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Περίληψη 
 

Ο επαγωγικός θόρυβος τάσης είναι μια από τις σημαντικές αυξανόμενες ανησυχίες στους 

σύγχρονους επεξεργαστές. Η υπερβολική πτώση της τάσης μπορεί να προκαλέσει μη ορθή 

λειτουργία. Ενώ η υπερβολική αύξηση της τάσης αυξάνει την κατανάλωση ενέργειας, τη 

διάχυση της θερμότητας και μπορεί να επιταχύνει τη γήρανση του υλικού. Ο θόρυβος τάσης 

προκαλείται από ξαφνικές μεταβολές στην κατανάλωση ρεύματος.  Σύγχρονες τάσεις 

σχεδίασης όπως οι τεχνικές χαμηλής κατανάλωσης ενέργειας (π.χ. power-gating, clock-

gating), οι γρήγορες συχνότητες και η υψηλή κατανάλωση ρεύματος, επιδεινώνουν τον 

θόρυβο τάσης. Για την αντιμετώπιση του προβλήματος είναι υψίστης σημασίας να 

αναπτυχθούν εργαλεία που επιτρέπουν τον χαρακτηρισμό των δικτύων παροχής ισχύος 

(ΔΠΙ) και την παρακολούθηση του επαγωγικού θορύβου τάσης. Τέτοια εργαλεία 

παρακολούθησης είναι χρήσιμα κατά τη διάρκεια των δοκιμών για να βοηθούν στον επαρκή 

καθορισμό των περιθωρίων τάσης που θα επιτρέπουν την ομαλή και ενεργειακά αποδοτική 

λειτουργία του επεξεργαστή. Επίσης, αυτά τα εργαλεία παρακολούθησης χρησιμοποιούνται 

στην κατασκευή κυκλωμάτων μετριασμού του θορύβου τάσης που προστατεύουν τον 

επεξεργαστή από χαμηλή τάση και εξασφαλίζουν αξιόπιστη λειτουργία. 

Αυτή η διδακτορική θέση προτείνει μια νέα μεθοδολογία για τον χαρακτηρισμό ΔΠΙ. Η 

προτεινόμενη μεθοδολογία βασίζεται στην ασύρματη ανίχνευση της ηλεκτρομαγνητικής 

ακτινοβολίας (ΗΑ) που εκπέμπεται από το ΔΠΙ χρησιμοποιώντας μια κεραία και ένα 

όργανο για την ανάλυση των ληφθέντων σημάτων (όπως ένας αναλυτής φάσματος). Η 

προτεινόμενη προσέγγιση έχει τρία σημαντικά πλεονεκτήματα σε σύγκριση με κλασικές 

προσεγγίσεις χαρακτηρισμού ΔΠΙ: α) είναι μη παρεμβατική και βολική καθώς δεν φορτίζει, 

διακόπτει ή παρεμποδίζει το σύστημα με οποιονδήποτε τρόπο επιτρέποντας την 

παρακολούθηση του συστήματος ως έχει, β) θεωρητικά, είναι συμβατή με οποιαδήποτε 

πλατφόρμα καθώς οποιοδήποτε υλικό υπολογιστών εκπέμπει ΗΑ, γ) δεν επιβάλει επιπλέον 
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κόστος στον κατασκευαστή καθώς δεν απαιτεί υλικούς πόρους πάνω στον επεξεργαστή. Η 

προτεινόμενη μεθοδολογία βασίζεται στην παρατήρηση ότι η ΗΑ μεγάλης ισχύος κοντά 

στη συχνότητα συντονισμού του ΔΙΠ συσχετίζεται με υψηλό θόρυβο τάσης. Αυτή η 

δουλειά παρέχει τη θεωρητική βάση και την απόδειξη ότι αυτή η παρατήρηση ισχύει. 

Εκμεταλλευόμαστε αυτή την παρατήρηση με δύο τρόπους: α) για να μετρήσουμε τη 

συχνότητας συντονισμού του ΔΠΙ και β) για να θέσουμε αποδοτικά περιθώρια τάσης με τη 

βοήθεια ειδικών προγραμμάτων που μεγιστοποιούν το θόρυβο τάσης, αυτά τα 

προγράμματα παράγονται μέσω ενός γενετικού αλγόριθμου που μεγιστοποιεί την ΗΑ. Η 

προσέγγιση μας αξιολογείται σε διάφορους σύγχρονους επεξεργαστές. Σε όλους τους 

δοκιμασμένους επεξεργαστές με την προτεινόμενη μεθοδολογία μπορέσαμε να 

παρακολουθήσουμε με επιτυχία τον θόρυβο τάσης, να αναγνωρίσουμε τη συχνότητα 

συντονισμού, να δημιουργήσουμε προγράμματα που προκαλούν υψηλό θόρυβο τάσης και 

να θέσουμε αποδοτικά περιθώρια τάσης που μειώνουν την κατανάλωση ενέργειας. Επίσης, 

αυτή η διδακτορική θέση προσφέρει την πρώτη δημόσια διαθέσιμη εφαρμογή για αυτόματη 

δημιουργία στρες προγραμμάτων. Η εφαρμογή βασίζεται σε γενετικούς αλγόριθμους και 

έχει δοκιμαστεί με επιτυχία σε πολλούς διαφορετικούς επεξεργαστές. 
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Abstract 
 

 
Inductive dI/dt voltage-noise is a growing concern in modern processors. Voltage-noise 

is caused by sudden transitions in current consumption. Voltage-noise is manifested as large 

voltage droops and overshoots below and above the nominal supply-voltage. These events 

are a threat to reliability, robust execution and hardware longevity. Voltage droops may 

cause unreliable execution, whereas voltage overshoots increase power consumption, heat 

dissipation and may accelerate the hardware aging. Modern design trends such as: a) 

aggressive low-power techniques (e.g. power-gating, clock-gating), b) high dynamic-power 

range of multicore processors, and c) high current consumption, exacerbate voltage-noise 

rendering power-delivery a critical concern. Tools for characterizing Power Delivery 

Networks (PDN) and monitoring inductive dI/dt voltage-noise are required for: a) processor 

voltage and frequency margining at the post-silicon chip testing phase and b) for designing 

voltage-noise mitigation circuits that protect processor from voltage droops and ensure 

reliable operation.  

This thesis proposes a novel methodology for PDN characterization. The proposed 

methodology is based on wirelessly sensing the PDN emanated electromagnetic (EM) 

radiation using an antenna and an instrument for analyzing the received signals such as a 

spectrum analyzer. The proposed approach has three major advantages compared to state-

of-the art PDN characterization approaches: a) it is non-intrusive and convenient as it 

doesn’t load, interrupt or physically interfere with the system in any way allowing 

monitoring the system as it is, b) it is cross-platform as all hardware emanates EM radiation, 

c) it adds zero-overhead as it does not require development effort nor on-chip/on-package 

resources. The proposed EM methodology is based on the observation that high amplitude 

EM emanations at the PDN resonance frequency are correlated with high voltage-noise. 

This thesis provides the theoretical basis and conclusive evidence that this correlation holds 
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true. We exploit this correlation for measuring the PDN resonance frequency and for voltage 

margining CPUs with the help of dI/dt stress-tests generated with a genetic algorithm (GA) 

that maximizes the amplitude of EM emanations. The EM approach is successfully 

evaluated on five different processors. On all tested processors we are able to successfully 

monitor PDN oscillations, identify the resonance-frequency and generate dI/dt stress-tests 

that cause higher voltage-noise and have higher minimum operational voltage (VMIN) than 

conventional workloads.  

Additionally, this thesis delivers GeST (Generating Stress-Tests), a GA based 

framework for automatic stress-test generation that is developed for the needs of this thesis. 

To the best of our knowledge GeST is the first publicly available framework for stress-test 

generation. The key strengths of GeST are its flexibility and extensibility as it provides an 

easy interface for using and extending the framework. 
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 Introduction 
 

1.1 Motivation 
 

The combination of higher current demand at scaled supply-voltages [66], high 

operating frequencies, aggressive low-power techniques [39] and increasing core-counts 

exacerbate supply-voltage noise for CPUs both in mobile [20][46][47] and server/desktop 

[10][42][49] market segments. Large voltage noise is a threat to robust execution because 

when the supply voltage drops below a certain threshold, timing violations or bit-flips may 

occur [10][39][66]. This may lead to silent data corruption (SDC), application or system 

crashes and general system instability [42][73]. 

 Manufacturers budget voltage margins (or guardbands) to ensure robustness even in the 

presence of worst-case voltage noise conditions1. Consequently, production systems are 

typically operated at a higher supply voltage (and/or lower clock-frequency) than necessary 

under nominal operating conditions. Accurate determination of voltage margins is critical 

since optimistic margining (where the added margins are not adequately provisioned for the 

rare worst-case noise event) can cause abrupt system-failures in the field. Conversely, 

excessive margining adversely impacts CPU energy-efficiency [9][10][42][44][56][66]. 

A key aspect of margining production systems is the determination of the worst-case 

inductive component (referred to as “LdI/dt” or “dI/dt”) of the voltage noise [10]. LdI/dt 

events are abrupt changes in CPU current demand that cause voltage noise oscillations 

excited at the Power-Delivery-Network (PDN) 1st order resonance-frequency.  The dI/dt 

voltage-noise component typically dominates over the resistive component (referred to as 

“IR”)  in the PDN of modern computing systems [20][44][55]. In comparison with aperiodic 

 
1Voltage margins are also necessary for variation effects such as temperature hot-spots, circuit-aging and process-variation [63].  

However, system-margins are typically stressed most due to LdI/dt or inductive transients. Their fast-moving nature [21][44] renders 
them difficult to compensate for using traditional adaptive techniques. 
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or isolated dI/dt events, periodic current modulations at the 1st order resonance-frequency 

reinforce the resonant noise even further [63], thereby maximally stressing system-margins. 

Commercial Electronic Design Automation (EDA) tools [5][6][15] cannot accurately 

model the time-varying CPU current due to the complex hardware/software interactions, 

particularly in multi-core configurations [10]. Consequently, design-time PDN optimization 

is inadequate and post-silicon characterization is essential for margining production systems 

[10][47]. Post-silicon characterization typically relies upon synthetic virus workloads, 

referred to as dI/dt stress tests (dI/dt viruses) [10]. Due to the inherent complexity of 

manually crafting these tests, previous work [10][41][42] introduced frameworks for 

automated generation of stress tests based on optimization techniques such as Genetic 

Algorithms (GA). These approaches rely upon the capability of the platform-under-test to 

support high-bandwidth monitoring of on-chip voltage rails or direct voltage measurements.  

There are two main approaches for direct voltage measurement: 1) specialized on-chip 

circuitry integrated into the system at design-time [2][31][46][48][53][72] and 2) voltage 

sense pins located on the package [3][36][42][66] (also known as Kelvin measurement 

points). Unfortunately, these capabilities are not yet mainstream features, particularly in 

cost- and resource-constrained mobile platforms. Moreover, on-chip approaches incur the 

Non-Recurring Engineering (NRE) design-time costs for hardware development and system 

integration. In cases where the voltage monitor is integrated into the system as a peripheral 

device, it requires additional software support (in terms of a device driver) to configure, 

calibrate and query. Alternatively, on-package measurement points directly connected to 

on-chip voltage rails do not incur design-time NRE overheads. Nonetheless, they require a 

dedicated pair of Controlled Collapsible Chip Connection (C4) [22] bumps for each voltage-

domain. This consumes valuable C4 resources that could otherwise be used for direct power-

delivery. Consequently, such support is not usually provided in resource-constrained 

platforms such as mobile CPUs (e.g. the Cortex-A53 CPU used in this thesis).  
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In this thesis, we propose an alternative approach for post-silicon PDN characterization. 

The proposed approach relies upon sensing CPU electromagnetic (EM) emanations using 

an antenna and a spectrum analyzer connected to the antenna. Compared to direct-

measurement, our approach offers the following unique advantages for resonant voltage 

noise analysis: a) is non-intrusive, as no physical connection to the CPU is required, b) has 

zero-overhead, as it does not require design time, development effort, on-package and on-

chip resources, and c) is cross-platform, as it can be applied to virtually any platform.  

Due to its general applicability, we believe that our approach provides a fundamentally 

new way for benchmarking commercial systems and at the same time democratizes PDN 

characterization and voltage noise research. Voltage noise visibility is not typically available 

in motherboards and researchers do not usually have access, when available, to proprietary 

on-chip voltage noise circuits.  Consequently, voltage noise visibility is limited to chips and 

motherboards that expose high bandwidth voltage measurements points. The proposed EM 

methodology removes these constraints by allowing basic PDN characterization to be 

performed on any CPU and motherboard without the need for direct fine-grained voltage 

measurements. 

1.2 Contributions 
 

This thesis explains the theoretical basis and provide conclusive evidence for the 

correlation between on-chip voltage noise and emanated EM power. Our measurements 

demonstrate that both on-chip voltage noise and EM signal power are maximized at the 1st-

order resonance frequency. We leverage this observation to propose a convenient, zero-

overhead, cross-platform and non-intrusive way for PDN characterization. We demonstrate 

that with the proposed EM approach, it is possible to: a) monitor periodic voltage-noise of 

large amplitude b) generate dI/dt stress tests within a GA framework that optimizes towards 

a maximum EM signal amplitude, c) rapidly measure the 1st-order resonance frequency, d) 
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detect resonance frequency shifts due to capacitance changes in multi-core configurations, 

e.g. due to dynamically switching on or off cores in a CPU cluster, e) construct Dynamic-

Voltage-Scaling (DVS) governors that are based on real-time EM monitoring and the 

minimum-operational-voltage (VMIN) of the EM dI/dt viruses; these DVS governors provide 

at least 10% power-savings over nominal voltage settings. 

Furthermore, this thesis establishes the cross-platform applicability of the EM approach 

by successfully applying it to different CPUs and Instruction Set Architectures (ISA). We 

characterize the PDN for individual CPUs across separate platforms and distinct processor-

clusters integrated on the same die. In particular, the EM methodology is applied on five 

different CPUs: two ARM multi-core CPU clusters (dual-core Cortex-A72 and quad-core 

Cortex-A53) hosted on a Juno Board [7], one x86-64 AMD desktop CPU (Athlon II X4 

645) and two Ampere Computing X-Gene ARM server CPUs (X-Gene2 8-core and X-

Gene3 32-core). Thus, the proposed approach is shown to work across CPUs of different 

market segments (mobile, desktop and server), different ISAs (ARM and x86), different 

CPU micro-architectures, different technology nodes and on CPUs that do not offer direct 

voltage measurements such as the Cortex-A53 and the X-Gene2 CPU. The efficacy of the 

EM approach is validated through direct voltage measurements (where it is feasible) and 

VMIN determination (minimum stable operational voltage for a given frequency). 

Finally, for the experimental needs of this thesis, the GeST (Generating Stress-tests) 

framework has been developed. GeST is a GA based framework for generating stress-tests. 

The EM methodology utilizes GeST for generating dI/dt viruses. GeST framework’s source 

code has been released to public. While GA based automatic frameworks for generating 

stress-tests is not a novel concept, GeST is to the best of our knowledge the first publicly 

available framework that researchers and practitioners can use for generating stress-tests. 

The main strengths of GeST are its flexibility and extensibility as GeST can be extended to 

support virtually any optimization metric, any measurement instrument and any target 
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platform. This renders GeST an ideal platform for researchers to experiment with and build 

upon. 

1.3 Document Structure 
 

The remainder of this thesis is the following. Chapter 2 discusses the theoretical 

background of this thesis, this includes among other subjects: a) CPU energy-efficiency, b) 

PDN and voltage-noise, c) dI/dt and power-viruses, d) VMIN characterization, e) prior work 

related to exploitation of EM emanations, and f) related work on GA stress-test generation 

frameworks.  

Chapter 3 presents and evaluates the GeST framework. We delve into the architecture, 

implementation and usage details of the GeST framework. We also demonstrate the 

framework’s effectiveness by generating power, IPC and dI/dt viruses on several CPUs.  

Chapter 4 proposes the EM methodology. Specifically, Section 4.1 provides the 

experimental apparatus required for the proposed approach, Section 4.2 provides both the 

theoretical explanation and the experimental findings that prove the correlation between 

inductive PDN voltage-noise and EM radiation. Sections 4.3, 4.4 provide the methodologies 

for resonance-frequency detection, and, Section 4.5 provides the methodology for dI/dt virus 

generation where we utilize GeST to conduct a GA search that optimizes towards high EM 

amplitude.  

Chapter 5 presents the experimental platforms where we evaluate the EM methodology. 

Chapter 6 evaluates the EM methodology by detecting the resonance-frequency and 

generating dI/dt viruses for the Cortex-A72, Cortex-A53, AMD Athlon II X4 645 CPU, X-

Gene2 and X-Gene3 CPUs. Chapter 7 proposes and evaluates on the X-Gene2 CPU two 

DVS governors based on the EM methodology. Finally, Chapter 8 concludes this thesis.   Zac
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 Background and Related Work 
 

This Chapter provides this thesis’ theoretical background and related work. The Chapter 

starts by discussing the factors that contribute to the CPU power-consumption and common 

techniques for improving the CPU energy-efficiency such as power-gating, clock-gating, 

DVFS, DVS etc. Then it discusses the fundamentals of PDNs and the voltage-noise 

phenomenon. Voltage-noise is one of the main subjects of this thesis. Therefore, we will 

delve deeply into related work on mitigating voltage-noise. We also provide background 

information on stress-tests (dI/dt viruses, power-virus, IPC viruses), VMIN characterization 

and all the prior work related to GA frameworks for stress-test development.  

This thesis harnesses EM emanations for PDN characterization. This approach has been 

inspired from prior work that exploits EM emanations for other purposes (e.g. performance-

profiling, security exploits etc.). Therefore, in this Chapter we also discuss related work in 

exploiting CPU EM emanations. 

2.1 CPU Power and Energy-Efficiency Techniques 
 

Figure 1 illustrates the components of the CPU power-consumption. The CPU power-

consumption is attributed to two major factors: a) the static power-consumption, and b) the 

dynamic power-consumption. The static power contribution comes from the leakage 

current. Leakage current is always consumed regardless of the CPU activity. In contrast, 

dynamic power-consumption depends on CPU activity. The dynamic power is composed 

of: a) the voltage-frequency (these are mentioned together because their values are 

intertwined) and b) the switching activity. The switching activity is equal to the activity 

factor multiplied by the capacitance.  Zac
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A lot of work has been performed for improving the energy-efficiency and reducing the 

power-consumption of multi-core general-purpose CPUs. The techniques for reducing the 

power-consumption can be broken down into three categories: a) techniques that deal with 

static power, b) techniques that deal with dynamic power consumption through switching-

activity reduction, and c) techniques that deal with dynamic power consumption through 

voltage and frequency reduction. 

2.1.1 Eliminating Static-Power 

 

First, we discuss static power-consumption reduction techniques. Power-gating is 

probably the most well-known static power elimination technique. Power-gating is 

performed by detecting idle transistors and turning them off (essentially disconnecting them 

from the PDN). Power-gating can be applied at the level of a cache line, a functional unit, a 

whole core or even a whole CPU cluster (e.g. in the case of big. Little chips). Power gating 

can be detrimental to energy-efficiency if it is not performed at the right time. The gating 

must be applied long enough to justify the delay and the dynamic-power spent to power-

back the transistors. In a typical power-gating implementation a mechanism counts the idle 

time of a functional unit; if a threshold idle time is reached, then, the functional unit enters 

a power-gated state. Power-gating has more power saving potential on floating points units 

compared to integer units. The reason is that integer units are more utilized, hence, they 

offer less power gating opportunity. Power gating a whole core or CPU cluster can be 

 

Figure 1. Power equations. 

 

 

 Pstatic = V * Ileak 

 

Pdynamic = V2
 * F * C * A 

 

Ptotal = Pdynamic + Pstatic 

 

V (voltage) F (frequency) C (capacitance) A (activity-factor) 
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instructed from OS using the ACPI interface, whereas power-gating of functional units is 

performed within the hardware. The power gated states as defined by ACPI interface start 

from C6 [83] state and above.  

Caches are perhaps the most promising component for applying power-gating. Previous 

work [84] shows that most of the time (80% of workload execution) cache lines are dead. 

Dead means that they will not be used again. This motivates the concept of cache decay 

which basically is a mechanism that tries to guess whether a cache line is dead or alive. 

Dead caches can be power gated to save power. Of-course cache decay again incurs the risk 

of wrong prediction. A wrong prediction might cause an otherwise unnecessary cache miss 

that will have detrimental impact on both performance and energy.  

The drowsy caches is an alternative approach for reducing static power consumption. 

This approach may not have the same power saving potential as cache decay but is less 

prone to detrimental effects. Drowsy caches exploit the fact that to preserve a cache line’s 

state a lower voltage can be applied. Of course, when the cache line must be accessed the 

normal voltage has to be applied back. But during times when a cache line is not accessed, 

to save static power the voltage is lowered just enough to preserve the cache line values. 

The performance penalty of the drowsy cache mechanism is due to the latency to scale back 

to normal voltage. The performance penalty is very small (1%), therefore, related work 

proposed to put all the cache periodically regardless of usefulness into the drowsy mode for 

substantial energy savings [84]. 

2.1.2 Eliminating Dynamic Power Consumption (Switching Activity) 

 

The next power saving techniques category to be discussed is related to switching 

activity reduction. Clock-gating is the most common switching activity reduction technique. 

The motivation behind clock-gating is the following. During a CPU cycle a functional unit 

might be idle i.e. no instruction is scheduled to execute on that functional unit. Still, 

switching activity is wasted even when functional units are idle because of the clock signal 
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causing unwanted bit toggling. Clock-gating prevents unnecessary switching due to clock 

signal. This is achieved by placing an AND gate between the clock signal and the flip-flops. 

The AND operation is performed on the clock signal and a control signal. The control signal 

is equal to 1 to allow the clock to reach the flip flops, unless a functional unit is idle for 1 

cycle or more. In that case the control signal is equal to 0 to not allow the clock to reach the 

flip flops. Clock gating can be performed at various granularities. Clock-gating is commonly 

used in functional units, the power savings are less compared to power-gating, but clock-

gating is more performance friendly since the latency for returning to operational state is 

negligible. Clock gating can be performed for the whole core in various degrees as defined 

by ACPI C1-C3 states. Like for the power gating C6 state, OS can orchestrate the core C1-

C3 states transitions. Researchers have proposed even more finer grain clock-gating by 

gating unused bit width of functional units [84]. The motivation stems from the fact that 

registers are very wide 32 and 64 bit, but most instructions can be satisfied with only 16bits. 

2.1.3 Eliminating Dynamic Power Consumption (Voltage-Frequency 
Reduction) 

 

Next, techniques for reducing voltage and frequency are discussed [84]. Nearly, all 

modern general-purpose CPUs and GPUs use Dynamic voltage and frequency scaling 

(DVFS) to save energy. The motivation behind DVFS is that many workloads have 

significant slack that can be exploited to run the workload at a slower speed and save energy 

at the same time. Input/output (I/O) and memory latency dominated workloads provide good 

opportunity for DVFS. Let us take as example a text processor application. This is a 

relatively easy computational application with a lot of I/O and relatively relaxed response-

time requirements (a person types about a character every 200-300ms) that does not justify 

operating the CPU at the highest CPU frequency all the time. Instead, we can lower the CPU 

frequency and the voltage to save significant amount of power (recall from Section 2.1 that 

power depends quadratically on voltage) while keeping a satisfying performance level and 
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response-time for the user. Like any other power management technique DVFS poses a risk 

of detrimental impact in performance. To avoid undesired performance reduction DVFS 

must be used only when substantial compute slack is available. The most common proxy 

for estimating compute slack and guiding DVFS decisions is the CPU utilization. Low CPU 

utilization implies opportunity for voltage and frequency reduction. DVFS decisions are 

usually guided by OS. Hardware usually exposes various voltage-frequency points (also 

known as performance-points or P-States) to the OS. The OS communicates to the hardware 

the desired performance level through the ACPI interface. A commonly used OS level 

DVFS interface is the cpufreq Linux utility. 

Lowering only the frequency (DFS) (without lowering the voltage as well) can be 

beneficial in circumstances where the system is thermally constrained or when workload is 

dominated by main memory latency. But, for non-thermal and non-memory-latency 

constrained scenarios, performing DFS most probably is not beneficial for energy-efficiency 

because the power-consumption decrease is proportional to the workload execution time 

increase (frequency affects both power and performance linearly). Therefore, for energy-

savings we usually use DVFS which scales down both voltage and frequency.  

Finally, besides DVFS, lowering only the voltage i.e. DVS can be also applied for 

dynamic power reduction. Lowering the voltage without scaling the frequency reduces the 

available voltage noise margin. If voltage drops very low error can happen. Therefore, DVS 

is a less common practice than DVFS. DVS requires either detection, correction and roll-

back mechanisms [34] to deal with potential instability due to low voltage [21], or ability to 

monitor critical path and adjust voltage accordingly [44]. 
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2.2 Power-Delivery-Networks 
 

2.2.1 PDN Resonance-Frequencies 

 

Figure 2 (a) shows a simplistic representation of the PDN of a die-package-PCB system 

[20][55]. The current demand due to on-chip switching transistors is modelled as a lumped 

current source, ILOAD. Explicit decoupling capacitors (henceforth, referred to as decaps) and 

non-switching, but powered-on, transistors act as localized charge reservoirs that provide 

the high-frequency component of the demand current, ILOAD. The on-chip power-grid 

resistance is modelled as a lumped resistor, RDIE, connected in series with CDIE. The total 

die current (IDIE) is sourced through the inductive power-line traces of the package and the 

PCB, represented by a series R-L (resistor, inductor) equivalent circuit. The discrete decaps 

on the PCB and package are represented by an ideal capacitance (CPKG, CPCB) in series with 

its effective series inductance (ESL) and effective series resistance (ESR).  Figure 2(b) 

shows the input impedance of the distributed RLC network as seen from the die. The 

impedance spectrum shows multiple resonance peaks due to multiple LC-tank circuits. The 

highest impedance peak, referred to as the 1st-order resonance peak is attributed to the die-

capacitance (CDIE) interaction with its counterpart inductance (LPKG). The 1st-order 

resonance also occurs at the highest frequency (50MHz-200MHz) compared to the 2nd- (~1-

10MHz) and 3rd-order (~10KHz) resonances that are due to downstream capacitor networks. 

The resonance frequencies also manifest in the time-domain when the PDN is excited 

by a step-current excitation (Figure 2 (c)). Micro-architectural events such as branch 

mispredictions [20] can trigger these oscillations in the PDN. Power-supply oscillations of 

larger magnitudes can be set off within the supply network due to sustained program activity 

with alternating periods of high-current and low-current consumption within a loop (e.g. 

due to dI/dt virus) [42][73]. When the frequency of the time-varying current aligns closely 

with the 1st-order resonance frequency, voltage oscillations are maximized in amplitude. 
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High voltage oscillations can lead to bit-flips in arrays, timing errors in logic paths 

[42][65][66][73] and reliability issues due to gate-oxide stress [1][65]. Such periodic events 

often result in system/application crashes and/or incorrect execution output [42][56]. 

2.2.2 IR drop versus dI/dt noise 

 

This thesis focuses on the dI/dt voltage-droop (or AC droop) but the total voltage-droop 

magnitude does not solely depend on the dI/dt effect. The magnitude of a voltage-droop is 

the sum of the dI/dt and the IR droop (or DC droop) [10]. As illustrated in Figure 2 a PDN 

includes resistive and inductive PDN components. The resistive PDN components (RVRM, 

RPB, etc.) produce the IR drop, whereas the inductive components (LVRM, LPCB, etc.) produce 

the dI/dt droops. IR drops can be mitigated with techniques that compensate the voltage 

drop by dynamically adding a voltage-offset during runtime. A well-known technique for 

dynamic voltage-offsetting is the Load-Line calibration. Load-Line calibration is available 

on most high-performance PCBs. In contrast to IR droops, dI/dt droops due to their fast-

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) A simplified model of the PDN [55]. The impedance as seen by the die has multiple 

resonance frequencies, shown in the frequency-domain response in (b) and time-domain response to 

a step-current excitation in (c) 
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moving nature cannot be compensated with Load-Line calibration. Other more advances 

techniques must be employed (that are discussed in the next Sections of this Chapter). 

IR and dI/dt voltage droops are stimulated by different factors and they are generated by 

different workloads. IR drop increases proportionally to the CPU power-consumption. 

Broadly speaking, higher CPU frequency and higher current draw lead to higher IR drop. 

Contrary, to raise the dI/dt droop, repetitive high current stimulus at a rate equal to the 1st 

order resonance-frequency is required. Therefore, increasing the CPU frequency while 

executing a resonant workload will not necessary increase the voltage-droop.  

To illustrate these differences we run and measure the voltage droop caused by two 

different workloads: a) a power-virus that targets maximum power-consumption, and b) a 

dI/dt virus that targets the PDN resonance-frequency by causing sudden high current-draw 

at a rate equal to the resonance-frequency.  We perform this experiment on a Cortex-A57 

CPU hosted on an ARM Juno board. This CPU supports measuring dI/dt voltage-droops 

through a high-bandwidth On-Chip-Digital-Storage-Oscilloscope (OC-DSO). We run the 

two workloads for different CPU frequencies. At each frequency we measure the current 

draw and the voltage-droop. Figure 3 shows the power-virus’ results and Figure 4 shows the 

dI/dt virus’ results. 

First and foremost, the figures confirm two fundamental expectations: a) that the power-

virus draws significantly more current than the dI/dt virus and b) that the current 

consumption grows linearly to the CPU operating frequency for both workloads. Regarding 

voltage-droop, the measured voltage-droop for the power-virus shows linear dependence 

with the CPU frequency. This is the case because the power-virus exercises the IR drop. In 

contrast, the dI/dt virus measured droop does not show linear dependence to the CPU 

frequency. The dI/dt virus exercises the dI/dt droop. Hence, the measured voltage droop 

increases with CPU frequency until the resonance-frequency is achieved. This occurs at 

1.2GHz, this is the operating CPU frequency at which the dI/dt virus stresses the resonance-
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frequency. Further increase in the CPU frequency moves the virus’s stress-frequency 

beyond the 1st-order resonance. This causes a reduction in the measured voltage droop.  

 

 

 

Figure 3. Voltage droop and current consumption for a power virus at various CPU frequencies. 
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Figure 4. Voltage droop and current consumption for a dI/dt virus at various CPU frequencies. 
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2.3 Voltage Margins 
 

The classic approach for dealing with voltage-noise is adding a voltage margin i.e. 

running the chip at a higher voltage to provision for worst case voltage droops [63]. This is 

very practical for ensuring robust execution, but it leads to unnecessary waste of power. 

Usually the voltage margins are much more pessimistic than required. Manufacturers are 

forced to set pessimistic voltage margins because workload variations render the in the field 

voltage-droop magnitude very hard to predict. Moreover, due to hardware static variations, 

some parts may have higher tolerance to voltage-droops than others. Therefore, a voltage-

margin that ensures robust execution for a slow part, limits the energy-efficiency of a faster 

part. Ideally, each chip should adopt different margins.  

A partial solution to the issue of pessimistic margining is the speed-binning (or 

frequency-binning). Speed-binning refers to making different product models out of the 

same chips [63]. The chips are categorized to speed-bins (frequency-bins) after running 

various representative test workloads on all chips. Broadly speaking the product models will 

differ on their advertised nominal operating frequency (e.g. Model X runs at 3GHz, Model 

Y runs at 2.8GHz etc.) and on their price. With speed-binning the faster chips are not forced 

to work at slower frequencies and this partially solves the energy-inefficiency issue. But 

speed-binning does not tackle completely the issue of static variations as even in the same 

frequency-bin static variations still exist. 

Constructing dI/dt viruses and characterizing their VMIN is another approach for reducing 

the pessimistic margins [10]. As we show in this thesis and in prior work [42], the VMIN of 

a proper dI/dt virus is higher than the VMIN of conventional workloads, thereby, the dI/dt 

virus’s VMIN can be used as a guideline to determine the operating voltage for a given 

frequency. 

 

Zac
ha

ria
s H

ad
jila

mbro
u



16 

 

2.3.1 VMIN Characterization 

 

VMIN is the minimum voltage at which a chip (CPU, GPU etc.) operates correctly for a 

given frequency. A chip can have different VMIN per workload as the execution paths and 

the voltage droop magnitude differs from workload to workload. To determine a workload’s 

VMIN  we perform VMIN characterization. This procedure involves running the workload for 

various voltage values until instability is observed. Typically, the VMIN characterization 

starts from high voltage and after each successful workload execution, the voltage is lowered 

in increments of 10mV. The VMIN test stops at the first voltage where instability is observed 

(SDC, crash etc.). This voltage is tagged as the crash-point. The VMIN is equal to the crash-

point plus 10mV (or any other voltage increment that is selected). Figure 5 illustrates the 

VMIN characterization flow. 

 

 

 

 

Figure 5. VMIN characterization flow. 
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2.4 Voltage Margin Elimination Techniques 
 

A voltage margin elimination approach is the critical path monitoring (CPM) [44].  

CPMs are on-chip sensors that can measure at real-time the CPU’s available timing margin. 

CPM can be combined with an actuator that can adjust the voltage or operating frequency. 

For instance, when the available timing margin is high, then the actuator can reduce the 

operating voltage to reduce the power or increase the CPU frequency to improve the energy 

efficiency. If the timing margin is low, then the CPU frequency should be decreased, or the 

voltage should be increased to ensure stability. Even in the presence of this technique, a 

fixed voltage margin for the worst-case voltage droops must be maintained to ensure 

stability in production setups [44]. Therefore, in practice this timing guard-band scheme 

adjusts the voltage (or frequency) depending on workload’s voltage noise magnitude to 

maintain a fixed margin. This is a more energy-efficient approach compared to the 

conventional approach of maintaining fixed operating voltage, because with fixed operating 

voltage a lot of power is wasted for common workloads that do not cause high voltage-

noise. 

A more aggressive approach for voltage margin elimination is Razor [21]. Compared to 

CPM, Razor can provide higher energy savings, but it also incurs higher area and penalty 

overhead. Razor is based on running the chip at aggressive voltage/frequency conditions 

and relying on error-detection and roll-back mechanism to recover the pipeline from errors. 

Razor replicates critical path flip-flops. One flip-flop operates at aggressive margin 

conditions and provides the speculative value. The other flip-flop operates at safe conditions 

and provides the golden reference. If the flip-flop values do not match, then a recovery 

mechanism for bringing the pipeline to the correct state is started. 
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2.5 LdI/dt Noise Mitigation Techniques 
 

The most common approach for mitigating dI/dt voltage-noise is to add on-chip 

capacitance [55]. Capacitance affect voltage-noise in two ways. First, higher capacitance 

helps in mitigating the voltage droop magnitude. Adding decoupling capacitors is a known 

design-time technique to reduce voltage droop magnitude [63]. This approach has its 

limitations though, as cost, area overheads and leakage limit the amount of capacitance that 

can be added. In general, well connected PDNs that connect many hardware components, 

and, thus, incorporate higher capacitance are considered beneficial for voltage noise 

reduction [37]. The second effect that capacitance has on voltage-noise is that higher 

capacitance has inverse relationship with resonance-frequency [55]. Therefore, the 

resonance-frequency decreases with more capacitance. In terms of voltage-droop 

magnitude, shifting the resonance-frequency can be either beneficial or detrimental 

depending on which frequencies a workload exercise. 

The vast majority of voltage droops is caused by periodic activity of loops [33][85]. If 

these loops happen to match the PDN resonance-frequency, then the voltage noise is 

amplified even further. Therefore, authors in [58][59][60] examined ways to modulate loop 

frequency to avoid resonant voltage-noise. The proposed approaches require the capability 

to monitor current at high bandwidth. Monitoring current is more advantageous over 

monitoring voltage in this case, because resonant current behavior precedes voltage noise. 

The authors exploit a phenomenon called “maximum repetition tolerance” which is the 

maximum resonant current repetitions that can happen before a large voltage emergency is 

triggered. The maximum repetition tolerance helps preventing unnecessary reactions to 

voltage droops that are not dangerous and at the same it helps ensuring that a mitigation 

mechanism will be engaged before it is too late. For mitigating voltage droop when detected, 

stalling the pipeline by stalling instruction issue or instruction fetch has been proposed by 

the authors. These mitigation approaches incur a performance penalty each time an 
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emergency is detected. Other authors [39] have proposed to clock-gate or turn-on functional 

units on purpose to reduce or increase current consumption. Turn-on can be used to 

compensate voltage droop and clock-gate to smooth-out voltage overshoot. 

The adoption of multi-core CPUs compared to single core CPUs raises the dynamic 

power variability and hence increases the susceptibility to voltage transients. But at the same 

time, it gives opportunity for voltage noise mitigation with destructive scheduling [66]. 

Essentially, some workloads when co-scheduled on different cores of a multi-core CPU 

have a damping effect on voltage noise. Other workload combinations amplify voltage 

noise. The key is to find which workload combinations decrease the voltage noise and utilize 

this information in scheduling decisions. Workloads can have destructive voltage-noise 

interference because their current consumption does not align. Destructive interference can 

be also applied within multi-threaded application by misaligning the threads 

synchronization barriers [49]. Other work performed in a modern multi-core IBM server 

processor that supports droop mitigation mechanisms has shown that the server efficiency 

is limited by the IR drop [75]. Therefore, they suggest in multi-socket servers, to evenly 

balance the workload across the CPU sockets to minimize IR drop for better energy 

efficiency. 

Using ECC feedback as a proxy of voltage noise and emergency conditions has been 

proposed in [9]. The idea is to lower the voltage until ECC errors start to occur. This 

approach applies only to chips that have error protected ECC pipelines. Other work shows 

that predicting safe VMIN through workload performance counters signature is possible [56]. 

Another prediction scheme [63] proposes voltage noise prediction based on sequences of 

micro-architectural events and instruction that are likely to cause voltage noise (e.g. branch 

instructions, pipeline flushes etc.). A micro-architectural structure inspired by branch 

predictors but for prediction of voltage noise emergency is proposed. This mechanism also 

relies on a voltage sensor for training the predictor as well as a roll-back mechanism in case 
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of wrong emergency prediction that causes CPU malfunction. A voltage emergency 

misprediction in such configuration induces performance penalty. 

Voltage droop mitigation circuits have been proposed and implemented on some 

processors [14][26][31][43][46][62][74]. A common mitigation circuit setup includes: a) an 

on-die voltage monitor sensor, b) an actuator that mitigates the voltage noise either by 

pipeline throttling (stall instruction issue or fetch) or reducing the CPU frequency (e.g. 

adaptive-clocking [14])  and c) a voltage threshold indicating when the actuator should be 

enabled (also in case of frequency modulation the amount of modulation is expressed). 

Setting the right threshold can be tricky. A conservative (pessimistic) threshold might lead 

to performance penalty whereas an optimistic threshold might translate to instability.  

2.6 LdI/dt noise on GPUs 
 

Besides CPU voltage noise, voltage on GPUs has been studied as well. In fact, GPUs 

may suffer more from voltage noise due to their higher current consumption. Contrast to 

CPU research, most GPU voltage noise research has been performed with the help of GPU 

voltage noise simulators e.g. the GPUVolt simulator [86]. This might be an indication that 

interfaces for direct voltage noise measurements on GPUs are seldomly found. Generating 

high inductive noise on GPUs should be easier compared to CPUs. The GPU cores are much 

simpler compared to complex general-purpose CPU out-of-order superscalar pipelines. 

Moreover, GPUs have much more support for synchronizing core execution which assists 

the generation of large dI/dt swings. Therefore, researchers have shown that dI/dt viruses 

can be achieved by relatively simple manual written code that activates and deactivates 

functional units with periodicity that matches the resonance-frequency or using instructions 

that are known to cause low and high-power consumption [70][87].  

Similar techniques to CPU have been proposed for voltage noise mitigation on GPUs. 

GPUs due to high core counts are susceptible to static variations. Researchers have proposed 
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the use of CPM combined with clock gating to throttle down cores that do not have enough 

timing margin [87]. Other work reaches to the interesting conclusion that on GPUs normal 

workloads have higher 2nd order droop compared to 1st order droop [45]. This is the case 

because the 1st order droop is more sensitive to miss-alignment of cores. In fact, alignment 

with so many cores (>100) at ~100MHz is hard to achieve. Whereas events as second order 

droop around 1MHz are aligned easier. They have identified that the main events that cause 

1st order droops for GPUs are dispatch stalls and register file current variations. Events that 

cause 2nd order droops are instruction and data cache miss stalls. For droop mitigation they 

suggest blocking dispatch unit and delaying system wide activity. Last, related work has 

examined the GPU behaviour at low voltages. The researchers have shown that performance 

counters can be utilized for workload VMIN prediction [88]. 

2.7 EM emanations exploitation 
 

Previous work has exploited EM radiation for various objectives. EM emanations are a 

known security side channel for snooping information [16][17][18][29]. Other work 

leverages EM for non-malicious uses. In particular, [68] proposed non-obtrusive software 

profiling, [76][77] proposed counterfeit detection and [52] proposed a malware detection 

scheme based on EM emanations. Our work also leverages EM radiation, but for addressing 

a different problem: voltage noise and PDN characterization in high-performance system-

design. Other work [30] proposes architectural and compiler changes to reduce CPU EM 

interference. 

2.8 Stress-Tests 
 

Broadly speaking, stress-tests can be classified into three categories: a) stress-tests that 

maximize specific micro-architectural (uArch) metrics, such as memory bandwidth, IPC 

and cache-misses, b) stress-tests that maximize power consumption and temperature, 

commonly referred to as “power-viruses”, and c) stress-tests that maximize voltage noise, 
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also known as “voltage-noise viruses” or “dI/dt-viruses”. This work shows that GeST can 

successfully generate stress-tests for all three categories. In particular, we use the framework 

to generate stress-tests that maximize CPU IPC, power, temperature and dI/dt voltage-noise. 

While this work focuses on the CPU there is nothing fundamental that prevents using GeST 

for other processor components as well, for instance the last level cache (LLC) or for an 

integrated accelerator. A brief discussion on each of the three stress-tests categories follows. 

2.8.1 Performance Stress-Tests 

 

Stress-tests for maximizing specific uArch metrics are mainly useful for performance 

benchmarking purposes. The AIDA test suite [91] is a good example of benchmarking 

stress-test software that is commonly used to test desktop and mobile system’s performance. 

This suite includes various benchmarks to test the performance of specific CPU units (e.g. 

floating-point unit) and specific functions (e.g. hashing). It also includes memory latency 

and read/write bandwidth tests as well as specific test benchmarks for GPUs and disks. 

Besides performance testing, previous work has proposed using stress-tests that target 

specific CPU parts (ALU, FPU, L1D, L1I, L2 and L3 caches) to characterize the CPU 

minimum operation voltage (VMIN) [92] and to generate power-models and an energy-per-

instruction (EPI) profile [90].  

2.8.2 Power-Viruses 

 

 Power-viruses maximize both sustained power consumption and heat-dissipation [57]. 

They are useful for characterizing a system’s power and thermal margins as well as the IR 

drop. In addition, they can check thermal stability, in particular, of overclocked systems (set 

to run at a higher than nominal voltage and frequency). Power-viruses usually maximize the 

micro-architectural activity by issuing many instructions per cycle [40]. Prime95 [61] is a 

well-known test program that maximizes power consumption and it is often used to check 

the stability of over-clocked CPUs.  
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2.8.3 LdI/dt stress-tests 

 

Voltage-noise viruses attempt to maximize CPU voltage fluctuations [10][41][42] and 

they have different characteristics from power-viruses. Rather than keeping a sustained high 

current (I) consumption, dI/dt stress-tests attempt to cause sudden transition from very low 

to very high current consumption. Abrupt current increase causes the voltage to drop low. 

Periodic current surges that match the CPU’s PDN 1st order resonance-frequency maximize 

the CPU voltage droops and overshoots [10][41][42] like shown in Figure 6.    

 Since low voltage operation may lead to malfunctioning [42][56], dI/dt viruses are very 

effective timing-error stability-tests. Voltage-noise viruses typically cause higher voltage 

drop than power-viruses because the dI/dt component dominates over the IR drop. The 

lowest voltage at which a dI/dt virus runs correctly can provide a good indication of where 

to set the operating voltage of the CPU (for a given operating frequency).  

Typically, a dI/dt virus is a loop of assembly instructions fine-tuned to cause current 

variations at a rate equal to the PDN’s 1st order resonance-frequency. To achieve this the 

virus should have the following traits: a) the loop should be executed repeatedly, b) a current 

surge is caused at each loop iteration, and c) the loop iteration length in cycles is equal to 

the CPU cycles that can fit inside a resonance period (1/resonance frequency). To develop 

dI/dt viruses high bandwidth voltage measurements are required to measure the maximum 

voltage droop or the maximum peak-to-peak voltage swing. This is achieved either through 

external oscilloscope connected to on-package voltage sense points or internal on-chip 

voltage sensors. Previous work [41][42] has proposed generating dI/dt viruses with a GA 

that maximizes voltage-noise through on-package voltage sense points. This thesis also uses 

GA to maximize voltage-noise but through maximizing EM emanations amplitude. 
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2.9 GA for Stress-Test Generation 
 

Table I provides an overview of the state-of-the-art GA stress-test generation 

frameworks. We consider the pairs of works [41][42], and [27][89] as each representing the 

same framework. Particularly, the work in [41] has evaluated a dI/dt GA framework on  a 

simulated environment and subsequently on real multi-core hardware [42]. Similarly, the 

work in [89] generates GA power viruses for single-core CPUs and a latter extension on 

multi-core CPUs [27]. In a different line of work, Joshi et al. [40] evaluated a power-virus 

GA framework on an Alpha ISA single-core simulator and Polfliet et al. [57] evaluated a 

power-virus GA framework on real-hardware using x86 multi-cores. 

 

 

Figure 6. Resonant buildup that leads to very high voltage droops and overshoots during dI/dt virus 

execution on a x86 CPU. Measured with external Oscilloscope and active differential probe 

connected to on-package measurement pads. 
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As shown in Table I, there are two dominant approaches in designing GA frameworks 

for stress-test generation: a) based on an abstract-workload model and b) based on 

instruction-level primitives (usually assembly instructions). In the abstract-model 

frameworks the individual is a vector of workload related parameters such as instruction-

mix, register-dependency distance, memory-stride profile, branch transition rates etc. The 

GA operators are performed on this abstract workload profile. A workload generator 

stochastically generates the assembly (or higher-level language) code based on the values 

of the abstract model parameters. On the other hand, for the instruction-level optimizations 

the individual is the actual source code of the virus. The GA performs the optimization 

directly on the source-code and has full-control on the instruction-mix, instruction-order and 

instructions’ operands. GeST as presented in Chapter 3 utilizes the instruction-level 

optimization approach. 

Table I. Comparison of related work on GA frameworks. 

Framework Optimization 
Type 

Optimization 
Language 

Evaluated-
On 

Metrics 
Evaluated 

Component 
Stressed 

References 

AUDIT Instruction-
Level 

x86 ISA Real-
Hardware 
/ 
Simulator 

dI/dt CPU [41][42] 

MAMPO Abstract-
Workload 

SPARC ISA Simulator power CPU+DRAM [27],[89] 

Joshi et al. Abstract-
Workload 

Alpha ISA Simulator power CPU [40] 

Powermark Abstract-
Workload 

C Real-
Hardware  

power Full-System [57] 

GeST Instruction-
Level 

ARM,x86  Real-
Hardware 

dI/dt,power CPU this thesis 
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An advantage of the abstract workload model is that it reduces the design space. A 

disadvantage of the abstract model is that it fails in optimizing the instruction order and the 

instruction opcodes simply because these parameters are out of GA control. Previous work 

[90] reports that instruction-order can make up to 17% difference in power for the same 

activity factor and instruction-mix.  

Moreover, knobs typically found in abstract-workload frameworks that allow fine tuning 

memory accesses and branch behavior, through parameters such as memory stride and 

branch transition rate, seem not so relevant, at least, for high power and dI/dt workloads. As 

reported in previous work [40][57] and confirmed from this thesis (Section 3.3) power-

viruses are characterized by high IPC, very predictable branches and extremely high L1 hit 

rates. These characteristics can easily be achieved with instruction-level optimization. 

Regarding dI/dt optimization, all previous work utilized instruction-level optimizations 

[10][41][42]. This is the case since dI/dt optimization is very sensitive to the workload 

frequency that must match the PDN resonance frequency. For such optimization search, 

instruction-order is more important than disruptive events such as cache-misses and branch-

misprediction that cause non-determinism and limit the capacity to control the workload 

frequency [10]. 

Another design choice of a GA framework is the optimization language. Most 

frameworks prefer generating assembly code except [57] that prefers a high-level language 

like C. The advantage of using higher level language is that it makes the framework versatile 

to the hardware platform of interest. Using a higher-level language makes sense in 

conjunction with an abstract workload model. For instruction-level optimization this is not 

so practical because it prevents GA to directly optimize the instruction type mix and order 

(the final instruction order and types depend on the compiler). For GeST we prefer the 

assembly instruction level optimization. The versatility of GeST that allows its use with any 

hardware platform stems from providing an interface to the experimenter to specify the 
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instructions that will be used in the optimization. Thereby, this allows the experimenter to 

use GeST to customize and optimize for any ISA. 

Finally, another important GA framework aspect is the component it targets. Most works 

justifiably target the CPU as it is generally accepted that CPU is the most active and power-

hungry component. In [57] authors generated full-system stress-tests that also stressed the 

network-interface-card and hard-disk. This is achieved by adding a thread that sends 

network packets and a thread that performs disk reads, the invocation frequency of these 

threads is a parameter of the abstract-workload-profile. GeST is as an instruction-level 

optimization framework that primarily targets CPU, but it is also applicable to any other 

component that can be stressed through a stream of instructions. For instance, with GeST is 

possible to stress LLC or DRAM by instructing the framework to optimize towards cache-

misses and providing in the input file load/store instruction definitions with various strides, 

base memory registers and various min-max immediate values. We are currently 

investigating such extensions.  
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 GeST Framework 
 

This Chapter presents and evaluates the GeST framework. GeST is a GA framework 

that is developed for the requirements of this thesis. GeST source code has been publicly 

released [78] and a paper dedicated to the framework is published in ISPASS 2019 [79].  

GeST, given a user-specified set of assembly instructions and operands, attempts to find 

the instruction mix, order and operands that maximize a target metric. GeST is extensible 

as it offers an easy interface to build upon. A user can define the instructions, which the 

optimization search uses, by only changing input configuration parameters. This renders the 

framework compatible with any ISA. Moreover, an experimenter can script custom 

measurement procedures and custom fitness functions (the function that drives the GA 

optimization) in a plug-and-play fashion using the template measurement and fitness 

software classes provided in the framework. The user defined measurement scripts and 

fitness functions are easy to integrate in the framework by simply changing the 

configuration parameters without performing any change in the framework’s core source 

code. We demonstrate the power of the framework’s extensibility and flexibility by: a) 

generating stress-tests that maximize different target metrics such as power, temperature, 

and dI/dt voltage-noise, b) using the framework with various measurement procedures and 

optimization metrics such as software accessible counters (e.g. performance counters) and 

external instruments (such as oscilloscopes), c) generating stress-tests on mobile ARM and 

server-grade ARM and x86 CPUs, d) generating stress-tests on bare-metal and OS execution 

environments, and e) using both simple as well as complex multi-objective fitness functions. 

The rest of the Chapter is organized as follows: Section 3.1 presents GeST architecture 

and implementation details, Section 3.2 provides the platforms we use to evaluate GeST, 

Section 3.3 demonstrates the capability of GeST to generate stress-tests that maximize 

power consumption, temperature and IPC, and, in Section 3.4 we highlight the framework’s 
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capability to generate dI/dt voltage noise stress-tests with the help of an external 

oscilloscope connected to on-package voltage-sense pins (later in Chapter 4 we use GeST 

to develop dI/dt viruses by utilizing EM measurements).  

3.1 GeST Framework Description 
 

GeST is written in Python 3 and takes as inputs xml files that define configuration 

parameters. The framework high-level overview is shown in Figure 7. The framework can 

be broken down into 5 major parts: the inputs, the outputs, the GA engine, the measurement 

component and the fitness evaluation function. Next, we describe in detail each of these 

components. 

3.1.1 GA Engine 

 

The GA engine is the heart of the GeST framework and coordinates its execution. GAs 

optimize a target metric by applying operators inspired by natural evolution such as 

selection of fittest individual for breeding, exchange of genes (crossover) and mutation. 

Previous work has shown that GAs can generate workloads that stress the system worse or 

comparably to manually written stress-tests with little human guidance within few hours 

[27][41][42][57]. Our findings clearly confirm the GA suitability and effectiveness for 

stress-test generation. A typical GA flow is shown in Figure 8. A short description of each 

GA step follows:  

• Seed Population: The first step is to create an initial seed population (generation). 

The population is a set of assembly instruction sequences. In GA terminology, each 

sequence of assembly instructions represents an individual of the population.  The seed 

population can be either a new random initial population or a population from a previous 

GA run. In the case of a random initial population the individuals are randomly generated 

based on the user-specified instructions, operands and loop-size. 
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Figure 7. GeST overview. 
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• Measure Individuals: The second step involves compiling each individual, executing 

the resulting binary, measuring the metrics of interest during the binary execution and 

assigning a fitness value to the individual. In GeST the user defines the measurement 

procedure and fitness function as shown in Figure 7.  

• Creating next generation: The algorithm creates a new population after all 

individuals are measured. The new population is created by selecting the fittest individuals 

as parents (e.g. the ones that scored the highest average power), exchanging instructions 

between the two parents (crossover) and performing mutation. A mutation operation 

converts an instruction or an instruction-operand (such as a register) into another, with a 

conversion probability, referred to as the “mutation rate”. For instance, if the mutation rate 

is equal to 2%, then each instruction has a 2% probability to be mutated.  

Figure 9 demonstrates, with the help of an example, how we generate a new population 

by applying tournament selection, one-point crossover and mutation operators. The 

procedure demonstrated in the figure is performed repeatedly until the desired population 

size is reached. Note that for this example each individual consists of only four instructions. 

First, we randomly pick five individuals from the population and select from them as 

“parent1” the fittest individual. The same procedure is applied to select “parent2”. Then a 

random point in the instruction stream is selected for the crossover between the two parents. 

 

Figure 8. A Typical GA flow. 

 

Seed

Population

Measure

Population

Selection 

(Parents)
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(Parents)
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In the example the crossover point is the 2nd instruction. This means that the “child1” will 

inherit the first half from the “parent1” and the second half from “parent2”, while “child2” 

will inherit the first part from “parent2” and the second part from “parent1”. Finally, the 

example demonstrates the mutation operator. Mutation can be performed for a whole 

instruction i.e. the whole instruction is randomly transformed to a new instruction, or an 

operand of the instruction i.e. an operand is transformed to another operand. For “child1” 

the r2 register of the SUB instruction transforms to r5, while for “child2” the STR instruction 

transforms to LSL and the LSL operands are randomly generated. 

Table II shows the GA related configuration parameters and their values that we 

empirically found to work well in our experiments. A key observation from our work is that 

relatively few instructions are sufficient to stress the CPU. Loop lengths of 50 instructions 

prove sufficient to cause large power consumption or high IPC. Voltage noise optimization 

is more sensitive to loop-length because the dI/dt noise is highly related to the PDN 

 

Figure 9. Demonstration of GA operators. 

 

Parent2

ASR r0,r1,#31

STR r8, [r11,#4]

MLA r3,r4,r5

SUB r3,r1,r2

1-point crossover
Parent1

ADD r0,r1,r2

MUL r3,r4,r5

SUB r3,r1,r2

LDR r8, [r11,#4]

Child1

ADD r0,r1,r2

MUL r3,r4,r5

MLA r3,r4,r5

SUB r3,r1,r2

Child2

ASR r0,r1,#31

STR r8, [r11,#4]

SUB r3,r1,r2

LDR r8, [r11,#4]

Tournament selection

Select the strongest of 

them to be the parent1

Randomly pick 5 individuals 

from the current population

Select the strongest of 

them to be the parent2

Randomly pick 5 individuals 

from the current population

M utation

Child1

ADD r0,r1,r2

MUL r3,r4,r5

MLA r3,r4,r5 

SUB r3,r1,r5

Child2

ASR r0,r1,#31

LSL r3,r1,#31

SUB r3,r1,r2

LDR r8, [r11,#4]
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resonance frequency. A rule of thumb that is found to work well for dI/dt noise is to have 

the loop instruction length equal to IPC x clock_frequency / resonance_frequency (similar 

to what authors used in [41]). The IPC should be roughly equal to 

MAX_THEORETICAL_IPC / 2. The rationale behind this is that dI/dt should contain low 

and fast activity phases hence the IPC should be somewhere in the middle (we explain in 

more detail this heuristic in Section 4.5). In our experience, the aforementioned equation 

typically results in loop lengths of 15 to 50 instructions. Another recommendation, 

supported from experimental findings, is that mutation rate should be low enough so that 

only one or at-most two loop instructions are mutated at a time. Higher mutation rate might 

impede the GA convergence. So, if the target is one mutated instruction, then for loop 

lengths of 50 instructions we need 2% mutation rate, for 15 instructions we need 8%.  

Also, we have found that optimization search converges faster if children preserve some 

of the instruction order found in their parents (this is especially true for maximum power 

and maximum dI/dt search). Hence, to accelerate the GA convergence we prefer one-point 

crossover that does a better job in preserving the instruction-order of strong individuals 

compared to uniform-crossover (another well-known crossover operator), where each 

instruction has an equal probability to be swapped among the parents. 

Additionally, we use elitism (automatically promote some of the fittest individuals to 

the next generation) because according to literature [50] this feature helps GA convergence 

for most optimization problems. We apply elitism by promoting the fittest individual to the 

next population. Regarding population size, we use populations of 50 individuals.  Authors 

[50][95] showed that for most optimization problems populations sizes between 50 and 100 

individuals are sufficient. Given the relatively high hardware measurement time per 

individual (in the order of seconds), we choose population size of 50 individuals in order to 

keep the GA execution time as low as possible. Finally, for selection method we use 

tournament selection because it is generally considered as one of the most balanced selection 
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methods in terms of computational efficiency, implementation-ease and GA growth rates 

[50][96].  

3.1.2 Inputs 

 

The GeST inputs consists of the main configuration file and the template source code. 

We describe in detail the format and use of these files. The main configuration file is a xml 

file that specifies: a) the GA engine related input parameters (population size, mutation rate 

etc.), b) the instructions and operands used in the GA search, and c) various other 

parameters, such as, the directory where the results will be saved and the names of the 

measurement and fitness classes to be used by the GA search. GA engine related 

configuration parameters (individual size, mutation rate etc.) are explained in Section 3.1.1. 

The following discussion focuses on how to specify the instructions and operands used by 

the GA optimization search. 

The registers, immediate values and instructions used by the GA optimization are 

defined in the main configuration file. Figure 10 shows an example of how a user can define 

an instruction and its required operands. The instruction in the example is the ARM ISA 

LDR (load from memory). The first required parameter is the instruction name, it is used to 

Table II. GA parameters. 

Parameter Default Values 

population_size 50 

Individual Size (number of loop 

instructions) 15-50 

mutation_rate 0.02 - 0.08 

crossover_operator one point crossover 

elitism (Best individual promoted to next 

generation) TRUE 

parent_selection_method Tournament Selection 

tournament_size 5 
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identify the instruction and must be unique. The second parameter is the number of 

instruction operands. LDR has 3 operands: a) the register where the result will be written, 

b) the register that holds the base memory address, and c) an immediate value that holds the 

memory offset. These operands must be separately defined in the same configuration file 

(also shown in the figure). The instruction definition links to the operand definitions through 

the operand ids. In our example, the third to fifth instruction-definition parameters define 

the operand ids which are “mem_result”, “mem_address_register” and “immediate_value”. 

If the instruction definition contains an undefined operand id, the framework will terminate 

the execution. In addition, if the instruction definition contains incompatible to the ISA 

specification operands, then generated instructions sequences that contain this instruction 

will fail to compile. It is user’s responsibility to provide the right inputs so that the generated 

instructions sequences will compile and will not crash during execution. The user should 

define the memory instructions and their operands in a way that prevents random mutation 

that leads into illegal memory access. To prevent random mutation in our GA runs we set 

the memory instruction’s base address register to the stack pointer address (this can be done 

by simply adding an assignment statement in the template source code file before the loop 

body), then we restrict the memory offset to values that do not exceed the stack size (for 

 

Figure 10. Example of an instruction definition and its necessary operands. 

 

 

<operand

id="mem_result"

values="x2 x3 x4"

type="register" >

</operand>

<operand

id="mem_address_register"

values="x10"

type="register“>

</operand>

<operand

id=“immediate_value"

min="0"

max="256"

stride="8"

type=“immediate"

>

</operand>

<instruction

name="LDR"

num_of_operands="3

operand1=“mem_result"

operand2="mem_address_register"

operand3=“immediate_value“

"format="LDR op1,[op2,#op3]"

type="mem"

> </instruction>
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example in Figure 10 the maximum allowed memory offset from the stack pointer address 

is 256 bytes). With that said, even if some individuals fail due to compilation or execution 

errors the GA optimization will implicitly discard them because their fitness value will be 

low. Therefore, as long as these illegal cases are rare, they will not impede GA convergence.  

Continuing with the instruction definition parameters, the “format” parameter specifies 

the instruction format. It prescribes to the framework how the instruction must be printed in 

the generated output source code. The op1, op2 and op3 keywords in the format 

specification will be replaced by the corresponding operands. Finally, an instruction type is 

specified, that is useful for various reasons. For example, it allows analyzing the instruction 

breakdown of the generated stress-tests in terms of integer, float, SIMD, memory and branch 

instructions. It is worth noting that through the same instruction specification interface the 

experimenter can specify both individual instructions as well as whole instructions 

sequences that will be atomically included in the GA optimization search. One reason for 

using atomic sequences is for forcing cache-misses. For instance, to cause a cache-miss on 

an 8-way associative cache, a user can specify 3 atomic sequences each with 3 memory 

accesses that causes access to same set but to different blocks. 

Regarding operand definitions, both register operands and immediate operands require 

their potential values to be specified. For register type operands the values are specified 

through the “values” parameter that accepts space separated register names. In Figure 10, 

the user has specified that the LDR result register can be anyone of the x2, x3 or x4 registers. 

Regarding immediate operands, the potential values of an immediate are expressed through 

maximum, minimum and stride parameters. In the example the user allows the immediate 

value to take 33 different values, from 0 to 256 in strides of 8 i.e. 0,8,16,24…256. 

Essentially, in this example there are 99 possible ways the GA can use the LDR instruction 

(3 registers for memory result x 1 memory address register x 33 immediate values). The GA 

randomly generates any one of the 99 possible forms when generating the initial random 
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population and when performing the mutation operation. As the search is progressing, the 

GA will converge to the instruction variation that maximizes the target metric. If none of 

the evaluated instruction’s possible variations helps to maximize the fitness value, then the 

instruction will likely stop appearing in the GA generated source codes. For instance, 

consider a long-latency instruction like integer division (DIV) used in an IPC maximization 

search. After, few generations the DIV instruction will most probably be eliminated from 

the individuals because it does not contribute in generating fit populations.  

An operand definition, if desired, can be common for multiple instructions. For instance, 

the “mem_address_register” and “immediate_value” can be used by other memory 

instructions that the user may want to define, such as for the ARM ISA instructions LDP, 

STR, STP. The instruction and operand specification interface can serve one more purpose: 

as the means to force or explicitly avoid instruction dependencies. For instance, if 

optimizing for maximum instructions per cycle (IPC) it may be undesirable to have short-

latency integer instructions depending on memory loads. Thereby, to avoid integer 

instructions depending on memory loads the user can specify two disjoint sets of integer 

register operands, one for memory destinations and one for source operands of all other 

integer operations.  

The GA uses the instruction and operand definitions to generate individuals during the 

optimization search. These individuals are printed inside a template source code file (the 

location of the template file is provided in the main configuration file by the experimenter) 

that will be eventually compiled in a binary. The template source file must contain an empty 

loop body that is filled with the GA generated individuals. To indicate where the individual 

will be printed, the string “#loop_code” must be written within the empty loop body. Before 

compiling an individual, the framework removes the “#loop_code” string and prints the 

instruction sequence starting from the indicated line. Within the template file the user can 

also specify some fixed code that can be part of the loop body across all individuals e.g. add 
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NOP instructions for padding. The template source file may also include user specified 

initialization code that contains register and memory initialization. We find that register 

values have considerable effect on power consumption, so they must be initialized 

judiciously. For this work, we have use checkerboard patterns (e.g. 0xAAAAAAAA) since 

they increase bit switching that helps in maximizing power or dI/dt voltage-noise. We have 

observed that checkerboard pattern values may increase the fitness value by approximately 

10% compared to setting all bits to high (i.e.. 0xFFFFFFFF). 

It is worth mentioning that while this thesis performs GA searches at assembly 

programming level, the instruction definition interface and the template source file can be 

also used to perform optimization at a higher-level language (e.g. at a C code level).  

3.1.3 Measurement and Fitness Evaluation 

 

Each source code is compiled to a binary and measured on the target machine (the GA 

framework typically runs on a separate workstation). This procedure typically involves 

transferring the source file to the target machine, compiling the binary on the machine, 

running the binary, measuring the metric of interest through a measurement instrument 

(such as multimeter, oscilloscope or software accessible counters) while the binary is 

running, and, finally, stopping the binary execution and calculating the fitness value based 

on the measurements. An abstract Python class, refer to as the “Measurement.py”, provides 

the template for scripting such measurement procedures. Moreover, the class contains 

various utility functions that can be useful for scripting these procedures. For instance, the 

class contains functions for communicating through ssh with the target machine such as 

copying files over scp and executing any arbitrary command. To create a custom 

measurement script the user must inherit the Measurement.py class and overwrite the “init” 

and “measure” functions. The “init” should contain specific to the measurement procedure 

parameter initializations (e.g. number of active CPU cores, number of measurement samples 

to take etc.) and the “measure” function defines the actual measurement procedure. The 
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specific measurement parameters initialized in “init” function should be defined in a xml 

configuration file (not in the main configuration file). Both the measurement class name and 

its corresponding configuration file should be specified in the main configuration file. The 

framework utilizes the Python language capability to dynamically load a class. This means 

that the user defined class is dynamically loaded by only specifying the class name in the 

input configuration file. No other change in the source code is required. 

Eventually, a fitness value will be given on the generated individual based on the 

measurement results. This is needed so that the GA can rank the individuals and pick the 

fittest ones that satisfy the most the optimization goal(s). An individual can have many 

measurements associated with it, e.g. maximum voltage droop and average power 

consumption. The framework offers a default fitness class “DefaultFitness.py” that simply 

uses the first measurement (in the list order) as the fitness function. More complicated fitness 

functions might be desired, for instance, maximize voltage droop while keeping average 

power low. The framework offers the user the ability to define such functions by writing a 

custom class that inherits from “DefaultFitness.py” and overrides the “getFitness” function. 

Similarly, to the measurement scripts, to use the custom fitness class the user must specify 

the fitness class name in the main configuration file. 

 

3.1.4 Output 

 

The framework’s output is the source code of all individuals. Each source code is saved 

in a different file. The name of the file includes: the population number, individual id and 

an array of measurements. For example, for the individual with id number 10 that belongs 

to population number 1 and with measured average and peak power of 1.3W and 1.33W 

respectively the file name would look like this 1_10_1.30_1.33.txt. By default, the first 

measurement is the fitness value, this naming convention facilitates the quick retrieval of 

the fittest individual using basic UNIX commands.  
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Moreover, each GA population is saved in a separate binary file. This binary file 

contains the source code, the id, the parent ids and the measurement values of each 

individual. These binary files can be loaded in a Python script for advanced result post-

processing. As part of the framework release, there is a Python script that reads the 

populations in binary format and extracts statistics such as the fitness value of the fittest 

individual per generation and instruction mix breakdown of fittest individual per generation. 

Furthermore, the binary population files can be used as seed population for a new GA search 

(by default a new GA search starts with a randomly generated population). In such case, the 

user must specify the location of the seed population file in the main configuration file.  

Additionally, in the output directory of each GA run the following are saved for record-

keeping: the GA source code, the configuration files and the template individual source file 

used for the run. 

3.2 GeST Evaluation Platforms 
 

We use GeST to generate the following viruses: a) power-viruses for ARM Cortex-A15, 

ARM Cortex-A7, Intel i5-2400 and X-Gene2 CPUs, b) IPC virus for the X-Gene2 CPU and 

c) a power-virus that targets both power and instruction stream simplicity for the X-Gene2 

CPU (henceforth referred to as PowerVirusSimple). For generating PowerVirusSimple we 

use the GeST capability to work with user defined custom fitness functions.  

The characteristics of the evaluated CPUs are shown in Table III. We generate power 

viruses for ARM Cortex-A15 and Cortex-A7 running on a bare-metal environment (without 

OS). The chips are hosted on a CoreTile Versatile Express evaluation board. The board 

offers external measurement points that allow measuring CPU power, current and voltage. 

We hook an ARM energy-probe on the measurement points to read the power. Next, we 

generate a power virus and an IPC virus for the Ampere Computing X-Gene2 ARM-based 

server CPU. This server offers temperature sensor readings accessible through the i2c 
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interface. We use the i2c interface to generate the power virus by optimizing towards 

maximum temperature. The IPC virus is generated by monitoring the IPC from the perf 

Linux utility. On the same system we demonstrate the GeST ability to optimize complex 

fitness functions (multi-objective) by generating a virus that targets both high temperature 

and instruction stream simplicity (fewer unique instructions). Lastly, we generate a power-

virus on an Intel i5-2400 desktop CPU. 

GA searches are performed on a single core. GeST can do multi-core optimizations by 

launching multiple workload instances but optimizing on single core has the advantage of 

less measurement variability which helps the GA optimization to converge faster. This is 

especially true when runs are conducted within an OS environment. Despite the GA search 

performed on a single core, a virus is tested by running it on all cores. All results reported 

in this thesis are measured with all cores active with each core running a separate virus 

instance. The viruses developed in this thesis do not make use of shared resources (e.g. 

LLC). Hence, the generated viruses scale well with multi-core execution because running 

multiple virus instances is not causing performance interference. The other workloads used 

Table III. GeST evaluation platforms. 

CPU 
# of 

Cores Board Environment 
Stress-test 
developed 

Measurement 
Instrument 

ARM  
Cortex-A15 2 

CoreTile Versatile 
Express Bare Metal power-virus ARM energy probe 

ARM  
Cortex-A7 3 

CoreTile  Versatile 
Express Bare Metal power-virus ARM energy probe 

Ampere  
X-Gene 2 8 Validation Board Centos 7.2 

power-virus 
and IPC virus 

i2c temperature 
sensor readings, 

performance 
counters 

Intel 
i5-2400 4 

HP Business 
Desktop 

Computer Ubuntu 14 power-virus Likwid-power-meter 
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for comparison purposes are also executed on all cores. For single-thread benchmarks we 

execute multiple instances and for multi-thread benchmarks (e.g. NAS, Parsec) we execute 

one instance with multiple threads.   

We are aware of a previous work [27] that evaluates a GA framework for power-virus 

generation on simulated multi-cores and reports significant increase in power-consumption 

when virus threads access shared memory. This increase in power consumption is attributed 

to the high engagement of network-on-chip, which in the simulated systems has a large 

contribution in total power consumption (for some runs more than 33% of the total power). 

In all CPUs we tested, we have successfully generated effective power/thermal stress-tests 

that exceed the fitness of the worst-case workload or manually-written stress-test by at least 

10% without using shared memory. With that said, memory instructions that access shared 

memory can be added to the GeST optimization. The user must provide a template file that 

initializes shared-memory and launches multiple workload threads (in case the shared 

memory is defined in kernel then multiple process instances instead of threads should also 

work). Moreover, the user must define in the main configuration file the instructions that 

access the shared-memory. This important extension is beyond the scope of this thesis. 

Regarding framework execution time, the GeST runtime is defined by the following 

factors: a) time to measure each individual, b) for how many generations the optimization 

is performed, and c) how many individuals are measured per generation (population size). 

In our experience GeST produces stress-tests that exceed significantly conventional 

workloads after 70-100 generations. Given 50 individuals per population and 5 seconds per 

measurement (which is typical for power optimization) the runtime is approximately 7 

hours. 

In the framework release we include measurement scripts and fitness functions that can 

be used for power, IPC, dI/dt noise and instruction-stream simplicity optimization for x86 

and ARM ISA. 
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3.3 Power-Virus Generation 
 

We develop a power-virus for Cortex-A15 and Cortex-A7 in a bare-metal environment. 

The measurement function for this optimization executes each GA generated binary for few 

seconds and takes multiple power readings during the binary execution. The fitness function 

calculates the average value of all power samples. Fittest individuals are considered the ones 

with the highest average power.  

The relative (normalized to coremark benchmark) power-results for Cortex-A15 and 

Cortex-A7 are shown in Figure 11 and Figure 12 respectively. First, it is worth noting that 

the GA generated stress-test both on Cortex-A15 and Cortex-A7 cause the highest power 

consumption and surpass the manually written stress-tests (A15manual_stress_test, 

A7manual_stress_test) as well as conventional bare-metal workloads (coremark, imdct, 

fdct). This emphasizes the GA’s ability to generate worst-case pathological scenarios that 

are hard for humans to produce. The other interesting observation is that Cortex-A7 GA 

virus is not a good stress-test for Cortex-A15 and Cortex-A15 virus is not a good stress-test 

for Cortex-A7. Different CPU designs require different stress-tests to maximize their CPU 

power consumption. The need for different stress-tests for dissimilar micro-architecture is 

also evident by the differences in the instruction mix between the Cortex-A15 and Cortex-

A7 GA-power-viruses depicted in Table IV. The breakdown is shown in terms of short 

latency (1 cycle) integer instructions (e.g. ADD, SUB), multi-cycle instructions (e.g. MUL), 

float or SIMD instructions, memory instruction and branch instructions. Both stress-tests 

consist of a loop of 50 instructions. The table shows that to raise the Cortex-A7 power 

Table IV. Instruction breakdown of Cortex-A15 and Cortex-A7 power viruses. 

GA virus 

Short 
Latency 

Int 

Long 
Latency 

Int 
Float/ 
SIMD Mem Branch 

Total 
Loop 

Instructions 

Cortex-A15 4 5 22 18 1 50 

Cortex-A7 8 6 16 10 10 50 
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consumption it is important to add a lot of branch instructions (10 instructions out of 50 are 

branches) while for Cortex-A15 only one branch is used. Also, Cortex-A7 virus prefers 

slightly shorter latency integer instructions as compared to Cortex-A15 virus. A common 

observation for both viruses is that floating point/SIMD instructions are dominant. 

Next, we test GeST on the X-Gene2 ARM-based server CPU. We generate a virus that 

maximizes chip temperature (and hence the power) using chip temperature sensor feedback. 

We compare the temperature of the virus (denoted as powerVirus) with various benchmarks 

(Parsec and NAS suite) and a virus that maximizes IPC (denoted as IPCvirus) generated 

with the GA using perf Linux utility. Figure 13 shows the relative (normalized to bodytrack 

 

 

Figure 11. Cortex-A15 power results. 

 

 

Figure 12. Cortex-A7 power results. 
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benchmark) chip temperature. The power virus outperforms all other workloads by reaching 

the highest chip temperature. 

The IPC virus also raises the chip temperature very high (but lower than power virus). 

IPC virus is expected to cause high temperature because it causes very high CPU activity. 

It is interesting to understand what characteristics make the power virus cause higher 

temperatures. Table V provides a comparison of the IPC and the power viruses. The IPC 

virus achieves 12% higher IPC but also 12% lower power consumption than the power virus. 

As expected, the IPC virus does not contain any long latency integer instruction. Also, the 

IPC virus makes moderate use of memory operations. On the other hand, the power virus 

contains a few long-latency instructions and uses a lot of memory operations. Perhaps the 

modest use of long-latency instruction helps to increase the power consumption and 

temperature (which is the goal of the virus) by keeping active the issue queue and the 

dependency tracking logic. Also, the more frequent engagement of the memory subsystem 

 

Figure 13. X-Gene2 temperature results. 
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results in a higher power consumption. While the use of long-latency operations and many 

memory instructions increases the temperature, it also reduces the IPC. This highlights an 

interesting tradeoff that the GA is capable to make to maximize the temperature. This 

analysis clearly shows that the highest IPC does not automatically convert to highest power 

consumption and temperature. A recipe for the highest power consumption and temperature 

(at least for the X-Gene2) seems to be a combination of high IPC (not the highest) with 

heavy use of memory instructions and modest use of long-latency operations. 

Furthermore, we demonstrate the GeST capability to optimize a complex fitness 

function by generating a power-virus that achieves both high temperature and simplicity in 

terms of using less unique instructions (unique opcodes). Simplicity of the generated power-

viruses is desired for various reasons such as for ease in isolating inefficiencies in initial 

chip samples, like hotspots, and instructions that are power-intensive. To optimize for both 

high-temperature and simplicity, we use the GeST interface for scripting custom fitness 

functions (presented in Section 3.1.3). 

We use the equation shown in Figure 14 for calculating the individual’s fitness. The 

fitness can take values from 0 to 1 and the equation has two parts, with both parts 

contributing equally to the fitness value. The first part rewards high temperature. The 

Table V. Power virus, simple power virus and IPC virus comparison. 

GA  
virus 

Short  
Int 

Long 
Int 

Float/ 
SIMD Mem Branch 

Relative  
IPC 

Relative 
Plug 
Power  
(W) 

Relative  
Chip 
Temp. 

# of 
Unique 
Instruct
ions 

Power 
Virus 22 5 9 12 2 1 1 1 21 

Power 
Virus 
Simple 16 7 13 11 3 0.94 0.99 1 13 

IPC 
virus 26 0 15 6 3 1.12 0.88 0.94 13 
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contribution of the temperature part must be bounded to a 0-1 value range (temperature 

score), hence, we normalize the measured temperature with the maximum possible 

temperature. The maximum temperature can be obtained either from a previous GA run or 

from specifications e.g. TJMAX. An issue with the temperature score is that even during 

idle operation the temperature is not negligible because of ambient temperature. Thereby, 

we must subtract the idle temperature to avoid overestimation of the temperature score. The 

second part of the equation is the simplicity which rewards having less unique instructions. 

It is also bounded between a 0-1 value range. Assuming individuals of 50 instructions, an 

individual with 25 unique instructions would be assigned a simplicity score of 0.5 whereas 

an individual with 15 unique instructions would be assigned a simplicity score of 0.7 

(without taking in account the 0.5 weight factor). 

 We run the GA with the complex fitness function for the same number of populations 

as the GA that generated the power virus. The characteristics of the fittest individual 

(powerVirusSimple) are shown in Table V. This virus has very similar characteristics with 

the original power virus. Specifically, we observe the same characteristics we discussed in 

the previous paragraphs such as fairly high IPC, significant use of memory and modest use 

of long latency integer instructions. However, there is also a difference, the new power virus 

prefers to spend more instruction slots for floating point and long latency instructions at the 

expense of the short latency instructions. This has an impact on the IPC which is 6% lower 

compared to the original power virus but this doesn’t affect its temperature and power 

consumption. The simple power virus achieves virtually the same power and the same 

temperature as the original power virus. The complex fitness optimization is considered 

F =  (M_T – I_T) / (MAX_T – I_T) * 0.5 + 

(T_I – U_I) / T_I * 0.5 

 
Fitness (F), M_T (measured temperature), I_T (idle temperature), MAX_T (max temperature), 

T_I (total instructions), U_T (unique instructions) 

 

Figure 14. Complex fitness function rewarding high temperature and instruction simplicity.  
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successful as the simple power-virus achieves the same stress-level as the original power-

virus while using only 13 unique instructions instead of 21. 

Last, we apply GeST to generate a power-virus on Intel i5-2400. Figure 15 shows the 

GA progression. The GA search converges to a power-virus that consumes 90W CPU 

package power. We compare the power-virus with the well-known prime95 stress-tests in 

terms of power consumption We run both the small (data fits inside cache) and the large 

(data does not fit inside cache) prime95 tests. Figure 16 shows the power results. The 

GAvirus consumes 6% more power than the prime95 large test and 8% more power than 

the prime95 small test. 

 

 

 

 

Figure 15. GeST CPU power virus search on i5-2400. 

 

 

40

50

60

70

80

90

100

0 50 100 150 200 250

i5
-2

4
0

0
 P

KG
 p

o
w

er
 (

W
)

GA generation

Zac
ha

ria
s H

ad
jila

mbro
u



49 

 

3.4 Voltage-Noise Virus Generation 
 

This section demonstrates the capability of GeST to generate voltage noise viruses and 

consequently stability-tests. For this study we use an AMD Athlon II X4 645 CPU hosted 

on an Asus M5A78L LE motherboard. This motherboard offers high bandwidth voltage 

sense points that can be used to monitor voltage noise. This is achieved by connecting an 

oscilloscope to the sense points through an active differential probe. The GA generates the 

dI/dt virus by optimizing towards maximum peak-to-peak voltage. The framework runs each 

GA generated binary for a few seconds. During the binary execution the minimum and 

maximum voltage observed on the oscilloscope are recorded. The binaries that achieve the 

highest difference between maximum and minimum recorded voltages are considered the 

fittest.   

 

Figure 16. Power consumption results for Intel i5-2400. 
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Figure 17 shows the max-min voltage noise caused by various workloads compared to 

the GA generated virus. The GA dI/dt virus clearly outperforms the other workloads 

including well known stability-tests such as Prime95 and AMD’s own stability test. Since 

the dI/dt virus causes the highest voltage-noise it should stress the system’s stability better 

than the other workloads. A good stability-test must have high VMIN. To characterize the 

VMIN of a workload we run the workload multiple times and each time we lower the 

operating voltage in steps of 12.5mV. We keep the CPU frequency stable at the nominal 

value of 3.1GHz. The highest voltage at which a workload executes correctly (without 

corruption, error messages, crashes) is the workload’s VMIN.  Figure 18 shows the VMIN of 

the various workloads we tested on the AMD CPU. The dI/dt virus is the best stability-test 

because it causes instability at a higher voltage, even higher than the commonly used AMD 

stability test and Prime95.  

Our results show that workloads designed to draw very high power are not suitable 

stability-tests as they are not designed to drop the voltage very low and induce timing errors. 

Prime95 is a workload known to raise the CPU power consumption very high. Such 

workloads are a good choice for exercising IR drop as well as characterizing thermal 

 

Figure 17. Voltage-noise results on AMD Athlon CPU. 
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stability and making sure that the temperature will not exceed a critical threshold during 

normal operation. But they are inadequate for characterizing the susceptibility to timing 

errors. Also, this is another confirmation that AC dI/dt noise dominates over IR drop. 

  

 

Figure 18. VMIN results on AMD Athlon CPU. 
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 EM methodology 
 

 

This chapter presents the EM methodology for PDN characterization. This chapter 

provides the following: a) the experimental apparatus needed to perform the EM 

methodology, b) the experimental proof of the correlation between voltage-noise and EM 

amplitude, c) two EM methodologies for determining the PDN 1st order resonance-

frequency, and d) the EM approach for generating dI/dt stress-tests via a GA optimization 

that maximizes the EM amplitude.  

4.1 Required Experimental Apparatus 
 

The EM methodology requires the following components: a) a CPU that will be 

monitored, b) an antenna to sense the EM emanations that are emitted from the monitored 

CPU, c) a spectrum analyzer for reading the amplitude and the frequency of the received 

signals d) a coaxial cable that connects the antenna with the spectrum analyzer, and e) a 

workstation that is connected with the spectrum analyzer for orchestrating the resonance 

frequency detection and dI/dt virus generation. 

Examples of EM methodology experimental setups are shown in Figure 19. The figure 

shows both the ARM Juno and AMD desktop PC experimental setups. The spectrum 

analysers Agilent E4402B (Juno setup) and Agilent N9332C (AMD setup) are used to 

measure the EM signals. Note that cheaper commercial software-defined radio receivers 

 

Figure 19. Experimental setup for the ARM Juno board (left) and AMD desktop CPU (right).     
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should also work [68].  Also, instead of a spectrum-analyzer, an oscilloscope can be used 

for time-domain measurements given that the EM signal amplitude is high enough (typically 

oscilloscopes have much lower noise floor than spectrum-analyzers).  

 In the figure we observe that the antennae are placed at a stable position 5-10cm close 

to the monitored CPUs. We prefer the back-side of the PCB (i.e. back of the CPU socket) 

due to proximity to the die which translates to stronger received signals. As illustrated in 

the figure, such approach is particularly convenient for desktop CPUs as the only 

requirement is to simply remove the tower’s back-cover.  

It is also possible to capture the EM emanations from the front of the PCB. The received 

signal can be amplified with a pre-amplifier or with an antenna matching-network that 

amplifies the signal at the targeted PDN resonance-frequency. Particularly, we have 

experimented with a matching network that matches the X-Gene2 CPU’s PDN resonance-

frequency at 150MHz. We confirm that with this matching network we were able to capture 

strong EM signals from the front of the PCB. 

Regarding the antenna selection, is recommended to use an antenna that has a flat 

response in the frequency range where the PDN resonance-frequency is expected to lie. This 

is desired to avoid any biases when measuring EM signal amplitude at different frequencies. 

Such measurement biases are unwanted during resonance frequency-determination and GA 

dI/dt virus generation.  

We crafted a square loop antenna (3 cm side length) as a receiver for the emanated EM 

radiation (this antenna is used in Figure 19 experimental setups). As shown in the antenna’s 

frequency-response graph in Figure 20, the antenna has a relatively flat and low frequency 

response from DC until 1.2 GHz, with a self-resonance frequency at 2.95 GHz. This means 

that the antenna has a flat response at the range where we expect the 1st order resonance-

frequency to lie (1-200MHz), hence, this antenna is suitable for the EM methodology. Note 

that such antenna is very cheap to produce. The fact that applying the EM methodology does 
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not require spending a significant budget for buying sophisticated commercial antennas (e.g. 

[80]), can be considered as another advantage of our approach over the state-of-the art high-

bandwidth voltage-measurement approaches. 

Is worth saying that a well-matched antenna at 1-200MHz should offer better reception 

and could enable capturing EM signals from longer distance and more convenient positions. 

Unfortunately, is extremely difficult to craft or buy an antenna that is both well-matched 

and provides flat response in the wide range of 1-200MHz. Therefore, to avoid measurement 

biases a normalization step that normalizes the measured amplitude at different frequencies 

based on the antenna’s frequency response profile can be used.   

4.2 Relationship Between CPU EM Emanations and On-

Chip Voltage Noise 
 

It is well-known that metallic conductors act as transmitting antennae that emanate EM 

radiation under oscillating voltage and current stimulation [38][69]. On-chip 

interconnections and transistors act as distributed radiating antennae due to time-varying 

current consumption induced through normal program execution. Simple periodic activity, 

such as that due to instruction loops, cause periodic variations in CPU power (i.e. sequence 

 

Figure 20. Measured |S11 [13]| for the square loop antenna indicating a self -resonance around 2.95 

GHz. 
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of DIVs followed by ADDs) that manifest as visible spikes in the EM spectrum, at a 

frequency F equal to 1/T (where T is the loop period) [18]. 

Fundamental antenna theory (say, for a traditional Hertzian dipole) states that the 

component of the radiated power for the transmitting antenna, at a specific frequency, varies 

quadratically with the amplitude of the oscillating feed current [38] at the corresponding 

frequency and the so-called radiation resistance. The radiating resistance of a conductor can 

be differentiated from its loss resistance, in that the former is a function of the geometry of 

the conductor and determines the magnitude and the directivity of the radiated power [38]. 

The loss resistance, in contrast, manifests as ohmic losses dissipated through the conductor. 

Periodic current load (ILOAD), pulsing at the first-order resonance frequency, can trigger 

sustained oscillations of large magnitude in VDIE and IDIE.  

We simulate the simplified PDN model in Figure 2(a) with a persistently pulsing current 

excitation (ILOAD) at 80MHz which matches the 1st-order resonance frequency (Figure 2 

(b)). This sets off resonant oscillations in the PDN as illustrated by HSPICE [35] simulations 

in Figure 21 (a). At resonance, both voltage and current oscillations maximize in amplitude. 

This, in turn, maximizes the radiated EM power from the on-chip distributed antennae, due 

to the quadratic dependence with oscillatory current amplitude. Therefore, measuring the 

frequency at which the amplitude of the emanated EM power is maximized directly reveals 

the 1st-order resonance frequency. We leverage this relationship between radiated EM 

power and on-chip voltage-noise to maximize the voltage-noise by maximizing the 

amplitude of EM signals. 
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We experimentally observe the correlation between high-voltage noise and high EM 

amplitude. We use the experimental setup from  Figure 19 to capture the EM signals emitted 

from the Cortex-A72 CPU while running a dI/dt virus. Simultaneously we capture the time 

domain supply-voltage oscillations caused by the dI/dt workload with an On-Chip Digital 

Storage Oscilloscope (OC-DSO) [72] that is integrated in Cortex-A72. We compare the two 

measurement instruments in Figure 21 (b). The figure shows that resonant voltage 

oscillations at 15ns on Cortex-A72 captured with the OC-DSO are depicted as a high 

spectrum spike on the spectrum analyzer at 67MHz. Moreover, we obtain the frequency-

domain representation (using the Fast Fourier Transform (FFT) algorithm) of the voltage 

waveform shown in Figure 21 (b) and we compare it with the spectrum analyzer readings 

in the range of 10-90MHz in Figure 22. The dominant frequency of both frequency-domain 

representations is exactly aligned at 67MHz. Moreover, the two instruments agree on other 

 

Figure 21. a) Simulated waveforms showing the die voltage (VDIE) and die current (IDIE) in the 

simplified PDN model in Fig. 2. A pulsing ILOAD triggers the first-order resonance where the AC-

component of both VDIE (Vac) and IDIE (Iac) maximize, thus maximizing the radiated EM power. 

b) Resonant oscillations (close to the resonance-frequency at 67MHz) triggered on an ARM Cortex-

A72 cluster (on ARM Juno Platform) causes a corresponding peak in the measured EM power 

captured on a Spectrum Analyzer. 
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less dominant spikes as well, such as the virus’s base loop frequency (1/loop period) located 

at 16.66MHz.  

We further establish the theory that links CPU EM emanations with on-chip voltage 

noise in Chapter 6 and Chapter 7 where we show that the proposed EM methodology can 

determine the 1st order resonance-frequency of a CPU and generate dI/dt viruses that can 

be used for VMIN determination and for guiding DVS decisions. 

4.3 EM Resonance Frequency Detection (Loop Method) 
 

To quickly identify the resonance-frequency from EM emanations we propose the 

following procedure. The first step is to manually design a simple instruction loop composed 

of separate high and low current consuming sequences. This is not meant to be a dI/dt stress 

test but a loop that causes merely enough current variation to result in a visible EM spike at 

a frequency equal to the loop frequency (which is equal to the inverse of the loop iteration 

period). Then, while the loop is running on the CPU, we sweep the CPU frequency to 

modulate the loop period, and, consequently, the EM spike frequency. The spike amplitude 

is maximized when the loop frequency matches the resonance frequency because the 

 

 

 

 

 

 

 

 

 

Figure 22. Comparison of spectrum analyzer readings (left axis) with FFT of OC-DSO voltage 

readings (right axis) during execution of a dI/dt virus. The two measurements agree as they reveal 

spikes at the same frequencies. 
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fluctuating loop-current will trigger resonant oscillation in the PDN [55]. Therefore, after 

the frequency sweep is over, the frequency at which the highest EM amplitude occurs 

reveals the resonance frequency. We refer to this approach as the “loop method”. 

We demonstrate the loop method on the Cortex-A72 processor. We use a loop with the 

high current consuming sequence consisting of eight ADD instructions that are executed in 

4 CPU cycles and a low current consuming sequence consisting of a single DIV instruction 

that takes 4 CPU cycles to execute. The period of execution of the overall loop (with both 

the high-current and the low-current consuming portions) is 6.6ns at the 1.2GHz CPU 

frequency (the nominal Cortex-A72 frequency). This corresponds to a loop frequency of 

150MHz. To modulate the loop frequency, we sweep the CPU frequency from 1.2GHz 

down to 300MHz and we record the EM signal amplitude at each loop frequency. 

Figure 23 shows the results of the frequency sweep. The amplitude is maximized at 

around 67-72.5MHz loop frequency when both cores are active (C0C1 curve). When only 

one core is powered-up (C0 curve) the resonance-frequency increases to approximately 

85MHz. This increase is expected due to inverse proportional relationship between 

resonance-frequency and capacitance [55].  

To confirm that the resonance-frequencies for C0 and C0C1 scenarios are correctly 

identified we use an independent methodology that utilizes a synthetic current load (SCL) 

circuit integrated on the Cortex-A72 [73]. The SCL allows loading the Cortex-A72 PDN 

 

Figure 23. EM resonance frequency exploration for Cortex-A72 PDN with loop method. 
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with artificial current at various frequencies. With the OC-DSO we can measure the PDN 

response to a SCL current load. We sweep the injected current frequency with SCL from 

10MHz to 130MHz and we record the peak-to-peak voltage oscillations at each frequency 

with the OC-DSO. The highest voltage oscillation reveals the resonance frequency [42][73]. 

The results of the sweep are shown in Figure 24 according to which the first-order resonance 

frequency lies in the range between 66-72MHz (we observe a relatively flat frequency 

response around resonance) when both cores in the cluster are powered up (indicated by the 

label “C0C1” in the plot). These results agree with EM loop method for resonance-

frequency detection. This confirms the effectiveness of the EM approach in identifying the 

resonance frequency. This approach is applicable to virtually any CPU that allows changing 

the clock frequency. 

 

4.4 EM Resonance Frequency Detection (Clock Method) 
 

 Another approach for PDN resonance-frequency determination is to match the CPU 

frequency with the PDN resonance-frequency. We refer to this approach as the clock 

method. This approach does not require executing a specific loop of instructions, the only 

requirement is to prevent the cores from entering a clock-gated state. This can be easily 

 

Figure 24.  SCL stimulus reveals a resonance frequency in the range of 66-72MHz with two 

powered cores (C0C1) and 80-86MHz with one powered core (C0). 
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achieved by either disabling all C-states or by executing a trivial self-loop on the cores. We 

demonstrate this method on Cortex-A72. We run a self-loop e.g. “while(true);” while we 

sweep the CPU frequency from 60MHz to 80Mhz. We record the EM amplitude at each 

frequency. The results are shown in Figure 25 that reveals a peak at 72.5MHz which matches 

closely the resonance-frequency identified in Figure 23 and Figure 24. 

The clock method can be used only with CPUs that support very fine-grain frequency 

scaling. It can be particularly useful for black box approaches where the experimenter is 

either not allowed to run anything on the device or executing code on the device is not trivial 

(e.g. FPGAs, accelerators, GPUs).  One use case where this method proved to be handy is 

for characterizing the Mali-T622 GPU that is hosted on the ARM Juno R2 board. Crafting 

a loop of instructions that causes an EM spike on Mali-T622 is not a trivial task due to lack 

of full control regarding to what is executed in the device. We can only program Mali from 

high-level Open-CL code that is compiled to native instructions through the GPU driver. 

This introduces a lot of non-determinism and impeded our efforts in applying the loop 

method on Mali-T622. With the clock method we were able to circumvent this short-coming 

 

Figure 25. Resonance-Frequency exploration on Cortex-A72 with clock method. 
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to measure the resonance frequency of the Mali-T622. The results of the clock method on 

Mali-T622 are shown in Figure 26 and they reveal a resonance frequency at 70MHz. 

4.5 EM dI/dt virus Generation 
 

Previous work has proposed automated frameworks based on GA frameworks for 

generating dI/dt viruses [41][42][73]  and power-viruses [27][40][57]. The main difference 

of this thesis with prior work is the usage of the EM amplitude as an optimization metric to 

drive the GA dI/dt virus search. We use GeST to drive the GA EM amplitude optimization. 

This section describes how we use GeST to generate dI/dt viruses by optimizing towards 

maximum EM amplitude.   

For the EM optimization, the metric of interest is maximum EM amplitude at any 

frequency in the spectrum of 50-200MHz (the spectrum where the 1st order PDN resonance 

frequency is typically located). Particularly, the fitness function for the EM optimization is 

the mean root square of 30 EM samples.  

Regarding the loop size of the individuals, we use a rule of thumb (heuristic) for picking 

the optimal loop size that takes in account the ratio of CPU frequency to the PDN resonance 

frequency and is similar to what authors used in [41]. Particularly, we use the following 

heuristic equation to estimate the optimal loop size: 

 

 

Figure 26. Resonance frequency exploration on Mali-T622 with the clock method. 
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LOOP_SIZE = (MAX_THEORETICAL_IPC / N) * RESONANCE_CYCLES,  

where RESONANCE_CYCLES=CLOCK_FREQ / RESONANCE_FREQ and N takes 

values from 2 to 3.  

The heuristic is based on the assumption that the following traits are essential to a 

successful dI/dt virus: a) an IPC that is a fraction of the maximum theoretical IPC of a CPU 

core because a mix of both short-latency and long-latency stalling instructions [39] (e.g. 

integer division) are needed to create sudden current surges, b) cause a current surge at each 

loop iteration, and c) the virus’s loop iteration length in cycles to be equal to the CPU cycles 

that can fit inside a resonance period (1/resonance-frequency). The purpose of the first 

characteristic is to facilitate the GA convergence towards solutions that cause current surges. 

This is realized by targeting an IPC that allows both high and low power-phases. The second 

and third characteristics aim is to increase the likelihood that the current surges will lead to 

resonant voltage-noise build-up. 

To use this heuristic the MAX_THEORETICAL_IPC and the resonance-frequency 

must be known a priori. The MAX_THEORETICAL_IPC can be found either from specs 

or from a GA optimization search targeting maximum IPC. The PDN resonance can be 

obtained either by running the GA for few iterations and recording the dominant EM 

frequency (the frequency with the highest EM amplitude), or through the quick 

methodologies for resonance frequency detection described in Sections 4.3 and 4.4.   

We observe that satisfactory results are obtained after running the GA for at least 60 

generations. The algorithm execution is typically limited by the measurement latency per 

individual. Approximately 18 seconds are needed to take 30 EM measurements which 

translates to an execution time of ~15 hours for 60 generations (when 50 individuals are 

considered per generation).     

The assembly instructions that are used in the EM GA optimization deliberately target 

diversity in latency (both single and multi-cycle) and instruction-type (integer, floating-
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point, SIMD and load/store) to facilitate rapid convergence (as we present later in Section 

8.1. indeed, the dI/dt viruses benefit from instruction type diversity). In particular, for the 

ARM ISA [8] we use: a) short latency integer instructions such as move (MOV), add (ADD) 

b) multi-cycle long latency integer instructions such as MUL and DIV, c) floating point 

equivalents of the above arithmetic instructions, d) equivalent SIMD instructions using 

SIMD registers, e) unconditional dummy branches pointing to the next instruction 

(conditional branches are difficult to incorporate as they can introduce non-determinism), 

and f) load and store memory instructions. For the x86 instruction set, the same instruction 

mix selection principles as with ARM are used with some minor modifications. Since x86 

does not have explicit load-store instructions, memory operations are implemented by using 

memory address operands for integer instructions. For SIMD operations, SSE2 [54] 

instructions are used. As shown in the conclusions chapter the viruses make use of nearly 

all instruction types to maximize voltage noise. This clearly illustrates that it is essential to 

have diverse set of instruction types to select from during GA optimization. Also, we would 

like to emphasize that in contrast to a power-virus optimization (such as the ones discussed 

in Chapter 3), for the EM optimization we deliberately include long-latency low-power 

instructions (e.g. FSQRT and integer DIV) because they are necessary for creating pipeline 

stalls that lead to dI/dt events.  

Furthermore, we deliberately avoid cache misses due to the timing non-determinism 

introduced by them. The GA should give preference to instruction sequences with periodic 

current swings triggering first-order resonant oscillations in the PDN. Thereby, events such 

as cache misses that introduce time variability should be avoided as they result in significant 

jitter to the GA algorithm, which in turn impedes its convergence. Nonetheless, memory 

references, even if they are always hits, are found to be essential for maximizing voltage 

noise due to engaging the memory subsystem (pipeline resources and L1 cache).   
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 Measurement Setup 
 

Table VI shows an overview of the platforms where the EM methodology is evaluated.  

The ARM Juno [7] platform hosts a heterogeneous multiprocessing System-on-Chip (the 

so-called big.LITTLE configuration) consisting of separate clusters of the dual core Cortex-

A72 and a quad core Cortex-A53 [11]. The platform integrates an on-chip power-supply 

monitor configurable as a digital storage oscilloscope (OC-DSO) [72] that is ideal for 

validating our proposed EM methodology. The OC-DSO provides fine-grained sampling 

(up to 1.6GHz bandwidth) of the voltage rails supplying the dual-core Cortex-A72 cluster. 

OC-DSO reports 8-bit raw values. To extract voltage readings in millivolts calibration 

is required. To calibrate the OC-DSO we sweep the supply-voltage from 700mV to 1050mV 

in steps of 10mV and at each voltage-step we measure the raw counter value. We plot the 

results of the sweep in Figure 27. The graph shows a linear correlation between voltage and 

counter values with gradient equal to 6.23 and intercept equal to 493.38. We use the 

discovered linear equation to convert raw values to millivolts. The capability of OC-DSO 

to capture voltage noise is illustrated in Figure 28. As expected, the dI/dt virus causes much 

larger noise as compared to SPEC2006 benchmarks and CPU idle state.   

Table VI. Experimental platforms. 

MB CPU 

# of 
Cores ISA uArch 

Highest   
Freq.,Voltage 
Point 

Technology 
(nm) OS 

Voltage noise 
visibility 

Juno Board 

R2 Cortex-A72 2 ARM 

Out of 

Order 1.2GHz,1V 16 Debian 

OC-DSO 

[72][73] 

Juno Board 

R2 Cortex-A53 4 ARM In-Order 0.95GHz,1V 16 Debian None 

Asus 

M5A78L LE 

Athlon II X4 

645 4 

x86-

64 

Out of 

Order 3.1GHz,1.4V 45 

Windows 

8.1 

On-package 

pads 

Validation  

Board 

Ampere X-

Gene 2 

8 ARM Out of 

Order 

2.4GHz, 0.98V 28 Centos 

7.2 

None 

Validation  

Board 

Ampere X-

Gene 3 

32 ARM Out of 

Order 

3.0GHz, 0.87V 16 Centos 

7.2 

On-Chip droop 

detector 
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Figure 27. OC-DSO calibration 

 

 

Figure 28. Voltage waveforms obtained from OC-DSO for 3 different workloads. dI/dt virus causes 

the largest voltage noise. 
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The JUNO board also offers a synthetic current load (SCL) [73] block integrated in the 

OC-DSO. The SCL loads the Cortex-A72 PDN with a square-wave current excitation at 

various frequencies. This is useful for detecting the Cortex-A72 PDN resonance frequency 

[73] (as shown in Section 4.3) and for validating the EM methodology. Both OC-DSO and 

SCL are placed in a Power-Delivery-Monitor block that sits on-chip. This is illustrated in 

Figure 29. The figure shows how small is the OC-DSO. The total size of the Power-

Delivery-Monitor macro is approximately 350 x 310 μm2 with a power-consumption of 25 

μW during waveform capture.  

Also, the Juno board runs a Debian OS with a 4.4.0-135-arm64 kernel. The DS-5 

debugger [23] is used to access OC-DSO, sweep CPU frequency, change supply-voltage 

and power-gate both the Cortex-A72 and Cortex-A53 clusters, orchestrated through a 

system control processor (SCP) that enables this functionality [72]. Please note that the 

Cortex-A53 cluster does not benefit from the OC-DSO or SCL circuits because it is in a 

separate voltage domain. Cortex-A53 voltage domain lacks any explicit support for voltage-

noise measurement. 

For the AMD setup, an Athlon II X4 645 CPU is used that is hosted on an ASUS 

M5A78L LE motherboard and Windows 8.1 OS. AMD Overdrive application [4] is used to 

change the voltage and the frequency of the CPU. This application also includes a stability 

test that is evaluated and compared against the GA generated dI/dt viruses. The motherboard 

integrates on-package Kelvin measurement pads that enable direct external monitoring of 

the on-chip voltage rails using differential probes connected to a bench-top oscilloscope (the 

setup is illustrated in Figure 30). 
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Figure 29. The Power-Delivery-Monitor layout on the left and on the right a die photo of a JUNO R1 

SoC [73] (Juno R1 uses the Cortex-A57 CPU whereas the Juno R2 uses the Cortex-A72, apart from 

some differences in CPU micro-architecture the two SoCs are identical). 

 

 

 

Figure 30. AMD time-domain supply-voltage measurement setup. 
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The X-Gene2 and X-Gene3 CPUs are hosted on validation boards provided by Ampere 

Computing. On both boards Centos 7.2 is installed. Also, the boards come with a hardware 

exposure interface (HEI) provided by Ampere Computing for monitoring various metrics 

such as CPU temperature and power. The HEI also allows changing the CPU voltage and 

frequency. The HEI is accessible through i2c Linux utility. Moreover, a voltage droop 

detector is integrated on X-Gene3 for monitoring dI/dt events. The detector can be 

programmed on boot to monitor two droop threshold values. The detector reports how many 

times and for how many cycles a voltage droop that exceeds the threshold values occurred. 

These metrics are also accessible through the HEI. We use the X-Gene3 droop detector for 

validating the EM methodology. X-Gene2 does not support any high-bandwidth voltage-

measurements for monitoring dI/dt events. 

To confirm that our EM generated dI/dt viruses produce large voltage-noise and have 

high VMIN we compare them against other conventional workloads. We choose workloads 

from the following benchmark suites: a) SPEC2006, b) SPEC2017 c) NAS and d) common 

Windows OS workloads (e.g. Blender benchmark). Previous work showed that these 

workloads expose micro-architectural events that cause voltage-noise [42][65][66] (such as 

branch miss-predictions, cache-misses), hence, we can use these workloads for our 

evaluation purposes. 

Also, we validate that there are no random signals that will interfere with our 

measurements. We measure all the random signals emitted in our lab environment in the 

range of 1 to 3000MHz. Figure 31 shows the result of the sweep. We observe a rather flat 

EM amplitude across the whole spectrum with a few exceptions. Prominent spikes are 

observed at 2.4GHz which are attributed to the WIFI internet access that is available in our 

lab. These signals do not interfere with our experiments as they are located far away from 

our frequency-spectrum of interest which is located somewhere between 50-200MHz.  
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Figure 31. Measurement of random signals in the frequency-spectrum of 1 to 3000MHz. 
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 PDN Characterization 
 

6.1 ARM Cortex-A72 
 

First, we evaluate the EM methodology on the Cortex-A72 CPU. A GA search is 

performed with target to produce a stress-test that maximizes the EM amplitude at the 

resonance-frequency and, hence, generate high voltage-noise. We first determine the loop 

size using the heuristic proposed in Section 4.5. This requires knowing the resonance 

frequency, the CPU frequency and the maximum core IPC. As shown in Section 4.3 the 

resonance frequency of the Cortex-A72 PDN is around 70MHz. The CPU frequency is 

1.2GHz and we find with a GA IPC search that the Cortex-A72 can sustain maximum IPC 

of 3. Given these values, the heuristic suggests a virus with loop size of 20 instructions. 

Therefore, we perform the GA search on Cortex-A72 with loop size set to 20 instructions. 

Figure 32 shows how the EM amplitude, the maximum voltage-droop (measured with 

OC-DSO [72]) and the dominant frequency (the one with the highest EM amplitude) of the 

strongest individual of each generation varies as the GA progresses. The signal amplitude 

 

Figure 32. EM driven GA run on Cortex-A72. Peak amplitude (left y-axis) and maximum droop / 

dominant frequency (right y-axis) for the best individual of each GA generation. 
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increases from generation to generation during the GA search along with the voltage droop. 

This shows that the EM generated virus corresponds to a dI/dt virus that maximizes voltage-

droop. The virus dominant frequency is 67MHz that is very close to the resonance frequency 

of the Cortex-A72 identified in Section 4.3. 

To confirm that indeed the obtained virus is really causing large voltage noise, more 

than typical workloads, we perform VMIN testing. Figure 33 compares the voltage-droop and 

the VMIN of SPEC benchmarks and the dI/dt virus produced by GA search with 20 

instructions based on EM emanations. As shown in Figure 33 the virus causes larger voltage 

droop and has higher VMIN than the SPEC benchmarks. And, it has the same VMIN  and 

voltage-droop as a dI/dt virus generated with a GA search guided from the OC-DSO 

(denoted as OC-DSO_VIRUS). This is clear indication that the proposed EM based 

methodology is effective in generating dI/dt viruses. 

Next, we show the benefit of using the loop size heuristic. We compare how the GA 

search for Cortex-A72 with 20 loop instructions compares to a GA search with 50 loop 

instructions. Note that 50 loop instructions is a value that we empirically find to work 

generally well in most cases. Figure 34 compares the GA progress in terms of maximum 

voltage-droop between the GA search with 20 instructions and the GA search with 50 

instructions. The search with 20 instructions converges much faster to a more powerful 

 

Figure 33. Voltage droop and VMIN measurements on Cortex-A72. 
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virus. At generation 30, the GA search with 20 instructions causes a maximum voltage droop 

of 160mV, whereas the GA search with 50 instructions causes a voltage droop of 114mV. 

Figure 34 also shows that the search with 50 loop instructions even after 60 generations does 

not produce a virus of equal strength as the search using 20 instructions. This clearly 

highlights the effectiveness of the loop-size determination heuristic in generating faster 

stronger dI/dt viruses 

6.2 ARM Cortex-A53 
 

Cortex-A53 cluster does not provide any support for direct voltage-noise measurements 

rendering dI/dt virus generation and resonance frequency identification impractical with 

state-of-the-art means. This section shows that the EM methodology circumvents this 

shortcoming and obtain a) a virus that stresses voltage margins, and b) the first-order 

resonance frequency. This underlines the effectiveness and the generality of the proposed 

methodology. 

We conduct a GA optimization run with the objective of obtaining a voltage-noise virus 

for the Cortex-A53 cluster. Figure 35 shows the inter-generational progression of the GA 

(left-axis showing received EM-power and the right-axis showing the dominant frequency 

of the strongest individual per generation). The GA successfully maximizes the EM 

 

Figure 34. GA search for Cortex-A72 dI/dt virus with 20 loop instructions vs 50 loop instructions. 
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amplitude. Since, Cortex-A53 does not support voltage noise measurements to test the 

effectiveness of the GA we compare the VMIN of the strongest individual across all 

generations (labelled “EM virus”) against the VMIN of SPEC2006 benchmarks.  

Figure 36 shows the VMIN of the EM virus (rightmost) compared to SPEC2006 

benchmarks and idle (leftmost). The VMIN is obtained with four active cores at a 950MHz 

CPU frequency. The VMIN of the generated EM virus stands out (50mV higher) compared 

to the rest of the benchmarks which demonstrates the effectiveness of the EM approach in 

generating dI/dt viruses. 

  

Figure 36. VMIN measurements on Cortex-A53. 
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Figure 35. GA EM amplitude driven optimization for Cortex-A53.  
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The GA converges to 75MHz dominant frequency. We use the loop method 

methodology for resonance-frequency detection (described in Section 4.3) to validate that 

this is the first-order resonance frequency of the Cortex-A53 cluster. The results of the 

sweep are shown in Figure 37. For four powered cores (C0C1C2C3 scenario) the sweep 

reveals a resonance frequency at 76MHz which matches closely the GA results. The 

agreement of the two independent approaches gives confidence that the resonance frequency 

is correctly identified. 

Furthermore, Figure 37 provides insight about how power-gating can affect significantly 

the PDN characteristics. The Cortex-A53 quad-core cluster has the highest die capacitance 

when all four cores are powered up (“C0C1C2C3”). The first-order resonance frequency is 

inversely proportional to the square-root of the die capacitance [55], hence, the resonance 

frequency increases from 76.5MHz when all cores are powered up (labelled as 

“C0C1C2C3”) to 97MHz with just one core powered up (labelled as “C0”). Note that the 

amplitude of the EM emanations is affected by the number of powered cores in addition to 

the resonance frequency. Since we kept stable current consumption across all four scenarios 

by having only the first core active, the EM amplitude (and hence the voltage noise) is 

maximized in the scenario where the least PDN capacitance is present (“C0”). These results 

 

Figure 37. Resonance frequency exploration on Cortex-A53. For four powered cores (C0C1C2C3) 

the resonance frequency is 76.5MHz. 
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confirm prior work [37] that shows that with more cores connected under the same PDN, 

the capacitance increases and voltage noise smooths out. 

Moreover, the results indicate that power-saving techniques, such as power-gating 

individual cores, whilst being beneficial from a leakage perspective, can affect power-

delivery adversely. Power-gating not only reduces the available useful capacitance that can 

mitigate high-magnitude voltage-droops, but also makes the frequency of voltage-noise 

oscillations higher. This has detrimental implications on voltage-noise mitigation 

mechanisms such as adaptive-clocking [31][44], that are extremely sensitive to response-

latency.  

6.2.1 Simultaneous Voltage Noise Monitoring of Multiple Voltage 
Domains 

 

We next illustrate the capability of the EM based methodology to monitor multiple 

voltage domains simultaneously. This is impossible with an on-chip or off-chip oscilloscope 

that has a direct physical probing on a single voltage domain. In contrast, an antenna can 

detect voltage emergencies happening at the same time on both the Cortex-A72 and Cortex-

A53. To demonstrate this capability, we run the Cortex-A72 and Cortex-A53 dI/dt viruses 

at the same time and capture the spectrum analyzer readings as shown in Figure 38. The 

frequency-domain signatures of both viruses are clearly visible. This shows that the EM 

 

Figure 38. Simultaneous monitoring of voltage emergencies across multiple voltage domains through 

EM emanations. 
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methodology offers an effective detection mechanism for voltage-noise oscillations 

occurring across multiple voltage domains, thereby underlining its applicability to 

heterogeneous System-on-Chips (SoCs).  

6.3 AMD Athlon II X4 645 
This section extends the evaluation from low-power mobile CPUs and the ARM ISA to 

high power x86-64 desktops (AMD Athlon II X4 645). The loop method frequency sweep 

methodology for finding the resonance frequency (Section 4.3) is performed on the AMD 

CPU and the results are shown in Figure 39. The sweep reveals the first-order resonance 

frequency to be at 78MHz. An EM amplitude driven GA run shows excellent agreement 

converging to nearly the same resonance frequency (77MHz) as shown in Figure 40. The 

EM amplitude during the GA search follows the same trends as in the Juno board CPUs, it 

increases with each generation until it eventually converges. 

For VMIN comparison, the GA auto-generated EM virus is compared against common 

Windows (and Desktop CPU) workloads. The benchmark suite includes CPU intensive 

video rendering workloads such as Blender [12], Cinebench [19], scientific workloads such 

as Euler 3D [25] and all-around benchmark suites such as WEBXPRT [71] (mimics browser 

workloads) and GeekBench [28] (set of common workloads e.g. encryption, database 

 

Figure 39. Loop frequency sweep on Athlon II X4 645 reveals a resonance frequency at 78MHz. 
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queries etc.). Moreover, the EM virus is compared against the well-known Prime95 [61] 

stability test, AMD’s own stability test application [4], and a GA virus generated through 

the voltage feedback from on-package Kelvin measurement pads (denoted as OscVirus). 

We monitor on-die voltage noise using a differential probe connected to an oscilloscope 

(Figure 30). The VMIN and voltage noise results are shown in Figure 41. Unless noted 

otherwise, all measurements are with all four cores active.  

The GA viruses (EMvirus, OscVirus) cause much higher voltage noise and have higher 

VMIN as compared to the rest of the workloads. The EM driven GA approach again is 

effective in generating voltage-noise viruses. The EM virus has a VMIN of 1.3625V, 37.5mV 

below the nominal voltage at 3.1GHz. It is interesting to point out that the EM based virus 

  

Figure 40. GA EM amplitude driven run on AMD CPU.  
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Figure 41. VMIN and voltage noise measurements on the AMD CPU. 
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running on only two active cores is more severe than the AMD stability test and Prime95 

on four active cores. To gain confidence in the VMIN results we have run the AMD stability 

test and Prime95 for 24 hours at 1.287V and 1.28V respectively. They both pass the test 

whereas the EM virus causes immediate system-crash at 1.3V or even higher voltages.  

6.4 Ampere Computing X-Gene2 
 

In this section, we evaluate the EM methodology on the X-Gene2 CPU. Compared to 

the other evaluated CPUs the X-Gene2 has a distinct characteristic that affects the dI/dt virus 

generation; X-Gene2 cores are clustered into Processor-Modules (PMD). Each PMD 

includes two cores with a private DL1 cache and a shared L2 cache. The DL1 caches are 

write-through [82] so each time a write is performed in the DL1 cache, the L2 cache is 

written as well. Therefore, when two threads run on the same PMD L2 cache contention and 

interference across threads should be the norm. Hence, the approach of performing the GA 

search on single core and then testing the resulted virus by running it on all cores does not 

work for X-Gene2 because execution of multiple instances of a derived virus, one instance 

in each core, usually suffers from timing interference that impedes resonance built-up. To 

mitigate this issue, we propose to perform the GA search on a single PMD but with two 

instances of the virus running, one on each PMD core. With this approach we observe that 

the GA naturally converges to solutions that do not suffer from contention on the L2 cache 

and cause high voltage-noise.  

We use the loop-size heuristic (Section 4.5) to estimate the number of instructions for 

the GA optimization on X-Gene2. Recall that to use the heuristic, we need to determine the 

CPU frequency, the maximum IPC and the PDN resonance-frequency. The nominal CPU 

frequency is known from the specifications and is equal to 2.4GHz [82]. The maximum IPC 

is 4 [82] which we confirm with a GA IPC optimization. To find the resonance frequency 
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we use the loop method for quick resonance-frequency determination described in Section 

4.3.  

Figure 42 shows the results of the PDN resonance-frequency exploration on X-Gene2. 

The sweep results suggest a resonance frequency at 150Mhz. We observe gaps between the 

data points in Figure 42 because X-Gene2 supports only discrete CPU frequency values in 

steps of 300MHz. Based on these values the heuristic suggests using loop size of 25 

instructions during the GA optimization. The GA search maximizes the EM amplitude at 

150MHz as shown in Figure 43. We confirm the virus effectiveness by performing a VMIN 

comparison against SPEC2017 and NAS benchmarks. The results in Figure 44 reveal that 

the GA virus (rightmost) has higher VMIN than the other workloads.  

6.5 Ampere Computing X-Gene3 
 

We apply the EM methodology on X-Gene3 to generate a dI/dt virus. We validate the 

effectiveness of the generated virus with both VMIN measurements and voltage droop 

 

Figure 42. X-Gene2 resonance frequency exploration 
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measurements using the voltage droop detector circuit that is integrated on the X-Gene 3 

chip.  

Figure 45 shows the max voltage droop caused by the dI/dt virus compared to NAS 

parallel benchmarks at 32 active cores and 3GHz CPU frequency. Is shown that the virus is 

the only workload that causes 80mV voltage droops. Furthermore, the droop detector allows 

 

 

Figure 43. GA search on X-Gene2. 
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Figure 44. X-Gene2 VMIN results. 
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counting the number of CPU cycles that suffered a voltage droop per second. Figure 46 

shows the number of CPU cycles that suffered a 40mV voltage droop per second while 

running the virus and the SP NAS benchmark (the NAS benchmark with the highest droop 

count) for a different number of active cores. The first observation is that the virus causes 

orders of magnitude more droops than the SP benchmark. This confirms that the dI/dt virus 

behaves as intended by causing periodically voltage droops at a rate equal to the PDN 

resonance frequency. Another observation is that the droop count increases along with the 

number of active cores. For instance, the SP benchmarks start to cause droops of 40mV only 

above 16 active cores. This is expected as with more cores actives more current (I) is drawn, 

hence, higher voltage droops are generated [42]. We also observe that the SP curve is more 

flat compare to the dI/dt virus i.e. the droop increase with a higher number of active cores 

is more apparent for the dI/dt virus. This can be explained by the fact that the virus is a tiny 

loop of 50 instructions, therefore, during virus execution the cores are more easily aligned, 

which has a constructive effect on voltage-noise as the number of cores increase.  

 

Figure 45. Voltage droop of virus vs NAS workloads. 
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Regarding VMIN, as shown in Figure 47 the virus has equal VMIN to the SP benchmark 

despite (as shown in Figure 45 and Figure 46) virus causing higher voltage-noise (both in 

terms of quantity and magnitude). A possible explanation for this behaviour might be the 

Load-Line calibration feature that is supported by the X-Gene3.  

Load-Line calibration is the mechanism that automatically adds a voltage-offset to the 

desired operating voltage (the one set by the user or the manufacturer) to compensate for 

voltage droops that occur due to changes in CPU power consumption. This mechanism 

responds to a voltage drop in scales of milliseconds and it addresses the IR drop. It is not 

intended to address the sudden inductive dI/dt voltage droops, such as the one caused by a 

dI/dt virus. Despite that, at least in this case, it seems to work as a counter against our X-

Gene3 dI/dt virus. This is the case because it happens that the virus causes higher power-

consumption that the rest workloads. The dI/dt virus causes on average 20W more CPU 

power consumption that the NAS benchmarks. This results in more voltage offset being 

added during virus execution.  

 

Figure 46. Cycles suffered droop per second versus number of active cores. 
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Figure 48 show the operating voltage over time for NAS, dI/dt and idle workloads when 

the voltage regulator is instructed to set the operating voltage to 820mV. We observe that 

even at idle a small voltage offset of 3mV is added (except for one spike at 824mV that 

could be correlated with a sudden activity from background system processes). When CPU 

is not idle (during NAS and dI/dt execution) the Load-Line calibration raises the voltage 

much higher to compensate for the IR drop (the drop of voltage at the ends signifies the end 

of execution). Because the dI/dt virus causes higher power consumption, the operating 

voltage during virus execution is raised from 3 to 6mV higher compared to SP workload. 

This shows that VMIN testing with Load-Line calibration enabled is not exactly a fair 

comparison since the actual operating voltage is dependent on the workload power-

consumption (instead of just being equal to the voltage asked by the experimenter). 

Unfortunately, we cannot disable Load-Line calibration to check if the VMIN results will be 

different. Another implication of these results is that during dI/dt virus development, 

emphasis must be given not only on dI/dt voltage-droop but on average power consumption 

 

 

Figure 47. VMIN measurements on X-Gene 3. 
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as well. Our results support the following: a) generating voltage-noise viruses with low 

average power-consumption when Load-Line calibration is present to reduce the 

automatically added voltage-offset, and b) generating voltage-noise viruses with high 

average power-consumption when Load-Line calibration is not present to increase the 

overall voltage droop with higher IR droop.  

 

Figure 48. Voltage over time for 3 different workloads (idle, SP and dI/dt virus).  
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 EM based DVS Governors 
 

7.1 EM Detection Governor 
 

We propose a DVS governor that exploits the correlation between EM amplitude and 

voltage-noise. The governor detects workloads that cause high-voltage noise by 

continuously monitoring the EM power levels emitted by the CPU’s PDN. If the EM 

amplitude surpasses a certain threshold the workload is considered unsafe. In that case the 

governor will set the CPU voltage to a high safe value. Otherwise, if the EM power does 

not exceed a certain threshold, the governor sets the CPU voltage to a lower more optimistic 

value. 

The DVS governor EM detection setup for a X-Gene2 system is shown in Figure 49. 

Essentially, is the same EM setup as we shown in Section 4.1 for the Juno board and the 

AMD desktop CPU. The antenna senses the EM signals and the spectrum analyser monitors 

EM spikes at the resonance frequency. A workstation is connected to the spectrum analyser 

(not shown in the picture). The workstation analyses the strength of the signals and if a 

threshold is surpassed, it will act to enforce stability by changing the voltage to a safe value.  

 

Figure 49. DVS governor EM detection setup on X-Gene2. 
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This DVS governor requires the following parameters to work: a) a safe voltage called 

WorkloadVMIN for safely executing regular workloads (this can be identified through 

extensive VMIN characterization of regular workloads), b) a safe voltage for running a dI/dt 

workload which can be equal to the VMIN of a dI/dt virus (we will refer to this as 

VirusVMIN), c) the threshold of the EM signal amplitude that is considered dangerous (this 

can be identified by characterizing the EM of a dI/dt virus characterization) and d) the 

resonance frequency of the CPU’s PDN, this is the frequency that the spectrum analyser 

will monitor.  

The predictor algorithm is the following: a) Upon a new workload start set the voltage 

to VirusVMIN, b) Monitor the workload for few seconds, c) if the EM amplitude doesn’t 

exceed the threshold, then, lower the voltage to the WorkloadVMIN, d) if the EM amplitude 

exceeds the threshold, then, keep the voltage at the VirusVMIN. These steps are illustrated 

with a flowchart in Figure 50. In the figure the VirusVMIN is equal to 980mV and the 

WorkloadVMIN is equal to 930.  

 
 

Figure 50. EM predictor flow-chart. 
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We evaluate the EM detection governor on X-Gene2. We have executed the EM 

detection governor for 12 hours under a random workload. For virus workloadVMIN, we 

use 930mV. Figure 51 shows the moving average power consumption of EM governor 

versus the moving average power consumption of the CPU executing under nominal 

voltage. The EM governor provides lower power consumption. In total the EM predictor 

provides 10% power-savings.  

Is worth highlighting that the EM predictor has not yet been practically realised in real 

deployments. But the effectiveness of this prototype motivates the implementation of this 

approach in future designs by incorporating both the antenna and the actuator logic inside 

the chip.   

 

 

 

 

Figure 51. EM predictor vs nominal. 
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7.2 Core Allocation Governor 
 

The dI/dt viruses produced with the EM methodology can assist in DVS decisions for 

improving the CPU energy-efficiency. In particular, we propose to characterize offline the 

VMIN of dI/dt viruses for different core-allocation classes (i.e. for different active cores) and 

implement a DVS governor that: a) continuously monitors which cores are active, b) 

identifies the core-allocation class based on the current active cores, c) determines the VMIN 

of the core-allocation based on the off-line characterization, and d) sets the operating voltage 

to the VMIN of the current core-allocation. 

We evaluate the core-allocation governor on the X-Gene2 CPU. One of the fundamental 

questions for implementing the core-allocation governor is how many different core 

allocations are characterized. Broadly speaking the most determining factor for dynamic 

voltage scaling (DVS) decisions is the number of active cores. More active cores lead to 

higher current (I) consumption and higher voltage droops, and, it is generally accepted that 

a system’s VMIN is higher when more cores are active [42][49][73]. Therefore, one approach 

would be to characterize the VMIN of the system under different number of active cores. But 

in cases where the CPU design introduces asymmetric performance among cores, the 

number of active cores is not the sole determining factor for the magnitude of the voltage-

noise [42]. Examples of such CPU designs are Simultaneous-Multi-Threading processors 

(SMT) [81], the AMD bulldozer architecture [42] and X-Gene2 [82].   

X-Gene2 implements a PMD based architecture. X-Gene2 cores are clustered into 

Processor-Modules (PMD).  Each PMD includes two cores with their private L1 cache and 

a shared L2 cache. The L1 caches are write-through to the L2 cache. The sharing of the L2 

cache causes performance differences when executing two threads on the same PMD 

compared to executing two threads across two PMDs. Hence, to apply the core-allocation 

governor on X-Gene2 we must characterize the system VMIN for different number of fully 

active PMDs (i.e. the PMDs where both cores are active henceforth referred to as fp) and 
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for different number of half active PMDs (i.e. the PMDs where only one core is active 

henceforth referred to as hp).  

For clarity Figure 52 illustrates different core-allocations classes for 4 threads. In total, 

X-Gene2 has 14 different allocation classes which are shown in Table VII. For each 

allocation class, a subset of allocation-instances is shown. Allocation-instances are basically 

the ids of the active cores that implement an allocation. For example, the combination of 

cores “0,1,2” implements a 1fp,1hp allocation class. In total, X-Gene2 has 255 allocation-

instances (all the possible active core combinations minus one, 28 – 1 = 256 -1 = 255). 

It is also important to consider which cores are going to be characterized for each 

allocation class. Naïve selection of the cores that will be characterized could result in not 

optimal power-efficiency or system failures. For instance, applying the VMIN of a 2fp 

allocation-instance that uses cores 0,1,2,3 to a 2fp allocation-instance that uses cores 4,5,6,7 

might be dangerous for system-stability if cores 4,5,6,7 have higher VMIN than cores 0,1,2,3. 

This issue becomes more important with the increasing CPU core counts that render static 

variations among cores (in terms of VMIN) a higher concern. Therefore, for each allocation 

 

 

 

 

 

 

 

 

 

 

Figure 52. Different core-allocation classes for 4 active threads. Idle cores and L2 are illustrated 

with white colour. 
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class we characterize the VMIN of the worst-case allocation instance. The worst-case 

allocation instance is the instance that consists of the cores and PMDs with the highest VMIN. 

The VMIN of the worst-case allocation instance will be considered as a safe VMIN for any 

allocation-instance that belongs to the same allocation class. This approach is based on two 

expectations: a) the voltage-droop is inherent to the number of active fp and hp (i.e. 

allocation scenario), b) the core-to-core variations affect the resilience to voltage droops but 

not the voltage droop magnitude. 

We start constructing the DVS governor for X-Gene2 by first finding the dI/dt virus 

(from Section 6.4) VMIN of all 1hp and 1fp allocation-instances. This is a required first step 

that enables the identification of the worst-case allocations for the rest 12 allocation classes. 

The results are shown in Figure 53. The cores 1,6,7 are the most unreliable cores. The PMD 

runs (both PMD cores active) “0,1”,”2,3”,”4,5”,”6,7” have equal VMIN, and, as expected, 

they have higher or equal VMIN to the single-core runs. We use these results to construct the 

worst-case allocations-instances for all rest allocation classes. For example, based on Figure 

53 results, the worst-case allocation-instance for the 2hp class are the cores “1,6” (or “1,7”). 

Table VII. All X-Gene2 core allocation classes. 

Allocation 
Class 

Allocation Instances 
(space separated) 

Total number of Allocation 
Instances 

1hp 0  1  2  3  4  5  6  7 8 

1fp 0,1  2,3  4,5  6,7 4 

2hp 0,2  0,3  0,4  0,5  0,6  0,7  1,2  … 24 

1fp 1hp 0,1,2  0,1,3 …. 24 

3hp 0,2,4 …. 32 

1fp 2hp 0,1,2,4 … 48 

2fp 0,1,2,3  4,5,6,7 …. 6 

4hp 0,2,4,6  1,3,5,7 … 16 

1fp 3hp 0,1,2,4,6 … 32 

2fp 1hp 0,1,2,3,4 … 24 

2fp 2hp 0,1,2,3,4,6 … 24 

3fp 0,1,2,3,4,5 … 4 

3fp 1hp 0,1,2,3,4,5,6 … 8 

4fp (or 8hp) 0,1,2,3,4,5,6,7 1 
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In cases of equal VMIN the cores and PMDs are arbitrary selected. For instance, for the 2fp 

class is not obvious which two PMDs to pick, hence, the worst-case instance is arbitrary 

selected.  

We perform dI/dt virus VMIN characterization for each worst-case topology instance and 

the results are shown in Figure 54. The classes are sorted based on the number of active 

cores, and, the results show a rather monotonical trend with increasing number of cores, 

 

 

Figure 53. Single core and PMD VMIN characterization. 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 54. Allocation class VMIN characterization. 
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which is expected. These VMIN values have a 10mV safety margins added on top of the VMIN 

i.e. the VMIN values shown on the graph are equal to crash voltage plus 20mV. This safety 

margin is added to cover any potential inaccuracies in the VMIN results. Such inaccuracies 

may arise from various experimental limitations such as limited characterization time.  

With the allocation class VMIN characterization finished, the DVS governor has all the 

necessary information for taking DVS decisions. The governor essentially will perform the 

following steps when CPU is running a workload: a) check which cores are active (i.e. the 

allocation instance, b) if the VMIN of the allocation-instance is known e.g. in the case  a 1hp 

or 1fp allocation-instance, then we set the voltage to that value otherwise, c) determine to 

which allocation class the allocation instance belong and set the voltage according to Figure 

54 VMIN results. 

We test the DVS governor by running the dI/dt virus for all 255 allocation-instances. 

We have not observed any instability during the experiment execution. Furthermore, we 

evaluate the DVS governor with SPEC_rate 2017 and NAS benchmarks. We create a 

random workload by randomly generating: a) the benchmark to execute, and b) the 

allocation-instance i.e. the cores that will run the benchmark. For SPEC_rate each core runs 

a different benchmark instance whereas for NAS benchmarks each core executes a different 

benchmark thread. The total execution time for the random workload is 62 hours. We 

compare the power consumption of this random workload under: a) the nominal voltage, b) 

the proposed DVS governor.  

The power of the CPU voltage domain over time for the two scenarios is shown in Figure 

55. As expected, execution time is not affected because we alter only the CPU voltage. The 

workload changes are depicted in the figure by the observed power variations. The full 

random workload consists of a mix of high-power, medium and low-power runs. The 

average CPU utilization (not shown in the graph) is 50%. The DVS governor consistently 
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provides lower power than operating 24/7 under nominal voltage. This is illustrated more 

clearly in Figure 56 , which shows the moving average power consumption.  

At the end of the workload, the DVS governor provides 10% power-savings compared 

to nominal execution. The average voltage during DVS governor execution is 928mV (not 

shown in graphs). The success of the core-allocation governor supports two conclusions: a) 

the robustness and accuracy of the EM approach in generating proper dI/dt viruses and b) 

the worst-case noise is inherent to the design and not to core-to-core variations.  

 

 

Figure 56. DVS governor vs nominal moving average. 
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Figure 55. CPU power consumption over 60 hours workload. 
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 Conclusions 
 

8.1 Summary 
 

This thesis proposes a novel methodology for post-silicon dI/dt stress-test generation 

and resonance-frequency detection based on sensing modulations in CPU EM emanations. 

The proposed approach has the advantage of being non-intrusive: a) to system-software, b) 

to hardware and c) does not incur design-time overheads and complexities. The basic 

premise for this methodology is the presence of a correlation between the radiated EM 

power and on-chip voltage noise. The experimental analysis clearly establishes this 

correlation. Additionally, we demonstrate the generality of the proposed approach by 

successfully applying it to different CPUs to generate voltage-noise viruses for them and to 

obtain their PDN’s 1st order resonance frequency.  

Our experimental results support that the EM methodology can improve the CPU 

energy-efficiency by enabling operation outside of the nominal voltage margins. The VMIN 

of the dI/dt viruses produced with the EM methodology provides a good indication of a 

system’s safe VMIN. We repeatedly verified this claim through VMIN measurements. For all 

experimental platforms used in this thesis the VMIN of the dI/dt viruses is higher or equal to 

the VMIN of the conventional workloads. Furthermore, for a 60-hour workload we 

demonstrate that a DVS governor that scales the voltage according to the dI/dt virus VMIN 

for various core allocation scenarios can ensure robust execution and provide 10% power-

savings compared to nominal execution. 

We also demonstrate how the EM setup can be utilized during live operation to detect 

high voltage droops, react to them using a mitigation mechanism, and ultimately prevent 

their negative consequences. We evaluate this approach on a simple prototype setup with 

significant limitations in terms of reaction time. Still, we can guarantee safe and energy-

efficient operation for a 12-hour workload composed of conventional benchmarks and dI/dt 
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viruses. These results strongly encourage further development of this approach towards a 

product-grade solution that might be integrated into real systems. 

Besides the EM methodology, this thesis has another significant contribution. This thesis 

delivers GeST, a GA based framework for automatic stress-test generation that was 

developed for the needs of this thesis. While GA based automatic frameworks are not a 

novel concept, to the best of our knowledge there is no publicly available framework that 

researchers and practitioners can use. The framework presented in this thesis has been 

successfully demonstrated in industrial platforms and has been used for various research 

publications [20][72][73][93][94]. 

The key strengths of the GeST framework are its flexibility and extensibility as it 

provides an easy interface to the experimenter that can be used for building upon the 

framework. We demonstrate the flexibility and the effectiveness of the framework by 

generating, among other, power and dI/dt stress-tests (viruses) on various CPUs with simple 

and complex fitness functions. The generated viruses stress the system more than 

conventional workloads and manually written stress-tests. While this thesis demonstrates 

GeST on real hardware, there is no fundamental restriction that prevents the framework 

from being used for pre-silicon stress-test generation in conjunction with accurate power, 

temperature, performance and voltage-noise models/simulators. 

Finally, we conclude this Section with some observations we gather from all the CPUs 

that we have applied the EM methodology. We discuss cross-platform findings to provide 

insight on the generated viruses. In particular, we focus the discussion on the measured 

resonance frequencies, the potential for energy-efficiency improvements, the efficacy of the 

GA-optimization and the implications of instruction mix in virus generation.  

Table VIII provides a comparison about the viruses generated by GA for the different 

platforms in terms of average instructions per cycle (IPC), instruction loop frequency, 

dominant frequency (the one where the highest EM amplitude is observed), voltage margin 
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(the difference between the nominal voltage and virus VMIN), energy-efficiency 

improvement potential through the elimination of voltage margins and instruction-mix 

breakdown.  

The first-order resonance frequency of processors is typically in the range between 50-

200MHz [55][63] which is confirmed by our experimental results. According to Table VIII 

the lowest resonance is observed at 66MHz (Cortex-A72) and the highest at 150MHz (X-

Gene2). Regarding the VMIN of the dI/dt viruses, the viruses exhibit between 20 to 75mV 

higher VMIN compared to standard benchmarks or previously proposed stress tests (e.g. 

Prime95) and, hence, can be used to determine better operating points. The Cortex-A72 and 

Cortex-A53 on the Juno platform can benefit considerably from margin elimination (the 

estimated VMIN is at least 120mV and 150mV respectively, lower than nominal voltage 

specifications). 

  Another interesting insight from Table VIII is that that the dominant frequency (at 

which highest voltage oscillations occur) does not have to be equal the instruction loop 

frequency (1/loop period). Cortex-A53 virus has long loop periods that includes faster 

periodic events that stress the 1st order resonant frequency (e.g. Cortex-A53 has 6 times 

slower loop frequency than dominant frequency). In contrast, the other viruses have equal 

dominant and loop frequencies. Is worth mentioning that Cortex-A53 is the only examined 

CPU that does not benefit from the loop size heuristic. We empirically find that the fittest 

virus is generated with a loop-size of 50 instructions that does not adhere to the heuristic. 

Cortex-A53 is also the only in-order CPU in this study. This might suggest that in-order 

CPUs require slightly different loop-size heuristic, or different parameter values e.g. 

different target IPC.   
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Table VIII also shows the instruction breakdown of the viruses. All instruction types, 

apart from branch instructions are used in the instruction-mix of the viruses. Typically, a 

virus requires a combination of high-current and low-current-consuming instructions to 

create modulations in CPU current demand that can match the PDN’s 1st order resonance 

frequency. Single-cycle instructions and those that engage the memory sub-system typically 

increase current consumption in the pipeline due to higher switching activity. The ARM 

viruses use plenty of short latency operations whereas the AMD viruses include many short 

latency integer instructions with operands in memory (denoted as SL-int-Mem). X-Gene 

CPUs use more memory instructions compared to the rest ARM CPUs. This seems to be 

attributed to the fact that memory-store instructions on X-Gene CPUs draw more power 

compared to other CPUs due to the simultaneous engagement of both L1 and L2 cache 

(recall from Section 6.4 that DL1 on X-Gene CPUs is write-through). 

Longer latency instructions are found in all the viruses as they create explicit pipeline 

stalls/interlocks that reduce current consumption. For stalling the SIMD/floating point 

functional units we have observed by code inspection that viruses tend to use long latency 

instructions like FSQRT (square root). 

8.2 Future Work Directions 
 

For future work, we aim to extend our methodology to GPU PDNs, complementing 

recent studies on GPU voltage noise [70][86]. To the best of our knowledge we are not 

aware of any work that has conducted voltage-droop measurements on real hardware. Most 

GPU related work uses simulators [86] and models to study voltage-noise. Hence, 

conducting real-hardware voltage-noise measurements on GPU alone is a prominent 

research direction. Is worth examining how observations made with real measurements 

compare against the observations made from studies that are performed with a simulator. 

Furthermore, applying successfully the EM methodology for dI/dt virus generation on GPUs 
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will be another significant achievement. In this thesis we already show some promising 

results by successfully measuring the Mali GPU resonance-frequency in Chapter 4. 

Synchronization of dI/dt events for high core counts (8 and above) in general-purpose 

CPUs is another very interesting future work direction. There is no known method that 

guarantees thread synchronization in a tangible amount of time, for high core counts in an 

OS environment. Previously proposed probabilistic approaches for guaranteeing thread-

alignment work well for up to 4 threads [42].  Synchronizing dI/dt events at high core counts 

can lead to security, robustness and reliability issues at nominal settings. Also, we plan to 

apply the EM methodology on newer Intel and AMD CPUs e.g. Intel Skylake (and above) 

and AMD Ryzen architectures. Since these CPUs are widely used in the PC and server 

market segments, conducting voltage-noise research on these CPUs is of great importance. 

Another possible research direction is to exploit the interplay of IR drop and inductive 

dI/dt noise for generating the best voltage-noise viruses. It is known that these two can have 

additive effect. Fine tuning GeST to achieve both high power and high dI/dt noise is a receipt 

for creating the ultimate voltage-noise virus for cases where the system does not utilize IR 

drop compensation. Contrary, if the system employs IR drop compensations e.g. Load-Line-

Calibration (such as X-Gene3 Section 6.5) a better receipt seems a dI/dt virus with the lowest 

possible power-consumption. In general, the GeST framework provides a solid base to build 

upon and conduct research. In this thesis we have thoroughly tested the framework for CPU 

based optimizations such as power-viruses and dI/dt viruses. GeST is fairly extensible and 

can be easily used or extended to generate stress-tests that stress specific CPU components 

(e.g. viruses that maximize cache-misses or branch mispredictions) or non-CPU parts such 

as GPUs. Some preliminary results we have on GPU power-viruses look promising. A 

challenge of generating stress-tests with the EM approach for individual CPU components 

(e.g. floating-point units) instead of the whole CPU is to filter out sources of EM emanations 
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that do not belong to the target component. Examples of such sources are fetching and 

decoding pipeline activity which are necessary steps for executing any CPU instruction.    

Investigating the trade-offs between voltage noise and power-gating in the presence of 

having some cores active and some cores idle in a multi-core CPU is also an interesting 

work direction.  There is an interesting inter-play that we believe has not been 

comprehensively examined yet. Power-gating disables idle cores, therefore, it reduces 

overall power consumption by reducing static power. This is desirable, but power gating 

can also cause undesirable effects. Particularly, as shown in Section 6.2 power gating can 

amplify voltage-noise with the following means: a) power-gating reduces capacitances, 

hence, voltage-droop magnitude might be increased, b) power-gating reduces capacitances, 

therefore, shifts resonance-frequency to a higher value; if the activity of the active cores 

happens to match the new resonance-frequency then voltage-noise is amplified. Hence, 

instead of applying power-gating, in some cases it might be more power-efficient to keep 

the powered cores up and simply lower the operating voltage (this is feasible since voltage-

noise will be smaller). There is one more aspect to consider though. In some cases, power-

gating can alleviate the voltage droop. If the active cores run a workload that matches the 

1st order resonance-frequency, then power-gating can alleviate voltage-noise by moving 

away the resonance-frequency from the workload activity. A prominent future work is to 

explore these trade-offs and propose a scheme that decides to power-gate or not idle cores 

based on the active cores’ periodic activity. 

Regarding the EM methodology itself, a promising extension is to perform time-domain 

measurements (instead of frequency-domain as performed for this thesis). With time-

domain measurements it might be possible to capture aperiodic-events such as single one-

off voltage droops. Currently, the inability to capture one-off events is a disadvantage of the 

EM methodology compared to the traditional high-bandwidth measurement tools. Moving 
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the EM methodology to time-domain measurements is a promising future work direction 

for removing this limitation.  

Other general work directions for EM methodology are: a) secure-system design where 

on-the-fly PDN characterization can be utilized to thwart malicious side-channel attacks, 

and b) development of an EM based PDN characterization procedure that is integrated in 

high-end products that can help improve their quality and energy efficiency. 
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