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ΠΕΡΙΛΗΨΗ 

Ένα μεγάλο ποσοστό καρκίνων πηγάζει από το επιθήλιο των οργάνων του σώματος. 

Πριν γίνουν επεμβατικοί, στα στάδια της δυσπλασίας και του καρκινώματος in situ, τα 

πρώιμα καρκινικά κύτταρα αλλάζουν την επιθηλιακή δομή. Πιο συγκεκριμένα, ο αριθμός 

των κυττάρων, και συνεπώς των πυρήνων, αυξάνεται. Οι πυρήνες γίνονται μεγαλύτεροι και 

υπερχρωματικοί, χαρακτηριστικά προφανή κατά την ιστολογική εξέταση. Επί του παρόντος, 

αυτές οι πρώιμες ανωμαλίες είναι ανιχνεύσιμες μόνο με ιστοπαθολογία ή, μη επεμβατικά, 

με τεχνικές οπτικής απεικόνισης όπως συνεστιακή ή μικροσκοπία πολλαπλών φωτονίων. 

Δυστυχώς, καμία από τις δύο τεχνικές δεν έχει εφαρμοστεί κλινικά λόγω πολυπλοκότητας 

και περιορισμένης διείσδυσης. Πρόσφατα, χρησιμοποιήθηκαν αλγόριθμοι μηχανικής 

μάθησης για την ανίχνευση ανωμαλιών και την εύρεση περιοχών που χρειάζονται περαιτέρω 

εξέταση, αυξάνοντας έτσι την ακρίβεια και την αποτελεσματικότητα της διάγνωσης. 

Η Τομογραφία Οπτικής Συνοχής (OCT) είναι μια μη επεμβατική τεχνική ιατρικής 

απεικόνισης με αυξανόμενη χρήση στη διάγνωση, σε τομείς όπως η οφθαλμολογία, η 

καρδιολογία, η γαστρεντερολογία κ.λπ. Αντίθετα με τους υπέρηχους, λόγω της υψηλής 

ταχύτητας του φωτός, χρησιμοποιούνται συμβολομετρικές τεχνικές για την ανίχνευση του 

φωτός που οπισθοσκεδάζεται από τη μικροδομή των ιστών. Το κύριο πλεονέκτημα της είναι 

ότι διαθέτει ευκρίνεια παρόμοια με αυτή της ιστοπαθολογίας (1-20μm) σε πραγματικό 

χρόνο καθιστώντας την πολύ ελκυστική στις περιπτώσεις όπου βιοψίες δύσκολα μπορούν 

να εκτελεστούν. 

Όταν αξιοποιηθεί πλήρως, η OCT θα μπορούσε να βελτιώσει σημαντικά τον τρόπο 

διάγνωσης και θεραπείας. Εκτός από την απεικόνιση της μικροδομής, η OCT μπορεί επίσης 

να παρέχει πρόσθετες πληροφορίες σχετικά με την κυτταρική σύσταση του ιστού. Εκτός 

από την εκτίμηση του πυρηνικού μεγέθους, που επιδείχθηκε νωρίτερα, η διασπορά και ο 

δείκτης διάθλασης μπορούν επίσης να εξαχθούν από τις εικόνες OCT και μπορούν να 

χρησιμεύσουν ως διαγνωστικά σημαντικοί βιοδείκτες. Επιπλέον, η ανάπτυξη ενός πλήρως 

αυτοματοποιημένου αλγορίθμου για τμηματοποίηση των εικόνων και εξαγωγή 

χαρακτηριστικών μπορεί να ενισχύσει περαιτέρω το κλινικό δυναμικό της OCT. Αυτή η 

διατριβή ολοκληρώνεται με σύγκριση διαφόρων αλγορίθμων ταξινόμησης ML, οι οποίοι 

χρησιμοποιούν χαρακτηριστικά εικόνας OCT, ως προς την ικανότητά τους να διακρίνουν 

και να αναγνωρίζουν ανωμαλίες στον ιστού του ανθρώπινου οισοφάγου σε πρώιμο στάδιο, 

κάτι που θα μπορούσε να βελτιώσει σημαντικά την καταπολέμηση των οισοφαγικών 

παθήσεων όπως το αδενοκαρκίνωμα. 
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ABSTRACT 

A large proportion of cancers originates from the epithelium of various organs 

throughout the human body. Before they become invasive, at stages known as dysplasia and 

carcinoma in situ, early cancer cells alter the epithelial structure. More specifically, the 

number of cells, and therefore the number of nuclei, increases. The nuclei become bigger 

and become hyperchromatic, features that are obvious during histological examination. 

Currently, these early abnormalities are only detectable by histopathology or, non-

invasively, by optical imaging techniques such as confocal or multi-photon microscopy. 

Unfortunately, neither of the two techniques has been clinically implemented due to 

complexity and limited penetration issues. Recently, machine learning (ML) algorithms have 

been employed to review medical images, detect abnormalities, and find regions that need 

further examination, thus increasing the accuracy and efficiency of diagnostic procedures. 

Optical Coherence Tomography (OCT) is a noninvasive medical imaging technique 

with increasing use in the diagnosis of disease, in areas such as ophthalmology, cardiology, 

gastroenterology etc. Images are formed by measuring light backscattered from the tissue 

microstructures. However, unlike ultrasound (US), because of the high speed of light, 

interferometric techniques are utilized to detect the signal. The main advantage of OCT is 

that it can perform imaging at a resolution similar to that of histopathology (1-20μm), in real 

time, making it very attractive for applications where conventional biopsies cannot be 

performed.  

When fully exploited, OCT could significantly enhance the way doctors and 

researchers diagnose and treat disease. In addition to imaging the micro-structure, OCT can 

also provide additional information regarding the constituents and stage of the cellular 

components of the tissue. In addition to the estimation of the nuclear size, which was 

demonstrated earlier, dispersion and index of refraction can also be extracted from the OCT 

images and can serve as diagnostically important biomarkers. Moreover, the development 

of a fully automated algorithm for tissue segmentation and feature extraction can further 

enhance the clinical potential of OCT. This thesis concludes with a comparison of various 

ML classification algorithms, which use OCT image features, for their ability to distinguish 

and recognize human esophagus tissue abnormalities at early stage, something that will 

improve the fight against esophageal diseases such as adenocarcinoma.  

  

CHRISTOS PHOTIO
U 



ix 

ACKNOWLEDGMENTS 

This research project was performed under the supervision of Dr. Costas Pitris, 

Professor at the Department of Electrical and Computer Engineering of the University of 

Cyprus. First and foremost, I would like to express my deepest gratefulness to my advisor, 

Prof. Pitris, for his professional and patient guidance with his open-mindedness and kindness 

during the Ph.D. project period. His kind support and tremendous help, as well as his 

insightful comments and ideas and his enthusiasm about research were essential for 

overcoming any obstacle and for achieving the goals during this Ph.D. project. It was a great 

honor for me to work with Prof. Pitris and the encouragement that he gave me will be of 

great supportiveness for my career and throughout my whole life.    

Special thanks to Dr. Stavros Iezekiel, Dr. Julius Georgiou, Dr. Constantinos 

Pattichis and Dr. Adrian Podoleanu for their participation in the committee. The time and 

effort that they spent to review the dissertation is really appreciated, while their comments 

have been important and helpful for improving the quality of this dissertation.  

 I would like to express my sincere thanks to all my colleagues at KIOS Research 

Center for the lovely environment and the endless friendship and their help. Special thanks 

to all biomedical team members of Dr. Costas Pitris for the very effective collaboration and 

the sharing of research experience during all these years.       

Finally, I want to express the most important and the sincerest gratitude to my parents 

and my beloved sisters for their exceptional and unconditional love and their encouragement 

throughout my life.  

 

 

 

 

 

 

 

 

 

 

CHRISTOS PHOTIO
U 



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHRISTOS PHOTIO
U 



xi 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents. Thank you for everything 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHRISTOS PHOTIO
U 



xii 

 

 

 

CHRISTOS PHOTIO
U 



xiii 

TABLE OF CONTENTS 

VALIDATION PAGE i 

DECLARATION OF DOCTORAL CANDIDATE iii 

ΠΕΡΙΛΗΨΗ vii 

ABSTRACT viii 

ACKNOWLEDGMENTS ix 

TABLE OF CONTENTS xiii 

LIST OF TABLES xvii 

LIST OF FIGURES xix 

 INTRODUCTION 1 

1.1 Scope of the thesis 1 

1.2 Dissertation outline 2 

1.3 Contribution 3 

 OPTICAL COHERENCE TOMOGRAPHY 5 

2.1 Introduction 5 

2.2 Theory and operation 7 

2.2.1 Time - Domain OCT (TD-OCT) 8 

2.2.2 Fourier - Domain OCT (FD-OCT) 9 

2.3 OCT clinical applications 12 

 BACKGROUND 21 

3.1 OCT and dispersion compensation 21 

3.2 OCT and tissue dispersion 23 

3.2.1 Methods of measuring group velocity dispersion (GVD) 24 

3.3 Index of refraction as a diagnostic tool 28 

3.4 Methods of estimating n distributions 30 

3.4.1 Bulk optical methods 30 

3.4.2 Interferometric methods 30 

3.4.3 Immersion methods 31 

3.4.4 Confocal microscopy method 32 

3.5 Index of refraction measurement in OCT 32 

3.5.1 OCT imaging method 32 

CHRISTOS PHOTIO
U 



xiv 

3.5.2 Focus Tracking Methods 33 

3.5.3 Interferometric Methods 36 

3.6 Scatterer size estimation using OCT images 38 

3.6.1 Correlation of the derivative method 39 

3.7 Features for OCT image classification 42 

3.7.1 Texture features 43 

3.7.2 Morphological features 50 

3.7.3 Fractal features 54 

3.8 Medical Imaging Classification 58 

3.8.1 Introduction 58 

3.8.2 Machine learning in medical imaging 59 

3.8.3 OCT image classification 61 

 USING SPECKLE TO MEASURE TISSUE DISPERSION IN OCT 69 

4.1 Summary 69 

4.2 Theory 69 

4.3 Experimental methodology 70 

4.3.1 Ex vivo verification of image speckle Method 70 

4.3.2 Application to GI images 72 

4.3.3 Results 72 

4.4 Conclusions 76 

 MEASURING TISSUE DISPERSION USING THE CROSS 

CORRELATION OF HALF - SPECTRUM OCT IMAGES 77 

5.1 Summary 77 

5.2 Theory 77 

5.2.1 GVD measurement using speckle cross-correlation method 77 

5.3 Experimental Methodology 78 

5.3.1 Ex vivo GVD measurement based on the walk-off method 78 

5.3.2 Application of the cross-correlation method to GI images 78 

5.4 Results 79 

5.5 Conclusion 83 

 COMPARISON OF TISSUE DISPERSION MEASUREMENT 

TECHNIQUES BASED ON OPTICAL COHERENCE TOMOGRAPHY 85 

6.1 Summary 85 

6.2 Methodology - Results 85 

CHRISTOS PHOTIO
U 



xv 

6.2.1 PSF degradation 87 

6.2.2 Walk-Off shift 89 

6.2.3 Phase Difference 90 

6.2.4 Speckle width degradation 92 

6.2.5 Speckle cross-correlation 92 

6.3 Discussion 95 

6.4 Conclusions 96 

 DUAL-ANGLE OCT FOR INDEX OF REFRACTION ESTIMATION 

USING RIGID REGISTRATION AND CROSS-CORRELATION 97 

7.1 Summary 97 

7.2 Methods and Results 97 

7.2.1 Theory 97 

7.2.2 Results 100 

7.3 Conclusions 103 

 CLASSIFICATION OF BARRETS AND DYSPLASIA OF THE 

ESOPHAGUS USING IN VIVO OCT IMAGES 105 

8.1 Summary 105 

8.2 Introduction 105 

8.3 Methodology 106 

8.3.1 Image and data processing 106 

8.3.2 Feature extraction 107 

8.3.3 Feature selection and classification 108 

8.3.4 Experimental results 111 

8.3.5 Conclusions 117 

 CONCLUSIONS AND FUTURE WORK 119 

9.1 Conclusions 119 

9.2 Future work 122 

References 125 

 

 

 

 

 

CHRISTOS PHOTIO
U 



xvi 

 

 

  

CHRISTOS PHOTIO
U 



xvii 

LIST OF TABLES 

Table 2-1. OCT imaging studies on different medical Applications ................................... 14 

Table 3-1. Machine Learning studies using Optical Coherence Tomography .................... 65 

Table 4-1. GVD measured with the psf degradation and speckle-based method and mean 

index of refraction measurements ........................................................................................ 74 

Table 5-1. GVD measured from literature walk-off method and the cross-correlation 

technique described above. .................................................................................................. 81 

Table 6-1. Samples used for GVD estimation with references values for Index and GVD 86 

Table 6-2. Experimental and statical analysis results of every method ............................... 94 

Table 7-1. Index of refraction estimations using both methods on samples with different 

scattering proporties ........................................................................................................... 101 

Table 8-1. p-values of the most significant features for each classification task .............. 110 

Table 8-2. Tables of Normal vs Abnormal classification results for every segmentation depth

 ........................................................................................................................................... 113 

Table 8-3 .Tables of BE vs Dysplasia classification results for every segmentation depth

 ........................................................................................................................................... 114 

Table 9-1.Comparison of our study with previous state-of-the-art studies ....................... 121 

 

  

CHRISTOS PHOTIO
U 



xviii 

 

 

CHRISTOS PHOTIO
U 



xix 

LIST OF FIGURES 

Figure 2.1. From left to right: Axial scanning of an OCT system (A-scan), cross-sectional 

scan (B-scan) obtained by combining a series of axial scans. ............................................... 6 

Figure 2.2. Schematic of low coherence interferometry. ....................................................... 7 

Figure 2.3. Fiber Optic implementation of Time Domain low coherence interferometer, 

interferogram, and the AScan envelope.Where ΔL is the optical path length difference and 

dz the coherence length. ......................................................................................................... 9 

Figure 2.4. Fiber-optic implementation of Fourier Domain low coherence interferometer, 

spectrogram, back reflection profile. ................................................................................... 10 

Figure 2.5. Amplitude of the results of the Fourier transform of the spectral interferogram 

recorded with FD-OCT. DC term: A B : source spectrum (correlogram), A D : 

autocorrelation terms of mutual interference.  A C : symmetric cross-correlation terms of 

tissue scattering amplitude. .................................................................................................. 11 

Figure 2.6. Fiber-optic implementation of Swept Source low coherence interferometer, 

interferogram, and back reflection profile. .......................................................................... 12 

Figure 2.7. Comparison of OCT B-scans taken from different OCT systems (A,B,D,E) and 

their histopathological correlations (C,F). (A)–(C) show an example of normal breast tissue, 

with adipose, stroma and ducts. (D)–(F) show mucinous carcinoma. Insets: zoom-in view of 

adipose region, covering 0.3mm by 0.3mm area. Scale bar: 250 μm. [68] ......................... 16 

Figure 2.8. FF-OCT images (left column) and corresponding histology images (right 

column) of ovarian metastases. An ovary containing a solitary metastasis is shown in A and 

B (indicated by arrows). An ovary with disseminated breast tumor cells is shown in C and 

D. Micrometastases originating from endometrial carcinoma are shown in E and F (indicated 

by arrows); scale bars, 500 (A–D) and 200 mm (E–F). [46] ............................................... 16 

Figure 2.9. FF-OCT images of the pancreas. (A-B): FF-OCT image and corresponding 

hematoxylin and eosin (H&E) image of normal pancreatic tissue. (C-D): an example of an 

FF-OCT image of a moderately differentiated pancreatic adenocarcinoma with 

corresponding H&E image, showing tumor cells infiltrating into fat tissue (Bar = 250 μm). 

[77] ....................................................................................................................................... 17 

CHRISTOS PHOTIO
U 



xx 

Figure 2.10. (A) En face OCT obtained below esophageal surface. Only the distal 12 cm out 

of 24 cm data is shown. (B) Representative cross-section (blue) from EMR region (red). (C). 

(D) Enlargement (pink) from (B) showing layer effacement, surface signal greater than 

subsurface, and multiple dilated glands (arrows). (E) Cross-section (brown) showing layered 

BE, which is likely non-dysplastic. (F) Cross-section (yellow) showing the squamo-

columnar junction at a tongue of BE. Inset scale bars 1 mm. [53] ...................................... 18 

Figure 2.11. Example of endoscopic OCT of an esophageal squamous cell carcinoma. 

Corresponding OCT (A) and histology (B) image of tumor invasion in the submucosal layer, 

resulting in a loss of the five layered architecture (Bar = 1000 μm). Reprinted by permission 

from Elsevier: Gastrointestinal Endoscopy [85] .................................................................. 18 

Figure 2.12. Hematoxylin and eosin stained histology section (A) and FFOCT images (B) 

of malignant features highlighted showing disorganized cells with large dark nuclei 

confirmed in histology as papillary carcinoma. [93]. .......................................................... 19 

Figure 3.1. OCT image of collagen gel. Dispersion causes broadening of the pulse width (td) 

the can be estimated using the bottom surface of the sample. The reflector line can be used 

for the estimation of the original pulse width (t0). ............................................................... 25 

Figure 3.2. Adipose tissue images acquired using OCT at different central wavelengths of 

the spectrum (A).The comparison between the bottom surfaces of the images shows an 

image shift that is used to estimate the GVD (B). ............................................................... 26 

Figure 3.3. Using an adipose tissue OCT image a single peak is isolated from the bottom 

surface (A), (B).To take advantage of the phase changes the spectrum of the peak in (C) is 

used to calculate the second derivate of the spectrum and estimate the GVD (D). ............. 27 

Figure 3.4. OCT image of adipose tissue placed on an unpolished metal substrate. The two 

vertical bars represent L, L’, from top to bottom. ................................................................ 33 

Figure 3.5. Backscattering Mie Spectra for (A) 6 μm, (B) 10 μm and (C) 16 μm scatterers 

with medium and sphere refractive indices set at 1.47 and 1.59 respectively. The parameters 

for the calculations were chosen according to the specifications of the light source and the 

microsphere samples used in the experiments. Graphs D-F show the Correlation of the 

Derivative (COD) with the red dot indicating the first minimum and the red arrow indicating 

the bandwidth of the COD [173].......................................................................................... 40 

CHRISTOS PHOTIO
U 



xxi 

Figure 3.6. Correlation of the Derivative (COD) bandwidth as a function of scatterer size. 

The blue line is the theoretical curve from Mie theory and the blue line the 4th order 

approximation curve. Reliable scatterer estimation can be performed only in the region 

above four μm (solid red line) [173]. ................................................................................... 40 

Figure 3.7. Backscattering spectra dependence on the axial location of the Gaussian 

window. On the top are regions of OCT images of a phantom with 10 μm diameter 

microspheres and at the bottom are the resulting backscattering spectra. Centering on (A), 

above (B), and below (C) the microsphere only affects the intensity but not the shape of the 

spectrum [173]. .................................................................................................................... 42 

Figure 3.8. Backscattering spectra dependence on the lateral location of the Gaussian 

window. On the top are regions of OCT images of a phantom with 10 μm diameter 

microspheres and at the bottom are the resulting backscattering spectra. Centering on (A), 

left (B), and right (C) of the microsphere affects both the intensity and the shape of the 

spectrum [173]. .................................................................................................................... 42 

Figure 3.9. Spatial co-occurrence Haralick calculations. .................................................... 47 

Figure 3.10. Examples of four (A) intensity and (B) PR image regions calculated using k-

means algorithm for morphological analysis. The scale bars represent 500 µm × 500 µm. 

[204] ..................................................................................................................................... 50 

Figure 3.11. Sequential images obtained by OCT (top left), and the 3D OCT representation 

of the skin (top right). The center illustration demonstrates several skin structures and their 

corresponding appearance on OCT. The bottom images demonstrate thick skin and thin skin, 

and annotated structures, their corresponding equivalent histology, and OCT images. The 

scale bar in OCT images is 400 μm. [205] .......................................................................... 51 

Figure 3.12. The image processing of the normal OCT images. (A) The original OCT image; 

(B) the image of    preprocessing; (C) ROI image; (D) the image of local standard deviation. 

(Scalar bar: ~1 mm.). [51].................................................................................................... 52 

Figure 3.13. The image processing of the cancerous OCT images (A) The original OCT 

image; (B) the pre-processing image; (C) ROI image and (D) the local standard deviation. 

(Scalar bar: ~1 mm.). [51].................................................................................................... 52 

CHRISTOS PHOTIO
U 



xxii 

Figure 3.14. Esophagus image of the OCT showing a luminal en face view of an area of 

overlap (yellow arrow) between the 3 features of dysplasia (orange is lack of layering, blue 

is glandular structures and pink is a hyper-reflective surface). (A) A view looking down from 

the proximal esophagus. (B) A view closer to the suspected area of dysplasia. The en face 

view is also shown (C). [207] .............................................................................................. 53 

Figure 3.15. (A) Shows the obvious stripe pattern within a non-dysplastic BE EOCT image. 

(B) Shows no obvious stripe pattern within a high-grade dysplastic BE EOCT image. [81]

 .............................................................................................................................................. 53 

Figure 3.16. Koch curve. Initiator (E0) and generator (E1) are used for constructing the Koch 

curve. Curves E2, E3, and F are levels 2, 3, and 4 in the construction of the Koch curve, 

respectively. [209] ................................................................................................................ 55 

Figure 3.17. Sketch of determination of the number of boxes by the differentiate box 

counting method. [210] ........................................................................................................ 55 

Figure 3.18. Microscopy images of breast tissue [(A), (D), and (G)], along with the 

corresponding OCT images [(B), (E), and (H)], and distributions of fractal dimension values 

[(C), (F), and (I)] for the entire region. The tissue classifications for these regions are adipose 

[(A)–(C)], cancer (invasive ductal carcinoma) [(D)–(F)], and stroma [(G)–(I)]. Stromal 

regions within the adipose tissue (A) and adipose cells within the cancer (D) and stromal 

tissues (G) are heterogeneities that may broaden the measured fractal dimension distribution. 

[212] ..................................................................................................................................... 57 

Figure 3.19. Processing model for ex vivo brain tumour classification. [270] .................... 62 

Figure 3.20. Flowchart of the entire automated processing framework used for esophageal 

wall characterization. [273] .................................................................................................. 64 

Figure 3.21. Fully automated algorithm for dysplasia detection in BE and quantification. 

Inset: zoomed-in view.(Scale bars: 1 mm. [273] ................................................................. 64 

Figure 4.1. Values measured for verification purposes ....................................................... 71 

Figure 4.2. The novel presented technique was applied to regions of interest (ROIs) of 

speckle at various depth within the sample .......................................................................... 72 

CHRISTOS PHOTIO
U 



xxiii 

Figure 4.3. (A) OCT image of a pure collagen gel placed over a reflector (green line: top 

surface, red line: bottom surface, blue line: reflector, L: tissue thickness at that particular 

location). (B)  Zoomed portion of the bottom surface (red) with the FWHM (yellow). (C) 

The FWHM of the reflector calculated at each of 250 A-Scan. .......................................... 73 

Figure 4.4 (A) OCT image of porcine muscle placed over a reflector (green line: top surface, 

red line: bottom surface, blue line: reflector). (B)  Zoomed portion of the bottom surface 

(red) with the FWHM (yellow). (C) The FWHM of the reflector calculated at each of 250 

A-Scan. (D) The OCT image with the GVD overlaid in a pseudo-color hue scale ............. 73 

Figure 4.5. (A) OCT image of adipose tissue placed over a reflector (green line: top surface, 

red line: bottom surface, blue line: reflector). (B)  Zoomed portion of the bottom surface 

(red) with the FWHM (yellow). (C) The FWHM of the reflector calculated at each of 250 

A-Scan. ................................................................................................................................ 73 

Figure 4.6. (A) Portion of the image (80x250 pixels) containing mainly speckle from just 

below the top surface (z = 0) of the sample of Figure 4.3. (B) Similar portion from just above 

the bottom surface (z = L). (C) The SDF resulting from the deconvolution. (D) The width of 

the SDF for the 250 A-Scans in (C). (E) The mean SDF width as a function of depth with a 

linear fit (red line) illustrating the increase as a function of the depth. (F) The degraded width 

of the PSF as a function of depth calculated from the linear fit in (E). ............................... 74 

Figure 4.7. (A) OCT image of Fig. 1. (D) The OCT image with the GVD, calculated using 

the speckle-based method, overlaid in a pseudo-color hue scale. ....................................... 74 

Figure 4.8. (A) OCT image of normal colon tissue (green line: top surface, red line: 0.5 mm 

depth). (B) Mean sdf width as a function of depth for (A). (C) Degraded Gaussian width, dd, 

as a function of depth calculated from (B). (D) Overlay of the OCT image (gray scale) and 

the GVD for each A-Scan in a pseudo-color hue scale. (E-H) The same as before for colon 

adenocarcinoma. .................................................................................................................. 75 

Figure 4.9. (A) Distribution of GVD values from normal and abnormal colon. (B) 

Distribution of the median of the GVD for each image exhibiting statistically significant 

differences. (C) Recombination of the statistical moments of the GVD values using 

MANOVA, exhibiting maximal statistical separation. ........................................................ 76 

Figure 5.1. (A) Images reconstructed from the half spectra (red and green). (B) 

Corresponding A-Scans from the two half spectra images (red and green) indicating the lag 

CHRISTOS PHOTIO
U 



xxiv 

at which there is a correlation peak. (C) The cross-correlation of the corresponding A-Scans

 .............................................................................................................................................. 78 

Figure 5.2. (A) OCT image of porcine muscle placed over a reflector (top surface: green, 

bottom surface: red, reflector: blue line, L: sample thickness). (B) A single interferogram 

(yellow) split into two halves (red and green). (C) The location of the bottom reflector from 

each half-spectrum image (red and green lines). (D) The walk-off between the two reflector 

locations. .............................................................................................................................. 79 

Figure 5.3. (A) OCT image of collagen placed over a reflector (top surface: green, bottom 

surface: red, reflector: blue line). (B) A single interferogram (yellow) split into two halves 

(red and green). (C) The location of the bottom reflector from each half-spectrum image (red 

and green lines). (D) The walk-off between the two reflector locations. ............................ 79 

Figure 5.4. (A) OCT image of adipose tissue placed over a reflector (top surface: green, 

bottom surface: red, reflector: blue line). (B) A single interferogram (yellow) split into two 

halves (red and green). (C) The location of the bottom reflector from each half-spectrum 

image (red and green lines). (D) The walk-off between the two reflector locations. .......... 80 

Figure 5.5. (A) Portion of the first half-spectrum OCT image from just above the bottom 

surface of the sample. (B) Similar portion from the second half-spectrum OCT image. (C) 

The walk-off for the 250 A-Scans in A & B calculated from the cross-correlation (red line). 

The blue line is the walk-off from Figure 5.2D. (D) Three indicative cross-correlation curves 

from different locations (x): 0.5 mm (blue), 1 mm (yellow) and 2 mm (red). The stars indicate 

the first maximum and the associated walk-off (Δz). The red arrow points to the location 

where the maximum should occur, which was missed due to weak cross correlation, a cause 

of error in the estimations. ................................................................................................... 80 

Figure 5.6. Normal (A) and abnormal (B) OCT images of human colon with the portion of 

the tissue used (green and red lines). Overlay of the images and GVD (pseudocolor hue, 0-

800 fs2/mm) for each A-Scan normal (C) and adenocarcinoma (D). ................................... 82 

Figure 5.7. (A) Distribution of GVD measured from normal and abnormal colon tissue. (B) 

Distribution of the combined statistics (using MANOVA) for each sample. (C) LDA and 

LOOCV classification results. An unknown sample (cancer) was correctly classified....... 82 

Figure 6.1. Typical OCT images used in this study. KBr glass (A), collagen gel (B), porcine 

muscle (C) and porcine adipose tissue (D), over a reflector. L is the actual sample thickness, 

CHRISTOS PHOTIO
U 



xxv 

from top surface (green) to the level of the reflector (blue). L’ is the path-length difference, 

relative to air, because of the sample. .................................................................................. 87 

Figure 6.2. GVD estimation using the PSF degradation. (A) OCT image of porcine muscle. 

The top surface (green), reflector below the sample (red) and reflector (blue) are marked on 

the image. (B) The bottom surface (red) of the image in (A) with yellow lines marking the 

PSF width. (C) The PSF width measured from (B). (D) The OCT image of (A) with the GVD 

overlaid over the OCT intensity image as a pseudo color hue scale (0-800 fs2/mm). ......... 88 

Figure 6.3. GVD estimation using the PSF degradation. (A) OCT image of collagen gel. The 

top surface (green), reflector below the sample (red) and reflector (blue) are marked on the 

image. (B) The bottom surface (red) of the image in (A) with yellow lines marking the PSF 

width. (C) The PSF width measured from (B). .................................................................... 88 

Figure 6.4. GVD estimation using the PSF degradation. (A) OCT image of adipose tissue. 

The top surface (green), reflector below the sample (red) and reflector (blue) are marked on 

the image. (B) The bottom surface (red) of the image in (A) with yellow lines marking the 

PSF width. (C) The PSF width measured from (B). ............................................................ 88 

Figure 6.5. Images of a reflector constructed from the first (A) and the second (B) half spectra 

without digital dispersion compensation. The images to their right are zoomed regions 

indicated by the green squares. Images of a reflector constructed from the first (C) and the 

second (D) half spectra with digital dispersion compensation. The images to their right are 

zoomed regions indicated by the green squares. In all images, the FWHM (dashed lines) and 

the peak locations (solid lines) are marked for the first (red) and the second (yellow) half 

spectrum images. The FWHM and walk-off (Dz) are indicated for each case.................... 89 

Figure 6.6. GVD estimation using the walk-off. (A) Interferogram from a single A-Scan  

from an OCT image of gelatin gel. The complete spectrum (green) was split into two halves 

(red and yellow) by multiplication with Gaussian envelopes. (B) & (C) The two OCT images 

created from each half spectrum. (D) The bottom surfaces from (B) (red) and (C) (yellow). 

(E) The walk off width measured from (D). ........................................................................ 89 

Figure 6.7. (A) OCT image of porcine muscle showing top surface (green), reflector below 

the sample (red) and reflector (blue) lines. (B) The bottom surfaces from images of different 

spectrum parts (red and yellow). (C) The walk off width measured from (B). ................... 90 

CHRISTOS PHOTIO
U 



xxvi 

Figure 6.8 (A) OCT image of adipose tissue showing top surface (green), reflector below the 

sample (red) and reflector (blue) lines. (B) The bottom surfaces from images of different 

spectrum parts (red and yellow). (C) The walk off width measured from (B). ................... 90 

Figure 6.9. GVD estimation from the phase difference. (A) OCT image of collagen gel. The 

rectangle indicates the peak from a reflector below the sample. (B) The peak from the 

reflector, of a single A-Scan, isolated from the real part of the Fourier transform of the 

interferogram of that A-Scan. (C) The spectrum of the single peak obtained from the inverse 

Fourier transform of (B). (D) The GVD calculated from the second derivative of (C) as a 

function of wavelength for all A-Scans of (A). ................................................................... 91 

Figure 6.10. GVD estimation from the highly scattering samples resulting in erroneous GVD 

estimations. (A) OCT image of collagen gel and a single peak isolated from the 

interferogram of an A-Scan. (B) Max and min values of the GVD estimate indicating 

discontinuities. (C) The GVD of collagen as a function of wavelength for all A-Scans 

resulting in an accurate estimate. (D) OCT image of adipose tissue and a single peak isolated 

from the interferogram of an A-Scan. (E) Max and min values of the GVD estimate 

indicating discontinuities. (F) The GVD of adipose tissue (highly scattering) as a function of 

wavelength for all A-Scans resulting in an erroneous estimate. .......................................... 91 

Figure 6.11. (A) OCT Image of porcine muscle. (B) Portion of the image (80x250 pixels) 

containing mainly speckle from just below the top surface (z = 0, green lines in A). (C) 

Similar portion from just above the bottom surface (z=L, red lines in A). (D) The result of 

Weiner deconvolution showing the speckle-PSF. (E) The width of the speckle-PSF for the 

250 A-Scans in (D). (F) The mean speckle-PSF width as a function of depth with a linear fit 

(red line) illustrating the increase as a function of the depth. (G) The degraded Gaussian 

width as a function of depth calculated from the linear fit in (F). ....................................... 92 

Figure 6.12. (A) OCT Image of porcine muscle. (B) Portion of the first half-spectrum OCT 

image from just above the bottom surface of the sample (A, red lines). (C) Similar portion 

from the second half-spectrum OCT image. (D) The walk-off of for the 250 A-Scans in A & 

B calculated from the cross-correlation (red line). For comparison, the walk off from Section 

3.2 is also shown (blue line). (E) Three indicative cross-correlation curves with the walk-off 

(Δz) marked. The red arrow points to a missed maximum. ................................................. 93 

CHRISTOS PHOTIO
U 



xxvii 

Figure 6.13. Effect of the FFT size on the accuracy of the results. (A) GVD sampling error 

resulting from the finite FFT size. (B) Accuracy of the GVD measurements as a function of 

the FFT size. ........................................................................................................................ 95 

Figure 7.1. Incidence angles and path-lengths of beams perpendicular and at an angle to the 

samples. (A) Perpendicular (i) and at an incidence angle (ii) incidence on the sample. (B) 

Two samples with different incidence angles θ1,1 (i) and θ1,2 (ii). ....................................... 98 

Figure 7.2. Path-length change estimate from two OCT images taken at different incidence 

angles. The images (A) are first registered and aligned (B). The cross-correlation of 

corresponding A-Scans from the aligned images exhibit distinct maxima (C). .................. 99 

Figure 7.3. Images of glass (A&B) and cucumber (C&D). The angles θ1,1 and θ1,2 for the 

glass were 4.5 and 11.8 degrees, respectively, whereas for the cucumber, those angles were 

0.9 and 12.2 degrees.d in (C) indicates the sample thickness. ........................................... 101 

Figure 7.4. (A&B) Portions of the original OCT images of cucumber (Figure 7.3), at 

different incidence angles. (C) The registration of image B on A using rigid affine algorithm. 

(D) The cross-correlation of the A-Scans indicated by the dashed lines in A and C. The arrow 

points to the first maximum after the zero lag (not shown here for better visualization of the 

peaks). ................................................................................................................................ 102 

Figure 7.5. (A&B) The original OCT images of freshly excised trachea, at different 

incidence angles. The labels refer to the epithelium (e), the submucosa (sm) and cartilage 

(c). (C) The portion of image A. (D) Portion of image B. (E) The registered version of D. 

(F) The cross-correlation of the A-Scans indicated by the dashed lines in C and E. The arrow 

points to the first maximum after the zero lag (not shown here for better visualization of the 

peaks). ................................................................................................................................ 102 

Figure 8.1. Esophagus OCT images in polar coordinates showing segmentation at different 

sizes of thicknesses (red and green lines). (A) 0.4 mm depth, (B) 0.55 mm depth and (C) 0.7 

mm depth. .......................................................................................................................... 107 

Figure 8.2. (A) and (B) T-test and p-value of group velocity dispersion (GVD) and scatterer 

size (SC) for Normal vs Abnormal regions classification among with recombination of the 

features values using MANOVA to represent statistical separation (C) for portion depth 

~0.4mm and the region divided in half. ............................................................................. 109 

CHRISTOS PHOTIO
U 



xxviii 

Figure 8.3. (A) and (B) T-test and p-value of group velocity dispersion (GVD) and scatterer 

size (SC) for BE vs Dysplasia regions classification among with recombination of the 

features values using MANOVA to represent statistical separation (C) for portion depth 

~0.4mm and the region divided in half. ............................................................................. 109 

Figure 8.4. (A) In vivo OCT image of the human esophagus in Cartesian coordinates. (B) 

Same image in polar coordinates with the red and green lines indicating the top and bottom 

borders of the automatically segmented epithelial region (segmentation depth ~0.55mm). 

The yellow boxes indicate annotated dysplastic (a), BE (b) and Normal (c) regions. (C) 

Zoomed regions corresponding (from top to bottom) to the dysplastic, BE and normal 

annotated areas respectively. (D) Histopathologic sections (from unrelated samples) that 

illustrate the microstructural and nuclear changes associated with (from top to bottom) 

dysplastic, BE and normal esophageal tissue. .................................................................... 112 

Figure 8.5. Classification results of Normal vs. Abnormal discrimination when the 

epithelium was divided in half (Top) and when the epithelium divided in three parts (Bottom) 

for each classifier and different segmentation depths. ....................................................... 115 

Figure 8.6. Classification results of BE vs. Dysplasia discrimination when the epithelium 

divided in half (Top) and when the epithelium divided in three parts (Bottom) for each 

classifier and different segmentation depths. ..................................................................... 116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHRISTOS PHOTIO
U 



xxix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHRISTOS PHOTIO
U 



xxx 

Acronyms 

ANN Artificial Neural Network 

AOM Acousto Optical Modulation 

AUC Area Under the probability Curve 

BCC Bacal Cell Carcinoma 

BE Barret's Esophagus 

BOCR Bifocal Optical Coherence Refractometry 

CAD Computer Aided Diagnosis 

CCD Charge Coupled Device  

CNN Convolutional Neural Network 

COD Correlation Of the Derivative  

CSAC Center Symmetric Autocorrelation  

CT Computed Tomography 

DISR Double Immersion Spectroscopic Reflectometry  

DFT Discrete Fourier Transform 

ERCP Endoscopic Retrograde Cholangiopancreatography  

EOCT Endoscopic Optical Coherence Tomography 

FD Fractal Dimension 

FD-OCT Fourier Domain Optical Coherence Tomography 

FF-OCT Full Field Optical Coherence Tomography  

FFT Fast Fourier Transform 

FP Fabry Perot Interferometer 

FrFT Fractional Fourier Transform  

FS Fused Silica 

FWHM Full Width at Half Maximum 

GI Gastrointestinal 

GMAC Global Minimization of the Active Contour  

GTDM Grey Tone Difference Matrix  

GVD Group Velocity Dispersion 

KNN K-Nearest Neighbors  

LCI Low Coherence Interferometry 

LDA Linear Discriminant  Analysis 

LISR Liquid Immersion Spectroscopic Reflectometry  

LOOCV Leave-One-Out-Cross-Validation 

CHRISTOS PHOTIO
U 



xxxi 

LSS Light Scattering Spectroscopy  

MANONA Multivariate Analysis of Variance 

MFAC Morphological Feature Analysis Classification 

MI Michelson Interferometer 

ML Machine Learning 

MRI Magnetic Resonance Imaging  

n Index of Refraction 

NN Neural Network 

OCT Optical Coherence Tomography 

PMMA Poly-Methyl-Methacrylate glass 

PSF Point Spread Function 

RBC Red Blood Cells 

rdf Resolution Degradation Function 

ReLU Rectified Linear Unit 

ROI Regions Of Interest 

RSOD Rapid Scanning Optical Delay 

RVM Relevance Vector Machine 

sdf Speckle Degradation Function 

SGLDM Spatial Gray Level Dependence   

SS Scatterer Size 

SISR Solid Immersion Spectroscopic Reflectometry  

SS-OCT Swept Source Optical Coherence Tomography 

STFT Short Time Fourier Transform 

SVM Support Vector Machine 

TD-OCT Time Domain Optical Coherence Tomography 

 

 

 

 

 

 

 

 

 

 

CHRISTOS PHOTIO
U 



xxxii 

 

CHRISTOS PHOTIO
U 



1 

  

INTRODUCTION 

1.1 Scope of the thesis 

The vision of this PhD thesis was to enhance the capabilities of Optical Coherence 

Tomography (OCT) to perform accurate diagnosis of clinically challenging diseases such as 

cancer. Going beyond the current empirical evaluation of microstructural attributes, the 

extraction and combination of additional features from the OCT images could lead to 

detection of cell and tissue alterations at early disease stages. This work could have a 

particularly significant impact on the diagnosis of cancer and other malignancies, allowing 

much earlier detection, thus improving patient prognosis and allowing more effective disease 

management.  

The main objective of this work was to implement novel methodologies to extract 

features from OCT images, such as group velocity dispersion (GVD) and refractive index 

(n) distribution of the tissue, and combine them with intensity features and nuclear size 

estimation, for tissue classification of esophageal disease. The classification of early tissue 

abnormalities could provide the ability to recognize earlier different benign or malignant 

areas. A fully automated algorithm is proposed for tissue segmentation and feature 

extraction, from regions of the epithelium, in order to evaluate the performance of different 

machine learning classification techniques for the discrimination of normal and abnormal 

areas of esophageal disease.  

The tissue and other sample images of different experimental samples used in the 

development of the new feature extraction techniques were acquired using a Santec IVS-300 

swept-source OCT system (Santec Corp., Komaki, Japan). The system has a center 

wavelength of 1300 nm with 60nm FWHM, axial and lateral resolutions of 12 and 22 μm 

respectively and an imaging depth range of 4 mm (in air).The methods developed were 

subsequently applied to  in vivo OCT images from a Massachusetts General Hospital (MGH) 

study involving patients with esophageal disease. Those images were acquired with a swept 

source EOCT system with a centre wavelength of 1300 nm, an axial resolution of 10 μm and 

an A-Scan rate of 40 kHz. Each catheter rotation produced 2,048 A-Scan, displayed in real-
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time, and multiple cross-sectional esophagus images were collected as the catheter was 

manually pulled up from the gastroesophageal junction.   

1.2 Dissertation outline 

Chapter 1 begins with an introduction and the scope of the proposed thesis.  Chapter 

2 presents a background as well the theory and applications of OCT. The first part of this 

chapter is a general introduction to OCT. In the second part, the development of the OCT 

from a historical perspective is presented, including an overview of the technology and the 

capabilities of the OCT imaging systems. In the third part, some basic theoretical background 

is provided and finally clinical applications of OCT are presented. 

Chapter 3 includes the literature analysis of the different features and classification 

methods that have been evaluated in this thesis. It begins with an analysis of various methods 

that can be used to measure the GVD and diagnostic potential of this feature. A review of 

index of refraction estimation methods and the evaluation of the feature as a potential 

biomarker follows. A new metric known as the correlation of the derivative bandwidth, used 

for nuclear size estimation, is also presented. Furthermore, there is an analysis of the features 

that are generally used for medical imaging classification and which are suitable for OCT. 

The chapter closes with an assessment of the machine learning techniques used over the last 

decades for OCT images classification.       

Chapter 4 proposes a novel technique for GVD estimation by using the image speckle 

at different depths that is applicable for in situ and in vivo measurements. Chapter 5 presents 

a second novel technique for GVD estimation, based on extension of the walk-off method, 

which uses novel image processing algorithms and it is also applicable for in vivo 

application. Chapter 6 presents a detailed comparison of existing methods and the two new 

techniques developed for GVD estimation to elucidate their capabilities and limitations as 

well as examine their applicability to tissue measurements. Chapter 7 introduces of a new 

technique for index of refraction estimation that uses images from various angles to estimate 

this important optical parameter from in vivo and in situ measurements. Chapter 8 describes 

the classification of different human esophagus regions as normal, Barret’s and dysplastic 

tissue comparing different intensity statistics in combination with features that were 

developed within this thesis.   

The thesis ends with conclusions and future plans. It highlights the fact that the 

contribution of the new methods developed for feature estimation could be easily applicable 
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in vivo and, along with an automated algorithm created for image segmentation and feature 

extraction, could be used for effective image classification. 

1.3 Contribution 

On the way, as a result of this research project two novel techniques were developed 

that are applicable to in vivo tissue dispersion measurements. They were validated and 

compared with existing methods to provide proof of their applicability to samples with 

different scattering properties such as human tissues. Furthermore, a novel technique for 

index of refraction estimation that can be also applied for in situ and in vivo measurements 

was demonstrated. Finally, this thesis concluded with a comparison of classification using 

various machine learning methods utilizing features extracted from an automated algorithm 

developed for this study. The results proved that the proposed methods and algorithms for 

tissue segmentation and feature extraction can be effectively used for tissue classification in 

a clinical application to assist medical diagnosis without the need of highly complicated 

optical or computationally expensive systems.   
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OPTICAL COHERENCE TOMOGRAPHY  

2.1 Introduction 

Optical coherence tomography (OCT) is an interferometric non-invasive imaging 

technique that can be used to obtain high resolution images of a sample’s internal micro-

structure [1]. OCT has been extensively used for medical imaging, especially for 

ophthalmologic pathologies, but also in cardiology, gastroenterology, cancer diagnosis, 

tissue optics and engineering. Further applications were also developed for other fields such 

as industrial non-destructive testing, optical fiber and polymer composite characterization 

and even in the jade industry [2], [3], [4]. OCT, originally conceived in 1991, offers many 

advantages such as safety, since it uses near infrared (NIR) light, and cost, since it is based 

on mass produced fiber-optic communication technology. More significantly, OCT also 

provides non-contact, non-or minimally invasive imaging, suitable for in vivo use, a great 

advantage for medical applications. 

Axial scanning of the system results to one-dimensional A-Scans that include the 

depth-dependent backscattered intensity in the sample along the beam’s path that reaches a 

static detector that is typically coaxial with the source.  Two-dimensional cross-sectional 

OCT images of tissue are constructed by juxtaposing a series of axial measurements at 

different transverse positions. The resulting data set is a two-dimensional array, which 

represents the optical backscattering within a cross-sectional slice of the tissue. Three-

dimensional imaging can also be created by stacking the two-dimensional cross-sectional 

images at different transverse positions (Figure 2.1). In OCT, the axial and the transverse 

imaging resolutions are independent. The axial resolution is mainly determined by the 

coherence length of the light source and is decoupled from the beam focusing which 

determines the transverse imaging resolution. The probe beam sources of OCT exhibit short 

temporal coherence length, high spatial coherence and point-source-like properties. Some 

examples include superluminescent diodes, femto second pulses, wavelength scanning 

sources [5]. 
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Figure 2.1. From left to right: Axial scanning of an OCT system (A-scan), cross-sectional scan (B-scan) obtained 

by combining a series of axial scans. 

The axial (depth) resolution of an OCT system is usually ~ 2-15 μm, which is 10 to 

100 times better than standard ultrasound imaging [6]. For ultrasound frequencies of ~100 

MHz a resolution of 15–20 μm can be reached. However, high frequencies are highly 

absorbed by biological tissues thus limiting the imaging depth. Other optical techniques, 

including confocal multi-photon microscopy, can provide very high resolution but they are 

clinically limited by poor imaging depth and it is difficult to apply them in vivo. Instead, 

OCT can achieve one micrometer resolution in vivo OCT imaging using femtosecond laser 

sources [7]. From a resolution and penetration depth perspective, OCT fills the gap between 

optical imaging (confocal and multi-photon microscopy) and conventional clinical imaging 

(ultrasound, X-ray, MRI) technologies. The major advantage of OCT is its ability to acquire 

high resolution images in real-time, in situ and in vivo. Although penetration can only reach 

a few millimeters (~3mm), OCT is extensively used for micro-structural characterization 

and detection of abnormalities in many tissues. 

OCT imaging has a number of features, which make it attractive for a broad range of 

applications. It can perform imaging with resolutions approaching that of conventional 

histopathology, while at the same time imaging is possible in situ and in real time. OCT can 

be implemented fiber-optically using devices such as handheld probes, endoscopes, 

catheters, laparoscopes, and needles that enable non-invasive or minimally invasive internal 

body imaging. OCT can be performed in real time, allowing guidance of excisional biopsy 

or interventional procedures. 3D-OCT data sets provide comprehensive, volumetric 

information on architectural morphology. Cross-sectional images with arbitrary orientations, 

as well as projection and rendered views, can be generated. OCT data is in digital form, 
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facilitating quantitative image processing techniques as well as electronic storage and 

transmission. OCT technology has significantly improved over the past few years with the 

introduction of fast, high resolution OCT systems which are uniquely suited for in vivo 

applications. However, some tissue and cellular changes, which are characteristic hallmarks 

of cancer, remain below the resolution limit of OCT. Diagnosis is further limited by lack of 

contrast at the cell or tissue level. The extraction of features from the OCT images, 

characteristic of many intrinsic tissue parameters, can significantly enhance OCT’s clinical 

capabilities for early detection and diagnosis of malignancies [1], [7], [8]. 

 

2.2 Theory and operation 

OCT is based on low coherence interferometry (LCI) using a Michelson 

interferometer (MI). Interferometric detection can measure the light backscattered from the 

sample with high sensitivity and dynamic range. LCI is performed with a low coherence 

length light source. One arm of the interferometer illuminates the tissue and collects the 

backscattered light (sample arm). The other arm, is scanned as a function of time (reference 

arm). Path delay comes between the two arm lengths and is not restricted to one arm. Optical 

interference between the light from the sample and reference arms occurs only when the 

optical delays match to within the coherence length of the light source (Figure 2.2).  

 

Figure 2.2. Schematic of low coherence interferometry. 
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In a typical configuration, OCT records a series of adjacent axial scans (A-scans) to 

construct a cross-sectional image of the object. Each of the A-scans contains the depth-

dependent intensity of reflections or back scattering in the sample along the beam’s path that 

reach the detector. The depth dimension of an A-scan represents the optical distance, i.e. the 

product of the refractive index and the geometric length. In addition, the contrast mechanism 

of the image is the refractive index profile, since scattering occurs at index changes, and 

allows one to distinguish sites of different optical properties in the sample. Two main forms 

of OCT have been developed independently. Time-Domain and Fourier-Domain OCT [9]. 

 

2.2.1 Time - Domain OCT (TD-OCT) 

The first OCT systems developed were Time-Domain OCT (TD-OCT) systems and 

were first reported in 1991 for imaging of the human retina in vitro [10]. In TD-OCT the 

reference arm is scanned to determine the path length of the light backscattered from the 

sample. Interference occurs only if the sample path length equals the reference path length. 

For sufficiently short coherence length lasers, inhomogeneity regions within the sample will 

create independent interference patterns. For that purpose, the coherence length of the source 

should, thus, be less than half of the sample’s internal structure scale. The major limitation 

of TD-OCT is that the imaging speed is restricted because of the need to scan the reference 

mirror. It requires accurate mechanical scanners and the imaging speed cannot usually 

exceed a hundred A-Scans per second. 

In TD-OCT, the optical depth ranging is achieved by physically scanning the 

reference arm mirror. A simple TD-OCT system with the interference signal and the A-Scan 

envelope is shown in Figure 2.3. When both arms have a mirror, for simplicity reasons, the 

backscattered intensity of light to the detector can be presented as a function of the arms path 

length difference ΔL as: 

 

0( ) 2 | { ( )}| cos( )d s r s rI L I I I I S k k L       (2. 1) 

where Is and Ir are the light intensities reflected from the sample and the reference arm 

respectively, k0=2π/λ0 is the average wave number and the relation λ0=c/f0 is used to 

transform from the time domain to the path domain. S(k) is the power spectrum of the light 

source [9] [11] [12]. 
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Figure 2.3. Fiber Optic implementation of Time Domain low coherence interferometer, interferogram, and the AScan 

envelope.Where ΔL is the optical path length difference and dz the coherence length. 

 

2.2.2 Fourier - Domain OCT (FD-OCT) 

Fourier Domain OCT (FD-OCT), proposed by Fercher in 1995, is based on Wolf’s 

inverse scattering solution for objects with limited scattering properties [13]. It relies on the 

relation between the Fourier components of the object’s scattering potential and the Fourier 

components of the scattered field detected outside the object. In FD-OCT, there is no 

movement of the interferometer arm and the intrinsic morphology of the sample, which is 

encoded in the spectral response, is extracted by Fourier transformation. Substituting the 

moving mirror with a dispersive grating was introduced by Schwider in 1994 to assess the 

surface profile of a material. FD-OCT can be utilized for measurements of the retina as well 

as for measurements of high scattering skin [13], [14]. 

In FD-OCT, depth information is provided by an inverse Fourier transform of the 

spectrum of the backscattered light. A simplified optical setup of a FD-OCT system is shown 

in Figure 2.4. The amplitude of the spectrum of the light backscattered from the sample I(k) 

is acquired using a spectrometer. The interference spectrum for a single scatterer at a distance 

from the reference plane is a cosine function multiplied by the spectrum of the source S(k). 

Analytically, the interference signal from multiple scatterers is given by the spectral intensity 

distribution of the light source times the square of the sum of the back reflected reference 

and sample signals [9], [8]: 
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k: wavenumber k=2π/λ 

 r: path length in the reference arm  

 r +z: path length in the object arm  

 z: path length in the object arm, measured from the reference plane  

0z  : offset distance between reference plane and object surface  

n: refractive index (n = 1 for z < 0z and varying depending on the sample for longitudinal positions 

in the object z > 0z )  

aR: reflection coefficient of the reference 

a(z): backscattering coefficient of the object signal, a(z) is zero for z < 0z   

S(k): spectral intensity distribution of the light source 

 

 

Figure 2.4. Fiber-optic implementation of Fourier Domain low coherence interferometer, spectrogram, back reflection 

profile. 

FD-OCT measures the signal in the Fourier domain and, by Fourier transformation, 

provides the scattering profile in the spatial domain. The inverse Fourier transform of the 

recorded spectral intensity yields the same line scan signal as obtained by standard LCI and 

provides a back reflection profile as a function of depth. In contrast to TD techniques, the 

time-consuming mechanical reference arm scan is replaced by a spectral measurement. In 

addition, since all the backscattered light is detected simultaneously, the signal-to-noise ratio 

(SNR) and sensitivity of FD-OCT is superior to TD-OCT. FD-OCT significantly improves 

the detection sensitivity and allows much higher scan speeds than TD-OCT systems. The 

short acquisition time, the lack of moving parts and the direct access to spectral information 

has made FD-OCT more preferable over TD-OCT [14], [15]. 

2

0

( ) ( ) exp( 2 ) ( )exp( 2 ( ( ). )RI k S k a j kr a z j k r n z z dz



                                                                                 

 

(2. 2)            
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FD-OCT has its limitations and some artifacts that must be mentioned. The 

interference pattern includes direct DC, autocorrelation and cross-correlation parts (Figure 

2.5). To avoid overlap of the autocorrelation and cross-correlation component, the mismatch 

length between the sample and the reference arms must be longer than the optical thickness 

of the sample. However, this introduces other issues. Higher frequency features in the 

resulting spectra require a higher resolution spectrometer to support the same detectable 

range inside the sample thus imposing demanding requirements on the spectrograph and 

CCD camera [15]. The system signals also display conjugate artifacts. As the signal of the 

spectrum is a real function, its Fourier transform is Hermitian  and the created image holds 

both the sample and its mirror image. These artifacts can be eliminated by phase shifting 

interferometry (PSI) also known to as Phase Stepping Interferometry or computationally 

with intelligent algorithms [16], [17], [18]. 

 

Figure 2.5. Amplitude of the results of the Fourier transform of the spectral interferogram recorded with FD-OCT. DC 

term: A B : source spectrum (correlogram), A D : autocorrelation terms of mutual interference.  A C : symmetric 

cross-correlation terms of tissue scattering amplitude. 

In Swept Source OCT (SS-OCT), a variation of FD-OCT, the wavelength-dependent 

intensity data are not recorded simultaneously by using a broadband light source and a 

spectrometer. Instead, they are recorded sequentially, with a single photodetector while 

tuning the wavelength of the light source. If the tuning of wavelength λ of the laser (Figure 

2.6) is constant, the intensity at the photodetector can be calculated as:  

                                                                                                  

where Is and Ir are the light intensities reflected from the sample and reference, respectively. 

ΔΦ=2Lk/2π is the phase difference between the two beams. 

2 cos(2 )s r s rI I I I I                                                                                   

 

(2. 3)            
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Figure 2.6. Fiber-optic implementation of Swept Source low coherence interferometer, interferogram, and back reflection 

profile. 

As in the case of FD-OCT, the main advantage of this technique, as compared to TD-OCT 

systems, is that the reference arm length is fixed and no moving parts are required. This 

significantly increases the speed of scanning. Compared to FD-OCT, SS-OCT also offers 

high data acquisition speed and improved SNR and sensitivity. In addition, using two 

photodetectors, in a heterodyne configuration, provides the added advantage of easy 

rejection of the unwanted DC intensity terms and improved SNR. This enhances the usable 

dynamic range of the detection system considerably. The main disadvantage of this approach 

is that the light sources are expensive and only available for a limited range of wavelengths. 

However, this limitation will probably be circumvented in the near future [9], [8] [19]. 

 

2.3 OCT clinical applications 

As mentioned before, many features of OCT make it uniquely suited for clinical 

applications.  OCT can image in high resolution, non-or minimally invasive, in real time, 

without the need to process a sample as in conventional biopsy and histopathology. It, thus, 

allows pathology to be monitored in situ and can enable real time diagnosis and enable 

surgical guidance [9] [17]. OCT is fiber-optically implemented and can, therefore, combined 

with  a wide range of instruments including catheters, endoscopes, laparoscopes, and surgical 

probes. This allows access to many internal organ systems. Finally, OCT is compact and 

portable, which is an important feature for a clinically viable device. The most developed 
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clinical OCT applications are those focusing on ophthalmology [20] [21], cardiovascular 

pathologies [22], [23], dermatology [24], [25], [26] [27] and GI tract imaging [28], [29], [30] 

[31].  Table 2-1 shows an overview of the OCT imaging applied in various medical fields. 

OCT technology has been utilized for surgery image-guidance in many medical disciplines 

[32], [33], [34], [35]. Table 2-1 shows the estimates cancer deaths in the USA, and therefore, 

OCT imaging is able to detect and diagnose different kind of cancers [36], [37], [38], [39], 

[40], [41], [42], [43], [44], [45], [46].  

OCT could be suitable for three general scenarios in the diagnosis of malignancies. 

First, OCT can guide standard excisional biopsies to decrease false negative results. This can 

improve the accuracy of biopsy and reduce the number of biopsies that are taken, resulting 

in better prognosis as well as significant cost savings. Second, it may be possible to use OCT 

to directly diagnose or grade disease. This application will be more challenging since it 

implies making a diagnosis based on OCT rather than conventional histopathology. 

Scenarios include situations where OCT could be utilized to grade early neoplastic 

abnormalities or detect the depth of neoplastic invasion. Third, diagnosis and treatment 

might be performed in real time based on OCT imaging. This would require that the OCT 

diagnostic information is directly coupled to the treatment decisions. The integration of 

diagnosis and treatment could lessen the number of patient visits, resulting in an important 

decrease in health care expenses and enhance patient compliance. Each of these scenarios 

demands a different level of OCT performance not only in its aptitude to image various 

tissues, but to attain the obligatory level of sensitivity and specificity for each clinical 

situation. Thus for, using empirical image features, radiologists can discriminate varius 

glands and tisuues from OCT images [47], [48]. More recently, researchers are using 

machine learning models for automatic classifocation of OCT images in an effort to find less 

time consuming diagnosis procrdures (to be covered in Chapter 3).  
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TABLE 2-1. OCT IMAGING STUDIES ON DIFFERENT MEDICAL APPLICATIONS 

Medical Fields Clinical Application References 

Ophthalmologic 

Pathologies 

Retinal pathologies evaluation 

Surgery, guidance 

Karst 2019 [21] 

Eladawi  2018 [20] 

             Oral Cancer Surgery guidance, malignancies detection 

 

Capocasale 2018 [49] 

 

Gastroenterology 

 

GI tissue discrimination 

Endoscopic procedures 

Colon cancer identification 

Stomach carcinoma  

Hepatic cancer detection 

Esophagus malignancies recognition 

  

Tearney 1997 [50] 

Li 2017 [28] 

Luo 2019 [51] 

Struk 2018 [31] 

Zhu 2015 [52] 

Liang 2016, Lee 2017 [29], [53] 

Skin Pathologies 
 Imaging, Skin cancer  

 Examination of burn wounds 

Podoleanu 2000 [24] 

Rajabi 2019 [26] 

Iftimia 2018 [25] 

Rangaraju 2019 [27] 

Urology 

Prostate cancer assessment 

       Bladder condition diagnosis 

Renal disease assessment 

Singh 2019 [39] 

Xiong 2019 [38] 

Onozato  2010 , Lee 2012 [37], [36] 

                Breast 
Cancer surgery guidance 

Cancer imaging 

Boppart 2004a [32] 

El Haddad 2017 [54] 

Scolaro 2014 [40] 

Ha 2019  Butola 2019 [41], [42] 

         Neural - Brain 
Surgery guidance  

Brain imaging 

Milner 2019 [33] 

Baumann 2019 [43] 

            Gynecology    

Cervical cancer evaluation 

Ovarian cancer assessment  

 

Malone 2020 [44] 

Wang 2015, Peters 2016 [45], [46] 

 

             Cardiology 

Acute coronary syndrome 

assessment  

Stent thrombosis detection 

Samir 2015 [23] 

Joner 2018 [22] 

             Respiratory Lung pathologies detection Hariri (2015, 2016) [55], [56] 

 

          Endocrinology 

Nodes, tissues and thyroid discrimination 

Thyroid cancer screening 

Surgery guidance 

Ladurner 2013 [47] 

Zhou 2010 [48] 

Sommerey 2015 [35] 

Erickson 2018 [34] 

In dermatology, researchers have investigated the diagnostic accuracy of OCT in 

distinguishing basal cell carcinomas (BCC) in vivo. Those studies yielded promising results 

with sensitivity and specificity ranging from 80 to 93 and 84 to 95%, respectively [57], [58]. 

In addition, Ulrich et al., examined the diagnostic value of OCT combined with clinical and 

dermoscopic evaluation. The study showed a better diagnostic accuracy compared to clinical 

and dermoscopic information, with sensitivity and specificity of 96 and 75%, respectively. 

However, even for skilled observers, it was very challenging to discriminate BCC from 

actinic keratosis, which suffered from a 50% error rate [58], [59]. 
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 Oral cancer, especially squamous cell carcinoma, is mainly treated by a mixture of 

surgery and radiotherapy. Because of the difficult location and the neighboring structures, it 

is crucial to achieve complete tumor removal. OCT utilized in various studies to evaluate its 

potential to distinguish between malignant and benign oral tissue with promising diagnostic 

accuracies (82%). The morphological characteristics were verified by quantitative analysis, 

but no studies have yet been performed for real-time assessment of the surgical resection 

margins [60], [61] [49]. 

 Furthermore, OCT was also evaluated for the visualization of lung cancer during 

bronchoscopy and after surgery on resected specimens. Bronchial malignancies were 

primarily defined on OCT images by a thickened epithelium wall and loss of sub epithelial 

identifiable microstructures. Tumor invasion was shown as loss and/or disturbed architecture 

of the basement membrane [62], [63], [64]. While the diagnostic accuracy was quite high 

(81.8 to 83.3%), OCT during bronchoscopy it is yet not sufficiently sensitive to completely 

replace biopsy. Although OCT has the prospective to be applied during bronchoscopic 

procedures for the diagnosis of lung tumors, valuation of tumor margin detection during 

surgery was not been assessed [55]. 

For breast cancer, OCT was evaluated for tumor and sentinel lymph node detection 

in breast cancer patients, using various criteria. It was shown to have high diagnostic 

accuracy (84%) in boundary assessment compared to histology (Figure 2.7). A handheld 

OCT system with a camera, which could be used during surgical procedures, was also 

considered for margin assessment and provided very good results. For lymph node detection, 

Full-field Optical Coherence Tomography (FF-OCT) was capable to discriminate malignant 

invasion of lymph nodes from benign lymph nodes with high sensitivity and specificity (89 

and 87%) [65] [66] [67] [68] [69]. 

 Several studies, assessed the use of OCT for the diagnosis of ovarian cancer, of 

which two during surgery. Studies evaluated the tumor characteristics based on qualitative 

image analysis using SS-OCT or FF-OCT (Figure 2.8) [46], [70] , [71]. Ovarian 

malignancies were distinguished by the appearance of hyperintense regions with irregular 

patterns, which turned out to be disorganized collagen fibers. Metastases could also be 

detected as shown by Peters et al [46]. Additionally, some studies analyzed tumor images 

quantitatively, focusing on optical coefficients, which were extracted from normalized 

histograms After building a logistic classifier model, Nandy et al., were able to achieve 
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sensitivity and specificity of 91.6% and 87.7% for tumor classification from FF-OCT images 

[72], [73].  

 

Figure 2.7. Comparison of OCT B-scans taken from different OCT systems (A,B,D,E) and their histopathological 

correlations (C,F). (A)–(C) show an example of normal breast tissue, with adipose, stroma and ducts. (D)–(F) show 

mucinous carcinoma. Insets: zoom-in view of adipose region, covering 0.3mm by 0.3mm area. Scale bar: 250 μm. 

[68] 

 

Figure 2.8. FF-OCT images (left column) and corresponding histology images (right column) of ovarian 

metastases. An ovary containing a solitary metastasis is shown in A and B (indicated by arrows). An ovary with 

disseminated breast tumor cells is shown in C and D. Micrometastases originating from endometrial carcinoma 

are shown in E and F (indicated by arrows); scale bars, 500 (A–D) and 200 mm (E–F). [46] 

OCT was also applied effectively in the gastrointestinal tract. It was utilized for 

malignant and benign pancreatic duct strictures discrimination both in vivo and ex vivo 

during basic endoscopic retrograde cholangiopancreatography (ERCP) procedures [74], 
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[75]. Biliary duct imaging with OCT was demonstrated by Arvanitakis et al., using specific 

criteria to detect malignant biliary strictures, with an accuracy of 84% in 37 patients [76]. 

OCT appeared promising in preoperative detection, compared to arbitrarily taken biopsies, 

with a 67% accuracy in the same cohort. Furthermore, Van Manen et al., assessed the 

accuracy of FF-OCT in distinguishing pancreatic tumors from surgical specimens and 

compiled specific criteria for different types of pancreatic tumors such as disruption of 

glands and the presence of tumor stroma [77]. (Figure 2.9). Zhu et al. checked the application 

of FF-OCT in hepatic specimens [52]. Regular hepatic structures, such as blood vessels and 

bile ducts could be very well distinguished and hepatic adenocarcinoma was identified by 

the presence of nuclear atypia and large tumor nodules separated by thick fibrous bands. 

 

Figure 2.9. FF-OCT images of the pancreas. (A-B): FF-OCT image and corresponding hematoxylin and eosin (H&E) image 

of normal pancreatic tissue. (C-D): an example of an FF-OCT image of a moderately differentiated pancreatic 

adenocarcinoma with corresponding H&E image, showing tumor cells infiltrating into fat tissue (Bar = 250 μm). [77] 

OCT has been also evaluated for the diagnosis of esophageal carcinomas, Barret’s 

esophagus (BE), and dysplasia. Different characteristics of BE, dysplasia and 

adenocarcinoma, were evaluated, with promising results. However, discrimination between 

normal glands and BE and tumor glands was very challenging. Bouma et al., performed the 

first in vivo study with 32 patients, who underwent routine endoscopy, and exhibited some 

characteristics of BE [78]. OCT was also used for detection of BE before and after 

radiofrequency ablation therapy where OCT was found to distinguish normal glands from 

buried Barrett’s glands only in a small percentage of the patients (7.7%) (Figure 2.10) [53], 
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[79]. Another study showed 81% sensitivity and 66% specificity in the detection of BE, 

indicating that OCT is presently not as accurate as histology [80]. OCT was further evaluated 

for the detection of esophageal dysplasia [81], [82]. Dysplasia was identified in OCT images 

based on reduced scattering and tissue structure changes, which are currently the only 

available criteria. Adenocarcinomas were also identified in OCT images with neoplastic 

epithelium containing large pockets of mucin surrounded by fibrotic and hypervascular 

tumor stroma. Occasionally, infiltration of heterogeneous structures into the muscular layers 

was mentioned as a feature of tumor invasion. Asymmetrical shape and crowding of 

submucosal glands was also indicating of the presence of adenocarcinoma (Figure 2.11) 

[80], [83]. Identification of adenocarcinoma, in patients who underwent upper GI endoscopy, 

at a recognition rate of 95% also showed promise [84].  

 

Figure 2.10. (A) En face OCT obtained below esophageal surface. Only the distal 12 cm out of 24 cm data is shown. 

(B) Representative cross-section (blue) from EMR region (red). (C). (D) Enlargement (pink) from (B) showing layer 

effacement, surface signal greater than subsurface, and multiple dilated glands (arrows). (E) Cross-section (brown) 

showing layered BE, which is likely non-dysplastic. (F) Cross-section (yellow) showing the squamo-columnar 

junction at a tongue of BE. Inset scale bars 1 mm. [53] 

 

Figure 2.11. Example of endoscopic OCT of an esophageal squamous cell carcinoma. Corresponding OCT (A) 

and histology (B) image of tumor invasion in the submucosal layer, resulting in a loss of the five layered 

architecture (Bar = 1000 μm). Reprinted by permission from Elsevier: Gastrointestinal Endoscopy [85] 
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The application of OCT during colonoscopy for tumor recognition has not been often 

analyzed. Now, quantitative analysis could be achieved for both tumor and polyp detection; 

but unfortunately, the diagnostic accuracy has low sensitivity. Tearney et al., [86] first 

showed the application of OCT during colonoscopy for precancerous tissue identification 

and imaging of normal colonic wall features was also demonstrated by Westphal et al. [87]. 

For colorectal cancer, quantitative analysis was performed in two studies, concluding that 

abnormal malignant tissue has lower scattering properties and less variation of signal 

intensity from the surface, resulting in 78% sensitivity and 74% specificity [88], [89].  

Other studies evaluated the diagnostic performance of OCT for the identification of 

cancer in bladder biopsies or surgical specimens in populations varying between 21 and 116 

patients [90], [91], [92], [93]. Distorted tissue layers and sub-epithelial nests of tumor cells 

were mainly found in biopsies of tumors. By using these criteria, sensitivity and specificity 

ranged between 84 and 100%, and 65 and 89% respectively for tumor recognition. Using 

FF-OCT, more details of tumor cells, such as the existence of large nuclei and newly formed 

blood vessels (as bright spots) could be seen (Figure 2.12). With appropriate training of the 

reviewers, disease diagnosis could be obtained with an accuracy up to 96% [93].  

 

Figure 2.12. Hematoxylin and eosin stained histology section (A) and FFOCT images (B) of malignant features 

highlighted showing disorganized cells with large dark nuclei confirmed in histology as papillary carcinoma. 

[93]. 
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BACKGROUND  

3.1 OCT and dispersion compensation 

Group velocity dispersion (GVD) is a physical phenomenon that causes different 

wavelengths of light to travel at different velocities. When a light pulse with a broad 

spectrum enters a medium, different wavelengths are travelling at different velocities since 

there is a variation in the index of refraction with wavelength or frequency. There are many 

examples showing how the phenomenon of dispersion affects the performance of photonic 

devices from communication to biomedical imaging systems. In communication systems, 

second order dispersion leads to a broadening of the pulses used to represent digital 

information. The pulse broadening causes adjacent bits to overlap and results in intersymbol 

interference or cause resolution degradation in biomedical imaging systems [94].  In imaging 

systems such as OCT, dispersion mismatch between the interferometer arms, causes a 

broadening of the interferometric peak resulting in resolution degradation.  

A feature unique to OCT is that the axial and lateral resolutions are decoupled, each 

being governed by separate optical phenomena. In the axial dimension the coherence length 

of the optical source and in the lateral dimension diffraction impose the physical resolution 

limits. In an OCT system, dispersion balance between reference and sample arms in the 

interferometer is necessary to produce the narrowest interferogram and, hence, resolution. 

For high axial resolution a larger source bandwidth is required and, as a result, the dispersion 

increases especially if not properly compensated. Therefore, the cross-correlation function 

becomes more broad and asymmetrical and the axial resolution worsens. With even more 

broad source bandwidths, dispersion compensation methods have become increasingly 

important for OCT. 

Traditional methods rely on placing the right amount of dispersion balancing material 

in one interferometer arm of the OCT setup. To allow dispersion balancing, a fused-silica 

(FS) prism pair is inserted in the reference arm, with faces in contact and index matched, to 

form a variable-thickness window. The width of the cross-correlation function is minimized 

by translating the prisms along their touching faces. This simple adjustment compensates for 
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differences in fiber length, collimating lens, and microscope objectives between the 

interferometer arms. A uniform group-delay dispersion is assured by flattering the phase of 

the Fourier transform of the interference signal from a mirror in real time. To minimize 

higher order dispersion effects, FS prism pour is used to compensate for fiber-length 

differences and BK7 prisms to compensate for optical material mismatch in the 

interferometer. However, this method is usually practical only for up to second order 

dispersion [95]. 

Another way to compensate for dispersion mismatch is by using grating-based phase 

delay scanners. Using the rapid-scanning optical delay (RSOD), one can adjust dispersion 

by displacing the diffraction grating from the focal plane of the lens. The RSOD can 

compensate dispersion and achieve transform-limited interferogram profiles, to achieve the 

optimal fringe visibility and the highest possible axial resolution in OCT. Although previous 

studies showed promising results, attempts to compensate completely for the dispersion, by 

moving only the grating in the RSOD, were unsuccessful, possibly because of high-order 

dispersion. The incorporation of acousto-optical modulation (AOM) into the RSOD was 

reported to improve the performance of high-speed reference scan and OCT image fidelity 

[50].  

In another approach, dual optical fiber stretchers were used for second order 

dispersion compensation with some degree of tunability [96]. In particular, it was 

demonstrated that two fiber stretchers, made of different fiber types and operated in parallel, 

compensated for a variable amount of chromatic dispersion while simultaneously allowing 

adjustment of the group delay between the two arms of the interferometer. The dispersion of 

a fiber of specific length and second-order dispersion coefficient changes upon elastic 

stretching. By using two fiber stretchers made up of different fiber types, an all-fiber tunable 

dispersion compensator was implemented in an OCT system in which the delay and the 

dispersion in the two arms of the interferometer could be adjusted independently. The setup 

was completely constructed from fiber elements and did not require any critical alignment, 

making it compact and versatile for use in in vivo experiments. The technique could similarly 

be used to compensate average sample dispersion and its use was not restricted to 

interferometer geometries, as the two stretchers could be used in sequence to adjust the 

dispersion and the group delay of a single piece of fiber, e.g., in telecommunication systems. 

It is, however, limited to the 2nd order term and the remaining 3rd order dispersion cannot be 

properly compensated by using only the two stretchers. These approaches require bulky 
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components and are difficult to adapt for depth-dependent compensation of sample 

dispersion.  

 A fiber-stretching-based dispersion compensator has also been combined with a 

grating based, scanning free, time domain OCT system to compensate for both second and 

third order dispersion, but the method increased the complexity [97]. The main advantage of 

the solution was its ability to independently compensate 2nd and 3rd order terms which are 

the predominant terms involved in OCT. Taking a closer look at the properties of this 

approach, it was hypothesized that the tunability of this method could also allow 

compensation of depth dependent dispersion in the sample, in a continuous manner. This 

could be a kind of adjustable depth dependent dispersion compensator if coupled to the fact 

that real time A-scans were obtained with a scan free system.  

Another approach revisits the problem of numerical dispersion compensation with 

the use of the fractional Fourier transform (FrFT) [98]. The fractional Fourier transform 

(FrFT) is a generalization of the traditional Fourier transform and can be seen as a tool to 

visualize the physics behind dispersion compensation. By using the FrFT one obtains depth 

information in FD-OCT while, simultaneously, numerically compensating for group 

velocity dispersion. The technique was successfully demonstrated on a biological sample. 

Furthermore, it provided new insights on the tissue depth-dependent dispersion. Simulations 

have shown that both normal and anomalous sample dispersion can be addressed by 

dynamically adapting the order parameter as a function of depth. This method can be seen 

as analogous to a “short time” FrFT but is more efficient and intuitive and may even be 

applicable to samples without isolated scatterers. From the optimized FrFT order parameter 

one can also readily obtain some information about the amount of dispersion in an OCT 

configuration and sample. The relationship between the FrFT order parameter and group 

velocity dispersion was derived and used to successfully measure the group velocity 

dispersion coefficient of distilled water and some single mode fibers. 

3.2 OCT and tissue dispersion 

While an OCT interferometer can be optimized for its intended purpose, dispersion 

differences will still emerge due to the variability and diversity of the properties of the tissues 

that are imaged. Interestingly, since dispersion is specific to the tissue that is causing the 

effect, it can carry useful information regarding its composition and/or constituent 

concentrations. OCT technology has significantly improved over the past few years with the 
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introduction of high resolution systems which are well suited for in vivo applications. 

However, many disease changes, such as those associated with early stage cancer, are in the 

micron and sub-micron range, remaining below the resolution limit for detection. Tissue 

dispersion can, therefore, play an important diagnostic role as a biomarker of disease. 

The concept of exploiting dispersion as a source of contrast is not new since there 

have already been examples of using the dispersion of biomolecules to quantify their 

concentration. For example, the dispersion of hemoglobin was used to extract the 

concentration of hemoglobin (Hb) in intact red blood cell (RBC) [99]. It provides a simple 

and practical method, using spectroscopic phase imaging, to simultaneously measure Hb 

concentration and cell volume of living RBCs. As demonstrated, dispersion provides 

molecular specificity and quantitative phase maps at different wavelengths can help 

differentiate among molecules. The relation between dispersion and biochemical 

composition was further exemplified using quantitative dispersion microscopy, which has 

confirmed that the dispersion of live HeLa cells agrees well with the dispersion measured 

for pure proteins solutions [100]. Variations in the dispersion of different types of normal 

skin have also been identified in vivo with coherent reflection measurements of different 

skin types [101]. Given the dramatic changes in cellular biochemistry caused by cancer 

[102], which are discernible by other optical techniques such as Raman spectroscopy [103], 

it is highly likely that dispersion can also be used as a contrast mechanism in OCT imaging. 

Therefore, Group Velocity Dispersion (GVD) could be used to detect, for example, changes 

associated with early cancer and result in more accurate disease diagnosis. 

3.2.1 Methods of measuring group velocity dispersion (GVD) 

Three main methods are described in literature for estimating the dispersion from 

OCT images: (i) measuring the resolution degradation [104], [105], (ii) measuring the shift 

(walk-off) between images taken at different center wavelengths [106], [107] and (iii) 

calculating the second derivative of the phase of the spectrum [108], [109]. However, these 

methods require that a strong, distinct, reflector is present in the image which is rarely the 

case in living tissue. In addition, the presence of Mie scattering and speckle can be 

detrimental to the attempt to measure dispersion. Each of these methods were evaluated, for 

the purposes of this thesis, with images from samples with different scattering properties as 

well as tissue images (ex vivo). 
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Point spread function (PSF) degradation method 

The most straight-forward method to estimate the dispersion is by measuring the 

broadening of a single reflection’s Gaussian envelope (Figure 3.1).  

 

Figure 3.1. OCT image of collagen gel. Dispersion causes broadening of the pulse width (td) the can be estimated using the 

bottom surface of the sample. The reflector line can be used for the estimation of the original pulse width (t0).   

If the original signal has an interferogram width of t0, the degraded interferogram 

will have a broader width, td, and the two will be related by 

                                          
 

2
2 2 2

0 01dt t L GVD t    
    

              ( 3. 1) 

 

where L is the sample thickness and GVD is the Group Velocity Dispersion [104], [105]. 

Thus, the GVD can be estimated by: 

 2 2 4 2

0 0dGVD t t t L 
 

             (3. 2) 

In an OCT image, the effects of dispersion are observed as a broadening of the Point 

Spread Function (psf) and, therefore, as a degradation of the resolution. The system 

resolution, d0, is defined as the full-width-at-half-maximum (FWHM) of the coherence 

envelope of a point reflector and is related to the interferogram width, t0, by 

 

      
  0 0 4ln 2t d c

 

             (3. 3) 
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where c is the speed of light. The same also holds for dd and td, the dispersion-degraded 

widths. Since the values of d0 and dd can be readily measured using OCT, the GVD can be 

estimated from an OCT image as long as there are distinct point reflectors below and outside 

the sample. Although this can be arranged ex vivo [110], it is rarely the case in vivo.  

Walk-off method 

 Dispersion causes each wavelength to travel at different phase velocity. This is due 

to index of refraction variations and causes different wavelengths to be subjected to varying 

path length. The result is in an apparent shift in the OCT images at different wavelengths, 

called a walk-off (Figure 3.2).   

 

Figure 3.2. Adipose tissue images acquired using OCT at different central wavelengths of the spectrum (A).The 

comparison between the bottom surfaces of the images shows an image shift that is used to estimate the GVD (B).  

Envelope broadening of the optical pulses can be written as 1 n
GVD

c 





  where c is 

the speed of light, n the index of refraction and ω the optical frequency. A dispersion 

measurement can be obtained from path length measurement through the material of interest. 

In OCT we aim to identify sample areas on a micrometer scale. This requires a sufficiently 

broad spectrum to obtain a measurable change in accumulated optical path length. The 

differential walk-off z  is evaluated between two spectrally separated independent source 

spectral as a function of index of refraction, z
n

L


  , where L is the sample thickness. Thus, 

the group velocity dispersion can be written as: 

z
GVD

cL 





 

(3. 4) 

 

Note that 
2

0

2 2
2

c c
f

  
  

 


      and so, 
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               (3. 5) 

 

where z  is the differential walk-off between two sources,   the source bandwidth and  

L  is the sample thickness [106], [107] . 

Phase difference method 

In spectral interferometry, the dispersion parameter can be obtained from the 

interference spectrum produced by two time delayed beams. Two beams from the two arms 

of the interferometer interfere and a spectral interferogram is produced. The spectrum 

produced for a given time or phase delay is given by (Figure 3.3): 

The delay is due to index of refraction variations and appears as a phase shift between 

different wavelengths. Hence, the GVD can be estimated from the phase changes of the 

spectrum of the OCT signals.  

 

 
 Figure 3.3. Using an adipose tissue OCT image a single peak is isolated from the bottom surface (A), (B).To take advantage 

of the phase changes the spectrum of the peak in (C) is used to calculate the second derivate of the spectrum and estimate 

the GVD (D). 

Note that   *

0( ) ( ) ( ) ( ) exp( ( ))f f t i            includes the phase information on the 

spectral phase difference as  ( ) arg ( )f    . To derive the phase difference Δφ(ω), the 

inverse Fourier transform(FT) of Ι(ω) is performed and the following is obtained: 

  

Then a FT is applied to the component ( )f t   to transfer it back to the spectral domain and 

the complex amplitude becomes: 

  0( ) ( ) ( ) exp( ( ) )f i                       (3. 8) 

2 2

0( ) ( ) ( ) ( )exp( ) *( )exp( )f i f i             
 

(3. 6) 
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The phase of this complex amplitude minus the linear part   that is due to the delay yields 

the spectral phase difference between the two beams. Finally, from phase-frequency plot the 

first derivative leads to group delay and the finally the group velocity dispersion is given by 

the second derivative of the spectrum phase as [108], [109]: 

2

2

1 ( )
( )

( )
GVD

L






 
 


 

               (3. 9) 

 

3.3 Index of refraction as a diagnostic tool 

The index of refraction (n) determines how fast the light propagates through a 

medium and can be calculated by the division of the speed of light, (c), and the speed of 

light, (v), as it propagates through a medium. Note that n is always greater than one. The use 

of index of refraction, as an important intrinsic biomarker has been explored recently.  

All materials have unique n value, which is associated with the electrical 

permittivities. Classic phase contrast or differential interference microscopy use n values as 

an optical imaging contrast. However, they do not provide a detailed mapping of n 

distributions in tissue samples, but are rather limited to thin slices from the samples that are 

fixed on slides or cell cultrures. Recently, there has been an escalating interests in measuring 

3D n distributions for various applications in bioimaging. Mainly because n, as an intrinsic 

optical parameter, provides the possibility for label-free cell imaging with the added 

advantage of giving a quantitative information about the sample. 

Recent studies have shown that the tissue index of refraction distribution could be 

used as a biomarker for medical diagnosis. Microbiology studies show that n distribution 

can provide valuable information about cellular growth and division and bacteria 

identification. Past studies have reported that 3D n tomograms of individual bacteria can be 

measured using holotomography (HT), a technology that directly provides the measurements 

of the 3-D n distribution of a cell. Using a Mach–Zehnder interferometer and illumination 

scanning, 3-D n tomograms of bacteria, extracted from a sample of E. coli, have been 

demonstrated [111]. Recently, white-light diffraction tomography was utilized to image 3-

D n tomogram of E. coli [112]. Furthermore, 3-D n distributions of a magnetostatic 

bacterium which produces magnetic particles (magnetosome), were measured [113]. In 

addition, n information can be exploited to retrieve cellular dry mass and concentration 

information about individual bacteria. Dry mass refers to the non-aqueous contents inside 

cells and can be used as a marker of cellular growth and division. It can be simply retrieved 
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by calculating 2-D optical phase delay maps and averaging over cell area since the optical 

phase delay map of a cell corresponds to the integration of n differences between the non-

aqueous contents inside cells [114].  

In hematology, different types of cells were identified by their n value. Blood borne 

infectious diseases (malaria) or chronic human disease (sickle cell anemia, diabetes mellitus) 

could be identified by n distribution. In addition, the use of 3D n tomography in the field of 

hematology allowed the simultaneous measurement of various optical parameters of 

individual red blood cells such as volume, surface area, sphericity, Hb content concentration, 

and membrane fluctuations that differ from reference values in case of disease [115], [116], 

[117]. 

Imaging of hepatocytes has played an important role in hepatology. The structure of 

hepatocytes is clearly associated with liver diseases and can be identified using their n value. 

Among subcellular structures of hepatocytes, lipid droplets (LDs) are very important 

because they are directly related to the lipid metabolism. LDs consist of a monolayer of 

phospholipids and associated proteins surrounding a core of neutral lipid and are ubiquitous 

intracellular organelles storing and supplying lipids in most cell types as well as hepatocytes 

[118]. Recent studies suggest that LDs participate in various pathological roles, such as 

cancer and diabetes mellitus, and exhibit 3-D motions to regulate lipid storage and 

metabolism [119]. LDs can be effectively visualized exploiting their n value. The index of 

lipid is significantly higher than protein [120] and thus LDs can be identified by performing 

3-D n tomograms. However, the detailed process of LD dynamics, including biogenesis, 

growth and 3-D subcellular motions, are incompletely represented [121]. 

Cancer studies have shown that the presence of cancerous cells can be identified by 

different values of n distributions and can be indicative of breast, prostate and epithelial 

cancer [122], [123], [124]. Recently, label-free tissue imaging, utilizing n information, was 

adapted to neuroscience. Index of refraction distributions could be helpful for the diagnosis 

of serious neurological situations such as Alzheimer’s [125] and Parkinson’s diseases [126]. 

However, there are some limitations when n distributions are used for medical 

diagnosis. First, it is difficult to relate n to molecular information. This is mainly because 

proteins have similar n values regardless of their type. Another problem is that the 

distribution of n values can provide limited morphological information about tissue 

CHRISTOS PHOTIO
U 



30 

structure. Also cells have refractive indices similar to their environment and this can result 

in significant errors. 

3.4 Methods of estimating n distributions  

3.4.1 Bulk optical methods 

Various methods for the measurement of n are available for many materials and 

tissues. The majority of these techniques are based on Snell’s law (total internal reflection 

and Brewster’s angle) and wave interference. They employ experimental setups using prisms 

and different types of interferometric techniques such as Michelson’s or Fabry-Perot 

interferometers [127]. The indices of refraction of a material can be measured very precisely 

using prism cut-outs of the material [128], [129]. The refractive index is calculated by 

estimating the incident angle at which total internal reflection of the prism base breaks. The 

main limitation of this method is that it requires prism shaped samples and is not suitable for 

routine measurements.  

3.4.2 Interferometric methods 

Interference methods are also used for index of refraction measurement using a 

Michelson or a Fabry-Perot interferometer [130], [131]. These methods utilize wave 

interference and produce a fringe pattern from the backscattered intensity of the light as it 

propagates through the sample. Although these methods are usually employed to detect very 

small relative phase differences, they were extended to measure absolute n values. In the 

Michelson Interferometer (MI) method, a sample is placed in one of the two arms of the 

interferometer continuously changing the optical path length difference, and hence 

producing a fringe pattern (with respect to the angle of incidence). From this pattern, and 

knowing the sample thickness, n can be easily determined with the accuracy of mm, the error 

arising mainly from the sample thickness measurement, because the n and the thickness 

cannot be independently determined from a single fringe pattern.  

                      

The Fabry Perot (FP) method is another interferometric technique used. In this case, 

the fringe pattern is determined solely by the phase difference between the directly 

transmitted light wave and the collinearly propagating waves, therefore the FP fringe pattern 

is more stable against environmental perturbations than the MI fringes. However, in both 

methods, the thickness measurement limits the accuracy of the n determination [131]. 
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3.4.3 Immersion methods 

Immersion Spectroscopic Reflectometry (ISR) was first developed to calculate the n 

and thickness of a transparent thin film [132] but was later applied to systems up to three 

layers. The technique’s basis was presented by Ellis in 1963 for estimating only the n of one 

layer thin films [133]. Ohlidal in 1980 developed it into a method for determining the index 

of refraction and thickness of thin films that was precise when assessing systems with more 

than three layers if the substrate index of refraction was known. If the environment medium 

in ISR is liquid, the method is called liquid immersion spectroscopic reflectometry (LISR) 

or solid immersion spectroscopic reflectometry (SISR) in case the environment medium is 

solid. The main goal is to extract the optical properties from the spectral response changes 

by varying the environment around a slab of material. LISR requires different non-absorbing 

media with known indices to change the spectral response of the sample while in SISR, a 

film with known n but with changing thicknesses is used to obtain various spectral responses. 

SISR was based on a previous method, created by Fränz in the 70’s, which acquired the same 

information by gradually etching the film thickness. Moreover, double-immersion 

spectroscopic reflectometry (DISR) was also developed for three layer systems. DISR is 

based on evaluating four spectral reflectances, utilizing all possible combinations of 

refractive indices of two different transparent environment media and two different non-

absorbent substrates [134].  

The immersion technique is based on the fact that for a two layer system, when the 

n of the medium is the same with the n of the film, the effect of the first layer can be removed 

away and the reflectance of the system matches the reflectance of the system immersed in a 

medium of different n. So, the problem of finding the optical parameters of a two-layer 

system could be reduced to examining a single layer problem. For a non-absorbing double 

layer formed on a non-absorbing substrate with known n, the indices of the layers can be 

obtained from the odd order of the reflectance spectrum oscillations. The same procedure is 

also used for SISR. This method was used to analyze non-absorbing single layer of silicon 

nitride, non-absorbing double layers of silicon dioxide, and silicon nitride thin films by 

measuring the spectral reflectance in air and in water. DISR was used for triple layers formed 

by titanium dioxide and silicon dioxide films placed on glass [132]. CHRISTOS PHOTIO
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3.4.4 Confocal microscopy method 

A confocal microscopy technique (dual beam) using a single wavelength source was 

also proposed for the simultaneous measurement of thickness and refractive index of a 

stepped sample (thickness changing through the sample) [135]. In this method the incident 

polarized beam (45 degrees) was divided using a Nomarski prism in front of the scanning 

objective lens. The prism created two closely spaced lateral confocal gates for the two 

orthogonal polarization states of the laser beam. Each channel pointed to two close lateral 

regions of the object with different unknown thickness and the intensity of each channel 

detected separately. The index of refraction of the object could be estimated from measuring 

the travelled distances of the scanning objective lens to the front and rear surfaces of the 

object for each channel. This method could not be applied to flat surface samples since the 

required two channels would not be present. The experimental validation was done using a 

microscope cover glass, with thickness ranging between 165 and 175 μm and with a 

refractive index of 1.525. 

3.5 Index of refraction measurement in OCT 

By using Low Coherence Interferometry (LCI) or OCT, multiple layers can be 

identified in terms of optical thickness, the geometric thickness multiplied by the refractive 

index [136]. Several methods have been developed to estimate the index of refraction and 

thicknesses in the optical thickness measurements. 

3.5.1 OCT imaging method 

Tearney et al, in 1995 proposed an in vitro method that exploits the ability of OCT 

to measure the optical path length of excised tissue specimens. It determines the index of 

refraction of a sample by placing it on top of a planar reflecting surface to acquiring an OCT 

image (Figure 3.4). The thickness of the sample, z, can be determined by subtraction the 

axial position of the reflector outside the tissue from the axial position of the tissue surface 

in the OCT image. The additional optical path length delay z΄ can be measured by subtraction 

of the axial position of the reflector outside the tissue from the axial position of the reflector 

imaged through the tissue. Finally, the refractive index of the sample can be defined as: 

  

                         
'L L

n
L


  

        (3. 10)  
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Although the method comparing physical and optical path lengths is necessarily invasive, it 

can therefore be used to determine the refractive indices of many different sample types. In 

that study, they determined the refractive indices of BK7 and fused silica (1.515 ± 0.01, 

1.458 ± 0.018) and also of human tissue (stratum corneum, 1.51 ± 0.02, and epidermis, 1.34 

± 0.01).The main limitation of the method is that it cannot be used for in vivo measurement 

as it requires a reflector under the tissue [110].      

 

 

Figure 3.4. OCT image of adipose tissue placed on an unpolished metal substrate. The two vertical bars 

represent L, L’, from top to bottom.  

3.5.2 Focus Tracking Methods 

These methods combine the concepts of a confocal microscope and LCI to decouple the 

estimations of distance and index of refraction. In these techniques, the focal point of the 

sample arm beam is scanned through the sample from the top surface to the bottom surface 

either by displacing the sample stage or by displacing the focusing lens. The physical 

location of the light beam focus is taken from the confocal signal and the change of phase 

information is extracted by utilising the scanning reference arm. These method allow the 

measurement of both the phase and group refractive index (ng and np) of the sample at each 

point. The measurement accuracy is low due to the resolution of the translation stages 

moving the focal point or the sample. 

Ohmi et al, in 1997, performed measurements on z-cut sapphire and glass plates 

nearly one mm thick and on a plate nearly 0.5mm thick. By moving the object and scanning 

through the sample they estimated an index of refraction accuracy of ≤ 0.3% [137]. Also, in 

another study by the same group in 2000 [138], they used biological samples of animal 

tissue, human tooth and nail with sample thicknesses ranging from 150μm to 550μm and 

resulting in refractive index measurements ranging from 1.37 to 1.65 and an accuracy of ± 

1% (assuming that the index of refraction was homogeneous through the sample thickness). 
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Furthermore, in the same study the technique was utilized on a more challenging two-layer 

sample. The first layer was a piece of crab-leg crust, which consisted of a white viscous 

layer, and the second was a semitransparent carapace. They managed to report separated 

measurements for each layer (1.375 and 1.411) with an accuracy of ±1%. 

Confocal scanning has also been utilized and evaluated in combination with FD-

OCT. In this scenario, optical thicknesses was estimated from the Fourier transform of the 

spectral data. Both the index of refraction and thickness could be calculated by moving the 

objective lens to focus on the top and bottom surface of a single layer object. This 

experimental procedure was implemented on water, air and oil solutions inside a 250μm 

deep container and the results followed the reference values within 0-1% error [139].  

When applying focus tracking, it is important to note that if the phase and group 

index of the object are not the same, another piece of information is required to calculate the 

three parameters (phase and group index, thickness). The additional information could be 

the light pulse dispersion relation or quantification of the thickness by another technique. 

One approach [140] was to place the sample between two reference glass plates with known 

separation. Then, by estimating the gaps between the sample and the glass plates, the single 

layer thickness could be calculated independently. For the experimental verification of this 

procedure, materials such as sapphire, electro optic crystals, fused quartz, flint glass and 

crown glass were used. The measurements resulted in phase and group refractive indices 

estimations with an error of 0.3% or less. The index of refraction range was 1.45 to 2.25 and 

the thickness range between 0.5mm to 1mm. Similarly, experiments were performed with 

FD-OCT systems [141]. For these experiments, the samples were Glass slide, BK7, Fused 

Silica with thickness about 1000 μm and in addition, they also used a slab of ITO glass with 

thickness about 700μm. The resulting estimates exhibited an error of about 7x10-4 for both 

the index and the thickness. There are, however, occasions when using this method is not 

practical since the sample must be placed in a special holder before the procedure. Therefore, 

in such cases, if possible, it is useful to take an expression of the chromatic dispersion of the 

under plate index. One approach of getting this dispersion information is to repeat the 

measurement with two or more different central wavelength sources for a single layer object 

[142]. This method was assessed experimentally for materials such as BK7, B270, CaF2, 

Silica, cover glass, and C.C film with wide range of thicknesses between 0.023-5.2mm and 

group and phase indices ranging between 1.43-1.53. The reported average measurement 

errors were about %0.061 for the geometrical thickness, %0.066 for the phase index, and 

%0.057 for the group index. 
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 In the early 2000’s, Maruyama et al proposed a new expression of the chromatic 

dispersion in terms of the phase index and showed that the phase and group refractive index 

and physical thickness of a single layer sample can be estimated without using a special 

sample holder [143]. The materials for the experiments were single layer samples like z-cut 

sapphire, x-cut LiNbO3 and z-cut LiTaO3, and Poly-viny-lchloride plates. The indices ranged 

between 1.45 and 2.17 and the measured estimates resulted in accuracies of 0.3% or better. 

In addition, a different study with similar measurements using this approach, on a 500μm 

thick fused-quartz plate and a 125μm thick z-cut LiNbO3 plate,  reported an accuracy of 

0.3% or better [144]. In addition, in this work, a multi point estimation of a radial-graded-

index rod lens was reported to give an approximation of the index gradient distribution. 

Another work assessed the applicability of the focus scanning method using multi-

layer systems, for both the object and the lens scanning methods, developing a generalized 

formula for the estimations. The technique utilized a pile of cover slips sample made of 13 

layers of glass and air [145]. Even though the layers were detected using the proposed 

method, there was no quantitative information about the accuracy of the measured index of 

refraction or thicknesses in the conclusions. 

Bifocal optical coherence refractometry (BOCR) was proposed by Alexandrov in 

2003 [146]. That technique was based on the simultaneous sample image formation of two 

accurately spaced confocal gates by using two lenses in the sample arm beam with different 

focal lengths such that two axially separated focal points were formed. The optical path 

length change between the gates was measured using the principles of LCI and was used for 

the calculation of the index of refraction. In another implementation of this technique, the 

two confocal gates were formed using an adaptive liquid-crystal lens [147]. The 

experimental measurements reported an in vivo measurement of the refractive index of the 

stratum corneum of skin on the dorsal surface of a human thumb. The index of refraction 

was 1.50 with a deviation of ±0.02.  

In another implementation of focus tracking, the sample was moved toward the 

objective lens with a defocus occurring at the image plane. The objective lens was then 

displaced to compensate the amount of defocus and extract the optical path changes. 

Recently, Min et al, suggested numerically shifting the image plane to find the focusing 

position instead of moving the objective, something that appeared to also be also applicable 

to multilayer systems [148]. They used various combinations of fused silica and BK7 glass 

for their experimental procedure and estimated the indices of the two layers with thicknesses 
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from 0.15 to 1.5 μm. The mean error of the resulted indices of layers 1 and 2 was 0.062% 

and 0.128% respectively. For thickness measurements, the mean error was 0.180% and 

1.394%. Finally, for multilayer samples, various combinations of plates and films, of various 

thicknesses were stack, on a 0.153 mm thick oil layer. The index of refraction and thickness 

of the oil layer were estimated with a mean error of 0.065% and 0.990%. 

3.5.3 Interferometric Methods   

The index of refraction can also be estimated by inserting the object into a Michelson 

interferometer. Fochs in 1950, [149], reported the first study of this type by using a white 

light Michelson interferometer and a spectrometer to record the spectral response pattern. 

The measurements were taken: (i) without a sample, (ii) with the sample placed normally in 

the interferometer and finally (iii) in the presence of the sample but with the interferometer 

mirrors covered. The measured thickness of a mica specimen was 12.19 with a deviation of 

± 0.02μm, and for the index 1,601 with a deviation of ± 0,03. Jin et al, in 2010 also used a 

Michelson interferometer to measure the index of refraction and the sample thickness of a 

single slab while the slab was partially inserted in the sample arm of the interferometer [150]. 

The resulting spectral response was a mixed pattern of the beam travelling in free space and 

the beam that passes through the sample. The optical thickness of the object, placed in the 

sample arm, was estimated from the Fourier transform of the spectral response of the 

perturbed beam. The experimental results for a double-sided polished Silicon wafer were 

334.85μm for the thickness and 3.5 for the index with deviations of  0.49 μm 0.004 and 

respectively. Following the same experimental approach, Cheng et al in 2010 used an OCT 

system with two reference arms and one sample arm [151]. First, the optical path difference 

between the sample arm and the reference arms was fixed without a sample. Then the sample 

was placed in the sample arm and the first reference arm was displaced in order to receive 

interference patterns when the signals of the two arms mixed while the other reference arm 

was not moved. The experiment was performed on a BK7 glass sample with an index of 

refraction of 1.501 (group) and thickness of 0.71mm and on B270 Glass with index of 

refraction 1.52 and thickness 2.0mm. The mean experimental errors were 3.81% and 1.1% 

respectively. 

In another study, both thickness and group index of refraction estimations were 

estimated using low coherence reflectometry with a setup comparable to an OCT system 

[152]. A reflecting mirror was fixed in the sample arm at a known position in front of the 

sample and the surfaces of both the mirror and the sample were detected by scanning the 
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reference mirror. The index of refraction and the thickness could be estimated by using the 

optical path displacement of the detected reflecting mirror position when the sample was 

placed in the sample arm. The method was used to estimate the sample thickness and index 

of refraction of a piece of Tygon tubing and resulted in 6.753mm and 1.511 with a deviation 

of ± 0.004 and ± 0.001 respectively. In addition, the method was applied to two fused silica 

samples (thickness 9mm and 12mm) and the resulted index was 1.46 with an uncertainty of 

6x10-4. In another study, the combination of LCI with a reflector plate and a moving 

reference arm was used for measuring poly-methyl-methacrylate glass (PMMA) with a 

thickness of 1.9 mm and an index of 1.66 with an accuracy of 0.04% [153]. In yet another 

application of this method, Na et al in 2009 used an FD-OCT system and measured a 1.555 

mm thick fused silica plate with the results showing a standard deviation of ±2x10-4 for both 

thickness and the index of refraction. This method was also utilized to estimate the index 

and thickness of a glass plate by both TD-OCT and FD-OCT systems. The results showed 

mean errors for index of refraction and thickness in TD-OCT of 1.74% and 1.65% 

respectively while the mean error using FD-OCT was reduced to 0.03% and 0.26% [154]. 

A FD-OCT system was employed to measure the index of refraction of a stepped 

layer of SiO2 thin-film deposited on a silicon substrate with thicknesses ranging from 0.5 to 

4.0 μm [155]. The index of the film layer was estimated with an accuracy of μm without 

prior reference of the geometrical properties. Park et al in 2011 reported a simultaneous 

measurement of sample thickness and group index of refraction based with spectral domain 

optical LCI with two sample probes facing each other that was applicable for transparent as 

well as absorptive or opaque samples [156]. The optical thickness extracted (after applying 

the Fourier transformation on the interference spectrum) by each probe made it possible to 

estimate the index of refraction and the physical sample thickness. The resulting 

measurements for the thickness had values from 0.15 mm to 3 mm with indices around 1.5 

(Cover glass, BK7, Silica, CaF2, NG9). The mean error for the group index of refraction and 

sample thickness was 0.06%. 

Finally, a Tandem interferometer (composed of a Michelson and a Fizeau 

interferometer) has also been used to estimate the index of refraction and thickness of single 

layer objects. This method is not affected by group delay dispersion and can be used with 

thick samples and broad source spectral line widths. Experimentally, three BK7 glass plates 

were tested, about 100, 150, and 300μm thick, which were placed in the interferometer arm. 

The resulting index of refraction exhibited a 7x10-4 difference from the reference value 

[157]. In another application of this method, without employing compensators, the indices 
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of BK7 glass plates with thicknesses 10,1mm and 3.5mm were estimated with a difference 

from the reference value of 1.85x10-4 and a standard deviation of 5.1x10-6 [158]. 

3.6 Scatterer size estimation using OCT images 

Spectral variations are related to scatterer size by Mie theory and have already been 

used in many OCT studies as a contrast enhancement mechanism. Various researchers have 

tried to estimate the size of epithelial cell nuclei using Light Scattering Spectroscopy (LSS) 

[159], [160]. Recently, LSS has been combined with low-coherence interferometry (LCI), 

providing depth localization of the LSS signal [161], [162]. OCT has also been proposed as 

for spectroscopic, depth-resolved, imaging. Spectroscopic OCT (SOCT) operates on the 

localized spectra that are inherently available in the OCT signal [163]. In order to take 

advantage of the SOCT capabilities, there has been great effort to find spectroscopic metrics 

that could precisely measure the size of cell nuclei, the main scatterer in epithelial tissues.  

The majority of the methods reported so far have been based on the hypothesis that 

epithelial cell nuclei can be considered as spheroidal scatterers whose interactions with light 

are described by Mie theory [120]. An approach to get their nuclear size is to curve-fit the 

backscattered spectra, extracted from the OCT or LCI signal, to the theoretical prediction 

curves [164]. The main limitation of this approach is that it requires an exhaustive search 

through many possible scattering sizes and precise knowledge of the index of refraction of 

the scatterer and the ambient medium [165]. Furthermore, it does not sufficiently account 

for the spectral changes that could appear in the experimental measurements if the incident 

beam waist spot size is small, or similar to the wavelength size and that Mie theory was not 

created for Gaussian beams but mainly for plane waves [166]. Many studies using Mie 

theory have been based on the observation that the oscillation “frequency” increases with 

the particle size. Some pre-processing of the backscattered spectrum followed by a Fourier 

transform was recommended by Wax et al, [162]. The position of the maximum of this 

function is indicative the dominant scattering features in the region under observation. This 

technique, with various studies on phantoms and biological tissues that followed, resulted in 

very good calculations of the scatterer sizes [162], [165], [167]. However, when the spectrum 

of light source is narrow, it does not provide a sufficient number of oscillations in the 

backscattered spectrum and becomes challenging to extract the maximum peak from other, 

low-frequency, components [168]. Another approach for measuring the scatterer size, 

reported by Adler et al, was based on estimating the autocorrelation width of the 

backscattered spectrum [169]. It relied on the observation that backscattered spectra with 
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high spectral modulation give autocorrelation functions that shift quickly away from the 

central point while the autocorrelation function of spectra with low spectral modulation is 

broader. Utilizing this information, the contrast of OCT images was enhanced. The main 

advantage of this spectroscopic analysis method is that it does not rely on the distribution of 

optical power over absolute wavelength and therefore it is not sensitive to many sources of 

spectroscopic noise. Still, it does not always result in a precise estimation of the scatterer 

size. 

 Variations of the above methods were implemented in other studies. Oldenburg et 

al, utilized the autocorrelation width of backscattered spectra, at 80% of the peak value, in 

order to improve the contrast of OCT images of macrophages and fibroblasts [168], while 

Kartakoullis et al., and Jaedicke et al., used the spectral information with principal 

component analysis (PCA) and clustering algorithms in an effort to discriminate phantom 

samples of microspheres with various diameters [170], [171]. Tay et al proposed that the use 

of many distinct bandwidths could enhance the sensitivity of scatterer size estimates, 

applying the method in spectroscopic OCT images of solutions of 0.5 and 45 μm 

microspheres which could be clearly discriminated [172]. 

3.6.1  Correlation of the derivative method 

Kasinopoulos et al., used Mie theory to create a new metric for SOCT, the bandwidth 

of the correlation of the derivative (COD) bandwidth [173]. The feasibility, accuracy and 

robustness of this new method, in estimating scatterer size, has been confirmed utilizing 

images from microsphere phantoms and human gastrointestinal normal and cancerous tissue. 

The concept behind this approach is presented in Figure 3.5 where the backscattered spectra 

for 6.0, 10.0 and 16.0 μm diameter scatterers in the wavelength range of the laboratory SS-

OCT system are presented. The characteristic oscillations are easily distinguishable in the 

spectra. The COD bandwidth method estimates the scatterer size by the extraction of the first 

derivative of the spectrum followed by the calculation of its autocorrelation. After the 

calculation of the autocorrelation, the lag position of the first minimum at the graph is used 

as a metric for scatterer size estimation and is referred to as the bandwidth of the Correlation 

of the Derivative (COD) bandwidth. Figure 3.5(D)-1(F) illustrate the COD function for the 

case of 6, 10 and 16 μm diameter scatterers. The red arrows indicate the COD bandwidth. 

The utilization of the derivative, before calculating the autocorrelation, is important to give 

more emphasis on the oscillations of the spectrum, since the derivative is self normalizing 

and eliminates big differences in the peak intensities of the spectrum.  
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Figure 3.5. Backscattering Mie Spectra for (A) 6 μm, (B) 10 μm and (C) 16 μm scatterers with medium and 

sphere refractive indices set at 1.47 and 1.59 respectively. The parameters for the calculations were chosen 

according to the specifications of the light source and the microsphere samples used in the experiments. Graphs 

D-F show the Correlation of the Derivative (COD) with the red dot indicating the first minimum and the red 

arrow indicating the bandwidth of the COD [173]. 

Mie theory can be used to derive the relationship between the scatterer size and the 

COD bandwidth. The Mie-derived curve (Figure 3.6, blue line) exhibits a strong and nearly 

monotonic relationship between the two parameters for diameters larger than 4 μm. 

Therefore, this relationship can be used to estimate the scatterer size from the COD 

bandwidth of an OCT spectroscopic image. However, reliable scatterer estimates using the 

proposed method can only be performed for scatterers above 4 μm (e.g. for cell nuclei but 

not for mitochondria). For practical purposes, especially during the experimental verification 

process, the 4th order approximation of this curve (Figure 3.6, red line) was used to estimate 

the scatterer diameter corresponding to each spectrum. It must be mentioned that the COD 

bandwidth and the scatterer size relation depend on the wavelength and the spectral range of 

the light source and also the refractive indices of the medium and scatterer. 

 

Figure 3.6. Correlation of the Derivative (COD) bandwidth as a function of scatterer size. The blue line is the theoretical 

curve from Mie theory and the blue line the 4th order approximation curve. Reliable scatterer estimation can be 

performed only in the region above four μm (solid red line) [173]. 
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Spectral processing 

A short time Fourier transform (STFT) of a moving Gaussian window is used in order 

to extract the depth resolved spectrum from the OCT images. This window separates the 

portion of the signal that corresponds to the observed region and decreases the side-lobes of 

the resulting FFT peaks (compared a rectangular window). Then, the depth resolved spectra 

are divided by the source spectra (taken from an OCT mirror image) to get the backscattering 

profile of the sample at each corresponding spatial region. Also median and low pass (LPF) 

filtering are used for spectra smoothing to avoid noise amplification during the 

differentiation process. Furthermore, the spectrum edges, which are more susceptible to 

noise than the central part since the borders of the source spectrum are lower in intensity 

compared to the center spectral region, are removed. An important factor that must be 

considered is noise since it can be very detrimental to scatterer estimation. It can affect, the 

estimation of the first minimum of the autocorrelation of the derivative by up to half a period 

which is an error of 20-60% on scatterer size depending on the slope of the curve of  Figure 

3.6. Differentiation is performed by obtaining the difference between adjacent values in the 

spectrum.  

It is important to note that the position of the Gaussian window with respect to the 

scatterer may have an impact on the spectrum. When the window is depth-displaced, it 

affects the intensity but does not affect the spectrum. The Gaussian window can be applied 

at different depths. Regardless of the window location in the axial direction, as long as the 

Gaussian width includes the interface between the scatterer and the matrix, the spectrum will 

have the same shape. When the window includes the entire axial length of the scatterer and 

the interface at both the upper and lower sides, the signal results in a spectrum of the highest 

intensity (Figure 3.7). However, there is a more important dependence of the depth resolved 

specta on shifts in the lateral direction (Figure 3.8). The maximum intensity spectra appear 

when the spatial window is in the center of the scatterer and as the window shifts to adjacent 

positions, the intensity falls off and also the waveform shape changes. This is an expected 

outcome because as the beam is shifted laterally only a part of the sphere is in the focal 

volume, and so the beam crosses a smaller effective diameter. To deal with this problem an 

intensity threshold (5 dB above the noise floor) is applied, below which the spectra are 

ignored, or compare three adjacent spectra and assign to each position the spectrum with the 

highest intensity. 
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Figure 3.7. Backscattering spectra dependence on the axial location of the Gaussian window. On the top are regions of 

OCT images of a phantom with 10 μm diameter microspheres and at the bottom are the resulting backscattering spectra. 

Centering on (A), above (B), and below (C) the microsphere only affects the intensity but not the shape of the spectrum 

[173]. 

 

 

Figure 3.8. Backscattering spectra dependence on the lateral location of the Gaussian window. On the top are regions of 

OCT images of a phantom with 10 μm diameter microspheres and at the bottom are the resulting backscattering spectra. 

Centering on (A), left (B), and right (C) of the microsphere affects both the intensity and the shape of the spectrum [173]. 

3.7 Features for OCT image classification 

Feature extraction and selection are important procedures for OCT imaging 

classification. A good feature selection should have effective and discriminating features 

that could lead to accurate classification results. However, simply combining the most 

significant features will not necessarily result in best performance. The goal of feature 

extraction and selection is to identify the best discriminating performance of the feature 

group. Generally, the most important features for classification using OCT images are the 

intensity and structural based features which can be texture, morphological and/or fractals. 

Extraction and selection of effective features is crucial and the general guidelines for 

selecting significant features mainly include four considerations: discrimination, reliability, 

independence and optimality.  
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3.7.1 Texture features  

               Textures are complicated intensity patterns or sub patterns that have characteristic 

properties (brightness, color) and can be seen as a similarity grouping in an image [174]. 

Local sub pattern properties give rise to important characteristics like lightness, uniformity, 

density, roughness, smoothness, etc., of the texture [175]. There are four main steps in 

texture analysis. First, feature extraction to estimate various characteristics of an image able 

to describe its texture properties. Texture discrimination to divide a textured image into 

portions, each matching to a particular homogeneous texture. Texture classification to 

specify to which of a pre-defined set of classes a segmented texture portion belongs and, 

finally, texture shape in order to be able to rebuild the surface (3D) geometry from texture 

information.  

Different methods of texture analysis include structural, statistical, model-based and 

transform approaches. Structural approaches [175], [176] use texture and hierarchy of spatial 

arrangements of different primitives.  To represent the texture, the primitives and rules 

concerning placement must be defined. The selection of a specific primitive and the 

probability of it located at a particular position can be a function of the position or the 

primitives near the position. The resulting symbolic description of the image of the structural 

approach offers several advantages, though, this method is more applicable for synthesis 

rather than analysis. These complicated descriptions can be weak for natural textures because 

of the variability of the different structures (micro and macro) and no clear separation 

between them. In medical image analysis, Serra et al, and Chen et al, proposed a tool, based 

on mathematical morphology, useful for bone image analysis detecting bone microstructures 

[177], [178].  

Statistical approaches do not attempt to understand explicitly the hierarchical 

structure of the texture as the structural methods do. As an alternative, they identify the 

texture indirectly by the non-deterministic properties of the distributions and relationships 

between the image’s grayscale intensity levels. Various techniques based on second order 

statistics (by pairs of pixels) were reported to have very good discrimination results [179]. 

Julesz et al, examined for the first time human texture discrimination in terms of the texture 

statistical characteristics [180]. They reported that the textures in gray scale images are 

distinguished spontaneously only if they vary in second order statistical moments in contrast 

to third-order moments that require much extra effort. This could provide an indication that 

statistics up to the second order could be more significant for automatic processing as well 

[181]. Significant second order statistical features for texture analysis can be extracted from 
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the co-occurrence matrix proposed by Haralick in 1979. Many studies have confirmed that 

those features are very effective for texture discrimination in medical images. Also, research 

based on multi dimensional co-occurrence matrices was shown to surpass wavelet packets 

when applied to texture classification [182], [183].  

Model based texture analyses [184] [185], try to define an image texture by 

generative image and stochastic models using fractal and stochastic approaches. The 

calculated parameters of the model are then utilized for image analysis. In such analysis, the 

biggest problem is the computational complexity arising from the estimation of stochastic 

model parameters. Fractal models have initially been shown to be applicable to natural 

texture, modelling. Nevertheless, they have weak orientation selectivity and are not 

applicable to describing local image morphology when applied to texture analysis and 

discrimination [186], [187].  

Transform techniques for texture analysis, like Fourier, Gabor [188] and wavelet 

transforms [189], identify the image in a space whose co-ordinate system has an 

interpretation that is tightly connected to the properties of a texture (such as frequency or 

size). Techniques based on the Fourier transform perform weakly in practice, because of its 

lack of spatial localization. Gabor filters provide the means for better spatial localization, 

but their usefulness is poor in practice due to the fact that there is usually no single filter 

resolution at which one can localize a spatial structure in natural textures. Wavelet 

transforms appear to have several advantages compared to the Gabor transform. First, they 

can represent of textures at the most suitable scale by varying the spatial resolution and, also, 

there is a wide range of wavelet functions so that one can choose the most appropriate for 

texture analysis for each specific application. These advantages make the wavelet transform 

attractive for texture segmentation. However, it is not translation invariant, which is a 

significant limitation [190]. 

 

Histogram based features (first order) 

The intensity-based histogram is a function displaying the number of pixels in the 

image having a specific intensity level. It is a brief and simple summary of the statistical 

information enclosed in an image. Calculation of the gray level histogram contains single 

pixels and, hence, the histogram incorporates the first-order statistical information of the 

image. By dividing the intensity values with the total number of pixels in the image, the 

approximate probability density of occurrence of the intensity levels can be extracted. The 

shape of the histogram gives various clues as to the character of the image. For example, a 
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narrowly distributed histogram indicates a low contrast image. A bimodal histogram often 

suggests that the image shows an object with a narrow intensity range against a background 

of differing intensity. Various important features can be extracted from the histogram to 

quantitatively describe the first-order statistical characteristics of the image such as mean, 

variance, skewness, kurtosis, energy and entropy. These features can provide valuable 

texture information and can by calculated using the equations below, where p(i) is the 

probability density of occurrence of the intensity levels: 
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The mean is the central moment that gives the average intensity level of the image or texture 

being examined, while the variance indicates the variation of intensity around the mean. 

Skewness is an indication of symmetry. It is zero if the histogram is symmetrical about the 

mean. Otherwise, it is either positive or negative depending whether the distribution is 

skewed above or below the mean. Kurtosis is a measure of flatness of the histogram and 

entropy is an indicator of histogram uniformity. Other possible features, derived from the 

histogram, the minimum, maximum, range and median values. In case of natural images, the 

mean and variance do not really carry the information about the texture. They rather 

represent the image acquisition procedure, such as the average lighting conditions or the gain 
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of a video amplifier. Using images normalized against both the mean and variance can 

provide superior  texture discrimination accuracy than using the actual mean and the actual 

variance as texture parameters [190] [191]. 

 Co-occurrence matrix           

The most significant advantage of using the texture statistics is their simplicity. 

Nevertheless, they cannot entirely characterise texture. Studies have shown that for a large 

class of textures, no texture pair can be distinguished if they agree within their second-order 

statistics [180]. Even though examples opposite to this conjecture were demonstrated, the 

signifigance of the second-order statistics is unquestionable. Thus, statistical techniques, 

utilized in texture analysis, nearly rely on the definition of the joint probability distributions 

of pairs of pixels. 

Haralick et al. in 1979 proposed a the second-order histogram known as the co-

occurrence matrix hdθ(i,j). When the matrix is divided by the total number of neighbouring 

pixels R(d,θ) in the image, it is then serves as the estimate of the joint probability, pdθ(i,j), 

of two pixels, a distance d apart along a given direction θ, having the particular (co-occuring) 

values i and j. There are two forms of the co-occurrence matrices: One symmetric where 

pairs separated by d and –d for a direction θ are included, and another no symmetric where 

only pairs separated by a distance d are used. Typically, given the image f(x,y) with a number 

of G discrete intensity levels, the matrix hdθ(i,j) is determined such that its (i,j)th entry is 

equal to the number of times that 

                                                    f (x1, y1) = i and f (x2, y2 ) = j 

         where 

                                               (x2, y2 ) = (x1, y1) + (d cosθ ,d sinθ )                             (3. 17) 

This produces a square matrix of dimension equal to the number of intensity levels in the 

image, for each distance d and orientation θ. Because of the large number of computations 

required, often only the distances d = 1 and 2 pixels with angles θ = 0°, 45°, 90° and 135° 

are considered as suggested by Haralick. If the pair of pixels in the image are highly 

correlated, the entries in hdθ(i,j) are clustered along the diagonal of the matrix. The 

cooccurrence matrix calculation is shown in Figure 3.9 (d=1). The classification of thin 

textures requires small values of d, whereas coarser textures require large values of d. 

Reduction of the intensity levels number, by quantizing the image to fewer levels of 

intensity, increases the speed of computation but, at a loss of textural information. 
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Figure 3.9. Spatial co-occurrence Haralick calculations.  

The co-occurrence matrix involves G2 components which too large for texture 

analysis with a reasonable computational time. For this reason, a number of new features 

can be calculated using the co-occurrence matrix [176], [191]. Angular second moment 

(energy), correlation, inertia, absolute value, inverse difference, entropy and maximum 

probability are some of these features defined by the equations that follow:  
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Maximum probability: 
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where μx, μy and σx, σy are the mean and standard deviations of the row and column sums 

of the matrix, respectively (associated to the marginal distributions px(i) and py(j)). 

Grey-Tone Difference Matrix 

The Grey-Tone Difference Matrix (GTDM) is a column vector involving G 

components proposed by Amadasun in 1989 in an effort to introduce texture measures 

associated with human perception of textures. Its values are calculated based an estimation 

of the difference between the intensity level of a pixel and the mean intensity calculated over 

a shifting square window centered at the pixel [192]. 

There are five main features extracted from the GTDM to quantitatively describe 

perceptual texture properties. Coarseness which is described by the size of texture primitives, 

contrast, which dependents on the intensity change between neighboring pixels, busyness, 

defined by high spatial frequency of intensity differences, complexity, which dependents on 

the number of different primitives, and mean intensities and texture strength associated with 

clearly visible primitives. The analytical definition of each is given below: 
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Texture analysis has not been performed on OCT images until the early 2000s’.Now 

many studies argue for the importance of texture feature identification in OCT images. 
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Gossage et al., and Gao et al., used the spatial gray level dependence texture features 

(SGLDMs) and texture features derived from the two dimensional discrete Fourier transform 

(DFT) of mouse OCT images and OCT images of human skin, respectively, for tissue 

classification. SGLDM is the spatial histogram of an image that represents the distribution 

of gray scale levels and permits the calculation of the statistical textural features for the 

selected area including correlation, homogeneity, energy, entropy and contrast (inertia). 

Furthermore, texture analysis of OCT images has provided very promising results for OCT 

images from different gastrointestinal tract tissues [81], [193], [194]. These studies were 

based on the hypothesis that the morphological structure loss as the normal histological 

organization as a result of dysplastic tissue architecture transformation, is reflected in the 

texture features, such as lightness, uniformity, density and roughness of OCT images. Hence, 

these features could be used for tissue identification and diagnosis. Alternatively, image 

feature extraction, utilizing the two-dimensional discrete Fourier transform (DFT),was 

proven to be a reliable tool for tissue classification, since DFT features could distinguish 

texture periodicity and orientation. The DFT feature values represent the percentage of signal 

in a specific range of spatial frequencies. Images with big homogenous areas, such as normal 

areas of esophageal tissue, have large DFT feature values within the lower spatial rings. In 

contrast, images with small inhomogeneous regions, like the crypt-like glandular structures 

in Barrett’s esophagus, have large DFT feature values within the higher spatial frequency 

rings [193], [194]. 

Furthermore, other studies report on the use of the center symmetric autocorrelation 

method (CSAC) [81]. To estimate the local center symmetric pattern covariance, utilizing 

two local center-symmetric auto-correlations is needed, linear and rank-order (SAC and 

SRAC), together with a related covariance measure (SCOV) and variance ratio (SVR), 

within pair variance (WVAR) and between pair variance (BVAR) [81]. In contrast to the 

SGLDM features, the specific are rotation invariant measures [195]. 

The textural properties of malignant tissue have been a significant analysis criterion 

for disease diagnosis. Textural heterogeneity of OCT, represented by the variance of 

intensity [196], was utilized to identify various abnormalities. Authors reported that OCT 

can distinguish gastric cancer [84], [197] , [198]. Automated textural analysis for different 

ophthalmologic pathologies is a well established, including OCT image segmentation, 

quantification, and separation of layers for diagnostic purposes [199] [200]. Analogous 

processing has been used to discriminate different types of skin dysplasia [201], ovarian 

cancer [73], esophageal malignancies [202] and coronary artery diseases [203]. 

CHRISTOS PHOTIO
U 



50 

3.7.2  Morphological features     

In general, morphology uses various simple rules and shapes, like squares, circles, 

diamonds, cubes and spheres, to investigate and process the architecture of tissue in images. 

The main goal is to identify important features in images in order to perform high-level 

inspection functions. Examining and assessing complex objects begins with ‘anchor point’ 

characteristics, determined by object morphology. In contrast to texture features estimated 

from the regions of interest (ROIs), morphological features emphasize different local 

characteristics of the image, such as the shapes and borders.  

In a study of gastrointestinal tissue disease classification using OCT images, Garcia-

Allende et al. applied morphological assessment using intensity distributions of different 

image regions. For each image, regions were created based on intensity measure 

segmentation using the k-means algorithm to separate different data points into k clusters in 

an iterative procedure [196]. Figure 3.10 (A and B) illustrates examples of intensity and PR 

images consisting of four clusters. Marvdashti et al. [204], in their study of Bacal Cell 

Carcinoma (BCC), extended this morphological analysis by incorporating the positional 

information associated with pixels within each image region in both the lateral and the axial 

directions. The traditional and extended analysis were carried out on both intensity and phase 

retardation data. The shape and spatial extent of the regions correlated with the histology-

based classification of the B-scan. For both image types, they calculated morphological 

features by segmenting the data within the binary ROI into two through six regions and then 

calculated statistics for each region such as: mean, normalized mean, absolute deviation, 

relative size, standard deviation, skewness, kurtosis. 

 

Figure 3.10. Examples of four (A) intensity and (B) PR image regions calculated using k-means algorithm for 

morphological analysis. The scale bars represent 500 µm × 500 µm. [204] 

Various morphological shapes and borders of tissue are very important for OCT 

image analysis. For example, OCT can accurately image the morphological characteristics 
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of skin tissue microstructure, i.e., stratum corneum, epidermis, dermis, hair follicles, eccrine 

sweat ducts, and sebaceous glands (Figure 3.11) [205].  

 

Figure 3.11. Sequential images obtained by OCT (top left), and the 3D OCT representation of the skin (top right). The 

center illustration demonstrates several skin structures and their corresponding appearance on OCT. The bottom images 

demonstrate thick skin and thin skin, and annotated structures, their corresponding equivalent histology, and OCT images. 

The scale bar in OCT images is 400 μm. [205] 

Luo et al., [51] explored morphological feature analysis classification (MFAC) to 

distinguish stomach malignant tissue. The stomach region of interest (ROI) was examined 

only to a depth of 1.2mm in every image. Normal stomach tissue is a regular structure and 

every layer is homogeneous. Malignant stomach tissue is heterogeneous with alternating 

high and low backscattering crypts that obscure the normal features. Therefore, three 

quantitative features to represent the stomach OCT image characteristics were proposed: the 

standard deviation at the ROI 40th-pixel depth line, the standard deviation of the intensity 

line of 0.25 × 20th + 0.5 × 40th + 0.25 × 60th, and the standard deviation of all 100 contour 

depth lines. The results showed that the three extra morphological features adequately 
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represent the layered structures and are markedly different in OCT images of normal and 

cancerous stomach. (Figure 3.12, Figure 3.13) 

 

Figure 3.12. The image processing of the normal OCT images. (A) The original OCT image; (B) the image of    

preprocessing; (C) ROI image; (D) the image of local standard deviation. (Scalar bar: ~1 mm.). [51] 

 

Figure 3.13. The image processing of the cancerous OCT images (A) The original OCT image; (B) the pre-

processing image; (C) ROI image and (D) the local standard deviation. (Scalar bar: ~1 mm.). [51] 

 Morphological features have also been applied to esophageal OCT images, in an 

effort to distinguish different grades of dysplasia in Barrett’s esophagus (BE) using 

endoscopic OCT (EOCT). The morphological features appeared to play an important role in 

tissue classification. A characteristic of dysplasia in Barrett’s images was reduced scattered 

intensity, probably resulting from the transformed optical properties of the dysplastic region. 

Dysplasia progressed through different stages and was mainly characterized by cellular 

alterations (size, shape and density of nuclei within the layer of epithelium) (Figure 3.14). 

These alterations influenced the scattering by the tissue. The profile of each A-scan in the 

EOCT image was associated to the backscattered power as a depth function and the optical 
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characteristics of the tissue. Qi et al., reported another visible characteristic of EOCT images, 

distinguishing dysplasia in BE, is the lack of the stripe-like patterns that can be seen in 

Barrett’s images without dysplasia (Figure 3.15). These patterns rarely appeared in 

dysplastic EOCT images. Even though the reason these stripes appear was not determined, 

they proved to be a very useful feature for tissue classification [81], [206] , [207]. 

 

Figure 3.14. Esophagus image of the OCT showing a luminal en face view of an area of overlap (yellow arrow) 

between the 3 features of dysplasia (orange is lack of layering, blue is glandular structures and pink is a hyper-

reflective surface). (A) A view looking down from the proximal esophagus. (B) A view closer to the suspected area 

of dysplasia. The en face view is also shown (C). [207] 

 

Figure 3.15. (A) Shows the obvious stripe pattern within a non-dysplastic BE EOCT image. (B) Shows no obvious stripe 

pattern within a high-grade dysplastic BE EOCT image. [81] 
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3.7.3 Fractal features 

Fractal analysis 

Mandelbrot in 1967 proposed fractal geometry and the concept of the fractal 

dimension (FD), to show the self-similar pattern, when he estimated the length of the 

coastline of the United Kingdom [208]. He noticed that the total length of the coastline varied 

when he changed the ruler’s size to calculate the coastline length. Hence, he used the FD as 

a scale that was applied to the ruler. The scale could be utilized as a pointer to characterise 

the roughness of a surface such as the coastline. Because of this description, complicated 

objects can be assessed using the FD. Higher values of the FD imply higher roughness of 

the surfaces. Thus, mathematics can be applied to nature, but nature can also be used to 

create new mathematical areas. Fractals are everywhere, from lightning bolts  to vegetables. 

 In Euclidean theory, various structures consist of basic Euclidean geometries such 

as lines, circles and cubes. A simple straight line has one dimension, while a plane has two 

and a cube has precisely three dimensions. These basic shapes of integer dimensions are 

known as topological dimensions. A fractal curve has dimensions between a straight line 

and a plane (one to two), and a fractal surface has dimensions between a plane and a cube 

(two to three). To calculate the FD of complicated structures, numerous definitions of FD 

were used. A simple definition of the FD is the Hausdorff dimension, which can be defined 

as follows:  

                                           
0
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r
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

                                                         (3. 30) 

where Nr is the number of sets of cells (a ruler used to measure map coastlines) and 1/r is 

the magnification factor that used to decrease the cell in every spatial direction. An example 

of a geometric structure with a non-integer dimension is the Koch curve (Figure 3.16). The 

straight line E0 is the initiator and has a length of one. The middle third of the line E0 is 

substituted two lines that each has the same length (1/3) as the remaining lines on either side. 

Therefore, the length of the line E1 is now 4/3. This form determines a rule that is used to 

make other new forms. Consequently, the curve E0 is used as the initiator, and the curve E1 

as a generator for creating the Koch curve. Each line is replaced by four lines, each 1/3 the 

length of the initial one. Thus, the lengths of the lines E2, E3, and F are 16/9, 64/27, and 

256/81, respectively. As shown in Figure 3.16, the total length of the curve rises with every 
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step and leads to an infinite length. By using equation 3.29 the FD could be calculated as ln4 

/ ln3 = 1.26.  

 

Figure 3.16. Koch curve. Initiator (E0) and generator (E1) are used for constructing the Koch curve. Curves E2, E3, and 

F are levels 2, 3, and 4 in the construction of the Koch curve, respectively. [209] 

Additionally, the estimation of the coastline FD could be estimated as the Koch 

curve, using a box counting method. In the measurement of the coastline, the number of 

scaled ruler is also counted as well as the size of the cell. Equation 3.29 is utilized in the 

estimation of the FD. Note that the cell is a box shaped cell (a square) for two-dimensional 

objects and that the cell is a cube for three dimensional objects (Figure 3.17). The box 

counting method is the most common technique to calculate the FD in different fields 

because of its ease to use. Nevertheless, the box counting method was found to miscount the 

number of boxes (cells), something that leads to erroneous calculations of the FD [210], 

[209]. 

 

Figure 3.17. Sketch of determination of the number of boxes by the differentiate box counting method. [210] 
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Fractal analysis of OCT images  

The above method can be adapted to estimate the FD of OCT images. If a grayscale 

OCT image is used in cartesian coordinates (x,y,z), the coordinates (x,y) represent a 2D 

location on the image plane, and the coordinate (z) indicates the intensity value. Using the 

2D differentiate box counting technique, the image plane is wrapped by the non overlapping 

grids. Assuming the gray scale image size is 𝑊 × 𝑊, then the non-overlapping grid size is 𝑠 

× 𝑠 and 𝑊/2 ≥ 𝑠 ≥ 2. If 𝐺 is the number of gray levels, the value 𝑠′ (in z dimension) can be 

obtained from:    𝑠′ = 𝐺𝑠/𝑊. Therefore, the size of the box that is used to cover the 3D spatial 

surface is 𝑠 × 𝑠 × 𝑠′ (Figure 3.17). Assuming that the minimum and maximum gray level in 

the (𝑖, 𝑗) grid were in the box number 𝑘 and 𝑙, respectively, the number of the boxes covering 

the surface in the grid (𝑖, 𝑗) is: 𝑛𝑟 (𝑖, 𝑗) = 𝑙 − 𝑘 + 1. Summing the contributions across all 

grids, we have  

                                                    
,

( , ),r ri j
N n i j                                                       (3. 31) 

where 𝑁𝑟 is counted for different values of 𝑟. Then, the fractal dimension of 2D OCT image 

can be estimated from the least square linear fit of log (Nr) divided by log (1/𝑟) as in equation 

3.29. [210].  

The FD has been used in the analysis of OCT images to examine the structural 

variations of biological tissues. Fluearu et al. utilized the box counting method to calculate 

the FD for porcine arterial tissue characterization [211]. Sullivan et al. used the same 

technique to calculate the FD for breast malignancy classification [212] (Figure 3.18). 

Furthermore, human skin studies reported that melanomas had a larger FD than basal cell 

carcinomas and benign melanocytic nevi when two fractal techniques were used in the 

calculations. The results could be explained by the fact that melanomas appeared to have 

heavily disorganized vessels with confusing branching. Both the FD and the differential box 

counting dimension could be utilized as an index to discriminate melanomas from the basal 

cell carcinomas and the benign melanocytic nevi [213]. 
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Figure 3.18. Microscopy images of breast tissue [(A), (D), and (G)], along with the corresponding OCT images [(B), 

(E), and (H)], and distributions of fractal dimension values [(C), (F), and (I)] for the entire region. The tissue 

classifications for these regions are adipose [(A)–(C)], cancer (invasive ductal carcinoma) [(D)–(F)], and stroma [(G)–

(I)]. Stromal regions within the adipose tissue (A) and adipose cells within the cancer (D) and stromal tissues (G) are 

heterogeneities that may broaden the measured fractal dimension distribution. [212] 

 In ophthalmology, researchers evaluated the fractal properties of the retinal 

vasculature for diagnostic purposes. Most of them have used variations in the FD to 

distinguish and diagnose eye disease [214], [215]. Generally, an overall measure 

characterizing the whole branching pattern of the retinal vascular network has been proposed 

as a unique parameter. Fractal analysis of OCT images has also been used to quantify 

photoreceptor rearrangement and vision restitution, recognize glaucomatous impairment at 

early stage in the retinal nerve fiber layer and as an indicator of other pathological 

syndromes. Furthermore, it has been applied to discriminate normal healthy eyes from 

diseased eyes with early neural loss in multiple intraretinal layers (multiple sclerosis) using 

a local approach through segmentation of the numerous cellular layers of the retina and 

representation of texture features on OCT images [216]. Somfai et al., [217] employed a 

power spectrum approach to perform fractal analysis of the layered retinal tissue to diagnose 

diabetic retinopathy. This study applied fractal analysis on each A-scan of the segmented 

regions. Hence, only the irregularity or roughness lengthways the A-scan contributed to the 

1D fractal analysis and all other directions were unknown.  
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3.8 Medical Imaging Classification 

3.8.1 Introduction 

Machine learning (ML) is a field of Artificial Intelligence that solves real world 

problems by equipping computers with learning skills. It emerges from the combination of 

statistics, which seek to discover relationships in data, and computer science, while 

concentrates on efficient computing algorithms. This relation, originating from the 

computational challenge of building statistical models from massive data sets, which can 

include enormous amount of data points. ML is divided into two main categories: supervised 

and unsupervised learning. Supervised learning aims to predict a known output or target. In 

contrast, in unsupervised learning there are no known outputs to predict, but instead, the aim 

is to find recurring patterns or groups within the data [218].  

ML is extensively used for biomedical signal and image processing. Since the 

understanding of biological systems is not complete, there are important features and 

information in biological data that are not readily obvious. In addition, the interactions 

between different subsystems are not easily recognizable. Biological data are also 

characterized by substantial variability, caused either by internal mechanisms or by external 

stimuli. Associations between the different parameters can be too complex to be solved with 

classic techniques. ML methods can help model the nonlinear relationships that exist in these 

data, and extract parameters and features which can improve diagnosis and management of 

disease [219], [220], [221].  

The main machine learning applications in medicine are smart electronic health 

records, drug discovery, biomedical signal and image processing and disease identification 

and diagnosis. In most cases of disease identification and diagnosis, the development of ML 

systems is considered as a trial to imitate the medical experts' knowledge in the recognition 

of disease. ML permits computer programs to learn from data, develop a model to recognize 

common patterns and make decisions based on collected knowledge and, in addition, work 

with the incompleteness of medical data sets. Computer medical image analysis systems can 

be very valuable to the medical diagnosis process. The goal is to enhance the clinician’s 

ability to find disease regions while decreasing the need for intervention, and enhancing the 

capability for precise diagnosis [222]. The need for more efficient techniques of early 

detection of disease by computer assisted medical diagnosis systems is obvious [223].  
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3.8.2 Machine learning in medical imaging 

During the last decades, increasing amounts of data are extracted from various 

biomedical imaging systems, requiring ML methods that can be applied to growing volumes 

of information and detect more complex patterns than human medical experts in the 

healthcare domain can process [224]. ML models are trained to facilitate the assessment of 

medical images and enhancement of medical diagnosis procedures. There are various 

established models which depend, for example, on employing pixel level morphological 

procedures for tumor edges extraction [225], cell geometric characteristics for cell 

recognition [226], texture analysis using different ML methods such as Naïve-Bayes (NB), 

Neural Networks (NN), Decision Trees (DT),etc., [227], [228], [229]. However, 

identification and classification of early disease changes in human tissue in medical images 

is very difficult due to the complicated architecture and structural morphology and the 

subtlety of early stage abnormalities. Abnormal or diseased tissues are regularly diffused 

with weak contrast. Furthermore, the majority of human tissues have different size and shape 

characteristics and require computational models with advanced plasticity and capacity in 

contrast with nature based models [230]. Lately, novel models have reported enhanced 

results in various medical image analysis fields such as brain tumor discrimination [231], 

knee cartilage segmentation recognition [232], diagnosis of muscle diseases using muscle 

ultrasound [233]. Still, the application of ML methods to medical image classification 

remains problematic having critical limitations in terms of utility and applicability. 

Recently, several biomedical imaging systems and various ML methods have been 

utilized for different tissue detection applications. Du et al., [227] evaluated unsupervised 

ML algorithms (k-means, Expectation Maximization (EM), threshold-based segmentation, 

and Global Minimization of the Active Contour (GMAC) model) for segmentation of three 

types of fluorescent cellular images from fluorescence microscopy. The process included 

images of synthetic cell, nuclei images, and brain cell images. They concluded that k-means 

clustering, threshold-based segmentation, and GMAC had better performance than EM that 

only had a better sensitivity. In addition, in another study showed that the Decision Tree 

algorithm had the best accuracy result compared to ANN’s, association rule-based classifier, 

NB classifier, SVM, logistic regression, and Bayesian networks on breast tumor features 

from mammograms [228]. In other studies, hybrid models for brain tumor recognition from 

MRI [234], rank error-based learning on contrast-enhanced MRI (CE-MR) images and a 

mixture of rough set and support vector machine (MRS) models [235] were also used. 

Feature selection and extraction were also addressed by practicing Rough Set Theory to 
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eliminate unnecessary features [236] and unsupervised feature extraction methods with a K-

SVM model that hybridizes a k-means algorithm with an SVM on breast cancer datasets 

[229]. This model delivered the best accuracy (97.38%) and the best computational time on 

a public dataset of breast cancer when compared with different feature selection methods 

with a heuristic approach. Ensemble learning is another trend that has been proposed to 

disease identification by gathering base models.  

Besides these conventional ML procedures, some special learning structures were 

also proposed for medical image processing. The first example is stream data learning. 

Usually, the training of ML algorithms is performed by utilizing static datasets. However, 

new patients and new data present continuously described as online or real-time data, 

incremental data or stream data. When new data sets arrive, if an ML algorithm is completely 

trained again on the updated batch dataset (the batch dataset is updated by adding the new 

into the prior data), the model keeps ignoring old patterns or patterns with insufficient 

representation, something that is also known as unlearning. For this reason, an incremental 

learning model is used to deal with the unlearning problem. Molina et al., introduced an 

augmented ensemble learning algorithm applied for prostatic cancer identification [237]. In 

that study, the new augmented learning algorithm was learning from new incoming data 

without ignoring the prior patterns. 

Recently convolutional neural networks (CNNs) for tissue segmentation and 

classification using a Deep-Learning approach have become very popular. Research includes 

application to GI tract and dental images, noise removal tasks, brain tumour segmentation, 

breast cancer, thyroid cancer and retinal diseases recognition [238], [239], [240], [241], 

[242]. CNNs are deep artificial neural networks that are used primarily to classify images, 

cluster them by similarity and perform object identification within scenes [243], [244], [245], 

[246], [247]. They are algorithms that can identify faces, tumours or any other aspect of 

visual data. The strength of CNNs arises from their deep structure which allows the 

extraction of features from various abstraction layers [248], [249], [250], [251]. Basically, 

all CNNs are made of a series of layers defined by a specific number of filters or kernels that 

mainly have the role of feature detectors from a set of input images. Sliding the filters on the 

input images and calculating the convolution of these filter matrices and input image matrix 

produces a set of convolved features. The meaning of learning in a CNN is to train the CNN 

architecture with the values of these convolutional operations [252] [253], [254].  
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3.8.3 OCT image classification 

Experts using OCT images of different tissues, usually try to perform disease 

diagnosis manually expending valuable effort and time. Sommerey et al., tried to identify 

the fat, thyroid, parathyroid, and lymph using OCT with manual assessment, which attempts 

to correlate the image findings to the corresponding histology [35].  

Image assessment with morphological methods is a common processing method and 

is utilized for OCT image analysis as shown by Macedo et al. [255]. The results of these 

approaches are extremely sensitive to image properties such as noise and intensity variations. 

The performance of morphological methods is also restricted to images with small 

dimensions and not very complex patterns. For large images with more complicated patterns, 

these operations require a lot of computational time while, at the same time their 

performance is limited, due to the image variations.  

OCT image assessment using ML has been recently introduced, especially in 

volumetric images, which pose numerous challenges pertaining to classification, 

discrimination and segmentation. A well known process to implement medical image 

segmentation is the development of different shape models like statistical shapes [256] and 

deformable [257] and level-sets models [258]. Studies also demonstrate that pixel/portion 

classification methods can reach encouraging performance while at the same time be less 

influenced by image characteristics like noise and artifacts for segmentation tasks [259]. 

Nam et al. demonstrated an automatic recognition paradigm of vessel lumen and stent 

struts utilizing a classic feature extraction approach [260]. In this study, an OCT system was 

used with a catheter able to scan the inner structure of blood vessels and gather OCT images 

[255]. Image preprocessing and feature extraction steps were performed during the feature-

based ML procedure. Since OCT images suffer from speckle noise and also other artifacts, 

the success of the procedure was limited [261]. Aggressive preprocessing for speckle noise 

elimination and artifact correction are crucial for successful feature extraction leading to 

accurate diagnosis as shown by Baghaie et al. [259]. 

Fuller et al. and Garvin et al. introduced ML with SVMs applied to semi-automatic 

segmentation and examination of a graph-theoretic segmentation of  retinal layers’ for 

human intraretinal layer segmentation [261], [262]. Also, Liu et al., utilizing Principal 

Component Analysis (PCA), Local Binary Pattern (LBP) and SVMs, demonstrated a ML 

method to distinguish normal macula and multiple macular diseases [263]. The algorithm 
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was tested on 326 OCT scans from 136 patients. An energy-decreasing active contour 

approach for intra-retinal layer detection using OCT data collected from 7 rats was also 

proposed by Yazdanpanah et al. [264]. In addition, Xu et al. used a boosting model for 

glaucoma detection by grouping adjacent pixels to a super pixel [265]. Lu et al., resorted to 

a Decision Tree (bagged) classifier for stent struts recognition in human coronary and 

Anantrasirichai et al., utilized PCA and SVM algorithms for glaucoma discrimination based 

on texture analysis [266] , [267]. Multi-scale Histogram of Oriented Gradients (HOG) 

descriptors as features were used by Srinivasan et al., to achieve retinal pathology 

recognition with the utilization of an SVM algorithm [268]. The constructed OCT dataset 

from their study was utilized later by various researchers [269], [252]. 

Another study from Lenz et al., demonstrated the application of k-means clustering 

on Short Time Fourier Transform (STFT) features to detect brain healthy and malignant 

regions [270] (Figure 3.19). LBP and HOG techniques were used together by Alsaih et al. 

for feature extraction and were also evaluated with an SVM algorithm for diabetic macular 

edema automatic recognition [271]. Moreover, Wang et al., introduced a study of the 

application of Linear Configuration Pattern (LCP)-based features and Sequential Minimal 

Optimization (SMO) which resulted in a very good outcome for retinal pathologies detection 

[272].  

 

Figure 3.19. Processing model for ex vivo brain tumour classification. [270] 
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Luo et al., developed a classification method based on morphological feature analysis 

(MFAC), in combination it with ML, to identify stomach cancer. They, first, extracted five 

quantitative morphological features from OCT images using the structured analysis. Then, 

they evaluated five ML classifiers for the classification process (SVM’s, the K-nearest 

neighbor, random forest, logic regression, and conventional threshold method). The results 

showed that features specifically created for stomach malignancies were significantly better 

than the classic morphological image features with over 95% accuracy for all five classifiers 

[51]. Allende et al., also applied morphological analysis of OCT images for automated 

classification of gastrointestinal tissues using several types of ML methods with sensitivity 

values up to 99.97%, specificity up to 99.85% and accuracy up to 99.88% depending on the 

features selected for classification [196].  

Qi et al., developed computer-aided diagnosis algorithms for dysplasia in Barret’s 

esophagus classification using an endoscopic OCT system (EOCT). They evaluated the 

performance of four types of multivariate analysis for discriminating dysplasia in BE: linear 

and quadratic discriminant analysis (LDA & QLA), K-nearest neighbor (k-NN), two types 

of neural networks (NNs) (single-hidden-layer NN (SLNN) and learning vector quantization 

(LVQ) network), and classification trees. The results indicate that their CAD system has the 

potential to detect accurately the presence or absence of dysplasia for surveillance of 

Barrett’s esophagus with an accuracy of 84% for the classification of non-dysplastic vs. 

dysplastic BE tissue [81]. In addition, Ughi et al. created a method for automated 

segmentation and characterization of the esophageal wall in vivo using a segmentation and 

classification algorithm. Their procedure could effectively describe the diseased esophageal 

wall with an A-Scan line classification accuracy of 94% with a sensitivity and specificity of 

94% and 93%, respectively (Figure 3.20, Figure 3.21) [273]. 

 Another study examined the texture and optical features of the OCT images of 

human breast tissue at different resolutions, and created computational methods for 

differentiation of major tissue types found in OCT images, such as adipose and malignant 

lesions. Relevance vector machine (RVM), a Bayesian frame work of support vector 

machine, was used to perform classification on adipose tissue against solid type of tissue, 

and invasive ductal carcinoma (IDC) against normal stroma tissue with an overall accuracy 

of 84%, sensitivity of 89% and specificity of 71% [68].   
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Figure 3.20. Flowchart of the entire automated processing framework used for esophageal wall characterization. [273] 

 

 

Figure 3.21. Fully automated algorithm for dysplasia detection in BE and quantification. Inset: zoomed-in view.(Scale bars: 

1 mm. [273] 

Table 3-1 summarizes ML research applied to OCT images for different tasks. It is clear that 

the majority of these ML studies are related to ophthalmological pathologies. The majority 

of the approaches before 2017 applied feature-based ML techniques with image 

classification. Since 2017, convolutional neural networks (CNNs) are more routinely used 

for the most tasks. 
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TABLE 3-1. MACHINE LEARNING STUDIES USING OPTICAL COHERENCE TOMOGRAPHY 

 

Study Clinical 

Application 

Method ML 

Algorithm 

Qi 2006 [81] Detection of 

dysplasia In 

Barret’s 

Esophagus 

Image 

classification 

PCA 

Classifier 

Fuller 2007 [261] Retinal layers 

segmentation 

Voxel 

classification 

RBF 

Kernel 

Lingley 2008 [274] Urinary 

bladder 

cancer 

Image 

classification 

Decision 

Trees 

Liu 2011[263] Macular 

diagnosis 

Image 

classification 

RBF 

Kernel 

Lu 2012 [266] Stent struts 

detection 

Image 

classification 

Boosted 

Decision 

Trees 

Ding 2013 [275] Retinal fluid 

segmentation 

Image 

classification 

Graph cut, 

Split 

Bregman, 

Random 

Forest 

Xu 2013 [265] Glaucoma 

detection 

Pixel 

classification 

Logit 

Boost 

Lang 2013 [276] Retinal layers 

segmentation 

Pixel 

classification 

Random 

Forest 

Albarrak 2014 [277] Macular 

Degeneration 

diagnosis 

Image 

classification 

Linear 

SVM 

Yoshida 2014 [278] Glaucoma 

detection 

Image 

classification 

Random 

Forests 

Srinivasan 2014 [268] Retinal 

diseases 

recognition 

Image 

classification 

SVM 

Xu 2015 [265] Retinal fluid 

segmentation 

Voxel 

classification 

KNN 

Kafieh 2015 [279] Retinal 

pathologies 

recognition 

Boundary 

localization 

Complex 

K-SVD 
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TABLE 3-1. MACHINE LEARNING STUDIES USING OPTICAL COHERENCE TOMOGRAPHY  

 

Study Clinical Application Method ML Algorithm 

Miri 2015 [280] Segmentation of optic disc Pixel 

classification 

Random Forest 

Bogunovic 2015 [281] Retinal layers segmentation Voxel 

classification 

ANN 

Gao 2015 [213] Skin cancer Image 

classification 

ANOVA followed 

by Newman–Keuls 

post-hoc analysis 

Marvdashti 2016 [204] Skin Bacal cell carcinoma Image  

classification 

Linear SVM) , 

 k-nearest neighbor 

Nam 2016 [260] Coronary stent strut detection  Image 

classification 

ANN 

Lenz 2016 [270] Brain classification Clustering  K means clustering 

Wang 2016 [272] Macular Degeneration 

diagnosis 

Image 

classification 

Sequential minimal 

optimization  

Gan 2016 [282] Atrial tissue classification Image 

classification 

Relevance vector 

machine 

Alsaih 2016 [271] Diabetic macular edema 

recognition 

Image 

classification 

SVM 

Lu 2017 [266] Stent struts detection Image 

classification 

Ada Boost 

Lu 2017 [283] Retinal fluid segmentation Pixel 

classification 

Random Forest 

Fang 2017 [284] Retinal layers segmentation Image 

classification 

CNN 

Karri 2017 [269] Retinal diseases detection Image 

classification 

CNN 

Breger 2017 [285] Retinal fluid segmentation Image 

classification 

Random forest, ANN 

Lee 2017 [286] Macular edema segmentation Pixel 

classification 

CNN 
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TABLE 3-1. MACHINE LEARNING STUDIES USING OPTICAL COHERENCE TOMOGRAPHY 

 

Study Clinical Application Method ML Algorithm 

Moiseev 2018 [287] Segmentation of tumors Pixel 

classification 

Random Forest 

Gholami 2018 [251] Recognition of ocular 

pathologies 

Image 

classification 

Meta Learning 

Gessert 2018 [288] Instrument pose tracking Regression ANN 

Kolluru 2018 [250] Voxel plague detection Voxel 

classification  

Decision Trees 

Devalla 2018 [249] Optic nerve classification Pixel 

classification 

CNN 

Rong 2018 [252] Retinal discrimination Image 

classification 

CNN 

Sawyer 2018 [289] Cancer of the ovaries Image 

classification 

Active contour 

He 2018 [248] Retinal layers segmentation Pixel 

classification 

CNN 

Aslam 2018 [290] Macular Degeneration 

diagnosis 

Regression ANN 

Zhang 2018 [240] Classification of thyroid tissue Image 

classification 

Deep convolutional 

networks(DCGAN,WGAN) 

Lu 2018 [239] Segmentation of thyroid tissue Image 

classification 

Weighted CNN 

 

Palomar 2019 [247] Multiple sclerosis detection Image 

classification 

Decision trees, SVM 

Multilayer Perceptron 
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TABLE 3-1. MACHINE LEARNING STUDIES USING OPTICAL COHERENCE TOMOGRAPHY 

 

Study Clinical Application Method ML Algorithm 

Butola 2019 [42] Breast cancer detection Image 

classification 

CNN 

Abbasi 2019 [241] Image noise removal Unsupervised CNN 

Dubey 2019 [246] Breast cancer detection Image 

classification  

Ensemble Learners 

Fang 2019 [291] Detection of macular pathologies Image 

classification 

CNN 

Rong 2019 [252] Eye pathologies evaluation Image 

classification 

CNN 

Li 2019 [253] Image segmentation of 

Esophagus 

Image 

segmentation 

U-net 

Li 2019 [254] Retinal pathologies recognition Image 

classification 

Transfer Learning 

Lu 2019 [292] Retinal fluid segmentation Pixel 

classification 

Random Forest, U-net 

Christopher 2020 [245] Glaucoma Detection Image 

classification 

Deep CNN 

Salehi 2020 [242] Dental caries classification Image 

classification 

CNN 

Hossbach 2020 [243] Angiography evaluation Image  

classification 

U-net 

Lee 2020 [244] Plaque characterization Image  

classification 

Hybrid CNN 
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USING SPECKLE TO MEASURE TISSUE 

DISPERSION IN OCT 

4.1 Summary 

This chapter proposes a new technique for estimating the dispersion using the image 

speckle to calculate the psf degradation and does not rely on distinct and strong reflections. 

Since speckle is present in most biological samples, this technique is applicable to any tissue 

and can be implemented in vivo and in situ. The proposed method was verified ex vivo with 

Group Velocity Dispersion (GVD) values comparable to methods described in the literature. 

Further more, its applicability to cancer diagnosis was evaluated on a small set of 

gastrointestinal (GI) normal and adenocarcinoma OCT image resulting in with 93% 

sensitivity, 100 % specificity and 96 % accuracy. These promising results indicate the 

potential of the proposed method to become an important diagnostic tool, but it should be 

further investigated to elucidate its advantages and limitations [293]. 

4.2 Theory 

          The methods of dispersion measurement from OCT images, described in section 3.2.1, 

are not suitable for in vivo measurements and are limited only to particular applications 

where clear and strong, single, reflections are present. A new novel method is proposed here 

that can be applied in the absence of such reflectors. It is based on the estimation of the point 

spread function (PSF) which is extracted from the dispersion-induced variation of the 

speckle pattern.  

In addition to other image features, OCT speckle is also affected by dispersion. The 

induced change in the speckle size can be used to estimate the image PSF broadening and, 

subsequently, to calculate the GVD. However, speckle variations, given the randomness of 

the speckle signal, are difficult to estimate. The approach proposed here is to compare small 

portions of an OCT image (of the order of twice the width of the system resolution), denoted 

as is(z), which contain mainly speckle. Such a section from the surface of the sample, is(0), 

where there is no dispersion-induced broadening, and one at a depth z, is(z), where the effects 
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of dispersion are visible. The two images are related by a depth-dependent speckle-degrading 

impulse response, sdf(z), such that 

                 
     * 0s si z sdf z i

                  

        (4. 1) 

where the * denotes the convolution of the two terms and z, in the solution presented here, 

takes the values of z=d0, 2d0, …, L. To obtain an estimate of sdf(z), in a practical and accurate 

manner, a Wiener-type minimization can be used [294]. For that purpose, the following least 

mean square error function, ε(z), is defined 

 2
( ) ( ) ( )* (0)s sz E i z sdf z i  

 

       (4. 2) 

where E denotes expectation. Minimizing the error function, ε(z), using a Wiener 

deconvolution approach, results in an estimate for sdf(z). In analogy to sdf(z), there exists 

another impulse response, rdf(z), of a similar form, which describes the dispersion-induced 

degradation of the system resolution. For calculating the GVD, it is not necessary to 

explicitly derive the rdf since only its width is required, which can be estimated from 

           

( )
( )

(0)

sdf

rdf o

sdf

d z
d z d

d


 

        (4. 3) 

where d0 is the system resolution and dsdf(z) is the width of the sdf at depth z. The result of 

the convolution of the rdf with the OCT image is a degraded image with resolution width 

dd(z) given by 

             
   

22

0( ) ( )d rdfd z d d z 
 

   (4. 4) 

since the convolution of two Gaussians, the point spread function (psf) and the rdf, results 

also in a Gaussian with a width that is the root mean square of the widths of the two original 

functions. Given this width, dd, the GVD can be calculated using equation   (3. 2).  

4.3 Experimental methodology 

4.3.1 Ex vivo verification of image speckle Method 

In order to validate the speckle-based technique, pure collagen gel, porcine muscle 

and adipose tissue samples were imaged ex vivο. Τhe GVD was estimated both using the 

novel proposed method as well as the standard PSF degradation method, described in section 
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3.2.1 which served as a reference for verification of the results. The pure collagen samples 

served the purpose of initially testing the proposed methodology using a sample of known 

dispersion under well-controlled conditions. In addition, the ex vivo tissue samples served as 

an initial test of the applicability of the technique to highly scattering biological material. A 

swept source OCT system, with a center wavelength of 1300 nm and a resolution of 12 μm 

in air, was used to image sample sections placed over a reflector (microscope slide) which 

also served as a reference for the actual thickness and system resolution measurements. Eight 

images were taken from each different type of sample.  

For each image, the Gaussian width without dispersion (d0) was measured from the 

free-space portion of the reflector (i.e. the portion not covered by the sample). The broadened 

Gaussian width (dd) was estimated from the width of the reflector below the tissue. Using 

the location of the glass surface, the actual thickness of the sample (L) was also calculated 

as the distance from the top surface to the extension of the free-space reflector line (Figure 

4.1). Given these parameters, the GVD was estimated using equations   (3. 2)  and (3. 3). In 

addition, the index of refraction was also calculated, as described in the literature [110]. The 

thickness of the sample, L, and the additional optical path length delay L’, calculated from 

the OCT images (Figure 4.1), were used to get the index of refraction based on the equation 

(3. 10. These values were used for verification of the results.  

 

Figure 4.1. Values measured for verification purposes 

The GVD was also estimated using the speckle-based technique as described above 

in 4.2. Given the randomness of the speckle and the noise in its width estimate, dsdf was 

estimated at various depths and the broadening was calculated from the slope of a linear fit 

to those values (Figure 4.2). The median of the GVD from 250 individual A-Scans from 

each image as well as the standard deviation of the median GVD for all images of each 

sample type were used to compare the results and evaluate the accuracy of the both methods. 
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Figure 4.2. The novel presented technique was applied to regions of interest (ROIs) of speckle at various depth within the 

sample 

 

4.3.2 Application to GI images 

To demonstrate the applicability of the novel speckle-based method to human tissue, 

the technique was applied to OCT images of normal and cancerous colon obtained from 

patients who were scheduled for surgical excision of their tumors. Eleven normal and 

fourteen abnormal images were included in this preliminary study. Since the actual tissue 

thickness could not be measured, it was estimated from the distance measured by OCT in air 

divided by an average index of refraction of 1.4 (which, despite being an approximation, it 

does not deviate more than 5% from the range reported in the literature). The GVD was 

estimated up to a depth of approximately 0.5 mm (as measured in air) for 500 A-Scans per 

image. Using the statistics of these GVD measurements (such as mean, standard deviation, 

and other moments.) the samples were classified as normal or abnormal using Linear 

Discriminant Analysis (LDA) and leave-one-out-cross-validation (LOOCV). 

4.3.3 Results 

The new proposed method was verified ex vivo using the same samples. Examples 

of the images collected are shown in Figure 4.3, Figure 4.4 and Figure 4.5.The median GVD 

for each type of sample as well as the standard deviation between the images of each type 

were calculated as described in section 3.2.1, 4.2 and are shown in Table 4-1. CHRISTOS PHOTIO
U 
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Figure 4.3. (A) OCT image of a pure collagen gel placed over a reflector (green line: top surface, red line: bottom 

surface, blue line: reflector, L: tissue thickness at that particular location). (B)  Zoomed portion of the bottom surface 

(red) with the FWHM (yellow). (C) The FWHM of the reflector calculated at each of 250 A-Scan. 

 
Figure 4.4 (A) OCT image of porcine muscle placed over a reflector (green line: top surface, red line: bottom surface, 

blue line: reflector). (B)  Zoomed portion of the bottom surface (red) with the FWHM (yellow). (C) The FWHM of 

the reflector calculated at each of 250 A-Scan. (D) The OCT image with the GVD overlaid in a pseudo-color hue 

scale  

 

 

Figure 4.5. (A) OCT image of adipose tissue placed over a reflector (green line: top surface, red line: bottom surface, 

blue line: reflector). (B)  Zoomed portion of the bottom surface (red) with the FWHM (yellow). (C) The FWHM of 

the reflector calculated at each of 250 A-Scan. 

The implementation of the speckle-based approach included the division of each 

OCT image in smaller strips (twice the width of the system resolution), containing mainly 
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speckle (Figure 4.6 A and B), and estimating the sdf (Figure 4.6 C) with a Wiener-type 

deconvolution as described before. The width of the sdf for all A-Scans was measured and 

the mean calculated (Figure 4.6D). The process was repeated as a function of depth Figure 

4.6 E). The dispersion-degraded image resolution width, dd, was, then, estimated from a 

linear fit of sdf mean width (Figure 4.6 F). This technique was applied to the same samples 

as the standard method (Figure 4.7) and the results were compared to experimentally validate  

the new methodology. 

 

TABLE 4-1. GVD MEASURED WITH THE PSF DEGRADATION AND SPECKLE-BASED METHOD AND MEAN INDEX OF 

REFRACTION MEASUREMENTS 

 PSF degradation method Speckle-based method  n 

 Median Std Std Median Std Std  Median Std Std 

 (fs2/mm) (fs2/mm) (%) (fs2/mm) (fs2/mm) (%)    (%) 

Collagen 135.72 5.77 4.25 135.62 12.70 9.36  1.369 0.003 0.24 

Muscle 136.86 16.79 12.14 133.08 13.59 10.21  1.427 0.032 2.25 

Adipose 249.90 28.65 11.25 267.20 55.60 20.81  1.630 0.128 7.70 

 

 

 

 
Figure 4.6. (A) Portion of the image (80x250 pixels) containing mainly speckle from just below the top surface (z = 0) 

of the sample of Figure 4.3. (B) Similar portion from just above the bottom surface (z = L). (C) The SDF resulting from 

the deconvolution. (D) The width of the SDF for the 250 A-Scans in (C). (E) The mean SDF width as a function of 

depth with a linear fit (red line) illustrating the increase as a function of the depth. (F) The degraded width of the PSF 

as a function of depth calculated from the linear fit in (E). 

 
Figure 4.7. (A) OCT image of Fig. 1. (D) The OCT image with the GVD, calculated using the speckle-based method, 

overlaid in a pseudo-color hue scale. 
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The comparison between the standard resolution (PSF) degradation method and the 

proposed speckle based technique is shown in Table 4-1. The median GVD values agree 

within < 7% although the resolution (PSF) degradation method appears to be slightly more 

robust with standard deviation of measurements varying between 4-12 % vs. 9-21 %. 

In addition, the GVD was also estimated for the normal and abnormal colon tissues 

using the speckle-based method (Figure 4.8). For each image, the moments of the 

distribution of the GVD values were calculated. Several of these parameters exhibited 

statistically significant differences with the most significant being the median with a p- value 

of 0.0007 (Figure 4.9). A recombination of these parameters using one-way Multivariate 

Analysis of Variance (MANOVA) applied for comparing the multivariate means. The 

resulting canon (C1), i.e. the linear combination of the original variables that has the largest 

separation between groups, produced the maximal statistical difference in the two 

populations. In addition, using the first six statistical moments of the GVD values and Linear 

Discriminant Analysis (LDA) with leave-one-out-cross-validation (LOOCV), the samples 

were classified with 93% sensitivity and 100 % specificity (96 % correct classification). 

 

 
Figure 4.8. (A) OCT image of normal colon tissue (green line: top surface, red line: 0.5 mm depth). (B) Mean sdf width as a 

function of depth for (A). (C) Degraded Gaussian width, dd, as a function of depth calculated from (B). (D) Overlay of the 

OCT image (gray scale) and the GVD for each A-Scan in a pseudo-color hue scale. (E-H) The same as before for colon 

adenocarcinoma. 
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Figure 4.9. (A) Distribution of GVD values from normal and abnormal colon. (B) Distribution of the median of the GVD 

for each image exhibiting statistically significant differences. (C) Recombination of the statistical moments of the GVD 

values using MANOVA, exhibiting maximal statistical separation. 

4.4 Conclusions 

The GVD variations that exist between normal and malignant tissues could be useful 

in the detection of changes associated with early disease leading to an improvement of the 

diagnostic utility of OCT. However, most standard techniques to estimate sample dispersion 

rely on strong and distinct, single, reflections from which the width, shift or phase can be 

determined.  Unfortunately, it is very rare to have such reflections in biological tissues. The 

new technique, proposed here, can estimate the psf degradation from the speckle pattern and 

is, thus, far more appropriate for in vivo imaging. This novel approach was shown, 

experimentally, to be effective in estimating the GVD with results comparable to the 

standard technique described in the literature for both low and highly scattering samples. In 

addition, it is sensitive enough to discriminate dispersion changes between normal and 

cancerous tissues. The success of these preliminary results indicates that further 

investigation is warranted, which should include both ex vivo and in vivo validation on a 

wider range of samples, to further elucidate the advantages and limitations of the proposed 

technique. 
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MEASURING TISSUE DISPERSION USING THE 

CROSS CORRELATION OF HALF - SPECTRUM 

OCT IMAGES 

5.1 Summary 

In this chapter, another novel technique is proposed for estimating tissue dispersion 

by calculating the cross-correlation of images acquired at different center wavelengths to 

estimate the shift between their features. This shift, also known as walk-off, is then used to 

calculate the dispersion. Since a distinct reflector is not required, this method is applicable 

to any sample and can even be implemented in vivo and in situ in human tissue. The proposed 

technique was verified ex vivo resulting in Group Velocity Dispersion (GVD) values 

comparable to those obtained from estimating the walk-off from a mirror, as described in the 

literature. Furthermore, the method applicability to cancer diagnosis was evaluated on a 

small set of gastrointestinal normal and cancer OCT images. Using the statistics of the GVD 

estimates, tissue classification resulted in 100% sensitivity, 81% specificity and 92% 

accuracy. The success of these preliminary results indicates the potential of the proposed 

method, which should be further investigated to elucidate its advantages and limitations 

[295]. 

5.2 Theory 

5.2.1 GVD measurement using speckle cross-correlation method 

When dispersion is present, different wavelengths perceive varying path-lengths as 

they propagate through tissue. The result is an apparent shift in the structures of OCT images 

taken at different center wavelengths. This, so-called, walk-off can be measured from the 

images using methodology shown in section 3.2.1 and so the GVD is calculated by equation 

3.5. Due to the absence of distinct reflectors in tissues, it is practically impossible to 

implement the technique described above in vivo and in situ. However, the walk-off between 

two images, acquired at different center wavelengths, can be estimated from the cross-

correlation of A-Scans from corresponding regions of the two images. As described in 

section 3.2.1, for Fourier Domain OCT images, each interferogram can be split into two 
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halves, forming two half-spectrum images at different center wavelengths (Figure 5.1 A). 

The cross-correlation of corresponding A-Scans is calculated and the first peak in the cross-

correlation is detected. The walk-off is estimated from the distance of the peak from the zero 

lag location (Figure 5.1 B&C) and the GVD is calculated using the equation 3.5. 

 

Figure 5.1. (A) Images reconstructed from the half spectra (red and green). (B) Corresponding A-Scans from the two half 

spectra images (red and green) indicating the lag at which there is a correlation peak. (C) The cross-correlation of the 

corresponding A-Scans 

5.3 Experimental Methodology 

5.3.1 Ex vivo GVD measurement based on the walk-off method 

A swept source OCT system was used to image samples of porcine muscle, collagen 

gel and adipose tissue sections placed over a reflector which served as a reference for 

measuring the actual sample thickness and the resolution. Eight images were taken from 

different regions of each type of sample. Each interferogram was split into two halves 

(Figure 5.2) and two, half-spectrum, images were formed corresponding to different center 

wavelengths. To measure the walk-off, the shift of the reflector located behind the tissue was 

measured by locating its peaks in each image (Figure 5.2C, red and green lines). Using the 

location of the mirror, the actual thickness of the sample was also calculated as the distance 

between the top surface (Figure 5.2A, green line) and the extension of the mirror line (Figure 

5.2A, blue line to the left). Based on these measurements, the GVD was estimated as the 

median of 250 measurements from individual A-Scans of each image. The standard 

deviation of the GVD of all images of each type was used as an estimate of the accuracy. 

5.3.2 Application of the cross-correlation method to GI images 

 

To demonstrate the applicability of the novel cross-correlation method to human 

tissues, the technique was applied to images from normal and cancerous colon obtained from 

patients who were scheduled for surgical excision. Eleven normal and fourteen abnormal 

images were included in this preliminary study. Since the actual tissue thickness could not 

be measured, it was estimated from the distance measured by OCT in air divided by an 

average index of refraction of 1.45 (error < 5%). The GVD was estimated up to a depth of 

approximately 0.5 mm (as measured in air) for 500 A-Scans per image (Figure 5.6). Using 
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the statistics of these GVD measurements (such as mean, standard deviation, etc.) the 

samples were classified as normal or abnormal using Linear Discriminant Analysis (LDA) 

and leave-one-out-cross-validation (LOOCV).  

5.4 Results 

The new proposed method was verified ex vivo using the same samples as in Chapter 

4. Examples of the images collected are shown in Figures Figure 5.2Figure 5.3 and 5.4.  

 

Figure 5.2. (A) OCT image of porcine muscle placed over a reflector (top surface: green, bottom surface: red, reflector: 

blue line, L: sample thickness). (B) A single interferogram (yellow) split into two halves (red and green). (C) The location 

of the bottom reflector from each half-spectrum image (red and green lines). (D) The walk-off between the two reflector 

locations. 

 

Figure 5.3. (A) OCT image of collagen placed over a reflector (top surface: green, bottom surface: red, reflector: blue line). 

(B) A single interferogram (yellow) split into two halves (red and green). (C) The location of the bottom reflector from 

each half-spectrum image (red and green lines). (D) The walk-off between the two reflector locations. 
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Figure 5.4. (A) OCT image of adipose tissue placed over a reflector (top surface: green, bottom surface: red, reflector: blue 

line). (B) A single interferogram (yellow) split into two halves (red and green). (C) The location of the bottom reflector 

from each half-spectrum image (red and green lines). (D) The walk-off between the two reflector locations. 

As described in section 5.2.1, for Fourier Domain OCT images, each interferogram 

can be split into two halves forming two half-spectrum images at different center 

wavelengths. In the example of Figure 5.5, corresponding regions (just above the bottom of 

the sample) are selected from each half-spectrum image of Figure 5.2 (Figure 5.5 A&B). 

The cross-correlation of corresponding A-Scans is calculated and the first peak in the cross-

correlation is detected. The walk-off is estimated from the distance of the peak from the zero 

lag location (Figure 5.5C) and the GVD is calculated using the equation 3.5. The walk-off 

estimation is more robust when there is enough speckle structure in the images to provide a 

better cross-correlation approximation. Figure 5.5D shows some typical cross-correlation 

curves with the arrow pointing to a miscalculation of the walk-off due to a weak cross 

correlation between A-Scans. This phenomenon is more common in clear samples such as 

the collagen gel used in the ex vivo experiments.  

                   

Figure 5.5. (A) Portion of the first half-spectrum OCT image from just above the bottom surface of the sample. 

(B) Similar portion from the second half-spectrum OCT image. (C) The walk-off for the 250 A-Scans in A & B 

calculated from the cross-correlation (red line). The blue line is the walk-off from Figure 5.4D. (D) Three 

indicative cross-correlation curves from different locations (x): 0.5 mm (blue), 1 mm (yellow) and 2 mm (red). 

The stars indicate the first maximum and the associated walk-off (Δz). The red arrow points to the location where 

the maximum should occur, which was missed due to weak cross correlation, a cause of error in the estimations.  

0 5 10 15 20 25 30 35 40 45

Walk-Off (um)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
a
liz

e
d

X
c o

rr
(a

. u
. )

x:0.5 mm

Δz:13.3 μm

x:1 mm

Δz:8.51 μm

x:2 mm

Δz:3.97 μm

0 0.5 1 1.5 2

0

0.1

0.2

z
( m

m
)

0 0.5 1 1.5 2

0

0.1

0.2

z
( m

m
)

0 0.5 1 1.5 2 2.5

x (mm)

-20

-15

-10

-5

0

W
a
lk

- o
ff

( u
m

)

Refl

XCorr

A

B

C

D

CHRISTOS PHOTIO
U 



81 

Table 5-1. GVD measured from literature walk-off method and the cross-correlation 

technique described above. summarizes the results of the GVD measurements using the 

standard walk-off method from the literature (Section A) and the cross-correlation technique 

(Section C) described above. The values agree within one standard deviation (10-20 %) 

experimentally verifying the validity of the proposed technique. The proposed method 

accurate even for highly scattering tissues (less inter-sample variation) such as the adipose 

sample used here.  

 

TABLE 5-1. GVD MEASURED FROM LITERATURE WALK-OFF METHOD AND THE CROSS-CORRELATION 

TECHNIQUE DESCRIBED ABOVE. 

 Walk-Off (Reflector) Walk-Off Cross-Correlation 

 
Median 

(fs2/mm) 

Inter-

Sample 

Std 

(fs2/mm) 

Intra-

Sample 

Std 

(fs2/mm) 

Median 

(fs2/mm) 

Inter-

Sample 

Std 

(fs2/mm) 

Intra-

Sample 

Std 

(fs2/mm) 

Collagen 135.19 5.374 3.975 155.92 15.672 10.051 

Muscle 136.60 18.64 13.64 139.96 23.484 16.779 

Adipose 248.37 48.21 19.41 247.86 49.518 19.978 

 

The GVD measurements from the normal and abnormal GI tissues exhibit 

statistically significant differences (Figure 5.7A & B). Combining the GVD distribution 

statistics using MANOVA results in perfect separation of the samples. Using the standard 

deviation of the GVD values, with LDA and LOOCV, the samples were classified with 

100% sensitivity, 82 % specificity and 92% accuracy. One example of the classification 

scatter plot is shown in the Figure 5.7C). 
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Figure 5.6. Normal (A) and abnormal (B) OCT images of human colon with the portion of the tissue used (green and 

red lines). Overlay of the images and GVD (pseudocolor hue, 0-800 fs2/mm) for each A-Scan normal (C) and 

adenocarcinoma (D). 

 

 

 
Figure 5.7. (A) Distribution of GVD measured from normal and abnormal colon tissue. (B) Distribution of the 

combined statistics (using MANOVA) for each sample. (C) LDA and LOOCV classification results. An unknown 

sample (cancer) was correctly classified. 
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5.5 Conclusion 

Given the results presented above, the GVD can be effectively estimated from the 

walk-off, using cross-correlation, a technique not requiring distinct reflectors and, thus, 

applicable to any type of tissue in vivo and in situ. Such information could also be useful in 

the detection of tissue changes and could prove diagnostically useful. The success of these 

preliminary results indicates that further investigation is warranted, which should include 

both ex vivo and in vivo validation on a wider range of samples, to further elucidate the 

advantages and limitations of the proposed technique. 
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COMPARISON OF TISSUE DISPERSION 

MEASUREMENT TECHNIQUES BASED ON 

OPTICAL COHERENCE TOMOGRAPHY 

6.1  Summary 

Dispersion effects in Optical Coherence Tomography (OCT) images have long been 

documented. As it was mentioned in Chapter 3, the imbalance of spectral broadening caused 

by dispersion mismatches in the two arms of the OCT interferometer, can result in significant 

resolution degradation. Group velocity dispersion (GVD) is also present in tissues and could 

be used to detect changes and provide useful information for diagnosis. This chapter presents 

a comparison between the existing methods used to measure the GVD from OCT images 

and the novel approaches developed as part of this thesis. The existing methods include: (i) 

the degradation of the point spread function (PSF), (ii) the shift (walk-off) between images 

taken at different wavelengths, (iii) the changes in the second derivative of the spectral phase 

(section 3.2.1). The two new methods which do not require a reflector and are applicable in 

intact tissues, are (iv) the speckle degradation (Chapter 4) and (v) the speckle cross-

correlation (Chapter 5) approaches. A systematic, experimental, evaluation of these methods 

is presented to elucidate the capabilities, the limitations and the accuracy of each technique 

when attempting to estimate the GVD in scattering samples. The most precise values were 

obtained from the estimation of the PSF degradation whereas using the phase derivative 

method was only applicable to minimally scattering samples. Speckle broadening appears to 

be the most robust method for in vivo tissue GVD measurements [296]. 

6.2 Methodology - Results 
For the experimental verification of the results and the comparison of the methods, a 

swept source OCT system, with a center wavelength of 1300 nm and a resolution of 12 μm 

in air was used. Samples of various glasses, collagen gel, porcine muscle and adipose tissue 

sections, ex vivo, were placed over a reflector, which served as a reference for the actual 

thickness and system resolution measurements, and eight images were acquired (5mm x 4 

mm) from different regions for each type of sample. The glass samples were chosen so that 

they spanned a wide range of GVD values. Their well characterized properties were used to 
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verify the validity of the OCT techniques. The glass dimensions were 12.5 mm diameter and 

2 mm thickness in all cases. The biological samples were chosen based on their scattering 

properties, ranging from minimal scattering (collagen) to very scattering (adipose tissue). 

The sample thickness varied between 1.5 to 2.5 mm as a result of being manually cut. 

However, since the actual thickness was measured for each lateral location (equation (3. 

10),_ the thickness variation was included in the GVD calculation and did not affect the 

comparison. In Table 6-1 , a list of all the samples with the values of their index of refraction 

and GVD, obtained from the literature, is provided.  

 

TABLE 6-1. SAMPLES USED FOR GVD ESTIMATION WITH REFERENCES VALUES FOR INDEX AND GVD 

Type Sample n GVD (fs2/m) Ref. 

G
la

ss
 

BaF2 (2 mm) 1.4724 18.663 [297] 

KBr (2 mm) 1.5506 62.942 [298] 

ZnS (2 mm) 2.3199 284.19 [299] 

ZnSe (2 mm) 2.4569 446.01 [299] 

B
io

lo
g

ic
a

l Collagen Gel 1.37 † 136 ‡  

Porcine Muscle 1.42 † 137 ‡  

Porcine Adipose Tissue 1.67 † 254 ‡  

† Experimental values measured using the technique of ref. [110]. 

‡ Experimental values defined as the average off all measurements. 

The OCT data were processed in MATLAB. Initially, an automated algorithm 

detected the top surface of the sample as well as the mirror peak location in free-space and 

below the tissue. The tissue thickness, index of refraction, and mirror reflection Gaussian 

widths were subsequently calculated. From those measurements, the GVD was estimated for 

250 A-Scans in each image. The GVD of each sample was taken as the median of the 250 

values. The standard deviation of the GVD values obtained from the 8 images of each 

sample, as well as the mean error between the estimated and measured GVD were used as 

indicators of the precision and accuracy of each of the different methods described above. 

Furthermore, the standard deviation of the GVD measurements of single A-Scans within an 

image was used as a measure of each technique’s robustness. Given that value, the minimum 

number of measurements that must be averaged in order to get a GVD estimate with an error, 

E, of 10% or less with a confidence level, α, of 95% was calculated by 

 

CHRISTOS PHOTIO
U 



87 

                                                    

2

/2Z
n

E

  
  
 

                                                             (6. 1)   

where α = 0.05, E = 0.1, σ is the standard deviation, and Zα/2 = 1.96 is  the critical value of 

the Normal distribution at α/2. The results were compared, to evaluate the precision, 

accuracy and robustness of each method in the following Sections.  

Figure 6.1 shows typical OCT images of the samples utilized in this study. Using the 

reflector location (blue lines) as reference, the sample thickness and the group index of 

refraction, at each lateral location, were calculated using the technique described in the 

literature using equation 3.10 [110]. 

      

 

Figure 6.1. Typical OCT images used in this study. KBr glass (A), collagen gel (B), porcine muscle (C) and porcine 

adipose tissue (D), over a reflector. L is the actual sample thickness, from top surface (green) to the level of the 

reflector (blue). L’ is the path-length difference, relative to air, because of the sample.    

 

6.2.1  PSF degradation 

Figure 6.2 is a typical example of how the PSF degradation is used to calculate the 

GVD. The width of the peak corresponding to a reflector placed below the sample (Figure 

6.2A - red line) was measured from each image. The sample thickness, L, was measured 

from the top surface (Figure 6.2A – green line) to the reflector line extension (Figure 6.2A 

– blue line). Using equation 3.2, the GVD was calculated and overlaid over the OCT intensity 

image as a pseudo color hue scale. The same procedure was followed for collagen gel and 

adipose tissue as you can see in Figure Figure 6.3 and Figure 6.4. 

x (mm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

z
(m

m
)

0

0.5

1

1.5

2

2.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x (mm)

0

0.5

1

1.5

2

2.5

z
(m

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x (mm)

0

0.5

1

1.5

2

2.5

z
(m

m
)

L

L’

L

L’

L

L’

B

DC

x (mm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

z
(m

m
)

0

0.5

1

1.5

2

2.5

3

3.5

L

L’

A

CHRISTOS PHOTIO
U 



88 

 
Figure 6.2. GVD estimation using the PSF degradation. (A) OCT image of porcine muscle. The top surface (green), 

reflector below the sample (red) and reflector (blue) are marked on the image. (B) The bottom surface (red) of the 

image in (A) with yellow lines marking the PSF width. (C) The PSF width measured from (B). (D) The OCT image 

of (A) with the GVD overlaid over the OCT intensity image as a pseudo color hue scale (0-800 fs2/mm). 

 

Figure 6.3. GVD estimation using the PSF degradation. (A) OCT image of collagen gel. The top surface (green), 

reflector below the sample (red) and reflector (blue) are marked on the image. (B) The bottom surface (red) of 

the image in (A) with yellow lines marking the PSF width. (C) The PSF width measured from (B). 

 

Figure 6.4. GVD estimation using the PSF degradation. (A) OCT image of adipose tissue. The top surface (green), 

reflector below the sample (red) and reflector (blue) are marked on the image. (B) The bottom surface (red) of the 

image in (A) with yellow lines marking the PSF width. (C) The PSF width measured from (B). 
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6.2.2     Walk-Off shift  

At first, using the interferogram, the two half spectra were dispersion matched 

digitally, using non-linear interpolation, to assure that the resolution was the same and there 

was no walk-off in the absence of a sample, i.e. reflection from a mirror (Figure 6.5). 

 

Figure 6.5. Images of a reflector constructed from the first (A) and the second (B) half spectra without digital dispersion 

compensation. The images to their right are zoomed regions indicated by the green squares. Images of a reflector 

constructed from the first (C) and the second (D) half spectra with digital dispersion compensation. The images to their 

right are zoomed regions indicated by the green squares. In all images, the FWHM (dashed lines) and the peak locations 

(solid lines) are marked for the first (red) and the second (yellow) half spectrum images. The FWHM and walk-off (Dz) 

are indicated for each case. 

Figure 6.6 illustrates how the GVD was calculated experimentally using the walk-

off. The interferogram (spectrum) was resampled and linearized and for each A-Scan (Figure 

6.6A – green) divided into two parts (Figure 6.6A – red and yellow) by multiplying with 

Gaussian envelopes. Each half spectrum was used to create a separate OCT image (Figure 

6.6 B&C). The walk-off (Figure 6.6 E), measured from the shift in the bottom surface (Figure 

6.6 D – red & yellow) of the two images, was used to calculate the GVD from equation 3.5. 

The same procedure followed for porcine muscle and adipose tissue samples as you can see 

in FiguresFigure 6.7 Figure 6.8. 

 
Figure 6.6. GVD estimation using the walk-off. (A) Interferogram from a single A-Scan  from an OCT image of gelatin 

gel. The complete spectrum (green) was split into two halves (red and yellow) by multiplication with Gaussian 

envelopes. (B) & (C) The two OCT images created from each half spectrum. (D) The bottom surfaces from (B) (red) 

and (C) (yellow). (E) The walk off width measured from (D).  
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Figure 6.7. (A) OCT image of porcine muscle showing top surface (green), reflector below the sample (red) and 

reflector (blue) lines. (B) The bottom surfaces from images of different spectrum parts (red and yellow). (C) The walk 

off width measured from (B).            

 

 

Figure 6.8 (A) OCT image of adipose tissue showing top surface (green), reflector below the sample (red) and reflector 

(blue) lines. (B) The bottom surfaces from images of different spectrum parts (red and yellow). (C) The walk off width 

measured from (B). 

 

6.2.3     Phase Difference 

Figure 6.9 is an example of the calculation of the GVD using the phase difference 

method. The real part of the Fourier transform of the interferogram of each A-Scan was used 

to isolate a single peak from a reflector below the sample (Figure 6.9B). The spectrum of the 

single peak was obtained from the inverse Fourier transform of the single peak (Figure 6.9C). 

Using equation 3.9, the GVD was calculated as a function of wavelength (Figure 6.9D).  
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Figure 6.9. GVD estimation from the phase difference. (A) OCT image of collagen gel. The rectangle indicates the peak 

from a reflector below the sample. (B) The peak from the reflector, of a single A-Scan, isolated from the real part of the 

Fourier transform of the interferogram of that A-Scan. (C) The spectrum of the single peak obtained from the inverse 

Fourier transform of (B). (D) The GVD calculated from the second derivative of (C) as a function of wavelength for all A-

Scans of (A). 

The measurement of the |GVD| based on the phase derivative did not produce 

accurate results for highly scattering samples. This was due to the presence of strong 

discontinuities in the phase (Figure 6.10 B&E), as a result of the scattering discontinuities, 

producing erroneous GVD estimations (Figure 6.10, F). This is consistent with the literature, 

which predicts minimum and non-minimum phase discontinuities from Mie scatterers [109]. 

 
Figure 6.10. GVD estimation from the highly scattering samples resulting in erroneous GVD estimations. (A) OCT image 

of collagen gel and a single peak isolated from the interferogram of an A-Scan. (B) Max and min values of the GVD 

estimate indicating discontinuities. (C) The GVD of collagen as a function of wavelength for all A-Scans resulting in an 

accurate estimate. (D) OCT image of adipose tissue and a single peak isolated from the interferogram of an A-Scan. (E) 

Max and min values of the GVD estimate indicating discontinuities. (F) The GVD of adipose tissue (highly scattering) as 

a function of wavelength for all A-Scans resulting in an erroneous estimate. 
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6.2.4     Speckle width degradation 

Figure 6.11 illustrates the application of the speckle-width-degradation-based 

approach to estimate the GVD from the OCT images. Portions of the image of from just 

below the top surface (Figure 6.11A – green lines) and just above the bottom surface (Figure 

6.11A – red lines) with a width of twice the system resolution are shown as examples in 

Figure 6.11 A&B. The impulse response, sdf, was estimated with a Wiener-type 

deconvolution (Figure 6.11C) and the width of the sdf for all A-Scans was measured (Figure 

6.11D). The process was repeated as a function of depth and the mean width, overall A-

Scans, was calculated as a function of depth (Figure 6.11E). Subsequently, the dispersion-

degraded image resolution width, dd, was approximated from a linear fit of sdf mean width 

(Figure 6.11F). The GVD was calculated using dd and equation 3.2. 

 

 

 
Figure 6.11. (A) OCT Image of porcine muscle. (B) Portion of the image (80x250 pixels) containing mainly speckle from 

just below the top surface (z = 0, green lines in A). (C) Similar portion from just above the bottom surface (z=L, red lines 

in A). (D) The result of Weiner deconvolution showing the speckle-PSF. (E) The width of the speckle-PSF for the 250 A-

Scans in (D). (F) The mean speckle-PSF width as a function of depth with a linear fit (red line) illustrating the increase as 

a function of the depth. (G) The degraded Gaussian width as a function of depth calculated from the linear fit in (F). 

 

6.2.5     Speckle cross-correlation 

 

Figure 6.12 is an example of the estimation of the GVD from the walk-off shift of 

half-spectrum images using the cross-correlation of corresponding A-Scans. Corresponding 

regions, just above the bottom of the sample (Figure 6.12A – red Lines), were selected from 

each half-spectrum image (Figure 6.12 B&C). The cross-correlation of corresponding A-

Scans was calculated and the first peak in the cross-correlation was detected. The walk-off 
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shift was estimated from the distance of the peak from the zero lag location (Figure 6.12D) 

and the GVD was calculated using the equation 3.5. The walk-off shift estimation was more 

robust when there was sample speckle in the images to provide a better cross-correlation 

approximation. Figure 6.12E shows some typical cross-correlation curves with the arrow 

pointing to a miscalculation of the walk-off shift due to a weak cross correlation between A-

Scans. This phenomenon is more common in clear samples such as the collagen gel used in 

the ex vivo experiments. 

 
Figure 6.12. (A) OCT Image of porcine muscle. (B) Portion of the first half-spectrum OCT image from just above the 

bottom surface of the sample (A, red lines). (C) Similar portion from the second half-spectrum OCT image. (D) The walk-

off of for the 250 A-Scans in A & B calculated from the cross-correlation (red line). For comparison, the walk off from 

Section 3.2 is also shown (blue line). (E) Three indicative cross-correlation curves with the walk-off (Δz) marked. The red 

arrow points to a missed maximum. 

 Table 6-2 summarizes the results of the GVD measurements using all the techniques 

described above. The left part of Table 6-2  lists the results of the GVD calculations over 

entire sample images, estimated from the median of the GVD of 250 A-Scans from each 

image. The accuracy of each technique (i.e. how close the results are to their expected values) 

for each different type of sample is evident from the % error difference from the expected 

values of Table 6-1 . Methods which are inaccurate are highlighted red in Table 6-2 . The 

precision of each technique (i.e. how concentrated the results are around their mean) is 

described by the standard deviation of the values of the results from complete images 

(average of 250 A-Scans). The right part of  Table 6-2 lists the standard deviations of the 

GVD values from the individual A-Scans within each image. Larger values imply that more 

averages are required to get a good estimate of the GVD of the sample. This is also evident 

from the minimum number of averages required to get an estimate of the GVD with an error 

of 10 %, or less, with 95 % confidence which is listed in the last column of Table 6-2. 

Methods which are not robust are listed in red font. Further discussion of the results follows 

in the next section. 
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TABLE 6-2. EXPERIMENTAL AND STATICAL ANALYSIS RESULTS OF EVERY METHOD 

  
Complete Images (Average of 250 A-

Scans) 
 Single A-Scan 

 
Sample 

Mean 

GVD 

Std 

GVD 
Std GVD Error  Std GVD Std GVD Min 

Num of 

Avgs  (fs2/mm) (fs2/mm) (%) (%)  (fs2/mm) (%) 

P
S

F
 D

eg
ra

d
a

ti
o

n
 

BaF2 17.89 0.030 0.166 4.126  3.665 20.483 16 

KBr 57.38 0.012 0.021 8.843  9.324 16.251 10 

ZnS 284.29 0.234 0.082 0.035  52.364 18.419 13 

ZnSe 445.33 0.000 0.000 0.153  47.383 10.640 4 

Collagen 135.72 5.775 4.255 0.206  11.879 8.753 3 

Muscle 136.97 16.621 12.135 0.024  23.747 17.338 12 

Adipose 253.58 31.986 12.614 0.167  58.193 22.949 20 

W
a

lk
-o

ff
 S

h
if

t 

BaF2 23.83 2.230 9.358 27.695  4.181 17.543 12 

KBr 66.41 5.671 8.539 5.517  16.278 24.509 23 

ZnS 279.03 22.106 7.922 1.817  41.966 15.040 9 

ZnSe 461.63 17.296 3.747 3.503  23.521 5.095 1 

Collagen 135.19 5.374 3.975 0.594  15.230 11.266 5 

Muscle 136.60 18.644 13.649 0.295  61.062 44.702 77 

Adipose 248.37 48.214 19.412 2.218  276.330 111.259 476 

P
h

a
se

 D
er

iv
a

ti
v

e 

BaF2 22.34 0.989 4.425 19.688  81.995 367.077 5176 

KBr 63.69 5.216 8.189 1.188  63.811 100.190 386 

ZnS 292.01 17.133 5.867 2.751  96.048 32.892 42 

ZnSe 454.77 9.633 2.118 1.964  182.321 40.091 62 

Collagen 136.47 6.047 4.431 0.348  386.650 283.315 3084 

Muscle 102.66 36.417 35.473 25.066  2579.897 2513.062 242616 

Adipose 43.61 27.595 63.280 82.831  12868.916 29510.448 33455208 

S
p

ec
k

le
 

D
eg

ra
d

. Collagen 135.62 12.700 9.364 0.276  27.562 20.322 16 

Muscle 133.08 13.594 10.215 2.858  25.938 19.490 15 

Adipose 267.20 55.603 20.809 5.198  60.905 22.794 20 

S
p

ec
k

le
 

W
a

lk
-

o
ff

 

Collagen 155.92 15.672 10.051 14.650  30.360 19.471 15 

Muscle 139.96 23.484 16.779 2.163  34.716 24.803 24 

Adipose 247.86 49.518 19.978 2.419  81.501 32.882 42 

 

 

 

Another important consideration, when calculating the GVD using OCT, is the size of the 

Fast Fourier Transform (FFT) to be used for the reconstruction of the images. In order to get 

a precise measurement of the degradation of the PSF or walk off, each peak in the OCT A-

Scan must be adequately sampled to avoid sampling errors. The effect of the Fourier 

transform sampling on the GVD was estimated from the images acquired experimentally, by 

changing the measurements by ±1 pixel, and is shown in Figure 6.13A. These calculations 
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indicate that for a small sampling error, FFT sizes of 218 or larger are required. This is further 

demonstrated by the effect of the FFT size on the actual GVD measurements (Figure 6.13B).  

 
Figure 6.13. Effect of the FFT size on the accuracy of the results. (A) GVD sampling error resulting from the finite FFT 

size. (B) Accuracy of the GVD measurements as a function of the FFT size. 

 

6.3 Discussion 

All three mirror-based techniques performed well in low-scattering and fairly 

uniform samples, such as glasses or collagen gel, with the exception of BaF2 which causes 

very low GVD. Based on these observations, only the PSF degradation method can be used 

to estimate GVD values below 20 fs2/mm. The measurements from all gel samples were 

comparable and exhibited little variation (σ~4-6%). In muscle tissue, which is significantly 

more scattering, only the PSF degradation and walk-off shift methods produced sufficiently 

consistent results with σ ~12-14% while the phase derivative resulted in σ ~36%. The 

measurement of the width and walk-off shift were degraded by the presence of speckle noise. 

Finally, in adipose tissue, which is even more highly scattering, the PSF degradation and 

walk-off shift method results were accurate resulting in a σ of ~11-19 % while the phase 

derivative was completely wrong for the reasons described earlier. In general, the methods 

that did work were sufficiently accurate with an error always less than 10 %. The speckle 

based techniques were not as precise as the reflector based methods (σ~10-20%) but they 

are the only methods applicable to in vivo imaging. With the exception of the speckle walk-

off method when applied to low scattering samples (collagen gel), the remaining estimates 

were accurate with an error ~0.3-5 %. In addition to the methods that result in erroneous 

estimates (described above and highlighted red in Table 6-2, there are other methods that are 

impractical due to the impractically high number of individual GVD values that must be 

averaged to get a good estimate of the GVD of the sample (red font in Table 6-2 ). 
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6.4 Conclusions 

Group Velocity Dispersion (GVD) is present in all tissues and could potentially 

provide diagnostically useful information. OCT can be used to estimate the GVD and 

therefore enhance the possibility of early diagnosis of serious diseases such as cancer. Given 

the results presented above, for ex vivo GVD estimation, the PSF degradation method is the 

best choice since it is more tolerant to disturbances in measurements due to tissue scattering 

in contrast to the other techniques evaluated. This method performed particularly well for 

larger GVD’s with an error of < 0.3 %. If the GVD is to be used to provide sensitive 

diagnostic information from highly scattering human tissues in vivo, it would be preferable 

to use the speckle degradation as an estimator of GVD. Given that tissue GVD is usually > 

100 fs2/mm this method is expected to perform well with an error of  ≤ 5 %. Whichever the 

case, the use of the GVD as a disease marker is an exciting prospect which should be further 

investigated. 
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DUAL-ANGLE OCT FOR INDEX OF REFRACTION 

ESTIMATION USING RIGID REGISTRATION AND 

CROSS-CORRELATION  

7.1 Summary 

There are many methods to measure the index of refraction, n, depending on the 

utilized imaging system or the experimental setup.  Optical coherence tomography (OCT) 

has also been used in the past to measure the index of refraction especially ex vivo. However, 

the methodologies reported to date are not appropriate for in vivo imaging since they require 

either a mirror below the sample or an otherwise complicated imaging setup and algorithm. 

In this chapter, we propose a new measurement technique that could be deployed for in vivo 

estimation of n. This technique uses two OCT images obtained at different incidence angles. 

The path-lengths observed, in the sample, are different in the two images and directly depend 

on n. Measuring the path length changes and the incidence angles can provide an estimate 

of the index. The dual-angle method was validated experimentally using both clear and 

scattering samples. The resulting measurements of n were within a mean of ~1 % of the 

expected values. These initial results are promising and provide evidence that this method 

should be further investigated and validated on human tissues so that, in the future, it could 

be developed into a clinically useful diagnostic tool [300]. 

7.2 Methods and Results 

7.2.1 Theory 

The proposed technique is applicable to both scattering, e.g. tissue, and non-

scattering, e.g. glass, samples. When a sample, of any kind, is horizontal, the light is incident 

on its surface perpendicularly and reaches the bottom of the sample without changing 

direction. The optical path-length (L1) from the top to the bottom surface of the sample is 

equal to the sample thickness (d) multiplied by the index of refraction. If the incidence is at 

an angle, the beam is refracted and, as it passes through the medium, it follows a path-length 

(L2) which is longer than that of perpendicular incidence (Figure 7.1A).  
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Figure 7.1. Incidence angles and path-lengths of beams perpendicular and at an angle to the samples. (A) Perpendicular (i) 

and at an incidence angle (ii) incidence on the sample. (B) Two samples with different incidence angles θ1,1 (i) and θ1,2 (ii). 

 

Given that the path-lengths and incidence angles can be measured from the OCT images the 

index of refraction can be estimated, using Snell’s law’s, by:  
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If the beams in both images are at an angle (Figure 7.1B), the equations become: 
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The path-lengths (L1 and L2) can be measured directly from the images and the incidence 

angles (θ1,1, θ1,2) can also be measured directly from the angle of the top surface of the 

sample. This approach was verified by placing samples over a reflector so that the path-
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length change could be easily measured and, at the same time, use the same reflector as a 

reference for estimating n with the technique described by Tearney et al, [110].  

However, distinct, highly reflective, structures are rarely present in tissue.  In order 

to apply this technique in vivo, a different approach is required to estimate the path-length 

change.  This can be achieved by first registering and aligning the two images, with a rigid 

affine transformation, and subsequently using the cross-correlation of corresponding A-

Scans from each image to estimate the path-length change for each A-Scan. Affine 

registration is an intensity-based linear mapping technique that does not affect points, 

straight lines and planes. It consists of scaling, rotation and translation and all pixels go 

through the same transformation. It is, usually, used to correct geometric distortions such as 

differences in the image size. The affine transformation can be described by: 
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              (7. 3) 

where, tx and ty refer to the translation vector, x' and y' are the original points and a1, a2, b1, 

b2 are the affine transformation parameters [301].  

After affine registration, the images are matched in rotation and translation. 

However, the second image is distorted, in depth, relative to the first, because of the 

elongation of the path-lengths due to the larger angle of incidence (Figure 7.2B).  The cross-

correlation is, therefore, expected to have maxima, first, at the 0 lag and then, again, at the 

lag which depends on the magnitude of this distortion. The path length change, ΔL, is 

estimated from the lag of this second maximum of the cross-correlation (Figure 7.2C). Since 

the path length of the second image, L2, can now be calculated by the path-length change, 

i.e. L2 = L1 + ΔL, the index is, then, calculated equation (7. 2) as: 
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Figure 7.2. Path-length change estimate from two OCT images taken at different incidence angles. The images (A) are first 

registered and aligned (B). The cross-correlation of corresponding A-Scans from the aligned images exhibit distinct 

maxima (C). 
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A swept source OCT system, with 1.3 μm center wavelength and 12 μm resolution 

in air (Santec IVS 300), was used to image samples of glass, cucumber and rabbit trachea. 

The system operated at an A-Scan rate of 20 kHz and collected raw interferometric data 

corresponding to a physical size of 5 x 5 mm (512 x 2018 pixels). Each sample was placed 

on a vertically mounted rotation stage (0.01o accuracy) which was rotated manually using a 

micrometer. For each sample, n and the sample thickness (L) were measured using the 

Tearney, et al, method [110], which served as the reference value. Subsequently, n was 

estimated from the path-length difference of the dual-angle images. To verify the technique, 

the mirror below the sample was initially used to measure the path-length changes. To prove 

the applicability of the technique to in vivo tissue imaging, the index of refraction was also 

calculated with the cross-correlation lag method. In this case, no mirror reflection was used. 

All methods were applied to the same sample images to assure that the results were 

comparable. The applicability of the proposed method was evaluated, first, on uniform, non-

scattering, glass and, subsequently, higher scattering samples (cucumber) with more 

complicated structures and varying thicknesses and angles of incidence. The accuracy of the 

results was evaluated relative to the reference values. Images of glass, cucumber slices and 

freshly excised rabbit trachea were acquired at different incidence angles, ranging from 5o 

to 20o, with eight repetitions for each combination. The pivot point was set manually in the 

middle of the image for each measurement. 

7.2.2 Results 

Images of glass were acquired at different incidence angles, ranging from 5o to 20o, 

with eight repetitions for each combination, for a total of 48 images (Figure 7.3 A&B). The 

average results are shown in Table 7-1. When compared to the reference value of the index 

of the particular glass, n = 1.509, the error was 1.36%. The accuracy and precision of the 

path-length measurements were also evaluated from the glass measurements.    

Imaging of thin cucumber slices followed, in an effort to examine the validity of the 

method in higher scattering samples (Figure 7.3 C&D).  The average results, when using the 

reflector below the sample to measure the path-lengths, are also shown in Table 7-1. The 

estimated n, compared to the reference value, exhibited a mean error of ~0.7 % (varying 

from 0.5% to 2 %). The index of refraction was also determined using the cross-correlation 

method (Figure 7.4). The results are also shown in Table 7-1. When compared to the 

reference value, the error was ~1.1 % (varying from 0.1- 3 %). The accuracy and precision 

of the measurements of angle and distance were also evaluated from the OCT images of 
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glass. When measuring the angle, from various locations within the same image, the values 

did not vary by more than a standard deviation of 0.7o. In addition, the measured path length, 

within the same image, varied by less than 8 μm standard deviation. The accuracy of the 

measurements was evaluated by comparing to the expected path length, i.e.  

1sin( )
/ cos sinL nd a

n

  
   

  

, and was found not to vary by more than 9 μm 

 

TABLE 7-1. INDEX OF REFRACTION ESTIMATIONS USING BOTH METHODS ON SAMPLES WITH DIFFERENT 

SCATTERING PROPORTIES 

 Reference  
Path-length Changes Measured 

Using a Reflector 

Path-length Changes 

Measured Using Xcorr 

 Mean Std  Mean Std Error % Error Mean Std Error % Error 

Glass 1.509† N/A  1.530 0.091 0.021 1.36 - - - - 

Cucumber 1.369‡ 0.015  1.379 0.025 0.009 0.688  1.354 0.024 0.015 1.097 

Rabbit 

Trachea 
1.391‡ 0.002  1.390 0.001 0.001 0.001 1.392 0.002 0.001 0.001 

† Provided by the manufacturer. 

‡ Measured using the method of Tearney et al, [110]. 

 

 

 

Figure 7.3. Images of glass (A&B) and cucumber (C&D). The angles θ1,1 and θ1,2 for the glass were 4.5 and 

11.8 degrees, respectively, whereas for the cucumber, those angles were 0.9 and 12.2 degrees.d in (C) indicates 

the sample thickness. 
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Figure 7.4. (A&B) Portions of the original OCT images of cucumber (Figure 7.3), at different incidence angles. (C) The 

registration of image B on A using rigid affine algorithm. (D) The cross-correlation of the A-Scans indicated by the dashed 

lines in A and C. The arrow points to the first maximum after the zero lag (not shown here for better visualization of the 

peaks). 

Finally, in order to validate the applicability of the proposed technique to tissue samples, 

freshly excised rabbit trachea was imaged. The results are shown in Figure 7.5 and Table 

7-1. The proposed methods perform equally accurately are the reference method. 

 

 

Figure 7.5. (A&B) The original OCT images of freshly excised trachea, at different incidence angles. The labels refer to 

the epithelium (e), the submucosa (sm) and cartilage (c). (C) The portion of image A. (D) Portion of image B. (E) The 

registered version of D. (F) The cross-correlation of the A-Scans indicated by the dashed lines in C and E. The arrow points 

to the first maximum after the zero lag (not shown here for better visualization of the peaks).  

The variation in the error, reaching in some cases 3%, is explained by but also exemplifies 

the most serious limitation of the proposed technique, i.e. image misalignment. 

Misalignment by as little as ± 10 μm between the two images could lead to up to 5% error, 

as measured experimentally. This limitation should be taken into account and alignment 

should be carefully monitored especially when measuring the index of non-uniform samples. 

Fortunately, angle-resolved OCT systems, which are specifically designed to image the same 
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sample area under different incident angles, can provide angular and spatial precisions 

limited only by the precision of the galvanometric scanners. The performance of such 

systems has been validated for speckle reduction and results indicate that there is no 

resolution degradation implying negligible spatial shifts [302]. 

7.3 Conclusions 

In this study, we propose a new measurement technique that could be deployed for 

in vivo estimation of n. This technique uses two OCT images obtained at different incidence 

angles and estimates n by measuring the path-length changes and the incidence angles. In 

tissues with no distinct reflectors, the path-length change can be estimated by first registering 

and aligning the two images, with a rigid affine transformation, and subsequently using the 

cross-correlation of corresponding A-Scans from each image. Experimental verification 

produced values of n with a mean error of ~1 % compared to the expected values. The main 

limitation of this technique is the effect of misalignment of the images on the results, which 

can lead up to 5% error for 10 μm misalignment. However, use of an angular resolved system 

should provide the precision required for the application of the proposed technique. These 

initial results are promising and provide evidence that this method should be further 

investigated and validated on human tissues so that, in the future, it could be developed into 

a clinically useful diagnostic tool.  
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CLASSIFICATION OF BARRETS AND DYSPLASIA 

OF THE ESOPHAGUS USING IN VIVO OCT 

IMAGES 

8.1 Summary 

Endoscopic Optical Coherence Tomography (EOCT) systems can perform in vivo, 

real-time, high-resolution imaging of the human esophagus and, thus, play an important role 

in the earlier diagnosis and better prognosis of esophageal diseases such as Barrett’s 

esophagus (BE), dysplasia and adenocarcinoma. However, the high image throughput and 

massive data volumes make manual evaluation of the generated information extremely 

difficult. Unfortunately, the algorithms, developed thus far, have not been able to provide 

effective computer-aided diagnosis. For the purposes of the thesis an automated algorithm 

was developed, capable of tissue segmentation and features extraction from regions of the 

epithelium, from in vivo EOCT images. Different machine learning methods for 

classification of esophageal tissue were also compared. The classification was based on 

several features, which included intensity-based statistics, group velocity dispersion (GVD) 

and the average scatterer size (SS) of each A-Scan. The areas of the epithelium were 

annotated as normal, BE or dysplasia by an expert. The comparison and evaluation of various 

machine learning (ML) techniques has shown that a neural network based approach provided 

the best performance, separating BE from dysplasia, for individual A-Scans, with an 

accuracy of 89% [303].  

8.2 Introduction 

Barrett’s esophagus (BE) is a condition where the normal squamous epithelium of 

the esophagus transforms to columnar-like, due to gastroesophageal reflux. The frequency 

of adenocarcinoma in patients with BE is up to 35 times greater than the general population. 

Furthermore, over the last few decades, the incidence of BE is rapidly increasing in western 

countries. BE progresses through different stages of dysplasia before developing into 

esophageal adenocarcinoma thus providing a window for an early detection of the disease, 

which significantly improves patient prognosis. Patients with confirmed BE undergo 
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periodic endoscopic surveillance with systematic biopsies. However, this procedure suffers 

from important limitations. Sampling error can lead to misdiagnosis since only a small 

proportion of the metaplastic BE epithelium is covered by the biopsies (4-6% of the area) 

[80], [82]. Furthermore, the size and morphology of the samples obtained can cause 

diagnostic uncertainty since it limits inter-observer agreement between pathologists and 

causes delays in the histopathologic processing [304]. Endoscopic Optical Coherence 

Tomography (EOCT) systems can acquire cross-sectional images of the microscopic 

structure of the esophageal layers. By analyzing the microstructure of the epithelium in 

EOCT images, researchers aim to characterize the state of the esophageal tissue, 

discriminating between normal esophagus and BE with or without dysplasia [305]. 

Computational methods for the analysis of esophageal EOCT images have recently been 

demonstrated [81], [273]. In this study, different regions of esophageal EOCT images were 

classified utilizing a fully automated algorithm for image segmentation and feature 

extraction. Several ML classifiers were evaluated for accuracy and capability to differentiate 

normal from abnormal tissues and BE vs. dysplasia from in vivo data.  

8.3 Methodology 

8.3.1 Image and data processing 

The OCT images were collected using a swept source EOCT system with a center 

wavelength of 1300 nm, an axial resolution of 10 μm and an A-Scan rate of 40 kHz. Each 

catheter rotation produced 2,048 A-Scan, displayed in real-time, and multiple cross-sectional 

esophageal images were collected as the catheter was manually pulled up from the 

gastroesophageal junction. In vivo data was derived from healthy volunteers and patients 

with esophageal disease enrolled in a study at Massachusetts General Hospital, approved by 

the Partner’s Internal Review Board (IRB).  

For this study, OCT esophageal images from ten patients creating a dataset of 320 

images. The annotated regions were 461, of which, 170 normal, 118 BE and 173 dysplastic 

providing a total of 154066 annotated A-Scans. In order to extract features for image 

classification an automated algorithm for tissue segmentation and features extraction created 

and utilized to segment the epithelium. Each image was segmented at three different depths 

from the top surface of the tissue to investigate the setting for optimal classification results. 

The depth of segmentation was 0.4, 0.55, 0.7mm (Figure 8.1). The annotated regions were 

processed to extract features for the training and testing of the ML classifier models. 
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Figure 8.1. Esophagus OCT images in polar coordinates showing segmentation at different sizes of thicknesses (red and 

green lines). (A) 0.4 mm depth, (B) 0.55 mm depth and (C) 0.7 mm depth.   

8.3.2 Feature extraction 

The classification of the esophageal tissue was performed using various features extracted 

from the epithelial portion of the OCT images. 

Intensity statistics 

The statistics of the intensity of the OCT images were estimated for the portion of 

the OCT image that was segmented. At first, the statistics were calculated for each A-Scan 

separately for the upper and lower parts of the region’s epithelium and then the region was 

also divided in three parts in order to more closely estimate the intensity differences between 

the basal layers and the luminal surface of the epithelium. The calculated statistics included 

the mean, variance, standard deviation, skewness, kurtosis, median, and the total, minimum 

and maximum intensities. In addition, the sliding standard deviation of every statistic, an 

estimate of the variation between the values of adjacent A-Scans, was also included. The 

result was a total of 36 intensity-based statistics for every A-Scan when the region was 

divided in half and 54 statistics when the region divided in three parts. The features were 

calculated separately for the top and bottom layer of the epithelium or alternatively for the 

top, middle and bottom layers.  
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Group velocity dispersion (GVD) 

As mentioned in section 3.1, studies have shown that tissue dispersion could be used 

as a biomarker of early disease changes to enhance the diagnostic potential of OCT. Tissue 

dispersion of each region was estimated using the image’s speckle, the technique that was 

developed and described in Chapter 4. It does not require the presence of distinct reflectors 

in the imaged tissue and is, therefore, applicable to in vivo imaging. This method compares 

the image speckle from different portions of the segmented area, beginning from the top 

surface of the epithelium and gradually progressing to the bottom.  The GVD is calculated 

for each A-Scan from the speckle width degradation that is proportional to the point spread 

function (PSF) degradation. 

Scatterer size (SS) 

The average scatter size for each A-Scan of the epithelial layer was estimated using 

the bandwidth of the correlation of the derivative (COD) method. The COD is the new 

spectroscopic metric (described in section 3.6) that extracts information about the 

modulation of depth-resolved spectra and can be used to calculate the average scatterer size, 

as predicted by Mie theory. For each region of the epithelium, the spectrum was extracted 

using autoregressive spectral estimation. To estimate the scatterer size, the first derivative of 

the spectrum was calculated followed by its autocorrelation. The lag location of the first 

minimum of the autocorrelation was used to estimate the scatterer size using a function 

derived from curve fitting of the expected COD calculated from Mie Theory.  

8.3.3 Feature selection and classification 

In order to select the features that would yield the best classification results, feature 

selection and optimization was performed. This process included utilization of a paired t-test 

and Multivariate Analysis of Variance (MANOVA). Initially, each feature set was evaluated 

with a pair t-test to determine the p-value between Normal vs Abnormal tissue and BE vs 

Dysplasia (Table 8-1, Figure 8.2Figure 8.3). Subsequently various combinations of the 

features were combined with MANOVA to determine which resulted in the best class. After 

this process, the p-values for Normal vs Abnormal and BE vs Dysplasia were zero. 
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Figure 8.2. (A) and (B) T-test and p-value of group velocity dispersion (GVD) and scatterer size (SC) for Normal 

vs Abnormal regions classification among with recombination of the features values using MANOVA to represent 

statistical separation (C) for portion depth ~0.4mm and the region divided in half. 

 

Figure 8.3. (A) and (B) T-test and p-value of group velocity dispersion (GVD) and scatterer size (SC) for BE vs 

Dysplasia regions classification among with recombination of the features values using MANOVA to represent 

statistical separation (C) for portion depth ~0.4mm and the region divided in half. 
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TABLE 8-1. P-VALUES OF THE MOST SIGNIFICANT FEATURES FOR EACH CLASSIFICATION TASK 

TOP (T), MIDDLE (M), BOTTOM (B) INDICATE THE PART OF THE EPITHELIUM.  

Feature Normal vs. Abnormal BE vs. Dysplasia 

Mean (T)/ Mean (B) 4.8x10-4 / 4.34x10-4 7.35x10-4 / 6.2x10-4 

Variance (T) / Variance (B) 4.94x10-4 / 2.19x10-4 3.42x10-4 / 2.39x10-4 

Median (T) / Median (B) 10-3 / 5.8x10-4 2.4x10-3 / 2.9x10-3 

Sum (T) / Sum (B) 6.53x10-4 /  3.09x10-4 7.38x10-4 /  2.72x10-4 

Min (T) / Min (B) 1.97x10-4 /  6.76x10-5 1.77x10-4 /  4.09x10-5 

Max (T) / Max (B) 2.85x10-4 /  6x10-3 1.65x10-3/  3.4x10-4 

Skewness (M) 3x10-4 1.13x10-3 

GVD 2.79x10-5 2.59x10-4  

SS 3.49x10-4 3.76x10-4 

For the classification, five classifiers were initially evaluated using all features: 

Discriminant Analysis (DA), Naïve-Bayes (NB), Decision Trees (DT), k-nearest 

neighbor (KNN) and Ensemble of Decision Trees (EDT). The performance of each classifier 

model was verified using leave-one-patient-out cross-validation and was, subsequently, 

applied to entire images and volumes. Subsequently, using Python and Keras, different 

neural networks (NN) were constructed, varying the number of hidden layers and neurons, 

and each one evaluated on the same dataset. The optimal NN, consisted of 1 input,1 output 

and 7 hidden layers with a total of 3,643 trainable parameters. A Rectified Linear Unit 

(ReLU) was used as an activation function with a learning rate of 0,01 as an optimizer. Each 

neighborhood of the epithelium was classified first as normal vs. abnormal and, 

subsequently, the abnormal areas were classified as BE vs. Dysplasia. [306], [307], [308]. 
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8.3.4 Experimental results 

Figure 8.4 shows an example of an in vivo EOCT image of the esophagus. In real-

time, the image is displayed in the standard Cartesian coordinates (Figure 8.4A) that 

represents more accurately the geometry of the esophagus. However, for processing 

purposes, the image was kept in polar coordinates (Figure 8.4B) so that individual A-Scans 

could be processed separately. The regions of the images in this dataset were annotated as 

normal, BE and dysplasia (Figure 8.4B, yellow boxes). The epithelium was automatically 

segmented using automatic appropriate morphological operations and thresh-holding, 

identifying the top and bottom boarders of the epithelium (Figure 8.4B, red and green lines). 

The segmented regions (Figure 8.4C) were used in the machine learning process.  

Table 8-2 and Table 8-3 summarize the performance of all models for Normal vs 

Abnormal classification and Barrett’s vs. Dysplasia, for every segmentation depth and for 

the region divided in two or in three parts. The performance of each classification scheme 

was verified using a leave-one-patient-out-cross validation for the same features selected 

based on t-testing and MANOVA (p-value <0.05). Mean, variance, median, sum, min and 

max of the upper and lower parts appeared to be the most significant features along with the 

GVD and SC. Only one feature of the middle area appeared to be significant (skewness) 

when the regions divided in three something.  

Classification was performed utilizing the features of the whole epithelial region but 

the results where 1-2 % lower than the results when the epithelium was divided into layers. 

In addition, when median filtering was applied to the estimated class of the classifier the 

results improved from 0-1%. Furthermore, combining all the classifiers and considering as 

the class the one with the majority of occurrences did not affect the results significantly.  

CHRISTOS PHOTIO
U 



112 

 

Figure 8.4. (A) In vivo OCT image of the human esophagus in Cartesian coordinates. (B) Same image in polar coordinates 

with the red and green lines indicating the top and bottom borders of the automatically segmented epithelial region 

(segmentation depth ~0.55mm). The yellow boxes indicate annotated dysplastic (a), BE (b) and Normal (c) regions. (C) 

Zoomed regions corresponding (from top to bottom) to the dysplastic, BE and normal annotated areas respectively. (D) 

Histopathologic sections (from unrelated samples) that illustrate the microstructural and nuclear changes associated with 

(from top to bottom) dysplastic, BE and normal esophageal tissue. 

As it can be seen in Tables 8-2 and 8-3 and the charts in Figures 8.5 and 8.6, the 

classification results (specifically, sensitivity, AUC and accuracy) were superior when the 

features used for classification were extracted from each region (top and bottom) for both 

Normal vs. Abnormal and BE vs. Dysplasia. In addition, Normal vs. Abnormal classification 

was generally more challenging. Since this is a very preliminary study, improving the 

accuracy of the classifier was the major focus. The Linear discriminant analysis (LDA) 

classifier provided very good performance for Normal vs. Abnormal classification when the 

portion of the image segmented was 0,55mm from the top surface (sensitivity of 76%, 

specificity of 83%, accuracy of 81% and AUC of 0.80), but the neural network (NN) 

approach performed best (sensitivity of 67%, specificity of 95%,  accuracy of 85% and AUC 

of 0.82) using 0.7mm segmentation depth. For BE vs. Dysplasia discrimination, which is 

more important for diagnostic purposes, the neural network (NN)  again exhibited the best 

performance when the epithelium was segmented 0,4mm depth and divided in half with 

sensitivity of 80%, specificity of 91%, accuracy of 89% and AUC of 0.85. LDA had better 

sensitivity (81%) when the depth was 0.7mm but specificity, accuracy and AUC were 79%, 

80% and 0.8 respectively. 
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TABLE 8-2. TABLES OF NORMAL VS ABNORMAL CLASSIFICATION RESULTS FOR EVERY SEGMENTATION DEPTH 

                L=0.4mm regions divided in half                                L=0.4mm regions divided in three parts 

Classifiers SEN[%] SPE[%] ACC[%] AUC GM  SEN[%] SPE[%] ACC[%] AUC GM 

LDA 75 80 80 0.78 0.78 
 

70 75 73 0.72 0.72 

k-NN 56 74 68 0.65 0.64 
 

58 68 63 0.63 0.63 

NB 63 77 72 0.70 0.70 
 

69 68 69 0.69 0.66 

EDT 60 88 77 0.73 0.72 
 

67 74 71 0.70 0.70 

DT 62 85 75 0.73 0.72 
 

65 71 68 0.68 0.67 

NN 72 92 84 0.78 0.80 
 

68 86 78 0.75 0.77 

 

                L=0.55mm regions divided in half                                L=0.55mm regions divided in three parts 

Classifiers SEN[%] SPE[%] ACC[%] AUC GM  SEN[%] SPE[%] ACC[%] AUC GM 

LDA 76 83 81 0.80 0.79 
 

68 74 71 0.70 0.71 

k-NN 54 78 69 0.66 0.65 
 

57 67 62 0.61 0.65 

NB 66 79 74 0.73 0.72 
 

59 72 66 0.65 0.65 

EDT 61 88 78 0.74 0.73 
 

63 74 69 0.69 0.68 

DT 59 85 75 0.72 0.71 
 

60 75 69 0.68 0.67 

NN 67 94 84 0.70 0.80 
 

65 87 77 0.70 0.75 

 

                L=0.7mm regions divided in half                                L=0.7mm regions divided in three parts 

Classifiers SEN[%] SPE[%] ACC[%] AUC GM  SEN[%] SPE[%] ACC[%] AUC GM 

LDA 66 85 78 0.75 0.75 
 

67 75 72 0.71 0.71 

k-NN 52 72 65 0.62 0.61 
 

58 64 62 0.61 0.61 

NB 64 81 75 0.73 0.72 
 

61 77 70 0.69 0.69 

EDT 53 88 75 0.70 0.68 
 

60 77 69 0.68 0.67 

DT 53 84 73 0.69 0.67 
 

60 74 68 0.67 0.67 

NN 67 95 85 0.82 0.80 
 

79 78 79 0.69 0.79 
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TABLE 8-3 .TABLES OF BE VS DYSPLASIA CLASSIFICATION RESULTS FOR EVERY SEGMENTATION DEPTH 

                L=0.4mm regions divided in half                                L=0.4mm regions divided in three parts 

Classifiers SEN[%] SPE[%] ACC[%] AUC GM  SEN[%] SPE[%] ACC[%] AUC GM 

LDA 70 80 78 0.75 0.75 
 

68 59 67 0.64 0.63 

k-NN 70 70 72 0.70 0.70 
 

59 54 56 0.56 0.56 

NB 51 64 60 0.58 0.58 
 

50 68 59 0.59 0.58 

EDT 64 82 76 0.73 0.72 
 

60 59 60 0.59 0.59 

DT 65 76 73 0.70 0.70 
 

58 56 57 0.57 0.57 

NN 80 91 89 0.85 0.84 
 

58 88 73 0.70 0.71 

 

                L=0.55mm regions divided in half                                L=0.55mm regions divided in three parts 

Classifiers SEN[%] SPE[%] ACC[%] AUC GM  SEN[%] SPE[%] ACC[%] AUC GM 

LDA 81 75 79 0.78 0.78 
 

66 62 64 0.64 0.64 

k-NN 78 71 74 0.75 0.75 
 

58 58 58 0.58 0.58 

NB 53 70 62 0.60 0.60 
 

53 57 55 0.55 0.55 

EDT 70 83 79 0.77 0.77 
 

56 65 60 0.60 0.60 

DT 67 78 73 0.73 0.72 
 

56 59 57 0.57 0.57 

NN 78 92 86 0.81 0.82 
 

58 88 73 0.70 0.71 

 

                L=0.7mm regions divided in half                                L=0.7mm regions divided in three parts 

Classifiers SEN[%] SPE[%] ACC[%] AUC GM  SEN[%] SPE[%] ACC[%] AUC GM 

LDA 81 79 80 0.80 0.80 
 

64 60 62 0.62 0.62 

k-NN 81 67 73 0.74 0.73 
 

56 60 58 0.58 0.58 

NB 62 72 68 0.67 0.67 
 

60 59 60 0.60 0.60 

EDT 71 86 80 0.78 0.79 
 

57 62 60 0.60 0.60 

DT 70 76 73 0.73 0.72 
 

57 56 57 0.57 0.59 

NN 72 93 85 0.81 0.82 
 

66 81 73 0.72 0.73 
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Figure 8.5. Classification results of Normal vs. Abnormal discrimination when the epithelium was divided in half (Top) 

and when the epithelium divided in three parts (Bottom) for each classifier and different segmentation depths. 
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Figure 8.6. Classification results of BE vs. Dysplasia discrimination when the epithelium divided in half (Top) and when 

the epithelium divided in three parts (Bottom) for each classifier and different segmentation depths. 
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8.3.5 Conclusions 

Given the results presented above, the automated algorithm proposed could be 

developed to perform in vivo EOCT esophageal tissue segmentation and classification. 

Using machine learning with a neural network, the algorithm could distinguish Barrett’s 

esophagus (BE) from Dysplasia with an accuracy of 89%, sensitivity of 80% and specificity 

of 92% with AUC 0.85. Segmentation depth of 0.4mm to the esophagus epithelial layer 

appears to best more appropriate for BE vs. Dysplasia classification and Normal vs. 

Abnormal. Furthermore, it is clear from the results that the division of the epithelial region 

in half (top and bottom) during feature extraction led to more effective classification. 

However, further evaluation is required, with a larger number of images from more patients, 

to optimize the classifier models and create a system that can be used for effective computer 

aided diagnosis of EOCT images. 
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CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

This dissertation concentrated on novel feature extraction from OCT images and 

Machine Learning (ML) methods for the classification of esophageal malignancies from 

endoscopic OCT. Novel methods, which can be used to estimate the Group Velocity 

Dispersion (GVD) and the index of refraction (n) of tissues in vivo and in situ were 

developed. These and additional features were studied and evaluated for their ability to 

improve tissue classification, using a variety of ML approaches, to enhance the diagnostic 

capabilities of OCT.  

The GVD variations that exist between normal and abnormal tissues were shown to 

be important in the detection of changes associated with early disease. However, most 

existing methods to estimate the GVD from OCT images are not applicable in vivo. Two 

novel techniques proposed in this Thesis could remedy this problem. First, the speckle 

degradation method that can be used to estimate the resolution degradation from the speckle 

pattern. This new approach was shown, experimentally, to be very robust in estimating the 

GVD with results comparable to the standard techniques, described in the literature, for both 

low and highly scattering samples. In addition, it is sensitive enough to discriminate 

dispersion changes between normal and cancerous tissues. Furthermore, another promising 

method was presented to effectively estimate GVD from the walk-off, using the cross-

correlation of corresponding A-scans from OCT images created separately from the two 

spectral halves of the source spectrum. The success of these preliminary results indicates 

that further investigation is warranted, which should include both ex vivo and in vivo 

validation on a wider range of samples, to further elucidate the advantages and limitations 

of the proposed techniques.  

The variations of the index of refraction have also been investigated for diagnostic 

purposes since they can reflect disease and cell dynamic changes. OCT has been used in the 

past to measure n ex vivo. In this Thesis, a new method was developed, which can be 

deployed in vivo and in situ. It utilizes two OCT images obtained at different incidence 

angles and estimates n by measuring the path-length changes and the incidence angles from 
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the OCT images. It exploits rigid image registration and the cross-correlation of 

corresponding A-Scans in the two images to do so. The main limitation of this method is the 

effect of misalignment of the images on the results, which can result in up to 5% error for 

10 μm misalignment. However, the use of an angular-resolved system should provide the 

precision required for the successful application of the proposed technique. These initial 

results are promising and provide evidence that this method should be further investigated 

and validated on human tissues so that, in the future, it could be developed into a clinically 

useful diagnostic tool. 

Finally, an automated algorithm for image segmentation, feature extraction and 

classification of in vivo OCT images of the human esophagus was deveoloped. By 

combining different features, several ML algorithms were compared for their ability to 

discriminate various regions of the human esophagus as normal, Barret’s Esophagus (BE) 

or dysplasia. The algorithm, using intensity features, GVD and scatterer size, combined with 

neural networks, resulted in 85% accuracy (67% sensitivity and 95% specificity) in 

discriminating normal vs. abnormal esophageal tissue and 89%  accuracy (80% sensitivity 

and 91% specificity) in the classification of BE vs. Dysplasia.  These results, although very 

preliminary, indicate that the proposed approach could assist medical diagnosis with 

improved accuracy.  

Compared with other studies, the performance of the classification is equivalent 

(Table 9-1). Several studies have explored the use of OCT for the diagnosis of Barret’s 

esophagus (BE), dysplasia and esophageal carcinomas. Various characteristics of BE, 

dysplasia and adenocarcinoma, were evaluated, with promising results. Nevertheless, 

discrimination of normal glands and BE and tumor glands was very challenging. Bouma et 

al., performed the first in vivo study with 32 patients, who underwent routine endoscopy, 

and exhibited some characteristics of BE [78]. OCT was also used for detection of BE before 

and after radiofrequency ablation therapy where OCT was found to distinguish normal 

glands from buried Barrett’s glands only in a small percentage of the patients (7.7%) [53], 

[79]. Another study showed 81% sensitivity and 66% specificity in the detection of BE, 

indicating that OCT is presently not as accurate as histology [80]. OCT was further evaluated 

for the detection of esophageal dysplasia [81], [82]. Dysplasia was identified in OCT images 

based on reduced scattering and tissue structure changes, which are currently the only 

available criteria. Adenocarcinomas were also identified in OCT images with neoplastic 

epithelium containing large pockets of mucin surrounded by fibrotic and hypervascular 

tumor stroma. Occasionally, infiltration of heterogeneous structures into the muscular layers 
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was mentioned as a feature of tumor invasion. Asymmetrical shape and crowding of 

submucosal glands was also indicating of the presence of adenocarcinoma ( [80], [83]. 

Identification of adenocarcinoma, in patients who underwent upper GI endoscopy, at a 

recognition rate of 95% also showed promise [84]. 

 

TABLE 9-1.COMPARISON OF OUR STUDY WITH PREVIOUS STATE-OF-THE-ART STUDIES 

Study Task SEN[%] SPE[%] ACC[%] AUC Method Comments 

X.Qi et al., 
(2006) 

Dysplasia in Barret's 

 

82 
 

74 83 - PCA 106 OCT images from 13 
BE patients 

Diaz et al, 

(2015) 

Dysplasia in Barret's 

 

86 93 - - Naïve 

Bayes 

classifier 

60 images from 38 

patients 

 

Ughi et al., 

(2016) 

Dysplasia in Barret's 

 

94% 93% 94 - Proposed 

automated 

algorithm 

4 patients, 50 images 

Photiou et al., 

(2020) 

Dysplasia in Barret's 

 

80 91 89 0.85 ML 

classifiers 

comparison 

Preliminary results with 

10 patients 

 

Swager et al., 
(2017) 

Neoplasia in Barret's 

 

90 93 - 0.91 ML 
classifiers 

comparison 

29 endoscopic resections 

 

Fonolla et al.,     

(2019 

Neoplasia in Barret's 

 

95 85 88 

 

0.95 Deep 

Learning 

45 patients (VLE laser-

marked ROIs) 

 

Putten et al.,      

(2020) 

Neoplasia in Barret's 

 

85 92 - 0.93 Deep 

Learning 

23 patients (86 BE, 25 

dysplasia regions)  

 

 

In an effort to classify esophageal tissue, Qi et al., developed computer-aided 

diagnosis algorithms for the classification of dysplasia in Barret’s esophagus using an 

endoscopic OCT system (EOCT). Using principal component analysis (PCA) and leave-one-

out-cross validation, the results indicated that their CAD system has the potential to detect 

accurately the presence or absence of dysplasia for surveillance of Barrett’s esophagus with 

an accuracy of 83%, sensitivity of 82% and specificity of 74%. In addition, Ughi et al. 

created a method for automated segmentation and characterization of the esophageal wall in 

vivo. Their procedure could effectively describe the diseased esophageal wall with an A-

Scan line classification accuracy of 94% with a sensitivity and specificity of 94% and 93%, 

respectively [273]. Diaz et al. proposed a diagnostic computer algorithm to detect dysplasia 

in BE regions using discrete wavelet transform to analyze and characterize the local spatial 

distribution of gray levels in the images. Features extracted from the wavelet components 

that found to be statistically significant based on a 2- sample t-test were used as inputs to a 
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Naïve Bayes classifier. Leave-one-out cross-validation applied using an image volume of 60 

images from 38 patients for BE vs. Dysplasia classification and resulted to 86% sensitivity 

and 93% specificity [309].  

Swager et al. used 60 images (from 29 endoscopic resections) from BE patients to 

detect early neoplasia in BE comparing different ML classifiers and using leave-one-out 

cross-validation method. Three new features were proposed: layering and signal decay 

statistics, layering, and signal intensity distribution. The first exhibited the optimal 

performance compared to other features with an AUC, sensitivity and specificity of 91%, 

90% and 93% respectively [310]. Furthermore, using Deep Learning approaches, Fonolla et 

al., trained an ensemble of deep convolutional neural networks to detect neoplasia in 45 BE 

patients. Their results showed 95% sensitivity, 85% specificity, accuracy of 88% and an 

AUC of 0.95 [311]. Van der Putten et al. proposed a fully automatic multi-step Computer-

Aided Detection (CAD) algorithm that optimally leverages the effectiveness of deep learning 

strategies by encoding the principal dimension in esophageal data. They trained and tested 

their algorithm using data from 23 patients to detect neoplastic regions in BE. With the 

encoded principal dimension, they obtained an AUC of 0.93 with sensitivity and specificity 

of 85% and  92% respectively [312].  

Unfortunately, the above studies have two very important limitations. First, they use 

leave-one-image-out cross validation method or A-Scan classification that severely biases 

the results. It is important to perform the classification with leave-one-patient-out cross 

validation to avoid severely biasing the algorithms when the classifiers are trained and tested 

with images from the same patient that can be very similar. Furthermore, no study performed 

Normal vs. Abnormal tissue classification, which is very important for screening procedures 

where image acquisition is performed without endoscopic guidance. 

 

9.2 Future work 

The results of this Thesis provide an initial demonstration of the potential of new 

features, combined with Machine Learning algorithms, to significantly enhance the 

diagnostic potential of OCT. However, these results are very preliminary and there is still 

much to be done to fully reveal and unequivocally prove their potential. 
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The algorithms proposed are A-Scan based, i.e. they analyze the data one line at a 

time. However, OCT images and volumes provide 2- and 3- dimensional data, which reflect 

the spatial variations of the tissue alterations caused by disease. This spatial information has 

not been considered in this Thesis and could prove very useful in improving the sensitivity 

and specificity of the diagnosis. Furthermore, several features that have been proposed in the 

literature have not been integrated in the Machine Learning process. These include fractal, 

texture and other information, which could improve the classification outcome. In addition, 

novel features could be extracted from the OCT images, including spectral and 

morphological characteristics. The latter, in particular, have not been explored in OCT 

despite the fact that they can reflect microstructural changes, which are the most robust 

criteria of visual OCT image inspection. As more data becomes available, the classification 

could be further improved by the introduction of deep learning methods to expand the current 

neural network approach. 

In order for the diagnostic capability of the proposed techniques to be reliably 

validated, a larger number of patients is required. The larger amounts of data will be crucial 

in the refinement of the image processing and the classification algorithms. Of course, more 

patient images will introduce a new set of challenges. The management and standardization 

of these massive amounts of data is but one of the issues that will have to be resolved. 

Furthermore, if the data is collected by different operators or even different OCT machines, 

issues of comparability may appear. Perhaps one of the most taunting challenges will be to 

obtain accurate and reliable annotation of the data. Given the lack of agreed-upon OCT 

image criteria for diagnosis, it will be exceedingly hard to obtain annotations even from well 

trained radiologists. In addition, the annotations will have to repeated by more than one 

expert in order to reach consensus.   

As with any new diagnostic approach, the clinical impact of the proposed 

methodology must be evaluated. In order for the suggested diagnostic tool to be clinically 

useful it must provide a significant improvement in the patient prognosis in an effective and 

efficient manner. These aspects can only be examined in clinical trials, which are much 

beyond the scope of this, or even the next, Thesis. However, these concerns should always 

be in the back of the investigators’ minds in order to guide their research efforts to the right 

direction. Finally, it is always useful to consider other applications of the proposed 

techniques, both in the diagnosis of other diseases as well as in non-medical applications, 

such as non-destructive material testing. 
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