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[epirndn

O otdyoc authAc g dltedric ebvar Vo UEAETHCW TNV XOWVWVIXT| XWVTIXOTNTO YENOoYo-
TOLOVTOC XOUVOTOUES OLXOVOUETEIXEC UEVOBOUC TOU TaREYOLY TOGO VewpenTiny 0G0 Xou

euneler} GUUBOAY| oTnV uTdpyouca BiBAoypapia.

Y10 Kegdhowo 1 pehetdton 1 petddoon tng eunuepiag amd yevid o Yewd, eoTidlovtag
OTOV POAO TV ETEVOVOEWY TWV YOVIWY T ToUdLS XoTtd T1) SLdpxELar TNE Tondixhc NAuxlog
xou NS veaprc nhwdag, yenoulomolnvtog 6edouéva and T Bdon dedouévewy Panel Study
of Income Dynamics (PSID). Ye avtideon ye v tActovotnta tng BYBAoypaplac 1 o-
Tolol ETXEVTRMOVETAUL OE EVay U6Vo aptdud mou cuvodilel Ty xavnuxdTnTa PETOCD YEVEDY,
1 oVIALOY| UaC EOTIACEL OF Lol XOUUTUAT, TOU XAUTOYRAPEL T1) OLOYEVELUXT) TROYLA XOTd TN
Oidpxelar Tne mopetag Lwhg evog atopou. Xenowonoolue functional data analysis, pa
uEV0B0 avdhuoTG DEBOUEVKY TIOU HOG ETUTEETEL VUL XUTACKEVGOOUUE EXTUINACEL TWY TROYI-
OV TNS XINTXOTNTOG PETOEY YEVEDY. ALUTIOTOVOUUE OTL Ol YOVIXES EMEVOUCELC lval TLo
TORUYWYIXES OTNV TR Xt Ohuun e@nBuxh nhixio 1 otnv veapr evnhudwor, éva ebpnua
T0 OTolo UTOBEIXVUEL OTL 1) YEOVIXY| CTUYHN xatd TNy omtola yivovton enevdloelg 0Ty ex-
ToddeVoT X TO AVP®TIVO XEQdhoto elvar TOAD onuoavTixy. Emimiéov, undpyouv ctotyela
ETEQPOYEVELUC AOY® TNG XOLVWVIXOOLXOVOULXNG XATACTACTC Xl TNG OLXOYEVELUXNS DOUNS
TV Toudv. Télog, 0 yedvoc xatd Tov omolo To Tadld TOU TEOEPYOVTAL O BUCTEAYO-
Uoeg oixoyéveleg Prdvouy xdmoto cox (dtallyto, 9dvortog evog yoviol 1 owovouxd cox)

ATOTEAEl OMUAVTING TOEAYOVTAL YIo TNV AVOOLXT TOUS XV TIXOTNTA.

Y10 Kegdhowo 2 avanticoouye o Véo Téln HOVTEAWY XOWOVIXAS dAANAeTidpaong Tou
yevixevouv o Spatial autoregressive model €10l HOTE Vo EMTEETEL TNV ToEOUGEH €Te-
povévewg pe TN popn threshold ef fects. Autd ta povtélo Umopoly vo eQupUocToLY
YLoL Vo EENYACOUV Lol GELOY 1] YROUMIXOY PUVOUEVKY OIS TEQITTOOELS OTOU ToL dTo-
ot ToeoéVouy TaytdeUpéVe 0T PTWYELR (poverty traps). Luyxexpuéva, TEoTelvouue
éva yevix6 povtého Threshold Spatial Autoregressive (I'SAR), to onolo amotehel ye-
vixeuon t6co Tov Mized regressive, spatial autoregressive model 650 xou Tou Spatial
autoregressive model xou eMTEETEL TNV UTAEETN EVOOYEVMY XOWOVIXOY OANAETLOPAGEWY
ava OLopopeTind xadeoTos. Avoamtiocoupe wio pédodo GMM oe 500 Bruota yior TNV
eEXTIUNON TWV TUPUUETEWY TOU LOVTEAOU Xl DELYVOUUE TNV CUVETELX XL TNV OCUUTTOTL-
X1} XAVOVIXOTNTOL TWV TEOTEWOUEVWY EXTNTGY. TEéhog, allohoyolue TNV amddooT TV

uedodwy pag yenowonowwvtag Monte Carlo Tpocouounoels.

Y10 Kegdhowo 3 pehetdue tn otatioTixr) cupncpacuatoroyion oyetixd ye tg threshold
TOAVOPOUNOELS EVE LTIEEYEL oEBalOTNT ¢ TPOG TOLo Efvall TO TEUYUATIXG HOVTEND. AUTO
TO TEOBANUA TEOXVTTEL OTAY XATOLOG EVOLUPERETOL Vo EAEYEEL TNV UTaPE T U1 YROUUIXO-
TV TUToL threshold, ahhd undpyel aefondTnTa OYETIXd UE TO GUVORO TWV PETUPBANTOY

TOU TEETEL VA GUUTERLANOVOVY 0To LHoVTEAD. H Tumxh Toooéyyion Yo TNV AVTILETONL-
P MTEQLANG M | TPOGEYYLON Ylo N M

il



on e oafefordTnTag Tou povtélou elvar N post — single TEOGEYYLOT), dNAADT aEy X M
emAoYT TV YETOBANTOY ehéyyou (Yl Tapdderypo péow xdmotwy EAEYYwY UTtoUéowy)
xoL 0T CLVEYELXL 1) eCaywYT) ouuTEpaoudTeY. Evtoltolg, 1 post — single mpooéyyion
odnyel oe coPapéc oTeeRAwoe oTo Péyedog ot 0TV oyl evOg EAEYYOL Yo UTtapdn Un
YeouuxotAtwy TUTou threshold. Xto napdy xegdiono viovetolue TNy post — double Tpo-
oéyyion v Belloni, Chernozhukov, xou Hansen (2011) oto mhaiclo wwv threshold
TOAVOPOUNCEWY Xall OEly VOUUE OTL 0 EAEY Y0 UTOVECWY UETA T YeHoT ALTHAC TNE HEY6B0U
Aertovpyel xoAd T0c0 o péyedog 6co xou ot woyl. Télog, autd To XePdhono aflohoyel

TNV amod00T TG TREOTEWOUEVNC UeVddou Uécw Tpocopoiwone Monte Carlo.
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Abstract

The broad aim of my thesis is to study social mobility using novel econometric methods

that provide both theoretical and empirical contributions in the existing literature.

In Chapter 1 we study the intergenerational transmission of well-being by focusing on
the role of trajectories of exposures during childhood and young adulthood using PSID
data. Our analysis shifts the focus from a single number that summarizes the inter-
generational mobility to a curve that captures the intergenerational trajectory over the
life-course of an individual. In doing so, we employ a functional data analysis approach
that allows us to construct estimates of trajectories of intergenerational mobility. We
find that parental investments are more productive in the early and late childhood or
young adulthood, highlighting the importance of the timing of human capital invest-
ments. Furthermore, we uncover evidence of heterogeneity due to socioeconomic status
and family structure that suggests that the timing of the shocks for the disadvantaged

children is an important factor for their upward mobility.

In Chapter 2 we develop a new class of social interaction models that generalize the
spatial autoregressive model to allow for threshold effects. These models can be applied
to explain a range of nonlinear phenomena such as poverty traps. In particular, we
propose a general Threshold Spatial Autoregressive (TSAR) Model, which nests both
mixed regressive, spatial autoregressive model as well as the spatial autoregressive
model and allows for regime specific endogenous as well as contextual effects. We
develop a two-step GMM method for the estimation of the threshold and regression
parameters and show consistency and asymptotic normality of the proposed estimators.

Finally, we assess the performance of our methods using a Monte Carlo simulation.

In Chapter 3 we study inference in threshold regressions in the presence of model
uncertainty. This problem arises when one is interested in testing for the presence
of threshold type nonlinearities but there exists uncertainty about the set of controls.
The standard approach to deal with model uncertainty is the post-single approach,
that is, select the control variables and then draw an inference. However, post-single
selection leads to severe size and power distortions. Following Belloni, Chernozhukov,
and Hansen (2011) this chapter uses a post-double selection procedure to construct a
threshold test that is valid under model uncertainty and performs well in both size and
power. Finally, this chapter evaluates the finite sample performance of the proposed

method via a Monte Carlo simulation.
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Introduction

Social mobility is one of the most important aspects of inequality and refers to how the
socio-economic position (outcomes and socioeconomic characteristics) of the children
as they grow-up to become adults relates to that of their parents. While social mobility
captures both the intragenerational and intergenerational aspects of the transmission
of socioeconomic status, the latter is of particular importance as it can be used to study
poverty traps. Despite the vast work, the literature has not provided satisfactory an-
swers to the questions of persistent inequality and poverty traps. My thesis addresses
various challenges by proposing three complementary approaches that focus on inter-
generational trajectories of income, threshold-type nonlinearities due to neighborhood

effects and model uncertainty in the context of threshold regressions.

Specifically, in the first chapter we study the intergenerational trajectories of the off-
springs. Chapter 2 develops an econometric model which allow us to study poverty
traps in the context of social networks and provides an empirical illustration. Chapter
3 studies inference on threshold regressions under model uncertainty. Chapter 2 has
given rise to a joint paper with Andros Kourtellos and Yiguo Sun while Chapters 1

and 3 have generated a number of joint papers with Andros Kourtellos.

In Chapter 1, we shift the focus from a single number that summarizes the intergen-
erational mobility to a curve that captures the intergenerational trajectory over the
life-course of an individual using functional data analysis. The standard empirical
approach in the economics literature on intergenerational mobility focuses on intergen-
erational elasticity of income (IGE). The IGE is the slope of the coefficient of a log-log
linear regression model of child’s permanent income on parent’s permanent income
controlling for some characteristics. Its magnitude determines the degree of intergen-
erational mobility; for example, a value close to 1 implies greater persistence of the
intergenerational transmission of income, suggesting lower mobility. However, there is
no apriori reason to believe that a simple average of observed income is a sufficient
statistic for permanent income since it ignores important mechanisms that affect off-
spring’s income. Several studies have investigated the importance of critical periods

in the human capital development of a child (Cunha and Heckman (2007) and Cunha,



Heckman, and Schennach (2010)), as well as the dynamic complementarity in invest-
ments in different periods and the interaction with the timing of borrowing constraints
(Caucutt and Lochner (2017)). In this chapter, we examine the role of the timing of
parental income during childhood and young adulthood years using annual or bian-
nual data from the Panel Study of Income Dynamics. Additionally, we investigate the
heterogeneity in the intergenerational trajectories of income due to the socioeconomic
status and structure of the family. We propose the intergenerational trajectories model
using functional regression and we estimate an intergenerational elasticity function,
which captures the intergenerational effect of the resources available to child at age t.
Overall, we find that the parental income in early and late childhood is important for
the outcomes of children as adults, while parental investments for young adulthood can
be at least as productive as the ones in early and late childhood. The socioeconomic
background of the parents affects the intergenerational trajectories of the offspring and
the timing of parental income shocks plays a key role in offsprings’ long run outcomes.
Finally, early family shocks seem to affect more parental investments, making them
less productive. This chapter contributes to the literature of intergenerational mobility
by providing a complementary approach that focuses on intergenerational trajectories
of income, taking into account for heterogeneity with respect to socioeconomic status

of parents and the effects of income and family ’shocks’.

In Chapter 2, motivated by our empirical work on intergenerational mobility, we pro-
pose a new class of social interaction models that generalize the Spatial Autoregression-
Mixed Regression to allow for threshold effects that capture the heterogeneity in the
endogenous social interaction effects. Threshold-type nonlinearity is suggested by sev-
eral economic theories such as models of income dynamics and poverty traps and more
generally by models that feature multiple equilibria due to incomplete markets, in-
creasing returns, complementarities, etc. One particular class of models that pro-
duces threshold-like nonlinearities are models of neighborhood effects. For example,
threshold-like behavior can arise in a model with strict stratification of neighborhoods
by income (Benabou (1996) and Durlauf (1996a,b)). We consider a two-step GMM
estimator and develop an asymptotic distribution theory for the GMM estimators of
the regression parameters as well as for the threshold parameter. While the first step
GMM estimator is consistent, it is not efficient. Hence, we propose a second step esti-
mator that aims at addressing this issue by obtaining a quasi-optimal estimator. Our
framework nests both the fixed and diminishing threshold effect, and the threshold
parameter estimate is normally distributed. We provide Monte Carlo simulations that
show the finite sample performance of our estimators. Moreover, we propose a test for
the threshold effect which features the Davies problem (that the threshold parameter is
not identified under the null). The econometric methodology developed in this chapter
is applicable to many interesting phenomena such as poverty traps. This chapter con-

tributes to the literature of Spatial Autoregression-Mixed Regression by considering



threshold-type nonlinearities.

Chapter 3 addresses the issue of model uncertainty with respect to the variables se-
lection in the context of threshold regressions. In many economic contexts, applied
economists have little guidance on the variables that should be included in the model,
mainly due to the fact that the validity of one theory does not logically exclude other
mechanisms from also being relevant. The usual approach is to select variables using
a test for the statistical significance or selection criteria or a shrinkage and selection
method in high dimensional framework and then conduct inference as if the real model
was chosen. However, the choice of the variables affects the inference about the thresh-
old. We are extending the post-double selection method of Belloni, Chernozhukov,
and Hansen (2011), to the threshold regressions framework. The ideas of post-double
selection method is based on the partialling out technique of Frisch-Waugh-Lovell in
the linear setting, the Neyman’s C'(«) test in the nonlinear setting (Neyman (1979)),
and Robinson (1988) in the semi-parametric setting. First, it is shown that the stan-
dard post-single selection methods have adverse effects in the size and power of the
bootstrap-based threshold test proposed by Hansen (1996). Then, we proceed in show-
ing how the proposed post-double selection procedure restores the distortion of the size
and power of the threshold test. Monte Carlo simulations suggest that post-double se-
lection restores the size and the power of the relevant bootstrap threshold test. This
chapter contributes to the literature of the threshold regressions framework by propos-
ing a post-double selection procedure to construct a threshold test that is valid under
model uncertainty. This methodology can be applied to a range of interesting applica-
tions, in both empirical microeconomics and macroeconomics (e.g., intergenerational

mobility, child development literature, and cross-country growth studies).



Chapter 1

Intergenerational Trajectories

1.1 Introduction

The standard empirical approach in the economics literature on intergenerational mo-
bility focuses on intergenerational elasticity of income (IGE) which is the slope of the
coefficient of a linear regression model of child’s permanent income on parent’s perma-
nent income controlling for some characteristics. The magnitude of the IGE coefficient
determines the degree of intergenerational mobility. An IGE close to zero implies
greater mobility while an IGE value close to one implies higher degree of persistence,
that is, immobility across generations. While the IGE model is a statistical model, un-
der certain assumptions the linear IGE model can be interpreted as a behavioral model,
which is implied by the classical theory of family income or investment models; see, for
example, Becker and Tomes (1979). Broadly speaking these models focus on the inter-
generational transmission mechanism of income, which stems from the dependence of
education investments in parental income. This model is often augmented with credit
constraints that capture the idea that parents cannot borrow against children’s future
income because they cannot provide credible repayment assurances (Becker and Tomes
(1986) and Loury (1981)).

One key aspect in the implementation of the IGE model is the measurement of per-
manent income which is latent. The standard empirical practice measures permanent
income as an average over several years. The idea is that transitory components av-
erage out to zero if a large enough time horizon is used. However, there is no reason
to assume that transitory components average out to zero over the lifetime of an indi-
vidual. For example, if the variance of the transitory component is not constant over

the life cycle of the individual, then the age at which father’s earnings are measured



is also important.® More importantly, using a simple average as a proxy of perma-
nent income completely ignores the importance of critical and sensitive periods in the
development of a child. Cunha and Heckman (2007) and Cunha, Heckman, and Schen-
nach (2010)) emphasize the importance of the timing of human capital investments
and dynamic complementarity in investments. In fact the dynamic complementarity
can also interact with the timing of borrowing constraints in subtle ways (Caucutt
and Lochner (2017)). Carneiro and Heckman (2003) argue, the inability of children
to borrow money to buy themselves out of family and neighborhood disadvantage is a
kind of market failure that plays a critical role in their labor market outcomes. The
importance of timing is not limited to family investments but more generally extends
to cover the impact of prenatal and early childhood environments on long run outcomes
(Almond and Currie (2011)). Heckman and Mosso (2014) summarize the evidence on
the divergence in skills from early childhood and how these gaps play a decisive role
in determining the life course social and economic outcomes of an individual. These
reasons suggest that the standard IGE approach that proxies the permanent income

with a simple average ignores important intergenerational mechanisms at work.?

In this chapter we take a different approach. We argue that the notion of permanent
income as it was conceptualized by Friedman (1957) was not statistical but rather be-
havioral. In fact, broadly defined, the permanent component of income can be viewed
as the effect of the factors that the individual perceives as the determinants of her
life-time nonhuman and human wealth including personal attributes (abilities, per-
sonality, experience, occupation), family characteristics (e.g., marital status), location
(e.g., schools, economic activity, social capital). Hence, there is no apriori reason to
believe that a simple average of observed income is a sufficient statistic for permanent
income, which in turn can be used to measure intergenerational mobility. Therefore,
we treat the annual income data as discrete signals of a latent income process, which
allows us to measure mobility by intergenerational income trajectories over the ages of
exposure of children and young adults. Put differently, we shift the focus of the analysis
from scalars to curves that map the trajectory of parent’s outcomes to the trajectory
of child’s outcomes. In doing so, we employ a functional regression approach that
treats the observations as “snapshots” of an underlying latent curve to uncover trends
and accelerations in the intergenerational trajectories that may be revelatory of the

importance of the timing of shocks over the entire lifetime of an individual.

Remarkably, the literature has focused on the linear IGE model and much of the

discussion is limited to minimizing the problems of attenuation and life-cycle biases.?

'Mazumder (2005, 2015) argue that these biases can be addressed by constructing long time aver-
ages centered at age 40.

2These income shocks are generally endogenous due to parents’ choices but this issue is beyond
the scope of this paper.

3For example, Mazumder (2015) provides a systematic analysis of the two biases.



A notable exception is Carneiro, Italo, Salvanes, and Tominey (2018) who examine the
role of the timing of parental income during their childhood years using administrative
data from Norway. In particular, they estimate semi-parametric regressions of human
capital outcomes on the discounted household income for the years when the child was
between 0 and 17 years that proxies the permanent income, and two other measures
of income at different stages of childhood that correspond to middle (ages 6-11) and
late (ages 12-17). They find that when households income is shifted from middle
childhood to either the early years or later childhood, the child can achieve optimal
outcomes. Our analysis generalizes their work by considering labor market outcomes of
the offspring using annual and bi-annual data that extend the age of exposure to include
transition to adulthood (18-24) using a functional data approach. In the same spirit,
Chausse, Chen, and Couch (2015) develop a multivariate functional regression method
and provide a simple illustration of its usefulness in the context of intergenerational
mobility. Yet, both of these analyses stop short from providing a full understanding of

the intergenerational impact of the timing of shocks.

This paper builds on the aforementioned line of work by having the following three
contributions. First, we examine the role of the timing of parental income during their
childhood years in the US data based on PSID data. Second, we employ a functional
data approach that allows the use of annual or bi-annual data and extend the time-
span to include young adulthood. In contrast, the analysis by Carneiro, Italo, Salvanes,
and Tominey (2018) is limited to three aggregate periods during childhood. Third, we
investigate the heterogeneity in the intergenerational trajectories of income due to the
socioeconomic status and structure of the family. There are several reasons why we
should expect such heterogeneity in the intergenerational trajectories. One reason is
the presence of intergenerational credit constraints by which we mean the inability of
parents to borrow against the future income of offspring in order to invest in education
(e.g., Loury (1981) and Galor and Zeira (1993), Han and Mulligan (2001)). Another
possibility is the presence of intragenenational Aiyagari-type credit constraints that in-
corporate endogenous labor supply, human capital accumulation, and various psychic
costs (Hai and Heckman (2017)). A third possibility is the presence of neighborhood ef-
fects that emphasize the importance of social factors in the intergenerational dynamics
(Benabou (1996) and Durlauf (1996a,b)).

Our findings, based on intergenerational trajectories, suggest a richer and more nuanced
characterization of the intergenerational mobility process than the standard empirical
practice which is based on the IGE coefficient. In particular, not only we find that
parental income in early and late childhood is important for their long run outcomes
but also, parental income for young adulthood can be at least as productive as the
ones in early and late childhood. More importantly, we provide ample of evidence that

the shape of intergenerational trajectories may crucially depend on the socioeconomic



background of the parents and family structure. Finally, we show that the shape of
these trajectories is also sensitive to the timing of the shocks. Specifically, middle
income and non-intact families exhibit higher sensitivity to shocks. Our results can be
interpreted as suggestive evidence for the existence of complementarities in investments

in human capital across periods in the spirit of Cunha, Heckman, and Schennach (2010).

The paper is organized as follows. Section 1.2 describes our data. Section 1.3 reviews
the standard empirical approach that focuses on the linear IGE model. Section 1.4
presents the functional data approach and section 1.5 presents our results. Section 1.6

discusses future work and section 1.7 concludes and discusses future work.

1.2 Data

The data are drawn from the Panel Study of Income Dynamics (PSID). PSID is a
longitudinal household survey starting in 1968 with a nationally representative sample
of over 18,000 individuals living in 5,000 families in the United States. We use the
Survey Research Center, which is nationally representative. Adult children are linked
to parents regardless of whether the parents are biological or adoptive. Specifically, we
use as parent’s income the income of the person that the child is living with at each

age.

In our empirical analysis we investigate two age of exposures sample periods: a shorter
sample period provides the annual incomes of parents when their children were 1 to 18
years old and a longer sample period extends the coverage to 24 years old but sampled
biannually.* Henceforth, we will refer to these sample as short sample and long sample,
respectively. In the short sample the children were born between 1968 to 1979 while in
the long sample they were born between 1968 to 1981. The need for considering two
samples is due to the unavailability of data for older children. The effective sample
size shrinks from 580 in the case of short sample to 212 in the case of the long sample.
The years 19-24 are expected to capture parental investments and timing of events
related to college education and other transfers during the transition of adulthood of
their offsprings.” In that case, the size increases to 887 in short sample and to 685 in
the long sample. Another reason we sample income biannual is the fact that after 1997
the survey is conducted biannually in PSID. As our baseline, we consider the annual
short sample and the biannual long sample. When we consider heterogeneity, we use

biannual short and long sample.

4When income is sampled biannually, we take the average of the discounted income by the age of
child.
5We trimmed observations both at the bottom and at the top by 3% to account for outliers.



Child’s income as an adult is measured by labor income as a 3-year average centered
at 35 years old. Labor income includes labor part of farm income and business income,
wages, bonuses, overtime, commissions, professional practice, labor part of income from
roomers and boarders or business income; the use of child’s labor income as opposed
to child’s family income emphasizes our focus on human capital investment and direct

labor market outcomes and avoids possible implications of assortative mating (e.g.,
Mazumder (2005), Mazumder (2015) and Landers and Heckman (2016)).

Parent’s income when the child is at age a is measured by family income discounted
with the age of the child defined as the taxable income of all earners in the family,
from all sources, and transfer payments in order to capture all the resources available
for parental investments on the child. The transfer payments include amount of aid to
dependent children, aid to dependent children with unemployed fathers (ADC, AFDC)
for the Head and Wife and for the entire family, income of Head and Wife for other
Welfare, from Social Security, other retirement pay, pensions or annuities, from un-
employment, or workmen’s compensation, from alimony or child support, help from
relatives, head’s income from other sources, other transfer income of wife and transfer
income from others in family. The ages of the parents vary from the ages of 16 to
70. For example, in the case of the short sample, when the child is at age 1 parents
are on average 27 years old and when the child is at age 18 parents are on average
44 years old. All income measures are converted to 2011 dollars using the Consumer
Price Index and adjusted for family size, by dividing with the square root of the family
size. Finally, we compute the logarithm of both parents’ income and child’s average

income.%.

In measuring permanent income one has to deal with two challenges. Single-year
measures of parental incomes are subject to transitory variations and measurement
error, that may result to downward bias. This problem is known as attenuation bias.
A typical method to address this problem is to average parents’ income over several
years. Solon (1992) argued that by using a 5-year average of income instead of a
single year of income the bias shrinks substantially. Mazumder (2005) argued that
even using a 5-year average may lead to a bias because the transitory variance in
earnings is highly persistent. A second challenge is the lifecycle bias, which refers to
the timing of measurement of income, that is, the income will not be representative of
the individual’s life time income if it is measured at either too young or too old ages.
This bias can occur for at least two reasons (Mazumder (2015)). First, individuals
with higher permanent income often have steeper income distributions that those with
lower income and second, transitory fluctuations typically are much higher when the
individuals are either too young or too old. Haider and Solon (2006) and Mazumder

(2015) show this bias is minimized around 40.

6Negative or zero parental income values are set to one, while zero labor incomes are set to missing.



Our focus on the age of exposures shifts the focus from measurement issues to modeling
issues but also imposes restrictions on how we address the above challenges. In par-
ticular, in this chapter we are interested in modeling the intergenerational trajectories
of income using annual income observations for up to 24 years for the parents and 3
years for the children centered at the age of 35.”7 As we discuss below our method
explicitly takes into account the fact that these observations are measured with error.
In addition to the annual income we also use the annual stock of income defined as the
annual cumulative income of an individual. This measure reflects the idea that if tim-
ing matters then parental investments can be better captured by the stock of human
and asset wealth at any point of time. In fact the idea of using cumulative income and
inputs is often used in the human capital literature (e.g., Bernal and Keane (2011)).
There is also a statistical reason for using the stock of income variable. This variable
is intrinsically continuous at any point of time and hence, it is expected to have more

information than the annual income.

Beyond income we use offspring’s and father’s years of schooling and educational at-
tainment. Educational attainment is measured by years of completed schooling for
High School Graduates and College Graduates. For family structure we consider intact
and non-intact families. An intact family is defined as a family for which both parents
stayed together for the entire childhood of the offspring until the age of 18 or until
the offspring left home to create her own household; whichever occurs earlier. A non-
intact family is then defined as all the other types of families including blended and
single-parent families.® Finally, as an additional offspring’s outcome we use complete
years of education. We include individuals that are at least 25 years old, in an age that

typically educational attainment is measured.

Table 1.1-Panel A presents descriptive statistics for the baseline short and long sample
when we consider permanent labor outcome as dependent variable. Figure 1.1 presents
the income profiles for parent’s income for the baseline samples. They show that
parent’s income increases until the child is around 20 years old and then stabilizes
with a small decrease at age 24. Table 1.1-Panel B presents descriptive statistics for
the baseline short and long sample when we consider father’s years of schooling as
an additional regressor. Table 1.1-Panel C presents descriptive statistics when the
offspring’s outcome is completed years of schooling. In that case, in the short sample
we have 820 individuals who were born between 1968 to 1979 when we consider annual
parental incomes. When we consider biannual samples, the size increases to 1907 in
short sample and to 1392 in the long sample and the individuals were born between

1968 to 1988.

"We have chosen a three-year average in order to maximize our sample; a five-year average was
also considered but the sample size would not allow us to make a comprehensive analysis.

8Unfortunately our small sample size does not allow us to distinguish among the various types of
shocks that generate non-intact families such as death in the family, divorce, child out-of-wedlock, etc.



1.3 The standard approach

The standard empirical model focuses on intergenerational elasticity of income (IGE)

given by the coefficient 8 in the following linear regression model,
Yoi = a + BYpi + 77 + e, (1.1)

where y,,; and y,; denote the logarithms of the permanent incomes of the offspring
and parent, respectively. These permanent incomes are proxied by simple averages,
Yoi = %30 Yois a0d Ypi = = 31, Ypie, Where g = log(Yie) and yp, = log((1 +
r)"'Y,.1), respectively.” x; is a k, x 1 vector of other controls, typically involving age
and age-squared that account for life cycle considerations when measuring permanent
income. e; is the regression error. As discussed in the introduction the magnitude of
the IGE coefficient $ determines the degree of intergenerational mobility. An IGE close
to zero implies greater mobility while an IGE value close to one implies higher degree

of immobility across generations.

One problem with the IGE model (1.1) is that it ignores the parental influence during
the ages of exposure of children and young adults. A naive generalization of (1.1) that

allows for such exposure effects is given by

T
Yoi = @ + Z Bilp,i + i + e, (1.2)

t=1
This model embodies effects during the ages of exposures when g, = ... = fr # 0.

This hypotheses can be tested using a joint Wald test.!” Alternatively, under the
normalization thzl fr = 1 equation (1.2) can be rewritten as the sum of average

income and future higher order differences

T-1

Yoi = O+ Bypi + B (Z ﬁ;—(j—l)AT_jyp,i,T—(j—l)> + 9T + e (1.3)
j=1

where Z;‘.F:_ll ﬁ;_( -1 = 0. This equation implies that the traditional linear IGE re-
gression which only conditions on a proxy of permanent income will result in omitted
variable bias when future higher order differences are correlated with the proxy of

permanent income.'!

9While the discounting is typically ignored in the literature, we use it for it is closer to the theoretical
notion of permanent income. We assume r = 0.03.

10Note that (1.2) and the standard IGE non-nested are not nested due to the logarithmic transfor-
mation. For robustness purposes we also explore the model y, ; = o + Slog (Zle Be(1+ r)*tYi,t) +
~'x; + e;. Under Hy : 81 = ... = Br = 1/T we obtain the standard IGE.

HNote that this formulation as well as the DWH test applied to equation (1.4) can be viewed as a
special case of Andreou, Ghysels, and Kourtellos (2010) who studied mixed frequency models when a
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Table (1.2) provides evidence that the standard IGE model that emphasizes the per-
manent income as the driving force of long run outcomes and ignores the childrearing
and developmental trajectories is not supported by the data. In particular, viewing the
problem of testing for the standard IGE model as a problem of omitted variables we
can view the annual income variables and their higher order differences as instrumental
variables z; € {{pi;} =1, {AT 7Ypir—(j-1)})=1}- We can then test for the null of no
omitted variable bias (i.e., standard IGE model) by testing for Hy : § = 0 using a

standard Durbin-Wu-Hausman (DWH) test in the auxiliary regression
Yoi = Y0 + NYps + 00; + 7, (1.4)

where 0; = y,, — n'z;. Table (1.2) provides p-values for the above LM test using
both the short and long sample and two kinds of instruments. Columns 2 and 3 use
as instrumental variables the annual parental income variables at age j one-at-a-time
while Columns 4 and 5 use as instrumental variables the cumulative income up to age
4y S0 ypij. We see that there is ample of evidence that the IGE model (1.1) is not
supported by the data. In particular, the evidence against the IGE model is strongest
for the case of stock and especially for the ages of middle and late childhood.!?

Next, we propose a methodology that shifts the focus from IGE coefficients to intergen-

erational mobility curves that can capture the life course trajectories of an individual.

1.4 A functional approach

In this section we propose to study patterns of intergenerational mobility using a
functional data approach that explicitly model trajectories. Traditional methods are
limited in their capacity to capture the dynamics of functions. For example, if we
want to study how the annual changes in family resources predict changes in offspring
outcomes the linear IGE model (1.1) is unsuitable. The naive model (1.2) is also
problematic because it does not model the trajectories as curves but rather as distinct
parameter estimates rendering the interpretation of the results difficult. As a result
this approach is subject to the incidental parameter problem since the parameters of

the model increase with the number of years of exposure.

The idea of functional data analysis is to treat data as discrete measurements of an
underlying continuous smooth stochastic L? process. Note that functional data are in-

trinsically infinite-dimensional and hence, subject to the curse of dimensionality. This

high-frequency variable is used to predict a low-frequency variable.
12While the results that include age effects are a bit weaker they do not alter the main conclusion
that the linear IGE is not supported by the data. Those results are available upon request.
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challenge is overcome by assuming smoothness such as the existence of continuous sec-
ond derivatives, which is in fact a regularization assumption as it allows measurements
at neighboring time points to be combined. Smoothing also allows handling missing
values, sparse longitudinal data, and for measurement error by exploiting the repeated

measurements for each individuals.

Specifically, the intergenerational income data are treated as n triplets (Yo, Ypj» t5),
Jj = 1,...,n, where t; lies in a bounded interval 7. ¥, ; is assumed to be the 7th signal of
a smooth latent function y,(-) so that yo; = yo(-) + usj, where y,(-) is random function
and u; ~ i.i.d zero mean error. y,,; can be defined likewise.'”” Ramsay and Silverman
(1997) provide an excellent introduction on functional data analysis. Morris (2015)
and Wang, Chiou, and Muller (2016) provide more recent surveys of estimation issues

and applications of this approach.

In particular, using functional data analysis we can generalize the linear IGE model

(1.1) to the intergenerational trajectories model

Yo = o+ / B(t) i (0t + s + e, (15)

where () is the intergenerational elasticity function, which captures the intergenera-

tional effect of the resources available to child at age t.

Furthermore, functional regression analysis allows for both functional offspring out-
comes (dependent variable) and functional parental outcomes (explanatory variables)
to vary over periods in highly nonlinear way allowing for measurement errors. Thus,
unlike the naive model (1.2), the functional regression approach can capture how intra-
and inter-offspring and parental outcomes coevolve. Assuming we can observe child’s
income over multiple periods we can also allow for a functional dependent variable

using a function-on-function functional linear regression

Yoi(s) = a(s) + /B(t, $)Ypi(t)dt +v'z; + e;(s) (1.6)

The above intergenerational trajectories models can be generalized in a number of
ways that can provide more insights about the patterns of intergenerational mobility
by accounting for both static and dynamic heterogeneity. We discuss these extensions

after we present our baseline results.

BMore generally, the functions are not required to have the same set of argument values for all
replications of each function, ¢ = 1,...,n, that is, (yi;,%:;), 7 = 1,...,n; with y;; = y:(-) + ;.
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1.4.1 Estimation issues

Estimation of the functional regression model (1.5) is intrinsically an infinite dimen-
sional problem. Typically, estimation is based on series estimation methods using
splines or Fourier or principal components. Here we opt to use B-spline basis due to
their computational speed and stability given the nature of our data. In particular,
we apply smoothing both on the functional coefficients 5(t) as well as the regressor,
in our baseline case, the parent’s income y,;(¢). Smoothing £(t) reduces collinearity
in the regression, and makes the estimates more efficient and more interpretable while
smoothing y,;(t) reduces the measurement error of y,,(t) and allows for sparse and

irregular data.

More precisely, let {¢1(t), ¢2(t), ...} be a sequence of B-spline basis functions in Ly
space defined over a time interval 7 = [to,tr]. We assume that 3(¢) and y,;(t) are

approximated by the following B-spline basis functions

Bt) = bron(t) = Vo, (t) (1.7)

and
Ypi(t) = Y ciadn(t) = cor(t) (1.8)

where dic, (1) = (1(0)...., b1, (1)) and G(t) = (6n(1). ... oo (1)) are Ky x 1 and
L x 1 vectors of B-spline basis functions, respectively. b; and ¢; are the corresponding

vectors of B-spline coefficients.

Given that B-splines bases are not necessarily orthonormal define Jiy = [ ¢y (t)y(t)'dt.

Then we can estimate (1.5) by least squares.

2

n Kg [
Sn<a7 b, ’Y) = Z Yoi — O — Z Zci,ljklbk - ’Y/l’z' . (1-9)
i k=1 =1

Regularization is imposed by choosing the number of basis functions Kz and L which
should depend on the sample size. We choose the number of basis functions using the
generalized cross-validation (GCV) method, which is more reliable than cross-validation

which tends to under-smooth.'* Finally, we provide inference using bootstrap confi-

14We also explored an estimation method regularization with a roughness penalty (e.g., Cardot,
Ferraty, and Sarda (2003)) based on the second derivative that aim at avoiding excessive local
roughness with similar findings. To this end, the penalized LS criterion is given by S’ (a,b,v,\) =
Sn(a,b,y) + A [_(D?B(t))*dt where D? is a linear differential operator and A > 0 is a smoothing pa-
rameter that controls the trade-off between roughness and smoothness chosen by cross-validation. Our
investigations did not yield substantially different results at least in the set of models we investigated
so far.
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dence intervals using 1000 replications.

1.5 Results

1.5.1 Income trajectories

We begin our analysis by presenting our baseline findings. Figures 1.2(a)-(b) show the
estimates of intergenerational elasticity function 5(¢) of model (1.5) for both the short

15

and long samples."”” These estimates are plotted together with 90% wild bootstrap
confidence intervals. The short sample covers three childhood periods of annual parent’s
income: early (1-6), middle (6-12), and late (12-18). The long sample extends the
period to include the transition to young adulthood (18-24) with the difference that

parent’s income is sampled biannually.'¢

In general, our results show that the intergenerational elasticity function exhibits evi-
dence of temporal heterogeneity (nonlinear pattern) for the ages of exposure following
a subtle U-shape. This heterogeneity is strongest and with significant effects mainly
for the long sample. Nevertheless, the prevailing pattern in Figures 1.2(a)-(b) is that
parent’s income is more productive in the early and late childhood. This finding is
consistent with the finding of Carneiro, Italo, Salvanes, and Tominey (2018) who find
that parent’s income in the early and late childhood years is more important for the
offspring’s educational outcome than parent’s income in the middle years. Our results
show that the importance of the late childhood carries over into young adulthood.!”
While we find that the importance of early years is stronger in the long sample than
the short sample, in both cases B (t) appears to be decreasing and reaches its minimum
in the middle childhood. This evidence supports the findings of the literature on the
human capital formation and the evolution of skills that emphasizes the importance
of early human capital investments (e.g., Cunha and Heckman (2007) and Cunha,
Heckman, and Schennach (2010)).

More insights about the life course dynamics can be obtained by considering the stock
of income that can be used to generate human capital and wealth. Recall that an
individual generates income via the labor market based on her level of human capital.

Also note that at any given age throughout childhood and young adulthood, offspring’s

15We present our results without controlling for the age of parents since in general, ages are not
significant and controlling for them does not change our main results, substantively.

16For comparison purposes, Figure Al of the Appendix shows the corresponding figures for the
bi-annual short sample.

I"Figure A2 of the Appendix investigates the impact of the added individuals in the long sample by
plotting the trajectories until the age of 18 for both analysis 1 to 18 (upper panel) and 1 to 24 (upper
panel) and keeping the same number of individuals.

14



human capital is a partial weighted sum of all current and past parent’s of some func-
tion of human capital investments. If parent’s annual income determines the human
capital investments at any given age then we should expect that offspring’s income is

determined by the trajectory of the cumulative parent’s income of parents
Yoi = O + /ﬁ(t)g,,,i(t)dt + 7'z + e, (1.10)

where §,,(t) = Z;:o Ypij- B(t) captures the intergenerational trajectory of exposure
to the stock of the resources available to child at age t. If the life-time human cap-
ital and wealth of the parents is the only thing that matters then we would expect
that only the stock of the last period to matter. We also compute the partial effect
0Y0.i/07pi(t) = ftT B(7)d(j7) which captures the current as well as all future effects of

the age of exposures effects.

Figures 1.2 (c¢)-(d) present the corresponding findings based on equation (1.10). We
see substantial temporal variation hovering around zero with an expanding variance
for both samples. Interestingly, 7,; exhibits a strong upward trend for both short and
long samples in their corresponding latter periods. This upward trend starts after the

age of 15 for the short sample and after the age of 21 for the long sample.

Overall, we find that the parental income in early and late childhood is important for
the outcomes of children as adults, consistent with the findings of Carneiro, Italo, Sal-
vanes, and Tominey (2018), the literature on human capital development and comple-
mentarities in the human capital production function Cunha and Heckman (2007) and
Cunha, Heckman, and Schennach (2010)), and income uncertainty and partial insur-
ance (e.g., Blundell, Pistaferri, and Preston (2008)). Moreover, we find that parental
investments for young adulthood can be at least as productive as the ones in early
and late childhood. These findings provide evidence that income shocks that affect
parental human capital investments in children can in turn affect their long run labor
market outcomes. One interpretation of our findings is that the presence of income
uncertainty and partial insurance can give rise to environments where investments in
children respond to parental income shocks. Alternatively, in the presence of dynamic
complementarities parents may find it optimal to shift resources from middle to early

and late childhood as well as young adulthood.

1.5.2 Heterogeneity

In this section we investigate the heterogeneity of the trajectories with respect to
parental income, parental education, and family structure. This type of analysis will

reveal whether the age of exposure for long run outcomes matters differentially for dif-
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ferent types of family environments. As discussed in the introduction this heterogeneity

may be manifestation of borrowing constraints or neighborhood effects.

Specifically, we consider threshold-type regressions with pre-specified regimes (sub-

samples)
q

=3 (s [ BOmu(0dt o) 16 =) e (1.11)

j T
where I(z; = j) is an indicator function that takes the value 1 if z; = j and otherwise
is 0.'® Equation (1.11) partitions the baseline model (1.5) into g-disjoint regimes. We
mainly focus on the results for the long sample but we also include in the Appendix

results based on the short sample.

1.5.2.1 Parent’s permanent income

We start by describing our results in Figures 1.4, 1.5, and 1.6 from sub-sample func-
tional regressions where the regimes are determined by parent’s permanent income
quartiles using the long sample. Generally, the results show that individuals born to
parents from different socioeconomic background have different trajectories. In par-
ticular, we highlight the following findings. First, Figure 1.4(a) and 1.5(a) show that
children born to disadvantaged parents experience substantial negative exposure effects
up until age 3 and profiles with very steep positive gradients. This finding is in contrast
with how the trajectories of other quartiles behave during early childhood which start
at positive values and follow decreasing trajectory. The substantial negative exposure
effects in middle childhood suggest that disadvantaged parents would choose to transfer
resources to late childhood since those investments are more productive. What is more
striking is their trajectory during young adulthood which also exhibits a decreasing
pattern as opposed to the other quartiles. Figure 1.6 illustrates this sharp difference
in the partial effects of the trajectory of the stock of income. One possible justification
of these results is the impossibility of parents to borrow against their child’s future
earnings. In this case parental wealth is a binding constraint and thus children coming
from constrained families will have lower early and late investments (Becker and Tomes
(1986)).

Second, the trajectory of the most advantaged group in Figure 1.5(d) appears to be
the reflection of Figure 1.5(a) over the age-axis. There are substantial positive effects
in early, middle, and young adulthood periods. Interestingly, the uptick during young

adulthood becomes stronger by parental income suggesting the importance of parental

80ne problem with this analysis is that it assumes an apiori partition of the sample. In other
words, the classification is not data driven. A natural generalization is to use classification methods
such as functional regression trees methods or functional threshold regression.
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transfers for university education, which in turn will determine the labor market out-
comes of the child. Figures 1.5(d) and Figure 1.3(c) clearly documents the importance

of the stock of income during young adulthood.

Third, while the trajectories of the third quartile in Figure 1.4(c) exhibit higher uncer-
tainty, it is worth noting that on average the third quartile exhibits higher persistence.
This finding is consistent with Durlauf, Kourtellos, and Tan (2017) who find evidence

of more persistence in earnings outcomes for members of middle income families.

Finally, we investigate the importance of the timing of family disadvantage by mea-
suring the quartiles of permanent income using information only from early or late
childhood. The relative impact of the timing of disadvantage can be attributed to the
relative impact borrowing constraints or family shocks that change the family struc-
ture occurred in the early childhood rather than late childhood or young adulthood.
Figures 1.7 and 1.8 show the intergenerational income and stock trajectories between
early and late for the four quartiles, respectively. Figure 1.9 superimposes the partial
effects for the four quartiles.' In general, as expected we find that the trajectories in
the bottom of the income distribution are the least sensitive to the timing of the shock.
Interestingly, the trajectories of the third quartile exhibit the most sensitivity. For
instance, Figure 1.9(c) shows that trajectories of the partial effects of income stocks

are much stronger for the ones whose parents experience late shock.

In sum, the results show that the socioeconomic background of the parents affect
the intergenerational trajectories of the offspring. Children coming from the most
disadvantaged background exhibit very different trajectories than other groups. There
are considerable negative effects during middle childhood that indicates that parents
choose to move investments from middle to late childhood since those investments are
more productive. A possible explanation for these findings, is the existence of binding
credit constraints. For children of the most advantaged parents, there are notable
positive effects in early, middle, and early adulthood periods; especially in the early
adulthood. Furthermore, consistent with the findings of Durlauf, Kourtellos, and Tan
(2017), we find evidence of of relatively higher immobility in the middle of the income
distribution rather than for the relatively disadvantaged and relatively affluent. More
importantly, however, the degree of immobility is not only determined by socioeconomic

class but also by the timing of parental income shocks.

YFigures A7 and A8 of the Appendix provide the corresponding figures for the short sample.
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1.5.2.2 Father’s education

One possibility is that higher levels of parental permanent income are associated with
higher levels of parental education. Hence, we investigate heterogeneity with respect

to the education level of father.

Figures 1.10, 1.11, and 1.12 present our results on intergenerational trajectories when
we split the sample based on whether fathers graduated from high school or from
college. Overall, our results are confirmatory of the heterogeneity by parent’s income

but weaker especially for the annual income trajectories.

In particular, the trajectories of non-high school graduates (Figures 1.10(a) and 1.11(a))
and non-college graduates (Figures 1.10(c) and 1.11(c)) appear to be similar to the
trajectories of individuals whose parents had the lowest income. Likewise the patterns
exhibited by the relative more advantageous groups in terms of income are similar to

the trajectories of children whose father had at least high-school or college education.

Furthermore, Figure 1.12(a) shows that the trajectories of the partial effects of the
stock income are always higher for the offsprings with fathers with at least high-school
education relative to those with fathers who did not graduate from high-school. What
is striking is the strong uptick for the offsprings with fathers with at least high-school
education. This evidence suggests that father’s education plays a key role in both early
and late investments and thereby their long-run outcomes; see for example Keane and
Woplin (2001) and Becker, Kominers, Murphy, and Spenkuch (2018).

Interestingly, comparing the same trajectories for offsprings with fathers with at least
a college degree against those with fathers with non-college degree (Figure 1.12(b)),
we find that the former sub-sample exhibits weaker effects possibly due to substitution

effects.

In sum, we find evidence that father’s education is important for the outcomes of the

children as adults, through early and late childhood investments.

1.5.2.3 Family structure

Another source of heterogeneity in the intergenerational trajectories is due to family
structure which influences the parent-child interactions (e.g., Moon (2014), Heckman
and Mosso (2014)). Figures 1.13, 1.14, 1.15 show the income and stock trajectories for

non-intact and intact family structures and the partial effects of the stock of income
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20" For the non-intact sample we also distinguish between the

for the short sample.
individuals who experienced a family shock in their early childhood and those with a

family shock in their late childhood.

The trajectories for the non-intact sub-samples exhibit interesting patterns. Focusing
on Figure 1.13(b) that does not distinguish between the timing of the shock, we see
a sharp decrease in the trajectory of income, becoming negative around the age of 3,
and reaching a minimum at the age of 6. Then it becomes positive after age 10 and
stabilizes in the late childhood. This pattern seems to be driven by individuals who
experienced early shock as it is implied by the Figures 1.13(c)-(d). It is also worth
pointing out that on average the partial effects of the stock of income for the children
who experienced late shock are much higher than those who experienced early shocks.
This suggests that those early family shocks tend to make the family investments less
productive. Finally, we note that the trajectories of childhood exposures for the intact

families exhibit a similar behavior as the bi-annual baseline (full) sample in Figure

(A1).

Overall, the results indicates that early family shocks seem to affect more the parental

investments, making them less productive.

1.5.3 Additional results

In this section we provide four additional investigations for robustness purposes. First,
we redo the main analysis using child’s schooling attainment as an outcome variable
instead of child’s income in Figures 1.16-1.19. Figure 1.16 shows the results for the
intergenerational trajectories of income, stock of income, and partial effects of the stock
of income. Not surprisingly, we find that the results using schooling attainment are
generally similar to our main analysis that relies on child’s income. For example, Figure
1.16(a) shows that the estimated curve exhibits the same subtle U-shape pattern as
in the case of child’s income in Figures 1.2(b). One notable difference, is the shape of
partial effects of the stock of income for offsprings whose parent’s permanent income lie
in the first quartile in Figure 1.19. While in the case of income the trajectory of partial
effects is decreasing from late childhood and turning even negative in adulthood, the
corresponding trajectory in the case of schooling attainment is less decreasing for the
same period, remains positive, and becomes increasing in the late young adulthood.
This difference may be attributable to unobservables related to labor market shocks

that affect the most disadvantaged offsprings.

20We opt to use short sample for family structure since the size of the non-intact subsample for the
long sample is much smaller.
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Second, in Figure 1.20 we investigate how our baseline results change if we analyze
daughters and sons, separately. Interestingly, we find that the trajectory of parent’s
income for daughters appears to have an inverted U shape in the early childhood while
for sons it appears to have a decreasing shape. Furthermore, we find that parent’s
income also appears to be important in the late childhood in both samples with the
difference that in the long sample it follows an inverted-U pattern before it increases
again during the young adulthood. This effect appears to be stronger for the daughters
than the sons which may reflect the relative dependence of daughters on parents during
young adulthood. This suggests that the time variation in the resources available to
daughters has substantially more impact on their labor market outcomes than the

corresponding effects for the sons.

Third, we take seriously a criticism that our analysis is likely to be highly correlated.
Figure 1.21 investigates a model that considers the trajectory of income growth ex-
periences g,;(t) = Ypit — Ypit—1 for t = 2,...,T conditional on initial income y, ;.
Consistent, with the findings based on parent’s annual income and stock of income
our results show that the trajectory of growth rates plays an important role for child’s
income for all ages of exposure and for both samples with the largest effects occurring
in the early and late periods. Furthermore, we find that the coefficients of initial in-
come are 0.40 and 0.42 for short and long samples, respectively. In both samples the
coefficients of initial income is statistical significant at 1%, highlighting the importance

of initial resources when a child is born.

Finally, we consider how the intergenerational trajectories respond to the inclusion of
factors that may proxy the permanent income of the parents beyond annual income.
Figure 1.22 of present results of equations (1.5) and (1.10) that condition on father’s

education. In general, we find our results remain qualitatively unaltered.

In summary, we find that our main conclusions are not altered when we use child’s
schooling attainment as an outcome variable, examine separately sons and daughters,
consider different transformations of the parent’s income such as growth rates, and

condition on additional control variables such as father’s education.

1.6 Future work

In terms of future work, an important and natural extension to our work is to investigate
the role of dynamic complementarity, which means that human capital investments at
different ages exhibit synergies and bolster each other (Cunha and Heckman (2007)
and Cunha, Heckman, and Schennach (2010)). The idea of dynamic complementarity
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combines the ideas of self-productivity of skills and complementarity. An increase in
current investments leads to an increase in next period’s skills but because these skills
exhibit self-productivity, in the sense that skills produced at one stage beget skills at
later stages, current investments and future investments are always complements as
long as future investments and future skills are contemporaneously complements. In
fact, given that the marginal product of increasing investments is increasing in skills
in any future period and the fact that future investments are complements with future
skills, the degree of complementarity between current and future investments will be

stronger, the stronger the future contemporaneous complementarity.

The ideas of dynamic complementarity are particularly important for policy making.
If there exist such dynamic complementarities then policies that promote early human
capital investments can have two implications. First, such policies make later policies
that promote the formation of human capital more productive, and second, if early
investments are not accompanied by later investments, those early policies are not
effective. Cunha and Heckman (2007) summarize the empirical evidence on life cycle
skill formation and present a model that accounts for a multistage technology of skill

formation that features self productivity and dynamic complementarity.

There are two possible approaches that allows for modelling interaction between income

at different ages. First, following Yao and Muller (2010), we could estimate model

Yoi = 0+ /51 (t)yp.i(t)dt + //Bg(t, $)Ypi () Ypi(s)dtds + +'x; + €; (1.12)

An alternative semiparametric way would be to consider a varying coefficient functional

linear regression model
Yo,i = Oé(Zi) + /B(Zz, t)yp,z@)dt + ’7,.731' +e; (113)

where 2; = (Zicarty> Timiddie: Titates Tiadulthood) 15 the vector of average of parental income

during early, middle, late childhood and early adulthood, respectively.

The above analysis will enable us to have some more insights of the policy implications
of our empirical results. We have found that early and late investments are more
productive than investments during middle childhood when the compulsory education
starts (which starts between five and eight and ends somewhere between ages sixteen
and eighteen, depending on the state). Our findings, along with the results of early
interventions for children from disadvantaged families (e.g. Abecadarian Project, Perry
Preschool experiment, Chicago child-parent programm) suggest that early investments
are crucial for the human capital development of the offsprings. Ability gaps between

individuals coming from different socioeconomic groups open up at early stages of life
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and remediation efforts in schooling years are not effective, since they do not eliminate
these ability gaps (Hansen, Heckman, and Mullen (2004)).

Moreover, recent literature in the economics of human capital development establishes
the importance of multiple skills distinguishing between cognitive and non cognitive
skills, showing that earlier stages are crucial for the development of cognitive skills
while later stages are crucial for the development of non-cognitive skills (Cunha, Heck-
man, and Schennach (2010)). Another important fact we want to investigate is that for
the skill formation multiple forms for investments including parental time investments
should be taken into account (Bernal (2008), Bernal and Keane (2010), Del Boca,
Flinn, and Wiswall (2014)). Time investments might be substitutes or complements
for goods investments, while spending time with children allows parents assess the abil-
ities of their children and make more targeted investments. We are going to employ the
Child Development Supplement (CDS) and Transition to Adulthood (TA) of the PSID
data that include additional information on children and their parents including time
use (diary) data, health, skills assessments, parenting styles, learning environment in
the home, and socio-emotional characteristics of children and their parents. This rich
database will allow us to consider models with functional outcome variables as well as
generally provide a better understanding of the underlying mechanisms of intergener-
ational dynamics (e.g., Del Boca, Flinn, and Wiswall (2016), Caetano, Kinsler, and
Teng (2017)).

Another avenue of future work is to consider the endogeneity of income shocks by
modeling the timing of parental investments as in Cunha, Heckman, and Schennach
(2010). Alternatively, the income variable can be decomposed into permanent and
transitory components as in Carneiro, Salvanes, and Tominey (2016) and Abbott and
Gallipoli (2019). Furthermore, a methodological extension of our work is to consider
data functional mixture models (Yao, Fu, and Lee (2011)) and varying coefficient
functional models (Wu, Fan, and Muller (2010) and Zhang and Wang (2015)) that can
provide further insights for the presence of borrowing constraints and neighborhood
influences. We are going to investigate the robustness of our results to other types of
functional forms, e.g., orthonormal polynomials, as they could provide better properties
in terms of efficiency. Moreover, we could consider other consistent information criteria

beyond the GCV to choose the optimal order of the basis functions.

1.7 Conclusion

In this chapter we propose a novel way to measure intergenerational mobility of eco-

nomic status. We argue that functional regressions provide a flexible and parsimonious

22



way to capture the intergenerational effects of higher frequency influences during the
age of exposure during childhood and young adulthood in ways not captured by the
current empirical practice. We find that parental investments are generally more pro-
ductive in the early and late childhood or young adulthood, suggesting that income
shocks play a major role in parental human capital investments in children and in their
long run outcomes. More importantly, we find that the timing of the shocks related to
socioeconomic status and family structure can have a key role in the upward mobility

of individuals, especially for disadvantaged children.
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1.8 Figures

Figure 1.1: Intergenerational Trajectories of Income

This figure presents the average annual parental income per age of individual. Figure 1.1(a) presents
the average annual parental income for the short baseline sample, while Figure 1.1(b) presents the

average annual parental income for the long baseline sample.
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Figure 1.2: Intergenerational Trajectories of Income

This figure presents the baseline results from model (1.5). Figure 1.2(a)-(b) present estimates of the
intergenerational elasticity of income 3(t) for the short and long samples, respectively. Figures 1.2(c)
and 1.2(d) present the corresponding functions for the stock of income from equation (1.10). The red

dotted lines represent 90% bootstrap confidence bands.
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Figure 1.3: Partial Effects of the Stock of Income
This figure presents the trajectories of partial effects of stock of income in equation (1.10) for the
Short sample

short and long samples.
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Figure 1.4: Intergenerational Trajectories of Income by Parental Income

Quartiles

(¢), (d) present the estimates of intergenerational elasticity function 5(¢) based on the long sample

for the first, second, third and fourth parent’s permanent income quartile respectively. The red

This figure presents the baseline results from model (1.5) for the long sample. Figures 1.4(a), (b),
dotted lines represent the bootstrap confidence bands.
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Figure 1.5: Intergenerational Trajectories of the Stock of Income by Parental

Income Quartiles

This figure presents the baseline results from model (1.10), based on the long sample. Figures 1.5(a),

(b), (¢), (d) present the estimates for the first parent

s permanent income quartile, second, third and

)

fourth quartile respectively. The red dotted lines represent the bootstrap confidence bands.
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Figure 1.6: Partial Effects of the Stock of Income based on Parental Income
Quartiles

This figure presents the trajectory partial effects of equation (1.10). The red line corresponds to first
parental permanent income quartile, the green line to the second quartile, the blue line to third
quartile and the cyan line to fourth quartile.
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Figure 1.7: Timing of Income Shocks - Trajectories of Income

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the long sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.
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Figure 1.8: Timing of Income Shocks - Trajectories of Stock of Income

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the long sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.
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This figure compares the intergenerational trajectories of marginal effects for stocks of income for
on quartiles of parent’s income during late childhood.
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Figure 1.10: Intergenerational Trajectories of Income by Father’s Education

This figure presents the baseline results from model (1.5) based on the long sample, for subsamples
based on father’s education. Figures 1.10(a)-(b) present the estimates of intergenerational elasticity
function ((t) for individual’s with non-high school graduates fathers and for individual’s with high
school graduates fathers, respectively, and Figures 1.10(c)-(d) for individual’s with non-college
graduates fathers and for individual’s with college graduates fathers.
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Figure 1.11: Intergenerational Trajectories of the Stock of Income by Father’s
Education

This figure presents the baseline results from model (1.10) based on the long sample, for subsamples
based on father’s education. Figure 1.11(a)-(b) present the estimates for individual’s with non-high

school graduates fathers and with for individual’s high school graduates fathers, and 1.11(c)-(d) for

individual’s with non-college graduates fathers and for individual’s with college graduates fathers.
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Figure 1.12: Partial Effects of the Stock of Income by Father’s Education

This figure presents the trajectory partial effects of equation (1.10) based on the long sample, for
subsamples based on father’s education. Figure 1.12(a) presents the estimates of partial effects for
individual’s with non-high school graduates fathers with green line and for individual’s with high
school graduates fathers with red line. Figure 1.12(b) presents the estimates of partial effects for
individual’s with non-college graduates fathers with green line and for individual’s with college
graduates fathers with red line.
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Figure 1.13: Intergenerational Trajectories of Income by Family Structure

This figure presents the results from model (1.5) based on the family structure and family shocks.
Figures 1.13(a) and (b) display the estimates for intact and non-intact families, respectively. Figures
1.13(c) and (d) present the estimates for non-intact families when an early and a late family shock

occurred, respectively.
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Figure 1.14: Intergenerational Trajectories of the Stock of Income by Family

Structure

This figure presents the results from model (1.10) based on the family structure and family shocks.
Figures 1.14(a) and (b) display the estimates for intact and non-intact families, respectively. Figures
1.14(c) and (d) present the estimates for non-intact families when an early and a late family shock

occurred, respectively.
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Figure 1.15: Partial Effects of the Stock of Income by Family Structure
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Figure 1.16: Schooling Attainment
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Intergenerational Trajectories of the

Figure 1.18: Schooling Attainment

Stock of Income by Parental Income Quartiles
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Figure 1.19: Schooling Attainment: Partial Effects of the Stock of Income

based by Parental Income Quartiles
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This figure presents the corresponding baseline results from models (1.5) and (1.10) for females and
Trajectories of Childhood Exposures

Figure 1.20: Intergenerational Trajectories of Income for Daughters and Sons
males. The red dotted lines represent 90% bootstrap confidence bands.
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Figure 1.21: Intergenerational Trajectories of Growth rates

This figure presents the trajectory of income growth experiences.
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Figure 1.22: Intergenerational Trajectories of Stock of Income by Father’s
Education

This figure presents the baseline results from model (1.5) and (1.10) that include parent’s education
for annual income and stock of income and for both short and long samples.
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1.9 Tables

Table 1.1: Summary Statistics
Panel A. Baseline Sample
Short Sample (n = 580)
Mean Std. Dev. Min Max

Labor Income of Individual 43649 22680 2646 105550
Parental Permanent Income 71438 23502 20417 158692
Age of mother at birth 25 5 16 44
Age of father at birth 28 6 17 48

Long Sample (n = 580)
Mean Std. Dev. Min Max

Labor Income of Individual 43538 21798 2646 105086
Parental Permanent Income 73997 24383 19649 158811
Age of mother at birth 25 5 16 46
Age of father at birth 28 6 17 48

Panel B. Father’s Education Sample
Short Sample (n = 573)
Mean Std. Dev. Min Max

Labor Income of Individual 43815 22731 2646 105550
Parental Permanent Income 71805 23365 20417 158692
Father’s Education 13 2 3 17

Long Sample (n = 677)
Mean Std. Dev. Min Max

Labor Income of Individual 43686 21842 2646 105086
Parental Permanent Income 26177 9078 7968 60557
Father’s Education 13 2 3 17

Panel C. Schooling Sample
Short Sample (n = 820)
Mean Std. Dev. Min Max
Individual’s Years of Schooling 14 2 8 17
Parental Permanent Income 26538 9223 7658 63234

Long Sample (n = 1392)
Mean Std. Dev. Min Max
Individual’s Years of Schooling 14 2 8 17
Parental Permanent Income 26432 9683 5150 65437
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Table 1.2: Testing the Standard IGE Model

This table presents the p-values for the LM test testing the null hypothesis of no omitted variable
bias using both the short and long sample and two kinds of instruments. Columns 2 and 3 use as
instrumental variables the annual parental income variables at age j one-at-a-time while Columns 4
and 5 use as instrumental variables the cumulative income up to age j.

Annual Stock
Age Short Long Short Long
1 094 078 094 0.78
2 041  0.77 0.55  0.67
3 096 0.51 0.58 0.81
4 0.14 040 053 0.84
5 081 0.62 0.72 0.97
6 075 090 0.52  0.83
7 0.06 0.05 037 0.34
8 0.02 0.02 0.05 0.04
9 0.04 0.09 0.06 0.05
10 0.10 0.10 0.02 0.04
11 046 0.23 0.03 0.02
12 0.85 093 0.13 0.09
13 0.86 0.46 0.03 0.02
14 040 0.89 0.03 0.04
15 0.03 0.25 0.07 0.02
16 0.02 0.30 0.68 0.04
17 091 0.25 0.01 0.01
18 0.01 036 0.09 0.08
19 - 0.11 - 0.55
20 - 044 - 0.81
21 - 0.16 - 0.57
22 - 0.23 - 0.92
23 - 0.50 - 0.92
24 - 0.31 - 0.78
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Chapter 2

Threshold Spatial Autoregression

2.1 Introduction

The study of social influences on individual behavior has attracted a lot of interest in
economics recently. The idea of social interactions is that individual choices are directly
influenced by the characteristics and choices of others. When choices are driven by
social factors there exists complementarity among agents in a group (e.g., classroom,
neighborhood) that generates interdependencies. This means that there exist incentives
for an individual to behave similarly to others either because of social norms, social
identity, peer effects, etc. The surveys by Durlauf and Ioannides (2010) and Benhabib,
Bisin, and Jackson (2011a,b) discuss the various classes of social interaction models

and their empirical applications.

The standard empirical models of social interactions are the linear-in-means model by
Manski (1993) and the spatial autoregression mixed regression (e.g., Anselin (1988)).
One problem with this type of models is that the linear functional form rules out
interesting phenomena.! For example, consider an idealistic intergenerational model of
poverty traps where the equilibrium law-of-motion is described by an intergenerational
dynamic relationship between the child’s permanent income and parent’s permanent
income conditional on the permanent income of other individuals in the neighborhood
and whether parent face credit constraints when making human capital decision about

their child. Such a model can be captured by a simple generalization of the linear

!Since the work of Schelling social interactions models have been used to explain a range of phe-
nomena including growth (Cooper and John (1988)), technology adoption (Durlauf (1993)), crime
(Glaeser, Sacerdote, and Scheinkman (1996)), delinquent behavior (Card and Giuliano (2013), oc-
cupations (Pan (2015)) among others. A common characteristic of all these models is their ability
to generate multiple equilibria, which implies that a small change in fundamentals may lead to large
differences in group behavior. That is, there exists a tipping point in the strength of social interactions
that leads to an abrupt emergence of two distinct regimes in the underlying outcome variable.
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mixed regressive spatial autoregressive model that allows for poverty traps depending

on whether parents’ income is above or below a threshold value 7.

Yin = Fa+ 6L, <) +a Y wiinyl, + Byl + €ins (2.1)
J#1

where y7,, is the child’s log permanent income and yﬁ ,, 1s the parents’ income. w;;,, are
weights that capture the degree of influence that individual j has on ¢ and define her
social network. 0, = K1 — ko and the indicator function, I (yf7 . < ) takes the value 1
if yi . <7 and 0 otherwise, one. When 3, which is interpreted as the intergenerational
elasticity (IGE) between the parent and child, is close to zero, parents’ income is
a weaker predictor of child’s income implying greater mobility. In contrast, when
[ is close to one, the child’s position in the income distribution is more dependent
on her background. Note that when 0, = 0 and w;;,, = 1 we obtain the linear-in-
means model. It is straightforward to see that the linear model-in-means model or the
linear mixed regressive spatial autoregressive model will be biased because the omitted
threshold term 6,1 (y;, < 7), is correlated with parents’ income. Hence, the estimated
IGE will not consistently estimate the structural parameter . More generally, the
threshold effects may be present in the other parameters beyond the intercept which
may exacerbate the bias. Therefore, in this paper we generalize the above simple model
to allow general threshold type nonlinearities including threshold effects in the spatial

autoregressive coefficient o, network weights w;; ,, and regression coefficients f3.

In particular, this paper develops a new class of social interaction models that generalize
the spatial autoregressive model to allow for threshold type nonlinearities by proposing
a general Threshold Spatial Autoregressive (TSAR) Model, which nests both mixed
regressive, spatial autoregressive model as well as the spatial autoregressive model.
Our model allows for regime specific endogenous and as well as contextual effects. En-
dogenous effects occur when the tendency of an agent’s behavior depends on the group
behavior while the choices are simultaneously determined. Exogenous or contextual ef-
fects occur when agent’s behavior depends on the characteristics of others in the group.
Endogenous effects are captured by spatial lags in our framework and constitute the
most salient effects as their presence is often associated with social multipliers, multiple
equilibria, and phase transitions. Specifically, we allow for either the network to be
different across regimes or the marginal rate of substitution between private and social

components of utility to be different across regimes or both.

Our estimation method generalizes the GMM estimation method of Lee (2007) to the
case of threshold regression and develop a statistical theory for the threshold parame-
ter as well as the regression coefficients including the spatial autoregressive coefficients.
Specifically, we consider a two-step GMM estimator under the assumption of indepen-

dent but heteroskedastic errors. The first-step estimates the objective function of GMM
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estimator for each value of the threshold parameter in a bounded set of values using an
initial weight matrix. The estimated threshold parameter is then obtained as the argu-
ment that minimizes this objective function. The spatial autoregression coefficients and
the slope coefficients are computed given the estimated threshold parameter. Finally,
in the second-step, we obtain a quasi-optimal GMM estimator using a regime-specific
weighting matrix by constructing appropriate moment functions using the first-step
GMM estimator.

We contribute to the literature by providing a unifying framework in which we can sub-
sume most commonly used social interaction models while allowing for general thresh-
old effects. Our model can be viewed as a generalization of the Spatial Autoregressive
Model (SAR) - mixed regressive model to allow for threshold type nonlinearities. The
SAR mixed regressive model was proposed by Cliff and Ord (1973) and its 2SLS/IV
estimation was studied by Anselin (1980), Kelejian and Prucha (1998), and Lee (2007)
among others. GMM estimation was first studied by Lee (2007) and further studied
by Lin and Lee (2010) among others. Interestingly, recently, there is an interest in
nonlinear spatial regression models (e.g., Su and Jin (2010), Malikov and Sun (2017)).
However, none of these studies consider threshold type nonlinearities. Inference in
threshold regressions is generally difficult. Chan (1993) showed that the asymptotic
distribution of the threshold estimator depends on many nuisance parameters including
the marginal distribution of the regressors. To overcome this difficulty, Hansen (2000)
assumed that the difference between the slope coefficients of the two regimes decreases
as the sample size grows and derived a useful asymptotic approximation, albeit non-
standard. Our framework nests both the fixed and diminishing threshold. As in Seo
and Shin (2016) we exploit the smoothness of the GMM criterion to show consistency

and asymptotic normality for our estimators.

The rest of the paper is organized as follows. In Section 2.2, we propose a general
TSAR model. Section 2.3 presents our GMM estimation method. Section 2.4 derives
limiting results for the proposed estimators and Section 2.5 proposes bootstrap infer-
ence. Section 2.6 reports Monte Carlo simulation results to assess the finite sample
performance of our methods. Section 2.7 discusses future work and 2.8 concludes. Fi-
nally, we delay all the mathematical proofs in the Appendix. We define the column
and row sum matrix norms of an n X n matrix A as ||A||; and ||A|| respectively, and
the spectral norm ||A||s, = )\%gx(AA’).

2There is also a literature that considers social interaction models in discrete choice models (e.g.,
Brock and Durlauf (2001a, 2002)), duration models (e.g., Sirakaya (2006), de Paula (2009)), and
regression discontinuity methods (RDD) (e.g., Card and Rothstein (2008)).
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2.2 TSAR Model

We propose a new class of social interaction models that generalize the Spatial Autore-
gression - Mixed Regression to allow for threshold effects in the endogenous as well as

contextual effects.

Let the ¢th individual’s outcome be denoted by v;, and her individual characteristics
by a kj;-dimensional vector z;, of stochastic variables, where the first element of this
vector is a constant. We consider an n x n fixed (predetermined) weight matrix W,
which has zero diagonal elements and its (4, j)th element is denoted by w;;,,. We split
our sample based on a threshold random variable z;,. Specifically we consider the
following threshold model with social interactions

v — anyn (W, A) + anay (w, A) + Biin + Y1127 (W, A) + Yoz (W, A) + €iny Zin <A
o a1y (w, N) + ooyl (w, A) + Bo 4+ Vo2 (W, A) + Yooz (W, A) + €imy  Zin > A
(2.2)

where {em} is a sequence of independent errors with zero mean and finite variance, and
we denote y7, (w) = D5 WijnYin, Tin(W) = D25 WijnTin, Wi, (A) = wijal{zjn <
)‘}a yz'n;b— (U}, )‘) = Zj;éi wi;,n (/\) yj,nv len_ (w) /\) = Zj;éi wi;,n (/\) xjmn yzln—i_(w? /\) = yzln(w)_
Yim (w, N), and 273" (w, A) = 2% (w) — 27,7 (w, A).

Our model includes two kinds of endogenous social effects that capture social pressures.
Let us focus on the lower regime; the first term («;;) captures regime specific social
effects while the second term (c3) captures across regime social effects. In general we
would expect the former term to capture conformity effects while the second term to

capture nonconformity effects.
Rearranging model (2.2) yields

Yin = oy (W) + Say (W, A) + By + y'2 (w) + 02 (w, )

+ Oy Y (W) H{ zim <A} + 0aaiy (W, )21 < A} 4 0575, 1{zin < A} (2.3)
+ OLal (W)l zip < A} 400 aln (w, \)1{zi, <A} +ein

yVin Y En

where a = oy, 8 = 2, 7 = V22, 5a2 = Qg1 — (g2, 572 = Y21 — 722, 5a1 = Q2 — (g2, 55 =

B1— B2, daa = (0611 —0412) - (0621 —0422)7 57 = V12— Y22 and 577 = (711 —712) - (721 —’722)-

Equation (2.3) nests several theoretically appealing models. When modeling social
effects in the context of threshold models it is reasonable to assume that social effects
are formed based only on regime-specific information, that is, ajo = g1 = Y12 = Y21 =
0. In contrast, when 64, = 0,, = 0aa = 04, = 0 then we obtain a social interaction
model that assumes that the formation of social effects occurs regardless of the regime;
it is solely based on the reference group. Finally, equation (2.3) nests the mixed spatial
autoregressive (MRSAR) model when d,, =7 = 6,, = a0y = 0pa = 0g = 0, = 01, = 0.
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Let x;(A) = z;,1{z, < A} and define the matrix X, (\) and X,, by stacking the
elements z;(\) and z;, respectively. And, we introduce three n x n weight matrices
Wa(A), W, and W~ () whose (7, j)th element equals wy;,, () = winl{zn < A},
wi;, (A) = wijanl{zin < A} and wy,;, = Hzin < Atwy;, (A), respectively. We then

rewrite model (2.3) in matrix form
Yo = aoWoY, + Xn(W)0s, + Yo (Wi, Ao)dag + Xn(Was Ao)dg,, + €n (2.4)

where Y, = [y1.n, - - . ,ymn]/, en = €1, - - ,en,n]/.

Also, we denote X,(W,) = [Xn, W, X,.], Yo(Wi, A) = [W, Yo, W (N)Y,, W (VY2
Xo(Wis A) = [Xn(A), Wa(N) X, W Xo, W (M) X, 0 = (8,9') to be a (2k;) x 1
vector of slope coefficients of the upper regime, and 6, = (da;, 00y, 0aa) and dp, =
(65,0%,,0",07)" to be the 3 x 1 and (4k;) x 1 vectors of threshold effects. In (2.4),
o, 03,, 0q, and 5950 denote the true parameters of the model. This model nests the

linear social interactions model when d,, = dy, = 0, under which model (2.4) is the

Bo
so-called spatial Durbin regression model.

Let S, (0y, A) = I,—aW, =00, W, \ =00, Wn(A) =0aaW,, (A), where 0, = (a, 6,)" and the
errors for any possible values of the parameter space e,,(6) = S, (0, )Y, — X,,(W,,)85 —
Xn(Wh, A)dg,, where 0 = (a,%,%,&éﬁ,)\)’. Moreover, we denote 0* = (9’6,5{96)’ and
0 = (65, 0,.a,6,)". Then the reduced form is given by

Y, = S, Xu(Wa)bs, + S, X (Wi, Mo)da,, + S, en, (2.5)

if S,, is non-singular, where S,, = S,,(6,0, Ao). This generally leads to
E(A.Y,) en] =tr[(A,S51) E (enel,)] # 0 for A, = Wy, W, , Wa(Xo), and W, (o)

n,A\0"?

where tr(+) is the trace operator.

We start with regularity conditions on the weight matrices, W, W, 'y, Wy.()), W, (})
and S, (6,, \).

Assumption 1.
(1.1) p (aaWa + 00y oW, s, + OaoWa(Xo) + daa oW, (X)) < 1, where p(A) is the largest
eigenvalue of matrix A in absolute values, and the spatial weight matrix W,, and

S~ have finite row- and column-sum norm.

(1.2) The parameter vector 6y = (ao, ,,,, @3, 0y, ;> Ao)’ is an interior point of a compact

930’ -
set © = ©** x A in the Euclidean Space R*, where kg = 6k; +5 and A = [)x, )\].
Also, 0ay g = €y, Oagy = Can™™ 5 daa,0 = Caa™ %5 05y = cgn™ %, 0yy = cyn~ 7,
572,0
a<i.

a

J— —a _ — 3
= cy,n % and 0,y 0 = cyyn~* With Cq,, Cayy Cans €8, Cys Crys Cyy 7 0 and 0 <
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Assumption (1.1) is a crucial assumption for the analysis of spatial estimators, as it
imposes limits on the correlations of the spatial elements. Following Seo and Shin
(2016) our framework nests both the fixed threshold effect as in Chan (1993) and
diminishing threshold effect framework of Hansen (2000). Assumption (1.2) states
that the threshold effect gets small as the sample size increases, when 0 < a < %, while
when a = 0, we have the fixed threshold effect.

We proceed by stating the assumptions necessary to derive the asymptotic properties

of our estimator

Assumption 2.

(2.1) {e;n}’s are independent (0, o?) errors, independent of {z;,} with finite moments
larger than the fourth order. Moreover, max;<;<, Fle; »|*™ < M < oo for some

n > 0.

(2.2) The threshold variable z;,, is i.i.d. with a continuous and bounded density, f (-),
such that f(A\g) > 0.

(2.3) We consider a linear transformation of the moment equations a,g, (#), where a,,
is a matrix with a full row rank greater than or equal to k¢ and converges to a

constant full row rank matrix ag.

This set of assumptions is similar to Seo and Shin (2016). Assumptions (2.1)-(2.2) are
also used in Hansen (2000). Assumption(2.3) is crucial for deriving the asymptotic
distribution of our GMM estimator.

As opposed to Seo and Shin (2016), we use both linear and quadratic moments as
suggested by Lee (2007). However, our moment conditions are different than those of
Lee (2007) due to the existence of regime specific social effects and the fact that the

threshold parameter is unknown and needs to be estimated.

Let (), be an n x kg matrix of initial instrumental variables (IV) with kg > kg«. For
example, we can use X,,, W, X,,, W2X,,, W3X,,.... after removing linearly dependent
components.® The moment conditions corresponding to the orthogonality conditions of
Q. and e, are E(Q!e,) = 0. The quadratic moments are based on a class of constant
n x n matrices denoted by Py, = {P, : diag (P,) = 0}. As shown in Lin and Lee (2010),
by selecting matrices from P, the corresponding quadratic moments are defined as

follows: E [(Pjnen)en] = 0, where matrices P}, are selected from Py, for j =1,...,m.

3While the initial matrix of instruments is not regime specific, we propose regime specific instru-
ments that allow us to obtain a more efficient second-step estimator.
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Assumption 3. The matrices in Py, are uniformly bounded in both row and column
sums in absolute values. The elements of (),, are uniformly bounded. Both X,, and @,

have full rank.

The GMM estimator is derived from the minimization of J,,(0) = ¢,,(0)'al,a,g,(0). The
set of moment conditions E(g,(#)) for the GMM estimation is given by a (kg +m) x 1

vector where g¢,,(0) is the set of empirical moments

en(0) Prnen(0)
PO = 0 Pen)] 20
Q%€n<0)

Before proceeding with the identification condition we introduce the following notation
Define G, = W,,S,', Gp(A) = W, (NS, 1, G = W, S, and G, (\) = W, (A\)S, .
Additionally, X\ =[X,(W,), Xp(Wn, A)] and X = X7\ 0% = (9/’8,6@3)’ and 05 =
(0.5, ).

Furthermore,

X (Wi, N) = (X3 X5 = Xy, Gu X, Ga(M) X365, G, 5, X265, G (o) X165,

(GalMo) = Gu(N) X385, (Grn, = G ) Xi. (G (o) — Gy (W) X360),

n,Ao
é ((08 - 9*)/7 9*,7 oy — &, (5012,0 - 50(27 (SaLo - 5041 ) 5aa,0 - 504047 60427 6a17 5aa)-

Then the error term can be decomposed as follows
en(8) = dn(0) + [An(0y, N) + 1] e, (2.7)

where d,(0) = X (W,,\)©' and
A0y, A) = (a0 — )Gy, + (5042,0 — 00, )Gn(Ao) + (5a1,o - 5a1)G7_L,>\0 + (daa,0 = 0aa) Gy, (Mo)
+ 00y (Ga(Ao) = Gu(A) 400, (G 5y = Grd) F 0aa( Gy (Ao) — G (A))

nAo

From equation (2.7), we can see that while the first part of e,(#) depends on all pa-
rameters of the model, the second term only depends only on the spatial autoregressive

parameters 6, and the threshold parameter A.

Taking the expectation of (2.6) and using the above notation we obtain

E(gn(0))
E(dn(0) Prndn(9)) + tr {T E(An (0, \) P5,) } + tr {Tn E(An (8, A) ProAn (6, )}

E(dy () Prndn(6)) + tr {T'n E(An (0, A)/éﬁm)} + tr{Tn E(An(0y, A) PrnAn(0y,A) }
E(Qdn(0))
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where P, = Pj,+ P}, forj =1,2,...,mand I', = diag(o3,...,0}). The parameter 6,
is identified as long as ag lim, o, n ' F(g,(#)) = 0 has a unique root at 6y € ©, where
ap is a constant full rank matrix. We then examine under which conditions linear and
quadratic moments have a unique solution at 6, and the identification condition is

summarized in Assumption 4.

The linear moments corresponding to E(Q',d,(#)) will have a unique solution under

Assumption (4.1), where

OE(Q,dn(0))

G(@Qn 0) = —=25

= [ Go,(N), Ga,o Gy (V) Galas 89, |

is a kg X kp matrix with

,dn 9 / * £)k / * £)k / — * [)* / — * )k
Ggy (A) = W =-F [QnGane(b QnGn()\)Xne()’ QnGn,)\Xnem QnGn ()\)XnHO}
Y
OE(Q"d, (0 ,
Geﬁ = % =—-F [Qan(Wn)]
OE(Q. d,(6 ,
Géeﬁ ()‘) = (izg—é(» =-F [Qan(Wna )‘)]
B

G)\(5a7 60[5 5 )\) = w

= T ) [BQU XN, BQu WX N), B(QLWa Xl N), E(QuWWa (N) XalA) + E(QuWVoy X V)| s,

I ) [BQGX10510), B(QuGrX0510), B(QuGr (V) X10510) + B(QuGiy \X3061)] b

A trivial violation of the rank condition, Assumption (4.1), occurs if (i) 65 = 0 or X,

is irrelevant, or (i) da, = 0 and dp, = 0 or threshold effect does not exist.
From (2.5), we have

Y= S, X084 un = (I, — Sp) S, ' X505 + X505 + uy,
=[G X105, Gn(No) X105, G\ X205, G (M) X050, + X075 + (2.8)

n7)‘0

where u,, = S, e, and u, therefore follows a SAR model, u,, = (oW, + 5a1’OWn_7 a T
OasoWin(Ao) + 0aa,oW,, (Xo))un + €,.  Assuming that threshold effect does exist and X,
contain relevant regressors in predicting Y,,, we consider an example that the rank con-
dition of Assumption (4.1) is violated. Specifically, in parallel to Lee (2007) we consider
the following example that X} and [G, X605, G(Ao) X305, G\ Xa05, Gy, (Mo) X, 05] are

linearly dependent. That is, there exists a 651 x4 non-zero constant matrix ¢y such that
Xoco = [Gn X005, Gn( o) X005, G\ X, Gr (Mo) X65]. Then, model ( 2.8) becomes

Yo =X, (cobly, + 05) + un, (2.9)
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and G, (Qn,0y) does not have full rank as

[Go, (), G Gy, (N0)| = —E Q1 X560, QX (W), Q4 X (Wi, Ao)]

is linearly dependent in column. For model (2.9), if < Oy A ) is identified from using
the quadratic moments, we have 0 = F [Q,d,(0)] = F[Q,, X} (65 — 0%)] so that 6] is
identified as X has full rank. That is, the model is identified under Assumption (4.2)

if Assumption (4.1) fails to hold.

Assumption 4

(4.1) G(Qn,0) has a full rank over § € © and maxycp F'(\) < 1; or

(4.2) (i) £(Q,X;) has the full rank 6k, and is linearly independent of
NG (0ags 004, 5 Mo);

(ii) D,, has the full rank 4 for some m > 4, where we denote

tr [, E (P,G)] tr [, E (P, G,)]
| e {E PG tr {T, E [PS,,G(N)]}
tr {I',E | MGMO]} tr {I',E | mnG;AO}}
tr {I E[P,G, (A} - tr (ThEA{LLE [P,GL (M)}

Assumption (4.1) is a global identification condition, while Assumption (4.2) is a local
identification condition derived from equation (B8), given in Appendix B, evaluated at
the true parameter value. The global condition, when Assumption (4.1) fails to hold,
has a lot less transparent expression than the local identification condition and requires

extra notation defined for equation (B8).

2.3 Estimation

In this section, we describe our two-step GMM estimators, where the first-step GMM
estimator is an initial estimator that is consistent and asymptotically normally dis-
tributed, but its asymptotic efficiency can be improved further as all the IVs and the
Pj,’s matrices in the quadratic moment conditions can be non optimal according to

the reduce form model (2.5).

Step 1. Given an initial weight matrix a/,a,, the GMM estimator of # is given by

) = arg min J,(0), where J,(0) = g,(0)al,ang,(0). However, for practical reasons
90
we estimate the objective function of GMM estimator for each value of the threshold
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parameter in a bounded set of values A = [)\, 5\]. Conditional on A, we can obtain the

GMM estimator of §** by concentration

5**()\) = arg minJ, (60", \),
9**
where J,(6**, \) = g,(0"*, \) al,a,g,(0**, \). Then, we obtain the GMM estimator of ¢
by

A =arg min J,(67()\),\) and 6%()) = arg minJ, (6%, \) (2.10)
A€A 0

Step 2. We improve the efficiency of our initial estimator by considering regime specific

moment functions. Motivated by the reduce form model (2.5) we define the empirical

moments .
en(0) Prnen(0)
9n(0) = ; 2.11
) en(0) Pyen(0) ( )
Qnen(0)
where
Pro = WaS;M(8,, A - ding (W,5,7(0,,))
Py = W S1(6,,\) — diag (W;XS;l(éy,X))
Py = Wa(N)S74(6,, 3) — diag (Wo(3)5;2(0,, 1))
Pro = W, (NS0, 3) — diag (W, (18,6, 1)
and

Qn = [WaS; (8, N)Xa (W), X (Wi ), ),
WS 8y N X (W), X (Wa ), ),
Wa(2) S5 (8 N [X0(Wa)B5, X0 (Wi, A) g, .
W (NS, 0y N X (W), X (W ), ),

X (W), X (W, A)]
after removing redundant terms.

In addition, given the initial consistent estimator calculated in the first step, we can
construct a matrix €, to estimate Q, = E [g,(00)gn(6o)'], Where g,(#) equals §,(6)

with @ replaced with 6, and the mathematical expression of €2, as shown in Theorem
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1 in the next section with m = 4, we define

[t (D0 (DuPrn) ) ot (PP (Bafi) ) 0, ]

Q, = T L : (2.12)
tr (Fan (FnP1n> ) ot (Fn » (rn 4n) ) "
i Ok, . Ok, 00, ]
where ', = diag {¢3,,,...,¢2,,} is an n x n diagonal matrix and ¢é; is the ith element

of the estimated residual é, = Sn(éy,j\)Yn — Xn(Wn)ég - Xn(Wn,S\)(%B. Then, the
second-step GMM estimator of ¢ is given by

0 = arg min §,(0)'% 1 9.(0) (2.13)
EC)
but evaluated through concentration of the objective function in a similar way as in
the first step.*

2.4 Asymptotic Theory

In this section we develop a statistical theory for the threshold parameter as well as
the regression coefficients including the spatial autoregressive coefficients. Proposition
1 shows the consistency of the GMM estimator, while Theorem 1 shows that the
asymptotic distribution of the GMM estimator follows a normal distribution. The
following assumption imposes a pointwise law of large numbers result that is used to

show the consistency of our estimator.

Assumption 5. For any given 6 € O, (i) n 'Q,xn X045 = E (Q,xnX205) + 0, (1),
where x, = G, Go(N), G, , and G, (N); (i) n='Q, X (0 = n ' E(QLX;\0%)+o, (1);
(i) 1 (6) (27 ans P ) d (6) = 72 |di, (6) (27 @i Pin ) i (6)] -+ 05 (1),

Assumption 5 is a high-end assumption for the law of large numbers, where As-
sumption 5(i) ensures n='Q’d, (0) = n'E (Q.d, (0)) + 0, (1) holds for § € ©, and
Assumption 5(ii) is a law of large number result for a second-order U statistic of
dn(0)= X305 + (a0 — @) Gr X305 =00, Gn(N) X305 — 00y G, 3 X005 —0aa G, (M) X505 =X 07
It is beyond the current scope of this paper to give a rigid proof of such LLN results,

we therefore assign it as an assumption.

Proposition 2.1 Under Assumptions 1-5, the identification condition holds which im-

4A third-step estimator can further provide efficiency gains using residuals and parameter estimates
from second-step.
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plies that aglim, oo n 'E(g,(0)) = 0 has a unique root at 0y € O, and the GMM

estimator is consistent.

Theorem 1 Under Assumptions 1-5, we have

VnH ( é;‘_—/\gf* ) _ \:?SQE;_Q):S:; LA N (0,%,), (2.14)

where we denote H,, = diag (Igx,+4,n%),

1 1 11 1 1 1 1
Yp = lim [anA;La/nannAan] [anA;a;Laanna;annAan] [anA;La%annAan

n—oo

Q= E[ga(60)9n(00)"]

tr (CnPin (CnPin)®) ... tr(TnPin (TnPon)®) o

- : o : . /: (2.15)
tr (Cp Pon (T P1n)?) oo tr (Tp P (T Pon)?) OkQ
L OkQ & OkQ E(Q%FnQn)_

and A,= —9E(gn(0,))/00" and A, H, has full column rank.

Applying Lemma A.1 in Lin and Lee (2010) gives (2.15). And, by (B8) in Appendix

B, we have

tr [FWE (an,GW)] tr {rnE [Pf71G'l</\O)]} tr {F"E [PiqnG;_)\a]} tr{l,E [anG; (/\o)]} Oéik, tr {F"E [anih (H,/,o, AD)]}

(2.16)

An _ : N N N : : )
tr[CuB (PrGo)l tr{TaB [P, Ga)} 0 {TnB [P, Gro [} e {TWE [P GO O, 0 {TuE [P,02 (00, 20)]}

E(Q,GnX5605)  B(@.Gn(M)Xp85)  B(QuG, X000 B(QLGL(M)X06)  E(Q,X)) Gr(0aq, 905, No)

Our model nests both Lee (2007) and Seo and Shin (2016). Equation (3.2) of Lee (2007)
is a submatrix of A,, as it does not contain the regime specific components. On the other
hand, excluding the spatial matrices will allow us obtain Seo and Shin (2016) model.
This theorem says that our estimator follows the normal distribution asymptotically
regardless of whether ¢ = 0 or 0 < a < %, since we exploit the smoothness of the
GMM criterion to reduce the rate of convergence as in Seo and Shin (2016). For the
estimation of the threshold parameter, Ay, the GMM estimator converges at slower
speed than what one would expect from a least-square based estimator, see Chan
(1993) and Hansen (2000) for example. However, the GMM estimator of Ay enjoys the

conveience of constructing the classic t-statistic in making inference of A = ).

While the GMM estimator in Theorem 1 allows for an arbitrary unknown heteroskedas-

ticity, it is not efficient. Our second step estimator aims at addressing this issue by
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obtaining a quasi-optimal estimator. In particular, by the generalized Schwartz in-
equality, the “optimal” weighting matrix is the inverse of the variance matrix €2, =
E [9,(00)9n(00)']. In the case of homoskedastic errors, the best selection of Pj, and @,
is available and thus, an optimal GMM is feasible. However, as argued by Lin and
Lee (2010), in the heteroskedastic case, an optimal estimator may not be feasible be-
cause the best selection involves matrix I',,, which is generally unknown. In this sense,
the second-step estimator is quasi-optimal and using a consistent estimator of {1 we
obtain a feasible quasi-optimal GMM estimator. The following proposition is used to

support the use of €, in (2.13).

Proposition 2.2 Under Assumptions 1-5, n=1(Q, — Q) = 0,(1), where 0 ,, is defined
in (2.12) and €, equals Q ., with 0 replaced with 6.

Then, the quasi-optimal GMM estimator is derived from minimizing g, (0)'Q2; 14, (0) as
long as n~'€2, is consistently estimated. Theorem 2 establishes that the quasi-optimal
estimator will be asymptotically normal with variance (lim,_,eo n *H. A, Q- A, H,) ™"
assuming the following regularity condition for €2, in Assumption 6. Finally, we ob-
tain asymptotically valid inferences from the quasi-optimal GMM estimator by re-

estimating €2, and A,, using the second-step residuals.
The variance matrix €2, must satisfy the following regularity condition.

Assumption 6. The matrix, lim,,_,. n '), exists and is nonsingular.

Theorem 2 Under Assumptions 1-6, we obtain the quasi-optimal GMM estimator

from minimizing §,(0)'C%-'§,(6), which has the limiting distribution

:f@o : ioo)) 4N (0.5;), (2.17)

with $* = (limy, 0o n 'H,AL QA H,,) ™", where A, with m = 4 and Pj, equals Pj,
with 6 replaced with 6, for j = 1,2, 3, 4.

To make statistical inference on 6 , we need to find a consistent estimator for >r. How-
ever, E [P5,¢2 (0,0, Mo)] as an element of A,, contains terms like f (Ag) and £ (P5,Gr|Xo)
E (P;,G, \,IN), and E (P5,Gy (M) |Xo), and these unknown terms have to be esti-
mated nonparametrically by kernel method, which makes the estimate of A,, depend
on a bandwidth parameter value. The overall accuracy of an estimate of A,, may not
be robust to the choice of the bandwidth parameter. Therefore, bootstrap-based in-
ference (e.g., Anselin (1988) and Taspinar and Vijverberg (2018), Gupta (2018)) for 6,

although time consuming, is recommended.
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Next, we propose a bootstrap procedure for inference including a threshold test for

linearity.

2.5 Bootstrap Inference

The bootstrap procedure for confidence intervals is summarized below

(i) Using the second-step estimator # defined in equation (2.13), we obtain the de-
meaned residuals &,, = én(é) —L’én(é)/n where én(é) = Sn(éy, S\)Yn—Xn (W,) 55 —
X, (Wn, :\) 59/3 and ¢ is the n x 1 vector.

(ii) The bootstrap sample of residuals e, =(e7 ,,, ..., €5, ,,)" is generated from a two point

distribution P (&}, = &;,(1 + V5)/2))=(v/5-1)/(2V/5) and P (g7, = &in(1— V5)/2))

= (v5+1)/(2v/5), where &;,, is the ith demeaned residual. Then, these residuals
are used to generate y = Sn(éy, 5\)_1 (Xn (W,) ég + X, <Wn, 5\> 593 + 6;;).

(iii) Using the bootstrap sample {y,, i}, i=1,..,n and weight matrix W, and ap-
plying the estimation in Section 2.3 we obtain bootstrap analogs of the empirical

moments g; . (¢) and the second-step GMM estimator 0;.

(iv) Repeat steps (i) — (#i7) B times and compute bootstrap standard errors s*(6) =
\/‘7;, where V* = < S (6 — 9:;;)2 and 100(1 — «)% bootstrap confidence inter-
vals [0; — ¢*(1 — a/2),0; — ¢*(r/2)], where 6, is an element j of the vector § and
¢*(+) is the quantile function of 6 — 6.

Next, we consider testing the null hypothesis Hy : d, = dg, = 0 under which the
model (2.4) reduces to the linear spatial Durbin regression model (SAR). However, the
inference is not standard because the threshold parameter A is not identified under
the null of the linear SAR model; this issue is also known as the Davies problem.
Following Hansen (1996) we employ a bootstrap sup-LR type supD test that can be

used to approximate its asymptotic distribution

supD = sgp(JSAR — Jrsar(N)). (2.18)

g

where Jrgar(A) = §n(0(N)) Q5 16,(0(N)) where A()) is the second-step estimator for a
given A and Joar = §n(0)225,(0))
t

" )) where 0 is the second-step GMM estimator under
the restrictions d, = dg = 0, 0i
defined in (3.9).

s the estimator (2.13) and §,, are the empirical moments

The bootstrap residuals u}, i = 1,...,n are generated with random draws from 4.7.d.

N(0,1). Then, set y; = &u}, where & = ¢€; —¢;. For each bootstrap sample Whins T}
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1=1,..,n and weight matrix W,,, we estimate the second step GMM estimator of the
SAR model and obtain its J-statistic Jg 4z, from the b bootstrap sample. For each
A € A, estimate the second step GMM estimator of the TSAR model and obtain its J-
stat Jbg 1p(\). Next, construct the Distance statistic supD; = sup, (J2 iz — Jog4r(N))-

Then calculate bootstrap p-value px = %Zé‘il {supD; > supD}.”

2.6 Monte Carlo

We first consider the following data generating process
Yin = ay(w) +32in + 0oy (W) H{zin < 0} 4+ 0pin1{zin <0} + €50, (2.19)

where z;, is a scalar regressor, z; ,, is the threshold variable and e; ,, is an i.i.d. N(0,1)

error.

We set the persistence of the spatial autoregressive coeflicient at & = 0.4 and explore
various experiments that allow to vary the threshold effects d,, = 0,0,1,0.3,0.5 and
85 = 0,1,2,3.° We use three alternative predetermined weight matrices: The Toledo
spatial matrix WO (98 x 98) based on the 5 nearest neighbors of 98 census tracts in
Toledo, Ohio.For larger sample sizes of n = 196 and 392 we use block diagonal matrices

with the Toledo spatial matrix as their diagonal blocks.

Tables 2.1-2.5 present the 5th, 50th and 95th quantiles of the distributions of our
estimators for three sample size that correspond to the aforementioned weight matri-
ces. Columns 2-4 present the two-stage least squares estimator using the matrix of
instrumental variables Q,, = (X,,, W,, X,,, W2X,,, W3X,,, W2X,). Columns 5-7 present
the first-step GMM estimator using (Q/,@Q,)"! as weighting matrix and quadratic mo-
ments. Columns 8-10 present the second-step GMM estimator using residuals and
estimators of the first-step as initial estimates and reiterating the first-step. Columns
11-13 present a third-step estimator using residuals and estimators of the second-step
as initial estimates and reiterating the second-step. Each table presents four different
panels for different values of the threshold effect 63 and each panel shows results for
four different values of d,,. When dg = d,, = 0 the DGP is the linear model. Finally,
we note that our results can be viewed as conservative since we always estimate an

unrestricted model regardless of the true DGP.

Table 2.1 shows the results for the estimator of the threshold parameter. Overall, we

51{supD* > supD} takes the value 1 when supD* > supD and both supDy and supD are positive
and 0 otherwise.
5The choice of a = 0.4 and J,, values was made in a way that ensures that Assumption 1 holds.
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can see that as the sample size and the threshold effects increase, the 50th quantile
approaches the true threshold parameter and the width of the distribution shrinks.
While there are efficiency gains as dg increases for fixed values of d,,, there are no
gains in efficiency when J,, increases for fixed values of dg. We should note that all
the estimators appear to center at the true threshold parameter. However, examining
the width of the distribution, we see that the GMM does not exhibit efficiency gains

over the 2SLS, perhaps due to the slow convergence rate.

Tables 2.2 and 2.3 show the results for the threshold effects of the SAR threshold
coefficient d,, and the SAR coefficient «, respectively. When J,, = 0 the threshold
effect of the SAR threshold coefficient d,, is estimated accurately regardless of dg.
However, when d,, # 0, the estimators of d,, shows a finite sample bias that decreases
as 0g increases. Similarly, in the case of the SAR coefficient «, Table 2.3 shows that
all estimators accurately estimate a and the 2nd step estimator appears to offer great
improvements in efficiency over the first-step estimator in all cases. Importantly, the
2nd step estimator appears to offer great improvements in efficiency for both d,, and «
over the first-step estimator in all cases. The third-step estimator also provides a small

improvement in terms of efficiency but generally not in terms of finite sample bias.

Table 2.4 and 2.5 provide a more nuanced characterization of the performance of the
estimators of dg and 3. In particular, while the 50th quantile approaches the true value
and the width of the distribution shrinks when dg = 0 for all values of ¢,,, there is
a finite sample bias for 63 # 0. Interestingly, the first-step GMM or 2SLS estimator
appears to be better in terms of bias than the second-step estimator and at least as
good as the third-step one. As expected, however, the second-step GMM estimator
provides substantial efficiency gains. The efficiency gains of the third-step estimator
generally appear small. The results for 3 also show bias for dg # 0 but it generally
smaller compared to the bias of the estimators for dg. Both larger sample size and

third-step estimators appear to reduce the bias to negligible levels.

An alternative possibility is to allow the social network to be different across regimes.

Therefore, we consider a second data generating process

1) 2 WignH{2jn < O0YYjn + BiZin + €y 2in <0
Vi = (2.20)
Qo Z#i Wijn1{2jn > 0}yjn + Botin + €ins 2in >0

where z;,, is a scalar regressor, z; ,, is the threshold variable and e, ,, is an i.i.d. N(0,1)

error.

We set the persistence of the spatial autoregressive coefficient ap = 0.4 and the slope
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coefficient 5, = 3 of the upper regime and vary the spatial autoregressive coefficient o
and the slope coefficient 5, of the lower regime by varying d,, = oy —as =0,0,1,0.3,0.5
and 0g = /1 — B2 = 0,1,2,3. We use two alternative predetermined weight matrices:
The Toledo spatial matrix WO (98 x 98) based on the 5 nearest neighbors of 98 census
tracts in Toledo, Ohio.For the larger sample size of n = 196 we use a block diagonal

matrice with the Toledo spatial matrix as its diagonal blocks.

Tables 2.6-2.10 present the 5th, 50th and 95th quantiles of the distributions of our
estimators for two sample size that correspond to the aforementioned weight matrices

for Model 2. The same structure as in tables 2.1-2.5 is applied.

Table 2.6 shows the results for the estimator of the threshold parameter. Overall, we
can see that as the sample size and the threshold effects increase, the 50th quantile
approaches the true threshold parameter. We found similar results in terms of efficiency,
as in the first DGP. There are efficiency gains as d increases for fixed values of 4, , while
there are no gains in efficiency when d,, increases for fixed values of d3. Although, all
the estimators appear to center at the true threshold parameter, we see that the GMM
does not exhibit efficiency gains over the 2SLS, perhaps due to the slow convergence

rate.

Tables 2.7 and 2.8 show the results for the threshold effects of the SAR threshold
coefficient d,, and the SAR coefficient as, respectively. We see that third step GMM
estimator of J,, performs better in terms of finite sample bias and provides efficiency
gains. Regarding as, we can see that the second and third step GMM estimator provide

as well gains in terms of finite sample bias and efficiency.

Table 2.9 and 2.10 displays the estimators of 63 and 3. While dg is accurately estimated
when 63 = 0, there is a bias in the opposite case, which however decreases as dg
increases. The second and third step GMM estimators provide considerable efficiency
gains in comparison with 2sls and first step GMM estimator. In general, the same

picture applies for 3, although the bias is smaller.

In sum, the results show that our estimators generally accurately estimate the param-
eters of the model. While the quasi-optimal second-step (or third) estimator does not
appear to provide efficiency gains for the estimation of the threshold parameter, it
can provide substantial improvements in the efficiency of the estimators for the slope

parameters of the model.
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2.7 Future Work

In future work we plan to illustrate the empirical relevance of our model by providing an
empirical application on intergenerational mobility and social influences. In particular,
we will study two possible mechanisms that give rise to poverty traps. First, models of
credit constraints such as Galor and Zeira (1993) and Han and Mulligan (2001) suggest
that intergenerational mobility threshold-type regressions emerge as distinct intergener-
ational transmission relationships for constrained and unconstrained families. Second,
models of neighborhood effects such as Benabou (1996) and Durlauf (1996a,b) show
that parental income plays a role in the quality of the neighborhood in which a child
grows up. The quality of neighborhood, in turn, affects future adult income in order
to produce threshold-like relationships between parent and offspring income. The idea
is that both lagged and contemporaneous feedbacks from the behavior of the members
of a neighborhood to the offspring’s future outcomes. While lagged feedbacks capture
neighborhood effects during childhood, contemporaneous feedbacks capture the idea
that neighborhoods constitute an intergenerational transmission mechanism because
they provide access to information about employment opportunities. Disadvantaged
localities act as barriers to the job opportunities for poor individuals due to lack of
hiring networks and general access to information (e.g., Conley and Topa (2001), Topa
(2001)). The basic assumption of the two aforementioned papers is that residents of
one tract exchange job information with residents of neighboring tracts and that phys-
ical distance is an essential determinant of the creation of these networks; the costs of
creating and preserving social ties increase with social distance, whereas local institu-
tions such as churches or local businesses help in creating social ties. Therefore, we will
treat the census tract as a representative unit of location and assume that a sufficient
statistic for the effects of others on a given adult’s income is given by a weighted av-
erage of income of others, where the weights depend on whether the individual resides
in the same census tract or nearby tracts. ” Since the average commuting distance is
equal to 16 miles, we will consider as adjacent tracts the tracts that are in a radius of
16 miles of the centre of the tract. We consider as the tract of residence the tract that
individual lived the three years prior the year we have first observed the income used

for the construction of permanent income.

The data will be drawn from the Panel Study of Income Dynamics (PSID). PSID is a
longitudinal household survey starting in 1968 with a nationally representative sample
of over 18,000 individuals living in 5,000 families in the United States. We will use
the Survey Research Center national sample and employ measures of the parent’s and
child’s family income, which include the taxable income of all earners in the family,

from all sources, and transfer payments. Furthermore, in order to account for the fact

"The weights are functions of the distance between the centers of the tracts.
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that PSID data are not geographically stratified, we will use Tract contextual data
from Neighborhood Change Database (NCDB) such as population density, proportion
of black minorities, as well as the proportion of persons over 25 years old who have
a bachelors or graduate/professional degree, persons over 25 years old who have com-
pleted 9-12 years of schooling and persons over 25 years old who who have completed

high school but no college.®

Following the literature of threshold regressions, our model can be extended to multiple
regimes. Typically, this estimation is performed sequentially, accounting for the order

of testing as in Gonzalo and Pitarakis (2002) who suggest repartitioning.

Our model could also be extended to the case where the weight matrices are given
exogenously for each regime and hence different socioeconomic matrices are considered
across the two regimes. For example, let us assume we study poverty traps and for the
formation of the social network, we take into account neighboring tracts. The nature
of interactions is intrinsically different for poor and rich people. Therefore, k — nearest

neighbors could be considered for the poor, and m — nearest for rich, where k # m.

2.8 Conclusion

In this chapter we propose a general threshold spatial autoregression model that nests
several models including the spatial autoregression model and spatial autoregression
model - mixed regression. Using a framework that allows for both fixed and dimin-
ishing threshold effects we develop a two-step GMM estimation method that exploit
both linear and quadratic moment conditions and study the limiting properties of the
estimators of the threshold parameter and slope parameters of spatial lags and regres-
sion coefficients. In particular, the first-step estimator is based on an initial matrix
of instruments by exploiting the powers of the exogenous spatial weight matrix. and
second-step estimator uses regime specific instruments. Finally, we assess the perfor-

mance of the proposed estimation method using a Monte Carlo simulation.

8We would like thank Giulio Zanella who kindly provided us with the NCDB data.

66



2.9 Tables

Table 2.1: Model 1 - Threshold Parameter (), = 0)

n 5th 50th  95th 5th 50th  95th 5th 50th  95th 5th 50th  95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: 63 =0

da =0
98 -0.73 -0.03 0.67 -0.71 -0.03  0.63 -0.75  -0.09 0.70 -0.75  0.00 0.69
196 -0.69 0.08 0.66 -0.67 -0.02 0.63 -0.70 0.01 0.71 -0.70  -0.01  0.70
392 -0.65 0.00 0.64 -0.65 -0.05 0.61 -0.70 -0.04 0.69 -0.69 0.00 0.69
5o = 0.1
98 -0.71 0.02 0.65 -0.71  -0.07 0.61 -0.76 -0.02  0.69 -0.77 -0.06 0.70
196 -0.65 0.01 0.64 -0.65 0.00 0.64 -0.73  0.02 0.70 -0.69 0.05 0.70
392 -0.65 0.00 0.65 -0.64 -0.03 0.61 -0.71 -0.02  0.68 -0.69 -0.03 0.68
0o =0.3
98 -0.70 -0.04 0.65 -0.70 -0.05 0.63 -0.77  -0.01 0.68 -0.75 -0.03 0.67
196 -0.67 -0.03 0.66 -0.66 -0.02 0.62 -0.71  0.03 0.68 -0.70 -0.01 0.65
392 -0.66 0.01 0.67 -0.64 -0.05 0.61 -0.69 0.00 0.67 -0.69 -0.03 0.67
0o = 0.5
98 -0.70 -0.01 0.66 -0.72  -0.06 0.61 -0.70 -0.03  0.65 -0.70 -0.03 0.64
196 -0.67 -0.03 0.65 -0.66 -0.07 0.63 -0.67 0.00 0.67 -0.68 -0.01 0.67
392 -0.64 0.02 0.64 -0.63  0.02 0.62 -0.67 -0.01 0.66 -0.66 -0.02 0.66
Panel B: §g =1
do =0
98 -0.69 -0.01 0.65 -0.71  -0.02 0.62 -0.72 -0.03 0.64 -0.71  -0.04 0.63
196 -0.64 -0.01 0.60 -0.65 -0.02 0.63 -0.67  0.02 0.65 -0.69 -0.01 0.67
392 -0.63 -0.01 0.62 -0.62 -0.01  0.60 -0.66 -0.03 0.64 -0.68 -0.02 0.62
S0 = 0.1
98 -0.67 -0.02 0.60 -0.69 -0.02 0.60 -0.71  -0.02 0.65 -0.72 -0.02 0.65
196 -0.65 0.00 0.63 -0.67 -0.01 0.64 -0.65 0.02 0.67 -0.68 0.03 0.65
392 -0.60 -0.02 0.60 -0.63 -0.05 0.61 -0.64 -0.03 0.66 -0.65 -0.05 0.63
0o =0.3
98 -0.68 -0.01 0.60 -0.71  -0.06 0.60 -0.68 0.00 0.63 -0.70 -0.06 0.64
196 -0.63 0.00 0.62 -0.64 -0.03 0.62 -0.64 0.00 0.63 -0.63 -0.02 0.64
392 -0.62 0.00 0.62 -0.62 -0.03 0.62 -0.66 0.00 0.63 -0.66  0.00 0.63
0o =0.5
98 -0.66 -0.02 0.61 -0.66 -0.02 0.61 -0.69 -0.02 0.64 -0.68 -0.01 0.60
196 -0.61 -0.01 0.59 -0.63 -0.06 0.62 -0.63  0.00 0.62 -0.61  0.00 0.65
392 -0.61 -0.01 0.58 -0.61  0.00 0.62 -0.62 -0.01 0.64 -0.65 -0.02 0.62
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Model 1 - Threshold Parameter ()\; = 0) (Continued)

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

5th

-0.64
-0.54
-0.52

-0.59
-0.53
-0.47

-0.58
-0.56
-0.48

-0.58
-0.57
-0.46

-0.50
-0.39
-0.40

-0.48
-0.43
-0.36

-0.51
-0.36
-0.40

-0.48
-0.38
-0.35

50th
25LS

-0.02
0.00
-0.01

-0.02
-0.01
0.00

-0.01
-0.01
-0.01

-0.03
-0.01
0.00

-0.01
-0.01
0.00

-0.01
-0.01
0.00

-0.02
-0.01
0.00

-0.01
-0.01
0.00

95th

0.53
0.54
0.52

0.53
0.52
0.53

0.56
0.51
0.51

0.53
0.57
0.50

0.44
0.48
0.32

0.46
0.45
0.40

0.49
0.44
0.31

0.44
0.38
0.34

5th

1st step GMM

-0.68
-0.61
-0.59

-0.67
-0.62
-0.62

-0.64
-0.62
-0.61

-0.66
-0.61
-0.59

-0.63
-0.60
-0.57

-0.67
-0.62
-0.59

-0.65
-0.58
-0.59

-0.65
-0.60
-0.56

50th

-0.03
-0.02
-0.01

-0.02
-0.02
-0.04

0.00
-0.03
-0.02

-0.03
-0.05
-0.01

-0.02
-0.02
0.00

-0.02
-0.02
-0.02

-0.03
-0.01
-0.02

-0.02
-0.02
-0.02

95th 5th

Panel C: dg =2
0o =0
0.58 -0.69
0.60 -0.61
0.59 -0.62
0o =0.1
0.62 -0.65
0.59 -0.58
0.57 -0.62
0o =0.3
0.62 -0.62
0.59 -0.59
0.58 -0.61
0o =0.5
0.61 -0.61
0.57 -0.60
0.59 -0.60

Panel D: 63 =3

0o =0
0.59 -0.57
0.57 -0.57
0.53 -0.56

0o =0.1
0.56 -0.59
0.59 -0.58
0.57 -0.58

0o = 0.3
0.58 -0.56
0.56 -0.57
0.55 -0.58

0o = 0.5
0.55 -0.54
0.57 -0.54
0.56 -0.53
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50th

-0.03
-0.01
-0.01

-0.01
0.01
-0.03

-0.01
-0.01
-0.02

-0.02
-0.02
-0.01

-0.02
0.00
-0.02

-0.01
0.00
-0.02

-0.01
0.00
0.00

-0.01
-0.01
-0.01

95th
2nd step GMM

0.59
0.62
0.59

0.59
0.62
0.60

0.59
0.58
0.57

0.57
0.56
0.58

0.49
0.55
0.56

0.55
0.52
0.54

0.55
0.52
0.59

0.54
0.52
0.53

5th

50th

95th

3rd step GMM

-0.71
-0.60
-0.61

-0.61
-0.61
-0.60

-0.63
-0.60
-0.61

-0.59
-0.59
-0.58

-0.56
-0.55
-0.57

-0.59
-0.56
-0.58

-0.58
-0.53
-0.54

-0.59
-0.54
-0.55

-0.04
-0.01
-0.01

-0.01
-0.01
-0.01

-0.01
-0.01
-0.01

-0.02
-0.01
-0.01

-0.02
0.00
-0.01

-0.02
0.00
-0.01

-0.01
-0.02
-0.01

-0.02
-0.01
-0.01

0.58
0.59
0.59

0.59
0.61
0.59

0.59
0.58
0.58

0.57
0.57
0.56

0.54
0.55
0.54

0.54
0.53
0.49

0.56
0.52
0.51

0.52
0.56
0.51



n

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

Table 2.2: Model 1 - Threshold Effect of the SAR Coefficient J,,

5th

-3.51
-3.95
-3.90

-3.18
-3.61
-3.46

-3.09
-3.74
-3.93

-2.74
-3.30
-2.62

-3.21
-3.16
-3.40

-2.99
-3.31
-3.00

-2.50
-2.69
-3.05

-2.29
-2.58
-2.51

50th
2SLS

-0.06
-0.05
0.04

0.07
0.15
0.32

0.41
0.50
0.53

0.64
0.69
0.87

0.04
-0.02
0.07

0.19
0.16
0.27

0.43
0.28
0.49

0.56
0.62
0.77

95th

4.42
3.55
3.54

3.44
3.72
4.29

3.57
4.06
3.91

3.49
3.93
4.49

3.10
3.45
3.08

3.12
3.43
3.44

2.94
3.32
3.46

3.07
3.44
3.40

5th 50th  95th 5th 50th  95th 5th 50th  95th

1st step GMM 2nd step GMM 3rd step GMM
Panel A: 65 =0
0o =0
-2.35  0.00 2.34 -0.79 -0.01 0.74 -0.57  0.01 0.58
-2.55  -0.05 2.60 -0.49 0.00 0.51 -0.33  0.00 0.35
-2.62 -0.01 2.82 -0.33  0.00 0.35 -0.24 0.00 0.25
0o = 0.1
-2.44  0.07 2.57 -0.61 0.11 0.76 -0.43  0.13 0.67
-2.50  0.10 2.65 -0.32  0.13 0.64 -0.21  0.12 0.52
-2.58  0.22 250 -0.18  0.13  0.49 -0.09 0.12 040
0o = 0.3
-2.01 0.39 2.88 -0.29  0.39 1.19 -0.09 0.35 1.00
-2.32 039 284 -0.09 0.38 1.00 0.07 035 0.82
-2.21 041 272 0.10 0.38 0.86 0.14 034 0.74
0o = 0.5
-1.83  0.58 2.82 0.05 0.59 147 0.13 0.57 1.33
-1.98  0.75 3.10 024 0.62 1.35 0.26  0.57 1.22
-1.80 0.68 3.11 0.28 0.61 1.18 0.31 0.54 1.07
Panel B: 63 =1
00 =0
-2.12  0.04 2.46 -0.57 -0.01 0.63 -0.48 0.00 0.42
-2.26  -0.02 2.36 -0.38  0.00 0.34 -0.30 0.00 0.26
-2.36 0.06 2.28 -0.23  0.00 0.25 -0.18 0.00 0.19
5o = 0.1
-1.82  0.19 231 -0.43 0.12 0.67 -0.29 0.09 0.54
-2.27 0.12 2.38 -0.23  0.12 0.53 -0.15  0.10 0.42
-2.13  0.21 247 -0.12  0.11 0.46 -0.06 0.10 0.34
0o = 0.3
-1.84 0.34 2.38 -0.11  0.35 0.99 -0.03 0.33 0.80
-1.88  0.34 249 0.05 0.36 0.86 0.10 0.32 0.74
-2.00 039 244 0.12 0.35 0.73 0.15 0.32 0.68
0o =0.5
-1.62 054 2.68 0.12  0.57 1.26 0.20 0.53 1.19
-1.64 0.55 240 0.29 0.58 1.18 0.30 0.54 1.09
-1.75  0.65 2.63 0.33 0.57 1.05 0.31 0.53 1.02
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Model 1 - Threshold Effect of the SAR Coefficient 4,, (Continued)

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

5th

-2.71
-2.71
-2.91

-2.30
-2.99
-2.50

-2.62
-2.12
-2.58

-2.03
-2.06
-2.27

-2.44
-2.41
-2.48

-2.48
-2.74
-2.02

-2.02
-2.02
-2.18

-1.64
-1.66
-1.94

50th
25LS

0.04
-0.03
0.04

0.12
0.13
0.18

0.28
0.30
0.39

0.50
0.57
0.63

-0.02
0.00
0.04

0.09
0.10
0.14

0.33
0.29
0.35

0.46
0.49
0.56

95th

2.73
2.65
2.58

2.41
2.78
2.92

2.77
2.82
2.79

2.93
2.88
3.19

2.15
2.80
2.38

2.20
2.43
2.55

2.55
2.35
2.46

2.40
2.43
2.60

5th

1st step GMM

-1.83
-2.18
-2.19

-1.76
-2.01
-1.91

-1.70
-1.61
-1.80

-1.59
-1.45
-1.60

-1.85
-1.82
-1.91

-2.07
-1.92
-1.66

-1.38
-1.47
-1.78

-1.47
-1.26
-1.44

50th

0.04
-0.04
0.02

0.07
0.12
0.21

0.30
0.35
0.38

0.46
0.55
0.62

-0.02
-0.02
0.04

0.12
0.12
0.18

0.30
0.34
0.34

0.43
0.49
0.50

95th 5th

Panel C: dg =2
do =0
2.27 -0.53
1.74 -0.32
2.05 -0.23
0o =0.1
2.16 -0.31
2.09 -0.15
2.28 -0.07
0a =0.3
2.01 -0.07
2.17 0.07
2.27 0.15
0o = 0.5
2.34 0.15
2.44 0.29
2.46 0.32

Panel D: 63 =3

0o =0
1.79 -0.39
1.99 -0.26
1.88 -0.20

00 =0.1
1.98 -0.28
1.94 -0.16
2.23 -0.08

0o = 0.3
2.20 -0.02
2.24 0.11
2.12 0.16

0o = 0.5
2.04 0.20
2.22 0.29
2.33 0.35
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50th

-0.01
0.00
-0.01

0.11
0.11
0.10

0.32
0.33
0.33

0.53
0.55
0.54

-0.01
0.00
0.00

0.12
0.11
0.10

0.32
0.32
0.32

0.52
0.53
0.54

95th

2nd step GMM

0.45
0.30
0.21

0.62
0.48
0.37

0.84
0.71
0.67

1.26
1.02
0.98

0.37
0.26
0.19

0.56
0.44
0.34

0.81
0.68
0.64

0.99
1.01
0.93

5th 50th  95th
3rd step GMM

-0.43 -0.01 0.36
-0.21  0.00 0.22
-0.16  0.00 0.17

-0.25 0.10 0.46
-0.10 0.10 0.35
-0.05 0.11 0.29

0.02 031 0.74
0.11 0.32 0.64
0.17 032 0.61

024 053 1.06
0.30 0.53 0.96
034 0.51 0.92

-0.27  0.00 0.31
-0.20  0.00 0.21
-0.15  0.00 0.15

-0.19 0.11 0.46
-0.09 0.10 0.30
-0.04 0.10 0.28

0.04 032 0.72
0.13 031 0.64
0.17 0.31 0.57

024 051 1.03
033 051 0.95
037 0.52 0.88



Table 2.3: Model 1 - SAR Coefficient o = 0.4

n 5th 50th  95th 5th 50th  95th 5th 50th  95th 5th 50th  95th

2SLS 1st step GMM 2nd step GMM 3rd step GMM
Panel A: 65 =0
0o =0
98 -1.64 0.41 2.18 -0.75  0.39 1.67 -0.02 0.39 0.79 0.09 0.39 0.70
196 -1.61 0.43 2.57 -0.90 0.43 1.72 0.11 039 0.68 0.19 0.39 0.60
392 -1.60 0.38 2.30 -0.99 0.39 1.76 0.22 040 0.59 0.25 0.40 0.53
0o = 0.1
98 -1.34 0.40 2.23 -0.92  0.40 1.67 -0.01 0.39 0.72 0.04 0.40 0.68
196 -1.51 0.39 2.44 -0.81 0.42 1.80 0.05 039 0.63 0.13 039 0.57
392 -1.71 0.32 225 -0.94 035 1.74 0.15 0.39 0.54 0.23 0.40 0.50
0o =0.3
98 -1.34 0.39 2.16 -0.87 0.38 1.56 -0.16 0.36  0.68 -0.07  0.38 0.63
196 -1.57 032 231 -1.03 0.36 1.78 -0.08 0.36 0.59 0.04 0.38 0.54
392 -1.60 0.30 2.18 -0.95 0.37 1.53 0.01 037 0.54 0.09 039 0.51
0o =0.5
98 -1.22 0.38 2.00 -0.81 0.40 1.54 -0.21  0.37  0.68 -0.15 0.38 0.63
196 -1.57 0.31 2.25 -1.00  0.33 1.60 -0.27  0.35 0.60 -0.08 0.37 0.57
392 -1.68 0.24 1.92 -0.97 0.33 1.56 -0.09 0.37 0.55 -0.02 0.39 0.54
Panel B: §g =1
0a =0
98 -1.21 0.39 2.13 -0.81 0.37 149 0.07 039 0.74 0.14 039 0.64
196 -1.35 0.41 2.08 -0.79 041 1.73 0.19 039 0.61 0.24 0.40 0.55
392 -1.29 0.37 2.09 -0.88 0.38 1.61 0.24 040 0.54 0.28 0.40 0.51
S0 = 0.1
98 -1.25 0.38 1.95 -0.80 0.36 1.35 0.04 0.39 0.68 0.14 0.40 0.62
196 -1.42 0.38 2.14 -0.82 041 1.64 0.13 039 0.58 0.19 0.40 0.55
392 -1.35 0.32 1.89 -0.91 0.35 1.54 0.20 039 0.52 0.28 0.40 0.49
0o = 0.3
98 -0.95 0.34 1.83 -0.72  0.39 143 -0.07  0.37  0.63 0.10 0.39 0.59
196 -1.11 042 1.94 -0.82 0.39 1.46 0.03 0.38 0.55 0.12 0.39 0.53
392 -1.37 0.34 2.16 -0.77  0.37 1.53 0.10 0.39 0.51 0.14 0.39 0.50
0o =0.5
98 -1.09 040 1.79 -0.70 0.39 1.51 -0.11  0.37  0.64 -0.04 0.38 0.59
196 -1.19 0.36 2.03 -0.67 0.43 1.55 -0.15 0.37  0.56 0.04 0.38 0.54
392 -1.16 030 1.84 -0.82  0.35 148 -0.04 0.39 0.54 0.04 0.39 0.54
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Model 1 - SAR Coefficient a = 0.4 (Continued)

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

5th

-0.82
-0.94
-0.91

-0.78
-0.88
-1.18

-0.94
-0.85
-1.03

-0.93
-0.80
-0.96

-0.78
-0.92
-0.76

-0.70
-0.76
-0.81

-0.79
-0.62
-0.66

-0.59
-0.62
-0.70

50th
2SLS

0.39
0.41
0.38

0.40
0.39
0.36

0.42
0.41
0.36

0.42
0.37
0.35

0.41
0.40
0.38

0.41
0.41
0.37

0.38
0.41
0.38

0.43
0.42
0.38

95th

1.87
1.84
1.82

1.62
1.85
1.74

1.81
1.62
1.77

1.72
1.63
1.83

1.61
1.69
1.65

1.64
1.89
1.46

1.49
1.52
1.62

1.40
1.53
1.52

5th

1st step GMM

-0.78
-0.48
-0.62

-0.62
-0.63
-0.66

-0.53
-0.53
-0.61

-0.53
-0.55
-0.75

-0.51
-0.55
-0.51

-0.58
-0.47
-0.80

-0.48
-0.57
-0.45

-0.44
-0.44
-0.49

50th

0.38
0.42
0.38

0.40
0.40
0.35

0.41
0.40
0.38

0.44
0.40
0.36

0.42
0.42
0.38

0.39
0.40
0.36

0.40
0.39
0.40

0.44
0.42
0.41

95th 5th

Panel C: dg =2
0o =0
1.43 0.14
1.55 0.21
1.51 0.26
0o =0.1
1.34 0.10
1.50 0.15
1.41 0.24
0o =0.3
1.39 0.05
1.35 0.12
1.47 0.16
0o = 0.5
1.47 -0.07
1.36 0.06
1.49 -0.02

Panel D: 63 =3

dq =0
1.34 0.17
1.35 0.23
1.44 0.27
0o = 0.1
1.49 0.12
1.39 0.17
1.34 0.26
0o = 0.3
1.30 0.07
1.31 0.11
1.54 0.17
0o = 0.5
1.37 0.06
1.28 0.07
1.40 0.12
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50th  95th

0.40
0.40
0.40

0.38
0.39
0.40

0.38
0.39
0.39

0.39
0.38
0.39

0.40
0.40
0.40

0.39
0.40
0.40

0.39
0.39
0.40

0.39
0.39
0.39

2nd step GMM

0.71
0.59
0.53

0.61
0.56
0.51

0.60
0.55
0.51

0.60
0.54
0.53

0.61
0.56
0.52

0.60
0.55
0.51

0.58
0.52
0.50

0.59
0.54
0.51

5th

50th  95th

3rd step GMM

0.18
0.25
0.29

0.17
0.25
0.28

0.13
0.15
0.17

0.05
0.06
0.11

0.20
0.25
0.30

0.20
0.26
0.31

0.11
0.20
0.22

0.11
0.09
0.18

0.41
0.39
0.39

0.39
0.40
0.40

0.39
0.39
0.39

0.39
0.39
0.40

0.40
0.40
0.40

0.39
0.40
0.40

0.38
0.39
0.39

0.39
0.40
0.40

0.64
0.52
0.50

0.58
0.53
0.48

0.57
0.52
0.50

0.57
0.53
0.52

0.57
0.51
0.49

0.57
0.51
0.48

0.55
0.50
0.49

0.56
0.52
0.50



Table 2.4: Model 1 - Slope Coefficient 3

n 5th 50th  95th 5th 50th  95th 5th 50th  95th 5th 50th  95th

2SLS 1st step GMM 2nd step GMM 3rd step GMM
Panel A: 63 =0
0o =0
98 -1.81 0.03 1.93 -3.10 0.04 3.32 -0.72  0.02 0.69 -0.70  0.01 0.76
196 -1.79 -0.01 1.78 -3.48 0.05 3.58 -0.54 0.01 0.49 -0.52  0.01 0.51
392 -1.50 -0.04 1.49 -3.39  0.03 3.29 -0.36 -0.02 0.33 -0.36  -0.01 0.35
0o =0.1
98 -2.05 -0.04 1.82 -3.16  0.11 3.32 -0.75 0.00 0.73 -0.75  0.02 0.75
196 -1.73 -0.05 1.62 -3.28 -0.01 3.48 -0.48 0.01 0.51 -0.49 0.00 0.49
392 -1.58 0.01 1.60 -3.50 -0.03 3.30 -0.35 0.00 0.35 -0.35 0.00 0.31
0o =0.3
98 -1.90 0.02 2.06 -3.31  0.09 3.34 -0.69 -0.01 0.72 -0.68 0.01 0.68
196 -1.54 0.00 1.69 -3.76  -0.13 3.02 -0.51  0.01 0.45 -0.49 0.00 0.45
392 -1.54 -0.03 1.47 -3.31  0.02 3.25 -0.33 -0.01 0.32 -0.32  -0.01 0.29
0o =0.5
98 -1.93 -0.02 2.03 -3.27 -0.01 3.25 -0.73  -0.01 0.72 -0.71  0.00 0.72
196 -1.79 0.00 1.85 -3.28 -0.01 3.31 -0.49 0.01 0.46 -0.43 0.01 0.45
392 -1.46 0.00 1.55 -3.49 -0.05 3.33 -0.32 -0.01 0.33 -0.30  0.00 0.30

Panel B: §g =1

0o =0
98 -0.88 096 2.86 -250  1.04 434 0.54 1.18 2.56 046 1.09 232
196 -0.76 093 2.54 -2.62  1.06 4.23 0.67 1.19 2.22 0.58 1.07 2.20
392 -0.85 096 248 -247 124 424 0.73 119 2.04 0.66 1.07 2.02
0o =0.1
98 -0.88 1.05 2.87 -2.25  1.09 4.14 0.52 1.18 2.44 048 1.10 2.35
196 -0.78 0.93 2.58 -2.27  1.09 449 0.66 1.17 2.19 0.61 1.07 2.08
392 -0.66 095 241 -2.23 115 4.32 0.71 1.20 2.05 0.68 1.08 2.01
0o =0.3
98 -1.11 096 2.79 -2.40 095 4.19 0.53 1.15 231 048 1.11 2.30
196 -0.85 1.00 2.68 -2.66 1.06 4.43 0.66 1.18 2.24 0.63 1.09 2.10
392 -0.67 091 242 -2.58  1.13  4.42 0.72 116 2.04 0.67 1.07 2.05
0o = 0.5
98 -1.18 098 3.02 -2.26 1.03 4.36 049 1.13 233 046 1.07 2.12
196 -0.81 1.00 2.78 -2.37  1.05 4.08 0.66 1.17 2.16 0.61 1.08 2.02
392 -0.52 090 244 -2.57 099 4.12 0.73 1.14 1.98 0.68 1.08 1.99

73



Model 1 - Slope Coefficient 3 (Continued)

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

5th

0.16
0.41
0.32

-0.25
0.12
0.56

-0.31
0.09
0.32

-0.15
-0.01
0.42

1.09
1.18
1.12

0.97
1.09
1.29

0.61
1.17
1.33

0.62
1.21
1.30

50th
2SLS

1.88
1.96
1.92

1.94
1.87
1.93

1.87
1.95
1.91

1.94
1.91
1.89

2.94
2.87
2.92

2.93
2.93
2.90

2.82
2.89
2.93

2.84
2.96
2.92

95th

3.52
3.55
3.57

3.64
3.36
3.35

3.80
3.63
3.37

4.02
3.75
3.35

4.87
4.69
4.64

4.96
4.70
4.53

4.85
4.77
4.55

4.96
4.81
4.57

5th

1st step GMM

-1.74
-1.65
-1.70

-2.02
-1.78
-2.18

-1.85
-2.00
-1.58

-2.21
-2.01
-1.96

-0.79
-0.93
-0.85

-1.23
-1.01
-1.71

-1.31
-0.58
-0.54

-1.16
-1.18
-1.13

50th  95th 5th

2.04
2.09
2.26

2.00
2.06
2.07

2.02
2.01
2.24

2.01
2.09
2.05

3.08
3.09
3.30

3.11
3.11
3.02

2.94
3.12
3.26

3.03
3.14
3.14

Panel C: dg =2
0o =0
5.04 1.36
5.48 1.53
5.66 1.61
0o =0.1
5.40 1.47
5.34 1.51
5.26 1.54
0o =0.3
5.56 1.40
4.98 1.53
5.74 1.57
0o =0.5
5.49 1.39
5.13 1.56
5.38 1.55

Panel D: 63 =3

0o =0
6.47 2.29
6.68 2.39
6.95 247

0o = 0.1
6.57 2.25
6.74 247
6.58 241

0o = 0.3
6.40 2.27
7.05 2.39
6.94 2.47

0o = 0.5
6.92 2.29
6.76 243
6.78 2.48

74

50th  95th

2.18
2.22
2.20

2.23
2.21
2.20

2.19
2.16
2.19

2.14
2.17
2.16

3.21
3.20
3.23

3.20
3.21
3.18

3.18
3.18
3.18

3.13
3.18
3.18

2nd step GMM

4.09
3.89
3.76

4.06
3.87
3.62

3.94
3.69
3.71

3.93
3.69
3.55

5.42
5.23
5.19

9.55
5.24
5.22

5.24
5.24
5.56

4.96
5.19
5.19

5th

50th  95th

3rd step GMM

1.33
1.47
1.49

1.33
1.45
1.51

1.38
1.47
1.48

1.38
1.46
1.53

2.26
2.30
2.36

2.24
2.32
2.37

2.20
2.32
2.32

2.29
2.32
2.36

2.05
2.10
2.08

2.11
2.07
2.12

2.12
2.08
2.08

2.08
2.08
2.06

3.08
3.05
3.05

3.13
3.06
3.06

3.07
3.10
3.05

3.10
3.09
3.08

4.05
3.74
3.68

3.69
3.63
3.71

3.87
3.58
3.62

3.68
3.58
3.49

5.51
4.91
4.92

5.14
5.05
5.10

5.47
5.17
4.98

5.46
5.26
5.04



98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

5th

1.97
2.03
2.22

2.03
2.21
2.25

1.93
2.08
2.27

1.85
2.15
2.17

1.99
2.22
2.18

1.88
2.11
2.22

1.95
2.06
2.23

1.96
1.95
2.23

50th
2SLS

2.99
3.00
3.01

3.02
3.02
3.00

2.98
2.99
3.02

3.01
2.99
3.01

3.06
3.07
3.05

3.02
3.03
3.04

3.05
3.02
3.04

3.04
3.00
3.05

95th

4.00
3.98
3.79

4.15
3.94
3.81

3.99
3.80
3.83

3.98
3.96
3.83

3.95
3.83
3.90

3.98
3.99
3.81

4.08
4.03
3.90

4.17
3.87
3.78

Table 2.5: Model 1 - Coefficient

5th

1st step GMM

1.31
1.37
1.35

1.42
1.23
1.38

1.27
1.49
1.37

1.29
1.26
1.34

1.29
1.25
1.22

1.21
1.12
1.13

1.29
0.97
1.28

1.31
1.33
1.28

50th

2.99
2.98
2.97

2.95
3.00
3.02

291
3.08
2.98

3.01
3.00
3.03

3.03
3.01
2.95

3.00
3.00
2.98

3.10
3.03
3.00

3.03
3.06
3.03

95th 5th

Panel A: g =0

0o =0
4.69 2.62
4.75 2.70
4.76 2.81

0o =0.1
4.70 2.57
4.74 2.72
4.85 2.82

0o =0.3
4.69 2.55
4.83 2.73
4.83 2.81

0o =0.5
4.64 2.57
4.68 2.73
4.77 2.83

Panel B: §g =1

0o =0
4.67 1.97
4.78 2.05
4.86 2.16

0o =0.1
4.79 1.97
4.75 2.04
4.73 2.15

0o =0.3
4.93 2.04
4.75 2.10
4.71 2.15

0o =0.5
4.80 2.14
4.63 2.14
4.85 2.22
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50th  95th

3.00
3.00
3.00

3.01
3.00
3.01

2.99
2.99
3.00

3.00
3.00
3.01

2.96
2.94
2.97

2.95
2.95
2.97

2.95
2.95
2.98

2.97
2.94
2.98

2nd step GMM

3.37
3.30
3.19

3.43
3.28
3.20

3.42
3.31
3.19

3.41
3.31
3.19

3.34
3.25
3.22

3.32
3.27
3.25

3.37
3.28
3.23

3.37
3.27
3.25

5th

50th  95th

3rd step GMM

2.60
2.71
2.80

2.57
2.72
2.83

2.60
2.75
2.84

2.60
2.74
2.82

2.13
2.18
2.30

2.14
2.26
2.23

2.21
2.25
2.21

2.23
2.23
2.26

3.00
2.99
3.00

3.00
3.00
3.00

2.99
2.99
3.00

3.00
3.00
3.01

2.98
2.98
2.99

2.98
2.98
2.99

2.98
2.97
2.99

2.98
2.98
3.00

3.42
3.30
3.19

3.43
3.29
3.20

3.37
3.26
3.17

3.38
3.25
3.16

3.39
3.29
3.28

3.37
3.29
3.27

3.39
3.28
3.26

3.36
3.28
3.27



Model 1 - Coefficient § (Continued)

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

98
196
392

5th

2.05
2.11
2.20

2.02
2.21
2.27

1.92
2.11
2.24

1.97
2.06
2.24

1.93
2.05
2.13

1.87
1.98
2.15

1.92
2.05
2.13

1.95
1.97
2.17

50th  95th
2SLS

3.04 4.2
3.04 391
3.04 3.86
3.08 4.14
3.07 3.94
3.02  3.75
3.08 4.21
3.03  3.99
3.06 3.85
3.04 4.15
3.06 4.09
3.05 3.83
3.04 4.14
3.06 4.10
3.04 394
3.03 4.27
3.04 4.15
3.04 3.93
3.10  4.26
3.06 3.98
3.03  3.93
3.08 4.29
3.06  4.05
3.04 3.96

5th ~ 50th  95th 5th ~ 50th  95th
1st step GMM 2nd step GMM

Panel C: dg =2

0o =0
1.29 3.06 4.82 1.55 297 3.53
1.05 296 4.87 1.52 295 3.39
1.11 295 4.73 1.57 298 3.36
0o =0.1
1.04 3.09 5.00 1.53 293 340
1.15 3.04 4.78 141 295 341
1.08 3.07 5.08 1.67 299 3.43
0o = 0.3
0.92 3.06 4.87 1.52 295 344
1.33 3.02 4.93 172 297 3.40
1.01 296 4.77 172 298 3.43
0o = 0.5
1.03  3.09 5.06 1.68 2,99 3.50
1.24 3.06 4.98 1.70 298 3.40
1.15 3.04 494 1.74 298 3.42

Panel D: 65 = 3

0o =0
1.04 299 4.79 1.54 296 3.44
1.05 3.01 5.01 1.28 296 3.49
0.84 294 494 1.33 298 3.50
0o =0.1
1.01  3.03 5.03 1.04 296 3.63
097 3.04 4091 1.26 296 3.48
1.03 3.08 5.36 145 298 3.58
0o = 0.3
1.16 3.08 5.16 1.34 295 3.57
0.85 3.01 4.72 1.20 2,96 3.58
089 295 4.74 1.07 298 3.52
0o = 0.5
0.99 3.04 5.03 1.52 294 3.58
0.81 3.02 5.03 1.33 297 3.50
084 299 5.01 1.37 298 3.47
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5th

50th  95th

3rd step GMM

1.56
1.80
1.69

1.70
1.87
1.61

1.67
1.82
1.74

1.75
1.83
1.89

1.49
1.61
1.51

1.57
1.39
1.64

1.32
1.43
1.51

1.31
1.40
1.59

2.99
2.98
2.99

2.97
2.98
2.99

2.97
2.98
2.99

2.99
2.99
3.00

2.98
2.98
3.00

2.99
2.99
3.00

2.97
2.98
3.00

2.98
2.99
3.00

3.61
3.46
3.45

3.46
3.49
3.47

3.48
3.47
3.47

3.50
3.45
3.42

3.61
3.59
3.61

3.61
3.58
3.58

3.62
3.57
3.58

3.53
3.58
3.61



98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

-0.66
-0.62

-0.69
-0.63

-0.65
-0.61

-0.64
-0.59

-0.66
-0.57

-0.66
-0.59

-0.64
-0.56

-0.61
-0.55

Table 2.6: Model 2 - Threshold Parameter () = 0)

50th
2SLS

-0.02
0.00

-0.03
0.00

-0.03
0.00

-0.02
0.01

-0.01
0.00

-0.03
-0.01

-0.02
0.00

-0.03
0.00

95th

0.62
0.61

0.63
0.63

0.60
0.61

0.62
0.59

0.57
0.54

0.60
0.56

0.52
0.55

0.51
0.56

5th

1st step GMM

-0.65
-0.58

-0.68
-0.65

-0.64
-0.57

-0.62
-0.61

-0.65
-0.58

-0.64
-0.62

-0.61
-0.58

-0.61
-0.58

50th

-0.02
0.01

-0.04
0.01

-0.02
0.02

0.00
0.01

-0.01
0.00

-0.03
0.00

-0.02
0.00

-0.01
0.01

95th 5th

Panel A: 63 =0
0a =0
0.63 -0.69
0.65 -0.61
0o = 0.1
0.59 -0.65
0.61 -0.61
0o = 0.3
0.58 -0.63
0.62 -0.61
0o = 0.5
0.57 -0.56
0.62 -0.56

Panel B: dg =1

0o =0
0.62 -0.63
0.61 -0.59

0o =0.1
0.59 -0.62
0.59 -0.63

0o = 0.3
0.58 -0.59
0.60 -0.57

0o = 0.5
0.55 -0.53
0.58 -0.56
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50th

-0.01
-0.01

-0.01
0.00

-0.02
0.01

-0.01
0.01

-0.04
0.00

-0.02
0.00

-0.02
0.00

-0.01
0.00

95th

2nd step GMM

0.62
0.62

0.60
0.65

0.57
0.60

0.55
0.62

0.63
0.61

0.55
0.60

0.55
0.60

0.53
0.55

5th

50th

95th

3rd step GMM

-0.66
-0.60

-0.63
-0.63

-0.63
-0.60

-0.54
-0.58

-0.64
-0.61

-0.62
-0.60

-0.59
-0.54

-0.56
-0.56

-0.05
0.00

-0.01
0.01

-0.02
0.02

0.00
0.01

-0.02
-0.01

-0.01
0.00

-0.02
0.00

-0.01
0.01

0.63
0.62

0.61
0.64

0.58
0.64

0.56
0.63

0.59
0.58

0.58
0.61

0.59
0.61

0.51
0.59



Model 2 - Threshold Parameter (A, = 0) (Continued)

98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

-0.58
-0.48

-0.53
-0.48

-0.55
-0.49

-0.47
-0.44

-0.50
-0.39

-0.45
-0.35

-0.47
-0.38

-0.39
-0.36

50th
2SLS

-0.02
-0.01

-0.03
0.00

-0.03
-0.01

-0.02
0.00

-0.02
-0.01

-0.02
-0.01

-0.01
-0.01

-0.01
-0.01

95th

0.50
0.45

0.48
0.48

0.51
0.44

0.48
0.47

0.37
0.33

0.42
0.38

0.39
0.31

0.45
0.35

5th

1st step GMM

-0.63
-0.60

-0.64
-0.58

-0.61
-0.57

-0.53
-0.54

-0.62
-0.54

-0.63
-0.57

-0.58
-0.51

-0.56
-0.54

50th

-0.03
0.00

-0.02
0.00

-0.02
-0.01

-0.02
0.00

-0.02
-0.01

-0.03
0.00

-0.01
0.00

-0.01
0.00

95th 5th

Panel C: dg = 2
da =0
0.56 -0.62
0.61 -0.61
0o =0.1
0.60 -0.61
0.58 -0.62
do =03
0.57 -0.53
0.55 -0.55
0o =0.5
0.50 -0.47
0.62 -0.53

Panel D: 63 =3

0o =0
0.56 -0.59
0.56 -0.58

00 =0.1
0.56 -0.59
0.56 -0.57

dq = 0.3
0.57 -0.55
0.55 -0.52

0o = 0.5
0.51 -0.45
0.56 -0.46
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50th

-0.01
0.00

-0.01
-0.01

-0.01
0.00

-0.02
0.00

-0.01
0.00

-0.01
0.00

-0.01
0.00

-0.02
0.00

95th
2nd step GMM

0.55
0.57

0.57
0.54

0.52
0.58

0.45
0.55

0.51
0.56

0.52
0.54

0.48
0.56

0.41
0.50

5th

50th

95th

3rd step GMM

-0.64
-0.63

-0.61
-0.57

-0.53
-0.51

-0.44
-0.50

-0.58
-0.54

-0.55
-0.56

-0.48
-0.51

-0.46
-0.50

-0.02
-0.01

-0.02
0.00

-0.01
0.00

-0.01
0.00

-0.01
-0.01

-0.01
0.00

-0.01
0.00

-0.02
0.00

0.55
0.56

0.52
0.57

0.50
0.61

0.46
0.59

0.53
0.56

0.56
0.54

0.47
0.55

0.46
0.58



98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

Table 2.7: Model 2 - Threshold Effect of the SAR Coefficient J,,

5th

-2.20
-3.67

-2.35
-3.54

-2.21
-3.43

-1.73
-3.28

-2.08
-3.16

-1.89
-2.94

-1.99
-2.60

-2.00
-2.85

50th
25LS

-0.01
0.06

0.10
0.18

0.25
0.30

0.49
0.43

-0.04
0.02

0.20
0.15

0.27
0.34

0.42
0.51

95th

241
3.89

2.51
4.22

2.64
3.71

2.78
3.65

2.21
3.28

2.50
3.60

2.37
3.44

2.64
3.63

5th 50th  95th 5th 50th  95th 5th 50th  95th
1st step GMM 2nd step GMM 3rd step GMM

Panel A: g =0

0o =0
-1.71  0.00 1.90 -0.97  0.01 1.01 -0.63  0.00 0.80
-2.68 -0.03 2.42 -1.50 0.00 1.42 -1.08 -0.02 1.02
0o =0.1
-1.81  0.11 1.73 -0.79 0.10 1.17 -0.52  0.10 0.99
-2.44  0.17  2.66 -1.30  0.11 1.70 -0.87  0.09 0.96
0o =0.3
-1.42  0.28 2.00 -0.34 034 1.56 -0.31 032 1.44
-2.36 0.26  2.82 -0.76 031 1.63 -0.54  0.31  1.50
0o =0.5
-1.21  0.45 2.03 -0.25  0.52  1.73 -0.08 049 148
-2.27 049 290 -0.55  0.53  2.66 -0.35 0.49 2.06
Panel B: 63 =1
0o =0
-1.56  0.00 1.50 -0.64 0.03 0.86 -0.49  0.02 0.67
-2.22 0.07 236 -0.96 0.01 091 -0.66  0.02 0.63
0o =0.1
-1.58  0.17 1.81 -0.60 0.12 0.99 -048 0.11 091
-213  0.16 2.36 -0.79 0.14 1.23 -0.58 0.12 0.92
0o = 0.3
-1.44 027 1.85 -0.30 032 1.50 -0.14 031 1.19
-1.73 033 2.54 -0.55 035 1.54 -0.33  0.33  1.38
0o =0.5
-1.19 046 2.17 -0.08 0.51 1.52 0.03 0.51 1.48
-2.01 047 2.75 -0.33  0.55 1.92 -0.08 053 217
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Model 2 - Threshold Effect of the SAR Coefficient 4,, (Continued)

98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

-1.69
-2.49

-1.72
-2.65

-1.77
-2.01

-1.79
-2.53

-1.76
-2.07

-1.57
-2.51

-1.45
-1.83

-1.57
-2.26

50th

2SLS

0.00
-0.02

0.07
0.07

0.27
0.35

0.43
0.57

0.02
0.03

0.09
0.09

0.31
0.32

0.41
0.53

95th

1.92
2.62

1.96
3.12

2.30
3.10

2.48
3.37

1.95
2.48

1.83
2.82

1.92
2.66

2.44
3.00

5th

1st step GMM

-1.52
-2.11

-1.36
-2.18

-1.35
-1.80

-1.14
-1.63

-1.46
-2.08

-1.56
-2.17

-1.21
-1.79

-1.13
-1.86

50th

0.04
0.06

0.08
0.14

0.28
0.38

0.48
0.54

-0.03
0.05

0.14
0.13

0.29
0.37

0.44
0.54

95th 5th

Panel C: dg =2
da =0
1.58 -0.58
1.95 -0.63
do =0.1
1.56 -0.50
2.31 -0.60
do =0.3
1.88 -0.20
2.29 -0.42
da = 0.5
1.90 -0.02
2.66 -0.26

Panel D: 63 = 3

0o =0
1.41 -0.46
1.87 -0.53
0o =0.1
1.76 -0.43
2.16 -0.58
da = 0.3
1.70 -0.16
2.29 -0.39
0o = 0.5
1.89 -0.06
2.47 -0.13
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50th  95th

0.01
0.02

0.11
0.15

0.33
0.35

0.52
0.55

0.03
0.03

0.12
0.13

0.33
0.34

0.52
0.53

2nd step GMM

0.80
0.93

0.95
1.08

1.22
1.44

1.45
1.88

0.70
0.82

0.90
1.05

1.17
1.27

1.44
1.67

5th

-0.39
-0.53

-0.33
-0.44

-0.09
-0.29

0.10
-0.03

-0.37
-0.54

-0.35
-0.49

-0.13
-0.21

0.18
-0.02

50th  95th
3rd step GMM

0.01
0.02

0.11
0.13

0.33
0.33

0.52
0.53

0.01
0.02

0.11
0.12

0.31
0.33

0.51
0.55

0.54
0.63

0.75
0.84

1.34
1.12

1.52
1.57

0.56
0.64

0.69
0.84

1.13
1.02

1.40
1.64



Table 2.8: Model 2 - SAR Coefficient oy = 0.4

n 5th 50th  95th 5th 50th  95th 5th 50th  95th 5th 50th  95th

2SLS 1st step GMM 2nd step GMM 3rd step GMM
Panel A: g =0
0o =10
98 -0.77 0.40 1.49 -0.59 0.40 1.28 0.08 0.44 1.10 0.14 0.43 0.93
196 -1.64 0.32 2.29 -0.92 0.34 1.93 -0.34  0.37 1.33 -0.11 0.38 1.29
0o = 0.1
98 -0.71 0.42 1.59 -0.39  0.40 1.29 0.10 0.44 1.06 0.14 0.42 0.92
196 -1.84 0.35 2.19 -1.02  0.32 1.67 -0.44 0.39 1.15 -0.01 0.39 1.10
0o = 0.3
98 -0.92 044 1.65 -0.58 0.41 1.29 0.00 0.41 0.98 0.10 0.41 0.90
196 -1.51 0.36 2.30 -0.94 037 1.82 -0.31 036 1.14 -0.21  0.36  0.97
0o =0.5
98 -0.86 044 1.72 -0.52 0.44 1.38 0.05 0.41 0.96 0.16 0.42 0.93
196 -1.50 0.38 2.25 -1.11 0.37  1.83 -0.76  0.37 1.07 -0.15  0.39 1.02
Panel B: §g =1
0o =10
98 -0.67 0.44 1.69 -043 0.38 1.31 0.07 042 0.95 0.15 0.41 0.86
196 -1.43 0.34 2.06 -1.01  0.31 1.68 -0.16 0.36 1.12 -0.01  0.37 0.85
0o =0.1
98 -1.00 0.38 1.57 -0.52  0.38 1.39 0.07 041 0.96 0.15 0.42 0.85
196 -1.86 0.34 2.30 -0.97 0.31 1.82 -0.33  0.37 1.08 -0.04 0.37 0.87
0o = 0.3
98 -0.81 044 1.72 -0.51 0.43 1.51 -0.01  0.41 0.90 0.12 0.42 0.84
196 -1.52 035 1.94 -1.07  0.34 1.64 -0.25 0.36  1.05 -0.10 0.36 0.81
0o =0.5
98 -0.95 0.44 1.76 -0.61 0.44 1.43 0.00 0.40 0.88 0.15 0.40 0.79
196 -1.75 037 2.44 -1.11  0.37 1.81 -0.36  0.38 1.05 -0.27  0.37 0.85
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Model 2 - SAR Coefficient oy = 0.4 (Continued)

98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

-0.87
-1.09

-0.65
-1.69

-0.92
-1.34

-0.89
-1.52

-0.78
-1.12

-0.70
-1.46

-0.73
-1.02

-0.99
-1.31

50th
2SLS

0.40
0.36

0.41
0.40

0.42
0.35

0.45
0.37

0.39
0.35

0.40
0.39

0.38
0.37

0.45
0.38

95th

1.40
2.06

1.56
2.22

1.68
1.84

1.83
2.47

1.60
1.89

1.53
2.16

1.58
1.89

1.79
2.37

5th

1st step GMM

-0.57
-0.91

-0.51
-0.97

-0.68
-0.93

-0.57
-1.16

-0.49
-0.96

-0.50
-0.86

-0.65
-1.04

-0.64
-1.11

50th

0.38
0.30

0.41
0.33

0.41
0.31

0.42
0.34

0.41
0.30

0.39
0.34

0.41
0.30

0.44
0.36

95th 5th

Panel C: dg =2
da =0
1.31 -0.01
1.75 -0.22
do =0.1
1.34 0.09
1.81 -0.27
0o =03
1.46 -0.02
1.75 -0.39
0o = 0.5
1.41 0.00
1.76 -0.40

Panel D: 63 = 3

0o =0
1.42 0.00
1.79 -0.24

0o =0.1
1.55 -0.07
2.02 -0.28

0o = 0.3
1.43 -0.02
1.96 -0.30

0o = 0.5
1.55 -0.03
2.10 -0.38
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50th  95th

0.42
0.37

0.42
0.36

0.40
0.36

0.40
0.38

0.40
0.36

0.40
0.38

0.41
0.38

0.40
0.39

2nd step GMM

0.94
0.90

1.00
0.94

0.88
1.04

0.87
1.02

0.82
0.86

0.88
0.97

0.93
1.00

0.98
0.98

5th

50th  95th

3rd step GMM

0.16
-0.07

0.11
-0.05

0.09
-0.13

0.10
-0.09

0.10
-0.05

0.09
-0.10

0.12
-0.13

0.09
-0.22

0.41
0.37

0.40
0.38

0.40
0.37

0.40
0.38

0.41
0.38

0.40
0.39

0.41
0.38

0.40
0.38

0.78
0.81

0.82
0.84

0.86
0.85

0.83
0.85

0.78
0.78

0.86
0.95

0.85
0.82

0.74
0.83



Table 2.9: Model 2 - Slope Coefficient 3

n 5th 50th  95th 5th 50th  95th 5th 50th  95th 5th 50th  95th
2SLS 1st step GMM 2nd step GMM 3rd step GMM

Panel A: 63 =0

0o =0
98 -1.74 0.01 1.68 -2.73  0.03 3.58 -0.77 0.02 0.87 -0.70  0.03 0.78
196 -1.28 -0.01 1.27 -3.01  0.02 294 -0.54 0.01 0.50 -049 0.01 0.47
0o =0.1
98 -1.87 0.00 1.59 -3.21 -0.02 3.02 -0.82  0.01 091 -0.75  0.02 0.69
196 -1.41 0.01 1.33 -291 -0.02 271 -0.56  0.01 0.53 -0.45 0.00 0.48
0o =0.3
98 -1.76 0.05 2.01 -3.11  0.01 3.29 -0.78 0.00 0.75 -0.83 0.01 0.72
196 -140 0.01 1.40 -3.10 -0.01 3.02 -0.51 -0.01 0.49 -0.48 0.00 0.50
0o = 0.5
98 -1.79 0.05 1.98 -3.81 -0.06 3.75 -0.82 -0.02 0.80 -0.70 -0.03 0.72
196 -1.18 -0.01 1.45 -3.18 -0.02  3.37 -0.52  0.00 0.56 -0.54 0.00 0.48

Panel B: §g =1

0o =0
98 -0.65 095 2.73 -2.27 093 4.11 0.46 1.12 2.50 039 1.09 235
196 -0.34 094 2.29 -1.85 0.92 4.24 0.60 1.09 2.00 0.62 1.08 2.09
0o =0.1
98 -0.84 0.92 251 -2.59 096 4.37 0.43 1.08 2.36 043 1.07 2.55
196 -0.53 092 2.28 -2.07 095 4.28 0.60 1.11 221 0.63 1.09 2.02
00 = 0.3
98 -0.86 091 2.72 -2.24 090 4.33 0.37 1.06 2.33 043 1.04 227
196 -044 090 2.31 -2.26 093 4.22 0.61 1.09 2.04 0.63 1.10 2.06
0o = 0.5
98 -1.06 095 3.03 -2.92 098 4.85 0.37  1.06 2.27 0.30 1.05 2.08
196 -046 091 231 -3.08 0.88 4.33 0.61 1.09 2.16 0.60 1.07 2.08
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Model 2 - Slope Coefficient 3 (Continued)

98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

0.15
0.62

-0.11
0.29

-0.22
0.65

-0.47
0.36

1.00
1.34

0.94
1.14

0.64
1.41

0.24
1.13

50th
2SLS

1.87
1.90

1.86
1.88

1.80
1.91

1.96
1.87

2.83
2.92

2.89
2.84

2.80
2.89

2.95
2.84

95th

3.61
3.25

3.55
3.33

3.68
3.33

4.56
3.47

4.74
4.29

4.79
4.34

4.82
4.42

5.54
4.54

5th

1st step GMM

-1.70
-0.82

-2.34
-1.40

-2.79
-1.13

-2.69
-1.85

-0.75
-0.54

-1.02
-0.58

-1.39
-0.60

-2.43
-1.82

50th  95th 5th

1.83
1.91

1.81
1.83

1.89
1.85

1.83
1.82

2.81
2.83

2.99
2.77

2.85
2.78

2.83
2.82

Panel C: dg =2
0a =0
4.96 1.38
5.54 1.54
0o = 0.1
5.24 1.37
5.04 1.56
0a =0.3
5.56 1.38
5.28 1.58
0o = 0.5
6.16 1.39
6.00 1.52

Panel D: 63 =3

0o =0
6.25 2.25
6.38 2.42

0o =0.1
6.78 2.34
6.80 2.46

0o = 0.3
6.37 2.36
6.89 2.49

0o = 0.5
7.78 2.34
6.63 2.52
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50th  95th

2.12
2.14

2.14
2.13

2.12
2.13

2.08
2.10

3.19
3.15

3.16
3.12

3.12
3.13

3.09
3.09

2nd step GMM

3.94
3.91

4.05
4.02

3.87
3.97

3.57
3.84

5.50
5.68

5.73
5.92

5.82
5.60

9.25
5.45

5th

50th  95th

3rd step GMM

1.37
1.52

1.41
1.54

1.36
1.60

1.36
1.54

2.38
2.48

2.31
2.53

2.33
2.52

241
2.54

2.12
2.13

2.13
2.13

2.05
2.10

2.06
2.10

3.11
3.16

3.14
3.12

3.11
3.11

3.10
3.13

3.88
3.91

3.95
3.98

3.72
3.83

3.58
3.84

5.55
5.61

5.88
5.58

5.48
5.40

5.17
5.52



98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

2.11
2.27

2.16
2.26

1.89
2.26

1.92
2.25

2.04
2.25

2.16
2.30

2.10
2.28

1.93
2.25

50th
25LS

3.00
3.00

3.01
2.98

2.95
2.99

2.96
2.99

3.05
3.04

3.05
3.04

3.03
3.04

3.02
3.05

95th

3.98
3.64

3.97
3.74

3.95
3.70

4.00
3.70

3.85
3.73

3.98
3.80

3.95
3.72

4.12
3.78

Table 2.10: Model 2- Coefficient (5

5th

1st step GMM

1.19
1.53

1.51
1.60

1.28
1.53

1.19
1.31

1.30
1.31

1.16
1.24

1.25
1.22

0.98
1.25

50th

2.97
3.00

3.02
3.03

2.98
3.01

3.04
3.02

3.07
3.04

3.04
3.04

3.04
3.06

3.03
3.05

95th 5th

Panel A: g =0
0o =0
4.53 2.55
4.57 2.70
0o =0.1
4.59 2.55
4.55 2.68
0o = 0.3
4.63 2.53
4.58 2.71
0o = 0.5
4.79 2.57
4.67 2.68
Panel B: §g =1
0o =0
4.61 1.90
4.48 2.28
0o =0.1
4.80 2.17
4.59 2.21
0o = 0.3
4.61 2.27
4.66 2.22
0o = 0.5
5.23 2.32
5.07 2.22
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50th  95th

2.99
3.00

3.00
3.00

2.98
3.01

3.00
3.00

2.97
2.98

2.98
2.97

2.98
2.97

2.99
2.96

2nd step GMM

3.44
3.30

3.52
3.29

3.43
3.31

3.42
3.31

3.37
3.30

3.41
3.27

3.40
3.29

3.35
3.26

5th

50th  95th

3rd step GMM

2.59
2.70

2.55
2.70

2.55
2.71

2.58
2.73

2.23
2.30

2.04
2.28

2.26
2.19

2.41
2.22

2.99
3.00

3.00
3.00

2.98
3.01

3.00
3.00

2.97
2.98

2.98
2.98

2.98
2.97

2.99
2.97

3.39
3.31

3.44
3.26

3.42
3.29

3.42
3.27

3.40
3.29

3.38
3.27

3.39
3.27

3.38
3.26



Model 2 - Coefficient § (Continued)

98
196

98
196

98
196

98
196

98
196

98
196

98
196

98
196

5th

2.09
2.27

2.09
2.23

2.06
2.24

1.61
2.18

2.05
2.22

1.97
2.23

1.88
2.18

1.52
2.13

50th  95th
2SLS

3.08 4.03
3.04 3.82
3.10  4.09
3.07  3.93
3.09 4.21
3.06 3.77
3.00 4.37
3.05 3.89
3.10 4.13
3.05 3.92
3.07  4.19
3.07 4.04
3.08  4.30
3.06 3.94
3.01 448
3.08 4.03

5th ~ 50th  95th 5th ~ 50th  95th
1st step GMM 2nd step GMM

Panel C: dg =2

0o =0
1.30 3.14 4.84 1.55 297 349
1.32  3.06 4.39 1.61 296 3.35
0o =0.1
1.34 3.14 4.96 1.72 296 3.47
1.25 3.10 4.69 1.61 298 3.40
0o = 0.3
0.85 3.07 543 1.62 296 3.41
1.09 3.13 4.62 141 295 3.35
0o = 0.5
0.86 3.09 5.57 202 297 3.36
0.82 3.08 4.96 1.58 297 3.31

Panel D: 65 = 3

0o =0
1.04 3.12 4.77 141 295 3.53
0.96 3.12 4.85 1.13 297 3.37
0o =0.1
0.88 3.06 4.98 1.22 294 351
099 314 481 091 297 3.36
0o = 0.3
1.14 3.12 5.31 1.35 295 3.47
091 3.10 4.88 1.05 296 3.34
0o = 0.5
0.52 3.10 5.63 1.68 297 3.40
1.13  3.09 5.45 1.21 296 3.29
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5th

50th  95th

3rd step GMM

1.57
1.66

1.70
1.58

1.98
1.63

2.03
1.52

1.34
1.08

1.02
1.14

1.56
1.21

1.82
1.04

2.98
2.98

2.98
2.97

2.98
2.96

2.98
2.96

2.98
2.96

2.95
2.97

2.96
2.95

2.97
2.96

3.48
3.40

3.43
3.37

3.44
3.29

3.36
3.29

3.44
3.43

3.45
3.34

3.41
3.34

3.38
3.30



Chapter 3

Inference in Threshold Regression

after Model Selection

3.1 Introduction

The problem of model uncertainty is pervasive in economic applications because eco-
nomic theory does not provide strong guidance about the variables to be included
in the model mainly because the relevant theories are openended. That is, in many
economic contexts there do not exist good theoretical reasons to include a particular
set of theories or proxies a priori because these theories or proxies provide mutually
compatible explanations of the underlying economic phenomenon. Brock and Durlauf
(2001Db) introduced the concept of openendedness who argued that this problem makes
the coefficient estimates of interest fragile (Leamer (1978)). This means that inclusion
or exclusion of a variable can result in substantial changes in magnitudes, loss of statis-
tical significance, or, even switch signs. A standard approach to model uncertainty is to
engage in model selection based on a post-single approach, that is, apply a conservative
test or a selection criterion or a shrinkage and selection method in high-dimensional
contexts (e.g., lasso) and then reestimate the model. However, these model selection
methods do not explicitly address the impact of model uncertainty on inference and
under certain cases they can give rise to misleading inference (e.g., Hansen (2005), Leeb
and Potscher (2008), Potscher (2009)).

In this chapter, we are interested in making inference on threshold regression when
there is uncertainty about the set of relevant regressors. A threshold regression model
classifies observations into regime-specific models depending on whether the observed

value of a threshold variable is above or below a threshold parameter. Usually, each
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regime obeys a linear model, although it can be extended to other nonlinear functions
as well. Both the regression coefficients and the threshold parameter are estimated by
the data. This model has been widely applied to various micro and macro contexts.
For example, Durlauf and Johnson (1995) and Tan (2010) in cross-country growth
behavior; Papageorgiou (2002) and Glushenkova, Kourtellos, and Zachariadis (2018)
in trade; Durlauf, Kourtellos, and Tan (2017) in intergenerational mobility; Hansen
(2017) in public debt. However, issue of model uncertainty was never been explicitly

addressed in these studies.

Of course, the idea of incorporating model uncertainty within threshold regressions
framework is not a new one. Kapetanios (1999) used information criteria to select the
lag order in SETAR models. Lee, Seo, and Shin (2016) developed a LASSO estimator
which both selects covariates and estimates the threshold parameter . These selection
methods may work well when the coefficient on the nuisance or control variable is either
“considerably away from zero” or “negligibly different from zero”. However, when it is
“moderately close to zero” then such post-single approaches can give rise to substantial

size and power distortions in the threshold effect test.

We propose that the post-double selection method of Belloni, Chernozhukov, and
Hansen (2011, 2014) (hereafter, referred to as BCH) can be applied in constructing
a threshold test, which is valid under model uncertainty. BCH developed their method
in the context of treatment effects. The ideas of post-double selection method is based
on the partialling out technique of Frisch-Waugh-Lovell in the linear setting, the Ney-
man’s C'(«) test in the nonlinear setting (Neyman (1979)), and Robinson (1988) in the
semi-parametric setting. In particular, we extend the post-double method to threshold
regression, which can be viewed as a regression discontinuity model with an unknown
discontinuity point (Yu (2014)). One challenge is that under the null of no thresh-
old effects the threshold parameter (sample split value) is not identified. This makes
the inference not standard even before one considers the issue of model uncertainty.
Nevertheless, we show that the post-double procedure can still be successfully applied
to construct moment conditions that are immune to model selection. In this way we

address the issue of model uncertainty.

The chapter is organized as follows. Section 3.2 illustrates the problem of post-single
approach in a simple threshold model and how the post-double approach can be applied
to solve this issue. Section 3.3 presents our model and provides theoretical results of
the post-double approach. Section 3.4 presents our Monte Carlo experiments. Section

3.5 concludes and discusses future work.
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3.2 Implications of model selection

We begin our analysis by illustrating the problem of inference on threshold effects in the
context of threshold regression when there is uncertainty about the set of regressors.
To fix ideas we illustrate this problem in an idealistic environment of poverty traps
where the entire family dynasty of child becomes trapped in a low-income regime
when the parent’s permanent income is below a certain threshold value conditional
on some variables that captures family or neighborhood environment. Similarly, the
entire family dynasty of child always remains in the high-income regime when parent’s
permanent income is above a threshold value. Such threshold type models are implied,
for example, by the existence of borrowing constraints (e.g., Galor and Zeira (1993)
and Han and Mulligan (2001)) or from the existence of social influences in models
with strict stratification of neighborhoods by income (e.g., Benabou (1996), Durlauf
(1996a), Durlauf and Seshadri (2018)). Our problem is that we wish to make inference
on the presence of poverty trap but economic theory does not identify exactly the
set of control variables. For instance, these variables may include proxies related to
segregation, income distribution, local public finance institutions, early education, K-12

education, college education, local labor market, family structure, social capital.

In particular, let the dependent variable y; denote the child’s permanent income and
let the threshold variable ¢; denote the parent’s permanent income. Consider a simple
threshold model that allows for such poverty traps using different intercepts depending

on whether parent’s income is above or below an unknown threshold parameter ~
Y :90+awi+60di(70)+ei, 1= 1,...,TL (31)

where d;(70) = 1{q; < 7} is an indicator function that takes the value 1 if ¢; < - and
0 otherwise and wj; is a scalar variable that captures the environment in which children
develop. dp = (o — by is the difference between the regime specific intercepts. e;|(w;, ;)
is i.i.d from N(0,02) and {y;, w;, ¢;}7-; is an i.i.d sample from a DGP P,,, where the

means and variances of y;, w;, ¢; are normalized to be zero and one, respectively.

In this chapter we are concerned with testing the null hypothesis Hy : 9 = 0 when there
is uncertainty about the inclusion of w;. The standard post-single-selection method for
inference applies a model selection method to (3.1) and then reestimates the model
and makes inference on 9y accordingly. Note that the threshold parameter of vy can
be estimated by a concentrated least squares method. Under certain assumptions the
asymptotic distribution of the estimator of 7y involves two independent Brownian mo-
tions and the confidence intervals for 7y can be obtained by an inverted likelihood ratio
approach (Hansen (2000)). The regression coefficients for the two regimes are then ob-

tained using least-squares estimation on the two sub-samples, separately, with standard
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asymptotic theory. Under the null hypothesis of a linear model (i.e., no threshold ef-
fect), the threshold parameter, =, is not identified, and hence inference is not standard.
Hansen (1996) proposed a bootstrap procedure under which the bootstrap statistic
approximates the asymptotic distribution and hence p-values constructed from the
bootstrap are asymptotically valid assuming correct specification and no uncertainty
about the inclusion of w;. What happens to the properties of this bootstrap test when

one first engages in the selection of w;?

3.2.1 Post-single selection

We first explain the problem of the standard post selection method assuming 7, is
known using standard omitted variable arguments as in BCH. Then, the argument
trivially carries over to the case of estimated threshold parameter =, since the bootstrap
method of Hansen (1996) will be invalid. This is because the bootstrap supLR test will
no longer be valid as it will based on an inconsistent conditional distribution function

and hence it will no longer mimic well the asymptotic distribution of the t-test of dy.
Without loss of generality assume that 7 is known and
di(0) = Kwi + u; (32)

where w;|w; is i.i.d. from N(0,02) and u; is independent of e;. This also implies that

2 _ 2 2 2 _ o - : _ . Ow
o5 = k“0;, + o0,. Finally, let ¢,, = /i where n is the sample size and p = Ko
is the correlation between d;() and w;. We assume that (3.1) and (3.2) hold for the

collection of all DGPs P, € P.!

The nuisance variable w; affects both directly the outcome variable y; and indirectly
via its effect on the threshold variable in equation (3.2). In the presence of uncertainty
about the inclusion of w;, standard post-single selection method will exclude w; with
probability 1 if

la] < n~'21,¢,, for some I, — oo, (3.3)

and include w; with probability 1 if
la| > n~Y21,c,, for some I > 1,, (3.4)

where [,, and I/, are slowly varying sequences. These sequences are important because

they determine the behavior of the (7).

'We assume that all true parameter values and the DGP may change with the sample size n to
capture the idea of a close to zero coefficient.
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In particular, when a is large enough so that there exist sequences of models P, such
that (3.4) holds, w; is included with probability one and standard inference based on
asymptotic normality is valid. Similarly, when a = o(1/4/n), and p is bounded away
from one then w; is excluded with probability one and again standard inference based
on asymptotic normality is valid because the omitted variable bias due to the exclusion

of regressor is small enough.

However, there are plausible sequences of DGPs where post-single selection generates
substantial omitted variable bias. For example, consider the case when the coefficient
on the uncertain regressor w; is “moderately close to zero”, that is, a = \Z/Lﬁcn. In this
case, standard conservative inference (e.g., t-test) will exclude w; with probability one.

Note that .
Vn(6(h0) = do) _ vnEn(di(yo)e:) n VnEn(di(vo)w;)a
On O'nEndi(’VO)z UnEndi(’YO)Q

(@) (i)

(3.5)

where 02 = 02/02. While term (i) % N(0,1), |(i)| > %1|_pl|)2ln o I, — oo. This

implies that the standard post-selection estimator is neither asymptotically normal

nor /n-consistent

— OQ.

|\/ﬁ(5('m) — o)

On

3.2.2 Post-double selection

In this chapter we show that a post-double procedure proposed by BCH can be adapted
to provide robust inference for the threshold effect in the sense that the threshold test
is not sensitive to inclusion or exclusion of the control variable w;. As discussed in the
introduction the post-double procedure is based on the idea of partialling out technique
of Frisch-Waugh-Lovell theorem.

To see this, first consider the case of known ~y. The post double procedure works as

follows:

Step 1: Select to include wj if it is a significant regressor of y; based on a conservative
t-test in model (3.1) .

Step 2: Select to include wj if it is a significant regressor of d;(79) based on a conser-

vative t-test in model (3.2) .

Step 3: If w; is selected in at least one of steps 1 and 2 use model (3.1) otherwise use
model
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to make inference on 4.

Therefore, the post double procedure implies that we exclude w; with probability 1 if
both

l—”cn and |k| < l—”(au/aw), (3.7)

v v

which means that to exclude w; we require both |a| = Op(\/iﬁ) and |k| = Op(\/Lﬁ). So

jal <

when w; is excluded, the omitted variable bias is negligible |ii| < 2\% — 0, and hence
the post-double estimator & (70) is consistent and asymptotically normal W —

N(0,1), as n — oo regardless of whether w; is included or excluded.

In other words, the post-double procedure constructs moment conditions for the pa-
rameter of interest dy that are robust to misspecification, in the sense that they have an
immunization condition. That is, we can estimate the empirical analog of the moment
condition M (dp,a) = 0, where Jy is the parameter of interest and « is the nuisance

parameter and enjoy the property that

dM(5Q, CL)

=0, (3.8)

which means the moments are locally unaffected by minor perturbations of the nuisance

parameter around the true parameter values.

We can obtain more intuition by illustrating the above immunization property in the
context of model (3.1). In doing so, note that the above procedure can be viewed as

an application of the Frisch-Waugh-Lovell theorem.

1. Regress y; on w; and obtain residuals u?.
2. Regress d;(7o) on w; and obtain the residuals (7).

3. Regress @ on a%(7p).

Then, for the known 7, the resulting moment condition is

E((ﬂy - ad(%wo)ﬂd(%)) =0 (3-9)

which is the empirical analog of

M (bo,a) = E([(yi — E(yilwi)) — (di(v0) — E(di(v0)|wi)do)][di(v) — E(di(v0)|ws)]), for
which the derivative of the moment condition is free of a

dE([(y: — E(yilwi)) — (di(70) — E(di(70)|wi)do)][di(70) — E(di(70)[wi)])
da

|a:a0 = 0

(3.10)
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Hence, when estimation and inference is based on the empirical analog of moments
M (6o, a), post double procedure implies that % = 0. In this sense, inference on ¢

is immune from model uncertainty.

In threshold regressions, however, the threshold parameter v is unknown and it is
estimated. In this case, we do not have d;(7) but d; = d;(§) and the moment condition
(3.9) is replaced by E([(y; — E(yilw;)) — (di — E(d;|w;)d0)][d; — E(d;|w;)]. If we show
that E(d; — E(d;|w;)) 2 E(di(v) — E(d;(7)|w;)), then the condition (3.8) will hold
in the case of the threshold regressions framework as well. However, we do not know
if there is a threshold effect or not. In the case of a threshold effect then E(czZ —
E(d;|w;)) & E(di(v) — E(d;(7)|w;)), while in a linear model E(d; — E(d;|w;)) &
d;(v*) — E(d;(v*)|w;), where v* is a random variable.

In the next section, we show that the threshold parameter estimator obtained by a lin-
ear model indeed converges in distribution to a random variable v* and that the above
immunization property carries over to case of estimated . Therefore, the results of
post-double selection are naturally extended to threshold regressions. Next, we proceed

to formally define the threshold regression model and the post-double procedure.

3.3 The threshold model

We start by generalizing model (3.1) to include the focus (k—1) x 1 vector of regressors

x; in addition to the doubtful scalar regressor w;

(3.11)

ayw; + Yz +e, ¢ <7,
Yi =
asw; + Vo + e ¢ >,

where ¢; can be part of x; or the same as w;. It is useful to rewrite model (3.11)
as a single equation. Define h; = [z;, w;), hi(v) = [z, 1{q < v}, wil{g < 7}, and
0 =1[9,a], and 6 = [d1,ds]’ then

yi = 0'h; + 0hi(7y) + e (3.12)
where E(e;|hi, q;) = 0.

In our case the parameters of interest are 91, ¥ (or ¥ and d; equivalently) and the

nuisance parameters are a and d,. Hence,we are interested in testing
H() 161 =0 vs. H1 5(517&0 (313)
when one engages in selection of the doubtful regressor w;. It is important to point
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out that the uncertainty about the inclusion of w; may affect the presence of threshold
effects, since imperfect model selection may lead to substantial omitted variable bias,

which in turn will result to inconsistent conditional distribution function.

3.3.1 Post-double procedure

Consider the auxiliary system of k — 1 regression equations
zi(v) = W+ U;, (3.14)

where E(U;|W;) = 0 and W; = diag{w;, ....,w; }.*

Step 1: Select to include w; if it is a significant regressor of y; based on a conservative
joint Wald test in model (3.11), i.e.,

Hy:ay =ay =0 vs. H : Not Hy (3.15)

Step 2: Select to include wj if it is a significant regressor of x;(¥) based on a conser-
vative joint Wald test in the SUR model (3.14), i.e.,

Hy: 1T =0vs. H : 11 #0, (3.16)

Step 3: If w; is selected in at least one of steps 1 and 2 use model (3.12) otherwise

use model

‘i te, ¢ <A,
%—{WH = (3.17)

Oox; + e, @ > A,

to make inference on ¢;.

3.3.2 Inference in Step 1

In the first step test, we perform a test for the inclusion of w; in our model, which will
be later tested for threshold effects. Consequently, we do not know a priori if we have

a linear or a threshold model and we do not want to put any extra restrictions on v,

and 192.

Therefore it is important that the inference on w; should be valid regardless of whether

the true model is linear or threshold model. We are going to show that the inference

2Equivalently, we can estimate the system equation-by-equation.
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on wj; in step 1, is valid both in the presence and absence of threshold effects in the rest
parameters. The following assumption is necessary to derive the asymptotic properties
of Step 1 test. Let M(7) = E(hihi1{g; < 1)), D(v) = E(hilllg; = ) and V() =
E(h;hle?|q; = v) and f(q) the density function of ¢;,7y the true value of v, D = D(~,),
V =V(v), f = f(n) and M = E(h;h).

Assumption 1

1.1 (hi,qi,ei) is i.i.d.
1.2 E(61|F1z‘_1) =0.
1.3 E|hi|*" < oo and E|he;|*" < oo.

1.4 For all v € T, E(|h;|*"|¢; = ) < C and E(|hi]*"e?"|q; = v) < C for some C' < oo,
f(y) < f < oo

1.5 f(v), D(v), V(v) are continuous at vy = .
1.6 0, =c,* withc#0,0<a < 1.
1.7 ¢/Dc>0,dVe>0and f>0.

1.8 M > M(v) >0 for all y € I'.

Assumption (1.1) is an assumption for the dependence. Assumption (1.2) guarantees
the correct specification of the conditional mean. Assumptions (1.3) and (1.4) are un-
conditional and conditional moment bounds. Assumption (1.5) requires the threshold
variable to have a continuous distribution, and the conditional variance to be con-
tinuous at -y, which excludes regime-dependent heteroskedasticity. Assumption (1.6)
states that the difference in regression slopes gets small as the sample size increases
(we are taking an asymptotic approximation valid for small values of §,) and allows us
to reduce the rate of convergence, in order to derive a simpler asymptotic distribution.
Assumption (1.7) is a full-rank condition needed to have nondegenerate asymptotic
distributions. Assumption( 1.8) is a conventional full-rank condition which excludes

multicollinearity.

Since we are agnostic about the presence of threshold effects, we need to keep in mind
that the asymptotic behavior of 4 will depend on whether the true model is linear
or threshold. The following Proposition describes the asymptotic distribution in each

case.

Proposition 3.1 Under Assumption 1, Hy : a; = ay = 0 and E(e;)* < k < oo we

have:
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1. nt722(8 — ) L T when ¥y # s

2. 44y = EH ) when 0y = 9,.

where w = (CC,E%, T =arg max,oo<T<oo[—%r+W(r)], F(.) denoting the distribution func-
tion of q; and I(q; <~) = I(F(g) < \), A 9N and N = arg maX)\E[A/\f]B{L(l, AN)By(1,\) +
(EyliBu(1) =By} Bu(1 N (Eoyr = Egar 1) Byl Bu(1) = ELL7 . Bu(1,0)) and Eyy = E(/;)

and By~ = E(xizi1{q <~}).

The first result is the standard result in threshold regressions as it was shown in Hansen
(2000). The second result, shows that the threshold parameter estimated while the
true model is linear, converges in distribution to an argument that maximizes a linear

combination of squares of Brownian bridges.

Next, we construct the Wald statistic and derive its asymptotic distribution under the
two alternative cases:

(RB)(R(X(7)X (%) 'R)" (R'B)

52

(3.18)

Wn(fw =

where R is a selection matrix, 4 is the 7 estimated under the null, s* is the residual

A

variance calculated under the alternative, 5 = [, a, d1, d2] and X () is the matrix with

stacked elements [z;1{q; < v}, w;l{q; < v}, x;1{q > v}, wil{q > 7}

The following Proposition, shows us that irrespectively of the presence of threshold

effects or not, the Wald statistic converges in distribution to a chi-squared distribution.

Proposition 3.2 Under Assumption 1, Hy: a1 = as = 0, E(e;)* < k < 0o and a < }1:
~\ d 2
Wa(¥) = X3 (3.19)
holds if
1.9y # s,

2. 91 =19 and e; is independent of x;.

Hence, the Wald test is valid and the BCH method carries over to threshold regressions

framework.
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In the next section, we assess the performance of the Wald statistic in finite samples.
Furthermore, we perform two Monte Carlo experiments to highlight the implications
of the post single selection method on the size of the test, and the performance of the

proposed post double selection method.

3.4 Monte Carlo

In this section we show that the standard post-single selection can have adverse con-
sequences in the bootstrap threshold test approach of Hansen (1996) both in terms of
size and power. We also provide evidence that a post-double approach restores the

properties of the bootstrap threshold test.
Consider the following data generating process which represents a linear model

Z-:awi+19’xi+ei,i<
yi=a ! O (3.20)
Y = agw; + 052, +€;,q >y

and
q; = cw; + v; (3.21)

where vy; ~ N(0,0.01), z; = [1, 2], z1; ~ N(0,1) , w; ~ N(0,1), e; ~ N(0,0.25),
191 = 192 = (2,2)/, a1 = Qg = O, c=0.8.

Furthermore, consider the data generating process that represents a threshold regres-

sion model
i = aqw; + I x; + ey, q <
yi=a ! @=7 (3.22)
Y = agw; + 05z, +€;,q; >y
and
q; = cw; + v; (3.23)

where V13 ~ N(O,OO].),LL’Z = [1,.7)11'], L1y ™~ N(O,l) , W; ~ N(O,l), €; ~ N(0,025),
191 = (3,3),192 = (2,2)/, ap = ag = O, c=0.8.

Table (3.1) shows the size of the test of the null hypothesis Hy : a3 = ay = 0 for
different sample sizes (n=100,250, 500). The number of simulation draws were 1000.
We can see that in both cases of a linear and a threshold model, the size of the test is
very close to 0.05. We, further assess the power of the test by varying a. Table (3.1)
displays also the results of this exercise. As the magnitude of a increases, the power

of the tests becomes larger and approaches 1 in both linear and threshold regression.
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Note that a changes with the sample size so we can not comment about the power as

the sample size increases because a decreases.

Having shown that the first step step is valid without the need of knowledge for the
presence or not of threshold effects, we now return to the post single selection method

and its implications on the size of the test.

We are considering two different data generating processes in order to justify our con-
cerns about typical post selection procedure. We are trying to capture cases in which
the regressor for which we face uncertainty is correlated with the regressors that they
should be included and the threshold varible in order to create omitted variable bias of
a significant amount that will affect the inference for threshold effects. In the first data
generating process, the regressor of question is both correlated with threshold effects
and the regressor that should be included, while in the second is correlated ony with
the threshold effect. We use 1000 simulations and consider three different sample sizes
n = 100, 250, 500.

For the first DGP, we face uncertainty about the inclusion of threshold variable ¢; as

a regressor, which is also correlated with xy;

Yi = 2+ 2w1; + aw; + (0 + 0121 + Sow;) (H{7}) + e

T1; = CW; —+ V;
where e¢; ~ N(0,1), v; ~ N(0,1), ¢; ~ N(0,1) and w; = ¢;.

We control the degree of correlation between w; and x1; by varying c. Furthermore,
we vary a, the coefficient of w; in DGP. ? In the left panel of Table (3.2), the size of
the test after post single procedure is presented. As a increases the distortion of the
size increases, because the omitted variable bias increases. As ¢ increases, hence the
correlation with the included regressor xy; increases, the distortion of the size decreases,

since the effect of w; is captured from ;.

In our second DGP, w; is correlated with ¢; through the equation ¢; = cw; + v;, hence

the omitted variable bias will occur due to the correlation with the threshold effect

v = aqw; + Px; + e q <y
Yi = agw; + V575 + €, ¢ > Y

3We tried several values of a and we present those that created distortion of the size. Higher
values, for example a = % did not create distortion of the size because their effect was large enough
1

Tvn did not create

to be chosen from the first step size, while cases with lower values such as a =
substantial bias that would affect inference.
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and

¢ = cw; +;

where v; ~ N(0,0.01), z1; ~ N(0,1) , w; ~ N(0,1), e; ~ N(0,0.25).

We vary a and ¢ as before. The results are displayed in the left panel of Table (3.2).
It is worth noting that when ¢ = 0 we do not observe any distortion of the size. This
is the case where the regressor for which we face uncertainty is not correlated with
none of the regressors we are interested in conducting inference and hence no omitted
variable bias arises. Overall, we can see that the distortion of size is higher for higher
values of ¢, since the omitted variable bias increases. As a increases we observe increase
and then decrease probably due to the fact that \/iﬁ is in some times chosen due to its

magnitude.

We have shown that under model uncertainty, the standard model selection method
may lead to large omitted variable bias, which in turn will affect the size of the threshold
test.

We have assesed the size of the test through the previous Monte Carlo simulations.
The results for DGP 1 and DGP 2 are presented in the right panels of Table (3.2). For
both DGP’s, the distortion of the size is minimized and in some cases even eliminated.
Overall, the results seem to be better for DGP 1. The reason is that w; is correlated
with both x1; and the threshold effect through ¢;, hence it is more possible to be chosen

in the second step, thus less possible for omitted variable bias to arise.

We assess the performance of the method in terms of power as well. The results are
displayed in Table (3.3) for each data generating process. When the threshold effect
increases, the power of the test increases as expected. Morever for a given value of
the threshold effect, the power of the test increases as the sample size increases, as

expected.

3.5 Conclusion and Future Work

This chapter contributes to the literature of threshold regression by proposing a thresh-
old test which is valid in the presence of uncertainty about the set of relevant regressors.
We show that standard post-single selection practices can have adverse consequences
in the bootstrap threshold test approach of Hansen (1996) both in terms of size and
power. Following Belloni, Chernozhukov, and Hansen (2011, 2014), we propose a post-
double selection that constructs moment conditions for the threshold effect that are

robust to misspecification, in the sense that they have an immunization condition. Fi-
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nally, a Monte Carlo simulation illustrates that post-double selection restores the size
and the power of the bootstrap threshold supWald test.

In terms of future work, we believe that our proposed paper is immediately applicable
to a wide range of questions with broad policy significance such as in intergenerational
mobility, child development literature, and cross-country growth studies as discussed
in the introducation. Methodologically, a natural extension of this paper is to consider
a high dimensional regression model with a possible threshold along the lines of Lee,
Seo, and Shin (2016) who propose a method of estimating and selecting relevant control
variables from a set of many potential covariates. Another fruitful avenue to deal with
model uncertainty is to generalize existing model averaging methods that apply to
linear models (e.g., Brock and Durlauf (2001b), Raftery, Madigan, and Hoeting (1997),
Hansen (2007, 2010)) to account for threshold effects.
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3.6 Tables

Table 3.1: First step test - Size and power
This table shows the size (a=0) of the test of the null hypothesis Hy : a; = as = 0 and the power of the
test (a = 1/y/n,2/y/n,4/y/n lor different sample sizes (n=100,250, 500). The left panel corresponds
to a linear model and the right panel to a threshold model.

Linear Model Threshold Model
a 0 1/y/n 2/v/n 4/yn 0 1/y/n 2/v/n 4/yn
sample size
100 0.04 0.19 0.65 1 0.05 0.55 0.86 0.98
250 0.04 0.17 0.66 1 0.06 0.59 0.91 1
500 0.04 0.16 0.65 1 0.04 0.59 0.92 1
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Table 3.2: Size of the test H, : 1 = 15
This table shows the size of the test of the null hypothesis H, : 17 = 5. Panel A displays the size
of the test for DGP 1 and Panel B for DGP 2, for different sample sizes (n=100,250, 500). Each
panel is divided into two subpanels. The left subpanel corresponds to the post-single method and the
right subpanel to the post-double method. We control the degree of correlation between w; and xy;
by varying c. a is the coefficient of w; in DGP.

Post-Single Post-Double
Values of ¢ Values of ¢
0 02 08 1 0 02 038 1

Values of a
Panel A: DGP 1

n=100
1/v/n 0.10 0.09 0.07 0.06 0.06 0.05 0.04 0.05
2/\/n 0.27 028 0.16 0.13 0.06 0.06 0.04 0.05
4/\/n 0.70 0.68 0.46 0.38 0.09 0.08 0.04 0.05
n=250
1/v/n 0.10 0.09 0.07 0.06 0.05 0.05 0.04 0.04
2/v/n 0.30 0.28 0.16 0.14 0.06 0.05 0.04 0.04
4/\/n 0.73 0.72 0.51 041 0.09 0.06 0.04 0.04
n=500
1/v/n 0.10 0.10 0.08 0.06 0.07 0.06 0.06 0.06
2/\/n 0.29 028 0.17 0.13 0.07 0.06 0.06 0.06
4/\/n 0.75 0.72 0.50 041 0.10 0.07 0.06 0.06

Panel B: DGP 2

n=100
1/y/n 0.06 0.22 0.28 0.28 0.03 0.07 0.07 0.08
2/v/n 0.06 0.47 0.71 0.71 0.03 0.08 0.10 0.12
4/\/n 0.05 0.07 0.12 0.13 0.03 0.05 0.07 0.07
n=250
1/v/n 0.05 0.24 0.27 0.28 0.04 0.04 0.06 0.06
2/\/n 0.05 048 0.72 0.72 0.04 0.06 0.10 0.09
4/\/n 0.04 0.06 0.10 0.12 0.04 0.04 0.05 0.05
n=500
1/v/n 0.05 0.25 0.31 0.30 0.05 0.05 0.07 0.05
2/\/n 0.05 049 0.73 0.73 0.05 0.07 0.08 0.07
4/\/n 0.05 0.07 0.11 0.11 0.05 0.05 0.06 0.05
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Table 3.3: Power of the test-Post double method
This table shows the power of the post double procedure. Panel A displays the power for DGP 1
and Panel B for DGP 2, for different sample sizes (n=100,250, 500). Each panel is divided into two
subpanels. The left subpanel corresponds to 6o = 61 = 0.5, 6o = 0.05 and the right subpanel to
6o =901 =1, 99 = 0.05 . a is the coefficient of w; in DGP.

Values of ¢ Values of ¢
0 0.2 0.8 1 0 02 038 1
Values of a
Panel A: DGP 1

n=100
1/v/n 0.136 0.13 0.125 0.132 0.27 0.28 0.34 0.38
2/\/n 0.116 0.115 0.125 0.132 0.26 0.26 0.34 0.38
4/\/n 0.118 0.115 0.125 0.132 0.24 0.25 0.34 0.38

n=250
1/v/n 027 023 030 032 0.47 048 0.75 0.81
2/\/n 025 022 030 032 0.47 048 0.75 0.1
4/\/n 022 021 030 032 042 047 0.75 0.81
n=500
1/v/n 034 032 052 0.58 0.67 073 0.95 097
2/\/n 033 032 052 0.58 0.66 0.73 0.95 097
4/\/n 029 031 052  0.58 0.64 072 095 0.97

Panel B: DGP 2

n=100
1/v/n 0.55 034 026 0.27 0.66 0.43 0.40 0.40
2/v/n 047 030 022 0.23 0.60 0.39 0.37 0.37
4/\/n 0.47 027 0.19 0.20 0.60 0.37 0.34 0.33
n=250
1/v/n 0.64 045 046  0.47 0.72 0.57 0.70 0.71
2/y/n 0.60 040 042 043 0.69 0.53 0.68 0.68
4/\/n 0.60 0.39 040 041 0.69 0.53 0.67 0.67
n=500
1/y/n 0.72 055 0.66 0.66 0.74 071 0.88 0.88
2/y/n 0.69 053 064 0.64 0.72 0.70 0.88 0.88
4/\/n 0.69 052 063 0.63 0.72 0.69 0.87 0.87
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Conclusions

The present dissertation aims in providing three complementary approaches to the
study of intergenerational mobility. We contribute to the literature of intergenerational
mobility by proposing novel econometric methods in order to address limitations in

existing methodologies.

In the first chapter, we focus on the timing of parental investments during childhood
and young adulthood. Surprisingly, much of the literature has focused on the lin-
ear model and the IGE coefficient, ignoring timing which is a very important aspect
of parental investments. Using functional regressions we treat the observations as
“snapshots” of an underlying latent curve, where annual income data are treated as
discrete signals of a latent income process. Hence, the object of interest is a curve
that captures the intergenerational trajectory of an individual. We find that parental
investments during early and late childhood or young adulthood are generally more
productive than middle childhood. These findings indicate that income shocks play a
crucial role in parental human capital investments in children and in their long run
outcomes. We further investigate the heterogeneity of the trajectories with respect to
parental income, parental education, and family structure. Timing of the shocks re-
lated to socioeconomic status and family structure plays a key role in intergenerational

trajectories of individuals, especially for disadvantaged children.

In Chapter 2, a general threshold spatial autoregression model is proposed which nests
several models including the spatial autoregression model and spatial autoregression-
mixed regression model. Our framework allows for both fixed and diminishing threshold
effects and we develop a two-step GMM estimation method that exploit both linear and
quadratic moment conditions. We study the limiting properties of the estimators of the
threshold parameter and slope parameters of spatial lags and regression coefficients.
Exploiting the smoothness of the GMM criterion, we reduce the rate of convergence of
the threshold parameter. As a result, not only the estimators of the slope parameters of
spatial lags and regression coefficients, but the estimator of the threshold parameter as
well, are normally distributed. We assess the performance of the proposed estimation

method using a Monte Carlo simulation.
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Chapter 3 contributes to the literature of threshold regression by proposing a threshold
test which is valid under misspecification, in the sense that we face uncertainty about
the set of relevant regressors. We show the implications of the standard post-single
selection practices on the size of the bootstrap threshold test approach of Hansen
(1996). Adopting the method of Belloni, Chernozhukov, and Hansen (2011, 2014)
to threshold regressions, we propose a post-double selection that constructs moment
conditions for the threshold effect that are robust to misspecification. Monte Carlo
Simulations show that post-double selection restores the size and the power of the
bootstrap threshold supWald test.
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Appendix A

Figure Al: Intergenerational Trajectories of Bi-annual Income (short sample)

This figure presents the estimates of models (1.5) and (1.10) for the bi-annual short sample.
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Figure A2: Restricted Bi-annual Sample

This figure presents results restricting the bi-annual sample to include same individuals in both
short and long samples. A2(a) displays the estimates from model (1.5) and A2(b) from model (1.10).
The upper panel of each sub-figure correspons to short sample and the lower to the long sample.
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Figure A3: Restricted Sample

This figure presents the partial effects of stock of income for daughters and sons, when the short
sample is restricted to have the same number of individuals as the long.
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Figure A4: Intergenerational Trajectories of Annual Income by Parental In-
come Quartiles (short sample)

This figure presents the baseline results from model (1.5) based on the short sample. Figures A4(a),
(b), (c), (d) present the estimates of intergenerational elasticity function 3(t) for the first parent’s
permanent income quartile, second, third and fourth quartile respectively. The red dotted lines
represent the bootstrap confidence bands.
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Figure A5: Intergenerational Trajectories of Stock of Income by Parental
Income (short sample)

This figure presents the baseline results from model (1.10) based on the short sample. Figures A5(a),
(b), (¢), (d) present the estimates for the first parent’s permanent income quartile, second, third and
fourth quartile respectively. The red dotted lines represent the bootstrap confidence bands.
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Figure A6: Partial Effects of Stock of Income by Parental Income Quartiles

This figure presents the trajectory partial effects of equation (1.10) based on the short sample. The
red line corresponds to first parental permanent income quartile, the green line to the second
quartile, the blue line to third quartile and the cyan line to fourth quartile.
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Figure A7: Timing of Income Shocks - Trajectories of Income (short sample)

This figure compares the intergenerational trajectories of income for the short sample based on
quartiles of parent’s income during early childhood against the ones based on quartiles of parent’s
income during late childhood.
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Figure A8: Timing of Income Shocks - Trajectories of Stock of Income (short
sample)

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
the short sample based on quartiles of parent’s income during early childhood against the ones based
on quartiles of parent’s income during late childhood.
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This figure compares the intergenerational trajectories of income for the long sample based on

quartiles of parent’s income during early childhood against the ones based on quartiles of parent’s

income during late childhood.
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the long sample based on quartiles of parent’s income during early childhood against the ones based

This figure compares the intergenerational trajectories of marginal effects for stocks of income for
on quartiles of parent’s income during late childhood.
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Trajectories of Childhood Exposures

(a) Non-

Figure A11l: Intergenerational Trajectories of Annual Income by Father’s

Education
This figure presents the results from model (1.5) based on the short sample for the sub-samples

based on father’s education.
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Trajectories of Childhood Exposures

(b) High School Graduates

ories of Childhood Exposures

ct

Traje

This figure presents the results from model (1.10) based on the short sample for sub-samples based
(a) Non-high School Graduates

Figure A12: Intergenerational Trajectories of Stock of Income by Father’s
on father’s education.
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Figure A13: Partial Effects of Stock of Income by Father’s Education

This figure presents the trajectory partial effects of equation (1.10)based on the short sample for
sub-samples based on father’s education.
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Figure A14: Intergenerational Trajectories by Family Structure
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Intergenerational Trajectories (Short

Figure A15: Schooling Attainment

Sample)
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Figure A18: Schooling Attainment: Partial Effects of the Stock of Income
based by Parental Income Quartiles (Short Sample)
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Figure A19: Partial Effects of the Stock of Income

This figure presents the trajectories of partial effects of stock of income in equation (1.10) for the
short and long samples. The red line corresponds to the baseline (pooled) sample, the green line to
the daughters and the blue line to sons’.
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Figure A20: Intergenerational Trajectories of Growth rates (Short Sample)

This figure presents the trajectory of income growth experiences.
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Figure A21: Intergenerational Trajectories of Stock of Income by Father’s
Education (Short Sample)

This figure presents the baseline results from model (1.5) and (1.10) that include parent’s education
for annual income and stock of income and for both short and long samples.
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Figure A23: Schooling Attainment: Partial Effects of the Stock of Income
based by Parental Income Quartiles (Short Sample)
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Figure A24: Partial Effects of the Stock of Income

This figure presents the trajectories of partial effects of stock of income in equation (1.10) for the
short and long samples. The red line corresponds to the baseline (pooled) sample, the green line to
the daughters and the blue line to sons’.
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Figure A25: Intergenerational Trajectories of Growth rates (Short Sample)

This figure presents the trajectory of income growth experiences.
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Figure A26: Intergenerational Trajectories of Stock of Income by Father’s
Education (Short Sample)

This figure presents the baseline results from model (1.5) and (1.10) that include parent’s education
for annual income and stock of income and for both short and long samples.

(a) Annual Income

Short sample

=
@
=]
[&]
=
i)
an]
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
Early & Middle 12 Late 12
Age
(¢) Stock of Income
Long sample
= i i ;
o 1 1 i
1 1 !
1 1 !
1 1
1 1 !
1 1 H
e ! ! '
- 1 1
1 1
1 1
1 1
1 1
1 1
= 1 1
- 1 1
: 1 1
= 1 1
=] 1 1
O 1 1
a2 w i i
@ =] 1 1
m I 1
1 1
1 1
il 1
1
o T N ol AP, SR, ! M JESRPU
= T
- e 1
—— H
1
! o .
w3 1 N
=R : e
1 T
1 1
1 1
I I
T 1 T 1 T T
Early [+ Middle 12 Late 18

Age

139



Appendix B

B6.1 Derivatives

Lemma B1 Suppose that A, and B, are n x ks and n X kg matrices with column

sums uniformly bounded in absolute value. Then

OE(A!, Wy (\)By,
1. BATNE) — A1, B, f(N)

OE(A, W, \Bn

) /
2. 5\ = AW, B, f(\)

9. CPULIR IR = 91 (\) f (A) A, W B,

Proof: Note that under Assumption 2 we have

dE[1(zjn < A)]

o = f(\)
dE[1 (2 <N 1(z, <N d[F(V)
N = — - 2F (N) f ()

for any 7 # j.
Then, applying Property 17.1(a) in Seber (2008) gives

OE(A,Wn(A)B)
O\

IE(Wn(N)

=4

B, =f(\) Al W,B,

OE(A W B, oEW
(n n,\ ) — A ( n’)\)Bn:f()\)A:LWan

o\ )
OB By OB op () £ (1) AL,

as A, B, and W, are all nonstochastic and the (4, j)th element of E(W,,())), E(W,,),
and E(W, (N)) equal w;j,(A) = wijnl (zjn < A), wijn(A) = wijnl(zj, <A), and
Wijnl (zin < A)1(zj, < A), respectively. This completes the proof of this lemma.
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B6.2 Structural Error

First, we obtain the structural error
en(0) = Sn(0y, \)Y, — X,y (W) 05 — Xy (Wi, A) by, (B1)
where

Sn(e?ﬁ )‘): STL + (Oéo - Oé)Wn + (5012,0 - 502)Wn<)‘0) + (5a1,0 - 50&1)W7

n,\0
+(5aa0 - 5aa)Wn_ (/\0> + 5a2 (Wn(AO) - Wn()‘)> + 5a1(Wn_,/\0 N Wn_,A)
+5aa(Wn_<)‘0) - Wn_ ()‘))7 <B2)

and from the reduced form model (2.5) we have

Y,

o [Xn(wn)eﬁo + X (Wao)dg,, + en]
n Wn)gﬁo + [aOWn + 5042.01/]/"()‘0) + 501,0Wn:/\0 + 50&0&,0Wn7()‘0)] Srlen(VVn)eﬁo

(
n(Wn)\O)(SG/gO + I:Oé()Wn + 50(2,0Wn()\0) + 604],0W7 + 5aa,0W7:(/\0):| Sngn(Wru AO)(SGSO
1

n,A0

e

en
(Wn)gﬂg + [aoGn + 502.0Gn()\0) + 5041,0G:L’)\0 + 5aa,0G;()\0)} Xn(Wn)QgO
n Wn)‘O)(;GﬁO + [aOGn + 5a2,0Gn()\0) + 5041,0G7 + 5aa,0G;()\0):| Xn(Wn/\O)éﬁﬁO

7,0
—1

n

el

+ o+ o+ o+
S

n

€n;

where the second equality follows from (I,, — A)(I,, — A)~! = I,, which implies (I,, —
A7t =1, + A(I, — A)~! and the third equality uses the definitions of G, = W, S !,
Gu(A) = Wa(N)ST, Gy = W S5t and G (M) = Wr (A)S

As defined in Section 2, X7\ =[X,(W,), X,(Wy,A)], X5 = [Xn(Wa), Xo(Wa, Xo)],

Oyy = (00, 0z 05 Oy 05 Sagare)” and 05 = (07, (5@60)’, model (B3) can be rewritten as

Y, = X305 + [Gn X265, Gr(No) X265, G, X5, G (M) X005 ] 0y + Sy e (B3)

n7A0

Substituting (B2) and (B3) into equation (B1) gives
en(0) = dn(0) + [An(0y, N) + L] e, (B4)
where

dn(0)= X, (05 — 0%) + (X, — X;,A)g* + (a0 — )G X, 05 + (5a2,o — Oy ) G (N0) X, 05
+(5a1,o - 5a1)G_ X;;QS + (5aa,0 - 5aa)G;()‘O)X:98 + 50@ (Gn()‘ﬂ) - Gn()‘))X;%

n7A0

+5a1( ;,)\0 - G;’)\)XZQS + (5fm(Gn()‘0>_ - G;()‘))XZQS
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and

An(ew /\): (aO - Oé)Gn + (5062,0 - 502)Gn()‘0) + (5041,0 - 50{1)G7 + (56%0170 - 6aa)Gr_z ()‘0)

n,\0

+5a2 (Gn()‘0> - Gn()‘)) + 5011( n. G;/\) + 6aa(Gr_z ()‘0) - Gr_z ()‘»

n,\o

Next, we obtain the identification condition.

B6.3 Identification Conditions

Substituting (B4) into (2.6) and taking expectation, we obtain the (m+#kg) x 1 column

vector of linear and quadratic moments

E(du(6) Piadn(6)) + tr(Tu E(Ay (8, NP;,)) + tr(T E(Au (8, A) Pr A6, 1))

E(dn(0) Pnndn(0)) + tr(CnE(An(0y, A)I.D;Zn)) + r(Cn E(An 0y, A) Pron An (8, A))
E(Q,dn(0))

' (B5)
The identification condition states that aglim, ., n"'F(g,(6)) = 0 has a unique root

at 0y € ©. Applying Taylor expansion gives

OF [g9n(0)]

E [gn(e)] =k [gn(QO)] + o0’

(6 — o)

where 6 lies between 0 and 6.
Evidently, there will be a unique 6 satisfying ag lim,, oo n " E(g,(0)) = 0if 0E(g,(0))/ 0¢’
has a full rank ky over 6 € ©.

Firstly, we calculate 0FE(Q,d,(0))/ 00, where

E(Q,du(0)) = E{Q,[X5(05 — ) + (X, — X ,)0" + (a0 — )G X305
(5012,0 - 50&2>Gn(>‘0>X;98 + (5011,0 - 50[1)G;,>\0Xrteg

(0000 = Gaa) Gy (A0) X + 0ay (Gnl(Ao) — Gu(A) X6
Oar (G xy = G ) X + Gaa(Gn(Xo) ™ — G () X00]}

+ +
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Applying straightforward calculations gives

G, = PGB (06,305, Q0N X85, QUG X85 QUG ()X6]
DE(Q.d,(0 ,
GOB = % =—F [Qan<Wn)]
DE(Q (8 ,
s, () = G (g x, (W)
B

Also, we obtain

G0, 0, ) = ZELGnDnl0)

= 1O [BQU XN, B(Q WX N), B(QLWa Xl N), E(QuWWa (3) XalX) + B(QuWVoy Xl V)| 80,

1) [BQGa X3 65I0), B(QL G X050, E(QuG (N) X305IN) + E(@uCry X205 10)] 8
where applying Lemma B1 gives

0
a3 X005

0 /
= Z 55’ [Qz’,nxz‘,n(sﬁl{zi = )‘H

- Z 6)\ / Q1 nxz n55|zl n} (Zim) dzi,n

= Z E (Qin,0,17) [ (A) = E(Q,Xa05lA) f (A,
=1

0
3 I ) X,

0 :
= Z wa’nﬁE [Qi’nxj’néwl{zj’n S /\}}

i=1 j#i

= Y v [ BlQu kil £

11]751

= Z Z wzyn Qz R n572|)\) ( ) E (QanXné’sz\) f ()\> )

i=1 j#i

o
aE [Qan,AXn57]

n a ,
- Zzwzgnaff [mej’névl{zi < )\}]

ilj;éi

= ZZU)U” an%né |)\) (A) = E(QuWnX,6,A) f(N),

=1 j#i
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and applying the Leibniz rule

d b(x)

_ / , b(z) dg ($,y)
dz Jo gz, y)dy=g(x,b(x))V (z) —g(z,a(z))a (x)Jr/ dg (@.y) ;.

a(x) dz

we obtain

0
3_/\E [Q W, ( )Xn(sw]

9 :
= Z Zwij,naE [Qi,nxj’ndwvl (Zi,n S )\> 1 (Zj,n S A)]

ilj;éi

= Z Zwm na)\ / [Qi,n$;7n5771 (Zi,n S >\> |Zj,n:| f (Zj,n> dzj,n

113751

~ ZZwm Qi 071 (2 < X)) S (V)

=1 j#i

+ Zzwmn/ I\ QZ nwy w01 (zin < A) |75, N} (2jn) d2jn

i=1 j#i

= B[QuV,,Xudn A £ ()

a A
+ Z szj n/ {_ / E [Qi,n‘x;’,n&y”zi,m Zj,n] f (Zz',n) dzz,n} f (Zj,n) dzj,n

=1 j#i

- [Qan /\X 5'y7|>\ + Z Z wz] n / Qz n‘r] n577|)‘ ZJ n] f (A) f (Zjﬂ) dev”

11]7&1
— B (QuW X610 +wa Qa1 (30 < N N £ N

= F (QnW,;,\XnCSwP‘) (A) + E(Qn Wi () Xnday|A) £ ()

We proceed to show that if the rank condition of Assumption (4.1) fails, we can identify

(0, (SQB0 ), as long as (9’ )\0)/ is identified from using the quadratic moments. By (2.5),

Yo’
we have

Y= STUXH05 4wy = (I, — Su)STUXC08 + X208+
= [GnX:LHS, Gn()\o)X 6* Gn )\OX 9* GT:()\())X:;HS](CY(), 50[170, 504270, (Saa’o)l -+ X;:@S + Uy,
(B6)

where u,, = S, ‘e, and u,, therefore follows a SAR model, u,, = (agW,, + dqa, oW 2 T
Oas,0Wn(A0) + baaoW,, (Xo))un + €, In parallel to Lee (2007) we consider the following
example that X, and [G,, X607, Gr(Ao) X605, G, \ X005, Gy (Mo) X, 05] are linearly de-

pendent. That is, there exists a 6k; x4 non-zero constant matrix ¢y such that
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Xoco = [Gn X305, Gu(Xo) X005, G 5 X005, G (A0) X65]. Then, model ( B6) becomes
Y, =X (coby, +65) + un, (B7)
and

dn(0) = QX7 105 — 0" + co (0 — Oy,)] + @y, [Xn(Wh, Ag) — X (Wi, A)] 0y,
Q [(Gn(X0) = Gu(M) X305, (G, — Grn) Xn0, (G (M) = G (A)X365)] (ags G5 Gaa)

n,A0

and G, (Qn,0) does not have full rank as
[Go, (V) Go., Gy, V)| = —E Q1 X0, X (W), QX (Wi, M)

are linearly dependent in column. For model (B7), if ( 9;0, )\0)/ is identified from using

the quadratic moments, we have 0 = F [Q},d,(0)] = E [Q, X (05 — 6*)] so that 6 is
identified as X has full rank.

Secondly, for j = 1,...,m, we calculate
oF [en (9)/Pjnen(9)] d e, (0)
=F P
oo’ { n(0) 00 }

where we have

den(0) |0en(0) 0en(f) 0en(f) 0en(d)
o0 | o0, " 80, 9%, " OA

and

den(0)  0dy(0) N 0[A,(6y, Ney)
a0, B a0, o0,
(G X8, GaN X305, G X280, G (V) X205]
_ [Gnen, Gr(Ne,, G, e, G;(A)en]

9 cal0) _ 00u(6) | 91Au(0,: Ner]
o6, o0, 06,
9 cal0) _ 04u(6) | 9[Au(0) V]
o5, 0%, o5,

— X, (W)

— X, (Wi, \)

and

den(0)  0d,(0) N 0[A,(0y, Ney)
D)) O\
OX)\ 0GL(N) X105 G, X005 oG, (M) X305

D W s e e e

ac;, -
- (6a28Gn()\) 15, G 5waan(A)> .

O\ O\ O\
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Therefore, we obtain

OF [e, (6) Puen(0)]
oo’

=7 (0) + Az ()

where we have

A (0)=E [d (0 p]sna gz)ge)}

9 en(0) 0 en(0) O en(8) O en(d) ]
00, 90, ' a0, = OA
= —E{d.(0) P}, [Ga X705, Ga(N X305, G X085, G (N X705, X (Wa) , X (Wi, A)
0X; \ 0G,(N) X 0% G, Xibh o 0GL(N)Xat;
ox oA TN TN
Xn (Wm /\) y P1 (0y7 /\)]}

— E|d,(0)P:

n

and

20(0) = B [¢, 14,(0,3) + 1 P Zonl®)

= —E e} [An(0,, ) + L] P}, [an,jeg,Gn(A)X 05, Gy \ X503, Gy (VX308
X (Wh), Xy (Wi, A), 0]

0 en(0)
/ / — — n
—E |:en [An(ey’ >‘) + In] Pgsn |:Gnenv Gn()‘)en’ Gm)\ena Gn (A)en, 0n><(2k1)7 On><(2k1)a O\
/ /
= —F {en [An(e,w )‘) + I?’L] Pjs [ nen7 )\)6 n )\6 (A)env 0n><(2k1)7 On><(2k:1)7
) 9Gn(Y) + 6 0G» A4S
) o 8)\ e
= —[tr (TWE {[An(0,,)) + L) } tr (TnE {[An(0y, ) + L) P5.Gu(N)})
tr (T {[An (0, ) + L] PjnG;A}> r(T0E {[An(0, \) + I] PG (N} 3 O o)
On><(2k1)7tr (F E{ 01/7)‘) +I ] n‘pQ })]
Taking together the results above gives
Edn(0) PG X005] + tr {TWE [xa (6, NGul}t .. E[d,(0)' PnGuX 05 + tr {Tn E [ (0, NGl } E[Q,Gn X305
E [dn(0) P, G(N) X306] + tr {T'n E [x1(8y, A)G W} - Eldu(0) P, Gu(NX505] + tr {TW E [x, (9 A)C N EQLG.(NX;6]
) E [do(6) Po,Gy X283) + tr {TuE [ (6, NGa]} o B [da(8) P, Grn Xi83] + tr {TuE [ Gy BlQuGLX)
(200) = — | B [,(0) P, G X305] + (T [0 (0, A) SOV} B [, (0) P3G X6 +u-(l‘nE{l‘nE[xm(oy-A)G;(A)]})E[QLGZ(MXSOS]' (B8)
E [da(0) P, X0 (W,)] E [da(0) PS5, X (W) E[QLX. (W)
Ed,(0) Pg X (Wi, N . E[d(0) P, X (W, )] E[QLXn(Wy, V)]

E[dn(0) Prupr (0, V] + tr {T0 B [xa (0, e (0, I} E[dn(0) Bor (0, M) + e AT E [ (0, Mp2 (0, I} Ga(0a, 09,5, A)'
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where we denote x;(0,, A) = [A, (0, A) + I,)' P§, for j = 1,...,m, to make the notation
short.

From (B8), we see that OF [g,(6)] /08" can still be a full rank matrix even if As-
sumption (4.1) fails to hold. However, the mathematical expression of the global
identification condition can be messy. We therefore include the local identification
condition in the main context, i.e., Assumption (4.2), which is the condition under
which 0F [g,,(0y)] /0¢' is a full rank matrix. Specifically, we have

tr [0, E (Py,Gy)] tr [ E (Ps, Gy EQ.,G. X035
DB [PL,Ga(A)]} o e {TWE [P, Ga(N)]}  EQLGa(M0) X005
, w{TL B (PG o e {LE PG ] B@uG, X060
(B} = — | (B[PGO - (LB {TLEPLG O] BQuG:00)Xi6) | (BY)
O, . O, E[Q,X,(W,)]
04,y e 04, EQ, X0 (W, Ao))]'
L tr {ThE [P 2 (9%0, M)} {TLE [P 00 (ey,Oa o)l } G (a5 50%7 Ao)’

since d,,(60))= 0, An(0y0,2,) =0 and for j =1,...,m, x;(0y,0, \o) = P;, and

nxn’

E [P;,2 (0,0, \o)]

_ s aGn()‘o) 3G;/\0 s aGEO‘o)
= Oeb {Pj"T] O R R Ly
= (8o, +0a1) E (P5,Gnlho) f(Ao) + daaf (M) [E (PG 1M0) + E (P5,Gn (X) [Mo)] -

(B10)

B6.4 Proofs of Consistency and Asymptotic Normality

Proof of Proposition 2.1: Firstly, we have F [g, (6p)] = 0 and the proof given in
Appendix B6.3 shows that E [g, (0)] = 0 if and only # = 6y under Assumptions 1-4.
Hence, applying Lemma 2.3 in Newey and McFadden (1994) implies that J,,(6) has a

unique minimum value of zero at true parameter value 6.

Secondly, we need to show that maxgee ||[n " a,9,(0) — n~'a, E [9.(0)]|| = 0, (1). By
(B4), we have

(Zam m) e (6) = . ( (Zaw ]n) () £ 1, (0) £ ma (0),  (B11)

where I, (8) = d,, (6)’ (zj i P, ) [An(6,, \) + 1] €
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and my (0) = ¢, [An(0y, ) + L]’ (X7 @niPin ) [A(8y, ) + L] e,

Because W, A,(6y,A) and } 7", an; P, both have finite column sum norm for any
6 € © and the elements of X,, are uniformly bounded and strictly exogenous, applying
Lemma A.4 and Lemma A.3 in Lin and Lee (2010), we obtain n~'1, (§) = O, (n~*/?)
and n~'m, (0) = n" E [m, (0)] +O, (n"'/2) uniformly over 6 € ©, respectively. Simi-
larly, we have n='Qe, (0) =n~'Q.d, (§) + O, (n~'/?) uniformly over § € © by Lemma
A4 in Lin and Lee (2010). As d,(f) is continuous in 6** and A enters into d, () in
the form indicator function, the stochastic equicontinueity result is expected to hold
for n7'a,g,(0) — n"'a,F [g,(0)]. Then, applying Lemma 2.8 in Newey and McFadden
(1994), we obtain maxgpee ||n" ' angn(0) — n " ra,E [ga(0)]]] = 0, (1) under Assumptions

1-5.

Taking together all the results above implies 0L 0, by Theorem 2.1 in Newey and
McFadden (1994). This completes the proof of this Proposition.

Proof of Theorem 1: Under Assumptions 1-5, we have shown that F [g,(6)] = 0
is differentiable function of # and has a unique solution at an interior point 6, € O,
and that lim,_,., H,A’a! a,A,H, is non-singular, where A,= —9F(g,(6))/00 and
H, = diag(Iex,+4,n"). Since OE [g,(6h)]/ O linearly depends on 6,0 and dp, by (B9)
and the two parameter vectors are of order n=% for some 0 < a < %, we use the weight
matrix H, to rescale A, such that A, H, has full column rank. In addition, applying
Lemma A.5 in Lin and Lee (2010) and Cramer-Wold theorem, we obtain

1 1

%angn(eo) A N(O,q}i_}rgo ﬁanQna’n), (B12)
where 2, = Var(g,(0y)). Moreover, because g,(0) and E [g, (0)] are both continuous in
0** and the elements involving the indicator function of A satisfies Holder inequality, the

empirical processy/n [¢,(6) — F (g,(0))] is stochastically equicontinuous, which implies

“up V1 |gn(0) — gn(00) — E (9(0)) ||
10—60][<hn L+ +/n] |0 — 6|

= 0,(1) (B13)

for any h,, — 0 as n — co. Hence, applying the central limit theorem of Newey and
McFadden (1994) (Theorem 7.2) completes the proof of this theorem.

Before we proceed with the proof of Proposition 2.2 we first introduce several different
matrix norms for an n x m matrix A, = (a;;). (1) [|An] 0 = MaXi<i<ni<j<n |ijl-
(ii) |Anll,, denotes the spectral norm of A,. (iii) [|A.[, = maxi<j<m Y i, |ai| and
[Anlle = maxi<icn Y 5o, lag]. Also, we denote p(B,) = maxi<i<n |Ai (By)| for any

square matrix B,, of size n.
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Lemma B2 Under Assumptions 1-5, we have

|52 (0. 4) = 8.1| =01, [[@u =@ =0y (1) and| — 0, (1) for
sp Sp sp

Jj=1,...,4, where replacing 0 by 0y in Q,, and P}, gives Q,, and Pj,, respectively.

Pin =P,

Proof: By Theorem 1, /nH, ! (é — 90) = 0, (1), and we estimate S,, = S, (0,0, o) =
Iy — 00Wy = Gay Wiy = Gaso Wa(Ao) = SaaoW; (Xo) by Sp = Su(0y,A) = I, — aW, —

SQIWJS\ — oy Wi(A) = 6aaW. (A). By Property 4.67 in Seber (2008), we have

19 = S sy = 157 (S0 = Su) S2Mlsp < 185 lsp1Sn = Sullapl 197 s

where ||, sp < V1S5 1195 Moo < M < 0o under Assumption (1.1) and

)

using the result given in the footnote.* Hence, we have [|S; ! — S|, = O, (| 1S, — Sn|\sp>
if |5, — Syllsp = 0p (1), Where

||S;1||§p = Al;liln <§n§;> = )‘r;iln (Sn's’vlz) + O (‘ gﬂg; N SnS;z

||‘§n - Sn||$p
< |& - 040| HWanp + 5a1W;5\ - 50&1,0Wn_,)\0 sp
100 Wi (A) = Ban o W X0) ||+ [[0aaWi (A) = Guao Wi (Xo)
sp sp
= 0, (n71/2) 10, (nl/%a) + |00, ‘W;A — Wil + Oy ‘Wn(;\) — Wi(Xo)
s sp sp

+ [0aa (B14)

W () = Wy (M)

sp

under Assumption (1.1) and by Theorem 1, and letting Z (5\, AO) be an n X n diagonal

matrix with a typical element equal to y; (5\, )\0> = Nz, < 5\} —H{zin < Ao}, we

have

W) =W, o) = Z (A %) W,
Wo(d) — Wa(ho) = WiZ (X, /\0>

W= Wi, = 2 (3 %0) WaZ (M)

4For any symmetric matrix A and B of same size, Wely’s theorem states that
)\min (A) + )\min (B - A) S )\min (B) S )\min (A) + )\max (B - A)

which implies that
)\min (B - A) S )\min (B) - )\min (A) S )\max (B - A)

or [Amin (A) = Amin (B)| < p(B — A) < ||B — Al|,, by Property 4.68 (a) in Seber (2008).
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By definition we have

HZ (5\,)\0> 2 = max @w'Z ()\ )\0) w = Hr;lﬁxflsziiji (5\, )\0> X (5\, )\0)

sp l=l=1

where @ £ 0 is an n X 1 vector. As A — \g = O, (n"~1/?), for any small ¢, > 0
chn“*1/2) < €,. Letting
B ()Xo, cnn“_l/Q) =[x — can® 12 N + ¢,n®~'/%], we obtain for some 0 < £ < 1/2—a

{|&1ﬁxxlzz:wlexz < , > X (5\, )\0> > Mcnn_g}

1 j5=1

_ {[”w” IZZWW@( , ) X; (X, )\0> > Mcnn—f] N {X €B (Ao,cnna—lﬂ)”

—l—Pr{

Pr sup max Z Z @iwixi (A o) X5 (A Xo) > Me,n™ 3 + ¢,

AeB(xo,cana1/2) II=1 55

1 n n ) .
Men<r [”fgﬁlflzzwiwjxi (A%, 20) x5 (A, do)

there exists a finite constant ¢, such that Pr ()5\ — Ao

n n

@ﬁlﬁzzwi%xi <;\, Ao) Xj (5\, Ao) > Mcnn—f] N [5\ ¢ B ()\07Cnna—1/2)]}

i=1 j=1

IN

IN

+ €n

1

_ 2 *
- annxlzw E[xi (A, 2)] + €

= O (n"™12) 4 ¢, =0(1)
where \* = \g + ¢,n* /2 or \g — ¢,n* /2 and it is readily seen that

E[)@2 (/\7>\0)} = F.(A)+ F. (Xo) — 2F% (min (A, \g))
= F() (A=) =2 (A ) (min (A Ao) = Ao)

with X (or A) lying between A (or min (X, Ao)) and Ao. Hence, we obtain HZ <5\, )\0>
sp
O, (n™*/%). Combining the results above gives ||S,—S,||s, = O, (n71/?)+0, (n'/>7)+
O, (n_g/ 2) =0, (n_f/ 2). Then, applying trivial calculations and property of matrix
Qn—Qul| =o0,(1)and ||P;, — P op (1) for j =1,...,4. This
sp

Jn =
sp
completes the proof of this lemma.

norm will give ‘

Proof of Proposition 2.2: By Lemma A.1 in Lin and Lee (2010), a typical element
of O, tr(fn[f’an (fn]f’bn> ) = D i1 2 i1 Panyij(Bonsij + Don.ji) 07,05, for any a,b =
1,...,4, where pg, ;; is the (¢,7)th element of Iswn and P, i = 0 for w = a,b and
any i. Denoting pa, ij = Dan,ij(Don,ij + Don,ji) a0d PA,,ij = Pan,ij(Pen,ij + Ponji), we first

150



obtain

13t
_§ § pAnlJ i,n ]n_ﬁ§ E pAnlJUzn ]n
=1 j=1 =1 j=1
1! 1
_ § :E : A 2 2 2:2: 2 2 2 2\
- ﬁ (pAmij - pAmij) €inCin + E Pasij (ei,nejn —0in0j, n) =0p (1)
i=1 j=1 i=1 j=1

(B15)

where the first term in eq. (B15) equals o, (1) by using ||Px,|l; < M |, Pa,ij —
PAii = (Panij — Pan.ij) (Don.ij + Dbnji — Pon.ij — Pon.ji) +Pan.ij(Pon.ij + Don.ji — Ponij — Ponji)
+ (Pan,ij — Pansij) (Ponij + Pon,ji) and Lemma B2, while the second term in eq. (B15)
equals o, (1) by closely following the proof of Proposition 2 in Lin and Lee (2010).

Next, we consider

_ZZpAnz] zn ]n——ZZPAan zn ]n

=1 j=1 =1 j=1
1 n o n .
= _ZZ pAnl] pPa, Z])( €in ]n €in ]n +n ba, ZJ Cin ]”_6i»”6j,”)
=1 j=1 =1 j=1
= _ZZ pAn g3 — PA, Z])( €in ]n ezz,nein) +Op (1) (B16)
i=1 j=1

where we closely follow the proof of Proposition 2 in Lin and Lee (2010) to obtain the
last line, and the residuals can be decomposed as follows
En = SV — X0 (W) — Xo(W,, \)dg,
_ (Sn _ Sn) Y, — X,(W,) (éﬂ . eﬁo) - [Xn(Wn, A — X (W, AO)] 5o,
_Xn(Wn, )\0) <59/3 - 59[3()) + e,

= e, +b,+0,

where b,, = (Sn — Sn> S-le, and

& = (Sn . Sn> S [Xn (W) 05, + X (Wi, Ag)a%} - [Xn(Wn, A) = X (Wi, M) | b,

— X, (W) (éﬁ - 950) X (W, Ao) (396 - 5%) . (B17)

From the proof of Lemma B2, we actuall can extend the convergence in spectral normal
results into the convergence for the row-/column sum norm results:

W () = Wi )| = 0 (1), [Wa(3) = Walho)|_ = 0, (1), amd || W w7

n 7,0

1
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n7>\0

0p (1) and HVV;A -W- H = 0,(1). Hence, we obtain that b, = b, + 0, (1) and
¢ = Cn + 0, (1) hold uniformly, where the result for ¢, requires all the elements of X,

to be uniformly bounded. °

Let €; , €ins biny bin, Cin, and ¢; , denote the ¢th element of é,, e, b,, by, ¢,, and ¢,, re-

spectively. Then, ¢? = (em + Bm + éi,n)Q = e?yn—l—i)in—i-é?’n +2 (emlv)i,n + Cin€in + Bi,néi,n).

» Cin
As é?,néjz,n - ez%ne?,n = e?,n (éin - ez%n) + ezz,n (é?,n - e?,n) + (éin - 6?,71) (ézz,n - ezz,n)’ we

can decompose the leading term in (B16) into three terms:

n n

1 . JORR
A, = o Z Z (Panij = Panis) (€5 0€ln — €1n€in)
i=1 j=1
I 2 (42 2
= - Z Z (pAn,ij - pAn,ij> €in (ei,n - ei,n)
i=1 j=1
I . 2 (A2 2
+ﬁ Z Z (pAn,ij - pAn,ij) €in (ej,n . ej,n)
i=1 j=1

1 n n
+E Z Z (ﬁAmij - pAmij) (éin - e?,n) (éin - 612,n)

i=1 j=1

= Anl + An2 + An?n

where we define A,;, A,2 and A,3 according to its order of appearance. For A,;, we

have

n n
l ’ A . — ) | 2 |2 _ 2
n Panis = PAnijl €n |€in — Cin

’Anl‘ S
i=1 j=1
1 v — _
L n Z Z DA i — Pl 632,n [3 (biQ,n + Ef,n) + 26?,n]
=1 j=1
3 o _
-0 DD pavi = Panil G (B0 + &) +0, (1)
i=1 j=1

by Lemma B2 and || P, ||, < M. Letting V,, = W, S, [Xn (W) 05, + X0 (W, )\0)5%] =

[Vl s+ -+ Unn)'s We have max;<;<,, [vin| = O (1) under Assumption (1.2) and the typical

5. < PPN _ _ _ S PP _ _
b = Saa (Wi (3) = W7 (X0)) Sy ten and &n = Saa (W, (3) = W,y (X)) S5t {xn (Wn) 055 + X (W, A0)59/30]<
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element of ¢, = 5MZ (5\, )\0> Vi 18 G = cim)(i (5\, >\0) V;n. It then follows that

n n

1
; E E ’pAn ij — DA, zg’ejn in
=1 j=1

) n n
_ Yaa 1Pa, i — | €2 2 (N M\ ) 02
o n PAanij = PAnijl €5,nXi y N0 ) Ui

i=1 j=1

= 0,(1).

Moreover, letting d;;,, be the (7, 7)th element of W, S, and denoting V;, = W,,S, e, =
V10, ,vn,n]/, we have v;,, = > ', dyne; and applying tedious but straightforward

calculation gives

1 n n

EZZM)AnZ] pAnU|€jn in

i=1 j=1
N 2
5§a n n X . n
— Ba S S s = pansl e (M) (z d)
i=1 j=1 —1
= 0,(1).

because |W, S|, < M under Assumption (1.2). Therefore, we obtain A,; = o, (1).
Similarly, we have A2 = 0, (1) and A,3 = o0, (1).

Hence, we have n~! [tr (F B, (F an> > —tr (I, Pan (Fnan)S)] = 0, (1) for a,b =
1,2,3,4.

Next, we consider

Q;zf‘n@n - Q;FnQn
y (Qn _ Qn), I, <Qn - Qn> + (Qn - Qn)/ I Qn
QP (@ = @u) + @ (- T0) @

where (),, equals Qn with replaced with 6y and
Qn - Qn = [Anla An27 An37 A7L47 071><(2k1)7 Xn(Wna 5‘) - Xn(Wna )\0)i| with

Anl - WHSJI[XH<WH)9A§7 Xn(Wm 5‘)595] [ ( n)‘gﬂov (Wm )‘0)69;30]
An? = W_AS(_I[X (W’n)éﬂa X’n(Wna 5\)595] [ TZ( )0,807 XTI(WTU )\0>69B0]

Ay = Wa(N)S X (W), Xa(Way A, ] = Wa(Xo) S, X (W), Xoa( Wi, o), ]

A

Ay = W (NS X (W), Xa (Wi, A)da,] = Wi (M) Sy X (W) X (Wa M), -

n)\o n
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Letting ¢;, and g;, be the ¢th column of Qn and @,, respectively, we have
A / A A
nil <Qn - Qn) Fn (Qn - Qn) = nil QZn —q; n) (QZ,n - Qi,n),

N [N
nil (Qn - Qn) FnQn = nil Z éz2,n (di,n - Qi,n) qg,n

=1
n_lQ; <fn - Fn) Qn = _1 Z qz nqzn

Using the results in Lemma B2 and the arguments made above, we can show that

the three equations are all of order o, (1) element by element. That is, we have

nt (QuFaQu — Qulu@n) = 0 (1),

To sum up, we have shown that n=* <Qn — Qn) = 0,(1). This completes the proof of

this proposition.

Proof of Theorem 2: From the generalized Schwartz inequality, we know that the

optimal weighting matrix is (n='€,)"'. Setting a, = (n7',)"2, we have ay =

—-1/2

(lim,, 0o n7102,) exists under Assumption 6. Applying simple algebra yields

Applying Lemma B2, we can show maxpece n™" [|gn(0) — gn(0)|| = 0, (1), which implies
. n(690,13,(6) — (69, "9,(6)]| = 0, (1)

N~ IMaXgeco

In addition, we have 71, (0)/Q g, (0) = 12 g,(0) Q1 g (0)+n "2 g, (0) (01— 1) g, (0) =
n1g,(0)2,, g,.(0)+0, (1) by Proposition 2.2, because maxgee ||n"'¢,(0) — n ' E [g.(0)]]| =
0, (1) and maxgee ||n " F [g,(0)]]| = O (1). Therefore, minimizing §,, ()% §, (0 w.r.t.
6 € © is equivalent to minimizing n'g,(0)'Q1g,(0) over § € O. Following the proof

of Theorem 2.14, we therefore obtain
vn o A N 0,2 (B18)
(-

where ¥ = (lim,, %HT’LAnQ; YA, H,)~t. This completes the proof of this theorem.
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Appendix C
Lemma C1 Under Assumption 1, 91 # Y5 and Hy : ay = as = 0, the following hold

L. n” X} maita < A3a < 0} = 07 X zeil{an < 3} = Op(Elziatlg—no)n ™1 2%).
In™ o7 2wl {g <A {a <0} —n” XF 22 1{q < 0} = Op(E(zizh|g=0)n 1 +2).
In= 3" eizi1{q < A{q < vo}-n" DF eizil{a <A} = Op(/E(2i2]]g=70) /nn~112).
I~ " eiz1{q < A3{aq < v0}—n" ez {qi < 70} = Op(\/E(z:2]Jq=0) [nn~1T2).

o

co

-:K

where z; = x; or w;.
Proof of Lemma CI1.

1. Note that
= 355 meil{e < A e < ot — 07 X awil{e <A <m0 {0 —
17—l <@ <7 +17—l}

Given that 4 = 9 + O, (n™172%), for any small € > 0, there exists a constant
M and an integer N, such that for any n > N, Pr{|y — | > Mn~ 1t} < e.
Hence, for any n > N, and any finite M > 0 such that

n n
Pr {|n‘ > zail{g <A {a <o} —nm > zail{e <A} > ME(z|g; = Wo)n_“f%}

g i

{{'” > st < A0 < 20}~ D sl < > Bl = o)™
i [

N {7 =] < Mn~1122}

i %

N {17 — 0| > Mn~1122}

{{In sz Ha <A@ <y} —n~ sz Y <A > ME(z:gi = 7o)n 1+2a}
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=Pr {nl Z |zixh |1y — Mn ™12 < ¢; < 4o + Mn~ 129} > ME(zixﬂq_fyo)nl*za}

t=1

n
<Pr {nl Z |zih| 1{yo — Mn ™12 < q; < yg + Mn~1129) > ME(zimﬂq_'yO)nl“a}

t=1

—|—Pr{|’y — Y| > Mn_1+2a}

< n S0 E [zl 1{yo — Mn712 < g < 4o + Mn~tT2}]
B ME(zjx}|q=ryo)n =112«
_2E [|z127 H(h =] fq (y) M

— — + €.
ME(zx}|q="0)

+€

The second inequality is obtained after applying Markov’s inequality and last
equality from mean value theorem to obtain the last equation with ¥ lies between
Yo — Mn=1*2 and o + Mn~'T2* Hence |n~ Y 7 zixi1{qy < 9}{q¢ < %} —
n” 32 wril{a < A} = Op(E(ziwf|g=yo)n ™).

. Similarly,
In~ Z? zixi{q <A H{a < yop—n~ Z? ziwi{q <y} = Op(E(ZixHCI:%)”_Hza)-

- Let the partition [yo — Mn="2 4 + Mn=""2%] = U [ye, Y1) U [ywve, Y1)
into N, non-overlapping intervals with equal length € = 2Mn=1+2*/N,_.
Then, we have

n n
ma n- e 1{qg <AV1{g: < —-n~ e; 2 1{q; <A
scimottmt B ) zz: izi{a <A1 {a < 0} ZZ: 211 <A}

n

< o ™) ez [1{g <4} — Hai <} Hai > 0}
Y= € .
K
Nc+1 n
+ > Ity eml{a < wdHa > 0}
k=1 =1

= 0 (\/E (2zilai = Y0) /"6) +Op <Ne”1+2a\/E (2lzilai = Y0) /”)
= 0, (B Gt =0 (e + Nor#20) ) = 0, (w7298 (s =)

for any finite N,. It follows,
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Pr {]n‘ Zeizgl{qi <AM{g <7} —n" Zeizgl{qi <A} > Mbn}

Pr {{|n_ Zeizﬂ{%‘ <A <} —n" Zeizﬂ{q@‘ <4} > Mb,

3 K3

N{1F =0l < Mn=20]

_|_

N{15 =90l > Mn=72}

Pr {{|n_ Zeiél{qi <AH{a <v}f-n" Z@Zﬂ{q@' <A > Mbn}

SPI{ max In~* Z@‘Z;l{% <A {q > 1} > Mbn}

ol <Men1+2a | L

+Pr{ 17 — 0| > Mn_1+2°‘} =€+ e =2

where b, = \/E(22!]g=70)/nn~ 2. Hence, |n~ > " e;2/1{q; < 4}1{q < %} —
n= Y " ezl < A = O,(v/E(z:2lla=0) [nn~1+2).

4. Similarly,
In™ Y7 eizil{qi < AM{a < yo}—n" Yo7 eizil{gi < 0} = Op(v/E(2i2]lg=70) /nn~1T2%).

Proof of Proposition 3.1. Let the model

ayw; + 91w +ep, ¢ <y
Yin =
asW; + 79,21'1 +e€, q >

which is equivalent to

yi = Va; + aw; + 012, 1{q; < v} + dow;1{q <~} + e

where ¥ = 9, a = ag, 01 = 91 — ¥y and 0y = a; — as.
Under the null hypothesis H, : a1 = a; = 0 or (H, : J = a = 0) the model reduces to
yi = 0wy + 0wl {qg < v} + e (C1)
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When ¥; # 95 (61 = 0), we have the standard threshold regression model and from

Hansen (2000), n!=2%(§ — 7,) % wT, where w = m7 T = argmax_ogcrcoo|— 37 +

When ¢, = 95, model (C1) becomes y; = ¥'z; + ;. Define the matrix @), of stacked
elements [z;1{¢; <}, x:il{q¢ >}, M, =1, — QW(Q’WQW)*IQ7 and A = F,(y). Then

ylMWy = y/([n - QV(Q;Qw)ile)y
= el(In - QW(Q;QV)ilQV)e
= ce— G/QW(Q;QW)_IQW

—1 /

From Law of Large Numbers, n~'e’e 28 02 and

¢Q5(Q)2) Qe = Bu(L,AYB,(1.N)
T+ EM2B(1) — BY2 BN [B(ale) - E@al{a < 1)) EXB.(1) - BB,

TT,y TT,y

where E,, = E(z}z;) and E,, , = E(zjz;1{q; < v}), because
€Q,(Q,Q,) Qe = Zw eil{q <V} Zw vi{a; <A} szezl{qz <7}

+ Zl’ eil{q > v} ZM’ {a: >})" Z%ezl{qz >}

and from Theorem 1 of Hansen and Caner (2001),
[ 2B V2 S wier, n P E S wiel{q; > 7}] = [Bu(s), Bu(s, \)]. Now, de-
note \* = F,(v*) and A= F,(%). Then

A=A = argmazB,(1,2)B,(1,))
+ [E?Bu(l) = B2 Bu(L V) [B(zjzi) — B(zizil{g < 7})] 7' [Es)* Bu(l) - B2 B

acm7

Proof of Proposition 3.2. Let the Wald statistic

(RB)(R(X(4)'X(3))'R)"L(RB) (C2)

52

Wn(?) =

where R is a selection matrix, 4 is the v estimated under the null, s? is the residual
variance calculated under the alternative, 3 = [¥,a,01,00] and X () is the matrix of
stacked elements [z;1{q; < v}, w;1{q; < v}, x;1{q; > v}, wil{q > 7}

Let X(v) = [X_(7), X4 (7)], where X_(v) is the matrix of stacked elements [z;1{g; <
v} wil{q < ~vy}and X (7) is the matrix of stacked elements [x;1{¢; > v}, w;1{q; > v}].
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From Lemma 1, Hansen (1996)

n X (V)X (y) B

(Blz;z;1{g; < ~}])~ 0 ]
0 Elzzai1{q >}) |

Hence R'(X ()X (7)) 7' R)™" = Oy(n).

Under the null y = X_ ()01 + X, (7)9 + e, where X_(7) is the matrix whose i'th
row is ;1{¢; < 7} and X, (7) the matrix whose i'th row is z;1{g; > 7}. Note that
[dy, do]' = (R'3) and define W* the matrix of stacked elements [w;1{g; < v}, w;1{g; >
~v}]. Then

(@ o) = (W ML) W Moy = (W MWW M (X (7)) + X ()9 + )

First, we consider the case where ¥ = 9. Note that, R'(X(7)X(3)'R)"' %
R(X(y*)X(v*))™'R)™" = Op(n) from continuous mapping theorem and % Gy
Then y = X0 + e, where X is the matrix whose i'th row is z;. Then

b, = (W* MW" W Myy = (WX MsW*) 7T W My (X0 + e)

Since X lies in the space spanned by Q@(Q%Qﬁ)’lQ& hence (W*/M&W*)”W*'M&Xﬁ =
0. Furthermore, n= (W* M;W*) "' W* Mse N n~H W M-W*)"'W* M,-e from con-
tinuous mapping theorem and % LN ~*, which in turn converges to a zero mean normal

distribution when e; is independent of x;. Hence, W,,(¥) < X3-

Next, we consider the case where ¥ # 5. Similarly R'(X(5)'X(9))"'R)™! = Op(n).
When 191 7é 192,

ar, ) = (W7 MWW May = (W M W) ™ W M (X (70)91 + X (30)02 + )

Note that from Proposition 1, n!=2%(§—~,) 2 wT. Hence, 4 = 7o+0,(n~'*>*). There-
fore, from Lemma 1 we obtain that (W* M;W*)"'W* Msy(X_(y0)0h + X (70)92 =
O,(n712) and (W* M;W*)'W* Myy = (W M;W*)"'W* Mse converges to a zero

mean normal distribution. Hence, W,,(%) A X3-
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