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Per–lhyh

H paro‘sa diatrib† qwr–zetai se d‘o mËrh. Arqikà, jewro‘me Ëna prÏblhma suno-

riak∏n tim∏n me Ënan pl†rwc mh-grammikÏ parabolikÏ telest† sto eswterikÏ kai me

sunoriakËc sunj†kec se morf† katà kate‘junshc parag∏gou:

8
>>>>><

>>>>>:

F (D2u)� ut = f, in Q+
1

� ·Du = g, on Q⇤
1

u = u0, on @pQ
+
1 \Q⇤

1.

(0.0.1)

Sth sunËqeia, meletàme Ëna sunoriakÏ prÏblhma empod–ou me Ënan pl†rwc mh-grammikÏ

parabolikÏ telest† sto eswterikÏ:

8
>>>>><

>>>>>:

F (D2u)� ut = 0, in Q+
1

max{un,'� u} = 0, on Q⇤
1

u = u0, on @pQ
+
1 \Q⇤

1

(0.0.2)

Kai stic d‘o peript∏seic, jewro‘me thn ex–swsh kaj∏c kai tic sunoriakËc sunj†kec

na isq‘oun mÏno me thn Ënnoia tou ix∏douc. O telest†c F e–nai omoiÏmorfa elleip-

tikÏc kai me Q+
1 sumbol–zoume ton monadia–o parabolikÏ hmi-k‘lindro ston Rn+1 me to

ep–pedo mËroc tou sunÏrou tou na sumbol–zetai me Q⇤
1. EpiplËon, sto (0.0.1), me �

sumbol–zoume mia dedomËnh dianusmatik† sunàrthsh h opo–a na ikanopoie– th sunj†kh

katà kate‘junshc parag∏gou kai sto (0.0.2) sumbol–zoume me ' to leptÏ empÏdio.

O stÏqoc mac, kai stic d‘o peript∏seic, e–nai na pàroume Hölder ektim†seic oi opo–ec

na isq‘oun mËqri kai to s‘noro, gia th l‘sh kai tic parag∏gouc thc. ApotelËsmata

aut†c thc morf†c apotelo‘n thn prwtarqik† jewrhtik† bàsh h opo–a mpore– na qrhsi-

mopoihje– gia thn austhr† majhmatik† anàlush problhmàtwn pou sundËontai àmesa me

efarmogËc stic jetikËc epist†mec.

ii

GEORGIANA C
HATZIG

EORGIO
U



Abstract

The purpose of the present thesis is twofold. Firstly, we consider boundary value

problems of oblique derivative type with fully nonlinear parabolic equations inside:

8
>>>>><

>>>>>:

F (D2u)� ut = f, in Q+
1

� ·Du = g, on Q⇤
1

u = u0, on @pQ
+
1 \Q⇤

1.

(0.0.3)

Secondly, we study a boundary obstacle problem with a fully nonlinear parabolic op-

erator in the interior:

8
>>>>><

>>>>>:

F (D2u)� ut = 0, in Q+
1

max{un,'� u} = 0, on Q⇤
1

u = u0, on @pQ
+
1 \Q⇤

1

(0.0.4)

In both cases the equation as well as the boundary conditions are understood in the

viscosity sense, F is a uniformly elliptic operator and Q+
1 is the unit parabolic half-

cylinder in Rn+1 with the flat part of its boundary denoted by Q⇤
1. Moreover in (0.0.3)

� is a given vector function satisfying the obliqueness condition while in (0.0.4) ' is

the so-called obstacle.

Our main aim in both situations is to derive up to the boundary Hölder estimates

for the solution and its derivatives. These results produce the primary theory suit-

able for a rigorous mathematical analysis for problems with immediate connections to

applications in other sciences.
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Chapter 1

Introduction

The subject of this dissertation is included in the general area of linear and fully

nonlinear Partial Di↵erential Equations (PDEs) and the theory of Free Boundaries.

PDEs are perhaps the most important link between Mathematics and other sciences.

Models that appear in Physics, Biology, Finance etc., are described by means of PDEs

and the mathematical reasoning is essential for understanding and solving the corre-

sponding problems. The main scope of this project is to develop the mathematical

methodology which will be suitable for a rigorous mathematical analysis of questions

included in the areas of Boundary Value Problems (BVPs) and of Free Boundary

Problems (FBPs). A BVP consists of a PDE, which should be satisfied in the interior

of a given domain, together with a set of conditions that should be satisfied on the

boundary of this domain (the boundary conditions), which are related again with the

unknown solution and its derivatives in a suitable manner. A FBP is again described

by a PDE but it is also characterized by the appearance of boundaries whose position

and geometry are apriori unknown. That is, the given domain is now splitted by an

unknown interface (the free boundary), which is characterized by given conditions (the

free boundary conditions) that the unknown solution should satisfy, so that a PDE

is satisfied on the one part of the domain while on the other part we may ask to be

satisfied a di↵erent PDE or di↵erential inequalities, etc., depending on the problem.

We also mention that in the study of problems which deal with PDEs it is usually

convenient to consider solutions that satisfy the equation in a suitable weaker sense

(these solutions may not even be di↵erentiable). The notion of weak solution turns

out to be advantageous for many reasons, for example: it is easier to show existence

of such solutions, they appear naturally is applications, etc. From the mathematical

1
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point of view we want to examine the properties of these solutions and to find out the

assumptions on the given data that make these solutions to be smooth.

The purpose of the present thesis is twofold. Firstly, we consider BVPs of oblique

derivative type governed by fully nonlinear parabolic operators (Chapter 3). Here both

the equation as well as the boundary condition are understood in the viscosity sense.

In the second part we study the viscosity solution of a boundary obstacle problem

(that is, a FBP) with a fully nonlinear parabolic equation in the interior (Chapter 4).

In both cases we derive up to the boundary Hölder estimates for the solution and its

derivatives. In the following we give a brief description of the structure of this thesis

together with a historical background concerning the problems under study.

In Chapter 2 we introduce the notation as well as the basic definitions and ter-

minology we use throughout the text. Moreover, we prove some main properties of

viscosity solutions that will be used in our theory.

In Chapter 3, our main objective is to study the regularity of viscosity solutions of

fully nonlinear parabolic equations with oblique boundary conditions of the form

8
>>>>><

>>>>>:

F (D2u)� ut = f, in Q+
1

� ·Du = g, on Q⇤
1

u = u0, on @pQ
+
1 \Q⇤

1

(1.0.1)

where F is a uniformly elliptic convex operator in Sn, f, g and u0 are given data and

� : Q⇤
1 ! Rn is a given vector function with �n � �0 > 0. By Q+

1 we denote the half

parabolic cylinder with flat part Q⇤
1 (detailed definitions are contained in Chapter 2).

A viscosity solution is apriori assumed to be merely continuous and satisfies the

equation (or the boundary condition) only in a weak sense which, roughly speaking,

says that smooth functions that touches the solution from below/above at a point must

be super/sub-solutions of the equation (or the boundary condition) in the classical

sense. The notion of viscosity solution was first introduced and studied for first order

nonlinear equations, in particular of Hamilton-Jacobi type. Then the notion extended

to the case of second order fully nonlinear elliptic/parabolic equations. A first detailed

and self-contained survey of the basic theory of viscosity solutions for second order

equations is [16]. Here the precise definition of the notion as well as the structural

conditions that the equation should satisfy to be compatible with this definition are

explained. Also one can find the proofs of existence and comparison results together

2
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with an extensive bibliography. The first regularity result regarding viscosity solutions

of elliptic equations was given by L. Ca↵arelli in his seminal work [9] (more details

are given in [10]) where the author constructed first two basic tools, an Aleksandrov-

Bakelman-Pucci (ABP) estimate and a Harnack inequality. Then he was able to apply

an approximation-type technique.

There is a vast literature that concerns oblique derivative boundary value problems

for elliptic operators. For the linear elliptic case we refer the reader to the book of G.

Lieberman [32] and references therein. In the case of fully nonlinear elliptic operators,

existence and uniqueness of viscosity solutions are obtained in [24] (where boundary

conditions are in fact more general). Regularity of viscosity solutions was obtained in

[33] for the Neumann case and in [27] for the oblique derivative case.

The corresponding theory for linear parabolic equations with oblique derivative

boundary data is also well understood. For existence, uniqueness and regularity results

we refer to [28], [29], [36], [35], [47] and [20]. For the case when the operator is fully

nonlinear parabolic, comparison and existence results for viscosity solutions can be

found in [25]. Interior and boundary estimates for fully nonlinear parabolic equations

with Dirichlet conditions have been studied by L. Wang in a series of papers (see

[44], [45], [46]) where the methods of [9] were successfully adopted in the parabolic

framework since the author were able to obtain parabolic analogs of ABP and Harnack

estimates. Moreover apriori Hölder estimates for classical solutions appeared in [43],

[30]. Our main goal is to investigate the regularity of viscosity solutions.

We prove, under suitable assumptions, Hölder regularity (in the parabolic sense)

for u and its first and second derivatives (note that a viscosity solution is only assumed

to be continuous so we have to prove also the existence of its derivatives). We start

the development of our theory with the Hölder regularity of u (subsection 3.2.2) which

is derived through a boundary Harnack-type inequality we construct. Note that the

special case of Neumann conditions is considered in subsection 3.2.1 where we prove

that the Hölder regularity can be also obtained through a reflection principle. Next we

continue with the first and second order regularity (in the parabolic sense) in sections

3.3 and 3.4 respectively. The main idea is to use an approximation method as used (for

the elliptic case) in [27] (which is first introduced in [9]). That is, we try to approximate

inductively the general problem (1.0.1) by ”simpler” ones for which the regularity is

known. The ”simpler” problems will be special cases of (1.0.1) where the equation as

well as the boundary condition are homogeneous and the vector � is constant. To attack

3
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the regularity for this type of problems we first examine the regularity for the parabolic

Neumann problem (that is, when � = (0, . . . , 0, 1)) which is obtained by adapting the

ideas of [33] in the parabolic framework (subsections 3.3.1, 3.3.2 and 3.4.1). Then, we

observe that after a suitable change of variables (introduced in section 2.5) a constant

oblique derivative problem can be transformed into a Neumann problem. Moreover,

to put through the approximation technique a suitable form of the ABP estimate is

needed. This powerful tool is derived in section 3.1.

In Chapter 4 we study the regularity of the viscosity solution of the following thin

obstacle problem in a half-cylinder,

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

F (D2u)� ut = 0, in Q+
1

uy  0, on Q⇤
1

u � ', on Q⇤
1

uy = 0, on Q⇤
1 \ {u > '}

u = u0, on @pQ
+
1 \Q⇤

1

(1.0.2)

where, F is a uniformly elliptic convex operator on Sn with ellipticity constants � and

⇤ and ' : Q
⇤
1 ! R, u0 : @pQ

+
1 \Q⇤

1 ! R are given functions. Function ' is the so-called

obstacle and u0 � ' on @pQ⇤
1 for compatibility reasons. Our aim is to derive first order

regularity for u up to the flat boundary Q⇤
1.

The classical obstacle problem as well as the thin obstacle problem are originated

in the context of elasticity since model the shape of an elastic membrane which is

pushed by an obstacle (which may be very thin) from one side a↵ecting its shape and

formation. The same model appears in control theory when trying to evaluate the

optimal stopping time for a stochastic process with payo↵ function. Important cases

of obstacle type problems occur when the operators involved are fractional powers of

the Laplacian as well as nonlinear operators since they appear, among others, in the

analysis of anomalous di↵usion, in quasi-geostrophic flows, in biology modeling flows

through semi-permeable membranes for certain osmotic phenomena and when pricing

American options regulated by assets evolving in relation to jump processes.

Thin (or boundary) obstacle problem (or Signorini’s problem) was extensively stud-

ied in the elliptic case. For Laplace equation and more general elliptic PDEs in diver-

gence form the problem can be also understood in the variational form, that is as a

4
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problem of minimizing a suitable functional over a suitable convex class of functions

which should stay above the obstacle on a part of the boundary (or on a sub-manifold

of co-dimension at least 1) of the domain of definition. The C1,↵-regularity of the

weak solution for the harmonic case was proved first in 1979 by L. Ca↵arelli in [8]

who treats also the divergence case for regular enough coe�cients. Results for more

general divergence-type elliptic operators can be found in [42]. For optimal regularity

and regularity of the free boundary in the case of linear elliptic equations we refer to [2]

and [5] where the harmonic case is studied and to [22], [19], [26] for the case of variable

coe�cients. Similar results exist also for the case of fractional Laplacians. Regularity

of the solution for the classical (thick) obstacle problem was studied in [40], then via

the extension problem introduced in [13] the thin obstacle problem was treated in [12].

Finally, for fully nonlinear elliptic operators, regularity of the viscosity solution was

proved in [34] (see also [18]) while for optimal and free boundary regularity the only

existing work is [38].

The corresponding regularity theory for thin obstacle problems of parabolic type is

much less developed. The C1,↵-regularity of the weak solution was obtained in 1982 by

I. Athanasopoulos in [6] who studied the case of heat equation and the case of smooth

enough linear parabolic equation. The case of more general linear parabolic operators

was examined in [41] and [1]. Optimal and free boundary regularity for the caloric case

have been obtained very recently in [4] (see also [17]). Finally for the case of parabolic

operators of fractional type we refer the reader to [3] and [11].

Our purpose is to combine the techniques of [8], [6] and [34] adapting them in

our fully nonlinear parabolic framework. To achieve this we need up to the boundary

Hölder estimates for viscosity solutions of nonlinear parabolic equations with Neumann

boundary conditions (as [33] is used in [34]), that is the results of Chapter 3.

We start Chapter 4 discussing the natural assumptions we make on the given data.

Our first main accomplishment is to obtain the semi-concavity properties of the solution

(section 4.2). We prove Lipschitz continuity in space variables, a lower bound for ut

and for the second tangential derivatives of u (semi-convexity) and an upper bound

for the second normal derivative of u (semi-concavity). All these bounds are universal

and hold up to the flat boundary Q⇤
1. The boundedness of the first and second normal

derivatives ensures the existence of uy+ on Q⇤
1. Our first intention is to prove that

uy+  0 on Q⇤
1 (which apriori holds only in the viscosity sense). To achieve this we

use the penalized problem defined and studied in section 4.1. Finally in section 4.3 we

5
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prove the main theorem. To do so we obtain first an estimate in measure (Lemma 76)

for uy+ on Q⇤
1 and subsequently we see how such a property can be carried inside Q+

1

(Lemma 77). An iterative application of the above two properties gives the regularity

of uy+ on Q⇤
1 around free boundary points (Lemma 78) and then our problem can be

treated as a non-homogeneous Neumann problem.

Regarding problem (1.0.2) the demanding questions of the optimal regularity of

the solution as well as the regularity of the free boundary are still open. In the linear

elliptic theory, optimal regularity obtained first in [2] and the free boundary regularity

in [5] where in both cases the methods rely on monotonicity formulas-techniques. In

the linear parabolic case one realizes immediately that the presence of time creates

even more non-trivial di�culties. The corresponding results in the parabolic case

developed very recently (see for instance [4]) where the authors notice first that it is

necessary to pay extra attention on the regularity of the time derivative and then to

consider a suitable monotonicity formula. We may observe that since monotonicity

formulas follow from the structure of the operators, one cannot expect to have such

a formulas in the fully nonlinear case, so a di↵erent treatment is needed. Even in

the elliptic fully nonlinear case the only known result is [38] where the authors show

the dichotomy around a free boundary point x0: Either 1. supBr(x0)(u � ') � cr2�✏0

or 2. supBr(x0)(u � ')  C✏r2�✏. In addition around the points where 1. holds they

show that the free boundary is Lipschitz graph. We conclude that optimal and free

boundary regularity for problem (1.0.2) are questions which seem to be particularly

challenging since one has to deal not only with the lack of monotonicity formulas due

to the nonlinear character of the problem but also with the regularity of the time

derivative.

6
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Chapter 2

Preliminaries

In this chapter we give the basic definitions and properties needed in the sequel.

2.1 Parabolic Topology and Function Spaces

First, we introduce the notation we follow in the present text.

2.1.1 Notation

We use X = (x, y) to denote a point of Rn, where x 2 Rn�1 and y 2 R. Moreover,

if t 2 R then P = (X, t) denotes a point in Rn+1, where X are the space variables and

t is the time variable.

The Euclidean ball in Rn will be denoted by

Br(X0) := {X 2 Rn : |X �X0| < r}

and the elementary cylinder in Rn+1 by

Qr(X0, t0) := Br(X0)⇥ (t0 � r2, t0].

Also, let us define the following half and thin-cylinders, for r > 0, X0 2 Rn
+, t0 2 R

Q+
r (X0, t0) := Qr(X0, t0) \ {y > y0},

Q�
r (X0, t0) := Qr(X0, t0) \ {y < y0},

Q⇤
r(X0, t0) := Qr(X0, t0) \ {y = y0}.

7
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Note that most of the times when the center is (0, 0) we omit it, i.e. we write Qr

instead of Qr(0, 0), Br instead of Br(0) etc.

⌦�, ⌦ and @⌦ denote the interior, the closure and the boundary, respectively, of

the domain ⌦ ⇢ Rn+1 in the sense of the Euclidean topology of Rn+1. Also, for a set

⌦ 2 Rn+1 we define its parabolic interior to be,

intp(⌦) := {(X, t) 2 Rn+1 : there exists r > 0 so that Q�
r(X, t) ⇢ ⌦}

and its parabolic boundary,

@p(⌦) := ⌦ \ intp(⌦).

Domains of the form U ⇥ (t1, t2) 2 Rn+1 are called cylindrical domains and

elementary cylinders consist a special case.

Let us also define the parabolic distance for P1 = (X, t), P2 = (Y, s) 2 Rn+1,

p(P1, P2) := max{|X � Y |, |t� s|1/2},

where | · | is the Euclidean norm. Note that Qr(P0) is the set {P 2 Rn+1 : p(P, P0) <

r, t  t0}.

2.1.2 Parabolic Hölder Continuity

Aiming to define the spaces H↵, H↵+1 and H↵+2, for 0 < ↵  1, we introduce first

the following semi-norms. For a function f defined in a domain ⌦ ⇢ Rn+1 we define,

[f ]↵;⌦ := sup
P1,P22⌦,P1 6=P2

|f(P1)� f(P2)|
p(P1, P2)↵

.

hfi↵+1;⌦ := sup
(X,t1),(X,t2)2⌦

t1 6=t2

|f(X, t1)� f(X, t2)|
|t1 � t2|

↵+1
2

.

Then we say that,

• f 2 H↵(⌦) if

||f ||H↵(⌦) := sup
⌦

|f |+ [f ]↵;⌦ < +1.

So f is ↵-Hölder continuous inX-variables and ↵
2 - Hölder continuous in t-variable.

8
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• f 2 H↵+1(⌦) if

||f ||H↵+1(⌦) := sup
⌦

|f |+
nX

i=1

sup
⌦

|Dif |+
nX

i=1

[Dif ]↵;⌦ + hfi↵+1;⌦ < +1

where Dif denote the first partial derivatives of f with respect to the space

variables assuming that there exist. So, f is (↵ + 1) - Hölder continuous in X-

variables while in t-variable f is merely ↵+1
2 - Hölder continuous (with 1

2 < ↵+1
2 <

1). Note that ||f ||H↵+1 do not provide anything about the existence of the first

time derivative ft.

• f 2 H↵+2(⌦) if

||f ||H↵+2(⌦) := sup
⌦

|f |+
nX

i=1

sup
⌦

|Dif |+ sup
⌦

|ft|+
nX

i,j=1

sup
⌦

|D2
ijf |

+ [ft]↵;⌦ +
nX

i,j=1

[D2
ijf ]↵;⌦ +

nX

i=1

hDifi↵+1;⌦ < +1

where Dijf denote the second partial derivatives of f with respect to the space

variables assuming that there exist.

Due to the nonlinear character of the problem we study, most of the times we

prove H↵+1 and H↵+2-regularity results in the punctual sense at a point. Next, we

explain what does this mean. Assume that the function u is defined in ⌦, where

⌦ := ⌦0 ⇥ (t1, t2) is a cylindrical domain of Rn+1, we say that u is punctually H↵+1

at a point P1 2 ⌦ if there exists a polynomial R1;P1 of first order in X, that is

R1;P1(X) = AP1 + BP1 · (X � X1), where AP1 2 R and BP1 2 Rn and some cylinder

Qr1(P1) ⇢ ⌦, so that for any 0 < r < r1,

|u(X, t)�R1;P1(X)|  K r1+↵, for every (X, t) 2 Qr(P1)

for some constant K > 0. In the same spirit, we say that u is punctually H↵+2 at a

point P1 2 ⌦ if there exists a polynomial R2;P1 of second order in X and of first order

in t, that is R2;P1(X, t) = AP1 +BP1 · (X�X1)+CP1(t� t1)+
1
2(X�X1)⌧DP1(X�X1),

where AP1 , CP1 2 R, BP1 2 Rn and DP1 2 Rn⇥n and some cylinder Qr1(P1) ⇢ ⌦ so that

for any 0 < r < r1,

|u(X, t)�R2;P1(X, t)|  K r2+↵, for every (X, t) 2 Qr(P1)
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for some constant K > 0. Note that when we study points on a flat part of the

boundary, the cylinders in the above definitions are replaced by half-cylinders.

The following lemmas state that if u 2 H↵+1(⌦) (or H↵+2(⌦)) then it is puctually

H↵+1 (or H↵+2) at every point of ⌦.

Lemma 1. Let u 2 H↵+1(⌦), where ⌦ := ⌦0 ⇥ (t1, t2) is a cylindrical domain of

Rn+1.Then, for any P1 2 ⌦,

|u(X, t)� u(X1, t1)�rXu(X1, t1) · (X �X1)|  C||u||H↵+1(⌦) p(P1, P )1+↵

for every P 2 ⌦.

Proof. First observe that by triangle inequality,

|u(X, t)� u(X1, t1)�rXu(X1, t1) · (X �X1)|

 |u(X, t)� u(X1, t)�rXu(X1, t) · (X �X1)|+ |u(X1, t)� u(X1, t1)|

+ |rXu(X1, t)�rXu(X1, t1)||X �X1|. (2.1.1)

Now, set vt(X) := u(X, t)� u(X1, t)�rXu(X1, t) · (X �X1), then

vt(X1) = 0 and rXv
t(X) = rXu(X, t)�rXu(X1, t).

The second one yields, |rXvt(X)|  ||u||H↵+1(⌦)|X �X1|↵. By mean value theorem we

have,

|vt(X)| = |vt(X)� vt(X1)| = |rXv
t(⌅)||X �X1|  ||u||H↵+1(⌦)|⌅�X1|↵|X �X1|

 ||u||H↵+1(⌦)|X �X1|↵+1

where ⌅ is lying on the line segment connecting X with X1.

Hence, returning to (2.1.1),

|u(X, t)� u(X1, t1)�rXu(X1, t1) · (X �X1)|

 |vt(X)|+ ||u||H↵+1(⌦)|t� t1|
↵+1
2 + ||u||H↵+1(⌦)|t� t1|

↵
2 |X �X1|

 C||u||H↵+1(⌦) p(P1, P )1+↵.
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Lemma 2. Let u 2 H↵+2(⌦), where ⌦ := ⌦0 ⇥ (t1, t2) is a cylindrical domain of

Rn+1.Then, for any P1 2 ⌦,

|u(X, t)� u(X1, t1)�rXu(X1, t1) · (X �X1)� ut(X1, t1)(t� t1)

� 1

2
(X �X1)

⌧D2
Xu(X1, t1)(X �X1)|  C||u||H↵+2(⌦) p(P1, P )2+↵

(2.1.2)

for every P 2 ⌦.

Proof. First observe that by triangle inequality and denoting by (I) the left-hand side

of (2.1.2) we have

(I)  |u(X, t)� u(X1, t)�rXu(X1, t) · (X �X1)�
1

2
(X �X1)

⌧D2
Xu(X1, t)(X �X1)|

+ |u(X1, t)� u(X1, t1)� ut(X1, t1)(t� t1)|+ |rXu(X1, t)�rXu(X1, t1)||X �X1|

+
1

2
|X �X1|2|D2

Xu(X1, t)�D2
Xu(X1, t1)| =: (II) + (III) + (IV ) + (V ).

For (II), set

vt(X) := u(X, t)�u(X1, t)�rXu(X1, t) · (X�X1)�
1

2
(X�X1)

⌧D2
Xu(X1, t)(X�X1)

then

vt(X1) = 0 and vtxi
(X, t) = uxi(X, t)� uxi(X1, t)�rXuxi(X1, t) · (X �X1)

for any i = 1, . . . , n. Lemma 1 applied to uxi 2 H↵+1 gives

|vtxi
|  C||u||H↵+2(⌦)|X �X1|1+↵.

By mean value theorem we have,

|vt(X)| = |vt(X)� vt(X1)| = |rXv(⌅, t)||X �X1|

 C||u||H↵+2(⌦)|⌅�X1|1+↵|X �X1|  C||u||H↵+2(⌦)|X �X1|↵+2

where ⌅ is lying on the line segment connecting X with X1. That is

(II)  C||u||H↵+2(⌦) p(P1, P )2+↵.
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For (III), set  (t) := u(X1, t)� u(X1, t1)� ut(X1, t1)(t� t1), then

 (t1) = 0 and  t(t) = ut(X1, t)� ut(X1, t1)

thus, | t(t)|  ||u||H↵+2(⌦)|t� t1|↵/2. By mean value theorem we have,

| (t)| = | (t)�  (t1)| = | t(⌅)||t� t1|  ||u||H↵+2(⌦)|⌅� t1|↵/2|t� t1|

 ||u||H↵+2(⌦)|t� t1|(↵+2)/2

where ⌅ is lying between t and t1. That is (III)  ||u||H↵+2(⌦) p(P1, P )2+↵.

For (IV ) and (V ) we have,

(IV )  ||u||H↵+2(⌦)|t� t1|(↵+1)/2|X �X1|  ||u||H↵+2(⌦) p(P1, P )2+↵

and

(V )  1

2
||u||H↵+2(⌦)|t� t1|↵/2|X �X1|2  C||u||H↵+2(⌦) p(P1, P )2+↵.

Combining the above the proof is complete.

Before we close this subsection, let us note that throughout the text, we will consider

integration with respect to the Lebesgue measure in Rn+1, we will denote it by dXdt.

Moreover, we consider the Lp-spaces with respect to this measure. Note also that we

use the notation Ck for k = 0, 1, 2, . . . to denote the standard spaces of functions that

are k-times continuously di↵erentiable.

2.2 Viscosity Solutions for Parabolic Equations

In this text we consider fully nonlinear uniformly parabolic equations of the

form,

F (D2u(X, t), X, t)� ut(X, t) = f(X, t) for (X, t) 2 ⌦ (2.2.1)

where, ⌦ is a bounded domain of Rn+1, u is the unknown function defined in ⌦ and

D2u(X, t) is the n⇥n matrix of its second derivatives with respect to the X-variables,

ut(X, t) is the first derivative with respect to the t-variable, f is a given function defined

in ⌦ and the nonlinear operator F is uniformly elliptic which means that there exist
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constants 0 < �  ⇤ such that

�||N ||1  F (M +N,X, t)� F (M,X, t)  ⇤||N ||1 (2.2.2)

for every M,N 2 Sn with N � 0 and (X, t) 2 ⌦, where we denote by Sn the space of

symmetric n⇥ n matrices with real entries.

Recall that for any real n⇥ n matrix M,

||M ||1 = sup
|e|=1

|Me|

which in case that M is symmetric, using spectral theorem, we can obtain easily that

||M ||1 = max{|�i|, where �i are the eigenvalues of M}.

If M is non-negative definite matrix we have that ||M ||1 is its maximum eigenvalue.

The condition (2.2.2) is called the ellipticity condition and the constants �,⇤

are called the ellipticity constants. From (2.2.2) (replacing M by M �N) we may

derive that

�||N ||1  F (M,X, t)� F (M �N,X, t)  ⇤||N ||1 (2.2.3)

for every M,N 2 Sn with N � 0 and (X, t) 2 ⌦. Moreover, the ellipticity condition

gives that F (M,X, t) is monotone increasing in M. Indeed, let M,N 2 Sn with M  N

(which means that N �M � 0) then by (2.2.2) we have

F (M +N �M,X, t)� F (M,X, t) � �||N �M ||1 � 0.

In particular, roughly speaking, (2.2.2) and (2.2.3) say that if we add a positive (or

negative)-definite matrix then the value of F increases (or decreases) proportionally.

Again by spectral theorem we can derive that any N 2 Sn can be written in the

form N = N+ � N�, with N+, N� � 0 and N+N� = O. In particular, we get the

following equivalence,

Lemma 3. F is uniformly elliptic if and only if for constants 0 < �  ⇤,

F (M +N,X, t)  F (M,X, t) + ⇤||N+||1 � �||N�||1

for any M,N 2 Sn and any (X, t) 2 ⌦.
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Proof. For the one direction, let M,N 2 Sn then,

F (M +N,X, t) = F (M �N� +N+, X, t)  F (M �N�, X, t) + ⇤||N+||1

 F (M,X, t)� �||N�||1 + ⇤||N+||1

where we use condition (2.2.2) for N+ � 0 and then condition (2.2.3) for N� � 0.

Now, for the other direction, let M,N 2 Sn with N � 0. We have that N+ =

N, N� = O, thus

F (M +N,X, t)  F (M,X, t) + ⇤||N ||1.

On the other hand, (�N)+ = O, (�N)� = N , thus F (M � N,X, t)  F (M,X, t) �

�||N ||1 which, if we substitute M with M +N , gives F (M,X, t)  F (M +N,X, t)�

�||N ||1, hence

F (M +N,X, t)� F (M,X, t) � �||N ||1.

By the above lemma we observe that F (M,X, t) is Lipschitz continuous in M.

Indeed, since ||N+||1  ||N ||1 and ��||N�||1  0, we have F (M + N,X, t) 

F (M,X, t) + ⇤||N ||1 for any M,N 2 Sn. Then, let M1,M2 2 Sn, we apply the above

first with M = M1, N = M2 �M1 and second with M = M2, N = M1 �M2 to obtain

|F (M1, X, t)� F (M2, X, t)|  ⇤||M1 �M2||1.

We also assume that F and f are continuous in variables (X, t), unless otherwise stated.

Note that, F could also depend on derivatives of u of lower order, however in this text

we consider the case where the operator F depends only on the second order derivatives

of u with respect to X.

Remark 4. In the rest of this text, when we call a constant universal we mean

that it depends only on the dimension and on the ellipticity constants (unless otherwise

stated). Note also that although a universal constant may change from the one equation

to another we always denote it by C.

Before we define the notion of viscosity solutions let us give some examples of

nonlinear parabolic equations.
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• The parabolic Bellman equation

sup
↵2A

{L↵u(X, t)� f↵(X, t)}� ut(X, t) = 0

where A is any set of indices and for each ↵ 2 A, f↵ is a real function in ⌦ and

L↵u = aij↵ (X, t)Dij
Xu + bi↵(X, t)Di

Xu is a linear uniformly elliptic operator with

bounded measurable coe�cients.

• The mean curvature equation

< D2
Xu(X, t)rXu(X, t),rXu(X, t) >

|rXu(X, t)|2 � ut(X, t) = 0.

Other examples are Pucci operators which will be defined in the next subsection.

We proceed with the definition of viscosity solution of the nonlinear equation (2.2.1).

First, let us note that when we say that the function u : ⌦ ⇢ Rn+1 ! R has lo-

cal maximum (or minimum) at a point (X0, t0) we mean that there exists a cylinder

Qr(X0, t0) ⇢ ⌦ so that u(X, t)  (or �) u(X0, t0) for (X, t) 2 Qr(X0, t0).

Motivation. Let u and � be C1 with respect to t-variable and C2 with repsect to X-

variable and assume that u satisfies (2.2.1) in ⌦ and that u� � has a local maximum

at (X0, t0) 2 ⌦. Then ut(X0, t0) � �t(X0, t0) = ut�(X0, t0) � �t�(X0, t0) � 0 and

D2�(X0, t0)�D2u(X0, t0) � 0. Using the monotoniciy of F we obtain

F (D2�(X0, t0), x0, t0)� �t(X0, t0) � F (D2u(X0, t0), X0, t0)� ut(X0, t0) = f(X0, t0).

Note. In the following, functions that are defined in a bounded domain ⌦ ⇢ Rn+1 and

be C1 with respect to t-variable and C2 with repsect to X-variable, will be called test

functions.

Definition 5. Let u 2 C(⌦), where ⌦ ⇢ Rn+1 is a bounded domain.

• We say that u is a viscosity subsolution of (2.2.1) in ⌦ if, whenever a test

function � is such that the function u � � has a local maximun at some point

(X0, t0) 2 ⌦ we have that

F (D2�(X0, t0), X0, t0)� �t(X0, t0) � f(X0, t0). (2.2.4)
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• We say that u is a viscosity supersolution of (2.2.1) in ⌦ if, whenever a test

function � is such that the function u � � has a local minimum at some point

(X0, t0) 2 ⌦ we have that

F (D2�(X0, t0), X0, t0)� �t(X0, t0)  f(X0, t0). (2.2.5)

We say that u is a viscosity solution of (2.2.1) in ⌦ if it is both a viscosity subsolution

and supersolution.

Remark 6. As can be readily seen, if u is a viscosity supersolution of (2.2.1) then

v = �u is a viscosity subsolution of G(D2v(X, t), X, t) � vt(X, t) = �f(X, t), where

G(M,X, t) = �F (�M,X, t) which is also uniformly elliptic with the same constants

of ellipticity.

Definition 7. Let u and v be two continuous functions defined in a bounded domain

⌦ ⇢ Rn+1. We say that v touches u by above at a point (X0, t0) 2 ⌦ if u(X0, t0) =

v(X0, t0) and there exists a cylinder Qr(X0, t0) ⇢ ⌦ such that u  v in Qr(X0, t0).

Similarly, we define touching by below.

Observing that �(X, t)+u(X0, t0)��(X0, t0) touches u by above whenever u�� has

a local maximum at (X0, t0) 2 ⌦ we can easily deduce that it is enough to consider test

functions touching u by above in the definition of viscosity subsolutions (similarly for

supersolutions). Also regarding the following we conlcude that it is enough to consider

polynomials touching u by above in the definition of viscosity subsolutions.

Lemma 8. Let u 2 C(⌦), where ⌦ ⇢ Rn+1 is a bounded domain. If, whenever a second

order parabolic paraboloid R2(X, t) = A+B ·(X�X0)+C(t�t0)+
1
2(X�X0)⌧D(X�X0)

(A,C 2 R, B 2 Rn and D 2 Rn⇥n) touches u by above at point (X0, t0) 2 ⌦ we have

that

F (D,X0, t0)� C � f(X0, t0),

then u is a viscosity subsolution of (2.2.1) in ⌦.

Proof. Let (X0, t0) 2 ⌦ and � be a test function that touches u by above at (X0, t0).

Since � is C2 in X and C1 in t, using Taylor’s Theorem, we can show that

�(X, t) =�(X0, t0) + �t(X0, t0)(t� t0) +rX�(X0, t0) · (X �X0)

+
1

2
(X �X0)

⌧D2
X�(X0, t0)(X �X0) + o

�
|X �X0|2 + |t� t0|

�
(2.2.6)
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as (X, t) ! (X0, t0). To do so we should be careful since di↵erent order derivatives

with respect to X and t are involved. That is, we expand first in X-variables to get

�(X, t) = �(X0, t)+rX�(X0, t)·(X�X0)+
1

2
(X�X0)

⌧D2
X�(X0, t)(X�X0)+o

�
|X �X0|2

�

as X ! X0, for any t-level. Next, we expand the C1-function �(X0, t) and the contin-

uous functions rX�(X0, t) and D2
X�(X0, t) in t-variable to obtain,

�(X, t) =�(X0, t0) + �t(X0, t0)(t� t0) + o (|t� t0|) + (rX�(X0, t0) + o(1)) · (X �X0)

+
1

2
(X �X0)

⌧
�
D2

X�(X0, t0) + o(1)
�
(X �X0) + o

�
|X �X0|2

�

as X ! X0 and t ! t0. To conclude, it remains to observe that

o(t� t0)

|X �X0|2 + |t� t0|
! 0 and

o (|X �X0|2)
|X �X0|2 + |t� t0|

! 0

as (X, t) ! (X0, t0), which is true since |X �X0|2 + |t � t0| is greater than or equals

to both |X �X0|2 and |t� t0|. Also,

o(1)|X �X0|
|X �X0|2 + |t� t0|

 o(1)|X �X0|
|t� t0|

=
(a|t� t0|+ o(|t� t0|)) |X �X0|

|t� t0|
! 0

and
o(1)|X �X0|2

|X �X0|2 + |t� t0|
 o(1)|X �X0|2

|X �X0|2
= o(1) ! 0

as (X, t) ! (X0, t0). This shows (2.2.6).

Now, (2.2.6) gives that for any ✏ > 0 the paraboloid

R2(X, t) =�(X0, t0) +rX�(X �X0) · (X �X0) + �t(X0, t0)(t� t0)

+
1

2
(X �X0)

⌧D2
X�(X0, t0)(X �X0) + ✏

�
|X �X0|2 � t+ t0

�

touches u by above at (X0, t0). Therefore from the hypothesis and since

D2
XR2 = D2

X�(X0, t0) + 2✏In, (R2)t(X0, t0) = �t(X0, t0)� ✏

we have that

F (D2
X�(X0, t0) + 2✏In, X0, t0)� �t(X0, t0) + ✏ � 0.
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Hence letting ✏! 0,

F (D2
X�(X0, t0), X0, t0)� �t(X0, t0) � 0

since F is continuous in M . The proof is complete.

Remark 9. Let u be C1 with respect to t-variable and C2 with repsect to X-variable

then u is a viscosity subsolution of (2.2.1) if and only if it is a classical subsolution.

Next proposition deals with the stability of viscosity solutions.

Proposition 10. Assume that {Fk}k2N are uniformly elliptic operators in Q1 with the

same ellipticity constants 0 < �  ⇤ and {uk}k2N ⇢ C(Q1) are such that for every

k 2 N, uk is a viscosity subsolution of Fk(D2v,X, t)�vt(X, t) = f(X, t) in Q1. Suppose

also that Fk converges to F uniformly in Sn⇥Q1 and uk converges to u uniformly in any

Q⇢(X0, t0) ⇢ Q1. Then u is a viscosity subsolution of F (D2u,X, t)� ut(x, t) = f(X, t)

in Q1.

Proof. First we have to check that F is a uniformly elliptic operator. This can be easily

obtained using the pointwise convergence and the ellipticity conditions of Fk, since Fk

have the same ellipticity constants. Also, we immediately have that u 2 C(Q1) as a

locally uniform limit of continuous functions.

Now, let � be a test function that touches u by above at some point (X0, t0) 2 Q1,

we have to show that

F (D2�(X0, t0))� �t(X0, t0) � f(X0, t0).

Claim. For every r > 0 su�ciently small, ✏ > 0 and k0 2 N there are k � k0, a

constant Ak and some (Xk, tk) 2 Qr(X0, t0) ⇢ Q1 so that the test function

 k(X, t) := �(X, t) +
✏

2
(|X �X0|2 � t+ t0) + Ak

touches uk by above at (Xk, tk).

Proof of Claim. We have that for ⇢ > 0 su�ciently small,

u(X, t)� �(X, t)  0 for (X, t) 2 Q⇢(X0, t0) ⇢ Q1
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and

u(X0, t0)� �(X0, t0) = 0.

Then, for ✏ > 0 and any 0 < r < ⇢,

u(X, t)� �(X, t)� ✏

2
(|X �X0|2 � t+ t0) < 0 for (X, t) 2 Qr(X0, t0) \ {(X0, t0)}.

We denote by �̃(X, t) := �(X, t) + ✏
2(|X �X0|2 � t+ t0) and we consider,

c := max
(X,t)2@pQr(X0,t0)

⇣
u(X, t)� �̃(X, t)

⌘
< 0.

Then u� �̃  c, on @pQr(X0, t0).

Now by the uniform convergence of uk in Qr(X0, t0) we have that there exists some

K 2 N such that for any k � max{k0, K},

|uk(X, t)� u(X, t)| < � c

4
, for (X, t) 2 Qr(X0, t0).

Therefore, if k � max{k0, K} and (X, t) 2 @pQr(X0, t0),

uk(X, t)� �̃(X, t) < u(X, t)� c

4
� �̃(X, t)  c� c

4
+ u(X0, t0)� �̃(X0, t0)

<
3c

4
� c

4
+ uk(X0, t0)� �̃(X0, t0) = uk(X0, t0)� �̃(X0, t0) +

c

2
.

Fix k � max{k0, K} and let

Ak := max
(X,t)2Qr(X0,t0)

(uk(X, t)� �̃(X, t)).

Since, uk(X, t)��̃(X, t) < uk(X0, t0)��̃(X0, t0) for any (X, t) 2 @pQr(X0, t0) then Ak is

achieved at some point in Qr(X0, t0), therefore there exists some (Xk, tk) 2 Qr(X0, t0)

satisfying

uk(X, t)� �̃(X, t)� Ak  0, for (X, t) 2 Qr0(Xk, tk) ⇢ Qr(X0, t0)

with

uk(Xk, tk)� �̃(Xk, tk)� Ak = 0

and choosing  k(X, t) = �̃(X, t) + Ak the claim follows.
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Apply claim for every r = 1
m (for su�ciently large m 2 N) to get a sequence

(Xkm , tkm) ! (X0, t0) and since  km touches ukm(X, t) by above at (Xkm , tkm) we have

Fkm(D
2�(Xkm , tkm) + ✏I,Xkm , tkm)� �t(Xkm , tkm) +

✏

2
� f(Xkm , tkm).

Note that we apply the claim repeatedly and at every step we can take km+1 � km so

{ukm}m and {Fkm}m form subsequences of {uk}k and {Fk}k respectively. So, taking

m ! 1 we obtain,

F (D2�(X0, t0) + ✏I,X0, t0)� �t(X0, t0) +
✏

2
� f(X0, t0)

using the continuity of Fk, f and of the derivatives of � and the uniform convergence

of {Fk}. Finally we take ✏! 0+ and the proof is complete.

2.3 Parabolic S-classes

Now we define Pucci’s extremal operators which are special cases of nonlinear

uniformly elliptic operators but with some specific useful properties.

Definition 11. Let 0 < �  ⇤, M 2 Sn and denote by �i = �i(M), for i = 1, . . . , n,

the eigenvalues of M . We define the Pucci’s extremal operators by

M�(M,�,⇤) := �
X

�i>0

�i + ⇤
X

�i<0

�i (2.3.1)

and

M+(M,�,⇤) := ⇤
X

�i>0

�i + �
X

�i<0

�i. (2.3.2)

One can easily verify the following properties.

Lemma 12.

(i) Let A�,⇤ be the subset of Sn containing all matrices whose eigenvalues lie in the

interval [�,⇤]. Consider also, for A 2 A�,⇤, the linear functional LA(M) =

tr(AM), where M 2 Sn. Then

M�(M,�,⇤) = inf
A2A�,⇤

LA(M) (2.3.3)
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and

M+(M,�,⇤) = sup
A2A�,⇤

LA(M). (2.3.4)

(ii) For any M 2 Sn,

M±(↵M,�,⇤) = ↵M±(M,�,⇤), if ↵ � 0

and

M+(↵M,�,⇤) = ↵M�(M,�,⇤), if ↵ < 0.

(iii) For any M,N 2 Sn,

M+(M,�,⇤) +M�(N,�,⇤)  M+(M +N,�,⇤)  M+(M,�,⇤) +M+(N,�,⇤).

M�(M,�,⇤) +M�(N,�,⇤)  M�(M +N,�,⇤)  M�(M,�,⇤) +M+(N,�,⇤).

(iv) For any M 2 Sn with M � 0,

�||M ||1  M�(M,�,⇤)  M+(M,�,⇤)  n⇤||M ||1.

Remark 13. Combining the above properties we can easily obtain that operators M�

and M+ are uniformly elliptic with ellipticity constants � and n⇤.

Next we define the parabolic S-classes.

Definition 14. Let 0 < �  ⇤, ⌦ ⇢ Rn+1 be a bounded domain and f 2 C(⌦).

Assume also that u 2 C(⌦), then

• If u is a viscosity subsolution of M+(D2u(X, t),�,⇤)� ut(X, t) = f(X, t) in ⌦,

we say that u 2 Sp(�,⇤, f) in ⌦,.

• If u is a viscosity supersolution of M�(D2u(X, t),�,⇤) � ut(X, t) = f(X, t) in

⌦, we say that u 2 Sp(�,⇤, f) in ⌦.

In addition we define,

Sp(�,⇤, f) := Sp(�,⇤, f) \ Sp(�,⇤, f).

Next we present some properties of the behavior of parabolic S-classes under certain

transformations.
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Proposition 15.

(i) If u 2 Sp(�,⇤, f) in ⌦ (or u 2 Sp(�,⇤, f) in ⌦) then

↵u 2 Sp(�,⇤,↵f) in ⌦ (or ↵u 2 Sp(�,⇤,↵f) in ⌦) if ↵ � 0

and

↵u 2 Sp(�,⇤,↵f) in ⌦ (or ↵u 2 Sp(�,⇤,↵f) in ⌦) if ↵ < 0.

(ii) If u 2 Sp(�,⇤, f) in Q1(0, 0) then for r > 0 and (X0, t0) 2 Rn+1,

v(Z, s) := u

✓
Z �X0

r
,
s� t0
r2

◆
2 Sp

✓
�,⇤,

1

r2
f

✓
Z �X0

r
,
s� t0
r2

◆◆

in Qr(X0, t0). Similar property holds for Sp as well.

(iii) Let u 2 Sp(�,⇤, f) in ⌦ and � be C1 with respect to t-variable and C2 with repsect

to X-variables in ⌦ and be such that M+(D2�(X, t),�,⇤) � �t(X, t)  g(X, t)

for any (X, t) 2 ⌦ then u� � 2 Sp(�,⇤, f � g) in ⌦. Similar property holds for

Sp as well.

Proof.

(i) This is obvious by (ii) of Lemma 12.

(ii) Let  be a test function in Qr(X0, t0) that touches v by above at some point

(Z⇤, s⇤) 2 Qr(X0, t0). Then

u

✓
Z �X0

r
,
s� t0
r2

◆
  (Z, s)

for (Z, s) in a cylinder centered at (Z⇤, s⇤) withinQr(X0, t0) and u
�
Z⇤�X0

r , s
⇤�t0
r2

�
=

 (Z⇤, s⇤). Now, we consider,

 ̃(X, t) :=  (rX +X0, r
2t+ t0) for (X, t) 2 Q1(0, 0)

and (X⇤, t⇤) =
�
Z⇤�X0

r , s
⇤�t0
r2

�
. Then

u(X, t)   ̃(X, t)
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for (X, t) in a cylinder around (X⇤, t⇤) in Q1(0, 0) and u(X⇤, t⇤) =  ̃(X⇤, t⇤).

Hence,

M+(D2 ̃(X⇤, t⇤),�,⇤)�  ̃t(X
⇤, t⇤) � f(X⇤, t⇤).

In addition,

 ̃t(X
⇤, t⇤) = r2 t(Z

⇤, s⇤) and D2 ̃(X⇤, t⇤) = r2D2 (Z⇤, s⇤)

and by (ii) of Lemma 12 we have that

M+(D2 (Z⇤, s⇤),�,⇤)�  t(Z
⇤, s⇤) � 1

r2
f

✓
Z⇤ �X0

r
,
s⇤ � t0
r2

◆
.

(iii) Consider again a test function  that touches u � � by above at some point

(X0, t0) 2 ⌦. Then

u(X, t)   (X, t) + �(X, t)

for (X, t) in a cylinder around (X0, t0) in ⌦ and u(X0, t0) =  (X0, t0)+�(X0, t0).

Hence,

M+(D2 (X0, t0) +D2�(X0, t0),�,⇤)�  t(X0, t0)� �t(X0, t0) � f(X0, t0).

Therefore, by (iii) of Lemma 12 we have that

M+(D2 (X0, t0),�,⇤)� t(X0, t0)+M+(D2�(X0, t0),�,⇤)��t(X0, t0) � f(X0, t0)

that is,

M+(D2 (X0, t0),�,⇤)�  t(X0, t0)

� f(X0, t0)�M+(D2�(X0, t0),�,⇤) + �t(X0, t0) � f(X0, t0)� g(X0, t0)

which completes the proof.

Finally, we discuss the relation between parabolic S-classes and arbitrary nonlinear

operators of parabolic type.

Proposition 16. Let ⌦ ⇢ Rn+1 be a bounded domain. Assume that � is a test function
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in ⌦ and u 2 C(⌦) is a viscosity subsolution of the uniformly parabolic equation (2.2.1)

in ⌦, then

u� � 2 Sp

✓
�

n
,⇤, f(X, t)� F (D2�(X, t), X, t) + �t(X, t)

◆
in ⌦.

Similarly, if u is a viscosity supersolution then

u� � 2 Sp

✓
�

n
,⇤, f(X, t)� F (D2�(X, t), X, t) + �t(X, t)

◆
in ⌦.

In particular, if u is a viscosity subsolution of (2.2.1) in ⌦, then

u 2 Sp

✓
�

n
,⇤, f(X, t)� F (O,X, t)

◆
in ⌦

(similarly for supersolutions).

Proof. Let  be a test function that touches u�� by above at some point (X0, t0) 2 ⌦

then the test function  + � touches u by above at (X0, t0). Hence

f(X0, t0)  F (D2 (X0, t0) +D2�(X0, t0), X0, t0)�  t(X0, t0)� �t(X0, t0)

 F (D2�(X0, t0), X0, t0) + ⇤||[D2 (X0, t0)]
+||1 � �||[D2 (X0, t0)]

�||1

�  t(X0, t0)� �t(X0, t0)

due to Lemma 3. But ||[D2 (X0, t0)]+||1 equals to the maximum positive eigenvalue

of D2 (X0, t0) (or it is zero) and ||[D2 (X0, t0)]�||1 equals to the absolute value of

the minimum negative (or it is zero) eigenvalue of D2 (X0, t0) so

||[D2 (X0, t0)]
+||1 

X

�i>0

�i

and

n||[D2 (X0, t0)]
�||1 � �

X

�i<0

�i

where �i, i = 1, . . . , n, are the eigenvalues of D2 (X0, t0). Hence

f(X0, t0)  F (D2�(X0, t0), X0, t0)��t(X0, t0)+M+

✓
D2 (X0, t0),

�

n
,⇤

◆
� t(X0, t0).
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That is,

M+

✓
D2 (X0, t0),

�

n
,⇤

◆
� t(X0, t0) � f(X0, t0)�F (D2�(X0, t0), X0, t0) + �t(X0, t0)

which completes the proof.

Remark 17. By Proposition 10 we have that the classes Sp, Sp and Sp are closed

under locally uniform limits.

2.4 Oblique Boundary Data

Here we adopt the notion of oblique boundary conditions in the viscosity framework.

In the following we assume that � : Q⇤
r ! Rn is a vector-value function defined on the

flat boundary so that �n(x, t) � �0 > 0 for every (x, t) 2 Q⇤
r and k�kL1(Q⇤

r)
 1.

Definition 18. Let u 2 C (Q+
r [Q⇤

r) and g 2 C (Q⇤
r).

(i) We say that

� ·Du � g on Q⇤
r

in the viscosity sense if whenever we take any point P0 = (x0, 0, t0) 2 Q⇤
r and a

test function � that touches u by above at P0 in some half-cylider Q+
⇢ (P0) ⇢ Q+

r ,

then we must have that

�(x0, t0) ·D�(P0) � g(x0, t0).

(ii) We say that

� ·Du  g on Q⇤
r

in the viscosity sense if whenever we take any point P0 = (x0, 0, t0) 2 Q⇤
r and a

test function � that touches u by below at P0 in some half-cylider Q+
⇢ (P0) ⇢ Q+

r ,

then we must have that

�(x0, t0) ·D�(P0)  g(x0, t0).

If the above two hold at the same time we say that � · Du = g on Q⇤
r in the viscosity

sense.
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Proposition 19. (Rescaling). Let u 2 C
�
Q+

1 [Q⇤
1

�
and g 2 C (Q⇤

1) be so that � ·Du �

g (resp.  g) on Q⇤
1 in the viscosity sense. Let also

v(Z, s) = u

✓
Z � x0

r
,
s� t0
r2

◆

for (Z, s) = (z, w, s) 2 Q+
r (P0) [ Q⇤

r(P0), where P0 = (x0, 0, t0). Then �̃ · Dv � 1
r g̃

(resp.  1
r g̃) in the viscosity sense on Q⇤

r(P0), where g̃(z, s) = g
�
z�x0
r , s�t0

r2

�
and

�̃(z, s) = �
�
z�x0
r , s�t0

r2

�
.

Proof. Take any point P1 = (z1, 0, s1) 2 Q⇤
r(P0) and a test function � that touches v

by above at P1 in some half-cylider around P1 in Q+
r (P0). Set

 (X, t) := �(rX + x0, r
2t+ t0)

for (X, t) 2 Q+
1 and P 0

1 :=
�
z1�x0

r , 0, s1�t0
r2

�
. Note that (rX + x0, r2t + t0) 2 Q+

r (P0).

Then  touches u by above at P 0
1 in some half-cylider around P 0

1 in Q+
1 and hence, by

definition, �
�
z1�x0

r , s1�t0
r2

�
· D (P 0

1) � g
�
z1�x0

r , s1�t0
r2

�
. Since D (P 0

1) = rD�(P1) the

proof is complete.

A special case of the oblique-type condition is when �(x, t) = (0, . . . , 0, 1) 2 Rn

for every (x, t) 2 Q⇤
r. This type of condition is called Neumann boundary condition.

Next we give some properties of the viscosity solutions of nonlinear parabolic Neumann

problems.

Proposition 20. (Closedness). Let {uk}k2N ⇢ C(Q+
1 [ Q⇤

1) are such that for every

k 2 N, uk satisfies in the viscosity sense the following

8
><

>:

F (D2v(X, t))� vt(X, t) � 0, (X, t) 2 Q+
1

vy(x, 0, t) � 0, (x, t) 2 Q⇤
1

(2.4.1)

Assume that uk converges to u uniformly in any Q
+
⇢ (x0, 0, t0) ⇢ Q+

1 [Q⇤
1, then u satisfies

(2.4.1) in the viscosity sense.

Proof. First note that F (D2u) � ut � 0 in Q+
1 in the viscosity sense by Proposition

10. So, it remains to obtain the Neumann sub-condition. The argument is similar to

the one of Proposition 10 but here we must be more careful since the test function  k,

which was constructed in the proof of Proposition 10 may touch uk at a point which
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lies either on the flat boundary or at in the interior. This is why assuming only the

Neumann sub-condition for uk’s is not enough and we need to know also that uk’s are

subsolutions of the equation in the interior. The details follow below.

Take any point P0 = (x0, 0, t0) 2 Q⇤
1 and any test function � that touches u by

above at P0 in Q
+
⇢ (P0) 2 Q+

1 . We want to show that, �y(P0) � 0.

We have that,

u(X, t)� �(X, t)  0, for (X, t) 2 Q
+
⇢ (P0) and u(P0)� �(P0) = 0.

Then, for ✏ > 0 and any 0 < r < ⇢,

u(X, t)� �(X, t)� ✏

2
(|X � x0|2 � t+ t0) < 0 for (X, t) 2 Q+

r (P0) \ {P0}.

We denote by �̃(X, t) := �(X, t) + ✏
2(|X �X0|2 � t+ t0) and by Ar(P0) := @pQ+

r (P0) \

Q⇤
r(P0) and we consider,

c := max
(X,t)2Ar(P0)

⇣
u(X, t)� �̃(X, t)

⌘
< 0.

Then u� �̃  c on Ar(P0).

By uniform convergence of uk in Q
+
r (P0) we have that for any k0 2 N, there exists

some K 2 N such that for any k � max{k0, K},

|uk(X, t)� u(X, t)| < � c

4
, for (X, t) 2 Q

+
r (P0).

Therefore, for k � max{k0, K} and (X, t) 2 Ar(P0),

uk(X, t)� �̃(X, t) < u(X, t)� c

4
� �̃(X, t)  c� c

4
+ u(P0)� �̃(P0)

<
3c

4
� c

4
+ uk(P0)� �̃(P0) = uk(P0)� �̃(P0) +

c

2
.

Fix k � max{k0, K} and let

Ck := max
(X,t)2Q+

r (P0)

(uk(X, t)� �̃(X, t)).

Since, uk(X, t)� �̃(X, t) < uk(P0)� �̃(P0) for any (X, t) 2 Ar(P0) then Ck cannot be

attained on Ar(P0), then it is achieved at some point (Xk, tk) 2 Q+
r (P0) [Q⇤

r(P0).
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Therefore, if we take a sequence of radii rm = 1
m (for su�ciently large m 2 N) there

are points (Xkm , tkm) 2 Q+
r (P0) [Q⇤

r(P0) so that (Xkm , tkm) ! P0, as m ! 1 and the

test function  km := �̃+Ckm touches by above ukm at (Xkm , tkm). Hence, we treat two

cases:

1. If (Xkm , tkm) 2 Q⇤
r(P0), then using the Neumann sub-condition for ukm we have

that ( km)y (Xkm , tkm) � 0, therefore

�y(Xkm , tkm) + ✏ykm � 0. (2.4.2)

2. If (Xkm , tkm) 2 Q+
r (P0), then using the equation for ukm we have that

F (D2�(Xkm , tkm) + ✏I)� �t(Xkm , tkm) +
✏

2
� 0. (2.4.3)

Now, if 1. is true for an infinite number of m’s then taking a suitable subsequence

and the limit in (2.4.2) we derive �y(P0) � 0, as desired. Otherwise, 2. will be true

for an infinite number of m and so taking subsequences and limits in (2.4.3) we derive,

F (D2�(P0))� �t(P0)) � 0.

To finish the proof we assume that �y(P0) < 0 (to get a contadiction). Then having

in mind the dichotomy above we conclude that F (D2�(P0)) � �t(P0) � 0 must hold.

For small � > 0, we consider the following perturbation of �,

��(X, t) = �(X, t) + �y � y2

�
.

Observe that if (X, t) 2 Q+
�2(P0), then y  �2 gives y2  �2y and y2

�  �y. That is

�y � y2

� � 0. Therefore, we obtain

��(X, t) � �(X, t) � u(X, t), for (X, t) 2 Q+
�2(P0) and ��(P0) = �(P0) = u(P0).

This shows that, �� is also a test function that touches u by above at P0 and following

the same steps as we did for � we conclude that

(��)y (P0) � 0 or F (D2��(P0))� (��)t (P0) � 0.
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A direct computation of these quantities will give the contradiction. Indeed,

(��)y (P0) = �y(P0) + �.

We have assumed that �y(P0) < 0 so choosing 0 < � < ��y(P0) we obtain (��)y (P0) <

0. On the other hand,

F (D2��(P0))� (��)t (P0)) = F

0

BBB@
D2�(P0)�

2

�

0

BBB@

0 · · · 0
...
. . .

...

0 · · · 1

1

CCCA

1

CCCA
� �t(P0)

which by Lemma 3 gives,

F (D2��(P0))� (��)t (P0)  F
�
D2�(P0)

�
� 2�

�
� �t(P0).

Recall that F (D2�(P0)) � �t(P0) � 0 so choosing � > 0 small enough to satisfy

2�
� > F (D2�(P0))� �t(P0) + 1, we obtain F (D2��(P0))� (��)t (P0) < 0 and the proof

is complete.

Proposition 21. (Reflection Principle). Let u, f 2 C(Q+
1 [ Q⇤

1). Assume that u 2

Sp(�,⇤, f) in Q+
1 and uy = 0 on Q⇤

1 in the viscosity sense. Consider the reflected

function,

u⇤(x, y, t) =

8
><

>:

u(x, y, t), if y � 0

u(x,�y, t), if y < 0

for (X, t) 2 Q1, where X = (x, y) (x 2 Rn�1 and y 2 R). Similarly we consider the

reflection f ⇤ of f . Then u⇤ 2 Sp(�,⇤, f ⇤) in Q1.

Proof. First note that since u and f are continuous up to Q⇤
1 then we can easily verify

that u⇤, f ⇤ 2 C(Q1). Note also that u⇤ and f ⇤ are even functions.

Next we observe that u⇤ 2 Sp(�,⇤, f ⇤) in Q+
1 . Similarly we verify that u⇤ 2

Sp(�,⇤, f ⇤) in Q�
1 . Indeed, let � be a test function that touches u⇤ by above at some

point (X0, t0) 2 Q�
1 . Define  (z, w, t) = �(z,�w, t) where (Z, t) = (z, w, t) 2 Q+

1 .

Then  is a test function that touches u by above at (Z0, t0) = (x0,�y0, t0) 2 Q+
1 and

as a consequence M+(D2 (Z0, t0),�,⇤) �  t(Z0, t0) � f(Z0, t0). On the other hand
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f(Z0, t0) = f ⇤(X0, t0),  t(Z0, t0) = �t(X0, t0) and

D2 (Z0, t0) =

0

@D2
n�1�(X0, t0) d⌧

d �yy(X0, t0)

1

A

where d := (��x1y(X0, t0), . . . ,��xn�1y(X0, t0)). Note that the matrices D2 (Z0, t0)

and D2�(X0, t0) have the same eigenvalues since,

det(D2 (Z0, t0)� lIn) = det

0

@D2
n�1�(X0, t0)� lIn�1 d⌧

d �yy(X0, t0)� l

1

A

= det

0

@D2
n�1�(X0, t0)� lIn�1 �d⌧

�d �yy(X0, t0)� l

1

A

= det(D2�(X0, t0)� lIn).

HenceM+(D2 (Z0, t0),�,⇤) = M+(D2�(X0, t0),�,⇤). This shows that u⇤ 2 Sp(�,⇤, f
⇤)

in Q�
1 . In a same fashion we also prove that u⇤ 2 Sp in Q�

1 .

We consider the auxiliary functions,

v�(X, t) := u⇤(X, t) + �|y|

for � 2 R. By Proposition 15 (iii) and since u⇤ 2 Sp in Q+
1 [ Q�

1 , we have that

v� 2 Sp(�,⇤, f ⇤) in Q+
1 [ Q�

1 . In order to get that v� 2 Sp(�,⇤, f ⇤) in Q1 it remains

to study what happens across Q⇤
1.

Assume first that � > 0. We will show that v� cannot be touched by above by any

test function at any point of Q⇤
1. Indeed, let � be a test function in Q1 that touches v�

by above at some point P0 = (x0, 0, t0) 2 Q⇤
1. The idea is to use the viscosity Neumann

condition to get a contradiction. We have that �(X, t)� �y touches u by above at P0

in some Q+
⇢ (P0) ⇢ Q+

1 . Then �y(P0)� � � 0, i.e.

�y(P0) � � > 0.

But on the other hand, �(X, t) + �y touches u⇤ by above at P0 in some Q�
⇢ (P0) ⇢ Q�

1 .

A change of variables implies that u(X, t)  �(x0,�y, t)� �y, for (X, t) 2 Q+
⇢ (P0) and
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of course, u(P0) = �(P0) (since y0 = 0). Then ��y(P0)� � � 0, i.e.

�y(P0)  �� < 0

a contradiction. Therefore such a test function cannot exist.

Consequently, since v� 2 Sp(�,⇤, f
⇤) in Q+

1 [Q�
1 and no test function can touch v�

by above at any point of Q⇤
1 in a neighborhood in Q1 we get that v� 2 Sp(�,⇤, f

⇤) in

Q1, when � > 0. In a similar way we also get that v� 2 Sp(�,⇤, f ⇤) in Q1, when � < 0.

Finally, we observe that,

|v� � u⇤| = |�||y|  |�| ! 0

as � ! 0, which means that v� ! u⇤, as � ! 0, in a uniform way in Q1. So, we can

consider for k 2 N the sequences {v 1
k
}, {v� 1

k
}. The first one is a subset of Sp(�,⇤, f

⇤)

in Q1 and tends to u⇤ uniformly in Q1 as k ! 1, hence by closedness u⇤ 2 Sp(�,⇤, f
⇤)

in Q1. The second one is a subset of Sp(�,⇤, f ⇤) in Q1 and tends to u⇤ uniformly in

Q1 as k ! 1, hence by closedness u⇤ 2 Sp(�,⇤, f ⇤) in Q1. The proof is complete.

Remark 22. When we study an oblique derivative problem, we call a constant C > 0

universal if it depends only on n,�,⇤, �0 and other constants related to function �.

2.5 Change of variables

Here we consider the case when the function � is constant. In this case we see that

using a suitable change of variables, a viscosity problem of the form

8
><

>:

F (D2u)� ut = 0, in Q+
1

� ·Du = 0, on Q⇤
1

(2.5.1)

can be transformed into a nonlinear Neumann parabolic problem

8
><

>:

F̃ (D2v)� vt = 0, in Q̃+
1

vy = 0, on Q⇤
1

(2.5.2)

where F̃ is also an elliptic operator on Sn and Q̃+
1 a suitable ”half-set”.

More precisely, let  =  (z, w, t) be a smooth function defined on Q+
1 and consider
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�(x, y, t) :=  
⇣
x1 +

�1

�n
y, . . . , xn�1 +

�n�1

�n
y, y, t

⌘
. Then

�xi =  zi , for every i = 1, . . . , n� 1, �t =  t and

�y =  z1

�1
�n

+ . . . zn�1

�n�1

�n
+  w, that is, �y =

1

�n
� ·D .

Note that if

A :=

0

BBBBBB@

1 . . . 0 �1

�n

. . .

0 . . . 1 �n�1

�n

0 . . . 0 1

1

CCCCCCA

then detA = 1 and

A�1 =

0

BBBBBB@

1 . . . 0 � �1

�n

. . .

0 . . . 1 ��n�1

�n

0 . . . 0 1

1

CCCCCCA
.

We have that �(x, y, t) :=  (A(x, y), t) and one can easily check that

D2� = A⌧D2 A and D2 = (A�1)⌧D2�A�1.

Define F̃ (M) := F ((A�1)⌧MA�1). Then F̃ is elliptic and its ellipticity constants

are universal multiplicatives of � and ⇤. Indeed, first note that

||A||1 := sup
e2Rn, |e|=1

|Ae| = sup
e2Rn, |e|=1

����e+
✓
�1
�n

, . . . ,
�n�1

�n
, 1

◆����  1 +
1

�0
=
�0 + 1

�0
=: C�0

and the same hold for ||A�1||1, ||A⌧ ||1 and ||(A�1)⌧ ||1. Next, let M,N 2 Sn with

N � 0, we have

F̃ (M +N)� F̃ (M) = F ((A�1)⌧MA�1 + (A�1)⌧NA�1)� F ((A�1)⌧MA�1)

and we intent to use the ellipticity of F . To do so, we have to ensure that (A�1)⌧NA�1
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is symmetric and positive definite. We denote by

bij := (A�1)ij =

8
>>>>><

>>>>>:

1, if i = j

0, if i 6= j, j < n

� �i

�n
, if i < n, j = n

= ((A�1)⌧ )ji.

Then

�
(A�1)⌧NA�1

�
ij
=

nX

l,k=1

Nklbkiblj

=

8
>>>>>>>><

>>>>>>>>:

Nij, if i < n, j < n

Pn
l,k=1 Nklbknbln, if i = j = n

Pn
k=1 Nkjbknbjj +

Pn
k=1 Nknbknbnj, if i = n, j < n

Pn
l=1 Nilbiibln +

Pn
l=1 Nnlbnibln, if j = n, i < n

=
�
(A�1)⌧NA�1

�
ji
, since N is symmetric,

that is, (A�1)⌧NA�1 2 Sn. Also det ((A�1)⌧NA�1) = det((A�1)⌧ ) det(N) det(A�1) =

det(N) � 0, sinceN is non-negative definite. Moreover, all the 1⇥1, . . . , (n�1)⇥(n�1)

upper left corners of (A�1)⌧NA�1 has positive determinant since N is positive definite.

By Sylvester’s criterion (A�1)⌧NA�1 � 0. Therefore,

F̃ (M +N)� F̃ (M)  ⇤
��(A�1)⌧NA�1

��
1  ⇤C2

�0 kNk1

and

F̃ (M +N)� F̃ (M) � �
��(A�1)⌧NA�1

��
1

kA⌧k1 kAk1
kA⌧k1 kAk1

� � kNk1
kA⌧k1 kAk1

� �

C2
�0

kNk1 .

We observe also that the transformation Amaps the hyper-plane {y = 0} identically

into itself and the half-space {y > 0} into itself (so does A�1). So, Q̃+
1 := {(x, y, t) =

(A�1(z, w), t), for (z, w, t) 2 Q+
1 } lies in the half-space {y > 0} and Q⇤

1 is part of its

parabolic boundary.

Note that combining all the above one can ensure that if u(Z, t) is a viscosity

solution of (2.5.1) then v(X, t) = u(AX, t) is a viscosity solution of (2.5.2). This

fact will be useful later to prove regularity for problems of the form (2.5.1) using the
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regularity of problems of the form (2.5.2).

Closing this section it is interesting to examine how Sp-classes behave under the

above transformation. Using the representation (2.3.3) (resp. (2.3.4)) for M+ (resp.

M�) we show

M+
⇣
D2�(X, t), �̃, ⇤̃

⌘
� �t(X, t) � M+

�
D2 (Z, t),�,⇤

�
�  t(Z, t)

⇣
resp. M�

⇣
D2�(X, t), �̃, ⇤̃

⌘
� �t(X, t)  M� �D2 (Z, t),�,⇤

�
�  t(Z, t)

⌘

where, (Z, t) = (AX, t),  and � defined as above and �̃ := �
C2

�0

, ⇤̃ := n⇤C2
�0 . Indeed,

first we observe that

M+
�
D2 (Z, t),�,⇤

�
�  t(Z, t) = M+

�
(A�1)⌧D2�(X, t)A�1,�,⇤

�
� �t(X, t).

Therefore, it is su�cient to show that for any M 2 Sn,

M+
�
(A�1)⌧MA�1,�,⇤

�
 M+

⇣
M, �̃, ⇤̃

⌘
.

That is it is enough to show that

{LB

�
(A�1)⌧MA�1

�
, B 2 A�,⇤} ⇢ {LB̃ (M) , B̃ 2 A�̃,⇤̃}.

So, let B 2 A�,⇤, then

LB

�
(A�1)⌧MA�1

�
= tr

�
B(A�1)⌧MA�1

�
= tr

�
A�1B(A�1)⌧M

�
= LB̃ (M)

for B̃ := A�1B(A�1)⌧ . It remains to show that B̃ 2 A�̃,⇤̃. We have for ⇠ 2 Rn,

B̃ij⇠i⇠j = LB̃ (⇠⇠⌧ ) = LB ((A�1)⌧⇠⇠⌧A�1) and the (n ⇥ n)-matrix ⇠⇠⌧ is symmetric,

positive definite and its eigenvalues are �1 = · · · = �n�1 = 0 and �n = |⇠|2. Hence,

�

C2
�0

|⇠|2  LB

�
(A�1)⌧⇠⇠⌧A�1

�
 n⇤C2

�0 |⇠|
2

using the ellipticity condition for LB.

Regarding the above we obtain that if u 2 Sp(�,⇤) in Q+
1 then v 2 Sp

⇣
�̃, ⇤̃

⌘
in

Q̃+
1 .
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2.6 Useful known results

Here we present some basic results for viscosity solutions of nonlinear parabolic

equations (appeared in [44] and with more details in [23]) as well as a useful iterative

argument.

Theorem 23. (Harnack inequality). Let f be continuous and bounded in Q⇢ and

assume that u 2 Sp(�,⇤, f) in Q⇢ with u � 0 in Q⇢. Then

sup
K⇢R

u  C

✓
inf
Q⇢R2

u+ ⇢
n

n+1 ||f ||Ln+1(Q⇢)

◆
(2.6.1)

where C > 0 is a universal constant and K⇢R = ⇢KR with

KR := B R2

2
p

2

(0, 0)⇥

�R2 +

3

8
R4,�R2 +

4

8
R4

�

for R := min

✓
1

3
p
n , 3� 2

p
2, 1p

10(m+1)

◆
where m > 0 is a universal constant.

Theorem 24. (Aleksandrov-Bakelman-Pucci-type Maximum Principle). Let f be con-

tinuous and bounded in Q⇢ and assume that u 2 Sp(�,⇤, f) in Q⇢ with u � 0 on @pQ⇢.

Then

sup
Q⇢

u�  C⇢
n

n+1 ||f+||Ln+1(Q⇢) (2.6.2)

where C > 0 is a universal constant.

Corollary 25. Let f be continuous and bounded in Q⇢ and assume that u 2 Sp(�,⇤, f)

in Q⇢ then

||u||L1(Q⇢)  ||u||L1(@pQ⇢) + C⇢
n

n+1 ||f ||Ln+1(Q⇢) (2.6.3)

where C > 0 is a universal constant.

Corollary 26. Let ⌦ 2 Rn+1 be a bounded domain and assume that u 2 Sp(�,⇤, 0) in

⌦ then

||u||L1(⌦)  ||u||L1(@p⌦). (2.6.4)

We close with a useful iteration lemma.
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Lemma 27. (An iteration argument). Let ! and � be two increasing functions defined

in the interval (0, R], R > 0 and assume that for every r  R we have

!(⌧r)  �!(r) + �(r) (2.6.5)

for some 0 < � < 1 and 0 < ⌧ < 1. Then for every 0 < µ < 1 and r  R,

!(r)  C

 ⇣ r

R

⌘↵

!(R) + �(rµR1�µ)

!
(2.6.6)

where C = C(�) and ↵ = ↵(�, ⌧, µ) are positive constants. In particular, ↵ = (1 �

µ) log �log ⌧ .

Proof. For any r  R we fix some r  r1  R (which will be chosen suitably later).

Then by (2.6.5) we have

!(⌧r1)  �!(r1) + �(r1).

Therefore,

!(⌧ 2r1) = !(⌧(⌧r1))  �!(⌧r1) + �(r1)  �2!(r1) + (� + 1)�(r1).

Applying repeatedly the above procedure we obtain, for every positive integer m, that

!(⌧mr1)  �m!(r1) + �(r1)
m�1X

i=0

�i

 �m!(R) +
�(r1)

1� �
, (2.6.7)

where we used the fact that ! is increasing and that
P1

i=0 �
i = 1

1�� since 0 < � < 1.

Now, since r  r1 and 0 < ⌧ < 1 there exists a positive integer m0 so that

⌧m0r1 < r  ⌧m0�1r1.

Hence from (2.6.7) and the monotonicity of !,we get

!(r)  !(⌧m0�1r1)  �m0�1!(R) +
�(r1)

1� �
. (2.6.8)

Also observe that ⌧m0 < r
r1
, so � log ⌧m0 � � log r

r1
� 0 and since 0 < � < 1,

�� log ⌧m0  �� log r
r1 =

⇣
r
r1

⌘� log �

, that is, ��m0 log ⌧ 
⇣

r
r1

⌘� log �

. Moreover 0 < ⌧ <
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1, in particular log ⌧ < 0, hence we have that �m0 
⇣

r
r1

⌘ log �
log ⌧

. That is, �m0�1 

1
�

⇣
r
r1

⌘ log �
log ⌧

. From (2.6.8) we obtain

!(r)  1

�

✓
r

r1

◆ log �
log ⌧

!(R) +
�(r1)

1� �
. (2.6.9)

Now for 0 < µ < 1, set

r1 = rµR1�µ

and since 0 < µ < 1 we can easily deduce that r  r1  R. We return to (2.6.9) and

get

!(r)  1

�

⇣ r

R

⌘(1�µ) log �
log ⌧

!(R) +
�(rµR1�µ)

1� �

 C

 ⇣ r

R

⌘↵

!(R) + �(rµR1�µ)

!

where C = C(�) > 0 is a constant and ↵ = (1 � µ) log �log ⌧ . Since r  R is arbitrary, we

have the desired result.
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Chapter 3

Regularity Theory for Fully

Nonlinear Parabolic Equations with

Oblique Boundary Data

The purpose of this chapter is to study the regularity of viscosity solutions of fully

nonlinear parabolic equations with oblique boundary conditions of the form

8
>>>>><

>>>>>:

F (D2u)� ut = f, in Q+
1

� ·Du = g, on Q⇤
1

u = u0, on @pQ
+
1 \Q⇤

1

(3.0.1)

where F is a uniformly elliptic convex operator in Sn, f, g and u0 are given data and

� : Q⇤
1 ! Rn is a given vector function with �n � �0 > 0 and ||�||L1  1 (see Chapter

2 for detailed definitions).

3.1 ABP-estimate with Oblique Boundary Data

We prove an ABPT-type maximum principle corresponding to our oblique derivative

problem (see [27], [33] for the elliptic case). Recall that the convex envelope of a

function u 2 C
⇣
Q

+
1

⌘
is defined as

�(u)(X, t) := sup{v(X, t) : v  u in Q+
1 , v is convex in Z and decreasing in s}

= sup{⇠ ·X + h : ⇠ · Z + h  u(Z, s), for every Z 2 B+
1 , s 2 (�1, t]}.
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Moreover for smooth enough v we define the function

G(v)(X, t) = (Dv(X, t), v(X, t)�X ·Dv(X, t)).

Note that detD(X,t)G(v) = vt detD2v.

Theorem 28. (ABP-estimate in the case of oblique boundary data). Let f 2 C
⇣
Q

+
r

⌘
,

g 2 C
⇣
Q

⇤
r

⌘
and u 2 Sp(�,⇤, f) \ C

⇣
Q

+
r

⌘
with � · Du  g on Q⇤

r in the viscosity

sense. Then,

inf
@pQ

+
r \Q⇤

r

u� inf
Q+

r

u  Cr

✓Z

{u=�u}

��f+(X, t)
��n+1

dX dt

◆1/n+1

+ Cr sup
Q⇤

r

g+ (3.1.1)

where �u is the convex envelope of �u� in Q+
r and C > 0 is a universal constant.

Proof. For convenience take r = 1 and inf@pQ+
1 \Q⇤

1
u = 0 (then u � 0 on @pQ

+
1 \Q⇤

1). We

denote by M := supQ+
1
u� > 0 (excluding the trivial case) then there exists (X0, t0) 2

Q+
1 [Q⇤

1 (since u � 0 on @pQ
+
1 \Q⇤

1) so that u�(X0, t0) = M .

Note that if supQ⇤
1
g+ � �0M

16 then (3.1.1) holds. So we consider that supQ⇤
1
g+ < �0M

16 .

Since �u 2 H2(Q
+
1 ) then we can show (for more details, see [44] or [23] and references

therein)

• Using area formula

|G(�u)(Q
+
1 )| 

Z

Q+
1 \{u=�u}

�(�u)t det(D
2�u) dXdt.

• �(�u)t + ��(�u)  f+, in {u = �u}.

Then we can end up with |G(�u)(Q
+
1 )| 

R
Q+

1 \{u=�u}(f
+)n+1 dXdt.

We consider the set

A := {(⇠, h) 2 Rn ⇥ R : |⇠| < M

8
<

M

2
 �h  3M

4
, ⇠n � M

8
, |⇠0|  �0M

16
}

where ⇠0 := (⇠1, . . . , ⇠n�1). We will show that A ⇢ G(�u)(Q
+
1 ). So we take any

(⇠, h) 2 A and we consider the polynomial

P (X) := ⇠ ·X + h.

Then we observe that
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1. For every X 2 B2, P (X)  |⇠||X|+ h  2M
8 � M

2 = �M
4 < 0.

2. P (X0)�u(X0.t0) = ⇠ ·X0+h+M � �|⇠||X0|+h+M � �M
8 � 3M

4 +M = M
8 > 0,

that is

max
B

+
1

(P (X)� u(X, t0)) � 0.

Define

t1 := sup{�1  t  0 : for every s 2 [�1, t], max
B

+
1

(P (X)� u(X, s)) < 0}.

Note that �1 belongs in the above set since u(X,�1) � 0 and P (X) < 0. Moreover

t1  t0  0 and from the continuity of P � u with respect to s we have that

P (X1)� u(X1, t1) = max
B

+
1

(P (X)� u(X, t1)) = 0.

Then (X1, t1) 2 Q+
1 . Indeed, if (X1, t1) 2 @pQ

+
1 \ Q⇤

1 then u(X1, t1) � 0 and since

P (X1) < 0, P (X1)� u(X1, t1) < 0, a contradiction. Also if (X1, t1) 2 Q⇤
1, P touches u

by below at (X1, t1), then �(x1, t1) · ⇠  g(x1, t1) but

�(x1, t1) · ⇠ = ⇠n�n(x1, t1) + ⇠0 · �0(x1, t1) � �0⇠n � |⇠0|||�||L1 � �0⇠n �
�0⇠n
2

=
�0⇠n
2

� sup
Q⇤

1

g+

since ⇠n > M
8 > 2

�0
supQ⇤

1
g+ and we get a contradiction.

Combining the above we have that P (X)  �u�(X, t), for everyX 2 B
+
1 , �1 < t 

t1 and P (X1) = �u�(X1, t1). Then P (X)  �u(X, t), for every X 2 B
+
1 , �1 < t  t1

and P (X1) = �u(X1, t1) with (X1, t1) 2 Q+
1 , then G(�u)(X1, t1) = (⇠, h). Finally

observing that |A| = C(�0, n)Mn+1 we finish the proof.

3.2 Hölder Estimates

3.2.1 H↵-estimates for the Neumann case

In the present subsection, using Harnack inequality, we prove interior Hölder regu-

larity for functions in Sp(�,⇤, f) (this result can be found in [44]). Then using reflection

property, we prove Hölder regularity up to a flat part of the boundary at which we
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assume a viscosity Neumann condition.

Theorem 29. (Interior H↵-regularity). Let f be continuous, bounded in Q1 and con-

sider a bounded function u 2 Sp(�,⇤, f) in Q1. Then for universal constants C > 0

and 0 < ↵ < 1, we have that

u 2 H↵(Q1/2)

with an estimate of the form

||u||H↵(Q1/2)
 C

�
||u||L1(Q1) + ||f ||Ln+1(Q1)

�
. (3.2.1)

Proof. For 0 < ⇢  1 we consider the quantities M⇢ := supQ⇢
u,m⇢ := infQ⇢ u and

the oscillation of u in Q⇢, !⇢ := oscQ⇢ u = supQ⇢
u � infQ⇢ u. We apply Harnack

inequality (Theorem 23) to the non-negative functions u�m⇢,M⇢ � u which by (iii)

of Proposition 15, lie in Sp(�,⇤, f) in Q⇢. Hence we obtain

sup
K⇢R

u�m⇢  C

✓
inf
Q⇢R2

u�m⇢ + ⇢
n+2
n+1 ||f ||Ln+1(Q⇢)

◆

and

M⇢ � inf
K⇢R

u  C

 
M⇢ � sup

Q⇢R2

u+ ⇢
n+2
n+1 ||f ||Ln+1(Q⇢)

!
.

Adding the above relations we get

!⇢  !⇢ + osc
K⇢R

u  C!⇢ � C!⇢R2 + 2C⇢
n+2
n+1 ||f ||Ln+1(Q⇢).

Therefore,

!R2⇢ 
C � 1

C
!⇢ + 2C⇢

n+2
n+1 ||f ||Ln+1(Q1).

Then, we apply Lemma 27 in (0, 1] with ⌧ = R2 < 1, � = C�1
C < 1, �(⇢) =

2C⇢
n+2
n+1 ||f ||Ln+1(Q1) and choosing properly some (universal) 0 < µ < 1 so that 0 < ↵ =

(1� µ) log �
logR2 < 1 and 0 < ↵ = (1� µ) log �

logR2 < µn+2
n+1 we finally get

!⇢  C⇢↵
�
!1 + ||f ||Ln+1(Q1)

�

 C⇢↵
�
||u||L1(Q1) + ||f ||Ln+1(Q1)

�
(3.2.2)

for 0 < ⇢  1 and universal constants 0 < ↵ < 1, C > 0.

Now let (X, t) 2 Q1/2. Then one can easily verify that Q⇢(X, t) ⇢ Q1 for any

41

GEORGIANA C
HATZIG

EORGIO
U



0 < ⇢  1
4 . We observe that, if (Z, s) 2 Q⇢(X, t) \Q⇢/2(X, t) then either |Z �X| > ⇢

2

or t� s > ⇢2

4 and so (3.2.2) (properly translated to Q⇢(X, t)) implies,

u(X, t)� u(Z, s)  !⇢;(X,t)  C|X � Z|↵
�
||u||L1(Q1) + ||f ||Ln+1(Q1)

�

or

 C|t� s|↵/2
�
||u||L1(Q1) + ||f ||Ln+1(Q1)

�

and as a consequence in any case,

|u(X, t)� u(Z, s)|  C(|X � Z|↵ + |t� s|↵/2)
�
||u||L1(Q1) + ||f ||Ln+1(Q1)

�
(3.2.3)

for universal constants 0 < ↵ < 1, C > 0. In addition we observe that for any

(Z, s) 2 Q1/4(X, t) \ {(X, t)}, there exists some 0 < ⇢  1
4 such that (Z, s) 2 Q⇢(X, t) \

Q⇢/2(X, t) (choose ⇢ = max
⇣
|Z �X|,

p
|t� s|

⌘
). Hence estimate (3.2.3) holds for

every (Z, s) 2 Q1/4(X, t).

Finally, we obtain estimate (3.2.3) for any (X, t), (Z, s) 2 Q1/2. We may assume

without loss of generality that s  t, then we have two possible cases:

1. If (Z, s) 2 Q1/4(X, t) the above consideration is in order.

2. If (Z, s) /2 Q1/4(X, t), then either |Z �X| > 1
4 or t� s > 1

16 therefore

|u(X, t)� u(Z, s)|  4↵2||u||L1(Q1)
1

4↵
 4↵2||u||L1(Q1)|X � Z|↵

or

 4↵2||u||L1(Q1)|t� s|↵/2.

In any case we derive estimate (3.2.3) which completes the proof.

Theorem 30. (Up to the boundary H↵-regularity). Let f be continuous and bounded

in Q+
1 . Assume that u 2 C

⇣
Q+

1

⌘
is such that

8
><

>:

u 2 Sp(�,⇤, f), in Q+
1

uy = 0, on Q⇤
1, in the viscosity sense.
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Then for universal constants C > 0 and 0 < ↵ < 1, we have that

u 2 H↵
⇣
Q

+
1/2

⌘

with an estimate

||u||
H↵(Q+

1/2)
 C

⇣
||u||L1(Q+

1 )
+ ||f ||Ln+1(Q+

1 )

⌘
. (3.2.4)

Proof. Consider the reflected function u⇤ defined in Proposition 21. Then u⇤ 2 Sp(�,⇤, f ⇤)

in Q1 and by Theorem 29 applied to u⇤ we obtain

||u⇤||H↵(Q1/2)
 C

�
||u⇤||L1(Q1) + ||f ⇤||Ln+1(Q1)

�

for universal constants C > 0 and 0 < ↵ < 1. Now observe that ||u||
H↵(Q+

1/2)


||u⇤||H↵(Q1/2), ||u||L1(Q+
1 )

= ||u⇤||L1(Q1) and ||f ⇤||Ln+1(Q1) = 2
1

n+1 ||f ||Ln+1(Q+
1 )

after a

change of variables. Combining all the above relations we finish the proof.

Combining Theorem 30 with Proposition 16 we immediately have the following

corollary.

Corollary 31. Let f be continuous, bounded in Q+
1 and assume that the bounded

function u 2 C
�
Q+

1 [Q⇤
1

�
is a viscosity solution of

8
><

>:

F (D2u)� ut = f, in Q+
1

uy = 0, on Q⇤
1.

Then for universal constants C > 0 and 0 < ↵ < 1, we have that

u 2 H↵
⇣
Q

+
1/2

⌘

and

||u||
H↵(Q+

1/2)
 C

⇣
||u||L1(Q+

1 )
+ ||f ||Ln+1(Q+

1 )
+ |F (O)|

⌘
. (3.2.5)

Using (ii) of Proposition 15 and then Proposition 21 we can obtain rescaled versions

of Theorems 29 and 30.
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Corollary 32. Let f be continuous, bounded in Qr(X0, t0) and consider a bounded

function u 2 Sp(�,⇤, f) in Qr(X0, t0). Then for universal constants C > 0 and 0 <

↵ < 1, we have that

u 2 H↵(Qr/2(X0, t0))

and

||u||H↵(Qr/2(X0,t0)) 
C

r↵

⇣
||u||L1(Qr(X0,t0)) + r

n
n+1 ||f ||Ln+1(Qr(X0,t0))

⌘
. (3.2.6)

Corollary 33. Let f be continuous, bounded in Qr(X0, t0) and consider a bounded

function u 2 Sp(�,⇤, f) in Qr(X0, t0). Then for universal constants C > 0 and 0 <

↵ < 1, we have that for any 0 < s < r

u 2 H↵(Qs(X0, t0))

and

||u||H↵(Qs(X0,t0))  CC̃(r, s)
�
||u||L1(Qr(X0,t0)) + ||f ||Ln+1(Qr(X0,t0))

�
(3.2.7)

for a constant C̃(r, s) > 0.

Proof. If (X, t) 2 Qs(X0, t0) then Qr�s(X, t) ⇢ Qr(X0, t0) and applying Corollary 34

we get the desired estimate for points (Z, s) lying in Q r�s
2
(X, t). Now for points not in

Q r�s
2
(X, t) we can follow a similar argument as in the proof of Theorem 29.

By reflection (Proposition 21) we get the following corollaries.

Corollary 34. Let f 2 C (Q+
r (x0, t0)), bounded and consider a bounded function u 2

C (Q+
r (x0, t0) [Q⇤

r(x0, t0)) be bounded and such that

8
><

>:

u 2 Sp(�,⇤, f), in Q+
r (x0, t0)

uy = 0, on Q⇤
r(x0, t0), in the viscosity sense.

Then for universal constants C > 0 and 0 < ↵ < 1, we have that

u 2 H↵
⇣
Q

+
r/2(x0, t0)

⌘
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with an estimate

||u||
H↵(Q+

r/2(x0,t0)) 
C

r↵

⇣
||u||L1(Q+

r (x0,t0)) + r
n

n+1 ||f ||Ln+1(Q+
r (x0,t0))

⌘
. (3.2.8)

Corollary 35. Let f 2 C (Q+
r (X0, t0)), bounded and u 2 C (Q+

r (x0, t0) [Q⇤
r(x0, t0)),

bounded satisfying

8
><

>:

u 2 Sp(�,⇤, f), in Q+
r (x0, t0)

uy = 0, on Q⇤
r(x0, t0), in the viscosity sense.

Then for universal constants C > 0 and 0 < ↵ < 1, we have that for any 0 < s < r,

u 2 H↵
⇣
Q

+
s (x0, t0)

⌘

with an estimate

||u||
H↵(Q+

s (x0,t0))  CC̃(r, s)
⇣
||u||L1(Q+

r (x0,t0)) + ||f ||Ln+1(Q+
r (x0,t0))

⌘
(3.2.9)

for a constant C̃(r, s) > 0.

The following boundary Lipschitz-type estimate will be useful in the study of H1+↵-

estimates. It can be proved using a barrier argument (see for instance Lemma 2.1 in

[7]).

Proposition 36. Let f be bounded in Q+
1 and u 2 C

�
Q+

1 [Q⇤
1

�
be bounded and satisfy

in the viscosity sense

8
><

>:

u 2 Sp(�,⇤, f), in Q+
1

u = 0, on Q⇤
1.

Then there exists universal constant C > 0 so that

|u(X, t)|  C
⇣
||u||L1(Q+

1 )
+ ||f ||Ln+1(Q+

1 )

⌘
y (3.2.10)

for every (X, t) = (x, y, t) 2 Q
+
1/2.
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3.2.2 H↵-estimates for the oblique derivative case

In the present subsection we prove Hölder regularity up to the flat boundary for the

nonlinear parabolic oblique derivative problem proving first a boundary Harnack-type

inequality.

Theorem 37. (Up to the boundary H↵-regularity). Let f and g be continuous and

bounded in Q+
1 and Q⇤

1 respectively. Assume that u 2 C
⇣
Q+

1

⌘
is such that

8
><

>:

u 2 Sp(�,⇤, f), in Q+
1

� ·Du = g, on Q⇤
1, in the viscosity sense.

Then for universal constants C > 0 and 0 < ↵ < 1, we have that

u 2 H↵
⇣
Q

+
1/2

⌘

with an estimate

||u||
H↵(Q+

1/2)
 C

⇣
||u||L1(Q+

1 )
+ ||f ||Ln+1(Q+

1 )
+ ||g||L1(Q⇤

1)

⌘
. (3.2.11)

Note that Theorem 30 is a special case of the above but in the previous subsection

we gave an alternative proof for the Neumann case through reflection property.

Corollary 38. (Up to the boundary H↵-regularity-rescaled). Let f and g be continuous

and bounded in Q+
r and Q⇤

r respectively. Assume that u 2 C
�
Q+

r

�
is such that

8
><

>:

u 2 Sp(�,⇤, f), in Q+
r

� ·Du = g, on Q⇤
r, in the viscosity sense.

Then for universal constants C > 0 and 0 < ↵ < 1, we have that

u 2 H↵
⇣
Q

+
r/2

⌘

with an estimate

||u||
H↵(Q+

r/2)
 C

r↵

⇣
||u||L1(Q+

r ) + r
n

n+1 ||f ||Ln+1(Q+
r ) + r||g||L1(Q⇤

r)

⌘
. (3.2.12)

Combining the interior Harnack inequality with a barrier argument we get the
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following boundary Harnack inequality.

Theorem 39. (Boundary Harnack inequality). Let f and g be continuous and bounded

in Q+
1 and Q⇤

1 respectively. Assume that u 2 C
⇣
Q+

1

⌘
, u � 0 is such that

8
><

>:

u 2 Sp(�,⇤, f), in Q+
1

� ·Du = g, on Q⇤
1, in the viscosity sense.

Then for universal constants C > 0 and 0 < ⇢ < 1, we have for every 0 < r < 1
2 ,

sup
K rR

2
(A,0)

u  C

 
inf

H( r
4 ,⇢)

u+ r
n

n+1 ||f ||Ln+1(Q+
1 )

+ r||g||L1(Q⇤
1)

!
(3.2.13)

where, A = (0, . . . , 0, r) 2 Rn, KR := B R2

2
p
2

(0, 0) ⇥
⇥
�R2 + 3

8R
4,�R2 + 4

8R
4
⇤
, for

0 < R << 1 universal defined as in Theorem 23 and

H(r, ⇢) := {(X, t) : |x| < rR2

4
, 0 < y < ⇢r,�r2R4

16
< t  0}.

Proof. For 0 < r < 1
2 note that

Qr/2(A, 0) ⇢ {(X, t) : |x| < r,
r

2
< y <

3r

2
,�r2 < t  0}.

Then we can apply interior Harnack inequality to u in Qr/2(A, 0) (Theorem 23),

sup
K rR

2
(A,0)

u  C

0

@ inf
Q rR2

2

(A,0)
u+ r

n
n+1 ||f ||Ln+1(Q1)

1

A .

Let

H 0(r, ⇢) := {(X, t) : |x| < rR2

4
, y = ⇢r,�r2R4

16
< t  0}.

Note that if we choose 0 < ⇢ <
p
3R2

4 then H 0(r, ⇢) ⇢ Q rR2

2
(A, 0). So we want to show

that

B := inf
H0(r,⇢)

u  C

 
inf

H( r
4 ,⇢)

u+ r
n

n+1 ||f ||Ln+1(Q+
1 )

+ r||g||L1(Q⇤
1)

!
. (3.2.14)

In other words we want to find a suitable lower bound for u in H
�
r
4 , ⇢

�
. We do this

comparing u with a suitable barrier function.
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For r̄ := rR2

4 we define

b(X, t) := B � B

4


2� y2

(⇢r)2
� y

⇢r
+ 4

✓
|x|2 � t

r̄2

◆�
�

||g||L1(Q⇤
1)

�0
(⇢r � y).

We calculate the derivatives of b in H(r, ⇢):

bxi = �2Bxi

r̄2
, bt =

B

r̄2
, by =

By

2(⇢r)2
+

B

4⇢r
+

||g||L1(Q⇤
1)

�0

and

bxixj = �2B

r̄2
�ij, bxiy = 0, byy =

B

2(⇢r)2
.

So, we have in H(r, ⇢) that

M�(D2b,�,⇤)� bt = �
B

2(⇢r)2
� (n� 1)⇤

2B

r̄2
� B

r̄2
� 0

if we choose 0 < ⇢ 
q

�R4

32[2(n�1)⇤+1] . Hence

u� b 2 Sp(�,⇤, f), in H(r, ⇢).

Next, we study b on the parabolic boundary of H(r, ⇢). We start with H(r, ⇢)\{y = 0},

� ·Db = �2B

r̄2
� · (x, 0) + B

4⇢r
�n +

||g||L1(Q⇤
1)

�0
�n � �2B

r̄2
1 r̄ +

B

4⇢r
�0 + ||g||L1(Q⇤

1)

� B

r

✓
� 8

R2
+
�0
4⇢

◆
+ ||g||L1(Q⇤

1)
� +||g||L1(Q⇤

1)

if we choose 0 < ⇢  �0R2

32 . Hence

� ·D(u� b)  0, on H(r, ⇢) \ {y = 0}.

We continue with @pH(r, ⇢) \H(r, ⇢) \ {y = 0}. We have

• On {|x| = r̄}:

b(X, t) = B � B

4

✓
1� y2

(⇢r)2

◆
� B

4

✓
1� y

⇢r

◆
� B + B

t

r̄2
�

||g||L1(Q⇤
1)

�0
(⇢r � y)

 0  u(X, t).
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• On {t = �r̄2}:

b(X,�r̄2) = B � B

4

✓
1� y2

(⇢r)2

◆
� B

4

✓
1� y

⇢r

◆
� B

|x|2

r̄2
� B �

||g||L1(Q⇤
1)

�0
(⇢r � y)

 0  u(X,�r̄2).

• On {y = ⇢r}:

b(x, ⇢r, t) = B � B

✓
|x|2 � t

r̄2

◆
 B  u(x, ⇢r, t).

Hence

u� b � 0, on @pH(r, ⇢) \H(r, ⇢) \ {y = 0}.

Therefore from Theorem 28 we have that

u� b � �r
n

n+1 ||f ||Ln+1(Q+
1 )
, in H(r, ⇢).

Then in H
�
r
4 , ⇢

�
we have

u+ Cr||g||L1(Q⇤
1)

+ r
n

n+1 ||f ||Ln+1(Q+
1 )

� B � B

2


1 + 2

✓
|x|2 � t

r̄2

◆�

� B � B

2
� B

2
· 1
8
=

7B

16

which gives (3.2.14).

Then Theorem 37 follows in a standard way.

Proof of Theorem 37. For 0 < r  1
2 we consider the quantities

Mr := sup
Q+

r

u, mr := inf
Q+

r

u.

Then the functions v1 := Mr�u, v2 := u�mr are non-negative in Q+
r , vi 2 Sp(�,⇤, f)

in Q+
r and b ·Dvi = g on Q⇤

r. Then we apply Theorem 39 to vi

Mr � inf
K rR

4
(A,0)

u  C

0

@Mr � sup
H( r

8 ,⇢)
u+ r

n
n+1 ||f ||Ln+1(Q+

r ) + r||g||L1(Q⇤
r)

1

A

49

GEORGIANA C
HATZIG

EORGIO
U



and

sup
K rR

4
(A,0)

u�mr  C

 
inf

H( r
8 ,⇢)

u�mr + r
n

n+1 ||f ||Ln+1(Q+
r ) + r||g||L1(Q⇤

r)

!
.

Adding the above we get

osc
Q+

r

u  osc
Q+

r

u+ osc
K rR

4
(A,0)

u  C

 
osc
Q+

r

u� osc
H( r

8 ,⇢)
u+ 2r

n
n+1 ||f ||Ln+1(Q+

r ) + 2r||g||L1(Q⇤
r)

!

then

osc
H( r

8 ,⇢)
u  � osc

Q+
r

u+ 2C
⇣
r

n
n+1 ||f ||Ln+1(Q+

r ) + r||g||L1(Q⇤
r)

⌘

where � := C�1
C < 1. Note that Q+

⇢R2

25
r
⇢ H

�
r
8 , ⇢

�
so we can write

osc
Q+

⇢R2

25
r

u  � osc
Q+

r

u+ 2C
⇣
r

n
n+1 ||f ||Ln+1(Q+

r ) + r||g||L1(Q⇤
r)

⌘
.

Then the result follows in the same way as in the proof of Theorem 29 using Lemma

27.

3.3 Hölder Estimates for the first derivatives

In this section, we study existence and regularity of the first derivatives of viscos-

ity solutions in the Neumann case (subsection 3.3.2) and then in the general oblique

derivative case (subsection 3.3.3). To study the Neumann problem we define suitable

di↵erence quotients and apply the Hölder estimates proved in the previous section. To

do so we have to explore which problem the di↵erence of two solutions satisfies. This

is achieved with the aid of suitable approximate solutions defined in subsection 3.3.1

(the idea had been initially introduced by Jensen for nonlinear elliptic equations). In

subsection 3.3.3, first we use the change of variables of section 2.5 and combining with

the H1+↵-estimates for Neumann problems of subsection 3.3.2 we get H1+↵-estimates

for a constant oblique derivative problem. Secondly, we use a standard approximation

method (see for example [10], Chapter 8) and approximate a general oblique derivative

problem by suitable constant oblique derivative problems.
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3.3.1 Approximate sub/super-solutions

Let u 2 C
�
Q+

1 [Q⇤
1

�
, ✏ > 0 and 0 < ⇢ < 1

2 . We define the sub-convolution of u by

u✏,⇢(X, t) = sup
(Z,s)2Q+

⇢

✓
u(Z, s)� 1

✏
|X � Z|2 � 1

✏
(t� s)2

◆

for any (X, t) 2 Q+
1 [ Q⇤

1. The super-convolution u✏,⇢ is defined accordingly taking

infimum and adding (instead of subtracting) the polynomial, that is

u✏,⇢(X, t) = inf
(Z,s)2Q+

⇢

✓
u(Z, s) +

1

✏
|X � Z|2 + 1

✏
(t� s)2

◆
.

Next we study some basic properties of sub/super-convolutions which will be useful

in the sequel.

Lemma 40. (i) For (X0, t0) 2 Q+
1 [Q⇤

1 there exists a point (X⇤
0 , t

⇤
0) 2 Q

+
⇢ so that

u✏,⇢(X0, t0) = u(X⇤
0 , t

⇤
0)�

1

✏
|X0 �X⇤

0 |2 �
1

✏
(t0 � t⇤0)

2

(ii) u✏,⇢(X, t) � u(X, t) for any (X, t) 2 Q
+
⇢ .

(iii) 0  u✏,⇢(X0, t0)� u(X0, t0)  u(X⇤
0 , t

⇤
0)� u(X0, t0) for any (X0, t0) 2 Q+

⇢ .

(iv) u✏,⇢ is continuous in Q+
1 [Q⇤

1.

(v) |X0 �X⇤
0 |2 + (t0 � t⇤0)

2  ✏ oscQ+
⇢
u, that is if we choose ✏ small enough the point

(X⇤
0 , t

⇤
0) will be ”close” to (X0, t0).

(vi) u✏,⇢ ! u uniformly in Q
+
⇢ , as ✏! 0+.

(vii) (u✏,⇢)y � 0 on Q⇤
1 in the viscosity sense. (!)

Analog properties hold for u✏,⇢ as well.

Proof. (i)-(iii) are immediate.
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(iv) Take any (X1, t1), (X2, t2) 2 Q+
1 [Q⇤

1, then for any (Z, s) 2 Q
+
⇢ we have

u✏,⇢(X1, t1) � u(Z, s)� 1

✏
|X1 � Z|2 � 1

✏
(t1 � s)2

� u(Z, s)� 1

✏
|X2 � Z|2 � 1

✏
|X1 �X2|2 �

2

✏
|X2 � Z||X1 �X2|

� 1

✏
(t2 � s)2 � 1

✏
(t1 � t2)

2 � 2

✏
|t2 � s||t1 � t2|

� u(Z, s)� 1

✏
|X2 � Z|2 � 1

✏
(t2 � s)2 � 6

✏
|X1 �X2|�

6

✏
|t1 � t2|

using the definition of u✏,⇢, the triangle inequality and that |X1 � X2|, |X2 �

Z|, |t1 � t2|, |t1 � s|  2. That is, taking supremum over Q
+
⇢ we obtain

|u✏,⇢(X1, t1)� u✏,⇢(X2, t2)| 
6

✏
(|X1 �X2|+ |t1 � t2|) (3.3.1)

for any (X1, t1), (X2, t2) 2 Q+
1 [ Q⇤

1. Inequality (3.3.1) implies the continuity of

u✏,⇢.

(v) Since u✏,⇢(X0, t0) = u(X⇤
0 , t

⇤
0)� 1

✏ |X0 �X⇤
0 |2 � 1

✏ (t0 � t⇤0)
2 we get that

|X0 �X⇤
0 |2 + (t0 � t⇤0)

2 = ✏ (u(X⇤
0 , t

⇤
0)� u✏,⇢(X0, t0))

which together with (ii) implies the result.

(vi) Take any M > 0. We know that u is uniformly continuous in the compact set

Q
+
⇢ , so there exists some �(M) > 0 so that

|u(X, t)� u(Z, s)| < M, for any (X, t), (Z, s) 2 Q
+
⇢ with |X � Z|, |t� s| < �.

We choose 0 < ✏ < �2(M)
osc

Q+
⇢

u (note that if osc
Q

+
⇢
u = 0 then u as well as u✏,⇢

are both identical zero and the result is obvious). Then taking any (X0, t0) 2

Q
+
⇢ we have from (v) that |X0 � X⇤

0 |2 + (t0 � t⇤0)
2  �2, which implies that

|X0 � X⇤
0 |, |t0 � t⇤0| < �. Therefore |u(X⇤

0 , t
⇤
0) � u(X0, t0)| < M and by (iii) we

conclude that 0  u✏,⇢(X0, t0)� u(X0, t0) < M .

(vii) Let � be a test function that touches u✏,⇢ by above at some point (X0, t0) =

(x0, 0, t0) 2 Q⇤
1. Let (X

⇤
0 , t

⇤
0) = (x⇤

0, y
⇤
0, t

⇤
0) 2 Q

+
⇢ be the point in (i). We have

�(X, t) � u✏,⇢(X, t) � u(X⇤
0 , t

⇤
0)�

1

✏
|X �X⇤

0 |2 �
1

✏
(t� t⇤0)

2
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in a half-cylinder around (X0, t0). In particular

�(X0, t0) = u✏,⇢(X0, t0) = u(X⇤
0 , t

⇤
0)�

1

✏
|X0 �X⇤

0 |2 �
1

✏
(t0 � t⇤0)

2.

Hence the function �(y) = �(x0, y, t0) +
1
✏ |y � y⇤0|2 � u(X⇤

0 , t
⇤
0) +

1
✏ |x0 � x⇤

0|2 +
1
✏ (t0 � t⇤0)

2 is non-negative for small y > 0 and zero at y = 0. Therefore

�0(0) = lim
y!0+

�(y)� �(0)

y
� 0.

That is, �y(X0, t0)� 2
✏y

⇤
0 � 0. But y⇤0 � 0, thus �y(X0, t0) � 0.

Lemma 41. Assume that u is continuous in Q+
1 [Q⇤

1 and satisfies the condition uy � 0

on Q⇤
1 in the viscosity sense. Then for any (X0, t0) 2 Q+

1 the point (X⇤
0 , t

⇤
0) of (i) in

Lemma 40 lies in Q
+
⇢ \Q⇤

⇢.

Proof. Take any (X0, t0) 2 Q+
1 . We assume that (X⇤

0 , t
⇤
0) 2 Q⇤

⇢ in order to arrive to a

contradiction. By Lemma 40 we have

u✏,⇢(X0, t0) = u(X⇤
0 , t

⇤
0)�

1

✏
|X0 �X⇤

0 |2 �
1

✏
(t0 � t⇤0)

2

and for any (Z, s) 2 Q
+
⇢ ,

u✏,⇢(X0, t0) � u(Z, s)� 1

✏
|X0 � Z|2 � 1

✏
(t0 � s)2.

That is for any (Z, s) 2 Q
+
⇢ ,

u(X⇤
0 , t

⇤
0)�

1

✏
|X0 �X⇤

0 |2 �
1

✏
(t0 � t⇤0)

2 � u(Z, s)� 1

✏
|X0 � Z|2 � 1

✏
(t0 � s)2.

Setting �(Z, s) := u(X⇤
0 , t

⇤
0) � 1

✏ |X0 �X⇤
0 |2 � 1

✏ (t0 � t⇤0)
2 + 1

✏ |X0 � Z|2 + 1
✏ (t0 � s)2 we

ensure that

� � u in Q
+
⇢ and �(X⇤

0 , t
⇤
0) = u(X⇤

0 , t
⇤
0).

In addition, since (X⇤
0 , t

⇤
0) 2 Q⇤

⇢, the Neumann condition implies that �y(X⇤
0 , t

⇤
0) � 0,

But, on the other hand we can compute �y(X⇤
0 , t

⇤
0) = �2

✏ (y0� y⇤0) = �2
✏y0 < 0 and this

is a contradiction.
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Lemma 42. Let u 2 C
�
Q+

1 [Q⇤
1

�
satisfies in the viscosity sense

8
><

>:

F (D2u)� ut � 0, in Q+
1

uy � 0, on Q⇤
1.

(3.3.2)

Then for any 0 < ⇢1 < ⇢ < 1
2 there exists some 0 < ✏0 = ✏0(⇢1, ⇢, u) such that for

any 0 < ✏ < ✏0, u✏,⇢ is a viscosity subsolution of F (D2v) � vt = 0 in Q+
⇢1 (hence, u✏,⇢

satisfies problem (3.3.2) in Q+
⇢1 [Q⇤

⇢1 (combining with (vii) of Lemma 40)).

Note that we do not use the Neumann condition of (3.3.2) for u to show that u✏,⇢

satisfies the same condition since u✏,⇢ satisfies this condition anyway (see (vii), Lemma

40). But the Neumann condition is needed for u in order to get that u✏,⇢ is a subsolution

of the equation (regarding Lemma 41). We see this in the following proof.

Proof. Take any point (X0, t0) 2 Q+
⇢1 and any second order paraboloid R2(X, t) =

A + B · (X �X0) + C(t � t0) +
1
2(X �X0)⌧D(X �X0) (with A,C 2 R, B 2 Rn and

D 2 Rn⇥n) touching u✏,⇢ by above at (X0, t0). We want to show that F (D) � C � 0

(see Lemma 8).

Consider the point (X⇤
0 , t

⇤
0) 2 Q

+
⇢ for which

u✏,⇢(X0, t0) = u(X⇤
0 , t

⇤
0)�

1

✏
|X0 �X⇤

0 |2 �
1

✏
(t0 � t⇤0)

2

and recall that this point cannot lie on Q⇤
⇢ due to Lemma 41. Consider also the

translation

R̃2(X, t) = R2(X +X0 �X⇤
0 , t+ t0 � t⇤0) +

1

✏
|X0 �X⇤

0 |2 +
1

✏
(t0 � t⇤0)

2.

Our aim is to show that for small ✏ this paraboloid touches u at (X⇤
0 , t

⇤
0) and then apply

the equation for u. Note that R̃2(X⇤
0 , t

⇤
0) = R2(X0, t0) +

1
✏ |X0 � X⇤

0 |2 + 1
✏ (t0 � t⇤0)

2 =

u✏,⇢(X0, t0) +
1
✏ |X0 �X⇤

0 |2 + 1
✏ (t0 � t⇤0)

2 = u(X⇤
0 , t

⇤
0). Hence it remains to show that R̃2

stays above u around (X⇤
0 , t

⇤
0).

Let d = ⇢ � ⇢1 > 0 and take ✏0 = d4

16 osc
Q+
⇢

u > 0. Then, for 0 < ✏  ✏0 we

have (by (v) of Lemma 40) that |X0 � X⇤
0 |2 + (t0 � t⇤0)

2 
�
d
2

�4
which ensures that

(X⇤
0 , t

⇤
0) is an interior point of Q+

⇢ . Indeed, |X0 � X⇤
0 |  d

2 , since d
2 < 1, and so

|X⇤
0 | < d

2 + ⇢1  ⇢. That is, |X⇤
0 | < ⇢ and y⇤0 > 0. Also |t0 � t⇤0| 

�
d
2

�2
, in particular

�
�
d
2

�2
+ t0  t⇤0 and using that t0 > �⇢21 we get that t⇤0 > �⇢2. This shows that
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(X⇤
0 , t

⇤
0) 2 Q+

⇢ (and not on its boundary). Therefore, we may choose some � > 0

so that Q�(X⇤
0 , t

⇤
0) ⇢ Q+

⇢ and Q�(X0, t0) ⇢ Q+
⇢ . Now let (X, t) 2 Q�(X⇤

0 , t
⇤
0), then

(X +X0 �X⇤
0 , t+ t0 � t⇤0) 2 Q�(X0, t0) since |X +X0 �X⇤

0 �X0| = |X �X⇤
0 | < � and

t+ t0 � t⇤0 � t0 = t� t⇤0 with ��2 < t� t⇤0  0 and t0 � �2 < t+ t0 � t⇤0  t0. Moreover,

we observe that for such a point (X, t),

u✏,⇢(X +X0 �X⇤
0 , t+ t0 � t⇤0) � u(Z, s)� 1

✏
|Z �X �X0 +X⇤

0 |2 �
1

✏
(s� t� t0 + t⇤0)

2

for any (Z, s) 2 Q
+
⇢ . Hence taking (Z, s) = (X, t),

R2(X +X0 �X⇤
0 , t+ t0 � t⇤0) � u✏,⇢(X +X0 �X⇤

0 , t+ t0 � t⇤0)

� u(X, t)� 1

✏
|X0 �X⇤

0 |2 �
1

✏
(t0 � t⇤0)

2.

That is u(X, t)  R̃2(X, t), for (X, t) 2 Q�(X⇤
0 , t

⇤
0) as desired. Hence F (D) � C =

F
⇣
D2

XR̃2(X⇤
0 , t

⇤
0)
⌘
�
⇣
R̃2

⌘

t
(X⇤

0 , t
⇤
0) � 0 and the proof is complete.

Now we are able to show the main objective of this subsection. Using the notion of

approximate sub/super-solutions we show that the di↵erence of two functions satisfying

a Neumann condition is forced to fulfill the same condition. Note that these functions

have to be obtained as sub/super-solutions of the equation in the interior.

Proposition 43. Assume that u, v 2 C
�
Q+

1 [Q⇤
1

�
satisfy in the viscosity sense

8
><

>:

F (D2u)� ut � 0, in Q+
1

uy � 0, on Q⇤
1

and

8
><

>:

F (D2v)� vt  0, in Q+
1

vy  0, on Q⇤
1

(3.3.3)

Then

8
><

>:

u� v 2 Sp

�
�
n ,⇤

�
, in Q+

1

(u� v)y � 0, on Q⇤
1 (in the viscosity sense).

(3.3.4)

Proof. In Theorem 4.6 of [45], L.Wang uses a similar approximate consideration to

obtain that u � v 2 Sp

�
�
n ,⇤

�
in Q+

1 . Therefore, it remains to examine the Neumann

condition.

We define the corresponding approximate sub/super-solutions u✏,⇢, v✏,⇢, for which

we have that (u✏,⇢ � v✏,⇢)y � 0 on Q⇤
1 in the viscosity sense. This can be proved using
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the same idea as in the proof of (vii), Lemma 40. We are aiming to pass to the limit

using Proposition 20. To do se we take any (X0, t0) 2 Q⇤
1 and consider 0 < ⇢0 < ⇢ < 1

be so that (X0, t0) 2 Q⇤
⇢0 ⇢ Q

+
⇢0 ⇢ Q

+
⇢ . Then from Lemma 42 we have that for

su�ciently small ✏ > 0, u✏,⇢, v✏,⇢ are sub/super-solutions of F (D2w) � wt = 0 in Q+
⇢0 .

So again from Theorem 4.6 of [45], u✏,⇢ � v✏,⇢ 2 Sp

�
�
n ,⇤

�
in Q+

⇢0 .

We now apply Proposition 20 to u✏,⇢ � v✏,⇢ and combining with (vi) of Lemma

40 we obtain that (u � v)y � 0 on Q⇤
⇢0 and in particular at (X0, t0). The proof is

complete.

The above gives a uniqueness result for the nonlinear Neumann problem. A maxi-

mum principle which is proved in a previous section is needed.

Proposition 44. Let g 2 C
�
@p(Q

+
1 ) \Q⇤

1

�
and u, v 2 C

⇣
Q

+
1

⌘
satisfy in the viscosity

sense

8
>>>>><

>>>>>:

F (D2w)� wt = 0, in Q+
1

wy = 0, on Q⇤
1

w = g, on @p(Q
+
1 ) \Q⇤

1.

(3.3.5)

Then u = v in Q
+
1 .

Proof. Let w := u� v then from Proposition 43 w satisfies

8
>>>>><

>>>>>:

w 2 Sp

�
�
n ,⇤

�
, in Q+

1

wy = 0, on Q⇤
1

w = 0, on @p(Q
+
1 ) \Q⇤

1.

Hence applying Theorem 28 to w and �w we obtain that

osc
Q+

1

w = 0.

From the continuity of w we arrive to w = 0 in Q
+
1 .

3.3.2 H1+↵-estimates for the homogeneous Neumann case

First we give the statement of a theorem concerning interior estimates for the first

derivatives proved in Section 4.2. of [45]. Actually, as explained in [45], we have more
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than typical spatial H1+↵-estimates and the extra property is related to the t-direction.

Theorem 45. (Interior H1+↵-estimates). Let u 2 C (Q1) be a bounded viscosity so-

lution of F (D2
Xu) � ut = 0 in Q1. Then the first derivatives ux1 , . . . , uxn�1 , uy exist.

Moreover there exist universal constants 0 < ↵ < 1, C > 0 so that u 2 H1+↵
�
Q1/2

�

with an estimate

||u||H1+↵(Q1/2)  C
�
||u||L1(Q1) + F (O)

�
. (3.3.6)

In addition ut exists and it is H↵ in Q1/2, where the H↵-norm of ut is bounded by

C
�
||u||L1(Q1) + F (O)

�
as well.

Note that the above ensures the existence of the derivatives at every interior point.

So in what follows, it is enough to check the existence of the derivatives at boundary

points.

To examine the Neumann problem we need to know the analog theory for the

Dirichlet case.

Lemma 46. Let u 2 C (Q+
r [Q⇤

r) be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
r

u = 0, on Q⇤
r.

(3.3.7)

Then the first derivatives ux1 , . . . , uxn�1 , uy exist in Q
+
r/2. Moreover there exists univer-

sal constant 0 < ↵ < 1 so that u is punctually H1+↵ at every point P0 2 Q⇤
r/2. More

precisely for bP0 = uy(P0) and any r̃  r
2

|u(X, t)� bP0y|  C
r̃1+↵

r1+↵

⇣
||u||L1(Q+

r ) + r2|F (O)|
⌘

(3.3.8)

for every (X, t) 2 Q
+
r̃ (P0), where C > 0 is a universal constant.

For the proof of Lemma 46 we will need the following.

Lemma 47. Let f be bounded in Q+
1 and u 2 C

�
Q+

1 [Q⇤
1

�
be bounded and satisfies in

the viscosity sense

8
><

>:

u 2 Sp(�,⇤, f), in Q+
1

u = 0, on Q⇤
1.
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Then there exist universal constants 0 < ↵ < 1, C > 0 so that for any 0 < ⇢  1
2

osc
Q+

⇢

u

y
 C⇢↵

 
osc
Q+

1/2

u

y
+ ||f ||L1(Q+

1 )

!
. (3.3.9)

The idea of the proof of Lemma 47 is based on the proof of Theorem 9.31 in [21]

or on its parabolic version appeared in [31] (Lemmata 7.46 and 7.47).

Proof. First we observe that u
y is bounded in Q+

1/2 from Proposition 36. Now to obtain

estimate (3.3.9) we intend to use the iteration Lemma 27, so we need to prove a relation

of the form

osc
Q+

⌧⇢

u

y
 � osc

Q+
⇢

u

y
+ C⇢||f ||L1(Q+

1 )
, for every 0 < ⇢  1

2
(3.3.10)

where 0 < ⌧, � < 1 and C > 0 are universal constants. To do so we use a barrier

argument in order to be able to apply Harnack inequality to u
y up to the flat boundary.

First we study the case when u � 0 in Q+
1 .

Step 1. We get a Harnack-type inequality for v := u
y .

For any 0 < ⇢  1
2 and 0 < �  1 we consider the strip-like set

H(⇢, �) :=

⇢
(X, t) : |x| < ⇢,

⇢�

2
< y <

3⇢�

2
,�⇢2 < t  0

�
.

For A = (0, . . . , 0, ⇢) we consider the cylinder Q⇢/2(A, 0) ⇢ H(⇢, 1) and apply Harnack

inequality (Theorem 23) inside this interior set. So if C > 0, 0 < R << 1 and Kr are

the ones appeared in Theorem 23 we have,

sup
K ⇢R

2
(A,0)

v  2

⇢
sup

K ⇢R
2

(A,0)
u  2

⇢
C

0

@ inf
Q ⇢R2

2

(A,0)
u+ ⇢2 ||f ||L1(Q+

1 )

1

A

 2

⇢
C

0

@3⇢

2
inf

Q ⇢R2
2

(A,0)
v + ⇢2 ||f ||L1(Q+

1 )

1

A .

Hence, defining the following thin set,

H 0(⇢, �) :=

⇢
(X, t) : |x| < ⇢R2

4
, y = �⇢,�⇢

2R2

16
< t  0

�
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which lies inside Q ⇢R2

2

(A, 0) if we choose 0 < � <
p
3R2

4 . We have

sup
K ⇢R

2
(A,0)

v  C

✓
inf

H0(⇢,�)
v + ⇢ ||f ||L1(Q+

1 )

◆
. (3.3.11)

Step 2. Through a barrier argument we get an estimate up to the flat boundary,

inf
H0(⇢,�)

v  C

 
inf

H̃( ⇢4 ,�)
v + ⇢ ||f ||L1(Q+

1 )

!
(3.3.12)

where

H̃(⇢, �) :=

⇢
(X, t) : |x| < ⇢R2

4
, 0 < y < �⇢,�⇢

2R2

16
< t  0

�
.

Then (3.3.11) and (3.3.12) will give

sup
K ⇢R

2
(A,0)

v  C

 
inf

H̃( ⇢4 ,�)
v + ⇢ ||f ||L1(Q+

1 )

!
. (3.3.13)

For convenience we consider the function ū := 1
mu, where m := infH0(⇢,�) v (we

assume that m > 0 excluding the trivial case). Then from (i) of Proposition 15 we

have that ū 2 Sp(�,⇤, f̄) in Q+
1 , where f̄ := f

m . Moreover, if we denote by v̄ := ū
y then

infH0(⇢,�) v̄ = 1 and (3.3.12) for v̄ becomes

C

 
inf

H̃( ⇢4 ,�)
v̄ + ⇢ ||f̄ ||L1(Q+

1 )

!
� 1. (3.3.14)

To show (3.3.14) we define

b(X, t) = y

"
1� |x|2

⇢̃2
+

t

⇢̃2
+

 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!✓
y � �⇢p

�⇢

◆#
for (X, t) 2 H̃(⇢, �)

where ⇢̃ := ⇢R2

4 . Our intention is to apply a comparison principle between b and ū. We

have to show the following to:

1. M�(D2b) � bt � f̄ in H̃(⇢, �) (this will be satisfied in the classical sense due

to the smoothness of b). Then from (iii) of Proposotion 15 we obtain that

ū� b 2 Sp(�,⇤, 0) in H̃(⇢, �).

2. ū� b � 0 on @pH̃(⇢, �).

59

GEORGIANA C
HATZIG

EORGIO
U



First we prove 1: We compute the derivatives of b:

bt =
y

⇢̃2
, bxi = �2xiy

⇢̃2
, for i = 1, . . . , n� 1.

by = 1� |x|2

⇢̃2
+

t

⇢̃2
+

 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!✓
y � �⇢p

�⇢

◆
+

yp
�⇢

 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!
.

bxixj =

8
><

>:

0, if i 6= j

�2y
⇢̃2 , if i = j

, for i, j = 1, . . . , n� 1.

bxiy = �2xi

⇢̃2
, for i = 1, . . . , n� 1, byy =

2p
�⇢

 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!
.

Recall that from Lemma 12

M�(M,�,⇤) = inf
A2A�,⇤

LA(M)

where A�,⇤ be the subset of Sn containing all matrices whose eigenvalues lie in the

interval [�,⇤] and for A = (aij) 2 A�,⇤, LA is the linear functional LA(M) = tr(AM) =
P

ij aijµij, where M = (µij) 2 Sn. So if we show that, for any such linear operator

LA, it holds LA(D2b) � bt � f̄ then taking infimum with respect to all suitable A

we will have the desired. Take any A = (aij) 2 A�,⇤ and observe that from the

fact that �|⇠|2 
P

ij aij⇠ij  ⇤|⇠|2 for any ⇠ 2 Rn we obtain �  aii  ⇤ and

|ain|  ⇤ � �
2 =: C0 > 0 (taking ⇠i = 1, ⇠n = 1 and ⇠j = 0 for any other j). So in

H̃(⇢, �) we compute

LA(D
2b)� bt = �2y

⇢̃2

n�1X

i

aii �
4

⇢̃2

n�1X

i

ainxi +
2annp
�⇢

 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!
� y

⇢̃2

(y < ⇢�) � � 2⇢�
⇢2R4

16

(n� 1)⇤� 4

⇢̃2

n�1X

i

|ain||xi|+
2
⇣
1 + ⇢ ||f̄ ||L1(Q+

1 )

⌘

p
�⇢

� ⇢�
⇢2R4

16

(� <
p
�, |x| < ⇢̃) � � 16

⇢R4
(1 + 2n⇤)

p
� � 4

⇢2R4

16

C0n
⇢R2

4
+

2p
�⇢

⇣
1 + ⇢ ||f̄ ||L1(Q+

1 )

⌘

(
p
�, ⇢ < 1) = � 16

⇢R4
(1 + 2n⇤)

p
� � 16C0n

⇢R2
+

2p
�⇢

⇣
1 + ⇢ ||f̄ ||L1(Q+

1 )

⌘
=: (G).
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It is enough to choose � small so that

� 16

R4
(1 + 2n⇤)� � 16C0n

R2

p
� + 2 � 0. (3.3.15)

Indeed if this is the case then (G) � 2p
�
||f̄ ||L1(Q+

1 )
� ||f̄ ||L1(Q+

1 )
� f̄ (since

p
� < 1).

Now, for (3.3.15) we observe that we have a polynomial in �̄ :=
p
�. One can realize

that this polynomial has two universal roots �̄1 < 0, �̄2 > 0 and the polynomial is

positive in (�̄1, �̄2). So if we choose 0 < � < �̄21 we have the desired. This completes the

proof of 1.

Now we examine b on @pH̃(⇢, �). We split in the following cases:

• For y = 0, b = 0 = u = ū.

• For y = �⇢, b(x, �⇢, t) = �⇢
⇣
1� |x|2

⇢̃2 + t
⇢̃2

⌘
 �⇢  ū(x, �⇢, t), since infH0(⇢,�)

ū
�⇢ =

infH0(⇢,�) v̄ = 1.

• For t = �⇢̃2, b(X,�⇢̃2) = y

"
� |x|2

⇢̃2 +

 
1+⇢ ||f̄ ||

L1(Q+
1 )

�

!⇣
y��⇢p

�⇢

⌘#
 0  ū(X,�⇢̃2).

• For |x| = ⇢̃, b(X, t) = y

"
t
⇢̃2 +

 
1+⇢ ||f̄ ||

L1(Q+
1 )

�

!⇣
y��⇢p

�⇢

⌘#
 0  ū(X, t).

This yields 2 on @pH̃(⇢, �).

Therefore by maximum principle (Corollary 26) we have that ū� b � 0 in H̃(⇢, �)

and as a consequence, in H̃
�
⇢
4 , �

�
we have an estimate by below for the ratio

ū(X, t)

y
� 1� |x|2

⇢̃2
+

t

⇢̃2
+

 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!✓
y � �⇢p

�⇢

◆

� 1�
�
⇢̃
4

�2

⇢̃2
�

⇢̃2

16

⇢̃2
�
 
1 + ⇢ ||f̄ ||L1(Q+

1 )
�

!
p
�, since |x| < ⇢̃

4
, t > � ⇢̃

2

16
, y > 0

� 7

8
�

p
�

�
�
⇢ ||f̄ ||L1(Q+

1 )
�

� 1

2
�
⇢ ||f̄ ||L1(Q+

1 )
�

by choosing 1  � 
�
3�
8

�2
. Hence taking infimum

1  C

 
inf

H̃( ⇢
4 ,�)

ū

y
+ ⇢ ||f̄ ||L1(Q+

1 )

!
.

Recalling that ū := 1
mu, f̄ := f

m for m := infH0(⇢,�) v we obtain (3.3.12).
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Next we treat the general case by removing the assumption on the nonnegativity

of u.

Step 3. We denote M := supH̃(2⇢,�) v and m := infH̃(2⇢,�) v. Then the functions My �

u, u�my are nonnegative since v = u
y and satisfy the assumptions of lemma. Applying

(3.3.13) to these two functions and then adding the two estimates we conclude

osc
H̃( ⇢

4 ,�)
v  C � 1

C
osc

H̃(2⇢,�)
v + 2C⇢ ||f ||L1(Q+

1 )

which is an analog of (3.3.10) and the proof is completed.

Remark 48. Observe that if we consider a function u satisfying the assumptions of

Lemma 47 in Q+
r [Q⇤

r (instead of Q+
1 [Q⇤

1) then using the change of variables v(Z, s) :=

u(rZ, r2s), for (Z, s) 2 Q+
1 [Q⇤

1 (recall the properties of Sp-classes, Proposition 15) we

will get that there exist universal constants 0 < ↵ < 1, C > 0 so that for any 0 < r̃  r
2

osc
Q+

r̃

u

y
 C

✓
r̃

r

◆↵
 
osc
Q+

r/2

u

y
+ r2||f ||L1(Q+

1 )

!
. (3.3.16)

Moreover, together with a rescaled version of Proposition 36 we also have

osc
Q+

r̃

u

y
 C

✓
r̃

r

◆↵✓1

r
osc
Q+

r

u+ r2||f ||L1(Q+
1 )

◆
. (3.3.17)

Now we are able to prove Lemma 46.

Proof of Lemma 46. First let us examine what Lemma 47 ensures:

• uy exists on Q⇤
r.

Indeed we show this at (0, 0). Let the sequence {hk}k be so that hk & 0 as k ! 1

and take m > l (large enough) then applying Remark 48 for (⇢ = hl > hm) we

obtain
u(0, hm, 0)

hm
� u(0, hl, 0)

hl
 C

r↵
K(hl)

↵

where K := osc
Q

+
r/2

u
y + |F (O)|. Now let ✏ > 0 and take ✏⇤ =

�
✏

CK

�↵
, then

there exists some N 2 N so that hl < ✏⇤ for any l � N which implies that

u(0,hm,0)
hm

� u(0,hl,0)
hl

< ✏ for any m > l � N . That is the sequence {u(0,hk,0)
hk

} is a

Cauchy sequence and hence it converges to uy(0, 0) (since u(0, 0) = 0). Similarly

using a translated version of Lemma 47 (and Remark 48) we can get the above

at any point of Q⇤
r.
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• uy 2 H↵
⇣
Q⇤

r/2

⌘
.

Indeed, let h < ⇢
2 , ⇢ < r

2 and (x0, t0), (z0, s0) 2 Q⇤
⇢/2 then again from Remark 48

we have
u(x0, h, t0)

h
� u(z0, h, s0)

h
 C

r↵
K⇢↵.

Taking h ! 0 we obtain uy(x0, 0, t0)� uy(z0, 0, s0)  C
r↵K⇢

↵ which implies

osc
Q⇤

⇢/2

uy 
C

r↵
K⇢↵,

while H↵-estimates can be obtained as in the proof of Theorem 29.

Now let (X, t) 2 Q+
r̃ and h > 0 small, Remark 48 yields

u(X, t)

y
� u(0, h, 0)

h
 C

✓
r̃

r

◆↵
 
1

r
osc
Q

+
r

u+ r2|F (O)|
!
.

Then letting h ! 0+ we get

|u(X, t)� uy(0, 0)y|  y C

✓
r̃

r

◆↵
 
1

r
osc
Q

+
r

u+ r2|F (O)|
!

and since 0 < y  r̃ and r < 1 we conclude

|u(X, t)� uy(0, 0)y|  C

✓
r̃

r

◆1+↵ ⇣
||u||L1(Q+

r ) + r2|F (O)|
⌘
.

This proves the estimate around P0 = (0, 0). A suitable translation gives the later for

any P0.

Theorem 49. (Boundary H1+↵-estimates for the Dirichlet problem). Let g be an

H1+↵-function locally on Q⇤
1 and u 2 C

�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the

viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

u = g, on Q⇤
1.

(3.3.18)

Then the first derivatives ux1 , . . . , uxn�1 , uy exist in Q
+
1/2. Moreover there exists uni-

versal constant 0 < ↵0 < 1 so that for � = min{↵,↵0}, u is punctually H1+� at

every point P0 2 Q⇤
1/2 . More precisely, there exists a polynomial R1;P0 of first order
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in X, that is R1;P0(X) = AP0 + BP0 · (X � X0), where AP0 = u(P0) = g(P0) and

BP0 =
�
ux1(P0), . . . , uxn�1(P0), uy(P0)

�
=
�
gx1(P0), . . . , gxn�1(P0), uy(P0)

�
so that

|u(X, t)�R1;P0(X)|  C
⇣
||u||L1(Q+

1 )
+ ||g||H1+↵(Q⇤

1/2) + |F (O)|
⌘

p(P, P0)
1+� (3.3.19)

for every P = (X, t) 2 Q
+
1/4(P0), where C > 0 is a universal constant and p(P, P0)

denotes the parabolic distance.

We treat the non-homogeneous case by approximating with suitable homogeneous

problems.

Proof. We will show the result around P0 = (0, 0). Note that without the loss of

generality we can assume that u(0, 0) = g(0, 0) = 0 and rn�1g(0, 0) = 0 (since we can

consider the transformation u(X, t)� g(0, 0)�rn�1g(0, 0) · x). For convenience let us

denote by K := ||u||L1(Q+
1 )

+ ||g||H1+↵(Q⇤
1/2) + |F (O)|.

We intend to find a number A 2 R so that, for universal C > 0, 0 < � < 1,↵0 > 0

and � = min{↵,↵0}, we have

osc
Q+

�k

(u(X, t)� Ay)  CK�k(1+�), for any k 2 N. (3.3.20)

Before we continue with the proof lets explain why (3.3.20) su�ces. Take any (X, t) 2

Q+
1/4 then ⇢ := max{|X|, |t|1/2}  1

4 . Choose � = log ⇢
log � > 0 (then ⇢ = ��) and take

k0 = [�]  � < k0 +1 then �k0+1  �� = ⇢  �k0 . So applying (3.3.20) for k0 we obtain

u(X, t)� Ay = u(X, t)� Ay � (u(0, 0)� A · 0) (adding a zero-term)

 osc
Q+

�k0

(u(X, t)� Ay)

 CK�k0(1+�) =
C

�(1+�)
K�(k0+1)(1+�)  CK��(1+�).

In a similar way we can get that u(X, t) � Ay � CK��(1+�). This gives the punctual

H1+↵-estimate at (0, 0). Then using translation argument we get the result at every

point of Q⇤
1/2.

Now, to prove (3.3.20) we show by induction that there exist universal constants

0 < � << 1, C̄ > 0,↵0 > 0 such that for � := min{↵,↵0} we can find a number Ak 2 R

for any k 2 N so that

osc
Q+

�k

(u(X, t)� Aky)  C̄K�k(1+�) (3.3.21)
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and

|Ak+1 � Ak|  CK�k�. (3.3.22)

First, for k = 0, take A0 = 0 and choose any C̄ � 2. Next for the induction we

assume that we have found numbers A0, . . . , AN for which (3.3.21) and (3.3.22) hold.

Denoting by r := �N and B := AN we have

osc
Q+

r

(u(X, t)� By)  C̄Kr(1+�) (3.3.23)

and we want to find a number AN+1 so that

osc
Q+

�r

(u(X, t)� AN+1y)  C̄K�(N+1)(1+�). (3.3.24)

Now we consider a suitable problem with homogeneous Dirichlet data on the flat

boundary in order to use Theorem 46. Let v be the viscosity solution of

8
>>>>><

>>>>>:

F (D2v)� vt = 0, in Q+
r

v = 0, on Q⇤
r

v = u� By, on @pQ+
r \Q⇤

r.

Then v satisfies the following:

• Maximum principle (see Theorem 24 or Corollary 25) gives

osc
Q+

r

v  osc
Q+

r

(u(X, t)� By) + Cr2|F (O)|. (3.3.25)

• From Theorem 46 we have that A := vy(0, 0) exists (note that vx1(0, 0), . . . ,

vxn�1(0, 0) exist as well and equal to 0) and

osc
Q+

r̃

(v(X, t)� Ay)  C0

✓
r̃

r

◆1+↵1
✓
osc
Q+

r

v + r2|F (O)|
◆

(3.3.26)

for any r̃  r
2 and also (see Proposition 36)

|A|  C

✓
1

r
osc
Q+

r

v + r2|F (O)|
◆
. (3.3.27)
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Next, we take r̃ = �r (note that � is very small) in (3.3.26). Hence

osc
Q+

�r

(v(X, t)� Ay)  C0�
1+↵1 osc

Q+
r

v + C0r
2�|F (O)| (3.3.28)

since �1+↵1  �. Now take (universal) � << 1 su�ciently small in order to have that

C0�↵1 < 1. We denote by 1 � ✓ := C0�↵1 , where 0 < ✓ < 1 is a universal constant.

Then combining (3.3.28) and (3.3.25) we obtain

osc
Q+

�r

(v(X, t)� Ay)  (1� ✓)� osc
Q+

r

(u(X, t)� By) + Cr2|F (O)|. (3.3.29)

Now to return to u we define w = u� By � v. Then

8
>>>>><

>>>>>:

w 2 Sp

�
�
n ,⇤

�
, in Q+

r

w = g, on Q⇤
r

w = 0, on @pQ+
r \Q⇤

r.

where the first comes from Theorem 4.6 of [45] and (iii) of Proposition 15.

Subsequently, applying again maximum principle we obtain

osc
Q+

r

w  C||g||L1(Q⇤
r).

The regularity we have assumed for g gives the right decay for the oscillation of w.

That is, (since g(0, 0) = 0,rn�1g(0, 0) = 0) for (x, t) 2 Q⇤
r

|g(x, t)| = |g(x, t)� g(0, 0)�rn�1g(0, 0) · x|

 C||g||H1+↵(Q⇤
1/2)

�
max{|x|, |t|1/2}

�1+↵  C||g||H1+↵(Q⇤
1/2)r

1+↵.

Hence we obtain

osc
Q+

r

w  Cr1+↵||g||H1+↵(Q⇤
1/2). (3.3.30)

Adding (3.3.29) and (3.3.30) yields

osc
Q+

�r

[u(X, t)� (A+ B)y]  (1�✓)� osc
Q+

r

(u(X, t)� By)+Cr2|F (O)|+C||g||H1+↵(Q⇤
1/2)r

1+↵
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and using the hypothesis (3.3.23) we get

osc
Q+

�r

[u(X, t)� (A+ B)y]  C̄K(1� ✓)�r1+� + CKr2 + CKr1+↵.

Recalling that r = �N , the above gives

osc
Q+

�N+1

[u(X, t)� (A+ B)y]  K
⇥
(1� ✓)C̄��N(1+�) + C

�
�2N + �N(1+↵)

�⇤
. (3.3.31)

We have to choose the right constants ↵0 and C̄ in order to obtain (3.3.24). Take ↵0

so that �↵0 = 1 � ✓
2 and C̄ large enough so that �✓C̄

4 � C (note that our choices are

independent of N). Then we return to (3.3.31) writing 1� ✓ as 1� ✓
2 �

✓
2 and recalling

that � = min{↵,↵0},

osc
Q+

�N+1

[u(X, t)� (A+ B)y]  K

✓
1� ✓

2

◆
C̄��N(1+�) + C

�
�2N + �N(1+↵)

�
� ✓

2
C̄��N(1+�)

�
.

Note that

C�2N  �✓C̄

4
�2N  �✓C̄

4
�N(1+�), since � < 1 and � + 1  2

and

C�N(1+↵)  �✓C̄

4
�N(1+↵)  �✓C̄

4
�N(1+�), since � < 1 and �  ↵

hence combining all the above we have

osc
Q+

�N+1

[u(X, t)� (A+ B)y]  KC̄�↵0+1�N(1+�)  KC̄�(N+1)(1+�)

since � < 1 and �  ↵0. This is (3.3.24) for AN+1 = A + B = A + AN . It remains

to get (3.3.22) for k = N . To do so, we use (3.3.27) together with (3.3.25) and then

(3.3.23),

|AN+1 � AN | = |A|  C

r
C̄Kr1+� + C̄r2|F (O)|  CK(r� + r)  CKr�

since r < 1 and � < 1, that is |AN+1 �AN |  CK�N� as desired. The inductive proof

is completed.

67

GEORGIANA C
HATZIG

EORGIO
U



Finally, it remains to get estimate (3.3.20). Observe that

lim
k!1

|Ak+1 � Ak|  lim
k!1

CK�k� = 0, since � < 1.

That is, the limit A1 := limk!1 Ak exists and it is the number A of (3.3.20). Indeed,

for any k 2 N we have

osc
Q+

�k

(u(X, t)� A1y)  osc
Q+

�k

(u(X, t)� Aky) + �k(Ak � A1)

where we wrote u(X, t)�A1y = u(X, t)�Aky+Aky�A1y  u(X, t)�Aky+ |y| |Ak�

A1| and |y|  �k. We have

osc
Q+

�k

(u(X, t)� A1y)  C̄K�k(1+�) + CK�k
1X

j=k

�j�  C̄K�k(1+�) + CK�k
�k�

1� ��

= C̄K�k(1+�) +
C

1� ��
K�(1+�)k  CK�k(1+�)

and the proof is complete.

In order to get (punctual) H1+↵-regularity for the Neumann problem it is enough

(due to Theorem 3.3.19) to show that the restriction of u on Q⇤
1 is locally H1+↵. To

do so, we need the following lemma.

Lemma 50. Let 0 < ↵ < 1, 0 < �  1, 0 < A < B and K > 0 be constants. Let

u 2 L1([A,B]) with kukL1([A,B])  K. Let d = B � A. Define, for h 2 R with

0 < |h|  d
2 ,

v�,h(l) =
u(l + h)� u(l)

|h|�
, l 2 Ih,

where Ih = [A,B�h] if h > 0 and Ih = [A�h,B] if h < 0. Assume that v�,h 2 C↵(Ih)

and kv�,hkC↵(Ih)
 K, for any 0 < |h|  d

2 . Then we have

1. if ↵ + � < 1 then u 2 C↵+�([A,B]) and kukC↵+�([A,B])  CK

2. if ↵ + � > 1 then u 2 C0,1([A,B]) and kukC0,1([A,B])  CKd↵+��1

where the constant C depends only on ↵ and �.

This lemma is proved in [10] (Lemma 5.6) in the interval [�1, 1] (that is, with

A = �1, B = 1). A rescaling argument gives Lemma 50.
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Proof. Denote by D = A+B
2 and d0 = d

2 and observe that l 2 [A,B] if and only if

k := l�D
d0 2 [�1, 1]. Then define the function

ũ(k) := u(d0k +D), for k 2 [�1, 1].

Note first that kũkL1([�1,1]) = kukL1([A,B])  K. Moreover, for 0 < |h̃|  1 we consider

ṽ�,h̃(k) =
ũ(k + h)� ũ(k)

|h̃|�
, k 2 Ĩh̃,

where Ĩh̃ = [�1, 1� h̃] if h̃ > 0 and Ĩh̃ = [�1� h̃, 1] if h̃ < 0. Hence 0 < d0|h̃|  d0 and

if k 2 Ĩh̃ then d0k+D 2 Idh̃. Also ũ(k+h) = u(d0(k+ h̃)+D) = u(d0k+D+ d0h̃) then

ṽ�,h̃(k) = (d0)�v�,dh̃(d
0k +D). Taking k1, k2 2 Ĩh̃, we have

|ṽ�,h̃(k1)� ṽ�,h̃(k2)| = (d0)�|v�,dh̃(d
0k1 +D)� v�,dh̃(d

0k2 +D)|

 (d0)�K|d0k1 � d0k2|↵ = K(d0)↵+�|k1 � k2|↵.

That is,
��ṽ�,h̃

��
C↵(Ĩh̃)

 K(d0)↵+�, for any 0 < |h̃|  1. Therefore, if ↵ + � < 1 Lemma

5.6 of [10] gives that for k1, k2 2 [�1, 1],

|ũ(k1)� ũ(k2)|  C(↵, �)(d0)↵+�K|k1 � k2|↵+�.

So taking any l1, l2 2 [A,B] and k1 =
l1�D
d0 , k2 =

l2�D
d0 2 [�1, 1], we have that

|u(l1)� u(l2)|  C(↵, �)(d0)↵+�K

✓
|l1 � l2|

d0

◆↵+�

 C(↵, �)K|l1 � l2|↵+�.

We can argue similarly if ↵ + � > 1 and the proof is complete.

Remark 51. Observe that it can be deduced easily from the proof of Lemma 5.6 in [10]

and a rescaling argument as the one above that if v�,h is C↵ only for negative values

of h then we will have the estimates of 1. and 2. in
⇥
A+B
2 , B

⇤
and not in the whole

[A,B]. This is useful when we study the t-direction.

Now we are able to show the main objective of this section, i.e. the up to the flat

boundary H1+↵-regularity for the Neumann problem. Having in mind Theorem 49

we see that it is enough to examine x-directions. To do so we will consider for every

direction a suitable di↵erence quotient v�,h (similar to the one of Lemma 50) which,
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due to Theorem 43 will satisfy a Neumann problem and hence H↵-estimates (from

the results of the previous chapter). Moreover these estimates will depend on the H�-

estimate of the solution u. Then Lemma 50 will imply larger exponent for the Hölder

regularity of u and hence we will be able to consider higher � for the di↵erence quotient.

Iterating this procedure we arrive to an H↵-estimate for the di↵erence quotient with

� = 1 which gives the desired. Note also that a similar argument can be applied for

the t-direction.

Theorem 52. (Boundary H1+↵-estimates for the Neumann problem).

Let u 2 C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

uy = 0, on Q⇤
1.

(3.3.32)

Then the first derivatives ux1 , . . . , uxn�1 , uy exist in Q
+
1/2. Moreover there exists a uni-

versal constant 0 < ↵ < 1 so that u is punctually H1+↵ at every point P0 2 Q⇤
1/2.

More precisely, there exists a polynomial R1;P0 of first order in X, that is R1;P0(X) =

AP0 +BP0 · (X�X0), where AP0 = u(P0) and BP0 =
�
ux1(P0), . . . , uxn�1(P0), 0

�
so that

|u(X, t)�R1;P0(X)|  C
⇣
||u||L1(Q+

1 )
+ |F (O)|

⌘
p(P, P0)

1+↵ (3.3.33)

for every P = (X, t) 2 Q
+
1/4(P0), where C > 0 is a universal constant.

In addition, ut exists and it is H↵ in Q
+
1/4 with the corresponding estimate being

bounded by above by a term of the form C
⇣
||u||L1(Q+

1 )
+ |F (O)|

⌘
.

Proof. For convenience we denote by K := ||u||L1(Q+
1 )

+ |F (O)|.

Lets examine first the xi-direction, for i = 1, . . . , n � 1. For ei = (0, . . . , xi =

1, . . . , 0) 2 Rn, 0 < �  1, 0 < |h| < 1
8 we define

v�,h,i(X, t) =
u(X + hei, t)� u(X, t)

|h|� , for (X, t) 2 Q+
7/8

(note that if (X, t) 2 Q+
7/8 then (X + hei, t) 2 Q+

1 ). Define also the following H↵-norm

which deals only with xi-direction

||u||H↵
i (⌦) := ||u||L1(⌦) + sup

(X,t),(Z,t)2⌦
xj=zj ,xi 6=zi

|u(X, t)� u(Z, t)|
|xi � zi|↵

.
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Now observe that once we show that the function w(X, t) = u(X + hei, t) satisfies

in the viscosity sense the following

8
><

>:

F (D2w)� wt = 0, in Q+
7/8

wy = 0, on Q⇤
7/8.

(3.3.34)

then by Theorem 43 and Proposition 15 we end up with

8
><

>:

v�,h,i 2 Sp

�
�
n ,⇤

�
, in Q+

7/8

(v�,h,i)y = 0, on Q⇤
7/8.

For (3.3.34), let � be a test function that touches w by above at some point (X0, t0) 2

Q+
7/8[Q⇤

7/8 and let  (Z, t) = �(Z�hei, t). Then  touches u by above at (X0+hei, t0).

Note that if (X0, t0) 2 Q+
7/8 then (X0+hei, t0) 2 Q+

1 and F (D2 (X0+hei, t0))� t(X0+

hei, t0) � 0 while if (X0, t0) 2 Q⇤
7/8 then (X0+hei, t0) 2 Q⇤

1 and  y(X0+hei, t0) � 0. We

finish by observing that the derivatives of  at (X0+hei, t0) are equal to the derivatives

of � at (X0, t0). We argue similarly for test functions that touch u by below.

Now, take 0 < r < ⇢  7
8 . Applying Corollary 35 to v�,h,i we have

||v�,h,i||H↵1(Q+
r )

 C C(r, ⇢) ||v�,h,i||
L1

✓
Q

+
r+⇢
2

◆ (3.3.35)

(note that r < r+⇢
2 < ⇢  7

8). Next, observe that if (X, t) 2 Q
+
r+⇢
2
, once we choose

0 < |h| < ⇢� r

2
(3.3.36)

we get (X + hei, t) 2 Q
+
⇢ . Also (X, t) 2 Q

+
⇢ therefore

|v�,h,i(X, t)| = |u(X + hei, t)� u(X, t)|
|h|�

 ||u||
H�

i (Q
+
⇢ )
.

Returning to (3.3.35) we have that

||v�,h,i||H↵1(Q+
r )

 C C(r, ⇢) ||u||
H�

i (Q
+
⇢ )

(3.3.37)

for any 0 < r < ⇢  7
8 and h as in (3.3.36).

Moreover observe that Corollary 35 ensures that for some exponent � the norm
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||u||
H�

i (Q
+
⇢ )

is bounded. More precisely, there exists some universal 0 < ↵2 < 1 so that

for any 0 < ⇢ < 1,

||u||
H

↵2
i (Q+

⇢ )
 ||u||

H↵2(Q+
⇢ )

 C C(⇢)K. (3.3.38)

Now take ↵0 = min{↵1,↵2}. We can choose some suitable 0 < ↵ < ↵0 in order to

succeed finding a universal integer m0 � 1 so that

m0↵ < 1 and (m0 + 1)↵ > 1.

Indeed, let m0 :=
h

1
↵0

i
 1

↵0
< m0 + 1, then m0↵0  1 and (m0 + 1)↵0 > 1. But since

1
↵0

< m0+1 there exists an ↵ > 0 so that 1
↵0

< 1
↵ < m0+1. Then 0 < ↵ < ↵0 < 1 and

m0↵ < 1 and (m0 + 1)↵ > 1. Note that for the exponent ↵ chosen above the relations

(3.3.37) and (3.3.38) are both true. That is we have

||v�,h,i||H↵(Q+
r )

 C C(r, ⇢) ||u||
H�

i (Q
+
⇢ )

(3.3.39)

for any 0 < r < ⇢  7
8 and h as in (3.3.36), as well as

||u||
H↵

i (Q
+
⇢ )

 C C(⇢)K. (3.3.40)

Recall that our aim is to show that the derivative uxi exists up to the flat boundary

and satisfies some H↵-estimate depending only on CK. This can be obtained if (3.3.39)

holds true for � = 1 with right-hand side term CK in some half-cylinder. To do so we

will apply, using Lemma 50, an iteration procedure (which can be started from � = ↵,

regarding (3.3.40)). The details follow.

We consider the following finite sequence of (universal) radii

rk =
7

8
� k

16m0
, for k = 0, 1, . . . , 2m0.

Note that r0 =
7
8 , r2m0 =

3
4 and rk�1 � rk =

1
16m0

.

Step 1. (of the iteration): Applying (3.3.39) with � = ↵, r = r1, ⇢ = 7
8 together with

(3.3.40) for ⇢ = 7
8 , we obtain that

||v↵,h,i||H↵(Q+
r1)

 CK, for any 0 < |h| < 1

16m0
.
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Then using the above and Lemma 50 we shall get

||u||
H2↵

i (Q+
r2)

 CK. (3.3.41)

That is, we want, for any two (X, t), (X + Lei, t) 2 Q
+
r2 , to have that |u(X + Lei, t)�

u(X, t)|  CK|L|2↵. We split into two cases:

• If |L| � 1
16m0

, then |u(X+Lei, t)�u(X, t)|  2K  2K(16m0)2↵|L|2↵  CK|L|2↵

and we are done.

• If |L| < 1
16m0

, we consider the interval I =
h
� 1

16m0
, 1
16m0

i
(note that 0, L 2 I).

Also, we define

ũ(X,t),i(l) = u(X + lei, t), for l 2 I

and

ṽ(X,t),i
↵,h (l) =

ũ(X,t),i(l + h)� ũ(X,t),i(l)

|h|↵ , for 0 < |h| < 1

16m0
, l 2 Ih

where Ih is defined as in Lemma 50. Observe that

ṽ(X,t),i
↵,h (l) =

u(X + lei + hei, t)� u(X + lei, t)

|h|↵ = v↵,h,i(X + lei, t).

Now, if (X, t) 2 Q
+
r2 and l 2 I then |X + lei|  r2 +

1
16m0

= r1, i.e. (X + lei, t) 2

Q
+
r1 . Hence

||ṽ(X,t),i
↵,h ||C↵(Ih)  ||v↵,h,i||H↵(Q+

r1)
 CK.

Therefore, Lemma 50 implies

||ũ(X,t),i||C↵(I)  CK

(note that the length of I is a universal number). Then, since 0, L 2 I, we have

the desired.

Step 2. (of the iteration): Applying (3.3.39) with � = 2↵, r = r3, ⇢ = r2 together with

(3.3.41) we obtain that

||v2↵,h,i||H↵(Q+
r3)

 CK, for any 0 < |h| < 1

16m0
.
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Then in the same way as in Step 1 (using Lemma 50) we can derive that

||u||
H3↵

i (Q+
r4)

 CK.

We continue this way until:

Step m0. (of the iteration): Applying (3.3.39) with � = m0↵, r = r2m0�1, ⇢ = r2m0�2

together with Step m0 � 1 we obtain that

||vm0↵,h,i||H↵
⇣
Q

+
r2m0�1

⌘  CK, for any 0 < |h| < 1

16m0
.

Then again as in Step 1 (using Lemma 50) and recalling how the constants ↵ and m0

have been chosen ((m0 + 1)↵ > 1) we can derive that

||u||
H1

i (Q
+
3/4)

 CK. (3.3.42)

This last estimate ensures the (almost everywhere) existence of uxi on Q⇤
3
4
for any

i = 1, . . . , n � 1. Moreover, applying again (3.3.39) with � = 1, r = 5
8 , ⇢ = 3

4 together

with (3.3.42) we conclude that

||v1,h,i||H↵(Q+
5/8)

 CK, for any 0 < |h| < 1

16m0
.

This gives a suitable H↵-estimate for uxi on Q⇤
5/8.

Now, observing that u satisfies in the viscosity sense a problem of the form (3.3.18)

with g(x, t) = u(x, 0, t) and since g is H1+↵-function on Q⇤
5/8 we can apply Theorem

49 to get the desired result for X-directions.

It remains to examine the t-direction. The proof follows the same lines as above but

since some (minor) modifications are needed we present the proof for completeness.

So for 0 < �  2, �1
8 < h < 0 we define

v�,h(X, t) =
u(X, t+ h)� u(X, t)

|h|�2
, for (X, t) 2 Q+

7/8

(note that if (X, t) 2 Q+
7/8 then (X, t + h) 2 Q+

1 ). Define also the following H↵-norm

which deals only with t-direction

||u||H↵
t (⌦) := ||u||L1(⌦) + sup

(X,t),(X,s)2⌦,t 6=s

|u(X, t)� u(X, s)|
|t� s|↵2

.

74

GEORGIANA C
HATZIG

EORGIO
U



Note that we can easily obtain that

8
><

>:

v�,h 2 Sp

�
�
n ,⇤

�
, in Q+

7/8

(v�,h)y = 0, on Q⇤
7/8.

Then, taking 0 < r < ⇢  7
8 and applying Corollary 35 to v�,h we have

||v�,h||H↵1(Q+
r )

 C C(r, ⇢) ||v�,h,i||
L1

✓
Q

+
r+⇢
2

◆ (3.3.43)

(note that r < r+⇢
2 < ⇢  7

8). Next, observe that if (X, t) 2 Q
+
r+⇢
2

and by choosing

�
✓
⇢� r

2

◆2

< h < 0 (3.3.44)

we get that (X, t+ h) 2 Q
+
⇢ . Also (X, t) 2 Q

+
⇢ and hence

|v�,h(X, t)| = |u(X, t+ h)� u(X, t)|
|h|

�
2

 ||u||
H�

t (Q
+
⇢ )
.

Returning back to (3.3.43) we have that

||v�,h||H↵1(Q+
r )

 C C(r, ⇢) ||u||
H�

t (Q
+
⇢ )

(3.3.45)

for any 0 < r < ⇢  7
8 and h as in (3.3.44).

Moreover we observe that Corollary 35 ensures that there exists a universal 0 <

↵2 < 1 so that for any 0 < ⇢ < 1,

||u||
H

↵2
t (Q+

⇢ )
 ||u||

H↵2(Q+
⇢ )

 C C(⇢)K. (3.3.46)

Now take ↵0 = min{↵1,↵2}. We choose a suitable 0 < ↵ < ↵0 in order to obtain a

universal integer m0 � 1 so that

m0
↵

2
< 1 and (m0 + 1)

↵

2
> 1.

Indeed let m0 :=
h

2
↵0

i
 2

↵0
< m0 + 1, then m0

↵0
2  1 and (m0 + 1)↵0

2 > 1. But since

2
↵0

< m0+1 there exists an ↵ > 0 so that 2
↵0

< 2
↵ < m0+1. Then 0 < ↵ < ↵0 < 1 and

m0
↵
2 < 1 and (m0 + 1)↵2 > 1. Note that for the exponent ↵ chosen above the relations
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(3.3.45) and (3.3.46) are both true. That is we have

||v�,h||H↵(Q+
r )

 C C(r, ⇢) ||u||
H�

t (Q
+
⇢ )

(3.3.47)

for any 0 < r < ⇢  7
8 , h as in (3.3.44) and of course

||u||
H↵

t (Q
+
⇢ )

 C C(⇢)K. (3.3.48)

For the iteration consider the following finite sequence of (universal) radii

rk =
7

8
� k

16m0
, for k = 0, 1, . . . , 2m0.

Note that r0 =
7
8 , r2m0 =

3
4 and rk�1 � rk =

1
16m0

.

Step 1. (of the iteration): Applying (3.3.47) for � = ↵, r = r1, ⇢ = 7
8 together with

(3.3.48) for ⇢ = 7
8 we obtain that

||v↵,h||H↵(Q+
r1)

 CK for any �
✓

1

16m0

◆2

< h < 0.

Using the above and Remark 51 we shall get

||u||
H2↵

t (Q+
r2)

 CK. (3.3.49)

That is, we take any two (X, t1) 6= (X, t2) 2 Q
+
r2 and since t1 6= t2 we can assume

without the loss of generality that t1 > t2 and denote by t := t1 and t+ L := t2 (then

L = t2 � t1 < 0) and we aim to get that |u(X, t) � u(X, t + L)|  CK|L|↵. We split

into two cases:

• If |L| � 1
2

⇣
1

16m0

⌘2

, then |u(X, t) � u(X, t + l)|  2K  2K2↵(16m0)2↵|L|↵ 

CK|L|↵ and we are done.

• If |L| < 1
2

⇣
1

16m0

⌘2

, we consider the interval I =


�
⇣

1
16m0

⌘2

, 0

�
. Define

ũ(X,t)(l) = u(X, t+ l), for l 2 I
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and

ṽ(X,t)
↵
2 ,h

(l) =
ũ(X,t)(l + h)� ũ(X,t)(l)

|h|↵2
, for � 1

2

✓
1

16m0

◆2

< h < 0, l 2 Ih

where Ih is as in Lemma 50. Then

ṽ(X,t)
↵
2 ,h

(l) =
u(X, t+ l + h)� u(X, t+ l)

|h|↵2
= v↵,h(X, t+ l).

Now, if (X, t) 2 Q
+
r2 , l 2 I then �r22 < t  0 and �

⇣
1

16m0

⌘2

� r22 < t+ l  l < 0.

But, �
⇣

1
16m0

⌘2

� r22 = �(r1 � r2)2 � r22 = �r21 + 2r1r2 � 2r22 � �r21 (using that

r1 > r2), i.e. (X, t+ l) 2 Q
+
r1 . Then, for l1, l2 2 Ih

���ṽ(X,t)
↵
2 ,h

(l1)� ṽ(X,t)
↵
2 ,h

(l2)
��� = |v↵,h(X, t+ l1)� v↵,h(X, t+ l2)|  CK|l1 � l2|

↵
2 .

That is, ���ṽ(X,t)
↵
2 ,h

���
C

↵
2 (Ih)

 CK

and Remark 51 implies

||ũ(X,t)||C↵(Ĩ)  CK

where Ĩ =


�1

2

⇣
1

16m0

⌘2

, 0

�
. Since 0, L 2 Ĩ, we have the desired.

We repeat the same procedure until:

Step m0. (of the iteration): Applying (3.3.47) for � = m0↵, r = r2m0�1, ⇢ = r2m0�2

together with Step m0 � 1 we obtain that

||vm0↵,h||H↵
⇣
Q

+
r2m0�1

⌘  CK, for any �
✓

1

16m0

◆2

< h < 0.

Then again as in Step 1 (using Remark 51) and recalling how the constants ↵ and m0

have been chosen ((m0 + 1)↵2 > 1) we can derive that

||u||
H2

t (Q
+
3/4)

 CK. (3.3.50)

This last estimate ensures the (almost everywhere) existence of ut in Q+
3
4

. Moreover,
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by applying again (3.3.47) for � = 2, r = 1
2 , ⇢ =

3
4 together with (3.3.50) gives

||v1,h||H↵(Q+
5/8)

 CK, for any �
✓

1

16m0

◆2

< h < 0.

The later gives the H↵-estimate for ut in Q+
1/2.

3.3.3 H1+↵-estimates for the oblique derivative case

In the following we assume for convenience that F (O) = 0. Note that this as-

sumption is not essential in the sense that we can find an operator with the same

ellipticity constants satisfying this assumption and subtracting a paraboloid from u

the new equation is satisfied. Indeed, from the ellipticity condition we can derive that

there exists some ✓ 2 R so that F (✓In) = 0:

F

✓
|F (O)|
�

In

◆
� F (O) � �

|F (O)|
�

� �F (O) ) F

✓
|F (O)|
�

In

◆
� 0

and

F (O)� F

✓
� |F (O)|

�
In

◆
� �

|F (O)|
�

� F (O) ) F

✓
� |F (O)|

�
In

◆
 0

hence from the continuity of F there exists ✓ 2
h
� |F (O)|

� , |F (O)|
�

i
so that F (✓In) = 0.

Now, we consider the operator G(M) = F (M + ✓In) then G(O) = F (✓In) = 0 and for

any M,N 2 Sn, N � 0

� kNk  F (M+N+✓In)�F (M+✓In)  ⇤ kNk ) � kNk  G(M+N)�G(M)  ⇤ kNk

that is, G is uniformly elliptic with the same ellipticity constants as F . Moreover for

any (fixed) X0 2 Rn we consider the paraboloid P (X) = ✓
2 |X�X0|2 (then D2P = ✓In).

Also let u be a solution of F (D2u)�ut = 0, then u�P is a solution of G(D2w)�wt = 0.

Note also that u� P and u = u� P + P have the same regularity.

First we examine a constant oblique derivative problem using the change of variables

of section 2.5.

Theorem 53. (Boundary H1+↵-estimates for the constant oblique derivative problem).
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Let u 2 C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

� ·Du = 0, on Q⇤
1

(3.3.51)

where � is a constant function. Then the first derivatives uz1 , . . . , uzn�1 , uw exist at

(0, 0). Moreover there exists a universal constant 0 < ↵ < 1 so that u is punctually

H1+↵ at (0, 0). More precisely, there exists a polynomial R1 of first order in Z, that is

R1(Z) = A0 + B0 · Z, where A0 = u(0, 0) and B0 = Du(0, 0) 2 Rn (then, � · B0 = 0)

so that

|u(Z, t)�R1(Z)|  C ||u||L1(Q+
1 )

�
|Z|+ |t|1/2

�1+↵
(3.3.52)

for every P = (Z, t) 2 Q
+
⇢ , where C > 0, 0 < ⇢ < 1 are universal constants.

In addition, ut exists and it is H↵ in Q
+
⇢ with the corresponding estimate being

bounded by above by a term of the form C ||u||L1(Q+
1 )
.

Proof. Let A be the transformation defined in section 2.5. Define v(X, t) = u(AX, t),

for (X, t) 2 Q+
r , where 0 < r < �0

�0+1 < 1. Note that Q+
r ⇢ Q̃+

1 . Then

8
><

>:

F̃ (D2v)� vt = 0, in Q+
r

vy = 0, on Q⇤
r.

So applying Theorem 52 to v we have that vx1 , . . . , vxn�1 , vy exist at (0, 0) and there

exists a polynomial R̃1(X) = Ã0 + B̃0 ·X, where Ã0 = v(0, 0) and B̃0 = (vx1(0, 0), . . . ,

vxn�1(0, 0), 0) so that

|v(X, t)� R̃1(X)|  C ||v||L1(Q+
r )

�
|X|+ |t|1/2

�1+↵

for every (X, t) 2 Q
+
r/4, where C > 0, 0 < ↵ < 1 are universal constants. In addition,

vt exists and it is H↵ in Q
+
r/4 with the corresponding estimate being bounded by above

by a term of the form C ||v||L1(Q+
r ).

Now since u(Z, t) = v(A�1Z, t) then uz1 , . . . , uzn�1 , uw exist at (0, 0). Also

|v(A�1Z, t)� R̃1(A
�1Z)|  C ||u||L1(Q+

r )
�
|A�1Z|+ |t|1/2

�1+↵

for every (A�1Z, t) 2 Q
+
r/4. Note that for ⇢ =

�0r
4(�0+1) < 1 if (Z, t) 2 Q+

⇢ then (A�1Z, t) 2

79

GEORGIANA C
HATZIG

EORGIO
U



Q
+
r/2, that is the above estimate is true for every (Z, t) 2 Q+

⇢ . Let R1(Z) = R̃1(A�1Z) =

Ã0 + B̃0 · A�1Z = Ã0 + (A�1)⌧ B̃0 · Z and observe that

Ã0 = v(0, 0) = u(0, 0) =: A0

and

(A�1)⌧ B̃0 =

✓
vx1(0, 0), . . . , vxn�1(0, 0), vy(0, 0)�

�1
�n

vx1(0, 0)� · · ·� �n�1

�n
vxn�1(0, 0)

◆

=
�
uz1(0, 0), . . . , uzn�1(0, 0), uw(0, 0)

�
=: B0

and

|u(Z, t)�R1(Z)|  C ||u||L1(Q+
r )

�
|Z|+ |t|1/2

�1+↵

for every (Z, t) 2 Q
+
⇢ . Furthermore ut(Z, t) = vt(A�1Z, t) and kutkH↵(Q+

⇢ )  C kukL1(Q+
1 )
.

Theorem 54. (Boundary H1+↵-estimates for the general oblique derivative problem).

Let g and � be H� locally on Q⇤
1, f 2 Lq

�
Q+

1

�
with q > (n+1)(n+2)

2 and u 2 C
�
Q+

1 [Q⇤
1

�

be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = f, in Q+
1

� ·Du = g, on Q⇤
1.

Then the first derivatives ux1 , . . . , uxn�1 , uy exist at (0, 0). Moreover there exists uni-

versal constant 0 < ↵0 < 1 so that for ↵ = min{↵0, �,
2q�(n+1)(n+2)

q(n+1) }, u is punctually

H1+↵ at (0, 0). More precisely, there exists a polynomial R1;0 of first order in X, that

is R1;0(X) = A0 + B0 ·X, where A0 = u(0, 0) and B0 = Du(0, 0) 2 Rn so that

|u(X, t)�R1;0(X)|  C
⇣
||u||L1(Q+

1 )
+ ||g||H�(Q⇤

1/2) + ||f ||
Lq(Q+

1 )

⌘ �
|X|+ |t|1/2

�1+↵

(3.3.53)

for every (X, t) 2 Q
+
⇢ , where 0 < ⇢ < 1, C > 0 are universal constants.

Note that we may assume that u(0, 0) = 0, considering u(X, t) � u(0, 0), then

A0 = 0. Also we may assume that g(0, 0) = 0, considering u(X, t)� g(0,0) y
�n(0,0)

.

Proof. Before we start let us denote for convenience K := ||u||L1(Q+
1 )

+ ||g||H�(Q⇤
1/2) +

||f ||
Lq(Q+

1 )
and �0 := �(0, 0) 2 Rn.
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We intend to find some B0 2 Rn, with �0 ·B0 = 0 so that for universal C > 0, 0 <

⌘ < 1, 0 < ⇢ < 1,↵0 > 0 and ↵ = min{↵0, �,
2q�(n+1)(n+2)

q(n+1) } we have

osc
Q+

⇢⌘k

�
u(X, t)� B0 ·X

�
 CK⌘k(1+↵), for any k 2 N (3.3.54)

(see the proof of Theorem 49 where we explain why (3.3.54) su�ces). We proceed by

induction to show that there exist universal constants 0 < ⌘ << 1, 0 < ⇢ << 1, C̄ >

0,↵0 > 0 such that for ↵ = min{↵0, �,
2q�(n+1)(n+2)

q(n+1) } we can find a vector Bk 2 Rn,

with �0 · Bk = 0 for any k 2 N so that

osc
Q+

⇢⌘k

(u(X, t)� Bk ·X)  C̄K⌘k(1+↵) (3.3.55)

and

|Bk+1 � Bk|  CK⌘k↵. (3.3.56)

Note that the right constants will be deduced from the induction. The details follow.

First, for k = 0, take B0 = 0 and choose any C̄ � 2. Next for the induction we

assume that we have found vectors B0, B1, . . . , Bk0 for which (3.3.55) and (3.3.56) hold.

Denoting by r := ⇢⌘k0
2 and B := Bk0 we have �0 · B = 0 and

osc
Q+

r

(u(X, t)� B ·X)  4C̄

⇢1+↵
Kr(1+↵) (3.3.57)

and we want to find a vector Bk0+1, with �0 · Bk0+1 = 0 so that

osc
Q+

2⌘r

(u(X, t)� Bk0+1 ·X)  C̄K⌘(k0+1)(1+↵). (3.3.58)

Now we consider a suitable constant oblique derivative problem (as the one of

Theorem 53). So let v be the viscosity solution of

8
>>>>><

>>>>>:

F (D2v)� vt = 0, in Q+
r

�0 ·Dv = 0, on Q⇤
r

v = u� B ·X, on @pQ+
r \Q⇤

r.

Then v satisfies the following
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• ABP-estimate for the oblique derivative case (see Theorem 28) gives

osc
Q+

r

v  osc
Q+

r

(u(X, t)� B ·X) (3.3.59)

since �0 ·Dv = 0 and F (O) = 0.

• From Theorem 53 we have that B̄ = Dv(0, 0) exists and �0 · B̄ = 0. Moreover

osc
Q+

r̃

�
v(X, t)� B̄ ·X

�
 C0

✓
r̃

r

◆1+↵1

osc
Q+

r

v (3.3.60)

for any r̃  ⌧ r, where 0 < ⌧ < 1 universal and also

|B̄|  C

r
osc
Q+

r

v. (3.3.61)

Next, we take r̃ = 2⌘r (for 0 < ⌘ < ⌧
2 ) in (3.3.60). Hence

osc
Q+

2⌘r

�
v(X, t)� B̄ ·X

�
 C0⌘

1+↵1 osc
Q+

r

v. (3.3.62)

Now take (universal) 0 < ⌘ << 1 su�ciently small in order to have that 8 C0⌘↵1 < 1.

We denote by 1 � ✓ := 8 C0⌘↵1 , where 0 < ✓ < 1 is a universal constant. Then

combining (3.3.62) and (3.3.59) and then using (3.3.57) we obtain

osc
Q+

2⌘r

�
v(X, t)� B̄ ·X

�
 (1� ✓)

8
⌘ osc

Q+
r

(u(X, t)� B ·X)  (1� ✓)

2
⌘

C̄

⇢1+↵
Kr1+↵.

(3.3.63)

Now to return to u we define w = u� B ·X � v. Then

8
>>>>><

>>>>>:

w 2 Sp

�
�
n ,⇤, f

�
, in Q+

r

� ·Dw = g � � · (B +Dv) , on Q⇤
r

w = 0, on @pQ+
r \Q⇤

r.

Now for 0 < µ < 1 (to be chosen universal) we denote by r̄ := r(1 � µ) < r. We

apply again ABP-estimate for the oblique derivative case (Theorem 28)
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osc
Q+

r̄

w  Cr||f ||Ln+1(Q+
r ) + Cr||g||L1(Q⇤

r) + Cr||� · B||L1(Q⇤
r)

+ Cr||� ·Dv||L1(Q⇤
r̄) + osc

@pQ
+
r̄ \Q⇤

r̄

w

=: I+ II+ III+ IV+V. (3.3.64)

We want to bound every term I - V by a term of order r1+↵. We start with term I.

Recall that from Hölder inequality we can easily get that if q1 < q2 and f 2 Lq2 (Q+
r ),

||f ||Lq1(Q+
r )  C(n) r

(n+2)(q2�q1)
q1q2 ||f ||Lq2(Q+

r ).

Then

||f ||Ln+1(Q+
r )  C(n) r

(n+2)(q�n�1)
q(n+1) ||f ||Lq(Q+

r )  C(n) r
n+2
n+1�

n+2
q ||f ||Lq(Q+

r ).

Note that n+2
n+1 �

n+2
q � 1� n+2

q with 0 < 1� n+2
q < 1 and r < 1. Hence

I  C r1+(1�
n+2
q ) K.

Next, for term II, we use the H�-regularity of g and the fact that g(0, 0) = 0, then

II = Cr||g � g(0, 0)||L1(Q⇤
r)  Crr�K  Cr1+�K.

We continue with term III. We use the H�-regularity of � and the fact that �0 ·B = 0,

III = Cr||
�
� � �0

�
· B||L1(Q⇤

r)  Cr||� � �0||L1(Q⇤
r) |B|  Crr�K  Cr1+�K

where we use that |B|  CK. Indeed, since |B0| = 0, we have |B| = |Bk0 � B0| 
Pk0�1

k=0 |Bk+1 � Bk|  CK
Pk0�1

k=0 (⌘↵)k  CK
⇣

1�(⌘↵)k0

1�⌘↵

⌘
 CK 1

1�⌘↵  CK. Next for

term IV, we use again the H�-regularity of � and the fact that �0 ·Dv = 0 on Q⇤
r, we

have

IV  Cr||� � �0||L1(Q⇤
r) ||Dv||L1(Q⇤

r̄)  Crr�
C̄Kr1+↵

r
 C2⇢

� C̄

⇢1+↵
Kr1+↵

using again Theorem 53 for v. Finally we examine term V. Let (X0, t0) 2 @pQ
+
r̄ \Q⇤

r̄.
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• If |X0| = r̄ we choose X̄0 2 (@Br)
+ so that |X0 � X̄0| = µr 

p
2µr and t̄0 = t0.

• If |X0| < r̄ then t0 = �(1 � µ)2r2 and we choose t̄0 = �r2 then |t0 � t̄0|1/2 =

r
p

µ(2� µ) 
p
2µr and X̄0 = X0.

In any case |X0�X̄0|+|t0�t̄0|1/2 
p
2µr and (X̄0, t̄0) 2 @pQ+

r \Q⇤
r that is w

�
X̄0, t̄0

�
= 0.

Then

|w (X0, t0) | = |w (X0, t0)� w
�
X̄0, t̄0

�
|

 | (u (X0, t0)� B ·X0)�
�
u
�
X̄0, t̄0

�
� B · X̄0

�
|+ |v (X0, t0)� v

�
X̄0, t̄0

�
|

(3.3.65)

and we bound these terms using H↵-estimates. Indeed, we have that

8
><

>:

F (D2(u� B ·X))� (u� B ·X)t = f, in Q+
2r

� ·D(u� B ·X) = g � � · B, on Q⇤
2r.

Then Corollary 38 gives

||u� B ·X||
H↵2(Q+

r )
 C

r↵2
||u� B ·X||L1(Q+

2r)

+
C

r↵2

⇣
r

n
n+1 ||f ||Ln+1(Q+

2r)
+ r||g||L1(Q⇤

2r)
+ r||� · B||L1(Q⇤

2r)

⌘
.

Next we apply to v global H↵-estimates. Note that v satisfies a constant oblique

derivative problem which can be transformed into a Neumann problem (see section

2.5) then using a reflection principle (see Proposition 21) we can see that we only need

global H↵-estimates for the Dirichlet problem. This type of estimates can be found in

[45]. Note that the values of v on the parabolic boundary equal to u� B ·X which is

H↵2 . So, for 0 < ↵3 << ↵2 universal, we have

||v||
H↵3(Q+

r )
 C

r↵3

⇣
||v||L1(Q+

r ) + r↵2 ||u� B ·X||
H↵2(Q+

r )

⌘

 C

r↵3
||u� B ·X||L1(Q+

2r)

+
C

r↵3

⇣
r

n
n+1 ||f ||Ln+1(Q+

2r)
+ r||g||L1(Q⇤

2r)
+ r||� · B||L1(Q⇤

2r)

⌘
.
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Now, we return to (3.3.65).

|w(X0, t0)| 
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵2 C

r↵2

⇣
||u� B ·X||L1(Q+

2r)
+ r

n
n+1 ||f ||Ln+1(Q+

2r)

⌘

+
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵2 C

r↵2

⇣
r||g||L1(Q⇤

2r)
+ r||� · B||L1(Q⇤

2r)

⌘

+
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵3 C

r↵3

⇣
||u� B ·X||L1(Q+

2r)
+ r

n
n+1 ||f ||Ln+1(Q+

2r)

⌘

+
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵3 C

r↵3

⇣
r||g||L1(Q⇤

2r)
+ r||� · B||L1(Q⇤

2r)

⌘

 Cµ↵3/2 ||u� B ·X||L1(Q+
2r)

+ Cµ↵3/2
⇣
r

n
n+1 ||f ||Ln+1(Q+

2r)
+ r||g||L1(Q⇤

2r)
+ r||� · B||L1(Q⇤

2r)

⌘

 VI+ I0 + II0 + III0.

For term VI, we use the hypothesis of the induction, (3.3.57).

VI  C1µ
↵3/2

C̄

⇢1+↵
Kr1+↵.

Moreover for term I0, we have

I0  Cµ↵3/2r
n

n+1C(n) r
(n+2)(q�n�1)

q(n+1) ||f ||Lq(Q+
2r)

 Cµ↵3/2r1+
2q�(n+1)(n+2)

q(n+1) K.

We denote by ↵(n, q) := 2q�(n+1)(n+2)
q(n+1) which is positive since q � (n+1)(n+2)

2 . Note also

that ↵(n, q) < 1 � n+2
q . Also, terms II0 and III0 are in fact the same as terms II and

III. That is,

V  C1µ
↵3/2C̄Kr1+↵ + Cµ↵3/2r1+↵(n,q) K + Cµ↵3/2r1+� K + C2⇢

� C̄

⇢1+↵
Kr1+↵.

So, returning to (3.3.64), we have

osc
Q+

r̄

w  CKr1+↵(n,q) + CKr1+� + C1µ
↵3/2

C̄

⇢1+↵
Kr1+↵ + C2⇢

� C̄

⇢1+↵
Kr1+↵.

Next combining the above with (3.3.63) and choosing µ < 1� 2⌘ (then 2⌘ < 1�µ)

we get

osc
Q+

2⌘r

⇥
u(X, t)� (B + B̄) ·X

⇤
 1

2
(1� ✓)⌘

C̄

⇢1+↵
Kr1+↵ + CKr1+↵(n,q) + CKr1+�

+ C1µ
↵3/2

C̄

⇢1+↵
Kr1+↵ + C2⇢

� C̄

⇢1+↵
Kr1+↵. (3.3.66)
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Now, recall that our aim is to get relation (3.3.58). We choose the right constants ↵0, µ

and C̄ for this purpose. So, take ↵0 so that ⌘↵0 = 1� ✓
2 and ↵ = min{↵0, �,

2q�(n+1)(n+2)
q(n+1) }.

Take µ  ⌘
2(1+↵)

↵3

(4C1)
2
↵3

(then C1µ↵3/2  ⌘1+↵

4 ), ⇢  ⌘
1+↵
�

(4C2)
1
�
(then C2⇢�  ⌘1+↵

4 ) and C̄ large

enough so that ⌘✓C̄
4⇢1+↵ � 2C (note that our choices are all independent of k0). Then we

return to (3.3.66) writing 1� ✓ as 1� ✓
2 �

✓
2 and recalling that r = ⇢⌘k0

2 ,

osc
Q+

⇢⌘k0+1

⇥
u(X, t)� (B + B̄) ·X

⇤
 1

2

✓
1� ✓

2

◆
C̄⌘⌘k0(1+↵)K + 2Cr1+↵K

�K
⌘✓

4

C̄

⇢1+↵
r1+↵ +KC̄

⌘1+↵

2
⌘k0(1+↵)

 C̄K⌘(k0+1)(1+↵).

This is relation (3.3.58) for Bk0+1 = B+B̄ = Bk0+B̄ and �0·Bk0+1 = �0·Bk0+�
0·B̄ = 0.

It remains to get (3.3.56) for k = k0. To do so, we use relation (3.3.61) together with

(3.3.59) and then (3.3.57),

|Bk0+1 � Bk0 | = |B̄|  C

r
C̄Kr1+↵  CKr↵ = CK⌘k0↵

as we want. So the inductive proof is completed.

Finally, it remains to get estimate (3.3.54). Observe that

lim
k!1

|Bk+1 � Bk|  lim
k!1

CK⌘k↵ = 0, since ⌘ < 1.

That is, the limit B1 := limk!1 Bk exists and it is the vector B0 of (3.3.54). Indeed,

�0 · B0 = 0 and for any k 2 N we have

osc
Q+

⇢⌘k

(u(X, t)� B1 ·X)  osc
Q+

⇢⌘k

(u(X, t)� Bk ·X) + ⇢⌘k(Bk � B1)

here we wrote u(X, t)�B1 ·X = u(X, t)�Bk ·X +Bk ·X �B1 ·X  u(X, t)�Bk ·

X + |X| |Bk � B1| and |X|  ⇢⌘k. We have

osc
Q+

⇢⌘k

(u(X, t)� B1 ·X)  C̄K⌘k(1+↵) + CK⌘k
1X

j=k

⌘j↵  C̄K⌘k(1+↵) + CK⌘k
⌘k↵

1� ⌘↵

= C̄K⌘k(1+↵) +
C

1� ⌘↵
K⌘(1+↵)k  CK⌘k(1+↵)

and the proof is completed.
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3.4 Hölder Estimates for the second derivatives

3.4.1 H2+↵-estimates for the homogeneous Neumann case

Here we prove H2+↵ boundary estimates. For, we will use first Lemma 47 which

applied on the derivative uy will give the existence and Hölder continuity of the sec-

ond derivative uyy. Then for the tangential directions, our purpose is to consider the

restriction of u on the thin-cylinder Q⇤
1 and to show that satisfies a suitable parabolic

equation there. Hence we will be able to use the interior estimates proved in [45].

First let us formulate here Theorems 4.13 and 1.1 of [45] in the form we are going

to use them.

Theorem 55. (Interior H2+↵-estimates). Let u 2 C(Q1) be a bounded viscosity so-

lution of F (D2u) � ut = 0 in Q1. Assume also that F is convex. Then there exist

universal C > 0, 0 < ↵ < 1 so that

kukH2+↵(Q1/2)  C
⇣
kukL1(Q1)

+ |F (O)|
⌘
. (3.4.1)

Also, we have the same result for operators that depend on (X, t), that is of the

form F (M, (X, t)). For, we define

✓F (X, t) = sup
M2Sn

|F (M, (X, t))� F (M, (0, 0))|
|M |+ 1

.

Theorem 56. (Interior H2+↵-estimates for more general operators). Let u 2 C(Q1)

be a bounded viscosity solution of F (D2u, (X, t)) � ut = 0 in Q1. Assume that any

solution v of the equation F (D2v + B, (0, 0)) � vt = E, where B,E are such that

F (B, (0, 0)) = E, satisfies H2+�-estimates

kukH2+�(Qr/2) 
C

r2+↵

⇣
kukL1(Qr)

+ |F (O, (0, 0))|
⌘
. (3.4.2)

Assume also that ✓
1

mn+1(Qr)

Z

Qr

✓n+1
F

◆1/(n+1)

 Cr↵. (3.4.3)

Then ut and the second derivatives of u exist in Q1/2. Moreover there exists universal

constant 0 < ↵ < � so that u is punctually H2+↵ at every point P0 2 Q1/2 and more

precisely there exists a polynomial R2;P0 of second order in X and of first order in t,

that is R2;P0(X, t) = AP0 + BP0 · (X � X0) + CP0(t � t0) +
1
2(X � X0)⌧DP0(X � X0),
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where AP0 = u(P0), BP0 = rXu(P0), CP0 = ut(P0) and DP0 := D2
Xu(P0) so that

|u(X, t)�R2;P0(X, t)|  C
⇣
||u||L1(Q+

1 )
+ |F (O, (0, 0))|

⌘
p(P, P0)

2+↵ (3.4.4)

for every P = (X, t) 2 Q1/2(P0), where C > 0 is a universal constant.

We continue with an immediate consequence of Lemma 47.

Corollary 57. Let f be bounded in Q+
1 and u 2 C

�
Q+

1 [Q⇤
1

�
be bounded and satisfies

8
><

>:

u 2 Sp(�,⇤, f), in Q+
1

u = 0, on Q⇤
1.

Then uy exists on Q⇤
1 and for a universal constants C > 0, 0 < ↵ < 1 we have

|u(X, t)� uy(x, 0, t)y|  C
⇣
kuk

L1(Q+
1 )

+ kfk
L1(Q+

1 )

⌘
y1+↵ (3.4.5)

for every (X, t) 2 Q
+
1/2. Moreover, uy is H↵

⇣
Q

+
1/2

⌘
with the corresponding norm

depending only on universal quantities and K := kuk
L1(Q+

1 )
+ kfk

L1(Q+
1 )
.

Proof. Note first that the justification for the existence and H↵-regularity of uy can be

found in the proof of Lemma 46.

Now let (X, t) 2 Q
+
1/2. We apply Remark 48 in Q

+
y (x, 0, t) ⇢ Q+

1 to obtain for small

h > 0,
u(X, t)

y
� u(x, h, t)

h
 CK ya.

So letting h ! 0,
u(X, t)

y
� uy(x, 0, t)  CK ya

which implies the result.

Next we apply the above to uy to obtain the following.

Corollary 58. Let u 2 C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

uy = 0, on Q⇤
1.
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Then uyy exists on Q⇤
1 and for a universal constants C > 0, 0 < ↵ < 1 we have

����u(X, t)� u(x, 0, t)� 1

2
uyy(x, 0, t) y

2

����  C kuk
L1(Q+

1 )
y2+↵ (3.4.6)

for every (X, t) 2 Q
+
1/2. Moreover, uyy is H↵

⇣
Q

+
1/2

⌘
with the corresponding norm

depending only on universal quantities and K := kuk
L1(Q+

1 )
.

Proof. First we observe that uy exists in Q+
1 [ Q⇤

1 from Theorem 52 and moreover it

satisfies the following

8
><

>:

uy 2 Sp

�
�
n ,⇤

�
, in Q+

1

uy = 0, on Q⇤
1.

Indeed, let (X0, t0) 2 Q+
1 and Qr(X0, t0) ⇢ Q+

1 . We consider the di↵erence quotient

uh(X, t) =
u(x, y + h, t)� u(X, t)

h
, for (X, t) 2 Qr(X0, t0), 0 < h <

r

2
.

Then from Theorem 4.6 in [45] we have that uh 2 Sp

�
�
n ,⇤

�
in Qr(X0, t0). But uy is the

uniform limit of uhk
as k ! 1 (due to the uniform H↵-estimates which are satisfied

by uh). Then using Proposition 10 we have the result.

Hence we can apply Corollary 57 to uy. This means that uyy exists and it is

H↵
⇣
Q

+
1/2

⌘
. Also from (3.4.5) we have

�CKy1+↵  uy(X, t)� uyy(x, 0, t)y  CKy1+↵

for any (X, t) 2 Q+
1/2. Then we integrate in direction y

u(X, t)� u(x, 0, t) =

Z y

0

uy(x, ⇢, t) d⇢ 
Z y

0

�
uyy(x, 0, t)⇢+ CK⇢1+↵

�
d⇢

= uyy(x, 0, t)
y2

2
+ CKy2+↵

for any (X, t) 2 Q+
1/2. Repeating the same argument we have also the other-side

inequality and the proof is complete.
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Proposition 59. Let u 2 C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

uy = 0, on Q⇤
1.

Consider the restriction of u on Q⇤
1, v(x, t) := u(x, 0, t). Moreover, denoting by

A(x, t) := uyy(x, 0, t) (which exists regarding Corollary 58) we consider the operator

G(M,x, t) := F

0

@M 0

0 A(x, t)

1

A (3.4.7)

for (x, t) 2 Q⇤
1 and M 2 Sn�1. Then

G
�
D2v, x, t

�
� vt = 0, in Q⇤

1

in the viscosity sense.

Proof. For convenience we show the result first at P0 = (0, 0) 2 Q⇤
1. So let � be a test

function on Q⇤
1 that touches v from below at (0, 0). That is, for (x, t) in some Q⇤

⇢,

�(x, t)  v(x, t) = u(x, 0, t) and �(0, 0) = v(0, 0) = u(0, 0, 0).

Our aim is to show that

F

0

@D2�(0, 0) 0

0 A(0, 0)

1

A� �t(0, 0)  0.

To do so we extend � into Q+
1 and translate it suitably to turn it into a test function

that touches u at some point of Q+
r and then use the equation for u.

For small ✏ > 0 we consider,

�̃(X, t) = �(x, t) +
A(0, 0)

2
y2 � ✏(|X|2 � t).

First, using Corollary 58 we want to obtain that for su�ciently small r > 0

u(X, t) � �̃(X, t) +
✏

2
(|X|2 � t), for any (X, t) 2 Q

+
r . (3.4.8)
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Indeed, Corollary 58 implies that for any (X, t) 2 Q+
1/2,

u(X, t) � u(x, 0, t) +
A(x, t)

2
y2 � CKy2+↵

moreover, A is H↵ that is,

|A(0, 0)� A(x, t)|
|x|↵ + |t|↵2

 CK ) A(0, 0)� A(x, t)  CK|x|↵ + CK|t|↵2 .

Hence

u(X, t) � u(x, 0, t) +
A(0, 0)

2
y2 � CK|x|↵y2 � CK|t|↵2 y2 � CKy2+↵

� u(x, 0, t) +
A(0, 0)

2
y2 � CK|X|2+↵ � CK|t|↵2 y2.

Now choose 0 < r < min{⇢,
�

✏
4CK

�1/↵}, then for (X, t) 2 Q
+
r we have

CK|X|2+↵  CK|X|2r↵  CK|X|2 ✏

4CK
 ✏

4
(|X|2 � t)

and

CK|t|↵2 y2  CK
✏

4CK
|X|2  ✏

4
(|X|2 � t).

So, using also that �  u on Q⇤
⇢ we get

u(X, t) � �(x, t) +
A(0, 0)

2
y2 � ✏

2
(|X|2 � t)

which by the definition of �̃ implies (3.4.8).

Now, from (3.4.8) we have an extension of � that stays below u in Q+
r . Next, using

this we translate suitably �̃ in order to achieve u� �̃ to have a local minimum. So we

consider for h 2 R,

�̃h(X, t) = �̃(x, y � h, t).

Then

�̃h(X, t) = �(x, t) +
A(0, 0)

2
(y � h)2 � ✏(|x|2 + (y � h)2 � t)

= �̃(X, t)� A(0, 0)yh+
A(0, 0)

2
h2 + 2✏hy � ✏h2.
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Next, we observe that,

�̃h(0, 0, 0) = �(0, 0) +
A(0, 0)

2
h2 � ✏h2

and since �(0, 0) = u(0, 0, 0),

u(0, 0, 0)� �̃h(0, 0, 0) = �A(0, 0)

2
h2 + ✏h2

and by (3.4.8),

u(X, t)� �̃h(X, t) � ✏

2
(|X|2 � t) + (A(0, 0)� 2✏)hy + u(0, 0, 0)� �̃h(0, 0, 0)

for any (X, t) 2 Q
+
r . So we have that

• On @pQ+
r \Q⇤

r,

u(X, t)� �̃h(X, t) � ✏

2
r2 + (A(0, 0)� 2✏)hy + u(0, 0, 0)� �̃h(0, 0, 0). (3.4.9)

• On Q
⇤
r,

(�̃h)y = �A(0, 0)h+ 2✏h. (3.4.10)

Subsequently, we split into two cases.

Case 1: If A(0, 0)  0. We choose h > 0 and we have,

• On @pQ+
r \Q⇤

r, using (3.4.9) and that (A(0, 0)� 2✏)h  0, y < r, so

u(X, t)� �̃h(X, t) � ✏

2
r2 + (A(0, 0)� 2✏)hr + u(0, 0, 0)� �̃h(0, 0, 0)

� u(0, 0, 0)� �̃h(0, 0, 0)

choosing 0 < h  ✏r
2(2✏�A(0,0)) , (then

✏
2r

2 + (A(0, 0)� 2✏)hr � 0).

• On Q
⇤
r, by (3.4.10) we know that (�̃h)y > 0. Also uy = 0, hence (u� �̃h)y < 0.

The above imply that the minimum of u� �̃h in Q
+
r cannot be attained on @pQ

+
r , that

is it is attained at some point (X1, t1) 2 Q+
r and hence it is a local (in the parabolic

sense) minimum. Then, we can use the equation at (X1, t1), i.e. F (D2�̃h(X1, t1)) �
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(�̃h)t(X1, t1)  0. But

D2�̃h(X1, t1) =

0

@D2�(x1, t1)� 2✏In�1 0

0 A(0, 0)� 2✏

1

A

and, (�̃h)t(X1, t1) = �t(x1, t1) + ✏. So, taking ✏ ! 0 then r ! 0 and (x1, t1) ! (0, 0)

and we obtain

F

0

@D2�(0, 0) 0

0 A(0, 0)

1

A� �t(0, 0)  0.

Case 2: If A(0, 0) > 0. We choose h = �h̄, for h̄ > 0 and ✏ < A(0,0)
2 , so

• On @pQ+
r \Q⇤

r, using (3.4.9) and that (A(0, 0)� 2✏)h̄ > 0, y < r we have,

u(X, t)� �̃h(X, t) � ✏

2
r2 � (A(0, 0)� 2✏)h̄r + u(0, 0, 0)� �̃h(0, 0, 0)

� u(0, 0, 0)� �̃h(0, 0, 0)

choosing 0 < h̄  ✏r
2(A(0,0)�2✏) , (then

✏
2r

2 � (A(0, 0)� 2✏)h̄r � 0).

• On Q
⇤
r, by (3.4.10) we have, (�̃h)y = �h(A(0, 0)�2✏) = h̄(A(0, 0)�2✏) > 0. Also

uy = 0, hence (u� �̃h)y < 0.

Then we can argue as in Case 1 and get again that

F

0

@D2�(0, 0) 0

0 A(0, 0)

1

A� �t(0, 0)  0.

Finally note that a similar argument can be applied for test functions that touch

v by above. Moreover, to get the result for any point of Q⇤
1, we have to translate

first Corollary 58 and then to consider �̃ and take relation (3.4.8) around the point we

study.

Now we are able to prove the main theorem of this section.

Theorem 60. (Boundary H2+↵-estimates for the Neumann problem).
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Let u 2 C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

uy = 0, on Q⇤
1.

Then the second derivatives of u exist in Q
+
1/2. Moreover there exists universal constant

0 < ↵ < 1 so that u is punctually H2+↵ at every point P0 2 Q⇤
1/2. More precisely,

there exists a polynomial R2;P0 of second order in X and of first order in t, that is

R2;P0(X, t) = AP0 + BP0 · (X � X0) + CP0(t � t0) +
1
2(X � X0)⌧DP0(X � X0), where

AP0 = u(P0), BP0 =
�
ux1(P0), . . . , uxn�1(P0), 0

�
, CP0 = ut(P0) and

DP0 :=

0

BBBBBB@

ux1x1(P0) . . . ux1xn�1(P0) 0
...

. . .
...

...

uxn�1x1(P0) . . . uxn�1xn�1(P0) 0

0 . . . 0 uyy(P0)

1

CCCCCCA

so that

|u(X, t)�R2;P0(X, t)|  C
⇣
||u||L1(Q+

1 )
+ |F (O)|

⌘
p(P, P0)

2+↵ (3.4.11)

for every P = (X, t) 2 Q
+
1/2(P0), where C > 0 is a universal constant.

Proof. Our intention is to combine Corollary 58 and interior H2+↵-estimates on Q⇤
1

(through Proposition 59).

So, let v(x, t) = u(x, 0, t). Then from Proposition 59 v satisfies in the viscosity sense

the equation G(D2v(x, t), (x, t))� vt(x, t) = 0 in Q⇤
1, where G is defined in (3.4.7). In

order to use interior H2+↵-estimates we have to verify that this equation satisfies the

assumptions of Theorem 56:

• First we observe that G has the same ellipticity constants as F . Indeed, for

M,N 2 Sn�1, N � 0

G(M +N, x, t)�G(M,x, t) := F

0

@M +N 0

0 A(x, t)

1

A� F

0

@M 0

0 A(x, t)

1

A
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and applying the ellipticity condition of F with the following matrices in Sn

M̄ :=

0

@M 0

0 A(x, t)

1

A , N̄ :=

0

@N 0

0 0

1

A � 0

we have what we want.

• Next we have to examine if the quantity ✓G satisfies the assumption (3.4.3). We

have

0  ✓G(x, t) = sup
M2Sn�1

|G(M, (x, t))�G(M, (0, 0))|
|M |+ 1

= sup
M2Sn�1

������
F

0

@M 0

0 A(x, t)

1

A� F

0

@M 0

0 A(0, 0)

1

A

������
|M |+ 1

(F Lipschitz)  sup
M2Sn�1

������

0

@0 0

0 A(x, t)� A(0, 0)

1

A

������
|M |+ 1

= |A(x, t)� A(0, 0)| sup
M2Sn�1

1

|M |+ 1
 CKmax{|x|, |t|1/2}↵

since 1
|M |+1  1 and the function A is H↵ from Corollary 58. Hence this estimate

implies immediately assumption (3.4.3).

• Finally, we examine the assumption (3.4.2). So, let w be any viscosity solution of

the equation G(D2w+B, (0, 0))�wt = E, where B,E are such that G(B, (0, 0)) =

E. We consider the operator L(M) := G(M+B, (0, 0))�E, for M 2 Sn�1. Then

L is elliptic with the same ellipticity constants as G (hence as F ). Indeed, for

M,N 2 Sn�1, N � 0,

�||N ||  G(M +N + B, (0, 0))� E +G(M + B, (0, 0)) + E  ⇤||N ||.

Moreover, L is convex since F is, L(O) = 0 and w satisfies the homogeneous

equation L(D2w)� wt = 0. Then Theorem 55 implies the assumption (3.4.2).

First we will get the result at P0 = (0, 0, 0), for convenience. Regarding the above

conversation we can apply Theorem 56 to v and obtain that there exists a polynomial

R̃2;P0(x, t) = ÃP0+B̃P0 ·x+C̃P0t+
1
2x

⌧D̃P0x, where ÃP0 = v(0, 0), B̃P0 = rxv(0, 0), C̃P0 =
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vt(0, 0) and D̃P0 := D2
xv(0, 0) so that

|u(x, 0, t)� R̃2;P0(x, t)|  C
⇣
||u||L1(Q+

1 )
+ |F (O)|

⌘
max{|x|, |t|1/2}2+↵

for every (x, t) 2 Q
⇤
1/2. On the other hand we have estimate (3.4.6) of Corollary 58

which gives for (X, t) 2 Q
+
1/2,

����u(X, t)� u(x, 0, t)� 1

2
A(0, 0) y2

����  C kuk
L1(Q+

1 )
y2+↵ + |A(x, t)� A(0, 0)| y

2

2

 CK max{|X|, |t|1/2}2+↵ + CK max{|x|, |t|1/2}↵y
2

2

 CK max{|X|, |t|1/2}2+↵

where K := ||u||L1(Q+
1 )

+ |F (O)| and using the H↵-regularity of A(x, t) := uyy(x, 0, t).

Then, we take R2;P0(X, t) = R̃2;P0(x, t) +
A(0,0)

2 y2 and combining the above we have for

(X, t) 2 Q
+
1/2,

|u(X, t)�R2;P0(X, t)| 
����u(X, t)� u(x, 0, t)� 1

2
A(0, 0) y2

����+ |u(x, 0, t)� R̃2;P0(x, t)|

 CK max{|X|, |t|1/2}2+↵.

For the points of Q⇤
1/2 other than (0, 0, 0) we use translation.

3.4.2 H2+↵-estimates for the oblique derivative case

In the present section we intent to obtain H2+↵-estimates for the general oblique

derivative problem (Theorem 62). We achieve this again using an approximation tech-

nique. We ”approximate” the general problem by homogeneous problems with a suit-

able function � in the oblique derivative condition (as in Lemma 65). To get Lemma 65

we need to examine first the case when we have a non-homogeneous oblique condition

but with constant � (Lemma 64) which can be done again by approximating the prob-

lem with suitable constant oblique derivative problems. Thereafter we first examine

a constant oblique derivative problem (Theorem 61) using the change of variables of

section 2.5. For convenience we assume that F (O) = 0 (see section 3.3.3).

Theorem 61. (Boundary H2+↵-estimates for the constant oblique derivative problem).
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Let u 2 C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

� ·Du = 0, on Q⇤
1

where � is a constant function. Then the second derivatives of u exist at (0, 0). More-

over there exists universal constant 0 < ↵ < 1 so that u is punctually H2+↵ at (0, 0).

More precisely, there exists a polynomial R2;0 of second order in Z and of first order in

t, that is R2;0(Z, t) = A0+B0 ·Z+C0t+ 1
2Z

⌧D0Z, where A0 = u(0, 0), B0 = Du(0, 0) 2

Rn, C0 = ut(0, 0) and D0 = D2u(0, 0) 2 Sn so that

|u(Z, t)�R2;0(Z, t)|  C ||u||L1(Q+
1 )

�
|Z|+ |t|1/2

�2+↵
(3.4.12)

for every (Z, t) 2 Q
+
⇢ , where C > 0 and 0 < ⇢ < 1 are universal constants.

Proof. Let A be the transformation defined in section 2.5. Define v(X, t) = u(AX, t),

for (X, t) 2 Q+
r , where 0 < r < �0

�0+1 < 1. Note that Q+
r ⇢ Q̃+

1 . Then

8
><

>:

F̃ (D2v)� vt = 0, in Q+
r

vy = 0, on Q⇤
r

with F̃ convex. So applying Theorem 60 to v we have that the second derivatives of v

exist at (0, 0) and there exists a polynomial R̃2(X, t) = Ã0 + B̃0 ·X + C̃0t+ 1
2X

⌧D̃0X,

where Ã0 = v(0, 0), B̃0 = Dv(0, 0) 2 Rn, C̃0 = vt(0, 0) and D̃0 = D2v(0, 0) 2 Sn so

that

|v(X, t)� R̃2(X, t)|  C ||v||L1(Q+
r )

�
|X|+ |t|1/2

�2+↵

for every (X, t) 2 Q
+
r/2, where C > 0, 0 < ↵ < 1 are universal constants.

Now since u(Z, t) = v(A�1Z, t) then the second derivatives of u exist at (0, 0). Also

|u(A�1Z, t)� R̃2(A
�1Z, t)|  C ||u||L1(Q+

r )
�
|A�1Z|+ |t|1/2

�2+↵

for every (A�1Z, t) 2 Q
+
r/2. Note that for ⇢ = �0r

2(�0+1) < 1 if (Z, t) 2 Q+
⇢ then

(A�1Z, t) 2 Q
+
r/2, that is the above estimate is true for every (Z, t) 2 Q+

⇢ . Let

R2(Z, t) = R̃2(A�1Z, t) = Ã0+B̃0 ·A�1Z+C̃0t+ 1
2(A

�1Z)⌧D̃0A�1Z = Ã0+(A�1)⌧ B̃0 ·
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Z + C̃0t+ 1
2Z

⌧ (A�1)⌧D̃0A�1Z and observe that

Ã0 = v(0, 0) = u(0, 0) =: A0

and

(A�1)⌧ B̃0 =

✓
vx1(0, 0), . . . , vxn�1(0, 0), vy(0, 0)�

�1
�n

vx1(0, 0)� · · ·� �n�1

�n
vxn�1(0, 0)

◆

=
�
uz1(0, 0), . . . , uzn�1(0, 0), uw(0, 0)

�
=: B0

and

C̃0 = vt(0, 0) = ut(0, 0) =: C0

and

(A�1)⌧D̃0A�1 = D2u(0, 0) =: D0

and

|u(Z, t)�R2(Z, t)|  C ||u||L1(Q+
r )

�
|Z|+ |t|1/2

�2+↵

for every (Z, t) 2 Q
+
⇢ .

Theorem 62. (Boundary H2+↵-estimates for the general oblique derivative problem).

Let g and � be H1+� locally on Q⇤
1, f 2 H�

�
Q+

1

�
and u 2 C

�
Q+

1 [Q⇤
1

�
be bounded

and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = f, in Q+
1

� ·Du = g, on Q⇤
1.

Then the second derivatives of u and ut exist at (0, 0). Moreover there exists universal

constant 0 < ↵0 < 1 so that for ↵ = min{↵0, �}, u is punctually H2+↵ at (0, 0). More

precisely, there exists a polynomial R2;0 of second order in X and of first order in t,

that is R2;0(X, t) = A0+B0 ·X +�0t+ 1
2X

⌧D0X, where A0 = u(0, 0), B0 = Du(0, 0) 2

Rn,�0 = ut(0, 0) and D0 = D2u(0, 0) 2 Sn so that

|u(X, t)�R2;0(X, t)|  C
⇣
||u||L1(Q+

1 )
+ ||g||H1+�(Q⇤

1/2) + ||f ||H�(Q+
1 )

⌘ �
|X|+ |t|1/2

�2+↵

(3.4.13)

for every (X, t) 2 Q
+
⇢ , where 0 < ⇢ < 1, C > 0 are universal constants.

Note that we may assume that:
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1. u(0, 0) = 0, considering u(X, t)� u(0, 0) (then A0 = 0).

2. g(0, 0) = 0, considering u(X, t)� g(0,0) y
�n(0,0)

.

3. f(0, 0) = 0, considering F 0(M) := F (M)�f(0, 0), then F 0(D2u)�ut = f�f(0, 0)

in the viscosity sense.

4. gxi(0, 0) = 0 for every i = 1, . . . , n� 1, considering

ū(X, t) := u(X, t)� y

�n(0, 0)

n�1X

k=1

gxk
(0, 0)xk.

Here we have to be more careful since we subtract a second order term. We have

to examine what equation u satisfies. Denote by h(X) := y
�n(0,0)

Pn�1
k=1 gxk

(0, 0)xk,

then for every i, j = 1, . . . , n� 1

hxi(X) =
y gxi(0, 0)

�n(0, 0)
, hy(X) =

1

�n(0, 0)

n�1X

k=1

gxk
(0, 0)xk

and

hxixj(X) = 0, hxiy(X) =
gxi(0, 0)

�n(0, 0)
= hyxi(X), hyy(X) = 0.

That is

M0 := D2h(X) =

0

BBBBBB@

0 . . . 0
gx1 (0,0)

�n(0,0)
...

...
...

...

0 . . . 0
gxn�1 (0,0)

�n(0,0)

gx1 (0,0)

�n(0,0)
. . .

gxn�1 (0,0)

�n(0,0)
0

1

CCCCCCA
2 Sn.

We have that F (D2ū+M0) � ūt = f in Q+
1 in the viscosity sense. More-

over, � · Dū = ḡ, on Q⇤
1 in the viscosity sense, where ḡ(x, t) := g(x, t) �

�n(x,t)
�n(0,0)

Pn�1
k=1 gxk

(0, 0)xk (note that ḡxi(0, 0) = 0). Note also that F̄ (M) := F (M+

M0) has the same ellipticity constants as F

Before we continue let us make a remark that will be useful in the following proofs.
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Remark 63. Let

D =

0

BBBBBB@

0 . . . 0 0
...

...
...

...

0 . . . 0 0

0 . . . 0 1

1

CCCCCCA

Then there exists ⌧0 2 R so that F̄ (⌧0D) = 0. Moreover, |⌧0|  C||g||H1+�(Q⇤
1/2), where

C > 0 universal.

Indeed, denote by l := |F (M0)|
�

F (M0 + lD)� F (M0) � �l � �F (M0) ) F (M0 + lD) � 0

and

F (M0)� F (M0 � lD) � �l � F (M0) ) F (M0 + lD)  0

hence from the continuity of F there exists ⌧0 2 [�l, l] so that F (M0+ ⌧0D) = 0. Also,

|⌧0|  |F (M0)�F (O)|
�  ⇤

� ||M0||1  C(�,⇤, �0)||g||H1+�(Q⇤
1/2).

Note that, in the following we denote ū, ḡ, F̄ by u, g, F for convenience.

As we mention in the start, in order to prove Theorem 62 we prove first two special

cases.

Lemma 64. Let � be constant g be H1+� locally on Q⇤
1 and u 2 C

�
Q+

1 [Q⇤
1

�
be

bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

� ·Du = g, on Q⇤
1.

Then the second derivatives of u and ut exist at (0, 0). Moreover there exists universal

constant 0 < ↵0 < 1 so that for ↵ = min{↵0, �}, u is punctually H2+↵ at (0, 0). More

precisely, there exists a polynomial R2;0 of second order in X and of first order in t,

that is R2;0(X, t) = A0+B0 ·X +�0t+ 1
2X

⌧D0X, where A0 = u(0, 0), B0 = Du(0, 0) 2

Rn,�0 = ut(0, 0) and D0 = D2u(0, 0) 2 Sn so that

|u(X, t)�R2;0(X, t)|  C
⇣
||u||L1(Q+

1 )
+ ||g||H1+�(Q⇤

1/2)

⌘ �
|X|+ |t|1/2

�2+↵
(3.4.14)
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for every (X, t) 2 Q
+
1/4, where C > 0 is a universal constant.

Proof. Before we start let us denote for convenience K := ||u||L1(Q+
1 )

+ ||g||H1+�(Q⇤
1/2).

We intend to find some R0(X, t) = B0 · X + �0t + 1
2X

⌧D0X, with � · B0 = 0 and

F (D0)� �0 = 0 so that for universal C > 0, 0 < ⌘ < 1,↵0 > 0 and ↵ = min{↵0, �} we

have

osc
Q+

⌘k

�
u(X, t)�R0(X, t)

�
 CK⌘k(2+↵), for any k 2 N. (3.4.15)

Similarly as we explain in the proof of Theorem 49, estimate (3.4.15) is enough.

Now, to get (3.4.15) we show by induction that there exist universal constants

0 < ⌘ << 1, C̄ > 0,↵0 > 0 such that for ↵ = min{↵0, �} we can find a paraboloid

Rk(X, t) = Bk ·X + �kt+
1
2X

⌧DkX, with

F (Dk)� �k = 0, � · Bk = 0 and
nX

j=1

(Dk)ij�j = 0, i = 1, . . . , n� 1 (3.4.16)

for any k 2 N so that

osc
Q+

⌘k

(u(X, t)�Rk(X, t))  C̄K⌘k(2+↵) (3.4.17)

and

||Dk+1 �Dk||  CK⌘k↵, |�k+1 � �k|  CK⌘k↵, |Bk+1 � Bk|  CK⌘k(1+↵). (3.4.18)

Note that the right constants will be deduced from the induction. The details follow.

First, for k = 0, take B0 = 0, �0 = 0 and (D0)ij = 0, for ij 6= nn and (D0)nn = ⌧0

where ⌧0 is chosen so that F (D0) = 0 (see Remark 63) and we see that

osc
Q+

1

(u(X, t)�R0(X, t))  2||u||L1(Q+
1 )

+ 2||D0||1  C̄K

choosing C̄ large enough.

Next for the induction we assume that we have found paraboloids R0, R1, . . . , Rk0

for which (3.4.16), (3.4.17) and (3.4.18) hold. Denoting by r := ⌘k0 we have

osc
Q+

r

(u(X, t)�Rk0(X, t))  C̄Kr(2+↵) (3.4.19)
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and we want to find a paraboloid Rk0+1 satisfying (3.4.16), (3.4.18) and

osc
Q+

⌘r

(u(X, t)�Rk0+1(X, t))  C̄K⌘(k0+1)(2+↵). (3.4.20)

Now we consider a suitable constant oblique derivative problem (as the one of

Theorem 61). So let v be the viscosity solution of

8
>>>>><

>>>>>:

G(D2v)� vt = 0, in Q+
r

� ·Dv = 0, on Q⇤
r

v = u�Rk0 , on @pQ+
r \Q⇤

r

where G(M) = F (M+Dk0)��k0 which is an elliptic operator with the same ellipticity

constants as F . Also G(O) = F (Dk0)� �k0 = 0. Then v satisfies the following

• ABP-estimate for the oblique derivative case (see Theorem 28) gives

osc
Q+

r

v  osc
Q+

r

(u(X, t)�Rk0(X, t)) (3.4.21)

since � ·Dv = 0 and G(O) = 0.

• From Theorem 61 we have that B̄ := Dv(0, 0), �̄ := vt(0, 0), D̄ := D2v(0, 0) exist

and for R̄(X, t) = B̄ ·X + �̄t+ 1
2X

⌧D̄X we have

osc
Q+

r̃

�
v(X, t)� R̄(X, t)

�
 C0

✓
r̃

r

◆2+↵1

osc
Q+

r

v (3.4.22)

for any r̃  ⇢ r, where 0 < ⇢ < 1 universal and also

|B̄|  C

r
osc
Q+

r

v, |�̄|  C

r2
osc
Q+

r

v, ||D̄||1  C

r2
osc
Q+

r

v. (3.4.23)

Note that � · B̄ = 0 from the oblique condition and F (D̄ +Dk0) � �k0 � �̄ = 0

using the continuity of F , D2v and vt. Also, � · Dv = 0 holds in the classical

sense on Q⇤
1 and we can di↵erentiate this condition with respect to xi, for any

i = 1, . . . , n� 1 to get
Pn

j=1 D̄ij�j = 0, for any i = 1, . . . , n� 1.

Next, we take r̃ = ⌘r (for 0 < ⌘ < ⇢) in (3.4.22 ). Hence

osc
Q+

⌘r

�
v(X, t)� R̄(X, t)

�
 C0⌘

2+↵1 osc
Q+

r

v. (3.4.24)
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Now take (universal) 0 < ⌘ << 1 su�ciently small in order to have that C0⌘↵1 < 1.

We denote by 1�✓ := C0⌘↵1 , where 0 < ✓ < 1 is a universal constant. Then combining

(3.4.24) and (3.4.21) and then using (3.4.19) we obtain

osc
Q+

⌘r

�
v(X, t)� R̄(X, t)

�
 (1� ✓) ⌘2 osc

Q+
r

(u(X, t)�Rk0(X, t))  (1� ✓) ⌘2 C̄Kr2+↵.

(3.4.25)

Now to return to u we define w = u�Rk0 � v. Note that

D2(Rk0 + v) = Dk0 +D2v, (Rk0 + v)t = �k0 + vt

hence, F (D2(Rk0+v))�(Rk0+v)t = F (Dk0+D2v)��k0�vt = 0. Then from Theorem

4.6 of [45] and (iii) of Proposition 15 we have that w 2 Sp

�
�
n ,⇤

�
. Moreover we can

easily check that DRk0 = Dk0X + Bk0 , then on Q⇤
r, � ·DRk0 = � ·Dk0X + � · Bk0 =

Pn
j=1 �j

Pn�1
k=1(Dk0)jkxk + 0 =

Pn�1
k=1

Pn
j=1 �j(Dk0)jkxk = 0. That is combining the

above we have

8
>>>>><

>>>>>:

w 2 Sp

�
�
n ,⇤

�
, in Q+

r

� ·Dw = g, on Q⇤
r

w = 0, on @pQ+
r \Q⇤

r.

Next we apply again ABP-estimate for the oblique derivative case (Theorem 28) and

then the H1+�-estimate for g together with the fact that g(0, 0) = 0 and Dg(0, 0) = 0

to obtain

osc
Q+

r̄

w  Cr||g||L1(Q⇤
r) = Cr||g � g(0, 0)�Dg(0, 0)||L1(Q⇤

r)  CKrr1+�  CKr2+�.

Next combining the above with (3.4.24) we get

osc
Q+

⌘r

⇥
u(X, t)� (Rk0(X, t) + R̄(X, t))

⇤
 (1� ✓)⌘2C̄Kr2+↵ + CKr2+�. (3.4.26)

Now, recall that our aim is to get relation (3.4.20). We choose the right constants ↵0

and C̄ for this purpose. So, take ↵0 so that ⌘↵0 = 1 � ✓
2 and ↵ = min{↵0, �} and C̄

large enough so that ⌘2✓C̄
2 � C (note that our choices are all independent of k0). Then
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we return to (3.4.26) writing 1� ✓ as 1� ✓
2 �

✓
2 and recalling that r = ⌘k0 ,

osc
Q+

⌘k0+1

⇥
u(X, t)� (Rk0(X, t) + R̄(X, t))

⇤
 K

✓
1� ✓

2

◆
C̄⌘2⌘k0(2+↵) + Cr2+↵ � ⌘2✓C̄

2
r2+↵

�

 C̄K⌘(k0+1)(2+↵).

This is relation (3.4.20) for Rk0+1 = Rk0+R̄. Note also that F (Dk0+D̄)�(�k0+�̄) = 0,

� · Bk0+1 = � · Bk0 + � · B̄ = 0 and for any i = 1, . . . n � 1,
Pn

j=1(Dk0+1)ij�j =
Pn

j=1(Dk0)ij�j +
Pn

j=1(D̄)ij�j = 0. It remains to get (3.4.18) for k = k0. To do so, we

use relation (3.4.23) together with (3.4.21) and then (3.4.19),

|Bk0+1 � Bk0 | = |B̄|  C

r
C̄Kr2+↵  CKr↵ = CK⌘k0(1+↵)

|Dk0+1 �Dk0 | = |D̄|  C

r2
C̄Kr2+↵  CKr↵ = CK⌘k0↵

|�k0+1 � �k0 | = |�̄|  C

r2
C̄Kr2+↵  CKr↵ = CK⌘k0↵

as we want. So the inductive proof is completed.

Finally, it remains to get estimate (3.4.15). Observe that

lim
k!1

|Bk+1 � Bk|  lim
k!1

CK⌘k(1+↵) = 0, lim
k!1

|�k+1 � �k|  lim
k!1

CK⌘k↵ = 0

lim
k!1

|Dk+1 �Dk|  lim
k!1

CK⌘k↵ = 0, since ⌘ < 1.

That is the limits B1 := limk!1 Bk, �1 := limk!1 �k and D1 := limk!1 Dk exist

and R0(X, t) = B1 · X + �1t + 1
2X

⌧D1X satisfies (3.4.15). Indeed, � · B1 = 0,

F (D1)� �1 = 0 and for any k 2 N we have

osc
Q+

⌘k

�
u(X, t)�R0(X, t)

�
 osc

Q+

⌘k

�
u(X, t)�R0(X, t)

�

+ ⌘k|Bk � B1|+ ⌘2k|�k � �1|+ 1

2
⌘2k||Dk �D1||

here we wrote u(X, t)�R0(X, t) = u(X, t)�Rk(X, t)+Rk(X, t)�R0(X, t)  u(X, t)�

Rk(X, t) + |Bk � B1| |X| + |�1 � �k||t| + 1
2 ||D1 �Dk|||X|2 and |X|  ⌘k, |t|  ⌘2k.
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We have

osc
Q+

⌘k

�
u(X, t)�R0(X, t)

�
 C̄K⌘k(2+↵) + CK⌘k

1X

j=k

⌘j(1+↵) + 2CK⌘2k
1X

j=k

⌘j↵

 CK⌘k(2+↵)

using the sum of geometric series and the proof is completed.

Lemma 65. Let � be constant function, N0 2 Rn⇥n with ||N0||1  C1 and u 2

C
�
Q+

1 [Q⇤
1

�
be bounded and satisfies in the viscosity sense

8
><

>:

F (D2u)� ut = 0, in Q+
1

(� +N0X) ·Du = 0, on Q⇤
1.

Then the second derivatives of u and ut exist at (0, 0). Moreover there exists universal

constant 0 < ↵ < 1 so that u is punctually H2+↵ at (0, 0). More precisely, there exists

a polynomial R2;0 of second order in X and of first order in t, that is R2;0(X, t) =

A0 + B0 ·X + �0t + 1
2X

⌧D0X, where A0 = u(0, 0), B0 = Du(0, 0) 2 Rn,�0 = ut(0, 0)

and D0 = D2u(0, 0) 2 Sn so that

|u(X, t)�R2;0(X, t)|  C||u||L1(Q+
1 )

�
|X|+ |t|1/2

�2+↵
(3.4.27)

for every (X, t) 2 Q
+
1/4, where C > 0 depends on universal constants and on C1.

Before we continue with the proof let us make a useful remark.

Remark 66. Assume that for any (X0, t0) 2 Q⇤
1/2 we have that

|u(X, t)� u(X0, t0)�Du(X0, t0) · (X �X0)|  C⇤ �|X �X0|+ |t� t0|1/2
�1+↵

for every (X, t) 2 Q+
1/4(X0, t0). Then

|(Du(X, t)�Du(0, 0)) ·X|  C⇤ �|X|+ |t|1/2
�1+↵

for every (X, t) 2 Q⇤
1/4.

Indeed, we take initially (X0, t0) = (0, 0), then

|u(X, t)� u(0, 0)�Du(0, 0) ·X|  C⇤ �|X|+ |t|1/2
�1+↵

(3.4.28)
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for every (X, t) 2 Q+
1/4. Then we take (X0, t0) to be any point (X, t) of Q⇤

1/4, then

|u(Z, s)� u(X, t)�Du(X, t) · (Z �X)|  C⇤ �|Z �X|+ |s� t|1/2
�1+↵

for every (Z, s) 2 Q+
1/4(X, t) and choose (Z, s) = (0, 0) 2 Q+

1/4(X, t), then

|u(0, 0)� u(X, t) +Du(X, t) ·X|  C⇤ �|X|+ |t|1/2
�1+↵

. (3.4.29)

Combining now twice (3.4.28) and (3.4.29) we get

(Du(X, t)�Du(0, 0)) ·X  C⇤ �|X|+ |t|1/2
�1+↵

and

((Du(0, 0)�Du(X, t)) ·X  C⇤ �|X|+ |t|1/2
�1+↵

which gives the result.

Now, we proceed with the proof of Lemma 65.

Proof. Our intention here is to ”convert” our problem into a constant non-homogeneous

oblique derivative problem in order to use the result of Lemma 64. To do so we add

to u a suitable paraboloid. Note that u satisfies H1+↵-estimates locally up to the flat

boundary and H2+↵-interior estimates so it is in fact a classical solution.

First we choose N 2 Sn so that N� = N ⌧
0Du(0, 0). Note that such a matrix exists

since the above is actually a linear system of n equations and n(n+1)
2 variables and the

matrix of the system can be shown to have rank equals to n (using that �n 6= 0), that is

the system has infinitely many solutions. Moreover ||N ||1  C(n, �0)|Du(0, 0)|. Then

we define v(X, t) := u(X, t) + 1
2X

⌧NX. Note that

Dv(X, t) = Du(X, t) +NX, D2v(X, t) = D2u(X, t) +N, vt(X, t) = ut(X, t).

Then

F (D2v �N)� vt = 0, in Q+
1 .

Also, for X 2 Q⇤
1,

� ·Dv(X, t) = �N0X ·Du(X, t) + � ·NX = �(Du(X, t))⌧N0X + (NX)⌧�
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and since N is symmetric (NX)⌧ = X⌧N , then

� ·Dv(X, t) = �(Du(X, t))⌧N0X +X⌧N ⌧
0Du(0, 0)

= �(Du(X, t))⌧N0X + (Du(0, 0))⌧N0X

= (Du(0, 0)�Du(x, 0, t))⌧N0(x, 0) =: g(x, t).

We observe also that v(0, 0) = u(0, 0) = 0, G(M) := F (M�N) has the same ellipticity

constants as F and

||g||L1(Q⇤
r)  ||N0||1r||Du(0, 0)�Du(x, 0, t)||L1(Q⇤

r)  C||u||L1(Q+
1 )
r1+↵

using the H1+↵-estimates that u satisfies (Theorem 54) and Remark 66.

Therefore we can apply Lemma 64 to v to obtain that there exists R̄(X, t) =

B̄ ·X + �̄t+ 1
2X

⌧D̄X so that

||v�R̄||L1(Q+
r )  C

✓
||v||L1(Q+

1 )
+ ||g||

H1+↵
⇣
Q+

1/2

⌘ + |F (�N)|
◆
r2+↵  C||u||L1(Q+

1 )
r2+↵

for any r  1
4 . Taking as R0(X, t) := R̄(X, t) + 1

2X
⌧NX the proof is complete.

Proof of Theorem 62. Before we start let us denote for convenience K := ||u||L1(Q+
1 )

+

||g||H1+�(Q⇤
1/2) + ||f ||H�(Q+

1 )
and �0 := �(0, 0), �0

xi
:= �xi(0, 0) 2 Rn. We intend to find

some R0(X, t) = B0 · X + �0t + 1
2X

⌧D0X, with �0 · B0 = 0 and F (D0) � �0 = 0 so

that for universal C > 0, 0 < ⌘ < 1, 0 < ⇢ < 1,↵0 > 0 and ↵ = min{↵0, �} we have

osc
Q+

⇢⌘k

�
u(X, t)�R0(X, t)

�
 CK⌘k(2+↵), for any k 2 N. (3.4.30)

Similarly as we explain in the proof of Theorem 49, estimate (3.4.30) is enough.

Now, to get (3.4.30) we show by induction that there exist universal constants

0 < ⌘ << 1, 0 < ⇢ << 1, C̄ > 0,↵0 > 0 such that for ↵ = min{↵0, �} we can find a

paraboloid Rk(X, t) = Bk ·X + �kt+
1
2X

⌧DkX, with

F (Dk)� �k = 0, �0 · Bk = 0 and
nX

j=1

⇥
(Dk)ij�

0
j + (�j)

0
xi
(Bk)j

⇤
= 0, i = 1, . . . , n� 1 (3.4.31)
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for any k 2 N so that

osc
Q+

⇢⌘k

(u(X, t)�Rk(X, t))  C̄K⌘k(2+↵) (3.4.32)

and

||Dk+1 �Dk||  CK⌘k↵, |�k+1 � �k|  CK⌘k↵, |Bk+1 � Bk|  CK⌘k(1+↵). (3.4.33)

First, for k = 0, take B0 = 0, �0 = 0 and (D0)ij = 0, for ij 6= nn and (D0)nn = ⌧0

where ⌧0 is chosen so that F (D0) = 0 (see Remark 63) and we see that

osc
Q+

1

(u(X, t)�R0(X, t))  2||u||L1(Q+
1 )

+ 2||D0||1  C̄K

choosing C̄ large enough.

Next for the induction we assume that we have found paraboloids R0, R1, . . . , Rk0

for which (3.4.31), (3.4.32) and (3.4.33) hold. Denoting by r := ⇢⌘k0
2 we have

osc
Q+

r

(u(X, t)�Rk0(X, t))  4C̄

⇢2+↵
Kr(2+↵) (3.4.34)

and we want to find a paraboloid Rk0+1 satisfying (3.4.31), (3.4.33) and

osc
Q+

2⌘r

(u(X, t)�Rk0+1(X, t))  C̄K⌘(k0+1)(2+↵). (3.4.35)

Now we consider a suitable oblique derivative problem (as the one of Lemma 65).

So let v be the viscosity solution of

8
>>>>><

>>>>>:

G(D2v)� vt = 0, in Q+
r

(�0 +D�0x) ·Dv = 0, on Q⇤
r

v = u�Rk0 , on @pQ+
r \Q⇤

r

where G(M) = F (M+Dk0)��k0 which is an elliptic operator with the same ellipticity

constants as F . Note that G(O) = F (Dk0) � �k0 = 0. Also by D�0 we denote the
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matrix

D�0 :=

0

BBB@

(�1)x1(0, 0) . . . (�1)xn�1(0, 0)
. . .

(�n)x1(0, 0) . . . (�n)xn�1(0, 0)

1

CCCA
2 Rn⇥(n�1).

Then v satisfies the following

• ABP-estimate for the oblique derivative case (see Theorem 28) gives

osc
Q+

r

v  osc
Q+

r

(u(X, t)�Rk0(X, t)) (3.4.36)

since (�0 +D�0x) ·Dv = 0 and G(O) = 0.

• From Lemma 65 we have that B̄ := Dv(0, 0), �̄ := vt(0, 0), D̄ := D2v(0, 0) exist

and for R̄(X, t) = B̄ ·X + �̄t+ 1
2X

⌧D̄X we have

osc
Q+

r̃

�
v(X, t)� R̄(X, t)

�
 C0

✓
r̃

r

◆2+↵1

osc
Q+

r

v (3.4.37)

for any r̃  r
4 and also

|B̄|  C

r
osc
Q+

r

v, |�̄|  C

r2
osc
Q+

r

v, ||D̄||1  C

r2
osc
Q+

r

v. (3.4.38)

Note that (�0 + D�0 0) · B̄ = 0 from the oblique derivative condition, that is

�0 · B̄ = 0 and F (D̄ + Dk0) � �k0 � �̄ = 0 using the continuity of F , D2v and

vt. Also, (�0 + D�0x) · Dv = 0 holds in the classical sense on Q⇤
r and we can

di↵erentiate this condition with respect to xi, for any i = 1, . . . , n � 1 to get at

(x, t) = (0, 0),
Pn

j=1

⇥
D̄ij�0

j + (�j)0xi
B̄j

⇤
= 0, for any i = 1, . . . , n� 1.

Next, we take r̃ = 2⌘r (for 0 < ⌘ < 1
8) in (3.4.37 ). Hence

osc
Q+

2⌘r

�
v(X, t)� R̄(X, t)

�
 C0⌘

2+↵1 osc
Q+

r

v. (3.4.39)

Now take (universal) 0 < ⌘ << 1 su�ciently small in order to have that 8 C0⌘↵1 < 1.

We denote by 1 � ✓ := 8 C0⌘↵1 , where 0 < ✓ < 1 is a universal constant. Then
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combining (3.4.39) and (3.4.36) and then using (3.4.34) we obtain

osc
Q+

2⌘r

�
v(X, t)� R̄(X, t)

�
 (1� ✓)

8
⌘2 osc

Q+
r

(u(X, t)�Rk0(X, t))  (1� ✓)

2
⌘2

C̄

⇢2+↵
Kr2+↵.

(3.4.40)

Now to return to u we define w = u�Rk0 � v. Note that

D2(Rk0 + v) = Dk0 +D2v, (Rk0 + v)t = �k0 + vt

hence, F (D2(Rk0+v))�(Rk0+v)t = F (Dk0+D2v)��k0�vt = 0. Then w 2 Sp

�
�
n ,⇤, f

�

in Q+
r . Moreover we can easily check that DRk0 = Dk0X + Bk0 . That is, w satisfies

8
>>>>><

>>>>>:

w 2 Sp

�
�
n ,⇤, f

�
, in Q+

r

� ·Dw = g � � · (Dk0X + Bk0 +Dv) , on Q⇤
r

w = 0, on @pQ+
r \Q⇤

r.

Now for 0 < µ < 1 (to be chosen universal) we denote by r̄ := r(1 � µ) < r. We

apply again ABP-estimate for the oblique derivative case (Theorem 28)

osc
Q+

r̄

w  Cr||f ||Ln+1(Q+
r ) + Cr||g||L1(Q⇤

r) + Cr||� · (Dk0X + Bk0)||L1(Q⇤
r)

+ Cr||� ·Dv||L1(Q⇤
r̄) + osc

@pQ
+
r̄ \Q⇤

r̄

w

=: I+ II+ III+ IV+V. (3.4.41)

We want to bound every term I - V by a term of order r2+↵. We start with term I.

We have

I  Cr||f ||L1(Q+
r )

✓Z

Q+
r

1 dX dt

◆ 1
n+1

 Cr2||f ||L1(Q+
r )

then using the H� regularity of f and the fact that f(0, 0) = 0 we get

I  Cr2||f � f(0, 0)||L1(Q+
r )  CKr2+�.

Next, for term II, we use the H1+�-regularity of g and the fact that g(0, 0) = 0,
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Dg(0, 0, ) = 0, then

II = Cr||g � g(0, 0)�Dg(0, 0) · x||L1(Q⇤
r)  Crr1+�K  CKr2+�.

We continue with III and we study first the term

A := (�0 +D�0x) · (Dk0X + Bk0) = �0 ·Dk0X +D�0x ·Dk0X +D�0x · Bk0

since �0 · Bk0 = 0 and

�0 ·Dk0X =
nX

i=1

�0
i

n�1X

k=1

(Dk0)ikxk

and

D�0x · Bk0 =
nX

i=1

n�1X

k=1

(�i)
0
xk
xk(Bk0)i

that is,

�0 ·Dk0X +D�0x · Bk0 = 0.

Hence, A = D�0x ·Dk0X. Returning to III, we have

III  Cr||� � �0 �D�0x||L1(Q⇤
r)||Dk0X + Bk0 ||L1(Q⇤

r)

+ Cr||(�0 +D�0x) · (Dk0X + Bk0)||L1(Q⇤
r)

 Crr1+�(||Dk0 ||1 + |Bk0 |) + Crr2||D�0||1||Dk0 ||1

using theH1+�-regularity of �. Note also that |Bk0 |  CK and ||Dk0 ||1  CK. Indeed,

since |B0| = 0, we have |B| = |Bk0 �B0| 
Pk0�1

k=0 |Bk+1 �Bk|  CK
Pk0�1

k=0 (⌘1+↵)k 

CK

✓
1�(⌘1+↵)

k0

1�⌘1+↵

◆
 CK 1

1�⌘1+↵  CK and similarly ||Dk0 ||1 = ||Dk0 � D0||1 
Pk0�1

k=0 ||Dk+1 � Dk||1  CK
Pk0�1

k=0 (⌘↵)k  CK
⇣

1�(⌘↵)k0

1�⌘↵

⌘
 CK, then ||Dk0 ||1 

CK + ||D0||1  CK. Then III  CKr2+�.

Next for term IV, we use again the H1+�-regularity of � and the fact that (�0 +

D�0x) ·Dv = 0 on Q⇤
r, we have

IV  Cr||� � �0 �D�0x||L1(Q⇤
r)||Dv||L1(Q⇤

r̄)  C⇢1+� C̄

⇢2+↵
Kr2+↵

using Theorem 53 for v. Finally we examine term V. Let (X0, t0) 2 @pQ
+
r̄ \Q⇤

r̄.

• If |X0| = r̄ we choose X̄0 2 (@Br)
+ so that |X0 � X̄0| = µr 

p
2µr and t̄0 = t0.
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• If |X0| < r̄ then t0 = �(1 � µ)2r2 and we choose t̄0 = �r2 then |t0 � t̄0|1/2 =

r
p

µ(2� µ) 
p
2µr and X̄0 = X0.

In any case |X0�X̄0|+|t0�t̄0|1/2 
p
2µr and (X̄0, t̄0) 2 @pQ+

r \Q⇤
r that is w

�
X̄0, t̄0

�
= 0.

Then

|w (X0, t0) | = |w (X0, t0)� w
�
X̄0, t̄0

�
|

 | (u (X0, t0)�Rk0(X0, t0))�
�
u
�
X̄0, t̄0

�
�Rk0(X̄0, t̄0)

�
|

+ |v (X0, t0)� v
�
X̄0, t̄0

�
| (3.4.42)

and we bound these terms using H↵-estimates. Indeed, we have that

8
><

>:

F (D2(u�Rk0) +Dk0)� �k0 � (u�Rk0)t = f, in Q+
2r

� ·D(u�Rk0) = g � � · (Dk0X + Bk0), on Q⇤
2r.

Recall that G(M) = F (M + Dk0) � �k0 has the same ellipticity constants as F and

G(O) = 0. Then Corollary 38 gives

||u�Rk0 ||H↵2(Q+
r )

 C

r↵2

⇣
||u�Rk0 ||L1(Q+

2r)
+ r

n
n+1 ||f ||Ln+1(Q+

2r)

⌘

+
C

r↵2

⇣
r||g||L1(Q⇤

2r)
+ r||� · (Dk0X + Bk0)||L1(Q⇤

2r)

⌘
.

Next we apply to v global H↵-estimates. Note that the values of v on the parabolic

boundary equal to u�Rk0 which is H↵2 . So, for 0 < ↵3 << ↵2 universal, we have

||v||
H↵3(Q+

r )
 C

r↵3

⇣
||v||L1(Q+

r ) + r↵2 ||u�Rk0 ||H↵2(Q+
r )

⌘

 C

r↵3
||u�Rk0 ||L1(Q+

2r)

+
C

r↵3

⇣
r

n
n+1 ||f ||Ln+1(Q+

2r)
+ r||g||L1(Q⇤

2r)
+ r||� · (Dk0X + Bk0)||L1(Q⇤

2r)

⌘
.
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Now, we return to (3.4.42) and we have that |w(X0, t0)| is bounded by

�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵2 C

r↵2

⇣
||u�Rk0 ||L1(Q+

2r)
+ r

n
n+1 ||f ||Ln+1(Q+

2r)

⌘

+
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵2 C

r↵2

⇣
r||g||L1(Q⇤

2r)
+ r||� · (Dk0X + Bk0)||L1(Q⇤

2r)

⌘

+
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵3 C

r↵3

⇣
||u�Rk0 ||L1(Q+

2r)
+ r

n
n+1 ||f ||Ln+1(Q+

2r)

⌘

+
�
|X0 � X̄0|+ |t0 � t̄0|1/2

�↵3 C

r↵3

⇣
r||g||L1(Q⇤

2r)
+ r||� · (Dk0X + Bk0)||L1(Q⇤

2r)

⌘

 Cµ↵3/2 ||u�Rk0 ||L1(Q+
2r)

+ Cµ↵3/2
⇣
r

n
n+1 ||f ||Ln+1(Q+

2r)
+ r||g||L1(Q⇤

2r)
+ r||� · (Dk0X + Bk0)||L1(Q⇤

2r)

⌘

 VI+ I0 + II0 + III0.

For termVI, we use the hypothesis of the induction, (3.4.34), thenVI  C1µ↵3/2 C̄
⇢2+↵Kr2+↵.

Moreover for term I0, we have

I0  Cr
n

n+1 ||f ||L1(Q+
r )

✓Z

Q+
r

1 dX dt

◆ 1
n+1

 Cr
n

n+1 ||f ||L1(Q+
r ) C(n)r

n+2
n+1

= Cr2||f ||L1(Q+
r )

then using the H� regularity of f and the fact that f(0, 0) = 0 we get

I0  Cr2||f � f(0, 0)||L1(Q+
r )  CKr2+�.

Also, terms II0 and III0 are in fact the same as terms II and III. That is,

V  C1µ
↵3/2

C̄

⇢2+↵
Kr2+↵ + Cµ↵3/2Kr2+� + C2⇢

1+� C̄

⇢2+↵
Kr2+↵.

So, returning to (3.4.41), we have

osc
Q+

r̄

w  CKr2+� + C1µ
↵3/2

C̄

⇢2+↵
Kr2+↵ + C2⇢

1+� C̄

⇢2+↵
Kr2+↵.

Next combining the above with (3.4.40) and choosing µ < 1 � ⌘ (then ⌘ < 1 � µ)
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we get

osc
Q+

⌘r

⇥
u(X, t)� (Rk0 + R̄)(X, t)

⇤
 1

2
(1� ✓)⌘2

C̄

⇢2+↵
Kr2+↵ + CKr2+�

+ C1µ
↵3/2

C̄

⇢2+↵
Kr2+↵ + C2⇢

1+� C̄

⇢2+↵
Kr2+↵.

(3.4.43)

Now, recall that our aim is to get relation (3.4.35). We choose the right constants

↵0, µ and C̄ for this purpose. So, take ↵0 so that ⌘↵0 = 1 � ✓
2 and ↵ = min{↵0, �}.

Take µ  ⌘
2(2+↵)

↵3

(4C1)
2
↵3

(then µ↵3/2  ⌘2+↵

4C1
), ⇢  ⌘

2+↵
1+�

(4C2)
1

1+�
(then C2⇢1+�  ⌘2+↵

4 ) and C̄ large

enough so that ⌘✓C̄
4⇢2+↵ � C (note that our choices are all independent of k0). Then we

return to (3.4.43) writing 1� ✓ as 1� ✓
2 �

✓
2 and recalling that r = ⇢⌘k0

2 ,

osc
Q+

⇢⌘k0+1

⇥
u(X, t)� (Rk0 + R̄)(X, t)

⇤
 1

2

✓
1� ✓

2

◆
C̄⌘2⌘k0(2+↵)K + Cr2+↵K

�K
⌘✓C̄

4⇢2+↵
r2+↵ + C̄

⌘2+↵

2
⌘k0(2+↵)

 C̄K⌘(k0+1)(2+↵).

This is relation (3.4.35) for Rk0+1 = Rk0+R̄. Note also that F (Dk0+D̄)�(�k0+�̄) = 0,

�0 · Bk0+1 = �0 · Bk0 + �0 · B̄ = 0 and for any i = 1, . . . n� 1,

nX

j=1

⇥
(Dk0+1)ij�

0
j + (�j)

0
xi
(Bk0+1)j

⇤
=

nX

j=1

⇥
(Dk0)ij�j + (�j)

0
xi
(Bk0)j

⇤

+
nX

j=1

⇥
(D̄)ij�j + (�j)

0
xi
(B̄)j

⇤
= 0.

It remains to get (3.4.33) for k = k0. To do so, we use relation (3.4.38) together with

(3.4.36) and then (3.4.34),

|Bk0+1 � Bk0 | = |B̄|  C

r
C̄Kr2+↵  CKr↵ = CK⌘k0(1+↵)

|Dk0+1 �Dk0 | = |D̄|  C

r2
C̄Kr2+↵  CKr↵ = CK⌘k0↵

|�k0+1 � �k0 | = |�̄|  C

r2
C̄Kr2+↵  CKr↵ = CK⌘k0↵

as we want. So the inductive proof is completed.
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Finally, it remains to get estimate (3.4.30). Observe that

lim
k!1

|Bk+1 � Bk|  lim
k!1

CK⌘k(1+↵) = 0, lim
k!1

|�k+1 � �k|  lim
k!1

CK⌘k↵ = 0

lim
k!1

|Dk+1 �Dk|  lim
k!1

CK⌘k↵ = 0, since ⌘ < 1.

That is the limits B1 := limk!1 Bk, �1 := limk!1 �k and D1 := limk!1 Dk exist

and R0(X, t) = B1 · X + �1t + 1
2X

⌧D1X satisfies (3.4.30). Indeed, �0 · B1 = 0,

F (D1)� �1 = 0 and for any k 2 N we have

osc
Q+

⇢⌘k

�
u(X, t)�R0(X, t)

�
 osc

Q+

⇢⌘k

�
u(X, t)�R0(X, t)

�

+ ⇢⌘k|Bk � B1|+ ⇢⌘2k|�k � �1|+ 1

2
⇢⌘2k||Dk �D1||

here we wrote u(X, t)�R0(X, t) = u(X, t)�Rk(X, t)+Rk(X, t)�R0(X, t)  u(X, t)�

Rk(X, t) + |Bk � B1| |X|+ |�1 � �k||t|+ 1
2 ||D1 �Dk|||X|2. We have

osc
Q+

⇢⌘k

�
u(X, t)�R0(X, t)

�
 C̄K⌘k(2+↵) + CK⌘k

1X

j=k

⌘j(1+↵) + 2CK⌘2k
1X

j=k

⌘j↵

 CK⌘k(2+↵)

using the sum of geometric series and the proof is completed.
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Chapter 4

Regularity Theory for the Fully

Nonlinear Parabolic Thin Obstacle

Problem

In the present chapter we intent to study the regularity of the viscosity solution of

the following thin obstacle problem

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

F (D2u)� ut = 0, in Q+
1

uy  0, on Q⇤
1

u � ', on Q⇤
1

uy = 0, on Q⇤
1 \ {u > '}

u = u0, on @pQ
+
1 \Q⇤

1

(4.0.1)

where, F is a uniformly elliptic operator on Sn with ellipticity constants � and ⇤ and

' : Q
⇤
1 ! R, u0 : @pQ

+
1 \Q⇤

1 ! R are given functions with ' 2 H2+↵ (Q⇤
1) the so-called

obstacle and with u0 � ' on @pQ⇤
1 for compatibility reasons. Note that the conditions

on Q⇤
1 can be written also as max{uy,'� u} = 0.

We consider that the solution u of (4.0.1) can be recovered as the minimum viscosity
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supersolution of

8
>>>>>>>><

>>>>>>>>:

F (D2v)� vt  0, in Q+
1

vy  0, on Q⇤
1

v � ', on Q⇤
1

v � u0, on @pQ
+
1 \Q⇤

1

(4.0.2)

with ut locally bounded by above in Q+
1 (note that under suitable assumptions on F

we have that ut does exist in Q+
1 once F (D2u)� ut = 0 in Q+

1 in the viscosity sense).

The aim of this chapter is to prove that u lies in H1+↵ up to the flat boundary Q⇤
1.

To do so we make the following assumptions on F and u0.

• Assumptions on F . First we assume that F is convex on Sn so we have interior

H2+↵-estimates for the viscosity solutions. Moreover considering the following

extension of F in Rn⇥n

F (M) = F

✓
M +M ⌧

2

◆
, for M 2 Rn⇥n

we assume that F is once continuously di↵erentiable in Rn2
and we denote Fij :=

@F
@mij

. We can easily see that Fij(M) = Fji(M) for any M , indeed let H ij denote

the matrix with elements

�
H ij

h

�
kl
=

8
><

>:

0, if k 6= i or l 6= j,

h, if k = i and l = j

where h 2 R and observe that
�
H ij

h

�⌧
= Hji

h then

Fij(M) = lim
h!0

F
�
M +H ij

h

�
� F (M)

h
= lim

h!0

F

✓
M+Hij

h +(M+Hij
h )

⌧

2

◆
� F (M)

h

= lim
h!0

F

✓
M+M⌧

2 +
(Hji

h )
⌧
+Hji

h

2

◆
� F (M)

h

= lim
h!0

F

✓
M+Hji

h +(M+Hji
h )

⌧

2

◆
� F (M)

h
= Fji(M).

We suppose also that Fin = 0, for any i = 1, . . . , n � 1 (then Fni = 0 as well).
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Finally, we assume for convenience that F (O) = 0, an assumption that can be

easily removed (see the introduction of subsection 3.3.3).

• Assumptions on u0. Note that we intend to examine the regularity up to flat

boundary Q⇤
1 (and not up to @pQ

+
1 \ Q⇤

1) thus we may assume that u0 > ' on

@pQ⇤
1. Therefore if v 2 C

⇣
Q

+
1

⌘
is the viscosity solution of

8
>>>>><

>>>>>:

F (D2v)� vt = 0, in Q+
1

vy = 0, on Q⇤
1

v = u0, on @pQ
+
1 \Q⇤

1

(4.0.3)

then due to the continuity of v and ' and the compactness of @pQ⇤
1 we see that

there exists some 0 < ⇢ < 1 so that v > ' on Q⇤
1 \ Q⇤

1�⇢. Then using the ABP-

type estimate of Theorem 28 we get that u > ' on Q⇤
1 \ Q⇤

1�⇢ thus uy = 0 on

Q⇤
1 \Q⇤

1�⇢, in the viscosity sense.

We denote by �⇤ := {(x, t) 2 Q⇤
1 : u(x, 0, t) = '(x, t)} the contact set, by ⌦⇤ :=

{(x, t) 2 Q⇤
1 : u(x, 0, t) > '(x, t)} the non-contact set and by � = @�⇤ \ Q⇤

1 the

free boundary. We assume that �⇤ 6= ; since otherwise we would have a Neumann

boundary value problem for which the regularity is known from the previous chapter.

Note that around the points of the int(�⇤) and around the points of ⌦⇤ we can treat our

problem as Dirichlet or Neumann problem respectively. That is, around these points

the regularity is known. Finally, we denote by K := ||u||L1(Q+
1 )

+ ||'||H2+↵(Q⇤
1)

and in

the following a constant C > 0 that depends only on K,n,�,⇤ and ⇢ will be called

universal.

4.1 A penalized problem

We start with the study of the following penalized problem

8
>>>>><

>>>>>:

F
�
D2u(k)

�
�
�
u(k)

�
t
= 0, in Q+

1

�
u(k)

�
y
= �k

�
'� u(k)

�+
:= g(k), on Q⇤

1

u(k) = u0, on @pQ
+
1 \Q⇤

1.

(4.1.1)

118

GEORGIANA C
HATZIG

EORGIO
U



We observe that (4.1.1) is not an obstacle problem. Using ABP-estimate and a

barrier argument we obtain independent of k estimates for u(k) and g(k) (Lemmata 67

and 68). Then we can treat (4.1.1) as a non-homogeneous Neumann problem and using

suitable Hölder estimates of the previous chapter we obtain the uniform convergence

of u(k) to u (Proposition 69) and the existence of
�
u(k)

�
y
in the classical sense (Lemma

71). Note also that for any k 2 N, comparing u(k) with the solution v of (4.0.3) we

have that u(k) > ' on Q⇤
1 \Q⇤

1�⇢, by Theorem 28.

Lemma 67 (Independent of k estimate for u(k)). For any k 2 N,

||u(k)||L1(Q+
1 )

 max{||u||L1(@pQ+
1 \Q⇤

1)
, ||'||L1(Q⇤

1)
}. (4.1.2)

Proof. First, by Theorem 28 we have

inf
Q+

1

u(k) � inf
@pQ

+
1 \Q⇤

1

u(k) = inf
@pQ

+
1 \Q⇤

1

u

since
�
u(k)

�
y
 0 in the viscosity sense on Q⇤

1. Hence it remains to bound supQ+
1
u(k).

Assume that

sup
Q+

1

u(k) > sup
@pQ

+
1 \Q⇤

1

u

and let (X0, t0) 2 Q
+
1 be such that u(k)(X0, t0) = supQ+

1
u(k) =: M . From weak maxi-

mum principle (see [44], Corollary 3.20) we know that

||u(k)||
L1(Q+

1 )
 ||u(k)||L1(@pQ+

1 )

thus we can choose (X0, t0) = (x0, 0, t0) 2 Q⇤
1. Then a Hopf’s-type lemma gives that

u(k)
y (x0, t0) < 0 in the viscosity sense. Therefore �k

�
'(x0, t0)� u(k)(x0, 0, t0)

�
< 0,

that is M = u(k)(x0, 0, t0) < '(x0, t0)  ||'||L1(Q⇤
1)
.

Lemma 68 (Independent of k estimate for g(k)). For any k 2 N,

||g(k)||L1(Q⇤
1)

 C (K,n,�,⇤, ⇢) . (4.1.3)

Proof. Note that g(k)  0 on Q⇤
1, so we need to obtain only a lower bound. Let (x0, t0) 2

Q
⇤
1 be such that g(k)(x0, t0) = minQ

⇤
1
g(k) and we may assume that g(k)(x0, t0) < 0

(excluding the trivial case where g(k) = 0 identically). Recall also that u(k) > ' on

Q⇤
1 \Q⇤

1�⇢ which implies that g(k) = 0 on Q⇤
1 \Q⇤

1�⇢. That is, (x0, t0) 2 Q⇤
1�⇢.
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We intend to turn the obstacle ' into a suitable test function (whose normal deriva-

tive will not depend on k) that touches u(k) by below at (x0, t0) and then to use the

viscosity condition
�
u(k)

�
y
= g(k) to bound g(k)(x0, t0).

We denote by

M := inf
Q+

1

u� sup
Q⇤

1

'

and we observe that M  0, indeed

inf
Q+

1

u  inf
Q⇤

1

u  u(x⇤, 0, t⇤) = '(x⇤, t⇤)  sup
Q⇤

1

'

where (x⇤, t⇤) is any point of �⇤. Keep also in mind that by Lemma 67, M 

infQ+
1
u(k)� supQ⇤

1
'. We consider b to be the solution of the following Dirichlet bound-

ary value problem

8
>>>>>>>><

>>>>>>>>:

M� �D2b, �
n ,⇤

�
� bt = (⇤n+ 1) ||'||H2+↵(Q⇤

1)
, in Q+

⇢

b = M, on @pQ+
⇢ \Q⇤

⇢

b = 0, on Q⇤
⇢/2

b(x, 0, t) = 2M
⇢

⇣
max

n
|x|, |t| 12

o
� ⇢

2

⌘
, on Q⇤

⇢ \Q⇤
⇢/2.

Note that max
n
|x|, |t| 12

o
= ⇢

2 on @pQ
⇤
⇢/2 and max

n
|x|, |t| 12

o
= ⇢ on @pQ⇤

⇢, that is, b = 0

on @pQ⇤
⇢/2 and b = M on @pQ⇤

⇢. Hence the Dirichlet data on @pQ+
⇢ is a continuous

function (recall also that the maximum of two continuous functions is continuous).

Moreover applying regularity theory for Dirichlet problems in Q+
⇢/2, we obtain that

b 2 H1+↵
⇣
Q

+
⇢/4

⌘
with the corresponding estimate depending only on ⇢, n,�,⇤, K. In

particular, |Db(0, 0)|  C (K,n,�,⇤, ⇢).

Next, we consider the function

�(X, t) = u(k)(x0, 0, t0)� '(x0, t0) + '(x, t) + b ((X, t)� (x0, 0, t0))

for (X, t) 2 Q+
⇢ (x0, t0) ⇢ Q+

1 . Since b(0, 0) = 0, �(x0, 0, t0) = u(k)(x0, 0, t0). Moreover,
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• On @pQ+
⇢ (x0, t0) \Q⇤

⇢(x0, t0):

�(X, t)  u(k)(x0, 0, t0)� '(x0, t0) + sup
Q⇤

1

'+ inf
Q+

1

u(k) � sup
Q⇤

1

'

 inf
Q+

1

u(k)  u(k)(X, t), since g(k)(x0, t0) < 0.

• On Q⇤
⇢(x0, t0):

�(x, 0, t)  u(k)(x, 0, t)� '(x, t) + '(x, t) = u(k)(x, 0, t)

using that b  0 on Q⇤
⇢ and that g(k)(x0, t0)  g(k)(x, t) for any (x, t) 2 Q

⇤
1 and

g(k)(x0, t0) < 0, that is, '(x0, t0) � u(k)(x0, 0, t0) �
�
'(x, t)� u(k)(x, 0, t)

�+ �

'(x, t)� u(k)(x, 0, t).

That is we have that �  u(k) on @pQ+
⇢ (x0, t0). Note also that if we extend ' in Q+

1 by

'(X, t) = '(x, t) and li, i = 1, . . . , n denote the eigenvalues of D2' 2 Sn

M�
✓
D2',

�

n
,⇤

◆
� 't =

�

n

X

li>0

li + ⇤
X

li<0

li � 't � �⇤
X

li<0

|li|� |'t|

� �⇤n||D2'||1 � |'t| � �(⇤n+ 1)||'||H2+↵(Q⇤
1)
.

That is, M� �D2b+D2', �
n ,⇤

�
� bt�'t � 0. Thus, u(k)�� 2 Sp

�
�
n ,⇤

�
in Q+

⇢ (x0, t0).

Applying maximum principle we have that �  u(k) in Q+
⇢ (x0, t0). In other words �

touches u(k) by below at (x0, t0). Hence �y(x0, 0, t0)  g(k)(x0, t0). But we observe that

�y(x0, 0, t0) = by(0, 0) which completes the proof.

Proposition 69. u(k) ! u uniformly in Q
+
1 .

Proof. We split our proof into two steps.

Step 1. We prove equicontinuity of u(k)’s. For, it is enough to obtain an independent

of k modulus of continuity for u(k) in Q
+
1 . Note that Lemma 67 gives a uniform L1-

bound for u(k) in Q
+
1 . Also Lemma 68 gives a uniform L1-bound for g(k), thus using

Theorem 37 we get a uniform H↵-estimate for u(k) in Q
+
1� ⇢

2
. So it remains to get a

uniform modulus of continuity in Q
+
1 \Q+

1� ⇢
2
.

Note that
�
u(k)

�
y
=0 on Q⇤

1 \Q⇤
1�⇢. Thus if we extend u(k) in Q1 \Q1�⇢ considering

its even reflection ũ(k) with respect to y we have that ũ(k) 2 Sp(�,⇤) (see Proposition

21). We observe also that ũ(k)|@pQ1 = u0 is independent of k and smooth enough
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and ũ(k)|@pQ1�⇢ satisfy uniform H↵-estimate from the previous discussion. So using

global H↵-estimates for Dirichlet problems we get the uniform modulus we desired in

Q
+
1 \Q+

1� ⇢
2
.

Step 2. We explain now why equicontinuity is enough. First recall again that Lemma

67 ensures the existence of a uniform L1-bound for u(k) in Q
+
1 . Therefore Arzelá-Ascoli

implies that every subsequence of {u(k)} has a subsequence that converges uniformly

in Q
+
1 . We claim that every uniformly convergent subsequence of {u(k)} must converge

to u. Thus we should have that u(k) ! u uniformly in Q
+
1 , so to finish the proof it

remains to prove this claim.

Let v be the uniform limit of {u(km)} in Q
+
1 . If we show that v satisfies prob-

lem (4.0.1) then v = u by uniqueness. The closedness result of Proposition 20 gives

immediately that

8
><

>:

F (D2v)� vt = 0, in Q+
1

vy  0, on Q⇤
1

in the viscosity sense. Additionally, v = u0 on @pQ
+
1 \Q⇤

1. It remains to check that

1. vy = 0 on Q⇤
1 \ {v > '}, in the viscosity sense.

2. v � ' on Q⇤
1.

For 1. let (x0, t0) 2 Q⇤
1 be so that v(x0, 0, t0) > '(x0, t0). From the continuity of

v and ', there exists some small � > 0 so that v(x, 0, t) > '(x, t) for any (x, t) 2

Q
⇤
�(x0, t0). Next we use the uniform convergence of u(km) to v. Take

" := min
Q

⇤
�

(v � ') > 0

then there exists n0 2 N so that |u(km) � v| < " in Q
⇤
�(x0, t0) for any m � n0. Hence

u(km) � v > �" � �v + ', that is u(km) > ', so
�
u(km)

�
y
= 0 in Q

⇤
�(x0, t0) for any

m � n0. Since F
�
D2u(km)

�
�
�
u(km)

�
t
= 0 in Q

+
� (x0, t0) again from the closedness

result of Proposition 20 we get that vy = 0 on Q
⇤
�(x0, t0), in the viscosity sense.

For 2. we assume that there exists some (x0, t0) 2 Q⇤
1 such that v(x0, 0, t0) <

'(x0, t0) to get a contradiction. Again using the convergence we have that there

exists n0 2 N so that u(km)(x0, 0, t0) � v(x0, 0, t0) < '(x0, t0) � v(x0, 0, t0) for any

m � n0. Hence g(km)(x0, 0, t0) = �km
�
'(x0, t0)� u(km)(x0, 0, t0)

�
, that is, '(x0, t0) �
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u(km)(x0, 0, t0) = � 1
km

g(km)(x0, 0, t0) for any m � n0 and g(k) is bounded independently

of k by Lemma 68. So taking m ! 1 we get that '(x0, t0) = v(x0, 0, t0) which is a

contradiction.

Proposition 69 gives the following.

Lemma 70. For any 0 < � < 1, Du(k) ! Du uniformly in K� := Q1�� \ {y > �}.

Proof. Note first that from interior H1+↵-estimates for viscosity solutions of F (D2v)�

vt = 0 we know the existence of Du(k), Du in K� and a uniform H↵-estimate for Du(k)

(recall that ||u(k)||L1(Q+
1 )

are uniformly bounded). Therefore using Arzelá-Ascoli we

get that every subsequence of {Du(k)} has a subsequence that converges uniformly in

K�. Then by standard calculus we know that any uniformly convergent subsequence

of {Du(k)} should converge to Du (since u(k) ! u). This gives the desired.

Lemma 71. For any 0 < � < 1, u(k) 2 H1+↵
⇣
Q

+
1��

⌘
.

Although the H1+↵-estimates of the above may depend on k, Lemma 71 ensures

the existence and regularity of
�
u(k)

�
y
on Q⇤

1 in the classical sense.

Proof. Using Lemma 68 and Theorem 37 we get a uniform H↵-estimate for u(k) in Q
+
1� �

2

which means that g(k) = �k
�
'� u(k)

�+
is H↵ on Q

⇤
1� �

2
. Then applying Theorem 54

we get the desired.

4.2 Semi-concavity of the solution

In this section we obtain some bounds for the first and second derivatives of the

solution. The first application of these bounds is about to ensure that uy+ exists on

Q⇤
1.

Proposition 72. For any 0 < � < 1,

(A) |uxi |, |uy|  C, in Q+
1��, for any i = 1, . . . , n� 1

(B) uxixi , ut � �C, in Q+
1��, for any i = 1, . . . , n� 1

(C) uyy  C, in Q+
1��

where the constant C > 0 depends only on K,n,�,⇤, ⇢ and �.
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Note that since F is convex, we have that uxixj and ut exist inside Q
+
1 in the classical

sense by interior estimates.

Proof.

For (A), we thicken the obstacle '. First, we extend ' as a solution inside Q+
1 and

Q�
1 (following the idea of Theorem 1(a) in [2], see also Proposition 2.1 in [18]), that is

we consider the viscosity solutions of the Dirichlet problems

8
>>>>><

>>>>>:

F (D2'̃)� '̃t = 0, in Q+
1

'̃ = ', on Q⇤
1

'̃ = �||u||L1(Q+
1 )
, on @pQ

+
1 \Q⇤

1

and

8
>>>>><

>>>>>:

F (D2'̃)� '̃t = 0, in Q�
1

'̃ = ', on Q⇤
1

'̃ = �||u||L1(Q+
1 )
, on @pQ

�
1 \Q⇤

1.

For any 0 < � < 1 and since ' is smooth enough we obtain, using Theorem 49, that '̃ is

Lipschitz in Q1� �
2
with a constant that depends only on K,n,�,⇤ and �. Moreover, we

can show that ũ � '̃ in Q1, where ũ denotes the even reflection of u in y in Q1. Indeed,

u� '̃ 2 Sp

�
�
n ,⇤

�
in Q+

1 , u � ' = '̃ on Q⇤
1, u � �||u||L1(Q+

1 )
= '̃ on @pQ

+
1 \Q⇤

1, thus

using maximum principle we get that u � '̃ in Q
+
1 and we repeat the same argument

in Q�
1 (note that F (D2ũ) � ũt = 0 in Q�

1 due to the assumptions on F ). Finally,

Proposition 21 ensures that F (D2ũ) � ũt  0 in Q1 and that F (D2ũ) � ũt = 0 in

Q1 \ {ũ > '̃} in the viscosity sense. That is ũ satisfies a thick obstacle problem in Q1

with obstacle '̃ which is Lipschitz in Q1� �
2
. Therefore ũ 2 H1 (Q1��) with a constant

that depends only on K,n,�,⇤ and � (see [39], [37]) which gives (A).

For (B), we denote by d := min{⇢, �} and we consider the set Q̃+ := Q+
1� d

3

\Q+
1� 2d

3

.

We observe that uy = 0 on Q̃⇤ in the viscosity sense, since Q̃⇤ ⇢ Q⇤
1\Q⇤

1�⇢. Thus H
2+↵-

estimates of subsection 3.4.1 can be applied in Q̃+, so we have H↵-estimates for uxixi

and ut on @pQ
+
1� d

2

\Q⇤
1� d

2

. In particular we have uniform bounds for the corresponding

di↵erence quotients, that is,

u(x+ hei, y, t) + u(x� hei, y, t)� 2u(x, y, t)

h2
� �C (4.2.1)

where {ei}1in is the orthonormal basis of Rn and

u(x, y, t� h)� u(x, y, t)

h
� �C (4.2.2)

for (X, t) 2 @pQ
+
1� d

2

\Q⇤
1� d

2

and h > 0 small enough (depending only on d). Note also
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that constant C > 0 depends only on K,n,�,⇤, ⇢ and �.

We study (4.2.1) first in order to bound uxixi , for i = 1, . . . , n� 1. We observe that

v(x, y, t) :=
u(x+ hei, y, t) + u(x� hei, y, t)

2
+ Ch2 � u(x, y, t), on @pQ

+
1� d

2

\Q⇤
1� d

2
.

Moreover, for (x, t) 2 Q⇤
1� d

2

,

v(x, 0, t) =
u(x+ hei, 0, t) + u(x� hei, 0, t)

2
+ Ch2

� '(x+ hei, t) + '(x� hei, t)

2
+ Ch2 � '(x, t)

changing C if necessary depending on K. We observe also that the convexity of F

ensures that F (D2v)� vt  0 in Q+
1� d

2

in the viscosity sense. Finally note that vy  0

on Q⇤
1� d

2

in the viscosity sense (can be obtained as Theorem 43). That is v is a viscosity

supersolution of (4.0.2) in Q+
1� d

2

. But u is assumed to be the least supersolution of

(4.0.2), thus v � u in Q+
1� d

2

. That is,

u(x+ hei, y, t) + u(x� hei, y, t)� 2u(x, y, t)

h2
� �C

in Q+
1� d

2

and C > 0 depends only on K,n,�,⇤, ⇢ and �, so we take h ! 0+. Next we

study (4.2.2) in a similar way in order to bound ut. We observe that

w(x, y, t) := u(x, y, t� h) + Ch � u(x, y, t), on @pQ
+
1� d

2

\Q⇤
1� d

2
.

Moreover, for (x, t) 2 Q⇤
1� d

2

,

w(x, 0, t) = u(x, 0, t� h) + Ch � '(x, t� h) + Ch � '(x, t)

changing C if necessary depending on K. Finally, we observe that F (D2w)�wt = 0 in

Q+
1� d

2

and wy  0 on Q⇤
1� d

2

in the viscosity sense. That is w is a viscosity supersolution

of (4.0.2). But u is assumed to be the least supersolution of (4.0.2) in Q+
1� d

2

, thus w � u

in Q+
1� d

2

. That is,

u(x, y, t� h)� u(x, y, t)

h
� �C

in Q+
1� d

2

and C > 0 depends only on K,n,�,⇤, ⇢ and �, so we take h ! 0+.
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For (C), we use (B) and the equation. To study the equation further we define

aij(X, t) :=

Z 1

0

Fij

�
hD2u(X, t)

�
dh

and we observe that d
dh [F (hD2u(X, t))] =

Pn
i,j=1 Fij (hD2u(X, t)) uxixj(X, t). That

is,

nX

i,j=1

aij(X, t) uxixj(X, t) =

Z 1

0

nX

i,j=1

Fij

�
hD2u(X, t)

�
uxixj(X, t) dh

= F
�
D2u(X, t)

�
� F (O) = F

�
D2u(X, t)

�
.

Thus,
Pn

i,j=1 aij(X, t) uxixj(X, t)�ut(X, t) = 0 in Q+
1 . Also, we have that aij = aji and

that ain = ani = 0, for any 1  i  n � 1, from the assumptions on F . Additionally

we may observe that using the ellipticity of F we have that for any M 2 Sn and h > 0

�h  F
�
M +H ii

h

�
� F (M)  ⇤h

so taking h ! 0+ we have that �  Fii(M)  ⇤. In particular, �  aii(X, t)  ⇤, for

any (X, t) 2 Q+
1 , i = 1, . . . , n. So if An�1(X, t) := (aij(X, t))i,j=1,...,n�1 2 Sn�1 we have

ann(X, t)uyy(X, t) = �
n�1X

i,j=1

aij(X, t) uxixj(X, t) + ut(X, t)

= �tr
�
An�1(X, t) D2

n�1u(X, t)
�
+ ut(X, t)

= �tr
⇥
An�1(X, t)

�
D2

n�1u(X, t) + CIn�1

�⇤

+ tr (CAn�1(X, t)) + ut(X, t)

where C > 0 the constant of (B), so D2
n�1u(X, t) + CIn�1 � 0 in Q+

1��. Also,

tr (An�1(X, t)) =
Pn�1

i=1 aii(X, t) � �(n� 1) � 0, thus

tr
⇥
An�1(X, t)

�
D2

n�1u(X, t) + CIn�1

�⇤
= tr [An�1(X, t)] tr

⇥
D2

n�1u(X, t) + CIn�1

⇤
� 0

and tr (CAn�1(X, t)) = C
Pn�1

i=1 aii(X, t)  C⇤(n � 1), ann(X, t) � �. Hence we have

that

uyy  C
⇤(n� 1) + 1

�
, in Q+

1��.
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For any (x, t) 2 Q⇤
1 we define

�(x, t) := lim
y!0+

uy(x, y, t).

Note that Proposition 72 ensures the existence of the above limit for any (x, t) 2 Q⇤
1.

Indeed, we consider the function v(X, t) = uy(X, t)�Cy, for (X, t) 2 Q+
1 . Then using

(A) and (C) of Proposition 72 we obtain that v > �2C and vy = uyy �C  0 in Q+
1��,

that is, v is monotone decreasing in y and bounded by below, thus limy!0+ v(x, y, t)

exists for (x, t) 2 Q⇤
1��, for any 0 < � < 1.

Furthermore we remark that the existence of the above limit ensures (through a

simple De L’Hôpital rule) the existence of limy!0+
u(x,y,t)�u(x,0,t)

y , that is uy+ exists on

Q⇤
1 and equals to � (note also that uy is continuous in y up to Q⇤

1). Thereafter the

viscosity condition uy  0 on Q⇤
1 suggests that we should have

�  0, on Q⇤
1. (4.2.3)

Now although we know that uy+ = � on Q⇤
1 in the classical sense, we cannot use the

viscosity condition to get (4.2.3) since we do not know if uy+ is continuous in (x, 0, t).

We prove (4.2.3) in the next lemma using the penalized problems introduced in the

previous section to approach u by classical solutions.

Lemma 73. �  0 on Q⇤
1.

Proof. For k 2 N (fixed), we consider the solution u(k) of (4.1.1). We denote by

v :=
�
u(k)

�
y
which exists in the classical sense and it is continuous in Q+

1 [Q⇤
1 (due to

Lemma 71). Then v  0 on Q⇤
1 and u(k) > ', that is, v = 0 on Q⇤

1 \Q⇤
1�� if 0 < � < ⇢.

Moreover we can use Theorem 52 in Q+
1� �

3

\Q+
1� 2�

3

to obtain that

v  M, on @pQ
+
1� �

2

\Q⇤
1� �

2

where M > 0 is a constant independent of k (recall that by Lemma 67 u(k)’s have

uniform L1-bound).

Next we apply a barrier argument to v. We define the function b to be the viscosity
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solution of (see also the proof of Lemma 68)

8
>>>>>>>><

>>>>>>>>:

M+
�
D2b, �

n ,⇤
�
� bt = 0, in Q+

1� �
2

b = M, on @pQ
+
1� �

2

\Q⇤
1� �

2

b = 0, on Q⇤
1��

b(x, 0, t) = 2M
�

⇣
max

n
|x|, |t| 12

o
� 1 + �

⌘
, on Q⇤

1� �
2

\Q⇤
1��.

As explained in the proof of Lemma 68 the boundary data given in the above problem

is a continuous function. We remark that

v  b, on @pQ
+
1� �

2

\Q⇤
1� �

2

and

v  0  b, on Q⇤
1� �

2
.

Moreover, we know that v 2 Sp

�
�
n ,⇤

�
in Q+

1� �
2

(this can be obtained if we recover
�
u(k)

�
y
as a uniform limit of di↵erence quotients and then we use Theorem 4.6 of [45] and

the closedness of viscosity solutions proved in Proposition 10). Then v� b 2 Sp

�
�
n ,⇤

�

in Q+
1� �

2

. So using maximum principle we get that v  b in Q+
1� �

2

and note that function

b does not depend on k. On the other hand
�
u(k)

�
y
! uy as k ! 1 pointwise in Q+

1� �
2

by Lemma 70. Hence uy  b in Q+
1� �

2

. Finally, we observe that b = 0 on Q⇤
1��, for any

0 < � < ⇢ and we take y ! 0+.

4.3 Regularity of the solution

Recall that at the points of ⌦⇤ (as well as at the points of the interior of �⇤) the

regularity of the solutions is known. Thereafter at these points the viscosity Neumann

condition holds in the classical sense, thus � = 0 in ⌦⇤.

In this section we concentrate in studying the regularity of � around free boundary

points in order to treat our problem as a non-homogeneous Neumann boundary value

problem around these points. To achieve this we show first Lemma 78 which gives an

H↵-estimate for � in universal neighborhoods of points of ⌦⇤. Lemma 78 is based on

Lemmata 76 and 77 and on semi-concavity of u in y. Lemma 76 says that considering

a non-contact point P0 2 Q⇤
1/2, we can find a universal neighborhood of P0 which
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contains a small universal thin-cylinder where � decays proportionally to its radius.

Finally Lemma 77 says that the information we have in this small thin cylinder can be

carried to a suitable set inside Q+
1 and then is carried back in a parabolic neighborhood

of P0 using semi-concavity in y. An iterative application of the above gives Lemma 78.

We start with Lemma 75 which is important in proving Lemma 76. The following

remark is used in the proof of Lemma 75.

Remark 74. For P0 := (x0, t0) 2 ⌦⇤, K0 := 2K and

'̃P0(x, t) := '(x0, t0) +D'(x0, t0) · (x� x0)�K0(t� t0) +K0|x� x0|2.

we have that '̃P0 > ' in Q⇤
1 \ {t  t0} \ {(x0, t0)}.

Indeed, let � = '̃P0 � '. Then we observe that

(a) �(x0, t0) = 0.

(b) D�(x, t) = D'(x0, t0) + 2K0(x� x0)�D'(x, t), thus D�(x0, t0) = 0.

(c) D2�(x, t) = 2K0In�1 �D2'(x, t) > 0, that is � is convex with respect to x.

(d) �t(x, t) = �2K0 � 't(x, t) < 0, that is � is monotone decreasing with respect to

t.

Then (c) (through integration) and (b) give that �(x, t0) � �(x0, t0) > (x � x0) ·

D�(x0, t0) = 0 for x 6= x0. Thus by (a) we have that �(x, t0) > �(x0, t0) = 0, for

x 6= x0. On the other hand (d) gives that �(x, t) > �(x, t0) for any t < t0 and any

x. Combining the above we get that �(x, t) > �(x0, t0) = 0, for any x 6= x0 and any

t < t0.

Lemma 75. For P0 = (x0, t0) 2 ⌦⇤, K0 := 2K and C0 >
n
� [⇤(n� 1) + 1] we define

hP0(x, y, t) := '(x0, t0) +D'(x0, t0) · (x� x0)�K0(t� t0) +K0|x� x0|2 � C0K0y
2.

We consider also any set of the form ⇥ := ⇥̃ ⇥ (t1, t0] ⇢ Q1, with P0 2 ⇥, ⇥̃ ⇢ Rn a

bounded domain containing x0 and t1 < t0. Then

sup
@p⇥\{y�0}

(u� hP0) � 0.

Proof. Let w := u� hp0 then
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1. w(x0, 0, t0) = u(x0, 0, t0)� '(x0, t0) > 0, since (x0, t0) 2 ⌦⇤.

2. w 2 Sp

�
�
n ,⇤

�
in Q+

1 . Indeed, we note that (hP0)ij = 0 for i 6= j, (hP0)ii = 2K0 for

i < n, (hP0)nn = �2C0K0 and (hP0)t = �K0. Then M+
�
D2hP0 ,

�
n ,⇤

�
� (hP0)t =

�2C0K0
�
n+2K0⇤(n�1)+K0 < 2K0

⇥
� [⇤(n� 1) + 1] + ⇤(n� 1) + 1

2

⇤
= �K0 <

0 in the classical sense. Since u 2 Sp

�
�
n ,⇤

�
in Q+

1 we get the desired.

3. wy = 0 on ⌦⇤ in the classical sense. Indeed, we note that (hP0)y = �2K0n2⇤
� y,

that is (hP0)y = 0 on Q⇤
1. Since uy = 0 on ⌦⇤ in the classical sense we get the

desired.

Now we denote by w⇤ the extension of w in Q1 considering its even reflection with

respect to y and we have that w⇤ 2 Sp

�
�
n ,⇤

�
in Q1 \ �⇤ (see Proposition 21). Then

maximum principle (Corollary 26) gives that

sup
@p(⇥\�⇤)\{y�0}

w = sup
@p(⇥\�⇤)

w⇤ � sup
⇥\�⇤

w⇤ � w(x0, 0, t0) > 0

since (x0, t0) 2 ⇥\�⇤. Finally we observe that @p (⇥ \�⇤)\{y � 0} ⇢ (@p⇥ \ {y � 0})

[ (�⇤ \ {t  t0}). On the other hand, hP0 = '̃P0 > ' on Q⇤
1 \ {t  t0} \ {(x0, t0)}

from Remark 74 and ' = u on �⇤, that is w < 0 on �⇤ \ {t  t0} and the proof is

complete.

Lemma 76. For � > 0 we define ⌦⇤
� := {(x, t) 2 Q⇤

1 : �(x, t) > ��}. Let (x0, t0) 2

⌦⇤\Q⇤
1/2, then there exist constants 0 < C̄ < ¯̄C < 1 which depend only on K, n,�,⇤, ⇢

so that for any 0 < � < 1
2 there exists a thin-cylinder Q⇤

C̄�(x̄, t̄) so that

Q⇤
C̄�(x̄, t̄) ⇢ Q⇤

¯̄C�
(x0, t0) \ ⌦⇤

�.

Proof. Let (x0, t0) 2 ⌦⇤ \Q⇤
1/2, we apply Lemma 75 with

⇥ := B⇤
C1�(x0)⇥ (�C2�, C2�)⇥

�
t0 � (C1�)

2, t0
⇤

where 0 < C2 << C1 << 1 to be chosen. Then there exists P1 = (x1, y1, t1) 2

@p⇥ \ {y � 0} so that

u(P1)� hP0(P1) � 0. (4.3.1)

We split into cases.

Case 1. If |x1 � x0| = C1� or t1 = t0 � (C1�)2. Then using (4.3.1) and Remark 74
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we have in the first occasion that

u(P1) � '(x0, t0) +D'(x0, t0) · (x1 � x0)�K0(t1 � t0) +
K0

2
|x1 � x0|2

+
K0

2
|x1 � x0|2 � C0K0y

2
1

� '(x1, t1) +
K0

2
(C1�)

2 � C0K0(C2�)
2

and in the second occasion we have that

u(P1) � '(x0, t0) +D'(x0, t0) · (x1 � x0) +K0|x1 � x0|2 �
K0

2
(t1 � t0)

� K0

2
(t1 � t0)� C0K0y

2
1

� '(x1, t1) +
K0

2
(C1�)

2 � C0K0(C2�)
2.

Thus in any case

u(x1, y1, t1) � '(x1, t1) + C4�
2 (4.3.2)

where C4 > 0 a constant depending only on universal constants and on C1, C2 (choosing

0 < C2 <
q

C0
2 C1).

Now take any (x2, t2) 2 Q⇤
C3�(x1, t1), that is |x1 � x2| < C3� and t1 � (C3�)2 <

t2  t1, for C3 to be chosen. First we intend to transfer the information (4.3.2) from

(x1, y1, t1) to (x2, y1, t2) using the tangential semi-convexity of u (Proposition 72). We

denote by ⌧ = x2�x1
|x2�x1| 2 Rn�1 and we assume that (x2 � x1) · Dn�1(u � ')(P1) � 0

(considering the extension of ' in Q+
1 where '⇤(x, y, t) = '(x, y)). We notice that

Z |x2�x1|

0

Z e

0

(u� ')⌧⌧ (x1 + ⌧h, y1, t1) dhde

=

Z |x2�x1|

0

[(u� ')⌧ (x1 + ⌧e, y1, t1)� (u� ')⌧ (x1, y1, t1)] de

= (u� ')(x2, y1, t1)� (u� ')(x1, y1, t1)� |x2 � x1|(u� ')⌧ (x1, y1, t1)

and

Z t1

t2

(u� ')t(x2, y1, h) dh = (u� ')(x2, y1, t1)� (u� ')(x2, y1, t2).
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Combining the above we get

Z |x2�x1|

0

Z e

0

(u� ')⌧⌧ (x1 + ⌧h, y1, t1) dhde�
Z t1

t2

(u� ')t(x2, y1, h) dh

= (u� ')(x2, y1, t2)� (u� ')(x1, y1, t1)� |x2 � x1|(u� ')⌧ (x1, y1, t1). (4.3.3)

On the other hand using (B) of Proposition 72 we have

Z |x2�x1|

0

Z e

0

(u� ')⌧⌧ (x1 + ⌧h, y1, t1) dhde � �C

Z |x2�x1|

0

e de

� �C|x2 � x1|2 � �C(C3�)
2

and

�
Z t1

t2

(u� ')t(x2, y1, h) dh � �C(t1 � t2) � �C(C3�)
2.

Therefore returning to (4.3.3) we have that

(u� ')(x2, y1, t2)� (u� ')(x1, y1, t1)� |x2 � x1|(u� ')⌧ (x1, y1, t1) � �C(C3�)
2.

That is,

(u� ')(x2, y1, t2) � (u� ')(x1, y1, t1) + (x2 � x1) ·Dn�1(u� ')(x1, y1, t1)� C(C3�)
2

� C4�
2 � C(C3�)

2 > 0 (4.3.4)

chosing 0 < C2
3 < C4

C .

Now (to get a contradiction) we assume that (x2, t2) /2 ⌦⇤
�, that is �(x2, t2)  �� <

0. Then (x2, t2) 2 �⇤, that is u(x2, 0, t2) = '(x2, t2). Similarly as before the normal

semi-concavity of u ((C) of Proposition 72) will allow to transfer this information from

(x2, 0, t2) to (x2, y1, t2). We have

Cy21 �
Z y1

0

Z e

0

uyy(x2, h, t2) dhde =

Z y1

0

[uy(x2, e, t2)� �(x2, t2)] dhde

= u(x2, y1, t2)� u(x2, 0, t2)� y1�(x2, t2)
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then

u(x2, y1, t2)� '(x2, t2)  Cy21 + y1(��)  y1(CC2� � �) = y1�(CC2 � 1) < 0

choosing 0 < C2  1
C . This is a contradiction regarding (4.3.4).

Case 2. If y1 = C2�. Then using (4.3.1) and Remark 74 we have

u(x1, y1, t1) � '(x1, t1)� C0K0C
2
2�

2. (4.3.5)

We take any (x2, t2) 2 Q⇤
C2�(x1, t1), that is |x1�x2| < C2� and t1� (C2�)2 < t2 

t1. Assuming that (x2 � x1) ·Dn�1(u� ')(P1) � 0 we can repeat the computations of

Case 1 slightly modified to obtain

(u� ')(x2, C2�, t2) � �C⇤C2
2�

2. (4.3.6)

Now (to get a contradiction) we assume that (x2, t2) /2 ⌦⇤
�, that is �(x2, t2)  �� <

0. Then (x2, t2) 2 �⇤, that is u(x2, 0, t2) = '(x2, t2). Similarly as in Case 1 we get that

u(x2, C2�, t2)� '(x2, t2)  CC2
2�

2 � C2�
2  �2(C6C

2
2 � C2) < �C⇤C2

2�
2

where C6 := max{C,C⇤} and choosing C2 < (C6 � C⇤)�1 . This is a contradiction

regarding (4.3.6).

In any case we have that there exists 0 < C7 << 1 depending only on ⇢, n,�,⇤, K so

that if (x2, t2) 2 Q⇤
C7�(x1, t1) with (x2�x1) ·Dn�1(u�')(x1, y1, t1) � 0 (which roughly

speaking holds at least in the ”half” of Q⇤
C7�(x1, t1)) then (x2, t2) 2 ⌦⇤

�. Moreover choos-

ing 1 > ¯̄C > C7 + C1 it is easy to check that Q⇤
C7�(x1, t1) ⇢ Q⇤

¯̄C�
(x0, t0). By choosing

a thin cylinder Q⇤
C̄�(x̄, t̄) inside Q⇤

C7�(x1, t1) \ {(x2 � x1) ·Dn�1(u� ')(x1, y1, t1) � 0}

the proof is complete.

Now maximum principle and a barrier argument give the following important prop-

erty.

Lemma 77. Consider the set K1 := B⇤
1 ⇥ (0, 1)⇥ (�1, 0] and assume that w 2 C (K1)
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satisfies in the viscosity sense

.

8
><

>:

M� (D2w,�,⇤)� wt  0, in K1

w � 0, in K1.

Suppose that there exists some neighborhood Q⇤
�(x̄, t̄) ⇢ Q⇤

1 so that

lim inf
y!0+

w(x, y, t) � 1, for any (x, t) 2 Q
⇤
�(x̄, t̄).

Then, there exists " = "(�, n,�,⇤) > 0 so that

w(x, y, t) � ", for any (x, y, t) 2 B
⇤
1/2 ⇥


1

4
,
3

4

�
⇥

��

2

2
, 0

�
.

Proof. For any P 0 = (x0, t0) 2 Q
⇤
1�� we define the auxiliary function

8
>>>>><

>>>>>:

M� �D2bP 0 , �
n ,⇤

�
� (bP 0)t = 0, in K1

bP 0 = 0, on @pK1 \Q⇤
�(P

0)

bP 0(x, 0, t) = 1� 1
� max{|x� x0|,

p
2|t� t00| 12}, on Q⇤

�(P
0)

where t00 := t0 � �2

2 . It can be easily checked that the boundary data given above

is a continuous function on @pK1. Moreover applying regularity results for Dirichlet-

type boundary value problems (see [45]) we have that bP 0 is Lipschitz in K1 with the

corresponding constant depending only on � and universal quantities (but not on P 0).

We claim that

bP 0 > 0, in B
⇤
1/2 ⇥


1

4
,
3

4

�
⇥

��

2

2
, 0

�
:= K2. (4.3.7)

Indeed, note first that bP 0 � 0 on @pK1, thus by maximum principle bP 0 � 0 in K1.

We suppose (to get a contradiction) that there exists some (x1, y1, t1) 2 K2 with

bP 0(x1, y1, t1) = 0 which means that bP 0 attains its minimum over K1 at (x1, y1, t1).

Then strong maximum principle gives that

bP 0 = 0, on K1 \ {t  t1}.

Note that t1 � � �2

2 � t0� �2

2 > t0� �2 then there exist (x, t) 2 Q⇤
�(P

0) such that t < t1,
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that is bP 0(x, 0, t) > 0 and t < t1 which is a contradiction.

Now let "(P 0, �, n,�,⇤) := minK2 bP 0 > 0 and

"̃(�, n,�,⇤) := inf
P 02Q⇤

1��

"(P 0, �, n,�,⇤) � 0.

We want to show that "̃ > 0. We assume that "̃ = 0, then there exists {P 0
j :=

(x0
j, t

0
j)}j2N ⇢ Q⇤

1�� so that "(P 0
j , �, n,�,⇤) ! 0 as j ! 1. Also for any j 2 N

there exists (Xj, tj) 2 K2 so that "(P 0
j , �, n,�,⇤) = bP 0

j
(Xj, tj). We notice also that

{P 0
j}, {(Xj, tj)} are both bounded sequences and therefore there exist convergent sub-

sequences (for which we use the same indices for simplicity). That is

P 0
j ! P 0

1 2 Q
⇤
1��, (Xj, tj) ! (X1, t1), as j ! 1.

On the other hand bP 0
j
are equicontinuous and uniformly bounded in K1, thus there

exist a uniformly convergent subsequence in K1, that is bP 0
j
! b1 uniformly in K1 as

j ! 1 (using the same indices for simplicity). To get the contradiction it is enough

to show that

b1 = bP 0
1 , in K1. (4.3.8)

Indeed, if (4.3.8) holds then by uniform convergence we have that bP 0
j
(Xj, tj) !

bP 0
1(X1, t1) as j ! 1 but bP 0

j
(Xj, tj) ! 0 as j ! 1, thus bP 0

1(X1, t1) = 0 which

contradicts (4.3.7) since (X1, t1) 2 K2. Now to obtain (4.3.8) due to uniqueness it is

enough to show that b1 solves the same Dirichlet problem as bP 0
1 in K1. From closed-

ness of viscosity solutions (Proposition 10) we know that M� �D2b1, �
n ,⇤

�
� (b1)t = 0

in K1. Also b1 = 0 on @pK1 \Q⇤
1. Thus it remains to check the following two

1. b1(x, 0, t) = 1� 1
� max{|x� x0

1|,
p
2|t� t001| 12} on Q

⇤
�(P

0
1)

2. b1 = 0 on Q⇤
1 \Q

⇤
�(P

0
1).

For (x, t) such that |x � x0
1| < � and |t � t001| < �2

2 then we can choose an integer

m = m(x, t, �) > 3
2� so that (x, t) 2 Q⇤

�� 1
m
(P 0

1). Also, since x0
j ! x0

1 and t0j ! t01 as

j ! 1, there exists integer N = N(x, t, �) 2 N so that for any j � N

|x0
j � x0

1| < 1

m
and |t00j � t001| < 1

m2
.

Then for any j � N , |x�x0
j|  |x�x0

1|+|x0
j�x0

1| < �� 1
m+ 1

m = � and |t�t00j |  |t�t001|+
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|t00j � t001| < 1
2

�
� � 1

m

�2
+ 1

m2 = �2

2 � �
m + 1

2m2 +
1
m2 < �2

2 , using that m > 3
2� . So we have

that (x, t) 2 Q
⇤
�(P

0
j) for any j � N , that is bP 0

j
(x, 0, t) = 1� 1

� max{|x�x0
j|,

p
2|t� t00j |

1
2}

and taking j ! 1 we obtain 1. at (x, t). Note that for (x, t) such that |x � x0
1| = �

or t01 � �2 = t or t = t01 we use the continuity of b1. Finally for (x, t) 2 Q⇤
1 \Q

⇤
�(P

0
1),

that is |x � x0
1| > � or |t � t001| > �2

2 we follow a similar argument as before. We can

choose an integer m = m(x, t, �) > 1
� so that (x, t) 2 Q⇤

1 \Q
⇤
�+ 1

m
(P 0

1). Also there exists

integer N = N(x, t, �) 2 N so that for any j � N

|x0
j � x0

1| < 1

m
and |t00j � t001| < 1

m2
.

Then for j � N , if |x�x0
1| > �+ 1

m then |x�x0
j| > �+ 1

m� 1
m = �. If |t�t001| > 1

2

�
� + 1

m

�2

then |t� t00j | > 1
2

�
� + 1

m

�2 � 1
m2 = �2

2 + �
m + 1

2m2 � 1
m2 > �2

2 , using that m > 3
2� . So we

have that (x, t) 2 Q⇤
1 \Q

⇤
�(P

0
j) for any j � N , that is bP 0

j
(x, 0, t) = 0 and taking j ! 1

we obtain 2. at (x, t). Thus (4.3.8) is true.

We have obtained that "̃ > 0 and if P̄ = (x̄, t̄) the given point we have that

bP̄ � "̃ in K2. We use maximum principle to get this information for w as well.

So let v = w � bP̄ then v 2 Sp

�
�
n ,⇤

�
in K1. Moreover if (x, t) 2 Q⇤

�(P̄ ) then

lim infy!0+ v(x, y, t) � 1 � bP̄ (x, 0, t) � 0 from the definition of bP̄ and if (x, t) 2

@pK1 \ Q⇤
�(P̄ ) then lim infy!0+ v(x, y, t) � 0 since w � 0. Then maximum principle

gives that w � bP̄ � "̃ in K2.

The next lemma is a consequence of an iterative argument.

Lemma 78. Let (x0, t0) 2 ⌦⇤ \Q⇤
1/2, then there exists universal constants 0 < ↵ < 1,

C > 0 so that

0 � �(x, t) � �C
�
|x� x0|+ |t� t0|1/2

�↵
, for any (x, t) 2 Q⇤

1/2(x0, t0).

Proof. Our aim is to show that for any k 2 N

uy(X, t) � �C✓k, for every (X, t) 2 Q⇤
rk(x0, t0)⇥ {y 2 (0, rk)} (4.3.9)

where 0 < r << ✓ < 1 to be chosen and C > 0 universal. We proceed by induction.

For k = 1 it follows by (A) of Proposition 72 choosing the right C. We assume that

(4.3.9) holds for some k and we prove it for k + 1.
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We define

w =
uy + C✓k

�µrk + C✓k
, in Q⇤

rk(x0, t0)⇥ {y 2 (0, rk)}

where 0 < µ < 1 a small constant to be chosen. Then by the hypothesis of the

induction uy + C✓k � 0 in Q⇤
rk(x0, t0) ⇥ {y 2 (0, rk)} and choosing r < ✓ and µ < C

we have that �µrk + C✓k > 0, that is w � 0 in Q⇤
rk(x0, t0)⇥ {y 2 (0, rk)}. Moreover,

M� �D2w, �
n ,⇤

�
� wt  0 in Q⇤

rk(x0, t0)⇥ {y 2 (0, rk)}. We observe also that

lim
y!0+

w(x, y, t) =
�(x, t) + C✓k

�µrk + C✓k
, for (x, t) 2 Q⇤

rk(x0, t0).

On the other hand applying Lemma 76 around (x0, t0) 2 ⌦⇤ \Q⇤
1/2 with � = µrk <

µr < 1
2 we get that there exists

Q⇤
C̄µrk(x̄, t̄) ⇢ Q⇤

µrk(x0, t0) \ ⌦⇤
µrk

where 0 < C̄ < 1 depends only on K, n,�,⇤ and ⇢. Thus � > �µrk on Q⇤
C̄µrk(x̄, t̄).

That is,

lim
y!0+

w(x, y, t) � 1, for (x, t) 2 Q⇤
C̄µrk(x̄, t̄).

Therefore, w satisfies the assumptions of Lemma 77 in Q⇤
rk(x0, t0) ⇥ (0, rk). So we

apply Lemma 77 to the rescaled W (x, y, t) := w(µrkx + x0, µrky, (µrk)2t + t0) in K1

and obtain that

w � ", in B
⇤
µrk

2
(x0)⇥


µrk

4
,
3µrk

4

�
⇥

t0 �

(C̄µrk)2

2
, t0

�
(4.3.10)

where " = "(C̄, n,�,⇤) > 0, that is, uy � �C✓k + "(C � µ)✓k � �C✓k + "C✓k

2 using

that r < ✓ and choosing µ < C
2 .

Now to fill the gap of y 2
⇣
0, µr

k

4

i
we integrate uyy with respect to y and use (C)

of Proposition 72. For (x, t) 2 B
⇤
µrk

2
(x0)⇥

h
t0 � (C̄µrk)2

2 , t0
i
we have

uy

✓
x,

µrk

2
, t

◆
� uy(x, y, t) =

Z µrk

2

y

uyy(x, h, t) dh  C0
µrk

2
� C0y
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where C0 > 0 the constant of Proposition 72. Then

uy(x, y, t) � uy

✓
x,

µrk

2
, t

◆
� C0

µrk

2
� �C✓k +

"C✓k

2
� C0

µrk

2
.

Therefore in B
⇤
µrk

2
(x0)⇥

⇣
0, 3µr

k

4

i
⇥
h
t0 � (C̄µrk)2

2 , t0
i
we have that

uy(x, y, t) � �C✓k +
"C✓k

2
� C0µr

k.

We choose 0 < r < min
n

µ
2 ,

C̄µp
2

o
< 1

2 then the above holds in B
⇤
rk+1(x0) ⇥ (0, rk+1) ⇥

⇥
t0 � (rk+1)2, t0

⇤
. Also using that r < ✓ and choosing µ < C"

4C0
and ✓ > 1 � "

4 we have

�C✓k + "C✓k

2 � C0µrk � �C
�
✓k � "

4✓
k
�
� �C✓k+1 and the induction is complete.

Taking y ! 0+ in (4.3.10) we have that for any k 2 N

�(x, t) � �C✓k, for every (x, t) 2 Q⇤
rk(x0, t0)

where 0 < r << ✓ < 1 and C > 0 universal. The above gives the desired regularity for

�. Indeed, for 0 < R < 1
2 we consider the quantity

a(x0,t0)(R) := sup
Q⇤

R(x0,t0)
|�|.

Then we have that a(x0,t0)(r
k)  ✓k for any k 2 N. We choose m0 2 N so that

rm0 < R  rm0�1, thus a(x0,t0)(R)  ✓m0�1 and ✓� log rm0  ✓� logR = R� log ✓, that

is, ✓m0  R
log ✓
log r . Choosing 0 < ↵ := log ✓

log r < 1 we have a(x0,t0)(R)  1
✓✓

m0  CR↵.

Finally, for (x, t) 2 Q⇤
1/2(x0, t0) let R = max

�
|x� x0|, |t� t0|1/2

 
< 1

2 . Then (x, t) 2

Q
⇤
R(x0, t0), so |�(x, t)|  CR↵  C

�
|x� x0|+ |t� t0|1/2

�↵
.

Now we are ready to obtain the main theorem.

Theorem 79. Let P0 = (x0, t0) 2 �⇤ \ Q⇤
1/2, there exist universal constants 0 < ↵ <

1, C > 0, 0 < r << 1 and an a�ne function R0(X) = A0 + B0 · (X � (x0, 0)), where

A0 = u(P0), B0 = Du(P0) so that

|u(X, t)�R0(X)|  C
�
|X � (x0, 0)|+ |t� t0|1/2

�1+↵
, for any (X, t) 2 Q+

r (P0).

Proof. First we use Lemma 78 to get the regularity of � around P0. So Lemma 78

gives the following two:

138

GEORGIANA C
HATZIG

EORGIO
U



1. �(x0, t0) = 0. Indeed we know that � = 0 in ⌦⇤ and since �⇤ = @⌦⇤ \ Q⇤
1 there

exists {(xk, tk)}k2N ⇢ ⌦⇤ \ Q
⇤
1/2 so that (xk, tk) ! (x0, t0) as k ! 1. We have

0 � �(x0, t0) � �C
�
|x0 � xk|+ |t0 � tk|1/2

�↵
for any large k 2 N. Thus taking

k ! 1 we get the desired.

2. 0 � �(x, t) � �C
�
|x� x0|+ |t� t0|1/2

�↵
, for any (x, t) 2 Q

⇤
1/4(x0, t0). Indeed,

we consider again {(xk, tk)}k2N ⇢ ⌦⇤ \Q
⇤
1/2 so that (xk, tk) ! (x0, t0) as k ! 1.

We have 0 � �(x, t) � �C
�
|x� xk|+ |t� tk|1/2

�↵
for any large k 2 N and any

(x, t) 2 Q
⇤
1/4(x0, t0) and we let k ! 1.

On the other hand we know that uy = � on Q⇤
1 in the classical sense but since uy is

continuous in (X, t) (regarding 2.) this holds also in the viscosity sense. Thus once the

Neumann data � is H↵ (regarding 2. again) we can apply Theorem 54 in Q
+
1/4(x0, t0)

and get the desired.
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Conclusions

The research presented in this thesis produce the primary theory for problems with

immediate connections to applications that involve nonlinear equations for certain types

of free boundary problems. More precisely, in the present thesis we succeeded to derive

several boundary Hölder estimates for problems that involve fully nonlinear parabolic

operators. The text was essentially splitted into two parts.

In the first part (Chapter 3), we concentrated to a fully nonlinear parabolic oblique

derivative problem and we derived delicate Hölder estimates of zero, first and second

order for the viscosity solutions, up to the flat boundary, under suitable assumptions

on the data. These results contribute in the completion of the standard parabolic

regularity theory and establish a solid framework which will initiate the study of even

more general degenerate/ singular operators and of more general (non-flat) domains of

definition. The results of Chapter 3 appear in [15].

In the second part (Chapter 4), we dealt with a fully nonlinear parabolic thin

obstacle problem. Under natural assumptions on the given data, we managed to derive

first order Hölder estimates, up to the flat boundary, for the corresponding viscosity

solution. This result is the initial step towards the understanding of this free boundary

problem and opens the way to the study of the even more demanding questions of the

optimal regularity of the solution and the regularity of the free boundary. The results

of Chapter 4 appear in [14].
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24):118–131, 189, 1992.

[37] A. Petrosyan and H. Shahgholian. Parabolic obstacle problems applied to finance.

In Recent developments in nonlinear partial di↵erential equations, volume 439 of

Contemp. Math., pages 117–133. Amer. Math. Soc., Providence, RI, 2007.

[38] X. Ros-Oton and J. Serra. The structure of the free boundary in the fully nonlinear

thin obstacle problem. Adv. Math., 316:710–747, 2017.

[39] H. Shahgholian. Free boundary regularity close to initial state for parabolic ob-

stacle problem. Trans. Amer. Math. Soc., 360(4):2077–2087, 2008.

[40] L. Silvestre. Regularity of the obstacle problem for a fractional power of the

Laplace operator. Comm. Pure Appl. Math., 60(1):67–112, 2007.
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