
ENFORCING DETECTABILITY IN DISCRETE EVENT SYSTEMS
VIA ADAPTIVE CONTROL SEQUENCES

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MAGISTER SCIENTICE IN COMPUTER ENGINEERING

MARTHA CHRISTOU

The University of Cyprus, Nicosia

Department of Electrical and Computer Engineering

APRIL 2021

Μά
ρθ
α Χ
ρίσ
του

Επιβολή Ανιχνευσιμότητας σε Συστήματα Διακριτών Συμβάντων

Μέσω Προσαρμοστικών Ακολουθιών Ελέγχου

Διατριβή που κατατίθεται ως μέρος των απαιτήσεων για το πτυχίο

Μάστερ στην Μηχανική Υπολογιστών

Μάρθα Χρίστου

Πανεπιστήμιο Κύπρου, Λευκωσία

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

APR’ILIOS 2021

Μά
ρθ
α Χ
ρίσ
του

THESIS APPROVAL SHEET

Thesis Title: Enforcing Detectability in Discrete Event Systems via
Adaptive Control Sequences

Student’s Name: Martha Christou

We the members of the Advisory Committee for the above named student verify that the thesis

satisfies the requirements of the Graduate School as approved by the Graduate Faculty.

Christoforos N. Hadjicostis
Professor

Department of Electrical and Computer Engineering
Director of Thesis

Charalambos D. Charalambous
Professor

Department of Electrical and Computer Engineering
Dean, School of Engineering

Dr. loannis Tzortzis
Post Doctoral Researcher

Department of Electrical and Computer Engineering

Advisory Committee

Date

Μά
ρθ
α Χ
ρίσ
του

ii

c©Copyright by Martha Christou, 2021

All Rights Reserved

Μά
ρθ
α Χ
ρίσ
του

Acknowledgement

I would like to express my gratitude to my advisor Professor Christoforos Hadjicostis for his pa-

tience and his continuous encouragement and support. I appreciate his extensive knowledge and

expertise in many areas and his nice treatment and assistance throughout my studies at the Univer-

sity of Cyprus.

Big thanks also go to my family and my friends for the support they provided throughout my entire

life. Without their love, patience and encouragement I would not have finished this work.

iii

Μά
ρθ
α Χ
ρίσ
του

Abstract

This thesis studies a class of problems in which we are given the model of a system, with an

unknown (or partially known) initial state, and the goal is to apply a carefully chosen sequence of

inputs so that, along with the observations (outputs) that are generated, one can determine exactly

the current or initial state of the system. The main solution for this type of problems involves

current- or initial-state estimation based on recorded sequences of observable events or outputs.

Having recorded a sequence of observable events, typical estimation/inference tasks involve the

determination of the exact current/initial state of the system or, more generally, the deduction of

useful information about the possible current/initial states of the system, and/or the occurrence

of certain (unobservable) events of interest. This can be key for fault diagnosis and other event

inference tasks in discrete event systems, or even for supervisory control strategies that aim at

achieving various objectives (e.g., opacity enforcement or deadlock avoidance).

iv

Μά
ρθ
α Χ
ρίσ
του

Πρόλογος

Το detectability enforcement είναι μια διαδικασία που γίνεται σε συστήματα διακριτών συμβάντων

(discrete event systems (DES)),τα οποία μπορούν να μοντελοποιηθούν ως finite automata with

outputs δηλαδή με πεπερασμένο αριθμό από καταστάσεις (states) και εξόδους.

Σε αυτή τη διατριβή, μελετούμε το detectability (δηλαδή, την ενδεχόμενη ακριβή γνώση της

τρέχουσας κατάστασης του συστήματος) και την επιβολή του σε non-deterministic finite au-

tomata με ελεγχόμενες εισόδους (πλήρως καθορισμένες σε κάθε καταστάση (fully defined) αλλά

χωρίς πλήρη γνώση της αρχικής κατάστασης (initial state).

Στην εργασία αυτή ενδιαφερόμαστε για εποπτικές στρατηγικές ελέγχου (supervisory control),

όπου η ακολουθία εισόδων επιλέγεται προσεκτικά έτσι ώστε η ακολουθία εξόδων που δημιουρ-

γείται από το σύστημα (μαζί με την εφαρμογή της γνωστής ακολουθίας εισόδων), να μπορεί

να χρησιμοποιηθεί για τον προσδιορισμό της ακριβούς κατάστασης του συστήματος στο τέλος

της διαδικασίας (state detectability, κατάσταση ανιχνευσιμότητας).

Οι στρατηγικές που θα χρησιμοποιηθούν είναι προσαρμοστικές υπό την έννοια ότι ο controller

επιτρέπεται να βασίζει την απόφαση του ως προς το ποια είσοδος θα εφαρμοστεί στη συνέχεια

σε μια συγκεκριμένη στιγμή, με βάση την ακολουθία των εισόδων που έχουν ήδη εφαρμοστεί,

και την ακολουθία των εξόδων που έχουν παρατηρηθεί μέχρι αυτό το σημείο.

Αυτό οδηγεί σε μια διαμόρφωση παιχνιδιού δύο παικτών, όπου ο controller του συστήματος

επιλέγει την είσοδο για εφαρμογή, ενώ το σύστημα ‘επιλέγει’ μια έξοδο (πιο συγκεκριμένα,

το σύστημα παράγει μια έξοδο μέσα από το σύνολο των εφικτών εξόδων). Στη διατριβή

αυτή αναλύεται πως η στρατηγική ελέγχου μπορεί να επιτευχθεί συστηματικά χρησιμοποιώντας

μια αλγοριθμική περιγραφή της προκύπτουσας δομής παιχνιδιού. Γίνεται επίσης συζήτηση για

τις βέλτιστες (με ελάχιστο κόστος) στρατηγικές ελέγχου που ελαχιστοποιούν το χειρότερο

(μέγιστο) μήκος της ακολουθίας των εισόδων ελέγχου που πρέπει να εφαρμοστούν για να

v

Μά
ρθ
α Χ
ρίσ
του

ΠΡ΄ΟΛΟΓΟΣ vi

φτάσουμε σε κατάσταση ανιχνευσιμότητας (state detectability).

Μά
ρθ
α Χ
ρίσ
του

Contents

Acknowledgement iii

Abstract iv

Πρόλογος v

1 Introduction and Motivation 1

2 Basic Definitions, Background and Notation 4

2.1 Deterministic Finite Automata Under Partial Observation 4

2.2 Fully Defined Nondeterministic Finite Automata with Outputs 7

2.3 Strong Detectability and its Verification . 10

2.4 K-Detectability and its Verification . 11

3 Problem Formulation and Solution Approach 14

4 Min-Max Strategies 24

5 Conclusions 33

5.1 Summary . 33

5.2 Future Work . 34

vii

Μά
ρθ
α Χ
ρίσ
του

List of Figures

2.1 Nondeterministic finite automaton (NFA) with outputs. 7

2.2 Construction of the observer for the NFA in Fig. 2.1 based on inputs only. 8

3.1 Problem formulation . 15

3.2 Observer construction based on inputs and outputs. 16

3.3 Illustration of Rule 1. 18

3.4 llustration of Rule 2. 18

3.5 Solution approach. 19

3.6 Nondeterministic finite automaton (NFA) with outputs. 20

3.7 Construction of the observer with inputs and outputs for the NFA in Fig. 3.6. . . . 21

3.8 Solution approach for NFA with outputs in Fig. 3.6 22

4.1 Acyclic Digraph. 25

4.2 FDNFA considered in Example 2. 26

4.3 FDNFA considered in Example 2. 28

4.4 Observer construction for the system in Fig. 4.3 29

4.5 Feasible Strategies for the system in Fig. 4.3. 30

4.6 Cost observer of NDNFA Fig. 3.6. 31

4.7 Possible strategies for the system in Fig. 3.7. 32

viii

Μά
ρθ
α Χ
ρίσ
του

Chapter 1

Introduction and Motivation

The property of interest in this thesis is the notion of detectability [8, 9]: a given system is called

detectable if, after any sequence of observations of sufficient length, the current state of the system

can be isolated (i.e., it becomes perfectly known). More specifically, a system is strongly detectable

if, after observing any sufficiently long sequence of observations that can be generated by the

system, the current state of the system can be pinpointed exactly. In the case of discrete event

systems (DES) that can be modeled as (deterministic or nondeterministic) finite automata under

partial observation, the property of detectability can be verified by constructing the observer of

the system (with complexity exponential in the number of states of the given finite automaton) or

by constructing the detector of the system (with complexity polynomial in the number of states

of the given finite automaton) [1, 8, 9]. Detectability has been generalized to K-detectability to

capture the ability to isolate the state of the system within a set of cardinality at most K, following

the occurrence of any sequence of observations of sufficient length [10]. Extensions that consider

how to enforce detectability via supervisory control strategies have also been considered (see, for

example, [11]).

The above works consider primarily DES that can be modeled as nondeterministic finite automata

with events that are partially observable (e.g., some of the events may be unobservable). In this

thesis, we consider DES that can be modeled as nondeterministic finite automata with inputs (fully

defined at each state) and outputs. In other words, each time an input is applied to the system,

one also observes an output that is generated by the system (and which can be used to refine any

estimate of the current/initial state of the system). This implies that, apart from the sequence of

inputs that is applied to the system, the sequence of outputs that is produced is also important for

1

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

state identification.

Sequences of inputs that can be used for state estimation/classification have been studied mostly

in the context of finite state machines (i.e., deterministic finite automata with outputs) and come

under various names, depending on what they achieve.

• A synchronizing sequence is a sequence of inputs that guarantees to lead the system to a

known state. In other words, despite any uncertainty in the initial state of the system, the

system will be driven to a specific final state after the application of the synchronizing se-

quence [12] , [13].

• A homing sequence is a sequence of inputs that allows us to determine, based on the se-

quence of outputs that is generated, the final state of the system [2]. The main difference

of a homing sequence from a synchronizing sequence is that it also takes into account the

sequence of outputs that is generated (i.e., a homing sequence requires access to the outputs

of the system, whereas a synchronizing sequence does not require such access). Note that a

homing sequence is called adaptive if one is allowed to choose the next input based on the

sequence of outputs generated so far; if this is not the case (i.e., if the sequence of inputs

is chosen a priori, without taking into account any of the outputs that are observed), the

homing sequence is called preset.

• A distinguishing sequence is a sequence of inputs that allows one to uniquely identify the

initial state by observing the output sequence [14]. In the case of deterministic finite au-

tomata (which was the focus of most of the earlier work in this area), a preset (or adaptive)

distinguishing sequence is necessarily a preset (or adaptive) homing sequence.

Most works that focus on the type of problems described above (i.e., choosing appropriate input se-

quences for current/initial state identification) assume that the underlying system is a deterministic

finite automaton with inputs and outputs, also referred to as a finite state machine (FSM). Another

common assumption for this type of problems is that the given machine is minimal, connected and

fully (or completely) specified (i.e., each input is defined at each state). Challenges include the fact

that the initial state is unknown (or may be known to belong to a subset of states) and the output

that is observed can only partially identify activity in the system. Discussions on existing work on

the above topics can be found in [1, 15].

In this thesis, we consider the problem of obtaining an adaptive homing sequence for an underlying

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

nondeterministic finite automaton with outputs. More specifically, we are interested in strategies

where the sequence of inputs is carefully chosen so that the sequence of outputs that is generated

by the system can be used to determine the exact state of the system at the end of the process

(state detectability). The strategies are adaptive in the sense that the controller is allowed to decide

what input to apply at a particular instant of time based on the sequence of inputs that has already

been applied and the sequence of outputs that has been observed up to that point. Compared

to traditional approaches on synchronizing/homing/distinguishing sequences (see, for example,

[15] and the more recent work in [12, 13, 16, 17]), our work generalizes the underlying setting

by considering nondeterministic finite automata with outputs (and inputs that are fully defined at

each state). Compared to work on detectability (see, for example, [8, 9] but also the work in [11]

that aims at enforcing detectability), our work generalizes the existing framework by considering

nondeterministic finite automata with outputs. The presence of outputs naturally leads to minimax

strategies in two-player game formulations, in which the controller chooses the input to apply

whereas the system “chooses” an output (more precisely, the system produces an output among

the set of feasible outputs).

The authors of [11] also deal with this class of problems but they assume (unlike our work in this

thesis) that they can control the input/output pair (i.e., they can instruct the system to execute,

among transitions associated with a specific input, the ones associated with a chosen output). In

our case, however, we can only control the event (input), but not the output. Our goal is also

slightly different because we aim to drive the system to a situation where we know its state exactly.

However, we could also adopt an objective that is closer to the work in [11], which aims at oper-

ating the system in a region where the state of the system is known exactly. More specifically, we

could aim for an adaptive strategy (i.e., a strategy that reacts on the output seen) so that the system

is kept in detectable states all the time (regardless of what outputs the system chooses), at least

from a certain point onwards. We elaborate on this issue later on, once we have the opportunity to

describe the setting and the proposed approach in more detail.

Another paper that deals with related problems is the work in [16], which considers the case when

there is no output. Thus, the authors of [16] aim at finding the minimal sequence of inputs, under

which the system reaches a known state. In contrast, the uncertainty introduced by the presence

of outputs in our setting implies that we need to employ a min-max approach: since there is

uncertainty as to what output the system will generate, we choose to obtain the minimal length

sequence of inputs, under the worst possible scenario of outputs provided by the system.

Μά
ρθ
α Χ
ρίσ
του

Chapter 2

Basic Definitions, Background and Notation

2.1 Deterministic Finite Automata Under Partial Observation

Let Σ be an alphabet (set of events) and denote by Σ∗ the set of all finite-length strings of elements

of Σ (sequences of events), including the empty string ε (the length of a string s is denoted by

|s| with |ε| = 0). A language L ⊆ Σ∗ is a subset of finite-length strings in Σ∗ [7] (i.e., sequences

of events with the convention that the first event appears on the left). Given strings s, t ∈ Σ∗, the

string st stands for the concatenation of s and t, which denotes the sequence of events captured by

s followed by the sequence of events captured by t. For a string s, s denotes the prefix-closure of s,

and is defined as s̄ = {t ∈ Σ∗ | ∃t ′ ∈ Σ∗{tt ′ = s}}.

Definition 2.1.1. (Deterministic Finite Automaton (DFA)) A deterministic finite automaton (DFA)

is captured by D = (Q,Σ,δ ,Q0), where Q = {q(1),q(2), . . . ,q(|Q|)} is the finite set of states, Σ is

the finite set of inputs, and Q0, Q0 ⊆ Q, is the set of possible initial states. The possibly partially

defined transition function δ : Q×Σ→ Q specifies, for a state q ∈ Q and an input σ ∈ Σ, the next

state q′ ∈ Q that the system transitions to. This is denoted by δ (q,σ) = q′; δ (q,σ) is undefined if

input σ is not feasible at state q.

The function δ can be extended from the domain Q× Σ to the domain Q× Σ∗ in the routine

recursive manner:

δ (q,σs) =
ß

δ (δ (q,σ),s), if δ (q,σ) is defined,
undefined, otherwise,

for q ∈ Q, s ∈ Σ∗, and σ ∈ Σ (note that we take δ (q,ε) := q for all q ∈ Q). With this notation at

hand, the behavior of DFA D is captured by L(D) := {s ∈ Σ∗ | ∃q0 ∈ Q0{δ (q0,s) is defined}}.

4

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 5

Definition 2.1.2. (Nondeterministic Finite Automaton (NFA)) A nondeterministic finite automaton

(NFA) is captured by N = (Q,Σ,δ ,Q0), where Q = {q(1),q(2), . . . ,q(|Q|)} is the finite set of states, Σ

is the finite set of inputs, and Q0, Q0 ⊆ Q, is the set of possible initial states. The nondeterministic

transition relation δ ⊆Q×Σ×Q is such that (q,σ ,q′)∈ δ if from state q with input σ we transition

to state q′.

Remark 2.1.1. Note that the relation δ may include (q,σ ,q′) ∈ δ and (q,σ ,q′′) ∈ δ for different

q′ and q′′. This implies that the transition from state q with input σ is nondeterministic in the sense

that the system may end up in state q′ or state q′′ (or other states if there exist additional (q,σ ,∗)∈
δ). We can also sometimes define δ f as a nondeterministic transition function: δ f (q,σ) = {q′ ∈
Q|(q,σ ,q′) ∈ δ}.

Given an NFA N = (Q,Σ,δ ,Q0), we say that input σ , σ ∈ Σ, is defined at state q if there exists (at

least one) q′ ∈ Q so that (q,σ ,q′) ∈ δ . Moreover, we say that N is fully (or completely) defined on

input set Σ if for each σ ∈ Σ and each state q ∈ Q, input σ is defined at state q.

The transition relation δ can be extended from the domain Q×Σ×Q to the domain Q×Σ∗×Q as

follows: For s = σ1σ2...σk we have (q,s,q′) ∈ δ if ∃ q1,q2, ..,q(k−1) such that

(q,σ1,q1),(q1,σ2,q2), ...,(q(k−1),σk,q′) ∈ δ .

Regardless of whether we deal with a DFA or an NFA, a simple observation model is to assume

that a subset of events Σo, Σo ⊆ Σ, can be observed; however, the remaining events Σuo ≡ Σ \Σo

are assumed to be unobservable. In such case, the natural projection P : Σ∗→ Σ∗o can be used to

map any trace executed in the system to the sequence of observations associated with it (generated

by it). This projection is defined recursively as P(σs) = P(σ)P(s), s ∈ Σ∗,σ ∈ Σ, with

P(σ) =

ß
σ , if σ ∈ Σo,
ε, if σ ∈ Σuo∪{ε},

where ε represents the empty trace [7].

Definition 2.1.3. (Possible states following a sequence of observations (R : 2Q×Σ∗o→ 2Q)) Sup-

pose that NFA N = (Q,Σ,δ ,Q0) is known to be in a set of possible states Q′, Q′ ⊆ Q; the set of all

possible states after subsequently observing ω ∈ Σ∗o is

R(Q′,ω) = {q ∈ Q | ∃q′ ∈ Q′,∃s ∈ Σ∗, s.t.
P(s) = ω ∧ (q′,s,q) ∈ δ} .

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 6

Definition 2.1.4. (Observer or Current-State Estimator [7]) Given an NFA N = (Q,Σ,δ ,Q0) with

set of observable events Σo ⊆ Σ under the natural projection map P, the observer (or current-state

estimator) is a deterministic finite automaton (DFA) Nobs = (Qobs,Σo,δobs,Q0,obs), which can be

constructed as follows:

1. Each state of Nobs is associated with a unique subset of states of the original NFA N (this

means that Qobs ⊆ 2Q has at most 2|Q| states).

2. The initial state Q0,obs of Nobs is the unobservable reach of Q0 (i.e., Q0,obs = UR(Q0) =

R(Q0,ε)).

3. From any state qobs ∈ Qobs of the current-state estimator, the next state for any σo ∈ Σo is

captured by δobs(qobs,σo) = R(qobs,σo).

Example 2.1.1. Consider the nondeterministic finite state automaton (NFA), denoted by N =

(Q,Σ,δ ,Q0) and shown in Fig. 2.1 (ignore, for now, the outputs – 0 or 1 – on each transi-

tion). In this particular example, we have state set Q = {q(1),q(2),q(3),q(4)}, input or event set

Σ = {α,β ,γ}, and Q0 = Q (i.e., all states are possible initial states). The relation δ is cap-

tured by the label on each of the arrows that connect the various pairs of states (for example,

(q(1),α,q(2)) ∈ δ is indicated by the arrow with label α from state q(1) to state q(2)).

Fig. 2.2 shows the observer for system N, based on input information only and assuming that

all input events are observable, i.e., Σo = Σ = {α,β ,γ}. For example, we start at initial state

{q(1),q(2),q(3),q(4)} (representing the fact that any initial state is possible) and, depending on the

input, we move to different states: if α is applied, the set of possible states is {q(1),q(2),q(3),q(4)}
(we get to q(1) from q(4), to q(2) from q(1) and q(3), to q(3) from q(3), to q(4) from q(2) and q(4));

similarly, if β is applied, the set of possible states is {q(1),q(2),q(3),q(4)} (we get to q(1) from q(1),

to q(2) from q(4), to q(3) from q(2), to q(4) from q(1) and q(3)); finally, if γ is applied, the set of

possible states is {q(1),q(2),q(3)} (we get to q(1) from q(2) and q(3), to q(2) from q(2), to q(3) from

q(1) and q(4)). For each of the newly obtained states, we can continue in a similar fashion. For

example, from state {q(1),q(2),q(3)},we have the following possibilities: if α is applied, the set

of possible states is {q(2),q(3),q(4)} (we get to q(2) from q(1) and q(3), to q(3) from q(2), and to

q(4) from q(1)). If β is applied, the set of possible states is {q(1),q(3),q(4)} (we get to q(1) from

q(1), to q(3) from q(2), and to q(4) from q(1) and q(3)); if γ is applied, the set of possible states is

{q(1),q(2),q(3)}. We can continue from each new state in a similar fashion until no new states are

obtained.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 7

q(2)

q(4)

q(1)

q(3)

α/0

γ/1

γ/0
γ/1

α/1 β/1

β/0

β/1

α/0

β/1

γ/0

α/0

β/0

α/1

γ/1

α/1

Figure 2.1: Nondeterministic finite automaton (NFA) with outputs.

Note that the dotted arrow in Fig. 2.2, represents the arrival at a singleton state that we are aiming

for (thus, we do not consider continuations from such states). Also, to avoid cluttering the diagram,

we color-code the states: observer states with the same color represent the same state (thus, we

only describe continuations from one such state).

2.2 Fully Defined Nondeterministic Finite Automata with Out-
puts

In this work, we are interested in fully (or completely) defined nondeterministic finite automata

(FDNFAs) with outputs, as described below.

Definition 2.2.1. (Fully Defined Nondeterministic Finite Automata (FDNFA) with Outputs) A fully

defined nondeterministic finite automaton (FDNFA) with outputs is captured by M =(Q,Σ,Y,δ ,λ ,Q0)

where (Q,Σ,δ ,Q0) is an NFA with Q = {q(1),q(2), . . . ,q(|Q|)} being the finite set of states, Σ be-

ing the finite set of inputs, Q0, Q0 ⊆ Q, being the set of possible initial states, and δ being a

fully defined transition relation (i.e., for each q ∈ Q and each σ ∈ Σ, we can find at least one

q′ ∈ Q such that (q,σ ,q′) ∈ δ). Moreover, Y = {y(1),y(2), . . . ,y(|Y |)} is the finite set of outputs and

λ : Q×Σ×Q→ Y is the output function that specifies, for each triplet (q,σ ,q′) ∈ δ , the output

y ∈ Y that the system produces.

The output function λ is assumed without loss of generality to be surjective. Given an FDNFA

with starting state q0, q0 ∈ Q0, if we apply a sequence of inputs s ∈ Σ∗, denoted by s = σ1σ2...σk,

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 8

{q(1), q(2), q(3), q(4)}

{q(1), q(2), q(3)}

{q(2), q(3), q(4)} {q(1), q(3), q(4)}

{q(1), q(2), q(3), q(4)} {q(1), q(2), q(4)} {q(1), q(3)}

{q(2), q(3)} {q(1), q(4)}

{q(2), q(3), q(4)} {q(3), q(4)} {q(1), q(2)} {q(3)}

{q(1), q(3), q(4)} {q(1), q(2), q(3)}{q(2), q(4)}

{q(1), q(2), q(3), q(4)}{q(2), q(4)} {q(1), q(3)}

{q(1), q(2), q(4)}

{q(1), q(2), q(3)} {q(2), q(3)} {q(1), q(4)}

α, β

γ

γ

β

α

γ

β

α

α

β γ

γα
β

γ

α, β γ

α
β

α
β

γ

β γα

β α γ

γ
β

α

Figure 2.2: Construction of the observer for the NFA in Fig. 2.1 based on inputs only.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 9

we can obtain a resulting sequence of states and outputs as follows:

q1 ∈ δ (q0,σ1)
y1 = λ (q0,σ1,q1)
q2 ∈ δ (q1,σ2)
y2 = λ (q1,σ2,q2)

...
qk ∈ δ (qk−1,σk)
yk = λ (qk−1,σk,qk) .

Since the FDNFA is nondeterministic, multiple state sequences (and corresponding sequences of

outputs) can be obtained. The next example illustrates the notation that is used.

Example 2.2.1. Consider the FDNFA with outputs, M = (Q,Σ,Y,δ ,λ ,Q0) shown in Fig. 2.1. In

this particular example, we have state set Q = {q(1),q(2),q(3),q(4)}, input set Σ = {α,β ,γ}, output

set Y = {0,1}, and Q0 = Q (i.e., all states are possible initial states). As mentioned earlier the

relation δ is captured by the arrows in the figure: for example, (q(1),α,q(2)) ∈ δ and this is

indicated by the label α on the arrow from state q(1) to state q(2); similarly, (q(2),α,q(4)) ∈ δ and

this is indicated by the label α on the arrow from state q(2) to state q(4); and so forth.

The function λ is also captured by the labels on the arrows of the figure: for example,

λ (q(1),α,q(2)) = 0 and this is captured by the label 0 on the arrow from state q(1) to state q(2) with

input α; similarly, λ (q(2),α,q(4)) = 0 and this is captured by the label 0 on the arrow from state

q(2) to state q(4) with label α; and so forth.

In summary, the label “σ/y” on an arrow from state q(i) to state q(j) indicates that (q(i),σ ,q(j)) ∈
δ and λ (q(i),σ ,q(j)) = y.

If the sequence of inputs αβ is applied and the sequence of outputs 00 is observed, we have the

following matching sequence of transitions: α/0, β/0. In this particular example, this leads to

two matching state trajectories, namely

q(1),q(2),q(3) ,
q(3),q(2),q(3) ,

and implies that the set of possible initial states is {q(1),q(3)} and the set of possible current states

is {q(3)}.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 10

2.3 Strong Detectability and its Verification

We recall below the notion of strong detectability [8] which is of interest in this thesis.

Definition 2.3.1. (Strong Detectability [8]) An NFA N = (Q,Σ,δ ,Q0) is strongly detectable with

respect to natural projection map P for the set of observable events Σo ⊆ Σ if for all system tra-

jectories s, s ∈ L(N), we can determine (exactly) the current state and subsequent states of the

system, after a finite number of observations (greater than a certain critical length). In other

words, ∃nc ∈ N such that ∀n≥ nc we have

(∀s ∈ Σ
∗ : |P(s)|= n)⇒ |R(Q0,P(s))| ≤ 1 .

Remark 2.3.1. For all s ∈ L(N), we have |R(Q0,P(s))| ≥ 1, thus in the above definition we could

have required that

(∀s ∈ L(N) : |P(s)|= n)⇒ |R(Q0,P(s))|= 1 .

Strong detectability for NFA N can be verified easily by constructing its observer Nobs and checking

whether it has loops with certain properties [8]. The observer (or current state estimator) of N was

described in the beginning of this chapter and is a standard construction that captures the possible

current states in NFA N following any sequence of observations.

Definition 2.3.2. (Observer or Current-State Estimator [7]) Given an NFA N = (Q,Σ,δ ,Q0) with

set of observable events Σo ⊆ Σ under the natural projection map P, the observer (or current-state

estimator) is a deterministic finite automaton (DFA) Nobs = (Qobs,Σo,δobs,Q0,obs), which can be

constructed as follows:

1. Each state of Nobs is associated with a unique subset of states of the original NFA N (this

means that Qobs ⊆ 2Q has at most 2|Q| states).

2. The initial state Q0,obs of Nobs is the unobservable reach of Q0 (i.e., Q0,obs = UR(Q0) =

R(Q0,ε)).

3. From any state qobs ∈ Qobs of the current-state estimator, the next state for any σo ∈ Σo is

captured by δobs(qobs,σo) = R(qobs,σo).

Theorem 2.3.1. (Strong detectability: Necessary and sufficient conditions using observer Nobs [8])

An NFA N = (Q,Σ,δ ,Q0) is strongly detectable with respect to the natural projection P for a set of

observable events Σo, Σo ⊆ Σ, iff its observer Nobs = (Qobs,Σo,δobs,Q0,obs) does not include loops

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 11

that contain ambiguous states, or are followed by an ambiguous state. Note that a state of Nobs is

ambiguous if it is associated with a set of states of N that has cardinality greater or equal to 2.

Apart from verifying detectability using an observer (as captured by the conditions in Theo-

rem 2.3.1), strong detectability for NFA N can also be verified with polynomial complexity using

a detector.

Definition 2.3.3. (Detector [9]) Given an NFA N = (Q,Σ,δ ,Q0) under the natural projection map

P with respect to the set of observable events Σo, Σo ⊆ Σ, the detector Nd = (Qd,Σo,δd,Q0,d) is a

nondeterministic finite automaton, where

1. Qd = {Q0,d}∪Qs∪Qp is the finite set of states, with

(i) Q0,d = R(Q0,ε) being the set of all possible initial states for NFA N before any observa-

tion is made;

(ii) Qs = {{q j} | q j ∈ Q}; and

(iii) Qp = {qd1 ,qd2, ...,qdD}, where D = |Q×Q| − |Q| with qdi = {ql,qm} ∈ Qp, ql 6= qm,

ql,qm ∈ Q.

2. δd : Qd×Σo→ Qd captures the state transitions and is defined as follows:

δd(qd,σ) =

 {qdi ∈ Qp|qdi ⊆ R(qd,σ)}, if |R(qd,σ)|> 1,
{ql} ∈ Qs, if R(qd,σ) = {ql},
undefined, if R(qd,σ) = /0.

Theorem 2.3.2. (Strong detectability: Necessary and sufficient conditions using detector Nd [9])

NFA N is strongly detectable iff its detector Nd does not include any loop that is reachable from the

initial state and contains ambiguous states, or is followed by ambiguous states (ambiguous state

are states in Qp).

Remark 2.3.2. The detector Nd (in Definition 2.3.3) can be used to verify strong detectability for

an NFA N with polynomial complexity (with respect to the size of the given NFA). The reason is

that the number of states of the detector is at most |Q|2 + 1; this should be contrasted with the

number of states of the observer which could be as high as 2|Q|.

2.4 K-Detectability and its Verification

In this section we define the notion of strong K-detectability (one can similarly define K-detectability,

strong periodic K-detectability, and periodic K-detectability, see [8]).

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 12

Definition 2.4.1. (Strong K-Detectability) Given a positive integer K, an NFA N = (Q,Σ,δ ,Q0) is

strongly K-detectable with respect to the natural projection map P for the set of observable events

Σo ⊆ Σ if for all system trajectories s, s ∈ L(N), we can determine, within a subset of states of

cardinality no more than K, the current state and subsequent states of the system, after a finite

number of observations (greater than a certain critical length nc). Mathematically, ∃nc ∈ N such

that ∀n≥ nc we have

(∀s ∈ Σ
∗ : |P(s)|= n)⇒ |R(Q0,P(s))| ≤ K .

Remark 2.4.1. Note that in [18] a different notion of K-detectability is used to capture the ability

to detect the precise current-state of the system (without uncertainty) after K steps; perhaps a

better terminology for the notion in [18] would be K-step detectability.

Clearly, strong K-detectability for NFA N can be verified easily by constructing its observer Nobs

and checking whether it has loops with certain properties. In particular, the observer should not

have loops that involve sets of state estimates of cardinality greater than K.

Theorem 2.4.1. (Strong K-detectability: Necessary and sufficient conditions using observer Nobs)

An NFA N = (Q,Σ,δ ,Q0) is strongly K-detectable with respect to the natural projection P for a

set of observable events Σo, Σo ⊆ Σ, iff its observer Nobs = (Qobs,Σo,δobs,Q0,obs) does not include

loops that contain or are followed by states associated with sets of state estimates of cardinality

greater than K.

We next argue that, apart from verifying K-detectability using an observer, strong K-detectability

for NFA N can also be verified with polynomial complexity using a K-detector. One can view the

K-detector as a construction that aims to resemble the observer for states for which the associated

sets of state estimates have cardinality K or less, whereas it resembles the detector for states for

which the associated sets of state estimates have cardinality K +1 or more.

Definition 2.4.2. (K-Detector) Given an NFA N = (Q,Σ,δ ,Q0) under the natural projection map

P with respect to the set of observable events Σo, Σo ⊆ Σ, the K-detector Nkd = (Qkd,Σo,δkd,Q0,kd)

is a nondeterministic finite automaton, where

1. Qkd = {Q0,kd}∪Qs∪Qp is the finite set of states, with

(i) Q0,kd = R(Q0,ε) being the set of all possible initial states for NFA N before any observa-

tion is made;

(ii) Qs = {Ss | Ss ⊆ Q∧|Ss| ≤ K}; and

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 2. BASIC DEFINITIONS, BACKGROUND AND NOTATION 13

(iii) Qp = {Sp | Sp ⊆ Q∧|Sp|= K +1}.

2. δkd : Qkd×Σo→ Qkd captures the state transitions and is defined as follows:

δkd(qkd,σ) =

ß {Ss ∈ Qs | Ss = R(qkd,σ)}, if |R(qkd,σ)| ≤ K,
{Sp ∈ Qp | Sp ⊆ R(qkd,σ)}, if |R(qkd,σ)|> K.

Remark 2.4.2. For simplicity of notation, the K-detector has a trapping state that corresponds

to the empty set of current state estimates. This state was not included in the construction of the

standard detector in Definition 2.3.3, but we could have easily done it by requiring all transitions

that were left undefined to lead to this trapping state. Apart from this difference, the K-detector

defined above reduces for K = 1 to the standard detector in Definition 2.3.3.

Theorem 2.4.2. (Strong K-detectability: Necessary and sufficient conditions using the K-detector

Nkd [9]) NFA N is strongly K-detectable iff its K-detector Nkd does not include any loop that is

reachable from the initial state and contains ambiguous states or is followed by ambiguous states

(ambiguous states in the case of the K-detector are the states in Qp).

Remark 2.4.3. The structure of the K-detector within the set Qs is not necessarily identical to the

structure of the observer for states that are associated with sets of state estimates of cardinality

K or less. However, it should also be clear from Theorem 2.4.2 that the structure of the observer

within the set Qs is replicated by the K-detector (but the K-detector could have additional states).

Remark 2.4.4. Given an NFA N with n states, its K-detector Nkd (in Definition 2.4.2) is a con-

struction that in the worst case has the following state complexity:

(i) 2K = O(nK) states in the set Qs;

(ii)
Å

n
K +1

ã
= O(nK) states in the set Qp;

(iii) possibly one additional state as the initial state X0,kd .

Thus, the K-detector has a total of O(nK) states (the number of transitions per state could be in

the worst case |Σo| for a total number of O(|Σo|nK) transitions. Therefore, using the K-detector,

the verification of strong K-detectability for an NFA N can be accomplished with complexity that

is polynomial in the number of states of N and exponential in K.

Μά
ρθ
α Χ
ρίσ
του

Chapter 3

Problem Formulation and Solution
Approach

The problem we are interested in solving is the following: given a fully defined nondetermin-

istic finite automaton (FDNFA) N = (Q,Σ,Y,δ ,λ ,Q0), we need to apply a sequence of inputs

σ [1],σ [2], . . . ,σ [n], such that, once this sequence is applied, the sequence of outputs

y[1],y[2], . . . ,y[n] that is generated allows us to identify exactly the final (current) state of the

system. The input sequence could be fixed (determined ahead of time) or adaptive (σ [k], k =

2 . . . ,n, is determined based on the previous inputs σ [1],σ [2], . . . ,σ [k− 1] and the previous out-

puts y[1],y[2], . . . ,y[k− 1]). In this thesis, we focus on the latter case, i.e., at each time epoch of

the system operation, we can decide which input to apply, based on the outputs that have been

observed thus far (as well as the sequence of inputs that we have applied). The goal is to choose

the sequence of inputs so that eventually we know the state of the system exactly.

Given an FDNFA as defined in the previous section, we can construct an observer-like structure

(refer to Fig. 3.1), based on the inputs, which are chosen, and the outputs, which are produced

(“chosen”) by the system. In Fig. 3.1 inputs are drawn using the shape of a circle, whereas outputs

are depicted with the shape of a square. In other words, we separate inputs and outputs in a way

that allows us to easily recognize them in a diagram: circles correspond to controllable events

whereas squares correspond to uncontrollable events. The advantage of the resulting structure is

that it summarizes all possible state estimates based on inputs and outputs.

There are several ways to approach the solution for the problem described at the beginning of this

section. An interesting approach is inspired from controlled detectability [11] where one attempts

14

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 15

...
...

...
...

...
...

...

: outputs

: inputs

controllable

uncontrollable uncontrollable

Figure 3.1: Problem formulation

to control the system input sequence so as to make the system detectable. This is necessary or

desirable in situations where there is some behavior in the system that makes its state undetectable

[11]. Our problem can also be considered as a supervisory control strategy for avoiding behavior

that keeps the state of the system undetectable. The natural question that arises is how to obtain

this supervisory control strategy systematically.

Our goal is to obtain a control strategy that allows us to reach a singleton state in the observer

construction. Note that a singleton observer state is a state associated with a set of possible states

that has cardinality exactly one (e.g., {q(1)}). This goal does not mean that all the non-singleton

states must be avoided since we could visit non-singleton states in route to a singleton state. In

the next example, we illustrate the construction of the observer for the case of an FDNFA with

outputs. This observer maintains the set of possible states by separately tracking both the input

that is applied and the output that is produced.

Example 3.0.1. In Fig. 3.2, we show part of the observer construction, based on inputs and

outputs, for the FDNFA with outputs in Fig. 2.1. We assume that the set of initial states is

Q0 = Q = {q(1),q(2),q(3),q(4)}. We start from initial state Q0 at which point three possible in-

puts could be applied: α , β , and γ . We consider each case separately below.

• If α is applied, there are two possible output observations, 0 and 1: (i) if 0 is observed, then

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 16

{q(1), q(2), q(3), q(4)}

{q(1), q(3), q(4)} {q(2), q(4)} {q(1), q(3)} {q(3)}{q(1), q(2)}

{q(2), q(4)}{q(2)} {q(1)} {q(3)}

{q(4)}{q(1), q(4)} {q(2)} {q(3)} {q(1), q(2)}

{q(2)} {q(3)} {q(1)} {q(4)}

{q(2), q(4)} {q(1), q(3)} {q(4)} {q(3)}{q(2)} {q(1)} {q(2), q(4)} {q(3)}

α

β

γ

α β γ

1 0 1 0 1 0

1

0 1 0 1 0

α β γ

01 1 0 0 1

α γ β

0 1 0 1 0 1

α β γ

0 0 1 0

1
α β γ

0

1

0 1 0

Figure 3.2: Observer construction based on inputs and outputs.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 17

the set of possible states is {q(2),q(4)} (q(2) can be reached via α/0 from states q(1) and q(3),

whereas q(4) can be reached via α/0 from q(2)); (ii) if 1 is observed, then the set of possible

states is {q(1),q(3),q(4)} (q(1) can be reached via α/1 from state q(4), q(3) can be reached

via α/1 from state q(3), and q(4) can be reached via α/1 from state q(4)).

• If β is applied, there are two possible output observations, 0 and 1: (i) if 0 is observed, then

the set of possible states is {q(1),q(3)} (q(1) can be reached via β/0 from state q(1), and q(3)

can be reached via β/0 from state q(2)); (ii) if 1 is observed, then the set of possible states

is {q(2),q(4)} (q(2) can be reached via β/1 from state q(4), whereas q(4) can be reached via

β/1 from states q(1) and q(3)).

• If γ is applied, there are two possible output observations, 0 and 1: (i) if 0 is observed, then

the set of possible states is {q(3)} (q(3) can be reached via γ/0 from states q(1) and q(4)); if

1 is observed, then the set of possible states is {q(1),q(2)} (q(1) can be reached via γ/1 from

states q(2) and q(3), whereas q(2) can be reached via γ/1 from state q(2)).

We can continue this construction in the same manner, by considering each of the possible inputs

and corresponding outputs, and the sets of states they lead to. For better readability, we do not

consider continuations from states that are associated with singleton sets of state estimates (since

the goal in Fig. 3.2 is to determine exactly the current state of the system). Also, the construction

in Fig. 3.2 does not merge identical states but uses color coding instead to avoid cluttering the

diagram (e.g., the state reached after the observation of α/0 is the same as the state reached after

the observation of α/1 followed by β/1).

Once we complete the construction with inputs and outputs (part of which is shown in Fig. 3.2),

we can use the graph structure to obtain possible strategies to solve the problem outlined in the

beginning of this section (also refer to Fig. 3.5). Note that events associated with circles are

controllable, whereas events associated with squares are uncontrollable. We find a solution with

the following iteration: initially, we mark with a
√

(which denotes desirable or acceptable states)

all states that are singleton sets. Then, we iteratively mark states with a
√

as follows:

• RULE 1: We put
√

to a circle, if it has at least one subsequent square marked with a
√

(since in circle states events are controllable (this rule is illustrated in Fig. 3.3).

• RULE 2: We put
√

at a square state only when all subsequent circles are marked with
√

(as

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 18

√
X X

√

Figure 3.3: Illustration of Rule 1.

√ √

√

Figure 3.4: llustration of Rule 2.

illustrated in Fig. 3.4).

Fig. 3.5 shows the application of the above rules for the system in Fig. 2.1.

In summary, the strategy is as follows: we first mark all states associated with singleton sets as

desirable states, by putting
√

. Then, we iteratively apply the two rules that we mentioned above

from bottom to top. At the end of the iterative process, the following holds true: if the starting state

is marked with
√

, then we have a strategy.

Remark 3.0.1. Note that the maximum possible number of states for the observer in Fig. 3.2 is 2|Q|.

In this example, we could have a maximum of 16 observer states; in reality, we have significantly

less states.

We next provide a pseudo code description of the proposed approach.

• Step1: Create an observer based on inputs and outputs.

• Step2: Select observer states associated with singleton sets and mark them with
√

.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 19

{q(1), q(2), q(3), q(4)}

√ √

√ √√ √

{q(1), q(3), q(4)} {q(2), q(4)} {q(1), q(3)} {q(3)}{q(1), q(2)}

{q(2), q(4)}
√

{q(2)} {q(1)} {q(3)}

{q(4)}{q(1), q(4)} {q(2)} {q(3)} {q(1), q(2)}

{q(2)} {q(3)} {q(1)} {q(4)}

{q(2), q(4)}

√

{q(1), q(3)} {q(4)} {q(3)}{q(2)} {q(1)} {q(2), q(4)}

√

{q(3)}

√

√

√ √

√ √ √

√ √ √ √

√ √√ √ √

√ √ √

√

√

√

√

√

√ √

√

√√√

√ √

√

√√

√

α

β

γ

α β γ

1 0 1 0 1 0

1

0 1 0 1 0

α β γ

01 1 0 0 1

α γ β

0 1 0 1 0 1

α β γ

0 0 1 0

1
α β γ

0

1

0 1 0

Figure 3.5: Solution approach.
Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 20

q(2)

q(3)

q(1)
α/0, β/1

β/0, γ/1

α/1β/0β/1α/0, γ/1

α/1, γ/0 γ/1

α/1, γ/0

Figure 3.6: Nondeterministic finite automaton (NFA) with outputs.

• Step3: Iteratively apply Rule 1 and Rule 2 to the observer states starting from singleton states

and subsequently considering precursor states.

• Step4: If the initial state is marked with
√

then a solution strategy exists.

Example 3.0.2. Consider the FDNFA with outputs, denoted by M = (Q,Σ,Y,δ ,λ ,Q0) and shown

in Fig. 3.6. In this particular example, we have state set Q = {q(1),q(2),q(3)}, input set Σ =

{α,β ,γ}, output set Y = {0,1}, and Q0 = Q (i.e., all states are possible initial states). The func-

tions δ and λ are as defined by the arrows and the labels in figure.

The observer with inputs and outputs for the above system is shown in Fig. 3.7 it starts from a state

that represents the set of initial states Q0 = Q = {q(1),q(2),q(3)}; from this initial state, there are

three possible inputs: α , β , and γ . We consider each case separately below.

• If α is applied, there are two possible output observations, 0 and 1:

(i) If 0 is observed, then the set of possible states is {q(1),q(2)} (q(1) can be reached via α/0

from state q(3), and q(2) can be reached via α/0 from state q(1)).

(ii) If 1 is observed, then the set of possible states is {q(1),q(3)} (q(1) can be reached via α/1

from state q(1), and q(3) can be reached via α/1 from states q(2) and q(3)).

• If β is applied, there are two possible output observations, 0 and 1:

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 21

{q(1), q(2), q(3)}

{q(1), q(2)} {q(1), q(3)} {q(1), q(2)} {q(2), q(3)}

{q(1), q(3)} {q(2)} {q(2), q(3)} {q(1)} {q(1), q(2)} {q(2)} {q(2), q(3)} {q(1)} {q(1)}{q(3)} {q(1), q(2)} {q(3)}

α

γ

β

0 1 0 1 0 1

α β γ

1 0 01 0

1 α β γ

0

1

0 1 1

0 α β γ

0 0 011

Figure 3.7: Construction of the observer with inputs and outputs for the NFA in Fig. 3.6.

(i) If 0 is observed, then the set of possible states is {q(1),q(2)} (q(1) can be reached via β/0

from state q(2), and q(2) can be reached via β/0 from state q(3)).

(ii) If 1 is observed, then the set of possible states is {q(2),q(3)} (q(2) can be reached via β/1

from state q(1), and q(3) can be reached via β/1 from state q(1)).

• If γ is applied, there are two possible output observations, 0 and 1:

(i) If 0 is observed, then the set of possible states is {q(1),q(3)} (q(1) can be reached via γ/0

from state q(1), and q(3) can be reached via γ/0 from state q(3)).

(ii) If 1 is observed, then the set of possible states is {q(1),q(2)} (q(1) can be reached via γ/1

from states q(2) and q(3), and q(2) can be reached via γ/1 from state q(2)).

Sometimes we choose to redraw a node that already exists in the graph so that we do not clutter

the digraph; in such case, we use the same color for the two node. Nodes that are associated

with singleton sets are also replicated for convenience; for these nodes we use gray color and do

not consider continuations. Once we construct the observer with inputs and outputs for the given

FDNFA, we can use the iterative procedure to determine whether there exists a strategy for getting

to know the exact current state of the FDNFA by applying an adaptive input sequence. The result

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 22

{q(1), q(2), q(3)}

√

√ √ √

√ √ √ √ √ √ √ √ √

{q(1), q(2)}

√

{q(1), q(3)}

√

{q(1), q(2)}

√

{q(2), q(3)}

√

{q(1), q(3)}

√

{q(2)}

√

{q(2), q(3)}

√

{q(1)}

√

{q(1), q(2)}

√

{q(2)}

√

{q(2), q(3)}

√

{q(1)}

√

{q(1)}

√

{q(3)}

√

{q(1), q(2)}

√

{q(3)}

√

α

γ

β

0 1 0 1 0 1

α β γ

1 0 01 0

1 α β γ

0

1

0 1 1

0 α β γ

0 0 011

Figure 3.8: Solution approach for NFA with outputs in Fig. 3.6Μά
ρθ
α Χ
ρίσ
του

CHAPTER 3. PROBLEM FORMULATION AND SOLUTION APPROACH 23

of this procedure is shown in Fig. 3.8.

At initialization the only nodes in Fig. 3.8 that take a
√

are the singleton subsets. After that, as

shown in the figure, the only “square” nodes that could take a
√

are the ones for which both of the

leafs are singleton subset. Later on, with the application of the two rules, the state with brown color

(i.e., {q(2),q(3)}) takes a
√

, because it has at least one choice that drive us into a singleton subset.

When the brown state takes a
√

, the only square node that should take a
√

is the one reached from

{q(1),q(2)} (because it has two children with a
√

), and the square node reached from {q(1),q(3)}
with β (for the same reason). Continuing in this way, we can mark states iteratively. Following the

above process, if the initial node gets marked with a
√

, then there at least one adaptive strategy

that takes us into a singleton subset.

Note that if a square node or a circle node has a
√

, it means that there exists an adaptive sequence

of subsequent decisions that ensures that the state of the system will be known exactly. A
√

in a

state does not mean that any choice from such states will eventually allow us to know the exact

state of the system. The problem is that states with
√

could form cycles; thus, repetitive careless

choices (along with specific outputs provided by the system) could prevent us from reaching a

situation where the state of the system is known exactly. Nevertheless, careful choices can always

take us out of such cycles of states with uncertain state estimates.

Μά
ρθ
α Χ
ρίσ
του

Chapter 4

Min-Max Strategies

Following the algorithm of the previous section, we can determine whether there exists a strategy

for eventually determining the current state of the system based on the status of the starting node

(i.e., whether the starting node eventually gets marked with a
√

).

In general, at the end of the algorithm, there is a possibility for more than one strategies. In fact,

when we have multiple options to choose from, any one of them would give satisfactory results.

The question of which strategy is the best depends on the optimization criterion. One criterion for

choosing the “best” strategy is based on the number of steps (inputs) that will be needed before

the state of the system becomes exactly known. One should keep in mind that this number also

depends on the actions of the system: some system actions may result in fewer number of steps

than others. For this reason, a commonly adopted optimization criterion in such type of problems

is to choose the strategy that results in the smallest number of steps, under the worst case scenario

(with respect to the actions of the system).

From Fig. 3.5 (which is the result of the iterative application of Rules 1 and 2), we would like

to obtain a structure like the one in Fig. 4.1, i.e., a tree that includes all possible strategies after

the application of the algorithm. For example, from {q(1),q(4)} we remove input α (it is not an

option because we might get 1); from the set of states {q(1),q(2)} we remove the input γ (it is not

an option because we might get 1); and from {q(1),q(3),q(4)} we remove the input α (it is not an

option because we might get 1).

Note that the structure in Fig. 4.1 summarizes all allowable strategies. At the starting state, we can

choose, for example, α; then if we get 1 we will choose γ and we are done; however, if we get

24

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 25

{q(1), q(2), q(3), q(4)}

C = ∞ր
C=2

C = ∞ր
C=2

C = ∞ր
C=2

C = ∞ր
C=1

C = ∞ր
C=1

C = ∞ր
C=1

C = ∞ր
C=1

C = ∞ր
C=1

{q(1), q(3), q(4)}
C = ∞ր

C=1

{q(2), q(4)}
C = ∞ր

C=1

{q(1), q(3)}
C = ∞րC=1

{q(1)}
C = 0

{q(3)}
C = 0

{q(2)}
C = 0

{q(3)}
C = 0

{q(2)}
C = 0

{q(3)}
C = 0

{q(1)}
C = 0

{q(4)}
C = 0

ROUNDS :−−−− −
Round 1 : Singleton States with C = 0, Non− Singleton with C = ∞.
Round 2 : Update the Costs with C
Round 3 : Update the Costs with C
Round 4 : Update the Costs with C
Round 5 : Update the Costs with C

α

β

γ

1 0 1 0

1 0

β

1 0

α γ β

0 1 0 1 0 1

Figure 4.1: Acyclic Digraph.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 26

q(2)

q(4)

q(1)

q(3)

α/0, γ/0

γ/1

γ/0
γ/0

α/1 β/1, γ/0

β/0, γ/1

β/1

α/0

β/1, γ/1

γ/0

α/0

β/0

α/1, γ/0

γ/1

α/1

Figure 4.2: FDNFA considered in Example 2.

0, we will have to choose β and then we will be done (in either case, we get done at two steps).

Suppose we choose β in the beginning. If we get 1, we will choose β and we will be done; if we

get 0, we can choose anything and we will be done (again in two steps).

We now focus on how to ensure that the strategy we have selected will result in the minimum

number of steps. The idea is that, at every state we can determine our strategy by choosing the

input based on what is the biggest/worst height of any subsequent path at the tree. If we have this

information for each possible subsequent input choice, we can choose the input (or inputs) that

guarantees (or guarantee) the minimum (worst case) subsequent path. The pseudo code for the

min-max strategy is described below.

Pseudocode: Min/Max Strategy Algorithm 2: Min/Max Iteration for Optimal Strategy

• Step 1: Create an observer with inputs and outputs with all possible choices that we have

when the system runs.

• Step 2: Assign a cost variable cq to each observer state (circle node) or square node q of

the observer with input and outputs. Initialize this cost variable to +∞, except at observer

states (circle nodes) that are associated with singleton sets of state estimates, which receive

an initial cost of zero (refer to Fig. 4.1).

• Step 3: Iteratively perform the following (until no more node costs get updated):

1) Each square node q computes the maximum cost cmax among its subsequent nodes (circle

nodes that can be reached from square node q). It then updates its cost cq to be the minimum

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 27

of its current cost and 1+ cmax, i.e.,

cq := min(cq,1+ cmax) ,

where

cmax = max
q′∈out(q)

cq′

with out(q) being the set of observer states (circle nodes) that can be reached from q.

2) Each circle node q computes the minimum cost cmin among its subsequent nodes (square

nodes that can be reached from circle node q). It then updates its cost cq to be the minimum

of its current cost and cmin, i.e.,

cq := min(cq,cmin) ,

where

cmin = min
q′∈out(q)

cq′

with out(q) being the set of square nodes that can be reached from q in the observer con-

struction.

When we run the above iteration, we end up with a cost cQ0,obs at the starting node of the observer.

This cost corresponds to the smallest number of inputs that need to be applied in order to ensure

that we reach a singleton state, regardless of the output sequence generated by the system. To

obtain an optimal minimax strategy, at each circle node q, we only allow input choices that lead

to square nodes with costs equal to cq (the remaining inputs have higher cost which means that, in

the worst case, they might require longer sequences of inputs before they lead to an observer state

with state estimates that form a singleton set).

We next consider a modified example where we introduce additional uncertainty to input γ as in

Fig. 4.3. We apply the algorithm that we mentioned above, to find if there exists an appropriate

solution and at what cost. The corresponding observer with inputs and ouptus is shown in Fig. 4.4.

When we apply the min-max algorithm, we conclude that “the best option” is to first apply input

β .

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 28

q(2)

q(4)

q(1)

q(3)

α/0, γ/0

γ/1

γ/0
γ/0

α/1 β/1, γ/0

β/0, γ/1

β/1

α/0

β/1, γ/1

γ/0

α/0

β/0

α/1, γ/0

γ/1

α/1

Figure 4.3: FDNFA considered in Example 2.

By applying the first algorithm (i.e., Rule 1 and Rule 2), we notice that the original state has a
√

,

which means that there is at least one strategy that is guaranteed to lead us to a singleton set.

Following the iteration for the min-max strategy the cost at the root node is finite if and only if

there is an adaptive strategy. Also, the cost at the root is the smallest number of the inputs that

need to be applied and guarantee that the state of the system will be known exactly, regardless of

which action the system takes.

To find the finite cost of the root node, we initialize the cost of each element (i.e., the cost of states

associated with singleton sets is set to C=0 and the cost of the non-singleton sets and ‘square’ nodes

are set to C = ∞). Afterwards, in subsequent iterations, we apply the algorithm for the min-max

strategy. At each round, we update first the “square” nodes (one plus max of the cost of the leaves)

and then the ‘circle” nodes (min of the cost of the leaves).

Specifically, at iteration we update the cost of the “square” node which is connected with two

singleton sets (i.e., max cost is C=0). This node receives a cost of 1 (as mentioned before on the

cost equation we should add plus one to the max cost). Thus, the new cost of the “square” node is

C=1. Moreover, the cost of the ‘brown round’ node will also change. It will become the min cost

among all “square” nodes connected to it. We follow the same procedure until the cost of all nodes

stop getting updated.

With the min-max algorithm, we want to obtain the minimum cost that will be necessary to find

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 29

{q(1), q(2), q(3), q(4)}

{q(1), q(3), q(4)} {q(2), q(4)} {q(1), q(3)}

{q(2), q(4)} {q(1)}

{q(1), q(2), q(3), q(4)}

{q(4)}

{q(1), q(4)} {q(4)} {q(3)} {q(2)}
{q(3), q(4)} {q(1), q(2), q(3)}

{q(2)} {q(3)} {q(1)} {q(4)}

{q(1), q(2), q(3), q(4)}{q(1), q(4)}

{q(1), q(4)} {q(2)} {q(1)} {q(2), q(4)} {q(2), q(3), q(4)}

α

β

γ

α β γ

1 0 1 0

0, 1

1

0 1 0
0

1

α β γ

1 0 0 1 0 1

α γ β

0 1 0 1

01

α β γ

1 0 0 1

0

Figure 4.4: Observer construction for the system in Fig. 4.3

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 30

{q(1), q(2), q(3), q(4)}

C = ∞ր
C=2

C = ∞ր
C=3

C = ∞ր
C=2

C = ∞ր
C=2

C = ∞ր
C=1

C = ∞ր
C=1

C = ∞ր
C=2

C = ∞ր
C=1

C = ∞ր
C=2

C = ∞ր
C=1

{q(1), q(3), q(4)}
C = ∞ր

C=2

{q(2), q(4)}
C = ∞ր

C=1

{q(1), q(3)}
C = ∞ր

C=1

{q(2), q(4)}
C = ∞ր

C=1

{q(1)}
C = 0

{q(3)}
C = 0

{q(2)}
C = 0

{q(2)}
C = 0

{q(3)}
C = 0

{q(1)}
C = 0

{q(4)}
C = 0

{q(2), q(3)}
C = ∞ր

C=1

{q(2), q(4)}
C = ∞ր

C=1

{q(3)}
C = 0

{q(4)}
C = 0

α

β

β

1 0 1 0

1 0

β

0 1

α γ β

0 1 0 1

α β

0 1 0 1

Figure 4.5: Feasible Strategies for the system in Fig. 4.3.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 31

{q(1), q(2), q(3)}
C = ∞ր

C=3

C = ∞ր
C=3

C = ∞ր
C=3

C = ∞ր
C=3

C = ∞ր
C=3

C = ∞ր
C=2

C = ∞ր
C=3

C = ∞ր
C=3

C = ∞ր
C=2

C = ∞ր
C=3

C = ∞ր
C=1

C = ∞ր
C=3

C = ∞ր
C=3

{q(1), q(2)}
C = ∞ր

C=2

{q(1), q(3)}
C = ∞ր

C=2

{q(1), q(2)}
C = ∞րC=2

{q(2), q(3)}
C = ∞ր

C=1

{q(1), q(3)}
C = ∞ր

C=2

{q(2)}
C = 0

{q(2), q(3)}
C = ∞ր

C=1

{q(1)}
C = 0

{q(1), q(2)}
C = ∞ր

C=2

{q(2)}
C = 0

{q(2), q(3)}
C = ∞ր

C=1

{q(1)}
C = 0

{q(1)}
C = 0

{q(3)}
C = 0

{q(1), q(2)}
C = ∞ր

C=2

{q(3)}
C = 0

ROUNDS :−−−− −
Round 1 : Singleton States with C = 0, Non− Singleton with C = ∞.

Round 2 : Update the Costs with C

Round 3 : Update the Costs with C

Round 4 : Update the Costs with C

Round 5 : Update the Costs with C

Round 6 : Update the Costs with C

α

γ

β

0 1 0 1 0 1

α β γ

1 0 01 0

1 α β γ

0

1

0 1 1

0 α β γ

0 0 011

Figure 4.6: Cost observer of NDNFA Fig. 3.6.

the “best” solution. If the initial state of the observer has finite cost, this means a solution exists.

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 4. MIN-MAX STRATEGIES 32

{q(1), q(2), q(3)}
C = ∞ր

C=3

C = ∞ր
C=3

C = ∞ր
C=3

C = ∞ր
C=3

C = ∞ր
C=2

C = ∞ր
C=2

C = ∞ր
C=1

{q(1), q(2)}
C = ∞ր

C=2

{q(1), q(3)}
C = ∞ր

C=2

{q(1), q(2)}
C = ∞րC=2

{q(2), q(3)}
C = ∞ր

C=1

{q(2), q(3)}
C = ∞ր

C=1

{q(1)}
C = 0

{q(2)}
C = 0

{q(2), q(3)}
C = ∞ր

C=1

{q(1)}
C = 0

{q(3)}
C = 0

α

γ

β

0 1 0 1 0 1

β

01

β

0 1

α

01

Figure 4.7: Possible strategies for the system in Fig. 3.7.Μά
ρθ
α Χ
ρίσ
του

Chapter 5

Conclusions

5.1 Summary

This thesis focused on adaptive control strategies that choose the input based on the output pro-

duced by the system. The formulation of the problem assumes that we can control all inputs and,

depending on the output, determines whether there exist a solution and which strategy is the “best”

according to a min-max criterion.

We obtained and analysed adaptive control strategies. When we use adaptive strategies, we can

carefully choose inputs, based on which the system generates outputs. Our model is that of a fully

defined non-deterministic finite automaton. We proposed an iterative algorithm, which includes

two rules for updating the status (or, more generally, the cost) of nodes in an appropriately con-

structed observer for the system, with inputs and outputs. We developed this algorithm to choose

strategies that more efficiently lead us to a situation where the state of the system is known exactly.

The iterative algorithm is our proposal for a solution to this kind of problems. One should keep

in mind, that once we achieve our goal and arrive at a singleton set of state estimates, a next step

might be to remain in cycles of strictly singleton sets (i.e., for the system to continue operating

while its state remains known).

After this procedure, we obtain the cost of each state and then we choose which path has the lowest

cost to reach a singleton state. There is a possibility to have more than one strategy with the same

cost.

33

Μά
ρθ
α Χ
ρίσ
του

CHAPTER 5. CONCLUSIONS 34

5.2 Future Work

An interesting future extension of this problem is to apply it to the case of partially defined systems.

The challenge in this case is that deadlocks might exist. Also it will be interesting to determine

whether (approximate) solutions to the problem can be obtained with less complexity using a

detector [10] as opposed to an observer. Such an approach may have reduced complexity at the

cost of being suboptimal.

Another interesting extension is to formulate the problem as a stochastic system (i.e., with proba-

bilities on inputs or outputs). An important question that arises is how the strategy changes when

we know that one output is more likely to occur compared to another. In such case, one would also

need to adopt appropriate (stochastic) criteria for optimality.

Μά
ρθ
α Χ
ρίσ
του

Bibliography

[1] C. N. Hadjicostis, Estimation and Inference in Discrete Event Systems. Springer, 2020.

[2] R. L. Rivest and R. E. Schapire, “Inference of finite automata using homing sequences,”

Information and Computation, vol. 103, no. 2, pp. 299–347, 1993.

[3] J. Dubreil, P. Darondeau, and H. Marchand, “Opacity enforcing control synthesis,” in Pro-

ceedings of 9th International Workshop on Discrete Event Systems, pp. 28–35,2008.

[4] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strategies via state estima-

tor constructions,” IEEE Transactions on Automatic Control, vol. 57, no. 5, pp. 1155–1165,

2011.

[5] Y. Falcone and H. Marchand, “Runtime enforcement of K-step opacity,” in Proceedings of

52nd IEEE Conference on Decision and Control (CDC), pp. 7271–7278, 2013.

[6] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource allocation systems

with multiple resource acquisitions and flexible routings,” IEEE Transactions on Automatic

Control, vol. 46, no. 10, pp. 1572–1583, 2001.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer Science

& Business Media, 2009.

[8] S. Shu, F. Lin, and H. Ying, “Detectability of discrete event systems,” IEEE Transactions on

Automatic Control, vol. 52, no. 12, pp. 2356–2359, 2007.

[9] S. Shu and F. Lin, “Detectability of discrete event systems with dynamic event observation,”

Systems & Control Letters, vol. 59, no. 1, pp. 9–17, 2010.

[10] C. N. Hadjicostis and C. Seatzu, “K- detectability in discrete event systems,” in Proceedings

of 55th IEEE Conference on Decision and Control (CDC), pp. 420–425, 2016.

35

Μά
ρθ
α Χ
ρίσ
του

BIBLIOGRAPHY 36

[11] S. Shu and F. Lin, “Enforcing detectability in controlled discrete event systems,” IEEE Trans-

actions on Automatic Control, vol. 58, no. 8, pp. 2125–2130, 2013.

[12] M. Pocci, I. Demongodin, N. Giambiasi, and A. Giua, “Synchronizing sequences on a class of

unbounded systems using synchronized Petri nets,” Discrete Event Dynamic Systems, vol. 26,

no. 1, pp. 85–108, 2016.

[13] C. Wu, I. Demongodin, and A. Giua, “Correction to “Synchronizing sequences on a class

of unbounded systems using synchronized Petri nets”,” Discrete Event Dynamic Systems,

vol. 29, no. 4, pp. 521–526, 2019.

[14] N. Yevtushenko, V. Kuliamin, and N. Kushik, “Evaluating the complexity of deriving adap-

tive homing, synchronizing and distinguishing sequences for nondeterministic FSMs,” in

Proceedings of IFIP International Conference on Testing Software and Systems, pp. 86–103,

Springer, 2019.

[15] D. Lee and M. Yannakakis, “Testing finite-state machines: state identification and verifica-

tion,” IEEE Transactions on Computers, vol. 43, no. 3, pp. 306–320, 1994.

[16] N. Kushik, K. El-Fakih, N. Yevtushenko, and A. R. Cavalli, “On adaptive experiments for

nondeterministic finite state machines,” International Journal on Software Tools for Technol-

ogy Transfer, vol. 18, no. 3, pp. 251–264, 2016.

[17] M. Soucha, “Finite state machine state identification sequences,” Open Informatics, Com-

puter and Information Science, Faculty of Electrical Engineering, Department of Cybernet-

ics, 2014.

[18] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-enforcing supervi-

sors for partially-observed discrete-event systems,” IEEE Transactions on Automatic Control,

vol. 61, no. 8, pp. 2140–2154, 2016.Μά
ρθ
α Χ
ρίσ
του

	Acknowledgement
	Abstract
	englishgreekPr'ologos
	Introduction and Motivation
	Basic Definitions, Background and Notation
	Deterministic Finite Automata Under Partial Observation
	Fully Defined Nondeterministic Finite Automata with Outputs
	Strong Detectability and its Verification
	K-Detectability and its Verification

	Problem Formulation and Solution Approach
	Min-Max Strategies
	Conclusions
	Summary
	Future Work

