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Με την εισαγωγή της επιστήμης της πληροφορικής στον τομέα της υγείας, πολλές οντότη-

τες που συσχετίζονται με την υγεία, έχουν στην κατοχή τους τεράστιο όγκο από δεδομένα

ασθενών. Παρά το γεγονός ότι η κοινοποίηση αυτών των δεδομένων σε ερευνητές μπορεί

να αυξήσει την πιθανότητα ανακάλυψης καινοτόμων ευρημάτων, αυτό δεν είναι δυνατό λόγο

νομικών και ηθικών ζητημάτων. Η μηχανική μάθηση μπορεί να χρησιμοποιηθεί σε αυτά τα

δεδομένα για τον εντοπισμό των παραγόντων που αυξάνουν ή μειώνουν το ρίσκο κάποιος να

αποκτήσει μια ασθένεια, αλλά οποιοσδήποτε αλγόριθμος που θα αναλύσει αυτά τα δεδομένα

θα πρέπει να λαμβάνει υπόψη ότι οι περισσότερες κοινές ασθένειες επηρεάζονται από πολλα-

πλές γονιδιακές αλληλεπιδράσεις και αλληλεπιδράσεις με το περιβάλλον. Επομένως, θα πρέπει

να χρησιμοποιηθούν αλγόριθμοι που επιτρέπουν την εύρεση τέτοιων αλληλεπιδράσεων. Στη

διατριβή, αρχικά παρουσιάζεται ένας νέος αλγόριθμος για την ανωνυμοποίηση δεδομένων τα

οποία έχουν διακριτές τιμές, μέσω κ-ανωνυμίας και αλγόριθμου επιλογής μεταβλητών, για

προβλήματα ταξινόμησης. Ο αλγόριθμος αξιολογήθηκε σε διάφορα είδη ιατρικών δεδομένων

και στην πλειονότητα των πειραμάτων τα ανώνυμα δεδομένα που παράχθηκαν, είχαν παρόμοια

ή μεγαλύτερη ακρίβεια στην ταξινόμηση σε σχέση με τη χρήση των αρχικών μη-ανώνυμων

δεδομένων. Στη συνέχεια παρουσιάζεται ένας καινούριος αλγόριθμος για τη μετατροπή συ-

νεχών μεταβλητών σε διακριτές, με βάση την πυκνότητα των τιμών των μεταβλητών. Η
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μέθοδος αυτή έχει παρόμοιες επιδόσεις με τους αλγόριθμους που είναι ευρέως χρησιμοποιη-

μένοι στον τομέα, και έχει το πλεονέκτημα ότι είναι υπολογιστικά αποδοτικός και μπορεί να

χρησιμοποιηθεί σε μεγάλα δεδομένα. Για την αναγνώριση προτύπων σημειακών νουκλεοτι-

δικών πολυμορφισμών που συσχετίζονται με εμφάνιση ή όχι μιας ασθένειας, παρουσιάζεται

ένας Χάρτης Αυτο-οργάνωσης για διακριτά δεδομένα. Η μέθοδος αυτή εφαρμόστηκε σε γε-

νετικά δεδομένα και η κατηγοριοποίηση των δεδομένων που δημιούργησε ήταν στατιστικά

σημαντική και αποκάλυψε ενδιαφέροντα πρότυπα που ήταν διαφορετικά μεταξύ των κατηγο-

ριών που αντιπροσώπευαν ασθενείς και υγιή άτομα. Επίσης, προτείνεται ένα πλαίσιο για την

αποτελεσματική ανακάλυψη ν-αλληλεπιδράσεων. Το πλαίσιο αυτό χρησιμοποιεί αλγόριθμους

μηχανικής μάθησης για την μείωση του αριθμού των μεταβλητών ενός προβλήματος και για τη

μείωση της διάστασης των μεταβλητών μετατρέποντάς τις σε δυαδική μορφή. Αυτό επιτρέπει

την μείωση του προβλήματος των πολλαπλών συγκρίσεων και επίσης μειώνει τους βαθμούς

ελευθερίας των στατιστικών υποθέσεων, το οποίο αυξάνει την στατιστική δύναμη για την

αναγνώριση των ν-αλληλεπιδράσεων που συσχετίζονται με εμφάνιση ή όχι μιας ασθένειας. Τα

αποτελέσματα δείχνουν ότι με τη νέα κωδικοποίηση, το προτεινόμενο πλαίσιο ήταν σε θέση να

αναγνωρίσει περισσότερες στατιστικά σημαντικές ν-αλληλεπιδράσεις σε σύγκριση με τη χρήση

της αρχικής κωδικοποίησης των μεταβλητών.
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In recent years, with the infiltration of information technology in healthcare, many healthcare

related entities, have vast amounts of patients’ data. Although sharing such data can increase

the likelihood of identifying novel findings or even replicating existing research results, this is

not happening due to legal and ethical issues. Machine learning can be used on such datasets to

identify risk factors that can be used to improve our lives, but any algorithms that will analyze

such data should take into consideration that most common diseases are influenced by multiple

gene interactions and interactions with the environment. Hence they should use models that allow

the finding of such multivariate associations. This thesis initially presents a novel algorithm for

anonymizing categorical data with k-anonymity and performing feature selection for classification

tasks. The algorithm was evaluated on various medical datasets and in the majority of the evalu-

ated test cases the produced anonymized data had similar or better accuracies than using the full

datasets. Additionally, a novel density based discretization algorithm is presented that has similar

performance with state of the art algorithms while being computationally efficient and suitable for

big data. For pattern recognition of n-SNP associations in case/control data, a Self Organizing

Map for nominal categorical data is presented, which was able to produce statistically significant

clustering revealing some interesting patterns between the clusters of cases and controls. Finally,

a framework for efficient n-Way interaction testing is presented that uses machine learning to re-

duce the dimensionality of the data and to produce a targeted binary encoding of the features. This

enables the reduction of the multiple testing problem and the degrees of freedom of the statisti-

cal tests applied for interaction testing, and hence increases the statistical power of the performed

analysis. Results indicate that with the new encoding, the proposed framework was able to identify

more statistically significant interactions compared to using the initial encoding of the features.
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Chapter 1

Introduction

1.1 Problem Statement

In recent years, with the infiltration of information technology in healthcare, many healthcare

related entities such as hospitals and pharmaceutical companies, have vast amounts of patients’

data. Such datasets may contain various types of data, such as environmental, phenotypic, imag-

ing and -omics data, which can provide useful information for identifying factors using machine

learning that can improve our lives. For example, imaging data could be used to predict if a per-

son is on early stages of dementia or the risk of developing cancer, whereas environmental and

phenotypic data could provide risk factors for a person to develop a cardiovascular disease and

hence have the ability to take precautions for reducing the risks and having a better and longer

life. Genetic data can change the whole scene in the current medical industry, since they can make

personalized medicine a reality.

Although it is clear that sharing such data can increase the likelihood of identifying novel

findings or even replicating existing research results, this is not happening due to legal and ethical

issues. Attempts have been made by research programs like Linked2Safety [2, 1], for merging

data across different healthcare entities and preserve individuals privacy, but one needs to also

1
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decide which data to share, so that the likelihood that the shared data will lead to new findings

is increased. The problem is more evident in the case of genetic data, since they can reveal the

identity of an individual and possible risk factors that s/he may have. Hence they are highly

sensitive data and caution is needed even if a part of them is shared.[3]

Machine learning can be used for the analysis of such data, but such algorithms should take

into consideration that most common diseases are influenced by multiple gene interactions and

interactions with the environment [5]. Furthermore, univariate analyses in such diseases may not

replicate their results across multiple samples, due to the effect of epistasis and other phenomena

[6]. Hence, any algorithm that will be used as a preprocessing and processing step for the analysis

of this data, should allow the finding of such multivariate associations.

Additionally, due to the high dimensionality of these datasets, the algorithms that will process

them should be efficient and be able to harness the computational power of high performance

computing. This means that the algorithms need to be as computationally efficient as possible, but

additionally be easily parallelizable so as to be executed on multiple nodes and cores.

1.2 Contribution

This thesis focuses on the sharing and the analysis of categorical data in the medical domain

and contributes to various steps that could be needed in the analysis process of such data. To be

able to include continuous data as well in the analysis process, a novel discretization algorithm for

converting continuous data to categorical is also proposed. Assuming that all data are categorical

or have been converted to categorical, the proposed algorithms in this thesis and frameworks

can be applied to them. Then this thesis contributes to privacy preserving data publishing, by

providing a novel algorithm for the anonymization of data to be able to share such data with other

researchers and to be able to combine data from different data providers. This can increase the
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statistical power of the analysis and the likelihood of identifying novel findings or replicating

existing results. If needed then, before analyzing a dataset, one can discretize and anonymize the

data at hand using the proposed algorithms. The next two areas in which this thesis contributes

are in the analysis of data and specifically in the identification of n-SNP patterns and n-Way

interactions in case/control studies. In both cases, the algorithms and framework proposed, take

into consideration the use of methods that allow the identification of interacting factors since, in

most common complex diseases, such interacting factors are influenced by them. Additionally,

all of the proposed algorithms are capable to handle big data since they are either available in

parallel implementations or are computationally efficient. In the next subsections, a summary of

the contribution in each area is provided.

1.2.1 Privacy Preserving Data Publishing

The Linked2Safety project [2, 1] provides a framework for connecting and interlinking data

from different sources while preserving data privacy and conforming to all legal and ethical issues

relevant to each dataset. The privacy preserving methodology is based on the creation of data

cubes and applying cell suppression and perturbation on them for removing patients data that

can be reidentified. This is applied on categorical data so that the data cubes can be created.

Additionally the data cubes are semantically enriched with the use of medical taxonomies and

ontologies, to allow the interlinking of data from different sites. The data can then be analyzed in

the data analysis space, using statistical and data mining methods.

One problem identified in the Linked2Safety project, was the selection of the variables that

would be included in the data cubes for the analysis. For this reason a novel algorithm for

anonymizing categorical data with k-anonymity and performing feature selection for classifica-

tion tasks was proposed [3]. It is based on a novel fast pattern based evaluation measure that can
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be computed in O(n) and uses a greedy forward selection for selecting the best features, which

can also be parallelized. The algorithm also tries to reduce the probability of removing data that

can affect the results of future analysis using statistical measures. The algorithm was evaluated on

various medical datasets with varying complexity, using four different classifiers. In 74% of the

evaluated cases the produced anonymised data, had similar or better accuracies than using the full

datasets.

1.2.2 Data Discretization

Another problem identified in the Linked2Safety project was the need to manually convert the

continuous data to categorical, based on the expertise of the data owners. This approach required

a good communication among the different sites, so as to use the same intervals in the variables

that would be shared. Discretization is a preprocessing technique used for converting continuous

features into categorical. This step is essential for processing algorithms that cannot handle con-

tinuous data and can also improve the performance and the interpretation of results of algorithms

that can directly use continuous data as input. Moreover, the Self Organizing Map algorithm and

the Privacy Preserving Data Publishing algorithm require categorical data and hence it was of in-

terest to find an effective and efficient algorithm for converting continuous data to categorical. To

address this issue, a novel density based discretization (DBAD) algorithm was proposed. It com-

bines the simple equal width binning approach with a statistical test for identifying the intervals

in which the density of the data of each class changes for producing the final bins. The algorithm

has similar performance with state of the art algorithms, but has the advantage of being compu-

tationally efficient since it can discretize a variable in O(n) time and it can be easily parallelized.

The parallel version of DBAD, shows almost linear speedup for an MPI implementation (9.6x for

10 nodes), while a hybrid MPI/OpenMP implementation improved execution time by 35.3x for
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10 nodes and 6 threads per node. The algorithm can be applied to datasets that will be used in

classification tasks and unsupervised tasks and can also be used for histogram visualization.

1.2.3 Pattern Recognition of n-SNP Associations

As mentioned earlier, common diseases can be affected by multiple interactions and hence

algorithms that can help identify them should be used for analysing them. For this reason, a Self

Organizing Map (SOM) that can handle nominal categorical data [4] was used for the first time on

clustering Single Nucleotide Polymorphisms (SNPs) of subjects with and without Multiple Scle-

rosis. It was also proposed to use the χ2 statistic for selecting the map size of the network instead

of the traditional measures. The produced clusters were statistically significant and revealed inter-

esting patterns between cases and controls, indicating that this method could prove of significant

value in future multi-loci association testing. Additionally, a parallel version of the algorithm is

available that can be used for the analysis of big data.

1.2.4 A Framework for Efficient n-Way Interaction Testing

As it has already been mentioned, complex interactions can affect common diseases, but with

the high dimensionality of genetic data and usually the small sample size, an efficient n-Way

interaction testing approach is needed. A framework that tackles this problem was proposed that

comprises of four steps. The first step carries out quality control analysis so that the data used

are not erroneous. The second step uses feature selection to remove any redundant features. By

reducing the dimensionality of the data, the risk of overfitting in the next steps is reduced and it

is easier for machine learning algorithms to identify the true signals from noise. In addition less

computational power is required by the algorithms and the multiple testing problem is reduced.

In the third step, clustering is used for grouping subjects with similar genetic patterns together in

Aris
tos

 Aris
tod

im
ou



6

an attempt to identify clusters that have a majority of cases and controls and that have distinctive

patterns that can separate the two classes. In the final step, the genotypes are converted to binary

variables, based on the patterns of the clusters before testing for n-Way interactions. This reduces

the degrees of freedom of the statistical tests applied for interaction testing and hence increases

the statistical power. Results indicate that with the new encoding, the proposed framework was

able to identify more statistically significant interactions compared to using the initial encoding of

the genotypes.

1.2.5 Publications

The research work of this proposal, has produced 2 Journal publications and 8 conference

papers, which are listed in Appendix A. Additionally 2 more Journal publications are under review.

1.3 Structure of this Proposal

This thesis is comprised of 8 chapters. Chapter 2 introduces the Linked2Safety project, which

is focused on the anonymization and semantic interconnection of medical information across dif-

ferent entities for advancing patients’ safety through its innovative platform. Chapter 3, introduces

a novel privacy preserving data publishing algorithm that uses k-anonymity and feature selection

and that can automate the selection of the important features that will be anonymized and pub-

lished for analysis. Chapter 4, presents a novel fast discretization algorithm, which creates its bins

based on the density of the data using a statistical approach. The next chapter is on a methodology

for identifying n-SNP associations between cases and controls using a Self Organizing Map for

categorical data, whereas the 7th chapter presents a framework for the efficient identification of

n-Way interactions. Finally, in the last chapter, the concluding remarks and the proposed future

work are presented.
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Chapter 2

Linked2Safety: A secure linked data medical information space for

semantically-interconnecting EHRs advancing patients’ safety in

medical research [1, 2]

2.1 Introduction

In this chapter Linked2Safety [1, 2] is presented, a project funded under the FP7 scheme of

the European Commission focused on some key challenges and potential solutions that have been

identified through the work performed in the project. The vision of the project was to advance

clinical practice and accelerate medical research, by providing pharmaceutical companies, health-

care professionals and patients with an innovative semantic interoperability framework facilitating

the efficient and homogenized access to distributed Electronic Health Records (EHRs).

EHRs contain an increasing wealth of medical information and they have the potential to con-

tribute significantly and advance medical research, as well as improve health policies, providing

society with additional benefits [7, 8, 9, 10]. However, the European healthcare information space

is fragmented due to the lack of legal and technical standards, cost effective platforms, and sus-

tainable business models. The key factors that define the work done in this and any other project

7
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that attempts to merge or share medical data between multiple sources are legal and ethical issues,

patient privacy protection and statistical power.

Linked2Safety, developed a platform for analysing EHRs from multiple distributed institu-

tions, while strictly adhering to the legal and ethical requirements as defined by each data provider

at EU level. The primarily objective of analysing EHRs from multiple institutions, arises from the

need to increase the total number of subjects that are included in each analyses, thus increasing

the statistical power of detecting true positive effects. This may in turn enable the identification

of key biomarkers, which may lead to new drugs, the identification of adverse events that may be

associated with a specific drug or family of drugs, and the reduction of costs associated with the

setting up of clinical trials [11, 12, 13, 14]. The costs of clinical trials can be reduced, since it will

make the process of identifying sites and the number of subjects to be included in a clinical trial

from each site easier.

The structure of the chapter is as follows. Section 2.2 covers the legal and ethical issues of

the project, whereas Section 2.3 and Section 2.4 present the Linked2Safety platform and architec-

ture respectively. Section 2.5 presents the three showcases used for demonstrating the use of the

platform. Finally in Section2.9 the concluding remarks are provided.

2.2 Legal and Ethical issues

Within the Linked2Safety project, patients’ personal health are processed, which prerequisites

the study of the corresponding national and European legislative framework, and the establishment

of specific legal and ethical requirements for the platform that will be developed and operating on

these data.

According to Art.17 para. 1 of the European Data Protection Directive [15], the data controller

as well as the data processor must implement appropriate technical and organizational measures
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Figure 1: The Linked2Safety platform. The data are initially anonymised and semantically en-
riched before making them available for access by a SPARQL endpoint. The medical expert
connects to a Galaxy web portal, which schedules any analysis that the user wants to perform.
The analysis is then performed on an HPC infrastructure and the results are returned to the user
through the Galaxy web portal.

to protect the data against accidental or unlawful destruction or accidental loss, alteration, unau-

thorized disclosure or access and against all other unlawful forms of processing. At the same time,

the data subject has several rights that must be respected, such as the right to be informed, the right

of access, the right of rectification, erasure or blocking and the right to object.

From the ethical perspective, the processing of health data at EU level requires the consent

of the data subject [16], though in certain cases and under specific conditions this might not be

needed. For instance, the national laws of the clinical pilot partners of Linked2Safety in Greece

[17], Cyprus [18] and Switzerland [19] declare that the use and processing of health data without

the consent of the data subject is possible, if and only if, it is for research purposes, the data are

properly anonymised, and analysis is done in aggregated level.
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2.3 Linked2Safety Platform

The Linked2Safety architecture addresses legal and ethical issues while enabling the analy-

sis of electronic health data across multiple data sites with different owners and with potentially

diverse legal and ethical requirements.

With those two facets of the problem, a novel idea for addressing both legal and ethical prob-

lems (at a commercial and not just a research level), as well as the need to merge the data from

multiple sites simultaneously is introduced. All processing and analysis on medical data is done

on aggregated data from each site. This is nothing new, since aggregated results from the analysis

of electronic health records are published in the majority of medical research publications that

involve medical studies. In Linked2Safety however the system enables future analysis of the ag-

gregated data using methodologies or ways of analysis that may have not been considered at the

time of aggregating the data. The proposed method that enables this is the use of data cubes [20].

This method aggregates values across many dimensions together, resulting in multidimensional

data cubes. Getting a contingency table from any subset of the variables within the data cube can

easily be achieved by adding the values across the excluded dimensions.

For tackling the issue of accessing electronic health records that contain potentially identifiable

personal medical data, the concept of a ”closed-world” room was introduced (a room located

within a data provider’s premises, featuring the required hardware infrastructure to process EHR’s

isolated from any kind of network connections).

The physical access to this machinery within the room is allowed only to specific personnel

of the corresponding data provider and it is off line to the outside world. The data provider’s

staff executes a program on the computers located in the closed room, that aggregates the data

generating the data cubes. The program offers the option to the data provider to limit the way that
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the data are aggregated so that any legal and ethical issues that may relate to the type of analyses

that may be performed on the data can be addressed. Quality control is also performed on the

data by the program, so that the likelihood of reverse engineering the data of a single subject or a

group of subjects is minimized. As illustrated in Figure 1, only the aggregated data (data cubes)

are physically carried outside the closed-world room to a server that is accessible by the rest of

the Linked2Safety infrastructure. The data cubes are in Resource Description Framework (RDF)

format and are accessed through a SPARQL endpoint, whereas all of the tools for analysing the

aggregated data are on a dedicated Galaxy server [21, 22]. The analysis of the data is available

only to Linked2Safety users through a Galaxy web portal.

The operational procedures for the creation and semantic enrichment of the data cubes are as

follows:

• The data provider’s staff after reviewing the legal and ethical requirements for their data,

make a decision on what data to include in Linked2Safety and what parameters they need

to define for the creation of the aggregated data.

• A member of the staff of the data provider enters the ”closed-world” room, where the data

are maintained and performs the aggregation of the data, which creates the data cubes. This

step includes the quality assurance and filtering of the data, based on the predefined settings

of the previous step.

• The produced data cubes are stored in RDF format and are verified that they do not contain

any personal medical records.

• The final data cubes are transferred to a server that is accessible by the Linked2Safety plat-

form, outside the ”closed-world” room.
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• The data cubes are semantically enriched and made available to the rest of the Linked2Safety

platform.

The above steps are carried out by all sites that maintain clinical data, so as to include in the

Linked2Safety platform aggregated data from multiple independent studies. In cases where the

definitions of the variables overlap among sites, they are recorded in a way that enables them to be

analysed and merged so as to increase the statistical power of detecting true positive results. These

data are then available to researchers with access to the Linked2Safety platform for analysing

them.
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2.4 Linked2Safety Architecture

Figure 2: The Linked2Safety architecture consists of four spaces. The data cube generation space

creates the data cubes for anonymising the patients personal data. The interoperable EHR data

space provides the tools for transforming the data cube information to a common referenced data

cube format. The linked medical data space provides a secure knowledge base of semantically

interconnected data cube related information resources. The fourth space, genetic analysis space,

provides the tools for data mining and statistical analysis of the medical data.
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Figure 2 portraits the Linked2Safety’s architecture. As can be seen, the platform consists of

four main spaces, which are described below.

2.4.1 Data Cube Generation Space

The data cube generation space provides the tools for transforming the proprietary EHR and

Electronic Data Capture (EDC) data to the data cube structure. Specifically, the locally stored

EHR and EDC data are aligned, mapped and transformed to a reference EHR schema. Then, this

commonly referred EHR data are used to create the data cubes.

2.4.2 Interoperable EHR Data Space

The interoperable EHR data space provides a tool set to make the transition of data cubes

from the ”closed-world” of each clinical data provider to an open data environment accessible to

all partners based on policies that enforce strong data security, privacy and anonymity. Thus, its

responsibility is to transform the data cube information to a common referenced data cube format

by means of a semantic EHR model, named common data cube reference EHR ontology. More-

over, the interoperable EHR data space provides the mechanisms for the semantic enrichment of

the standardised data cubes with the use of appropriate, globally available healthcare and medical

taxonomies and ontologies, enabling the delivery of machine interpretable information regarding

their structure and content.

2.4.3 Linked Medical Data Space

The linked medical data space implements a secure knowledge base of semantically inter-

connected data cube related information resources. It also provides the mechanisms and tools

required for publishing and interlinking the common referenced data cubes from different medical
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data providers. Access to this data is governed by adaptable access policies and mechanisms. In

this way, the clinical research community is going to have homogenised access to the available

anonymised patient related information needed, to perform complex data mining operations.

2.4.4 Genetic Data Analysis Space

The genetic data analysis space provides a scalable infrastructure for medical data mining,

empowered by a set of algorithms and models. These methods are applied in the semantically-

interlinked data cubes containing anonymised patient’s health records in order to analyse the asso-

ciations among the genetic, environmental and phenotypical data related to identified and reported

Adverse Events (AEs). Thus, clinical researchers and healthcare professionals are provided with

an advanced genetic analysis statistical and data mining toolset, focusing on advancing patients’

safety through the analysis of bio-markers associated to identified AEs and the proactive exclusion

of specific patients’ profiles from the wide patients’ selection process.

My main work in the Linked2Safety project was in this space, in which I was also the leader.

Part of my work was the design of the architecture of the space, the selection and implementation

of the algorithms that would be included in the analysis space and the selection of the platform

that would integrate all of the algorithms. This space was implemented using the Galaxy workflow

management system and it is comprised of five steps, which are illustrated in Figure 3. Galaxy al-

lows the creation of different workflows that can be stored and used with new data. Additionally, it

allows the sharing of such workflows with other researchers, which can promote the collaboration

and transfer of analysis workflows between different research groups. The input data are retrieved

using a SPARQL query engine that accesses the anonymized RDF data cubes. For pre-processing,

multiple quality control methods are available such as handling missing data and performing the

Hardy Weinberg Equilibrium test. Additionally, feature selection algorithms are also available for
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the pre-processing step based on rough set theory and statistical measures such as the χ2 test and

information gain. This helps to reduce the feature space of the analysis and helps focus on the

most informative features. Additionally, this allows the creation of simpler models that can be

interpreted for drug discovery and the creation of human-readable association rules. In the pro-

cessing step, data mining algorithms and statistical methods are provided for analyzing the data.

These include Random Forests [23], C4.5 [24], logistic regression and statistical tests that can be

used to test for associations between the predictors and the target variable. In the post-processing

step, any statistically significant identified rules are automatically stored in the knowledge base

of the platform, which can be used to alert for any possible adverse effects in specific subjects.

Finally, in the last step, the results of the performed analyses are output in various forms such as

plots and texts.

Figure 3: The Linked2Safety’s Genetics Data Analysis Space workflow steps and an example of

a workflow in Galaxy.
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2.5 Usage Scenarios

Although the Linked2Safety platform will enable many diverse types of analysis that may

help in multiple facets of research in medicine, three were identified and acted as showcases to

demonstrate the use of the platform when it was completed.

2.5.1 Subject Selection for a Phase III Clinical Trial

Recruitment of investigators, clinical sites, and study participants is a constant concern during

the course of any clinical trial. Recruiting participants for clinical trials is a time-consuming,

intensive process which constitutes the critical first step for a study’s ultimate success. Once

investigators and clinical sites are selected, participants recruitment and retention is performed.

Clinical researchers then determine whether clinical studies adhere to time-lines. Depending upon

the size of the trial, the condition or disease being investigated, and the participant population

available, subject recruitment often proves to be a time-consuming step for many clinical trials.

Clinical studies are no longer exclusively centralised in university and research hospitals.

Many clinical trials have been relocated to private practice or small clinical research centres, often

spread across the continent in pan-European trials. Investigators and academic research organi-

sations are also implementing global clinical trials and mining databases in search of physicians

who treat patients eligible for trials. Sponsors and clinical research organisations usually rely on

a network of known investigators and sites, tending to go to the sites that they have been work-

ing with in the past. To succeed in the identification of superior sites in terms of quality and

subject recruitment, they maintain active investigator databases for Europe and the United States.

Information typically included in such databases is: contact details, area of research interest, in-

vestigator’s experience with clinical trials (phase of trials, number of patients enrolled at site per
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trials, classes of drug/devices tested), site infrastructure and capacity (equipment, internal logis-

tics, patient database), etc.

Moreover, another way to identify sites and investigators is the number of publications re-

leased in the specific field. Placing a study in the best recruiting centre, where the appropriate

subject population is available, and in a competition-free environment are also critical factors for

a successful clinical trial.

The objective of this scenario was to demonstrate how sponsors could identify recruiting sites

for participants into clinical trials in the most time- and cost-efficient way. For them, any delay

in approval for a successful drug can potentially cost millions in sales, in addition to preventing

promising novel therapies from reaching future patients.

2.5.2 Phase IV Post Marketing Surveillance trial

A Phase IV study is a clinical trial, a quasi-experimental study, or an observational study to

gather specific information about an approved drug, a biological product, a device, or a procedure.

Post-approval research is typically initiated to better understand product use in real-world situa-

tions, to obtain evidence for higher reimbursement or submission for expanded labeling, to fulfill

a specific requirement of regulatory authorities, or to monitor safety of a drug or device in a larger,

non-clinical trial setting.

The need for post-approval surveillance studies stems from inherent limitations in the clinical

trial process used for regulatory approval. While studies of safety and efficacy in optimal popula-

tions are required to bring a drug or a device to market, it is only through post-approval research

and studies of patient outcomes from product use in real-world settings that strong evidence of the

effectiveness and safety of a new product emerges. Studies in large populations, with real-world
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dosing, longer duration of exposure, long-term follow-up, and comparison data based on current

physicians’ practices, are the most informative approaches to monitoring device and drug safety.

Regulatory initiatives have confirmed the significant value and appeal of information generated

from registries that are well-designed and appropriately conducted, analysed, and reported [25].

Observational studies constitute a sub-category of post marketing studies. Observational studies

are studies in which the researcher observes and does not alter the participant’s experience in any

way. In an observational study, treatment decisions, visit schedules, and any tests/measurements

are generally left to the discretion of the provider. Observational studies can provide the health

community with invaluable data on safety and effectiveness of a product and/or information about

the natural history of a disease under standard care practices. These studies provide real-world

data that can benefit patients, healthcare providers, pharmaceutical companies, sponsors, and reg-

ulatory agencies.

The objective of this scenario was to provide an analytical framework to analyse existing

databases’ content with information including (but not limited to): demographics, medication

used, AEs and medical history. The aim was to detect safety signals as soon as possible, and

identify association with factors that may act as causative or predisposing to the AE.

2.5.3 Identification of Relations between Molecular Fragments and Specific Adverse Side

Effect Categories (Chemoinformatics)

This scenario focused on the identification of structural features in drugs that may be related

to AEs in population sub-groups. The inspiration stems from the application of similar chemical

structure-based techniques for the prediction of biological properties including potency, solubility,

toxicity, etc. in the drug discovery field.
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To succeed in this, we needed detailed information on patients’ records including drugs admin-

istered and AEs. The availability of this information allowed the application of chemoinformatics

methods that could suggest potential chemical structure-adverse effect relationships. A subset of

such potential relationships could be subjected to further analysis at a molecular level to elucidate

the mechanism of action of the associated molecular sub-structure and the characteristics of the

sub-population affected. This required a quantity and quality of information on patients and their

characteristics, as well as, on AEs.

The objective of this scenario was to demonstrate the usefulness of Linked2Safety framework

to search and identify associations between molecular features (e.g. chemical structure of drugs),

and the occurrence of AEs.

2.6 External Evaluations

The second step was to conduct external evaluations. External evaluators were members of

the wider scientific community. External evaluations were designed and conducted to eliminate

potential bias in the feedback and to gather a wider set of feedback on the utility and functionality

of the Linked2Safety platform by people not affiliated with the project. For the external user eval-

uations, a restricted second version of the integrated Linked2Safety platform was prepared and

the installation of all components was done in a controlled environment. For security reasons, the

external users did not have access to the full platform and could only analyze synthetic data 1[1]

(modeled on real-world data). They were given specific scenarios to evaluate using demonstra-

tions and screenshots, which tested the acceptance of confidence in the Linked2Safety concept and

its applicability. The idea behind scenario-based evaluation with these external users is for them

to perform a type of task that is typical in their professional work by utilizing the Linked2Safety

Aris
tos

 Aris
tod

im
ou



21

platform. Despite not having full access to the platform of the integrated real-world data, their in-

sights were expected to have a non-biased view of the Linked2Safety platform, providing reliable

and objective results.

2.6.1 Participants

The participants of the external evaluation came from three different groups:

1. medical science analysts,

2. analytic methodology engineers, and

3. data providers,

which coincide with the target groups of users of the system.

Medical science analysts focus their efforts on analyzing data; they rely primarily on using

existing statistical or computational methods to test pre-existing hypotheses or to generate new

hypotheses depending on the problem on which they are working. They are typically associated

with large pharmaceutical industry organizations, academic institutions interested in medical anal-

yses and hospitals and other medical care providers that perform analyses on data as part of their

decision support process, prognostics, or other efforts. Medical science analysts routinely seek

new sources of data to test their hypotheses with increased statistical power, using standardized

analytical tools.

Analytic methodology engineers are focused on developing innovative analytical techniques

to perform analyses on data and on evaluating those techniques. They may have a background in

statistics, computational intelligence, data mining, software engineering and development, or other

fields of study. Their focus is on the development of tools that can either introduce new analytic

approaches to solve medical problems through the analyses of medical data or to introduce new
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versions of analytic methodologies that are expected to have certain advantages over existing ones.

Typically, an analytic methodology engineer would utilize the Linked2Safety platform as part of

his/her efforts to evaluate newly developed tools and, once the tools are proven to be successful, the

platform can also enable quick deployment of his/her work to a large number of medical science

analysts for use.

Data providers are institutions that hold medical data; these may be organizations that are

responsible for data collected through clinical trials, epidemiological studies, health providers

with patients’ electronic health records, and others who have the ability to store and use that

medical data in some form of research analyses. The primary focus of these users is typically to

collect data for scientific research, whilst strictly adhering to legal and ethical limitations.

Table 1 shows the three groups of participants of the external evaluations of Linked2Safety.

There were a total of three external evaluation events with a total of 75 participants from the three

targeted groups of potential users (35 medical science analysts, 11 methodology engineers and 29

data providers).

Table 1: External Evaluation Participants

Institution Count Type

CING 24 Medical science analysts

CING 23 Data providers

CHUV 6 Data providers

CHUV 6 Data providers

UNIMAN 11 Analytic methodology engineers

University of Liverpool 5 Medical science analysts

Each evaluation event typically started with a brief description of the Linked2Safety project

aims and scope, which was given as a presentation. The presentation included the results of the

internal evaluation (e.g. monetary and time cost of deployment results, findings that replicated

scientific knowledge already discovered) this was followed by individual hands-on experience of
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the Linked2Safety system by participants through three different scenarios (a different scenario

for each group) that demonstrated the basic functionality of the system for each group of users’

main activities. The workflow instructions were in the form of screenshots on how to use the basic

functionality of the Linked2Safety platform. After participants used the system and had hands-on

experience with its basic functionalities they completed an evaluation questionnaire (a different

questionnaire for each group).

2.6.2 Questionnaire

The Linked2Safety external end-user evaluation questionnaire, which was developed specif-

ically for the purposes of the evaluation of the Linked2Safety system, is structured in five main

parts. Part 1 of the evaluation questionnaire refers to users’ personal information, such as gender,

age, employment and experience. Part 2 allows users to evaluate the following five aspects of the

Linked2Safety platform:

1. Analyses space: Questions that fall under the category of analyses space cover issues of

subject selection, hypothesis testing, hypothesis generation, data mining, replication testing,

time, cost and usability.

2. Linked Data Space

3. Usability

4. Legal and ethical issues

5. Value of the system (for patients, future research)

The third part (Part 3) targets only members of Stakeholder Group 2 (analytic methodology engi-

neers); and the fourth part (Part 4) targets only members of Stakeholder Group 3 (data providers).
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Lastly, the fifth part (Part 5) of the external end-user evaluation questionnaire provides users with

the ability to express their opinion in a few open-ended questions that focus on ways to improve

Linked2Safety.

All questions were in a ‘multiple choice’ format and began with a statement to which the

clinical partner was asked to state their agreement by selecting from the options: strongly disagree,

disagree, agree and strongly agree. In addition, a ‘not applicable’ option was given should the user

feel unable to give an answer. Not all statements were positive (a method commonly used in survey

design to ensure that subjects do not attempt to reply completely positively or negatively without

closely reading the questions). It is also important to note that in order to avoid bias in participants’

answers (e.g answering with positive replies of either ”agree” or ”strongly agree”), the evaluation

questionnaires were completed anonymously.

2.6.3 Questionnaire analysis

Following the data collection of the study, all the data from the different evaluation sessions

were input in a statistical package (SPSS) for analysis. For the questionnaire results, descriptive

statistics (frequencies) of 75 participants’ answers have been collected to illustrate the users’ per-

ceptions of the Linked2Safety system, broken down into specific categories that can be analyzed

in more detail (analyses space, linked data space, usability of the system, legal and ethical issues,

value of the system).Associations/correlations between the users’ personal data (e.g. their expe-

rience, educational level, age, gender) and their perceptions of the Linked2Safety system (e.g. to

what extent they value the system, to what extent they find specific tools user-friendly etc.) were

conducted. For these evaluations, a comparison of responses in questions that are common inAris
tos
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the three target groups (data providers, medical science analysts and analytic methodology engi-

neers) have been conducted to identify whether there are differences between users’ perception of

Linked2Safety based on their role.

2.6.4 Participants demographics

As summarized in Table 1, there were three external evaluation events organized as part of the

Linked2Safety project that took place in the following partners’ premises:

1. CING (with 47 participants),

2. CHUV (12 participants), and

3. UNIMAN (16 participants).

The total number of external evaluators was 75, including 35 medical science analysts, 11

methodology engineers and 29 data providers. 45.3% of participants were male and 54.7% of par-

ticipants were female. Over 90% of evaluators had either an MSc or PhD. The majority came from

medical research institutes (42.7%) or academic institutions (30.7%). With regards to experience,

almost half of the evaluators had at least 3 years of experience.

2.7 Results

For all five aspects of the Linked2Safety systems that were examined (analysis space, linked

data space, usability, legal and ethical issues and value of the system), the participants’ perceptions

were overwhelmingly positive. These results are summarized in Table 2, which shows that all

three groups had a Mean score between ”agree” and ”strongly agree” (higher than 3.10 out of

4.00 in all cases). Overall, the participants’ perceptions of the analysis space were positive (Mean

= 3.28, SD(Standard Deviation) = 0.50) as all three groups had a Mean score between ”agree”
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and ”strongly agree”. The analysis space aspect includes all questions that refer to the overall

functionality of the platform, as well as the functionality of the Linked2Safety system in relation

to saving time and money when compared with traditional systems.

Table 2: Descriptive Statistics of Participants’ Perceptions in all Five Aspects of Linked2Safety

N Mean Type
Analysis space 75 3.28 0.5

Linked data space 74 3.22 0.49

Usability 75 3.1 0.63

Legal and ethical 72 3.33 0.55

Value of the system 75 3.21 0.43

Valid N (listwise) 71

Considering the results in more detail, per group of participants, the descriptive statistics for

the responses in the three groups showed that Medical Science Analysts (N = 35) had the lowest

scores in the evaluation of the Analysis Space (Mean = 3.22; SD = 0.45). Data Providers (N =

29) had the next highest evaluation score (Mean = 3.31; SD = 0.49) while Methodology Engineers

(N = 11) had the highest evaluation score (Mean = 3.49; SD = 0.45). An Analysis of Variance

(ANOVA) test showed no significant differences between the three groups (F = 1.423, p = 0.248)

and thus no post hoc tests were run. There were also no significant differences among the groups

in relation to gender, age, educational and employment.

A one sample t-test was then run to evaluate the inclination of answers (between satisfaction

and dissatisfaction), with the value of 2.5 taken as the ‘neutral’ answer to be tested against for

each group separately and all the groups together. The aim of this test is to examine whether the

participants responses were in general higher than or lower than 2.5 (with 2.5 being the neutral

answer between the values of 1 that showed disagreement/dissatisfaction with the particular aspect

of the Linked2Safety system that was examined and 4 that showed agreement/satisfaction with

the particular aspect of the Linked2Safety system that was examined), in other words it identifies
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whether the participants’ responses were positive or negative at a statistically significant level.

The results show a significant positive inclination (p ≤ 0.001) in all groups separately as well as

together.

At a more detailed level of analysis, we examined the descriptive statistics of individual ques-

tions that were part of the analysis space aspect. The vast majority of participants (over 90%) were

positive about using the Linked2Safety platform to identify and combine data with other institu-

tions and to locate datasets and subjects to test their hypotheses. Similarly, positive perceptions

have been expressed about saving both money and time when deploying a new methodology (Net

Per cent Agreement NPA = 90.9%, n = 75) or when locating data and selecting subjects (NPA

= 94.3%, n = 75). Seventy per cent (70%) of evaluators agreed that the Linked2Safety platform

could increase the statistical power of their experiments. While the participants were generally

positive about using data mining to generate further hypotheses (NPA = 91.9%, n = 75), the sce-

narios they have executed, which used fake data, did not allow them to generate specific results

that were worth investigating further, given the dataset used for external evaluation. They were

also largely positive about using the Medical Dictionary for Regulatory Activities (MedDRA) for

mapping of data (NPA = 91.9%, n = 75).

Furthermore, it was found that for the statement: ‘I was able to investigate my hypothesis

by testing for associations’ only 5.7% disagreed and 94.3% agreed or strongly agreed. For the

statement ‘The use of Linked2Safety allowed me to successfully test the hypothesis of the study’

13.1% disagreed or strongly disagreed, and 84.7% agreed or strongly agreed.

2.7.1 Linked data space

Overall, the external evaluators’ perceptions of the linked data space were positive (Mean =

3.22, SD = 0.49) as all three groups had a Mean score between ”agree” and ”strongly agree”.
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Considering the results in more detail, per group of participants, the descriptive statistics for

the responses in the three groups showed that Medical Science Analysts (N = 35) gave a medium

evaluation score about Linked Data Space (Mean = 3.23) but with the highest variability in their

answers (SD = 0.52). Data Providers (N = 29) gave the lowest evaluation score (Mean = 3.12; SD

= 0.47) and Methodology Engineers (N = 10) showed the highest perception score (Mean = 3.33;

SD = 0.44), which may be expected given their understanding and utilization of similar services

for linking data. All three groups had a Mean score between ”agree” and ”strongly agree”. An

ANOVA test performed to investigate differences between the three groups showed no significant

differences (F = 0.425, p = 0.656) and thus no post hoc tests were run.

A one sample t-test was run to see the inclination of answers (satisfaction and dissatisfaction),

with the value of 2.5 taken as the ‘neutral’ answer: the results show a significant positive inclina-

tion (p ≤ 0.001) in all groups separately as well as together. There were no significant differences

among the groups in relation to gender, age, educational and employment.

At a more detailed level of analysis, we analysed the responses to individual questions that

were part of the Linked Data Space aspect. The vast majority of answers (over 90%) reflect the

perception that the linked data approach developed as part of Linked2Safety could provide a stan-

dardized and efficient way to enable merging of data from multiple sources for analysis. In addi-

tion, it could provide a meaningful and standardized approach to merging of clinical terminologies

across multiple institutions (NPA = 66.7%, n = 75).

2.7.2 Usability

Overall, the external evaluators’ perceptions of the usability of the Linked2Safety system were

positive (Mean = 3.10, SD = 0.63) as all three groups had a Mean score between ”agree” and

”strongly agree”. At a more detailed level of analysis, we analysed the responses to individual
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questions that were part of the system usability aspect. Overall, over 60% of evaluators thought

that the platform was easy to use, and that the interface is not complex (NPA = 90.6%, n = 75).

Around 80% of participants felt that the analytic space, the mapping tool, and the integration of

MedDRA were easy to use, and similarly that the data mining tools were intuitive to use. The

majority of evaluators expressed their motivation to use the Linked2Safety platform in the future

(NPA = 78.3%, n = 75).

2.7.3 Legal and ethical issues

Overall, the external evaluators’ perceptions of legal and ethical issues in relation to the

Linked2Safety platform were positive (Mean = 3.32, SD = 0.55) as all three groups had a Mean

score between ”agree” and ”strongly agree”. The descriptive statistics for the responses in the

three groups showed that Medical Science Analysts (N = 33) gave the lowest evaluationscore of

legal and ethical issues (Mean = 3.24; SD = 0.59). Importantly, Data Providers (N = 29) gave

the highest evaluation score (Mean = 3.43; SD = 0.53), while Methodology Engineers (N = 10)

had a medium evaluation score (Mean = 3.30; SD = 0.48). Overall, all three groups had a Mean

score between ”agree” and ”strongly agree”. An ANOVA test performed to investigate differences

between the three groups showed no significant differences (F = 0.914, p = 0.406) and thus no

post hoc tests were run.

A one sample t-test was run to see the inclination of answers (satisfaction and dissatisfaction),

with the value of 2.5 taken as the ‘neutral’ answer: the results show a significant positive inclina-

tion (p ≤ 0.001) in all groups separately as well as together. There were no significant differences

among the groups in relation to gender, age, educational and employment.

At a more detailed level of analysis, we analysed the responses to individual questions that

were part of the legal and ethical aspect. Over 90% of evaluators felt that the platform guarantees
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anonymity of data (through data cubes) (NPA = 93.2%, n = 75), and almost 70% thought that re-

identification of individuals was improbable using reasonable financial and technical efforts (NPA

= 69%, n = 75).

2.7.4 Value of the system (for patients, future research)

Participants of the external evaluation were aware of the cost deployment results of the internal

evaluation of the platform through a presentation of the system that preceded the administration

of external evaluation instruments. Overall, the external evaluators’ perceptions of the value of

the Linked2Safety platform for patients and future research were positive (Mean = 3.21, SD =

0.43) as all three groups had a Mean score between ”agree” and ”strongly agree”. The descriptive

statistics for the responses in the three groups showed that Medical Science Analysts (N = 35) had

the lowest evaluation score on the value of the system (Mean = 3.12; SD = 0.43). Encouragingly,

Data Providers (N = 29) had the next highest evaluation score on the value of the system (Mean

= 3.27; SD = 0.40) and Methodology Engineers (N = 11) had the highest evaluation score on the

value of the system (Mean = 3.36; SD = 0.40). Overall, all three groups had a Mean score between

”agree” and ”strongly agree”.

Overall, over 80% of participants felt that the system enabled analyses that maximize the posi-

tive effect to the patient (NPA = 80.6%, n = 75). More than 80% of participants valued the version

with MedDRA incorporated into the system, while two-thirds thought that the infrastructure would

help them examine new analytical techniques, in particular if a large number of organisations are

involved. Overall, the vast majority of evaluators (over 85%) thought that the Linked2Safety plat-

form would have an impact on future research, is easy to use (NPA = 75.8%, n = 75) and that they

would recommend it to other users and data providers (NPA = 83.8%, n = 75), in particular if it is

made publically accessible (NPA = 83.8%, n = 75).
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2.7.5 Participants’ motivation to become a data provider

Overall, their composite score in these four questions indicates that they had a positive per-

ception towards the idea of becoming a data provider (Mean = 3.38, SD = 0.46).). It is important

to note that these results were positive even though participants were aware that there is some

cost associated with the decision to become a data provider, which involves the need to employ

a data manager, IT manager, legal advisor and project manager for the preparatory activities and

a research scientist for the running activities. The group of Data Providers was also asked four

specific questions to examine their motivation to become data providers for the Linked2Safety

system.

Over 85% of data providers felt that the platform would reduce the time needed for data

sharing compared to other approaches and that this should significantly increase the number of

samples available (N = 85.2%, n = 75). Around two-thirds of evaluators thought that the process

of becoming a data provider is simple (NPA = 72.4%, n = 75) and cost-effective (NPA = 62.9%, n

= 75).

2.8 Discussion

From the deployment of the system that included three independent institutions from different

European countries we were able to determine the costs for each aspect of the system deployment,

as well as evaluate the new scientific potential of the increase in statistical power. It is clear that

although only one data provider had whole genome data, while another had candidate gene stud-

ies, the overlap in genetic bio-markers as well as phenotypes was significant and allowed for the

joint analyses of the datasets with a significant increase in statistical power. This indicated that

a wider deployment of Linked2Safety or similar future system will results in significant gains in
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statistical power, enhancing the discoverability of new knowledge from existing data. Further-

more studies tend to collect a wide array of data beyond their primary and secondary endpoints

that may be used either to adjust for known effects, or to study potentially unexpected/unknown

effects. By merging data across many studies it’s possible to gain sufficient statistical power to

discover knowledge related to otherwise rare observations including combinations of biomarkers.

Linked2Safety, clearly demonstrates a potential for such a system to enable re-use and a signif-

icant increase in data collected as part of isolated studies.A set of external evaluation scenarios

were developed for users working in the medical / pharmaceutical industry who are external to

the project, in order to reduce possible bias. These were similar to the internal scenarios but,

for security reasons, these external users did not have access to the full platform and could only

analyze synthetic data. They were therefore given more general, less complicated scenarios to

evaluate using demonstrations and screenshots which tested the acceptance of, confidence in and

applicability of the Linked2Safety concept.

In all aspects the participants’ responses were positive at a statistically significant level, as

shown in the one-sample t-tests that were run. The results show a significant positive inclination

(p ≤ 0.001) in all groups separately as well as together, a finding that indicates that the accep-

tance level is high, their confidence in their ability to deploy the system in the future is high and,

lastly their perceptions for the applicability of the concept are positive. In all cases there was no

differentiation in participants’ responses in relation to the group of users to which they belonged

(analysts, methodology engineers or data providers). Further, in all cases, there were no significant

differences among the groups in relation to gender, age, educational and employment.

If we look at the results per aspect, with regard to the analysis space, the vast majority of partic-

ipants (over 90%) were positive about using the Linked2Safety platform to identify and combine

data with other institutions and to locate datasets and subjects to test their hypotheses. Similarly,
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positive perceptions have been expressed about saving both money and time when deploying a

new methodology or when locating data and selecting subjects. 70% of evaluators agreed that the

Linked2Safety platform could increase the statistical power of their experiments.

With regard to the linked data space, the vast majority of answers (over 90%) reflect the per-

ception that the linked data approach developed as part of Linked2Safety could provide a stan-

dardized and efficient way to enable merging of data from multiple sources for analysis. With

regard to usability, over 60% of evaluators thought that the platform was easy to use, over 90% of

users thought that the interface is not complex and around 80% of participants felt that the analytic

space, the mapping tool and the integration of MedDRA were also easy to use. With regard to the

legal and ethical issues, over 90% of evaluators felt that the platform guarantees anonymity of data

(through data cubes).

Lastly, with regard to the value of the system, over 80% of participants felt that the system

enabled analyses that increase the positive effect to the patient; while two-thirds thought that

the infrastructure would help them to examine new analytical techniques, in particular if a large

number of organizations is involved. The vast majority of evaluators (over 85%) thought that the

Linked2Safety platform would impact future research and that they would recommend it to other

users and data providers, as the system is currently publically available. It is important to note

that participants’ perceptions were positive while at the same time they were aware of the cost for

deployment results of the platform.

2.9 Conclusion

This chapter presented an innovative and secure semantic interoperability framework that is

valuable for pharmaceutical companies, healthcare professionals and patients. Linked2Safety ad-

dressed the problem of diversity and complexity of today’s legal and ethical regulations imposed
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at both the national and European legislation level, which make it difficult, risky and expensive

to transfer data by sharing EHRs. The proposed solution provided a semantically interconnected

approach to sharing aggregate data in the form of data cubes, which eliminated the risks associ-

ated with sharing pseudoanonymized (and therefore still personal in some types of data such as

genetics) data while enabling the multi-source, multi-type analysis of health data through a single

web based secure access platform.

The external evaluation that was conducted put the Linked2Safety theory into practice, allow-

ing both clinical partners and potential external users coming from academia, and the medical and

pharmaceutical industry to interact with the system. The research focus of the study was on the

documentation of the perceptions of Medical science analysts, Analytic methodology engineers

and Data providers on the evaluation of the system with respect to five specific dimensions (anal-

ysis space, linked data space, usability of the system, legal and ethical issues, and value of the

system).

For all five dimensions of the Linked2Safety system that were examined, the participants’

perceptions were overwhelmingly positive, providing evidence of the acceptance of, confidence

in and applicability of the Linked2Safety concept. Patient rights are inherently addressed through

the design as it minimizes the risk of de-anonymization while still allowing for the mechanisms

of the data provider to support removal of subjects from repositories to be propagated to the

analyses performed by Linked2Safety. Patients’ choices when it comes to personal data protection

and supporting scientific advancement frequently involve a delicate balance that is very hard for

laymen potential participants to reach a truly informed decision. Through Linked2Safety the risk

of privacy breach can be reduced, making it more likely for participants concerned with privacy

protection to participate in studies.
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Policy makers also have to balance the strictness of legal regulation on the use of personal

data so as to both protect the subjects/citizens as well as still enable beneficial research and tech-

nological advancement. A wider deployment of such aggregate data based solutions for the joined

analyses can enable policy holders to adhere to the strict protection requirements expected by cit-

izens without having a significant impediment to research. However it should also be noted that

the proposed approach has focused on specific types of data (categorical, or variables undergoing

quantization), to enable wider adoption there is a need to expand future research into these ap-

proaches to solve the remaining challenges and enable wider standardization and wider adoption.

Linked2Safety or systems developed in the future based on similar concepts of aggregating

data from multiple providers across Europe and beyond in a way that only research focus epi-

demiological analyses is enabled that adheres to national and international legal and ethical re-

quirements could revolutionize the capacity for knowledge discovery without the need for larger,

or significantly costlier studies. The tools exist already to enable standardization of data collected,

as well as secure joint analyses; challenges remain however on the political and legal front with

ambiguous and clustered legal frameworks. Consent seems to be of vital importance, as there is a

lack of standardization on how the use of subject’s data is limited to specific application (if at all)

making efforts to enable wide ranging aggregate analyses challenging.
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Chapter 3

Privacy Preserving Data Publishing of Categorical Data through

k-anonymity and Feature Selection [3]

3.1 Introduction

In recent years, with the infiltration of information technology in healthcare, many healthcare

related entities such as hospitals and pharmaceutical companies, have vast amounts of patients’

data. Although it is clear that sharing such data can increase the likelihood of identifying novel

findings or even replicating existing research results, this is not happening due to legal and ethical

issues. Attempts have been made by research programs like Linked2Safety [1], for merging data

across different healthcare entities and preserve individuals privacy, but one needs to also decide

which data to share, so that the likelihood that the shared data will lead to new findings is increased.

The problem is more evident in the case of genetic data, since they can reveal the identity of an

individual and possible risk factors that s/he may have. Hence they are highly sensitive data and

caution is needed even if a part of them is shared.

36
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The aim of Privacy Preserving Data Publishing (PPDP), is to provide the means for publishing

data in a way so that the privacy of individuals is preserved with a minimum loss of informa-

tion [26]. One approach that is employed for data anonymization is k-anonymity [27, 28]. In

k-anonymity, a dataset is considered anonymized if the combined values of the quasi-identifiers

appear at least k times, which means that there is at most 1/k probability of identifying an individ-

ual using the available data. Features are considered as quasi-identifiers, if their combined values

can be linked to publicly available information and can lead to the re-identification of individuals

[28]. Knowing beforehand all of the features that can be used as quasi-identifiers is difficult [28]

(e.g. genetic data), hence one could consider all features as such and therefore publish datasets

whose records exist at least k times.

The most common methods for achieving the k-anonymity requirement are generalization and

suppression [29]. In generalization, the values of features are transformed into more general ones

so that details of the individuals are disclosed. For example the address of an individual could be

replaced with the zip code, the city or even the country the individual is living, depending on how

abstract the information needs to be so that k-anonymity is obtained. This requires the creation of

value generalization hierarchies (taxonomy trees) for the quasi-identifiers, so that an anonymiza-

tion algorithm can select the minimum level of generalization needed. Research focused more on

the generalization approach, resulting in many such algorithms [30, 31, 32, 33], but their need for

taxonomy trees makes it hard for use in high-dimensional data. Algorithms that can cope with the

lack of user defined taxonomy trees such as Top-Down Refinement (TDR) [34] exist, but in gen-

eral, high-dimensionality can severely affect the information contained in the anonymized datasets

[35].

In suppression, part of the dataset is removed so that the k-anonymity requirement is not vio-

lated. This can be achieved by various suppression methods, like record suppression and attribute
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suppression. For example in record suppression, all records (instances) that appear less than k

times in the dataset are removed, whereas in attribute suppression, features that have values that do

not conform to k-anonymity are removed. This approach can lead to substantial information loss

since data are removed instead of being replaced by generalized values, hence caution is needed

when used. Methods that employ suppression for obtaining k-anonymity before data publishing

have been proposed [28, 36, 37] and there has been some focus on suppression methods that also

combine feature selection [38, 39]. With the use of feature selection, the dimensionality of the

data is reduced and features that are not related to the problem of interest can be removed. With

fewer features, the probability of having records that are unique decreases, thus less suppression

is required for obtaining k-anonymity.

In this chapter, k-anonymity through Pattern Based Multidimensional Suppression (kPB-MS)

is proposed for PPDP. The algorithm uses feature selection for reducing the data dimensionality

and then combines attribute and record suppression for obtaining k-anonymity. The proposed

algorithm can be used on categorical data for classification tasks. The structure of the rest of the

chapter is as follows: Section3.2 introduces a new measure which is used in the proposed feature

selection algorithm presented in Section 3.3. In Section 3.4 the anonymization methodology is

shown, whereas Section 3.5 presents the datasets and the evaluation methodology used. The last

three sections contain the results of the algorithm along with a discussion and the concluding

remarks.

3.2 Pattern Based Classification Accuracy (PBCA)

In this section a new measure is proposed, which will be used as the performance metric of the

feature selection step of the anonymization methodology. PBCA uses the discrimination power

of the patterns in a dataset to calculate the accuracy that can be obtained by classifiers. It is
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applicable on categorical data, and considers each input instance as a pattern. As will be shown it

is the upper limit of the classification accuracy that can be obtained by classifiers when the entire

dataset is used both for training and testing. In the following table, the mathematical notations that

will be used in the rest of the chapter are given.

Table 3: Mathematical notations

Notation Meaning

x Single value variable

x Vector

|x| Number of elements in vector x

X nxd Matrix

Xi,j

The value of the j-th feature

of the i-th instance

The PBCA of the features in X and the response variable y, can be calculated using the

following equation

PBCA(X, y) =
∑p

i=1max(Ti,c : c ∈ [1, |c|])
n

(1)

where p is the number of rows of the contingency table (number of unique patterns), T is the

contingency table, Ti,c is the number of instances of row/pattern i in the contingency table T

that belong to class c, |c| is the number of classes of the response variable and n the number of

instances in the dataset.

PBCA is model free and can capture both linear and non-linear dependencies among the fea-

tures and the response variable. The complexity of the approach for calculating the PBCA isO(n),

since it requires one pass from the data to create the contingency table and a single pass from the

contingency table to calculate the PBCA.Aris
tos
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A disadvantage of the measure is that it is biased towards variables with many categorical

values. For example, if the unique ID of each instance is included in the dataset, then the PBCA

would be 100% regardless of the values of the rest of the variables.

Table 4 shows a contingency table of a hypothetical dataset. The dataset has three features (f1,

f2, f3) with three categorical values each, whereas the response variable (Class) is binary. The

first row indicates that all 10 instances with the values (pattern) {1,2,1} for features f1, f2 and f3

respectively belong to class ”0”. Similarly the rest of the rows indicate how many instances for

each pattern belong to each class in the dataset. Such a contingency table can be created with a

single pass from the dataset using a hash table, in which the key used is the pattern of the instances.

Table 4: Example of a contingency table

f1 f2 f3 Class=0 Class=1
1 2 1 10 0
1 2 2 0 10
2 3 1 10 20
2 3 3 10 10
3 1 1 20 0
3 1 3 0 10

When applying (1) on the dataset in Table 4, a PBCA of 80% is obtained, which means that

(10 + 10 + 20 + 10 + 20 + 10) = 80 instances out of the total 100 would be correctly classified.

An ideal classifier would classify an instance to class ”0” if most of the instances of a pattern

belonged to ”0”, and ”1” otherwise. Using the dataset shown in Table 4, it would classify instances

that match the pattern of the first row as class ”0”, instances that match the pattern of the second

row as class ”1” and so on. In the case of a tie among the number of instances that belong to each

class of a pattern, any of the classes can be selected. Hence by selecting the most probable class

for each pattern, as observed in the dataset, the PBCA for the dataset can be calculated. As can be

seen, since the most probable class for each pattern is selected, the PBCA indicates the upper limit

Aris
tos

 Aris
tod

im
ou



41

of the classification accuracy that can be obtained when the entire dataset is used for both training

and testing by a classifier.

3.3 Pattern Based Feature Subset Selection (PB-FSS)

As mentioned, with feature selection one can reduce the dimensionality of a dataset and re-

move any redundant and non-informative features. For the needs of the proposed anonymization

process, a new feature selection algorithm is presented and shown in Algorithm 1. PB-FSS has

three main steps. The first step is to perform Forward Sequential Feature Selection (FSFS) using

PBCA as its performance metric. The second step is to remove any features that are redundant in

the features subset and the final step is to order the selected features based on their importance.

Algorithm 1 PB-FSS
Require: X, y

1: s← FSFS(X, y)
2: s← removeRedundantFeatures(s, X, y)
3: s← sortFeatures(s, X, y)
4: return s

FSFS begins with an empty features subsets and sequentially adds the features that increase

the performance metric. At each iteration of the FSFS, the feature that maximizes PBCA when

added to the selected features subset is found. If the selected feature increases the PBCA when

included in the features subset s, the process is repeated. If the PBCA is not increased then the

process finishes and the feature subset without this feature is returned. Since the entire process

depends on the PBCA, to overcome its bias towards features with many categorical values, cross

validation is used in the PBCA calculation.

When adding features in the subset using FSFS, it is possible that some of the already selected

ones become redundant. For example a new feature that is selected, interacts with one or more

features in a way that the effect of a previously selected feature is masked and hence is no longer
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needed. In such cases, features that become redundant need to be removed. The second step of

PB-FSS is responsible for removing such features and is performed in the function removeRe-

dundantFeatures. At each iteration of the function, a feature is removed from the subset and the

PBCA is recalculated. If the PBCA remains the same after the removal of a feature, that feature

is considered as redundant and it is removed from the selected features subset, otherwise it is kept

in the final subset.

The third step of the PB-FSS, sorts the selected features in descending order based on their

contribution to the PBCA. To calculate the PBCA contribution of a feature the following procedure

is followed. Each feature is removed from the subset to calculate the PBCA that can be obtained

without it and then it is added back to the subset. The feature that produced the smallest PBCA

difference when removed, is considered as the one with the smallest contribution and is added to

the beginning of a new subset list. This is repeated until no features remain in the initial subset

list. The reason the sorting is performed in a backward feature selection manner, is that this allows

to take into consideration feature interactions and produce a better ranking.

Since PB-FSS is based on the PBCA, which is model free, it can capture any type of non-

linear interactions among the features. Additionally, the algorithm is able to remove features

whose effect can be expressed by the interactions of the other selected features, which can further

decrease the size of the returned subset. Finally, it provides a ranking of the features that accounts

any feature interactions that exist. A disadvantage of the method, due to its forward selection

strategy, is that it could end up in not selecting interacting features with low main effects, such as

in the XOR problem.Aris
tos
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3.4 k-anonymity through Pattern Based Multidimensional Suppression (kPB-MS

Data anonymization using the suppression method of k-anonymity, can result in the removal

of a substantial amount of the initial instances, especially when the dataset is high dimensional.

Additionally, by removing instances from the dataset there is the risk of removing important infor-

mation, which can lead to poorer classification results or even to wrong models. To address these

issues, a new anomyzation process called kPB-MS is proposed.

Algorithm 2 kPB-MS
Require: X, y, k, t

1: s← PB−FSS(X, y)
2: while 1 do
3: Z ← anonymization(X, y, s, k)
4: loss← instanceLoss(X,Z)
5: if loss > t then
6: s← removeLastFeature(s)
7: else
8: break
9: end if

10: end while
11: return Z

The steps of kPB-MS are shown in Algorithm 2. Initially PB-FSS is performed for reducing

the dimensionality of the dataset and for ranking the selected features based on their importance.

In the anonymization step, a contingency table with each pattern in the reduced dataset is created

like in Table 4. For each pattern, a new 2x|c| contingency table is created, where |c| is the number

of classes. An example of such a contingency table is shown in Table 5.

Table 5: Contingency table for testing the effect of k-anonymity

Class=0 Class=1
initial 10 20

k-anonymized (k = 15) 0 20

The first row has the initial number of instances of each class for that pattern. The second

row contains the remaining number of instances once k-anonymity is performed. This means that
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in the second row, the number of instances of the classes that violate k-anonymity are replaced

with the value of zero. Fisher’s exact test is then performed on this contingency table, for testing

the significance of the change in the number of instances in each class. In case the change is

statistically significant, all of the instances of that pattern are removed, instead of only removing

the ones that do not conform to k-anonymity.

Finally, the percentage of the lost instances (loss) from the anonymization process is calcu-

lated. In case the loss is above the user’s defined threshold (t), the least important feature (in

this case the last feature in the subset) is removed and the process is repeated, otherwise the

anonymized dataset Z is returned.

3.5 Evaluation Methodology

In this section a description of the datasets used is given along with the preprocessing steps

applied on them. Then the process followed for the analysis of the datasets is described.

3.5.1 Datasets

A summary of the datasets used in the evaluation is given in Table 6. All of the datasets are

from the UCI Machine Learning Repository [40], except HTS which was created from PubChem1

. Since the proposed algorithms require categorical data, any continuous features in the datasets

were discretized using the Minimum Description Length Principle (MDLP) [41] algorithm.

Table 6: Summary of the datasets

Dataset #Features #Instances #Classes Class Instances
RETINOPATHY 19 1,151 2 540 / 611

SPECT 22 267 2 55 / 212
SPLICE 60 3,190 3 767 / 768 / 1,655

HTS 1,024 3,115 2 2,000 / 1,115
DOROTHEA 100,000 1,150 2 112 / 1,038

1http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=633
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The datasets are from different areas of life sciences. RETINOPATHY has features extracted

from the Messidor image set [42] to predict whether an image contains signs of diabetic retinopa-

thy or not, whereas SPECT contains data on cardiac Single Proton Emission Computed Tomogra-

phy (SPECT) images and is on the classification of normal and abnormal patients. SPLICE con-

tains gene sequences and is on the identification of splice junctions. SPLICE is the only dataset

with three classes. HTS is on drug discovery and was created using the compounds and outcomes

from PubChem. The fingerprints were calculated using the LiSIs platform [43] using a radius

equal to two and a fingerprint size of 1024. The initial distribution of the classes for this dataset

was highly imbalanced (99% / 1%), thus resampling was used for selecting a subset of the in-

stances of the frequent class (2,000 instances). DOROTHEA is also on drug discovery and it is

the largest dataset used in the experiments. This high-dimensional dataset is imbalanced, with its

less frequent class representing 11% of the instances.

3.5.2 Analytical Methodology

For the evaluation of kPB-MS, the following methodology was followed. Initially each dataset

was anonymized using kPB-MS. Different k values for k-anonymity were used and the accepted

loss of instances (t) was set to 10%. Specifically k was set to the values 1, 3, 5, 10 and 20. For

the case that k was set to 1, the non-anonymized dataset that results from PB-FSS, is used, so

that the effects of k can also be observed. All of the features in the datasets were considered as

quasi-identifiers.

Once the anonymized datasets were produced, classification with a 10-fold stratified cross

validation was performed on the full and the anonymized datasets. The same folds were used

in the training and testing of both the full and the anonymized datasets. Specifically, the test

folds were always the same among the full and the anonymised datasets, but the training folds
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could either be the same or use a subset of the instances in the anonymized datasets. This is

due to the fact that instances could be removed during the anonymization process. The statistical

significance among the results was calculated with a paired t-test and it compared the accuracies

on the 10 test folds of the anonymized and the full datasets. The difference was considered as

statistically significant, when the obtained p-value was less than 0.05.

For the classification task, four non-linear classifiers were selected. The Support Vector Ma-

chine (SVM) [44] with its default parameters, the 1-Nearest Neighbour (1-NN) algorithm [45],

the C4.5 decision tree [24] with its default parameters, and the Random Forest (RF) algorithm

[23] using 50 trees. The RF and SVM were selected because they were found having the best

performance in an extensive test of multiple algorithms for classification [46] and are also widely

used in the medical domain. Additionally they represent different learning families, the ensem-

ble and statistical learning family respectively. To see how kPB-MS performs in a non-ensemble

method, the C4.5 algorithm was chosen since it can also be directly compared with the RF that

uses multiple decision trees. Finally the 1-NN algorithm was selected because the PBCA measure

has similarities to the algorithm and it would be of interest to see if 1-NN performs well with

kPB-MS. Their accuracy were calculated in R using the RWeka package [47] for k-NN and C4.5

and the e1071 package for the SVM and the randomForest package [48] for RF.

3.6 Results

For each classifier, its results on the full and anonymized datasets are illustrated in Figure 4.

The x axis of each plot represents the value used in k-anonymity, whereas the y axis represents the

classification accuracy obtained. The colors of the boxplots indicate if the classification accuracy

using the anonymized dataset had a statistically significant change compared to the one obtained

when the full dataset is used. White indicates no significant accuracy differences, green indicates
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that better accuracies were obtained with the anonymized dataset and red indicates that better

accuracies were obtained with the full dataset.
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Figure 4: Results on the full datasets and the kPB-MS anonymized datasets with different values for kAris
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Table 7: The effect of k on the dimensionality and the instance loss

Features used (Instance loss)
Dataset k=1 k=3 k=5 k=10 k=20

RETINOPATHY 4 (0%) 4 (3%) 4 (5%) 2 (2%) 2 (5%)

SPECT 1 (0%) 1 (0%) 1 (0%) 1 (0%) 0 (100%)

SPLICE 4 (0%) 4 (2%) 4 (8%) 3 (1%) 2 (6%)

HTS 25 (0%) 25 (7%) 21 (10%) 13 (9%) 8 (9%)

DOROTHEA 19 (0%) 19 (4%) 19 (4%) 19 (8%) 14 (10%)

In Table 7, the features retained in the anonymized dataset and the instance loss for different

values of k is shown. For the SPECT dataset, with k = 20, the removed instances were more than

the accepted threshold so no data could be published. For the rest of the datasets, anonymized data

could be published for all of the tested values of k.

As can be seen in Figure 4, the PB-FSS datasets with k = 1 (in this case we only notice

the feature selection effect of PB-FSS) did not affect negatively the classifiers accuracies in 80%

of the cases. Hence the proposed feature selection algorithm is capable of selecting informative

features. In the cases that it did affect negatively the accuracies, it is probably caused due to the

removal of features by PB-FSS that interacted with others and had low main effects. This is due

to the forward selection strategy the algorithm uses.

With the increase of the value of k, the obtained accuracies are affected as expected [38, 49].

This is due to the fact that more instances are being suppressed, which can cause the use of fewer

features when the instances loss is above the pre-specified threshold. The effect is more visible

for values larger than 5 in the datasets tested (see Table 7). This also shows that before publishing

data an analysis on the effect of different values of k should be performed before selecting the

most appropriate value, so that a balance between privacy and information loss is acquired.

In general kPB-MS with a k > 1 did not have a statistically significant negative effect on

the obtained accuracies in 74% of the test cases. The best results were obtained in SPECT and
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DOROTHEA. In SPECT only one feature was selected and it had enough information to produce

similar accuracies with the full dataset. In DOROTHEA, the anonymized datasets had better or

similar accuracies with the full dataset since the high dimensionality was affecting the classifiers

ability to model the data.

3.7 Discussion

The proposed kPB-MS, combines feature selection with both attribute and record suppression

and additionally provides a method for selecting the accepted percentage of records to be lost. The

algorithm attempts to reduce the information lost and as seen from the results it accomplishes this

in most of the tested datasets.

The first step of kPB-MS uses the PB-FSS, hence informative features are selected and ranked

according to their importance. This can help researchers focus on these features and help them

interpret their results. Additionally by sharing the anonymized datasets produced by kPB-MS they

increase the probability of replicating the results obtained since they are focusing on informative

features.

Since it is using suppression, no user defined taxonomy trees need to be defined as is the

case with generalization techniques [30, 31, 32], which makes the algorithm easier to use by non-

domain experts. Additionally, one does not need to know beforehand, which features are the

possible quasi-identifiers, since all of the features can be treated as such. This can further reduce

the risk of publishing data that might accidentally contain quasi-identifiers that do not adhere to

the k-anonymity requirement.

kPB-MS uses multidimensional suppression, which means that it is taking into consideration

all of the value combinations of the features for preserving k-anonymity. A similar approach is

also followed by kACTUS [38]. kACTUS uses C4.5 for building a classification tree and uses
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the selected features of the tree to rank the features and decide which to suppress when they do

not comply to k-anonymity. Due to the use of C4.5, kACTUS is bound to the performance of the

classifier and in high dimensional data like DOROTHEA, kPB-MS is expected to perform better.

In [39] DMPD is proposed, which uses a genetic algorithm for searching for optimal feature

set partitioning. One difference with kPB-MS is that it produces multiple feature subsets, which

can all be used by classifiers and then combine their classification predictions. This approach is

expected to produce less suppressions than kPB-MS, since it can create many subsets with a small

number of features and hence have a smaller probability to not adhere to k-anonymity. On the

other hand it might be computationally demanding when used on data which are high dimensional

like genetic data, due to the increased search space and the need for parameter optimization. kPB-

MS would require running PB-FSS on the dataset once to get a ranked list of informative features

and then the optimization of k and the instance loss threshold t can be performed on the reduced

dataset. Hence it is less computationally demanding since the optimization of the parameters does

not require rerunning the feature selection process on the entire dataset each time. Additionally

PB-FSS is also computationally efficient, since it is based on forward sequential selection and its

performance metric (PBCA) can be calculated in O(n).

To the authors knowledge, there are no similar studies on the datasets used in this chapter.

Both DMPD [39] and kACTUS [38] were shown to have significantly better results than traditional

methods, but were not compared with each other. Since the performance of kACTUS is bound to

C4.5, it is expected that if evaluated on the five databases investigated in this study, its performance

would be comparable to the C4.5 results documented in Figure 4 (for the full datasets). Based on

this, it can be inferred that kPB-MS is expected to give similar or better results than kACTUS for 4

out of the 5 databases investigated (as documented in Figure 4 for SPECT, RETINOPATHY, HTS

and DOROTHEA).
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The selection of the thresholds of k and the instance loss threshold t in kPB-MS affect the

remaining number of features and instances of the dataset after the anonymization. The biggest

effect is from the value of k, since the larger the value the more features get suppressed to have at

least k instances per pattern that exist in our dataset. But in the case that the dataset is large and one

does not mind losing a big percentage of the instances (e.g. if there were 100 thousand instances,

then by setting t to 50% would still leave us in the worst case with a good number of instances for

most problems). By setting t to a lower value it is possible to preserve more features. This would

be of interest in case we expect that the problem that we want to solve with the specific data is

dependent on a large number of features and thus by removing many features we would negatively

affect the accuracy of any trained model. Thus, k needs to be set based on the restrictions one has

regarding the privacy level that has to be achieved, whereas t can be selected based on the number

of instances available and whether one is interested in preserving a larger number of features or

not.

3.8 Conclusions

A new method for k-anonymizing datasets has been proposed. This includes the proposal of

a new measure and a new feature selection algorithm along with multidimensional suppression.

The proposed measure (PBCA), is model free and has a complexity of O(n), which reduces the

computational demands of the feature selection algorithm and makes the whole process applicable

for high-dimensional data. With PB-FSS, informative features are selected and ranked so that only

such features are shared. This can further increase the probability of sharing data that can lead to

replicating results.

The multidimensional suppression procedure of kPB-MS takes into consideration the instances

removed and the effect of record suppression on classifiers. The first is obtained by allowing
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the user to define the accepted loss of instances, whereas the second is obtained by testing the

significance of the suppression using Fisher’s exact test on each pattern. As shown in the results,

the algorithm did not negatively affect the classifiers in 80% of the test cases, indicating that

kPB-MS can be used in privacy preserving data publishing.

As seen, the value of k can affect the overall results, hence before publishing the data, a proper

value for k should be selected. The selection should be made in a way that it provides a balance

between the obtained privacy and the information lost. For this task, the evaluation methodology

used here can be used on different values of k for guiding such a decision.

Since PB-FSS is using a forward selection method, it can miss interacting features with low

main effects such as in the XOR problem. Thus, as part of future research, different search strate-

gies will be tested for overcoming this disadvantage. One such approach could be the use of nature

inspired search strategies. Furthermore, work will be done in the expansion of the algorithm for

being directly used on continuous features.
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Chapter 4

A Supervised Density Based Discretization Algorithm for Big Data

Classification Tasks in the Medical Domain

4.1 Introduction

Discretization is a preprocessing step in which continuous values of features are transformed

into categorical. Specifically, in discretization, a finite number of intervals is provided and values

that lie between two consecutive intervals are replaced by a value which characterizes that range.

This process can also be considered as a dimensionality reduction methodology, since the initial

spectrum of a feature’s values is reduced to a smaller finite set of values [50, 51]. This chapter

focuses on supervised discretization, and specifically on its application as a preprocessing step for

classification tasks.

The necessity of discretization is due to the fact that a number of existing classifiers and

statistical tests, rely on having only discrete data as input. For example C4.5 [24] has an embedded

method for discretizing data, whereas if someone wanted to test for association between weight

and diabetes using Pearson’s Chi Square Test, then the weight would have to be converted into

discrete values so as to be able to create the contingency table for the test. Additionally, with
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discrete data, the processing time of a classifier can be reduced [52] and the results can be easier

to interpret, whereas the use of a discretized version of the data can also improve the obtained

accuracy by a classifier [50, 53, 54]. With the big data era, discretization algorithms need to be

able to handle such data efficiently without compromising their performance. Hence it is important

to have discretization algorithms that are computationally efficient and can harness the power of

high performance computing, while minimizing the information lost.

4.1.1 Related Work

Discretization algorithms can be categorized based on some of their main characteristics [50].

A main characteristic is if it is using the class label (supervised) or not (unsupervised), when

deciding for the intervals. If a discretizer is independent of a learner then it is static, otherwise

it is dynamic. Algorithms that discretize each feature separately are called univariate and if they

consider all attributes multivariate. In case only a part of the information of a feature is used

when deciding for an interval, the algorithm is considered as local, otherwise as global. Another

characteristic is based on whether the intervals are selected simultaneously (direct) or one at a

time (incremental). The last two main characteristics of discretizers are the evaluation measure

used to select the most appropriate interval and the procedure used to create the intervals (splitting

or merging). In the splitting approach, a discretizer starts with an empty set of intervals and each

added interval divides the domain, whereas in the merging approach it begins with a set of intervals

which are being merged based on a criterion. In case the algorithm is incremental, and uses the

splitting approach then it is called Top-Down, whereas if it is using merging, then it is called a

Bottom-Up approach.Aris
tos
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4.1.1.1 Supervised Discretization

In supervised discretization, an algorithm tries to transform each feature from continuous to

categorical, by using the class label of each instance. By transforming continuous data to discrete,

there is the risk of information loss, especially if a very small number of intervals is created.

Hence, a discretization algorithm needs to find a balance between the number of intervals created

and the information lost.

In [41], Fayyad and Irani presented an information theory based discretizer, known as Mini-

mum Description Length Principle (MDLP). Its name is from the criterion used for deciding when

to stop creating more intervals and uses a Top-Down approach. The values of a feature are initially

sorted, and each midpoint between two consecutive values is considered as a new interval. Then

it recursively selects the interval that produces the minimum class information entropy, until the

stopping criterion is satisfied. A distributed version of MDLP has been proposed [55], allowing it

to be used on big data. Numerous information theory based algorithms have been proposed in the

literature [56, 57, 58] but MDLP is one of the most widely used discretizers.

ChiMerge [59], is a Bottom-Up discretizer that uses Pearson’s Chi Square test (χ2) to decide

if two intervals need to be merged or not. It initially sorts the values of a variable and adds each

value in a separate interval. Then it selects the two adjacent intervals with the lowest χ2 value and

merges them. This is repeated until no adjacent intervals have a χ2 value below the predefined

threshold. Again, many algorithms were proposed based on χ2 [60, 61, 62] and were found to

have good results in [50].

Another Top-Down method is Class-Attribute Interdependence Maximization (CAIM) [63].

This algorithm also sorts the values of a feature and then considers the midpoints between the val-

ues as possible intervals. It then repeatedly selects the midpoint that maximizes the class-attribute
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interdependence as a splitpoint. If the current best value is smaller than the global maximum, the

procedure stops. CAIM produces at least C intervals, where C is the number of classes. A version

of CAIM that can better handle imbalanced datasets was also proposed [64], whereas a version for

handling multi-label data is also available [65].

4.1.1.2 Density Based Discretization Algorithms

The density of a feature can be estimated using parametric or nonparametric methods. Para-

metric methods are more appropriate when the distribution of the data of a feature follows a known

distribution. For example if the normal distribution is assumed, then a parametric method can be

used to calculate the mean and variance of the distribution through maximum likelihood estimates

[66].

Nonparametric methods are used when the distribution of a feature is unknown, since they

can fit different density forms. One such method is kernel density estimation, in which a kernel

is used with a smoothing parameter for estimating the density of a feature. A simpler method for

visualizing such data, is the use of histograms, in which the values of a feature are represented by

bins and the density of the feature in each bin is shown by its height.

Two well known discretization algorithms that use binning, are the equal-width and equal-

frequency discretizers. These are unsupervised methods, since they do not take into consideration

the class label of the data. Equal-width takes as input the wanted number of bins (k), and creates k

equally sized bins. In equal-frequency, k bins with approximately the same number of values are

created. These two algorithms did not have a good performance in general in the tests performed

in [50]. A more sophisticated unsupervised density based discretization algorithm is TUBE [67],

which uses the log-likelihood and cross-validation to select the intervals and decide when to stop

splitting the data. It was shown that it can better estimate the density of the data compared to
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equal-width and equal-frequency in the majority of the tests, where variables had less than 20

unique values, but it is not as fast as equal-width and equal-frequency.

4.1.2 Contribution

The main contribution of this work, is that it turns the fast unsupervised density based dis-

cretization into supervised, while having a performance similar to the state of the art supervised

discretization algorithms. It initially uses the simple binning approach of the equal-width dis-

cretization, along with a statistical test to merge any consecutive bins that have a similar density

on each class. Then the resulting intervals of each class are merged to produce a supervised dis-

cretization that is computationally efficient and hence suitable for big data.

4.2 Methods

4.2.1 Supervised Density Based Discretization

The proposed Density BAsed Discretization (DBAD) algorithm is based on the hypothesis

that intervals with different densities can be used to characterize a class, and essentially be used to

help in separating instances of different classes. For example, Class 1 might have a higher density

in the range [0,1], whereas Class 2 in the range of [0.5,2]. Based on this, the following intervals of

interest can be created {[0, 0.5], (0.5, 1], (1, 2]} to discretize the data. It is also possible that low

density intervals of a class can help separate it with another class that has no instances in those

ranges, hence one should not only focus on identifying the high density intervals of each class, but

instead should identify the intervals in which densities change.

DBAD is a heuristic algorithm that tries to emulate the way a human would identify similar

density intervals with the help of a histogram. Figure 5 illustrates the process followed by DBAD

for a class on a feature. It begins with equal-width binning (histogram (a)) for estimating the
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Figure 5: Interval identification for a single class of a feature using DBAD (left) and merging
of the intervals of each class for identifying the final intervals of a feature (right). The top left
histogram (a) illustrates the initial equal width binning. The histogram in middle left (b) illustrates
the effect of the removal of the empty bins. The bottom left histogram (c) shows the final bins
after merging any consecutive bins with similar densities. The top right (d) histogram shows the
intervals selected for Class 1 whereas underneath it (e) the intervals of Class 2 and the bottom
right histogram (f) the final intervals after the ones of the two classes got merged.

density of a feature in different intervals (bins). Each of the created bins contains a number of

instances, which defines the density of the feature in those intervals. The more instances in a bin,

the higher its density. Once the bins are created, DBAD removes any empty bins by allocating

their range to their neighboring non-empty bins (histogram (b)). Then it identifies any consecutive

bins with similar densities, using a statistical test, and merges them (histogram (c)). This way,

DBAD ends up with bins that have different densities.

This procedure is performed on the instances of each class for a feature, so as to have a su-

pervised approach, which will further help with classification tasks. Once the final intervals for

each class are identified, they get merged to get the final discretization intervals. An example of
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this final step of DBAD can be seen in histograms on the right in Figure 5. As illustrated, Class 1

intervals are in the range [0,10] (histogram (d)), whereas for Class 2 in the range [-6,4] (histogram

(e)), so the final intervals for this feature are {[-6, 0], (0, 4], (4,10]} (histogram (f)).

Algorithm 3 DBAD
Require: feature values x
Require: unique class values y

1: featureBins← ∅
2: for each y ∈ y do
3: k ← dlog |xy|e+ 1
4: bins← createEWBins(xy, k)
5: bins← removeEmptyBins(bins)
6: bins← mergeSimilarDensityBins(bins)
7: featureBins← featureBins

⋃
bins

8: end for
9: featureBins← removeEmptyBins(featureBins)

10: return featureBins

The steps followed by DBAD on a feature, are shown in detail in Algorithm 3. DBAD gets

as input two vectors, which contain the values of the feature that will be discretized (x) and the

unique class values of the dataset (y). To better capture the intervals in which densities change, a

proper number of bins (k) needs to be selected. DBAD uses Sturge’s rule [68] (step 3 in Algorithm

3) for this and then creates k equal-width bins with the function createEWBins.

With equal-width binning, it is possible to end-up with bins that have no instances in them. To

eliminate such bins, removeEmptyBins is used (see Algorithm 4). Initially, it merges consecutive

empty bins, by replacing the right interval of the left empty bin, with the right interval of the right

empty bin (step 7), and then removing the latter from the bins (step 8). Once the consecutive empty

bins are merged, the new empty bin needs to be removed as well. To perform this removal, it is

needed to assign its intervals to its surrounding bins. Initially, a new split point (w) is calculated

(step 11) using (2)

w ← binsleftz +
binsnz−1

binsnz−1 + binsnz+1

∗ (binsrightz − binsleftz ) (2)
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Algorithm 4 removeEmptyBins

Require: bins
1: i = 1 #indexing starts at 0
2: while i < |bins| do
3: if binsni == 0 then
4: z = i
5: i = i+ 1
6: while binsni = 0 do
7: binsrightz = binsrighti

8: bins = bins− binsi
9: i = i+ 1

10: end while
11: calculate w using (2)
12: binsrightz−1 = w

13: binsleftz+1 = w
14: bins = bins− binsz
15: else
16: i = i+ 1
17: end if
18: end while
19: return bins

where binsnz−1 and binsnz+1 represent the number of instances of the bins on the left and right of

the empty bin, whereas binsleftz and binsrightz are the left and right intervals of the empty bin that

will be removed. Then the right interval of the bin on the left, and the left interval of the bin on

the right are replaced by w (steps 12-13) and the empty bin is removed (step 14). This approach,

ensures that the remaining bins cover the range of the removed bin based on their density, thus

bins with more instances (more dense) get a larger range of values. This effect can be seen in

Figure 5 and the plots (a) and (b). For example the first two non empty bins, which have a similar

density, shared the empty bin’s space between them, whereas the last bin got the largest share of

the empty bin that was on its left, because it was much more dense than the third non-empty bin.

The next step of DBAD is to merge any consecutive bins with similar densities (similar number

of instances) using mergeSimilarDensityBins. To decide if two consecutive bins have a similar

density, a metric is needed which will be less strict with bins representing a small number of
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Algorithm 5 mergeSimilarDensityBins

Require: bins
1: normalize the bins using (3)
2: i = 1 #indexing starts at 0
3: numBinsM = 1 #num of bins merged with current bin
4: while i < |bins| do
5: avgSizeOfMerged =

binsni−1

numBinsM
6: maxBinSize = max(avgSizeOfMerged, binsni )
7: minBinSize = min(avgSizeOfMerged, binsni )
8: maxMinSize = maxBinSize+minBinSize
9: perc = minBinSize

maxMinSize
10: CI = confInterval(perc,maxMinSize, 0.05)
11: if 50% ∈ CI then
12: binsrighti−1 = binsrighti

13: binsni−1 = binsni−1 + binsni
14: bins = bins− binsi
15: numBinsM = numBinsM + 1
16: else
17: binsni−1 = avgSizeOfMerged
18: numBinsM = 1
19: end if
20: i = i+ 1
21: end while
22: return bins
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instances, and stricter with bins of high density. This will enable the identification of intervals

in which the densities have a significant difference. This can be tested with a two-tailed test of

a population proportion, in which the population is the number of instances in the two bins and

the hypothesized value of the true population proportion between the two bins is 50%. Essentially

the proportion test decides that two bins are similar if the calculated confidence interval contains

50%.

The steps of mergeSimilarDensityBins are shown in Algorithm 5. Initially, two consecutive

bins are selected and the bin with the largest and smallest number of instances out of the two is

identified (steps 6-7). Then the percentage of the instances of the smallest bin to the sum of the

instances of the two is calculated in step 9. Using the calculated percentage and the number of

instances of the two bins, the confidence interval at a 5% significance level is calculated (step 10).

If 50% is within the calculated confidence interval, the two bins get merged. Initially the right

interval of the left bin is set equal to the right interval of the right bin (step 12), and the size of the

right bin is added to the size of the left bin (step 13). The right bin is then removed from the bins

vector (step 14) and the counter of the number of bins contained in the current bin is incremented

by one (step 15). Thus, once two or more bins get merged, their new size is the mean number of

instances of the bins used to create it (step 5).

Table 8: Confidence Intervals as the Number of Instances Increases

binsn1 binsn2 binsn1/(binsn1 + binsn2 ) CI
10 11 47.6% 26.4%− 69.7%

100 110 47.6% 40.7%− 54.6%

1000 1100 47.6% 45.5%− 49.8%

10000 11000 47.6% 46.9%− 48.3%

The range of a confidence interval is affected by the population size, since the larger the

population the more confident we are on a percentage. In this case, the population size is the

number of instances that belong to the two bins that DBAD is trying to merge. Specifically, the
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range of the confidence interval gets narrower as the number of instances increases and hence the

criterion becomes stricter. Table 8 represents the number of instances of two bins (binsn1 , binsn2 ),

the percentage of bin1 (binsn1/(binsn1 + binsn2 )) and the calculated confidence interval (CI) at a

5% confidence level. As can be seen, for the same percentage, only in the first two cases the 50%

criterion is met, but DBAD should merge the two bins in all 4 cases, since 47.6% is very close to

50%.

Hence, this approach behaves as needed on low density bins but can be too strict as the bins

density increases. For such bins, the criterion should be strict but should still be able to consider

them as similar if their ratio is above a certain threshold. The narrowest confidence interval will

be the one testing if the largest bin should be considered similar to one of its neighboring bins (if

they indeed have a similar number of instances). Thus, to control the strictness of the metric, the

sample size of the bins needs to be normalized. To accomplish this, in case there are more than α

instances in the largest bin (binsmax), the number of instances in each bin gets normalized using

(3), so that binsmax ends up having α instances.

binsni ← dbinsni ∗
α

binsnmax

e (3)

To select the α value, it is needed to define one more threshold (t). This threshold will control

when a bin compared to the largest one should be considered having a similar density. For DBAD

it was empirically selected to consider a bin that is consecutive to the largest one as similar, if it

has at least 75% of its instances (t = 75%).

To find the α value for which t is satisfied, the following process is performed. For each α

value (size of the largest bin) that will be tested, the minimum size of a consecutive bin that passes

the proportion test is identified and its ratio to α is calculated. Then the α value for which the ratio

is equal to t is selected. In Figure 6, the points indicate the ratio of the smallest bin size that will
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Figure 6: The x axis represents the number of instances of the largest bin (α) and the y axis the
ratio of the number of instances of a bin to the largest. The points indicate the ratio of the smallest
bin size that will be considered having a similar density to an α sized bin.

be considered having a similar density to an α sized bin. As expected, with a larger number of

instances (α) the more the ratio increases, since the calculated confidence interval gets narrower

and its lower bound increases. To obtain the targeted t = 75%, for DBAD α is set to 112, thus the

largest bin will have at most 112 instances after the normalization.

In the next step of DBAD (Algorithm 3), the intervals of the remaining bins are merged with

the intervals identified for other classes of the feature. Once this is done for all of the classes,

removeEmptyBins is executed on them so as to remove any possible empty bins that we might

have after the merging of the intervals of each class. These are the final intervals that will be used

for discretizing the feature.Aris
tos

 Aris
tod

im
ou



66

4.2.2 Parallelization

The algorithm of DBAD, can be easily parallelized and executed by multiple resources, since

each feature can be discretized independently. This is also known as an embarassingly parallel

problem, that can achieve high-levels of performance. A hybrid parallel versio of DBAD that runs

on both distributed and shared memory systems using the Message Passing Interface (MPI) [69]

and OpenMP [70] has been implemented in C++. The algorithm splits the execution to multiple

MPI processes, where each node takes one equal portion of the dataset. Each MPI process is

scheduled on a separate node in the system, where the DBAD discretization is further parallelized

using OpenMP threads (see Figure 7).

Figure 7: Parallelization of DBAD.

The algorithm gets as input multiple splitted files of the initial input file, so as to allow pro-

cessing big data that cannot fit in the RAM of a single node and at the same time reduce the

communication overhead between parallel nodes. Initially MPI is used to distribute the input files

evenly to the available nodes. Then each node reads one file at a time and splits its features to
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the available cores it has and each core executes DBAD on its provided features. When the cores

finish with the discretization of a file, the node returns the discretized version of the file, where the

master node will merge all results to produce the final output.

4.2.3 Datasets

A summary of the datasets used in the evaluation is given in Table 9. All of the datasets are

from the UCI Machine Learning Repository [40], except from the two synthetic datasets that are

used for testing the speedup of the parallel version of DBAD.

Table 9: Summary of the datasets investigated

Dataset #Instances #Features Instances per Class
Heart 270 13 (7) 150 / 120

SPECTF 267 44 (0) 55 / 212
Cardiotocography 2126 35 (11) 1655 / 295 / 176

Diabetic retinopathy 1151 19 (3) 560 / 611
Haberman 306 3 (0) 225 / 81

Saheart 462 9 (1) 302 / 160
WisconsinBC 569 30 (0) 357 / 212

Pima 768 8 (0) 500 / 268
ILPD 583 10 (1) 416 / 167

Mammographic 830 5 (4) 427 / 43
Arcene 200 9961 (0) 112 / 88

Synthetic1 10000 1000000 (0) 5000 / 5000
Synthetic2 1000000 10000 (0) 500000 / 500000

Number of categorical features given in parentheses

The datasets from the UCI repository, cover a wide range of datasets of the life sciences

domain. They were selected so as to have different ranges of number of instances and features,

and have a variety of class balances. These datasets had a two step preprocessing procedure. The

first step was to replace any missing values using (4), which basically replaces the missing values

of a variable with its minimum value minus one.

x∅ ← min(x)− 1 (4)
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The second was to remove any single valued features since they did not contain any information

that could help with the classification.

The two synthetic datasets, were created using different continuous distributions (uniform,

Gaussian and beta) on each feature, so as to cover some of the common distributions a dataset

might have. The Synthetic1 dataset has a large number of features, whereas Synthetic2 a large

number of instances, so as to see if the algorithm is affected by the size of each dimension.

4.2.4 Evaluation Methodology

To evaluate the effectiveness of DBAD at producing meaningful intervals, a 10 fold stratified

Cross Validation (CV) methodology was followed. Initially the training folds were used by a dis-

cretizer so as to create the intervals for each feature. Using these intervals, the training and testing

folds were discretized. Then a classifier was trained on the training folds and its accuracy and

Cohen’s kappa value was measured on the testing fold. Specifically, the Support Vector Machine

(SVM) [44], the Random Forest [23] and Naive Bayes were used for the classification task.

Additionally, the inconsistency rate of the discretizer was calculated on the testing fold. The

inconsistency rate is calculated on each feature and it measures the percentage of instances that

will be unavoidably misclassified if a single discretized feature is used in a classification. This is

due to the fact that after the discretization of a feature, some instances will end up having the same

value but their class will differ.

The evaluation was performed among DBAD and three more discretizers, which were docu-

mented to perform well in the literature [50]. The selected discretization algorithms used, were

CAIM and ChiMerge which offer excellent performances in different types of classifiers, and

MDLP which provides a good trade-off between the number of produced intervals and accuracy
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[50]. All algorithms used the same folds for training and testing during the CV so as to obtain

comparable results.

To test if the intervals created by each discretization algorithm were superior or inferior to

DBAD’s intervals, Wilcoxons’ signed-rank test was used on the evaluation measures mentioned

above and additionally on the number of intervals produced by each algorithm and its execution

time. The difference between two algorithms is considered statistically significant, if the obtained

p-value from the test is less than or equal to 0.05.

The aforementioned evaluation was performed in R. Specifically, from the e1071 package [71]

the SVM and Naive Bayes were used, from the randomForest package [48] Random Forest was

used, whereas for the discretization part, the discretization package [72] was used for the three

discretizers. All of the aforementioned algorithms were used with their default parameters. The

version of DBAD used for the aformentioned evaluation was implemented in R so as to have

comparable results with the other discretization methods regarding their execution time which

were also in R.

For testing the speedup of the parallel version of DBAD, Synthetic1 and Synthetic2 were split

to 10 files each. Specifically, Synthetic1 was split to 10 files with 10,000 instances and 100,000

features each, whereas Synthetic2 was split to 10 files with 1,000,000 instances and 1,000 features

each. The experiments were run at the Cyprus Institute HPC facility (CY-TERA), on nodes with

48 GB of RAM and the Intel Westmere X5650 hexa-core CPUs. The speedup, was tested using a

different number of nodes (1-10) and threads (1,2,4,6).

4.3 Results

In this section the evaluation results of DBAD are presented. Initially results regarding the

number of intervals created by each algorithm and the inconsistency rate are presented. Then
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metrics regarding the performance of the classifiers are shown, which can test the goodness of

the intervals and the information lost. Additionally the execution times of each algorithm are

shown and finally the obtained speedup with the parallel version of DBAD is provided. To show

if DBAD performed better or worse than another algorithm, the result of the statistical analysis is

shown with a sign next to the accuracy. A positive sign indicates that DBAD performed better,

whereas a negative sign shows that DBAD had worse performance.

Table 10: Average Number of Intervals

Dataset DBAD MDLP CAIM ChiMerge
Heart 5.0 1.7 (-) 2.0 (-) 4.5 (-)

SPECTF 6.7 1.5 (-) 2.0 (-) 4.0 (-)
Cardiotocography 8.7 3.0 (-) 2.7 (-) 14.2 (+)

Diabetic retinopathy 7.5 1.8 (-) 2.0 (-) 46.8 (+)
Haberman 5.0 1.3 (-) 2.0 (-) 3.1 (-)

Saheart 7.4 1.7 (-) 2.0 (-) 17.7 (+)
WisconsinBC 10.1 3.0 (-) 2.0 (-) 44.2 (+)

Pima 9.1 2.1 (-) 2.0 (-) 13.5 (+)
ILPD 7.1 1.6 (-) 2.0 (-) 10.9 (+)

Mammographic 7.2 2.3 (-) 2.0 (-) 3.7 (-)
Arcene 4.0 1.3 (-) 2.0 (-) 7.4 (+)
average 7.1 1.9 2.1 15.5

(+) DBAD was statistically better, (-) DBAD was statistically worse

For comparing the produced number of intervals by each discretizer, Table 10 provides the av-

erage number of intervals created by each algorithm on the training data. In most of the datasets,

the smallest number of intervals was created by MDLP and then by CAIM. DBAD is third and cre-

ated 7 intervals on average on each dataset, whereas ChiMerge had the largest number of intervals

in most of the tests.
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Table 11: Average Inconsistency Rates

Dataset DBAD NoDiscr MDLP CAIM ChiMerge
Heart 32.3 23.6 (-) 34.5 (+) 33.3 (+) 31.9

SPECTF 19.3 11.5 (-) 20.6 (+) 20.4 (+) 20.0 (+)
Cardiotocography 20.1 17.5 (-) 20.2 (+) 20.2 (+) 19.5 (-)

Diabetic retinopathy 41.2 18.7 (-) 45.0 (+) 43.7 (+) 33.2 (-)
Haberman 25.0 16.0 (-) 25.7 25.5 25.4

Saheart 30.4 10.6 (-) 33.8 (+) 32.3 (+) 27.0 (-)
WisconsinBC 20.4 0.4 (-) 22.9 (+) 22.9 (+) 14.4 (-)

Pima 30.0 16.0 (-) 33.1 (+) 32.4 (+) 29.2
ILPD 27.3 16.7 (-) 28.6 (+) 28.5 (+) 26.7 (-)

Mammographic 27.3 24.8 (-) 28.3 (+) 27.9 (+) 27.6
Arcene 38.7 19.4 (-) 42.2 (+) 39.6 (+) 33.4 (-)
average 28.4 15.9 30.4 29.7 26.2

(+) DBAD was statistically better, (-) DBAD was statistically worse

The inconsistency rate of the testing folds is presented in Table 11. The lowest inconsistency

rate was obtained with the original data (NoDiscr), which is essentially the minimum error that

can be obtained by a discretization algorithm. The discretization algorithm with the lowest incon-

sistency rate is ChiMerge and then DBAD follows. MDLP had the worst performance from the

discretization algorithms regarding this measure.
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Table 12: Classification Accuracy

Dataset DBAD NoDiscr MDLP CAIM ChiMerge
Support Vector Machine results

Heart 83.7 83.7 84.4 84.1 80.0
SPECTF 78.7 79.0 78.3 79.2 80.6

Cardiotocography 98.8 98.7 99.1 98.8 98.9
Diabetic retinopathy 68.2 69.5 62.3 (+) 63.3 (+) 53.2 (+)

Haberman 72.9 74.8 71.9 74.5 73.2
Saheart 72.1 71.6 70.3 71.2 71.6

WisconsinBC 97.9 97.2 97.0 94.9 (+) 97.2
Pima 75.8 75.5 76.3 73.1 75.4
ILPD 71.3 71.2 70.5 68.2 70.8

Mammographic 82.4 82.9 84.0 83.7 83.1
Arcene 82.4 81.9 66.4 (+) 79.3 70.9 (+)

Random Forest results
Heart 85.6 84.8 85.2 84.8 84.4

SPECTF 81.4 82.5 79.8 81.4 81.8
Cardiotocography 98.9 98.8 99.0 98.8 98.8

Diabetic retinopathy 66.9 68.4 62.6 (+) 63.9 (+) 65.5
Haberman 72.6 74.5 72.6 73.5 74.5

Saheart 72.7 68.4 (+) 70.1 73.0 69.0 (+)
WisconsinBC 96.0 96.5 96.7 95.4 96.8

Pima 77.1 76.8 75.8 75.1 75.4
ILPD 69.3 70.0 69.8 67.9 70.1

Mammographic 81.9 80.6 83.6 84.2 (-) 82.8
Arcene 80.5 82.9 86.0 81.4 82.9

Naive Bayes results
Heart 83.3 78.9 84.4 84.1 81.1

SPECTF 77.6 77.6 77.2 78.3 81.0
Cardiotocography 95.5 95.8 96.6 (-) 96.2 96.4

Diabetic retinopathy 64.4 61.4 62.6 61.8 61.9
Haberman 74.5 71.6 71.9 75.8 73.2

Saheart 68.2 67.5 69.7 72.3 66.3
WisconsinBC 93.8 73.6 (+) 94.2 94.4 93.8

Pima 74.8 66.9 (+) 76.6 72.5 73.7
ILPD 66.9 66.0 67.7 66.4 66.4

Mammographic 83.0 82.8 82.4 81.6 (+) 83.0
Arcene 70.9 67.4 66.4 (+) 66.9 73.0
average 79.5 78.2 78.5 78.8 78.4

(+) DBAD was statistically better, (-) DBAD was statistically worse

Table 12 presents the obtained accuracies with the discretized data of each algorithm using

the three classifiers. The NoDiscr column shows the accuracies obtained with the non-discretized
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data. As can be seen, DBAD had a similar performance with the other algorithms for the majority

of the tests (87%) and performed better (won) 11 times (11%), while it performed worse (lost) in

only 2 tests (2%). Additionally, the algorithm had a similar or better performance than using the

non-discretized data and on average had the highest accuracy from all of the tested approaches.

Table 13: Sensitivity Specificity and Precision

DBAD NoDiscr MDLP CAIM ChiMerge
Sensitivity

average 75.3 71.7 73.9 74.5 73.0 total
SVM (2,7,1) (3,6,1) (2,8,0) (1,8,1) (8,29,3)
RF (0,10,0) (1,7,2) (0,9,1) (0,10,0) (2,36,2)
NB (5,4,1) (1,8,1) (3,5,2) (2,7,1) (11,24,5)

total (7,21,2) (5,21,4) (6,22,2) (3,25,2) (21,89,10)
Specificity

average 70.3 68.4 68.7 69.6 69.6 total
SVM (1,6,3) (1,9,0) (1,7,2) (1,7,2) (4,29,7)
RF (1,8,1) (4,5,1) (3,6,1) (1,9,0) (9,28,3)
NB (2,7,1) (1,9,0) (1,8,1) (1,7,2) (5,31,4)

total (4,21,5) (6,23,1) (5,21,4) (3,23,4) (18,88,14)
Precision

average 75.2 70.3 69.3 73.2 72.4 total
SVM (1,8,1) (4,6,0) (2,7,1) (2,7,1) (9,28,3)
RF (1,9,0) (4,6,0) (3,7,0) (1,9,0) (9,31,0)
NB (2,8,0) (1,9,0) (1,9,0) (0,10,0) (4,36,0)

total (4,25,1) (9,21,1) (6,23,1) (3,26,1) (22,95,3)
(wins, ties, losses)

Table 13 shows the performance of the algorithms based on their sensitivity, specificity and

precision. The cardiotocography dataset was not included in this analysis since it has three classes.

Regarding the sensitivity, DBAD had a similar number of wins and losses against each of the other

discretization algorithms, except CAIM from which it had more wins, whereas in specificity it

had more wins against MDLP. DBAD, performed better more times than the other discretizers in

precision. Overall, DBAD performed better than the other algorithms and the non discretized data

in 61 tests and worse in 27, and on average had higher values in all three measures.
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Table 14: Cohen’s Kappa Values

Dataset DBAD NoDiscr MDLP CAIM ChiMerge
Support Vector Machine results

Heart 0.67 0.67 0.68 0.67 0.59
SPECTF 0.19 0.01 (+) 0.00 (+) 0.25 0.29 (-)

Cardiotocography 0.97 0.97 0.97 0.97 0.97
Diabetic retinopathy 0.37 0.39 0.26 (+) 0.27 (+) 0.00 (+)

Haberman 0.18 0.18 0.12 0.25 0.20
Saheart 0.33 0.32 0.30 0.34 0.32

WisconsinBC 0.95 0.94 0.94 0.89 (+) 0.94
Pima 0.44 0.44 0.44 0.37 0.43
ILPD 0.09 0.00 (+) -0.02 (+) 0.09 0.13

Mammographic 0.65 0.66 0.68 0.67 0.66
Arcene 0.65 0.63 0.34 (+) 0.58 0.37 (+)

Random Forest results
Heart 0.71 0.69 0.70 0.69 0.68

SPECTF 0.28 0.29 0.34 0.34 0.32
Cardiotocography 0.97 0.97 0.97 0.97 0.97

Diabetic retinopathy 0.34 0.37 0.27 (+) 0.28 (+) 0.31
Haberman 0.14 0.20 0.16 0.11 0.18

Saheart 0.37 0.25 (+) 0.29 0.37 0.28 (+)
WisconsinBC 0.91 0.92 0.93 0.90 0.93

Pima 0.47 0.48 0.43 0.41 (+) 0.44
ILPD 0.20 0.18 0.02 (+) 0.08 0.22

Mammographic 0.64 0.61 0.67 0.68 (-) 0.66
Arcene 0.66 0.65 0.71 0.61 0.65

Naive Bayes results
Heart 0.66 0.57 0.68 0.68 0.62

SPECTF 0.42 0.24 0.45 0.47 0.44
Cardiotocography 0.88 0.89 0.91 (-) 0.90 0.90

Diabetic retinopathy 0.29 0.24 0.27 0.22 (+) 0.24
Haberman 0.21 0.14 0.12 0.28 0.20

Saheart 0.31 0.26 0.34 0.38 0.26
WisconsinBC 0.87 0.41 (+) 0.88 0.88 0.87

Pima 0.45 0.27 (+) 0.48 0.37 (+) 0.42
ILPD 0.31 0.23 0.31 0.27 0.25

Mammographic 0.66 0.66 0.65 0.63 0.66
Arcene 0.42 0.36 0.34 0.35 0.45
average 0.51 0.46 0.47 0.49 0.48

(+) DBAD was statistically better, (-) DBAD was statistically worse

The obtained Cohen’s Kappa values are shown in Table 14. Similar to the accuracy results of

Table 12, DBAD had a similar performance with the other algorithms in most of the performed
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tests. Overall, it performed better than the other algorithms in more tests (15) than it did not (3).

Most of its wins were with the SVM classifier, as was the case with the accuracy tests.

Table 15: Average Execution Time in Seconds

Dataset DBAD MDLP CAIM ChiMerge
Heart 0.0 0.1 (+) 0.4 (+) 1.4 (+)

SPECTF 0.3 0.7 (+) 2.1 (+) 3.8 (+)
Cardiotocography 0.2 2.7 (+) 18.7 (+) 100.1 (+)

Diabetic retinopathy 0.1 3.6 (+) 28.8 (+) 453.4 (+)
Haberman 0.0 0.0 (+) 0.2 (+) 0.2 (+)

Saheart 0.1 0.8 (+) 3.3 (+) 29.3 (+)
WisconsinBC 0.2 10.2 (+) 31.1 (+) 408.2 (+)

Pima 0.1 0.8 (+) 3.1 (+) 21.8 (+)
ILPD 0.1 0.6 (+) 2.2 (+) 8.9 (+)

Mammographic 0.0 0.1 (+) 0.2 (+) 0.3 (+)
Arcene 68.9 301 (+) 632 (+) 2,199 (+)
average 6.3 29.1 65.7 293.4

(+) DBAD was statistically better, (-) DBAD was statistically worse

The average execution time of each discretization algorithm on the training folds is provided in

Table 15. DBAD has the lowest computational complexity from the rest of the algorithms, which

explains the results shown in Table 15. DBAD is the fastest and in some tests it is at least an order

of magnitude faster than the rest. The difference is more obvious in the Arcene dataset, which

has the largest number of features from all the datasets. In this dataset, DBAD is approximately 4

times faster than MDLP, 9 times faster than CAIM and 32 times faster than ChiMerge.

Table 16: Obtained Speedup

#Threads
#Nodes Dataset 1 2 3 4 5 10

1
Synthetic1 1.0 2.0 2.5 3.3 4.9 9.9
Synthetic2 1.0 2.0 2.5 3.3 4.9 9.6

2
Synthetic1 1.7 3.5 4.3 5.7 8.6 17.2
Synthetic2 1.8 3.4 4.3 5.7 8.6 17.1

4
Synthetic1 2.7 5.4 6.6 9.1 13.5 26.3
Synthetic2 2.8 5.6 7.0 9.4 14.1 28.0

6
Synthetic1 3.3 6.7 8.4 11.1 16.4 33.3
Synthetic2 3.8 7.0 8.9 11.8 17.8 35.3

The results using 6 to 9 nodes are omitted since they had a similar speedup with 5 nodes.
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Table 16, provides the obtained speedup of the parallel version of DBAD. The time needed

to discretize the Synthetic1 dataset with a single node and a single thread was 233 minutes (ap-

proximately 3.9 hours), whereas Synthetic2 needed 217 minutes (7% faster). The first thing worth

mentioning, is that the speedup is similar in both synthetic datasets, which indicates that the par-

allel execution scales well with the size of the dataset. The second thing we notice is that on the

single thread executions, there is a linear speedup when the number of splits (10) is divisible by

the number of nodes. The last thing of interest is that if we consider the change of speedup when

we keep the number of nodes constant and increase the number of threads, is that the obtained

speedup is not linear. In this scenario, performance scalability is limited by the size of the cache

in the processor. The large size of the input file doesn’t fit in the processors cache, thus requires

accessing DRAM.

4.4 Discussion

An important feature of a discretization algorithm, is to be able to produce a small number

of intervals. Even though MDLP and CAIM performed better on this task, DBAD produced

a reasonable number of intervals, whereas ChiMerge produced the largest number of intervals.

DBAD might produce a large number of intervals in the case of datasets with many classes with

different distributions. This is due to the fact that the intervals are created for each class separately

and if the densities are in different ranges for each class, we will end up with much more intervals.

On the other hand this might not affect a classifier since it could further help with the separation

of the classes.

The results regarding the inconsistency rates seem to be associated with the number of intervals

produced by the algorithms. As was also found by [50], the more intervals an algorithm creates,

the lower its inconsistency rate is. The performance on this metric does not seem to be correlated
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with the performance of the classifiers. If that was the case, then the undiscretized data would

have produced better results than the discretized.

The results regarding the obtained accuracies by the discretized data of each algorithm, indi-

cate that DBAD has a similar or better performance than the other algorithms in the majority of

the tests and in only 2% of the performed tests its performance was worse. Additionally, when

using the SVM classifier, it did not perform worse than any of the other methods. A positive out-

come of this analysis is that DBAD’s discretization did not significantly reduce the information

of the datasets, since it performed equally or better than the original datasets in all of the tests.

The results on specificity indicate that it had a similar performance with the other methods on this

measure, while it was able to perform better than the other algorithms more times than they did

when considering sensitivity and precision. Cohen’s kappa values also had more tests in which

DBAD had a better performance than the other discretization algorithms (15 wins and 3 losses).

Since this measure takes into consideration random hits [73], and many of the tested datasets were

also imbalanced, it is a more suitable measure for comparing the efficiency of the discretization

algorithms. On average, DBAD had the highest scores in all of the aforementioned measures and

since the statistical analysis indicates that it performs similarly or better than the other algorithms

in the majority of the tests, there is a good indication that using the densities of each class is a

promising approach for data discretization.

The proposed algorithm has a clear advantage over the others, regarding its computational

complexity. A dataset can be discretized by DBAD inO(m∗n), wherem is the number of features

and n is the number of instances. Specifically, for a single feature, the binning and number of

instances in each bin can be calculated with a single pass from the feature’s data (O(n)), whereas

the removal of empty bins and the merging of similar density bins is O(log(n)), since this is

approximately the number of bins that are initially created using Sturge’s rule. Algorithms like
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CAIM, MDLP and ChiMerge, have a computational complexity of at least O(n ∗ log(n)) for each

feature, since this is the complexity for sorting the data. Then the Top-Down approaches have an

additional cost of O(k ∗n), where k is the number of intervals created. For CAIM and MDLP this

value is close to the number of classes and since this is much smaller than the number of instances

their complexity is O(m ∗ n ∗ log(n)). Due to the fact that ChiMerge, merges two consecutive

points/bins at a time, this means that it has an additional complexity of O((n− k) ∗n), and hence

its complexity for discretizing a dataset isO(m∗n2). Based on this analysis, it is clear that DBAD

has a low computational complexity, which explains its small execution times on the performed

experiments.

In addition to its low complexity, DBAD is an embarrassingly parallel algorithm, since each

feature can be discretized separately, which makes the algorithm suitable for big data. When using

multiple threads, after a point the speedup is not linear because the overhead of reading the dataset

in memory and writing the discretized version of the dataset is larger or equal to the time for

discretizing the data. This is because the reading and writing tasks are sequential and cannot be

parallelized and once the parallel task of the discretization becomes faster than the time needed to

read and write the data, no additional speedup can be obtained. On the other hand, the speedup

analysis, shows that it can fully exploit the use of distributed systems since the reading and writing

of each file can be done in parallel in each node. But to get the optimal speedup, one should split

the initial data to a number of files that is divisible with the number of nodes that will be used.

This will allow an optimal load balancing to each node.

In general, DBAD is a good choice for discretizing big data. A limitation of the algorithm

is that it will under-perform if the data of each class to be discretized are from the same uniform

distribution. In such cases, since the density is the same in the entire range of values for all classes,

DBAD will not be able to identify any intervals and will return a single valued feature. On the
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other hand, if data are from different distributions, since DBAD uses the density change and not

a direct measure that checks for class separability, it can have an advantage over such methods in

cases that have interacting features with low main effects. In such cases, a single feature does not

have enough information for separating the different classes, unless it is considered in combination

with other features, and hence a method that uses a measure based on class separability will return

a single valued feature. DBAD, on the other hand, would still be able to split such features based

on their density differences, and those splits could allow the identification of interacting features.

4.5 Conclusions

A new supervised discretization algorithm has been proposed, based on how the density of the

values of a feature changes for each class. DBAD is a univariate discretizer and hence does not

consider any possible feature interactions when selecting the best intervals for each feature, but

results indicate that it does not significantly reduce the information contained in a dataset. It is a

static discretizer since it is independent of the classifier that will be used at the processing step,

which allows it to produce more generic intervals that can perform well with different classifiers. It

initially creates all of the bins simultaneously and then follows a bottom-up approach for merging

consecutive bins with similar densities, based on the confidence interval of their percentage.

In the performed evaluation, DBAD produced an acceptable number of intervals and had com-

parable results with the other discretizers. An advantage it has, over the other methods, is its low

computational complexity, which makes it appropriate for big data. Another reason DBAD can

be easily applied on big data, is because it is an embarrassingly parallel algorithm, since each fea-

ture can be discretized independently, and our experiments have shown that it can obtain a linear

speedup.
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The results of the evaluation, indicate that density based discretization is a promising approach

and needs to be further investigated. One possible direction is to test different methods for the

initial binning of the data, since the current approach is based only on the number of instances

and hence the true distribution of the data might be misrepresented. Another possible direction

could be on having an additional step for further reducing the number of the final intervals of each

feature based on other metrics.
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Chapter 5

Clustering Subjects in Genetic Studies with Self Organizing Maps [4]

5.1 Introduction

In common complex diseases, multi-loci interactions are more important than the main effect

of any single SNP. Single locus association studies in such diseases may not replicate their results

across multiple samples, due to the effect of epistasis and other phenomena [6]. In this chapter,

Self Organizing Maps (SOMs) are investigated for clustering Genome Wide Association (GWA)

data for multi-loci association testing.

Traditional genetic analyses focus on single locus associations and not on multi-loci associ-

ations. Several machine learning techniques have been applied for multi-loci association testing

[74, 75, 76]. Most of them are using Neural Networks (NNs), Support Vector Machines (SVMs),

Random Forests (RFs), Multifactor Dimensionality Reduction (MDR) and variations of these tech-

niques and they will be introduced.

Ritchie et al applied Multifactor Dimensionality Reduction (MDR) to a sporadic breast cancer

data set [77], whereas variations of MDR were also introduced for multi-loci associations [78, 79,

80]. MDR and its variations had good results when they were used on a small number of SNPs but
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they cannot be directly used on a large number of SNPs, due to the exhaustive search it performs

for identifying n-SNP associations [76].

NNs have also been applied in such studies [81], but their results are affected by the archi-

tecture of the network. Since it is computationally intractable to perform an exhaustive search

for selecting the appropriate architecture, techniques based on Genetic Programming Neural Net-

works (GPNN) [82] and Grammatical Evolution Neural Networks (GENN) [83] were proposed

with promising results. When these two optimisation methods were compared, GENN outper-

formed GPNN [83].

Wadell et al [84] used SVM to test their hypothesis that different SNP patterns exist among

patients with Multiple Myeloma diagnosed at a young age and patients diagnosed after the age

of 70. They obtained an accuracy of 71% in classifying these two patient classes giving them

evidence that their initial hypothesis was correct. In [85] an SVM approach was proposed for

gene-gene interaction with comparable results with MDR. The approach handled unbalanced data

better than MDR and was less susceptible to overfitting, but it was computationally expensive

[85]. A disadvantage of SVMs, is that they do not cope well with missing data [85].

RFs have also been used for multi-loci association testing [86, 87]. A variation of RF is

SNPInterForest [88], which copes with some limitations of RFs such as the fact that they may

ignore SNPs with low marginal effects and the difficulty of extracting the interactions patterns.

SNPInterForest was applied on 10,000 SNPs and identified two novel interactions but the analysis

was computationally demanding. Another variation of RFs is Random Jungle (RJ) [89], which is

an efficient method for analysing GWA data. The method was applied on 275,153 SNPs revealing

new interactions and validating findings of recent studies. As with RFs, RJ’s findings were affected

when SNPs only had weak main effecs [76].
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SOMs [90] were proposed by Tuevo Kohonen and have been widely used for clustering data in

several scientific areas. To the authors knowledge, they have not been used for identifying multi-

loci associations, but they have been used on biological data analyses [91, 92, 93, 94]. Classical

SOMs were intended for use with numerical data, but SNPs are nominal categorical data, hence a

SOM for categorical data needs to be used for such data. NCSOM [95] is an algorithm that was

proposed for handling numerical and categorical variables with promising results, and its update

rule for nominal categorical variables is also used in this work.

In this study, the NCSOM algorithm was tested on GWA data, and specifically on subjects

with and without Multiple Sclerosis (MS). Initially a subset of the SNPs was selected and then the

algorithm was trained with 10-fold cross validation for selecting the appropriate map size. Once

the map size was defined, the algorithm was applied on the selected SNPs and its clustering results

were evaluated.

The structure of the chapter is as follows. Section 5.2 provides the methodology followed

for the experiments carried out and in Section 5.3 the results of the experiments are presented.

In Section 5.4 the results are discussed and finally in Section 5.5 the concluding remarks are

provided.

5.2 Methodology

5.2.1 Dataset

The data used are from Australia and New Zealand Multiple Sclerosis Genetics Consortium

(ANZgene)[96]. The dataset has 1,618 people with MS (cases) and 3,413 people without MS

(controls). The genotyping platform used was made by Illumina 300k model. The distribution of

the subjects in the dataset is shown in the first three columns in Table 17.
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Table 17: ANZgene Subjects Distribution

Males Females Total Training Testing
Cases 445 1173 1618 1456 162

Controls 757 1231 1988 1789 199
Total 1202 2404 3606 3245 361

Before using the data for training SOM, they were encoded using the encoding schema shown

in Table 18. An allele value of ”a” represents the minor allele of a SNP and ”A” represents

the major allele of that SNP. With this encoding, if a subject has homozygous minor allele in a

SNP and another subject has homozygous major allele on that SNP the distance between the two

subjects for that SNP will be two. In the case that one of the subjects has a heterozygous allele

and the other has a homozygous allele the distance will be one. The missing alleles were encoded

with a -1 so that SOM can identify them, since it handles missing data differently.

Table 18: Data Encoding

Allelle 1 Allele 2 Encoding Value
a a 0 1
a A

1 1
A a
A A 1 0

Missing Missing -1 -1

5.2.2 Feature Selection

The dataset consists of approximately 300,000 SNPs per subject, but this work focuses on

SNPs in the HLA region, where previous studies have identified associations among the region and

MS [97, 98, 99, 100]. A subset of SNPs in the regions was selected using a two SNP interaction

algorithm [101, 102]. Specifically, the SNP pairs that were found to be associated with the disease

by the two SNP interaction algorithm were selected as input for the training of SOM. This analysis

resulted in a total of 37 SNPs. The advantage of using a two SNP interaction algorithm for feature

selection with SOM, is that we can test for associations among the selected SNPs. For example if
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the two SNP interaction algorithm returned that SNP A and SNP B were associated and that SNP

A and SNP C were associated, SOM would also cluster the association of SNP A, B and C with

the disease.

5.2.3 Categorical SOM for clustering SNPs

A batch categorical SOM was used, with the update rule for nominal categorical data from [95]

with some modifications for handling missing data. Specifically, missing data were ”ignored”,

since they were always considered as a match when compared with any allelic value. SOM con-

sisted of an input layer which selected an input vector at a time as the input of the network, and

an output layer that had the neurons that represented the final clusters. The input layer was an N

dimensional vector x, where N was the number of features of the P input vectors. The output

layer consisted of the neurons mapped in a two dimensional map. The number of neurons and

the size of the map was predefined before training. Each neuron consisted of an N dimensional

vector w called the weights of the cluster and the ith weight of each cluster corresponded to the

ith feature of the input vector. The set a = {0, 1,−1} represents the possible categorical values of

each input vector feature and ar represents the categorical value with index r, where r = 1, 2, 3.

Algorithm 6 Categorical SOM

Initialize the weights (w) with random values {0,1}
t = 1 (current epoch)

Require: radius (neighbourhood radius), T (final epoch)
while t 6= T do

for each input vector xj do
find its BMU using (5)

end for
update the weights of each neuron using (8)
t = t+ 1
reduce radius

end whileAris
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The training of the network is shown in Algorithm 6. Initially the weights of the neurons were

randomly set to zeros and ones. Then the best matching unit (BMU) of each input vector was

calculated using (5). As can be seen in (7) any feature with the missing value was considered as a

matching case with any weight value.

BMU j = argminmD(xj ,wm) (5)

where

D(xj ,wm) =

i=N∑
i=1

δ(xji ,w
m
i ) (6)

δ(xji ,w
m
i ) =



0 if(xji = wm
i )

0 if(xji = −1)

1 if(xji 6= wm
i )

(7)

Once the BMU of each input vector was calculated the weights of each neuron were updated

using (8). As seen in (8), the weights get the value of the most frequent categorical value of

each feature (ignores the categorical value of missing data). The function hBMUjm is a Gaussian

neighbourhood function centred at the BMU of xj .

wm
i (t+ 1) =



ac if(F (ac,wm
i (t)) > F (ar/∈{c,3},wm

i (t)))

ac if(F (ac,wm
i (t)) = F (ar/∈{c,3},wm

i (t))

∧ random(0, 1) > 0.5)

wm
i (t) otherwise

(8)

where

F (ar,wm
i ) =

j=P∑
j=1

(hBMUjm|xji = ar ∨ xji = −1)

j=P∑
j=1

hBMUjm

, r = 1, 2 (9)

c = argrmaxF (ar,wm
i ), r = 1, 2 (10)
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Once the weights were updated, the neighbourhood (radius) was decreased. Then the process

was repeated for a predefined number of epochs T .

5.2.4 Models Investigated

Different map sizes were evaluated on the input dataset using a 10-fold cross validation. Each

fold had the same proportion of cases and controls based on the initial distribution of cases and

controls of the dataset. Specifically each fold contained approximately 162 cases and 199 controls

and the total number of subjects used in training and testing are shown in Table 17. Due to the

initial randomization of the weights of SOM, the 10-fold cross validation procedure was repeated

10 times. To select the appropriate map size for SOM, the test was repeated on a 2x2, a 4x4, a

6x6 and an 8x8 map size for 1000 epochs. The initial neighbourhood radius was set as half of the

map’s edge size.

5.2.5 Evaluation Metrics

5.2.5.1 Traditional Measures

To evaluate the classification power of SOM and test how the map size of the network affects

the results, each cluster of the trained network was labeled as ”case” if the majority of its subjects

were cases and ”control” otherwise.

Table 19: Confusion Matrix

Actual
Control Case

Predicted
Control TP FP

Case FN TNAris
tos
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Then the confusion matrix was calculated as shown in Table 19 and the following evaluation

metrics were calculated:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)

BalancedAccuracy =
Sensitivity + Specificity

2
(14)

5.2.5.2 Pearson’s Chi Square Test (χ2)

Because the evaluation metrics mentioned above do not take into consideration the map size,

χ2 was also used for evaluating the clustering of the network. The hypothesis here is that the gen-

erated clusters will be associated with the case/control status. The χ2 provides a well established

methodology to test that. Specifically the null hypothesis tested, is that there is no association

among the clusters generated and the case/control status of the subjects in the clusters.

For testing this, two contingency tables were created after the training of each SOM run. The

first had the number of cases and controls of each neuron (cluster) using the training data and the

second used the testing data. Then the p-value of χ2 was calculated on each contingency table.

It was decided a-priori that the null hypothesis would be rejected if the p-value was smaller than

0.01 (−log(p-value) > 2). The advantage of this test is the fact that the p-value calculated takes

into consideration not only the distribution of the cases and controls in each cluster, but also the

number of active clusters. An active cluster in this work is defined as a cluster with at least one

subject assigned in it.Aris
tos
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Table 20: Clustering Results Using the Top 37 SNPs in the HLA Region

SOM map size

2x2 4x4 6x6 8x8

χ2 (−log(p-value))
Train 21.0±2.1 42.9±2.9 39.9±3.0 35.1±2.5

Test 2.7±1.4 3.1±1.4 2.0±1.0 1.7±0.4

Accuracy (%)
Train 58±0.3 63±0.7 63±0.7 64±0.8

Test 58±3 62±2.7 63±2.3 63±2.2

Sensitivity (%)
Train 64±2.0 66±3.5 70±1.9 70±1.7

Test 64±4 66±4.2 69±2.9 69±3

Specificity (%)
Train 51±2.7 58±4 56±2.6 57±2.5

Test 51±5 58±6.4 55±5.4 55±5.4

Balanced Accuracy (%)
Train 58±0.4 62±0.8 63±0.8 64±0.8

Test 57±2.6 62±2.8 62±2.5 62±2.4

5.2.6 Pattern Identification

After training, the best performing model was selected. The parameters of this model (e.g.

map size, neighbourhood radius) were used for constructing an SOM, where the whole dataset was

used for training. Once the model was trained, the generated clusters were tested for association

with the case-control status of the subjects using χ2. The χ2 was calculated using a contingency

table with the number of cases and controls of each cluster. If the statistical significance of the

association was above the predefined threshold (−log(p-value) ≥ 2), the patterns of the clusters

would be further investigated to identify SNP associations with the disease status of the subjects

clustered. Since each weight of a cluster represents the allelic value of the majority of the subjects

of that cluster, the weights of the trained SOM were used to identify any interesting patterns

among SNPs. To have more representative results (since the weight values were dependent on the

distribution of the two classes in a cluster), only clusters with a minimum separation of 70% - 30%

among the two classes were selected for pattern identification.
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5.3 Results

5.3.1 Models Investigated

A total of 37 SNPs were selected by the two SNP interaction algorithm [101] and these SNPs

were used as input for all tests performed. The results of the 10-fold cross validation for both

the train and test sets are presented in Table 20. From the χ2 test, it is clear that the best map

size for the selected dataset is the 4x4 map size. Specifically there is a major increase in the

−log(p-value) from the 2x2 size to the 4x4 size and then it decreases as the map size increases.

The −log(p-value) was 42.9± 2.9 for the training set and 3.1± 1.4 for the testing set, which are

above the predefined threshold. For the testing set, the measure was close to the predefined thresh-

old, but this was mainly because of the small number of subjects used in the testing phase. To ad-

dress this, models were retrained using half of the subjects for training and the other half for testing

on 5 different such sets. SOM was run 10 times on each set using the 4x4 map size and statistically

significant clusters were obtained for both training and testing results with a −log(p-value) close

to 21, which is far greater than the predefined threshold.

The percentage of balanced accuracy was 62± 2.8 for the test set of the 4x4 map size. Similar

to this value but with slightly smaller standard deviations were obtained for the 6x6 and 8x8 map

sizes. The percentage of sensitivity and specificity were 66± 3.5 and 58± 6.4 for the test set for

the 4x4 map size. Similar values were also obtained for the 6x6 and 8x8 map sizes.

5.3.2 Pattern Identification

After training the SOM with a 4x4 size map using all of the subjects and the top 37 SNPs,

the −log(p-value) was 45, indicating that the weights of its clusters were associated with the

disease. In this model, 5 major clusters were identified with more than 65% separation among
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the normalized distribution of cases and controls. Two of them are ”case” clusters and the others

are ”control” clusters. In total these 5 clusters account for 1312 subjects, which is approximately

36% of the total number of subjects. These 5 clusters are highlighted with a grey background in

Figure 8. In each pie chart there are two numbers where the number in the blue area represents the

fraction out of the total controls that got clustered in that specific cluster and similarly the same

applies for the number in the red area and cases.

Figure 8: The normalized distribution of cases and controls in each cluster after training SOM
on a 4x4 map using all of the subjects for training with the top 37 SNPs. Light blue represents
the controls and red represents the cases. The values in the blue areas in the pie charts represent
the proportion out of the total controls that are in each cluster and similarly the numbers in the
red areas the proportions out of the total cases. Highlighted with a grey background are the top 5
clusters based on the difference of their distribution of cases and controls.

Out of these 5 clusters, 4 of them had a proportion of cases and controls above the a-priori

defined threshold (70% - 30%). In Figure 9 each row illustrates the weights of these 4 clusters.

The numbers in the first column represent the (x,y) coordinates of each cluster as illustrated in
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Figure 9: Pattern identification showing the top 4 clusters of a 4x4 map using the top 37 SNPs
as input. The numbers in the first column represent the (x,y) coordinates of each cluster as illus-
trated in Figure 8. The second column has bar charts with details such as the number of cases
and controls in each cluster and the fraction out of the total number of cases and controls that
each number corresponds in parentheses. The rest of the columns have the weight values of the
clusters, that represent the most frequent allele values of the subjects of that cluster for the specific
SNP. ”AA” represents homozygous major allele value, ”aa” homozygous minor allele value and
”aA/Aa” heterozygous allele value for a SNP. The highlighted columns (rs2242660, rs1077393,
rs1046089, rs1053924, rs926070, rs3129941) show important differences in patterns among the
case and controls clusters.

Figure 8. The second column has bar charts showing the distribution and the number of cases

and controls in each cluster. The numbers in parentheses in the bar charts, represent the fraction

out of the total number of cases and controls for each cluster. The rest of the columns represent

the weight values of the two alleles for each SNP. As can be seen, the ”control” clusters have

similarities among them that are not present in the ”case” cluster. Three SNPs that illustrate this

are rs1053924, rs926070 and rs3129941, which are highlighted with red rectangles. In these three

SNPs, the majority of the subjects in the case cluster had homozygous minor allele values whereas

in the controls clusters, the majority had homozygous major allele values. Similarly for the first

three SNPs (rs2242660, rs1077393, rs1046089) in Figure 9, the case cluster had homozygous

major allele values, whereas the control clusters had heterozygous allele values. The two SNP
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interaction algorithm indicated for these three SNPs that rs2242660 interacted with rs1077393 and

that rs1077393 interacted with rs1046089, hence SOM identified a three SNP interaction among

these SNPs.

5.4 Discussion

In this chapter, SOM, a clustering algorithm, was tested to investigate whether it could find

clusters whose SNPs were strongly associated with MS. From the results obtained, an important

finding is that the clusters identified are statistically significant. The top clusters had an important

separation among cases and controls and they accounted for a good proportion of the total subjects

of the dataset. Moreover, some interesting patterns among the top case and controls clusters were

identified. Further investigation of these patterns needs to be performed for identifying the actual

causative effects driving them.

Many studies indicated that there is an association among the Human Leukocyte Antigen

(HLA) region and MS using single locus association testing [97, 98, 99, 100]. Antoniades used

a two SNP interaction algorithm in [101] and was able to identify statistically significant two

SNP interactions among 37 SNPs, which were replicated using an independent dataset. Those

37 SNPs were used and SOM was able to identify higher order SNP interactions, with 6 SNPs

revealing interesting patterns among the ”case” and ”control” clusters. Brassat et al identified

single and three locus association models among SNPs in the HLA region and MS using MDR

[103], whereas in [104], Motsinger et al identified two, three and four locus associations among

SNPs in the HLA region and MS using MDR as well. The SNPs identified by these two studies

were not selected by the feature selection algorithm used in this work, hence the associations

identified cannot be compared with the associations identified in those two studies. These findings

indicate that SOMs can be used for clustering GWA data for finding associations among SNPs and
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a disease. The advantage of the SOM is that it is searching for n-SNP associations when creating

the clusters. This is accomplished by clustering subjects together that have as many similar SNP

patterns as possible without performing an exhaustive search as MDRs [76].

From the metrics used for evaluating the clustering and selecting the map size of the network,

the χ2 metric was more indicative than the traditional evaluation metrics. It has the advantage of

considering the initial distribution of the classes, which is important when analysing imbalanced

data. This is something that the standard accuracy measure does not cope with, making it inappro-

priate for such cases. Balanced accuracy can be used with imbalanced data and when used with

specificity and sensitivity, the accuracy on each class and their average accuracy can be observed.

But these measures do not take into consideration the number of clusters used by the network as

the calculation of the p-value of χ2 does. Moreover the p-value calculated accounts for the number

of subjects used as well, hence χ2 can be used as a single measure for evaluating and selecting the

map size of the network.

5.5 Conclusion

The ability of SOM for finding associations among SNPs and a disease has been investigated

with promising results. From the results obtained, it can be seen that the unsupervised clustering of

SOM was statistically significant, revealing an association among the SNP patterns in the clusters

generated and the disease status of the subjects. Moreover the χ2 statistic due to its ability of

taking into consideration the distribution of the classes, the number of subjects in the dataset and

the number of active clusters of the network, has been proposed for selecting the map size of the

network instead of the traditional evaluation measures. Finally we conclude that SOMs ability of

clustering subjects with similar SNP patterns together, is an important feature that may prove of

significant value in future multi-loci association testing.
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Chapter 6

A Framework for Efficient n-Way Interaction Testing in

Case/Control Studies

6.1 Introduction

The introduction of affordable high throughput genotyping technologies allows the assay of

millions of genetic polymorphisms per subject across the whole genome. This has led to genome

wide association studies (GWAS) that try to identify genetic variations associated with diseases.

Traditional genetic analyses focus on single locus associations, but most common diseases are

influenced by multiple gene interactions and interactions with the environment [5].

Gene interaction is known in biology as epistasis, which is the result of physical interactions

among biomolecules within gene regulatory networks and biochemical pathways in an individual,

such that the effect of a gene on a phenotype is dependent on one or more other genes [105].

There is also the term of statistical epistasis, which is defined as the deviation from additivity in

a statistical model, summarizing the relationship between multi-loci genotypes and phenotypic

variations in a population [105].

95
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Various methods have been proposed for interaction testing such as statistical [106], informa-

tion theory [107, 108] and machine learning [76, 109] based methods. The statistical and infor-

mation theory methods, usually provide a measure for identifying an interaction, but one needs

to perform an exhaustive search on the available variables. To test for all possible n-Way interac-

tions, one would need O(kn) tests, where k is the total number of variables. This increases the

computational complexity of the analysis. Additionally, in statistical tests that compute a p-value,

if Bonferroni correction is used to address the problem of multiple testing, many true positive

interactions will be missed, because of the conservative nature of this adjustment and the large

number of tests performed [109].

Machine learning algorithms have also been proposed for identifying interacting factors. The

Multifactor Dimensionality Reduction (MDR) algorithm [77], has been used in many studies [110,

111, 112, 113]. This method is model free and reduces the dimensionality of tested factors by

labeling each pattern as ”high risk” or ”low risk” if the ratio of cases:controls is above a threshold.

Then using these labels and Cross Validation (CV), the model is evaluated. Random Forest (RF)

[23] based methods have also been proposed for interaction testing [89, 88], but have not been as

widely used as the MDR based methods.

Machine learning algorithms for pattern recognition can also be used for identifying interesting

patterns associated with an outcome. The features involved in these patterns can then be used to

test if interactions also exist. This could involve association rule mining alogorithms [114, 24,

115, 116] that try to identify frequent patterns in the data, and clustering algorithms [117, 90, 118]

that try to cluster instances in different groups based on their features similarity. In clustering

algorithms, one can see the most frequent values of each cluster and the class they represent and

see if there are any interesting patterns that are different between the classes and focus on those

[4].
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Applying machine learning algorithms directly on high dimensional data can be computation-

ally demanding and can result in models that are hard to interpret [119]. Additionally in the case

that the number of features is much larger than the number of instances, a common case in biomed-

ical data, it is hard to identify the true signals from noise and there is also the risk of overfitting

[120]. To reduce the search space before performing interaction testing and to also alleviate the

issues aforementioned for machine learning methods, feature selection can be used [121, 119].

Feature selection, tries to identify the smallest subset of the available features that can best explain

the response variable. Various feature selection algorithms have been used in genetic data such

as Relief-F [122], the Recursive Feature Elimination Support Vector Machine (RFE-SVM) [123],

and various penalized regression methods [?].

In this chapter we propose a machine learning framework for discovering n-Way interactions

associated to disease that is demonstrated on real data from a Multiple Sclerosis study. The goal

is to use machine learning to reduce the dimensionality of the data and therefore limit the multiple

testing problem and the complexity of the analysis. Then subjects are clustered based on their

underlying genetic profile across multiple genetic loci. Finally, using the most frequent genotypes

of the clusters, the genotypes are converted to binary to reduce the degrees of freedom of the

interaction tests that will be performed and increase the statistical power.

6.2 Proposed Framework

The proposed framework is comprised of four steps. The first step is on quality control to

remove any erroneous data. The next two steps use machine learning to perform feature selection

and to cluster subjects based on their similarities. The final step uses the processed data of the pre-

vious steps to convert each feature into a binary variable before performing an n-Way interaction

testing. Essentially, the last step reduces the dimensionality of each feature and hence the degrees
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of freedom of the statistical test that will be performed. This, increases the statistical power of the

analysis. The proposed framework can be applied on categorical data and hence any continuous

features that need to be included in the analysis should be discretized. The features can be of any

type (e.g. genetic, environmental, phenotypic), which means that the analysis is not limited in

the identification of only interacting genetic data, but also the interactions between genetic and

environmental/phenotypic data.

6.2.1 Quality Control

The purpose of the first step is to perform data cleaning to remove data of low quality that

could negatively affect the analysis. In this step, one can use any of the well established methods

for quality control in genetic data. Some of these are the Hardy-Weinberg Equilibrium (HWE)

test, the minimum Minor Allele Frequency (MAF) filter and the percentage of missing values

filter.

6.2.2 Feature Selection

Once data have been cleaned, supervised feature selection is used. Since the ultimate goal is

to identify interactions, it is important to use an algorithm that can select such interacting features.

This means that it is better to avoid using feature selection algorithms that perform univariate

analysis, since this can exclude interacting terms that have low main effects. Another important

characteristic of the feature selection algorithm that will be used, is to use a similar modeling func-

tion as the interaction testing method. For example, if the interaction testing method is model-free,

then it is best if the feature selection algorithm is also model-free, otherwise important features

could be removed.
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6.2.3 Clustering

The next step is to cluster subjects based on their genotype. The similarity between data is

usually calculated using the Hamming distance when they are categorical. In this framework,

it is of interest to group subjects that have similar genotypic/environmental/phenotypic patterns

together and use those to help perform a more targetted interaction testing. For this reason, features

are handled as nominal categorical variables in the clustering procedure, since we do not want to

consider an order in the values of each feature. Once clustering is performed, each resulted cluster

will have a different number of cases and controls. If the majority of the subjects in that cluster are

Cases then the cluster will be labeled as a Cases cluster otherwise as a Controls cluster. Based on

these requirements, it is important to use a clustering algorithm that can handle nominal categorical

data such as the NC-SOM [95] and k-modes [124].

Finally, to select the appropriate number of clusters and to see if the resulting clustering is of

interest, the clusters should be evaluated. This can be tested using Pearson’s χ2 test on the number

of cases against the number of controls in each cluster, as was proposed in [4]. Using this test, one

can see if the distribution of cases and controls in the produced clusters deviates from the expected

and hence indicates that the patterns in the clusters could be used to separate the two classes.

6.2.4 n-Way Interaction Testing

In the last step, given that the clustering had statistically significant results, the features will

be encoded to binary variables. This is done by initially identifying clusters that are of interest,

based on the ratio of cases and controls, the size of the clusters and how distinctive the patterns of

a cluster of a certain label are from the patterns of clusters of other labels.

Once a cluster of interest is identified, the features’ values are encoded into binary, based

on the most frequent value the subjects of that cluster have for that feature. For example, if we
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had SNPs and for an SNP, the subjects in the cluster of interest mainly have heterozygous alleles

then aB and Ba will be encoded to the value of 1 and the homozygous minor alleles (aa) and

homozygous major alleles (BB) will be encoded to 0. Then n-Way interaction testing is applied to

all subjects using the new encoding.

This allows performing targeted interaction testing, since the clustering already identified the

values that are common in the cluster of a certain class. Hence, we are now investigating if these

patterns also have an interacting effect. Additionally, since we have reduced the dimensionality of

each feature to binary, the statistical power of the analysis is increased, which allows identifying

such interactions with smaller sample sizes as well.

6.3 Methodology

The dataset used in the experiments is presented along with the evaluation methodology of the

proposed framework. For each step of the proposed framework, the algorithms used are exten-

sively described.

6.3.1 Dataset

The distribution of the subjects in the dataset used in this study is shown on Table 21. It

consists of 389 Multiple Sclerosis (MS) patients and 336 controls from 3 MS centers; The Cyprus

Institute of Neurology and Genetics in Cyprus, the University Hospital of Larissa, and the AHEPA

Hospital of Aristotle University.

Table 21: Subjects Distribution

Males Females Total
Cases 138 251 389

Controls 102 234 336
Total 240 485 725
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All patients are of Greek origin with 240 of them being males and 485 of them being fe-

males. The dataset has 147 tagging SNPs across 9 genes encoding for P-selectin (SELP), inte-

grins (ITGA4, ITGB1, and ITGB7), adhesion molecules (ICAM1, VCAM1, and MADCAM1),

fibronectin 1 (FN1), and osteopontin (SPP1) [125]. The genotypes of the SNPs were assigned with

the value of 1 for homozygous minor alleles (aa), the value of 2 for heterozygous alleles (aB/Ba)

and the value of 3 for homozygous major alleles (BB). Missing values were represented by the

value of 0.

6.3.2 Evaluation Methodology

This section outlines the methods used in this study in each step of the proposed framework.

Additionally the methodology followed for evaluating the effectiveness of the framework is de-

scribed.

6.3.2.1 Quality Control

For data cleaning, two data characteristics were used. The first one was the percentage of

missing data of each SNP, and the second one the MAF. Specifically, any SNPs with more than

5% missing values or with an MAF less than 5% were removed from the dataset.

6.3.2.2 Feature Selection

For features selection, Random Forest (RF) [23] was used for finding the importance of the

SNPs regarding their ability of differentiating between cases and controls. RF is a collection of

many de-correlated trees and to decide in which class a subject belongs to, each tree votes and the

class with the majority of votes is selected. The algorithm creates each tree using bootstrapping

hence at each tree some subjects will be used more than once, whereas some others will not be.
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The subjects not used are called the out of bag (OOB) samples and are used for calculating the

misclassification error.

In this work, the implementation from the R package randomForest was used [48] using 50

trees and the importance of SNPs was measured by the Mean Decrease in Gini.

6.3.2.3 Clustering

For clustering, the NC-SOM [95] was used and specifically the version for nominal categorical

data with the methodology described in [4] for selecting the appropriate map size. SOMs have the

ability of assigning subjects with similar genetic data to neighboring clusters. Hence clusters

that are close together tend to have subjects that are similar to each other compared to subjects

in clusters in further locations. The distance between a cluster and a subject is calculated using

the Hamming distance, which is more appropriate for nominal categorical data. Additionally the

weights of each cluster, which represent the center of the cluster, are the modes of each cluster

and hence one can see the most frequent values of each SNP for that cluster. One difference to the

encoding applied to the data in [4], is that in this paper, SNPs are encoded to the genotype level

with the values {0, 1, 2, 3} for {missing, aa, aB/Ba,BB} respectively.

Different map sizes are evaluated on the input dataset using a stratified 2-fold Cross Validation

(CV). Due to the initial randomization of the weights of SOM, the 10-fold cross validation proce-

dure is repeated 10 times. To select the appropriate map size for SOM, the test was repeated on

different map sizes for 1000 epochs. The initial neighbourhood radius is set to half the map’s edge

size. The χ2 test is used for evaluating the clustering on both training and testing data, by applying

it on the contingency table that has the number of cases and controls of each cluster. The map size

with the lowest p-value is selected and if it is statistically significant (p − value <= 0.05) the

clustering is repeated with all data and the analysis proceeds to the next step of the framework.
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6.3.2.4 n-SNP Interaction Testing

For interaction testing, two methods were used to test if the proposed framework behaves

similarly in different methods. The first method is the classic logistic regression and the second

a χ2 based interaction testing method [126]. Both methods were testing for 2-SNP and 3-SNP

interactions.

For the logistic regression, the model used for 2-SNP interaction testing is shown in (15)

ln(
p

1− p
) = β + βAxA + βBxB + βABxAxB (15)

in which xA and xB are the two SNPs of interest at loci A and B respectively, βA and βB

are regression coefficients that represent the main effects of exposures at A and B, and the coef-

ficient βAB represents an interaction term [75]. Similarly the model can be extended for 3-SNP

interactions as shown in (16).

ln(
p

1− p
) = β + βAxA + βBxB + βCxC + βABxAxB

+ βACxAxC + βBCxBxC + βABCxAxBxC

(16)

The model for 2-SNP interaction testing using the χ2 method is shown in (17)

χ2
A∗B = χ2

A+B − χ2
A − χ2

B (17)

where χ2
A+B is the omnibus effect of SNPs A and B, χ2

A is the main effect of SNP A and χ2
B

is the main effect of SNP B. To calculate the degrees of freedom (18) is used

DFA∗B = DFA+B −DFA −DFB (18)
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where DFA+B is the degrees of freedom of the χ2 test performed on the omnibus effect of

SNPs A and B and similarly DFA, DFB for the main effect of SNPs A and B respectively. To test

for 3-SNP interactions the model is extended as shown in (19)

χ2
A∗B∗C = χ2

A+B+C − χ2
A∗B − χ2

B∗C − χ2
A∗C

− χ2
A − χ2

B − χ2
C

(19)

and its degrees of freedom can be calculated using (20)

DFA∗B∗C = DFA+B+C −DFA∗B −DFB∗C −DFA∗C

−DFA −DFB −DFC

(20)

Interaction testing was performed on both the binary version of the genotypes and on the initial

encoding, to test if the proposed encoding helps with the task at hand. An exhaustive 2-SNP and 3-

SNP interaction testing was performed on the selected SNPs. In each tested SNPs pair/triplet, the

subjects that had a missing value in the SNPs of that pair/triplet, were removed from the analysis.

An interaction was considered statistically significant if it had a p-value less than 0.05. To address

the multiple testing problem, permutation analysis was performed to adjust the p-values using

10,000 permutations.

6.4 Results

From quality control, 80 SNPs failed to pass the missing data threshold and from the remaining

ones two more failed to pass the MAF threshold. Hence the Random Forest had 65 SNPs to

analyze. The SNPs importance plot is shown in Figure 10.

Based on the mean decrease in Gini, the top 7 SNPs of Figure 10 were selected. All 7 SNPs

were also found having an association with the case/control status of the subjects in [125]. This
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Figure 10: The importance of the top 30 SNPs from the Random Forest analysis using the mean
decrease in Gini.

means that in the selected SNPs there are no SNPs with a low main effect and that any possible

interactions in this case are between SNPs that have high main effects. Random Forests can

include SNPs that have low main effects if they are interacting with SNPs with high main effects,

but if the interacting SNPs are all with low main effects it is possible that they will be missed [76],

hence such interactions might have been missed.

After testing different map sizes for the SOM using cross validation, the final topology was

selected to be a 2x2 map. The clustering with all subjects using the selected SNPs from Random

Forest had a p-value of 0.00002, indicating that the distribution of cases and controls in the clusters

was deviating from the expected. The final clusters are shown in Figure 11.

Each row represents a cluster and has its identification number (ID) in the first column and the

number of cases and controls in the next two columns. An asterisk indicates the majority class
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Figure 11: Each row represents a cluster of the SOM. The first two columns indicate the number
of cases and controls each cluster has and an asterisk indicates if the majority of subjects is cases
or controls. The rest of the columns show the most frequent genotype of each SNP for the subjects
that belong to it.

of a cluster. Then for each SNP the most frequent genotype of the subjects that belong to that

cluster is shown. Red indicates homozygous minor alleles, yellow heterozygous alleles and green

homozygous major alleles. As indicated on Figure 11, the first three clusters (IDs 1-3), include a

majority of cases in them and only the last cluster (ID 4) has a majority of controls. The encoding

of the SNPs to binary, will be based on the controls cluster to evaluate if there are SNP interactions

with those genotypes that can help separate cases from controls. For example, SNP rs281437 will

have the value 1 for its homozygous major alleles and 0 for the rest.

The interaction testing results are shown in Table 22. Both logistic regression and the χ2

method identified more 2-SNP and 3-SNP interactions using the proposed binary encoding com-

pared to using the initial encoding. In both methods methods there a single 2-SNP interaction

that was only identified using the initial encoding, whereas using the binary encoding the logis-

tic regression identified four more SNP interactions and the χ2 method five more that were not

identified using the initial encoding.
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Table 22: Statistically Significant n-SNP Interactions per Method and SNP Encoding

Initial Encoding Binary Encoding Initial Encoding Binary Encoding
2-SNP interactions Logistic χ2

rs17225354 (ITGA4) & rs6721763 (ITGA4) X X
rs17225354 (ITGA4) & rs281437 (ICAM1) X X X
rs17225354 (ITGA4) & rs1250258 (FN1) X X
rs2076074 (SELP) & rs6721763 (ITGA4) X X

rs11689738 (ITGA4) & rs281437 (ICAM1) X X X X
rs11689738 (ITGA4) & rs6721763 (ITGA4) X X

3-SNP interactions Logistic χ2

rs17225354 (ITGA4) & rs281437 (ICAM1) & rs1250258 (FN1) X X
rs2076074 (SELP) & rs6721763 (ITGA4) & rs281437 (ICAM1) X X
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There are two reasons for being able to identify more n-SNP interactions using the proposed

encoding. Initially, with binary encoding, the degrees of freedom of the statistical tests are reduced

and hence the power of the analysis is increased. For example, in the χ2 method, using the initial

encoding in the 2-SNP interaction test we ended up with four degrees of freedom, whereas using

the binary encoding with only one. Similarly, for the 3-SNP interaction test, we dropped from 8

degrees of freedom to one. The second reason is due to the fact that the encoding enforces a more

targeted analysis on the possible interacting SNP values that can be seen from the clustering step,

which shows the SNP genotypes that are more frequent in the cluster of interest versus the rest,

which in this case is the controls cluster versus the cases clusters.

6.5 Conclusion

A framework for the efficient identification of n-Way interactions has been proposed. The

framework removes any erroneous data in its first step and then uses feature selection to reduce

the dimensionality of the search space and select the most informative features. This, reduces

the statistical tests that will be performed and hence the multiple testing problem. Additionally,

it reduces the computational complexity of the analysis to be performed and the probability of

overfitting. Therefore, the first two steps of the framework focus on providing high quality and

informative features.

In the clustering step, subjects are grouped based on their similarity in their genotypes and

each cluster is labeled based on the majority class of the subjects. This enables the visualization

of the most frequent values of the subjects in each cluster and the phenotype they represent. Then

a cluster of interest is selected and its values are used to convert the genotypes to binary variables.

This enables a targeted interaction testing analysis and additionally increases the power of the

statistical analysis due to the reduction of the degrees of freedom of the tests. As has been shown in
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the results, using the binary encoding more 2-SNP and 3-SNP interactions were identified, which

further supports the hypothesis that the proposed framework helps identifying more interactions.

Additionally, due to the cluster based binary encoding, the framework can also promote per-

sonalised medicine. For example, one could identify different n-Way interactions for each cluster

of interest and hence adjust the treatment of a patient based on his/her genotypic profile.
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Chapter 7

Concluding Remarks

7.1 Conclusion

This work began with the project Linked2Safety, a semantically interconnected approach for

sharing aggregated data in the form of data cubes, which preserves individuals’ privacy, while

enabling the multi-source, multi-type analysis of health data through a single web based secure

access platform. From the experience acquired in the project, two problems were identified that

needed to be automated. The first one is the need for automating the selection of the most in-

formative variables to be published in the platform so as to increase the probability of significant

findings in the analyses that would be performed. The second one was the need for converting any

continuous variables into categorical to be able to use the data cube approach with cell suppression

for anonymizing the data.

To address the problem of selecting the most informative features and anonymizing data, kPB-

MS was proposed. The algorithm combines feature selection with k-anonymity, so as to select the

most informative features that conform to the k-anonymity criterion and to reduce the number

of instances removed from the dataset. For the feature selection algorithm, a novel measure was

proposed which is model free and computationally efficient so as to be able to capture any type
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of variable associations with the target variable and to be able to analyze efficiently high dimen-

sional data. The multidimensional suppression procedure of kPB-MS takes into consideration the

instances removed and the effect of record suppression on classifiers. The first is obtained by al-

lowing the user to define the accepted loss of instances, whereas the second is obtained by testing

the significance of the suppression using Fisher’s exact test on each pattern. As shown in the re-

sults, the algorithm did not negatively affect the classifiers in 80% of the test cases, indicating that

kPB-MS can be used in privacy preserving data publishing.

The second problem was addressed with the proposal of DBAD, a novel supervised discretiza-

tion algorithm, based on how the density of the values of a feature changes for each class. DBAD

had similar or better results with the state of the art discretization algorithms that were used in

the evaluation procedure in the majority of the tests, showing that density based discretization is a

promising approach and needs to be further investigated. DBAD is computationally efficient and

embarrassingly parallel. The parallel implementation of the algorithm showed that it can obtain a

linear speedup, which makes it appropriate for use on big data.

To identify n-SNP patterns associated with the disease status of individuals, a categorical ver-

sion of SOM was used. For selecting the map size of the network, the χ2 statistic was proposed,

due to its ability of taking into consideration the distribution of the classes, the number of indi-

viduals in the dataset and the number of active clusters of the network, to avoid overfitting. The

produced clustering of SOM was statistically significant, revealing an association among the SNP

patterns in the clusters generated and the disease status of the subjects, indicating that clustering

subjects with similar SNP patterns together, is an important feature that may prove of significant

value in future multi-loci association testing.

Finally, since the identification of interactions is important in common complex diseases, a

framework for the efficient identification of n-Way interactions was proposed. The framework

Aris
tos

 Aris
tod

im
ou



112

removes any erroneous data in its first step and then uses feature selection to reduce the dimen-

sionality of the search space and select the most informative features. Therefore, the first two

steps of the framework focus on providing high quality and informative features. The next step

uses clustering to group subjects based on their similarity in their genotypes and each cluster is

labeled based on the majority class of the subjects. Then a cluster of interest is selected and its

values are used to convert the genotypes to binary variables. This enables a targeted interaction

testing analysis and additionally increases the power of the statistical analysis due to the reduction

of the degrees of freedom of the tests. Results indicate that using the binary encoding we were

able to identify a larger number of statistically significant 2-SNP and 3-SNP interactions com-

pared to using the initial encoding of the genotypes, which further supports the hypothesis that the

proposed framework helps identifying more interactions. Additionally, due to the cluster based

binary encoding, the framework can also promote personalised medicine, since one can identify

different n-Way interactions for each cluster of interest and adjust the treatment of patients based

on their genotypic profiles.

Overall the four proposed methodologies have shown promising results and can be used in dif-

ferent aspects of the analysis of categorical data in the medical domain. From converting variables

into categorical, to performing privacy preserving data publishing so as the data from multiple

sources can be combined, and finally to the analysis of such data for the identification of n-Way

associations or interactions that can be ultimately used in drug discovery and for adjusting patients

lifestyle for reducing the risk of developing a disease.

If anyone is interested in validating these results, the source code of the algorithms used and

the experiments performed can be shared upon request along with the publicly available datasets.Aris
tos
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For datasets such as the ones on multiple sclerosis from ANZGENE and the Cyprus/Greece col-

laboration, one should request access from the consortium that owns the datasets to be able to

perform any analyses on them.

7.2 Future Work

7.2.1 DBAD

The main issue with the current DBAD implementation is its simple strategy for the initial

binning of the data of each class for a feature. Currently Sturge’s rule is used to select the number

of equal-width bins that will be created. Hence, one optimization that can be tested is the use

of a technique that can better capture the different densities and create non-equal-width bins, like

TUBE [67] and the diagonally-cut histogram. A recursive DBAD execution on each bin could also

be tried to decide if a bin should be further splitted and better identify regions in which densities

change.

Furthermore, a metric based on class separability could be used to decide which bins to keep

after the created bins of each class are merged. This could reduce the final per feature intervals

and help classifiers produce simpler models.

7.2.2 n-Way Interaction Testing Framework

Initially, we plan to collaborate with experts in the domain to see if the biological function of

the identified interacting genes can be related to MS. This will be based on literature review on

the specific genes (SELP, FN1, ITGA4 and ICAM1) to see what information is available on the

way these genes function separately and if they have been identified associated with the risk of

having MS in other studies. Additionally, bioinformatics tools for pathway analysis will be used,

such as pathvisio [127] and path [128]. Biological pathways can be used to identify the steps in
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biological processes and hence can help with the biological interpretation and understanding of

the interactions between these genes. If biological validation of the findings is achieved, then there

will be further support that the proposed framework is capable of identifying true positive n-Way

interactions even in small datasets.

The proposed framework, can be applied on other Multiple Sclerosis datasets and see if we

can replicate the results of the initial study if the same SNPs are available. That would further

support that the patterns identified are significant and that they can be used as risk factors for the

disease or even for producing new drugs based on their biological functionality.

It can also be used on datasets with genetic and other markers, such as phenotypes and imaging

data and see if there are any combinations of such variables that can help separate cases from

controls. In such a case, the following pipeline will be followed:

1. Discretize any non categorical variables.

2. Apply the framework on the discretized dataset.

7.2.3 Deep Learning

Deep learning has had very good results especially in image processing [129, 130] and it is

worth testing how it behaves when combined with some of the methods described in this thesis.

The first thing that would be interesting to see, is how deep learning and specifically Convolutional

Neural Networks (CNN) would perform when image data get discretized using the DBAD algo-

rithm and whether that would help achieve a convergence faster and if its accuracy is positively

affected as was the case with other algorithms [50] when they used discretized data, compared to

using the original continuous data.

Since neural networks, in general, are hard to interpret [131], they cannot be easily used for

n-Way interaction testing and the identification of which features are interacting in a case/control
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study. Instead, a deep neural network could be used after this analysis is performed, using as input

the identified interacting features (generated via the proposed n-Way interaction testing frame-

work) to classify the instances into cases and controls. Moreover, such a model could be used for

predicting the risk of subjects having a specific disease based on their genetic/environmental/phenotypic

profile.
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[50] S. Garcia, J. Luengo, J. A. Sáez, V. Lopez, and F. Herrera, “A survey of discretization
techniques: Taxonomy and empirical analysis in supervised learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 4, pp. 734–750, 2013.

[51] R. Ali, M. H. Siddiqi, and S. Lee, “Rough set-based approaches for discretization: a com-
pact review,” Artificial Intelligence Review, vol. 44, no. 2, pp. 235–263, 2015.

[52] M. Richeldi and M. Rossotto, “Class-driven statistical discretization of continuous at-
tributes,” in European Conference on Machine Learning. Springer, 1995, pp. 335–338.

[53] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised discretization of
continuous features,” in Machine Learning Proceedings 1995. Elsevier, 1995, pp. 194–
202.

Aris
tos

 Aris
tod

im
ou



120

[54] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent survey,” GESTS
International Transactions on Computer Science and Engineering, vol. 32, no. 1, pp. 47–
58, 2006.

[55] S. Ramı́rez-Gallego, S. Garcı́a, H. Mouriño-Talı́n, D. Martı́nez-Rego, V. Bolón-Canedo,
A. Alonso-Betanzos, J. M. Benı́tez, and F. Herrera, “Data discretization: taxonomy and big
data challenge,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 6, no. 1, pp. 5–21, 2016.
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