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Humans are emotional beings and their feelings influence the way they perform and interact with

computers. Emotion recognition is important in a variety of applications such as intelligent tutoring sys-

tems, computer games, robotics, medical and human computer interaction. The most expressive modal-

ities for humans is body posture and movement and it has lately received attention from researchers in

the use for emotion recognition. Despite these advances, there is a significant gap in low recognition

rates on emotion derived from body modality.

This thesis addresses shortcomings in emotion recognition and it proposes various methods towards

an automatic emotion recognition system. Firstly a method using body postures to detect emotions in a

game environment is presented. Even though there was no temporal information available it resulted in

satisfactory levels of recognition. Secondly a method adding temporal information with high level no-

tational systems is presented inspired by several temporal techniques and the theory of Laban [137], we

have created a model that achieved an 89% recognition rates, showing that temporal information along

with high level notation systems can increase the results. Thirdly a method of automatic segmentation

of body movements is presented, proposing symmetry for automatic segmentation, which can be used

as an input for fully automated systems of recognising emotions. Finally a method to classify emotions

using deep CNN models on the 3D raw data is presented resulting to a high recognition rates of 81% for

binary classification that shows a very promising path for future research.THEOCHARIS ZACHARATOS
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Chapter 1

Introduction

1.1 Motivation

Scientific findings indicate that emotions play an essential role in decision making, perception and

learning, hence influence the mechanisms of rational thinking. An imbalance of emotion can impair

decision-making. According to Rosalind Picard [186], if we want computers to be genuinely intelligent

and to interact naturally with us, we must give them the ability to recognize, understand and express emo-

tions. Despite the significance of user affect in computing, technologists have largely ignored emotion,

resulting in often-frustrating experiences for people. Affective computing is the study and development

of systems and devices that can recognize, interpret, process, and simulate human affect. Research in

this field combines engineering and computer science with psychology, cognitive science, neuroscience,

sociology, education, psychophysiology, value-centered design, ethics, and more. Detecting emotional

information begins with active or passive sensors that capture data of the user’s physical state or behav-

ior. The data gathered can depict emotions from different input sources called modalities. For example, a

video camera might capture facial expressions, body posture and gestures, while a microphone captures

speech. Other sensors detect emotional cues by measuring physiological data, such as skin temperature

and galvanic resistance. Even though some of the above modalities have been successfully explored,

1
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new modalities have started to arise. One very promising and emerging modality that has lately started

to receive attention from researchers is body posture and movement.

Various application areas exists for emotion recognition. In intelligent tutoring systems, emotion

recognition can be used to adapt the presentation style when a learner is bored, interested, frustrated or to

detect student motivation [15] [223]. This can be done by providing an estimation of the level of interest

and engagement derived from the Theory of Mind [16], which emphasizes the principles and techniques

that humans deploy in order to understand, predict, and manipulate the behavior of other humans. In

online education, there is a lack of direct, timely, and effective communication and feedback between

teachers and students. By enabling real-time emotion detection in online lessons ensures that feedback

expressed by facial expressions can be provided to teachers real time which will enable them to adjust

the teaching program and ultimately improve the quality and efficiency of online education [230].

In games, the affective state of players during game play has a significant effect on their motivation

and engagement. Often players lose interest and stop playing a game due to negative emotions such as

frustration or anger. On the other hand, players who experience positive emotions during game playing

are more likely to continue playing. A system that recognizes player’s emotions during game playing

can be a useful tool for game designers, allowing them to employ artificial intelligence behaviors for the

characters and the game in response to the user’s state. New advances in non-intrusive user interfaces

that allow human gestures as input have resulted in the high popularity of a new game genre called

exergaming. Exergames go beyond the passive gameplay activity that traditional controllers such as

gamepads, keyboard and mouse offer, and require players to become physically active using their body

movements for interacting with the game. They are often used to promote a healthy lifestyle for both

casual gamers that use such interfaces at home but also for special categories of users who need to ad-

vance their physical activity in order to improve specific health conditions [86] [124] [114] [113].THEOCHARIS ZACHARATOS
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A fascinating challenge in the field of robotics and human-robot interaction is the possibility to endow

robots with emotional intelligence in order to make the interaction more intuitive, genuine, and natural.

To achieve this, a critical point is the capability of the robot to infer and interpret human emotions. For

example in healthcare, we have interactive assistive robots designed to interact socially with humans

and non-interactive robots for surgical, rehabilitation and medication delivery [80]. In Human Robot

Interaction (HRI), emotions have been considered from the following main points: a) Formalization of

the robots own emotional state, in order to improve their effectiveness and enhance their believability

[110], b) emotion expression, the ability of robots to exhibit recognizable emotional expressions for

social interaction [163] and c)Ability to infer the human emotional state in order to be more effective

while interacting with people [41].

Driving is an essential activity that people do and research suggests that is affected by people’s

emotions [117]. The inability to manage one’s emotions while driving is often identified as one of the

major causes for accidents. A system can use physiological sensors to collect and analyze data in order

to recognize the driver’s affective state, by interpreting both the mental and physiological components

of the particular emotion experienced, and respond accordingly [24] [105]. In this field companies

are utilizing research results to create multimillion global operations, such us Affectiva, which analyse

human states while driving, to save lives by improving road safety with in-cabin sensing [2].

Emotion recognition is also being used for medical applications and healthcare, to detect depression

for patients suffering with dementia [133], or detect emotion in patients diagnosed with schizophrenia

and autism [102]. Emotion recognition systems are particularly suited for the study of autism spectrum

disorder (ASD), where patients with sever symptoms have developmental and long-term difficulties in

evaluating facial emotions [153].

It is highly anticipated that the advent of 5G technology will affect a huge amount of information

processing and numerous applications in internet of things. However, it should be a serious threat if
THEOCHARIS ZACHARATOS
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AI algorithms are utilized to attack a wide range of applications and promising systems including 5G-

enabled autonomous cars, smart drones, AI-driven facilities, smart buildings, manufacturing machinery,

and healthcare in advanced smart cities. Due to this threat a recent and promising emotion recognition

area has emerged, the ability to distinguished humans from machines and things [125].

When it comes to reading and understanding emotions, humans are still way ahead of machines.

It is foreseen that with further scientific progress, the emotional intelligence of machines will become

more accurate, in order to become an increasingly integral part of our communication. My personal

motivation is to contribute to this endeavour by creating beyond the state of the art reseach in emotion

recognition and more specifically from body movements.

1.2 Problem Statement/Contributions

Over the past few years, many experiments with different approaches towards emotion recognition

have been carried out. These approaches differ in various aspects, such as the modalities they utilize, the

way they model the emotions, the emotion sets they tackle, and the techniques they deploy to achieve

the recognition. The most widely used modality in emotion recognition is facial expressions [152] [157]

[218]. A recent successful example using this modality was the FERC project [167] which deployed

Convolutional Neural Networks in two phases. In the first phase to remove background information

and in the second to extract a facial feature vector. Trained from a custom database of 10,000 images

captured from 154 different persons, the developed model achieves a recognition rate of 96% accuracy

for a set of 5 emotions. A similar approach [108] utilized a set of two sub-networks, each one utilizing a

different CNN architecture. Each sub-network has a different task. The one network recognizes eye and

mouth features, while the other focuses on macrostructure. After it was tested on public databases, the

model achieved accuracy rates between 62.11% and 96.44%. While the face modality can potentially

offer high recognition rates, test results indicate, that cannot generalize in all cases. Voice expressions
THEOCHARIS ZACHARATOS
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have also been used in the form of lexical cues [59] and a combination of acoustic and linguistic features

[148] [143] but such techniques cannot generalize the verbal content of emotional speech. Brain and

physiological signals such as Electroencephalography [154] and pulse/heart rate have been analyzed to

recognize emotions with signal processing and traditional classification algorithms. Such techniques are

still costly and experimental and do not yet provide recognition rates higher than facial features.

Using only motion to derive the affective state of the user is a challenging task, due to the fact that it

involves precise motion segmentation, evaluation using human characteristics which are based on people

origin, tradition or customs, and all these need to be performed in real time for useful results. As part of

this thesis automatic emotion recognition methods from body movements are proposed, during a human

computer interaction process.

Over the past years a set of approaches have been proposed that use expressions derived from body

postures and movements [28] [50] [122] [128] [228]. A recent technique [200] deployed deep neural

networks that receive low level sequences of body joints position and orientation to recognize seven

different emotions from motion data collected with Microsoft Kinect. The results of experiments with

different sets of emotions show that this technique can identify emotion above chance level (accuracies

that vary between 33% and 89% for different emotions and different experiments). Another interesting

statistic reported is that human performance for the given tasks can be as high as 63%, showing the

subjectivity of perceiving emotions even when acted, leading clearly to a need of emotion recognition

from one modality such us body motion or to a recommendation of incorporating the techniques as part

of a multimodal system.

Another recent technique[208] proposed a CNN that models the skeleton data as a static graph,

but adds additional connections among joints, adding supplementary information. They used a custom

dataset of 5492 samples divided in four emotional classes and achieved 68.4% accuracy in emotionTHEOCHARIS ZACHARATOS
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recognition. Another technique[53] used the Riemannian center of mass for each motion classifica-

tion on a set of five emotion classes, with acted data captured constrained in moving along a given

path with average accuracy of 71.2%. The human evaluator results of this study reported an average of

74.2%. In addition to the above techniques mentioned there was another [3] that recognized emotions

among five classes using a first step of ANOVA to remove irrelevant features, and a binary-chromosome

genetic algorithms to further reduce the feature set. This system achieved accuracy of 86.6% using a

proprietary data set. Part of the feature set used in this work was based on Laban Movement Analysis,

which was used in an earlier experiment as part of the current thesis.

This thesis addresses some of the issues arise from of low recognition rates, on emotion derived from

body modality. More specifically a method using body postures to detect emotions in a game environ-

ment is presented. Even though there was no temporal information available, and with a limited training

data sets, it resulted to satisfactory levels of recognition. In addition a method adding temporal informa-

tion with high level notational systems is presented. Adding more features by inserting 3D data as an

input with temporal information and Inspired by several temporal techniques and the theory of Laban

[137], we have created a model that achieved an 89% recognition rates, showing that temporal informa-

tion along with high level notation systems , such us the Laban, can increase the results. Further more a

method of automatic segmentation of body movements is presented, which can be used as an input for

fully automated systems of recognising emotions. Proposing symmetry that can be used as a feature to

automatic segmentation expressive clips, we have created a symmetry detection and segmentation algo-

rithm, that produced satisfactory results. Finally a method to classify emotions using deep CNN models

on the 3D raw data is presented resulting to a high recognition rates of 81% for binary classification

that illustrates a very promising path for future research. A short description of the contributions over

traditional approaches is presented over the next few paragraphs.THEOCHARIS ZACHARATOS



71.2.1 Emotion Recognition from Body Postures

Body postures do not contain temporal data but can still embed affective information. Previous

studies have used postures captured from professional motion capture software to build and test emotion

recognition models that perform at comparable to human base rates in which humans used only an

avatar representation model with no facial expressions to rate postures [130]. A major difference of

the current research was the use of a less accurate sensor for body skeleton (Microsoft Kinect) since

professional motion capture systems are not available to home gaming systems, making results not

applicable in short-term. This project investigated the comparison of an automatic recognition system

based on postures information but provided the observers who performed the annotation with a double

modality information, both skeleton data and video snapshot. This resulted in increased agreement levels

and raised the human base rate. The system was trained based on the labelling of the observer with higher

agreement levels. The classification problem included three classes of emotions concentrated, frustrated

and triumph, therefore the chance level recognition probability was 33.33%. The overall agreement of

observers measured before training was 72% showing that emotion recognition based on posture is not

always a deterministic task. Despite this, the trained model achieved 61.22% recognition rate, using

back-propagation, well above chance level and close to the observers’ agreement. Since the training set

that was used was limited (included only 147 postures) and unbalanced (half of postures belonged to the

frustrated class), the proposed technique has potential of improvement, since there are now several data

augmentation techniques [43] [100] [71] [136] [132] [196] [209] [218] that can enlarge and improve the

training data set, anticipating higher performance levels for the model. Overall, postures may lack the

temporal dimension, however a model can utilize a set of key postures (such as key frames) to extend

its functionality in a temporal space, while maintaining its simplicity of expressive postures as input for

the model.THEOCHARIS ZACHARATOS



81.2.2 Emotion Recognition Using Motion

The use of raw 3D skeleton data has proven successful in many experiments [19] [127] [162] [161]

and researchers have made efforts to determine more sophisticated feature sets such as velocity, accel-

eration, fluidity amplitude and so on [40] [201] [202]. The current project utilized observer agreement

to achieve annotations on non-acted motion clips for the emotions of excitement, frustration, concen-

tration, and meditation. For the classification problem novel features derived from the Space and Time

motion factors of the Effort component from the Laban Movement Analysis (LMA) theory [137] were

calculated. Previous studies that deployed Laban’s theories in examining emotion either did not perform

automatic emotion recognition [161] [162] or did so with low recognition rates [35] [37] and on other

domains such as dance. The current project focused on motion data captured from computer games

sessions (more particular exergames, i.e. using the body as the input modality). Using the Space motion

factor of LMA allowed the feature set to contain elements of human attention to surroundings. The pro-

posed implementation of the Space component included percentages of narrowing down the body, and

the orientation of the face vector with the four extremities. Further more implementing the Time motion

factor of LMA enables to encode decision and intuition in the feature set. Sustained movements convey

calmness, while sudden movements convey excitedness. Velocity, acceleration and jerk for the four ex-

tremities of the body were used to implement the Time factor. Data analysis revealed that the selected

feature set allows distinguishing the four emotion classes. The overall results show high recognition

rates for all four emotion classes (83-89%) showcasing the strength of LMA in engineering features for

automatic emotion recognition. The current project success on deploying two LMA factors, highlighted

that further engineering on Laban-based features can provide additional intuition towards emotion ex-

pressiveness via the body motion modality. Compared to the previous experiment with postures, this

experiment deployed more complex raw data that was transformed based on the LMA theory and usedTHEOCHARIS ZACHARATOS
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a bigger data set of 309 non-acted labelled motion clip samples. Nevertheless as mentioned, data en-

gineering, augmentation or deployment of the latest deep learning techniques may further improve the

recognition accuracy, however given the already high recognition rates this might not necessarily be the

case.

1.2.3 Segmentation and Recognition of Emotional Expressiveness in Raw 3D Body Motion Data

The previous experiments showcased emotion recognition based on 3D posture and motion data

recorded during gaming, however this was based on pre-segmented clips and human annotation. In an

application scenario, recognition needs to happen in raw data produced in a time series format. In this

case, the system should be able to determine emotion on clips that are not if given or predetermined size.

The third experiment of this thesis provides a solution in this direction as well as a different approach

towards recognizing emotional expressiveness. Raw data from 13 players who played sports games for

30 minutes was collected. The raw data is parsed by a function that calculates rotational kinetic energy

at each frame, based on angular velocity. Based on observation of the raw data, energy increases during

energetic motion. The energy signal is smoothed with the Savitzky Golay filter and clip segmentation

takes place between local minima. Following the segmentation, a symmetry calculation based on hand

and leg joints allows the analysis of the movements. Observation yielded that seeking above than average

body symmetry combined with reduced lower body energy, appears to isolate a large percentage of the

expressive clips and removes the vast majority of the non-expressive clips. While this novel approach

has satisfactory preliminary results, its contribution can be further enhanced with further research in

the given direction, such as the combination of this technique with either supervised learning where the

LMA features are calculated after the segmentation, or with outlier detection considering emotions as

outliers of a large cluster of non-expressive clips.THEOCHARIS ZACHARATOS



101.2.4 Deep CNNs for Emotion Recognition on Image transformation of 3D Motion Data

The final experiment of this thesis, focused on the classification of emotions from 3D body move-

ments using modern Deep Learning techniques. Previous techniques focused on multimodal feature set

that combined body motion with other modalities [150] [17]. Another technique [200] deployed sequen-

tial model of low level 3D joint data. The proposed technique utilizes a model that was used for action

recognition [216] but this time on the context of emotion recognition. Each 3D motion skeleton data

clip is converted to an RGB image with each row comprising a frame, and each column the temporal

value series of a given feature. Features include joint to joint distances and their orientations with the

orthogonal axes. The images are then used to apply transfer learning to train a version of the Inception

V3 model and use it to solve a binary classification emotion recognition of happiness and sadness. The

experiment used an acted emotional body movement data set [90]. The dataset contained scenarios of

typical and natural expressions, captured by a motion capture system. Selected scenarios were carried

out to include an equal number of men and women actors. Overall, 208 happiness and 194 sadness

different input clips were deployed for training and testing the model. The results of binary classifica-

tion between happiness and sadness exhibit a 81% recognition rate, showing that combining posture and

subsequent frame motion dynamics in an image that uses rows as a temporal dimension and columns as

dynamic features can capture affective information.
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111.3 Document Structure

Chapter 2 summarises related affective computing literature around body movements. It provides

an overview of emotion theories and the models of emotion recognition concentrating on body move-

ments. It illustrates recent approaches on emotion recognition from body movements and summarises

experimental methodologies to capture, validate such emotions.

Chapter 3 describes an initial contribution using active game playing data with postures to recognise

three distinct emotions.

Chapter 4 describes the contribution of a real time emotion recognition system for four distinct

emotions, using Laban Movement Analysis techniques to generate features used by the machine learning

algorithms.

Chapter 5 Portrays the contribution of real time body symmetry detection and how it is related to

emotion expressiveness from raw 3D body motion data.

Chapter 6 Covers our latest contribution utilizing deep neural networks for emotion recognition,

using image-based transformations of 3D skeleton motion data.

Chapter 7 Summarizes the conclusions of the current thesis as well as the future directions from the

research perspective.
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Chapter 2

Related Work

2.1 Models of emotion

Recognition and analysis of human emotions have attracted a lot of interest over the past two decades

and extensive research has been carried out in neuroscience, psychology, cognitive sciences, and com-

puter sciences. There are various ways of representing emotions, either by using distinct emotions

like happiness, sadness, fear, anger, surprise, disgust or by measuring and contextualizing emotions ac-

cording to some dimensional space as illustrated in Figure 32, where emotions are represented in two

dimensions of valence and arousal and each emotion can be viewed as point in the space defined by

these dimensions.

Similarly, emotions are represented on dimensions containing activation and evaluation. Activation

is understood as the tendency of the person to execute an action according to his emotion and evaluation

reflects the global appraisal of the positive or negative feeling [187] [50].

Popular models have seen to be those dealing with psychological models of nonverbal communi-

cation like the Pleasure-Arousal-Dominant model (PAD). In the PAD model, the Pleasure-Displeasure

scale measures how pleasant an emotion may be, the Arousal-Nonarousal scale measures the intensity of

the emotion, and the Dominance-Submissiveness scale represents the controlling and dominant nature

12
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13of the emotion [168].

Another model widely used in emotion research is the OCC model [178] that is applied in a large

number of studies to generate emotions for embodied characters [66] [131]. This model states that the

strength of a given emotion primarily depends on the events, agents, or objects in the environment of the

agent exhibiting the emotion. The model specifies 22 emotion categories and consists of five processes

that define the complete system that characters follow from the initial categorization of an event to the

resulting behavior of the character. These processes are a) classifying the event, action or object encoun-

tered, b) quantifying the intensity of affected emotions, c) interaction of the newly generated emotion

with existing emotions, d) mapping the emotional state to an emotional expression and e) expressing the

emotional state.

An alternative approach for modeling affect is the Appraisal theory. Appraisal theory is the idea

that emotions are extracted from our evaluations (appraisals) of events that cause specific reactions in

different people. Essentially, our appraisal of a situation causes an emotional response that is going

to be based on that appraisal. Appraisal theories offer a more flexible framework than discrete and

dimensional models, being able to account for individual differences and variations of responses to the

same stimulus by the same individual at two different moments in time [197].

All the above definition of emotions have been used in studies before. Distinct emotions are preferred

in studies with a need for specific emotions to be recognized such as in a healthcare for recognition of

depression or concentration. By using models of emotion in a dimensional way, you can combine distinct

emotions, resulting in a dimension recognition, thus resulting in higher recognition rates. Dimensional

approaches can be used in applications like games where a dimension of valence or arousal is enough

for recognizing excitement vs boredom.
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Figure 1: The Valence-Arousal space

2.2 Emotion recognition from various modalities

There has been extensive research in the field of emotion recognition using various modalities. The

most widely used techniques are through facial expressions [157] [180], where recognition of actions

of individual muscles called action units is performed, rather than emotions through the detection of

differences between a spontaneous and an exaggerated data. Such studies incorporate temporal dynamics

of facial actions and parameters like speed, intensity, duration, and the co-occurrence of facial muscle

activation, in order to classify facial behavior presented as either deliberate or spontaneous [220] [152].

Another widely used modality is voice expressions. Through voice expressions [238]. Methods pro-

pose interpretation of speech signals in terms of certain application-dependent affective states. Lexical

cues were used with better performance than paralinguistic cues to detect relief, anger, fear, and sadness

in human-human medical conversations [59]. Some studies introduce the idea of using a combination of

acoustic and linguistic features to improve vocal affect recognition [148] [143]. Although this can show

an improvement on vocal recognition, in many cases the automatic extraction of these related features

can be a difficult problem. Existing systems based on this idea cannot reliably recognize the verbalTHEOCHARIS ZACHARATOS
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content of emotional speech. Furthermore, extracting semantic discourse information is even more

challenging. Most of these features are either extracted manually or by transcripts.

It is worth mentioning that over the past two decades several studies have focused on emotion recog-

nition using brain-machine interfaces. They are based on the neural activity of the users [151] and

the most used technique is electroencephalography(EEG) signal analysis. Neuroscientists develop new

techniques in brain imaging that help us to map the neural circuitry that underlies emotional experience.

An example of the contribution of neuroscience in understanding and recognizing emotion is the evi-

dence provided to the discussions on dimensional models, where valence and arousal might be supported

by distinct neural pathways. One of the most popular methods that neuroscientists use is the Functional

Magnetic Resonance Imaging [142] by using evidence from brain damaged subjects to prove that emo-

tions are very important in decision making [112]. Scientists observed that patients with a lesion in a

particular section of the frontal lobe showed normal logical reasoning but yet they couldn’t see the con-

sequences of their actions and were unable to learn from their mistakes. From this observation scientists

conclud that emotion related processes are required for learning, even in areas that had previously been

attributed to cognition. The cost, time resolution, and the complexity of setting up protocols that can be

used in real world activities are still problematic issues that put the application development with use of

these techniques to a hold. Nevertheless, signal processing [18] and classification algorithms [154] for

EEG have been developed in the context of building Brain Computer Interfaces.

Physiological signals can also be used to detect a user’s emotional state by monitoring and analyzing

their physiological signs such as pulse and heart rate (Blood Volume pulse), Galvanic Skin Response,

and minute contractions of the facial muscles (Facial Electromyography). A person’s Blood Volume

Pulse (BVP) can be measured by a process called photoplethysmography, which produces a graph indi-

cating blood flow through the extremities [186]. Facial Electromyography is a technique used to measure

the electrical activity of the facial muscles by amplifying the tiny electrical impulses that are generated
THEOCHARIS ZACHARATOS
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by muscle fibers when they contract [139]. Nevertheless, this area is gaining momentum and there

are now real products which implement the techniques. Galvanic Skin Response (GSR) is a measure

of skin conductivity, which is dependent on how moist the skin is. As the sweat glands produce this

moisture and the glands are controlled by the bodyś nervous system, there is a correlation between GSR

and the arousal state of the body. The more aroused a person is, the greater the skin conductivity and

GSR reading [186].

With the emergence of the affective computing field, various studies have been carried out to create

systems that can recognize the affective states of their users by analyzing their body expressions in

order to recognize, understand and model human emotion [228] [49] [128] [122]. For example, fear

makes the body contract as an attempt to appear as small as possible, surprise causes orientating towards

the object capturing attention, and joy may lead to movements of openness and acceleration of forearms

upwards [28]. Bodily expressions have been recognized as important for nonverbal communication and

changes in a persons affective state are also reflected by changes in their body posture. There are two

separate pathways in the brain for recognizing biological information: one for form information and the

other for the motion information [87].

2.3 Emotion recognition from body

Darwin was the first to describe the association between body language and posture with emotions

in humans and animals [54]. State of the art emotion detection systems have overlooked the importance

of body posture compared to facial expressions and voice recognition. Posture can offer information

that is unavailable from conventional nonverbal measures such as the face and speech. For example, the

affective state of a person can be decoded over long distances with posture, whereas recognition at the

same distance from facial features is difficult or unreliable [227]. Meijer [169] defined some dimensions

and qualities such as trunk movement: stretching - bowing; arm movement: opening - closing; vertical
THEOCHARIS ZACHARATOS
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direction: upward - downward; sagittal direction: forward - backward; force: strong - light; veloc-

ity: fast - slow; directness: direct - indirect. Those dimensions and qualities can be found in different

combinations for different emotions. For instance, a joyful feeling could be characterized by a strong

force, a fast velocity and a direct trajectory but it could instead have a light force or be an indirect

movement.

2.4 Capturing body movements

Various ways are used to capture body movements. Motor data can be captured by physiological

instruments to the body such as an accelerometer or electromyograph. These systems provide very

accurate information on motor movement [48] but can be used only in controlled laboratory experiments

where freedom of expression is limited. Motion capture has been found to be an accurate measurement

technique for measuring body movements like gait [177] and arm movements [188], but requires a

controlled environment with cameras and sensors as illustrated in Figure 2. Two dimensional video

cameras are using less obstructive ways of measuring body movement, such as silhouette extraction [89]

but they don’t provide accurate description of movement for a specific body part. More complex features

can be computed using 3D depth cameras like the Kinect sensor [171] although it is still not as accurate

as traditional motion capture systems.

2.5 Motion Datasets for Emotion recognition

One of the firsts datasets made accessible was the FABO database that was created by Gunes and

Piccardi [97]. It is a bimodal database that combines face and body expressions recorded simultaneously.

The videos were obtained in a lab setting with artificial light and the emotions were posed. Subjects were

placed in front of a plain blue background to facilitate background subtraction. 23 subjects were filmed,THEOCHARIS ZACHARATOS
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Figure 2: Motion Capture Process

with ages ranging from 18 to 50. The subjects were instructed to begin in a neutral expression and

body position, and then perform the supposed emotion based on scenarios they were presented with.

The expressions recorded were: neutral, uncertainty, anger, surprise, fear, anxiety, happiness, disgust,

boredom, and sadness.

The GEneva Multimodal Emotion Portrayals (GEMEP) database contains audiovisual files that in-

clude 18 different emotions displays. Twelve of the emotion classes are categorized by two emotional

dimensions: valence and arousal. The subjects that performed the emotions were French theatre actors

between 25 and 57 years old. The videos were recorded in a controlled setting in a studio. The ex-

pressions were recorded with three digital cameras, one zoomed in on the face, the other zoomed out

displaying the body and posture from a frontal view, and the other one from a side view.

2.6 Notational systems for body movements

Movement notational systems are required to access the expressive content of movement. They have

been proposed for observing, describing, notating and interpreting human motion [213]. Many of the

systems used from dance choreographers since 17th century. Some of them can describe only foot posi-

tions and symbols for each step like rhythm [67], while others can describe how emotions,THEOCHARIS ZACHARATOS
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attitude and personality are conveyed in dynamic body postures and gestures [160]. Notation systems

have been used contain information about body and limp positions of the extremities [20], orientation

of the different body limbs expressed in a spherical coordinate system [69] and spatio-temporal cod-

ing [78] [103] that describes position and movement on the three Cartesian axes (sagittal, vertical and

transverse).

Psychology coding systems describe orientation of postures and actions during seated interactions to

check on attitudes and emotions like boredom/interest, agreement/disagreement [32]. Tracy and Robins

[217] proposed a coding system to assess pride in static upper body postures. Ekman and Friesen [64]

proposed a coding system for hand actions that has been used by various gesture-speech systems [62]

[165]. Wallbott proposed a reliable correlation between different parts of body, emotion and movement

qualities like activity, expansiveness and dynamics [228]. Birdwhistell [25] founded the theory of Ki-

nesics, which assumes that nonverbal behavior is used in everyday communication systematically and

can be studied in a similar way to language. A minimal part distinguished in kinesics is a kineme which

is the smallest meaningful set of body movement, for example raising eyebrows or moving the eyes

upward. Birdwhistell developed a complex system of kinegraphs to annotate kinemes for the research

on body language.

A widely used movement notational system is Laban Movement Analysis (LMA) [137]. It was orig-

inally developed by dance artist and theorist Rudolf Laban in the early 20th century. Laban method

focuses on the relationships between internal state, intention and attention and their effects on all human

motions. One of the strong points of LMA is the ability to describe expressive content of movements,

which makes it appropriate for emotion and behavior analysis. Many researchers have been trying to

create a computational form of LMA for motion analysis [13] [240] [241]. Laban movement analysis

has also been used to reproduce expressive movements in robots that could be interpreted as emotions

by human observers and map low-level features to LMA parameters [173]. The main limitation it is tied
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to the embodiment of the robot which has limited number of degrees of freedom. A system has been

proposed that implements LMA using probability calculus and Bayesian theory using Bayesian models

for computational LMA in form of Bayesian nets and joint distributions [191]. The results indicated that

there is a set of low-level features that can be used as evidence for the Laban parameters and that the

classifier is able to make online predictions, thus giving the system a sense of anticipation.

Another notational system called Body Action and Posture (BAP) is best suited for coding nonverbal

emotion expression was proposed [52]. In this system a distinction is made between body posture units

and body action units [103]. A posture unit represents the general alignment of one part, or set of parts

of the body (head, trunk, arms) to a resting place, which shows periodic changes known as posture shifts

e.g. arms crossed. An action unit is a path of one part or set of parts of the body (mostly the arms)

outside the resting place with a distinct start point, a short duration and a distinct end point where the

path returns to a resting place e.g. head shake, pointing arm gesture. All body skeleton movements are

categorized as an action or posture with the exception of legs. BAP separates its behavior variables in

12 categories of action and posture: head orientation, trunk orientation, arms, whole body posture, gaze

and other. Even though the coding system attempts to be as objective as possible, it offers challenges

to its automatic implementation on how the data is segmented, containing noise and synchronization

due to different sample rates for the different sensors. Moreover the same segment may have different

labels depending on the previous and next segment. These faults are removed from a more recent

approach called AutoBAP [221] which is a system that automates the annotation process of BAP. By

preprocessing the sensor data it synchronizes the different sample rates and merges the data so it removes

the synchronization issues.
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Even though notation systems are using motion analysis for expressive movements, only some of

them have been used for emotion recognition. As previously described, the motion analysis is performed

by using components from Laban’s theory [137] [44] [176] [199]. Laban’s theory is divided into

four categories called body, space, effort and shape. Most of the work in emotion recognition focuses

on the effort component that deals with the expressiveness and describes the dynamic qualities of the

movement and the inner attitude towards using energy. By selecting a set of suitable features from

the trajectories described by hands, foot and head, the effort component can be used as one descriptor

for expressive movements. Laban saw effort as the inner impulse, a movement sensation, a thought,

a feeling or emotion from which movement originates; it constitutes the interface between mental and

physical components of movement.

Lourens et al. [155] extracted low level features from video and used Labanotation experts to clas-

sify the video clips to four emotional states manually. Samadani et al. [198] has used Laban effort

components for hand arm movements and an approach of quantifying shape direction based on the aver-

age trajectory curvature. The results show a high correlation between Laban certified movement analyst

and shape directions for the hand-arm movements dataset.

Another study used Laban features like whole-body movement, inclination of the body and area,

to extract four emotions (pleasure, anger, sadness and relaxation) from a robot that has limited ways

of movement [162]. Although they used observers to classify the robot movements to emotions, they

have not used automatic recognition techniques for classification. They used empirical estimation of

correlation between Laban features and emotional set.

Dael et al. [52] adopted the Body Action and Posture (BAP) system to examine the types and patterns

of body movement from actors expressing twelve different emotions. They used Principal component

analysis to reduce the 49 behavior variables of BAP, resulting to 16 extracted components, that applied toTHEOCHARIS ZACHARATOS
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Name Study Description Evaluation

Ellis and March [67] Foot positions and symbols for each step like rhythm Movement
Marsella et al. [160] How emotions, attitude and personality are con-

veyed in dynamic body postures and gestures
Emotion ,
Movement

Benesh [20] Information about body and limp positions of the ex-
tremities

Movement

Eshkol and Wach-

mann

[69] Orientation of the different body limbs expressed in
a spherical coordinate system

Movement

Frey and Pool [78] [103] Spatio-temporal coding that describes position and
movement on the three Cartesian axes (sagittal, ver-
tical and transverse)

Movement

Bull [32] Orientation of postures and actions during seated in-
teractions to check on attitudes and emotions like
boredom/interest, agreement/disagreement

Emotion

Tracy and Robins [217] Assess pride in static upper body postures Emotion,
Movement

Ekman and Friesen [64] Hand actions Movement
De Silva and N.

Berthouze

[56] Description of body expressions in terms of anatom-
ical body part configuration measured as joint rota-
tions and joint distances

Emotion

Wallbott [228] Correlation between different parts of body, emotion
and movement qualities like activity, expresiveness
and dynamics

Emotion,
Movement

Birdwhistell [25] Theory of Kinesics, which assumes that nonverbal
behavior is used in everyday communication sys-
tematically

Movement

Laban [137] Laban movement analysis method focuses on the re-
lationships between internal state, intention and at-
tention and their effects on all human motions.

Emotion,
Movement

Dael et al. [52] Body Action and Posture (BAP) describes of body
movement on an anatomical level (different articula-
tions of body parts), a form level (direction and ori-
entation of movement), and a functional level (com-
municative and self-regulatory functions)

Emotion

Table 1: Notational systems for emotions and movementsTHEOCHARIS ZACHARATOS
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a two-step clustering algorithm [45] to reveal natural groupings. This clustering algorithm was useful for

handling large datasets with both categorial and continues variables. Even though some emotions were

characterized by a specific behavior pattern, most emotions were encoded by a combination of clusters

that also grouped other emotions resulting in a large amount of expressive variability and overlapping

response profiles.

2.8 Establishing the ground truth

A major issue with emotion recognition is the subjectivity of the area and the difficulty in estab-

lishing a benchmark on when the recognition is successful or not. Most early automatic recognition

systems relied on corpora that had been acted [10] [94] [169] [194]. More recent studies are using non-

acted data [127] [129] [237] with body posture and movements, validating the results by using human

observers. In order for a result to be valid, it should be compared to a database of valid postures or

movements set as the ground truth. Ground truth of the expressed emotional state is a critical aspect, as

even self-assessment can be manipulated by lying. Believability and authenticity of emotional expres-

sions is usually increased if all modalities express the same state. Incongruence is correlated with lying.

In this case, expressions of body movements seem to be more reliable than facial expressions because

people do less bother to censor their body movement or physiology in daily life than facial expressions

[63] [96].

To set the ground truth, after human annotation on postures and motion clips, a validation of the

agreement level of all annotators is required. Various techniques have been used for the validation of

agreement of the annotators like Cohen’s Kappa [22] which works for two annotators, and Fleiss Kappa

[75] that works for any fixed number of annotators. Correlation coefficients [193] measure pairwise

correlation among annotators using a scale that is ordered and intra-class correlation coefficient [70] is

defined as the proportion of variance of an observation due to between-subject variability in the true
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scores. Another approach to agreement is limits of agreement with Bland-Altman plot [26] which is

useful when there are only two annotators and the scale is continuous. Krippendorff Alpha [134] uses

several specialized agreement coefficients by accepting any number of annotators. It is applicable to

nominal, ordinal, interval, and ratio levels of measurement, being able to handle missing data, and be-

ing corrected for small sample sizes. Table 2 describes various statistical techniques for validating

annotation agreement when ground truth is constructed.

Study Name Use

Kleinsmith et

al. [129]

Cross Valida-

tion

Is a technique to assessing how the results of a statistical analysis
will generalize to an independent data set. Cross-validation in-
volves partitioning a sample of data into subsets, performing the
analysis on one subset (training set), and validating the analysis
on the other subset (testing set).

Carletta J.[39] Cohen’s Kappa Is a statistical measure for assessing the agreement between two
annotators

Fleiss J. L.[75] Fleiss Kappa Is a statistical measure for assessing the agreement between a
fixed number of annotators

Pearson K.[183] Correlation co-
efficients

measure pairwise correlation among annotators using a scale that
is ordered

Koch G.[130] Intra-class cor-
relation coeffi-

cient

Is a statistical measure that can be used when quantitative mea-
surements are made on units that are organized into groups. Is the
proportion of variance of an observation due to between-subject
variability in the true scores

Bland, J. and

Altman, D.[26]

Bland-Altman

plot

Is useful when there are only two annotators and the scale is con-
tinuous

Krippendorff

K.[134]

Krippendorff

Alpha

Uses several specialized agreement coefficients by accepting any
number of annotators. It is applicable to nominal, ordinal, inter-
val, and ratio levels of measurement, being able to handle missing
data, and being corrected for small sample sizes.

Table 2: Statistical Agreement TechniquesTHEOCHARIS ZACHARATOS
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Humans identify emotion from body motion or posture based on visual parameters called gestures

and our brain annotates them to a specific emotion. Gestures are also user specific, and each human

has a personal vocabulary of gestures [1]. Efron [51] proved that humans use visual cues to segment

motion sequences into gestures and he showed that gestures are used as the building blocks of complex

motions. The methodology in automatic body emotion recognition uses the same principle to segment a

motion or a posture. Segmentation enables the identification of each motion unit and its representation

through a set of values of relevant parameters. In order to create quality motion capture data efficiently,

captured sessions typically produce long streams of motion capture data. The solution is to preprocess

the long motion capture data stream by breaking it up into short segments that are appropriate for an

analysis tool. This process is often done manually, but it is a very laborious and time consuming.

Moreover manual segmentation is subjective and it depends on the human perception on movement, and

very often to cultural elements of the person. Segmentation done by experts instead of non experts on

specific motion data, like LMA experts in dance, gives a better quality of segmented clips. Most of the

emotion recognition studies [129] [201] [237] [121] use manual segmentation of postures or motion,

by using human observers to classify expressive posture and movements and separate them. A more

accurate solution is to create tools that automate the segmentation process.

An automatic segmentation program will produce the same segmentation given the same input mo-

tion capture. On the other hand, different people will produce different segmentations, given the same

motion capture data. In addition, a person will often produce different segmentations of identical mo-

tion capture data. Different approaches have been proposed for automatic motion segmentation. The

direct approach where temporal segmentation precedes recognition like Kang et al. [120], which first

computes low-level motion parameters such as velocity, acceleration and trajectory curvature, and the

approach like Kahol et al. [119] that uses motion parameters such as human body activity and then looksTHEOCHARIS ZACHARATOS
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for changes in those parameters to identify candidate gesture boundaries. Although both approaches

are able to detect gesture boundaries with high accuracy, the method works only if each gesture is pre-

ceded and followed by non-gesturing intervals, a requirement not satisfied for continuous gesturing.

Various indirect methods detect gesture boundaries by finding intervals that give good recognition

scores when matched with one of the gesture classes and detect gesture endpoint by comparing the

recognition likelihood score to a threshold [6] [145] [175] [138] [190] [7]. These kinematic methods

are extremely efficient, however they produce simple low-level segmentations. Different approaches

produce higher level segmentations. Barbic et al. [14] implemented a method where the projection error

resulting from Principal Component Analysis (PCA) increases on larger segments of motion capture

data. They also proposed a segmentation method by tracking changes in the distance when data con-

taining the frames that precede the segment fits to a Gaussian distribution model. They use expectation

minimization clustering to estimate the Gaussian Mixture Model (GMM) while Lee and Elgammal [144]

used k-means to estimate the GMM. These time series methods produce higher level segmentation than

the kinematic methods, but they do not utilize semantic content of the motion.

Kahol et al [119] use a Naive Bayes approach, in order to find segmentation profiles of dance mo-

tion capture sequences. Starner and Pentland [212] implemented implicit segmentation using Hidden

Markov Models (HMM). Both showed that supervised learning approach can be used to capture some of

the complexity of decision making present in manual motion capture segmentation. Supervised learning

based segmentation methods are difficult to implement for general motion, due to the enormous number

of training data that needed in order to create a true general classifier. A different solution will be to use

a classifier that works well on smaller set of classes but is effective on general motions. Bounchard and

Badler [29] used Effort component of Laban Movement Analysis, that deals with the expressiveness and

describes the dynamic qualities of the movement and the inner attitude towards using energy, in order to

represent such a classifier. The inner impulse is expressed by usage of motion factors. Every human
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movement including thought has the potential to engage the four motion factors: space, weight, time

and flow.

A different approach yielding towards a computational emotion recognition system is by segmenting

expressive motion automatically. Cammuri et al. [36] used quantity of motion for segmentation which

is the amount of detected movement and its evolution in time. Quantity of motion has been seen as a

sequence of bell-shaped curves in order to perform segmentation between pause and motion phases. In

order to segment motion, a list of curves and their features has been computed by using empirical thresh-

olds [36] [35]. Another approach [21] [185] used the concept of motion energy for segmenting motion

primitives [76] for emotion recognition. Body’s motion energy can be computed as a weighted sum of

the rotational limb speeds, which will be large for periods of energetic motion and will remain small

during periods of low motion energy. Table 3 shows various studies that used automatic segmentation

techniques.

Study Segmentation Feature Boundary Movement Evaluation

Camuri et al. Quantity of motion Threshold Body Emotion

Fod et al. Motion Energy - Sum of squares of

angular velocity

Threshold Body Motion

Bernhadt et al. Motion Energy Threshold Body Emotion

Kahol et al. Activity of Segment Local minima Body Motion

Pianna et al. Motion Energy Threshold Body Emotion

Alon et al. Continues Dynamic Programming Gesture Spotting Hand Motion

Table 3: Automatic Segmentation for body movement
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Existing research that attempts to recognize emotions using human motion data does not achieve

sufficient recognition rates, is based on training the system with low level feature data that is very vague

(such as rotation of a given joint on a given axes etc) and is selected without firm justification from

movement analysis theories. Some recent approaches in robotics do achieve good quality recognition

[161] [162] [19] showing that body language can be successfully used by humanoid robots to express

emotions, however their task is more simplified since robots perform mechanic and predetermined move-

ments while expressive human movement is more complex and non-deterministic. Different approaches

have been used in order to get higher recognition rates for some basic emotions like uses of movement

qualities such as amplitude, speed and fluidity of movement to infer emotions [40]. Similar to this it has

been tried to recognize emotions from animation by using low level features such as angular velocity,

acceleration for the body’s arm, hand and right forearm and body directionality for spine and head [201].

In this approach, the recognition rate is average for individual emotions and higher when categorization

is been done for high and low intensity of emotions.

Figure 3: A Multimodal Automatic Emotion Recognition SystemTHEOCHARIS ZACHARATOS
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Another approach used balance postural control variables for automatic recognition. Human balance

was assessed by analyzing center of gravity or center of pressure displacements [61]. Results showed

that balance variables such as center of gravity and displacement variability were correlated to negative

emotions and situation appraisals [88]. Low level 3D postural features were used also together with

high level kinematic and geometrical features (body movement activity power, symmetry and bending)

fed to a random forest classifier and achieved a high recognition rate [229]. In another study [47]

various features to emotion classification were analyzed in order to measure their performance with

respect to predict affective state of an input motion. Posture features: end effector positions, end effector

orientations, bounding box. Dynamic features: velocity, acceleration, Jerk. Frequency-based features:

output of fast Fourier transform for each position trajectory of the end effectors. The overall success

rate was very high and the feature vector was combined by three feature sets, however actors were used

instead on non-acted people. Table 4 shows various studies that used low level movement features for

emotion recognition.

A more recent study [73] computed all the above features and categorised them into ten unique

groups based on the type of movements, using a filter-based feature selection algorithm Analysis of

Variance (ANOVA) [85] to select relevant features from each of the movement feature groups. Several

top features from each feature group were used as inputs to the second layer of the framework. The

number of features considered from each group was derived using normalised Multivariate Analysis of

Variance (MANOVA) [215] score computed for each group separately. The number of relevant features

selected from each group was based on the normalised MANOVA score computed for each motion

feature group. A binary chromosome based genetic algorithm was utilised to extract a feature subset

maximising the emotion recognition rate as displayed in Figure 4.
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30Study Feature used Description
[35] Kinetic Energy The overall energy spent during movement, estimated as

the total amount of displacement in all of the points.
[137] Construction Index The Contraction Index is a measure, ranging from 0 to 1,

of how the body occupies the space surrounding it and is
the bounding volume of the minimum of a box surrounding
the body.

[119] Body Movement
Activity and power

The body movement activity and power composed of three
parameters, force, kinetic energy and momentum calcu-
lated hierarchically.

[205] Body Spatial Ex-
tension

The Bounding Box calculated from the positions of joints
in each frame and three spatial extents in x,y,z axis.

[195] Symmetry Spatial symmetric indexes are considered for the two hands
in three coordinates. The three partial indexes are then
combined in a normalized index that expresses the overall
estimated symmetry.

[205] Body Bending Body bending forward or backward is measured by the ve-
locity of the joint’s displacement along its depth respective
to the body position and orientation.

[228] Smoothness Hand trajectories curvature computation.
[228] Fluidity High curvature of the speed’s trajectory in time means low

fluidity, while low curvature means high fluidity. Fluidity
= tangential velocity of the joint.

[169] Directness Movement Directness Index is computed from a trajectory
by a joint as the ratio between the Euclidean distances, cal-
culated between the starting and the ending point of the
trajectory, and the trajectory’s actual length The directness
index tends to assume values close to 1 if a movement is
direct and low values (close to 0) otherwise.

[207] Periodicity The periodicity transform decomposes sequences into a
sum of periodic sequences by projecting onto a set of pe-
riodic subspaces. The Periodicity transform looks for the
best periodic characterization of the length N sequence x.

[184] Impulsiveness A temporal perturbation of a regime motion.
[30] Quantity of motion The Quantity of Motion is computed as the weighted sum

of the area of a layered silhouette: a wide movement will
have a higher Quantity of Motion than a small one. An
extended version is computing the direction of the motion
by computing the gradients of motion history images.

[228] Barycenter The motion of the barycenter of a silhouette over time gives
a good idea of the way a person is moving. In excitement
the barycenter spans a bigger area and its movements are
wider, while in sadness the movements are more quiet.

Table 4: Movement features for emotion recognition
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Figure 4: Framework for emotion recognition from fused features of body motion

2.11 Multimodal emotion recognition approach with body

As facial expressions and speech expressions dominate during face-to-face interaction, they cannot

cover by themselves the full range of emotional states which can be recognized by observing a sin-

gle modality [96]. This motivates the development of multi-modal emotion recognition systems. Most

approaches for automatic recognition investigate the categorical emotions, in particular the basic emo-

tions or a subset of them. Fewer studies refer to emotional dimensions. Nevertheless, recognition sys-

tems based on a dimensional model for emotions seem to be more appropriate for multi-modal emotion

recognition because modalities differ in their intensity and distinctness to express various emotions.

Several multimodal approaches have been proposed, using facial, speech and body feature level fu-

sion [84], using bi-modal of face and upper-body gestures [97] and by using face and body to automat-

ically detect temporal segments or phases [98]. Results on multimodal approaches shows that explicit

detection of the temporal phases can improve the accuracy of affect recognition. They also shows that

the recognition from fused face and body modalities performs better than that from the face or the bodyTHEOCHARIS ZACHARATOS
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Study Type

Joshi et al. [118] upper body expressions and gestures

Griffin et al. [93] laughter states (hilarious, social, awkward, fake, and non-laughter)

Kleinsmith et al. [129] body postures

Scherer et al. [204] head pose, eye gaze, facial expressions (smiles), hands and legs

Aung et al. [11] body movements, EMG for paraspinal and trapezius muscles

Savva et al. [202] body movements

Table 5: Studies on naturalistic body datasets

modality alone and synchronized feature-level fusion achieves better performance than decision-level

fusion.

In cognitive and affective neuroscience, research on emotional body language is rapidly emerging

as a new field. The involvement of the amygdala in emotional behavior has been known for some time

[231]. A study measured dance-like body movements and biological movement patterns [27]. The pat-

terns which were experienced as pleasant activated subcortical structures including the amygdala. Visual

perception of biological motion activates two areas in occipital and fusiform cortex [95]. This indicates

that areas that are known for processing faces are also involved in processing larger properties associated

with human bodies. Hadjikhani and Gelder [99] used high-field fMRI and showed that exposure to body

expressions of fear, as opposed to neutral body postures, activates the fusiform gyrus and the amygdala.

The fact that these two areas have previously been associated with facial expressions suggest synergies

between facial and body emotional expressions. Recent multimodal deep learning techniques has been

proposed as described in the next section.
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Current efforts as described in previous chapters, despite some improvement of accuracy, have re-

lied on handcrafted features and classification techniques. The use of deep learning techniques to auto-

matically extract effective features from multimodal information and classifications are new directions

currently actively pursued by researchers, but several challenges remain in realising an end-to-end deep

learning system. Deep learning is defined as a class of neural network based machine learning techniques

that exploit many layers of non-linear information processing for supervised or unsupervised feature ex-

traction and transformation or pattern analysis and classification [57]. With the availability of large

datasets, deep learning has become a state-of-the art solution to problems such as emotion recognition.

In [126] the authors use a CNN-based model for a hierarchical feature representation in the audio-visual

domain to recognise spontaneous emotions. They showed that improvement of recognition accuracy is

achieved when hierarchical features and multimodal information are adopted. In another effort, models

are constructed from multiple physiological signals collected from sensors placed on the human body

by adopting multimodal deep learning approach so as to improve their performance and reduce the cost

of acquiring physiological signals for real world applications [150]. To classify spontaneous multimodal

emotional expressions as positive or negative, researchers proposed a cross channel convolutional neu-

ral network (CCCNN) having the capability of learning and extracting general and specific features of

emotions relying on body motion and face expression [17].These features were further passed through

to cross-convolution channels to build the cross-modal feature representation. The Convolutional Neural

Network (CNN) is a type of deep learning that is especially used in the processing of images, proposed

by Lecun et al. [140] It is based on the foundation of conventional neural networks inspired by biolog-

ical understanding of visual cortex. Figure 5 represents architecture of LeNet-5, one of the first initial

architectures of CNN.THEOCHARIS ZACHARATOS
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Figure 5: Architecture of LeNet-5, one of the first initial architectures of CNN [140]

The network as shown in Fig 5 applied convolution and sub-sampling alternatively to the input data,

in the convolutional layers and sub-sampling layers. After two stages of this computation, the data is fed

to a fully connected conventional neural networks, to complete the classification problem. Deep leaning

based algorithms can be used for feature extraction and classification. With the use of CNNs the work

spent on the pre-processing of the images is greatly reduced since the algorithm is already capable of

detecting the best features needed to classify the images.

Because CNN based methods cannot reflect temporal variations, recently researchers have combined

CNN, for the spatial features of single frames, with RNN networks that allow operation directly on time

sequences. They are successfully applied to tasks involving temporal data such us speech recognition,

language modelling, translation and gesture analysis. In RNNs, the output of the previous sequence time

step is taken into consideration when calculating the result of the next one. However, a standard RNN

does not handle long term dependencies well, due to the vanishing gradient problem. [107]. The Long

Short Term Memory network (RNN-LSTM) is an extension for RNN, which works much better than

the standard version. In RNN-LSTM architecture, RNN uses gateway units in addition to the common

activation function, which extend its memory [12]. Such an architecture allows the network to learn

and remember dependencies over more time steps, linking causes and effects remotely [106]. As seen

in Figure 6 the above networks were used to identify gestures emotion recognition based on low level

features inferred from the spacial location and orientation of joints within a track skeleton. [200]THEOCHARIS ZACHARATOS
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Figure 6: (a) The process of using a Convolutional Neural Network (CNN) for gestures-based emotion
recognition shows the process of creating an matrices based on motion sequence. (b) The process of us-
ing a Recurrent Neural Network (RNN) for motion sequence analysis; each step of the motion sequence
is evaluated by a RNN

Hierarchical Learning was used [65] for learning actions from body motion patterns of acted video

recordings, using Grow When Required (GWR) networks. The separate processing of pose and motion

features and their subsequent integration has been shown to improve the topological formation of visual

representations in a hierarchical learning scheme. Due to an increased dimensionality of the neural

weights along the hierarchy and concatenations of neural activation from previous layers, a recurrent

variant called Gamma-GWR [182] was used that equips each neurone in the network with a temporal

context as seen in Figure 7. Neural learning architecture with a hierarchy of self-organizing networks.

The first layer processes separately pose and motion features from individual frames, whereas in the

second a recurrent network learns the spatio-temporal structure of the joint pose-motion representations.

For all the above deep learning approaches, a vast amount of data is needed to perform the training and

learning. Unfortunately, the annotation of the motion data sets is a very laborious procedure, due to the

fact that annotators need to perform a detailed analysis in every frame of a motion clip, to identify the

exact frames that they emotion is depict. A solution to this problem are data augmentation techniques.
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Figure 7: Neural learning architecture with a hierarchy of self-organizing networks

2.12.1 Data Augmentation

Obtaining an appropriate data set for training a desired Machine Learning model is a challenge by

itself. Developers often have access to limited samples of data that are not sufficient to train and op-

timize a Deep Learning model, resulting in most of the time poor performance in terms of accuracy,

precision, and recall. Moreover, the available training data for classification problems may also be im-

balanced, causing issues to the model. Data Augmentation is a process that encompasses a suite of

techniques which enhance the size and quality of training datasets leading to significant improvements

in the performance parameters of Machine Learning models as well as providing developers with the

opportunity to further iterate their model implementation. Data Augmentation has been extensively

used with imaging data and computer vision tasks, involving image augmentation algorithms such us

geometric transformations, color space augmentations, kernel filters, mixing images, random erasing,

feature space augmentation, adversarial training, generative adversarial networks, neural style transfer,

and meta-learning [209]. While data augmentation is an established technique with image data sets em-

ployed widely in industry settings, there are numerous examples in the literature on possible ways toTHEOCHARIS ZACHARATOS
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also augment skeleton motion data for Deep Learning training purposes. One way to approach this

is through the concept of time series data and the ways to perform data augmentation on this format

[232]. In an example that uses time series 3D body action recognition, Dawar et al. [55] in a project

that fuses depth images with signals captured by an inertia wearable sensor, proposed the simulation of

various orientations of the depth camera and the sensor placement. Molchanov et al. [172] employed the

popular methods of augmentation of video data by means of affine image transformations (rotation, scal-

ing, mirroring). Additionally, they exploited the techniques of changing the sequence order of individual

video frames (reverse ordering, mirroring, etc.). Another data augmentation technique proposed down-

sampling based on local averaging combined with data shuffling to allow further variations and avoid

overfitting in wearable inertial measurement unit sensors [71]. A biomechanical-based approach to data

augmentation for gesture recognition proposed populating human-like examples from a set of naturalis-

tic features extracted from a single gesture sample while preserving human traits such as visual saliency

and smooth transition [158]. Research on action recognition from motion and posture data has also

benefited from data augmentation techniques. A Long Short-Term Memory Auto-Encoder was used to

achieve effective spatial-temporal data augmentation for skeleton-based human action recognition. This

technique outperformed traditional methods of scale and rotation [218]. In a study that involved static

human skeleton data (postures) an image-based synthesis engine that uses annotated pictures and 3d

skeleton postures to generate synthetic images with similar postures depicting the same action [196].

Regarding postures, another method augments the input data with rotation augmentation, and use pose

estimation method multiple times for every frame, and select the most consistent pose, followed by a

motion reconstruction for smoothing [132]. In a wider setting but inclusive of skeletal action recog-

nition, new time-series classes can be obtained in warped space between sub optimally aligned input

examples of different lengths to enrich the training dataset [136]. Another technique applies Dynamic

Time Warping to preserve the relationships between neighboring elements in the warping. The results
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are further improved by using the most discriminative sample in a batch as a teacher (reference sam-

ple) [116]. Oversampling minority classes is a common data augmentation technique and can range

from changing the weight of the minority class, randomly oversampling (duplicating) the samples, to

more sophisticated techniques such as the Synthetic Minority Over-sampling Technique (SMOTE) [43]

or Adaptive Synthetic (ADASYN) [100]. SMOTE interpolates between samples to generate new ones,

while ADASYN is similar but applies an additional limitation to the number of new samples based on

the number of nearby opposite samples [43], [136], [100]. A similar technique proposed averaging

motion trajectories to generate new N!(N-1)!/2 artificial gestures from a database of size N [203]. The

comparison results show significant improvement following the proposed augmentation technique.

A different approach is been used by Li et al [146], which the skeletal structure recorded by depth

cameras, was converted to represent pseudo images. Subsequently, they performed image augmentation

(standard affine transformations). Figure 8 displays a three dimensional action recognition approach

using deep convolutional neural networks and data augmentation technique from images [111]. Given

a skeleton sequence (a) extracted pose features (b-1) are transformed into a color image I (b-2) by an

encoding technique, called PoF2I. The action image I is refined by a mechanism of adding or eliminating

randomly selected skeleton frames. Manifold action images J (b-3) are generated from I for training set

augmentation. These action images J are finally fed into deep CNNs (c) for action recognition.

Figure 8: Schematic overview of a method of 3-D action recognition.THEOCHARIS ZACHARATOS
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Generative adversarial networks (GANs) can be used to generate images from an adversarial training

[92]. The generator attempts to produce a realistic image to fool the discriminator, which tries to distin-

guish whether it’s input image is from the training set or the generated set. Generative adversarial nets

are now widely used in many image tasks such as single image super-resolution [141], image manipula-

tion [243], synthesis [58] and image to image translation [115]. Zhu et. al [242] proposed CycleGAN a

network that can do image to image transition between two unpaired image domain. Researchers used

CycleGAN network to generate labeled emotion images and show that these images are helpful in fi-

nal image classification task. In Figure 9 shows a framework of GAN-based data augmentation. Both

reference images and target images are collected from the original data and flow into the CycleGAN as

domains R and T, respectively. G and F are two generators, transferring R & T and T & R, respectively.

Supplementary data is generated through generator G. A CNN classifier is trained using original data

and supplementary data as input.

Figure 9: An illustration of the CycleGAN framework for data augmentation and classification using a

CNN classifier.THEOCHARIS ZACHARATOS
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Data mining and machine learning technologies have already achieved significant success in many

knowledge engineering areas including classification, regression and clustering. However, many ma-

chine learning methods work well only under a common assumption: the training and test data are drawn

from the same feature space and the same distribution. When the distribution changes, most statistical

models need to be rebuilt from scratch using newly collected training data. In many real world applica-

tions, it is expensive or impossible to re-collect the needed training data and rebuild the models. It would

be nice to reduce the need and effort to re-collect the training data. In such cases, knowledge transfer

or transfer learning between task domains would be desirable. Transfer Learning partially resolves the

limitations of the isolated learning paradigm: “The current dominant paradigm for ML is to run an ML

algorithm on a given dataset to generate a model. The model is then applied in real-life tasks. We call

this paradigm isolated learning because it does not take into account any other related information or

any of the knowledge learned in the past [149]. Transfer Learning gives us the ability to share learned

features across different learning tasks. Emerging transfer learning methods can leverage the knowledge

from one emotion-related domain to another. The main premise behind such techniques is that people

may share similar characteristics when expressing a given emotion. For example, anger may result in

increased speech loudness and more intense facial expressions [226]. Fear is usually expressed with

reduced speech volume and may produce increased heart rate [225]. These emotion-specific character-

istics might be commonly met among people, contributing to the similarity among the various emotional

datasets. Therefore, transfer learning approaches can learn common emotion-specific patterns and can

be applied across domains for recognizing emotions in datasets with scarce or non-labeled samples.

Such techniques can further result in generalizable systems, which can detect emotion for unseen data.

Transfer learning in automatic emotion recognition has been used in speech based systems, and image

or video based systems using facial expressions in which the state-of-art transfer learning approach toTHEOCHARIS ZACHARATOS



41

the video-based emotion recognition includes obtaining high-level features using mainly a convolu-

tional neural network (CNN) trained on large sources of data [8] [123] [174] [211] or transfering the

knowledge from higher-quality auxiliary image datasets [234].

Figure 10: Transfer Learning of ResNet50 model

Very Deep Convolutional Networks for Large-Scale Image Recognition(VGG16)

pre-train model [211] is a convolutional neural network trained on 1.2 million images to classify 1000

different categories. Its pre-trained architecture can detect generic visual features present on our emotion

dataset.

Figure 11: The VGG16 Model has 16 Convolutional and Max Pooling layers, 3 Dense layers for the

Fully-Connected layer, and an output layer of 1,000 nodesTHEOCHARIS ZACHARATOS
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Another relevant model is the ResNet model. The main motivation behind this model was to avoid

poor accuracy as the model went on to become deeper. Additionally the ResNet model is aimed to

tackle the Vanishing Gradient issue. Other available deep learning models are made available alognside

pre-trained weights. These models can be used for prediction, feature extraction and fine tuning. The

available models are depict in the following table:

Figure 12: Pre-train models for transfer learning
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Chapter 3

Emotion recognition on Postures during active game playing

3.1 Introduction

The affective state of a player during game playing has a significant effect on his/her motivation and

engagement. Often players lose their interest and stop playing a game due to negative emotions such as

frustration, anger, and many more. On the other hand, players who experience positive emotions during

game playing are more likely to continue playing the specific game. Therefore, a system that recognises

player’s emotions during game playing can be a useful tool for designing games that can receive affective

feedback from the player and respond to this through sophisticated artificial intelligence behaviours that

can be applied to the game characters and the game itself.

A system was designed to recognise emotions using posture data. The objectives for the research

were to (a) investigate how to construct a database of postures labelled with emotions. (b) Record data

from both single and multiplayer competitive games to capture the rich expressiveness of both game sce-

narios (c) Utilise state of the art non-intrusive interfaces such as Microsoft Kinect [171] to capture data

and provide a system that can be used in today ’s games. This is particularly important as commercial

systems are increasingly adopting such interfaces in contrast to traditional motion capture systems that

are expensive, and have unrealistic space requirements so cannot be supported. Taking into

43
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consideration the limitation of movements and postures that an interface like Kinect can recognise due

to its simple setup, it is interesting to see whether it performs similarly to other motion capture systems

in terms of recognition accuracy.

As previously illustrated in table 5 there has been research in the field of emotion recognition using

various body modalities. One approach uses cyclic arm movements to recognise fundamental emotions

[21] and another investigates recognition accuracy, confusions, and viewpoint difference while attribut-

ing emotions to postures [49]. In another study, automatic recognition models grounded on low-level

posture descriptions were built and tested for their ability to generalize to new observers and postures

[127] [129]. The automatic models achieve recognition percentages comparable to the human base rates.

A different approach uses movement qualities such as amplitude, speed and fluidity of movement to in-

fer emotions [40]. Similar to this, researchers tried to recognise emotion from animation rather than

posture [201]. In this approach, human recognition of emotion is taken through observation of skeletal

information only. Our approach used, both video and skeleton data is given to the human observers

during labelling, as during experimentation, a number of postures could not be predicted using skeleton

data only. Moreover, all the above approaches use body posture or animation data captured from tra-

ditional motion capture equipment which is not as ubiquitous as Kinect. However, as Kinect is not as

accurate as traditional motion capture devices, it is uncertain if it is practical to capture training data for

the recognition system using Kinect.

3.2 Methodology

3.2.1 Data Collection

The Kinect SDK skeleton data was used to capture and store the posture of players in each frame.

Six male players were asked to play games with the Xbox integrated with a Kinect. A second KinectTHEOCHARIS ZACHARATOS
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Figure 13: Experiment Overview

was connected to a PC and was used separately to record the motion data of the players. The software

used for the motion capture also had the capacity to capture and display both video and skeleton data in

real-time. The PC screen was captured to provide replay capacity for the extraction of the apex poses.

In contrast with the previous research [127] skeleton and emotion postures were recorded during both

actual game play sessions and replay sessions, as it may not be sufficient for an emotion recognition

system to be trained with different data than the one it is aimed to recognise.

3.2.2 Data Analysis

Two different male students replayed the captured video to determine and select affective postures

for four emotional states: Triumph, Concentrating, Frustrated and Defeated. The selection of these

emotional states has been decided from previous research [127], describing some basic emotions that

are valuable for game-play scenarios. Although we have used the same emotions in order to be able also

to compare and test against prior research, the system can be used with any emotional representations,

that ground truth has been collected.

The students asseed the videos and expressed a concern on selecting a posture between frustrated

and defeated, as they considered these emotional states similar in many circumstances. For this reason,

the emotion label set was reduced to three (triumph, concentrating, frustrated/defeated). The studentsTHEOCHARIS ZACHARATOS
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Figure 14: Example on skeleton capturing using human observers

were given the option to identify emotional states based on both video and skeleton data. Both students

agreed that the actual video made it easier for them to decide on the emotional state in many instances

where the skeleton data was not helpful. A total of 147 postures were extracted using this technique.

For all the postures that were extracted, a screenshot of the corresponding frame of the software was

taken for each posture. A digital questionnaire was created and four different observers, three male and

one female, were asked to annotate the screenshots 14 with an emotion label of one of the three above

mentioned emotional states.

Table 6 presents observer agreement for all possible pairs among the four observers, measured based

on Cohen’s Kappa value (Berry 1998). As can be seen, agreement strength is above or equal to ’good‘at

all cases, demonstrating that the labelling quality is satisfactory. Observer 2 clearly performs better on

all paired cases. The average Cohen’s Kappa value for observer 2 on all three pairs is 0.812.
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Observer pair Kappa SE of Kappa 95% confidence interval agreement strength

1-2 0.806 0.043 0.721 - 0.890 Very good

1-3 0.739 0.049 0.643 - 0.835 Good

1-4 0.749 0.047 0.656 - 0.842 Good

2-3 0.782 0.045 0.694 - 0.871 Good

2-4 0.849 0.038 0.775 - 0.923 Very good

3-4 0.686 0.052 0.585 - 0.787 Good

Table 6: Paired observer agreement strength

Table 7 lists the actual number of agreements and percentage of agreement for all possible pairs that

include observer 2. It also compares against chance level agreement. The score is significantly higher

than the chance level agreement and above 86% on all pairs, making observer 2 a suitable candidate for

the labelling of postures. Considering this and the Kappa value, the labelling from observer 2 was used

for posture data annotation for the different emotion recognition tests.

Observer IDs Observer agreements % of agreement Chance Agreements % of expected agreement

1 and 2 129 87.76 54.41 37.04

2 and 3 127 86.39 55.1 37.5

2 and 4 133 90.48 54 36.76

Table 7: Agreement score for Observer 2

Finally, the overall agreement of all observers was far above chance level at 72.3%, agreeing on 107

out of the 147 postures. This is used as the benchmark for evaluating the performance of the collected

skeleton data postures as input for the emotion recognition system. Figure 15 presents the distribution

of labels across the 147 postures according to observer 2.THEOCHARIS ZACHARATOS
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Figure 15: Distribution of emotion labels for the 147 postures, according to observer 2

3.2.3 Emotion Recognition Method and Results

After the observer performance was completed, the skeleton data for each labelled posture was

extracted and annotated with the corresponding emotion label taken from the annotation set by observer

2. The skeleton data comprises standard 3d rotational information for each of the joints of the body.

Automatic emotion recognition was tested based on the capacity to recognise new postures. The labelled

data was used in WEKA [101] to build and test a model. Using supervised learning, back-propagation

algorithm with 10 fold cross-validation we have tried to generalised based on new postures and based

on new players.

The model successfully recognized 90 out of the 147 postures, resulting in overall recognition rate of

61.22%, which is approximately double of what might be expected from chance. Figure 16 presents the

confusion matrix for the conducted test. The recognition rates are balanced across all three emotional

labels, with defeated/frustrated slightly higher than the other two labels. It can be seen that as the

number of postures increases, the recognition rate improves. It is possible that a more balanced database

of sample can result into more balanced and improved recognition rates.THEOCHARIS ZACHARATOS
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Figure 16: Recognition rates for new postures using the back-propagation algorithm. Recognized suc-

cessfully 90 out of 147 postures, 61.22% recognition rate

Another recognition test evaluated the capacity to recognise emotions on new players. The data was

separate into two sets (a) the first set comprises 108 postures that was captured by four players (b) the

second set includes 39 postures captured by two separate players. The first set was used to train the

back-propagation algorithm (Phansalkar, 1994), while the second one was used as test data. Figure 17

presents the confusion matrix for the conducted test. The correctly classified postures were 22 out of

the 39, resulting in 56.4% overall recognition rate. Recognition rate is almost the same for triumph and

defeated/frustrated labels, but is significantly smaller for concentrating (42%). However, this is expected

due to the small amount of training data for the new concentrating label, which was reduced to 17, as

12 of the 29 are now part of the test data. In general, it appears that the database again performs above

chance level and can generalise to new players, although the training data sample is small.

Figure 17: Recognition rates for new players using the back-propagation algorithm. Recognized suc-

cessfully 22 out of 39 postures, 56.4% recognition rateTHEOCHARIS ZACHARATOS



50

The above results in recognising emotions have based on posture data captured using Microsoft’s

Kinect and that time there was no previous research that used non-acted data captured from Kinect to

recognise emotions. The results are similar to those in existing literature that use traditional motion

capture equipment. This suggests that Kinect provides sufficiently valid data to construct such a model,

which can be used in today’s games. Improved recognition of concentrating labels compared to re-

searchers [127] above and can be attributed to smaller emotion set (three instead of four) or to better

observer annotation due to the provision of camera input apart from skeleton posture data. Compared

to the benchmark rate taken from the observers in the current study, the overall recognition was 11.08%

lower. This again, is probably due to the fact that observers had the advantage of camera input, while

the algorithm uses only skeleton data. It would be interesting to test whether observer?s agreement is

influenced by this, as in preivous research [127] agreement is lower than in our experiment. This could

test and indicate the superiority that a multimodal system may have against single modalities such as

posture or animation data.

3.3 Conclusion

The recognition system described above yielded satisfactory results showing that images with pos-

tures can be used as a tool for automatic recognition where skeleton tracking is possible. However, i

believe that it can be further optimised by using mirror postures. Moreover, the training data size can

be adjusted to improve performance since the current data was collected using specific sports games. It

would be interesting to investigate if the constructed database can recognise emotions captured during

game playing of different game genres and to compare the benchmark of acted, non-acted and hybrid

databases.
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Chapter 4

Emotion Recognition for Exergames using Laban Movement Analysis

4.1 Introduction

New advances in non-intrusive user interfaces that use natural human gestures as input have resulted

in high popularity of a new game genre called Exergaming. Exergames go beyond the passive gameplay

activity that traditional controllers such as gamepads, keyboard and mouse offer, and require game

players to become physically active. Through this, exergames are often used to promote a healthy

lifestyle for both casual gamers that use such interfaces at home but also for special categories of users

who need to advance their physical activity in order to improve specific health conditions [86] [181].

Further to this, exergames provide a novel and livelier game experience that can also augment the fun

factor, however research in this area is still in the early stages [124] [114] [113].

A major issue of the available exergames is that they do not have the capacity to detect whether the

players are really enjoying the game-playing. The games are not intelligent enough to detect significant

emotional states and adapt according to them in order to offer a better user experience for the players.

While facial and audio information have been used successfully to detect emotions on users of desktop

applications [91] [34] [72] [222], exergame players express their emotions using their bodies as these

modalities are more active and energetic during exergaming. Existing research that attempts to recognize
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emotions using human motion data does not achieve sufficient recognition rates, and is based on training

the system with low level feature data that is very vague (such as rotation of a given joint on a given axes

etc) and is selected without firm justification from movement analysis theories. Some recent studies in

robotics do achieve good quality recognition [161] [162], however their task is more simplified since

robots perform mechanic and predetermined movements while expressive human movement is more

complex and non-deterministic. Therefore it is not clear how applicable these methods are to real game

playing situations.

This contribution is a step towards overcoming the above limitations, by providing a novel method

that achieves high recognition rates using real human motion data, captured during genuine game play-

ing. It presents an emotion recognition model that makes use of human motion data dynamics derived

from the widely accepted and applied movement analysis theories of Laban [137]. The features that

are used to describe the emotional state vector are derived from the theories of Laban on Effort move-

ment qualities. Four different game-playing related emotional states (excitement, frustration, meditation

and concentration) are studied and training features extracted so that they can distinguish either single

emotions or subsets of the above mentioned emotion.

4.2 Methodology

Many studies have been carried out for motion analysis by using Laban theory’s [44], [176] and

[199]. Camurri et.al examined emotion in dance [36]. The results ranged between 31% and 46% for

recognizing four emotions, far less than the observer recognition rate of 56%. Lourens [155] extracted

low level features from video and used Labanotation experts to classify the video clips to four emotional

states manually. Another study used Laban features like whole-body movement, inclination of the body

and area, to extract four emotions, pleasure, anger, sadness and relaxation from a robot that has limited

ways of movement [162]. Although they used observers to classify the robot movements to emotions,
THEOCHARIS ZACHARATOS
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they have not used automatic recognition techniques for classification. They used empirical estimation

of correlation between Laban features and emotional set. In my approach i used human motion capture

data to extract some of the Laban features for the body’s extremity parts such as arms, legs and head

and then perform automatic recognition techniques on those features to classify our emotional set: ex-

citement, frustration, concentration and meditation. For my experiment, ‘meditation’is the mental state

during which users ignore the environment and focus on themselves. An example of this, a breathing

moment, stretching and any other movement which draws the user’s attention to his own body.

4.2.1 Laban Movement Analysis

Laban Movement Analysis (LMA) is a theory for observing, describing, notating and interpreting

human motion. It was originally developed by dance artist and theorist Rudolf Laban in the early 20th

century. The method focuses on the relationships between internal state, intention and attention and

their effects on all human motions. One of the strong points of LMA is the ability to describe expressive

content of movements, which makes it excellent for emotion and behavior analysis. Many researchers

have been trying to create a computational form of LMA for motion analysis [13] [241] [240]. Nakata

[173], reproduced expressive movements in a robot that could be interpreted as emotions by a human

observer.

Theory divides LMA in four components shown in Figure 18. The experiment focuses on the Effort

component that deals with the expressiveness and describes the dynamic qualities of the movement and

the inner attitude towards using energy. By selecting a set of suitable features from the trajectories

described by hands, foot and head, the effort component can be used as one descriptor for expressive

movements. Laban sees Effort as the inner impulse-a movement sensation, a thought, a feeling or

emotion- from which movement originates; it constitutes the interface between mental and physical

components of movement. The inner impulse is expressed by way of Motion Factors. Every humanTHEOCHARIS ZACHARATOS
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Figure 18: Four major Components of Laban Movement analysis. Adopted by ZHAO 2002

movement including thought has potential to engage the four motion factors: Space, Weight, Time and

Flow. Table 8 shows the motion factors, the underlying cognitive process associated with and the bipolar

quality between two extremes of Effort component.

Motion Factor Cognitive process Extremes

Space Attention-Thinking Indirect-Direct

Weight Intention-Sensing Light-Strong

Time Decision-Intuiting Sustained-Sudden

Flow Progression-Feeling Free-Bound

Table 8: Effort motion factors

Space Motion Factor

As observed by Maletic [156], motion factors have correlation with cognitive processes. The em-

phasis on attitudes toward Space can be associated with the cognitive capacities of orienting, attending

and organizing. It addresses the quality of active attention to the surroundings. The two Extremes are

Direct (Concentrate, Focused, pinpointing, narrowing down) and Indirect (multi-focused, with all-round

attention).THEOCHARIS ZACHARATOS
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Weight Motion Factor

The predominance of Weight qualities may indicate sensing or sensibility for assuming light or firm

Intention towards an action. It senses the physical mass and its relationship with gravity. The two

Extremes are Light (Accepting or Adjusting to gravity, delicate, lesser muscular tension) and Strong

(resisting the pull of gravity, firm, forcefull).

Time Motion Factor

A great frequency of Time qualities may indicate an intuitive readiness for Decision making. Its

mastery gives a calm or alert approach to thought or movement actions. The two Extremes are Sustained

(Calm, slow tempo of movement) and Sudden (Excited, immediate, unexpected).

Flow Motion Factor

The emphasis on Flow can be associated with the emergence of feelings that depending on the

interaction with self or others, free or bind the continuity of movement and give either a controlled and

careful or exuberant and outgoing Progression. The two Extremes are Free (Accepting the continuity of

movement, go with the flow) and Bound (Resisting the flux of movement, controlled, restrained).

4.2.2 Data collection and processing

Thirteen players (ten male and three female) were asked to play sports games for 30 minutes each on

the Xbox integrated with the Microsoft Kinect [171]. The motion data was collected using a PhaseSpace

Impulse X2 motion tracking system with 8 cameras. A camera was also used to record all the sessions

on video, in order to aid at a later stage the annotation of emotional states. The data annotation was done

in a two-step process. First motion clips (of size no longer than 2 seconds) that potentially exhibit one

of the 4 investigated emotions were extracted manually. Special care was given not to include frames

at the beginning and end of the clip that are not significantly expressive in order to reduce noise in the

learning process. A total of 309 clips were extracted. In the second step, four different observers throughTHEOCHARIS ZACHARATOS
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a multiple-choice questionnaire annotated each of the extracted clips, resulting on an agreement on

197 clips that became the ground truth for our system.

4.2.3 Feature Analysis

In the current implementation, the Space and Time motion factors of the Effort component were

implemented. According to Laban [137], the Space motion factor represents the person’s attention to

the surroundings. It is related to attention and thinking. Indirect Space is multi-focused with all-around

attention, while direct is focused with a tendency to align joints and bend. Laban states that concentrated

behavior has direct space quality. Through observation of motion data it is easy to see that excitement

and frustration are not focused movements, while meditation is a state of focusing on one’s whole body

rather on a single point. In the current study, Space motion factor is used to try to recognize concentrate

emotional states from the other three emotional states. Space motion factor is implemented similar to

Masuda [161], but taking into consideration the above theories of Laban.

Through experimentation we have used and discarded multiple features like Quaternion Velocity and

Acceleration, Torsion, Corner Curvature, Angular Displacement, Angular Velocity and Acceleration,

Swivel Angles, Sternum Height [240]. These features have been tested and received lower recognition

rates than the features proposed below. In particular quaternions are very good in representing rotations

as compared to Euler angle or matrix representations and eliminating gimbal lock. In our case recogni-

tion using quaternion velocity and acceleration has resulted in lower rates probably due to the need for

a global coordinate system, thus positional information was used. Further more, other features such as

Torsion and Corner Curvature, that are independent of the way the trajectory is traversed, showed that

are higher in strong motions versus light motions. However, path curvatures of light motions are larger

than in strong motions. These motions does not give much value to emotion recognition correlation as

an individual feature and that is why was excluded from our experiments. On the contrary, swivel anglesTHEOCHARIS ZACHARATOS
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show that Laban’s Indirect and Free movements tend to be driven by the elbow, so swivel angle changes

significantly during a movement.

(a) Frustration (b) Excitement (c) Concentration

Figure 19: Emotion recognition using Laban’s features on the body’s extremity parts

Although that we have tested various features derived from swivel angles, as discussed in the liter-

ature from Laban movements like a) swivel angle changing rate (velocity), b) total sum of swivel angle

velocities, c) number of zero-crossings of the second derivative, d) total pendulum distances (swivel

angle changes between all the neighbouring zero-crossings) and e) the difference between maximum

and minimum swivel angles, for emotion recognition did not provide any higher recognition rates so

we excluded them to reduce the input information. Furthermore by analysing the feet of the player we

excluded left foot which was not giving any higher recognition rates versus using both feet. This maybe

was to the type of the game (football) where most of the participants where kicking the ball with the

right foot. This shows also that in a generalization of the algorithm, we need to take into consideration

left and right handed/feet people separately into the training data.

Sternum height feature on the other hand is measured as the distance between the lowest and the

highest point in a movement. Motion capture systems cannot directly measure muscular tension, so

sternum height is used as an indirect indicator of muscular tension. Sternum height has been used forTHEOCHARIS ZACHARATOS
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Figure 20: Discarded features

discrimination of motion factors that are almost the same, such us sudden time and strong weight that

are simultaneusouly active in the same movement. For this reason it can not be used as a stand alone

feature for recognition. Nevertheless, we have inspired from Sternum height to create a new feature

called percentage of narrowing down PND as depict below:

Percentage of narrowing down PND in the clip, is calculated as the difference of the initial Y position

of the head minus the average head Y position of the clip, divided by the initial Y position. Through

observation, it is easy to see that in concentration clips, the player tends to bend resulting in significantly

lower head positions throughout the clip frames.

PND = (YInitialHead � Ȳ )/YInitialHead (1)

Further to the above feature, to highlight a prospective focus of the movement to a given point

(direct behaviour) the face direction
�!
F and the unit movement vectors of the four extremity points of

the skeleton are used.

S = {�!L hand,
�!
Rhand,

�!
L foot,

�!
R foot}

The dot product of the face vector with each of the four extremity movement vectors are calculated at

each frame of the clip.

8x 2 S, F · x (2)THEOCHARIS ZACHARATOS
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(resulting in indirect or direct movement), as can be seen in Figure 21.

(a) Concentration (b) Excitement-Frustration-Mediation

Figure 21: Face Vector with extremity points

For each extremity point, the average of the dot product values of all the direct frames and the

indirect frames are calculated as two separate features. At the end eight features are calculated for all

four extremity points. Together with the PND feature, they form the Space feature vector, as seen in

Table 9.

Feature Description

PND Percentage of narrow down

DotLhandDirect (
�!
F ·�!L hand) for direct frames

DotRhandDirect (
�!
F ·�!Rhand) for direct frames

DotLfootDirect (
�!
F ·�!L foot) for direct frames

DotRfootDirect (
�!
F ·�!R foot) for direct frames

DotLhandinDirect (
�!
F ·�!L hand) for indirect frames

DotRhandinDirect (
�!
F ·�!Rhand) for indirect frames

DotLfootinDirect (
�!
F ·�!L foot) for indirect frames

DotRfootinDirect (
�!
F ·�!R foot) for indirect frames

Table 9: The Space feature vectorTHEOCHARIS ZACHARATOS
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The Time component represents the speed of the movement. According to Laban, it has to do with

decision and intuition. Sustained movements are calm, with slow tempo, while sudden movements,

are immediate, excited, unexpected and with fast tempo. Laban’s theory about Time and emotions

correlates:

(a) {meditation,concentration} 2 Sustained

(b) {frustration,excitement} 2 Sudden

Time is implemented using the positional velocity(�), acceleration(↵) and jerk(j) (acceleration deriva-

tive) for the extremities of the body, both hands and foot. In Figures 22,23 and 24 we have shown the

average velocity, acceleration and jerk of each extremity joint across all the clips. It shows that for the

left foot the variation is small and thus does not contribute much and can be omitted from the feature

set.

Figure 22: Average Velocity

The final feature set for the Time component comprises nine features, positional velocity, accelera-

tion and jerk for left hand, right hand and right foot respectively as seen in Table 10 below.
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Figure 23: Average Acceleration

Figure 24: Average Jerk

4.2.4 Machine Learning Approach

To assess the validity of the selected feature sets for the Space and Time motion factors, and to

measure the success in recognition of the targeted emotional states, the following tests were conducted:

Test1: Annotate all non-concentrate clips as one category and test to see if Space factor can distin-

guish between concentrate and non-concentrate clips. This can be used during automatic measurements

of concentration on exergames in which acute cognitive benefits such as temporal improvements in con-

centration are being evaluated [83].THEOCHARIS ZACHARATOS
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Feature Description

LhandV Velocity(�) for right hand

RhandV Velocity(�) for left hand

RfootV Velocity(�) for right foot

LhandA Acceleration(↵) for right hand

RhandA Acceleration(↵) for left hand

RfootA Acceleration(↵) for right foot

LhandJ Jerk(j) for right hand

RhandJ Jerk(j) for left hand

RfootJ Jerk(j) for right foot

Table 10: The Time feature vector

Test2: Annotate all excitement and frustration clips as the one category and all meditation and con-

centration clips as another and attempt to see how well the Time factor can recognize between the two

categories. This can be used in a scenario where the valence of the emotion state of the user is required

to be measured.

Test3: Attempt to recognize all four emotions against all others using a combined feature set.

I have used WEKA [101] to distinguished all 4 emotions against all others using a combined feature

set. The whole data set was divided to 10 folds and each fold was used once as a testing set, while the

rest acted as training sets. All the three tests have computed by Multi Layer Perceptron Classification

algorithm. The results presented in this paper are the averages of the 10 trials.
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The results showed an overall 92,38% recognition rate for the binary set of concentrate emotion or

other. As seen in Table 4, 36 from the 44 clips were recognized as concentrate, and 146 from 153 clips

as other.

Concentration Other

36(82%) 8 Concentration

7 146(95%) Other

Table 11: Concentrate or not classification using the Space factor

For Test 2 i have defined a binary set of emotional states, when the clip is sustained or sudden. It

showed a 91,87% recognition rate for the binary set of emotion, with 86 out of 96 clips were recognized

as Concentrate or Meditation and 95 out of 101 clips recognized as Excitement or Frustration. The

confusion matrix can be seen on Table 5.

Concentrate-Meditation Excitement-Frustration

86(90%) 10 Con.-Med.

6 95(94%) Exc.-Fru.

Table 12: Concentrate-Meditation vs Excitement-Frustration classification using the Time factor

For Test 3, this time with all the four emotional states available i have combined space features

and time features in one set, with overall classification of 85.27%, with Kappa statistic 0.8031. The

Confusion matrix can be seen on Table 6.
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Meditation Concentrate Excitement Frustration

45(87%) 2 0 5 Meditation

5 39(89%) 0 0 Concentrate

1 1 39(83%) 6 Excitement

3 1 5 45(83%) Frustration

Table 13: All four emotions classification using the combined Space and Time feature set

4.3 Conclusion

The results shows the conclusion that Laban Movement Analysis is a valid and promising approach

for emotion recognition from body movements due to the abstract level of Laban’s technique. Specif-

ically i have shown that two of Effort’s component motion factors, Time and Space can result to high

emotion recognition rates. The implementation of the rest of the Laban motion factors and components

is one of current goals and part of my future work. It is anticipated that this will further improve the

recognition rates. This is very important as emotion recognition systems must be very accurate before

they can be used within games to adapt game behavior, as any emotion recognition mistakes can have

the opposite effect on the player’s experience. It would also be interesting to integrate the method to an

automatic emotion recognition system capable to be used by Exergames.
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Recognizing Emotional Expressiveness in Raw 3D Body Motion Data

5.1 Introduction

As the gaming industry evolves, more sophisticated and natural user interfaces are being introduced,

gradually replacing traditional controllers. Such interfaces make extensive use of modalities such as

body motion gestures and voice commands, becoming popular nowadays in gaming and virtual reality

applications. The former, motion data, has the potential to achieve an added level of immersion through

the physical embodiment of the player character in real time [114]. This makes it a very strong candidate

for an emotion recognition modality, and has already been identified and is being explored by researchers

[40] [47].

While recognizing specific emotions is a very interesting and challenging task, being able to detect

moments of emotional expressiveness for a game player could offer multiple benefits. Aside from the

fact that this is a first step towards specific emotion recognition, emotional expressiveness detection can

be used to automate part of the manual segmentation of 3d motion data, requiring users to watch long

clips and segment portions as emotionally-labeled candidates. This would allow the quick creation of

large databases of emotionally expressive clips, that many institutions construct manually and use for

many purposes such as qualitative observation or training sets for predictive models [33] [224] [77].

65
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Moreover, it would also be useful from a marketing perspective to be able to extract expressive mo-

tion clips from raw data, similar to the technique used to extract candid portraits from videos [74].

For example, some exergames that use Microsoft Kinect sensor extract screenshots from the gameplay

sessions at the end of the games.

The proposed method uses automatic segmentation based on motion primitives in order to determine

which clips to segment. Using symmetry detection in the segmented clips and energy of upper and lower

body we can determine expressive clips that can benefit emotion recognition and emotion database

creation experiments.

5.2 Methodology

The proposed method uses automatic segmentation of motion data, in order to separate high from

low energy sequences. The input of the methodology is motion capture continues data sequences that

was given as a raw signal in the algorithm. Then an automatic segmentation algorithm is used for seg-

menting high energy clips, by calculating the rotational kinematic energy of the upper and lower body,

and segment sections based on a predetermined threshold. Furthermore a symmetry detection algorithm

is applied in order to detect the symmetrical percentage for hands and legs, derived from our observa-

tions that when expression occurs then we have symmetry in some relevant body bones. A comparison

of the warping motions is done through a multidimensional Dynamic Time Warping algorithm, that

shows the symmetry in percentage for each frame and the average total symmetry. Due to the fact that

our segmented clips mostly comprised by non-expressive gameplay clips, i have used a set of features

that empirically appear to exhibit possible correlation with the expressiveness of the motion in the given

gameplay context The set of features includes hand and leg symmetry and kinetic energy that allows the

isolation of a pool of expressive clips. Figure 25 depicts the overall methodology and process.THEOCHARIS ZACHARATOS
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Figure 25: Methodology and process

5.2.1 Data Collection and Segmentation

Players were asked to play sports games for 30 minutes each on the Xbox integrated with the Mi-

crosoft Kinect. The motion data was collected using a PhaseSpace Impulse X2 motion tracking system

with 8 cameras. The calculations and processing time was reduced to 30 frames per second. We have

created an animation session representation in Unity3D, in order to aid the annotation of emotional states

and create the ground truth. An automatic segmentation system has been implemented in order to parse

high-dimensional body movements into a sequence of more basic primitives [76]. The segmentation is

based on function E(f) which measures the rotational kinematic energy [206] at frame f by using the

angular velocity of different joints. Let ✓f,k represent the angular speed of the k-th rotational degree of

freedom at frame f, assuming that I is equal for all joints. Then, we can define the body’s rotational kine-

matic energy as the weighted sum of the rotational joint velocities. Energy will be high when energetic

motion occurs.

E(f) =
nX

k=1

wk||✓||2f,k (3)

nX

k=1

wk = 1 (4)THEOCHARIS ZACHARATOS



68

Where wk is the weight for the k-th rotational degree of freedom. After the calculation of the rota-

tional kinematic energy of each frame, we smooth the signal with Savitzky Golay filter and segment the

clips with the previous and next local minima that are created. Initially we have defined an empirically-

deterimend threshold for the level of Energy, and observed that some times there are continues move-

ments that should be combined to one, since they represent the same overall movement with different

energy. At first to solve this, we used a Gaussian function to smooth the signal, resulting to a smoother

signal but loosing many small expressive movements. Finally we have used another approach to define

the initial and end cutting points, by when the percentage of the Energy falls below 90% comparing with

the previous minima, thus showing that the movement has come to an end. This approach resulted in

combining the small movements, but also keeping the valuable expressive information.

Figure 26: Motion primitives segmentation

As seen in figure 27 and 28, segmentation sessions contains both gameplay , and expressive clips,

thus an evaluation of movement is needed to differentiate.
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Figure 27: GamePlay Clips

Figure 28: Expressive ClipsTHEOCHARIS ZACHARATOS



705.2.1.1 Symmetry Detection

Symmetric Motion Extraction

The human body is analyzed partially, the upper and the lower body, and the symmetrical motion

of each segment is extracted separately in order to produce the final symmetric motion. For the upper

body, taking into account the positions of the spinemid ps
, the neck p

n
and the left shoulder p

ls
, and, for

the lower body, the positions of the spinebase p
sb

, the spinemid p
s

and the left hip p
lh

, the orientations

Rub and Rlb are extracted for the upper and lower body respectively. In particular, let v’x1 be the

normalized vector from the neck to the left shoulder position and vy1 be the normalized vector from the

neck to the spinemid position. The cross product between vy1 and v’x1 gives vz1. Therefore, the cross

product between vz1 and vy1 gives vx1. As a result, the upper body rotation matrix Rub is defined by the

normalized vectors vx vy vz . The sequence of the equations is presented below.

v’x1 = p
ls
� p

n
(5)

vy1 = p
s
� p

n
(6)

vz1 = vy1 ⇥ v’x1 (7)

vx1 = vz1 ⇥ vy1 (8)

Rub = [vx1vy1vz1]T (9)

Similarly, for the lower body, using psb
, p

s
and p

lh
we have:
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v’x2 = p
lh
� p

sb
(10)

vy2 = p
sb
� p

s
(11)

vz2 = vy2 ⇥ v’x2 (12)

vx2 = vz2 ⇥ vy2 (13)

Rlb = [vx2vy2vz2]T (14)

Since the orientations Rub and Rlb are known in each body frame of the motion, the joint positions

that belong to the body segment can be used to extract the symmetric motion. The symmetric motion

of a human body joint is defined as the saggital symmetry of its position in each frame. The symmetric

position of the joint j, can be calculated using the orientation Rb of the a body segment. Let p be the

position of the joint and p
sym

corresponding symmetric one. Using eq. (15), the point p is aligned to the

global coordinate system and gives p’, the eq. (16) gives the saggital symmetric point p’sym and finally,

eq. (17) gives the symmetric point p
sym

.

p’ = R�1p (15)

p’sym = [�p’
x
p’

y
p’

z
] (16)

psym
= Rp’

sym
(17)

(18)

Thus, applying the equations above for each joint position using the orientation of the body segment

that the joint belongs to, we create the symmetric position of each joint, thus the symmetric motion is

extracted. It is worth to be mentioned that the extraction of the symmetric and not the mirrored motion

is desired, so the symmetric positions are assigned to the symmetric joints and not to the same one (e.g.

the symmetric motion of the right wrist is the motion of the left one wrist in the symmetric motion).
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Since the symmetric motion is extracted, in case there exists symmetry in a human motion, the sym-

metric and the original motions must be quite similar. In other words, the symmetric motion is extracted

in order to be compared with the original one and the outcome will give the symmetry. To achieve that,

the proposed comparison between the motions must be defined. In such an approach, the “technique”

of the motion is important, not the speed or the synchronization of the performed action. For example,

a jumping jack is a symmetric motion but also the performance of two sequent punches, a left-handed

and a right handed straight ones, is a symmetric motion too. Thus, a warping between the motions is

necessary in order to compare the warped frames of the motion. For this purpose, multiple multidi-

mensional Dynamic Time Warping algorithm (DTW) is applied [81]. The joints that are analyzed to

compare the motions are the wrists, the elbows, the ankles and the knees. For each of these human body

joints, motion features as the position and the velocity are extracted in each frame. Thus, applying the

DTW algorithm on the 3d vectors of the joint positions and the joint velocities, the warping between

the symmetric and the original motions is achieved. Then, the euclidean distance between the 3d vectors,

Figure 29: Symmetry detectionTHEOCHARIS ZACHARATOS
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normalized with a maximum distance value that declares the maximum error, represents the error for

each feature. Finally, a function Si(e1, e2) gives the symmetry in percentage for frame i, using weights,

and the average of the motion frames symmetry gives the total symmetry. The equations are below:

w2 =
||uor||
umax

(19)

w1 = 1� w2 (20)

e1 =
||por

� p
sym

||
dmax

(21)

e2 =
||uor � usym||

umax

(22)

S(e1, e2) = w1e1 + w2e2 (23)

FStotal =
1

N

NX

i=1

Si (24)

where uor and usym are the 3d vectors of the linear velocity of the original and symmetric motion

respectively, umax is the maximum value of the euclidean distance between 3d vectors of linear velocity,

w1 and w2 are the weights of the error based on positions and velocities respectively, p
or

and p
sym

are

the 3d vectors of the relative positions of the original and symmetric motion respectively and FStotal is

the final evaluation of the symmetry in percentage.

5.2.2 Feature Space

Our overall set of segmented clips comprise mostly non-expressive gameplay clips. In order to

successfully separate the majority of the expressive clips from the rest, i have used a set of features

that empirically appear to exhibit possible correlation with the expressiveness of the motion in the given

gameplay context. The set of features includes hand symmetry and leg symmetry (based on the previous

section) as well as hand energy and legs energy. Energy is calculated in the form of kinetic energy based

on the velocity of the corresponding body joints. The feature space is seen below:

Space: [Hand Symmetry, Leg Symmetry, Hand Kinetic Energy, Leg Kinetic Energy]
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745.3 Results

The method presented has been tested using Microsoft Kinect sports game. Without requiring any

heavy pre-processing from the motion capture, only some skeleton adjustments, the skeleton data are

collected and the necessary info is extracted. In order to reduce the computational cost, motion capture

data can be collected with less frames per second, or use only the end-effectors (head, hands, legs) for

training and not all the skeleton joints. The stream of data is segmented automatically using a threshold

on the total energy of hands and feet at every frame. Each segmented clip is individually evaluated using

the criteria specified in previous section. For evaluation only purposes, the data was also annotated,

before being segmented, by 2 human observers.

For an example player that plays a football game, the total interaction consisted of 10600 frames

as depict Figure 30. The human observers identified in this 16 distinct expressions while the rest was

marked as game-play. The system segmented the game into 292 clips. It is worth noting that due to

the rather naive segmentation method used, a movement or expression is sometimes split into 2 or more

clips. The aim is to be able to pick up at least one clip from each expression performed by the user. Using

the formula described in previous paragraphs, with the thresholds for the hand and feet symmetries set

to 50 and 80 respectively, the methods marks 18 clips as expression. 13 of these fall on the 10 out of the

16 expressions while the other 5 fall on 4 different game-play movements.

Figure 30: Results showed that 72% of the selected clips were expressiveTHEOCHARIS ZACHARATOS
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In this experiment i have presented the preliminary results towards recognising emotional expres-

siveness from raw 3d body motion data.Through observation and testing, it appears that expressiveness

in motion is linked to motion symmetry and minima or maxima of the energy of body extremities, de-

pending on the gameplay context. For example, from experiments conducted using a football exergame,

observation revealed that seeking above than average body symmetry and reduced lower body energy,

isolates a large percentage of the expressive clips and removes the majority of the non expressive clips.

Future work in this direction includes testing more features and building the automatic thresholding in

all phases, starting from segmentation. Moreover, to conduct an agreement level test, among real users

and the system, to determine a more reliable and realistic success metric, as the subject of emotion

recognition is subjective, especially with non-acted data.
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Chapter 6

Deep CNNs for Emotion Recognition based on Image transformation of

3D Skeleton Motion Data

6.1 Introduction

As the gaming industry evolves, more sophisticated and natural user interfaces are being introduced,

gradually replacing traditional controllers. Such interfaces make extensive use of modalities such as

body motion gestures and voice which are nowdays becoming popular in gaming and virtual reality ap-

plications. The former, motion data, has the potential to achieve an added level of immersion through the

physical embodiment of the player character in real time [114]. This makes it a very strong candidate for

an emotion recognition modality, and has already been identified and is being explored by researchers

[40] [47] [9]. Deep Learning (DL) has been deployed in computer vision applications offering signif-

icantly improved results compared to traditional machine learning techniques. Particularly for human

action recognition from motion data, Convolutional Neural Networks (CNNs) have been used exten-

sively due to their high performance success on images or videos tasks [219]. This experiment focuses

on the classification of emotions from 3D body movements, which are transformed to 2D images, that

encode posture and motion dynamics in pixel values. Those images are used as input to train the last

layers of a pre-trained Deep CNN applying the popular methodology of transfer learning.

76
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Figure 31: The overall Architecture

Traditional machine learning techniques have been improving in terms of accuracy but rely on hand-

crafted features [40] [47] [9]. The use of deep learning techniques to automatically extract effective

features from multimodal information and classifications are new directions currently actively pursued

by researchers, but several challenges remain in realising an end-to-end deep learning system. With the

availability of large datasets, deep learning has become a state-of-the art solution to problems such as

emotion recognition. Kim et al. for example propose a CNN-based model for a hierarchical feature

representation in the audio-visual domain to recognise spontaneous emotions [126]. Results showed

that improvement of recognition accuracy is achieved when hierarchical features and multimodal in-

formation are adopted. In another effort, models are constructed from multiple physiological signals

collected from sensors placed on the human body by adopting a multimodal deep learning approach so

as to improve their performance and reduce the cost of acquiring physiological signals for real world

applications [150]. To classify spontaneous multimodal emotional expressions as positive or negative,

researchers proposed a cross channel convolutional neural network (CCCNN) having the capability of

learning and extracting general and specific features of emotions relying on body motion and face ex-

pression [17].These features were further passed to cross-convolution channels to build the cross-modal

feature representation.THEOCHARIS ZACHARATOS
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The CNN is a type of deep learning that is especially used in the processing of images, proposed by

Lecun et al. [140] It is based on the foundation of conventional neural networks inspired by biological

understanding of the visual cortex. In this work the CNN applies convolution and sub-sampling alter-

natively to the input data, in the convolutional layers and sub-sampling layers. After two stages of this

computation, the data is fed to a fully connected conventional neural networks, to complete the classi-

fication problem. Deep leaning-based algorithms can be used for feature extraction and classification.

With the use of CNNs the work spent on the pre-processing of the images is greatly reduced since the

algorithm is already capable of detecting the best features needed to classify the images.

Because CNN-based methods cannot reflect temporal variations, recently researchers have combined

CNN, for the spatial features of single frames, with Recurrent Neural Networks (RNNs) that allow

operation directly on time sequences. They are successfully applied to tasks involving temporal data

such us speech recognition, language modelling, translation and gesture analysis. In a RNN, the output

of the previous sequence time step is taken into consideration when calculating the result of the next one.

However, a standard RNN does not handle long term dependencies well, due to the vanishing gradient

problem. [107]. The RNN Long Short Term Memory Network (RNN-LSTM) is an extension for RNN,

which works much better than the standard version. In the RNN-LSTM architecture, RNN uses gateway

units in addition to the common activation function, which extend its memory [12]. Such an architecture

allows the network to learn and remember dependencies over more time steps, linking causes and effects

remotely [106]. In recent research, an RNN-LSTM was used to identify gestures emotion recognition

based on low level features inferred from the spacial location and orientation of joints within a track

skeleton. [200]. For all the above deep learning approaches, a vast amount of data is needed to perform

the training and learning. Moreover, encoding raw skeleton data to images and then recognise emotions

faces the limitation of a frame by frame representation of emotions. My method creates features related

to time from raw skeleton data and converts them to images.
THEOCHARIS ZACHARATOS



796.2 Methodology

The proposed technique is inspired by recent research on action recognition methods that depict

skeleton information into image-based representations and create features from 3D skeleton sequences

[216]. The feature matrix that is created contains pose and transition dynamics using distance and

orientation features.

For the pose distance feature within any given frame, the joint-to-joint Euclidean distance for all

the joint pairs combinations was calculated by projecting the 3D joint coordinates to the three planes

perpendicular to the axes x, y, z in a global coordinate system. The pose distance feature between two

joints i and j for a given frame t is given by the below equation:

Dt

ij = [dXY plane,t

ij
, dY Zplane,t

ij
, dXZplane,t

ij
] (25)

where:

dXY plane,t

ij
= ||P (ix, iy)

t � P (jx, jy)
t|| (26)

In the above equation, P is the 2D point created from the projection of joint i or j on the XY plane

for a given frame t.

In a similar way, the transition feature calculates the joint-to-joint Euclidean distance for all possible

joint pairs combinations but within two consecutive frames:

Ct

ij = [cXY plane,t

ij
, cY Zplane,t

ij
, cXZplane,t

ij
] (27)

where:

cXY plane,t

ij
= ||P (ix, iy)

t � P (jx, jy)
t�1|| (28)

observe the difference from calculating distance for frames t and t-1. Two additional features are calcu-

lated based on joint-to-joint orientations with respect to the horizontal axes X, Y, Z. Calculating theTHEOCHARIS ZACHARATOS
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dot product of each joint-to-joint orientation with each of the 3 axis vectors allows the extraction of

the orientation angle from the inverse cosine function. An example is given below for a joint-to-joint

vector
�!
ij and the X axis vector

�!
X

rXaxis,t

ij
= cos�1

 �!
ijt ·�!X

||
�!
ijt||⇥ ||�!X ||

!
(29)

And below is the vector from all 3 axes for a single pair of joints i and j.

Rt

ij = [rXaxis,t

ij
, rY axis,t

ij
, rZaxis,t

ij
] (30)

In a similar way, a transition of orientation is calculated across two consecutive frames, with the

same formula but now vector
�!
ij is calculated with joint i from frame t and joint j from frame t-1:

Gt

ij = [gXaxis,t

ij
, gY axis,t

ij
, gZaxis,t

ij
] (31)

The four features are calculated for all applicable joint pairs and are normalized using min and

maximum values to (0,1). They are then concatenated in a row to form a feature set for a given frame.

The same process is repeated for each frame starting from frame number 2 and moving further taking

into consideration the dynamics with the previous frame 3D joint data. Given this configuration, at the

end i had a 2D matrix with every row being the data for each frame and every column representing a

feature for a particular pair of joints. This data is then converted to a 2D RGB image.

6.2.1 Emotion image generation

There are various ways of representing emotions, either by using distinct emotions like happiness,

sadness, fear, anger, surprise, disgust or by measuring and contextualizing emotions according to a

dimensional space as illustrated in Figure 32, where emotions are represented in two dimensions of

valence in x axis and arousal in y axis and each emotion can be viewed as point in the space defined by

these dimensions.
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Figure 32: The Valence-Arousal space

Starting from the hypothesis that motion data can represent emotion information, to prepare motion

clips for use in a CNN, i have proposed the transformation of 3d data to pixel data in the form of

normalized posture and motion dynamics using an approached that has proven to be successful for

action recognition [216]. The posture and motion features are encoded to RGB 24-bit color images.

Each row of the image represents a single frame of the clip and each column a different posture or

motion dynamics feature as seen in Figure 33.

All clips depict a single skeleton therefore the number of features is the same in all clips, making the

width dimension of the image common for all of them. However, since each input motion clip can have

a different length in terms of number of frames, the generated images have different sizes with respect

to the image’s height. To prepare the data for input for the selected pre-trained CNN, images needed to

be converted to a standard size. This was achieved by determining the maximum height of all images,

witch have variable frames in length and i have padded zeros to the remaining images extended pixels.THEOCHARIS ZACHARATOS
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Figure 33: Image representing a series of postures (rows) with features (columns)

6.2.2 Transfer Learning

The rapid developments in Computer Vision has been further accelerated by the advent of Transfer

Learning. Transfer learning allows us to use a pre-existing model, trained on a huge dataset, for our

own tasks. Consequently reducing the cost of training new deep learning models and since the datasets

have been vetted, we can be assured of the quality. To address our given classification problem, i have

tested and compared different pre-train models that used on millions of images as described in chapter

2. Among these models we choose Inception V3 model which gave very good results in prior work.

Inception V3 [214] is an image recognition model that has been shown to attain greater accuracy on

the ImageNet dataset. The parameters of the Inception module are 24 Million as can be seen in Figure

34. I have removed the last layers of the model adding my own layers, to accommodate my architecture

with the total parameters reaching 24.5 million out of which 2.6 million are trainable.THEOCHARIS ZACHARATOS
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Figure 34: Inception-V3 model

I had used binary cross-entropy as the loss metric as i had 2 target classes (happy and sad). I

have added new trainable layers as seen in Figure 35. The new layers contain a global average 2D

pooling, then multiple dense RELU activation layers, and then dropout of 0.3, ending on two neurons

for prediction of the targeted two classes.

Figure 35: Added Layers on pre-trained Inception-V3 model

The model learned to convert the existing features into predictions on the new dataset. The summary

of the model can be seen in Figure 36. The overall architecture of my emotion recognition method is

showed in Figure 31.

Figure 36: Our Transfer learning model architectureTHEOCHARIS ZACHARATOS
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I have used an acted emotional body movement dataset [90] in order to execute a pilot test with 2

emotions that differ in both dimensions of the Valence-Arousal space. The dataset contained scenarios

to perform a typical and natural expression, captured by a motion capture system Axis Neuron. I have

selected scenarios of equal man and women actors and in total i have used 208 happiness and 194 sadness

different inputs. All the data were setup using 17 body joints with both positional and rotational data; i

have only considered the positional data.

6.2.4 Results

The Inception model network was trained for 30 epochs using a learning rate of 10�3. I have used

80% of the input clips for training and 20% for validation. All experiments are implemented on an Intel

i9-07920x CPU @ 2.9Ghz, with one NVIDIA GeForce RTX 2080 Ti card. The training model was

tested with an un-seen dataset of 16 motion clips (8 happiness, 8 sadness), which resulted in an average

of 81% recognition rate as can be seen in table 14

Hapiness Sadness

7(88%) 1 Hapiness

2 6(75%) Sadness

Table 14: Happiness or Sadness classification using Transfer Learning

6.3 Conclusion

Previous studies [200] showcased that movement dynamics can be used for emotion recognition.

Up to now we have not seen research contributions in the Affective computing domain, that utilise im-

age representations of pose and movement dynamics from 3D skeleton motion data. This technique

has been used with success previously for action recognition [216] and in the current project i attempted

to apply it in the context of emotion recognition.The proposed technique utilizes both posture and motionTHEOCHARIS ZACHARATOS
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dynamics to construct image representations of the motion clips. The images are then annotated with the

emotion class of their source clips. The current technique shows that combining posture and subsequent

frame motion dynamics in an image that uses rows as a temporal dimension and columns as dynamic

features can capture affective information. While the initial results are promising, the study needs to be

extended to a larger set of emotion classes, to determine how descriptive is the encoding of affect into

the produced images. Moreover, new representations of images should be tested, such as those derived

from other sets of motion dynamics, for example Laban Movement Analysis features. Further to this,

the training data can be enriched with standard data augmentation techniques to potentially improve the

classification accuracy. The data augmentation can take place either directly to the skeleton data before

the creation of images (noise on joint properties, time warping, autoencoder-based among others) or

to the resulting images with traditional image-based data augmentation techniques. Finally, while the

current work deployed the Inception V3 model, there are other successful pre-trained CNN models that

should be tested and compared in terms of performance.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This section presents the conclusions to the current thesis, as well as a discussion on limitations and

advancements on the elements of emotion recognition from body movements.

7.1.1 Is there really an Emotion? Improving the Ground Truth

The ongoing research presented in this thesis and other studies [127] [129] [237] highlighted the

importance of establishing ground truth for recognizing emotions. The task of emotion recognition re-

lates to human traits and behavior which is not a well-defined task such as human action recognition

(e.g., walking, running, picking up an object) object detection (detecting cars, animals and so on) where

a corpus of training data can be created with high certainty for its validity. For example, in the first

experiment of the current work, inspection of the agreement levels among observers, gives evidence

that postures cannot represent expression of emotions deterministically. This is because humans express

emotions in different ways, based on personality, culture, and perhaps other factors. Similarly, humans

apply their individual experiences and characteristics when trying to recognize emotions expressed by

others. Achieving a high percentage ground truth is already a challenging task and requires research

86
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focus as a topic itself. Having to train a model with data that is not deterministic limits the opportu-

nity for high accuracy rates. The uncertainty can be partially mitigated by utilizing acted postures or

motion clips [10] [94] [169] [194], however this has also limitations. Creation of acted data is expensive

and time consuming and it is impossible to generate a large corpus of data equivalent to the amounts of

data that is used in other tasks to effectively train modern deep learning architectures. Data augmen-

tation can enhance and improve the training data to an extent but based on the fundamental principles

of acquiring training data, many actors that represent a wide set of different groups need first to be en-

gaged. Extensive research in this field is likely to highlight a need for separate models to be trained

and deployed for different type and/or demographics of players. It would also be interesting to see the

agreement observers on the acted clips as this can further establish the ground truth.

Since the creation of a large corpus of acted clips is difficult, the training data can be designed to

include selected motion clips from raw data captured during gameplay. Several trained observers can

then identify, segment, and annotate the data accordingly. As the selection of training data can affect

the performance of an algorithm, selection of the data to be used must include high agreement levels.

Data samples case where agreement levels are not high, can also create opportunities for identification

of reasons why agreement is not achieved, as this can also help towards the feature and data engineering

process. Observed annotations can also be correlated with information collected by other modalities such

as face, heart-rate monitor signals, electroencephalography, and self-reporting, to strengthen the ground

truth. It is worth noting that in older and recent studies [60] [4], correlations among such modalities

have been detected but as anticipated they are not strong due to human parameter measurements. When

deploying observers and self-reporting, there are also other parameters to consider such as deception

and self-deception, cognitive load, and demographics [235].
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887.1.2 Are the selected features descriptive? Data Engineering

The different techniques that were deployed in this thesis and in similar studies [32] [137] [159]

[217] [227] to engineer the feature set that will be used to train and test the model, indicate that there

are different ways to try to encapsulate emotion in data. The first experiment showcased that using raw

3D skeleton transformation data as a feature set can be successfully used to recognize emotion from

single postures. However, when working with motion clips, using the whole set of 3D transformation

data enlarges the feature space and makes it hard to train a model. Transforming the raw data using

LMA [137] and other similar techniques [56] [78] [103] proved to be successful in capturing affect,

due to the elements that such methodologies attempt to embed. The results of the second experiment of

this thesis showed that using features (such as percentage of narrow down, orientation features, velocity,

acceleration and its derivative) derived from the Space and Time motion factors of the Effort component

yielded high performance results on non-acted clips that were manually segmented and annotated by

observers. In a side experiment that is not documented in this thesis, an attempt was made to train an

autoencoder using raw 3D transformation motion clip data. While the compressed feature set captured

and decoded the motion clips with high visual detail, it did not prove to capture and encode emotional

information, as tests indicated. It would be interesting to see if transforming the raw data to variations

of LMA representations first, and then compressing those through the encoder would encapsulate affect.

The last experiment showcased that transforming raw data to posture and motion dynamics and convert-

ing those to images has the potential to represent emotions and allow recognition of some of those using

Deep CNNs. The latter technique can also be combined with LMA as an alternative way to capture

motion dynamics. It is apparent that there are many more feature set technique combinations that may

further enhance the current results and offer insight to the problem domain. It is also possible to examine

separately particular body segments only, and derived feature set for those, as indicated in the second

experiment of this thesis.THEOCHARIS ZACHARATOS
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Recent advances in Machine Learning gave access to specialized new architectures that can be uti-

lized to solve classification and pattern analysis problems. Deep Learning neural networks allow the

construction and use of automatically transformed features that are capable to encode and capture in-

formation that relates to given problems. This thesis demonstrated how architectures such as Multilayer

Perceptron, CNNs as well as ad-hoc approaches such as symmetry detection can be applied to recognize

affect or the presence of emotional expressiveness. Regarding the CNN, this thesis applied Transfer

learning by using the Inception v3 model. While the Inception model has been transferred successfully

to experiments that address different machine problems, there is room for more experimentation by test-

ing other readily available CNN trained models such as the VGGNet [211], REsNet [104], AlexNet

[135], among others. Additionally, different architectures such as RNN-LSTM [12] [71], Autoencoders

[5], and Transformers [46] provides a way to treat the problem at its original form when it comes to raw

data, more specifically, a time-series domain. Considering the difficulty in segmenting the clip before

processing it, these seem techniques that can offer a way to deal with the motion data within frame win-

dows, the size of which can be chosen empirically after experimentation. More recently, Reinforcement

Learning (RL) has been used to achieve emotion detection and the gradual emotional changes within

conversations [147]. Similar principle may have potential to skeleton data, with the action of the RL

agent to be set selecting the emotion label. Using pre-segmented data allows more traditional tech-

niques, but the time dimension becomes more significant as the focus shifts towards application that use

emotion recognition.
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Manual examination of body postures provides a way to examine, determine and report emotional

expressiveness. Observers that are given sets of postures are capable to recognize the expressed emotion

in most of the cases. It is possible to train machine learning models with training sets that comprise

postures annotated by observers, and such systems are capable to generalize to new postures and new

users with results comparable to humans. However, as mentioned earlier in the section about improv-

ing the ground truth, providing observers with postures only snapshots, does not yield high agreement

levels, which reduces the ground truth and the expected accuracy. Using postures from acted clips can

eliminate this issue, but the bias of selecting those posture remains. Moreover, postures do not hold tem-

poral information and are utilized isolated from the actual movements that embed the selected postures.

Perhaps an emotion recognition that uses posture representation as a feature set need to be enhanced by

ss different mechanism that operates on a raw signal, recognizing emotion frame by frame, but apply a

temporal mechanism to determine emotion based on the time-series of postures. After all, the 3D repre-

sentation of a posture itself cannot embed information on what action caused this posture and what type

of movement has led to it. A particular posture can be the result of a large number of 3D movements

and can lead to an equally large number of subsequent postures, depending on the movement of the

player/actor. Modern models of Recurrent Neural Networks [12] [106] [200] can offer some ideas for

experimentation towards the use of postures in emotion recognition.

7.1.5 3D Body Motion for Emotion Recognition

The second experiment showed that 3D body motion data can be used to calculate new features such

as those derived from Laban Movement Analysis that are distinctive for some emotion categories. This

makes Laban features suitable for training machine learning models to recognize emotions with high

success. An interesting question arises on whether implementing more features that are derived fromTHEOCHARIS ZACHARATOS



91

LMA or other body motion theories can be used with modern Deep Learning architectures to further

improve the system. The current implementation in this thesis, calculated Laban features as per clip,

using average values. As described above, an interesting venue to move ahead would be to calculate

LMA features per frame and establish them as a time-series training data. Another interesting question

is whether those can be used either directly as input to an Autoencoder, or similarly to the last experi-

ment of the thesis by embedding LMA features as pixels of images and applying CNN techniques, that

proved promising during the last experiment. However, it is not very clear that images created this way

present descriptive image data for all classes of emotions that will allow classification of more than two

emotion labels. Overall, 3D motion data offer the additional dimension information that postures of 2D

motion data from videos does not have, but theories of motion analysis require to handle the complexity

of the additional dimension.

7.1.6 3D motion data in Multimodal systems

While individual modalities have proven successful towards recognition of affective information,

the prospect of multimodal systems can combine the strength of each modality by fusing them into a

feature set of by combining the output of different modalities before reporting the emotional prediction

[84] [97] [98]. The current thesis did not explore this opportunity, however given the limitations of each

modality and the ambiguity that is caused by the temporal duration of the emotional expressions, this

approach needs to be further explored and exploited. Accuracy rates can potentially be improved and

the temporal effect of emotions can be examined.
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This thesis presented a set of different techniques that have potential in recognizing specific emotions

or emotional expressiveness from 3D body posture and motion data. This thesis is concentrated on

methods and algorithms for emotion recognition which are not binded on a specific emotion, but more

generalized. The topic of emotion recognition has been explored by many researchers in the past years

and despite the promising achieved findings, there are numerous areas of improvement and explorations.

The thesis contributed with results across a number of different facets of the problem and has also

presented a number of opportunities to further contribute towards this non-deterministic and open area

of research.

7.2 Future Work

This section presents different but interconnected directions for future work, in the field of automatic

emotion recognition using body movement analysis.

7.2.1 Automatic emotion recognition using high level movement notational systems

Even though there have been some approaches that used movement notational systems, the com-

plexity of the task allows further investigation. Most approaches so far have focused on specific aspects

or subcomponents of a notational system. Even though in many cases results are promising, all methods

are ad-hoc and are far from applicable in real life situations. They also fail to generalize in not only

broader context, but also in minor adjustments of some parameters.

Another common problem of existing movement notational systems is that they are designed for

purposes that do not necessarily regard emotional states. Laban Movement Analysis [137], Beauchamp

[67], Benesh [20], Eshkol and Wachmann [69] movement notational systems were created to describe
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dance movement based on some movement qualities or properties. Specifically Laban Movement Anal-

ysis has been tested in its suitability for emotion recognition (described earlier in 4.2). Although encour-

aging results have been produced regarding recognition of emotion in pre-segmented clips under specific

context, the presented Laban Movement Analysis computational models have several limitations in their

experimental data, as there is no evidence that the success of the recognition can occur in other applica-

tions and different context. In other words, the rules that encode the different Laban Movement Analysis

categories (Body, Effort, Shape, Space) into a computational model have not been successfully tested

across different databases. It would be interesting to see how LMA can be studied to offer a more com-

prehensive and holistic system that can be used to detect emotion of users in different context. Such an

approach would require that a set of emotions and their bodily manifestations are studied and observed

across different context cases and correlations are derived from the results of the observations. Context

and segmentation are significant components of such a system if the purpose is to achieve automatic

emotion recognition in real time for different context (e.g. different types of exergames).

Other notational systems [228] [217] [32], which have been designed for purposes that are related to

emotions have not been extended and applied to wider cases and are only proof of concepts. Perhaps the

most common limitation of these approaches and any other applications of notational systems described

earlier in 4.2, is the fact that all movement modalities provide raw and continuous signals which make

it very difficult to segment or to recognize emotions within this raw signal rather than from between a

predetermined set of annotated clips. The concept of segmentation for emotion is a different area of

future work itself and it is described in the next paragraph.

Furthermore, the area of automatic emotion recognition requires not only a segmentation process,

but also some form of recognition to take place during this segmentation. Perhaps the closest notational

system to achieve the goal of emotion recognition is the BAP [52]. BAP encodes a list of behaviors as

variables, all of them annotated with a short description that can help develop a computational model
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from BAP that can be used to study emotion expression. A significant limitation of this approach is

that leg movement and whole body posture cannot be studied in detail due to the camera settings. This

limitation could be tackled by utilizing different notational systems (such as LMA) to evaluate whole

body posture or lower limb movement. Also, as the authors of BAP mention [52], categorical coding

systems that focus on specific hand shapes, orientations, positions and movement trajectories have been

established in the fields of sign language [189] and linguistics and gesture studies [31]. Such information

can be integrated into BAP or into another layer of a holistic system that uses BAP. Another limitation of

BAP is the manual annotation of the movement clips with the labels/behaviors of the system. This was

partially solved by an extension called AutoBAP [221] that loads continuous body motion and outputs

a labeled XML file with a 62% support of the behaviors of BAP and with good agreement level with a

manual annotator. This does not contribute yet to emotion recognition, but as BAP evolves as a coding

system, AutoBAP can support the use of BAP by replacing the manual annotation. AutoBAP has some

limitations that can be improved in future research. The experimental results need to be validated by

the introduction of more natural datasets in the system. The current approach uses scripted datasets.

Moreover, as the authors of AutoBAP state, BAP was designed for situations of standing characters with

upper body information available. This was already highlighted earlier as a limitation of BAP and will

need to be addressed in the future. Finally, BAP and AutoBAP are recently established and will need

to be tested and verified. It is likely that through evaluation, some behaviors of BAP may prove more

significant for emotion recognition. Systems similar to AutoBAP may focus on those behaviors instead.

Different approaches for automatic annotation and emotion recognition could be derived, based on other

notational systems. This is discussed further in the next section.
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A very challenging component of an automatic emotion recognition system is the ability to segment

continuous body motion signals so that recognition can occur using the segmented motion clips. The

majority of current emotion recognition approaches described earlier in this paper [129] [201] [237]

[121] were based on manual segmentation and annotation of postures. Automating this process can yield

significant benefits such as achieving automatic emotion recognition itself, saving expensive human

intervention, avoiding ambiguity due to the subjectivity of human perception and decision and so on.

A rational approach would be to try and establish automatic emotion recognition based on automatic

gesture segmentation.

Currently, gesture-based motion segmentation is an unresolved topic under investigation. Tech-

niques that use continuous signals of motion parameters and look for sudden changes to those parameters

have been used [119] but with limitations to signals with gestures detected among non-gesture signals.

However, that assumption is not valid for most of the time for real application signals such as in ex-

ergaming. To address this problem, research effort is needed to initially determine a dynamic separation

of gesture and non-gesture signals using a technique like the one described in [119], and then test a set of

different techniques that can provide emotion recognition as performed with manually segmented clips

or with the use of context short memory mechanisms and continuous frame windows for recognition.

Also it would be important for a system to be able to separate different context periods within a signal.

For example, in the case of games, it would be good if the signal could detect movements that are actual

gameplay and movements in which the player does not interact with gameplay. It would then require

a different technique to be used for emotion recognition for the above two cases, as emotion detection

during gameplay could look into properties like arousal and energy of movement for gestures, while

for non-gameplay the recognition of more standard gesture properties could provide insight. Another

possible extension of existing research would be to compare the success of differentTHEOCHARIS ZACHARATOS



96

emotion recognition techniques in high-level against low-level segmentation techniques [6] [14]. For

example, LMA could be tested on both high and low level segmentations due to the correlations found

between LMA qualities and kinematic features. Moreover, it would be worth examining the use of fuzzy

logic to determine membership of emotions for each clip. This kind of membership can be used both for

emotion recognition, but also for studying the richness of motion with observations and annotations of

experts in emotion expression. Furthermore, an unsupervised learning technique could detect outliers in

frame windows to try and identify either context from non-context signal segments, or expressive from

non-expressive clips. On the contrary, supervised techniques can also provide solutions for this topic. In

Fiss et al. [74] describe how to select frames from a video of a human face that effectively communicate

the moment and work well as candid portraits. To automate this task, they have collected a large dataset

of human ratings, and trained a predictive model to select those frames that are most or least effective as

candid portraits. This technique can be used in selecting motion clips instead of frames for two different

approaches. The first would be to use it for an automatic selection and extraction of expressive clips

without the need to determine a definite emotion for annotating it. Those clips can be then given for

annotation by observers, as done in techniques described in section 4.4. The second approach would

be to establish automatic emotion recognition using a set of different features as in the current emotion

recognition literature [36] [76] [185]. Section 4.5 provides more information on this topic that can give

more ideas for future exploration.

7.2.3 Context knowledge of environment

Context knowledge describes information about the surrounding environment and more specifically

interaction items such as objects or other humans/avatars. Analyzing the context of environment when a

movement is performed can lead to more accurate emotion recognition. Today’s body movement-driven

computational models do not take into account the context knowledge of environment into affectTHEOCHARIS ZACHARATOS
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recognition results. However, successful recognition of emotional states in HCI is linked to individ-

ual human characteristics and behavior types. Therefore, an emotion recognition system has to take into

account the context of the interaction, as well as the user types of anyone involved in such an interaction.

Caridakis et al. [38] presented a neural network architecture that highlights the need for adapta-

tion and has the capacity to adapt to the user. They used a combination of different sensors to achieve

a multimodal fusion input based on fuzzy logic that included facial expressions and hand/body ges-

tures (upper body). However, this is limited to recognition of the active quadrant of Whissel’s wheel

activation/valence representation [233] and not to given emotional states. Moreover, it can adapt to

the user, rather than the overall interaction context. This technique can be further improved with the

introduction of affective user models [166] [236] [109] which can be really important for: (a) design

adaptive interactive applications for personalized experiences, and (b) globalize our systems by trans-

ferring a user’s model among different applications. Metallinou et al. [170] showed how adaptation

and learning can be enhanced by context-sensitive frameworks for emotion classification. In this ap-

proach, context is defined at temporal level as the emotional context of past and future observations.

They presented a context-sensitive Hidden Markov Model (HMM) equipped with this type of memory

mechanism that outperforms a context-free HMM in terms of emotion classification performance for

valence and valence-activation space into clusters. This approach tested audio and visual cues with the

former being more significant. However, this definition of context is more of a memory system and

would need to be broader to include knowledge and understanding of more general type as described

earlier in this paragraph.

Earlier in time, researchers used domain ontologies as components to define context-aware emotions

[42]. This ontology uses different modules to organize fundamental affective computing concepts. The

ontology allows the use of a formal description of abstracted emotions that can be personalized by users,

language and culture. Another similar approach uses a set of ontologies to use context and culture to
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improve the recognition process [164], however the testing results are limited to facial cues. Ontolo-

gies have also recently been used to apply context and user profiles in the recognition of emotional

states using EEG signals [239]. Such ontologies can be tested on other modalities such as body motion

data and movement notational systems to allow emotion recognition based on context information. A

recent approach, which is of particular interest to this survey, incorporated context in the bodily reaction

and the cognitive input to demonstrate how context influences the way humans determine and inter-

pret emotions felt by others [23]. As humans are the standard benchmarking technique to test emotion

recognition for non-acted data in the literature, the results of this study show that such ontology can offer

another step towards more realistic and successful emotion recognition based on body motion data.

Context is not only important during the actual recognition process, but also during the creation of

databases that contain emotion information and are used to train systems. In that particular case and for

the utilization of non-acted data, context may influence not only the emotion expression style, but also

the opinion of the person who annotates a given set of data with an emotion label. In such scenarios

the expressions are uncontrolled and annotation becomes a subjective decision with varying agreement

levels being the major benchmark measurement. Nevertheless, experimentation in emotion recognition

shows that invalid annotation can lead to poor results. Moreover, expressions themselves may vary based

on context, resulting in poor results when attempting to generalize by transferring emotion captured dur-

ing a given context as training data for different contexts. Siegert et al. [210] investigated how context

information influences the assignment of labels with realistic data. They used video and audio channels

to present data to the annotators. Their experimental results show that contextual information may be

more important in specific emotions, however their experimental results are limited and do not provide

a definite set of rules as a result. It would be interesting to investigate how to determine a set of features

or an adaptation of a notational movement that allow data sets that can generalize to a set of emotions

under different contexts. Another alternative approach would be to assemble a large
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collection of training data sets captured from different contexts, using different feature sets and different

combinations of modalities, organized appropriately in graphs or hierarchies, to allow the database to

perform under different context or even attempt to determine and recognize the context itself as a reverse

engineering task.

7.2.4 Brain and body emotion recognition

Emotional body language consist of an emotion expressed in the whole body, comprising coordinate

movements and meaningful actions which so far have been investigated in isolation and not related to the

perception of emotional body language. Darwin [54] has shown the close relationship between emotions

and adaptive behaviour. He has also described in detail the body expressions associated with emotions

in animals and humans with a particular emphasis on the link between emotion and action [179] [79].

As described earlier [27] [95] [99] fusiform gyrus and the amygdala of the brain is responsible for

processing properties related to emotional body language. The amygdala decodes the affective relevance

of sensory inputs and initiates adaptive behaviours via its connections to the motor systems [68]. More

recently, the discovery of neurones that encode complex movements and actions (mirror neurones) [192]

[82], provide the neurobiological bases for all emotional and social cognition skills. This has changed

the role that motor areas have in perception of body movement and emotional body language.

Brain activity directly associated with exposure to emotional body language is relatively unexplored

and emotion researchers are trying to get closer to the link between emotion and behaviour, in order to

shed some light on disorders that combine motor and emotional components such as autism, schizophre-

nia and Huntington’s disease. With respect to the perception of bodily expressed emotions, humans rely

on a mixture of visual form and motion cues. Attempts to emulate human emotion recognition in ma-

chines will require detailed knowledge not only of how all the different subsystems of the brain operate

but also of how they interact, which is currently a focus of research in cognitive neuroscience. AnotherTHEOCHARIS ZACHARATOS
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interesting use of brain technology on body-based emotion recognition would be to compare the success

of an emotion recognition system trained from clips annotated by brain signals with a system that is

trained using manual annotation. Moreover, as technology now allows neuron headsets to act as input

devices to robotic controllers and virtual simulations, it would be interesting to see how given body

motions and gestures are triggered from specific emotions and determine correlations between the two

of them.

7.2.5 Datasets for emotion recognition based on movements

As described in sub-section 2.5, only a few datasets exist for emotion recognition from body move-

ments such us the FABO database and the GEMEP database [97], to be used from researchers as ground

truth to test their experiments. Throughout this thesis, we have created datasets from motion capture and

from Kinect devices, that have been used successfully in the experiments described in previous sections.

One of our future goals is to publish and open this library of videos with the respective annotations, to

be used freely in the community as open-source. For this work further annotation needs to be made from

different people, from different genders, ages and ethnic backgrounds in order to generalize better the

human annotation.

7.2.6 Variational auto-encoders

Lately, deep learning based generative models have gained more interest due to improvements in the

machine learning field. Relying on huge amounts of data and well-designed network architectures, deep

generative models have shown an incredible ability to produce highly realistic content of images, text,

sounds etc. Among these deep generative models are also the Variational Autoencoders (VAEs). VAEs

are meant to compress the input information into a constrained multivariate latent distribution (encod-

ing) to reconstruct it as accurately as possible (decoding).THEOCHARIS ZACHARATOS
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A VAE encodes the data into a latent space R, as seen below in Figure 37.

Figure 37: Variational Auto-Encoder

VAEs should be selected if precised control is needed over latent representations and what it is

needed to represent. However if auto-encoders suffices for the feature representation its preferable to

use auto-encoders due to their simple and uncomplicated structure. As a future research we will try to

use the VAEs latent space, in a continuous motion capture data, to learn distributions, that can be used

as an extra feature space for emotion recognition or generate new expressive datasets.
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