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Abstract

Machine Learning (ML) has become in the recent years increasingly ubiquitous for its

classification and clustering capabilities, with a wide range of applications in science,

engineering, social sciences and humanities, including archaeology and security.

An algorithm’s effectiveness in correctly classifying samples to the desired class is

influenced by factors such as its intrinsic characteristics and parametrization, training

and evaluation methods as well as the appropriateness of the input dataset. As a result,

an algorithm’s performance may be greatly influenced with variability of any of these

factors; when it has not been previously considered . Nowadays, ML techniques find

applicability to countless domains towards the resolution of problems that range from

very simple to very complex; these usually rely on patterns and inference.

It has become rather important to develop methods and metrics, algorithmic ag-

nostic, that allow estimating a models’ ability of consistently producing acceptable

results; a practice that is non trivial. In this Thesis, we propose an algorithmic ag-

nostic methodology for learning robust classifiers for data with uncertainties. The

proposed methodology is agnostic of the selected classification method and emerges

as a result of thorough analysis of factors that influence the classification result and

emerge from factors related to the application domain and dataset characteristics. The

developed design follows a systematic approach and well-established methods, such as

bootstrapping with replacement and the 5x2 cross validation (paired t-test and F-test)

tests, to ensure the results are statistically significant.

The produced results indicate that the evaluation of robustness in classification is

possible, while investigation of inter-class relationships on classification results may

provide expert researchers with additional information for data samples with low clas-

sification confidence.

The suggested methodology has been validated against two case studies: (a) clas-

sification of scarce chemical compositional archaeological data from ceramics and, (b)
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classification of audio samples for acoustic event detection in the field of intelligent

surveillance for security purposes. Finally, an open source web-based tool realising the

proposed framework is presented for use by other scientists and application domain

experts.
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Chapter 1

Introduction

The human brain is the most powerful pattern recognition machine, that it is currently

impossible to achieve similar performance with computational methods. Machine learn-

ing (ML) is defined as a set of methods that can automatically detect patterns in data

and subsequently utilise this knowledge to either predict new data or make decisions

under uncertainty [180]. Pattern recognition is a branch of ML that focuses on the

recognition of patterns and regularities in data [29]. Pattern recognition/ classification

is the scientific field that concerns the development and implementation of compu-

tational algorithms which achieve pattern classification (how do we categorise data

based on a number of attributes), feature identification and generation (identify the

most informative data characteristics) and regression (quantitative describe possible

interrelations between features).

ML algorithms have many applications – due to its classification and clustering

capabilities – and are being deployed in interesting ways to either predict new data or

make decisions under uncertainty. It has become increasingly ubiquitous with more

and more applications even in the most unlikely places. A few simple applications

of ML with high impact are anomaly detection, automated categorisation and trend

revealing [95]. ML assists in anomaly detection to flag any malpractice even in very

high volume high frequency data transactions/ communications as ML powered sys-

tems can detect a possible insider trading in a stock market, while it may also flag a

rogue customer transaction as a fraudulent transaction in high volume business doing

market place websites. Classification methods on the other hand neatly segregate un-

der topics thousands of sources of news articles aggregating portals while marketing

companies use ML to group customers into segments. The list of possible applications
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is endless nowadays touching many and versatile areas: speech recognition, genetics,

signal denoising, weather forecasting, image processing, face detection/ recognition,

autonomous systems, or even the automobile industry.

Algorithms in the field are mainly discriminated into two categories: unsupervised

and supervised learning each imposing a number of assumptions with however fuzzy

boundaries leaving room for methods which combine aspects of both practices. Most

research in the field is tailored made to the needs of its application domain. As a

result, performance greatly degrades when solutions are applied in real environments,

while domain experts struggle with the variety and complexity of their datasets. As

far as this thesis is concerned when referring to supervised learning methods we refer

to classification techniques, which is of our main interest, while when referring to

unsupervised methods we refer to clustering approaches.

1.1 Motivation

The use of ML in so many domains and applications has led to an emerging need of

application domain experts to, not only familiarise themselves with the basic principles

of data analysis, but also to gain substantial comprehension on data sampling, transfor-

mation and analysis practices. The high demand in ML solutions leads to the emerging

need for plug-n-play solutions that do not require extensive setup or re-training, whilst

also allowing their integration in greater systems. The high performance expectations

and, usually timely and data constrained, implementation strategy of ML solutions,

lead researchers in not always following sound research procedures.

Additionally, it is often the case that data emerge as the result of observation or

projection of artifacts – tangible or not – that exist (in physical form) or may be per-

ceived in the multidimensional real world. The sampling procedure of the artifacts to

their quantitative or qualitative representation generally introduces uncertainty. Usual

sources of uncertainty are the sampling instrumentation used and range of selected pa-

rameters/features thought to be representative enough for the artifacts in question.

These factors add to the uncertainty that the artifact may be imperfect or imprecise

even in its original form. Considering, the complexity and involved factors, it is rather

challenging to train robust classification models with validated performance without

coding or scripting involved.

Robust classification of data with uncertainties is thought to be possible when
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enough parameters of the application domain are considered and analysed. Through-

out this thesis, and particularly in Chapter 3 multiple cases where various factors in-

fluence the classification outcome will be disclosed. The nature of data, pre-processing

operations, feature aggregation and data transformations are factors that impact sig-

nificantly the results of analysis. Even though solutions based on supervised learning

are widely deployed, it is not necessarily implied that the above mentioned aspects

were thoroughly analysed or that classifier learning followed a sound procedure.

As no classification algorithm is suitable for all problems and based on the fact that

increased model complexity does not necessarily imply improvements in performance,

there is an emerging need for methods that deal with the training of robust classifiers.

Moreover, the era of big data and high metadata fidelity, leads to an abundance of

available features that may constitute a sample (highly dimensional and heterogeneous

feature spaces) and uncertainty in the methods used for recording. As a result, situa-

tions with heterogeneity in the nature of data and feature vectors are rather common.

From a practical point of view, and as far as this thesis is concerned, robust clas-

sification involves an algorithm’s ability in tolerating small input changes that might

have been caused either due to sampling uncertainties or due to the unavailability of

enough data. Even though. various robust optimisation techniques exist in the litera-

ture, these are not considered in this thesis as they are algorithm specific and therefore

could not be employed in the context of an algorithm agnostic methodology. However,

the employment of robust optimisation when an appropriate algorithm is selected, for

learning with the proposed methodology, is still valid and possible. Additionally, this

thesis is also concerned with the robustness of the training outcome produced as a

result of utilising well established, and sound steps to alleviate the likelihood aspect

introduced by an algorithm’s initial and training-test set conditions during learning.

1.2 Hypothesis & Contribution

Based on the challenges and motivating factors discussed in Section 1.1, this thesis

contributes to the research community by proposing a structured and systematic –

algorithmic agnostic – methodology that deploys sound methods for the training of

classifiers with evaluated robustness. The proposed methodology allows robust learning

– in the sense that it alleviates the influence of likelihood – of one or more classifiers

with algorithms of preference and their performance evaluation. The above-mentioned
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aspects present novelties in the area of machine learning.

An additional aspect of the suggested methodology is that it is statistically unbi-

ased, in the sense that all deployed algorithms are treated equally. Data re-sampling

in each iteration precedes the training and testing of each algorithm and therefore the

same training, validation and testing data are provided. Additionally, flexibility is al-

lowed to the fine-tuning and parametrisation of each involved classification algorithm

based on their intrinsic characteristics.

Additionally, pair-wise comparative analysis of the classification outcome to deter-

mine significance in the output is also possible for the selection of the best performing

classifier. Designation of this methodology followed investigation and analysis of factors

and parameters that influence the classification result, including dataset characteristics

and inter-class relationships.

The systematic learning approach also allows a researcher to evaluate an annotated

dataset’s ability to sufficiently discriminate between the different categories. Doing so,

should allow the researcher to evaluate the expert’s labeling – which usually considers

a number of additional attributes – solely by the underlying structure of the dataset.

The novelty of the suggested methodology lies on its statistically valid and unbiased

design which considers the idiosyncrasies of scarce heterogeneous data whilst also acting

as a validated model, for its robustness, to allow the reliable categorization of new

samples; to the nearest class or classes.

Having developed such a methodology, it is subsequently of interest to validate

its applicability to multiple domains, without any additional steps or transformations,

and to validate its effectiveness with the use of different classification algorithms on

the same data.

The proposed methodology is applied in the fields of archaeology and security

through two independent case studies that share data uncertainty and sparsity as com-

mon characteristics. The first case study is focused on the analysis of compositional

archaeological data with uncertainties while the second is focused on the analysis of

audio waveforms for the detection of key events in the area of acoustic event detection

(AED) for surveillance.

The effectiveness of the suggested methodology will be tested against the null hy-

pothesis that it is possible to test robustness of classification of data with uncertain-

ties in an algorithmic agnostic approach, while the alternative hypothesis states that

domain-specific approaches need to be developed in order to produce robust classifiers.
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1.3 Thesis Outline

This thesis is organised as follows. Chapter 1 covers the introduction to the subject as

well as the motivation and contribution of this study in the research community. Chap-

ter 2 provides background on supervised learning with emphasis on the classification

problem. Chapter 3, then provides an overview of current methods and best prac-

tices that aim to surpass limitations of existing approaches. Having defined the prob-

lem and investigated current practices, Chapter 4 introduces a statistically unbiased

classification methodology implemented for robust analysis in an algorithmic agnostic

approach. It additionally, discusses how the designation of an ensemble classification

methodology may serve towards a more knowledgeable inference of the classification

result. Finally, the methodology for performing robustness evaluation on classification

for heterogeneous scarce data with uncertainties is presented. The application of the

proposed methodology is discussed in Chapters 5 and 6 through two case studies. Case

Study I is focused on the analysis of ceramic archaeological data, while Case Study II is

focused on the analysis of sound waves for acoustic event detection is surveillance sys-

tems. The characteristics and requirements in each application domain are discussed

and an appropriate methodology configuration is suggested.

The positive impact and successful validation of the methodology led to the desig-

nation of the Data Analysis Suite web-based tool, presented in Chapter 7 that allows

application experts to perform exploratory analysis and train robust classification learn-

ers for binary problems. Finally, in Chapter 8 conclusions are drawn and the impact

of this work is discussed.
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Chapter 2

Classification in Supervised Learning

The problem of searching for patterns in data is a fundamental one and has a long

successful history [29]. An agent is learning if it improves its performance on future

tasks after making observations about the world. In this chapter, the learning problem

to train a function, given a set of input - output pairs, to predict the output for

new inputs will be analysed. Even though this problem seems restricted, it exhibits

vast applicability. Any component that adheres to intelligent characteristics, may be

improved by learning from data. The characteristics of the component, the existence

of prior knowledge, the representation used for the data and component as well as

the availability of analysis feedback are contributing factors to the selection of the

appropriate learning method.

2.1 Learning Approaches

Machine learning is usually divided into three main types, the predictive/ supervised

learning approach – which is of main interest in this thesis –, the descriptive/ unsuper-

vised learning approach and reinforcement learning. Additionally, class memberships

range from crisp labels (which can be seen as a strong supervised learning setting) to

the uniform class membership distribution y j =
1
L for all possible classes (which can be

considered as a special unsupervised scenario),while learning with uncertain class la-

bels, or with weak teaching signals can be seen as a special type of partially supervised

learning (PSL) [227].

Even though, supervised learning is the focus of this thesis, unsupervised learning

methods through clustering and other exploratory analysis techniques are key and

allow insight in dataset characteristics. It is common to train and apply, multiple such
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techniques on the under analysis dataset, to observe characteristics of relevant to data

distribution, feature dominance, separability and cluster dispersion. Such information

is critical to the appropriate selection of the best classification algorithm for the specific

problem; considering that the dataset is representative enough.

2.1.1 Supervised Learning

In supervised learning, the goal is to learn a mapping from inputs x to outputs t, given

a labeled set of input-output pairs D = (xi, ti)
N
i=1 with D being the training set and N

the number of training examples. Given a training set of N example input-output pairs

(x1, t1), (x2, t2), . . . (xN, tN)

where each ti was generated by an unknown function t = f (x), discover a function h that

approximates the true function f . In this context, x and t can be any value, the function

h is a hypothesis. Learning is a search through the space of possible hypotheses for one

that will perform well, even on new examples beyond the training set. Over-training

a learner through multiple iterations over the training set may lead to over-fitting; a

phenomenon that occurs with all types of learners, even when the target function is

not at all random. Overfitting becomes more likely as the hypothesis space and the

number of input attributes grows and less likely as the number of training examples is

increased [214].

The development of robust pattern classifiers from a limited training set T =

{x1, . . . , xm} of observations (i.e., feature vectors) xi ∈ X, represented in a proper fea-

ture space X, has long been one of the most relevant and challenging tasks in machine

learning and statistical patter recognition [132]. A successful supervised learning al-

gorithm is expected to accurately predict the target class for any data vector x. Each

training input xi is a p-dimensional vector, in general however this could be a complex

structured object such as an image, a time series, a molecular shape or in the case of

archaeology the chemical composition of a specimen.

In the supervised framework, any given generic observation x ∈ T is uniquely asso-

ciated with a corresponding target label y ∈ Y. It is assumed that X is a real-valued

vector space such that X ⊆ Rp, and that Y = {y1, . . . , yL} is the set of L different

class labels reflecting the ground truth of the classification problem at hand. The out-

put variable yi can in principle be anything, however most methods assume that yi

is a categorical or nominal variable from some finite set in the case of classification
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yi ∈ {1, . . . ,Y} (i.e. fabric A or fabric B) or a real valued scalar (i.e. exposure level,

specimen age or risk level) in the case of regression; regression is beyond the scope

of this thesis. Intervention from human experts is needed in order to annotate the

training set correctly.

In classification, the training set is fed into a pre-selected supervised learning algo-

rithm aimed at training a classifier C, that is a mapping C : Rp ⇒ Y. This algorithm is

expected to exploit the information encapsulated within both the feature vectors and

the corresponding class labels [227]. Besides the training algorithm, a hypothesis space

has to be fixed, as well. The hypothesis space consists of all the potential candidate

classifiers C which may be the eventual outcome of the computation of the learning

algorithm on the training set [9]. A hypothesis generalises well if it correctly predicts

the value of y for novel examples. Sometimes the function f is stochastic in the sense

that it is not strictly a function of x, and what is required is to learn the conditional

probability distribution P(Y|x).

2.1.2 Unsupervised Learning

On the other hand, an operational definition unsupervised learning can be stated as

follows: given a presentation of n inputs, find c groups based on a measure of simi-

larity such that the similarities between objects in the same group are high while the

similarities between artifacts (samples) in different groups are low. Considering a set

of n sample measurements X = {x1, . . . , xn} ⊂ Rp , where the coordinates of xi provide

feature values. We assume that there are groups (subsets) of similar samples in X (the

clusters) which however do not bear any class identifier.

The process of discriminating unlabeled data seeks solution to two problems. The

first, is concerned primarily on the clustering approach and involves: assessing cluster

tendency, partitioning and cluster validity. In other words, one should first determine

the number of clusters present, then determine which objects belong to each one, and to

what degree, and finally validate how good is the partitioning. Assessing cluster validity

is of great importance and the performance of clustering methods greatly depends on

specifying the parameters correctly. The second problem is concerned purely with the

way similarity between the different samples in X is measured. An ideal cluster can be

defined as a set of points that is compact and isolated [130].

Possible solutions to the clustering problem requires an integer number c repre-
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senting the number of clusters which can be either crisp or fuzzy partitions. Crisp

clustering can be formulated, in general, as a problem of partitioning the finite set X

into a given number c of disjoint clusters. The crisp c-partitions of X are sets of cn

(remember c is the number of clusters and n is the number of analyzed artifacts in set

X) membership values uik. This results in a c×n membership matrix in which element

uik defines the membership of sample xk in cluster i. The set of all non-degenerate (no

zero rows) c-partition matrices for X is:

Mhc = {U ∈ ℜcn|ui j ϵ {0, 1} ∀i, j;
c∑

i=1

ui j = 1∀ j;
n∑

j=1

ui j > 0∀i} (2.1)

where the partition element Uik = 1 if xk is labelled i and is 0 otherwise.

In unsupervised learning, the only provided input is set X = {xi|xi ∈ Rp, i = 1, . . . , n}
and the goal is to discover underlying structures in the data. This is a less well-defined

problem as no target groups or indications are being provided. Unsupervised learning

also imposes challenges in suggesting suitable evaluation metrics as the comparison of

the prediction of y for a given x to the observed value is not possible. Reinforcement

learning is useful for learning how to act or behave when given occasional reward or

punishment signals [18]; in the form of a scalar reinforcement signal that constitutes a

measure of how well the system operates. The learner is not told which actions to take,

but rather must discover which actions yield the best reward, by trying each action in

turn [147].

2.2 Significance Test

Statistical significance testing is used to test whether the information gain between

training iterations or methods is statistically unlikely. Statistical hypothesis testing

methods allow the inference of a hypothesis ensuring that the predicted result is unlikely

to have occurred by chance alone, according to a predetermined threshold probability

[58]. Statistical inference allows analysts to assess evidence in favor or some claim

about the population from which the sample has been drawn.

Such a test begins by assuming that there is no underlying pattern (the so called null

hypothesis). The data are analysed to calculate the extent to which they deviate from

a perfect absence of pattern. If the degree of deviation is statistically unlike (usually

depicted by a probability of 5% or less), it is considered to be good evidence for the
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presence of a significant pattern in the data. The probabilities are calculated from

standard distributions of the amount of deviation one would expect to see in random

sampling. In this context, the null hypothesis states that no information gain is to be

observed even if an indefinite large sample was provided. The probability under the

null hypothesis for a sample of v = n+p would exhibit the observed deviation from the

expected distribution of positive and negative samples. The deviation of comparing

actual values of positive and negative examples in each subset pk and nk, with the

expected numbers, p̂k and n̂k, assuming true irrelevance (see equation 2.2).

p̂k = p × pk + nk

p + n
n̂k = n × pk + nk

p + n
(2.2)

A convenient measure for the total deviation is given by equation 2.3.

∆ =

d∑
k=1

(pk − p̂k)2

p̂k
+

(nk − n̂k)2

n̂k
(2.3)

Under the null hypothesis the value of ∆ is distributed according to the χ2 distri-

bution with v − 1 degrees of freedom. The χ2 table may be used to tell if a particular

∆ value confirms or rejects the null hypothesis.

The methods of inference used to support or reject claims based on sample data are

known as tests of significance. Statistical hypothesis testing is necessary in assuring,

with a certain degree of confidence, that the outcome is not random, also allowing

performance comparisons between different method.

2.3 Distance Metrics & Validity Indices

Many ML algorithms, heavily rely on the distance metric for the input data patterns

due to the need that good metrics reflecting reasonably well the important relation-

ships between the data need to be given [272]. Distance Metric learning is to learn

a distance metric for the input space of data from a given collection of pair of simi-

lar/dissimilar points that preserves the distance relation among the training data. In

recent years, many studies have demonstrated, both empirically and theoretically, that

a learned metric can significantly improve the performance in classification, clustering

and retrieval tasks [276].

Previous work [114,116,178] has shown that appropriately designed distance metrics

can significantly benefit classification accuracy compared to the standard Euclidean
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distance [276]. Extensive work has been undertaken in the development of distance

learning methods aiming optimal results, however the majority of research focuses on

unconstrained spaces where the analysis of compositional and frequency domain or

transformed data is not appropriate leaving only a few possible options.

Depending on the availability of the training examples, algorithms for distance

metric learning can be divided into two categories: supervised distance metric learn-

ing and unsupervised distance metric learning. The training examples of supervised

distance metric learning is cast into pairwise constraints: the equivalence constraints

where pairs of data points that belong to the same classes, and in-equivalence con-

straints where pairs of data points belong to different classes whereas for unsupervised

distance metric learning, the idea is to learn an underlying low-dimensional manifold

where geometric relationships (e.g. distance) between most of the observed data are

preserved. There is deep connection between unsupervised distance metric learning

and dimension reduction [276].

Since, classification (supervised) is a more constrained problem than clustering

(unsupervised), clustering techniques may still be applied to classification problems

to draw information related to the distribution of clusters. Key information relevant

to the obtained clusters or classes, depending on the nature of the problem, may be

obtained by combining compactness and separability metrics. Compactness measures

the closeness of cluster elements and it is usually measured by variance. Separability

indicates how distinct two clusters are, measuring the distance between representative

objects of two clusters. Such aspects are of concern to research around clustering

validity indexes [206].

There are three approaches to study cluster validity [249]. The first is based on

external criteria of a pre-specified structure imposed on a dataset (external informa-

tion that is not contained in the dataset). The second approach is based on internal

criteria with the use of information that involves dataset vectors. Internal criteria are

subdivided into two groups: the one that assesses the fit between the data and the ex-

pected structure and others that focus on the stability of the solution [188]. The third

approach of clustering validity is based on relative criteria, which consists of evaluating

the results (clustering structure) by comparing them with other clustering schemes.
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2.4 Error Rate & Generalisation Loss

Model training involves the iterative process of finding the best fit of a model to the

training dataset. In practice, the model’s performance is evaluated against different

parametrisation. The error rate of a hypothesis is defined as the proportion of times

that h(x) , t for an input-output pair (x, t). The error rate combined with the cost

of error for each class (aka utility) constitute the loss function L(x, t, t̂) defined as

the utility of predicting h(x) = t̂ when the correct answer is f (x) = t. However, the

hypothesis h with the smaller error does not also imply good generalisation ability. A

hypothesis is thought to generalise well when it consistently performs well on unseen

data. This process usually involves the use of cross-validation methods, where the

available data are randomly split into a training set from which the learning algorithm

produces h and a test set on which the accuracy of h is evaluated [214].

The generalisation loss for a hypothesis h with respect to the loss function L is

defined as equation 2.4, given that the prior probability distribution over all input-

output pairs is defined as P(X,Y) and P(x, y) being the probability of vector x belonging

to label y.

GenLossL(h) =
∑

(x,y)∈D

L(y, h(x))P(x, y) (2.4)

and the best hypothesis h∗, is the one with the minimum expected generalisation

loss, equation 2.5

h∗ = arg min
h∈H

GenLossL(h) (2.5)

However, because P(x, y) is not known, the learning agent can only estimate gener-

alisation loss empirically as:

EmpLossL,D(h) =
1
N

∑
(x,y)∈D

L(y, h(x)) (2.6)

with the best hypothesis ĥ∗ as

ĥ∗ = arg min
h∈H

EmpLossL,D(h) (2.7)

Factors such as unrealizability, variance noise and computational complexity con-

stitute the reasons why ĥ∗ may differ from the true function f .
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2.5 Assumptions & Overlooks in Classification

Usually machine learning methods operate under a set of basic assumptions to prove

their effectiveness and validity. Discrepancies are however noticed between assump-

tions imposed during method designation and realistic conditions. Performance is

usually evaluated with respect to the ability to reproduce known knowledge, while in

Knowledge Discovery and Data Mining (KDD) the key task is the discovery of previ-

ously unknown knowledge [268]. Therefore, the most fundamental aspect in producing

plausible classification is that representative class labels and sufficient data, for each

category, need to be provided (also related to size of the feature space); the training

sample needs to be representative to the data population. One of the most confusing

things about understanding learning theory is the vast array of differing assumptions.

There is a gap between the assumptions made to prove that methods work and the

assumptions that are realistic in practice. However, due to the ubiquity of high dimen-

sional problems, the gap has become dangerously wide. [265].

Assumptions such as data smoothness, Independent and Identically Distributed

(IID) sequences as well as class membership are common in classification algorithms.

Smoothness assumptions on the data are linked to the cluster assumption stating that

data points in the same cluster are likely to belong to the same class [190] and the

manifold assumption stating that a high-dimensional dataset can be embedded into a

lower dimensional manifold [45, 234]. The smoothness of a classifier revolves around

the notion that if two input data points (x1, x2) are close to each other, then the

corresponding classifier outputs (t1, t2) are mutually close, as well.

Another very common assumption is that objects x ∈ X are independently drawn

from some (unknown, yet identical) probability distribution defined on P(x) (i.i.d. as-

sumption) [29]. The labels t ∈ T are given for each object according to some (also

unknown but fixed) function η(x) also covering the more general situation where each

object can have more than one possible label (P(t | x)) [257]. However, it turns out that

many results of pattern recognition theory carry over a weaker assumption. Namely,

under the assumption of conditional independence and identical distribution of objects,

while the only assumption on the distribution of labels is that the rate of occurrence

of each label should be above some positive threshold [216].

Another assumption linked with the fact that training data are representative to

their distribution and characteristics, there is also the stationarity assumption that the
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probability distribution of data remains stationary over time [214].

Finally, a fundamental assumption adopted by traditional supervised learning is

that each example belongs to only one concept, i.e. having unique semantic meaning

[278]. However as this is a very strong, and in most cases non-realistic, a number

of methods have been developed over the years to account for the multiple semantic

meanings that one real-world object might have; also escaping from the notion of

partial (fuzzy) membership. The multi-label learning paradigm emerges by assigning a

set of proper labels to the object to explicitly express its semantics [252]; a very useful

approach for the classification of archaeological artefacts.

Deployment of classification and in general ML methods requires compliance to

inherent assumptions and also consideration of underlying mechanics. Many learning

problems are formulated as minimization of some loss function on a training set of

examples, while loss functions express the discrepancy between the predictions of the

model being trained and the actual problem instances. The difference between the

two arise from the goal of generalization: while optimization algorithms can minimize

the loss on a training set, machine learning is concerned with minimizing the loss on

unseen samples [153]. Therefore, deployment of a classification algorithm may serve as

a solution only when its objectives are well tied to the objectives of the problem.

2.6 Data Uncertainty & Outliers

As one of the major issues in data mining, outlier detection, or anomaly detection, has

found numerous applications in a variety of fields [263]. Outliers are the observations,

events, or items which do not conform to an expected pattern or deviate from the ma-

jority of the data. They arise often due to human error, systematic changes, fraudulent

behavior, or natural deviations in populations [50].

In recent years, many new techniques have been developed for mining and managing

uncertain data. This is because of the new ways of collecting data which has resulted

in enormous amounts of inconsistent or missing data. Such data is often remodeled in

the form of uncertain data. The outlier detection problem is particularly challenging

for the uncertain case, because the outlier-like behaviour of a data point may be a

result of the uncertainty added to the data point. Furthermore, the uncertainty added

to the other data points may skew the overall data distribution in such a way that true

outliers may be masked [4].
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However, in cases of scarce data, practices implementing outlier detection and re-

moval may hinder the data mining outcome. When dealing with scarce datasets, one

should not expect that classes are equally represented. Samples from such classes may

be mistakenly detected as outliers. Their removal leads to significantly skewing the

class distribution or even discarding the whole class. It is therefore of interest to utilise

re-sampling methods to minimise the effect of possible outliers, without the discarding

of samples.

2.7 Summary

In this chapter, the fundamental and key principles of learning with emphasis on su-

pervised learning and classification in particular were presented. The supervised and

unsupervised learning problems were defined and the concept of statistical significance

testing as a method of ensuring that the predicted result is unlikely to have occurred

by chance alone was explained. The often overlooked role of distance metrics in rea-

sonably reflecting the important relationships in the data is also discussed as it will be

further utilised in Chapter 4. Additionally, the estimation of error rate and generali-

sation loss were also introduced as a means of stating the importance of estimating a

good hypothesis.

The introduction of concepts in this chapter is important to set the foundations

for the rest of this document, as Chapter 3 will discuss methods and approaches used

in principle in the area of classification and Chapter 4 will build on these concepts to

introduce a learning methodology for robust classification in order to tackle common

overlooks by researchers when dealing with classification problems.

16

Elisa
ve

t C
ha

ral
am

bo
us



Chapter 3

Classification Algorithms & State of the Art

Analysis

3.1 Introduction

During the past decade, machine learning has been widely applied to diverse prob-

lems from automatic annotation of multimedia contents [33, 200, 218, 251, 264], to bio-

informatics [55,82], web mining [142], rule mining [247], information retrieval [101], tag

recommendation [234], and many more. As over the years, new classification methods

are introduced, it is important to create standardised workflows that allow the plau-

sible and valid learning and deployment of classifiers. This idea is further reinforced

by the fact that complex structures in the form of deep neural networks have become

prevalent and are being widely deployed in real-world applications ranging from image

classification [31, 49] to autonomous driving [151, 230].

The impact and effectiveness of ML methods becomes evident with their wide

applicability in diverse problems. However, the robustness of an ML model, prior to its

deployment, is a critical factor and the subject of investigative interest. Robustness was

briefly introduced in Chapter 1 and refers to a model’s ability in retaining consistency

in terms of performance and immunity to small input changes which is also of interest

in this work. Typical ways of measuring robustness in this context are the use of

boosting and classification evaluation methods [63] in combination with significance

testing [144] with the use of appropriate classification evaluation metrics. In Chapter

2, the various factors that influence the classification outcome have been analysed. This

is further reinforced by the fact that, in real-world environments it is usually difficult
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to specify target operating conditions precisely making building robust classification

systems problematic since most of the times a realistic environment is neither isolated

nor uncontrolled.

The practical application of classifiers in the pipeline of operations may impact

the performance or judgement of other systems. Due to this, over the years, several

methods related to re-sampling, classification fusion and multi-layered classification

(cascaded and hierarchical) have been developed with the purpose to improve the

performance and consistency of the trained classifiers. In the rest of this Chapter, the

state-of-art analysis, with respect to relevant aspects, is presented with emphasis on

aspects relevant to the proposed methodology which is discussed as part of the next

chapter, Chapter 4.

3.2 The Evolution of Classification Methods

Over the years, a number of algorithms have been recognized, while in 2009 the fol-

lowing algorithms have been characterised as the top 10 most influential data min-

ing methods in the research community [271]: C4.5, k-Means, SVM (Support Vector

Machines), Apriori, EM (Expectation Maximization), PageRank, AdaBoost, k-NN (k-

Nearest Neighbours), Naive Bayes, and CART (Classification And Regression Trees).

ML approaches have been categorised under five distinctly different approaches: de-

terministic sensitivity analysis, probabilistic sensitivity analysis, Bayesian frameworks,

fuzzy set theory, and grey theory [37]. Even though numerous classification methods

exist and have been effectively used as solutions to diverse applications, their adapta-

tion to serve the requirements of individual application domains was necessary. Such

examples are endless, one is presented in [250] where a fuzzy-input fuzzy-output SVM

(F2SVM) is introduced where fuzzy class memberships are used during the training

phase, and a fuzzy output is generated by using a logistic transfer function. In [223] the

F2SVM is applied in speech processing for classification of voice quality characteristics.

Additionally, recent work in unsupervised feature learning and deep learning has

shown that being able to train large models can dramatically improve performance

allowing the development of deep networks capable of performing training on billions of

parameters using tens of thousands of CPU cores [64]. Deep artificial neural networks

(including recurrent ones) have won numerous contests in pattern recognition and

machine learning [225].
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A standard neural network (NN) consists of many simple, connected processors each

producing a sequence of real-valued activations. NN-like models have been around for

many decades if not centuries, while models with several successive nonlinear layers of

neurons date back to the 1960s and 1970s having as main landmark the appearance

of the back propagation (BP) algorithm. Despite the potentials, BP-based training of

Deep NNs with many layers, has been found to be difficult in practice and had become

an explicit research subject. Deep Learning became practically feasible through the

help of Unsupervised Learning and Deep NNs attract wide-spread attention since 2000,

mainly by outperforming alternative machine learning methods such as kernel machines

[258] in numerous important applications. Deep NNs have also become relevant for the

more general field of Reinforcement Learning (RL). Deep learning is leading in many

domains, due to its ability to achieve the accuracy of kernel SVMs with the scalability

of stochastic gradient descent.

At the same time, different methods and algorithms have been proposed to train

models in pattern recognition applications [13,106,222] using partially or weakly labeled

training data sets. Many semi-supervised classification algorithms have been developed

during the last 20 years, as a means of providing solutions to problems that could not

entirely fit in any of the two major categories.

Due to the wide and diverse range of existing algorithms, there is emerging need

for the implementation of frameworks, like the one proposed in this work, to allow

the robust classification of classifiers with any preferred algorithm, regardless of their

structure.

Innovations in the field of classifications do not only involve the invention or im-

provement of existing classification algorithms, but also innovative ways in the de-

ployment of classifiers; these might involve classifiers deployed under a hierarchical or

cascaded manner or classifier ensembles that utilise classification fusion or majority

voting techniques in order to provide an output. Such efforts aid the improvement of

accuracy in the final output by combining classifiers, however, they make even more

significant the use of robust classifiers in such setups to avoid errors propagation.

Research in this area is divided into two broad groups, the first is the combination

of classifiers that predict the same set of random variables while the second involves

the incorporation of classifiers as components in large intelligent systems. The aim in

the first group is to improve classifications by combining the outputs of the individual

models. Boosting [93], in which many weak learners are combined into a highly accurate
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classifier, is one of the most common and powerful such schemes. In contrast, the

objective in the second group is to allow multiple classifiers to operate in harmony and

smoothly within a unified environment. Kumar and Hebert in [154], present such an

example where a large MRF(Markov Random Fields)-based probabilistic model was

developed, linking multi-class segmentation and object detection.

In the machine learning community it is well known that more complex classification

functions yield lower training errors yet run the risk of poor generalization. If the

main consideration is test set error, structural risk minimization provides a formal

mechanism for selecting a classifier with the right balance of complexity and training

error [60] In particular, the hierarchical structure was initially used to train different

second-level classifiers. In the hierarchical case, a model is learned to distinguish a

second-level category from other categories within the same top level. In the flat non-

hierarchical case, a model distinguishes a second-level category from all other second-

level categories [77]. Hierarchical decomposition of a classification problem allows for

efficiencies in both learning and representation. Each sub-problem is smaller than the

original problem, and it is sometimes possible to use a much smaller set of features for

each sub-problem [146].

Additionally, the concept of Cascaded Classification Models (CCM) involves the

employment of repeated instantiations of “black box” classifiers at each level for, a

sub-problem or a set of sub-problems, combined to improve performance on some or

all tasks. Specifically, the CCM framework creates multiple instantiations of each

classifier, and organizes them into tiers where models in the first tier learn in isolation,

processing the data to produce the best classifications given only the raw instance

features. Lower tiers accept as input both the features from the data instance, as well

as features computed from the output classifications of the models at the previous

tier [118].

Finally, an ensemble of classifiers is a set of classifiers whose individual decisions

are combined in some way (typically by weighted or unweighted voting) to classify new

examples. One of the most active areas of research in supervised learning has been

to study methods for constructing good ensembles of classifiers. The main discovery

is that ensembles are often much more accurate than the individual classifiers that

make them up. A necessary and sufficient condition for an ensemble of classifiers to be

more accurate than any of its individual members is if the classifiers are accurate and

diverse [110]. An accurate classifier is one that has an error rate of better than random
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guessing on new x values. Two classifiers are diverse if they make different errors on

new data points [69].

3.3 Classification Evaluation

So far we have seen that a wide selection of classification methods have been developed

over the years in an effort to serve as tools for the solution of copious and simultaneously

diverse problems. However, the effectiveness of a classification algorithm is not only

dependent on its nature or parameterisation, but it is also largely dependent on the

application domain (i.e. account the number of correct predictions from all predictions,

account the instances in which the classifier correctly did not assign an artifact to a class

it does not belong, do not account for instances in which the algorithm correctly did

not assign a sample to a specific class). Evaluation of the validity and the plausibility of

classification results is not only necessary but critical, while it should follow appropriate

parameterisation and use of metrics.

Therefore a number of classification evaluation metrics have been developed to

account for both supervised and unsupervised methods as well as for the different

types of classification/clustering (i.e. crisp, fuzzy, binary, multi-class, multi-label). A

common approach for the evaluation of both supervised and unsupervised results is

with the use of validity indices. One of the fundamental challenges of clustering is how

to evaluate results, without auxiliary information; both training and testing data are

needed for the assessment of an algorithm’s generalization capability.

In order to determine the input parameters that lead to clusters that best fit a

given dataset, we need reliable guidelines to evaluate the clusters [207]. Currently,

cluster validity indices research has drawn attention as a means to give a solution

[109]. Clustering validation is a technique to find a set of clusters hat best fits natural

partitions (number of clusters) without any class information. Cluster validity indices

can be defined based on three different criteria: internal, relative and external [131].

Indices based on internal criteria assess the fit between the structure imposed by the

clustering algorithm and the data using the data alone. Indices based on relative

criteria compare multiple structures (generated by different algorithms, for example)

and decide which of them is better in some sense and evaluate the result with respect

to information intrinsic to the data alone. External indices measure the performance

by matching cluster structure to the a priori information and evaluate the result with
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respect to a pre-specified structure (i.e., the ground truth). Finally, the third approach

of clustering validity is based on relative criteria, which consists of evaluating the results

(clustering structure) by comparing them with other clustering schemes [207].

Internal cluster validity indices can be further divided into two groups where the

former assesses the fit between the data and the expected structure and the latter

focuses on the stability of the solution [189]. The notion of cluster stability [157] is

appealing as an internal stability measure. Cluster stability is measured as the amount

of variation in the clustering solution over different sub-samples drawn from the input

data. Consequently, different types of indices are used to solve different types of prob-

lems and indices selection depends on the kind of available information. In general,

clustering validity indices are usually defined by combining compactness and separa-

bility. Compactness is the measure known describing closeness of cluster elements. A

common measure of compactness is variance, while the measure of separability indi-

cates how distinct two clusters are; it essentially computes the distance between two

different clusters.

For a classification application with discrete states the performance of a classifier is

usually summarized by a confusion matrix. The elements of the confusion matrix deter-

mine the number of samples correctly (or incorrectly) classified. An evaluation metric

then summarizes this confusion matrix into a value that can be used for comparing

different classification techniques or different models for the classifier [88].

This choice of the evaluation metric is very important and application-dependent.

A poorly defined metric may guide the model selection procedure to a far-from-optimal

model or lead to erroneous conclusions when comparing the performances of two classi-

fiers. Several evaluation metrics, including the classification accuracy, mis-classification

costs, Kappa coefficient [57], the receiver operating characteristics (ROC) curve [284],

and loss functions have been proposed. For evaluating classification problems with

balanced datasets, classification accuracy is commonly used. Serious problems with

classification accuracy arise when classes are highly imbalanced (e.g., for a two-class

problem p(C1) >> p(C2)) [199]. Imbalanced datasets are common and of interest to

this thesis and therefore classification accuracy is not a suitable evaluation metric.

Unfortunately, choosing an alternative evaluation metric in classification applica-

tions with imbalanced datasets is not obvious. Each metric has strengths and weak-

nesses, however, research studies seldom justify why a particular metric was chosen

for that specific application. Provision of an objective method for comparing metrics
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would allow the informed selection of metrics suitable for the particular application.

In [125], a framework to compare (classification accuracy and AUC) two well-known

metrics frequently used to summarize a confusion matrix is proposed. With AUC

we refer to the area under the receiver operating characteristic (ROC) curve. This

framework uses two measures: the degree of consistency (DoC) and the degree of

difference (DoD) to compare classification accuracy and AUC. Based on this work,

Fatourechi et al. [88] proposed a general solution for comparing metrics used in binary

classification applications with imbalanced datasets. The focus in this study was on

metrics that summarise a single confusion matrix (compared to metrics such as AUC

whose calculation is dependent on multiple confusion matrices).

The area under the ROC (Receiver Operating Characteristics) curve, or simply

AUC, has been traditionally used in medical diagnosis and other sciences – ecology

included – since the 1970s. It has recently been proposed as an alternative single-

number measure for evaluating the predictive ability of learning algorithms. Despite

the fact that for multiple years no formal arguments were given as to why AUC should

be preferred over accuracy, [125] showed theoretically and empirically that AUC is a

better measure (defined precisely) than accuracy. The significance of this study escapes

this proof as it also demonstrated that the results of statistical tests of significance are

impacted by the choice of the evaluation metric. In particular, it was demonstrated

that Naive Bayes and decision trees that are very similar in predictive analysis do not

adhere to the same results in AUC; Naive Bayes was significantly better than decision

trees when AUC was used.

3.4 Distance Metrics

Many ML algorithms rely their operation in a form of similarity or dissimilarity metric

among a set of items in a multidimensional space; either this being other data samples

or a metric relevant to the distribution of the class/cluster. These measuring functions

are known as distance metrics and allow the supervised or unsupervised learning al-

gorithm to make data based decisions. A good distance metric helps in improving the

performance of classification, clustering and information retrieval process significantly.

The use of the appropriate distance metric is extremely important as neither infor-

mation present in the data should be ignored nor that effects of noise or outliers are

exaggerated. Failing to select the appropriate distance metric, then unwanted features
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in the data will have undue influence on the results, perhaps obscuring meaningful

patterns [168].

Many ML algorithms use the Euclidean distance as the default distance function

where the distance between vectors in Cartesian coordinates p = [p1, p2, . . . , pn]T and

q = [q1, q2, . . . , qn]T are two points in the infinite Euclidean n-space, then the distance

d is defined as:

d(p, q) = d(q, p) =

√√
n∑

i=1

(pi − qi)2 (3.1)

The use of this distance metric is not appropriate neither in all problems nor with

all ML learning methods.

The City-block distance (aka Manhattan distance) is a commonly used metric that

lies in the taxicab geometry where the distance between two points is the sum of the

absolute difference of the Cartesian coordinates. The taxicab distance d1, between two

vectors, in an n-dimensional real vector space is defined as:

d1(p, q) = ∥p − q∥1 =
n∑

i=1

|pi − qi| (3.2)

Taxicab distance depends on the rotation of the coordinate system, but does not

depend on its reflection about a coordinate axis or its translation and therefore is one

of the preferred distance metrics used to assess the differences in discrete frequency

distributions.

Proportion coefficients can also be used as distance metrics and represent coeffi-

cients expressed as proportions of the maximum distance possible. An instance of a

proportion coefficient is the Jaccard index (aka Jaccard coefficient and Jaccard simi-

larity) and may be thought of as the overlap between the area under curves. If A is

the area under one curve, B is the area under the other,then the Jaccard coefficient, in

set notation, is defined as:

JaccardIndex =
A ∩ B
A ∪ B

(3.3)

Proportion coefficients as distance measures are foreign to classical statistics, which

are based on squared Euclidean distances. Ecologists latched onto proportion coeffi-

cients for their simple, intuitive appeal despite their falling outside of mainstream

statistics. Nevertheless, Roberts in [210], showed how proportion coefficients can be

derived from the mathematics of fuzzy sets an increasingly important branch of math-

ematics.
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Another, interesting to our field distance metric is the chi-square measure (χ2),

used in correspondence analysis. Chi-square histogram distance is one of the distance

measures that can be used to find dissimilarity between two histograms and has been

widely used in various applications such as image retrieval, texture and object classifi-

cation, and shape classification [192]. If p and q represent the probability distributions

of two events A and B with random variables, i = 1, 2, . . . , n, the chi-square measure

between these two histograms is given by [192]:

χ2
A,B =

1
2

n∑
i=1

[pi − qi]2

pi + qi
(3.4)

In histograms of many processes, the difference between large bins is less important

than the difference between small bins and that should be reduced. The chi-square

histograms take this into account [192]. The chi-square histogram distance comes from

the chi-square statistics to test the fit between a distribution and observed frequencies.

At this point it is important to note that depending on the type of data – under

analysis – and the performed operation/transformation, the most appropriate distance

metric should be used. For instance if the similarity between images is to be measured

based on their histograms, the chi-square distance metric should be used, while in case

image coefficients are extracted and stored in a database, then distance metrics such

as the Manhattan Distance and the Euclidean distance should be used; a similar case

is explained by Fan & Wang in [87].

Another such example involves the use of Kullback–Leibler Divergence (KLD) to

analyze the spectral structure of acoustic events for Acoustic Event Detection (AED).

In [282] KLD based feature discriminative capability analysis was applied to under-

stand the relevance of different feature components (in a speech feature set) for the

AED task compared to speech recognition. The distance between the distributions

associated with an acoustic event label and the other audio labels reveals the discrim-

inative capability of the feature for that acoustic event. KLD, denoted by D(p||q), is a

measure (a ‘‘distance” in a heuristic sense) between two distributions, p and q, and is

defined as the cross entropy between p and q minus the self entropy of p (see Equation

3.5).

D(p||q) =
∫

p(x) log
p(x)
q(x)

(3.5)

KLD was used to measure the discriminative capability of each feature component

for each acoustic event. Let di j = D(pi j||qi j) denote the divergence between the distribu-

tion of the ith feature component for the jth acoustic event and the global distribution

25

Elisa
ve

t C
ha

ral
am

bo
us



of the ith feature component for all the audio. The global discriminating capability of

the ith feature component is defined by Equation 3.6 where P j is the prior probability

for the jth acoustic event.

di =
∑

j

P jdi j (3.6)

Even though, many distance measures exist, it is important to know the domain

of acceptable data values for each distance measure. Many distance measures are not

compatible with negative numbers while other distance measures assume that the data

are proportions varying between zero and one [168].

3.5 Feature Selection

In the past thirty years, the dimensionality of the data involved in machine learning and

data mining tasks has increased explosively. Data with extremely high dimensionality

has presented serious challenges to existing learning methods [113, 160]. With the

presence of a large number of features, a learning model tends to overfit, resulting in

performance degradation.

Dimensionality reduction is one of the most popular techniques to remove irrelevant

and redundant features and are generally categorised into feature extraction and feature

selection. According to whether the training set is labelled or not, feature selection

algorithms can be categorised into supervised [233, 267], unsupervised [78, 175] and

semi-supervised [275, 280].

Feature extraction approaches project features into a new feature space with lower

dimensionality, where the newly constructed features are usually combinations of orig-

inal features. Feature selection approaches aim to select a small subset of features that

minimize redundancy and maximize relevance to the target (i.e select the subset of

highly discriminant features). Common feature extraction techniques include Princi-

ple Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Canonical

Correlation Analysis (CCA), while common feature selection techniques include Infor-

mation Gain, Relief, Fisher Score and LASSO [241].

Both feature extraction and feature selection are capable of improving learning per-

formance, lowering computational complexity, building better generalised models, and

decreasing required storage. Feature selection is superior in terms of better readabil-

ity and interpretability compared to feature extraction techniques as feature selection
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selects a subset of features from the original feature set without any transformation,

and maintains the physical meanings of the original features allowing further analysis

on the obtained features if desired.

Feature selection aims to select a subset of highly discriminant features; the rele-

vance of features is assessed as the capability of distinguishing the given sample into

the set of different classes. For example, a feature fi is said to be relevant to a class

c j if fi and c j are highly correlated [241]. This procedure generally consists of four

basic steps [161], namely, subset generation, subset evaluation, stopping criterion, and

result validation. In the first step, a candidate feature subset will be chosen based on a

given search strategy, which is then evaluated, in the second step, according to certain

evaluation criteria. The subset that best fits the evaluation criterion will be chosen

from all the candidates that have been evaluated after the stopping criteria are met.

The chosen subset will finally be validated using domain knowledge or a validation set.

Supervised feature selection, which is of interest in this thesis, assesses the rele-

vance of features guided by the label information but a good selector needs enough

labeled data, which is time consuming; a requirement not always satisfied when data

are characterised by huge dimensionality. Supervised feature selection methods mainly

affect the training phase of classification and are broadly categorized into filter models,

wrapper models and embedded models. The filter model separates feature selection

from classifier learning so that the bias of a learning algorithm does not interact with

the bias of a feature selection algorithm. It relies on measures of the general character-

istics of the training data such as distance, consistency, dependency, information, and

correlation. Relief [211], Fisher score [76] and Information Gain based methods [193]

are among the most representative algorithms of the filter model.

The wrapper model uses the predictive accuracy of a predetermined learning algo-

rithm to determine the quality of selected features. In a wrapper method the classifier

is used as a black box returning a feature ranking, therefore one can use any classi-

fier which can provide the ranking of features. For practical reasons, a classifier used

in this problem should be both computationally efficient and simple, possibly with-

out user defined parameters [155]. If this requirement is not fulfilled, these methods

may become prohibitively expensive to run for data with a large number of features.

Finally, the embedded model performs feature selection in the learning time; model

fitting and feature selection are performed simultaneously [44, 201]. This model was

proposed to bridge the gap between the filter and wrapper models, as it incorporates
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the statistical criteria to select several candidate feature subsets with a given cardi-

nality and then select the subset with the highest classification accuracy [161]. Thus,

the embedded model usually achieves both comparable accuracy to the wrapper and

comparable efficiency to the filter model.

In real-world classification problem little to none prior knowledge is available with

regards to class and class-conditional probabilities, while, little knowledge about rel-

evant features exists. Due to this, many candidate features are introduced to better

represent the domain, resulting in the existence of irrelevant/redundant features to the

target concept. A relevant feature is neither irrelevant nor redundant to the target

concept; an irrelevant feature is not directly associated with the target concept but

affects the learning process, and a redundant feature does not add anything new to the

target concept [136]. A good discussion outlining why finding all relevant attributes

is important is given by Nilsson et al. in [185]. In many classification problems, it

is difficult to learn good classifiers before removing these unwanted features due to

the huge size of the data. Reducing the number of irrelevant/redundant features can

drastically reduce the running time of the learning algorithms and yields a more gen-

eral classifier. This helps in getting a better insight into the underlying concept of a

real-world classification problem [241].

The all-relevant problem of feature selection which involves the identification of all

attributes which are in some circumstances relevant for classification is more difficult

than usual minimal-optimal one where the objective if to find a set of non-redundant

features. One reason is that we cannot rely on the classification accuracy as the criterion

for selecting the feature as important (or rejecting it as unimportant). The degrada-

tion of the classification accuracy, upon removal of the feature from the feature set,

is sufficient to declare the feature important, but lack of this effect is not sufficient to

declare it unimportant [155]. One therefore needs another criterion for declaring vari-

ables important or unimportant. Moreover, one cannot use filtering methods, because

the lack of direct correlation between a given feature and the decision is not a proof

that this feature is not important in conjunction with the other features [107]. One is

therefore restricted to wrapper algorithms, which are computationally more demanding

than filters. Wrappers use a search algorithm to search through the space of possible

features and evaluate each subset by running a model on the subset.

The feature selection phase might be independent of the learning algorithm, like

filter models, or it may iteratively utilize the performance of the learning algorithms to
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evaluate the quality of the selected features, like wrapper models. With the finally se-

lected features, a classifier is induced for the prediction phase. Usually feature selection

for classification attempts to select the minimally sized subset of features that does not

significantly decrease the classification accuracy (or any other classification evaluation

metric) whilst retaining as much as possible the original class distribution [241].

Ideally, feature selection methods search through the subsets of features and try

to find the best one among the competing 2p candidate subsets according to some

evaluation functions [62]. However this procedure is exhaustive as it tries to find only

the best one. It may be too costly and practically prohibitive, even for a medium-sized

feature set size (m). Other methods based on heuristic or random search methods

attempt to reduce computational complexity by compromising performance. These

methods need a stopping criterion to prevent an exhaustive search of subsets.

Researchers in statistics [34, 75, 156, 171, 183] and pattern recognition [21, 65] have

investigated the feature selection (aka feature subset selection) problem for decades,

but most work has concentrated on feature selection using linear regression.

Sequential backward elimination, sometimes called sequential backward selection,

was introduced in Marill & Green (1963). Kittler generalised the different variants

including forward methods and stepwise methods. Branch and bound algorithms were

introduced by Narendra & Fukunaga (1977). Finally, more recent papers attempt

to use AI techniques such as beam search and bidirectional search [229], best first

search [273] and genetic algorithms [255].

Many measures have been suggested to evaluate feature selection (as opposed to

cross validation), such as adjusted mean square error, adjusted multiple correlation

coefficient and the Cp statistic [166]. The search for the best feature subset can be

improved by making assumptions on the evaluation function. The most common as-

sumption is monotonicity, that increasing the subset can only increase the performance.

Under such assumptions, the search space can be pruned by the use of dynamic pro-

gramming and branch-and-bound techniques. The monotonicity assumption is not

valid for man induction algorithms used in machine learning.

The terms weak and strong relevance are used to denote formulas that appear in one

minimal derivation or in all minimal derivations. Moret [177] then defined redundant

features and indispensable features for the discrete case. The definitions are similar to

our notions of irrelevance and strong relevance, but do not coincide on some boundary

cases. Determination was introduced in Russel [213, 215] under a probabilistic setting

29

Elisa
ve

t C
ha

ral
am

bo
us



and used in a deterministic non-noisy setting in Schlimmer [224] and may help analyse

redundancies.

3.6 Modeling Data Uncertainty

The main challenge of uncertainty in design is that different types of uncertainty can

occur at different stages of the design process. These different uncertainties can re-

quire distinctive handling and modeling techniques to understand their influence and

importance [150]. Complex information systems are expected to have several types of

uncertainties, such as fuzzy, probabilistic, and non-specificity [186, 187]. Fuzzy Un-

certainty deals with the imprecision or vagueness associated with the occurrence of

an event. In contrast, Probabilistic Uncertainty models the uncertainty of an event

belonging to a crisp set. A model that integrates these two uncertainty types may be

called Combined Uncertainty (named Total Uncertainty in [186, 187]).

To date, there has not been a principled way of modeling data uncertainty directly

for classification problems in the literature. A hidden underlying assumption is that

errors are confined to the output y, i.e., the input data are not corrupted with noise;

or even when noise is present in the data, its effect is often ignored in the learning for-

mulation [28]. Despite the previous statement, attempts in learning robust classifiers

have been studied in an algorithm specific manner (i.e., the learning of robust SVM).

However, for many applications, this assumption is unrealistic. Sampling errors, mod-

eling errors and instrument errors may preclude the possibility of knowing the input

data exactly.

A simple approach that will most likely be sufficient for most decisions is deter-

ministic sensitivity analysis, although more complex approaches may be needed when

multiple sources of uncertainty must be simultaneously considered [37]. Hence classi-

fication problems based on observed data in reality are expected to have noisy inputs.

Due to this, many systems opt to provide estimates for the reliability of their outputs,

which measure how uncertain each element of the outputs is. Such information is

proven useful in the learning formulation problem and should be considered when the

objective is to produce more accurate predictors.

Data uncertainty modeling assumes that data are corrupted by noise such that

(xi, yi) with xi being the corrupted input emerge from x′i the un-corrupted data, in-

dependently of the output yi so that (x′i , yi) is still a valid expression. Given that x′i
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follows distribution p(x′i , yi|θ), where θ is an unknown parameter estimated from the

data. The objective is to model a distribution p(xi|θ′ , σi, x
′

i) where σi is the known es-

timate of uncertainty for xi. The joint probability of (xi, yi) is obtained by integrating

out the unobserved quantity x′i:

p(xi, yi) =
∫

p(x
′

i , yi|θ)p(xi|θ
′
, σi, x

′

idx
′

i) (3.7)

The unknown parameters (θ, θ′) can be estimated from the data using the maxi-

mum likelihood estimate which often leads to a very complicated formulation due to the

integration over the unknown true input. Additionally, generalisation of this method

to non-probability formulations is not straightforward and therefore other, more com-

putationally efficient and tractable, methods should be applied; such methods involve

approximations of equation 3.7. The penalisation effects of uncertainty modeling ap-

proaches leads to ignoring data that are thought to be very uncertain and perform the

learning and prediction procedure on data less contaminated.

Over the years, multiple attempts have been proposed to tackle the problem of

uncertainty modeling. The complexity of the uncertainty problem, led researchers in

decoupling the problem into different areas for further investigation. For instance, [28]

investigated a learning model based on support vector classification in which the input

data is corrupted with noise. Authors, introduced a formulation of SVM with uncertain

input based on the total least squares regression method. Empirical results showed that

the newly formed method is superior to the standard SVM for problems with noisy

input. On the same lines, but losing the assumption that t represents the ground truth,

authors in [26] proposed a framework based on robust optimization methods to address

classification problems whose data (both in features and in labels) are subject to error,

the three most widely used classification methods: support vector machines, logistic

regression, and decision trees. Robust optimization is a flexible framework for modeling

uncertainty [23] and is arguably one of the fastest-growing areas of optimization in the

last decade. Research is also focused in combined uncertainty methods, in particular,

[11] discusses the use of combined uncertainty methods in the diagnosis of coronary

artery disease using electrocardiogram (ECG) stress signals. Combined uncertainty

computes a composite of two types of uncertainties, fuzzy and probabilistic.

Due to the great interest in the field and the increasing number of produced pub-

lications in the area, in 2015 a work has been published, reviewing attempts to deal

with uncertainty in classification as part of Multi-Criteria decision analysis [37]. Based
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on the definitions of uncertainty suggested by Briggs et al. [36] on the different types

of uncertainty, studies in the area of uncertainty between 1960 and 2013 were reviewed

and categorized based on the MCDA method used. Additionally, [150] in a work pub-

lished in the International Conference on Engineering Design (ICED11), proposed a

classification of the manifestation of uncertainty describing the different points of the

design process with the aim to set a basis for shared understanding and characterization

of uncertainty.

A plausible approach for dealing with noisy input is to use the standard learning

formulation without modeling the underlying input uncertainty. This reasoning relies

on the fact that the noise observed in both the training and testing data is equivalent

and therefore will impact the learning process similarly; making it negligible.

Different approaches of uncertainty described in literature focus on different aspects

and points of the design process and offer insights on different aspects [150]. While

uncertainty modelling might be beneficial to well defined problems, enough data should

be available for the proper estimation of the probability distribution functions in equa-

tion 3.7; it is also assumed that the distribution functions of both data and uncertainty

do not change over time.

Moreover, deterministic uncertainty modeling approaches, that are more straight-

forward and most commonly used, rely on the assumption that labels t do not adhere to

uncertainty and represent the ground truth; a very strong assumption for applications

related to soft sciences and human perception. In some applications, it is not accept-

able to neglect data even when these are thought to be highly uncertain; especially

when dealing with scarce datasets and under-represented classes [228].

3.7 Classification Robustness

Noisy data and uncertainty impose great challenges in the learning of accurate ML

models. Unfortunately, the commonality of uncertain data calls for the implementation

of methods, whether these are algorithm agnostic or not, that allow for robustness in

the operation of the ML model and as a consequence the operation of the overall

system.

In most classification settings, the proportion of misclassified samples in the test set

is the main performance metric used to evaluate classifiers. Classification robustness

works study empirically and theoretically the robustness to different types of pertur-
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bations, such as adversarial perturbations, additive random noise, structured trans-

formations, or even universal perturbations. The prediction accuracy has been the

long-lasting and sole standard for comparing the performance of classification models,

however, recent studies have highlighted the lack of robustness in well-trained classifiers

to adversarial examples [238] creating the emerging need to experiment with multiple

robustness metrics, including the distortion and success rate. The robustness is usually

measured as the sensitivity of the discrete classification function.

In real-world environments it is usually difficult to precisely specify target operating

conditions making building robust classification systems problematic. In robustness

the objective is to fit a model on contaminated data such that you find a fit as close

as possible as the one you would have had without the outliers. Outlier detection

tries to find all the outliers that matter in the sample. That is, all points that exert

a disproportional pull on the fitted parameter of the model. Robustness solutions

approach the problem from different perspectives, some aid at learning a classifier based

on robust optimisation techniques for maximum separation (assuming the probability

distribution of noise), while others aid at optimising the learning solution by combining

multiple analysis approaches with the aim to make systems more tolerable to noise;

contributions in this thesis belong to the second approach.

Many recent attempts exist in the literature with respect to classification robust-

ness. In the area of artificial neural networks, the concept of combining multiple

networks has been proposed as a new direction for the development of highly reliable

neural network systems. The authors in [52] proposed a method for multi network

combination based on the fuzzy integral. This technique non-linearly combined objec-

tive evidence, in the form of a fuzzy membership function, with subjective evaluation

of the worth of the individual neural networks with respect to the decision. The exper-

imental results with the recognition problem of on-line handwriting characters confirm

the superiority of the presented method to the other voting techniques.

Provost in [199] proposes a way to build a hybrid classifier that promised to perform

at least as well as the best available classifier for any target conditions; based on em-

pirical evidence. The authors claim that in some cases the performance of the hybrid

actually can surpass that of the best known classifier. The authors’ proposed method is

based on the comparison of classifier performance that is robust to imprecise class dis-

tributions and mis-classification costs. Provost’s solution extends across a wide variety

of comparison frameworks based on the ROC convex hull (ROCCH) method combin-
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ing techniques from ROC analysis, decision analysis and computational geometry, and

adapts them to the particulars of analyzing learned classifiers. The method minimizes

the management of classifier performance data, and allows for visual comparisons and

sensitivity analyses.

Viola & Jones in [262] proposed an approach based on a series of cascaded simple

classifiers for extremely fast detection in domains where the distribution of positive and

negative examples is highly skewed. Their subject of interest involved face detection

and database retrieval applications. Their methodology included the use of AdaBoost

as a mechanism for training eash classifier in the cascade. Each trained classifiers were

designed to achieve high detection rates and modest false positive rates can yield a

final detector with many desirable features: including high detection rates, very low

false positive rates, and fast performance.

Ben-Tal in [22] approaches the problem from a different perspective and studies

efficient methods for robust classification under uncertainty in Kernel Matrices through

a study for the designation of SVM classifiers when the kernel matrix, K, is affected

by uncertainty.

Motivated by the fact that real-world applications need to be resilient to arbitrary

input data, an important line of work has developed the open-world learning frame-

work that checks if the inputs are within the same distribution as training data (in-

distribution examples), or if they come from a different distribution referred to as out-

of-distribution examples [24, 25]. State-of-the-art open-world learning systems equip

machine learning classifiers with out-of-distribution detectors, and an input example

is processed for classification only if the input passes through those detectors. In re-

cent years, the research community has developed several out-of-distribution detection

mechanisms that are effective in distinguishing out-of-distribution inputs [119,151,158].

Sehwag et al. in [228] investigated evasion attacks in the open-world learning frame-

work and defined out-of-distribution adversarial examples, which represent a new at-

tack vector on machine learning models used in practice. Out-of-distribution learning

frameworks aim to discard input examples which are not from the same distribution as

the training data of machine learning classifiers . Through experiments, authors found

that existing out-of-distribution detectors are insufficient to deal with this threat while

they suggest further investigation on distance comparisons in feature space [135, 159]

as part of their future work.

Finally, [81] proposed an optimisation approach for the robust classification of scarce
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data in the area of face recognition for computer vision in the multi-sub space, using

scarce representation techniques. Due to the fact that data for face recognition from

multiple classes lie in multiple low-dimensional subs-paces of a high-dimensional am-

bient space. Authors cast classification as a structured scarce recovery problem where

the goal is to find a representation of a test example that uses the minimum number

of blocks from the dictionary. The authors showed that transforming the face recog-

nition problem to a structured scarce recovery problem can improve the results of the

state-of-the-art face recognition algorithms, especially when we have relatively small

number of training data for each class.

3.8 Statistical Hypothesis Testing

Statistical hypothesis testing methods allow the inference of a hypothesis ensuring that

the predicted result is unlikely to have occurred by chance alone, according to a pre-

determined threshold probability [58]. Statistical hypothesis testing is necessary in

assuring, with a certain degree of confidence, that the outcome is not random, also

allowing performance comparisons between different methods. Statistical inference

allows analysts to assess evidence in favour or some claim about the population from

which the sample has been drawn. The methods of inference used to support or reject

claims based on sample data are known as tests of significance.

The inference procedure using dispersion metrics relies on statistical hypothesis

testing, and therefore, on how well the null model represents neutral expectations.

Currently, there exists an extensive number of null models that can be used to in-

fer assembly processes, ranging from simple null models based on random shuffling of

taxon labels [59,102,103,143,266], to dynamic null models [196] and analytical frame-

works [236] that incorporate macroevolutionary processes such as speciation, dispersal,

and extinction. However, even with more dynamic null models and simulation power,

relying on statistical hypothesis testing and passing a significance threshold to infer an

assembly process are problematic, in part due to the sensitivity between p‐values and

sample size and how we interpret “significance,” but also because each analysis of a

particular data type and test statistic results in a measure of significance. Researchers

are then responsible for integrating across a suit of hypothesis tests, some that may be

significant while others are not, in order to draw an inference. Arguably, a model‐based

inference procedure is necessary to incorporate all data at once, rank models of com-
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munity assembly by their relative support, and, importantly, incorporate uncertainty

in model inference.

Statistical methods emphasizing formal hypothesis testing have dominated the anal-

yses used by various disciplines to gain insight from data. One such discipline is ecology

where the use of statistical hypothesis testing involves an integral component in their

analysis. Variations of statistical hypothesis testing approaches have been developed

over the years to be coupled with standardised approaches while it has been noted that

journal editors nowadays require authors to quote the exact P values yield by their

analysis, and let readers make their own interpretation [129].

Statistical hypothesis testing has gained great interest for several decades in multi-

ple disciplines. The examples are numerous; for instance, [260] proposed a quantitative

criterion for the termination of the estimation process for the Maximum Likelihood Es-

timator algorithm. Statistical hypothesis testing was used for determining the quality

of the outcome. In particular, the authors in [239] proposed a new method of ex-

ploratory data analysis was developed based on the calculation of the AUC metric

and non-parametric statistical hypotheses testing to detect statistically significant dif-

ferences in the characteristics of the wave trains of the muscles’ electrical activity.

Another such example is presented by authors in [246] where authors discuss the use

of statistical hypothesis testing to test phylogeographical hypotheses. Additionally,

authors in [139], review the use of statistical hypothesis testing in biology and stress

the fact the use of these methods is often emphasized disproportionately at the expense

of the original goal of testing the experimental hypothesis.

Statistical testing can be performed in a number of ways depending on the nature

of the problem, the availability of data as well as the ability to deploy re-sampling on

the original dataset. The performance of a hypothesis test are characterised by Type I

and Type II errors. A Type I error occurs if we reject the null hypothesis (in favor of

the alternative hypothesis) when the null hypothesis is true. Type I error is denoted as

α = P(TypeIerror) A Type II error occurs if we fail to reject the null hypothesis H0 when

the alternative hypothesis HA is true. Type II error is denoted as β = P(TypeIIError).

In general, for every hypothesis test, it is desirable to:

• Minimize the probability of committing a Type I error. That, is minimize α =

P(TypeIError). Typically, a significance level of α ≤ 0.10 is desired.

• Maximize the power (at a value of the parameter under the alternative hypothesis
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that is scientifically meaningful). Typically, with a desired value of power to be

0.80 or greater. Alternatively, minimisation of β = P(TypeIIError), aiming for a

type II error rate of 0.20 or less.

In the case of heterogeneous scarce data with a large number of features candidate

solutions are the McNemar’s test [169], k-fold cross validation [97] and the 5 × 2 cross

validation paired t − test [67]; a variation of the k-fold cross validation test. However

the deployment of statistical testing does not remove the bias of the tested data. For

this reason, bagging methods such as bootstrapping are used. Bootstrapping allows

assigning measures of accuracy (defined in terms of bias, variance, confidence intervals,

prediction error or some other such measure) to sample estimates [80].

Statistical hypothesis testing is a well known and established method for a few

decades now. Due to its significance, it is still employed in many statistical and ML

studies across multiple domains [3,12,30,108,128,253]. The abuse of statistical hypoth-

esis testing in the case of multiple comparison procedures has already been the subject

of a number of reviews in biological and medical journals, primarily in the case of mis-

analysis of factorial designs and regression techniques [40,51,100,138,165,195]. There

are, of course, a broad range of problems that yield to such methods, notably problems

that are amenable to replicated, manipulative experiments. However, despite the suc-

cess of these traditional approaches in analyzing data from designed experiments, there

is an increasing appreciation among disciplines that a singular focus on manipulative

experimentation and associated analyses compresses the range of questions that can

address [121].

While extensive work also exists in reviewing alternatives to hypothesis testing

including techniques for parameter estimation and model selection using likelihood

and Bayesian techniques. These methods emphasize evaluation of weight of evidence

for multiple hypotheses, multi-model inference, and use of prior information in anal-

ysis [121]. Such alternative involve the estimation and confidence intervals for de-

termining the importance of factors,decision theory for guiding actions in the face of

uncertainty,and Bayesian approaches to hypothesis testing and other statistical prac-

tices [137].
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3.9 Summary

In this chapter, the state-of-the-art on the areas relevant to this thesis were discussed.

Aspects relevant to the learning of classifiers and their deployment in real-environments

were of particular interest. The evolution of machine learning techniques led to its wide

applicability in diverse areas. As a consequence, new algorithms and analysis practices

are continuously developed calling for the need to create standardised workflows that

allow the plausible and valid learning and deployment of classifiers. Fuzzy algorithms

were introduced over the traditional hard classification methods in order to cope with

the fact that in real life categories or classes are not necessarily distinct or that a

sample may rightfully belong to more than one labels. These methods usually emerge

as alterations on the hard partitioning algorithm while variations of weakly or partially

labels training sets also exist.

Research in the field of classification evaluation revealed that the classification ac-

curacy, which is the most commonly used metric, is inappropriate for use in imbalanced

datasets. The selection of the appropriate classification evaluation metric in learning

impacts the performance of the classifier. Due to this, we have investigated other al-

ternative metrics such as the Jaccard Index (appropriate in the case of fuzzy labels)

and ROC AUC for greater separation in hard partitioning problems.

Uncertainty, either internal or external, in data impacts the performance of a

learned model. To limit this impact, methods of either modeling data uncertainty

or adjusting an algorithm exist in the literature. Once such example involves the

employment of fuzzy classification with fuzzy input and output pairs.

The stable performance of a trained model in real environments is linked with its

robustness. As it is usually the case for fuzzy algorithms, robust classifiers emerge as

alterations to well proven classification methods where the learning of their parameters

is optimised to increase robustness in small input changes. The complexity of the

problem emerges from the fact that the conditions of a real-world environment are

dynamic and difficult to estimate. As a result, the problem has been approached by

different perspectives (see Table 3.1)

Despite the advances, there is still lack of standard methods that may allow the

learning of multiple classification algorithms through an algorithmically agnostic learn-

ing procedure. Proposed methodologies should respect algorithm designation assump-

tions and should consider all available data samples to allow its application on scarce
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Robust Classification Approaches

Type Description Characteristic

Classification Optimi-

sation Approaches

Optimisation of hyper-planes

for maximum margin between

classes

Its application is algorithm de-

pendent

Hybrid Classification Combination of trained clas-

sifiers for different classes

Tailor-made solution for each

problem. The learning and com-

bination of classifiers may vary

each time

Cascaded Classifica-

tion

Serial arrangement of trained

classifiers

Suitable when the distribution of

positive and negative examples is

highly skewed

Ensemble Classifica-

tion

Parallel arrangement of

trained classifiers

Inappropriate for scarce datasets

Out-of-distribution ap-

proaches

Discarding of input examples

of different distribution from

the training data

Leads to data loss due to omis-

sion of samples. Inappropriate

for scarce datasets

Table 3.1: Approaches to robust classification

data. The generation of statistically valid evaluation metrics is also vital and for this,

the use of statistical hypothesis testing is key as it is agnostic of the classifier’s estima-

tion and learning process. Based on the above, a methodology that respects the above

is proposed in the next chapter, Chapter 4. Classifiers learned with this methodol-

ogy, can still be deployed in hierarchical, cascaded or ensemble layouts. The proposed

methodology does not claim to outperform previously discussed learning methodolo-

gies, it proposes a learning framework for heterogeneous and scarce data that do not

lay in the unconstrained euclidean space.
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Chapter 4

A Statistically Unbiased Classification

Methodology for Robust Classification

Chapter 2 defined classification and information related to common assumptions and

overlooks. Chapter 3 then disclosed related work and practices followed in research

with emphasis on the need for standardised methodologies that allow the learning of

robust classifiers. Such methodologies are of particular importance due to the diverse

applicability of ML methods in real environments and the immense interest of the

research community to invent new classification approaches.

The reliability and plausibility of the classification result is dependent on whether

imposed assumptions have been respected during learning and the characteristics of the

training dataset. Datasets are often scarce, suffering from class under-representation

and in a constrained feature space where practices designed for the Euclidean space

are not suitable. Nowadays, space constrained data are at least frequent. Common

examples represent digitized measurement of analogue representations that exist in the

real world. This is because the instrument used for the digitisation process supports

a finite range or fidelity. As a result, data emerging from microphones, cameras or

even instruments that measure the chemical concentration or composition of artifacts

do not lay in the unconstrained real space. It is also important to note that data

transformations may be used to transform data from one space to another, however

this is not advised for scarce data with uncertainty as their internal structure may be

altered. Rather, the use of appropriate distance metrics is advised.

Since the occurrence of space constrained data is common, it was of our inter-

est to develop methods to allow the learning of classifiers that produce plausible and

41

Elisa
ve

t C
ha

ral
am

bo
us



statistically valid results. Having identified the rather challenging process of reliably

categorising data under uncertainty, in this chapter a systematic methodology aiding

to solve two major problems in the area is being proposed. First, the robustness evalu-

ation of classification algorithms in successfully categorising a set of data by examining

the degree of similarity between discriminated types measured and secondly the ability

to evaluate if an expert’s labeling (which takes into account a number of attributes) is

validated solely by the underlying structure of the obtained data with the deployment

of an ensemble strategy.

The above mentioned objectives are based on the development of a statistically valid

unbiased methodology that allows the learning of classifiers with multiple algorithms.

The suggested methodology is algorithm agnostic in the sense that algorithms are

learned and evaluated with the same training and test sets in each iteration. Flexibility

also exists in the fine tuning/ parametrisation of each employed classification algorithm

with appropriate strategy. The claim of unbiased learning lies on the fact that in

each learning iteration, all algorithms are provided with the same data for fine-tuning,

training and evaluation. This data driven approach provides freedom in the estimation

of algorithm parameters depending on their characteristics and complexity. In each

iteration, the validity of the produced classification, on the testing dataset, is examined

and the degree of similarity between discriminated types measured. Once a model has

been validated for its robustness the domain expert should be able to input new samples

and obtain as output the nearest class or classes based on its internal characteristics.

Having identified the challenges in the field and evaluated already deployed prac-

tices, a methodology has been implemented for the statistically unbiased classification

of scarce heterogeneous data with inherent uncertainty. The proposed methodology

has been validated through two independent case studies analysed later in this thesis

in Chapters 5 and 6 for the analysis of ceramic arachaeological data in the form of

chemical compositions and the analysis of audio for the detection of acoustic events

in the field of security. Audio samples and the chemical composition of archaeological

data represent space constrained examples of data where their transformation from the

analogue to the digital realm introduces space restrictions. Additionally, the analogue

origin of data also introduces the characteristic of overlapping between different classes.

This is because in nature abrupt changes rarely occur and rather transitions between

one state to the other are observed.
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4.1 Dataset Characteristics

The proposed methodology is particularly suggested to scarce heterogeneous datasets

with uncertainties, however, its application is still possible in other types of data.

Datasets that find application with this methodology need to be annotated, with hard

labels and a one-to-one strict relationship for each input-output pair. This is to say

that all samples need to map to one t value within the nominal set of possible classes.

Data scarcity implies that too few data points for each class/cluster are available.

This is often because it is difficult to get data or the data is small compared to the

amount needed. It is often the case that not all data are sampled for analysis. This

is especially observed when other types of analysis are followed to drive the inference

process (i.e. utilise knowledge that resides outside the sampled dataset itself). A good

example for scarce data is archaeological data where the obtained dataset only forms

a small part of the data the archaeologist gathered.

Another characteristic of the data of our interest is heterogeneity. When hetero-

geneity is combined with scarcity then the effect of sparsity is also observed. Data

sparsity refers to cases where data are distributed sparsely over the available space.

Data sparsity is the normal situation in all analytics problems as usually only a very

small portion of the available state space is filled.

Data scarcity and sparcity often result in highly overlapping classes that do not

allow for separable clusters. Depending on the application domain, the overlapping

between classes may indicate non-discrete transitions caused by parameters not ade-

quately captured in the dataset (i.e. technological or chronological transitions). More-

over, an aspect that impacts the selection of the appropriate data analysis algorithm

is the algorithm’s ability to use an appropriate distance metric when similarity or

dissimilarity is measured between data samples.

The complexity and dimensionality of the data of interest make the use of clustering

methods particularly difficult as the characterisation of samples will be based solely on

their internal structure is practically impossible (especially considering that the expert

may not annotate data with confidence). Clusters can differ in terms of their shape,

size and density. The presence of noise in the data makes the detection of the clusters

even more difficult. As a result, the development of classifiers capable of approaching

the decision making process of the expert is of interest.
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4.2 Preliminary Design Process

The designation of a process capable of fulfilling the above-mentioned objectives re-

quired thorough analysis of each influencing parameter. This process was facilitated

in iterations where each identified characteristic in the data was analysed separately

to allow for enough understanding. One of the primary questions was to determine

whether the internal structure of the data is enough to validate the annotations of-

ten provided by experts. This process involved analysis of datasets with internal and

external validity indices in a less constrained clustering problem.

The process of discriminating unlabeled data seeks solution to two problems. The

first, is concerned primarily on the clustering approach and involves: assessing cluster

tendency, partitioning and cluster validity. In other words, one should first determine

the number of clusters present, then determine which objects belong to each one, and

to what degree, and finally validate the how good is the partitioning. Assessing cluster

validity is of great importance and the performance of clustering methods greatly de-

pends on specifying the parameters correctly. While the second problem is concerned

purely with the way similarity between the different compositions in X is measured.

An ideal cluster can be defined as a set of points that is compact and isolated [130].

Possible solutions to the clustering problem requires an integer number c repre-

senting the number of clusters which can be either crisp or fuzzy partitions. Crisp

clustering can be formulated, in general, as a problem of partitioning the finite set X

into a given number c of disjoint clusters and was previously introduced in Section

2.1.2. This definition is also extended to the concept of fuzzy clustering where the

principle of partial membership is introduced. That is, due to uncertainties about the

integrity of an artifact, errors caused due to the deterioration of materials or other an-

alytical reasons, an artifact may simultaneously belong to more than one clusters. The

constraint that each object has unit membership through the total number of clusters

needs to hold (i.e. the sum of each row in the U membership matrix should be equal to

1). Given the set X of samples, assign each artifact x to one or more clusters while also

specifying the degree of membership for each assignment; this represents the likelihood

of the artifact xi to belong to that specific cluster (see equation 4.1).

M f c = {U ∈ ℜc×n|ui j ∈ [0, 1]∀ j, i; 0 <
n∑

i=1

ui j < n,∀ j;
c∑

j=1

ui j = 1,∀i} (4.1)
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4.2.1 Clustering Algorithms

For this analysis, k-means and two of its variant algorithms were employed: K-means,

Fuzzy c-means and Kernel Fuzzy c-means. Additionally visual clustering is used, as

an alternative method, to visually study the characteristics of clusters. Even though

k-means was first proposed over 50 years ago, it is still one of the most widely used algo-

rithms for clustering mainly due to ease of implementation, simplicity and efficiency.

However, the algorithm is sensitive to the selection of the initial partition and may

converge to a local minimum; finitely many possible clustering results exist. Numerous

variants of the original approach have been developed with the aim to improve specific

aspects of the algorithm and subsequently its effectiveness on specific problems. Visual

clustering, on the other hand, is an innovative and alternative approach of clustering

multivariate data. Visual Assessing Tendency (VAT) is one of these methods and re-

lies on the very simple principle that similar objects should be placed near each other.

The output of the algorithm allows the visualization of similarities between artifacts

through a greyscale image.

K-means

Given the set of objects x with n dimensions, the goal is to partition the data in the

n-dimensional space into c clusters such that the objective function J has an optimal

(usually minimal) value; in hope that the final clustering reflects the structure of the

data.

J =
c∑

i=1

n∑
j=1

ui jd2(x j, v j)→ min (4.2)

where ui j signifies the membership of object oi in cluster j, d is the distance metric

(defined as in Eq. 4.3) and v j is the center of cluster j. Inputs to the algorithm are the

set of n-dimensional vectors {x1, x2, . . . , xn} as well as the parameter c which signifies

the desired number of clusters. The algorithm’s output is a mapping of the vectors

into c clusters (disjoint subsets).

d2 =
∥∥∥x j − v j

∥∥∥2
= (x j − v j)T(x j − v j) (4.3)

The idea behind the operation of this approach is that elements should belong to

their closest cluster. The clustering operation terminates when the changes from iter-
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ation to iteration fall below the pre-specified positive threshold; usually the threshold

δ is equal to δ = 0.001
0.01 . The algorithm is as follows:

Fuzzy c-means

Fuzzy c-means is an evolution of k-means and incorporates the principle of partial

membership allowing data samples to belong partially to more than one clusters. Set

X is grouped into c clusters with every data-point in the dataset belonging to every

cluster by a certain degree. A data-point lying close to the centre of a cluster will have

a high degree of belonging to that cluster and a lower membership when lying further

away. This principle allows the algorithm to model in some means the uncertainty in

unsupervised learning.

Jm =

c∑
i=1

n∑
k=1

um
ik

∥∥∥∥xk − vi

∥∥∥∥2
(4.4)

where m is the fuzzifier determining the level of cluster fuzziness and v the set of

cluster centers or prototypes ( vi ∈ ℜp).

c∑
i=1

uik = 1 (4.5)

where ui j signifies the membership of object xi in cluster j, ∥.∥ is the eucledian norm

and v j is the center of cluster j.

The cost function of the algorithm is almost identical to the one already presented

in k-means since the objective is to minimize the within clusters Euclidean distance.

The only difference is that since we do not have crisp clustering the membership matrix

U takes floating point values where each column sums up to 1 (the total probability

of a sample is 1). Inputs to the algorithm are the set of n-dimensional vectors {x1, x2,

…, xn} as well as the parameter c which signifies the desired number of clusters. The

algorithm’s output is a mapping of the vectors into c clusters (disjoint subsets).

Kernel Fuzzy c-means

Another variation of k-means is the Kernel FCM variation which additionally to the

implementation of the fuzzy partition principle the calculation of the distance between

objects is used based on the kernel method; the euclidean distance does not find use

in this method. Considering the operation of FCM, KFCM defines a nonlinear map as

Φ : x→ Φ(x) ∈ F, where x ∈ X where X denotes the data space, and F the transformed
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feature space with higher even infinite dimension. KFCM minimizes the following

objective function:

Jm =

c∑
i=1

n∑
k=1

um
ik ∥Φ(xk) −Φ(vi)∥2 (4.6)

Where:

∥Φ(xk) −Φ(vi)∥2 = K(xk, xk) + K(vi, vi) − 2K(xk, vi) (4.7)

in which K(x, y) = Φ(x)TΦ(y) is an inner product kernel function. [61]. In fact,

equ. 4.7 can be viewed as kernel-induced new metric in the data space (equ. 4.8),

which is defined follows which in turn yields equ. 4.9 :

d(x, y) =
∥∥∥Φ(x) −Φ(y)

∥∥∥ = √2(1 − K(x, y))) (4.8)

The original FCM uses the probabilistic constraint that the memberships of a data

point across classes sum to one. While this is useful in creating partitions, the mem-

berships resulting from FCM and its derivatives, however, do not always correspond

to the intuitive concept of degree of belonging or compatibility

Jm =

c∑
i=1

n∑
k=1

um
ik ∥Φ(xk −Φ(vi))∥2 +

c∑
i=1

ηi

n∑
k=1

(1 − uik)m (4.9)

Kernel functions must be continuous, symmetric, and most preferably should have a

positive (semi-) definite Gram matrix [220]; this ensures that the optimization problem

will be convex and solution will be unique. Choosing the most appropriate kernel highly

depends on the problem at hand - and fine tuning its parameters can easily become a

tedious and cumbersome task. A polynomial kernel, for example, allows us to model

feature conjunctions up to the order of the polynomial while a radial basis function

allows to pick out circles (or hyperspheres) [235].

Visual Clustering

The visual assessment of tendency (VAT) technique [27] uses a visual approach to

find the number of clusters in data. For object data, visual clustering was initially

performed by inspecting scatter plots in p = 1, 2, and 3 dimensions. For p > 3, scatter

plots cannot be made; not possible for all types of data.
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Figure 4.1: The unordered and ordered D matrix: the input and output of VAT

The VAT algorithm reorders the rows and columns of any n×n scaled dissimilarity

matrix D with a modified version of Prim’s minimal spanning tree algorithm [198]. Any

reordering of D is denoted as D. In Figure 4.1 on the left is the un-ordered distance

matrix and on the right the ordered version of the same matrix. If the image I(D) has

c dark blocks along its main diagonal, this suggests that D contains c clusters. The

size of each block may even indicate the approximate size of the suggested cluster [27].

Hence, VAT images suggest both the number of and approximate members of object

clusters.

The ouput of VAT (the ordered D∗ matrix) serve as the input to the CLODD al-

gorithm which will determine the number clusters in the data. Specifically, the goal

is to partition the objects underlying D and D∗ by optimizing an objective function

designed to extract aligned clusters from the dark blocks in the image of the ordered

dissimilarity matrix I(D∗) [115]. CLODD is a completely autonomous method for de-

termining cluster tendency, extracting clusters from the ordered dissimilarity data, and

providing a cluster validity metric. This leads to a distinct advantage of CLODD since

it is not tied directly to any distance metric or reordering scheme [115]. The only input

requires by the algorithm is an image of reordered dissimilarity data, such that the

clusters appear as dark blocks along the diagonal.

4.2.2 Experimental Results

It was of interest to evaluate the operation and effectiveness, of the introduced algo-

rithms, in one of our domains of interest. For this purpose, an archaeological dataset
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of chemical compositional data was used.

The Dataset

The study involved the compositional analysis of a small dataset obtained from the

ED-XRF (Energy Dispersive X-Ray Fluorescence) analysis of ceramics [70]. A quite

challenging case since the dataset is consisted of 73 samples - from which 6 were clearly

noted as outliers - classified by the expert archaeologist into 10 classes, the objective of

analysis was the diachronic technological assessment of pottery production and patterns

of ceramic distribution at a single settlement; in an attempt to reconstruct production

and distribution patterns. The selected samples (are thought to) represent the main

wares and document technological differences in each of these wares over time.

The dataset became subject to treating before statistical analysis was performed.

This included the conversion of all elements into oxide compounds with stoichiometry.

The composition of each artifact was then normalized (i.e. force the sum of each row

to be 100). Also, It is typical with archaeological data to exclude certain features upon

processing. Trace elements with elemental concentration below 10 ppm were omitted

along with sulphur trioxide (SO3), cerium oxide (CeO2), Chlorine (ClO) and lead oxide

(PbO) concentrations due to analytical reasons imposed by the instrument’s inability to

provide measurements. Sodium oxide (Na2O), phosphorus pentoxide (P2O5), sulphur

trioxide (SO3), cobalt (Co3O4) and cerium oxides (CeO2) were also omitted from

multivariate statistics because of their inconsistent values and poor reproducibility in

successive analytical runs [70].

The obtained dataset forms only a small part of the data the archaeologist gathered.

ED-XRF analysis was performed as a complementary analysis method so as to confirm

and refine the interpretation of inferences that were obtained after the application of

traditional approaches. So as to allow the evaluation of the correspondence between

the mineralogical and chemical groupings and define their degree of consistency. An

extensive description of the original study along with comprehensive explanations of

the processes that were followed by the archaeologist can be found here [70].

The Approach

The aim of the experiment was to obtain quantitative measures on each method’s

performance so that comparable results could be obtained. The small size of the
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dataset made necessary the use of a re-sampling method so as to allow the generation of

statistical figures. Bootstrapping with replacement was used and multiple new datasets

were generated based on the original one.

Since, the artifacts were measured for both main and trace elements, the resultant

data is consisted of features with different scales. Due to this, feature/column-wise

pre-processing was necessary. Each data point in the matrix is divided by its column

arithmetic mean. This quite simple transformation allows the relative variability in

the original variables to become the variability of the transformed ones [254]. As a

consequence of this transformation, the original variables become comparable with

each other. The arithmetic mean of each new variable is equal to 1. The variables

preserve their different original variability and therefore have different influence on the

cluster analysis [74].

Once clustering was performed by each, of the already discussed, clustering algo-

rithms, a series of metrics were calculated with the aim to estimate the number of

clusters. This involved an iterative method in which each algorithm was called to per-

formed clustering for different values of c. Knowing that the data were classified by the

expert into 10 (however, non-definite) classes,the range of c selected to be c=1,…,12.

Upon each iteration, and since we assume that the true label of each object is known,

the external validity indices: Rand Index [203], the Adjusted Rand Index [127],the

Mirkin Index [172] and the Hubert Index were calculated for each clustering [167].

In short, the Rand Index penalizes both false positive and false negative decisions

during clustering. The adjusted Rand index is the corrected-for-chance version of the

Rand index. Though the Rand index may only yield a value between 0 and +1, the

adjusted Rand index can yield negative values if the index is less than the expected

index. The Mirkin Index, corresponds to the hamming distance between certain binary

vector representations of each partition; it yields 0 for identical clusterings and positive

otherwise [172]. Finally, the Hubert’s Index has a clear probabilistic interpretation and

is corrected for chance with respect to the null hypothesis, and is bounded between -1

and +1.

The figures which follow (Fig. 4.2- 4.5) show the results of calculating the above

indices for each clustering with respect to the different values of c.

During the processing of each resampled dataset, a matching factor was also calcu-

lated. This had to do with the successful assignment of elements to the correct target

class. Each set of clusters, produced by the algorithms, was compared to the known
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target classes and a percentage of matching elements of each cluster was calculated.

For the fuzzy solutions, a crisp membership matrix was was required. This involved the

assignment of each artifact to the cluster with maximum membership. The calculation

of the matching metric was performed only at the solutions that yield a number of

clusters equal to the number of the known target classes (i.e.10). An overall matching

percentage for each algorithm was calculated, by averaging the values of all iterations.

K-means and Variants

The evaluation of the k-means method was straightforward since it does not require

other parametrization than defining the number of clusters. However, this is not the

case for the FCM and KFCM algorithms which require the analyst to determine the

values of other operational parameters. Both methods perform fuzzy clustering and

therefore require the specification of the fuzzifier parameter. Even though the fine

tuning of the parameter has a significant impact on the performance of the algorithm.

This value was chosen to be m = 2; a reasonable selection based on literature. This

fixed value was adopted for both algorithms so as to avoid the optimization of their

performance to this specific dataset.

KFCM also requires the analyst to deliberately select the type and parameters of

the kernel to be used [126]. The algorithm was evaluated for two different types of

kernels, a second order polynomial (K = (XX′
+ 1)2) and the RBF kernelK = e−

1
{2σ2XX′ }2

with a σ value of 1.5).

The figures (Fig. 4.2- 4.5) illustrate that the fuzzy solutions produce more stable

results than the crisp k-means (Fig, 4.2). This result was expected; the archaeological

data is consisted of non separable clusters not only due to the similarities between

the different artifacts but also due to the fact that artifacts span chronologically many

centuries. The performance problems of the algorithms become apparent with the

calculation of the adjusted Rand index; consistently below 0.6 with FCM being the

method which produces the highest values. The performance of the algorithms against

the adjusted Rand index is of great importance due to its sensitivity and ability to not

be affected by the granularity of each particular clustering.

The matching percentage of the k-means algorithm was consistently around 33.5-

35.2% while FCM tended to produce higher percentages of the order of 47.5-48.75%.

The case of the KFCM algorithm was quite interesting. The performance of this ap-
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Figure 4.2: K-means: External Validity Indices
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Figure 4.3: FCM: External Validity Indices

proach was significantly affected by the kernel that was used and consequently its

parameters. KFCM with the polynomial kernel produced a matching percentage be-

tween 43-48% while the RBF kernel returned 19.2%, a significantly lower percentage.

Overall, less than 50% of the artifacts were assigned to the correct clusters.
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Figure 4.4: KFCM Polynomial Kernel: External Validity Indices
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Figure 4.5: KFCM RBF Kernel: External Validity Indices

VAT Clustering

Since the VAT and CLODD algorithms are non-parametric and only accept as input

the symmetric distance matrix of the objects in set X. For the needs of the experiment

the distance matrix of the data served as the input to the VAT algorithm which subse-

quently produced the ordered matrix solution. The output of the VAT algorithm was

then used as the input to the CLODD algorithm which produced the estimate of the
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number of clusters.

The evaluation of the algorithm against the external validity indices was performed

for all datasets including the original one (Fig. 4.6). The VAT algorithm, according

to the values of adjusted Rand index, managed the best results, out of the algorithms

we have evaluated, by reaching values sometimes higher than 0.7. Additionally, the

CLODD algorithm produced a mean number of clusters: 9, a quite impressing result

approaching the true value especially considering the complexity of the data.
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Figure 4.6: The effectiveness of CLODD for different datasets

4.2.3 Key Findings

Scarce and heterogeneous data can be difficult to analyse as they often suffer from

class/cluster overlapping. This task becomes even harder when data are subject to

uncertainty. Example data that adhere to these characteristics involve chemical com-

positional archaeological data from pottery.

Analysis of the sample dataset revealed that fuzzy clustering solutions seemed capa-

ble of capturing amounts of data uncertainties. However, it should be considered that

evaluation based on external validity metrics required hard partitioning of the data

which resulted in altering the original fuzzy solutions which is an undesirable effect.

Evaluation was only allowed with the generation of new datasets based on re-

sampling method with replacement. Considering the size of the dataset this may result

in the exclusion of some classes or the selection of very few samples out of certain classes
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and therefore the inability of the clustering techniques to identify the different groups.

The application of visual clustering techniques on archaeological data produced in-

teresting results as it indicated a number of possible clusters close to what the expert

suggested. Additionally, visual clustering also provided useful information with re-

spect to the size of clusters and their in-between distance. Visual clustering indicated

relationship between clusters. However since the output of VAT is unordered it was of

interest to further experimentation with the generation of confusion matrices.

The key findings of the discussed study served as the foundation for the development

of a methodology for the learning of robust classifiers in a algorithm agnostic approach.

In the rest of this chapter we will be discussing the implementation details of this

approach and the reasoning behind the selection of the employed methods.

4.3 A Methodology for Robust Classification

The study in the previous section highlighted the use of re-sampling along with the

use of the appropriate distance metrics impact the classification outcome. As a result,

this section suggests a design that follows a systematic approach and well-established

methods, such as bootstrapping with replacement for dealing with data scarcity and

uncertainties and the 5×2 cross validation (paired t-test and F-test) tests, to ensure that

the results are statistically significant, whereas classification evaluation is performed

on the basis of an appropriate classification metric. The classification evaluation is

measured with the multi-class ROC AUC evaluation metric as it represents a degree

or measure of separability between classes.

The developed strategy may be applied to both multi-class and binary classification

problems with labeled datasets. Data annotation assumed to be performed by experts

in each respective field with the utilisation of knowledge not solely emerging from the

dataset itself. Due to the scarcity of data and the aspect of under-represented classes,

outliers are included in the analysis and are considered as single-element-classes.

The aim of the presented methodology is neither to achieve perfect classification,

nor to determine the best classification algorithm. The target is rather to develop a

plausible, unbiased and statistically valid methodology for classification, which takes

into consideration the idiosyncrasies of the classification algorithm, in general, and char-

acteristics of the data and application domain in particular. It therefore allows data

analysts to select the best performing algorithm by applying the proposed methodology
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with classification algorithms of interest. Pair-wise analysis of selected model’s evalua-

tion may be used as part of statistical testing towards the validation or rejection of the

hypothesis that the under evaluation trained models perform equally well. Statistical

testing allow the analyst to identify that a model’s performance is consistently – with

small error probability – better than its opponent.

Additionally, the proposed methodology aims to examine the validity of the pro-

duced categorisation. The proposed methodology may subsequently be used to differen-

tiate a series of samples, and investigate the degree of similarity between discriminated

types. A high level diagram of the proposed methodology is summarised in Figure 4.7

in a number of steps that involve, data boosting with replacement, feature selection,

algorithm parametrisation, classification evaluation and hypothesis testing.

4.3.1 The Dataset

The objective of this framework is to learn a mapping from inputs x to outputs t, given

a labeled set of input-output pairs D = (xi, ti)
N
i=1 with D being the training set and N

the number of training examples. Given a training set of N example input-output pairs

(x1, t1), (x2, t2), . . . (xN, tN)

where each ti was generated by an unknown function t = f (x), discover a function h

that approximates the true function f so it generalises well when provided with data

of same distribution characteristics as inputs x. The outputs t need to be hard labels

(no partial labeling or weak labeling).

This methodology is claimed to be algorithm agnostic as it allows the learning of

any algorithm, as long as its applicability is possible with the above characteristics.

4.3.2 Significance Testing with Simulation

Statistical testing requires the calculation of enough statistics to alleviate the factor

of likelihood in the classification output. Since data availability is an issue in scarce

data the drawing of statistics will be performed through bootstrap simulation. During

each simulation iteration, 5× 2 cv is applied and the classification performance of each

algorithm is used to calculate the statistics for significance testing with the t-test and

F-test.
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Figure 4.7: Flowchart of methodology
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Hypothesis tests on paired data can be analysed by considering the differences

between the paired items. The p-statistic produced by each of the under training

algorithms are retained to measure the power and significance statistics.

The distribution of differences is usually symmetric, in fact, the distribution must

be symmetric if the individual distributions of the two items are identical. In reality,

this is not always the case since equal class representation is not ensured when random

sampling is applied. Due to this, significance testing methods derived from the paired

t-test are selected the paired t-test finds applicability even when the distributions of

the individual items are not normal.

The simulation process is iterative and a large enough number (M) of iterations

need to the performed. M is a large number, usually anywhere from 100 to 10,000. As

the number of iterations is increased, the accuracy and running time of the simulation

will be increased also.

The precision of the simulated power estimates are calculated by the binomial

distribution. Thus, confidence intervals may be constructed for various power values.

The following table gives you an estimate of the precision that is achieved for various

simulation sizes when the power is either 0.50 or 0.95. The table values are interpreted

as follows: a 95% confidence interval of the true power is given by the power reported

by the simulation plus and minus the ’precision’ value given in the table Table 4.1).

Estimate Iterations

Simulation Size

M

Precision when

Power=0.50

Precision when

Power=0.95

100 0.100 0.044

500 0.045 0.019

1000 0.032 0.014

2000 0.022 0.010

5000 0.014 0.006

10000 0.010 0.004

5000 0.004 0.002

10000 0.003 0.001

Table 4.1: Estimate Iterations

The power of a hypothesis test is the probability of making the correct decision if the

alternative hypothesis is true. That is, the power of a hypothesis test is the probability

of rejecting the null hypothesis when the alternative hypothesis is the hypothesis that
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is true. The power value in a simulation can be estimated as the proportion of times

that the null hypothesis is rejected (out of M).

4.3.3 Algorithm Parametrisation

There is no equivalence between the estimation of each algorithm’s parameters for

classification, therefore, the proposed methodology allows the application of a suitable

parameter optimisation strategy for each algorithm. It is of primary interest to learn

classifiers that produce minimal mis-classification rate. As a result, the methodology

allows freedom in the deployed algorithm parametrisation process.

During each training iteration, the same (re-sampled) training and testing datasets

are provided as input to all algorithms. Despite the fact that the training data need

to be similar for all algorithms, the parametrisation process might be adapted to the

needs and characteristics of the algorithm. This is so algorithms with many parameters

are allowed to more extensive parametrisation than algorithms with fewer parameters.

The learning of more than two algorithms is possible, even though paired tests are

used for significance testing. During learning, the classification evaluation produced by

each algorithm in each 5×2cv simulation iteration can be retained and used to estimate

the outcome of pair-wise significance tests to validate or reject whether a trained model

is significantly better than its opponent.

4.3.4 Classification Evaluation

AUC - ROC, previously introduced in Chapter 3 curve is a performance measurement

for classification problem at various thresholds settings. ROC AUC is a metric on

how much model is capable of distinguishing between classes, the higher the AUC, the

better is the model at predicting samples in their correct class.

In a Receiver Operating Characteristic (ROC) curve the TPR (True Positive Rate

aka sensitivity) is plotted in FPR (False Positive Rate), calculated as 1 − specificity,

for different cut-off points, where TPR is on y-axis and FPR is on the x-axis (shown

in Figure 4.8). Each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular decision threshold. A test with perfect discrimination

(no overlap in the two distributions) has a ROC curve that passes through the upper

left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is

to the upper left corner, the higher the overall accuracy of the test.
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Figure 4.8: AUC - ROC Curve [184]

The ROC AUC metric is the preferred classification evaluation metric due to its

direct relationship with the sensitivity and specificity metrics. In Chapter 3 the impor-

tance of the sensitivity metric as a form of measuring robustness has been highlighted.

Sensitivity measures the proportion of actual positives that are correctly identified as

such while specificity measures the proportion of actual negatives that are correctly

identified as such.

The use of AUC as a metric for classification evaluation and robustness is impor-

tant, as it is an algorithm and parametrization agnostic metric that complies with the

objectives and aims of the proposed methodology. The selection of this metric emerged

as a result of a number of experiments with various classification evaluation metrics, of

which some are disclosed in Chapters 5 & 6 through the validation of the methodology

in the two case studies.

When using normalized units, the AUC is equal to the probability that a classifier

will rank a randomly chosen positive instance higher than a randomly chosen negative

one (assuming “positive” ranks higher than “negative”) [89]. This can be seen as

follows: the area under the curve is given by (the integral boundaries are reversed as
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large T has a lower value on the x-axis)

TPR(T) : T→ y(x) (4.10)

FPR(T) : T→ x (4.11)

AUC =
∫ 1

x=0
TPR(FPR−1(x))dx (4.12)

ROC curves are typically used in binary classification but it can be extended to

multi-class classification problems by binarising the classification output and drawing

a ROC curve per label.

4.3.5 Bootstrapped 5×2 cv t-test and F-test

The algorithm learning method should be repeated for enough iterations based on sim-

ulation principles, introduced in Section 4.3.2, to remove the bias of variance between

iterations. In each iteration, bootstrap with replacement is applied to produce datasets

of similar size to the input dataset. This step in the methodology has been added to

deal with the scarcity in data. It is expected that classes will not be equally represented

in all iterations due to the replacement strategy, however, this effect is alleviated by

running enough iterations.

Bootstrap with replacement involves a computer-intensive re-sampling method, in-

troduced in statistics by B. Efron in 1979 [80] for estimating the variability of statistical

quantities and for setting confidence regions. This method allows the re-sampling of

data – given observations D1, . . . ,Dn, artificial bootstrap samples are drawn with re-

placement from D1, . . . ,Dn, putting an equal probability mass of 1
n on Di for each

i ∈ {1, . . . , n}.
Bootstrap is commonly implemented with the paired t-test, however in our design

bootstrap with replacement is paired with the 5× 2cv t-test and F-test to benefit from

their advantages when dealing with small datasets.

Our choice of five replications of cross-validation is not arbitrary. Exploratory

studies showed that using fewer or more than five replications increased the risk of type

I error. A possible explanation is that there are two competing problems. With fewer

replications, the noise in the measurement of the si’s becomes troublesome. With more

replications, the lack of independence among the si’s becomes troublesome. Whether

five is the best value for the number of replications is an open question [68].

In each simulation iteration, a new dataset is generated with the bootstrap with
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replacement method. The generated dataset is used as input to the 5×2 cv configu-

ration. In the 5 × 2cv t-test, proposed by Dietterich [68], we perform 5 replications

of 2-fold cross validation. In each replication, the input dataset is re-sampled without

replacement, and divided into two equal-sized sets. These sets are usually referred to

as training and testing sets in the 2-fold cross validation process. These training and

testing datasets will be alternated during the 2nd fold of training (i.e. data samples in

the training set will be used for testing and the opposite).

The learning process in each replication in 5 × 2ct starts with the parametrisation

of each algorithm. For this the, the training dataset from the previous step is again

sub-divided in two halves (S1 and S2 from Figure 4.7). S1 is used for the estimation

of each algorithms’ parameters. The estimated parameters are then used to validate

each models performance on S2. The estimated values of S2 are compared to the actual

class labels to produce a metric of evaluation of the classification. Datasets S1 and S2

are then swapped and the process of algorithm parametrisation is now repeated on S2

and validated against S1.

The described procedure involves one iteration of five in the 5 × 2 cross validation

method. Once all five iterations are obtained, the t and F statistics are measured on

the ten validation values to obtain one figure for each of the M simulation iterations.

In our proposed framework, the classification performance is evaluated with the ROC

AUC metric, while it is advised to deploy an appropriate distance metric should the

algorithm allows.

4.3.6 Estimation of t and F statistics for significance testing

The estimation of t and F statistics for significance testing require the calculation of

the difference (p(i)
i ) between the error rates of the two classifiers, for each simulation

iteration, on fold j = 1, 2 of replication i = 1, . . . , 5. The average on replication i is

p̄i = (p(1)
i + p(2)

i )/2 and the estimated variance is s2
i = (p(1)

i − p̄i) + (p(2)
i − p̄i)2. Under the

null hypothesis, p(
i j) is the difference of two identically distributed propositions so can

be safely treated as a normal distribution with zero mean and unknown variance σ2.

Then p( j)
i /σ is unit normal. If p(1)

i and p(2)
i are independent normals, s2

i /σ
2 is chi-square

with one degree of freedom. Then

Ms =

∑5
i=1 s2

i

σ2
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is chi-square with 5 degrees of freedom. if Z ∼ Z and X ∼ χ2
n

Tn =
Z√
X/n

is t-distributed with n degrees of freedom. Therefore

t =
p(1)

1√
Ms/5

=
p(1)

1√∑5
i=1 s2

i /5

is approximately t-distributed with 5 degrees of freedom [68].The hypothesis that the

two classifiers have the same error rate with 95% confidence is rejected, if t > 2.571.

We note that the numerator p(1)
1 is arbitrary and actually there are ten different values

that can be placed in the numerator, leading to ten possible statistics

t( j)
i =

p( j)
i√∑5

i=1 s2
i /5

The combined 5 × 2cv F-test is a new test that combines the results of the ten

possible statistics and promises to be more robust. If p( j)
i /σ ∼ Z, then (p( j)

i )2/σ2 ∼ χ2
1

and

N =

∑5
i=1
∑2

j=1 (p( j)
i )2

σ2

is chi square with 10 degrees of freedom. If X1 ∼ χ2
n and X2 ∼ χ2

m then

X1/n
X2/m

∼ Fn,m

Therefore, we have

f =
N/10
M/5

=

∑5
i=1
∑2

j=1 (p( j)
i )2

2
∑5

i=1 s2
i

is approximately F distributed with 10 and 5 degrees of freedom. For example we

reject the hypothesis that the algorithms have the same error rate with 0.95 confidence

if the statistic F is greater than 4.74. The combined version combines the ten statistics

and is more robust; it is as if the combined version takes a majority vote over the ten

possible 5 × 2cv t-test results.

The values of t and F statistic of each simulation iteration can be used to estimate

the power of the test and therefore the model’s robustness estimate in classifying new

inputs x
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4.3.7 Feature Selection

Feature selection may also be applied as an optional step that should be applied in

a case by case situation. The use of ensemble feature selection with random forests

is suggested to allow for variability when used in combination with boosting. The

tree-based strategies used by random forests naturally rank features by how well they

improve the purity of nodes. Nodes with the greatest decrease in impurity happen

at the start of the trees, while notes with the least decrease in impurity occur at

the end of trees. Thus, by pruning trees below a particular node creates a subset

of the most important features which are retained. The threshold of pruning is a

parameter that needs to be determined on a case by case scenario and it is dependent

on the dimensionality of the feature space and the degree of overlapping between class

distributions (data complexity). The dimensionality of the dataset is reduced to only

retained features above the specified pruning threshold.

Random forests (RF) construct many individual decision trees at training. Predic-

tions from all trees are pooled to make the final prediction; the mode of the classes for

classification or the mean prediction for regression. Feature importance is calculated

as the decrease in node impurity weighted by the probability of reaching that node.

The node probability can be calculated by the number of samples that reach the node,

divided by the total number of samples. The higher the value the more important the

feature. For each decision tree, nodes importance using Gini Importance, assuming

only two child nodes for simplicity (binary tree):

ni j = w jC j − wle f t( j)Cle f t( j) − wright( j)Cright( j)

where ni j the importance of node j, w j the weighted number of samples reaching node

j, Ci the impurity value of node j, le f t( j) the child node from left split on node j and

equivalently right( j) the child node on the right split of node j. The importance for

each feature on a decision tree is then calculated as:

f ii =

∑
j:nodejsplitson f eaturei ni j∑

k∈allnodes nik

, where f ii the importance of feature i and ni j the importance of node j. These can

then be normalized to a value between 0 and 1 by dividing by the sum of all feature

importance values:

norm f ii =
f ii∑

j∈all f eatures f i j
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. The final feature importance, at the Random Forest level, is it’s average over all

the trees. The sum of the feature’s importance value on each trees is calculated and

divided by the total number of trees:

RF f ii =

∑
j∈alltrees norm f f ii j

T

where RF f ii the importance of feature i calculated from all trees in the Random Forest

model. norm f ii j, the normalised feature importance for i om tree j and T the total

number of trees.

4.4 Identification of inter-class relationships

The application of the previously described methodology on the same set of data may

produce interesting findings with respect to class similarity. Based on the fact that

outliers were included in the analysis and represented single element classes, patterns in

their mis-classification indicate similarities with other classes. Visualisation of results in

the form of a confusion matrix may summarise the prediction results on a classification

problem. The number of correct and incorrect predictions are summarized with count

values and broken down by each class.

Due to the fact that re-sampling with replacement is a core step in the proposed

classification methodology, observation of confusion matrices may lead to tracing inter-

class relationships. This may be done by superimposing the confusion matrices ob-

tained from the re-sampling iterations. Overlaying the confusion matrices alleviates

the factor of misclassification by chance.

Identification of such relationships implies that if a sample from a certain class is

to be misclassified, it would be classified into a very small number of candidate classes.

Inter-class relationships might reveal similar characteristics between samples of specific

classes. However, when inter-class relationships are found between classes and single

class elements, this might indicate that the specific sample is wrongly misclassified as

an outlier.

4.5 Summary

The supervised classification problem may be broken down into two separate stages:

1) the inference stage where training data is used to learn a model and 2) the decision
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stage in which the trained model is used to make class assignments [29]. The design of

the methodology to tackle a problem has to serve its specific needs while considering

limitations and constraints. The choice of deployed methods accounts for the non-

uniformity in the distribution of classes, as well as the size of the dataset, which might

be relatively small compared to the number of classes.

Classification of small datasets (with regard to the number of classes) requires

the use of re-sampling methods. For the needs of this study, bootstrapping with re-

placement is used to allow the generation of datasets of original size. The choice of

re-sampling. adds the assumption that the dataset is representative to the population,

in other words, the sample of collected ceramics yields a good representation of the

population.

In many cases, probability theory is applied to problems that involve uncertainty

where the term uncertainty is related to the prediction of an item’s class based on prior

knowledge, the fit of the model to the given data, the evaluation process of the deployed

model as well as on attributes that account for an expert’s uncertainty in categorising

an item or a measuring instrument’s ability to record/collect data measurements with

precision and accuracy.

Even though, not formally introduced as integral part of the inference stage, feature

selection is a highly recommended technique in highly dimensional feature spaces. In

many problems, it is common for features not to follow a normal distribution also caus-

ing skewed distributions dominating other key features. Feature selection is therefore

a technique that allows identifying the most ”important” features in data; the ones

that contribute most to the target variable. In other words, feature selection allows

an expert to choose the best predictors for the target variable, these are the features

that allow maximum discrimination. Often in data science exerts are encountered with

data with hundreds or even millions of features and are called to create a model that

only includes the most important features. In this problem, feature selection allows

the training of models that are simple to interpret, reduce the variance of the model

– and therefore lessen over-fitting – and finally reduce the complexity of the model

in terms of computational needs as far as resources and time are concerned. Using

less redundant data in the analysis also lessens the possibility of making decisions on

redundant data/noise possibly leading to improved accuracy.

Despite the benefits, one of the main drawbacks of feature selection is the assump-

tion that the input dataset is representative of the population. Additionally, in highly
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complex data (where class overlapping and similarity between clusters exist), removing

features might introduce adverse implications. The use of feature selection should be

implemented on a case by case manner and may therefore serve as an optional step. In

each case the expert needs to investigate whether feature selection improves the classi-

fication result or not. An example of highly complex data will be presented in Chapter

5 where main and trace elements contribute almost equally to class discrimination.

The deployment of established methods allows the evaluation of the validity of the

results through the use of a special form of cross validation testing. The developed

design follows a systematic approach and well-established methods, such as bootstrap-

ping with replacement [80] and the 5×2 cross validation (paired t-test and F-test) tests

in order to ensure that the results are statistically significant. The learning process

involves aspects that introduce randomness. One may claim that this process may fa-

vor one algorithm over the other. However this factor is alleviated by allowing enough

iterations during the simulation where a large enough number of iterations should be

allowed.

Moreover, the performance of the algorithms is evaluated using classification evalu-

ation metrics. A range of evaluation metrics exist. Despite the fact that the purpose of

these metrics is to evaluate how effective a trained model is at classifying correctly the

input data, they account for different factors. The selection of the appropriate evalu-

ation metric depends on the nature and cost factors of the problem as well as on the

type of the selected classification algorithm. An analysis on the impact of classification

evaluation metric has been performed to investigate the degree of impact in the ob-

tained measurements.The results of this study revealed that the use of the appropriate

evaluation metric will affect the selection of the more effective classifier; the use of an

inappropriate metric will hinder a classifier’s performance if the necessary factors are

not accounted for (i.e. categorise samples to the exact category, minimise the number

of false positives, minimise the number of false positives).

Since the performance of any algorithm is highly dependent on its parameterisation,

it is necessary to consider some fine-tuning of each algorithm’s parameters for each

bootstrapped dataset. This operation however may not be considered equivalent in

every algorithm as each algorithm’s parameters cannot be assumed to be identical.

For instance, in [46] the C4.5, k-NN and LVQ algorithms were deployed. Since the

LVQ algorithm requires the parameterisation of more parameters than the other two,

it is believed that its performance is more likely to suffer if not exhaustive fine-tuning is
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performed. In this study, the performance of the algorithms was evaluated against the

classification accuracy and the Jaccard Index. Even though the classification accuracy

is the predominantly used metric, it does not account for separability in the data.

As a result, further investigation was perform with respect to the most appropriate

classification evaluation metric.

The application of the proposed learning framework is further discussed in Chapter

5 for the analysis of scarce chemical compositional data that emerge from archaeological

pottery and in Chapter 6 for the analysis of scarce audio data to achieve acoustic event

detection as part of a security surveillance system.
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Chapter 5

Case study I: Analysis of Compositional

Archaeological Data with Uncertainties

5.1 Introduction

The perceived present is the consequence of human action in the past, interacting with

natural processes through time [16,205]. Archaeology ultimately aims at investigating

social causation through the examination of gathered residue evidence [17]. Pottery

analysis, in particular, has been proven cross-culturally an indispensable tool for indi-

rectly approaching past people and societies. For this reason, compositional (miner-

alogical and chemical) and micro-structural analyses have become an integral part of

interdisciplinary archaeological research, underlining the importance of compositional

and technological comparative studies [46].

Archaeological questions, for which ceramics are used, vary from straightforward

analytical questions (i.e.identification of distinct (chemical) groups within the data and

association with different origins or manufacturing technologies) to behavioural ana-

lytical questions (i.e. the investigation of the relationship between the ”recipe” and

the sources of raw materials). As a consequence, classification analysis of archaeologi-

cal ceramics is being deployed by researchers to provide answers mainly to analytical

questions through exploratory analysis of chemical compositional data with the aim to

identify clusters. However, compositional data impose a number of restrictions dur-

ing data analysis. An example involves sub-compositional coherence and the fact that

features do not vary independent of each other. This property requires the selection

of a distance metric such that the distance between samples does not decrease as the
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number of species considered increases, where use of ratios of components.

The key challenges of archaeological data analysis are the small number of samples,

the uncertainty in the compositional measurements as well as the uncertainty in the

expert classification. These impose challenges in applying Machine Learning method-

ologies for classification purposes. Classification of archaeological ceramics deals with

the categorisation of ceramic specimens of similar chemical profiles [179]. Classification

in archaeology is very important since it makes possible the identification of a newly

found artefact based on already known information.

The methodology introduced in Chapter 4 is applied in the analysis of chemical

compositional data with the aid to solve two major problems in the area. Firstly,

the performance evaluation of classification algorithms in successfully categorising a

set of data. Secondly, the ability to evaluate if an expert’s labeling (which takes into

account a number of attributes) is validated solely by the underlying structure of the

compositional data.

Archaeological artefacts and ceramics in particular, constitute a class of data no-

tably challenging for analysis exhibiting characteristics such as uncertainty in the data

measurements, due to the natural deterioration of materials and inconsistencies in de-

ployed analysis methods/instruments as well as uncertainty in the label due to the

expert’s low confidence during data annotation caused for a number of reasons (dis-

parity in data, artefact condition and composition, analysis method, incomplete data

etc.); data scarcity and heterogeneity in composition also contribute to this.

Another common attribute of archaeological artefacts is the overlapping between

classes due to (possibly) mutual sources of raw material. The non-separability of sam-

ples might be explained as a relationship between classes adding to inference conclusions

by the expert.

Machine learning in the field of archaeology has been used mainly as a method for

performing exploratory analysis using only part of the available information (chemical,

compositional, mineralogical, macroscopic etc.) while archaeologists currently cannot

rely on structures emerging from ML methods due to doubts in their reproducibility and

reliability. Therefore, our research is focused on chemical heterogeneous archaeological

data where the composition of the sample under analysis is being expressed in chemical

element compositions.
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5.2 Compositional Archaeological Data under Uncertainty

Archaeological data constitute a special class of data exhibiting characteristics imposing

challenges during classification. Archaeological artefacts not only become subject to

natural deterioration over the years but also candidate analysis samples for a number

of methodologies (and technologies), introducing uncertainty. It has also been noted

that at times not even the expert may categorise artifacts with confidence and therefore

data analysis methods need to consider this [46]. Additionally, the field of archaeology

suffers a lot from the issue of data scarcity where not sufficient data are available for

their reliable and robust characterisation [268].

Many parameters influence the reliability of the produced data. Different people

execute the same procedures in different ways; thereby increasing the within class vari-

ance. This problem gets even worse by taking into account that apart from variations

generated due to the human factor, acquired variability is also caused due to the dete-

rioration of the source material because of its natural ageing as well as the environment

of preservation.

The composition of a sample might be characterised as homogeneous or heteroge-

neous. With respect to chemical compositional analysis, homogeneous refers to the

situation where a sample has uniform composition and properties throughout while

heterogeneous mixtures have particles that can be seen under a microscope. Het-

erogeneous mixtures are jumbled irregularly together and as a result can usually be

separated in two or more homogeneous mixtures [208]. In archaeology, homogeneity

and heterogeneity commonly also imply situations where certain features dominate the

analysis; the most highly variable elements have the greatest of the impacts on the

multivariate data ensemble and that they do not necessarily depict elements with high

concentrations [204]. This is particularly visible in the analysis of ceramics where just

a few chemical elements may constitute 90-95% of an artefact’s composition however

it’s been believed that in ceramics, the inclusions are of significant importance during

categorisation by experts [105].

Data annotation is an additional, expensive, and error-prone preparation process.

Individual data have to be carefully inspected (by one, or more domain experts) in

order to pinpoint somewhat reliable class labels for the training patterns. Instances

of the difficulties involved in the process are found in areas such as bio-informatics,

speech processing, or affective computing, where the exact class labels may not even
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be explicitly observable. Although annotating data might be extremely difficult and

time consuming (or, sometimes, even impossible), supervised learning is still far the

most prominent branch of machine learning and pattern recognition [227].

In archaeology, it is also common to come across settlements that produce pottery

of multiple/different kind/type and therefore class. The end composition of a ceramic

artefact is highly dependent on its source material and it is therefore noted that classes

exhibit a degree of similarity based on the amount of mutual ingredients; in chemical

compositional data this relationship is expressed in the concentration of main and

trace elements. Additionally, there has been the claim that most “big data” research

uses masses of simple and homogeneous data, whereas archaeologists struggle with the

variety and complexity of their data sets [99].

Providing homogeneous and consistent access to data might hide the diversity of

interpretation that data inherently support. In other words, blindly re-using somebody

else’s data could lead researchers to disregard the implicit assumptions embedded in

those data and make a bad use of the additional information provided in this way.

5.2.1 Chemical Compositional Data

Chemical analysis is involved in enumerating the number of each type of atoms in a

sample; concentrations are usually given in relative numbers (as percentages (%) or as

parts per million (ppm)). During an artefact’s analysis, it is common to collect multiple

measurements (3 or 5) with the same technique from different positions in an effort

to better capture its overall composition. The analyst will then retain measurements,

found to be representative, and will then average those to produce a feature vector

xi ∈ [0, 1]p where p is the number of analysed chemical elements.

The chemical constituents of any specimen, can be categorised into main and trace

elements. Main elements comprise large proportions of the specimen under analysis,

while trace elements are present in concentrations less than 0.1%. An example of an

artefact’s chemical analysis is shown in Figure 5.1, where the values of pick compositions

are extracted and assume the artefact’s composition; the microstructure of the same

artefact obtained with SEM (Scanning Electron Microscope) analysis is shown in Figure

5.2.

Additionally, as we deal with heterogeneity in composition data, with the majority

of their major elements present in most specimen, the discrimination of objects into
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Figure 5.1: Spectrum of Analysed Artefact ©Maria Dikomitou-Eliadou

Figure 5.2: Microstructure of Artefact ©Maria Dikomitou-Eliadou
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groups makes necessary the utilisation of trace elements in determining the fingerprint

of a deposit [174].As ceramics are heterogeneous in composition with the majority of

their major elements present in most artefacts, the discrimination of objects into groups

makes necessary the utilization of trace elements.

5.3 Classification in Archaeology

Common analytical questions include those relating to the existence of chemically dis-

tinct groups within the data and their association with different manufacturing tech-

nologies and their origins [141]. Over the last few decades, the deployment of advanced

statistical methods has been proposed in assisting answering various archaeological

questions. One of the main concerns in the areas of pattern recognition and data min-

ing is how to organize observed data into meaningful structures. Within the context of

archaeology, this can provide answers in the main concerning areas of archaeologists,

the distribution and production of artefacts.

The roots of classification analysis of archaeometric data are traced back multiple

decades ago with the contribution of Kowalski in 1972 [149] being an early landmark.

In subsequent years, classification methods have been used in a number of studies

[19,90,148,163,181]. A clear milestone in the analysis of archaeometric data is Baxter’s

work in 2006 [20], where he reviews the application of classification methods (among

others) on the chemical composition of glass artifacts [20]. The effectiveness of a

variety of classification methods was evaluated; among them also the three methods to

be examined in this chapter for the validation of the methodology. Despite this, the

results of the two works are not be straightforwardly comparable due to the different

experimental data and deployed methodology.

The complexity and dimensionality of the data makes necessary the use of machine

learning methods to allow the characterization of samples based solely on their con-

stitution, while knowing that the presence of noise in the data makes the detection

of the clusters even more difficult. The number of studies with primary objective the

characterization of specimens is countless and they all share the need to identify some

structure or pattern in the ceramic body mainly through chemical analysis. This is

all based on the assumption that ceramics made from the same raw material will be

similar to a certain degree chemically.
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5.3.1 Problem Formulation

Since archaeological data emerge from tangible artifacts, the definition of the classi-

fication problem is slightly different. Assuming a set of archaeological artifacts, an

operational definition of classification of archaeological chemical data can be stated as

follows: given a set of n archaeological artifacts and a vector t indicating the label of

each artifact find a model which successfully assigns new samples to the appropriate

class.

Consider a set of n archaeological observations O = o1, . . . , on. The analysis of the

actual-tangible artifact oi with the use of ED-XRF or any other chemical method of

ancient pottery analysis will produce the chemical representation of oi which has the

form xi ∈ [0, 1]p where p is the number of analysed chemical elements and vector xi

consists the chemical compositions of the artefact. Therefore the set X = {x1, . . . , xn}
represents the dataset of the sediments’ chemical composition; a set of quantifiable

features. We assume that there are groups (subsets) of similar sediments in O, the class

of which is determined by the labels in Y = {y1, . . . , yn}, and yi ∈ J where J denotes the

possible (known) class labels. Each artifact is represented in the dataset with the pair

oi = (xi, yi), during parameter training the parameters Θ of the classifier are obtained

by Θ = g(O), and the class ti of an uncategorised set of artifacts X = {xn+1, . . . , xn+l}
can be obtained by yi = f (xi,Θ),∀n < in + l.

5.3.2 Analysis Practices for Compositional Data

Chemical compositional data are defined as vectors of strictly positive components,

usually expressed as percentages or parts-per million (ppm), with constant sum, a

restriction not always maintained. Quantitative chemical analysis is not involved in

measuring, but in enumerating or counting the number of each type of atoms in a

sample [41]. Chemical compositional data do not vary independently and concentration

based approaches to data analysis can lead to misleading conclusions [204].

Chemical compositional data therefore lay in the constrained Simplex Space [6]

[41], where correlation analysis and the Euclidean distance are not mathematically

meaningful concepts [204]. Furthermore, graphical depiction of raw or log transformed

data should only be used in an exploratory data analysis sense, to detect unusual data

behaviour or candidate subgroups of samples [2].

Standard multivariate analysis designed for unconstrained multivariate data is en-
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tirely inappropriate for the statistical analysis of compositional data. This is due to

the fact that the space of compositions is a simplex, a generalisation of a triangle

and tetrahedron space, radically different from the real Euclidean space (the space for

representing unconstrained vector data).

The chemical constituents of an archaeological artefact, or any other object, can be

categorised into major and trace elements. Major elements comprise large proportions

of the artefact under analysis, while trace elements are present in concentrations less

than 0.01%. As ceramics are heterogeneous in composition with the majority of their

major elements present in most artefacts, the discrimination of objects into groups

makes necessary the utilisation of trace elements in determining the fingerprint of a

deposit [174].

The need for the implementation of methodologies appropriate for deployment in

the simplex space has been expressed for over a century, such as: [48,191,219,270]. All

pointing out to the conclusion that product-moment correlation of raw components is

a meaningless descriptive and analytical tool in the study of compositional variabil-

ity. Formally the sub-composition based on parts (1, 2, . . . ,C) of a D-part composition

(x1, . . . , xD) is the (1, 2, . . . ,C)-sub-composition (s1, . . . , sC) defined by

(s1, . . . , sC) = (x1, . . . , xC)/(x1 + . . . + xC)

As a result any attempt in producing compositional statements for comparison or corre-

lation related purposes with sub-compositions will result in misleading results. Ignoring

the principle of sub-compositional coherence has been a source of great confusion in

compositional data analysis [7].

5.3.3 Data Analysis in the Simplex

Chemical compositional data (see Figure 5.3) lay in the constrained Simplex Space

[6, 41], where correlation analysis and the Euclidean distance are not mathemati-

cally meaningful concepts [204]. Formally, compositional or closed data refer to p −
dimensional vectors x = [x1, x2, . . . , xp] of positive components summing up to a constant

k, hence defined on the simplex sample space: Sp = x = [x1, x2, . . . , xp]|xi > 0;
∑p

i=1 xi = k

[176].

The characterisation of Sp as Euclidean space related topics are summarized in [176]

and [8]. From the Euclidean structure of SD, a distance, known as the Aitchinson
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Figure 5.3: Representation of data in the constrained simplex space

distance [5] is included:

da(x, x′) = [
1
D

∑
i< j

(ln
xi

x j
− ln

x′i
x′j

)2]
1
2 (5.1)

The characteristics of the Aitchison distance are: Scale invariant, Permutation in-

variant and Sub-compositional dominant. The most important characteristic of compo-

sitional data is that they carry only relative information and therefore scale invariance

is related to universality as features should not change if compositions are multiplied by

a common factor. Additionally, a function is permutation-invariant if it yields equiv-

alent results when we change the ordering of our parts in the composition. The final

condition is sub-compositional coherence: sub-compositions should behave as orthog-

onal projections do in conventional real analysis. The size of a projected segment is

less or equal than the size of the segment itself. This general principle, though shortly

stated, has several practical implications, the most illustrative are that the distance

measured between two full compositions must be greater (or at least equal) then the

distance between them when considering any sub-composition and that if we erase a

non-informative part, our results should not change.

When the analysis involves data that row-wise do not sum up to 100 another column

is added forcing the sum of each row to be at 100. For example if the sum of n elements

is 98 then the cell in the added column (the nth + 1) will have the value of 2. A sub-

compositionally dominant distance implies that the distance measured in the n+1 parts

must be greater or equal to the distance measured in the n part sub-composition. The
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use of the Aitchison distance allows the deployment of classification methods without

violating restrictions of the Simplex.

Another option in utilising ML methods on compositional data is their transforma-

tion to the Euclidean unconstrained space. This is possible through the use of log-ratio

data transformations (additive, centered and isometric). Following [6], the statistical

analysis of compositions should be focused on the rations between components. In this

way, data are moved to real space wherein standard methods can be applied. Log-ratio

data analysis relies on the fact that in high dimensional problems (many features) it

is often desirable to select the most informative features and therefore acts in a sense

as a dimensionality reduction. This is done in an effort of problem simplification for

achieving possibly better generalisation, however this approach diminishes the contri-

bution of minor elements and therefore it does not serve as a possible option in our

analyses.

Nonetheless, any pottery analysis is not a straightforward process, and there are

various parameters (i.e. contextual, spatial, chronological, compositional, technolog-

ical) that the researchers need to consider while defining their research design, their

sampling strategy, and later while evaluating their research results.

5.4 Validation of Methodology on Ceramic Data

The methodology introduced in Chapter 4 has been applied on a sample of utilitarian

pottery, characterised as scarce with uncertainty that could not allow the expert ar-

chaeologist to categorise all samples to a class. In this experiment, the aim was rather

to differentiate the specimen based on their fabric, and therefore investigate the degree

of similarity between types than to achieve perfect classification or to discriminate the

origin of each artefact.

The results of this experiment are originally published in [46] with analysis on a

sample of Early and Middle Bronze Age utilitarian pottery from Cyprus. The statis-

tical experiment involved two analytical datasets deriving from the mineralogical and

chemical characterisation of 177 ceramic samples, with the respective employment of

ceramic petrography and ED-XRF [71]. The samples were categorised in 15 groups;

22 samples were marked as outliers due to their condition and are usually neglected in

further analysis. Data annotation (labeling) has been performed based on the artefacts’

microstructure, macroscopic attribute and petrographic analysis.
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The objective of the experiment was to evaluate the algorithms’ performance – in

terms of some cluster validity index – on the given data and validate the result’s signif-

icance against the shaped hypothesis. For demonstration purposes and for the needs

of this experiment, classification is achieved with three well-known methods, a stan-

dard statistical method “k-Nearest Neighbours” (k-NN) [76], a method using “Decision

Trees” (C4.5) [201] and a more complex structure with foundations in neural networks

“Learning Vector Quantisation” (LVQ) [145]. The selection of these three algorithms

was driven by the need to test the effectiveness of different types of algorithms on the

analysis of archaeological data, however, the presented design may be realized with

any classification method.

5.4.1 The Archaeological Dataset

This statistical study involves the compositional analysis of a small elemental dataset

obtained from the ED-XRF analysis of Early and Middle Bronze Age ceramics from

Cyprus [71]. The archaeological samples derived from the occupational phases of the

Early and Middle Bronze Age settlement of Marki Alonia in central Cyprus, and include

the two predominant wares recorded at the site, i.e. Red Polished Philia pottery from

the first occupational phases of the settlement and Red Polished pottery from the Early

and Middle Bronze Age. Red Polished Philia pottery was also selected from other

contemporary sites across Cyprus, in order to assess the degree of compositional and

technological homogeneity among pottery assemblages that exhibit a significant degree

of stylistic uniformity across the island. Therefore the final 177 samples under study

come from eight different sites across the island [71]. Their analytical study aimed

at their compositional and technological characterisation in order to assess ceramic

production, distribution and social interaction in Early and Middle Bronze Age Cyprus

[71–73].

The samples were divided into two datasets. The first dataset involved the Red

Polished Philia samples from various Philia sites, while the second dataset involved

all the samples from Marki Alonia, including both the Red Polished Philia and Red

Polished samples from the settlement. The statistical experiment was particularly

challenging due to its small size (177 samples), and the relatively large number of

outliers (21 samples), which were not categorised – by the expert – in one of the

predefined groups, either because they lack discriminating petrology, or because their
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fabric was dissimilar to those of the clustered samples.

At this point, it is worth noting that the labelling procedure was performed by the

expert archaeologist utilising knowledge other than the chemical compositions of the

samples (i.e. petrography). The samples were labelled into 15 fabric groups (Marki

fabrics I-XIII and Philia fabrics I and IV). Considering the fact that the identification of

outliers is as important for the assessment of ceramic compositional and technological

variability, all outliers were also included in the experiment, each outlier forming a

separate class, resulting in a total of 36 different classes. The consideration of outliers

served a twofold purpose:

1. To test the robustness of classification on complicated and highly overlapping

data, and

2. To assess whether post-classification analysis could allow outlier categorisation to

one of the predefined fabric groups (a task that could not be solved with certainty

beforehand due to the absence of discriminating petrology in the ceramic thin

sections).

Finally, the statistical experiment was conducted in order to explore other methods

of statistical analysis that are not yet widely known in the field of archaeological sciences

and investigate the relations among fabric groups within the two datasets that are

suggested by petrography to be identical or very similar, with the ultimate objective to

test the correspondence between the mineralogical and chemical compositional data.

The dataset became subject to treating before statistical analysis. All elements were

converted into oxide compounds with stoichiometry, the composition of each artefact

was normalised to allow the application of Aitchinson distance (i.e. force the sum

of each row to be 100). Trace elements with elemental concentration below 10 ppm

were omitted along with sulphur trioxide (SO3), chlorine (ClO) and lead oxide (PbO)

concentrations due to analytical reasons. It is a typical practice in chemical composi-

tional analysis to exclude features with very small concentrations due to instruments

inability in accurately enumerate in very low ranges. Sodium oxide (Na2O), phos-

phorus pentoxide (P2O5), cobalt (Co3O4) and cerium oxides (CeO2) were also omitted

from multivariate statistics due to inconsistencies in values and poor reproducibility in

successive analytical runs [71]. The chemical compounds used for analysis are: MgO,

Al2O3, SiO2, K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, NiO, CuO, ZnO, Ga2O3,

Rb2O, SrO, Y2O3, ZrO2, BaO.
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5.4.2 Hypothesis Testing

It should be clarified that the two different datasets, i.e. the “Marki” and “Philia”

datasets, were studied in the same period of time and by the same researcher, therefore

they are characterised by a reliable degree of consistency, as all samples were at first

collected and then analysed by the same person in the same laboratory, using the

exact same procedures. The combination of the data into a single dataset could,

however, reveal compositional and/or technological relationships between types/classes

of ceramics, as well as links emerging either due to their context of production or

recovery and/or their technology of production.

The null hypothesis behind the classification problem stated that the classifica-

tion algorithms, k-Nearest Neighbour, C4.5 (based on Decision Trees) and Learning

Vector Quantisation (LVQ Networks) perform equally well for the dataset of interest

when the performance is measured with the classification accuracy. Upon the rejec-

tion of the null hypothesis, the alternative hypothesis tests whether any of the three

algorithms outperforms the other in pairwise comparisons. Each of the three selected

algorithms operates on different principles, each representing a different category of sta-

tistical/machine learning approaches. Doing so allows solving the classification problem

from different perspectives, hoping that the differences in the results may disclose new

information about the data.

5.4.3 The experimental design

The proposed methodology is subsequently used to differentiate a series of ceramic

specimens based on their fabric, and investigate the degree of similarity between dis-

criminated types. The choice of deployed methods accounts for the non-uniformity in

the distribution of classes, as well as the size of the dataset, which is relatively small

compared to the number of classes.

Classification of small datasets (with regards to the number of classes) requires

the use of re-sampling methods. For the needs of this study, bootstrapping with re-

placement is used to allow the generation of datasets of 177 samples. The choice of

re-sampling adds the assumption that the dataset is representative to the population,

in other words, the sample of collected ceramics depicts a good representation of the

ceramic population at the sampled sites, during the specified time period. Moreover,

the performance of the algorithms is evaluated against the classification accuracy; the
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number of correct predictions from all predictions [232]. The calculation of the accu-

racy for a problem with more than two classes also accounts the instances in which the

classifier correctly decides not to assign an artefact to those fabrics, to which it does

not belong. The classification result is also evaluated against the Jaccard index -—

an external cluster validity index -— which is calculated as the number of correctly

classified samples over the number of samples that exist either in the true or estimated

classification [240]; this index does not account for instances in which the algorithm

correctly did not assign a sample to a specific class. The calculation of both indices

is done in an effort to observe their robustness and emphasise the significance of their

choice. It is not expected that an algorithm will perform equally well with any dataset.

The results are highly dependent on the parameterisation of the algorithm, as well as

the structure and complexity of the data. Since the evaluation of classification per-

formance forms part of the question, it was necessary to consider some fine-tuning of

each algorithm’s parameters for each bootstrapped dataset. However, the fine-tuning

of each algorithm’s parameters cannot be assumed to be equivalent to one another. For

instance, the LVQ algorithm requires the parameterisation of more parameters than

the other two and its performance is more likely to suffer.

k- Nearest Neighbour (k-NN)

The k-NN algorithm is a non-parametric approach used for classification, operating in

the belief that a sample will more likely belong to the class of its closest already clas-

sified artefacts [76]. k-NN is among the simplest and most intuitive machine learning

algorithms. For each uncategorised artefact, its distance to all classified samples is

measured, the k closest samples are selected and the artefact is categorised to the class

most of the k neighbours belong; k is a positive integer, typically small. If k = 1, then

the object is simply assigned to the class of its immediate nearest neighbour, according

to some distance metric. The input consists of the k closest training examples in the

feature space and the output is a class membership. The valid implementation of the

algorithm for compositional data in the Simplex space requires measuring the distance

with the Aitchison distance metric [6].
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C4.5 Algorithm

The C4.5 is an extension of the earlier ID3 algorithm and performs classification by

generating a decision tree [152]. Decision trees are generated incrementally by breaking

down a dataset into smaller and smaller subsets. C4.5 builds decision trees from a set of

training data, using the concept of information entropy. At each tree node, the chemical

element/feature that most effectively splits the dataset into subsets is selected while the

attribute with the highest normalized information gain is chosen to make the decision.

The idea is to refine T (the tree) into subsets of samples that are heading towards

single-class collections of samples. An appropriate test is chosen, based on a single

element that has one or more mutually exclusive outcomes [248]. The decision tree

for T consists of a decision node identifying the test and one branch for each possible

outcome (see Figure 5.4). The C4.5 algorithm then recurs on the smaller sub-lists. The

decision trees generated by C4.5 can be used for classification and it is referred as a

statistical classifier.

Figure 5.4: Decision Tree example based on the values of three chemical elements

Learning Vector Quantisation (LVQ)

Learning Vector Quantisation is a special case of an artificial neural network which

deploys the winner takes it all learning-based approach. An LVQ system is represented

by prototypes W = w1, . . . ,wm where m is the number of classes defined in the feature

space of observed data. Algorithms based on this approach, assign each data sample,

the label of the prototype that is closest to it, according to a given distance measure.

The position of this so-called winner prototype is then adapted, i.e. the winner is
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moved closer if it correctly classifies the data point or moved away if it classifies the

data point incorrectly. An advantage of LVQ is that it creates prototypes that are easy

to interpret. A trained LVQ network allows the visualisation of the map of prototypes

which gives insight on which classes are closer to others. In archaeological context this

may provide information as of how “close” fabrics are to each other. Even though the

algorithm does not restrict the dimensionality of the map, it is usually implemented as

a 2D map.

Algorithm Parameter Estimation

The deployment of the discussed algorithms for each bootstrapped dataset required

some fine-tuning of the algorithms. However, exhaustive fine-tuning might easily be-

come very time consuming especially when a large number of re-sampled datasets need

to be processed. The set of categorised samples is used for the parameterisation of

the algorithm and it is further divided into 2 smaller sets named the training tuning

and testing tuning sets. The parameters maximising the classification performance of

the algorithm on the testing set are selected for processing the bootstrapped dataset.

Considering the very restrictive size of the training and testing tuning datasets, it is

expected that the selected parameters might not be the optimal; a decision which we

are obliged to make to avoid violating the rules of training classification algorithms [76].

The C4.5 algorithm did not become subject to parameterisation or pruning. Pruning

is a way of reducing the size of the decision tree, for this experiment, the parameter

determining the pruning stage was set to 0 corresponding to no pruning. The k-NN

method only requires the specification of the parameter k. For each dataset the algo-

rithm was tested for the integer values of k = 1, . . . , 10; 96% of the time the values of

k maximizing the classification accuracy were between 1 and 4, with k = 1 being the

most frequently occurring value scoring 73%. LVQ required most of the training; the

configuration of the network requires specifying the learning rate and map size in each

dimension; for convenience this study was limited to 2 dimensional square maps —the

most common implementation [145]. The tuning of an LVQ network has a significant

computational cost, and due to this the parameterisation was limited to a small range

of possible values.
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5.4.4 Statistical Testing

The 5 × 2 cross validation paired t-test [68] and the 5 × 2 cross validation F-test [10]

were deployed to firstly statistically test the significance of the classification results

and secondly to evaluate their robustness. Benchmarks on significance testing propose

that cross validation testing methods are more robust when dealing with small datasets

where reproducibility of the experiment is not an issue [68]. The 5× 2 cross validation

methods were selected to allow large enough datasets for testing while ensuring that

no further dependencies of overlapping training and testing sets are introduced when

cross validation is used [217].

The experiment was allowed to run for 500 iterations to allow the generation of

valid statistics and the significance of the results was calculated at level 0.05 ensuring

that there is 95% confidence that the results of statistical testing represents the reality.

5.4.5 Results and Discussion

Figure 5.6 shows a plot obtained by Linear Discriminant Analysis (a dimensionality

reduction method) [29] of the original dataset. Many classes are overlapping and the

discrimination of classes is not trivial. Table 5.1 shows the performance, in terms of

classification accuracy and the Jaccard index. The scores are calculated as the mean

scores of all iterations. As expected the values scored measuring the classification accu-

racy are higher than the values scored by the Jaccard index. In archaeological ancient

pottery analysis, it is important to measure a classifier’s robustness in assigning arte-

facts to the correct fabric. Since classification accuracy accounts the instances in which

the classifier correctly does not assign an artefact to fabrics to which it does not be-

long it served better the needs of the problem compared to the Jaccard coefficient. The

classification accuracy scores for the three algorithms is summarised in Figure 5.5. The

classification evaluation scores are seemingly low. This is due to the high overlapping

of possible classes and their under representation. Additionally, as previously stated,

the classification accuracy metric does not account for robustness in the separability

of the data.
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Figure 5.5: Variability in classification accuracy between algorithms
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The scores claim that the k-NN algorithm consistently scores the highest compared

to the other algorithms. Significance testing between the algorithms, in a pairwise

fashion, has illustrated that the performance of k-NN and C4.5 outperformed the LVQ

Network, while the Null hypothesis between the k-NN and C4.5 (stating their non

significant difference performance) is accepted. In other words, k-NN and C4.5 score

better than LVQ, however, k-NN is not significantly better than C4.5. It is also im-

portant to note that both statistical tests, the 5x2 cv paired t-test and the 5 × 2 cv

F-test, confirmed the same hypothesis results.

Table 5.1: The estimated accuracy and Jaccard index of each algorithm. The scores

represent the mean score of all iterations.

Algorithm Classification Accuracy (%) Jaccard Index (%)

Mean Max Min Mean Max Min

k −NN 72.1 79.4 64.2 56.7 70.1 42.7

C4.5 68.5 77.2 61.7 49.1 63.7 38

LVQ 55.8 65.2 46.2 30.3 38.8 21

The experiment does not show that LVQ performs worse; it is rather shown that

its operation with the very limited fine-tuning and the discussed dataset, results in

lower performance compared to the other classification methods. LVQ is admittedly

a more complex algorithm and its parameterisation needs to be handled with care,

especially when dealing with datasets of very limited size containing a large number

of classes. The, potentially, poor selection of parameters, during fine-tuning, may

hinder the classification results; something that became apparent in the performance

of the LVQ. When one deploys any classification approach should really understand

the operation of the algorithm and its appropriate configuration.

The results of classification can be useful in verifying the initial distinction of the

samples into fabric groups and outliers. Most importantly, further analysis on the

classification results has shown that classification may provide more information to the

archaeologist. During each iteration, a matrix with the correctly and wrongly classified

artefacts for each class (i.e. the confusion matrix) is generated. Systematic study of the

misclassified artefacts has shown that some elements are not misclassified randomly.

For instance, elements of class M1.II if they were to be misclassified then the algorithm

would assign them to class M1.III; the same holds for all classes shown in Table 2.
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Indeed the comparative study of the fabric groups suggested by petrography and the

highlighted elemental relations suggested by this statistical experiments confirmed that

fabrics M1.I and Ph.I are essentially the same fabric distributed across Cyprus during

the Philia cultural phase, including the settlement at Marki, while M1.II and M1.III

share many mineralogical characteristics, being made with raw materials deriving from

a similar geological environment. It was also very interesting to see that the algorithms

proposed a link between the two most igneous fabrics, those being M1.VIII.

Table 5.2: Inter-class relationships in a multi-class problem.

Class1 Class2 SampleID

M1.I Ph.I

M1.II M1.III

M1.II M1.VII

M1.II M1. outlier10 14604

M1.III M1.II

M1.IV M1.VI

M1.IV M1. outlier17 16513

M1.V M1.XIII

M1.X M1.VIII

M1.XII M1.VII

M1.XII M1. outlier6 12372

Ph.I M1.I

Another important finding is that the analysis of misclassified artefacts suggested

a possible class (fabric group) to some outlier samples. Inter-class relationships within

the context of archaeology are plausible as different pottery fabrics might be produced

in the same settlement, with the use of mutual ingredients or even present evolution

changes. This analysis becomes useful for the classification of samples of unknown class

with a degree of confidence (analogous to the classification accuracy). The result of

this process returns a possible class for each of these samples which when interpreted

may lead to their definite categorisation. The inability of the algorithm to classify the

specimen to their true class reveals possible relationships between certain classes (see

Table 5.3). Having said that, it is not anticipated that all misclassified artefacts admit

correlations between classes; it is expected the classifiers to adhere to certain error
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rates.

Table 5.3: Classification accuracy and Jaccard index scores when classification is per-

formed on elements with mean concentration >0.1% and <0.1%.

Classification Accuracy (%) Jaccard Index (%)

Elements

Used

Mean Max Min Mean Max Min

k −NN
>0.1% 73.2 79.5 67.6 52.9 64.8 40.5

<0.1% 66.6 75 58.2 47.8 57.7 35.7

C4.5
>0.1% 67.8 75.1 62.7 43.2 56.8 32.8

<0.1% 64.5 71.2 55.8 46.1 58.1 35.6

LVQ
>0.1% 57.3 67 48.8 29.3 36.6 20.9

<0.1% 59.1 66.2 51.4 40.2 52.2 26.1

The specimens of request were analysed for a number of chemical elements, some

of which in very small concentrations (< 0.1%). The heterogeneous composition of

ceramics needs to be accounted during classification. Trace elements may concur more

characteristically in determining the fingerprint of a deposit [173], making important

the evaluation of their discriminating abilities. Due to this, the experiment as discussed

previously was repeated two more times, using the chemical elements with mean con-

centration > 0.1% (MgO, Al2O3, SiO2, K2O, CaO, TiO2, MnO, Fe2O3, BaO) and

another one using only the chemical elements with mean concentration < 0.1% (V2O5,

Cr2O3, NiO, CuO, ZnO, Ga2O3, Rb2O, SrO, Y2O3, ZrO2); in both cases the data rows

were normalised to sum 100. The results of the experiments bring to our attention

some interesting data properties summarised in Table 5.2 where each table column

shows potential relationship between Class 1 and Class2. Upon classification, samples

of Class 1 in case they are misclassified, they would more likely be allocated to Class

2. The exclusive use of elements with mean concentration >0.1% allows the equivalent

discrimination of artefacts when using all available information (see Table 5.1). Ta-

ble 5.3 also shows that despite not utilising 99.8% of the measured information (when

<0.1%), the majority of characteristics that allow the discrimination of the specimen

into their categories is maintained. This finding allows us to hypothesise that the use

of trace elements during classification needs to be studied further.
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Chapter 6

Case study II: Acoustic Event Detection

6.1 Introduction

Acoustic event detection and classification (AED/C aka AED) is a recent discipline

that may be included in the broad area of computational auditory scene analysis. It

consists of processing acoustic signals and converting them into symbolic descriptions

corresponding to a listener’s perception of the different sound events present in the

signals and their sources. AED aims to identify both timestamps and types of events

in an audio stream. This becomes very challenging when going beyond restricted high-

light events and well controlled recordings. AED escapes the field of speech recognition

as it is concerned about both voiced and unvoiced auditory scenes. Depending on the

approach, it is often observed that machine learning methods through classification

and clustering techniques come into play. Additionally, detection and classification of

sounds other than speech may be useful to enhance the robustness of speech technolo-

gies like automatic speech recognition.

The auditory scene in an environment is highly dynamic – and unpredictable –

making the training of robust classifiers a real challenge. Acoustic events may adhere

to very diverse characteristics both in terms of duration and frequency content. The

perception of sound is significantly impacted by the surrounding environment and it

is enhanced with reverberations, created as a result of sound reflections on adjacent

objects and the environment; the duration and impact of reverberations are dependent

on the signal’s frequency. As a result, numerous reflections of the sound wave build up

and then decay as the sound is absorbed by the surfaces of objects in the space. This

is most noticeable when the sound source stops but the reflections continue, decreasing
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in amplitude, until they reach zero amplitude.

The accurate detection and recognition of acoustic events in the highly dynamic

auditory environment require large enough datasets to allow appropriate representation

of the event under different conditions. Several hours of the recorded audio of the same

event are required. Considering that the duration of acoustic events varies drastically

according to its type, it is not always possible to generate sufficient data for training.

Data scarcity and class under-representation impact greatly the model training process.

As a result, often researchers are forced to train classification models utilising data of

different – and heterogeneous – encoding schemes; introducing further uncertainty and

noise in the extracted features.

Acoustic events such as explosions and gunshots in particular, which are of primary

interest in the field of AED, are heavily impacted by reverberations as they are charac-

terised by a short (in time) impulse of high amplitude. The perception of such events

by the human ear differs significantly, as the impulse responses of the same event in

closed and open environments are drastically different.

It is a common practice in AED to split the audio stream in chunks for feature

extraction and subsequent processing and it is also very common to use frequency

domain characteristics as features. The isolation of short-time audio chunks makes its

recognition and categorisation even more challenging when put out of context; blocks

are processed in isolation without memory. Additionally, events of interest in AED,

range in characteristics and may be both voiced and unvoiced. The production of ML

models capable of robustly identifying events need to involve the use of appropriate

features to allow for this; it is also critical to cope with signal continuity in the case of

streamlined data.

The existence and timestamps of many non-speech sounds, i.e. (non-speech) acous-

tic events, reveal human and social activities. Such information is very helpful in

applications such as surveillance, multimedia information retrieval and intelligent con-

ference rooms. Additionally, efforts have been made to produce unsupervised clustering

of interesting events recorded automatically in an office environment [111] to allow the

extraction of highlights in the audio stream.

In the context of surveillance systems, AED aims to fill the gap when other analytics

are not in the position to provide results in dark environments, incidents residing

outside the field of view or the inability to detect events due to overcrowded areas.
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6.2 Audio Coding

In digitization, a microphone detects changes in air pressure and sends corresponding

voltage changes down a wire to an ADC (Analog to Digital Converter) which regularly

samples the values. In the realm of sound, the digitization process takes an analog

occurrence of sound, records it as a sequence of discrete events, and encodes it in the

binary language of computers. Digitization involves two main steps, sampling and

quantization.

Sampling is a matter of measuring air pressure amplitude at equally-spaced mo-

ments in time, where each measurement constitutes a sample. The number of samples

taken per second (samples/s) is the sampling rate. Units of samples/s are also re-

ferred to as Hertz (Hz). The Hertz unit is also used to mean cycles/s with regard to a

frequency component of sound.

Quantization is a matter of representing the amplitude of individual samples as

integers expressed in binary. The fact that integers are used forces the samples to be

measured in a finite number of discrete levels, whose range is determined by the bit

depth (the number of bits used per sample). A sample’s amplitude must be rounded

to the nearest of the allowable discrete levels, which introduces error in the digitization

process. An example of this process is shown in Figure 6.1.

Figure 6.1: A sampled and quantised sound wave

A sound wave, in red, represented digitally, in blue (after sampling and 4-bit

quantisation), with the resulting array shown on the right.1

The above image shows how a sound excerpt is taken from a waveform and turned

into a one dimensional array or vector of amplitude values. The samples are stored as

1Source:https://commons.wikimedia.org/wiki/File:4-bit-linear-PCM.svg
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binary numbers. From these stored values, the amplitude of the digitized sound can

be recreated and turned into analog voltage changes by the DAC.

The quantity of these stored values that exist within a given amount of time, as

defined by the sampling rate, is important to capturing and recreating the frequency

content of the audio signal. The higher the frequency content of the audio signal, the

more samples per second (higher sampling rate) are needed to accurately represent

it in the digital domain. Based on the Nyquist Theorem, and in order to be able

to successfully digitize a sound wave, the sampling rate must be at least twice the

frequency of the highest frequency component; in any other case an undesirable effect

called aliasing is introduced resulting in lowering the frequency content of the signal

upon reconstruction.

The described procedure is known as PCM (Pulse Code Modulation) encoding and

when the Nyguist theorem is respected the end result is lossless; a perfect DAC (Dig-

ital to Analog) reconstruction of the signal is possible. PCM encoded sound waves

usually bear the WAV extensions (WAVE codec). Lossless encoding is more expensive

in terms of both transmission and storage. Due to this, lossy compression is usually

applied on the sampled signal to lessen the dynamic range between the loudest and

quietest parts of an audio signal. This is usually done by boosting the quieter signals

and attenuating the louder signals. Many compression algorithms rely on the psychoa-

coustic model (how humans perceive and reconstruct sound) and the audio masking

effect (which frequencies are audible in a stream). Therefore, inaudible or close to

inaudible frequencies are removed to reduce the signal’s bit depth, transmission time

and storage size. When lossy compression is applied on a signal, its perfect reconstruc-

tion is no longer possible, introducing further errors in the signal. Properties such as

insufficient sampling rate and lossy compression (or the use of different codecs) result

in the introduction of uncertainty in the signal; also depicted in the feature extraction

process.

6.3 Classification in Acoustic Event Detection

6.3.1 Problem Formulation

Most digital signals are infinite, or sufficiently large that the dataset cannot be manip-

ulated as a whole. This is also the case for audio signals. Long signals are difficult to

94

Elisa
ve

t C
ha

ral
am

bo
us



analyse statistically, because statistical calculations require all points to be available

for analysis. To tackle this, the audio stream is divided into blocks (signal subsets)

through windowing.

The windowing process will alter the spectral properties of the dataset. A finite

window with transfer function W(z) is applied on the digitised signal S(z) as such:
ˆS(z) = S(z)W(z). The simplest approach of windowing is with the use of a rectangular

window, W(z) = 1, where all data points before and after the window are truncated.

Parameters such as the length of the window, the window function and the shifting

method impact the representation of the signal as distinct blocks of fixed size. The

number of blocks depends on the length of the stream and the window length. An

operational definition of classification of audio in acoustic event detection can be stated

as follows: given a set of n blocks and a vector t indicating the label of each block find

a model which successfully assigns new samples to the appropriate class.

Consider a set of n extracted blocks from a continuous stream O = o1, . . . , on.

Each block, oi, contains the time-domain quantised values of the audio stream. Each

observation undergoes through a feature extraction process to produce a representation

of oi which has the form xi ∈ [0, 1]p where p is the number of extracted features.

Therefore the set X = x1, , xn depicts the representation of the audio stream as a set

of distinct quantitative features. We assume that there are groups (subsets) of similar

events in O, the class of which is determined by the labels in T = t1, . . . , tn, and ti ∈ J

where J denotes the possible (known) class labels. Each block is represented in the

dataset with the pair oi = (xi, ti), during parameter training the parameters Θ of the

classifier are obtained by Θ = g(O), and the class ti of an uncategorised set of blocks

X = xn+1, . . . , xn+l can be obtained by ti = f (xi,Θ)∀n < in + l.

6.3.2 Practices in Acoustic Event Detection

Much research in audio content analysis has typically addressed the problem of segre-

gating a few audio sources [39,84] or segmenting an audio stream into a small number

of acoustically compact categories [197,197]. Acoustic Event Detection (AED) aims to

detect specified acoustic events such as gunshots [56], explosions [43,182], speech/music

transitions [197], cough events [231], or audience cheering at a sports event [15].

Despite the research done so far, reliable detection and categorization of audio

events from everyday audio is not mature enough for practical applications and em-
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phasizes mostly in monophonic sound. Most of the previous work classifies an audio

signal into one of predefined classes using standard features such as mel-frequency

cepstral coefficients (MFCC) and classifiers such as hidden Markov models (HMM),

Gaussian mixture models (GMM) or other statistical learning methods. Research has

also been made on the use of the appropriate features and classifiers for different events.

However, compartive analysis on the performance of classifiers on specific events cannot

be generalised to cover for all types of acoustic events. One of these studies is imple-

mented for 24 everyday contexts, such as restaurant, car, library, and office in [85].

The system used MFCCs and their first-order time derivatives as features and HMMs

with discriminative training for classification. The authors also conducted a listening

test to compare the system’s performance to the human abilities. The average recog-

nition accuracy of the system was 58%, against 69% obtained in the listening tests, in

recognizing between 24 everyday contexts. The accuracy in recognizing six high-level

classes was reported as 82% for the system and 88% for the humans. Additionally, [282]

proposed extracting discriminative features for AED using a boosting approach, which

outperformed classical speech perceptual features, such as Mel-frequency Cepstral Co-

efficients (MFCCs) and log frequency filterbank parameters with the use of cascaded

statistical models and noise adaptive kernels. In particular, a tandem connectionist-

HMM approach used to combine the sequence modeling capabilities of the HMM with

the high-accuracy context-dependent discriminative capabilities of an artificial neural

network trained using the minimum cross entropy criterion. Then, an SVM–GMM-

supervector approach was followed implementing noise adaptive kernels better approx-

imating the KL divergence between feature distributions in different audio segments.

Experiments on the CLEAR 2007 AED Evaluation set-up demonstrated over 45% rela-

tive performance improvement, on detection of twelve general acoustic events in a real

seminar environment.

While most of the work in acoustic event detection focuses on a few highlight acous-

tic events, the 2007 AED Evaluation sponsored by the project ”Classification of Events,

Activities and Relationships (CLEAR)” [243, 245] was performed on a continuous au-

dio database recorded in real seminars [244]. Systems attempted to identify both the

temporal boundaries and labels of twelve acoustic events containing also acoustically

subtle o mixed with speech events. The AED evaluation work sponsored by the CLEAR

project served as the baseline for other research works. Efforts on acoustic events de-

tection presented in the CHIL project made use of CLEAR AED evaluation [237]. The
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goal in the CHIL project was to detect and recognize a closed set of pre-defined acoustic

events. The evaluation data consisted of overlapping acoustic events occurring in the

CHIL lecture and meeting corpus. Participants to the CLEAR evaluation proposed 5

systems based on HMMs and one on SVMs, using MFCCs and the Viterbi algorithm;

the best performing system used HMMs and AdaBoost for feature selection [117,281].

Considering the success of HMM in the discrimination between acoustic events,

efforts have been made to implement systems for acoustic event detection in recordings

from real life environments [170], where events were modeled using a network of hid-

den Markov models; their size and topology was chosen based on a study of isolated

events recognition. On real life recordings, the recognition of isolated sound events

and event detection was tested. For event detection, the system performed recognition

and temporal positioning of a sequence of events. The classifier’s performance was

measured based on the accuracy metric with a 5-fold cross validation with non over-

lapping training and testing sets. An accuracy of just 24% was reported in classifying

isolated sound events into 61 classes. This corresponds to the accuracy of classifying

between 61 events when mixed with ambient background noise at 0dB signal-to-noise

ratio. In event detection, the system was capable of recognizing almost one third of

the events, and the temporal positioning of the events was not correct for 84% of the

time in polyphonic long recordings.

Additionally, efforts have been made to produce unsupervised clustering of inter-

esting events recorded automatically in an office environment [111]. The ”interesting”

events are detected by continuous monitoring of background noise and then clustered

into discrete categories using unsupervised k-means. Authors of [42] propose a frame-

work for detection of key audio effects in a continuous stream with the use of 10

audio effects, distinct enough to be perceived, modeled using HMMs with parameters

trained using isolated audio effects from Web, and decode the optimal sequence using

the Viterbi algorithm.

Acoustic information is used also for finding interesting segments of video in video

content analysis. Authors of [274] present an audio keyword generation system for

sports videos based on audio. They use HMMs for classifying semantic events and a

support vector machine (SVM) classifier for finding audio keywords in soccer, basketball

and tennis videos. Audio event detection can find a use also in healthcare monitoring

for elderly people [194] or audio-based surveillance [56].

The work in [54] deals with direct audio context recognition. Individual events are
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considered to be characteristics of the audio scene, and are not modeled themselves,

but included in models of the contexts. The events and contexts are chosen such that to

minimize overlapping. The authors present results for classifying 14 different contexts

using MFCCs and matching pursuit features, using fixed length segments in training

and testing.

HMM models are particularly interesting in this context as they consider the tran-

sition from one state to another; however is assumes no resampling or permutation of

observations.

Although different system architectures and feature sets have been explored [243,

245], even the top rated AED system (around 30% accuracy) left much space for

improvement [281]. By contrast, classification of performed isolated events in silent

rooms saw very good performance. The evaluation highlighted the challenges in the

detection of a large set of ordinary acoustic events in a real world environment [243].

Work reported in [281, 283] tried to further improve the classification performance

in a realistic setting with optimisation on extracted features and statistical models.

Analysis of the spectral structure of acoustic events and design of a suitable feature

set are important for AED. Various audio perceptual features have been proposed for

different analysis tasks [39, 43, 221]. In the recent CLEAR Evaluations for AED, the

most popular features are speech perception features [14, 243], such as Mel-Frequency

Cepstral Coefficients (MFCC) and log frequency filter bank parameters, which have

been proven to represent speech spectral structure well.

SVMs were shown to be optimal for classification of isolated events in a silent en-

vironments [226], while dynamic Bayesian networks and HMM were applied in noisy

environments thanks to the Viterbi algorithm [92], which allows the simultaneous com-

putation for optimal segmentation and classification of the audio stream [242, 243].

Additionally, the use of boosting approaches are recommended to construct a discrim-

inative feature set from a large feature pool.

6.3.3 Feature Extraction for AED

Over the past decades, a lot of research has been done on speech perceptual features

[120, 209]. Currently, the speech features are designed mainly based on properties of

speech production and perception. Based on knowledge of the human auditory system,

the envelope of the spectrogram (formant structure) instead of the fine structure of the
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spectrogram (harmonic structure) is believed to hold most information for speech.

Both log frequency filter bank parameters and Mel Frequency Cepstral Coefficients

(MFCC) [120] use triangular band pass filters to smooth out the fine structure of the

spectrogram. Moreover, to simulate the non-uniform frequency resolution observed in

human auditory perception, these speech feature sets use bandwidths based on the

perceptual critical band, e.g., they have higher resolution in the low frequency part of

the spectrum. These features have been successfully used to characterize speech signal

as well as other signal perceived by human audition, e.g., music [162].

The spectral structure of acoustic events is different from that of speech, therefore

speech feature sets designed according to the spectral structure of speech might be

far from optimal for AED [282]; frequency ranges that contain little speech discrimi-

native information, but of great discriminative importance for acoustic events, might

be neglected. Even though, AED solutions utilise mostly features extracted from the

spectral representation of the signal, some time domain characteristics of the signal

such as the zero crossing rate and energy/power, are used, especially for unvoiced and

noise like events.

To analyze the spectral structure of acoustic events for AED, Kullback–Leibler

Divergence (KLD) based feature discriminative capability analysis may be carried out.

KLD allows researchers to understand the relevance of different feature components (in

a speech feature set) for the AED task, compared to speech recognition. The distance

between the distributions associated with an acoustic event label and the other audio

labels reveals the discriminative capability of the feature for that acoustic event.

6.3.4 Acoustic Event Detection for Surveillance

Audio covers a 360°area day and night, at a low cost, and surpasses the limitation

of the viewing of conventional surveillance cameras. The lack of audio in surveillance

systems impacts significantly the ability of security personnel to act timely, if at all, in

cases of emergency. AED aims to identify both time, duration and types of events in an

audio stream. This becomes very challenging when going beyond restricted highlight

events and well controlled recordings.

As it has been previously discussed in this Chapter, the field of audio signal clas-

sification consists of methods for extracting relevant features from a sound in order to

identify into which of a set of classes the sound is most likely to fit. The feature extrac-
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tion and grouping algorithms used can be quite diverse depending on the classification

domain of the application [98].

Research on automatic surveillance systems has recently received particular atten-

tion, due to the increasing importance of these systems as well as the prohibitively

growing expenses as the number of deployed sensors escalates [256]. In particular,

the use of audio sensors in surveillance and monitoring applications has proved to be

particularly useful for the detection of events like screaming and gunshots [56] [212].

Such detection systems can be efficiently used to signal to an automated system that

an event has occurred and at the same time, to enable further processing like acoustic

source localization for steering a video-camera.

Traditional implementations involve the use of speech/music segmentation and clas-

sification [164] [197] and audio retrieval [279]. Much of the previous work about audio-

based surveillance systems has concentrated on the task of detecting some particular

audio events. Early research stems from the field of automatic audio classification

and matching [279]. More, recently, specific works covering the detection of particular

classes of events for multimedia-based surveillance have been developed. The SOLAR

system [122] uses a series of boosted decision trees to classify sound events belonging

to a set of predefined classes, such as screams, barks etc.

Successive works have shown that classification performance can be considerably

improved if a hierarchical classification scheme composed by different levels of binary

classifiers is used in place of a single-level multi-class classifier [14]. The hierarchi-

cal approach has been employed in [212] to design a specific system able to detect

screams/shouts in public transport environments. A slightly different technique is

used in [56] to detect gunshots in public environments. Several binary sub-classifiers

for different types of firearms are run in parallel. In this way, the false rejection rate of

the system is reduced by a 50% on average with respect to a single gunshot/noise clas-

sifier. Finally, in [14] a hierarchical set of cascaded Gaussian Mixture Models (GMM)

is used to classify 5 different sound classes. Reported results show that the hierarchical

approach yields accuracies from 70 to 80% for each class, while single level approaches

reach high accuracies for one class but poor results for the others.

Despite the advances, none of the previously mentioned systems has been developed

for operation on computationally and power limiting devices; imposing constraints on

the complexity of deployed analytic solutions and the extraction of audio features.
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6.4 Validation of Methodology on Audio for Acoustic Event

Detection

There is no universal solution for every problem. The design of the methodology

to tackle a problem has to serve its specific needs while considering limitations and

constraints. The methodology proposed in Chapter 4 has been deployed in [47] an

audio classification problem with a twofold objective: first the performance evaluation

of a number of algorithms in successfully performing audio event detection and secondly

their evaluation in terms of time complexity as the solution aided deployment on a low

cost embedded system.

In this task, classifiers of different computational profiles should be produced to

allow detection and validation of acoustic events of interest; the desired solution should

allow support for two levels of analysis. In the rest of this section, the implementation

details of classification solutions for surveillance along with the designed classification

strategy will be presented.

6.4.1 Implementation of robust audio analytics for surveillance

Analytics in surveillance systems impose additional restrictions with respect to the

complexity of classifiers – to allow their deployment on edge hardware platforms – as

well as the classification time. More specifically, the time required for feature extrac-

tion, classification and communication of the result needs to be less than the audio

block size. Models that do not comply to these restrictions may not be considered as

candidate solutions as they may not be operated in real-time.

The methodology presented in Chapter 4 is used for the training of robust classi-

fiers for the detection of gunshots, glass breaking and screaming incidents. The trained

models were designed to be deployed as part of an ethical audio surveillance system de-

veloped for the cost effective and real-time detection of auditory events of interest. The

implemented surveillance system utilises a low-cost embedded system for the recording

of audio and first level event detection with the use of lightweight analytics. Extracted

features of detected events are transferred to a private cloud for the execution of second

level event validation.

As is has already been stated, algorithms are not expected to perform equally well

with any dataset. The results are highly dependent on the parameterisation of the
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algorithm, as well as the structure and complexity of the dataset. Since models trained

for surveillance aim use in open and unrestricted environments, effective operation of

the systems –- serving the already defined specification –- require analysis of the data

with multiple techniques where each one examines different aspects of the sample.

6.4.2 System Operational Information

The designed audio analytics solution is composed of two levels of analysis, the models

designed for deployment on the edge should allow deployment on resource constraint

embedded systems. For the needs of this case study, the following the A10-O LinuXino-

LIME equipped with an A10 1GHz Cortex-A8 ARMv7 CPU, 512MB DDR3 RAM

memory embedded system was used; a cost effective low-end device which supports

wired connections. For the second level of analysis on the cloud side, a dedicated

Virtual Machine is allowed a CPU clocked at 2.2 GHz, 2 GB of RAM, and 20 GB

of storage capacity. Both embedded and cloud systems run under Ubuntu OS while

algorithm implementation is performed in C on the ES and in Python 3.5 on cloud.

The performance of the system is a critical factor, therefore lightweight analytics

are performed on the, power limited, embedded system. Upon occurrence of an event

the results are transferred on the cloud for further analysis. This method is adopted

to limit the number of false positive detection and therefore allowing the system to

operate without unwanted traffic.

A model previously trained with the use of sample data is deployed on the power

restricted device. Audio is recorded at a sampling rate of 44.1kHz with 16-bit depth, a

circular buffer temporarily stores the digitized samples. The necessity to operate and

take decisions in real time requires splitting the received data stream into frames of

predefined size; each frame is sequentially analysed and a set of extracted features is

obtained. Features are extracted from individual audio blocks, to be passed through

the previously trained model which is called to make a binary decision indicating or

not the existence of an acoustic event (see Figure 6.2). The detection of an event on

the first level of detection triggers buffering for successive blocks – even if there are

negatively labeled – to allow their aggregation and second level of analysis in the cloud

for event validation. Due to the very short length of audio blocks, an event generally

generates multiple positively flagged samples. The classifier on the second level of

analysis receives batches of samples for prediction.
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Figure 6.2: Lightweight analytics on ES

The selection of audio analytics models for the first and second levels of analysis

followed a comparative study in which re-sampling and boosting, which are integral

parts of the methodology, allowed generating new datasets with a balanced number

of samples for uniform class distribution. The selection of the preferred classification

method in this case study, not only depended on the classification performance, but also

on the required processing time. Both parameters are critical as they impact greatly

the overall performance of the system. Inadequate classification performance would

result in an increase of false positives while slow classification speed would result in

overburdening the ES resources resulting in delays and a non-real time solution. During

operation, the ES audio analytics module performs feature extraction on discretised

blocks of audio of predefined length.

It is expected that an audio event will raise multiple alerts as it will span multiple

blocks. Due to this, the second level of analysis implements classification fusion for

increased confidence in the process of event detection.

For the needs of this study, a series of audio datasets which do not only involve

events of interest but also background noise and other random sounds composing a

mixture of different sound sources captured from different environments were used.

This process was considered necessary to enhance system robustness and classifiers

generalisation capability.
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6.4.3 Feature Extraction

Analysis of the audio stream is carried out in a block based fashion where for each

block a number of spectral, cepstral and unvoiced coefficients are extracted and used

for subsequent classification. For each sound block, the first 13 Mel-frequency cepstral

coefficients (MFCC) [202] are retained along with the values of zero-crossings, and

block energy.

As cepstral features are computed by taking the Fourier transform of the warped

logarithmic spectrum, they contain information about the rate changes in the different

spectrum bands. Cepstral features are favorable due to their ability to separate the

impact of source and filter in a speech signal. In other words, in the cepstral domain,

the influence of the vocal cords (source) and the vocal tract (filter) in a signal can

be separated since the low-frequency excitation and the formant filtering of the vocal

tract are located in different regions in the cepstral domain. If a cepstral coefficient

has a positive value, it represents a sonorant sound since the majority of the spectral

energy in sonorant sounds are concentrated in the low-frequency regions. On the other

hand, if a cepstral coefficient has a negative value, it represents a fricative sound since

most of the spectral energies in fricative sounds are concentrated at high frequencies.

The lower order coefficients contain most of the information about the overall spectral

shape of the source-filter transfer function. In particular, the zero-order coefficient in-

dicates the average power of the input signal and the first-order coefficient represents

the distribution spectral energy between low and high frequencies. Even though higher

order coefficients represent increasing levels of spectral details, depending on the sam-

pling rate and estimation method, 12 to 20 cepstral coefficients are typically optimal

for speech analysis. Selecting a large number of cepstral coefficients results in more

complexity in the models.

6.4.4 Classifier Training Methodology

The designation of the implemented methodology accounts for the non-uniformity in

the distribution of classes, as well as the fact that audio samples significantly different

from the training set may be collected during a real-life scenario. For the needs of

this study, bootstrapping with replacement is used to allow the generation of new

datasets; a balance between true and false events was maintained to avoid over fitting

to either category. The choice of re-sampling adds the assumption that the dataset
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is representative to the population. Moreover, the performance of the algorithms is

evaluated using the classification accuracy, i.e. the number of correct predictions from

all predictions [232], as well as the AUC index [38]. The calculation of both indices

is done in an effort to assess their robustness and emphasise the significance of their

choice.

The 5x2 cross validation paired t-test [68] and the 5x2 cross validation F-test [10]

were deployed to statistically test the significance of the classification results and to

evaluate their robustness. Benchmarks on significance testing propose that cross vali-

dation testing methods are more robust when dealing with small datasets where repro-

ducibility of the experiment is not an issue [68]. The 5x2 cross validation method was

selected to allow large enough datasets for testing while ensuring that no further depen-

dencies of overlapping training and testing sets are introduced when cross validation is

used [217].

Variants of the scheme introduced in Chapter 4 has been deployed for the training

of classifiers for both analysis levels to serve different objectives. On the cloud, the

objective was to determine which algorithm performs the best, in terms of classifica-

tion evaluation metrics, while on the embedded system the objective was to find the

algorithm that satisfies the trade-off between classification performance and real-time

operation. In each instance, the experiment was allowed to run for 500 iterations to

allow the generation of valid statistics and the significance of the results was calculated

at level 0.05 ensuring that a 95% confidence level for the results of statistical testing.

6.4.5 Classification Algorithms used in the experiment

The selection of the algorithm was determined based on the results of an extensive

experiment involving a number of classification methods some of which were also used

in Chapter 5.

Random Forests

Random forests are a combination of tree predictors such that each tree depends on

the values of a random vector sampled independently and with the same distribution

for all trees in the forest [35] [259]. The generalization error for forests converges a.s.

to a limit as the number of trees in the forest becomes large while it also depends on

the strength of the individual trees in the forest and the correlation between them.
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Random forests on bagging where the combination of learning models, is thought

to, increase the classification accuracy. The main idea of bagging is to average noisy

unbiased models to create a model with low variance, in terms of classification; a large

collection of decorrelated decision trees. Supposing that matrix S is the set of training

samples, used for training the classification model, random forests generate a number of

different and independent decision trees from an equal number of random data subsets

(selected as random sets from the original set. Upon prediction, new uncategorised

samples are classified by all trained trees. The element is assigned the label based on

the majority rule of class label each tree has returned.

Support Vector Machines

Support vector machine is based on statistical learning theory and the structural risk

minimization principle [259]. Using the training data, SVM implicitly maps the orig-

inal inputs pace into a high dimensional feature space [140]. Subsequently, in the

feature space the optimal hyperplane is determined by maximizing the margins of class

boundaries [1].

The training points that are closest to the optimal hyperplane are called support

vectors. Once the decision surface is obtained, it can be used for classifying new data.

Consider a training dataset of instance-label pairs (xi, yi) with xi ∈ Rn, yi ∈ {1,−1} and

i = 1, ...,m. In the current context of audio classification, x is a vector of input space

that contains the previously extracted audio coefficients. The two classes 1,-1 denote

identified event and misidentified event. The aim of the SVM classification is to find

an optimal separating hyperplane that can distinguish the two classes {1,−1} from the

mentioned set of training data. For the case of linear separable data, a separating

hyperplane can be defined as: yi(w×xi+ b) ≥ 1−ξi where w is a coefficient vector that

determines the orientation of the hyperplane in the feature space, b is the offset of the

hyperplane from the origin, xi is the positive slack variable [60].

k-Nearest Neighbour (k-NN) & C4.5

The k-NN and C4.5 classification algorithms were used in Case Studies. These methods

were briefly introduced in Section 5.4.3. The k-Nearest Neighbour (k-NN) implemen-

tation in this case study was used with Manhattan distance.
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6.4.6 Lightweight Audio Analytics

The audio analytics module on the embedded system (ES) is designed to emphasise on

the detection of screaming, glass breaking and gun-shooting/loud explosions with the

deployment of a timely efficient method.

Within the tasks of the embedded system is the recording of audio from the attached

microphone, its encoding in the WAVE uncompressed format, its re-sampling to the

preferred sampling rate as well as the transmission of extracted features and lightweight

analytics results on the cloud, therefore the latency caused by these aspects needs also

to be considered.

Additionally, due to privacy reasons, the audio data should neither be retained on

the ES after a block has been processed, nor be transmitted on the cloud through

the network. Therefore, only the extracted feature coefficients are transmitted to the

cloud for further processing (see Figure 6.3). The need of operating in real-time imposes

the extra challenge in preserving low processing (feature extraction and classification)

times.

Figure 6.3: Embedded System Audio Analytics Functional View

Classification on the ES is performed with C4.5. The selection of this method

emerged after a systematic experiment discussed in [46]; during this process the effec-

tiveness of a number of possible audio features has also been tested. Statistical testing

revealed that in most cases C4.5 was significantly better than its counterpart algo-

rithms while in cases where the null hypothesis (i.e. algorithm A is not significantly
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better than algorithm B) is confirmed C4.5 was proven to be more efficient in terms of

processing times.

Time Complexity

The necessity to operate and take decisions in real time requires splitting the received

data stream into frames of predefined size; each frame is sequentially analysed and a

set of extracted features is obtained. The prediction module is then called to make the

binary decision (i.e. the sound is alarming or not). The trade-off between processing

time and classification error (measured as the misclassification rate) is considered crit-

ical and as a result, the parametrisation of the algorithm is determined based on the

results, shown in Table 6.1, involving the following parameters: audio sampling fre-

quency, block size (expressed in ms), NFFT frame, number of filter bank and MFCC

coefficients, misclassification error and average (block) processing time. Based on the

reported times in Table 1 the parameterisation of configuration #1 is adopted.

Table 6.1: Top 3 configurations obtained in an experiment which involved the param-

eterisation of the audio analytics module.

Configuration

Parameter #1 #2 #3

Fs(kHz) 8 8 8

Block(ms) 140 100 140

FBank 22 22 22

MFCC 13 13 10

Accuracy 98.6% 98.4% 98.4%

Time(ms) 85.74 89.06 65.13

Classification strategy

The audio analytics module on the embedded system solves the classification problem

with a number of cascaded binary classification trees (shown in Figure 6.4); generated

with the means of the C4.5 algorithm. Processing involves a number of steps depending

on the output of previous steps. First the input sample goes through the three trees in

Tier 1, in the case where all algorithms classify the sample as non-alerting no further

processing is required, otherwise processing goes through the tree in Tier 2 which
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identifies between voiced and unvoiced sounds. If a scream is detected then the sample

is labelled as screaming and the results along with features is queue for transmission

to the cloud. In the event of an unvoiced event the algorithm moves to Tier 3 and the

discrimination between the sounds of glass breaking and gunshots.

Figure 6.4: Lightweight analytics on ES

6.4.7 Cloud side analysis

On the cloud side a number of different analytics methods are available for analysis.

Due to the diversity of audio sounds that may occur in trial setups, the analysis of

the data from different perspectives is considered necessary, therefore the selection

of the algorithms was driven by this need; each algorithm exploits best certain data

attributes. Despite our selection of classification methods, the proposed design supports

the addition of any other classification/ clustering method.

Due to this, four different methods have been deployed: C4.5 based on decision

trees, random forests, an ensemble DT method, and two statistical methods known

as Support Vector Machines (hereafter SVM) and k- Nearest Neighbour (hereafter k-

NN). A more complex structure, based on neural networks, known as Learning Vector

Quantisation (LVQ) [261] has also been implemented, however during testing it was

decided to be left out as the produced results were inconsistent.

Due to the continuous nature of sound waves and the fact that an acoustic event

is very likely to span multiple processing blocks, a varied majority voting approach is

also applied on the classifier’s predictions prior to the final output. This step has been

added to the event validation process as a countermeasure against spontaneous false
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positives. Majority voting is applied as a means of fusing classification results when

multiple classifiers produce predictions on the same data.

Two different voting schemes are common among voting classifiers, hard and soft

voting. In hard voting, every individual classifier votes for a class, and the majority

wins. In statistical terms, the predicted target label of the ensemble is the mode of the

distribution of individually predicted labels. A hard majority vote classifier consisting

of votes from hypotheses h1, h2, . . . , hB is defined as follows.

C(X) = arg max
i

B∑
j=0

w jI(h j(X) = i) (6.1)

where wi, . . . ,wB are weights that sum to 1 and I() is an indicator function. Data

samples x are assigned to the class that receives the largest number of classification

votes. In soft voting, every individual classifier provides a probability value that a

specific data point belongs to a particular target class. The predictions are weighted

by the classifier’s importance and summed up. Then the target label with the greatest

sum of weighted probabilities wins the vote.

C(X) = arg max
i

B∑
j=0

w jp̂i j (6.2)

where p̂i j is the probability estimate from the jth classification rule for the ith class.

In the context of the task in hand, the transferred data from lightweight analytics

that represented an acoustic event was provided as input to a trained classifier. The

estimated classification output was applied to soft majority voting with equal weights

to produce the validated classification outcome.

Classifier Performance Evaluation

The implemented cloud analytics algorithms for audio offer more flexibility compared

to the designed strategy on the ES for lightweight audio analytics. The computational

resources on the cloud enable the quick analysis of transferred parameters through

multiple algorithms in low confidence cases. The same approach as earlier has been

followed for the evaluation of algorithms on cloud. During the experiment all algo-

rithms operated with the same parameterisation for all generated datasets so as to

avoid the introduction of dataset bias in the performance of the algorithms, however

these numbers emerged as a result of several experiments. Therefore, C4.5 operated

with no pruning, k-NN with k=3, random forests with tree bagging of 20 and finally
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SVM with the RBF kernel, a maximum value of 15000 iterations and a 5% level of

violation of the KKT conditions in cases where the algorithm does not reach conver-

sion. For consistency purposes the evaluation of each algorithm for each type of alert

involved the calculation of the following metrics: Accuracy, Sensitivity, Specificity,

Precision, Recall, F-Measure, G-Mean, and AUC. In total a number of three experi-

ments have been performed, one for each of the three possible alerts; results shown in

Table 6.2. The experiments, tested the algorithms performance in discriminating the

sounds of glass breaking, gunshots/explosions and screaming from non-scream sound

(background noise, people talking, ambient sound in transportation media etc.).

Table 6.2: Classification performance for the detection of events.

Glass Vs. NonScreams Gunshot Vs. NonScreams Screams Vs. NonScreams

C4.5 k-NN RF SVM C4.5 k-NN RF SVM C4.5 k-NN RF SVM

Accuracy 1.00 1.00 1.00 0.81 0.99 0.98 0.99 0.97 1.00 1.00 1.00 0.99

Sensitivity 1.00 1.00 1.00 0.78 0.99 0.99 0.99 0.97 1.00 1.00 1.00 0.99

Specificity 0.99 1.00 1.00 1.00 0.86 0.93 0.96 0.99 0.97 0.98 0.99 1.00

Precision 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 0.78 0.99 0.99 0.99 0.97 1.00 1.00 1.00 0.99

F-Measure 1.00 1.00 1.00 0.87 0.99 0.99 1.00 0.99 1.00 1.00 1.00 0.99

Gmean 0.99 1.00 1.00 0.88 0.93 0.96 0.97 0.98 0.98 0.99 0.99 0.99

AUC 1.00 1.00 1.00 0.71 0.93 0.86 0.94 0.75 0.98 0.92 0.99 0.70

6.5 Experiment Results & Conclusions

Results of the above experiment suggested that C4.5 was consistently the quickest

algorithm both during prediction and training while it also returned high classification

scores. k-NN performs best in discriminating between the sound of glass breaking and

non-screaming, even though RF and C4.5 follow its performance very closely; k-NN

is no significantly better than C4.5 and RF with all 3 algorithms reporting extremely

high rate in both accuracy, F-measure and AUC. RF outperforms the rest algorithms

in the detection of gunshots and abnormally loud sounds reporting almost perfect

classification, very shortly followed by C4.5 and k-NN. However the results show that

RF and C4.5 report better AUC values than k-NN. RF outperforms also in the detection

of screams with very high rates, shortly followed by C4.5 and k-NN. Despite this, none

of the algorithms is significantly better than the others in terms of Accuracy, Sensitivity,

Specificity, Precision, Recall, F-Measure and G-Mean. SVM constantly produces lower

performance rates compared to the rest algorithms in terms of AUC. The variability
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between reported values of accuracy, f-measure and AUC provide a lead for further

investigation of characteristics between the different classes. SVM was parametrised

in a way to accept a degree of error in favour of running time. The parameterisation

allows for extremely quick classification.

The fully automatic and reliable identification of sounds and alerts in real-time, at

the current stage of advancement in technologies, is not possible when a computation-

ally restricted ES is involved in the process. However, the results indicate that reliable

ways of detecting alerts within an environment are feasible. Despite the high scores

of the performed experiment, a confidence classification metric may be calculated as a

function of the number of alerts that have occurred in the clip, the matching between

ES and cloud analytics as well as the fusion of results obtained from the simultaneous

analysis of the clip with multiple algorithms (possibly audio, video and/or depth).
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Chapter 7

Data Analysis Suite Tool

7.1 Introduction

Data analytics tools can help deliver value and bring data to life. A lot of hard work

goes into extracting and transforming data into a usable format, but once that’s done,

data analytics can provide users with greater insights into their customers, business,

and industry. Tens of tools, some of which open sourced or freely available, have

been launched over the past decade to assist data analysis experts and non to gain

insights in their data with the aim to either extract valuable knowledge or to introduce

automations in existing or new systems. As data analysis comes in many forms and

covers a wide spectrum of operations, applications such as: Tableau Public, Rapid-

Miner, KNIME, QlikView and Splunk serve as mere examples on the range of available

tools that offer such services for specific data types and sources. On the other hand,

technologies such as: Apache Spark, Scikit Learn and TensorFlow enabled by R, Mat-

lab and Python environments allow the generation and configuration of advanced and

parametrised data analysis models to fit the requirements of any problem.

However, research presented in Chapter 3 illustrates that many parameters need

to be taken into consideration during the preprocessing, training, validation, deploy-

ment and maintenance phases of data analysis models for robustness in the produced

outcome.
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7.2 Motivation

The use of ML in so many domains and applications has led to an emerging need of

application domain experts to, not only familiarise themselves with the basic principles

of data analysis, but also to gain substantial comprehension on data sampling, trans-

formation and analysis practices. Considering, the complexity of this task it is rather

challenging to train robust classification models with validated performance without

coding or scripting involved.

The aforementioned challenge impacts the sectors of research and industry and es-

capes beyond the areas of archaeology and security which we analysed as case studies.

As a result, a web-based data analysis suite tool have been developed to allow appli-

cation domain experts to gain insights on their data, to train classifiers with assured

performance and to deploy with unseen data. The rest of this chapter discusses the

features and functionalities covered by this tool.

7.3 Tool Design

The data analysis suite tool has been developed in an effort to allow users to gain

insight on their data quickly through an easy to use interface. The data analysis

platform covers the following functionalities to solve binary problems:

• Data importing either in raw media format for audio data or in CSV format for

any other type of numeric dataset,

• Exploratory data analysis with clustering methods on previously imported data,

• Model training and validation for classification problems,

• Classification of unseen data with previously trained models.

The data analysis suite is being developed based on open-source technologies and

the Django web-development framework [123] on an MVC design (see Figure 7.1), with

Python powering the server-side and HTML, CSS, Javascript and JQuery on the client-

side. The user interface is accessible through any modern web browser and does not

require any scripting knowledge. For ease of deployment, the project is packaged in

two docker containers: one for the web service and one for the tool’s database.

For flexibility and scalability purposes, the processing and visualisation layers are

designed as separated layers that communicate through a REST 2.0 API. Configuration
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Figure 7.1: Django Architecture diagram. [104]

and admin data are stored in a secured Sqlite3 database while extracted features and

analysis results are stored in a Mongo database to allow storage and management of

large volumes of data(see Figure 7.2).

Figure 7.2: Conceptual Design

The data analysis platform has been implemented with standardised interfaces to

allow a software developer to easily add new classification and clustering algorithms

as well as to add upon the already provided parametrisation options. At the current

stage to allow for testing, the data analysis platform is integrates the SVM [60], Ran-

dom Forests [35], Multilayer Perceptron Neural Networks [96], Naive Bayes [277] and

Stochastic Gradient Descent [32] classification algorithms and the K-Means [130] and

Affinity Propagation [94] algorithms for clustering.
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7.4 Analysis Principles

The analysis domain of the developed tool relies on the fact that the user will import

representative data to allow for adequate class separation upon training, validation and

testing . The administrator’s panel allows the configuration of class labels as well as

validation/evaluation and algorithmic method characteristics as any time.

Figure 7.3: Analysis Domain

One of the main requirements was to provide a solution that is dataset and clas-

sification method agnostic, the user is called to import new data and associate these

with already configured class label . Depending on the type of data, the platform per-

forms pre-processing for data harmonisation purposes and extracts feature domination

characteristics . Imported data may become subject to clustering and dimensionality

reduction for exploratory data analysis purposes or to model training for classifica-

tion purposes. The latter option, which is also the main purpose of the tool, allows

automated training of multiple models through different and diverse classification tech-

niques. Prior to clustering and classification operations the user is able to select whether

feature selection techniques, based on feature ranking, will be applied to perform anal-

ysis with the use of selected features. Model performance evaluation is performed

based on a series of metrics, while statistical testing may be applied to compare classi-

fier performance for configurable significance indices . Finally, adequately performing

models may be selected for use with new data or exported for use independently or in

combination with other tools; the latter option is provisioned for cases where a user

may perform cascading on trained classification models. This process is summarised

in Figure 7.3.
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7.4.1 Data Source Processing

Users are able to add import datasets through the Data Input Panel either by uploading

CSV files or by uploading a series of audio or video files supported by FFMPEG1. The

data analysis platform is implemented on the concept that a sample feature vector is

consisted of numeric values. In CSV files, each data row represents a sample while the

first row is thought to be the column headers. In the case where an acoustic dataset

is to be imported, the platform transcodes all files in the lossless WAVE format, in

mono sound with 16kHz sampling rate; these values were selected as a result of exper-

iments implemented within the context of Chapter 6. Each audio file is processed in

1 sec blocks (with this value being configurable). From each block a range of 193 fea-

tures are extracted including 40 MFCCs, 12 mean Chromagram values [83], 128 mean

mel-scaled spectrogram values, 7 spectral contrast values [134] and 6 tonal centroid

features (tonnetz) [112]. The Chromagram and spectral contrast for each block are

estimated based on the Short-Time Fourier Transform (STFT) representation of the

signal, a time-frequency domain representation computed as a result of discrete Fourier

transforms (DFT) over short overlapping windows.

Figure 7.4: Data Input Panel

Other data recorded along with the extracted features during the importing of a

dataset involve the dataset name, description, source and associated class label (see

Figure 7.4). Once source files are processed, the uploaded files are removed from the

server-side and only the extracted features are retained; this was implemented to ensure
1https://www.ffmpeg.org/
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that no personal data are retained and no reconstruction of the original data is possible

when the tool was applied to surveillance data.

Figure 7.5: Imported dataset detail view

In addition, to the extraction/parsing of dataset features, the Data Analysis plat-

form performs dimensionality reduction based on Principal Component Analysis (PCA)

[269] for visualisation purposes. Additionally, the explained variance of the first 10 com-

ponents (if available) as well as feature domination and normalised feature domination

are visualised to allow the user to gain insight on the imported dataset without altering

its characteristics.A sample view of an imported dataset is shown in Figure 7.5.

7.4.2 Exploratory Data Analysis

Exploratory data analysis functionalities through dimensionality reduction and clus-

tering methods have been added to the data analysis platform to allow users to review
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characteristics relevant to the imported datasets. This is particularly important when

data are scarce and analysts are obliged to use multiple datasets collected separately

with different recorded methods in order to produce a representative set of samples.

The exploratory data analysis panel allows the user to select one or more datasets

to perform clustering or to review the results of previous clustering requests. The

user interface allows for parametrisation of the already integrated clustering methods

with dynamically updated selections while it also supports for feature selection with

SelectKBest and the x2 score function independent of the predictive method.

Functionality provided through the EDA panel allow users to review various charac-

teristics of their data along with the impact of feature selection in increasing separabil-

ity between clusters (see Figure 7.6). Currently, the K-means and Affinity propagation

clustering algorithms are supported within the data analysis platform; along with sev-

eral parametrisation options through the user interface. The selection of the integrated

clustering methods was so to allow also for the prediction of the number of clusters.

Further clustering methods may be added programmatically through standardised in-

terfaces implemented in the analytics engine component (see Figure 7.2).

Figure 7.6: Detailed view of clustering result

Once the clustering process is completed, a new entry is added in the list of re-

sults. The detailed view of each clustering request shows a PCA representation of
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the clustered data labeled with their assigned cluster label. Additionally, a number

of evaluation metrics measuring cluster compactness and separation are reported in

addition to plots for the explained variance of the first ten features, feature domination

and normalised feature domination.

7.4.3 Model Training & Analysis for Classification Problems

The initial driver for the ideation of the data analysis platform was the need for domain

experts to be able to train robust classifiers with their own data for later use with unseen

data in a user friendly environment. It was also observed that it is difficult to compare

classifier performance with when either the training or testing data are different. Due

to this, the data analysis suite tool implements two different spaces: the model training

panel and the post analysis panel.

The model training panel is designed to allow the user to train multiple classi-

fiers, based upon selection of integrated algorithms, and to evaluate their performance

according to the methodology introduced in Chapter 4. As a consequence, the post

analysis panel is implemented to allow the classification of unseen data with the use of

previously trained and saved classifiers.

Model Training

The model training panel allows the user to submit requests for training multiple

classifiers in a single request and to evaluate their performance on the basis of the same

data (see Figure 7.7). In particular, the user is called to select datasets for positive and

negative detection (binary classification problems) and to pick from a range or already

integrated classification algorithms; these include SVM, Random Forests, Multi-layer

Perceptron Neural Network, Naive Bayer and Stochastic Gradient Descent. Within the

mandatory parameters is also the evaluation metric2. The Data Analysis Suite then

allows for several cross validation options, feature selection with random forests as well

as significance testing with the statistical T-test and F-Test methods. Additionally,

in order to avoid cases of dataset dominance due to the vast difference in the size of

positive labelled and negative labeled samples, the option of random data truncation

is implemented to allow this on an ad-hoc basis even after dataset importing.
2One of ROC AUC, Accuracy, Cohen’s Kappa, Confusion Matrix, Jaccard Similarity, Precision,

Recall and ROC Curve.
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Figure 7.7: Snippet of training panel parametrisation

The submission of a training request entails a number of steps to be performed by

the analysis engine component of the tool summarised in Figure 7.8. Firstly, the fea-

tures from the already processed datasets are retrieved from MongoDB and aggregated

to form the positively and negatively labeled datasets when multiple datasets have been

selected. At this stage, if data resizing is selected the analysis engine randomly selects

x features from the larger dataset where x = min (a, b) and a and b are the number

of samples in the positively labeled and negatively labeled datasets; model training is

performed on the selected x samples than on the original dataset.

If feature selection is selected, the new aggregated dataset which combines samples

from both class labels, undergoes feature ranking and selection with the ensemble

method of Random Forests. Random Forests are often used for feature selection in

a data science workflow. The reason is because the tree-based strategies used by

random forests naturally ranks by how well they improve the purity of the node. This

mean decrease in impurity over all trees (called gini impurity). Nodes with the greatest

decrease in impurity happen at the start of the trees, while notes with the least decrease

in impurity occur at the end of trees. Thus, by pruning trees below a particular node,

a subset of the most important features is retained. Following empirical testing with

respect to generalisation and ability to cope with heterogeneous datasets, features with

importance greater than 1% are retained.

Feature selection is an effective method to increase separability between classes

especially when samples are characterised by hundreds or even thousands of features.

Generating, simple to interpret, models that only consider important features also

reduces the model’s variance and computational cost of training.

Following feature selection the training model training process proceeds according
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Figure 7.8: Model training through the data analysis suite.

to the data validation parameter selected by the user. The following validation options

are available through the tool:

• Data split options for 60-40 data-split, 70-30 data-split and 50-50 data-split where

data corresponding to the first percentage are used for training and the percentage
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for the second percentage are retained for testing and validating and performance

of the trained model;

• S − f old cross-validation: with options for 2-fold and 10-fold cross-validation.

S − f old involves taking the available date and partitioning it into S groups (in

the simplest case of the same size). Then S − 1 of the groups are used to train a

set of models that are then evaluated on the remaining group. This procedure is

then repeated for all S possible choices for the held-out group. The performance

scores from the S runs are then averaged [76];

• Leave One Out: This is an extreme case of cross-validation when data is partic-

ularly scarce, it may be appropriate to consider the case where S = N, where N

is the total number of data points [76];

• 5x2 cross-validation: In this test, 5 replications of 2-fold cross-validation. In each

replication, the available data is randomly partitioned into two equal-sized sets

S1 and S2. Each learning algorithm is trained on each set and tested on the other

set. [66];

Depending on the classification problem, the classification performance may be

measured through a number of metrics. The data analysis tool allows measuring a

classifier’s performance with the calculation of one of the following of which one is to

be selected prior to the submission of a training request:

• ROC Curve: A receiver operating characteristic curve (ROC curve) is a graphical

plot that illustrates the diagnostic ability of a binary classifier system as its

discrimination threshold is varied. The ROC curve is created by plotting the true

positive rate (TPR) against the false positive rate (FPR) at various threshold

settings. The true-positive rate is also known as sensitivity, recall or probability

of detection [79];

• ROC AUC: An ROC curve is a two-dimensional depiction of classifier perfor-

mance. To compare classifiers we may want to reduce ROC performance to a

single scalar value representing expected performance. A common method is to

calculate the area under the ROC curve, abbreviated AUC [89]

• Accuracy: In general, the accuracy metric measures the ratio of correct predic-

tions over the total number of instances evaluated [124];
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• Cohen’s Kappa: The Kappa statistic is used to measure the agreement between

two sets of categorizations of a dataset while correcting for chance agreements

between the categories. The Kappa statistic makes use of both the overall ac-

curacy of the model and the accuracy within each category, both in terms of

the predictive model and the field-surveyed sample points, to correct for chance

agreement between categories [133].

• Confusion Matrix: The basic confusion matrix is a k×k matrix of counts, where k

is the number of classes involved in the classification problem. By weak tradition,

the columns correspond to the true classificatory state, while the rows correspond

to the algorithm results.If an object is truly of class j and the algorithm classifies

it into class i, then the count in cell (i, j)–the cell at the intersection of row i and

column j–of the confusion matrix is incremented by one [91].

• Jaccard Similarity is included in the negative match exclusive measures and is

calculated on the basis of the Operational Taxonomic Units (OTUs) [86] in a

2 × 2 contingency table. The Jaccard coefficient proposed at 1901 is still widely

used in the various fields such as ecology and biology [53].

• Precision: used to measure the positive patterns that are correctly predicted from

the total predicted patterns in a positive class [124];

• Recall: Recall is used to measure the fraction of positive patterns that are cor-

rectly classified [124];

Finally, the 5 × 2 cross validation paired t-test [67] and the 5 × 2 cross validation

F-test [10] can be deployed, if selected, to statistically test the significance of the

classification results and to evaluate their robustness. Benchmarks on significance

testing propose that cross validation testing methods are more robust when dealing

with small datasets where reproducibility of the experiment is not an issue [68]. The

5 × 2 cross validation method was selected to allow large enough datasets for testing

while ensuring that no further dependencies of overlapping training and testing sets

are introduced when cross validation is used [217].

This functionality has been added to alleviate the factor of likelihood in an algo-

rithm’ performance against another algorithm and can be deployed only for pairs of

classification algorithms. The tests essentially check the probability that the selected
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evaluation statistic has a high enough probability of being drawn from that distribu-

tion [10].

Figure 7.9: Detailed page of training request

Following the a request for the training of classification models, a user may ob-

serve the algorithm’s capability in correctly classifying training and validation datasets.

Trained classifiers with acceptable performance may be saved for use at a later stage

with unseen data or to download the model for use through a different system (see

Figure 7.9). As with the EDA panel, the Data Analysis tool supports for standardised

interfaces which allow the integration of further classification algorithms as options.
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Classification of Unseen data

Classification of unseen data is possible for trained models previously saved form the

training results page. The user may select the relevant model from the drop-down list

in the post analysis panel. As with the already discussed procedure for data import, a

user may select a number of CSV or multimedia files for audio extraction (see Figure

7.10).

Figure 7.10: Classification of unseen data

For each uploaded file, data are sequentially read and fed as input to the indicated

classifier. For audio classification, the uploaded files are first transcoded and split into

blocks from which features are extracted. Data generated by each file are classified

individually to allow visualisation of the attained results (see Figure 7.11).

When classification is completed, a new entry in the list of results is added in

the table at the bottom of the page. The detailed view of each classification request

visualises an accumulative view of all labeled data in a PCA plot at the top of the

page (see Figure 7.12), followed by the results of classification for each file (see Figure

7.13). Classified samples are coloured to shades of blue and orange depending on

which class they have been assigned; the shade of the colour is determined based on

the classification confidence.

For each processed file, a single line colour-coded file-map provides a quick overview

of the content of the file. Additionally, the classification label and confidence are

reported for each sample in the form of a list.
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Figure 7.11: Data analysis flow through the data analysis suite.

Figure 7.12: Data analysis flow through the data analysis suite.

7.5 Future Developments & Application

The demand for the development of data analysis tools like the Data Analysis Suite,

is apparent even with the existence of numerous data analysis and analytics platforms

and emerged from experience in several EU funded projects that collaborate closely

with end users.

The current work has been applied in the fields of archaeology and acoustic event
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Figure 7.13: Snippet of results for a file

detection for security purposes. Even though the two application domains do not

seem to share much in common, they both impose specific restrictions in as far as

data recording and sharing are concerned. Data in both domains are abundant and

an easy to use end to end solution for exploratory data analysis and classification is

of interest. The current tool has emerged based on the methodology presented in

Chapter 4 applied in archaeological context within the framework of the Marie-Curie

ITN project NARNIA and in the FP7 P-REACT and H2020 ASGARD projects for

the training of acoustic event detection classifiers.

Future development plans for the tool are support for multi-class classification prob-

lems for the incorporation of confusion matrices in classification results for inter-class

relationship analysis, as well as the the addition of the option to train classification

models with parametrisation.
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Chapter 8

Conclusions & Impact

Machine learning algorithms have many applications and are being deployed in interest-

ing ways. It has become increasingly ubiquitous with more and more applications even

in the most unlikely areas. The use of ML in so many domains and applications has led

to an emerging need of application domain experts to, not only familiarise themselves

with the basic principles of data analysis, but also to gain substantial comprehension

on data sampling, transformation and analysis practices.

The decision making process followed by the human brain is highly complex and

usually utilizes past knowledge, experiences and stimuli from the environment. The

development of algorithms that mitigate part of this decision making process is chal-

lenging due to the many involved parameters; one of which is also the way we perceive

data.

Machine learning techniques and statistical analysis can be very useful if used ap-

propriately. Classification aims at identifying to which element of a set of categories,

a new uncategorised artifact belongs, on the basis of a training set of artifacts the

class/type of which is known. Classification algorithms are being developed under a

set of assumptions which in practice may not always realistic, however their deploy-

ment needs to comply with the imposed restrictions and also assure that the algorithm’s

objectives are in accordance to the problem’s underlying mechanisms; ensuring no con-

flicting constraints.

Multiple factors contribute to the introduction of noise or uncertainty in data mea-

surements; these might be both intrinsic and extrinsic. The sole categorisation of data

with classification methods requires the learning of robust classifiers with validated

performance. The utilisation of prior knowledge or actual models of uncertainty may

129

Elisa
ve

t C
ha

ral
am

bo
us



significantly improve the accuracy of classification; however these are not available in

realistic conditions.

The sampling procedure of – the under analysis – artifacts to their quantitative

or qualitative representation generally introduces uncertainty emerging from sampling

instrumentation, feature extraction and selection procedures as well as the selection

and parametrisation of classification methods; uncertainty is sometimes also introduced

when artifacts are imperfect even in their original form (i.e damaged or tempered tangi-

ble artifacts, insufficient sampling or inappropriate recording equipment for intangible

arifacts). Considering, the complexity and involved factors, it is rather challenging

to train robust classification models with validated performance without coding or

scripting involved.

Therefore, this thesis investigated the classification problem and its contributing

factors through different perspectives and proposed a methodology for the robust clas-

sification of heterogeneous and scarce data under uncertainty. Aspects relevant to the

use of distance metrics, the heterogeneity in size and composition within data, the con-

tribution of extracted features, the evaluation procedure and the bias due to overfitting

were analysed with respect to their impact. Through this analysis a design based on

well established and standardised methods is proposed to support a two fold purpose:

• To allow the comparative analysis between candidate classification algorithms

on a specific task measuring the classification performance of the trained models

and also its robustness upon prediction;

• To reveal inter-class relationships between categories of artifacts and also between

classes and mis-classified samples.

The suggested design has been validated through application on two vastly differ-

ent domains through independent case studies. The Case Study I involved the analysis

of compositional archaeological data with uncertainties and practices concerning the

multi-class classification problem with the use of annotated data from an archaeologist

expert. The archaeological process in the categorisation of artifacts in the appropri-

ate fabric relies heavily on macroscopic, microscopic and compositional evaluations as

well as on prior knowledge from past analyses. Even though classification is applied

successfully in many domains, no standardised methodology has been so far reported

for the effective classification of archaeological artifacts. This is emphasised by the
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fact that, classification on chemical compositional data is applied at the end of this

thorough process for the archaeologist to validate whether the findings of their analysis

match the compositional structure of the artifact.

Therefore, the characteristics and constraints of the analysis of chemical composi-

tional data were analysed and the proposed methodology has been deployed with the

appropriate configuration to allow for sound statistical conclusions. An experimental

design for the training of robust classifiers for archaeological ceramic compositional

data was presented in Chapter 5 where the robustness of classification on complicated

and highly overlapping data was successfully validated with the use of statistically valid

methods for the Simplex space where chemical compositional data lay. Additionally,

the implementation or re-sampling allowed for the categorisation of samples marked as

outliers by experts; a task that could not be solved with certainty beforehand due to the

absence of discriminating petrology in the ceramic thin sections. Finally, post analysis

on mis-classification pattered resulted in conclusions with respect to inter-class rela-

tionships that revealed links with respect to technological similarities and chronological

evolution.

Through this study it was demonstrated that robust classification may assist the

archaeological process in ways that no other currently deployed form of analysis could.

Categorisation based on subset groups of chemical elements and the identification of

inter-class relationships are impactful to the archaeological community. Additionally,

the utilisation of artifacts that were marked as outliers, due to their inconsistent find-

ings from other types of analysis, revealed links with other classes. Classification in the

archaeological process on ceramic data, through the implementation of the proposed

methodology, assisted in the recognition and validation of compositional patterns, and

the identification of possible categorisation mistakes.

Considering that generalisation of the methodology to other domains is also impor-

tant. The designed methodology as part of Case Study II, was also deployed in the

security and surveillance domain for the implementation of robust classification models

in the field of acoustic event detection. The auditory scene in an environment is highly

dynamic – and unpredictable – making the training of robust classifiers a real chal-

lenge. Acoustic events may adhere to very diverse characteristics with the perception

of sound significantly impacted by the surrounding environment. Since models trained

for surveillance aim use in open and unrestricted environments, effective operation of

the systems –- serving the already defined specification –- require analysis of the data
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with multiple techniques where each one examines different aspects of the sample.

The aim of this study was to train robust classifiers for the detection of gunshots,

glass breaking and screaming incidents for use on resource constraint embedded sys-

tems. The trained models were designed to be deployed as part of an ethical audio

surveillance system developed for the cost effective and real-time detection of auditory

events of interest.

The desired solution should implement classifiers for first level of analysis in the

resource constrained device and second level of analysis on a private cloud. The se-

lection of audio analytics models for the first and second levels of analysis followed

a comparative study in which re-sampling and boosting, which are integral parts of

the methodology, allowed generating new datasets with a balanced number of samples

for uniform class distribution. The selection of the preferred classification method in

this case study, not only depended on the classification performance, but also on the

required processing time.

The objectives of this Case Study were to first evaluate the performance of a num-

ber of algorithms in successfully performing audio event detection and secondly their

evaluation in terms of time complexity as the solution aided deployment on a low cost

embedded system. After experimentation, a series of binary classifiers were trained

and deployed in cascaded form for the first layer of analysis, For the second level of

analysis, samples are passed through a series of binary classifiers one for each acoustic

event of interest, the classification outcome emerges as a result of majority voting.

Both case studies validated that a configurable but standardised methodology for

classification may allow the learning of robust models for consistent analysis outcome.

Even though the analysis of chemical compositional data and sound waves do not have

much in common, they are impacted by similar challenges. As a result classification

analysis on data should be applied only after sufficient comprehension of the respec-

tive domain or through the use of implemented tools that implement these structures

internally.

8.1 Future Work

Research on the objectives of this thesis and the validation of the presented methodol-

ogy through two case studies, generated a number of additional research questions for

future investigation.
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The analysis of chemical compositional data and sound waves revealed that the

appropriate distance metrics and techniques should be used for a statistically valid

classification outcome. In the case of chemical compositional data, the use of the

Aitchinson distance is adviced, while for the analysis of frequency domain features the

use of Manhattan distance or χ2 are preferred. The emergence however of methods

that require the combination of features that have not been extracted under the same

basis (i.e. combination of time and frequency domain features or the combination of

linearly and non-linearly calculated measurements); further research is required in this

respect.

Findings in the analysis of inter-class relationships led us to believe that since

different algorithms are better in exploiting specific characteristics of the data, the

”aggregation” of their produced results would benefit the expert’s analysis; this is pos-

sible with the use of ensemble methods and majority voting techniques. Interestingly,

since the operation of a classification algorithm is determined based on its underlying

mathematical definitions, complementarity analysis to determine whether the decision

making process of classifiers is based on different criteria. Knowledge on the comple-

mentarity of classifiers is expected to increase the individual classifiers performance

with the use of classification fusion approaches.

The implementation of the Data Analysis Suite tool, presented in Chapter 7 allows

the rapid training and deployment of robust classifiers. Experimentation with the tool

enables researchers to draw interesting findings with respect to characteristics of their

data, and the impact of algorithms with respect to the result. The standardisation of

interfaces to support the addition of further functionalities expand its configurability.

However, not all methodology steps have been integrated in the tool to minimise the

training time. Due to the interest drawn by end-users and its ease-of-use, boosting,

multi-class classification and the automated detection of inter-class relationships will

be integrated. Doing so will allow reproducibility of the presented case studies – and

others – without the need for scripting or coding.
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