
DEPARTMENT OF COMPUTER SCIENCE

Harnessing CPU Electromagnetic

Emanations for Power-Delivery

Network Characterization

Zacharias Hadjilambrou

A dissertation submitted to the University of Cyprus in partial

fulfillment of the requirements for the degree of Doctor of

Philosophy

November, 2019 Zac
ha

ria
s H

ad
jila

mbro
u

©Zacharias Hadjilambrou, 2019

Zac
ha

ria
s H

ad
jila

mbro
u

i

VALIDATION PAGE

Doctoral Candidate: Zacharias Hadjilambrou

Doctoral Dissertation Title: Harnessing CPU Electromagnetic Emanations for Power-

Delivery Network Characterization

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Computer Science and was

approved on the 8/11/2019 by the members of the Examination Committee.

Examination Committee:

Zac
ha

ria
s H

ad
jila

mbro
u

ii

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other

statements.

Zacharias Hadjilambrou

………………………..

Zac
ha

ria
s H

ad
jila

mbro
u

iii

Περίληψη

Ο επαγωγικός θόρυβος τάσης είναι μια από τις σημαντικές αυξανόμενες ανησυχίες στους

σύγχρονους επεξεργαστές. Η υπερβολική πτώση της τάσης μπορεί να προκαλέσει μη ορθή

λειτουργία. Ενώ η υπερβολική αύξηση της τάσης αυξάνει την κατανάλωση ενέργειας, τη

διάχυση της θερμότητας και μπορεί να επιταχύνει τη γήρανση του υλικού. Ο θόρυβος τάσης

προκαλείται από ξαφνικές μεταβολές στην κατανάλωση ρεύματος. Σύγχρονες τάσεις

σχεδίασης όπως οι τεχνικές χαμηλής κατανάλωσης ενέργειας (π.χ. power-gating, clock-

gating), οι γρήγορες συχνότητες και η υψηλή κατανάλωση ρεύματος, επιδεινώνουν τον

θόρυβο τάσης. Για την αντιμετώπιση του προβλήματος είναι υψίστης σημασίας να

αναπτυχθούν εργαλεία που επιτρέπουν τον χαρακτηρισμό των δικτύων παροχής ισχύος

(ΔΠΙ) και την παρακολούθηση του επαγωγικού θορύβου τάσης. Τέτοια εργαλεία

παρακολούθησης είναι χρήσιμα κατά τη διάρκεια των δοκιμών για να βοηθούν στον επαρκή

καθορισμό των περιθωρίων τάσης που θα επιτρέπουν την ομαλή και ενεργειακά αποδοτική

λειτουργία του επεξεργαστή. Επίσης, αυτά τα εργαλεία παρακολούθησης χρησιμοποιούνται

στην κατασκευή κυκλωμάτων μετριασμού του θορύβου τάσης που προστατεύουν τον

επεξεργαστή από χαμηλή τάση και εξασφαλίζουν αξιόπιστη λειτουργία.

Αυτή η διδακτορική θέση προτείνει μια νέα μεθοδολογία για τον χαρακτηρισμό ΔΠΙ. Η

προτεινόμενη μεθοδολογία βασίζεται στην ασύρματη ανίχνευση της ηλεκτρομαγνητικής

ακτινοβολίας (ΗΑ) που εκπέμπεται από το ΔΠΙ χρησιμοποιώντας μια κεραία και ένα

όργανο για την ανάλυση των ληφθέντων σημάτων (όπως ένας αναλυτής φάσματος). Η

προτεινόμενη προσέγγιση έχει τρία σημαντικά πλεονεκτήματα σε σύγκριση με κλασικές

προσεγγίσεις χαρακτηρισμού ΔΠΙ: α) είναι μη παρεμβατική και βολική καθώς δεν φορτίζει,

διακόπτει ή παρεμποδίζει το σύστημα με οποιονδήποτε τρόπο επιτρέποντας την

παρακολούθηση του συστήματος ως έχει, β) θεωρητικά, είναι συμβατή με οποιαδήποτε

πλατφόρμα καθώς οποιοδήποτε υλικό υπολογιστών εκπέμπει ΗΑ, γ) δεν επιβάλει επιπλέον

Zac
ha

ria
s H

ad
jila

mbro
u

iv

κόστος στον κατασκευαστή καθώς δεν απαιτεί υλικούς πόρους πάνω στον επεξεργαστή. Η

προτεινόμενη μεθοδολογία βασίζεται στην παρατήρηση ότι η ΗΑ μεγάλης ισχύος κοντά

στη συχνότητα συντονισμού του ΔΙΠ συσχετίζεται με υψηλό θόρυβο τάσης. Αυτή η

δουλειά παρέχει τη θεωρητική βάση και την απόδειξη ότι αυτή η παρατήρηση ισχύει.

Εκμεταλλευόμαστε αυτή την παρατήρηση με δύο τρόπους: α) για να μετρήσουμε τη

συχνότητας συντονισμού του ΔΠΙ και β) για να θέσουμε αποδοτικά περιθώρια τάσης με τη

βοήθεια ειδικών προγραμμάτων που μεγιστοποιούν το θόρυβο τάσης, αυτά τα

προγράμματα παράγονται μέσω ενός γενετικού αλγόριθμου που μεγιστοποιεί την ΗΑ. Η

προσέγγιση μας αξιολογείται σε διάφορους σύγχρονους επεξεργαστές. Σε όλους τους

δοκιμασμένους επεξεργαστές με την προτεινόμενη μεθοδολογία μπορέσαμε να

παρακολουθήσουμε με επιτυχία τον θόρυβο τάσης, να αναγνωρίσουμε τη συχνότητα

συντονισμού, να δημιουργήσουμε προγράμματα που προκαλούν υψηλό θόρυβο τάσης και

να θέσουμε αποδοτικά περιθώρια τάσης που μειώνουν την κατανάλωση ενέργειας. Επίσης,

αυτή η διδακτορική θέση προσφέρει την πρώτη δημόσια διαθέσιμη εφαρμογή για αυτόματη

δημιουργία στρες προγραμμάτων. Η εφαρμογή βασίζεται σε γενετικούς αλγόριθμους και

έχει δοκιμαστεί με επιτυχία σε πολλούς διαφορετικούς επεξεργαστές.

Zac
ha

ria
s H

ad
jila

mbro
u

v

Abstract

Inductive dI/dt voltage-noise is a growing concern in modern processors. Voltage-noise

is caused by sudden transitions in current consumption. Voltage-noise is manifested as large

voltage droops and overshoots below and above the nominal supply-voltage. These events

are a threat to reliability, robust execution and hardware longevity. Voltage droops may

cause unreliable execution, whereas voltage overshoots increase power consumption, heat

dissipation and may accelerate the hardware aging. Modern design trends such as: a)

aggressive low-power techniques (e.g. power-gating, clock-gating), b) high dynamic-power

range of multicore processors, and c) high current consumption, exacerbate voltage-noise

rendering power-delivery a critical concern. Tools for characterizing Power Delivery

Networks (PDN) and monitoring inductive dI/dt voltage-noise are required for: a) processor

voltage and frequency margining at the post-silicon chip testing phase and b) for designing

voltage-noise mitigation circuits that protect processor from voltage droops and ensure

reliable operation.

This thesis proposes a novel methodology for PDN characterization. The proposed

methodology is based on wirelessly sensing the PDN emanated electromagnetic (EM)

radiation using an antenna and an instrument for analyzing the received signals such as a

spectrum analyzer. The proposed approach has three major advantages compared to state-

of-the art PDN characterization approaches: a) it is non-intrusive and convenient as it

doesn’t load, interrupt or physically interfere with the system in any way allowing

monitoring the system as it is, b) it is cross-platform as all hardware emanates EM radiation,

c) it adds zero-overhead as it does not require development effort nor on-chip/on-package

resources. The proposed EM methodology is based on the observation that high amplitude

EM emanations at the PDN resonance frequency are correlated with high voltage-noise.

This thesis provides the theoretical basis and conclusive evidence that this correlation holds

Zac
ha

ria
s H

ad
jila

mbro
u

vi

true. We exploit this correlation for measuring the PDN resonance frequency and for voltage

margining CPUs with the help of dI/dt stress-tests generated with a genetic algorithm (GA)

that maximizes the amplitude of EM emanations. The EM approach is successfully

evaluated on five different processors. On all tested processors we are able to successfully

monitor PDN oscillations, identify the resonance-frequency and generate dI/dt stress-tests

that cause higher voltage-noise and have higher minimum operational voltage (VMIN) than

conventional workloads.

Additionally, this thesis delivers GeST (Generating Stress-Tests), a GA based

framework for automatic stress-test generation that is developed for the needs of this thesis.

To the best of our knowledge GeST is the first publicly available framework for stress-test

generation. The key strengths of GeST are its flexibility and extensibility as it provides an

easy interface for using and extending the framework.

Zac
ha

ria
s H

ad
jila

mbro
u

vii

Acknowledgements

This PhD thesis would have not been possible without the help of many great people

that I had the fortune to meet and work with during the last 7 years. First and foremost, I

would like to thank my advisor Yiannakis Sazeides with whom I had the pleasure to work

since 2012. Yanos was my advisor during my BSc, MSc and PhD studies. In parallel with

my studies, Yanos gave me the opportunity to work for large impact European research

projects such as EuroCloud, Harpa and Uniserver. I cannot thank him enough for giving me

these opportunities. All these years we had an excellent cooperation. Yanos is characterized

by his strong work ethics and tremendous passion for science. These aspects compose the

exceptional advisor, scientist and person he is.

I also consider myself extremely fortunate to have cooperated with another remarkable

man; my other advisor Shidhartha Das. The first time I met Sid was during my first

internship in Arm in 2013. Since then we had a continuous cooperation and the epitome of

our efforts is this PhD thesis. Sid was my manager during my last internship in Arm (from

Sep 2017 – Dec 2017). The work performed during that internship contributed significantly

in delivering this thesis.

Next, a big thank you is devoted to Marco A Antoniades and Kyriakos Neophytou. With

their expertise in antennas and electromagnetic waves, they provided invaluable help and

support. They constructed all the antennas used in this thesis and assisted in gathering all

the necessary equipment for setting up the EM experimental setup.

I would like to thank people who I cooperated with during my time in Xi Computer

Architecture research group. I would like to thank Chrysostomos Nicopoulos with whom

we have cooperated closely for the Eurocloud and Harpa projects. I would like to thank

Pedro Trancoso; we cooperated for the Uniserver project and I was truly lucky to have him

as my professor in various university courses as well. Of course, I would like to thank all

the fellow students and researchers that passed from the group: Marios, Panagiota,

Zac
ha

ria
s H

ad
jila

mbro
u

viii

Panayiotis, Lorena, Giorgos, Kypros, Georgia and many others. With these people I shared

the same lab for many years and their presence made life at work easier and more enjoyable.

Also, I would like to thank my colleagues and friends at Arm Cambridge offices. I would

like to thank Emre Özer who contributed in establishing close working relationship between

Arm and University of Cyprus. I would like to thank Paul Whatmough, my line manager

during my first and second Arm internships who has contributed to the development of the

GeST framework. I would like to thank David Bull for being always willing to share his

high technical expertise. A big thank you to the people I hanged together with; my fellow

Arm internship students and friends Vaibhav, Rohan and Jeremy. Their presence made life

and work in Cambridge much more amusing.

Many thanks to the members of the examination committee for their time and their

comments that helped improving this thesis. Likewise, special thanks go to all conference

and journal reviewers which contributed to polishing this thesis through their feedback.

Many thanks to the institutions that contributed to this thesis: University of Cyprus and

Arm. I would like to thank University of Cyprus for providing me the appropriate

environment to carry this thesis, and for being my second home for the last eleven years.

Also, a big thanks to Arm for providing me the opportunity to work there during three

different internships.

Finally, I genuinely express my thankfulness towards my family and Avraamia for

encouraging me and standing by my side during this journey. I dedicate this PhD thesis to

my grandfather, Zacharias Hadjilambrou, who although passing away he has always been a

role model and an inspiration, guiding my way through science. I remember him from a

very young age sitting with me and teaching me how to read and write. He was also a holder

of a doctoral degree and I am very proud and grateful for achieving to follow his footsteps.

Zac
ha

ria
s H

ad
jila

mbro
u

ix

Thesis Contributions

This thesis has contributed to the following achievements.

1. Hadjilambrou, Zacharias, Shidhartha Das, Marco A. Antoniades, and Yiannakis

Sazeides. "Leveraging CPU Electromagnetic Emanations for Voltage Noise

Characterization." In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 573-585. IEEE, 2018.

2. Hadjilambrou, Zacharias, Shidhartha Das, Paul N. Whatmough, David Bull, and

Yiannakis Sazeides. "GeST: An Automatic Framework For Generating CPU Stress-Tests."

In 2019 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), pp. 1-10. IEEE, 2019. [Best Paper Nominee]

3. Hadjilambrou, Zacharias, Shidhartha Das, Marco A. Antoniades, and Yiannakis

Sazeides. "Sensing CPU voltage noise through Electromagnetic Emanations." IEEE

Computer Architecture Letters 17, no. 1 (2018): 68-71. [Best paper award]

4. US patent application: Power Analysis, application ID 20190064896,

http://appft.uspto.gov/netacgi/nph-

Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-

bool.html&r=1&f=G&l=50&co1=AND&d=PG01&s1=Sazeides.IN.&OS=IN/Sazeides&RS=I

N/Sazeides

5. Software Framework: GeST https://github.com/toolsForUarch/GeST

6. Hadjilambrou, Zacharias, Shidhartha Das, Marco A. Antoniades, and Yiannakis

Sazeides, Harnessing CPU Electromagnetic Emanations for Resonance-Induced Voltage-

Noise Characterization, IEEE Transactions on Computers (Under Submission)

7. Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and David M. Bull.

"Power integrity analysis of a 28 nm dual-core ARM cortex-A57 cluster using an all-digital

power delivery monitor." IEEE Journal of Solid-State Circuits 52, no. 6 (2017): 1643-1654.

8. Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and David M. Bull. "14.6

an all-digital power-delivery monitor for analysis of a 28nm dual-core arm cortex-a57

cluster." In 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of

Technical Papers, pp. 1-3. IEEE, 2015.

9. Konstantinos Tovletoglou, Lev Mukhanov, Georgios Karakonstantis, Athanasios

Chatzidimitriou, George Papadimitriou, Manolis Kaliorakis, Dimitris Gizopoulos, Zacharias

Hadjilambrou, Yiannakis Sazeides, Alejandro Lampropulos, Shidhartha Das, Phong Vo:

Measuring and Exploiting Guardbands of Server-Grade ARMv8 CPU Cores and

DRAMs. DSN Workshops 2018: 6-9

10. Georgios Karakonstantis, Konstantinos Tovletoglou, Lev Mukhanov, Hans

Vandierendonck, Dimitrios S. Nikolopoulos, Peter Lawthers, Panos K. Koutsovasilis,

Manolis Maroudas, Christos D. Antonopoulos, Christos Kalogirou, Nikolaos Bellas, Spyros

Zac
ha

ria
s H

ad
jila

mbro
u

https://dblp.org/pers/hd/t/Tovletoglou:Konstantinos
https://dblp.org/pers/hd/m/Mukhanov:Lev
https://dblp.org/pers/hd/k/Karakonstantis:Georgios
https://dblp.org/pers/hd/c/Chatzidimitriou:Athanasios
https://dblp.org/pers/hd/c/Chatzidimitriou:Athanasios
https://dblp.org/pers/hd/p/Papadimitriou:George
https://dblp.org/pers/hd/k/Kaliorakis:Manolis
https://dblp.org/pers/hd/g/Gizopoulos:Dimitris
https://dblp.org/pers/hd/s/Sazeides:Yiannakis
https://dblp.org/pers/hd/l/Lampropulos:Alejandro
https://dblp.org/pers/hd/d/Das:Shidhartha
https://dblp.org/pers/hd/v/Vo:Phong
https://dblp.org/db/conf/dsn/dsn2018w.html#TovletoglouMKCP18

x

Lalis, Srikumar Venugopal, Arnau Prat-Pérez, Alejandro Lampropulos, Marios Kleanthous,

Andreas Diavastos, Zacharias Hadjilambrou, Panagiota Nikolaou, Yiannakis Sazeides,

Pedro Trancoso, George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou,

Dimitris Gizopoulos, Shidhartha Das: An energy-efficient and error-resilient server

ecosystem exceeding conservative scaling limits. DATE 2018

11. Poster: Harnessing CPU Electromagnetic Emanations for Voltage Noise Characterization,

Zacharias Hadjilambrou and Yiannakis Sazeides ACM Student Research Competition

held in conjunction with Parallel Architectures and Compilation Techniques Conference

(PACT18), November 2018

12. Poster: Shaving the Safety Margins by Exposing Intrinsic Hardware Heterogeneity

Zacharias Hadjilambrou, Konstantinos Tovletoglou, Panagiota Nikolaou, Charalambos

Chalios, Dimitrios Nikolopoulos, Pedro Trancoso, Yanos Sazeides and Georgios

Karakonstantis, ACACES 2016, July 2016

Zac
ha

ria
s H

ad
jila

mbro
u

xi

Contents

 Introduction ... 1
1.1 Motivation ... 1

1.2 Contributions ... 3

1.3 Document Structure .. 5

 Background and Related Work ... 6
2.1 CPU Power and Energy-Efficiency Techniques .. 6

2.1.1 Eliminating Static-Power ... 7

2.1.2 Eliminating Dynamic Power Consumption (Switching Activity) 8

2.1.3 Eliminating Dynamic Power Consumption (Voltage-Frequency Reduction) 9

2.2 Power-Delivery-Networks ... 11

2.2.1 PDN Resonance-Frequencies ... 11

2.2.2 IR drop versus dI/dt noise.. 12

2.3 Voltage Margins ... 15

2.3.1 VMIN Characterization ... 16

2.4 Voltage Margin Elimination Techniques .. 17

2.5 LdI/dt Noise Mitigation Techniques .. 18

2.6 LdI/dt noise on GPUs ... 20

2.7 EM emanations exploitation ... 21

2.8 Stress-Tests .. 21

2.8.1 Performance Stress-Tests .. 22

2.8.2 Power-Viruses .. 22

2.8.3 LdI/dt stress-tests .. 23

2.9 GA for Stress-Test Generation ... 24

 GeST Framework .. 28
3.1 GeST Framework Description .. 29

3.1.1 GA Engine .. 29

3.1.2 Inputs ... 34

3.1.3 Measurement and Fitness Evaluation ... 38

3.1.4 Output ... 39

3.2 GeST Evaluation Platforms .. 40

Zac
ha

ria
s H

ad
jila

mbro
u

xii

3.3 Power-Virus Generation .. 43

3.4 Voltage-Noise Virus Generation .. 49

 EM methodology ... 52
4.1 Required Experimental Apparatus .. 52

4.2 Relationship Between CPU EM Emanations and On-Chip Voltage Noise 54

4.3 EM Resonance Frequency Detection (Loop Method) ... 57

4.4 EM Resonance Frequency Detection (Clock Method) ... 59

4.5 EM dI/dt virus Generation ... 61

 Measurement Setup ... 64

 PDN Characterization ... 70
6.1 ARM Cortex-A72 .. 70

6.2 ARM Cortex-A53 .. 72

6.2.1 Simultaneous Voltage Noise Monitoring of Multiple Voltage Domains 75

6.3 AMD Athlon II X4 645 .. 76

6.4 Ampere Computing X-Gene2 ... 78

6.5 Ampere Computing X-Gene3 ... 79

 EM based DVS Governors .. 85
7.1 EM Detection Governor ... 85

7.2 Core Allocation Governor .. 88

 Conclusions ... 94
8.1 Summary .. 94

8.2 Future Work Directions ... 98

Bibliography .. 102

Zac
ha

ria
s H

ad
jila

mbro
u

xiii

List of Figures

Figure 1. Power equations. .. 7

Figure 2. (a) A simplified model of the PDN [55]. The impedance as seen by the die has

multiple resonance frequencies, shown in the frequency-domain response in (b) and time-

domain response to a step-current excitation in (c) ... 12

Figure 3. Voltage droop and current consumption for a power virus at various CPU

frequencies. ... 14

Figure 4. Voltage droop and current consumption for a dI/dt virus at various CPU

frequencies. ... 14

Figure 5. VMIN characterization flow. .. 16

Figure 6. Resonant buildup that leads to very high voltage droops and overshoots during

dI/dt virus execution on a x86 CPU. Measured with external Oscilloscope and active

differential probe connected to on-package measurement pads. ... 24

Figure 7. GeST overview. ... 30

Figure 8. A Typical GA flow. ... 31

Figure 9. Demonstration of GA operators. .. 32

Figure 10. Example of an instruction definition and its necessary operands. 35

Figure 11. Cortex-A15 power results. ... 44

Figure 12. Cortex-A7 power results. ... 44

Figure 13. X-Gene2 temperature results. .. 45

Figure 14. Complex fitness function rewarding high temperature and instruction simplicity.

 ... 47

Figure 15. GeST CPU power virus search on i5-2400. ... 48

Figure 16. Power consumption results for Intel i5-2400. .. 49

Figure 17. Voltage-noise results on AMD Athlon CPU. .. 50

Figure 18. VMIN results on AMD Athlon CPU. ... 51

Figure 19. Experimental setup for the ARM Juno board (left) and AMD desktop CPU

(right). .. 52

Zac
ha

ria
s H

ad
jila

mbro
u

file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427217
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427218
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427218
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427218
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427219
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427219
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427220
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427220
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427221
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427222
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427222
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427222
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427223
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427224
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427225
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427226
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427227
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427228
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427229
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427230
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427230
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427231
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427232
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427233
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427234
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427235
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427235

xiv

Figure 20. Measured |S11 [13]| for the square loop antenna indicating a self -resonance around

2.95 GHz. .. 54

Figure 21. a) Simulated waveforms showing the die voltage (VDIE) and die current (IDIE)

in the simplified PDN model in Fig. 2. A pulsing ILOAD triggers the first-order resonance

where the AC-component of both VDIE (Vac) and IDIE (Iac) maximize, thus maximizing

the radiated EM power. b) Resonant oscillations (close to the resonance-frequency at

67MHz) triggered on an ARM Cortex-A72 cluster (on ARM Juno Platform) causes a

corresponding peak in the measured EM power captured on a Spectrum Analyzer. 56

Figure 22. Comparison of spectrum analyzer readings (left axis) with FFT of OC-DSO

voltage readings (right axis) during execution of a dI/dt virus. The two measurements agree

as they reveal spikes at the same frequencies. .. 57

Figure 23. EM resonance frequency exploration for Cortex-A72 PDN with loop method.58

Figure 24. SCL stimulus reveals a resonance frequency in the range of 66-72MHz with two

powered cores (C0C1) and 80-86MHz with one powered core (C0). 59

Figure 25. Resonance-Frequency exploration on Cortex-A72 with clock method. 60

Figure 26. Resonance frequency exploration on Mali-T622 with the clock method. 61

Figure 27. OC-DSO calibration .. 65

Figure 28. Voltage waveforms obtained from OC-DSO for 3 different workloads. dI/dt virus

causes the largest voltage noise. .. 65

Figure 29. The Power-Delivery-Monitor layout on the left and on the right a die photo of a

JUNO R1 SoC [73] (Juno R1 uses the Cortex-A57 CPU whereas the Juno R2 uses the

Cortex-A72, apart from some differences in CPU micro-architecture the two SoCs are

identical). ... 67

Figure 30. AMD time-domain supply-voltage measurement setup. 67

Figure 31. Measurement of random signals in the frequency-spectrum of 1 to 3000MHz.69

Figure 32. EM driven GA run on Cortex-A72. Peak amplitude (left y-axis) and maximum

droop / dominant frequency (right y-axis) for the best individual of each GA generation. 70

Figure 33. Voltage droop and VMIN measurements on Cortex-A72. 71

Figure 34. GA search for Cortex-A72 dI/dt virus with 20 loop instructions vs 50 loop

instructions. ... 72

Zac
ha

ria
s H

ad
jila

mbro
u

file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427236
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427236
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427237
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427237
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427237
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427237
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427237
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427237
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427238
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427238
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427238
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427239
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427240
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427240
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427241
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427242
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427243
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427244
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427244
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427245
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427245
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427245
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427245
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427246
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427247
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427248
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427248
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427249
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427250
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427250

xv

Figure 35. GA EM amplitude driven optimization for Cortex-A53.................................... 73

Figure 36. VMIN measurements on Cortex-A53. ... 73

Figure 37. Resonance frequency exploration on Cortex-A53. For four powered cores

(C0C1C2C3) the resonance frequency is 76.5MHz. ... 74

Figure 38. Simultaneous monitoring of voltage emergencies across multiple voltage

domains through EM emanations. ... 75

Figure 39. Loop frequency sweep on Athlon II X4 645 reveals a resonance frequency at

78MHz. .. 76

Figure 40. GA EM amplitude driven run on AMD CPU. ... 77

Figure 41. VMIN and voltage noise measurements on the AMD CPU................................. 77

Figure 42. X-Gene2 resonance frequency exploration .. 79

Figure 43. GA search on X-Gene2. ... 80

Figure 44. X-Gene2 VMIN results. .. 80

Figure 45. Voltage droop of virus vs NAS workloads. ... 81

Figure 46. Cycles suffered droop per second versus number of active cores. 82

Figure 47. VMIN measurements on X-Gene 3. ... 83

Figure 48. Voltage over time for 3 different workloads (idle, SP and dI/dt virus). 84

Figure 49. DVS governor EM detection setup on X-Gene2. .. 85

Figure 50. EM predictor flow-chart. ... 86

Figure 51. EM predictor vs nominal. .. 87

Figure 52. Different core-allocation classes for 4 active threads. Idle cores and L2 are

illustrated with white colour. ... 89

Figure 53. Single core and PMD VMIN characterization. .. 91

Figure 54. Allocation class VMIN characterization... 91

Figure 55. CPU power consumption over 60 hours workload. ... 93

Figure 56. DVS governor vs nominal moving average. .. 93

Zac
ha

ria
s H

ad
jila

mbro
u

file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427251
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427252
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427253
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427253
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427254
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427254
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427255
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427255
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427256
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427257
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427258
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427259
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427260
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427261
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427262
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427263
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427264
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427265
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427266
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427267
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427268
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427268
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427269
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427270
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427271
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427272

xvi

List of Tables

Table I. Comparison of related work on GA frameworks. .. 25

Table II. GA parameters. ... 34

Table III. GeST evaluation platforms.. 41

Table IV. Instruction breakdown of Cortex-A15 and Cortex-A7 power viruses. 43

Table V. Power virus, simple power virus and IPC virus comparison. 46

Table VI. Experimental platforms. .. 64

Table VII. All X-Gene2 core allocation classes. ... 90

Table VIII. dI/dt virus comparison. SL denotes short latency and LL denotes long latency.

Voltage margin = Nominal voltage – VirusVmin. .. 97

Zac
ha

ria
s H

ad
jila

mbro
u

file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427207
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427208
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427209
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427210
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427211
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427212
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427213
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427214
file:///C:/Users/sugar-gaming/Google%20Drive/phdThesis/thesis_final.docx%23_Toc27427214

1

 Introduction

1.1 Motivation

The combination of higher current demand at scaled supply-voltages [66], high

operating frequencies, aggressive low-power techniques [39] and increasing core-counts

exacerbate supply-voltage noise for CPUs both in mobile [20][46][47] and server/desktop

[10][42][49] market segments. Large voltage noise is a threat to robust execution because

when the supply voltage drops below a certain threshold, timing violations or bit-flips may

occur [10][39][66]. This may lead to silent data corruption (SDC), application or system

crashes and general system instability [42][73].

 Manufacturers budget voltage margins (or guardbands) to ensure robustness even in the

presence of worst-case voltage noise conditions1. Consequently, production systems are

typically operated at a higher supply voltage (and/or lower clock-frequency) than necessary

under nominal operating conditions. Accurate determination of voltage margins is critical

since optimistic margining (where the added margins are not adequately provisioned for the

rare worst-case noise event) can cause abrupt system-failures in the field. Conversely,

excessive margining adversely impacts CPU energy-efficiency [9][10][42][44][56][66].

A key aspect of margining production systems is the determination of the worst-case

inductive component (referred to as “LdI/dt” or “dI/dt”) of the voltage noise [10]. LdI/dt

events are abrupt changes in CPU current demand that cause voltage noise oscillations

excited at the Power-Delivery-Network (PDN) 1st order resonance-frequency. The dI/dt

voltage-noise component typically dominates over the resistive component (referred to as

“IR”) in the PDN of modern computing systems [20][44][55]. In comparison with aperiodic

1Voltage margins are also necessary for variation effects such as temperature hot-spots, circuit-aging and process-variation [63].

However, system-margins are typically stressed most due to LdI/dt or inductive transients. Their fast-moving nature [21][44] renders
them difficult to compensate for using traditional adaptive techniques.

Zac
ha

ria
s H

ad
jila

mbro
u

2

or isolated dI/dt events, periodic current modulations at the 1st order resonance-frequency

reinforce the resonant noise even further [63], thereby maximally stressing system-margins.

Commercial Electronic Design Automation (EDA) tools [5][6][15] cannot accurately

model the time-varying CPU current due to the complex hardware/software interactions,

particularly in multi-core configurations [10]. Consequently, design-time PDN optimization

is inadequate and post-silicon characterization is essential for margining production systems

[10][47]. Post-silicon characterization typically relies upon synthetic virus workloads,

referred to as dI/dt stress tests (dI/dt viruses) [10]. Due to the inherent complexity of

manually crafting these tests, previous work [10][41][42] introduced frameworks for

automated generation of stress tests based on optimization techniques such as Genetic

Algorithms (GA). These approaches rely upon the capability of the platform-under-test to

support high-bandwidth monitoring of on-chip voltage rails or direct voltage measurements.

There are two main approaches for direct voltage measurement: 1) specialized on-chip

circuitry integrated into the system at design-time [2][31][46][48][53][72] and 2) voltage

sense pins located on the package [3][36][42][66] (also known as Kelvin measurement

points). Unfortunately, these capabilities are not yet mainstream features, particularly in

cost- and resource-constrained mobile platforms. Moreover, on-chip approaches incur the

Non-Recurring Engineering (NRE) design-time costs for hardware development and system

integration. In cases where the voltage monitor is integrated into the system as a peripheral

device, it requires additional software support (in terms of a device driver) to configure,

calibrate and query. Alternatively, on-package measurement points directly connected to

on-chip voltage rails do not incur design-time NRE overheads. Nonetheless, they require a

dedicated pair of Controlled Collapsible Chip Connection (C4) [22] bumps for each voltage-

domain. This consumes valuable C4 resources that could otherwise be used for direct power-

delivery. Consequently, such support is not usually provided in resource-constrained

platforms such as mobile CPUs (e.g. the Cortex-A53 CPU used in this thesis).

Zac
ha

ria
s H

ad
jila

mbro
u

3

In this thesis, we propose an alternative approach for post-silicon PDN characterization.

The proposed approach relies upon sensing CPU electromagnetic (EM) emanations using

an antenna and a spectrum analyzer connected to the antenna. Compared to direct-

measurement, our approach offers the following unique advantages for resonant voltage

noise analysis: a) is non-intrusive, as no physical connection to the CPU is required, b) has

zero-overhead, as it does not require design time, development effort, on-package and on-

chip resources, and c) is cross-platform, as it can be applied to virtually any platform.

Due to its general applicability, we believe that our approach provides a fundamentally

new way for benchmarking commercial systems and at the same time democratizes PDN

characterization and voltage noise research. Voltage noise visibility is not typically available

in motherboards and researchers do not usually have access, when available, to proprietary

on-chip voltage noise circuits. Consequently, voltage noise visibility is limited to chips and

motherboards that expose high bandwidth voltage measurements points. The proposed EM

methodology removes these constraints by allowing basic PDN characterization to be

performed on any CPU and motherboard without the need for direct fine-grained voltage

measurements.

1.2 Contributions

This thesis explains the theoretical basis and provide conclusive evidence for the

correlation between on-chip voltage noise and emanated EM power. Our measurements

demonstrate that both on-chip voltage noise and EM signal power are maximized at the 1st-

order resonance frequency. We leverage this observation to propose a convenient, zero-

overhead, cross-platform and non-intrusive way for PDN characterization. We demonstrate

that with the proposed EM approach, it is possible to: a) monitor periodic voltage-noise of

large amplitude b) generate dI/dt stress tests within a GA framework that optimizes towards

a maximum EM signal amplitude, c) rapidly measure the 1st-order resonance frequency, d)

Zac
ha

ria
s H

ad
jila

mbro
u

4

detect resonance frequency shifts due to capacitance changes in multi-core configurations,

e.g. due to dynamically switching on or off cores in a CPU cluster, e) construct Dynamic-

Voltage-Scaling (DVS) governors that are based on real-time EM monitoring and the

minimum-operational-voltage (VMIN) of the EM dI/dt viruses; these DVS governors provide

at least 10% power-savings over nominal voltage settings.

Furthermore, this thesis establishes the cross-platform applicability of the EM approach

by successfully applying it to different CPUs and Instruction Set Architectures (ISA). We

characterize the PDN for individual CPUs across separate platforms and distinct processor-

clusters integrated on the same die. In particular, the EM methodology is applied on five

different CPUs: two ARM multi-core CPU clusters (dual-core Cortex-A72 and quad-core

Cortex-A53) hosted on a Juno Board [7], one x86-64 AMD desktop CPU (Athlon II X4

645) and two Ampere Computing X-Gene ARM server CPUs (X-Gene2 8-core and X-

Gene3 32-core). Thus, the proposed approach is shown to work across CPUs of different

market segments (mobile, desktop and server), different ISAs (ARM and x86), different

CPU micro-architectures, different technology nodes and on CPUs that do not offer direct

voltage measurements such as the Cortex-A53 and the X-Gene2 CPU. The efficacy of the

EM approach is validated through direct voltage measurements (where it is feasible) and

VMIN determination (minimum stable operational voltage for a given frequency).

Finally, for the experimental needs of this thesis, the GeST (Generating Stress-tests)

framework has been developed. GeST is a GA based framework for generating stress-tests.

The EM methodology utilizes GeST for generating dI/dt viruses. GeST framework’s source

code has been released to public. While GA based automatic frameworks for generating

stress-tests is not a novel concept, GeST is to the best of our knowledge the first publicly

available framework that researchers and practitioners can use for generating stress-tests.

The main strengths of GeST are its flexibility and extensibility as GeST can be extended to

support virtually any optimization metric, any measurement instrument and any target

Zac
ha

ria
s H

ad
jila

mbro
u

5

platform. This renders GeST an ideal platform for researchers to experiment with and build

upon.

1.3 Document Structure

The remainder of this thesis is the following. Chapter 2 discusses the theoretical

background of this thesis, this includes among other subjects: a) CPU energy-efficiency, b)

PDN and voltage-noise, c) dI/dt and power-viruses, d) VMIN characterization, e) prior work

related to exploitation of EM emanations, and f) related work on GA stress-test generation

frameworks.

Chapter 3 presents and evaluates the GeST framework. We delve into the architecture,

implementation and usage details of the GeST framework. We also demonstrate the

framework’s effectiveness by generating power, IPC and dI/dt viruses on several CPUs.

Chapter 4 proposes the EM methodology. Specifically, Section 4.1 provides the

experimental apparatus required for the proposed approach, Section 4.2 provides both the

theoretical explanation and the experimental findings that prove the correlation between

inductive PDN voltage-noise and EM radiation. Sections 4.3, 4.4 provide the methodologies

for resonance-frequency detection, and, Section 4.5 provides the methodology for dI/dt virus

generation where we utilize GeST to conduct a GA search that optimizes towards high EM

amplitude.

Chapter 5 presents the experimental platforms where we evaluate the EM methodology.

Chapter 6 evaluates the EM methodology by detecting the resonance-frequency and

generating dI/dt viruses for the Cortex-A72, Cortex-A53, AMD Athlon II X4 645 CPU, X-

Gene2 and X-Gene3 CPUs. Chapter 7 proposes and evaluates on the X-Gene2 CPU two

DVS governors based on the EM methodology. Finally, Chapter 8 concludes this thesis. Zac
ha

ria
s H

ad
jila

mbro
u

6

 Background and Related Work

This Chapter provides this thesis’ theoretical background and related work. The Chapter

starts by discussing the factors that contribute to the CPU power-consumption and common

techniques for improving the CPU energy-efficiency such as power-gating, clock-gating,

DVFS, DVS etc. Then it discusses the fundamentals of PDNs and the voltage-noise

phenomenon. Voltage-noise is one of the main subjects of this thesis. Therefore, we will

delve deeply into related work on mitigating voltage-noise. We also provide background

information on stress-tests (dI/dt viruses, power-virus, IPC viruses), VMIN characterization

and all the prior work related to GA frameworks for stress-test development.

This thesis harnesses EM emanations for PDN characterization. This approach has been

inspired from prior work that exploits EM emanations for other purposes (e.g. performance-

profiling, security exploits etc.). Therefore, in this Chapter we also discuss related work in

exploiting CPU EM emanations.

2.1 CPU Power and Energy-Efficiency Techniques

Figure 1 illustrates the components of the CPU power-consumption. The CPU power-

consumption is attributed to two major factors: a) the static power-consumption, and b) the

dynamic power-consumption. The static power contribution comes from the leakage

current. Leakage current is always consumed regardless of the CPU activity. In contrast,

dynamic power-consumption depends on CPU activity. The dynamic power is composed

of: a) the voltage-frequency (these are mentioned together because their values are

intertwined) and b) the switching activity. The switching activity is equal to the activity

factor multiplied by the capacitance. Zac
ha

ria
s H

ad
jila

mbro
u

7

A lot of work has been performed for improving the energy-efficiency and reducing the

power-consumption of multi-core general-purpose CPUs. The techniques for reducing the

power-consumption can be broken down into three categories: a) techniques that deal with

static power, b) techniques that deal with dynamic power consumption through switching-

activity reduction, and c) techniques that deal with dynamic power consumption through

voltage and frequency reduction.

2.1.1 Eliminating Static-Power

First, we discuss static power-consumption reduction techniques. Power-gating is

probably the most well-known static power elimination technique. Power-gating is

performed by detecting idle transistors and turning them off (essentially disconnecting them

from the PDN). Power-gating can be applied at the level of a cache line, a functional unit, a

whole core or even a whole CPU cluster (e.g. in the case of big. Little chips). Power gating

can be detrimental to energy-efficiency if it is not performed at the right time. The gating

must be applied long enough to justify the delay and the dynamic-power spent to power-

back the transistors. In a typical power-gating implementation a mechanism counts the idle

time of a functional unit; if a threshold idle time is reached, then, the functional unit enters

a power-gated state. Power-gating has more power saving potential on floating points units

compared to integer units. The reason is that integer units are more utilized, hence, they

offer less power gating opportunity. Power gating a whole core or CPU cluster can be

Figure 1. Power equations.

 Pstatic = V * Ileak

Pdynamic = V2
 * F * C * A

Ptotal = Pdynamic + Pstatic

V (voltage) F (frequency) C (capacitance) A (activity-factor)

Zac
ha

ria
s H

ad
jila

mbro
u

8

instructed from OS using the ACPI interface, whereas power-gating of functional units is

performed within the hardware. The power gated states as defined by ACPI interface start

from C6 [83] state and above.

Caches are perhaps the most promising component for applying power-gating. Previous

work [84] shows that most of the time (80% of workload execution) cache lines are dead.

Dead means that they will not be used again. This motivates the concept of cache decay

which basically is a mechanism that tries to guess whether a cache line is dead or alive.

Dead caches can be power gated to save power. Of-course cache decay again incurs the risk

of wrong prediction. A wrong prediction might cause an otherwise unnecessary cache miss

that will have detrimental impact on both performance and energy.

The drowsy caches is an alternative approach for reducing static power consumption.

This approach may not have the same power saving potential as cache decay but is less

prone to detrimental effects. Drowsy caches exploit the fact that to preserve a cache line’s

state a lower voltage can be applied. Of course, when the cache line must be accessed the

normal voltage has to be applied back. But during times when a cache line is not accessed,

to save static power the voltage is lowered just enough to preserve the cache line values.

The performance penalty of the drowsy cache mechanism is due to the latency to scale back

to normal voltage. The performance penalty is very small (1%), therefore, related work

proposed to put all the cache periodically regardless of usefulness into the drowsy mode for

substantial energy savings [84].

2.1.2 Eliminating Dynamic Power Consumption (Switching Activity)

The next power saving techniques category to be discussed is related to switching

activity reduction. Clock-gating is the most common switching activity reduction technique.

The motivation behind clock-gating is the following. During a CPU cycle a functional unit

might be idle i.e. no instruction is scheduled to execute on that functional unit. Still,

switching activity is wasted even when functional units are idle because of the clock signal

Zac
ha

ria
s H

ad
jila

mbro
u

9

causing unwanted bit toggling. Clock-gating prevents unnecessary switching due to clock

signal. This is achieved by placing an AND gate between the clock signal and the flip-flops.

The AND operation is performed on the clock signal and a control signal. The control signal

is equal to 1 to allow the clock to reach the flip flops, unless a functional unit is idle for 1

cycle or more. In that case the control signal is equal to 0 to not allow the clock to reach the

flip flops. Clock gating can be performed at various granularities. Clock-gating is commonly

used in functional units, the power savings are less compared to power-gating, but clock-

gating is more performance friendly since the latency for returning to operational state is

negligible. Clock gating can be performed for the whole core in various degrees as defined

by ACPI C1-C3 states. Like for the power gating C6 state, OS can orchestrate the core C1-

C3 states transitions. Researchers have proposed even more finer grain clock-gating by

gating unused bit width of functional units [84]. The motivation stems from the fact that

registers are very wide 32 and 64 bit, but most instructions can be satisfied with only 16bits.

2.1.3 Eliminating Dynamic Power Consumption (Voltage-Frequency
Reduction)

Next, techniques for reducing voltage and frequency are discussed [84]. Nearly, all

modern general-purpose CPUs and GPUs use Dynamic voltage and frequency scaling

(DVFS) to save energy. The motivation behind DVFS is that many workloads have

significant slack that can be exploited to run the workload at a slower speed and save energy

at the same time. Input/output (I/O) and memory latency dominated workloads provide good

opportunity for DVFS. Let us take as example a text processor application. This is a

relatively easy computational application with a lot of I/O and relatively relaxed response-

time requirements (a person types about a character every 200-300ms) that does not justify

operating the CPU at the highest CPU frequency all the time. Instead, we can lower the CPU

frequency and the voltage to save significant amount of power (recall from Section 2.1 that

power depends quadratically on voltage) while keeping a satisfying performance level and

Zac
ha

ria
s H

ad
jila

mbro
u

10

response-time for the user. Like any other power management technique DVFS poses a risk

of detrimental impact in performance. To avoid undesired performance reduction DVFS

must be used only when substantial compute slack is available. The most common proxy

for estimating compute slack and guiding DVFS decisions is the CPU utilization. Low CPU

utilization implies opportunity for voltage and frequency reduction. DVFS decisions are

usually guided by OS. Hardware usually exposes various voltage-frequency points (also

known as performance-points or P-States) to the OS. The OS communicates to the hardware

the desired performance level through the ACPI interface. A commonly used OS level

DVFS interface is the cpufreq Linux utility.

Lowering only the frequency (DFS) (without lowering the voltage as well) can be

beneficial in circumstances where the system is thermally constrained or when workload is

dominated by main memory latency. But, for non-thermal and non-memory-latency

constrained scenarios, performing DFS most probably is not beneficial for energy-efficiency

because the power-consumption decrease is proportional to the workload execution time

increase (frequency affects both power and performance linearly). Therefore, for energy-

savings we usually use DVFS which scales down both voltage and frequency.

Finally, besides DVFS, lowering only the voltage i.e. DVS can be also applied for

dynamic power reduction. Lowering the voltage without scaling the frequency reduces the

available voltage noise margin. If voltage drops very low error can happen. Therefore, DVS

is a less common practice than DVFS. DVS requires either detection, correction and roll-

back mechanisms [34] to deal with potential instability due to low voltage [21], or ability to

monitor critical path and adjust voltage accordingly [44].

Zac
ha

ria
s H

ad
jila

mbro
u

11

2.2 Power-Delivery-Networks

2.2.1 PDN Resonance-Frequencies

Figure 2 (a) shows a simplistic representation of the PDN of a die-package-PCB system

[20][55]. The current demand due to on-chip switching transistors is modelled as a lumped

current source, ILOAD. Explicit decoupling capacitors (henceforth, referred to as decaps) and

non-switching, but powered-on, transistors act as localized charge reservoirs that provide

the high-frequency component of the demand current, ILOAD. The on-chip power-grid

resistance is modelled as a lumped resistor, RDIE, connected in series with CDIE. The total

die current (IDIE) is sourced through the inductive power-line traces of the package and the

PCB, represented by a series R-L (resistor, inductor) equivalent circuit. The discrete decaps

on the PCB and package are represented by an ideal capacitance (CPKG, CPCB) in series with

its effective series inductance (ESL) and effective series resistance (ESR). Figure 2(b)

shows the input impedance of the distributed RLC network as seen from the die. The

impedance spectrum shows multiple resonance peaks due to multiple LC-tank circuits. The

highest impedance peak, referred to as the 1st-order resonance peak is attributed to the die-

capacitance (CDIE) interaction with its counterpart inductance (LPKG). The 1st-order

resonance also occurs at the highest frequency (50MHz-200MHz) compared to the 2nd- (~1-

10MHz) and 3rd-order (~10KHz) resonances that are due to downstream capacitor networks.

The resonance frequencies also manifest in the time-domain when the PDN is excited

by a step-current excitation (Figure 2 (c)). Micro-architectural events such as branch

mispredictions [20] can trigger these oscillations in the PDN. Power-supply oscillations of

larger magnitudes can be set off within the supply network due to sustained program activity

with alternating periods of high-current and low-current consumption within a loop (e.g.

due to dI/dt virus) [42][73]. When the frequency of the time-varying current aligns closely

with the 1st-order resonance frequency, voltage oscillations are maximized in amplitude.

Zac
ha

ria
s H

ad
jila

mbro
u

12

High voltage oscillations can lead to bit-flips in arrays, timing errors in logic paths

[42][65][66][73] and reliability issues due to gate-oxide stress [1][65]. Such periodic events

often result in system/application crashes and/or incorrect execution output [42][56].

2.2.2 IR drop versus dI/dt noise

This thesis focuses on the dI/dt voltage-droop (or AC droop) but the total voltage-droop

magnitude does not solely depend on the dI/dt effect. The magnitude of a voltage-droop is

the sum of the dI/dt and the IR droop (or DC droop) [10]. As illustrated in Figure 2 a PDN

includes resistive and inductive PDN components. The resistive PDN components (RVRM,

RPB, etc.) produce the IR drop, whereas the inductive components (LVRM, LPCB, etc.) produce

the dI/dt droops. IR drops can be mitigated with techniques that compensate the voltage

drop by dynamically adding a voltage-offset during runtime. A well-known technique for

dynamic voltage-offsetting is the Load-Line calibration. Load-Line calibration is available

on most high-performance PCBs. In contrast to IR droops, dI/dt droops due to their fast-

Figure 2. (a) A simplified model of the PDN [55]. The impedance as seen by the die has multiple

resonance frequencies, shown in the frequency-domain response in (b) and time-domain response to

a step-current excitation in (c)

Zac
ha

ria
s H

ad
jila

mbro
u

13

moving nature cannot be compensated with Load-Line calibration. Other more advances

techniques must be employed (that are discussed in the next Sections of this Chapter).

IR and dI/dt voltage droops are stimulated by different factors and they are generated by

different workloads. IR drop increases proportionally to the CPU power-consumption.

Broadly speaking, higher CPU frequency and higher current draw lead to higher IR drop.

Contrary, to raise the dI/dt droop, repetitive high current stimulus at a rate equal to the 1st

order resonance-frequency is required. Therefore, increasing the CPU frequency while

executing a resonant workload will not necessary increase the voltage-droop.

To illustrate these differences we run and measure the voltage droop caused by two

different workloads: a) a power-virus that targets maximum power-consumption, and b) a

dI/dt virus that targets the PDN resonance-frequency by causing sudden high current-draw

at a rate equal to the resonance-frequency. We perform this experiment on a Cortex-A57

CPU hosted on an ARM Juno board. This CPU supports measuring dI/dt voltage-droops

through a high-bandwidth On-Chip-Digital-Storage-Oscilloscope (OC-DSO). We run the

two workloads for different CPU frequencies. At each frequency we measure the current

draw and the voltage-droop. Figure 3 shows the power-virus’ results and Figure 4 shows the

dI/dt virus’ results.

First and foremost, the figures confirm two fundamental expectations: a) that the power-

virus draws significantly more current than the dI/dt virus and b) that the current

consumption grows linearly to the CPU operating frequency for both workloads. Regarding

voltage-droop, the measured voltage-droop for the power-virus shows linear dependence

with the CPU frequency. This is the case because the power-virus exercises the IR drop. In

contrast, the dI/dt virus measured droop does not show linear dependence to the CPU

frequency. The dI/dt virus exercises the dI/dt droop. Hence, the measured voltage droop

increases with CPU frequency until the resonance-frequency is achieved. This occurs at

1.2GHz, this is the operating CPU frequency at which the dI/dt virus stresses the resonance-

Zac
ha

ria
s H

ad
jila

mbro
u

14

frequency. Further increase in the CPU frequency moves the virus’s stress-frequency

beyond the 1st-order resonance. This causes a reduction in the measured voltage droop.

Figure 3. Voltage droop and current consumption for a power virus at various CPU frequencies.

0

0.5

1

1.5

2

2.5

3

3.5

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

C
u

rr
en

t
(A

)

vo
lt

ag
e

d
ro

o
p

 (
m

V
)

CPU_FREQUENCY (MHz)

Power Virus

Voltage Droop (mV) Current (A)

Figure 4. Voltage droop and current consumption for a dI/dt virus at various CPU frequencies.

0

0.2

0.4

0.6

0.8

1

1.2

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

C
u

rr
en

t
(A

)

vo
lt

ag
e

d
ro

o
p

 (
m

V
)

CPU_FREQUENCY (MHz)

dI/dt virus

Voltage Droop (mV) Current (A)

Zac
ha

ria
s H

ad
jila

mbro
u

15

2.3 Voltage Margins

The classic approach for dealing with voltage-noise is adding a voltage margin i.e.

running the chip at a higher voltage to provision for worst case voltage droops [63]. This is

very practical for ensuring robust execution, but it leads to unnecessary waste of power.

Usually the voltage margins are much more pessimistic than required. Manufacturers are

forced to set pessimistic voltage margins because workload variations render the in the field

voltage-droop magnitude very hard to predict. Moreover, due to hardware static variations,

some parts may have higher tolerance to voltage-droops than others. Therefore, a voltage-

margin that ensures robust execution for a slow part, limits the energy-efficiency of a faster

part. Ideally, each chip should adopt different margins.

A partial solution to the issue of pessimistic margining is the speed-binning (or

frequency-binning). Speed-binning refers to making different product models out of the

same chips [63]. The chips are categorized to speed-bins (frequency-bins) after running

various representative test workloads on all chips. Broadly speaking the product models will

differ on their advertised nominal operating frequency (e.g. Model X runs at 3GHz, Model

Y runs at 2.8GHz etc.) and on their price. With speed-binning the faster chips are not forced

to work at slower frequencies and this partially solves the energy-inefficiency issue. But

speed-binning does not tackle completely the issue of static variations as even in the same

frequency-bin static variations still exist.

Constructing dI/dt viruses and characterizing their VMIN is another approach for reducing

the pessimistic margins [10]. As we show in this thesis and in prior work [42], the VMIN of

a proper dI/dt virus is higher than the VMIN of conventional workloads, thereby, the dI/dt

virus’s VMIN can be used as a guideline to determine the operating voltage for a given

frequency.

Zac
ha

ria
s H

ad
jila

mbro
u

16

2.3.1 VMIN Characterization

VMIN is the minimum voltage at which a chip (CPU, GPU etc.) operates correctly for a

given frequency. A chip can have different VMIN per workload as the execution paths and

the voltage droop magnitude differs from workload to workload. To determine a workload’s

VMIN we perform VMIN characterization. This procedure involves running the workload for

various voltage values until instability is observed. Typically, the VMIN characterization

starts from high voltage and after each successful workload execution, the voltage is lowered

in increments of 10mV. The VMIN test stops at the first voltage where instability is observed

(SDC, crash etc.). This voltage is tagged as the crash-point. The VMIN is equal to the crash-

point plus 10mV (or any other voltage increment that is selected). Figure 5 illustrates the

VMIN characterization flow.

Figure 5. VMIN characterization flow.

 Zac
ha

ria
s H

ad
jila

mbro
u

17

2.4 Voltage Margin Elimination Techniques

A voltage margin elimination approach is the critical path monitoring (CPM) [44].

CPMs are on-chip sensors that can measure at real-time the CPU’s available timing margin.

CPM can be combined with an actuator that can adjust the voltage or operating frequency.

For instance, when the available timing margin is high, then the actuator can reduce the

operating voltage to reduce the power or increase the CPU frequency to improve the energy

efficiency. If the timing margin is low, then the CPU frequency should be decreased, or the

voltage should be increased to ensure stability. Even in the presence of this technique, a

fixed voltage margin for the worst-case voltage droops must be maintained to ensure

stability in production setups [44]. Therefore, in practice this timing guard-band scheme

adjusts the voltage (or frequency) depending on workload’s voltage noise magnitude to

maintain a fixed margin. This is a more energy-efficient approach compared to the

conventional approach of maintaining fixed operating voltage, because with fixed operating

voltage a lot of power is wasted for common workloads that do not cause high voltage-

noise.

A more aggressive approach for voltage margin elimination is Razor [21]. Compared to

CPM, Razor can provide higher energy savings, but it also incurs higher area and penalty

overhead. Razor is based on running the chip at aggressive voltage/frequency conditions

and relying on error-detection and roll-back mechanism to recover the pipeline from errors.

Razor replicates critical path flip-flops. One flip-flop operates at aggressive margin

conditions and provides the speculative value. The other flip-flop operates at safe conditions

and provides the golden reference. If the flip-flop values do not match, then a recovery

mechanism for bringing the pipeline to the correct state is started.

Zac

ha
ria

s H
ad

jila
mbro

u

18

2.5 LdI/dt Noise Mitigation Techniques

The most common approach for mitigating dI/dt voltage-noise is to add on-chip

capacitance [55]. Capacitance affect voltage-noise in two ways. First, higher capacitance

helps in mitigating the voltage droop magnitude. Adding decoupling capacitors is a known

design-time technique to reduce voltage droop magnitude [63]. This approach has its

limitations though, as cost, area overheads and leakage limit the amount of capacitance that

can be added. In general, well connected PDNs that connect many hardware components,

and, thus, incorporate higher capacitance are considered beneficial for voltage noise

reduction [37]. The second effect that capacitance has on voltage-noise is that higher

capacitance has inverse relationship with resonance-frequency [55]. Therefore, the

resonance-frequency decreases with more capacitance. In terms of voltage-droop

magnitude, shifting the resonance-frequency can be either beneficial or detrimental

depending on which frequencies a workload exercise.

The vast majority of voltage droops is caused by periodic activity of loops [33][85]. If

these loops happen to match the PDN resonance-frequency, then the voltage noise is

amplified even further. Therefore, authors in [58][59][60] examined ways to modulate loop

frequency to avoid resonant voltage-noise. The proposed approaches require the capability

to monitor current at high bandwidth. Monitoring current is more advantageous over

monitoring voltage in this case, because resonant current behavior precedes voltage noise.

The authors exploit a phenomenon called “maximum repetition tolerance” which is the

maximum resonant current repetitions that can happen before a large voltage emergency is

triggered. The maximum repetition tolerance helps preventing unnecessary reactions to

voltage droops that are not dangerous and at the same it helps ensuring that a mitigation

mechanism will be engaged before it is too late. For mitigating voltage droop when detected,

stalling the pipeline by stalling instruction issue or instruction fetch has been proposed by

the authors. These mitigation approaches incur a performance penalty each time an

Zac
ha

ria
s H

ad
jila

mbro
u

19

emergency is detected. Other authors [39] have proposed to clock-gate or turn-on functional

units on purpose to reduce or increase current consumption. Turn-on can be used to

compensate voltage droop and clock-gate to smooth-out voltage overshoot.

The adoption of multi-core CPUs compared to single core CPUs raises the dynamic

power variability and hence increases the susceptibility to voltage transients. But at the same

time, it gives opportunity for voltage noise mitigation with destructive scheduling [66].

Essentially, some workloads when co-scheduled on different cores of a multi-core CPU

have a damping effect on voltage noise. Other workload combinations amplify voltage

noise. The key is to find which workload combinations decrease the voltage noise and utilize

this information in scheduling decisions. Workloads can have destructive voltage-noise

interference because their current consumption does not align. Destructive interference can

be also applied within multi-threaded application by misaligning the threads

synchronization barriers [49]. Other work performed in a modern multi-core IBM server

processor that supports droop mitigation mechanisms has shown that the server efficiency

is limited by the IR drop [75]. Therefore, they suggest in multi-socket servers, to evenly

balance the workload across the CPU sockets to minimize IR drop for better energy

efficiency.

Using ECC feedback as a proxy of voltage noise and emergency conditions has been

proposed in [9]. The idea is to lower the voltage until ECC errors start to occur. This

approach applies only to chips that have error protected ECC pipelines. Other work shows

that predicting safe VMIN through workload performance counters signature is possible [56].

Another prediction scheme [63] proposes voltage noise prediction based on sequences of

micro-architectural events and instruction that are likely to cause voltage noise (e.g. branch

instructions, pipeline flushes etc.). A micro-architectural structure inspired by branch

predictors but for prediction of voltage noise emergency is proposed. This mechanism also

relies on a voltage sensor for training the predictor as well as a roll-back mechanism in case

Zac
ha

ria
s H

ad
jila

mbro
u

20

of wrong emergency prediction that causes CPU malfunction. A voltage emergency

misprediction in such configuration induces performance penalty.

Voltage droop mitigation circuits have been proposed and implemented on some

processors [14][26][31][43][46][62][74]. A common mitigation circuit setup includes: a) an

on-die voltage monitor sensor, b) an actuator that mitigates the voltage noise either by

pipeline throttling (stall instruction issue or fetch) or reducing the CPU frequency (e.g.

adaptive-clocking [14]) and c) a voltage threshold indicating when the actuator should be

enabled (also in case of frequency modulation the amount of modulation is expressed).

Setting the right threshold can be tricky. A conservative (pessimistic) threshold might lead

to performance penalty whereas an optimistic threshold might translate to instability.

2.6 LdI/dt noise on GPUs

Besides CPU voltage noise, voltage on GPUs has been studied as well. In fact, GPUs

may suffer more from voltage noise due to their higher current consumption. Contrast to

CPU research, most GPU voltage noise research has been performed with the help of GPU

voltage noise simulators e.g. the GPUVolt simulator [86]. This might be an indication that

interfaces for direct voltage noise measurements on GPUs are seldomly found. Generating

high inductive noise on GPUs should be easier compared to CPUs. The GPU cores are much

simpler compared to complex general-purpose CPU out-of-order superscalar pipelines.

Moreover, GPUs have much more support for synchronizing core execution which assists

the generation of large dI/dt swings. Therefore, researchers have shown that dI/dt viruses

can be achieved by relatively simple manual written code that activates and deactivates

functional units with periodicity that matches the resonance-frequency or using instructions

that are known to cause low and high-power consumption [70][87].

Similar techniques to CPU have been proposed for voltage noise mitigation on GPUs.

GPUs due to high core counts are susceptible to static variations. Researchers have proposed

Zac
ha

ria
s H

ad
jila

mbro
u

21

the use of CPM combined with clock gating to throttle down cores that do not have enough

timing margin [87]. Other work reaches to the interesting conclusion that on GPUs normal

workloads have higher 2nd order droop compared to 1st order droop [45]. This is the case

because the 1st order droop is more sensitive to miss-alignment of cores. In fact, alignment

with so many cores (>100) at ~100MHz is hard to achieve. Whereas events as second order

droop around 1MHz are aligned easier. They have identified that the main events that cause

1st order droops for GPUs are dispatch stalls and register file current variations. Events that

cause 2nd order droops are instruction and data cache miss stalls. For droop mitigation they

suggest blocking dispatch unit and delaying system wide activity. Last, related work has

examined the GPU behaviour at low voltages. The researchers have shown that performance

counters can be utilized for workload VMIN prediction [88].

2.7 EM emanations exploitation

Previous work has exploited EM radiation for various objectives. EM emanations are a

known security side channel for snooping information [16][17][18][29]. Other work

leverages EM for non-malicious uses. In particular, [68] proposed non-obtrusive software

profiling, [76][77] proposed counterfeit detection and [52] proposed a malware detection

scheme based on EM emanations. Our work also leverages EM radiation, but for addressing

a different problem: voltage noise and PDN characterization in high-performance system-

design. Other work [30] proposes architectural and compiler changes to reduce CPU EM

interference.

2.8 Stress-Tests

Broadly speaking, stress-tests can be classified into three categories: a) stress-tests that

maximize specific micro-architectural (uArch) metrics, such as memory bandwidth, IPC

and cache-misses, b) stress-tests that maximize power consumption and temperature,

commonly referred to as “power-viruses”, and c) stress-tests that maximize voltage noise,

Zac
ha

ria
s H

ad
jila

mbro
u

22

also known as “voltage-noise viruses” or “dI/dt-viruses”. This work shows that GeST can

successfully generate stress-tests for all three categories. In particular, we use the framework

to generate stress-tests that maximize CPU IPC, power, temperature and dI/dt voltage-noise.

While this work focuses on the CPU there is nothing fundamental that prevents using GeST

for other processor components as well, for instance the last level cache (LLC) or for an

integrated accelerator. A brief discussion on each of the three stress-tests categories follows.

2.8.1 Performance Stress-Tests

Stress-tests for maximizing specific uArch metrics are mainly useful for performance

benchmarking purposes. The AIDA test suite [91] is a good example of benchmarking

stress-test software that is commonly used to test desktop and mobile system’s performance.

This suite includes various benchmarks to test the performance of specific CPU units (e.g.

floating-point unit) and specific functions (e.g. hashing). It also includes memory latency

and read/write bandwidth tests as well as specific test benchmarks for GPUs and disks.

Besides performance testing, previous work has proposed using stress-tests that target

specific CPU parts (ALU, FPU, L1D, L1I, L2 and L3 caches) to characterize the CPU

minimum operation voltage (VMIN) [92] and to generate power-models and an energy-per-

instruction (EPI) profile [90].

2.8.2 Power-Viruses

 Power-viruses maximize both sustained power consumption and heat-dissipation [57].

They are useful for characterizing a system’s power and thermal margins as well as the IR

drop. In addition, they can check thermal stability, in particular, of overclocked systems (set

to run at a higher than nominal voltage and frequency). Power-viruses usually maximize the

micro-architectural activity by issuing many instructions per cycle [40]. Prime95 [61] is a

well-known test program that maximizes power consumption and it is often used to check

the stability of over-clocked CPUs.

Zac
ha

ria
s H

ad
jila

mbro
u

23

2.8.3 LdI/dt stress-tests

Voltage-noise viruses attempt to maximize CPU voltage fluctuations [10][41][42] and

they have different characteristics from power-viruses. Rather than keeping a sustained high

current (I) consumption, dI/dt stress-tests attempt to cause sudden transition from very low

to very high current consumption. Abrupt current increase causes the voltage to drop low.

Periodic current surges that match the CPU’s PDN 1st order resonance-frequency maximize

the CPU voltage droops and overshoots [10][41][42] like shown in Figure 6.

 Since low voltage operation may lead to malfunctioning [42][56], dI/dt viruses are very

effective timing-error stability-tests. Voltage-noise viruses typically cause higher voltage

drop than power-viruses because the dI/dt component dominates over the IR drop. The

lowest voltage at which a dI/dt virus runs correctly can provide a good indication of where

to set the operating voltage of the CPU (for a given operating frequency).

Typically, a dI/dt virus is a loop of assembly instructions fine-tuned to cause current

variations at a rate equal to the PDN’s 1st order resonance-frequency. To achieve this the

virus should have the following traits: a) the loop should be executed repeatedly, b) a current

surge is caused at each loop iteration, and c) the loop iteration length in cycles is equal to

the CPU cycles that can fit inside a resonance period (1/resonance frequency). To develop

dI/dt viruses high bandwidth voltage measurements are required to measure the maximum

voltage droop or the maximum peak-to-peak voltage swing. This is achieved either through

external oscilloscope connected to on-package voltage sense points or internal on-chip

voltage sensors. Previous work [41][42] has proposed generating dI/dt viruses with a GA

that maximizes voltage-noise through on-package voltage sense points. This thesis also uses

GA to maximize voltage-noise but through maximizing EM emanations amplitude.
Zac

ha
ria

s H
ad

jila
mbro

u

24

2.9 GA for Stress-Test Generation

Table I provides an overview of the state-of-the-art GA stress-test generation

frameworks. We consider the pairs of works [41][42], and [27][89] as each representing the

same framework. Particularly, the work in [41] has evaluated a dI/dt GA framework on a

simulated environment and subsequently on real multi-core hardware [42]. Similarly, the

work in [89] generates GA power viruses for single-core CPUs and a latter extension on

multi-core CPUs [27]. In a different line of work, Joshi et al. [40] evaluated a power-virus

GA framework on an Alpha ISA single-core simulator and Polfliet et al. [57] evaluated a

power-virus GA framework on real-hardware using x86 multi-cores.

Figure 6. Resonant buildup that leads to very high voltage droops and overshoots during dI/dt virus

execution on a x86 CPU. Measured with external Oscilloscope and active differential probe

connected to on-package measurement pads.

Zac
ha

ria
s H

ad
jila

mbro
u

25

As shown in Table I, there are two dominant approaches in designing GA frameworks

for stress-test generation: a) based on an abstract-workload model and b) based on

instruction-level primitives (usually assembly instructions). In the abstract-model

frameworks the individual is a vector of workload related parameters such as instruction-

mix, register-dependency distance, memory-stride profile, branch transition rates etc. The

GA operators are performed on this abstract workload profile. A workload generator

stochastically generates the assembly (or higher-level language) code based on the values

of the abstract model parameters. On the other hand, for the instruction-level optimizations

the individual is the actual source code of the virus. The GA performs the optimization

directly on the source-code and has full-control on the instruction-mix, instruction-order and

instructions’ operands. GeST as presented in Chapter 3 utilizes the instruction-level

optimization approach.

Table I. Comparison of related work on GA frameworks.

Framework Optimization
Type

Optimization
Language

Evaluated-
On

Metrics
Evaluated

Component
Stressed

References

AUDIT Instruction-
Level

x86 ISA Real-
Hardware
/
Simulator

dI/dt CPU [41][42]

MAMPO Abstract-
Workload

SPARC ISA Simulator power CPU+DRAM [27],[89]

Joshi et al. Abstract-
Workload

Alpha ISA Simulator power CPU [40]

Powermark Abstract-
Workload

C Real-
Hardware

power Full-System [57]

GeST Instruction-
Level

ARM,x86 Real-
Hardware

dI/dt,power CPU this thesis

Zac
ha

ria
s H

ad
jila

mbro
u

26

An advantage of the abstract workload model is that it reduces the design space. A

disadvantage of the abstract model is that it fails in optimizing the instruction order and the

instruction opcodes simply because these parameters are out of GA control. Previous work

[90] reports that instruction-order can make up to 17% difference in power for the same

activity factor and instruction-mix.

Moreover, knobs typically found in abstract-workload frameworks that allow fine tuning

memory accesses and branch behavior, through parameters such as memory stride and

branch transition rate, seem not so relevant, at least, for high power and dI/dt workloads. As

reported in previous work [40][57] and confirmed from this thesis (Section 3.3) power-

viruses are characterized by high IPC, very predictable branches and extremely high L1 hit

rates. These characteristics can easily be achieved with instruction-level optimization.

Regarding dI/dt optimization, all previous work utilized instruction-level optimizations

[10][41][42]. This is the case since dI/dt optimization is very sensitive to the workload

frequency that must match the PDN resonance frequency. For such optimization search,

instruction-order is more important than disruptive events such as cache-misses and branch-

misprediction that cause non-determinism and limit the capacity to control the workload

frequency [10].

Another design choice of a GA framework is the optimization language. Most

frameworks prefer generating assembly code except [57] that prefers a high-level language

like C. The advantage of using higher level language is that it makes the framework versatile

to the hardware platform of interest. Using a higher-level language makes sense in

conjunction with an abstract workload model. For instruction-level optimization this is not

so practical because it prevents GA to directly optimize the instruction type mix and order

(the final instruction order and types depend on the compiler). For GeST we prefer the

assembly instruction level optimization. The versatility of GeST that allows its use with any

hardware platform stems from providing an interface to the experimenter to specify the

Zac
ha

ria
s H

ad
jila

mbro
u

27

instructions that will be used in the optimization. Thereby, this allows the experimenter to

use GeST to customize and optimize for any ISA.

Finally, another important GA framework aspect is the component it targets. Most works

justifiably target the CPU as it is generally accepted that CPU is the most active and power-

hungry component. In [57] authors generated full-system stress-tests that also stressed the

network-interface-card and hard-disk. This is achieved by adding a thread that sends

network packets and a thread that performs disk reads, the invocation frequency of these

threads is a parameter of the abstract-workload-profile. GeST is as an instruction-level

optimization framework that primarily targets CPU, but it is also applicable to any other

component that can be stressed through a stream of instructions. For instance, with GeST is

possible to stress LLC or DRAM by instructing the framework to optimize towards cache-

misses and providing in the input file load/store instruction definitions with various strides,

base memory registers and various min-max immediate values. We are currently

investigating such extensions.

Zac
ha

ria
s H

ad
jila

mbro
u

28

 GeST Framework

This Chapter presents and evaluates the GeST framework. GeST is a GA framework

that is developed for the requirements of this thesis. GeST source code has been publicly

released [78] and a paper dedicated to the framework is published in ISPASS 2019 [79].

GeST, given a user-specified set of assembly instructions and operands, attempts to find

the instruction mix, order and operands that maximize a target metric. GeST is extensible

as it offers an easy interface to build upon. A user can define the instructions, which the

optimization search uses, by only changing input configuration parameters. This renders the

framework compatible with any ISA. Moreover, an experimenter can script custom

measurement procedures and custom fitness functions (the function that drives the GA

optimization) in a plug-and-play fashion using the template measurement and fitness

software classes provided in the framework. The user defined measurement scripts and

fitness functions are easy to integrate in the framework by simply changing the

configuration parameters without performing any change in the framework’s core source

code. We demonstrate the power of the framework’s extensibility and flexibility by: a)

generating stress-tests that maximize different target metrics such as power, temperature,

and dI/dt voltage-noise, b) using the framework with various measurement procedures and

optimization metrics such as software accessible counters (e.g. performance counters) and

external instruments (such as oscilloscopes), c) generating stress-tests on mobile ARM and

server-grade ARM and x86 CPUs, d) generating stress-tests on bare-metal and OS execution

environments, and e) using both simple as well as complex multi-objective fitness functions.

The rest of the Chapter is organized as follows: Section 3.1 presents GeST architecture

and implementation details, Section 3.2 provides the platforms we use to evaluate GeST,

Section 3.3 demonstrates the capability of GeST to generate stress-tests that maximize

power consumption, temperature and IPC, and, in Section 3.4 we highlight the framework’s

Zac
ha

ria
s H

ad
jila

mbro
u

29

capability to generate dI/dt voltage noise stress-tests with the help of an external

oscilloscope connected to on-package voltage-sense pins (later in Chapter 4 we use GeST

to develop dI/dt viruses by utilizing EM measurements).

3.1 GeST Framework Description

GeST is written in Python 3 and takes as inputs xml files that define configuration

parameters. The framework high-level overview is shown in Figure 7. The framework can

be broken down into 5 major parts: the inputs, the outputs, the GA engine, the measurement

component and the fitness evaluation function. Next, we describe in detail each of these

components.

3.1.1 GA Engine

The GA engine is the heart of the GeST framework and coordinates its execution. GAs

optimize a target metric by applying operators inspired by natural evolution such as

selection of fittest individual for breeding, exchange of genes (crossover) and mutation.

Previous work has shown that GAs can generate workloads that stress the system worse or

comparably to manually written stress-tests with little human guidance within few hours

[27][41][42][57]. Our findings clearly confirm the GA suitability and effectiveness for

stress-test generation. A typical GA flow is shown in Figure 8. A short description of each

GA step follows:

• Seed Population: The first step is to create an initial seed population (generation).

The population is a set of assembly instruction sequences. In GA terminology, each

sequence of assembly instructions represents an individual of the population. The seed

population can be either a new random initial population or a population from a previous

GA run. In the case of a random initial population the individuals are randomly generated

based on the user-specified instructions, operands and loop-size.

Zac
ha

ria
s H

ad
jila

mbro
u

30

Figure 7. GeST overview.

Ge
ne

tic

Al
go

rit
hm

En
gin

e

M
ain

 co
nf

igu
ra

tio
n

Fil
e

GA
 E

ng
ine

 p
ar

am
et

er
s,

Ins
tru

cti
on

 Li
st,

Re
gis

te
r L

ist
,

Im
m

ed
iat

e L
ist

Te
mp

lat
e s

ou
rce

co

de

M
ea

su
re

m
en

t
Sc

rip
t

M
ea

su
re

m
en

t
Pr

oc
ed

ur
e

so
ur

ce
 co

de
Fit

ne
ss

Ev
alu

at
ion

Fit
ne

ss
Fu

nc
tio

n

M
ea

su
re

me
nt

re

su
lts

Fit
ne

ss
va

lue

Inp
ut

M
ea

su
re

me
nt

Fit
ne

ss
ev

alu
ati

on

GA
 po

pu
lat

ion
s

in
bin

ar
y

fo
rm

at
,

Ind
ivi

du
al

so
ur

ce

co
de

s i
n

AS
CII

Ou
tp

ut

Fit
ne

ss
va

lue

Inh
er

ita
nc

e
Inh

er
ita

nc
e

M
ea

su
re

m
en

t.p
y

m
ea

su
re

m
en

t.x
m

l
De

fau
ltF

itn
es

s.p
y

Zac
ha

ria
s H

ad
jila

mbro
u

31

• Measure Individuals: The second step involves compiling each individual, executing

the resulting binary, measuring the metrics of interest during the binary execution and

assigning a fitness value to the individual. In GeST the user defines the measurement

procedure and fitness function as shown in Figure 7.

• Creating next generation: The algorithm creates a new population after all

individuals are measured. The new population is created by selecting the fittest individuals

as parents (e.g. the ones that scored the highest average power), exchanging instructions

between the two parents (crossover) and performing mutation. A mutation operation

converts an instruction or an instruction-operand (such as a register) into another, with a

conversion probability, referred to as the “mutation rate”. For instance, if the mutation rate

is equal to 2%, then each instruction has a 2% probability to be mutated.

Figure 9 demonstrates, with the help of an example, how we generate a new population

by applying tournament selection, one-point crossover and mutation operators. The

procedure demonstrated in the figure is performed repeatedly until the desired population

size is reached. Note that for this example each individual consists of only four instructions.

First, we randomly pick five individuals from the population and select from them as

“parent1” the fittest individual. The same procedure is applied to select “parent2”. Then a

random point in the instruction stream is selected for the crossover between the two parents.

Figure 8. A Typical GA flow.

Seed

Population

Measure

Population

Selection

(Parents)

Crossover

(Parents)
Mutation

(Parents)

Create next generation

Zac
ha

ria
s H

ad
jila

mbro
u

32

In the example the crossover point is the 2nd instruction. This means that the “child1” will

inherit the first half from the “parent1” and the second half from “parent2”, while “child2”

will inherit the first part from “parent2” and the second part from “parent1”. Finally, the

example demonstrates the mutation operator. Mutation can be performed for a whole

instruction i.e. the whole instruction is randomly transformed to a new instruction, or an

operand of the instruction i.e. an operand is transformed to another operand. For “child1”

the r2 register of the SUB instruction transforms to r5, while for “child2” the STR instruction

transforms to LSL and the LSL operands are randomly generated.

Table II shows the GA related configuration parameters and their values that we

empirically found to work well in our experiments. A key observation from our work is that

relatively few instructions are sufficient to stress the CPU. Loop lengths of 50 instructions

prove sufficient to cause large power consumption or high IPC. Voltage noise optimization

is more sensitive to loop-length because the dI/dt noise is highly related to the PDN

Figure 9. Demonstration of GA operators.

Parent2

ASR r0,r1,#31

STR r8, [r11,#4]

MLA r3,r4,r5

SUB r3,r1,r2

1-point crossover
Parent1

ADD r0,r1,r2

MUL r3,r4,r5

SUB r3,r1,r2

LDR r8, [r11,#4]

Child1

ADD r0,r1,r2

MUL r3,r4,r5

MLA r3,r4,r5

SUB r3,r1,r2

Child2

ASR r0,r1,#31

STR r8, [r11,#4]

SUB r3,r1,r2

LDR r8, [r11,#4]

Tournament selection

Select the strongest of

them to be the parent1

Randomly pick 5 individuals

from the current population

Select the strongest of

them to be the parent2

Randomly pick 5 individuals

from the current population

M utation

Child1

ADD r0,r1,r2

MUL r3,r4,r5

MLA r3,r4,r5

SUB r3,r1,r5

Child2

ASR r0,r1,#31

LSL r3,r1,#31

SUB r3,r1,r2

LDR r8, [r11,#4]

Zac
ha

ria
s H

ad
jila

mbro
u

33

resonance frequency. A rule of thumb that is found to work well for dI/dt noise is to have

the loop instruction length equal to IPC x clock_frequency / resonance_frequency (similar

to what authors used in [41]). The IPC should be roughly equal to

MAX_THEORETICAL_IPC / 2. The rationale behind this is that dI/dt should contain low

and fast activity phases hence the IPC should be somewhere in the middle (we explain in

more detail this heuristic in Section 4.5). In our experience, the aforementioned equation

typically results in loop lengths of 15 to 50 instructions. Another recommendation,

supported from experimental findings, is that mutation rate should be low enough so that

only one or at-most two loop instructions are mutated at a time. Higher mutation rate might

impede the GA convergence. So, if the target is one mutated instruction, then for loop

lengths of 50 instructions we need 2% mutation rate, for 15 instructions we need 8%.

Also, we have found that optimization search converges faster if children preserve some

of the instruction order found in their parents (this is especially true for maximum power

and maximum dI/dt search). Hence, to accelerate the GA convergence we prefer one-point

crossover that does a better job in preserving the instruction-order of strong individuals

compared to uniform-crossover (another well-known crossover operator), where each

instruction has an equal probability to be swapped among the parents.

Additionally, we use elitism (automatically promote some of the fittest individuals to

the next generation) because according to literature [50] this feature helps GA convergence

for most optimization problems. We apply elitism by promoting the fittest individual to the

next population. Regarding population size, we use populations of 50 individuals. Authors

[50][95] showed that for most optimization problems populations sizes between 50 and 100

individuals are sufficient. Given the relatively high hardware measurement time per

individual (in the order of seconds), we choose population size of 50 individuals in order to

keep the GA execution time as low as possible. Finally, for selection method we use

tournament selection because it is generally considered as one of the most balanced selection

Zac
ha

ria
s H

ad
jila

mbro
u

34

methods in terms of computational efficiency, implementation-ease and GA growth rates

[50][96].

3.1.2 Inputs

The GeST inputs consists of the main configuration file and the template source code.

We describe in detail the format and use of these files. The main configuration file is a xml

file that specifies: a) the GA engine related input parameters (population size, mutation rate

etc.), b) the instructions and operands used in the GA search, and c) various other

parameters, such as, the directory where the results will be saved and the names of the

measurement and fitness classes to be used by the GA search. GA engine related

configuration parameters (individual size, mutation rate etc.) are explained in Section 3.1.1.

The following discussion focuses on how to specify the instructions and operands used by

the GA optimization search.

The registers, immediate values and instructions used by the GA optimization are

defined in the main configuration file. Figure 10 shows an example of how a user can define

an instruction and its required operands. The instruction in the example is the ARM ISA

LDR (load from memory). The first required parameter is the instruction name, it is used to

Table II. GA parameters.

Parameter Default Values

population_size 50

Individual Size (number of loop

instructions) 15-50

mutation_rate 0.02 - 0.08

crossover_operator one point crossover

elitism (Best individual promoted to next

generation) TRUE

parent_selection_method Tournament Selection

tournament_size 5

Zac
ha

ria
s H

ad
jila

mbro
u

35

identify the instruction and must be unique. The second parameter is the number of

instruction operands. LDR has 3 operands: a) the register where the result will be written,

b) the register that holds the base memory address, and c) an immediate value that holds the

memory offset. These operands must be separately defined in the same configuration file

(also shown in the figure). The instruction definition links to the operand definitions through

the operand ids. In our example, the third to fifth instruction-definition parameters define

the operand ids which are “mem_result”, “mem_address_register” and “immediate_value”.

If the instruction definition contains an undefined operand id, the framework will terminate

the execution. In addition, if the instruction definition contains incompatible to the ISA

specification operands, then generated instructions sequences that contain this instruction

will fail to compile. It is user’s responsibility to provide the right inputs so that the generated

instructions sequences will compile and will not crash during execution. The user should

define the memory instructions and their operands in a way that prevents random mutation

that leads into illegal memory access. To prevent random mutation in our GA runs we set

the memory instruction’s base address register to the stack pointer address (this can be done

by simply adding an assignment statement in the template source code file before the loop

body), then we restrict the memory offset to values that do not exceed the stack size (for

Figure 10. Example of an instruction definition and its necessary operands.

<operand

id="mem_result"

values="x2 x3 x4"

type="register" >

</operand>

<operand

id="mem_address_register"

values="x10"

type="register“>

</operand>

<operand

id=“immediate_value"

min="0"

max="256"

stride="8"

type=“immediate"

>

</operand>

<instruction

name="LDR"

num_of_operands="3

operand1=“mem_result"

operand2="mem_address_register"

operand3=“immediate_value“

"format="LDR op1,[op2,#op3]"

type="mem"

> </instruction>

Zac
ha

ria
s H

ad
jila

mbro
u

36

example in Figure 10 the maximum allowed memory offset from the stack pointer address

is 256 bytes). With that said, even if some individuals fail due to compilation or execution

errors the GA optimization will implicitly discard them because their fitness value will be

low. Therefore, as long as these illegal cases are rare, they will not impede GA convergence.

Continuing with the instruction definition parameters, the “format” parameter specifies

the instruction format. It prescribes to the framework how the instruction must be printed in

the generated output source code. The op1, op2 and op3 keywords in the format

specification will be replaced by the corresponding operands. Finally, an instruction type is

specified, that is useful for various reasons. For example, it allows analyzing the instruction

breakdown of the generated stress-tests in terms of integer, float, SIMD, memory and branch

instructions. It is worth noting that through the same instruction specification interface the

experimenter can specify both individual instructions as well as whole instructions

sequences that will be atomically included in the GA optimization search. One reason for

using atomic sequences is for forcing cache-misses. For instance, to cause a cache-miss on

an 8-way associative cache, a user can specify 3 atomic sequences each with 3 memory

accesses that causes access to same set but to different blocks.

Regarding operand definitions, both register operands and immediate operands require

their potential values to be specified. For register type operands the values are specified

through the “values” parameter that accepts space separated register names. In Figure 10,

the user has specified that the LDR result register can be anyone of the x2, x3 or x4 registers.

Regarding immediate operands, the potential values of an immediate are expressed through

maximum, minimum and stride parameters. In the example the user allows the immediate

value to take 33 different values, from 0 to 256 in strides of 8 i.e. 0,8,16,24…256.

Essentially, in this example there are 99 possible ways the GA can use the LDR instruction

(3 registers for memory result x 1 memory address register x 33 immediate values). The GA

randomly generates any one of the 99 possible forms when generating the initial random

Zac
ha

ria
s H

ad
jila

mbro
u

37

population and when performing the mutation operation. As the search is progressing, the

GA will converge to the instruction variation that maximizes the target metric. If none of

the evaluated instruction’s possible variations helps to maximize the fitness value, then the

instruction will likely stop appearing in the GA generated source codes. For instance,

consider a long-latency instruction like integer division (DIV) used in an IPC maximization

search. After, few generations the DIV instruction will most probably be eliminated from

the individuals because it does not contribute in generating fit populations.

An operand definition, if desired, can be common for multiple instructions. For instance,

the “mem_address_register” and “immediate_value” can be used by other memory

instructions that the user may want to define, such as for the ARM ISA instructions LDP,

STR, STP. The instruction and operand specification interface can serve one more purpose:

as the means to force or explicitly avoid instruction dependencies. For instance, if

optimizing for maximum instructions per cycle (IPC) it may be undesirable to have short-

latency integer instructions depending on memory loads. Thereby, to avoid integer

instructions depending on memory loads the user can specify two disjoint sets of integer

register operands, one for memory destinations and one for source operands of all other

integer operations.

The GA uses the instruction and operand definitions to generate individuals during the

optimization search. These individuals are printed inside a template source code file (the

location of the template file is provided in the main configuration file by the experimenter)

that will be eventually compiled in a binary. The template source file must contain an empty

loop body that is filled with the GA generated individuals. To indicate where the individual

will be printed, the string “#loop_code” must be written within the empty loop body. Before

compiling an individual, the framework removes the “#loop_code” string and prints the

instruction sequence starting from the indicated line. Within the template file the user can

also specify some fixed code that can be part of the loop body across all individuals e.g. add

Zac
ha

ria
s H

ad
jila

mbro
u

38

NOP instructions for padding. The template source file may also include user specified

initialization code that contains register and memory initialization. We find that register

values have considerable effect on power consumption, so they must be initialized

judiciously. For this work, we have use checkerboard patterns (e.g. 0xAAAAAAAA) since

they increase bit switching that helps in maximizing power or dI/dt voltage-noise. We have

observed that checkerboard pattern values may increase the fitness value by approximately

10% compared to setting all bits to high (i.e.. 0xFFFFFFFF).

It is worth mentioning that while this thesis performs GA searches at assembly

programming level, the instruction definition interface and the template source file can be

also used to perform optimization at a higher-level language (e.g. at a C code level).

3.1.3 Measurement and Fitness Evaluation

Each source code is compiled to a binary and measured on the target machine (the GA

framework typically runs on a separate workstation). This procedure typically involves

transferring the source file to the target machine, compiling the binary on the machine,

running the binary, measuring the metric of interest through a measurement instrument

(such as multimeter, oscilloscope or software accessible counters) while the binary is

running, and, finally, stopping the binary execution and calculating the fitness value based

on the measurements. An abstract Python class, refer to as the “Measurement.py”, provides

the template for scripting such measurement procedures. Moreover, the class contains

various utility functions that can be useful for scripting these procedures. For instance, the

class contains functions for communicating through ssh with the target machine such as

copying files over scp and executing any arbitrary command. To create a custom

measurement script the user must inherit the Measurement.py class and overwrite the “init”

and “measure” functions. The “init” should contain specific to the measurement procedure

parameter initializations (e.g. number of active CPU cores, number of measurement samples

to take etc.) and the “measure” function defines the actual measurement procedure. The

Zac
ha

ria
s H

ad
jila

mbro
u

39

specific measurement parameters initialized in “init” function should be defined in a xml

configuration file (not in the main configuration file). Both the measurement class name and

its corresponding configuration file should be specified in the main configuration file. The

framework utilizes the Python language capability to dynamically load a class. This means

that the user defined class is dynamically loaded by only specifying the class name in the

input configuration file. No other change in the source code is required.

Eventually, a fitness value will be given on the generated individual based on the

measurement results. This is needed so that the GA can rank the individuals and pick the

fittest ones that satisfy the most the optimization goal(s). An individual can have many

measurements associated with it, e.g. maximum voltage droop and average power

consumption. The framework offers a default fitness class “DefaultFitness.py” that simply

uses the first measurement (in the list order) as the fitness function. More complicated fitness

functions might be desired, for instance, maximize voltage droop while keeping average

power low. The framework offers the user the ability to define such functions by writing a

custom class that inherits from “DefaultFitness.py” and overrides the “getFitness” function.

Similarly, to the measurement scripts, to use the custom fitness class the user must specify

the fitness class name in the main configuration file.

3.1.4 Output

The framework’s output is the source code of all individuals. Each source code is saved

in a different file. The name of the file includes: the population number, individual id and

an array of measurements. For example, for the individual with id number 10 that belongs

to population number 1 and with measured average and peak power of 1.3W and 1.33W

respectively the file name would look like this 1_10_1.30_1.33.txt. By default, the first

measurement is the fitness value, this naming convention facilitates the quick retrieval of

the fittest individual using basic UNIX commands.

Zac
ha

ria
s H

ad
jila

mbro
u

40

Moreover, each GA population is saved in a separate binary file. This binary file

contains the source code, the id, the parent ids and the measurement values of each

individual. These binary files can be loaded in a Python script for advanced result post-

processing. As part of the framework release, there is a Python script that reads the

populations in binary format and extracts statistics such as the fitness value of the fittest

individual per generation and instruction mix breakdown of fittest individual per generation.

Furthermore, the binary population files can be used as seed population for a new GA search

(by default a new GA search starts with a randomly generated population). In such case, the

user must specify the location of the seed population file in the main configuration file.

Additionally, in the output directory of each GA run the following are saved for record-

keeping: the GA source code, the configuration files and the template individual source file

used for the run.

3.2 GeST Evaluation Platforms

We use GeST to generate the following viruses: a) power-viruses for ARM Cortex-A15,

ARM Cortex-A7, Intel i5-2400 and X-Gene2 CPUs, b) IPC virus for the X-Gene2 CPU and

c) a power-virus that targets both power and instruction stream simplicity for the X-Gene2

CPU (henceforth referred to as PowerVirusSimple). For generating PowerVirusSimple we

use the GeST capability to work with user defined custom fitness functions.

The characteristics of the evaluated CPUs are shown in Table III. We generate power

viruses for ARM Cortex-A15 and Cortex-A7 running on a bare-metal environment (without

OS). The chips are hosted on a CoreTile Versatile Express evaluation board. The board

offers external measurement points that allow measuring CPU power, current and voltage.

We hook an ARM energy-probe on the measurement points to read the power. Next, we

generate a power virus and an IPC virus for the Ampere Computing X-Gene2 ARM-based

server CPU. This server offers temperature sensor readings accessible through the i2c

Zac
ha

ria
s H

ad
jila

mbro
u

41

interface. We use the i2c interface to generate the power virus by optimizing towards

maximum temperature. The IPC virus is generated by monitoring the IPC from the perf

Linux utility. On the same system we demonstrate the GeST ability to optimize complex

fitness functions (multi-objective) by generating a virus that targets both high temperature

and instruction stream simplicity (fewer unique instructions). Lastly, we generate a power-

virus on an Intel i5-2400 desktop CPU.

GA searches are performed on a single core. GeST can do multi-core optimizations by

launching multiple workload instances but optimizing on single core has the advantage of

less measurement variability which helps the GA optimization to converge faster. This is

especially true when runs are conducted within an OS environment. Despite the GA search

performed on a single core, a virus is tested by running it on all cores. All results reported

in this thesis are measured with all cores active with each core running a separate virus

instance. The viruses developed in this thesis do not make use of shared resources (e.g.

LLC). Hence, the generated viruses scale well with multi-core execution because running

multiple virus instances is not causing performance interference. The other workloads used

Table III. GeST evaluation platforms.

CPU
of

Cores Board Environment
Stress-test
developed

Measurement
Instrument

ARM
Cortex-A15 2

CoreTile Versatile
Express Bare Metal power-virus ARM energy probe

ARM
Cortex-A7 3

CoreTile Versatile
Express Bare Metal power-virus ARM energy probe

Ampere
X-Gene 2 8 Validation Board Centos 7.2

power-virus
and IPC virus

i2c temperature
sensor readings,

performance
counters

Intel
i5-2400 4

HP Business
Desktop

Computer Ubuntu 14 power-virus Likwid-power-meter

Zac
ha

ria
s H

ad
jila

mbro
u

42

for comparison purposes are also executed on all cores. For single-thread benchmarks we

execute multiple instances and for multi-thread benchmarks (e.g. NAS, Parsec) we execute

one instance with multiple threads.

We are aware of a previous work [27] that evaluates a GA framework for power-virus

generation on simulated multi-cores and reports significant increase in power-consumption

when virus threads access shared memory. This increase in power consumption is attributed

to the high engagement of network-on-chip, which in the simulated systems has a large

contribution in total power consumption (for some runs more than 33% of the total power).

In all CPUs we tested, we have successfully generated effective power/thermal stress-tests

that exceed the fitness of the worst-case workload or manually-written stress-test by at least

10% without using shared memory. With that said, memory instructions that access shared

memory can be added to the GeST optimization. The user must provide a template file that

initializes shared-memory and launches multiple workload threads (in case the shared

memory is defined in kernel then multiple process instances instead of threads should also

work). Moreover, the user must define in the main configuration file the instructions that

access the shared-memory. This important extension is beyond the scope of this thesis.

Regarding framework execution time, the GeST runtime is defined by the following

factors: a) time to measure each individual, b) for how many generations the optimization

is performed, and c) how many individuals are measured per generation (population size).

In our experience GeST produces stress-tests that exceed significantly conventional

workloads after 70-100 generations. Given 50 individuals per population and 5 seconds per

measurement (which is typical for power optimization) the runtime is approximately 7

hours.

In the framework release we include measurement scripts and fitness functions that can

be used for power, IPC, dI/dt noise and instruction-stream simplicity optimization for x86

and ARM ISA.

Zac
ha

ria
s H

ad
jila

mbro
u

43

3.3 Power-Virus Generation

We develop a power-virus for Cortex-A15 and Cortex-A7 in a bare-metal environment.

The measurement function for this optimization executes each GA generated binary for few

seconds and takes multiple power readings during the binary execution. The fitness function

calculates the average value of all power samples. Fittest individuals are considered the ones

with the highest average power.

The relative (normalized to coremark benchmark) power-results for Cortex-A15 and

Cortex-A7 are shown in Figure 11 and Figure 12 respectively. First, it is worth noting that

the GA generated stress-test both on Cortex-A15 and Cortex-A7 cause the highest power

consumption and surpass the manually written stress-tests (A15manual_stress_test,

A7manual_stress_test) as well as conventional bare-metal workloads (coremark, imdct,

fdct). This emphasizes the GA’s ability to generate worst-case pathological scenarios that

are hard for humans to produce. The other interesting observation is that Cortex-A7 GA

virus is not a good stress-test for Cortex-A15 and Cortex-A15 virus is not a good stress-test

for Cortex-A7. Different CPU designs require different stress-tests to maximize their CPU

power consumption. The need for different stress-tests for dissimilar micro-architecture is

also evident by the differences in the instruction mix between the Cortex-A15 and Cortex-

A7 GA-power-viruses depicted in Table IV. The breakdown is shown in terms of short

latency (1 cycle) integer instructions (e.g. ADD, SUB), multi-cycle instructions (e.g. MUL),

float or SIMD instructions, memory instruction and branch instructions. Both stress-tests

consist of a loop of 50 instructions. The table shows that to raise the Cortex-A7 power

Table IV. Instruction breakdown of Cortex-A15 and Cortex-A7 power viruses.

GA virus

Short
Latency

Int

Long
Latency

Int
Float/
SIMD Mem Branch

Total
Loop

Instructions

Cortex-A15 4 5 22 18 1 50

Cortex-A7 8 6 16 10 10 50

Zac
ha

ria
s H

ad
jila

mbro
u

44

consumption it is important to add a lot of branch instructions (10 instructions out of 50 are

branches) while for Cortex-A15 only one branch is used. Also, Cortex-A7 virus prefers

slightly shorter latency integer instructions as compared to Cortex-A15 virus. A common

observation for both viruses is that floating point/SIMD instructions are dominant.

Next, we test GeST on the X-Gene2 ARM-based server CPU. We generate a virus that

maximizes chip temperature (and hence the power) using chip temperature sensor feedback.

We compare the temperature of the virus (denoted as powerVirus) with various benchmarks

(Parsec and NAS suite) and a virus that maximizes IPC (denoted as IPCvirus) generated

with the GA using perf Linux utility. Figure 13 shows the relative (normalized to bodytrack

Figure 11. Cortex-A15 power results.

Figure 12. Cortex-A7 power results.

0

0.5

1

1.5

2

2.5

Re
la

ti
ve

 a
ve

ra
ge

 p
ow

er

0

0.5

1

1.5

Re
la

ti
ve

 a
ve

ra
ge

 p
ow

er

Zac
ha

ria
s H

ad
jila

mbro
u

45

benchmark) chip temperature. The power virus outperforms all other workloads by reaching

the highest chip temperature.

The IPC virus also raises the chip temperature very high (but lower than power virus).

IPC virus is expected to cause high temperature because it causes very high CPU activity.

It is interesting to understand what characteristics make the power virus cause higher

temperatures. Table V provides a comparison of the IPC and the power viruses. The IPC

virus achieves 12% higher IPC but also 12% lower power consumption than the power virus.

As expected, the IPC virus does not contain any long latency integer instruction. Also, the

IPC virus makes moderate use of memory operations. On the other hand, the power virus

contains a few long-latency instructions and uses a lot of memory operations. Perhaps the

modest use of long-latency instruction helps to increase the power consumption and

temperature (which is the goal of the virus) by keeping active the issue queue and the

dependency tracking logic. Also, the more frequent engagement of the memory subsystem

Figure 13. X-Gene2 temperature results.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

b
o

d
yt

ra
ck

d
c.

B

b
la

ck
sc

h
o

le
s

vi
p

s

fa
ce

si
m

st
re

am
cl

u
st

er

fl
u

id
an

im
at

e

is
.C

u
a.

C

fe
rr

e
t

m
g.

C

b
t.

C

ep
.C

fr
eq

m
in

e

x2
6

4

sw
ap

ti
o

n
s

lu
.C

cg
.C

sp
.C

IP
C

vi
ru

s

P
o

w
er

V
ir

u
s

N
o

rm
al

iz
ed

 c
h

ip
 t

em
p

er
at

u
re

workload
Zac

ha
ria

s H
ad

jila
mbro

u

46

results in a higher power consumption. While the use of long-latency operations and many

memory instructions increases the temperature, it also reduces the IPC. This highlights an

interesting tradeoff that the GA is capable to make to maximize the temperature. This

analysis clearly shows that the highest IPC does not automatically convert to highest power

consumption and temperature. A recipe for the highest power consumption and temperature

(at least for the X-Gene2) seems to be a combination of high IPC (not the highest) with

heavy use of memory instructions and modest use of long-latency operations.

Furthermore, we demonstrate the GeST capability to optimize a complex fitness

function by generating a power-virus that achieves both high temperature and simplicity in

terms of using less unique instructions (unique opcodes). Simplicity of the generated power-

viruses is desired for various reasons such as for ease in isolating inefficiencies in initial

chip samples, like hotspots, and instructions that are power-intensive. To optimize for both

high-temperature and simplicity, we use the GeST interface for scripting custom fitness

functions (presented in Section 3.1.3).

We use the equation shown in Figure 14 for calculating the individual’s fitness. The

fitness can take values from 0 to 1 and the equation has two parts, with both parts

contributing equally to the fitness value. The first part rewards high temperature. The

Table V. Power virus, simple power virus and IPC virus comparison.

GA
virus

Short
Int

Long
Int

Float/
SIMD Mem Branch

Relative
IPC

Relative
Plug
Power
(W)

Relative
Chip
Temp.

of
Unique
Instruct
ions

Power
Virus 22 5 9 12 2 1 1 1 21

Power
Virus
Simple 16 7 13 11 3 0.94 0.99 1 13

IPC
virus 26 0 15 6 3 1.12 0.88 0.94 13

Zac
ha

ria
s H

ad
jila

mbro
u

47

contribution of the temperature part must be bounded to a 0-1 value range (temperature

score), hence, we normalize the measured temperature with the maximum possible

temperature. The maximum temperature can be obtained either from a previous GA run or

from specifications e.g. TJMAX. An issue with the temperature score is that even during

idle operation the temperature is not negligible because of ambient temperature. Thereby,

we must subtract the idle temperature to avoid overestimation of the temperature score. The

second part of the equation is the simplicity which rewards having less unique instructions.

It is also bounded between a 0-1 value range. Assuming individuals of 50 instructions, an

individual with 25 unique instructions would be assigned a simplicity score of 0.5 whereas

an individual with 15 unique instructions would be assigned a simplicity score of 0.7

(without taking in account the 0.5 weight factor).

 We run the GA with the complex fitness function for the same number of populations

as the GA that generated the power virus. The characteristics of the fittest individual

(powerVirusSimple) are shown in Table V. This virus has very similar characteristics with

the original power virus. Specifically, we observe the same characteristics we discussed in

the previous paragraphs such as fairly high IPC, significant use of memory and modest use

of long latency integer instructions. However, there is also a difference, the new power virus

prefers to spend more instruction slots for floating point and long latency instructions at the

expense of the short latency instructions. This has an impact on the IPC which is 6% lower

compared to the original power virus but this doesn’t affect its temperature and power

consumption. The simple power virus achieves virtually the same power and the same

temperature as the original power virus. The complex fitness optimization is considered

F = (M_T – I_T) / (MAX_T – I_T) * 0.5 +

(T_I – U_I) / T_I * 0.5

Fitness (F), M_T (measured temperature), I_T (idle temperature), MAX_T (max temperature),

T_I (total instructions), U_T (unique instructions)

Figure 14. Complex fitness function rewarding high temperature and instruction simplicity.

Zac
ha

ria
s H

ad
jila

mbro
u

48

successful as the simple power-virus achieves the same stress-level as the original power-

virus while using only 13 unique instructions instead of 21.

Last, we apply GeST to generate a power-virus on Intel i5-2400. Figure 15 shows the

GA progression. The GA search converges to a power-virus that consumes 90W CPU

package power. We compare the power-virus with the well-known prime95 stress-tests in

terms of power consumption We run both the small (data fits inside cache) and the large

(data does not fit inside cache) prime95 tests. Figure 16 shows the power results. The

GAvirus consumes 6% more power than the prime95 large test and 8% more power than

the prime95 small test.

Figure 15. GeST CPU power virus search on i5-2400.

40

50

60

70

80

90

100

0 50 100 150 200 250

i5
-2

4
0

0
 P

KG
 p

o
w

er
 (

W
)

GA generation

Zac
ha

ria
s H

ad
jila

mbro
u

49

3.4 Voltage-Noise Virus Generation

This section demonstrates the capability of GeST to generate voltage noise viruses and

consequently stability-tests. For this study we use an AMD Athlon II X4 645 CPU hosted

on an Asus M5A78L LE motherboard. This motherboard offers high bandwidth voltage

sense points that can be used to monitor voltage noise. This is achieved by connecting an

oscilloscope to the sense points through an active differential probe. The GA generates the

dI/dt virus by optimizing towards maximum peak-to-peak voltage. The framework runs each

GA generated binary for a few seconds. During the binary execution the minimum and

maximum voltage observed on the oscilloscope are recorded. The binaries that achieve the

highest difference between maximum and minimum recorded voltages are considered the

fittest.

Figure 16. Power consumption results for Intel i5-2400.

0

10

20

30

40

50

60

70

80

90

100

idle prime95 (small
test)

prime95 (large
test)

GAvirus

p
ea

k
C

P
U

 p
ac

ka
ge

 p
o

w
er

 (
W

)

Zac
ha

ria
s H

ad
jila

mbro
u

50

Figure 17 shows the max-min voltage noise caused by various workloads compared to

the GA generated virus. The GA dI/dt virus clearly outperforms the other workloads

including well known stability-tests such as Prime95 and AMD’s own stability test. Since

the dI/dt virus causes the highest voltage-noise it should stress the system’s stability better

than the other workloads. A good stability-test must have high VMIN. To characterize the

VMIN of a workload we run the workload multiple times and each time we lower the

operating voltage in steps of 12.5mV. We keep the CPU frequency stable at the nominal

value of 3.1GHz. The highest voltage at which a workload executes correctly (without

corruption, error messages, crashes) is the workload’s VMIN. Figure 18 shows the VMIN of

the various workloads we tested on the AMD CPU. The dI/dt virus is the best stability-test

because it causes instability at a higher voltage, even higher than the commonly used AMD

stability test and Prime95.

Our results show that workloads designed to draw very high power are not suitable

stability-tests as they are not designed to drop the voltage very low and induce timing errors.

Prime95 is a workload known to raise the CPU power consumption very high. Such

workloads are a good choice for exercising IR drop as well as characterizing thermal

Figure 17. Voltage-noise results on AMD Athlon CPU.

100

150

200

250

300

350

400

m
ax

 -
m

in
 v

o
lt

ag
e

(m
V

)

workload

Zac
ha

ria
s H

ad
jila

mbro
u

51

stability and making sure that the temperature will not exceed a critical threshold during

normal operation. But they are inadequate for characterizing the susceptibility to timing

errors. Also, this is another confirmation that AC dI/dt noise dominates over IR drop.

Figure 18. VMIN results on AMD Athlon CPU.

1150

1200

1250

1300

1350

1400

V
M

IN
 (

m
V

)

workload

Zac
ha

ria
s H

ad
jila

mbro
u

52

 EM methodology

This chapter presents the EM methodology for PDN characterization. This chapter

provides the following: a) the experimental apparatus needed to perform the EM

methodology, b) the experimental proof of the correlation between voltage-noise and EM

amplitude, c) two EM methodologies for determining the PDN 1st order resonance-

frequency, and d) the EM approach for generating dI/dt stress-tests via a GA optimization

that maximizes the EM amplitude.

4.1 Required Experimental Apparatus

The EM methodology requires the following components: a) a CPU that will be

monitored, b) an antenna to sense the EM emanations that are emitted from the monitored

CPU, c) a spectrum analyzer for reading the amplitude and the frequency of the received

signals d) a coaxial cable that connects the antenna with the spectrum analyzer, and e) a

workstation that is connected with the spectrum analyzer for orchestrating the resonance

frequency detection and dI/dt virus generation.

Examples of EM methodology experimental setups are shown in Figure 19. The figure

shows both the ARM Juno and AMD desktop PC experimental setups. The spectrum

analysers Agilent E4402B (Juno setup) and Agilent N9332C (AMD setup) are used to

measure the EM signals. Note that cheaper commercial software-defined radio receivers

Figure 19. Experimental setup for the ARM Juno board (left) and AMD desktop CPU (right).

Zac
ha

ria
s H

ad
jila

mbro
u

53

should also work [68]. Also, instead of a spectrum-analyzer, an oscilloscope can be used

for time-domain measurements given that the EM signal amplitude is high enough (typically

oscilloscopes have much lower noise floor than spectrum-analyzers).

 In the figure we observe that the antennae are placed at a stable position 5-10cm close

to the monitored CPUs. We prefer the back-side of the PCB (i.e. back of the CPU socket)

due to proximity to the die which translates to stronger received signals. As illustrated in

the figure, such approach is particularly convenient for desktop CPUs as the only

requirement is to simply remove the tower’s back-cover.

It is also possible to capture the EM emanations from the front of the PCB. The received

signal can be amplified with a pre-amplifier or with an antenna matching-network that

amplifies the signal at the targeted PDN resonance-frequency. Particularly, we have

experimented with a matching network that matches the X-Gene2 CPU’s PDN resonance-

frequency at 150MHz. We confirm that with this matching network we were able to capture

strong EM signals from the front of the PCB.

Regarding the antenna selection, is recommended to use an antenna that has a flat

response in the frequency range where the PDN resonance-frequency is expected to lie. This

is desired to avoid any biases when measuring EM signal amplitude at different frequencies.

Such measurement biases are unwanted during resonance frequency-determination and GA

dI/dt virus generation.

We crafted a square loop antenna (3 cm side length) as a receiver for the emanated EM

radiation (this antenna is used in Figure 19 experimental setups). As shown in the antenna’s

frequency-response graph in Figure 20, the antenna has a relatively flat and low frequency

response from DC until 1.2 GHz, with a self-resonance frequency at 2.95 GHz. This means

that the antenna has a flat response at the range where we expect the 1st order resonance-

frequency to lie (1-200MHz), hence, this antenna is suitable for the EM methodology. Note

that such antenna is very cheap to produce. The fact that applying the EM methodology does

Zac
ha

ria
s H

ad
jila

mbro
u

54

not require spending a significant budget for buying sophisticated commercial antennas (e.g.

[80]), can be considered as another advantage of our approach over the state-of-the art high-

bandwidth voltage-measurement approaches.

Is worth saying that a well-matched antenna at 1-200MHz should offer better reception

and could enable capturing EM signals from longer distance and more convenient positions.

Unfortunately, is extremely difficult to craft or buy an antenna that is both well-matched

and provides flat response in the wide range of 1-200MHz. Therefore, to avoid measurement

biases a normalization step that normalizes the measured amplitude at different frequencies

based on the antenna’s frequency response profile can be used.

4.2 Relationship Between CPU EM Emanations and On-

Chip Voltage Noise

It is well-known that metallic conductors act as transmitting antennae that emanate EM

radiation under oscillating voltage and current stimulation [38][69]. On-chip

interconnections and transistors act as distributed radiating antennae due to time-varying

current consumption induced through normal program execution. Simple periodic activity,

such as that due to instruction loops, cause periodic variations in CPU power (i.e. sequence

Figure 20. Measured |S11 [13]| for the square loop antenna indicating a self -resonance around 2.95

GHz.

-7

-6

-5

-4

-3

-2

-1

0

1

20 200 2000

S1
1

|
(d

B
)

Frequency (MHz)

Zac
ha

ria
s H

ad
jila

mbro
u

55

of DIVs followed by ADDs) that manifest as visible spikes in the EM spectrum, at a

frequency F equal to 1/T (where T is the loop period) [18].

Fundamental antenna theory (say, for a traditional Hertzian dipole) states that the

component of the radiated power for the transmitting antenna, at a specific frequency, varies

quadratically with the amplitude of the oscillating feed current [38] at the corresponding

frequency and the so-called radiation resistance. The radiating resistance of a conductor can

be differentiated from its loss resistance, in that the former is a function of the geometry of

the conductor and determines the magnitude and the directivity of the radiated power [38].

The loss resistance, in contrast, manifests as ohmic losses dissipated through the conductor.

Periodic current load (ILOAD), pulsing at the first-order resonance frequency, can trigger

sustained oscillations of large magnitude in VDIE and IDIE.

We simulate the simplified PDN model in Figure 2(a) with a persistently pulsing current

excitation (ILOAD) at 80MHz which matches the 1st-order resonance frequency (Figure 2

(b)). This sets off resonant oscillations in the PDN as illustrated by HSPICE [35] simulations

in Figure 21 (a). At resonance, both voltage and current oscillations maximize in amplitude.

This, in turn, maximizes the radiated EM power from the on-chip distributed antennae, due

to the quadratic dependence with oscillatory current amplitude. Therefore, measuring the

frequency at which the amplitude of the emanated EM power is maximized directly reveals

the 1st-order resonance frequency. We leverage this relationship between radiated EM

power and on-chip voltage-noise to maximize the voltage-noise by maximizing the

amplitude of EM signals.

Zac
ha

ria
s H

ad
jila

mbro
u

56

We experimentally observe the correlation between high-voltage noise and high EM

amplitude. We use the experimental setup from Figure 19 to capture the EM signals emitted

from the Cortex-A72 CPU while running a dI/dt virus. Simultaneously we capture the time

domain supply-voltage oscillations caused by the dI/dt workload with an On-Chip Digital

Storage Oscilloscope (OC-DSO) [72] that is integrated in Cortex-A72. We compare the two

measurement instruments in Figure 21 (b). The figure shows that resonant voltage

oscillations at 15ns on Cortex-A72 captured with the OC-DSO are depicted as a high

spectrum spike on the spectrum analyzer at 67MHz. Moreover, we obtain the frequency-

domain representation (using the Fast Fourier Transform (FFT) algorithm) of the voltage

waveform shown in Figure 21 (b) and we compare it with the spectrum analyzer readings

in the range of 10-90MHz in Figure 22. The dominant frequency of both frequency-domain

representations is exactly aligned at 67MHz. Moreover, the two instruments agree on other

Figure 21. a) Simulated waveforms showing the die voltage (VDIE) and die current (IDIE) in the

simplified PDN model in Fig. 2. A pulsing ILOAD triggers the first-order resonance where the AC-

component of both VDIE (Vac) and IDIE (Iac) maximize, thus maximizing the radiated EM power.

b) Resonant oscillations (close to the resonance-frequency at 67MHz) triggered on an ARM Cortex-

A72 cluster (on ARM Juno Platform) causes a corresponding peak in the measured EM power

captured on a Spectrum Analyzer.

-1.3

-0.3

0.7

0.4

0.9

1.4

0 50 100 150 200 250

C
u

rr
e

n
t

(A
)

V
o

lt
a

g
e

 (
V

)
Time (ns)

VDIE IDIE

 =>

(a)

(b)

Zac
ha

ria
s H

ad
jila

mbro
u

57

less dominant spikes as well, such as the virus’s base loop frequency (1/loop period) located

at 16.66MHz.

We further establish the theory that links CPU EM emanations with on-chip voltage

noise in Chapter 6 and Chapter 7 where we show that the proposed EM methodology can

determine the 1st order resonance-frequency of a CPU and generate dI/dt viruses that can

be used for VMIN determination and for guiding DVS decisions.

4.3 EM Resonance Frequency Detection (Loop Method)

To quickly identify the resonance-frequency from EM emanations we propose the

following procedure. The first step is to manually design a simple instruction loop composed

of separate high and low current consuming sequences. This is not meant to be a dI/dt stress

test but a loop that causes merely enough current variation to result in a visible EM spike at

a frequency equal to the loop frequency (which is equal to the inverse of the loop iteration

period). Then, while the loop is running on the CPU, we sweep the CPU frequency to

modulate the loop period, and, consequently, the EM spike frequency. The spike amplitude

is maximized when the loop frequency matches the resonance frequency because the

Figure 22. Comparison of spectrum analyzer readings (left axis) with FFT of OC-DSO voltage

readings (right axis) during execution of a dI/dt virus. The two measurements agree as they reveal

spikes at the same frequencies.

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

10 30 50 70 90

FF
T

 (
V

)

EM
 s

ig
n

al

A
m

p
lit

u
d

e
(n

W
)

Frequency (MHz)

SpectrumAnalyzer

FFT (OC-DSO)

Zac
ha

ria
s H

ad
jila

mbro
u

58

fluctuating loop-current will trigger resonant oscillation in the PDN [55]. Therefore, after

the frequency sweep is over, the frequency at which the highest EM amplitude occurs

reveals the resonance frequency. We refer to this approach as the “loop method”.

We demonstrate the loop method on the Cortex-A72 processor. We use a loop with the

high current consuming sequence consisting of eight ADD instructions that are executed in

4 CPU cycles and a low current consuming sequence consisting of a single DIV instruction

that takes 4 CPU cycles to execute. The period of execution of the overall loop (with both

the high-current and the low-current consuming portions) is 6.6ns at the 1.2GHz CPU

frequency (the nominal Cortex-A72 frequency). This corresponds to a loop frequency of

150MHz. To modulate the loop frequency, we sweep the CPU frequency from 1.2GHz

down to 300MHz and we record the EM signal amplitude at each loop frequency.

Figure 23 shows the results of the frequency sweep. The amplitude is maximized at

around 67-72.5MHz loop frequency when both cores are active (C0C1 curve). When only

one core is powered-up (C0 curve) the resonance-frequency increases to approximately

85MHz. This increase is expected due to inverse proportional relationship between

resonance-frequency and capacitance [55].

To confirm that the resonance-frequencies for C0 and C0C1 scenarios are correctly

identified we use an independent methodology that utilizes a synthetic current load (SCL)

circuit integrated on the Cortex-A72 [73]. The SCL allows loading the Cortex-A72 PDN

Figure 23. EM resonance frequency exploration for Cortex-A72 PDN with loop method.

0

50

100

150

200

0 20 40 60 80 100 120 140 160

EM
 A

m
p

lit
u

d
e

(p
W

)

Loop Frequency (MHz)

C0

C0C1Zac
ha

ria
s H

ad
jila

mbro
u

59

with artificial current at various frequencies. With the OC-DSO we can measure the PDN

response to a SCL current load. We sweep the injected current frequency with SCL from

10MHz to 130MHz and we record the peak-to-peak voltage oscillations at each frequency

with the OC-DSO. The highest voltage oscillation reveals the resonance frequency [42][73].

The results of the sweep are shown in Figure 24 according to which the first-order resonance

frequency lies in the range between 66-72MHz (we observe a relatively flat frequency

response around resonance) when both cores in the cluster are powered up (indicated by the

label “C0C1” in the plot). These results agree with EM loop method for resonance-

frequency detection. This confirms the effectiveness of the EM approach in identifying the

resonance frequency. This approach is applicable to virtually any CPU that allows changing

the clock frequency.

4.4 EM Resonance Frequency Detection (Clock Method)

 Another approach for PDN resonance-frequency determination is to match the CPU

frequency with the PDN resonance-frequency. We refer to this approach as the clock

method. This approach does not require executing a specific loop of instructions, the only

requirement is to prevent the cores from entering a clock-gated state. This can be easily

Figure 24. SCL stimulus reveals a resonance frequency in the range of 66-72MHz with two

powered cores (C0C1) and 80-86MHz with one powered core (C0).

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 20 40 60 80 100 120 140

m
ax

 -
m

in
 (

V
)

Excitation Frequency (MHz)

C0C1 C0

Zac
ha

ria
s H

ad
jila

mbro
u

60

achieved by either disabling all C-states or by executing a trivial self-loop on the cores. We

demonstrate this method on Cortex-A72. We run a self-loop e.g. “while(true);” while we

sweep the CPU frequency from 60MHz to 80Mhz. We record the EM amplitude at each

frequency. The results are shown in Figure 25 that reveals a peak at 72.5MHz which matches

closely the resonance-frequency identified in Figure 23 and Figure 24.

The clock method can be used only with CPUs that support very fine-grain frequency

scaling. It can be particularly useful for black box approaches where the experimenter is

either not allowed to run anything on the device or executing code on the device is not trivial

(e.g. FPGAs, accelerators, GPUs). One use case where this method proved to be handy is

for characterizing the Mali-T622 GPU that is hosted on the ARM Juno R2 board. Crafting

a loop of instructions that causes an EM spike on Mali-T622 is not a trivial task due to lack

of full control regarding to what is executed in the device. We can only program Mali from

high-level Open-CL code that is compiled to native instructions through the GPU driver.

This introduces a lot of non-determinism and impeded our efforts in applying the loop

method on Mali-T622. With the clock method we were able to circumvent this short-coming

Figure 25. Resonance-Frequency exploration on Cortex-A72 with clock method.

0

10

20

30

40

50

60

70

80

50 60 70 80 90

EM
 a

m
p

lit
u

d
e

 (
p

W
)

CPU frequency (MHz)
Zac

ha
ria

s H
ad

jila
mbro

u

61

to measure the resonance frequency of the Mali-T622. The results of the clock method on

Mali-T622 are shown in Figure 26 and they reveal a resonance frequency at 70MHz.

4.5 EM dI/dt virus Generation

Previous work has proposed automated frameworks based on GA frameworks for

generating dI/dt viruses [41][42][73] and power-viruses [27][40][57]. The main difference

of this thesis with prior work is the usage of the EM amplitude as an optimization metric to

drive the GA dI/dt virus search. We use GeST to drive the GA EM amplitude optimization.

This section describes how we use GeST to generate dI/dt viruses by optimizing towards

maximum EM amplitude.

For the EM optimization, the metric of interest is maximum EM amplitude at any

frequency in the spectrum of 50-200MHz (the spectrum where the 1st order PDN resonance

frequency is typically located). Particularly, the fitness function for the EM optimization is

the mean root square of 30 EM samples.

Regarding the loop size of the individuals, we use a rule of thumb (heuristic) for picking

the optimal loop size that takes in account the ratio of CPU frequency to the PDN resonance

frequency and is similar to what authors used in [41]. Particularly, we use the following

heuristic equation to estimate the optimal loop size:

Figure 26. Resonance frequency exploration on Mali-T622 with the clock method.

0

200

400

600

800

1000

1200

1400

60 65 70 75 80

EM
 a

p
lit

u
d

e
 (

p
W

)

GPU frequency (MHz)

Zac
ha

ria
s H

ad
jila

mbro
u

62

LOOP_SIZE = (MAX_THEORETICAL_IPC / N) * RESONANCE_CYCLES,

where RESONANCE_CYCLES=CLOCK_FREQ / RESONANCE_FREQ and N takes

values from 2 to 3.

The heuristic is based on the assumption that the following traits are essential to a

successful dI/dt virus: a) an IPC that is a fraction of the maximum theoretical IPC of a CPU

core because a mix of both short-latency and long-latency stalling instructions [39] (e.g.

integer division) are needed to create sudden current surges, b) cause a current surge at each

loop iteration, and c) the virus’s loop iteration length in cycles to be equal to the CPU cycles

that can fit inside a resonance period (1/resonance-frequency). The purpose of the first

characteristic is to facilitate the GA convergence towards solutions that cause current surges.

This is realized by targeting an IPC that allows both high and low power-phases. The second

and third characteristics aim is to increase the likelihood that the current surges will lead to

resonant voltage-noise build-up.

To use this heuristic the MAX_THEORETICAL_IPC and the resonance-frequency

must be known a priori. The MAX_THEORETICAL_IPC can be found either from specs

or from a GA optimization search targeting maximum IPC. The PDN resonance can be

obtained either by running the GA for few iterations and recording the dominant EM

frequency (the frequency with the highest EM amplitude), or through the quick

methodologies for resonance frequency detection described in Sections 4.3 and 4.4.

We observe that satisfactory results are obtained after running the GA for at least 60

generations. The algorithm execution is typically limited by the measurement latency per

individual. Approximately 18 seconds are needed to take 30 EM measurements which

translates to an execution time of ~15 hours for 60 generations (when 50 individuals are

considered per generation).

The assembly instructions that are used in the EM GA optimization deliberately target

diversity in latency (both single and multi-cycle) and instruction-type (integer, floating-

Zac
ha

ria
s H

ad
jila

mbro
u

63

point, SIMD and load/store) to facilitate rapid convergence (as we present later in Section

8.1. indeed, the dI/dt viruses benefit from instruction type diversity). In particular, for the

ARM ISA [8] we use: a) short latency integer instructions such as move (MOV), add (ADD)

b) multi-cycle long latency integer instructions such as MUL and DIV, c) floating point

equivalents of the above arithmetic instructions, d) equivalent SIMD instructions using

SIMD registers, e) unconditional dummy branches pointing to the next instruction

(conditional branches are difficult to incorporate as they can introduce non-determinism),

and f) load and store memory instructions. For the x86 instruction set, the same instruction

mix selection principles as with ARM are used with some minor modifications. Since x86

does not have explicit load-store instructions, memory operations are implemented by using

memory address operands for integer instructions. For SIMD operations, SSE2 [54]

instructions are used. As shown in the conclusions chapter the viruses make use of nearly

all instruction types to maximize voltage noise. This clearly illustrates that it is essential to

have diverse set of instruction types to select from during GA optimization. Also, we would

like to emphasize that in contrast to a power-virus optimization (such as the ones discussed

in Chapter 3), for the EM optimization we deliberately include long-latency low-power

instructions (e.g. FSQRT and integer DIV) because they are necessary for creating pipeline

stalls that lead to dI/dt events.

Furthermore, we deliberately avoid cache misses due to the timing non-determinism

introduced by them. The GA should give preference to instruction sequences with periodic

current swings triggering first-order resonant oscillations in the PDN. Thereby, events such

as cache misses that introduce time variability should be avoided as they result in significant

jitter to the GA algorithm, which in turn impedes its convergence. Nonetheless, memory

references, even if they are always hits, are found to be essential for maximizing voltage

noise due to engaging the memory subsystem (pipeline resources and L1 cache).

Zac
ha

ria
s H

ad
jila

mbro
u

64

 Measurement Setup

Table VI shows an overview of the platforms where the EM methodology is evaluated.

The ARM Juno [7] platform hosts a heterogeneous multiprocessing System-on-Chip (the

so-called big.LITTLE configuration) consisting of separate clusters of the dual core Cortex-

A72 and a quad core Cortex-A53 [11]. The platform integrates an on-chip power-supply

monitor configurable as a digital storage oscilloscope (OC-DSO) [72] that is ideal for

validating our proposed EM methodology. The OC-DSO provides fine-grained sampling

(up to 1.6GHz bandwidth) of the voltage rails supplying the dual-core Cortex-A72 cluster.

OC-DSO reports 8-bit raw values. To extract voltage readings in millivolts calibration

is required. To calibrate the OC-DSO we sweep the supply-voltage from 700mV to 1050mV

in steps of 10mV and at each voltage-step we measure the raw counter value. We plot the

results of the sweep in Figure 27. The graph shows a linear correlation between voltage and

counter values with gradient equal to 6.23 and intercept equal to 493.38. We use the

discovered linear equation to convert raw values to millivolts. The capability of OC-DSO

to capture voltage noise is illustrated in Figure 28. As expected, the dI/dt virus causes much

larger noise as compared to SPEC2006 benchmarks and CPU idle state.

Table VI. Experimental platforms.

MB CPU

of
Cores ISA uArch

Highest
Freq.,Voltage
Point

Technology
(nm) OS

Voltage noise
visibility

Juno Board

R2 Cortex-A72 2 ARM

Out of

Order 1.2GHz,1V 16 Debian

OC-DSO

[72][73]

Juno Board

R2 Cortex-A53 4 ARM In-Order 0.95GHz,1V 16 Debian None

Asus

M5A78L LE

Athlon II X4

645 4

x86-

64

Out of

Order 3.1GHz,1.4V 45

Windows

8.1

On-package

pads

Validation

Board

Ampere X-

Gene 2

8 ARM Out of

Order

2.4GHz, 0.98V 28 Centos

7.2

None

Validation

Board

Ampere X-

Gene 3

32 ARM Out of

Order

3.0GHz, 0.87V 16 Centos

7.2

On-Chip droop

detector

Zac
ha

ria
s H

ad
jila

mbro
u

65

Figure 27. OC-DSO calibration

Figure 28. Voltage waveforms obtained from OC-DSO for 3 different workloads. dI/dt virus causes

the largest voltage noise.

voltage = 6.23 * counter_value + 493.38

0

200

400

600

800

1000

1200

0 20 40 60 80 100

vo
lt

ag
e

(m
V

)

Raw counter value

900

960

1020

1080

1140

0 10 20 30 40 50

C
o

rt
e

x-
A

7
2

 C
lu

st
e

r
V

o
lt

ag
e

 (
m

V
)

time (ns)

dI/dt virus gcc idle

Zac
ha

ria
s H

ad
jila

mbro
u

66

The JUNO board also offers a synthetic current load (SCL) [73] block integrated in the

OC-DSO. The SCL loads the Cortex-A72 PDN with a square-wave current excitation at

various frequencies. This is useful for detecting the Cortex-A72 PDN resonance frequency

[73] (as shown in Section 4.3) and for validating the EM methodology. Both OC-DSO and

SCL are placed in a Power-Delivery-Monitor block that sits on-chip. This is illustrated in

Figure 29. The figure shows how small is the OC-DSO. The total size of the Power-

Delivery-Monitor macro is approximately 350 x 310 μm2 with a power-consumption of 25

μW during waveform capture.

Also, the Juno board runs a Debian OS with a 4.4.0-135-arm64 kernel. The DS-5

debugger [23] is used to access OC-DSO, sweep CPU frequency, change supply-voltage

and power-gate both the Cortex-A72 and Cortex-A53 clusters, orchestrated through a

system control processor (SCP) that enables this functionality [72]. Please note that the

Cortex-A53 cluster does not benefit from the OC-DSO or SCL circuits because it is in a

separate voltage domain. Cortex-A53 voltage domain lacks any explicit support for voltage-

noise measurement.

For the AMD setup, an Athlon II X4 645 CPU is used that is hosted on an ASUS

M5A78L LE motherboard and Windows 8.1 OS. AMD Overdrive application [4] is used to

change the voltage and the frequency of the CPU. This application also includes a stability

test that is evaluated and compared against the GA generated dI/dt viruses. The motherboard

integrates on-package Kelvin measurement pads that enable direct external monitoring of

the on-chip voltage rails using differential probes connected to a bench-top oscilloscope (the

setup is illustrated in Figure 30).

Zac
ha

ria
s H

ad
jila

mbro
u

67

Figure 29. The Power-Delivery-Monitor layout on the left and on the right a die photo of a JUNO R1

SoC [73] (Juno R1 uses the Cortex-A57 CPU whereas the Juno R2 uses the Cortex-A72, apart from

some differences in CPU micro-architecture the two SoCs are identical).

Figure 30. AMD time-domain supply-voltage measurement setup.

 Zac
ha

ria
s H

ad
jila

mbro
u

68

The X-Gene2 and X-Gene3 CPUs are hosted on validation boards provided by Ampere

Computing. On both boards Centos 7.2 is installed. Also, the boards come with a hardware

exposure interface (HEI) provided by Ampere Computing for monitoring various metrics

such as CPU temperature and power. The HEI also allows changing the CPU voltage and

frequency. The HEI is accessible through i2c Linux utility. Moreover, a voltage droop

detector is integrated on X-Gene3 for monitoring dI/dt events. The detector can be

programmed on boot to monitor two droop threshold values. The detector reports how many

times and for how many cycles a voltage droop that exceeds the threshold values occurred.

These metrics are also accessible through the HEI. We use the X-Gene3 droop detector for

validating the EM methodology. X-Gene2 does not support any high-bandwidth voltage-

measurements for monitoring dI/dt events.

To confirm that our EM generated dI/dt viruses produce large voltage-noise and have

high VMIN we compare them against other conventional workloads. We choose workloads

from the following benchmark suites: a) SPEC2006, b) SPEC2017 c) NAS and d) common

Windows OS workloads (e.g. Blender benchmark). Previous work showed that these

workloads expose micro-architectural events that cause voltage-noise [42][65][66] (such as

branch miss-predictions, cache-misses), hence, we can use these workloads for our

evaluation purposes.

Also, we validate that there are no random signals that will interfere with our

measurements. We measure all the random signals emitted in our lab environment in the

range of 1 to 3000MHz. Figure 31 shows the result of the sweep. We observe a rather flat

EM amplitude across the whole spectrum with a few exceptions. Prominent spikes are

observed at 2.4GHz which are attributed to the WIFI internet access that is available in our

lab. These signals do not interfere with our experiments as they are located far away from

our frequency-spectrum of interest which is located somewhere between 50-200MHz.

Zac
ha

ria
s H

ad
jila

mbro
u

69

Figure 31. Measurement of random signals in the frequency-spectrum of 1 to 3000MHz.

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000

EM
 a

m
p

lit
u

d
e

(p
W

)

Frequency (MHz)

Zac
ha

ria
s H

ad
jila

mbro
u

70

 PDN Characterization

6.1 ARM Cortex-A72

First, we evaluate the EM methodology on the Cortex-A72 CPU. A GA search is

performed with target to produce a stress-test that maximizes the EM amplitude at the

resonance-frequency and, hence, generate high voltage-noise. We first determine the loop

size using the heuristic proposed in Section 4.5. This requires knowing the resonance

frequency, the CPU frequency and the maximum core IPC. As shown in Section 4.3 the

resonance frequency of the Cortex-A72 PDN is around 70MHz. The CPU frequency is

1.2GHz and we find with a GA IPC search that the Cortex-A72 can sustain maximum IPC

of 3. Given these values, the heuristic suggests a virus with loop size of 20 instructions.

Therefore, we perform the GA search on Cortex-A72 with loop size set to 20 instructions.

Figure 32 shows how the EM amplitude, the maximum voltage-droop (measured with

OC-DSO [72]) and the dominant frequency (the one with the highest EM amplitude) of the

strongest individual of each generation varies as the GA progresses. The signal amplitude

Figure 32. EM driven GA run on Cortex-A72. Peak amplitude (left y-axis) and maximum droop /

dominant frequency (right y-axis) for the best individual of each GA generation.

0

20

40

60

80

100

120

140

160

180

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

vo
lt

ag
e

d
ro

o
p

 (
m

V
)

/
d

o
m

in
an

t
Fr

eq
 (

M
H

z)

EM
 a

m
p

lit
u

d
e

(n
W

)

GA generation

amplitude (nW)

dominantFreq (MHz)

maxDroop (mV)Zac
ha

ria
s H

ad
jila

mbro
u

71

increases from generation to generation during the GA search along with the voltage droop.

This shows that the EM generated virus corresponds to a dI/dt virus that maximizes voltage-

droop. The virus dominant frequency is 67MHz that is very close to the resonance frequency

of the Cortex-A72 identified in Section 4.3.

To confirm that indeed the obtained virus is really causing large voltage noise, more

than typical workloads, we perform VMIN testing. Figure 33 compares the voltage-droop and

the VMIN of SPEC benchmarks and the dI/dt virus produced by GA search with 20

instructions based on EM emanations. As shown in Figure 33 the virus causes larger voltage

droop and has higher VMIN than the SPEC benchmarks. And, it has the same VMIN and

voltage-droop as a dI/dt virus generated with a GA search guided from the OC-DSO

(denoted as OC-DSO_VIRUS). This is clear indication that the proposed EM based

methodology is effective in generating dI/dt viruses.

Next, we show the benefit of using the loop size heuristic. We compare how the GA

search for Cortex-A72 with 20 loop instructions compares to a GA search with 50 loop

instructions. Note that 50 loop instructions is a value that we empirically find to work

generally well in most cases. Figure 34 compares the GA progress in terms of maximum

voltage-droop between the GA search with 20 instructions and the GA search with 50

instructions. The search with 20 instructions converges much faster to a more powerful

Figure 33. Voltage droop and VMIN measurements on Cortex-A72.

60

80

100

120

140

160

180

720

760

800

840

880

920

id
le

h
2

6
4

re
f

b
zi

p
2

gc
c

go
b

m
k

h
m

m
e

r
lib

q
u

an
tu

m
o

m
n

et
p

p
p

e
rl

b
en

ch
p

o
vr

ay
sj

e
n

g
b

w
av

es
ca

ct
u

sA
D

M
ca

lc
u

lix
d

e
al

II
G

e
m

sF
D

TD
gr

o
m

ac
s

le
sl

ie
3

d
n

am
d

m
cf

m
ilc

so
p

le
x

to
n

to
w

rf
X

al
an

ze
u

sm
p

lb
m

O
C

-D
SO

_V
IR

U
S

EM
_V

IR
U

S

m
ax

 v
o

lt
ag

e
d

ro
o

p
 (

m
V

)

V
M

IN
 (

m
V

)

VMIN (mV) maxDroop (mV)

Zac
ha

ria
s H

ad
jila

mbro
u

72

virus. At generation 30, the GA search with 20 instructions causes a maximum voltage droop

of 160mV, whereas the GA search with 50 instructions causes a voltage droop of 114mV.

Figure 34 also shows that the search with 50 loop instructions even after 60 generations does

not produce a virus of equal strength as the search using 20 instructions. This clearly

highlights the effectiveness of the loop-size determination heuristic in generating faster

stronger dI/dt viruses

6.2 ARM Cortex-A53

Cortex-A53 cluster does not provide any support for direct voltage-noise measurements

rendering dI/dt virus generation and resonance frequency identification impractical with

state-of-the-art means. This section shows that the EM methodology circumvents this

shortcoming and obtain a) a virus that stresses voltage margins, and b) the first-order

resonance frequency. This underlines the effectiveness and the generality of the proposed

methodology.

We conduct a GA optimization run with the objective of obtaining a voltage-noise virus

for the Cortex-A53 cluster. Figure 35 shows the inter-generational progression of the GA

(left-axis showing received EM-power and the right-axis showing the dominant frequency

of the strongest individual per generation). The GA successfully maximizes the EM

Figure 34. GA search for Cortex-A72 dI/dt virus with 20 loop instructions vs 50 loop instructions.

60

80

100

120

140

160

180

0 20 40 60 80

m
ax

 v
o

lt
ag

e
d

ro
o

p
 (

m
V

)

GA generation

GA20instructions

GA50instructions

Zac
ha

ria
s H

ad
jila

mbro
u

73

amplitude. Since, Cortex-A53 does not support voltage noise measurements to test the

effectiveness of the GA we compare the VMIN of the strongest individual across all

generations (labelled “EM virus”) against the VMIN of SPEC2006 benchmarks.

Figure 36 shows the VMIN of the EM virus (rightmost) compared to SPEC2006

benchmarks and idle (leftmost). The VMIN is obtained with four active cores at a 950MHz

CPU frequency. The VMIN of the generated EM virus stands out (50mV higher) compared

to the rest of the benchmarks which demonstrates the effectiveness of the EM approach in

generating dI/dt viruses.

Figure 36. VMIN measurements on Cortex-A53.

740

780

820

860

id
le

g
c
c

h
m

m
e
r

lib
q

u
a

n
tu

m

b
z
ip

2

c
a
lc

u
lix

d
e
a

lI
I

G
e

m
s
F

D
T

D

g
o
b

m
k

g
ro

m
a

c
s

h
2
6

4
re

f

lb
m

m
c
f

m
ilc

n
a
m

d

o
m

n
e

tp
p

p
e
rl

b
e
n

c
h

p
o
v
ra

y

s
je

n
g

s
o
p

le
x

w
rf

X
a

la
n

b
w

a
v
e

s

c
a
c
tu

s
A

D
M

le
s
lie

3
d

z
e
u

s
m

p

to
n
to

a
5
3

e
m

V
ir

u
s

V
m

in
 (

m
V

)
@

9
5

0
M

H
z

Figure 35. GA EM amplitude driven optimization for Cortex-A53.

64

66

68

70

72

74

76

78

80

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120

D
o

m
in

an
t

Fr
eq

u
en

cy
 (

M
H

z)

EM
 A

m
p

lit
u

d
e

(p
W

)

generation

maximumAmplitude (pW)

dominantFreq (Mhz)

Zac
ha

ria
s H

ad
jila

mbro
u

74

The GA converges to 75MHz dominant frequency. We use the loop method

methodology for resonance-frequency detection (described in Section 4.3) to validate that

this is the first-order resonance frequency of the Cortex-A53 cluster. The results of the

sweep are shown in Figure 37. For four powered cores (C0C1C2C3 scenario) the sweep

reveals a resonance frequency at 76MHz which matches closely the GA results. The

agreement of the two independent approaches gives confidence that the resonance frequency

is correctly identified.

Furthermore, Figure 37 provides insight about how power-gating can affect significantly

the PDN characteristics. The Cortex-A53 quad-core cluster has the highest die capacitance

when all four cores are powered up (“C0C1C2C3”). The first-order resonance frequency is

inversely proportional to the square-root of the die capacitance [55], hence, the resonance

frequency increases from 76.5MHz when all cores are powered up (labelled as

“C0C1C2C3”) to 97MHz with just one core powered up (labelled as “C0”). Note that the

amplitude of the EM emanations is affected by the number of powered cores in addition to

the resonance frequency. Since we kept stable current consumption across all four scenarios

by having only the first core active, the EM amplitude (and hence the voltage noise) is

maximized in the scenario where the least PDN capacitance is present (“C0”). These results

Figure 37. Resonance frequency exploration on Cortex-A53. For four powered cores (C0C1C2C3)

the resonance frequency is 76.5MHz.

0

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120 140 160

EM
 A

m
p

lit
u

d
e

(p
W

)

Loop Frequency (MHz)

C0

C0C1

C0C1C2

C0C1C2C3

Zac
ha

ria
s H

ad
jila

mbro
u

75

confirm prior work [37] that shows that with more cores connected under the same PDN,

the capacitance increases and voltage noise smooths out.

Moreover, the results indicate that power-saving techniques, such as power-gating

individual cores, whilst being beneficial from a leakage perspective, can affect power-

delivery adversely. Power-gating not only reduces the available useful capacitance that can

mitigate high-magnitude voltage-droops, but also makes the frequency of voltage-noise

oscillations higher. This has detrimental implications on voltage-noise mitigation

mechanisms such as adaptive-clocking [31][44], that are extremely sensitive to response-

latency.

6.2.1 Simultaneous Voltage Noise Monitoring of Multiple Voltage
Domains

We next illustrate the capability of the EM based methodology to monitor multiple

voltage domains simultaneously. This is impossible with an on-chip or off-chip oscilloscope

that has a direct physical probing on a single voltage domain. In contrast, an antenna can

detect voltage emergencies happening at the same time on both the Cortex-A72 and Cortex-

A53. To demonstrate this capability, we run the Cortex-A72 and Cortex-A53 dI/dt viruses

at the same time and capture the spectrum analyzer readings as shown in Figure 38. The

frequency-domain signatures of both viruses are clearly visible. This shows that the EM

Figure 38. Simultaneous monitoring of voltage emergencies across multiple voltage domains through

EM emanations.

0

20

40

60

80

60 65 70 75 80

A
m

p
lit

u
d

e
(n

W
)

Frequency (MHz)

Cortex-A53 virus

Cortex-A72
virus

Zac
ha

ria
s H

ad
jila

mbro
u

76

methodology offers an effective detection mechanism for voltage-noise oscillations

occurring across multiple voltage domains, thereby underlining its applicability to

heterogeneous System-on-Chips (SoCs).

6.3 AMD Athlon II X4 645
This section extends the evaluation from low-power mobile CPUs and the ARM ISA to

high power x86-64 desktops (AMD Athlon II X4 645). The loop method frequency sweep

methodology for finding the resonance frequency (Section 4.3) is performed on the AMD

CPU and the results are shown in Figure 39. The sweep reveals the first-order resonance

frequency to be at 78MHz. An EM amplitude driven GA run shows excellent agreement

converging to nearly the same resonance frequency (77MHz) as shown in Figure 40. The

EM amplitude during the GA search follows the same trends as in the Juno board CPUs, it

increases with each generation until it eventually converges.

For VMIN comparison, the GA auto-generated EM virus is compared against common

Windows (and Desktop CPU) workloads. The benchmark suite includes CPU intensive

video rendering workloads such as Blender [12], Cinebench [19], scientific workloads such

as Euler 3D [25] and all-around benchmark suites such as WEBXPRT [71] (mimics browser

workloads) and GeekBench [28] (set of common workloads e.g. encryption, database

Figure 39. Loop frequency sweep on Athlon II X4 645 reveals a resonance frequency at 78MHz.

0

2

4

6

8

10

60 70 80 90 100 110 120 130 140

EM
 A

m
p

lit
u

d
e

(n
W

)

loop_frequency (MHz)

Zac
ha

ria
s H

ad
jila

mbro
u

77

queries etc.). Moreover, the EM virus is compared against the well-known Prime95 [61]

stability test, AMD’s own stability test application [4], and a GA virus generated through

the voltage feedback from on-package Kelvin measurement pads (denoted as OscVirus).

We monitor on-die voltage noise using a differential probe connected to an oscilloscope

(Figure 30). The VMIN and voltage noise results are shown in Figure 41. Unless noted

otherwise, all measurements are with all four cores active.

The GA viruses (EMvirus, OscVirus) cause much higher voltage noise and have higher

VMIN as compared to the rest of the workloads. The EM driven GA approach again is

effective in generating voltage-noise viruses. The EM virus has a VMIN of 1.3625V, 37.5mV

below the nominal voltage at 3.1GHz. It is interesting to point out that the EM based virus

Figure 40. GA EM amplitude driven run on AMD CPU.

50

55

60

65

70

75

80

85

90

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80

D
o

m
in

an
t

Fr
e

q
 (

M
H

z)

EM
 A

m
p

lit
u

d
e

 (
n

W
)

generation

highestGenerationAmplitude

dominantFreq (MHz)

Figure 41. VMIN and voltage noise measurements on the AMD CPU.

1050

1100

1150

1200

1250

1300

1350

1400

0
50

100
150
200
250
300
350
400
450

id
le

Eu
le

r3
D

7
-Z

ip

A
M

D
 s

ta
b

ili
ty

 t
es

t

W
EB

X
P

R
T

G
ee

kB
en

ch

C
in

e
b

en
ch

P
o

vr
ay

B
le

n
d

er

P
ri

m
e9

5

Em
V

ir
u

s
(2

co
re

s)

O
sc

V
ir

u
s

Em
V

ir
u

s

V
M

IN
 (

m
V

)

p
ea

k-
to

-p
ea

k
vo

lt
ag

e
n

o
is

e
(m

V
)

vMin(mV) max-min (mV)

Zac
ha

ria
s H

ad
jila

mbro
u

78

running on only two active cores is more severe than the AMD stability test and Prime95

on four active cores. To gain confidence in the VMIN results we have run the AMD stability

test and Prime95 for 24 hours at 1.287V and 1.28V respectively. They both pass the test

whereas the EM virus causes immediate system-crash at 1.3V or even higher voltages.

6.4 Ampere Computing X-Gene2

In this section, we evaluate the EM methodology on the X-Gene2 CPU. Compared to

the other evaluated CPUs the X-Gene2 has a distinct characteristic that affects the dI/dt virus

generation; X-Gene2 cores are clustered into Processor-Modules (PMD). Each PMD

includes two cores with a private DL1 cache and a shared L2 cache. The DL1 caches are

write-through [82] so each time a write is performed in the DL1 cache, the L2 cache is

written as well. Therefore, when two threads run on the same PMD L2 cache contention and

interference across threads should be the norm. Hence, the approach of performing the GA

search on single core and then testing the resulted virus by running it on all cores does not

work for X-Gene2 because execution of multiple instances of a derived virus, one instance

in each core, usually suffers from timing interference that impedes resonance built-up. To

mitigate this issue, we propose to perform the GA search on a single PMD but with two

instances of the virus running, one on each PMD core. With this approach we observe that

the GA naturally converges to solutions that do not suffer from contention on the L2 cache

and cause high voltage-noise.

We use the loop-size heuristic (Section 4.5) to estimate the number of instructions for

the GA optimization on X-Gene2. Recall that to use the heuristic, we need to determine the

CPU frequency, the maximum IPC and the PDN resonance-frequency. The nominal CPU

frequency is known from the specifications and is equal to 2.4GHz [82]. The maximum IPC

is 4 [82] which we confirm with a GA IPC optimization. To find the resonance frequency

Zac
ha

ria
s H

ad
jila

mbro
u

79

we use the loop method for quick resonance-frequency determination described in Section

4.3.

Figure 42 shows the results of the PDN resonance-frequency exploration on X-Gene2.

The sweep results suggest a resonance frequency at 150Mhz. We observe gaps between the

data points in Figure 42 because X-Gene2 supports only discrete CPU frequency values in

steps of 300MHz. Based on these values the heuristic suggests using loop size of 25

instructions during the GA optimization. The GA search maximizes the EM amplitude at

150MHz as shown in Figure 43. We confirm the virus effectiveness by performing a VMIN

comparison against SPEC2017 and NAS benchmarks. The results in Figure 44 reveal that

the GA virus (rightmost) has higher VMIN than the other workloads.

6.5 Ampere Computing X-Gene3

We apply the EM methodology on X-Gene3 to generate a dI/dt virus. We validate the

effectiveness of the generated virus with both VMIN measurements and voltage droop

Figure 42. X-Gene2 resonance frequency exploration

0

10

20

30

40

50

60

70

60 80 100 120 140 160 180 200

EM
 A

m
p

lit
u

d
e

 (
p

W
)

Loop Frequency (MHz)

Zac
ha

ria
s H

ad
jila

mbro
u

80

measurements using the voltage droop detector circuit that is integrated on the X-Gene 3

chip.

Figure 45 shows the max voltage droop caused by the dI/dt virus compared to NAS

parallel benchmarks at 32 active cores and 3GHz CPU frequency. Is shown that the virus is

the only workload that causes 80mV voltage droops. Furthermore, the droop detector allows

Figure 43. GA search on X-Gene2.

149

150

151

152

153

154

155

156

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

d
o

m
in

an
t

Fr
eq

 M
H

z)

EM
 p

ea
k

am
p

lit
u

d
e

(p
W

)

GA generation

peakAmplitude dominantFreq(MHz)

Figure 44. X-Gene2 VMIN results.

890

900

910

920

930

940

950

960

970

980

lu
m

g
ep is cg b

t
p

er
lb

en
ch

_r
n

am
d

_r
p

ar
es

t_
r

o
m

n
et

p
p

_r
xa

la
n

cb
m

k_
r

b
le

n
d

er
_r

d
ee

p
sj

en
g_

r
im

ag
ic

k_
r

le
el

a_
r

n
ab

_r
ex

ch
an

ge
2

_r
fo

to
n

ik
3d

_r
ro

m
s_

r
sp u
a

ca
ct

u
B

SS
N

_r
p

o
vr

ay
_r

lb
m

_r
w

rf
_r

x2
6

4_
r

xz
_r d
c

ca
m

4_
r

d
I/

d
t

vi
ru

s

V
M

IN
 (

m
V

)

Zac
ha

ria
s H

ad
jila

mbro
u

81

counting the number of CPU cycles that suffered a voltage droop per second. Figure 46

shows the number of CPU cycles that suffered a 40mV voltage droop per second while

running the virus and the SP NAS benchmark (the NAS benchmark with the highest droop

count) for a different number of active cores. The first observation is that the virus causes

orders of magnitude more droops than the SP benchmark. This confirms that the dI/dt virus

behaves as intended by causing periodically voltage droops at a rate equal to the PDN

resonance frequency. Another observation is that the droop count increases along with the

number of active cores. For instance, the SP benchmarks start to cause droops of 40mV only

above 16 active cores. This is expected as with more cores actives more current (I) is drawn,

hence, higher voltage droops are generated [42]. We also observe that the SP curve is more

flat compare to the dI/dt virus i.e. the droop increase with a higher number of active cores

is more apparent for the dI/dt virus. This can be explained by the fact that the virus is a tiny

loop of 50 instructions, therefore, during virus execution the cores are more easily aligned,

which has a constructive effect on voltage-noise as the number of cores increase.

Figure 45. Voltage droop of virus vs NAS workloads.

0

10

20

30

40

50

60

70

80

90

m
ax

 V
o

lt
ag

e
d

ro
o

p
 (

m
v)

WorkloadsZac
ha

ria
s H

ad
jila

mbro
u

82

Regarding VMIN, as shown in Figure 47 the virus has equal VMIN to the SP benchmark

despite (as shown in Figure 45 and Figure 46) virus causing higher voltage-noise (both in

terms of quantity and magnitude). A possible explanation for this behaviour might be the

Load-Line calibration feature that is supported by the X-Gene3.

Load-Line calibration is the mechanism that automatically adds a voltage-offset to the

desired operating voltage (the one set by the user or the manufacturer) to compensate for

voltage droops that occur due to changes in CPU power consumption. This mechanism

responds to a voltage drop in scales of milliseconds and it addresses the IR drop. It is not

intended to address the sudden inductive dI/dt voltage droops, such as the one caused by a

dI/dt virus. Despite that, at least in this case, it seems to work as a counter against our X-

Gene3 dI/dt virus. This is the case because it happens that the virus causes higher power-

consumption that the rest workloads. The dI/dt virus causes on average 20W more CPU

power consumption that the NAS benchmarks. This results in more voltage offset being

added during virus execution.

Figure 46. Cycles suffered droop per second versus number of active cores.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1 6 11 16 21 26 31

4
0

m
V

 d
ro

o
p

 c
yc

le
s

p
er

 s
ec

o
n

d

of active cores

dI/dt virus SP

Zac
ha

ria
s H

ad
jila

mbro
u

83

Figure 48 show the operating voltage over time for NAS, dI/dt and idle workloads when

the voltage regulator is instructed to set the operating voltage to 820mV. We observe that

even at idle a small voltage offset of 3mV is added (except for one spike at 824mV that

could be correlated with a sudden activity from background system processes). When CPU

is not idle (during NAS and dI/dt execution) the Load-Line calibration raises the voltage

much higher to compensate for the IR drop (the drop of voltage at the ends signifies the end

of execution). Because the dI/dt virus causes higher power consumption, the operating

voltage during virus execution is raised from 3 to 6mV higher compared to SP workload.

This shows that VMIN testing with Load-Line calibration enabled is not exactly a fair

comparison since the actual operating voltage is dependent on the workload power-

consumption (instead of just being equal to the voltage asked by the experimenter).

Unfortunately, we cannot disable Load-Line calibration to check if the VMIN results will be

different. Another implication of these results is that during dI/dt virus development,

emphasis must be given not only on dI/dt voltage-droop but on average power consumption

Figure 47. VMIN measurements on X-Gene 3.

770

790

810

830

850

870

V
M

IN
 (

m
v)

Workloads

Zac
ha

ria
s H

ad
jila

mbro
u

84

as well. Our results support the following: a) generating voltage-noise viruses with low

average power-consumption when Load-Line calibration is present to reduce the

automatically added voltage-offset, and b) generating voltage-noise viruses with high

average power-consumption when Load-Line calibration is not present to increase the

overall voltage droop with higher IR droop.

Figure 48. Voltage over time for 3 different workloads (idle, SP and dI/dt virus).

822

824

826

828

830

832

834

836

0 20 40 60 80 100

vo
lt

ag
e

(m
V

)

seconds

idleVoltage SP.C.Xvoltage dI/dt Virus

Zac
ha

ria
s H

ad
jila

mbro
u

85

 EM based DVS Governors

7.1 EM Detection Governor

We propose a DVS governor that exploits the correlation between EM amplitude and

voltage-noise. The governor detects workloads that cause high-voltage noise by

continuously monitoring the EM power levels emitted by the CPU’s PDN. If the EM

amplitude surpasses a certain threshold the workload is considered unsafe. In that case the

governor will set the CPU voltage to a high safe value. Otherwise, if the EM power does

not exceed a certain threshold, the governor sets the CPU voltage to a lower more optimistic

value.

The DVS governor EM detection setup for a X-Gene2 system is shown in Figure 49.

Essentially, is the same EM setup as we shown in Section 4.1 for the Juno board and the

AMD desktop CPU. The antenna senses the EM signals and the spectrum analyser monitors

EM spikes at the resonance frequency. A workstation is connected to the spectrum analyser

(not shown in the picture). The workstation analyses the strength of the signals and if a

threshold is surpassed, it will act to enforce stability by changing the voltage to a safe value.

Figure 49. DVS governor EM detection setup on X-Gene2.

 Zac
ha

ria
s H

ad
jila

mbro
u

86

This DVS governor requires the following parameters to work: a) a safe voltage called

WorkloadVMIN for safely executing regular workloads (this can be identified through

extensive VMIN characterization of regular workloads), b) a safe voltage for running a dI/dt

workload which can be equal to the VMIN of a dI/dt virus (we will refer to this as

VirusVMIN), c) the threshold of the EM signal amplitude that is considered dangerous (this

can be identified by characterizing the EM of a dI/dt virus characterization) and d) the

resonance frequency of the CPU’s PDN, this is the frequency that the spectrum analyser

will monitor.

The predictor algorithm is the following: a) Upon a new workload start set the voltage

to VirusVMIN, b) Monitor the workload for few seconds, c) if the EM amplitude doesn’t

exceed the threshold, then, lower the voltage to the WorkloadVMIN, d) if the EM amplitude

exceeds the threshold, then, keep the voltage at the VirusVMIN. These steps are illustrated

with a flowchart in Figure 50. In the figure the VirusVMIN is equal to 980mV and the

WorkloadVMIN is equal to 930.

Figure 50. EM predictor flow-chart.

Zac
ha

ria
s H

ad
jila

mbro
u

87

We evaluate the EM detection governor on X-Gene2. We have executed the EM

detection governor for 12 hours under a random workload. For virus workloadVMIN, we

use 930mV. Figure 51 shows the moving average power consumption of EM governor

versus the moving average power consumption of the CPU executing under nominal

voltage. The EM governor provides lower power consumption. In total the EM predictor

provides 10% power-savings.

Is worth highlighting that the EM predictor has not yet been practically realised in real

deployments. But the effectiveness of this prototype motivates the implementation of this

approach in future designs by incorporating both the antenna and the actuator logic inside

the chip.

Figure 51. EM predictor vs nominal.

0

2

4

6

8

10

12

14

16

18

20

1
50

5
10

09
15

13
20

17
25

21
30

25
35

29
40

33
45

37
50

41
55

45
60

49
65

53
70

57
75

61
80

65
85

69
90

73
95

77
10

08
1

10
58

5
11

08
9

11
59

3
12

09
7

12
60

1
13

10
5

13
60

9

m
o

vi
n

g
av

er
ag

e
p

o
w

er
 (

w
)

seconds

EMpredictor(W) nominal (W)

Zac
ha

ria
s H

ad
jila

mbro
u

88

7.2 Core Allocation Governor

The dI/dt viruses produced with the EM methodology can assist in DVS decisions for

improving the CPU energy-efficiency. In particular, we propose to characterize offline the

VMIN of dI/dt viruses for different core-allocation classes (i.e. for different active cores) and

implement a DVS governor that: a) continuously monitors which cores are active, b)

identifies the core-allocation class based on the current active cores, c) determines the VMIN

of the core-allocation based on the off-line characterization, and d) sets the operating voltage

to the VMIN of the current core-allocation.

We evaluate the core-allocation governor on the X-Gene2 CPU. One of the fundamental

questions for implementing the core-allocation governor is how many different core

allocations are characterized. Broadly speaking the most determining factor for dynamic

voltage scaling (DVS) decisions is the number of active cores. More active cores lead to

higher current (I) consumption and higher voltage droops, and, it is generally accepted that

a system’s VMIN is higher when more cores are active [42][49][73]. Therefore, one approach

would be to characterize the VMIN of the system under different number of active cores. But

in cases where the CPU design introduces asymmetric performance among cores, the

number of active cores is not the sole determining factor for the magnitude of the voltage-

noise [42]. Examples of such CPU designs are Simultaneous-Multi-Threading processors

(SMT) [81], the AMD bulldozer architecture [42] and X-Gene2 [82].

X-Gene2 implements a PMD based architecture. X-Gene2 cores are clustered into

Processor-Modules (PMD). Each PMD includes two cores with their private L1 cache and

a shared L2 cache. The L1 caches are write-through to the L2 cache. The sharing of the L2

cache causes performance differences when executing two threads on the same PMD

compared to executing two threads across two PMDs. Hence, to apply the core-allocation

governor on X-Gene2 we must characterize the system VMIN for different number of fully

active PMDs (i.e. the PMDs where both cores are active henceforth referred to as fp) and

Zac
ha

ria
s H

ad
jila

mbro
u

89

for different number of half active PMDs (i.e. the PMDs where only one core is active

henceforth referred to as hp).

For clarity Figure 52 illustrates different core-allocations classes for 4 threads. In total,

X-Gene2 has 14 different allocation classes which are shown in Table VII. For each

allocation class, a subset of allocation-instances is shown. Allocation-instances are basically

the ids of the active cores that implement an allocation. For example, the combination of

cores “0,1,2” implements a 1fp,1hp allocation class. In total, X-Gene2 has 255 allocation-

instances (all the possible active core combinations minus one, 28 – 1 = 256 -1 = 255).

It is also important to consider which cores are going to be characterized for each

allocation class. Naïve selection of the cores that will be characterized could result in not

optimal power-efficiency or system failures. For instance, applying the VMIN of a 2fp

allocation-instance that uses cores 0,1,2,3 to a 2fp allocation-instance that uses cores 4,5,6,7

might be dangerous for system-stability if cores 4,5,6,7 have higher VMIN than cores 0,1,2,3.

This issue becomes more important with the increasing CPU core counts that render static

variations among cores (in terms of VMIN) a higher concern. Therefore, for each allocation

Figure 52. Different core-allocation classes for 4 active threads. Idle cores and L2 are illustrated

with white colour.

Zac
ha

ria
s H

ad
jila

mbro
u

90

class we characterize the VMIN of the worst-case allocation instance. The worst-case

allocation instance is the instance that consists of the cores and PMDs with the highest VMIN.

The VMIN of the worst-case allocation instance will be considered as a safe VMIN for any

allocation-instance that belongs to the same allocation class. This approach is based on two

expectations: a) the voltage-droop is inherent to the number of active fp and hp (i.e.

allocation scenario), b) the core-to-core variations affect the resilience to voltage droops but

not the voltage droop magnitude.

We start constructing the DVS governor for X-Gene2 by first finding the dI/dt virus

(from Section 6.4) VMIN of all 1hp and 1fp allocation-instances. This is a required first step

that enables the identification of the worst-case allocations for the rest 12 allocation classes.

The results are shown in Figure 53. The cores 1,6,7 are the most unreliable cores. The PMD

runs (both PMD cores active) “0,1”,”2,3”,”4,5”,”6,7” have equal VMIN, and, as expected,

they have higher or equal VMIN to the single-core runs. We use these results to construct the

worst-case allocations-instances for all rest allocation classes. For example, based on Figure

53 results, the worst-case allocation-instance for the 2hp class are the cores “1,6” (or “1,7”).

Table VII. All X-Gene2 core allocation classes.

Allocation
Class

Allocation Instances
(space separated)

Total number of Allocation
Instances

1hp 0 1 2 3 4 5 6 7 8

1fp 0,1 2,3 4,5 6,7 4

2hp 0,2 0,3 0,4 0,5 0,6 0,7 1,2 … 24

1fp 1hp 0,1,2 0,1,3 …. 24

3hp 0,2,4 …. 32

1fp 2hp 0,1,2,4 … 48

2fp 0,1,2,3 4,5,6,7 …. 6

4hp 0,2,4,6 1,3,5,7 … 16

1fp 3hp 0,1,2,4,6 … 32

2fp 1hp 0,1,2,3,4 … 24

2fp 2hp 0,1,2,3,4,6 … 24

3fp 0,1,2,3,4,5 … 4

3fp 1hp 0,1,2,3,4,5,6 … 8

4fp (or 8hp) 0,1,2,3,4,5,6,7 1

Zac
ha

ria
s H

ad
jila

mbro
u

91

In cases of equal VMIN the cores and PMDs are arbitrary selected. For instance, for the 2fp

class is not obvious which two PMDs to pick, hence, the worst-case instance is arbitrary

selected.

We perform dI/dt virus VMIN characterization for each worst-case topology instance and

the results are shown in Figure 54. The classes are sorted based on the number of active

cores, and, the results show a rather monotonical trend with increasing number of cores,

Figure 53. Single core and PMD VMIN characterization.

Figure 54. Allocation class VMIN characterization.

880

890

900

910

0 1 2 3 4 5 6 7 0,1 2,3 4,5 6,7

V
M

IN
 (

m
V

)

allocation instance (active core ids)

880
890
900
910
920
930
940
950
960
970
980

2hp 1fp
1hp

3hp 1fp
2hp

2fp 4hp 1fp
3hp

2fp
1hp

2fp
2hp

3fp 3fp
1hp

4fp

V
M

IN
 (

m
V

)

allocation class

Zac
ha

ria
s H

ad
jila

mbro
u

92

which is expected. These VMIN values have a 10mV safety margins added on top of the VMIN

i.e. the VMIN values shown on the graph are equal to crash voltage plus 20mV. This safety

margin is added to cover any potential inaccuracies in the VMIN results. Such inaccuracies

may arise from various experimental limitations such as limited characterization time.

With the allocation class VMIN characterization finished, the DVS governor has all the

necessary information for taking DVS decisions. The governor essentially will perform the

following steps when CPU is running a workload: a) check which cores are active (i.e. the

allocation instance, b) if the VMIN of the allocation-instance is known e.g. in the case a 1hp

or 1fp allocation-instance, then we set the voltage to that value otherwise, c) determine to

which allocation class the allocation instance belong and set the voltage according to Figure

54 VMIN results.

We test the DVS governor by running the dI/dt virus for all 255 allocation-instances.

We have not observed any instability during the experiment execution. Furthermore, we

evaluate the DVS governor with SPEC_rate 2017 and NAS benchmarks. We create a

random workload by randomly generating: a) the benchmark to execute, and b) the

allocation-instance i.e. the cores that will run the benchmark. For SPEC_rate each core runs

a different benchmark instance whereas for NAS benchmarks each core executes a different

benchmark thread. The total execution time for the random workload is 62 hours. We

compare the power consumption of this random workload under: a) the nominal voltage, b)

the proposed DVS governor.

The power of the CPU voltage domain over time for the two scenarios is shown in Figure

55. As expected, execution time is not affected because we alter only the CPU voltage. The

workload changes are depicted in the figure by the observed power variations. The full

random workload consists of a mix of high-power, medium and low-power runs. The

average CPU utilization (not shown in the graph) is 50%. The DVS governor consistently

Zac
ha

ria
s H

ad
jila

mbro
u

93

provides lower power than operating 24/7 under nominal voltage. This is illustrated more

clearly in Figure 56 , which shows the moving average power consumption.

At the end of the workload, the DVS governor provides 10% power-savings compared

to nominal execution. The average voltage during DVS governor execution is 928mV (not

shown in graphs). The success of the core-allocation governor supports two conclusions: a)

the robustness and accuracy of the EM approach in generating proper dI/dt viruses and b)

the worst-case noise is inherent to the design and not to core-to-core variations.

Figure 56. DVS governor vs nominal moving average.

0

2

4

6

8

10

12

P
o

w
er

 (
W

)

hours

movingAverageDVS
movingAverageNominal

Figure 55. CPU power consumption over 60 hours workload.

Zac
ha

ria
s H

ad
jila

mbro
u

94

 Conclusions

8.1 Summary

This thesis proposes a novel methodology for post-silicon dI/dt stress-test generation

and resonance-frequency detection based on sensing modulations in CPU EM emanations.

The proposed approach has the advantage of being non-intrusive: a) to system-software, b)

to hardware and c) does not incur design-time overheads and complexities. The basic

premise for this methodology is the presence of a correlation between the radiated EM

power and on-chip voltage noise. The experimental analysis clearly establishes this

correlation. Additionally, we demonstrate the generality of the proposed approach by

successfully applying it to different CPUs to generate voltage-noise viruses for them and to

obtain their PDN’s 1st order resonance frequency.

Our experimental results support that the EM methodology can improve the CPU

energy-efficiency by enabling operation outside of the nominal voltage margins. The VMIN

of the dI/dt viruses produced with the EM methodology provides a good indication of a

system’s safe VMIN. We repeatedly verified this claim through VMIN measurements. For all

experimental platforms used in this thesis the VMIN of the dI/dt viruses is higher or equal to

the VMIN of the conventional workloads. Furthermore, for a 60-hour workload we

demonstrate that a DVS governor that scales the voltage according to the dI/dt virus VMIN

for various core allocation scenarios can ensure robust execution and provide 10% power-

savings compared to nominal execution.

We also demonstrate how the EM setup can be utilized during live operation to detect

high voltage droops, react to them using a mitigation mechanism, and ultimately prevent

their negative consequences. We evaluate this approach on a simple prototype setup with

significant limitations in terms of reaction time. Still, we can guarantee safe and energy-

efficient operation for a 12-hour workload composed of conventional benchmarks and dI/dt

Zac
ha

ria
s H

ad
jila

mbro
u

95

viruses. These results strongly encourage further development of this approach towards a

product-grade solution that might be integrated into real systems.

Besides the EM methodology, this thesis has another significant contribution. This thesis

delivers GeST, a GA based framework for automatic stress-test generation that was

developed for the needs of this thesis. While GA based automatic frameworks are not a

novel concept, to the best of our knowledge there is no publicly available framework that

researchers and practitioners can use. The framework presented in this thesis has been

successfully demonstrated in industrial platforms and has been used for various research

publications [20][72][73][93][94].

The key strengths of the GeST framework are its flexibility and extensibility as it

provides an easy interface to the experimenter that can be used for building upon the

framework. We demonstrate the flexibility and the effectiveness of the framework by

generating, among other, power and dI/dt stress-tests (viruses) on various CPUs with simple

and complex fitness functions. The generated viruses stress the system more than

conventional workloads and manually written stress-tests. While this thesis demonstrates

GeST on real hardware, there is no fundamental restriction that prevents the framework

from being used for pre-silicon stress-test generation in conjunction with accurate power,

temperature, performance and voltage-noise models/simulators.

Finally, we conclude this Section with some observations we gather from all the CPUs

that we have applied the EM methodology. We discuss cross-platform findings to provide

insight on the generated viruses. In particular, we focus the discussion on the measured

resonance frequencies, the potential for energy-efficiency improvements, the efficacy of the

GA-optimization and the implications of instruction mix in virus generation.

Table VIII provides a comparison about the viruses generated by GA for the different

platforms in terms of average instructions per cycle (IPC), instruction loop frequency,

dominant frequency (the one where the highest EM amplitude is observed), voltage margin

Zac
ha

ria
s H

ad
jila

mbro
u

96

(the difference between the nominal voltage and virus VMIN), energy-efficiency

improvement potential through the elimination of voltage margins and instruction-mix

breakdown.

The first-order resonance frequency of processors is typically in the range between 50-

200MHz [55][63] which is confirmed by our experimental results. According to Table VIII

the lowest resonance is observed at 66MHz (Cortex-A72) and the highest at 150MHz (X-

Gene2). Regarding the VMIN of the dI/dt viruses, the viruses exhibit between 20 to 75mV

higher VMIN compared to standard benchmarks or previously proposed stress tests (e.g.

Prime95) and, hence, can be used to determine better operating points. The Cortex-A72 and

Cortex-A53 on the Juno platform can benefit considerably from margin elimination (the

estimated VMIN is at least 120mV and 150mV respectively, lower than nominal voltage

specifications).

 Another interesting insight from Table VIII is that that the dominant frequency (at

which highest voltage oscillations occur) does not have to be equal the instruction loop

frequency (1/loop period). Cortex-A53 virus has long loop periods that includes faster

periodic events that stress the 1st order resonant frequency (e.g. Cortex-A53 has 6 times

slower loop frequency than dominant frequency). In contrast, the other viruses have equal

dominant and loop frequencies. Is worth mentioning that Cortex-A53 is the only examined

CPU that does not benefit from the loop size heuristic. We empirically find that the fittest

virus is generated with a loop-size of 50 instructions that does not adhere to the heuristic.

Cortex-A53 is also the only in-order CPU in this study. This might suggest that in-order

CPUs require slightly different loop-size heuristic, or different parameter values e.g.

different target IPC.

 Zac
ha

ria
s H

ad
jila

mbro
u

97

 T
a

b
le

 V
II

I.
 d

I/
d

t
v

ir
u

s
co

m
p

a
ri

so
n

.
S

L
 d

en
o

te
s

sh
o

rt
 l

a
te

n
cy

 a
n

d
 L

L
 d

e
n

o
te

s
lo

n
g

 l
a

te
n

cy
.

V
o

lt
a

g
e

m
a

rg
in

 =
 N

o
m

in
a

l
v

o
lt

a
g

e
–

 V
ir

u
sV

m
in

.

C
P

U

IP
C

Lo
o

p

p
er

io
d

(n
s)

Lo
o

p

Fr
e

q
 (

1/
lo

o
p

p
er

io
d

)

(M
H

z)

D
o

m
in

an
t

Fr
e

q

(M
H

z)

V
o

lt
ag

e

m
ar

gi
n

(m
V

)

In
st

ru
ct

io
n

 T
yp

e
 M

ix

Lo
o

p

in
st

ru
ct

io
n

s

B
ra

n
ch

(A
R

M

O
n

ly
)

SL
 in

t

R
e

gi
st

e
r

o
n

ly

LL
 in

t

R
e

gi
st

e
r

o
n

ly

SL
 in

t

M
e

m

(x
8

6

o
n

ly
)

LL
 in

t

M
e

m

(x
8

6

o
n

ly
)

Fl
o

at

SI
M

D

M
EM

(A
R

M

O
n

ly
)

A
7

2

2
1

1
.2

1

5
6

6
.6

6

6
6

.6
6

1

20

0
%

3

5
%

1

0
%

-

-
2

5
%

2

5
%

5

%

A
5

3

5
0

0
.6

9
8

1
.1

7
1

2
.3

2

7
4

.9
5

1

50

0
%

2

0%

8
%

-

-
4

2%

2
4%

6

%

X
-G

en
e2

2

5
1

.6

6
.6

6

1
50

1

50

2
0

0

%

6
8%

8

%

-
-

4
%

4

%

1
6%

X
-G

en
e3

5

0
2

8
1

25

1
25

5

0

0
%

3

8%

6
%

-

-
1

4%

1
4%

2

8%

A
M

D

5
0

1
.3

2
1

3
.0

0

7
6

.9
2

7

6
.9

2

3
7

.5

0
%

2

4%

8
%

3

0%

2
%

1

0%

2
6%

-

Zac
ha

ria
s H

ad
jila

mbro
u

98

Table VIII also shows the instruction breakdown of the viruses. All instruction types,

apart from branch instructions are used in the instruction-mix of the viruses. Typically, a

virus requires a combination of high-current and low-current-consuming instructions to

create modulations in CPU current demand that can match the PDN’s 1st order resonance

frequency. Single-cycle instructions and those that engage the memory sub-system typically

increase current consumption in the pipeline due to higher switching activity. The ARM

viruses use plenty of short latency operations whereas the AMD viruses include many short

latency integer instructions with operands in memory (denoted as SL-int-Mem). X-Gene

CPUs use more memory instructions compared to the rest ARM CPUs. This seems to be

attributed to the fact that memory-store instructions on X-Gene CPUs draw more power

compared to other CPUs due to the simultaneous engagement of both L1 and L2 cache

(recall from Section 6.4 that DL1 on X-Gene CPUs is write-through).

Longer latency instructions are found in all the viruses as they create explicit pipeline

stalls/interlocks that reduce current consumption. For stalling the SIMD/floating point

functional units we have observed by code inspection that viruses tend to use long latency

instructions like FSQRT (square root).

8.2 Future Work Directions

For future work, we aim to extend our methodology to GPU PDNs, complementing

recent studies on GPU voltage noise [70][86]. To the best of our knowledge we are not

aware of any work that has conducted voltage-droop measurements on real hardware. Most

GPU related work uses simulators [86] and models to study voltage-noise. Hence,

conducting real-hardware voltage-noise measurements on GPU alone is a prominent

research direction. Is worth examining how observations made with real measurements

compare against the observations made from studies that are performed with a simulator.

Furthermore, applying successfully the EM methodology for dI/dt virus generation on GPUs

Zac
ha

ria
s H

ad
jila

mbro
u

99

will be another significant achievement. In this thesis we already show some promising

results by successfully measuring the Mali GPU resonance-frequency in Chapter 4.

Synchronization of dI/dt events for high core counts (8 and above) in general-purpose

CPUs is another very interesting future work direction. There is no known method that

guarantees thread synchronization in a tangible amount of time, for high core counts in an

OS environment. Previously proposed probabilistic approaches for guaranteeing thread-

alignment work well for up to 4 threads [42]. Synchronizing dI/dt events at high core counts

can lead to security, robustness and reliability issues at nominal settings. Also, we plan to

apply the EM methodology on newer Intel and AMD CPUs e.g. Intel Skylake (and above)

and AMD Ryzen architectures. Since these CPUs are widely used in the PC and server

market segments, conducting voltage-noise research on these CPUs is of great importance.

Another possible research direction is to exploit the interplay of IR drop and inductive

dI/dt noise for generating the best voltage-noise viruses. It is known that these two can have

additive effect. Fine tuning GeST to achieve both high power and high dI/dt noise is a receipt

for creating the ultimate voltage-noise virus for cases where the system does not utilize IR

drop compensation. Contrary, if the system employs IR drop compensations e.g. Load-Line-

Calibration (such as X-Gene3 Section 6.5) a better receipt seems a dI/dt virus with the lowest

possible power-consumption. In general, the GeST framework provides a solid base to build

upon and conduct research. In this thesis we have thoroughly tested the framework for CPU

based optimizations such as power-viruses and dI/dt viruses. GeST is fairly extensible and

can be easily used or extended to generate stress-tests that stress specific CPU components

(e.g. viruses that maximize cache-misses or branch mispredictions) or non-CPU parts such

as GPUs. Some preliminary results we have on GPU power-viruses look promising. A

challenge of generating stress-tests with the EM approach for individual CPU components

(e.g. floating-point units) instead of the whole CPU is to filter out sources of EM emanations

Zac
ha

ria
s H

ad
jila

mbro
u

100

that do not belong to the target component. Examples of such sources are fetching and

decoding pipeline activity which are necessary steps for executing any CPU instruction.

Investigating the trade-offs between voltage noise and power-gating in the presence of

having some cores active and some cores idle in a multi-core CPU is also an interesting

work direction. There is an interesting inter-play that we believe has not been

comprehensively examined yet. Power-gating disables idle cores, therefore, it reduces

overall power consumption by reducing static power. This is desirable, but power gating

can also cause undesirable effects. Particularly, as shown in Section 6.2 power gating can

amplify voltage-noise with the following means: a) power-gating reduces capacitances,

hence, voltage-droop magnitude might be increased, b) power-gating reduces capacitances,

therefore, shifts resonance-frequency to a higher value; if the activity of the active cores

happens to match the new resonance-frequency then voltage-noise is amplified. Hence,

instead of applying power-gating, in some cases it might be more power-efficient to keep

the powered cores up and simply lower the operating voltage (this is feasible since voltage-

noise will be smaller). There is one more aspect to consider though. In some cases, power-

gating can alleviate the voltage droop. If the active cores run a workload that matches the

1st order resonance-frequency, then power-gating can alleviate voltage-noise by moving

away the resonance-frequency from the workload activity. A prominent future work is to

explore these trade-offs and propose a scheme that decides to power-gate or not idle cores

based on the active cores’ periodic activity.

Regarding the EM methodology itself, a promising extension is to perform time-domain

measurements (instead of frequency-domain as performed for this thesis). With time-

domain measurements it might be possible to capture aperiodic-events such as single one-

off voltage droops. Currently, the inability to capture one-off events is a disadvantage of the

EM methodology compared to the traditional high-bandwidth measurement tools. Moving

Zac
ha

ria
s H

ad
jila

mbro
u

101

the EM methodology to time-domain measurements is a promising future work direction

for removing this limitation.

Other general work directions for EM methodology are: a) secure-system design where

on-the-fly PDN characterization can be utilized to thwart malicious side-channel attacks,

and b) development of an EM based PDN characterization procedure that is integrated in

high-end products that can help improve their quality and energy efficiency.

Zac
ha

ria
s H

ad
jila

mbro
u

102

Bibliography

[1] Alam, M., B. Weir, and A. Silverman. "A future of function or failure?[CMOS gate oxide

scaling]." IEEE circuits and devices magazine 18, no. 2 (2002): 42-48.

[2] Alon, Elad, Vladimir Stojanovic, and Mark A. Horowitz. "Circuits and techniques for high-

resolution measurement of on-chip power supply noise." IEEE Journal of Solid-State Circuits

40, no. 4 (2005): 820-828.

[3] AMD, http://support.amd.com/TechDocs/31412.pdf

[4] AMD overdrive, https://www.amd.com/en/technologies/amd-overdrive

[5] Ansys, https://www.ansys.com/en-gb/products/electronics/ansys-hfss

[6] Apache, https://www.apache-da.com/products/sentinel/sentinel-psi

[7] ARM,

http://infocenter.arm.com/help/topic/com.arm.doc.100114_0200_03_en/arm_versatile_express

_juno_r2_development_platform_(v2m_juno_r2)_technical_reference_manual_100114_0200_

03_en.pdf

[8] ARM V8 ISA,

http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.

pdf

[9] Bacha, Anys, and Radu Teodorescu. "Using ECC feedback to guide voltage speculation in low-

voltage processors." Proceedings of the 47th Annual IEEE/ACM International Symposium on

Microarchitecture. IEEE Computer Society, 2014.

[10] Bertran, Ramon, Alper Buyuktosunoglu, Pradip Bose, Timothy J. Slegel, Gerard Salem,

Sean Carey, Richard F. Rizzolo, and Thomas Strach. "Voltage noise in multi-core processors:

Empirical characterization and optimization opportunities." In Microarchitecture (MICRO),

2014 47th Annual IEEE/ACM International Symposium on, pp. 368-380. IEEE, 2014.

[11] big.LITTLE Whitepaper ARM,

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdfbig.LITT

LE Whitepaper ARM,

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

[12] Blender, https://www.blender.org/

[13] Bockelman, David E., and William R. Eisenstadt. "Combined differential and common-

mode scattering parameters: Theory and simulation." IEEE transactions on microwave theory

and techniques 43, no. 7 (1995): 1530-1539.

Zac
ha

ria
s H

ad
jila

mbro
u

103

[14] Bowman, Keith A., Carlos Tokunaga, Tanay Karnik, Vivek K. De, and James W. Tschanz.

"A 22 nm all-digital dynamically adaptive clock distribution for supply voltage droop tolerance."

IEEE Journal of Solid-State Circuits 48, no. 4 (2013): 907-916.

[15] Cadence, https://www.cadence.com/content/dam/cadence-

www/global/en_US/documents/tools/ic-package-design-analysis/sigrity-systemsi-technology-

ds.pdf

[16] Callan, Robert, Alenka Zajic, and Milos Prvulovic. "A practical methodology for measuring

the side-channel signal available to the attacker for instruction-level events." Microarchitecture

(MICRO), 2014 47th Annual IEEE/ACM International Symposium on. IEEE, 2014.

[17] Callan, Robert, Alenka Zajic, and Milos Prvulovic. "FASE: finding amplitude-modulated

side-channel emanations." Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual

International Symposium on. IEEE, 2015.

[18] Callan, Robert, Nina Popovic, Alenka Zajic, and Milos Prvulovic. "A new approach for

measuring electromagnetic side-channel energy available to the attacker in modern processor-

memory systems." In Antennas and Propagation (EuCAP), 2015 9th European Conference on,

pp. 1-5. IEEE, 2015.

[19] Cinebench, https://www.maxon.net/en/products/cinebench/

[20] Das, Shidhartha, Paul Whatmough, and David Bull. "Modeling and characterization of the

system-level Power Delivery Network for a dual-core ARM Cortex-A57 cluster in 28nm

CMOS." Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM International

Symposium on. IEEE, 2015.

[21] Das, Shidhartha. “Razor: A Variation-Tolerant Design Methodology for Low-Power and

Robust Computing”, Doctoral Dissertation, University of Michigan, 2009.

[22] DeHaven, Keith, and Joel Dietz. "Controlled collapse chip connection (C4)-an enabling

technology." In Electronic Components and Technology Conference, 1994. Proceedings., 44th,

pp. 1-6. IEEE, 1994.

[23] DS-5 debugger, https://developer.arm.com/products/software-development-tools/ds-5-

development-studio/ds-5-debugger/overview

[24] Ernst, Dan, Shidhartha Das, Seokwoo Lee, David Blaauw, Todd Austin, Trevor Mudge,

Nam Sung Kim, and Krisztian Flautner. "Razor: circuit-level correction of timing errors for low-

power operation." IEEE Micro 24, no. 6 (2004): 10-20.

[25] Euler3d benchmark.www.caselab.okstate.edu/research/ euler3dbenchmark.html

Zac
ha

ria
s H

ad
jila

mbro
u

104

[26] Fischer, Tim, Jayen Desai, Bruce Doyle, Samuel Naffziger, and Ben Patella. "A 90-nm

variable frequency clock system for a power-managed itanium architecture processor." IEEE

Journal of Solid-State Circuits 41, no. 1 (2006): 218-228.

[27] Ganesan, Karthik, and Lizy K. John. "MAximum Multicore POwer (MAMPO): an

automatic multithreaded synthetic power virus generation framework for multicore systems."

Proceedings of 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis. ACM, 2011.

[28] GeekBench, https://www.geekbench.com/

[29] Genkin, Daniel, Lev Pachmanov, Itamar Pipman, and Eran Tromer. "Stealing keys from

PCs using a radio: Cheap electromagnetic attacks on windowed exponentiation." In International

Workshop on Cryptographic Hardware and Embedded Systems, pp. 207-228. Springer Berlin

Heidelberg, 2015.

[30] Gorman, Daphne I., Matthew R. Guthaus, and Jose Renau. "Architectural opportunities for

novel dynamic EMI shifting (DEMIS)." Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture. ACM, 2017.

[31] Grenat, Aaron, Sanjay Pant, Ravinder Rachala, and Samuel Naffziger. "5.6 adaptive

clocking system for improved power efficiency in a 28nm x86-64 microprocessor." In Solid-

State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp.

106-107. IEEE, 2014.

[32] Gu, J., Eom, H. and Kim, C.H., 2007, June. A switched decoupling capacitor circuit for on-

chip supply resonance damping. In VLSI Circuits, 2007 IEEE Symposium on (pp. 126-127).

IEEE.

[33] Gupta, Meeta Sharma, Krishna K. Rangan, Michael D. Smith, Gu-Yeon Wei, and David

Brooks. "Towards a software approach to mitigate voltage emergencies." In Low Power

Electronics and Design (ISLPED), 2007 ACM/IEEE International Symposium on, pp. 123-128.

IEEE, 2007.

[34] Gupta, Meeta S., Krishna K. Rangan, Michael D. Smith, Gu-Yeon Wei, and David Brooks.

"DeCoR: A delayed commit and rollback mechanism for handling inductive noise in

processors." In High Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th

International Symposium on, pp. 381-392. IEEE, 2008.

[35] HSPICE circuit simulation tool, https://www.synopsys.com/verification/ams-

verification/circuit-simulation/hspice.html

[36] Intel, http://download.intel.com/design/mobile/datashts/31407804.pdf

Zac
ha

ria
s H

ad
jila

mbro
u

105

[37] James, Norman, Phillip Restle, Joshua Friedrich, Bill Huott, and Bradley McCredie.

"Comparison of split-versus connected-core supplies in the POWER6 microprocessor." In

Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE

International, pp. 298-604. IEEE, 2007.

[38] Jordan, Edward C., and K. G. Balmain. "EM Waves & Radiating Systems." (2006).

[39] Joseph, Russ, David Brooks, and Margaret Martonosi. "Control techniques to eliminate

voltage emergencies in high performance processors." In High-Performance Computer

Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on, pp.

79-90. IEEE, 2003.

[40] Joshi, Ajay M., Lieven Eeckhout, Lizy K. John, and Ciji Isen. "Automated microprocessor

stressmark generation." In High Performance Computer Architecture, 2008. HPCA 2008. IEEE

14th International Symposium on, pp. 229-239. IEEE, 2008.

[41] Kim, Youngtaek, and Lizy Kurian John. "Automated di/dt stressmark generation for

microprocessor power delivery networks." In Proceedings of the 17th IEEE/ACM international

symposium on Low-power electronics and design, pp. 253-258. IEEE Press, 2011.

[42] Kim, Youngtaek, Lizy Kurian John, Sanjay Pant, Srilatha Manne, Michael Schulte, William

Lloyd Bircher, and Madhu Saravana Sibi Govindan. "AUDIT: Stress testing the automatic way."

In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pp.

212-223. IEEE, 2012.

[43] Kurd, Nasser A., Subramani Bhamidipati, Christopher Mozak, Jeffrey L. Miller, Timothy

M. Wilson, Mahadev Nemani, and Muntaquim Chowdhury. "Westmere: A family of 32nm IA

processors." In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, pp. 96-97. IEEE, 2010.

[44] Lefurgy, Charles R., Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-Ware, Bishop

Brock, Jose A. Tierno, and John B. Carter. "Active management of timing guardband to save

energy in POWER7." In Microarchitecture (MICRO), 2011 44th Annual IEEE/ACM

International Symposium on, pp. 1-11. IEEE, 2011.

[45] Leng, Jingwen, Yazhou Zu, and Vijay Janapa Reddi. "GPU voltage noise: Characterization

and hierarchical smoothing of spatial and temporal voltage noise interference in GPU

architectures." High Performance Computer Architecture (HPCA), 2015 IEEE 21st International

Symposium on. IEEE, 2015.

[46] Mair, H.T., Gammie, G., Wang, A., Lagerquist, R., Chung, C.J., Gururajarao, S., Kao, P.,

Rajagopalan, A., Saha, A., Jain, A. and Wang, E., 2016, January. 4.3 A 20nm 2.5 GHz ultra-

low-power tri-cluster CPU subsystem with adaptive power allocation for optimal mobile SoC

Zac
ha

ria
s H

ad
jila

mbro
u

106

performance. In Solid-State Circuits Conference (ISSCC), 2016 IEEE International (pp. 76-77).

IEEE.

[47] Mair, H., Wang, E., Wang, A., Kao, P., Tsai, Y., Gururajarao, S., Lagerquist, R., Son, J.,

Gammie, G., Lin, G. and Thippana, A., 2017, February. 3.4 A 10nm FinFET 2.8 GHz tri-gear

deca-core CPU complex with optimized power-delivery network for mobile SoC performance.

In Solid-State Circuits Conference (ISSCC), 2017 IEEE International (pp. 56-57). IEEE.

[48] Mansuri, M., Casper, B. and O'Mahony, F., 2012, June. An on-die all-digital delay

measurement circuit with 250fs accuracy. In VLSI Circuits (VLSIC), 2012 Symposium on (pp.

98-99). IEEE.

[49] Miller, Timothy N., Renji Thomas, Xiang Pan, and Radu Teodorescu. "VRSync:

Characterizing and eliminating synchronization-induced voltage emergencies in many-core

processors." In Computer Architecture (ISCA), 2012 39th Annual International Symposium on,

pp. 249-260. IEEE, 2012.

[50] Mitchell, Melanie. An introduction to genetic algorithms. MIT press, 1998.

[51] National Instruments drivers, http://www.ni.com/downloads/drivers/

[52] Nazari, Alireza, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos Prvulovic.

"EDDIE: EM-Based Detection of Deviations in Program Execution." In Proceedings of the 44th

Annual International Symposium on Computer Architecture, pp. 333-346. ACM, 2017..

[53] O'Mahony, F., 2013 February. Tutorial 6 - On-chip voltage and timing-diagnostic circuits.

In Solid-State Circuits Conference (ISSCC), 2013 IEEE International. IEEE.

[54] Oracle x86 assembly language reference manual,

https://docs.oracle.com/cd/E18752_01/html/817-5477/docinfo.html

[55] Pant, Sanjay. "Design and Analysis of Power Distribution Networks in VLSI Circuits."

(2008).

[56] Papadimitriou, George, Manolis Kaliorakis, Athanasios Chatzidimitriou, Dimitris

Gizopoulos, Peter Lawthers, and Shidhartha Das. "Harnessing voltage margins for energy

efficiency in multicore CPUs." In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 503-516. ACM, 2017.

[57] Polfliet, Stijn, Frederick Ryckbosch, and Lieven Eeckhout. "Automated full-system power

characterization." IEEE Micro 31.3 (2011): 46-59.

[58] Powell, M. D., & Vijaykumar, T. N. (2004, June). Exploiting resonant behavior to reduce

inductive noise. In Computer Architecture, 2004. Proceedings. 31st Annual International

Symposium on (pp. 288-299). IEEE.

Zac
ha

ria
s H

ad
jila

mbro
u

107

[59] Powell, Michael D., and T. N. Vijaykumar. "Pipeline damping: a microarchitectural

technique to reduce inductive noise in supply voltage." In Computer Architecture, 2003.

Proceedings. 30th Annual International Symposium on, pp. 72-83. IEEE, 2003.

[60] Powell, Michael D., and T. N. Vijaykumar. "Pipeline muffling and a priori current ramping:

architectural techniques to reduce high-frequency inductive noise." In Proceedings of the 2003

international symposium on Low power electronics and design, pp. 223-228. ACM, 2003.

[61] Prime 95, https://www.mersenne.org/download/

[62] Ravezzi, Luca, and Hamid Partovi. "Clock and synchronization networks for a 3 GHz 64

Bit ARMv8 8-core SoC." IEEE Journal of Solid-State Circuits 50.7 (2015): 1702-1710.

[63] Reddi, Vijay Janapa, and Meeta Sharma Gupta. "Resilient architecture design for voltage

variation." Synthesis Lectures on Computer Architecture 8.2 (2013): 1-138.

[64] Reddi, Vijay Janapa, Meeta S. Gupta, Glenn Holloway, Gu-Yeon Wei, Michael D. Smith,

and David Brooks. "Voltage emergency prediction: Using signatures to reduce operating

margins." In High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th

International Symposium on, pp. 18-29. IEEE, 2009.

[65] Reddi, Vijay Janapa, Meeta S. Gupta, Krishna K. Rangan, Simone Campanoni, Glenn

Holloway, Michael D. Smith, Gu-Yeon Wei, and David Brooks. "Voltage noise: Why it’s bad,

and what to do about it." In 5th IEEE Workshop on Silicon Errors in Logic-System Effects

(SELSE), Palo Alto, CA. 2009.

[66] Reddi, Vijay Janapa, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael D.

Smith, Gu-Yeon Wei, and David Brooks. "Voltage noise in production processors." IEEE micro

31, no. 1 (2011): 20-28.

[67] Sathe, V. and Das, S. Taming the Dark Horse: Voltage-Margin Minimization for Modern

“Real-World” Energy-Efficient Computing. Tutorial in IEEE Design Automation Conference

(DAC), Austin, TX, June 2016.

[68] Sehatbakhsh, Nader, Alireza Nazari, Alenka Zajic, and Milos Prvulovic. "Spectral profiling:

Observer-effect-free profiling by monitoring EM emanations." In Microarchitecture (MICRO),

2016 49th Annual IEEE/ACM International Symposium on, pp. 1-11. IEEE, 2016.

[69] Stutzman, Warren L., and Gary A. Thiele. Antenna theory and design. John Wiley & Sons,

2012.

[70] Thomas, Renji, Naser Sedaghati, and Radu Teodorescu. "EmerGPU: Understanding and

mitigating resonance-induced voltage noise in GPU architectures." Performance Analysis of

Systems and Software (ISPASS), 2016 IEEE International Symposium on. IEEE, 2016.

Zac
ha

ria
s H

ad
jila

mbro
u

108

[71] Webxprt, http://www.principledtechnologies.com/benchmarkxprt/webxprt

[72] Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and David M. Bull. "14.6

An all-digital power-delivery monitor for analysis of a 28nm dual-core ARM Cortex-A57

cluster." In Solid-State Circuits Conference-(ISSCC), 2015 IEEE International, pp. 1-3. IEEE,

2015.

[73] Whatmough, Paul N., Shidhartha Das, Zacharias Hadjilambrou, and David M. Bull. "Power

Integrity Analysis of a 28 nm Dual-Core ARM Cortex-A57 Cluster Using an All-Digital Power

Delivery Monitor." IEEE Journal of Solid-State Circuits 52, no. 6 (2017): 1643-1654.

[74] Xu, J., Hazucha, P., Huang, M., Aseron, P., Paillet, F., Schrom, G., Tschanz, J., Zhao, C.,

De, V., Karnik, T. and Taylor, G., 2007, February. On-die supply-resonance suppression using

band-limited active damping. In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of

Technical Papers. IEEE International (pp. 286-603). IEEE.

[75] Zu, Yazhou, Charles R. Lefurgy, Jingwen Leng, Matthew Halpern, Michael S. Floyd, and

Vijay Janapa Reddi. "Adaptive guardband scheduling to improve system-level efficiency of the

POWER7+." In Proceedings of the 48th International Symposium on Microarchitecture, pp.

308-321. ACM, 2015.

[76] Stern, Andrew, Ulbert Botero, Bicky Shakya, Haoting Shen, Domenic Forte, and Mark

Tehranipoor. "EMFORCED: EM-based Fingerprinting Framework for Counterfeit Detection

with Demonstration on Remarked and Cloned ICs." In 2018 IEEE International Test Conference

(ITC), pp. 1-9. IEEE, 2018.

[77] He, Kai, Xin Huang, and Sheldon X-D. Tan. "EM-based on-chip aging sensor for detection

and prevention of counterfeit and recycled ICs." In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pp. 146-151. IEEE Press, 2015.

[78] GeST a framework for generating stress-tests, https://github.com/toolsForUarch/GeST

[79] Hadjilambrou, Zacharias, Shidhartha Das, Paul N. Whatmough, David Bull, and Yiannakis

Sazeides. "GeST: An Automatic Framework For Generating CPU Stress-Tests." In 2019 IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 1-

10. IEEE, 2019.

[80] AARONIA, “Datasheet: Rf near field probe set dc to 9ghz.” http:

//www.aaronia.com/Datasheets/Antennas/RF-Near-Field-Probe-Set.pdf, accessed April 6, 2016

[81] Tullsen, Dean M., Susan J. Eggers, and Henry M. Levy. "Simultaneous multithreading:

Maximizing on-chip parallelism." ACM SIGARCH computer architecture news. Vol. 23. No. 2.

ACM, 1995.

Zac
ha

ria
s H

ad
jila

mbro
u

109

[82] Singh, Gaurav, Greg Favor, and Alfred Yeung. "Appliedmicro x-gene2." In 2014 IEEE Hot

Chips 26 Symposium (HCS), pp. 1-24. IEEE, 2014.

[83] Rogers, Aaron, et al. "The Core-C6 (CC6) sleep state of the AMD Bobcat x86

microprocessor." Proceedings of the 2012 ACM/IEEE international symposium on Low power

electronics and design. ACM, 2012.

[84] Kaxiras, Stefanos, and Margaret Martonosi. "Computer architecture techniques for power-

efficiency." Synthesis Lectures on Computer Architecture 3.1 (2008): 1-207.

[85] Reddi, Vijay Janapa, Simone Campanoni, Meeta S. Gupta, Michael D. Smith, Gu-Yeon

Wei, David Brooks, and Kim Hazelwood. "Eliminating voltage emergencies via software-

guided code transformations." ACM Transactions on Architecture and Code Optimization

(TACO) 7, no. 2 (2010): 12.

[86] Leng, Jingwen, et al. "GPUVolt: Modeling and characterizing voltage noise in GPU

architectures." Low Power Electronics and Design (ISLPED), 2014 IEEE/ACM International

Symposium on. IEEE, 2014.

[87] Thomas, Renji, et al. "Core Tunneling: Variation-aware voltage noise mitigation in GPUs."

High Performance Computer Architecture (HPCA), 2016 IEEE International Symposium on.

IEEE, 2016.

[88] Leng, Jingwen, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, and Vijay Janapa

Reddi. "Safe limits on voltage reduction efficiency in GPUs: a direct measurement approach."

In Proceedings of the 48th International Symposium on Microarchitecture, pp. 294-307. ACM,

2015.

[89] Ganesan, Karthik, Jungho Jo, W. Lloyd Bircher, Dimitris Kaseridis, Zhibin Yu, and Lizy K.

John. "System-level Max Power (SYMPO)-A systematic approach for escalating system-level

power consumption using synthetic benchmarks." In 2010 19th International Conference on

Parallel Architectures and Compilation Techniques (PACT), pp. 19-28. IEEE, 2010.

[90] Bertran, Ramon, Alper Buyuktosunoglu, Meeta S. Gupta, Marc Gonzalez, and Pradip Bose.

"Systematic energy characterization of cmp/smt processor systems via automated micro-

benchmarks." In 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 199-211. IEEE, 2012.

[91] AIDA64 system stability test, https://www.aida64.com/

[92] Papadimitriou, G., Chatzidimitriou, A., Kaliorakis, M., Vastakis, Y., & Gizopoulos, D.

(2018, April). Micro-Viruses for Fast System-Level Voltage Margins Characterization in

Multicore CPUs. In Performance Analysis of Systems and Software (ISPASS), 2018 IEEE

International Symposium on (pp. 54-63). IEEE.

Zac
ha

ria
s H

ad
jila

mbro
u

110

[93] Hadjilambrou, Zacharias, Shidhartha Das, Marco A. Antoniades, and Yiannakis Sazeides.

"Leveraging CPU Electromagnetic Emanations for Voltage Noise Characterization." In 2018

51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 573-

585. IEEE, 2018.

[94] Konstantinos Tovletoglou, Lev Mukhanov, Georgios Karakonstantis, Athanasios

Chatzidimitriou, George Papadimitriou, Manolis Kaliorakis, Dimitris Gizopoulos, Zacharias

Hadjilambrou, Yiannakis Sazeides, Alejandro Lampropulos, Shidhartha Das, Phong Vo:

Measuring and Exploiting Guardbands of Server-Grade ARMv8 CPU Cores and DRAMs. DSN

Workshops 2018: 6-9

[95] De Jong, Kenneth Alan. "Analysis of the behavior of a class of genetic adaptive systems."

(1975).

[96] Goldberg, David E., and Kalyanmoy Deb. "A comparative analysis of selection schemes

used in genetic algorithms." In Foundations of genetic algorithms, vol. 1, pp. 69-93. Elsevier,

1991.

Zac
ha

ria
s H

ad
jila

mbro
u

https://dblp.org/pers/hd/t/Tovletoglou:Konstantinos
https://dblp.org/pers/hd/m/Mukhanov:Lev
https://dblp.org/pers/hd/k/Karakonstantis:Georgios
https://dblp.org/pers/hd/c/Chatzidimitriou:Athanasios
https://dblp.org/pers/hd/c/Chatzidimitriou:Athanasios
https://dblp.org/pers/hd/p/Papadimitriou:George
https://dblp.org/pers/hd/k/Kaliorakis:Manolis
https://dblp.org/pers/hd/g/Gizopoulos:Dimitris
https://dblp.org/pers/hd/s/Sazeides:Yiannakis
https://dblp.org/pers/hd/l/Lampropulos:Alejandro
https://dblp.org/pers/hd/d/Das:Shidhartha
https://dblp.org/pers/hd/v/Vo:Phong
https://dblp.org/db/conf/dsn/dsn2018w.html#TovletoglouMKCP18
https://dblp.org/db/conf/dsn/dsn2018w.html#TovletoglouMKCP18

