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ΠΕΡΊΛΗΨΗ ΔΙΑΤΡΙΒΗΣ 

Η διατριβή εξετάζει θέματα σχετικά με την πρόβλεψη χρεωκοπίας δημόσιων εταιριών στην 

Αμερική και αποτελείται από τρία κεφάλαια. Στο πρώτο κεφάλαιο εξετάζεται μια εναλλακτική 

μέθοδος πρόβλεψης χρεωκοπίας που απευθύνεται σε εταιρίες που έχουν δάνεια και πληρώνουν 

κουπόνια (coupon-paying debts). Η μέθοδος βασίζεται στο μοντέλο Leland-Toft (1996) το 

οποίο αποτελεί επέκταση ενός ευρέως διαδεδομένου μοντέλου; του Black-Scholes-Merton. 

Παρ ’όλα αυτά, το μοντέλο Leland-Toft (1996) δεν έχει λάβει την απαραίτητη προσοχή στην 

βιβλιογραφία και γι’ αυτό, εξετάζουμε την εμπειρική του απόδοση. Τέλος αποσκοπούμε στην 

βελτίωση της απόδοσης παραδοσιακών μοντέλων πρόβλεψης χρεωκοπίας, όπως τα μοντέλα του 

Altman (1968) και Ohlson (1980) αλλά και πιο σύγχρονων μοντέλων, όπως το μοντέλο των 

Campbell et al. (2008), χρησιμοποιώντας την πιθανότητα χρεωκοπίας που προκύπτει από το 

μοντέλο Leland-Toft, σαν επιπρόσθετο παράγοντα στα μοντέλα τους. Συνοπτικά, το κεφάλαιο 

αποδεικνύει τη χρησιμότητα του μοντέλου Leland-Toft για την πρόβλεψη χρεωκοπίας, καθώς 

παρέχει βελτιώσεις στην εμπειρική απόδοση των μοντέλων που εξετάζονται. Το δεύτερο 

κεφάλαιο ασχολείται με την μεγιστοποίηση του κριτήριου απόδοσης AUROC (Area Under 

ROC curve). Συγκεκριμένα, το AUROC είναι από τα πιο γνωστά κριτήρια απόδοσης μοντέλων 

χρεοκοπίας και έχει δειχθεί πως τράπεζες που χρησιμοποιούν μοντέλα με μεγαλύτερο δείκτη 

AUROC, πετυχαίνουν μεγαλύτερη κερδοφορία εν συγκρίσει με άλλες τράπεζες. Παρ ‘όλα 

αυτά, δεν είναι κοινή πρακτική να εκπαιδεύονται μοντέλα τα οποία μεγιστοποιούν το κριτήριο 

AUROC. Στο κεφάλαιο αυτό, προτείνονται  και συγκρίνονται διάφορες μέθοδοι για 

μεγιστοποίηση του κριτηρίου απόδοσης AUROC, με τον σκοπό να βρούμε την καλύτερη 

μέθοδο. Συνοπτικά, το κεφάλαιο δείχνει ότι οι προτεινόμενες μέθοδοι βελτιώνουν την εμπειρική 

απόδοση παραδοσιακών μοντέλων. Επίσης, αναδεικνύονται τα οικονομικά οφέλη που 

προκύπτουν όταν το κριτήριο AUROC χρησιμοποιείται κατά τη διάρκεια της εκπαίδευσης 

μοντέλων πρόβλεψης χρεωκοπίας. Στο τρίτο κεφάλαιο δίνεται έμφαση στην κατηγορία των 

δομικών (παραμετρικών) μοντέλων , όπου προτείνουμε μια τεχνική για να υπολογίσουμε τις 

πιο σημαντικές τους παραμέτρους, οι οποίες δεν μπορούν να παρατηρηθούν στην αγορά; την 

αγοραία αξία της εταιρίας ή αντίστοιχα την αξία των περιουσιακών της στοιχείων (asset value) 

και την τυπική απόκλιση τους (asset volatility). Εναλλακτικές τεχνικές υπολογισμού που 

προτάθηκαν στην βιβλιογραφία βασίζονται σε προσεγγίσεις που μπορεί να οδηγήσουν σε 

ανακριβείς υπολογισμούς (προσεγγίσεις που είναι noisy or simplified). Στο κεφάλαιο αυτό, 

υποθέτουμε πως οι παράμετροι που θέλουμε να υπολογίσουμε, εξαρτώνται από κάποιες 
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εξωγενής μεταβλητές μέσω αγνώστων σχέσεων-συναρτήσεων και χρησιμοποιώντας μια μη-

παραμετρική μέθοδο, για παράδειγμα νευρωνικά δίκτυα, στοχεύουμε στην εκμάθηση αυτών 

των συναρτήσεων όπου θα δώσουν βελτιωμένες παραμέτρους. Αυτές οι παράμετροι, όταν 

ενσωματωθούν στο παραμετρικό μοντέλο, δημιουργούν ένα ημι-παραμετρικό μοντέλο. 

Χρησιμοποιώντας το παραμετρικό μοντέλο Black-Scholes-Merton ως παράδειγμα, το κεφάλαιο 

καταλήγει ότι η προτεινόμενη μέθοδος παρέχει παραμέτρους οι οποίες όταν ενσωματωθούν στο 

Black-Scholes-Merton, βελτιώνει σημαντικά την απόδοση του συγκριτικά με τις παραδοσιακές 

μεθόδους υπολογισμού τους.         
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SUMMARY OF THE DISSERTATION 

The dissertation examines topics in bankruptcy prediction using public firms from U.S. and 

consists of three chapters. Chapter 1 is dedicated to investigating an alternative approach for 

bankruptcy prediction that measures the financial healthiness of firms with coupon-paying 

debts. The approach is based on the framework of Leland-Toft (1996) which is a structural 

model that extends a widely-used corporate bankruptcy model; the Black-Scholes-Merton 

model. Despite that, Leland-Toft (1996) has received limited attention in the bankruptcy 

literature and thus, we aim to examine its empirical performance. Finally, we are interested to 

improve the performance of well-established bankruptcy models, like Altman (1968) and 

Ohlson (1980) but also more recent ones, like Campbell et al. (2008) by incorporating the 

probability of bankruptcy derived from Leland-Toft as additional predictor in their models. 

Overall, the chapter demonstrates the usefulness of Leland-Toft in predicting bankruptcy, since 

it provides enhancements in the empirical performance of the examined models. Chapter 2 is 

dedicated on the maximization of the discriminatory power of bankruptcy prediction models, 

measured by the Area Under ROC curve (AUROC). Specifically, AUROC is a widely-used 

performance measure and it has been shown that models with higher AUROC are associated 

with higher economic benefits for banks. Yet, it is not a common practice to training bankruptcy 

models by maximizing AUROC. In this chapter, several methodologies to maximize AUROC 

are introduced and compared, with the objective to find the best one. Overall, the chapter shows 

that the proposed approaches provide enhancements in the empirical performance of the 

traditional bankruptcy models, highlighting also the economic benefits arising by using models 

where the AUROC is used as the optimization criterion during the training phase of the models. 

In Chapter 3, the focus is on structural (parametric) models where we propose an estimation 

technique to estimate their most important parameters which are not observed in the market; the 

value of assets and the volatility of assets. Alternative estimation techniques proposed in the 

literature, are based on “noisy” techniques or “simplified” approximations that may result to 

inaccurate estimation of the unobserved parameters. In this chapter, we assume that these 

parameters depend on some exogenous variables through some unknown relationships and by 

using a nonparametric approach, like neural networks, we seek to estimate these relationships, 

obtaining in that way improved parameter values that when enter the parametric model, yields 

a semiparametric method for the estimation of the probability of default. Using the Black-

Scholes-Merton structural model as a paradigm, the chapter concludes that the proposed 
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methodology provides parameters which when enter the structural model, significantly improve 

the predictive performance of the model relative to the traditional methods. 
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FOREWORD 

   Prediction of corporate bankruptcy is an area of research that is active for the last 50 years and 

specifically, since the paper of Altman (1968) who shows how to construct bankruptcy scores 

for firms using readily available information from financial statements. Since then, there has 

been a massive interest for the development of powerful bankruptcy prediction models, resulting 

to significant methodological advancements in the field of corporate bankruptcy prediction. The 

effort to predict corporate bankruptcy in the most accurate way continues until today and we 

argue that the topic will always be of interest. This is because, it is a topic that concerns a lot of 

parties including banks, investors, regulators, auditors, employees, the management of the firm 

and generally the stakeholders of the firm.  

   The topic has regenerated increased attention recently, mainly for two reasons. The first one, 

is that the Basel Committee on Banking Supervision in a consultation document in 2006 (known 

as Basel II which has been substituted by Basel III later), reports that banks are now allowed to 

develop internally, models to provide probability of default estimates on their credit exposures 

to estimate capital requirements that must set aside in order to absorb possible losses stemming 

from potential customer (i.e. firm) bankruptcies. This has been a huge motivation for banks to 

devote resources and sophistication for the development of such models. As it is also shown in 

the subsequent chapters, banks which use models with higher predictive accuracy, earn higher 

returns relative to the competition. Much of the attention that has been given to the development 

of bankruptcy models, also comes from the global financial crisis that hit the markets 

internationally between 2007-2008 and resulted to many corporations filing for bankruptcy and 

left banks with huge losses from their credit portfolios. Several economists have also 

characterized the 2007-2008 financial crisis equivalent to the Great Depression back to 1930’s. 

These facts remind us the importance to develop models that provide early warning signals 

related to the financial condition of the corporations, especially during the crises. As a response 

to this great need, each chapter dedicates a section for testing the performance of the proposed 

models during the recent global financial crisis  

   Understanding the importance and the challenges of developing bankruptcy prediction 

models, the main objective of this dissertation is to propose methodologies to enhance the 

accuracy of bankruptcy prediction models with the objective to provide powerful risk 

management tools for those interested in the prediction of corporate bankruptcy. It must also be 

ZENON TAOUSHIANIS



viii 
 

stated that, the methodologies proposed in this dissertation are extensively tested for robustness 

using a battery of tests and most importantly, are tested out-of-sample. This is important because 

the extensive tests ensure the stability of the performance of the resulted models and their 

reliability before their actual implementation, something that has been highlighted by regulatory 

authorities. 

   This dissertation focuses on the two most common methodological approaches for bankruptcy 

prediction. The first one refers to the development of empirical models. In such approach, one 

is interested to find empirical relationships between a set of predictor variables, such as 

accounting and market variables, and the likelihood of bankruptcy. This is achieved by training 

a model subject to an optimization criterion. This approach has been pioneered by Altman 

(1968) with the development of Z-score using discriminant analysis. Since then, other 

researchers have provided methodological enhancements, such as predicting bankruptcy with 

logistic regression (Ohlson, 1980), neural networks etc. The second approach is the structural 

approach where bankruptcy depends on the evolution of the capital structure of the firm and 

bankruptcy occurs when the value of firm’s assets falls below a threshold, for instance, the 

liabilities of the firm. This approach has been pioneered by Merton (1974) who has used the 

options pricing framework of Black and Scholes (1973) to show that equity is equivalent to a 

European call option on the assets of the firm. In this dissertation, we propose methodologies 

which provide enhancements to both approaches described in this paragraph. 

   With that respect, the dissertation is divided in three chapters. In all chapters, we use data from 

a large number of non-financial U.S. bankrupt and healthy firms over the recent period. The 

main source of data comes from the database BankruptcyData which provides the name and 

date of bankruptcy filing, while financial and market data were obtained from Compustat and 

CRSP respectively at the year before bankruptcy filing. In the first chapter, we investigate the 

empirical performance of the Leland-Toft (1996) structural model. The specific model has 

received limited attention in the literature of bankruptcy prediction in the sense that it has not 

tested by the prior literature, despite that it is an extended version of a very widely-used 

structural bankruptcy model; the Black-Scholes-Merton model. Thus, in the first chapter, we are 

interested to examine whether such extensions offered by Leland-Toft that may be useful for 

bankruptcy prediction, such as the interest or coupon payment of the firm, provide 

improvements in the empirical performance of the structural models. Another objective of the 

first chapter, is to enhance the performance of traditional empirical bankruptcy models that are 
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widely used in the literature, like Altman (1968) and Ohlson (1980), but also of more recent 

ones, such as Campbell et al. (2008), by including the probability of bankruptcy derived from 

Leland-Toft as additional predictor in those models, seeking to improve the estimation of 

bankruptcy risk relative to using the empirical models in isolation. Consistent with our 

expectations, the structural model of Leland-Toft, outperforms the Black-Scholes-Merton 

model in all tests. For instance, we find out-of-sample that Leland-Toft exhibits higher 

discriminatory power than the Black-Scholes-Merton but also it is associated with higher 

economic benefits for banks using Leland-Toft than Black-Scholes-Merton. However, it is 

found that none of the structural models can stand alone in predicting bankruptcy, since they are 

outperformed by other models (such as Ohlson, 1980; Campbell et al., 2008 etc). Most 

importantly, it is demonstrated that augmenting the empirical models of Ohlson (1980) and 

Campbell et al. (2008) with the probability derived by Leland-Toft as additional predictor, yield 

models with improved performance relative to the original models. In fact, these models, which 

we call them hybrid models, exhibit the highest predictive accuracy among all models 

considered in this chapter. 

   The second chapter is partly motivated by the first chapter but also on several other facts that 

we explain subsequently.  Specifically, a result that is not explicitly discussed in chapter one is 

that, the higher the discriminatory power of the bankruptcy model used by a bank is, as measured 

by the Area Under ROC curve (AUROC), the higher the economic benefits for the bank. 

Furthermore, evidence in the extant literature suggests that banks using models with higher 

discriminatory power (i.e. higher AUROC) relative to other banks, have higher economic 

performance because they reject loans to “bad” firms and hence, they manage a healthier and 

more profitable credit portfolio. This result is evident even when there are minor differences in 

model performance measured by AUROC. Overall, there is evidence which shows the 

importance of using AUROC as performance measure and generally, it has been well-

established as a performance statistic in academic studies but in industry as well (for instance, 

Moody’s KMV extensively use AUROC before bringing their models into commercial 

practice).  

   Yet, it is not a common practice to train bankruptcy models to maximize AUROC (i.e. to 

obtain model coefficients by maximizing AUROC) but rather, it is used ex-post (after training 

the models using another maximization criterion, such as the log-likelihood function). As a 

response to this limited literature, this chapter contributes to the literature by introducing and 
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comparing several methodologies to maximize the discriminatory power of bankruptcy 

prediction models, as measured by the widely-used AUROC statistic. In particular, by using 

models with probabilistic and linear response functions (i.e. when the output is a probability and 

a linear score respectively), we introduce several merit functions seeking to optimize AUROC. 

In other words, we obtain model coefficients when the AUROC is used as the optimization 

criterion during the training phase and contrast performance when the model is trained using the 

log-likelihood merit function. The key finding from this chapter is that, models trained to 

optimize AUROC, exhibit higher discriminating ability (higher AUROC), out-of-sample, 

relative to traditional approaches, like logistic regression models. From the models with linear 

response functions, a merit function which takes care of the outliers which often characterizes 

financial data, has the highest performance. However, from all models, a neural network model 

with a probabilistic response function is the best performing one. Consistent with expectations, 

in a simulated paradigm it is shown that banks which use the models with the highest AUROC, 

earn the highest profitability relative to other banks. 

   The third chapter is somewhat more independent in the sense that it is not a follow-up study 

from the previous chapters. However, it addresses a well-known issue underlying the structural 

approach for estimating firm default risk, which has attracted a lot of research the last decade. 

In particular, in the third chapter we focus exclusively on structural (parametric) models and we 

contribute to the literature by proposing a novel methodology to estimate the value of assets and 

the volatility of assets, which are the most important input parameters to the structural models 

for the estimation of the probability of default. These inputs, however, are not observed in the 

market thus making the estimation of the probability of default a challenging task to accomplish. 

In the literature, there are two main approaches to estimate the two parameters. The first 

approach is based on iteratively solving equations derived from options theory, which we call a 

“noisy” estimation approach, since convergence errors may affect the final outputs but also the 

relationships imposed to these unobserved parameters, are based on the restrictive assumptions 

from options theory. The second approach is based on “simplified” or ad-hoc approximations. 

Our methodology assumes the value of assets and the volatility to depend on some exogenous 

variables, x, through some unknown relationships. We use a nonparametric approach, such as 

neural networks, to learn the unknown relationships, aiming to obtain improved parameter 

values which enter the structural model, yielding a semiparametric model. With this respect, the 

Black-Scholes-Merton structural model is used a paradigm. Results in this chapter demonstrate 

ZENON TAOUSHIANIS



xi 
 

that the out-of-sample performance of the semiparametric approach is significantly better 

relative to the alternative Black-Scholes-Merton specifications based on several tests, giving in 

that way validity to our proposed approach. Moreover, in this chapter we were motivated to 

augment the sample of bankruptcies, with financially distressed firms, given that financially 

distressed firms are more difficult to predict since it much more difficult to predict the beginning 

of the crisis. It is shown that the semiparametric approach shows an impressive performance 

relative to the competing Black-Scholes-Merton specifications. Interestingly, the 

semiparametric approach outperforms alternative approaches for default prediction, like the 

logistic regression approach as well as neural networks. 
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CHAPTER 1 

 

 

Predicting corporate bankruptcy using the framework of Leland-Toft: 

Evidence from U.S. 

 

 

 

Abstract 

In this paper, we evaluate an alternative approach for bankruptcy prediction that measures the 

financial healthiness of firms that have coupon-paying debts. The approach is based on the 

framework of Leland and Toft (1996), which is an extension of a widely-used model; the Black-

Scholes-Merton model. Using U.S. public firms between 1995 and 2014, we show that the 

Leland-Toft approach is more powerful than Black-Scholes-Merton in a variety of tests. 

Moreover, extending popular but also contemporary corporate bankruptcy models with the 

probability of bankruptcy derived from the Leland-Toft model, such as Altman (1968), Ohlson 

(1980) and Campbell et al. (2008), yields models with improved performance. One of our tests, 

for example, shows that banks using these extended models, achieve superior economic 

performance relative to other banks. Our results are consistent under a comprehensive out-of-

sample framework. 
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1 Introduction 

   Corporate bankruptcy prediction models are valuable risk management tools to assist bank 

managers in the decision-making process of identifying firms which are likely to fail and 

therefore would not be able to pay their obligations. This is because, the consequences arising 

from bankruptcy are enormous and include, for instance, economic ones such as the loss of the 

amount lent, impaired profitability for the bank which in certain cases may harm the viability of 

the bank, the financial system and the economy as well1. From the perspective of an investor, 

economic consequences include the loss of the wealth invested in bankrupt firms but also 

include non-economic ones, such as the loss of investors’ confidence towards the financial 

markets. For these reasons, among others, it is important for the interested parties to develop 

and apply reliable corporate bankruptcy prediction models.   

   Much of the attention that has been given to the development of bankruptcy prediction models 

recently, is attributed to the global financial crisis period that hit the markets internationally in 

2007, mainly due the consequences that the crisis left behind. Several economists even 

characterized the recent financial crisis at least as severe as the Great Depression period back to 

1930’s. As argued by Switzer et al. (2018), the 2007-2008 financial crisis, engendered huge 

losses to many firms, especially firms to the financial sector and its impact on financial stability, 

has attracted the interest of practitioners, scholars and policy-makers. Furthermore, another 

strand of the literature proposes mechanisms to reduce or at least control the risk of firms prior 

or during the crisis (Caprio et al., 2007; Gupta et al., 2013). Our study, is related to this strand 

of the literature, aiming to enhance the estimation of bankruptcy risk for firms and providing in 

that way proper risk management tools that serve as a companion to those interested to predict 

bankruptcy. We dedicate a separate section with results from the credit crunch in a subsequent 

section. 

   While various models have been proposed in the literature, two of the most frequently used 

by academics and practitioners are Z-score (Altman, 1968) and O-score (Ohlson, 1980). These 

models mainly use information from the financial statements of the firm to relate past 

performance with bankruptcy risk. More recently, models with both accounting and market 

                                                           
1 For instance, Papakyriakou et al. (2019) show that the failure of financial institutions from U.S, negatively 

affect the international stock markets. 
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information have been developed. These models have the advantage to incorporate timely 

market information and thus the likelihood of bankruptcy can be updated more frequently2. 

Studies such as Shumway (2001), Chava and Jarrow (2004), Campbell et al. (2008) and Tinoco 

and Wilson (2013) show that accounting and market information yield models with improved 

performance. Another approach is the contingent claims-based approach which is based on the 

framework of Black and Scholes (1973) and Merton (1974). There, in an options pricing 

framework, the probability of bankruptcy is the probability that the assets value of the firm will 

be worth less than its debts, at maturity3. Such models are frequently referred to, as structural 

models.   

   In this paper, we evaluate an alternative approach for bankruptcy prediction, and we construct 

with it powerful bankruptcy models, seeking to improve the performance of existing models. 

Specifically, we evaluate an approach that measures the financial healthiness of firms with 

coupon-paying debts, using the framework of Leland and Toft (1996). Leland and Toft (1996) 

belongs to a class of models that extends Merton (1974), to incorporate the effects of taxes and 

bankruptcy costs to the valuation of equity and a corporate coupon-paying debt with finite 

maturity. Other significant features of their framework are that, bankruptcy can occur prior to 

the maturity of the debt but also, they consider the case when the bankruptcy point is determined 

endogenously. Thus, Leland and Toft is a more appropriate corporate model than Black-

Scholes-Merton because it includes a richer information set about the firm which can be useful 

for bankruptcy prediction4. 

    Several models are considered in this paper. Firstly, we compare the performance of two 

structural models; Leland-Toft and Black-Scholes-Merton. We believe that the former would 

outperform the latter since it is an extended version, containing more information for bankruptcy 

prediction. Next, we compare the performance of three reduced-form models with three hybrid 

models (i.e reduced-form models augmented with structural models). The first reduced-form 

model is Ohlson (1980) which is a comprehensive model since it includes various accounting 

variables such as profitability, liquidity, leverage, cash flows etc. Next, we augment Ohlson 

                                                           
2 Refer to Agarwal and Taffler (2008) for a discussion between accounting and market information in bankruptcy 

prediction models. 
3 See for instance Bharath and Shumway (2008) and Afik et al. (2016) for related literature regarding this approach. 
4 A strand of the literature also examines empirically the performance of the structural models in predicting 

corporate bond prices and spreads and find that they do not accurately predict them (see for instance Lyden and 

Saraniti, 2000 and Eom et al., 2004 and references therein). 
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model with the probability of bankruptcy derived from Leland-Toft, yielding a hybrid model. 

We believe that augmenting this comprehensive accounting model with Leland-Toft will 

improve its performance, yielding a powerful bankruptcy prediction model. Another reduced-

form model we examine is an extension of Altman (1968) model, which includes an additional 

cash flow variable and was suggested by Almamy et al. (2016). The authors find that 

augmenting Altman’s model with a cash flow variable yields improved predictive ability for 

U.K. firms. We believe that augmenting Altman’s model with Leland-Toft will further increase 

its predictive ability. Next, we use a competent reduced-form model that includes accounting 

and market variables suggested by Campbell et al. (2008). This model has been examined by 

Bauer and Agarwal (2014) and was found to outperform other approaches, such as reduced-

form models with accounting information as well as the Black-Scholes-Meton structural model. 

Finally, we seek to improve Campbell et al. (2008), by including Leland-Toft in their model. 

   For our analysis we use 5460 U.S. public firms with coupon-paying debts between 1995 and 

2014. The performance of the models is compared on three dimensions and our results are based 

on an extensive out-of-sample framework: 1) On their ability to discriminate bankrupt from 

healthy firms using Receiver Operating Characteristics (ROC) analysis 2) On their ability to 

predict bankruptcy probabilities close to actual or equivalently on their ability to empirically fit 

the data using log-likelihood statistics and 3) By measuring the economic performance of banks 

when they are competing to grant loans to individual firms and each bank uses a corresponding 

model to evaluate prospective firm-customers. For this last test, we employ the setting of 

Agarwal and Taffler (2008).  

   The key findings of the paper are that 1) Leland-Toft approach is more powerful than Black-

Scholes-Merton. Sensitivity analysis tests for Leland-Toft shows that its forecasting power is 

not affected by the choice of parameter values underlying the model. However, none of the 

structural models can stand alone in forecasting bankruptcies since they are outperformed by 

reduced-form (and also hybrid) models, 2) Further increase in predictive ability is achieved 

when augmenting Altman’s model with Leland-Toft rather than a cash-flow variable, 3) 

Augmenting the comprehensive models of Ohlson (1980) and Campbell et al. (2008) with 

Leland-Toft yields models with improved performance 4) Reduced-form models augmented 

with Leland-Toft, outperform reduced-form models augmented with BSM. In fact, the hybrid 

models which include Leland-Toft are the best performing models in all tests. Most importantly, 
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in our experiment with the competitive loan market we find that banks using these extended 

models achieve superior economic performance relative to their competitors. 

   The paper proceeds as follows; Section 2 describes the bankruptcy models and the research 

hypotheses, section 3 discusses our data, section 4 discusses the methodology, section 5 reports 

the results and section 6 concludes.  

2 Bankruptcy Models and Research Hypotheses 

2.1 Structural Models 

2.1.1 Black-Scholes-Merton  

   Merton (1974) shows that the equity value of the firm (E) can be viewed as a European call 

option underlying the assets of the firm (V) and with strike price the zero-coupon debt of the 

firm (D). The Black and Scholes (1973) options pricing formula can therefore be used to price 

the equity of the firm: 

 𝐸 = 𝑉𝑁(𝑑1) − 𝐷𝑒−𝑟𝑇𝑁(𝑑2) (1) 

where r is the riskless rate of return, N(.) is the standard normal distribution function, T is the 

maturity of the debt and d1, d2 are defined as follows: 

 
𝑑1 =

𝑙𝑛(𝑉
𝐷⁄ ) + (𝑟 + 0.5𝜎𝑉

2)𝛵

𝜎𝑉√𝛵
 (2) 

 𝑑2 = 𝑑1 − 𝜎𝑉√𝛵 (3) 

and 𝜎𝑉 is the volatility of assets value returns. In the framework of Black-Scholes-Merton, the 

firm goes bankrupt when V < D and thus the probability of bankruptcy, prob(V<D), is the 

probability that at debt maturity, the assets value is lower than the debt. The probability of 

bankruptcy is then given by the Black-Scholes-Merton (BSM hereafter) formula: 

  
𝑝𝑟𝑜𝑏 = 𝑁 (−

𝑙𝑛(𝑉
𝐷⁄ ) + (𝜇 − 0.5𝜎𝑉

2)𝛵

𝜎𝑉√𝛵
) (4) 

where μ is the return of assets. ZENON TAOUSHIANIS
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2.1.2 Leland and Toft (1996) 

   Leland and Toft (1996) extends the framework of Merton (1974) to incorporate the effects of 

taxes and bankruptcy costs in the valuation of a corporate risky debt with finite maturity. Their 

framework considers the valuation of debt that pays coupons as opposed to the framework of 

Merton where the firm issues a zero-coupon debt. In this context, Leland-Toft derive closed-

form solutions for the market value of equity, debt and total firm value. Most importantly, they 

consider the case where bankruptcy is determined endogenously as opposed to Merton (1974) 

where bankruptcy is determined exogenously. This consideration allows the calculation of an 

optimal bankruptcy point which is chosen by the management of the firm in favor of 

shareholders such that the equity value is maximized. When assets value reaches that point, it is 

optimal, from shareholders´ perspective, for the firm to file for bankruptcy. In contrast, when 

bankruptcy is determined exogenously, the bankruptcy point is chosen arbitrarily5. However, 

this consideration is suboptimal because firms usually continue operations even when assets 

value falls below firm’s debt and practically there is not an agreed value to use. Eq. (5) shows 

the calculation of the bankruptcy point, 𝑉𝐵𝐿𝑇, underlying Leland-Toft model which is a key 

determinant of the bankruptcy probability6: 

 

𝑉𝐵𝐿𝑇 =
(

𝐶
𝑟) (

𝐴
𝑟𝑇 − 𝐵) − 𝐴

𝑃
𝑟𝑇 − 𝜏

𝐶𝑥
𝑟

1 + 𝑐𝑥 − (1 − 𝑐)𝐵
 (5) 

where 

𝐴 = 2𝛼𝑒−𝑟𝑇𝑁(𝑎𝜎𝑉√𝑇) − 2𝑧𝑁(𝑧𝜎𝑉√𝛵) −
2

𝜎𝑉√𝛵
𝑛(𝑧𝜎𝑉√𝛵) +

2𝑒−𝑟𝑇

𝜎𝑉√𝛵
𝑛(𝛼𝜎𝑉√𝛵) + (𝑧 − 𝑎) 

𝐵 = − (2𝑧 +
2

𝑧𝜎𝑉
2𝛵

) 𝑁(𝑧𝜎𝑉√𝛵) −
2

𝜎𝑉√𝛵
𝑛(𝑧𝜎𝑉√𝛵) + (𝑧 − 𝑎) +

1

𝑧𝜎𝑉
2𝛵

 

𝑎 =
(𝑟 − 𝛿 − 0.5𝜎𝑉

2)

𝜎𝑉
2

, 𝑧 =
√𝑎2𝜎𝑉

4 + 2𝑟𝜎𝑉
2

𝜎𝑉
2

,       𝑥 = 𝑎 + 𝑧  

with N(·) and n(·) denoting the cumulative standard normal distribution and standard normal 

density functions respectively. A closer examination shows that Eq. (5) is a function of eight 

                                                           
5 For example, in the Merton’s model the bankruptcy point is the debt of the firm and thus, is determined 

exogenously. 
6 Hilberink and Rogers (2002), extend Leland-Toft (1996) to allow for sudden jumps in the asset value, V, and 

derive a new optimal bankruptcy point. However, the solutions are not explicit and some of the parameters are not 

straightforward to compute (see Eq. (3.16) and Eq. (3.23) in their paper). 
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parameters: risk-free rate (r), tax rate (τ), coupon payments (C), bankruptcy costs (c), volatility 

of assets (𝜎𝑉), debt principal (P), payout yield (δ), and debt maturity (T). 

   To evaluate bankruptcy risk in discrete points of time t, where t ≤ T, we need to define a 

cumulative distribution function. In the framework of Leland-Toft (LT hereafter), the 

probability that the current value of firm’s assets, V, will fall to the bankruptcy point, 𝑉𝐵𝐿𝑇, for 

the first time at time t is obtained from Leland (2004) and defined as: 

 𝑝𝑟𝑜𝑏(𝑡) = 𝑁(𝑋) + 𝑒𝑌𝑁(𝑍) (6) 

where    

𝑋 =
−𝑙𝑛 (

𝑉
𝑉𝐵𝐿𝑇

) − (𝜇 − 𝛿 − 0.5𝜎𝑉
2)𝑡

𝜎𝑉√𝑡
, 𝑌 =

−2𝑙𝑛 (
𝑉

𝑉𝐵𝐿𝑇
) (𝜇 − 𝛿 − 0.5𝜎𝑉

2)

𝜎𝑉
2

 

𝑍 =
− ln (

𝑉
𝑉𝐵𝐿𝑇

) + (𝜇 − 𝛿 − 0.5𝜎𝑉
2)𝑡

𝜎𝑉√𝑡
 

Finally, t is the forecasting horizon, which in our case is one year. 

2.1.3 Estimating Asset Values and Volatilities 

   The most important inputs to LT and BSM models are the value of assets and the volatility of 

assets returns which are not observed. In the context of options pricing, however, the following 

two non-linear equations can be solved iteratively to obtain the two variables of interest: 

 
𝑉 =

𝐸 − 𝐷𝑒−𝑟𝑇𝑁(𝑑2) 

𝑁(𝑑1)
 (7) 

 
𝜎𝑉 =

𝛦𝜎𝐸

𝑉𝑁(𝑑1)
 (8) 

where  𝜎𝐸 is the volatility of equity returns that is directly estimated from daily equity data. The 

above iterative procedure, which we use to estimate the two unobserved inputs, is the standard 

approach for the estimation of asset value and volatility and has also been used by Eom et al. 

(2004), Hillegeist et al. (2004), Campbell et al. (2008), while Vassalou and Xing (2004) use a 

variation of the above iterative process7. 

                                                           
7 For other approaches, see Bharath and Shumway (2008), Charitou et al. (2013) and Afik et al. (2016) 
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2.2 Reduced-Form Models 

   Several reduced-form models are also considered. Ohlson (1980) is a model which relates 

bankruptcy with a set of accounting-based variables, defined as follows: 

 Ohlson = f (SIZE, TLTA, WCTA, CLCA, D(TL>TA), NITA, 

CFOTL, D (NIt+NIt-1<0), CHINI) 

(9) 

Next, we consider Almamy, Aston and Ngwa (2016), which we refer as AAN. This model is an 

extension of Altman’s model which incorporates a cash flow variable as additional predictor 

and it is defined as follows: 

 𝐴𝐴𝑁 =  𝑓 (𝑊𝐶𝑇𝐴, 𝑅𝐸𝑇𝐴, 𝐸𝐵𝐼𝑇𝑇𝐴, 𝑀𝑉𝑇𝐿, 𝑆𝐿𝑇𝐴, 𝐶𝐹𝑂𝑇𝐴) (10) 

Moreover, we consider the model proposed by Campbell, Hilscher and Szilagyi (2008), which 

we refer to as CHS. This model is a mixture of accounting ratios, scaled by the market value of 

assets, and other market information as predictors, defined as follows:  

 𝐶𝐻𝑆 =  𝑓 (𝑁𝐼𝑀𝑇𝐴, 𝑇𝐿𝑀𝑇𝐴, 𝐸𝑋𝑅𝐸𝑇, 𝑆𝐼𝐺𝑀𝐴, 𝑅𝑆𝐼𝑍𝐸, 𝐶𝐴𝑆𝐻𝑀𝑇𝐴, 𝑀𝐵, 𝑃𝑅𝐼𝐶𝐸) (11) 

The definition of the variables is in table 1. 

[Insert Table 1 here] 

2.3 Hybrid Models 

   Finally, we incorporate the probability of bankruptcy derived from LT as additional predictor 

in Ohlson, Altman and CHS models, yielding the following hybrid models which we refer to as 

OLT, ALT and CHSLT respectively: 

 OLT= f (SIZE, TLTA, WCTA, CLCA, D(TL>TA), NITA, 

CFOTL, D (NIt+NIt-1<0), CHINI, LT) 
(12) 

 𝐴𝐿𝑇 =  𝑓 (𝑊𝐶𝑇𝐴, 𝑅𝐸𝑇𝐴, 𝐸𝐵𝐼𝑇𝑇𝐴, 𝑀𝑉𝑇𝐿, 𝑆𝐿𝑇𝐴, 𝐿𝑇) (13) 

 CHSLT= f (NIMTA, TLMTA, EXRET, SIGMA, RSIZE, CASHMTA, 

                                MB, PRICE, LT) 

(14) 

 ZENON TAOUSHIANIS



9 
 

2.4 Research Hypotheses 

   LT is an extended version of Merton’s model with less restrictive assumptions and a richer 

information set about the firm. Therefore: 

Hypothesis 1: LT is a better alternative approach than BSM  

   Prior research suggests that accounting and market information should be included in 

corporate bankruptcy prediction models since they provide complementary information. For 

instance, variables such as the volatility of equity and excess equity returns improve the 

performance of accounting-based models (Chava and Jarrow, 2004; Hillegeist et al., 2004; 

Agarwal and Taffler, 2008; Tinoco and Wilson, 2013 etc.). Therefore, we expect that including 

LT in Ohlson model will enhance its performance: 

Hypothesis 2: Incorporating LT as additional predictor in Ohlson, yields a model with improved 

performance.  

Hence, the model in Eq. (12) should outperform the model in Eq. (9). An extension of 

Hypothesis 2, is as follows: 

Hypothesis 2a: Ohlson model augmented with LT, will outperform Ohlson model augmented 

with BSM.  

   Almamy et al. (2016) suggest that augmenting Altman’s model with a cash-flow variable, 

increases its predictive ability. However, further increase in predictive ability could be obtained 

when augmenting Altman’s model with a predictor that measures the financial healthiness of 

firms with coupon-paying debts. Hence, the model in Eq. (13) should outperform the model in 

Eq. (10). 

Therefore: 

Hypothesis 3: Augmenting Altman’s model with LT will further increase predictive ability than 

a cash-flow variable.  

An extension of Hypothesis 3, is as follows: 

Hypothesis 3a: Altman’s model augmented with LT, will outperform Altman’s model augmented 

with BSM. 
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   Campbell et al. (2008) find that augmenting their model with BSM, doesn’t yield improved 

performance, arguing that all the information incorporated in BSM, such as returns and 

volatilities, are already included in their model. Since LT is an extension of BSM that includes 

additional information, we want to investigate if augmenting Campbell et al. (2008) with LT, 

would improve its performance. This leads to the fourth hypothesis: 

Hypothesis 4: Incorporating LT as additional predictor in Campbell et al. (2008), yields a model 

with improved performance.  

Finally, an extension of the fourth hypothesis, is the following: 

Hypothesis 4a: Augmenting Campbell et al. (2008) with LT, will outperform Campbell et al. 

(2008) augmented with BSM 

3 Data 

3.1 Sample  

   We analyze a sample of 54608 U.S. public firms from which 333 filed for bankruptcy in a 

specific year between the 20-year period 1995-2014. Bankruptcy filings were identified from 

BankruptcyData9 and include firms which filed for bankruptcy under Chapter 7 or Chapter 11. 

To avoid problems related to sample selection bias and increase efficiency of regression 

estimates, we collect all available observations in the selected period for each bankrupt and 

healthy firm. This practice increases our sample to 39830 firm-year observations. Furthermore, 

once a firm files for bankruptcy, future observations for that firm are excluded but past 

observations for all bankrupt firms are included in our sample (i.e. before a firm file for 

bankruptcy, it is considered as healthy).  

   Table 2 presents the distribution of observations across the years.  

[Insert Table 2 here] 

In general, bankruptcy rate in all years is less than 1% except for years 1999 (1.493%) and the 

mid-crisis years 2008 and 2009 with the bankruptcy rate being at its peak (1.190% and 2.133% 

                                                           
8 The framework of Leland and Toft (1996) applies for firms with coupon-paying debt. Thus, we keep only firms 

which have interest payments in their income statements 
9 Available at http://www.bankruptcydata.com/findabrtop.asp 
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respectively). The average bankruptcy rate in the sample is 0.836% indicating the fact that 

bankruptcy is a rare event.  

   Similar with Bharath and Shumway (2008), Afik et al. (2016) and others, we exclude financial 

firms (SIC 6000-6799) due to the different nature of their operations and structure of their 

financial statements relative to other industrial firms. Firms are classified into a specific industry 

according to the Standard Industrial Classification (SIC) code provided by the United States 

Department of Labor. Table 3 shows the distribution of observations across industries.  

[Insert Table 3 here] 

Most of observations (53%) comes from the Manufacturing sector and then from Services, 

Transportation, Retail and Mining sectors, accounting for 16.42%, 10.36%, 8.41% and 5.87% 

of the sample respectively, whereas the Wholesale, Construction, Public Administration and 

Agriculture sectors account for the smallest proportions of the sample (4.03%, 0.95%, 0.62% 

and 0.35% respectively). 

3.2 Variables Construction 

   To construct the relevant variables used in the structural and reduced-form models, we collect 

annual financial data from Compustat and daily equity data from CRSP. All variables are 

constructed at the fiscal year-end, prior to the year of bankruptcy.  

   To estimate the value of assets and the volatility with the iterative process described earlier, 

we need the market value of equity and the (annualized) volatility of equity return. For the first, 

we take the stock price at the fiscal year-end and multiply it with the number of shares 

outstanding. For the latter, we follow Campbell et al. (2008) by taking the standard deviation of 

stock returns for the last 30 days, prior to fiscal year-end. For the face value of debt (D), we 

follow convention in the literature, and we set it equal with short-term debt plus half of long-

term debt (also used in Vassalou and Xing, 2004 and Campbell et al., 2008). The prediction 

horizon is one, thus T for the BSM and t for the Leland-Toft models equal 1. Another input to 

the structural models, is the assets value returns (μ). Campbell et al. (2008) use an equity risk-

premium equal to the riskless rate plus 6% for all firms. However, we believe that using a 

common return for all firms, would undermine the predictive ability of the structural models. A 

better alternative would be to use a firm-specific return. A reasonable proxy, which we use in 

our study, is the annualized return of equity, also used by Bharath and Shumway (2008). Afik 
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et al. (2016), instead, suggest using the maximum between the riskless rate of return and equity 

return. However, this specification would overstate the asset drift for firms with negative 

prospects (i.e. the bankrupt firms), undermining again the predictive ability of the structural 

models.  

   For the risk-free rate (r), the one-year Treasury Constant Maturity rate is used, obtained from 

Federal Reserve10. For the coupon payments (C) and debt principal (P), the interest expense and 

the short-term debt plus half of long-term debt are used as proxies respectively and the payout 

yield (δ) is defined as the sum of coupon payments plus dividends (ordinary and preferred) 

divided by the market value of assets. For corporate tax rate (τ), bankruptcy costs (c) and 

maturity of debt (Τ) we follow Leland (2004) who sets these parameters equal to 15%, 30% and 

10 years respectively. However, as shown later and specifically in Appendix A, results are not 

sensitive with respect to different parameters choices and thus Leland-Toft is stable as far as its 

performance is concerned (refer to section 4 about model performance measures). All inputs of 

the models are summarized in Τable 1. 

4 Methodology 

   This section describes the methodology that is used to assess the performance of the 

bankruptcy prediction models.  

4.1 Discriminatory Power   

   Discriminatory power refers to the ability of a model to discriminate bankrupt from healthy 

firms. The ROC curve is a graphical representation of the discriminatory power of a bankruptcy 

prediction model. It plots the true predictions on the vertical axis (the percentage of bankrupt 

firms correctly classified as bankrupt) against the false predictions on the horizontal axis (the 

percentage of healthy firms incorrectly classified as bankrupt) according to a pre-determined 

cut-off value. By performing this classification procedure for multiple cut-off values, we create 

a set of points which together constitute the ROC curve. Ideally, a perfect model will never 

make false predictions and will always correctly classify the bankrupt firms, for any level of 

cut-off point. Hence the ROC curve of a perfect model will pass through the point (0, 1) and in 

                                                           
10 Available at http://www.federalreserve.gov/releases/h15/data.htm 
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general, the closer the ROC curve towards the top-left corner of the graph, the better the 

discriminatory power is.  

   A quantitative assessment of the discriminatory power of a bankruptcy prediction model is the 

Area Under ROC (AUROC) curve (see for example Hanley and McNeil, 1982 and Sobehart 

and Keenan, 2001) and calculated as follows:    

 
𝐴𝑈𝑅𝑂𝐶̂ =

1

𝑛𝑚
∑ ∑ 𝜓(𝑝𝐵

𝑖 , 𝑝𝐻
𝑗

)

𝑚

𝑗=1

𝑛

𝑖=1

 (15) 

 where 

 𝜓(𝑝𝐵
𝑖 , 𝑝𝐻

𝑗
) = {

1,            𝑝𝐵
𝑖 > 𝑝𝐻

𝑗
  

0.5,         𝑝𝐵
𝑖 = 𝑝𝐻

𝑗
  

0,            𝑝𝐵
𝑖 < 𝑝𝐻

𝑗
  

     

and  𝑝𝐵
𝑖  is the bankruptcy probability of the i-th bankrupt firm, 𝑝𝐻

𝑗
 is the bankruptcy probability 

of the j-th healthy firm, n is the number of bankrupt firms and m is the number of healthy firms 

in our sample. 

   We test for statistically significant differences between the AUROCs of two models. The 

hypothesis is as follows:  

𝛨0: 𝐴𝑈𝑅𝑂𝐶 1 –  𝛢𝑈𝑅𝑂𝐶 2 = 0      𝑉𝑠     𝛨1: 𝐴𝑈𝑅𝑂𝐶 1 –  𝛢𝑈𝑅𝑂𝐶 2 ≠ 0   

We use the non-parametric approach of DeLong et al. (1988), which accounts for the correlation 

of the AUROCs produced by the two models. The construction of the test statistic is described 

in Appendix B.  

4.2 Logit Models 

   The logistic regression approach is used to estimate the models in Eqs. (9)-(14). Specifically, 

we estimate the following logit model: 

 
𝑃(𝑌𝑖,𝑡+1 = 1|𝑋𝑖,𝑡) =  𝑝𝑖,𝑡 =

𝑒𝑎+𝛽′𝑋𝑖,𝑡

1 + 𝑒𝑎+𝛽′𝑋𝑖,𝑡
 (16) 

where 𝑝𝑖,𝑡 is the probability of bankruptcy at time “t”, that the “i-th” firm will go bankrupt the 

next year, Yi, t+1 denotes the status of the i-th firm (1 if it goes bankrupt at time t+1, 0 otherwise), 
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𝑋𝑖,𝑡 is the vector of covariates of the i-th firm at time t, 𝛽 is the vector of coefficient estimates 

and 𝑎 is the constant term which expresses the bankruptcy risk in the absence of the covariates. 

   The model in Eq. (16) represents a multi-period logit model because it includes observations 

for each firm across time. However, the inclusion of multiple firm-year observations per firm 

yields understated standard errors because the log-likelihood objective function, which is 

maximized to estimate the multi-period logit model, assumes that each observation is 

independent from each other. This is a wrong assumption since financial information of a firm 

at time t+1 cannot be independent from the financial information of the same firm at t. Failing 

to address this econometric issue, leads to wrong inference regarding the significance of the 

individual coefficients. Similar with Filipe et al. (2016), we use clustered-robust standard errors 

to adjust for the number of firms in the sample but also for heteroskedasticity (Huber,1967 and 

White, 1980).   

   To compare the predictive accuracy of various logit models, we test the difference between 

their log-likelihoods. Hence, the hypothesis takes the following general form: 

H0: 𝐿1(𝑘1) − 𝐿2(𝑘2)  = 0      𝑉𝑠     H1: 𝐿1(𝑘1) − 𝐿2(𝑘2)  ≠ 0 

where 𝐿1(𝑘1) is the log-likelihood of the first model with 𝑘1 parameters and 𝐿2(𝑘2), is the log-

likelihood of the second model, with 𝑘2 parameters and k1 > k2. The construction of the test 

statistic for different types of logit models can be found in Appendix C. 

4.3 Economic Analysis of Bankruptcy Models 

   The analysis so far addressed the accuracy of our bankruptcy models. But how accuracy is 

economically beneficial for banks? Here, we follow the approach of Agarwal and Taffler (2008) 

to examine it by assuming a loan market worth $100 billion and banks competing for granting 

loans to individual firms. Each bank uses one of our bankruptcy models to evaluate the credit 

worthiness of their customers.    

4.3.1 Calculating Credit Spreads 

   We estimate the models using data spanning the years 1995-2005 (70% of the sample). We 

sort firm-customers from this sample in 10 groups of equal size and a credit spread is calculated 

according to the following rule; Firms in the first group, which are firms with the lowest 

ZENON TAOUSHIANIS



15 
 

bankruptcy risk, are given a credit spread, k, and firms in the remaining groups are given a credit 

spread, CSi, obtained from Stein (2005) and Blochlinger and Leippold (2006) and it is defined 

as follows: 

 
𝐶𝑆𝑖 =

𝑝(𝑌 = 1|𝑆 = 𝑖)

𝑝(𝑌 = 0|𝑆 = 𝑖)
𝐿𝐺𝐷 + 𝑘 (17) 

where p(Y=1|S=i) and p(Y=0|S=i), is the average probability of bankruptcy and non-bankruptcy 

for the i-th group, with i=2, 3, … ,10 and LGD is the loan loss upon default. Following Agarwal 

and Taffler (2008), the average probability of bankruptcy for the i-th group, is the actual 

bankruptcy rate for that group, defined as the number of firms that went bankrupt the following 

year divided by the number of firms in the group. Furthermore, k=0.3% and LGD=45%. 

4.3.2 Granting Loans and Measuring Economic Performance 

   To evaluate economic performance, we assume that banks compete to grant loans to 

prospective firm-customers between the period 2006-2014. Each bank uses one of our 

bankruptcy models which have been estimated in the period 1995-2005. The bank sorts those 

customers according to their riskiness and rejects the bottom 5% with highest risk. The 

remaining firms are classified in 10 groups of equal size and firms from each group are charged 

a credit spread that has been obtained from the period 1995-2005. Finally, for each customer the 

bank that charges the lowest credit spread is granting the loan. Two measures of profitability 

are used. The first one, Return on Assets (ROA) is defined as Profits/Assets lent and the second 

one, Return on Risk-Weighted Assets (RORWA) takes into consideration the riskiness of the 

assets, defined as Profits/Risk-Weighted Assets. Risk-Weighted Assets are obtained from 

formulas provided by the Basel Committee on Banking Supervision (2006)11. 

5 Results 

5.1 Descriptive Statistics 

   Table 4 reports mean values of the explanatory variables for the entire sample 1995-2014. As 

expected, the performance of bankrupt firms is worse than the performance of healthy firms, 

one year prior to bankruptcy with the differences in mean values being statistically significant 

                                                           
11 See for instance the Appendix in Bauer and Agarwal (2014) 
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in most cases. For example, bankrupt firms; are less profitable (EBITTA is lower), have more 

leverage (TLTA is higher), their liquidity is more constrained (WCTA is lower) etc. In terms of 

the market performance, stock price of bankrupt firms is significantly more volatile than healthy 

firms (SIGMA is higher), they underperform the market (EXRET is lower) as well stock price is 

lower (PRICE is lower). Our variable of interest, LT, is higher for bankrupt firms relative to 

healthy firms 

[Insert Table 4 here] 

5.2 Reduced-Form and Hybrid Models Estimation  

   Table 5 reports estimation results for our models when applying the logistic regression 

approach on our data.  

[Insert Table 5 here] 

Here, the estimation sample spans the years between 1995 and 2005 which accounts for 

approximately 70% of our sample. Firstly, most of Ohlson and CHS variables are significant 

and with the correct sign. Noticeable exception is the case of SIGMA where in previous studies 

(Campbell et al., 2008 and Bauer and Agarwal, 2014) was found significant. Based on an 

analysis we have performed, we conclude that in our case the interaction of SIGMA with other 

market variables in the CHS model is the main cause for this kind of behavior. For example, 

when we include SIGMA individually or in the Ohlson model, is statistically significant and 

with the correct (positive) sign. Furthermore, in the estimation sample, average SIGMA (not 

tabulated) for bankrupt firms is 1.21 while for healthy firms is 0.60, which excludes possible 

data collection error. Another relatively odd estimation result is the positive coefficient for the 

SIZE variable12. According to Galil and Gilat (2018), a positive sign of this variable may hint 

on a selection bias in the bankruptcy sample toward larger corporates. However, this is not the 

case with our sample. In the estimation sample (whole sample), average total assets for bankrupt 

firms are 679.1 million (662.5 million), while for the healthy group, average total assets are 

2074.5 million (3455.3 million). We believe that its interaction with other variables is the main 

cause for this result (including SIZE only in a logistic regression, yields a statistically significant 

coefficient with the correct (negative) sign.   

                                                           
12 Hillegeist et al. (2004) also find a positive SIZE coefficient in the Ohlson model 
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   Secondly, most of Altman variables included in AAN are not significant, consistent with 

Hillegeist et al. (2004). The cash flow ratio enters significantly and with the correct sign. Finally, 

the predictor of interest, LT, is highly statistically significant (α=1%) when incorporated in 

Altman (ALT), Ohlson (OLT), and Campbell (CHSLT) models. 

5.3 Evaluating Leland-Toft and BSM (Hypothesis 1) 

    First, we compare the performance of the two structural models. For consistency, we estimate 

two logit models; The first includes the probability of bankruptcy derived from Leland-Toft in 

the period 1995-2005 as predictor and the second includes the probability of bankruptcy derived 

from BSM. Using these models, we forecast bankruptcies in the out-of-sample period, 2006-

201413. The performance is reported in Table 6. 

[Insert Table 6 here] 

   We find that AUROC of LT is 0.8941 while for BSM is 0.8659, indicating that LT has better 

out-of-sample discriminating ability. Using the Delong test we find that the difference is 

statistically significant at α=1% (test statistic=2.74). Moreover, in Appendix A we perform a 

sensitivity analysis test to examine whether the AUROC of LT is affected by deviations in the 

choice of parameter values. In all, results suggest that LT is not sensitive as far as the ordinal 

ranking (AUROC) is concerned.  Further, LT model explains bankruptcy variation better than 

BSM, according to pseudo-R2 (19.72% and 17.90% respectively), although differences in their 

log-likelihoods are not significant (test statistic is 1.38). 

   However, as it is evident from Table 6, neither LT, nor BSM are sufficient statistics to forecast 

bankruptcies, since they are outperformed by other models such as Ohlson and CHS (differences 

in AUROCs and log-likelihoods are significant)14. Thus, none of the structural models can stand 

alone.  

   Finally, we perform an analysis of the economic benefits when banks use either LT or BSM 

in evaluating the credit worthiness of prospective customers. We make the paradigm more 

challenging by using Altman’s model as a benchmark. Hence, we assume there are three banks 

                                                           
13 This adjustment in the bankruptcy probability derived from structural models through a logit regression, is 

usually referred to as calibration. 
14 This result is also evident by the regression results in table 5, since LT enters significantly in Ohlson, Altman 

and CHS along with other variables, suggesting that individually, it doesn’t capture all the bankruptcy-related 

information. 
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competing for loans; bank 1 uses LT, bank 2 uses BSM and bank 3 uses Altman’s model. The 

results are reported in table 7: 

[Insert Table 7 here] 

As can be inferred, the quality of the loan portfolio for bank 1 which uses LT is the best among 

the three banks, since there are only 10 bankruptcies (0.25%), whereas there are 37 and 38 

bankruptcies in the portfolios of banks 2 and 3 respectively, corresponding to 0.79% and 0.76% 

bankruptcy rate. Most importantly however, is that bank 1 generates superior economic 

performance relative to its competitors. For instance, on a risk-adjusted basis, bank 1 yields 

1.09% return on the capital it has invested while bank 2 generates 0.64% and the return for bank 

3 is 0.54%15.   

   From the analysis in this section, we conclude that a bank has more gain by using LT rather 

than BSM which in fact, lends support to our first hypothesis, indicating that LT is a better 

approach than BSM, due to the richer information set incorporated in LT. 

5.4 Reduced-Form and Hybrid Model Performance (Hypotheses 2-4) 

   In this section, we test the performance of the models using three out-of-sample approaches, 

as well as the economic benefits when banks adopt the models in a competitive loan market, as 

outlined below. 

5.4.1 Baseline Approach 

   Here, we use the models (as estimated in table 5) to forecast bankruptcies in the out-of-sample 

period which spans the years between 2006 and 2014. Results are reported in table 6. 

   Panel A reports the performance of the models while panels B and C test for differences in 

their discriminating ability and predictive accuracy respectively. Firstly, OLT performs better 

than Ohlson (AUROCs are 0.9449 vs 0.9252 and log-likelihoods are -483.43 vs -535.57). The 

differences are statistically significant (test statistics are 4.73 and 104.28 respectively) which 

lends support to our second hypothesis, that extending Ohlson with LT yields improved 

performance. Secondly, ALT outperforms AAN (AUROCs are 0.9207 vs 0.8597 and log-

                                                           
15 Results are robust with respect to various specifications of LGD (0.4-0.7) but k as well (0.002-0.004) 
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likelihoods are -519.56 vs -603.81). The differences are statistically significant (test statistics 

are 4.78 and 6.51 respectively) which is in line with our third hypothesis. That is, augmenting 

Altman’s model with LT, further improves performance relative to a cash flow variable as 

suggested by Almamy et al. (2016). Including LT in CHS slightly improves discriminating 

ability (AUROCs are 0.9395 for CHSLT and 0.9332 for CHS), though their differences are not 

statistically significant (test statistic is 1.47). On the other hand, LT carries incremental 

information as indicated by their log-likelihoods, meaning that it is a missing variable for the 

model (log-likelihoods for CHSLT and CHS are -491.41 and -498.85 respectively), with the 

difference being statistically significant (test statistic is 14.88). Thus, we provide evidence 

regarding the fourth hypothesis, that augmenting CHS with LT yields improved performance. 

We complement the aforementioned results, with ROC curves provided in figure 1. 

[Insert Figure 1 here] 

   A related performance statistic with AUROC is the partial AUROC (pAUROC)16, which is 

based on a specified region of the area under ROC curve that might be of practical interest (see 

for instance Dodd and Pepe, 2003)17. Panel A in table 6 reports pAUROCs for the models. We 

have also tested for differences in pAUROCs, but we do not report the results to save space. 

Overall, the conclusions are similar with the case of AUROC, giving validity to hypotheses 1-

4.  

5.4.2 Rolling Window Approach 

   As a second way to test the models, we re-estimate them yearly based on a rolling window. 

For instance, we estimate the models using firms between 1995 and 2005 and apply them on 

firms in 2006. Then we re-estimate the models using firms between 1996 and 2006 and apply 

them on firms in 2007. This process is repeated until 2014 and we aggregate bankruptcy 

probabilities obtained from each year to measure the performance of the models. It should be 

noted that this approach should be used in practice because the models are updated more 

frequently as new information becomes available. Results are reported in table 8. 

                                                           
16 We thank an anonymous referee for this suggestion. 
17 The selection of the partial region under the ROC curve, however, is subjective. We rely on STATA’s default 

specifications to estimate pAUROCs and to test for significant differences. 
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[Insert Table 8 here] 

   We obtain similar results as before and summarized as follows: 1) Augmenting Ohlson with 

LT yields a model with improved performance as indicated by AUROC statistics (0.9469 for 

OLT vs 0.9289 for Ohlson) as well as log-likelihood statistics (-470.37 for OLT vs -522.87 for 

Ohlson). Differences are statistically significant (test statistics are 4.33 and 104.99 for the two 

performance tests respectively) which is consistent with hypothesis 2, 2) Incorporating LT in 

Altman’s model further improves its performance as opposed to a cash flow variable (AUROC 

for ALT is 0.9253 vs 0.8673 for AAN, while log-likelihoods are -508.25 and -593.86 

respectively). Differences in their performance are significant (test statistics for the two tests are 

4.62 and 6.28 respectively) which provides evidence to support our third hypothesis and 3) LT 

incorporates information not included in CHS (log-likelihood for CHSLT is -479.66 while for 

CHS is -485.94, and test statistic is 12.57) which is in line with the fourth hypothesis. AUROC 

improvement is not significant. 

5.4.3 Five Folds Approach 

   Here, we divide the whole sample period in five approximately equal-sized sub-samples. We 

use any four of them to estimate the models and apply them on firms in the left-out sample. This 

is to break the chronological order of the data, and to consider different periods as well, such as 

periods before the financial crisis period. Then we aggregate bankruptcy probabilities from each 

left-out sample to obtain single performance measures. Results are reported in table 9. 

[Insert Table 9 here] 

   As expected, performance according to this approach is lower since we use data from different 

periods to make predictions, missing therefore potential trends.  Despite this fact, we obtain 

similar insights as with the two previous approaches. Discriminating ability is improved when 

we include LT as additional predictor in Ohlson (AUROCs are 0.9091 for OLT and 0.8939 for 

Ohlson) while predictive accuracy is also better (log-likelihoods are -1379.48 for OLT and -

1477.06 for Ohlson). Differences are statistically significant (test statistics are 4.56 and 195.16 

for the two tests respectively) which is consistent with our second hypothesis regarding the 

superiority of this extended version of Ohlson’s model. Next, ALT outperforms AAN as 

indicated by AUROC statistics (0.8826 vs 0.8438 respectively) as well as log-likelihood 

statistics (-1471.35 vs -1630.45 respectively), meaning that LT further improves performance 
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when included in Altman’s model as opposed to a cash flow variable, supporting therefore our 

third hypothesis. Differences in performance are significant (test statistics are 5.63 and 6.62 for 

the two tests respectively). Finally, as with the previous tests we find evidence that LT improves 

the performance of CHS. Specifically, log-likelihood for CHSLT is -1403.72 while for CHS is 

-1417.16. Difference is statistically significant (test statistic is 26.87) while discriminating 

ability, measured by AUROC, is only slightly improved. 

5.4.4 Economic Benefits 

   So far, we have considered aspects of model performance such as discriminating ability, 

measured by AUROC, and empirical fit, measured by log-likelihood statistics. However, a bank 

is more interested in the economic benefits when using bankruptcy models in the decision-

making process of granting loans to individual firms. Here, we show the case of five banks, 

where bank 1 uses OLT, bank 2 uses CHSLT, banks 3 and 4 use CHS and Ohlson respectively, 

whereas bank 5 uses a benchmark model such as Altman’s model. Table 10 reports information 

regarding the economic results of these banks. 

[Insert Table 10 here] 

Clearly, the quality of the loan portfolio for banks 1 and 2 which use OLT and CHSLT 

respectively, is superior relative to that of banks 3 and 4 which use CHS and Ohlson 

respectively. This is evident by the lower concentration of bankruptcies in their portfolios 

(0.11% for bank 1 and 0.16% for bank 2) relative to other banks (0.44% for bank 3 and 0.58% 

for bank 4). 

   The most important result, however, is that banks 1 and 2 earn higher returns than the other 

banks on a risk-adjusted basis (i.e. after adjusting for the riskiness of the assets lent). For 

instance, for each dollar invested, banks 1 and 2 earn 1.74% and 1.54% respectively on a risk-

adjusted basis, whereas the competing banks earn lower returns (1.12% for bank 3 and 1.02% 

for bank 4). Bank 5 which uses a generic bankruptcy model earns negative returns. It is also 

worth noting that differences in discriminating ability that we have not found to be statistically 

significant are reflected in the economic results18. For instance, both banks 1 and 2 that use OLT 

                                                           
18 Bauer and Agarwal (2014) also reported that very small differences in AUROCs are shown up in the economic 

results  
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and CHSLT respectively, are more profitable than bank 3 which uses CHS, although there are 

no significant differences in their AUROCs, as reported in table 6. Thus, banks should take into 

consideration the economic benefits when judging what bankruptcy model to use.   

   Based on these results19, we conclude that banks using OLT and CHSLT, can achieve superior 

economic performance relative to other banks that use, for instance, CHS or Ohlson. 

5.5 Augmenting CHS, Ohlson and Altman with LT and BSM (Hypotheses 2a-4a) 

   Campbell et al. (2008) show that augmenting their model with BSM doesn’t yield improved 

performance based on pseudo-R2, indicating that all the information incorporated in BSM is 

already included in their model. Here, we re-examine this insight and compare it with the case 

of LT. Table 11 reports the results. 

[Insert Table 11 here] 

Indeed, augmenting CHS with BSM doesn’t improve performance, since volatility and return 

measures are already included in the model (log-likelihood and pseudo-R2 are the same when 

compared to CHS. Differences in model performance are not statistically significant according 

to test-statistics reported in panel A and B. However, this is not the case when we include LT. 

Specifically, pseudo-R2 increases to 34.35% as well as log-likelihood (difference with CHS is 

statistically significant at α=1%), indicating that LT provides additional information not 

included in CHS. As expected though, we document increase in performance when augmenting 

Ohlson and Altman with LT and BSM, since the two reduced-form models do not incorporate 

market information (all test statistics for performance difference are significant at α=1%).   

   Finally, we find that hybrid models with LT outperform hybrid models with BSM. For 

example, log-likelihood for CHS augmented with LT is -491.41 while for CHS augmented with 

BSM is -497.96 (Vuong’s test statistic is significant at α=5%). AUROC for the first, is slightly 

higher (test statistic is not significant). Similar is the case with Ohlson and Altman model. 

Augmenting these models with LT yields models with better performance relative to 

augmenting them with BSM (Delong’s test for AUROCs and Vuong’s test for log-likelihoods 

                                                           
19 Results are robust with respect to different parameter specifications, for example, setting LGD = 0.4-0.7 and 

k=0.002-0.004 
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are significant at α=5%). In all, we find evidence in favor of hypotheses 2a-4a; hybrid models 

that incorporate LT, outperform those with BSM. 

5.6 Time Robustness 

   In this test, we estimate the reduced-form and hybrid models in the period 2006-2014 and 

forecast bankruptcies in the period 1995-2005. This is to test the performance of the models in 

a completely new sample, since the previous tests, included data from the recent period to 

measure performance i.e. 2006-2014. Results are reported in table 12. 

[Insert Table 12 here] 

In all, the results support the superiority of the hybrid models over the reduced form models, 

suggesting that the LT is a significant addition to the models20. For instance, OLT outperforms 

Ohlson (differences in AUROCs and log-likelihoods are both significant at α=5% and α=1% 

respectively), CHSLT outperforms CHS (differences in log-likelihoods are significant at α=1%) 

and finally, ALT outperforms AAN (differences in AUROCs and log-likelihoods are significant 

at α=1%). 

5.7 Focusing on the crisis period 2007-2009 

   The purpose of this section is to shed light on the performance of our bankruptcy models 

during the financial crisis period 2007-200921 (results not tabulated). With respect to this test we 

find qualitatively similar results with our previous tests, suggesting that the hybrid models 

performed better relative to the reduced-formed models and they could have been more valuable 

in terms of measuring bankruptcy risk more accurately during the financial crisis period. The 

evidence in this section confirms that LT is a missing predictor in bankruptcy models and its 

addition would be beneficial. 

                                                           
20 We have also performed our test for the economic benefits, and we find that the banks using the hybrid models 

achieve higher returns relative to banks using the reduced-form models.  
21 Almamy et al. (2016) consider the period 2007-2008 as the financial crisis period. While this is true, we 

consider that the crisis may take some time to affect company performance and as such, we also include the year 

2009 in our financial crisis period. 
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6 Summary and Conclusions 

   In this paper, we examine an alternative approach for bankruptcy prediction that is based on 

Leland and Toft (1996), which is a model that measures the financial healthiness of firms with 

coupon-paying debts. This model is an extension of a model widely used in the literature; the 

BSM model. The Leland-Toft (LT), however, incorporates information not captured by BSM 

and thus it should be a better one. Based on several tests, we find evidence suggesting that it is 

a better approach in terms of discriminatory power, predictive accuracy but also in terms of 

economic performance when a bank implements LT relative to BSM. 

   Next, we use the probability of bankruptcy derived from LT as additional predictor to extend 

two widely-used corporate bankruptcy models (Altman, 1968 and Ohlson, 1980) but also, a 

contemporary model which was found to outperform other approaches for bankruptcy prediction 

(Campbell et al., 2008). Our objective is to develop powerful models that are practical and easy 

to implement. Under a comprehensive out-of-sample analysis, we find that augmenting 

Altman’s model with LT further improves its performance as opposed to a cash flow ratio, as 

suggested by Almamy et al. (2016). The most powerful models, however, are obtained when we 

augment Ohlson and CHS, with LT. Further, the models augmented with LT outperform the 

models augmented with BSM. 

   However, banks are more interested in the economic performance of such models. Based on 

our final test we find that banks using OLT and CHSLT earn higher returns than banks which 

implement other models to evaluate firm-customers in a competitive loan market. We therefore 

recommend the use of those augmented models as an appropriate risk management tool, that 

could be economically beneficial for banks.  

   Future work should emphasize the estimation of bankruptcy costs and debt maturity separately 

for each firm, rather than using average values, which we think will increase the accuracy of LT 

and its contribution to OLT and CHSLT.  
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Appendix A: Sensitivity Analysis of Leland-Toft 

   Consider the following three vectors with different parameter values for tax rate, τ, debt 

maturity, T and bankruptcy costs, c: 

τ= {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}  

T= {8, 10, 12, 14, 16, 18, 20} 

c= {0.15, 0.20, 0.25, 0.30, 0.35, 0.40} 

Each scenario has as input the triplet {𝜏𝑖, 𝑇𝑗 , 𝑐𝑘} where i=k=1,…,6 and j=1,…,7. For each input 

scenario, AUROC of Leland-Toft is obtained and a histogram is constructed for the 252 

scenarios, as shown in the following figure. 

[Insert Figure A.1 here] 

As can be inferred, discriminating ability measured by AUROC, is not sensitive at all with 

respect to the different scenarios since it ranges between 0.8828 to 0.8848, with an average value 

of 0.8840. Thus, performance is not affected significantly by deviations in the choice of 

parameter values.  
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Figure A.1: This figure shows the distribution of AUROC produced by Leland-Toft model under 

different scenarios of its input parameters τ (the tax rate), T (debt maturity) and c (bankruptcy costs) 

during the period 1995-2014. 

 

Appendix B: Discriminatory Power Test Statistic 

   The key element for the estimation of the test statistic is the covariance matrix of the AUROCs 

produced by the two models. Following DeLong et al. (1988), the covariance matrix is estimated 

as follows: 

1) For each bankrupt firm calculate the AUROC: 

 𝐴𝑈𝑅𝑂𝐶̂ (𝑝𝐵
𝑖 ) =

1

𝑚
∑ 𝜓(𝑝𝐵

𝑖 , 𝑝𝐻
𝑗

)

𝑚

𝑗=1

,    (𝑖 = 1,2, … , 𝑛) (B.1) 

 

2) For each healthy firm calculate the AUROC: 
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 𝐴𝑈𝑅𝑂𝐶̂ (𝑝𝐻
𝑗

) =
1

𝑛
∑ 𝜓(𝑝𝐵

𝑖 , 𝑝𝐻
𝑗

)

𝑛

𝑖=1

,    (𝑗 = 1,2, … , 𝑚) (B.2) 

3) Define the 2x2 symmetric matrix 𝑆10 with (k,r)th element defined as: 

  𝑠10
𝑘,𝑟 =

1

𝑛 − 1
∑[

𝑛

𝑖=1

𝐴𝑈𝑅𝑂𝐶̂
𝑘(𝑝𝐵

𝑖 ) − 𝐴𝑈𝑅𝑂𝐶𝑘][̂ 𝐴𝑈𝑅𝑂𝐶̂
𝑟(𝑝𝐵

𝑖 )  − 𝐴𝑈𝑅𝑂𝐶𝑟
̂ ] (B.3) 

4) Define the 2x2 symmetric matrix 𝑆01 with (k,r)th element defined as: 

 𝑠01
𝑘,𝑟 =

1

𝑚 − 1
∑[

𝑚

𝑗=1

𝐴𝑈𝑅𝑂𝐶̂
𝑘(𝑝𝐻

𝑗
) − 𝐴𝑈𝑅𝑂𝐶𝑘][̂ 𝐴𝑈𝑅𝑂𝐶̂

𝑟(𝑝𝐻
𝑗

)  − 𝐴𝑈𝑅𝑂𝐶𝑟
̂ ] (B.4) 

5) Then the covariance matrix of the two AUROCs is defined as:  

  𝑆 =
1

𝑛
𝑆10 +

1

𝑚
𝑆01 

(B.5) 

Finally, the z-statistic which is standard-normally distributed is calculated as follows: 

 𝑧 =
𝐴𝑈𝑅𝑂𝐶̂

1 − 𝐴𝑈𝑅𝑂𝐶̂
2

(𝑠1,1 − 2𝑠1,2 + 𝑠2,2)
1

2⁄
 (B.6) 

with 𝑠1,1 and 𝑠2,2 being the variances of AUROCs of the two models under comparison and 𝑠1,2 

their covariance, all obtained from Eq. (B.5).  

  

Appendix C: Predictive Accuracy Test Statistic 

 

   There are two distinct types of logit models; non-nested and nested models. In the case of non-

nested models where the 𝑘2 parameters in model 2 are not subset of the 𝑘1 parameters in model 

1, the Vuong (1989) test is used. The z-statistic in this case is standard-normally distributed and 

it is defined as follows: 

  𝑧 =
2(𝐿1 − 𝐿2) − (𝑘1 − 𝑘2)ln (𝑁)

2√𝑁𝜔𝛮

 (C.1) 

Here, N is the number of observations and 𝜔𝛮 is the sample standard deviation of the individual 

log-likelihoods produced by each model, 𝑙𝑖 , which is defined as follows: ZENON TAOUSHIANIS
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 𝑙𝑖 = 𝑙𝑛 [
𝑝1,𝑖

𝑦𝑖(1 − 𝑝1,𝑖)
(1−𝑦𝑖)

𝑝2,𝑖
𝑦𝑖(1 − 𝑝2,𝑖)(1−𝑦𝑖)

] 
(C.2) 

where 𝑝1,𝑖 and 𝑝2,𝑖 are the bankruptcy probabilities for the i-th firm produced by models 1 and 

2 respectively (time index “t” is dropped for simplicity). Furthermore, 𝑦𝑖 indicates whether the 

firm is bankrupt (𝑦𝑖 = 1) or healthy (𝑦𝑖 = 0). Rejection of the null hypothesis indicates 

significant difference between the predictive accuracy of the two models. 

   On the other hand, to compare predictive accuracy between nested models where the 𝑘2 

parameters in model 2 are subset of the 𝑘1 parameters in model 1, the standard Likelihood Ratio 

(LR) test is used.  The statistic in that case is the following: 

 𝐿𝑅 = −2[𝐿(𝑘2) − 𝐿(𝑘1)] (C.3) 

and follows a chi-squared distribution with 𝑘1 − 𝑘2 degrees of freedom. Rejection of the null 

hypothesis indicates that predictive accuracy of the two models is not equivalent. Therefore, at 

least one of the extra 𝑘1 − 𝑘2 parameters in model 1 carry additional explanatory power about 

bankruptcy risk.  
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Tables 

 

Table 1: Model definition and estimation of the variables 

AAN (2016) 

Variable Estimation 

WCTA Working capital/total assets 

RETA Retained earnings/total assets 

EBITTA Earnings before interests and taxes/total assets 

MVTL Market value of equity/total liabilities 

SLTA Net sales/total assets 

CFOTA Cash flows from operations/total assets 

   

Ohlson (1980) 

SIZE Log (Total assets/GNP price level index) 

TLTA Total liabilities/total assets 

CLCA Current liabilities/current assets 

D(TL>TA) 1 if TL>TA and 0 otherwise, where TL are total liabilities and TA are total assets 

NITA Net income/total assets 

CFOTL Cash flows from operations/total liabilities 
D(NIt+NIt-1<0) 1 if the cumulative net income in two consecutive years is negative and 0 otherwise 

WCTA Working Capital/total assets 

CHNI (NIt – NIt-1)/ (|NIt| + |NIt-1|), is the change in net income (takes values between -1 and 1) 

   

CHS (2008) 

NIMTA 
Net income/market value of assets, where market value of assets is the sum of market value 

of equity and total liabilities 

TLMTA Total liabilities/market values of assets 

EXRET 
Annualized return of each firm’s equity minus the annualized return of the S&P 500 index, 

over the previous 12 months 

SIGMA Annualized standard deviation of daily stock returns, over the previous 3 months 

RSIZE Relative size, defined as log (Market value of equity/market value of S&P 500 index) 

CASHMTA Cash and short-term investments/market value of assets 

MB Market value of equity/book value of equity 

PRICE Log (stock price) 
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Leland and Toft 

(1996) 

σ Annualized volatility of asset returns, obtained by solving Eqs. (7) and (8) 

𝜇 Annualized return on assets, proxied by the annualized return on equity 

𝑉 Market value of assets, obtained by solving Eqs. (7) and (8) 

r Riskless rate of return, proxied by the one-year treasury constant maturity rate 

C Coupon payments, proxied by the interest expenses in the income statement 

P Principal value of debt, proxied by short-term debt plus half of long-term debt 

δ 
Payout yield, which is the sum of coupons and dividends (ordinary and preferred) divided 

by the market value of assets 

τ Corporate tax rate, 15% as in Leland (2004) 

c Bankruptcy costs, 30% as in Leland (2004) 

Τ Maturity, 10 years as in Leland (2004) 
This table describes the input variables of four models: Almamy et al. (2016), denoted as AAN, Ohlson (19980), Campbell et al. (2008), denoted 

as CHS and Leland and Toft (1996). All variables are constructed using financial and market information one year prior to bankruptcy filing. The 

second column shows how variables are entered in the models and the third column shows how they are calculated. 
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        Table 2: Distribution of observations per year 

Bankruptcy year Bankrupt firms Healthy firms Bankruptcy rate 

1995 15 2749 0.543 

1996 16 2804 0.567 

1997 13 2933 0.441 

1998 21 2186 0.952 

1999 31 2045 1.493 

2000 21 2572 0.810 

2001 23 2425 0.940 

2002 15 2206 0.675 

2003 18 2045 0.873 

2004 13 1919 0.673 

2005 15 1865 0.798 

2006 10 1796 0.554 

2007 15 1738 0.856 

2008 20 1661 1.190 

2009 34 1560 2.133 

2010 7 1508 0.462 

2011 9 1431 0.625 

2012 13 1388 0.928 

2013 12 1353 0.879 

2014 12 1313 0.906 

Total 333 39497 0.836 
This table reports the number of observations across the years 1995-2014. The first column 
shows the year of bankruptcy, the second and third columns show the number of bankrupt and 
healthy firms respectively and the last column shows the annual bankruptcy rate defined as 
bankrupt firms /(bankrupt firms + healthy firms). 
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Table 3: Distribution of observations per industry 

Industry 
Number of 

observations 
Percentage 

Agriculture, Forestry and Fishing 138 0.35 

Mining 2340 5.87 

Construction 379 0.95 

Manufacturing 21109 53.00 

Transportation, Communications, Electric, Gas, and Sanitary Services 4126 10.36 

Wholesale Trade 1604 4.03 

Retail Trade 3349 8.41 

Services 6539 16.42 

Public Administration 246 0.62 

This table shows the distribution of observations per industry. Each observation is classified to an industry, 

according to SIC codes. Column 2 shows the number of observations that belong to each industry and 

column 3 shows the percentage of sample belonging to each industry calculated as industry observations / 

total observations.  
 

 

Table 4: Summary statistics 

Variable Mean values 
t-statistic for differences 

 Bankruptcies Non-Bankruptcies 

SIZE 0.410 1.391 8.56 

TLTA 0.888 0.523 26.00 

WCTA -0.009 0.227    18.77 

CLCA 1.389 0.658 25.75 

D(TL>TA) 0.312 0.034 27.32 

NITA -0.414 -0.024 31.99 

CFOTL -0.302 0.102 13.08 

D (NIt+NIt-1<0) 0.913 0.322 23.06 

CHINI -0.260 0.013 8.83 

RETA -1.736 -0.188 22.37 

EBITTA -0.238 0.029 25.03 

MVTL 3.103 38.257 3.99 

SLTA 1.250 1.172 1.72 

CFOTA -0.147 0.047 21.67 

NIMTA -0.270 -0.008 36.02 

TLMTA 0.694 0.412 19.12 

EXRET -0.909 -0.056 26.79 

SIGMA 1.219 0.609 26.01 

RSIZE -12.933 -10.820 18.46 

CASHMTA 0.075 0.097 2.85 

MB 1.459 1.416 0.24 

PRICE 0.496 2.422 28.93 

LT 0.441 0.042 41.46 

This table reports mean value differences for the explanatory variables, between the bankrupt 

and non-bankrupt firms and t-tests for the statistical significance of the differences. The 

definition of variables can be found in Table 1. 
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Table 5: Reduced-form and hybrid models estimation, 1995-2005 

Ohlson           

Constant SIZE TLTA WCTA CLCA D(TL>TA) NITA CFOTL D (NIt+NIt-1<0) CHINI  

-7.280*** 

(0.368) 

0.093*** 

(0.035) 

1.461*** 

(0.391) 

-1.997*** 

(0.553) 

0.040 

(0.155) 

-0.047 

(0.361) 

-0.451* 

(0.275) 

-0.416*** 

(0.130) 

2.120*** 

(0.253) 

-0.545*** 

(0.124) 

 

           

AAN           

Constant WCTA RETA EBITTA MVTL SLTA CFOTA     

-4.470*** 

(0.136) 

-3.628*** 

(0.363) 

0.084 

(0.057) 

-1.420*** 

(0.474) 

-0.015 

(0.012) 

0.119* 

(0.066) 

-1.390*** 

(0.563) 

    

           

CHS           

Constant NIMTA TLMTA EXRET SIGMA RSIZE CASHMTA MB PRICE   

-3.916*** 

(0.604) 

-3.206*** 

(0.331) 

2.566*** 

(0.333) 

-0.545*** 

(0.135) 

-0.073 

(0.220) 

0.140*** 

(0.047) 

-4.186*** 

(0.917) 

-0.00 

(0.015) 

-0.531*** 

(0.105) 

  

           

ALT           

Constant WCTA RETA EBITTA MVTL SLTA LT     

-5.222*** 

(0.148) 

-2.485*** 

(0.331) 

0.004 

(0.055) 

-1.955*** 

(0.316) 

-0.008 

(0.007) 

0.157** 

(0.067) 

2.520*** 

(0.181) 

    

           

CHSLT           

Constant NIMTA TLMTA EXRET SIGMA RSIZE CASHMTA MB PRICE LT  

-3.528 

(0.607) 

-3.129*** 

(0.342) 

1.955*** 

(0.391) 

-0.30*** 

(0.143) 

-0.150 

(0.212) 

0.146*** 

(0.047) 

-4.195*** 

(0.890) 

-0.002 

(0.015) 

-0.529*** 

(0.104) 

1.174*** 

(0.298) 

 

           

OLT           

Constant SIZE TLTA WCTA CLCA D(TL>TA) NITA CFOTL D (NIt+NIt-1<0) CHINI LT 

-7.09*** 

(0.357) 

0.030 

(0.038) 

1.202*** 

(0.375) 

-1.809*** 

(0.552) 

-0.102 

(0.159) 

-0.016 

(0.345) 

-0.447* 

(0.267) 

-0.341*** 

(0.127) 

1.844*** 

(0.252) 

-0.369*** 

(0.132) 

2.034*** 

(0.194) 

This table reports estimation results for six models; Ohlson (1980), Almamy et al., (2016), referred to as AAN, Campbell et al. (2008), referred to as CHS 

and three extended versions of Altman, Ohlson and Campbell et al. (2008) models, which include LT as additional predictor (referred to as ALT, OLT and 

CHSLT respectively). The sample includes 25950 firm-year observations, from which 201 went bankrupt in a year between 1995 and 2005. The predictor 

variables are constructed one year prior to bankruptcy. For the definition of variables refer to table 1. ***, ** and * indicate statistical significance at α=1%, 

α=5% and α=10% respectively. In parentheses clustered robust standard errors are reported, that take into consideration the panel character of our data. 
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Table 6: Model performance and test for differences, baseline approach 

Panel A: Out-of-sample performance, baseline approach (2006-2014) 

Model AUROC      

pAUROC 

Log-

Likelihood 

Pseudo-R2 (%) 

Structural    

Leland-Toft 0.8941            0.3953 -600.93 19.72 

BSM 0.8659            0.3750 -614.55 17.90 

    

Hybrid    

OLT 0.9449            0.4477 -483.43 35.41 

CHSLT 0.9395            0.4426 -491.41 34.35 

ALT 0.9207            0.4288 -519.56 30.59 

    

Reduced-Form    

CHS (2008) 0.9332            0.4392 -498.85 33.35 

AAN (2016) 0.8597            0.3754 -603.81 19.33 

Ohlson (1980) 0.9252            0.4280 -535.57 28.45 

 

Panel B: Test-statistics for differences in AUROCs 

Model OLT CHSLT ALT CHS  AAN  Ohlson  Leland-Toft 

CHSLT 0.64       

ALT 2.58 1.63      

CHS  1.12 1.47 -0.92     

AAN  5.36 5.30 4.78 4.51    

Ohlson  4.73 1.65 -0.41 0.8127 -4.41   

Leland-

Toft 

3.59 3.15 1.67 2.46 -1.64 1.96  

BSM 6.02 4.14 3.03 3.58 -0.28 3.28 2.74 

 

Panel C: Test-statistics for differences in log-likelihoods 

Model OLT CHSLT ALT CHS  AAN  Ohlson Leland-Toft 

CHSLT 0.75       

ALT 4.38 2.38      

CHS  1.23 14.88 -1.48     

AAN 7.51 6.16 6.51 5.86    

Ohlson 104.28 2.98 1.22 2.58 -6.21   

Leland-

Toft 

8.07 6.93 6.73 5.76 -0.16 3.61  

BSM 8.01 7.21 6.56 6.51 0.63 4.47 1.38 

This table reports out-of-sample performance for the two structural models (Leland-Toft and BSM), 

the three hybrid models (OLT, CHSLT and ALT) as well as the three reduced-form models 

(Ohlson,1980; Campbell et al., 2008, referred to as CHS and Almamy et al., 2016, referred to as AAN). 

For the definition of the models, refer to table 1. Panel A reports discriminating ability, measured by 

AUROC as well as predictive accuracy, measured by log-likelihood (and pseudo-R2). Panel B reports 

test statistics for differences in the discriminating ability between various models, using Delong et al. 

(1988). Panel C reports test statistics for differences in predictive accuracy between various models 

using likelihood ratio tests or Vuong (1989) test. The results are based on a baseline approach, where 

the models are estimated on the period 1995-2005 and applied on the period 2006-2014. In the case 

of structural models, for consistency, we estimate two logistic regression models where the first 

contains the probability of bankruptcy derived from Leland-Toft and the second the probability of 

bankruptcy derived from BS as predictors.  
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Table 7: Economic performance of banks using different bankruptcy models (LT vs BSM) 

 Bank 1 Bank 2 Bank 3 

 LT BSM Altman 

Credits 4037 4667 5022 

Market Share (%) 29.09 33.62 36.18 

Bankruptcies 10 37 38 

Bankruptcies/Credits (%) 0.25 0.79 0.76 

Average Spread (%) 0.38 0.49 0.45 

Revenues ($M) 110.71 163.22 163.89 

Loss($M) 26.41 97.70 100.34 

Profit($M) 84.30 65.52 63.55 

Return on Assets (%) 0.29 0.19 0.018 

Return on RWA (%) 1.09 0.64 0.54 

This table reports economic results for three banks in a competitive loan market worth $100 billion. 

Bank 1 uses LT, bank 2 uses BSM and bank 3 uses Altman. For the definition of the models, see table 

1. The banks sort prospective customers (2006-2014) and reject the 5% of firms with the highest risk. 

The remaining firms are classified in 10 groups of equal size and for each group, a credit spread is 

calculated, as described in the main text (section 4.3). The bank that classifies the firm to the group 

with the lowest spread is finally granting the loan. Market share is the number of loans given divided 

by the number of firm-years, Revenues = market size*market share*average spread, Loss=market 

size*prior probability of bankruptcy*share of bankruptcies*loss given default. Profit=Revenues-Loss. 

Return on Assets is profits divided by market size*market share and Return on Risk-Weighted-Assets 

is profits divided by Risk-Weighted Assets, obtained from formulas provided by the Basel Accord 

(2006). The prior probability of bankruptcy is the bankruptcy rate for firms between 1995-2005 and 

equals 0.77%. Loss given default is 45%.  
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Table 8: Model performance and test for differences, rolling window approach 

 Panel A: Out-of-sample performance, rolling approach (2006-2014) 

Model AUROC Log-Likelihood Pseudo-R2 (%) 

Hybrid  
OLT 0.9469 -470.37 37.00 

CHSLT 0.9438 -479.66 35.76 

ALT 0.9253 -508.25 31.93 

    

Reduced-Form 
CHS (2008) 0.9372 -485.94 34.92 

AAN (2016) 0.8673 -593.86 20.46 

Ohlson (1980) 0.9289 -522.87 29.97 

 

Panel B: Test-statistics for differences in AUROCs 

Model OLT CHSLT ALT CHS  AAN  

CHSLT 0.41     

ALT 2.31 1.58    

CHS  1.00 1.80 -0.88   

AAN  5.24 5.12 4.62 4.42  

Ohlson  4.33 1.94 -0.34 0.91 -4.38 

 

Panel C: Test-statistics for differences in log-likelihoods 

Model OLT CHSLT ALT CHS  AAN  

CHSLT 0.79     

ALT 4.57 2.20    

CHS  1.13 12.57 -1.46   

AAN  7.61 6.17 6.28 5.91  

Ohlson  104.99 2.85 1.06 2.49 -6.48 

This table reports out-of-sample performance for the three hybrid models (OLT, CHSLT and ALT) as 

well as the three reduced-form models (Ohlson,1980; Campbell et al., 2008, referred to as CHS and 

Almamy et al., 2016, referred to as AAN). For the definition of the models refer to table 1. Panel A 

reports discriminating ability, measured by AUROC as well as predictive accuracy, measured by log-

likelihood (and pseudo-R2). Panel B reports test statistics for differences in the discriminating ability 

between various models, using Delong et al. (1988). Panel C reports test statistics for differences in 

the predictive accuracy between various models using likelihood ratio tests or Vuong (1989) test. The 

results are based on a rolling window approach, where the models are updated yearly and used to 

predict bankruptcies next year. For instance, the models are estimated between 1995 and 2005 and 

apply them on firms in 2006. Then we re-estimate the models between 1996 and 2006 and apply them 

on firms in 2007. This process is repeated up to 2014. Bankruptcy probabilities for each year are 

aggregated to obtain single performance measures. 
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Table 9: Model performance and test for differences, five folds approach 

Panel A: Out-of-sample performance, five folds approach (1995-2014) 

Model AUROC Log-Likelihood Pseudo-R2 (%) 

Hybrid 
OLT 0.9091 -1379.48 28.49 

CHSLT 0.9057 -1403.72 27.23 

ALT 0.8826 -1471.35 23.73 

 

Reduced-Form 
CHS (2008) 0.9014 -1417.16 26.54 

AAN (2016) 0.8438 -1630.45 15.48 

Ohlson (1980) 0.8939 -1477.06 23.43 

 

Panel B: Test-statistics for differences in AUROCs 

Model OLT CHSLT ALT CHS  AAN  

CHSLT 0.50     

ALT 3.95 2.86    

CHS  1.02 1.96 -2.05   

AAN  7.09 6.14 5.63 5.42  

Ohlson  4.56 1.54 -1.38 0.94 -5.75 

 

Panel C: Test-statistics for differences in log-likelihoods 

Model OLT CHSLT ALT CHS  AAN 

CHSLT 1.25     

ALT 5.20 3.07    

CHS  1.68 26.87 -2.11   

AAN  7.63 6.41 6.62 6.07  

Ohlson  195.16 2.79 0.22 2.34 -5.53 

This table reports out-of-sample performance for the three hybrid models (OLT, CHSLT and ALT) as 

well as the three reduced-form models (Ohlson,1980; Campbell et al., 2008, referred to as CHS and 

Almamy et al., 2016, referred to as AAN). For the definition of the models refer to table 1. Panel A 

reports discriminating ability, measured by AUROC as well as predictive accuracy, measured by log-

likelihood (and pseudo-R2). Panel B reports test statistics for differences in the discriminating ability 

between various models, using Delong et al. (1988). Panel C reports test statistics for differences in 

the predictive accuracy between various models using likelihood ratio tests or Vuong (1989) test. The 

results are based on a five-fold cross-validation approach, where we divide the whole sample into five 

equal sub-samples. Any four of them are used to estimate the models and apply them on firms in the 

left-out sub-sample. Bankruptcy probabilities for each left-out sub-sample are aggregated to obtain 

single out-of-sample performance measures 
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Table 10: Economic performance for five banks when using different bankruptcy models 

 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 

 OLT CHSLT CHS Ohlson Altman 

Credits 3571 2561 2758 1886 2935 

Market Share (%) 25.73 18.45 19.87 13.59 21.15 

Bankruptcies 4 4 12 11 48 

Bankruptcies/Credits (%) 0.11 0.16 0.44 0.58 1.64 

Average Spread (%) 0.35 0.35 0.43 0.51 0.59 

Revenues ($M) 90.14 65.35 85.42 69.41 125.65 

Loss($M) 10.56 10.56 31.69 29.05 126.75 

Profit($M) 79.58 54.79 53.73 40.36 -1.10 

Return on Assets (%) 0.31 0.30 0.27 0.30 -0.00 

Return on RWA (%) 1.74 1.54 1.12 1.02 -0.00 

This table reports economic results for five banks in a competitive loan market worth $100 billion. 

Bank 1 uses OLT, bank 2 uses CHSLT, bank 3 uses CHS, bank 4 uses Ohlson and bank 5 uses Altman. 

For the definition of the models, see table 1. The models are estimated using data from 1995-2005. 

The banks sort prospective customers (2006-2014) and reject the 5% of firms with the highest risk. 

The remaining firms are classified in 10 groups of equal size and for each group, a credit spread is 

calculated, as described in the main text (section 4.3). The bank that classifies the firm to the group 

with the lowest spread is finally granting the loan. Market share is the number of loans given divided 

by the number of firm-years, Revenues = market size*market share*average spread, Loss=market 

size*prior probability of bankruptcy*share of bankruptcies*loss given default. Profit=Revenues-Loss. 

Return on Assets is profits divided by market size*market share and Return on Risk-Weighted-Assets 

is profits divided by Risk-Weighted Assets, obtained from formulas provided by the Basel Accord 

(2006). The prior probability of bankruptcy is the bankruptcy rate for firms between 1995-2005 and 

equals 0.77%. Loss given default is 45%.  

 

 

 

 

 

 

 

 

 

 

 ZENON TAOUSHIANIS



42 
 

Table 11: Extending Campbell et al. (2008), Ohlson (1980) and Altman (1968) with BSM and LT 

Panel A: Out-of-sample performance, 2006-2014 

Model AUROC LL Pseudo-R2 (%) 

CHS models 

CHS (2008) 0.9332 -498.85 33.35 

CHS with BSM 0.9343 -497.96 33.47 

CHS with LT 0.9395 -491.41 34.35 

Ohlson models 

Ohlson (1980) 0.9252 -535.57 28.45 

Ohlson with BSM 0.9383 -497.71 33.51 

Ohlson with LT 0.9449 -483.43 35.41 

Altman models 

AAN (2016) 0.8597 -603.81 19.33 

Altman with BSM 0.9109 -538.87 28.01 

Altman with LT 0.9207 -519.56 30.59 

 

Panel B: Test statistics for differences in AUROC’s 

CHS vs CHS with BSM                    0.82         Ohlson vs Ohlson with BSM                     3.54             AAN vs Altman with BSM                         4.13 

CHS vs CHS with LT                       1.49          Ohlson vs Ohlson with LT                        4.71             AAN vs Altman with LT                             4.78 

CHS with LT vs CHS with BSM      1.47         Ohlson with LT vs Ohlson with BSM       2.37             Altman with LT vs Altman with BSM        1.97 

 

Panel C: Test statistics for differences in log-likelihoods 

CHS vs CHS with BSM                    1.78          Ohlson vs Ohlson with BSM                    75.72           AAN vs Altman with BSM                         5.74 

CHS vs CHS with LT                        14.88        Ohlson vs Ohlson with LT                       104.28      AAN vs Altman with LT                            6.51 

CHS with LT vs CHS with BSM       2.09         Ohlson with LT vs Ohlson with BSM      2.36             Altman with LT vs Altman with BSM       2.52 

This table reports out-of-sample performance for the three reduced-form models (Campbell et al., 2008, referred to as CHS, Ohlson, 1980 and Almamy 

et al., 2016, referred to as AAN) and several hybrid models that augment the reduced-form models with the LT or BSM. The models are estimated using 

data from 1995-2005 and the results are based on the out-of-sample period, 2006-2014. Panel A reports discriminating ability and predictive accuracy as 

measured by AUROC and log-likelihood respectively. Panel B reports test statistics for differences in the discriminating ability between various models, 

using Delong et al. (1988). Panel C reports test statistics for differences in the predictive accuracy between various models using likelihood ratio tests or 

Vuong (1989) test. 
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Table 12: Model performance and test for differences, baseline approach (time-robustness) 

Panel A: Out-of-sample performance, baseline approach (1995-2005) 

Model AUROC Log-Likelihood Pseudo-R2 (%) 

Hybrid 
OLT 0.8854 -960.51 18.72 

CHSLT 0.8838 -937.03 20.71 

ALT 0.8716 -1029.06 12.92 

 

Reduced-Form 
CHS (2008) 0.8811 -951.09 19.52 

AAN (2016) 0.8344 -1116.46 5.53 

Ohlson (1980) 0.8741 -1014.27 14.17 

 

Panel B: Test-statistics for differences in AUROCs 

Model OLT CHSLT ALT CHS  AAN  

CHSLT 0.16     

ALT 1.47 1.14    

CHS  0.42 1.28 -0.81   

AAN  3.88 3.49 3.98 3.25  

Ohlson  2.41 0.87 -0.22 0.62 -3.18 

 

Panel C: Test-statistics for differences in log-likelihoods 

Model OLT CHSLT ALT CHS  AAN 

CHSLT -1.20     

ALT 2.36 3.02    

CHS  -0.43 28.12 -2.41   

AAN  3.13 3.62 3.07 3.33  

Ohlson  107.52 3.14 -0.43 2.56 -2.10 

This table reports out-of-sample performance for the three hybrid models (OLT, CHSLT and ALT) 

as well as the three reduced-form models (Ohlson,1980; Campbell et al., 2008, referred to as CHS 

and Almamy et al., 2016, referred to as AAN). For the definition of the models, refer to table 1. 

Panel A reports discriminating ability, measured by AUROC as well as predictive accuracy, 

measured by log-likelihood (and pseudo-R2). Panel B reports test statistics for differences in the 

discriminating ability between various models, using Delong et al. (1988). Panel C reports test 

statistics for differences in the predictive accuracy between various models using likelihood ratio 

tests or Vuong (1989) test. The results are based on a baseline approach, where the models are 

estimated on the period 2006-2014 and applied on the period 1995-2005, in order to test the time 

robustness of our models. 
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Figures 

 

Figure 1: This figure provides graphical representation of the discriminatory power of various 

bankruptcy prediction models through the ROC curves. The ROC curves are constructed for the out-

of-sample period 2006-2014.  
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CHAPTER 2 

 

 

Maximizing discriminatory power of bankruptcy prediction models: 

Empirical evidence from U.S. 

 

 

 

Abstract 

In this paper several methodologies for maximizing the discriminatory power of bankruptcy 

prediction models, as measured by the Area Under Receiver Operating Characteristics 

(AUROC) curve, are introduced and compared. We consider linear and probabilistic 

response functions for the output of the models as well as different merit functions, used to 

obtain model coefficients. For our analysis we use accounting and market information for 

U.S. public bankrupt and healthy firms between 1990 and 2015. Results show higher 

discriminatory power when we implement our approaches as compared with traditional 

approaches, such as logistic regression models. We also find that using models with a merit 

function that accounts for outliers yields the best performance among the linear response 

functions. Among all models, however, a neural network with probabilistic response 

function is the best performing model. More importantly results hold under different tests. 

One of our tests for instance, shows that banks using models with maximized AUROC earn 

higher risk-adjusted returns relative to banks using traditional approaches, highlighting the 

benefits of using models with maximized AUROC. 
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1 Introduction 

1.1 Background and Motivation 

   Increased attention has been paid in recent years for the development of powerful 

bankruptcy prediction models, mainly for two reasons. Firstly, the recent global financial 

crisis has left banks to experience huge losses from their credit portfolios and consequently 

their lending policies and decision-making processes have been seriously criticized from 

regulators, investors and other stakeholders. Secondly, since the reform of Basel Accord in 

2006, banks are allowed to develop their own internal models to assess credit risks and 

protect themselves through the capital reserves that should withhold to face potential losses. 

Thus, for a matter of bank viability, financial stability and investor protection, it would be 

of great interest to develop powerful bankruptcy prediction models which is the aim of this 

paper.    

   One of the most significant measures to evaluate the performance of bankruptcy prediction 

models is their ability to discriminate bankrupt from healthy firms. It has been shown that 

models with higher discriminatory power are associated with higher economic benefits for 

a bank (Bloechlinger and Leippold, 2006; Agarwal and Taffler, 2008). Further, Bauer and 

Agarwal (2014) show that even small differences in the discriminatory power among 

bankruptcy prediction models yield superior bank economic performance. In addition, 

commercial vendors such as Moody’s KMV extensively use discriminatory power as an 

integral part of their validation processes, especially when comparing their newly developed 

models with existing ones (see for instance the RiskCalc 3.1 model in Dwyer et.al, 2004). 

As it is stated in that paper: 

 “The greatest contribution to profitability, efficiency, and reduced losses comes 

from the models’ powerful ability to rank-order firms by riskiness so that the bank can 

eliminate high risk prospects.”  

Beyond that, Moody’s KMV provides ample explanatory documentation on how to use 

various discriminatory power measures in practice (see for instance Keenan and Sobehart, 

1999 and Sobehart et al., 2000). This extensive use in fact highlights the importance of using 

discriminatory power as a leading measure to evaluate the performance of bankruptcy 

prediction models.      

   Yet, it is somewhat surprising that a common practice in bankruptcy prediction studies is 

to use discriminatory power as an indication of model performance, rather than obtaining 
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model coefficients directly by maximizing discriminatory power. Exceptions include Miura 

et al. (2010) and Kraus and Kuchenhoff (2014) in the related area of credit scoring which 

we also discuss and compare. We contribute to this limited literature by introducing and 

comparing several new methodologies that maximize the discriminatory power of 

bankruptcy prediction models and through a battery of tests, we highlight the importance of 

using such models. To measure discriminatory power, we use the Area Under Receiver 

Operating Characteristics curve (AUROC or AUC). This is a widely-used statistic to 

measure the discriminatory power of bankruptcy prediction models and it has also been used 

in related areas, such as mortgage default prediction (Fitzpatrick and Mues, 2016) and 

generally when assessing the performance of credit scoring models (see for instance 

Lessmann et al., 2015, and references therein for recent studies that use AUROC as a 

performance measure).  

   For our analysis we collect annual financial data and daily equity prices for a large sample 

of U.S. public bankrupt and healthy firms between 1989 and 2014 and construct variables to 

make one-year forecasts (for bankruptcies between 1990 and 2015). We keep approximately 

70% of the whole sample as a training set (1990-2006) and evaluate the performance of the 

models in the testing set (2007-2015) using three distinct type of tests, following Bauer and 

Agarwal (2014); 1) AUROC analysis 2) Information content tests 3) Economic performance, 

when banks use various bankruptcy prediction models in a competitive loan market. 

1.2 Main Findings 

   Firstly, we employ the logistic regression approach22 which is our benchmark against 

models with maximized AUROC and find that several financial variables related to firm 

leverage, profitability, liquidity and coverage, are significant predictors of bankruptcy. 

When we also consider market-based variables in the analysis, however, the model with both 

financial and market variables outperforms the model with only financial variables 

consistent with prior research (Shumway, 2001; Chava and Jarrow, 2004; Campbell et al., 

2008; Wu et al., 2010 and Tinoco and Wilson, 2013). 

                                                           
22 We use logistic regression, since it is the most common approach of deriving a classification rule (Crook et 

al., 2007) and an approach adopted by many researchers in recent bankruptcy prediction studies (i.e. Westgaard 

and Wijst, 2001; Chava and Jarrow, 2004; Altman and Sabato, 2007; Campbell et al., 2008; Tinoco and Wilson, 

2013, etc.).  
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   Next, we develop models with maximized AUROC using the set of variables that we find 

to be significant (with financial only data and financial plus market data) according to the 

logistic regression approach. We consider models with probabilistic and linear response 

functions. That is, the output of the models is a probability in the first case and a linear score 

in the second case. We also consider various merit functions used in the optimization to 

obtain the coefficient estimates and we seek to find the specification which yields the best 

performance. We find that our proposed approaches outperform out-of-sample logistic 

regression models. Among the linear response functions, we find that a merit function that 

takes care of the outliers which often characterize financial data, is the best performing one. 

However, a neural network model with a probabilistic response function is the best 

performing among all. The results are consistent with respect to the three testing approaches 

and summarized as follows: 1) Models with maximized AUROC outperform logistic 

regression models in terms of AUROC, out-of-sample, 2) The models with the highest 

AUROC are selected for the remaining tests and we find that they contain significantly more 

information relative to a logistic regression model according to information content tests and 

3) Banks using models with maximized AUROC, earn superior returns on a risk-adjusted 

basis, relative to banks that use traditional models to predict bankruptcy. Therefore, we 

recommend the implementation of models with maximized AUROC in bankruptcy 

prediction since, according to our findings, such models are more valuable and appropriate 

risk management tools relative to traditional bankruptcy prediction models. 

   The remainder of the paper proceeds as follows: In section 2 we discuss data collection, in 

section 3 we present the methodologies to maximize AUROC as well as three distinct type 

of tests, in section 4 we discuss the results and section 5 concludes. 

2 Data 

2.1 Sample  

   Our sample consists of 11,096 non-financial U.S. firms from which 422 filed for 

bankruptcy under Chapter 7 or Chapter 11, between 1990-2015. We have a total of 97,133 

firm-year observations with non-missing data, collected between 1989-2014 to forecast 

bankruptcies one year ahead. The date of bankruptcy filing was identified from the database 

BankruptcyData.   ZENON TAOUSHIANIS
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2.2 Variables Construction  

   We collect annual financial data and market (equity) data from Compustat and CRSP 

respectively and we construct several variables based on related studies in the literature. For 

example, in our analysis we consider variables used in traditional corporate bankruptcy 

prediction studies, such as Altman (1968), Ohlson (1980), Zmijewski (1984) but also in more 

recent studies, such as Shumway (2001), Chava and Jarrow (2004), Campbell et al. (2008) 

etc. All the variables are constructed at the fiscal year-end prior to the year of bankruptcy.  

   First, we construct financial ratios capturing aspects of a firm’s financial performance, 

such as leverage, profitability, liquidity, coverage, activity, cash flows, as presented in panel 

A of Table 1. A limitation of financial variables is that by their nature look backwards and 

the quality of information they carry depends on accounting practices (Hillegeist et al., 2004; 

Agarwal and Taffler, 2008). Market variables instead, constructed from equity prices, look 

forward since they carry market perceptions about the prospects of the firm. For publicly 

traded firms it would be more appropriate to incorporate market variables in the models. To 

this end, we collect daily equity prices from CRSP for the entire fiscal year and several 

market-based variables are constructed, as reported in panel B of Table 1. Annualized 

volatility of daily equity returns (VOLE) refers to the fluctuations of firm’s equity value 

returns, expecting to be higher for bankrupt firms. Next, excess returns (EXRET) refer to the 

difference between firm’s annualized equity return and the annualized value-weighted return 

of a portfolio with NYSE, AMEX, NASDAQ stocks, expecting to be lower for bankrupt 

firms. Further, we consider the relative size of the firm (RSIZE), the logarithm of stock price 

at fiscal year-end (LOGPRICE) and the Market-to-Book ratio (MB), expecting a negative 

association with bankruptcy risk. Finally, we include three financial variables scaled by 

firm’s market value. More precisely, Campbell et al. (2008) show that scaling financial 

variables with a market-based measure of firm’s value i.e. market equity + liabilities (MTA), 

compared to total assets as reported in the balance sheet, increases the predictive accuracy 

of bankruptcy prediction models. These variables are cash over MTA (CASHMTA), net 

income over MTA (NIMTA), expecting a negative association with bankruptcy risk and 

lastly, total liabilities over MTA (TLMTA). Following common practice, we winsorize the 

variables between 1st and 99th percentile to avoid problems induced by outliers.  

[Insert Table 1 here] 
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2.3 Variables Selection 

   Table 1 presents an extensive list of variables that previous studies find to be significant 

predictors of bankruptcy risk. Out of these variables, a smaller set should be selected in order 

to construct parsimonious models with few variables but with high forecasting power. We 

establish a three-step approach to select the most powerful variables (see for instance Altman 

and Sabato, 2007 and Filipe et al., 2016) and summarized in the following three steps: 

Step 1: Remove variables with low discriminating ability (as a cut-off, we use AUROC equal 

to 0.60). The idea of this step is to qualify the variables that individually exhibit a satisfactory 

ability to discriminate bankrupt from healthy firms. 

Step 2: Remove highly correlated variables using the Variance Inflation Factor (VIF) 

criterion. The idea of this step is to remove the variables that are highly correlated with 

others, since multicollinearity may yield misleading results regarding the significance of the 

variables in the final model. Beyond that, we end up with variables that provide different 

information and explain bankruptcy uniquely. We use 5 as cut-off (variables with VIF ≥ 5 

are removed).  

Step 3: Perform a stepwise multivariate logistic regression to the remaining variables in order 

to obtain the most significant variables from a statistical point of view (we use a significance 

level of α = 5%). 

The logistic regression program estimates coefficients assuming independent observations, 

which is an invalid assumption, since the data contains information for firms over multiple 

periods. In such case, an appropriate correction measure which we adopt in our study, is to 

use clustered robust standard errors (also used by Filipe et al.,2016).   

   Using the three-step approach, we develop two types of models. The first one is a “private 

firm” type of model, including only financial variables. We further develop a “public firm” 

type of model, including both financial and market variables. For example, the private firm 

model includes five financial variables (TLTA, STDTA, NITA, CASHTA, EBITCL), while the 

public firm model includes six variables (TLTA, STDTA, LOGPRICE, CASHMTA, NIMTA, 

EXRET). Notice that two financial-based variables (CASHTA and NITA) are replaced with 

CASHMTA and NIMTA. Generally, the majority of variables that are found to be significant 

for the public firm model are market variables, which is consistent with the perception that 
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market-based variables are better bankruptcy risk measures, due to their forward-looking 

nature. 

2.4 Descriptive Statistics 

  Table 2 reports descriptive statistics for the accounting and market variables that we find 

to be significant predictors of bankruptcy. As expected, bankrupt firms are more levered on 

average relative to healthy firms (TLTA and STDTA for bankrupt firms are higher), they are 

also less profitable (NITA and NIMTA are lower for bankrupt firms). Furthermore, bankrupt 

firms are more constrained in terms of cash available (CASHTA and CASHMTA are lower) 

as opposed to healthy firms. Going to the market variables, it is evident that the stock price 

of bankrupt firms (LOGPRICE) on average is lower than healthy firms, possibly due to their 

deteriorating financial position that is priced by investors, leading to a depreciation of their 

stock prices at the year prior to bankruptcy. Finally, bankrupt firms exhibit lower and 

negative market performance relative to the market (EXRET is lower one year prior to 

bankruptcy), as opposed to healthy firms. 

[Insert Table 2 here] 

3 Methodology 

3.1 Measuring Discriminatory Power 

   Discriminatory power refers to the ability of a model to discriminate bankrupt from healthy 

firms. According to a cut-off score, firms whose bankruptcy score exceeds that cut-off are 

classified as bankrupt and healthy otherwise. Therefore, a way to measure the discriminating 

ability of the model is to count the true predictions (percentage of bankrupt firms correctly 

classified as bankrupt) and the false predictions (percentage of healthy firms incorrectly 

classified as bankrupt). Doing this process for multiple cut-offs, we get a set of true and false 

predictions. A graph made from this set is the ROC curve with false predictions on the x-

axis and true predictions on the y-axis. A perfect model would always (never) make true 

(false) predictions and thus its ROC curve would pass through the point (0,1). Generally, the 

closer the ROC curve to the top-left corner, the better the discriminatory power of the model. ZENON TAOUSHIANIS
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   The ROC curve provides a graphical way to visualize discriminatory power. A quantitative 

assessment of the discriminatory power is given by the Area under ROC curve (AUROC) 

which is calculated as follows23:       

 𝐴𝑈𝑅𝑂𝐶̂ =
1

𝑛𝑚
∑ ∑ 𝐼(𝑠𝐵

𝑖 − 𝑠𝐻
𝑗

> 0)

𝑚

𝑗=1

𝑛

𝑖=1

 (1) 

where 𝐼(𝑥) is an indicator function, defined to be 1 if x is true and 0 otherwise,  𝑠𝐵
𝑖  and 𝑠𝐻

𝑗
  

denote the response functions (i.e. the bankruptcy scores) of a model, for the i-th bankrupt 

firm, and for the j-th healthy firm observation respectively, n is the number of bankrupt firms 

and m is the number of healthy firm observations. Note that Eq. (1) is discontinuous and 

non-differentiable. 

3.2 Maximizing Discriminatory Power  

   In this section we present different methodologies for maximizing the discriminatory 

power. First, we consider the case of a probabilistic response function and second, we 

consider the case of a linear response function. Finally, several merit functions used in the 

optimization to obtain model coefficients, are introduced 

3.2.1 Probabilistic Response Function 

   Here we present a methodology to maximize discriminatory power where the response 

function, s, is a probability. Ideally, we should have used Eq. (1) directly as the objective 

function in the optimization. However, traditional gradient-based optimization methods 

cannot be used to maximize Eq. (1) directly because it is discontinuous and non-

differentiable. For this reason, we introduce a surrogate function that seeks to maximize the 

discriminatory power. 

   We define 𝑑𝑖,𝑗(𝛽) =  𝑠𝐵
𝑖 (𝛸𝑖, 𝛽) − 𝑠𝐻

𝑗
(𝛸𝑗 , 𝛽) =  𝑝𝐵

𝑖 (𝛸𝑖, 𝛽) − 𝑝𝐻
𝑗

(𝛸𝑗, 𝛽) as the difference 

between the probability of bankruptcy24 for the i-th bankrupt firm and the probability of 

bankruptcy for the j-th healthy firm observation, conditional on the predictor variables in X 

which could be a set of financial and market variables. From Eq. (1), to obtain the 

                                                           
23 For further explanation, refer to Hanley and McNeil (1982) and Sobehart and Keenan (2001). 
24 A good choice for the probabilistic response function that is usually used in bankruptcy prediction studies 

and also adopted in our study, is the logistic function. 
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coefficients, β, that maximize the discriminatory power of a model we would like as many 

as possible 𝑑𝑖,𝑗′𝑠 to be positive. A way to achieve this is through the minimization of the 

following merit function: 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑ 𝑚𝑎𝑥 (0, 𝛾 − 𝑑𝑖,𝑗(𝛽))

𝑚

𝑗=1

𝑛

𝑖=1

 (2) 

where 0 ≤ γ ≤ 1. The above merit function ignores the terms where 𝑑𝑖,𝑗(𝛽)> 𝛾 (meaning that 

the difference in bankruptcy probabilities between the i-th bankrupt firm and j-th healthy 

firm observation is relatively high, as specified by the parameter γ) and penalizes the terms 

where 𝑑𝑖,𝑗(𝛽)≤ 𝛾. In other words, the parameter 𝛾 can be considered as a parameter which 

controls the magnitude of the 𝑑𝑖,𝑗′𝑠 that are to be penalized. For instance, if γ=0, we penalize 

only the negative 𝑑𝑖,𝑗′𝑠 (i.e. only the cases where the model assigned a higher probability of 

bankruptcy for a healthy firm than a bankrupt firm) while if γ=1, we penalize all 𝑑𝑖,𝑗′𝑠. 

   Based on the optimality conditions of minimizing F(β), at the optimal solution, a number 

of 𝑑𝑖,𝑗′𝑠 must satisfy the condition 𝑑𝑖,𝑗= γ 25. Hence, by selecting γ (close) to zero, we force 

a number of  𝑑𝑖,𝑗′𝑠 to be close to zero in absolute terms. In that case, a small change of the 

input data can easily induce 𝑑𝑖,𝑗′𝑠 to change signs which in turn will cause a change in the 

AUROC. This may be particularly evident in the case of out-of-sample data. That is, by 

training a model to produce 𝑑𝑖,𝑗′𝑠 close to zero, may yield a model with poor generalized 

ability and consequently the out-of-sample AUROC will be very sensitive. On the other 

hand, selecting γ (close) to one, coefficient estimates can blow up and provide unreasonable 

results. We suggest using a validation procedure to select the parameter value. In this study, 

we further divide our training sample into training (70%) and validation (30%) sets. We train 

the models by choosing from the set of parameter values γ = {0, 0.1, 0.2, …, 1} and keep the 

value that gives the highest AUROC on the validation set. For instance, using our private 

and public firm models we find that γ equals 0.3 and 0.1 respectively. Then we merge the 

training and validation sets, to train the models and test their performance on the testing set. 

   However, the surrogate function in Eq. (2) is non-differentiable when 𝛾 − 𝑑𝑖,𝑗(𝛽) = 0. To 

overcome this problem and thus being able to use traditional gradient-based optimization 

algorithms, we should replace the term 𝑚𝑎𝑥(0, 𝑧) with a differentiable function. Note that, 

                                                           
25 This draws on results from Charalambous (1979). 
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we can solve Eq. (2) using linear programming provided that the response function is linear 

with respect to the coefficients, β. We examine that in a subsequent section. Here, the 

probability is a non-linear function and as such we should use non-linear optimization 

algorithms to obtain the coefficients. We replace the term 𝑚𝑎𝑥(0, 𝑧) by the following ε-

smoothed differentiable approximation, ℎ𝜀(𝑧): 

 

ℎ𝜀(𝑧) = {

0,                                        𝑧 ≤ −𝜀/2

     
1

2𝜀
(𝑧 + 𝜀/2)2, −𝜀/2 < 𝑧 ≤ 𝜀/2

𝑧,                                       𝑧 > 𝜀/2

 (3) 

where ε is a small positive number close to zero. Here we set ε = 0.001. The ε-smoothed 

function ℎ𝜀(𝑧), which we graphically present in the top plot of Figure 1, is a shifted version 

of the smoothed function used previously by Charalambous et al. (2007) to value call 

options26.   

[Insert Figure 1 here] 

Hence, the merit function to be minimized is replaced by: 

 
𝐹(𝛽) =  

1

𝑛𝑚
∑ ∑ ℎ𝜀 (𝛾 − 𝑑𝑖,𝑗(𝛽))

𝑚

𝑗=1

𝑛

𝑖=1

 (4) 

   We further illustrate the role of γ by providing an example using our data. We estimate the 

private firm model using Eq. (4) as the objective function to obtain the coefficients and we 

calculate the 𝑑𝑖,𝑗′𝑠. We further estimate a logistic regression model but in that case the log-

likelihood function is used in the optimization to obtain the coefficients and we also calculate 

the 𝑑𝑖,𝑗′𝑠. Figure 2 shows a sample of those 𝑑𝑖,𝑗′𝑠27, produced by logistic regression (top 

plot) and by maximizing AUROC with the ε-smoothed function, setting γ =0 (middle plot) 

and γ =0.3 (bottom plot).  

[Insert Figure 2 here] 

   Recall that we would like as many as possible of 𝑑𝑖,𝑗′𝑠 to be greater than zero. Hence, they 

should lie above the solid straight line. For the logistic regression, some lie above and some 

below. Using the ε-smoothed function, we want to make as many as possible negative 𝑑𝑖,𝑗′𝑠 

to move above the straight line. Setting γ=0, we observe that all 𝑑𝑖,𝑗′𝑠 are close to zero. Some 

                                                           
26 See also Pinar and Zenios (1994) for similar ε-smoothed functions. 
27 We chose a sample consisting of 289 𝑑𝑖,𝑗′𝑠 that were calculated for a randomly selected healthy firm 

against all bankrupt firms. 
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cases, 21 in particular, that were negative according to the logistic regression became 

positive (denoted with green crosses) and one case that was positive became negative 

(denoted with a red star), highlighting the limitation of producing 𝑑𝑖,𝑗′𝑠  that are close to 

zero. Setting γ=0.3, not only more 𝑑𝑖,𝑗′𝑠  that were negative became positive (59 in 

particular), but now the majority lie well above the solid straight line, several also passing 

the γ parameter which are the points that lie above the dashed line. Notice now that none of 

the 𝑑𝑖,𝑗′𝑠  that were positive became negative because the higher value of γ, causes 𝑑𝑖,𝑗′𝑠  to 

be well above zero and as a consequence, AUROC will not be sensitive. 

3.2.2 Linear Response Function 

   In this section we examine several specifications for Eq. (2) but now we consider a linear 

response function. That is, the bankruptcy score, s, is given by βTX and thus, 𝑑𝑖,𝑗(𝛽) =

 𝑠𝐵
𝑖 (𝛸𝑖, 𝛽) − 𝑠𝐻

𝑗
(𝛸𝑗 , 𝛽) =  𝛽𝛵(𝛸𝐵

𝑖 − 𝛸𝑁𝐵
𝑗

). We firstly show how to solve the problem by 

linear programming and finally we compare various merit functions that are continuous and 

differentiable, accounting also for outliers that frequently characterize financial data. Our 

aim is to find the specification that yields the best performance in terms of AUROC. It would 

be useful to say here that the choice of parameter γ in the case of linear response function, 

affects only the scaling of coefficient estimates, β, and will not affect the ranking of firms, 

meaning that the AUROC will not be affected by the choice of γ. It is a common practice to 

set γ=128.  

3.2.2.1 L1-max Merit Function 

   Under the specifications introduced in this section, the non-differentiable function, F(β), 

becomes: 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑ 𝑚𝑎𝑥 (0, 1 − 𝑑𝑖,𝑗(𝛽))

𝑚

𝑗=1

𝑛

𝑖=1

 (5) 

                                                           
28 We borrow the idea of setting γ=1 from the literature of classification, based on support vector machines 

(i.e. Vapnik, 1995; Vapnik, 1998). Again, provided that the parameter γ is a (non-zero) positive number, it will 

only affect the scale of the coefficients, but the ranking of firms will remain the same and therefore AUROC 

will not change.  
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The above function is the normalized linear sum of max(0,z) and it is similar to the one 

proposed by Vapnik (1995) in the context of classification. Minimizing F(β), is equivalent 

to the following linear programming problem:  

 min
𝑧,𝛽

𝐹(𝑧, 𝛽) =  
1

𝑛𝑚
∑ ∑ 𝑧𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (6) 

                                            s.t. 

𝑧𝑖,𝑗 ≥ 0 

            𝑧𝑖,𝑗  ≥ 1-𝑑𝑖,𝑗(𝛽) 

 

 

In the following sub-sections, we introduce other merit functions that are continuous and 

differentiable in order to use gradient-based optimization algorithms. 

3.2.2.2 Function 1: L2-max Merit Function 

   A straightforward function that is continuous and differentiable, is the squared function 

{max(0,z)}2, as shown in the bottom plot of Figure 1. In that case, the merit function to be 

minimized is the following: 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑ [max (0, 1 − 𝑑𝑖,𝑗(𝛽))]

2
𝑚

𝑗=1

𝑛

𝑖=1

 (7) 

3.2.2.3 Function 2: Exponential Square Merit Function 

   A drawback of the function in Eq. (7) and to less extend the function in Eq. (5) is that, both 

are sensitive to outliers that eventually can affect the optimization and consequently the 

coefficient estimates. To this end, we use an exponential square function similar with the 

one used by Feng et al. (2016) in the context of classification, as shown in Eq. (8). 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑ 𝜎2( 1 − exp {− [max (0, 1 − 𝑑𝑖,𝑗(𝛽))]

2

/𝜎2} )    

𝑚

𝑗=1

𝑛

𝑖=1

 (8) 

Note that the following holds true for the function 𝜎2{1-exp[-(.) ] }: 

 𝜎2{1 − exp[−(. ) ] } = {
0,              𝑑𝑖,𝑗(𝛽) = 1

𝜎2, 𝑑𝑖,𝑗(𝛽) → −∞
 (9) 

i=1,2,…,n  and j=1,2,…,m 
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The role of 𝜎2 and the way it affects the optimization, however, is not clear. Here for 

simplicity we set 𝜎2=1. Finally, we plot the exponential square function in the bottom plot 

of Figure 1. As can be seen from the plot, while the L2-max function sharply increases for 

large values of the variable z, the exponential square function is restricted up to 𝜎2, which 

in our case equals 1. 

3.2.2.4 Function 3: ε-Smoothed Merit Function 

   Another function that can be used is the ε-smoothed function that we have introduced in 

an earlier section, yielding the following merit function: 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑ ℎ𝜀 (1 − 𝑑𝑖,𝑗(𝛽))

𝑚

𝑗=1

𝑛

𝑖=1

 (10) 

3.2.2.5 Function 4: Exponential ε-Smoothed Merit Function 

   We consider the exponential ε-smoothed function to avoid problems induced by outliers. 

In this case, the function to be minimized, is the following: 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑ 𝜎2{1 − exp [ −ℎ𝜀 (1 − 𝑑𝑖,𝑗(𝛽)) /𝜎2 ] }

𝑚

𝑗=1

𝑛

𝑖=1

 (11) 

As with Eq. (8), we set 𝜎2=1. 

3.2.2.6 Other Approaches 

   We also consider two other approaches proposed by Miura et al. (2010) and Kraus and 

Kuchenhoff (2014), to maximize AUROC of credit scoring models29. Miura et al. (2010) 

suggest a sigmoid function as an approximation of Eq. (1). Specifically, they maximize the 

following objective function30: 

 𝐹(𝛽) =  
1

𝑛𝑚
∑ ∑  

1

1 + exp[−𝑑𝑖,𝑗(𝛽)/𝜎]
 

𝑚

𝑗=1

𝑛

𝑖=1

 (12) 

                                                           
29 Several related approaches for maximizing AUROC have been proposed and applied in other domains, such 

as in computer science (Tayal et al., 2015). In our study, we focus on approaches suggested in credit scoring 

studies. 
30 The authors, in the original specification, set the tuning parameter σ =0.01 or 0.1. Here, we use σ=1 because 

the original specifications performed poorly. Further, they constrain the norm of coefficients to be 1. Again, 

we find that this specification performs poorly. 
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where 𝑑𝑖,𝑗(𝛽) =  𝛽𝛵(𝑋𝐵
𝑖 − 𝑋𝑁𝐵

𝑗
). However, unlike the functions that we previously 

introduced, it treats all 𝑑𝑖,𝑗′𝑠 in the same way, whereas our functions, give more emphasis 

on the “bad” cases, for example, when a healthy firm has higher bankruptcy score than a 

bankrupt firm. Further, the authors consider only a linear response function. In this paper, 

we also consider a probabilistic response function which can be used by any modeling 

approach, such as neural networks. 

   Finally, Kraus and Kuchenhoff (2014) suggest using directly Eq. (1) as the objective 

function and implementing derivative-free methods (such as Nelder and Mead, 1965) to 

optimize the coefficients. The optimization algorithm that is used, however, assumes that the 

objective function is continuous, which is not the case for Eq. (1). Also, this approach while 

is easy to implement, ignores information provided by the gradient which could increase the 

accuracy of the coefficients after the optimization process and thus we believe that using 

specifications with differentiable functions is a better choice31. 

3.2.3 Outline of the Methodologies Used to Maximize AUROC 

   In Figure 3 we outline the models along with their response functions and the various merit 

functions that we use to maximize AUROC.  

[Insert Figure 3] 

   The advantage of using a probabilistic response function (panel A), is that it can be applied 

regardless of the approach used to model the probability of bankruptcy. In this study, we 

consider a two-layer feed-forward neural network, since it is a widely-used modeling 

approach in bankruptcy prediction studies (Kumar and Ravi, 2007). The specifications of 

the neural network are as follows: 1) In the hidden layer we use two neurons, selected based 

on a validation procedure32, 2) We use a logistic transfer function in the hidden layer and 3) 

We use one neuron in the output layer, to produce the probability of bankruptcy, using the 

                                                           
31 We use the optimization toolbox in Matlab. For the linear programming, we use the linprog command with 

the dual-simplex algorithm. For Kraus and Kuchenhoff (2014) we use the fminsearch command while for the 

rest problems with continuous and differentiable functions, we use the fminunc command with the trust-region 

algorithm. 

 
32 We divide the training sample (1990-2006) into training (70%) and validation (30%). We train the neural 

network using one, two, three and four neurons, starting also from various initial coefficient values, and we 

select the number of neurons that performs the best (in terms of AUROC) in the validation set. Then we merge 

the two samples to train the neural network and measure the performance on the testing set (2007-2015). 
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logistic function. Then the probability of bankruptcy is used in the merit function and by 

using standard optimization methods, we obtain the coefficients.  

   We also consider a simpler model where the linear score, ψ= 𝛽𝛵𝛸, is converted directly to 

a probability using the logistic function, p(β)=1/[1+exp{-ψ(β)}] and by using the merit 

function, such as the one in Eq. (4) we obtain the coefficients. Notice that, this simpler model 

would be equivalent to a logistic regression if the merit function was the log-likelihood 

function.  

   In the case of a linear response function (panel B) the linear score, ψ= 𝛽𝛵𝛸=s(β), is directly 

entered to the merit function. To this end, we consider four different merit functions as 

shown in panel B of Figure 3. 

3.3 Information Content Tests 

   We further consider information content tests, also done in related studies (see for instance 

Hillegeist et al., 2004; Agarwal and Taffler, 2008; Charitou et al., 2013; Bauer and Agarwal, 

2014). In such tests the out-of-sample bankruptcy probabilities produced by various models, 

such as by models with maximized AUROC, are entered as inputs to logistic regression 

models and we are interested to assess their explanatory power. Recall that in the case of 

linear response functions, the output is not a probability. For consistency, we use the logistic 

function to convert the linear score into a probability. Note that the logistic function provides 

a monotonic transformation and thus will not change the ranking of firms (and consequently 

the AUROC will not be affected). In particular, we estimate the following panel logit 

specification: 

 𝑝(𝑌𝑖,𝑡+1 = 1| 𝑝𝑟𝑜𝑏𝑖,𝑡) = 𝑝𝑖,𝑡 =
𝑒𝑎𝑡+𝛽∗𝑝𝑟𝑜𝑏𝑖,𝑡

1 + 𝑒𝑎𝑡+𝛽∗𝑝𝑟𝑜𝑏𝑖,𝑡
=

𝑒𝑎∗𝑅𝑎𝑡𝑒𝑡+𝛽∗𝑝𝑟𝑜𝑏𝑖,𝑡

1 + 𝑒𝑎∗𝑅𝑎𝑡𝑒𝑡+𝛽∗𝑝𝑟𝑜𝑏𝑖,𝑡
 (13) 

where 𝑝𝑖,𝑡 is the probability of bankruptcy at time t, that the i-th firm will go bankrupt the 

next year and Yi, t+1 is the status of the i-th firm the next year (1 if it goes bankrupt and 0 if 

it is solvent). The variable of interest is 𝑝𝑟𝑜𝑏𝑖,𝑡, which is the out-of-sample bankruptcy 

probability of the i-th firm at time t, produced by a model, for instance with maximized 

AUROC. Finally,  𝛽 is the coefficient estimate and 𝑎𝑡 is the baseline hazard rate that is only 

time-dependent, and it is common to all firms at time t. Similar with prior studies, we proxy 

the baseline hazard rate with the actual bankruptcy rate at time t.  

ZENON TAOUSHIANIS



-60- 
 
 

   The specification in Eq. (13) is equivalent with the hazard model specifications used in 

related bankruptcy prediction studies, such as Hillegeist et al. (2004), Agarwal and Taffler 

(2008), Bauer and Agarwal (2014) etc. Specifically, Shumway (2001) argues that a panel 

logit model, like the one in Eq. (13), is equivalent with a hazard rate model and therefore 

standard log-likelihood procedures can be used to estimate the logit model in Eq. (13), with 

a minor adjustment that we explain below.   

   The model in Eq. (13) represents a multi-period logit model as it includes observations for 

each firm across time. However, the inclusion of multiple firm-year observations per firm 

yields understated standard errors because the log-likelihood objective function, which is 

maximized to estimate the multi-period logit model, assumes that each observation is 

independent from each other. This is a wrong assumption since firm observations at time 

t+1 cannot be independent from firm observation at time t. Failing to address this 

econometric issue, could lead to wrong inference regarding the significance of the individual 

coefficients. Similar with Filipe et al. (2016), we use clustered-robust standard errors to 

adjust for the number of firms in the sample but also for heteroskedasticity (Huber,1967 and 

White, 1980).   

3.4 Economic Analysis of Bankruptcy Models 

   The analysis so far addressed the forecasting accuracy of the bankruptcy models. But how 

accuracy is economically beneficial for banks? In particular, Bauer and Agarwal (2014) 

show that even small differences in the AUROCs between the models affect the profitability 

of a bank. Therefore, it would be interesting to investigate the effect of using models with 

maximized AUROC, on bank economic performance. Here, we follow the approach of 

Agarwal and Taffler (2008) and Bauer and Agarwal (2014) to examine it by assuming a loan 

market worth $100 billion and banks competing for granting loans to individual firms. Each 

bank uses a bankruptcy model to evaluate the credit worthiness of their customers.    

3.4.1 Calculating Credit Spreads 

   We estimate the models using data spanning the years 1990-2006 (70% of the sample). 

We sort firm-customers from this sample in 10 groups of equal size and a credit spread is 

calculated according to the following rule; Firms in the first group, which are firms with the 

lowest bankruptcy risk, are given a credit spread, k, and firms in the remaining groups are 
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given a credit spread, CSi, obtained from Blochlinger and Leippold (2006) and it is defined 

as follows: 

 𝐶𝑆𝑖 =
𝑝(𝑌 = 1|𝑆 = 𝑖)

𝑝(𝑌 = 0|𝑆 = 𝑖)
𝐿𝐺𝐷 + 𝑘 (14) 

where p(Y=1|S=i) and p(Y=0|S=i) is the average probability of bankruptcy and non-

bankruptcy respectively, for the i-th group, with i=2, 3, … ,10 and LGD is the loan loss upon 

default. Following Agarwal and Taffler (2008), the average probability of bankruptcy for 

the i-th group is the actual bankruptcy rate for that group, defined as the number of firms 

that went bankrupt the following year divided by the number of firms in the group. 

Furthermore, k=0.3% and LGD=45%. 

3.4.2 Granting Loans and Measuring Economic Performance 

   To evaluate economic performance, we assume that banks compete to grant loans to 

prospective firm-customers between the period 2007-2015. Each bank uses a bankruptcy 

model that has been estimated in the period 1990-2006. The bank sorts those customers 

according to their riskiness and rejects the bottom 1% with highest risk. The remaining firms 

are classified in 10 groups of equal size and firms from each group are charged a credit 

spread that has been obtained from the period 1990-2006. Finally, the bank that charges the 

lowest credit spread for the customer (i.e for the firm-year observation) is granting the loan. 

Two measures of profitability are used. The first one, Return on Assets (ROA) is defined as 

Profits/Assets lent and the second one, Return on Risk-Weighted Assets (RORWA) takes 

into consideration the riskiness of the assets, defined as Profits/Risk-Weighted Assets. Risk-

Weighted Assets are obtained from formulas provided by the Basel Committee on Banking 

Supervision (2006). 

4 Results 

   In this section we present the results of our tests. We start the analysis by evaluating the 

AUROCs of the different specifications. Next, we assess the information content of models 

with maximized AUROC and finally, we examine the economic effects of using models with 

maximized AUROC. ZENON TAOUSHIANIS
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4.1 AUROC Results 

   Table 3 shows the out-of-sample performance (2007-2015) of the various specifications 

for maximizing AUROC and also includes a logistic regression model, trained by 

maximizing the log-likelihood function. 

[Insert Table 3 here] 

   Overall, models that are trained to maximize AUROC perform better out-of-sample as 

compared to the logistic regression model that is trained to maximize the log-likelihood 

function, indicating that the functions we examine perform well out-of-sample, in 

discriminating firms that will go bankrupt the next year. Notice that when using the 

exponential square and exponential ε-smoothed merit functions, we obtain higher AUROCs 

compared to using the L2-max and ε-smoothed merit functions. These functions prevent the 

outliers, which are usually included in the financial data, to influence the optimization 

process, allowing for a smoother calculation of the coefficient estimates. 

   Interestingly, among the models with a linear response function, the one that uses the 

exponential ε-smoothed merit function performs the best when using both the private and 

public firm models (AUROCs equal to 0.9247 and 0.9480 respectively). We believe that this 

result bears a possible explanation. As can be seen in the bottom plot of Figure 1, the 

exponential ε-smoothed function is the only function that gives emphasis on small “z” values 

(whereas the L2-max and exponential square functions give less or no emphasis), but also 

accounts for outliers. The L1-max function also emphasizes on the small values but does not 

account for the outliers.  

    However, from all the models we consider, the neural network model with a probabilistic 

response function is the best performing model, which is consistent with the notion that 

neural networks outperform simpler modeling approaches (Zhang et al., 1999; Kumar and 

Ravi, 2007; Lessmann et al., 2015).  

   The effect by maximizing the AUROC, as expected, is more pronounced in the case of 

“private firms model” where only limited information is available (i.e. financial 

information), hence there is more space to improve the performance. In contrast, the effect 

is less pronounced in the case of “public firms model”, since the inclusion of market data in 

addition to financial data, further increases the forecasting power of the models. In fact, a 
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logistic regression model achieves high discriminatory power, measured by AUROC 

(0.9425), but models whose coefficients are estimated by maximizing the AUROC 

outperform the former. 

   From the results in this section, we suggest using the neural network model trained to 

maximize AUROC. For the user interested in simpler models, such as models with linear 

response functions, we suggest the implementation of the exponential ε-smoothed function, 

suitable for data with outliers. For the remaining tests, we use these two approaches and 

compare them with a model estimated without maximizing AUROC, for example, a logistic 

regression model, in order to test the conjecture that models with maximized AUROC are 

more valuable risk management tools in bankruptcy prediction. 

4.2 Information Content Results 

   In this section we report the results from information contest tests. We compare the 

information contained in out-of-sample bankruptcy probabilities produced by models 

without maximized AUROC, for example a logistic regression (Prob 1), and by models with 

maximized AUROC. We consider the best model in the linear response family that accounts 

for the outliers (Prob 2) and by the neural network model which we find to be the best 

performing model (Prob 3). Table 4 reports the results of logit models that include the out-

of-sample bankruptcy probabilities as explanatory variables but also the annual bankruptcy 

rate (Rate) as the baseline hazard rate.  

[Insert Table 4 here] 

   Panel A reports results from six models. Model 1, 2 and 3 include out-of-sample 

bankruptcy probabilities produced by the logistic regression model, by the best model among 

the linear response functions and by the neural network respectively, using only financial 

data (private firms model).  Models 4-6 correspond to models 1-3 but include financial and 

market data (public firms model) for the estimation of the probability of bankruptcy. 

   According to the results, bankruptcy probabilities in models 1-6 are highly statistically 

significant, indicating that they carry significant information in predicting bankruptcy one 

year ahead, (coefficient estimates are significant at the 1% significance level). More 

importantly, bankruptcy probabilities produced by models with maximized AUROC contain 

significantly more information than bankruptcy probabilities produced by models without 

maximizing AUROC. In particular, in panel B, we use the Vuong (1989) test-statistic to test 
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for differences in the log-likelihoods between various (non-nested) models. Results show 

that the log-likelihoods of models 2 and 3 are significantly different than model 1 (test-

statistics are 5.38 and 8.21 respectively). We also document higher explanatory power of 

model 3 over model 2 (Vuong test-statistic is 3.40). 

   As far as models 4-6 is concerned, evidence confirms that models with maximized 

AUROC capture more bankruptcy-related information, according to log-likelihood 

comparisons. For instance, differences in the log-likelihoods of model 6 over model 4 and 

model 5 over model 4, are statistically significant (Vuong test-statistics are 7.71 and 3.84 

respectively). Significant difference is also documented between the log-likelihoods of 

models 6 and 5, as the Vuong test-statistic is 5.61.  

      Overall, our results suggest that models with maximized AUROC provide probability 

estimates that contain significantly more information about bankruptcies over the next year 

compared to a logistic regression model, even when the increase in AUROC is relatively 

small (as in the case of our public firm models). 

4.3 Economic Performance Results 

   So far we have considered discriminatory power and information contest tests to assess 

model performance. However, a bank is generally interested in the economic benefits arising 

by using bankruptcy prediction models in the decision-making process of granting loans to 

individual firms. Following Agarwal and Taffler (2008) and Bauer and Agarwal (2014), we 

consider a loan market worth $100 billion and four banks are competing to grant loans to 

prospective firm customers. We hypothesize that bank 1 is a “naïve” bank, using a generic 

corporate model such as Altman’s Z-score for its credit decisions. Further, bank 2 uses a 

statistical approach to develop a bankruptcy prediction model such as the logistic regression 

model developed in this study. Finally, banks 3 and 4 are more sophisticated in the sense 

that they use models with maximized AUROC. To this end, bank 3 uses the best model with 

the linear response function and bank 4 uses the neural network model. In Table 5, we report 

the results, for both private and public firm models. 

[Insert Table 5 here] 

   Clearly, banks 3 and 4 which use models with maximized AUROC manage loan portfolios 

with higher quality relative to banks 1 and 2 which use Altman’s Z-score model and a logistic 

regression model respectively. This is evident by the lower concentration of bankruptcies 
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they attract. In particular, the bankruptcy rate of bank’s 4 portfolio is 0.060% and 0.053% 

when using the private and public firms model respectively and the bankruptcy rate for bank 

3 is 0.18% and 0.12% using the private and public firms model respectively. In contrast, 

0.50% and 0.25% of the loans provided by bank 2, using the private and public firms model 

respectively, file for bankruptcy the next year while for bank 1 the bankruptcy rates are 

1.20% and 1.06% for the private and public firms model respectively. Notice that the higher 

the AUROC for the model (reported in Table 3), the better the quality of loans granted by 

the bank. Among the four banks, bank 4 which uses a neural network models manages the 

credit portfolio with the highest quality.  

   More importantly, banks 3 and 4 achieve superior economic performance compared to 

banks 1 and 2 on a risk-adjusted basis. For example, considering the private firms model, 

banks 3 and 4 which use models with maximized AUROC, earn 2.37% and 1.60% per dollar 

invested respectively, while banks 1 and 2 earn 0.16% and 0.84% respectively. Similarly, 

considering the public firms model, banks 3 and 4 earn 2.24% and 2.21% respectively, 

whereas banks 1 and 2 earns a lower return (0.25% and 1.80% respectively)33. Notice that 

the small differences between the AUROC of models (especially for bank 3 and 4), are 

depicted in the economic performance consistent with the findings of Bauer and Agarwal 

(2014).  

4.4 Focusing on the financial crisis period 2007-2009 

   We perform an additional test by measuring the performance of the models during the 

financial crisis period 2007-2009. For this test, we compare the models with maximized 

AUROC (the neural network and the best linear response model) with models which are 

trained without maximizing AUROC, such as logistic regression (results are not tabulated). 

Overall, we find qualitatively similar results with the previous tests, suggesting that under 

stressed conditions, models which use AUROC as the optimization criterion, outperform 

logistic regression models. 

5   Conclusions    

 

   In this paper, we develop bankruptcy prediction models where the discriminatory power 

as measured by the Area Under ROC curve (AUROC), is used as the optimization criterion 

                                                           
33 Results are robust with respect to different specifications for LGD (0.4-0.7) and k (0.002-0.004), suggesting 

that models with maximized AUROC, outperform the traditional approaches. 
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to obtain their coefficients and we highlight the benefits of using such models. First, we 

consider variables used in well-established bankruptcy prediction studies, such as Campbell 

et al. (2008) to construct a traditional model based on logistic regression and using these 

variables, we introduce and compare several methodologies to maximize AUROC. We 

consider linear and probabilistic response functions for the output of the models and we 

examine several merit functions used to obtain the coefficients. We find that the proposed 

approaches outperform, out-of-sample, the logistic regression models according to different 

tests. For the users interested in simpler models with a linear response function, we 

recommend the use of the model whose coefficients are estimated with a merit function that 

takes care of the outliers. For users interested in more advanced models, we recommend a 

neural network model since according to our findings is the best performing model. The 

results hold under various tests such as AUROC analysis, information content tests and in 

terms of economic benefits when banks use different bankruptcy prediction models in a 

competitive environment. We therefore suggest the consideration of AUROC as an 

optimization criterion when developing bankruptcy prediction models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

ZENON TAOUSHIANIS



-67- 
 
 

References 

Agarwal, V., & Taffler, R. (2008). Comparing the Performance of Market-Based and 

Accounting-Based Bankruptcy Prediction Models. Journal of Banking and Finance, 

32, 1541-1551. 

Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate 

Bankruptcy. Journal of Finance, 23, 589-609. 

Altman, E., & Sabato, G. (2007). Modeling Credit Risk for SMEs: Evidence from the US 

Market. Abacus, 43, 332-357. 

Basel Committee on Banking Supervision. (2006). International convergence of capital 

measurement and capital standards: A revised frameework.  

Bauer, J., & Agarwal, V. (2014). Are Hazard Models Superior to Traditional Bankruptcy 

Prediction Approaches? A Comprehensive Test. Journal of Banking and Finance, 

40, 432-442. 

Blochlinger, A., & Leippold, M. (2006). Economic benefit of powerful credit scoring. 

Journal of Banking and Finance, 30, 851-873. 

Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In Search of Distress Risk. The Journal 

of Finance, 63, 2899-2939. 

Charalambous, C. (1979). On conditions for optimality of the non-linear l1 problem. 

Mathematical Programming, 17, 123-135. 

Charalambous, C., Christofides, N., Constantinide, E. D., & Martzoukos, S. H. (2007). 

Implied non-recombining trees and calibration for the volatility smile. Quantitative 

Finance, 7, 459-472. 

Charitou, A., Dionysiou, D., Lambertides, N., & Trigeorgis, L. (2013). Alternative 

Bankruptcy Prediction Models Using Option-Pricing Theory. Journal of Banking 

and Finance, 37, 2329-2341. 

Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of 

Finance, 8, 537-569. 

Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent developments in consumer 

credit risk assessment. European Journal of Operational Research, 183, 1447-1465. 

Dwyer, D. W., Kocagil, A. E., & Stein, R. M. (2004). Moody's KMV RiskCalc v3.1 model. 

Moody's KMV. 

Feng, Y., Yang, Y., Huang, X., & Mehrkanoon, S. (2016). Robust support vector machines 

for classification with nonconvex and smooth losses. Neural Computation, 28, 1217-

1247. 

ZENON TAOUSHIANIS



-68- 
 
 

Filipe, S. F., Grammatikos, T., & Michala, D. (2016). Forecasting distress in European SME 

portfolios. Journal of Banking and Finance, 64, 112-135. 

Fitzpatrick , T., & Mues, C. (2016). An empirical comparison of classification algorithms 

for mortgage default prediction: evidence from a distressed mortgage market. 

European Journal of Operational Research, 249, 427-439. 

Hanley , J. A., & McNeil, B. J. (1982). The Meaning and Use of the Area Under a Receiver 

Operating Characteristics (ROC) Curve. Radiology, 143, 29-36. 

Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the 

Probability of Bankruptcy. The Review of Financial Studies, 9, 5-34. 

Huber, P. J. (1967). The Behavior of Maximum Likelihood Estimates Under Non-Standard 

Conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics 

and Probability, 221-233. 

Keenan, S. C., & Sobehart, J. R. (1999). Performance measures for credit risk models. 

Moody's Risk Management Services. 

Kraus, A., & Kuchenhoff, H. (2014). Credit scoring optimization using the area under the 

curve. The Journal of Risk Model Validation, 8, 31-67. 

Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical 

and intelligent techniques-A review. European Journal of Operational Research, 

180, 1-28. 

Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-

the-art classification algorithms for credit scoring: An update of research. European 

Journal of Operational Research, 247, 124-136. 

Miura, K., Yamashita, S., & Eguchi, S. (2010). Area under the curve maximization method 

in credit scoring. The Journal of Risk Model Validation, 4, 3-25. 

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The 

Computer Journal, 7, 308-313. 

Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediciton of Bankruptcy. 

Journal of Accounting Research, 18, 109-131. 

Pinar, M. C., & Zenios, S. A. (1994). On smoothing exact penalty functions for convex 

constrained optimization. SIAM Journal of Optimization, 4, 486-511. 

 Shumway, T. (2001). Forecasting Bankruptcy More Accurately: A Simple Hazard Model. 

The Journal of Business, 74, 101-124. 

Sobehart, J. R., Keenan, S. C., & Stein, R. M. (2000). Benchmarking quantitative default 

risk models: A validation methodology. Moody's Investors Service. 

ZENON TAOUSHIANIS



-69- 
 
 

Soberhart, J., & Keenan, S. (2001). Measuring default accurately. Risk , 31-33. 

Tayal, A., Coleman, T. F., & Li, Y. (2015). RankRC: Large-scale nonlinear rare class 

ranking. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 

27, 3347-3359. 

Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among 

listed companies using accounting, market and macroeconomic variables. 

International Review of Financial Analysis, 30, 394-419. 

Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20, 273-297. 

Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley. 

Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested 

Hypotheses. Econometrica, 57, 307-333. 

Westgaard, S., & van der Wijst, N. (2001). Default probabilities in a corporate bank 

portfolio: A logistic model approach. European Journal of Operational Research, 

135, 338-349. 

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a 

Direct Test for Heteroskedasticity. Econometrica, 48, 817-838. 

Wu, Y., Gaunt, C., & Gray, S. (2010). A Comparison of Alternative Bankruptcy Prediction 

Models. Journal of Contemporary Accounting & Economics, 6, 34-45. 

Zhang, G., Hu, M. Y., Patuwo, B. E., & Indro, D. C. (1999). Artificial neural networks in 

bankruptcy prediction: General framework and cross-validation analysis. European 

Journal of Operational Research, 116, 16-32. 

Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial 

Distress Prediction Models. Journal of Accounting Research, 22, 59-82. 

 

 

 

 

 

 

 

 

ZENON TAOUSHIANIS



-70- 
 
 

Tables 

 

Table 1: List of financial and market variables 

Panel A: Financial Ratios (Compustat) 

Variable Detailed Description Compustat Item 

NITA Net Income/Total Assets NI/AT 

EBITTA Earnings Before Interests and Taxes/Total Assets EBIT/AT 

RETA Retained Earnings/Total Assets RE/AT 

CASHTA Cash and Short-Term Investments/Total Assets CHE/AT 

WCTA Working Capital/Total Assets WCAP/TA 

STDTA Debt in Current Liabilities/Total Assets DLC/AT 

TLTA Total Liabilities/Total Assets LT/AT 

CLCA Current Liabilities/Current Assets LCT/ACT 

EBITCL Earnings Before Interests and Taxes/Current Liabilities EBIT/LCT 

NICL Net Income/Current Liabilities NI/LCT 

CFOTA Operating Cash Flows/Total Assets OANCF/AT 

CFOTL Operating Cash Flows/Total Liabilities OANCF/LT 

SLTA Sales/Total Assets SALE/AT 

LOGASSETS Natural logarithm of Total Assets LOG(AT) 

Panel B: Market Variables (CRSP) 

VOLE Annualized volatility of daily equity returns  

EXRET Annualized equity return minus the value-weighted return of NYSE, AMEX, 

NASDAQ stocks  

LOGPRICE Natural logarithm of the stock price, at the fiscal-year end 

RSIZE Natural logarithm of firm’s market capitalization over the total market 

capitalization of NYSE, AMEX, NASDAQ stocks  

MB Firm’s market capitalization over book value of equity (Market-to-Book ratio)  

TLMTA Total Liabilities/ (Market Capitalization + Total Liabilities) 

NIMTA Net Income/ (Market Capitalization + Total Liabilities) 

CASHMTA Cash and Short-Term Investments/ (Market Capitalization + Total Liabilities) 

This table shows all financial ratios and market variables that are considered to construct the 

bankruptcy prediction models. From these, only a set of variables are selected according to a 

three-step procedure described in the text.  
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Table 2: Descriptive statistics for the selected variables 

 TLTA STDTA NITA CASHTA EBITCL LOGPRICE EXRET CASHMTA NIMTA 

Bankrupt 

Firms 
     

    

Mean 0.854 0.181 -0.382 0.107 -0.578 0.528 -0.224 0.0684 -0.250 

Median 0.825 0.099 -0.211 0.045 -0.153 0.560 -0.349 0.032 -0.172 

St.Dev. 0.327 0.183 0.450 0.157 1.289 1.146 0.876 0.100 0.257 

          

Healthy 

Firms 

         

Mean 0.486 0.048 -0.042 0.190 0.07 2.293 0.205 0.121 -0.022 

Median 0.478 0.014 0.031 0.101 0.153 2.474 0.106 0.063 0.022 

St.Dev. 0.253 0.083 0.254 0.217 1.322 1.266 0.684 0.162 0.149 

This table reports descriptive statistics for several financial and market variables, one year prior to bankruptcy for both 

bankrupt and healthy firm observations. The definition of the variables is given in Table 1. 

 

 

 

    Table 3: AUROC results  

Methodology Private Firms Model Public Firms Models 

Logistic Regression 0.8991 0.9425 

   

Probabilistic Response Function 

hε [γ-(PB-PNB) ] 
Logistic 0.9221 0.9470 

Neural Network 0.9331 0.9508 

 

Linear Response Function 
max[0, 1- β(XB-XNB)] 0.9147 0.9456 

hε[ 1 – β(XB-XNB) ] 0.9151 0.9468 

{max[0, 1 – β(XB-XNB)]}2 0.9121 0.9462 

1-exp( - {max[0, 1 – β(XB-XNB)]}2 ) 0.9129 0.9473 

1-exp( -  hε[ 1 – β(XB-XNB) ]) 0.9247 0.9480 

   

Other Approaches 

Miura et al. (2010) 0.9188 0.9471 

Kraus and Kuchenhoff (2014) 0.9046 0.9473 

This table reports AUROC results for a logistic regression model as well as for models with 

maximized AUROC, when we consider probabilistic and linear response functions, as well as 

various merit functions used to obtain the coefficients. The models are trained in the period 

1990-2006 and the table reports results in the out-of-sample period 2007-2015. For the logistic 

regression, the log-likelihood function is used as a merit function to obtain the coefficients. 
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Table 4: Information content tests results 

Panel A: Logit models estimation 

 Private Firms Model   Public Firms Model 

 Model 1 Model 2 Model 3   Model 4 Model 5 Model 6 

Prob1 0.296 

(7.27) 
  

  0.271 

(10.33) 

  

Prob2 
 

0.103 

(5.63) 
 

  
 

0.065 

(6.11) 

 

Prob3 
  

0.069 

(19.25) 

  
 

 0.195 

(16.60) 

Rate -0.218 

(-0.59) 

-0.711 

(-1.93) 

-1.128 

(-2.91) 

  -0.370 

(-0.92) 

-0.747 

(-1.95) 

-1.07 

(-2.28) 

Constant -5.52 

(-30.42) 

-13.24 

(-7.78) 

-7.98 

(-26.33) 

  -5.54 

(-28.84) 

-9.64 

(-9.44) 

-20.32 

(-18.72) 

         

Log-Likelihood -774.96 -656.72 -601.53   -728.26 -639.96 -554.91 

Pseudo-R2 8.56% 22.51 29.03%   14.07% 24.49% 34.53% 

         

Panel B: Vuong test statistics for differences in log-likelihoods 

Models 1 2 3  Models 4 5 6 

3 8.21 3.40 -  6 7.71 5.61 - 

2 5.38 -   5 3.84 -  

1 -    4 -   

This table reports results from information content tests. Panel A shows estimation of six logit models. 

Model 1, 2 and 3 include out-of-sample (2007-2015) bankruptcy probabilities produced by logistic 

regression, and by models with maximized AUROC (the best model with linear response function and by 

a neural network) respectively, using financial data only. Models 4-6 correspond to models 1-3 but using 

financial and market data. All the models include the Rate as proxy for the baseline hazard rate, which is 

the prior year bankruptcy rate in our sample. The last two rows of the panel reports log-likelihood and 

pseudo-R2 for each model. Panel B reports Vuong test statistics for differences in the log-likelihoods 

between the six models.     
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Table 5: Economic performance 

        Private Firms Model  Public Firms Model  

 Bank1 Bank2 Bank3 Bank4 Bank1 Bank2 Bank3 Bank4 

Credits 5649 6253 3410 13278 8083 3228 7785 9491 

Market Share (%) 19.68 21.78 11.88 46.25 28.15 11.24 27.12 33.06 

Bankruptcies 68 31 6 8 86 7 9 5 

Bankruptcies/Credits (%) 1.20 0.50 0.18 0.060 1.06 0.25 0.12 0.053 

Average Spread (%) 0.56 0.37 0.35 0.33 0.53 0.36 0.34 0.34 

Revenues ($M) 109.25 81.41 41.41 153.15 149.67 40.08 91.45 111.79 

Loss($M) 97.18 44.30 8.57 11.43 122.90 11.43 12.86 7.15 

Profit($M) 12.07 37.11 32.84 141.72 26.77 28.65 78.59 104.64 

Return on Assets (%) 0.061 0.17 0.28 0.31 0.095 0.25 0.29 0.32 

Return on RWA (%) 0.16 0.84 1.60 2.37 0.25 1.80 2.21 2.24 

This table reports economic results for four banks in a competitive loan market worth $100 billion. Bank 1 

is a bank using simply the Altman’s Z-score model for estimating the bankruptcy score. Bank 2 uses a 

statistical approach, such as the logistic regression model developed in this study. Banks 3 and 4 are more 

sophisticated, using models with maximized AUROC. Bank 3 uses the best model with a linear response 

function and bank 4 uses the neural network model. 

The banks sort prospective customers (2007-2015) and reject the 1% of firms with the highest risk. The 

remaining firms are classified in 10 groups of equal size and for each group, a credit spread is calculated, as 

described in the main text (section 5.3). The bank that classifies the firm to the group with the lowest spread 

is finally granting the loan. Market share is the number of loans given divided by the number of firm-years, 

Revenues = (market size)*(market share)*(average spread), Loss=(market size)*(prior probability of 

bankruptcy)*(share of bankruptcies)*(loss given default). Profit=Revenues-Loss. Return on Assets is profits 

divided by market size*market share and Return on Risk-Weighted-Assets is profits divided by Risk-

Weighted Assets, obtained from formulas provided by the Basel Accord (2006). The prior probability of 

bankruptcy is the bankruptcy rate for firms between 1990-2006 and equals 0.42%. Loss given default is 45%.  
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Figures 

 

 

 

Figure 1: Plotting various merit functions. For the exponential-type functions, we set σ=1. 
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Figure 2: Plotting a sample of dij’s, estimated using logistic regression and with models based on 

AUROC maximization, using the ε-smoothed merit function  
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Figure 3: Outline of the modeling approaches, response functions and merit functions 

 

 

 

 

 

 

 

 

 

 

 

Panel A: Probabilistic Response Function 

 

 

 

 

 
  

 

 

 

 

 

 

Panel B: Linear Response Function 
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CHAPTER 3 

 

A semiparametric default forecasting model 

 

 

 

Abstract 

A fundamental limitation of structural (parametric) models for the estimation of the 

probability of default is that their most important parameters, the value of assets and 

volatility, are not observed in the market. In this paper we develop a methodology where the 

unobserved parameters are viewed as generalized functions. Using a nonparametric 

approach for their estimation, we obtain improved parameter values which enter a parametric 

model, yielding a semiparametric model. In this context, the Black-Scholes-Merton model 

is used as a paradigm. Results show substantial improvement in the out-of-sample 

performance when comparing our semiparametric model with other alternative 

specifications of the Black-Scholes-Merton model in terms of discriminatory power, 

information content and economic impact. 
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1 Introduction  

1.1 Background and Motivation 

   The Black-Scholes-Merton model (i.e. Black and Scholes, 1973 and Merton, 1974) is one 

of the most widely used corporate default forecasting models, which become popular among 

academics and practitioners in the early 2000’s. In particular, Crosbie and Bohn (2003) is 

one of the earliest papers that provides detailed explanation of the model. Since then, it has 

become state of the art in the academic literature, as several papers have compared its 

predictive power with other widely-used models34 (Hillegeist et al., 2004; Reisz and Perlich, 

2007; Agarwal and Taffler, 2008; Bauer and Agarwal, 2014). Another strand of the literature 

has also tried to extend and improve the performance of the model through alternative 

estimation of its input parameters (Bharath and Shumway, 2008; Charitou et al.,2013; Afik 

et al., 2016). The present study is related with the second strand of the literature. In particular, 

we develop a new estimation technique that provides improved parameter values, eventually 

improving the forecasting power of the Black-Scholes-Merton (BSM). 

   The intuition behind the BSM model is very simple. The equity of the firm is viewed as a 

European call option underlying the assets of the firm and with strike price being the 

liabilities of the firm. At maturity, the firm defaults if assets value falls below liabilities. In 

this case, equity holders receive nothing but walk free due to their limited liability. In the 

opposite scenario, equity holders are the residual claimants after all obligations are paid and 

the firm continues as a going concern. In this setting, the probability of default is the 

probability that at maturity, the assets value worth less than the liabilities. 

   The empirical application of the model requires several parameters, like for instance, the 

value of assets, the volatility of asset value changes, the expected growth of assets and the 

liabilities. However, two of the most important parameters, the value of assets and the 

volatility of asset value changes, are not observed, which makes the implementation of the 

model a challenging task. The literature provides two different estimation techniques to 

obtain the unobserved parameters. The first one, is based on iterative procedures 

(implemented by Hillegeist et al., 2004; Vasallou and Xing, 2004; Campbell et al., 2008). 

However, as argued by Crosbie and Bohn (2003), such estimation approaches might yield 

                                                           
34 Evidence in the literature is conflicting. For instance, Hillegeist et al. (2004) find that the Black-Scholes-

Merton model performs better than the Altman (1968) and Ohlson (1980) models, whereas Agarwal and Taffler 

(2008) find that Altman (1968) performs better. Nevertheless, Bharath and Shumway (2008) and Campbell et 

al. (2008) find that it is not a sufficient statistic, suggesting that other information not included in the model 

might be useful for default prediction.  

ZENON TAOUSHIANIS



-79- 
 
 

inaccurate probability of default estimations when market leverage changes too fast. In 

addition, numerical errors during the iterations might affect the estimation of the two 

unobserved parameters (Charitou et al., 2013), which makes the specific approach quite 

“noisy”. To avoid the iteration approach, several papers have proposed a second approach 

which is based on “simplified” approximations for the two unobserved parameters (Bharath 

and Shumway, 2008; Charitou et al., 2013; Afik et al., 2016). We review the major 

estimation approaches in the subsequent section. 

    It is inevitable, therefore, that the estimation technique affects the performance of the 

model and by improving the estimation of the unobserved parameters would improve the 

forecasting power of the BSM model. In this paper, we develop an approach to obtain 

improved parameter values that are used in the parametric model (i.e. the BSM), based on a 

nonparametric approach. Specifically, we assume the value of assets and the volatility to 

depend on several exogenous variables that are elements of the vector x, through some 

unknown relationships. We estimate these unknown relationships through learning, by 

embedding in the model a nonparametric structure, such as neural networks. The inputs to 

the neural network are the variables in the vector x, and the outputs are the unobserved 

parameters which are the inputs to the parametric model, thus yielding a semiparametric 

model for the estimation of the probability of default. In this setting, the weights of the neural 

network are adjusted in order to maximize a merit function. The proposed approach provides 

an alternative estimation method that outperforms the “noisy” iterative procedures and the 

“simplified” approximations in out-of-sample forecasts.  

   The basic advantage of the proposed approach is that one does not need to make 

assumptions about the structure of the unobserved parameters, for example to impose any 

deterministic relationships to calculate them. Instead, by letting the unobserved parameters 

to depend on some exogenous inputs, x, through some unknown functions, the network is 

optimized accordingly to learn the unknown relationships, providing improved parameter 

values, while preserving the theoretical properties of the parametric model.  

   Semiparametric methods have been used by Bandler et al. (1999) which show that such 

network structures can be used to adjust the parameters of imperfect models to get more 

accurate outputs. In the context of options pricing, semiparametric methods have been used 

by Aït-Sahalia and Lo (1998) and Aït-Sahalia and Duarte (2003). Furthermore, Andreou et 

al. (2008) used semiparametric methods to obtain improved parameters (implied volatility, 

skewness and kurtosis), in options pricing. The results justify the implementation of the 
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semiparametric approach, since the option prices were more accurate relative to other 

estimations approaches. 

   In this paper, for the first time, we use semiparametric models in the context of default 

prediction. In our framework, the imperfect model is the BSM model and the network 

structure adjusts the parameters of the BSM model (such as the value of assets and the 

volatility) in order to obtain improved parameters and eventually, more accurate probability 

of default outputs. 

   We use accounting and market data between 1989 and 2014 for non-financial U.S. public 

firms to estimate the probability of default with the various BSM specifications, over a one-

year forecasting horizon (for defaults between 1990-2015). For the estimation of the 

semiparametric model, we divide the whole sample into two sub-samples; the in-sample 

period includes defaults between 1990 and 2006 and the model is used to make forecasts in 

the out-of-sample period which includes defaults between 2007 and 2015.  

1.2 Main Findings 

   We compare the performance of our semiparametric model with alternative BSM 

specifications; When asset value and volatility are estimated based on iterative procedures 

(i.e. Hillegeist et al., 2004 and Vassalou and Xing, 2004) and when estimated using direct 

estimation approaches (Bharath and Shumway, 2008 and Charitou et al., 2013). Specifically, 

we use three distinct type of tests. In the first test, we compare the discriminatory power of 

the models based on the widely-used Area Under Receiver Operating Characteristic curve 

(AUROC). Results indicate that the discriminating ability of the semiparametric model is 

substantially better than the competing approaches. In the second test, we compare the 

information content of the various BSM specifications. Results show that default 

probabilities produced by the semiparametric model contain significantly more information 

than default probabilities produced by the alternative BSM specifications. In the final test, 

we compare the economic impact arising when banks use the different BSM models in the 

decision-making process of granting loans to individual firms. We find that the bank which 

uses the semiparametric model earns superior risk-adjusted returns relative to the banks 

which use the alternative methodologies. Overall, results from our tests suggest that our 

approach yields more accurate asset values and volatilities which are reflected in the 

performance of the BSM model.  
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   Several additional tests are conducted for robustness, including augmenting the sample of 

events with financially distressed firms-a practice which makes prediction more challenging. 

We find that our semiparametric approach substantially outperforms the alternative BSM 

specifications. Interestingly, using the new dataset with financially distressed firms, the 

semiparametric approach is also better than other widely-used methodologies such as the 

logistic regression and the nonparametric approaches.      

   The remainder of the paper is organized as follows: Section 2 describes the alternative 

BSM specifications, which are used as benchmark, while section 3 describes our 

methodology to obtained improved parameter values for the BSM model. Section 4 discusses 

the data and section 5 describes the three distinct-type of tests we employ in order to test the 

performance of the models. Section 6 discusses the main results, and section 7 provides 

additional results for robustness and section 8 concludes.   

2 BSM Model and Estimation of Asset Value and Volatility 

2.1 Black-Scholes-Merton Model 

   Since equity can be viewed as a European call option, the standard options pricing formula 

can be applied to value the equity of the firm as follows: 

 𝐸 = 𝑉𝑁(𝑑1) − 𝐹𝑒−𝑟𝑇𝑁(𝑑2) (1) 

where  

 
𝑑1 =

𝑙𝑛(𝑉
𝐹⁄ ) + (𝑟 + 0.5𝜎𝑉

2)𝛵

𝜎𝑉√𝛵
 (2) 

 𝑑2 = 𝑑1 − 𝜎𝑉√𝛵 (3) 

Here, V is the value of assets, F the liabilities of the firm, 𝜎𝑉 the volatility of assets value 

returns, r is the riskless rate of return, N(d) is the standard normal distribution function and 

T is the liabilities time to maturity. In Eq. (1), N(d2) represents the probability of solvency 

i.e. the probability that the firm will not default on its liabilities. Therefore, the probability 

of default is 1-N(d2) or N(-d2). In the context of Black-Scholes-Merton, however, N(-d2) is 

the risk-neutral probability of default, since d2 is estimated using the riskless rate of return, 

r. We estimate the real-world probability of default, by substituting r with the real growth of ZENON TAOUSHIANIS
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assets, μ. Hence, it is straightforward to show that the probability of default, PD, is given by 

the following formula35.   

 
𝑃𝐷 = 𝑁(−𝑑2) = 𝑁 (−

𝑙𝑛(𝑉
𝐹⁄ ) + (𝜇 − 0.5𝜎𝑉

2)𝛵

𝜎𝑉√𝛵
) (4) 

The ratio inside of Eq. (4), known as the distance-to-default, gives the number of standard 

deviations the value of assets must drop in order the firm to default (i.e. how far the firm is 

away from default). 

   However, the two most critical inputs in Eq. (4), V and 𝜎𝑉, are not observed in the market 

which makes the estimation of the probability of default a challenging issue. Due to this, 

there was a burgeoning academic literature since the early 2000’s regarding the estimation 

of V and 𝜎𝑉. We identify three main approaches for the estimation of these inputs, which we 

discuss in the following section. 

2.2 Alternative Approaches to Estimate Assets Value and Volatility 

   In this section we present the various approaches used in the literature to estimate asset 

value and volatility, which we use as benchmark for our proposed approach.   

2.2.1 Two Equations Approach (2-Eqs. Approach) 

   One of the earliest and probably the most common estimation approach for V and 𝜎𝑉 was 

given by Jones et al. (1984) in the context of corporate debt valuation and by Ronn and 

Verma (1986) in the context of the empirical estimation of deposit insurance premiums. In 

the context of default probability estimation, this approach has been used, for instance, by 

Hillegeist et al. (2004) and Campbell et al. (2008).  

   In particular, in the framework of options pricing there are two equations that we can solve 

iteratively to obtain the value of assets and the volatility. For the first equation, we solve the 

                                                           
35 In the context of default prediction, Eqs (1) and (4) come with variations. For instance, Hillegeist et al. (2004) 

include a dividend yield and use liabilities for F, while Vassalou and Xing (2004) do not include a dividend 

yield but use short-term debt plus half of long-term debt for F. For the purposes of our study, it is important to 

keep a common specification, like the standard formulas in Eqs. (1) and (4) and change only the methodology 

for asset value and volatility estimation in order to ensure that the source of improvement in model 

performance, comes from the methodology itself and not from the formula specification.   
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standard options pricing formula given by Eq. (1), with respect to V, yielding the following 

equation36: 

 
𝑉 =

𝐸 + 𝐹𝑒−𝑟𝑇𝑁(𝑑2)

𝑁(𝑑1)
 (5) 

The second equation relates the (annualized) volatility of equity changes, 𝜎𝐸, which is 

obtained from historical equity data, with the volatility of asset changes, 𝜎𝑉, through the 

equation 𝜎𝐸 = (
𝑉

𝐸
)

𝜕𝐸

𝜕𝑉
𝜎𝑉. Given that 

𝜕𝐸

𝜕𝑉
 = N(d1) and re-arranging the terms, 𝜎𝑉 is calculated 

as follows:   

 
𝜎𝑉 =

𝐸𝜎𝛦

𝑉𝑁(𝑑1)
 (6) 

Starting from some initial values, for instance setting V=E+F and 𝜎𝑉 = 𝜎𝐸 on the RHS in 

Eqs. (5) and (6), we obtain a new set of V and 𝜎𝑉 which are used in the next iteration in order 

to update the values of the two variables. The process is repeated until the changes of V and 

𝜎𝑉 between two consecutive iterations are very small. When we obtain the two values, we 

can easily estimate μ as the return on asset values between two consecutive years i.e. ln(Vt 

/Vt-1). Note that the two equations approach, is performed at a specific point in time, for 

instance, at the fiscal year-end prior to the year of default.  

   However, as argued by Charitou et al. (2013), convergence problems in the numerical 

procedures may yield numerical errors into the estimation of V and 𝜎𝑉. Further, Crosbie and 

Bohn (2003) argue that depending on how quickly market leverage changes, solving Eqs. 

(5) and (6) biases the probability of default because Eq. (6) holds instantaneously. Moreover, 

because Eqs. (5) and (6) are derived from the basic assumptions underlying options theory, 

we believe that these assumptions pose restrictions in accurately estimating these unobserved 

parameters.    

2.2.2 Single Equation Approach (1-Eq. Approach) 

   A related approach with the 2-Eqs.Approach, is the 1-Eq. Approach used by Vassalou and 

Xing (2004) in their study on how firm default risk affects equity returns. In this case, given 

the observable daily time-series of equity for the entire year, we use Eq. (5) to obtain daily 

                                                           
36 We re-run by considering a dividend component as in Hillegeist et al. (2004), but we haven’t found any 

differences in the performance. 
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time-series for the value of assets37. Once we obtain the time-series of asset values, we 

estimate the annualized volatility, 𝜎𝑉, from the logarithmic changes of asset values. Using 

this estimate of 𝜎𝑉, in the next iteration we obtain a new series of asset values and estimate 

a new value for 𝜎𝑉. This process is repeated until the change in volatility is very small, i.e. 

0.0001. This approach also requires setting initial values for V and 𝜎𝑉. We set V=E+F and 

𝜎𝑉 = 𝜎𝐸.  

   Once we obtain the daily series of V’s, we calculate the annualized growth of assets, μ, 

from the logarithmic changes of V’s.  The advantage of this approach is that it requires the 

solution of just one equation, possibly reducing convergence errors relative to using the two 

equations approach, but it is computationally intensive. Nevertheless, it still relies on 

convergence criteria that may affect the final outputs and consequently the accuracy of the 

probability of default.   

2.2.3 Direct Estimation Approaches 

   Under this category, the estimation of V and 𝜎𝑉 is not based on iterative procedures at all 

but rather, the estimation relies on approximations using observable data. Prominent among 

the studies that use such approximations is Bharath and Shumway (2008), which we denote 

as BS (2008). In their study, V is approximated by the sum of market value of equity (E) plus 

the debt (F). Next, they calculate 𝜎𝑉 as a weighted average of the volatility of equity and the 

volatility of debt: 

 
𝜎𝑉 =

𝐸

𝐸 + 𝐹
𝜎𝛦 +

𝐹

𝐸 + 𝐹
𝜎𝐹 (7) 

where 𝜎𝐹 = 0.05 + 0.25𝜎𝛦 . Finally, for the growth rate of V, they use the stock market 

return over the previous year (μ=𝑟𝐸,𝑡−1). The authors show empirically that the BSM model 

performs better when V and 𝜎𝑉 are estimated with the simplified approximations, as opposed 

to more complex iterative procedures. They conclude that the accuracy stemming from BSM 

is due to its functional form and iterative procedures used to obtain V and 𝜎𝑉 are not useful. 

   In a similar notion, Charitou et al. (2013), which we denote as CDLT (2013), suggest the 

estimation of V and 𝜎𝑉 directly from equity data. In their study, they use the sum of equity 

                                                           
37 We re-run by setting F as short-term debt plus half of long-term debt as in Vassalou and Xing (2004). Again, 

we haven’t found any differences in the performance. 

 

ZENON TAOUSHIANIS



-85- 
 
 

and liabilities as an approximation of V. Using monthly equity data over the previous 60 

months, they calculate a time-series of V’s from which the annualized return (μ) and 

volatility (𝜎𝑉) are obtained. We slightly modify CDLT (2013), by estimating the 

aforementioned variables using daily equity data over the prior year, in order to be consistent 

with the standards of our study, since we use equity data over a one-year period. 

   CDLT (2013) demonstrate that such specifications improve the performance of the BSM 

model compared with the ad-hoc specifications of BS (2008). The authors, however, do not 

compare their results using the two equations approach, or the single equation approach.  

   In the following section we present a nonparametric methodology where improved 

parameters enter the BSM parametric model, yielding a semiparametric model, avoiding in 

that way the estimation of the parameters by solving the equations or using simplified 

approximations as described above.     

3 Methodology: A Semiparametric Model  

3.1 The General Case 

   Consider that we have a parametric model, 𝑓𝑃𝑀, which requires the parameters p to 

estimate the probability of default: 

 𝑃𝐷 = 𝑓𝑃𝑀(𝑝) (8) 

where 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝐿] is the L dimensional vector with the L parameters of the model 

and 𝑓𝑃𝑀 refers to the functional form of the parametric model. Suppose that some parameters 

of 𝑓𝑃𝑀, say M, where M ≤  L, are not observable and thus: 

 𝑃𝐷 = 𝑓𝑃𝑀(𝑝−, 𝑝+) (9) 

 

In Eq. (9), 𝑝− = [𝑝1
−, 𝑝2

−, … , 𝑝𝑀
− ] is the vector which corresponds to the unobservable 

parameters, and 𝑝+ = [𝑝𝑀+1
+ , 𝑝𝑀+2

+ , … , 𝑝𝐿
+] is the vector which corresponds to the observable 

parameters. Note that the vector p consists of the two subsets 𝑝− and 𝑝+.    

   Suppose now that the unobservable parameters, 𝑝−, depend on some exogenous variables 

that are elements of the vector x, through some unknown relationships: 

 𝑝1
− = 𝑓1(𝑥) (10) 

ZENON TAOUSHIANIS



-86- 
 
 

⋮ 

𝑝𝑀
− = 𝑓𝑀(𝑥) 

where 𝑓𝑖(𝑥)  is some unknown function of 𝑝𝑖
− with respect to the exogenous vector of 

variables, x, which we aim to estimate nonparametrically through learning, for i=1,2,…,M. 

In this context, the probability of default is estimated as: 

 𝑃𝐷 = 𝑓𝑃𝑀(𝑧, 𝑝+) (11) 

where 𝑧 = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑀(𝑥)] refers to the vector with the variables that are determined 

through the nonparametric estimation of the unknown functions. In fact, the vector z provides 

improved parameter values to the model in Eq. (11), which we refer to as semiparametric 

model. Figure 1 provides a schematic representation of the proposed approach. 

[Insert Figure 1 here] 

   As can be seen from the figure, the probability of default is estimated using the functional 

form of the parametric model but using two sets of inputs: 1) the inputs that enter directly to 

the parametric model, p+, and 2) the variables z, which depend on the exogenous variables x 

through some unknown relationships that we aim to estimate nonparametrically (i.e. x are 

the inputs to the nonparametric model that produce the outputs z). In this context, z and 

consequently PD, depend on the weights imposed by the nonparametric model. The next 

step is to estimate the weights by training the model. Consider that we have N input samples 

(i.e. observations).  Each input sample, 𝑥𝑛 = [𝑥1𝑛, 𝑥2𝑛, … , 𝑥𝑘𝑛], is associated with a known 

target, 𝑡𝑛, where n=1,2,…, N and k is the number of variables. In the context of default 

prediction, the input sample 𝑥𝑛 can be information characterizing the n-th firm, such as 

financial or market information, whereas 𝑡𝑛 is an indicator variable which equals 1 if the 

corresponding firm-observation defaults and 0 otherwise. The output of the parametric 

model, PD(w), with the associated targets, t, are used in the merit function which is 

optimized in order to obtain the weights of the nonparametric model and consequently the 

final output, which is the probability of default, PD. The nonparametric model here serves 

as an auxiliary mechanism which adjusts the parameters of the parametric model during the 

training phase, until the merit function is optimized. Note that both the nonparametric and 

parametric models belong to the network structure. This is important because in this setting, 

the nonparametric model embeds knowledge from the parametric model. 

   In this study, we use a feedforward neural network since it is the most common neural 

network architecture and it has been widely used to approximate any unknown function. 
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Cybenko (1989) proved that a feedforward neural network with a single hidden layer with 

enough neurons in the hidden layer, with monotonic increasing activation functions and 

linear outputs, can approximate any continuous function to any degree of accuracy. 

Similarly, Hornik et al. (1989) concludes that such network architectures are universal 

function approximators. Furthermore, neural networks have been successfully applied in the 

context of default prediction. For example, Kumar and Ravi (2007) in a comprehensive 

review for the work done during 1968-2005, report that in general, neural networks 

outperform other popular approaches for default prediction. Therefore, neural networks is 

an appropriate methodology for our framework. 

   A typical feedforward neural network is a system with interconnected units (neurons) 

organized into layers where information, flow from the previous layers to the next layers 

aiming to learn the unknown relationships between the inputs and outputs. The first layer in 

our network, presented in Figure 2, is consisted with H units, with the i-th unit connected 

with the input features, x, through the k-dimensional weight vector 𝑤𝑖
(1)

and the biases 𝑤𝑖0
(1)

. 

The i-th unit produces a weighted sum, 𝜓𝑖
(1)

, which enters an activation function, 𝑓𝑖
(1)

, to 

produce an output, 𝑦𝑖
(1)

, where i=1,2,…,H. The outputs from the first layer are further 

processed in the second layer which is consisted with M units, corresponding to the outputs 

of the network. The j-th unit in this layer is connected with the outputs from the previous 

layer through the H-dimensional weight vector 𝑤𝑗
(2)

and the biases 𝑤𝑗0
(2)

. The j-th unit 

produces a weighted sum, 𝜓𝑗
(2)

, which enters an activation function, 𝑓𝑗
(2)

, to produce the 

final output, 𝑦𝑗
(2)

, with j=1,2,…,M.   

[Insert Figure 2 here] 

The set of equations below shows the explicit derivation of the outputs from the neural 

network,  𝑦1
(2)

… 𝑦𝑀
(2)

: 

 

𝑦1
(2)

= 𝑓1
(2)

[𝑤10
(2)

+ ∑ 𝑤1𝑖
(2)

𝐻

𝑖=1

𝑓𝑖
(1)

(𝑤𝑖0
(1)

+ ∑ 𝑤𝑖𝑗
(1)

𝐾

𝑗=1

𝑥𝑗)] 

 

⋮ 
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𝑦𝑀
(2)

= 𝑓𝑀
(2)

[𝑤𝑀0
(2)

+ ∑ 𝑤𝑀𝑖
(2)

𝐻

𝑖=1

𝑓𝑖
(1)

(𝑤𝑖0
(1)

+ ∑ 𝑤𝑖𝑗
(1)

𝐾

𝑗=1

𝑥𝑗)] 

 

The RHS of the set of equations above, are the generalized (unknown) functions that we 

seek to estimate by optimizing the weights of the network, according to a merit function. 

The LHS of the set of equations, correspond to the improved parameters that enter the 

parametric model, yielding the semiparametric model.    

   Overall, there are several advantages by using our proposed approach. First, we do not 

need to impose a priori ad-hoc or simplified approximations for the parameters of the 

parametric model. Instead, by treating (some of) the parameters as generalized functions, the 

network structure optimizes the weights accordingly, to determine the relationships between 

the input features and the parameters under consideration, yielding improved parameters that 

enter the parametric model. Second, we utilize the strong learning capabilities of the 

nonparametric model while preserving the theoretical properties of the parametric model. 

That is, the probability of default is estimated using the underlying theory of the parametric 

model, while the nonparametric model embeds knowledge from the parametric model which 

is useful during the training phase of the network.  

3.2 The Case of BSM Model 

   First, it would be useful to rewrite Eq. (4) as follows: 

 

𝑃𝐷 = 𝑁(−𝐷𝐷) = 𝑁 (−
𝑙𝑛 (

𝑉𝑒𝜇𝛵

𝐹 ) − 0.5𝜎𝑉
2𝛵

𝜎𝑉√𝛵
) 

  

(13) 

Note that the numerator inside the logarithm in Eq. (13), 𝑉𝑒𝜇𝛵, is the expected value of 

assets which when scaled by the liabilities of the firm, F, gives the expected leverage, 

denoted by 𝐸𝐿. Thus, the probability of default is given by the following formula: 

 
𝑃𝐷 = 𝑁(−𝐷𝐷) = 𝑁 (−

𝑙𝑛(𝐸𝐿) − 0.5𝜎𝑉
2𝛵

𝜎𝑉√𝛵
) (14) 

     Consider now that there are two outputs from the nonparametric model; the expected 

value of assets (divided by liabilities, for scaling considerations), 𝑦1
(2)

= 𝐸𝐿(𝑤), and the 

volatility of asset value changes, 𝑦2
(2)

= 𝜎𝑉(𝑤):  
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 𝐸𝐿(𝑤) = 𝑓𝐿(𝑥, 𝑤) (15) 

 𝜎𝑉(𝑤) = 𝑓𝜎(𝑥, 𝑤) (16) 

The RHS of Eqs. (15) and (16) are the generalized (unknown) functions between the input 

features, x, and 𝐸𝐿 and 𝜎𝑉, that the neural network seeks to learn by optimizing the weights 

of the network structure. These two outputs are entered as inputs to the BSM model and thus 

obtaining the probability of default: 

 
𝑃𝐷(𝑤) = 𝑁[−𝐷𝐷(𝑤)] = 𝑁 (−

ln[𝐸𝐿(𝑤)] − 0.5𝜎𝑉
2(𝑤)𝛵

𝜎𝑉(𝑤)√𝛵
) (17) 

Notice that the difference between Eqs. (14) and (17) is that the latter depends on the weights 

imposed to 𝐸𝐿 and 𝜎𝑉 through the neural network and as a consequence, the probability of 

default, PD, is a function of the weights, yielding a semiparametric model. For a sample of 

N observations, the weights of the neural network are obtained by maximizing the Log-

Likelihood, LL, defined as follows: 

 

𝐿𝐿(𝑤) = ∑ 𝑙𝑛(𝑤)

𝑁

𝑛=1

 (18) 

where 

 𝑙𝑛(𝑤) = 𝑡𝑛ln[𝑃𝐷𝑛(𝑤)] + (1 − 𝑡𝑛) ln[1 − 𝑃𝐷𝑛(𝑤)] (19) 

   To solve the problem, we formulate a nonlinear unconstrained optimization process using 

MATLAB. Specifically, we use the fminunc command and the trust-region optimization 

algorithm to obtain the weights of the neural network. At each iteration, the optimization 

algorithm updates the weights according to the partial derivatives that we provide. The 

gradient vector of 𝑙𝑛(𝑤) with respect to the weights is given by38 (for simplicity we drop the 

subscript n): 

 𝜕𝑙(𝑤)

𝜕𝑤
= 𝑐(𝑤)

𝜕𝑃𝐷(𝑤)

𝜕𝑤
 (20) 

where 𝑐(𝑤) =
𝑡−𝑃𝐷(𝑤)

𝑃𝐷(𝑤)[1−𝑃𝐷(𝑤)]
 and 

 𝜕𝑃𝐷(𝑤)

𝜕𝑤
= ∑

𝜕𝑃𝐷(𝑌(2))

𝜕𝑦𝑗
(2)

𝑀

𝑗=1

𝜕𝑦𝑗
(2)

𝜕𝑤
 (21) 

                                                           
38 The notation we use here for the gradient used for the adaptation of the weights of the neural network, is 

based on the principles from Charalambous (1992) for the efficient training of neural networks. 
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The quantity 
𝜕𝑃𝐷(𝑌(2))

𝜕𝑦
𝑗
(2)  ≡ 

𝜕𝑓𝑃𝑀

𝜕𝑝𝑗
 represents the partial derivative of the parametric model with 

respect to the j-th output of the neural network (i.e. the input to the parametric model) and 

𝜕𝑦𝑗
(2)

𝜕𝑤
 represents the partial derivative of the j-th  output with respect to the weights.  

When w≡𝑤𝑗
(2)

, 

 𝜕𝑃𝐷(𝑤)

𝜕𝑤𝑗
(2)

= 𝛿𝑗
(2)

𝑌(1), 𝑗 = 1,2, … , 𝑀 (22) 

where 𝛿𝑗
(2)

=
𝜕𝑃𝐷(𝑌(2))

𝜕𝑦
𝑗
(2) 𝑓𝑗

(2)′

(𝜓𝑗
(2)

). Here, the term 𝑓𝑗
(2)′

(𝜓𝑗
(2)

) is the partial derivative of the 

activation function of the j-th output, valued at 𝜓𝑗
(2)

.  

 When w≡𝑤𝑖
(1)

, 

 𝜕𝑃𝐷(𝑤)

𝜕𝑤𝑖
(1)

= 𝛿𝑖
(1)

𝑥, 𝑖 = 1,2, … , 𝐻 (23) 

where 𝛿𝑖
(1)

= 𝑝𝑑𝑖
(1)

𝑓𝑖
(1)′

(𝜓𝑖
(1)

) and 𝑝𝑑𝑖
(1)

= ∑ 𝑤𝑗𝑖
(2)

𝛿𝑗
(2)𝑀

𝑗=1 . Here, 𝑓𝑖
(1)′

(𝜓𝑖
(1)

) is the partial 

derivative of the activation function of the i-th output from the first layer, valued at 𝜓𝑖
(1)

.  

3.3 Specifications of the Nonparametric Model 

    Several features of the neural network need to be specified such as the input variables, the 

number of neurons used in the hidden layer, as well as the activation functions in the input 

and output layers.  

   First, notice that the default process in the BSM model is based on the future distribution 

of assets value i.e. the expected value of assets and the volatility of asset value returns. We 

aim to forecast the future distribution by using data that captures the current performance of 

the firm. With respect to that, prior studies have identified firm-specific characteristics 

related to the default process of the firm (see for instance Altman, 1968; Ohlson 1980; 

Almamy et al., 2016 etc). We use data from a more comprehensive model. In particular, 

Campbell et al. (2008) find that several accounting-based and market-based variables are 

significant predictors of default. We use the variables of their study as inputs to the neural 

network that might affect the outputs. It should be noted that, the inputs include information 

about the leverage of the firm (liabilities divided by assets) and equity return data which 
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might have an association with the expected value of assets divided by liabilities (i.e. market 

leverage), 𝐸𝐿,  but also, it includes the volatility of equity, which might have an association 

with the volatility of assets, 𝜎𝑉. Thus, using the variables from Campbell et al. (2008) as 

inputs to the neural network, is a reasonable choice.  

   The selection of the optimal number of neurons is done empirically, based on a validation 

process-a straightforward and easy to implement approach, which makes use only the in-

sample data to determine the optimal number of neurons (see Andreou et al., 2008).  Initially, 

we divide the whole sample into two sets; the training set (70%) and the testing set (30%). 

We further divide the training sample into training and validation. Using this training set, we 

estimate the network structure using one to five neurons. The optimal number of neurons is 

the one which performs the best on the validation set, according to AUROC. This process is 

repeated 20 times for each neuron, in order to account for different initialization points. Then 

we use the whole training set to estimate the network, using the optimal number of neurons 

and as starting point, we use the weights of the model that performed the best on the 

validation set. We find that three neurons perform the best in this setting (H=3).  

   As for the activation functions, the hyperbolic tangent sigmoid function is used in the 

hidden layer, 𝑓𝐻(. ) =
1− exp(−2𝜓𝑖

(1)
)

1+exp(−2𝜓𝑖
(1)

)
, which bounds the outputs from the hidden layer 

between [-1, 1]. A challenging task is the format of the transfer functions to be used in the 

output layer. This is because, EL and σV must be non-negative and within reasonable values. 

In this case, we use a modification of the log-sigmoid function as follows; 𝑓𝑀(. ) = a + 

𝑏−𝑎

(1+exp[−𝜓𝑗
(2)

])
, which bounds the outputs in the range [a, b]. In our case, j=1,2, represent the 

two outputs; the expected value of assets (scaled by liabilities) and the volatility of assets. 

When 𝐸𝐿is to be estimated, a=min [(E+F)/F] and b= max [(E+F)/F]. When σV is to be 

estimated, a=min (σE) and b= max (σE). Notice that when 𝜓𝑗
(2)

 →∞, then EL and σV →b. 

When 𝜓𝑗
(2)

 →-∞, then EL and σV →a.  

4 Data 

4.1 Sample  

   Our sample of defaulted firms consists of 420 non-financial U.S. public firms that file for 

bankruptcy under Chapter 7 or Chapter 11 over the 26-year period 1990-2015 and have all 
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data available in Compustat and CRSP one year prior to bankruptcy. Bankrupt firms were 

sourced from the database BankruptcyData. The final sample contains about 94,000 default 

and healthy firm-year observations. The distribution of observations across the years is 

shown in Table 1.     

[Insert Table 1 here] 

4.2 Variables Construction 

   To construct assets value, V, and the volatility, σV, for the alternative approaches described 

in section 2, we obtain data from three sources. From Compustat, we get total liabilities and 

from CRSP we get daily equity prices and shares outstanding to calculate; the equity value 

of the firm, E, at fiscal year-end as the closing stock price * shares outstanding and the 

annualized volatility of daily equity returns, 𝜎𝐸, for the entire fiscal year. Using daily equity 

prices, we also calculate the annualized equity return, 𝑟𝐸,𝑡−1, which is used in BS (2008) as 

proxy for assets growth, μ. Finally, for the risk-free rate we use the 1-year Treasury bill rate, 

obtained from Federal Reserve Board Statistics.  

   Regarding the variables from Campbell et al. (2008) which we use as inputs to the 

nonparametric model, we further get financial information from Compustat such as net 

income, cash and short-term investments and shareholders equity value, to construct the 

following ratios; total liabilities divided by equity market value + total liabilities (TLMTA), 

net income divided by equity market value + total liabilities (NIMTA), cash and short-term 

investments divided by equity market value + total liabilities (CASHMTA) and shareholders’ 

equity value divided by equity market value i.e. book-to-market ratio (BM). Other variables 

used are the following; annualized volatility of daily equity returns, excess returns (EXRET), 

which is the difference between firm’s annualized equity return and the annualized value-

weighted return of a portfolio with NYSE, AMEX, NASDAQ stocks, the relative size of the 

firm (RSIZE), defined as the (log of) equity market value divided by the total market 

capitalization of NYSE, AMEX, NASDAQ stocks and finally, the natural logarithm of stock 

price at fiscal year-end (LOGPRICE). Table 2 provides descriptive statistics for defaulted 

and healthy firm observations. 

[Insert Table 2 here] 
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   As can be seen from Table 2, there are several differences in the financial performance 

between defaulted and healthy firms. Specifically, defaulted firms are less profitable 

(NIMTA is lower), have less liquidity (CASHMTA is lower) and have higher levels of 

leverage (TLMTA is higher). Furthermore, book-to-market ratios of defaulted firms are 

smaller (BM is lower) and tend to be smaller in size (RSIZE is lower), have lower stock 

prices (LOGPRICE is lower) and perform worse than the market (EXRET is negative for 

defaulted firms and positive for healthy firms). Finally, equity returns for defaulted firms are 

more volatile relative to healthy firms (SIGMA is higher). In the last column of the table, t-

tests for mean differences are reported. All mean differences are significant at the 1% level 

except from BM which is significant at the 10% level. 

5 Model Performance 

   The aim is to examine whether our proposed methodology for the estimation of asset value 

and volatility outperforms the commonly used approaches which we have discussed in 

section 2. With respect to that, we employ three distinct tests to compare the performance of 

the models, following Bauer and Agarwal (2014); 1) Discriminatory power based on 

AUROC, 2) Information content tests and 3) Economic benefits arising from using different 

default models. 

5.1 Discriminatory Power 

   With this test we evaluate the ability of the models to discriminate the defaulted firms from 

the healthy firms. For a given cut-off probability, firms whose default probability is higher 

than the cut-off, are classified as defaulted and healthy otherwise. A way to measure 

discriminatory power is by counting the true predictions (percentage of defaulted firms 

correctly classified as defaulted) and the false predictions (percentage of healthy firms 

incorrectly classified as defaulted). Doing this classification process for multiple cut-offs, 

we obtain a set of true and false predictions and when we plot them (true predictions on the 

y-axis and false predictions on the x-axis), we get the Receiver Operating Characteristics 

(ROC) curve. The more the ROC curve approaches the top-left corner, the more powerful 

the model is (since it will hit more true predictions and less false predictions). A quantitative 

assessment of the discriminatory power is given by the Area Under ROC (AUROC) curve 

(see for instance Hanley and McNeil, 1982 and Sobehart and Keenan, 2001), defined as 

follows: 
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𝐴𝑈𝑅𝑂𝐶̂ =

1

𝑛𝑚
∑ ∑ 𝐼(𝑃𝐷𝐵

𝑖 > 𝑃𝐷𝐻
𝑗

)

𝑚

𝑗=1

𝑛

𝑖=1

 (24) 

5.2 Information Content Tests 

   With this test, we evaluate the explanatory power of the models by including the out-of-

sample default probabilities they produced in discrete hazard models. Following related 

studies, such as Hillegeist et al. (2004) and Agarwal and Taffler (2008), we estimate the 

following discrete logit model: 

 
𝑝(𝑌𝑖,𝑡+1 = 1| 𝑃𝐷𝑖,𝑡) = 𝑝𝑖,𝑡 =

𝑒𝑎𝑡+𝛽∗𝑃𝐷𝑖,𝑡

1 + 𝑒𝑎𝑡+𝛽∗𝑃𝐷𝑖,𝑡
=

𝑒𝑎∗𝑅𝑎𝑡𝑒𝑡+𝛽∗𝑃𝐷𝑖,𝑡

1 + 𝑒𝑎∗𝑅𝑎𝑡𝑒𝑡+𝛽∗𝑃𝐷𝑖,𝑡
 (25) 

where 𝑝𝑖,𝑡 is the probability of default at time t, that the i-th firm will default the next year 

and Yi, t+1 is the status of the i-th firm the next year (1 if it defaults and 0 if it is solvent). The 

variable of interest is 𝑃𝐷𝑖,𝑡, which is the out-of-sample default probability of the i-th firm at 

time t. Finally,  𝛽 is the coefficient estimate and 𝑎𝑡 is the baseline hazard rate that is only 

time-dependent, and it is common to all firms at time t. Similar with prior studies, we proxy 

the baseline hazard rate with the actual bankruptcy rate at time t. 

   Shumway (2001) argues that a panel logit model like the one in Eq. (25) should be 

estimated based on standard log-likelihood maximization programs, but with a minor 

adjustment. The number of independent observations is the number of firms in the estimation 

sample and not the number of firm-year observations. Failing to address this issue could 

yield to understated standard errors, leading to wrong inference about the coefficient 

estimates. Similar with Filipe et al. (2016), we use clustered-robust standard errors to adjust 

for the number of firms in the sample but also for heteroskedasticity (Huber,1967 and White, 

1980). 

5.3 Economic Impact  

  The previous tests measure the accuracy of the models. In this test, we examine how the 

accuracy of the models is economically beneficial for banks. Following Agarwal and Taffler 

(2008), we assume a competitive loan market worth $100 billion and each bank uses a 

different default model to evaluate the credit-worthiness of prospective clients. ZENON TAOUSHIANIS
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5.3.1 Calculating Credit Spreads 

   We use the period 1990-2006 (70% of the sample) to calculate credit spreads. We sort 

firm-customer observations in 10 groups of equal size, with the first and tenth group being 

the firms with the lowest and highest default risk respectively, and a credit spread is 

calculated according to the following rule; Firms classified in the first group receive a credit 

spread k and firms in the remaining groups receive a credit spread CSi, which is obtained 

from Blochlinger and Leippold (2006) and it is defined as follows: 

 
𝐶𝑆𝑖 =

𝑝(𝑌 = 1|𝑆 = 𝑖)

𝑝(𝑌 = 0|𝑆 = 𝑖)
𝐿𝐺𝐷 + 𝑘 

(26) 

where p(Y=1|S=i) and p(Y=0|S=i) is the average probability of default and non-default 

respectively for the i-th group, with i=2, 3, … ,10 and LGD is the loan loss upon default. 

Following Agarwal and Taffler (2008), the average probability of default for the i-th group 

is the actual default rate for that group, defined as the number of firms that defaulted the 

divided by the number of firms in the group. Furthermore, k=0.3% and LGD=45%. 

5.3.2 Measuring Economic Performance 

   Banks compete to grant loans to prospective firm-customers in the period 2007-2015. 

Using different default models, each bank sorts the customers according to their riskiness 

and denies credit to the bottom 5% with the highest risk. The remaining customers are 

divided in 10 groups and a credit spread is charged to each group, that was obtained from 

the period 1990-2006. Finally, the bank that charges the lowest credit spread for the customer 

is granting the loan. Two measures of profitability are used. The first one, Return on Assets 

(ROA), is defined as Profits/Assets lent and the second one, Return on Risk-Weighted Assets 

(RORWA), takes into consideration the riskiness of the assets, defined as Profits/Risk-

Weighted Assets. Risk-Weighted Assets are obtained from formulas provided by the Basel 

Committee on Banking Supervision (2006). 

6 Results 

   This section discusses the results of the paper. We begin by reporting the estimation of 

asset and volatility values with respect to the different estimation approaches and finally, we 
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report the performance of the various models, based on AUROC, information content and 

economic impact. 

6.1 Asset Value and Volatility Estimation Results 

   In Table 3, we report asset values (expected leverage in the case of the semiparametric 

approach, EL) and volatility values with respect to the different estimation approaches. 

 [Insert Table 3 here] 

As expected, the ratio V/F is lower for defaulted firms in all cases. Differences in the mean 

values between defaulted and healthy firms are statistically significant. Similarly, 𝜎𝑉  is 

higher for defaulted firms, except in the case of CDLT (2013). Differences in the mean 

values of the remaining approaches are statistically significant. Overall, results are indicative 

of the impaired financial condition of defaulted firms relative to healthy firms one year prior 

to bankruptcy. We conclude that our approach produces reasonable expected asset and 

volatility values. 

6.2 AUROC Results 

   Table 4 presents the out-of-sample discriminatory power of the various approaches based 

on AUROC. 

[Insert Table 4 here] 

The key finding is that the semiparametric model substantially outperforms the competing 

approaches, suggesting that it is more powerful in discriminating the defaulted firms from 

the healthy firms. Specifically, the AUROC of the semiparametric model is 0.9387 whereas 

for the two and single equations approach, AUROCs are 0.8964 and 0.9026 respectively. 

According to Delong (1988) test, differences in AUROCs between the semiparametric 

model and the two and single equations approaches are statistically significant at the 1% 

level (test statistics are 5.64 and 5.40 respectively). The semiparametric model is also 

superior from the direct estimation approaches, since the AUROCs of BS (2008) and CDLT 

(2013) are 0.8791 and 0.9044 respectively. According to Delong (1988) test, differences in 

AUROCs between the semiparametric model and the two direct estimation approaches are 

statistically significant at the 1% level (test statistics are 6.45 and 5.08 respectively).  
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   Results from this test clearly shows the superiority of the semiparametric approach in 

discriminating defaulted from healthy firms relative to the alternative BSM specifications.  

6.3 Information Content Results    

   Table 5 reports the results from information content tests. Models 1-5 are logit models that 

include as predictors, out-of-sample default probabilities produced by various BSM 

specifications. Models 1-2 include the default probabilities produced by estimating asset 

values and volatilities with the 2-Eqs. and 1-Eq. Approaches respectively (denoted as Prob 

1 and Prob 2 respectively). Next, Models 3-4 include default probabilities produced by 

estimating asset values and volatilities based on BS (2008) and CDLT (2013) respectively 

and are denoted as Prob 3 and Prob 4 respectively. Finally, Model 5 includes out-of-sample 

default probabilities produced from our semi-parametric model (Prob 5). 

[Insert Table 5 here] 

   According to the results, out-of-sample default probabilities produced by all BSM 

specifications are highly statistically significant at the 1% level, indicating that they carry 

significant information in predicting defaults one year ahead. More importantly, out-of-

sample default probabilities produced by the semiparametric model contains significantly 

more information compared with the alternative approaches. Using the Vuong (1989) test to 

compare the log-likelihoods, we find that the log-likelihood of Model 5 is significantly 

different from Models 1-4. Differences are significant at the 1% level. The higher 

explanatory power of default probabilities produced by the semiparametric model, is also 

shown from the high pseudo-R2 of Model 5 (28.60%) relative to the other Models which 

range from 16.43% to 21.21%.  

   From this test we conclude that the default probabilities obtained from the semi-parametric 

model contain significantly more information about future defaults as opposed to other BSM 

specifications. This finding confirms that our approach yields more accurate asset value and 

volatilities that improve the performance of the parametric model. 

6.4 Economic Impact Results  

   So far, we have assessed the performance of various BSM specifications based on 

discriminatory power and information content. However, banks are interested in the 
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economic benefits arising by using default models in the decision-making process of giving 

loans to individual firms. Thus, does the improved performance using the semi-parametric 

model yields superior returns? We test this conjecture using the framework of Agarwal and 

Taffler (2008), by assuming a competitive loan market worth $100 billion and five banks 

use the different default models in their credit decisions.  

   Table 6 reports economic results for five banks. Banks 1 and 2 use the 2-Eqs. and 1-Eq. 

Approaches respectively for the estimation of asset values and volatilities. Banks 3 and 4 

use the direct estimation approaches based on BS (2008) and CDLT (2013) respectively. 

Finally, Bank 5 uses our semiparametric model. 

[Insert Table 6 here] 

   As can be inferred from the table, Bank 5 manages a credit portfolio with the lowest 

concentration of defaults (0.08%) whereas for the remaining banks, concentration of defaults 

is higher, ranging from 0.10% to 0.90%. More importantly, Bank 5 earns higher risk-

adjusted returns (i.e. accounting for the riskiness of the portfolio rather than the total profit 

earned). In particular, Bank 5 on a risk-adjusted basis, earns 2.06% per dollar invested while 

risk-adjusted returns for the competing banks range from 0.30% to 1.81%39. 

   Results from this test, overall, suggest that banks can have a competitive advantage using 

the semiparametric approach relative to any of the alternative BSM specifications. 

6.5 Robustness Analysis 

   In this section, we perform several robustness tests. We begin the analysis by measuring 

the out-of-sample performance of the models using several other performance statistics. As 

a next test, we re-run and compare the models based on a five-fold validation approach. As 

an additional test, we increase the sample of events with firms which experienced financial 

distress during the sample period and we compare the semiparametric model with the various 

BSM specifications as well as with other widely-used methodologies.  

                                                           
39 Results are robust with respect to different parameter specifications (k=0.002-0.004 and LGD=0.4-0.7). 
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6.5.1 Other Performance Statistics  

   Several other tests exist in the literature to evaluate the performance of default prediction 

models. In this section, we use the Kolmogorov-Smirnov (KS) statistic, the Conditional 

Information Entropy Ratio (CIER) statistic (see for instance Russel et al., 2012 for 

information regarding these tests) and the H-measure (Hand, 2009). Our results (not 

tabulated) demonstrate that the semiparametric model outperforms the alternative BSM 

specifications. Specifically, the KS statistic is 0.75 for the semiparametric model whereas 

for the 2-Eqs. approach is 0.68, for the 1-Eq. approach is 0.67, for BS (2008) is 0.61 and for 

CDLT (2013) is 0.68. The CIER statistic for the semiparametric model is 0.22 whereas for 

the other approaches CIER statistic is 0.19, 0.17, 0.15, 0.18 (we keep the same order of the 

models as with the KS). Finally, the H-measure for the semi-parametric model is 0.65 

whereas for the competing models the H-measure is 0.51, 0.51, 0.45, 0.52.  

6.5.2 Five-Fold Validation 

   For this test, we divide the full sample (1990-2015) into five approximately equal sub-

samples in chronological order. We use any four of them to train the semiparametric model 

and use the left-out sample to measure its performance. We then compare its performance 

with the alternative specifications in each of the left-out subsample, using AUROC as a 

summary statistic. In each subsample, the semiparametric model outperforms the alternative 

BSM specifications (not tabulated). Its average performance is 0.9102 where for the 

remaining models, performance is as follows: Using the 2-Eqs. and 1-Eq. approaches, 

average AUROC is 0.8431 and 0.8727 respectively. For BS (2008) and CDLT (2013), 

average AUROCs are 0.8507 and 0.8747 respectively. The performance though is lower than 

the performance reported in the earlier sections, because the five-fold validation approach 

breaks the chronological order of the data (i.e. we use subsequent periods to train the model 

and measuring performance on earlier periods). However, the key finding remains: 

Estimating asset value and volatility using our approach, outperforms the alterative BSM 

specifications. 

6.5.3 The Case of Financial Distress 

   We further explore the prediction performance of the semiparametric model by 

augmenting the event sample with financially distressed firms. Generally speaking, it is 
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preferable to develop models to identify the early signs of the crisis (i.e. financial distress) 

rather than waiting until bankruptcy occurs, in which case the firm might already have lost 

most of its value and the firm faces additional costs arising from bankruptcy, such as 

liquidation and legal costs40. Another advantage from the prediction of financial distress 

relative to bankruptcy, is that the firm may have enough time to reverse the situation through 

corrective measures, such as assets sales, reductions in capital expenditures, debt 

restructurings etc (see Asquith et al., 1994 and references therein), preventing in that way 

further deterioration which may eventually lead to bankruptcy. Finally, we believe that 

predicting financial distress poses an interesting problem because predicting the early stages 

of the problem is a harder task to accomplish and therefore, will challenge the performance 

of all models. 

   Despite the benefits of the prediction of financial distress, only a handful of papers have 

addressed the issue. We believe that the main reason is the lack of a formal definition of 

financial distress and as such, it must be defined using subjective criteria based on financial 

performance. However, most of the studies agree that the key criterion should be a form of 

inability of the firm to cover its financial obligations, such as the inability to cover its interest 

payments (see for instance Pindado et al., 2008; Gupta et al., 2018). 

   In this study, we follow Keasey et al., (2015) to classify the firms as financially distressed 

(also used by Gupta et al., 2018).  Specifically, we consider a firm to be in financial distress 

when all of the following conditions are satisfied; 1) Earnings Before Interest, Tax and 

Depreciation and Amortization (EBITDA) is less than financial expenses (i.e. interest 

payments) for two consecutive years 2) Total Debt is higher than the Net Worth of the firm 

for two consecutive years and 3) The firm experiences negative Net Worth growth between 

two consecutive years. The firm is classified as financially distressed in the year immediately 

following these three events. For prediction purposes, we use the data two years before 

financial distress. For example, when the conditions are satisfied for the years t and t-1, then 

the firm is considered as financially distressed in the year t and we construct the variables at 

t-2 to predict financial distress. By doing so, we have classified a total of 2022 firms as 

financially distressed between 1991 and 2015 and the total sample amounts to 72042 firm-

year observations.  

                                                           
40 According to a recent study from Glover (2016), the direct and indirect costs arising from default amounts 

to 45% of firm value. 
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   Results reported in table 7, clearly demonstrate the superior performance of the 

semiparametric model relative to the alternative BSM specifications.  

[Insert Table 7 here] 

The results from Table 7 also reveal that in states of financial distress, the simple BSM 

models are not useful in predicting the firms undergoing financial distress as indicated by 

AUROC results, which in all cases are substantially lower relative to when predicting 

bankruptcies (table 4). In contrast, in cases of financial distress, more advanced 

methodologies should be used. For instance, the performance of the semiparametric model 

is quite impressive, given the relatively difficult nature of the problem, although the 

performance according to AUROC has been dropped (as expected) relative to when 

predicting bankruptcies (0.8997 vs 0.9387 respectively). Information content and economic 

benefits results also demonstrate that the semiparametric model performs better than the 

alternative BSM models. For instance, in a competitive environment, the bank which uses 

the semiparametric model manages a portfolio of clients where only the 0.43% are 

financially distressed. In contrast, for the other banks which use various BSM specifications, 

the financially distressed ratio ranges between 2.34% - 6.25%.   

6.5.4 Comparison with Alternative Methodologies-Financial Distress Case 

   The good performance of the semiparametric model motivates us to compare its 

performance with alternative methodologies. We compare the performance of the 

semiparametric model with two very widely-applied approaches; the logistic regression (LR) 

approach and the nonparametric (NP) approach, such as neural networks. As explanatory 

variables for both approaches, we use the variables of Campbell et al. (2008), which are also 

used as inputs when estimating our semiparametric model. Furthermore, in the case of the 

traditional neural network, we use the same specifications as was done for the 

semiparametric model; In the hidden layer, we use three neurons (H=3) as well as we use 

the tan-sigmoid activation function. This is done for consistency. In the output layer, we use 

one neuron (M=1) with the log-sigmoid activation function in order to obtain a probability. 

Finally, the log-likelihood function is used to train the neural network in order to obtain its 

coefficients. Performance results are reported in table 8. 

[Insert Table 8 here] 
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   As expected, the results are now more comparable since all approaches generally perform 

well in predicting financial distress. However, the semiparametric model is the best 

performing model, according to all tests. This is evident by the higher out-of-sample 

AUROC it exhibits relative to the LR and NP approaches (which equal to 0.8528 and 0.8802 

respectively) with the differences being statistically significant according to the DeLong test 

(at significance level α=1%). Next, the semiparametric model is better in terms of 

information content (differences in log-likelihoods are statistically significant at α=1% 

according to the Vuong test). Finally, a bank which uses the semiparametric model, manages 

a better-quality portfolio of clients as indicated by the lowest fraction of financially 

distressed firms it attracts relative to other banks, which use the LR approach or the NP 

approach. In particular, for the bank which uses the semiparametric model, 0.80% of the 

firms it attracts are financially distressed, whereas for banks which use the LR or NP 

approach, the financial distress ratio amounts to 3.63% and 1.04% respectively. Overall, the 

results in this section suggest that the semiparametric model is a promising methodology 

since it outperforms other well-known financial distress prediction methodologies. 

6.5.5 Focusing on the financial crisis period 2007-2009 

   In this section, we compare the performance of the models in the out-of-sample period 

which includes only the years 2007-2009, where the financial crisis has arrived and might 

have impacted the financial performance of the firms severely (results are not tabulated). 

The purpose of this section is to test the performance of the models under unfavorable 

conditions in the market. Overall, evidence from this test confirms the superior performance 

of the semiparametric approach relative to the alternative BSM models during the financial 

crisis period. 

7 Summary and Conclusions 

   In this paper, we introduce and compare an estimation technique to obtain parameter 

values, such as the asset value and volatility, which are used in parametric models for the 

estimation of the probability of default. Specifically, we view asset value and volatility as 

generalized functions and by using a nonparametric technique, such as neural networks, we 

obtain improved asset values and volatilities which enter the parametric model, yielding a 

semiparametric model. Using the BSM model as a paradigm, we compare the performance 

of the semiparametric model with popular BSM alternative specifications with respect to 1) 
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AUROC, 2) Information content and 3) Economic benefits. Our results demonstrate the 

superiority of the semiparametric model since in all tests, the semiparametric model 

outperforms the competing BSM specifications. We further examine the performance of the 

models when the sample of events is augmented with financially distressed firms. In this 

respect, we find that the semiparametric model outperforms not only the BSM models but 

also, other methodologies as well, such as the logistic regression approach and the 

nonparametric approach, which in fact justifies the implementation of the semiparametric 

model in future research for default/financial distress prediction. 

   However, we believe that the semiparametric model may be subject to improvement. 

Future research may emphasize on the examination of other activation functions to be used 

in the output layer of the neural network, such that possibly more accurate asset values and 

volatilities can be obtained. Another promising avenue for future research, would be to 

increase the number of outputs from the nonparametric model, for instance, asset values, 

asset volatility and asset expected return, whereas in this study, the asset value with expected 

return were merged in order to obtain the expected value of assets. Also, it would have been 

useful to examine several other inputs to the nonparametric model, beyond the variables 

from Campbell et al. (2008), which could further increase the precision of outputs from the 

nonparametric model. Finally, the BSM which we improve its estimation, is the earliest 

parametric model. Given that several extensions have been proposed in the literature (see for 

instance Leland, 1994; Leland and Toft, 1996), one may possibly use the approach proposed 

in this study, to improve the estimation of such extended parametric models.  
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Tables 

 

Table 1: Distribution of observations 

Year Defaulted Firms Healthy Firms Default Rate (%) 

1990 22 3292 0.66 

1991 25 3241 0.77 

1992 17 3258 0.52 

1993 20 3318 0.60 

1994 10 3543 0.28 

1995 14 3861 0.36 

1996 14 4138 0.34 

1997 13 4379 0.30 

1998 19 4698 0.40 

1999 26 4664 0.55 

2000 20 4435 0.45 

2001 21 4286 0.49 

2002 14 4182 0.33 

2003 15 3913 0.38 

2004 13 3601 0.36 

2005 14 3510 0.40 

2006 10 3503 0.28 

2007 14 3439 0.41 

2008 20 3320 0.60 

2009 31 3244 0.95 

2010 6 3153 0.19 

2011 9 3037 0.30 

2012 12 2963 0.40 

2013 12 2920 0.41 

2014 12 2884 0.41 

2015 17 2897 0.58 
This table shows the distribution of default and healthy-firm observations across the sample period 

1990-2015 and the annual default rate, defined as the number of defaults divided by the annual 

number of observations 
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Table 2: Descriptive statistics 

 Defaulted Firms  Healthy Firms  t-test 

Variables Mean Median St.Dev  Mean Median St.Dev.   

NIMTA -0.249 -0.1722 0.254  -0.021 0.023 0.148  -31.40 

CASHMTA 0.068 0.032 0.098  0.119 0.062 0.160  -6.51 

TLMTA 0.697 0.784 0.264  0.378 0.332 0.258  25.35 

BM 1.036 0.481 2.551  1.461 0.537 4.807  -1.81 

RSIZE -12.774 -12.765 1.490  -10.919 -10.983 2.075  -18.31 

LOGPRICE 0.523 0.560 1.145  2.291 2.473 1.274  -28.37 

EXRET -0.213 -0.340 0.864  0.207 0.106 0.670  -12.79 

SIGMA 1.070 0.959 0.486  0.657 0.551 0.418  20.14 
This table reports descriptive statistics for the entire sample period 1990-2015, of the inputs, x, which 

enter the nonparametric model, as used in Campbell et al. (2008). The construction of the variables 

is described in section 4.2. The last column reports t-tests for mean differences between defaulted 

and healthy firms. 

 

 

 

  

Table 3: Mean asset values and volatilities from the different estimation approaches 

Estimation Apporaches 
Mean-Defaulted Firms Mean-Healthy Firms t-test 

V/F  σV V/F  σV V/F σV 

2-Eqs. Approach 1.958 0.565 6.380 0.383 -2.69 4.53 

       

1-Eq. Approach 1.887 0.400 6.378 0.353 -2.74 2.09 

       

Direct Estimation        

1) BS (2008) 2.004 0.489 6.406 0.417 -2.68 2.81 

2) CDLT (2013) 2.004 0.328 6.406 0.335 -2.68 -0.32 

       

SP Approach 3.676 0.72 6.398 0.572 -24.12 25.73 
This table reports mean asset and volatility values obtained with respect to the various estimation approaches, 

in the out-of-sample period 2007-2015. The 2-Eqs. Approach refers to estimating asset values and volatilities 

by simultaneously solving Eqs. (5) and (6). The 1-Eq. Approach refers to estimating the time-series of asset 

values over the previous year by solving Eq. (5) and estimating the volatility of asset values until convergence 

(see sections 2.2.1 and 2.2.2 respectively). BS (2008) and CDLT (2013) refer to the direct estimation approach 

as done in Bharath and Shumway (2008) and Charitou et al. (2013) respectively (see section 2.2.3). Finally, 

the SP approach refers to estimating expected asset value and the volatility based on the semiparametric 

approach (see sections 3.1 and 3.2). The last column reports t-tests for mean differences between defaulted 

and healthy firms. 
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Table 4: AUROC results 

 AUROC Delong test 

2-Eqs. Approach 0.8964 5.64 

   

1-Eq. Approach 0.9026 5.40 

   

Direct Estimation    

1) BS (2008) 0.8791 6.45 

2) CDLT (2013) 0.9044 5.08 

   

SP Approach 0.9387 - 
This table reports AUROC results for the various BSM specifications in the out-of-sample period 

spanning the years 2007-2015. The 2-Eqs. Approach refers to estimating asset values and 

volatilities by simultaneously solving Eqs. (5) and (6). The 1-Eq. Approach refers to estimating 

the time-series of asset values over the previous year by solving Eq. (5) and estimating the 

volatility of asset values until convergence (see sections 2.2.1 and 2.2.2 respectively). BS (2008) 

and CDLT (2013) refer to the direct estimation approach as done in Bharath and Shumway (2008) 

and Charitou et al. (2013) respectively (see section 2.2.3). Finally, the SP Approach refers to 

estimating expected asset value and volatility based on our semiparametric approach (see sections 

3.1 and 3.2). The last column reports the Delong (1988) test statistic, to test for statistically 

significant differences in the AUROCs between the semiparametric model with the alternative 

BSM specifications.  
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Table 5: Information content results 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Prob 1 0.039 

(20.93) 

    

Prob 2  0.045 

(19.63) 

   

Prob 3   0.037 

(17.99) 

  

Prob 4    0.051 

(20.80) 

 

Prob 5     0.337 

(26.45) 

Rate -1.562 

(-3.60) 

-2.329 

(-4.61) 

-1.360 

(-2.75) 

-2.458 

(-4.34) 

-2.073 

(-4.20) 

Constant -5.810 

(-25.66) 

-5.741 

(-24.10) 

-5.870 

(-24.89) 

-5.459 

(-22.92) 

-5.692 

(-26.32) 

Log-

Likelihood 

-690.70 -665.81 -705.42 -671.69 -607.70 

Pseudo-R2 (%) 18.18 21.21 16.43 20.43 28.01 

Vuong Test 4.78 4.50 5.41 4.46 - 
This table reports information content results. We estimate five logit models, where the out-of-

sample default probabilities (from the period 2007-2015) produced by the various BSM 

specifications are included in the logit estimation. Models 1 and 2 include default probabilities 

produced by the 2-Eqs. and 1-Eq. Approaches (denoted with Prob 1 and Prob 2 respectively). 

Models 3 and 4 include default probabilities produced by the direct estimation approach (Prob 3 

and Prob 4 are default probabilities produced by BS, 2008 and CDLT, 2013 respectively). Finally, 

Model 5 includes default probabilities produced by our semiparametric approach. The last row of 

the table reports the Vuong (1989) test statistic, to test for statistically significant differences in 

the log-likelihoods between Model 5 with the Models 1-4. In all logit models, we include Rate, 

defined as the annual default rate of the previous year, as proxy for the baseline hazard rate.     
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Table 6: Economic impact results 

 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 

Credits 5115 3546 2652 3254 12977 

Market Share (%) 18.27 12.67 9.47 11.63 46.36 

Defaults 43 5 24 4 10 

Defaults/Credits (%) 0.84 0.14 0.90 0.10 0.08 

Average Spread (%) 0.54 0.35 0.46 0.36 0.35 

Revenues ($M) 98.90 44.57 43.17 41.33 162.92 

Loss($M) 63.16 7.34 35.25 5.88 14.69 

Profit($M) 35.74 37.23 7.92 35.45 148.23 

Return on Assets (%) 0.20 0.29 0.08 0.30 0.32 

Return on RWA (%) 0.54 1.81 0.30 1.73 2.06 
This table reports economic results for five banks in a competitive loan market worth $100 billion. Banks 1 

and 2 use the BSM specification, where asset values and volatilities are obtained with the 2-Eqs. and 1-Eq. 

Approaches respectively. Banks 3 and 4 use the direct estimation approach to obtain asset values and 

volatilities, based on BS (2008) and CDLT (2013) respectively. Finally, Bank 5 uses the semiparametric 

approach. Banks sort prospective customers (2007-2015) and reject the 5% of firms with the highest risk. 

The remaining firms are classified in 10 groups of equal size and for each group, a credit spread is calculated 

as described in the main text (section 5.3). The bank that classifies the firm to the group with the lowest 

spread is finally granting the loan. Market share is the number of loans given divided by the number of firm-

years, Revenues = (market size)*(market share)*(average spread), Loss=(market size)*(prior probability of 

bankruptcy)*(share of bankruptcies)*(loss given default). Profit=Revenues-Loss. Return on Assets is profits 

divided by market size*market share and Return on Risk-Weighted-Assets is profits divided by Risk-

Weighted Assets, obtained from formulas provided by the Basel Accord (2006). The prior probability of 

bankruptcy is the bankruptcy rate for firms between 1990-2006 and equals 0.43%. Loss given default is 45%. 
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Table 7: Performance comparisons between the semiparametric approach and BSM 

specifications-Financial distress case 

 AUROC LL-Info. Content Portfolio Quality DeLong Test Vuong Test 

2-Eqs. Approach 0.6884 -2235.00 5.53% 17.41 14.21 

      

1-Eq. Approach 0.7235 -2202.61 2.34% 15.59 13.15 

      

Direct Estimation       

1) BS (2008) 0.6846 -2257.86 6.25% 17.74 14.38 

2) CDLT (2013) 0.7217 -2216.28 2.78% 15.63 13.46 

      

SP Approach 0.8997 -1720.45 0.43% - - 
This table reports performance results of the various BSM specifications in the out-of-sample period spanning 

the years 2007-2015, when the sample of events is augmented with financially distressed firms. The 2-Eqs. 

Approach refers to estimating asset values and volatilities by simultaneously solving Eqs. (5) and (6). The 1-

Eq. Approach refers to estimating the time-series of asset values over the previous year by solving Eq. (5) and 

estimating the volatility of asset values until convergence (see sections 2.2.1 and 2.2.2 respectively). BS (2008) 

and CDLT (2013) refer to the direct estimation approach as done in Bharath and Shumway (2008) and 

Charitou et al. (2013) respectively (see section 2.2.3). Finally, the SP Approach refers to estimating expected 

asset value and volatility, based on our semiparametric approach (see sections 3.1 and 3.2). The first column 

reports AUROC results (equivalent to table 4), the second column reports log-likelihoods from information 

content tests (equivalent to table 5) and the third column reports the concentration of financially distressed 

firms, when banks compete to grant loans in a competitive economy (equivalent to the fourth row of table 6). 

The last two columns report DeLong (1988) and Vuong (1989) test statistics, to test for statistically significant 

differences in the AUROCs and log-likelihoods, between the semiparametric approach and the various BSM 

specifications.  

 

 

 

Table 8: Performance comparisons between the semiparametric approach and alternative 

approaches-Financial distress case 

 AUROC LL-Info. Content Portfolio Quality DeLong Test Vuong Test 

LR Approach 0.8528 -2105.94 3.63% 7.19 12.43 

      

NP Approach  0.8802 -1841.27 1.04% 3.96 5.02 

      

SP Approach 0.8997 -1720.45 0.80% - - 
This table reports performance results of the alternative approaches for financial distress prediction, such as 

the logistic regression (LR) approach, the nonparametric (NP) approach and specifically neural networks 

and finally, the semiparametric (SP) approach. Performance is measured in the out-of-sample period 

spanning the years 2007-2015. The first column reports AUROC results (equivalent to table 4), the second 

column reports log-likelihoods from information content tests (equivalent to table 5) and the third column 

reports the concentration of financially distressed firms, when banks compete to grant loans in a competitive 

economy (equivalent to the fourth row of table 6). The last two columns report DeLong (1988) and Vuong 

(1989) test statistics, to test for statistically significant differences in the AUROCs and log-likelihoods, 

between the semiparametric approach and the alternative methodologies.  
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Figure 1: Schematic representation of our approach. Improved parameter values, z, are obtained from the 

nonparametric model and enter as inputs to the parametric model along with other parameters, 𝑝+, that enter 

directly, yielding a semiparametric model. Here, x, represents some exogenous inputs to the nonparametric 

model. The proposed structure is optimized according to a merit function, to give the weights, w, and finally 

the probability of default, PD. Note that in the merit function, the targets t are supplemented directly. In our 

case, t=1 if the firm defaults and t=0 otherwise and the merit function is the log-likelihood function. 
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Figure 2: General structure of a two-layer feedforward neural network, with H neurons in the 

hidden layer and M neurons in the output layer. 
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CONCLUSIONS 

   Bankruptcy prediction of firms has been in the forefront of academic research over the past 

decades and the effort to identify the troubled firms early, will continue in the future. The 

lessons learned from the recent global financial crisis, where we have evidenced the 

bankruptcy of many firms which led banks to suffer huge losses from their loan portfolios, 

remind us the importance of developing bankruptcy prediction models. Besides the 

economic costs arising from bankruptcy, several others include social ones, such as the loss 

of investors’ confidence towards the markets, lawsuits to the management of the firm but 

also, people losing their jobs due to the closure of the company. 

   This dissertation aimed to provide innovations to the most common bankruptcy prediction 

approaches; The structural approach and the empirical approach. Firstly, in the first chapter, 

it is found that the structural model from the framework of Leland-Toft (1996) is a better 

approach relative to the most widely-used structural model; The Black-Scholes-Merton 

model. Therefore, for those interested to forecast bankruptcy using the structural approach, 

the Leland-Toft model should be preferred. The chapter also found that including the 

probability of bankruptcy derived from Leland-Toft as additional predictor in models like 

Altman (1968), Ohlson (1980) and Campbell et al. (2008) yields models with improved out-

of-sample performance and these models were the best performing in all tests. With that 

respect, evidence suggests that Leland-Toft probability is a missing predictor in empirical 

models and it is recommended to be considered in association with the original empirical 

models. 

   The second chapter of the dissertation focused on the empirical approach and proposed 

methodologies to maximize their ability to discriminate bankrupt from healthy firms as 

measured by AUROC. It is found that the proposed methodologies provide bankruptcy 

models with improved predictive ability relative to traditional approaches for bankruptcy 

prediction and the improvement in predictive ability is also evident economically when 

banks use such models. Therefore, for those interested using the empirical approach to 

estimate bankruptcy risk of firms, it is recommended to train their models using AUROC as 

the optimization criterion. More specifically, a merit function which takes care of the outliers 

should be used when the response function is linear and a neural network model when the 

response function is probabilistic. ZENON TAOUSHIANIS
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   The third chapter which is dedicated on the structural approach, proposed a nonparametric 

methodology to estimate unobserved parameters of the structural (parametric) models; the 

value of assets and volatility of asset value returns. When these parameters are viewed as 

generalized functions of some exogenous inputs, x, the nonparametric approach can be used 

to uncover these functions through learning. With that respect, the Black-Scholes-Merton 

model was used as paradigm and it is found that our approach provides improved parameter 

values which when enter the structural model, yields a semiparametric model with 

substantially improved performance relative to the alternative parameter estimation 

approaches widely-used in the literature. This chapter also considered the case of financially 

distress prediction, which is a state prior to bankruptcy, and it is found that while the 

traditional approaches did not perform well, the semiparametric approach exhibited 

impressive out-of-sample performance. In all, our semiparametric model is the best 

performing in all tests considered in this chapter and we conclude that when using the 

structural approach, the nonparametric methodology should be implemented in order to 

obtain the unobserved parameter values. 
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