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Abstract

We study fourth-order singularly perturbed problems in one- and two-dimensions, and

the approximation of their solution by the hp-Finite Element Method (FEM). The

solution to such problems features boundary layers and our goal is twofold: first we

want to obtain regularity results for the solution, and second we want to construct

robust hp-FEM approximations on the so-called Spectral Boundary Layer Mesh for

its approximation. We are mainly concerned with C1 conforming FEMs but we also

consider a C0 mixed formulation approximation.

From the point of view of regularity, we provide estimates that are explicit in the dif-

ferentiation order and the singular perturbation parameter. Both classical differentia-

bility as well as differentiability through asymptotic expansions are derived. Through

the latter, we obtain a decomposition of the solution into a smooth part, boundary

layers along the boundary, and a (negligible) remainder. Explicit regularity estimates

are obtained for each part. The above are achieved for one-dimensional problems with

variable (smooth) coefficients as well as two-dimensional problems with constant coef-

ficients posed on smooth domains.

Using the aforementioned results, we construct hp approximations that converge in-

dependently of the singular perturbation parameter, when the error is measured in

the energy norm. In one-dimension the rate is exponential, while in two-dimensions,

the rate, in general is spectral (unless certain assumptions are made). Moreover, in

two-dimensions, we are faced with the problem of not being able to construct C1 ap-

proximations on curved elements (or even affine, distorted elements). One way to deal

with this issue by using a mixed formulation, hence C0 elements suffice. Another, is

the use of the Discontinuous Galerkin FEM, but only the former is investigated. In all

cases studied, numerical results are provided which illustrated the theory.
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Περίληψη

Η παρούσα διατριβή αφορά προβλήματα 4ης τάξης, στη μια και στις δύο διαστάσεις, τα

οποία είναι διαταραγμένα με ιδιόμορφο/ιδιάζοντα τρόπο. Η λύση τέτοιων προβλημάτων

περιέχει συνοριακά στρώματα. ΄Εχουμε δύο στόχους: πρώτα θέλουμε να αποδείξουμε

εκτιμήσεις ομαλότητας για τη λύση, οι οποίες είναι ρητές ως προς τη παράμετρο διαταρα-

χής και τη τάξη παραγώγισης. Στη συνέχεια, θέλουμε να προσεγγίσουμε τη λύση τους

με την εκδοχή hp της Μεθόδου Πεπερασμένων Στοιχείων (ΜΠΣ) χρησιμοποιώντας το

λεγόμενο Φασματικό Πλέγμα Συνοριακών Στρωμάτων. Πρώτιστα, μας ενδιαφέρουν C1

προσεγγίσεις, αν και στο Κεφ.6 θεωρούμε μια C0
προσέγγιση βασισμένη σε μια μεικτή

μεταβολική διατύπωση.

Απο τη πλευρά της ομαλότητας, αποδεικνύουμε εκτιμήσεις οι οποίες είναι ρητές ως προς

τη παράμετρο διαταραχής και τη τάξη παραγώγισης. Το επιτυγχάνουμε στη περίπτωση

της κλασσικής ομαλότητας, όπως επίσης και στην περίπτωση της ομαλότητας μέσω ασυμ-

πτωτικών αναπτυγμάτων. Τα τελευταία μας επιτρέπουν να γράψουμε/αναλύσουμε τη λύση

ως ένα άθροισμα όρων που αποτελούνται από το ομαλό μέρος, τα συνοριακά στρώματα

(κατά μήκος του συνόρου) και το υπόλοιπο (το οποίο είναι αμελητέο). Ρητές εκτιμήσεις

ομαλότητας αποδεικνύονται για το κάθε μέρος στην ανάλυση. Τα πιο πάνω έχουν επιτευ-

χθεί για προβλήματα με μη σταθερούς συντελεστές στη 1-διάσταση και για προβλήματα

με σταθερούς συντελεστές στις 2-διαστάσεις, όπου το χωρίο είναι ομαλό.

Χρησιμοποιώντας τις εκτιμήσεις ομαλότητας, κατασκευάζουμε μια κατάλληλη προσέγγιση

για τη λύση, με την εκδοχή hp της ΜΠΣ. Αποδεικνύουμε ότι η προσέγγιση συγκλίνει

με εκθετικό ρυθμό ανεξάρτητως της παραμέτρου διαταραχής στη νόρμα ενέργειας, στη

1-διάσταση. Στις 2-διαστάσεις, η προσέγγιση δεν μπορεί να έχει C1
συνέχεια όταν τα

στοιχεία του πλέγματος έχουν καμπύλες πλευρές (ή ακόμη και απλώς διαταραγμένες ευ-

θείες). Ξεπερνούμε αυτή την δυσκολία με δύο τρόπους: πρώτα θεωρούμε ότι το χωρίο

είναι τετράγωνο, αλλά υποθέτουμε ότι η λύση συμπεριφέρεται έως αν το χωρίο να μην

ii
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περιείχε γωνιές (και ως εκ τούτου, και ιδιομορφίες). Ο δεύτερος τρόπος είναι μέσω μιας

μεικτής διατύπωσης, η οποία επιτρέπει τη χρήση C0
προσέγγισης. Και για τις δύο κατη-

γορίες, κατασκευάσαμε συναρτήσεις βάσης με ιεραρχικό τρόπο και τις υλοποιήσαμε στον

υπολογιστή (μέσω της MATLAB). Μια τρίτη επιλογή, που δεν θα μελετήσουμε στη πα-

ρούσα διατριβή είναι η χρήση της Ασυνεχής Μεθόδου Galerkin, στην οποία δεν χρειάζεται

συνέχεια (από στοιχείο σε στοιχείο) των συναρτήσεων βάσης. Και για τις δύο επιλογές

που μελετήσαμε, παραθέτουμε αποτελέσματα υπολογισμών που συμφωνούν με τη θεωρία.
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Chapter 1

Introduction

This thesis lies in the intersection of Numerical Analysis, Finite Element Methods

(FEMs) and Singularly Perturbed Problems (SPPs). Our main concern here is to

address SPPs that are given by fourth-order ordinary or partial differential equations,

posed in bounded regions in one and two dimensions.

1.1 Perturbation theory

First, let us present some background information about perturbation theory. This

field of applied mathematics, as the entire area of numerical analysis, provides approx-

imations for the solution to certain problems. Usually, we want to solve a differential

equation that is given by a mathematical model in order to describe fairly a physical

phenomenon. In most cases it is hard to determine the analytical solution and the use

of perturbation theory is common in order to obtain an approximation.

As is well known, perturbation theory examines differential equations or systems that

share a specific feature: a very small parameter that multiplies one or more terms

of the differential equation or system. Perturbation theory allows us to transform

each problem to a simpler one. To be more specific, this associated problem does not

include the terms with the perturbation parameter. Researchers usually refer to it as

a simplified, unperturbed or reduced problem.

The aforementioned class of differential equations can be divided in two categories.

The separation is done in accordance with the behaviour of the simplified problem.

1
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Chapter 1 Section 1.1

Namely, in case that the reduced problem describes the phenomenon under investigation

sufficiently well, it is characterized as a regularly perturbed problem. However, it is not

always that a perturbed problem behaves this way. Therefore, the scientific community

distinguishes those cases and calls the corresponding problems as singularly perturbed.

We present the following examples to better explain this separation.

Example 1.1.1. This example was given by O’ Malley in [55] and represents a regular

perturbation. Let ε > 0 be the perturbation parameter and consider the equation

u2 + εu− 1 = 0. (1.1.2)

The analytical solution to (1.1.2) is given by:

u =
−ε±

√
ε2 + 4

2
. (1.1.3)

Now consider the simplified problem, i.e. set ε = 0 in (1.1.2) and note that it has two

solutions: u = ±1. If we set again ε = 0 in (1.1.3) we obtain u = ±1 once more. In this

case the reduced problem is in complete accordance with the initial problem therefore

the problem is regularly perturbed.

Example 1.1.4. We next illustrate a simple example of a SPP. For ε > 0, consider

the boundary value problem given as

εv′′(x)− v(x) = 1, x ∈ (0, 1),

v(0) = 0, v(1) = −1.

 (1.1.5)

If we examine the reduced problem, that is

−v(x) = 1,

v(0) = 0, v(1) = −1,


it is clear that the solution v(x) = −1, for x ∈ [0, 1], violates the boundary condition

at x = 0. The analytical solution to (1.1.5) is

v(x, ε) = −1 +
1

1− e2/
√
ε

(
e(2−x)/

√
ε − ex/

√
ε
)
.

2
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Chapter 1 Section 1.1

Obviously, as the perturbation parameter ε tends to zero the solution equals −1. How-

ever, the boundary condition at the left endpoint causes boundary-layer effects. The

reader may see those effects in Figure 1.1. To address this difficulty we must not ne-

glect the derivative term. A natural way to treat this case is by adjusting the variable

x in such a way to ensure that d
2v
dx2 = O(ε−1). Hence we need to set x = O(

√
ε). Thus

we define x̃ = x/
√
ε and the boundary value problem is written in the form

d2v(x̃)

dx̃2 − v(x̃) = 1, x̃ ∈ (0,∞),

v(0) = 0, lim
x̃→∞

v(x̃) = −1.

 (1.1.6)

The solution to the boundary value problem above is v(x̃) = −1 + e−x̃ or v(x, ε) =

−1 + e−x/ε, which agrees with the exact solution as ε→ 0.

As it is shown by the above example, the peculiarity of SPPs arises from neglecting the

term that is multiplied by the petrurbation parameter. In many cases, the perturbation

parameter affects the highest order derivative and its omission leads to boundary layer

effects. We note that in case v(1) 6= −1 then another boundary layer should be expected

near x = 1.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

ǫ=10-4

ǫ=10-3

ǫ=10-2

ǫ=10-1

ǫ=1

Figure 1.1: Exact solution variation with ε.

Poincaré and Stieltjes [58, 71] worked independently and in 1886 set the origins of

perturbation theory through the examination of asymptotic series, which are in general

3
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Chapter 1 Section 1.2

divergent. Prandtl in 1905 [59] examined the motion of a fluid with small viscosity along

a body. The first mathematician who studied extensively SPPs is A.N. Tikhonov in

the late 1940s and early 1950s. A list of some important publications may be found in

[74], [75]. Subsequently, M.I. Vishik and L.A. Lyusternik published a radical paper in

1957 [77], about a well known method (the "Vishik-Lyusternik" method) which treats

linear partial differential equations with singular perturbations.

There are many applications of SPPs. For instance, this type of problems can be uti-

lized to describe reaction and convection-diffusion problems, Navier-Stokes equations

with small viscosity coefficients, semi-conductor device modeling, plate and shell mod-

els for small thickness [45, 47, 65, 67, 79, 80, 81]. Fourth-order diffusion equations

appear in many applications such as thin film theory, surface diffusion on solids, inter-

face dynamics, flow in Hele-Shaw cells and phase-field models of multiphase systems

[18].

1.2 Finite Element Method

For the approximation of the solution, we apply the Finite Element Method. As we

illustrate in the next chapters the hp version of the Finite Element Method (FEM)

yields optimal results. Let us now discuss briefly the development of the FEM through

the last century.

B.G. Galerkin (1915) and others developed the mathematical background for the FEM

based on the work of Lord Rayleigh (1870) and W. Ritz (1909), which concerns vari-

ational methods and the weighted-residual approach. In 1941, R. Courant had an

innovative idea. He introduced the special linear functions defined over triangular re-

gions and utilized the Ritz method for the solution of torsion problems. This idea

helped scientists to surpass the main issue in the Ritz method, namely the functions

used must fulfill the boundary conditions of the problems. The work of Courant is

considered as the origin of the era of FEM since it is very close to the FEM proposed

in 1960 by Clough. Back then it was the first time that the phrase "finite element"

appeared [20].

Since then, the FEM has been developed and expanded enormously and it is considered

as one of the most succesfull approximation methods. Many researchers have worked

4
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Chapter 1 Section 1.3

in this field and have provided some essential and important results. Among the

mathematicians who made significant contributions, we mention Babuška, Brezzi, Aziz,

Osborn, Kellogg, Arnold, Brenner, Scott [6, 9, 15, 17, 35, 64, 73] and among engineers

Argyris, Oden, Szabo, Hughes, Demkowicz, Zienkiewicz [1, 3, 26, 36, 84].

Regarding SPPs, many people have worked on them in the last few decades; among

them are the names Vasileva, Butuzov, Bakhvalov, Shishkin [13, 52, 76], O’Malley,

Stynes, O’Riordan, Roos, Tobiska, Linß, Kopteva, Schwab, Suri, Melenk, Xenophontos

[39, 40, 42, 43, 45, 47, 55, 61, 65, 66, 67, 80, 81]. The bulk of the work is on appropriate

discretizations of SPPs so that the method converges independently of the singular

perturbation parameter at the optimal rate. While there are several ways to achieve

this, the preferred choice among the aforementioned researchers is the use of layer

adapted meshes, such as the Bakhvalov mesh, the Shishkin mesh or the exponential

mesh [13, 68, 69], which may be used in conjunction with finite differences or the h-

version of the FEM. If one uses the hp-version of the FEM, then the convergence could

be exponential, independently of the singular perturbation parameter, provided the

so-called Spectral Boundary Layer mesh is used [22, 82].

1.3 The plan of the thesis

Here we present in brief the plan of this thesis, which is divided into seven (7) Chapters.

Throughout Chapter 2 we examine a fourth order Singularly Perturbed Boundary

Value Problem ( SPBVP) in one-dimension with variable coefficients, and we present

an extensive analysis of its regularity which provides the main result of the Chapter 2

presented in Theorem 2.4.42.

In Chapter 3, we apply the hp version of FEM to construct approximations of the

solution to the problem examined in Chapter 2. The construction is accomplished

through the use of the Spectral Boundary Layer Mesh (Definition 3.1.11) which yields

robust approximation results. We illustrate a set of polynomial functions which make

up our C1-basis in one dimension (see Section 3.1.1), and present a one-dimensional

interpolation operator and its approximation properties (Proposition 3.2.1). This work

is an extension of [57]. We mention here that the error of the hp-approximation is

measured in the energy norm. Our numerical results illustrate robust, exponential
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Chapter 1 Section 1.4

convergence.

In Chapter 4, we present the analysis for the regularity of the analogous SPBVP of

fourth order that is defined in a smooth bounded region in two-dimensions. Basically,

throughout Chapter 4, we illustrate an extension of Morrey’s analysis [53] which fo-

cuses on fourth order differential equations in 2D. Theorem 4.3.32 gives an important

estimate that is independent of ε, in the case |α| ≥ ε−1 (|α| is the order of the partial

derivatives). Remark 4.4.52 summarizes the regularity of the components of the solu-

tion, namely the smooth part, boundary layers and the remainder. Unfortunately, the

remainder in our decomposition is not exponentially small, and this has repercussions

for the approximation.

In Chapter 5, we consider the problem posed on the reference element S = (−1, 1)2,

and construct hierarchical, C1 basis functions. Then, we define an interpolation op-

erator and study its approximation properties. We also provide lifting results that

allow us to obtain a global C1 continuous, piecewise polynomial approximation. Next,

assuming certain regularity of the solution to the problem posed on a square (e.g. no

corner singularities and exponentially small remainder), we analyze the hp-FEM ap-

proximation on the Spectral Boundary Layer mesh, and we show robust, exponential

convergence. The chapter ends with numerical examples.

In Chapter 6, we use a different formulation to approximate the solution to the problem

presented in Chapter 4. Namely, we utilize the widely known Mixed Finite Element

formulation and we show that this method produces robust exponential convergence

without requiring a C1 approximation (hence basis functions), assuming analytic reg-

ularity. Theorem 6.2.12 is the main result that gives the convergence in the case of a

smooth domain. Several numerical examples are also presented.

Finally, in Chapter 7 we give conclusions and discuss future plans.

1.4 Notation

The notation in this thesis is more or less standard, with just a few exceptions. In this

section, we describe the notation used throughout.

The set of integer numbers is denoted by Z, the set of real numbers is denoted by R,

6
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Chapter 1 Section 1.5

the set of complex numbers by C and for a natural number n we denote the set that

consists of all n−tuples of real numbers by Rn, that is the well known n-dimensional

real space. Also we denote by Tl the one-dimensional torus of length l, namely R/lZ

endowed with the usual topology. For the most part, I and J denote arbitrary intervals

and Ω and G denote two-dimensional bounded domains unless otherwise specified. We

denote the boundary of Ω by ∂Ω and its closure by Ω. The notation Ω ⊂⊂ G means

that Ω is compact and Ω ⊂ G.

We denote by Pq(I) the space of polynomials on I, of degree less than or equal to q. We

extend this notation to two dimensions and we set Qq(S) = Pq([−1, 1]) ⊗ Pq([−1, 1]),

where S is the reference square S = (−1, 1)2. The set of functions on Ω with continuous

partial derivatives of order ≤ n is denoted by Cn(Ω). By Cn(Ω) we denote the set of

functions which can, along with their derivatives of order≤ n, be continuously extended

to Ω. With 0 < µ ≤ 1, the space Cn
µ (Ω) is comprised of the functions u ∈ Cn(Ω) such

that all n-th derivatives of u are Hölder continuous with exponent µ, on each compact

subset of Ω. We denote by Cn
c (Ω) and Cn

µc(Ω) the set of functions in Cn(Ω) and Cn
µ (Ω)

respectively, which have compact support in Ω. We utilize the Lebesgue spaces Lp(Ω),

of functions f with
(∫

Ω
|f |p
)1/p

< ∞. By Hk(Ω) we will denote the Sobolev space of

order k on a domain Ω ⊂ R2 with H0(Ω) = L2(Ω).a The usual norms and seminorms

are denoted by ‖ · ‖k,Ω and | · |k,Ω, respectively. Furthermore we set the spaces

H1
0 (Ω) =

{
u ∈ H1(Ω) : u = 0 on ∂Ω

}
and

H2
0 (Ω) =

{
u ∈ H2(Ω) : u =

∂u

∂n
= 0 on ∂Ω

}
.

Here ∂
∂n

is the normal derivative directed outwards. By 〈·, ·〉Ω we denote the usual L2

inner product on Ω.

In this thesis the maximum value of a function f on its domain I will be denoted as

f := supx∈I |f(x)| and the minimum as f := infx∈I |f(x)|. Also positive constants will

be denoted by C,C1, C̃, ..., and may take different values.
aIn some rare cases we use the notation Hk

p (Ω) that is referred to the general Sobolev spaces given
in Definition 1.5.4
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Chapter 1 Section 1.5

1.5 Preliminaries

For the following definitions let n,N ∈ N, k ∈ Z and assume that all functions below

have the form • : Rn → RN .

Definition 1.5.1. A function f is said to be homogeneous of degree k if

f(αv) = αkf(v),

for all nonzero α ∈ R and v ∈ Rn.

Definition 1.5.2. A function f is said to be positively homogeneous of degree k if

f(αv) = αkf(v),

for all α ∈ R+ and v ∈ RN .

Definition 1.5.3. A function f is called essentially homogeneous of degree k if

• f is positively homogeneous if k < 0,

• in the complementary case, f can be written in the form

f(v) = f0(v) log(|v|) + f1(v),

where f0 is a homogeneous polynomial of degree k and f1 is positively homoge-

neous of degree k.

We will utilize the following notation: Let α denote a "multi-index", i.e. a vector

(α1, · · · , αn) in which each αi is a non-negative integer. Let G ⊂ Rn and u ∈ C |α|(G),

and define

|α| = α1+ · · ·+ αn, α! = (α1!) · · · (αn!), Cα =
|α|!
α!

,

Dαu =
∂|α|u

(∂x1)α1 · · · (∂x1)αn
.

Definition 1.5.4. (Space Hm
p ). Let G ⊂ RN , N ∈ N. Let p ∈ [1,∞] and m ∈ N. We

say a function f = (f1, . . . , fN) : G→ R belongs to Hm
p (G) if and only if f ∈ Lp(G) and
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Chapter 1 Section 1.5

if for all multiindices α = (α1, . . . , αN), 0 ≤ |α| ≤ m, there exist functions gα ∈ Lp(G),

such that

∫
G

h(x)gα(x)dx = (−1)|α|
∫
G

Dαh(x)f(x)dx, h ∈ C∞c (G).

The following result can be found in [53, Theorem 3.1.1].

Theorem 1.5.5 [53, Chapter 3] Let m ∈ N and p ∈ [1,∞). Then, for any multiindex

α, 0 ≤ |α| ≤ m, the space Hm
p (G) with norm defined by

‖f‖mp =

(∫
G

( N∑
i=1

∑
0<|α|<m

Cα|Dαfi|2
)p/2

dx

)1/p

, f = (f1, . . . , fN), (1.5.6)

is a Banach space, where Cα denotes the multinomial coefficient |α|!
α1!...αN !

. If p = 2, the

space is a Hilbert space with the scalar product

(u, v)m2 =

∫
G

N∑
i=1

∑
0≤|α|≤m

CαD
αuiD

αvidx.
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Chapter 2

One dimensional fourth-order SPP

with variable coeffiecients

2.1 Introduction

In this chapter we examine a fourth-order singularly perturbed boundary value problem

(SPBvp) in one-dimension, presented in (2.2.1) and which models the simplified Orr-

Sommerfeld equation from hydrodynamics. In fluid dynamics, researchers have noticed

that the linear modes of disturbance to a viscous parallel flow can be described with

the aid of an eigenvalue equation, the Orr-Sommerfeld equation (see [56] and [70]).

The equation is named after William McFadden Orr and Arnold Sommerfeld, who

derived it at the beginning of the 20th century. This specific equation determines

certain conditions which the solution to the Navier-Stokes for a parallel, laminar flow

must satisfy in order to be stable. The Orr-Sommerfeld equation is

Re−1u(4)(x)− iλ

((
h(x)− β

)
u′′(x)−

(
λ2
(
h(x)− β

)
+ h′′(x)

)
u(x)

)
= 0, (2.1.1)

where u is the unknown, potential/stream function, h is a given function, Re is the

Reynolds number of the base flow, β is a parameter, λ is the wavenumber and i is the

imaginary unit. This equation defines an eigenvalue problem, if the parameter β is

unknown and is singularly perturbed when the Reynolds number is large enough. The

boundary value problem given in (2.2.1) is a simplified version of (2.1.1).

Here we study the behaviour of the solution to the SPBVP given in (2.2.1) below.
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Chapter 2 Section 2.2

Our main task is the construction of a satisfactory approximation, therefore we must

first focus on the properties of the solution. Namely, in this chapter we present proper

regularity results which allow us to proceed with an hp−approximation. We restrict

our attention to problems with analytic data, and we note that here we generalize

the work that has been presented in [57]. To be more specific, in the aforementioned

paper one can find the regularity analysis about the problem under investigation with

constant coefficients and we now generalize the results for variable coefficients.

2.2 The model problem and the decomposition of its

solution

We consider the following two-point boundary value problem: For a parameter ε ∈
(0, 1], find u ∈ C4([0, 1]) such that

ε2u(4)(x)−
(
α(x)u′(x)

)′
+ β(x)u(x) = f(x), for x ∈ I = (0, 1)

u(0) = u′(0) = u(1) = u′(1) = 0

 (2.2.1)

where α(x) ≥ c1 ∈ R+, β(x) ≥ 0 ∀x ∈ I and f are given (analytic) functions. Specif-

ically, we assume that there exist positive constants Cα, Cβ, Cf , γα, γβ, γf independent

of ε, such that for all n ∈ N0,

‖α(n)‖L∞(I) ≤ Cαγ
n
αn!, ‖β(n)‖L∞(I) ≤ Cβγ

n
βn!, ‖f (n)‖L∞(I) ≤ Cfγ

n
f n!. (2.2.2)

We next present the variational formulation, namely we seek a function u ∈ H2
0 (I)

that satisfies the equation

B(u, v) = F(v), for all v ∈ H2
0 (I), (2.2.3)

where

B(u, v) :=

∫
I

(
ε2u′′(ξ)v′′(ξ) + α(ξ)u′(ξ)v′(ξ) + β(ξ)u(ξ)v(ξ)

)
dξ,

F(v) :=

∫
I

f(ξ)v(ξ)dξ.
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Chapter 2 Section 2.2

We also define the natural energy norm

‖u‖E,I =
(
B(u, u)

) 1
2
. (2.2.4)

Our goal is to construct hp−approximations, hence we must control the dependence

of the higher order derivatives of the solution on the peturbation parameter ε. For a

constant γ > 0, one can show in an inductive way, (using equations (2.8)-(2.12) in [72])

the following inequality:

‖u(n)‖L∞(I) ≤ Cγn max{nn, ε1−n}, ∀n ∈ N0. (2.2.5)

We observe that, the solution of (2.2.1) is analytic if the data α, β, f are analytic.

However, if ε is small, then (2.2.5) does not reveal the entire picture. To address this,

we use the method of matched asymptotic expansions, as was done in [38, 41, 78],

in order to decompose the solution into a smooth component, boundary layers and

a remainder. In this way, we obtain estimates on the derivatives of each part of the

solution, separately.

Anticipating that boundary layers will be present near the endpoints of I, we define

the stretched variables x̃ = x
ε
, x̂ = 1−x

ε
and make the formal ansatz

u ∼
∞∑
j=0

εj
[
Uj(x) + Ũj(x̃) + Ûj(x̂)

]
, (2.2.6)

where the functions Uj, Ũj, Ûj will be determined shortly. We insert (2.2.6) in the

differential equation (2.2.1) and separate the slow (i.e. x) and fast (i.e. x̃, x̂) variables.

Equating like powers of ε on both sides of the resulting equation, we get:

−
(
α(x)U ′0(x)

)′
+ β(x)U0(x) = f(x),

−
(
α(x)U ′1(x)

)′
+ β(x)U1(x) = 0,

−
(
α(x)U ′j(x)

)′
+ β(x)Uj(x) = −U (4)

j−2(x), j = 2, 3, · · ·


(2.2.7)

Ũ
(4)
0 (x̃)−

(
α̃0(x̃)Ũ ′0(x̃)

)′
= 0,

Ũ
(4)
1 (x̃)−

(
α̃0(x̃)Ũ ′1(x̃)

)′
= 0,

Ũ
(4)
j (x̃)−

(
α̃0(x̃)Ũ ′j(x̃)

)′
= F̃j(x̃), j = 2, 3, · · ·

 (2.2.8)
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Chapter 2 Section 2.2

and similarly for Û . In (2.2.8), we used the notation α̃k(x̃) = α(k)(0)
k!

x̃k and β̃k(x̃) =

β(k)(0)
k!

x̃k and the right hand side functions are given by

F̃j(x̃) :=

Aj∑
k=1

α̃k(x̃)Ũ ′′j−k(x̃) +

Aj∑
k=1

α̃′k(x̃)Ũ ′j−k(x̃)−
Bj∑
k=0

β̃k(x̃)Ũj−2−k(x̃),

where

Aj =


j
2
, if j is even,

j−1
2
, if j is odd,

Bj =


j−2

2
, if j is even,

j−3
2
, if j is odd.

An analogous system as (2.2.8) is obtained for the functions Ûj(x̂), with α̂k(x̂) =

α(k)(1)
k!

x̂k and β̂k(x̂) = β(k)(1)
k!

x̂k.

In order to satisfy (2.2.1) we add the following boundary conditions to the above

systems of equations:

U0(0) = U0(1) = 0, (2.2.9)

Ũ0(0) = 0, Ũj(0) = −Uj(0), j ≥ 1, (2.2.10)

Ũ ′0(0) = 0, Ũ ′j+1(0) = −U ′j(0), j ≥ 0, (2.2.11)

lim
x̃→∞

Ũj(x̃) = 0, j ≥ 0, (2.2.12)

Û0(0) = 0, Ûj(0) = −Uj(1), j ≥ 1, (2.2.13)

lim
x̂→∞

Ûj(x̂) = 0, j ≥ 0, (2.2.14)

Û ′0(0) = 0, Û ′j+1(0) = −U ′j(1), j ≥ 0. (2.2.15)

For j ∈ N0, Table 2.1 displays all the boundary value problems satisfied by Uj, Ũj, Ûj.

Table 2.1: B.V.P. for functions Uj, Ũj, Ûj,∀j ∈ N0.

Outer solution Boundary layer at x = 0 Boundary layer at x = 1

−(αU ′0)′ + βU0 = f, Ũ
(4)
0 − (α̃0Ũ

′
0)′ = 0, Û

(4)
0 − (α̂0Û

′
0)′ = 0,

U0(0) = −Ũ0(0) = 0, limx̃→∞ Ũ0(x̃) = 0, limx̂→∞ Û0(x̂) = 0,

U0(1) = −Û0(0) = 0, Ũ ′0(0) = 0, Û ′0(0) = 0,

−(αU ′1)′ + βU1 = 0, Ũ
(4)
1 − (α̃0Ũ

′
1)′ = 0, Û

(4)
1 − (α̂0Û

′
1)′ = 0,

U1(0) = −Ũ1(0), limx̃→∞ Ũ1(x̃) = 0, limx̂→∞ Û1(x̂) = 0,

U1(1) = −Û1(0), Ũ ′1(0) = −U ′0(0), Û ′1(0) = −U ′0(1),

−(αU ′j)
′ + βUj = −U (4)

j−2, Ũ
(4)
j − (α̃0Ũ

′
j)
′ = F̃j, Û

(4)
j − (α̂0Û

′
j)
′ = F̂j,

Uj(0) = −Ũj(0), limx̃→∞ Ũj(x̃) = 0, limx̂→∞ Ûj(x̂) = 0,

Uj(1) = −Ûj(0), Ũ ′j(0) = −U ′j−1(0), Û ′j(0) = −U ′j−1(1).
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Chapter 2 Section 2.3

Next, we define for each M ∈ N0, the outer (smooth) expansion usM as

usM(x) :=
M∑
j=0

εjUj(x), (2.2.16)

the boundary layer expansion at the left endpoint ũBLM , as

ũBLM (x) :=
M+1∑
j=0

εjŨj(x/ε) =
M+1∑
j=0

εjŨj(x̃), (2.2.17)

and the boundary layer expansion at the right endpoint ûBLM , as

ûBLM (x) :=
M+1∑
j=0

εjÛj

(1− x
ε

)
=

M+1∑
j=0

εjÛj(x̂). (2.2.18)

Finally, we define the remainder rM as

rM := u− (usM + ũBLM + ûBLM ). (2.2.19)

Therefore, we decompose the solution u of the problem (2.2.1) into a smooth part uM ,

two boundary layer parts ũBLM , ûBLM and a smooth remainder rM , viz.

u = usM + ũBLM + ûBLM + rM . (2.2.20)

2.3 Preliminaries

In this section we provide some useful propositions and lemmata which are needed to

obtain the desired approximation results. The proofs are given in Section 2.5 (Appendix

A).

Proposition 2.3.1 The boundary value problem: find u ∈ C2([0, 1]) satisfying

−
(
α(x)u′(x)

)′
+ β(x)u(x) = g(x),

u(0) = g−, u(1) = g+,
(2.3.2)

(for some constants g−, g+ and sufficciently smooth α, β, g, where α(x) ≥ c1 ∈ R+, β(x) ≥
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Chapter 2 Section 2.3

0 ∀x ∈ I ) is equivalent to the problem: find v ∈ C2([0, 1]) such that

−
(
α(x)v′(x)

)′
+ β(x)v(x) = h(x),

v(0) = v(1) = 0,
(2.3.3)

where h(x) := g(x)− β(x)
(
(g+ − g−)x+ g−

)
+ α′(x)(g+ − g−).

Remark 2.3.4. The variational formulation of (2.3.3) reads: Find u ∈ H1
0 (I), such

that

B(u, v) = F (v), for all v ∈ H1
0 (I), (2.3.5)

where

B(u, v) =

∫ 1

0

α(x)u′(x)v′(x)dx+

∫ 1

0

β(x)u(x)v(x)dx, (2.3.6)

and

F (v) =

∫ 1

0

h(x)v(x)dx. (2.3.7)

Associated with the above problem is the energy norm:

‖u‖E,I :=
(
B(u, u)

)1/2

. (2.3.8)

Lemma 2.3.9 Let u ∈ C2([0, 1]) be the solution of the boundary value problem (2.3.3)

and assume that the right hand side h is analytic. Then,

‖u‖0,I ≤ ‖u′‖0,I . (2.3.10)

‖u‖0,I ≤
1

β
‖h‖0,I , (2.3.11)

‖u′‖0,I ≤
1

α
‖h‖0,I , (2.3.12)

where α, β are the coefficient functions in (2.3.3).

Lemma 2.3.13 Consider the problem (2.3.2) for some analytic right hand side func-

tion g. For some constants Cg, c, c̃ the solution to the problem satisfies the following

inequalities:

‖u′‖0,I + ‖u‖0,I ≤ c̃{Cg + c(|g+|+ |g−|)}, (2.3.14)

‖u′‖1,I ≤Cg
(1 + c̃c

α
+ c̃
)

+
( c
α

+ 1
)
c̃c(|g+|+ |g−|), (2.3.15)
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Chapter 2 Section 2.4

‖u‖L∞(I) ≤ (2π)−1c̃{Cg + c(|g+|+ |g−|)}, (2.3.16)

‖u′‖L∞(I) ≤ (2π)−1
[
Cg

(1 + c̃c

α
+ c̃
)

+
( c
α

+ 1
)
c̃c(|g+|+ |g−|)

]
, (2.3.17)

where c̃ = max{ 1
β
, 1
α
}, c = α′ + β and Cg > ‖g‖L∞(I).

Proposition 2.3.18 Let λ ∈ C+. Assume that u : (0,∞)→ C satisfies

u(4) − λu(2) = f, on (0,∞), u′(0) = 0, lim
x→∞

u(x) = 0, (2.3.19)

where f is an entire function satisfying, for some Cf > 0,

|f(z)| ≤ Cfe
−Re(

√
λz), for all z ∈ C.

Then, there exists a κ ∈ C+ with κ2 = λ and for x ∈ (0,∞), u is uniquely determined

(due to the boundary conditions), as

u(x) =
1

κλ
e−κx

∫ ∞
0

f(ξ)dξ − e−κx

2κλ

∫ ∞
0

e−κξf(ξ)dξ − e−κx

2κλ

∫ x

0

eκξf(ξ)dξ−

− 1

λ

∫ ∞
x

ξf(ξ)dξ +
x

λ

∫ ∞
x

f(ξ)dξ − eκx

2κλ

∫ ∞
x

e−κξf(ξ)dξ.

Lemma 2.3.20 [51, Lemma 4.8] For C1, d > 0 and ρ ≥ 0 the following estimates are

valid with ρ̃ = ρ/ε, γ = 2 max{1, C2
1}:

(C1l + ρ̃)2l ≤ 2l(C1l)
2l + 2lρ̃2l ≤ γl(l2l + ρ̃2l), (2.3.21)

sup
ρ>0

ρne−
dρ
4 ≤

(4n

ed

)n
. (2.3.22)

2.4 Regularity results

We now present the regularity results for the solution u. As mentioned before, we

assume that the problem has analytic data and as a result we obtain that the high

order derivatives of u are also analytic.

Lemma 2.4.1 Let α, β be analytic functions on I = [0, 1] and α(x) ≥ c1 ∈ R+, β(x) >

0, ∀x ∈ I. Then there exists γ0 > 0 such that for all γ ≥ γ0 and all Cg > ‖g‖L∞(I), the
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Chapter 2 Section 2.4

following holds: If g satisfies

‖g(n)‖L∞(I) ≤ Cgγ
nn!, ∀n ∈ N0,

then the solution u of the boundary value problem

−
(
α(x)u′(x)

)′
+ β(x)u(x) = g(x), x ∈ I = (0, 1),

u(0) = g− ∈ R, u(1) = g+ ∈ R,

 (2.4.2)

satisfies

‖u(n)‖L∞(I) ≤

C̃{Cg + C(|g−|+ |g+|)}, n = 0, 1,

C̄γn−1{Cg + C(|g−|+ |g+|)}(n− 1)n−1, n ≥ 2,

(2.4.3)

with C = c, C̃ = 1
2π

max
{

1+c̃c
α

+ c̃, c̃
(
c
α

+ 1
)}
, C̄ = max

{
1, 1

α

}
constants independent of

n, where c, c̃ are given in Lemma 2.3.13.

Proof. We are going to show that inequality (2.4.3) holds by induction. We choose

γ0 > 0 to satisfy the following:

γ0 ≥ max{1, eγα, eγβ},

and for all n ∈ N0, for all γ ≥ γ0,

C̄Cβd

γ2(1− eγβ/γ)
+

C̄Cαdeγα
γ(1− eγα/γ)

+
C̃Cβd(eγβ)n−1

γn+1
+
C̃Cβd(eγβ)n

γn+1
+
C̃Cαd(eγα)n+1

γn+1
+

1

γ
≤ 1,

where d = e1/12
√

2π
e

. The constants γα, γβ are given in (2.2.2) and along with γ, they

control the domain of the analyticity of the functions α, β and g, respectively.

Lemma 2.3.13 ensures that (2.4.3) holds for n = 0, 1. Taking the n-th derivative of the

differential equation in (2.4.2) we get

(αu′)(n+1) =(βu)(n) − g(n).
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Chapter 2 Section 2.4

Using the Leibniz formula for the n-th derivative of a product, we obtain

αu(n+2) =
n∑
k=0

(
n

k

)
β(k)u(n−k) −

n∑
k=0

(
n+ 1

k + 1

)
α(k+1)u(n+1−k) − g(n).

Therefore

‖αu(n+2)‖L∞(I) ≤
n∑
k=0

(
n

k

)
‖β(k)‖L∞(I)‖u(n−k)‖L∞(I)+

+
n∑
k=0

(
n+ 1

k + 1

)
‖α(k+1)‖L∞(I)‖u(n+1−k)‖L∞(I) + ‖g(n)‖L∞(I).

Since the functions α, β and g are analytic we have

‖αu(n+2)‖L∞(I) ≤

≤
n−2∑
k=0

(
n

k

)
Cβγ

k
βk!‖u(n−k)‖L∞(I) +

(
n

n− 1

)
Cβγ

n−1
β (n− 1)!‖u′‖L∞(I)+

+

(
n

n

)
Cβγ

n
βn!‖u‖L∞(I) +

n−1∑
k=0

(
n+ 1

k + 1

)
Cαγ

k+1
α (k + 1)!‖u(n+1−k)‖L∞(I)+

+

(
n+ 1

n+ 1

)
Cαγ

n+1
α (n+ 1)!‖u′‖L∞(I) + Cgγ

nn!

(2.4.4)

We now assume that (2.4.3) holds for n+ 1 and we are going to show it for n+ 2:

‖αu(n+2)‖L∞(I) ≤

≤{Cg + C(|g+|+ |g−|)}×

×
[
n−2∑
k=0

(
n

k

)
Cβγ

k
βk!C̄γn−1−k(n− k − 1)n−k−1 + C̃

(
n

n− 1

)
Cβγ

n−1
β (n− 1)!+

+ C̃

(
n

n

)
Cβγ

n
βn! +

n−1∑
k=0

(
n+ 1

k + 1

)
Cαγ

k+1
α (k + 1)!C̄γn−k(n− k)n−k+

+ C̃

(
n+ 1

n+ 1

)
Cαγ

n+1
α (n+ 1)!

]
+ Cgγ

nn! (2.4.5)

By using Stirling’s approximation for the factorial:

(n
e

)n√
2πn ≤ e

1
12n+1

(n
e

)n√
2πn ≤ n! ≤ e

1
12n

(n
e

)n√
2πn ≤ e

(n
e

)n√
2πn, (2.4.6)

we can prove that (
n

k

)
≤
(en

k

)k
, k ≤ n. (2.4.7)
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Chapter 2 Section 2.4

Moreover, by utilizing the right hand side inequality of Stirling’s approximation we get

1

nn
≤ e1/12n

√
2πn

enn!
≤ d

n!
, (2.4.8)

since
e1/12n

√
2πn

en
≤ e1/12

√
2π

e
= d, (2.4.9)

for all n = 2, 3, . . . Inserting (2.4.7) and (2.4.8) into (2.4.5) we get

‖αu(n+2)‖L∞(I) ≤ {Cg + C(|g+|+ |g−|)} ×
[
n−2∑
k=0

(
en

k

)k
Cβγ

k
βk!C̄γn−1−k(n− k − 1)n−k−1+

+

(
en

n− 1

)n−1

C̃Cβγ
n−1
β (n− 1)! +

(
en

n

)n
C̃Cβγ

n
βn! +

(
e(n+ 1)

n+ 1

)n+1

C̃Cαγ
n+1
α (n+ 1)!+

+
n−1∑
k=0

(
e(n+ 1)

k + 1

)k+1

Cαγ
k+1
α (k + 1)!C̄γn−k(n− k)n−k

]
+ Cgγ

nn!

≤{Cg + C(|g+|+ |g−|)} ×
[
C̄Cβdγ

n−1nn−1

n−2∑
k=0

(eγβ
γ

)k
+ C̄Cαdγ

neγα(n+ 1)n+1

n−1∑
k=0

(eγα
γ

)k
+

+ C̃Cβd(eγβ)n−1nn−1 + C̃Cβd(eγβ)nnn + C̃Cαd(eγα)n+1(n+ 1)n+1

]
+ Cgγ

n(n+ 1)n+1/2.

Since the constant γ satisfies γ ≥ max{1, eγα, eγβ}, the sums above can be estimated

by convergent geometric series. We then have

‖αu(n+2)‖L∞(I) ≤
[
Cg + C(|g−|+ |g+|)

]
γn+1(n+ 1)n+1×

×
[

C̄Cβd

γ2(1− eγβ/γ)
+

C̄Cαdeγα
γ(1− eγα/γ)

+
C̃Cβd(eγβ)n−1

γn+1
+
C̃Cβd(eγβ)n

γn+1
+
C̃Cαd(eγα)n+1

γn+1
+

γn

γn+1

]
.

The specific choice of γ made before, gives

α‖u(n+2)‖L∞(I) ≤ γn+1
[
Cg + C(|g−|+ |g+|)

]
(n+ 1)n+1,

and therefore

‖u(n+2)‖L∞(I) ≤ C̄γn+1
[
Cg + C(|g−|+ |g+|)

]
(n+ 1)n+1.

This completes the proof.

Proposition 2.4.10 Let j ∈ N, κ, λ ∈ C+, with λ = κ2 and let F be an entire function
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Chapter 2 Section 2.4

satisfying, for some CF > 0, q ≥ 4j
|κ| ,

|F (z)| ≤ CF e−Re(κz)(q + |z|)2j−1, for all z ∈ C.

Furthermore, let g1 ∈ C, and let w : (0,∞)→ C be the solution of

w(4) − λw(2) = F on (0,∞), w′(0) = g1, lim
x→∞

w(x) = 0. (2.4.11)

Then, w can be extended to an entire function (denoted again by w) which satisfies

|w(z)| ≤ C

[
CF
2j

(q + |z|)2j +
|g1|
|κ|

]
e−Re(κz), for all z ∈ C.

Proof. The proof follows very closely the proof of Lemma 7.3.6 in [45] and Lemma 4

in [57]. By Proposition 2.3.18, for z ∈ (0,∞), w is given by

w(z) =
e−κz

λ2

∫ ∞
0

F (y/κ)dy − e−κz

2λ2

∫ ∞
0

e−yF (y/κ)dy

− e−
√
λz

2λ2

∫ κz

0

eyF (y/κ)dy − 1

λ2

∫ ∞
κz

yF (y/κ)dy

+
z

κλ

∫ ∞
κz

F (y/κ)dy − eκz

2λ2

∫ ∞
κz

e−yF (y/κ)dy − g1

κ
e−κz.

We remove the restriction to (0,∞) with analytic continuation and we procced by

giving bounds on all the above terms. In order to bound the third term, we use as

path of integration the straight line connecting 0 and κz to get∣∣∣∣∣e−
√
λz

2λ2

∫ κz

0

eyF (y/κ)dy

∣∣∣∣∣ ≤ 1

2|λ2|e
−Re(κz)

∫ 1

0

CF (q + t|z|)2j−1|κz|e−Re(κtz)eRe(κtz)dt

≤CF
|κ|

2|λ2|
e−Re(κz)

2j

(
(q + |z|)2j − q2j

)
.

The following, which gives an estimate for the sixth term, has an almost identical proof

to that of Lemma 7.3.6 in [45]:∣∣∣∣∣e
√
λz

2λ2

∫ ∞
κz

e−yF (y/κ)dy

∣∣∣∣∣ =
1

2|λ|2

∣∣∣∣∣
∫ ∞

0

e−yF (z + y/κ)dy

∣∣∣∣∣
≤ 1

2|λ|2
∫ ∞

0

e−yCF e−Re(κz+y)
(
q + |z|+ y

|κ|
)2j−1

dy

≤ 1

2|λ|2CF e−Re(κz)|κ|−(2j−1)

∫ ∞
0

e−2y
(
|κ|q + |κz|+ y

)2j−1
dy
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Chapter 2 Section 2.4

≤ 1

2|λ|2CF e−Re(κz)|κ|−(2j−1)

∫ ∞
0

e−y
1

2

(
|κ|q + |κz|+ y/2

)2j−1
dy

≤ 1

2|λ|2CF e−Re(κz)|κ|−(2j−1)2−2j

∫ ∞
0

e−y
(
2|κ|q + 2|κz|+ y

)2j−1
dy

=
CF
2

e−Re(κz)|κ|−(2j−1)2−2je2|κ|(q+|z|)Γ(2j, 2|κ|(q + |z|)),

where Γ(· , ·) denotes the incomplete Gamma function. We observe that 2|κ|q ≥ 2j−1.

Thus we may employ the estimate

Γ(a, ξ) ≤ e−ξξa

|ξ| − a0

, a0 = max{a− 1, 0}, Re(ξ) ≥ 0, |ξ| > a0,

(which can be found in [54, Chapter 4, Section 10]) to get∣∣∣∣∣ e
√
λz

2|λ|2
∫ ∞
κz

e−yF (y/κ)dy

∣∣∣∣∣ ≤ 1

2|λ|2CF e−Re(κz)|κ| (q + |z|)2j

2|κ|(q + |z|)− (2j − 1)

≤ 1

2|λ|2CF e−Re(κz)|κ|(q + |z|)2j

6j + 1
.

We note that the integral
∫∞

0
e−yF (y/κ)dξ is treated just like the sixth term. Hence,

for the second term, we obtain∣∣∣∣∣e−
√
λz

2λ2

∫ ∞
0

e−yF (y/κ)dy

∣∣∣∣∣ ≤ 1

2|λ|2CF e−Re(κz)|κ|(q + |z|)2j

6j + 1
.

The first and the last term of the solution satisfy the desired estimate as they are

multiplied by e−κz. To complete the proof we need to bound the term z
κλ

∫∞
κz
F (y/κ)dy−

1
λ2

∫∞
κz
yF (y/κ)dy. We have

1

|λ|2

∣∣∣∣∣
∫ ∞
κz

(κz − y)F (y/κ)dy

∣∣∣∣∣ =

=
1

|λ|2

∣∣∣∣∣
∫ ∞
κz

(y − κz)F (y/κ)dy

∣∣∣∣∣
=

1

|λ|2

∣∣∣∣∣
∫ ∞

0

tF
( t
κ

+ z
)
dt

∣∣∣∣∣
≤CF e−Re(κz)

|λ|2
∫ ∞

0

t

(
q + |z|+ t

|κ|

)2j−1

e−tdt

=
CF e−Re(κz)

|λ|2
2j−1∑
n=0

1

|κ|n
(

2j − 1

n

)
(q + |z|)2j−1−n

∫ ∞
0

tn+1e−tdt
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Chapter 2 Section 2.4

=
CF e−Re(κz)

|λ|2
2j−1∑
n=0

1

|κ|n
(

2j − 1

n

)
(q + |z|)2j−1−nΓ(n+ 2)

≤CF e−Re(κz)

|λ|2 (q + |z|)2j−1

2j−1∑
n=0

1

|κ|n
(n+ 1)(2j − 1)!

(2j − 1− n)!
(q + |z|)−n

≤CF e−Re(κz)

|λ|2 (q + |z|)2j−1

2j−1∑
n=0

(n+ 1)

|κ|n (2j − 1)n(q + |z|)−n

≤CF e−Re(κz)

|λ|2 (q + |z|)2j−1

2j−1∑
n=0

(n+ 1)(q/2)n(q + |z|)−n

≤CF e−Re(κz)

|λ|2 (q + |z|)2j−1

∞∑
n=0

2−n(n+ 1)

≤4CF e−Re(κz)

|λ|2 (q + |z|)2j−1

≤CF e−Re(κz)(q + |z|)2j

j|κλ| .

Combining all the above inequalities we get

|w(z)| ≤ C

[
CF
j

(q + |z|)2j +
|g1|
|κ|

]
e−Re(κz), for all z ∈ C, (2.4.12)

where C is a constant independent of v and j.

Lemma 2.4.13 Let j ∈ N and let the function V be an entire function which satisfies

|V (z)| ≤ CγjV
(j − 1)!

(qj + |z|)2(j−1)e−Re(
√
α(0)z), ∀z ∈ C,

for some constants C, γV , α(0) > 0, and with qj = 4j√
α(0)

. Then, for all n ∈ N, we have

|V (n)(z)| ≤ C
n!en+1

(n+ 1)n
γjV

(j − 1)!
e−Re(

√
α(0)z)

(
qj +

n+ 1√
α(0)

+ |z|
)2(j−1)

, z ∈ C.

(2.4.14)

Proof. We apply Cauchy’s Integral Theorem for derivatives, letting the integration

path be a circle of radius n+1√
α(0)

about z and we get

|V (n)(z)| ≤ n!

2π

∮
D

|V (ζ)|
|ζ − z|n+1

dζ

≤C
(√

α(0)
)n
n!en+1

(n+ 1)n
γjV

(j − 1)!
e−Re(

√
α(0)z)

(
qj +

n+ 1√
α(0)

+ |z|
)2(j−1)

,

(2.4.15)
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for all k = 0, . . . , j.

Theorem 2.4.16 Consider the triple (Uj, Ũj, Ûj) where {Uj}j∈N0 are defined by (2.2.7),

(2.2.10), (2.2.13), {Ũj}j∈N0 by (2.2.8), (2.2.11), (2.2.12) and {Ûj}j∈N0 by (2.2.8), (2.2.14),

(2.2.15). Then, there exist constants a, γ, C,K > 1, independent of ε, such that, for

all n ∈ N0,

‖U (n)
j ‖L∞(I) ≤ Cγj

a2jj2j

j!
Knn!, ∀j ∈ N0, (2.4.17)

|Ũj(z)| ≤ Cγj
1

(j − 1)!
(aj + |z|)2(j−1)e−

√
α(0)Re(z), ∀z ∈ C, j ∈ N, (2.4.18)

|Ûj(z)| ≤ Cγj
1

(j − 1)!
(aj + |z|)2(j−1)e−

√
α(1)Re(z), ∀z ∈ C, j ∈ N. (2.4.19)

We note that the constant K is directly dependent on γf given in (2.2.2), (i.e. on the

analyticity of f).

Proof. Let γ0 be the constant of Lemma 2.4.1 and let γf given in (2.2.2). We choose

a, γ > 1, γ̃f ≥ max{γ0, γf} and K = max{1, eγ̃f} to satisfy,

a ≥ 3

min
{√

α(0),
√
α(1)

} , (2.4.20)

γ ≥ max{γα, γα′ , γβ}, (2.4.21)

1

γ

(
1 +

K

min
{√

α(0),
√
α(1)

}) ≤ 1, (2.4.22)

2

a2

(12K4

a2γ2
+ 1
)
≤ 1. (2.4.23)

We observe that the sequences Uj, Ũj and Ûj are intertwined and cannot be analyzed

separately therefore one should treat them simultaneously. We are going to prove

(2.4.17)–(2.4.19) using induction. By Lemma 2.4.1 we have

‖U (n)
0 ‖L∞(I) ≤

C̃Cf , n = 0, 1

C̄Cf γ̃
n−1
f (n− 1)n−1, n ≥ 2.

(2.4.24)

Here C̃, C̄ are the constants of Lemma 2.4.1. Therefore, for j = 0, (2.4.17) holds by

(2.4.24) and Stirling’s approximation. The function Ũ0 given by (2.2.8), (2.2.11) and
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(2.2.12) is calculated as Ũ0 = 0. In the same manner Û0 = 0. Next, we calculate

Ũ1, Û1, by solving the corresponding boundary value problems:

Ũ1(x̃) =
U ′0(0)√
α(0)

e−
√
α(0)x̃, (2.4.25)

and

Û1(x̂) =
U ′0(1)√
α(1)

e−
√
α(1)x̂. (2.4.26)

This shows that (2.4.18), (2.4.19) hold for j = 1, once we extend Ũ1, Û1 to C. Moreover,

one gets

|Ũ1(0)|+ |Û1(0)| ≤ |U
′
0(0)|√
α(0)

+
|U ′0(1)|√
α(1)

≤ CK

(
1√
α(0)

+
1√
α(1)

)
. (2.4.27)

In the above inequality, we used (2.4.17) for n = 1, j = 0. We consider U1 that is given

by (2.2.7), (2.2.10) and (2.2.13). From Lemma 2.4.1, we get

‖U (n)
1 ‖L∞(I) ≤

C
(
|Ũ1(0)|+ |Û1(0)|

)
, n = 0, 1

Cγ̃f
n−1
(
|Ũ1(0)|+ |Û1(0)|

)
(n− 1)n−1, n ≥ 2.

(2.4.28)

From (2.4.27), (2.4.28) and Stirling’s approximation we obtain that (2.4.17) holds for

j = 1.

We now consider the triple (Uj, Ũj, Ûj) and we assume that the desired results hold for

j. We will show that they hold also for j + 1. Since Ũj+1 satisfies (2.2.8), (2.2.11) and

(2.2.12), we may use Proposition 2.4.10, once we show that

|F̃j+1(z)| ≤ Cγje−
√
α(0)Re(z) 1

(j − 1)!
(tj+1 + |z|)2j−1,

for some number tj+1, depending on j + 1. To this end, we recall that

F̃j(z) =

Aj∑
k=1

αk(z)Ũ ′′j−k(z) +

Aj∑
k=1

α′k(z)Ũ ′j−k(z)−
Bj∑
k=0

βk(z)Ũj−2−k(z).

By the induction hypothesis we have that, for all k = 0, . . . , j − 1,

|Ũj−k(z̃)| ≤ Cγj−k
1

(j − k − 1)!

(
a(j − k) + |z|

)2(j−k−1)

e−
√
α(0)Re(z). (2.4.29)
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From Lemma 2.4.13 we obtain

∣∣F̃j+1(z)
∣∣ ≤

≤
Aj+1∑
k=1

C1γ
j+1−kCαγ

k
α|z|k

1

(j − k)!

(
a(j + 1− k) +

3√
α(0)

+ |z|
)2(j−k)

e−
√
α(0)Re(z)+

+

Aj+1∑
k=1

C2γ
j+1−kCα′γ

k
α′ |z|k

1

(j − k)!

(
a(j + 1− k) +

3√
α(0)

+ |z|
)2(j−k)

e−
√
α(0)Re(z)+

+

Bj+1∑
k=0

C3γ
j−1−kCβγ

k
β |z|k

1

(j − 2− k)!

(
a(j − 1− k) +

3√
α(0)

+ |z|
)2(j−2−k)

e−
√
α(0)Re(z),

since the functions α, β are analytic. Next we present some useful inequalities, namely,

for j ≥ 2, we have,

1

(j − k)!
≤(j − 1)k−1

(j − 1)!
≤ 1

(j − 1)!

(
aj +

3√
α(0)

+ |z|
)k−1

, k ≤ j − 1,

1

(j − 2− k)!
≤(j − 1)k+1

(j − 1)!
≤ 1

(j − 1)!

(
aj +

3√
α(0)

+ |z|
)k+1

, k ≤ j − 2,

since a > 1 and hence, for k ≤ j − 1,

|z|k 1

(j − k)!

(
a(j + 1− k) +

3√
α(0)

+ |z|
)2(j−k)

≤ 1

(j − 1)!

(
a(j + 1− k) +

3√
α(0)

+ |z|
)2j−1

,

and for k ≤ j − 2,

|z|k 1

(j − 2− k)!

(
a(j + 1− k) +

3√
α(0)

+ |z|
)2(j−2−k)

≤ C

(j − 1)!

(
a(j + 1− k) +

3√
α(0)

+ |z|
)2j−1

.

This gives

|F̃j+1(z)| ≤Cγj 1

(j − 1)!

(
aj +

3√
α(0)

+ |z|
)2j−1

e−
√
α(0)Re(z)×

×
[
Aj+1∑
k=1

C1Cαγα

(
γα
γ

)k−1

+

Aj+1∑
k=1

C2Cα′γα′

(
γα′

γ

)k−1

+ +

Bj+1∑
k=0

C3Cβ
γβ

(
γβ
γ

)k]
.

By (2.4.21) we ensure that the sums above are bounded by convergent geometric series,
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thus

|F̃j+1(z)| ≤Cγj 1

(j − 1)!

(
aj +

3√
α(0)

+ |z|
)2j−1

e−
√
α(0)Re(z), (2.4.30)

and by Proposition 2.4.10, we infer that

|Ũj+1(z)| ≤C
[
γj

j

1

(j − 1)!

(
aj +

3√
α(0)

+ |z|
)2j

+
∣∣∣ U ′j(0)√

α(0)

∣∣∣]e−
√
α(0)Re(z).

We bound now the term |U ′j(0)| using the induction hypothesis corresponding to

(2.4.17). We get

|Ũj+1(z)| ≤C
[
γj

j!

(
aj +

3√
α(0)

+ |z|
)2j

+
Kγja2jj2j

j!
√
α(0)

]
e−
√
α(0)Re(z),

and thus we have

|Ũj+1(z)| ≤Cγj+1 1

j!

(
aj +

3√
α(0)

+ |z|
)2j
[

1

γ
+

K√
α(0)γ

]
e−
√
α(0)Re(z).

We conclude that

|Ũj+1(z)| ≤Cγ
j+1

j!

(
a(j + 1) + |z|

)2j

e−
√
α(0)Re(z), (2.4.31)

by (2.4.20) and (2.4.22). Thus the assertion (2.4.18) holds for j + 1. In the same

manner, one can prove that (2.4.19) holds also. We next proceed with function Uj+1,

which satisfies the boundary value problem defined by (2.2.7), (2.2.10), (2.2.13). The

induction hypothesis for j − 1, gives

‖U (4)
j−1‖L∞(I) ≤ Cγj−1a

2(j−1)(j − 1)2(j−1)

(j − 1)!
K44!. (2.4.32)

By considering the above, we appeal to Lemma 2.4.1 which implies the estimate

‖U (n)
j+1‖L∞(I) ≤

C
[
‖U (4)

j−1‖L∞(I) + |Ũj+1(0)|+ |Ûj+1(0)|
]
, n = 0, 1,

Cγ̃n−1
f

[
‖U (4)

j−1‖L∞(I) + |Ũj+1(0)|+ |Ûj+1(0)|
]
(n− 1)n−1, n ≥ 2.

(2.4.33)
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We note that we have already proved (2.4.18) and (2.4.19) for j + 1. Therefore

|Ũj+1(0)| ≤Cγj+1 1

j!
a2j(j + 1)2j, (2.4.34)

and the same result holds for Ûj+1(0). We combine (2.4.32)–(2.4.34) and we have that

‖U (4)
j−1‖L∞(I) + |Ũj+1(0)|+ |Ûj+1(0)| ≤

≤C
[
4!K4γj−1 1

(j − 1)!
a2(j−1)(j − 1)2(j−1) + 2γj+1 1

j!
a2j(j + 1)2j

]
≤Cγj+1a

2(j+1)(j + 1)2(j+1)

(j + 1)!

[
4!K4

a4γ2
+

2

a2

]
≤Cγj+1a

2(j+1)(j + 1)2(j+1)

(j + 1)!
.

In the last step we used the assumption (2.4.23). The above result and (2.4.33) yield

(2.4.17) for j + 1. We mention that we treat the term (n− 1)n−1 in (2.4.33) with the

aid of Stirling’s approximation and we also note that we obtain the desired results only

in the case that (2.4.20)–(2.4.23) hold.

Corollary 2.4.35 Let the functions Ũj, Ûj be given by (2.2.8), (2.2.11), (2.2.12) and

(2.2.8), (2.2.14), (2.2.15), respectively. Then, there exist constants C, K̃, K̂, γ > 0

independent of j and n such that, for all x̃, x̂ > 0, and ∀n ∈ N,

|Ũ (n)
j (x̃)| ≤ CK̃n(a2eγ)jjj−1e−

√
α(0)

2
|x̃|, (2.4.36)

|Û (n)
j (x̂)| ≤ CK̂n(a2eγ)jjj−1e−

√
α(1)

2
|x̂|. (2.4.37)

Proof. In Theorem 2.4.16 we have shown that Ũj, Ûj are entire and moreover they

satisfy (2.4.18) and (2.4.19). Using Lemma 2.4.13 we get for z ∈ C,

|Ũ (n)
j (z)| ≤C

(√
α(0)

)n
nnen+1

(n+ 1)n
γje−Re(

√
α(0)z) 1

(j − 1)!

(
aj +

n+ 1√
α(0)

+ |z|
)2(j−1)

.

(2.4.38)

From Lemma 2.3.20 we have for x̃ > 0,

(
aj +

n+ 1√
α(0)

+ x̃
)2(j−1)

e−
√
α(0)|x̃| ≤

≤C
(
aj +

n+ 1√
α(0)

)2(j−1)

e−
√
α(0)

2
|x̃|
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≤C(aj)2(j−1)

(
1 +

(n+ 1)√
α(0)aj

)2(j−1)

e−
√
α(0)

2
|x̃|

≤C(aj)2(j−1)

(
1 +

2(n+ 1)

2a
√
α(0)(j − 1)

)2(j−1)

e−
√
α(0)

2
|x̃|

≤C(aj)2(j−1)e
2(n+1)

a
√
α(0) e−

√
α(0)

2
|x̃|, (2.4.39)

and we get

1

(j − 1)!

(
aj +

n+ 1√
α(0)

+ x̃
)2(j−1)

e−
√
α(0)|x̃| ≤

≤Ca2(j−1) j
2(j−1)

(j − 1)!
e

2(n+1)

a
√
α(0) e−

√
α(0)

2
|x̃| (2.4.40)

≤C(a2e)j−1jj−1e
2(n+1)

a
√
α(0) e−

√
α(0)

2
|x̃|.

In the last step the Stirling’s approximation has been used. Therefore

|Ũ (n)
j (x̃)| ≤C

√
α(0)nnen+1

(n+ 1)n
γje−

√
α(0)

2
|x̃|(a2e)j−1e

2(n+1)

a
√
α(0) jj−1

≤C e
√
α(0)

a2
e

2(n+1)

a
√
α(0)

(
ne

n+ 1

)n
(a2eγ)jjj−1e−

√
α(0)

2
|x̃|,

(2.4.41)

and this completes the proof.

We next present the main result regarding the regularity of the solution. Theorem

2.4.42 tells us that the solution has an analytic character, the boundary layers do not

affect the solution in areas away from the boundary and the remainder is exponentially

small.

Theorem 2.4.42 Assume that (2.2.2) holds. LetM ∈ N0, there are constants C,K,K1,

q > 0 independent of ε ∈ (0, 1] such that the solution u of (2.2.1) can be written as

u = usM + ũBLM + ûBLM + rM ,

with

‖(usM)(n)‖0,I ≤ CKnn!, ∀n ∈ N0, (2.4.43)∣∣(ũBLM )(n)
(x)
∣∣+
∣∣(ûBLM )(n)

(x)
∣∣ ≤ CKn

1 ε
1−ne−min

{√
α(0)

2
,

√
α(1)

2

}
dist(x,∂I)/ε, ∀n ∈ N0,

(2.4.44)
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‖rM‖L∞(∂I) + ‖r′M‖L∞(∂I) + ‖rM‖E,I ≤ Ce−q/ε, (2.4.45)

provided a2εeγ(M + 1) < 1, where a and γ is given in Theorem 2.4.16.

Proof. We mention that we follow [57, Theorem 6]. First we consider (2.4.43). The

combination of (2.2.16) and (2.4.17) and Stirling’s approximation gives

‖(usM)(n)‖0,I ≤
M∑
j=0

εj‖U (n)
j ‖0,I ≤ C

M∑
j=0

εjγj
a2jj2j

j!
Knn!

≤CKnn!
M∑
j=0

(εγ)j
a2jj2j

j!
≤ CKnn!

M∑
j=0

(a2εeγj)j

≤CKnn!
∞∑
j=0

(a2εeγM)j

≤CKnn!.

The assumption a2εeγ(M+1) < 1 allows us to obtain the above result since the sum is

a converging geometric series. We proceed with (2.4.44). Recall (2.4.36) which, under

the assumption mentioned before, gives us

∣∣(ũBLM )(n)
(x̃)
∣∣ ≤M+1∑

j=0

εj|Ũ (n)
j (x̃)| ≤

M+1∑
j=1

εje−
√
α(0)

2
|x̃|K̃n(a2eγ)jjj−1

≤εγK̃ne−
√
α(0)

2
|x̃|

M+1∑
j=1

(
a2εeγ(M + 1)

)j−1

≤CεK̃ne−
√
α(0)

2
|x̃|
∞∑
j=0

(
a2εeγ(M + 1)

)j
≤CεK̃ne−

√
α(0)

2
|x̃|.

In the same manner one can infer a similar result for ûBLM . In order to show (2.4.45)

we note that

rM(0) =u(0)−
(

M∑
j=0

εjUj(0) +
M+1∑
j=0

εjŨj(0) +
M+1∑
j=0

εjÛj(1/ε)

)

=− εM+1ŨM(0)−
M+1∑
j=0

εjÛj(1/ε),
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since u(0) = 0, Uj(0) + Ũj(0) = 0, for j ≥ 1. Hence, using (2.4.36), (2.4.37), we have

|rM(0)| ≤εM+1|ŨM+1(0)|+
M+1∑
j=1

εj|Ûj(1/ε)|

≤C(a2εeγ)
M+1

(M + 1)M +
M+1∑
j=1

εjCe−
√
α(1)

2ε γjjj−1

≤C(a2εeγ)
M+1

(M + 1)M + Cεγe−
√
α(1)

2ε

M+1∑
j=1

(
a2εeγ(M + 1)

)j−1

≤C(a2εeγ)
M+1

(M + 1)M + Cεγe−
√
α(1)

2ε

∞∑
j=0

(
a2εeγ(M + 1)

)j
≤Cεγ

(
a2εγ(M + 1)

)M
+ Cεe−q

√
α(1)

2ε ,

for some positive q ∈ R, independend of ε and clearly bounded away from 0. Again

the assumption a2εγM < 1 was used. Furthermore,

r′M(0) =u′(0)−
(

M∑
j=0

εjU ′j(0) +
M+1∑
j=1

εj−1Ũ ′j(0)−
M+1∑
j=1

εj−1Û ′j(1/ε)

)

=−
M+1∑
j=1

εj−1Û ′j(1/ε),

since u′(0) = Ũ ′0(0) = Û ′0(0) = 0, Ũ ′j(0) + U ′j−1(0) = 0. Thus

|r′M(0)| ≤
M+1∑
j=1

εj−1|Û ′j(1/ε)|. (2.4.46)

By using (2.4.37) once more, we get

|r′M(0)| ≤ CK̂e−q
√
α(1)/ε. (2.4.47)

In the same way we obtain analogous results for |rM(1)|, |r′M(1)|. We now apply the

operator L := ε2 d4

dx4 − d
dx

(α(x) d2

dx2 ) + β(x) to the function u− usM and obtain,

L(u− usM) =f −
M∑
j=0

εjL(Uj)

=f −
M∑
j=0

εj
(
ε2U

(4)
j −

(
α(x)U ′j

)′
+ β(x)Uj

)
=− εM+1U

(4)
M−1 − εM+2U

(4)
M ,

(2.4.48)
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since {Uj}j∈N0 satisfy (2.2.7). By (2.4.17), we get

‖L(u− usM)‖L∞(I) ≤

≤C4!K4
(
εM+1γM−1a

2(M−1)(M − 1)2(M−1)

(M − 1)!
+ εM+2γM

a2MM2M

M !

)
≤CK4εMγM

a2MM2M

M !

[
1

γa2
+ ε

]
≤CεMγM a

2MMM

M !
.

Using Stirling’s approximation we obtain

‖L(u− usM)‖L∞(I) ≤ C(a2eεγM)M .

We next obtain an estimate for LũBLM :

L
(
ũBLM

)
=

M+1∑
j=0

εj
[
ε−2
(
Ũ

(4)
j (x̃)−

j∑
k=0

εkαk(x̃)Ũ ′′j−k(x̃)−
j∑

k=0

εkα′k(x̃)Ũ ′j−k(x̃)
)

+

j−2∑
k=0

εkβk(x̃)Ũj−2−k(x̃)

]
=

∑
1≤k≤j≤M+1,
j−2+k>M−1

−εj+k−2
(
αk(x̃)Ũ ′′j−k(x̃) + α′k(x̃)Ũ ′j−k(x̃)

)
+

∑
0≤k≤j−2≤M+1,

j+k>M−1

εk+jβk(x̃)Ũj−2−k(x̃).

We utilize the analyticity of αandβ along with the estimate (2.4.18), and with the aid

of Lemma 2.4.13 we obtain

∥∥∥L(ũBLM )∥∥∥
L∞(I)

≤ εM
∑

1≤k≤j≤M+1,
j−2+k>M−1

{
|αk(x̃)Ũ ′′j−k(x̃)|+ |α′k(x̃)Ũ ′j−k(x̃)|

}
+ εM

∑
0≤k≤j−2≤M+1,

j+k>M−1

|βk(x̃)Ũj−2−k(x̃)|

≤εM
∑

1≤k≤j≤M+1,
j−2+k>M−1

C
{
Cαγ

k
α|x̃|kγj−k

1

(j − k − 1)!

(
a(j − k) +

3√
α(0)

+ |x̃|
)2(j−k−1)

+

+ Cα′γ
k
α′|x̃|kγj−k

1

(j − k − 1)!

(
a(j − k) +

2√
α(0)

+ |x̃|
)2(j−k−1)}

e−
√
α(0)x̃+

+ εM
∑

0≤k≤j−2≤M+1,
j+k>M−1

Cβγ
k
β |x̃|kγj−2−k 1

(j − k − 3)!

(
a(j − 2− k) + |x̃|

)2(j−k−3)

e−
√
α(0)x̃.
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Note that, for j ≥ 2, there holds,

1

(j − k − 1)!
≤ (j − 1)k

(j − 1)!
≤ 1

(j − 1)!

(
aj +

3√
α(0)

+ |x̃|
)k
, k ≤ j − 1,

1

(j − k − 3)!
≤ (j − 3)k

(j − 3)!
≤ 1

(j − 3)!

(
aj +

3√
α(0)

+ |x̃|
)k
, k ≤ j − 2,

and hence

|x̃|k 1

(j − k − 1)!

(
a(j + 1− k) +

3√
α(0)

+ |x̃|
)2(j−k−1)

≤ 1

(j − 1)!

(
aj +

3√
α(0)

+ |x̃|
)2(j−1)

,

|x̃|k 1

(j − k − 3)!
(a(j − 1− k) +

3√
α(0)

+ |x̃|)2(j−3−k) ≤ 1

(j − 1)!

(
aj +

3√
α(0)

+ |x̃|
)2j−3

.

From (2.4.40) we have

1

(j − 1)!

(
aj +

3√
α(0)

+ |x̃|
)k

e−
√
α(0)x̃ ≤ C(a2e)j−1jj−1e

6

a
√
α(0) e−

√
α(0)

2
x̃,

1

(j − 3)!

(
aj +

3√
α(0)

+ |x̃|
)k

e−
√
α(0)

2
x̃ ≤ C(a2e)j−3(j − 2)j−3e

6

a
√
α(0) e−

√
α(0)

2
x̃,

and this gives

∥∥∥L(ũBLM )∥∥∥
L∞(I)

≤ εM
∑

1≤k≤j≤M+1,
j−2+k>M−1

C
[
Cαγ

k
αγ

j−k(a2e)j−1jj−1e−
√
α(0)

2
x̃+

+ Cα′γ
k
α′γ

j−k(a2e)j−1jj−1e−
√
α(0)

2
x̃
]
+

+ εM−1
∑

0≤k≤j−2≤M+1,
j+k>M−1

Cβγ
k
βγ

j−2−k(a2e)j−3(j − 2)j−3e−
√
α(0)

2
x̃

≤εMC
[ ∑

1≤k≤j≤M+1,
j−2+k>M−1

γj(a2e)j−1jj−1e−
√
α(0)

2
x̃

(
Cα

(γα
γ

)k
+ Cα′

(γα′
γ

)k)
+

+
∑

0≤k≤j−2≤M+1,
j+k>M−1

Cβγ
j−2(a2e)j−3(j − 2)j−3e−

√
α(0)

2
x̃
(γβ
γ

)k]
.

We recall that in Theorem 2.4.16 the constant γ is chosen in such a way to satisfy

(2.4.21) and therefore the sums are bounded by convergent geometric series. Thus

∥∥∥L(ũBLM )∥∥∥
L∞(I)

≤CεM(a2e)MγM+1(M + 1)Me−
√
α(0)x̃

≤Cγ
(
a2eεγ(M + 1)

)M
.

(2.4.49)
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The term ‖L
(
ûBLM

)
‖L∞(I) satisfies an analogous result. Thus we have

‖L(rM)‖L∞(I) ≤

≤‖L(u− usM)‖L∞(I) + ‖L(ũBLM )‖L∞(I) + ‖L(ûBLM )‖L∞(I)

≤C
(
a2eεγ(M + 1)

)M
.

We choose M + 1 to be the integer part of qε , where q = 1
γa2e2 . Then, we get

a2γeε(M + 1) ≤ e−1,

and M ≥ q
ε − 2, therefore

‖L(rM)‖L∞(I) ≤ Ce−M ≤ Ce−q/ε.

We have shown that rM has exponentially small values at the endpoints of [0, 1] and

LrM is uniformly bounded by an exponentially small quantity on the interval (0, 1).

By stability we have the desired result.

2.5 Appendix A

Here we give the proofs for Section 2.3.

Proof. (Proposition 2.3.1)

We set the linear function u0(x) := (g+−g−)x+g− and the function v = u−u0, where

u satisfies problem (2.3.2). Therefore, we get

−α(x)v′′(x)− α′(x)v′(x) + β(x)v(x) = g(x) + α′(x)(g+ − g−)− β(x)u0.

Thus, v satisfies the boundary value problem

−
(
α(x)v′(x)

)′
+ β(x)v(x) = h(x),

v(0) = v(1) = 0,

for h(x) := g(x)− β(x)
(
(g+ − g−)x+ g−

)
+ α′(x)(g+ − g−).
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Proof. (Lemma 2.3.9)

We first mention that (2.3.10) is the well known Poincaré inequality. By the Funda-

mental Theorem of Calculus we have

∫ x

0

u′(t)dt = u(x)− u(0) = u(x),

since u(0) = 0. Therefore we obtain

∫ 1

0

|u(x)|2dx =

∫ 1

0

∣∣∣∫ x

0

u′(t)dt
∣∣∣2dx

≤
∫ 1

0

(∫ 1

0

|u′(t)|dt
)2

dx =
(∫ 1

0

|u′(x)|dx
)2

.

Using now the Cauchy-Schwarz inequality we infer

(∫ 1

0

|u′(x)|dx
)2

≤
[(∫ 1

0

|u′(x)|2dx
)1/2(∫ 1

0

12dx
)1/2

]2

=

∫ 1

0

|u′(x)|2dx.

In order to show the remaining inequalities we work as follows. Using Cauchy’s in-

equality on (2.3.5) we obtain

‖u‖2
E ≤ ‖h‖0,I‖u‖0,I . (2.5.1)

Also √
β|‖u‖0,I ≤

(∫ 1

0

β(x)u2(x)dx
)1/2

≤ ‖u‖E,

holds and since α, β > 0 we get

‖u‖2
0,I ≤

1

β
‖u‖2

E. (2.5.2)

Combining inequalities (2.5.1), (2.5.2) we infer that

‖u‖0,I ≤
1

β
‖h‖0,I .

To show inequality (2.3.12) we first observe that

√
α‖u′‖0,I ≤

(∫ 1

0

α(x)
(
u′(x)

)2
dx
)1/2

≤ ‖u‖E,
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Chapter 2 Section 2.5

and therefore we obtain

‖u′‖2
0,I ≤

1

α
‖u‖2

E. (2.5.3)

Combining inequalities (2.3.10), (2.5.1) and (2.5.3) we get the desired result.

Proof. (Lemma 2.3.13)

By Proposition 2.3.1 we know that problem (2.3.2) is equivalent to (2.3.3). It is trans-

parent that
‖h‖0,I ≤‖g‖0,I + β(|g+|+ |g−|) + α′(|g+|+ |g−|)

≤‖g‖L∞(I)+
(
|g+|+ |g−|

)(
β + α′

)
.

(2.5.4)

Using (2.3.11) and (2.5.4) we obtain

‖u‖0,I ≤
1

β

(
Cg + c

(
|g+|+ |g−|

))
, (2.5.5)

where Cg > ‖g‖L∞(I) and c = α′ + β. Simillarly, from (2.3.12) and (2.5.4) we get

‖u′‖0,I ≤
1

α

(
Cg + c

(
|g+|+ |g−|

))
. (2.5.6)

Therefore we have, for c̃ = max{ 1
α
, 1
β
}

‖u‖0,I + ‖u′‖0,I ≤ c̃{Cg + c(|g+|+ |g−|)},

and (2.3.14) is verified. We continue to show (2.3.15). We use the differential equation

of (2.3.2), to obtain

‖αu′′‖0,I ≤‖g‖0,I + ‖α′‖L∞(I)‖u′‖0,I + ‖β‖L∞(I)‖u‖0,I .

By (2.3.14) we get

‖αu′′‖0,I ≤‖g‖0,I +
(
α′ + β

)
c̃{Cg + c(|g+|+ |g−|)}

≤Cg
[
1 + c̃(α′ + β

)]
+
(
α′ + β

)
c̃{c(|g+|+ |g−|)}

≤Cg
(
1 + c̃c) + c̃c2(|g+|+ |g−|).

Hence we have that

‖u′′‖0,I ≤
1

α
[Cg
(
1 + c̃c) + c̃c2(|g+|+ |g−|)]. (2.5.7)
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Chapter 2 Section 2.5

It holds that

‖u′‖1,I ≤‖u′′‖0,I + ‖u′‖0,I .

From (2.5.7) and (2.3.15) we conclude that

‖u′‖1,I ≤
1

α
[Cg
(
1 + c̃c) + c̃c2(|g+|+ |g−|)] + c̃{Cg + c(|g+|+ |g−|)}

≤ 1

α
Cg
(
1 + c̃c) + c̃Cg +

( c̃c2

α
+ c̃c

)
(|g+|+ |g−|)

≤Cg
(1 + c̃c

α
+ c̃
)

+
( c
α

+ 1
)
c̃c(|g+|+ |g−|),

(2.5.8)

and (2.3.15) follows. We proceed with the remaining inequalities. Using Sobolev’s

Embedding Theorem and (2.3.15) we obtain

sup
x∈I
|u(x)| =‖u‖L∞(I)

≤(2π)−1‖u‖H1(I)

≤(2π)−1
(
‖u′‖0,I + ‖u‖0,I

)
≤(2π)−1c̃{Cg + c(|g+|+ |g−|)}.

This is sufficient for (2.3.16). To show (2.3.17), we appeal again to Sobolev’s Embedding

Theorem and use (2.3.15) to get

‖u′‖L∞(I) ≤(2π)−1‖u′‖H1(I)

≤(2π)−1
[
Cg

(1 + c̃c

α
+ c̃
)

+
( c
α

+ 1
)
c̃c(|g+|+ |g−|)

]
.

Proof. ( Proposition 2.3.18)

With the aid of the Green’s function of the boundary value problem we can determine

the solution. For x ∈ (0,∞), we seek a solution in the form

u(x) =

∫ ∞
−∞

G(x, ξ)f(ξ)dξ,

where G is Green’s function. The solutions of the characteristic equation m4−λm2 = 0

are given by m1,2 = 0 and m3,4 = ±κ, hence the general solution of the differential
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Chapter 2 Section 2.5

equation is

v(x) = A+Bx+ Ceκx +De−κx,

for some constants A,B,C and D. Therefore the associated Green’s function and its

derivatives are given as

G(x, ξ) =

A1(ξ) +B1(ξ)x+ C1(ξ)eκx +D1(ξ)e−κx, x < ξ,

A2(ξ) +B2(ξ)x+ C2(ξ)eκx +D2(ξ)e−κx, x > ξ.

Gx(x, ξ) =

B1(ξ) + κC1(ξ)eκx − κD1(ξ)e−κx, x < ξ,

B2(ξ) + κC2(ξ)eκx − κD2(ξ)e−κx, x > ξ.

Gxx(x, ξ) =

λC1(ξ)eκx + λD1(ξ)e−κx, x < ξ,

λC2(ξ)eκx + λD2(ξ)e−κx, x > ξ.

Gxxx(x, ξ) =

λκC1(ξ)eκx − λκD1(ξ)e−κx, x < ξ,

λκC2(ξ)eκx − λκD2(ξ)e−κx, x > ξ.

• In order to ensure that G satisfies the given boundary values we should have

|A2(ξ)|+ |B2(ξ)|+ |C2(ξ)| = 0 and B1(ξ) + κC1(ξ)− κD1(ξ) = 0.

• Continuity of G at x = ξ :

A1(ξ) +B1(ξ)ξ + C1(ξ)eκξ +D1(ξ)e−κξ −D2(ξ)e−κξ = 0.

• Continuity of Gx at x = ξ :

B1(ξ) + κC1(ξ)eκξ − κD1(ξ)e−κξ + κD2(ξ)e−κξ = 0.

• Continuity of Gxx at x = ξ :

λC1(ξ)eκξ + λD1(ξ)e−κξ − λD2(ξ)e−κξ = 0.

• Jump condition of Gxxx at x = ξ :

−λκC1(ξ)eκξ + λκD1(ξ)e−κξ − λκD2(ξ)e−κξ = 1.
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Chapter 2 Section 2.5

Solving the system we get

A1(ξ) = − ξ
λ
,

B1(ξ) =
1

λ
,

C1(ξ) = −e−κξ

2κλ
,

D1(ξ) =
2− e−κξ

2κλ
,

D2(ξ) =
2− eκξ − e−κξ

2κλ
,

hence, the appropriate Green’s function is given by

G(x, ξ) =

−
ξ
λ

+ x
λ
− e−κξ

2κλ
eκx + 2−e−κξ

2κλ
e−κx, x < ξ,

2−eκξ−e−κξ

2κλ
e−κx, x > ξ.

Finally, the solution of (2.3.19) is

u(x) =

∫ x

0

2− eκξ − e−κξ

2κλ
e−κxf(ξ)dξ

+

∫ ∞
x

(
− ξ
λ

+
x

λ
− e−κξ

2κλ
eκx +

2− e−κξ

2κλ
e−κx

)
f(ξ)dξ

=
2

2κλ
e−κx

∫ x

0

f(ξ)dξ − e−κx

2κλ

∫ x

0

eκξf(ξ)dξ − 1

2κλ
e−κx

∫ x

0

e−κξf(ξ)dξ

− 1

λ

∫ ∞
x

ξf(ξ)dξ +
x

λ

∫ ∞
x

f(ξ)dξ − eκx

2κλ

∫ ∞
x

e−κξf(ξ)dξ

+
2e−κx

2κλ

∫ ∞
x

f(ξ)dξ − e−κx

2κλ

∫ ∞
x

e−κξf(ξ)dξ

=
1

κλ
e−κx

∫ ∞
0

f(ξ)dξ − e−κx

2κλ

∫ ∞
0

e−κξf(ξ)dξ − e−
√
λx

2κλ

∫ x

0

eκξf(ξ)dξ

− 1

λ

∫ ∞
x

ξf(ξ)dξ +
x

λ

∫ ∞
x

f(ξ)dξ − eκx

2κλ

∫ ∞
x

e−κξf(ξ)dξ.
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Chapter 3

1-D hp-approximation results

In the present chapter the analysis of the hp-FEM approximation is illustrated with re-

spect to the fourth order SPBVP in one dimension studied in Chapter 2. In particular,

we study the performance of the hp version on the Spectral Boundary Layer Mesh (see

Definition 3.1.11 ahead) and we show that the method converges at an exponential rate

in the natural energy norm, independently of ε. In [57], the case of constant coefficients

was considered. We extend the results of [57] to the case of variable coefficients.

3.1 The construction of the Finite Element Space

Recall the variational formulation as given in Chapter 2: Find u ∈ H2
0 (I) such that

B(u, v) = F(v), ∀ v ∈ H2
0 (I). (3.1.1)

The purpose of this section is the construction of finite-dimensional subspaces SN ⊂
H2

0 (I) and subsequently the establishment of the corresponding discrete problem of

(3.1.1) that reads: Find uN ∈ SN ⊂ H2
0 (I) such that

B(uN , v) = F(v), ∀ v ∈ SN . (3.1.2)

We mention that

‖u− uN‖E,I ≤ inf
v∈SN

‖u− v‖E,I , ∀v ∈ SN , (3.1.3)
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Chapter 3 Section 3.1

holds. To define the desired subspaces SN for the problem above, we utilize a family of

functions that have already been proposed in the literature. We refer to [57] for further

details.

3.1.1 The basis functions

We first examine the four cubic Hermite polynomials given in the local coordinate

system, where ξ ∈ [−1, 1]:

h1(ξ) =
1

4
(1 + ξ)2(2− ξ) =

1

4
(−ξ3 + 3ξ + 2), (3.1.4)

h2(ξ) =
1

4
(1− ξ)2(2 + ξ) =

1

4
(ξ3 − 3ξ + 2), (3.1.5)

h3(ξ) =
1

4
(1 + ξ)2(ξ − 1) =

1

4
(ξ3 + ξ2 − ξ − 1), (3.1.6)

h4(ξ) =
1

4
(1− ξ)2(1 + ξ) =

1

4
(ξ3 − ξ2 − ξ + 1). (3.1.7)

These four Hermite polynomials give us the ability to control the values of the inter-

polant and its first-order derivative at the boundary points and thus they are char-

acterized as nodal basis functions. To complete the family of the basis functions we

proceed by adding the so called internal basis functions.

Suppose {Li(x)}i∈N0 is the set of Legendre polynomials of degree i defined on the

interval IST = (−1, 1). By using the family of Legendre polynomials we construct a

new family of polynomials over the interval IST . For i ≥ 5, the C1 basis functions can

be determined by

hi(x) =

√
2i− 5

2

∫ x

−1

∫ t

−1

Li−3(η)dηdt. (3.1.8)

(In fact, this is defined in [64]). For i ≥ 5, we calculate

hi(x) =
1√

4i− 10

[
1

2i− 5
Li−5(x)− 4i− 10

(2i− 3)(2i− 7)
Li−3(x) +

1

2i− 3
Li−1(x)

]
.

(3.1.9)

All polynomials given by (3.1.4)–(3.1.8) make up the family {hi}k+1
i=1 and it is obvious

that this family serves as a basis for Pk(IST ), k ≥ 3. Figure 3.1 presents the first eight

aforementioned polynomials and their corresponding first-order derivatives are shown

in Figure 3.2. We observe that the following properties hold:
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Figure 3.1: The first eight hierarchical C1 basis functions.

At the boundary points, we have,

h1(−1) = 0, h1(1) = 1,

h2(−1) = 1, h2(1) = 0,

hi(±1) = 0, i ≥ 3.

The first order derivatives of the basis functions at the boundary points satisfy

h′1(±1) = 0, h′2(±1) = 0,

h′3(−1) = 0, h′3(1) = 1,

h′4(−1) = 1, h′4(1) = 0

h′i(±1) = 0, i ≥ 5.

These properties allow us to determine the values of the interpolant and its first-order

derivatives at each vertex node.

The basis {hi}i∈N has one more essential property: it is hierarchical, i.e. the polynomial

of degree p + 1 is obtained as a correction to the polynomial of degree p. Such bases

need not be reconstructed when the polynomial degree is increased and it is well suited

for hp approximations.
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Figure 3.2: The corresponding first order derivatives.

3.1.2 The Finite Element Space

Suppose ∆ = {x0, . . . , xm} is an arbitrary partition of the interval I and denote the

intervals (xi−1, xi) by Ii. Also consider the mappings Ri : Ii → IST given by

Ri(x) =
2x− (xi + xi−1)

xi − xi−1

, (3.1.10)

and define the space a

Sp(∆) := {v ∈ H2(I) : v ◦R−1
i ∈ Pp(IST ), i = 1, . . . ,m}.

The desired subspace SN ⊂ H2
0 (I) mentioned before, is chosen as SN = Sp0(∆) =

Sp(∆) ∩H2
0 (I).

In 1996, C. Schwab and M. Suri [67] introduced a certain type of mesh which became

known as the Spectral Boundary Layer Mesh. It is comprised of three elements only.

Its size can be changed, however we do not add or remove elements. (Hence, we are

really using a p-FEM on a moving mesh). Despite that, we call our method hp-FEM

in order to be consistent with the bibliography.

aNote that we use the same polynomial degree p for all elements. A more general approach is the
usage of different polynomials degrees on each subinterval.
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Chapter 3 Section 3.2

Definition 3.1.11. (Spectral Boundary Layer Mesh) For ν > 0, p ∈ N and 0 < ε ≤ 1,

define the spaces S(ν, p) = Sp0(∆) of piecewise polynomials where the partition is given

by

∆ :=

{0, νpε, 1− νpε, 1}, if νpε < 1/2,

{0, 1}, if νpε ≥ 1/2.

(3.1.12)

3.2 Approximation in the energy norm

The results presented in this section are an improvement of those found in [57], in

the sense that in certain places in [57] various inaccuracies exist. One example is the

following proposition (cf. Lemma 7 in [57]).

Proposition 3.2.1 Let u ∈ H2([−1, 1]). Then there exists a linear operator Ip :

H2([−1, 1])→ Pp([−1, 1]), p ≥ 3 such that

I(k)
p u(±1) = u(k)(±1), k = 0, 1, (3.2.2)

and moreover, if u ∈ C∞([−1, 1]),

‖(u− Ipu)′′‖2
0,[−1,1] ≤

(p− α1)!

(p− 2 + α1)!
‖u(α1+1)‖2

0,[−1,1], (3.2.3)

‖(u− Ipu)′‖2
0,[−1,1] ≤

1

(p− 1)2

(p− α2)!

(p− 2 + α2)!
‖u(α2+1)‖2

0,[−1,1], (3.2.4)

‖u− Ipu‖2
0,[−1,1] ≤

1

(p− 1)4

(p− α3)!

(p− 2 + α3)!
‖u(α3+1)‖2

0,[−1,1] (3.2.5)

for any integers 1 ≤ α1, α2, α3 ≤ p.

Proof. We make use of Legendre expansions. To be more specific, we form the Legendre

expansions of u′′ and I ′′pu. Then we obtain that, (see [64, Appendix C])

‖u′′ − I ′′pu‖2
0,[−1,1] =

∞∑
i=p−1

2

2i+ 1
|ai|2.

Here the coefficients ai are given by

ai =
2i+ 1

2

∫ 1

−1

u′′(ξ)Li(ξ)dξ. (3.2.6)
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Chapter 3 Section 3.2

We next define

I ′pu(ξ) =

∫ ξ

−1

I ′′pu(η)dη + u′(−1),

and

Ipu(ξ) =

∫ ξ

−1

I ′pu(η)dη + u(−1).

It is transparent that I ′pu(−1) = u′(−1) and Ipu(−1) = u(−1). By the definition of

ai, we note that

2a0 =

∫ 1

−1

u′′(η)dη = u′(1)− u′(−1), (3.2.7)

and using integration by parts,

2a1 =3

∫ 1

−1

ξu′′(ξ)dξ = 3
(
u′(1) + u′(−1)−

∫ 1

−1

u′(ξ)dξ
)

=3
(
u′(1) + I ′pu(−1)− u(1) + Ipu(−1)

)
.

(3.2.8)

In the same manner, we get

2a0 =

∫ 1

−1

I ′′pu(η)dη = I ′pu(1)− I ′pu(−1). (3.2.9)

The combination of (3.2.7) and (3.2.9) gives us

u′(1)− I ′pu(1)−
(
u′(−1)− I ′pu(−1)

)
= 0,

and thus u′(1) = I ′pu(1). Using this in (3.2.8) we get

2a1 =3
(
I ′pu(1) + I ′pu(−1)− u(1) + Ipu(−1)

)
. (3.2.10)

We proceed to show that Ipu(1) = u(1).

Ipu(1) =

∫ 1

−1

I ′pu(η)dη + u(−1)

=

∫ 1

−1

(∫ η

−1

I ′′pu(ξ)dξ + u′(−1)

)
dη + u(−1)

=

p−2∑
i=0

ai

∫ 1

−1

∫ η

−1

Li(ξ)dξdη + 2u′(−1) + u(−1)

=2a0 +

p−2∑
i=1

ai

∫ 1

−1

1

2i+ 1

(
Li+1(η)− Li−1(η)

)
dη + 2u′(−1) + u(−1)
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Chapter 3 Section 3.2

=2a0 −
2a1

3
+ 2u′(−1) + u(−1)

=u′(1) + u′(−1)− 2a1

3
+ u(−1).

From (3.2.10) we obtain

Ipu(1) =u′(1) + u′(−1)−
(
I ′pu(1) + I ′pu(−1)− u(1) + Ipu(−1)

)
+ u(−1) = u(1),

and this establishes (3.2.2). With the aid of the identity [64, Lemma 3.10]

∫ 1

−1

∣∣(u′′)(k)(ξ)(1− ξ2)k
∣∣dξ =

∑
i≥k

|ai|2
2

2i+ 1

(i+ k)!

(i− k)!
, k ≥ 0,

we get the estimate (3.2.3), namely, for 1 ≤ k ≤ p,

‖u′′ − I ′′pu‖2
0,[−1,1] ≤

∞∑
i≥k−1

2

2i+ 1
|ai|2

(i− k + 1)!

(i+ k − 1)!

(i+ k − 1)!

(i− k + 1)!

≤ (p− k)!

(p− 2 + k)!

∞∑
i≥k−1

2

2i+ 1
|ai|2

(i+ k − 1)!

(i− k + 1)!

≤ (p− k)!

(p− 2 + k)!

∫ 1

−1

∣∣(u′′)(k−1)(ξ)(1− ξ2)k−1
∣∣dξ

≤ (p− k)!

(p− 2 + k)!
‖u(k+1)‖2

0,[−1,1].

In order to get (3.2.4) we observe that

I ′pu(ξ)− u′(ξ) =

∫ ξ

−1

∞∑
i=p−1

aiLi(t)dt =
∞∑

i=p−1

ai

∫ ξ

−1

Li(t)dt.

We note that

ψi(x) =

∫ x

−1

Li(t)dt = − 1

i(i+ 1)
(1− x2)L′i(x).

The above equality comes up by integrating the Legendre differential equation. By [64,

(3.3.9)] we have ∫ 1

−1

1

1− x2
ψi(x)ψj(x)dx =

δij
i(i+ 1)(2j + 1)

,

where δij is the Kronecker delta. Then

‖(u− Ipu)′‖2
0,[−1,1] ≤

∫ 1

−1

1

1− x2 |u′(x)− I ′pu(x)|2dx
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≤
∫ 1

−1

1

1− x2

( ∞∑
i=p−1

aiψi(x)
)2

dx

≤
∞∑

i=p−1

|ai|2
∫ 1

−1

ψ2
i (x)

1− x2dx

≤
∞∑

i=p−1

2

i(i+ 1)(2i+ 1)
|ai|2

≤ (p− k)!

(p− 2 + k)!

∞∑
i≥k−1

2

i(i+ 1)(2i+ 1)
|ai|2

(i+ k − 1)!

(i− k + 1)!

≤ 1

(p− 1)2

(p− k)!

(p− 2 + k)!
‖u(k+1)‖2

0,[−1,1].

To complete the proof we proceed as follows:

u(x)− Ipu(x) =
∞∑

i=p−1

ai

∫ x

−1

∫ η

−1

Li(t)dtdη =
∞∑

i=p−1

√
2

2i+ 1
aihi+3(x),

with hi given by (3.1.8). It can be shown [85] that

∫ 1

−1

hi(x)hj(x)dx

≤
C
i4
, if j = i, i+ 2, or i− 2

= 0, otherwise
.

Hence we obtain

∫ 1

−1

|u(x)− Ipu(x)|2dx ≤
∫ 1

−1

( ∞∑
i=p−1

√
2

2i+ 1
aihi+3(x)

)2

dx

≤
∞∑

i=p−1

C

i4
2

2i+ 1
|ai|2,

and this gives us

‖u− Ipu‖2
0,[−1,1] ≤C

(p− 2− k)!

(p− 2 + k)!

∞∑
i≥k−1

2

i4(2i+ 1)
|ai|2

(i+ k − 1)!

(i− k + 1)!

≤ C

(p− 1)4

(p− k)!

(p− 2 + k)!
‖u(k+1)‖2

0,[−1,1].

We next present a Lemma which is necessary for Theorem 3.2.13. We mention that

here we borrow the ideas of [83, Lemma 3.1].
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Chapter 3 Section 3.2

Lemma 3.2.11 Let p ≥ 3, λ ∈ (0, 1]. Then, there is a constant C > 0 which satisfies

(
p− λ(p− 2)

)
!(

p− 2 + λ(p− 2)
)
!
≤ Cp2(p− 2)−2λ(p−2)e2λ(p−2)−1

[
(1− λ/3)(1−λ)

(1 + λ)(1+λ)

]p−2

. (3.2.12)

Proof. Recall Stirling’s approximation (2.4.6). Using it one may get

(
p− λ(p− 2)

)
!(

p− 2 + λ(p− 2)
)
!
≤

≤
√

2π
(
p− λ(p− 2)

)
2π
(
p− 2 + λ(p− 2)

)
(
p− λ(p− 2)

e

)p−λ(p−2)

(
p− 2 + λ(p− 2)

e

)p−2+λ(p−2)

e

e
1

12(p−2+λ(p−2))+1

≤ p2e2λ(p−2)−1

√
p
(
1− λ(1− 2/p)

)
(p− 2)(1 + λ)

pp−2−λ(p−2)

(p− 2)p−2+λ(p−2)

(
1− λ(1− 2/p)

)p−λ(p−2)

(1 + λ)p−2+λ(p−2)

≤ p2e2λ(p−2)−1(1− λ/3)2

√
1 +

2

p− 2

√
1− λ/3
1 + λ

(
1 +

2

p− 2

)p−2

×

× (p− 2)−2λ(p−2) (1− λ/3)(1−λ)(p−2)

(1 + λ)(1+λ)(p−2)

≤
√

3e2p2

√
1− λ/3
1 + λ

(p− 2)−2λ(p−2)e2λ(p−2)−1

[
(1− λ/3)(1−λ)

(1 + λ)(1+λ)

]p−2

.

Theorem 3.2.13 Suppose the space S(ν, p) is given by Definition 3.1.11 and assume

that the functions u and uN solve (3.1.1) and (3.1.2), respectively. Then the error

bound

‖u− uN‖E,I ≤ Ce−σνp, 0 < ν ≤ ν0 (3.2.14)

holds, for some constants ν0, C, σ > 0 depending only on the input data α, β, f .

Proof. b Since the value of the number νpε determines the form of our mesh, one has to

study two cases. First, suppose that νpε ≥ 1/2 or equivalently (2νε)−1 ≤ p. We note

that in this case the mesh is comprised of one only element, ∆ = {0, 1}. For p ≥ 3, by

appealing to Proposition 3.2.1, one is able to find a polynomial Ipu ∈ Πp that satisfies

(3.2.2)–(3.2.5). The combination of those inequalities yields

‖u− Ipu‖2
E,I ≤ C

(p− α)!

(p− 2 + α)!

( 1

(p− 1)4
+

1

(p− 1)2
+ ε2

)∥∥∥u(α+1)
∥∥∥2

0,I
. (3.2.15)

bThe proof follows ideas that are presented in [83, Lemma 4]
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Chapter 3 Section 3.2

Set α = λ(p − 2) ∈ N, for λ ∈ (0, 1) to be selected shortly. From Lemma 3.2.11 we

have the estimate (3.2.12). Also if λ > 2ν the bound (2.2.5) gives

‖u(λ(p−2)+1)‖0,I ≤Cγλ(p−2)+1 max{(λ(p− 2) + 1)λ(p−2)+1, ε−λ(p−2)}

≤Cγλ(p−2)+1(λ(p− 2) + 1)λ(p−2)+1,

since p > 1
2νε

. We combine the above inequalities to get

‖u− Ipu‖2
E,I ≤

≤ Cp2(p− 2)−2λ(p−2)e2λ(p−2)−1

[
(1− λ/3)(1−λ)

(1 + λ)(1+λ)

]p−2

γ2(λ(p−2)+1)(λ(p− 2) + 1)2(λ(p−2)+1)

≤ Cp2e2λ(p−2)−1

[
(1− λ/3)1−λ

(1 + λ)1+λ

]p−2

γ2(λ(p−2)+1)(λ(p− 2) + 1)2(λ+ 1/(p− 2))2λ(p−2)

≤ Cp4e2λ(p−2)−1γ2(λ(p−2)+1)λ2λ(p−2)

[
(1− λ/3)1−λ

(1 + λ)1+λ

]p−2[
(1 + 1/λ(p− 2))λ(p−2)

]2

≤ Cp4

[
(1− λ/3)1−λ

(1 + λ)1+λ
(eγλ)2λ

]p−2

.

The choicec λ ≤ (eγ)−1 ∈ (0, 1) yields, for ω := | lnw| and w := (1−λ/3)1−λ

(1+λ)1+λ < 1, the

estimate

‖u− Ipu‖E,I ≤ Cp4e−ων(p−2),

and the desired result follows from (3.1.3). In the case νpε < 1/2, the four mesh

points discretize the domain into three elements, namely ∆ = {0, νpε, 1 − νpε, 1}.
The solution u is decomposed (see Chapter 2) as

u = uM + ũM + ûM + rM ,

and each term must be handled separetely.

For p ≥ 3, from Proposition 3.2.1 there exists a polynomial IpuM such that

‖uM − IpuM‖E,I ≤ C
(
ε2 +

1

(p− 1)2
+

1

(p− 1)4

) (p− α)!

(p− 2 + α)!

∥∥∥w(α+1)
M

∥∥∥2

0,I
.

From (2.4.43), the inequality n! ≤ nn, n ∈ N and by following the same procedure as
cAs a consequence of this choice, the constant ν in the definition of the mesh must satisfy ν ≤ 1

2eγ .
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in the case presented before, we get, by setting α = λ1(p− 2) for some λ1 ∈ (0, 1),

‖uM − IpuM‖2
E,I ≤

≤C
(
ε2 +

1

(p− 1)2
+

1

(p− 1)4

) (
p− λ1(p− 2)

)
!(

p− 2 + λ1(p− 2)
)
!
K

2(λ1(p−2)+1)
1 [(λ1(p− 2) + 1)!]2

≤Cp2(p− 2)−2λ1(p−2)e2λ1(p−2)−1

[
(1− λ1/3)(1−λ1)

(1 + λ1)(1+λ1)

]p−2

K
2(λ1(p−2)+1)
1 (λ1(p− 2) + 1)2(λ1(p−2)+1)

≤CK2
1p

2(λ1(p− 2) + 1)2

[
(1− λ1/3)1−λ1

(1 + λ1)1+λ1
(eK1)2λ1

]p−2

(λ1 + 1/(p− 2))2λ1(p−2)

≤Cp4

[
(1− λ1/3)1−λ1

(1 + λ1)1+λ1
(eλ1K1)2λ1

]p−2

.

As a result, for λ1 ≤ 1
eK1

, ω1 := | ln w̃1| and w̃1 := (1−λ1/3)1−λ1

(1+λ1)1+λ1
< 1 we have

‖uM − IpuM‖E,I ≤ Cp4e−ω1ν(p−2). (3.2.16)

Regarding the boundary layer components one is obliged to analyse them into sepa-

rate cases.d For the interval I∗ε = (0, νpε) we have an approximation given again by

Proposition 3.2.1 such that

‖ũM − IpũM‖2
E,I∗ε ≤ C(νpε)2α−2

(
ε2 +

(νpε)2

(p− 1)2
+

(νpε)4

(p− 1)4

)
(p− α)!

(p− 2 + α)!

∥∥∥ũ(α+1)
M

∥∥∥2

0,I∗ε

.

Setting α = λ2(p− 2), for some λ2 ∈ (0, 1) and applying (2.4.44), yields

‖ũM − IpũM‖2
E,I∗ε ≤

≤C(νpε)2λ2(p−2)−2K2λ2(p−2)+2ε2

(
1 +

(νp)2

(p− 1)2
+

(νp)4ε2

(p− 1)4

)
×

×
(
p− λ2(p− 2)

)
!(

p− 2 + λ2(p− 2)
)
!

∫ νpε

0

ε−2λ2(p−2)e−2
√
α(0)dist(x,∂I)/εdx

≤νpεC(νp)2λ2(p−2)−2K2λ2(p−2)+2p2(p− 2)−2λ2(p−2)e2λ2(p−2)−1

[
(1− λ2/3)(1−λ2)

(1 + λ2)(1+λ2)

]p−2

≤νpεCν−2ν2λ2(p−2)
( p

p− 2

)2λ2(p−2)

e2λ2(p−2)−1K2λ2(p−2)+2

[
(1− λ2/3)1−λ2

(1 + λ2)1+λ2

]p−2

≤Cεp
ν

(2λ2ν)2λ2(p−2)
(

1 +
2

2λ2(p− 2)

)2λ2(p−2)

e2λ2(p−2)−1K2λ2(p−2)+2

[
(1− λ2/3)1−λ2

(1 + λ2)1+λ2

]p−2

≤Ce2K2 εp

ν

[
(1− λ2/3)1−λ2

(1 + λ2)1+λ2
(2λ2eνK)2λ2

]p−2

.

dWe omit the analysis of ûM since it is similar to the one we illustrate.
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Chapter 3 Section 3.2

For ω2 := | ln w̄2| and w̄2 := (1−λ2)1−λ2

(1+λ2)1+λ2
we obtain

‖ũM − IpũM‖2
E,I∗ε ≤ εCe−ω2ν(p−2), (3.2.17)

provided ν ≤ (2λ2eK)−1.

On the interval I \ I∗ε = (νpε, 1) we use ũM ’s cubic interpolant I3ũM , and get

‖ũM − I3ũM‖2
E,I\I∗ε ≤ ‖ũM‖

2
E,I\I∗ε + ‖I3ũM‖2

E,I\I∗ε .
(3.2.18)

From the regularity result (2.4.44) we get

‖ũM‖2
E,I\I∗ε ≤

∫ 1

νpε

(
ε2|ũ′′M |2 + |ũ′M |2 + |ũM |2

)
dx ≤ Ce−νp,

and

‖I3ũM‖2
E,I\I∗ε ≤ C(|ũM(νpε)|2 + |ũ′M(νpε)|2 + |ũM(1)|2 + |ũ′M(1)|2) ≤ Ce−νp,

Combining the bounds on the intervals (0, νpε), (νpε, 1) by (3.1.3) we obtain

‖ũM − IpũM‖2
E,I ≤ Ce−νp,

as desired.

Remark 3.2.19. The constant ν0 in the previous theorem can be specified if we know

the constants of analyticity of the data. However, the choice ν0 = 1, i.e. the mesh is

chosen as {0, pε, 1−pε, 1} if pε ≤ 1/2, gives the best result in all numerical experiments

performed by us and in the literature.

To summarize, it has been illustrated that when then hp-FEM is applied to fourth-order

SPBVPs, the error measured in the energy norm decays exponentially. However, we

must mention a weak spot. The natural choice of the energy norm is not balanced.

To see this, suppose the energy norm of a layer function l : [0, 1] → [0, 1] such that

l ′(x) = exp
(
−dist(x, ∂I)/ε

)
, ∀x ∈ [0, 1] is measured. We find that the boundary layer

term contributes O(ε1/2) to ε‖l ′′‖0,I . On the other hand, the smooth part contributes

O(1) to the corresponding term. Hence, each component has different orders of mag-

nitude and that is the reason researchers call the energy norm unbalanced. Moreover,
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Chapter 3 Section 3.3

we observe that as the perturbation parameter ε tends to zero, the energy norm of

the layer vanishes. Therefore researchers prefer to choose a balanced norm in order to

avoid this phenomenon. The balanced norm is defined as

|||u|||2I = ε‖u′′‖2
0,I + ‖u‖2

1,I ,

and in the next section we will numerically test the following conjectures:

|||u− uN |||I ≤ Ce−βp, β ∈ R+, (3.2.20)

||u(κ) − u(κ)
N ||∞,I ≤ Ce−σp, σ ∈ R+, κ = 0, 1, (3.2.21)

||u(κ) − u(κ)
N ||∞,[0,νpε]∪[1−νpε,1] ≤ Cε1−κe−δp, δ ∈ R+, κ = 0, 1. (3.2.22)

Similar results have been established for second order SPPs [50] and we believe they

hold in our case too.

3.3 Numerical Results

Now we present some numerical results to test the conjectures (3.2.20)–(3.2.22). Nu-

merical results illustrating robust exponential convergence in the energy norm may be

found in [57].

Example 3.3.1. We first provide a numerical approximation for a simple form of

(2.2.1) and (2.2.3), i.e. we choose constant coefficients and we set them as α(x) =

β(x) = f(x) = 1. Using the exact solution for the calculations, in Figure 3.3 we

present the error in the balanced norm versus the number of degrees of freedom in a

semilog scale. The perturbation parameter takes the values ε = 10−j, j = 3, . . . , 8. As

Figure 3.3 illustrates, the method yields robust exponential convergence suggesting that

(3.2.20) holds. We also present the numerical results for the error of the approximation

and its first-order derivative in the maximum norm (see Figures 3.4 and 3.5). These

numerical results show that the error in u improves as ε → 0, however the error in u′

remains unaffected as ε→ 0. This fact suggests that (3.2.21), (3.2.22) also hold.

Example 3.3.2. Next we consider a variable coefficient problem with α(x) = e−x,

β(x) = 0 and f(x) = e−x
2

+ 1. As was done in Example 3.3.1, in Figures 3.6, 3.7
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and 3.8 we show the now estimated error in the balanced and maximum norms versus

the number of degrees of freedom, in a semi-log scale. We note that here the error is

calculated with the aid of a reference approximation which is obtained with polynomials

of degree 2p, since the exact solution is not availiable. We again reach the same

conclusions as in the previous example.
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Figure 3.3: Balanced norm convergence for Example 3.3.1
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Figure 3.4: Maximum norm convergence in u, within the layer region, for Example
3.3.1
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Figure 3.5: Maximum norm convergence in u′, within the layer region, for Example
3.3.1
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Figure 3.6: Balanced norm convergence for Example 3.3.2
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Figure 3.7: Maximum norm convergence in u, within the layer region, for Example
3.3.2
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Figure 3.8: Maximum norm convergence in u′, within the layer region, for Example
3.3.2
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Chapter 4

Regularity results for a fourth-order

SPP in two-dimensions

4.1 Introduction

In this chapter we study the regularity of the solution to a Dirichlet boundary value

problem for a fourth-order singularly perturbed equation defined on a bounded arbi-

trary smooth domain in two dimensions. Namely, for ε > 0, we consider the model

problem: find u ∈ C4(Ω) such that

Λεu = ε2∆2u− b∆u+ cu = f, in Ω ⊂ R2,

u =
∂u

∂n
= 0, on ∂Ω,

 (4.1.1)

where b and c are positive constants, the right-hand-side function f is assumed to be

analytic on a neighborhood of Ω, in the sense that

‖Dαf‖∞,Ω ≤ Cfγ
|α|
f max{|α||α|, ε1−|α|}, for all α = (α1, α2) ∈ N0 × N0, (4.1.2)

and Ω is a bounded domain with an analytic boundary, i.e. ∂Ω is a closed, nonselfin-

tersecting, analytic curve. As usual, ∆ is the Laplacian operator, ∆2 = ∆∆ is the

Biharmonic operator, and ∂
∂n

is the normal derivative (directed outwards).

We focus on fourth-order partial differential problems with analytic data defined on

smooth domains. In order to generalize the regularity results for the corresponding
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Chapter 4 Section 4.1

problems over nonsmooth domains, one must address many issues that arise. For

instance, the corners of the domain may complicate the problem and reduce the regu-

larity of the solution. This kind of problems are still open. We recall that for second

order problems analogous research has been obtained by several researchers (see for

example [10],[19],[35],[42],[45] and [81]) and we expect that similar results also hold for

fourth order SPPs on nonsmooth domains. This, however, is not pursued further in

this dissertation.

Our goal is to control the high order partial derivatives of the solution u to the problem

(4.1.1), explicitely in ε, under the assumption that the input data are analytic too. We

adapt results from classical elliptic theory to the data of our problem and we obtain a

bound on the higher-order partial derivatives of the solution, in the form:

‖Dαu‖L2(Ω) ≤ CK |α|max{|α||α|, ε1−|α|}, for all α = (α1, α2) ∈ N0 × N0, (4.1.3)

with C,K > 0 independent of ε. In the case ε ≥ 1
|α| , the above estimate is sufficient

to obtain the desired approximation result.

However, in the complementary case this bound is not helpful, since the error grows

as the perturbation parameter tends to zero. To overcome this difficulty we apply the

technique from asymptotic expansion theory, that has been used in Chapter 2. The

idea is the same as in 1-D, i.e. we decompose the solution into three parts, a smooth

part, boundary layers and a remainder. We handle each part separately, namely we

present the asymptotic expansions for each part and with the appropriate treatment,

we present bounds on their high order partial derivatives. We mention that we use

boundary fitted coordinates from [6] and we describe them in Section 4.4.

Variational problem: We recast (4.1.1) into a variational form that reads: Find

u ∈ H2
0 (Ω) such that

Bε(u, v) = F (v), for all v ∈ H2
0 (Ω), (4.1.4)

where the bilinear form Bε and the linear functional F are defined as

Bε(u, v) = ε2〈∆u,∆v〉Ω + 〈b∇u,∇v〉Ω + 〈cu, v〉Ω, (4.1.5)
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and

F (v) = 〈f, v〉Ω.

We define the energy norm as

‖u‖2
E,Ω := Bε(u, u), (4.1.6)

and it follows that the bilinear form (4.1.5) is strongly coercive with respect to this

norm, i.e. for some constant C > 0,

Bε(u, u) ≥ ‖u‖2
E,Ω, ∀u ∈ H2

0 (Ω). (4.1.7)

Moreover

‖u‖E,Ω ≤ ‖f‖L2(Ω). (4.1.8)

4.2 Some auxiliary results

Before we present the main results, we collect some auxiliary lemmata.

Lemma 4.2.1 [46, Lemma B.4] Let I ⊂ R be a closed bounded interval and assume

that the functions f, g are analytic on I. Then there are constants C, K1, K2 > 0 such

that

‖Dp(fng)‖L∞(I) ≤ Cp!Kn
1K

p
2 ∀n, p ∈ N0.

Moreover, the constant K1 > ‖f‖L∞(I) may be chosen arbitrarily close to ‖f‖L∞(I).

Lemma 4.2.2 [49, Lemma 2.7] For every q ≥ 0 and for every M ∈ N0,

M∑
j=0

qj ≤ 2
(
1 + (4q)M

)
.

Lemma 4.2.3 [45, Lemma 7.3.13] For every M , a ≥ 0, α ∈ (0, 1) there holds

sup
r>0

(M + a+ r)Me−αr ≤MMα−Me(1−α)Meαa.

Proposition 4.2.4 For some positive constants b and c we consider the second order
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Dirichlet boundary value problem: Find u ∈ C2(Ω) such that

−b∆u+ cu = f, in Ω ⊆ R2,

u = g, on ∂Ω.
(4.2.5)

Here we suppose that f is analytic in a neighborhood of Ω and g is analytic on ∂Ω.

The domain Ω is assumed to be a bounded Lipschitz domain, and ∂Ω is assumed to be

a closed, nonselfintersecting, analytic curve. For an analytic function h, the problem

(4.2.5) is equivalent to the BVP: Find u∈ C2(Ω) such that

−b∆v + cv = h, in Ω ⊆ R2,

v = 0, on ∂Ω,
(4.2.6)

where h is given by h = f − cG. Here G denotes an analytic extension of g into Ω (as

defined in the proof).

Proof. The boundary data g is analytic; therefore we extend it analytically into Ω as

follows: We define the extended function G by

−∆G = 0 on Ω,

G = g on ∂Ω.

Standard elliptic theory gives that G is analytic on Ω. We proceed by setting v as

v = u−G. (4.2.7)

For h = f − cG, the function v satisfies (4.2.6).

Remark 4.2.8. We consider the problem: Find u such that

−b∆u+ cu = f, in Ω ⊆ R2,

u = 0, on ∂Ω.
(4.2.9)

Here b and c are again assumed to be positive constants. The weak solution of (4.2.9)

solves the problem: Find u ∈ H1
0 (Ω) such that

B(u, v) = F (v), for all v ∈ H1
0 (Ω),
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where the bilinear form is defined as B(u, v) := b〈∇u,∇v〉 + c〈u, v〉, and the linear

form F as F (v) := 〈f, v〉.

The associated energy norm is given by ‖u‖2
E,Ω = B(u, u). It is easy to see that

c‖u‖2
0,Ω ≤ ‖u‖2

E,Ω, b‖∇u‖2
0,Ω ≤ ‖u‖2

E,Ω. (4.2.10)

Moreover by Cauchy’s inequality we obtain that B(u, u) ≤ ‖f‖0,Ω‖u‖0,Ω, and therefore

we have

‖u‖2
E,Ω ≤ ‖f‖0,Ω‖u‖0,Ω ≤

1√
c
‖f‖0,Ω‖u‖E,Ω,

which leads to

‖u‖E,Ω ≤
1√
c
‖f‖0,Ω. (4.2.11)

From the differential equation of (4.2.9), we have −b∆u = f − cu and hence we get

b‖∆u‖0,Ω = ‖f − cu‖0,Ω ≤ ‖f‖0,Ω + c‖u‖0,Ω. (4.2.12)

Combining (4.2.10), (4.2.11) and (4.2.12) we obtain

‖∆u‖0,Ω ≤
2

b
‖f‖0,Ω. (4.2.13)

Theorem 4.2.14 [49, Theorem 3.1] Let f, g be analytic functions on Ω and ∂Ω,

respectively and let u ∈ C2(Ω) satisfy of the boundary value problem:

−b∆u+ cu = f, in Ω ⊂ R2,

u = g, on ∂Ω,
(4.2.15)

where ∂Ω is an analytic curve. Then there are C and γ̃ > 0 depending only on f and

g and the geometry of Ω such that

‖Dαu‖L2(Ω)≤Cγ̃|α|max{|α|, (b/c)−1/2}|α|(1 + ‖u‖E,Ω), ∀α ∈ N2
0. (4.2.16)

Let G be a bounded domain of class C1 and let u, v be of class C4 on G = G ∪ ∂G.

From Green’s theorem we have

∫
G

(u∆v − v∆u)dx =

∫
∂G

(
u
∂v

∂n
− v ∂u

∂n

)
dS, (4.2.17)
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where n is the exterior normal. We define (see for instance [2]) the fundamental sin-

gularity

K∗(r) :=
1

8π
r2(log r − 1) (4.2.18)

of the operator ∆2 at x = 0 which satisfies the differential equation

∆2K∗ = δ in R2, (4.2.19)

in the sense of distributions, where δ is the Dirac measure supported at the origin.

Now, suppose G is bounded and of class C1, x0 ∈ G, u ∈ C4(G) and there holds

∆2u = f , on G. Suppose B(x0, ρ) ⊂ G and apply (4.2.17) to the domain G \B(x0, ρ),

with v(x) = K∗(x− x0). We obtain∫
∂B(x0,ρ)

(
u
∂v

∂n
− v ∂u

∂n

)
dS =

∫
∂G

(
u
∂v

∂n
− v ∂u

∂n

)
dS +

∫
G\B(x0,ρ)

v(x)f(x)dx. (4.2.20)

Letting ρ→ 0 in (4.2.20) we get

u(x0) =

∫
∂G

(
u
∂v

∂n
− v ∂u

∂n

)
dS +

∫
G

K∗(x− x0)f(x)dx. (4.2.21)

In (4.2.21) with v(x) = K∗(x− x0), we see that if u is of class C4 on G with

∆2u(x) = f(x), (4.2.22)

where G is of a class C1, then the boundary integrals are biharmonic so that the

function U defined by

U(x) =

∫
G

K∗(x− x0)f(ξ)dξ, (4.2.23)

would differ from u by a biharmonic function and hence would also be a solution of

(4.2.22).

Definition 4.2.1 The equation (4.2.22) is known as nonhomogeneous biharmonic

equation and the function U in (4.2.23) is called the potential of f .

The above are based on Morrey who studied integrals of the form

U(x) =

∫
G

K(x− ξ)f(ξ)dξ, (4.2.24)
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and the results which we present next, are taken from [53].

Theorem 4.2.25 [53, Theorem 3.4.2] Let m be a positive integer and let the function

K be essentially homogeneous of degree m − n. Moreover, suppose K belongs to the

space Cm+1(Rn \ {0}), suppose f is defined on Rn and u is defined by

u(x) =

∫
Rn
K(x− y)f(y)dy, y 6= x ∈ Rn.

1. Let 0 < µ ≤ 1. If f ∈ Cµ
c (Rn), then u ∈ Cm

µ (Rn) and

Dαu(x) =


∫
Rn D

αK(x− y)f(y)dy, 0 ≤ |α| ≤ m− 1,

Cαf(x) + limρ→0

∫
Rn\B(x,ρ)

DαK(x− y)f(y)dy, |α| = m,

(4.2.26)

where Cα = −
∫

Σ
DβK(−η)ηγdΣ, α = β+γ, |β| = m−1, |γ| = 1, Σ = ∂B(0, 1).

2. If f ∈ Lp(Rn) and has compact support on G ⊂⊂ Rn then u ∈ Hm
p (D) for any

bounded domain D, the formula (4.2.26) holds almost everywhere and

‖u‖mp,D ≤ C(n,N,m, p,D,K)‖f‖0
p,G. (4.2.27)

4.3 Growth estimates

In this section, we give an important result (Theorem 4.3.32) regarding the derivatives

of the solution to the fourth order elliptic Dirichlet SPP, (4.1.1). As already mentioned,

we are interested in the fourth order SPP with constant coefficients, however through-

out this section we assume that b and c are analytic functions. This is necessary in

order to obtain the desired result on the smooth domain. To be more specific, we will

first give the results on the disc and half disk. We then need to generalize them on

an arbitrary smooth domain. To achieve this task (see Theorem 4.3.32) we will use a

certain conformal mapping. The fourth order SPP with constant coefficients is trans-

formed under this mapping into a fourth order SPP with variable coefficients. For this

reason we provide the analysis for the problem with the variable coefficients.

Here, we adopt ideas from [49], [53] and we use similar notation as in [53]. We note that

Morrey [53] first studied the general second order elliptic Dirichlet problem. Melenk
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and Schwab [49] considered the Dirichlet boundary value problem for second order SPP

in two dimensions. We address the same goal that Melenk and Schwab have achieved

in [49] which in our case concerns the fourth order SPP instead. Namely, we control

the dependence of the growth of the higher order partial derivatives of the solution on

the perturbation parameter and the differentiation order.

The following notation as mentioned before, follows [53]. First, we set

[n] := max{1, n}, for all n ∈ Z.

Then, we define for a positive number ρ, the discs Bρ and half discs Hρ in two-

dimensions by

Bρ := Bρ(0) ⊂ R2, Hρ := {(x, y) ∈ Bρ | y > 0}.

Suppose x̃ ∈ R2 and D ⊂ R2. We set the distance of x̃ from D as

d(x̃, D) = inf{‖x̃− ỹ‖2 : ỹ ∈ D},

where ‖ · ‖2 is the usual Euclidean norm.

For a real number ρ0 > 0 and a smooth function u ∈ C∞(Bρ0), we introduce the

following notation:

We consider a two dimensional vector α = (α1, α2) ∈ R2 and we demand each of its

components to be non-negative integers. We also define

|α| = α1 + α2, α! = (α1!)(α2!), (4.3.1)

∣∣∇nu(x, y)
∣∣2 :=

∑
|α|=n

|α|!
α!

∣∣Dαu(x, y)
∣∣2 =

∑
α1+α2=n

n!

(α1!)(α2!)

∣∣∣∣∂nu(x, y)

∂xα1∂yα2

∣∣∣∣2, ∀n ∈ N0.

(4.3.2)

Moreover in order to control the derivatives of the solution to the problem we introduce

the following notation:

N̆ρ0,n(u) :=
1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)4+n‖∇n+4u‖L2(Bρ), ∀n ∈ N0 ∪ {−4,−3,−2,−1},
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M̆ρ0,n(u) :=
1

n!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)4+n‖∇nu‖L2(Bρ), for all n ∈ N0.

As can be seen the only difference between the two quantities above is located in the

order of the partial derivatives.

Similarly, we introduce notation about smooth functions defined on the half space and

vanishing on the boundary. The first notation (with two indices) is used to control

the tangential derivatives of the function. The second one controls both tangential

and normal derivatives. We let u ∈ C∞(Hρ0) and u = ∂u
∂η

= 0 along ∂Hρ0 . Then

define

N̆ ′ρ0,n
(u) :=


1
n!

supρ0/2≤ρ<ρ0
(ρ0 − ρ)4+n

∥∥∥∇4
(
∂nu
∂xn

)∥∥∥
L2(Hρ)

, n ≥ 0,

supρ0/2≤ρ<ρ0
(ρ0 − ρ)4+n‖∇4+nu‖L2(Hρ), n = −4,−3,−2,−1,

and

N̆ ′ρ0,n,m
(u) :=

1

[n+m]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)4+n+m

∥∥∥∥ ∂n+m+4u

∂xn∂ym+4

∥∥∥∥
L2(Hρ)

, n ≥ 0, m ≥ −4.

Finally, for all n ∈ N0 and f ∈ C∞(Hρ0), the next quantity controls the tangential and

all derivatives, respectively, of the smooth function defined on the half space:

M̆ ′
ρ0,n

(f) :=
1

n!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)4+n
∥∥∥∂nf
∂xn

∥∥∥
L2(Hρ)

,

and

M̃ρ0,n(f) :=
1

n!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)4+n‖∇nf‖L2(Hρ).

Here we mention that for every u ∈ C∞(Hρ0),

N̆ ′ρ0,n,i
(u) ≤ N̆ ′ρ0,n+i(u), for all n ≥ −4 and i = −4,−3,−2,−1, (4.3.3)

and

M̆ ′
ρ0,n

(f) ≤ M̃ ′
ρ0,n

(f), for all n ∈ N0, f ∈ C∞(Hρ0). (4.3.4)

The proofs of the auxiliary results presented in this section, appear in the Appendix

at the end of the chapter.
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Lemma 4.3.5 Let ρ, ρ0 ∈ R, 0 < ρ < ρ0. Suppose u ∈ H3(Bρ0), u
∣∣
Bρ
∈ H4(Bρ), and

∆2u = f, on Bρ0 .

Then there exists a constant C such that

∫
Bρ

|∇4u|2dx ≤ C

[∫
Bρ+δ

f 2dx+

∫
Bρ+δ

(
δ−2|∇3u|2 + δ−4|∇2u|2 + δ−6|∇u|2 + δ−8|u|2

)
dx

]
,

(4.3.6)

for all δ ∈ (0, ρ0 − ρ).

Proof. First we define η : R2 → R as

η(x̃) :=


1, x̃ ∈ Bρ ⊂ Bρ+δ,

1− 2δ−1dist(x̃, Bρ), for 0 ≤ dist(x̃, Bρ) ≤ δ/2,

0, otherwise,

and by standard mollification we obtain a new function, denoted again by η, such that

η ∈ C∞(Bρ+δ). We set v = ηu and we note that

∆2v =ηf + 6
(
∆η
)(

∆u
)

+ u∆2η+

+ 4

[
∂η

∂x

(
∂3u

∂x3
+

∂3u

∂x∂y2

)
+
∂η

∂y

(
∂3u

∂y3
+

∂3u

∂x2∂y

)]
+

+ 4

[
∂u

∂x

(
∂3η

∂x3
+

∂3η

∂x∂y2

)
+
∂u

∂y

(
∂3η

∂y3
+

∂3η

∂x2∂y

)]
,

and hence

|∆2v| ≤ C
{
|η||f |+

∣∣∆η∣∣∣∣∆u∣∣+ |u|
∣∣∆2η

∣∣+
∣∣∇η∣∣∣∣∇3u

∣∣+
∣∣∇u∣∣∣∣∇3η

∣∣}.
Using (4.2.27) of Theorem 4.2.25 and the definition of η, we obtain the desired result.

Lemma 4.3.7 Let ρ, ρ0 ∈ R, 0 < ρ < ρ0. Suppose u ∈ H3(Hρ0), u
∣∣
Hρ
∈ H4(Hρ), and

∆2u = f, on Hρ0 ,

u =
∂u

∂η
= 0, on ∂Hρ0 .
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Then there is a constant C such that

∫
Hρ
|∇4u|2dx ≤ C

[∫
Hρ+δ

f 2dx+

∫
Hρ+δ

(
δ−2|∇3u|2 + δ−4|∇2u|2 + δ−6|∇u|2 + δ−8|u|2

)
dx

]
,

(4.3.8)

for all δ ∈ (0, ρ0 − ρ).

Proof. We extend the solution u and the right hand side function f to the disk Bρ0 using

the reflection given by the following formula, (which satisfies the boundary conditions,

see e.g. [62, Theorem 3.1])

v(x, y) = −v(x,−y)− 2y
∂v

∂y
(x,−y)− y2∆v(x,−y), for (x, y) ∈ Bρ0 \ Hρ0 .

The desired result follows directly from the previous lemma.

Lemma 4.3.9 Let 0 < ρ0 ≤ 1. Suppose u, f ∈ C∞(Bρ0) and u satisfies

∆2u = f, (4.3.10)

on Bρ0. We suppose also that M̆ρ0,n(f) < ∞ and N̆ρ0,n(u) < ∞, for each n. Then,

there is a constant C such that

N̆ρ0,n(u) ≤ C
(
M̆ρ0,n(f) + N̆ρ0,n−1(u) + N̆ρ0,n−2(u) + N̆ρ0,n−3(u) + N̆ρ0,n−4(u)

)
, n ≥ 0.

(4.3.11)

Proof. Let n ∈ N. We note that the partial derivatives ∂nu
∂xn

, ∂nu
∂yn

satisfy the biharmonic

equations ∆2(∂
nu
∂xn

) = ∂nf
∂xn

, ∆2(∂
nu
∂yn

) = ∂nf
∂yn

, respectively. Hence we apply Lemma 4.3.5

for each ∂nu
∂xn

, ∂nu
∂yn

, we sum up the estimates and we obtain

(
N̆ρ0,n(u)

)2

≤ C(n!)−2 sup
ρ0/2≤ρ<ρ0

(ρ0 − ρ)8+2n

[∫
Bρ0+δ

|∇nf |2dx+

∫
Bρ0+δ

(
δ−2|∇n+3u|2+

+δ−4|∇n+2u|2 + δ−6|∇n+1u|2 + δ−8|∇nu|2
)
dx

]
.

With the aid of the estimates (4.5.10) and by setting δ = ρ0−ρ
n+1

for n ≥ 4, we get

(
N̆ρ0,n(u)

)2

≤ C

[(
1 +

1

n

)2n+8(
M̆ρ0,n(f)

)2

+
(

1 +
1

n

)2n+8(
N̆ρ0,n−1(u)

)2

+

+
(n+ 1)2

(n− 1)2

(
1 +

1

n

)2n+6(
N̆ρ0,n−2(u)

)2

+
(n+ 1)4

(n− 1)2(n− 2)2

(
1 +

1

n

)2n+4(
N̆ρ0,n−3(u)

)2

+
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+
(n+ 1)6

(n− 1)2(n− 2)2(n− 3)2

(
1 +

1

n

)2n+2(
N̆ρ0,n−4(u)

)2
]
,

which completes the proof. Similar results hold in the cases n = 0, 1, 2, 3.a

Proposition 4.3.12 Let ρ0 ∈ (0, 1]. Assume b, c and f are analytic functions on Bρ0

and satisfy, for some positive constants Cb, Cc, Cf , γ, γb, γc, the bounds below:

∥∥∥∇nb
∥∥∥
L∞(Bρ0 )

≤ Cbγ
n
b n!, ∀n ∈ N0,∥∥∥∇nc

∥∥∥
L∞(Bρ0 )

≤ Ccγ
n
c n!, ∀n ∈ N0,

 (4.3.13)

‖∇nf‖L2(Bρ0 ) ≤ Cfγ
n
(
nnρ−n0 + max{nn, ε1−n}

)
, ∀n ∈ N0. (4.3.14)

Then, for any function u that satisfies,

ε2∆2u− b∆u+ cu = f, on Bρ0 ⊂ R2, (4.3.15)

there exists a constant K ≥ 1, independent of ε and ρ0, such that for all n ≥ −4,

N̆ρ0,n(u) ≤ CuK
n+4 max

{
[n]n+4,

(
ρ0/ε

)n+3}
[n]!

, (4.3.16)

where,

Cu = ‖u‖0,Bρ0
+ min{1, ρ0/ε}ε‖∇u‖0,Bρ0

+ min{1, (ρ0/ε)
2}ε2‖∇2u‖0,Bρ0

+ min{1, (ρ0/ε)
3}ε3‖∇3u‖0,Bρ0

+ Cf min
{

1, (ρ0/ε)
4
}
.

(4.3.17)

Proof. We, again, use induction. By the definition of Cu, the statement holds for

n = −4,−3,−2 and −1, since K ≥ 1. Suppose that for n ≥ 0, it is also true for every

0 ≤ n′ < n. We apply Lemma 4.3.9 to the equation ∆2u = ε−2(f + b∆u− cu) and we

get,
N̆ρ0,n(u) ≤C

(
ε−2M̆ρ0,n(f) + ε−2M̆ρ0,n(b∆u) + ε−2M̆ρ0,n(cu)+

+ N̆ρ0,n−1(u) + N̆ρ0,n−2(u) + N̆ρ0,n−3(u) + N̆ρ0,n−4(u)
)
.

By Lemma 4.5.1 we obtain

N̆ρ0,n(u) ≤C
(
ε−2M̆ρ0,n(f) + ε−2Cb

n∑
k=0

(γbρ0

2

)n−k [k − 2]!

[k]!

(ρ0

2

)2

N̆ρ0,k−2(u)+

aWe take δ = (ρ0 − ρ)/2
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+ ε−2Cc

n∑
k=0

(γcρ0

2

)n−k [k − 4]!

[k]!

(ρ0

2

)4

N̆ρ0,k−4(u)+

+ N̆ρ0,n−1(u) + N̆ρ0,n−2(u) + N̆ρ0,n−3(u) + N̆ρ0,n−4(u)

)

and with the aid of the inequalities (4.5.14) and the induction hypothesis, we get

N̆ρ0,n(u) ≤ C
(
ε−2Md0,n(f) +

(
Cu

1

n!
M1K

n+4
)

max
{

[n]n+4,
(
ρ0/ε

)n+3})
.

Here

M1 =K−1 +K−2 +K−3 +K−4 +
Cb
4

n∑
k=0

(γbρ0

2

)n−k
Kk−n−2 +

Cc
16

n∑
k=0

(γcρ0

2

)n−k
Kk−n−4

≤K−1 +K−2 +K−3 +K−4 +
K−2

1− γbρ0

2K

Cb
4

+
K−4

1− γcρ0

2K

Cc
16
. (4.3.18)

Above we notice that the assumption max{γb, γc}ρ0

2K ≤ 1 has been used and therefore

the sums are bounded by convergent geometric series. Now, we can see that

ε−2Mρ0,n(f) =ε−2 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)4+nCfγ
n
(
nnρ−n0 + max{nn, ε1−n}

)
≤ 1

4
ε−2ρ4

0

1

n!
Cf

(γ
2

)n(
nn + max{(ρ0n)n, (ρ0/ε)

n−1}
)
.

Using (4.5.16) and (4.5.17) we get

ε−2Mρ0,n(f) ≤ 1

2

(γ
2

)n
Cf min

{
1, (ρ0/ε)

4
}max

{
[n]n+4,

(
ρ0/ε

)n+3}
n!

.

Thus

Nρ0,n(u) ≤ CuM2K
n+4 max

{
[n]n+4,

(
ρ0/ε

)n+3}
n!

,

where M2 = C
(

1
2

(
γ

2K

)n
K−4Cf + M1

)
.b The appropriate choice of the constant K

ensures that M2 is smaller than one and the proof is complete.

Lemma 4.3.19 Let 0 < ρ0 ≤ 1 and suppose u, f ∈ C∞(Hρ0), u satisfies (4.3.10) on

Hρ0 and u = ∂u
∂η

= 0 along ∂Hρ0∩{(x, y)|y = 0}. Then there is a constant C such that,

bThe constant M1 is defined in (4.3.18)
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for n ≥ 0,

N̆ ′ρ0,n
(u) ≤ C

(
M̆ ′

ρ0,n
(f) + N̆ ′ρ0,n−1(u) + N̆ ′ρ0,n−2(u) + N̆ ′ρ0,n−3(u) + N̆ρ0,n−4(u)

)
.

(4.3.20)

Proof. We apply the estimate (4.3.8) for Hρ, to ∂nu
∂xn

for n ≥ 0:

∫
Hρ

∣∣∣∇4
(∂nu
∂xn

)∣∣∣2dx ≤ C

(∫
Hρ0+δ

∣∣∣∂nf
∂xn

∣∣∣2dx+

∫
Hρ0+δ

(
δ−2
∣∣∣∇3
(∂nu
∂xn

)∣∣∣2 + δ−4
∣∣∣∇2
(∂nu
∂xn

)∣∣∣2+

+ δ−6
∣∣∣∇(∂nu

∂xn

)∣∣∣2 + δ−8
∣∣∣∂nu
∂xn

∣∣∣2dx)).
By combining the above inequality and estimates (4.5.12) we obtain the result in the

same way as in Lemma 4.3.9.

Lemma 4.3.21 Let ρ0 ∈ (0, 1] and let u satisfy

ε2∆2u− b∆u+ cu = f in Hρ0 , u =
∂u

∂η
= 0 on ∂Hρ0 ∩ {(x, y)|y = 0}, (4.3.22)

where the functions b, c and f are analytic on Hρ0 and satisfy, for some constants

Cf , Cb, Cc, γ, γb, γc > 0,∥∥∥∥ ∂n1+n2b

∂xn1∂yn2

∥∥∥∥
L∞(Hρ0 )

≤ Cbγ
n1+n2
b n1!n2!, ∀n1, n2 ∈ N0,∥∥∥∥ ∂n1+n2c

∂xn1∂yn2

∥∥∥∥
L∞(Hρ0 )

≤ Ccγ
n1+n2
c n1!n2!, ∀n1, n2 ∈ N0,

 (4.3.23)

‖∇nf‖L2(Hρ0 ) ≤ Cfγ
n
(
nnρ−n0 + max{nn, ε1−n}

)
, ∀n ∈ N0. (4.3.24)

Also let Cu be defined as in (4.3.17). Then there exists a constant K1 > 0 independent

of ε and ρ0 such that,

N̆ ′ρ0,n
(u) ≤ CuK

n+4
1

max
{

[n]n+4,
(
ρ0/ε

)n+3}
[n]!

, n ≥ −4. (4.3.25)

Proof. We use the same strategy as in Proposition 4.3.12, namely the strong induction

method on n. It is not hard to verify that (4.3.25) holds true for n = −4,−3,−2 and

−1. By appealing to Lemma 4.3.19 for the equation ∆2u = ε−2(f + b∆u − cu) and
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using Lemma 4.5.5 we get

N̆ ′ρ0,n
(u) ≤C

(
ε−2M̆ ′

ρ0,n
(f) + Cb

n∑
k=0

(γbρ0

2

)n−k [k − 2]!

[k]!

(ρ0

2

)2

N̆ ′ρ0,k−2(u)+

+ Cc

n∑
k=0

(γcρ0

2

)n−k [k − 4]!

[k]!

(ρ0

2

)4

N̆ ′ρ0,k−4(u) + N̆ ′ρ0,n−1(u)+

+ N̆ ′ρ0,n−2(u) + N̆ ′ρ0,n−3(u) + N̆ ′ρ0,n−4(u)
)
.

We proceed by considering that the induction hypothesis holds for all −4 < n′ < n.

Therefore, we obtain

N̆ ′ρ0,n
(∆u) ≤ Cε−2M̆ ′

ρ0,n
(f) + CuM1K

n+4
1

max{[n]n+4,
(
ρ0/ε

)n+3}
n!

.

Here M1 is defined as in (4.3.18). The proof can be completed by handling the term

M̆ ′
ρ0,n

(f) in the same way we have treated the term M̆ρ0,n(f) in Proposition 4.3.12.

Proposition 4.3.26 Suppose that the hypotheses of Lemma 4.3.21 hold. Then there

are constants K1, K2 > 0 independent of ε and ρ0 such that for all n ≥ 0, m ≥ −4

N̆ ′ρ0,n,m
(u) ≤ CuK

n+4
1 Km+4

2

max{[n+m+ 2]n+m+4,
(
ρ0/ε

)n+m+3}
[n+m]!

, (4.3.27)

where Cu is defined as in (4.3.17) .

Proof. Here we again use the strong induction method on m. From Lemma 4.3.21 and

(4.3.3) we confirm that (4.3.27) holds for m = −4,−3,−2,−1 and for all n. Taking

the ∂n+m

∂xn∂ym
-derivative of the differential equation we have

∂n+m+4u

∂xn∂ym+4 =ε−2

(
∂n+mf

∂xn∂ym
+
∂n+m+2(bu)

∂xn+2∂ym
+
∂n+m+2(bu)

∂xn∂ym+2 −
∂n+m(cu)

∂xn∂ym

)
−

− 2
∂n+m+4u

∂xn+2∂ym+2 −
∂n+m+4u

∂xn+4∂ym
,

and an application of (4.5.8) yields

∣∣∣∣ ∂n+m+4u

∂xn∂ym+4

∣∣∣∣ ≤ε−2

[∣∣∣∣ ∂n+mf

∂xn∂ym

∣∣∣∣+ Cb

n+2∑
k=0

m∑
l=0

(n+m+ 2)n+m+2−k−lγn+m+2−k−l
b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣+
+ Cb

n∑
k=0

m+2∑
l=0

(n+m+ 2)n+m+2−k−lγn+m+2−k−l
b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣+
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+ Cc

n∑
k=0

m∑
l=0

(n+m)n+m−k−lγn+m−k−l
c

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣
]

+

+ 2

∣∣∣∣ ∂n+m+4u

∂xn+2∂ym+2

∣∣∣∣+

∣∣∣∣ ∂n+m+4u

∂xn+4∂ym

∣∣∣∣.
Hence by taking the L2-norm we obtain

∥∥∥∥ ∂n+m+4u

∂xn∂ym+4

∥∥∥∥
L2(Hρ0 )

≤ C

[
ε−2

(
Cb

n+2∑
k=0

m∑
l=0

(n+m+ 2)n+m+2−k−lγn+m+2−k−l
b

∥∥∥∥ ∂k+lu

∂xk∂yl

∥∥∥∥
L2(Hρ0 )

+

+ Cb

n∑
k=0

m+2∑
l=0

(n+m+ 2)n+m+2−k−lγn+m+2−k−l
b

∥∥∥∥ ∂k+lu

∂xk∂yl

∥∥∥∥
L2(Hρ0 )

+

∥∥∥∥ ∂n+mf

∂xn∂ym

∥∥∥∥
L2(Hρ0 )

+

+ Cc

n∑
k=0

m∑
l=0

(n+m)n+m−k−lγn+m−k−l
c

∥∥∥∥ ∂k+lu

∂xk∂yl

∥∥∥∥
L2(Hρ0 )

)
+

∥∥∥∥ ∂n+m+4u

∂xn+4∂ym

∥∥∥∥
L2(Hρ0 )

+

+ 2

∥∥∥∥ ∂n+m+4u

∂xn+2∂ym+2

∥∥∥∥
L2(Hρ0 )

]
. (4.3.28)

Using the notation N̆ ′ρ0,n,m
and M̃ρ0,n we can rewrite the above inequality as

N̆ ′ρ0,n,m
(u) ≤

≤ C

[
ε−2

(
Cb

n+2∑
k=0

m∑
l=0

[k + l − 4]!

[n+m]!
(n+m+ 2)n+m+2−k−lγn+m+2−k−l

b ×

× sup
ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+m+4−k−lN̆ ′ρ0,k,l−4(u)+

+ Cb

n∑
k=0

m+2∑
l=0

[k + l − 4]!

[n+m]!
(n+m+ 2)n+m+2−k−lγn+m+2−k−l

b ×

× sup
ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+m+4−k−lN̆ ′ρ0,k,l−4(u)+

+ Cc

n∑
k=0

m∑
l=0

[k + l − 4]!

[n+m]!
(n+m)n+m−k−lγn+m−k−l

c ×

× sup
ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+m+4−k−lN̆ ′ρ0,k,l−4(u) + M̃ρ0,n+m(f)

)
+

+ 2N̆ ′ρ0,n+2,m−2(u) + N̆ ′ρ0,n+4,m−4(u)

]
,

and we simplify it as

N̆ ′ρ0,n,m
(u) ≤C

[
ε−2

(
Cb
γ2
bρ

4
0

16

n+2∑
k=0

m∑
l=0

(γbρ0

2

)n+m−k−l [k + l − 4]!

[n+m]!
×

× (n+m+ 2)n+m+2−k−lN̆ ′ρ0,k,l−4(u)+
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+ Cb
γ2
bρ

4
0

16

n∑
k=0

m+2∑
l=0

(γbρ0

2

)n+m−k−l [k + l − 4]!

[n+m]!
×

× (n+m+ 2)n+m+2−k−lN̆ ′ρ0,k,l−4(u)+

+ Cc
ρ4

0

16

n∑
k=0

m∑
l=0

(γcρ0

2

)n+m−k−l [k + l − 4]!

[n+m]!
(n+m)n+m−k−lN̆ ′ρ0,k,l−4(u)+

+ M̃ρ0,n+m(f)

)
+ 2N̆ ′ρ0,n+2,m−2(u) + N̆ ′ρ0,n+4,m−4(u)

]
.

We suppose that (4.3.27) holds for all 0 ≤ l < m, hence

N̆ ′ρ0,k,l−4(u)[k + l − 4]! ≤CCuKk+4
1 K l

2

max
{

(k + l − 2)k+l, (ρ0/ε)
k+l−1

}
[k + l − 4]!

[k + l − 4]!

≤CuKk+4
1 K l

2 max
{

(n+m+ 2)k+l, (ρ0/ε)
k+l−1

}
.

We also recall that
ρ4

0

ε2 ≤ max
{

(n+m+ 2)2,
(ρ0

ε

)4}
,

and we obtain

N̆ ′ρ0,n,m
(u) ≤ CCuM3K

n+4
1 Km+4

2

max
{

[n+m+ 2]n+m+4,
(
ρ0/ε

)n+m+3}
[n+m]!

+ ε−2
(
M̃ρ0,n+m(f)

)
.

(4.3.29)

Here the constant M3 equals

K4
1K
−4
2 + 2K2

1K
−2
2 +

Cbγ
2
b

16

n+2∑
k=0

m∑
l=0

Kk−n
1 K l−m−4

2

(γbρ0

2

)n+m−k−l
+

+
Cbγ

2
b

16

n∑
k=0

m+2∑
l=0

Kk−n
1 K l−m−4

2

(γbρ0

2

)n+m−k−l
+
Cc
16

n∑
k=0

m∑
l=0

Kk−n
1 K l−m−4

2

(γcρ0

2

)n+m−k−l
.

It follows from the assumption max{γb, γc}ρ0

2K2
< 1, that

M3 ≤ K4
1K
−4
2 + 2K2

1K
−2
2 +

2Cbγ
2
b + Cc

16K4
2

· 1(
1− max{γb, γc}ρ0

2K1

)(
1− max{γb, γc}ρ0

2K2

) .

We note that to obtain the above result we have used (4.5.14). Next, using (4.3.24) we

have

M̃ρ0,n+m(f) ≤ CCf
[n+m]!

(ρ0

2

)4(γ
2

)n+m(
(n+m)(n+m) + max

{(
ρ0(n+m)

)n+m
, (ρ0/ε)

n+m−1
})
,

(4.3.30)
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and with the aid of (4.5.16) and (4.5.17) we obtain

ε−2
(
M̃ρ0,n+m(f)

)
≤ CCf

(γ
2

)n+m
min

{
1, (ρ0/ε)

4
}max

{
(n+m+ 2)n+m+4, (ρ0/ε)

n+m+3
}

[n+m]!
.

Thus,

N̆ ′ρ0,n,m
(u) ≤ CuM4K

n+4
1 Km+4

2

max
{

[n+m+ 2]n+m+2,
(
ρ0/ε

)n+m+1}
[n+m]!

.

where,

M4 = M3 + CfK
−4
1 K−4

2

( γ

2K1

)n( γ

2K2

)m
min

{
1, (ρ0/ε)

4
}
.

By the choice of K2, the coefficient M4 can be bounded by one and this gives us the

desired result.

Lemma 4.3.31 [49, Lemma 3.6] Let U, V ⊂ R2 be bounded open sets. We consider

the function h = (h1, h2) : V → R2 which is analytic and injective on V , det h′ 6= 0

on V and h(V ) ⊂ U . Let f : U → C be analytic on U and assume that it satisfies for

some ε, Cf , γ > 0,

‖∇nf‖L2(U) ≤ Cfγ
n max (nn, ε1−n), for all n ∈ N0.

Then there are C,K > 0 depending only on Cf , γ and the map h, such that

‖∇n(f ◦ h)‖L2(V ) ≤ CKn max (nn, ε1−n), for all n ∈ N0.

Theorem 4.3.32 Suppose that the function f and the curve ∂Ω are analytic and

suppose moreover that u is the solution of

ε2∆2u− b∆u+ cu = f, in Ω,

u =
∂u

∂η
= 0, on ∂Ω,

(4.3.33)

where b, c are positive constants. Then there are constants C, K > 0 independent of ε

such that ∥∥∥Dαu
∥∥∥
L2(Ω)

≤ CK |α|max{|α||α|, ε1−|α|}, ∀α ∈ N2
0. (4.3.34)

Proof. Propositions 4.3.12 and 4.3.26 constitute the major part of this proof. In the

interior we obtain the desired result by a straightforward application of Proposition
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4.3.12, since for d0 ∈ (0, 1) and x0 ∈ Ω, we consider the ball Bd0(x0) ⊂ Ω. In order

to complete the proof we examine the boundary. Proposition 4.3.26 is very helpful

here, however we are obliged to introduce a conformal mapping in order to use it, since

the boundary must be flattenned locally. For x0 ∈ ∂Ω, there is a conformal mapping

φ : Ω ∩ B2d0(x0) → H2d0 [44, Theorem 1] that leaves the term with the biharmonic

tensor invariant. The remaining terms under the transformation, may aquire non-

constant coefficients. Therefore the transformed functions v = u ◦ φ−1 solve

ε2∆2v−b
∣∣(φ−1)′

∣∣2∆v + c
∣∣(φ−1)′

∣∣4v =
∣∣(φ−1)′

∣∣4(f ◦ φ−1
)
, in H2d0 ,

v =
∂v

∂n
= 0, on ∂H2d0 ∩ {(x, y)|y = 0}.

and using Proposition 4.3.26, Lemma 4.3.31 and a compactness argument we obtain

(4.3.34).

4.4 Analysis of the asymptotic expansion

4.4.1 Solution decomposition

Recall problem (4.1.1):

Λεu = ε2∆2u− b∆u+ cu = f, in Ω ⊂ R2,

u =
∂u

∂n
= 0, on ∂Ω.


We will show that the solution to (4.1.1) satisfies, for some M ∈ N0, the following

decomposition

uε = usM + χuBLM + rM , (4.4.1)

where M is the expansion order, usM denotes the smooth part, uBLM the boundary layer,

rM the remainder and χ is the cutoff function given by (4.4.3) ahead. To this end,

in order to treat the boundary layer we define boundary-fitted coordinates [6] as fol-

lows:

Suppose z(θ) =
(
X(θ), Y (θ)

)
, θ ∈ [0, l) is an analytic l-periodic parametrization of the
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boundary ∂Ω. For the remainder of this chapter, let ρ0 > 0 be fixed such that

0 < ρ0 <
1

‖κ‖L∞(Tl)
, (4.4.2)

where κ(θ) denotes the curvature of ∂Ω at z(θ). Then one can find a diffeomorphism

Ψ of (0, ρ0)× R/l on

Ω0 = {z− ρnz| z ∈ ∂Ω, 0 < ρ < ρ0},

where nz is the outward unit normal at z ∈ ∂Ω. The mapping Ψ is given as

(ρ, θ)→ z− ρnz =
(
X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ)

)
.

Figure 4.1 helps us understand better the definition of boundary-fitted coordinates.

Ω

θ
(x, y)

ρ

Figure 4.1: Boundary fitted coordinates.

In what follows we will utilize the following function:

σ(ρ, θ) :=
1

1− κ(θ)ρ
.

We also introduce a smooth cutoff function χ : [0,∞)×Tl → {0, 1} as follows. Suppose
0 < ρ1 < ρ0 and define

χ =

1, 0 ≤ ρ ≤ ρ1

0, (ρ1 + ρ0)/2 ≤ ρ.

(4.4.3)

Anticipating layers along ∂Ω, we define the stretched variable ρ̃ = ρ/ε. We then make

74

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 4 Section 4.4

the formal ansatz

u ∼
∞∑
j=0

εj{uj(x, y) + ṽj(ρ̃, θ)}, (4.4.4)

with uj, ṽj to be determined, and insert it in the differential equation of (4.1.1). As is

usually done, we equate like powers of ε on both sides and obtain the following for the

functions uj:

b∆uj − cuj = fj, j ∈ N0, (4.4.5)

where fj is defined as

fj :=


−f, j = 0,

0, j = 1,

∆2uj−2, j ≥ 2.

(4.4.6)

To handle the terms ṽj, we follow [6] and express the Laplacian tensor in boundary

fitted coordinates as:

∆ =
∂2

∂ρ2
+ σ2(ρ, θ)

∂2

∂θ2
+ κ(θ)σ(ρ, θ)

∂

∂ρ
− ρκ′(θ)σ3(ρ, θ)

∂

∂θ
. (4.4.7)

Similarly, using the stretched variable notation ρ̃ = ρ/ε, the tensor Λε defined in (4.1.1)

can be rewritten as

Λε =
4∑
i=0

4∑
j=0

cij(ε, ρ̃, θ)
∂i+j

∂ρ̃i∂θj
, (4.4.8)

where,

c00 = c,

c10 = ε−1bκ(θ)σ(ρ̃, θ)− ε
[
κ3(θ) + κ′′(θ)

]
σ3(ρ̃, θ)− 3ε2ρ̃

[
κ(θ)κ′′(θ) +

(
κ′(θ)

)2]
σ4(ρ̃, θ)+

+ ε3ρ̃2(κ′(θ))2κ(θ)σ5(ρ̃, θ),

c01 = −εbρ̃κ′(θ)σ3(ρ̃, θ) + 5ε2κ′(θ)κ(θ)σ4(ρ̃, θ) + 9ε3ρ̃
[
κ2(θ)κ′(θ) + κ(3)(θ)

]
σ5(ρ̃, θ)+

+ 10ε4ρ̃2κ′(θ)κ′′(θ)σ6(ρ̃, θ) + 15ε5ρ̃
(
κ′(θ)

)3
σ7(ρ̃, θ),

c20 = −κ2(θ)σ3(ρ̃, θ)− ε−2b, c11 = 2ε2ρ̃κ(θ)κ′(θ)σ4(ρ̃, θ),

c02 = −bσ2(ρ̃, θ) + 4ε2κ2(θ)σ4(ρ̃, θ) + 4ε3ρ̃κ′′(θ)σ5(ρ̃, θ) + 15ε4ρ̃2
(
κ′(θ)

)2
σ6(ρ̃, θ),

c30 = −2ε−1κ(θ)σ3(ρ̃, θ), c21 = 2ερ̃κ′(θ)σ3(ρ̃, θ), c12 = 2εκ(θ)σ3(ρ̃, θ),

c03 = 6ε3ρ̃κ′(θ)σ5(ρ̃, θ), c40 = ε−2, c22 = 2σ2(ρ̃, θ), c04 = ε2σ4(ρ̃, θ),

75

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 4 Section 4.4

and for all other cases cij = 0. It is helpful to rewrite the tensor Λε in the form

Λε =
∞∑
j=0

εj−2Λj. (4.4.9)

This can been done by expanding the tensor in a power series of ε. Note that the sum

given in (4.4.9) converges under the assumption |ερ̃κ(θ)| < 1. Here, the operators Λj

are given by

Λ0 =
∂4

∂ρ̃4
− b ∂

2

∂ρ̃2
, Λ1 = −2κ(θ)

∂3

∂ρ̃3
+ κ(θ)

∂

∂ρ̃
,

Λ2 = 2
∂2

∂ρ̃2

∂2

∂θ2
− 2κ2(θ)ρ̃

∂3

∂ρ̃3
+ κ2(θ)

∂2

∂ρ̃2
− ∂2

∂θ2
+ κ2(θ)ρ̃

∂

∂ρ̃
+ cI,

Λ3 = 2

(
2

1

)
κ(θ)ρ̃

∂4

∂ρ̃2∂θ2
− 2

(
2

0

)
κ3(θ)ρ̃2 ∂

3

∂ρ̃3
+ 2κ(θ)

∂3

∂ρ̃∂θ2
+ 2κ′(θ)ρ̃

∂3

∂ρ̃2∂θ
−

−
(

2

1

)
κ3(θ)ρ̃

∂2

∂ρ̃2
+
(
−κ3(θ)− κ′′(θ)

) ∂
∂ρ̃
− b
(

2

1

)
κ(θ)ρ̃

∂2

∂θ2
+ b

(
2

0

)
κ3(θ)ρ̃2 ∂

∂ρ̃
−

− bκ′(θ)ρ̃ ∂
∂θ
,

Λ4 = 2

(
3

1

)
κ2(θ)ρ̃2 ∂4

∂ρ̃2∂θ2
+

∂4

∂θ4
− 2

(
3

0

)
κ4(θ)ρ̃3 ∂

3

∂ρ̃3
+ 2

(
3

2

)
κ2(θ)ρ̃

∂3

∂ρ̃∂θ2
+

+ 2

(
3

2

)
κ′(θ)κ(θ)ρ̃2 ∂3

∂ρ̃2∂θ
−
(

3

1

)
κ4(θ)ρ̃2 ∂

2

∂ρ̃2
+ 2κ′(θ)κ(θ)ρ̃

∂2

∂ρ̃∂θ
+ 4κ2(θ)

∂2

∂θ2
+

+

(
−
(

3

2

)
κ4(θ)ρ̃−

(
3

2

)
κ′′(θ)κ(θ)ρ̃− 3

(
κ′(θ)

)2
ρ̃− κ′′(θ)κ(θ)ρ̃

)
∂

∂ρ̃
+ 5κ′(θ)κ(θ)

∂

∂θ
−

− b
(

3

1

)
κ2(θ)ρ̃2 ∂

2

∂θ2
+ b

(
3

0

)
κ4(θ)ρ̃3 ∂

∂ρ̃
− b
(

3

2

)
κ′(θ)κ(θ)ρ̃2 ∂

∂θ
,

Λ5 = 2

(
4

1

)
κ3(θ)ρ̃3 ∂4

∂ρ̃2∂θ2
+

(
4

3

)
κ(θ)ρ̃

∂4

∂θ4
− 2

(
4

0

)
κ5(θ)ρ̃4 ∂

3

∂ρ3
+ 2

(
4

2

)
κ3(θ)ρ̃2 ∂3

∂ρ̃∂θ2
+

+ 2

(
4

2

)
κ′(θ)κ2(θ)ρ̃3 ∂3

∂ρ̃2∂θ
+ 6κ′(θ)ρ̃

∂3

∂θ3
−
(

4

1

)
κ5(θ)ρ̃3 ∂

2

∂ρ̃2
+ 2

(
4

3

)
κ′(θ)κ2(θ)ρ̃2 ∂2

∂ρ̃∂θ
+

+

(
4

(
4

3

)
κ3(θ)ρ̃+ 4κ′′(θ)ρ̃

)
∂2

∂θ2
+

(
−
(

4

2

)
κ5(θ)ρ̃2 −

(
4

2

)
κ′′(θ)κ2(θ)ρ̃2−

− 3

(
4

3

)(
κ′(θ)

)2
κ(θ)ρ̃2 −

(
4

3

)
κ′′(θ)κ2(θ)ρ̃2 − 3

(
κ′(θ)

)2
κ(θ)ρ̃2

)) ∂

∂ρ̃
+

+

(
5

(
4

3

)
κ′(θ)κ2(θ)ρ̃+ 9κ′(θ)κ2(θ)ρ̃+ κ(3)ρ̃

)
∂

∂θ
− b
(

4

1

)
κ3(θ)ρ̃3 ∂

2

∂θ2
+ b

(
4

0

)
κ5(θ)ρ̃4 ∂

∂ρ̃
−

− b
(

4

2

)
κ′(θ)κ2(θ)ρ̃3 ∂

∂θ
,

Λ6 = 2

(
5

1

)
κ4(θ)ρ̃4 ∂4

∂ρ̃2∂θ2
+

(
5

3

)
κ2(θ)ρ̃2 ∂

4

∂θ4
− 2

(
5

0

)
κ6(θ)ρ̃5 ∂

3

∂ρ3
+ 2

(
5

2

)
κ4(θ)ρ̃3 ∂3

∂ρ̃∂θ2
+
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+ 2

(
5

2

)
κ′(θ)κ3(θ)ρ̃4 ∂3

∂ρ̃2∂θ
+ 6

(
5

4

)
κ′(θ)κ(θ)ρ̃2 ∂

3

∂θ3
−
(

5

1

)
κ6(θ)ρ̃4 ∂

2

∂ρ̃2
+

+ 2

(
5

3

)
κ′(θ)κ3(θ)ρ̃3 ∂2

∂ρ̃∂θ
+

(
4

(
5

3

)
κ4ρ̃2 + 4

(
5

4

)
κ′′(θ)κ(θ)ρ̃2 + 15

(
(κ′(θ)

)2
ρ̃2

)
∂2

∂θ2
+

+

(
−
(

5

2

)
κ6(θ)ρ̃3 −

(
5

2

)
κ′′(θ)κ3(θ)ρ̃3 − 3

(
5

3

)(
κ′(θ)

)2
κ2(θ)ρ̃3 −

(
5

3

)
κ′′(θ)κ3(θ)ρ̃3−

− 3

(
5

4

)(
κ′(θ)

)2
κ2(θ)ρ̃3

)
∂

∂ρ̃
+

(
5

(
5

3

)
κ′(θ)κ3(θ)ρ̃2 + 9

(
5

4

)
κ′(θ)κ3(θ)ρ̃2+

+

(
5

4

)
κ(3)(θ)κ(θ)ρ̃2 + 10κ′(θ)κ′′(θ)ρ̃2

)
∂

∂θ
− b
(

5

1

)
κ4(θ)ρ̃4 ∂

2

∂θ2
+ b

(
5

0

)
κ6(θ)ρ̃5 ∂

∂ρ̃
−

− b
(

5

2

)
κ′(θ)κ3(θ)ρ̃4 ∂

∂θ
,

and for j = 7, 8, . . .

Λj :=
4∑
l=0

4∑
k=0

bjlk(ρ̃, θ)
∂l+k

∂ρ̃l∂θk
.

The functions bjlk are defined as:

bj22 = 2

(
j − 1

1

)
κj−2(θ)ρ̃j−2, bj04 =

(
j − 1

3

)
κj−4(θ)ρj−4,

bj30 = −2

(
j − 1

0

)
κj(θ)ρj−1, bj03 = 6

(
j − 1

4

)
κ′(θ)κj−5(θ)ρ̃j−4,

bj12 = 2

(
j − 1

2

)
κj−2(θ)ρ̃j−3, bj21 = 2

(
j − 1

2

)
κ′(θ)κj−3(θ)ρ̃j−2,

bj20 = −
(
j − 1

1

)
κj(θ)ρ̃j−2, bj11 = 2

(
j − 1

3

)
κ′(θ)κj−3(θ)ρ̃j−3,

bj02 =4

(
j − 1

3

)
κj−2(θ)ρ̃j−4 + 4

(
j − 1

4

)
κ′′(θ)κj−5(θ)ρ̃j−4+

+ 15

(
j − 1

5

)
κ′(θ)2κj−6(θ)ρ̃j−4 − b

(
j − 1

1

)
κj−2(θ)ρ̃j−2,

bj10 =−
(
j − 1

2

)
κj(θ)ρ̃j−3 −

(
j − 1

2

)
κ′′(θ)κj−3(θ)ρ̃j−3−

− 3

(
j − 1

3

)(
κ′(θ)

)2
κj−4(θ)ρ̃j−3 −

(
j − 1

3

)
κ′′(θ)ρ̃j−3κj−3(θ)−

− 3

(
j − 1

4

)(
κ′(θ)

)2
κj−4(θ)ρ̃j−3 + b

(
j − 1

0

)
κj(θ)ρ̃j−1,

bj01 =5

(
j − 1

3

)
κ′(θ)κj−3(θ)ρ̃j−4 + 9

(
j − 1

4

)
κ′(θ)κj−3(θ)ρ̃j−4+
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+

(
j − 1

4

)
κ(3)(θ)κj−5(θ)ρ̃j−4 + 10

(
j − 1

5

)
κ′(θ)κ′′(θ)κj−6(θ)ρ̃j−4+

+ 15

(
j − 1

6

)(
κ′(θ)3κj−7(θ)ρ̃j−4 − b

(
j − 1

2

)
κ′(θ)ρ̃j−2κj−3(θ),

and bjkl = 0 for all other cases.

We determine ṽk by setting

Λεu
BL =

∞∑
i=−2

εi
i+2∑
k=0

Λkṽi+2−k = 0

and require that all coefficients in the power series in ε are zero. We obtain the following

system:
∂4ṽj
∂ρ̃4
− b∂

2ṽj
∂ρ̃2

= −G̃j, j = 0, 1, 2, . . . ,

G̃0 = 0, G̃j =
7∑

ν=1

G̃ν
j , j = 1, 2, . . .

 (4.4.10)

The functions
{
G̃ν
j

}7

ν=1
that appear in (4.4.12), for j = 1, 2, . . . are given byc:

G̃1
j(ρ̃, θ) =

j−1∑
ν=0

[
−2

(
ν

0

)
κν+1(θ)ρ̃ν

∂3ṽj−1−ν

∂ρ̃3 −
(
ν

1

)
κν+1(θ)ρ̃ν−1∂

2ṽj−1−ν

∂ρ̃2 +

+

(
−
(
ν

2

)
κν+1(θ)ρ̃ν−2 + b

(
ν

0

)
κν+1(θ)ρ̃ν

)
∂ṽj−1−ν

∂ρ̃

]
,

G̃2
j(ρ̃, θ) =

j−2∑
ν=0

[
2

(
ν + 1

1

)
κν(θ)ρ̃ν

∂4ṽj−2−ν

∂ρ̃2∂θ2 + 2

(
ν + 1

2

)
κν(θ)ρ̃ν−1∂

3ṽj−2−ν

∂ρ̃∂θ2 +

+

(
4

(
ν + 1

3

)
κν(θ)ρ̃ν−2 − b

(
ν + 1

1

)
κν(θ)ρ̃ν

)
∂2ṽj−2−ν

∂θ2

]
,

G̃3
j(ρ̃, θ) =

j−3∑
ν=0

[
2

(
ν + 2

2

)
κ′(θ)κν(θ)ρ̃ν+1∂

3ṽj−3−ν

∂ρ2∂θ
+ 2

(
ν + 2

3

)
κ′(θ)κν(θ)ρ̃ν

∂2ṽj−3−ν

∂ρ∂θ
+

+

(
−
(
ν + 2

2

)
−
(
ν + 2

3

))
κ′′(θ)κν(θ)ρ̃ν

∂ṽj−3−ν

∂ρ̃
+

+

(
5

(
ν + 2

3

)
+ 9

(
ν + 2

4

))
κ′(θ)κν(θ)ρ̃ν−1∂ṽj−3−ν

∂θ̃

]
,

G̃4
j(ρ̃, θ) =

j−4∑
ν=0

[(
−3

(
ν + 3

3

)
− 3

(
ν + 3

4

))(
κ′(θ)

)2
κν(θ)ρ̃ν+1∂ṽj−4−ν

∂ρ̃
+

cHere the empty sums take the value zero
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+

(
ν + 3

3

)
κν(θ)ρ̃ν

∂4ṽj−4−ν

∂θ4

]
,

G̃5
j(ρ̃, θ) =

j−5∑
ν=0

[
6

(
ν + 4

4

)
κ′(θ)κν(θ)ρ̃ν+1∂

3ṽj−5−ν

∂θ3 + 4

(
ν + 4

4

)
κ′′(θ)κν(θ)ρ̃ν+1∂

2ṽj−5−ν

∂θ2 +

+

(
ν + 4

4

)
κ(3)(θ)κν(θ)ρ̃ν+1∂ṽj−5−ν

∂θ̃

]
,

G̃6
j(ρ̃, θ) =

j−6∑
ν=0

[
15

(
ν + 5

5

)(
κ′(θ)

)2
κν(θ)ρ̃ν+2∂

2ṽj−6−ν

∂θ2 +

+ 10

(
ν + 5

5

)
κ′(θ)κ′′(θ)κν(θ)ρ̃ν+2∂ṽj−6−ν

∂θ

]
,

and

G̃7
j(ρ̃, θ) =

j−7∑
ν=0

[
15

(
ν + 6

6

)(
κ′(θ)

)3
κν(θ)ρ̃ν+3∂ṽj−7−ν

∂θ

]
.

To summarize, the functions uj, ṽj that appear in (4.4.4) satisfy

b∆uj − cuj = fj, j = 0, 1, 2, . . . , (4.4.11)

∂4ṽj
∂ρ̃4
− b∂

2ṽj
∂ρ̃2

= −G̃j, j = 0, 1, 2, . . . (4.4.12)

In order to satisfy the boundary conditions in (4.1.1), the system given by (4.4.11),(4.4.12)

is supplemented with the following:

u0

∣∣∣
∂Ω

= 0, uj =− ṽj
∣∣∣
∂Ω
, j = 1, 2, . . . (4.4.13)

∂

∂ρ̃
ṽ0(ρ̃, θ)

∣∣∣
∂Ω

=0,

∂

∂ρ̃
ṽj(ρ̃, θ)

∣∣∣
∂Ω

=− ∂

∂ρ
ũj−1(ρ, θ)

∣∣∣
∂Ω
, j = 1, 2, . . .

lim
ρ̃→∞

ṽj(ρ̃, θ) =0, j = 0, 1, 2, . . .


(4.4.14)

The function ũj−1 that appears in (4.4.14) is defined as follows:

ũj−1(ρ, θ) = uj−1 (X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ)) . (4.4.15)

Since we assume that ∂Ω is a smooth (analytic) curve, we have that X(θ), Y (θ) are

analytic functions, (and therefore |X(k)(θ)|, |Y (k)(θ)| ≤ Cγk∗k! ∀k = 0, 1, 2, ... where

γ∗ > 0 controls the domain of the analyticity of the functions X, Y ) as well as 1 −
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κ(θ)ρ, (1 − κ(θ)ρ)−1 ≤ C. Thus for uj−1(x, y) defined in Ω0, the above change of

variables produces

∂uj−1

∂x
=

1

1− κ(θ)ρ

{
∂ũj−1

∂θ
X ′(θ)− ∂ũj−1

∂ρ
(Y ′(θ) + ρX ′′(θ))

}
,

∂uj−1

∂y
=

1

1− κ(θ)ρ

{
∂ũj−1

∂ρ
(X ′(θ)− ρY ′′(θ)) +

∂ũj−1

∂θ
Y ′(θ)

}
.

This shows that the first derivatives with respect to the (physical) x, y variables are

bounded by the first derivatives with respect to the ρ, θ variables, and vice versa, if

one considers the inverse mapping:

∂ũj−1

∂ρ
= κ(ρ, θ)

{
−∂uj−1

∂x
Y ′(θ) +X ′(θ)

∂uj−1

∂y

}
,

∂ũj−1

∂θ
= κ(ρ, θ)

{
−∂uj−1

∂x
Y ′(θ) +X ′(θ)

∂uj−1

∂y

}
,

where

κ(ρ, θ) =
(1− κ(θ)ρ)

(Y ′(θ) + ρX ′′(θ))Y ′(θ) + (X ′(θ)− ρY ′′(θ))X ′(θ) .

Loosely speaking, the regularity of uj remains ‘unaffected’ as we transform from the

x, y variables to the ρ, θ variables. As a final remark, we note that

∂ũj−1

∂ρ

∣∣∣∣
ρ=0

=
−Y ′(θ)

(Y ′(θ))2 + (X ′(θ))2

∂uj−1

∂x

∣∣∣∣
∂Ω

+
X ′(θ)

(Y ′(θ))2 + (X ′(θ))2

∂uj−1

∂y

∣∣∣∣
∂Ω

(4.4.16)

hence ∣∣∣∣∂ũj−1

∂ρ
(0, θ)

∣∣∣∣ ≤ C ‖Duj−1‖L∞(Ω) . (4.4.17)

Lemma 4.4.18 Let ρ0 > 0 given by (4.4.2), let u be analytic on Ω and let ũ(ρ, θ) =

u(X(θ)− ρY ′(θ), Y (θ) + ρX ′(θ)) (cf. (4.4.15)). Then there exist ρ′0,Θ ∈ R+, such that

∂ũ/∂ρ (cf. (4.4.16)) is holomorphic in the complex neighborhood of (0, ρ′0)× [0, `], given

by Bρ′0
(0)× VΘ, where

VΘ = {z ∈ C : dist(z, [0, `]) < Θ} . (4.4.19)

Proof. Since u is analytic on Ω̄, there is a complex neighborhood of ∂Ω on which u

is holomorphic and bounded. Specifically, due to the fact that ∂Ω is parametrized
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by arclength θ ∈ [0, `] , we have that ũ(ρ, θ) as well as ∂ũ/∂ρ, are holomorphic in

Bρ′0
(0)× VΘ, with VΘ given by (4.4.19), for some ρ′0,Θ ∈ R+. The result follows.

Since u0 satisfies (4.4.11), (4.4.13), with f analytic, standard elliptic regularity theory

gives that u0 is analytic in Ω. Lemma 4.4.18 further gives ρ′0, θ1 ∈ R+ such that ũ0, as

well ∂ũ0

∂ρ
, are holomporphic in Bρ′0

(0)× Vθ1 .

Next, we easily verify that ṽ0 = 0. Moreover we note that

G̃1 = Λ1ṽ0 = 0,

and

G̃2 = Λ1ṽ1 + Λ2ṽ0 = (2b+ 1)κ(θ)
∂ũ0

∂ρ
(0, θ)e−

√
bρ̃,

thus

ṽ1(ρ̃, θ) = − 1√
b

∂ũ0(0, θ)

∂ρ
e−
√
bρ̃. (4.4.20)

This shows that ṽ1 is holomorphic in C×Vθ1 as well, and as a consequence, u1 satisfying

(4.4.11), (4.4.13) is analytic in Ω. By Lemma 4.4.18 there is ρ′1, θ2 ∈ R+ such that ∂ũ1

∂ρ

is holomorphic in Bρ′1
(0)× Vθ2 . Similarly

ṽ2(ρ̃, θ) =

[
κ(θ)(2b+ 1)

( 5

4b2
+

2ρ̃− 1

b3/2

)∂ũ0(0, θ)

∂ρ
− 1√

b

∂ũ1(0, θ)

∂ρ

]
e−
√
bρ̃,

and by the same reasoning, we obtain θ3 ∈ R+ such that ṽ2 is holomorphic in C× Vθ3 .
In general, we get θ1 ≥ θ2 ≥ θ3 ≥ . . . , such that ṽj is holomorphic in C× Vθj+1

.

As we show in the next subsection, the functions ṽj can be written in the form

ṽj(ρ̃, θ) = Πj(ρ̃, θ)e
−
√
bρ̃, (4.4.21)

where Πj is a polynomial of degree 2(j − 1) in ρ̃, with coefficients that depend on θ.

Finally, we define for some M ∈ N0,

usM(x, y) =
M∑
j=0

εjuj(x, y), (4.4.22)

uBLM (ρ̃, θ) :=
M+1∑
k=0

εj ṽj(ρ̃, θ), (4.4.23)
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as the smooth part and boundary layer. The remainder rM is defined as

rM := u− usM − χuBLM , (4.4.24)

where χ is the cut off function given in (4.4.3). By construction the remainder rM

satisfies

ΛεrM = g1 in Ω,

rM = 0 on ∂Ω,

 (4.4.25)

where

g1 = −εM+1∆2uM−1 − εM+2∆2uM − Λε(χu
BL
M ).

4.4.2 Regularity results

Our goal throughout this subsection is to provide information about the regularity

of the functions given by (4.4.22)–(4.4.24). In Theorem 4.4.36 we give the regularity

of the functions {uj}∞j=0, {ṽj}∞j=0 that are defined by (4.4.11)–(4.4.14). The desired

results about the smooth part usM , the boundary layer uBLM and the remainder rM are

presented in Theorems 4.4.40, 4.4.46 and 4.4.50, respectively.

We note that using the stretched coordinate ρ̃, the tensor Λε given by (4.1.1) can be

written in the form (4.4.8).

To obtain the lemma that follows we apply again, Cauchy’s integral theorem for deriva-

tives. We note that the results are a variation of Lemma 7.3.7 in [45].

Recall the definition of VΘ given by (4.4.19) and set

VΘ(d) := {z ∈ VΘ | dist(z, ∂VΘ) > d}. (4.4.26)

Lemma 4.4.27 Let Θ>0 and M ∈ N0. Assume that U is holomorphic on C×VΘ and

suppose that there exist CU,j > 0 (depending on U and j ∈ {0, 1, . . . ,M}), such that

for all d ∈ (0,Θ) and for every (z, ζ) ∈ C× VΘ(d), there holds

|U(z, ζ)| ≤ CU,jd
−j(cj + |z|)2(j−1)e−Re(

√
bz). (4.4.28)
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Then for all d < Θ, (z, ζ) ∈ C× VΘ(d), we have∣∣∣∣ ∂m∂zmU(z, ζ)

∣∣∣∣ ≤ CU,jm!d−je
√
b(ĉj + |z|)2(j−1)e−Re(

√
bz), (4.4.29)

∣∣∣∣ ∂n∂ζnU(z, ζ)

∣∣∣∣ ≤ CU,jn!κ−n1 d−(j+n)(c̄j + |z|)2(j−1)e−Re(
√
bz), (4.4.30)

∣∣∣∣ ∂n+m

∂zm∂ζn
U(z, ζ)

∣∣∣∣ ≤ CU,jm!n!κ−n1 d−(j+n)e
√
b(c∗j + |z|)2(j−1)e−Re(

√
bz), (4.4.31)

where cj, ĉj, c̄j, c∗j are constants (depending on j) and κ1 ∈ (0, 1).

Proof. We follow the proof of [45, Lemma 7.3.7]. With the aid of Cauchy’s integral

theorem for derivatives and by using as path of integration a circle of radius 1 around

z, we proceed to show the estimate (4.4.29):

∣∣∣ ∂m
∂zm

U(z, ζ)
∣∣∣ ≤m!

2π

∫
|t|=1

∣∣∣∣U(z + t, ζ)

tm+1

∣∣∣∣dt
≤m!

2π

∫
|t|=1

d−jCU,j
|t|m+1

(cj + |z|+ 1)2(j−1)e−Re(
√
bz)+

√
bdt

≤CU,jd−je
√
bm!(ĉj + |z|)2(j−1)e−Re(

√
bz).

In order to get the bound for derivatives with respect to the ζ-variable, for κ1 ∈ (0, 1)

we choose a different circle, namely, we integrate on ∂Bκ1d(ζ):

∣∣∣ ∂n
∂ζn

U(z, ζ)
∣∣∣ =

∣∣∣∣ n!

2πi

∫
|t|=κ1d

U(z, ζ + t)

tn+1
dt

∣∣∣∣
≤ n!

2π
2πκ1d

(
1

κ1d

)n+1

CU,jd
−j(cj + |z|+ κ1d)2(j−1)e−Re(

√
bz)

≤CU,jn!

(
1

κ1d

)n
d−j(c̄j + |z|)2(j−1)e−Re(

√
bz) (4.4.32)

≤CU,jn!κ−n1 d−(j+n)(c̄j + |z|)2(j−1)e−Re(
√
bz).

Combining the above steps we can get the third estimate. We note that the derivatives

with respect to z and to ζ commute.

Lemma 4.4.33 Let the curve ∂Ω be analytic. For a positive number Θ, there exists

B > 0, such that

|κ(θ)| ≤ B <
1

ρ0

, ∀θ ∈ {φ ∈ C : |Imφ| < Θ}, (4.4.34)
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with ρ0 satisfying (4.4.2). In addition, for ν ∈ N0, any term written in the following

form, can be estimated as follows: There is CB > 0 such that, with l,m, n ∈ {0, 1, 2, 3},
there holds

(
ν

i

)
(1 + b)|κ′(θ)|l|κ′′(θ)|m|κ(3)(θ)|n|κ(θ)|ν ≤ CB2νBν ∀i = 0, . . . , ν. (4.4.35)

Proof. We recall that the function κ is continuous. Hence, by restricting the variable

Θ, we can find B > 0 such that ‖κ‖L∞(TL) ≤ B < 1
ρ0

. Moreover the curvature is

analytic, thus its derivatives are bounded. We choose a constant CB in such a way to

satisfy

(1 + b)|κ′(θ)|l|κ′′(θ)|m|κ(3)(θ)|n ≤ CB for all l,m, n ∈ {0, 1, 2, 3}.

Now using the above, Lemma 4.2.1 and the estimate for the binomial coefficient:

(
n

i

)
≤ 2n, ∀ 0 ≤ i ≤ n,

we obtain (4.4.35).

Theorem 4.4.36 Let M ∈ N0, j ∈ {0, 1, . . . ,M}, and {uj}, {ṽj} be given by (4.4.11),

(4.4.13) and (4.4.12), (4.4.14), respectively. Then uj is analytic on a neighborhood of

Ω, i.e. there exist constants Cu,j, Cv,j, Kj > 0 depending on j such that, for n ∈ N0,

‖∇nuj‖L∞(Ω) ≤ Cu,jK
n
j max{n,

√
c/b}n. (4.4.37)

Moreover, there are θ1 ≥ θ2 ≥ · · · ≥ θM ≥ Θ > 0, such that for j ∈ {1, 2, . . . ,M},

∣∣ṽj(ρ̃, θ)∣∣ ≤ Cv,jd
−j(qj + |ρ̃|)2(j−1)e−

√
bρ̃, ∀d ∈ (0, θj), ∀(ρ̃, θ) ∈ C× Vθj(d),

(4.4.38)

where qj > 1 are constants (depending on j) and Vθj(d) is given by (4.4.26).

Proof. We proceed following the proof of Theorem 4.2.14, namely we are going to use

induction. As has been done in 1-D, both sequences must be handled simultaneously.

We first consider u0. By appealing to Theorem 4.2.14 we may ensure that u0 satisfies

(4.4.37). We have already seen that ṽ0 = 0 and ṽ1 is given by (4.4.20), thus both satisfy
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(4.4.38). The function u1 satisfies

b∆u1 − cu1 = 0,

u1

∣∣
∂Ω

= −ṽ1

∣∣
∂Ω

=
1√
b

∂ũ0(0, θ)

∂ρ
,

with ũ0(0, θ) defined by (4.4.15). We suppose now that (4.4.37), (4.4.38) hold for j

and we will prove them for j + 1. We will prove that the function G̃j+1 appearing in

(4.4.12) satisfies the desired condition in order to apply Proposition 2.4.10. First, note

that G̃j+1 is defined as a sum involving the functions ṽk (and their derivatives), with

k ≤ j. By the induction hypothesis, ṽk satisfies (4.4.39) which implies that we have

θk ∈ R+ such that ṽk is holomorphic in C× Vθk , k ≤ j. Then, by using Lemma 4.4.27

and the induction hypothesis for (4.4.38), we obtain for every d ∈ (0, θj),

∣∣G̃j+1(ρ̃, θ)
∣∣ ≤ 7∑

ν=1

∣∣G̃ν
j+1(ρ̃, θ)

∣∣ ≤ Cv,jd
−(j+1)(qj + |ρ̃|)2j−1e−

√
bρ̃, ∀(ρ̃, θ) ∈ C× Vθj(d).

(4.4.39)

The above bound can be obtained by handling each term
∣∣G̃ν

j+1

∣∣ separately. We present

the calculations for the first term:

∣∣G̃1
j+1(ρ̃, θ)

∣∣ ≤ j∑
ν=0

[
2

(
ν

0

)
|κ(θ)|ν+1|ρ̃|ν

∣∣∣∣∂3ṽj−ν

∂ρ̃3

∣∣∣∣+

(
ν

1

)
|κ(θ)|ν+1|ρ̃|ν−1

∣∣∣∣∂2ṽj−ν

∂ρ̃2

∣∣∣∣+
+

(
−
(
ν

2

)
|κ(θ)|ν+1|ρ̃|ν−2 + b

(
ν

0

)
|κ(θ)|ν+1|ρ̃|ν

)∣∣∣∣∂ṽj−ν∂ρ̃

∣∣∣∣
]

≤Cv,jCBBd−je
√
be−
√
bρ̃×

×
j∑

ν=0

[
(2dB)ν |ρ̃|ν−2

(
(12 + b)|ρ̃|2 + 4|ρ̃|+ 1

)
(qj−ν + |ρ̃|)2(j−ν−1)

]
≤Cv,jCBBd−je

√
be−
√
bρ̃ (2dB)j+1 − 1

2dB − 1
(qj + |ρ̃|)2j−1,

under the assumption 2dB 6= 1. In the same manner we handle the second term:

∣∣G̃2
j+1(ρ̃, θ)

∣∣ ≤ j−1∑
ν=0

[
2

(
ν + 1

1

)
|κ(θ)|ν |ρ̃|ν

∣∣∣∣∂4ṽj−1−ν

∂ρ̃2∂θ2

∣∣∣∣+ 2

(
ν + 1

2

)
|κ(θ)|ν |ρ̃|ν−1

∣∣∣∣∂3ṽj−1−ν

∂ρ̃∂θ2

∣∣∣∣+
+

(
4

(
ν + 1

3

)
|κ(θ)|ν |ρ̃|ν−2 + b

(
ν + 1

1

)
|κ(θ)|ν |ρ̃|ν

)∣∣∣∣∂2ṽj−1−ν

∂θ2

∣∣∣∣
]

≤Cv,jCBκ−2
1 d−(j+1)e−

√
bρ̃×
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×
j−1∑
ν=0

(2dB)ν |ρ̃|ν−2
(

(16e
√
b + 4b)|ρ̃|2 + 8e

√
b|ρ̃|+ 16

)
(qj + |ρ̃|)2(j−ν−2)

≤Cv,jCBκ−2
1 d−(j+1)e−

√
bρ̃ (2dB)j − 1

2dB − 1
(qj + |ρ̃|)2j−1.

By working in same way, one may obtain the analogous bounds, for the remaining

terms; we omit to present the calculations.

Since ṽj solves the BVP given by (4.4.12), (4.4.14) and we have shown that (4.4.39)

holds, we may use Proposition 2.4.10 and get

∣∣ṽj+1(ρ̃, θ)
∣∣ ≤ C

[
Cv,jd

−(j+1)(qj+1 + |ρ̃|)2j +
1√
b

∣∣∣∣−∂ũj(0, θ)∂ρ

∣∣∣∣]e−√bρ̃.
Note that ∂ũj

∂ρ
appears in the estimate above ( ũj given by (4.4.15)). By Lemma 4.4.18

∂ũj
∂ρ

is holomorphic in Bρ′j−1
(0) × Vθj . Then by the induction hypothesis for uj (and

hence ũj) we obtain, for all d ∈ (0, θj+1), (ρ̃, θ) ∈ C× Vθj+1
(d),

∣∣ṽj+1(ρ̃, θ)
∣∣ ≤ C

[
Cv,jd

−(j+1)(qj+1 + |ρ̃|)2j +
Cu,jK√

b
max{1,

√
c/b}

]
e−
√
bρ̃.

This implies,

∣∣ṽj+1(ρ̃, θ)
∣∣ ≤ Cv,j+1d

−(j+1)(qj+1 + |ρ̃|)2je−
√
bρ̃, ∀d ∈ (0, θj+1), ∀(ρ̃, θ) ∈ C× Vθj+1

(d),

thus we ensure that (4.4.38) holds for j + 1. Next we consider uj+1. This function

solves the BVP
b∆uj+1 − cuj+1 = ∆2uj−1,

uj+1

∣∣
∂Ω

= −ṽj+1

∣∣
∂Ω
.

From the induction hypothesis, we assume that (4.4.37) holds for j − 1 and we have

already shown that (4.4.38) holds for j+1. Then, Theorem 4.2.14 ensures that (4.4.37)

holds for j + 1.

Theorem 4.4.40 Let M ∈ N0 and let usM be defined by (4.4.22). Then there exist

CM , K̄M > 0 depending on M such that

‖∇nusM‖L∞(Ω) ≤ CMK̄
n
M max{n,

√
c/b}n, ∀n ∈ N0. (4.4.41)
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Proof. With the aid of Cauchy-Schwarz inequality and the definition (4.4.22) we have

∣∣∣∇nusM

∣∣∣2 ≤M M∑
j=0

ε2j
∣∣∣∇nuj

∣∣∣2.
By using (4.4.36) we obtain for ε 6= 1,

∣∣∣∇nusM

∣∣∣2 ≤M M∑
j=0

ε2jC2
u,jK

2n
j max{n,

√
c/b}2n

≤MCMK̄
2n
M

ε2M+1 − 1

ε− 1
max{n,

√
c/b}2n

≤CMK̄2n
M max{n,

√
c/b}2n.

Lemma 4.4.42 Let M ∈ N0 and j ∈ {0, 1, . . . ,M}. Assume that ṽj given by (4.4.12)

and (4.4.14). Then there are constants K1 > 1, θ1 ≥ θ2 ≥ · · · ≥ θM ≥ Θ > 0 and Cj,

qj > 0 (depending on j), such that for m,n ∈ N0, ρ̃ > 0, θ ∈ Vθj(d), d ∈ (0, θj), there

holds ∣∣∣∣∣∂m+nṽj(ρ̃, θ)

∂ρ̃m∂θn

∣∣∣∣∣ ≤ Cjm!n!e
√
bKn

1 d
−(j+n)

(
qj+1 + |ρ̃|

)2(j−1)

e−
√
bρ̃, (4.4.43)

Proof. The combination of Lemma 4.4.27 and Theorem 4.4.36 gives the result.

Lemma 4.4.44 Let M ∈ N0 and consider the boundary layer term uBLM given in

(4.4.23) and the tensor Λε given by (4.4.8) with respect to boundary fitted coordinates.

There exist Θ > 0 and θM > Θ, CM , qM > 0 depending on M , f and ∂Ω, such that for

d ∈ (0, θM), ∣∣∣Λεu
BL
M (ρ, θ)

∣∣∣ ≤ CMε
2Md−(2M+2)(qM + |ρ̃|)4Me−

√
bρ̃, (4.4.45)

for all (ρ, θ) ∈ Bρ0/4(0)× VθM , with ρ0 satisfying (4.4.2).

Proof. Let j ∈ {0, 1, . . . ,M}. With the aid of Lemma 4.4.33 we select the constants

CB, B to ensure that the inequalities λ = ρ0B < 1 and |ρκ(θ)| ≤ λ < 1, ∀(ρ, θ) ∈
Bρ0/4(0)×Vθj hold. By the definition of Λε and uBLM , and the property of the functions
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ṽj, i.e.
∑i

j=0 Lj ṽi−j =
∑i

j=0 Li−j ṽj = 0, we have

Λεu
BL
M (ρ, θ) =

∞∑
ν=2M+2

εν−2

2M+1∑
j=0

Λν−j ṽj(ρ/ε, θ)

=−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
−2

(
ν − j − 1

0

)
κν−j(θ)ρ̃ν−j−1∂

3ṽj

∂ρ̃3 −
(
ν − j − 1

1

)
κν−j(θ)ρ̃ν−j−2∂

2ṽj

∂ρ̃2 +

+

(
−
(
ν − j − 1

2

)
κν−j(θ)ρ̃ν−j−3 + b

(
ν − j − 1

0

)
κν−j(θ)ρ̃ν−j−1

)
∂ṽj
∂ρ̃

]
−

−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
2

(
ν − j − 1

1

)
κν−j−2(θ)ρ̃ν−j−2 ∂4ṽj

∂ρ̃2∂θ2 +

+ 2

(
ν − j − 1

2

)
κν−j−2(θ)ρ̃ν−j−3 ∂3ṽj

∂ρ̃∂θ2 +

+

(
4

(
ν − j − 1

3

)
κν−j−2(θ)ρ̃ν−j−4 − b

(
ν − j − 1

1

)
κν−j−2(θ)ρ̃ν−j−2

)
∂2ṽj

∂θ2

]
−

−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
2

(
ν − j − 1

2

)
κ′(θ)κν−j−3(θ)ρ̃ν−j−2 ∂3ṽj

∂ρ2∂θ
+

+ 2

(
ν − j − 1

3

)
κ′(θ)κν−j−3(θ)ρ̃ν−j−3 ∂

2ṽj
∂ρ∂θ

+

+

(
−
(
ν − j − 1

2

)
−
(
ν − j − 1

3

))
κ′′(θ)κν−j−3(θ)ρ̃ν−j−3∂ṽj

∂ρ̃
+

+

(
5

(
ν − j − 1

3

)
+ 9

(
ν − j − 1

4

))
κ′(θ)κj−3−ν(θ)ρ̃j−n−4∂ṽj

∂θ̃

]
−

−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[(
ν − j − 1

3

)
κν−j−4(θ)ρ̃ν−j−4∂

4ṽj

∂θ4 +

+

(
−3

(
ν − j − 1

3

)
− 3

(
ν − j − 1

4

))(
κ′(θ)

)2
κν−j−4(θ)ρ̃ν−j−3∂ṽj

∂ρ̃

]
−

−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
6

(
ν − j − 1

4

)
κ′(θ)κν−j−5(θ)ρ̃ν−j−4∂

3ṽj

∂θ3 +

+4

(
ν − j − 1

4

)
κ′′(θ)κj−5−ν(θ)ρ̃ν−j−4∂

2ṽj

∂θ2 +

+

(
ν − j − 1

4

)
κ(3)(θ)κν−j−5(θ)ρ̃ν−j−4∂ṽj

∂θ̃

]
−

−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
15

(
ν − j − 1

5

)(
κ′(θ)

)2
κν−j−6(θ)ρ̃ν−j−4∂

2ṽj

∂θ2 +

+10

(
ν − j − 1

5

)
κ′(θ)κ′′(θ)κν−j−6(θ)ρ̃ν−j−4∂ṽj

∂θ

]
−
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−
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
15

(
ν − j − 1

6

)(
κ′(θ)

)3
κν−j−7(θ)ρ̃ν−j−4∂ṽj

∂θ

]
.

Obviously Λεu
BL
m is an ’enormous’ term which must be handled. Here we present only

the calculations for the first double sum. All the rest can be treated in same manner.

We have:

2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
2

(
ν − j − 1

0

)
|κ(θ)|ν−j|ρ̃|ν−j−1

∣∣∣∣∂3ṽj

∂ρ̃3

∣∣∣∣+
+

(
ν − j − 1

1

)
|κ(θ)|ν−j|ρ̃|ν−j−2

∣∣∣∣∂2ṽj

∂ρ̃2

∣∣∣∣+
+

((
ν − j − 1

2

)
|κ(θ)|ν−j|ρ̃|ν−j−3 + b

(
ν − j − 1

0

)
|κ(θ)|ν−j|ρ̃|ν−j−1

)∣∣∣∣∂ṽj∂ρ̃
∣∣∣∣
]

=I1 + I2 + I3,

where

I1 =
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

[
2

(
ν − j − 1

0

)
|κ(θ)|ν−j|ρ̃|ν−j−1

∣∣∣∣∂3ṽj

∂ρ̃3

∣∣∣∣+
+b

(
ν − j − 1

0

)
|κ(θ)|ν−j|ρ̃|ν−j−1

∣∣∣∣∂ṽj∂ρ̃
∣∣∣∣
]
,

I2 =
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

(
ν − j − 1

1

)
|κ(θ)|ν−j|ρ̃|ν−j−2

∣∣∣∣∂2ṽj

∂ρ̃2

∣∣∣∣,
and

I3 =
2M+1∑
j=0

∞∑
ν=2M+2

εν−2

(
ν − j − 1

2

)
|κ(θ)|ν−j|ρ̃|ν−j−3

∣∣∣∣∂ṽj∂ρ̃
∣∣∣∣.

We begin with I1 and we appeal again to Lemmata 4.4.27, 4.4.33, 4.4.43 and, for fixed

d ∈ (0, θM), we get

I1 ≤e
√
bCB

2M+1∑
j=0

∞∑
ν=2M+2

Cv,j(2εB|ρ̃|)ν−2d−j(12 + b)21−jB2−j|ρ|1−j(qj+1 + |ρ̃|)2(j−1)e−
√
bρ̃.

By Lemma 4.4.33 we choose B to satisfy (4.4.34) and since ρ ≤ ρ0

4
, we have for fixed
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d ∈ (0, θM),

I1 ≤e
√
bB2(48 + 4b)CB

(
2εB|ρ̃|

)2M
2M+1∑
j=0

Cv,j(2Bd)−j|ρ̃|1−j(qj+1 + |ρ̃|)2(j−1)e−
√
bρ̃.

Note that, for 0 ≤ j ≤ 2M + 1,

|ρ̃|1−j
(
qj + |ρ̃|

)2(j−1)

≤ |ρ̃|−2M
(
qM + |ρ̃|

)4M

,

where qM is adjusted properly, i.e. it is taken to be the max{qj | 0 ≤ j ≤ 2M + 1}.
Therefore, we get, for fixed d ∈ (0, θM) and 2dB 6= 1,

I1 ≤e
√
bB2(48 + 4b)CMCB

(
2εB|ρ̃|

)2M (2Bd)−2M−2 − 1

(2Bd)−1 − 1
|ρ̃|−2M(qM + |ρ̃|)4Me−

√
bρ̃

≤e
√
b(12 + b)CMCBε

2Md−2M−2 2B

1− 2Bd
(qM + |ρ̃|)4Me−

√
bρ̃.

We proceed with terms I2, I3. Those terms vanish for ν − j − 2 < 0, ν − j − 3 < 0,

respectively, hence by appealing to Lemmata 4.4.27, 4.4.33, 4.4.43, and keeping in mind

ρ ≤ ρ0

4
, we bound them as follows:

I2 ≤
2M∑
j=0

∞∑
ν=2M+2

εν−2

(
ν − j − 1

1

)
|κ(θ)|ν−j|ρ̃|ν−j−2

∣∣∣∣∂2ṽj

∂ρ̃2

∣∣∣∣+
+

2M+1∑
j=2M+1

∞∑
ν=2M+3

εν−2

(
ν − j − 1

1

)
|κ(θ)|ν−j|ρ̃|ν−j−2

∣∣∣∣∂2ṽj

∂ρ̃2

∣∣∣∣
≤4B2e

√
bCB

(
2εB|ρ̃|

)2M
2M∑
j=0

Cv,j(2Bd)−j|ρ̃|−j(qj + |ρ̃|)2(j−1)e−
√
bρ̃+

+ 4B2e
√
bCMCB

(
2εB|ρ̃|

)2M+1
(2Bd)−(2M+1)|ρ̃|−(2M+1)(qM + |ρ̃|)4Me−

√
bρ̃,

and

I3 ≤
2M−1∑
j=0

∞∑
ν=2M+2

εν−2

(
ν − j − 1

2

)
|κ(θ)|ν−j|ρ̃|ν−j−3

∣∣∣∣∂ṽj∂ρ̃
∣∣∣∣+

+
2M∑
j=2M

∞∑
ν=2M+3

εν−2

(
ν − j − 1

2

)
|κ(θ)|ν−j|ρ̃|ν−j−3

∣∣∣∣∂ṽj∂ρ̃
∣∣∣∣+

+
2M+1∑
j=2M+1

∞∑
ν=2M+4

εν−2

(
ν − j − 1

2

)
|κ(θ)|ν−j|ρ̃|ν−j−3

∣∣∣∣∂ṽj∂ρ̃
∣∣∣∣

90

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 4 Section 4.4

≤2B2e
√
bCB

(
2εB|ρ̃|

)2M
2M−1∑
j=0

Cv,j(2Bd)−j|ρ̃|−1−j(qj + |ρ̃|)2(j−1)e−
√
bρ̃+

+ 2B2e
√
bCMCB

(
2εB|ρ̃|

)2M+1
(2Bd)−(2M+1)|ρ̃|−(2M+1)(qM + |ρ̃|)4M−2e−

√
bρ̃+

+ 2B2e
√
bCMCB

(
2εB|ρ̃|

)2M+2
(2Bd)−(2M+2)|ρ̃|−(2M+2)(qM + |ρ̃|)4Me−

√
bρ̃,

for fixed d ∈ (0, θM). We adjust properly the constant qM and for 0 ≤ j ≤ 2M , we

have

|ρ̃|−j(qj + |ρ̃|)2(j−1) ≤ |ρ̃|−2M(qM + |ρ̃|)4M−2.

Also for 0 ≤ j ≤ 2M − 1,

|ρ̃|−j−1(qj + |ρ̃|)2(j−1) ≤ |ρ̃|−2M(qM + |ρ̃|)4M−4.

The combination of the previous inequalities gives, for fixed d ∈ (0, θM),

I2 ≤4B2e
√
bCBCMε

2Md−(2M+1)
( d

1− 2Bd
+ ε
)

(qM + |ρ̃|)4Me−
√
bρ̃.

Simillary, for fixed d ∈ (0, θM),

I3 ≤2B2e
√
bCBCMε

2Md−(2M+2)
( 2Bd3

1− 2Bd
+ εd+ ε2d2

)
(qM + |ρ̃|)4Me−

√
bρ̃.

Theorem 4.4.46 Let M ∈ N0 and uBLM be defined by (4.4.23) and suppose that ρ0 > 0

satisfies (4.4.2). In addition, suppose that the right hand function f in (4.1.1) and the

curve of the boundary of the domain are analytic. Then there exist constant CM+1 > 0,

depending on M + 1, K > 1, K1 > 1, K2 > 0 such that the inner expansion uBLM is

analytic on (0, ρ0)× Tl and for every n, m ∈ N0, (ρ, θ) ∈ (0, ρ0)× Tl,∣∣∣∣∣∂m+nuBLM (ρ, θ)

∂ρm∂θn

∣∣∣∣∣ ≤ CM+1e
m+3

2 (m+ 1)1/2n!Knε1−me−
√
bρ/ε. (4.4.47)

Proof. From Theorem 4.4.36 we know that {ṽj}j∈N0 are holomorphic on C×VΘ, for some

Θ > 0. We apply Cauchy’s differentiation formula and for all n,m ∈ N0, ρ ≥ 0, θ ∈ Tl

91

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 4 Section 4.4

we have that

∂m+nṽj(ρ/ε, θ)

∂ρm∂θn
= −ε−mm!n!

4π2

∫
|r|=r0

∫
|s|= Θ

2

ṽj(ρ/ε+ r,Θ + s)

rm+1sn+1 dsdr.

By applying (4.4.38) on the functions {ṽj}∞j=0 and setting r0 = m+1√
b

we get

∣∣∣∣∣∂m+nṽj(ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣ ≤Cv,jε−mm!n!em+1

(m+ 1)m

( 2

Θ

)n+j(
qj + ρ/ε+

m+ 1√
b

)2(j−1)

e−
√
bρ/ε.

Considering the above calculations and Stirling’s formula,

m! ≤ Cmme−m
(
2π(m+ 1)

)1/2
,

we obtain,∣∣∣∣∣∂m+nṽj(ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣ ≤ Cv,jε
−me

(
2π(m+ 1)

)1/2
n!
( 2

Θ

)n+j(
qj + ρ/ε+

m+ 1√
b

)2(j−1)

e−
√
bρ/ε.

Consider the term(
qj + ρ/ε+

m+ 1√
b

)2(j−1)

e−
√
bρ/ε ≤

(
qj + ρ/ε+

m+ 1√
b

)2j

e−
√
bρ/ε

=
(√

b
)−2j

(√
bqj +

√
bρ

ε
+m+ 1

)2j

e−
√
b

2
ρ/εe−

√
b

2
ρ/ε

≤
(√

b
)−2j

(
2j +

√
bqj +

√
bρ

ε
+m+ 1

)2j

e−
1
2

(
√
bρ/ε+m+1)e

m+1
2 e−

√
b

2
ρ/ε.

(4.4.48)

By Lemma 4.2.3 we obtain

(
qj + ρ/ε+

m+ 1√
b

)2(j−1)

e−
√
bρ/ε ≤

(√
b
)−2j

(2j)2jeje

√
bqj
2 e

m+1
2 e−

√
bρ

2ε .

Hence,∣∣∣∣∣∂m+nṽj(ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣ ≤ Cv,jε
−me

(
2π(m+ 1)

)1/2
n!
( 2

Θ

)n+j(√
b
)−2j

(2j)2jeje

√
bqj
2 e

m+1
2 e−

√
bρ

2ε .

The term
(

2e
Θ

)j(
2j√
b

)2j

e

√
bqj
2 may be absorbed by the constant Cv,j (since it depends
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on j.) Therefore, for K = 2
Θ
,

∣∣∣∣∣∂m+nṽj(ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣ ≤ Cv,jε
−me

m+3
2

(
2π(m+ 1)

)1/2
n!Kne−

√
bρ

2ε . (4.4.49)

We now consider the definition of the term uBLM in (4.4.23) and we use (4.4.49):

∣∣∣∣∣∂m+nuBLM (ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣ ≤
M+1∑
j=0

εj

∣∣∣∣∣∂m+nṽj(ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣ =
M+1∑
j=1

εj

∣∣∣∣∣∂m+nṽj(ρ/ε, θ)

∂ρm∂θn

∣∣∣∣∣
≤

M+1∑
j=1

Cv,je
m+3

2 (m+ 1)1/2n!ε1−mKnεj−1e−
√
bρ

2ε

≤e
m+3

2 (m+ 1)1/2n!ε1−mKne−
√
bρ

2ε

M∑
j=0

Cv,j+1ε
j

≤CM+1e
m+3

2 (m+ 1)1/2n!ε1−mKne−
√
bρ

2ε .

Theorem 4.4.50 Let M ∈ N0 and rM be defined by (4.4.24) and suppose that the right

hand function f in (4.1.1) and the curve of the boundary of the domain are analytic.

Then there exist CM+1 > 0, depending on M , and β > 0 depending on b and the cut-off

function χ, such that

‖rM‖E,Ω ≤ CM+1

((
εM2

)2M
+ e−β/ε

)
. (4.4.51)

Proof. We have,

ΛεrM =Λε(u− usM)− Λε(χu
BL
M ) = f −

M∑
ν=0

ενΛε(uν)− Λε(χu
BL
M ) =

=f −
M∑
ν=0

εν
(
ε2∆2uν − b∆uν + cuν

)
−
(
ε2χ∆2uBLM + 6ε2∆χ∆uBLM + ε2uBLM ∆2χ−

− buBLM ∆χ− bχ∆uBLM + cχuBLM − 2b

[
∂χ

∂x

∂uBLM
∂x

+
∂χ

∂y

∂uBLM
∂y

]
+

+ 4ε2

[
∂χ

∂x

(
∂3uBLM
∂x3

+
∂3uBLM
∂x∂y2

)
+
∂χ

∂y

(
∂3uBLM
∂x2∂y

+
∂3uBLM
∂y3

)]
+

+ 4ε

[
∂uBLM
∂x

(
∂3χ

∂x3
+

∂3χ

∂x∂y2

)
+
∂uBLM
∂y

(
∂3χ

∂x2∂y
+
∂3χ

∂y3

)])

=− εM+1∆2uM−1 − εM+2∆2uM −
(

6ε2∆χ∆uBLM + ε2uBLM ∆2χ− buBLM ∆χ+

93

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 4 Section 4.4

+ 4ε2

[
∂χ

∂x

(
∂3uBLM
∂x3

+
∂3uBLM
∂x∂y2

)
+
∂χ

∂y

(
∂3uBLM
∂x2∂y

+
∂3uBLM
∂y3

)]
+

+ 4ε

[
∂uBLM
∂x

(
∂3χ

∂x3
+

∂3χ

∂x∂y2

)
+
∂uBLM
∂y

(
∂3χ

∂x2∂y
+
∂3χ

∂y3

)]
−

− 2b

[
∂χ

∂x

∂uBLM
∂x

+
∂χ

∂y

∂uBLM
∂y

]
+ χΛεu

BL
M

)
.

With the aid of (4.4.37), the first two terms can be bounded as

∥∥∥εM+1∆2uM−1 + εM+2∆2uM

∥∥∥
L∞(Ω)

≤ εM+1
∥∥∥∆2uM−1

∥∥∥+ εM+2
∥∥∥∆2uM

∥∥∥
≤εM+1 max{4,

√
c/b}4

(
CM−1K

4
M−1 + CMK

4
M

)
≤CMε

M+1 max{4,
√
c/b}4

To handle the term χΛεu
BL
M we recall the support properties of χ (given by (4.4.3)).

We utilize Lemma 4.4.44 and we have,

∥∥∥χΛεu
BL
M

∥∥∥
L2(Ω)

≤CMε2M

(∫
Ω0

[
d−(2M+2)(qM + |ρ/ε|)4Me−

√
bρ
ε

]2

dρdθ

)1/2

.

By following (4.4.48) we may obtain (for m = 1),

∥∥∥χΛεu
BL
M

∥∥∥
L2(Ω)

≤CMε2M
(4M√

b

)4M

e2M+1/2e
√
bqM
2

(∫
Ω0

[
d−(2M+2)e−

√
bρ

2ε

]2

dρdθ

)1/2

.

Letting d→ Θ (with Θ as in the statement of Theorem 4.4.36) gives

∥∥∥χΛεu
BL
M

∥∥∥
L2(Ω)

≤CMε2M
(4M√

b

)4M

e2M+1/2e
√
bqM
2

( 1

Θ

)2M+2

|Ω0|1/2

≤CMε2MM4M

(
16e

bΘ

)2M

≤CM
(

16εeM2

bΘ

)2M

.

We proceed with the remaining terms. We recall that in a neighborhood of ρ = 0, the

cut-off function χ ≡ 1 and all its derivatives vanish. Since uBLM and all its derivatives

are exponentially small by (4.4.47), we may bound the terms, for ρ > ρ0/2, by using

Theorem 4.4.46, as follows:

∥∥∥∆χ∆uBLM

∥∥∥
L2(Ω)

≤ CM+1ε
−1e−

β
ε ,
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∥∥∥uBLM ∆χ
∥∥∥
L2(Ω)

≤ CM+1εe
−β
ε ,

∥∥∥uBLM ∆2χ
∥∥∥
L2(Ω)

≤ CM+1εe
−β
ε ,∥∥∥∥∂χ∂x

(
∂3uBLM
∂x3

+
∂3uBLM
∂x∂y2

)
+
∂χ

∂y

(
∂3uBLM
∂x2∂y

+
∂3uBLM
∂y3

)∥∥∥∥
L2(Ω)

≤
∥∥∥∇χ∇3uBLM

∥∥∥
L2(Ω)

≤ CM+1ε
−2e−

β
ε ,∥∥∥∥∂uBLM∂x

(
∂3χ

∂x3
+

∂3χ

∂x∂y2

)
+
∂uBLM
∂y

(
∂3χ

∂x2∂y
+
∂3χ

∂y3

)∥∥∥∥
L2(Ω)

≤
∥∥∥∇3χ∇uBLM

∥∥∥
L2(Ω)

≤CM+1e−
β
ε ,

∥∥∥∥∂χ∂x ∂uBLM∂x +
∂χ

∂y

∂uBLM
∂y

∥∥∥∥
L2(Ω)

≤
∥∥∥∇χ∇uBLM ∥∥∥

L2(Ω)
≤ CM+1e−

β
ε ,

for some β > 0 depending on b and χ. Combining the above bounds we have, with the

aid of stability, the desired result.

We summarize the main results of this section:

Remark 4.4.52. Let M ∈ N0, and let u be the solution of (4.1.1). Then u can be

written as:

u = usM + χuBLM + rM ,

and there are constants C1,M , C2,M+1, C3,M+1 > 0 depending onM and ρ0 independent

of ε ∈ (0, 1] such that, for all m,n ∈ N0, (ρ, θ) ∈ (0, ρ0)× Tl,

‖∇nusM‖L∞(Ω) ≤ C1,MK
n
M max{n,

√
c/b}n,∣∣∣∣∣∂m+nuBLM (ρ, θ)

∂ρm∂θn

∣∣∣∣∣ ≤ C2,M+1e
m+3

2 (m+ 1)1/2n!Knε1−me−
√
bρ

2ε ,

‖rM‖E,Ω ≤ C3,M+1

((
εM2

)2M
+ e−β/ε

)
,

for some β > 0.
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4.5 Appendix

Here we present some useful lemmas and inequalities. In some cases, we ommit the

proof.

Lemma 4.5.1 Let 0 < ρ0 ≤ 1 and the integer n ≥ 2. Suppose that b, c and u are

analytic functions defined on the disc Bρ0, where b and c satisfy the bounds

∥∥∥∇nb
∥∥∥
L∞(Bρ0 )

≤ Cbγ
n
b n!, ∀n ∈ N0,∥∥∥∇nc

∥∥∥
L∞(Bρ0 )

≤ Ccγ
n
c n!, ∀n ∈ N0.

(4.5.2)

Then we have

M̆ρ0,n(cu) ≤ Cc

n∑
k=0

(γcρ0

2

)n−k [k − 4]!

[k]!

(ρ0

2

)4

N̆ρ0,k−4(u), (4.5.3)

M̆ρ0,n(b∆u) ≤ Cb

n∑
k=0

(γbρ0

2

)n−k [k − 2]!

[k]!

(ρ0

2

)2

N̆ρ0,k−2(u). (4.5.4)

Proof. With the aid of Leibniz’s formula, (the proof can be found in [53, Lemma 5.7.4.])

|∇n(cu)| ≤
n∑
k=0

|∇n−kc||∇ku|,

we have,

M̆ρ0,n(cu) =

=
1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4‖∇n(cu)‖L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4

n∑
k=0

(
n

k

)
‖∇n−kc‖L∞(Bρ0 )‖∇ku‖L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4Cc

n∑
k=0

n!

(n− k)!k!
γn−kc (n− k)!

[k − 4]!

supρ0/2≤ρ<ρ0
(ρ0 − ρ)k

N̆ρ0,k−4(u)

≤Cc
n∑
k=0

(γcρ0

2

)n−k [k − 4]!

[k]!

(ρ0

2

)4

N̆ρ0,k−4(u).

In a similar manner,

M̆ρ0,n(b∆u) =
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=
1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4‖∇n(b∆u)‖L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4

n∑
k=0

(
n

k

)
‖∇n−kb‖L∞(Bρ0 )‖∇k∆u‖L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4Cb

n∑
k=0

n!

(n− k)!k!
γn−kb (n− k)!

[k − 2]!

supρ0/2≤ρ<ρ0
(ρ0 − ρ)k

N̆ρ0,k−2(u)

≤Cb
n∑
k=0

(γbρ0

2

)n−k [k − 2]!

[k]!

(ρ0

2

)2

N̆ρ0,k−2(u).

Lemma 4.5.5 Let 0 < ρ0 ≤ 1 and the integer n ≥ 2. Suppose that b, c and u are

analytic functions defined on the half disc Hρ0, where b and c satisfy the bounds (4.3.23).

Then we have

M̆ ′
ρ0,n

(cu) ≤ Cc

n∑
k=0

(γcρ0

2

)n−k [k − 4]!

[k]!

(ρ0

2

)4

N̆ ′ρ0,k−4(u), (4.5.6)

M̆ ′
ρ0,n

(b∆u) ≤ Cb

n∑
k=0

(γbρ0

2

)n−k [k − 2]!

[k]!

(ρ0

2

)2

N̆ ′ρ0,k−2(u), (4.5.7)

and ∣∣∣∣∂n1+n2(bu)

∂xn1∂yn2

∣∣∣∣ ≤ Cb

n1∑
k=0

n2∑
l=0

(n1 + n2)n1+n2−k−lγn1+n2−k−l
b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣. (4.5.8)

Proof. Using Leibniz’s formula once more, we get

M̆ ′
ρ0,n

(cu) =

=
1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4

∥∥∥∥∂n(cu)

∂xn

∥∥∥∥
L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4

n∑
k=0

(
n

k

)∥∥∥∥ ∂n−kc∂xn−k

∥∥∥∥
L∞(Bρ0 )

∥∥∥∥∂ku∂xk

∥∥∥∥
L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4Cc

n∑
k=0

n!

(n− k)!k!
γn−kc (n− k)!

[k − 4]!

supρ0/2≤ρ<ρ0
(ρ0 − ρ)k

N̆ ′ρ0,k−4(u)

≤Cc
n∑
k=0

(γcρ0

2

)n−k [k − 4]!

[k]!

(ρ0

2

)4

N̆ ′ρ0,k−4(u).

In a similar manner,

M̆ ′
ρ0,n

(b∆u) =
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=
1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4

∥∥∥∥∂n(b∆u)

∂xn

∥∥∥∥
L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4

n∑
k=0

(
n

k

)∥∥∥∥ ∂n−kb∂xn−k

∥∥∥∥
L∞(Bρ0 )

∥∥∥∥∂k(∆u)

∂xk

∥∥∥∥
L2(Bρ0 )

≤ 1

[n]!
sup

ρ0/2≤ρ<ρ0

(ρ0 − ρ)n+4Cb

n∑
k=0

n!

(n− k)!k!
γn−kb (n− k)!

[k − 2]!

supρ0/2≤ρ<ρ0
(ρ0 − ρ)k

N̆ ′ρ0,k−2(u)

≤Cb
n∑
k=0

(γbρ0

2

)n−k [k − 2]!

[k]!

(ρ0

2

)2

N̆ ′ρ0,k−2(u).

To obtain the third bound we recall the assumptions on b and we apply again Leibniz’s

formula:∣∣∣∣∂n1+n2(bu)

∂xn1∂yn2

∣∣∣∣ ≤ n1∑
k=0

n2∑
l=0

(
n1

k

)(
n2

l

)∣∣∣∣∂k+l(bu)

∂xk∂yl

∣∣∣∣
≤Cb

n1∑
k=0

n2∑
l=0

(
n1

k

)(
n2

l

)
(n1 − k)!(n2 − l)!γn1+n2−k−l

b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣
≤Cb

n1∑
k=0

n2∑
l=0

n1!

k!

n2!

l!
γn1+n2−k−l
b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣
≤Cb

n1∑
k=0

n2∑
l=0

nn1−k
1 nn2−l

2 γn1+n2−k−l
b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣
≤Cb

n1∑
k=0

n2∑
l=0

(n1 + n2)n1+n2−k−lγn1+n2−k−l
b

∣∣∣∣ ∂k+lu

∂xk∂yl

∣∣∣∣

Lemma 4.5.9 Let 0 < ρ0 ≤ 1 and u, f ∈ C∞(Bρ0). For each ρ0/2 < ρ ≤ ρ + δ < ρ0,

0 < δ ≤ ρ the following inequalities hold:

∫
Bρ+δ

|∇nf |2dx ≤
(
n!
)2

(ρ0 − ρ− δ)−2(n+4)
[
M̆ρ0,n(f)

]2
, n ≥ 1,∫

Bρ+δ

|∇n+1u|2dx ≤
[
(n− 3)!

]2
(ρ0 − ρ− δ)−2(n+1)

[
N̆ρ0,n−3(u)

]2
, n ≥ 3, (4.5.10)∫

Bρ+δ

|∇n+2u|2dx ≤
[
(n− 2)!

]2
(ρ0 − ρ− δ)−2(n+2)

[
N̆ρ0,n−2(u)

]2
, n ≥ 2,∫

Bρ+δ

|∇n+3u|2dx ≤
[
(n− 1)!

]2
(ρ0 − ρ− δ)−2(n+3)

[
N̆ρ0,n−1(u)

]2
, n ≥ 1.
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Chapter 4 Section 4.5

Lemma 4.5.11 Suppose 0 < ρ0 ≤ 1 and u ∈ C∞(Hρ0). Then,

|∇3∇n
xu|2 ≤ |∇4∇n−1

x u|2, n ≥ 1; |∇3∇n
xu|2 = |∇3u|2, n = 0,

|∇2∇n
xu|2 ≤ |∇4∇n−2

x u|2, n ≥ 2; |∇2∇n
xu|2 ≤ |∇2+nu|2, n = 0, 1,

|∇∇n
xu|2 ≤ |∇4∇n−3

x u|2, n ≥ 3; |∇∇n
xu|2 ≤ |∇n+1u|2, n = 0, 1, 2,

(4.5.12)

hold true.

Lemma 4.5.13 We suppose ε > 0, 0 < ρ0 ≤ 1 and we let n ≥ 2 be an integer. Then

we have

n

n

max
{

[n− 1]n+3,
(
ρ0/ε

)n+2}
[n− 1]!

≤ 1

n!
max

{
[n]n+4,

(
ρ0/ε

)n+3}
,

n(n− 1)

n(n− 1)

max
{

[n− 2]n+2,
(
ρ0/ε

)n+1}
[n− 2]!

≤ 1

n!
max

{
[n]n+4,

(
ρ0/ε

)n+3}
,

n(n− 1)(n− 2)

n(n− 1)(n− 2)

max
{

[n− 3]n+1,
(
ρ0/ε

)n}
[n− 3]!

≤ 1

n!
max

{
[n]n+4,

(
ρ0/ε

)n+3}
,

n(n− 1)(n− 2)(n− 3)

n(n− 1)(n− 2)(n− 3)

max
{

[n− 4]n,
(
ρ0/ε

)n−1}
[n− 4]!

≤ 1

n!
max

{
[n]n+4,

(
ρ0/ε

)n+3}
,

ε−2ρ2
0

1

[n]!

[n]!

[k]!
max

{
[k − 2]k+2,

(
ρ0/ε

)k+1} ≤ 1

n!
max

{
[n]n+4,

(
ρ0/ε

)n+3}
,

ε−2ρ4
0

1

[n]!

[n]!

[k]!
max

{
[k − 4]k,

(
ρ0/ε

)k−1} ≤ 1

n!
max

{
[n]n+4,

(
ρ0/ε

)n+3}
.

(4.5.14)

Lemma 4.5.15 For the same hypotheses of Lemma 4.5.13, we get

nn + max
{(
ρ0n
)n
,
(
ρ0/ε

)n−1}≤ 2 max
{
nn,
(
ρ0/ε

)n−1}
, (4.5.16)

and

(ρ0/ε)
4 ≤ min

{
1, (ρ0/ε)

4
}

max
{
n, (ρ0/ε)

4
}
. (4.5.17)
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Chapter 5

2-D hp-approximation results

In the present chapter, we construct tools for the hp–FEM approximation to solutions

of singularly perturbed problems, such as the one studied in Chapter 4. In particular,

we construct hierarchical basis functions on the reference square S = (−1, 1)2, and

study their approximation properties. With the help of the interpolation operator

of Chapter 3, we define an appropriate interpolant by tensor product, and obtain

bounds on the interpolation error, for the reference square. Since the mesh contains,

more often than not, several elements, we also address the issue of inter-element C1

continuity. Specifically, we provide appropriate lifting results, which are meant to

correct the discontinuous approximation. By liftings, we mean polynomial extensions of

polynomial traces, which allow us to construct, from local approximations, a globally C1

continuous piecewise polynomial approximation without degrading the error estimate

[12].

When the domain is curved, one has to construct elements with (at least some) curved

edges. Unfortunately, it is not possible to construct a C1 continuous approximation

on curved elements. In Chapter 6 we address this issue with an alternative (mixed)

formulation of our problem. Here, however, we consider the case of a square domain

(hence no curved elements) and we make an Assumption on the regularity of the

solution, which is meant to eliminate the (possible) presence of corner singularities

and at the same time allow us to focus on the hp approximation of boundary layers.

The Spectral Boundary Layer mesh, we’ve seen before in one dimension, is extended

to two dimensions, and our main result (Theorem 5.3.12) gives robust, exponential

convergence in the energy norm.
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Chapter 5 Section 5.1

At the end of the chapter, we present numerical results to corroborate the theory.

We consider again the variational problem under study: Find u ∈ H2
0 (Ω) such that

Bε(u, v) = F (v), for all v ∈ H2
0 (Ω). (5.0.1)

The bilinear form Bε and the linear functional F are defined as

Bε(u, v) = ε2〈∆u,∆v〉Ω + b〈∇u,∇v〉Ω + c〈u, v〉Ω (5.0.2)

and

F (v) = 〈f, v〉Ω.

The energy norm is defined as ‖u‖E,Ω =
(
Bε(u, u)

)1/2

.

As usual, in order to establish an approximation for the weak solution of problem

(5.0.1), we replace the Hilbert space H2
0 (Ω) by a finite dimensional subspace VN ⊆

H2
0 (Ω). This subspace is comprised of piecewise differentiable polynomials of a fixed

degree associated with a subdivision of the computational domain. We note that

the parameter N is related to the discretization of the domain. Consequently, the

variational problem is replaced by the following discrete problem: Find uN ∈ VN such

that

Bε(uN , vN) = F (vN), for all vN ∈ VN . (5.0.3)

From Céa’s lemma, it follows that the finite element approximation uN to the weak

solution u ∈ H2
0 (Ω), is the best approximation to u in the energy norm, i.e.

‖u− uN‖E,Ω ≤ inf
vN∈VN

‖u− vN‖E,Ω, (5.0.4)

for some constant C > 0 independent of f and VN .

5.1 C1-Basis functions on the reference element

To describe the approximation uN it is necessary to construct a basis for the subspace

VN . The basis gives us the ability to define the subspace VN (i.e. the Finite Element

Space) and consequently the solution to the discrete problem. Therefore, our task
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Chapter 5 Section 5.1

in this subsection is the complete description of that set which makes up the basis

functions defined in two dimensions.

We will construct our mesh using quadrilaterals, therefore we begin our analysis by

considering the four-node Bogner-Fox-Schmit element which is presented in Figure 5.1.

This element has sixteen (16) degrees of freedom, four at each vertex node. The degrees

of freedom are associated with the values of the solution and its first and second order

mixed partial derivatives at the nodes. Therefore we need to choose proper basis

functions in order to control the values of the approximation and its derivatives at

each vertex node. Those functions must have continuous first order partial derivatives

and we must ensure that they possess a hierarhical character. For the corresponding

problem in one dimension, a family of functions which satisfies these conditions, has

already been introduced in Section 3.1 of Chapter 3. See also [57].

0

1

-1

2

-2

1-1 2-2 x

y

a b

cd

Figure 5.1: Bogner-Fox-Schmit Element

We first examine the four cubic Hermite polynomials given by (3.1.4)–(3.1.7). By

utilizing these four functions one can describe precisely the Bogner-Fox-Schmit element.

This occurs by the construction of a two dimensional basis with the aid of tensor

products among the Hermite polynomials. To improve the perfomance, the extension

of the Bogner-Fox-Schmit element to a hierarchical high-order element is needed. The

extension is achieved through the usage of the polynomials given by (3.1.9) which

control the internal values.
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Chapter 5 Section 5.1

We seek to construct hierarchical basis functions that are defined on the reference

square S = {(ξ, η)| − 1 ≤ ξ, η ≤ 1}. For −1 ≤ ξ, η ≤ 1 the natural choice of the family

{hi(ξ)× hj(η)}i,j gives us the C1−basis we seek.

As a result, we define a hierarchical set of basis functions in two dimensions (2D), (by

taking tensor products of the one dimensional (1D) basis presented in Chapter 3) and

we subdivide them into three categories: vertex, edge and face (we mention that here

we follow the idea given in [29]).

Vertex modes (Nodal basis functions)

First we define the nodal basis functions by using the tensor product among the cubic

Hermite polynomials. There are sixteen (16) such cases which describe exactly the

Bogner-Fox-Schmit element. Their formula is given by

φji (ξ, η) = hp1(ξ)hp2(η), i = 1, 2, 3, 4, j = a, b, c, d, (5.1.1)

where p1 and p2 are polynomial degrees and their relation is presented in Table 5.1

below.

Table 5.1: Indices p1 and p2 for the nodal basis functions

φ φa1 φa2 φa3 φa4 φb1 φb2 φb3 φb4 φc1 φc2 φc3 φc4 φd1 φd2 φd3 φd4
p1 1 1 2 2 3 3 4 4 3 3 4 4 1 1 2 2
p2 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4

As shown in Table 5.1 four nodal basis functions are associated with each vertex and

each function matches either the solution, the first order partial derivatives, or the

second order mixed derivative.

Figure 5.2 displays the corresponding functions which are associated with the vertex

at the point a and Figure 5.3 is related with the vertex at d. Their values at the vertex

points are essential for our construction.

Edge Modes (Side basis functions)

We now proceed with the side basis functions, using polynomials of degree p in each

direction. There are 8(p− 3) such functions and for i = 1, . . . , p− 3, we present their
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(a) φa1(ξ, η) = h1(ξ)h1(η)
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(b) φa2(ξ, η) = h1(ξ)h2(η)
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(c) φa3(ξ, η) = h2(ξ)h1(η)

-1
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11

0.5

0

-0.5

0

0.02

0.04
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(d) φa4(ξ, η) = h2(ξ)h2(η)

Figure 5.2: Nodal basis functions at vertex a

formulas at each side:

Side ab:

φ
ab1
i (ξ, η) = hi+4(ξ)h1(η)

φab2i (ξ, η) = hi+4(ξ)h2(η)

Side bc:

φ
bc1
i (ξ, η) = h3(ξ)hi+4(η)

φbc2i (ξ, η) = h4(ξ)hi+4(η)

Side cd:

φ
cd1
i (ξ, η) = hi+4(ξ)h4(η)

φcd2
i (ξ, η) = hi+4(ξ)h3(η)

Side da:

φ
da1
i (ξ, η) = h2(ξ)hi+4(η)

φda2
i (ξ, η) = h1(ξ)hi+4(η)

Figure 5.4 shows some edge shape functions which are related with side ab. As can be

observed from the first four figures, the application of such basis function gives us the

means to control the values of the interpolant along side ab. Regarding the other four

figures below, although it may not be clear, such basis functions let us determine the

values of the first partial derivatives. In addition, Figure 5.5 displays the analogous

edge shape functions related to side bc.

Face Modes (Internal basis functions)

To complete the construction, we define the internal basis functions in order to control
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(a) φd1(ξ, η) = h1(ξ)h3(η)
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(b) φd2(ξ, η) = h1(ξ)h4(η)
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(c) φd3(ξ, η) = h2(ξ)h3(η)
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(d) φd4(ξ, η) = h2(ξ)h4(η)

Figure 5.3: Nodal basis functions at vertex d

the internal values of the approximation, using polynomials of degree p in each direc-

tion. There are (p− 3)2 internal basis functions.They are given by the formula:

φi,j(ξ, η) = hi+4(ξ)hj+4(η), i, j = 1, . . . , p− 3. (5.1.2)

The reader may examine some of the face functions in Figure 5.6. The edge functions

along with the face modes complete the description of the hierarchical high order

square element. By the definitions of the side and internal functions, it is clear that

they appear for polynomials of order strictly greater than 3. Since the basis functions

have been fully determined, it is not hard to deduce that the approximation of the

solution is given as

up(ξ, η) =
16∑
k=1

αkφk(ξ, η) +

8(p−3)∑
l=1

βlφl(ξ, η) +

(p−3)2∑
m=1

γmφm(ξ, η), (5.1.3)

for some constants αk, βl and γm.
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(c) φab13 (ξ, η) = h7(ξ)h1(η)
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(e) φab21 (ξ, η) = h5(ξ)h2(η)
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(g) φab23 (ξ, η) = h7(ξ)h2(η)
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Figure 5.4: Side basis functions at side ab
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Figure 5.5: Side basis functions at side bc
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(h) φ7,7(ξ, η) = h7(ξ)h7(η)

Figure 5.6: Some internal basis functions

5.2 Approximation results on the unit square

The following Lemmas are a simplification of [34, Lemma 3.1], [34, Lemma 3.2] and

[34, Lemma 3.6], respectively, for m = 2, hence we omit their proofs. In order to be

consistent with the publication [34], we will give the following results on the square

(0, 1)× (0, 1) instead of the reference square.
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1
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γ3

γ2γ4 S1
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N4 N3

N1 N2

Figure 5.7: Reference square S1 and its notations

As aforementioned, we denote the square (0, 1) × (0, 1) and its sides by S1 and γi

respectively. Also, we denote its whole boundary by γ (see Figure 5.7). The usual

Sobolev space on γi is denoted by Hk(γi). Let Q be a subset of {1, 2, 3, 4} and define

Hk(γ) = Πi∈QH
k(γi). Moreover set γ̃ = {(x, 0) | 0 < x < 1}.

Lemma 5.2.1 Let S1 = (0, 1)2 and suppose u ∈ H3(S1) satisfies the boundary condi-

tions
u(0, 0) = u(1, 0) =u(0, 1) = u(1, 1) = 0,

∂u

∂ξ
(0, 0) =

∂u

∂ξ
(1, 0) =

∂u

∂ξ
(0, 1) =

∂u

∂ξ
(1, 1) = 0,

∂u

∂η
(0, 0) =

∂u

∂η
(1, 0) =

∂u

∂η
(0, 1) =

∂u

∂η
(1, 1) = 0.

Then u ∈ H2(γ) and

‖u‖H2(γ) ≤ C|u|H3(S1). (5.2.2)

Lemma 5.2.3 Let ψ1(ξ), ψ2(ξ) be polynomials of degree p on γ̃ that satisfy

ψ1(0) = ψ1(1) = ψ2(0) = ψ2(1) = 0,

ψ′1(0) = ψ′1(1) = ψ′2(0) = ψ′2(1) = 0.

Then there are polynomials Ψ1,Ψ2 of degree p in ξ and degree 3 in η such that

Ψ1(ξ, η) =

ψ1(ξ), for all (ξ, η) ∈ γ̃,

0, for (ξ, η) belonging to the other sides of S1,

(5.2.4)
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∂Ψ1

∂ξ
(ξ, η) =

ψ
′
1(ξ), for all (ξ, η) ∈ γ̃,

0, for (ξ, η) belonging to the other side of S1,

(5.2.5)

∂Ψ1

∂η
(ξ, η) = 0, for (ξ, η)belonging to each side of S1, (5.2.6)

Ψ2(ξ, η) =0, for (ξ, η) belonging to each side of S1, (5.2.7)

∂Ψ2

∂ξ
(ξ, η) =0, for (ξ, η) belong to all other side of S1, (5.2.8)

∂Ψ2

∂η
(ξ, η) =

ψ2(ξ), for all (ξ, η) ∈ γ̃,

0, for (ξ, η) belonging to the other side of S1,

(5.2.9)

and

‖Ψ1‖H2(S1) ≤ C‖ψ1‖H2(γ̃), (5.2.10)

‖Ψ2‖H2(S1) ≤ C‖ψ2‖H2(γ̃). (5.2.11)

Proof. Define Ψ1(ξ, η) = ψ1(x)(2η3 − 3η2 + 1) and Ψ2(ξ, η) = ψ2(x)(η3 − 2η2 + η). It

is transparent that the polynomials satisfy the conditions above.

Next, we recall Proposition 3.2.1, since we seek to take advantage of its results and

extend them to two dimensions with the help of a tensor product operator. Some

calculations are needed, however it is not hard to deduce the 2D analogous results in

the reference square which we present in Proposition 5.2.35 and Lemma 5.2.37. As

mentioned before, the approximation results which are obtained by the tensor product

of the one dimensional operator are not adequate to deduce the intended result. One

must also surpass the difficulty of the interelement discontinuity, if the mesh consists

of more than one element. Using a scaling argument (Lemma 5.2.43) and ideas from

[34] we construct in Theorem 5.2.46 a C1 piecewise polynomial that approximates the

given function and we show bounds on the error.

We note that one can use the one dimensional operators Ip on a two dimensional

function u(ξ, η) with respect to ξ or η. Throughout the rest of this section we denote

this by the symbols I(ξ)
p or I(η)

p , respectively.
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Lemma 5.2.12 Let u ∈ H2(S) and let p ≥ 3 be an integer. Then

∥∥∥∥∂2(u− I(ξ)
p u)

∂ξ2

∥∥∥∥2

0,S

≤ (p− α1)!

(p− 2 + α1)!

∥∥∥∥∂α1+1u

∂ξα1+1

∥∥∥∥2

0,S

, (5.2.13)∥∥∥∥∂2(u− I(η)
p u)

∂η2

∥∥∥∥2

0,S

≤ (p− β1)!

(p− 2 + β1)!

∥∥∥∥∂β1+1u

∂ηβ1+1

∥∥∥∥2

0,S

, (5.2.14)

∥∥∥∥∂2(u− I(ξ)
p u)

∂η2

∥∥∥∥2

0,S

≤ 1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+3u

∂ξα3+1∂η2

∥∥∥∥2

0,S

, (5.2.15)∥∥∥∥∂2(u− I(η)
p u)

∂ξ2

∥∥∥∥2

0,S

≤ 1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+3u

∂ξ2∂ηβ3+1

∥∥∥∥2

0,S

, (5.2.16)

∥∥∥∥∂2(u− I(ξ)
p u)

∂ξ∂η

∥∥∥∥2

0,S

≤ 1

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥ ∂α2+2u

∂ξα2+1∂η

∥∥∥∥2

0,S

, (5.2.17)∥∥∥∥∂2(u− I(η)
p u)

∂ξ∂η

∥∥∥∥2

0,S

≤ 1

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥ ∂β2+2u

∂ξ∂ηβ2+1

∥∥∥∥2

0,S

, (5.2.18)

∥∥∥∥∂(u− I(ξ)
p u)

∂ξ

∥∥∥∥2

0,S

≤ 1

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥∂α2+1u

∂ξα2+1

∥∥∥∥2

0,S

, (5.2.19)∥∥∥∥∂(u− I(η)
p u)

∂η

∥∥∥∥2

0,S

≤ 1

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥∂β2+1u

∂ηβ2+1

∥∥∥∥2

0,S

, (5.2.20)

∥∥∥∥∂(u− I(ξ)
p u)

∂η

∥∥∥∥2

0,S

≤ 1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+2u

∂ξα3+1∂η

∥∥∥∥2

0,S

, (5.2.21)∥∥∥∥∂(u− I(η)
p u)

∂ξ

∥∥∥∥2

0,S

≤ 1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+2u

∂ξ∂ηβ3+1

∥∥∥∥2

0,S

, (5.2.22)

∥∥∥u− I(ξ)
p u
∥∥∥2

0,S
≤ 1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥∂α3+1u

∂ξα3+1

∥∥∥∥2

0,S

, (5.2.23)

∥∥∥u− I(η)
p u

∥∥∥2

0,S
≤ 1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥∂β3+1u

∂ηβ3+1

∥∥∥∥2

0,S

, (5.2.24)

for any integers 1 ≤ α1, α2, α3, β1, β2, β3 ≤ p.

Proof. One can easily deduce the above estimates with the aid of Proposition 3.2.1.
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For instance, to show (5.2.13) we perform the calculations

∣∣∣∣∂2(u− I(ξ)
p u)

∂ξ2

∣∣∣∣2
0,S

=

∫ 1

−1

∫ 1

−1

∣∣∣∣∂2(u− I(ξ)
p u)

∂ξ2

∣∣∣∣2dxdy
=

∫ 1

−1

∥∥∥ ∂2

∂x2
u(·, y)− ∂2

∂x2
I(ξ)
p u(·, y)

∥∥∥2

0,[−1,1]
dy ≤ (p− α1)!

(p− 2 + α1)!

∥∥∥∥∂α1+1u

∂α1+1ξ

∥∥∥∥2

0,S

,

where (3.2.3) has been used. One can show all other estimates in a similar way.

Lemma 5.2.25 We assume the same conditions as in Lemma 5.2.12. Then,

∣∣∣u− I(ξ)
p u
∣∣∣2
2,S
≤ (p− α1)!

(p− 2 + α1)!

∥∥∥∥∂α1+1u

∂ξα1+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+3u

∂ξα3+1∂η2

∥∥∥∥2

0,S

+

+
2

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥ ∂α2+2u

∂ξα2+1∂η

∥∥∥∥2

0,S

,

(5.2.26)∣∣∣u− I(η)
p u

∣∣∣2
2,S
≤ (p− β1)!

(p− 2 + β1)!

∥∥∥∥∂β1+1u

∂ηβ1+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+3u

∂ξ2∂ηβ3+1

∥∥∥∥2

0,S

+

+
2

(p− 1)2

(p− 2− β2)!

(p− 2 + β2)!

∥∥∥∥ ∂β2+2u

∂ξ∂ηβ2+1

∥∥∥∥2

0,S

,

(5.2.27)∣∣∣u− I(ξ)
p u
∣∣∣2
1,S
≤ 1

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥∂α2+1u

∂ξα2+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+2u

∂ξα3+1∂η

∥∥∥∥2

0,S

,

(5.2.28)∣∣∣u− I(η)
p u

∣∣∣2
1,S
≤ 1

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥∂β2+1u

∂ηβ2+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+2u

∂ξ∂ηβ3+1

∥∥∥∥2

0,S

,

(5.2.29)

for any integers 1 ≤ α1, α2, α3, β1, β2, β3 ≤ p.

Proof. We recall that

∣∣∣u− I(ξ)
p u
∣∣∣2
2,S
≤
∣∣∣∣∂2(u− I(ξ)

p u)

∂ξ2

∣∣∣∣2
0,S

+

∣∣∣∣∂2(u− I(ξ)
p u)

∂η2

∣∣∣∣2
0,S

+ 2

∣∣∣∣∂2(u− I(ξ)
p u)

∂ξ∂η

∣∣∣∣2
0,S

,

(5.2.30)

and ∣∣∣u− I(ξ)
p u
∣∣∣2
1,S
≤
∣∣∣∣∂(u− I(ξ)

p u)

∂ξ

∣∣∣∣2
0,S

+

∣∣∣∣∂(u− I(ξ)
p u)

∂η

∣∣∣∣2
0,S

. (5.2.31)

By appealing to Lemma 5.2.12, the desired results follow.

We want to obtain appropriate bounds in the plane, therefore we need the existence of
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a two dimensional operator, which is defined for m, n > 2, as

Jm,n = I(ξ)
m ⊗ I(η)

n . (5.2.32)

For simplicity’s sake we use the notation Jm = Jm,m. We remark that this operator

has been introduced in [63]. For u ∈ H2(S), Jm satisfies, for k = 0, 1, the following

conditions:
∂k

∂ξk
(
Jmu(xi, yi)

)
=

∂k

∂ξk
(
u(xi, yi)

)
(5.2.33)

and
∂k

∂ηk
(
Jmu(xi, yi)

)
=

∂k

∂ηk
(
u(xi, yi)

)
, (5.2.34)

where the vertices of S are denoted by (xi, yi).

Proposition 5.2.35 Let p > 3 be integer and let u ∈ H2(S). For the integers 1 ≤
α1, α2, α3, α4, α5, α6, β1, β2, β3, β4, β5, β6 ≤ p, the projector defined in (5.2.32) satisfies

(5.2.33), (5.2.34) and the bounds below:

∣∣∣u− Jpu∣∣∣2
0,S
≤ 1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥∂α3+1u

∂ξα3+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥∂β3+1u

∂ηβ3+1

∥∥∥∥2

0,S

+

+
1

(p− 1)8

(p− α6)!

(p− 2 + α6)!

(p− β6)!

(p− 2 + β6)!

∥∥∥∥ ∂α6+β6+2u

∂ξα6+1∂ηβ6+1

∥∥∥∥2

0,S

,

∣∣∣u− Jpu∣∣∣2
1,S
≤ 1

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥∂α2+1u

∂ξα2+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+2u

∂ξα3+1∂η

∥∥∥∥2

0,S

+

+
1

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥∂β2+1u

∂ηβ2+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+2u

∂ξ∂ηβ3+1

∥∥∥∥2

0,S

+

+
1

(p− 1)6

(p− α5)!

(p− 2 + α5)!

(p− β6)!

(p− 2 + β6)!

∥∥∥∥ ∂α5+β6+2u

∂ξα5+1∂ηβ6+1

∥∥∥∥2

0,S

+

+
1

(p− 1)6

(p− α6)!

(p− 2 + α6)!

(p− β5)!

(p− 2 + β5)!

∥∥∥∥ ∂α6+β5+2u

∂ξα6+1∂ηβ5+1

∥∥∥∥2

0,S

,

∣∣∣u− Jpu∣∣∣2
2,S
≤ (p− α1)!

(p− 2 + α1)!

∥∥∥∥∂α1+1u

∂ξα1+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+3u

∂ξα3+1∂η2

∥∥∥∥2

0,S

+

+
2

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥ ∂α2+2u

∂ξα2+1∂η

∥∥∥∥2

0,S

+
(p− β1)!

(p− 2 + β1)!

∥∥∥∥∂β1+1u

∂ηβ1+1

∥∥∥∥2

0,S

+
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+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+3u

∂ξ2∂ηβ3+1

∥∥∥∥2

0,S

+
2

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥ ∂β2+2u

∂ξ∂ηβ2+1

∥∥∥∥2

0,S

+

+
1

(p− 1)4

(p− α4)!

(p− 2 + α4)!

(p− β6)!

(p− 2 + β6)!

∥∥∥∥ ∂α4+β6+2u

∂ξα4+1∂β6+1η

∥∥∥∥2

0,S

+

+
1

(p− 1)4

(p− α6)!

(p− 2 + α6)!

(p− β4)!

(p− 2 + β4)!

∥∥∥∥ ∂α6+β4+2u

∂ξα6+1∂ηβ4+1

∥∥∥∥2

0,S

+

+
2

(p− 1)4

(p− α5)!

(p− 2 + α5)!

(p− β5)!

(p− 2 + β5)!

∥∥∥∥ ∂α5+β5+2u

∂ξα5+1∂ηβ5+1

∥∥∥∥2

0,S

.

Proof. For i = 0, 1, 2 the use of triangle inequality leads to

∣∣∣u− Jpu∣∣∣2
i,S
≤
∣∣∣u− I(ξ)

p u
∣∣∣2
i,S

+
∣∣∣u− I(η)

p u
∣∣∣2
i,S

+
∣∣∣(I − I(η)

p )⊗ (I − I(ξ)
p )u

∣∣∣2
i,S
.

We control the first two seminorms on the right hand side using the appropriate esti-

mates of Lemmas 5.2.12 and 5.2.25. To bound the third seminorm we work as follows.

We set v =
(
I − I(ξ)

p

)
u. Therefore

Ei :=
∣∣∣(I − I(η)

p )⊗ (I − I(ξ)
p )u

∣∣∣2
i,S

=
∣∣∣v − I(η)

p v
∣∣∣2
i,S
, i = 0, 1, 2.

With the aid of (5.2.24) and Proposition 3.2.1 we get

E0 ≤
1

(p− 1)8

(p− α6)!

(p− 2 + α6)!

(p− β6)!

(p− 2 + β6)!

∥∥∥∥ ∂α6+β6+2u

∂ξα6+1∂ηβ6+1

∥∥∥∥2

0,S

. (5.2.36)

We note that ∂
∂y

and I(ξ)
p commute and by using (5.2.29) and Proposition 3.2.1 we

obtain

E1 ≤
1

(p− 1)6

(p− α5)!

(p− 2 + α5)!

(p− β6)!

(p− 2 + β6)!

∥∥∥∥ ∂α5+β6+2u

∂ξα5+1∂ηβ6+1

∥∥∥∥2

0,S

+

+
1

(p− 1)6

(p− α6)!

(p− 2 + α6)!

(p− β5)!

(p− 2 + β5)!

∥∥∥∥ ∂α6+β5+2u

∂ξα6+1∂ηβ5+1

∥∥∥∥2

0,S

.

Similar calculations and using (5.2.27) and Proposition 3.2.1 lead to

E2 ≤
1

(p− 1)4

(p− α4)!

(p− 2 + α4)!

(p− β6)!

(p− 2 + β6)!

∥∥∥∥ ∂α4+β6+2u

∂ξα4+1∂ηβ6+1

∥∥∥∥2

0,S

+

+
1

(p− 1)4

(p− α6)!

(p− 2 + α6)!

(p− β4)!

(p− 2 + β4)!

∥∥∥∥ ∂α6+β4+2u

∂ξα6+1∂ηβ4+1

∥∥∥∥2

0,S

+

+
2

(p− 1)4

(p− α5)!

(p− 2 + α5)!

(p− β5)!

(p− 2 + β5)!

∥∥∥∥ ∂α5+β5+2u

∂ξα5+1∂ηβ5+1

∥∥∥∥2

0,S

.

The estimates above for Ei, i = 0, 1, 2 and Lemma 5.2.25 give the desired result.
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Lemma 5.2.37 Suppose p ≥ 3 is an integer, u ∈ H2(S) and suppose Jp is given by

(5.2.32). For i = 1, 2, 3, and for the integers 1 ≤ αi, βi ≤ p, the conditions (5.2.33),

(5.2.34) and the following bounds hold:

∥∥∥u− Jpu∥∥∥2

1,S
≤ 1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥∂α3+1u

∂ξα3+1

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥∂β3+1u

∂ηβ3+1

∥∥∥∥2

0,S

+

+
1

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥∂α2+1u

∂ξα2+1

∥∥∥∥2

0,S

+
1

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥∂β2+1u

∂ηβ2+1

∥∥∥∥2

0,S

+

+
1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+2u

∂ξα3+1∂η

∥∥∥∥2

0,S

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+2u

∂ξ∂ηβ3+1

∥∥∥∥2

0,S

+
1

(p− 1)(p− 2)

( 2

(p− 1)6
+

1

(p− 1)8

) (p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+3u

∂ξα3+1∂η2

∥∥∥∥2

0,S

, (5.2.38)

∣∣∣u− Jpu∣∣∣2
2,S
≤ (p− α1)!

(p− 2 + α1)!

∥∥∥∥∂α1+1u

∂ξα1+1

∥∥∥∥2

0,S

+
(p− β1)!

(p− 2 + β1)!

∥∥∥∥∂β1+1u

∂ηβ1+1

∥∥∥∥2

0,S

+

+
2

(p− 1)2

(p− α2)!

(p− 2 + α2)!

∥∥∥∥ ∂α2+2u

∂ξα2+1∂η

∥∥∥∥2

0,S

+
2

(p− 1)2

(p− β2)!

(p− 2 + β2)!

∥∥∥∥ ∂β2+2u

∂ξ∂ηβ2+1

∥∥∥∥2

0,S

+

+

(
1 +

3

(p− 1)(p− 2)

)
1

(p− 1)4

(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+3u

∂ξα3+1∂η2

∥∥∥∥2

0,S

+

+
1

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+3u

∂ξ2∂ηβ3+1

∥∥∥∥2

0,S

,

(5.2.39)

and

∥∥∥u− Jpu∥∥∥2

E,S
≤ ε2

(
(p− α1)!

(p− 2 + α1)!

∥∥∥∥∂α1+1u

∂ξα1+1

∥∥∥∥2

0,S

+
(p− β1)!

(p− 2 + β1)!

∥∥∥∥∂β1+1u

∂ηβ1+1

∥∥∥∥2

0,S

)
+

+
1

(p− 1)2

(
(p− α2)!

(p− 2 + α2)!

∥∥∥∥∂α2+1u

∂ξα2+1

∥∥∥∥2

0,S

+
(p− β2)!

(p− 2 + β2)!

∥∥∥∥∂β2+1u

∂ηβ2+1

∥∥∥∥2

0,S

)
+

+
2ε2

(p− 1)2

(
(p− α2)!

(p− 2 + α2)!

∥∥∥∥ ∂α2+2u

∂ξα2+1∂η

∥∥∥∥2

0,S

+
(p− β2)!

(p− 2 + β2)!

∥∥∥∥ ∂β2+2u

∂ξ∂ηβ2+1

∥∥∥∥2

0,S

)
+

+
1

(p− 1)4

(
(p− α3)!

(p− 2 + α3)!

∥∥∥∥∂α3+1u

∂ξα3+1

∥∥∥∥2

0,S

+
(p− β3)!

(p− 2 + β3)!

∥∥∥∥∂β3+1u

∂ηβ3+1

∥∥∥∥2

0,S

)
+ (5.2.40)

+
1

(p− 1)4

(
(p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+2u

∂ξα3+1∂η

∥∥∥∥2

0,S

+
(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+2u

∂ξ∂ηβ3+1

∥∥∥∥2

0,S

)
+

+

[
ε2

(
1 +

3

(p− 1)(p− 2)

)
1

(p− 1)4
+

1

(p− 1)(p− 2)

(
2

(p− 1)6
+

1

(p− 1)8

)]
×

× (p− α3)!

(p− 2 + α3)!

∥∥∥∥ ∂α3+3u

∂ξα3+1∂η2

∥∥∥∥2

0,S

+
ε2

(p− 1)4

(p− β3)!

(p− 2 + β3)!

∥∥∥∥ ∂β3+3u

∂ξ2∂ηβ3+1

∥∥∥∥2

0,S

.
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Proof. The result is a direct consequence of the preceding proposition if one sets α3 =

α4 = α5 = α6, β4 = β5 = β6 = 1.

Corollary 5.2.41 Assume the conditions and notations of Lemma 5.2.37. For 1 ≤
s ≤ p we have

∥∥∥u− Jpu∥∥∥2

E,S
≤C (p− s)!

(p− 2 + s)!

[∥∥∥∥∂s+1u

∂s+1
ξ

∥∥∥∥2

0,S

+

∥∥∥∥ ∂s+2u

∂s+1
ξ ∂η

∥∥∥∥2

0,S

+

∥∥∥∥ ∂s+3u

∂s+1
ξ ∂η2

∥∥∥∥2

0,S

+

+

∥∥∥∥∂s+1u

∂s+1
η

∥∥∥∥2

0,S

+

∥∥∥∥ ∂s+2u

∂ξ∂s+1
η

∥∥∥∥2

0,S

+ ε2

∥∥∥∥ ∂s+3u

∂ξ2∂s+1
η

∥∥∥∥2

0,S

]
,

(5.2.42)

and (5.2.33), (5.2.34) also hold.

Proof. By setting α1 = α2 = α3 = β1 = β2 = β3 = s, the above result follows in a

straightforward way from (5.2.40).

We next extend the previous result to an arbitrary rectangle.

Lemma 5.2.43 Let p ≥ 3. Suppose D = (a, b)× (c, d) with h1 = b− a and h2 = d− c
and let u ∈ H3(D). Then there exists a polynomial ψ = Jmu of order p which satisfies,

for 1 ≤ s ≤ p, k = 0, 1,

∂k

∂ξk
(
ψ(xi, yi)

)
=

∂k

∂ξk
(
u(xi, yi)

)
, (5.2.44)

∂k

∂ηk
(
ψ(xi, yi)

)
=

∂k

∂ηk
(
u(xi, yi)

)
, (5.2.45)

where (xi, yi) denotes the vertices of D and

‖u− ψ‖2
1,D ≤C

(p− s)!
(p− 2 + s)!

h−2

[
h

2(s+1)
1

∥∥∥∥∂s+1u

∂s+1
ξ

∥∥∥∥2

0,D
+ h

2(s+1)
1 h2

∥∥∥∥ ∂s+2u

∂s+1
ξ ∂η

∥∥∥∥2

0,D
+

+ h
2(s+1)
1 h3

2

∥∥∥∥ ∂s+3u

∂s+1
ξ ∂η2

∥∥∥∥2

0,D
+ h

2(s+1)
2

∥∥∥∥∂s+1u

∂s+1
η

∥∥∥∥2

0,D
+ h1h

2(s+1)
2

∥∥∥∥ ∂s+2u

∂ξ∂s+1
η

∥∥∥∥2

0,D
+

+ h3
1h

2(s+1)
2

∥∥∥∥ ∂s+3u

∂ξ2∂s+1
η

∥∥∥∥2

0,D

]
,
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and

ε2
∣∣u− ψ∣∣2

2,D ≤C
(p− s)!

(p− 2 + s)!
ε2h−4

[
h

2(s+1)
1

∥∥∥∥∂s+1u

∂s+1
ξ

∥∥∥∥2

0,D
+ h

2(s+1)
1 h2

∥∥∥∥ ∂s+2u

∂s+1
ξ ∂η

∥∥∥∥2

0,D
+

+ h
2(s+1)
1 h3

2

∥∥∥∥ ∂s+3u

∂s+1
ξ ∂η2

∥∥∥∥2

0,D
+ h

2(s+1)
2

∥∥∥∥∂s+1u

∂s+1
η

∥∥∥∥2

0,D
+ h1h

2(s+1)
2

∥∥∥∥ ∂s+2u

∂ξ∂s+1
η

∥∥∥∥2

0,D
+

+ h3
1h

2(s+1)
2

∥∥∥∥ ∂s+3u

∂ξ2∂s+1
η

∥∥∥∥2

0,D

]
.

Here h = min{h1, h2}.

Proof. We set ψ = Jpu, where Jp is defined by (5.2.32). By rescaling the bound

(5.2.42) the above estimates follow as an immediate result on the rectangle D.

We next adjust the C1-continuity, following [34].

Theorem 5.2.46 Let Ω be the mesh defined in (5.3.10) and let u ∈ H3(Ω). Then,

for 1 ≤ s ≤ p, there exists a a piecewise C1-continuous polynomial ψ ∈ S(κ, p) that

satisfies: for k = 0, 1, the conditions

∂k

∂ξk
(
ψ(xi, yi)

)
=

∂k

∂ξk
(
u(xi, yi)

)
, (5.2.47)

∂k

∂ηk
(
ψ(xi, yi)

)
=

∂k

∂ηk
(
u(xi, yi)

)
, (5.2.48)

where (xi, yi) denotes the vertices of Ω and

‖u− ψ‖2
1,Ω ≤C

(p− s)!
(p− 2 + s)!

h−2

[
h

2(s+1)
1

∥∥∥∥∂s+1u

∂s+1
ξ

∥∥∥∥2

0,Ω

+ h
2(s+1)
1 h2

∥∥∥∥ ∂s+2u

∂s+1
ξ ∂η

∥∥∥∥2

0,Ω

+

+ h
2(s+1)
1 h3

2

∥∥∥∥ ∂s+3u

∂s+1
ξ ∂η2

∥∥∥∥2

0,Ω

+ h
2(s+1)
2

∥∥∥∥∂s+1u

∂s+1
η

∥∥∥∥2

0,Ω

+ h1h
2(s+1)
2

∥∥∥∥ ∂s+2u

∂ξ∂s+1
η

∥∥∥∥2

0,Ω

+

+ h3
1h

2(s+1)
2

∥∥∥∥ ∂s+3u

∂ξ2∂s+1
η

∥∥∥∥2

0,Ω

]
, (5.2.49)

and (5.2.50)

ε2
∣∣u− ψ∣∣2

2,Ω
≤C (p− s)!

(p− 2 + s)!
ε2h−4

[
h

2(s+1)
1

∥∥∥∥∂s+1u

∂s+1
ξ

∥∥∥∥2

0,Ω

+ h
2(s+1)
1 h2

∥∥∥∥ ∂s+2u

∂s+1
ξ ∂η

∥∥∥∥2

0,Ω

+

+ h
2(s+1)
1 h3

2

∥∥∥∥ ∂s+3u

∂s+1
ξ ∂η2

∥∥∥∥2

0,Ω

+ h
2(s+1)
2

∥∥∥∥∂s+1u

∂s+1
η

∥∥∥∥2

0,Ω

+ h1h
2(s+1)
2

∥∥∥∥ ∂s+2u

∂ξ∂s+1
η

∥∥∥∥2

0,Ω

+
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Chapter 5 Section 5.2

+ h3
1h

2(s+1)
2

∥∥∥∥ ∂s+3u

∂ξ2∂s+1
η

∥∥∥∥2

0,Ω

]
. (5.2.51)

Here h = min{h1, h2}.

Proof. We will only consider the case of two rectangles with a common side, since

we will be only considering meshes with rectangular elements. Let Ωi and Ωj be the

rectangles shown in Figure 5.8(a). Suppose that γ is the common side, of Ωi and Ωj

and suppose also that Ri and Rj are the mappings of the standard squares S1 and S2(
presented in Figure 5.8(b)

)
onto Ωi and Ωj, respectively. We define them as:

Ri :=

x = cξ + x0

y = aη + y0

, Rj :=

x = bξ + x0

y = aη + y0

. (5.2.52)

Let ζi = Jpu, which satisfies (5.2.46) on the rectangle Ωi. In the same manner

γ

0

Ωj Ωi

x

y

a

bc

(x0, y0)

(a) Adjacent elements.

γ̃

1

1

0-1

S2 S1

ξ

η

(b) Standard squares.

Figure 5.8: Mapping of standard squares onto adjacent elements

there is a polynomial ζj that provides the same result on Ωj. Obviously the piecewise

polynomial defined on the union Ωi ∪ Ωj and it is comprised of the polynomials ζi, ζj

and is discontinuous at the intersection γ. We procced to eliminate the jump in the

approximation across the edges of the elements.

We set ψ1 = (ζi − ζj)|γ and hence ψ̂1(η) = ψ̂1

(
R−1
i (x, y)

)
. Then

ψ̂
(m)
1 (η) =

∂m

∂ηm
(ζ̂i − ζ̂j)

∣∣
γ̂
=

∂m

∂ηm
ζ̂i(0, η)− ∂m

∂ηm
ζ̂j(0, η).

118

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 5 Section 5.2

We recall that, for 0 ≤ m ≤ 1,

∂m

∂ηm
ûi(0, η) =

∂m

∂ηm
ûj(0, η), 0 ≤ η ≤ 1, (5.2.53)

since u is C1-continuous.

From (5.2.33), (5.2.34) and (5.2.53) we have

ψ̃
(m)
1 (0) = ψ̃

(m)
1 (1) = 0, 0 ≤ m ≤ 1.

With the aid of Lemma 5.2.3 one can find a polynomial Ψ̂1(ξ, η) of degree ≤ p in η and

degree 3 in ξ such that (5.2.4)-(5.2.6) are satisfied. Set

χ̂i =ζ̂i − Ψ̂1, on S1,

χ̂j =ζ̂j, on S2,

then
χi =χ̂i

(
R−1
i (x, y)

)
= ζi −Ψ1 = ζi − Ψ̂1

(
R−1
i (x, y)

)
on Ωi,

χj =χ̂j
(
R−1
j (x, y)

)
on Ωj.

From Lemma 5.2.3 and the definition of ψ1, we see that

(χi − χj)
∣∣
γ
= (χ̂i − χ̂j)

∣∣
γ̂
= (ζ̂i − ζ̂j)

∣∣
γ̂
−ψ̂1(η) = 0.

Moreover, we set

ψ2 =
∂

∂x
(χi − χj)

∣∣
γ
=
∂

∂x
(ζi − ζj)

∣∣
γ
− ∂

∂x
Ψ1

∣∣
γ
. (5.2.54)

Note that

ψ̂2(η) =
1

c

∂ζ̂i(0, η)

∂ξ
− 1

b

∂ζ̂j(0, η)

∂ξ
− 1

c

∂Ψ̂1(0, η)

∂ξ
. (5.2.55)

This along with (5.2.33), (5.2.53) and (5.2.55) yields

ψ2(0) = ψ2(1) = 0.

Moreover

ψ̂′2(η) =
1

c

∂2

∂ξ∂η
ζ̂i(0, η)− 1

b

∂2

∂ξ∂η
ζ̂j(0, η)− 1

c

∂2

∂ξ∂η
Ψ̂1(0, η), (5.2.56)
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Combining (5.2.33), (5.2.34) gives

∂2

∂ξ∂y

(
Jmu(xi, yi)

)
=

∂2

∂ξ∂y

(
u(xi, yi)

)
and with the aid of (5.2.53) and (5.2.55), we get

ψ
(1)
2 (0) = ψ

(1)
2 (1) = 0.

By appealing again to Lemma 5.2.3, we get a polynomial Ψ2 of degree p in η and degree

3 in ξ such that (5.2.7), (5.2.8) and (5.2.9) hold. We now set

ψ̂i =χ̂i − cΨ̂2, on S1,

ψ̂j =χ̂j, on S2,

and
ψi =χi − cΨ̂2

(
R−1
i (x, y)

)
, on Ωi,

ψj =χ̂j, on Ωj.

It is clear that

(ψi −ψj)
∣∣
γ
= (ψ̂i − ψ̂j)

∣∣
γ̂
= (ζ̂i − Ψ̂1 − cΨ̂2 − ζ̂j)

∣∣
γ̂
= 0. (5.2.57)

Also from (5.2.6), (5.2.9),

∂

∂x
(ψi −ψj)

∣∣∣
γ
=
∂

∂x
(ζi −Ψ1 − cΨ2 − ζj)

∣∣
γ

=
1

c

∂ζ̂i(0, η)

∂ξ
− 1

b

∂ζ̂j(0, η)

∂ξ
− 1

c

∂Ψ̂1(0, η)

∂ξ
− ∂Ψ̂2(0, η)

∂ξ
= 0.

(5.2.58)

Equations (5.2.57), (5.2.58) ensure the C1-continuity of ψi and ψj along γ and we also

get

‖ûj − ψ̂j‖H2(S2) = ‖ûj − ζ̂j‖H2(S2) (5.2.59)

and

‖ûi − ψ̂i‖H2(S1) ≤ C
(
‖ûi − ζ̂i‖H2(S1) + ‖Ψ̂1‖H2(S1) + ‖Ψ̂2‖H2(S1)

)
. (5.2.60)
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From Lemmas 5.2.1 and 5.2.3 we obtain for k = 1, 2,

‖Ψ̂k‖H2(S1) ≤C
(
‖ûi − χ̂i‖H2(γ̃) + ‖ûj − χ̂j‖H2(γ̃)

)
≤C
(
‖ûi − χ̂i‖H3(S1) + ‖ûj − χ̂j‖H2(S1)

) (5.2.61)

and therefore ψi is the desired approximation on the associated rectangle Ωi.

5.3 An hp–FEM on the square

We now consider the case when Ω = (0, 1)2 and make certain assumptions on the

regularity of the solution in order to construct an hp-FEM on the Spectral Boundary

Layer mesh.

First we recall that from Chapter 4, we have the decomposition

u = usM + χuBLM + rM

where M ∈ N0 is a fixed constant. This fact makes the remainder rM not neglible,

hence it needs to be approximated as well. However, the regularity of rM , which follows

from Chapter 4, is

‖rM‖k,Ω ≤ CMε
1−k,

thus applying the tools of the previous sections is not possible (without inheriting

negative powers of ε). One choice is to use standard p–version estimates [27] and

obtain, a polynomial πprM such that

‖rM − πprM‖E,Ω ≤ Cp2−s+δ ∀s > 0,

where δ > 0 is arbitrarily small (see [27] for more details). This error bound would

dominate the other two, since the smooth part and the boundary layer part could be

approximated at an exponential rate if the Spectral Boundary Layer mesh is used.

In order to provide the approximation details for our problem posed on the unit square,

we thus make the following assumption.

121

Phil
ipp

os
 C

on
sta

nti
no

u



Chapter 5 Section 5.3

Assumption 5.3.1. The solution of (5.0.1) satisfies the decomposition

u = us +
4∑

k=1

uBLk +
4∑

k=1

uALk , (5.3.2)

where us denotes the smooth part, {uBLk }4
k=1, are the boundary layers along each side

and {uCLk }4
k=1, the auxiliary layers near the four corners. In addition, we assume that

there exist constants γ, γi, Ki, C > 0, i = 1, . . . 4, such that the following bounds on

each component of the decomposition (5.3.2) hold:∥∥∥∥ ∂i+jus∂xi∂yj

∥∥∥∥
0,Ω

≤ Cγi+j(i+ j)!, (5.3.3)

∣∣∣∣∂i+juBL1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cγi+j1 ε1−ie−x/ε,

∣∣∣∣∂i+juBL3

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cγi+j3 ε1−ie−(1−x)/ε, (5.3.4)

∣∣∣∣∂i+juBL2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cγi+j2 ε1−je−y/ε,

∣∣∣∣∂i+juBL4

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cγi+j4 ε1−je−(1−y)/ε, (5.3.5)

∣∣∣∣∂i+juAL1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ CKi+j
1 ε1−i−je−(x+y)/ε,

∣∣∣∣∂i+juAL3

∂xi∂yj
(x, y)

∣∣∣∣ ≤ CKi+j
2 ε1−i−je−[(1−x)+(1−y)]/ε

(5.3.6)∣∣∣∣∂i+juAL2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ CKi+j
3 ε1−i−je−[(1−x)+y]/ε,

∣∣∣∣∂i+juAL4

∂xi∂yj
(x, y)

∣∣∣∣ ≤ CKi+j
4 ε1−i−je−[x+(1−y)]/ε,

(5.3.7)

for all (x, y) ∈ Ω. Moreover, there are constants C,K > 0, depending only on the data,

such that

‖∇nu‖L2(Ω) ≤ CKn max{nn, ε1−n}, ∀n ∈ N0. (5.3.8)

We define our mesh ∆ which is an appropriate two-dimensional version of the Spectral

Boundary Layer Mesh (see also [67]).

Definition 5.3.9. Let κ > 0 be a fixed number and let p ≥ 3 be the degree of the

approximating polynomials. We then set ∆ as

∆ =

[0, 1]× [0, 1], 1/2 ≤ κpε,

∪9
i=1∆i, κpε < 1/2.

(5.3.10)

Namely, in the case κpε < 1/2, we divide our domain into 9 elements as shown in Figure

5.9. Using this mesh one can capture every part of the solution (smooth part, bound-

ary and auxiliary layers), and it is the minimal mesh that yields robust exponential
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convergence.

The elements ∆i are given by:

∆1 = [κpε, 1− κpε]2, ∆2 = [0, κpε]2, ∆3 = [κpε, 1− κpε]× [0, κpε],

∆4 = [1− κpε, 1]× [0, κpε], ∆5 = [1− κpε, 1]× [κpε, 1− κpε],

∆6 = [1− κpε]2, ∆7 = [κpε, 1− κpε]× [1− κpε, 1],

∆8 = [0, κpε]× [1− κpε, 1], ∆9 = [0, κpε]× [κpε, 1− κpε].

Consider the affine mappings Ri : S → ∆i, i = 1, . . . , 9 and define the space VN as

VN ≡ V (κ, p) = {u ∈ H2
0 (S1) : u|∆i

= ψp ◦R−1
i , for some ψp ∈ Qp(S), i = 1, . . . , 9}.

(5.3.11)

0
∆2 ∆3 ∆4

∆1∆9 ∆5

∆8 ∆7 ∆6

x

y

κpε

κpε

1-κpε

1-κpε
1

1

Figure 5.9: The Spectral Boundary Layer Mesh in the case κpε < 0.5

To conclude, we present the main result, namely we prove that an hp−approximation

defined on the Spectral Boundary Layer Mesh yields robust exponential convergence in

the energy norm.

Theorem 5.3.12 Suppose u solves (5.0.1) and let uN ∈ V (κ, p) be the solution of

(5.0.3) based on the Spectral Boundary Layer mesh. Then there are positive constants
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C, σ, κ, independent of ε, such that

‖u− uN‖E,Ω ≤ Ce−σκp. (5.3.13)

Proof. We study two separate cases: κpε < 1/2 and κpε ≥ 1/2.

Case 1: We begin by considering the “asymptotic range of p”, i.e. the case when

p ≥ (2κε)−1. By setting s = r1(p − 2), with r1 ∈ (0, 1), to be selected shortly, and

appealing to (5.3.8) and (5.2.46) a we obtain, for K̃ = max{1, K},

∥∥∥u− Jpu∥∥∥2

E,Ω
≤ C

(p− r1(p− 2))!

(p− 2 + r1(p− 2))!
K̃2(r1(p−2)+3)

×max {(r1(p− 2) + 3)2(r1(p−2)+3), ε1−2(r1(p−2)−3)}.

We use Lemma 3.2.11 to obtain(
p− r1(p− 2)

)
!(

p− 2 + r1(p− 2)
)
!
≤ Cp2(p− 2)−2r1(p−2)e2r1(p−2)−1

[
(1− r1/3)(1−r1)

(1 + r1)(1+r1)

]p−2

,

hence

∥∥∥u− Jpu∥∥∥2

E,Ω
≤

≤Cp2K̃6

(
(1− r1/3)1−r1

(1 + r1)1+r1

)p−2

(p− 2)−2r1(p−2)e2r1(p−2)−1K̃2r1(p−2)×

× (r1(p− 2) + 3)6(r1(p− 2) + 3)2r1(p−2)

≤CeK̃6p8

(
(1− r1/3)1−r1

(1 + r1)1+r1
e2r1K̃2r1

)p−2

(2r1)2r1(p−2)
(1

2
+

3

2r1(p− 2)

)2r1(p−2)

≤Cp8

(
(1− r1/3)1−r1

(1 + r1)1+r1
(2er1K̃)2r1

)p−2

.

(5.3.14)

We now choose r1 = (2eK̃)−1 ∈ (0, 1) and we denote

σ1 = | ln τ1|, τ1 =
(1− r1/3)1−r1

(1 + r1)1+r1
< 1.

The above choices lead to

∥∥∥u− Jpu∥∥∥2

E,Ω
≤ Cp8e−σ1p.

The factor p8 may be absorbed in the exponential and adjusting the constants.
ah = 1 in this case
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Case 2: In the pre-asymptotic case p < (2κε)−1, the mesh is defined as in (5.3.10).

In that case we use the decomposition (5.3.2) and we handle each part using (5.3.3)–

(5.3.6). We first consider the smooth part. From Lemma 5.2.43 there is an approxi-

mation Jpus of us that satisfies (5.2.46). We now set s = r2(p− 2), for some r2 ∈ (0, 1)

arbitrary. Using assumption (5.3.3), we get, for K̃ = max{1, γ}

∥∥∥us − Jpus∥∥∥2

E,Ω
≤ C

(p− r2(p− 2))!

(p− 2 + r2(p− 2))!
K̃2(r2(p−2)+3)

(
(r2(p− 2) + 3)!

)2
, (5.3.15)

and with the aid of the inequality j! ≤ jj, ∀j ∈ N, we have,

∥∥∥us − Jpus∥∥∥2

E,Ω
≤

≤C (p− r2(p− 2))!

(p− 2 + r2(p− 2))!
K̃2(r2(p−2)+3)

(
(r2(p− 2) + 3)r2(p−2)+3

)2

≤Cp2K̃6

(
(1− r2/3)1−r2

(1 + r2)1+r2

)p−2

(p− 2)−2r2(p−2)e2r2(p−2)−1K̃2r2(p−2)×

× (r2(p− 2) + 3)6(r2(p− 2) + 3)2r2(p−2)

≤CeK̃6p8

(
(1− r2/3)1−r2

(1 + r2)1+r2
e2r2K̃2r2

)p−2

(2r2)2r2(p−2)
(1

2
+

3

2r2(p− 2)

)2r2(p−2)

≤Cp8

(
(1− r2/3)1−r2

(1 + r2)1+r2
(2er2K̃)2r2

)p−2

≤Cp8e−σ2(p−2). (5.3.16)

Here the calculations have been done as in (5.3.14). The symbol σ2 denotes the number

σ2 = | ln τ2|, τ2 = (1−r2/3)1−r2

(1+r2)1+r2
< 1.

We proceed by considering the boundary layers. Here we display the calculations only

for the boundary layer uBL1 . We omit all other cases, since one can deduce the same

results in a similar way. We partition the domain Ω as Ω1∪Ω2, where Ω1 = ∆2∪∆8∪∆9

and Ω2 = Ω \Ω1. By Theorem 5.2.46 one finds an approximation ψBL of uBL1 with the

properties mentioned there. By assumption (5.3.4) on the subdomain Ω1, we have, for

i, j ∈ N,

∫
Ω1

∣∣∣∣∂i+juBL1

∂xi∂yj
(x, y)

∣∣∣∣2dxdy ≤∫ 1

0

∫ κpε

0

∣∣Cγi+j1 ε1−ie−x/ε
∣∣2dxdy

≤κpεCγ2(i+j)
1 ε2−2i.

(5.3.17)
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Therefore, for s, j ∈ N it holds,

∥∥∥∥∂s+j+1uBL1

∂xs+1∂yj

∥∥∥∥2

0,Ω1

≤κpεCγ2(s+j+1)
1 ε2−2(s+1),

and ∥∥∥∥∂s+j+1uBL1

∂xj∂ys+1

∥∥∥∥2

0,Ω1

≤κpεCγ2(j+s+1)
1 ε2−2j,

For r3 ∈ (0, 1) arbitrary, we set s = r3(p−2), in (5.2.46) and with the use of assumption

(5.3.4) we obtain, for K̃ = max{1, γ1},

∥∥∥uBL1 − ψBL
∥∥∥2

1,Ω1

≤

≤ C(κpε)−2 (p− r3(p− 2))!

(p− 2 + r3(p− 2))!
K̃2(r3(p−2)+3)×

×
[
3κpε(κpε)2(r3(p−2)+1)ε2−2(r3(p−2)+1) + ε2κpε+ (κpε)2 + (κpε)4ε−2

]
≤ C

(p− r3(p− 2))!

(p− 2 + r3(p− 2))!
K̃2(r3(p−2)+3)

[
3(κp)2(r3(p−2))+1 +

1

κp
+ 1 + (κp)2

]
≤ Cp3

( p

p− 2

)2r3(p−2)

e2r3(p−2)−1

[
(1− r3/3)(1−r3)

(1 + r3)(1+r3)

]p−2

K̃2(r3(p−2)+3)×

×
[
3κ2(r3(p−2))+1 +

1

κp2(r3(p−2))+2
+

1

p2(r3(p−2))+1
+

κ2

p2(r3(p−2))−1

]
≤ p332r3(p−2)C

(
(1− r3/3)1−r3

(1 + r3)1+r3
(κeK̃)2r3

)p−2

≤ p3C

(
(1− r3/3)1−r3

(1 + r3)1+r3
(3κeK̃)2r3

)p−2

≤ Cp3εe−σ3(p−2), (5.3.18)

where

σ3 = | ln τ3|, τ3 =
(1− r3)1−r3/3

(1 + r3)1+r3
< 1.

Furthermore, we have

ε2
∣∣∣uBL1 − ψBL

∣∣∣2
2,Ω1

≤

≤ Cε2(κpε)−4 (p− r3(p− 2))!

(p− 2 + r3(p− 2))!
K̃2(r3(p−2)+3)× (5.3.19)

×
[
3κpε(κpε)2(r3(p−2)+1)ε2−2(r3(p−2)+1) + ε2κpε+ (κpε)2 + (κpε)4ε−2

]
≤ Cp3εe−σ3(p−2),
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and therefore, from (5.3.18) and (5.3.19) we conclude that

∥∥∥uBL1 − ψBL
∥∥∥2

E,Ω1

≤ Cp3εe−σ3p. (5.3.20)

On the subdomain Ω2, we have

∥∥∥uBL1

∥∥∥2

E,Ω2

≤
∫ 1

0

∫ 1

κpε

∣∣Ce−x/ε
∣∣2dxdy ≤ C(1− κpε)e−2κp. (5.3.21)

As we have done in Chapter 3 (see (3.2.18)), we approximate uBL1 by its cubic inter-

polant I3u
BL
1 , therefore

∥∥∥uBL1 − I3u
BL
1

∥∥∥2

E,Ω2

≤
∥∥∥uBL1

∥∥∥2

E,Ω2

+
∥∥∥I3u

BL
1

∥∥∥2

E,Ω2

≤ Ce−νp. (5.3.22)

From (5.3.20) and (5.3.22) we get

∥∥∥uBL1 − ψBL
∥∥∥2

E,Ω
≤ Cp2e−σ̃3p. (5.3.23)

Next we consider the auxiliary layers. As before we provide the details only for uAL1 ,

since the rest are similar. We again make a partition of the domain Ω = Ω3∪Ω4 where

Ω3 = ∆2 and Ω4 = Ω \∆2. On Ω3 we have the bound

∫
Ω3

∣∣∣∣∂i+juAL1

∂xi∂yj
(x, y)

∣∣∣∣2dxdy ≤∫ κpε

0

∫ κpε

0

∣∣CKi+j
1 ε1−i−je−(x+y)/ε

∣∣2dxdy
≤(κpε)2CK

2(i+j)
1 ε2−2i−2j,

(5.3.24)

where assumption (5.3.5) was used. Let r4 ∈ (0, 1) be arbitrary and set s = r4(p− 2).

Therefore on Ω3, we have from Lemma 5.2.43, for K̃ = max{1, K1},

∥∥∥uCL1 − ψAL
∥∥∥2

1,Ω3

≤

≤ C(κpε)−2 (p− r4(p− 2))!

(p− 2 + r4(p− 2))!
K̃2(r4(p−2)+3)×

× (κpε)2
[
(κpε)2(r4(p−2)+1)ε2−2(r4(p−2)+1) + (κpε)2(r4(p−2)+1)+1ε2−2(r4(p−2)+1)−2+

+ (κpε)2(r4(p−2)+1)+3ε2−2(r4(p−2)+1)−4 + (κpε)2(r4(p−2)+1)ε2−2(r4(p−2)+1)+

+ (κpε)2(r4(p−2)+1)+1ε2−2(r4(p−2)+1)−2 + (κpε)2(r4(p−2)+1)+3ε2−2(r4(p−2)+1)−4
]

≤ 2C
(p− r4(p− 2))!

(p− 2 + r4(p− 2))!
K̃2(r4(p−2)+3)p2(r4(p−2)+1)+2κ2(r4(p−2)+1)

[ε2

p2
+
κε

p
+ εκ3

]
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≤ Cεp6
( p

p− 2

)2r4(p−2)

e2r4(p−2)−1κ2(r4(p−2)+1)

[
(1− r4/3)(1−r4)

(1 + r4)(1+r4)

]p−2

K̃2(r4(p−2)+3)

≤ εp632r4(p−2)C

(
(1− r4/3)1−r4

(1 + r4)1+r4
(κeK̃)2r4

)p−2

≤ εp6C

(
(1− r4/3)1−r4

(1 + r4)1+r4
(3κeK̃)2r4

)p−2

≤ εCp6e−σ4(p−2), (5.3.25)

where

σ4 = | ln τ4|, τ4 =
(1− r4)1−r4

(1 + r4)1+r4
.

In addition, working as above gives

ε2
∣∣∣uAL1 − ψAL

∣∣∣2
2,Ω3

≤ Cp6e−σ4(p−2), (5.3.26)

and thus, using (5.3.25) and (5.3.26) we get

∥∥∥uAL1 − ψAL
∥∥∥2

E,Ω3

≤ Cp6e−σ4p, (5.3.27)

On Ω4, with the aid of (5.3.6), we estimate the integral

∥∥∥uAL1

∥∥∥2

E,Ω4

≤
∫

Ω3

C(εe−(x+y)/ε)2dxdy

≤
∫ 1

κpε

∫ 1

κpε

C(εe−(x+y)/ε)2dxdy

≤ε2(κpε)2Ce−4κp.

(5.3.28)

Using the cubic interpolant I3u
AL
1 , the following estimate is deduced:

∥∥∥uAL1 − `uAL1

∥∥∥2

E,Ω4

≤
∥∥∥uAL1

∥∥∥2

E,Ω4

+
∥∥∥I3u

AL
1

∥∥∥2

E,Ω4

≤ Cp2e−4κp,

and therefore by the above and (5.3.27), we obtain

∥∥∥uAL1 − ψAL
∥∥∥2

E,Ω
≤ Cp2e−σ̃4p. (5.3.29)

Using (5.3.16), (5.3.23), (5.3.29) and the analogous bounds for all other boundary and
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corner layers, we infer

∥∥∥u− ψ∥∥∥2

E,S
=

∥∥∥∥∥
(
us +

4∑
k=1

uBLk +
4∑

k=1

uALk

)
−
(
Jpus +

4∑
k=1

ψBLk +
4∑

k=1

ψALk

)∥∥∥∥∥
2

E,S

≤
∥∥∥us − Jpus∥∥∥2

E,S
+

∥∥∥∥∥
4∑

k=1

(
uBLk − ψBLk

)∥∥∥∥∥
2

E,S

+

∥∥∥∥∥
4∑

k=1

(
uALk −

4∑
k=1

ψALk
)∥∥∥∥∥

2

E,S

≤ Cp7e−σκp.

From (5.0.4) we get the desired result, after we absorb the powers of p in the exponen-

tial.

5.4 Numerical results

In this section we provide numerical evidence in order to validate the theoretical results

presented before. We focus on a function with a boundary layer on the right side of

Ω = (0, 1)2, at x = 1. We choose b = c = 1 and f such that the exact solution to

(4.1.1) is given by

u(x, y) = x2y2(1− x2)(1− y2)e−(1−x)/ε, ∀x, y ∈ Ω.

In this case the Spectral Boundary Layer Mesh is comprised of two elements, as is

shown in Figure 5.10. (The parameter κ in the definition of the mesh is set equal to

1

1

0 1− pε x

y

Figure 5.10: The Spectral Boundary Layer mesh for the numerical example

1. The corresponding solutions for the values {εj}8
j=3 of the perturbation parameter,
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are approximated by polynomials of degree p = 3, . . . , 11 (in each variable). In Figure

5.11 we show the percentage relative error in the energy norm versus the square root

of the number of degrees of freedom (DOF) in a semilog scale. Figure 5.11 agrees with

Theorem 5.3.12.

2 3 4 5 6 7 8 9 10 11 12

(DOF)1/2

100

101

102

%
 R

el
. E

rr
or

 in
 th

e 
E

ne
rg

y 
N

or
m

  = 10-j 

 j = 3
 j = 4
 j = 5
 j = 6
 j = 7
 j = 8

Figure 5.11: Convergence of the hp-version on the Spectral Boundary Layer mesh

As a second example, we choose f so that the exact solution is:

u(x) = x2 sin(πx) sin2(πy)
(

1− e−
(1−x)
ε

)
, ∀x, y ∈ Ω = (0, 1)2.

We perform the same computations as before, and the results is shown in Figure

5.12. As the figure shows the results illustrate robust exponential, just like the theory

predicts. We also see the lack of balance in the energy norm, manifesting itself as

better performance as ε → 0. Unfortunately, round-off error does not allow us to

obtain (meaningful) results for smaller ε and/or for more DOF.
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(DOF)1/2
5 6 7 8 9 10 11

P
er

ce
nt

ag
e 

R
el

at
iv

e 
E

rr
or

 in
 th

e 
E

ne
rg

y 
N

or
m

10-2

10-1

100
ε = 10−j
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Figure 5.12: Convergence of the hp-version on the Spectral Boundary Layer mesh
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Chapter 6

2-D Mixed hp-approximation

results

6.1 Introduction

In this chapter we study the mixed finite element approximation of the fourth order

SPP that is under study. Such formulations are preferred in many cases to the standard

Finite Element approach for different reasons. A mixed formulation is obtained by the

proper treatment of the initial equation. We rewrite the equation as a system, we

formulate it into a variational form and then discretize it. Therefore, by utilizing the

mixed method we use two spaces to approximate dual variables. Mixed formulations

are a powerful tool that can be used to address problems which arise in a variety of

scientific fields such as electrical enginnering, structural and fluid mechanics.

The mixed finite element method was introduced by Brezzi [16] and among others,

Babuška, Oden, Lee [11, 8], Crouzeix and Raviart [25] have affected the development

of the analysis of the mixed methods. The reader can study results about mixed

methods in [28, 30] and in the books [14, 15, 17, 33].

We choose to use a mixed method in order to avoid the problem of using affine elements

or making assumptions on the structure of the solution (like we did in Chapter 5). The

mixed formulation allows us to use C0 basis functions (since we are now discretizing

H1 and not H2) to approximate the (now) dual variables. The present approach was

presented in [31] where the authors studied an h-FEM on a Shishkin-type mesh. In
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Chapter 6 Section 6.2

this chapter we extend their results, by considering an hp-FEM approximation on the

Spectral Boundary Layer mesh. We mention that the material of this chapter appears in

[21], where the following assumption on the regularity of the solution was made.

Assumption 6.1.1. The BVP (4.1.1) has a solution u which can be decomposed as a

smooth part uS, a boundary layer part uBL and a remainder r, viz.

u = uS + χuBL + r, (6.1.2)

where χ is a smooth cut-off function, satisfying

χ =

 1 for 0 < ρ < ρ0/3

0 for ρ > 2ρ0/3
.

Moreover, there exist constants C1, C2, C3, K1, K2, ω, δ > 0, independent of ε but de-

pending on the data, such that

∥∥DnuS
∥∥

0,Ω
≤ C1 |n|!K |n|1 ∀ n ∈ N2

0, (6.1.3)

∣∣∣∣∂m+nuBL(ρ, θ)

∂ρm∂θn

∣∣∣∣ ≤ C2n!Km+n
2 ε1−me−ωρ/ε ∀ m,n ∈ N, (ρ, θ) ∈ Ω0, (6.1.4)

‖r‖E ≤ C3e
−δ/ε. (6.1.5)

Finally, there exist constants C,K > 0, depending only on the data, such that

‖Dnu‖0,Ω ≤ CK |n|max
{
|n||n| , ε1−|n|

}
∀ n ∈ N2

0. (6.1.6)

6.2 Mixed formulation and discretization

6.2.1 The mixed formulation of the problem

Let u be the solution of (4.1.1). We select a

w = ε∆u ∈ H2(Ω) (6.2.1)

aThe fact that w ∈ H2(Ω) is a consequence of the smoothness of f and ∂Ω
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and as a consequence we seek a vector (u,w) ∈ H1
0 (Ω) × H1(Ω) such that for all

(φ, ψ) ∈ H1(Ω)×H1
0 (Ω),

ε〈∇u,∇φ〉Ω + 〈w, φ〉Ω = 0,

b〈∇u,∇ψ〉Ω + c〈u, ψ〉Ω − ε〈∇w,∇ψ〉Ω = 〈f, ψ〉Ω.

 (6.2.2)

Equations in (6.2.2) describe the mixed formulation of (4.1.1). Evidently the corre-

sponding bilinear form is given by

B
(
(u,w), (ψ, φ)

)
= ε〈∇u,∇φ〉Ω + 〈w, φ〉Ω + b〈∇u,∇ψ〉Ω + c〈u, ψ〉Ω − ε〈∇w,∇ψ〉Ω

(6.2.3)

and, on that account, the associated energy norm is defined as

∣∣∣∣∣∣(u,w)
∣∣∣∣∣∣2

Ω
:= ‖w‖2

0,Ω + b‖∇u‖2
0,Ω + c‖u‖2

0,Ω. (6.2.4)

We mention that ∣∣∣∣∣∣(u,w)
∣∣∣∣∣∣2

Ω
= ‖u‖2

E,Ω,

since ∣∣∣∣∣∣(u,w)
∣∣∣∣∣∣2

Ω
=
∣∣∣∣∣∣(u, ε∆u)

∣∣∣∣∣∣2
Ω

= ε2‖∆u‖2
0,Ω + b‖∇u‖2

0,Ω + c‖u‖2
0,Ω.

Lemma 6.2.5 The bilinear form is coercive with respect to the energy norm i.e.

∣∣∣∣∣∣(u,w)
∣∣∣∣∣∣2

Ω
≤ B

(
(u,w), (u,w)

)
, ∀u ∈ H1

0 (Ω), w ∈ H1(Ω).

Proof. This was shown in [31].

6.2.2 Discretization by a mixed hp-FEM on smooth domains

The discrete version of (6.2.2) reads: find (uN , wN) ∈ V N
1 × V N

2 ⊂ H1
0 (Ω) × H1(Ω) b

such that ∀ (ψ, φ) ∈ V N
1 × V N

2 ,

ε〈∇uN ,∇φ〉Ω + 〈wN , φ〉Ω = 0,

b〈∇uN ,∇ψ〉Ω + c〈uN , ψ〉Ω − ε〈∇wN ,∇ψ〉Ω = 〈f, ψ〉Ω.

 (6.2.6)

bThe finite dimensional subspaces V N1 , V N2 are defined in the sequel
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Chapter 6 Section 6.2

We assume Ω is an open domain and ∂Ω is an analytic curve. Here we make use of the

boundary fitted coordinates presented in Section 4.4.

Let the mesh ∆ = {Ωi}Ni=1 be comprised of curvilinear quadrilaterals, subject to the

usual conditions (see, e.g. [48]) and associate with each Ωi a bijective mapping Mi :

S → Ωi. We define the spaces

Sp(∆) =
{
u ∈ H1(Ω) : u

∣∣∣
Ωi
◦Mi ∈ Qp(S), i = 1, . . . , N

}
,

Sp0 (∆) =Sp(∆) ∩H1
0 (Ω).

and we take V N
1 = Sp0 (∆), V N

2 = Sp(∆), with the mesh ∆ chosen following the con-

struction in [48, 50].

We denote by ∆A a fixed (asymptotic) mesh consisting of curvilinear quadrilateral

elements Ωi, i = 1, . . . , N1. These elements Ωi are the images of the reference square

S under the element mappings MA,i, i = 1, . . . , N1 ∈ N (the subscript A emphasizes

that they correspond to the asymptotic mesh). They are assumed to satisfy conditions

(M1)–(M3) of [48] in order for the space Sp(∆) to have the necessary approximation

properties. Moreover, the element mapings MA,i are assumed to be analytic (with

analytic inverse), or equivalently [48]

‖(M ′
A,i)
−1‖∞,SST ≤ C, ‖DαMA,i‖∞,SST ≤ Cα!γ|α| ∀α ∈ N2

0, i = 1, . . . , N1,

for some constants γ, C > 0. We also assume that the elements do not have a single

vertex on the boundary ∂Ω but only complete, single edges. For convenience, we

number the elements along the boundary first, i.e., Ωi, i = 1, . . . , N2 < N1 for some

N2 ∈ N.

We now give the definition of the appropriate Spectral Boundary Layer Mesh ∆BL =

∆BL(κ, p).

Definition 6.2.7. (Spectral Boundary Layer mesh ∆BL(κ, p)). Given parameters κ >

0, p ∈ N, ε ∈ (0, 1] and the (asymptotic) mesh ∆A, the Spectral Boundary Layer mesh

∆BL(κ, p) is defined as follows:

• If κpε ≥ 1/2 then we are in the asymptotic range of p and we use the mesh ∆A.

• If κpε < 1/2, we need to define so-called needle elements. We do so by splitting

the elements Ωi, i = 1, . . . , N2 into two elements Ωneed
i and Ωreg

i . To this end, split
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Chapter 6 Section 6.2

the reference square S into two elements

Sneed = [0, κpε]× [0, 1], Sreg = [κpε, 1]× [0, 1],

and define the elements Ωneed
i , Ωreg

i as the images of these two elements under the

element map MA,i and the corresponding element maps as the concatenation of

the affine maps

Aneed : S → Sneed, (ξ, η)→ (κpεξ, η),

Areg : S → Sreg, (ξ, η)→ (κpε+ (1− κpε)ξ, η),

with the element map MA,i, i.e., Mneed
i = MA,i ◦ Aneed and M reg

i = MA,i ◦ Areg.
Explicitly:

Ωneed
i = MA,i(S

need), Ωreg
i = MA,i(S

reg),

Mneed
i (ξ, η) = MA,i(κpεξ, η), M reg

i (ξ, η) = MA,i(κpε+ (1− κpε)ξ, η).

An example of such a mesh construction is illustrated in Figure 6.1 on the unit circle.

In total, the mesh ∆BL(κ, p) consists of N = N1 + N2 elements if κpε < 1/2. By

construction, the resulting mesh

∆BL = ∆BL(κ, p) = {Ωneed
1 , . . . ,Ωneed

N1
,Ωreg

1 . . . ,Ωreg
N1
,ΩN1+1, . . . ,ΩN}

is a regular admissible mesh in the sense of [48].
 

∆A ∆BL

Ω1

Ωreg
1

Ωneed
1

Ω2
Ωreg

2

Ωneed
2

Ω3
Ωreg

3

Ωneed
3

ΩN1

Ωreg
N1

Ωneed
N1

Figure 6.1: Example of an admissible mesh. Left: asymptotic mesh ∆A. Right: Spec-
tral boundary layer mesh ∆BL.
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Chapter 6 Section 6.2

Error Estimates

Our approximation will be based on the (element-wise) Gauß-Lobatto interpolant from

[48, Prop. 3.11] (see also [45]) and its improvement in [50].

Lemma 6.2.8 Let (u, z) be the solution to (6.2.2) and assume that (4.3.14) holds.

Then there exist constants κ0, κ1, C, β > 0 independent of ε ∈ (0, 1] and p ∈ N, such

that the following is true: For every p and every κ ∈ (0, κ0] with κp ≥ κ1, there exist

πpu ∈ Sp0 (∆BL(κ, p)), πpw ∈ Sp(∆BL(κ, p)) such that

max
{
‖u− πpu‖∞,Ω , ‖∇(u− πpu)‖∞,Ω , ‖w − πpw‖∞,Ω , ε1/2 ‖∇(w − πpw)‖0,Ω

}
≤ Ce−βpκ

Proof. The proof is separated into two cases.

Case 1 : κpε ≥ 1/2 (asymptotic case).

In this case we use the asymptotic mesh ∆A and u satisfies (4.3.34). Inspecting the

proof of Corollary 3.5 of [50], we see that we can find πpu ∈ Sp0 (∆A) such that

‖u− πpu‖∞,Ω + ‖∇(u− πpu)‖∞,Ω ≤ Cp2(ln p+ 1)2e−βpκ (6.2.9)

(due to the fact that for u the boundary layers are in the derivative, hence we have an

extra power of ε in estimate (4.3.34)). For w = ε∆u, we have

‖Dαw‖0,Ω ≤ CεK |α|+2 max{(|α|+ 2)|α|+2 , ε1−(|α|+2)} ∀ |α| ∈ N2
0.

and by Corollary 3.5 of [50], there exists a πpw ∈ Sp(∆A) such that

‖w − πpw‖∞,Ω + ε1/2 ‖∇(w − πpw)‖0,Ω ≤ Cp2(ln p+ 1)2e−βpκ. (6.2.10)

This gives the result in the asymptotic case, once we absorb the powers of p in the

exponential term and by adjusting the constants.

Case 2 : κpε < 1/2 (pre-asymptotic case).

In this case we use the Spectral Boundary Layer mesh ∆BL and u is decomposed as

u = uS + χuBL + r.
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Chapter 6 Section 6.2

The approximation of uS and r is constructed as in Case 1 above (basically taken

to be that of [48]) and estimates like (6.2.9) may be obtained. For uBL we use the

approximation of Lemma 3.4 in [50], taking advantage of the extra power of ε in the

regularity estimates. Ultimately, we get πpu ∈ Sp0 (∆A) such that (6.2.9) holds and for

w = ε∆u, a similar argument gives (6.2.10).

The previous lemma allows us to measure the error between the solution (u,w) and its

interpolant (πpu, πpw). The following lemma allows us to measure the error between

the interpolant and the finite element solution (uN , wN).

Lemma 6.2.11 Let (uN , wN) ∈ Sp0 (∆BL(κ, p)) × Sp(∆BL(κ, p)) be the solution to

(6.2.6). Then there exist polynomials πpu ∈ Sp0 (∆BL(κ, p)), πpw ∈ Sp(∆BL(κ, p)) such

that

||| (πpu− uN , πpw − wN) |||2 ≤ Ce−β̃p,

with C, β̃ > 0 a constant independent of ε and p.

Proof. Recall that the bilinear form B ((·, ·), (·, ·)), given by (6.2.3) is coercive, hence

we have, with ψ = πpu− uN ∈ Sp0(∆BL(κ, p)) and φ = πpw − wN ∈ Sp(∆BL(κ, p)),

|||(ψ, φ)|||2 ≤ B ((πpu− u, πpw − w), (ψ, φ)) = ε 〈∇ (πpu− u) ,∇φ〉+ 〈πpw − w, φ〉

+b 〈∇ (πpu− u) ,∇ψ〉+ c 〈πpu− u, ψ〉 − ε 〈∇ (πpw − w) ,∇ψ〉

= : I1 + I2 + I3 + I4 + I5.

Each term is treated using Cauchy-Schwarz and Lemma 6.2.8, except for I1 which also

requires the use of an inverse inequality:

|I1| = |ε 〈∇ (πpu− u) ,∇φ〉| ≤ ε ‖∇ (πpu− u)‖0,Ω ‖∇φ‖0,Ω

≤ C ‖∇ (πpu− u)‖0,Ω ε(κpε)
−1p2 ‖φ‖0,Ω ≤ Cpe−βp ‖φ‖0,Ω ,

|I2| = |〈πpw − w, φ〉| ≤ ‖πpw − w‖0,Ω ‖φ‖0,Ω ≤ Ce−βp ‖φ‖0,Ω ,

|I3| = |b 〈∇ (πpu− u) ,∇ψ〉| ≤ C ‖∇ (πpu− u)‖0,Ω ‖∇ψ‖0,Ω ≤ Ce−βp ‖∇ψ‖0,Ω ,

|I4| = |c 〈πpu− u, ψ〉| ≤ C ‖πpu− u‖0,Ω ‖ψ‖0,Ω ≤ Ce−βp ‖ψ‖0,Ω ,

|I5| = |ε 〈∇ (πpw − w) ,∇ψ〉| ≤ ε ‖∇ (πpw − w)‖0,Ω ‖∇ψ‖0,Ω ≤ Ce−βp ‖∇ψ‖0,Ω .

Hence, after absorbing the factor p into the exponential term in the estimate for I1, we
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Chapter 6 Section 6.3

get

|||(ψ, φ)|||2Ω ≤ Ce−β̃p
(
‖∇ψ‖0,Ω + ‖φ‖0,Ω + ‖ψ‖0,Ω

)
≤ Ce−β̃p|||(ψ, φ)|||Ω

and the proof is complete.

Combining Lemmas 6.2.8 and 6.2.11 we establish the main result of this chapter.

Theorem 6.2.12 Let (u,w) ∈ H1
0 (Ω)×H1(Ω), (uN , wN) ∈ V N

1 × V N
2 be the solutions

to (6.2.2) and (6.2.6), respectively. Then there exists a positive constant β, independent

of ε but depending on κ, such that

||| (u− uN , w − wN) |||Ω ≤ Ce−βp.

Proof. The triangle inequality gives

||| (u− uN , w − wN) |||Ω ≤ ||| (u− πpu,w − πpw) |||Ω + ||| (πpu− uN , πpw − wN) |||Ω

and we then use Lemmas 6.2.8 and 6.2.11.

Remark 6.2.1 We note that the result of the previous theorem gives robust exponential

convergence of the hp version of the FEM on the Spectral Boundary Layer mesh when

the error is measured in the (energy) norm (6.2.4). As was pointed out in [31], this

norm is not balanced in the sense that, if uBL, uS are layer and smooth components of

the solution, respectively, then

|||(uBL, ε∆uBL)|||Ω = O(ε1/2) , |||(uS, ε∆uS)|||Ω = O(1).

This means that as ε→ 0, the energy norm ‘does not see the layer’. The convergence of

our method in a stronger, balanced norm is beyond the scope of this thesis. Nevertheless,

we study it computationally in the next section.

6.3 Numerical results

In this section we present the results of numerical computations for two examples,

taken from [21].

Example 6.3.1. We set b = c = 1 and Ω = (0, 1)2 and we choose the proper right
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hand side function f to ensure that the exact solution is given by

u(x, y) = X(x)Y (y).

Here

X(x) =
1

2

(
sin(πx) +

πε

1− ε−1/ε
(ε−x/ε + ε(x−1)/ε − 1− ε−1/ε)

)
,

Y (y) =

(
2y(1− y2) + ε

[
ld(1− 2y)− 3

q

l
+

(
3

l
− d
)
ε−y//ε +

(
3

l
+ d

)
ε(y−1)//ε

])
,

with l = 1 − ε−1/ε, q = 2 − l and d = 1/(q − 2εl). (cf. [31, 32]). As can be seen, this

function has boundary layers along each side of Ω (and no corner singularities), thus

the appropriate mesh to approximate the solution is the Spectral Boundary Layer Mesh

that is comprised of nine elements and it is shown at Figure 5.9. For the computations

we take κ = 1, as this choice gave the smallest errors.

For ε = 10−j, j = 3, . . . , 9, we approximate the solution by using polynomials of degree

p = 1, . . . , 20 in each variable and we illustrate the percentage relative error in the

energy norm versus the polynomial degree in a semi-log scale in Figure 6.2. As it is

shown in the figure the exponential convergence of the method is visible, namely we

observe straight lines (as p is increased). As ε → 0, the errors get smaller, which is a

manifestation of the lack of balance in the norm, even though we have robustness.
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Polynomial Degree p (in each variable)

%
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.
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e
E
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o
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j=3
j=4
j=5
j=6
j=7
j=8
j=9

Figure 6.2: Energy norm convergence

Example 6.3.2. In this example we consider a smooth domain Ω with boundary Γ

given by a curve γ(φ) using polar coordinates. We consider the so called Cranioid-curve
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with

γ(φ) =
(1

4
sin(φ) +

1

2

√
1− 0.9 cos(φ)2 +

1

2

√
1− 0.7 cos(φ)2

)
·

cos(φ)

sin(φ)

 (6.3.3)

and φ ∈ [0, 2π). On this domain Ω we choose b = c = 1 and as right-hand side

f(x, y) = 10x. Figure 6.3 shows the (approximated) solutions to this problem for a

Figure 6.3: Approximate solutions u (left) and w (right), and mesh, for ε = 10−2.

rather large value of ε = 10−2. The solutions show the expected behaviour with a

visible layer structure only for w. Note that the mesh consists of eight coarse and

six needle, curved quadrilaterals in the boundary layer region. Here the width of the

numerical layer region (and therefore of the quadrilaterals) is set to κpε with κ = 1.

As the exact solution is unknown we use a numerically computed reference solution

in its place. It is computed on a mesh generated by once refining the shown mesh in

Figure 6.3 and with a polynomial degree p = 18 that is larger by two than the maximal

one used for the simulations.

The results obtained in the energy-norm can be seen in the left picture of Figure 6.4. We

observe a robust exponential convergence, visible as a straight decay in the semilog plot.

The error curves for different values of ε lie on top of each other (different to our previous

example but similar to the example of Ch.5, cf. Figure 5.11). Regarding Remark 6.2.1

we also investigated the error component ‖w−wh‖0,Ω separately. The right picture of

Figure 6.4 shows the error curves for this part, normalised by |||(u,w)|||Ω. Obviously,

this part of the error decays proportionally to ε1/2 and exponentially in p. Thus a

balancing as indicated in Remark 6.2.1 will also give robust error measures.

Example 6.3.4. Finally, we choose b = c = f = 1 and Ω = (−1, 1)2 \ (−1, 0)2, that

is an L-shaped domain. This example is meant to examine what happens when the
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Figure 6.4: Convergence of the solutions on Cranioid-domain

domain is a polygon and the data does not satisfy any compatibility conditions (thus the

solution contains corner singularities). In second-order singularly perturbed problems,

the corner singularities have support only in the layer region [35]. For fourth-order

singularly perturbed problems, this is still an open question but we note the following:

the limiting problem is (essentially) a Poisson-like problem and it will feature its own

(classical) corner singularities. As a result, the Spectral Boundary Layer mesh will

need to include geometric refinement toward the re-entrant corner, in addition to the

needle elements along the boundary.

Figure 6.5 shows two meshes: a mesh that includes only boundary layer refinement

(left) and a mesh with both boundary layer and geometric refinement (right). The

latter uses three refinements inside the layer region and two outside, with radio 0.15.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 6.5: The meshes used in Example 6.3.4

Figure 6.6 shows the comparison of the two schemes. In particular, we show the

percentage relative error in the energy norm versus the polynomial degree p, in a
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semilog scale. Since there is no exact solution availiable, we used a reference solution

obtained with p = 21. Both seem to yield robust exponential convergence once ε is

small enough, but the method that uses geometric refinement seems to give better

results (at the expense, of course, of using much more degrees of freedom). Based

on this experiment, we feel that this issue deserves further study (theoretical and

computational) and we intend to do so in the near future.

5 10 15 20

10−1

100

101

Polynomial Degree p (in each variable)

%
R
el
.
E
rr
or

in
th
e
E
n
er
gy

N
o
rm

ε = 10−j

j=3 j=4
j=5 j=6
j=7 j=8
j=9

5 10 15 20
10−4

10−3

10−2

10−1

100

101

Polynomial Degree p (in each variable)

%
R
el
.
E
rr
or

in
th
e
E
n
er
g
y
N
or
m

ε = 10−j

j=3 j=4
j=5 j=6
j=7 j=8
j=9

Figure 6.6: Energy norm convergence for Example 6.3.4

Acknowledgment: I would like to thank Dr. S. Franz and Dr. L. Ludwig for per-

forming the computations that appeared in this chapter (and also in [21]).
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Chapter 7

Conclusions and future work

In this dissertation we studied fourth order singularly perturbed problems in one-

and two-dimensions. For the latter, we assumed that the domain was smooth and

that no corner singularities are present. In one-dimension, we established appropriate

regularity results, which enabled us to construct a robust, exponentially converging

hp-FEM approximation measured in the energy norm. In two-dimensions, we studied

the regularity of the solution in the case of smooth domains (and data) and obtained

estimates which are explicit in the differentiation order and in ε. Then, we provided

the numerical analysis for the approximation of the solution of 2-D problems in two

cases: over a square under some assumptions and over an arbitrary smooth domain.

For the former, we used the standard Galerkin FEM while for the latter, we used a

mixed formulation.

One direction for future work is the study of the problem over polygonal domains.

Regularity results that show the structure of the solution and establish a decomposition

into a smooth part, boundary layers and corner singularities, would be welcomed by

the research community. One thing to note is that we expect the corner singularities to

extend beyond the layer region, which is different from what happens in second order

problems (see [35]). The reason for this is the fact that the limiting problem is a second

order PDE (similar to the Laplacian), thus the limiting solution will have singularities

independently of ε.

Another direction for future research has to do with the approximation of the solution

by appropriate methods. We showed that when the element mappings are affine, a

C1 approximation is possible and with the use of the Spectral Boundary Layer mesh,
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exponential convergence, independently of ε is attained, under certain assumptions on

the regularity of the solutions. However, for smooth domains, curved elements must

be used and it is not possible to construct a C1 approximation on elements with non-

affine maps. One solution, presented in Chapter 6, uses amixed formulation, hence only

requiring C0 continuity along element boundaries. If one sticks to a non-mixed Galerkin

formulation (like the one presented in Chapter 5), then treating curved elements would

require a new approach. Two possible approaches are the following:

1. The Discontinuous Galerkin FEM, in which inter-element continuity is not re-

quired [4, 5, 7, 60].

2. Isogeometric Analysis, which combines high regularity basis functions and Galerkin’s

approach [23, 24, 37].

Both seem very promising, albeit on different sides of the spectrum, and they both

deserve to be studied in the near future. We should mention that for the second

approach, we are not aware of any work involving singularly perturbed problems.

A final suggestion is the study of balanced norm estimates. As mentioned in Section 3.2

we expect that a balanced norm will provide optimal results and therefore we intend

to do so in one-dimension and in two-dimensions, at least over smooth domains.
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