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IHEPTAHYH ATIATPIBHX

H owtpi) e€etdlerl Oépato oyetikd pe v TpoPreyn ype®KOTioe SNUOCI®V ETUPLOV OTNV
Apepikn kot amoteleitol amd Tpio KePAAalo. XT0 TPMOTO KEQPAANO eEETALETAL L0 EVOALOKTIKY|
LéEB0d0C TPOPAEYNS YPEMKOTIOG TOV OEVOVVETAL GE ETOUPTIEG TTOV EYOVV JAVELD KO TANPDVOLY
kovmovio. (coupon-paying debts). H pébodog Baciletar oto poviédo Leland-Toft (1996) to
omoio amotelel eméKTOOT EVOC €VPEMS dlodedopEvoy povtédov; tov Black-Scholes-Merton.
[Map *6Aa avtd, To povtého Leland-Toft (1996) dev éxel Aafet v anapaitntn Tpocoyn otV
Broypapia kot YU avtd, eetdlovpe TNV EUTEPIKT TOL anddoot. TELog amocKomovpE 6TV
BeAtimon g amddooNg TapadOGIOUKMV LOVIEA®Y TPOPAEYNC ¥PEMKOTIOG, OTMS T LOVTEAD TOV
Altman (1968) kot Ohlson (1980) aAAd kow o chyypoveV HOVIEA®VY, OTMG TO LOVTELD TMV
Campbell et al. (2008), ypnoyomoidvtag Ty mOAvVOTNTA YPE®KOTING TOV TPOKVTTEL GO TO
povtélo Leland-Toft, cav emmpdcheto mapdyovio ot LOVTELD TOVE. ZVVORTIKA, TO KEQAANLO
amodeIkvOEL T ypnodtTo Tov poviédov Leland-Toft yuo thv mpofreyn ypewkomiog, kabmg
TapE el PEATIOCEIS OTNV EUNEPIKN amdOd0on TV HovtéAwv mov e€etdlovtatl. To dgdtepo
KeEPAAoO aoyoleital pe v peylotomoinon tov kpiripov omdédoonc AUROC (Area Under
ROC curve). Zvykekpyéva, to AUROC givar omd T o yvootd kprtpila amdd06mg LOVIEA®Y
ypeokomiag kot £xel derybel mwg Tpameles TOL YPNGULOTOOVV HOVTEAL LE HEYOUAVTEPO OeikTn
AUROC, metvyaivouv peyolvtepn kepdopopia ev cvykpicel pe dideg tpdameles. Tlap ‘Oha
aVTA, O0EV EIVOL KOV TPOKTIKT VO EKTOOEVOVTOL LOVTELD TO, OO0, LLEYIGTOTOLOVY TO KPLTHPLo
AUROC. Z1t0 xepdlowo avtd, mpoteivovtor kot ovykpivovtar didgopeg pébodor yia
peytotonmoinon tov kpirnpiov amddoons AUROC, pe tov okomd vo Bpodue v kaAvtepn
péB0d0. Zvvomtikd, To KepAaimo deiyvel 6Tt ot mpotevopeveg LEB0OOL BEATIOVOLY TNV EUTEIPIKTY
amod0oon TopadoclOKOV HovTEA®V. Emiong, avadeikvdovior to OKOVOHKOE O@EAN TOv
pokvTovy 6tav to kprtipro AUROC ypnowpomoteitan katd tn Sidpkeio TG EKTAidEvLong
HOVTEA®V TPOPAEYTG YpemKoTioc. £T0 TPiTo KePAAao divetal Eupact otnv katnyopio TV
SopK®V (TOPAUETPIKMDY) HOVIEA®VY , OTIOV TPOTEIVOVUE L0, TEYVIKY Y10 VO VTOAOYIGOVUE TIG
O GNUOVTIKEG TOVG TAPAUETPOVS, Ol OTTOIEG OV UTOPOVV Vo Topatnpndodv oty ayopd; v
ayopaia a&io e etapiog N avtiototrya TNV a&io TV TEPLOVOIAKMV TNG oTolyEiwV (asset value)
Kot TNV Tumky amdkiion tovg (asset volatility). EvaAloxticég teyvikéc vmoloyiopod mwov
mpotabnkav omv Piproypapio Paciloviar 6e TPoceyyicel; TOV UTOPEL Vo 0ONYHGOVY OE
avokpieic vroloyiopovg (Tpoceyyicelg mov givon noisy or simplified). 1o kepdioto avto,
vrofétovpe g ol mopdpetpor wov OEAovpe vo vwoloyicovpe, eEapTOVTOL MO KATOES



eEwyevng LETOPANTEG LECH AYVOOTOV OYECEDMV-GUVOPTICEDV KOl YPNCULOTOIOVTOS 0L [UT)-
Tapopetpikn pEB0do, Yoo TaPASEYHO VELPOVIKG SIKTVLO, GTOYEVOLLE GTNV EKUAONON OVTOV
TOV cLVOPTNoEDV 0oV Bo dGoVV PeATiopéves TapapuéTpovg. AvTtég ot TopdueTpol, 0TV
eVoOUAT®OOHV 6TO TOPOUETPIKO HOVTEAO, ONUIOVPYOVV &Va MUL-TOPOUETPIKO LOVTEAO.
Xpnoonowmvtag To TopapeTpikd poviédo Black-Scholes-Merton mg napddetryua, to ke@dAoio
KOTAANYEL OTL 1) TPOTEWOLUEVT HEBODOG TAPEYEL TAPAUETPOVS O1 OTTOTES OTAY EVOOUATM®OOVV GTO
Black-Scholes-Merton, BeAtidvel onpoavtikd Ty amdS06T TOL CUYKPITIKA UE TIC TOPUSOCIOKES

uefo6d0vg LTOAOYIGHOD TOVC.



SUMMARY OF THE DISSERTATION

The dissertation examines topics in bankruptcy prediction using public firms from U.S. and
consists of three chapters. Chapter 1 is dedicated to investigating an alternative approach for
bankruptcy prediction that measures the financial healthiness of firms with coupon-paying
debts. The approach is based on the framework of Leland-Toft (1996) which is a structural
model that extends a widely-used corporate bankruptcy model; the Black-Scholes-Merton
model. Despite that, Leland-Toft (1996) has received limited attention in the bankruptcy
literature and thus, we aim to examine its empirical performance. Finally, we are interested to
improve the performance of well-established bankruptcy models, like Altman (1968) and
Ohlson (1980) but also more recent ones, like Campbell et al. (2008) by incorporating the
probability of bankruptcy derived from Leland-Toft as additional predictor in their models.
Overall, the chapter demonstrates the usefulness of Leland-Toft in predicting bankruptcy, since
it provides enhancements in the empirical performance of the examined models. Chapter 2 is
dedicated on the maximization of the discriminatory power of bankruptcy prediction models,
measured by the Area Under ROC curve (AUROC). Specifically, AUROC is a widely-used
performance measure and it has been shown that models with higher AUROC are associated
with higher economic benefits for banks. Yet, it is not a common practice to training bankruptcy
models by maximizing AUROC. In this chapter, several methodologies to maximize AUROC
are introduced and compared, with the objective to find the best one. Overall, the chapter shows
that the proposed approaches provide enhancements in the empirical performance of the
traditional bankruptcy models, highlighting also the economic benefits arising by using models
where the AUROC is used as the optimization criterion during the training phase of the models.
In Chapter 3, the focus is on structural (parametric) models where we propose an estimation
technique to estimate their most important parameters which are not observed in the market; the
value of assets and the volatility of assets. Alternative estimation techniques proposed in the
literature, are based on “noisy” techniques or “simplified” approximations that may result to
inaccurate estimation of the unobserved parameters. In this chapter, we assume that these
parameters depend on some exogenous variables through some unknown relationships and by
using a nonparametric approach, like neural networks, we seek to estimate these relationships,
obtaining in that way improved parameter values that when enter the parametric model, yields
a semiparametric method for the estimation of the probability of default. Using the Black-

Scholes-Merton structural model as a paradigm, the chapter concludes that the proposed
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methodology provides parameters which when enter the structural model, significantly improve

the predictive performance of the model relative to the traditional methods.
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FOREWORD

Prediction of corporate bankruptcy is an area of research that is active for the last 50 years and
specifically, since the paper of Altman (1968) who shows how to construct bankruptcy scores
for firms using readily available information from financial statements. Since then, there has
been a massive interest for the development of powerful bankruptcy prediction models, resulting
to significant methodological advancements in the field of corporate bankruptcy prediction. The
effort to predict corporate bankruptcy in the most accurate way continues until today and we
argue that the topic will always be of interest. This is because, it is a topic that concerns a lot of
parties including banks, investors, regulators, auditors, employees, the management of the firm

and generally the stakeholders of the firm.

The topic has regenerated increased attention recently, mainly for two reasons. The first one,
is that the Basel Committee on Banking Supervision in a consultation document in 2006 (known
as Basel 1l which has been substituted by Basel |11 later), reports that banks are now allowed to
develop internally, models to provide probability of default estimates on their credit exposures
to estimate capital requirements that must set aside in order to absorb possible losses stemming
from potential customer (i.e. firm) bankruptcies. This has been a huge motivation for banks to
devote resources and sophistication for the development of such models. As it is also shown in
the subsequent chapters, banks which use models with higher predictive accuracy, earn higher
returns relative to the competition. Much of the attention that has been given to the development
of bankruptcy models, also comes from the global financial crisis that hit the markets
internationally between 2007-2008 and resulted to many corporations filing for bankruptcy and
left banks with huge losses from their credit portfolios. Several economists have also
characterized the 2007-2008 financial crisis equivalent to the Great Depression back to 1930’s.
These facts remind us the importance to develop models that provide early warning signals
related to the financial condition of the corporations, especially during the crises. As a response
to this great need, each chapter dedicates a section for testing the performance of the proposed

models during the recent global financial crisis

Understanding the importance and the challenges of developing bankruptcy prediction
models, the main objective of this dissertation is to propose methodologies to enhance the
accuracy of bankruptcy prediction models with the objective to provide powerful risk

management tools for those interested in the prediction of corporate bankruptcy. It must also be
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stated that, the methodologies proposed in this dissertation are extensively tested for robustness
using a battery of tests and most importantly, are tested out-of-sample. This is important because
the extensive tests ensure the stability of the performance of the resulted models and their
reliability before their actual implementation, something that has been highlighted by regulatory

authorities.

This dissertation focuses on the two most common methodological approaches for bankruptcy
prediction. The first one refers to the development of empirical models. In such approach, one
is interested to find empirical relationships between a set of predictor variables, such as
accounting and market variables, and the likelihood of bankruptcy. This is achieved by training
a model subject to an optimization criterion. This approach has been pioneered by Altman
(1968) with the development of Z-score using discriminant analysis. Since then, other
researchers have provided methodological enhancements, such as predicting bankruptcy with
logistic regression (Ohlson, 1980), neural networks etc. The second approach is the structural
approach where bankruptcy depends on the evolution of the capital structure of the firm and
bankruptcy occurs when the value of firm’s assets falls below a threshold, for instance, the
liabilities of the firm. This approach has been pioneered by Merton (1974) who has used the
options pricing framework of Black and Scholes (1973) to show that equity is equivalent to a
European call option on the assets of the firm. In this dissertation, we propose methodologies

which provide enhancements to both approaches described in this paragraph.

With that respect, the dissertation is divided in three chapters. In all chapters, we use data from
a large number of non-financial U.S. bankrupt and healthy firms over the recent period. The
main source of data comes from the database BankruptcyData which provides the name and
date of bankruptcy filing, while financial and market data were obtained from Compustat and
CRSP respectively at the year before bankruptcy filing. In the first chapter, we investigate the
empirical performance of the Leland-Toft (1996) structural model. The specific model has
received limited attention in the literature of bankruptcy prediction in the sense that it has not
tested by the prior literature, despite that it is an extended version of a very widely-used
structural bankruptcy model; the Black-Scholes-Merton model. Thus, in the first chapter, we are
interested to examine whether such extensions offered by Leland-Toft that may be useful for
bankruptcy prediction, such as the interest or coupon payment of the firm, provide
improvements in the empirical performance of the structural models. Another objective of the

first chapter, is to enhance the performance of traditional empirical bankruptcy models that are
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widely used in the literature, like Altman (1968) and Ohlson (1980), but also of more recent
ones, such as Campbell et al. (2008), by including the probability of bankruptcy derived from
Leland-Toft as additional predictor in those models, seeking to improve the estimation of
bankruptcy risk relative to using the empirical models in isolation. Consistent with our
expectations, the structural model of Leland-Toft, outperforms the Black-Scholes-Merton
model in all tests. For instance, we find out-of-sample that Leland-Toft exhibits higher
discriminatory power than the Black-Scholes-Merton but also it is associated with higher
economic benefits for banks using Leland-Toft than Black-Scholes-Merton. However, it is
found that none of the structural models can stand alone in predicting bankruptcy, since they are
outperformed by other models (such as Ohlson, 1980; Campbell et al., 2008 etc). Most
importantly, it is demonstrated that augmenting the empirical models of Ohlson (1980) and
Campbell et al. (2008) with the probability derived by Leland-Toft as additional predictor, yield
models with improved performance relative to the original models. In fact, these models, which
we call them hybrid models, exhibit the highest predictive accuracy among all models
considered in this chapter.

The second chapter is partly motivated by the first chapter but also on several other facts that
we explain subsequently. Specifically, a result that is not explicitly discussed in chapter one is
that, the higher the discriminatory power of the bankruptcy model used by a bank is, as measured
by the Area Under ROC curve (AUROC), the higher the economic benefits for the bank.
Furthermore, evidence in the extant literature suggests that banks using models with higher
discriminatory power (i.e. higher AUROC) relative to other banks, have higher economic
performance because they reject loans to “bad” firms and hence, they manage a healthier and
more profitable credit portfolio. This result is evident even when there are minor differences in
model performance measured by AUROC. Overall, there is evidence which shows the
importance of using AUROC as performance measure and generally, it has been well-
established as a performance statistic in academic studies but in industry as well (for instance,
Moody’s KMV extensively use AUROC before bringing their models into commercial

practice).

Yet, it is not a common practice to train bankruptcy models to maximize AUROC (i.e. to
obtain model coefficients by maximizing AURQOC) but rather, it is used ex-post (after training
the models using another maximization criterion, such as the log-likelihood function). As a

response to this limited literature, this chapter contributes to the literature by introducing and
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comparing several methodologies to maximize the discriminatory power of bankruptcy
prediction models, as measured by the widely-used AUROC statistic. In particular, by using
models with probabilistic and linear response functions (i.e. when the output is a probability and
a linear score respectively), we introduce several merit functions seeking to optimize AUROC.
In other words, we obtain model coefficients when the AUROC is used as the optimization
criterion during the training phase and contrast performance when the model is trained using the
log-likelihood merit function. The key finding from this chapter is that, models trained to
optimize AUROC, exhibit higher discriminating ability (higher AUROC), out-of-sample,
relative to traditional approaches, like logistic regression models. From the models with linear
response functions, a merit function which takes care of the outliers which often characterizes
financial data, has the highest performance. However, from all models, a neural network model
with a probabilistic response function is the best performing one. Consistent with expectations,
in a simulated paradigm it is shown that banks which use the models with the highest AUROC,
earn the highest profitability relative to other banks.

The third chapter is somewhat more independent in the sense that it is not a follow-up study
from the previous chapters. However, it addresses a well-known issue underlying the structural
approach for estimating firm default risk, which has attracted a lot of research the last decade.
In particular, in the third chapter we focus exclusively on structural (parametric) models and we
contribute to the literature by proposing a novel methodology to estimate the value of assets and
the volatility of assets, which are the most important input parameters to the structural models
for the estimation of the probability of default. These inputs, however, are not observed in the
market thus making the estimation of the probability of default a challenging task to accomplish.
In the literature, there are two main approaches to estimate the two parameters. The first
approach is based on iteratively solving equations derived from options theory, which we call a
“noisy” estimation approach, since convergence errors may affect the final outputs but also the
relationships imposed to these unobserved parameters, are based on the restrictive assumptions
from options theory. The second approach is based on “simplified” or ad-hoc approximations.
Our methodology assumes the value of assets and the volatility to depend on some exogenous
variables, x, through some unknown relationships. We use a nonparametric approach, such as
neural networks, to learn the unknown relationships, aiming to obtain improved parameter
values which enter the structural model, yielding a semiparametric model. With this respect, the

Black-Scholes-Merton structural model is used a paradigm. Results in this chapter demonstrate
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that the out-of-sample performance of the semiparametric approach is significantly better
relative to the alternative Black-Scholes-Merton specifications based on several tests, giving in
that way validity to our proposed approach. Moreover, in this chapter we were motivated to
augment the sample of bankruptcies, with financially distressed firms, given that financially
distressed firms are more difficult to predict since it much more difficult to predict the beginning
of the crisis. It is shown that the semiparametric approach shows an impressive performance
relative to the competing Black-Scholes-Merton specifications. Interestingly, the
semiparametric approach outperforms alternative approaches for default prediction, like the

logistic regression approach as well as neural networks.
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CHAPTER 1

Predicting corporate bankruptcy using the framework of Leland-Toft:
Evidence from U.S.

Abstract

In this paper, we evaluate an alternative approach for bankruptcy prediction that measures the
financial healthiness of firms that have coupon-paying debts. The approach is based on the
framework of Leland and Toft (1996), which is an extension of a widely-used model; the Black-
Scholes-Merton model. Using U.S. public firms between 1995 and 2014, we show that the
Leland-Toft approach is more powerful than Black-Scholes-Merton in a variety of tests.
Moreover, extending popular but also contemporary corporate bankruptcy models with the
probability of bankruptcy derived from the Leland-Toft model, such as Altman (1968), Ohlson
(1980) and Campbell et al. (2008), yields models with improved performance. One of our tests,
for example, shows that banks using these extended models, achieve superior economic
performance relative to other banks. Our results are consistent under a comprehensive out-of-

sample framework.



1 Introduction

Corporate bankruptcy prediction models are valuable risk management tools to assist bank
managers in the decision-making process of identifying firms which are likely to fail and
therefore would not be able to pay their obligations. This is because, the consequences arising
from bankruptcy are enormous and include, for instance, economic ones such as the loss of the
amount lent, impaired profitability for the bank which in certain cases may harm the viability of
the bank, the financial system and the economy as well*. From the perspective of an investor,
economic consequences include the loss of the wealth invested in bankrupt firms but also
include non-economic ones, such as the loss of investors’ confidence towards the financial
markets. For these reasons, among others, it is important for the interested parties to develop

and apply reliable corporate bankruptcy prediction models.

Much of the attention that has been given to the development of bankruptcy prediction models
recently, is attributed to the global financial crisis period that hit the markets internationally in
2007, mainly due the consequences that the crisis left behind. Several economists even
characterized the recent financial crisis at least as severe as the Great Depression period back to
1930’s. As argued by Switzer et al. (2018), the 2007-2008 financial crisis, engendered huge
losses to many firms, especially firms to the financial sector and its impact on financial stability,
has attracted the interest of practitioners, scholars and policy-makers. Furthermore, another
strand of the literature proposes mechanisms to reduce or at least control the risk of firms prior
or during the crisis (Caprio et al., 2007; Gupta et al., 2013). Our study, is related to this strand
of the literature, aiming to enhance the estimation of bankruptcy risk for firms and providing in
that way proper risk management tools that serve as a companion to those interested to predict
bankruptcy. We dedicate a separate section with results from the credit crunch in a subsequent

section.

While various models have been proposed in the literature, two of the most frequently used
by academics and practitioners are Z-score (Altman, 1968) and O-score (Ohlson, 1980). These
models mainly use information from the financial statements of the firm to relate past

performance with bankruptcy risk. More recently, models with both accounting and market

! For instance, Papakyriakou et al. (2019) show that the failure of financial institutions from U.S, negatively
affect the international stock markets.
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information have been developed. These models have the advantage to incorporate timely
market information and thus the likelihood of bankruptcy can be updated more frequently2.
Studies such as Shumway (2001), Chava and Jarrow (2004), Campbell et al. (2008) and Tinoco
and Wilson (2013) show that accounting and market information yield models with improved
performance. Another approach is the contingent claims-based approach which is based on the
framework of Black and Scholes (1973) and Merton (1974). There, in an options pricing
framework, the probability of bankruptcy is the probability that the assets value of the firm will
be worth less than its debts, at maturity®. Such models are frequently referred to, as structural

models.

In this paper, we evaluate an alternative approach for bankruptcy prediction, and we construct
with it powerful bankruptcy models, seeking to improve the performance of existing models.
Specifically, we evaluate an approach that measures the financial healthiness of firms with
coupon-paying debts, using the framework of Leland and Toft (1996). Leland and Toft (1996)
belongs to a class of models that extends Merton (1974), to incorporate the effects of taxes and
bankruptcy costs to the valuation of equity and a corporate coupon-paying debt with finite
maturity. Other significant features of their framework are that, bankruptcy can occur prior to
the maturity of the debt but also, they consider the case when the bankruptcy point is determined
endogenously. Thus, Leland and Toft is a more appropriate corporate model than Black-
Scholes-Merton because it includes a richer information set about the firm which can be useful

for bankruptcy prediction®.

Several models are considered in this paper. Firstly, we compare the performance of two
structural models; Leland-Toft and Black-Scholes-Merton. We believe that the former would
outperform the latter since it is an extended version, containing more information for bankruptcy
prediction. Next, we compare the performance of three reduced-form models with three hybrid
models (i.e reduced-form models augmented with structural models). The first reduced-form
model is Ohlson (1980) which is a comprehensive model since it includes various accounting

variables such as profitability, liquidity, leverage, cash flows etc. Next, we augment Ohlson

2 Refer to Agarwal and Taffler (2008) for a discussion between accounting and market information in bankruptcy
prediction models.
3 See for instance Bharath and Shumway (2008) and Afik et al. (2016) for related literature regarding this approach.
4 A strand of the literature also examines empirically the performance of the structural models in predicting
corporate bond prices and spreads and find that they do not accurately predict them (see for instance Lyden and
Saraniti, 2000 and Eom et al., 2004 and references therein).
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model with the probability of bankruptcy derived from Leland-Toft, yielding a hybrid model.
We believe that augmenting this comprehensive accounting model with Leland-Toft will
improve its performance, yielding a powerful bankruptcy prediction model. Another reduced-
form model we examine is an extension of Altman (1968) model, which includes an additional
cash flow variable and was suggested by Almamy et al. (2016). The authors find that
augmenting Altman’s model with a cash flow variable yields improved predictive ability for
U.K. firms. We believe that augmenting Altman’s model with Leland-Toft will further increase
its predictive ability. Next, we use a competent reduced-form model that includes accounting
and market variables suggested by Campbell et al. (2008). This model has been examined by
Bauer and Agarwal (2014) and was found to outperform other approaches, such as reduced-
form models with accounting information as well as the Black-Scholes-Meton structural model.
Finally, we seek to improve Campbell et al. (2008), by including Leland-Toft in their model.

For our analysis we use 5460 U.S. public firms with coupon-paying debts between 1995 and
2014. The performance of the models is compared on three dimensions and our results are based
on an extensive out-of-sample framework: 1) On their ability to discriminate bankrupt from
healthy firms using Receiver Operating Characteristics (ROC) analysis 2) On their ability to
predict bankruptcy probabilities close to actual or equivalently on their ability to empirically fit
the data using log-likelihood statistics and 3) By measuring the economic performance of banks
when they are competing to grant loans to individual firms and each bank uses a corresponding
model to evaluate prospective firm-customers. For this last test, we employ the setting of
Agarwal and Taffler (2008).

The key findings of the paper are that 1) Leland-Toft approach is more powerful than Black-
Scholes-Merton. Sensitivity analysis tests for Leland-Toft shows that its forecasting power is
not affected by the choice of parameter values underlying the model. However, none of the
structural models can stand alone in forecasting bankruptcies since they are outperformed by
reduced-form (and also hybrid) models, 2) Further increase in predictive ability is achieved
when augmenting Altman’s model with Leland-Toft rather than a cash-flow variable, 3)
Augmenting the comprehensive models of Ohlson (1980) and Campbell et al. (2008) with
Leland-Toft yields models with improved performance 4) Reduced-form models augmented
with Leland-Toft, outperform reduced-form models augmented with BSM. In fact, the hybrid

models which include Leland-Toft are the best performing models in all tests. Most importantly,



in our experiment with the competitive loan market we find that banks using these extended

models achieve superior economic performance relative to their competitors.

The paper proceeds as follows; Section 2 describes the bankruptcy models and the research
hypotheses, section 3 discusses our data, section 4 discusses the methodology, section 5 reports
the results and section 6 concludes.

2 Bankruptcy Models and Research Hypotheses
2.1 Structural Models

2.1.1 Black-Scholes-Merton

Merton (1974) shows that the equity value of the firm (E) can be viewed as a European call
option underlying the assets of the firm (V) and with strike price the zero-coupon debt of the
firm (D). The Black and Scholes (1973) options pricing formula can therefore be used to price

the equity of the firm:

E =VN(d,) —De ""N(d,) Q)
where r is the riskless rate of return, N(.) is the standard normal distribution function, T is the
maturity of the debt and ds, d; are defined as follows:

3 ln(V/D) + (r + 0.50y2)T
o oyNT
d, =dy —oyNT 3)
and gy, is the volatility of assets value returns. In the framework of Black-Scholes-Merton, the

(@)

firm goes bankrupt when V < D and thus the probability of bankruptcy, prob(V<D), is the
probability that at debt maturity, the assets value is lower than the debt. The probability of
bankruptcy is then given by the Black-Scholes-Merton (BSM hereafter) formula:

(4)

in(V/p) + (= 050,2)T
oy NT

prob =N (—

where x is the return of assets.



2.1.2 Leland and Toft (1996)

Leland and Toft (1996) extends the framework of Merton (1974) to incorporate the effects of
taxes and bankruptcy costs in the valuation of a corporate risky debt with finite maturity. Their
framework considers the valuation of debt that pays coupons as opposed to the framework of
Merton where the firm issues a zero-coupon debt. In this context, Leland-Toft derive closed-
form solutions for the market value of equity, debt and total firm value. Most importantly, they
consider the case where bankruptcy is determined endogenously as opposed to Merton (1974)
where bankruptcy is determined exogenously. This consideration allows the calculation of an
optimal bankruptcy point which is chosen by the management of the firm in favor of
shareholders such that the equity value is maximized. When assets value reaches that point, it is
optimal, from shareholders™ perspective, for the firm to file for bankruptcy. In contrast, when
bankruptcy is determined exogenously, the bankruptcy point is chosen arbitrarily>. However,
this consideration is suboptimal because firms usually continue operations even when assets
value falls below firm’s debt and practically there is not an agreed value to use. Eg. (5) shows
the calculation of the bankruptcy point, VB, r, underlying Leland-Toft model which is a key
determinant of the bankruptcy probability®:

)h-1)- 1y

A T T (%)
B = r
VBur 1+cx—(1—-c¢)B
where
2 2e7T
A= Zae‘rTN(aGV\/T) - ZZN(ZJV\/T) — n(zaV\/T) + —n(aavﬁ) +(z—a)
Uv\/T Uv\/T
2 2
B=— <22 + ZO'V2T> N(zoyVT) — Jvﬁn(zavﬁ) +(z—a)+ 20,27
(r—6 —0.50,2%) Jazoyt + 2roy,?
a= > ) z= > , Xx=a+z
Oy oy

with N(-) and n(-) denoting the cumulative standard normal distribution and standard normal
density functions respectively. A closer examination shows that Eq. (5) is a function of eight

> For example, in the Merton’s model the bankruptcy point is the debt of the firm and thus, is determined
exogenously.
& Hilberink and Rogers (2002), extend Leland-Toft (1996) to allow for sudden jumps in the asset value, V, and
derive a new optimal bankruptcy point. However, the solutions are not explicit and some of the parameters are not
straightforward to compute (see Eq. (3.16) and Eq. (3.23) in their paper).
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parameters: risk-free rate (r), tax rate (z), coupon payments (C), bankruptcy costs (c), volatility

of assets (ay,), debt principal (P), payout yield (), and debt maturity (T).

To evaluate bankruptcy risk in discrete points of time t, where t < T, we need to define a
cumulative distribution function. In the framework of Leland-Toft (LT hereafter), the
probability that the current value of firm’s assets, V, will fall to the bankruptcy point, VB, for

the first time at time t is obtained from Leland (2004) and defined as:

prob(t) = N(X) + eYN(Z) (6)

where

4 2
—In (VTLT) —(u—6- 0.50y )t
oVt
|4
—In (WLT) + (,Ll -6 - O.SO'VZ)t
oyt

Finally, t is the forecasting horizon, which in our case is one year.

X = 'Y=

7 =

2.1.3 Estimating Asset Values and Volatilities

The most important inputs to LT and BSM models are the value of assets and the volatility of
assets returns which are not observed. In the context of options pricing, however, the following

two non-linear equations can be solved iteratively to obtain the two variables of interest:

E—De ""N(d,)

R T )
_ Eog 3
Oy = VN(dl) ( )

where oy is the volatility of equity returns that is directly estimated from daily equity data. The
above iterative procedure, which we use to estimate the two unobserved inputs, is the standard
approach for the estimation of asset value and volatility and has also been used by Eom et al.
(2004), Hillegeist et al. (2004), Campbell et al. (2008), while Vassalou and Xing (2004) use a

variation of the above iterative process’.

7 For other approaches, see Bharath and Shumway (2008), Charitou et al. (2013) and Afik et al. (2016)
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2.2 Reduced-Form Models

Several reduced-form models are also considered. Ohlson (1980) is a model which relates
bankruptcy with a set of accounting-based variables, defined as follows:

Ohlson = f (SIZE, TLTA, WCTA, CLCA, D(TL>TA), NITA, ©)

CFOTL, D (NIi+NI1<0), CHINI)
Next, we consider Almamy, Aston and Ngwa (2016), which we refer as AAN. This model is an
extension of Altman’s model which incorporates a cash flow variable as additional predictor

and it is defined as follows:

AAN = f (WCTA,RETA,EBITTA,MVTL,SLTA,CFOTA) (10)
Moreover, we consider the model proposed by Campbell, Hilscher and Szilagyi (2008), which
we refer to as CHS. This model is a mixture of accounting ratios, scaled by the market value of

assets, and other market information as predictors, defined as follows:

CHS = f (NIMTA, TLMTA, EXRET,SIGMA, RSIZE, CASHMTA, MB, PRICE)  (11)

The definition of the variables is in table 1.
[Insert Table 1 here]

2.3 Hybrid Models

Finally, we incorporate the probability of bankruptcy derived from LT as additional predictor
in Ohlson, Altman and CHS models, yielding the following hybrid models which we refer to as
OLT, ALT and CHSLT respectively:

OLT=f (SIZE, TLTA, WCTA, CLCA, D(TL>TA), NITA,

(12)

CFOTL, D (NI+NI¢1<0), CHINI, LT)
ALT = f (WCTA,RETA, EBITTA,MVTL, SLTA, LT) (13)
CHSLT= f (NIMTA, TLMTA, EXRET, SIGMA, RSIZE, CASHMTA, (14)

MB, PRICE, LT)



2.4  Research Hypotheses

LT is an extended version of Merton’s model with less restrictive assumptions and a richer

information set about the firm. Therefore:
Hypothesis 1: LT is a better alternative approach than BSM

Prior research suggests that accounting and market information should be included in
corporate bankruptcy prediction models since they provide complementary information. For
instance, variables such as the volatility of equity and excess equity returns improve the
performance of accounting-based models (Chava and Jarrow, 2004; Hillegeist et al., 2004;
Agarwal and Taffler, 2008; Tinoco and Wilson, 2013 etc.). Therefore, we expect that including

LT in Ohlson model will enhance its performance:

Hypothesis 2: Incorporating LT as additional predictor in Ohlson, yields a model with improved

performance.

Hence, the model in Eqg. (12) should outperform the model in Eq. (9). An extension of

Hypothesis 2, is as follows:

Hypothesis 2a: Ohlson model augmented with LT, will outperform Ohlson model augmented
with BSM.

Almamy et al. (2016) suggest that augmenting Altman’s model with a cash-flow variable,
increases its predictive ability. However, further increase in predictive ability could be obtained
when augmenting Altman’s model with a predictor that measures the financial healthiness of
firms with coupon-paying debts. Hence, the model in Eq. (13) should outperform the model in
Eqg. (10).

Therefore:

Hypothesis 3: Augmenting Altman’s model with LT will further increase predictive ability than

a cash-flow variable.
An extension of Hypothesis 3, is as follows:

Hypothesis 3a: Altman’s model augmented with LT, will outperform Altman’s model augmented

with BSM.



Campbell et al. (2008) find that augmenting their model with BSM, doesn’t yield improved
performance, arguing that all the information incorporated in BSM, such as returns and
volatilities, are already included in their model. Since LT is an extension of BSM that includes
additional information, we want to investigate if augmenting Campbell et al. (2008) with LT,

would improve its performance. This leads to the fourth hypothesis:

Hypothesis 4: Incorporating LT as additional predictor in Campbell et al. (2008), yields a model

with improved performance.
Finally, an extension of the fourth hypothesis, is the following:

Hypothesis 4a: Augmenting Campbell et al. (2008) with LT, will outperform Campbell et al.
(2008) augmented with BSM

3 Data

3.1 Sample

We analyze a sample of 54608 U.S. public firms from which 333 filed for bankruptcy in a
specific year between the 20-year period 1995-2014. Bankruptcy filings were identified from
BankruptcyData® and include firms which filed for bankruptcy under Chapter 7 or Chapter 11.
To avoid problems related to sample selection bias and increase efficiency of regression
estimates, we collect all available observations in the selected period for each bankrupt and
healthy firm. This practice increases our sample to 39830 firm-year observations. Furthermore,
once a firm files for bankruptcy, future observations for that firm are excluded but past
observations for all bankrupt firms are included in our sample (i.e. before a firm file for

bankruptcy, it is considered as healthy).
Table 2 presents the distribution of observations across the years.
[Insert Table 2 here]

In general, bankruptcy rate in all years is less than 1% except for years 1999 (1.493%) and the
mid-crisis years 2008 and 2009 with the bankruptcy rate being at its peak (1.190% and 2.133%

8 The framework of Leland and Toft (1996) applies for firms with coupon-paying debt. Thus, we keep only firms
which have interest payments in their income statements
° Available at http://www.bankruptcydata.com/findabrtop.asp
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respectively). The average bankruptcy rate in the sample is 0.836% indicating the fact that
bankruptcy is a rare event.

Similar with Bharath and Shumway (2008), Afik et al. (2016) and others, we exclude financial
firms (SIC 6000-6799) due to the different nature of their operations and structure of their
financial statements relative to other industrial firms. Firms are classified into a specific industry
according to the Standard Industrial Classification (SIC) code provided by the United States

Department of Labor. Table 3 shows the distribution of observations across industries.
[Insert Table 3 here]

Most of observations (53%) comes from the Manufacturing sector and then from Services,
Transportation, Retail and Mining sectors, accounting for 16.42%, 10.36%, 8.41% and 5.87%
of the sample respectively, whereas the Wholesale, Construction, Public Administration and
Agriculture sectors account for the smallest proportions of the sample (4.03%, 0.95%, 0.62%

and 0.35% respectively).

3.2 Variables Construction

To construct the relevant variables used in the structural and reduced-form models, we collect
annual financial data from Compustat and daily equity data from CRSP. All variables are

constructed at the fiscal year-end, prior to the year of bankruptcy.

To estimate the value of assets and the volatility with the iterative process described earlier,
we need the market value of equity and the (annualized) volatility of equity return. For the first,
we take the stock price at the fiscal year-end and multiply it with the number of shares
outstanding. For the latter, we follow Campbell et al. (2008) by taking the standard deviation of
stock returns for the last 30 days, prior to fiscal year-end. For the face value of debt (D), we
follow convention in the literature, and we set it equal with short-term debt plus half of long-
term debt (also used in Vassalou and Xing, 2004 and Campbell et al., 2008). The prediction
horizon is one, thus T for the BSM and t for the Leland-Toft models equal 1. Another input to
the structural models, is the assets value returns («). Campbell et al. (2008) use an equity risk-
premium equal to the riskless rate plus 6% for all firms. However, we believe that using a
common return for all firms, would undermine the predictive ability of the structural models. A
better alternative would be to use a firm-specific return. A reasonable proxy, which we use in

our study, is the annualized return of equity, also used by Bharath and Shumway (2008). Afik
11



et al. (2016), instead, suggest using the maximum between the riskless rate of return and equity
return. However, this specification would overstate the asset drift for firms with negative
prospects (i.e. the bankrupt firms), undermining again the predictive ability of the structural

models.

For the risk-free rate (r), the one-year Treasury Constant Maturity rate is used, obtained from
Federal Reserve. For the coupon payments (C) and debt principal (P), the interest expense and
the short-term debt plus half of long-term debt are used as proxies respectively and the payout
yield (0) is defined as the sum of coupon payments plus dividends (ordinary and preferred)
divided by the market value of assets. For corporate tax rate (z), bankruptcy costs (c) and
maturity of debt (7) we follow Leland (2004) who sets these parameters equal to 15%, 30% and
10 years respectively. However, as shown later and specifically in Appendix A, results are not
sensitive with respect to different parameters choices and thus Leland-Toft is stable as far as its
performance is concerned (refer to section 4 about model performance measures). All inputs of

the models are summarized in Table 1.

4  Methodology

This section describes the methodology that is used to assess the performance of the

bankruptcy prediction models.

4.1 Discriminatory Power

Discriminatory power refers to the ability of a model to discriminate bankrupt from healthy
firms. The ROC curve is a graphical representation of the discriminatory power of a bankruptcy
prediction model. It plots the true predictions on the vertical axis (the percentage of bankrupt
firms correctly classified as bankrupt) against the false predictions on the horizontal axis (the
percentage of healthy firms incorrectly classified as bankrupt) according to a pre-determined
cut-off value. By performing this classification procedure for multiple cut-off values, we create
a set of points which together constitute the ROC curve. Ideally, a perfect model will never
make false predictions and will always correctly classify the bankrupt firms, for any level of

cut-off point. Hence the ROC curve of a perfect model will pass through the point (0, 1) and in

10 Available at http://www.federalreserve.gov/releases/h15/data.htm
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general, the closer the ROC curve towards the top-left corner of the graph, the better the

discriminatory power is.

A guantitative assessment of the discriminatory power of a bankruptcy prediction model is the
Area Under ROC (AUROC) curve (see for example Hanley and McNeil, 1982 and Sobehart
and Keenan, 2001) and calculated as follows:

AUROC = iii W(pk, ) (15)
nm B'FH
i=1j=1
where
1 LS )
' , P -~ Py
W(phpl) =405 pj=7p)
0, ph < P}

and p} is the bankruptcy probability of the i-th bankrupt firm, p,’; is the bankruptcy probability
of the j-th healthy firm, n is the number of bankrupt firms and m is the number of healthy firms

in our sample.

We test for statistically significant differences between the AUROCs of two models. The
hypothesis is as follows:

HO: AUROC1- AUROC2=0 Vs H1:AUROC1- AUROC?2#0

We use the non-parametric approach of DeLong et al. (1988), which accounts for the correlation
of the AUROCs produced by the two models. The construction of the test statistic is described
in Appendix B.

4.2 Logit Models

The logistic regression approach is used to estimate the models in Egs. (9)-(14). Specifically,

we estimate the following logit model:

ea+ﬁ,Xi't

14 e@+h X (19)

P(Yierr = UXie) = pip =

where p; ; is the probability of bankruptcy at time “t”, that the “i-th” firm will go bankrupt the

next year, Yi, +1 denotes the status of the i-th firm (1 if it goes bankrupt at time t+1, 0 otherwise),
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Xi Is the vector of covariates of the i-th firm at time t, § is the vector of coefficient estimates

and a is the constant term which expresses the bankruptcy risk in the absence of the covariates.

The model in Eq. (16) represents a multi-period logit model because it includes observations
for each firm across time. However, the inclusion of multiple firm-year observations per firm
yields understated standard errors because the log-likelihood objective function, which is
maximized to estimate the multi-period logit model, assumes that each observation is
independent from each other. This is a wrong assumption since financial information of a firm
at time t+1 cannot be independent from the financial information of the same firm at t. Failing
to address this econometric issue, leads to wrong inference regarding the significance of the
individual coefficients. Similar with Filipe et al. (2016), we use clustered-robust standard errors
to adjust for the number of firms in the sample but also for heteroskedasticity (Huber,1967 and
White, 1980).

To compare the predictive accuracy of various logit models, we test the difference between

their log-likelihoods. Hence, the hypothesis takes the following general form:
Ho: Ly(ky) — Lp(kz) =0 Vo HalLy(ky) — Lp(kp) #0

where L, (k,) is the log-likelihood of the first model with k, parameters and L, (k,), is the log-
likelihood of the second model, with k, parameters and ki > ko. The construction of the test

statistic for different types of logit models can be found in Appendix C.

4.3 Economic Analysis of Bankruptcy Models

The analysis so far addressed the accuracy of our bankruptcy models. But how accuracy is
economically beneficial for banks? Here, we follow the approach of Agarwal and Taffler (2008)
to examine it by assuming a loan market worth $100 billion and banks competing for granting
loans to individual firms. Each bank uses one of our bankruptcy models to evaluate the credit

worthiness of their customers.

4.3.1 Calculating Credit Spreads

We estimate the models using data spanning the years 1995-2005 (70% of the sample). We
sort firm-customers from this sample in 10 groups of equal size and a credit spread is calculated
according to the following rule; Firms in the first group, which are firms with the lowest

14



bankruptcy risk, are given a credit spread, k, and firms in the remaining groups are given a credit

spread, CSj, obtained from Stein (2005) and Blochlinger and Leippold (2006) and it is defined

as follows:

_p(Y=1|S=1i)
p(Y =0]|S =)

where p(Y=1|S=i) and p(Y=0|S=i), is the average probability of bankruptcy and non-bankruptcy

LGD + k (17)

CS;

for the i-th group, with i=2, 3, ... ,10 and LGD is the loan loss upon default. Following Agarwal
and Taffler (2008), the average probability of bankruptcy for the i-th group, is the actual
bankruptcy rate for that group, defined as the number of firms that went bankrupt the following
year divided by the number of firms in the group. Furthermore, k=0.3% and LGD=45%.

4.3.2 Granting Loans and Measuring Economic Performance

To evaluate economic performance, we assume that banks compete to grant loans to
prospective firm-customers between the period 2006-2014. Each bank uses one of our
bankruptcy models which have been estimated in the period 1995-2005. The bank sorts those
customers according to their riskiness and rejects the bottom 5% with highest risk. The
remaining firms are classified in 10 groups of equal size and firms from each group are charged
a credit spread that has been obtained from the period 1995-2005. Finally, for each customer the
bank that charges the lowest credit spread is granting the loan. Two measures of profitability
are used. The first one, Return on Assets (ROA) is defined as Profits/Assets lent and the second
one, Return on Risk-Weighted Assets (RORWA) takes into consideration the riskiness of the
assets, defined as Profits/Risk-Weighted Assets. Risk-Weighted Assets are obtained from

formulas provided by the Basel Committee on Banking Supervision (2006)*.

5 Results

5.1 Descriptive Statistics

Table 4 reports mean values of the explanatory variables for the entire sample 1995-2014. As
expected, the performance of bankrupt firms is worse than the performance of healthy firms,
one year prior to bankruptcy with the differences in mean values being statistically significant

11 See for instance the Appendix in Bauer and Agarwal (2014)
15



in most cases. For example, bankrupt firms; are less profitable (EBITTA is lower), have more
leverage (TLTA is higher), their liquidity is more constrained (WCTA is lower) etc. In terms of
the market performance, stock price of bankrupt firms is significantly more volatile than healthy
firms (SIGMA is higher), they underperform the market (EXRET is lower) as well stock price is
lower (PRICE is lower). Our variable of interest, LT, is higher for bankrupt firms relative to

healthy firms
[Insert Table 4 here]

5.2 Reduced-Form and Hybrid Models Estimation

Table 5 reports estimation results for our models when applying the logistic regression

approach on our data.
[Insert Table 5 here]

Here, the estimation sample spans the years between 1995 and 2005 which accounts for
approximately 70% of our sample. Firstly, most of Ohlson and CHS variables are significant
and with the correct sign. Noticeable exception is the case of SIGMA where in previous studies
(Campbell et al., 2008 and Bauer and Agarwal, 2014) was found significant. Based on an
analysis we have performed, we conclude that in our case the interaction of SIGMA with other
market variables in the CHS model is the main cause for this kind of behavior. For example,
when we include SIGMA individually or in the Ohlson model, is statistically significant and
with the correct (positive) sign. Furthermore, in the estimation sample, average SIGMA (not
tabulated) for bankrupt firms is 1.21 while for healthy firms is 0.60, which excludes possible
data collection error. Another relatively odd estimation result is the positive coefficient for the
SIZE variable®. According to Galil and Gilat (2018), a positive sign of this variable may hint
on a selection bias in the bankruptcy sample toward larger corporates. However, this is not the
case with our sample. In the estimation sample (whole sample), average total assets for bankrupt
firms are 679.1 million (662.5 million), while for the healthy group, average total assets are
2074.5 million (3455.3 million). We believe that its interaction with other variables is the main
cause for this result (including SIZE only in a logistic regression, yields a statistically significant

coefficient with the correct (negative) sign.

12 Hillegeist et al. (2004) also find a positive SIZE coefficient in the Ohlson model
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Secondly, most of Altman variables included in AAN are not significant, consistent with
Hillegeist et al. (2004). The cash flow ratio enters significantly and with the correct sign. Finally,
the predictor of interest, LT, is highly statistically significant (a¢=1%) when incorporated in
Altman (ALT), Ohlson (OLT), and Campbell (CHSLT) models.

5.3 Evaluating Leland-Toft and BSM (Hypothesis 1)

First, we compare the performance of the two structural models. For consistency, we estimate
two logit models; The first includes the probability of bankruptcy derived from Leland-Toft in
the period 1995-2005 as predictor and the second includes the probability of bankruptcy derived
from BSM. Using these models, we forecast bankruptcies in the out-of-sample period, 2006-
2014, The performance is reported in Table 6.

[Insert Table 6 here]

We find that AUROC of LT is 0.8941 while for BSM is 0.8659, indicating that LT has better
out-of-sample discriminating ability. Using the Delong test we find that the difference is
statistically significant at a=1% (test statistic=2.74). Moreover, in Appendix A we perform a
sensitivity analysis test to examine whether the AUROC of LT is affected by deviations in the
choice of parameter values. In all, results suggest that LT is not sensitive as far as the ordinal
ranking (AUROC) is concerned. Further, LT model explains bankruptcy variation better than
BSM, according to pseudo-R? (19.72% and 17.90% respectively), although differences in their

log-likelihoods are not significant (test statistic is 1.38).

However, as it is evident from Table 6, neither LT, nor BSM are sufficient statistics to forecast
bankruptcies, since they are outperformed by other models such as Ohlson and CHS (differences
in AUROC:s and log-likelihoods are significant)*. Thus, none of the structural models can stand

alone.

Finally, we perform an analysis of the economic benefits when banks use either LT or BSM
in evaluating the credit worthiness of prospective customers. We make the paradigm more

challenging by using Altman’s model as a benchmark. Hence, we assume there are three banks

13 This adjustment in the bankruptcy probability derived from structural models through a logit regression, is
usually referred to as calibration.
14 This result is also evident by the regression results in table 5, since LT enters significantly in Ohlson, Altman
and CHS along with other variables, suggesting that individually, it doesn’t capture all the bankruptcy-related
information.
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competing for loans; bank 1 uses LT, bank 2 uses BSM and bank 3 uses Altman’s model. The

results are reported in table 7:
[Insert Table 7 here]

As can be inferred, the quality of the loan portfolio for bank 1 which uses LT is the best among
the three banks, since there are only 10 bankruptcies (0.25%), whereas there are 37 and 38
bankruptcies in the portfolios of banks 2 and 3 respectively, corresponding to 0.79% and 0.76%
bankruptcy rate. Most importantly however, is that bank 1 generates superior economic
performance relative to its competitors. For instance, on a risk-adjusted basis, bank 1 yields
1.09% return on the capital it has invested while bank 2 generates 0.64% and the return for bank
315 0.54%*".

From the analysis in this section, we conclude that a bank has more gain by using LT rather
than BSM which in fact, lends support to our first hypothesis, indicating that LT is a better
approach than BSM, due to the richer information set incorporated in LT.

5.4 Reduced-Form and Hybrid Model Performance (Hypotheses 2-4)

In this section, we test the performance of the models using three out-of-sample approaches,
as well as the economic benefits when banks adopt the models in a competitive loan market, as

outlined below.

5.4.1 Baseline Approach

Here, we use the models (as estimated in table 5) to forecast bankruptcies in the out-of-sample

period which spans the years between 2006 and 2014. Results are reported in table 6.

Panel A reports the performance of the models while panels B and C test for differences in
their discriminating ability and predictive accuracy respectively. Firstly, OLT performs better
than Ohlson (AUROCSs are 0.9449 vs 0.9252 and log-likelihoods are -483.43 vs -535.57). The
differences are statistically significant (test statistics are 4.73 and 104.28 respectively) which
lends support to our second hypothesis, that extending Ohlson with LT yields improved
performance. Secondly, ALT outperforms AAN (AUROCs are 0.9207 vs 0.8597 and log-

15 Results are robust with respect to various specifications of LGD (0.4-0.7) but k as well (0.002-0.004)
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likelihoods are -519.56 vs -603.81). The differences are statistically significant (test statistics
are 4.78 and 6.51 respectively) which is in line with our third hypothesis. That is, augmenting
Altman’s model with LT, further improves performance relative to a cash flow variable as
suggested by Almamy et al. (2016). Including LT in CHS slightly improves discriminating
ability (AUROCs are 0.9395 for CHSLT and 0.9332 for CHS), though their differences are not
statistically significant (test statistic is 1.47). On the other hand, LT carries incremental
information as indicated by their log-likelihoods, meaning that it is a missing variable for the
model (log-likelihoods for CHSLT and CHS are -491.41 and -498.85 respectively), with the
difference being statistically significant (test statistic is 14.88). Thus, we provide evidence
regarding the fourth hypothesis, that augmenting CHS with LT yields improved performance.
We complement the aforementioned results, with ROC curves provided in figure 1.

[Insert Figure 1 here]

A related performance statistic with AUROC is the partial AUROC (pAUROC)?, which is
based on a specified region of the area under ROC curve that might be of practical interest (see
for instance Dodd and Pepe, 2003)". Panel A in table 6 reports pAUROCSs for the models. We
have also tested for differences in pAUROCS, but we do not report the results to save space.
Overall, the conclusions are similar with the case of AUROC, giving validity to hypotheses 1-
4,

5.4.2 Rolling Window Approach

As a second way to test the models, we re-estimate them yearly based on a rolling window.
For instance, we estimate the models using firms between 1995 and 2005 and apply them on
firms in 2006. Then we re-estimate the models using firms between 1996 and 2006 and apply
them on firms in 2007. This process is repeated until 2014 and we aggregate bankruptcy
probabilities obtained from each year to measure the performance of the models. It should be
noted that this approach should be used in practice because the models are updated more

frequently as new information becomes available. Results are reported in table 8.

16 We thank an anonymous referee for this suggestion.
17 The selection of the partial region under the ROC curve, however, is subjective. We rely on STATA’s default
specifications to estimate pAUROCSs and to test for significant differences.
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[Insert Table 8 here]

We obtain similar results as before and summarized as follows: 1) Augmenting Ohlson with
LT yields a model with improved performance as indicated by AUROC statistics (0.9469 for
OLT vs 0.9289 for Ohlson) as well as log-likelihood statistics (-470.37 for OLT vs -522.87 for
Ohlson). Differences are statistically significant (test statistics are 4.33 and 104.99 for the two
performance tests respectively) which is consistent with hypothesis 2, 2) Incorporating LT in
Altman’s model further improves its performance as opposed to a cash flow variable (AUROC
for ALT is 0.9253 vs 0.8673 for AAN, while log-likelihoods are -508.25 and -593.86
respectively). Differences in their performance are significant (test statistics for the two tests are
4.62 and 6.28 respectively) which provides evidence to support our third hypothesis and 3) LT
incorporates information not included in CHS (log-likelihood for CHSLT is -479.66 while for
CHS is -485.94, and test statistic is 12.57) which is in line with the fourth hypothesis. AUROC

improvement is not significant.

5.4.3 Five Folds Approach

Here, we divide the whole sample period in five approximately equal-sized sub-samples. We
use any four of them to estimate the models and apply them on firms in the left-out sample. This
is to break the chronological order of the data, and to consider different periods as well, such as
periods before the financial crisis period. Then we aggregate bankruptcy probabilities from each

left-out sample to obtain single performance measures. Results are reported in table 9.
[Insert Table 9 here]

As expected, performance according to this approach is lower since we use data from different
periods to make predictions, missing therefore potential trends. Despite this fact, we obtain
similar insights as with the two previous approaches. Discriminating ability is improved when
we include LT as additional predictor in Ohlson (AUROCS are 0.9091 for OLT and 0.8939 for
Ohlson) while predictive accuracy is also better (log-likelihoods are -1379.48 for OLT and -
1477.06 for Ohlson). Differences are statistically significant (test statistics are 4.56 and 195.16
for the two tests respectively) which is consistent with our second hypothesis regarding the
superiority of this extended version of Ohlson’s model. Next, ALT outperforms AAN as
indicated by AUROC statistics (0.8826 vs 0.8438 respectively) as well as log-likelihood

statistics (-1471.35 vs -1630.45 respectively), meaning that LT further improves performance
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when included in Altman’s model as opposed to a cash flow variable, supporting therefore our
third hypothesis. Differences in performance are significant (test statistics are 5.63 and 6.62 for
the two tests respectively). Finally, as with the previous tests we find evidence that LT improves
the performance of CHS. Specifically, log-likelihood for CHSLT is -1403.72 while for CHS is
-1417.16. Difference is statistically significant (test statistic is 26.87) while discriminating
ability, measured by AUROC, is only slightly improved.

5.4.4 Economic Benefits

So far, we have considered aspects of model performance such as discriminating ability,
measured by AUROC, and empirical fit, measured by log-likelihood statistics. However, a bank
is more interested in the economic benefits when using bankruptcy models in the decision-
making process of granting loans to individual firms. Here, we show the case of five banks,
where bank 1 uses OLT, bank 2 uses CHSLT, banks 3 and 4 use CHS and Ohlson respectively,
whereas bank 5 uses a benchmark model such as Altman’s model. Table 10 reports information

regarding the economic results of these banks.
[Insert Table 10 here]

Clearly, the quality of the loan portfolio for banks 1 and 2 which use OLT and CHSLT
respectively, is superior relative to that of banks 3 and 4 which use CHS and Ohlson
respectively. This is evident by the lower concentration of bankruptcies in their portfolios
(0.11% for bank 1 and 0.16% for bank 2) relative to other banks (0.44% for bank 3 and 0.58%
for bank 4).

The most important result, however, is that banks 1 and 2 earn higher returns than the other
banks on a risk-adjusted basis (i.e. after adjusting for the riskiness of the assets lent). For
instance, for each dollar invested, banks 1 and 2 earn 1.74% and 1.54% respectively on a risk-
adjusted basis, whereas the competing banks earn lower returns (1.12% for bank 3 and 1.02%
for bank 4). Bank 5 which uses a generic bankruptcy model earns negative returns. It is also
worth noting that differences in discriminating ability that we have not found to be statistically

significant are reflected in the economic results®. For instance, both banks 1 and 2 that use OLT

18 Bauer and Agarwal (2014) also reported that very small differences in AUROCS are shown up in the economic
results
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and CHSLT respectively, are more profitable than bank 3 which uses CHS, although there are
no significant differences in their AUROC:S, as reported in table 6. Thus, banks should take into
consideration the economic benefits when judging what bankruptcy model to use.

Based on these results®, we conclude that banks using OLT and CHSLT, can achieve superior

economic performance relative to other banks that use, for instance, CHS or Ohlson.

5.5 Augmenting CHS, Ohlson and Altman with LT and BSM (Hypotheses 2a-4a)

Campbell et al. (2008) show that augmenting their model with BSM doesn’t yield improved
performance based on pseudo-R?, indicating that all the information incorporated in BSM is
already included in their model. Here, we re-examine this insight and compare it with the case
of LT. Table 11 reports the results.

[Insert Table 11 here]

Indeed, augmenting CHS with BSM doesn’t improve performance, since volatility and return
measures are already included in the model (log-likelihood and pseudo-R? are the same when
compared to CHS. Differences in model performance are not statistically significant according
to test-statistics reported in panel A and B. However, this is not the case when we include LT.
Specifically, pseudo-R? increases to 34.35% as well as log-likelihood (difference with CHS is
statistically significant at a=1%), indicating that LT provides additional information not
included in CHS. As expected though, we document increase in performance when augmenting
Ohlson and Altman with LT and BSM, since the two reduced-form models do not incorporate

market information (all test statistics for performance difference are significant at a=1%).

Finally, we find that hybrid models with LT outperform hybrid models with BSM. For
example, log-likelihood for CHS augmented with LT is -491.41 while for CHS augmented with
BSM is -497.96 (Vuong’s test statistic is significant at a=5%). AUROC for the first, is slightly
higher (test statistic is not significant). Similar is the case with Ohlson and Altman model.
Augmenting these models with LT vyields models with better performance relative to

augmenting them with BSM (Delong’s test for AUROCs and Vuong’s test for log-likelihoods

19 Results are robust with respect to different parameter specifications, for example, setting LGD = 0.4-0.7 and
k=0.002-0.004
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are significant at a=5%). In all, we find evidence in favor of hypotheses 2a-4a; hybrid models

that incorporate LT, outperform those with BSM.

5.6 Time Robustness

In this test, we estimate the reduced-form and hybrid models in the period 2006-2014 and
forecast bankruptcies in the period 1995-2005. This is to test the performance of the models in
a completely new sample, since the previous tests, included data from the recent period to

measure performance i.e. 2006-2014. Results are reported in table 12.
[Insert Table 12 here]

In all, the results support the superiority of the hybrid models over the reduced form models,
suggesting that the LT is a significant addition to the models®. For instance, OLT outperforms
Ohlson (differences in AUROCSs and log-likelihoods are both significant at a=5% and a=1%
respectively), CHSLT outperforms CHS (differences in log-likelihoods are significant at a=1%)
and finally, ALT outperforms AAN (differences in AUROCSs and log-likelihoods are significant
at 0=1%).

5.7 Focusing on the crisis period 2007-2009

The purpose of this section is to shed light on the performance of our bankruptcy models
during the financial crisis period 2007-2009%* (results not tabulated). With respect to this test we
find qualitatively similar results with our previous tests, suggesting that the hybrid models
performed better relative to the reduced-formed models and they could have been more valuable
in terms of measuring bankruptcy risk more accurately during the financial crisis period. The
evidence in this section confirms that LT is a missing predictor in bankruptcy models and its

addition would be beneficial.

20 \We have also performed our test for the economic benefits, and we find that the banks using the hybrid models
achieve higher returns relative to banks using the reduced-form models.
21 Almamy et al. (2016) consider the period 2007-2008 as the financial crisis period. While this is true, we
consider that the crisis may take some time to affect company performance and as such, we also include the year
2009 in our financial crisis period.
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6 Summary and Conclusions

In this paper, we examine an alternative approach for bankruptcy prediction that is based on
Leland and Toft (1996), which is a model that measures the financial healthiness of firms with
coupon-paying debts. This model is an extension of a model widely used in the literature; the
BSM model. The Leland-Toft (LT), however, incorporates information not captured by BSM
and thus it should be a better one. Based on several tests, we find evidence suggesting that it is
a better approach in terms of discriminatory power, predictive accuracy but also in terms of

economic performance when a bank implements LT relative to BSM.

Next, we use the probability of bankruptcy derived from LT as additional predictor to extend
two widely-used corporate bankruptcy models (Altman, 1968 and Ohlson, 1980) but also, a
contemporary model which was found to outperform other approaches for bankruptcy prediction
(Campbell et al., 2008). Our objective is to develop powerful models that are practical and easy
to implement. Under a comprehensive out-of-sample analysis, we find that augmenting
Altman’s model with LT further improves its performance as opposed to a cash flow ratio, as
suggested by Almamy et al. (2016). The most powerful models, however, are obtained when we
augment Ohlson and CHS, with LT. Further, the models augmented with LT outperform the
models augmented with BSM.

However, banks are more interested in the economic performance of such models. Based on
our final test we find that banks using OLT and CHSLT earn higher returns than banks which
implement other models to evaluate firm-customers in a competitive loan market. We therefore
recommend the use of those augmented models as an appropriate risk management tool, that

could be economically beneficial for banks.

Future work should emphasize the estimation of bankruptcy costs and debt maturity separately
for each firm, rather than using average values, which we think will increase the accuracy of LT
and its contribution to OLT and CHSLT.
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Appendix A: Sensitivity Analysis of Leland-Toft

Consider the following three vectors with different parameter values for tax rate, t, debt
maturity, T and bankruptcy costs, c:

1= {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}

T={8, 10, 12, 14, 16, 18, 20}

c={0.15, 0.20, 0.25, 0.30, 0.35, 0.40}

Each scenario has as input the triplet {ri, T;, ck} where i=k=1,...,6 and j=1,...,7. For each input
scenario, AUROC of Leland-Toft is obtained and a histogram is constructed for the 252

scenarios, as shown in the following figure.
[Insert Figure A.1 here]

As can be inferred, discriminating ability measured by AUROC, is not sensitive at all with
respect to the different scenarios since it ranges between 0.8828 to 0.8848, with an average value
of 0.8840. Thus, performance is not affected significantly by deviations in the choice of

parameter values.
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AUROC distribution for Leland-Toft (1995-2014)
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Figure A.1: This figure shows the distribution of AUROC produced by Leland-Toft model under
different scenarios of its input parameters t (the tax rate), T (debt maturity) and ¢ (bankruptcy costs)
during the period 1995-2014.

Appendix B: Discriminatory Power Test Statistic
The key element for the estimation of the test statistic is the covariance matrix of the AUROCs
produced by the two models. Following DelLong et al. (1988), the covariance matrix is estimated

as follows:

1) For each bankrupt firm calculate the AUROC:

m
S . 1 L .
AUROC(pf) = — ) @b ph), (i =12,..,m) B.1)
j=1

2) For each healthy firm calculate the AUROC:
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3) Define the 2x2 symmetric matrix S;, with (k,r)" element defined as:

n
1 . - -
siT = mZ[AUROCk(pZ‘;) — AUROC,][AUROC, (p}) — AUROC,]  (B-3)
i=1

4) Define the 2x2 symmetric matrix So; with (k,r)"" element defined as:

m

1

m—14
j=1

5) Then the covariance matrix of the two AUROC:s is defined as:

[ AUROC,(p},) — AUROC,|[AUROC,(p},) — AUROC,] (B4

kr _
So1 ~—

1 1 (B.5)

Finally, the z-statistic which is standard-normally distributed is calculated as follows:

N (sP1 — 2512 + 52,2)1/2

with s and 522 being the variances of AUROCS of the two models under comparison and s

their covariance, all obtained from Eq. (B.5).

Appendix C: Predictive Accuracy Test Statistic

There are two distinct types of logit models; non-nested and nested models. In the case of non-
nested models where the k, parameters in model 2 are not subset of the k, parameters in model
1, the Vuong (1989) test is used. The z-statistic in this case is standard-normally distributed and

it is defined as follows:

- 2(Ly — Ly) — (ky — ky)In(N) C.1)
2\/Na)N

Here, N is the number of observations and w, is the sample standard deviation of the individual

log-likelihoods produced by each model, [; , which is defined as follows:
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where p, ; and p, ; are the bankruptcy probabilities for the i-th firm produced by models 1 and

li:

2 respectively (time index “t” is dropped for simplicity). Furthermore, y; indicates whether the
firm is bankrupt (y; = 1) or healthy (y; = 0). Rejection of the null hypothesis indicates
significant difference between the predictive accuracy of the two models.

On the other hand, to compare predictive accuracy between nested models where the k,
parameters in model 2 are subset of the k,; parameters in model 1, the standard Likelihood Ratio

(LR) test is used. The statistic in that case is the following:

LR = —2[L(ky) — L(ky)] (C.3)

and follows a chi-squared distribution with k; — k, degrees of freedom. Rejection of the null
hypothesis indicates that predictive accuracy of the two models is not equivalent. Therefore, at
least one of the extra k; — k, parameters in model 1 carry additional explanatory power about

bankruptcy risk.
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Tables

Table 1: Model definition and estimation of the variables

Variable Estimation
WCTA Working capital/total assets
RETA Retained earnings/total assets
AAN (2016) EBITTA Earnings before interests and taxes/total assets
MVTL Market value of equity/total liabilities
SLTA Net sales/total assets
CFOTA Cash flows from operations/total assets
SIZE Log (Total assets/GNP price level index)
TLTA Total liabilities/total assets
CLCA Current liabilities/current assets
D(TL>TA) 1if TL>TA and 0 otherwise, where TL are total liabilities and TA are total assets
Ohlson (1980) NITA Net income/total assets
CFOTL Cash flows from operations/total liabilities
D(NI+NI.1<0) 1 if the cumulative net income in two consecutive years is negative and 0 otherwise
WCTA Working Capital/total assets
CHNI (Nlt— Nle2)/ (NI + [NIea]), is the change in net income (takes values between -1 and 1)
Net income/market value of assets, where market value of assets is the sum of market value
NIMTA : S
of equity and total liabilities
TLMTA Total liabilities/market values of assets
Annualized return of each firm’s equity minus the annualized return of the S&P 500 index,
EXRET X
CHS (2008) over thg previous 12 mor)th_s _ _
SIGMA Annualized standard deviation of daily stock returns, over the previous 3 months
RSIZE Relative size, defined as log (Market value of equity/market value of S&P 500 index)
CASHMTA Cash and short-term investments/market value of assets
MB Market value of equity/book value of equity
PRICE Log (stock price)
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Annualized volatility of asset returns, obtained by solving Egs. (7) and (8)
Annualized return on assets, proxied by the annualized return on equity
Market value of assets, obtained by solving Egs. (7) and (8)

Riskless rate of return, proxied by the one-year treasury constant maturity rate
Coupon payments, proxied by the interest expenses in the income statement
Principal value of debt, proxied by short-term debt plus half of long-term debt
Payout yield, which is the sum of coupons and dividends (ordinary and preferred) divided
by the market value of assets

Corporate tax rate, 15% as in Leland (2004)

Bankruptcy costs, 30% as in Leland (2004)

Maturity, 10 years as in Leland (2004)

This table describes the input variables of four models: Almamy et al. (2016), denoted as AAN, Ohlson (19980), Campbell et al. (2008), denoted
as CHS and Leland and Toft (1996). All variables are constructed using financial and market information one year prior to bankruptcy filing. The
second column shows how variables are entered in the models and the third column shows how they are calculated.
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Table 2: Distribution of observations per year

Bankruptcy year Bankrupt firms Healthy firms Bankruptcy rate
1995 15 2749 0.543
1996 16 2804 0.567
1997 13 2933 0.441
1998 21 2186 0.952
1999 31 2045 1.493
2000 21 2572 0.810
2001 23 2425 0.940
2002 15 2206 0.675
2003 18 2045 0.873
2004 13 1919 0.673
2005 15 1865 0.798
2006 10 1796 0.554
2007 15 1738 0.856
2008 20 1661 1.190
2009 34 1560 2.133
2010 7 1508 0.462
2011 9 1431 0.625
2012 13 1388 0.928
2013 12 1353 0.879
2014 12 1313 0.906
Total 333 39497 0.836

This table reports the number of observations across the years 1995-2014. The first column
shows the year of bankruptcy, the second and third columns show the number of bankrupt and
healthy firms respectively and the last column shows the annual bankruptcy rate defined as
bankrupt firms /(bankrupt firms + healthy firms).
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Table 3: Distribution of observations per industry

Number of

Industry observations Percentage
Agriculture, Forestry and Fishing 138 0.35
Mining 2340 5.87
Construction 379 0.95
Manufacturing 21109 53.00
Transportation, Communications, Electric, Gas, and Sanitary Services 4126 10.36
Wholesale Trade 1604 4.03
Retail Trade 3349 8.41
Services 6539 16.42
Public Administration 246 0.62

This table shows the distribution of observations per industry. Each observation is classified to an industry,
according to SIC codes. Column 2 shows the number of observations that belong to each industry and
column 3 shows the percentage of sample belonging to each industry calculated as industry observations /
total observations.

Table 4: Summary statistics

Variable Mean values t-statistic for differences
Bankruptcies Non-Bankruptcies

SIZE 0.410 1.391 8.56
TLTA 0.888 0.523 26.00
WCTA -0.009 0.227 18.77
CLCA 1.389 0.658 25.75
D(TL>TA) 0.312 0.034 27.32
NITA -0.414 -0.024 31.99
CFOTL -0.302 0.102 13.08
D (NI+NI1<0) 0.913 0.322 23.06
CHINI -0.260 0.013 8.83
RETA -1.736 -0.188 22.37
EBITTA -0.238 0.029 25.03
MVTL 3.103 38.257 3.99
SLTA 1.250 1.172 1.72
CFOTA -0.147 0.047 21.67
NIMTA -0.270 -0.008 36.02
TLMTA 0.694 0.412 19.12
EXRET -0.909 -0.056 26.79
SIGMA 1.219 0.609 26.01
RSIZE -12.933 -10.820 18.46
CASHMTA 0.075 0.097 2.85
MB 1.459 1.416 0.24
PRICE 0.496 2.422 28.93
LT 0.441 0.042 41.46

This table reports mean value differences for the explanatory variables, between the bankrupt
and non-bankrupt firms and t-tests for the statistical significance of the differences. The
definition of variables can be found in Table 1.
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Table 5: Reduced-form and hybrid models estimation, 1995-2005

Ohlson

Constant  SIZE TLTA WCTA CLCA D(TL>TA) NITA CFOTL D (NI#NI1<0) CHINI
-7.280*%**  0.093***  1.461*** -1.997***  0.040 -0.047 -0.451* -0.416%**  2.120*** -0.545%**
(0.368) (0.035) (0.391) (0.553) (0.155) (0.361) (0.275) (0.130) (0.253) (0.124)

AAN

Constant  WCTA RETA EBITTA MVTL SLTA CFOTA

-4.470%**  -3.628*** (0.084 -1.420*%**  -0.015 0.119* -1.390%**

(0.136) (0.363) (0.057) (0.474) (0.012) (0.066) (0.563)

CHS

Constant NIMTA TLMTA EXRET SIGMA RSIZE CASHMTA MB PRICE

-3.916*%**  -3.206***  2.566*** -0.545***  -0.073 0.140%*** -4.186*** -0.00 -0.531***

(0.604) (0.331) (0.333) (0.135) (0.220) (0.047) (0.917) (0.015) (0.105)

ALT

Constant  WCTA RETA EBITTA MVTL SLTA LT

-5.222%** .2 A85***  (0.004 -1.955***  -0.008 0.157** 2.520***

(0.148) (0.331) (0.055) (0.316) (0.007) (0.067) (0.181)

CHSLT

Constant NIMTA TLMTA EXRET SIGMA RSIZE CASHMTA MB PRICE LT

-3.528 -3.129%** ] Q55*** -0.30***  -0.150 0.146*** -4.195%** -0.002 -0.529%** 1.174***
(0.607) (0.342) (0.391) (0.143) (0.212) (0.047) (0.890) (0.015) (0.104) (0.298)

OLT

Constant  SIZE TLTA WCTA CLCA D(TL>TA) NITA CFOTL D (NI#+NI-1<0) CHINI LT
-7.09***  0.030 1.202%** -1.809***  -0.102 -0.016 -0.447* -0.341***  1.844*** -0.369*** 2.034%**
(0.357) (0.038) (0.375) (0.552) (0.159) (0.345) (0.267) (0.127) (0.252) (0.132) (0.194)

This table reports estimation results for six models; Ohlson (1980), Almamy et al., (2016), referred to as AAN, Campbell et al. (2008), referred to as CHS
and three extended versions of Altman, Ohlson and Campbell et al. (2008) models, which include LT as additional predictor (referred to as ALT, OLT and
CHSLT respectively). The sample includes 25950 firm-year observations, from which 201 went bankrupt in a year between 1995 and 2005. The predictor
variables are constructed one year prior to bankruptcy. For the definition of variables refer to table 1. ***, ** and * indicate statistical significance at a=1%,
a=5% and a=10% respectively. In parentheses clustered robust standard errors are reported, that take into consideration the panel character of our data.
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Table 6: Model performance and test for differences, baseline approach

Panel A: Out-of-sample performance, baseline approach (2006-2014)

Model AUROC Log- Pseudo-R? (%)
pAUROC Likelihood

Structural

Leland-Toft 0.8941 0.3953 -600.93 19.72

BSM 0.8659 0.3750 -614.55 17.90

Hybrid

OLT 0.9449 0.4477 -483.43 35.41

CHSLT 0.9395 0.4426 -491.41 34.35

ALT 0.9207 0.4288 -519.56 30.59

Reduced-Form

CHS (2008) 0.9332 0.4392 -498.85 33.35

AAN (2016) 0.8597 0.3754 -603.81 19.33

Ohlson (1980) 0.9252 0.4280 -535.57 28.45

Panel B: Test-statistics for differences in AUROCs

Model OLT CHSLT ALT CHS AAN Ohlson Leland-Toft

CHSLT 0.64

ALT 2.58 1.63

CHS 1.12 1.47 -0.92

AAN 5.36 5.30 4,78 451

Ohlson 4,73 1.65 -0.41 0.8127 -4.41

Leland- 3.59 3.15 1.67 2.46 -1.64 1.96

Toft

BSM 6.02 4.14 3.03 3.58 -0.28 3.28 2.74

Panel C: Test-statistics for differences in log-likelihoods

Model OLT CHSLT ALT CHS AAN Ohlson Leland-Toft

CHSLT 0.75

ALT 4.38 2.38

CHS 1.23 14.88 -1.48

AAN 7.51 6.16 6.51 5.86

Ohlson 104.28 2.98 1.22 2.58 -6.21

Leland- 8.07 6.93 6.73 5.76 -0.16 3.61

Toft

BSM 8.01 7.21 6.56 6.51 0.63 4.47 1.38

This table reports out-of-sample performance for the two structural models (Leland-Toft and BSM),
the three hybrid models (OLT, CHSLT and ALT) as well as the three reduced-form models
(Ohlson,1980; Campbell et al., 2008, referred to as CHS and Almamy et al., 2016, referred to as AAN).
For the definition of the models, refer to table 1. Panel A reports discriminating ability, measured by
AUROC as well as predictive accuracy, measured by log-likelihood (and pseudo-R?). Panel B reports
test statistics for differences in the discriminating ability between various models, using Delong et al.
(1988). Panel C reports test statistics for differences in predictive accuracy between various models
using likelihood ratio tests or Vuong (1989) test. The results are based on a baseline approach, where
the models are estimated on the period 1995-2005 and applied on the period 2006-2014. In the case
of structural models, for consistency, we estimate two logistic regression models where the first
contains the probability of bankruptcy derived from Leland-Toft and the second the probability of
bankruptcy derived from BS as predictors.
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Table 7: Economic performance of banks using different bankruptcy models (LT vs BSM)

Bank 1 Bank 2 Bank 3

LT BSM Altman
Credits 4037 4667 5022
Market Share (%) 29.09 33.62 36.18
Bankruptcies 10 37 38
Bankruptcies/Credits (%) 0.25 0.79 0.76
Average Spread (%) 0.38 0.49 0.45
Revenues ($M) 110.71 163.22 163.89
Loss($M) 26.41 97.70 100.34
Profit($M) 84.30 65.52 63.55
Return on Assets (%) 0.29 0.19 0.018
Return on RWA (%) 1.09 0.64 0.54

This table reports economic results for three banks in a competitive loan market worth $100 billion.
Bank 1 uses LT, bank 2 uses BSM and bank 3 uses Altman. For the definition of the models, see table
1. The banks sort prospective customers (2006-2014) and reject the 5% of firms with the highest risk.
The remaining firms are classified in 10 groups of equal size and for each group, a credit spread is
calculated, as described in the main text (section 4.3). The bank that classifies the firm to the group
with the lowest spread is finally granting the loan. Market share is the number of loans given divided
by the number of firm-years, Revenues = market size*market share*average spread, Loss=market
size*prior probability of bankruptcy*share of bankruptcies*loss given default. Profit=Revenues-Loss.
Return on Assets is profits divided by market size*market share and Return on Risk-Weighted-Assets
is profits divided by Risk-Weighted Assets, obtained from formulas provided by the Basel Accord
(2006). The prior probability of bankruptcy is the bankruptcy rate for firms between 1995-2005 and
equals 0.77%. Loss given default is 45%.
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Table 8: Model performance and test for differences, rolling window approach

Panel A: Out-of-sample performance, rolling approach (2006-2014)

Model AUROC Log-Likelihood  Pseudo-R? (%)
Hybrid

OLT 0.9469 -470.37 37.00
CHSLT 0.9438 -479.66 35.76
ALT 0.9253 -508.25 31.93
Reduced-Form

CHS (2008) 0.9372 -485.94 34.92
AAN (2016) 0.8673 -593.86 20.46
Ohlson (1980) 0.9289 -522.87 29.97
Panel B: Test-statistics for differences in AUROCs

Model OLT CHSLT ALT CHS AAN
CHSLT 0.41

ALT 2.31 1.58

CHS 1.00 1.80 -0.88

AAN 5.24 5.12 4.62 4.42

Ohlson 4.33 1.94 -0.34 0.91 -4.38
Panel C: Test-statistics for differences in log-likelihoods

Model OLT CHSLT ALT CHS AAN
CHSLT 0.79

ALT 4.57 2.20

CHS 1.13 12.57 -1.46

AAN 7.61 6.17 6.28 5.91

Ohlson 104.99 2.85 1.06 2.49 -6.48

This table reports out-of-sample performance for the three hybrid models (OLT, CHSLT and ALT) as
well as the three reduced-form models (Ohlson,1980; Campbell et al., 2008, referred to as CHS and
Almamy et al., 2016, referred to as AAN). For the definition of the models refer to table 1. Panel A
reports discriminating ability, measured by AUROC as well as predictive accuracy, measured by log-
likelihood (and pseudo-R?). Panel B reports test statistics for differences in the discriminating ability
between various models, using Delong et al. (1988). Panel C reports test statistics for differences in
the predictive accuracy between various models using likelihood ratio tests or Vuong (1989) test. The
results are based on a rolling window approach, where the models are updated yearly and used to
predict bankruptcies next year. For instance, the models are estimated between 1995 and 2005 and
apply them on firms in 2006. Then we re-estimate the models between 1996 and 2006 and apply them
on firms in 2007. This process is repeated up to 2014. Bankruptcy probabilities for each year are
aggregated to obtain single performance measures.
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Table 9: Model performance and test for differences, five folds approach

Panel A: Out-of-sample performance, five folds approach (1995-2014)

Model AUROC Log-Likelihood  Pseudo-R? (%)
Hybrid

OLT 0.9091 -1379.48 28.49
CHSLT 0.9057 -1403.72 27.23
ALT 0.8826 -1471.35 23.73
Reduced-Form

CHS (2008) 0.9014 -1417.16 26.54
AAN (2016) 0.8438 -1630.45 15.48
Ohlson (1980) 0.8939 -1477.06 23.43
Panel B: Test-statistics for differences in AUROCs

Model OLT CHSLT ALT CHS AAN
CHSLT 0.50

ALT 3.95 2.86

CHS 1.02 1.96 -2.05

AAN 7.09 6.14 5.63 5.42

Ohlson 4.56 1.54 -1.38 0.94 -5.75
Panel C: Test-statistics for differences in log-likelihoods

Model OLT CHSLT ALT CHS AAN
CHSLT 1.25

ALT 5.20 3.07

CHS 1.68 26.87 -2.11

AAN 7.63 6.41 6.62 6.07

Ohlson 195.16 2.79 0.22 2.34 -5.53

This table reports out-of-sample performance for the three hybrid models (OLT, CHSLT and ALT) as
well as the three reduced-form models (Ohlson,1980; Campbell et al., 2008, referred to as CHS and
Almamy et al., 2016, referred to as AAN). For the definition of the models refer to table 1. Panel A
reports discriminating ability, measured by AUROC as well as predictive accuracy, measured by log-
likelihood (and pseudo-R?). Panel B reports test statistics for differences in the discriminating ability
between various models, using Delong et al. (1988). Panel C reports test statistics for differences in
the predictive accuracy between various models using likelihood ratio tests or Vuong (1989) test. The
results are based on a five-fold cross-validation approach, where we divide the whole sample into five
equal sub-samples. Any four of them are used to estimate the models and apply them on firms in the
left-out sub-sample. Bankruptcy probabilities for each left-out sub-sample are aggregated to obtain
single out-of-sample performance measures
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Table 10: Economic performance for five banks when using different bankruptcy models

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

OLT CHSLT CHS Ohlson Altman
Credits 3571 2561 2758 1886 2935
Market Share (%) 25.73 18.45 19.87 13.59 21.15
Bankruptcies 4 4 12 11 48
Bankruptcies/Credits (%) 0.11 0.16 0.44 0.58 1.64
Average Spread (%) 0.35 0.35 0.43 0.51 0.59
Revenues ($M) 90.14 65.35 85.42 69.41 125.65
Loss($M) 10.56 10.56 31.69 29.05 126.75
Profit($M) 79.58 54.79 53.73 40.36 -1.10
Return on Assets (%) 0.31 0.30 0.27 0.30 -0.00
Return on RWA (%) 1.74 1.54 1.12 1.02 -0.00

This table reports economic results for five banks in a competitive loan market worth $100 billion.
Bank 1 uses OLT, bank 2 uses CHSLT, bank 3 uses CHS, bank 4 uses Ohlson and bank 5 uses Altman.
For the definition of the models, see table 1. The models are estimated using data from 1995-2005.
The banks sort prospective customers (2006-2014) and reject the 5% of firms with the highest risk.
The remaining firms are classified in 10 groups of equal size and for each group, a credit spread is
calculated, as described in the main text (section 4.3). The bank that classifies the firm to the group
with the lowest spread is finally granting the loan. Market share is the number of loans given divided
by the number of firm-years, Revenues = market size*market share*average spread, Loss=market
size*prior probability of bankruptcy*share of bankruptcies*loss given default. Profit=Revenues-Loss.
Return on Assets is profits divided by market size*market share and Return on Risk-Weighted-Assets
is profits divided by Risk-Weighted Assets, obtained from formulas provided by the Basel Accord
(2006). The prior probability of bankruptcy is the bankruptcy rate for firms between 1995-2005 and
equals 0.77%. Loss given default is 45%.
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Table 11: Extending Campbell et al. (2008), Ohlson (1980) and Altman (1968) with BSM and LT

Panel A: Out-of-sample performance, 2006-2014

Model AUROC LL Pseudo-R? (%)

CHS models

CHS (2008) 0.9332 -498.85 33.35

CHS with BSM 0.9343 -497.96 33.47

CHS with LT 0.9395 -491.41 34.35

Ohlson models

Ohlson (1980) 0.9252 -535.57 28.45

Ohlson with BSM 0.9383 -497.71 33.51

Ohlson with LT 0.9449 -483.43 35.41

Altman models

AAN (2016) 0.8597 -603.81 19.33

Altman with BSM 0.9109 -538.87 28.01

Altman with LT 0.9207 -519.56 30.59

Panel B: Test statistics for differences in AUROC’s

CHS vs CHS with BSM 0.82 Ohlson vs Ohlson with BSM 3.54 AAN vs Altman with BSM 413
CHS vs CHS with LT 1.49 Ohlson vs Ohlson with LT 4.71 AAN vs Altman with LT 4.78
CHS with LT vs CHS with BSM  1.47 Ohlson with LT vs Ohlson with BSM 2.37 Altman with LT vs Altman with BSM 1.97
Panel C: Test statistics for differences in log-likelihoods

CHS vs CHS with BSM 1.78 Ohlson vs Ohlson with BSM 75.72 AAN vs Altman with BSM 5.74
CHS vs CHS with LT 14.88 Ohlson vs Ohlson with LT 104.28 AAN vs Altman with LT 6.51
CHS with LT vs CHS with BSM 2.09 Ohlson with LT vs Ohlson with BSM  2.36 Altman with LT vs Altman with BSM 2.52

This table reports out-of-sample performance for the three reduced-form models (Campbell et al., 2008, referred to as CHS, Ohlson, 1980 and Almamy
et al., 2016, referred to as AAN) and several hybrid models that augment the reduced-form models with the LT or BSM. The models are estimated using
data from 1995-2005 and the results are based on the out-of-sample period, 2006-2014. Panel A reports discriminating ability and predictive accuracy as
measured by AUROC and log-likelihood respectively. Panel B reports test statistics for differences in the discriminating ability between various models,
using Delong et al. (1988). Panel C reports test statistics for differences in the predictive accuracy between various models using likelihood ratio tests or

Vuong (1989) test.
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Table 12: Model performance and test for differences, baseline approach (time-robustness)

Panel A: Out-of-sample performance, baseline approach (1995-2005)

Model AUROC Log-Likelihood Pseudo-R? (%)
Hybrid

OLT 0.8854 -960.51 18.72
CHSLT 0.8838 -937.03 20.71
ALT 0.8716 -1029.06 12.92
Reduced-Form

CHS (2008) 0.8811 -951.09 19.52
AAN (2016) 0.8344 -1116.46 5.53
Ohlson (1980) 0.8741 -1014.27 14.17
Panel B: Test-statistics for differences in AUROCs

Model OLT CHSLT ALT CHS AAN
CHSLT 0.16

ALT 1.47 1.14

CHS 0.42 1.28 -0.81

AAN 3.88 3.49 3.98 3.25

Ohlson 2.41 0.87 -0.22 0.62 -3.18
Panel C: Test-statistics for differences in log-likelihoods

Model OLT CHSLT ALT CHS AAN
CHSLT -1.20

ALT 2.36 3.02

CHS -0.43 28.12 -2.41

AAN 3.13 3.62 3.07 3.33

Ohlson 107.52 3.14 -0.43 2.56 -2.10

This table reports out-of-sample performance for the three hybrid models (OLT, CHSLT and ALT)
as well as the three reduced-form models (Ohlson,1980; Campbell et al., 2008, referred to as CHS
and Almamy et al., 2016, referred to as AAN). For the definition of the models, refer to table 1.
Panel A reports discriminating ability, measured by AUROC as well as predictive accuracy,
measured by log-likelihood (and pseudo-R?). Panel B reports test statistics for differences in the
discriminating ability between various models, using Delong et al. (1988). Panel C reports test
statistics for differences in the predictive accuracy between various models using likelihood ratio
tests or Vuong (1989) test. The results are based on a baseline approach, where the models are
estimated on the period 2006-2014 and applied on the period 1995-2005, in order to test the time
robustness of our models.
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Figure 1: This figure provides graphical representation of the discriminatory power of various
bankruptcy prediction models through the ROC curves. The ROC curves are constructed for the out-
of-sample period 2006-2014.
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CHAPTER 2

Maximizing discriminatory power of bankruptcy prediction models:
Empirical evidence from U.S.

Abstract

In this paper several methodologies for maximizing the discriminatory power of bankruptcy
prediction models, as measured by the Area Under Receiver Operating Characteristics
(AUROC) curve, are introduced and compared. We consider linear and probabilistic
response functions for the output of the models as well as different merit functions, used to
obtain model coefficients. For our analysis we use accounting and market information for
U.S. public bankrupt and healthy firms between 1990 and 2015. Results show higher
discriminatory power when we implement our approaches as compared with traditional
approaches, such as logistic regression models. We also find that using models with a merit
function that accounts for outliers yields the best performance among the linear response
functions. Among all models, however, a neural network with probabilistic response
function is the best performing model. More importantly results hold under different tests.
One of our tests for instance, shows that banks using models with maximized AUROC earn
higher risk-adjusted returns relative to banks using traditional approaches, highlighting the

benefits of using models with maximized AUROC.
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1 Introduction
1.1 Background and Motivation

Increased attention has been paid in recent years for the development of powerful
bankruptcy prediction models, mainly for two reasons. Firstly, the recent global financial
crisis has left banks to experience huge losses from their credit portfolios and consequently
their lending policies and decision-making processes have been seriously criticized from
regulators, investors and other stakeholders. Secondly, since the reform of Basel Accord in
2006, banks are allowed to develop their own internal models to assess credit risks and
protect themselves through the capital reserves that should withhold to face potential losses.
Thus, for a matter of bank viability, financial stability and investor protection, it would be
of great interest to develop powerful bankruptcy prediction models which is the aim of this
paper.

One of the most significant measures to evaluate the performance of bankruptcy prediction
models is their ability to discriminate bankrupt from healthy firms. It has been shown that
models with higher discriminatory power are associated with higher economic benefits for
a bank (Bloechlinger and Leippold, 2006; Agarwal and Taffler, 2008). Further, Bauer and
Agarwal (2014) show that even small differences in the discriminatory power among
bankruptcy prediction models yield superior bank economic performance. In addition,
commercial vendors such as Moody’s KMV extensively use discriminatory power as an
integral part of their validation processes, especially when comparing their newly developed
models with existing ones (see for instance the RiskCalc 3.1 model in Dwyer et.al, 2004).

As it is stated in that paper:

“The greatest contribution to profitability, efficiency, and reduced losses comes
from the models’ powerful ability to rank-order firms by riskiness so that the bank can

eliminate high risk prospects.”

Beyond that, Moody’s KMV provides ample explanatory documentation on how to use
various discriminatory power measures in practice (see for instance Keenan and Sobehart,
1999 and Sobehart et al., 2000). This extensive use in fact highlights the importance of using
discriminatory power as a leading measure to evaluate the performance of bankruptcy

prediction models.

Yet, it is somewhat surprising that a common practice in bankruptcy prediction studies is

to use discriminatory power as an indication of model performance, rather than obtaining
-46-



model coefficients directly by maximizing discriminatory power. Exceptions include Miura
et al. (2010) and Kraus and Kuchenhoff (2014) in the related area of credit scoring which
we also discuss and compare. We contribute to this limited literature by introducing and
comparing several new methodologies that maximize the discriminatory power of
bankruptcy prediction models and through a battery of tests, we highlight the importance of
using such models. To measure discriminatory power, we use the Area Under Receiver
Operating Characteristics curve (AUROC or AUC). This is a widely-used statistic to
measure the discriminatory power of bankruptcy prediction models and it has also been used
in related areas, such as mortgage default prediction (Fitzpatrick and Mues, 2016) and
generally when assessing the performance of credit scoring models (see for instance
Lessmann et al., 2015, and references therein for recent studies that use AUROC as a

performance measure).

For our analysis we collect annual financial data and daily equity prices for a large sample
of U.S. public bankrupt and healthy firms between 1989 and 2014 and construct variables to
make one-year forecasts (for bankruptcies between 1990 and 2015). We keep approximately
70% of the whole sample as a training set (1990-2006) and evaluate the performance of the
models in the testing set (2007-2015) using three distinct type of tests, following Bauer and
Agarwal (2014); 1) AUROC analysis 2) Information content tests 3) Economic performance,

when banks use various bankruptcy prediction models in a competitive loan market.

1.2 Main Findings

Firstly, we employ the logistic regression approach?? which is our benchmark against
models with maximized AUROC and find that several financial variables related to firm
leverage, profitability, liquidity and coverage, are significant predictors of bankruptcy.
When we also consider market-based variables in the analysis, however, the model with both
financial and market variables outperforms the model with only financial variables
consistent with prior research (Shumway, 2001; Chava and Jarrow, 2004; Campbell et al.,
2008; Wu et al., 2010 and Tinoco and Wilson, 2013).

22 \We use logistic regression, since it is the most common approach of deriving a classification rule (Crook et
al., 2007) and an approach adopted by many researchers in recent bankruptcy prediction studies (i.e. Westgaard
and Wijst, 2001; Chava and Jarrow, 2004; Altman and Sabato, 2007; Campbell et al., 2008; Tinoco and Wilson,
2013, etc.).
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Next, we develop models with maximized AUROC using the set of variables that we find
to be significant (with financial only data and financial plus market data) according to the
logistic regression approach. We consider models with probabilistic and linear response
functions. That is, the output of the models is a probability in the first case and a linear score
in the second case. We also consider various merit functions used in the optimization to
obtain the coefficient estimates and we seek to find the specification which yields the best
performance. We find that our proposed approaches outperform out-of-sample logistic
regression models. Among the linear response functions, we find that a merit function that
takes care of the outliers which often characterize financial data, is the best performing one.
However, a neural network model with a probabilistic response function is the best
performing among all. The results are consistent with respect to the three testing approaches
and summarized as follows: 1) Models with maximized AUROC outperform logistic
regression models in terms of AUROC, out-of-sample, 2) The models with the highest
AUROC are selected for the remaining tests and we find that they contain significantly more
information relative to a logistic regression model according to information content tests and
3) Banks using models with maximized AUROC, earn superior returns on a risk-adjusted
basis, relative to banks that use traditional models to predict bankruptcy. Therefore, we
recommend the implementation of models with maximized AUROC in bankruptcy
prediction since, according to our findings, such models are more valuable and appropriate

risk management tools relative to traditional bankruptcy prediction models.

The remainder of the paper proceeds as follows: In section 2 we discuss data collection, in
section 3 we present the methodologies to maximize AUROC as well as three distinct type

of tests, in section 4 we discuss the results and section 5 concludes.

2 Data

2.1 Sample

Our sample consists of 11,096 non-financial U.S. firms from which 422 filed for
bankruptcy under Chapter 7 or Chapter 11, between 1990-2015. We have a total of 97,133
firm-year observations with non-missing data, collected between 1989-2014 to forecast
bankruptcies one year ahead. The date of bankruptcy filing was identified from the database

BankruptcyData.
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2.2 Variables Construction

We collect annual financial data and market (equity) data from Compustat and CRSP
respectively and we construct several variables based on related studies in the literature. For
example, in our analysis we consider variables used in traditional corporate bankruptcy
prediction studies, such as Altman (1968), Ohlson (1980), Zmijewski (1984) but also in more
recent studies, such as Shumway (2001), Chava and Jarrow (2004), Campbell et al. (2008)
etc. All the variables are constructed at the fiscal year-end prior to the year of bankruptcy.

First, we construct financial ratios capturing aspects of a firm’s financial performance,
such as leverage, profitability, liquidity, coverage, activity, cash flows, as presented in panel
A of Table 1. A limitation of financial variables is that by their nature look backwards and
the quality of information they carry depends on accounting practices (Hillegeist et al., 2004;
Agarwal and Taffler, 2008). Market variables instead, constructed from equity prices, look
forward since they carry market perceptions about the prospects of the firm. For publicly
traded firms it would be more appropriate to incorporate market variables in the models. To
this end, we collect daily equity prices from CRSP for the entire fiscal year and several
market-based variables are constructed, as reported in panel B of Table 1. Annualized
volatility of daily equity returns (VOLE) refers to the fluctuations of firm’s equity value
returns, expecting to be higher for bankrupt firms. Next, excess returns (EXRET) refer to the
difference between firm’s annualized equity return and the annualized value-weighted return
of a portfolio with NYSE, AMEX, NASDAQ stocks, expecting to be lower for bankrupt
firms. Further, we consider the relative size of the firm (RSIZE), the logarithm of stock price
at fiscal year-end (LOGPRICE) and the Market-to-Book ratio (MB), expecting a negative
association with bankruptcy risk. Finally, we include three financial variables scaled by
firm’s market value. More precisely, Campbell et al. (2008) show that scaling financial
variables with a market-based measure of firm’s value i.e. market equity + liabilities (MTA),
compared to total assets as reported in the balance sheet, increases the predictive accuracy
of bankruptcy prediction models. These variables are cash over MTA (CASHMTA), net
income over MTA (NIMTA), expecting a negative association with bankruptcy risk and
lastly, total liabilities over MTA (TLMTA). Following common practice, we winsorize the

variables between 1% and 99" percentile to avoid problems induced by outliers.

[Insert Table 1 here]
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2.3 Variables Selection

Table 1 presents an extensive list of variables that previous studies find to be significant
predictors of bankruptcy risk. Out of these variables, a smaller set should be selected in order
to construct parsimonious models with few variables but with high forecasting power. We
establish a three-step approach to select the most powerful variables (see for instance Altman

and Sabato, 2007 and Filipe et al., 2016) and summarized in the following three steps:

Step 1: Remove variables with low discriminating ability (as a cut-off, we use AUROC equal
to 0.60). The idea of this step is to qualify the variables that individually exhibit a satisfactory
ability to discriminate bankrupt from healthy firms.

Step 2: Remove highly correlated variables using the Variance Inflation Factor (VIF)
criterion. The idea of this step is to remove the variables that are highly correlated with
others, since multicollinearity may yield misleading results regarding the significance of the
variables in the final model. Beyond that, we end up with variables that provide different
information and explain bankruptcy uniquely. We use 5 as cut-off (variables with VIF > 5

are removed).

Step 3: Perform a stepwise multivariate logistic regression to the remaining variables in order
to obtain the most significant variables from a statistical point of view (we use a significance
level of a = 5%).

The logistic regression program estimates coefficients assuming independent observations,
which is an invalid assumption, since the data contains information for firms over multiple
periods. In such case, an appropriate correction measure which we adopt in our study, is to

use clustered robust standard errors (also used by Filipe et al.,2016).

Using the three-step approach, we develop two types of models. The first one is a “private
firm” type of model, including only financial variables. We further develop a “public firm”
type of model, including both financial and market variables. For example, the private firm
model includes five financial variables (TLTA, STDTA, NITA, CASHTA, EBITCL), while the
public firm model includes six variables (TLTA, STDTA, LOGPRICE, CASHMTA, NIMTA,
EXRET). Notice that two financial-based variables (CASHTA and NITA) are replaced with
CASHMTA and NIMTA. Generally, the majority of variables that are found to be significant

for the public firm model are market variables, which is consistent with the perception that
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market-based variables are better bankruptcy risk measures, due to their forward-looking

nature.

2.4  Descriptive Statistics

Table 2 reports descriptive statistics for the accounting and market variables that we find
to be significant predictors of bankruptcy. As expected, bankrupt firms are more levered on
average relative to healthy firms (TLTA and STDTA for bankrupt firms are higher), they are
also less profitable (NITA and NIMTA are lower for bankrupt firms). Furthermore, bankrupt
firms are more constrained in terms of cash available (CASHTA and CASHMTA are lower)
as opposed to healthy firms. Going to the market variables, it is evident that the stock price
of bankrupt firms (LOGPRICE) on average is lower than healthy firms, possibly due to their
deteriorating financial position that is priced by investors, leading to a depreciation of their
stock prices at the year prior to bankruptcy. Finally, bankrupt firms exhibit lower and
negative market performance relative to the market (EXRET is lower one year prior to

bankruptcy), as opposed to healthy firms.
[Insert Table 2 here]

3 Methodology

3.1 Measuring Discriminatory Power

Discriminatory power refers to the ability of a model to discriminate bankrupt from healthy
firms. According to a cut-off score, firms whose bankruptcy score exceeds that cut-off are
classified as bankrupt and healthy otherwise. Therefore, a way to measure the discriminating
ability of the model is to count the true predictions (percentage of bankrupt firms correctly
classified as bankrupt) and the false predictions (percentage of healthy firms incorrectly
classified as bankrupt). Doing this process for multiple cut-offs, we get a set of true and false
predictions. A graph made from this set is the ROC curve with false predictions on the x-
axis and true predictions on the y-axis. A perfect model would always (never) make true
(false) predictions and thus its ROC curve would pass through the point (0,1). Generally, the

closer the ROC curve to the top-left corner, the better the discriminatory power of the model.

-51-



The ROC curve provides a graphical way to visualize discriminatory power. A quantitative
assessment of the discriminatory power is given by the Area under ROC curve (AUROC)
which is calculated as follows?:

AUROC = 1271:5:1(1' 7> 0) 1
Ty SB ~ Sy 1)

i=1 j=1
where I(x) is an indicator function, defined to be 1 if x is true and O otherwise, s and s,’,'
denote the response functions (i.e. the bankruptcy scores) of a model, for the i-th bankrupt
firm, and for the j-th healthy firm observation respectively, n is the number of bankrupt firms
and m is the number of healthy firm observations. Note that Eq. (1) is discontinuous and

non-differentiable.

3.2 Maximizing Discriminatory Power

In this section we present different methodologies for maximizing the discriminatory
power. First, we consider the case of a probabilistic response function and second, we
consider the case of a linear response function. Finally, several merit functions used in the

optimization to obtain model coefficients, are introduced

3.2.1 Probabilistic Response Function

Here we present a methodology to maximize discriminatory power where the response
function, s, is a probability. Ideally, we should have used Eq. (1) directly as the objective
function in the optimization. However, traditional gradient-based optimization methods
cannot be used to maximize Eq. (1) directly because it is discontinuous and non-
differentiable. For this reason, we introduce a surrogate function that seeks to maximize the

discriminatory power.

We define d;;(B) = sp(X, B) — s}(X;,B) = ps (X, B) — pi(X;, B) as the difference
between the probability of bankruptcy?* for the i-th bankrupt firm and the probability of
bankruptcy for the j-th healthy firm observation, conditional on the predictor variables in X

which could be a set of financial and market variables. From Eq. (1), to obtain the

2 For further explanation, refer to Hanley and McNeil (1982) and Sobehart and Keenan (2001).
24 A good choice for the probabilistic response function that is usually used in bankruptcy prediction studies
and also adopted in our study, is the logistic function.
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coefficients, f, that maximize the discriminatory power of a model we would like as many
as possible d; ;'s to be positive. A way to achieve this is through the minimization of the

following merit function:

F® = — > > max (0,7~ dyy () @

i=1 j=1
where 0 <y < /. The above merit function ignores the terms where d; ;(£)>y (meaning that
the difference in bankruptcy probabilities between the i-th bankrupt firm and j-th healthy
firm observation is relatively high, as specified by the parameter y) and penalizes the terms
where d; ;(#)<y. In other words, the parameter y can be considered as a parameter which
controls the magnitude of the d; ;'s that are to be penalized. For instance, if y=0, we penalize
only the negative d; ;'s (i.e. only the cases where the model assigned a higher probability of

bankruptcy for a healthy firm than a bankrupt firm) while if y=1, we penalize all d; ;'s.

Based on the optimality conditions of minimizing F(f), at the optimal solution, a number
of d; ;'s must satisfy the condition d; ;= y 2. Hence, by selecting y (close) to zero, we force
a number of d; ;s to be close to zero in absolute terms. In that case, a small change of the
input data can easily induce d; ;'s to change signs which in turn will cause a change in the
AUROC. This may be particularly evident in the case of out-of-sample data. That is, by
training a model to produce d; ;'s close to zero, may yield a model with poor generalized
ability and consequently the out-of-sample AUROC will be very sensitive. On the other
hand, selecting y (close) to one, coefficient estimates can blow up and provide unreasonable
results. We suggest using a validation procedure to select the parameter value. In this study,
we further divide our training sample into training (70%) and validation (30%) sets. We train
the models by choosing from the set of parameter values y = {0, 0.1, 0.2, ..., 1} and keep the
value that gives the highest AUROC on the validation set. For instance, using our private
and public firm models we find that y equals 0.3 and 0.1 respectively. Then we merge the

training and validation sets, to train the models and test their performance on the testing set.

However, the surrogate function in Eg. (2) is non-differentiable wheny — d; ;(f) = 0. To

overcome this problem and thus being able to use traditional gradient-based optimization

algorithms, we should replace the term max (0, z) with a differentiable function. Note that,

% This draws on results from Charalambous (1979).
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we can solve Eq. (2) using linear programming provided that the response function is linear
with respect to the coefficients, f. We examine that in a subsequent section. Here, the
probability is a non-linear function and as such we should use non-linear optimization
algorithms to obtain the coefficients. We replace the term max(0, z) by the following -

smoothed differentiable approximation, h.(z):

0, z< —¢g/2
h.(z) = 2—18(2 +¢/2)?, —g/2<z<¢g/2 3)
Z, z>¢/2

where € is a small positive number close to zero. Here we set ¢ = 0.001. The e-smoothed
function h.(z), which we graphically present in the top plot of Figure 1, is a shifted version
of the smoothed function used previously by Charalambous et al. (2007) to value call

options®.
[Insert Figure 1 here]

Hence, the merit function to be minimized is replaced by:

> he (v - diy®) @

n
1
i=1j=1

nm

F(B) =

We further illustrate the role of y by providing an example using our data. We estimate the
private firm model using Eqg. (4) as the objective function to obtain the coefficients and we
calculate the d; ;'s. We further estimate a logistic regression model but in that case the log-
likelihood function is used in the optimization to obtain the coefficients and we also calculate
the d; ;'s. Figure 2 shows a sample of those d; ;'s27, produced by logistic regression (top

plot) and by maximizing AUROC with the e-smoothed function, setting y =0 (middle plot)
and y =0.3 (bottom plot).

[Insert Figure 2 here]

Recall that we would like as many as possible of d; ;s to be greater than zero. Hence, they

should lie above the solid straight line. For the logistic regression, some lie above and some

below. Using the e-smoothed function, we want to make as many as possible negative d; ;'s

to move above the straight line. Setting y=0, we observe that all d; ;'s are close to zero. Some

%6 See also Pinar and Zenios (1994) for similar e-smoothed functions.
%7 We chose a sample consisting of 289 d; ;'s that were calculated for a randomly selected healthy firm
against all bankrupt firms.
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cases, 21 in particular, that were negative according to the logistic regression became
positive (denoted with green crosses) and one case that was positive became negative
(denoted with a red star), highlighting the limitation of producing d; ;'s that are close to
zero. Setting y=0.3, not only more d;;’s that were negative became positive (59 in
particular), but now the majority lie well above the solid straight line, several also passing
the y parameter which are the points that lie above the dashed line. Notice now that none of
the d; ;'s that were positive became negative because the higher value of y, causes d; ;'s to

be well above zero and as a consequence, AUROC will not be sensitive.

3.2.2 Linear Response Function

In this section we examine several specifications for Eq. (2) but now we consider a linear
response function. That is, the bankruptcy score, s, is given by g™X and thus, d;j(B) =
sk(Xi, B) — s} (X;, B) = BT (X} — X},,). We firstly show how to solve the problem by
linear programming and finally we compare various merit functions that are continuous and
differentiable, accounting also for outliers that frequently characterize financial data. Our
aim is to find the specification that yields the best performance in terms of AUROC. It would
be useful to say here that the choice of parameter y in the case of linear response function,
affects only the scaling of coefficient estimates, f, and will not affect the ranking of firms,
meaning that the AUROC will not be affected by the choice of y. It is a common practice to

set y=1%.

3.2.2.1 L1-max Merit Function

Under the specifications introduced in this section, the non-differentiable function, F(p),

becomes:
1 n m
F@ = — > max(0,1-di;(8) (5)
i=1 j=1

28 We borrow the idea of setting y=1 from the literature of classification, based on support vector machines
(i.e. Vapnik, 1995; Vapnik, 1998). Again, provided that the parameter y is a (non-zero) positive number, it will
only affect the scale of the coefficients, but the ranking of firms will remain the same and therefore AUROC
will not change.
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The above function is the normalized linear sum of max(0,z) and it is similar to the one
proposed by Vapnik (1995) in the context of classification. Minimizing F(p), is equivalent
to the following linear programming problem:

r?}gnF(z,ﬁ)= %iiz (6)

i=1j=1
S.t.

zi; =20

zj >1-d; j(B)

i=1,2,...n and j=1,2,....m

In the following sub-sections, we introduce other merit functions that are continuous and

differentiable in order to use gradient-based optimization algorithms.

3.2.2.2 Function 1: L2-max Merit Function

A straightforward function that is continuous and differentiable, is the squared function
{max(0,2)}?, as shown in the bottom plot of Figure 1. In that case, the merit function to be

minimized is the following:

FB) = Y > [max(0,1 -y @) )

i=1j=1

3.2.2.3 Function 2: Exponential Square Merit Function

A drawback of the function in Eq. (7) and to less extend the function in Eq. (5) is that, both
are sensitive to outliers that eventually can affect the optimization and consequently the
coefficient estimates. To this end, we use an exponential square function similar with the

one used by Feng et al. (2016) in the context of classification, as shown in Eq. (8).

F(B) = %Z

i=1

0?(1— exp{— [max (0, 1-— di,j(ﬁ))]z /a?}) (8)

Ms

~.
Il
=

Note that the following holds true for the function o2{1-exp[-(.) ] }:

0, di i == 1
o?{1—exp[—(.)]} = { /) 9)

o, d;j(B) > —
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The role of o2 and the way it affects the optimization, however, is not clear. Here for
simplicity we set o2=1. Finally, we plot the exponential square function in the bottom plot
of Figure 1. As can be seen from the plot, while the L2-max function sharply increases for
large values of the variable z, the exponential square function is restricted up to a2, which

in our case equals 1.

3.2.2.4 Function 3: e-Smoothed Merit Function

Another function that can be used is the e-smoothed function that we have introduced in

an earlier section, yielding the following merit function:

F® = =" he(1-diy() (10

i=1j=1

3.2.2.5 Function 4: Exponential e-Smoothed Merit Function

We consider the exponential e-smoothed function to avoid problems induced by outliers.

In this case, the function to be minimized, is the following:

F®) =~ 0?1 - expl —h (1~ dyy(8) /%1 (11)

i=1j=1

As with Eq. (8), we set o2=1.

3.2.2.6 Other Approaches

We also consider two other approaches proposed by Miura et al. (2010) and Kraus and
Kuchenhoff (2014), to maximize AUROC of credit scoring models®. Miura et al. (2010)
suggest a sigmoid function as an approximation of Eq. (1). Specifically, they maximize the

following objective function:

1 v 1
PO = 22 T el @7 (2

i=1j=1

2 Several related approaches for maximizing AUROC have been proposed and applied in other domains, such
as in computer science (Tayal et al., 2015). In our study, we focus on approaches suggested in credit scoring
studies.
30 The authors, in the original specification, set the tuning parameter ¢ =0.01 or 0.1. Here, we use 6=1 because
the original specifications performed poorly. Further, they constrain the norm of coefficients to be 1. Again,
we find that this specification performs poorly.
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where d;;(8) = BT(Xs — XJ,). However, unlike the functions that we previously
introduced, it treats all d; ;s in the same way, whereas our functions, give more emphasis
on the “bad” cases, for example, when a healthy firm has higher bankruptcy score than a
bankrupt firm. Further, the authors consider only a linear response function. In this paper,
we also consider a probabilistic response function which can be used by any modeling
approach, such as neural networks.

Finally, Kraus and Kuchenhoff (2014) suggest using directly Eq. (1) as the objective
function and implementing derivative-free methods (such as Nelder and Mead, 1965) to
optimize the coefficients. The optimization algorithm that is used, however, assumes that the
objective function is continuous, which is not the case for Eq. (1). Also, this approach while
is easy to implement, ignores information provided by the gradient which could increase the
accuracy of the coefficients after the optimization process and thus we believe that using

specifications with differentiable functions is a better choice®.

3.2.3 Outline of the Methodologies Used to Maximize AUROC

In Figure 3 we outline the models along with their response functions and the various merit

functions that we use to maximize AUROC.
[Insert Figure 3]

The advantage of using a probabilistic response function (panel A), is that it can be applied
regardless of the approach used to model the probability of bankruptcy. In this study, we
consider a two-layer feed-forward neural network, since it is a widely-used modeling
approach in bankruptcy prediction studies (Kumar and Ravi, 2007). The specifications of
the neural network are as follows: 1) In the hidden layer we use two neurons, selected based
on a validation procedure®, 2) We use a logistic transfer function in the hidden layer and 3)

We use one neuron in the output layer, to produce the probability of bankruptcy, using the

31 We use the optimization toolbox in Matlab. For the linear programming, we use the linprog command with
the dual-simplex algorithm. For Kraus and Kuchenhoff (2014) we use the fminsearch command while for the
rest problems with continuous and differentiable functions, we use the fminunc command with the trust-region
algorithm.

32 We divide the training sample (1990-2006) into training (70%) and validation (30%). We train the neural

network using one, two, three and four neurons, starting also from various initial coefficient values, and we

select the number of neurons that performs the best (in terms of AUROC) in the validation set. Then we merge

the two samples to train the neural network and measure the performance on the testing set (2007-2015).
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logistic function. Then the probability of bankruptcy is used in the merit function and by

using standard optimization methods, we obtain the coefficients.

We also consider a simpler model where the linear score, y= 87X, is converted directly to
a probability using the logistic function, p(B)=1/[1+exp{-y(B)}] and by using the merit
function, such as the one in Eq. (4) we obtain the coefficients. Notice that, this simpler model
would be equivalent to a logistic regression if the merit function was the log-likelihood

function.

In the case of a linear response function (panel B) the linear score, y= BT X=s(B), is directly
entered to the merit function. To this end, we consider four different merit functions as
shown in panel B of Figure 3.

3.3 Information Content Tests

We further consider information content tests, also done in related studies (see for instance
Hillegeist et al., 2004; Agarwal and Taffler, 2008; Charitou et al., 2013; Bauer and Agarwal,
2014). In such tests the out-of-sample bankruptcy probabilities produced by various models,
such as by models with maximized AUROC, are entered as inputs to logistic regression
models and we are interested to assess their explanatory power. Recall that in the case of
linear response functions, the output is not a probability. For consistency, we use the logistic
function to convert the linear score into a probability. Note that the logistic function provides
a monotonic transformation and thus will not change the ranking of firms (and consequently
the AUROC will not be affected). In particular, we estimate the following panel logit
specification:

at+[f’*pr0bi‘t a*Ratet+ﬁ*probi_t

e e
1+ eat+ﬁ*probi‘t - 1+ ea*Ratet+ﬁ*probL-,t

P(Yi,t+1 = 1| prob;;) = p;r = (13)

where p; . is the probability of bankruptcy at time t, that the i-th firm will go bankrupt the
next year and Y, w+1 IS the status of the i-th firm the next year (1 if it goes bankrupt and O if
it is solvent). The variable of interest is prob; ., which is the out-of-sample bankruptcy
probability of the i-th firm at time t, produced by a model, for instance with maximized
AUROC. Finally, p isthe coefficient estimate and a; is the baseline hazard rate that is only
time-dependent, and it is common to all firms at time t. Similar with prior studies, we proxy

the baseline hazard rate with the actual bankruptcy rate at time t.
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The specification in Eq. (13) is equivalent with the hazard model specifications used in
related bankruptcy prediction studies, such as Hillegeist et al. (2004), Agarwal and Taffler
(2008), Bauer and Agarwal (2014) etc. Specifically, Shumway (2001) argues that a panel
logit model, like the one in Eq. (13), is equivalent with a hazard rate model and therefore
standard log-likelihood procedures can be used to estimate the logit model in Eq. (13), with

a minor adjustment that we explain below.

The model in Eq. (13) represents a multi-period logit model as it includes observations for
each firm across time. However, the inclusion of multiple firm-year observations per firm
yields understated standard errors because the log-likelihood objective function, which is
maximized to estimate the multi-period logit model, assumes that each observation is
independent from each other. This is a wrong assumption since firm observations at time
t+1 cannot be independent from firm observation at time t. Failing to address this
econometric issue, could lead to wrong inference regarding the significance of the individual
coefficients. Similar with Filipe et al. (2016), we use clustered-robust standard errors to
adjust for the number of firms in the sample but also for heteroskedasticity (Huber,1967 and
White, 1980).

3.4 Economic Analysis of Bankruptcy Models

The analysis so far addressed the forecasting accuracy of the bankruptcy models. But how
accuracy is economically beneficial for banks? In particular, Bauer and Agarwal (2014)
show that even small differences in the AUROCSs between the models affect the profitability
of a bank. Therefore, it would be interesting to investigate the effect of using models with
maximized AUROC, on bank economic performance. Here, we follow the approach of
Agarwal and Taffler (2008) and Bauer and Agarwal (2014) to examine it by assuming a loan
market worth $100 billion and banks competing for granting loans to individual firms. Each

bank uses a bankruptcy model to evaluate the credit worthiness of their customers.

3.4.1 Calculating Credit Spreads

We estimate the models using data spanning the years 1990-2006 (70% of the sample).
We sort firm-customers from this sample in 10 groups of equal size and a credit spread is
calculated according to the following rule; Firms in the first group, which are firms with the

lowest bankruptcy risk, are given a credit spread, k, and firms in the remaining groups are
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given a credit spread, CS;, obtained from Blochlinger and Leippold (2006) and it is defined
as follows:

_p(r=1s=0
p(Y =0|S =)
where p(Y=1|S=i) and p(Y=0|S=i) is the average probability of bankruptcy and non-

Cs; LGD + k (14)

bankruptcy respectively, for the i-th group, with i=2, 3, ... ,10 and LGD is the loan loss upon
default. Following Agarwal and Taffler (2008), the average probability of bankruptcy for
the i-th group is the actual bankruptcy rate for that group, defined as the number of firms
that went bankrupt the following year divided by the number of firms in the group.
Furthermore, k=0.3% and LGD=45%.

3.4.2 Granting Loans and Measuring Economic Performance

To evaluate economic performance, we assume that banks compete to grant loans to
prospective firm-customers between the period 2007-2015. Each bank uses a bankruptcy
model that has been estimated in the period 1990-2006. The bank sorts those customers
according to their riskiness and rejects the bottom 1% with highest risk. The remaining firms
are classified in 10 groups of equal size and firms from each group are charged a credit
spread that has been obtained from the period 1990-2006. Finally, the bank that charges the
lowest credit spread for the customer (i.e for the firm-year observation) is granting the loan.
Two measures of profitability are used. The first one, Return on Assets (ROA) is defined as
Profits/Assets lent and the second one, Return on Risk-Weighted Assets (RORWA) takes
into consideration the riskiness of the assets, defined as Profits/Risk-Weighted Assets. Risk-
Weighted Assets are obtained from formulas provided by the Basel Committee on Banking
Supervision (2006).

4 Results

In this section we present the results of our tests. We start the analysis by evaluating the
AUROC:s of the different specifications. Next, we assess the information content of models
with maximized AUROC and finally, we examine the economic effects of using models with
maximized AUROC.
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4.1 AUROC Results

Table 3 shows the out-of-sample performance (2007-2015) of the various specifications
for maximizing AUROC and also includes a logistic regression model, trained by

maximizing the log-likelihood function.
[Insert Table 3 here]

Overall, models that are trained to maximize AUROC perform better out-of-sample as
compared to the logistic regression model that is trained to maximize the log-likelihood
function, indicating that the functions we examine perform well out-of-sample, in
discriminating firms that will go bankrupt the next year. Notice that when using the
exponential square and exponential e-smoothed merit functions, we obtain higher AUROCSs
compared to using the L2-max and e-smoothed merit functions. These functions prevent the
outliers, which are usually included in the financial data, to influence the optimization

process, allowing for a smoother calculation of the coefficient estimates.

Interestingly, among the models with a linear response function, the one that uses the
exponential e-smoothed merit function performs the best when using both the private and
public firm models (AUROCSs equal to 0.9247 and 0.9480 respectively). We believe that this
result bears a possible explanation. As can be seen in the bottom plot of Figure 1, the
exponential e-smoothed function is the only function that gives emphasis on small “z”” values
(whereas the L2-max and exponential square functions give less or no emphasis), but also
accounts for outliers. The L1-max function also emphasizes on the small values but does not

account for the outliers.

However, from all the models we consider, the neural network model with a probabilistic
response function is the best performing model, which is consistent with the notion that
neural networks outperform simpler modeling approaches (Zhang et al., 1999; Kumar and
Ravi, 2007; Lessmann et al., 2015).

The effect by maximizing the AUROC, as expected, is more pronounced in the case of
“private firms model” where only limited information is available (i.e. financial
information), hence there is more space to improve the performance. In contrast, the effect
is less pronounced in the case of “public firms model”, since the inclusion of market data in

addition to financial data, further increases the forecasting power of the models. In fact, a
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logistic regression model achieves high discriminatory power, measured by AUROC
(0.9425), but models whose coefficients are estimated by maximizing the AUROC

outperform the former.

From the results in this section, we suggest using the neural network model trained to
maximize AUROC. For the user interested in simpler models, such as models with linear
response functions, we suggest the implementation of the exponential e-smoothed function,
suitable for data with outliers. For the remaining tests, we use these two approaches and
compare them with a model estimated without maximizing AUROC, for example, a logistic
regression model, in order to test the conjecture that models with maximized AUROC are

more valuable risk management tools in bankruptcy prediction.

4.2 Information Content Results

In this section we report the results from information contest tests. We compare the
information contained in out-of-sample bankruptcy probabilities produced by models
without maximized AUROC, for example a logistic regression (Prob 1), and by models with
maximized AUROC. We consider the best model in the linear response family that accounts
for the outliers (Prob 2) and by the neural network model which we find to be the best
performing model (Prob 3). Table 4 reports the results of logit models that include the out-
of-sample bankruptcy probabilities as explanatory variables but also the annual bankruptcy

rate (Rate) as the baseline hazard rate.
[Insert Table 4 here]

Panel A reports results from six models. Model 1, 2 and 3 include out-of-sample
bankruptcy probabilities produced by the logistic regression model, by the best model among
the linear response functions and by the neural network respectively, using only financial
data (private firms model). Models 4-6 correspond to models 1-3 but include financial and

market data (public firms model) for the estimation of the probability of bankruptcy.

According to the results, bankruptcy probabilities in models 1-6 are highly statistically
significant, indicating that they carry significant information in predicting bankruptcy one
year ahead, (coefficient estimates are significant at the 1% significance level). More
importantly, bankruptcy probabilities produced by models with maximized AUROC contain
significantly more information than bankruptcy probabilities produced by models without

maximizing AUROC. In particular, in panel B, we use the Vuong (1989) test-statistic to test
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for differences in the log-likelihoods between various (non-nested) models. Results show
that the log-likelihoods of models 2 and 3 are significantly different than model 1 (test-
statistics are 5.38 and 8.21 respectively). We also document higher explanatory power of

model 3 over model 2 (Vuong test-statistic is 3.40).

As far as models 4-6 is concerned, evidence confirms that models with maximized
AUROC capture more bankruptcy-related information, according to log-likelihood
comparisons. For instance, differences in the log-likelihoods of model 6 over model 4 and
model 5 over model 4, are statistically significant (Vuong test-statistics are 7.71 and 3.84
respectively). Significant difference is also documented between the log-likelihoods of

models 6 and 5, as the Vuong test-statistic is 5.61.

Overall, our results suggest that models with maximized AUROC provide probability
estimates that contain significantly more information about bankruptcies over the next year
compared to a logistic regression model, even when the increase in AUROC is relatively

small (as in the case of our public firm models).

4.3 Economic Performance Results

So far we have considered discriminatory power and information contest tests to assess
model performance. However, a bank is generally interested in the economic benefits arising
by using bankruptcy prediction models in the decision-making process of granting loans to
individual firms. Following Agarwal and Taffler (2008) and Bauer and Agarwal (2014), we
consider a loan market worth $100 billion and four banks are competing to grant loans to
prospective firm customers. We hypothesize that bank 1 is a “naive” bank, using a generic
corporate model such as Altman’s Z-score for its credit decisions. Further, bank 2 uses a
statistical approach to develop a bankruptcy prediction model such as the logistic regression
model developed in this study. Finally, banks 3 and 4 are more sophisticated in the sense
that they use models with maximized AUROC. To this end, bank 3 uses the best model with
the linear response function and bank 4 uses the neural network model. In Table 5, we report
the results, for both private and public firm models.

[Insert Table 5 here]

Clearly, banks 3 and 4 which use models with maximized AUROC manage loan portfolios
with higher quality relative to banks 1 and 2 which use Altman’s Z-score model and a logistic

regression model respectively. This is evident by the lower concentration of bankruptcies
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they attract. In particular, the bankruptcy rate of bank’s 4 portfolio is 0.060% and 0.053%
when using the private and public firms model respectively and the bankruptcy rate for bank
315 0.18% and 0.12% using the private and public firms model respectively. In contrast,
0.50% and 0.25% of the loans provided by bank 2, using the private and public firms model
respectively, file for bankruptcy the next year while for bank 1 the bankruptcy rates are
1.20% and 1.06% for the private and public firms model respectively. Notice that the higher
the AUROC for the model (reported in Table 3), the better the quality of loans granted by
the bank. Among the four banks, bank 4 which uses a neural network models manages the

credit portfolio with the highest quality.

More importantly, banks 3 and 4 achieve superior economic performance compared to
banks 1 and 2 on a risk-adjusted basis. For example, considering the private firms model,
banks 3 and 4 which use models with maximized AUROC, earn 2.37% and 1.60% per dollar
invested respectively, while banks 1 and 2 earn 0.16% and 0.84% respectively. Similarly,
considering the public firms model, banks 3 and 4 earn 2.24% and 2.21% respectively,
whereas banks 1 and 2 earns a lower return (0.25% and 1.80% respectively)3. Notice that
the small differences between the AUROC of models (especially for bank 3 and 4), are
depicted in the economic performance consistent with the findings of Bauer and Agarwal
(2014).

4.4 Focusing on the financial crisis period 2007-2009

We perform an additional test by measuring the performance of the models during the
financial crisis period 2007-2009. For this test, we compare the models with maximized
AUROC (the neural network and the best linear response model) with models which are
trained without maximizing AUROC, such as logistic regression (results are not tabulated).
Overall, we find qualitatively similar results with the previous tests, suggesting that under
stressed conditions, models which use AUROC as the optimization criterion, outperform

logistic regression models.

5 Conclusions

In this paper, we develop bankruptcy prediction models where the discriminatory power

as measured by the Area Under ROC curve (AUROC), is used as the optimization criterion

33 Results are robust with respect to different specifications for LGD (0.4-0.7) and k (0.002-0.004), suggesting
that models with maximized AUROC, outperform the traditional approaches.
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to obtain their coefficients and we highlight the benefits of using such models. First, we
consider variables used in well-established bankruptcy prediction studies, such as Campbell
et al. (2008) to construct a traditional model based on logistic regression and using these
variables, we introduce and compare several methodologies to maximize AUROC. We
consider linear and probabilistic response functions for the output of the models and we
examine several merit functions used to obtain the coefficients. We find that the proposed
approaches outperform, out-of-sample, the logistic regression models according to different
tests. For the users interested in simpler models with a linear response function, we
recommend the use of the model whose coefficients are estimated with a merit function that
takes care of the outliers. For users interested in more advanced models, we recommend a
neural network model since according to our findings is the best performing model. The
results hold under various tests such as AUROC analysis, information content tests and in
terms of economic benefits when banks use different bankruptcy prediction models in a
competitive environment. We therefore suggest the consideration of AUROC as an
optimization criterion when developing bankruptcy prediction models.
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Tables

Table 1: List of financial and market variables

Panel A: Financial Ratios (Compustat)

Variable Detailed Description Compustat Item
NITA Net Income/Total Assets NI/AT
EBITTA Earnings Before Interests and Taxes/Total Assets EBIT/AT
RETA Retained Earnings/Total Assets RE/AT

CASHTA Cash and Short-Term Investments/Total Assets CHE/AT
WCTA Working Capital/Total Assets WCAP/TA
STDTA Debt in Current Liabilities/Total Assets DLC/AT

TLTA Total Liabilities/Total Assets LT/AT
CLCA Current Liabilities/Current Assets LCT/ACT
EBITCL Earnings Before Interests and Taxes/Current Liabilities EBIT/LCT
NICL Net Income/Current Liabilities NI/LCT
CFOTA Operating Cash Flows/Total Assets OANCF/AT
CFOTL Operating Cash Flows/Total Liabilities OANCF/LT
SLTA Sales/Total Assets SALE/AT
LOGASSETS Natural logarithm of Total Assets LOG(AT)

Panel B: Market Variables (CRSP)

VOLE Annualized volatility of daily equity returns
EXRET Annualized equity return minus the value-weighted return of NYSE, AMEX,

NASDAQ stocks
LOGPRICE Natural logarithm of the stock price, at the fiscal-year end
RSIZE Natural logarithm of firm’s market capitalization over the total market
capitalization of NYSE, AMEX, NASDAQ stocks
MB Firm’s market capitalization over book value of equity (Market-to-Book ratio)

TLMTA Total Liabilities/ (Market Capitalization + Total Liabilities)
NIMTA Net Income/ (Market Capitalization + Total Liabilities)
CASHMTA  Cash and Short-Term Investments/ (Market Capitalization + Total Liabilities)

This table shows all financial ratios and market variables that are considered to construct the
bankruptcy prediction models. From these, only a set of variables are selected according to a
three-step procedure described in the text.
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Table 2: Descriptive statistics for the selected variables

TLTA STDTA NITA CASHTA EBITCL LOGPRICE EXRET CASHMTA NIMTA

Bankrupt

Firms

Mean 0.854 0.181 -0.382 0.107 -0.578 0.528 -0.224 0.0684 -0.250
Median 0.825  0.099 -0.211 0.045 -0.153 0.560 -0.349 0.032 -0.172
St.Dev. 0.327 0.183  0.450 0.157 1.289 1.146 0.876 0.100 0.257
Healthy

Firms

Mean 0.486  0.048 -0.042 0.190 0.07 2.293 0.205 0.121 -0.022
Median 0478 0.014  0.031 0.101 0.153 2.474 0.106 0.063 0.022
St.Dev. 0.253 0.083  0.254 0.217 1.322 1.266 0.684 0.162 0.149

This table reports descriptive statistics for several financial and market variables, one year prior to bankruptcy for both
bankrupt and healthy firm observations. The definition of the variables is given in Table 1.

Table 3: AUROC results

Methodology Private Firms Model Public Firms Models

Logistic Regression 0.8991 0.9425
Probabilistic Response Function

Logistic 0.9221 0.9470
hly-(PePre) I Neural Network 0.9331 0.9508
Linear Response Function
max|[0, 1- B(Xs-Xng)] 0.9147 0.9456
he[ 1 — B(Xs-Xns) ] 0.9151 0.9468
{max[0, 1 — B(Xe-Xng)]}? 0.9121 0.9462
1-exp( - {max[0, 1 — B(Xe-Xne)]}?) 0.9129 0.9473
1-exp( - he 1 - B(Xe-Xng) 1) 0.9247 0.9480
Other Approaches
Miura et al. (2010) 0.9188 0.9471
Kraus and Kuchenhoff (2014) 0.9046 0.9473

This table reports AUROC results for a logistic regression model as well as for models with
maximized AUROC, when we consider probabilistic and linear response functions, as well as
various merit functions used to obtain the coefficients. The models are trained in the period
1990-2006 and the table reports results in the out-of-sample period 2007-2015. For the logistic
regression, the log-likelihood function is used as a merit function to obtain the coefficients.
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Table 4: Information content tests results

Panel A: Logit models estimation

Private Firms Model Public Firms Model
Model 1  Model 2 Model 3 Model 4 Model5 Model 6
Probl 0.296 0.271
(7.27) (10.33)
Prob2 0.103 0.065
(5.63) (6.11)
Prob3 0.069 0.195
(19.25) (16.60)
Rate -0.218 -0.711 -1.128 -0.370 -0.747 -1.07
(-0.59) (-1.93) (-2.91) (-0.92) (-1.95) (-2.28)
Constant -5.52 -13.24 -7.98 -5.54 -9.64 -20.32
(-30.42)  (-7.78)  (-26.33) (-28.84) (-9.44) (-18.72)
Log-Likelihood -774.96 -656.72 -601.53 -728.26  -639.96 -554.91
Pseudo-R? 8.56% 22.51 29.03% 14.07% 24.49% 34.53%
Panel B: Vuong test statistics for differences in log-likelihoods
Models 1 2 3 Models 4 5 6
3 8.21 3.40 - 6 7.71 5.61 -
2 5.38 - 5 3.84 -
1 - 4 -

This table reports results from information content tests. Panel A shows estimation of six logit models.
Model 1, 2 and 3 include out-of-sample (2007-2015) bankruptcy probabilities produced by logistic
regression, and by models with maximized AUROC (the best model with linear response function and by
a neural network) respectively, using financial data only. Models 4-6 correspond to models 1-3 but using
financial and market data. All the models include the Rate as proxy for the baseline hazard rate, which is
the prior year bankruptcy rate in our sample. The last two rows of the panel reports log-likelihood and
pseudo-R? for each model. Panel B reports Vuong test statistics for differences in the log-likelihoods
between the six models.
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Table 5: Economic performance

Private Firms Model Public Firms Model

Bankl Bank2 Bank3 Bank4 Bankl Bank2 Bank3 Bank4

Credits 5649 6253 3410 13278 8083 3228 7785 9491

Market Share (%) 19.68 21.78 11.88 46.25 28.15 11.24 27.12 33.06

Bankruptcies 68 31 6 8 86 7 9 5

Bankruptcies/Credits (%) 1.20 0.50 0.18 0.060 1.06 0.25 0.12 0.053
Average Spread (%) 0.56 0.37 0.35 0.33 0.53 0.36 0.34 0.34
Revenues ($M) 109.25 81.41 4141 153.15 149.67 40.08 9145 111.79
Loss($M) 97.18 44.30 8.57 11.43 12290 11.43 12.86 7.15
Profit($M) 12.07 37.11 32.84 14172 26.77 28.65 7859 104.64

Return on Assets (%) 0.061 0.17 0.28 0.31 0.095 0.25 0.29 0.32
Return on RWA (%) 0.16 0.84 1.60 2.37 0.25 1.80 2.21 2.24

This table reports economic results for four banks in a competitive loan market worth $100 billion. Bank 1
is a bank using simply the Altman’s Z-score model for estimating the bankruptcy score. Bank 2 uses a
statistical approach, such as the logistic regression model developed in this study. Banks 3 and 4 are more
sophisticated, using models with maximized AUROC. Bank 3 uses the best model with a linear response
function and bank 4 uses the neural network model.

The banks sort prospective customers (2007-2015) and reject the 1% of firms with the highest risk. The
remaining firms are classified in 10 groups of equal size and for each group, a credit spread is calculated, as
described in the main text (section 5.3). The bank that classifies the firm to the group with the lowest spread
is finally granting the loan. Market share is the number of loans given divided by the number of firm-years,
Revenues = (market size)*(market share)*(average spread), Loss=(market size)*(prior probability of
bankruptcy)*(share of bankruptcies)*(loss given default). Profit=Revenues-Loss. Return on Assets is profits
divided by market size*market share and Return on Risk-Weighted-Assets is profits divided by Risk-
Weighted Assets, obtained from formulas provided by the Basel Accord (2006). The prior probability of
bankruptcy is the bankruptcy rate for firms between 1990-2006 and equals 0.42%. Loss given default is 45%.
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Figure 1: Plotting various merit functions. For the exponential-type functions, we set o=1.
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Logistic Regression
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Figure 2: Plotting a sample of dij’s, estimated using logistic regression and with models based on

AUROC maximization, using the e-smoothed merit function
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Panel A: Probabilistic Response Function

Neural Network Structure Response Function Merit Function
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Figure 3: Outline of the modeling approaches, response functions and merit functions
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CHAPTER 3

A semiparametric default forecasting model

Abstract

A fundamental limitation of structural (parametric) models for the estimation of the
probability of default is that their most important parameters, the value of assets and
volatility, are not observed in the market. In this paper we develop a methodology where the
unobserved parameters are viewed as generalized functions. Using a nonparametric
approach for their estimation, we obtain improved parameter values which enter a parametric
model, yielding a semiparametric model. In this context, the Black-Scholes-Merton model
is used as a paradigm. Results show substantial improvement in the out-of-sample
performance when comparing our semiparametric model with other alternative
specifications of the Black-Scholes-Merton model in terms of discriminatory power,

information content and economic impact.
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1 Introduction

1.1 Background and Motivation

The Black-Scholes-Merton model (i.e. Black and Scholes, 1973 and Merton, 1974) is one
of the most widely used corporate default forecasting models, which become popular among
academics and practitioners in the early 2000’s. In particular, Crosbie and Bohn (2003) is
one of the earliest papers that provides detailed explanation of the model. Since then, it has
become state of the art in the academic literature, as several papers have compared its
predictive power with other widely-used models®* (Hillegeist et al., 2004; Reisz and Perlich,
2007; Agarwal and Taffler, 2008; Bauer and Agarwal, 2014). Another strand of the literature
has also tried to extend and improve the performance of the model through alternative
estimation of its input parameters (Bharath and Shumway, 2008; Charitou et al.,2013; Afik
etal., 2016). The present study is related with the second strand of the literature. In particular,
we develop a new estimation technique that provides improved parameter values, eventually
improving the forecasting power of the Black-Scholes-Merton (BSM).

The intuition behind the BSM model is very simple. The equity of the firm is viewed as a
European call option underlying the assets of the firm and with strike price being the
liabilities of the firm. At maturity, the firm defaults if assets value falls below liabilities. In
this case, equity holders receive nothing but walk free due to their limited liability. In the
opposite scenario, equity holders are the residual claimants after all obligations are paid and
the firm continues as a going concern. In this setting, the probability of default is the
probability that at maturity, the assets value worth less than the liabilities.

The empirical application of the model requires several parameters, like for instance, the
value of assets, the volatility of asset value changes, the expected growth of assets and the
liabilities. However, two of the most important parameters, the value of assets and the
volatility of asset value changes, are not observed, which makes the implementation of the
model a challenging task. The literature provides two different estimation techniques to
obtain the unobserved parameters. The first one, is based on iterative procedures
(implemented by Hillegeist et al., 2004; Vasallou and Xing, 2004; Campbell et al., 2008).

However, as argued by Crosbie and Bohn (2003), such estimation approaches might yield

34 Evidence in the literature is conflicting. For instance, Hillegeist et al. (2004) find that the Black-Scholes-
Merton model performs better than the Altman (1968) and Ohlson (1980) models, whereas Agarwal and Taffler
(2008) find that Altman (1968) performs better. Nevertheless, Bharath and Shumway (2008) and Campbell et
al. (2008) find that it is not a sufficient statistic, suggesting that other information not included in the model
might be useful for default prediction.
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inaccurate probability of default estimations when market leverage changes too fast. In
addition, numerical errors during the iterations might affect the estimation of the two
unobserved parameters (Charitou et al., 2013), which makes the specific approach quite
“noisy”. To avoid the iteration approach, several papers have proposed a second approach
which is based on “simplified” approximations for the two unobserved parameters (Bharath
and Shumway, 2008; Charitou et al., 2013; Afik et al., 2016). We review the major

estimation approaches in the subsequent section.

It is inevitable, therefore, that the estimation technique affects the performance of the
model and by improving the estimation of the unobserved parameters would improve the
forecasting power of the BSM model. In this paper, we develop an approach to obtain
improved parameter values that are used in the parametric model (i.e. the BSM), based on a
nonparametric approach. Specifically, we assume the value of assets and the volatility to
depend on several exogenous variables that are elements of the vector x, through some
unknown relationships. We estimate these unknown relationships through learning, by
embedding in the model a nonparametric structure, such as neural networks. The inputs to
the neural network are the variables in the vector x, and the outputs are the unobserved
parameters which are the inputs to the parametric model, thus yielding a semiparametric
model for the estimation of the probability of default. In this setting, the weights of the neural
network are adjusted in order to maximize a merit function. The proposed approach provides
an alternative estimation method that outperforms the “noisy” iterative procedures and the

“simplified” approximations in out-of-sample forecasts.

The basic advantage of the proposed approach is that one does not need to make
assumptions about the structure of the unobserved parameters, for example to impose any
deterministic relationships to calculate them. Instead, by letting the unobserved parameters
to depend on some exogenous inputs, X, through some unknown functions, the network is
optimized accordingly to learn the unknown relationships, providing improved parameter

values, while preserving the theoretical properties of the parametric model.

Semiparametric methods have been used by Bandler et al. (1999) which show that such
network structures can be used to adjust the parameters of imperfect models to get more
accurate outputs. In the context of options pricing, semiparametric methods have been used
by Ait-Sahalia and Lo (1998) and Ait-Sahalia and Duarte (2003). Furthermore, Andreou et
al. (2008) used semiparametric methods to obtain improved parameters (implied volatility,

skewness and kurtosis), in options pricing. The results justify the implementation of the
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semiparametric approach, since the option prices were more accurate relative to other

estimations approaches.

In this paper, for the first time, we use semiparametric models in the context of default
prediction. In our framework, the imperfect model is the BSM model and the network
structure adjusts the parameters of the BSM model (such as the value of assets and the
volatility) in order to obtain improved parameters and eventually, more accurate probability

of default outputs.

We use accounting and market data between 1989 and 2014 for non-financial U.S. public
firms to estimate the probability of default with the various BSM specifications, over a one-
year forecasting horizon (for defaults between 1990-2015). For the estimation of the
semiparametric model, we divide the whole sample into two sub-samples; the in-sample
period includes defaults between 1990 and 2006 and the model is used to make forecasts in

the out-of-sample period which includes defaults between 2007 and 2015.

1.2 Main Findings

We compare the performance of our semiparametric model with alternative BSM
specifications; When asset value and volatility are estimated based on iterative procedures
(i.e. Hillegeist et al., 2004 and Vassalou and Xing, 2004) and when estimated using direct
estimation approaches (Bharath and Shumway, 2008 and Charitou et al., 2013). Specifically,
we use three distinct type of tests. In the first test, we compare the discriminatory power of
the models based on the widely-used Area Under Receiver Operating Characteristic curve
(AUROC). Results indicate that the discriminating ability of the semiparametric model is
substantially better than the competing approaches. In the second test, we compare the
information content of the various BSM specifications. Results show that default
probabilities produced by the semiparametric model contain significantly more information
than default probabilities produced by the alternative BSM specifications. In the final test,
we compare the economic impact arising when banks use the different BSM models in the
decision-making process of granting loans to individual firms. We find that the bank which
uses the semiparametric model earns superior risk-adjusted returns relative to the banks
which use the alternative methodologies. Overall, results from our tests suggest that our
approach yields more accurate asset values and volatilities which are reflected in the

performance of the BSM model.
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Several additional tests are conducted for robustness, including augmenting the sample of
events with financially distressed firms-a practice which makes prediction more challenging.
We find that our semiparametric approach substantially outperforms the alternative BSM
specifications. Interestingly, using the new dataset with financially distressed firms, the
semiparametric approach is also better than other widely-used methodologies such as the

logistic regression and the nonparametric approaches.

The remainder of the paper is organized as follows: Section 2 describes the alternative
BSM specifications, which are used as benchmark, while section 3 describes our
methodology to obtained improved parameter values for the BSM model. Section 4 discusses
the data and section 5 describes the three distinct-type of tests we employ in order to test the
performance of the models. Section 6 discusses the main results, and section 7 provides

additional results for robustness and section 8 concludes.

2 BSM Model and Estimation of Asset Value and Volatility
2.1 Black-Scholes-Merton Model

Since equity can be viewed as a European call option, the standard options pricing formula
can be applied to value the equity of the firm as follows:
E=VN(dy) —Fe ""N(d,) (1)

where

- ln(V/F) + (r + 0.562)T
1= -~
d, =d; —oNT 3)

Here, V is the value of assets, F the liabilities of the firm, gy, the volatility of assets value

)

returns, r is the riskless rate of return, N(d) is the standard normal distribution function and
T is the liabilities time to maturity. In Eq. (1), N(d2) represents the probability of solvency
i.e. the probability that the firm will not default on its liabilities. Therefore, the probability
of default is 1-N(d2) or N(-d2). In the context of Black-Scholes-Merton, however, N(-d2) is
the risk-neutral probability of default, since d> is estimated using the riskless rate of return,
r. We estimate the real-world probability of default, by substituting r with the real growth of
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assets, u. Hence, it is straightforward to show that the probability of default, PD, is given by

the following formula®®.

(4)

Gv\/T

The ratio inside of Eq. (4), known as the distance-to-default, gives the number of standard

|4 — 2
PD = N(—d,) =N (_ In( /F) + (u 0.50V)T>

deviations the value of assets must drop in order the firm to default (i.e. how far the firm is

away from default).

However, the two most critical inputs in Eq. (4), V and gy, are not observed in the market
which makes the estimation of the probability of default a challenging issue. Due to this,
there was a burgeoning academic literature since the early 2000’s regarding the estimation
of V and oy,. We identify three main approaches for the estimation of these inputs, which we

discuss in the following section.

2.2 Alternative Approaches to Estimate Assets Value and Volatility

In this section we present the various approaches used in the literature to estimate asset
value and volatility, which we use as benchmark for our proposed approach.

2.2.1 Two Equations Approach (2-Eqs. Approach)

One of the earliest and probably the most common estimation approach for V and oy, was
given by Jones et al. (1984) in the context of corporate debt valuation and by Ronn and
Verma (1986) in the context of the empirical estimation of deposit insurance premiums. In
the context of default probability estimation, this approach has been used, for instance, by
Hillegeist et al. (2004) and Campbell et al. (2008).

In particular, in the framework of options pricing there are two equations that we can solve

iteratively to obtain the value of assets and the volatility. For the first equation, we solve the

3 In the context of default prediction, Eqgs (1) and (4) come with variations. For instance, Hillegeist et al. (2004)
include a dividend yield and use liabilities for F, while Vassalou and Xing (2004) do not include a dividend
yield but use short-term debt plus half of long-term debt for F. For the purposes of our study, it is important to
keep a common specification, like the standard formulas in Egs. (1) and (4) and change only the methodology
for asset value and volatility estimation in order to ensure that the source of improvement in model
performance, comes from the methodology itself and not from the formula specification.

-82-



standard options pricing formula given by Eq. (1), with respect to V, yielding the following
equation®®:
_E+Fe N(d,)
N(d,)
The second equation relates the (annualized) volatility of equity changes, oz, which is

(5)

obtained from historical equity data, with the volatility of asset changes, gy, through the

equation oy = (g)g—iav. Given that Z—i = N(d1) and re-arranging the terms, ay, is calculated
as follows:
_ Eog 6

Starting from some initial values, for instance setting V=E+F and o, = o on the RHS in
Egs. (5) and (6), we obtain a new set of V and gy, which are used in the next iteration in order
to update the values of the two variables. The process is repeated until the changes of V and
oy between two consecutive iterations are very small. When we obtain the two values, we
can easily estimate x as the return on asset values between two consecutive years i.e. In(Vt
/Vi1). Note that the two equations approach, is performed at a specific point in time, for

instance, at the fiscal year-end prior to the year of default.

However, as argued by Charitou et al. (2013), convergence problems in the numerical
procedures may yield numerical errors into the estimation of V and ay,. Further, Crosbie and
Bohn (2003) argue that depending on how quickly market leverage changes, solving Egs.
(5) and (6) biases the probability of default because Eq. (6) holds instantaneously. Moreover,
because Egs. (5) and (6) are derived from the basic assumptions underlying options theory,
we believe that these assumptions pose restrictions in accurately estimating these unobserved

parameters.
2.2.2 Single Equation Approach (1-Eg. Approach)
A related approach with the 2-Eqgs.Approach, is the 1-Eq. Approach used by Vassalou and

Xing (2004) in their study on how firm default risk affects equity returns. In this case, given

the observable daily time-series of equity for the entire year, we use Eqg. (5) to obtain daily

% We re-run by considering a dividend component as in Hillegeist et al. (2004), but we haven’t found any
differences in the performance.
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time-series for the value of assets®’. Once we obtain the time-series of asset values, we
estimate the annualized volatility, oy, from the logarithmic changes of asset values. Using
this estimate of gy, in the next iteration we obtain a new series of asset values and estimate
a new value for a,. This process is repeated until the change in volatility is very small, i.e.
0.0001. This approach also requires setting initial values for V and a,,. We set V=E+F and
Oy = Og.

Once we obtain the daily series of Vs, we calculate the annualized growth of assets, x,
from the logarithmic changes of 7’s. The advantage of this approach is that it requires the
solution of just one equation, possibly reducing convergence errors relative to using the two
equations approach, but it is computationally intensive. Nevertheless, it still relies on
convergence criteria that may affect the final outputs and consequently the accuracy of the

probability of default.

2.2.3 Direct Estimation Approaches

Under this category, the estimation of V and gy, is not based on iterative procedures at all
but rather, the estimation relies on approximations using observable data. Prominent among
the studies that use such approximations is Bharath and Shumway (2008), which we denote
as BS (2008). In their study, V is approximated by the sum of market value of equity (E) plus
the debt (F). Next, they calculate oy, as a weighted average of the volatility of equity and the
volatility of debt:

E F
_ 7
EErFOE T R RO )

where o = 0.05 + 0.2505. Finally, for the growth rate of V, they use the stock market

return over the previous year (u=rg ¢—1). The authors show empirically that the BSM model
performs better when V and oy, are estimated with the simplified approximations, as opposed
to more complex iterative procedures. They conclude that the accuracy stemming from BSM

Is due to its functional form and iterative procedures used to obtain V and gy, are not useful.

In a similar notion, Charitou et al. (2013), which we denote as CDLT (2013), suggest the

estimation of V and oy, directly from equity data. In their study, they use the sum of equity

37 We re-run by setting F as short-term debt plus half of long-term debt as in Vassalou and Xing (2004). Again,
we haven’t found any differences in the performance.
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and liabilities as an approximation of V. Using monthly equity data over the previous 60
months, they calculate a time-series of J’s from which the annualized return (x) and
volatility (o,) are obtained. We slightly modify CDLT (2013), by estimating the
aforementioned variables using daily equity data over the prior year, in order to be consistent

with the standards of our study, since we use equity data over a one-year period.

CDLT (2013) demonstrate that such specifications improve the performance of the BSM
model compared with the ad-hoc specifications of BS (2008). The authors, however, do not

compare their results using the two equations approach, or the single equation approach.

In the following section we present a nonparametric methodology where improved
parameters enter the BSM parametric model, yielding a semiparametric model, avoiding in
that way the estimation of the parameters by solving the equations or using simplified

approximations as described above.

3 Methodology: A Semiparametric Model
3.1 The General Case

Consider that we have a parametric model, fpy,, Which requires the parameters p to
estimate the probability of default:

PD = fou(p) (8)
where p = [p1, P2, .., p1] 1S the L dimensional vector with the L parameters of the model

and fp,, refers to the functional form of the parametric model. Suppose that some parameters

of fpu, SAy M, where M < L, are not observable and thus:

PD = fpu(p~,p") ©)

In Eq. (9), p~ = [p1, P73, -, Py] IS the vector which corresponds to the unobservable
parameters, and p* = [pi4+1, Pir+2, -, P; 1 is the vector which corresponds to the observable

parameters. Note that the vector p consists of the two subsets p~ and p*.

Suppose now that the unobservable parameters, p~, depend on some exogenous variables

that are elements of the vector x, through some unknown relationships:

p1 = fi(x) (10)
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Py = fu(x)
where f;(x) is some unknown function of p; with respect to the exogenous vector of
variables, x, which we aim to estimate nonparametrically through learning, for i=1,2,...,M.

In this context, the probability of default is estimated as:

PD = fpu(z,0") (11)
where z = [f;(x), f(x), ..., fsr (x)] refers to the vector with the variables that are determined
through the nonparametric estimation of the unknown functions. In fact, the vector z provides
improved parameter values to the model in Eq. (11), which we refer to as semiparametric

model. Figure 1 provides a schematic representation of the proposed approach.
[Insert Figure 1 here]

As can be seen from the figure, the probability of default is estimated using the functional
form of the parametric model but using two sets of inputs: 1) the inputs that enter directly to
the parametric model, p*, and 2) the variables z, which depend on the exogenous variables x
through some unknown relationships that we aim to estimate nonparametrically (i.e. x are
the inputs to the nonparametric model that produce the outputs z). In this context, z and
consequently PD, depend on the weights imposed by the nonparametric model. The next
step is to estimate the weights by training the model. Consider that we have N input samples
(i.e. observations). Each input sample, x,, = [x1,, X2p, ..., Xk ], IS associated with a known
target, t,, where n=1,2,..., N and k is the number of variables. In the context of default
prediction, the input sample x,, can be information characterizing the n-th firm, such as
financial or market information, whereas t,, is an indicator variable which equals 1 if the
corresponding firm-observation defaults and O otherwise. The output of the parametric
model, PD(w), with the associated targets, t, are used in the merit function which is
optimized in order to obtain the weights of the nonparametric model and consequently the
final output, which is the probability of default, PD. The nonparametric model here serves
as an auxiliary mechanism which adjusts the parameters of the parametric model during the
training phase, until the merit function is optimized. Note that both the nonparametric and
parametric models belong to the network structure. This is important because in this setting,

the nonparametric model embeds knowledge from the parametric model.

In this study, we use a feedforward neural network since it is the most common neural
network architecture and it has been widely used to approximate any unknown function.
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Cybenko (1989) proved that a feedforward neural network with a single hidden layer with
enough neurons in the hidden layer, with monotonic increasing activation functions and
linear outputs, can approximate any continuous function to any degree of accuracy.
Similarly, Hornik et al. (1989) concludes that such network architectures are universal
function approximators. Furthermore, neural networks have been successfully applied in the
context of default prediction. For example, Kumar and Ravi (2007) in a comprehensive
review for the work done during 1968-2005, report that in general, neural networks
outperform other popular approaches for default prediction. Therefore, neural networks is

an appropriate methodology for our framework.

A typical feedforward neural network is a system with interconnected units (neurons)
organized into layers where information, flow from the previous layers to the next layers
aiming to learn the unknown relationships between the inputs and outputs. The first layer in
our network, presented in Figure 2, is consisted with H units, with the i-th unit connected

with the input features, X, through the k-dimensional weight vector wi(l)and the biases w'"

i0
@
l

The i-th unit produces a weighted sum, :~’, which enters an activation function, fi(l), to

produce an output, yi(l), where i=1,2,...,H. The outputs from the first layer are further
processed in the second layer which is consisted with M units, corresponding to the outputs

of the network. The j-th unit in this layer is connected with the outputs from the previous

layer through the H-dimensional weight vector wj(z)and the biases wj(.f). The j-th unit
produces a weighted sum, zp]@, which enters an activation function, fj(z), to produce the

final output, yj(Z), with j=1,2,....M.

[Insert Figure 2 here]

The set of equations below shows the explicit derivation of the outputs from the neural

network, y® ...y®:

H K

@ _ @ ) @ (€Y) (€Y)

Yi = J1 Wi +Zw1i f; Wio +2Wij Xj
i=1 =1

(12)
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H
2 _ @2 ) ) (1 (€] 1
Yv™ = JIm |Wmo +ZWMi f; Wio +zwij Xj

i=1 =1

The RHS of the set of equations above, are the generalized (unknown) functions that we
seek to estimate by optimizing the weights of the network, according to a merit function.
The LHS of the set of equations, correspond to the improved parameters that enter the
parametric model, yielding the semiparametric model.

Overall, there are several advantages by using our proposed approach. First, we do not
need to impose a priori ad-hoc or simplified approximations for the parameters of the
parametric model. Instead, by treating (some of) the parameters as generalized functions, the
network structure optimizes the weights accordingly, to determine the relationships between
the input features and the parameters under consideration, yielding improved parameters that
enter the parametric model. Second, we utilize the strong learning capabilities of the
nonparametric model while preserving the theoretical properties of the parametric model.
That is, the probability of default is estimated using the underlying theory of the parametric
model, while the nonparametric model embeds knowledge from the parametric model which

is useful during the training phase of the network.

3.2 The Case of BSM Model

First, it would be useful to rewrite Eq. (4) as follows:

uT

In (Vi: ) — 0.502T

PD =N(—DD)=N| — (13)
( ) Uv\/T

Note that the numerator inside the logarithm in Eq. (13), Ve*T, is the expected value of
assets which when scaled by the liabilities of the firm, F, gives the expected leverage,
denoted by E; . Thus, the probability of default is given by the following formula:

(14)

PD =N(-DD) =N <_ In(E,) — 0.50§T>

T

Consider now that there are two outputs from the nonparametric model; the expected

value of assets (divided by liabilities, for scaling considerations), yl(z) = E;(w), and the

volatility of asset value changes, yz(z) = oy(w):
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E,(w) = fi(x,w) (15)

oy(w) = fo(x,w) (16)
The RHS of Egs. (15) and (16) are the generalized (unknown) functions between the input
features, x, and E; and oy, that the neural network seeks to learn by optimizing the weights
of the network structure. These two outputs are entered as inputs to the BSM model and thus
obtaining the probability of default:

PD(W) = N[-DD(w)] = N <_ Inf, (w)] - 0-So§(w)T)

O-V(W)\/T
Notice that the difference between Eqgs. (14) and (17) is that the latter depends on the weights

17

imposed to E;, and oy, through the neural network and as a consequence, the probability of
default, PD, is a function of the weights, yielding a semiparametric model. For a sample of
N observations, the weights of the neural network are obtained by maximizing the Log-
Likelihood, LL, defined as follows:

N
LLW) = ) Ly(w) (18)

where
l,(w) = t,In[PD,,(w)] + (1 — t,) In[1 — PD,,(w)] (19)

To solve the problem, we formulate a nonlinear unconstrained optimization process using
MATLAB. Specifically, we use the fminunc command and the trust-region optimization
algorithm to obtain the weights of the neural network. At each iteration, the optimization
algorithm updates the weights according to the partial derivatives that we provide. The
gradient vector of L, (w) with respect to the weights is given by (for simplicity we drop the

subscript n):

al(w) OPD(w)
2= 20
ow c(w) aw (20)
_ t—PD(w)
where c(w) = PDOIL—PDOT] and
aPD(w) < aPD(Y@)dyS” o
0 -25 @ 9
w =t ayj w

38 The notation we use here for the gradient used for the adaptation of the weights of the neural network, is
based on the principles from Charalambous (1992) for the efficient training of neural networks.
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) @
The quantity 6PD(E’2) ) = af EM represents the partial derivative of the parametric model with
]

respect to the j-th output of the neural network (i.e. the input to the parametric model) and

oy
When w= W(Z)
———=45"Y®, j=12,..,M 29
awgz) j (22)
@

where 6].(2) %f(z) (z/)(z)) Here, the term f(z) (1/)(2)) is the partial derivative of the
activation function of the j-th output, valued at lp(z)
When w=w ( )

—=0,"x, i=12,..,H (23)

® l
ow;

where & = pd™ fi(l),(lli(l)) and pd” = ¥, w5 Here, f, @'’ (zp(l)) is the partial

derivative of the activation function of the i-th output from the first layer, valued at wi(l).

3.3 Specifications of the Nonparametric Model

Several features of the neural network need to be specified such as the input variables, the
number of neurons used in the hidden layer, as well as the activation functions in the input
and output layers.

First, notice that the default process in the BSM model is based on the future distribution
of assets value i.e. the expected value of assets and the volatility of asset value returns. We
aim to forecast the future distribution by using data that captures the current performance of
the firm. With respect to that, prior studies have identified firm-specific characteristics
related to the default process of the firm (see for instance Altman, 1968; Ohlson 1980;
Almamy et al., 2016 etc). We use data from a more comprehensive model. In particular,
Campbell et al. (2008) find that several accounting-based and market-based variables are
significant predictors of default. We use the variables of their study as inputs to the neural
network that might affect the outputs. It should be noted that, the inputs include information

about the leverage of the firm (liabilities divided by assets) and equity return data which
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might have an association with the expected value of assets divided by liabilities (i.e. market
leverage), E;, but also, it includes the volatility of equity, which might have an association
with the volatility of assets, oy,. Thus, using the variables from Campbell et al. (2008) as
inputs to the neural network, is a reasonable choice.

The selection of the optimal number of neurons is done empirically, based on a validation
process-a straightforward and easy to implement approach, which makes use only the in-
sample data to determine the optimal number of neurons (see Andreou et al., 2008). Initially,
we divide the whole sample into two sets; the training set (70%) and the testing set (30%).
We further divide the training sample into training and validation. Using this training set, we
estimate the network structure using one to five neurons. The optimal number of neurons is
the one which performs the best on the validation set, according to AUROC. This process is
repeated 20 times for each neuron, in order to account for different initialization points. Then
we use the whole training set to estimate the network, using the optimal number of neurons
and as starting point, we use the weights of the model that performed the best on the

validation set. We find that three neurons perform the best in this setting (H=3).

As for the activation functions, the hyperbolic tangent sigmoid function is used in the

1- exp(—zwgl))

hidden layer, fy(.) = Trewp( 20’

which bounds the outputs from the hidden layer

between [-1, 1]. A challenging task is the format of the transfer functions to be used in the
output layer. This is because, EL and ov must be non-negative and within reasonable values.

In this case, we use a modification of the log-sigmoid function as follows; f,(.) =a +

b-a
(exp|-w”])

two outputs; the expected value of assets (scaled by liabilities) and the volatility of assets.
When E}is to be estimated, a=min [(E+F)/F] and b= max [(E+F)/F]. When ov is to be

which bounds the outputs in the range [a, b]. In our case, j=1,2, represent the

estimated, a=min (oe) and b= max (og). Notice that when v,b}@ —o0, then EL and ov —b.

When 1,[;](2) —»-o0, then E and ov —a.

4 Data
4.1 Sample

Our sample of defaulted firms consists of 420 non-financial U.S. public firms that file for
bankruptcy under Chapter 7 or Chapter 11 over the 26-year period 1990-2015 and have all
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data available in Compustat and CRSP one year prior to bankruptcy. Bankrupt firms were
sourced from the database BankruptcyData. The final sample contains about 94,000 default
and healthy firm-year observations. The distribution of observations across the years is

shown in Table 1.

[Insert Table 1 here]

4.2 Variables Construction

To construct assets value, V, and the volatility, ov, for the alternative approaches described
in section 2, we obtain data from three sources. From Compustat, we get total liabilities and
from CRSP we get daily equity prices and shares outstanding to calculate; the equity value
of the firm, E, at fiscal year-end as the closing stock price * shares outstanding and the
annualized volatility of daily equity returns, o, for the entire fiscal year. Using daily equity
prices, we also calculate the annualized equity return, g ., which is used in BS (2008) as
proxy for assets growth, . Finally, for the risk-free rate we use the 1-year Treasury bill rate,

obtained from Federal Reserve Board Statistics.

Regarding the variables from Campbell et al. (2008) which we use as inputs to the
nonparametric model, we further get financial information from Compustat such as net
income, cash and short-term investments and shareholders equity value, to construct the
following ratios; total liabilities divided by equity market value + total liabilities (TLMTA),
net income divided by equity market value + total liabilities (NIMTA), cash and short-term
investments divided by equity market value + total liabilities (CASHMTA) and shareholders’
equity value divided by equity market value i.e. book-to-market ratio (BM). Other variables
used are the following; annualized volatility of daily equity returns, excess returns (EXRET),
which is the difference between firm’s annualized equity return and the annualized value-
weighted return of a portfolio with NYSE, AMEX, NASDAQ stocks, the relative size of the
firm (RSIZE), defined as the (log of) equity market value divided by the total market
capitalization of NYSE, AMEX, NASDAQ stocks and finally, the natural logarithm of stock
price at fiscal year-end (LOGPRICE). Table 2 provides descriptive statistics for defaulted
and healthy firm observations.

[Insert Table 2 here]
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As can be seen from Table 2, there are several differences in the financial performance
between defaulted and healthy firms. Specifically, defaulted firms are less profitable
(NIMTA is lower), have less liquidity (CASHMTA is lower) and have higher levels of
leverage (TLMTA is higher). Furthermore, book-to-market ratios of defaulted firms are
smaller (BM is lower) and tend to be smaller in size (RSIZE is lower), have lower stock
prices (LOGPRICE is lower) and perform worse than the market (EXRET is negative for
defaulted firms and positive for healthy firms). Finally, equity returns for defaulted firms are
more volatile relative to healthy firms (SIGMA is higher). In the last column of the table, t-
tests for mean differences are reported. All mean differences are significant at the 1% level

except from BM which is significant at the 10% level.

5 Model Performance

The aim is to examine whether our proposed methodology for the estimation of asset value
and volatility outperforms the commonly used approaches which we have discussed in
section 2. With respect to that, we employ three distinct tests to compare the performance of
the models, following Bauer and Agarwal (2014); 1) Discriminatory power based on
AUROC, 2) Information content tests and 3) Economic benefits arising from using different

default models.

5.1 Discriminatory Power

With this test we evaluate the ability of the models to discriminate the defaulted firms from
the healthy firms. For a given cut-off probability, firms whose default probability is higher
than the cut-off, are classified as defaulted and healthy otherwise. A way to measure
discriminatory power is by counting the true predictions (percentage of defaulted firms
correctly classified as defaulted) and the false predictions (percentage of healthy firms
incorrectly classified as defaulted). Doing this classification process for multiple cut-offs,
we obtain a set of true and false predictions and when we plot them (true predictions on the
y-axis and false predictions on the x-axis), we get the Receiver Operating Characteristics
(ROC) curve. The more the ROC curve approaches the top-left corner, the more powerful
the model is (since it will hit more true predictions and less false predictions). A quantitative
assessment of the discriminatory power is given by the Area Under ROC (AUROC) curve
(see for instance Hanley and McNeil, 1982 and Sobehart and Keenan, 2001), defined as

follows:
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i=1j=1

5.2 Information Content Tests

With this test, we evaluate the explanatory power of the models by including the out-of-
sample default probabilities they produced in discrete hazard models. Following related
studies, such as Hillegeist et al. (2004) and Agarwal and Taffler (2008), we estimate the

following discrete logit model:

eat+B*PDi_t ea*Ratet+,8*PDL-,t
(25)

p(yi't+1 - 1| PDit) = pir = 1 + g HB*PDy, = 1 + e®*Ratec+B*PD;,

where p; . is the probability of default at time t, that the i-th firm will default the next year
and Y w1 is the status of the i-th firm the next year (1 if it defaults and O if it is solvent). The
variable of interest is PD; ;, which is the out-of-sample default probability of the i-th firm at
time t. Finally, B is the coefficient estimate and a; is the baseline hazard rate that is only
time-dependent, and it is common to all firms at time t. Similar with prior studies, we proxy

the baseline hazard rate with the actual bankruptcy rate at time t.

Shumway (2001) argues that a panel logit model like the one in Eq. (25) should be
estimated based on standard log-likelihood maximization programs, but with a minor
adjustment. The number of independent observations is the number of firms in the estimation
sample and not the number of firm-year observations. Failing to address this issue could
yield to understated standard errors, leading to wrong inference about the coefficient
estimates. Similar with Filipe et al. (2016), we use clustered-robust standard errors to adjust
for the number of firms in the sample but also for heteroskedasticity (Huber,1967 and White,
1980).

5.3 Economic Impact
The previous tests measure the accuracy of the models. In this test, we examine how the
accuracy of the models is economically beneficial for banks. Following Agarwal and Taffler

(2008), we assume a competitive loan market worth $100 billion and each bank uses a
different default model to evaluate the credit-worthiness of prospective clients.
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5.3.1 Calculating Credit Spreads

We use the period 1990-2006 (70% of the sample) to calculate credit spreads. We sort
firm-customer observations in 10 groups of equal size, with the first and tenth group being
the firms with the lowest and highest default risk respectively, and a credit spread is
calculated according to the following rule; Firms classified in the first group receive a credit
spread k and firms in the remaining groups receive a credit spread CSi, which is obtained

from Blochlinger and Leippold (2006) and it is defined as follows:

_pr=15=0
p(Y=0|S=1)
where p(Y=1|S=i) and p(Y=0|S=i) is the average probability of default and non-default

(26)

CS; LGD +k

respectively for the i-th group, with i=2, 3, ... ,10 and LGD is the loan loss upon default.
Following Agarwal and Taffler (2008), the average probability of default for the i-th group
is the actual default rate for that group, defined as the number of firms that defaulted the
divided by the number of firms in the group. Furthermore, k=0.3% and LGD=45%.

5.3.2 Measuring Economic Performance

Banks compete to grant loans to prospective firm-customers in the period 2007-2015.
Using different default models, each bank sorts the customers according to their riskiness
and denies credit to the bottom 5% with the highest risk. The remaining customers are
divided in 10 groups and a credit spread is charged to each group, that was obtained from
the period 1990-2006. Finally, the bank that charges the lowest credit spread for the customer
Is granting the loan. Two measures of profitability are used. The first one, Return on Assets
(ROA), is defined as Profits/Assets lent and the second one, Return on Risk-Weighted Assets
(RORWA), takes into consideration the riskiness of the assets, defined as Profits/Risk-
Weighted Assets. Risk-Weighted Assets are obtained from formulas provided by the Basel
Committee on Banking Supervision (2006).

6 Results
This section discusses the results of the paper. We begin by reporting the estimation of

asset and volatility values with respect to the different estimation approaches and finally, we
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report the performance of the various models, based on AUROC, information content and

economic impact.

6.1 Asset Value and Volatility Estimation Results

In Table 3, we report asset values (expected leverage in the case of the semiparametric

approach, EL) and volatility values with respect to the different estimation approaches.

[Insert Table 3 here]

As expected, the ratio V/F is lower for defaulted firms in all cases. Differences in the mean
values between defaulted and healthy firms are statistically significant. Similarly, oy is
higher for defaulted firms, except in the case of CDLT (2013). Differences in the mean
values of the remaining approaches are statistically significant. Overall, results are indicative
of the impaired financial condition of defaulted firms relative to healthy firms one year prior
to bankruptcy. We conclude that our approach produces reasonable expected asset and

volatility values.

6.2 AUROC Results

Table 4 presents the out-of-sample discriminatory power of the various approaches based
on AUROC.

[Insert Table 4 here]

The key finding is that the semiparametric model substantially outperforms the competing
approaches, suggesting that it is more powerful in discriminating the defaulted firms from
the healthy firms. Specifically, the AUROC of the semiparametric model is 0.9387 whereas
for the two and single equations approach, AUROCs are 0.8964 and 0.9026 respectively.
According to Delong (1988) test, differences in AUROCs between the semiparametric
model and the two and single equations approaches are statistically significant at the 1%
level (test statistics are 5.64 and 5.40 respectively). The semiparametric model is also
superior from the direct estimation approaches, since the AUROCs of BS (2008) and CDLT
(2013) are 0.8791 and 0.9044 respectively. According to Delong (1988) test, differences in
AUROCs between the semiparametric model and the two direct estimation approaches are

statistically significant at the 1% level (test statistics are 6.45 and 5.08 respectively).
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Results from this test clearly shows the superiority of the semiparametric approach in

discriminating defaulted from healthy firms relative to the alternative BSM specifications.

6.3 Information Content Results

Table 5 reports the results from information content tests. Models 1-5 are logit models that
include as predictors, out-of-sample default probabilities produced by various BSM
specifications. Models 1-2 include the default probabilities produced by estimating asset
values and volatilities with the 2-Eqgs. and 1-Eq. Approaches respectively (denoted as Prob
1 and Prob 2 respectively). Next, Models 3-4 include default probabilities produced by
estimating asset values and volatilities based on BS (2008) and CDLT (2013) respectively
and are denoted as Prob 3 and Prob 4 respectively. Finally, Model 5 includes out-of-sample

default probabilities produced from our semi-parametric model (Prob 5).

[Insert Table 5 here]

According to the results, out-of-sample default probabilities produced by all BSM
specifications are highly statistically significant at the 1% level, indicating that they carry
significant information in predicting defaults one year ahead. More importantly, out-of-
sample default probabilities produced by the semiparametric model contains significantly
more information compared with the alternative approaches. Using the Vuong (1989) test to
compare the log-likelihoods, we find that the log-likelihood of Model 5 is significantly
different from Models 1-4. Differences are significant at the 1% level. The higher
explanatory power of default probabilities produced by the semiparametric model, is also
shown from the high pseudo-R? of Model 5 (28.60%) relative to the other Models which
range from 16.43% to 21.21%.

From this test we conclude that the default probabilities obtained from the semi-parametric
model contain significantly more information about future defaults as opposed to other BSM
specifications. This finding confirms that our approach yields more accurate asset value and
volatilities that improve the performance of the parametric model.

6.4 Economic Impact Results
So far, we have assessed the performance of various BSM specifications based on
discriminatory power and information content. However, banks are interested in the
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economic benefits arising by using default models in the decision-making process of giving
loans to individual firms. Thus, does the improved performance using the semi-parametric
model yields superior returns? We test this conjecture using the framework of Agarwal and
Taffler (2008), by assuming a competitive loan market worth $100 billion and five banks

use the different default models in their credit decisions.

Table 6 reports economic results for five banks. Banks 1 and 2 use the 2-Egs. and 1-Eq.
Approaches respectively for the estimation of asset values and volatilities. Banks 3 and 4
use the direct estimation approaches based on BS (2008) and CDLT (2013) respectively.

Finally, Bank 5 uses our semiparametric model.
[Insert Table 6 here]

As can be inferred from the table, Bank 5 manages a credit portfolio with the lowest
concentration of defaults (0.08%) whereas for the remaining banks, concentration of defaults
is higher, ranging from 0.10% to 0.90%. More importantly, Bank 5 earns higher risk-
adjusted returns (i.e. accounting for the riskiness of the portfolio rather than the total profit
earned). In particular, Bank 5 on a risk-adjusted basis, earns 2.06% per dollar invested while

risk-adjusted returns for the competing banks range from 0.30% to 1.81%%°.

Results from this test, overall, suggest that banks can have a competitive advantage using

the semiparametric approach relative to any of the alternative BSM specifications.

6.5 Robustness Analysis

In this section, we perform several robustness tests. We begin the analysis by measuring
the out-of-sample performance of the models using several other performance statistics. As
a next test, we re-run and compare the models based on a five-fold validation approach. As
an additional test, we increase the sample of events with firms which experienced financial
distress during the sample period and we compare the semiparametric model with the various

BSM specifications as well as with other widely-used methodologies.

39 Results are robust with respect to different parameter specifications (k=0.002-0.004 and LGD=0.4-0.7).
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6.5.1 Other Performance Statistics

Several other tests exist in the literature to evaluate the performance of default prediction
models. In this section, we use the Kolmogorov-Smirnov (KS) statistic, the Conditional
Information Entropy Ratio (CIER) statistic (see for instance Russel et al., 2012 for
information regarding these tests) and the H-measure (Hand, 2009). Our results (not
tabulated) demonstrate that the semiparametric model outperforms the alternative BSM
specifications. Specifically, the KS statistic is 0.75 for the semiparametric model whereas
for the 2-Eqs. approach is 0.68, for the 1-Eq. approach is 0.67, for BS (2008) is 0.61 and for
CDLT (2013) is 0.68. The CIER statistic for the semiparametric model is 0.22 whereas for
the other approaches CIER statistic is 0.19, 0.17, 0.15, 0.18 (we keep the same order of the
models as with the KS). Finally, the H-measure for the semi-parametric model is 0.65

whereas for the competing models the H-measure is 0.51, 0.51, 0.45, 0.52.

6.5.2 Five-Fold Validation

For this test, we divide the full sample (1990-2015) into five approximately equal sub-
samples in chronological order. We use any four of them to train the semiparametric model
and use the left-out sample to measure its performance. We then compare its performance
with the alternative specifications in each of the left-out subsample, using AUROC as a
summary statistic. In each subsample, the semiparametric model outperforms the alternative
BSM specifications (not tabulated). Its average performance is 0.9102 where for the
remaining models, performance is as follows: Using the 2-Egs. and 1-Eq. approaches,
average AUROC is 0.8431 and 0.8727 respectively. For BS (2008) and CDLT (2013),
average AUROCs are 0.8507 and 0.8747 respectively. The performance though is lower than
the performance reported in the earlier sections, because the five-fold validation approach
breaks the chronological order of the data (i.e. we use subsequent periods to train the model
and measuring performance on earlier periods). However, the key finding remains:
Estimating asset value and volatility using our approach, outperforms the alterative BSM

specifications.

6.5.3 The Case of Financial Distress

We further explore the prediction performance of the semiparametric model by
augmenting the event sample with financially distressed firms. Generally speaking, it is
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preferable to develop models to identify the early signs of the crisis (i.e. financial distress)
rather than waiting until bankruptcy occurs, in which case the firm might already have lost
most of its value and the firm faces additional costs arising from bankruptcy, such as
liquidation and legal costs®®. Another advantage from the prediction of financial distress
relative to bankruptcy, is that the firm may have enough time to reverse the situation through
corrective measures, such as assets sales, reductions in capital expenditures, debt
restructurings etc (see Asquith et al., 1994 and references therein), preventing in that way
further deterioration which may eventually lead to bankruptcy. Finally, we believe that
predicting financial distress poses an interesting problem because predicting the early stages
of the problem is a harder task to accomplish and therefore, will challenge the performance
of all models.

Despite the benefits of the prediction of financial distress, only a handful of papers have
addressed the issue. We believe that the main reason is the lack of a formal definition of
financial distress and as such, it must be defined using subjective criteria based on financial
performance. However, most of the studies agree that the key criterion should be a form of
inability of the firm to cover its financial obligations, such as the inability to cover its interest

payments (see for instance Pindado et al., 2008; Gupta et al., 2018).

In this study, we follow Keasey et al., (2015) to classify the firms as financially distressed
(also used by Gupta et al., 2018). Specifically, we consider a firm to be in financial distress
when all of the following conditions are satisfied; 1) Earnings Before Interest, Tax and
Depreciation and Amortization (EBITDA) is less than financial expenses (i.e. interest
payments) for two consecutive years 2) Total Debt is higher than the Net Worth of the firm
for two consecutive years and 3) The firm experiences negative Net Worth growth between
two consecutive years. The firm is classified as financially distressed in the year immediately
following these three events. For prediction purposes, we use the data two years before
financial distress. For example, when the conditions are satisfied for the years t and t-1, then
the firm is considered as financially distressed in the year t and we construct the variables at
t-2 to predict financial distress. By doing so, we have classified a total of 2022 firms as
financially distressed between 1991 and 2015 and the total sample amounts to 72042 firm-

year observations.

40 According to a recent study from Glover (2016), the direct and indirect costs arising from default amounts
to 45% of firm value.
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Results reported in table 7, clearly demonstrate the superior performance of the

semiparametric model relative to the alternative BSM specifications.
[Insert Table 7 here]

The results from Table 7 also reveal that in states of financial distress, the simple BSM
models are not useful in predicting the firms undergoing financial distress as indicated by
AUROC results, which in all cases are substantially lower relative to when predicting
bankruptcies (table 4). In contrast, in cases of financial distress, more advanced
methodologies should be used. For instance, the performance of the semiparametric model
is quite impressive, given the relatively difficult nature of the problem, although the
performance according to AUROC has been dropped (as expected) relative to when
predicting bankruptcies (0.8997 vs 0.9387 respectively). Information content and economic
benefits results also demonstrate that the semiparametric model performs better than the
alternative BSM models. For instance, in a competitive environment, the bank which uses
the semiparametric model manages a portfolio of clients where only the 0.43% are
financially distressed. In contrast, for the other banks which use various BSM specifications,
the financially distressed ratio ranges between 2.34% - 6.25%.

6.5.4 Comparison with Alternative Methodologies-Financial Distress Case

The good performance of the semiparametric model motivates us to compare its
performance with alternative methodologies. We compare the performance of the
semiparametric model with two very widely-applied approaches; the logistic regression (LR)
approach and the nonparametric (NP) approach, such as neural networks. As explanatory
variables for both approaches, we use the variables of Campbell et al. (2008), which are also
used as inputs when estimating our semiparametric model. Furthermore, in the case of the
traditional neural network, we use the same specifications as was done for the
semiparametric model; In the hidden layer, we use three neurons (H=3) as well as we use
the tan-sigmoid activation function. This is done for consistency. In the output layer, we use
one neuron (M=1) with the log-sigmoid activation function in order to obtain a probability.
Finally, the log-likelihood function is used to train the neural network in order to obtain its

coefficients. Performance results are reported in table 8.

[Insert Table 8 here]
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As expected, the results are now more comparable since all approaches generally perform
well in predicting financial distress. However, the semiparametric model is the best
performing model, according to all tests. This is evident by the higher out-of-sample
AUROC it exhibits relative to the LR and NP approaches (which equal to 0.8528 and 0.8802
respectively) with the differences being statistically significant according to the DeLong test
(at significance level 0=1%). Next, the semiparametric model is better in terms of
information content (differences in log-likelihoods are statistically significant at a=1%
according to the Vuong test). Finally, a bank which uses the semiparametric model, manages
a better-quality portfolio of clients as indicated by the lowest fraction of financially
distressed firms it attracts relative to other banks, which use the LR approach or the NP
approach. In particular, for the bank which uses the semiparametric model, 0.80% of the
firms it attracts are financially distressed, whereas for banks which use the LR or NP
approach, the financial distress ratio amounts to 3.63% and 1.04% respectively. Overall, the
results in this section suggest that the semiparametric model is a promising methodology
since it outperforms other well-known financial distress prediction methodologies.

6.5.5 Focusing on the financial crisis period 2007-2009

In this section, we compare the performance of the models in the out-of-sample period
which includes only the years 2007-2009, where the financial crisis has arrived and might
have impacted the financial performance of the firms severely (results are not tabulated).
The purpose of this section is to test the performance of the models under unfavorable
conditions in the market. Overall, evidence from this test confirms the superior performance
of the semiparametric approach relative to the alternative BSM models during the financial

crisis period.

7 Summary and Conclusions

In this paper, we introduce and compare an estimation technique to obtain parameter
values, such as the asset value and volatility, which are used in parametric models for the
estimation of the probability of default. Specifically, we view asset value and volatility as
generalized functions and by using a nonparametric technique, such as neural networks, we
obtain improved asset values and volatilities which enter the parametric model, yielding a
semiparametric model. Using the BSM model as a paradigm, we compare the performance

of the semiparametric model with popular BSM alternative specifications with respect to 1)
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AUROC, 2) Information content and 3) Economic benefits. Our results demonstrate the
superiority of the semiparametric model since in all tests, the semiparametric model
outperforms the competing BSM specifications. We further examine the performance of the
models when the sample of events is augmented with financially distressed firms. In this
respect, we find that the semiparametric model outperforms not only the BSM models but
also, other methodologies as well, such as the logistic regression approach and the
nonparametric approach, which in fact justifies the implementation of the semiparametric

model in future research for default/financial distress prediction.

However, we believe that the semiparametric model may be subject to improvement.
Future research may emphasize on the examination of other activation functions to be used
in the output layer of the neural network, such that possibly more accurate asset values and
volatilities can be obtained. Another promising avenue for future research, would be to
increase the number of outputs from the nonparametric model, for instance, asset values,
asset volatility and asset expected return, whereas in this study, the asset value with expected
return were merged in order to obtain the expected value of assets. Also, it would have been
useful to examine several other inputs to the nonparametric model, beyond the variables
from Campbell et al. (2008), which could further increase the precision of outputs from the
nonparametric model. Finally, the BSM which we improve its estimation, is the earliest
parametric model. Given that several extensions have been proposed in the literature (see for
instance Leland, 1994; Leland and Toft, 1996), one may possibly use the approach proposed

in this study, to improve the estimation of such extended parametric models.
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Tables

Table 1: Distribution of observations

Year Defaulted Firms Healthy Firms Default Rate (%)
1990 22 3292 0.66
1991 25 3241 0.77
1992 17 3258 0.52
1993 20 3318 0.60
1994 10 3543 0.28
1995 14 3861 0.36
1996 14 4138 0.34
1997 13 4379 0.30
1998 19 4698 0.40
1999 26 4664 0.55
2000 20 4435 0.45
2001 21 4286 0.49
2002 14 4182 0.33
2003 15 3913 0.38
2004 13 3601 0.36
2005 14 3510 0.40
2006 10 3503 0.28
2007 14 3439 0.41
2008 20 3320 0.60
2009 31 3244 0.95
2010 6 3153 0.19
2011 9 3037 0.30
2012 12 2963 0.40
2013 12 2920 0.41
2014 12 2884 0.41
2015 17 2897 0.58

This table shows the distribution of default and healthy-firm observations across the sample period
1990-2015 and the annual default rate, defined as the number of defaults divided by the annual
number of observations

-107-



Table 2: Descriptive statistics

Defaulted Firms Healthy Firms t-test
Variables Mean Median  St.Dev Mean Median St.Dev.
NIMTA -0.249  -0.1722 0.254 -0.021 0.023  0.148 -31.40
CASHMTA 0.068 0.032 0.098 0.119 0.062  0.160 -6.51
TLMTA 0.697 0.784 0.264 0.378 0.332  0.258 25.35
BM 1.036 0.481 2.551 1.461 0.537  4.807 -1.81
RSIZE -12.774  -12.765 1.490 -10.919 -10.983 2.075 -18.31
LOGPRICE 0.523 0.560 1.145 2.291 2473  1.274 -28.37
EXRET -0.213  -0.340 0.864 0.207 0.106  0.670 -12.79
SIGMA 1.070 0.959 0.486 0.657 0.551  0.418 20.14

This table reports descriptive statistics for the entire sample period 1990-2015, of the inputs, X, which
enter the nonparametric model, as used in Campbell et al. (2008). The construction of the variables
is described in section 4.2. The last column reports t-tests for mean differences between defaulted
and healthy firms.

Table 3: Mean asset values and volatilities from the different estimation approaches

Estimation Apporaches Mean-Defaulted Firms Mean-Healthy Firms t-test
PP VIF ov VIF ov VIF  ov

2-Eqs. Approach 1.958 0.565 6.380 0.383 -2.69 453
1-Eq. Approach 1.887 0.400 6.378 0.353 -2.74  2.09
Direct Estimation

1) BS (2008) 2.004 0.489 6.406 0.417 -2.68 281
2) CDLT (2013) 2.004 0.328 6.406 0.335 -2.68 -0.32
SP Approach 3.676 0.72 6.398 0.572 -24.12 25.73

This table reports mean asset and volatility values obtained with respect to the various estimation approaches,
in the out-of-sample period 2007-2015. The 2-Eqgs. Approach refers to estimating asset values and volatilities
by simultaneously solving Egs. (5) and (6). The 1-Eq. Approach refers to estimating the time-series of asset
values over the previous year by solving Eq. (5) and estimating the volatility of asset values until convergence
(see sections 2.2.1 and 2.2.2 respectively). BS (2008) and CDLT (2013) refer to the direct estimation approach
as done in Bharath and Shumway (2008) and Charitou et al. (2013) respectively (see section 2.2.3). Finally,
the SP approach refers to estimating expected asset value and the volatility based on the semiparametric
approach (see sections 3.1 and 3.2). The last column reports t-tests for mean differences between defaulted
and healthy firms.
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Table 4: AUROC results

AUROC Delong test
2-Eqs. Approach 0.8964 5.64
1-Eqg. Approach 0.9026 5.40
Direct Estimation
1) BS (2008) 0.8791 6.45
2) CDLT (2013) 0.9044 5.08
SP Approach 0.9387 -

This table reports AUROC results for the various BSM specifications in the out-of-sample period
spanning the years 2007-2015. The 2-Eqs. Approach refers to estimating asset values and
volatilities by simultaneously solving Egs. (5) and (6). The 1-Eq. Approach refers to estimating
the time-series of asset values over the previous year by solving Eq. (5) and estimating the
volatility of asset values until convergence (see sections 2.2.1 and 2.2.2 respectively). BS (2008)
and CDLT (2013) refer to the direct estimation approach as done in Bharath and Shumway (2008)
and Charitou et al. (2013) respectively (see section 2.2.3). Finally, the SP Approach refers to
estimating expected asset value and volatility based on our semiparametric approach (see sections
3.1 and 3.2). The last column reports the Delong (1988) test statistic, to test for statistically
significant differences in the AUROCs between the semiparametric model with the alternative

BSM specifications.
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Table 5: Information content results

Model 1 Model 2 Model 3 Model 4 Model 5
Prob 1 0.039

(20.93)
Prob 2 0.045

(19.63)
Prob 3 0.037
(17.99)
Prob 4 0.051
(20.80)
Prob 5 0.337
(26.45)

Rate -1.562 -2.329 -1.360 -2.458 -2.073

(-3.60) (-4.61) (-2.75) (-4.34) (-4.20)
Constant -5.810 -5.741 -5.870 -5.459 -5.692

(-25.66) (-24.10) (-24.89) (-22.92) (-26.32)
Log- -690.70 -665.81 -705.42 -671.69 -607.70
Likelihood
Pseudo-R? (%) 18.18 21.21 16.43 20.43 28.01
Vuong Test 4,78 4.50 5.41 4.46 -

This table reports information content results. We estimate five logit models, where the out-of-
sample default probabilities (from the period 2007-2015) produced by the various BSM
specifications are included in the logit estimation. Models 1 and 2 include default probabilities
produced by the 2-Egs. and 1-Eq. Approaches (denoted with Prob 1 and Prob 2 respectively).
Models 3 and 4 include default probabilities produced by the direct estimation approach (Prob 3
and Prob 4 are default probabilities produced by BS, 2008 and CDLT, 2013 respectively). Finally,
Model 5 includes default probabilities produced by our semiparametric approach. The last row of
the table reports the Vuong (1989) test statistic, to test for statistically significant differences in
the log-likelihoods between Model 5 with the Models 1-4. In all logit models, we include Rate,

defined as the annual default rate of the previous year, as proxy for the baseline hazard rate.
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Table 6: Economic impact results

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

Credits 5115 3546 2652 3254 12977
Market Share (%) 18.27 12.67 9.47 11.63 46.36
Defaults 43 5 24 4 10
Defaults/Credits (%) 0.84 0.14 0.90 0.10 0.08
Average Spread (%) 0.54 0.35 0.46 0.36 0.35
Revenues ($M) 98.90 44.57 43.17 41.33 162.92
Loss($M) 63.16 7.34 35.25 5.88 14.69
Profit($M) 35.74 37.23 7.92 35.45 148.23
Return on Assets (%) 0.20 0.29 0.08 0.30 0.32
Return on RWA (%) 0.54 1.81 0.30 1.73 2.06

This table reports economic results for five banks in a competitive loan market worth $100 billion. Banks 1
and 2 use the BSM specification, where asset values and volatilities are obtained with the 2-Egs. and 1-Eq.
Approaches respectively. Banks 3 and 4 use the direct estimation approach to obtain asset values and
volatilities, based on BS (2008) and CDLT (2013) respectively. Finally, Bank 5 uses the semiparametric
approach. Banks sort prospective customers (2007-2015) and reject the 5% of firms with the highest risk.
The remaining firms are classified in 10 groups of equal size and for each group, a credit spread is calculated
as described in the main text (section 5.3). The bank that classifies the firm to the group with the lowest
spread is finally granting the loan. Market share is the number of loans given divided by the number of firm-
years, Revenues = (market size)*(market share)*(average spread), Loss=(market size)*(prior probability of
bankruptcy)*(share of bankruptcies)*(loss given default). Profit=Revenues-Loss. Return on Assets is profits
divided by market size*market share and Return on Risk-Weighted-Assets is profits divided by Risk-
Weighted Assets, obtained from formulas provided by the Basel Accord (2006). The prior probability of
bankruptcy is the bankruptcy rate for firms between 1990-2006 and equals 0.43%. Loss given default is 45%.
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Table 7: Performance comparisons between the semiparametric approach and BSM
specifications-Financial distress case

AUROC LL-Info. Content  Portfolio Quality Delong Test Vuong Test

2-Eqs. Approach 0.6884 -2235.00 5.53% 17.41 14.21
1-Eq. Approach 0.7235 -2202.61 2.34% 15.59 13.15
Direct Estimation

1) BS (2008) 0.6846 -2257.86 6.25% 17.74 14.38
2) CDLT (2013) 0.7217 -2216.28 2.78% 15.63 13.46
SP Approach 0.8997 -1720.45 0.43% - -

This table reports performance results of the various BSM specifications in the out-of-sample period spanning
the years 2007-2015, when the sample of events is augmented with financially distressed firms. The 2-Egs.
Approach refers to estimating asset values and volatilities by simultaneously solving Egs. (5) and (6). The 1-
Eq. Approach refers to estimating the time-series of asset values over the previous year by solving Eq. (5) and
estimating the volatility of asset values until convergence (see sections 2.2.1 and 2.2.2 respectively). BS (2008)
and CDLT (2013) refer to the direct estimation approach as done in Bharath and Shumway (2008) and
Charitou et al. (2013) respectively (see section 2.2.3). Finally, the SP Approach refers to estimating expected
asset value and volatility, based on our semiparametric approach (see sections 3.1 and 3.2). The first column
reports AUROC results (equivalent to table 4), the second column reports log-likelihoods from information
content tests (equivalent to table 5) and the third column reports the concentration of financially distressed
firms, when banks compete to grant loans in a competitive economy (equivalent to the fourth row of table 6).
The last two columns report DeLLong (1988) and Vuong (1989) test statistics, to test for statistically significant
differences in the AUROCSs and log-likelihoods, between the semiparametric approach and the various BSM
specifications.

Table 8: Performance comparisons between the semiparametric approach and alternative
approaches-Financial distress case

AUROC LL-Info. Content  Portfolio Quality DelLong Test \Vuong Test

LR Approach 0.8528 -2105.94 3.63% 7.19 12.43
NP Approach 0.8802 -1841.27 1.04% 3.96 5.02
SP Approach 0.8997 -1720.45 0.80% - -

This table reports performance results of the alternative approaches for financial distress prediction, such as
the logistic regression (LR) approach, the nonparametric (NP) approach and specifically neural networks
and finally, the semiparametric (SP) approach. Performance is measured in the out-of-sample period
spanning the years 2007-2015. The first column reports AUROC results (equivalent to table 4), the second
column reports log-likelihoods from information content tests (equivalent to table 5) and the third column
reports the concentration of financially distressed firms, when banks compete to grant loans in a competitive
economy (equivalent to the fourth row of table 6). The last two columns report DeLong (1988) and VVuong
(1989) test statistics, to test for statistically significant differences in the AUROCSs and log-likelihoods,
between the semiparametric approach and the alternative methodologies.
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Figures
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Figure 1: Schematic representation of our approach. Improved parameter values, z, are obtained from the
nonparametric model and enter as inputs to the parametric model along with other parameters, p*, that enter
directly, yielding a semiparametric model. Here, X, represents some exogenous inputs to the nonparametric
model. The proposed structure is optimized according to a merit function, to give the weights, w, and finally
the probability of default, PD. Note that in the merit function, the targets t are supplemented directly. In our
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case, t=1 if the firm defaults and t=0 otherwise and the merit function is the log-likelihood function.
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Figure 2: General structure of a two-layer feedforward neural network, with H neurons in the
hidden layer and M neurons in the output layer.
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CONCLUSIONS

Bankruptcy prediction of firms has been in the forefront of academic research over the past
decades and the effort to identify the troubled firms early, will continue in the future. The
lessons learned from the recent global financial crisis, where we have evidenced the
bankruptcy of many firms which led banks to suffer huge losses from their loan portfolios,
remind us the importance of developing bankruptcy prediction models. Besides the
economic costs arising from bankruptcy, several others include social ones, such as the loss
of investors’ confidence towards the markets, lawsuits to the management of the firm but

also, people losing their jobs due to the closure of the company.

This dissertation aimed to provide innovations to the most common bankruptcy prediction
approaches; The structural approach and the empirical approach. Firstly, in the first chapter,
it is found that the structural model from the framework of Leland-Toft (1996) is a better
approach relative to the most widely-used structural model; The Black-Scholes-Merton
model. Therefore, for those interested to forecast bankruptcy using the structural approach,
the Leland-Toft model should be preferred. The chapter also found that including the
probability of bankruptcy derived from Leland-Toft as additional predictor in models like
Altman (1968), Ohlson (1980) and Campbell et al. (2008) yields models with improved out-
of-sample performance and these models were the best performing in all tests. With that
respect, evidence suggests that Leland-Toft probability is a missing predictor in empirical
models and it is recommended to be considered in association with the original empirical

models.

The second chapter of the dissertation focused on the empirical approach and proposed
methodologies to maximize their ability to discriminate bankrupt from healthy firms as
measured by AUROC. It is found that the proposed methodologies provide bankruptcy
models with improved predictive ability relative to traditional approaches for bankruptcy
prediction and the improvement in predictive ability is also evident economically when
banks use such models. Therefore, for those interested using the empirical approach to
estimate bankruptcy risk of firms, it is recommended to train their models using AUROC as
the optimization criterion. More specifically, a merit function which takes care of the outliers
should be used when the response function is linear and a neural network model when the

response function is probabilistic.
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The third chapter which is dedicated on the structural approach, proposed a nonparametric
methodology to estimate unobserved parameters of the structural (parametric) models; the
value of assets and volatility of asset value returns. When these parameters are viewed as
generalized functions of some exogenous inputs, x, the nonparametric approach can be used
to uncover these functions through learning. With that respect, the Black-Scholes-Merton
model was used as paradigm and it is found that our approach provides improved parameter
values which when enter the structural model, yields a semiparametric model with
substantially improved performance relative to the alternative parameter estimation
approaches widely-used in the literature. This chapter also considered the case of financially
distress prediction, which is a state prior to bankruptcy, and it is found that while the
traditional approaches did not perform well, the semiparametric approach exhibited
impressive out-of-sample performance. In all, our semiparametric model is the best
performing in all tests considered in this chapter and we conclude that when using the
structural approach, the nonparametric methodology should be implemented in order to

obtain the unobserved parameter values.
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