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Abstract 

In the last decades photovoltaic (PV) systems penetration in the energy mix is rapidly increasing 

with a total cumulative installed capacity of 758.9 GW in 2020, as reported by the International 

Energy Agency (IEA). For a further sustainable PV growth, it is crucial to assure the lifetime 

energy yield and the formulation of strict warranties to reduce investment risk. To achieve this, 

the accurate evaluation of the performance loss rate (PLR) of fielded PV systems is necessary. 

The PLR includes fault and loss events as well as PV module degradation and its estimation is 

technology and methodology dependent.  

The aim of this thesis is to develop an optimal methodology for forecasting the annual PLR of 

fielded PV systems. Annual PLRs based on forecasted performance ratio (PR) were computed 

using a Seasonal Auto Regressive Integrating Moving Average (SARIMA) model and robust 

principal component analysis (RCPA). The forecasted PLRs were compared with actual PLRs 

obtained over an 8-year period for eleven different PV technologies installed in Nicosia, Cyprus.  

The SARIMA method was used to model the PR time series of each PV system and the orders 

𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄 and 𝑠 of each model were derived using four different methods. Three of them were 

based on three different information criterions, namely the Akaike Information Criterion (AIC), the 

modified AIC for small sample size (AICc) and the Bayesian Information Criterion BIC. The fourth 

method was based on an empirical evaluation of the autocorrelation function (ACF), partial ACF 

(PACF) and a statistical residuals analysis.  

Each devised model was used to forecast the monthly PR for 3 years, using a 5-year period of 

monthly PR measurements as the train dataset. All methods showed good fitting for the 

forecasted PR, with the RMSE and MAE values being below 6%. The PLR was computed at the 

end of each forecasted year using the RPCA method. The results showed that the actual and 

forecasted PLR values were in agreement with the PLR values reported in literature for the c-Si 

and thin-film technologies, confirming the reliability of the RPCA method to calculate the PLR. 

Comparing the actual and forecasted PLR values, all methods manage to estimate the PLR 

sufficiently exhibiting absolute differences up to 1.2 %/𝑦𝑟, with the BIC method achieving the 

lowest difference of 0.51 %/𝑦𝑟. 

The optimal methodology for estimating the PLR was derived based on a comparative analysis. 

Specifically, the comparative analysis was based on the forecasting accuracy of the four methods 

for both PR and PLR values, the statistical significance and their simplicity. The method that 

achieved the lowest total score was considered the preferred one. The models based on BIC had 

the lowest scores for the forecasting accuracy, but the statistical significance scores of the method 

was quite high. However, the BIC method achieved the most preferred score with a total score of 

0.01807. Furthermore, the total scores based on AIC and AICc were slightly higher than the BIC, 

with the method based on AIC exhibit the second lower value with a total score of 0.01939 and 

the method based on AICc having a total score of 0.02049. Last but not least, the methodology 

based on ACF and PACF had the lowest score regarding the residual’s behaviour showing that 

the residuals of this method are closest to white noise behaviour. Depside that, this methodology 

achieved the total score of 0.02181, which was the higher score among the methods, ranking it 

to the least preferred method.  
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𝐼𝐴 Array current 𝐴 

𝐼𝑀𝑃𝑃 Maximum Power Point Current 𝐴 

𝐼𝑆𝐶 Shot Circuit Current 𝐴 

𝑃0 Array power rating (DC) 𝑘𝑊 

𝑃𝐴 Array power (DC)  𝑊 

PLR Performance Loss Rate %/𝑦𝑒𝑎𝑟 

𝑃𝑀𝑃𝑃 Maximum Power Point Power 𝑊 

𝑃𝑃𝑇𝐶 Power extrapolated to PTC 𝑊 

𝑃𝑅 Performance Ratio % 

𝑃𝑇𝑈 Power to the utility grid 𝑊 

𝑅𝐻 Relative humidity % 

𝑅𝑆 Series resistance 𝑂ℎ𝑚𝑠 

𝑅𝑆𝐻 Shunt resistance 𝑂ℎ𝑚𝑠 
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SYMBOL DESCRIPTION UNIT 

𝑇𝑎𝑚𝑏 Ambient air temperature ℃ 

𝑇𝑚𝑜𝑑 Module temperature ℃ 

𝑉𝐴 Array voltage 𝑉 

𝑉𝑀𝑃𝑃 Maximum Power Point Voltage 𝑉 

𝑉𝑂𝐶 Open Circuit Voltage 𝑉 

𝑊𝑎 Wind direction   

𝑊𝑆 Wind speed 𝑚/𝑠2 

𝑌𝐴 PV array energy yield 𝑘𝑊ℎ/𝑘𝑊 

𝑌𝐹 Final system yield 𝑘𝑊ℎ/𝑘𝑊 

𝑌𝑟 Reference yield 𝑘𝑊ℎ/𝑘𝑊 

𝛾𝑚𝑎𝑛𝑢𝑓 Temperature coefficient of power from the module specifications %/𝐾 

𝜂𝑆𝑇𝐶 PV module efficiency rated under STC % 

 

  

Ann
a M

ich
ail



 
 

xv 
 

Notation 

∇𝑑 Difference operator of dth order  

𝑎 Significance level 

𝐵 Back-shift operator 

𝐻𝑎 Alternative Hypothesis 

𝐻𝑜 Null Hypothesis 
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Chapter 1 – Introduction 

Over the last decades, a rapidly increasing penetration of photovoltaic (PV) systems in the energy 

mix is evidenced. Figure 1.1 illustrates the globally total cumulative installed capacity of PV 

systems over the years, reaching 758.9 GW by the end of 2020 as reported by the International 

Energy Agency (IEA) [1]. As indicated by IEA, PV is the fastest growing renewable energy 

technology in terms of global installation. A key factor that will enable the further uptake of the 

technology is the reduction of the PV electricity costs by increasing the lifetime output. This can 

be achieved by improving the reliability and service lifetime performance. In this sense, a main 

challenge in the quest for ensuring quality of operation especially for grid-connected PV systems 

is to safeguard reliability and good performance by identifying and quantifying accurately the 

factors behind the various performance loss mechanisms, while also detecting and diagnosing 

potential failures at early stages [2], [3].  

 

 

Figure 1.1. Global evolution of cumulative PV installations [1]. 

 

1.1 Thesis motivation 

PV systems over their lifetime develop degradation modes due to fault and loss events as well as 

PV module degradation. These degradation modes can be attributed to environmental and PV 

internal factors such as temperature, humidity, soiling (the accumulation of dust, dirt, and other 

particles that cover the surface of the module), solar irradiance, shading, module/cell cracks and 

module mismatches etc [4]. The aforementioned factors accelerate different degradation modes 

and impose significant stress over the lifetime of a PV module, resulting in the reduction of 

durability, which must be quantified through the estimation of the performance loss rate (PLR).  

Knowledge of the PLR is crucial for reducing uncertainties and financial risks [3]. It is important to 
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note that up to date, there is no standardized method for accurate calculating the PLR of fielded 

PV systems [5], [6].  

For instance, warranties offered by the manufacturers of PV modules guarantee that over the 25 

to 30 years’ service lifetime of the modules the power output as calculated under standard test 

conditions (STC), 𝑃0, will exhibit a maximum of 20 % degradation [4], [7]. More recently, the 

manufactures include in their guarantee a maximum linear degradation rate of the 𝑃0 per year. 

Usually, guarantees declare the 2 % of power degradation rate during the first year and not higher 

than 0.4 %/𝑦𝑟 to 0.8 %/𝑦𝑟 thereafter, depending on the manufacturer [8]. These values are not 

carried out by testing the PV modules to the end of their lifetime in the field, as they are taken 

under laboratory conditions at STC.  

In the case of fielded PV modules to measure their performance and compare it with the 

indications from the warranties, their operation is needed to be disturbed and measured under 

laboratory conditions at STC. This leads to high enough measurement uncertainties that 

difference lower than 2 % − 3 % from the 𝑃0. On the other hand, by fully testing the module at 

STC, only a small part of field performance is tested, as such conditions rarely occur in outdoor 

environments. Consequently, the overall performance of the PV system in the field must be 

analysed to come to conclusions on the actual PLR. 

The aforementioned reasons further urge the need for establishing a standardized methodology 

for accurately estimating the PLR of fielded PV modules and systems. This will assist to assure 

the lifetime energy yield and the formulation of strict warranties to reduce investment risk, leading 

to a further sustainable growth of PV technology.  

 

1.2 Research objectives 

The main focus of the present study is to establish an optimal methodology for estimating 

accurately the PLR of fielded PV systems. The PLR estimation is generally based on a 

performance metric which will assess the performance of the PV system and its value will reflect 

the losses on the PV rated output. In the present thesis the performance ratio (PR) was used as 

the performance metric. The main research objectives of the present thesis work are summarised 

as follows: 

• Precise capture the behaviour of the PR time series over the years for each PV system 

using a seasonal auto-regressive integrating moving average (SARIMA) model and 

forecast future values of the PR time series. 

• Estimate accurately the PLR for the upcoming years using the forecasted values of the 

PR time series. 

• Evaluate all the methods proposed and discussed in this study to derive a generalized 

methodology for the estimation of the PLR for fielded PV systems. 
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1.3 Outline of the thesis 

This thesis is divided and organized into five chapters. In particular, Chapter 1 is the introduction 

and elucidates the motivation and research objectives of this thesis.  

Chapter 2 provides an overview of the PLR and the research work performed in the literature. It 

also provides a review of the methodologies used for PLR estimation as well as the selected 

method for PLR estimation, that is used in Chapter 3 and Chapter 4.  

Chapter 3 describes the methodology and background theory. This chapter is divided into six 

subsections. The first and second subsections include a description of the experimental setup 

and the metric used for assessing the PV performance. The third and fourth subsection give the 

background theory of the SARIMA model and RPCA, which are the foundation methodologies in 

which the PLR estimation was based. The fifth subsection describes how the PLR values were 

calculated from the forecasted PR values from the SARIMA models after the implementation of 

the RPCA analysis. This chapter also includes the metrics in which the model adequacy 

assessment and the description of the comparative analysis used for the final selection of the 

optimal method.  

Chapter 4 elucidates the PLR results obtained using eight years of monthly PR data for eleven 

PV systems. The final selection of the optimal method is also included in this chapter.  

Finally, in the last chapter, Chapter 5, the conclusions and future work are presented. 
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Chapter 2 – Overview of the Performance Loss Rate 

2.1 Performance Loss Rate Definition 

The accurate estimation of power production over time is of vital importance for the further growth 

of the PV sector. A precise quantification of the decreasing trend of power over time, also known 

as PLR, is crucial to all the PV relevant stakeholders, such as utility companies, integrators, 

investors and researchers alike [3], [6].  

The issue of performance loss of PV has lead researchers across the world to investigate the 

underlying degradation mechanism achieving this way increment of the modules production and 

efficiency, preventing failures, as well as the introduction of new materials [4]. PV systems, 

especially the field operating ones, experience performance losses at all levels, i.e. cell, module, 

array and system. Different environmental factors and degradation mechanisms can cause such 

losses, including temperature, module soiling, humidity, snow, precipitation and solar irradiation, 

and to parameters relating to their constituent instruments.  

At the cell level, the main mechanisms underlying degradation losses are corrosion, light-induced 

degradation, contact stability and cracks [6]. Additional to these, mismatches between modules, 

shading, glass breakage, busbar failure, diode failures, delamination, broken interconnects and 

hot-spots are some of the factors which can cause degradation to the module, array and generally 

the whole system [4], [6]. These factors induce degradation mechanisms causing significant 

stress over the lifetime of a PV module, resulting in the reduction of durability, which must be 

quantified through the estimation of the PLR [9]. For the quantification of long-term behaviour and 

lifetime of PV systems, the outdoor field testing is of crucial meaning, as is their designated 

operating environment and is realistic way to relate indoor accelerated testing to outdoor results 

with the aim to accurate forecast field performance. 

The effect of the different degradation mechanisms on PVs depends on the technology, the 

operating topology, their cumulative history of field exposure and of course the location of 

installation [10]. Resulting, to different performance loss trends of the nominal power of different 

PV systems. This performance loss trend is expressed as PLR and defines the rate of nominal 

performance drop over time. Usually is expressed in %/𝑦𝑟 and represents the reduction of the 

chosen performance metric in the field [11].  

The main parameters which were related to the PLR of crystalline silicon (c-Si) technology were 

decreasing of the short-circuit current, 𝐼𝑆𝐶 and fill factor, 𝐹𝐹 [12], [13]. The 𝐼𝑆𝐶 initial degradation 

was attributed to oxygen contamination in the bulk of the Si junction, whereas the slow long-term 

degradation correlated linearly with ultraviolet exposure [13]. A comprehensive review [3] 

published by National Renewable Energy Laboratory (NREL) reported that no statistical 

difference was found between mono-Si and multi-Si technologies. However, modules connected 

to inverter experience higher PLR than the ones under open-circuit conditions, due to 

thermomechanical fatigue of the interconnects. Additionally, the type of materials used in modules 

showed to have an influence on the PLR, with the EVA and polyvinyl butyral encapsulants having 

higher PLR than silicone encapsulant. Also, glass–glass modules exhibited larger PLR than 

glass–polymer modules. Concluding, their review study reported that high PLR were attributed to 

high losses in 𝐹𝐹, i.e., significant increases in series resistance, 𝑅𝑆, while moderate PLR were 
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due to optical losses in 𝐼𝑆𝐶. Sánchez-Friera et al. in their study [14] ascribed the large PLR, of 

almost 1 %/𝑦𝑟, to the antireflective coating, in addition to front delamination and inherent junction 

degradation. 

Jordan et al. in [15] aggregated and analysed more than 11000 annual PLRs of almost 200 studies 

from 40 different countries. Through their study they found the median and mean PLR for c-Si 

modules to be in the range 0.5– 0.6 %/𝑦𝑟 and 0.8 − 0.9 %/𝑦𝑟, respectively. PV modules of thin-

film technologies exhibited additional degradation mechanisms [16] and in general higher PLR of 

the 𝐹𝐹 in comparison to the c-Si ones [17]. A total of 455 annual PLRs from studies of thin-film 

technologies were used in [15], resulting to median and mean value of the PLR greater than 

1 %/𝑦𝑟 and almost equal to 1.4 %/𝑦𝑟, respectively. The overall mean PLR including all the studies 

was calculated at 0.91 %/𝑦𝑟, with the thin-film technologies variating from 1 %/𝑦𝑟 to 6 %/𝑦𝑟, in 

contrast with c-Si technologies which were mainly concentrated around the mean.  

To conclude, this noticeable variation of the estimation of PLR for the different technologies of 

modules, is attributed to a number of different factors. Such factors are the technology of the 

module under study, the operating topology, the different climate/operating conditions [3] their 

cumulative history of field exposure [10] and the methodology used for the PLR evaluation [4]. 

 

2.2 Methodologies for the estimation of the PLR 

In literature estimation methods for PLR vary depending on the selected statistical method,  

utilised performance metric, data filtering technique and if the test conditions are under field 

operation or indoors at STC [3]. The most commonly used statistical methods for calculating the 

PLR includes the Linear Regression (LR), Year-over-Year (YoY) methodology, Classical 

Seasonal Decomposition (CSD), Auto-Regressive Integrated Moving Average (ARIMA) model 

and the LOcally wEighted Scatterplot Smoothing (LOESS) [4]. The implementation such methods 

requires the use of a performance metric, such as electrical parameters from IV curves, regression 

models as the Photovoltaics for Utility Scale Applications (PVUSA) or normalized ratings as the 

PR.  

 

2.2.1 Test conditions 

Performance metrics can depend on measurements acquired under field operation or indoors at 

STC. Testing at STC requires the use of solar simulators making this approach more time 

consuming and efficient only for application on small-scale PV plants [18]. Usually, for larger 

plants only a small sample of PV modules is tested indoors and used as an indication for the PLR 

of the whole PV plant. Thus, the PLR estimation using data from field operation are more accurate 

and representative on the actual loss of power which will affect the levelized cost of energy 

(LCoE). For these reasons, a multi-disciplinary methodology must be used which will overcome 

all the issues arising with fielded data.  

To include the failures and degradation mechanisms occurred in a PV module/array/system and 

estimate the PLR an analysis of the performance of PV in the fields and the prevailing 
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meteorological conditions are needed. Typical parameters include acquired electrical 

measurements, such as the array current, 𝐼𝐴, voltage, 𝑉𝐴, and power 𝑃𝐴, power to the utility grid, 

𝑃𝑇𝑈 (for grid-connected systems), meteorological measurements, such as the global irradiance in 

plane of array (POA), 𝐺𝐼, ambient air temperature, 𝑇𝑎𝑚𝑏, module temperature, 𝑇𝑚𝑜𝑑, wind speed 

𝑊𝑆, and relative humidity, 𝑅𝐻 and additional parameters which are extracted from continuous 

current-voltage (IV) characterization modules and arrays in the field, such as the short-circuit 

current, 𝐼𝑆𝐶, open circuit voltage 𝑉𝑂𝐶, fill factor 𝐹𝐹, series resistance 𝑅𝑆, and shunt resistance, 𝑅𝑆𝐻 

[19]. These parameters are then used to generate time series of performance metrics.  

 

2.2.2 Performance metric 

The most common used performance metrics are the electrical parameters from IV curves which 

recorded under outdoor or controlled indoor conditions and corrected to STC, the power 

extrapolated to Photovoltaics for Utility-Scale Applications (PVUSA) test conditions (𝑃𝑃𝑇𝐶) [20], 

and the performance ratio (PR). 

IV curves can be generated manually outdoors at fixed intervals or indoors at STC at sparse 

intervals with the modules operating at MPP between IV scans [21]. The PLR can be detected 

based on the electrical parameters of the IV curve, which can be indicative for the degradation 

mechanisms affecting the module. However, outdoor IV    characterization is mostly used for 

research [12] and diagnostic purposes [22]. On the other hand, indoor IV characterization is less 

commonly used as it is time consuming and inefficient for field operating PVs. On top of that, 

damaging of the modules might occur during indoor IV characterization due to mishandling, 

dismounting and transportation.  

To extrapolate field measurements, regression models are used, which exploit the linear 

relationship between the meteorological and PV operational parameters. A such model is the 

PVUSA [23]–[25]. The model assumes that 𝐼𝐴 is proportional to 𝐺𝐼 and that 𝑉𝐴 is proportional to 

𝑇𝑚𝑜𝑑, which also depend on the 𝐺𝐼, 𝑇𝑎𝑚𝑏 and 𝑊𝑆. For its implementation filtering of the 

𝐺𝐼 measurements are needed, i.e. use only the high values (𝐺𝐼 ≥ 800 𝑊/𝑚2) and the use of 

training dataset for 𝑃𝐴 or 𝑃𝑇𝑈, 𝐺𝐼, 𝑇𝑎𝑚𝑏 and 𝑊𝑆 in order to identify the coefficients 𝑐1, 𝑐2, 𝑐3 and 𝑐4 

using  Eq. (2.1). The coefficients of the model are calculated monthly and then the PVUSA test 

conditions (PTC) (𝐺𝐼 = 1000 𝑊/𝑚2, 𝑇𝑎𝑚𝑏 = 20 ℃ and 𝑊𝑆 = 1 𝑚/𝑠2) are used to estimate the 

𝑃𝑀𝑃𝑃.  

 𝑃𝑀𝑃𝑃 = 𝐺𝐼(𝑐1 + 𝑐2 ∙ 𝐺𝐼 + 𝑐3 ∙ 𝑇𝑎𝑚𝑏 + 𝑐4 ∙ 𝑊𝑆) (2.1) 

The above model is inaccurate for thin-film technologies. For this reason a modification was 

proposed in [26] which includes an additional regression coefficient 𝑐5, representing a loss factor 

(Eq. (2.2)). This modified model expresses the array yield, 𝑌𝐴, rather than the 𝑃𝑀𝑃𝑃 and uses 

measurements for 𝐺𝐼 ≥ 50 𝑊/𝑚2. 

 𝑌𝐴 =  𝐺𝐼(𝑐1 + 𝑐2 ∙ 𝐺𝐼 + 𝑐3 ∙ 𝑇𝑎𝑚𝑏 + 𝑐4 ∙ 𝑊𝑆) − 𝑐5 (2.2) 
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One of the most widely used, both in industry and research, performance metrics is the PR. The 

PR is a key performance indicator (KPI) that provides the ability to compare the performance of 

different PV technologies, with different capacities and geographical locations [27]. The PR can 

be expressed as the ratio of the 𝑌𝐴 of the PV array (or the final yield, 𝑌𝑓 of the PV plant) and the 

reference yield (𝑌𝑟) [19]. Usually the PR is calculated monthly or annually, with the annual ratings 

providing quick insights regarding the permanent performance loss of the PV. However, weekly 

and daily values of the PR are useful for identifying failure and measurement outliers. The monthly 

values of the PR, on the other hand, are a good indication of soiling losses and seasonality in 

comparison with the PVUSA method. Jordan et al. in [28] have reported that the variability of the 

PLR estimation was increased with the use of smaller time intervals of these metrics. In general, 

PR due to its calculation formula achieves normalization with irradiance, which can reflect in the 

metric values the overall effect of losses, such as soiling, reflection losses, system shutdown and 

component failures.  

In literature several studies have compared the PLR using PVUSA or PR as the performance 

metric. Marion et al. in [29] found similar results for both metrics using different PV technologies, 

however other studies [28], [30] found considerable difference between them. Additionally, the 

use of temperature corrected PR as formulated in [31] showed higher PLR than when using the 

regular PR [28]. This can be attributed to the non-linear behaviour of the instant temperature 

coefficient in field operation [28].  

The performance assessment in the present study was based on monthly PR time series, as this 

metric provides the ability to compare the performance of different PV technologies, with different 

capacities and geographical locations, and its value reflects the overall effect of losses which is 

needed for the accurate evaluation of the PLR. 

 

2.2.3 Time series analysis   

Phinikarides et al. in [32] showed that the PLR estimation is highly depended on the utilised 

statistical method. Generally, the different statistical analysis methods are used in order to identify 

the behaviour / trend of the PV performance over time and then evaluate the rate of performance 

change, i.e. the annual PLR. The main methods used in literature can be divided in model-based 

and non-parametric-methods. Model-based methods require the identification of a stochastic time 

series model and include the LR, CSD and ARIMA. On the other hand, for non-parametric 

methods there is not needed to define a model and they are popular due to their robustness and 

simplicity, such methods include the LOESS and YoY.   

The LR is one of the easiest to apply methods and that made it the most commonly used method 

for estimating PLR in literature. The LR method fits the �̂� values in Eq. (2.3) to describe the PV 

performance metric by identifying the slope of the trend, 𝑐1 and the intercept, 𝑐2 using ordinary 

least-squares (OLS) [33]. However, LR method appears to have high uncertainty due to its high 

sensitivity to outliers and seasonal variations [32].  

 �̂� = 𝑐1𝑡 + 𝑐2 (2.3) 
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The YoY methodology was proposed by the SunPower for estimating the PLR [34] and is a 

comparative data point method, which can be used as an alternative to regressive models. The 

YoY calculates the rate of change between two points at the same time in subsequent years [35]. 

The data points can be months, weeks or days of the performance metric, and the rate of change 

is calculated for each point individually. Then the YoY method calculates the median value of the 

rate of change over 1-year period, which represents the PLR of the PV system for that year.  

Seasonal fluctuations due to weather changes closely affect the value of the PR. In order to 

consider the seasonal behaviour of the PR and accurate estimate the PLR seasonalized 

techniques such as CSD and ARIMA are needed.  

CSD is a simple method [36] used to estimate their PLR of PV systems [4], [5], [33]. The CSD 

can be expressed as an additive model (Eq. (2.4)) or as a multiplicative model (Eq. (2.5)) 

depending on the seasonal component. 

 �̂� = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡 (2.4) 

 �̂� = 𝑇𝑡 ∙ 𝑆𝑡 ∙ 𝑒𝑡 (2.5) 

where �̂� are the fitted values, 𝑇𝑡 the trend, 𝑆𝑡 the seasonal component and 𝑒𝑡 the residual 

component. However, the CSD assumes a stable 𝑆𝑡 for all years and does not make any 

amendments to the model based on the residuals. These can cause correlated residuals in the 

model, which comes to a confrontation with the most basic assumption of uncorrelated residuals 

in stochastic models. Lastly, the assumption of stable 𝑆𝑡 does not reflect at all the behaviour of a-

Si technologies which are experiencing periods of lower and higher efficiency due to the Staebler– 

Wronski effect and thermal annealing, respectively. 

ARIMA method, on the other hand, and specifically the seasonal ARIMA (SARIMA) is more 

adaptive in comparison with CSD. SARIMA model [37] due to its nature can effectively handle 

seasonal behaviour, random errors, outliers and level shift as it is eliminating all the correlated 

residuals of the model. The linear SARIMA was used in the present study to capture the behaviour 

of the PR and forecast future values, more details about the model are given in Section 3.3. 
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Chapter 3 – Background Theory and Methodology 

Figure 3.1 illustrates a flowchart of the overall methodology followed for the identification of the 

optimal method to estimate the PLR. 

 

 

Figure 3.1. Overall methodology of the present study. 
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3.1 Experimental Setup and Data Acquisition System 

At the outdoor test facility of the University of Cyprus (UCY) (see Figure 3.2), grid-connected PV 

systems of different technologies (mono-c-Si, multi-c-Si and thin films) and approximately 1 𝑘𝑊𝑝 

capacity each, were installed in May 2006. The PV systems were installed side-by-side in an 

open-field arrangement due to South at the optimum annual energy angle of 27.5°. The 

specifications of the installed PV modules are presented in Table 3.1 [38], [39]. 

 

 

Figure 3.2. Outdoor test facility of the UCY in Nicosia, Cyprus. 
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Table 3.1. Manufacturer datasheet specifications of installed PV modules and rated power, 𝑷𝟎, of the PV system. 

a/a Manufacturer Module type Technology 
𝜼𝑺𝑻𝑪  
(%)  

𝑽𝑶𝑪 
(𝑽) 

𝑰𝑺𝑪  
(𝑨)  

𝑰𝑴𝑷𝑷  
(𝑨)  

𝑽𝑴𝑷𝑷  
(𝑽)  

𝑷𝑴𝑷𝑷  
(𝑾)  

𝑨  
(𝒎𝟐)  

𝑷𝟎  

(𝒌𝑾𝒑)  

𝜸𝒎𝒂𝒏𝒖𝒇  

(
%

𝑲
)  

01 Solon P220/6þ Multi-c-Si 13.40 36.50 8.25 7.62 28.90 220.00 1.64 1.540 -0.430 

02 Sanyo HIP-205NHE1 Mono-c-Si (HIT-cell) 16.40 50.30 5.54 5.05 40.70 205.00 1.25 1.025 -0.300 

03 Atersa A-170M 24V Mono-c-Si 12.90 44.00 5.10 4.75 35.80 170.00 1.32 1.020 -0.370 

04 Suntechnics STM 200 FW Mono-c-Si (back-contact cell) 16.10 47.80 5.40 5.00 40.00 200.00 1.24 1.000 -0.380 

05 Schott Solar ASE-260-DG-FT Multi-c-Si (EFG) 11.70 70.90 4.91 4.55 57.10 250.00 2.14 1.000 -0.470 

06 BP Solar BP7185S Mono-c-Si (11mplan-cell) 14.80 44.80 5.50 5.10 36.50 185.00 1.25 1.110 -0.500 

07 SolarWorld SW165 poly Multi-c-Si 12.70 43.90 5.10 4.60 35.50 165.00 1.30 0.990 -0.470 

08 Schott Solar ASE-165-GT-FT/MC Multi-c-Si (MAIN-cell) 13.00 44.00 5.25 4.71 36.00 170.00 1.31 1.020 -0.470 

09 Würth Solar WS 11007/75 CIGS 10.30 45.50 2.50 2.22 36.00 75.00 0.73 0.900 -0.360 

10 First Solar FS60 CdTe 8.30 90.00 1.14 0.94 64.00 60.00 0.72 1.080 -0.250 

11 MHI MA100T2 a-Si (single cell) 6.40 141.00 1.17 0.93 108.00 100.00 1.57 1.000 -0.200 
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During the 8 years evaluation period (from June 2006 to May 2014), the performance of the Solon 

multi-c-Si and BP solar mono-c-Si was affected by partial shading during the second, third and 

fourth years [38], [39]. 

The performance of each PV system and the prevailing meteorological conditions were recorded 

according to the IEC 61724 [19], at a resolution of 1 second and stored as 1- and 15-min averages 

with the use of a monitoring platform. The acquired meteorological data include the in-plane 

irradiance 𝐺𝐼 from pyranometers, ambient temperature 𝑇𝑎𝑚𝑏, back surface module temperature 

𝑇𝑚𝑜𝑑, wind speed 𝑊𝑆, and direction 𝑊𝑎, whereas the electrical data include the array dc current 

𝐼𝐴, voltage 𝑉𝐴 and power 𝑃𝐴, and ac power to the utility grid 𝑃𝑇𝑈.  

The monitoring platform consists of different sensors summarised in Table 3.2. Periodic 

calibrations and inspections of the sensors were performed to ensure top quality measurements 

and to account for any sensor drifts. Additionally, all sensor cabling and connection terminals 

were periodically checked for moisture intrusion, damage, and loose connections [38], [39].  

 

Table 3.2. Data acquisition equipment and sensors. 

Instrument Manufacturer Model 

Data logger Delphin Topmessage 

Ambient temperature Theodor Friedrichs 2030 

Module temperature Heraeus PT100 

Total irradiance Kipp & Zonen CM 21 e CV 2 

DC voltage Custom made Voltage divider 

DC current Custom made Shunt resistor 

AC energy NZR AAD1D5F 

Wind speed Theodor Friedrichs 4034 

Wind direction Theodor Friedrichs 4122 

 

3.2 PV Performance Analysis 

The estimated PLR can be affected considerable by the amount of corrupted and missing data in 

the performance metric used [5]. For this reason, the measurements of the 𝑃𝐴 and 𝐺𝐼 were prior 

checked for invalid data and outliers as described in [40]. Specifically, for the correction of 

downtimes of the system and sensor, set thresholds and maintenance logs were used. 

Additionally, downtimes of short outage periods (less than a day), were corrected using past 

measurements. To avoid introducing bias to the datasets, longer outage periods were not 

corrected. The obtained datasets were considered the complete datasets of observed values, 

which were used to construct the monthly PR time series using the following formula [19]:  

 𝑃𝑅 =
𝑌𝐴

𝑌𝑟
=

𝐸𝐴
𝑃0

⁄

𝐻𝐼
𝐺𝐼𝑆𝑇𝐶

⁄
 (3.1) 
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where 𝑌𝐴 is the monthly array energy yield defined as the PV array output energy, (𝐸𝐴), per rated 

kW of installed PV array (𝑃0), and 𝑌𝑟 is the reference yield which can be calculated by dividing the 

total in-plane irradiation (𝐻𝐼) by the module’s reference plane of array irradiance (𝐺𝐼𝑆𝑇𝐶
). 

In this work, the monthly PR was constructed (see Figure 3.3) using the 15-min average outdoor 

data acquired over a period of 8 years from the beginning of their operation. 

 

 

Figure 3.3. PR time series the eleven PV systems categorized by the three main technologies, mono-c-Si, multi-
c-Si and thin film with the additional sub- category for the two partially shaded PV systems. The numbering 

corresponds to the numbering used in Table 3.1. 

 

Figure 3.4 shows the PR time series of the Atersa mono-c-Si, Schott Solar (MAIN) multi-c-Si and 

First Solar CdTe thin film system per year. It can be observed that the PR time series exhibit 

seasonality and its value decreases over the years. More specifically, the seasonality is evident 

in Figure 3.3 and Figure 3.4 as a periodicity every 12 months and a repetitive behaviour of the 

graphs over the years, respectively. The decreasing of the PR value over the years is revealed 

as a downward trend of the mean PR value over the years. This change of the mean value over 
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time in statistical analysis can be expressed as non-stationary of the statistical behaviour of the 

time series. The optimal statistical model to describe times series that exhibit both seasonality 

and non-stationarity is the SARIMA model. 

 

 

Figure 3.4. PR time series divided per year of the (a) Atersa mono-c-Si (b) Schott Solar (MAIN) multi-c-Si and 
(c) First Solar CdTe thin film system. 

 

Makrides et al. in [38] showed that a minimum period of 3 to 5 years is required for accurate PLR 

estimation. Especially, for the c-Si technologies the PLR converges to a steady state value after 

5 years, whereas more time might be required for thin-film technologies [38]. For these reasons, 

the first 5 years of the monthly PR time series were used as the train dataset to identify and 

estimate the SARIMA models for each PV system. Monthly PR forecasts were then generated for 

the next 3 years using the estimated SARIMA models. The 3-year forecast time series were then 

combined with the 5-year training dataset to create an 8-year time series of monthly PR for each 

PV system, later mentioned as forecasted data. 

The robust principle component analysis (RPCA) proposed in [41] was then used to obtain the 

PLR at the end of the 6th, 7th and 8th year for the actual and forecasted data of each PV system. 

To implement the RPCA methodology, the forecasted and actual data both consisted by 96 
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monthly PR time series were divided into eight 12-month time series. Then the eight 12-month 

time series were collected in a matrix 𝑫 of dimension 8x12, called data matrix, for each PV system 

to be analysed using the RPCA.  

 

3.3 Seasonal Auto-Regressive Integrating Moving Average model 

(SARIMA) 

SARIMA is composed by three different basic time series operators, namely the autoregressive, 

the moving average and the integrating operators. 

 

3.3.1 Auto-Regressive model 

An auto-regressive (AR) model is a representation of a type of random process; as such, it is 

used to describe certain time-varying processes in nature, economics, etc. The auto-regressive 

model specifies that the output variable depends linearly on its own previous values and on a 

stochastic term (Eq. (3.2)). The AR model is not always stationary, as it may contain unit roots 

(generalized AR operator). 

 

𝑋𝑡 = ∑ 𝜑𝑖𝑋𝑡−1

𝑝

𝑖=1

+ 𝑎𝑡 

(3.2) 

where 𝜑𝑖 , … , 𝜑𝑝 are the parameters of the model and 𝑎𝑡 is a white noise.  

For the time series analysis the backshift operator (𝐵) must be introduced, which operates on an 

element of a time series to produce the previous element as given from the following equation 

 𝐵𝑋𝑡 = 𝑋𝑡−1 (3.3) 

where 𝑋𝑡 current and 𝑋𝑡−1 previous element of the time series. Additionally, the first difference 

operator ∇ (Eq. (3.4)) will be present in the following models and is operating on 𝑋𝑡 as follows 

 ∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 ↔  ∇𝑋𝑡 = (1 − 𝐵)𝑋𝑡 (3.4) 

The second difference operator ∇2 is given by  

 
∇(∇𝑋𝑡) = ∇𝑋𝑡 − ∇𝑋𝑡−1 ↔  ∇2𝑋𝑡 = (1 − 𝐵)∇𝑋𝑡 

↔  ∇2𝑋𝑡 = (1 − 𝐵)(1 − 𝐵)𝑋𝑡 ↔  ∇2𝑋𝑡 = (1 − 𝐵)2𝑋𝑡 
(3.5) 

Following the above approach, ∇i is given as 
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 ∇i𝑋𝑡 = (1 − 𝐵)i𝑋𝑡 (3.6) 

Then the Eq. (3.2) can be rewritten in terms of the backshift operator 𝐵 as 

 𝑋𝑡 = ∑ 𝜑𝑖𝐵𝑖𝑋𝑡

𝑝

𝑖=1

+ 𝑎𝑡 (3.7) 

An auto-regressive model can thus be represented as a superposition of its own previous values 

whose input is a stochastic term (white noise). 

 𝜑(𝐵)𝑋𝑡 = 𝑎𝑡 (3.8) 

where, 

 𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵𝑝 (3.9) 

is the 𝑝𝑡h order polynomial in the operator 𝐵, known as the auto-regressive operator. 

 

3.3.2 Moving Average model  

In time series analysis, the moving-average (MA) model, also known as moving-average process, 

is a common approach for modelling univariate time series. The moving-average model specifies 

that the output variable depends linearly on the current and past values of a stochastic term, 

 𝑋𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (3.10) 

where the 𝜃1,  … ,  𝜃𝑞 are the parameters of the model and the 𝑎𝑡 ,  𝑎𝑡−1, … , 𝑎𝑡−𝑞 are white noise 

error terms. The value of 𝑞 is called the order of the MA model. This can be equivalently written 

in terms of the backshift operator 𝐵 as 

 𝑋𝑡 = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 (3.11) 

and in an operator form  

 𝑋𝑡 = 𝜃(𝐵)𝑎𝑡 (3.12) 

Thus, a moving-average model is conceptually a linear regression of the current value of the 

series against current and previous (observed) white noise error terms or random shocks. The 

random shocks at each point are assumed to be mutually independent and to come from the 

same distribution, typically a normal distribution. 

 𝜃(𝐵) = 1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞 (3.13) 

where the 𝑞𝑡h order polynomial, is known as the moving average operator. 
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3.3.3 ARMA model 

To achieve greater flexibility in fitting of actual time series, it is sometimes advantageous to include 

both AR and MA terms in the model. This leads to the mixed autoregressive-moving average 

(ARMA) model [37]: 

 𝑋𝑡 = 𝜑1𝑋𝑡−1 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (3.14) 

or 

 𝜑(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑎𝑡 (3.15) 

The model employs 𝑝 +  𝑞 +  2 unknown parameters 𝜇, 𝜑1, … , 𝜑𝑝, 𝜃1, … , 𝜃𝑞 , 𝜎𝑎
2, that are estimated 

from the data, where 𝜇 expresses the mean and 𝜎𝑎
2 the variance of the model. In practice, it is 

frequently true that an adequate representation of actually occurring stationary time series can be 

obtained with autoregressive, moving average, or mixed models, in which 𝑝 and 𝑞 are not greater 

than 2 and often less than 2. 

 

3.3.4 Integrating operator and the ARIMA model  

Many time series encountered in industry or business exhibit nonstationary behaviour and in 

particular do not vary about a fixed mean. Such series may nevertheless exhibit homogeneous 

behaviour over time of a kind, e.g. the behaviour of the PR. In particular, although the general 

level about which fluctuations are occurring may be different at different times, the broad 

behaviour of the series, when differences in level are allowed for, may be similar over time. Such 

behaviour may often be represented by a model in terms of a generalized autoregressive operator 

𝜓(𝐵), in which one or more of the zeros of the polynomial 𝜓(𝐵) (i.e., one or more of the roots of 

the equation 𝜑(𝐵) =  0) lie on the unit circle. If there are 𝑑 unit roots and all other roots lie outside 

the unit circle, the operator 𝜓(𝐵) can be written 

 𝜓(𝐵)  =  𝜑(𝐵)(1 −  𝐵)𝑑 (3.16) 

where 𝜑(𝐵) is a stationary autoregressive operator. Thus, a model that can represent 

homogeneous nonstationary behaviour is of the form 

 𝜓(𝐵)𝑋𝑡  =  𝜑(𝐵)(1 −  𝐵)𝑑𝑋𝑡 =  𝜃(𝐵)𝑎𝑡 (3.17) 

that is, 

 𝜑(𝐵)𝑤𝑡  =  𝜃(𝐵)𝑎𝑡 (3.18) 

where 

 𝑤𝑡 = (1 −  𝐵)𝑑𝑋𝑡 = ∇𝑑𝑋𝑡 (3.19) 
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Thus, homogeneous nonstationary behaviour can sometimes be represented by a model that 

calls for the 𝑑th difference of the process to be stationary. In practice, 𝑑 is usually 0, 1, or at most 

2, with 𝑑 =  0 corresponding to stationary behavior.  

The process defined by Eq. (3.18) and (3.19) provides a powerful model for describing stationary 

and nonstationary time series and is called an autoregressive integrated moving average process, 

of order (𝑝, 𝑑, 𝑞), or ARIMA(𝑝, 𝑑, 𝑞) process. The process is defined by  

 𝑤𝑡  =  𝜑1𝑤𝑡−1 + ⋯ + 𝜑𝑝𝑤𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑝𝑎𝑡−𝑝 (3.20) 

The relationship, which is the inverse to (3.19), is 𝑋𝑡 = 𝑺𝑑𝑤𝑡, where 𝑺𝑑 = ∇𝑑= (1 − 𝐵)−𝑑 = 1 +

𝐵−1 + ⋯ + 𝐵−𝑑 is the summation (or integration) operator defined by 

 𝑺𝑤𝑡 = ∑ 𝑤𝑡−𝑗

∞

𝑗=0

= 𝑤𝑡 + 𝑤𝑡−1 + 𝑤𝑡−2 + ⋯ (3.21) 

Thus, the general ARIMA process may be generated by summing or ‘‘integrating’’ the non-

stationary process 𝑤𝑡𝑑 times. A special form of the model in Eq. (3.20) can be employed to 

represent seasonal time series, known as the SARIMA model. 

 

3.3.5 SARIMA model 

The SARIMA model is a multiplicative model, which models seasonal data 𝑋𝑡 of period 𝑠 by 

combining the operators from Eq. (3.9), (3.13) and (3.19) in the following manner: 

 𝜑𝑝(𝐵)𝛷𝑃(𝐵𝑠)𝛻𝑑𝛻𝑠
𝐷𝑋𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝑎𝑡 (3.22) 

where 𝛷𝑃(𝐵𝑠) and 𝛩𝑄(𝐵𝑠) are the seasonal AR and MA polynomials in 𝐵𝑠 of orders 𝑃 and 𝑄 

respectively and ∇𝑠
𝐷= (1 − 𝐵𝑠)𝐷 is the seasonal differencing operator. Th model of Eq. (3.22) is 

usually labelled as (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠. The orders 𝑝, 𝑑, 𝑞, 𝑃, 𝐷 and 𝑄 and the coefficients of the 

polynomials 𝜑𝑝(𝐵), Φ𝑃(𝐵𝑠), 𝜃𝑞(𝐵) and Θ𝑄(𝐵𝑠) are estimated from the available data. 

The model of Eq. (3.22) can provide crucial information of the time, statistical, and spectral 

behaviour of the time series, 𝑋𝑡. This information can be exploited to forecast the future values of 

the time series 𝑋𝑡. It can be shown, that the forecast value, �̂�𝑡(ℎ), at an instant of ℎ time steps 

ahead from a time instant 𝑡 is the conditional expectation, 

 �̂�𝑡(ℎ) = 𝐸[𝑋𝑡+ℎ|𝜃𝑞 , 𝜑𝑝, 𝛩𝑄 , 𝛷𝑃 , 𝑋𝑡 , 𝑋𝑡−1]  (3.23) 

where 𝑋𝑡+ℎ is the random variable generated by the SARIMA model (3.22) at the future time 

instant 𝑡 + ℎ and 𝜃, 𝜑, 𝜃𝑠, 𝜑𝑠 are the coefficients of the polynomials 𝜃(𝐵), 𝜑(𝐵), 𝜃𝑠(𝐵𝑠), 𝜑𝑠(𝐵𝑠) 

respectively, and 𝑋𝑡 , 𝑋𝑡−1, … are actual PR values up to the time 𝑡. 

The identified SARIMA model for each PV system using the initial 5 years training dataset, were 

utilised to forecast the monthly PR values for the last 3 years. These models are linear, thus it 

can be said that the estimation of the PLR is based on a linear assumption.  
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3.4 Robust Principal Component Analysis (RPCA) 

The quality of outdoor measurements can be affected unpredictably by the environment, 

operating conditions, and the uncertainty of the sensors. Even, thought the measurements were 

cleaned from outliers and missing data before the construction of the PR time series the 

aforementioned effects can still affect the data and consequently the estimation of the PLR. 

Kyprianou et al. in [41] have proposed the use of the robust principal component analysis (RPCA) 

in order to further eliminate these effects.  

Every actual and forecasted dataset of each of the PV systems was used to create a rectangular 

(𝑚, 𝑛) data matrix 𝑫, where 𝑚 and 𝑛 indicate the 8 years and the 12 months of each year, 

respectively. Then an RPCA analysis on 𝑫 is carried out, where the data matrix 𝑫 is expressed 

as: 

 𝑫 =  𝑲 +  𝑬 (3.24) 

where, 𝑲 is a low rank data matrix and 𝑬 an unknown sparse perturbation matrix. RPCA extracts 

𝑲 by solving the following optimization formula: 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒‖𝑘‖𝑠  + 𝜇‖𝐸‖1 
subjected to 𝑫 = 𝑲 + 𝑬 

(3.25) 

where ‖𝑘‖𝑠 is a norm defined by the sum of the singular values of 𝑲 and ‖𝐸‖1 is a norm defined 

by the summation of the absolute values of 𝑬 and is a weighting parameter that trades off between 

the two norms. The RPCA program was solved using the function “rrpca” of the package “rsvd” in 

R Project for Statistical Computing [42], which decomposes the matrix using the method of inexact 

Augmented Lagrange Multiplier (iALM) as given in Eq. (3.25) [43].  

 

3.5 Definition of Performance Loss Rate 

The PLR of the PV systems was estimated using the RPCA actual and forecasted data. The PLR 

for the 𝑖𝑡ℎ year was calculate using the Eq. (3.26) for both RPCA actual and forecasted data. The 

first year of the PR of each PV system was used as a reference for the PLR estimation, as the 

highest PLR of the lifetime of PV usually happens during this year. 

 
𝑃𝐿𝑅𝑖 =

𝐴1−𝑖
𝐴1

⁄

𝑖
 

(3.26) 

where 𝐴1 = ∫ (𝑃𝑅1)𝑑𝑡
12

1
 is area beneath the curve of the 1st year of the RPCA data and 𝐴1−𝑖 =

∫ (𝑃𝑅1 − 𝑃𝑅𝑖)𝑑𝑡
12

1
 is the area between the curve of the 1st and 𝑖𝑡ℎ year. In Figure 3.5 the shaded 

region of each graph represents the 𝐴1−8, which indicates the 8-year PR decay of three different 

PV system for the RPCA actual and forecasted data.  
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Figure 3.5. The monthly PR observations divided by year of the (a) actual and (b) forecasted RPCA data for 
the (i) Atersa mono-c-Si (ii) Schott Solar (MAIN) multi-c-Si and (iii) First Solar CdTe thin film system. Shaded 

region represents the 8-year PR decay of the data.  

 

3.6 Model Adequacy Assessment 

3.6.1 Model selection based on Information Criteria 

Forecast accuracy measures such as root mean squared error (RMSE) and mean absolute error 

(MAE) can be used for selecting a model for a given set of data, provided the errors are computed 

from data in a validation set and not from the same data as were used for model estimation 

(training set). However, there are often too few validation-samples errors to draw reliable 

conclusions [44]. Furthermore, the sample autocorrelation (ACF) and partial autocorrelation 

(PACF) functions are extremely useful in model identification, but sometimes there are cases 

involving mixed models where they can provide ambiguous results. This of course can be solved 

with the model being subjected to further examination, diagnostic checking, and modification, if 

necessary [37]. 
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Nevertheless, the use of a penalized method based on the training-sample fit can solve the 

aforementioned issues easier. Model specification can be based on model selection criteria such 

as AIC, AICc and BIC. AIC represents Akaike’s information criterion, AICc is a modification of the 

AIC for small sample size, which was proposed to minimize the possibilities to select an overfitting 

model, and lastly, BIC is the Bayesian information criterion due to Schwarz. These criteria are 

likelihood based and include under normality the determinant of the innovations covariance matrix 

that reflects the goodness of fit of the model. A second term is a function of the number of fitted 

parameters and penalizes models that are unnecessarily complex. 

The formulas of the AIC, AICc and BIC information criteria are given by the Eq. (3.27), (3.28) and 

(3.29), respectively [37]: 

 𝐴𝐼𝐶 =
−2 ln(𝐿) + 2𝑟

𝑛
 (3.27) 

 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑟2 + 2𝑟

𝑛 − 𝑟 − 1
 (3.28) 

  𝐵𝐼𝐶 =
−2 ln(𝐿) + 2𝑟 ln(𝑛)

𝑛
 (3.29) 

where 𝑛 is the number of the training-sample data, 𝑟 ≈ 𝑝 + 𝑞 + 𝑃 + 𝑄 is the number of estimated 

parameters in the model and 𝐿 is the maximized likelihood of the model fitted to the differenced 

data 𝛻𝑑𝛻𝑠
𝐷𝑋𝑡.  

It can be observed that AICc and BIC imposes a greater ‘‘penalty factor’’ for the number of 

estimated parameters than does AIC. These criteria can be used to compare models fitted using 

maximum likelihood and the model that gives the lowest value for a given criterion should be 

selected. Hence, since the AICc and BIC criteria imposes a greater penalty for the number of 

estimated model parameters than does AIC, the use of minimum AICc or BIC for model selection 

would always result in a chosen model whose number of parameters (𝑟) is no greater than that 

chosen under AIC [37]. 

In the present study all three information criterions were used for the identification of the SARIMA 

models and were compared with each other and with the models proposed in [6] for the 

identification of the optimal methodology for estimating the PLR. The SARIMA models in [6] were 

derived based on the ACF and PACF and verified using statistical analysis of the model’s 

residuals. 

 

3.6.2 Residuals Behaviour – Portmanteau Lack-of-Fit test  

After the SARIMA models are identified diagnostic checks are needed to be applied to the fitted 

models in order to assure the quality of fitting. The most used and appropriate checks are applied 

to the residuals of the fitted models, which can indicate necessary modifications to the selected 

model. The residuals (�̂�𝑡) in a time series model are the differences between the simulated results 

of the fitted model (�̂�𝑡) and the actual observations (𝑦𝑡), 
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 �̂�𝑡 = 𝑦𝑡 − �̂�𝑡 (3.30) 

The main properties that the residuals of a good forecasting method should have are that they 

must be uncorrelated and have zero mean [45]. If the residuals are correlated, it indicates that 

there is information in the residuals which the model should use for computing forecasts. Also, 

non-zero mean of the residuals shows that the forecasts are biased, i.e. constant difference 

between the forecasted and actual values. Additional properties which are not as essential as the 

two above, suggests that the residuals have a constant variance and are normally distributed. For 

an adequate model, it can be shown that the following equation is valid [37] 

 �̂�𝑡 = 𝑎𝑡 + 𝑶 (
1

√𝑛
) (3.31) 

where 𝑎𝑡 is white noise, 𝑛 is the number of the model’s residuals (same as the number of training-

sample data) and 𝑶(1 √𝑛⁄ ) represents order of the 1 √𝑛⁄ . Eq. (3.31) shows that as the series 

length increases, the �̂�𝑡’s become close to the 𝑎𝑡’s. 

Box et al. in [37] proposed two diagnostic checks for the model’s residuals, the autocorrelation 

check and the cumulative periodogram of the residuals. Autocorrelation check refers to the visual 

check of the ACF graphs of the residuals, which should be performed for all the obtained SARIMA 

models. The approximate upper and lower bounds used for the standard error of a single 

autocorrelation is ± 1 √𝑛⁄ , if the residuals fall within these bounds then the model is assumed to 

be adequate. In order to quantify the autocorrelations of the residuals the second check was 

performed as well, which was based on the portmanteau lack-of-fit test proposed by Ljung and 

Box.  

 �̃� = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1𝑟𝑘
2(�̂�)

𝐾

𝑘=1

 (3.32) 

where 𝑛 the number of data used to fit the model, 𝑟𝑘(�̂�) autocorrelations of the residuals �̂� and 𝐾 

the number of the first 𝑟𝑘
2(�̂�) used. The null hypothesis 𝐻0 is that the mean 𝐸[�̃�] is approximately 

distributed as 𝜒2(𝐾 − 𝑝 − 𝑞 − 𝑃 − 𝑄), which indicates that the model is appropriate fitted. For the 

execution of the Eq. (3.33) the “Box.test” function was used from the package “stats” in R Project 

for Statistical Computing. The 𝑝-values of the portmanteau statistic �̃� were examined, a lack of 

fitting was indicated if their values were at or near the significance level (𝛼 = 0.05). The 𝑝-values 

represent the probability of obtaining the observed results, when the 𝐻0 of a study question is 

true. As a result, higher values of the 𝑝-values indicate that the model approximates better the 

𝐻0, and contrary 𝑝-values lower than 𝛼 indicates that the 𝐻0 is rejected meaning that the fitted 

model does not follow a 𝜒2(𝐾 − 𝑝 − 𝑞 − 𝑃 − 𝑄) distribution. 

However, it is urged that the portmanteau statistic should not be considered as the only diagnostic 

check for the fitted model, but a careful examination must be performed of the residuals and their 

individual autocorrelation coefficients. The Ljung-Box portmanteau lack-of-fit test was mostly used 

in the present thesis for quantification of the fitting ability of the developed models. 
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3.6.3 Performance Assessment Metrics  

The performance accuracy of the developed models was assessed based on performance 

metrics. Such metrics commonly used in PV forecasting applications include the MAE which 

measures the difference between the measured and simulated data and the RMSE which 

describes the standard deviation of the prediction errors. Additionally, the error of difference (Dif) 

and absolute error of difference (Abs Dif) where used in the present study specially to quantify 

the difference between the actual (based on observed measurements) and forecasted (based on 

simulated values) of the PR and PLR values. The metrics used to analyse the performance of the 

developed performance models are based on the difference between the measured (actual) and 

simulated (forecasted) PR or PLR values and are calculated as follows: 

 
𝐷𝑖𝑓𝑖 = 𝑦𝑖 − �̂�𝑖 

𝐴𝑏𝑠 𝐷𝑖𝑓𝑖 = |𝑦𝑖 − �̂�𝑖| 
(3.33) 

 𝑀𝐴𝐸 =
1

𝑛
× ∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (3.34) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
× ∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 (3.35) 

where 𝑦𝑖 and �̂�𝑖 are the observed and forecasted value (for PR or PLR) respectively.  

 

3.6.4 Selection of Optimal Method  

The SARIMA models based on AIC, AICc, BIC and Ref [6] were compared to identify the optimal 

method for estimating the PR time series and thereafter the PLR. The performed comparative 

analysis was based on the forecasting accuracy for both PR and PLR, statistical significance and 

method’s simplicity (the results are summarized in section 4.3). 

Specifically, for the forecasting accuracy for the PR time series the RMSE metric and the 

information criterions were used. The ratio 𝑅𝑀𝑆𝐸𝑓𝑜𝑟/𝑅𝑀𝑆𝐸𝑟𝑒𝑓  express the mean RMSE of the 

SARIMA models developed by each methodology based on the information criterions (𝑅𝑀𝑆𝐸𝑓𝑜𝑟) 

divided with the mean RMSE using the SARIMA models as in Ref [6] (𝑅𝑀𝑆𝐸𝑟𝑒𝑓).  

Likewise, the 𝐴𝐼𝐶𝑟𝑒𝑓/𝐴𝐼𝐶𝑓𝑜𝑟 express the mean AIC value of the using the SARIMA models as in 

Ref [6] (𝐴𝐼𝐶𝑟𝑒𝑓), divided by the mean AIC value of the SARIMA models developed by each 

methodology based on the information criterions (𝐴𝐼𝐶𝑓𝑜𝑟), same for the AICc and BIC, 

respectively. The value of the information criterion is preferred to have the smallest value (largest 

negative value), that’s why these ratios are reversed in comparison with the one for RMSE.  
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The forecasting accuracy for the PLR was based on the mean value of Abs Dif between the actual 

and forecasted PLR for the last 3 years. Moreover, four different values of the mean Abs Dif were 

used for each PV technology, i.e. mono-c-Si, multi-c-Si and thin films, and separated for the 

partially shaded PV systems. 

For evaluating the statistical significance, the adequacy of the models of each method was 

evaluated based the residual behaviour by checking their individual autocorrelation coefficients 

and quantified based on the Ljung-Box portmanteau lack-of-fit test.  

The methodology followed in Ref [6] was assumed to be a more empirical approach and a good 

understanding of the ARIMA theory was needed to identify the SARIMA models. In contrast, with 

the methods based on the three different information criterions, simple and automatic functions 

were utilised for the identification of the SARIMA models for each PV system. However, even if 

automatic functions can identify the SARIMA models, a “manual” supervision of the results is 

needed to verify the statistical adequacy of the models.  

The total score of each methodology is the product of the score for each value mentioned above, 

with the preferred methodology be the one with the lowest total score.   
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Chapter 4 – Results 

4.1 Arima Modelling and Forecasting of the PR time series 

As has been stated in section 3.3 forecasting of a given time series 𝑋𝑡 requires the availability of 

a model that captures its time, statistical and spectral behaviour. To develop such a model, the 

orders and the coefficients of the operators must be identified, and the statistical diagnostic 

checks should be performed to assure the statistical significance of the model. The lags 

𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄 and 𝑠 of the SARIMA model were derived using the “auto.arima” function from the 

“forecast” package in R Project for Statistical Computing [44].  

 

4.1.1 Identification of SARIMA model orders  

The “auto.arima” function in R returns the best ARIMA or SARIMA model according to the chosen 

information criterion (e.g. AIC, AICc or BIC) [44]. As aforementioned, the PR time series exhibit 

seasonality and a downward tendency of the average PR value over periods of 12-month. 

Therefore, as the dataset are consisted from monthly values the seasonality 𝑠 and the seasonal 

differencing 𝐷 were set equal to 12 and 1, respectively, for all the systems in the “auto.arima” 

function. The 𝑑 wasn’t set equal to a constant value, its values were chosen automatic from the 

algorithm to be equal to 0 or 1, depending on PR time series of each PV system. 

Each devised model was used to forecast the monthly PR for 3 years, using a 5-year period of 

monthly PR measurements as the train dataset with the help of the “sarima.for” function of the 

“astsa” package in R. Table 4.1 summarizes the identified SARIMA models based on the different 

information criterions AIC, AICc and BIC respectively, as well as the SARIMA models proposed 

in [6].  

 

Table 4.1. Identified SARIMA models (𝒑, 𝒅, 𝒒), (𝑷, 𝑫, 𝑸)𝒔 for the PV grid connected systems based on the AIC, 
AICc and BIC value and as proposed in [6] . (*Partially shaded systems) 

a/a Manufacturer AIC AICc BIC Ref [6] 

01 Solon * (1,0,0), (1,1,0)12  (1,0,0), (1,1,0)12  (1,0,0), (1,1,0)12  (1,1,1), (1,1,1)12  

02 Sanyo (0,1,1), (1,1,1)12  (0,1,1), (1,1,1)12  (0,1,1), (1,1,1)12  (2,1,1), (1,1,1)12  

03 Atersa (0,0,0), (1,1,0)12  (0,0,0), (1,1,0)12  (0,0,0), (1,1,0)12  (2,1,1), (1,1,1)12  

04 Suntechnics (0,0,0), (1,1,0)12  (0,0,0), (1,1,0)12  (0,0,0), (1,1,0)12  (3,1,1), (1,1,1)12  

05 Schott Solar (EGF) (0,0,0), (1,1,1)12  (0,0,0), (1,1,1)12  (0,0,0), (1,1,1)12  (3,1,1), (1,1,1)12  

06 BP Solar * (0,1,2), (1,1,0)12  (2,1,0), (1,1,0)12  (0,1,0), (1,1,0)12  (3,1,2), (1,1,0)12  

07 SolarWorld (0,0,0), (1,1,1)12  (0,0,0), (1,1,1)12  (0,0,0), (1,1,0)12  (3,1,1), (1,1,1)12  

08 Schott Solar (MAIN) (0,0,0), (1,1,1)12  (0,0,0), (1,1,1)12  (0,0,0), (1,1,0)12  (3,1,1), (1,1,1)12  

09 Würth Solar (1,0,0), (1,1,0)12  (0,0,0), (1,1,0)12  (0,0,0), (1,1,0)12  (3,1,1), (1,1,1)12  

10 First Solar (1,1,0), (1,1,0)12  (1,1,0), (1,1,0)12  (1,1,0), (1,1,0)12  (3,1,1), (1,1,1)12  

11 MHI (0,1,1), (1,1,0)12  (0,1,1), (1,1,0)12  (0,1,1), (1,1,0)12  (3,1,1), (1,1,1)12  
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The SARIMA models identified with the three different information criterions yielded identical 

results expect for the BP solar, SolarWorld, Schott Solar (MAIN) and Wurth Solar PV systems. 

However, none of the obtained models based on the information criterions were in agreement 

with the ones proposed in [6]. 

 

4.1.2 Forecasting of the PR time series 

The SARIMA models were then used to generate 36 future values of the monthly PR time series. 

However, it should be noted that these models are purely statistical models and their probability 

limits should be considered. Usually, the upper and lower 50% and 95% probability limits are used 

to express the accuracy of the forecasts [37]. The probability limits express that the realized value 

of the time series, when it eventually occurs, will be included within these limits with the stated 

probability. Figure 4.1 illustrates 60 actual (black line) the 36 forecasted values (red line) of the 

monthly PR including the upper and lower 50% and 95% probability limits for three of the eleven 

PV systems, of different technologies. It can be observed that the probability limits are closed to 

the forecasted values and do not diverge over time. 
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Figure 4.1. Upper and lower 50% and 95% probability limits for the (a) Atersa mono-c-Si (b) Schott Solar 

(MAIN) multi-c-Si and (c) First Solar CdTe thin film system using the SARIMA models based on the AIC. 

 

Figure 4.2 shows the actual and forecasted values of the PR time series over the 8 years for three 

of the eleven PV systems, of different technologies. The forecasted values are closed to the actual 

ones for the presented PV systems. Further analysis regarding the forecasting accuracy is 

performed in the next subsection for all PV systems and methods. The figures with the probability 

limits and the comparison of the actual and forecasted data for the remaining PV systems and 

methods are included in Appendix A. 
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Figure 4.2. Three years of forecasted PR, with five years of training using the SARIMA models based on the 
AIC for (a) Atersa mono-c-Si (b) Schott Solar (MAIN) multi-c-Si and (c) First Solar CdTe thin film system. 

 

During the development of the SARIMA models, the performance loss of the PV systems was 

modelled as non-stationary, however this is purely statistical property which allows to the model 

to change, decrease or increase, the yearly and/or monthly average value of the PR. Generally, 

in terms of planning and policy making is should be considered that the PR values will not increase 

intensely over time. For this reason, the upper 50% and 95% curve should not be considered. 

The forecast data is the most likely expected future PR values with the lower 95% PR curve being 

the statistical worst-case scenario.  
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4.1.3 Robustness of the identified SARIMA model  

In this study the forecasted PR values were used to forecast the yearly PLR, for this reason is 

vital to capture as best as possible the real behaviour of the PR time series of each PV system. 

For the evaluation of the goodness of fit of the SARIMA models, different parameters were 

considered, including performance metrics (RMSE and MAE), the values of the information 

criterions and the behaviour of the residuals. 

 

4.1.3.1 Performance Metrics 

The actual and forecasted PR data (in %), i.e. for the last 3 years, were used to calculate the 

RMSE and MAE (Figure 4.3) for each PV system based on the AIC, AICc, BIC information 

criterion or on the method followed in [6].  

 

 

Figure 4.3. (a) RMSE and (b) MAE between the actual and forecasted PR data (in %) for each PV system 
based on the AIC, AICc, BIC information criterion or on the method followed in [6] for identifying the SARIMA 

model of each system. 

 

The values of RMSE and MAE for all methods used for the PV systems under investigation were 

lower than 6 %, indicating good fitting. The 1st and 6th PV system were affected by partial shading 

during the years (2nd, 3rd and 4th year) that the training sets were obtained, causing unexpected 

lower values of PR. This can explain the high values of errors, as the SARIMA models obtained 

for these PV systems included the effect of partial shading in the behaviour of their PR time series.  

Generally, comparing the RMSE and MAE values of each method no sufficient conclusions can 

be obtain for which method had the best fitting, as their results were very close. Additionally, none 
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of the methods had the lower values of errors for all the PV systems. However, the RMSE and 

MAE values using the BIC for the 6th PV system had up to 2.45% and 2.25% difference with the 

other methods, respectively and with the AIC method having the highest errors for this PV system.  

 

4.1.3.2 Information Criterion 

As aforementioned in Section 3.6.1 information criterions reflect the goodness of fit of the model 

and the model with the lowest (or higher negative) value of the chosen criterion is selected as 

optimal model. However, diagnostic checks must be applied afterwards to verify the statistical 

significance of the model. Even if some methods were based on specific information criterions for 

the identification of the SARIMA model, calculation of the value of other information can be 

calculated. Figure 4.4 compares the values of the AIC, AICc and BIC for the identified SARIMA 

model of each system based on the AIC, AICc, BIC information criterion or on the method followed 

in [6].  

The most striking observation from the comparison presented in the graphs below is that the 

values of the three information criterions for the models obtained in [6] are in almost all cases 

higher (smaller negative). This was expected, as the identification of these models was not based 

on any information. However, there is not a dramatic difference compared to the other methods, 

which indicates that even a more empirical approach can achieve good fitted models.  

Additionally, counterintuitive results can be observed on the AICc and BIC graphs for the models 

of the 6th PV system. It was expected that the model based on the AICc will have the highest 

negative value compared to the other model and similarly for the model based on the BIC. 

However, for the specific PV system the model based on the AIC seems to have the highest value 

for all three information criterions. This might be attributed to the greater ‘‘penalty factor’’ for the 

number of estimated parameters which AICc and BIC have in comparison to the AIC and random 

behaviour of the PR of the system due to the partial shading effects.  
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Figure 4.4. (a) AIC, (b) AICc, and (c) BIC value for the identified SARIMA model of each system based on the AIC, AICc, BIC information criterion or on 
the method followed in [6]. 
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4.1.3.3 Residuals behaviour – Lack of fit test 

The results discussed in the above subsection are not sufficient to indicate the SARIMA model 

which will best describe the behaviour of the PR time series of a specific PV system. However, 

they constituted a good first impression of the fitting ability of the model. To assure the quality of 

the fitting of diagnostic checks must be applied as discussed in Section 3.6.2. 

Figure 4.5 illustrates the time plot, ACF, histogram of the residuals and the Q-Q plot that displays 

the sample residuals with “o” and the theoretical-normal quantiles with a solid line obtained using 

the different methods to identify the SARIMA model of the BP Solar mono-c-Si PV system. From 

the graph it can be observed that the residuals of the models based on AIC, AICc and Ref [6] fall 

within the boundaries of the ACF. Additionally, the residuals of these methods seem to follow at 

an acceptable level the line of the theoretical quantiles, indicating that the residuals follow the 

normal distribution. On the contrary, the model based on the BIC has an autocorrelation lag at 2 

(𝑟2
2(�̂�)) which have greater value than the lower ACF limit which indicates that the model might 

missing some crucial information regarding the behaviour of the PR time series. This can be 

corrected manually by changing the MA order of the model (𝑞). However, in the present study no 

such corrections were performed in order to better compare the ability of the methods developed 

to capture the behaviour of the modelled time series. Detailed results of the residuals behaviour 

of the identified models for all PV systems can be found in Appendix A.  

Table 4.2 provides a synopsis of the number of lags following out of the ACF boundaries for the 

each obtained model obtained using the different methods. It can be observed the models based 

on the BIC have the highest mean value of out-falling lags, of 0.9091. On the contrary, the models 

proposed in [6] resulted in a significant lower value of out-falling lags with a mean value of 0.2727. 

 

Table 4.2. Number (No.) and position of lags following out of the residual ACF boundaries for the each obtained 
model based on the AIC, AICc, BIC and Ref [6]. 

a/a Manufacturer AIC AICc BIC Ref [6] 

  No. Position No. Position No. Position No. Position 

1 Solon * 0 - 0 - 0 - 0 - 

2 Sanyo 1 𝑟5
2(�̂�) 1 𝑟5

2(�̂�) 1 𝑟5
2(�̂�) 1 𝑟5

2(�̂�) 

3 Atersa 1 𝑟3
2(�̂�) 1 𝑟3

2(�̂�) 1 𝑟3
2(�̂�) 0 - 

4 Suntechnics 1 𝑟3
2(�̂�) 1 𝑟3

2(�̂�) 1 𝑟3
2(�̂�) 0 - 

5 Schott Solar (EGF) 1 𝑟3
2(�̂�) 1 𝑟3

2(�̂�) 1 𝑟3
2(�̂�) 0 - 

6 BP Solar * 0 - 0 - 1 𝑟2
2(�̂�) 0 - 

7 SolarWorld 1 𝑟3
2(�̂�) 1 𝑟3

2(�̂�) 1 𝑟3
2(�̂�) 0 - 

8 Schott Solar (MAIN) 1 𝑟3
2(�̂�) 1 𝑟3

2(�̂�) 1 𝑟3
2(�̂�) 0 - 

9 Würth Solar 0 - 1 𝑟4
2(�̂�) 1 𝑟4

2(�̂�) 0 - 

10 First Solar 0 - 0 - 0 - 0 - 

11 MHI 2 𝑟7
2(�̂�), 𝑟13

2 (�̂�) 2 𝑟7
2(�̂�), 𝑟13

2 (�̂�) 2 𝑟7
2(�̂�), 𝑟13

2 (�̂�) 2 𝑟7
2(�̂�), 𝑟13

2 (�̂�) 

Mean  0.7273  0.8182  0.9091  0.2727  
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Figure 4.5. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using (a) AIC, (b) AICc, (c) BIC information criterion or (d) the method followed in [6] for identifying the SARIMA 
model of the BP Solar mono-c-Si PV system. 
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Additionally, Table 4.3 shows the results of the Ljung-Box portmanteau lack-of-fit test for the four 

different methods used to obtain the SARIMA model for each PV system. As discussed before for 

the specific test, the 𝑝-value must not be lower than the significance level (𝛼 = 0.05) in order for 

the residuals to meet the criteria of a white noise behaviour.  

 

Table 4.3. Ljung-Box portmanteau lack-of-fit test using the command “Box.test” for the SARIMA models of 
each PV system using the AIC, AICc, BIC or Ref. [6] method. 

a/a 𝑯𝒂 = 𝑨𝑰𝑪  𝑯𝒂 = 𝑨𝑰𝑪𝒄  𝑯𝒂 = 𝑩𝑰𝑪  𝑯𝒂 = 𝑹𝒆𝒇 [6] 

 �̃�  𝒑-value  �̃�  𝒑-value  �̃�  𝒑-value  �̃�  𝒑-value 

1 6.1402 0.9088 6.1402 0.9088 6.1402 0.9088 4.0659 0.9822 

2 12.8676 0.3787 12.8676 0.3787 12.8676 0.3787 15.8905 0.1963 

3 15.3008 0.2254 15.3008 0.2254 15.3008 0.2254 9.6461 0.6470 

4 17.4354 0.1339 17.4354 0.1339 17.4354 0.1339 3.7766 0.9871 

5 17.0974 0.1460 17.0974 0.1460 17.0974 0.1460 6.5053 0.8885 

6 8.0798 0.7789 14.5828 0.2650 18.9065 0.0908 6.4213 0.8934 

7 10.8927 0.5381 10.8927 0.5381 11.8817 0.4552 4.5933 0.9702 

8 13.2040 0.3544 13.2040 0.3544 18.7786 0.0940 3.9506 0.9843 

9 10.4405 0.5774 16.3902 0.1740 16.3902 0.1740 7.8072 0.8000 

10 8.7974 0.7201 8.7974 0.7201 8.7974 0.7201 9.1364 0.6912 

11 16.2636 0.1795 16.2636 0.1795 16.2636 0.1795 17.5518 0.1300 

𝟏

𝑴𝒆𝒂𝒏
 0.0806 2.2262 0.0738 2.7336 0.0688 3.1370 0.1231 1.3463 

 

Figure 4.6 depicts the 𝑝-value of the Ljung-Box portmanteau lack-of-fit test for the SARIMA 

models of each PV system using the AIC, AICc, BIC or Ref [6] method. The p-values for all the 

models were higher than the significance level of 𝑎 = 0.05. This indicates that the SARIMA models 

fitted are adequate and do not lack of fit. However, it can be seen that the 𝑝-values of the models 

proposed in [6] are higher in most cases compared with the other methods, indicating that 

behaviour of their residuals has higher possibility to follow a white noise behaviour. On the other 

hand, the 𝑝-values of the models based on the BIC exhibit the lower values. 
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Figure 4.6. p-values from the Ljung-Box portmanteau lack-of-fit test for the SARIMA models of each PV 

system using the AIC, AICc, BIC or Ref. [6] method, the significance level (𝜶 = 𝟎. 𝟎𝟓) appears as a dashed 

line. 

 

4.2 Estimation of the PLR 

The RPCA data is used to define the PLR of the PV systems. Figure 4.7 shows the effect of the 

RPCA analysis on the actual dataset. In particular, (a) indicates the raw measurements and (b) 

indicates the actual dataset after procced with RPCA for the three PV systems, Atersa mono-c-

Si, Schott Solar (MAIN) multi-c-Si and First Solar thin film. It can be observed that the RPCA 

remove the outliers in the yearly time series of each system by extracting the data matrix 𝑲, that 

is the matrix after the removal of matrix 𝑬, which causes the outliers from the original data matrix 
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Figure 4.7. The monthly PR observations (a) before and (b) after implementing RPCA for the (i) Atersa mono-

c-Si (ii) Schott Solar (MAIN) multi-c-Si and (iii) First Solar CdTe thin film system. 

 

Following the procedure described in Section 3.5, and in particular using Eq. (3.26), the PLR was 

calculated for all the SARIMA models using the different methods at the end of the 6th, 7th and 8th 

year for all the eleven PV systems. Figure 4.8 shows the PLR calculated from the RPCA actual 

dataset for the (a) 6th, 7th and 8th years of the eleven PV systems and (b) the maximum, mean, 

median and minimum value over the last 3 years categorized by PV technology. The median and 

mean PLR values fall within the reported values in literature, i.e. median and mean value between 

0.5– 0.6 %/𝑦𝑟 and 0.8 − 0.9 %/𝑦𝑟, respectively for c-Si and with the median and mean value for 

thin-film greater than 1 %/𝑦𝑟 and almost equal to 1.4 %/𝑦𝑟, respectively. These results confirming 

the reliability of the RPCA analysis for calculate the PLR.  
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Figure 4.8. PLR for the RPCA actual datasets (a) for the 6th, 7th and 8th year for each PV system and (b) 

maximum, mean, median and minimum values over the last 3 years categorized by PV technology. 

 

The forecasted values of the PLR are presented in Figure 4.9 for the 6th, 7th and 8th years of the 

eleven PV systems using the different methods based on the AIC, AICc and BIC information 

criterion and the method proposed in [6]. From a quick comparison between the Figure 4.8.a and 

the graphs in Figure 4.9 it can be observed that the AIC, AICc and Ref [6] methods have 

surprisingly very lower value for the PLR of the 6th PV system in comparison with the actual and 

the forecast PLR value based on the BIC. Figure 4.10 compares the mean and median values of 

each method categorized by PV technology where is evident again that for the partial shaded PV 

systems the forecasted values of the PLR were quite low compared to the actuals. 
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Figure 4.9. PLR for the RPCA forecasted datasets for the 6th, 7th and 8th year for each PV system using the 

SARIMA models based on (a) AIC, (b) AICc, (c) BIC and (d) Ref [6]. 

 

 

Figure 4.10. (a) Mean and (b) median values of the abs dif. over the last 3 years for the PLR for the RPCA 

forecasted datasets categorized by PV technology and method (AIC, AICc, BIC and Ref [6]). 
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To further compare the forecasted PLR with the actual PLR and quantify the ability of each 

methodology the Abs Dif (Eq. (3.33)) was calculated. The results of the Abs Dif are illustrated in 

Figure 4.11 per PV system over the last three years of operation, and the mean and median 

values of Abs Dif categorised by PV technology are showed in Figure 4.12. These results show 

that all methods manage to estimate the PLR sufficiently with Abs Dif up to 1.2 %/𝑦𝑟. Also, the 

results based on the BIC achieve Abs Dif values below of 0.51 %/𝑦𝑟, especially due to the better 

estimations obtained for the 6th PV system. Generally, all the methods have the higher Abs Dif of 

the PLR for the partially shaded PV systems. The results obtained based on the proposed models 

of Ref [6] shows better results for the thin-film PV systems, however for the partially shaded PV 

systems their mean and median Abs Dif is higher than the other methods.  

 

 

Figure 4.11. PLR for the Abs Dif between the RPCA actual and forecasted datasets for the 6th, 7th and 8th year 
for each PV system using the SARIMA models based on (a) AIC, (b) AICc, (c) BIC and (d) Ref [6]. 
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Figure 4.12. (a) Mean and (b) median values of the Abs Dif over the last 3 years between the PLR for the 
RPCA actual and forecasted datasets categorized by PV technology and method (AIC, AICc, BIC and Ref [6]). 

 

4.3 Comparison of methods 

In the above subsections, different performance metrics and statistical analysis were performed 

for the assessment of the goodness of the methods used to estimate the PLR. However, the 

individual results of each analysis were not sufficient in order to indicate the optimal methodology 

for this scope. For this reason, a comparative analysis was performed to combine all the individual 

parameters as stated in Section 3.6.4. Table 4.4 summarises the results of the comparative 

analysis. The optimal method for forecasting the PLR of PV systems is the one achieving the 

lowest score.  

The values of the total score of all methods were very closed in general. The models based on 

BIC had the lowest scores for the forecasting accuracy, but the statistical significance scores of 

the method was quite high. However, the method achieved the most preferable score with a total 

score of 0.01807.  

Furthermore, the total scores based on AIC and AICc were slightly higher than the BIC, with the 

method based on AIC exhibit the second lower value with a total score 0.01939 and the method 

based on AICc having a total score of 0.02049. 

It is important to note that the method followed in Ref. [6] was assumed to be a more empirical 

approach, and for this reason its simplicity score was set equal to 4 and for the other three 

methods equal to 2. However, this method achieved to have the lowest score regarding the 

residual’s behaviour, showing that the residuals of this method are closest to a white noise 

behaviour. Depside that, this method achieved a total score of 0.02181, which was the higher 

score among the methods, ranking it to the least preferred method. 
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Table 4.4. Comparative analysis of the AIC, AICc, BIC and Ref. [6] methods to identify the SARIMA models and the total score of each method. 

Method Forecasting accuracy Statistical significance Simplicity Total score 

PR PLR Residuals Behaviour  
𝑯𝟎 =  𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔  

Performance 
metric 

Information Criterion Mono-
c-Si 

Multi-
c-Si 

Thin 
Film 

Partially 
Shaded 

Ljung-Box portmanteau 
lack-of-fit test 

  

𝑹𝑴𝑺𝑬𝒇𝒐𝒓

𝑹𝑴𝑺𝑬𝒓𝒆𝒇

 
𝑨𝑰𝑪𝒓𝒆𝒇

𝑨𝑰𝑪𝒇𝒐𝒓

 
𝑨𝑰𝑪𝒄𝒓𝒆𝒇

𝑨𝑰𝑪𝒄𝒇𝒐𝒓

 
𝑩𝑰𝑪𝒓𝒆𝒇

𝑩𝑰𝑪𝒇𝒐𝒓

 
𝑴𝒆𝒂𝒏(𝑨𝒃𝒔 𝑫𝒊𝒇 𝒐𝒇 𝑷𝑳𝑹)  𝟏

𝑴𝒆𝒂𝒏(𝒑𝒗𝒂𝒍𝒖𝒆𝒔)
 

  

Score 
Range 

0+ high – 5 low skill 
of forecasting in 
comparison with 
Ref. [6] 
 
(1 = no difference) 

0+ high – 5 low skill of 
capturing information by the 
model in comparison with Ref. 
[6] 
 
(1 = no difference) 

0+ low – 5 high error between the actual 
and forecasted data 

1 white noise behaviour –  
>20 rejection of the 𝐻0  
 

1 Simple – 
5 Complex 

Prefer the 
lowest value 

Ref. [6] 1.0000 1.0000 1.0000 1.0000 0.2693 0.1722 0.1631 0.5354 1.3463 4 0.02181 

AIC 1.0135 0.9733 0.9658 0.9495 0.2196 0.1618 0.2685 0.5047 2.2262 2 0.01939 

AICc 0.9755 0.9739 0.9663 0.9494 0.2196 0.1618 0.2682 0.4514 2.7336 2 0.02049 

BIC 0.9373 0.9765 0.9684 0.9494 0.2196 0.1737 0.2682 0.3347 3.1370 2 0.01807 
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Chapter 5 – Conclusions and Future Work 

5.1 Summary 

No standardised method is available for PLR estimation in the literature [3], [4]. Therefore, the 

current study’s proposal was to determine an optimal methodology for estimating accurately the 

PLR of fielded PV systems.  

In this investigation, field measurements were considered for the evaluation of different statistical 

methods. In particular, electrical and meteorological data from eleven grid-connected PV systems 

of different technologies located in Nicosia, Cyprus were used to construct the monthly PR time 

series over 8 years.  

The SARIMA model was then used for the identification of a statistical model which is able to 

capture the time, statistical, and spectral behavior of the PR time series and accurate forecast 

future values. Four different methods were used for the identification of the SARIMA models, three 

of them based on three different information criterions, namely the AIC, AICc and BIC, and the 

fourth based on the ACF and PCF as proposed in [6]. Five years of the monthly PR time series 

were used as the train dataset to identify and estimate the SARIMA models for each PV system, 

which was considered as a minimum training period for the investigated PV technologies. The 

PLR of the PV systems was estimated using the forecasted data from four different methods after 

the RPCA implementation.  

The optimal method was chosen based on a comparative analysis. Specifically, the comparative 

analysis was based on the forecasting accuracy for both PR and PLR, statistical significance and 

the simplicity of the methods. For the forecasting accuracy of the PR time series the RMSE metric 

and the information criterions were used. On the other hand, the forecasting accuracy of the PLR 

was based on the mean value of absolute difference between the actual and forecasted PLR, for 

each PV technology and separated for the partially shaded PV systems. Moreover, the statistical 

significance and the adequacy of the models of each method was evaluated based on residual 

analysis. Lastly, regarding the methods’ simplicity the  method proposed in [6] was assumed to 

be a more empirical approach, where a more deeply understanding of the ARIMA theory was 

needed, was assumed to be a more empirical approach were a more deeply understanding of the 

ARIMA theory. On the contrary, the information criterions -based methods were considered 

easiest to developed open access functions were used, with the obtained SARIMA models 

exhibiting good results. 
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5.2 Conclusions 

The results for the SARIMA models showed that the three different information criterions exhibited 

identical results for 7 PV systems. However, none of the obtained models using on the information 

criterions were in agreement with the ones proposed in [6].  

During the model adequacy assessment, all the methods showed good fitting of the forecasted 

PR values, with the RMSE and MAE values being below 6%. Nevertheless, no sufficient 

conclusion could be taken based on the RMSE and MAE values regarding the optimal PLR 

method, as their results were very close. However, the RMSE and MAE values using the BIC for 

the 6th PV system had up to 2.45% and 2.25% difference with the other methods, respectively 

and with the AIC method having the highest errors for this PV system. 

Comparing the AIC, AICc and BIC for the identified SARIMA models of each method, it was 

observed that models obtained in [6] had in almost all cases the least preferable values. Though, 

there was not a dramatic difference compared to the other methodologies. This was expected, as 

the identification of these models was not based on any information criterion. On the other hand, 

counterintuitive results were observed on the values of the AICc and BIC for the methods based 

on these values. Specifically, for the models of the 6th PV system the model based on the AICc 

had a less preferable AICc value compared to the model based on AIC, and similarly for the model 

based on the BIC. The model based on AIC exhibited the most preferable value of all three 

information criterions for the 6th PV system. This might be attributed to the greater ‘‘penalty factor’’ 

for the number of estimated parameters which AICc and BIC have in comparison to the AIC and 

random behaviour of the PR of the system due to the partial shading effects.  

The analysis of the residuals, and the inspection of the residuals’ autocorrelation coefficients 

showed that the models based on the BIC had the highest mean value, 0.9091 of out-falling lags 

per model. On the contrary, the models proposed in [6] resulted in a significant lower value of out-

falling lags per model with a mean value of 0.2727. Additionally, the Ljung-Box portmanteau lack-

of-fit test showed results that were consistent with the residuals’ autocorrelation coefficients. In 

particular, the 𝑝-values of the models proposed in [6] were higher in most cases compared with 

the other methods, indicating that behaviour of their residuals has higher possibility to follow a 

white noise behaviour. On the other hand, the 𝑝-values of the models based on the BIC exhibit 

the lower values. However, the p-values for all the models were higher than the significance level 

of 𝑎 = 0.05, indicating that the fitted SARIMA models are adequate and do not lack of fit. 

Moving to the results of the PLR, the actual and forecasted PLR values were in agreement with 

the PLR values reported in literature for the c-Si and thin-film technologies, confirming the 

reliability of the RPCA method to calculate the PLR. Comparing the actual and forecasted PLR 

values it was observed that all methods manage to estimate the PLR sufficiently with absolute 

difference up to 1.2 %/𝑦𝑟. Also, the results based on the BIC achieve absolute difference values 

below of 0.51 %/𝑦𝑟, especially due to the better estimations obtained for the 6th PV system. 

Generally, all the methods exhibit higher values of PLR absolute difference for the partially shaded 

PV systems. The results obtained based on the proposed models of Ref [6] showed better results 

for the thin-film PV systems, however for the partially shaded PV systems their mean and median 

absolute difference were higher than the other methods. 
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Finally, the comparative analysis performed showed that the values of the total score of all 

methods were very closed in general. The models based on BIC had the lowest scores for the 

forecasting accuracy, but the statistical significance scores of the method was quite high. 

However, this method achieved the most preferable score with a total score of 0.01807. 

Furthermore, the total scores based on AIC and AICc were slightly higher than the BIC, with the 

method based on AIC exhibit the second lower value with a total score of 0.01939 and the method 

based on AICc having a total score of 0.02049. Last but not least, the method proposed in [6] had 

the lowest score regarding the residuals’ behaviour showing that the residuals of this method are 

closest to white noise behaviour. Depside that, this method achieved a total score of 0.02181, 

which was the higher score among the methods, ranking it to the least preferred method. 

 

5.3 Future Work 

The need for a statistically significant model was urge to accurate capture the behaviour of the 

chosen performance metric with the ultimate goal the estimation of the PLR. However, the results 

of this study indicated that even if the method proposed in [6] having the optimal residual’s 

behaviour for all models, the values of RMSE and other metrics were not always superior in 

comparison with the other methods. This indicates that further investigation needs to be 

performed regarding the statistical significance of the models to fully understand its impact on the 

PLR estimations. 

Moreover, modification of the identified models could be performed based on the autocorrelation 

coefficients of the residuals, especially for the ones based on the information criterion. This could 

further improve the efficacy of the models and ensure the high statistical significance of the 

models.  

Lastly, the methodology proposed in this thesis should be tested on different PV systems 

topologies and on different locations to test its robustness.   
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Appendix A – Results of Simulations  

A.1 Results of SARIMA models based on the AIC information criterion 

 

Table A.1. Identified SARIMA models for the PV grid connected systems based on the AIC value. (*Partially 
shaded systems) 

a/a Manufacturer  (𝒑, 𝒅, 𝒒), (𝑷, 𝑫, 𝑸)𝒔  RMSE (%) MAE (%) AIC AICc BIC 

01 Solon * (1,0,0), (1,1,0)12  4.07 3.23 -222.33 -221.40 -214.85 

02 Sanyo (0,1,1), (1,1,1)12  2.52 2.11 -251.09 -250.13 -243.69 

03 Atersa (0,0,0), (1,1,0)12  2.69 2.11 -246.87 -246.32 -241.25 

04 Suntechnics (0,0,0), (1,1,0)12  2.47 2.00 -238.11 -237.57 -232.50 

05 Schott Solar (EGF) (0,0,0), (1,1,1)12  1.47 1.25 -262.09 -261.16 -254.61 

06 BP Solar * (0,1,2), (1,1,0)12  5.82 5.00 -194.92 -193.97 -187.52 

07 SolarWorld (0,0,0), (1,1,1)12  2.22 1.84 -255.64 -254.71 -248.16 

08 Schott Solar (MAIN) (0,0,0), (1,1,1)12  1.48 1.18 -259.47 -258.54 -251.99 

09 Würth Solar (1,0,0), (1,1,0)12  2.34 1.99 -247.77 -246.84 -240.29 

10 First Solar (1,1,0), (1,1,0)12  1.63 1.26 -275.45 -274.90 -269.90 

11 MHI (0,1,1), (1,1,0)12  1.93 1.62 -246.89 -246.33 -241.34 

 

 

Table A.2. RMSE and MAE between the actual and forecasted (using the SARIMA models based on the AIC) PR 
values after the application of the RPCA methodology for the 6th, 7th and 8th year. (*Partially shaded systems). 

  6th year 7th year 8th year 

a/a Manufacturer 
RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

01 Solon * 1.86 1.70 3.06 2.35 2.13 1.66 

02 Sanyo 1.10 0.94 1.78 1.73 2.02 1.98 

03 Atersa 2.51 2.35 2.86 2.70 1.13 0.90 

04 Suntechnics 1.12 0.97 1.83 1.62 1.77 1.51 

05 Schott Solar (EGF) 1.00 0.83 1.59 1.50 0.56 0.45 

06 BP Solar * 2.74 2.16 6.01 5.69 7.87 7.52 

07 SolarWorld 1.57 1.35 0.95 0.70 1.88 1.73 

08 Schott Solar (MAIN) 0.40 0.36 1.71 1.66 0.50 0.38 

09 Würth Solar 1.07 0.88 2.12 1.90 2.82 2.61 

10 First Solar 1.40 1.27 1.90 1.83 0.69 0.54 

11 MHI 1.13 0.96 2.31 2.19 1.43 1.31 
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Figure A.1. Upper and lower 50% and 95% probability limits using the SARIMA models based on the AIC. 
Mono-c-Si systems: (a) Sanyo (b) Atersa (c) Suntechnics and (d) BP Solar*. Multi-c-Si systems: (e) Solon*(f) 

Schott Solar (EGF) (g) Solar World and (h) Schott Solar (MAIN). Thin film systems: (i) Würth Solar (j) First 
Solar (EGF) and (k) MHI. (* Partially shaded systems) 
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Figure A.2. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using the AIC information criterion for identifying the SARIMA model for the 1st, 2nd and 3rd PV system. 

(*Partially shaded systems) 
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Figure A.3. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using the AIC information criterion for identifying the SARIMA model for the 4th, 5th and 6th PV system. 

(*Partially shaded systems) 
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Figure A.4. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using the AIC information criterion for identifying the SARIMA model for the 7th, 8th and 9th PV system. 
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Figure A.5. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 

normal quantiles with a solid line obtained using the AIC information criterion for identifying the SARIMA model for the 10th and 11th PV system. 
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Table A.3. Actual and forecast performance loss rate per PV system as calculated using the SARIMA models 
based on the AIC for each system and then the RPCA methodology. (*Partially shaded systems) 

  6th year 7th year 8th year 

a/a Manufacturer 
Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

01 Solon * 0.69 0.85 0.16 1.30 0.82 -0.49 1.11 0.89 -0.21 

02 Sanyo 0.83 0.97 0.14 0.71 0.96 0.25 0.73 0.99 0.26 

03 Atersa 0.90 0.39 -0.51 0.88 0.40 -0.49 0.47 0.46 -0.02 

04 Suntechnics 0.81 0.81 0.00 0.65 0.84 0.19 0.76 0.88 0.13 

05 Schott Solar (EGF) 0.38 0.50 0.12 0.79 0.53 -0.26 0.60 0.57 -0.03 

06 BP Solar * 0.73 0.46 -0.26 1.09 0.07 -1.02 1.03 0.15 -0.88 

07 SolarWorld 0.87 1.18 0.32 1.13 1.18 0.05 0.97 1.25 0.28 

08 Schott Solar (MAIN) 0.68 0.63 -0.04 0.97 0.67 -0.29 0.78 0.71 -0.07 

09 Würth Solar 1.97 1.88 -0.10 2.26 1.93 -0.33 2.39 2.00 -0.39 

10 First Solar 2.11 1.86 -0.25 2.14 1.85 -0.30 1.89 1.82 -0.07 

11 MHI 1.39 1.15 -0.24 1.58 1.11 -0.47 1.37 1.09 -0.28 

 

 

Table A.4. Maximum, minimum, mean and median value of the forecast performance loss rate per PV 

technology and separated for the two partially shaded PV system using the SARIMA models based on the AIC. 

  Forecast PLR (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.99 0.39 0.75 0.84 

02 Multi-c-Si 1.25 0.50 0.80 0.67 

03 Thin-Film 2.00 1.09 1.63 1.85 

04 Partially shaded PV systems 0.89 0.07 0.54 0.64 

05 For all the PV systems  2.00 0.07 0.97 0.88 

 

 

Table A.5. Maximum, minimum, mean and median value of the absolute difference between the actual and 
forecast performance loss rate per PV technology and separated for the two partially shaded PV system using 
the SARIMA models based on the AIC. 

  Absolute Difference (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.51 0.00 0.22 0.19 

02 Multi-c-Si 0.32 0.03 0.16 0.12 

03 Thin-Film 0.47 0.07 0.27 0.28 

04 Partially shaded PV systems 1.02 0.16 0.50 0.37 

05 For all the PV systems  1.02 0.00 0.27 0.25 
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A.2 Results of SARIMA models based on the AICc information criterion 

 

Table A.6. Identified SARIMA models for the PV grid connected systems based on the AICc value. (*Partially 

shaded systems) 

a/a Manufacturer  (𝒑, 𝒅, 𝒒), (𝑷, 𝑫, 𝑸)𝒔  RMSE (%) MAE (%) AIC AICc BIC 

01 Solon * (1,0,0), (1,1,0)12  4.07 3.23 -222.33 -221.40 -214.85 

02 Sanyo (0,1,1), (1,1,1)12  2.52 2.11 -251.09 -250.13 -243.69 

03 Atersa (0,0,0), (1,1,0)12  2.69 2.11 -246.87 -246.32 -241.25 

04 Suntechnics (0,0,0), (1,1,0)12  2.47 2.00 -238.11 -237.57 -232.50 

05 Schott Solar (EGF) (0,0,0), (1,1,1)12  1.47 1.25 -262.09 -261.16 -254.61 

06 BP Solar * (2,1,0), (1,1,0)12  4.76 4.01 -193.45 -192.50 -186.05 

07 SolarWorld (0,0,0), (1,1,1)12  2.22 1.84 -255.64 -254.71 -248.16 

08 Schott Solar (MAIN) (0,0,0), (1,1,1)12  1.48 1.18 -259.47 -258.54 -251.99 

09 Würth Solar (0,0,0), (1,1,0)12  2.33 1.99 -247.63 -247.08 -242.02 

10 First Solar (1,1,0), (1,1,0)12  1.63 1.26 -275.45 -274.90 -269.90 

11 MHI (0,1,1), (1,1,0)12  1.93 1.62 -246.89 -246.33 -241.34 

 

 

Table A.7. RMSE and MAE between the actual and forecasted (using the SARIMA models based on the AICc) 
PR values after the application of the RPCA methodology for the 6th, 7th and 8th year. (*Partially shaded 
systems). 

  6th year 7th year 8th year 

a/a Manufacturer 
RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

01 Solon * 1.86 1.70 3.06 2.35 2.13 1.66 

02 Sanyo 1.10 0.94 1.78 1.73 2.02 1.98 

03 Atersa 2.51 2.35 2.86 2.70 1.13 0.90 

04 Suntechnics 1.12 0.97 1.83 1.62 1.77 1.51 

05 Schott Solar (EGF) 1.00 0.83 1.59 1.50 0.56 0.45 

06 BP Solar * 2.43 1.91 4.95 4.56 6.23 5.80 

07 SolarWorld 1.57 1.35 0.95 0.70 1.88 1.73 

08 Schott Solar (MAIN) 0.40 0.36 1.71 1.66 0.50 0.38 

09 Würth Solar 1.06 0.88 2.11 1.90 2.80 2.59 

10 First Solar 1.40 1.27 1.90 1.83 0.69 0.54 
11 MHI 1.13 0.96 2.31 2.19 1.43 1.31 
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Figure A.6. Upper and lower 50% and 95% probability limits using the SARIMA models based on the AICc. 
Mono-c-Si systems: (a) Sanyo (b) Atersa (c) Suntechnics and (d) BP Solar*. Multi-c-Si systems: (e) Solon*(f) 

Schott Solar (EGF) (g) Solar World and (h) Schott Solar (MAIN). Thin film systems: (i) Würth Solar (j) First 
Solar (EGF) and (k) MHI. (* Partially shaded systems) 
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Figure A.7. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using the AICc information criterion for identifying the SARIMA model for the 1st, 2nd and 3rd PV system. 

(*Partially shaded systems) 
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Figure A.8. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using the AICc information criterion for identifying the SARIMA model for the 4th, 5th and 6th PV system. 

(*Partially shaded systems) 
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Figure A.9. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-normal 
normal quantiles with a solid line obtained using the AICc information criterion for identifying the SARIMA model for the 7th, 8th and 9th PV system. 
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Figure A.10. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the AICc information criterion for identifying the SARIMA model for the 10th and 11th PV 

system. 
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Table A.8. Actual and forecast performance loss rate per PV system as calculated using the SARIMA models 
based on the AICc for each system and then the RPCA methodology. (*Partially shaded systems) 

  6th year 7th year 8th year 

a/a Manufacturer 
Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

01 Solon * 0.69 0.85 0.16 1.30 0.82 -0.49 1.11 0.89 -0.21 
02 Sanyo 0.83 0.97 0.14 0.71 0.96 0.25 0.73 0.99 0.26 

03 Atersa 0.90 0.39 -0.51 0.88 0.40 -0.49 0.47 0.46 -0.02 

04 Suntechnics 0.81 0.81 0.00 0.65 0.84 0.19 0.76 0.88 0.13 
05 Schott Solar (EGF) 0.38 0.50 0.12 0.79 0.53 -0.26 0.60 0.57 -0.03 

06 BP Solar * 0.73 0.62 -0.11 1.09 0.26 -0.83 1.03 0.12 -0.91 

07 SolarWorld 0.87 1.18 0.32 1.13 1.18 0.05 0.97 1.25 0.28 
08 Schott Solar (MAIN) 0.68 0.63 -0.04 0.97 0.67 -0.29 0.78 0.71 -0.07 

09 Würth Solar 1.97 1.88 -0.10 2.26 1.94 -0.33 2.39 2.00 -0.38 

10 First Solar 2.11 1.86 -0.25 2.14 1.85 -0.30 1.89 1.82 -0.07 
11 MHI 1.39 1.15 -0.24 1.58 1.11 -0.47 1.37 1.09 -0.28 

 

 

Table A.9. Maximum, minimum, mean and median value of the forecast performance loss rate per PV 
technology and separated for the two partially shaded PV system using the SARIMA models based on the 
AICc. 

  Forecast PLR (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.99 0.39 0.75 0.84 

02 Multi-c-Si 1.25 0.50 0.80 0.67 

03 Thin-Film 2.00 1.09 1.63 1.85 

04 Partially shaded PV systems 0.89 0.12 0.59 0.72 

05 For all the PV systems  2.00 0.12 0.97 0.88 

 

 

Table A.10. Maximum, minimum, mean and median value of the absolute difference between the actual and 
forecast performance loss rate per PV technology and separated for the two partially shaded PV system using 

the SARIMA models based on the AICc. 

  Absolute Difference (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.51 0.00 0.22 0.19 

02 Multi-c-Si 0.32 0.03 0.16 0.12 

03 Thin-Film 0.47 0.07 0.27 0.28 

04 Partially shaded PV systems 0.91 0.11 0.45 0.35 

05 For all the PV systems  0.91 0.00 0.26 0.25 
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A.3 Results of SARIMA models based on the BIC information criterion 

 

Table A.11. Identified SARIMA models for the PV grid connected systems based on the BIC value. (*Partially 

shaded systems) 

a/a Manufacturer  (𝒑, 𝒅, 𝒒), (𝑷, 𝑫, 𝑸)𝒔  RMSE (%) MAE (%) AIC AICc BIC 

01 Solon * (1,0,0), (1,1,0)12  4.07 3.23 -222.33 -221.40 -214.85 

02 Sanyo (0,1,1), (1,1,1)12  2.52 2.11 -251.09 -250.13 -243.69 

03 Atersa (0,0,0), (1,1,0)12  2.69 2.11 -246.87 -246.32 -241.25 

04 Suntechnics (0,0,0), (1,1,0)12  2.47 2.00 -238.11 -237.57 -232.50 

05 Schott Solar (EGF) (0,0,0), (1,1,1)12  1.47 1.25 -262.09 -261.16 -254.61 
06 BP Solar * (0,1,0), (1,1,0)12  3.37 2.75 -188.62 -188.35 -184.92 

07 SolarWorld (0,0,0), (1,1,0)12  2.31 1.92 -255.01 -254.46 -249.40 

08 Schott Solar (MAIN) (0,0,0), (1,1,0)12  1.70 1.35 -257.62 -257.08 -252.01 

09 Würth Solar (0,0,0), (1,1,0)12  2.33 1.99 -247.63 -247.08 -242.02 

10 First Solar (1,1,0), (1,1,0)12  1.63 1.26 -275.45 -274.90 -269.90 
11 MHI (0,1,1), (1,1,0)12  1.93 1.62 -246.89 -246.33 -241.34 

 

 

Table A.12. RMSE and MAE between the actual and forecasted (using the SARIMA models based on the BIC) 
PR values after the application of the RPCA methodology for the 6th, 7th and 8th year. (*Partially shaded 
systems). 

  6th year 7th year 8th year 

a/a Manufacturer 
RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

01 Solon * 1.86 1.70 3.06 2.35 2.13 1.66 

02 Sanyo 1.10 0.94 1.78 1.73 2.02 1.98 

03 Atersa 2.51 2.35 2.86 2.70 1.13 0.90 

04 Suntechnics 1.12 0.97 1.83 1.62 1.77 1.51 

05 Schott Solar (EGF) 1.00 0.83 1.59 1.50 0.56 0.45 

06 BP Solar * 2.65 2.31 3.34 2.88 3.72 3.09 

07 SolarWorld 1.69 1.42 1.08 0.81 1.96 1.80 

08 Schott Solar (MAIN) 0.67 0.60 1.88 1.74 0.69 0.56 

09 Würth Solar 1.06 0.88 2.11 1.90 2.80 2.59 

10 First Solar 1.40 1.27 1.90 1.83 0.69 0.54 
11 MHI 1.13 0.96 2.31 2.19 1.43 1.31 
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Figure A.11. Upper and lower 50% and 95% probability limits using the SARIMA models based on the BIC. 
Mono-c-Si systems: (a) Sanyo (b) Atersa (c) Suntechnics and (d) BP Solar*. Multi-c-Si systems: (e) Solon*(f) 

Schott Solar (EGF) (g) Solar World and (h) Schott Solar (MAIN). Thin film systems: (i) Würth Solar (j) First 
Solar (EGF) and (k) MHI. (* Partially shaded systems) 
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Figure A.12. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the BIC information criterion for identifying the SARIMA model for the 1st, 2nd and 3rd PV 

system. (*Partially shaded systems) 
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Figure A.13. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the BIC information criterion for identifying the SARIMA model for the 4th, 5th and 6th PV 

system. (*Partially shaded systems) 
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Figure A.14. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the BIC information criterion for identifying the SARIMA model for the 7th, 8th and 9th PV 

system. 
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Figure A.15. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the BIC information criterion for identifying the SARIMA model for the 10th and 11th PV system. 
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Table A.13. Actual and forecast performance loss rate per PV system as calculated using the SARIMA models 
based on the BIC for each system and then the RPCA methodology. (*Partially shaded systems) 

  6th year 7th year 8th year 

a/a Manufacturer 
Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

01 Solon * 0.69 0.85 0.16 1.30 0.82 -0.49 1.11 0.89 -0.21 
02 Sanyo 0.83 0.97 0.14 0.71 0.96 0.25 0.73 0.99 0.26 

03 Atersa 0.90 0.39 -0.51 0.88 0.40 -0.49 0.47 0.46 -0.02 

04 Suntechnics 0.81 0.81 0.00 0.65 0.84 0.19 0.76 0.88 0.13 
05 Schott Solar (EGF) 0.38 0.50 0.12 0.79 0.53 -0.26 0.60 0.57 -0.03 

06 BP Solar * 0.73 0.90 0.17 1.09 0.58 -0.51 1.03 0.56 -0.47 

07 SolarWorld 0.87 1.20 0.33 1.13 1.18 0.05 0.97 1.26 0.29 
08 Schott Solar (MAIN) 0.68 0.62 -0.06 0.97 0.63 -0.34 0.78 0.69 -0.09 

09 Würth Solar 1.97 1.88 -0.10 2.26 1.94 -0.33 2.39 2.00 -0.38 

10 First Solar 2.11 1.86 -0.25 2.14 1.85 -0.30 1.89 1.82 -0.07 
11 MHI 1.39 1.15 -0.24 1.58 1.11 -0.47 1.37 1.09 -0.28 

 

 

Table A.14. Maximum, minimum, mean and median value of the forecast performance loss rate per PV 
technology and separated for the two partially shaded PV system using the SARIMA models based on the BIC. 

  Forecast PLR (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.99 0.39 0.75 0.84 

02 Multi-c-Si 1.26 0.50 0.80 0.63 

03 Thin-Film 2.00 1.09 1.63 1.85 

04 Partially shaded PV systems 0.90 0.56 0.77 0.83 

05 For all the PV systems  2.00 0.39 1.00 0.89 

 

 

Table A.15. Maximum, minimum, mean and median value of the absolute difference between the actual and 
forecast performance loss rate per PV technology and separated for the two partially shaded PV system using 
the SARIMA models based on the BIC. 

  Absolute Difference (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.51 0.00 0.22 0.19 

02 Multi-c-Si 0.34 0.03 0.17 0.12 

03 Thin-Film 0.47 0.07 0.27 0.28 

04 Partially shaded PV systems 0.51 0.16 0.33 0.34 

05 For all the PV systems  0.51 0.00 0.24 0.25 
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A.4 Results of SARIMA models as proposed in [6] 

 

Table A.16. Identified SARIMA models for the PV grid connected systems as proposed in [6] . (*Partially shaded 

systems) 

a/a Manufacturer  (𝒑, 𝒅, 𝒒), (𝑷, 𝑫, 𝑸)𝑺  RMSE (%) MAE (%) AIC AICc BIC 

01 Solon * (1,1,1), (1,1,1)12  3.80 2.95 -217.97 -216.51 -208.72 

02 Sanyo (2,1,1), (1,1,1)12  2.47 2.06 -248.19 -246.09 -237.09 

03 Atersa (2,1,1), (1,1,1)12  2.83 2.35 -241.70 -239.60 -230.59 

04 Suntechnics (3,1,1), (1,1,1)12  2.37 1.92 -231.98 -229.11 -219.03 

05 Schott Solar (EGF) (3,1,1), (1,1,1)12  1.63 1.35 -255.36 -252.49 -242.41 

06 BP Solar * (3,1,2), (1,1,0)12  5.67 4.88 -190.84 -187.97 -177.89 

07 SolarWorld (3,1,1), (1,1,1)12  2.33 1.94 -244.57 -241.70 -231.62 

08 Schott Solar (MAIN) (3,1,1), (1,1,1)12  1.66 1.31 -250.18 -247.31 -237.23 

09 Würth Solar (3,1,1), (1,1,1)12  2.29 1.95 -236.71 -233.84 -223.76 

10 First Solar (3,1,1), (1,1,1)12  1.52 1.18 -270.33 -267.46 -257.38 

11 MHI (3,1,1), (1,1,1)12  1.68 1.27 -240.71 -237.84 -227.76 

 

 

Table A.17. RMSE and MAE between the actual and forecasted (using SARIMA models as proposed in [6]) PR 
values after the application of the RPCA methodology for the 6th, 7th and 8th year. (*Partially shaded systems). 

  6th year 7th year 8th year 

a/a Manufacturer 
RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

01 Solon * 0.70 0.57 3.52 3.24 2.57 2.19 

02 Sanyo 1.10 0.93 1.73 1.67 1.91 1.86 

03 Atersa 3.05 2.93 3.22 3.07 1.30 1.14 

04 Suntechnics 0.67 0.59 1.84 1.69 1.62 1.47 

05 Schott Solar (EGF) 1.16 0.99 1.71 1.55 0.59 0.49 

06 BP Solar * 2.68 2.14 5.85 5.51 7.63 7.27 

07 SolarWorld 1.70 1.44 1.04 0.78 1.98 1.83 

08 Schott Solar (MAIN) 0.53 0.48 1.77 1.66 0.55 0.46 

09 Würth Solar 1.02 0.94 2.01 1.81 2.72 2.51 

10 First Solar 1.19 1.04 1.59 1.51 0.51 0.35 

11 MHI 0.61 0.49 0.93 0.82 0.77 0.72 
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Figure A.16. Upper and lower 50% and 95% probability limits using the SARIMA models as proposed in [6]. 
Mono-c-Si systems: (a) Sanyo (b) Atersa (c) Suntechnics and (d) BP Solar*. Multi-c-Si systems: (e) Solon*(f) 

Schott Solar (EGF) (g) Solar World and (h) Schott Solar (MAIN). Thin film systems: (i) Würth Solar (j) First 
Solar (EGF) and (k) MHI. (* Partially shaded systems) 
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Figure A.17. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the SARIMA models proposed in [6] for the 1st, 2nd and 3rd PV system. (*Partially shaded 

systems) 
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Figure A.18. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the SARIMA models proposed in [6] for the 4th, 5th and 6th PV system. (*Partially shaded 

systems) 
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Figure A.19. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the SARIMA models proposed in [6] for the 7th, 8th and 9th PV system. 
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Figure A.20. (i) Time plot, (ii) ACF, (iii) histogram of the residuals and (iv) Q-Q plot that displays the sample residuals with “o” and the theoretical-
normal normal quantiles with a solid line obtained using the SARIMA models proposed in [6] for the 10th and 11th PV system. 
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Table A.18. Actual and forecast performance loss rate per PV system using SARIMA models as proposed in 
[6]. 

  6th year 7th year 8th year 

a/a Manufacturer 
Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

Actual 
(%/yr) 

Forecast 
(%/yr) 

Dif. 
(%/yr) 

01 Solon * 0.69 0.64 -0.04 1.30 0.68 -0.63 1.11 0.71 -0.39 
02 Sanyo 0.83 0.96 0.13 0.71 0.95 0.24 0.73 0.97 0.24 

03 Atersa 0.90 0.28 -0.61 0.88 0.34 -0.55 0.47 0.37 -0.10 

04 Suntechnics 0.81 0.89 0.08 0.65 0.93 0.27 0.76 0.96 0.20 
05 Schott Solar (EGF) 0.38 0.52 0.14 0.79 0.51 -0.28 0.60 0.57 -0.03 

06 BP Solar * 0.73 0.48 -0.24 1.09 0.10 -0.99 1.03 0.11 -0.92 

07 SolarWorld 0.87 1.21 0.34 1.13 1.18 0.06 0.97 1.27 0.30 
08 Schott Solar (MAIN) 0.68 0.65 -0.03 0.97 0.66 -0.31 0.78 0.71 -0.07 

09 Würth Solar 1.97 1.91 -0.07 2.26 1.97 -0.30 2.39 2.03 -0.36 

10 First Solar 2.11 1.91 -0.21 2.14 1.90 -0.25 1.89 1.89 0.00 
11 MHI 1.39 1.35 -0.04 1.58 1.37 -0.21 1.37 1.40 0.03 

 

 

Table A.19. Maximum, minimum, mean and median value of the forecast performance loss rate per PV 
technology and separated for the two partially shaded PV system using the SARIMA models as proposed in 
[6]. 

  Forecast PLR (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.97 0.28 0.74 0.93 

02 Multi-c-Si 1.27 0.51 0.81 0.66 

03 Thin-Film 2.03 1.35 1.75 1.90 

04 Partially shaded PV systems 0.71 0.10 0.45 0.56 

05 For all the PV systems  2.03 0.10 0.98 0.93 

 

 

Table A.20. Maximum, minimum, mean and median value of the absolute difference between the actual and 
forecast performance loss rate per PV technology and separated for the two partially shaded PV system using 
the SARIMA models as proposed in [6]. 

  Absolute Difference (%/yr) 

a/a PV technology Max Min Mean Median 

01 Mono-c-Si 0.61 0.08 0.27 0.24 

02 Multi-c-Si 0.34 0.03 0.17 0.14 

03 Thin-Film 0.36 0.00 0.16 0.21 

04 Partially shaded PV systems 0.99 0.04 0.54 0.51 

05 For all the PV systems  0.99 0.00 0.26 0.24 

 

 

Ann
a M

ich
ail




