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ABSTRACT

Binary consensus is a problem in which a set of processors must agree on a single binary value. In

asynchronous systems, where a subset of the processors may be malicious, this challenge gets more

challenging. We study malicious and more serious problems in this work: transient faults. These

are temporary violations of the system’s operating assumptions that might cause the system’s state

to change unexpectedly, making recovery impossible without human intervention. We implement an

existing protocol for randomized Byzantine-tolerant binary consensus algorithm that is loosely-self-

stabilizing using the Go programming language and the ZeroMQ communication framework. This

approach is optimal in terms of resilience and termination, requires only bounded memory, and ensures

that the system will automatically converge to a legal state. Nevertheless, safety violations have a

O(2−M ) likelihood of occurring, where M is a predefined system parameter. This is the first time-

free Byzantine-tolerant binary consensus algorithm to make such guarantees, to our knowledge. We

describe the first known implementation of this algorithm in this work. With this implementation, we

were able to: (a) validate the algorithm; (b) compare the algorithm to its non-stabilizing version and

estimate the cost of self-stabilization in terms of processing time and message load; and (c) notice

that different failures in the system (whether due to transient faults or malicious behavior) have no

significant overhead on recovery and decision time.
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Chapter 1

Introduction

This thesis provides an implementation, validation and an experimental analysis of a self-stabilizing

Byzantine-tolerant binary consensus algorithm. The solution considers asynchronous message-passing

systems under various failure models.

1.1 Motivation

One of the most well-known problem in distributed computing is the consensus problem [22], where

multiple processors must agree on a common value. When processors try to solve consensus with

only two possible decision values, e.g., zero and one, then this task is known as binary consensus [29,

Ch. 14]. This problem has received a lot of attention recently, because it is considered a fundamental

building block of atomic broadcast [29, Ch. 16 and 19]. Since atomic broadcast can be used to imple-

ment state machine replication, the functionality is also useful to implement distributed ledgers (e.g.,

blockchains), due to the fact that many blockchains explicitly solve atomic broadcast to manage block

ordering [6, 25].

1
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2

System failures, let them be hardware failures, power failures, communication interruptions, can

have such adverse repercussions on industries, services, and governments, that the commodity of fault-

tolerance has major day-today gains. Fault-tolerant systems provide guarantees, given that some as-

sumptions hold. It is possible that in some instances system assumptions are violated. For example,

a system might be tolerant to a minority of failures of its processing entities, or to less than a third of

those to exhibit malicious behavior.

Byzantine faults [22] represent a type of fault in distributed systems where some processors fail

and behave maliciously. Systems that tolerate Byzantine faults work properly, as defined in their spec-

ifications, even in the presence of Byzantine faults. If malicious (Byzantine) entities are considered,

then only the correct processors are expected to agree this common value.

Fundamental system assumptions are not always guaranteed to hold true over time. Even systems

with great availability and dependability might suffer from rare failures. For example, a soft error

(some accidental bit-flip) may force a counter to acquire its maximal value, and thus drive the system

to either non-progress or to a permanent violation of the system’s safety properties. A corrupt program

counter or program variable can bring the system to an arbitrary state from which it cannot recover,

since it was not anticipated by the system’s designers. The system remains useless, requiring human

intervention to recover and personnel to be always on-call.

Self-stabilizing systems [15, 14] are designed to automatically recover the system back to its work-

ing state and desired behavior. Such systems have a comprehensive approach towards faulty states that

usually system designers consider as impossible to reach. In this way, self-stabilizing systems guaran-

tee convergence to a legitimate system state starting from any possible system state, and closure when

this legitimate state has been reached, and until the guarantees of the system are violated again.
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3

An overview of the current state of the art, as Chapter 2 shows that there are not enough works re-

lated to self-stabilizing byzantine fault tolerant systems. This thesis seeks to provide an implementation

and an experimental evaluation of a self-stabilizing binary consensus algorithm.

1.2 Contribution

We present the first, to our best knowledge, implementation and experimental validation and evaluation

of a self-stabilizing randomized Byzantine-tolerant algorithm, namely of the algorithm by Georgiou

et al. [19]. We use the Go programming language [20] together with the ZeroMQ message-passing

library [21]. Also, we perform the experimental validation to make sure of the correctness of our

implementation using unit tests. We then proceed to compare this algorithm with an implementation

of the original non-stabilizing binary consensus algorithm by Mostefaoui et al. [26]. Moreover, we

evaluated the performance overhead which is caused to the presence of Byzantine and transient faults.

1.3 Methodology

Initially, we began by reading several, more general material around Byzantine Fault Tolerance and

Self-stabilization. Then, we focused on the Byzantine-tolerant asynchronous binary consensus algo-

rithm with self-stabilizing guarantees by Georgiou et al. [19], which is the algorithm we implemented.

Next, we learned and practiced the Go programming language. [20] as well as the ZeroMQ messaging

library [33], by developing several small projects in order to get familiar with these two technologies.

Also, we studied the implementation of another work [27], to familiarize ourselves with a similar de-

velopment approach that used the Go programming language with the ZeroMQ framework in order

to use the same communication layer. During the implementation, a form of an Agile Software De-

velopment process took place. After the implementation and the testing, we ran the algorithm locally

on a single machine, for debugging and validating the correct operation of the algorithm. In addition,Con
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4

we evaluated its performance and behavior both locally and in a real-world distributed environment, a

cluster of five machines. Finally, we took several execution measurements and compared them with an

implementation of the original non-stabilizing binary consensus algorithm by Mostefaoui et al. [26].

1.4 Document Structure

The remaining parts of this thesis are structured as follows: In Chapter 2 we study prior work and related

literature about Consensus, Byzantine Fault Tolerant and Self-stabilization. Chapter 3 describes the

system’s settings and gives a description of the studied algorithm and its functionality. In Chapter 4 we

give a thorough explanation of the implementation technologies used in this work: the Go programming

language and the ZeroMQ messaging library. Chapter 5 discusses implementation details and important

design decisions regarding the tools used. Chapter 6 presents the experiments performed, along with the

results and outcomes of the experimental evaluation. We conclude with Chapter 7 where we overview

the thesis work, and discuss future research directions of the presented line of work.
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Chapter 2

Related Work

We overview related work in the research areas considered by this thesis. In this chapter we present a

literature review about the consensus problem, the different type of failures, Byzantine Fault Tolerance

and Self-stabilization.

2.1 Consensus Problem

Possibly the most well-known problem in distributed computing is the consensus problem [22] where

multiple processors must agree on a common value. In a decentralized system, achieving consensus

is one of the most important and most difficult tasks. Many distributed applications, such as cloud

computing, service replication, load balancing, and distributed ledgers, e.g., Blockchain, require the

system to solve consensus in which all nodes reliably agree on a single value.

The problem has garnered much attention in past and recent times, both on its own, but also because

it is considered a fundamental building block of reliable total order broadcast (atomic broadcast) [29].

Since atomic broadcast can be used to implement state machine replication, the functionality is also

useful to implement distributed ledgers, e.g., blockchains, and indeed many blockchains explicitly

solve atomic broadcast to manage block ordering [6, 25]. This use accounts for the most recent spike

5
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Figure 1: The stack of protocols implementing atomic broadcast. At the current work we are imple-
menting the first Byzantine-tolerant binary consensus module that is loosely-self-stabilizing.

in research interest for the problem. Consensus and atomic broadcast were shown to be equivalent [8].

It is customary to build atomic broadcast on top of a stack of protocols (see Figure 1) including binary

and multi-valued consensus [9]. These protocols are designed as successive transformations from one

to another. For example, the multi-valued consensus, is implemented on top of a randomized binary

consensus and also uses a reliable broadcast protocol. Moreover, the protocols assume that they are

built on top of reliable channels, hence bit flips rarely happen.

The problem, as it has been already mentioned, becomes difficult when some nodes may behave

arbitrarily or even fail, so the system must be designed in such a way that deals with this inevitability.

If faulty entities are considered, then only the correct processors are expected to agree on this common

value. Therefore, consensus must satisfy three correctness properties [11]:

1. Validity. If a correct processor decides upon a value, then this value was proposed by a correct

processor.

2. Agreement. If two correct processors decide, then their decided value is identical.

3. Termination. All correct processors eventually decide.
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7

2.2 Failures

One of the main challenges of distributed systems is how the system can provide services correctly

in the presence of failures. Therefore, a distributed system must be able to deal with various types of

failures. The algorithm that we focus on in this work can tolerate Byzantine and arbitrary transient

faults. These two types of faults are described in this section.

2.2.1 Byzantine faults

Byzantine faults [22] represent a type of fault in distributed systems where some processors fail and

behave maliciously. In contrast to a crash failure, a Byzantine failure does not necessarily mean that

the processor stops sending messages. Instead, a Byzantine node can still be active and send malicious

messages that do not follow the specification of the algorithm running on the system. The messages

sent can simply be corrupted, or they can be carefully constructed by a malicious attacker whose aim

is to cause to system to behave incorrectly.

Byzantine faults are permanent, meaning that a Byzantine node acts in a malicious way during the

entire lifetime of the system. Compared to crash failures, Byzantine failures are more difficult to handle

since it is no longer possible to trust that the messages received follow the specification.

Byzantine faults can occur due to several reasons [7]. As previously mentioned, they can be the

result of a malicious attack, where an intelligent attacker compromises one or more nodes in the system

and has control over what messages are being sent. However, Byzantine faults do not necessarily

happen due to malicious reasons. They can also be the result of hardware and software bugs, where

e.g. a buffer overflow in one node causes it to send corrupted or outdated messages.
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2.2.2 Transient faults

An arbitrary transient fault represents any possible temporary violation of the assumptions that can

happen to a system, except that the algorithm code stays intact [14]. These types of faults include e.g.

memory corruption induced by electromagnetic interference and control logic failures at the hardware

level. In other words, a transient fault is something that cannot be foreseen or predicted, but rather a

fault which violates the nature of the system.

The combination of all things that can go wrong puts the system in an arbitrary state, from which a

self-stabilizing algorithm [15] can recover. An algorithm is said to be self-stabilizing if it can recover

after the occurrence of transient faults within a bounded number of execution steps, provided that no

more transient faults occur during the time of recovery.

2.3 Byzantine Fault-tolerance

The most severe type of failure in distributed computation is the malicious or Byzantine one [22], in

which some processors may act arbitrarily by not following the defined algorithm. Systems that tolerate

Byzantine faults work properly, as defined in their specifications, even in the presence of Byzantine

faults.

2.3.1 Byzantine Consensus

Byzantine Fault Tolerance (BFT) originates from the Byzantine Generals Problem [22]; the hypotheti-

cal scenario in which the army of the Byzantine empire has multiple separate divisions surrounding an

enemy city, and they have to all agree on a common plan to attack or retreat. All, or at least nearly all,

must perform the same action or else they will risk complete failure. The generals can communicate

with one another only by messenger. The problem is that some of the generals may be traitors, trying

to prevent the loyal generals from reaching agreement. The generals must have an algorithm [22] toCon
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guarantee that all loyal generals decide upon the same plan of action. The loyal generals will all do

what the algorithm says they should, but the traitors may do anything they wish. In-addition, a small

number of traitors cannot cause the loyal generals to adopt a bad plan.

In [22], it was proven that the Byzantine Generals Problem and thus consensus, has no solution

when at least one-third of the generals are traitors. Hence, the algorithm preserves the properties of

optimal resilience, that up to f nodes out of 3f + 1 in total can be Byzantine. Therefore, the goal

of BFT systems is to be able to resist up to one-third of the nodes acting maliciously and continue

functioning correctly as long as the other two-thirds of the network reach consensus. For instance, all

decentralized blockchains [35] run on consensus protocols that all nodes in the blockchain must follow

in order to participate, such as Proof-of-Work and Proof-of-Stake that are Byzantine Fault Tolerant and

are thus able to resist up to one-third of the nodes disagreeing.

2.3.2 FLP Impossibility

Strong synchrony distributed systems come with limitations on, for example, availability, since it re-

quires processors to wait for the slowest processors before executing the next step. On the other hand,

in asynchronous systems, there is no upper bound on the amount of time processes may take to receive

messages.

The landmark FLP impossibility result as proven by Fischer et al. [18], shows that agreement

in asynchrony is impossible in the presence of even a single failure. In other words, a distributed

asynchronous system cannot reach consensus, in the absence of a mechanism for determining whether

or not a processor has crashed or if it is simply taking a long time to respond.

FLP impossibility [18], states that both agreement and termination correctness properties cannot be

satisfied in an asynchronous distributed system, if it is to be resilient to at least one fault. Consequently,Con
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FLP impossibility states that asynchronous fault tolerant systems cannot simultaneously agreement,

validity and termination, thus, fault tolerance and correctness cannot be achieved.

Since then, several ways have been proposed to bypass the impossibilities for the general case [10].

Popular ways to do this, are to introduce some synchrony to the model and assume a known delay to

the system’s communication. Another way is to employ a failure detection mechanism [2], which is an

external mechanism that detects faults. Finally, a different approach is to relax the requirement for a

deterministic solution and use randomization [3], for example coin flip algorithms [5].

2.4 Self-stabilization

The self-stabilization paradigm was first introduced by Dijkstra [14]. He calls a system self-stabilizing

when, “regardless of its initial state, it is guaranteed to arrive at a legitimate state in a finite number

of steps”. A legitimate state can be defined as a system state where the system holds the requirements

for the current algorithm. For instance, the requirements for a leader election algorithm are that at one

point at most one leader may exist in the system. Legal execution is the way a system should behave,

whether it is self-stabilizing or not.

A system is said to be self-stabilizing if and only if, the system is guaranteed to reach its legal

execution within a bounded number of execution steps regardless of its initial state [14]. We assume

that any transient fault leads to an arbitrary state of the system, possibly with stale information but with

the program code intact. Such transient faults could lead to the system having e.g., stale variables, and

can potentially affect the outcome of the system, but are not considered to affect the program code. A

self-stabilizing system will automatically recover from a transient fault and reach its legal execution

after the occurrence of the last transient fault. A recovery period is the period when the system is

converging to its legal execution.Con
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Figure 2: A self-stabilizing system following two properties: convergence and closure

For example, a soft error (some accidental bit-flip) may force a counter to acquire its maximal

value, and thus drive the system to either non-progress or to a permanent violation of the system’s safety

properties. A corrupt program counter or program variable can bring the system to an arbitrary state

from which it cannot recover, since it was not anticipated by the system’s designers [32]. The system

remains useless, requiring human intervention to recover and personnel to always be on-call. Self-

stabilizing systems [14, 15, 30] are designed to automatically recover the system back to its working

state and desired behavior, from any given state it may end up to after an unanticipated failure.

Self-stabilization was later formally defined by Schneider [30] as: For a system that is self-stabilizing,

it satisfies the following two properties, as shown in Figure 2:

1. Convergence. Starting from an arbitrary state, convergence property is guaranteed that the sys-

tem will eventually reach a legitimate state within a finite number of state transitions.

2. Closure. Given that the system is in a legitimate state, it is guaranteed to stay in a legitimate

state, until the guarantees of the system are violated again.

Furthermore, since transient failures can’t always be detected, a process in a self-stabilizing system

must keep checking if its local state is legitimate. Meaning if a transient failure occurs, the process will

eventually detect that it is no longer in a legitimate state and then take some action. This requires what

is referred to as the “do forever loop” or “forever loop”.Con
sta

nd
ino

s D
em

etr
iou



12

2.5 Self-stabilizing Byzantine Agreement

The few attempts to tackle the problem of self-stabilizing Byzantine Agreement are very recent.

Daliot and Dolev [12] consider a more severe fault model than permanent Byzantine failures, one

in which the system can in addition be subject to severe transient failures that can temporarily throw

the system out of its assumption boundaries. Classic Byzantine algorithms cannot guarantee to execute

from an arbitrary state, because they are not designed with self-stabilization in mind. They present

a self-stabilizing Byzantine agreement algorithm that reaches agreement among the correct nodes in

optimal time, by using only the assumption of bounded message transmission delay. In the process

of solving the problem, two additional important and challenging building blocks were developed: a

unique self-stabilizing protocol for assigning consistent relative times to protocol initialization and a

Reliable Broadcast primitive that progresses at the speed of actual message delivery time. The FLP

impossibility results is bypassed deterministically with timing assumptions, which is a type of syn-

chronization.

Dolev et al. [16] contribute the first self-stabilizing State Machine Replication (SMR) service that

is based on failure detectors without use of clock synchronization and timeouts. They suggest an imple-

mentable self-stabilizing failure detector to monitor both responsiveness and the replication progress.

They thus encapsulate weaker synchronization guarantees than the previous self-stabilizing BFT SMR

solution. They follow the seminal paper by Castro and Liskov [7] of Practical Byzantine Fault Tol-

erance and focus on the self-stabilizing perspective. This work can aid towards building distributed

blockchain system infrastructure enhanced with the self-stabilization design criteria.

Ongoing work by Lundström et al. [23, 24] provides self-stabilizing binary consensus and multival-

ued consensus (with the “indulgence” and “zero-degradation” characteristics). These algorithms can

form the basis for asynchronous randomized SMR, but they are not Byzantine tolerant.Con
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Georgiou et al. [19] present the first loosely-self-stabilizing fault-tolerant asynchronous solution to

binary consensus in Byzantine message-passing systems. Binary consensus is the agreement where

the set of values that can be proposed is either zero or one and it is a fundamental building block for

other “flavors” of consensus, e.g., multivalued, or vector, and of total order broadcast. This is achieved

via an instructive transformation of MMR [26] to a self-stabilizing solution that can violate safety

requirements with the probability Pr = O(2−M ), where M ∈ Z+ is a predefined constant. The

obtained self-stabilizing version of the MMR algorithm considers a far broader fault-model since it

recovers from transient faults. Additionally, the algorithm preserves the MMR’s properties of optimal

resilience and termination, i.e., t < n/3, and O(1) expected decision time. Furthermore, it only

requires a bounded amount of memory. FLP Impossibility results is bypassed non-deterministic with

randomization.

Finally, Duvignau et al. [17] focus on a fundamental module for dependable distributed systems:

a self-stabilizing Byzantine tolerant algorithm for multivalued consensus for asynchronous message-

passing systems. Multivalued consensus assumes that each non-faulty process advocates for a sin-

gle value from a given set V . In addition to tolerating Byzantine and communication failures, self-

stabilizing systems can automatically recover after the occurrence of arbitrary transient faults. These

faults represent any violation of the assumptions according to which the system was designed to operate

(provided that the algorithm code remains intact).
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Chapter 3

The Algorithm

In this chapter we present the studied loosely-self-stabilizing randomized Byzantine-tolerant binary

consensus algorithm by Georgiou et al. [19]. This is the algorithm we implemented, validated and

evaluated.

3.1 System Settings

The system considered is asynchronous and message-passing, comprising n processors p1, p2, . . . , pn

each having its own unique identity. Each pair of processors communicates via a bounded-capacity

bidirectional channel. No assumptions are made on the communication delays. Channels are private,

i.e., the adversary cannot read or change the contents of a message, but due to the channels’ bound-

edness, messages may be dropped if the channel is full. For liveness, we assume that a message sent

infinitely often will be received infinitely often [15].

Failure model. Processors may exhibit Byzantine (malicious) behavior by not following the algorithm

specifications. Because of a well-known impossibility [22], the algorithm can only guarantee safety if

the number of Byzantine processors t is less than a third of the total number processors’ set, i.e., t <

14
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n/3 . Such processors may send malicious messages to each other and collaborate in their operations,

but they cannot impersonate another processor.

An arbitrary transient fault represents any possible temporary violation of the assumptions that can

happen to a system, except that the algorithm code stays intact [14]. For example, a soft error (some

accidental bit-flip) may force a counter to acquire its maximal value, and thus drive the system to either

non-progress or to a permanent violation of the system’s safety properties. Also, corruption of the

system state can bring the system to an arbitrary state. This can lead to a violation of safety.

Random bits. The algorithm of [19] that we implement, uses a common coin to provide the same

random bit to each processor at every round. They assume the existence of a self-stabilizing random bit

algorithm such as the one by Ben-Or et al. [4]. For this work, we consider the self-stabilizing common

coin construction as a black box. In Section 5.1 we provide further details about how we implemented

its functionality.

3.2 Loosely-self-stabilizing Systems

The occurrence of these arbitrarily transient faults can cause unpredictable changes in the system state.

Dijkstra [14] considers that these violations drive the system to an arbitrary state from which a self-

stabilizing system should recover when modeling the system. Dijkstra specifies that the system must

recover after the last transient-fault occurrence, and that once it has recovered, it must never violate the

task specification.

There are currently no known approaches to meet Dijkstra’s self-stabilizing design criteria in the

context of the studied problem and fault model. Loosely-self-stabilizing systems [31] need that once the

system has recovered, it can only violate the safety specifications on rare and brief occasions. Although

it is a weaker design criterion than Dijkstra’s, the occurrence of violations can be made to be extremely

rare.Con
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The algorithm we present is loosely-self-stabilizing [19] and it considered guarantees convergence

after transient faults, but safety may be violated after recovery with a probability O(2−M ), where M

is a positive integer constant that is predefined to the system. This is a weaker property, compared to

Dijkstra’s definition of self-stabilization that guarantees closure, i.e., no violations once convergence

has taken place.

3.3 Algorithm Description

We present a more verbal version of the algorithm to make the reading more understandable. The

reader can check for more technical details of the algorithm in [19].

Proposal and initialization. The algorithm is initiated by a call to propose(v) from an upper layer

module (e.g., multi-valued consensus as per Figure 1), where v is the proposed initial value (line 3). The

round counter r, and the two structures holding the estimated values: est[M+1][n] and aux[M+1][n]

is part of the local state. The fields esti[r
′][j] and auxi[r

′][j] hold the corresponding value that pj

reported to pi on pj’s round r′. Field esti[M + 1][i] is expected to hold pi’s final decided value.

The local variables are then initiated to some default values. This initialization is appropriate in

the typical case where a transient fault does not occur, but a transient fault may apparently contribute

arbitrary values to the structures. This gives the rest of the algorithm a boost, allowing it to recover to

the expected system state.

Self-stabilizing algorithms run within a do-forever loop, which means that they theoretically run in

an infinite execution. If there is an initial state, then the algorithm proceeds to the consensus part in the

next lines (line 15). The algorithm starts by increasing the round counter, unless this has reached the

upper bound of M + 1 (line 16).

The consensus procedure is performed by entering the repeat-until loop. To discover possible

corruptions related to transient faults, the program first runs various consistency tests. Line 18 checksCon
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whether the initial estimate est[0][i] is not a binary value (indicating a state corruption) and if this

holds, the value is corrected to one of the binary pair. The second check if the est and aux values of

Pi in rounds before the current round r are absent (line 19).

Phase 1: Query for the estimated values. Processor pi informs other processors of its own value

(line 21) and receives the other processors’ values through the communication mechanism of lines 25–

27. The algorithm is wait-free since it transmits messages continually and continues on once the con-

ditions are met.

Phase 2: Informing about results of Phase 1. Once a value x is reported by 2t + 1 processors for

round r and if for the respective round the aux[r][i] field is either null or is not the value already held

by pi, then x is added to aux[r][i] (line 20). Once aux[r][i] has a non-null value, the round enters

this second phase. Moreover, the 2t+1 requirement assures that this set contains at least t+1 correct

processors, which make up the majority of the correct ones.

Phase 3: Attempt to decide on a single binary value. The infoResult() macro returns a non-empty

set then the algorithm attempts to decide (line 23), calling function tryToDecide(). If no unique value

exists, then the value added to est[r][i] is the value of the random bit. If a unique value exists, it is used

as the round r value. If this is also the random bit for round r, then this is the value that will be used

in this case. In this case the decided() function is called and the decision is written on all the fields

concerning pi between r and M + 1.

The receiver’s side of the communication (lines 25–27) stores the received est and aux values

about pj’s round rJ values and sends the values of pi for the corresponding round. A flag breaks the

vicious cycle of constantly sending these messages back and forth.

Finally, recovering the result is provided to the upper layer by an interface named result() which

returns the value of est[M + 1][i] if this has been decided, or ⊥ if no decision has been made. If the

module is unable to make a decision due to an error, the interface returns Ψ.Con
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As an optimization, line 24 allows for a fast decision once at least t + 1 processors have decided.

This is because, among the t+1 processors’ set there must be at least one correct processor. If a correct

processor has made a decision, subsequent correct processors may make a decision based on this value

rather than waiting for support with a higher threshold at line 21.
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Algorithm 1: Loosely-self-stabilizing Byzantine-tolerant binary consensus that uses M itera-
tions and violates safety with a probability that is inO(1/2M ); code for pi. (Simplified version
of the one in [19].)

1 variables: r ∈ is the round number counter; Structure est[M + 1][n] holds every processor’s
reported value per round for the first phase. est[r][j] holds pj’s value for round r; Structure
aux[M + 1][n] holds the values per round for each processor for the information phase.
aux[r][j] holds pj’s value for round r;

2 constants: initState is the default local state of the system with r = 0 and empty estimate and
auxiliary value structures; M is a system defined positive integer;

3 operations: propose(vp) do {(r, est, aux)← initState; Set est for pi’s round 0 to {vp}};
4 result() do {if (est[M+1][i] = {v}) then return v else if (r ≥M ∧ infoResult() ̸= ∅) then

return Ψ else return ⊥;}
5 macros: binValues(r, x) return the values held in est [r][•] by at least x processors for round r
6 infoResult() do {if there exists a set of more than n− t processors for which value val in
aux i[r][] belongs to binValues(r, 2t+1))) then return val else return ∅;}

7 functions: decide(x) begin
8 foreach round r′ ∈ {r, . . . ,M+1} do
9 if (est[r′][i] = ∅ ∨ aux[r′][i] = ⊥) then (est[r′][i], aux[r′][i])← ({x}, x);

10 r ←M+1;

11 tryToDecide(values) begin
12 if (values ̸= {v}) then est[r][i]← {randomBit(r)};
13 else {est[r][i]← {v}; if (v = randomBit(r)) then decide(v)};

14 do forever begin
15 if ((r, est, aux) ̸= initState) then
16 r ← min{r+1,M +1};
17 repeat
18 if The initial estimate est[0][i] is not a unique binary value then Reset the value to

any value;
19 foreach round r′ ∈ {1, . . . , r−1} where est[r′][i] or aux[r′][i] are empty/null do

Reset these values to est[i][0] ;
20 if ∃ value v ∈ binV alues(r, 2t+ 1) that is not already in the aux[r][i] then

aux[r][i];
21 foreach pj ∈ P do send EST(r, est[r−1][i] ∪ binValues(r, t+1), aux[r][i]) to pj
22 until infoResult() ̸= ∅;
23 tryToDecide(infoResult());
24 if t+ 1 processors have decided on value w then decide(w) ;

25 upon receipt of EST message from pj for round rJ begin
26 store values in est[rJ ][j] and aux[rJ ][j];
27 return EST message with pi’s values in round rJ , as in est[rJ − 1][i] and aux[rJ ][i] ;
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Chapter 4

Technological Background

The self-stabilizing randomized Byzantine tolerant binary consensus algorithm was implemented in the

Go programming language [20], embedded with the ZeroMQ messaging library [33, 34]. This chapter

provides a detailed description of these technologies.

4.1 Go Programming Language

Go is a statically-typed, compiled programming language with incredibly fast compilation speeds de-

signed at Google [20]. Some of its core developers were members of the UNIX team at Bell Labs like

Ken Thompson and Rob Pike and were primarily motivated by their shared dislike of C++. Primary

goals were to have a programming language that has static typing and run-time efficiency, that is read-

able and usable similar to Python and Javascript, trying to unify programming languages developers

use within Google, and to have high-performance networking and multiprocessing capabilities.

Features. Go is designed to have the functionality of C, while also providing memory safety and

garbage collection with a more simply syntax like that of Python and Javascipt. Moreover, it provides

some kind of Object-Oriented Programming through the use of structural typing, structs and interfaces.

Because it does not provide some of the main features of other OOP languages like inheritance and

20
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generics, it provides other features to make up for this. Some of them include type inference, a built-in

remote package management system through a CLI program and embedding which can be viewed as

an automated form of composition or delegation. The best one comes through its interfaces, which

provide runtime polymorphism. Interfaces are a class of types and provide a limited form of structural

typing, basically an object which is of an interface type is also of another type.

Concurrency in Go. The Go language has built-in facilities, as well as library support, for writing

concurrent programs. Mainly, it deploys concurrency following the CSP paradigm, which is a formal

language for describing patterns of interaction in concurrent systems. It does so by providing gorou-

tines, channels, and a rich standard library package featuring most of the classical concurrency control

structures. Firstly, goroutines are light-weight coroutines, or more accurately “green-threads”, which

are initiated with a function call prefixed with the “go” keyword, and so that function starts in a new

concurrency “thread”. As shown in the Listing 1 in line 5, go hello() starts a new goroutine. Now

the hello() function will run concurrently along with the main() function. The main function runs in

its own goroutine and it’s called the main goroutine. Channels provide the ability to send messages

between goroutines, which are stored in a FIFO order that allows goroutines to wait either when they

try to pull a message from an empty channel or when they try to push a message to a full channel.

Therefore to avoid blocking on a full channel, the built-in “select” statement can be used to implement

non-blocking communication on multiple channels. In the Listing 2, we create a done bool channel

in line 6 and pass it as a parameter to the hello goroutine. In line 8 we are receiving data from the

done channel. This line of code is blocking which means that until some goroutine writes data to the

done channel, the control will not move to the next line of code. The line of code < −done receives

data from the done channel but does not use or store that data in any variable. Now we have our main

goroutine blocked waiting for data on the done channel. The hello goroutine receives this channel as

a parameter, prints “Hello world goroutine” and then writes to the done channel. When this write isCon
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complete, the main goroutine receives the data from the done channel, it is unblocked and then the

text main function is printed. Thus, the Go programming language makes a perfect fit for concurrent

processing and networked systems.

1 func h e l l o ( ) {
2 fmt . P r i n t l n ( ” H e l l o wor ld g o r o u t i n e ” )

3 }
4

5 func main ( ) {
6 go h e l l o ( )

7 fmt . P r i n t l n ( ” main f u n c t i o n ” )

8 }

Listing 1: A simple example that shows how to create goroutines in Go programming language

1 func h e l l o ( done chan bool ) {
2 fmt . P r i n t l n ( ” H e l l o wor ld g o r o u t i n e ” )

3 done <− t rue
4 }
5

6 func main ( ) {
7 done := make ( chan bool )

8 go h e l l o ( done )

9 <−done

10 fmt . P r i n t l n ( ” main f u n c t i o n ” )

11 }

Listing 2: A simple example that shows how to use channels in Go programming language

4.2 ZeroMQ Messaging Library

ZeroMQ is a high-performance asynchronous messaging library [33], designed to be used in distributed

and concurrent applications. ZeroMQ provides a message queue, but unlike message-oriented middle-

ware, a ZeroMQ system can run without a dedicated message broker. The library’s API is designed to

resemble Berkeley sockets, and although it looks like an embeddable networking library, in reality it

acts like a concurrency framework. Originally the zero in ZeroMQ was meant as “zero broker” or “zeroCon
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latency”, however since then, it has come to encompass different goals like zero cost or zero waste, and

generally, “zero” refers to the culture of minimalism that permeates the ZeroMQ project. Among its

many benefits, ZeroMQ has sockets that carry atomic messages across various transport protocols like

in-process, inter-process, TCP, or multicast, it has a score of language APIs and also runs on most op-

erating systems. Furthermore, ZeroMQ is fast enough to be the fabric for any clustered product and its

asynchronous I/O model can support scalable multicore applications, built for asynchronous message

processing tasks.

Socket Types. One of the most important advantages of ZeroMQ is that it provides a range of sockets

which generalize the traditional IP and Unix domain sockets, each of which can be combined and form

N-to-N messaging patterns. Sockets provided by ZeroMQ are [34]:

• REQ: Sockets used by a client to send requests to and receive replies from a service. REQ sockets

must follow the pattern send, receive, send, receive.

• REP: Sockets used by a service to receive requests from and send replies to a client. REP sockets

must follow the pattern receive, send, receive, send.

• DEALER: Talks to a set of anonymous peers, sending and receiving messages using round-robin

algorithms. Works as an asynchronous replacement for REQ, for clients that talk to REP or

ROUTER servers.

• ROUTER: Talks to a set of peers, using explicit addressing so that each outgoing message is sent

to a specific peer connection. Works as an asynchronous replacement for REP, and is often used

for servers that talk to DEALER clients.

• PUB: Used by a publisher to distribute data. Messages sent are distributed to all connected peers.

This socket type is not able to receive any messages.Con
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• SUB: Used by a subscriber to subscribe to data distributed by a publisher. Initially a SUB socket

is not subscribed to any messages. The send function is not implemented for this socket type.

• XPUB: Same as PUB except that you can receive subscriptions from the peers in the form of

incoming messages.

• XSUB: Same as SUB except that you subscribe by sending subscription messages to the socket.

• PUSH: Talks to a set of anonymous PULL peers, sending messages using a round-robin algo-

rithm. It has no receive operation.

• PULL: Talks to a set of anonymous PUSH peers, receiving messages using a fair-queuing algo-

rithm.

• PAIR: Socket that can only be connected to a single peer at any one time. No message routing or

filtering is performed on messages sent over a PAIR socket.

• CLIENT: Talks to one or more SERVER peers. If connected to multiple peers, it scatters sent

messages among these peers in a round-robin fashion, and it does not drop messages in normal

cases.

• SERVER: Talks to zero or more CLIENT peers. Each outgoing message is sent to a specific peer.

A SERVER socket can only reply to an incoming message.

Messaging Patterns. Using and combining these socket types, various messaging patterns or architec-

tures can be built depending on the topology needed. ZeroMQ patterns are implemented by pairs of

sockets with matching types. The core built-in messaging patterns [34] ZeroMQ offers are:

• Request-Reply: Connects a set of clients using a REQ or DEALER socket to a set of services

using a REP or ROUTER socket. Messages sent to a service before the service becomes on-

line are not lost, because they are stored in a queue, facilitating the preservation of messages.Con
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Listing 3 shows a server that creates a socket of type response (REP), binds it to port 5555 and

then waits for messages. Also, in this example we have zero configuration, we are just sending

strings. Listing 4 illustrates a client that creates a socket of type request (REQ), connects and

starts sending messages. Both the send and receive methods are blocking (by default). For the

receive it is simple: if there are no messages the method will block. For sending it is more com-

plicated and depends on the socket type. For request sockets, if the high watermark is reached

or no peer is connected the method will block. The DEALER-ROUTER sockets have similar

functionality to the REQ-REP sockets with the difference that the DEALER-ROUTER sockets

allow asynchronous communication without blocking.

• Publish-Subscribe: A remote distribution pattern that connects a set of subscribers using a SUB

socket to a set of publishers using a PUB socket. Unlike the Request-Reply pattern, messages

if not received are lost, and if the subscriber cannot keep up with the incoming messages then

messages are dropped.

• Pipeline: Intended for task distribution, typically in a multi-stage pipeline where one or a few

nodes push work to many workers, and they in turn push results to one or a few collectors. The

pattern will not discard messages unless a node disconnects unexpectedly and it is scalable, as

nodes can join at any time.

• Exclusive Pair: Intended for specific use cases where the two peers are architecturally stable.

This limits its use within a single process for inter-thread communication, thus should be avoided

to use in distributed applications.

There are more ZeroMQ patterns that are still in draft state:

• Client-Server: Used for allowing a single server to talk to one or more clients. The client always

starts the conversation, after which either peer can send messages asynchronously, to the other.Con
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1 func main ( ) {
2 zc tx , := zmq . NewContext ( )

3 s , := z c t x . NewSocket ( zmq . REP)

4 s . Bind ( ” t c p : / / * : 5 5 5 5 ” )

5

6 f o r {
7 / / Wait f o r n e x t r e q u e s t from c l i e n t

8 msg , := s . Recv ( 0 )

9 l o g . P r i n t f ( ” Rece ived %s \n ” , msg )

10

11 / / S l e e p

12 t ime . S l e e p ( t ime . Second * 1)

13

14 / / Send r e p l y back t o c l i e n t

15 s . Send ( ” World ” , 0 )

16 }
17 }

Listing 3: Implementation example for a server in Go programming language using REP sockets that

provided from the ZeroMQ message library. The server receives a request from the client and replies

with a string.

1 func main ( ) {
2 zc tx , := zmq . NewContext ( )

3 / / S o c k e t t o t a l k t o s e r v e r

4 fmt . P r i n t f ( ” C o n n e c t i n g t o t h e s e r v e r . . . \ n ” )

5 s , := z c t x . NewSocket ( zmq .REQ)

6 s . Connect ( ” t c p : / / l o c a l h o s t :5555 ” )

7

8 / / Do 10 r e q u e s t s , w a i t i n g each t i m e f o r a r e s p o n s e

9 f o r i := 0 ; i < 1 0 ; i ++ {
10 fmt . P r i n t f ( ” Sending r e q u e s t %d . . . \ n ” , i )

11 s . Send ( ” H e l l o ” , 0 )

12 msg , := s . Recv ( 0 )

13 fmt . P r i n t f ( ” Rece ived r e p l y %d [ %s ]\ n ” , i , msg )

14 }
15 }

Listing 4: Implementation example for a clinet in Go programming language using REQ sockets that

provided from the ZeroMQ message library. The client sends a string to server and receives a reply.Con
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• Radio-Dish: Used for one-to-many distribution of data from a single publisher to multiple sub-

scribers in a fan out fashion.

As we explain in Section 5.2 for the purpose of our work we have used REQ/REP (request/reply)

pair of sockets to communicate with other processors. Our choice led us to the challenge of establishing

asynchronous communication with synchronous REQ/REP sockets.
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Chapter 5

Implementation

In this chapter, we describe the system implementation. We begin with a short mention of imple-

mentation methodology and decisions. We then proceed to a more concrete discussion regarding the

communication layer and the structure of the project.

5.1 Implementation Methodology and Decisions

As previously mentioned, for the implementation of the self-stabilizing randomized Byzantine tolerant

algorithm for binary consensus we used Go as the programming language, embedded with the ZeroMQ

messaging library. The implementation is open for everyone on GitHub [13].

Programming language – Go. In this work we decided to use the Go language because it is suggested

to provide functionality for implementing efficient applications with scalable concurrency mechanisms

known as goroutines and channels. As already mentioned on the Section 4.1, goroutines are lightweight

coroutines, or more accurately “green” threads associated with less overhead and the Go runtime is very

efficient in the handling of these goroutines. Also, channels provide the ability to send messages be-

tween goroutines. Since we needed to have each processor running concurrently, goroutines greatly

28
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facilitated the need for multi-threading support, and channels are the means to communicate and syn-

chronize with concurrent goroutines [20]. Furthermore, our results will be compared with the results

of the non-self-stabling algorithm which were developed also using Go [27], thus having them all im-

plemented in the same programming language makes the comparison and evaluation of the algorithms

more valid and accurate. Finally, even though Go is a newly developed programming language, due

to the fact that it is delivered by Google and is really hyped in the market, its documentation on the

Internet is really huge and remarkably helped us during the implementation process.

Communication implementation – ZeroMQ. When catering for the inter-processor communication,

we tried to employ a tool that would enable us to tightly map the assumptions of the system model (cf.

Section 3.1). This lead us to use ZeroMQ as our messaging library because it is a high-performance

asynchronous messaging library that provides a variety of sockets that can be used to deploy a vast

amount of distributed messaging patterns in any networked topology required. As previously stated in

Section 4.2, ZeroMQ is state-of-the-art in terms of speed, and reliability and by using hidden message

queues makes the delivery of messages guaranteed. Moreover, it has a variety of programming lan-

guage APIs and runs on most operating systems. Another reason we used the messaging framework

ZeroMQ is to have the same communication layer with the implementation of the non-self-stabilizing

algorithm [27] to have a fair comparison in our results. Section 5.2 provides details about the ZeroMQ

messaging patterns we used.

Common coin. In our work, we implemented a random bit function that simulates a common coin

using the rand package from the math library [28] (see Listing 5). Specifically, when a processor calls

the random bit function, the rand package is initialized with a seed equal to the round id and then the

random bit is returned. In this way the random bit function returns the same random bit to all processors

on the same round. Therefore, we can visualize the common coin as a black block. Although some

self-stabilizing communication protocols exist, there is none to our knowledge complete self-stabilizingCon
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random bit implementation.

1 func randomBi t ( r o u n d i d i n t ) i n t {
2 / / I n i t i a l i z e d w i t h a seed e q u a l t o t h e round i d

3 rand . Seed ( i n t 6 4 ( r o u n d i d ) )

4

5 / / Genera te a random b i t (0 or 1 )

6 random number := rand . I n t n ( 2 )

7

8 re turn random number

9 }

Listing 5: Implementation of the random bit function that simulates a common coin

Note. The goal of this project was to validate and evaluate the algorithm. We opted to restrict the use

of self-stabilizing components to the binary consensus module itself in this vein. This allowed us to

analyze execution time and other issues of self-stabilization that had to do only with this protocol. This

was especially true when comparing this algorithm with a non-self-stabilizing one. Therefore, in order

to have a fair comparison of the experimental results of the two algorithms, it is important that both

implementations are based on the same programming language (Go), have the same communication

framework (ZeroMQ) and have the same common coin (random bit device as black box).

5.2 Communication

For the implementation of the communication layer, we used the messaging framework ZeroMQ as

already mentioned. Specifically, each processor has a REQ/REP (request/reply) pair of sockets to

communicate with other processors, as shown in Figure 3. REQ sockets used by a client to send

requests to and receive replies from a service and REP sockets used by a service to receive requests

from and send replies to a client.Con
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Figure 3: Communication architecture with ZeroMQ sockets

The main reason we picked the REQ/REP pair of sockets over DEALER/ROUTER is that they

were used in the implementation of the non-self-stabilizing algorithm [27], and as previously stated we

would like to have a common communication layer to compare the experimental findings fairly. More-

over, REQ/REP sockets are the most reliable ones and and their development in the Go programming

language is quite simple.

Our decision to use REQ/REP sockets led us to a significant challenge: to establish asynchronous

communication with synchronous REQ/REP sockets. We had to avoid the case where a processor might

block waiting for another processor’s response. Thus, we “emulated” asynchrony using Go, by having

a form of a timeout and retransmission of messages, in order to match the asynchrony demands of the

system settings. In particular, we used Go goroutines, channels and the select statement alongside

the timeticker functionality that Go offers.

In this way processors intercommunicate with the use of their corresponding pair, but now a pro-

cessor that will receive a request, will immediately reply with an empty message, rendering its REP

socket available for the next request. With this solution, there will not be cases where REP sockets try

to receive twice consecutively, or REQ sockets trying to send twice, something that would otherwise

cause a system crash. Listing 6, Listing 7 and Listing 8 illustrate a part of the implementation of theCon
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communication process.

1 func I n i t i a l i z e M e s s e n g e r ( ) {
2 f o r i := 0 ; i < v a r i a b l e s .N; i ++ {
3

4 i f i == v a r i a b l e s . ID {
5 c o n t i nu e / / Not m y s e l f

6 }
7 . . .

8 / / S e n d S o c k e t s i n i t i a l i z a t i o n t o send i n f o r m a t i o n t o o t h e r

9 / / s e r v e r s

10 SendSocke t s [ i ] , e r r = C o n t e x t . NewSocket ( zmq4 .REQ)

11 i f e r r != n i l {
12 l o g g e r . E r rLogge r . F a t a l ( e r r )

13 }
14

15 / / R e c e i v e S o c k e t s i n i t i a l i z a t i o n t o g e t i n f o r m a t i o n from o t h e r

16 / / s e r v e r s

17 R e c e i v e S o c k e t s [ i ] , e r r = C o n t e x t . NewSocket ( zmq4 . REP )

18 i f e r r != n i l {
19 l o g g e r . E r rLogge r . F a t a l ( e r r )

20 }
21 }
22 }

Listing 6: Initialization of the send/receive sockets
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1 func Transmi tMessages ( ) {
2 / / Send t h e message t o a l l p r o c e s s o r s e x c e p t m y s e l f

3 f o r i := 0 ; i < v a r i a b l e s .N; i ++ {
4 i f i == v a r i a b l e s . ID {
5 c o n t i nu e / / Not m y s e l f

6 }
7

8 / / I n i t i a l i z e s them w i t h a g o r o u t i n e and w a i t s f o r e v e r

9 go func ( i i n t ) {
10 / / For each message i n c h a n n e l

11 f o r message := range MessageChannel [ i ] {
12

13 / / Send t h e message

14 , e r r = SendSocke t s [ i ] . SendBytes (w. By tes ( ) , 0 )

15 i f e r r != n i l {
16 l o g g e r . E r rLogge r . F a t a l ( e r r )

17 }
18

19 / / R e c e i v e t h e answer

20 , e r r = SendSocke t s [ i ] . Recv ( 0 )

21 i f e r r != n i l {
22 l o g g e r . E r rLogge r . F a t a l ( e r r )

23 }
24 }
25 } ( i )

26 }
27 }

Listing 7: Implementation of the function that sends the messages to the other processors
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1 func S u b s c r i b e ( ) {
2 / / Ge ts messages from o t h e r s e r v e r s and h a n d l e s them

3 f o r i := 0 ; i < v a r i a b l e s .N; i ++ {
4 i f i == v a r i a b l e s . ID {
5 c o n t i nu e / / Not m y s e l f

6 }
7

8 / / I n i t i a l i z e s them w i t h a g o r o u t i n e and w a i t s f o r e v e r

9 go func ( i i n t ) {
10 f o r {
11 message , e r r := R e c e i v e S o c k e t s [ i ] . RecvBytes ( 0 )

12 i f e r r != n i l {
13 l o g g e r . E r rLogge r . F a t a l ( e r r )

14 }
15

16 go HandleMessage ( message )

17

18 , e r r = R e c e i v e S o c k e t s [ i ] . Send ( ” ” , 0 )

19 i f e r r != n i l {
20 l o g g e r . E r rLogge r . F a t a l ( e r r )

21 }
22 }
23 } ( i )

24 }
25 }

Listing 8: Implementation of the function that receives the messages from the other processors
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5.3 Project Structure

The implementation includes a Go project which consists of several packages:
self-stabilizing-binary-consensus

modules

self-stabilizing-binary-consensus.go

non-self-stabilizing-binary-consensus.go

messenger

messenger.go

config

ip.go

local.go

scenario.go

types

message.go

bc message.go

ssbc message.go

variables

variables.go

logger

logger.go

threshenc

key generator.go

key reader.go

sign and verify.go

main.go

The implementation of the self-stabilizing binary consensus algorithm is located in the package mod-

ules. In the config package, the code for configuring the IP addresses of the system and configuring

the execution scenario is located. Additionally, a logger is implemented that writes info and errors inCon
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text files for the monitoring of the system’s operation. The types package contains all the necessary Go

structs and type aliases required for the messages that are exchanged among the different processors.

Also, the variables package contains the main variables and constants that are shared between modules,

such as the number of processors and Byzantine nodes. Finally, messenger is the package responsible

for sending and receiving messages between clients and servers and among the processes as well.

Modules. In the modules package as already mentioned, we have implemented the self-stabilizing

randomized Byzantine tolerant binary consensus algorithm by Chryssis et al. [19] and the non-self-

stabilizing randomized Byzantine tolerant binary consensus by Mostefaoui et al. [26]. The binary

consensus protocol is a part of a stack of protocols (see Figure 1) which at the top build the atomic

broad. If all these protocols become self-stabilizing then we will be able to have a self-stabilizing

atomic broadcast and thus it will be easier to create self-stabilizing blockchains in the future.

The non-self-stabilizing binary consensus protocol [9], consists basically of two (2) algorithms,

BC and BVB, with BC being the main one that executes the consensus procedure and BVB being the

algorithm that broadcasts the messages and fills the bin values set. In contrast, in self-stabilizing binary

consensus protocol [19], the BC and BVB algorithms merge into a single algorithm.

Messenger. In the messenger package, the initialization of the sockets takes place as well as some

basic functions that send the messages to other processors and receive messages. Except for these, we

also have a couple of functions that in case we are in a scenario that not all servers act non-faulty, the

messages sent by Byzantine nodes are modified before transmission to try and harm consensus among

the processes.

Config. For local development, the mapping of network addresses to nodes happens in the local.go

file. It contains four maps of integers to strings, each map storing the corresponding address of the

appropriate socket type, and we play with the localhost and different ports representing each processor

or client, as illustrated in Listing 9. Similarly, for the real-world configuration, instead of tinkering withCon
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ports, each processor has its own computer and IP address found in the ip.go file. Table 1 shows the IP

addresses of the cluster machines used in the experimental evaluation. Finally, scenario.go is respon-

sible for configuring the scenario of execution the servers run, which is basically a flag that allows us

to use it in our code and determine how a process needs to act. Finally, scenario.go is responsible for

configuring the scenario of execution the servers run, which is basically a flag that allows us to use it

in our code and determine how a process needs to act.

1 func I n i t i a l i z e L o c a l ( ) {
2 RepAddresses = make (map [ i n t ] s t r i n g , v a r i a b l e s .N)

3 ReqAddresses = make (map [ i n t ] s t r i n g , v a r i a b l e s .N)

4 S e r v e r A d d r e s s e s = make (map [ i n t ] s t r i n g , v a r i a b l e s . C l i e n t s )

5 R es po n se Add re s se s = make (map [ i n t ] s t r i n g , v a r i a b l e s . C l i e n t s )

6 f o r i := 0 ; i < v a r i a b l e s .N; i ++ {
7 RepAddresses [ i ] = ” t c p : / / * : ”+

8 s t r c o n v . I t o a (4000+( v a r i a b l e s . ID *100)+ i )

9 ReqAddresses [ i ] = ” t c p : / / l o c a l h o s t : ”+

10 s t r c o n v . I t o a (4000+( i *100)+ v a r i a b l e s . ID )

11 }
12 f o r i := 0 ; i < v a r i a b l e s . C l i e n t s ; i ++ {
13 S e r v e r A d d r e s s e s [ i ] = ” t c p : / / * : ”+

14 s t r c o n v . I t o a (7000+( v a r i a b l e s . ID *100)+ i )

15 Res po nse Add re s se s [ i ] = ” t c p : / / * : ”+

16 s t r c o n v . I t o a (10000+( v a r i a b l e s . ID *100)+ i )

17 }
18 }

Listing 9: IP configuration for local execution

Types. Since most of the messages that are exchanged in the system are complex structures containing

multiple fields, and ZeroMQ sends messages as a sequence of bytes, a method of serialization and

deserialization of structs is necessary, so for this requirement we used Gob [1]. Gob is a package

included in Go’s standard library, and it manages streams of bytes exchanged between a transmitter

and a receiver. Encoding with Gob returns an array of bytes while decoding with Gob builds a structCon
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Machine ID ID Address

0 10.16.12.56

1 10.16.12.11

5 10.16.12.100

6 10.16.12.212

8 10.16.12.105
Table 1: IP addresses for cluster machines

from an array of bytes. Gob supports encoding and decoding of all Go’s built-in types, but to be able to

encode/decode a complex struct, that struct has to implement the GobEncoder/GobDecoder interface

by implementing the two (2) basic methods.

So here comes the types package, in which we implemented all the basic types of messages we

need for our implementation, like SSBCMessage (see Listing 10). The message.go is the general type

in which processors’ messages are wrapped. Its structure is composed of the fields Payload, which

is an array of bytes, a string Type that denotes the type of the payload in terms of the name of the

structure, and an integer From denoting the identity of the sender processor. When a processor receives

an incoming message, it decodes received bytes into a Message struct, and then a switch case is applied

on the structure’s Type field. The message’s payload is decoded as well to the appropriate struct type,

and the resulting struct is consequently written to the corresponding channel, in which the consumer

module will read from. This pattern succeeds in hiding delays of sending and receiving messages,

making the message exchange feel more organic.

Variables. The variables package just consists of a file that contains all the vital variables and constants

that are used generally in the project. Some of them are, the processor’s ID, the number of processors,

Byzantine nodes in the system and whether the execution is local or in real-world.
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1 / / SSBCMessage − S e l f − S t a b i l i z i n g B i na ry Consensus EST message s t r u c t

2 type SSBCMessage s t r u c t {
3 I d e n t i f i e r i n t
4 F lag bool / / aJ

5 Round i n t / / r J

6 E s t 0 i n t / / vJ [ 0 ]

7 E s t 1 i n t / / vJ [ 1 ]

8 Aux 0 i n t / / uJ [ 0 ]

9 Aux 1 i n t / / uJ [ 1 ]

10 }
11 / / GobEncode − Bi na r y Consensus message encoder

12 func ( es tm SSBCMessage ) GobEncode ( ) ( [ ] byte , error ) {
13 w := new ( b y t e s . B u f f e r )

14 e n c o d e r := gob . NewEncoder (w)

15 e r r := e n c o d e r . Encode ( estm . I d e n t i f i e r )

16 i f e r r != n i l {
17 l o g g e r . E r rLogge r . F a t a l ( e r r )

18 }
19 . . .

20 re turn w. Bytes ( ) , n i l
21 }
22 / / GobDecode − Bi n a r y Consensus message decoder

23 func ( es tm *SSBCMessage ) GobDecode ( buf [ ] byte ) error {
24 r := b y t e s . NewBuffer ( buf )

25 d e c o d e r := gob . NewDecoder ( r )

26 e r r := d e c o d e r . Decode(& estm . I d e n t i f i e r )

27 i f e r r != n i l {
28 l o g g e r . E r rLogge r . F a t a l ( e r r )

29 }
30 . . .

31 re turn n i l
32 }

Listing 10: Example of SSBCMessage type of message with GobEncode and GobDecode

Threshenc. Moving now to the threshenc package, it is what is called Trusted Dealer. Basically, in this

package using built-in libraries of Go, Verification and Secret key-pairs (or Public and Private), for each

one of the processors are being created before the processors start their execution, and these key-pairsCon
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are stored locally. Then, when each processor starts its execution it reads and keeps the Verification

keys of all the processors but only its own Secret key, that is why it is called secret. Therefore, the

overhead that the keys have on each processor is just the time it takes to read them from the local files

and not their generation too, as that procedure takes place before the execution.

The reason why these key pairs are needed even though the implemented algorithm does not use any

digital signatures or threshold encryption schemes, is simply to have a method of validation for each

message that is received, to guarantee that the sender is valid. Therefore, using the sign and verify.go

file (see Listing 11), each processor signs the message before sending using their Secret key, appends

the signature to the message and then sends it. When the message is delivered, the receiver process

verifies that the signature is valid using the Verification key of the sender. If the verification procedure

of the message is correct, then the message is consumed from the algorithm, but if it is not correct then

it means it is a malicious one and thus it is dropped immediately.

1 func SignMessage ( message [ ] byte ) [ ] byte {
2 hash := sha256 . New ( )

3 , e r r := hash . Wr i t e ( message )

4 hashSum := hash . Sum( n i l )

5 s i g n a t u r e , e r r := r s a . SignPSS ( ran d . Reader , Secre tKey , c r y p t o . SHA256 ,

6 hashSum , n i l )

7 re turn s i g n a t u r e

8 }
9

10 func Ver i fyMessage ( message [ ] byte , s i g n a t u r e [ ] byte , i i n t ) bool {
11 hash := sha256 . New ( )

12 , e r r := hash . Wr i t e ( message )

13 e r r = r s a . Ver i fyPSS ( V e r i f i c a t i o n K e y s [ i ] , c r y p t o . SHA256 , hash . Sum ( n i l ) ,

14 s i g n a t u r e , n i l )

15 i f e r r != n i l {
16 re turn f a l s e
17 }
18 re turn true
19 }

Listing 11: Sign and Verify methodsCon
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Chapter 6

Experimental Validation and Evaluation

The first key part of our work was to validate the correctness of the algorithm. This was achieved

by emulating different failures and scenarios (by injecting faults by code), and based on the results

validating the functionality of the algorithm. The second key part consisted of performing a preliminary

evaluation, with respect to the performance of the implementation.

6.1 Experimental Scenarios

A distributed algorithm such as the one implemented must be able to deal with various types of failures.

Validating our implementation involved proving tolerance against failures. To this end, we constructed

scenarios where either processors were mimicking malicious behaviors (detailed is Section 6.1.1), or

the system state was changed to imitate the results of transient fault-induced corruptions (documented

in Section 6.1.2).

41
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6.1.1 Byzantine attacks

Normal Scenario. This is the failure-free scenario where no Byzantine behavior exists. Byzantine

processors act as correct. This allows us to take the baseline measurements for our comparison with

next scenarios where Byzantine behavior is expressed in several forms.

Idle Attack Scenario. In the second scenario we have the Byzantine processors acting as crashed

processors. In fact, the Byzantine processors do not send or broadcast anything, expressly remaining

completely idle. This is non-responsiveness scenario stresses the algorithm in the sense that all correct

processors must participate in order to reach the n− t thresholds.

Inverse Attack Scenario. In the next scenario, we have the Byzantine processors trying to attack the

algorithm by sending the exact opposite values from those that are instructed by the protocol’s specifi-

cation. When a Byzantine processor needs to send a message, it modifies it before the transmission in

an effort to confuse the correct processors and achieve a delay in the consensus process due to the fact

that correct processors nodes might need to send more messages to agree on the binary value.

Half and Half Attack Scenario. This scenario has a similar approach as the previous one but this time

the Byzantine processors do not send the same message to all processors. The Byzantine processors

send the correct message to one half of the processors and a modified wrong message to the other half

of the processors, in effort to hinder correct decision making.

Random Attack Scenario. The last Byzantine attack scenario is called “Random attack” because this

time the Byzantine processors send messages with random values to other processors based on a proba-

bility p. Specifically, the Byzantine processors send different messages to every other processor and the

value that contained in the message is randomly selected. For instance, when the probability p = 0.25

the Byzantine processors uniformly select one of the values {}, {0}, {1}, {0, 1} to include in the

message.Con
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6.1.2 Transient faults injection

Corruption of state of processor. A transient fault can corrupt the state of processor pi ∈ P by, for

example, setting est[i] or aux[i] with a different value set including the empty set.

Corruption of round counter. Another case of state corruption is when the round counter suddenly

setting with a different value. Transient faults can cause the counter to either abruptly decrease or

increase.

Corruption of a message. In-addition, transient faults can cause the message content to become cor-

rupt. A corrupt message in transit may be received after several exchanges.

6.1.3 Combining failures

Depending on the experiment’s aims some of experiments contain both types of failures, others only one

type and others use no failures. The details are given in the dedicated descriptions of the experiments

in the next section.

6.2 Experimental Environment

The evaluation was mainly performed in two different environments; a localhost environment run on a

single machine and a more real-word distributed environment run on a cluster. This section introduces

these environments and a description of how the evaluation was carried out along.

Localhost. A localhost environment was set up during the start of the project, to facilitate for fast

prototyping and development. By not having to deploy the system to external servers prior to testing

a new implementation, the overhead of implementation could be reduced and helped speed up the

implementation. The basic CPU resource characteristics for the localhost machine are featured in

Table 2. The local environment simulated multiple processors running on the same machine which all

communicated with each other. This resulted in the system performing very well and reliable due toCon
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Machine
ID

CPUs Thread per
core CPU

Cores per
socket

Sockets Model CPU
GHz

0 8 1 4 2 Intel(R) Xeon(R)

CPU

1.6

Table 2: Localhost machine basic CPU characteristics

Machine
ID

CPU(s) Thread per
core CPU

Core(s) per
socket

Socket(s) Model CPU
GHz

0 8 1 4 2 Intel(R) Xeon(R)

CPU

1.6

1 8 1 4 2 Intel(R) Xeon(R)

CPU

1.6

5 1 1 1 1 AMD Opteron(tm)

Processor 252

2.59

6 2 1 1 2 AMD Opteron(tm)

Processor 246

1.99

8 1 1 1 1 AMD Opteron(tm)

Processor 252

2.59

Table 3: Cluster machines’ basic CPU characteristics

the minimal latency and overhead in message exchange, which was helpful to perform basic validation

of the system quickly.

Cluster. In this case we used several machines in a local network that worked as our processors. Having

them running in parallel and while connected through their public IP via a ZeroMQ socket API, the

processors worked as a distributed system testbed. The machines we used were a cluster of five (5)

hosts. Their basic CPU resource characteristics are featured in Table 3. On every physical machine

we incremented the processes emulated by one in a round robin fashion. This allowed us to reach to 16

processes, where each machine ran 3 processes except one that ran 4.
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6.3 Evaluation Criteria

A common evaluation criteria in the field is to measure the algorithm’s latency. The average time it

takes for an algorithm to decide on a single binary value is called decision time. This includes both

communication delay and local processing time. We use this as our primary metric for the evaluation.

In addition, it is important to measure the time it takes for the algorithm to recover from a transient

fault. We, therefore, define the converge time to be the equivalent of the execution time it takes the

algorithm to decide in a single binary value given that it starts in an illegal state, i.e., a corrupt state.

6.4 Experimental Validation and Evaluation

We performed experiments in two directions: (1) We performed an Experimental Validation of the

algorithm’s implementation. (2) We then proceeded to the Experimental Evaluation. In both case, we

first started by running the experiments locally and then on the cluster.

6.4.1 Experimental Validation

For the experimental validation we ran several unit tests to check the correctness of the algorithm’s

implementation. A unit test is a small piece of code in our implementation that inject a fault so that we

can validate the tolerance of the algorithm to faults. The unit tests performed are those described already

in Section 6.1. Namely, we ran Byzantine failures (normal, idle, inverse, half&half, randomized), then

corruptions by transient faults (corruption of state of processor, corruption of round counter, corruption

of a message), and then combinations of the two. These experiments were run mostly locally since they

concerned validation.

To perform the validation, a logger was implemented, which wrote the output and the errors in

text files for the monitoring of the system’s operation. We used the created log files to check thatCon
sta

nd
ino

s D
em

etr
iou



46

Figure 4: Example of a logger output for a processor that gets a transient error (corruption) and finally
decides on a single binary value

the algorithm was exhibiting proper functionality per its specifications. This allowed us to identify

minor bugs in the method, which we graciously informed the algorithm’s authors about. For example,

Figure 4 shows the logger output for a processor that gets a transient error (corruption). Suddenly a

processor gets a transient fault that corrupts the state of processor. Due to the fact that the algorithm

is self-stabilizing through the logs, we observe that the algorithm continues to execute based on its

specifications. Finally, the processor decides on a single binary value (1) and the other processors

decide on the same value.

6.4.2 Experimental Evaluation Results and Outcomes

The non-self-stabilizing implementation. Our experimental results were compared with the results of

the non-self-stabilizing algorithm by Mostefaoui et al. [26] implemented as part of a degree project [27]Con
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under the same project umbrella. As already mentioned on Section 5.1, both implementations were de-

veloped in the same programming language (Go) and had the same communication layer (ZeroMQ).

In addition, the same random bit function was used in an effort to ensure an as fair as possible experi-

mental basis.

The decision time of each processor was measured from the moment that the algorithm starts its

execution until the moment it decides on a single binary value. Then, to calculate the average deci-

sion time we deduced the average decision times of all non-faulty processors. To get more accurate

results each experiment was repeated 10 times. We then had the maximal and minimal outlier of each

experiment removed, and then calculated the average of the remaining values.

Self-stabilization overhead. Figure 5 and Figure 6 show the average decision time and the average

number of messages received by a processor for the non-self-stabilizing, the self-stabilizing and an

optimized self-stabilizing version of randomized BFT binary consensus algorithm without the presence

of faults, on localhost and cluster respectively. The decision time and messages are measured by

increasing the number of processors in the network.

More specifically, the decision time for the non-self-stabilizing algorithm increased slightly from

0.2 sec to 1.5 sec on the localhost and from 0.3 sec to 1.1 sec on the cluster, with the increase in

the number of processors. In contrast, the decision time for the self-stabilizing algorithm increased

significantly from 0.3 sec to 5.3 sec on the localhost and from 0.5 sec to 5.5 sec on the cluster, by the

increase of the number of processors.

Trying to explain the overhead of self-stabilization, we decided to measure the average number of

messages received by a processor that appear on Figure 5 and Figure 6 on a secondary axis. We notice

that the decision time and the number of messages have the same trend, so we found that the overhead

is due to the large number of messages sent during self-stabilization.Con
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Figure 5: The average decision time and the average number of messages received by a processor
for the non-self-stabilizing, the self-stabilize and an optimized self-stabilizing version of randomized
BFT binary consensus algorithm without the presence of any type of faults. These experiments were
performed on localhost.

Figure 6: The average decision time and the average number of messages received by a processor
for the non-self-stabilizing, the self-stabilize and an optimized self-stabilizing version of randomized
BFT binary consensus algorithm without the presence of any type of faults. These experiments were
performed on cluster.
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An optimized self-stabilizing version. To check whether the decision time is affected by the num-

ber of messages received by each processor, we decided to create an optimized self-stabilizing version

of the algorithm. The optimized self-stabilizing version is a variation of the initial version of self-

stabilizing algorithm with the difference that instead of sending messages in each iteration, the mes-

sages the messages are sent periodically, and in particular in every 2nd iteration. Indeed, it turns out that

this optimization improves the performance, but longer periods of sending messages did not contribute

further reductions in time or messages needed to decide. We notice that the optimized version of the

self-stabilizing algorithm presents lower overhead compared to the original version. More specifically,

the decision time for the optimized self-stabilizing algorithm increased from 0.3 sec to 3.6 sec on the

localhost and from 0.4 sec to 3 sec on the cluster, by the increase of the number of processors. Whether

such an optimization is acceptable, depends on the application itself, since the longer the period be-

tween communications the longer it should be expected to correct a corrupt state. For example, if its

operation is too critical, we may want to accept the overhead of sending messages in each iteration.

We also notice that in all versions of the algorithm that executed on cluster the decision time in-

creases with the increase in the number of processors except in some cases where it seems that there

is a slight decrease while we would expect it to increase. The reason that this happens is due to the

hardware resource bottlenecks. Recall (Section 6.2) that we do not have enough machines in the clus-

ter to run individual processes on each machine. Some processes are grouped on the same machine

so these processes will exchange their messages faster so they will decide faster and thus reduce the

average decision time. On the other hand, when all versions of the algorithm executed locally always

the decision time increases with the increase in the number of processors, since all processors always

run on the same machine.
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Figure 7: Decision time of the initial version of the self-stabilizing algorithm in the presence of Byzan-
tine attacks. These experiments were performed on localhost.

Figure 8: Decision time of the initial version of the self-stabilizing algorithm in the presence of Byzan-
tine attacks. These experiments were performed on cluster.

Byzantine attack overhead. Figure 7 and Figure 8 illustrate the decision time of the initial version

of the self-stabilizing algorithm in the presence of Byzantine faults as described in Section 6.1.1.

More specifically, the decision time for the self-stabilizing algorithm in the present of Byzantine faults,Con
sta

nd
ino

s D
em

etr
iou



51

increased from 0.38 sec to 5.9 sec on the localhost and from 0.6 sec to 5.7 sec on the cluster, for the

most of Byzantine attacks, by the increase of the number of processors. We observe that the Byzantine

faults do not cause significant overhead in the execution of the algorithm. The reason why decision time

with idle attack is slightly less compared to normal execution (without Byzantine faults) is because the

Byzantine processors do not send any messages, so the non-faulty processors have fewer messages to

process. In other cases of Byzantine attacks the decision time is slightly increased since the Byzantine

processors try to confuse the non-fault processors, ones so the non-fault processors have to do more

iterations to decide a single binary value.

Figure 9 and Figure 10 illustrate the decision time of the non-self-stabilizing algorithm in the pres-

ence of Byzantine faults. The first thing to note is that the Byzantine faults do not cause significant

overhead in the execution of the non-self-stabilizing algorithm. More specifically, the decision time

for the self-stabilizing algorithm in the present of Byzantine faults, increased from 0.2 sec to 1.8 sec

on the localhost and from 0.4 sec to 1.1 sec on the cluster, for the most of Byzantine attacks, by the

Figure 9: Decision time of the non-self-stabilizing version of the algorithm in the presence of Byzantine
attacks. These experiments were performed on localhost.Con
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Figure 10: Decision time of the non-self-stabilizing version of the algorithm in the presence of Byzan-
tine attacks. These experiments were performed on cluster.

increase of the number of processors. In other words, non-self-stabilizing algorithm behaves similarly

to the self-stabilizing algorithm in the presence of Byzantine faults. We also notice that in all types of

Byzantines attacks the decision time on cluster, sometimes it is slight decrease while we would expect

it to increase. The reason that this happens is due to the fact that we do not have enough machines in

the cluster to run individual processes on each machine.

Convergence overhead. Finally, Figure 11 and Figure 12 show the converge time of the initial version

of the self-stabilizing algorithm. As mentioned in Section 6.3, it is important to measure the time it

takes for the algorithm to recover from a transient fault. We, therefore, define the converge time to

be equivalent to the execution time it takes the algorithm to decide, given that it starts in an illegal

state (state with transient faults). We observe that convergence time is approximately the same as

decision time without transient faults which means that the convergence overhead is not significant.

More specifically, the convergence time for the self-stabilizing algorithm increased slightly from 0.4
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sec to 5.4 sec on the localhost and from 0.5 sec to 5.1 sec on the cluster, with the increase in the number

of processors.

Figure 11: Converge time of the initial version of the self-stabilizing algorithm. These experiments
were performed on localhost.

Figure 12: Converge time of the initial version of the self-stabilizing algorithm. These experiments
were performed on cluster.Con
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Chapter 7

Conclusions

In last chapter, we present a brief summary of our work and the challenges we faced and suggest future

work that could be done.

7.1 Summary

Binary consensus is a fundamental problem in distributed systems that is especially hard to solve for

some system models. Our case-study is, to the best of our knowledge, the first work to practically

implement and evaluate a self-stabilizing randomized Byzantine fault-tolerant binary consensus al-

gorithm. For the implementation we use the Go programming language together with the ZeroMQ

message-passing library.

In this thesis, we explore binary consensus for a specifically complicated failure model; processors

may exhibit Byzantine (malicious) behavior by not following the algorithm’s specifications. An arbi-

trary transient fault represents any possible temporary violation of the assumptions that can happen to

a system, except that the algorithm code stays intact.
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The implementation served a validation of the algorithm’s correctness using several unit tests. By

checking the logs files generated by the algorithm we have found that the implemented algorithm can

tolerant Byzantine faults and it can recover from transient faults effectively.

In addition, we proceeded to the experimental evaluation with respect to the performance. We first

started by running the experiments locally and then on the cluster. Experimentally we find that for

the self-stabilization there is some overhead. Therefore, we decided to develop an optimized variation

of the initial version of self-stabilizing algorithm with the difference that instead of sending messages

in each iteration, the messages the messages are sent periodically. A transient fault under normal

circumstances happens very rarely, so we do not want to burden the system with unnecessary messages

for the self-stabilization. However, it should be emphasized that the decision is based mainly on the

application. If its operation is too critical, we may want to accept the overhead of sending messages

in each iteration. Our last finding is related to the fact that Byzantine and transient corruptions do not

cause significant overhead in the performance of the algorithm.

7.2 Challenges

The main challenge in the implementation was to establish asynchronous communication. We had to

avoid the case where a processor might block waiting for another processor’s response. Even though

REQ/REP sockets are synchronous, we used them due to the fact that we wanted to have a common

communication layer with the non-self-stabilizing algorithm. We solved this challenge by using Go

goroutines, channels and the select statement alongside the timeticker functionality that Go

offers.

Furthermore, we have never worked with the Go programming language and the ZeroMQ library

(distributed programming in general). The procedure gave us a better understanding of these two state-

of-the-art concepts. The whole process of studying and coding the implementation took around oneCon
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month of dedicated effort. Another difficulty was debugging the system, since in a distributed system

is much more challenging than debugging a single processor program, let alone debugging a distributed

system with concurrency.

On the experimental side, we highlight that the number of resources were limited due to the number

of machines in the cluster and the low specifications of the machines. We had only five (5) machines at

our disposal, which limited our ability to examine how the algorithm reacts on a larger scale network.

7.3 Future Work

Future work could take on multiple dimensions. More optimization could be used to make the algorithm

even more competitive. We can look for more ways (besides periodic messaging) by which we can

reduce the execution time of the algorithm.

On the experimental side, we note that there were limitations in the number of resources, as the

number of machines in the cluster we used and the low specs of the machines. We will be able to add

to the existing cluster more machines with higher specifications. This will avoid the possibility of more

than one processor running on the same machine, which affected the average decision times.

Finally, it is interesting to evaluate how the algorithm reacts on a larger scale network. Therefore,

experiments on a larger scale platform such as AWS or Planet-lab will reveal trends that we were not

able to see within our smaller scale cluster. In real large-scale networks, the processors will be geo-

graphically remote so we may be experiencing events such as network delays or packet loss that are

unlikely to occur on the local network where the cluster is located. Hence, possibly our synchrony em-

ulation with REQ/REP sockets would no longer be effective, so the implementation should be modified

to use the DEALER/ROUTER paradigm.
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