≤ ||Ŝ−1

n ||sp||Ŝn − Sn||sp||S−1
n ||sp

where ||S−1
n ||sp ≤

√
||S−1

n ||1||S−1
n ||∞ ≤M <∞ under Assumption (1.1) and

||Ŝ−1
n ||2sp = λ−1

min

(
ŜnŜ

′
n

)
= λ−1

min (SnS
′
n) +O

(∥∥∥ŜnŜ ′n − SnS ′n∥∥∥
sp

)

using the result given in the footnote.4 Hence, we have ‖S−1
n − S−1

n ‖sp = Op

(
||Ŝn − Sn||sp

)
if ||Ŝn − Sn||sp = op (1), where

||Ŝn − Sn||sp
≤ |α̂− α0| ‖Wn‖sp +

∥∥∥δ̂α1W
−
n,λ̂
− δα1,0W

−
n,λ0

∥∥∥
sp

+
∥∥∥δ̂α2Wn(λ̂)− δα2,0Wn(λ0)

∥∥∥
sp

+
∥∥∥δ̂ααW−

n (λ̂)− δαα,0W−
n (λ0)

∥∥∥
sp

= Op

(
n−1/2

)
+Op

(
n1/2−a)+

∣∣∣δ̂α1

∣∣∣ ∥∥∥W−
n,λ̂
−W−

n,λ0

∥∥∥
sp

+
∣∣∣δ̂α2

∣∣∣ ∥∥∥Wn(λ̂)−Wn(λ0)
∥∥∥
sp

+
∣∣∣δ̂αα∣∣∣ ∥∥∥W−

n (λ̂)−W−
n (λ0)

∥∥∥
sp

(B14)

under Assumption (1.1) and by Theorem 1, and letting Z
(
λ̂, λ0

)
be an n×n diagonal

matrix with a typical element equal to χi

(
λ̂, λ0

)
= 1{zi,n ≤ λ̂} −1{zi,n ≤ λ0}, we

have

W−
n (λ̂)−W−

n (λ0) = Z
(
λ̂, λ0

)
Wn

Wn(λ̂)−Wn(λ0) = WnZ
(
λ̂, λ0

)
W−
n,λ̂
−W−

n,λ0
= Z

(
λ̂, λ0

)
WnZ

(
λ̂, λ0

)
.

4For any symmetric matrix A and B of same size, Wely’s theorem states that

λmin (A) + λmin (B −A) ≤ λmin (B) ≤ λmin (A) + λmax (B −A)

which implies that
λmin (B −A) ≤ λmin (B)− λmin (A) ≤ λmax (B −A)

or |λmin (A)− λmin (B)| ≤ ρ (B −A) ≤ ‖B −A‖sp by Property 4.68 (a) in Seber (2008).
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By definition we have

∥∥∥Z (λ̂, λ0

)∥∥∥2

sp
= max
‖$‖=1

$′Z
(
λ̂, λ0

)
$ = max

‖$‖=1

n∑
i=1

n∑
j=1

$i$jχi

(
λ̂, λ0

)
χj

(
λ̂, λ0

)

where $ 6= 0 is an n × 1 vector. As λ̂ − λ0 = Op

(
na−1/2

)
, for any small εn > 0

there exists a finite constant cn such that Pr
(∣∣∣λ̂− λ0

∣∣∣ ≥ cnn
a−1/2

)
< εn. Letting

B
(
λ0, cnn

a−1/2
)

=
[
λ0 − cnna−1/2, λ0 + cnn

a−1/2
]
, we obtain for some 0 < ξ < 1/2−a

Pr

{
max
‖$‖=1

n∑
i=1

n∑
j=1

$i$jχi

(
λ̂, λ0

)
χj

(
λ̂, λ0

)
> Mcnn

−ξ

}

= Pr

{[
max
‖$‖=1

n∑
i=1

n∑
j=1

$i$jχi

(
λ̂, λ0

)
χj

(
λ̂, λ0

)
> Mcnn

−ξ

]
∩
[
λ̂ ∈ B

(
λ0, cnn

a−1/2
)]}

+ Pr

{[
max
‖$‖=1

n∑
i=1

n∑
j=1

$i$jχi

(
λ̂, λ0

)
χj

(
λ̂, λ0

)
> Mcnn

−ξ

]
∩
[
λ̂ /∈ B

(
λ0, cnn

a−1/2
)]}

≤ Pr

 sup
λ∈B(λ0,cnna−1/2)

max
‖$‖=1

n∑
i=1

n∑
j=1

$i$jχi (λ, λ0)χj (λ, λ0) > Mcnn
−ξ

+ εn

≤ 1

Mcnn−ξ
E

[
max
‖$‖=1

n∑
i=1

n∑
j=1

$i$jχi (λ
∗, λ0)χj (λ∗, λ0)

]
+ εn

=
1

Mcnn−ξ
max
‖$‖=1

n∑
i=1

$2
iE
[
χ2
i (λ∗, λ0)

]
+ εn

= O
(
na+ξ−1/2

)
+ εn = o (1)

where λ∗ = λ0 + cnn
a−1/2 or λ0 − cnna−1/2 and it is readily seen that

E
[
χ2
i (λ, λ0)

]
= Fz (λ) + Fz (λ0)− 2Fz (min (λ, λ0))

= f
(
λ̄
)

(λ− λ0)− 2fz

(
λ̊
)

(min (λ, λ0)− λ0)

with λ̄ (or λ̊) lying between λ (or min (λ, λ0)) and λ0. Hence, we obtain
∥∥∥Z (λ̂, λ0

)∥∥∥
sp

=

Op

(
n−ξ/2

)
. Combining the results above gives ||Ŝn−Sn||sp = Op

(
n−1/2

)
+Op

(
n1/2−a)+

Op

(
n−ξ/2

)
= Op

(
n−ξ/2

)
. Then, applying trivial calculations and property of matrix

norm will give
∥∥∥Q̂n −Qn

∥∥∥
sp

= op (1) and
∥∥∥P̂jn − Pjn∥∥∥

sp
= op (1) for j = 1, . . . , 4. This

completes the proof of this lemma.

Proof of Proposition 2.2: By Lemma A.1 in Lin and Lee (2010), a typical element

of Ω̂n, tr
(

Γ̂nP̂an

(
Γ̂nP̂bn

)s)
=
∑n

i=1

∑n
j=1 p̂an,ij(p̂bn,ij + p̂bn,ji)σ

2
i,nσ

2
j,n, for any a, b =

1, . . . , 4, where p̂$n,ij is the (i, j)th element of P̂$n and p̂$n,ii = 0 for $ = a, b and

any i. Denoting p̂∆n,ij = p̂an,ij(p̂bn,ij + p̂bn,ji) and p∆n,ij = pan,ij(pbn,ij + pbn,ji), we first
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obtain

1

n

n∑
i=1

n∑
j=1

p̂∆n,ije
2
i,ne

2
j,n −

1

n

n∑
i=1

n∑
j=1

p∆n,ijσ
2
i,nσ

2
j,n

=
1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij) e
2
i,ne

2
j,n +

1

n

n∑
i=1

n∑
j=1

p∆n,ij

(
e2
i,ne

2
j,n − σ2

i,nσ
2
j,n

)
= op (1)

(B15)

where the first term in eq. (B15) equals op (1) by using ‖P$n‖1 ≤ M , p̂∆n,ij −
p∆n,ij = (p̂an,ij − pan,ij) (p̂bn,ij + p̂bn,ji−pbn,ij−pbn,ji) +pan,ij(p̂bn,ij + p̂bn,ji−pbn,ij−pbn,ji)
+ (p̂an,ij − pan,ij) (pbn,ij + pbn,ji) and Lemma B2, while the second term in eq. (B15)

equals op (1) by closely following the proof of Proposition 2 in Lin and Lee (2010).

Next, we consider

1

n

n∑
i=1

n∑
j=1

p̂∆n,ij ê
2
i,nê

2
j,n −

1

n

n∑
i=1

n∑
j=1

p̂∆n,ije
2
i,ne

2
j,n

=
1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij)
(
ê2
i,nê

2
j,n − e2

i,ne
2
j,n

)
+

1

n

n∑
i=1

n∑
j=1

p∆n,ij

(
ê2
i,nê

2
j,n − e2

i,ne
2
j,n

)
=

1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij)
(
ê2
i,nê

2
j,n − e2

i,ne
2
j,n

)
+ op (1) (B16)

where we closely follow the proof of Proposition 2 in Lin and Lee (2010) to obtain the

last line, and the residuals can be decomposed as follows

ên = ŜnYn −Xn(Wn)θ̂β −Xn(Wn, λ̂)δ̂θβ

=
(
Ŝn − Sn

)
Yn −Xn(Wn)

(
θ̂β − θβ0

)
−
[
Xn(Wn, λ̂)−Xn(Wn, λ0)

]
δ̂θβ

−Xn(Wn, λ0)
(
δ̂θβ − δθβ0

)
+ en

= en + b̌n + čn

where b̌n =
(
Ŝn − Sn

)
S−1
n en and

čn =
(
Ŝn − Sn

)
S−1
n

[
Xn (Wn) θβ0 +Xn(Wn, λ0)δθβ0

]
−
[
Xn(Wn, λ̂)−Xn(Wn, λ0)

]
δ̂θβ

−Xn(Wn)
(
θ̂β − θβ0

)
−Xn(Wn, λ0)

(
δ̂θβ − δθβ0

)
. (B17)

From the proof of Lemma B2, we actuall can extend the convergence in spectral normal

results into the convergence for the row-/column sum norm results:∥∥∥W−
n (λ̂)−W−

n (λ0)
∥∥∥

1
= op (1),

∥∥∥Wn(λ̂)−Wn(λ0)
∥∥∥
∞

= op (1), and
∥∥∥W−

n,λ̂
−W−

n,λ0

∥∥∥
1

=
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op (1) and
∥∥∥W−

n,λ̂
−W−

n,λ0

∥∥∥
∞

= op (1). Hence, we obtain that b̌n = b̄n + op (1) and

čn = c̄n + op (1) hold uniformly, where the result for čn requires all the elements of Xn

to be uniformly bounded. 5

Let êi,n, ei,n, b̌i,n, b̄i,n, či,n, and c̄i,n denote the ith element of ên, en, b̌n, b̄n, čn, and c̄n, re-

spectively. Then, ê2
i,n =

(
ei,n + b̌i,n + či,n

)2
= e2

i,n+b̌2
i,n+č2

i,n +2
(
ei,nb̌i,n + či,nei,n + b̌i,nči,n

)
.

As ê2
i,nê

2
j,n − e2

i,ne
2
j,n = e2

j,n

(
ê2
i,n − e2

i,n

)
+ e2

i,n

(
ê2
j,n − e2

j,n

)
+
(
ê2
j,n − e2

j,n

) (
ê2
i,n − e2

i,n

)
, we

can decompose the leading term in (B16) into three terms:

An =
1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij)
(
ê2
i,nê

2
j,n − e2

i,ne
2
j,n

)
=

1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij) e
2
j,n

(
ê2
i,n − e2

i,n

)
+

1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij) e
2
i,n

(
ê2
j,n − e2

j,n

)
+

1

n

n∑
i=1

n∑
j=1

(p̂∆n,ij − p∆n,ij)
(
ê2
j,n − e2

j,n

) (
ê2
i,n − e2

i,n

)
= An1 + An2 + An3,

where we define An1, An2 and An3 according to its order of appearance. For An1, we

have

|An1| ≤
1

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,n

∣∣ê2
i,n − e2

i,n

∣∣
≤ 1

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,n

[
3
(
b̄2
i,n + c̄2

i,n

)
+ 2e2

i,n

]
=

3

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,n

(
b̄2
i,n + c̄2

i,n

)
+ op (1)

by Lemma B2 and ‖P$n‖1 ≤M . Letting Vn = WnS
−1
n

[
Xn (Wn) θβ0 +Xn(Wn, λ0)δθβ0

]
=

[v1,n, . . . , vn,n]′, we have max1≤i≤n |vi,n| = O (1) under Assumption (1.2) and the typical

5
b̄n = δ̂αα

(
W−
n (λ̂)−W−

n (λ0)
)
S−1
n en and c̄n = δ̂αα

(
W−
n (λ̂)−W−

n (λ0)
)
S−1
n

[
Xn (Wn) θβ0 +Xn(Wn, λ0)δθβ0

]
.

152

ANTRI C
. K

ONSTANTIN
ID

I



element of c̄n = δ̂ααZ
(
λ̂, λ0

)
Vn is c̄i,n = δ̂ααχi

(
λ̂, λ0

)
vi,n. It then follows that

1

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,nc̄

2
i,n

=
δ̂2
αα

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,nχ

2
i

(
λ̂, λ0

)
v2
i,n

= op (1) .

Moreover, letting dij,n be the (i, j)th element of WnS
−1
n and denoting Vn = WnS

−1
n en =

[v1,n, . . . , vn,n]′, we have vi,n =
∑n

l=1 dil,nel and applying tedious but straightforward

calculation gives

1

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,nb̄

2
i,n

=
δ̂2
αα

n

n∑
i=1

n∑
j=1

|p̂∆n,ij − p∆n,ij| e2
j,nχ

2
i

(
λ̂, λ0

)( n∑
l=1

dil,nel

)2

= op (1) .

because ‖WnS
−1
n ‖1 ≤ M under Assumption (1.2). Therefore, we obtain An1 = op (1).

Similarly, we have An2 = op (1) and An3 = op (1).

Hence, we have n−1
[
tr
(

Γ̂nP̂an

(
Γ̂nP̂bn

)s)
− tr (ΓnPan (ΓnPbn)s)

]
= op (1) for a, b =

1, 2, 3, 4.

Next, we consider

Q̂′nΓ̂nQ̂n −Q′nΓnQn

=
(
Q̂n −Qn

)′
Γ̂n

(
Q̂n −Qn

)
+
(
Q̂n −Qn

)′
Γ̂nQn

+Q′nΓ̂n

(
Q̂n −Qn

)
+Q′n

(
Γ̂n − Γn

)
Qn

where Qn equals Q̂n with θ̂ replaced with θ0 and

Q̂n −Qn =
[
∆n1,∆n2,∆n3,∆n4, 0n×(2k1), Xn(Wn, λ̂)−Xn(Wn, λ0)

]
with

∆n1 = WnŜ
−1
n [Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ]−WnS

−1
n [Xn(Wn)θβ0 , Xn(Wn, λ0)δθβ0

]

∆n2 = W−
n,λ̂
Ŝ−1
n [Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ]−W−

n,λ0
S−1
n [Xn(Wn)θβ0 , Xn(Wn, λ0)δθβ0

]

∆n3 = Wn(λ̂)Ŝ−1
n [Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ]−Wn(λ0)S−1

n [Xn(Wn)θβ0 , Xn(Wn, λ0)δθβ0
]

∆n4 = W−
n (λ̂)Ŝ−1

n [Xn(Wn)θ̂β, Xn(Wn, λ̂)δ̂θβ ]−W−
n (λ0)S−1

n [Xn(Wn)θβ0 , Xn(Wn, λ0)δθβ0
].

153

ANTRI C
. K

ONSTANTIN
ID

I



Letting q̂i,n and qi,n be the ith column of Q̂n and Qn, respectively, we have

n−1
(
Q̂n −Qn

)′
Γ̂n

(
Q̂n −Qn

)
= n−1

n∑
i=1

ê2
i,n (q̂i,n − qi,n) (q̂i,n − qi,n)′

n−1
(
Q̂n −Qn

)′
Γ̂nQn = n−1

n∑
i=1

ê2
i,n (q̂i,n − qi,n) q′i,n

n−1Q′n

(
Γ̂n − Γn

)
Qn = n−1

n∑
i=1

(
ê2
i,n − e2

i,

)
qi,nq

′
i,n.

Using the results in Lemma B2 and the arguments made above, we can show that

the three equations are all of order op (1) element by element. That is, we have

n−1
(
Q̂′nΓ̂nQ̂n −Q′nΓnQn

)
= op (1).

To sum up, we have shown that n−1
(

Ω̂n − Ωn

)
= op(1). This completes the proof of

this proposition.

Proof of Theorem 2: From the generalized Schwartz inequality, we know that the

optimal weighting matrix is (n−1Ωn)−1. Setting an = (n−1Ωn)−1/2, we have a0 =

(limn→∞ n
−1Ωn)−1/2 exists under Assumption 6. Applying simple algebra yields

ĝn(θ)′Ω̂−1
n ĝn(θ)− gn(θ)′Ω̂−1

n gn(θ)

= gn(θ)′Ω̂−1
n gn(θ) + 2 [ĝn(θ)− gn(θ)]′ Ω̂−1

n gn(θ)

+ [ĝn(θ)− gn(θ)]′ Ω̂−1
n [ĝn(θ)− gn(θ)] .

Applying Lemma B2, we can show maxθ∈Θ n
−1 ‖ĝn(θ)− gn(θ)‖ = op (1), which implies

n−1 maxθ∈Θ

∥∥∥ĝn(θ)′Ω̂−1
n ĝn(θ)− gn(θ)′Ω̂−1

n gn(θ)
∥∥∥ = op (1).

In addition, we have n−1gn(θ)′Ω̂−1
n gn(θ) = n−1gn(θ)′Ω−1

n gn(θ)+n−1gn(θ)′(Ω̂−1
n −Ω−1

n )gn(θ) =

n−1gn(θ)′Ω−1
n gn(θ)+op (1) by Proposition 2.2, because maxθ∈Θ ‖n−1gn(θ)− n−1E [gn(θ)]‖ =

op (1) and maxθ∈Θ ‖n−1E [gn(θ)]‖ = O (1). Therefore, minimizing ĝn(θ)′Ω̂−1
n ĝn(θ w.r.t.

θ ∈ Θ is equivalent to minimizing n−1gn(θ)′Ω−1
n gn(θ) over θ ∈ Θ. Following the proof

of Theorem 2.14, we therefore obtain√n(θ̂∗∗ − θ∗∗0 )
n

1
2
−a
(
λ̂− λ0

) d→ N (0,Σ∗n) (B18)

where Σ∗n = (limn→∞
1
n
H ′nΛnΩ−1

n ΛnHn)−1. This completes the proof of this theorem.
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Appendix C

Lemma C1 Under Assumption 1, ϑ1 6= ϑ2 and H0 : a1 = a2 = 0, the following hold

1. |n−
∑n

i zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

∑n
i zix

′
i1{qi ≤ γ̂}| = Op(E(zix

′
i|q=γ0)n−1+2α).

2. |n−
∑n

i zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

∑n
i zix

′
i1{qi ≤ γ0}| = Op(E(zix

′
i|q=γ0)n−1+2α).

3. |n−
∑n

i eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0}−n−

∑n
i eiz

′
i1{qi ≤ γ̂}| = Op(

√
E(ziz′i|q=γ0)/nn−1+2α).

4. |n−
∑n

i eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0}−n−

∑n
i eiz

′
i1{qi ≤ γ0}| = Op(

√
E(ziz′i|q=γ0)/nn−1+2α).

where zi = xi or wi.

Proof of Lemma C1.

1. Note that

|n−
∑n

i zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

∑n
i zix

′
i1{qi ≤ γ̂}| ≤ n−1

∑n
i=1 |zix′i|1{γ0 −

|γ̂ − γ0| < qi < γ0 + |γ̂ − γ0|}.

Given that γ̂ = γ0 + Op (n−1+2α), for any small ε > 0, there exists a constant

M and an integer Nε such that for any n > Nε, Pr {|γ̂ − γ0| > Mn−1+2α} ≤ ε.

Hence, for any n > Nε and any finite M̃ > 0 such that

Pr

{
|n−

n∑
i

zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

zix
′
i1{qi ≤ γ̂}| > M̃E(zix

′
i|qi = γ0)n−1+2α

}
=

Pr

{{
|n−

n∑
i

zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

zix
′
i1{qi ≤ γ̂}| > M̃E(zix

′
i|qi = γ0)n−1+2α

}

∩
{
|γ̂ − γ0| ≤Mn−1+2α

}}
+

Pr

{{
|n−

n∑
i

zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

zix
′
i1{qi ≤ γ̂}| > M̃E(zix

′
i|qi = γ0)n−1+2α

}

∩
{
|γ̂ − γ0| > Mn−1+2α

}}
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= Pr

{
n−1

n∑
t=1

|zix′i|1{γ0 −Mn−1+2α < qi < γ0 +Mn−1+2α} > M̃E(zix
′
i|q=γ0)n−1+2α

}

≤Pr

{
n−1

n∑
t=1

|zix′i|1{γ0 −Mn−1+2α < qi < γ0 +Mn−1+2α} > M̃E(zix
′
i|q=γ0)n−1+2α

}

+ Pr

{
|γ̂ − γ0| > Mn−1+2α

}

≤
n−1

∑n
t=1E

[
|zix′i|1{γ0 −Mn−1+2α < qi < γ0 +Mn−1+2α}

]
M̃E(zix′i|q=γ0)n−1+2α

+ ε

=
2E [|z1x′1 ||q1 = γ̆] fq (γ̆)M

M̃E(zix′i|q=γ0)
+ ε.

The second inequality is obtained after applying Markov’s inequality and last

equality from mean value theorem to obtain the last equation with γ̆ lies between

γ0 − Mn−1+2α and γ0 + Mn−1+2α. Hence |n−
∑n

i zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0} −

n−
∑n

i zix
′
i1{qi ≤ γ̂}| = Op(E(zix

′
i|q=γ0)n−1+2α).

2. Similarly,

|n−
∑n

i zix
′
i1{qi ≤ γ̂}1{qi ≤ γ0}−n−

∑n
i zix

′
i1{qi ≤ γ0}| = Op(E(zix

′
i|q=γ0)n−1+2α).

3. Let the partition [γ0 −Mn−1+2α, γ0 +Mn−1+2α] = ∪Nε−1
k=1 [γk, γk+1)∪ [γNε, γNε+1]

into Nε non-overlapping intervals with equal length ε = 2Mn−1+2α/Nε.

Then, we have

max
γ̂∈[γ0−Mn−1+2α,γ0+Mn−1+2α]

|n−
n∑
i

eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

eiz
′
i1{qi ≤ γ̂}|

≤ max
|γ′−γ|<ε

|n−1
n∑
i

eizi
[
1{qi ≤ γ′} − 1{qi ≤ γ}

]
1{qi > γ0}|

+

Nε+1∑
k=1

|n−1
n∑
i=1

eizi1{qi ≤ γk}1{qi > γ0}|

= Op

(√
E (z′izi|qi = γ0) /nε

)
+Op

(
Nεn

−1+2α
√
E (z′izi|qi = γ0) /n

)
= Op

(√
E (z′izi|qi = γ0) /n

(
ε+Nεn

−1+2α
))

= Op

(
n−1+2α)

√
E (z′izi|qi = γ0) /n

)
for any finite Nε. It follows,
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Pr

{
|n−

n∑
i

eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

eiz
′
i1{qi ≤ γ̂}| > M̃bn

}
=

Pr

{{
|n−

n∑
i

eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

eiz
′
i1{qi ≤ γ̂}| > M̃bn

}

∩
{
|γ̂ − γ0| ≤Mn−1+2α

}}
+

Pr

{{
|n−

n∑
i

eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0} − n−

n∑
i

eiz
′
i1{qi ≤ γ̂}| > M̃bn

}

∩
{
|γ̂ − γ0| > Mn−1+2α

}}

≤Pr

{
max

|γ̂−γ0|≤Mεn−1+2α
|n−1

n∑
t=1

eiz
′
i1{qt ≤ γ̂}1{qt > γ0}| > M̃bn

}

+ Pr

{
|γ̂ − γ0| > Mn−1+2α

}
= ε+ ε = 2ε,

where bn =
√
E(ziz′i|q=γ0)/nn−1+2α. Hence, |n−

∑n
i eiz

′
i1{qi ≤ γ̂}1{qi ≤ γ0} −

n−
∑n

i eiz
′
i1{qi ≤ γ̂}| = Op(

√
E(ziz′i|q=γ0)/nn−1+2α).

4. Similarly,

|n−
∑n

i eiz
′
i1{qi ≤ γ̂}1{qi ≤ γ0}−n−

∑n
i eiz

′
i1{qi ≤ γ0}| = Op(

√
E(ziz′i|q=γ0)/nn−1+2α).

Proof of Proposition 3.1. Let the model

yi,n =

{
a1wi + ϑ′1xi + ei, qi ≤ γ

a2wi + ϑ′2xi + ei, qi > γ

which is equivalent to

yi = ϑ′xi + awi + δ1xi1{qi ≤ γ}+ δ2wi1{qi ≤ γ}+ ei

where ϑ = ϑ2, a = a2, δ1 = ϑ1 − ϑ2 and δ2 = a1 − a2.

Under the null hypothesis Ho : a1 = a2 = 0 or (Ho : δ2 = a = 0) the model reduces to

yi = ϑ′xi + δ1xi1{qi ≤ γ}+ ei (C1)
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When ϑ1 6= ϑ2 (δ1 = 0), we have the standard threshold regression model and from

Hansen (2000), n1−2α(γ̂ − γo)
d−→ ωT , where ω = C′V C

(C′DC)2f
, T = argmax−∞<r<∞[−1

2
r+

W (r)].

When ϑ1 = ϑ2, model (C1) becomes yi = ϑ′xi + ei. Define the matrix Qγ, of stacked

elements [xi1{qi ≤ γ}, xi1{qi > γ}], Mγ = In −Qγ(Q
′
γQγ)

−1Qγ and λ = Fq(γ). Then

y′Mγy = y′(In −Qγ(Q
′
γQγ)

−1Qγ)y

= e′(In −Qγ(Q
′
γQγ)

−1Qγ)e

= e′e− e′Qγ(Q
′
γQγ)

−1Qγe

From Law of Large Numbers, n−1e′e
a.s→ σ2 and

e′Qγ(Q
′
γQγ)

−1Qγe⇒ Bu(1, λ)′Bu(1, λ)

+ [E1/2
xx Bu(1)− E1/2

xx,γBu(1, λ)]′[E(x′ixi)− E(x′ixi1{qi ≤ γ})]−1[E1/2
xx Bu(1)− E1/2

xx,γBu(1, λ)]

where Exx = E(x′ixi) and Exx,γ = E(x′ixi1{qi ≤ γ}), because

e′Qγ(Q
′
γQγ)

−1Qγe =
n∑
i

x′iei1{qi ≤ γ}(
n∑
i

xix
′
i{qi ≤ γ})−1

n∑
i

xiei1{qi ≤ γ}

+
n∑
i

x′iei1{qi > γ}(
n∑
i

xix
′
i{qi > γ})−1

n∑
i

xiei1{qi > γ}

and from Theorem 1 of Hansen and Caner (2001),

[n−1/2Exx
−1/2

∑ns
i xiei, n

−1/2E
−1/2
xx,γ

∑ns
i xiei1{qi > γ}] ⇒ [Bu(s), Bu(s, λ)]. Now, de-

note λ∗ = Fq(γ
∗) and λ̂ = Fq(γ̂). Then

λ̂⇒ λ∗ = argmaxBu(1, λ)′Bu(1, λ)

+ [E1/2
xx Bu(1)− E1/2

xx,γBu(1, λ)]′[E(x′ixi)− E(x′ixi1{qi ≤ γ})]−1[E1/2
xx Bu(1)− E1/2

xx,γBu(1, λ)]

Proof of Proposition 3.2. Let the Wald statistic

Wn(γ̂) =
(R′β̂)′(R′(X(γ̂)′X(γ̂))−1R)−1(R′β̂)

s2
(C2)

where R is a selection matrix, γ̂ is the γ estimated under the null, s2 is the residual

variance calculated under the alternative, β̂ = [ϑ, a, δ1, δ2] and X(γ) is the matrix of

stacked elements [xi1{qi ≤ γ}, wi1{qi ≤ γ}, xi1{qi > γ}, wi1{qi > γ}].

Let X(γ) = [X−(γ), X+(γ)], where X−(γ) is the matrix of stacked elements [xi1{qi ≤
γ}, wi1{qi ≤ γ}]and X+(γ) is the matrix of stacked elements [xi1{qi > γ}, wi1{qi > γ}].
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Hence,

[X(γ)′X(γ)]−1 =

([
X−(γ)′

X+(γ)′

] [
X−(γ)′ X+(γ)′

])−1

=

[
X−(γ)′X−(γ) 0

0 X+(γ)′X+(γ)

]−1

=

[
(X−(γ)′X−(γ))−1 0

0 (X+(γ)′X+(γ))−1

]

From Lemma 1, Hansen (1996)

n−1(X(γ)′X(γ)
p→

[
(E[x

′∗
i x
∗
i 1{qi ≤ γ}])−1 0

0 E[x
′∗
i x
∗
i 1{qi > γ}])−1

]
,

Hence R′(X(γ̂)′X(γ̂))−1R)−1 = Op(n).

Under the null y = X̃−(γ)ϑ1 + X̃+(γ)ϑ2 + e, where X̃−(γ) is the matrix whose i′th

row is xi1{qi ≤ γ} and X̃+(γ) the matrix whose i′th row is xi1{qi > γ}. Note that

[â1, â2]′ = (R′β̂)′ and define W ∗ the matrix of stacked elements [wi1{qi ≤ γ}, wi1{qi >
γ}]. Then

[â1, â2] = (W ∗′MγW
∗)−1W ∗′Mγy = (W ∗′MγW

∗)−1W ∗′Mγ( ˜X−(γ)ϑ1 + ˜X+(γ)ϑ2 + e)

First, we consider the case where ϑ1 = ϑ2. Note that, R′(X(γ̂)′X(γ̂))−1R)−1 d→
R′(X(γ∗)′X(γ∗))−1R)−1 = Op(n) from continuous mapping theorem and γ̂

d→ γ∗.

Then y = X̃ϑ+ e, where X̃ is the matrix whose i′th row is xi. Then

â,= (W ∗′Mγ̂W
∗)−1W ∗′Mγ̂y = (W ∗′Mγ̂W

∗)−1W ∗′Mγ̂(X̃ϑ+ e)

Since X̃ lies in the space spanned by Qγ̂(Q
′
γ̂Qγ̂)

−1Qγ̂ hence (W ∗′Mγ̂W
∗)−1W ∗′Mγ̂X̃ϑ =

0. Furthermore, n−1(W ∗′Mγ̂W
∗)−1W ∗′Mγ̂e

d→ n−1(W ∗′Mγ∗W
∗)−1W ∗′Mγ∗e from con-

tinuous mapping theorem and γ̂
d→ γ∗, which in turn converges to a zero mean normal

distribution when ei is independent of xi. Hence, Wn(γ̂)
d→ χ2

2.

Next, we consider the case where ϑ1 6= ϑ2. Similarly R′(X(γ̂)′X(γ̂))−1R)−1 = Op(n).

When ϑ1 6= ϑ2,

[â1, â2] = (W ∗′Mγ̂W
∗)−1W ∗′Mγ̂y = (W ∗′Mγ̂W

∗)−1W ∗′Mγ̂(X̃−(γ0)ϑ1 + X̃+(γ0)ϑ2 + e)

Note that from Proposition 1, n1−2α(γ̂−γ0)
d−→ ωT . Hence, γ̂ = γ0+Op(n

−1+2α). There-

fore, from Lemma 1 we obtain that (W ∗′Mγ̂W
∗)−1W ∗′Mγ̂(X̃−(γ0)ϑ1 + X̃+(γ0)ϑ2 =

Op(n
−1+2α) and (W ∗′Mγ̂W

∗)−1W ∗′Mγ̂y = (W ∗′Mγ̂W
∗)−1W ∗′Mγ̂e converges to a zero

mean normal distribution. Hence, Wn(γ̂)
d→ χ2

2.
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